diff --git a/.github/workflows/python-package.yml b/.github/workflows/python-package.yml index 47b2a0e..57d03f5 100644 --- a/.github/workflows/python-package.yml +++ b/.github/workflows/python-package.yml @@ -15,7 +15,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] + python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"] steps: - uses: actions/checkout@v3 diff --git a/.gitignore b/.gitignore index 5871a58..f173e0a 100644 --- a/.gitignore +++ b/.gitignore @@ -5,13 +5,14 @@ .coverage .vscode .venv +.mplconfig *.egg-info */__pycache__ -uv.lock - dev/ dist/ docs/site/ -build/ \ No newline at end of file +build/ + +*copy* \ No newline at end of file diff --git a/docs/docs/feature-checklist.md b/docs/docs/feature-checklist.md index d616238..87564da 100644 --- a/docs/docs/feature-checklist.md +++ b/docs/docs/feature-checklist.md @@ -3,7 +3,7 @@ ### 1. Descriptive Statistics | Feature | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| ----------------------------------- | --------------------- | ------------------------- | ------------------ | ------------- | ------------------------------------- | +|-------------------------------------|-----------------------|---------------------------|--------------------|---------------|---------------------------------------| | **Measures of Central Tendency** | | | | | | | Circular Mean | `circ_mean` | `mean(alpha)` | `circ_mean(alpha)` | `circ.mean` | `mean.circular` | | Circular Mean CI | `circ_mean_ci` | `mean(alpha, ci=95)` | `circ_confmean` | - | `mle.vonmises.bootstrap.ci` | @@ -31,7 +31,7 @@ #### One-Sample Tests for Significance | Feature | H0 | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| --------------------------- | ----------------------------------- | ------------------- | ---------- | ----------------- | ------------- | --------------- | +|-----------------------------|-------------------------------------|---------------------|------------|-------------------|---------------|-----------------| | **Mean Direction** | | | | | | | | Rayleigh Test | $\rho=0$ [^uniform] | `rayleigh_test` | `rayleigh` | `circ_rtest` | `r.test` | `rayleigh.test` | | V-Test | $\rho=0$ | `V_test` | `vtest` | `circ_vtest` | `v0.test` | - | @@ -46,7 +46,7 @@ #### Multi-Sample Tests for Significance | Feature | H0 | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| ------------------------------- | --------------------------------------------- | ---------------------------- | ----------------- | ----------------- | ----------------- | ---------------------- | +|---------------------------------|-----------------------------------------------|------------------------------|-------------------|-------------------|-------------------|------------------------| | **Mean Direction** | | | | | | | | Circular Analysis of Variance | $\mu_1 = \dots = \mu_n$ | `circ_anova` | - | - | - | `aov.circular` | | Watson-Williams Test [^one-way] | $\mu_1 = \dots = \mu_n$ | `watson_williams_test` | `watson_williams` | `circ_wwtest` | - | `watson.williams.test` | @@ -66,7 +66,7 @@ #### Goodness-of-fit Tests | Feature | H0 | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| ------------------- | ---------- | ------------------ | ------------ | ----------------- | ------------- | ------------------ | +|---------------------|------------|--------------------|--------------|-------------------|---------------|--------------------| | Kuiper’s Test | $\rho = 0$ | `circ_kuiper_test` | `kupier` | `circ_kuipertest` | `kuiper` | `kuiper.test` | | Rao’s Spacing Test | $\rho = 0$ | `rao_spacing_test` | `raospacing` | `circ_raotest` | `rao.spacing` | `rao.spacing.test` | | Watson's Test | $\rho = 0$ | `watson_test` | - | - | `watson` | `watson.test` | @@ -75,7 +75,7 @@ ### 3. Correlation & Regression | Feature | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| ----------------------------- | -------------- | ---------- | ----------------- | ------------- | ------------------------- | +|-------------------------------|----------------|------------|-------------------|---------------|---------------------------| | Circular-Circular Correlation | `circ_corrcc` | `corrcc` | `circ_corrcc` | `circ.cor` | `cor.circular` | | Circular-Linear Correlation | `circ_corrcl` | `corrcl` | `circ_corrcl` | - | - | | Circular-Circular Regression | `CCRegression` | - | - | `circ.reg` | `lm.circular(type="c-c")` | @@ -85,10 +85,12 @@ ### 4. Circular Distributions +All circular distributions assume angles are on ``[0, 2π)``. Inputs are automatically wrapped to that support as a convenience. We remove SciPy's ``loc``/``scale`` convention—parameters like ``mu``, ``rho``, etc. are the only inputs. + #### Symmetric Circular Distributions | Feature | Method | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| -------------------- | ------ | ------------------------- | ---------------- | ----------------- | ------------- | ------------------- | +|----------------------|--------|---------------------------|------------------|-------------------|---------------|---------------------| | Circular Uniform | PDF | `circularuniform.pdf` | - | - | - | `dcircularuniform` | | | CDF | `circularuniform.cdf` | - | - | - | - | | | PPF | `circularuniform.ppf` | - | - | - | - | @@ -134,15 +136,10 @@ | | PPF | `jonespewsey.ppf` | - | - | - | - | | | RVS | `jonespewsey.rvs` | - | - | - | - | | | Fit | `jonespewsey.fit` | - | - | - | - | -| Kato-Jones | PDF | - | - | - | - | `dkatojones` | -| | CDF | - | - | - | - | - | -| | PPF | - | - | - | - | - | -| | RVS | - | - | - | - | `rkatojones` | -| | Fit | - | - | - | - | - | #### Asymmetric Circular Distributions | Feature | Method | PyCircStat2 | PyCircStat | CircStat (MATLAB) | CircStats (R) | circular (R) | -| ------------------------ | ------ | ---------------------------- | ---------- | ----------------- | ------------- | ---------------- | +|--------------------------|--------|------------------------------|------------|-------------------|---------------|------------------| | Jones-Pewsey Sine-Skewed | PDF | `jonespewsey_sineskewed.pdf` | - | - | - | - | | | CDF | `jonespewsey_sineskewed.cdf` | - | - | - | - | | | PPF | `jonespewsey_sineskewed.ppf` | - | - | - | - | @@ -158,6 +155,11 @@ | | PPF | `inverse_batschelet.ppf` | - | - | - | - | | | RVS | `inverse_batschelet.rvs` | - | - | - | - | | | Fit | `inverse_batschelet.fit` | - | - | - | - | +| Kato-Jones | PDF | `katojones.pdf` | - | - | - | `dkatojones` | +| | CDF | `katojones.cdf` | - | - | - | - | +| | PPF | `katojones.ppf` | - | - | - | - | +| | RVS | `katojones.rvs` | - | - | - | `rkatojones` | +| | Fit | `katojones.fit` | - | - | - | - | | Wrapped Stable | PDF | `wrapstable.pdf` | - | - | - | - | | | CDF | `wrapstable.cdf` | - | - | - | - | | | PPF | `wrapstable.ppf` | - | - | - | - | @@ -172,4 +174,3 @@ [^F]: $F$ stands for distributions. [^one-way]: Yet anothr one-way ANOVA. [^two-way]: Two-way ANOVA. - diff --git a/docs/docs/images/circ-mod-cardioid.png b/docs/docs/images/circ-mod-cardioid.png index 894c5d0..c555b8f 100644 Binary files a/docs/docs/images/circ-mod-cardioid.png and b/docs/docs/images/circ-mod-cardioid.png differ diff --git a/docs/docs/images/circ-mod-cartwright.png b/docs/docs/images/circ-mod-cartwright.png index 50f92d8..6e97ac2 100644 Binary files a/docs/docs/images/circ-mod-cartwright.png and b/docs/docs/images/circ-mod-cartwright.png differ diff --git a/docs/docs/images/circ-mod-circularuniform.png b/docs/docs/images/circ-mod-circularuniform.png index f121343..bc4e154 100644 Binary files a/docs/docs/images/circ-mod-circularuniform.png and b/docs/docs/images/circ-mod-circularuniform.png differ diff --git a/docs/docs/images/circ-mod-inverse-batschelet.png b/docs/docs/images/circ-mod-inverse-batschelet.png index 00b3a1e..b756b6a 100644 Binary files a/docs/docs/images/circ-mod-inverse-batschelet.png and b/docs/docs/images/circ-mod-inverse-batschelet.png differ diff --git a/docs/docs/images/circ-mod-jonespewsey-asym.png b/docs/docs/images/circ-mod-jonespewsey-asym.png index 0a11582..d841494 100644 Binary files a/docs/docs/images/circ-mod-jonespewsey-asym.png and b/docs/docs/images/circ-mod-jonespewsey-asym.png differ diff --git a/docs/docs/images/circ-mod-jonespewsey-sineskewed.png b/docs/docs/images/circ-mod-jonespewsey-sineskewed.png index a9bba4c..65183fa 100644 Binary files a/docs/docs/images/circ-mod-jonespewsey-sineskewed.png and b/docs/docs/images/circ-mod-jonespewsey-sineskewed.png differ diff --git a/docs/docs/images/circ-mod-jonespewsey.png b/docs/docs/images/circ-mod-jonespewsey.png index 45dbbd9..7291069 100644 Binary files a/docs/docs/images/circ-mod-jonespewsey.png and b/docs/docs/images/circ-mod-jonespewsey.png differ diff --git a/docs/docs/images/circ-mod-katojones.png b/docs/docs/images/circ-mod-katojones.png new file mode 100644 index 0000000..b682bd1 Binary files /dev/null and b/docs/docs/images/circ-mod-katojones.png differ diff --git a/docs/docs/images/circ-mod-triangular.png b/docs/docs/images/circ-mod-triangular.png index 6166a6e..2a013f6 100644 Binary files a/docs/docs/images/circ-mod-triangular.png and b/docs/docs/images/circ-mod-triangular.png differ diff --git a/docs/docs/images/circ-mod-vonmises-flat-topped.png b/docs/docs/images/circ-mod-vonmises-flat-topped.png index 2ed2e2e..4edcae6 100644 Binary files a/docs/docs/images/circ-mod-vonmises-flat-topped.png and b/docs/docs/images/circ-mod-vonmises-flat-topped.png differ diff --git a/docs/docs/images/circ-mod-vonmises.png b/docs/docs/images/circ-mod-vonmises.png index 10af6b9..429cf7c 100644 Binary files a/docs/docs/images/circ-mod-vonmises.png and b/docs/docs/images/circ-mod-vonmises.png differ diff --git a/docs/docs/images/circ-mod-wrapcauchy.png b/docs/docs/images/circ-mod-wrapcauchy.png index 13906eb..723dd4b 100644 Binary files a/docs/docs/images/circ-mod-wrapcauchy.png and b/docs/docs/images/circ-mod-wrapcauchy.png differ diff --git a/docs/docs/images/circ-mod-wrapnorm.png b/docs/docs/images/circ-mod-wrapnorm.png index edbdb08..c94790f 100644 Binary files a/docs/docs/images/circ-mod-wrapnorm.png and b/docs/docs/images/circ-mod-wrapnorm.png differ diff --git a/docs/docs/images/circ-mod-wrapstable.png b/docs/docs/images/circ-mod-wrapstable.png index acf35bf..e868e6f 100644 Binary files a/docs/docs/images/circ-mod-wrapstable.png and b/docs/docs/images/circ-mod-wrapstable.png differ diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index c8e2259..b5824f9 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -12,6 +12,8 @@ plugins: - mkdocstrings: handlers: python: + paths: + - ../pycircstat2 options: show_source: true docstring_style: "numpy" diff --git a/examples/B1-Fisher-1993.ipynb b/examples/B1-Fisher-1993.ipynb index aae4826..d403c20 100644 --- a/examples/B1-Fisher-1993.ipynb +++ b/examples/B1-Fisher-1993.ipynb @@ -47,7 +47,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAHqCAYAAAAK6keWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbFlJREFUeJztnQe0FMX29euSswhIFER8iiTJyUcSFUQU0E8FI0hQFBBESSLiUxGzTxEDqBhQAQMZEUUQlAwXSYooSSTnnOtbu97q+ffM7enuiZ32b63h0mF6ume6a586dc6pDCmlFIQQQggJDNmcPgFCCCGEpBeKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQkjAoPgTQgghAYPiTwghhAQMij8hhBASMCj+hPiMkSNHivLly4s8efKI+vXriyVLlpjuv2rVKtG4cWO1f9myZcVLL72UZZ8vv/xSXHnllWqfatWqiRkzZqTwCgghqYbiT4iPGD9+vOjbt68YOnSoWLFihahevbpo2bKl2L17t+H+hw8fFi1atBCXXHKJWL58uXj55ZfF008/LUaNGhXaZ8GCBeLOO+8UXbp0EZmZmaJdu3bqtWbNmjReGSEkmWRwYh9C/AN6+nXr1hVvvfWWWj5//rzqzffq1UsMHDgwy/7vvPOOGDx4sNi5c6fIlSuXWof9Jk2aJH7//Xe13L59e3Hs2DExbdq00PsaNGggatSoId599920XRshJHmw50+ITzh9+rTqvV933XWhddmyZVPLCxcuVMudOnUSzZo1C23H+iZNmoSEH8BTsH79enHgwIHQPvpjavtoxySEeA+KPyE+Ye/eveLcuXOiRIkSYeuxjJ49KFWqlChXrlxoG9Yb7a9tM9tH204I8R45nD4BQkj6GD58uNOnQAhxAez5E+ITihUrJrJnzy527doVth7LJUuWNHwP1hvtr20z2yfaMQkh7ofiT4hPwLh97dq1xezZs0PrEPCH5YYNGxq+B+vnzZsnzpw5E1r3/fffi4oVK4oLL7wwtI/+mNo+0Y5JCHE/FH9CfATS/EaPHi0+/vhj8dtvv4mHHnpIRerff//9avugQYPEfffdF9r/rrvuUkYD0vjWrl2rUgXfeOMNdRyN3r17i5kzZ4pXX31VZQAgFXDZsmWiZ8+ejlwjISRxOOZPiI9AWt6ePXvEU089pQLykI4H4dYC9nbs2CG2bt0a2v+CCy4Qs2bNEj169FBeAwwd4L0PPPBAaJ+rr75afP755+LJJ58UTzzxhLj88stVKmDVqlUduUZCSOIwz58QQggJGHT7E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQkjAoPgTQgghAYPiTwghhAQMij8hhBASMCj+hBBCSMCg+BNCCCEBg+JPCCGEBAyKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IQHn7NmzYt68eeovISQYUPwJCThSSnHgwAH1lxASDCj+hBBCSMCg+BNCCCEBg+JPCCGEBAyKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQkjAoPgTQgghAYPiTwghhAQMij8hhBASMCj+hBBCSMCg+BNCCCEBg+JPCCGEBAyKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQkjAoPgTQgghAYPiTwghhAQMij8hhBASMCj+hBBCSMCg+BNCCCEBg+JPCCGEBAyKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQkjAoPgTQgghAYPiTwghhAQMij8hhBASMCj+hBBCSMCg+BNCCCEBI4fTJ0AIIV7njz/+EH/99Zf417/+JS6//HKnT4cQS9jzJ4SQONm/f7+44YYbRMWKFcWNN94orrjiCrV84MABp0+NEFMo/nEyfPhwUbduXVGwYEFRvHhx0a5dO7F+/fqwfUaNGiWaNWsmChUqJDIyMsTBgwdtHXvu3LmiVq1aInfu3Kon8dFHH2XZZ+TIkaJ8+fIiT548on79+mLJkiVJuzZCiD3uuusu8cMPP4Stw/Kdd94pgso777wjrrrqKtXu4dWwYUPx7bffmr5n1apVonHjxqo9K1u2rHjppZey7PPll1+KK6+8Uu1TrVo1MWPGjBRehf+h+MfJTz/9JHr06CEWLVokvv/+e3HmzBnRokULcezYsdA+x48fV72AJ554wvZxN23aJFq3bi2uueYasXLlStGnTx/RtWtX8d1334X2GT9+vOjbt68YOnSoWLFihahevbpo2bKl2L17d9KvkxAS3dWP5/LcuXNh67GM9Rs2bBBB5OKLLxYvvPCCWL58uVi2bJlo3ry5aNu2rVi7dq3h/ocPH1Zt5yWXXKLe8/LLL4unn35adZ40FixYoAyqLl26iMzMTNXZwmvNmjVpvDKfIUlS2L17t8TX+dNPP2XZNmfOHLXtwIEDlsfp37+/rFKlSti69u3by5YtW4aW69WrJ3v06BFaPnfunCxdurQcPnx4wtdBgsfp06flpEmT1F9inxkzZqjnOtoL28n/uPDCC+X7779vuO3tt99W20+dOhVaN2DAAFmxYsXQ8h133CFbt24d9r769evLBx98MIVn7W/Y808Shw4dUn+LFCkS0/swLNCpU6fQ8sKFC8V1110Xtg969VgPTp8+raxj/T7ZsmVTy9o+xHs9SLhFg9pT9CqXXXaZ6XYM2QUdeEHGjRunPKJw/wO0d2j3NNBuNWnSROTKlSuszcMwqhY7YdUuktih+CeB8+fPK/f8v//9b1G1atWY3luuXDlRqlSp0PLOnTtFiRIlwvbBMlxjJ06cEHv37lUPlNE+eK8fCIoYMljM+yA2J3v27GHrsAxhCnLU/+rVq0WBAgVU3FL37t3FxIkTReXKldU2tHdo96zaPG2b2T5+afOcgKl+SQBj/xh7+vnnn2N+7yeffJKSc/KqGCKASh/fgEb0iy++EBdeeKEIUrDYzJkzHTsvEvt9qgc9VNyzQQYGLWKW4BH96quvRMeOHVWcFAwABEsT52HPP0F69uwppk2bJubMmaMCXRKlZMmSYteuXWHrsIyo2bx584pixYqpnoXRPnivl/Fb5LSZB4PBYv66TzH0Bi8AflcYbn40VmMBLnwMe9SuXVuJPYKS33jjjZjaPG2b2T5eb/OchOIfJ1JKJfxwZ/3444/i0ksvTcpxMS42e/bssHXIJtDGy/BQ4YHS74NhByxr+3gRP4mhHXc+CsKY8eeff6b0HIMytJKu+xTPIDJviDH4fk6dOmW4De3WvHnzVMaUvs3D86MZUVbtIokDpyMOvcpDDz0kL7jgAjl37ly5Y8eO0Ov48eOhfbCcmZkpR48eraJ/582bp5b37dsX2ufee++VAwcODC1v3LhR5suXT/br10/+9ttvcuTIkTJ79uxy5syZoX3GjRsnc+fOLT/66CO5bt06+cADD8jChQvLnTt3Sq/ip8hpZGbgN9OfP5b1GRvr1683vd4//vgjJeeGew/nof+sm266yVa0P84Zv0Oqzs0L+Ok+TRVoz5D1tGnTJrlq1Sq1nJGRIWfNmhXajnZP4+DBg7JEiRJq3Zo1a1T7hjbwvffeC+3zyy+/yBw5cshXXnlFtYtDhw6VOXPmlKtXr3bkGv0AxT9Ooj38Y8aMCe2DG9Rqn6ZNm8qOHTtmSQ2sUaOGzJUrl6xQoULY/hojRoyQ5cqVU/sg9W/RokXSyzglhk5ehx0jIdkYfWaBAgVMxd/IYMDy/v37ZdDwy32aSjp37iwvueQS1TZddNFF8tprrw0JP0B7h3ZPz6+//iobNWqkOjVlypSRL7zwQpbjTpgwQV5xxRXquEiHnj59elqux69Q/IlriCaGaBS80uOMpWcI8YwU1Vq1asmlS5emVbjy5s2rxB89KiOcMFLcDL8P4gc45k9cAyKkI3N5CxcurLIovJIKF0vuN8YzERyG0swIFgMYN0bZ6FRcp1WcwcaNG30di5EM8H107txZXH311WHrGeFPvAbFn7gGTQzRwKJud6NGjbLMh+D26H8YKEhPjCX3e8iQIeLXX39N+XVaGSYVKlTIss7pwEQ3BnG2b99ezJ8/X92fKLXNCH/iRSj+xHVAICFU6PF7scdp5MFAqtNzzz3naM/azDCJZhywil309D5Ul/vwww8DXcyHeBeKP3ElXu5xxuLOT/d1Ghkm+lKryfBk+A0OfRA/QvEnrsQPPU477vxkX6c+f98ol/9/iSqJGwxBGuP2siFKSDQo/sSVmPU4td60H3qLyepZGxUWMioyZOS+njt3rumxYzEY/Fg8yA+GKCFZcDrdgJBoGKXCeSXXPNGUv8aNG8d0bUbpZ0Ypk6lK9bNTC0BfJMhLBYNwrkjBZHof8RMUf49y/vx5GRQgEGh8s2XL5pnGN5ZiMNh3/Pjxsk6dOnEZN1afZfXSxN+oaIrd6zAzEIwMAy8YcV49b6cJUtvkZSj+Hn24UCZ4w4YNMgiku6pasnqlRoIIAwa9ek3w8X+z3rod48bKy2BX/I16/nY8GFa/D67RyiuRTiPO7u8b7feDIeoFj4UTbN26VS5cuJAGgAeg+HuUAwcOqJ5aEAyAdNVTT3YZW6thC7svK6GJpedvJMRm5X3tGF6JGh+pMuIS+X1Zxjc+4Z86darcvXu306dCbMCAP4+CyneoMoYAK79HG6cr4CrZUwprKX8oBoMpX+PF6veNFjRoFEA4efLkpKf6Wf0+dkn1fRzL78sI/9j4+++/VWZL/fr1xUUXXeT06RA72LEQiHsJigcg1XX/E+npmbmREx2Pt9vLjDU4Uuux4y96/GYT+xgdO/J4Zr9Pqnv+dtz4sf6+8ezvlQDGZMMevzeh+PuAIBgARgJUtGhRWy7cVAwtRBuzjzyHRFzi8YyF60Vd/38zrMTf6NixGAh2MhHiGfOPxY0fz+9rJ8I/6DMeUvi9C8XfJwTBANALEHqUyUy9stvTs4oAjzyHRHr+yRIRiDoaacytvmLFCrlkyRK5YMECNef67Nmz5fPPPy/vvPNO+d1336l1mDt98eLFal+8B/Oynzx50tZnGRkIqUrZjGV2vWT9vnY9Hm7NQkkmFH5vk4F/bI0PENeDSXAWLFigxmn9XHgEcQ4oYGO2PZ6ysyiEgzFgfWEejG1jjBxj99H2sToHu+8BiA/o1auXqFmzpuU1nDx5UuzYsSP02r59e9iytm7v3r0iGRQpUkSUKlVKvUqXLh36f+S6fPnyGb4fhX8wVq7dm9r/4/mt4rkH4v19Ea9Ro0YNMW7cuLBjpuo+9AIc4/c+OZw+AZL8IEAYAMCvBoCdYKx4Gl2Uq0XwFyrwaTRs2FBN4Qrhgp2s32b3HIyOG4vgo3rf8uXL1QtzBKxdu1aJeuSMh7ly5QoT48aNG4ctIwAxZ86cIkeOHKG/eOH48+bNE61btxYZGRni7NmzodeZM2fEoUOHshgX+A0wsx3+DyNET6FChdTnXXnllaJ27dqhF65Nf32JCGOs94A2Fe/x48fVeRuVKdaqMkZy/vx59b0neg5+gcLvDyj+PiMIBkCqov+16HwIfWZmphgxYoSaWRAvEEtZYf056I9r1fPdt29fSOi11+bNm9W2ggULKgOhefPm4uKLL87S80bPHOIdK2XLlhX//POPmtIXRkEswCDSjAO9gYC/a9asEa+//npoIqMyZcqEGQP4PnHeqbwHYNggyl8v6tGMrVjFPIhlfyn8/oHi70P8bgBo6WdGLlxMnZsoaOAhDpiyVc/KlSst36u5kY16fJE9X4j10qVLxYQJE0JCv3Xr1lDvGeL4//7f/wuJJX7HRFIGUwGMDdxveFWqVMnQOIDxojdm3njjDSXKAOKvNwgw82HJkiUTugf033+0qXjz588fcvUnIub4jSCGZueQCPBGwCiJd3gkmVD4fYbTQQckdfg5CDCVdf+tgsPMItfNPhdVz9asWaMC7Bo2bCgzMjLUey644AJ5zTXXyMcff1x+8cUXKvjs3LlzMl3YjfZPFvgeEET41VdfyUGDBskWLVqEZW7UrFlTPvXUU3LZsmWmleKsUhDjSd+Mdx6DZAdqui2LgMF9/oPi73P8bACkqu6/VVoYPk+/jMwDpP0ZiQkEFRH1vXv3lpdeeqnaP3/+/PLWW2+VY8aMkX/++afjpVDTLf5G4DvYsmWL/Pzzz+Vdd90lCxcurL6rMmXKyAcffFDdwydOnIgpBTFV6ZvpKPvrpiwCCr8/ofgHAD8bAKkow2rnmFY575999pns0KGD6tXjPRdffLF86KGH5LfffhtVxIIs/pHgXObMmSMfffRRedlll6nvMF++fLJdu3byww8/lLt27bI8RiLpfdEMunSU/XVTaWEKv3+h+AcEvxoAqar7H2vPCz341157TbnvtffVrl1bPv300ypf3unevdfEXw++u3Xr1skXXnhBXn311Wq4BC8MnWAIBUMp0b5fO79jLL91OuaZSNdcFlZQ+P0NxT/ABoAfSpLa7SXFeq12StoePXpU9UIhQtieO3dueeONN8p33nlH/v3339IruF38I0GvH0MmGDrBEAq++6uuukq+9dZb6h5PZVxAOsr+uqHnT+H3PxT/gIHGcdq0abJ///6mwpZq4m0Ujd5jVlfezhiuGUbu/eXLl8vu3bvLQoUKqR4oAtbwOUeOHJFexGvirwdDKBCpW265Rf3mmJ74vvvuk/Pnzw/zBiQjLkC7/4xmRkxW2d9YPiNVUPiDAcU/gNx9993y008/lW3btk17wxJPo2j1Hjt1/xNtRI8dOyZHjRqlXPk4RunSpeWTTz6pota9jpfFX8/27dvVMECFChXUb1SpUiX5+uuvy4MHDybUyza6/6zmlYh12Ciez0gFFP7gQPEPGFpjhwYy0gBIh0sxnihmu+8xq/sfr/sUjeGAAQNkkSJFVC//pptuklOmTJFnzpyRfsEv4q+BNMkffvhBtm/fXubMmVMWKFBA9uzZU9378dxf0aL7K1euLEePHp2UoMBUz1ppBwp/sKD4Bwy9m9PIAEhlMFE8jWKyx2SjuXT1wF38888/y9tvv101wIjY79u3r9y4caP0I34T/0hvwJAhQ+RFF12kfnPEZGACI/2QgFlcgJ37KdaZHI1SDBM1UhOFwh883FUujKQcfRWzjRs3iqFDh4rbbrtNtG3bNlSd7Ntvv1WlaJONnfKp8bwHVdC0c7ba36xiG4zhGTNmiHr16qkSsKhmhmp027ZtE6+++qq49NJLbR+buANUEHzmmWdU5cQxY8aossOoDFilShU1UQ/q9mvll3Ef4ffHXyxjvZ37CRUEMXdDvJUC43kukgkr9wUUp60Pkn4iXYyaBwDFVVI5xmjVw4nHhVqlSpWwZbhJrXpqRkMGmOK2SZMmajv+oneWzip7TuLnnn8k6PFj2uLWrVur3xqFeSI9AfF6knDvxhqwh/0RS+JUz589/uBC8Q8gRm5OlFRNRxCg0dimVuY2mtFh5z36c0aglN0SvGvXrg1dM9LF0HC7OSc/FQRJ/PUgIwB1A/DbN2/eXC5ZssRwP6P7z07lR7OAPaMAv8h7OtVBuBT+YEPxDzBagBx6PukKArSqyW/U6Nl5T+QrMr0vsmIbGr77779fBW6h7O7YsWMD09OPJKjiD2DoIYBT8yDddttt8vfffw/bx+79ZxQUiOwQu+mpZkZqsqHwE4o/cSQIEI1hrO5OO+/Rn7NRbvfevXvlY489pgryIAjszTfflKdOnZJBJsjir3H27Fn50UcfyXLlyilR7tatm9y2bZvhPBJGIm9liOpFPJ7hr2RC4SeA4k+yNEaRBgA8A6lIN4qnjKnVe6IZDqjGN2zYMFWYB6lfKLt7+PDhpF6PV6H4hxcNQplmuOzz5Mmj0jz1wm3kBYh090e+YBzoPVlOlu+l8BMNij9xLAgwFal/kUMGyMdHud2SJUuqnG/MrseGLxyKf1YOHTqkUgRRPhgzDGJegePHj4e2671KdoMC9aWmY73vkwGFn+ih+BNHgwDNCqzEUs7XyDhZtWqV6pUhkOree+/1RTW+VEDxj87OnTtljx49ZI4cOeQVV1whf/nlF8P9cN9Zuf8xZKXdz+mespfCTyKh+BNHgwCNjA5EXuMVTdSjuV6XLl0a6u0/99xzqqePQK5oUdzkf1D8rfntt99kgwYNlCGJgk96L4B2T9pJM7V7jycTCj8xguJPXBEEqHejxlrOV2+IrF69WkVYoxc2aNAgefLkyaSepx+h+NsPCnz55ZdVsCi8AKgNEQmC+4w8ANHS+KJNOJQsKPwkGhR/4qogwHjHQ9HbR0Bfrly5VM119vbtQ/GP3QtQv359JfKPP/54mBcg1rRURvUTp6D4E1cEAWrj+0hzMmssjTwOa9askXXq1FGN8cCBA1XENrEPxT8+L8CLL76ovAAVK1aUCxcuDNuu9ejjuZ+TAYWfWEHxJ44GARpVOrPbU0JvH1O4oreP6VsXL16cxKsPDhT/+Fm3bp2sV6+eoRfAqch+Cj+xA8WfOBYEiIbRqGiK2RipBsry1q1bVzW6yMVmbz9+KP6JASMUqYAwQq+88sosXoB0RvZT+IldKP4k7UGAsfb29UMLKMf60ksvhRraRYsWpfy6/Q7FPzlEGqTa92k2ZXAyofCTWMjAP07PLEi8AaY6rVixYmi5QoUK4j//+Y/46quvxOTJk8V3330nzp07p6Ysvfzyy6Mep3HjxmLBggVqOlUzRo8eLcqUKRM63rFjx8T9998vvvzyS/H444+LZ599VuTJkyep1xhEzpw5o6ayvfHGG0XOnDmdPh1Pc/bsWfHKK6+IIUOGiCZNmogJEyaIokWLqm2YchrT81o9H7E8j5gOGMfDc8BpeUlMxGQqkMCTSBAgevyx5ELrhxG2bNkia9SooSquffPNNw5cuX9hzz/5zJ07V5UIvuyyy1RAajKJ9Jw1bdpUfvnll/Kvv/5K6ucQf0PxJ2kLArRTBc3ovZh6FZPwlC9fXlXtI8mF4p8aNm7cKKtVqyYLFiyoZg5MhQEO4f/iiy+UYZzK6X+J/6D4k7QEAc6cOTPm8X3w/vvvq0p9aOT27Nnj8FX7E4p/6jhy5Ii85ZZbVADr8OHDVcxKIuizBzThv+qqq9JSN4D4i2yxDRIQ8j8wZtmqVSs1xg82btwohg4dKm677TbRtm3b0H6ZmZnihhtuUC8zMjIyRK1atdQ45syZM0XBggVF7969RdeuXUWXLl3E999/L4oVK5by6yIkmRQoUEDFxCAGYNCgQeLuu+8WJ06ciPt4GOMHTZs2Fd27dxfDhw8Xq1atCm1HTAEhtnDa+iD+rgSoldq16u3r5zzHmOZ1112nJlN5++23nb5E38Oef3qYMGGCzJs3r3om/v7777iKYMHTZtTjZ8+fxArFn6QsCLBDhw6Wog/DAEGA+nQpBEkhWGrOnDmOXldQoPinjxUrVsiyZcuqKaYj6wHYDe4bN26cGuNPR90A4l/o9icJ88UXX4jrrrsutIwhgNdee020bt06bAjAiOuvv15MmTJF/X/atGmiQYMGIm/evGLp0qWiWbNmKT93QtJJzZo11b192WWXKdf9xx9/bLr/XXfdJX744Ycsrv6///47bD88f3gOCbGN09YHCV4QoPaaNWtW6L2vvfaaCopq166dPHz4sKPXETTY808/mG2yS5cu6jno37+/YSCgVXAfnp9UzghI/A3Fn6S9EiBc/ZqLEo3eM888o9ZjUp5z5845ffqBg+LvDLj3X3/9dXXvP/TQQ1nufe05ijbGn6pJgUgwyGHfR0CIPeDS1NCyAFAJEKAS4L///W/looTx+eSTT4rnn39eDBs2TDzxxBMOnjUh6QUZLn369FGZLd26dROnTp0So0aNEtmzZ1fbtaEBo6h+gMp+hMSN09YHCVYQYJ8+fUK9nkcffVRtg8ufOAd7/s6DZwMeMVTKxERBWq1+VO5jcB9JBQz4IwmD3Pxvv/1W1S43CwJE/j7WYf8ePXqI119/XYwcOVI8+uijDp05Ie7gnnvuEePHj1dzAXTo0EHl86NWP2pflChRwjS4z+j5I8SSlJgUxHG0vOBUBgMZzc4XWdNfCwLUzkN7D4L7Pvjgg5SdG7EPe/7uAWWAMWNl/fr15bZt26I+R3afP0KiQfH3GelsEGKdpxyu/h49eijh79u3r9ywYUPSz4nEDsXfPcDV//TTTysD4LbbbgsNASTj+SNED8XfZySrQbDyHERW9rOqNAbhh+Bj2+jRo+WBAwfk9OnTaQC4AIq/e4R/6tSpcvfu3XLy5MmqwuXdd98tz549m/Dzp38f0wMJoPj7iHgbhHg8B/p0PqNXZBrS4MGD1foRI0aE1tEAcAcUf3cJv74cMIIAUQ8gWhqg3eePQwQkEgb8+Qht0o9oYNIPq+AgfUUxDSzfeeedUdP5jNCnIT333HMqle+VV14RPXv2DK0vXLiwuPrqq9U5cUISElRQrQ/BffXr1xcXXXRRaP3tt9+uKgB++OGHolevXio1Np7nL5bnmgSILOYA8W3PHzX0zSz/WD0HdoYY3nzzTbX+2WefjXre9AA4C3v+7urxR4JprbUiWPEM8SXDI0j8B8XfZ0RrEDBRjlVDYeVKHDVqVNh4IQwHM1ciyvzCbYl8fitoADgHxd+9wq/xyiuvqOcL9QA0rJ4/bXwfMTaxDBGQYEDx9xlGDUJkjz+a5W/VQ4jWyBilIeFYhQsXljfccINhwJIRNACcgeLvbuHXAmY7deokc+fOLRcvXhy2LVo6rd1nmT3/YJKBf5weeiDRwXg4xvIxhnf55Zfbfh/G9DGOjvfh74033hh13xkzZqgxRHwOyoguWLBAnDt3LqwMaeRtghKkKDaCwj2RHDp0SI1fgkWLFqmxfbscPHhQff4VV1zB8qVp4syZM+oewD2SM2dOp08nsGP8VqD87zXXXCM2b94sli1bJkqXLm243w033KDG8/XPsNFzbPYMkwDgtPVBjElmdG6ssQAYIoi314BefqtWrVSvH58bD/QApBf2/N3b449kx44d8uKLL5Z169aVx48fz7I9Xu8dCR6M9ncpyYzORS+6ZcuWoQlDNLCMXjl62pG970aNGqne4OjRo02PHRmlP2jQIPHdd9+pUqX43HhgFgDxI/H2+PWULFlSTJo0SaxevVo88MADWTxyVhk/eJ7xXOPZQo//wgsvjOs8iA9w2vogWUlFdK5RLAB651afE8u5fPLJJ2odpilNBvQApAf2/N3f448EU/ziWXvppZfC1jOyn9iFPX+f5utHAgsflj7eB8sfPfvDhw+bvmfu3LnqXBo3bmzoNYA3QYtDWLx4sZqW9P777xe9e/cWyYAeAOIHktHjjwST/2AK7AEDBqjn2Y6XD888niNOAEQUts0E4pl8/USPb/SKjAPQfyYmIClVqpRs2LChPHnyZNK/D3oAUgt7/t7p8etB1b+bb75ZFipUSK5bt87Uy2f2/JJgwp6/CzGz3osWLSoWLlyYUCyAlWfBCH0cgH688MSJE+KWW25R5/bNN9+I3Llzi2RDDwDxIqno8evJli2bGDt2rChbtqxo06aNOHDggKGXD547PL96WN2PUPxdCubrRhqOnoYNG4p9+/ZlSeHBMoLs7LrzrEqDGoHP+Pnnn8NSDhFsBFf/mjVrxOTJk1UwUqqgAUC8RKqFX6NQoULq2du/f79o3769OHv2bGgbnlM86/Pnz0+4zSD+g+LvUiKtd/zFGF8yYgGieRbQk8ifP7/lZ2i8++674rPPPhNjxowRtWrVEqmGBgDxAukSfg0I/Jdffil+/PFH8Z///Cfm+CESUJwedyDOxALEUwlQHy28ceNGmT9/ftm9e/c0fwuMAUg2HPP3xhi/Ff/5z39Uye5ly5aF1jH6n0SDFf48hlH1Li1fH+N6keutKnhplQCLFSsmunfvLlasWBF1X/Tuly9fLs6fPy+uvfZasWnTJpVvXLBgQZFuWAkwebDCnzd7/Ea/Iz4bf1EBUIu/idZmsLpfwIlqFhBf1e7XJvmIZunjmJiEx+w4S5cuVfu+9dZbann27NnSSegBSA7s+Xu7x6/n119/lTlz5pSDBw+2PQGQGVbtBvEuFH+Pop/Mw2o2vlq1apk++FauQRgF2ux/f/31l8yXL5986KGHpBugAZA4FH9/CL/GM888o9z/mrGuYTQBVzrKixN3Qre/D0AAXMWKFaNuRyAfXPXRXH4IEDSb+AfufrgNL7jgAtG8eXOxZcsW5e4vUKCAcAMcAkgMuv296+qP9ns2aNBATQSEYbp40m85VOB/GO3vEyDQRnUBgF74jdJ8rFL/xo0bp7IP3n77bfHTTz+JDz/80DXCD5gFQJzAjcIPYMB99NFH6nmIjP63A96H9oHpgf6G4u9hkNsLCx29fgTqRT6s1atXt5UaaKeEL/ZBKdGHH35YTSvqNmgAkHTiVuHXqFatmnjqqafEiy++KJYuXWq5vz5FmOmBAcHpcQcSPxiDw9he5Pg8xvjtTMpjNZWvNsaHMqJNmjSRl156qTxy5Ih0M4wBiB2O+Xt7jD8a+D3RFlSuXFmeOHHC9ti+nQBi4n3Y8/co0VxzcPHr0/WiDQcYlQmOVsJ35MiRYt68ea5z9xtBDwAJco/fyP2P3nw097/R1OFoF9A+WE3mRTyO09YHiY9YI/zjtezRg0Z0f48ePaSXoAfAPuz5+6vHH8mwYcOUR3Dx4sVh6608g40bN2a0v49hz9+jWAXprVy5MkvEP7wAdssEAySCdO7cWZQoUUK88MILwkvQA0CC2uOPpH///urZ79Spk8oA0LAa2x80aFBYeXHNE0j8AcXfhzP/GUX464cDYAiYoaXLffXVV2pSkNGjR7ve3W8EDQASdOEHOXLkUPNvrF+/Xrz33nu2OxDaJF6tWrWiq9+HUPx9NvOfVYR/hw4dVIaAEfoxPeQKDx48WD34KOXrVWgAkCALv0bVqlXF/fffL5577jlx5MgRyw4Ex/b9D8XfZzP/wSCIZThADwwJ7f0I7kOg0PDhw4XXoQFAgiz8Gk8//bQ4fPiwePXVV007EPp2gPgXVvjzIdGqc0VmBuiZNWuWuP7669X/jx8/rlx+yOfHlL1+gZUAjWGFP/8Lv0a/fv3UVNwY7y9evHiWCb40V79W/0NbJv6DPX8fEs9wwNmzZ0P/f+ONN8TevXvFs88+K/wEPQAkyMKvBfGhIwD3vx5tbB8pflrhMBiDMJSxfODAAcfOmaQGir8PiWc4QOsJo2ogqoI9+OCDokKFCsJv0AAgQRV+UKRIEVWpE71/TMltJ+8fy3feeWcaz5KkA7r9A4SdyTqQFoQa/nD5IcXPr3AI4P+g2z8Ywq+hDeshkPfTTz+1PUEYtnMIwD+w5+8h9PW348EquGfbtm1ixIgR4rHHHvO18AN6AEgQhR/ky5dPDB06VMXzrFq1KrSeNf2DBXv+HgCueLjjUM5XA6k4EO14im5EBvdodO3aVUyePFk1AoUKFRJBgB4A9vyDJPz637xKlSrq+Z8+fbpax55/sGDP3wNYjcPF6hEwKtzx22+/qUIgTz75ZGCEH9ADEGyCKPwARt6wYcOU0Yd5OwDz/oMFe/4ux8oax0Q8P//8c8IegVtvvVVVAEQVsNy5c4ugEWQPQFB7/kEVfn3Vz3r16qnfHPd+RkaGiupHpyJZXkbiXtjzdzlW43B4aBONzF28eLGYOHGieOaZZwIp/IAegGARdOHXynxjzo5FixaJKVOmRM0UYk1/f8Kev8d7/mbvs1us46abbhKbN29WjWGkyy9oBNEDELSeP4VfZAn6RY9/2bJlqvdvBIv++A/2/F1OtHE4q8l5MjMzbRXrQJwAAn769u0beOEH9AD4Gwp/Vh5//HE15PfLL78YBhuz6I8/ofg7jJ1gPaMUPQiUGUjZs1OsA/sVK1ZMBRWS/0EDwJ9Q+I1p0aKFEndU9oyERX98DNz+JP3s27dPtmzZEkMuoReW9+/fH/U9f/zxh5wxY4b6C7B/9uzZw46B5UaNGoWti3xp7z948KAsUKCAHDx4cNqu20scOHBATp8+XW7YsEH6mdOnT8tJkyapv35l69atcurUqXL37t1On4orGTlypGo7tmzZElq3fv16W+0I8Sbs+TtEPBZ1ZIpetKI9vXr1Mv1srTeL1L6TJ0+Khx9+OIEr8S/0APgD9vitue+++0SBAgXEyJEjQ+tY9MffUPwdAGKCVJrIWfawjPXaEIDVkEC0yNwaNWqYfj6CdvBZcPnffvvtonTp0km8On9BA8DbUPjtAeFHka/Ro0eLY8eOqXWXXXaZ6XuCEhDrVyj+DmBlUdsN1ovmEbBTrAPGwsaNG0Xv3r2TeGX+hAaAN6Hwx0bPnj3FoUOHQtN4s+iPv6H4O4CVRW0nWM/KK2BVx3/UqFGiVq1aqmEk1tAA8BYU/tgpX7686mygbbDbjhAP43TQQVCJN1hvyZIlMQUKRgYJgr///ltmy5ZNvvvuu2m8Yn/gxyBAvwX8MbgvfqZMmaLalBUrVli2I8TbsMiPQ0Qro9m5c2fRvn37qO9Dbx09mmjT8topxvHss8+qyl47duwIVB3/ZOG3QkB+KvLDHn9inD17VlxyySWibdu2ampv4l8o/g4TOcNevBX97Nb5Rz3vChUqqLm8P/jgg6RcQxDxkwHgF/Gn8CeHIUOGqJx/dA7y58/v9OmQFMExf4eJJVgPvf5E6/x///33YsuWLaJbt25Ju4YgwhgAd0HhTx5dunQRR48eFRMmTHD6VEgKofi7kGhBNu+++67p+9CrN0sdBEjlqVq1KgP9kgANAHdA4U9+4N/111+v2griXyj+LiRa/n7dunXjqvOvCdORI0fE1KlTxf333x91Ag8SGzQAnIXCnxoQe7Rw4UI14RfxJxR/Dw0JRPMKWAXtaWPSs2bNEqdPnxbt2rVL0RkHExoAzkDhTx1odxD/gc4C8ScUf5cRa1U/uPURfBaNxo0bh4wHPMhw+SPgjyQXGgDphcKfWtChuOaaayj+Pobi7xJinTpT8wpElgg2qtoFsN+0adPEzTffnJLzJzQA0gWFPz2grZg7d644fPiw06dCUgDF30MT/Rh5BayqBdasWVP9xfjdvn37RJs2bZJ+7uT/oAGQWij86RV/pIHqa5EQ/0Dx98BEP0uXLo3qFbBbfxvuu+LFi4t69eql9dqCCA2A1EDhTy8o9lO9enUxZcoUp0+FpACKvwcm+unevXtUrwCGC2CdRxoOTZs2Dau/jQf4pptusswMIMmBBkByofA71/ufPn26qvxH/AWVwAVYue5XrFgR1SuAMpw//fRT2DYIPCJ1tcp+GCb4/fff6fJPMzQAkgOF3znQZsDDGFlAjHgfir8LSKSqH8r5RhoGKPajL+4Dl3/u3LmzpAiS1EMDIDEo/M5Su3ZtUbJkSbr+fQjF3+NV/czQxAYPLo7FOt3OQAMgPij8zgMvIlz/TPnzHxR/j1b1wzIm8rEq7oOYAHgH6PJ3FhoAsUHhdw9oO3Dfrl+/3ulTIUmE4u8y7Fb1wzJ69FaR/kgNxLAAgv2Is9AAsAeF311gBtC8efPS9e8zKP4erOqneQWwPpphoEX644GtU6eOKF26dFquhZhDA8AcCr/7gPBjoh+6/v1FDqdPIMjAJY/iPvoiGuixQ7i1SH2IBFIB4cJHT17vEdAbBjAcICbafvrAv0cffTTNV0bsGABaBLU290LQofC7F3gOkXKMan9Wc4kQb8Cev0ur+sVb7ldvHMBoOHTokGjYsGHKr4XEBj0A4VD43Q3aEHQmMjMznT4VkiQo/i6t6of8/XjK/epZvnx5KF2HuA8aAP+Dwu9+rrzySuX+19oU4n0o/i6t6meUv2+n3K8ePKgo0Vm0aNGUXANJnKAbABR+b5AjRw5Ro0YNir+PoPi7tKpfvOV+9eBBZa/f/QTVAKDwewu0JRR//0Dxd2FVP6v8fbNyv9oQgJRS7Ufx9wZBMwAo/N4DbQnuzyNHjjh9KiQJUPwdJJ78fatyv5pwaMF+FH/vEBQDgMLvTdCWoFPBoD9/QPF3kHjy963K/WppY5p7zspYIO7C7wYAhd+7VKpUSeTJk4euf5/APH8XEEv+PkTBDnhAy5YtywbWg/i1DgCF3/tBf9WrV6f4+wSKv8cMg5UrV5ruD0MB+zPYz9v4zQCg8PsDtClz5sxx+jRIEqDb32GscvUjGTFihOl2iASD/fyBX4YAKPz+AW3K77//Lo4ePer0qZAEofg7hJ0KfpGGAZaR/x+Nxo0bq17/xo0bxcGDByn+PsDrBgCF359Bf1YeSOJ+KP4eKu1r9cD17NlT/WVlP3/hVQOAwu8/KleuLHLnzh113D9WTyZxDo75O1jaNxJ9ad+FCxdmMQyOHTtmetyaNWuqv3gwL774YlG8ePEknzlxCq/FAFD4/UnOnDkNg/7sTFJG3AV7/h4q7Yv1EAEjUMJXCwyE1Q0LnfgLr3gAKPz+pkqVKmL9+vW2PZnEnVD8PVbaF2P5Ruzbty/katu+fbsoU6ZM3J9B3IvbDQAKv/8pXbq02LFjh+1JyjgE4E4o/h4r7WuGJgZ4MEuVKpXweRJ34lYDgMIfDNC27Ny5UwX+2fFkuukeJf8Hxd9DpX2tDAMtzY/i73/cZgBQ+IMD2pYzZ84ob6MdT6bb41OCCsXfQ6V9zQwDrMeYPx5IPJgUf//jFgOAwh8stLZFc/2beTK1dom4D4q/w+DBaNWqVdgDEo9hgPX6BxLjcsT/OG0AUPiDh9a2ILZIw6pdIu6DqX4+qfmvoYk/e/7Bwak0QAp/MClZsqT6qw/6s2qXiPug+LsU9OQQSGP0EJlt0x5I7QElwSDdBgCFP7igyE+RIkXCxN+sw0LcCd3+Hir7a6ckMFxxsMIx9SYJFukaAqDwE3gWjcSfeAeKv8swK5Zhp5AGI/2DTaoNAAo/ARR/70O3v4fK/hqhL6QBdxseSAb7BZtUDQFQ+IkG2hg3pJiS+GHP30VYFcswQ3sQ4fZnz58k2wNA4Sd62PP3PhR/n5T91Xp3dPuTZBsAFH4STfy1Kn/Ee1D8XYRVsQyrQhqs7keSbQBQ+IkRaGNOnjwpDh065PSpkDih+LsMs2IZVoU0zp8/rx7ICy64IK3nTPxpAFD4STS0Nubo0aNOnwpJl/jPmzdP3HzzzSrgIyMjQ0yaNClsO26Gnj17qvnk8+bNq6aWfffddy2Pu2rVKtG4cWOVola2bFnx0ksvZdnnyy+/FFdeeaXap1q1aqr6nd8wq+5ntg2cPXtW/c2Rg3GcJDEDgMJPzNDaGJQSJ+b8888/4p577lHTrkMToV3Lli0zfc/WrVtF69atRb58+UTx4sVFv379Qu27xty5c0WtWrVU3QUM+3700UciFmJWiWPHjonq1auLzp07i1tvvTXL9r59+4off/xRjB07VpQvX17MmjVLPPzww8pYaNOmjeExDx8+LFq0aKF6sTAUVq9erY6PBuuBBx5Q+yByGSltw4cPFzfddJP4/PPPRbt27cSKFStE1apVhd8wK5YRbRvFnyQjC4DCT6zQ2phIQSLhoAbLv//9b3HNNdeIb7/9Vj1PyMzSOmzRMrgg/CjUhmcVQ7n33XefyJkzp3j++efVPps2bVL7dO/eXXz22Wdi9uzZomvXrmo4BsPAtpAJgLdPnDgxbF2VKlXkM888E7auVq1acvDgwVGP8/bbb8sLL7xQnjp1KrRuwIABsmLFiqHlO+64Q7Zu3TrsffXr15cPPvigdJL169fLGTNmyD/++CMt28y2HzhwQP0mX375ZULXRPwN7pPp06fLDRs2qOXTp0/LSZMmqb9bt26VU6dOlbt373b6NImL+fnnn1Vbs27dOqdPxdUMGDBANmrUKKb3oG3Pli2b3LlzZ2jdO++8IwsVKhTSyP79+yut1dO+fXvZsmVL25+T9DF/9Cww+xxcHbAP5syZo1yN6NlrdOrUSTRr1iy0vHDhQtGkSRORK1eu0DpYL+vXrw9Vr8M+kePd2AfrvVSJL5EKflbb2fMniQwB4Jllj5/YgT1/e0AL69SpI26//Xblvq9Zs6YYPXp02D5PP/208pJrQNMwNFCiRIkwrYOHfO3atUnTw6SrxIgRI5SrHmP+uEGyZcumLhbirgHXBILTNHbu3CkuvfTSsONoF45tcJHgr/7L0PbBeiewqraX7G0Y2zf7TGyn+JN4hgDgZgRr1qyh8BNbwAUNOOZvzsaNG8U777yjhsOfeOIJsXTpUvHII4+ojm7Hjh3VPsWKFQtL846mddo2s31gIJw4cULFFjgi/osWLVIWzyWXXKICBHv06KHG/DVLBeP2yQSNl96YSDXoLeG69J4KDawHyd6GKn5mn/n777+rwA8NPpTEivz584t69eqFYgCuuuoqZRTw3iFWaPn9EBreL0IFvxt1uqBL6PlrY/Xo+cPIRmybJv4IkMcr3SRV/HEjwLqZOHGiCkbQGpSVK1eKV155JYubQgOBDbt27Qpbpy1rs9NF2wfrkSmA6Mh0ku55qpHCZ/aZGCLZt2+f+j+sS603R4hdMjMz1YsQKxBwBuBm3rt3rwg6xYsXFw0bNsyyHl5uZLzpqVSpkvj666+jHguatmTJkrj0sFChQrZ6/UkXf1iAeMHVH1mIxqxnji9t8ODB6r2aO+n7779XY9taVCT2QURjnz59Qu/DPlgPAyOdEf/o+deuXVukExhUt9xyS9TtyHooUKCA+n+NGjVUTAAhZmCMH5k1uF9w/+A5RRZJhQoVnD414nJwvwAM56I3G3QyMjIM1yPSHx0zPYi1gVc8GtC0YcOGid27dyujQtM6CLtmSGCfyFR3TQ9tE1MYopTyyJEjMjMzU73w9tdee039f8uWLWp706ZNVRTinDlz5MaNG+WYMWNknjx5VES/xsCBA+W9994bWj548KAsUaKEWrdmzRo5btw4mS9fPvnee++F9vnll19kjhw55CuvvCJ/++03OXToUJkzZ065evVq6QSIqsyePbv6DrQXlrE+FdusPhPs3btXrfvmm28c+U6Id9BH9WvR/nv27AnLAiAkGgsXLlRtjVPtr1dYsmSJ0q1hw4ap5+qzzz5T2jZ27NjQPiNGjJDNmzcPLZ89e1ZWrVpVtmjRQq5cuVLOnDlTXnTRRXLQoEGhfaCtOE6/fv2UHo4cOVJpAfa1S8ziD1HXi4/26tixo9q+Y8cO2alTJ1m6dGkl+kjXe/XVV+X58+dDx8C+MBL0/PrrryolInfu3LJMmTLyhRdeyPLZEyZMkFdccYXMlSuXMjDQUDnF/v37lejqvwMsY30qtll9pmZEYR2+J0KiEZnOp0/1i0wDJMSI+fPnq7YGwkPMwbMGMYe2XXnllXLUqFFh29GRveSSS8LWbd68WbZq1UrmzZtXFitWTD722GPyzJkzWbS4Ro0aSg8rVKigOtqxkIF/7PsJSCQo2IBhABRMiSy8k4ptZtuPHz+ugrhQ9AGZAYTYKeCD4Ta4EDFUhGG3gwcPqiBApJImazpg4i9QXQ6Fa9AW8R7xJswJc6ASXyLbzLYz95aYYbdyn91KgCS4MK3Y+3BiHw+CgBGUioTVrYf1tkk0Yi3Zm6zpgIk/0doYir93ofh7CKsKf8iyQEQo9iMk0Vr9NABINLQ2xqxGPXE3FH8PYVVVUMsr3b59uwNnR9xIopP00AAgRqCNQUcDMUbEm1D8PQIaX1T5iyzeg2Ws14YAIP6YBYqQZM3ORwOARII2Bm0N8S4Uf4/w119/mW7XGmWKP0nFtLw0AIgeir/3ofh7BP3ED0ZoEdmYQ4HiH2ySLfwaNACIBsXf+1D8PQKC+zBlI0qw6sEy1mupf+z5B5tUCb8GDQAC0Mago0G8C8XfQ2Bin8jJkbCsn/AH4n/06FFx5MgRB86Q+Fn4NWgAEAT8sefvbZik6SGQVjNz5kzTCoCaNQ7LvGDBgg6dKfGr8GuwEFBwQecCL4q/t2HP34NA8BEDAAMgstCP9kDS9R8c0i38GvQABBOtbTES/2gFyIj7oPi7GKMHyarQD8U/WDgl/Bo0AIKHkfhbtUvEfVD8PSbwVoV+4OrPly8fC/0EAKeFX4MGQLDQ2hZ9wJ+dAmTEXVD8PSTwbdq0sSz0k5GRwXS/AOAW4degARAc0Lagg6HFFNktQEbcBcXfQwL/888/m54DC/0EA7cJvwYNgGDl+KOjEUsBMuIuKP4eE3i7hX62bdsW93GIe3Gr8GvQAPA/aFv0Ln+7BciIu6D4e0zgGzVqZFnop0qVKmLVqlVCShn35xD34Xbh16AB4G9wD1atWjXmAmTEZcgAsn79ejljxgz5xx9/hNbt27dPtmzZEmoZemF5//796m/27NnDtmG5UaNGYeuS9cJxjT5Pfz5G56kxffp0tf6vv/5y6BsmyWbr1q1y6tSpcvfu3Uk/9unTp+WkSZPU32Ry4MABdS9u2LAhqcclznH06FGZLVs2+f7774ett9MuEXfhW/H3u8DjuiKvT2Pnzp3qPRMmTEjb9028KfypFH9AA8Bf/Pzzz6ptyczMNNxu1i4Rd+E78Q+KwFtRpkwZOXDgwCR/u8Rvwp9q8Qc0APzDm2++KXPlyiVPnTrl9KmQBMnAP8JHYCweY+76sXaMPTVs2DChsXazMfiFCxdm+Tyt5j7yXDH2r4ExMKxHqV5gVqrXCoypItLW6L1t27YVJ06cELNmzUr4Gom/x/jPnDkjZsyYoeJZcubMmZLPOHjwoCoFjPFhBoB5l06dOom1a9eKpUuXOn0qJEF8FfAHIUx3kN2UKVOiTraj1eKHSKNxxV8sa8IPINqtWrWKSfjtVNOqXbu2WL58OYP+PIpXgvvswiBAf4A2BW0L8T6+Ev89e/b4RuDNsFNNCw8ojIQtW7Yk5TNJ+vCb8GvQAPA2x48fF+vWraP4+wRfiX/58uV9I/DRsFtNq1atWiFLnXgHvwq/Bg0A74L78vz58xR/n+Ar8S9ZsqRpvqlXBN4Mq2pamZmZ6i8qcOFF8fcOfhd+DRoA3gRtSa5cucJy/Il38ZX4Awi51wXeDKtqWiNGjMgy7k/cT1CEX4MGgPdAW1KtWjVlABDv4zvx94PAm4HgPgxfRAOBjZrrn0F/3iBowq9BA8BbMNjPX/hO/P0g8Fb06tXLdLvWkOJB3bdvn9i6dWuazozESlCFX4MGgDdA2jCC/bRYIuJ9fCv+fqZGjRqm27U8as1Kp+vfnQRd+DVoALgf3KcIKmbP3z9Q/D1ItIk0smXLJho3bhzydmDmrbJly4p58+Y5dKYkGhT+cGgAuJv58+eLvHnzqjF/4g8o/j4KbEQaDh5SfcGf1q1bqywHjvu7Bwq/MTQA3AvakBYtWojcuXM7fSokSVD8PTrdsBbYiOA/9PijFfy5+eabxaZNm9R4HXEeCr85NADcx969e1VpZrQlxD9Q/D1AtHK+qK+N6H70+KMV/GnevLnIly+fmDp1qmPnT/4Hhd8eNADcBbKm4Dm86aabnD4VkkQo/i7u3VuV8+3evbvpsdBw5smTJ1TgiDgHhT82aAC4B7Qd9erVEyVKlHD6VEgSofh7oHcfrZzvihUrbEX9w123aNEisXv37pReAzGGwh8fNACc59SpU6r9adOmjdOnQpIMxd/jvXvk3UYrZ6xF/SPoD0yfPj2JV0HsQOFPDBoAzjJ37lxx9OhRir8Pofh7vHf/3nvvRS1nrFG8eHHRsGFDuv7TDIU/OdAAcA60GZgwrUqVKk6fCkkyOZJ9QPI/0FBhEh643rUeeLTevdVUxOjda0U29L17iHydOnVU1D+8CGgY9Z+nB67/Z599Vpw8eVLFAZDUQuFPjQGAqHP9kBZJHQjyQ6DwLbfcIjIyMpw+HZJk2PNPsvveqd69VTljuO0wH/ePP/4Y59USu1D4UwM9AOkF9zDuZab4+RP2/OMAAo9ePMRcA2PsEGMne/fRPA6gUqVKakZAuPFglJDUQOFPLfQApA+0FYUKFRJNmjRx+lRIKpDEkvXr18sZM2bIP/74Qy23bNlSZs+eHSXzQi8sN2rUKGxdLK+lS5eq4+rXYXn//v22znHfvn2W7+/Tp48sXbq0PH/+fMq+qyCzdetWOXXqVLl7927pJU6fPi0nTZqk/nqFAwcOyOnTp8sNGzY4fSq+pU6dOrJ9+/ZOnwZJERT/GAU1EYGvVauWodGAz9CAgaE3NOwSzSDRH/vHH39U65ctW5bU74l4V/i9Kv6ABkDq2LZtm2orxo4d6/SpkBTBMX8TjFz4mrsxHpIxdh/N1R8tnkCr9AdQChhlgb/66qu4r4Fkha5+Z2AMQOqYOHGiGnZEW0T8CcU/RkGNLKUbCQQ2Wt69NnaPY6NkJv5iGYKcCBjjNyMzM1P9zZkzp6r5//HHH4uzZ88m9Jnkf1D4nYUGQPKBR/j9999XgX5FihRx+nRIiqD4xymokZPpaAKPIJlU9O7Nsg0ijY1IRowYEfp/t27dxI4dO1jwJwlQ+N0BDYDksmzZMnVfo60g/iUDvn+nT8KNoCFBup5ZDx+T6kRG+2u9eDuR+cnMNkADePDgQdPr0c6jbt26qk73tGnTknpeQcJPwn/mzBnliUIWCLxDXgX3P4blkF7LLID4eeCBB5RHErOB6jsW0TKJiDdhzz8KaEAg6NFc+PPnzzd13yerd283FuHQoUOm79H3iGDRw2MAASPBFn4/QQ9A4hw5ckR8/vnnokuXLqG2L1rtkgMHDjh9uiQBKP4moCdv5sJPpcBHKyQULRbByoGj7wlh3D9v3rziww8/TNFZ+xcKv7uhAZAY48aNEydOnBCdO3cOrYtWuwTtCPEuFH8T0JNPRYCeHaJZ2ytXrow5FgEFhPQULFhQdOjQQXzwwQdZjAgSHQq/N6ABED+jR49W7UzZsmVjyiQi3oPib4N09PAjiWZt64P3jECjZ1Q+ONJVh9kCIWao3U2sofB7CxoAsbNkyRJVhvzBBx8MrbPqbPC79S4UfxdiZm0jyNAonRA9/saNG4diEdDbj/QC6F11SDvETH9vvPFGGq7I21D4vQkNgNhAW1ChQoXQFODAqrOB4USjOU6I+6H4ezDNsFevXlliEVB/AMKP3j2intHbj6xJEOmq6927t5qve9WqVSm4Cn9A4fc2NADssX37djFhwgTVtmgdC3xn+oymSPBMYH8GAnoTir8LwQQ8ZtSsWVPFHsADYNS7h0vfDK0RvPXWW0WZMmXY+48Chd8f0ACw5p133lFTfd9///22OyGYHpyBgN6F4u/BNEPEHmhWuVHv3mqKYC3yHzndPXr0EJ999pnlrINBg8LvL2gAmIs4So9D+C+44ALbnZDIWUgBAwG9A8Xfo2mGVlY5xvzNjAd9QY+MjAwxatSopJ6/l6Hw+xMaAMagTdm7d69y4dvthERmEEXC79f9UPw9mmZoZZXbmUQIFC1aVNx7773izTffFEePHhVBh8Lvb2gAhIM5Pl566SUV5GeUzRStE/Luu++aHpcVFj1AqqYLJKnHzjS+dqYI3rx5s8yVK5d85plnZJDx8rS8QZzSNxE4HfD/eP/991W7sXz5ctP9jNoRO+0PcS+s7e9hEFWL4Bp9jf/IOQYiiVaf+9FHH1VFf7AtiD3eIPf4/VLbP1aCPhcAKvmhDUDgMCr76bFTxz+e9oe4CKetD5I4dnr3+/btUxa53krH8v79+9X2PXv2yIIFC8o+ffrIoBHUHn+Qe/4aQfYAvPTSSzJHjhxh127VTsTb/hD3wZ5/QED+LdJw9NG5CNzB+B1iCcCzzz4rnnvuOWX1X3LJJSIIBLnHH/Sef5A9ALhmFPRBme+33347pnaC+AMG/PkQu5MBRablwPUPd91TTz0lggCFnwQ1CPDFF18Up06dCnvW7bYTrOjnDyj+PiLeyYAyMzPV3wIFCoghQ4aITz/9VKxevVr4GQo/CaoBgGp+KOwFY79kyZKh9XbaCU7t6x/o9vcR0Vx2qOFvVqYTAT8oDQxOnz4tKlWqJKpUqSKmTJki/AiFP5ygu/2DNgSACqBfffWVCujTF/XB3CBm7QS247vhkIA/YM8/IJMB1a5dO+p7sV1z4eXKlUuN+2O2P7OGwKtQ+EmQPQC4rvfff1888cQTYcJvVccf7Qc6CKzo5x8o/j7BquLf9ddfb7pd39C1b99ezR8wcOBAZIMIv0DhJ0E3AJ588klRunRp8fDDD8fUfmBI0Qy/fU9BgOLvE6wq/l1zzTWm23PkyBH6PyYLGj58uPjll1/EtGnThB+g8JOgGwDLli0TX375pXjmmWfUJD6xtB9btmwx3e7XIRI/Q/EPyGRALVq0MNyuge364B0sN2vWTAwaNCiLq89rUPhJPPjNAIAnr3Llyqqct932Q5s1NHICMf32yPlCiDeg+AdoMiCj7dGm48RkP0gHWrt2rRg9erTwKhR+kgh+MQAQwzN79mzx/PPPR+0AGLUPNWrUMD0utkfOF0K8AaP9fQiCb9BQRSvNOWvWLGWtRwMNnfa+rl27ivHjx4s1a9Z4rvAPhd8ejPb3dxYAvHnI3kEcD4bxYNjbbT8gD0jts9NWEG/Bnr8PwcPYqlWrsIdSX5jDyo2v7+G8+uqrqvcDI8BLdiKFnyQTL3sAevfuLY4fP66m7bYS/sj2w2o4kcLvXSj+ASz8A9efGfqeDdKBkBqEIQE0Hl6Awk9SgRcNALj7UbQLRX3KlCmTkuFE4k3o9g9o4R80ZHBlGhUEQg5w5JBBt27d1MxfqPxXvnx54VYo/LFDt78/hwBg+MPdjxx9GAF2ev2JDCcSb0Hx9xn6qTitxutQ2U9f2KNo0aJi3759htNzHj58WFStWlU1eN9//33CDUkqoPDHB8XfnwYAovoxxo+gXeT2E6KHbn8fu/e1yP1ooIcPYwENPwwBNGh6IPJt27ZV/y9UqJBy/yNi+L333hNug8JP0onbhwBQmnvs2LHK3U/hJ0aw5+9z975ZcJ8WqYu/Vh4CNCbwADz44IPi888/d5X7n8KfGOz5+8sDAO8dvHR16tRRz60bvXTEedjz93ldf32hjmiRulalPdG4aV6El19+WRQpUkR06dIlauGPdELhJ07iRg/AI488Ik6ePKk8dBR+Eg2Kv0fRp+5ZiXdkoY7ISF2r0p4QeW3yDrj/P/jgA/Hjjz867v6n8BM34CYDYNKkScoz9+abb9LdT0z5v4LuxDNj+3fddZcSY71b3gxE6QOjSF0tQBDTdaKWv1lvHvN5470wHuD+79evnxpuuPTSS0W6ofATNxoA8JIBJ4YA4O7HdL0333yzuOeee9L++cRbcMzf56l70ebaNjIitGNEA0YGpvUER44cEdWqVRMVKlRQgYHRSoamAgp/cuGYv/djANCMa88zovtLlSqVts8m3oRufw+5983G9mH1I0ffbiEONBQwIvRA0AsWLBj1XJAWqM3bjf0+/PBD8dNPP4khQ4aIdEHhJ27GqSGAt956S3n4Ro4cSeEntqDb36UY9cxr1apl+h6tOI9VIQ7NiIgERgQMADNwbO24zZs3V5P/wP0PL4BVamGiUPiJF0j3EACM+EcffVT07ds35c8g8Q8Uf5di1DOH8JmhCb6R6OuL/1gFCJrxzz//qN6/9hmPPfaYWLVqlejcubNah/SiVEDhJ14iXQYAjPE77rhDeflgiBNiF475uxCrvHuk7ukD82Id24+s7GcHpAzpbxV99T+kFTVt2lQZBkuXLk2625HCn1o45u/NGABU3WzQoIHy2C1evFgZHITYhWP+Pkzds/IgLFy4UJXyjSVIL9JGxDE1F2OePHlUihH2ueWWW5QxkCwo/MTLpCoGAIKPZ3v79u2qkA+Fn8QMev7EOfbt2ydbtmwJZQ29GjVqFLYc+frjjz/Ua8aMGepvNNavX296nMqVK5tuHz16tBw1apTluWgsWbJE5smTR3bs2FGeP38+4e9m69atcurUqXL37t0JH4tE5/Tp03LSpEnqL0kNBw4ckNOnT5cbNmxIyvEGDhwos2XLJmfOnJmU45HgwZ6/w8TSM9dX5tPPuR2vB6FPnz6m2+HKv/jii0330fdm6tatqwoAffzxx+L1118XicAeP/ETyfQAoIjPCy+8oKptoj0gJB4Y8OfwrHvRou6Ruhc5Nm/m3o+n+E+zZs1U42FUNwBpg2ikrIYGIgMAcQ6o+48MgMqVK6u6BLFC4Sd+JBlBgIipQWntjh07qgh/QuLGaddDkN37tWrVMnWpa259K/c+wLGzZ88e9n4sFy1a1HA99gf79+/Pcl54T+QyXIz6dRkZGWHLOAaOBc6ePStvuukmecEFF8jff/89pu+Jrv70Q7e/N4YAtm/fLkuXLi0bNGggT5w4kbLzI8GA4p8moomz3fF0M6zG9iNjCPRCraEZGdg3mhFh9hl6gwIcOnRIVqpUSV5xxRWqsbMDhd8ZKP7uNwAg9vXr15dlypRRRgAhicIxfw/MumeF1dg+iv/gHJDOhb9ICUSKnh58Fib4wTBDtAqCs2bNEqNGjTL8DOyjTf4DMAEQopD37Nmj8pBPnTpleo509ZMgEUsMANJ64erH84GsmshUWn2cDyF2ofh7LHXPCKtZ+bTiP4kGCJ49e9YyALBDhw7iwIEDoc/9+uuvxbx580T79u1VPrkRFH4SROwYAPDOYrIelO795JNPwopoIc4HMTWoCYIaDaglgGXt+SPElIR9ByRtqXvxDCvoXfGJnidS/7777jvTfRAbEPmZcG/mzJlT3n777fLMmTNh2+jqdx66/d05BIB02V69eqn4mo8//jjhZ54QPRT/JBNv4F2iGAXuGY3tx3OekcF9RgGAVvEKEydOVMe999575blz59Q6Cr87oPi7zwCA8Pfr1089S++9917McT7xdiJIcKD4J5FkBN4lSjKK/1h5ACDihQoVMt0H5xDJuHHjlNHQtWtXuXnzZgq/S6D4u88AeOqpp9Rz9Oabbxrui+cr1uePED3M808idgLv7My6lwjJmNhHO8+5c+eKBx54wDC4D3XFzUDQImIJ9NeJcf/Tp0+rHGWUJcWUwBzjJyQ8BuCRRx4Rn376qXjppZdEr1694orzMXr+CAkjzBQgCeFGV1y8MQh2eheoU2AnLVDv4YCrXxvHhAcANQGIs7Dn7w7g6n/yySfVM4PhMas0QKOhO3jWzJ4/QjQo/knGbUE4icQgWBkzS5cuNSwQFBkPoB1XP8b/ySefqP3QyEUGAZL0QvF3h/A/9thj6nl5+eWXbdUBiFagy03tD3EvFP8kE2vgndtjEOwYM1qcgVkmQNOmTeXkyZPDxvjHjx+vjoUsAAqPc1D8nQUBsD169FDPyYgRI2IuBGTn+XPK80jcC8U/RSSaupcM7AQFWZ1nLMZMtM+D8H/xxRdy2rRpWd6DLACkAbZt21aePHkyJd8DMYfi7xwY9sLwF4bBMINmIpUArZ53HN/pNom4B4q/D0GPP9k9gXizCDThv+qqq6K+F8fNnTu3vPbaa1WMAkkvFH9nOHbsmPJ6YfjLKI8/VgPAytPnBm8kcQ8Ufx9hFNxnNgafCvTDBJrw16hRw/Lz5s6dK4sUKSL/9a9/yXXr1qXk3IgxFP/0g/iXmjVrynz58slvvvnGcn+7BoDRMJ1RrQ7GARCW9/URmE4X0/PqOXjwYJY6/rGWD44FHBfHb9q0qSpLOnz4cFGiRAnLz8P+mK40T548qszv9OnTU3J+hDgNpvRFmV7Ml4H/33LLLUmbC0B7/iJBR89sLg4SPDJgATh9EiRx0Cigxnc0MCkPavOnI+8XtfozMzNVrjHqjcfyeUeOHBH33HOPmDp1qnjhhRdEv379REZGRkrPN+hgzgVM+oT68Dlz5nT6dHzNmDFjxIMPPigaNGggvvrqK1G8ePGY3g9jHgYDnis8y9GAqMNI+Oeff0S3bt2i7offHXN+kODBIj8+wc6kPOl4yLVJeho2bGhZwEdfeEgzEAoWLCgmTpwonnrqKTFgwACxatUqMXr0aJE3b96UnzshqQLPX//+/cXrr7+uxPitt94SuXLlivk4mgcABgCIZgBoxb7wjJlhZkAQf0O3v0+wM7NfqrE7O5/VbGSY4vi5555TM5l98803akgAPRhCvAju69atW4s333xTif57770Xl/DHMx0wni1MDw4vXCLThhP/QfH3CU4/5LFMy2sUm4BljFXqxyBRDnj+/Plix44dom7dumLJkiUpO39CUsHvv/+unolly5apobcePXokZRgrFgPAKA4glXE/xBtQ/H2EUw95LMKPxgqBRgg40oPlFStWZPEC1K5dWwUCli9fXjRp0kSMHTs2pddCSLJAbX08E4ijgOHavHnzpB7frgGAgN+ZM2eq/TDGj79YjgwEJsGC4u8jnHjIYxF+O7EJmhfgzjvvDC2XLFlSzJkzR62799571dhppPFAiFtADPUrr7yiXP0Yslq4cKHlsFw6PADw/iHuh65+Aij+PiRdD3mswg/sNIJGaUi5c+dWswAiYOrVV18VzZo1s2zsCEk3mK2yTZs2Kktl0KBBYtKkSaJQoUIp/cxYDABCNCj+JG3CbxabYASmFIbrVDMCMFbap08f5QVAI3vVVVeJN954Q5w/fz6hayEkGb19TMNbpUoVNb4/efJkMWzYMBW8qgFx1t/PyYQGAIkZp6sMEe+hn50vHozmC4i1HOnRo0fV1MDY1rhxY1u1z4kxrPCXGNu3b5c333yzuhfvvvvuLCWqjSpvpqq8bixzAZBgw54/SUuPP1psQq1atcJ6R8AoGjoyDiB//vwqdQpegG3btikvAJbpBSDp7u1XrlxZBfTBxY+A1CJFitjKbtHfz8mCHgBiF4o/Savw60FMAhrB66+/Pmy9UdHJaOVIMfaPQkCdO3cWvXv3Ftdcc42toEJCEgHpp+3atRP33XefqlWxdu1a0bZt25iyW1JVXpcGALEDxZ84IvzRMhRQzc8Mo8asQIECqnjKjz/+KLZu3aq8ACNGjKAXgCQdGKafffaZGttftGiRqkaJ5aJFixrub2WIpkqcaQAQKyj+xDHhN+rtlytXzlalQqPgKfT6V69eLTp16iQeeeQRlVe9cePGlJwvCR47d+5Uk/Bg7gnUoli3bp3q/euJvC+drLxJA4CY4nTQAfF3cF+ypyG2Gzw1e/ZsWb58eTVl6htvvMFgNhMY8GfOuXPn5CeffKKmnC5evLj8+uuvs+xjdl8aTbObzil1GQRIjKD4E8eEH0RrGGEAxNKQ1qpVS/7xxx9hxz58+LB86KGH1Fzml19+uZwwYYI8f/58yq7Fq1D8jcG9MnPmTFmzZk11n7Vv317u2bPHcF8zgTfKbklVtH80aACQSCj+xDHhX79+vWl636xZs+SMGTNCom61f7RGNTMzU95www1qe506deQPP/yQsmvyIhT/rCxevFg2a9ZM3TP//ve/5fz586Pua3Vfavcv/urv53RDA4Do4Zg/cWSMP5ZpiLVKhXZLA0dOEFSjRg01Dou0QBQXwvYWLVqI5cuXJ+EqiN8m4rntttvUvb9nzx4xZcoUNblUo0aNor7HblCf0+V1GQNA9FD8iSPCH08wlN3SwEYTBGlpgaizjmmCcZ116tRRMwemIt2KeAtMGd2tWzdRtWpVNZHURx99pJ6Dm2++2XIWPjdMp20XGgBEg+JPHBH+eKchNioKFIsXAA05IraRFfD++++LX375RRVpeeihh1TuNgkWMA4HDBigBBppey+//LJYv3696NixY5b7Mlp5Xqen044VGgBEETYIQAJLOsb4jbATDGUUSR3rq1GjRnL8+PFZxluPHz8uX375ZXnhhReqzIAnnnhCjY0GiSCO+R87dkwOHz5cFi5cWObPn18OGTJEHjp0yHA8H/cN7h+ze9QNQX2xwhiAYEPxJ44Jvx6zYCijSGqkAqLRjkwJjGeeAK0hHDRokMybN68yBGAEbNu2TQaBIIk/ovWHDRsmS5UqJXPkyCF79Oghd+7cmWU/K4MzWqqe00F9sUIDILhQ/AOOG4TfDKtIavTcYhV/sxzrf/75R/bu3VsWLFhQiUOHDh3kwoULpZ8JgvivWrVKdunSRebJk0e98P8///wz6v5GBqdZJL+XoQEQTDjmH2DSPcYfD1aR1IcPH1alVjFubzcWQKurPmvWrCxjuKVLlxb//e9/1WRBr7zyigr+atiwofqOPv/8c3H69OmEr4mkB/zOmFoXlR5R8hm/9ZAhQ9R9j3iPyEA9bUwf94VRPX4j/DBmzhiAgOK09UGcwe09fg07uf3aK7IwUKJDAeDs2bNyypQp8tprr1X7ocJb//79fdHj82vPH/f2008/LcuVK6d+swYNGsgvvvjC8PqijenbffnpPqAHIFhQ/AOIV4RfA8JsZ2wfbtoqVarIypUrxxwLYKfc6po1a+QjjzyiYgLwHhSB+eyzz+SJEyekl/GD+OPcJ06cKG+88cZQPEjXrl1VsR4jEg0ixf0Cg8FL4/t2oAEQHCj+AcNrwg/QI4+1ZxavFwANOXqDZo06MgTGjh0rmzZtqt6Dmu8wCubOnSvPnDkjvYZXxR819xctWiQHDBigAvi0Co6jRo1SpZ3NsDumb/f+cntkfyzQAAgGFP8A4UXh1wMDwG6PHg1748aNY3bpYo4AOymCGjAU+vXrFxIfeAXuvvtu9Z6DBw9KL+Al8UeK3uTJk1XAXokSJULG18MPP6zKOEdDb9DFMpSkf2n3E/46OVFPOqAB4H8y8I/TcQck9XghuM9OQZY777xTBWPZBUFMKLKCoD4EM2mFV6KBoMHz588bbkOJ1169eomaNWtmKdyC96BcMMrBTp06VX3XOXPmFE2bNhVt2rRRleLKly8v3MiZM2fEjBkzxI033qjO2W2g+NK0adPUd4vCTSdPnhQVK1YMfa8IyMyRI4fhe/fv3y/uuuuusHsGhaJQBdIOCP5DmWkUAcJvjvsJn211v/mBgwcPigULFqgiRm6qUkiShNPWB0k9Xu/xR4LeG3rodrwA6O3pQa/P6L2xuoCt3LybN2+WI0aMkC1atJA5c+ZU76lWrZocPHiwGoeGy9otuK3nj9n0fv31V/nss8/KunXrqu8Ov1eTJk1UQabff//d9rGizbZnx3Nk1JPH/RTL/eZ16AHwLxR/n+M34TerqBZtDN9OgFekuz9ecTACleMwnfC9996rXNR4f8mSJZXresyYMSoH3clYAafFH4YQBB3Bkyi6o0Xpo9bC7bffLj/99FO5d+/emI9r5d43Mx6jGXd2Z/DzEzQA/AnF38f4Vfj1fPfdd/Kyyy6TGRkZpuIcrQcI0U9kHNhOgKAeiPxPP/0kH3/8cVmpUqXQcVBZEClpEL8PP/xQ9XzTZRCkU/yROrlu3Tol6H369FHj5wUKFAh9DxUqVJA9e/ZU0zmfOnUqoc+y6qVHGnzamL7V7xit4qR2L/kRGgD+g2P+PsUPY/xmGI3l6sG4/hdffCEuvPBCW+O0eAwQT7By5cqoY/5GRI4f6z/XDihSlJmZqeIFtJd2Pnny5BHVq1cXtWvXDr1QzCjZ4/KpGvNHkRxMkqO/NlzrsWPH1PYKFSqEXRu+yyJFikQ9Hr4XFH3C+DO+H+3/0cbY7fzuALEgZseJNfYk1nvAKzAGwF9Q/H2I34UfYLpeBH/pq7AhmA9iOW7cuLCGHFXbIGzRiCUAzCpAEOeAmQRnzpxpKl5mQnPkyJEsBgFEFI9q7ty5RaVKlcTFF18sSpUqFfZCdUL8LVGiREwiHo/4Iwhu9+7dKhhPe23fvj3s/7/99ltI6FFNL1LorcRR+76KFSumKvPFI7bR7pNov1EsIIi0Q4cO6llLxfHdCA0A/0Dx9xlBEP5YI66t9jcScLwf69etW2f4HuxjVv5Vfw5GXgqzzIFoBgF+VxgCa9euDRPdXbt2hZ0Lpi2GYGrGgPZCrxpR8RB4/NX+D+DxwFz2mjEAcccL/z906FAWcYfw678zfGbx4sXDPhPfuSb0KCFrB3xvOJcRI0aIn3/+2dZ7zMTWqJce63dvdq5BifzXQwPAH1D8fUQQhN9OTx692FatWtnqAdqp3w5vQt68ecWiRYtsewv052D02cl0E+O4e/bsMeyB65fRaOtF3Qy9gVCwYMEwUY80KrAM4Y+WbpeMYRw7mIkteunwprz11lti/vz5Sfnu47kP/QINAB/gcMwBSRJBCO5LJOLaKDvAboS/Fjyon67V7jnYCSTUByfGEjyYjCh7BNWhGBFq3x85ciSlKYiRhXb015loxT07aXbRgj7jLc4TxMh/PQwC9DYUfx8QNOFHI4/Ke/E05LEIuFVjbkdMrCLO9a/ISoRmtQSSaSQkM9rf6Lys0izjnVQnFrFNlVBHuwf8WPffCBoA3oXi73GCIvxGApKM+uqx9Dgje5ZG3oTIc4jFwDAqPBRpzBh9D/rPjMcoQOodxP+3337L8n6z3rrd87L6jmOdhCnyZcfoS1VxHqN7wM91/42gAeBNKP4eJijCb9bDQm52Ij0su8WCzHqHem+C3XOPt0cb7Xto3ry5pSESTbBRYwDij79mImZ2bLMecCLCrr0i6zjEKq6pdtFr90AQ6v4bQQPAe1D8PUqQhD8dY6s4BmaDM5oOONHG28rAsOr5ar3SWCvWWZ23JtjRxD+WOIVkCLzZ94D4jK+//jpkZFkZXGbXmyphZgwADQAvQfH3KJs2bQqE8KejnrrVmHSy3LZo/I1mGbTqHWuiEUv8gJXo6IUqHvHXHzve84p8RX4PFStWVK9k/RZ2hmkSIWh1/6MZALHMvUCcg+JPXE+qe1RWpX9TQWTP1U6vNN4etpHo6IUqEfHHcazOyyg4M9p1LlmyxDQLIxk99Xi8BnYIes+feAuKP/EEqXLZuqXBRu/TTrR/PLPUpbrnb3Ze+qA/M+NAu0678RFuFdIg1v0n3oTiTzxBqly2bnDVGg07IHDM6NqiGQkI+IvVOErWmL/d30frcaN3j+uL3BfrY/E4uBErQ8fvkf/EO1D8iadItsvWDT1/u14NMyMhHuNIe08yov1j+X3Mhlli9Ti4FZwfrieIkf/EG7C8Lwk8qZz8JZn14e2cJ8rYxjpLHUrqnjx5UpUwvvTSS8Perz8eiPXYsV6vFV6ZNCeodf+Jh3Da+iDESdDzN4rAT5d71u6wQyo8FEZ5/qm+bqvrNeotR25funSpdDtuGE4ixIxsThsfhDgBJpJBTxq9s/bt26sZ5Bo3bizGjx+vemXoWaZjPnZMdWuG1uPG1LZmoEceK5hIB54EPVjGLHhOXe97772nevZ6GjRoIK666ir1f0ymVLduXfXbYcY+t2L3dyXEMUxNAxKVn376Sd50002yVKlSypKfOHFi2PaOHTsajpNaMWfOHFmzZk2ZK1cuedlll8kxY8Zk2eett96Sl1xyicydO7esV6+eXLx4cVKvLQikuuBLss8l2T1/q2j/VI6pR4uIh/fFKHbATb9VLHj1vJPB4cOHZe/evWW5cuVknjx5ZMOGDVVApxlbtmyRN954o7oPL7roIvn444/LM2fOxNw+EntQ/OMEDdPgwYPlN998E1X8b7jhBrljx47Qy8qdunHjRpkvXz7Zt29fVW99xIgRqrGYOXNmaJ9x48apG//DDz+Ua9euld26dZOFCxeWu3btStm1+g03BPnpsRusl0wxscrzT6Vb2iwiPta5Edwc+JfqokJu5o477lDVMtFJQsW/oUOHykKFCslt27YZ7n/27FlZtWpVed1118nMzEx1/xUrVkwOGjQopvaR2IfinwSiiX/btm1jOk7//v1llSpVwta1b98+rHFHT79Hjx6hZUzBWrp0aTl8+PC4zz9ouHU81ipS3m4tALf3/DWQqWBVktitv5Ubigq5lePHj6vfcdq0aWHrEa+BDpMR+H5wL+zcuTO07p133lEGA6adtts+EvtwzD+FzJ07VxQvXlyNKz/00ENi3759YdubNWsmOnXqFFpeuHBhlvHOli1bqvXg9OnTYvny5WH7ZMuWTS1r+xDvjsci+rtVq1aGUeCIUcBYPGITNBCj8MUXX8QVm3DFFVeoewvR83qwjPWpjkRHXMX8+fPF+fPnw9YjkwHZB8gycPNvlazf1Y+cPXtW/Y558uQJW49sEu3+ffrpp0X58uVD29B+VatWTZQoUSK0Dvfh4cOHxdq1a221jyQ2KP4pAgFJn3zyiZg9e7Z48cUXxU8//aQaAH2aVrly5USpUqVCyzt37gy7+QGW8QCcOHFC7N27V73faB+8l3hD+OLBKDhvwYIFCQXnwXCIbEyxjPWpxm4Aoxd/q6BTsGBB0bBhQ/Hss8+K7du3qzZr7NixSqR37Nih9ilWrFiYYRet7dO22WkfSWxQ/FNEhw4dRJs2bZQ1265dOzFt2jSxdOlS5Q3QgHEwfPhwR88zqDgpfPH0ktEb1huORr3kWHGyxEcsPXov/Vbkf3z66afq/ipTpozInTu3ePPNN5WhCk8l6Nmzp+oYEeeg+KeJChUqKGvXLCWrZMmSYteuXWHrsFyoUCHlMsP70eMx2gfvJfaBqxzpfBDWGTNmpDW9L1ZSkebnVKqfRiw9ei/9VuT/jDt4O48ePSr+/vtvsWTJEnHmzBnVDsbS9mnb7LSPJDYo/mli27Ztasxf7+aPBK6ySGv4+++/V+tBrly5RO3atcP2wZgplrV9iP/GY1Mx7p0qb0IsxNqj98JvRcLJnz+/avNQkwH3Vdu2bQ33Q/u1evVqsXv37rC2D8JeuXJlW+0jiZEYggOJjiNHjqiUFLzwNb722mvq/8hVxTbkqC5cuFBu2rRJ/vDDDyrS9fLLL5cnT54MHePee++VAwcOzJLK0q9fP/nbb7/JkSNHGqb6Ib//o48+UukuDzzwgEr100fJEv+R7JxxJ1P9gh4NHwTQZn377beqTZs1a5asXr26rF+/vjx9+rTajjQ9TEYVmerXokULuXLlSvV+5PobpfqZtY/EPhT/OEGxCaPUI6T4IdUFNzFu3pw5c6qCPMjHjxTopk2bqv0jj1ujRg2Vy1+hQgXDIhZ4cFA8A/sg9W/RokUpv17iLMlM83NLqh/xLyiZjfYLbVTJkiVVevLBgwdD25H3j3ZRz+bNm2WrVq3UfYgc/8cee8ywyI9V+0jswYl9CHE5SPPD+Dzcpvo0v8mTJyc07q1NFIThJLjaMdaPdFIvTJxDCEkMjvkT4nJSkeYHGEVPSHCh+BPiYlIZmEenHyHBheJPiItJVZqf06l+hBBnofgT4mJSVd7WDal+hBDnoPgT4mJSVd42lR4FQoj7ofgT4nIQgBdZyCTRwDw/TJhDCIkfij8hLibZs/lpcMIcQoINxZ+QAKb5Aab6ERJcKP6EuJRUB+Ux1Y+Q4ELxJ8SlpDooj6l+hAQXij8hLiWVQXlM9SMk2FD8CXEpqQzKY6ofIcGG4k9IwNL8AFP9CAk2FH9CApbmB5jqR0iwofgTEsA0P8BUP0KCC8WfEBeSjoA8pvoRElwo/oS4kHQE5DHVj5DgQvEnxIWkOiCPqX6EBBuKPyEuJNUBeUz1IyTYUPwJcSmpDMhjqh8hwSaH0ydACDEG6XwzZ85ULnj0xCHIyUrB0zwLkWP+8CzAwGCqHyH+hj1/QlwOhLhVq1ZJF2Sm+hESXCj+hAQUpvoRElwo/oQEFKb6ERJcKP6EBBCm+hESbCj+hAQQpvoREmwo/oQEEKb6ERJsKP6EBBDO6kdIsKH4ExJQmOpHSHCh+BMSUJjqR0hwofgTElCY6kdIcKH4ExJAmOpHSLCh+BMSQJjqR0iwofgTEkCY6kdIsKH4ExJAmOpHSLCh+BMSUJjqR0hwofgTElCY6kdIcKH4ExJQmOpHSHCh+BMSQJjqR0iwofgTEkCY6kdIsKH4ExJAmOpHSLCh+BMSQJjqR0iwyZAM+SUkkBw/flyMHTtWzJs3T1x55ZUqDqBx48binnvuEXnz5nX69AghKYTiTwghhAQMuv0JIYSQgEHxJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEEIICRgUf0IIISRgUPwJ8TCYke/mm28WpUuXFhkZGWLSpEmhbWfOnBEDBgwQ1apVE/nz51f73HfffWL79u2Wx507d66oVauWyJ07t/jXv/4lPvrooyz7jBw5UpQvX17kyZNH1K9fXyxZsiTp10cISQ0Uf0I8zLFjx0T16tWVEBtN2btixQoxZMgQ9febb74R69evF23atDE95qZNm0Tr1q3FNddcI1auXCn69OkjunbtKr777rvQPuPHjxd9+/YVQ4cOVcfGObRs2VLs3r07JddJCEkunNKXEJ+Anv/EiRNFu3btou6zdOlSUa9ePbFlyxZRrlw5w33gLZg+fbpYs2ZNaF2HDh3EwYMHxcyZM9Uyevp169YVb731llo+f/68KFu2rOjVq5cYOHBg0q+NEJJc2PMnJEAcOnRIGQmFCxcOrWvWrJno1KlTaHnhwoXiuuuuC3sfevVYD06fPi2WL18etk+2bNnUsrYPIcTdUPwJCQgnT55Uvfo777xTFCpUKLQeHoBSpUqFlnfu3ClKlCgR9l4sHz58WJw4cULs3btXnDt3znAfvJcQ4n5yOH0ChJDUg+C/O+64Q2CU75133gnb9sknnzh2XoQQZ6D4ExIQ4cc4/48//hjW6zeiZMmSYteuXWHrsIz35c2bV2TPnl29jPbBewkh7oduf0ICIPwbNmwQP/zwgyhatKjlexo2bChmz54dtu77779X60GuXLlE7dq1w/ZBwB+WtX0IIe6GPX9CPMzRo0fFn3/+GZamh/S8IkWKqHH82267TaXiTZs2TY3Ta2Py2A4RB8j9L1OmjBg+fLha7t69u4ri79+/v+jcubPyFkyYMEFlAGggza9jx46iTp06Knvgv//9r0o7vP/++9P+HRBC4gCpfoQQbzJnzhyk6mZ5dezYUW7atMlwG154n0bTpk3V/pHHrVGjhsyVK5esUKGCHDNmTJbPHjFihCxXrpzap169enLRokVpuWZCSOIwz58QQggJGBzzJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEEIICRgUf0IIISRgUPwJIYQQESz+P7O/7htttfEFAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAHqCAYAAAAK6keWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbJdJREFUeJztnQe0FMX29euSs0oOgohPyZKTjyQqiEjQTwUjiAkFBFGSiPhMKKI+RQyggIoKGMiIKIKgZLhIUkRBEAHJOUN9a9dbPf+euT3dPbHT/q01XDpOz0x37VOnzjmVIaWUghBCCCGBIZvTF0AIIYSQ9ELxJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEJ8xcuRIUb58eZEnTx7RoEEDsWzZMtP916xZI5o0aaL2L1u2rBg2bFiWfT7//HNRqVIltU/16tXFrFmzUvgJCCGphuJPiI+YOHGi6NOnjxgyZIhYtWqVqFGjhmjVqpXYvXu34f6HDx8WLVu2FJdccolYuXKleOWVV8QzzzwjRo0aFdpn0aJF4vbbbxf33XefyMzMFB06dFCvdevWpfGTEUKSSQYn9iHEP6CnX69ePfHWW2+p5fPnz6vefM+ePcWAAQOy7P/OO++IQYMGiV27dolcuXKpddhvypQp4tdff1XLHTt2FMeOHRMzZswIHdewYUNRs2ZN8e6776btsxFCkgd7/oT4hNOnT6ve+7XXXhtaly1bNrW8ePFitdylSxfRvHnz0Hasb9q0aUj4ATwFGzduFAcOHAjtoz+nto92TkKI96D4E+IT9u7dK86dOydKlCgRth7L6NmDUqVKiXLlyoW2Yb3R/to2s3207YQQ75HD6QsghKSPoUOH8usmhLDnT4hfKFq0qMiePbv4559/wtZjuWTJkobHYL3R/to2s32inZMQ4n7o9ifEJ2Dcvk6dOmLu3LmhdQj4w3KjRo0Mj8H6BQsWiDNnzoTWffvtt6JixYrioosuCu2jP6e2T7RzEkLcD8WfEB+BNL/Ro0eLDz/8UPzyyy/i4YcfVpH69957r9o+cOBAcc8994T2v+OOO5TRgDS+9evXq1TBN954Q51Ho1evXmL27Nni1VdfVRkASAVcsWKF6NGjhyOfkRCSOBzzJ8RHIC1vz5494umnn1YBeUjHg3BrAXs7d+4U27ZtC+1/wQUXiDlz5oju3bsrrwGGDnDsgw8+GNrnqquuEp9++ql46qmnxJNPPikuv/xylQpYrVo1Rz4jISRxmOdPCCGEBAy6/QkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEEIICRgUf0IIISRgUPwJIYSQgEHxJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFn5CAc/bsWbFgwQL1lxASDCj+hAQcKaU4cOCA+ksICQYUf0IIISRgUPwJIYSQgEHxJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEEIICRgUf0IIISRgUPwJIYSQgEHxJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEEIICRgUf0IIISRgUPwJIYSQgEHxJ4QQQgIGxZ8QQggJGBR/QgghJGBQ/AkhhJCAQfEnhBBCAgbFnxBCCAkYFH9CCCEkYFD8CSGEkIBB8SeEEEICBsWfEEIICRgUf0IIISRgUPwJIYSQgJHD6QsghBCv89tvv4k//vhD/Otf/xKXX36505dDiCXs+RNCSJzs379fXH/99aJixYrihhtuEFdccYVaPnDgAL9T4moo/nEydOhQUa9ePVGwYEFRvHhx0aFDB7Fx48awfUaNGiWaN28uChUqJDIyMsTBgwdtnXv+/Pmidu3aInfu3KonMW7cuCz7jBw5UpQvX17kyZNHNGjQQCxbtizej0IIiZM77rhDfPfdd2HrsHz77bcH9jt95513xJVXXqnaPbwaNWokvv76a9Nj1qxZI5o0aaLas7Jly4phw4Zl2efzzz8XlSpVUvtUr15dzJo1K4Wfwv9Q/OPkhx9+EN27dxdLliwR3377rThz5oxo2bKlOHbsWGif48ePq17Ak08+afu8W7ZsEW3atBFXX321WL16tejdu7e4//77xTfffBPaZ+LEiaJPnz5iyJAhYtWqVaJGjRqiVatWYvfu3fF+HEJIHK5+PJfnzp0LW49lrN+0aVMgv9OLL75YvPTSS2LlypVixYoVokWLFqJ9+/Zi/fr1hvsfPnxYtZ2XXHKJOuaVV14RzzzzjOo8aSxatEgZVPfdd5/IzMxUnS281q1bl8ZP5jMkSQq7d++W+Dp/+OGHLNvmzZunth04cMDyPP369ZNVq1YNW9exY0fZqlWr0HL9+vVl9+7dQ8vnzp2TpUuXlkOHDk34c5Dgcfr0aTllyhT1l9hn1qxZ6rmO9sJ28j8uuugi+f777xt+HW+//bbafurUqdC6/v37y4oVK4aWb7vtNtmmTZuw4xo0aCAfeughfsVxwp5/kjh06JD6W7hw4ZiOw7BAly5dQsuLFy8W1157bdg+6NVjPTh9+rSyjvX7ZMuWTS1r+xDv9SDhFg1qT9GrXHbZZabbMWQXdOAFmTBhgvKIwv0P0N6h3dNAu9W0aVORK1eusDYPw6ha7IRVu0hih+KfBM6fP6/c8//+979FtWrVYjq2XLlyolSpUqHlXbt2iRIlSoTtg2W4xk6cOCH27t2rHiijfXCsHwiKGDJYzPsgNid79uxh67AMYQpy1P/atWtFgQIFVNxSt27dxOTJk0WVKlXUNrR3aPes2jxtm9k+fmnznICpfkkAY/8Ye/rxxx9jPvajjz5KxiX4RgwRQKWPb0Aj+tlnn4mLLrpIBClYbPbs2Y5dF4n9PtWDHiru2SCD7AfELMEj+sUXX4jOnTurOCkYAAiWJs7Dnn+C9OjRQ8yYMUPMmzdPBbokSsmSJcU///wTtg7LiJrNmzevKFq0qOpZGO2DY72M3yKnzTwYDBbz132KoTd4AfC7wnDzo7EaC3DhY9ijTp06SuwRlPzGG2/E1OZp28z28Xqb5yQU/ziRUirhhzvr+++/F5deemlSfhCMi82dOzdsHbIJtPEyPFR4oPT7YNgBy9o+XsRPYmjHnY+CMGb8/vvvKb3GoAytpOs+xTOIzBtiDL6fU6dOGW5Du7VgwQKVMaVv8/D8aEaUVbtI4iDeSMGg8/DDD8sLLrhAzp8/X+7cuTP0On78eGgfLGdmZsrRo0er6N8FCxao5X379oX2ufvuu+WAAQNCy5s3b5b58uWTffv2lb/88oscOXKkzJ49u5w9e3ZonwkTJsjcuXPLcePGyQ0bNsgHH3xQXnjhhXLXrl3Sq/gpchqZGfjN9NePZX3GxsaNG00/72+//ZaSa8O9h+vQv9eNN95oK9of14zfIVXX5gX8dJ+mCrRnyHrasmWLXLNmjVrOyMiQc+bMCW1Hu6dx8OBBWaJECbVu3bp1qn1DG/jee++F9vnpp59kjhw55PDhw1W7OGTIEJkzZ065du1aRz6jH6D4x/vFRXn4x44dG9oHN6jVPs2aNZOdO3fOkhpYs2ZNmStXLlmhQoWw/TVGjBghy5Urp/ZB6t+SJUukl3FKDJ38HHaMhGRj9J4FChQwFX8jgwHL+/fvl0HDL/dpKunatau85JJLVNtUrFgxec0114SEH6C9Q7un5+eff5aNGzdWnZoyZcrIl156Kct5J02aJK+44gp1XqRDz5w5My2fx69Q/IlriCaGaBS80uOMpWcI8YwU1dq1a8vly5enVbjy5s2rxB89KiOcMFLcDL8P4gc45k9cAyKkI3N5L7zwQpVF4ZW66bHkfmM8E8FhKM2MYDGAcWOUjU7F57SKM9i8ebOvYzGSAb6Prl27iquuuipsPSP8ideg+BPXoIkhGljU7W7cuHGW+RDcHv0PAwXpibHkfg8ePFj8/PPPKf+cVoZJhQoVsqxzOjDRjUGcHTt2FAsXLlT3J0ptM8KfeBGKP3EdEEgIFXr8XuxxGnkwkOr0/PPPO9qzNjNMohkHrGIXPb0P1eXGjBkT6GI+xLtQ/Ikr8XKPMxZ3fro/p5Fhoi+1mgxPht/g0AfxIxR/4kr80OO0485P9ufU5+8b5fL/L1ElcYMhSGPcXjZECYkGxZ+4ErMep9ab9kNvMVk9a6PCQkZFhozc1/Pnzzc9dywGgx+LB/nBECUkC06nGxASDaNUOK/kmiea8tekSZOYPptR+plRymSqUv3s1ALQFwnyUsEgXCtSMJnuSPwExd+jnD9/XgYFCAQa32zZsnkm1zyWYjDYd+LEibJu3bpxGTdW72X10sTfqGiK3c9hZiAYGQZeMOK8et1OE6S2yctQ/D36cKFM8KZNm2QQSHdVtWT1So0EEQYMevWa4OP/Zr11O8aNlZfBrvgb9fzteDCsfh98RiuvRDqNOLu/b7TfD4aoFzwWTrBt2za5ePFiGgAegOLvUQ4cOKB6akEwANJVTz3ZZWythi3svqyEJpaev5EQm5X3tWN4JWp8pMqIS+T3ZRnf+IR/+vTpcvfu3Un5vUhqYcCfR0HlO1QZQ4CV36ON0xVwlewphbWUPxSDwZSv8WL1+0YLGjQKIJw6dWrSU/2sfh+7pPo+juX3ZYR/bPz1118qs6VBgwaiWLFiCf5SJC2k2LggKSYoHoBU1/1PpKdn5kZOdDzebo841uBIrceOv+jxm03sY3TuyPOZ/T6p7vnbcePH+vvGs79XAhiTDXv83oTi7wOCYAAYCVCRIkWS5qKPdWgh2ph95DUk4hKPZyxcL+r6/5thJf5G547FQLCTiRDPmH8sbvx4fl87Ef5Bn/GQwu9dKP4+IQgGgF6A0KNMZuqV3Z6eVQR45DUk0vNPlohA1NFIY271VatWyWXLlslFixapOdfnzp0rX3zxRXn77bfLb775Rq3D3OlLly5V++IYzMt+8uRJW+9lZCCkKmUzltn1kvX72vV4uDULJZlQ+L1NBv5JzwADSTWYBGfRokVqnNbPhUcQ54ACNmbb4yk7i0I4GAPWF+bB2DbGyDF2H20fq2uwewxAfEDPnj1FrVq1LD/DyZMnxc6dO0OvHTt2hC1r6/bu3SuSQeHChUWpUqXUq3Tp0qH/R67Lly+f4fEo/INxfe3e1P4fz28Vzz0Q7++LeI2aNWuKCRMmhJ0zVfehF+AYv/fJ4fQFkOQHAcIAAH41AOwEY8XT6KJcLYK/UIFPo1GjRmoKVwgX7GT9NrvXYHTeWAQf1ftWrlypXpgjYP369UrUI2c8zJUrV5gYN2nSJGwZAYg5c+YUOXLkCP3FC+dfsGCBaNOmjcjIyBBnz54Nvc6cOSMOHTqUxbjAb4CZ7fB/GCF6ChUqpN6vUqVKok6dOqEXPpv+8yUijLHeA9pUvMePH1fXbVSmWKvKGMn58+fV957oNfgFCr8/oPj7jCAYAKmK/tei8yH0mZmZYsSIEWpmQbxALGWF9degP69Vz3ffvn0hoddef/75p9pWsGBBZSC0aNFCXHzxxVl63uiZQ7xjpWzZsuLvv/9WU/rCKIgFGESacaA3EPB33bp14vXXXw9NZFSmTJkwYwDfJ647lfcADBtE+etFPZqxFauYB7HsL4XfP1D8fYjfDQAt/czIhYupcxMFDTzEAVO26lm9erXlsZob2ajHF9nzhVgvX75cTJo0KST027ZtC/WeIY7/7//9v5BY4ndMJGUwFcDYwP2GV+XKlQ2NAxgvemPmjTfeUKIMIP56gwAzH5YsWTKhe0D//Uebijd//vwhV38iYo7fCCluZteQCPBGwCiJd3gkmVD4fYbTQQckdfg5CDCVdf+tgsPMItfN3heVGdetW6cC7Bo1aiQzMjLUMRdccIG8+uqr5RNPPCE/++wzFXx27tw5mS7sRvsnC3wPCCL84osv5MCBA2XLli3DMjdq1aoln376ablixQrTSnFWKYjxpG/GO49BsgM13ZZFwOA+/0Hx9zl+NgBSVfffKi0M76dfRuYB0v6MxASCioj6Xr16yUsvvVTtnz9/fnnzzTfLsWPHyt9//93xUqjpFn8j8B1s3bpVfvrpp/KOO+6QF154ofquypQpIx966CF1D584cSKmFMRUpW+mo+yvm7IIKPz+hOIfAPxsAKSiDKudc1rlvH/yySeyU6dOqlePYy6++GL58MMPy6+//jqqiAVZ/CPBtcybN08+9thj8rLLLlPfYb58+WSHDh3kmDFj5D///GN5jkTS+6IZdOko++um0sIUfv9C8Q8IfjUAUlX3P9aeF3rwr732mnLfa8fVqVNHPvPMMypf3unevdfEXw++uw0bNsiXXnpJXnXVVWq4BC8MnWAIBUMp0b5fO79jLL91OuaZSNdcFlZQ+P0NxT/ABoAfSpLa7SXF+lntlLQ9evSo6oVChLA9d+7c8oYbbpDvvPOO/Ouvv6RXcLv4R4JeP4ZMMHSCIRR891deeaV866231D2eyriAdJT9dUPPn8Lvfyj+AQON44wZM2S/fv1MhS3VxNsoGh1jVlfezhiuGUbu/ZUrV8pu3brJQoUKqR4oAtbwPkeOHJFexGvirwdDKJhJ7qabblK/OaYnvueee+TChQvDvAHJiAvQ7j+jmRGTVfY3lvdIFRT+YEDxDyB33nmn/Pjjj2X79u3T3rDE0yhaHWOn7n+ijeixY8fkqFGjlCsf5yhdurR86qmnVNS61/Gy+OvZsWOHGgaoUKGC+o0qV64sX3/9dXnw4MGEetlG95/VvBKxDhvF8x6pgMIfHCj+AUNr7NBARhoA6XApxhPFbPcYs7r/8bpP0Rj2799fFi5cWPXyb7zxRjlt2jR55swZ6Rf8Iv4aSJP87rvvZMeOHWXOnDllgQIFZI8ePdS9H8/9FS26v0qVKnL06NFJCQpM9ayVdqDwBwuKf8DQuzmNDIBUBhPF0ygme0w2mktXD9zFP/74o7z11ltVA4yI/T59+sjNmzdLP+I38Y/0BgwePFgWK1ZM/eaIycAERvohAbO4ADv3U6wzORqlGCZqpCYKhT94uKtcGEk5+ipmmzdvFkOGDBG33HKLaN++fag62ddff61K0SYbO+VT4zkGVdC0a7ba36xiG4zhWbNmifr166sSsKjchmp027dvF6+++qq49NJLbZ+buANUEHz22WdV5cSxY8eqssOoDFi1alU1UQ/q9mvll3Ef4ffHXyxjvZ37CRUEMXdDvJUC43kukgkr9wUUp60Pkn4iXYyaBwDFVVI5xmjVw4nHhVq1atWwZbhJrXpqRkMGmOK2adOmajv+oneWzip7TuLnnn8k6PFj2uI2bdqo3xqFeSI9AfF6knDvxhqwh/0RS+JUz589/uBC8Q8gRm5OlFRNRxCg0dimVuY2mtFh5xj9NSNQym4J3vXr14c+M9LF0HC7OSc/FQRJ/PUgIwB1A/Dbt2jRQi5btsxwP6P7z07lR7OAPaMAv8h7OtVBuBT+YEPxDzBagBx6PukKArSqyW/U6Nk5JvIVmd4XWbENDd+9996rArdQdnf8+PGB6elHElTxBzD0EMCpeZBuueUW+euvv4btY/f+MwoKRHaI3fRUMyM12VD4CcWfOBIEiMYwVnennWP012yU27137175+OOPq4I8CAJ788035alTpwJ9FwRZ/DXOnj0rx40bJ8uVK6dE+YEHHpDbt283nEfCSOStDFG9iMcz/JVMKPwEUPxJlsYo0gCAZyAV6UbxlDG1Oiaa4YBqfC+88IIqzIPUL5TdPXz4MH99in+WokEo0wyXfZ48eVSap164jbwAke7+yBeMA70ny8nyvRR+okHxJ44FAaYi9S9yyAD5+Ci3W7JkSZXzjdn1du/ezV9dB3v+WTl06JBKEUT5YMwwiHkFjh8/Htqu9yrZDQrUl5qO9b5PBhR+oofiTxwNAjQrsBJLOV8j42TNmjWqV4ZAqrvvvtsX1fhSAcU/Ort27ZLdu3eXOXLkkFdccYX86aefDPfDfWfl/seQlXY/p3vKXgo/iYTiTxwNAjQyOhB5jVc0UY/mel2+fHmot//888+rnj4CuaJFcZP/QfG35pdffpENGzZUhiQKPum9ANo9aSfN1O49nkwo/MQIij9xRRCg3o0aazlfvSGydu1aFWGNXtjAgQPlyZMn+QtbQPG3HxT4yiuvqGBReAFQGyISBPcZeQCipfFFm3AoWVD4STQo/sRVQYDxjoeit4+Avly5cqma6+zt24fiH7sXoEGDBkrkn3jiiTAvQKxpqYzqJ05B8SeuCALUxveR5mTWWBp5HNatWyfr1q2rGuMBAwaoiG1iH4p/fF6Al19+WXkBKlasKBcvXhy2XevRx3M/JwP2+IkVFH/iaBCgUaUzuz0l9PYxhSt6+5i+denSpfw144DiHz8bNmyQ9evXN/QCOBXZT+EndqD4E8eCANEwGhVNMRsj1UBZ3nr16qlGF7nY7O3HD8U/MWCEIhUQRmilSpWyeAHSGdlP4Sd2ofiTtAcBxtrb1w8toBzrsGHDQg3tkiVL+AsmCMU/OUQapFrFRLMpg5MJhZ/EQgb+cXpmQeINMNVpxYoVQ8sVKlQQ//nPf8QXX3whpk6dKr755htx7tw5NWXp5ZdfHvU8TZo0EYsWLVLTqZoxevRoUaZMmdD5jh07Ju69917x+eefiyeeeEI899xzIk+ePEn9jEHkzJkzairbG264QeTMmdPpy/E0Z8+eFcOHDxeDBw8WTZs2FZMmTRJFihRR2zDlNKbntXo+YnkeMR0wzofnAFNQN2jQQBQrViwJn4T4nphMBRJ4EgkCRI8/llxo/TDC1q1bZc2aNVXFta+++irwv0MyYc8/+cyfP1+VCL7ssstUQGoyifScNWvWTH7++efyjz/+SOr7EH9D8SdpCwK0UwXN6FhMvYpJeMqXL6+q9pHkQvFPDZs3b5bVq1eXBQsWVDMHpsIAh/B/9tlnyjBO5fS/xH9Q/ElaggBnz54d8/g+eP/991WlPjRye/bs4a+VAij+qePIkSPypptuUgGsQ4cOVTEriaDPHtCE/8orr0xL3QDiL7I5PexAvAnGLFu3bq3G+MHmzZvFkCFDxC233CLat28f2i8zM1Ncf/316mVGRkaGqF27thrHnD17tihYsKDo1auXuP/++8V9990nvv32W1G0aNGUfy5CkkmBAgVUTAxiAAYOHCjuvPNOceLEibjPhzF+0KxZM9GtWzcxdOhQsWbNmtB2xBQQYgunrQ/i70qAWqldq96+fs5zjGlee+21ajKVt99+2+mP6HvY808PkyZNknnz5lXPxF9//RVXESx42ox6/Oz5k1ih+JOUBQF26tTJUvRhGCAIUJ8uhSApBEvNmzePv04aoPinj1WrVsmyZcuqKaYj6wHYDe6bMGGCGuNPR90A4l/o9icJ89lnn4lrr702tIwhgNdee020adMmbAjAiOuuu05MmzZN/X/GjBmiYcOGIm/evGL58uWiefPm/HWIr6hVq5a6ty+77DLluv/www9N97/jjjvEd999l8XV/9dff4Xth+cPzyEhtnHa+iDBCwLUXnPmzAkd+9prr6mgqA4dOsjDhw87+jmCBnv+6QezTd53333qOejXr59hIKBVcB+en1TOCEj8DcWfpL0SIFz9mosSjd6zzz6r1mNSnnPnzvEXSTMUf2fAvf/666+re//hhx/Ocu9rz1G0Mf5UTQpEgkEO+z4CQuwBl6aGlgWASoAAlQD//e9/KxcljM+nnnpKvPjii+KFF14QTz75JL9iEhiQ4dK7d2+V2fLAAw+IU6dOiVGjRons2bOr7drQgFFUP0BlP0LixmnrgwQrCLB3796hXs9jjz2mtsHlT5yDPX/nwbMBjxgqZWKiIK1WPyr3MbiPpAIG/JGEQW7+119/rWqXmwUBIn8f67B/9+7dxeuvvy5GjhwpHnvsMf4KJNDcddddYuLEiWougE6dOql8ftTqR+2LEiVKmAb3GT1/hFiSEpOCOI6WF5zKYCCj2fkia/prQYDadWjHILjvgw8+SNm1Efuw5+8eUAYYM1Y2aNBAbt++PepzZPf5IyQaFH+fkc4GIdZ5yuHq7969uxL+Pn36yE2bNiX9mkjsUPzdA1z9zzzzjDIAbrnlltAQQDKeP0L0UPx9RrIaBCvPQWRlP6tKYxB+CD62jR49Wh44cEDOnDmTBoALoPi7R/inT58ud+/eLadOnaoqXN55553y7NmzCT9/+uOYHkgAxd9HxNsgxOM50KfzGb0i05AGDRqk1o8YMSK0jgaAO6D4u0v49eWAEQSIegDR0gDtPn8cIiCRMODPR2iTfkQDk35YBQfpK4ppYPn222+Pms5nhD4N6fnnn1epfMOHDxc9evQIrb/wwgvFVVddpa6JE5KQoIJqfQjua9CggShWrFho/a233qoqAI4ZM0b07NlTpcbG8/zF8lyTAJHFHCC+7fmjhr5Zjz5Wz4GdIYY333xTrX/uueeiXjc9AM7Cnr+7evyRYFprrQhWPEN8yfAIEv9B8fcZ0RoETJRj1VBYuRJHjRoVNl4Iw8FsiABlfuG2RD6/FTQAnIPi717h1xg+fLh6vlAPQMPq+dPG9xFjE8sQAQkGFH+fYdQgRPb4o1n+Vj2EaI2MURoSznXhhRfK66+/3jBgyQgaAM5A8Xe38GsBs126dJG5c+eWS5cuDdsWLZ3W7rPMnn8wycA/Tg89kOhgPBxj+RjDu/zyy21/VRjTxzg6jsPfG264Ieq+s2bNUmOIeB+UEV20aJE4d+5cWBnSyNsEJUhRbASFeyI5dOiQGr8ES5YsUWP7djl48KB6/yuuuILlS9PEmTNn1D2AeyRnzpzpetvAEm2M3wqU/7366qvFn3/+KVasWCFKly5tuN/111+vxvP1z7DRc2z2DJMA4LT1QYxJZnRurLEAGCKIt9eAXn7r1q1Vrx/vGw/0AKQX9vzd2+OPZOfOnfLiiy+W9erVk8ePH8+yPV7vHQkejPZ3KcmMzkUvulWrVqEJQzSwjF45etqRve/GjRur3uDo0aNNzx0ZpT9w4EDxzTffqFKleN94YBYA8SPx9vj1lCxZUkyZMkWsXbtWPPjgg1k8clYZP3ie8VzDo4ge/0UXXRTXdRAf4LT1QbKSiuhco1gA9M6t3ieWa/noo4/UOkxTmgzoAUgP7Pm7v8cfCab4xbM2bNiwsPWM7Cd2Yc/fp/n6kcDCh6WP42D5o2d/+PBh02Pmz5+vrqVJkyaGXgN4E7Q4hKVLl6ppSe+9917Rq1cvkQzoASB+IBk9/kgw+Q+mwO7fv796nu14+fDMo+3gBEBEYdtMIJ7J10/0/EavyDgA/XtiApJSpUrJRo0ayZMnTyb9+6AHILWw5++dHr8eVP1r27atLFSokNywYYOpl8/s+SXBhD1/F2JmvRcpUkQsXrw4oVgAK8+CEfo4AP144YkTJ8RNN92kru2rr74SuXPnFsmGHgDiRVLR49eTLVs2MX78eFG2bFnRrl07ceDAAUMvHzx3eH71sLofofi7FMzXjTQcPY0aNRL79u3LksKDZQTZ2XXnWZUGNQLv8eOPP4alHCLYCK7+devWialTp6pgpFRBA4B4iVQLv0ahQoXUs7d//37RsWNHcfbs2dA2PKd41hcuXJhwm0H8B8XfpURa7/iLMb5kxAJE8yygJ5E/f37L99B49913xSeffCLGjh0rateuLVINDQDiBdIl/BoQ+M8//1x8//334j//+U/M8UMkoDg97kCciQWIpxKgPrp/8+bNMn/+/LJbt25p/wkZA5BcOObvjTF+K/7zn/+okt0rVqwIrWP0P4kGK/x5DKPqXVq+Psb1ItdbVfDSKgEWLVpUdOvWTaxatSrqvujdr1y5Upw/f15cc801YsuWLSrfuGDBgiLdsBJg8mCFP2/2+I1+R7w3/qICoBZ/E63NYHW/gBPVLCC+qt2vTfIRrUYAzolJeMzOs3z5crXvW2+9pZbnzp0rnYQegOTAnr+3e/x6fv75Z5kzZ045aNAg2xMAmWHVbhDvQvH3KPrJPKxm46tdu7bpg2/lGoRRoM3+98cff8h8+fLJhx9+WLoBGgCJQ/H3h/BrPPvss8r9rxnrGkYTcKWjvDhxJ3T7+wAE+VWsWDHqdgTywVUfzeWHAEGziX/g7ofb8IILLhAtWrQQW7duVe7+AgUKCDfAIYDEoNvfu67+aL9nw4YN1URAGKaLJ/2WQwX+h9H+PgECbVQXAOiF3yjNxyr1b8KECSr74O233xY//PCDGDNmjGuEHzALgDiBG4UfYGbGcePGqU5BZPS/HXAc2gemB/obir+HQW4vLHT0+hGoF/mw1qhRw1ZqoJ0SvtgHpUQfeeQRNa2o26ABQNKJW4Vfo3r16uLpp58WL7/8sli+fLnl/voUYaYHBgSnxx1I/GAMDmN7kePzGOO3MymP1VS+2hgfyog2bdpUXnrppfLIkSOu/skYAxA7HPP39hi/2e+KtqBKlSryxIkTtsf27QQQE+/Dnr9Hieaag4tfn64XbTjAqExwtBK+I0eOFAsWLHCdu98IegBIkHv8Ru5/9Oajuf+Npg5Hu4D2wWoyL+JxnLY+SHzEGuEfr2W/adMmFd3fvXt3T/1U9ADYhz1/f/X4I3nhhReUR3Dp0qVh6608g02aNGG0v49hz9+jWAXprV69OkvEP7wAdssEA6SCdu3aVZQoUUK89NJLwkvQA0CC2uOPpF+/furZ79Kli8oA0LAa2x84cGBYeXHNE0j8AcXfhzP/GUX464cDYAiYgcl7wBdffKEmBRk9erTr3f1G0AAgQRd+kCNHDjX/xsaNG8V7771nuwOhTeLVunVruvp9CMXfZzP/WUX4d+rUSWUIGKEf00Ou8KBBg9SDj1K+XoUGAAmy8GtUq1ZN3HvvveL5558XR44csexAcGzf/1D8fTbzHwyCWIYD9MCQ0I5HcB8ChYYOHSq8Dg0AEmTh13jmmWfE4cOHxauvvmragdC3A8S/sMKfD4lWnSsyM0DPnDlzxHXXXaf+f/z4ceXyQz4/puz1C6wEaAwr/Plf+DX69u2rpuLGeH/x4sWzTPClufq1+h/aMvEf7Pn7kHiGA86ePRv6/xtvvCH27t0rnnvuOeEn6AEgQRZ+LYgPHQG4//VoY/tI8dMKh6HkN4YGsHzgwAHHrpmkBoq/D4lnOEAL8kPVQFQFe+ihh0SFChWE36ABQIIq/KBw4cKqUid6/5iS207eP5Zvv/32NF4lSQd0+wcIO5N1IC0INfzh8kOKn1/hEMD/Qbd/MIRfQxvWQyDvxx9/bHuCMGznEIB/YM/fQ+jrb8eDVXDP9u3bxYgRI8Tjjz/ua+EH9ACQIAo/yJcvnxgyZIiK51mzZk1oPWv6Bwv2/D0AXPFwx6GcrwZScSDa8RTdiAzu0bj//vvF1KlTVSNQqFAhEQToAWDPP0jCr/f2VK1aVT3/M2fOVOvY8w8W7Pl7AKtxuFg9AkaFO3755RdVCOSpp54KjPADegCCTRCFX6v7/8ILL6iYIMzbAZj3HyzY83c5VtY4JuL58ccfE/YI3HzzzaoCIKqA5c6dWwSNIHsAgjrmH1Th11f9rF+/vvrNce9nZGSoqH50KpLlZSTuhT1/l2M1DoeHNtHI3KVLl4rJkyeLZ599NpDCD+gBCBZBF36tzDfm7FiyZImYNm1a1Ewh1vT3J+z5e7znb3ac3WIdN954o/jzzz9VYxhZ6jNoBNEDELSeP4VfZAn6RY9/xYoVqvdvBIv++A/2/F1OtHE4q8l5MjMzbRXrQJwAAn769OkTeOEH9AD4Gwp/Vp544gk15PfTTz8ZBhuz6I8/ofg7jJ1gPaMUvauuusr0vEjZs1OsA/sVLVpUBRWS/0EDwJ9Q+I1p2bKl6iSgsmckLPrjYyRxhH379slWrVpJ/ATaC8v79++Pesxvv/0mZ82apf4C7J89e/awc2C5cePGYesiX9rxBw8elAUKFJCDBg1K2+f2EgcOHJAzZ86UmzZtkn7m9OnTcsqUKeqvX9m2bZucPn263L17t9OX4kpGjhyp2o6tW7eG1m3cuNFWO0K8CXv+DhGPRR2ZohetaE/Pnj1N3xs5/gCpfSdPnhSPPPJIAp/Ev9AD4A/Y47fmnnvuEQUKFBAjR44MrWPRH39D8XfI1Y9UmshZ9rCM9doQgNWQQLTI3Jo1a5q+PwLZ8F5w+d96662idOnSSfx0/oIGgLeh8NsDwo8iX6NHjxbHjh1T6y677DLTY4ISEOtXKP4OYGVR2w3Wi+YRsFOsA8bC5s2bRa9evZL4yfwJDQBvQuGPjR49eohDhw6FpvFm0R9/Q/F3ACuL2k6wnpVXwKqO/6hRo0Tt2rVVnjOxhgaAt6Dwx0758uVVZwNtg912hHgYp4MOgkq8wXrLli2LKVAwMkgQ/PXXXzJbtmzy3XffTeMn9gd+DAL0W8Afg/viZ9q0aapNWbVqlWU7QrwNi/w4RLQyml27dhUdO3aMehx66yjGE21aXjvFOJ577jlV2Wvnzp2BquOfLPxWCMhPRX7Y40+Ms2fPiksuuUS0b99eTe1N/AvF32EiZ9iLt6Kf3Tr/qOddoUIFNZf3Bx98kJTPEET8ZAD4Rfwp/Mlh8ODBKucfnYP8+fMn6azEbXDM32FiCdZDrz/ROv/ffvut2Lp1q3jggQeS9hmCCGMA3AWFP3ncd9994ujRo2LSpElJPCtxGxR/FxItyObdd981PQ69erPUQYBUnmrVqjHQLwnQAHAHFP7kB/5dd911qq0g/oXi70Ki5e/Xq1cvrjr/WlGfI0eOiOnTp4t777036gQeJDZoADgLhT81IPZo8eLFasIv4k8o/h4aEojmFbAK2tPGpOfMmSNOnz4tOnTokKIrDiY0AJyBwp860O4g/gOdBeJPKP4uI9aqfnDrI/gsGk2aNAkZD3iQ4fJHwB9JLjQA0guFP7WgQ3H11VdT/H0Mxd8lxDp1puYViCwRbFS1C2C/GTNmiLZt26bk+gkNgHRB4U8PaCvmz58vDh8+nKZ3JOmE4u+hiX6MvAJW1QJr1aql/mL8bt++faJdu3ZJv3byf9ADkFoo/OkVf6SB6muREP9A8ffARD/Lly+P6hWwW38bLv/ixYuL+vXrp/WzBREaAKmBwp9eUOynRo0aYtq0aWl+Z5IOKP4emOinW7duUb0CGC6AdR5pODRr1iys/jYe4BtvvNEyM4AkBxoAyYXC71zvf+bMmaryH/EXVAIXYOW6X7VqVVSvAMpw/vDDD2HbIPCI1NUq+2GY4Ndff6XLP83QAEgOFH7nwDAhPIyRBcSI96H4u4BEqvqhnG+kYYBiP/riPnD5586dO0uKIEk9NAASg8LvLHXq1BElS5ak69+HUPw9XtXPTnEfuPxxLtbpdgYaAPFB4XceeBHh+me+v/+g+Hu0qh+WMZGPVXEfxATAO8Aof2ehARAbFH73gLYD7dHGjRudvhSSRCj+LsNuVT8so0dvFemP1EAMCyDYjzgLDQB7UPjdBWYAzZs3L13/PoPi78GqfppXAOujGQZapD8MhLp164rSpUun5bMQc2gAmEPhdx8Qfkz0Q9e/v8jh9AUEGbjkUdxHX0QDPXYItxapD6FHKiBc+OjJ6z0CesMAhgPG+LX99IF/jz32WJo/GbFjAGgR1NrcC0GHwu9e4DlEyjGq/VnNJUK8AXv+Lq3qF2+5X71xAKPh0KFDolGjRin/LCQ26AEIh8LvbtCGoDORmZnp9KWQJEHxd2lVP+Tvx1PuV8/KlStD6TrEfdAA+B8UfvdTqVIl5f7X2hTifSj+Lq3qZ5S/b6fcrx48qCjRWaRIkZR8BpI4QTcAKPzeIEeOHKJmzZoUfx9B8XdpVb94y/1Gij97/e4nqAYAhd9boC1hz98/UPxdWNXPKn/frNyvNgQgpVT7Ufy9QdAMAAq/90BbgvvzyJEjTl8KSQIUfweJJ3/fqtyvJhxasB/F3zsExQCg8HsTtCXoVDDozx9Q/B0knvx9q3K/WtqY5p6zMhaIu/C7AUDh9y6VK1cWefLkoevfJzDP3wXEkr8PUbADxL9s2bKiWLFiKbpqkir8WgeAwu/9oL8aNWpQ/H0Cxd9jhsHq1atN94ehgP0Z7Odt/GYAUPj94/qfN2+e05dBkgDd/g5jlasfyYgRI0y3QyQY7OcP/DIEQOH3l/j/+uuv4ujRo05fCkkQir9D2KngF2kYYBn5/9Fo0qSJ6vVv3rxZHDx4kMF+PsDrBgCF359Bf1YeSOJ+KP4eKu1r9cD16NFD/WVlP3/hVQOAwu8/qlSpInLnzh113D9WTyZxDo75O1jaNxJ9ad/FixdnMQyOHTtmet5atWqpv3gwL774YlG8ePEkXzlxCq/FAFD4/UnOnDkNg/7sTFJG3AV7/h4q7Yv1EAEjUMJXCwyE1Q0LnfgLr3gAKPz+pmrVqmLjxo22PZnEnVD8PVbaF2P5Ruzbty/katuxY4coU6ZM3O9B3IvbDQAKv/8pXbq02Llzp+1JyjgE4E4o/h4r7WuGJgZ4MEuVKpXwdRJ34lYDgMIfDNC27Nq1SwX+2fFkuukeJf8Hxd9DpX2tDAMtzY/i73/cZgBQ+IMl/mfOnFHeRjueTLfHpwQVir+HSvuaGQZYjzF/PJB4MNnz9z9uMQAo/MFCa1s017+ZJ1Nrl4j7oPg7DB6M1q1bhz0g8RgGWK9/IDEuR/yP0wYAhT94aG0LYos0rNol4j6Y6ueTmv8amviz5x8cnEoDpPAHk5IlS6q/+qA/q3aJuA+Kv0tBTw6BNEYPkdk27YHUHlASDNJtAFD4gwuK/BQuXDhM/M06LMSd0O3vobK/dkoCwxUHKxxTb5Jgka4hAAo/gWfRSPyJd6D4uwyzYhl2Cmkw0j/YpNoAoPATQPH3PnT7e6jsrxH6Qhpwt0H8GewXbFI1BEDhJxpoY9yQYkrihz1/F2FVLMMM7UGE25/BfiTZHgAKP9HDnr/3ofj7pOyv1ruj258k2wCg8JNo4q9V+SPeg+LvIqyKZVgV0mB1P5JsA4DCT6KJ/8mTJ8WhQ4f4BXkUir/LMCuWYVVI4/z58+qBvOCCC9J6zcSfBgCFn0RDa2OOHj3KLyko4r9gwQLRtm1bFfCRkZEhpkyZErYdN0OPHj3UfPJ58+ZVU8u+++67ludds2aNaNKkiUpRK1u2rBg2bFiWfT7//HNRqVIltU/16tVV9Tu/YVbdz2wbOHv2rPqbIwfjOEliBgCFn5ihtTEoJU7M+fvvv8Vdd92lpl2HJkK7VqxYYXrMtm3bRJs2bUS+fPlE8eLFRd++fUPtu8b8+fNF7dq1Vd0FDPuOGzdOxELMKnHs2DFRo0YN0bVrV3HzzTdn2d6nTx/x/fffi/Hjx4vy5cuLOXPmiEceeUQZC+3atTM85+HDh0XLli1VLxaGwtq1a9X50WA9+OCDah9ELiOlbejQoeLGG28Un376qejQoYNYtWqVqFatmvAbZsUyom2j+JNkZAFQ+Ild8Y8UJBIOarD8+9//FldffbX4+uuvRbFixVRmltZhi5bBBeFHoTY8q4ituOeee0TOnDnFiy++qPbZsmWL2qdbt27ik08+EXPnzhX333+/Go7BMLAtZALg8MmTJ4etq1q1qnz22WfD1tWuXVsOGjQo6nnefvttedFFF8lTp06F1vXv319WrFgxtHzbbbfJNm3ahB3XoEED+dBDD0kn2bhxo5w1a5b87bff0rLNbPuBAwfUb/L5558n9JmIv8F9MnPmTLlp0ya1fPr0aTllyhT1d9u2bXL69Oly9+7dTl8mcTE//vijams2bNjg9KW4mv79+8vGjRvHdAza9mzZssldu3aF1r3zzjuyUKFCIY3s16+f0lo9HTt2lK1atbL9Pkkf80fPArPPwdUB+2DevHnK1YievUaXLl1E8+bNQ8uLFy8WTZs2Fbly5Qqtg/WycePGUPU67BM53o19sN5LlfgSqeBntZ09f5LIEACe2Z9//lk0aNBA9VAIiQZ7/vaAFtatW1fceuutyn1fq1YtMXr06LB9nnnmGeUl14CmYWigRIkSYVoHD/n69euTpodJHxweMWKEctVjzB83SLZs2dSHhbhrwDWB4DSNXbt2iUsvvTTsPNoHxza4SPBX/2Vo+2C9E1hV20v2Noztm70ntlP8STxDAHAzgnXr1lH4iS3gggYc8zdn8+bN4p133lHD4U8++aRYvny5ePTRR1VHt3PnzmqfokWLhqV5R9M6bZvZPjAQTpw4oWILHBH/JUuWKIvnkksuUQGC3bt3V2P+mqWCcftkgsZLb0ykGvSW8Ln0ngoNrAfJ3oYqfmbv+euvv6rADw0+lMSK/Pnzi/r164diAK688kplFPDeIVZo+f0QGt4vQgW/GwVaQ5fQ89fG6tHzh5GN2DZN/BEgj1e6Sar440aAdTN58mQVjKA1KKtXrxbDhw/P4qbQQGDDP//8E7ZOW9Zmp4u2D9YjUwDRkekk3fNUI4XP7D0xRLJv3z71f1iXWm+OELtkZmaqFyFWIOAMwM28d+/ewH9hxYsXF40aNcryPcDLjYw3PZUrVxZffvll1O8MmrZs2bK49LBQoUK2ev1JF39YgHjB1R9ZiMasZ44vbdCgQepYzZ307bffqrFtLSoS+yCisXfv3qHjsA/Ww8BIZ8Q/ev516tQR6QQG1U033RR1O7IeChQooP5fs2ZNFRNAiBkY40dmDe4X3D94TpFFUqFCBX5xxBTcLwDDuejNBp2MjAzD9Yj0R8dMD2Jt4BWPBjTthRdeELt371ZGhaZ1EHbNkMA+kanumh7aJqYwRCnlkSNHZGZmpnrh8Ndee039f+vWrWp7s2bNVBTivHnz5ObNm+XYsWNlnjx5VES/xoABA+Tdd98dWj548KAsUaKEWrdu3To5YcIEmS9fPvnee++F9vnpp59kjhw55PDhw+Uvv/wihwwZInPmzCnXrl0rnQBRldmzZ1ffgfbCMtanYpvVe4K9e/eqdV999ZUj3wnxDvqofi3af8+ePWFZAIREY/Hixaqtcar99QrLli1TuvXCCy+o5+qTTz5R2jZ+/PjQPiNGjJAtWrQILZ89e1ZWq1ZNtmzZUq5evVrOnj1bFitWTA4cODC0D7QV5+nbt6/Sw5EjRyotwL52iVn8Iep68dFenTt3Vtt37twpu3TpIkuXLq1EH+l6r776qjx//nzoHNgXRoKen3/+WaVE5M6dW5YpU0a+9NJLWd570qRJ8oorrpC5cuVSBgYaKqfYv3+/El39d4BlrE/FNqv31IworMP3REg0ItP59Kl+kWmAhBixcOFC1dZAeIg5eNYg5tC2SpUqyVGjRoVtR0f2kksuCVv3559/ytatW8u8efPKokWLyscff1yeOXMmixbXrFlT6WGFChVURzsWMvCPfT8BiQQFGzAMgIIpkYV3UrHNbPvx48dVEBeKPiAzgBA7BXww3AYXIoaKMOx28OBBFQSIVNJkTQdM/AWqy6FwDdoi3iPehHVgHajEl8g2s+3MvSVm2K3cZ7cSIAkuTCv2PpzYx4MgYASlImF162G9bRKNWEv2Jms6YOJPtPQ+ziPiXSj+HsKqwh+yLBARiv0ISbRWPw0AYtYWAbMa9cTdUPw9hFVVQS2vdMeOHQ5cHXEjiU7SQwOAGIE2Bh0NxBgRb0Lx9whwv6LKX2TxHixjvTYEAPHHLFCEJGt2PhoAJBK0MWhriHeh+HuEP/74w3S7Ni5L8SepmJaXBgDRQ/H3PhR/j6Cf+MEILSIbcyiw5x9ski38GjQAiAbF3/tQ/D0CgvswZSNKsOrBMtZrqX/s+QebVAm/Bg0Aook/OhrEu1D8PQQm9omcHAnL+gl/IP5Hjx4VR44cceAKiZ+FX4MGAEHAH8f8vQ2L/HgIpNXMnj3btAKgZo3DMi9YsKBDV0r8KvwaLAQUXNC5wIvi723Y8/cgEHzEAMAAiCz0oz2QHPcPDukWfg16AIKJ1rYYiX+0AmTEfVD8XYzRg2RV6IfiHyycEn4NGgDBw0j8rdol4j4o/h4TeKtCP3D158uXj4V+AoDTwq9BAyBYaEXE9AF/dgqQEXdB8feQwLdr186y0E9GRgbT/QKAW4RfgwZAsHr+6GBoMUV2C5ARd0Hx95DA//jjj6bXwEI/wcBtwq9BAyBYOf7oaMRSgIy4C4q/xwTebqGf7du3x30e4l7cKvwaNAD8D9oWvcvfbgEy4i4o/h4T+MaNG1sW+qlatapYs2aNkFLG/T7Efbhd+DVoAPgb3IPVqlWLuQAZcRkygGzcuFHOmjVL/vbbb6F1+/btk61atYJahl5Y3r9/v/qbPXv2sG1Ybty4cdi6ZL1wXqP301+P0XVqzJw5U63/448/HPqGSbLZtm2bnD59uty9e3fSz3369Gk5ZcoU9TeZHDhwQN2LmzZtSup5iXMcPXpUZsuWTb7//vth6+20S8Rd+Fb8/S7w+FyRn09j165d6phJkyal7fsm3hT+VIo/oAHgL3788UfVtmRmZhpuN2uXiLvwnfgHReCtKFOmjBwwYECSv13iN+FPtfgDGgD+4c0335S5cuWSp06dcvpSSIJk4B/hIzAWjzF3/Vg7xp4aNWqU0Fi72Rj84sWLs7yfVnMfea4Y+9fAGBjWo1QvMCvVayc+AZG2Rse2b99enDhxQsyZMyfhz0j8PcZ/5swZMWvWLBXPkjNnzpS8x8GDB8WiRYvU+DADwLxLly5dxPr168Xy5cudvhSSIL4K+IMQpjvIbtq0aVEn29Fq8UOk0bjiL5Y14QcQ7datW8ck/HaqadWpU0esXLmSQX8exSvBfXZhEKA/QJuCtoV4H1+J/549e3wj8GbYqaaFBxRGwtatW5PyniR9+E34NWgAeJvjx4+LDRs2UPx9gq/Ev3z58r4R+GjYraZVu3btkKVOvINfhV+DBoB3wX15/vx5ir9P8JX4lyxZ0jTf1CsCb4ZVNa3MzEz1FxW48KL4ewe/C78GDQBvgrYkV65cYTn+xLv4SvwBhNzrAm+GVTWtESNGZBn3J+4nKMKvQQPAe6AtqV69ujIAiPfxnfj7QeDNQHAfhi+igcBGzfXPoD9vEDTh16AB4C0Y7OcvfCf+fhB4K3r27GlrIg2I/759+8S2bdvSdGUkVoIq/Bo0ALwB0oYR7KfFEhHv41vx9zM1a9Y03a7lUWspOXT9u5OgC78GDQD3g/sUQcVM8/MPFH8PEm0ijWzZsokmTZqEvB2Yeats2bJiwYIFDl0piQaFPxwaAO5m4cKFIm/evGrMn/gDir+PAhuRhoOHVF/wp02bNirLwWeFHD0Nhd8YGgDuBW1Iy5YtRe7cuZ2+FJIkKP4enW5YC2xE8B96/NEK/rRt21Zs2bJFjdcR56Hwm0MDwH3s3btXlWZGW0L8A8XfA0Qr54v62ojuR48/WsGfFi1aiHz58onp06c7dv3kf1D47UEDwF0gawqewxtvvNHpSyFJhOLv4t69VTnfbt26WUb958mTJ1TgiDgHhT82aAC4B7Qd9evXFyVKlHD6UkgSofh7oHcfrZzvqlWrbEX9w123ZMkSsXv37pR+BmIMhT8+aAA4z6lTp1T7065dO6cvhSQZir/He/fIu41WzliL+kfQH5g5c2YSPwWxA4U/MWgAOMv8+fPF0aNHKf4+hOLv8d79e++9F7WcsUbx4sVFo0aN6PpPMxT+5EADwFmXPyZMq1q1qoNXQVJBjpSclajePSbhgetd64FH691bTUWM3r1WZEPfu4fI161bV0X9w4uAMX79++mB6/+5554TJ0+eVHEAJLVQ+FNjACDqXD+kRVIHgvwQKHzTTTeJjIwMftU+gz3/JLvvnerdW5Uzxpgd5uP+/vvv4/y0xC4U/tRAD0B6QYcD9zJT/PwJe/5xAIFHLx5iroExdoixk737aB4HULlyZTUjINx4MEpIaqDwpxZ6ANIH2opChQqJpk2bpvFdSdqQxJKNGzfKWbNmyd9++00tt2rVSmbPnh0l80IvLDdu3DhsXSyv5cuXq/Pq12F5//79tn6hffv2WR7fu3dvWbp0aXn+/Hn+6ilg27Ztcvr06XL37t2e+n5Pnz4tp0yZov56hQMHDsiZM2fKTZs2OX0pvqVu3bqyY8eOTl8GSREU/xgFNRGBr127tqHRgPfQgIGhNzTsEs0g0Z/7+++/V+tXrFgRz71CfCj8XhV/QAMgdWzfvl21FePHj0/huxAn4Zi/CUYufC3gKB6SMXYfzdUfLZ5Aq/QHUAoYZYG/+OKLuD8DyQpd/c7AGIDUMXnyZDXsiLaI+BOKf4yCGllKNxIIbLS8e23sHudGyUz8xTIEOREwxm9GZmam+pszZ05V8//DDz8UZ8+eTeg9yf+g8DsLDYDkA4/w+++/rwL9ChcunIJ3IG6A4h+noEZOpqMJPIJkUtG7N8s2iDQ2IhkxYkTo/w888IDYuXMnC/4kAQq/O6ABkFxWrFihgo/RVhD/kgHfv9MX4UYgrEjXM+vhY1KdyGh/rRdvJzI/mdkGaAAPHjxo+nm066hXr56q0z1jxoykXleQ8JPwnzlzRnmikAUC75BXwf2PYTmk17IOQPw8+OCDyiOJ2UD1HYtomUTEm7DnHwU0IBD0aC78hQsXmrrvk9W7txuLcOjQIdNjYIhowKKHxwACRoIt/H6CHoDEOXLkiPj000/FfffdF2r7otUuOXDgQBLekTgFxd8E9OTNXPipFPhohYSixSJYOXD0PSGM++fNm1eMGTMmRVftXyj87oYGQGJMmDBBnDhxQnTt2jW0LlrtErQjxLtQ/E1ATz4VAXp2iGZtr169OuZYBBQQ0lOwYEHRqVMn8cEHH2QxIkh0KPzegAZA/IwePVq1M2XLlo0pk4h4D4q/DdLRw48kmrWtD94zAvXPjcoHR7rqMFsgxAy1u4k1FH5vQQMgdpYtW6bKkD/00EOhdVadDf1wIvEWFH8XYmZtI8jQKJ0QPf4mTZqEYhHQ24/0AuhddUg7xEx/b7zxRho+kbeh8HsTGgCxgbagQoUKoSnAgVVnA8OJRnOcEPdD8fdgmmHPnj2zxCKg/gCEH717RD2jtx9ZkyDSVderVy81X/eaNWtS8Cn8AYXf29AAsMeOHTvEpEmTVNuidSwg6vqMpkgQ8Ir9GQjoTSj+LgQT8JhRq1YtFXsAD4BR7x4ufTuuuptvvlmUKVOGvf8oUPj9AQ0Aa9555x011fe9995ruxOC6cEZCOhdKP4eTDNE7IFmlRv17q2mCNYi/5HT3b17d/HJJ59YzjoYNCj8/oIGgLmIo/Q4hP+CCy6w3QmJnIUUMBDQO1D8PZpmaGWVY8zfzHjQF/TIyMgQo0aNSur1exkKvz+hAWAM2pS9e/cqF77dTkhkBlEkDAR0PxR/j6YZWlnldiYRAkWKFBF33323ePPNN8XRo0dF0KHw+xsaAOFgjo9hw4apID+jbKZonZB3333X9HtmhUUP4OicgiQh7Ezja2eK4D///FPmypVLPvvss4H+Rbw8LW8Qp/RNBE4H/D/ef/991W6sXLnS9PsyakfstD/EvbC2v4dBzj5S9/Q1/iPnGIgkWn3uxx57TBX9wbYglqwNco/fL7X9YyXocwGgkh/aAAQOo7KfHjt1/ONpf4iLcNr6IIljp3e/b98+ZZHrrXQs79+/X23fs2ePLFiwoOzdu3fgfpKg9viD3PPXCLIHYNiwYTJHjhxhn92qnYi3/SHugz3/gID8f6Tl6KNzEbiD8TvEEoDnnntOPP/888rqv+SSS0QQCHKPP+g9/yB7APCZUdAHZb7ffvvtmNoJ4g8Y8OdD7E4GFJmWA9c/3HVPP/20CAIUfhLUIMCXX35ZnDp1KuxZt9tOsKKfP6D4+4h4JwPKzMxUfwsUKCAGDx4sPv74Y7F27VrhZyj8JKgGAKr5oZQvjP2SJUuG1ttpJzi1r3+g299HRHPZoYa/WZlOBPygNDA4ffq0qFy5sqhataqYNm2a8CMU/nCC7vYP2hAAKoB+8cUXKqBPX9QHc4OYtRPYju+GQwL+gD3/gEwGVKdOnajHYrvm0suVK5ca98dsf2YNgVeh8JMgewDwud5//33x5JNPhgm/VR1/tB/oILCin3+g+PsEq4p/1113nel2fUPXsWNHNX/AgAEDkA0i/AKFnwTdAHjqqadE6dKlxSOPPBJT+4EhRTP89j0FAYq/T7Cq+Hf11Vebbs+RI0fo/5gsaOjQoeKnn34SM2bMEH6Awk+CbgCsWLFCfP755+LZZ59Vk/jE0n5s3brVdLtfh0j8DMU/IJMBtWzZ0nC7BrYjZgCFO7Tl5s2bi4EDB2Zx9XkNCj+JB78ZAPDkValSRZXzttt+aLOGRk4gpt8eOV8I8QYU/wBNBmS0XQ+CBVGxC2CyH6QDrV+/XowePVp4FQo/SQS/GACI4Zk7d6548cUXo3YAjNqHmjVrmp4X2yPnCyHegNH+PgTBe2ioopXmnDNnjrLWo4GGTjvu/vvvFxMnThTr1q3zXOEfCr89GO3v7ywAePOQvYM4HgzjwbC3234g5gepw3baCuIt2PP3IXgYW7duHfZQ6gtzWLnx9T2cV199VfV+YAR4KfiPwk+SiZc9AL169RLHjx9X03ZbCX9k+2E1nEjh9y4U/wAW/oHrzwx9zwbpQEgNwpAAGg8vQOEnqcCLBgDc/SjahaI+ZcqUSclwIvEmdPsHtPAPGjK4Mo0KAiEHOHLI4IEHHlAzf6HyX/ny5YVbofDHDt3+/hwCgOEPdz9y9GEE2On1JzKcSLwFxd9n6KfitBqvQ2U/fWGPIkWKiH379hlOz3n48GFRrVo11eB9++23CTckqYDCHx8Uf38aAIjqxxg/gnaR20+IHrr9feze1yL3o4EePowFlHaFIYAGTQ9Evn379ur/hQoVUu5/RAy/9957wm1Q+Ek6cfsQAEpzjx8/Xrn7KfzECPb8fe7eNwvu0yJ18dfKQ4DGBB6Ahx56SHz66aeucv9T+BODPX9/eQDgvYOXrm7duuq5daOXjjgPe/4+r+uvL9QRLVLXqrQnGjfNi/DKK6+IwoULi/vuuy9q4Y90QuEnTuJGD8Cjjz4qTp48qTx0FH4SDYq/R9Gn7lmJd2ShjshIXavSnhB5bT5vuP8/+OAD8f333zvu/qfwEzfgJgNgypQpyjP35ptv0t1PTPm/gu7EM2P7d9xxhxJjvVveDETpA6NIXS1AENN1opa/WW8e83njWBgPcP/37dtXDTdceumlIt1Q+IkbDQB4yYATQwBw92O63rZt24q77ror7e9PvAXH/H2eugehnj17ti0jQjtHNGBkYFpPcOTIEVG9enVRoUIFFRgYrWRoKqDwJxeO+Xs/BgCZPdrzjOj+UqVKpe29iTeh299D7n2zsX1Y/cjRt1uIAw0FjAg9EPSCBQtGvRakBeI6APYbM2aM+OGHH8TgwYNFuqDwEzfj1BDAW2+9pTx8I0eOpPATW9Dt71KMeua1a9c2PUYrzmNViEMzIiKBEQEDwAycWztvixYt1OQ/cP/DC2CVWpgoFH7iBdI9BAAj/rHHHhN9+vRJ+TNI/APF36UY9cx//vln02M0wTcSfX3xH6sAQTP+/vtv1fvX3uPxxx8Xa9asEV27dlXrkF6UCij8xEukywCAMX7bbbcpLx8McULswjF/F2KVd4/UPX1gXqxj+5GV/eyAlCH9xD766n9IK2rWrJkyDJYvX550tyOFP7VwzN+bMQCoutmwYUPlsVu6dKkyOAixC8f8fZi6Z+VBWLx4sSrlG0uQXuSMfjin5mLMkyePSjHCPjfddJMyBpIFhZ94mVTFAEDw8Wzv2LFDFfKh8JOYkcRR9u3bJ1u1agVlDb0aN24cthz5+u2339Rr1qxZ6m80Nm7caHqeKlWqmG4fPXq0HDVqlOW1aCxbtkzmyZNHdu7cWZ4/fz7h72bbtm1y+vTpcvfu3Qmfi0Tn9OnTcsqUKeovSQ0HDhyQM2fOlJs2bUrK+QYMGCCzZcsmZ8+enZTzkeDBnr/DxNIz11fm08+5Ha8HoXfv3qbb4cq/+OKLTffR92bq1aunCgB9+OGH4vXXXxeJwB4/8RPJ9ACgiM9LL72kqm2iPSAkHhjw5/Cse9Gi7pG6Fzk2b+bej6f4T/PmzVXjYVQ3AGmDaKSshgYiAwBxDaj7jwyAKlWqqLoEsULhJ34kGUGAiKlBae3OnTurCH9C4sZp10OQ3fu1a9c2dalrbn0r9z7AubNnzx52PJaLFCliuB77g/3792e5LhwTuQwXo35dRkZG2DLOgXOBs2fPyhtvvFFecMEF8tdff43pe6KrP/3Q7e+NIYAdO3bI0qVLy4YNG8oTJ06k7PpIMKD4p4lo4mx3PN0Mq7H9yBgCvVBraEYG9o1mRJi9h96gAIcOHZKVK1eWV1xxhWrs7EDhdwaKv/sNAIh9gwYNZJkyZZQRQEiicMzfA7PuWWE1to/iP7iGWbNmqb9ICUSKnh68Fyb4wTBDtAqCc+bMEaNGjTJ8D+yjTf4DMAEQopD37Nmj8pBPnTpleo109ZMgEUsMANJ64epHnQ9k1USm0urjfAixC8XfY6l7RljNyqcV/0k0QPDs2bOWAYCdOnUSBw4cCL3vl19+KRYsWCA6duyo8smNoPCTIGLHAIB3FpP1oHTvRx99FFZEC3E+iKlBTZAbbrhB1RLAsvb8EWJKwr4DkrbUvXiGFfSu+ESvE6l/33zzjek+iA2IfE+4N3PmzClvvfVWeebMmbBtdPU7D93+7hwCQLpsz549VXzNhx9+mPAzT4gein+SiTfwLlGMAveMxvbjuc7I4D6jAECreIXJkyer8959993y3Llzah2F3x1Q/N1nAED4+/btq56l9957L+Y4n3g7ESQ4UPyTSDIC7xIlGcV/rDwAEPFChQqZ7oNriGTChAnKaLj//vvln3/+yQI+LoHi7z4D4Omnn1bP0Ztvvmm4L56vWJ8/QvQwzz+J2Am8szPrXiIkY2If7Trnz58vHnzwQcPgPtQVNwNBi4gl0H9OjPufPn1a5SijLCmmBC5WrFjMn5EQP8cAPProo+Ljjz8Ww4YNEz179owrzsfo+SMkjDBTgCSEG11x8cYg2OldoE6BnbRAvYcDrn5tHBMeANQEIM7Cnr87gKv/qaeeUs8Mhses0gCNhu7gWTN7/gjRoPgnGbcF4SQSg2BlzCxfvtywQFBkPIB2Xv0Y/0cffaT2QyMXGQRI0gvF3x3C//jjj6vn5ZVXXrFVByBagS43tT/EvVD8k0ysgXduj0GwY8xocQZmmQDNmjWTU6dODZukZ+LEiepcyALgpDLOQfF3FgTAdu/eXT0nI0aMiLkQkJ3nzynPI3EvFP8UkWjqXjKwExRkdZ2xGDPR3g/C/9lnn8kZM2ZkOQZZAEgDbN++vTx58mRKvgdiDsXfOTDsheEvDINhBs1EKgFaPe84v9NtEnEPFH8fgh5/snsC8WYRaMJ/5ZVXRj0W582dO7e85pprVIwCSS8Uf2c4duyY8nph+Msojz9WA8DK0+cGbyRxDxR/H2EU3Gc2Bp8K9MMEmvDXrFnT8v3mz58vCxcuLP/1r3/JDRs2pOTaiDEU//SD+JdatWrJfPnyya+++spyf7sGgNEwnVGtDsYBEJb39RGYThfT8+o5ePBgljr+sZYPjgWcF+dv1qyZKks6dOhQUaJECcv3w/6YrjRPnjyiQYMGYubMmSm5PkKcBlP6okwv5svA/2+66aakzQWgPX+RoKNnNhcHCR4ZsH+cvgiSOGgUUOM7GpiUB7X505H3i1r9mZmZKtcY9cZjeb8jR46Iu+66S0yfPl289NJLom/fviIjIyOl1xt0MOcCJn1CfficOXM6fTm+ZuzYseKhhx4SDRs2FF988YUoXrx4TMfDmIfBgOcKz3I0IOowEv7++2/xwAMPRN0Pvzvm/CDBg0V+fIKdSXnS8ZBrk/Q0atTIsoCPvvCQZiAULFhQTJ48WTz99NOif//+Ys2aNWL06NEib968Kb92QlIFnr9+/fqJ119/XYnxW2+9JXLlyhXzeTQPAAwAEM0A0Ip94Rkzw8yAIP6Gbn+fYGdmv1Rjd3Y+q9nIMMXx888/r2Yy++qrr9SQAHowhHgR3Ndt2rQRb775phL99957Ly7hj2c6YDxbmB4cXrhEpg0n/oPi7xOcfshjmZbXKDYByxir1I9BohzwwoULxc6dO0W9evXEsmXLUnb9hKSCX3/9VT0TK1asUENv3bt3T8owViwGgFEcQCrjfog3oPj7CKce8liEH40VAo0QcKQHy6tWrcriBahTp44KBCxfvrxo2rSpGD9+fEo/CyHJArX18UwgjgKGa4sWLZL65do1ABDwO3v2bLUfxvjxF8uRgcAkWFD8fYQTD3kswm8nNkHzAtx+++2h5ZIlS4p58+apdXfffbcaO400HghxC4ihHj58uHL1Y8hq8eLFlsNy6fAAwPuHuB+6+gmg+PuQdD3ksQo/sNMIGqUh5c6dW80CiICpV199VTRv3tyysSMk3WC2ynbt2qkslYEDB4opU6aIQoUKpfQ9YzEACNGg+JO0Cb9ZbIIRmFIYrlPNCMBYae/evZUXAI3slVdeKd544w1x/vx5/orE8d4+puGtWrWqGt+fOnWqeOGFF1TwqgbEWX8/JxMaACRmWOeIxIp+dr54MJovINZypEePHlVTA2NbkyZNbNU+J8awwl9i7NixQ7Zt21bdi3feeWeWEtVGlTdTVV43lrkASLBhz5+kpccfLTahdu3aYb0jYBQNHRkHkD9/fpU6BS/A9u3blRcAy/QCkHT39qtUqaIC+uDiR0Bq4cKFbWW36O/nZEEPALELxZ+kVfj1ICYBjeB1110Xtt6o6GS0cqQY+0choK5du4pevXqJq6++2lZQISGJgPTTDh06iHvuuUfVqli/fr1o3759TNktqSqvSwOA2IHiTxwR/mgZCqjmZ4ZRQFOBAgVU8ZTvv/9ebNu2TXkBRowYQS8ASTowTD/55BM1tr9kyRJVjRLLRYoUMdzfyhBNVYAeDQBiBcWfOCb8Rr39cuXK2apUaBQ8hV7/2rVrRZcuXcSjjz6q8qo3b96ckuslwWPXrl1qEh7MPYFaFBs2bFC9fz2R96WTlTdpABBTnA46IP4O7kv2NMR2g6fmzp0ry5cvr6ZMfeONN1RQGzGGAX/mnDt3Tn700UdqyunixYvLL7/80tZ9rN2XRtPspnNKXQYBEiMo/sQx4QfRGkYYALE0pLVr15a//fZb2LkPHz4sH374YTWX+eWXXy4nTZokz58/z188Aoq/MbhXZs+eLWvVqqXus44dO8o9e/bEdB/r79t0RPtHgwYAiYTiTxwT/o0bN5qm982ZM0fOmjUrJOpW+0drVDMzM+X111+vttetW1d+9913/NV1UPyzsnTpUtm8eXN1z/z73/+WCxcujPs+1u5f/NXfz+mGBgDRwzF/4sgYfyzTEGuVCu2WBo6cIKhmzZpqHBZpgSguhO0tW7YUK1euTMKnIH6biOeWW25R9/6ePXvEtGnT1ORSjRs3jnqM3aA+p8vrMgaA6KH4E0eEP55gKLulgY0mCNLSAlFnHdME43PWrVtXzRyYinQr4i0wZfQDDzwgqlWrpiaSGjdunHoO2rZtazkLnxum07YLDQCiQfEnjgh/vNMQGxUFisULgIYcEdvICnj//ffFTz/9pIq0PPzwwyp3mwQLGIf9+/dXAo20vVdeeUVs3LhRdO7cOct9Ga08r9PTaccKDQCiCBsEIIElHWP8RtgJhjKKpI711bhxYzlx4sQs463Hjx+Xr7zyirzoootUZsCTTz6pxkaDRBDH/I8dOyaHDh0qL7zwQpk/f345ePBgeejQIcPxfNw3uH/M7lE3BPXFCmMAgg3Fnzgm/HrMgqGMIqmRCohGOzIlMJ55ArSGcODAgTJv3rzKEIARsH37dhkEgiT+iNZ/4YUXZKlSpWSOHDlk9+7d5a5du7LsZ2VwRkvVczqoL1ZoAAQXin/AcYPwm2EVSY2eW6zib5Zj/ffff8tevXrJggULKnHo1KmTXLx4sfQzQRD/NWvWyPvuu0/myZNHvfD/33//Per+RganWSS/l6EBEEw45h9g0j3GHw9WkdSHDx9WpVYxbm83FkCrqz5nzpwsY7ilS5cW//3vf9VkQcOHD1fBX40aNVLf0aeffipOnz6d8Gci6QG/M6bWRaVHlHzGbz148GB13yPeIzJQTxvTx31hVI8/neV50wljAAKK09YHcQa39/g17OT2a6/IwkCJDgWAs2fPymnTpslrrrlG7YcKb/369fNFj8+vPX/c288884wsV66c+s0aNmwoP/vsM8PPF21M3+7LT/cBPQDBguIfQLwi/BoQZjtj+3DTVq1aVVapUiXmWAA75VbXrVsnH330URUTgGNQBOaTTz6RJ06ckF7GD+KPa588ebK84YYbQvEg999/vyrWY0SiQaS4X2AweGl83w40AIIDxT9geE34AXrksfbM4vUCoCFHb9CsUUeGwPjx42WzZs3UMaj5DqNg/vz58syZM9JreFX8UXN/yZIlsn///iqAT6vgOGrUKFXa2Qy7Y/p27y+3R/bHAg2AYEDxDxBeFH49MADs9ujRsDdp0iRmly7mCLCTIqgBQ6Fv374h8YFX4M4771THHDx4UHoBL4k/UvSmTp2qAvZKlCgRMr4eeeQRVcY5GnqDLpahJP1Lu5/w18mJetIBDQD/k4F/nI47IKnHC8F9dgqy3H777SoYyy4I4kKRFQT1IThLK7wSDQQNnj9/3nAbSrz27NlT1KpVK0vhFhyDcsEoBzt9+nT1XefMmVM0a9ZMtGvXTlWKK1++vHAjZ86cEbNmzRI33HCDuma3geJLM2bMUN8tCjedPHlSVKxYMfS9IiAzR44chsfu379f3HHHHWH3DApFoQqkHRD8hzLTKAKE3xz3E97b6n7zAwcPHhSLFi1SRYzcVKWQJAmnrQ+Serze448EvTf00O14AdDb04Nen9GxsbqArdy8f/75pxwxYoRs2bKlzJkzpzqmevXqctCgQWocGi5rt+C2nj9m0/v555/lc889J+vVq6e+O/xeTZs2VQWZfv31V9vnijbbnh3PkVFPHvdTLPeb16EHwL9Q/H2O34TfrKJatDF8OwFeke7+eMXBCFSOw3TCd999t3JR4/iSJUsq1/XYsWNVDrqTsQJOiz8MIQg6gidRdEeL0kethVtvvVV+/PHHcu/evTGf18q9b2Y8RjPu7M7g5ydoAPgTir+P8avw6/nmm2/kZZddJjMyMkzFOVoPEKKfyDiwnQBBPRD5H374QT7xxBOycuXKofOgsiBS0iB+Y8aMUT3fdBkE6RR/pE5u2LBBCXrv3r3V+HmBAgVC30OFChVkjx491HTOp06dSui9rHrpkQafNqZv9TtGqzip3Ut+hAaA/+CYv0/xwxi/GUZjuXowrv/ZZ5+Jiy66yNY4LQxhxBOsXr066pi/EZHjx/r3tQOKFGVmZqp4Ae2lXU+ePHlEjRo1RJ06dUIvFDNK9rh8qsb8USQHk+ToPxs+67Fjx9T2ChUqhH02fJeFCxeOej58Lyj6hPFnfD/a/6ONsdv53QFiQczOE2vsSaz3gFdgDIC/oPj7EL8LP8B0vQj+0ldhQzAfxHLChAlhDTmqtkHYohFLAJhVgCCuATMJzp4921S8zITmyJEjWQwCiCgEL3fu3KJy5cri4osvFqVKlQp7oToh/pYoUSImEY9H/BEEt3v3bhWMp7127NgR9v9ffvklJPSophcp9FbiqH1fRYsWVZX54hHbaPdJtN8oFhBE2qlTJ/WspeL8boQGgH+g+PuMIAh/rBHXVvsbCTiOx/oNGzYYHoN9zMq/6q/ByEthljkQzSDA7wpDYP369WGi+88//4RdC6YthmBqxoD2Qq8aUfEQePzV/g/g8cBc9poxAHHHC/8/dOhQFnGH8Ou/M7xn8eLFw94T37km9Cghawd8b7iWESNGiB9//NHWMWZia9RLj/W7N7vWoET+66EB4A8o/j4iCMJvpyePXmzr1q1t9QDt1G+HNyFv3rxiyZIltr0F+msweu9kuolx3j179hj2wPXLaLT1om6G3kAoWLBgmKhHGhVYhvBHS7dLxjCOHczEFr10eFPeeustsXDhwqR89/Hch36BBoAPcDrogCSHIAT3JRJxbZQdYDfCXwse1E/Xavca7AQS6oMTYwkeTEaUPYLqUIwIte+PHDmS0hTEyEI7+s+ZaMU9O2l20YI+4y3OE8TIfz0MAvQ2FH8fEDThRyOPynvxNOSxCLhVY25HTKwizvWvyEqEZrUEkmkkJDPa3+i6rNIs451UJxaxTZVQR7sH/Fj33wgaAN6F4u9xgiL8RgKSjPrqsfQ4I3uWRt6EyGuIxcAwKjwUacwYfQ/694zHKEDqHcT/l19+yXK8WW/d7nVZfcexTsIU+bJj9KWqOI/RPeDnuv9G0ADwJhR/DxMU4TfrYSE3O5Eelt1iQWa9Q703we61x9ujjfY9tGjRwtIQiSbYqDEA8cdfMxEzO7dZDzgRYddekXUcYhXXVLvotXsgCHX/jaAB4D0o/h4lSMKfjrFVnAOzwRlNB5xo421lYFj1fLVeaawV66yuWxPsaOIfS5xCMgTe7HtAfMaXX34ZMrKsDC6zz5sqYWYMwAE5c+ZMuWnTpqR8nyS1UPw9ypYtWwIh/Omop241Jp0sty2EymiWQavesSZwscQPWBlHeqGKR/z15473uiJfkd9DxYoV1StZv4WdYZpECFrd/2gegFjmXiDOQfEnrifVPSqr0r+pILLnaqdXGm8P20h09EKViPjjPFbXZRScGe1zLlu2zDQLIxk99Xi8BnYIes+feAuKP/EEqXLZuqXBRu/TTrR/PLPUpbrnb3Zd+qA/M+NA+5x24yPcKqRBrPtPvAnFn3iCVLls3eCqNRp2QOCY0WeLZiQg4C9W4yhZY/52fx+tx43ePT5f5L5YH4vHwY1YGTp+j/wn3oHiTzxFsl22buj52/VqmBkJ8RhH2jHJiPaP5fcxG2aJ1ePgVnB9+DxBjPwn3oDlfUngSeXkL8msD2/nOlHGNtZZ6lBS9+TJk6qE8aWXXhp2vP58INZzx/p5rfDKpDlBrftPPITT1gchToKev1EEfrrcs3aHHVLhoTDK80/157b6vEa95cjty5cvl27HDcNJhJiRzWnjgxAnwEQy6Emjd9axY0c1g1yTJk3ExIkTVa8MPct0zMeOqW7N0HrcmNrWDPTIYwUT6cCToAfLmAXPqc/73nvvqZ69noYNG4orr7xS/R+TKdWrV0/9dpixz63Y/V0JcQxT04BE5YcffpA33nijLFWqlLLkJ0+eHLa9c+fOhuOkVsybN0/WqlVL5sqVS1522WVy7NixWfZ566235CWXXCJz584t69evL5cuXcpfKkZSXfAl2deS7J6/VbR/KsfUo0XEw/tiFDvgpt8qFrx63cng8OHDslevXrJcuXIyT548slGjRiqg04ytW7fKG264Qd2HxYoVk0888YQ8c+ZMzO0jsQfFP07QMA0aNEh+9dVXUcX/+uuvlzt37gy9rNypmzdvlvny5ZN9+vRR9dZHjBihGovZs2eH9pkwYYK68ceMGSPXr18vH3jgAXnhhRfKf/75J96PEjjcEOSnx26wXjLFxCrPP5VuabOI+FjnRnBz4F+qiwq5mdtuu01Vy0QnCRX/hgwZIgsVKiS3b99uuP/Zs2dltWrV5LXXXiszMzPV/Ve0aFE5cODAmNpHYh+KfxKIJv7t27eP6Tz9+vWTVatWDVvXsWPHsMYdPf3u3buHljEFa+nSpeXQoUPjvv6g4dbxWKtIebu1ANze89dApoJVSWK3/lZuKCrkVo4fP65+xxkzZoStR7wGOkxG4PvBvbBr167QunfeeUcZDJh22m77SOzDMf8UMn/+fFG8eHE1rvzwww+Lffv2hW1v3ry56NKlS2h58eLFWcY7W7VqpdaD06dPi5UrV4btky1bNrWs7UO8Ox6L6O/WrVsbRoEjRgFj8YhN0ECMwmeffRZXbMIVV1yh7i1Ez+vBMtanOhIdcRULFy4U58+fD1uPTAZkHyDLwM2/VbJ+Vz9y9uxZ9TvmyZMnbD2ySbT795lnnhHly5cPbUP7Vb16dVGiRInQOtyHhw8fFuvXr7fVPpLYoPinCAQkffTRR2Lu3Lni5ZdfFj/88INqAPRpWuXKlROlSpUKLe/atSvs5gdYxgNw4sQJsXfvXnW80T44lnhD+OLBKDhv0aJFCQXnwXCIbEyxjPWpxm4Aoxd/q6BTsGBB0ahRI/Hcc8+JHTt2qDZr/PjxSqR37typ9ilatGiYYRet7dO22WkfSWxQ/FNEp06dRLt27ZQ126FDBzFjxgyxfPly5Q3QgHEwdOjQVF0CcanwxdNLRm9Ybzga9ZJj5X8jVs4QS4/eS78V+R8ff/yxur/KlCkjcufOLd58801lqMJTCXr06KE6RsQ5KP5pokKFCsraNUvJKlmypPjnn3/C1mG5UKFCymWG49HjMdoHxxL7wFWOdD4I66xZs9Ka3hcrqUjzcyrVTyOWHr2Xfivyf8YdvJ1Hjx4Vf/31l1i2bJk4c+aMagdjafu0bXbaRxIbFP80sX37djXmr3fzRwJXWaQ1/O2336r1IFeuXKJOnTph+2DMFMvaPsR/47GpGPdOlTchFmLt0XvhtyLh5M+fX7V5qMmA+6p9+/aGXxHar7Vr14rdu3eHtX0Q9ipVqthqH0mMxBAcSHQcOXJEpaTgha/xtddeU/9Hriq2IUd18eLFcsuWLfK7775Tka6XX365PHnyZOgcd999txwwYECWVJa+ffvKX375RY4cOdIw1Q/5/ePGjVPpLg8++KBK9dNHyRL/keyccSdT/YIeDR8E0GZ9/fXXqk2bM2eOrFGjhmzQoIE8ffq02o40PUxGFZnq17JlS7l69Wp1PHL9jVL9zNpHYh+Kf5yg2IRR6hFS/JDqgpsYN2/OnDlVQR7k40cKdLNmzdT+keetWbOmyuWvUKGCYRELPDgonoF9kPq3ZMmSeD8G8QjJTPNzS6of8S8omY32C21UyZIlVXrywYMHQ9uR9492Uc+ff/4pW7dure5D5Pg//vjjhkV+rNpHYg9O7EOIy0GaH8bn4TbVp/lNnTo1oXFvbaIgDCfB1Y6xfqSTemHiHEJIYnDMnxCXk4o0P8AoekKCC8WfEBeTysA8J1P9CCHOQvEnxMWkKs3P6VQ/QoizUPwJcTGpKm/rhlQ/QohzUPwJcTGpKm+bSo8CIcT9UPwJcTkIzIssZJJoeVs/TJhDCIkfij8hLibZs/lpcMIcQoINxZ+QAKb5Aab6ERJcKP6EuJRUB+Ux1Y+Q4ELxJ8SlpDooj6l+hAQXij8hLiWVQXlM9SMk2FD8CXEpqQzKY6ofIcGG4k9IwNL8AFP9CAk2FH9CApbmB5jqR0iwofgTEsA0P8BUP0KCC8WfEBeSjoA8pvoRElwo/oS4kHQE5DHVj5DgQvEnxIWkOiCPqX6EBBuKPyEuJNUBeUz1IyTYUPwJcSmpDMhjqh8hwSaH0xdACDEG6XyzZ89WwX0Y44erP9Eef6RnITKbAJ4FGBjJeh9CiDthz58QlwMhbt26ddIFmal+hAQXij8hAYWpfoQEF4o/IQGFqX6EBBeKPyEBhKl+hAQbij8hAYSpfoQEG4o/IQGEqX6EBBuKPyEBhLP6ERJsKP6EBBSm+hESXCj+hAQUpvoRElwo/oQEFKb6ERJcKP6EBBCm+hESbCj+hAQQpvoREmwo/oQEEKb6ERJsKP6EBBCm+hESbCj+hAQUpvoRElwo/oQEFKb6ERJcKP6EBBSm+hESXCj+hAQQpvoREmwo/oQEEKb6ERJsKP6EBBCm+hESbCj+hAQQpvoREmwyJEN+CQkkx48fF+PHjxcLFiwQlSpVUnEATZo0EXfddZfImzev05dHCEkhFH9CCCEkYNDtTwghhAQMij8hhBASMCj+hBBCSMCg+BNCCCEBg+JPCCGEBAyKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQkjAoPgTQgghAYPiT4iHwYx8bdu2FaVLlxYZGRliypQpoW1nzpwR/fv3F9WrVxf58+dX+9xzzz1ix44dluedP3++qF27tsidO7f417/+JcaNG5dln5EjR4ry5cuLPHnyiAYNGohly5Yl/fMRQlIDxZ8QD3Ps2DFRo0YNJcRGU/auWrVKDB48WP396quvxMaNG0W7du1Mz7llyxbRpk0bcfXVV4vVq1eL3r17i/vvv1988803oX0mTpwo+vTpI4YMGaLOjWto1aqV2L17d0o+JyEkuXBKX0J8Anr+kydPFh06dIi6z/Lly0X9+vXF1q1bRbly5Qz3gbdg5syZYt26daF1nTp1EgcPHhSzZ89Wy+jp16tXT7z11ltq+fz586Js2bKiZ8+eYsCAAUn/bISQ5MKePyEB4tChQ8pIuPDCC0PrmjdvLrp06RJaXrx4sbj22mvDjkOvHuvB6dOnxcqVK8P2yZYtm1rW9iGEuBuKPyEB4eTJk6pXf/vtt4tChQqF1sMDUKpUqdDyrl27RIkSJcKOxfLhw4fFiRMnxN69e8W5c+cM98GxhBD3k8PpCyCEpB4E/912221CSineeeedsG0fffQRfwJCAgbFn5CACD/G+b///vuwXr8RJUuWFP/880/YOizjuLx584rs2bOrl9E+OJYQ4n7o9ickAMK/adMm8d1334kiRYpYHtOoUSMxd+7csHXffvutWg9y5col6tSpE7YPAv6wrO1DCHE37PkT4mGOHj0qfv/997A0PaTnFS5cWI3j33LLLSoVb8aMGWqcXhuTx3aIOEDuf5kyZcTQoUPVcrdu3VQUf79+/UTXrl2Vt2DSpEkqA0ADaX6dO3cWdevWVdkD//3vf1Xa4b333pv274AQEgeSEOJZ5s2bJ/EYR746d+4st2zZYrgNLxyn0axZM7V/5Hlr1qwpc+XKJStUqCDHjh2b5b1HjBghy5Urp/apX7++XLJkSVo+MyEkcZjnTwghhAQMjvkTQgghAYPiTwghhAQMij8hhBASMCj+hBBCSMCg+BNCCCEBg+JPCCGEBAyKPyGEEBIwKP6EEEJIwKD4E0IIIQGD4k8IIYQEDIo/IYQQEjAo/oQQQogIFv8fs7/uGyztzJUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -83,7 +83,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAHwCAYAAACop2ZrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb35JREFUeJztnQeY1FTbhs8iC9JRehEQBURFOgIfTRAUEOyi2BU7qFg/UUFsWFEBpRcVVBRRgU8QRHoRREFFwEJTkC4dll3Jfz3HP2tmNpkkM0km5bmva1hmkpnJzCTnec973pKhKIoiCCGEEBIZ8qX7AAghhBDiLRR/QgghJGJQ/AkhhJCIQfEnhBBCIgbFnxBCCIkYFH9CCCEkYlD8CSGEkIhB8SeEEEIiBsWfEEIIiRgUf0IIISRiUPwJiRhvvvmmqFatmjjxxBPFueeeK5YtW5a7bd26deI///mPqFy5snj22WfTepyEEPeg+BMSISZOnCgeeOAB0a9fP/Htt9+KunXrigsuuEDs2LFDbu/Zs6e47rrrxGeffSZvixcvTvchE0JcgOJPSIQYOHCguO2228TNN98szjzzTDFs2DBRuHBhMWbMGLn9r7/+Eg0bNhTnnHOOqFixoti7d2+6D5kQ4gIUf0IiwrFjx8SKFSvE+eefn/tYvnz55P0lS5bI+08//bS8D4MA2+AVIISEj/zpPgBCiDfs2rVL/P3336JcuXIxj+P+2rVr5f87deokdu7cKfbv3y/KlCmTpiMlhLgNZ/6EkBgKFixI4Sck5FD8CYkIpUuXFieccILYvn17zOO4X758+bQdFyHEeyj+hESEAgUKyGC+2bNn5z52/Phxeb9Zs2ZpPTZCiLdwzZ+QCIE0vxtvvFE0atRINGnSRLz++uvi0KFDMvqfEBIdKP6ERIhu3brJgL6+ffuKbdu2iXr16okZM2bkCQIkhISbDEVRlHQfBCGEEEK8g2v+hBBCSMSg+BNCCCERg+JPCCGERAyKPyGEEBIxKP6EEEJIxKD4E0IIIRGD4k8IIYREDIo/IYQQEjEo/oQQQkjEoPgTQgghEYPiTwghhEQMij8hhBASMSj+hBBCSMSg+BMScdDY8/jx4/IvISQaUPwJiTg5OTli6tSp8i8hJBrkT/cBEELCwc8//yx+++03cfrpp4saNWqk+3AIIQngzJ8QkhJ79uwRF154oahVq5bo1KmTqFmzprz/119/pfvQCCEGUPwJISnRvXt38eWXX8Y8hvvXXHNN2o6JEJIYij8hJCVX/xdffCH+/vvvmMdxH4//8ssvaTs2QogxFH9CSNJgjT8Rv/76q2fHQgixDsWfEJI0p512WsLtCP4jhPgPij8hJGkQ3HfBBReIE044IeZx3MfjjPonxJ9Q/AkhKfH++++L888/P+Yx3MfjhBB/wjx/QkhKnHTSSWLQoEFi/vz58n7r1q054yfE51D8CSEp5fgj1Q+R/Spw92PWD6OAEOJP6PYnhCQNc/wJCSYUf0LSmCM/ffr0wObCM8efkOBC8SfEY8JSDpc5/oQEF4o/IR4TFlc5c/wJCS4Uf0I8JEyucub4ExJcKP6EeEjYXOXM8SckmDDVjxAP8burHJ4JGCg4Diszd6TzzZgxQ3osYLhYfR4hJL1w5k9IwFzlibIEUskguOyyy5IOQlQUxfb7EULSB8WfkIC4yhNlCTiRQTB37lzbQYhhyVwgJGpkKDTZCUkLmJ1DcDMyMiyVxIWoQpC1wYLwGKiGhNE2uOUTsWbNGukxgNAfOXIkz3ZsMzq2RMdk9r6EkPRB8SckDevodsvi4jUwu072/RMZFp9//rnIzs42FH9s79ixo+1jMntfN2IQCCHWoNufEJdI5BK3m+tvliWQSgbBqaeemlQQopuZC0bf3fLlywNdFZEQv0DxJ8QljAS+a9eutnP9zbIEUskgULfbDUJ0M3NB77vDd9OkSRPGFhDiABR/Qjwu5rNw4ULbM2azLAEniu20adPGVhCiW0V+jL67eIJYFZEQv0DxJ8QFUnHTG82YE2UJOFFsZ/LkyVJ4scaPvwjYM2vL60aRH6vfXRCrIhLiF1jkhxAXMHOJt2zZUixevFg3St5oxmxWUAfbZs6cKZYuXSqaNWsm2rdvbyl4TvU0YFu+fPrzgfjnau87XeTH7hIH3pfBgITYBNH+hBDnueCCC5QTTjgB2TS5N9zH43v27JF/tdvUx62wbt065fPPP1d+/vlneX/37t2Gr2e07bfffpN/CxUqpHz66afyr9E+2sdLlSoVc79FixbKxIkT5bHEH5eT353RLdX3IiSKUPwJcQkrAg/hSiSWVkW+bdu2hoaGkRECEcdfI/HX7mNFhONvdowZK99dRkaG7ucjhNiHef6EuIyeSzyRGx33jeoAIB9/3rx5McsFcNUfP3486eMrVKiQXKM3yvNPFqvFfrSfHcOR9ntQv7syZcqIJ554wnJdBEJIYij+hHgERG7lypViyJAhYsGCBbmPlypVSuzevdt1kfda/M2K/egZOFpatGghevXqJerXr5/7fC8aCLGwEIkCDPgjxGXMRE4r/GDWrFm6Iu+G8HuBUUCeXi6/FqREqmmRWkMAAYFqkKKT4my36iIhQYYzf0JcRq/+vRvAzW6n7n/JkiXF3r17RYECBXRn/tp9Ujl2vZl/KuWKtTgpzuxTQKIE8/wJSRIr7XOtFqyxg15RnbZt29quAYBSufGPW9kHyxRWj9Oo2E8qdRDcKPSTqCgTawmQMEK3PyEOrNsbzUBTETm9mTy6/2VmZsa4plWRx3snqgGgtw2Pr127Vqxbt058++238j309ol/Lu5/9913eb4Hq8V+UilXbCTOqSwBWOlTwPV/Eibo9ickScHXYuQeTsa9bSTyWgPDycA3BBeiqh9q5uM97aI9FmD1uJxcDjHqPGg1gM+LDoWE+Iok0gMJCT3Ir0fhmpYtW9rKbdfL1zcrWBNfNEebH29WB8AJjh07JvP88ddL9HL5k73pfT+JCh/ZLcpESNig+BOSouBrbxBqKyKnrYrnlcir5OTkKEePHlUOHz6sHDx4UNm8ebMybtw45a+//pKPYRv28QrtZ8fNzm+QSJztinmqVRcJCRJ0+5PIY5aKZ4dE7mGnc9QPHTok/vzzT3nbunVr7v937NghDh48KA4cOJDnL25Hjx61nP9ftGhRUaxYsdy/2v+j8E7FihVFhQoV5E39f+HChYUTWIkrMIq1sOvG1y4NALdrCRCSbij+JPI4sfbsRkpYTk6O2LhxoxQm9QZB/P3336XI79+/P49YQ3zLli2bR6i14l2kSBGZ3oeiQThuCOvmzZvFVVddlVtI6NixY9JgSGREwMiA0RFvTBQvXlwaApUrV5Ztf7W3qlWrivz587seV4AsDMQwmMUIMLefRBWKP4k0fsg3h9GB41ixYoUMLFSFfv369TIYD5x44olS6HCDgGpn2ur/IboZGRmeBvxh+Ni3b18e7wP+v2nTJinauGVlZcn98fqI9FeNgXr16omGDRvK/xt1FEwGqzN/5vaTqELxJ5HGbIaYCL3ys2ZAZJBah7Q6iD1ucG3DhQ9OPfVUUbt2bSmGeE1VJDGLdlIcnYz2NwOeBHgrYARovRhr1qyRng0AzwS+RxgC6g2fO76mgR3MhJ0R/iTKMM+fRBq7+eZ2BR8u8WXLlom5c+fK29dffy0OHz4st8FtDZHr2rWr/NugQQNZUS9swGiBtwK3+IJBf/31V4whNHXqVPH666/LbVieOPfcc0WbNm3krUmTJqJgwYKW31etWqhXEwEwt59EmjQHHAaat956S6lTp45SrFgxeWvatGlMtPfw4cOV1q1by234qhFNHU/VqlXzRDAPGDAgZp8RI0YoVapUUerVq6csXbrUk88WJcxS8eIj8xNx5MgRZd68eUr//v2V8847TznxxBPla5QsWVK5+OKLlZdeekn56quvdM+FdJGuVD8j8N3Mnj1befHFF5WuXbsqJUqUkN8hvku0Ln766aeV+fPny6wEKxhlUiC7w276IHEGjHH4ju+7777cxzBWxv8Gd9xxR8zzPvvsM6VGjRpKzZo1lalTp6bhyMMDxT8FpkyZovzvf/+TgwQGkj59+iiZmZnKjz/+KLe/9tpr8iRXT3Qj8cdg9ueff+bekH6lsmnTJuX0009XFi9erHz00UdK7dq1Pf2MUcBKKl4ifvvtN+X1119Xzj///Dxij3Pgu+++8zR1LujiHw++uxUrViivvvqq0qVLlxhjoH379sqgQYOUDRs2JPXazO33nmXLlinVqlVTzjnnnDzif9ttt8WMhfv27cvdDmOvcuXKyqxZs5SZM2fK/2dlZaXpUwQfir/DnHTSScqoUaNiHpszZ05C8YdAGPHDDz8ojRo1kgbB+vXr5UVD3MFqrv3ff/+tLFmyRHnssceUs88+W/62MPogGAMHDvS92AdN/I2MgVdeeUWKP757/AYQk8cff1z5+uuv5W9kBeb2e8uBAwfkzB0CDrGPF3/t/XhgCGC83Llzp7xhLNy/f79HRx4+KP4ODkjvv/++UqBAAWX16tW2xL9cuXLKySefLN36cAtnZ2fH7HPLLbfI2UihQoWU8ePHu/5ZggK8LV4VxsEMA54e/BZly5bNrcx3ww03KJMmTQr0IBQ08dcThQ8//FC57rrr5HWE36Z8+fJKjx49lGnTplmaHXpZZCkI19SWLVtceX1cL/fff7/8v574ly5dWl5XZ511lvLf//5XOXToUMzzn3rqKSV//vzS4MOyEEkein+KfP/990qRIkWkOMMdiWWAeBKJP1yZ2L5q1Spl6NCh0l3cu3fvPPvt2rVLVl+LkuAavb9eBTg3ZmuYPS5YsECuO6qicsYZZygPP/ywfDxIs/swi78WGM6IuXjwwQflDFM10u6++25l0aJFyvHjx9N9iL5ErxQyjCcnz3FMjuApQ1yMnvgjRmrGjBlyTMUkp1KlSsqll16a53X27t0baGPbL1D8UwSzil9++UX55ptvpKUKy9XOzD+e0aNHS8vWajCTV9itk+7F+7u1TvvTTz/J+A24FfHaCLbEb4slmDASJvGPB0b1I488IteH8VtWr15deeKJJ5Q1a9ak+9B8hVHswxVXXOHI66OENDxm+D2suvkR9Inj+PXXXx05BhILxd9h2rVrp9x+++1Jiz+CBbHv2rVrFT+R7sAos4j8VCO04VlB7EWDBg1yA/bwO2IWaXX9OKiEWfxV8BviOrz11ltzAwYbNmwoAzVhWIbZW2aGF1kPn3zySe6Yod5wPyMjQ/5fz8OAOCfsA28AcR53qoZEGBQ0UauZJQMqvCEvGiVa/QKKnSBXOr78rbaXejre3yg32yowfhctWiSuv/56UalSJfHII4/IIjuTJ08W27ZtE8OHDxetWrVyrbgO8Q78hqgVMGrUKPnbTpo0SZxyyini4Ycflr/9TTfdJJYsWSLPCadA6WAUGkIhIRRQQtGili1big8//ND1a8YOVuodpEq7du3EDz/8IMc39daoUSNx7bXXyv/rFXPC4wAVLIkLuGBQRAa4gjEzRJoR1qlwH5Ys0lAAUlUQ+T1y5EhpwSI3GffVmQbS9zDbXLlypUwXwzpXmTJlZFCMn8CsxW4nOy/f3+4sBTOKYcOG5Ubqn3baaTLQcseOHUoUicLM34ht27bJVNxTTz1Vngt169aVdTXiA83c8Fb5JasgXfUOtG5/uPaR8ozlU4ynyOfHEk2rVq1ceW9Ct39KIPIb0fqI8Idow+WvCj/o16+f7sU0duxYuR3pSueee650QyJnGTn8zz//vO/W++0MDm64OM3e3+oSBAYYBFPi+86XL59yySWXyN8r7G59M6Is/io4B+BeRlEhGPBI2X3ooYdkem06z9kwL+tpxR8xARB6BNYWLFhQ1jZBYK02z584C8WfODI4uB0QmMosCt6Wbt26ScHH4PLoo48qGzdudOS4wgDFPxYIPoQfBgDOue7du0vPXjq9VU4Tb6Sz3kH0oPgTSyQaHDCQIFAu2ZmDFW9BMlX4sMzSsWNHuS8i9998801fpEv6DYq/PnD9Dx48WGZ74By66KKLZLqgUzN/r5bNtJgZ6ax3EB0o/sQW2sHBLP3ObGaTjLfAbHBCHjdqLcAwwOuhWMi7776bp3AS+ReKf2LwvYwbN04uy+GcgnsaSwRmNQPczlAJYtYO8Q8Uf5IURrN9OzMbJwciDMQff/yxDNjC66DJEoKGor6ebwWKvzVwLk2ePFlp3LixPMfq168vvzcjI0DPW+W26CbyorGREdFC8Se2sDrbNxtUnByI0CWvSZMm8nloroN8blZysw7F3x44t7788kvZtRHnXPPmzeUSkxE4l92uSmnFi5burB3iLyj+xBZWXZlmMxsnBqJvv/02d8DDbAwVwYh9KP7Jg2wRtTBU586dYyrY6eHWmrredYkAVyx/qXDmT7RQ/Ill7AQxaWceeq7IVAYipOxdc801cj/09UZjHc70k4fin/pyAGb2SE9DmiAaDCXbYjgZzK4leBxUDwDX/IkKxZ84mr6E2QZmQkYBgVpXpN2BCK/Xs2dP2fugYsWKshgLA/lSh+LvDPj+0JwLHQXRdQ457FZKert9XcIgUa9JpvQRFYp/wEAxjHTNcq3M/O2k/1kdiDCzGjVqlGyaVLx4ceWFF15wpAIb+QeKv7OgguRzzz2nFC1aVDazQaaAU4GnyXjR9K4vt1P68Hl///13V16bOAPFP0BgcEagESoDemEA6A00RmuLiWb7Zm79RAMRyn2iCiKec/3118uSycRZKP7usGXLFlkgSA0KRLGpZLHiRcN1mEocjpPCv3z5chmDQ8+cf6H4Bwz0wnbbAEg00JjN1hFgZGUQMgvowzHceeed0mVZp06dhNHUJDUo/u6C7BPUm8B1gWWrZJYCzAL6cP2ptS2s3Nyc8avC77cy5SQWin8AcdsAsLIWHz9bh1g7Mfhg8EAjpFKlSkkX/xtvvMHZg8tQ/N0H3+2rr74qlwLQB2TMmDGWr10ztz5aE6uVLhHc54TxnQwU/mBB8Q8obhkAyUbhO+F2RGfDNm3ayP3Q2ZAufm+g+KdnKQCNwKz0mLDTJ6Bt27by5vXMn8IfPNioPKCceOKJ4j//+Y/466+/xHfffedYH/Jkenv//PPP4osvvhDHjx83ff3zzz9fvP/++zGP4XlvvvmmOOecc8TGjRvF7Nmzxdtvvy3Kly+fxCcgxL9UrFhRTJgwQcycOVNeN2effbYYPnx4wuv3tNNOs/z68+bNE5mZmfK1GzRoIE444YSY7bh/wQUXiBo1aginwPX77bffiv3798sxqWDBgo69NnEPin+AccMAMBtoTj/9dNsGQ0ZGhhyIMCDNmDFDnHTSSbnbNmzYINq1ayd69uwpbrjhBvHDDz+Itm3bpvAJCPE/7du3Fz/++KO45pprxJ133ik6dOggNm3apLtvzZo1pWDny2c+XP/999/SEAdffvmlNLbNjO9UoPAHF4p/wHHaAFAHGqMZA15/+vTp4pdffrFsMLRo0UIORNrZhjrbr1OnjjQAMNt/6623RNGiRVM6fkKCQvHixcWIESOkQbx27dqEXgAIdvPmzS2/9tVXXy3/4rVhdH/++ee6xncqUPgDTrrXHYj/YgD0Ivr11hLNCvbElxdV2bRpU25ddET079+/P6XjJanBNf/0s3fvXqVHjx65/Sn++OMP3f2sBvS5ndLHNf7gQ/EPEU4HAWoj+s0yAKwW7EGnvZNOOkk55ZRTlFmzZqV8jCR1KP7+Aa2CK1WqJLNd0JrabqdAL1L6KPzhgOIfMtzIArCTAWBUsCcrK0u5//775f4XX3yxTA0k/oDi7y927twpmwThWnnooYd0fxe1UyDqB3iZ0kfhDw9c8w8ZbgQB2skAwLp+x44dY9b38XwcE9b033jjDfHJJ5+Ik08+OeXjIiSMlC5dWkyZMkW8+uqr4vXXXxctW7aUWTBacH1dddVVYvLkybYDdJOFa/zhguIfQpwyABAghOC++OA/OwPMhx9+KOrXry+PZfHixeLee++V0f+EEGMQ2f/AAw+IRYsWie3bt4t69erpCr1ZgK5TKX0U/vBB8Q8pqRgAe/bsERdeeKGoVauW6NSpkxxESpUqZWuAycrKkilM3bp1k6+BgaNhw4aOfDZCokKTJk3k9YsUvcsvv1z06tVLHDt2LE8mgJspfRT+cJIB33+6D4LYn5HDlY4Zt5llf/ToUTl7QHoPZuBWZt1wM2KWri3ag5kIXmP37t25j0H4McDEpw5t27ZNXHbZZXLAGDx4sOjRowdn+z4mOztbpoLBSEOBGOI/MEwPHTpU9O7dWxoEH3/8sShbtmzMPki/xRKclXHBKhT+8ELxDxCYkXfv3j23iEciAU7GAMDrX3zxxWLhwoWGr4XKZDk5OYYDzIoVK8Qll1wii418+umncqAi/obiHxxglMOwhgh/9tlncjnALSj84YZu/wAB4UexHC24jyphTiwB4PUxuCQCwh8f0KfywQcfyII+FSpUEN988w2FnxCHQaGf5cuXy6BAXNPwACSLGtOjLdilQuEPPxT/gKDWz8eMWq+cp94FbMcAsFqfXy+4D895/PHHpRFyxRVXyPriqGFOCHGeU045RSxYsEB06dJFXm9PPfWUpb4aRjE9CBrEfYwNgMIfDSj+ASGZhjt2DACz18eav15w34EDB8Sll14qBgwYIF566SXxzjvviEKFCpkeCyEkeQoXLiyX+5577jnRv39/mfZ36NChpD2Is2bNEl27dqXwRwiKf0Cw2nAnkSsvkQFg9vp4Tnz08NatW6Wbf+7cuWLatGni4YcfZmAfIR6Ba61Pnz4ytgZeu1atWsm0wGQ8iBB9LPnBgMfY4KTwm41JJD1Q/AOCWT4vUvESufLiDQC0y/3999+lix4GgNHrY8YPgZ8/f35MUCEuaAwQiP5HMCHekxDiPWqQLoxxXJOJvHhG23Cd33///aJIkSKyGJcTwm+2vEDSTLpLDBLrJKqfb1Z7XwVlddXXQI39wYMHKy+++KJ83Gp9/mXLlimlS5dWateuLZv0kGDD8r7hYP369UqNGjWUcuXKKd9++63lUt1oFPTAAw8ob7zxhlKiRAnHegJYHZNIeqD4B5D4+vl2au/HX5AwAIYMGSINALUXgFF9fvDFF18oRYoUUZo2bars2rXLw09N3ILiHx527NihNGrUSClWrJisv68HxgC1M6Ce8NvtCYDxJ368sDMmkfRA8Q8BuPCsNPcwuiBVD8CcOXMSNgOaMGGCkj9/ftl05ODBgx5+QuImFP9wceDAAaVDhw5KgQIFZPOfeODJQ6ttI+G3Ks5aL2K8p9DqmETSB8U/BFixsnGhNmjQwHAfGAAQAKNugK+99prc78Ybb6RIhAyKf/hAF81rr71WycjIkJ49ve58AwYMUAYNGhQj/Hbc8npufRgUMCw48/c/FP+QYLa+hgsSA0GiC3L16tW67YCfffZZuf2RRx5xrE0w8Q8U/3ACge/du7e8dl966aU8bXlnzpypXHLJJaYxPnqYiXvLli2Vtm3bOrLmr7esQFKH4h8SjIL1fvvtNyn8iS5U7QV55MiRGAPgqaeekvv0798/3R+RuATFP7zgGn788cflNfz888/nCj/iAY4ePWoa42OEmVsfHgCIv5UAYrvLCvv370/6+yD/QvEPGfEXspUZP5YDtBckDIBZs2YpPXr0kNufe+65NH4i4jYU//AbAP369ZPX8h133BEj/MnOvs1m/lr3fjLGBWC2gLtQ/EMKrGazGX+i9bc+ffrIbffeey9d/SGH4h9+MOO/88475TUNb55VEgX1abMGrE4srMKYAfdhkZ+QYqVJj1HJ3meeeUY8//zz8i9KfiZqBkQI8Tdqyd4rr7xS9O3bV/YCePHFF1NuJoaKn2g0lIhVq1aZNh5zq5w5McEDA4N4jFWXHIJy4q1yRABjG4L89GIASPjgzD+86K3x9+3bV17jr7zyiiOzb4wjZkuLZjN1u8sKnPmnDsU/hJgF4+BCxZJAPEOHDpXbsT6ohQZAuKH4R0f4Aa7hxx57TF7ro0aNSnocUV36uCVKI07k/jdbVuCav3tQ/EMGLOYRI0bYnvFPmjRJGgVGa/w0AMILxT86wq+CaxgxAFiz/+yzz3Rfw2z2reb0W9nXSLQTCbzVcuMkOSj+IUHPgo53xWkvVi2o7IdqYN26dZODhhE0AMIJxT9awq+Sk5OjXHbZZcqJJ56oLFy4UHcfK0F96mTCyr7JlABONluAJIYBfyFBLzAnPkivffv2YsqUKXkCctAVDO1A3377bRkEaIRRO2BCiL+C+/bv32/alhcdPCdMmCDOPfdccdFFF4nVq1fn2QdBffXq1Uv4nujqqQYAmu2rDdSzGtSHgOSOHTvmCUwmqUHxDwFGPbpVRo4cKfeZMWNGTFveDRs2yBabuKgmT55sqY0nDQBCgi/82uv5s88+E1WrVpWZP5s3b47ZjvECom72vhh/du3aZbrvli1bxC+//CL/f9pppyXc9/TTTzc9fpI8FP8QYGZBV6pUKY/VvGPHDtGhQwdRtGhR8fnnn4tixYpZfj8aAIQEX/hVSpQoIaZPny4yMzPlZGD37t0x22vWrCkNg0ReQXD11VeLMmXKyH3hVdDjtttuk6+H9zHaF/f1UpCJs1D8Aw5m9H/88YctC/ro0aMyf//AgQPSYi9btqzt96UBQEjwhV+lQoUKYubMmXL2jmXArKysmO1WcvpXrlwpxxXse/7558dsy8jIMKwVEL8v7pt5EIgDmMQEkAAH+OlF2CJQ77rrrpNBPggKShUGAQYfBvyFP7jPKkuWLJHBv7feeqvu9Wwlp18NAESAnlnmEYP60gdn/iEO8NOzoF955RUxfvx4MWbMGNGoUaOUj4MeAEKCO+OPp2nTpmLEiBFi9OjRYvDgwXm2Iz6gfv36lgIA4bavXLlywn0Z1Jc+KP4+c+Fj7U0NiHE6wA9r+48++qh47LHHkiq5aQQNAEKCL/wqN954o3jwwQdF7969xaxZs5IOAMQ4ZhbUpw0AJN5C8fcBe/bskQEwtWrVEp06dcoNiIGYOhXgt2bNGin4SOl59tlnhdPQACAk+MKvgtr/CAju1q1bHnF2KwDQaLwj7kDx9wGJmmfoYTdFBhcVAnHggoPL3+yiTRYaAIQEX/gBxBozfIg3AgD37dvnSQAg8Q6Kf5oxcuHjvuo6i0e1vK2kyOTk5EjrHd4FFPgpXry4i5+GBgAhQRd+lZIlS8oxY+vWrXKCgvfXuv8XLFggWrZsmUfItce7cOFCaTzAAMBYh3gCED8uJBrviDtQ/NNMsq0rrabIoC3v7NmzxYcffmjqMXAKGgCEBFv4VbAUOXHiRBmL9MILL3gWAEjcJwMh/x68DzEA1jAusETbcdHgLwwFuPS1M3tYyrhg4h8HX331lTQI+vfvL5588knhNagngAsfswQMEEYzBJJesrOzZTAo4k1Q6IX4i3QJvxaMH88//7yYO3eunO3bGcO0+0FurIx3xAPSmGZILHS2StTyMhHbt29Xypcvr7Rt21Y28EgXrAPgf5jnH508/mTJzs6W+fuVKlVSdu7cmWe7laY+altfvfEOz8V25vl7B8XfByRqXZlMT2sMGB06dFDKli2rbN26VUk3NAD8DcXfn/hF+FV+//13pVSpUspFF12U5zrGWIWOoVba+uqNd2zb6z0Ufx8RX+XKasvLeAYMGCCrcM2cOVPxCzQA/AvF33/4TfhVpk2bJseegQMH6m63UgFQW9UPs327kxviDAz481FBn/gqV8kEA2KN/YknnhD//e9/ZQtfv8AgQEKCs8ZvROfOnWUBIBQLW7ZsWVIBgLj+AcYAfE47mU7EOSj+Pi7ok0w+P6JqUaLz6aefFn6DBgAhwRV+FQT+QeCRQhyf/2+lAuDLL79saXKDIkGJCv9YrYhK9KH4+7igj518fnD//ffLQeO9994T+fPnF36EBgAhwRV+UKBAAfHBBx/IDoAPPfSQ7rjVokULw+d/8803olWrVqJ06dIJ32fVqlW646LdiqjEAIeWD4gFklnDTxQMqGXKlCly25gxY5QgwBgA/8A1//Tj1zX+RAwbNkyOOTNmzMizbeLEiQnHOkT3YxyzkiUQPy4mEwRN8sKZv4dYXcPXurPgRkODHjyGXGy9hj2weO+44w5pBd90000iCNADQEiwZvzx3H777bKOSI8ePfK4/+vVq2ep+Q/6jJjtq41tSqYiKtGH4u8hZmv4cIMZubMStby87777xOHDh2XpzCAV0qEBQKJOUIUfYKwZNWqUFH4EASbT/AeTlmHDhiXcR7uEmWxFVKKDjjeAuEgil1Uy7izV3T927FglqHAJIL3Q7Z8egujq12P48OFyDJo+fXrSuf96Y5/eUmey6c8kLxR/jzFaw1+2bJntkxrV/1DFr3PnzoEXTRoA6YPi7z1hEX6A67V9+/ZK5cqVlb179yaV+4/vIlHhH+0kiBUCnYFuf48xWsNH5Kxddxbc/UeOHBHDhw8PlLtfDy4BkKgQZFe/Xfe/1dz/9evXy3EQ6/Z6aNf09Zqaqd8pI/+tQ/FPE/Fr+GZrY/E5/XPmzBHjx48XAwcOFJUqVRJhgAYACTthE36VKlWqiJdeekmMHj1aFhqzm/s/ZMgQ+Tc+kE9vEqSdQDVo0CBPKrRR6jSJhV390gxyVpH7b2Tx4sSGlYuTXduFDRGy6LeNntpmhkPQYDdAb2FXP28Iq/CrQLibNWsmjh07JnP542uNoBvgwoULHev6Z7UjKtEnXKoRkqI/WiD88VbzoEGDxNq1a8Wbb74ZOuEH9ACQsBF24VcnKhiTvv/+e90I/l69eplW9CtTpoxhYTMUDsLMX03nY+R/ijgUO0CSwCxyVa8xz5YtW5SiRYsqPXv2VMIOgwC9gQF/7hKm4D4r3H777UqJEiWUbdu22RrvEnX9QzdBJ4Kkyb+Eb9oYIMws15ycnDyPoZxmoUKFxDPPPCPCDj0AJOhEYcavV/sfM3U0F7OT+68G9SH4WRsUjeWCvXv3xuwLb+mTTz5pq/w5iYXin0bsNu5BkB+WABBYg/X+KEADgASVKAo/KFWqlBgwYIAYN26cWLx4ccw2jF9WK/pBvDFGIq7JqKIfKgTGR/7rLZWSvFD804idxj0IyurZs6do3ry5uOGGG0SUoAFAgkZUhV/l1ltvFY0bNxb33HNPjAfTSuS/nYp+O3fuNC1/TvSh+KcZvZxVPct15MiRYs2aNTIlJoxBfmbQACBBIerCrw3+W7lypXj77bctTXpUOnTokJurb9U7mqj8OdGHqX4+ARGscHfhZI4/gQ8ePCgfxwUTfyFFDaYBOg9T/ZyDwh8L8u3htsf4hlglFQg7tllJcYYhgDV+retfLwWa2CN6U0ifkshyff311+XF8vTTT4uoQw8A8SsU/rwgMHn79u25RXxU1EI9yVb047p+6lD8fQ4iXxHgd/fdd4uqVaum+3B8AQ0A4jco/PrAY3nbbbfJAMD4iH0rFf1wfVtpa07sQ/H3ObhoQJ8+fdJ9KL6CBgDxCxT+xPTt21dkZWWJF198Mc82szV9rceA6/rOQvH3MZs3b5YnP3L7UfmKxEIDgKQbCr855cuXF7179xZvvPGG2Lp1a57gP1TuM0KNFyDOQ/H3Mf369ZP5/A888EC6D8W30AAg6YLCb52HH35YBvz1798/qbK/7NLnPBR/n4K0vnfeeUdWsSpatGi6D8fX0AAgXkPht0eJEiXk0iW6/sXP5M2K/qxatYpd+lyA4u9TXnjhBVGxYkVx++23p/tQAgENAOIVFP7kQMEfLF8igDmZsr90/zsLxd+HbNq0Sbz33ntyrb9AgQLpPpzAQAOAuA2FP7XrE2v/qFWyZcsW22V/cU0T56D4+5BXXnlFusl69OiR7kMJHDQAiFtQ+FPnzjvvFEWKFBEDBw6MedxK2d/4WgEqSP2bPn06PQM2ofh7hNUTdMeOHWLUqFHivvvukxcJsQ8NAOI0FH5nKF68uHT/Dx8+XOzevTulyP89e/bI6n+1atWS1SnxfLUsMDGH4u8ydk9QpMOgsQWa+JDkoQFAnILC7yyY2OA71ZvJm0X+qx3/QPfu3WXZXy24z+BAa1D8XcbOCbpv3z7ZDAOuMVavSh0aACRVKPzOg6A/LGkOGjRI9i3RYrburzbygScVQYBGrX65BGAOxd9F7J6gQ4cOFUeOHJFBMcQZaACQZKHwuweCmfG9jhgxwlLHP2QCYElAre5n1upX6yEg+lD8XcTOCXrs2DHp8r/ppptkih9xDhoAxC4UfnepUqWKuPbaa8Vrr70mcnJyYrbpNfLB77Fw4ULbrX6JMRR/F7Fzgk6aNEls27ZN3H///R4cWfSgAUCsQuH3Box1f/zxh/jss89iHlcb+bRs2TJP7v+sWbNE165dDT0EuI/HWf/fHIq/yzRo0MDSCTp48GDRrl07Ubt27TQcZTSgAUDMoPB7B9b34crH2Ke3ZIrofvweeh6AVq1ayWVStvpNHoq/yxH+GEji1/zjT9BvvvlGLF26lBH+HkADgBhB4fceRPfPmzdP/PDDD7aWTBctWiTuuusutvpNgQyFo5/jQPgR0a8VfbivYOl+8MEHeVxSt9xyi5g9e7ZYv359Hi8BcYejR4/KAQQDRf369UVGRoaIKtnZ2XLwRCpqZmamiCIU/vSde9WqVRNdunQRw4YNy30cQo7JkxnYjy7+5ODM36MIf3VwiWfv3r3SIEANfwq/d9ADQFQo/OkDxibS/iZMmCAOHDhgud6/CqP6k4fi7zB2U1Deffddaf1i9k+8hQYAofCnH4j/4cOH86zV437z5s0TPpdR/clD8U9jhD/EBq6uiy++WFSoUMGDoyPx0ACILhR+f3DKKaeIzp07y7FQe/1hSQ5Bf3pR/4zqTx2Kv8OBfvfee6/uNr2T9euvvxY//fQT2/amGRoA0YPC7y/uuOMOee3pde5DKmD79u1jHmNUf+pQ/F0u5ZvoZB0/frws6IMUP5JeaABEBwq//8DECGV/sfYfj5r3z6h+Z6H4uxzop4JcVu3JinX+iRMnSoOBgX7+gAZA+KHw+xM0M0O/E0yQjMZQeE07duxIV79DUPwdYuXKlbYC/WbOnCl27dolS1wS/0ADILxQ+P0NxsI///xTzJkzx7EW6cQYir9D6FWpShSVCvfWWWedJerWrevykRG70AAIHxR+/9O4cWM5q8dyqFMt0okxFH8HgBWKkpNGIFpV66pCPuunn34qLd0oF5fxMzQAwgOFPxhgLMSYOHnyZJn6l2qLdJIYir8Huf3xZXsh/GjdixOZ+BcaAMGHwh8sIP6YHE2dOjXlFukkMRR/ByhVqlTC7SgfqwVuLXgDqlat6vKRkVShARBcKPzBA8uj5557rq7r32ySpZcmSIyh+DtA3759Dd1Y8bn9u3fvlm4qzvqDAw2A4EHhD/bsH6l8+/bts1VAbciQIS4fWbig+KeI6orSAyLx7LPPxjyGPFUMTKjqR4IDDYDgQOEPNhgbc3JypAGgBcF9aAFsBKoB0vVvHYp/ipi5onbu3Blzf8qUKaJJkyYs5xtAaAD4Hwp/8KlSpYrsgIqxUq8FcCLY6Mc6FH8Pa/lnZWVJLwHaV5JgQgPAv1D4wwPGSHhJUQxNC4yCRLDRj3Uo/imitp6Mr9KnV8t/3rx5MpK1a9euaThS4hQ0APwHhT9cYIxEu/NFixYlPd6SxFD8HagkhZKUqN1vVssfbixE+NepU8e14yXeQAPAP1D4w0eDBg1k3xM917/V8ZYkJkPhqGVYSQoR+dpgPliWOMGMGkrAQMCaE1xP8RYovuZq1apJi9asGiAJDkePHpWzE5wTSOkMYtEmuFbhYkXFtMzMTBEkKPzh7vQ3e/ZsOa7qXVeJxltiDmf+BtipJKV6B4BR44nvv/9ebN68mS7/kEEPQPqg8IcbjJUIqF67dq3udjb6SQ2Kvw5WK0nZqTONmVXRokVF69atPfscxBtoAHgPhT/8tG3bVhQqVEj873//S/ehhBKKfxLpe2o6iR3vADpVtWrVShQoUMDhoyV+gAaAd1D4owGEH7/v3Llz030ooYTin2T6np0608eOHZPrwm3atHHtmEn6oQHgPhT+aIExE8V7UPSHOAvFXwcr6SQrV660XGzim2++kV2qzjvvPNeOmfgDGgDuQeGPpvjj9zYbb4l9KP4GmKWTmEXsa4tNwOVfvHhx0wIVJBzQAHAeCn80ady4sShcuDBd/y5A8TcAqVuoLQ33PoL18Bf38Tj+v3DhQsPnomOfNgIVJy4ey58/v0dHT9INDQDnoPBHF8RIcd3fHSj+Juilk5gFBPbs2TP3/1zvjy40AFKHwk+47u8OFH8XAgJR7EVl+fLl4siRIxT/iEIDIHko/ARw3d8dKP4e1PPHer/WICDRggaAfSj8RKVRo0Zc93cBin+SWK0vvWzZMhm0Em8okGhBA8A6FH4Sv+6PWv/wohLnoPi7EBCoZcWKFaJhw4ZpO07iH2gAmEPhJ3pgDMVYSpyD4p8iiepL79ixQ/zxxx8Uf5ILDQBjKPzECIyhCLRGm99Uu7CSf6D4uwgGMkDxJ1poAOSFwk8SoY6huF70sNNnhfwDxd9F4KYqWbKkqF69eroPhfgMGgD/QuEnZkDUixQpYuj6t9NnhfwDxd9FcKIiUCWIPd6J+9AAoPATayBgGhVS9cTfTp8V8i8UfxdhsB8xI8oGAIWfOBH0Z7ULK4mF4u8Su3btEps3b6b4E1OiaABQ+IldMJZiFr9v3z7bXVhJXij+SWAlonT16tXy7znnnOPhkZGgEiUDgMJPkqFu3bry75o1aywVXcuXL1+eomvkXyj+NrATUQoDASefmVVKSJQMAAo/SRZ1Bo+xNR4UV2vVqlWecy07O5sR/wZQ/G1gJ6IUJ+ipp54qq1MRYpUwGwAUfpIKiPavXLmyrvijuBrG2vjZP8qrM+JfH4q/RexGlGJ/eAYIsUsYDQAKP3ECjKl64s+If/tQ/C1iN6KU4k9SIUwGAIWfuC3+jPi3D8XfInYiStF3GicjxZ9E3QCg8BMnwZiKWTzOKy2M+LcPxd8FNm3aJANNKP4kygYAhZ84DcbUw4cPi61bt+Z5vFSpUrrPweOM+M8Lxd8idtxKqluK4k+iagBQ+IkbqGNqvOsf93fv3q37HDzONf+8UPwtYsetBEMAkaeITCUkagYAhZ+4RbVq1WQKdfwaPtf87UPxt4hRIQncjy8kAZdUxYoV5UlKSJQMAAo/cZPMzExRrly5PG5/rvnbh+pkAxSSOP/882Mew308ruXPP/8UFSpU8PjoSBTwswFA4SdegLEVY2yykzPyDxR/G6CQxIwZM+T60ueffy7/4j4e10LxJ1EzACj8xCvgVY2f+duZnJF/yP//f4kNYEUmsiQh/vGlJglxwwBYtGiRNADq16+fttbRFH7iJZhY4XwzmpwhuA9r/HD1Jxqnf/75ZxkrYLZfWOHM3wVglXLmT6LgAaDwEz+4/bVAyBEDAANAL8rfTo+WMEPxd5hjx47J1BK4pggJswFA4SfpEv9t27blKeVrVdjt9GgJMxR/h8FJCTjzJ2E2ACj8JF1gYoXzb+fOnXm2mQk7ewD8C8XfJjh5pk+fbniSqO4oij8JqwFA4SfpRB1b413/VoSd9QD+heJvEavrROr9k08+OU1HSqKKFwYAhZ+kG3VsjR97rQg76wH8C8XfIlbXiQ4cOCD/FitWzNPjI8RtA4DCT/yAOraqY62KFWFnPYB/ofhbwM460cGDB+XfokWLen6chLhlAFD4iV9Qx1Z1rLUL6wH8A8XfAnbWiWCNYvDNn58lFEg4DAAKP/EThQoVkqXT42f+Vsdpq8Xawg7F3wJ21olgjdLlT8JiAFD4id9AMSvM/uNn/nbX82vUqCE6duwYKVe/Foq/BeysE8EapfiTMBgAFH7iVzDGxs/8uZ5vD4q/xUj/7OzsPGv+rVu3zrNOBGuU6/0k6AYAhZ/4Gb2ZP+B6vkviP2DAANG4cWNpdZUtW1ZccsklYt26dbnbN27cKF0yerePPvood7/NmzeLzp07i8KFC8vXefjhh0VOTk7Me/Xv319UrlxZtGjRQq7JpDvSf968eTGPYc0J7SXj14k48ydBNwAo/CSIM/+grecfOHBA3H///aJq1aoyjqF58+Zi+fLludtxjfbt21fWNcB2GDHx9WWWLFki6tWrJ6pVqyZGjx7tnvhDAO+55x6xdOlSMWvWLDkb7tChgzh06JDcfsopp8jCC9obRBxWGtZWAGbPEH6UwV28eLF4++23xbhx4+SHVEGzkv/973/is88+k8Lbs2dP4bdIfwyQehWhDh8+LI0aQoJoAFD4SRAoUqRIru7oEYT1/B49ekgdfffdd8UPP/wgtRQCv2XLFrn9pZdeEoMGDRLDhg0TX3/9tfzMWL44evRo7mvceuut4sknnxTvvfeenJz//vvv1g9ASYEdO3Zg9FDmzZtnuE+9evWUW265Jff+559/ruTLl0/Ztm1b7mNDhw5VihcvrmRlZcn7U6dOVS6++GLl2LFjytKlS5XGjRsr6QLHi89odMN2LZdddpnSsWPHtB0vIWYcOXJE+fLLL5UVK1Yox48fl9fZp59+qhw9elRZvny5Mnv2bPl/QvxK27ZtlauvvjrhPuvWrZPj888//6z4jcOHDysnnHCCMm3atJjHGzRooDz++OPyuixfvrzy8ssv527bu3evUrBgQeX999/PfaxKlSrK+vXrlYMHDyqNGjVSVq9ebfkYUlrz37dvX8JqditWrBArV66U1onWTVGnTh1Rrly53MdgzWCmsXr16tz7sG4wg0YVPVg06cJuBClmTlgSICRoHoBVq1Zxxk8CAcZYjLV6BKFrX05OjvQm41rUAvf+woULxYYNG2SfGG38QokSJcS5554rNVQFHvPatWvLbU2bNhVnnnmm5WNIWqXwxWO9AgPF2WefrbsP1iBwYFjLUMEH0go/UO+rTXGwlo51Grg/tm/fLtq1ayfSBU6cUqVK6W7D4/FuJYo/CZoBAANdXYOk8JOgi38QuvYVK1ZMNGvWTDzzzDOyBTwMgfHjx0thx3K5qoV6WqluA5hYo4ssmhwNHjzY1jEkXYkGa/8//vijtFL0OHLkiFyHwHpEsiAY0AjEG3gBCkNgHR8WWTx4fO3atTHeAVh0ODG9Oj5CkgUpUI0aNRJz586V9xE4xHOXBAEEkeM8jT9XMV7Pnz9fFChQIM9z8Hj8eO0WmMCagbX+W265RVSqVEleiw0aNJAGCjzmdkAsAG52SUr8EYA3bdo0+WUiIl+PSZMmSXG84YYbYh4vX768WLZsWcxjmN2r26yiBhx6QaI0EWQ7aDMeYIHhxESkKSFBwsiQJ8Rv7NixQ3qv9MZZO+O1G8BzhmUGM2CEIIgegYtYbkNUf7du3UT16tVztRDaqO0Qi/sw0p3AlvhjbbBXr17ik08+kbOFU0891XBfuPy7du0qypQpE/M4XB3PPfec/PHUmT2EvHjx4rbWK9q3by+8AJZkw4YNDbcjMlprSeJzw4WDtSZC/Apcpljjh6u/fv36YsGCBdK7hfidc845RxqwhPgVuLhLliyZZ5y1O177AXXmjiU4ZJAhyh/aCgNg9uzZuWIPAwFR/3fddZf34g9XP1z5SMHDmoW69oBgA61bXHW96FllSGeAyF9//fXyQ+I1nnjiCfnadtYarbhVnAAxC61atZJrRtp0P7hpEIxxxhlnxOyPmv5w/Xt1fIQkK/wokoI6GmqMCmJzMLhgOQ8GAQ0A4lcwEcVYGz/OYlzGkrMR2O6XsfmLL76QnwOBidBM1LuBntx8883y2kNM3bPPPivjymAMYAm9YsWKsr6OE9iKTBs6dKiM8G/Tpo10Rai3iRMnxuw3ZswYuRwAodf78rFkgL/wAlx33XVyaeDpp58WfsVO1Sh8rviaAIT4hUR5/Pi/W+2ACXESo8BqO03Y0g20FJNeCD40EIY4DALVOHnkkUekp/3222+XxfVgrCMQPj5DIFkykO/nyCtFABT0wcmD9D6j4hHwaKCCYXxFQEL8KvyInYGXDi5UDDxIs0WhLVRFoweA+BGktZ111ll5qtqhKBtm0kZgu58L/3gJc9JsgJMG60UwAOIr+5nVnCYkndip3OdkO2BC3MCoh4ra3CfeK8DmPnmh+FvEauEIo5rThKSLZEr20gAgfsaoh4rahC2+BoBeE7aoQ/G3iNXCEbBGKf7EL6RSq58GAAnazF+vCZsa5OfH5j7phOKfQnMf3I9v7gNrlG5/4gecaNJDA4AEZeZvZ5wmFP88J8/06dPznCR2IkjVNX+j0pOEeIGT3floABA/gY6wcO3Hz/yDFOnvByj+Ftbz7TT3Ua3RRO0mCXETN9ry0gAgfkFdVo2f+dttwhZ1KP4ON4JQrVG6/klYhF+FBgDxA+rYGj/zVyP9scavhZH++kRe/K2sE9lxJ6HaIdi7d69LR0yI98KvQgOApBt1bFXH2mQLskWdyIu/FWG3405SGzJo2y4SEgbhV6EBQNKJOrbqNYJDRD+q4GFSh8JV+Iv7jPTPS+TF34qw23EnqR2Y0KOZkLAJvwoNAJIu1LE1URdYjMkdO3akqz8BkRd/q8Ju1Z2EdSjc/vzzTw+OnkSddAi/Cg0Akg4wtpYqVcrTcz2MRF78rQq7HXcSOi9R/EmYhV+FBgDxGoyt2h73xIOWvmFFFXYrjXvwuJkrCScmxZ+EXfjjDQA0A4IBwGZAxG23PyZYJDU4809incioGJAKxZ9ERfhV6AEgfpn5m43P5B8o/i4098GJyYA/EhXhV6EBQNIp/lbHZ/IPFH8XigHBJQXx5+BHoiL8KjQAiJvgfDISfyeLtUUBir9F7DSNOPXUU2UVqt27d6fhSEkYCYLwq9AAIG6BSVVWVpaoXr16zONs6mMfir9F7FT5g7tJPSEJiZLwq9AAIG6gjqnqGKvCpj72ofhbxE6VP/X/FH8SReFXoQFAnAZjKmqwwLuqhU197EPxd4FChQqJKlWqUPxJZIVfhQYAcRKMqXD5Z2ZmpvtQAg/F3yJ23UpwS1H8SZSFX4UGAHEKjKnxLn9At799KP4WsetWoviTZAmT8KvQACBuij/d/vah+FvEbq9o7I8IUwzkhERZ+FVoAJBUyM7OFuvXr9cVf7vjM6H42wK1/lu3bp0nlQQnZXwhCZyMR48eFX/88YfHR0mCSpiFX4UGAEmWjRs3ipycHF3xt9N8jfwDxd9mDwAEmuTLF/u1zZs3L08hiTPOOEP+/fHHHz09RhJMoiD8KjQASDKsXr06ZmyNx07zNULxt4VaSCLela9XSKJatWrypMOATkgioiT8KjQAiF1WrFghypUrZ9rRz2qPlqhD8beBnYhSdDVr0KCBPGEJMSKKwq9CA4DYAWNpw4YN2THSISj+NrAbUYoTleJPjIiy8KvQACBWwHmhij9xBoq/DexGlOJE/f3338XOnTs9PlLidyj8/0IDgJixZcsWsWPHDoq/g1D8bWInolQ9UTn7J1oo/HmhAUASoY6hFH/noPjbxE5EKcpQlixZkuJPcqHwG0MDgBiBMbRs2bKiUqVK6T6U0EDxTxIrEaUM+iNaKPzm0AAgejDYz3ko/i6DE3bZsmUcxCIOhd86NACIFvz+y5cvT+jyhwd2+vTpMenWJDEUf5dp1aqVDFbZsGFDug+FpAkKv31oABCVtWvXyqBpjKXx7NmzR1x44YWiVq1aolOnTjIoG/fjK66SvFD8XaZFixayIuDcuXPTfSgkDVD4k4cGAAEYO/Pnzy+aN2+eZ1v37t3Fl19+GfMY7sdXXCV5ofi7DAL+6tevL+bMmZPuQyEeQ+FPHRoABOLfpEkTUaRIEd2Kq6iwalZxleSF4u8Bbdq0kScwB67oQOF3DhoA0QW/NcZOjKHxrFy50nLFVZIXir8H4MRFdz+0oyThh8LvPDQAorvej+I+euI/ePBgyxVXGRCYF4q/B3DdPzpQ+N2DBkD0MFrvh5gvXLgw4ZiLNGwGBBpD8fdw3Z/iH24o/O5DAyBaGK33mzVZ69Wrl/zLgEBjKP4ecd5554mvvvqKg1VIofB7Bw2A6FxTEP/WrVvbbrKGyRYDAhND8fcINP7ZunWrWLVqVboPhTgMhd97aACEn2+++Uau98NNn0yTNTst2KMIxd8jUKCiePHiYsqUKek+FOIgFP70QQMg3GCsPPnkk3Xz+600WbPbgj1qUPw9okCBAtKCpfiHBwp/+qEBEF4wViJIDwF/yTRZs9uCPWpQ/B3ELJ2ka9euskEFyv2SYEPh9w80AMLHxo0bxQ8//CDHTLPxFhg1WbPTgj1qUPwdwGo6CU5QWJ3Tpk1L27GS1KHw+w8aAOFi6tSpIjMzU87Q47GTvmenBXvUyFB4laQMTjykj2ijSiHysDBxomlBsYqiRYvSAAgoYRT+7OxsOTBiIMWAG2SOHj0qFi1aJAd3RHyzBWww6dChg/w7c+bMlMZbYgxn/iliN50EbiycuIcOHfL4SEmqhFH4wwY9AMFn3759MsVPz+XP9D3noPiniFk6CQYgLV26dBFZWVm6Fi3xLxT+4EADINhg9g5vFMbKeFjP3zko/ililk4SX38aQSl16tQRH3zwgctHRpyCwh88aAAEF4yNDRs2FFWrVk2pnj9JDMU/RRBsgjrSRqD+dLwr6rrrrpNpLBAT4m8o/MGFBkDwQDAf4k8wRsZjtZ4/sQbF3wHUOtJWXVGoKw3X/+TJk10+MpIKFP7gQwMgWEyaNEnk5OSIq6++2rbL32wcJrFQ/B2gXr16tlxRp5xyiqxXPWHCBJePjCQLhT880AAIDhgTEbVfvnx52y5/ZHcQ61D8HSCZSlLXXnutmD17tqz3T/wFhT980ADwP5s2bRLz58+ny98jKP4OYbeS1BVXXCFzqhn45y8o/OGFBoC/wVhZuHBhcemll+bZZrWFL7EOxd8h7FaSKlmypLjooovE+PHjPT9Wog+FP/zQAPAn+B3effddcfHFF8siaMm08CX2oPg7DFxPap1ps1r/cG9hAFq9erXnx0liofBHBxoA/gOtzn/66Sddl782qypfvljJYpOe5KH4u4DV2tPYVrp0aTFq1Ki0HSuh8EcRGgD+YuTIkaJChQqiffv2huMp1vxxrWphk57kofi7QPfu3WUJXy24jxQ/LRCZm2++WYwbN04cOXLE46MkgMIfXWgA+IODBw9Kl/+tt96q21tCbzyFB6Bly5Zs0pMCFH+HsVt7+vbbbxd79+4VH330kcdHSij8hAZA+kHQM3qd3HbbbZbHU1y7CxYsYC3/FKD4O4xZVCqKV2jd/6gBAFfX0KFDPTg6okLhJyo0ANIHvmuMfVgCrVKliu3xlLX8k4fi7zBmUamoUhXv/r/rrrvE0qVLxYoVK1w+OgIo/CQeGgDpAeMerkWMgcmMp6zlnzwUfwfQRvUbFfzRCk+8+x/dq2D1DhkyxMOjjiYUfmIEDQDvwZgHgUdAnxENGjRglL8LUPxdiOqHG6tu3bqW3VX58+eXli+iVnft2uXBkUcTCj8xgwaAd2zbtk3GOt1zzz15xF07tuKaZZS/81D8XYjqV4XcjruqR48e8u+IESNcOFJC4SdWoQHgDcOGDZPR/ch4sjK2YrYPL4BZATViDYq/S1H9GRkZCd3/KEepDfxDvv+NN94o3njjDab9OQyFn9iFBoD76X1o1HPLLbfIaqdWx1Zcx8QZKP5JYiUKVa/ef6K8/0ceeUS6/ceOHevosUYZCj9JFhoA7hb1wTX50EMP5dnGCH9voPgniZUoVLilBg0apLtdL+8fr9mtWzfx0ksviezsbMePOWpQ+Emq0ABwnqysLPHKK6/IzqZVq1bNs50R/t5A8Xe5ja+ZFYsBRct///tf2dqS3f5Sg8JPnIIGgLOgmt+ff/4pHn30UcdapBP7UPxdbuNrZsVi3UvLOeecIzp37ixeeOGFPBGuxBoUfuI0NACcAR5PeDYvueQSUbt2bcdapBP7ZCg8i1MGrnusQ8EdpWeVogY1mlIYgQAX7fMWLVokO1h9+umnssUlsQ6F3z5YYkIbaqSr6tVWJ/9y9OhReX1iSQ9tZBHYS6zz4YcfyqXNZcuWicaNG6c8tpLkofh7eMIbgfQVBABqU1datWoljh07JpYsWcIBxiIU/uSg+NuDBkByQGow1pUqVSpPGh/xHrr9PaBevXq2S/726dNHfP3112LmzJkuH104oPATr+ASQHJMnTpVjnWPPfZYug+FcObvHahWBWs3PnfVyP2PnwXLBeh2hZr/8RWwyL9Q+FODM//koAfAOhj3UPW0bNmyYvbs2fyufAAVxSMQqGJW8lcb+Y+L48UXX5SW8sSJEz04wmBC4Sfpgh4A64wfP16sXr1aBjJT+P0BZ/4egpk9alUbgSA/9KjW0rVrV3nRrFmzRhQoUMCDowwOFH5n4Mw/NegBMP9+MO4hwG/SpEnpPhzy/3Dm7yHIX4XAG4GMAG3RH/D888+LDRs2iFGjRnlwhMGBwk/8Aj0AiUGjsy1btojnnnsu3YdCNFD8PWr1q63pb6d05dlnny2uv/568fTTT8t62ITCT/wHDQB99u3bJ0UfNfwTeT2J91D8PWz1i4HBLPJfr3QlhB/Pff3110XUofATv0IDIC+vvvqqDFru169fug+FxEHx97DVL9L5EpWuRA6sHqh/fffdd8vKWDt27BBRhcJP/A4NgH9BCd+BAweK++67T1SqVMmyd5R4A8Xf41a/OMn1Sleq7Sq1XgItjz/+uMifP39kc2Qp/CQo0AD4t0tpoUKFdGv4J/KOEm+g+KdIvOVqpR0looJnzJghn4vZfnwO/6xZs/KU9S1durRcOxszZoys+hclKPwkaETdAJg/f75M70O6srZyqRXvKPEGpvolCSxXnMCYzavAnf/MM8+IJk2aWCrkYyX1b8qUKbkXD7wD6mujNnb80kEYofC7D1P93COKaYA5OTlyUlOkSBH52eMnN2bjXnyvE+IOnPkniZHl+uSTTxqu6UPMMfO36iVYvHhxjCWM13jzzTelGI4YMUKEHQo/CTpR9ABgjPrxxx/lX73KpFa8o8R9KP4urOs/++yzedb0S5YsKfP4tetbcOWbiZ8aJ6DStGlTmTaD2v87d+4UYYXCT8JClAyAbdu2ib59+4o777zTMIDZrFS5XsYTcR6KfxKYWa4QZXVNH+5UzPj37t1r6CUwuxi0ZX8BSmSCsAb/UfhJ2IiKAYAgP1QixQTIKMgPNz3g2cR4SJe/N1D8k+C0006zZLniJMa+mPEn8hI0b9484esNHjw45n6ZMmVk8N/o0aPF0qVLRZig8JOwEnYDAKXJ3333XTk5Ofnkky0tlWqBtxSZUMQbKP5JYCdX34qXABdNw4YNbZX9veOOO+RzevToIbKyskQYoPCTsBNWA+DIkSNyLMKy5M0332x5qVQFrcvhLdXLDCDuQPFPEqu5+la9BHCXJeLqq6+OyYGFoTF27Fh5UfXv318EHQo/iQphNACwhLlp0yY5JiUT5IcMAeItFP8kMcvVt1vRz6zsL1r7xufA1qlTR5bNRC7t8uXLRVCh8JOoESYDAFlJqOSHNOczzjhDdx+rkyBW/PMQ5PmT5Fm3bh2uWsPbzz//rOzZs0e54IILDPfBNnWfE044wfT1tGRnZysNGzZUateurRw5ckQJGn///beyfPlyZfbs2crRo0fTfTiR5NixY8qnn34q/xJvwTX75ZdfKitWrFCOHz+uBI1Dhw4pNWrUUJo2bark5OQk3FdvfMN9PL579+48Y6Q6LhJ34Mw/RZys6IelhLp169py/6Pk77hx4+RxPPXUUyJIcMZPok7QPQBPPPGE2Lx5s3T3mxUd01sqVYP8WPEvDbhkVEQGKzN/q/u2aNFCWbZsWcJ98uXLJy3ieJ577jm5benSpUoQ4IzfP3Dmn36C6AFYsGCBkpGRobz88suG+2DM+/zzz2PGQfxf+5idMZQ4B8XfARK5s7TghLci7Fbc/xDOePd/o0aNlDPOOMP37n8Kv7+g+PuDIBkAqru/WbNmuu5+O258s3ER24nz0O3vAIncWXaCXtSKfsj9N3P/I9VPi+r+37Bhg3jwwQeFX6Grn5DgLwGgTe8ff/xh6O6348a3GgxIHMYFgyKyxLuz9ID1ixm+maVr5gozcoe99dZbctukSZMUv8EZvz/hzN9f+N0D8N5778kxZtSoUbrbk3HjW/WeEueg+HsM3F5Y27dycTRo0CDhftge70bDYHHFFVcoJUqUUNavX6/4BQq/f6H4+w+/GgAYm4oWLap0797d8LiScePrZUQx2t9d6Pb3GET+o6If6v3HR/3H5/4PGzYs4WvBNYgsAS1oGTpy5EhZXhOZAceOHRPphq5+QoK/BIBKot26dRPly5eXY5NRe+Jkcvq1GVHoh4K/rPjnMi4bF8QAO7n/ZssE8CTEW8jIGsjMzFQefPBBJZ1wxu9/OPP3L37yAPTq1UspUKCA8u2335ruy5x+/0Px94EbDe77eIFXLxRcEGbuf6P0v1dffVVunzp1alo+G4U/GFD8/Y0fDIDJkyfLsWTIkCGW9k/kxuf6vj/IwD9uexeIMXBv1apVK+F2/ESJ9tHuq22Hied17dpVlt+E67BKlSrCK+jqDw7Z2dnS1dqpUyeRmZmZ7sMhOhw9elQsWrRIusHr169v6HJ3A2QQYTmybdu2YtKkSbrvjbEHhcbg0teOQXDpo9CZ+riV8Y4tfb2Ba/4BqBCo9gfQa5iRqPofLlKk/xUtWlRccskl4vDhw8ILKPyEhCMG4ODBgzKuCDFEaCEeL/x79uyRTcwg6DAetU3NAIS8Y8eOuYJuZbwj3kDxTzNmwTFbtmyR1jNqBjRv3tx2AGCpUqXEZ599JtatWydbbbo9aFD4CQmHAYBr+YYbbpAz/ylTpoiSJUvm2cduWV7m9PuIdK87EP3gGJTN1FsvQ3BfMgGAyPvHtmeffda1z8E1/mDCNf9g4VUMQN++feU4NGXKFN3tyZbl5Zq/P6D4ByDy36kAwH79+sntGOidhsIfXCj+wcNtA+DDDz+UY8Xzzz9vuE+yZXmZ0+8PGPDnI+Denzt3rrj99ttdCQCEG+/KK68UM2fOlEGAderUceS46eoPNgz4CyZuBQFiSQHXMZYQ33vvPcMAv3nz5pmOVYmC9+KDAYm3cM3fR+ACqFy5smsBgNj/7bffFtWrV5cX9q5du1I+Zgo/IeGJAdi+fbscG84880zTAD8j4UexMoxPZoIeHwxIvIXi7zOsBsQkGwCIyH8EAB44cEBceuml4siRI0kfK4WfkPAYAIcOHZJZQagK+umnn4rChQtbCvCLNxD0mpoR/0HxTzPaEpdAndXHd8rCfZQExsxfLYdpVCZYBQMB9mnZsmWMB6BatWoyenfFihXSO5CTk2P7uCn8hITHAMDSz1VXXSV++OEHMXXqVF0PJMYqdB39+++/Yx5X3w9lxVmWN0CkO+ggqiQqcakXEFOqVCnDfZMNAJw2bZoMJOzRo4etoCEG94ULBvxFOwgQ+954441K/vz5lS+++MLxAD/iTyj+acJKuovaIhipe/H7QtBbtmwp97PS/tco9WbcuHFy25NPPmnpuCn84YPiH20D4NFHH5VjwIQJEwz3wRgzYsSIpFL7iD+h+KcBO/mxZvuqOf1WGgDptQAGL774oqW63RT+cELxj64BMHDgQHntv/baa5Y9lEZpyCRYcM0/DdgpcWm2L1L2UE3LSgDgypUrdStvPfzww6J3796iV69e4qOPPtJ9Ltf4CQlXDMCECRPEAw88IB599FFx//336+6DgOFZs2bFPMYAv5CQbusjCmD2Dve9OqN3cuYf/xwrFQD13HOY1Xfv3l227Jw5c2aebZzxhxfO/KPnAcB4hDV+rPXreQcw48dYkmgcGTlyJF39AYYzfxcxanpRpkwZw4j++PxYuzn9iOKvV6+e7eYZeP2xY8dKKx6dAOfMmSMf54yfkHB5AFDkC2m+GJMQoa9XxAczfhQQSkSlSpWYox9k0m19RDWoz06JS7WmfyIrHDW4rQYAJrLWMVvo0KGDUrhwYWXOnDmc8UcAzvyj4wGYNWuWcuKJJyqdO3fWvaatzPgZ4BcOKP4uYVWA1Yh+KxeSnaY+qTTPOHz4sNKuXTulUKFCyuuvv07hDzkU/2gYAK+88opSsGBBOQbgvh5WAoeNUodJsKD4u4QbObF2cvpTaZ6BNf4FCxYo9erVU4oUKaLMnTs3yW+BBAGKf/jBjB/GfMOGDZVFixbprvNbjS/S6xpKggfX/F3CrPFOMn2rUTXLLKoWa/SowoW6/ai0hYpbaNpitfKWusaPEp9fffWVaNasmay/PXv2bNvHSwhJPxgPunTpIlq3bi1L86Kkd3wWAOKT9DKBtCA2ANVCUTV0586dMZVJSQBJt/URZrCu5kTf6vhsASuuOTueBfX18Td+jR9LABdeeKFcJ2QFr3DCmX94mTJliszgueiii3Kvab0sAL1lQr0Z/2+//cZ2vCGB4u8iuMhSuVCMSgCvX7/eNCjHSgyB9vVhTDzwwAPKmDFjlG3btuX5HF27dpWpQW+//XbS3wfxJxT/cDJ69Ggp6JdddpmSlZUVs01rAKxdu9ZyMHEqsUTEX1D8PcBOUJ8WswtNLwDQzoWovr4q/G+88YZy0kkn5V7oWrKzs5VbbrlFvsfLL79s63MQf0PxDxeYzT///PPyWr3zzjuVnJwc3f1UAwDegUSeRLUyaCpZRMR/UPx9ipULLZWgPvX1tcJfokSJhEE9GFT69Okjtz/44IMyMJAEH4p/eMA1ee+998pr9KmnnjIt7wsDABMTPMfIAFBFnY19wkX+dMcckORLAKPABoL4EHSD+wgitFp0A6+Pwj4o61m1alXRt29fsW/fvjxlg/H62oCf5557TpQvX17cd999Yvv27WLMmDEiMzMzhU9KCHGCrKwsceONN8oS3UOHDhV33nmn7n4I/sX1r44X5513nryWUd578ODBMuhXLTqGol/qmHLaaac5HsRM0ki6rQ+ij9suNqzz6c34rb7P+++/r2RmZkpPw4EDB1I6FpJeOPMPPvv375e1ORDc9/HHH9tuI/7nn38qY8eOjfEA6HkRraz5xwcoE39C8fcxbgXXqLX6EdyHNf5kXXnIHS5atKhcE/z9999TOiaSPij+wWbjxo1K3bp1leLFiyesyWE2nqhLAIgBgIDrkWipMZFxQfwHxd/HpLKmb4S2SQ+i+lPNGvj222+VU045RSlXrpyyePHipI+LpA+Kf3BBMa4yZcoo1apVU77//nvD/WbMmGHpOrfaDlgviJmZAMGC4h/ibIF4jLrzpZo1ACOiefPm0uU4bty4lI6ReA/FP5igqx6W3lq3bq3s3LlTdx+92biZh8+qAaCFmQDBgxX+AgACblBlL5UOWom686ETYPv27ZPu0V2uXDlZDfC6664TN910k3jwwQdFTk5O0sdKCDEG19a9994rbrvtNnHrrbeKWbNmidKlS+vu2717d1nVzwxtsJ5RN8BUA5SJv2C0fwQwa8uLkr/JZg2o4DVHjRol6tatK3r37i1Wr14tPvjgA1GyZEmHPw0h0QVleK+66ioxb9488dZbb4m77rrLcF9E9aO0byLiI/rjDQC09YUBUL9+fd3WvyrMBAgenPlHXPid9DBgcMCMBIbE119/Lc4991xpBBBCUuf7778XTZo0EStXrhQzZ840FX4Y32Yk8vDZ8QDUrFlTXHDBBdKY0IL7eDwVryVxB4p/iLEj/E6CJYRly5bJ/P/GjRuL0aNHW3IdEkLygmtn2LBhUviLFCkiry3k5ht5Bi688ELZWKxfv34JXxcGhFmzLzsGAIwIGBPJLh8Sb6H4hxQvhB+zC6POXrD0MUhde+21okePHjIe4MCBA44fAyFhBoW3unXrJmf5t9xyi1i6dKmoXr264f5W1vjV2Xh8nE+qBoC6fGi3kyhJE+mOOCTOYxTV7xR283nfe+89WQ/g9NNPlxHExF8w2t+fLFu2TKlevbrM3//www9TjrhPNV04mSwA4l848w8ZXsz49WYXiDi++OKLdfdHmWAcU7FixUSzZs3EkCFDuAxAiAG4Nl577TV5/ZYqVUrOtq+88sqUI+779++f0mw8mSwA4l8o/iHCK1c/Ioj//vvvPO+9YMEC0bJlSzk46C0DLFmyRNxxxx2yhvjll18udu7c6fjxERJkUGMfRvQDDzwgr5OFCxcmdPPbibiHEZ5q4B0NgPBA8Q8JXgX3mc0u0BAIQT56cQA4pkGDBolPPvlEpiqdddZZ4uOPP3blOAkJEhDRiRMnymsCRjJqb7z66quiQIECluNtzCLu8R5GMTp2oAEQEtK97kD8v8afzLqi2doiqgJeeumlcr9u3boZVigj7sM1//Syfft25fLLL5fXwpVXXqns2LEj6XgbvZLg5513ntK2bVvHa+4zBiDYUPwDjpfCr4KBw6j3t/aGfVq2bGn4OhgwJkyYoJx88slK2bJlDbuREXeh+KePiRMnKqVKlVJKly4t/2+G1VLc2pLgbtbcpwEQXCj+AcYr4Y9v0YkZg1lDIO0N+yaaZaCd6MUXXyz3vfrqq5Vdu3a59llIXij+6ZntX3HFFfKcx6wf9xNdfzAMGjZsaLt+vhc192kABBOu+QcUL9b4tQVDOnXqJNcUcR8guK9FixYiXz7zUwhxAAg2MqJ8+fIyDmD8+PEymPDMM88U7777LtcSSSiv27Fjx8q1/Tlz5sgqfB999JEoW7ZswusPuf4rVqywXT/fi5r7jAEIKOm2Poh/Z/xG7sIGDRrIGYPe+mKqs4ytW7cqV111Va7HYNWqVa59PvIPnPl7A9pfN2vWTJ7b11xzjYx7sXv9+XHmr0IPQLDgzD9geBXVb5TSh/t4f3gBMJtH6U7s26BBg4SNP6zOMipUqCCjnlFHYNeuXfJ177vvPlnpjJAgghlxz549RaNGjeR1ixn/e++9J7th2r3+9ID3zah+vpc19+kBCBYU/wDhZa1+M3chgECrtbzxfxyTU5292rVrJ1atWiUGDBggewPA9fnOO+9wQCGBc/Gr5+7LL78sRbFNmzaOXH8qzZs3zzXC9VL5vKy5TwMgQKTb9UDsu/u9iOq3k9KnTR2yGo1sh99//12mA6pLAfgOiHPQ7e88X3/9tdK0aVN5znbv3l3ZsmWL49efmk1jtdy2NgPAbbAE8M0338gxi/gTin/AcHstTRvZb2fNURV4vTgAJ3KKAdYTzzzzzNx8aC8GsShA8XeONWvWKJdddpk8R88++2xl7ty5trNpVMyuPzcNbifgur+/ofgTid7sAYVB4ouDWA06cmuWkZ2drYwePVqpXLmyHODuuOMOGSRIkofinzp//PGH0qNHD3lOVqlSRRk3bpySk5OT8DnJFOzBTB9pf7iu8HyzlFsayMQIij+RJCoEggEEEf5WCvtA8L3g8OHDyiuvvCILBBUqVEh57LHHlL/++suT9w4bFP/kgUA/8sgjyoknniiL9bz22muWl+WsFt/RM6ThLcA1mZGR4YvrkQQPij+xlA5kNa3PqZmGkSs0Hgh+nz59pAFw0kknKS+++KKyf/9+R44hKlD87bNv3z7l+eefV0qWLKkUKVJEefLJJ+VjVkk2BU/PW8CZP0kGij+RImt19mDkBXBqjVFvcINrU3V1GgHX/5133qlkZmZKIwCDMfsFWIPibx1U4oOxWaJECaVAgQLKPffcY5qvn+o1p8VqHA6uz3Sv+RN/Q/Entmchbgb1WQ1ySpQZ0Lt3b6Vw4cLydt999ymbN29O+bjCDMXfnI0bNyo9e/aUHibM9B988EHbEfypzvztZOCYldQmhOJPJMk0/3A6qM/K4GbVw4BZf9++faUXAN6Am2++WVm7dq0jxxk2KP7GrF69WrnhhhuU/PnzyzX9/v37S++UE8tWdq85M2+BlWZahKhQ/COKXrMet2bzVrEyuNldy8T6PwIDK1SoIIOj0EAIKYNMQ/oXin8syE3/4osvlIsuukiea8gsQSDfwYMHLeX3Y1nMynVk95qzYhyrz7caM0OiC8U/BRDw06hRI6Vo0aJKmTJlpLBoZ5eYIcBVWLNmTRkNfMoppyi9evVS9u7dG/M6ehfx+++/H7PPU089pVSqVEn5z3/+Iy/sZDFLL/KyEEgqbk27UcyIwB45cqTMvcbza9eurbz55psMDqT454KAvUGDBsnrFedI3bp1lTFjxihZWVmmz00UiOekB82s34bVgj9uM2/ePGk8wejGMXzyyScx2/v166fUqlVLLs0haLJdu3bK0qVLY/apWrVqnu9ywIABMfuMGDFCplbWq1cvz/NJYij+KYCLauzYscqPP/6orFy5UunUqZM8EdUZwg8//CALfkyZMkX59ddfZSOeGjVqyBaeWnBS43XQ2la9oUKWysKFC5XGjRvLilkQrPbt26d0zG719nYCqwFNyRonmPHPmTNH/gZ4HxhuqBWApitRJerij4qRyNGHEOGcQGOp+fPn2/IOWTlvnTCozbwFfrm+Ycw8/vjjyuTJk3XFf8KECcqsWbOU3377TY6ft956q1K8eHFlx44dMeL/9NNPx4yLWu/Lpk2blNNPP11ZvHix8tFHH0mDnliH4u8gOHFxosPqNeLDDz+UUcIoVqOid3FomTp1qvQqYHCGdQtDIBm87PCVLGYphU4OZAgExAykYsWK8rWbNGmiDB06VNm1a5cSJaIo/ogJgSHdsGHDXNc+1vNRrMctj5WTOfdGuf9+vL7NxjfV64L9sCSnFX8stxiByRU8rzAI1q9fr1SrVs3R4w47FH8H+eWXX+QJjJPSCLieS5cuHfMYngMBQkARhB0V7LSzDgzKEDwEHcFFpr1AvEgvSgcYqJDeF1/BzA0XJgwxiF/Hjh1lwBQCBLt27SoNNRQTCjtREf9Dhw7J5TS4o3EtwZDs3Lmz9MxpjXG3YlXcFl+/Xt9m4o9llZdfflmmT2rTcyH+5cqVk4W84NZ/6aWX8vxOt9xyi/wdkYUxfvx4Vz9H2KD4OxgkhIEEa/JG4MTGsgDyhLXAtQXXPlzPL7zwglKwYEHljTfe0M0xtrL+aIRfZwZmeBmHgJxtfPcwwvCdFCtWTGYKwOAyK9caVMIs/vjNZs6cKSP2scSD3xQNdwYPHiyvJycwu668yrn36/VtJP7waCJtEoG4mPwsW7YsZvurr74ql+hWrVolPXKY+CCNNx546qJgpDsNxd8hUGAGliryzI3cWnArX3jhhaaDLArUwA3pBl26dPHFmmAQwGCKZYHTTjst1zuDAE5EgnvRWdErwib++G2mT5+u3H333bkBZ4i1gVsf3jk3SLTm72XAnV/W/K2IP9z1+D2WLFkiZ/Bw2ycyyOARhccmTNdeOqH4OwCqfEGsse6kByLKmzVrJiNatYF8RkybNk1eMG6c5HCbocVouganIIIlGAxQyNSA50b1CFxxxRXKO++8E/gYgTCIP7xqaKaDQE51hg8xQZEnzCjdTu3Ui1VBBL7X7af9kLKbzJo/QPAeMqiMQGAgXov1OpwhvyBJg/O6V69e4pNPPhFz584Vp556ap599u/fLy644AJRsGBBMWXKFHHiiSeavu7KlSvFSSedJJ/jNPnz5xcTJkwQAwYMEKtXrxann366qFGjhogqP//8s/jtt98Sfg8ZGRmiadOm8vbGG2+I77//XkydOlX+njfccIPIly+f+M9//iO6du0qf+uzzjpLPkbc4/jx4+LHH38UM2bMkL/F4sWL5fXYpEkT8dhjj4kuXbqIs88+W/52XoDrFcfyyy+/iF9//TVt15VfjiPZ3zQrKyvhuIjrqmzZsp4eV2hxyIiIJHfddZcMUkHPbm06irr+BFf/ueeeq9SpU0em+mn3UdePEWyEIEAECcIF9tZbb8mUI1SnI+7hVD40egog1xhBZKjlgNdBQCdmoFhXxu+KeBA/E4SZP77D77//XubhX3rppTIIDN81Ar0QnDlq1Ch5XdmBhXDc48CBA8p3330nb/idBg4cKP+P9Dy4+9GFE940lE1GCjPiahDrhNk9QPoeIv2RQo10QATzoZYKYjeIM1D8U8AosAY5+wDBKkb7bNiwQe6DtUlEssJVieAXFBYZNmyY7wUj6LixNopocgQGPvHEEzJLAVkDqjGAJYIhQ4bIwcxvIutH8cexQCwg9qiVgUwYfJdIk23VqpU0jr/66ivbgV4QfK+ySKKM0dh34403yqVPGHCIocHvibgMGHDagL8VK1bIiRMmVzCqkcOPJQGu9ztHBv5Jt/eBEK9d/bVq1Uq4XesqtbI0oMfhw4fFkiVL5JIQbl9//bXIzs6WSz/nnHOOaNiwYe4NSwWZmZkiHeCYPv/8c9GpU6e0HMOxY8fkEtSKFStyb1hagQsYx4PlljZt2shbs2bNRKFChWy9Pn4/uIwHDx4sFi5cqLvPCSecIM4//3zpMickCnDNn0QOCHkisFYKkd+zZ4/o3r27+OKLL3K3YU3//fffl2urZhQuXFi0a9dO3sChQ4fEt99+K8UNf+fNmyeGDx8u1zoR3wGDoEGDBuKMM86Q71+zZk1RrVq1tBkFbhgZGzdulGKM29q1a+X3AKGHAYD13Nq1a0tj6LrrrpPfBW74Hu1iRfC1/P333/J3xlp5UNbICUkFzvxJ5LA687/wwgvFl19+KYXBrRkiDAKIlDrjxf8hQEeOHMkN0Kxevbo0BNRblSpVRIUKFeStTJkyKQcXOjXzhxGzc+dOsXXrVvHnn3+KzZs35wo9bhs2bBA5OTlyX8ze8Vnq1auX6/2oW7euKFKkSNLvb1fw9cD30LFjx6SPgZCgQPEnkcRM2O0uDTgJRHTLli0xwqkV0PhjLl++fK4xgBuioYsVK5Z7K1q0aJ7/Q+RhNOCG15s1a5b0UOD18P4wCA4cOCBvBw8e1P3/jh07coUet+3bt+c5tnjDRb1VrFjRsYwIPQ9Nsrj5uxLiJyj+JJL89ddf4pprrjF06U+fPl3OhJOZISYbI2AFiPK2bdtyBVcrvup9zL5VkdaKsRNA0FVDAl4HGBsQcq3xoT5Wrlw5T5Ys9Aw5u3DNn0QNij+JHFpxBnr50MnM/PVmoC1atJC1IOrXry/z0N0yCvTA+yFoTm/2Dvc7ZvhqbvV3330nGjVqJAoUKCBn5Fhu0HoK1L+ITfAqd96KEWX2O1nFTiwHIaHAwcwBQkKV2283HdBqO2LckGqGlDM/5Jj7KdXPbiqe1aY6ereWLVv65jcgxGso/iQy2BVzO6VSrbZ19aMhkG7xNxJ8K7+T3e+dgk/IP9DtTyJBKgF8VkqlmsUIOO1+djKuwMk8f6Pj0ns8mUA9vd/JbM2/ZcuWomfPnnLphcF8hPw//28EEBJq3O51nsrM306VQb2lC63nQFuyNlH5Wu22n376Sc7816xZY7hPoucbHRfuozSrkffEzjJJot9Jz0PDGT4hiaH4k0jgRa/zZMTM7vEk+x6q4OqJNOrjQ/zx10ywjUS+bdu2uksqKMur93giF3+yvxO2sVY/Idag259EBreL9uilDyaLXiphKpHt6ucE8d8BCu5gqQHHjkp7JUuWFHv37tX9nvSej21OpxQaHT9T8QhxBvYdJZEBAqcKmAru43En26lCpCdOnCjT/JJFTUO0U5bYSvla3BIJNbbt3r07zz6Jnu+28Dv9OxFCWNufRAivep3jNeFQ69Onj8yXR069KubIp7fSYEbvuE477TQRJmAcofERA/UISQMWlwcIIRYwC8hTwf+TaS3rZFyB3pp/Kq+TL18+y2v+2qA/s0C9RIGHhJDkoPgT4iBm4qwn7nYC1fQE08pNFVy949OKv5lgG9VKQMCfXiDg+vXrTWsl4HOPGDFCGTlyZMx3YLcoEyHEOhR/QhzCSrqfWSqfVYw8B2ZGh57xEB/tn0iwzQofGRkyRo8nEni7RZkIIdZhtD8hDmGn0I9T3ePwOvPnz5f/b926tfyrxjNo/x//Xtq4B6y5r1u3TmYSnHHGGbr7xD9/5syZYunSpaJZs2aiffv2SRcgMsrAwOsmasvL7nuEpAYD/ghxCDsBeRDVVMRLrzqeWh1Q+7pG76G1+XHcEP/448dzrTQvUt8Xr2m0Ta9iIQRcLy0ShkAi4Xfi+yMk6jDVjxCHQJ96iB1mrsmk8tkBIosZsxbcR65+IiDemG1jlg8vBY75sssuc+R97R5TKqmLqX5/hEQeG0sEhJAUA/KcWLNOpVqh3jp60aJFLTX2SaWEsVGJ4ETPQTwD1/wJcQfO/AlxELNCP04UqzGbMcMlrofqZjcq0mP2uqnM1PWOychTgvt4fMqUKa4WZSIkynDNnxAXUNfLr7rqKseLCpnFFhi5xM3Ee/369TEBf3bfN5ljUssKa9f+VYH3qigTIVGE0f6ERKRPgVFvALW2f3y0v933Bcn2TqDAE+ItdPsTEpE+BYnc7FZn9oneN5XeCRB8NDLCXAQpkzAGCCHuwZk/IQHG7oxZr/PgRRddJHr06CGj/zMzM1N+32Rm8YlSCPXSBAkhqUHxJyTA2CmoYyTQ1apVky2E7Yh/0NotE0JiofgTEkCcnClnZ2enVfyNYhG02xkHQIizcM2fkACSbJEfP5Js6iIhJHko/oQEjET5+ng8aMFyyaYuEkKSh+JPSMAI20zZrNgPXf6EOA/Fn5CAEcaZcippgoQQ+7DCHyEBQ50pG0XHB3GmzGp+hHgLZ/6EBJCwzpTVYj8UfkLchTN/QgIIZsqDBg0S8+fPl/dbt25NwSSEWIbiT0jAYDU8Qkiq0O1PSMAIU44/ISQ9UPwJCRBhy/EnhKQHij8hASJsOf6EkPRA8SckQIQxx58Q4j0Uf0ICBKvhEUKcgOJPSMAIa44/IcQ7mOpHSECr4W3ZskVs2LBBVKxYUVSvXj3dh0UICRAZiqIo6T4IQkj6QKbAmjVrRO3atfMsJxBCwgnFnxBCCIkYXPMnhBBCIgbFnxBCCIkYFH9CCCEkYlD8CSGEkIhB8SeEEEIiBsWfEEIIiRgUf0IIISRiUPwJIYSQiEHxJ4QQQiIGxZ8QQgiJGBR/QgghJGJQ/AkhhJCIQfEnhBBCIgbFn5CQMH/+fNGlSxdRsWJFkZGRIT799NOY7QcPHhQ9e/YUlStXFoUKFRJnnnmmGDZsWMw+R48eFffcc48oVaqUKFq0qLj88svF9u3bY/aZMmWKqFmzpqhVq5aYNm2aJ5+NEOIsFH9CQsKhQ4dE3bp1xZtvvqm7/YEHHhAzZswQ48ePF2vWrBH333+/NAYg5iq9e/cWU6dOFR999JGYN2+e2Lp1q7jssstyt2dlZUnj4K233hJDhgwRd911lzh27Jgnn48Q4hz5HXwtQkga6dixo7wZsXjxYnHjjTeKNm3ayPu33367GD58uFi2bJno2rWr2Ldvnxg9erR47733RNu2beU+Y8eOFbVr1xZLly4VTZs2leJ/wgkniHr16snt+fPnl48VKFDAo09JCHECzvwJiQjNmzeXs/wtW7YIRVHEnDlzxM8//yw6dOggt69YsUJkZ2eL888/P/c5Z5xxhqhSpYpYsmSJvF+8eHFx8803iwoVKsjlBcz8ixUrlrbPRAhJDs78CYkIgwcPlrN9rPljxp4vXz4xcuRI0apVK7l927ZtcgZfsmTJmOeVK1dOblPp16+fXDLA8yn8hAQTij8hERJ/uO8x+69ataoMEMT6PWbw2tm+FUqUKOHacRJC3IfiT0gEOHLkiOjTp4/45JNPROfOneVj55xzjli5cqV45ZVXpPiXL19eBu/t3bs3ZvaPaH9sI4SEB675ExIBsJaPG1z1WhC8d/z4cfn/hg0biszMTDF79uzc7evWrRObN28WzZo18/yYCSHuwZk/ISEBefy//vpr7v0NGzbImf3JJ58sg/Zat24tHn74YZnjD7c/UvneeecdMXDgwFxX/q233ipTAvEcBPf16tVLCj8i/Qkh4SFDQdgvISTwzJ07V5x33nl5Hkd637hx42TQ3mOPPSZmzpwp9uzZIw0ABAAitx9FgdQiPw8++KB4//33ZQrfBRdcIHP66fYnJFxQ/AkhhJCIwTV/QgghJGJQ/AkhhJCIQfEnhBBCIgbFnxBCCIkYFH9CCCEkYlD8CSGEkIhB8SeEEEIiBsWfEEIIiRgUf0IIISRiUPwJIYSQiEHxJ4QQQkS0+D/IEovpEPdS9QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAHwCAYAAACop2ZrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcAxJREFUeJztnQm8TOX/x5+LS3ZlX0JapJJdyBZRKO0p7aWdSv2qXyrSplWFIntFpSThh0j2JSIqocVWZM/OdW/O//V5+p/bmbnnzFnmnJmzfN6v17hmzpmZMzPnPJ/v832+S4aiKIoghBBCSGTIl+4DIIQQQkhqofgTQgghEYPiTwghhEQMij8hhBASMSj+hBBCSMSg+BNCCCERg+JPCCGERAyKPyGEEBIxKP6EEEJIxKD4E0IIIRGD4k9IxHj77bdF9erVxQknnCDOO+88sXTp0txt69atE+eff76oUqWKeP7559N6nIQQ76D4ExIhxo0bJx5++GHRp08fsWLFClGnTh1x0UUXiR07dsjt3bt3FzfeeKP44osv5G3RokXpPmRCiAdQ/AmJEP379xd33nmnuO2228RZZ50lhgwZIooUKSJGjhwpt//111+iQYMG4txzzxWVKlUSe/fuTfchE0I8gOJPSEQ4duyYWL58ubjwwgtzH8uXL5+8v3jxYnn/2WeflfdhEGAbvAKEkPBRIN0HQAhJDbt27RJ///23KF++fMzjuL927Vr5/44dO4qdO3eK/fv3i7Jly/KnISSkcOZPCImhUKFCFH5CQg7Fn5CIUKZMGZE/f36xffv2mMdxv0KFCmk7LkJI6qH4ExIRChYsKIP5Zs2alfvY8ePH5f2mTZum9dgIIamFa/6ERAik+d1yyy2iYcOGonHjxuLNN98Uhw4dktH/hJDoQPEnJEJ06dJFBvT17t1bbNu2TdStW1dMnz49TxAgISTcZCiKoqT7IAghhBCSOrjmTwghhEQMij8hhBASMSj+hBBCSMSg+BNCCCERg+JPCCGERAyKPyGEEBIxKP6EEEJIxKD4E0IIIRGD4k8IIYREDIo/IYQQEjEo/oQQQkjEoPgTQgghEYPiTwghhEQMij8hEQeNPY8fPy7/EkKiAcWfkIiTk5MjJk+eLP8SQqJBgXQfACEkHPz888/it99+E6eddpo4/fTT0304hJAEcOZPCEmKPXv2iIsvvljUrFlTdOzYUZxxxhny/l9//cVvlhCfQvEnhCRF165dxVdffRXzGO5ff/31/GYJ8SkUf0JIUq7+L7/8Uvz9998xj+M+Hv/ll1/47RLiQyj+hBDHYI0/Eb/++iu/XUJ8CMWfEOKYU089NeF2BP8RQvwHxZ8Q4hgE91100UUif/78MY/jPh5n1D8h/oTiTwhJio8++khceOGFMY/hPh4nhPgT5vkTQpLixBNPFAMGDBDz5s2T91u1asUZPyE+h+JPCEkqxx+pfojsV4G7H7N+GAWEEH9Ctz8hxDHM8SckmFD8CUljjvy0adMCmwvPHH9CggvFn5AUE5ZyuMzxJyS4UPwJSTFhcZUzx5+Q4ELxJySFhMlVzhx/QoILxZ+QFBI2Vzlz/AkJJkz1IySF+N1VDs8EDBQch5XqfEjnmz59uvRYwHCx+jxCSHrhzJ+QgLnKE2UJJJNBcOWVVzoOQlQUxfb7EULSB8WfkIC4yhNlCbiRQTBnzhzbQYhhyVwgJGpkKDTZCUkLmJ1DcDMyMiyVxIWoQpC1wYLwGKiGhNE2uOUTsWbNGukxgNAfOXIkz3ZsMzq2RMdk9r6EkPRB8SckDevodsvi4jUwu3b6/okMi6lTp4rs7GxD8cf2Dh062D4ms/f1IgaBEGINuv0J8YhELnG7uf5mWQLJZBCccsopjoIQvcxcMPruli1bFuiqiIT4BYo/IR5hJPCdO3e2netvliWQTAaBut1uEKKXmQt63x2+m8aNGzO2gBAXoPgTkuJiPgsWLLA9YzbLEkg2gwC0bt3aVhCiV0V+jL67eIJYFZEQv0DxJ8QDknHTG82YE2UJuFFsZ8KECVJ4scaPvwjYM2vL60WRH6vfXRCrIhLiF1jkhxAPMHOJt2jRQixatEg3St5oxmxWUAfbZsyYIZYsWSKaNm0q2rVrZyl4TvU0YFu+fPrzgfjnau+7XeTH7hIH3pfBgITYBKl+hBD3ueiii5T8+fOj+k3uDffx+J49e+Rf7Tb1cSusW7dOmTp1qvLzzz/L+7t37zZ8PaNtv/32m/xbuHBhZeLEifKv0T7ax0uXLh1zv3nz5sq4cePkscQfl5vfndEt2fciJIpQ/AnxCCsCD+FKJJZWRb5NmzaGhoaREQIRx18j8dfuY0WE4292jBkr311GRobu5yOE2Id5/oR4jJ5LPJEbHfeN6gAgH3/u3LkxywVw1R8/ftzx8RUuXFiu0Rvl+TvFarEf7WfHhET7PajfXdmyZcVTTz1luS4CISQxFH9CUgREbuXKlWLQoEFi/vz5uY+XLl1a7N6923ORT7X4mxX70TNwtDRv3lz06NFD1KtXL/f5qWggxMJCJAow4I8QjzETOa3wg5kzZ+qKvBfCnwqMAvL0cvm1ICVSTYvUGgIICFSDFN00AOxWXSQkyHDmT4jH6NW/9wK42e3U/S9VqpTYu3evKFiwoO7MX7tPMseuN/NPplyxFjfFmX0KSJRgnj8hDrHSPtdqwRo76BXVadOmje0aACiVG/+4lX2wTGH1OI2K/SRTB8GLQj+JijKxlgAJI3T7E+LCur3RDDQZkdObyaP7X2ZmZoxrWhV5vHeiGgB62/D42rVrxbp168SKFSvke+jtE/9c3P/uu+/yfA9Wi/0kU67YSJyTWQKw0qeAtQRImKDbnxCHgm8lst2Je9tI5LUGhpuBbwguRFU/NNDBe9pFeyzA6nG5uRxi1HnQagBfKjoUEuIrHKQHEhJ6kF+PwjUtWrSwlduul69vVrAmvmiONj/erA6AGxw7dkzm+eNvKtHL5Xd60/t+EhU+sluUiZCwQfEnJEnB194g1FZETlsVL1Uir5KTk6McPXpUOXz4sHLw4EFl8+bNyujRo5W//vpLPoZt2CdVaD87bnZ+g0TibFfMk626SEiQoNufRB6zVDw7JHIPu52jfujQIfHnn3/K29atW3P/v2PHDnHw4EFx4MCBPH9xO3r0qOX8/2LFionixYvn/tX+H4V3KlWqJCpWrChv6v+LFCki3MBKXIFRrIVdN752aQB4XUuAkHRD8SeRx421Z6vV7OyQk5MjNm7cKIVJvUEQf//9dyny+/fvzyPWEN9y5crlEWqteBctWlSm96FoEI4bwrp582Zx7bXX5hYSOnbsmDQYEhkRMDJgdMQbEyVKlJCGQJUqVWTbX+2tWrVqokCBAp7HFSALAzEMZjECzO0nUYXiTyKNH/LNYXTgOJYvXy4DC1WhX79+vQzGAyeccIIUOtwgoNqZtvp/iG5GRkZKA/6wdLhv37483gf8f9OmTVK0ccvKypL74/UR6a8aA3Xr1hUNGjSQ/zfqKOgEqzN/5vaTqELxJ5HGbIaYCL3ys1aEHql1SKuD2OMG1zZc+OCUU04RtWrVkmKI11RFErNoN8XRzWh/M+BJgLcCRoDWi7FmzRrp2QDwTOB7hCGg3vC542sa2MFM2BnhT6IM8/xJpLGbb25X8OESX7p0qZgzZ468ffPNN+Lw4cNyG9zWELnOnTvLv/Xr15cV9cIGjBZ4K3CLLxj0119/xRhCkydPFm+++abchuWJ8847T7Ru3VreGjduLAoVKmT5fdWqhXo1EQBz+0mkSXfEYZB55513lNq1ayvFixeXtyZNmsREe7/77rtKq1at5DZ81YimjqdatWp5Ipj79esXs8/QoUOVqlWrKnXr1lWWLFmSks8WJcxS8eIj8xNx5MgRZe7cuUrfvn2VCy64QDnhhBPka5QqVUq57LLLlFdeeUX5+uuvdc+FdJGuVD8j8N3MmjVLefnll5XOnTsrJUuWlN8hvku0Ln722WeVefPmyawEKxhlUiC7w276IHEHjHH4jh988MHcxzBWxv8Gd999d8zzvvjiC+X0009XzjjjDGXy5Mn8OZKA4p8EkyZNUv73v//JQQIDSa9evZTMzEzlxx9/lNvfeOMNeZKrJ7qR+GMw+/PPP3NvSL9S2bRpk3LaaacpixYtUj799FOlVq1ayRwy0cFKKl4ifvvtN+XNN99ULrzwwjxij3Pgu+++S2nqXNDFPx58d8uXL1def/115dJLL40xBtq1a6cMGDBA2bBhg6PXZm5/6lm6dKlSvXp15dxzz80j/nfeeWfMWLhv377c7TD2qlSposycOVOZMWOG/H9WVlYaPkE4oPi7zIknnqgMHz485rHZs2cnFH8IhBE//PCD0rBhQ2kQrF+/Xl40xBus5tr//fffyuLFi5UnnnhCOeecc+RvC6MPQtK/f3/fi33QxN/IGHjttdek+OO7x28AMXnyySeVb775Rv5GVmBuf2o5cOCAnLlDwCH28eKvvR8PDAGMlzt37pQ3jIX79+9P0ZGHD4q/iwPSRx99pBQsWFBZvXq1LfEvX768ctJJJ0m3PtzC2dnZMfvcfvvt0i1duHBhZcyYMW4dcuCBtyVVhXEww4CnB79FuXLlcivz3Xzzzcr48eMDPQgFTfz1ROGTTz5RbrzxRnkd4bepUKGC0q1bN2XKlCmWZoepLLIUhGtqy5Ytnrw+rpeHHnpI/l9P/MuUKSOvq7PPPlv573//qxw6dCjm+c8884xSoEABafBhWYg4h+KfJN9//71StGhRKc5wR2IZIJ5E4g9XJravWrVKGTx4sHQX9+zZM89+u3btktXXoiS4Ru+vVwHOi0psmD3Onz9frjuqonLmmWcqjz76qHw8SLP7MIu/FhjOiLl45JFH5AxTNdLuu+8+ZeHChcrx48fTfYi+RK8UMownN89xTI7gKUNcjJ74I0Zq+vTpckzFJKdy5crKFVdcked19u7dG2hj2y9Q/JMEs4pffvlF+fbbb6WlCsvVzsw/nhEjRkjL1mowU6qwWyc9Fe/vVQ32n376ScZvwK2I10awJX5bLMGEkTCJfzwwqh977DG5PozfskaNGspTTz2lrFmzJt2H5iuMYh+uvvpqV14fJaThMcPvYdXNj6BPHMevv/7qyjGQWCj+LtO2bVvlrrvuciz+CBbEvmvXrlX8RLoDo8wi8pON0IZnBbEX9evXzw3Yw++IWaTV9eOgEmbxV8FviOvwjjvuyA0YbNCggQzUhGEZZm+ZGanIevj8889zxwz1hvsZGRny/3oeBsQ5YR94A4j7eFM1JMKgoIlazcwJqPCGvGiUaPULKIaCXOn48rfaXurpeH89UPbVKjB+Fy5cKG666SZRuXJl8dhjj8kiOxMmTBDbtm0T7777rmjZsqVnxXVI6sBviFoBw4cPl7/t+PHjxcknnyweffRR+dvfeuutYvHixfKccAuUDkahIVQaRAElFC1q0aKF+OSTTzy/Zuxgpd5BsrRt21b88MMPcnxTbw0bNhQ33HCD/L9eMSc8DlDBkniABwZFZIArGDNDpBlhnQr3YckiDQUgVQWR38OGDZMWLHKTcV+daSB9D7PNlStXynQxrHOVLVtWBsX4Ccxa7HayS+X7252lYEYxZMiQ3Ej9U089VQZa7tixQ4kiUZj5G7Ft2zaZinvKKafIc6FOnTqyrkZ8oJkX3iq/dAxMV70Drdsfrn2kPGP5FOMp8vmxRNOyZUtP3pvQ7Z8UiPxGtD4i/CHacPmrwg/69OmjezGNGjVKbke60nnnnSfdkMhZRg7/iy++6Lv1fjuDgxcuTrP3t7oEgQEGwZT4vvPly6dcfvnl8vcKu1vfjCiLvwrOAbiXUVQIBjxSdv/zn//I9Np0nrNhXtbTij9iAiD0CKwtVKiQrG2CwFptnj9xF878iSuDg9cBgcnMouBt6dKlixR8DC6PP/64snHjRv7y/w/FPxYIPoQfBgDOua5du0rPXjq9VW4Tb6Sz3kH0oPgTSyQaHDCQIFDO6czBirfASRU+LLN06NBB7ovI/bffftsX6ZJ+g+KvD1z/AwcOlNkeOIcuueQSmS7o1sw/VctmWsyMdNY7iA4Uf2IL7eBgln5nNrNx4i0wG5yQx41aCzAM8HooFvLBBx/kKZxE/oXib/79jB49Wi7L4ZyCexpLBGY1A7zOUAli1g7xDxR/4gij2b6dmY2bAxEG4s8++0wGbOF10GQJQUNRX8+3AsXfGjiXJkyYoDRq1EieY/Xq1ZOxEkZGgJ63ymvRTeRFYyMjooXiT2xhdbZvNrNxcyBCl7zGjRvL56G5DvK5WcnNOhR/e+Dc+uqrr2TXRpxzzZo1k0tMRuBc9roqpRUvWrqzdoi/oPgTW1h1ZZrNbNwYiFasWJE74GE2hopgxD4Uf+cgW0QtDNWpU6eYCnZ6eLWmrnddIsAVy18qnPkTLRR/Yhk7QUzamYeeKzKZgQgpe9dff73cD3290ViHM33nUPyTXw7AzB7paUgTRIMhpy2GnWB2LcHjoHoAuOZPVCj+xNX0Jcw2MBMyCgjUuiLtDkR4ve7du8veB5UqVZLFWBjIlzwUf/e+RzTnQkdBdJ1DDruVkt5eX5cwSNRrkil9RIXiHzBQDCNds1wrM3876X9WByLMrIYPHy6bJpUoUUJ56aWXXKnARv6B4u8uqCD5wgsvKMWKFZPNbJAp4FbgqRMvmt715XVKHz7v77//7slrE3eg+AdskEagESoDpsIA0BtojNYWE832zdz6iQYilPtEFUQ856abbpIlk4m7UPy9YcuWLbJAkBoUiGJTTrHiRcN1mEwcjpvCv2zZMhmDQ8+cf6H4Bwz0wvbaAEg00JjN1hFgZGUQMgvowzHcc8890mVZu3bthNHUJDko/t6C7BPUm8B1gWUrJ0sBZgF9uP7U2hZWbl7O+FXh91uZchILxT+AeG0AWFmLj5+tQ6zdGHwweKARUunSpaWL/6233uLswWMo/qn5jl9//XW5FIA+ICNHjrR87Zq59dGaWK10ieA+N4xvJ1D4gwXFP6B4ZQA4jcJ3w+2IzoatW7eW+6GzIV38qYHin56lADQCs9Jjwk6fgDZt2shbqmf+FP7gwUblAeWEE04Q559/vvjrr7/Ed99951ofcie9vX/++Wfx5ZdfiuPHj5u+/oUXXig++uijmMfwvLfffluce+65YuPGjWLWrFnivffeExUqVHDwCQjxL5UqVRJjx44VM2bMkNfNOeecI959992E1++pp55q+fXnzp0rMjMz5WvXr19f5M+fP2Y77l900UXi9NNPF26B63fFihVi//79ckwqVKiQa69NvIPiH2C8MADMBprTTjvNtsGQkZEhByIMSNOnTxcnnnhi7rYNGzaItm3biu7du4ubb75Z/PDDD6JNmzZJfAJC/E+7du3Ejz/+KK6//npxzz33iPbt24tNmzbp7nvGGWdIwc6Xz3y4/vvvv6UhDr766itpbJsZ38lA4Q8uFP+A47YBoA40RjMGvP60adPEL7/8YtlgaN68uRyItLMNdbZfu3ZtaQBgtv/OO++IYsWKJXX8hASFEiVKiKFDh0qDeO3atQm9ABDsZs2aWX7t6667Tv7Fa8Ponjp1qq7xnQwU/oCT7nUH4r8YAL2Ifr21RLOCPfHlRVU2bdqUWxcdEf379+9P6nhJcnDNP/3s3btX6datW25/ij/++EN3P6sBfV6n9HGNP/hQ/EOE20GA2oh+swwAqwV70GnvxBNPVE4++WRl5syZSR8jSR6Kv39Aq+DKlSvLbBe0prbbKTAVKX0U/nBA8Q8ZXmQB2MkAMCrYk5WVpTz00ENy/8suu0ymBhJ/QPH3Fzt37pRNgnCt/Oc//5G/j1GnQNQPSGVKH4U/PHDNP2R4EQRoJwMA6/odOnSIWd/H83FMWNN/6623xOeffy5OOumkpI+LkDBSpkwZMWnSJPH666+LN998U7Ro0UJmwWjB9XXttdeKCRMm2A7QdQrX+MMFxT+EuGUAIEAIwX3xwX92BphPPvlE1KtXTx7LokWLxAMPPCCj/wkhxiCy/+GHHxYLFy4U27dvF3Xr1tUVerMAXbdS+ij84YPiH1KSMQD27NkjLr74YlGzZk3RsWNHOYiULl3a1gCTlZUlU5i6dOkiXwN5wA0aNHDlsxESFRo3biyvX6ToXXXVVaJHjx7i2LFjeTIBvEzpo/CHkwz4/tN9EMT+jByudMy4zSz7o0ePytkD0nswA7cy64abEbN0bdEezETwGrt37859DMKPASY+dWjbtm3iyiuvlII/cOBA0a1bN872fUx2drZMBYORhgIxxH9gmB48eLDo2bOnNAg+++wzUa5cuZh9kH6LJTgr44JVKPzhheIfIDAj79q1a24Rj0QC7MQAwOtfdtllYsGCBYavhcpkOTk5hgPM8uXLxeWXXy6LjUycOFEOVMTfUPyDA4xyGNaoovfFF1/I5QCvoPCHG7r9AwSEH8VytOA+qoS5sQSA18fgkggIf3xAn8rHH38sC/pUrFhRfPvttxR+QlwGhX6WLVsmgwJxTcMD4BQ1pkdbsEuFwh9+KP4BQa2fjxm1XjlPvQvYjgFgtT6/XnAfnvPkk09KI+Tqq6+W9cVRw5wQ4j4nn3yymD9/vrj00kvl9fbMM89Y6qthFNODoEHcx9igXs+s1R9+KP4BwUnDHTsGgNnrY81fL7jvwIED4oorrhD9+vUTr7zyinj//fdF4cKFTY+FEOKcIkWKyOW+F154QfTt21em/R06dMixB3HmzJmic+fOFP4IQfEPCFYb7iRy5SUyAMxeH8+Jjx7eunWrdPPPmTNHTJkyRTz66KMM7CMkRSB2p1evXjK2Bl67li1byrRAJx5EzPax5AcDHmODm935zMYkkh4o/gHBLJ8XqXiJXHnxBgDa5f7+++/SRQ8DwOj1MeOHwM+bNy8mqBAXNAYIRP8jmBDvSQhJPWqQLoxxXJOJvHhG23CdP/TQQ6Jo0aKyGJcbwm+2vEDSTLpLDBLrJKqfb1Z7XwVlddXXQI39gQMHKi+//LJ83Gp9/qVLlyplypRRatWqJZv0kGDD8r7hYP369crpp5+ulC9fXlmxYoXlUt1oFPTwww8rb731llKyZEnXegJYHZNIeqD4B5D4+vl2au/HX5AwAAYNGiQNALUXgFF9fvDll18qRYsWVZo0aaLs2rUrhZ+aeAXFPzzs2LFDadiwoVK8eHFl1qxZuvtgDFA7A+oJv92eABh/4scLO2MSSQ8U/xCAC89Kcw+jC1L1AMyePTthM6CxY8cqBQoUkE1HDh48mMJPSLyE4h8uDhw4oLRv314pWLCgbP4TDzx5aLVtJPxWxVnrRYz3FFodk0j6oPiHACtWNi7U+vXrG+4DA2DixImG3QDfeOMNud8tt9yi22WMBBeKf/hAF80bbrhBycjIkJ49ve58/fr1UwYMGBAj/Hbc8npufRgUMCw48/c/FP+QYLa+hgsSA0EiI2H16tW67YCff/55uf2xxx5zrU0w8Q8U/3ACge/Zs6e8dl955ZWYx5ctW6bMmDFDufzyy01jfPQwE/cWLVoobdq0cWXNX29ZgSQPxT8kGAXr/fbbb1L4E12o2gvyyJEjMQbAM888I/fp27dvuj8i8QiKf3jBNfzkk0/Ka/jFF1/MFX7EAxw9etQ0xscIM7c+PAAQfysBxHaXFfbv3+/4+yD/QvEPGfEXspUZP5YDtBckDICZM2cq3bp1k9tfeOGFNH4i4jUU//AbAH369JHX8t133x0j/E5n32Yzf+2SoxPjAjBbwFso/iEFVrPZjD9RcE+vXr3ktgceeICu/pBD8Q8/mPHfc8898pqGN88qiYL6tFkDVicWVmHMgPewyE9IsdKkx6hk73PPPSdefPFF+RclPxM1AyKE+Bu1Vv8111wjevfuLXsBvPzyy0k3E0PFTzQaSsSqVatMG495Vc6cmJACA4OkGKsuOQTlxFvliADGNgT56cUAkPDBmX940Vvj7927t7zGX3vtNVdm3xhHzJYWzVz+dpcVGPyXPBT/EGIWjIMLFUsC8QwePFhux/qgFhoA4YbiHx3hBzDin3jiCXmtDx8+3PE4orr0cUuURpzI/W+2rMAKgd5B8Q8ZsJiHDh1qe8Y/fvx4aRQYrfHTAAgvFP/oCL8KrnHEAGDN/osvvtB9DbPZt5rTb2VfoxS/RAJvtdw4cQbFPyToWdDxrjjtxaoFlf1QDaxLly5y0DCCBkA4ofhHS/hVcnJylCuvvFI54YQTlAULFujuYyWoT51MWNnXSQlgp9kCJDEM+AsJeoE58UF67dq1E5MmTcoTkIOuYGgH+t5778kgQCOM2gETQvwV3Ld//37Ttrzo4Dl27Fhx3nnniUsuuUSsXr06zz4I6qtbt27C90RXTzUA0GxfbaCe1aA+BCR36NAhT2AySQ6Kfwgw6tGtMmzYMLnP9OnTY9rybtiwQbbYxEU1YcIES208aQAQEnzh117PX3zxhahWrZrM/Nm8eXPMdowXEHWz98X4s2vXLtN9t2zZIn755Rf5/1NPPTXhvqeddprp8RPnUPxDgJkFXbly5TxW844dO0T79u1FsWLFxNSpU0Xx4sUtvx8NAEKCL/wqJUuWFNOmTROZmZlyMrB79+6Y7WeccYY0DBJ5BcF1110nypYtK/eFV0GPO++8U74e3sdoX9zXS0Em7kLxDziY0f/xxx+2LOijR4/K/P0DBw5Ii71cuXK235cGACHBF36VihUrihkzZsjZO5YBs7KyYrZbyelfuXKlHFew74UXXhizLSMjw7BWQPy+uG/mQSAuYBITQAIc4KcXYYso3xtvvFEG+SAoKFkYBBh8GPAX/uA+qyxevFgG/95xxx26WT9WcvrVAEAE6JllHjGoL31w5h/iAD89C/q1114TY8aMESNHjhQNGzZM+jjoASAkuDP+eJo0aSKGDh0qRowYIQYOHJhnO+ID6tWrZykAEG77KlWqJNyXQX3pg+LvMxc+1t7UgBi3A/ywtv/444+LJ554wlHJTSNoABASfOFXueWWW8QjjzwievbsKWbOnOk4ABDjmFlQnzYAkKQWir8P2LNnjwyAqVmzpujYsWNuQAxS6twK8FuzZo0UfKT0PP/888JtaAAQEnzhV0HtfwQEd+nSJY84exUAaDTeEW+g+PuARM0z9LCbIoOLCoE4cMHB5W920TqFBgAhwRd+ALHGDB/ijQDAffv2pSQAkKQOin+aMXLh477qOotHtbytpMjk5ORI6x3eBRT4KVGihIefhgYAIUEXfpVSpUrJMWPr1q1ygoL317r/58+fL1q0aJFHyLXHu2DBAmk8wADAWId4Ar34pETjHfEGin+acdq60mqKDNryzpo1S3zyySemHgO3oAeAkGALvwqWIseNGydjkV566aWUBQAS78lAyH8K3ocYAGsYF1ii7bho8BeGAlz62pk9LGVcMPGPg6+//loaBH379hVPP/10yn8D1BPAhY9ZAgYIoxkCSS/Z2dkyGBTxJij0QvxFuoRfC8aPF198UcyZM0fO9u2MYdr9IDdWxjuSAtKYZkgsdLZK1PIyEdu3b1cqVKigtGnTRjbwSBesA+B/mOcfnTx+p2RnZ8v8/cqVKys7d+7Ms91KUx+1ra/eeIfnYjub96QOir8PSNS60klPawwY7du3V8qVK6ds3bpVSTc0APwNxd+f+EX4VX7//XeldOnSyiWXXJKnABDGKnQMtdLWV2+8Y9ve1EPx9xHxrSuttryMp1+/frIK14wZMxS/QAPAv1D8/YffhF9lypQpcuzp37+/7nYrFQC1Vf0w27c7uSHuwIA/HxX0iW9d6SQYEGvsTz31lPjvf/8rW/j6BQYBEhKcNX4jOnXqJAsAoVjY0qVLHQUAoh04wOQTn9NOphNxD4q/jwv6OMnnR1QtSnQ+++yzwm/QACAkuMKvgsA/CDxSiOPz/61UAHz11VctTW5QJChR4R+rFVGJPhR/Hxf0sZPPDx566CE5aHz44YeiQIECwo/QACAkuMIPChYsKD7++GPZAfA///mP7rjVvHlzw+d/++23omXLlqJMmTIJ32fVqlW646LdiqjEAJeWD4gFnKzhJwoG1DJp0iS5beTIkYH4LRgD4B+45p9+/LrGn4ghQ4bIMWf69Ol5to0bNy7hWIfofoxjVrIE4sdFJ0HQJC+c+acQq2v4WncW3Gho0IPHkIut17AHFu/dd98treBbb71VBAF6AAgJ1ow/nrvuukvWEenWrVse93/dunUtNf9BnxGzfbWxTU4qohJ9KP4pxGwNH24wI3dWfDCglgcffFAcPnxYls4MUiEdGgAk6gRV+AHGmuHDh0vhRxCgk+Y/mLQMGTIk4T7aJUynFVGJDjreAOIhiVxWTtxZqrt/1KhRgf3duASQXuj2Tw9BdPXr8e6778oxaNq0aY5z//XGPr2lTqfpzyQvFP8UY7SGv3TpUtsnNar/oYpfp06d8hTdCBo0ANIHxT/1hEX4Acaedu3aKVWqVFH27t3rKPcf30Wiwj/aSRArBLoD3f4pxmgNH5Gzdt1ZcPcfOXJEvPvuu4Fy9+vBJQASFYLs6rfr/rea+79+/Xo5DmLdXg/tmr5eUzP1O2Xkv3Uo/mkifg3fbG0sPqd/9uzZYsyYMaJ///6icuXKIgzQACBhJ2zCr1K1alXxyiuviBEjRshCY3Zz/wcNGiT/xgfy6U2CtBOo+vXr50mFNkqdJrGwq1+aQc4qcv+NLF6c2LBycbJru7AhQhb9ttFT28xwCBrsBpha2NUvNYRV+FUg3E2bNhXHjh2TufzxtUbQDXDBggWudf2z2hGV6BMu1QhJ0R8tEP54q3nAgAFi7dq14u233w6d8AN6AEjYCLvwqxMVjEnff/+9bgR/jx49TCv6lS1b1rCwGQoHYeavpvMx8j9JXIodIA4wi1zVa8yzZcsWpVixYkr37t1D/50zCDA1MODPW8IU3GeFu+66SylZsqSybds2W+Ndoq5/6CboRpA0+ZfwTRsDhJnlmpOTk+cxlNMsXLiweO6550TYoQeABJ0ozPj1av9jpo7mYnZy/9WgPgQ/a4OisVywd+/emH3hLX366adtlT8nsVD804jdxj0I8sMSAAJrsN4fBWgAkKASReEHpUuXFv369ROjR48WixYtitmG8ctqRT+IN8ZIxDUZVfRDhcD4yH+9pVKSF4p/GrHTuAdBWd27dxfNmjUTN998s4gSNABI0Iiq8KvccccdolGjRuL++++P8WBaify3U9Fv586dpuXPiT4U/zSjl7OqZ7kOGzZMrFmzRqbEhDHIzwwaACQoRF34tcF/K1euFO+9956lSY9K+/btc8uaW/WOJip/TvRhqp9PQAQr3F04meNP4IMHD8rHccHEX0hRg2mA7sNUP/eg8MeCfHu47TG+IVZJBcKObVZSnGEIYI1f6/rXS4Em9ojeFNKnJLJc33zzTXmxPPvssyLq0ANA/AqFPy8ITN6+fXtuER8VtVCP04p+XNdPHoq/z0HkKwL87rvvPlGtWrV0H44voAFA/AaFXx94LO+8804ZABgfsW+lot93331nqa05sQ/F3+fgogG9evVK96H4ChoAxC9Q+BPTu3dvkZWVJV5++eU828zW9LUeA67ruwvF38ds3rxZnvzI7UflKxILDQCSbij85lSoUEH07NlTvPXWW2Lr1q15gv9Quc8INV6AuA/F38f06dNH5vM//PDD6T4U30IDgKQLCr91Hn30URnw17dvX0dlfxHzRNyF4u9TkNb3/vvvyypWxYoVS/fh+BoaACTVUPjtUbJkSbl0ia5/8TN5s6I/q1atYpc+D6D4+5SXXnpJVKpUSdx1113pPpRAQAOApAoKvzNQ8AfLlwhgdlL2l+5/d6H4+5BNmzaJDz/8UK71FyxYMN2HExhoABCvofAnd31i7R+1SrZs2WK77C8i/4l7UPx9yGuvvSbdZN26dUv3oQQOGgDEKyj8yXPPPfeIokWLiv79+8c8bqXsb3ytABWk/k2bNo2eAZtQ/FOE1RN0x44dYvjw4eLBBx+UFwmxDw0A4jYUfncoUaKEdP+/++67Yvfu3UlF/u/Zs0dW/6tZs6bo2LGjfL5aFpiYQ/H3GLsnKNJh0NgCTXyIc2gAELeg8LsLJjb4TvVm8maR/2rHP9C1a1dZ9lcL7qNsMDGH4u8xdk7Qffv2yWYYcI2xelXy0AAgyULhdx8E/WFJc8CAAbJviRazdX+1kQ88qQgCNGr1y+BAcyj+HmL3BB08eLA4cuSIDIoh7kADgDiFwu8dCGZG18OhQ4da6viHTAAsCai9T8xa/Wo9BEQfir+H2DlBjx07Jl3+t956q0zxI+5BA4DYhcLvLVWrVhU33HCDeOONN0ROTk7MNr1GPvg9FixYYLvVLzGG4u8hdk7Q8ePHi23btomHHnrIy0OKLDQAiFUo/KkBY90ff/whvvjii5jH1UY+LVq0yJP7P3PmTNG5c2dDDwHu43G97qgkFoq/x9SvX9/SCTpw4EDRtm1bUatWLa8PKbLQACBmUPhTB9b34crH2Ke3ZIrofvweeh6Ali1bymVStvp1DsXf4wj/FStW5Fnzj+9F/e2334olS5Ywwj8F0AAgRlD4Uw+i++fOnSt++OEHW0umCxcuFPfeey9b/SZBhqIoSjIvQPIC4UdEv1b04b6Cpfvxxx/ncUndfvvtYtasWWL9+vV5vATEG44ePSoHELgY69WrJzIyMiL7VWdnZ8s+6UhFzczMFFGEwp++c6969eri0ksvFUOGDImZ+WPyZAb2o4vfGZz5pyjCXx1c4tm7d680CFDDn8KfOugBIPHXJqLPzz//fFGoUCF+OSkCxibS/saOHSsOHDhgud6/CqP6nUPxdxm7KSgffPCBtH4x+yephQYAofCnH4j/4cOH85T3xf1mzZolfC6j+p1D8U9jhD9WXODquuyyy0TFihXdPhRiARoA0YXC7w9OPvlk0alTJzkWalehsSSHoD+9qH9G9ScPxd/lQL8HHnhAd5veyfrNN9+In376iW170wwNgOhB4fcXd999t+zap9e5D6mA7dq1Sxg0TexD8fe4lG+ik3XMmDGyoA9S/Eh6oQEQHSj8/gMTI5T9xdp/PGreP+KpEJiKv7jPEujJQfH3ONBPBbms2pMV6/zjxo2TBgMD/fwBDYDwQ+H3J2hmhn4nmCAZjaHwmnbo0IHR/S5B8XeJlStX2gr0mzFjhti1a5cscUn8Aw2A8ELh9zcYC//8808xe/Zs11qkE2Mo/i6hV6UqUVQq3Ftnn322qFOnjluHQFyCBkD4oPD7n0aNGslZPZZD3WqRToyh+LsArFCUnDQC0araQD/ks06cOFFaulEuLuNnaACEBwp/MMBYiDFxwoQJMvUv2RbpJDEU/xTk9nfv3j3mPoQfrXtxIhP/QgMg+FD4gwXEH5OjyZMnJ90inSSG4u8CpUuXTrgd5WO1wK0Fb0C1atXceHviITQAgguFP3hgefS8887Tdf2bTbL00gSJMRR/F+jdu7ehGys+t3/37t3STcVZf3CgARA8KPzBnv0jlW/fvn22CqgNGjTI4yMLFxT/JFFdUXqgWtXzzz8f8xjyVDEwoaofCQ40AIIDhT/YYGzMycmRBoAWBPehBbARqAZI1791KP5JYuaK2rlzZ8z9SZMmicaNG7OcbwChAeB/KPzBp2rVqrIDKsZKvRbAiWCjH+tQ/FNYyz8rK0t6CdC+kgQTGgD+hcIfHjBGwkuKYmhaYBQkgo1+rEPxTxK19WR8lT69Wv5z586VkaydO3dO9m1JGqEB4D8o/OECYyTanS9cuNDxeEsSQ/F3oZIUSlKidr9ZLX+4sRDhX7t2bbO3JT6HBoB/oPCHj/r168u+J3quf6vjLUlMhqLtoUhiKkkhIl8bzAfLEieYUUMJGAhYc4LrKd4CxddcvXp1adGaVQMkweHo0aNydoJzAimdQSzaBNcqXKyomJaZmSmCBIU/3J3+Zs2aJcdVvesq0XhLzOHM3wA7laRU7wAwajzx/fffi82bN9PlHzLoAUgfFP5wg4kSAqrXrl2ru52NfpKD4q+D1UpSdupMY2ZVrFgx0apVqyR/MuI3aACkHgp/+GnTpo0oXLiw+N///pfuQwklFH8H6XtqOokd7wA6VbVs2VIULFgwuV+M+BIaAKmDwh8NIPznn3++mDNnTroPJZRQ/B2m79mpM33s2DG5Lty6dWu3fjfiQ2gAeA+FP1pgzETxHhT9Ie5C8dfBSjrJypUrLReb+Pbbb2WXqgsuuMCt3434FBoA3kHhj6b479+/33S8Jfah+Btglk5iFrGvLTYBl3+JEiVMC1SQcEADwH0o/NGkUaNGokiRInT9ewDF3wCkbqG2NNz7CNbDX9zH4/j/ggULDL9UdOzTRvxjzQqPFShQwP1fkPgSGgDuQeGPLoiR4rq/N1D8TdBLJzELCOzevXvu/7neH11oACQPhZ9w3d8bKP4eBASi2IvKsmXLxJEjRxjsF1FoADiHwk8A1/29geKfgnr+WO/XGgQkWtAAsA+Fn6g0bNiQ6/4eQPF3iNX60kuXLpVBK/GGAokWNACsQ+En8ev+qPUPLypxD4q/BwGBWpYvXy4aNGjgxm9FAg4NAHMo/EQPjKEYS4l7UPyTJFF96R07dog//viD4k9yoQFgDIWfJBJ/BFqjzW+yXVjJP1D8PWTFihXyL2f+RAsNgLxQ+Eki1DH0u+++091up88K+QeKv4fATVWqVClRo0YNL9+GBBAaAP9C4SdmQNSLFi1q6Pq302eF/APF30NwoiJQJYg93on30ACg8BNrIGAaFVL1xN9OnxXyLxR/D2GwHzEjygYAZ/zEjaA/q11YSSwUf4/YtWuX2Lx5M9f7iSlRNAAo/MSJ+GMWv2/fPttdWEleKP4OsBJRunr1avn33HPPdfIWJGJEyQCg8BMn1KlTR/5ds2aNpaJr+fLly1N0jfwLxd8GdiJKYSDg5DOzSgmJkgFA4SdOUWfwGFvjQXG1li1b5jnXsrOzGfFvAMXfBnYiSnGCnnLKKbI6FSFWCbMBQOEnyYBo/ypVquiKP4qrYayNn/2jvDoj/vWh+FvEbkQp9odngBC7hNEAoPATN8CYqif+jPi3D8XfInYjSin+JBnCZABQ+InX4s+If/tQ/C1iJ6I0JydHnoyc+ZOoGwAUfuImGFPhZcV5pYUR//ah+HvApk2bZKAJxZ9E2QCg8BO3wZh6+PBhsXXr1jyPly5dWvc5eJwR/3mh+FvEjltJdUtR/ElUDQAKP/ECdUyNd/3j/u7du3Wfg8dZ5S8vFH+L2HErwRBA5CkiUwmJmgFA4SdeUb16dZlCHR9jxTV/+1D8LWJUSAL34wtJwCVVqVIleZISEiUDgMJPvCQzM1OUL18+j9ufa/72oTrZAIUkLrzwwpjHcB+Pa/nzzz9FxYoVHfwchATXAKDwk1SAsRVjrNPJGfkHir8NUEhi+vTpcn1p6tSp8i/u43EtFH8SNQOAwk9SBbyq8TN/O5Mz8g8F/v8vsQGsyESWJMQ/vtQkIV4YAAsXLpQGQL169dLWOprCT1I981+xYoXh5AzBfYgJQBxWonH6559/lrECZvuFFc78PQBWKd3+JAoeAAo/8YPbXwuEHDEAMAD0ovzt9GgJMxR/lzl27JhMLYFripAwGwAUfpIu8d+2bVueUutWhd1Oj5YwQ/F3GZyUgDN/EmYDgMJP0gUmVjj/du7cmWebmbCzB8C/UPxtgpNn2rRphkUjVHcUxZ+E1QCg8JN0oo6t8a5/K8LOegD/QvG3iNV1IvX+SSedZPWlCQmMAUDhJ+lGHVvjx14rws56AP9C8beI1XWiAwcOyL/Fixe3+tKEBMIAoPATP6COrepYq2JF2FkP4F8o/haws0508OBB+bdYsWJWXpqQQBgAFH7iF9SxVR1r7cJ6AP9A8beAnXUiWKMYfAsUYAkFEg4DgMJP/EThwoVl6fT4mb/VcdpqsbawQ/G3gJ11IlijdPmTsBgAFH7iN1DMCrP/+Jm/3fX8008/XXTo0CGSBX4Axd8CdtaJYI1S/EkYDAAKP/ErGGPjZ/5cz7cHxd9ipH92dnaeNf9WrVrlqRsNa5Tr/SToBgCFn/gZvZk/4Hq+R+Lfr18/0ahRI2l1lStXTlx++eVi3bp1uds3btwoXTJ6t08//TR3v82bN4tOnTqJIkWKyNd59NFHRU5OTsx79e3bV1SpUkU0b95crsmkO9J/7ty5MY9hzQntJePXiTjzJ0E3ACj8JIgz/6Ct5x84cEA89NBDolq1ajKOoVmzZmLZsmW523GN9u7dW9Y1wHY0KYqvL7N48WJRt25dUb16dTFixAjvxB8CeP/994slS5aImTNnytlw+/btxaFDh+T2k08+WRZe0N4g4rDSsLYCMHuG8KMM7qJFi8R7770nRo8eLT+kCpqV/O9//xNffPGFFN7u3bsLv0X6Y4CMj/QHhw8flkYNIUE0ACj8JAgULVo0V3f0CMJ6frdu3aSOfvDBB+KHH36QWgqB37Jli9z+yiuviAEDBoghQ4aIb775Rn5mLDMfPXo09zXuuOMO8fTTT4sPP/xQTs5///136wegJMGOHTsweihz58413Kdu3brK7bffnnt/6tSpSr58+ZRt27blPjZ48GClRIkSSlZWlrw/efJk5bLLLlOOHTumLFmyRGnUqJGSLnC8+IxGN2zXcuWVVyodOnRI2/ESYsaRI0eUr776Slm+fLly/PhxeZ1NnDhROXr0qLJs2TJl1qxZ8v+E+JU2bdoo1113XcJ91q1bJ8fnn3/+WfEbhw8fVvLnz69MmTIl5vH69esrTz75pLwuK1SooLz66qu52/bu3asUKlRI+eijj3Ifq1q1qrJ+/Xrl4MGDSsOGDZXVq1dbPoak1vz37duXsJrd8uXLxcqVK6V1onVT1K5dW5QvXz73MVgz+/fvF6tXr869D+sGM2hU0YNFky7sRpBi5oQlAUKC5gFYtWqVvA6xrVChQuk+TEIMwRiLsVaPIHTty8nJkd5kXIta4N5fsGCB2LBhg+wTA0+ASsmSJcV5550nNVQFHvNatWrJbU2aNBFnnXWW5WNwrFL44rFegYHinHPO0d0HaxA4MKxlqOADaYUfqPfVpjhYS8c6Ddwf27dvF23bthXpAidO6dKldbfh8Xi3EsWfBM0AgIGurkFS+EnQxT8IXfuKFy8umjZtKp577jnZAh6GwJgxY6SwY7lc1UI9rVS3AUys0UUWTY4GDhxo6xgcV6LB2v+PP/4orRQ9jhw5ItchsB7hFAQDGoF4g1SAwhBYx4dFFg8eX7t2bYx3ABYdTsxUHR8hTkGqasOGDcWcOXPkfQQO8dwlQQBB5Bhj48dZjNfz5s0TBQsWzPMcPB4/XnsFJrBmYK3/9ttvF5UrV5bXYv369aWBAo+5HRALgJtdHIk/AvCmTJkiv0xE5Osxfvx4KY4333xzzOMVKlQQS5cujXkMs3t1m1XUgMNUEJ/OpwXZDtqMB1hgODERaUpIkDAy5AnxGzt27JDeK71x1s547QVYMsMygxkwQhBEj8BFLLchqr9Lly6iRo0auVoIbdR2iMV9GOluYEv8sTbYo0cP8fnnn8vZwimnnGK4L1z+nTt3FmXLlo15HK6OF154Qf546sweQl6iRAlb6xXt2rUTqQCWZIMGDQy3r1ixIsaSxOeGCwdrTYT4FbhMscYPV3+9evXE/PnzpXcL8TvnnnuuNGAJ8StwcZcqVSrPOGt3vPYD6swdS3DIIEOUP7QVBsCsWbNyxR4GAqL+77333tSLP1z9cOUjBQ9rFuraA4INtG5x1fWiZ5UhnQEif9NNN8kPidd46qmn5GvbCTKy4lZxA8QstGzZUq4ZadP94KZBMMaZZ54Zsz9q+sP1n6rjI8Sp8KNICupoqAGqiM3B4ILlPBgENACIX8FEFGNt/DiLcRlLzkZgu1/G5i+//FJ+DgQmQjNR7wZ6ctttt8lrDzF1zz//vIwrgzGAJfRKlSrJ+jpuYCvgb/DgwTLCv3Xr1tIVod7GjRsXs9/IkSPlcgCEXu/Lx5IB/sILcOONN8qlgWeffVb4FTtVo/C54msCEOIXEuXx4/9etQMmxE2MAqvtNGFLN9BSTHoh+NBAGOIwCFTj5LHHHpOe9rvuuksW14OxjkD4+AwBp2Qg38+VV4oAKOiDkwfpfUbFI+DRQAXD+IqAhPhV+BE7Ay8dXKgYeJBmi0JbqIpGDwDxI0hrO/vss/NUtUNRNsykjcB2Pxf+SSVMSLcBThqsF8EAiK/sZ1ZzmpB0Yqdyn5vtgAnxAqMeKmpzn3ivgF4TtqhD8beI1cIRRjWnCUkXTkr20gAgfsaoh4rahC2+BoBeE7aoQ/G3iNXCEbBGKf7ELyRTq58GAAnazF+vCZsa5OfH5j7phOKfRHMf3I9v7gNrlG5/4gfcaNJDA4AEZeZvZ5wmFP88J8+0adPynCR2IkjVNX+j0pOEpAI3u/PRACB+Ah1h4dqPn/kHKdLfD3Dmb2E9305zH9UaTdRukhAv8aItLw0A4hfUZdX4mb/dJmxRh+LvciMI1Rql65+ERfhVaAAQP6COrfEzfzXSH2v8Whjpr0/kxd/KOpEddxKqHYK9e/cmfA4hQRJ+FRoAJN2oY6s61jotyBZ1Ii/+VoTdjjtJbcigbbtISBiEX4UGAEkn6tiq1wgOEf2ogodJHQpX4S/uM9I/L5EXfyvCbsedpHZgQo9mQsIm/Co0AEi6UMfWRF1gMSZ36NCBRX0SEHnxtyrsVt1JWIfC7c8//0z0vRMSWOFXoQFA0gHG1tKlS6f0XA8jkRd/q8Jux52EzksUfxJm4VehAUBSDcZWbY97koKWvmFFFXYrjXvwuFl9aJyYFH8SduGPNwDQDAi9ANgMiHjt9scEiyQHZ/4O1omMigGpUPxJVIRfhR4A4peZv9n4TP6B4u9Bcx+cmAz4I1ERfhUaACSd4m91fCb/QPH3oBgQXFIQf7ZCJVERfhUaAMRLMKYaib+bxdqiAMXfInaaRpxyyimyCtXu3bvd/bVIZAmC8KvQACBegUlVVlaWqFGjRszjbOpjH4q/RexU+YO7ST0hCYmS8KvQACBeoI6p6hirwqY+9qH4W8ROlT/1/xR/EkXhV6EBQNwGYypqsMC7qoVNfexD8feAwoULi6pVq1L8SWSFX4UGAHFb/OHyz8zM5BebJBR/i9h1K8EtxZk/ibLwq9AAIG6BMTXe5Q/o9rcPxd8idt1KFH/ilDAJvwoNAOKl+NPtbx+Kv0Xs9orG/sgAwEBOSJSFX4UGAEmG7OxssX79el3xtzs+E4q/LVDrv1WrVnlS/XBSxheSwMl49OhR8ccff/A8IyLqwq9CA4A4ZePGjSInJ0dX/O00XyP/wJm/zR4ACDTJly/2a5s7d26eQhJnnnmm/Pvjjz/aeQsSUaIg/Co0AIgTVq9eHTO2xmOn+Rqh+NtCLSQR78rXK/RTvXp1edJhQCckEVESfhUaAMQuy5cvF+XLlzft6Ge1R0vU4czfBnYiSjMyMkT9+vXlCUuIEVEUfhUaAMQOGEsbNGggx1aSPBR/G9iNKMWJSvEnRkRZ+FVoABCrNf1V8SfuQPG3gd2IUpyov//+u9i5c6c7vxYJDRT+f6EBQMzYsmWL2LFjB8XfRSj+NrETUapaqZz9Ey0U/rzQACCJUMdQzvzdg+JvEzsRpShDWapUKYo/yYXCbwwNAJJI/MuVKycqV67ML8klKP4OsRJRyqA/ooXCbw4NAKIHg/3ch+LvMXBTLV26VAaskOhC4bcODQCiBWPnsmXLErr84YGdNm1aTLo1SQzF32Natmwpg1U2bNjg9VsRn0Lhtw8NAKKydu1aGTSNsTSePXv2iIsvvljUrFlTdOzYUQZl4358xVWSF4q/xzRv3lxWBJwzZ47Xb0V8CIXfOTQACMDYWaBAAdGsWbM8X0jXrl3FV199FfMY7sdXXCV5ofh7DAL+6tWrJ2bPnu31WxGfQeFPHhoABOLfuHFjUbRoUd2Kq6iwalZxleSF4p8CWrduLU9grvtHBwq/e9AAiC4YMzF2YgyNZ+XKlZYrrpK8UPxTAE5cdPdDO0oSfij87kMDILrr/Sjuoyf+AwcOtFxxlQGBeaH4pwCu+0cHCr930ACIHkbr/RDzBQsWJBxzkYbNgEBjKP4pXPdn0F+4ofB7Dw2AaGG03m/WZK1Hjx7yLwMCjaH4p4gLLrhAfP3111z3DykU/tRBAyA61xTEv1WrVrabrGGyxYDAxFD8UwQa/2zdulWsWrUqVW9JUgSFP/XQAAg/3377rVzvR96+kyZrdlqwRxGKf4pAgYoSJUqISZMmpeotSQqg8KcPGgDhBmPlSSedpJvfb6XJmt0W7FGD4p8iChYsKC1Yin94oPCnHxoA4QVjJar2IeDPSZM1uy3YowbF30XM0kk6d+4sG1Sg3C8JNhR+/0ADIHxs3LhR/PDDD3LMNBtvgVGTNTst2KMGxd8FrKaT4ASF1TllyhQ33pakCQq//6ABEC4mT54sMjMz5Qw9Hjvpe3ZasEeNDIVl55IGJx7qSWvLTELkYWHiRNOCYhXFihWjARBQwij82dnZcmDEQIoBN8gcPXpULFy4UA7uiPhGW20SPNq3by//zpgxI6nxlhjDmX+S2E0ngRsLJ+6hQ4eSfWuSYsIo/GGDHoDgs2/fPpnip+fyZ/qee1D8k8QsneS7776LuX/ppZeKrKwsXYuW+BcKf3CgARBsMHuHNwpjZTys5+8eFP8kMUsnia8/jaCU2rVri48//jjZtyYpgsIfPGgABBeMjQ0aNBDVqlVLqp4/SQzFP0kQbII60kag/nS86//GG2+UaSxwHxN/Q+EPLjQAggeC+RB/gjEyHqv1/Ik1KP4uoNaRtlpJ6vrrr5eu/wkTJrjx9sQjKPzBhwZAsBg/frzIyckR1113nW2Xv9k4TGKh+LtA3bp1bbmiTj75ZFmveuzYsW68PfEACn94oAEQHDAmImq/QoUKtl3+yO4g1qH4u4CTSlI33HCDmDVrlqz3T/wFhT980ADwP5s2bRLz5s2jyz9FUPxdwm4lqauvvlrmVDPwz19Q+MMLDQB/g7GySJEi4oorrsizzWoLX2Idir9L2K0kVapUKXHJJZeIMWPGuHUIJEko/OGHBoA/Qa25Dz74QFx22WWyCJqTFr7EHhR/l4GLX60zbVbrHxGtqAOwevVqtw+D2ITCHx1oAPgPtDr/6aefdF3+2qyqfPliJYtNepxD8fcAq7Wnsa1MmTJi+PDhXhwGsQiFP3rQAPAXw4YNExUrVhTt2rUzHE+R5odrVQub9DiH4u8BXbt2lSV8teA+Uvy0oDzsbbfdJkaPHi2OHDnixaEQEyj80YUGgD84ePCgdPnfcccdur0l9MZTeABatGjBJj1JQPF3Gbu1p++66y6xd+9e8emnn7p9KMQECj+hAZB+EPSMXid33nmn5fEU1+78+fMNl1SJORR/lzGLSkXxCq37HzUA4OoaPHiw24dCEkDhJyo0ANIb6IexD0ugVatWtT2exhdQI9ah+LuMWVQqqlTFu//vvfdesWTJErF8+XK3D4foQOEn8dAASA8Y99ApE2Ogk/GUtfydQ/F3AW1Uv1HBH63wxLv/0b0KVu+gQYPcOBySAAo/MYIGQOrBmAeBR0CfEfXr12eUvwdQ/D2I6ocbq06dOpbdVQUKFJCWL4pc7Nq1K5lDIgmg8BMzaACkjm3btslYp/vvvz+PuGvHVngGGOXvPhR/D6L6VSG3467q1q2b/Dt06NBkDokYQOEnVqEBkBqGDBkio/uR8WRlbIU3FV4AswJqxBoUf4+i+jMyMhK6/1GOUhv4h3z/W265Rbz11ltM+3MZCj+xCw0A79P70Kjn9ttvl9VOrY6t8AIQd6D4O8RKFKpevf9Eef+PPfaYdPuPGjXK6WGROCj8xCk0ALwt6rN//37xn//8J882RvinBoq/Q6xEocItNWDAAN3tenn/eM0uXbqIV155RWRnZzs9NPL/UPhJstAAcJ+srCzx2muvyc6m1apVy7OdEf6pgeLvcRtfMysWtf21/Pe//5WtLdntLzko/MQtaAC4C6r5/fnnn+Lxxx93rUU6sQ/F3+M2vmZWLNa9tJx77rmiU6dO4qWXXsoT4UqsQeEnbkMDwB3g8YRn8/LLLxe1atVyrUU6sU+GghJLJCnguscaP1z9elYpalCjKYURCHDRPm/hwoWyg9XEiRNli0tiHQq/fbDEhDbUSFfVq61O/uXo0aPy+sSSHtrIIrCXWOeTTz6RS5tLly4VjRo1SnpsJc6h+KfwhDcC6SsIANSmrrRs2VIcO3ZMLF68mAOMRSj8zqD424MGgDMwz8RYV7p06TxpfCT10O2fAurWrWu75G+vXr3EN998I2bMmOHx0YUDCj9JFVwCcMbkyZPlWPfEE0+4/IsQJ3DmnyJQrQrWbnzuqpH7H1YylgvQ7Qo1/+MrYJF/ofAnB2f+zqAHwDoY91D1tFy5cmLWrFn0ZvoAKkqKQKCKWclfbeQ/1hJffvllaSmPGzcuBUcYTCj8JF3QA2CdMWPGiNWrV8tAZsZJ+APO/FMIZvaoVW0EgvzQo1pL586d5UWzZs0aUbBgwRQcZXCg8LsDZ/7JQQ+A+feDcQ8BfuPHj0/y2yZuwZl/CkH+KgTeCGQEaIv+gBdffFFs2LBBDB8+PAVHGBwo/MQv0AOQGDQ627Jli3jhhRdS9IsQK1D8U9TqV1vT32q3P3DOOeeIm266STz77LOyHjah8BP/QQNAn3379knRRw3/RF5Pknoo/ils9YtGPmaR//Hd/gCEH8998803RdThjJ/4FRoAeXn99ddl0HKfPn3S8IuQRFD8U9jqF+l8iUpXIgdWD9S/vu+++2RlrB07doioQuEnfocGwL+ghG///v3Fgw8+KCpXrmzZO0pSA8U/xa1+cZLrla5U21VqvQRannzySVGgQIHI5shS+ElQoAHwb5fSwoUL69bwT+QdJamB4p8k8ZarlXaUqOQ3ffp0+VzM9uNz+GfOnJmnrG+ZMmXk2tnIkSNl1b8oQeEnQSPqBsC8efNkeh/SlbWVS614R0lqYKqfQ2C54gTGbF4F7vznnntONG7c2FIhHyupf5MmTcq9eOAdUF8btbHjlw7CCIXfe5jq5x1RTAPMycmRk5qiRYvKzx4/uTEb9+J7nRBv4MzfIUaW69NPP224pg8xx8zfqpdg0aJFMZYwXuPtt9+WywNDhw4VYYfCT4JOFD0AGKN+/PFH+VevMqkV7yjxHoq/B+v6zz//fJ41/VKlSsk8fu36Flz5ZuKnxgmoNGnSRKbNoPb/zp07RVih8JOwECUDYNu2baJ3797innvuMQxgNitVrpfxRNyH4u8AM8sVoqyu6aNVKmb8e/fuNfQSmF0M2rK/ACUyQViD/yj8JGxExQBAkB8qkWICZBTkh5se8GxiPKTLPzVQ/B1w6qmnWrJccRJjX8z4E3kJmjVrlvD1Bg4cGHO/bNmyMvhvxIgRYsmSJSJMUPhJWAm7AYDS5B988IGcnJx00kmWlkq1wFuKTCiSGij+DrCTq2/FS4CLpkGDBrbK/t59993yOd26dRNZWVkiDFD4SdgJqwFw5MgRORZhWfK2226zvFSqgtbl8JbqZQYQb6D4O8Rqrr5VLwHcZYm47rrrYnJgYWiMGjVKXlR9+/YVQYfCT6JCGA0ALGFu2rRJjklOgvyQIUBSC8XfIWa5+nYr+pmV/UVr3/gc2Nq1a8uymcilXbZsmQgqFH4SNcJkACArCZX8kOZ85pln6u5jdRLEin8pRCFJsW7dOly1hreff/5Z2bNnj3LRRRcZ7oNt6j758+c3fT0t2dnZSoMGDZRatWopR44cCdyv+ffffyvLli1TZs2apRw9ejTdhxNJjh07pkycOFH+JakF1+xXX32lLF++XDl+/Hjgvv5Dhw4pp59+utKkSRMlJycn4b564xvu4/Hdu3fnGSPVcZF4A2f+SeJmRT8sJdSpU8eW+x8lf0ePHi2P45lnnhFBgjN+EnWC7gF46qmnxObNm6W736zomN5SqRrkx4p/acAjoyIyWJn5W923efPmytKlSxPuky9fPmkRx/PCCy/IbUuWLFGCAGf8/oEz//QTRA/A/PnzlYyMDOXVV1813Adj3tSpU2PGQfxf+5idMZS4B8XfBRK5s7TghLci7Fbc/3CVx7v/GzZsqJx55pm+d/9T+P0Fxd8fBMkAUN39TZs21XX323Hjm42L2E7ch25/F0jkzrIT9KJW9EPuv5n7H6l+WlT3/4YNG8Qjjzwi/Apd/YQEfwkAbXr/+OMPQ3e/HTe+1WBA4jIeGBSRJd6dpQesX8zwzSxdM1eYkTvsnXfekdvGjx+v+A3O+P0JZ/7+wu8egA8//FCOMcOHD9fd7sSNb9V7StyD4p9i4PbC2r6Vi6N+/foJ98P2eDcaBourr75aKVmypLJ+/XrFL1D4/QvF33/41QDA2FSsWDGla9euhsflxI2vlxHFaH9vods/xSDyHxX9UO8/Puo/Pvd/yJAhCV8LrkFkCWhBy9Bhw4bJ8prIDDh27JhIN3T1ExL8JQBUEu3SpYuoUKGCHJuM2hM7yenXZkShHwr+suKfx3hsXBAD7OT+my0TwJMQ7wFA1kBmZqbyyCOPpPU34Izf/3Dm71/85AHo0aOHUrBgQWXFihWm+zKn3/9Q/H3gRoP7Pl7g1fUuiLqZ+98o/e/111+X2ydPnpyWz0bhDwYUf3/jBwNgwoQJciwZNGiQpf0TufG5vu8PMvCP194FYgzcWzVr1ky4HT9Ron20+2rbYeJ5nTt3luU34TqsWrVqyn4KuvqDQ3Z2tnS1duzYUWRmZqb7cIgOR48eFQsXLpTu8Xr16hm63L0AGURYjmzTpo0YP3687ntj7EGhMbj0tWMQXPoodKY+bmW8Y0vf1MA1/wBUCFT7A+g1zEhU/Q8XKdL/ihUrJi6//HJx+PBhkQoo/ISEIwbg4MGDMq4IMURoIR4v/Hv27JFNzCDoMB61Tc0AhLxDhw65gm5lvCOpgeKfZsyCY7Zs2SKtZ9QMaNasme0AwNKlS4svvvhCrFu3Trba9HrQoPATEg4DANfyzTffLGf+kyZNEqVKlcqzj92yvMzp9xHpXncg+sExKJupt16G4D4nAYDI+8e2559/3rOvnGv8wYRr/sEiVTEAvXv3luPQpEmTdLc7LcvLNX9/QPEPQOS/WwGAffr0kdvRwc1tKPzBheIfPLw2AD755BM5Vrz44ouG+zgty8ucfn/AgD8fAff+nDlzxF133eVJACDceNdcc42YMWOGDAKsXbu2K8dNV3+wYcBfMPEqCBBLClhewBLihx9+aBjgN3fuXNOxKlHwXnwwIEktXPP3EbgAqlSp4lkAIPZ/7733RI0aNeSFvWvXrqSPmcJPSHhiALZv3y7HhrPOOss0wM9I+FGsDOOTmaDHBwOS1ELx9xlWA2KcBgAi8h8BgAcOHBBXXHGFOHLkiONjpfATEh4D4NChQzIrCFVBJ06cKIoUKWIpwC/eQNBrakb8B8U/zWhLXAJ1Vh/fKQv3URIYM3+1HKZRmWAVDATYp0WLFjEegOrVq8vo3eXLl0vvQE5Oju3jpvATEh4DAEs/1157rfjhhx/E5MmTdT2QGKvQdfTvv/+OeVx9P5QVZ1neAJHuoIOokqjftV5ATOnSpQ33dRoAOGXKFBlI2K1bN1tBQwzuCxcM+It2ECD2veWWW5QCBQooX375pesBfsSfUPzThJV0F7VFMFL34veFoLdo0ULuZ6X9r1HqzejRo+W2p59+2tJxU/jDB8U/2gbA448/LseAsWPHGu6DMWbo0KGOUvuIP6H4pwE7+bFm+6o5/VYaAOm1AAYvv/yypbrdFP5wQvGPrgHQv39/ee2/8cYblj2URmnIJFhwzT8N2ClxabYvUvZQTctKAODKlSt1K289+uijomfPnqJHjx7i008/1X0u1/gJCVcMwNixY8XDDz8sHn/8cfHQQw/p7oOA4ZkzZ8Y8xgC/kJBu6yMKYPYO9706o3dz5h//HCsVAPXcc5jVd+3aVbbsnDFjRp5ty5YtU2bNmqUcPXrU8++LpBbO/KPnAcB4hDV+rPXreQcw48dYkmgcGTZsGF39AYYzfw8xanpRtmxZw4j++PxYuzn9iOKvW7eu7eYZeP1Ro0bJNB10Apw9e7Z8nDN+QsLlAUCRL6T5YkxChL5eER/M+FFAKBGVK1dmjn6QSbf1EdWgPjslLtWa/omscNTgthoAmCgwB7OF9u3bK0WKFFFmz57NGX8E4Mw/Oh6AmTNnKieccILSqVMnXS+elRk/A/zCAcXfI6wKsBrRbyVS1k5Tn2SaZxw+fFhp27atUrhwYeXNN9+kqz/kUPyjYQC89tprSqFCheQYgPt6WAkcNkodJsGC4u8RXuTE2snpT6Z5Btb458+fr9StW1cpWrSoMmfOHIffAgkCFP/wgxk/jPkGDRooCxcu1F3ntxpfpNc1lAQPrvl7hFnjHbVMrx1Q1c+sbCbW6FGFC3X7p0+fLituTZ061XLlLXWNHyU+v/76a9G0aVNZf3vWrFm2j5cQkn4wHlx66aWiVatWsjQvSnrHZwEgPkkvE0gLYgNQLRRVQ3fu3BlTmZQEkHRbH2EG62pOXe+JsgWsuObseBbU18ff+Kh+LAFcfPHFcp2QFbzCCWf+4WXSpEkyg+eSSy7Jvab1sgD0lgn1Zvy//fabY48i8RcUfw/BRZbMhWJUAnj9+vWmQTlWYgi0rw9j4uGHH1ZGjhypbNu2Lc/n6Ny5s0wNeu+99xx/H8SfUPzDyYgRI6SgX3nllUpWVlbMNq0BsHbtWsvBxMnEEhF/QfFPAXaC+rSYXWh6AYB2LkT19VXhf+utt5QTTzwx90LXkp2drdx+++3yPV599VVbn4P4G4p/uMBs/sUXX5TX6j333KPk5OTo7qcaAPAOJPIkqpVBk8kiIv6D4u9TrFxoyQT1qa+vFf6SJUsmDOrBoNKrVy+5/ZFHHpGBgST4UPzDA67JBx54QF6jzzzzjGl5XxgAmJjgOUYGgCrqbOwTLgqkO+aAOC8BjGJACOJD0A3uI4hQWyDI7PVR2AdlPatVqyZ69+4t9u3bl6dsMF5fG/DzwgsviAoVKogHH3xQbN++XYwcOVJkZmbyZyQkzWRlZYlbbrlFlugePHiwuOeee3T3Q/Avrn91vLjgggvktYzy3gMHDpRBv2rRMRT9UseUU0891fUgZpJG0m19EH28drFhnU9vxm/1fT766CMlMzNTehoOHDjAnzHAcOYffPbv3y9rcyC477PPPrPdRvzPP/9URo0aFeMB0PMiWlnzjw9QJv6E4u9jvAquUWv1I7gPa/xOswaQO1ysWDG5Jvj7778ndUwkfVD8g83GjRuVOnXqKCVKlEhYk8NsPFGXABADAAHXI9FSYyLjgvgPir+PSWZN3whtkx5E9SebNbBixQrl5JNPVsqXL68sWrTI8XGR9EHxDy4oxlW2bFmlevXqyvfff2+43/Tp0y1d51bbAesFMTMTIFhQ/EOcLRCPUXe+ZLMGYEQ0a9ZMuhxHjx6d1DGS1EPxDyboqoelt1atWik7d+7U3UdvNm7m4bNqAGhhJkDwYIW/AICAG1TZsxrMp0ei7nzoBNiuXbuY/RHoY1ZNUKV8+fKyGuCNN94obr31VvHII4+InJwcx8dKCDEG19YDDzwg7rzzTnHHHXeImTNnijJlyuju27VrV1nVzwxtsJ5RN8BkA5SJv2C0fwQwa8uLkr9OswZU8JrDhw8XderUET179hSrV68WH3/8sShVqpTLn4aQ6IIyvNdee62YO3eueOedd8S9995ruC+i+lHaNxHxEf3xBgDa+sIAqFevnm7rXxVmAgQPzvwjLvxuehgwOGBGAkPim2++Eeedd540AgghyfP999+Lxo0bi5UrV4oZM2aYCj+MbzMSefjseADOOOMMcdFFF0ljQgvu4/FkvJbEGyj+IcaO8LsJlhCWLl0q8/8bNWokRowYYcl1SAjJC66dIUOGSOEvWrSovLaQm2/kGbj44otlY7E+ffok/DphQJg1+7JjAMCIgDHhdPmQpBaKf0hJhfBjdmHU2QuWPgapG264QXTr1k3GAxw4cMD1YyAkzKDwVpcuXeQs//bbbxdLliwRNWrUMNzfyhq/OhuPj/NJ1gBQlw/tdhIlaSLdEYfEfYyi+t3Cbj7vhx9+KOsBnHbaaTKCmPgLRvv7k6VLlyo1atSQ+fuffPJJ0hH3yaYLO8kCIP6FM/+QkYoZv97sAhHHl112me7+KBOMYypevLho2rSpGDRoEJcBCDEAM+s33nhDXr+lS5eWs+1rrrkm6Yj7vn37JjUbd5IFQPwLxT9EpMrVjwjiv//+O897z58/X7Ro0UIODnrLAIsXLxZ33323rCF+1VVXiZ07d7p+fIQEGdTYhxH98MMPy+tkwYIFCd38diLuYYQnG3hHAyA8UPxDQqqC+8xmF2gIhCAfvTgAHNOAAQPE559/LlOVzj77bPHZZ595cpyEBAnMoseNGyevCRjJqL3x+uuvi4IFC1qOtzGLuMd7GMXo2IEGQEhI97oD8f8av5N1RbO1RVQFvOKKK+R+Xbp0MaxQRryHa/7pZfv27cpVV10lr4VrrrlG2bFjh+N4G72S4BdccIHSpk0b12vuMwYg2FD8A04qhV8FA4dR72/tDfu0aNHC8HUQNDR27FjlpJNOUsqVK2fYjYx4C8U/fYwbN04pXbq0UqZMGfl/M6yW4taWBPey5j4NgOBC8Q8wqRL++BadmDGYNQTS3rBvolkG2oledtllct/rrrtO2bVrl2efheSF4p+e2f7VV18tz3nM+nE/0fUHw6BBgwa2m3ClouY+DYBgwjX/gJKKNX5twZCOHTvKNUXcBwjua968uciXz/wUQhwAgo2MqFChgowDGDNmjAwmPOuss8QHH3zAaGISyut21KhRcm1/9uzZsgrfp59+KsqVK5fw+kOu//Lly23Xz09FzX3GAASUdFsfxL8zfiN3Yf369eWMQW99MdlZxtatW5Vrr70212OwatUqzz4f+QfO/FMD2l83bdpUntvXX3+9jHuxe/35ceavQg9AsODMP2CkKqrfKKUP9/H+8AJgNo/Sndi3fv36CRt/WJ1lVKxYUUY9o47Arl275Os++OCDstIZIUEEqa/du3cXDRs2lNctZvwffvih7IZp9/rTA943o/r5qay5Tw9AsKD4B4hU1uo3cxcCCLRayxv/xzFZbRtqRtu2bcWqVatEv379ZG8AuD7ff/99LgWQwLn41XP31VdflcVxWrdu7cr1p9KsWbNcI1wvlS+VNfdpAASIdLseiH13fyqi+u2k9GlTh6xGI9vh999/l+mA6lIAvgPiHnT7u88333yjNGnSRJ6zXbt2VbZs2eL69adm01gtt63NAPAaLAF8++23cswi/oTiHzC8rqmtjey3s+aoCrxeHIAbOcUAdcXPOuus3HzoVAxiUYDi7x5r1qxRrrzySnmOnnPOOcqcOXNsZ9OomF1/XhrcbsD6//6G4k8kerMHFAaJLw5iNejIq1lGdna2MmLECKVKlSpygLv77rtlkCBxDsU/ef744w+lW7du8pysWrWqMnr0aCUnJyfhc5wU7MFMH2l/uK7wfLOUWxrIxAiKP5EkKgSCAQQR/lYK+0DwU8Hhw4eV1157TRYIKly4sPLEE08of/31F39NB1D8nQOBfuyxx5QTTjhBFut54403LC/LWS2+o2dIw1uAazIjI8MX1yMJHhR/YikdyGpan1szDSNXaDwQ/F69ekkD4MQTT1RefvllZf/+/fxVbUDxt8++ffuUF198USlVqpRStGhR5emnn5aPWcVpCp6et4Azf+IEij+RImt19mDkBXBrjVFvcINrU3V1GgHX/z333KNkZmZKIwCDMfsFWIPibx1U4oOxWbJkSaVgwYLK/fffb5qvn+w1p8VqHA6uz3Sv+RN/Q/EntmchXgb1WQ1ySpQZ0LNnT6VIkSLy9uCDDyqbN2/mr5wAir85GzduVLp37y49TJjpP/LII7Yj+JOd+dvJwDErqU0IxZ9InDT/cDuoz8rgZtXDgFl/7969pRcA3oDbbrtNWbt2LX9tHSj+xqxevVq5+eablQIFCsg1/b59+0rvlJVz2ezasHvNmXkLrDTTIkSF4h9R9Jr1eDWbt4qVwc1ubAHW/xEYWLFiRRkchQZCSBlkGtK/UPxjQW76l19+qVxyySXyXENmCQL5Dh48aCm/H8tiVq4ju9ecFeNYfb7VmBkSXSj+SYCAn4YNGyrFihVTypYtK4VFO7vEDAGuwjPOOENGA5988slKjx49lL1798b+CDoX8UcffRSzzzPPPKNUrlxZOf/88+WF7RSz9KJUFgJJxq1pN4oZEdjDhg2Tudd4fq1atZS3336bwYEU/1wQsDdgwAB5veIcqVOnjjJy5EglKyvL9PxKFIjnpgfNrN+G1YI/XjN37lxpPMHoxjF8/vnnMdv79Omj1KxZUy7NIWiybdu2ypIlS2L2qVatWp7vsl+/fjH7DB06VKZW1q1bN8/zSWIo/kmAi2rUqFHKjz/+qKxcuVLp2LGjPBHVGcIPP/wgC35MmjRJ+fXXX2UjntNPP1228Iz5EYSQr4PWtuoNFbJUFixYoDRq1EhWzIJgtWvXLqlj9qq3txtYDWhyapxgxj979mz5G+B9YLihVgCarkSVqM/8UTESOfoQIpwTaCw1b948W94hK+etGwa1mbfAL9c3jJknn3xSmTBhgq74jx07Vpk5c6by22+/yfHzjjvuUEqUKKHs2LEjRvyfffbZmHFR633ZtGmTctpppymLFi1SPv30U2nQE+tQ/F0EJy5OdFi9RnzyyScyShjFanJ/BJ2LQ8vkyZOlVwGDM6xbGAJOSGWHL6eYpRS6OZAhEBAzkEqVKsnXbty4sTJ48GBl165dSpSIovgjJgSGdIMGDXJd+1jPR7EerzxWbubcG+X++/H6NhvfVK8L9sOSnFb8sdxiBCZX8LzCIFi/fr1SvXp1V4877FD8XeSXX36RJzBOSiPgei5TpkzsjyCEFCAEFEHYUcFOO+vAoAzBQ9ARXGTaCyQV6UXpAAMV0vviK5h54cKEIQbx69ChgwyYQoBg586dpaGGYkJhJyrif+jQIbmcBnc0riUYkp06dZKeOa0x7lWsitfi69fr20z8sazy6quvyvRJbXouxL98+fKykBfc+q+88kqe3+n222+XvyOyMMaMGePp5wgbFH8Xg4QwkGBN3gic2FgWQJ6wFri24NqH6/mll15SChUqpLz11lu6OcZW1h+N8OvMwIxUxiEgZxvfPYwwfCfFixeXmQIwuMzKtQaVMIs/frMZM2bIiH0s8eA3RcOdgQMHyuvJDcyuq1Tl3Pv1+jYSf3g0kTaJQFxMfpYuXRqz/fXXX5dLdKtWrZIeOUx8kMYbDzx1UTDS3Ybi7xIoMANLFXnmRm4tuJUvvvhi00EWBWrghvSCSy+91BdrgkEAgymWBU499dRc7wwCOBEJnorOiqkibOKP32batGnKfffdlxtwhlgbuPXhnfOCRGv+qQy488uavxXxh7sev8fixYvlDB5u+0QGGTyi8NiE6dpLJxR/F0CVL4g11p2M0s2aNm0qI1q1gXxGTJkyRV4wXpzkcJuhxWi6BqcggiUYDFDI1IDnRvUIXH311cr7778f+BiBMIg/vGpopoNATnWGDzFBkSfMKL1O7dSLVUEEfqrbT/shZdfJmj9A8B4yqIxAYCBei/U63KGAII7Bed2jRw/x+eefizlz5ohTTjklzz779+8XF110kShUqJCYNGmSOOGEE0xfd+XKleLEE0+Uz3GbAgUKiLFjx4p+/fqJ1atXi9NOO02cfvrpIqr8/PPP4rfffkv4PWRkZIgmTZrI21tvvSW+//57MXnyZPl73nzzzSJfvnzi/PPPF507d5a/9dlnny0fI95x/Phx8eOPP4rp06fL32LRokXyemzcuLF44oknxKWXXirOOecc+dulAlyvOJZffvlF/Prrr2m7rvxyHE5/06ysrITjIq6rcuXKpfS4QotLRkQkuffee2WQCnp2a9NR1PUnuPrPO+88pXbt2jLVT7uPun6MYCMEASJIEC6wd955R6YcoTod8Q638qHRUwC5xggiQy0HvA4COjEDxboyflfEg/iZIMz88R1+//33Mg//iiuukEFg+K4R6IXgzOHDh8vryg4shOMdBw4cUL777jt5w+/Uv39/+X+k58Hdjy6c8KahbDJSmBFXg1gnzO4B0vcQ6Y8UaqQDIpgPtVQQu0HcgeKfzJdnEFiDnH2AYBWjfTZs2CD3wdokIlnhqkTwCwqLDBkyxPeCEXS8WBtFNDkCA5966imZpYCsAdUYwBLBoEGD5GDmN5H1o/jjWCAWEHvUykAmDL5LpMm2bNlSGsdff/217UAvCH6qskiijNHYd8stt8ilTxhwiKHB74m4DBhw2oC/5cuXy4kTJlcwqpHDjyUBrve7Rwb+Sbf3gZBUu/pr1qyZcLvWVWplaUCPw4cPi8WLF8slIdy++eYbkZ2dLZd+zj33XNGgQYPcG5YKMjMzRTrAMU2dOlV07NgxLcdw7NgxuQS1fPny3BuWVuACxvFguaV169by1rRpU1G4cGFbr4/fDy7jgQMHigULFujukz9/fnHhhRdKlzkhUYBr/iRyQMgTgbVSiPyePXtE165dxZdffpm7DWv6H330kVxbNaNIkSKibdu28gYOHTokVqxYIcUNf+fOnSveffddudaJ+A4YBPXr1xdnnnmmfP8zzjhDVK9ePW1GgRdGxsaNG6UY47Z27Vr5PUDoYQBgPbdWrVrSGLrxxhvld4Ebvke7WBF8LX///bf8nbFWHpQ1ckKSgTN/Ejmszvwvvvhi8dVXX0lh8GqGCIMAIqXOePF/CNCRI0dyAzRr1KghDQH1VrVqVVGxYkV5K1u2bNLBhW7N/GHE7Ny5U2zdulX8+eefYvPmzblCj9uGDRtETk6O3Bezd3yWunXr5no/6tSpI4oWLer4/e0Kvh74Hjp06OD4GAgJChR/EknMhN3u0oCbQES3bNkSI5xaAY0/5goVKuQaA7ghGrp48eK5t2LFiuX5P0QeRgNueL2ZM2dKDwVeD+8Pg+DAgQPydvDgQd3/79ixI1focdu+fXueY4s3XNRbpUqVXMuI0PPQOMXL35UQP0HxJ5Hkr7/+Etdff72hS3/atGlyJuxkhug0RsAKEOVt27blCq5WfNX7mH2rIq0VYzeAoKuGBLwOMDYg5FrjQ32sfPnyKVmy0DPk7MI1fxI1KP4kcmjFGejlQzuZ+evNQJs3by5rQdSrV0/moXtlFOiB90PQnN7sHe53zPDV3OrvvvtONGzYUBQsWFDOyLHcoPUUqH8Rm5Cq3HkrRpTZ72QVO7EchIQCFzMHCAlVbr/ddECr7YhxQ6oZUs780E/BT6l+dlPxrDbV0bu1aNHCN78BIamG4k8ig10xt1Mq1WpbVz8aAukWfyPBt/I72f3eKfiE/APd/iQSJBPAZ6VUqlmMgNvuZzfjCtzM8zc6Lr3HnQTq6f1OZmv+LVq0EN27d5dLLwzmI+T/+X8jgJBQ43Wv82Rm/naqDOotXWg9B9qStYnK12q3/fTTT3Lmv2bNGsN9Ej3f6LhwH6VZjbwndpZJEv1Oeh4azvAJSQzFn0SCVPQ6dyJmdo/H6Xuogqsn0qiPD/HHXzPBNhL5Nm3a6C6poCyv3uOJXPxOfydsMzJWCCGx0O1PIoPXRXv00gedopdKmExku/o5Qfx3gII7WGrAsaPSXqlSpcTevXt1vye952Ob2ymFRsfP8ruEuAP7jpLIAIFTBUwF9/G4m+1UIdLjxo2TaX5OUdMQ7ZQltlK+FrdEQo1tu3fvzrNPoud7Lfxu/06EENb2JxEiVb3O8ZpYUuvVq5fMl0dOvSrmyKe30mBG77hOPfVUESZgHKHxEQP1CEkDccsAhJAkMAvIU8H/nbSWdTOuQG/NP5nXyZcvn+U1f23Qn1mgXqLAQ0KIMyj+hLiImTjribudQDU9wbRyUwVX7/i04m8m2Ea1EhDwpxcIuH79etNaCfjcQ4cOVYYNGxbzHdgtykQIsQ7FnxCXsJLuZ5bKZxUjz4GZ0aFnPMRH+ycSbLPCR0aGjNHjiQTeblEmQoh1GO1PiEvYKfTjVvc4vM68efPk/1u1aiX/qvEM2v/Hv5c27gFr7uvWrZOZBGeeeabuPvHPnzFjhliyZIlo2rSpaNeuneMCREYZGHjdRG152X2PkOQokOTzCSEOAvIgqsmIv151PLU6oPZ1jd4DXj/tcUP8448fz7XSvEh9X7ym0Ta9ioUQcL20SBgCiYTfje+PkKjDVD9CXAJ96iF2mLk6SeWzA0QWM2YtuI9c/URAvDHbxiwfXgoc85VXXunK+9o9pmRSF5P9/giJPDaWCAghSQbkubFmnUy1Qr119GLFillq7JNMCWOjEsGJnoN4Bq75E+INnPkT4iJmhX7cKFZjNmOGS1wP1c1uVKTH7HWTmanrHZORpwT38fikSZM8LcpESJThmj8hHqCul1977bWuFxUyiy0wcombiff69etjAv7svq+TY1LLCmvX/lWBT1VRJkKiCKP9CYlInwKj3gBqbf/4aH+77wuc9k6gwBOSWuj2JyQifQoSudmtzuwTvW8yvRMwo0cjI2QMIGUSxgAhxDs48yckwNidMet1HrzkkktEt27dZPR/ZmZm0u/rZBafKIVQL02QEJIcFH9CAoydgjpGAl29enXZQtiO+Aet3TIhJBaKPyEBxM2ZcnZ2dlrF3ygWQbudgX6EuAvX/AkJIE6L/PgRp6mLhBDnUPwJCRiJ8vXxeNCC5ZymLhJCnEPxJyRghG2mbFbshy5/QtyH4k9IwAjjTDmZNEFCiH1Y4Y+QgKHOlI2i44M4U2Y1P0JSC2f+hASQsM6U1WI/QTRgCAkSnPkTEkAwUx4wYICYN2+evN+qVSsKJiHEMhR/QgIGq+ERQpKFbn9CAkaYcvwJIemB4k9IgAhbjj8hJD1Q/AkJEGHL8SeEpAeKPyEBIow5/oSQ1EPxJyRAsBoeIcQNKP6EBIyw5vgTQlIHU/0ICWg1vC1btogNGzaISpUqiRo1aqT7sAghASJDURQl3QdBCEkfyBRYs2aNqFWrVp7mOoSQcELxJ4QQQiIG1/wJIYSQiEHxJ4QQQiIGxZ8QQgiJGBR/QgghJGJQ/AkhhJCIQfEnhBBCIgbFnxBCCIkYFH9CCCEkYlD8CSGEkIhB8SeEEEIiBsWfEEIIiRgUf0IIISRiUPwJIYSQiEHxJyQkzJs3T1x66aWiUqVKIiMjQ0ycODFm+8GDB0X37t1FlSpVROHChcVZZ50lhgwZErPP0aNHxf333y9Kly4tihUrJq666iqxffv2mH0mTZokzjjjDFGzZk0xZcqUlHw2Qoi7UPwJCQmHDh0SderUEW+//bbu9ocfflhMnz5djBkzRqxZs0Y89NBD0hiAmKv07NlTTJ48WXz66adi7ty5YuvWreLKK6/M3Z6VlSWNg3feeUcMGjRI3HvvveLYsWMp+XyEEPco4OJrEULSSIcOHeTNiEWLFolbbrlFtG7dWt6/6667xLvvviuWLl0qOnfuLPbt2ydGjBghPvzwQ9GmTRu5z6hRo0StWrXEkiVLRJMmTaT458+fX9StW1duL1CggHysYMGCKfqUhBA34MyfkIjQrFkzOcvfsmWLUBRFzJ49W/z888+iffv2cvvy5ctFdna2uPDCC3Ofc+aZZ4qqVauKxYsXy/slSpQQt912m6hYsaJcXsDMv3jx4mn7TIQQZ3DmT0hEGDhwoJztY80fM/Z8+fKJYcOGiZYtW8rt27ZtkzP4UqVKxTyvfPnycptKnz595JIBnk/hJySYUPwJiZD4w32P2X+1atVkgCDW7zGD1872rVCyZEnPjpMQ4j0Uf0IiwJEjR0SvXr3E559/Ljp16iQfO/fcc8XKlSvFa6+9JsW/QoUKMnhv7969MbN/RPtjGyEkPHDNn5AIgLV83OCq14LgvePHj8v/N2jQQGRmZopZs2blbl+3bp3YvHmzaNq0acqPmRDiHZz5ExISkMf/66+/5t7fsGGDnNmfdNJJMmivVatW4tFHH5U5/nD7I5Xv/fffF/3798915d9xxx0yJRDPQXBfjx49pPAj0p8QEh4yFIT9EkICz5w5c8QFF1yQ53Gk940ePVoG7T3xxBNixowZYs+ePdIAQAAgcvtRFEgt8vPII4+Ijz76SKbwXXTRRTKnn25/QsIFxZ8QQgiJGFzzJ4QQQiIGxZ8QQgiJGBR/QgghJGJQ/AkhhJCIQfEnhBBCIgbFnxBCCIkYFH9CCCEkYlD8CSGEkIhB8SeEEEIiBsWfEEIIiRgUf0IIIUREi/8DyBKL6SN0bvUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -125,7 +125,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAHwCAYAAACop2ZrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA779JREFUeJzt3QncdeW4P/AVyVRmMs/zMR0SOTIUx5whdDjoqFBJNDoNJFNCKZEUchDKUZQ5ZAw5mYcyZDrmWaaI/f981/nfr/Wud8177eF5nuv3+ex6n+fZe+217nWv+3ddv2u4N5pMJpMsEAgEAoHAmsElFn0CgUAgEAgE5osg/0AgEAgE1hiC/AOBQCAQWGMI8g8EAoFAYI0hyD8QCAQCgTWGIP9AIBAIBNYYgvwDgUAgEFhjCPIPBAKBQGCNIcg/EAgEAoE1hiD/QCAQCATWGIL8A4E1hle+8pXZDW94w+wyl7lMdpe73CU755xz1v3t/PPPz/7lX/4lu+51r5s9//nPX+h5BgKB2SHIPxBYQzj55JOzvffeOzvkkEOyz33uc9ntb3/77H73u1/2s5/9LP/7HnvskT3ucY/L3vnOd+avs88+e9GnHAgEZoAg/0BgDeHII4/MnvSkJ2VPfOITs1vf+tbZcccdl13ucpfLXve61+V///Wvf53d6U53ym53u9tl1772tbPf/OY3iz7lQCAwAwT5BwJrBH/5y1+yc889N7vPfe6z7neXuMQl8p8/9alP5T8/97nPzX9mEPgbVSAQCKw+bLzoEwgEAvPBL37xi+xvf/tbtvnmm6/3ez+fd955+b8f+MAHZj//+c+z3/3ud9nVr371BZ1pIBCYNcLzDwQC6+HSl750EH8gsMoR5B8IrBFc7WpXyy55yUtmP/3pT9f7vZ+vec1rLuy8AoHA/BHkHwisEWyyySZ5Mt+HPvShdb/7+9//nv+81VZbLfTcAoHAfBEx/0BgDUGZ34477phtscUW2ZZbbpkdddRR2R/+8Ic8+z8QCKwdBPkHAmsIO+ywQ57Q9+xnPzv7yU9+kt3hDnfI3ve+922QBBgIBFY3NppMJpNFn0QgEAgEAoH5IWL+gUAgEAisMQT5BwKBQCCwxhDkHwgEAoHAGkOQfyAQCAQCawxB/oFAIBAIrDEE+QcCgUAgsMYQ5B8IBAKBwBpDkH8gEAgEAmsMQf6BQCAQCKwxBPkHAoFAILDGEOQfCAQCgcAaQ5B/IBAIBAJrDEH+gUAgEAisMQT5BwJrHDb2/Pvf/57/PxAIrA0E+QcCaxwXX3xxdsYZZ+T/DwQCawMbL/oEAoHA6sA3vvGN7Nvf/nZ205veNLvZzW626NMJBAINCM8/EAhMhV/96lfZ/e9//+wWt7hF9sAHPjC7+c1vnv/861//etGnFggEahDkHwgEpsJjH/vY7IMf/OB6v/PzYx7zmIWdUyAQaEaQfyAQmErqf//735/97W9/W+/3fvb7b37zmws7t0AgUI8g/0AgMBhi/E341re+NbdzCQQC3RHkHwgEBuMmN7lJ498l/wUCgeVDkH8gEBgMyX33u9/9skte8pLr/d7Pfh9Z/4HAciLIPxAITIW3vOUt2X3uc5/1fudnvw8EAsuJqPMPBAJT4cpXvnL28pe/PPvYxz6W/3zPe94zPP5AYMkR5B8IBKaq8VfqJ7M/gdzP62cUBAKB5UTI/oFAYDCixj8QWJkI8g8EFlgj/973vnfF1sJHjX8gsHIR5B8IzBmrpR1u1PgHAisXQf6BwJyxWqTyqPEPBFYugvwDgTliNUnlUeMfCKxcBPkHAnPEapPKo8Y/EFiZiFK/QGCOWHapnDLBQHEeXTx35Xzve9/7csWC4dL1c4FAYLEIzz8QWGFSeVOVwDQVBI94xCMGJyFOJpPe3xcIBBaHIP9AYIVI5U1VAmNUEHzkIx/pnYS4WioXAoG1ho0mYbIHAgsB7xzhbrTRRp1a4iJVhFxMFqQYJEOi7m9k+SZ8/etfzxUDRP+nP/1pg7/7W925NZ1T2/cGAoHFIcg/EFhAHL1vW1zH4F0P/f4mw+I973lP9te//rWW/P39AQ94QO9zavveWeQgBAKBbgjZPxCYEZok8b61/m1VAtNUENzoRjcalIQ4y8qFurH77Gc/u6K7IgYCy4Ig/0BgRqgj+O222653rX9blcA0FQTp732TEGdZuVA1dsZmyy23jNyCQGAEBPkHAnNu5vOJT3yit8fcViUwRrOde93rXr2SEGfV5Kdu7MpYiV0RA4FlQZB/IDADTCPT13nMTVUCYzTbOfXUU3PiFeP3fwl7bdvyzqLJT9exW4ldEQOBZUE0+QkEZoA2SXzrrbfOzj777Mos+TqPua2hjr994AMfyD796U9nW221VXbf+963U/JcUhr87RKXqPYHyp8t/jx2k5++IQ7fG8mAgUBPyPYPBALj4373u9/kkpe8pGqadS8/+/2vfvWr/P/Fv6Xfd8H5558/ec973jP5xje+kf/8y1/+svZ4dX/79re/nf//spe97OQd73hH/v+69xR/f9WrXnW9n+9+97tPTj755Pxcyuc15tjVvab9rkBgLSLIPxCYEboQPOJqIsuuJL/NNtvUGhp1RggS9/868i++pwsJl199jJkuY7fRRhtVXl8gEOiPqPMPBGaMKkm8SUb3c10fAPX4H/3oR9cLF5Dq//73vw8+v8te9rJ5jL6uzn8oujb7KV675ag4Dmnsrn71q2cHH3xw574IgUCgGUH+gcCcgOS+8IUvZK94xSuyj3/84+t+f9WrXjX75S9/OXOSnzf5tzX7qTJwirj73e+ePe1pT8v++Z//ed3n57GBUDQWCqwFRMJfIDBjtJFckfjhzDPPrCT5WRD/PFCXkFdVy1+EkshUFlk0BCQEpiTFMcm5b9fFQGAlIzz/QGDGqOp/PwuQ2fv0/b/Sla6U/eY3v8k22WSTSs+/+J5pzr3K85+mXXERY5Jz7FMQWEuIOv9AYCC6bJ/btWFNH1Q11dlmm2169wDQKrf8+y7vEaboep51zX6m6YMwi0Y/TU2ZopdAYDUiZP9AYIS4fZ0HOg3JVXnydv+71KUutZ40nUjedzf1AKj6m9+fd9552fnnn5997nOfy7+j6j3lz/r585///Abj0LXZzzTtiuvIeZoQQJd9CiL+H1hNCNk/EBhI+EXUycND5O06ki8aGGMmvkku1NVPz3zf2RfFc4Gu5zVmOKRu58GuCXzz2KEwEFgqDCgPDARWPdTXa1yz9dZb96ptr6rXb2tYU26aU6yPb+sDMAb+8pe/5HX+/j9PVNXyD31VjU9T46O+TZkCgdWGIP9AYErCL74QdReSK3bFmxfJJ1x88cWTP//5z5M//vGPk9///veT73//+5PXv/71k1//+tf57/zNe+aF4rV79bkHTeTcl8yn7boYCKwkhOwfWPNoK8XrgyZ5eOwa9T/84Q/Zj3/84/z1ox/9aN2/f/azn2W///3vswsvvHCD/3v9+c9/7lz/v+mmm2abbbbZuv8X/63xzrWvfe3sWte6Vv5K/77c5S6XjYEueQV1uRZ9ZfxiaABm3UsgEFg0gvwDax5jxJ5nURJ28cUXZ9/97ndzYkovhPiDH/wgJ/nf/e53G5A18r3GNa6xAVEXyfvyl798Xt6naZDzRqzf//73s0c/+tHrGgn95S9/yQ2GJiOCkcHoKBsTV7jCFXJD4LrXvW6+7W/xdYMb3CDbeOONZ55XoApDDkNbjkDU9gfWKoL8A2say1BvzuhwHueee26eWJiI/oILLsiT8eAyl7lMTnReCLToaad/I92NNtporgl/lo/f/va3G6gP/v29730vJ22viy66KH+/48v0T8bAHe5wh+xOd7pT/u+6HQWHoKvnH7X9gbWKIP/Amkabh9iEqvazbUAySuuU1SF7L9I2CR9udKMbZbe61a1yMnTMRJK86DHJccxs/zZQEqgVjICiivH1r389VzaAMmEcGQLp5brLPQ36oI3YI8M/sJYRdf6BNY2+9eZ9CZ8kfs4552Qf+chH8tdnPvOZ7I9//GP+N7I1kttuu+3y/9/xjnfMO+qtNjBaqBVe5YZBv/71r9czhM4444zsqKOOyv8mPHGXu9wlu9e97pW/ttxyy+zSl7505+9NXQureiJA1PYH1jQWnHC4onHsscdObnvb204222yz/HXXu951vWzvV7/61ZN73vOe+d8MtWzqMm5wgxtskMF82GGHrfee448/fnL9619/coc73GHy6U9/ei7XtpbQVopXzsxvwp/+9KfJRz/60cmhhx46ufe97z25zGUukx/jSle60uShD33o5MUvfvHkwx/+cOVcWBQWVepXB2PzoQ99aHL44YdPtttuu8kVr3jFfAyNpa2Ln/vc504+9rGP5VUJXVBXSaG6o2/5YGAcWOOM8dOf/vR1v7NWlu/BU57ylPU+9853vnNys5vdbHLzm998csYZZyzgzFcPgvynwOmnnz5597vfnS8SFpIDDzxwcqlLXWryla98Jf/7y172snySp4leR/4Wsx//+MfrXsqvEr73ve9NbnrTm07OPvvsydve9rbJrW51q7le41pAl1K8Jnz729+eHHXUUZP73Oc+G5C9OfD5z39+rqVzK538yzB255577uSII46YPOQhD1nPGLjvfe87efnLXz75zne+M+jYUds/f5xzzjmTG97whpPb3e52G5D/k570pPXWwt/+9rfr/s7Yu+51rzs588wzJx/4wAfyf1900UULuoqVjyD/kXHlK1958prXvGa935111lmN5I8g6vDlL395ssUWW+QGwQUXXJA/NIHZoGut/d/+9rfJpz71qckBBxwwuc1tbpPfW0YfwjjyyCOXnuxXGvnXGQMvfelLc/I39u4BMjnooIMmn/nMZ/J71AVR2z9fXHjhhbnnjsCRfZn8iz+XwRCwXv785z/PX9bC3/3ud3M689WHIP8RF6S3vOUtk0022WTy1a9+tRf5b7755pOrXOUquaxPFv7rX/+63nt22mmn3Bu57GUvO3nTm94082tZKaC2zKsxDg+D0uNeXOMa11jXme8JT3jC5L//+79X9CK00si/ihROOeWUyeMe97j8OXJvrnnNa0522WWXybve9a5O3uE8myythGfqhz/84UyO73l5xjOekf+7ivyvdrWr5c/VP/3TP03+8z//c/KHP/xhvc8/5znPmWy88ca5wScsFBiOIP8p8aUvfWly+ctfPidncqQwQBlN5E/K9PcvfvGLk1e96lW5XLzXXntt8L5f/OIXefe1tUS4dd9f1QFuFt4a7/HjH/94HndMpHLLW95yst9+++W/X0ne/Wom/yIYznIu9tlnn9zDTEba7rvvPvnkJz85+fvf/77oU1xKVLVCZjyNOcc5R5QyeTFV5C9H6n3ve1++pnJyrnOd60we/vCHb3Cc3/zmNyva2F4WBPlPCV7FN7/5zcn//M//5JYqy7WP51/Ga1/72tyy7ZrMNC/07ZM+j++fVZz2a1/7Wp6/QVZ0bMmW7q0QzGrEaiL/MhjV+++/fx4fdi9vfOMbTw4++ODJ17/+9UWf2lKhLvfhkY985CjH10KaYuZ+dJX5JX06j29961ujnENgfQT5j4xtt9128uQnP3kw+UsW9N7zzjtvskxYdGJUW0b+tBnalBW5F3e84x3XJey5j7zIrvHjlYrVTP4J7qHncOedd16XMHinO90pT9RkWK5mtawN86h6OO2009atGenl54022ij/d5XCIM/Je6gBgfExm64haxgamqRuZkOgw5u6aC1alwWanaiVLre/Le6lvojvr6vN7grG7yc/+cns8Y9/fHad61wn23///fMmO6eeemr2k5/8JHv1q1+d3eMe95hZc53A/OAe6hXwmte8Jr+3//3f/51d73rXy/bbb7/83v/Hf/xH9qlPfSqfE2NB62CNhjQS0kBJ06Ktt946O+WUU2b+zPRBl34H02LbbbfNvvzlL+frW3ptscUW2b//+7/n/65q5uT3oINlYAaYgUGxZkAK5hkqMxKn8jNLVhkKKFWR+X3CCSfkFqzaZD8nT0P5Hm/zC1/4Ql4uJs519atfPU+KWSbwWvruZDfP7+/rpfAojjvuuHWZ+je5yU3yRMuf/exnk7WIteD51+EnP/lJXop7oxvdKJ8Lt7/97fO+GuVEs1moVctSVbCofgdF2Z+0r+RZ+NR6qp5fiOYe97jHTL47ELL/VJD5LVtfhj/SJvkn4odDDjmk8mE68cQT878rV7rLXe6Sy5BqltXwv/CFL1y6eH+fxWEWEmfb93cNQVhgJFMa70tc4hKThz3sYfn9Wu2yfhvWMvknmAPkZU2FGPBKdvfdd9+8vHaRc3Y1h/WK5C8nANFLrL30pS+d9zaRWFus8w+MiyD/wCiLw6wTAqfxoqgtO+ywQ074FpdnPvOZk+9+97ujnNdqQJD/+kD4iJ8BYM499rGPzZW9RapVY6NspEe/g7WHIP9AJzQtDhYSiXJDPYcuasGQLnzCLA94wAPy98rcf+UrX7kU5ZLLhiD/apD+jznmmLzawxx68IMfnJcLjuX5zytsVkSbkR79DtYOgvwDvVBcHNrK79o8myFqQdvipI5brwWGgeNpFvLGN75xg8ZJgX8gyL8ZxuX1r399HpYzp8jTQgRtPQNmXaGyEqt2AsuDIP/AINR5+308mzEXIgvx29/+9jxhy3FssiRpaK3H87sgyL8bzKVTTz11cuc73zmfY//8z/+cj1udEVClVs2adJtUtNjIKFBEkH+gF7p6+22LypgLkV3yttxyy/xzNtdRzx2d3LojyL8fzK0PfvCD+a6N5tzd7na3PMRUB3N51l0pu6hoi67aCSwXgvwDvdBVymzzbMZYiD73uc+tW/B4YzqCBfojyH84VIukxlAPetCD1utgV4VZxdSrnksJrsJfCeH5B4oI8g90Rp8kpqLnUSVFTrMQKdl7zGMek7/Pvt421glPfziC/KcPB/DslacpE7TB0NAthoeg7VmiOCQFIGL+gYQg/8Co5Uu8DZ5QXUJgUYrsuxA53h577JHvfXDta187b8YSiXzTI8h/HBg/m3PZUdCuc2rYu7T0nvVzySBJz2SU9AUSgvxXGDTDWJSX28Xz71P+13Uh4lm95jWvyTdNusIVrjB50YteNEoHtsD/Ich/XOgg+YIXvGCy6aab5pvZqBQYK/F0iIpW9XzNuqTP9f7gBz+YybED4yDIfwXB4izRSGfAeRgAVQtNXWyxydtvk/WbFiLtPnVB9JnHP/7xecvkwLgI8p8NfvjDH+YNglJSoGZTQ9FFRfMcTpOHMybxf/azn81zcEKZW14E+a8w2At71gZA00LT5q1LMOqyCLUl9DmHXXfdNZcsb3vb2zZmUwemQ5D/bKH6RL8Jz4Ww1ZBQQFtCn+cv9bbo8pqlx5+If9nalAfWR5D/CsSsDYAusfiyt46sx1h8LB42QrrqVa+aS/xHH310eA8zRpD/7GFsjzjiiDwUYB+Q173udZ2f3TZZ39bEqdOl5L4xjO8hCOJfWQjyX6GYlQEwNAt/DNnRzob3ute98vfZ2TAk/vkgyH8xoQAbgXXZY6LPPgHbbLNN/pq35x/Ev/IQG5WvUFzmMpfJ/uVf/iX79a9/nX3+858fbR/yIXt7f+Mb38je//73Z3//+99bj3+f+9wne8tb3rLe73zula98ZXa7290u++53v5t96EMfyv7rv/4ru+Y1rzngCgKB5cW1r33t7KSTTso+8IEP5M/NbW5zm+zVr3514/N7k5vcpPPxP/rRj2aXutSl8mPf8Y53zC55yUuu93c/3+9+98tudrObZWPB8/u5z30u+93vfpevSZe+9KVHO3ZgdgjyX8GYhQHQttDc9KY37W0wbLTRRvlCZEF63/vel135ylde97fvfOc72bbbbpvtscce2ROe8ITsy1/+crbNNttMcQWBwPLjvve9b/aVr3wle8xjHpPtuuuu2b/+679m3/ve9yrfe/Ob3zwn7Etcon25/tvf/pYb4vDBD34wN7bbjO9pEMS/chHkv8IxtgGQFpo6j8Hx3/ve92bf/OY3OxsMd7/73fOFqOhtJG//tre9bW4A8PaPPfbYbNNNN53q/AOBlYIrXOEK2fHHH58bxOedd16jCoCw73a3u3U+9r/927/l/3dsRvd73vOeSuN7GgTxr3AsOu4QWL4cgKqM/qpYYlvDnnJ70YTvfe976/qiy+j/3e9+N9X5BqZDxPwXj9/85jeTXXbZZd3+FP/7v/9b+b6uCX2zLumLGP/KR5D/KsLYSYDFjP62CoCuDXvstHflK195cr3rXW9y5plnTn2OgekR5L88sFXwda5znbzaxdbUfXcKnEdJXxD/6kCQ/yrDLKoA+lQA1DXsueiiiybPeMYz8vc/9KEPzUsDA8uBIP/lws9//vN8kyDPyr777lt5X9JOgfoHzLOkL4h/9SBi/qsMs0gC7FMBIK7/gAc8YL34vs87JzH9o48+OjvttNOyq1zlKlOfVyCwGnG1q10tO/3007MjjjgiO+qoo7Ktt946r4IpwvP16Ec/Ojv11FN7J+gORcT4VxeC/FchxjIAJAhJ7isn//VZYE455ZTsn//5n/NzOfvss7M999wzz/4PBAL1kNm/9957Z5/85Cezn/70p9kd7nCHSqJvS9Adq6QviH/1Ich/lWIaA+BXv/pVdv/73z+7xS1ukT3wgQ/MF5GrXvWqvRaYiy66KC9h2mGHHfJjWDjudKc7jXJtgcBawZZbbpk/v0r0tt9+++xpT3ta9pe//GWDSoBZlvQF8a9ObET7X/RJBPp75KR0HnebZf/nP/859x6U9/DAu3jdZEZeerFpD0/EMX75y1+u+x3it8CUS4d+8pOfZI94xCPyBeOYY47Jdtlll/D2lxh//etf81IwRpoGMYHlg2X6Va96VbbXXnvlBsHb3/727BrXuMZ671F+KwTXZV3oiiD+1Ysg/xUEHvljH/vYdU08mgh4iAHg+A996EOzT3ziE7XH0pns4osvrl1gzj333OxhD3tY3mzkHe94R75QBZYbQf4rB4xyhjUSfuc735mHA2aFIP7VjZD9VxAQv2Y5RfhZl7AxQgCOb3FpAuIvJ/QlvPWtb80b+lzrWtfK/ud//ieIPxAYGRr9fPazn82TAj3TFIChSDk9xYZdCUH8qx9B/isEqX8+j7qqnWfVA9zHAOjan78quc9nDjrooNwIeeQjH5n3F9fDPBAIjI/rXe962cc//vHsIQ95SP68Pec5z+m0r0ZdTo+kQT9bGyCIf20gyH+FYMiGO30MgLbji/lXJfddeOGF2cMf/vDssMMOy1784hdnb3jDG7LLXvayrecSCASG43KXu1we7nvBC16QHXrooXnZ3x/+8IfBCuKZZ56ZbbfddkH8awhB/isEXTfcaZLymgyAtuP7TDl7+Ec/+lEu83/kIx/J3vWud2X77bdfJPYFAnOCZ+3AAw/Mc2uodve4xz3yssAhCiLSF/JjwFsbxiT+tjUpsBgE+a8QtNXzKsVrkvLKBoDtcn/wgx/kEj0DoO74PH4E/7GPfWy9pEIPtAVC9r9kQt8ZCATmj5Skyxj3TDapeHV/85w/4xnPyC5/+cvnzbjGIP628EJgwVh0i8FAdzT1z2/rvZ+grW46hh77xxxzzOTwww/Pf9+1P/8555wzudrVrja51a1ulW/SE1jZiPa+qwMXXHDB5GY3u9lk8803n3zuc5/r3KrbRkF777335Oijj55c8YpXHG1PgK5rUmAxCPJfgSj3z+/Te7/8QDIAXvGKV+QGQNoLoK4/P7z//e+fXP7yl5/c9a53nfziF7+Y41UHZoUg/9WDn/3sZ5Mttthistlmm+X996tgDUg7A1YRf989Aaw/5fWiz5oUWAyC/FcBPHhdNveoeyCTAnDWWWc1bgZ00kknTTbeeON805Hf//73c7zCtY2LL7548qMf/Why3nnn5RurjI0g/9WFCy+8cPKv//qvk0022STf/KcMSp6ttuuIvys5F1XEslLYdU0KLA4bLzrsEJhPMqD4W10/ADG4Zz/72dmJJ56YJwFWNQKywYjuYjvuuGN2wgknRDOYGUHilQ6J8jHS/3/4wx9mf/rTn/K//9u//Vt217veddGnGVhibLrpptkZZ5yR7bTTTvl8+fnPf5499alPXfd3uTtyfST3ifE/61nPyn7729/mf5PzozVwlw6BTVUDr33ta+e24VBgGIL8VwFSsp4HsZjFW3yQtexF7HVgAHjfj3/84w0MAOVEBx98cLb//vtnL3rRiyKjf0RQ35C8XdsuuOCCPCP6N7/5Td51z8J8xSteMbv+9a+fJ3Rq7uL+BAJt2GSTTfKyWy2A99hjj+yPf/xjXo0DqZzPXhuS+xLx99kTIFUNlOHYkg+19N5mm21yI6NuTZpFO/NAdwT5rxJ4YHn2xQfSQ+bhRvxNLXvTA3nrW986u/GNb5xn7ycD4LnPfW7eREQtMXUgMD1+//vf54uZRe1rX/vaOrK/whWukC/Wt7zlLbOrX/3qG1ReXOlKV8pVgECgC2Tw2xZYTwCGu+6cz3zmM9fV8SsNvO997ztoT4C2viDWkHvd6175ulJek7puOFTXzvxtb3tbttlmm3U6RqAe0dt/laH8ICN+D2LTbb7jHe+YqwaplM9eAIyFk08+OXvNa16Te/7qiQPTefdf//rX89d3vvOdXMbn2Su51A2xiuzLYCj87//+b/b85z8/X9jHAs/vda97XT5XlHhRdhx/4403zhs2FV9jfm9gfvOP8e71lKc8JW8I1LeOv+x9+1kJX5fPwZANh5QF1qmZ73vf+zofJ1CN8PxXGTxcXqzmNo+/2JO/WMOvD8BZZ52VE/+ee+6ZHXDAATM+69UJPRC+8pWv5CrK9773vdzz0pOdZ3+d61yndydE94hx5946zliwqQ959vzzz19ngKTQjp8Rvpd/8yIpFM6FEsED8/JvBoz/h4GwXHAvqXYaAB133HH53hsk+Wk3E/N/Mf6m1sJyDhB4X7m+LqxQbGceIYDpEOS/StFlkx6LNNmv/BA973nPy174whfm/99qq61qkwAD1fjFL36RS5MWKHuvb7755nl81aLb5t03AbEKD1jExyR/5yinwG5x5oTFnLdoob3ooovyl/dQhPybasGYsUCnv6U4c2og5VrtOBcL9OKRYvyPetSj8rCSMJ77JAQwzWZiDADJfU0Oxhe/+MX8vX099S7tzGNuTYcg/1WIOqu5S8teCX28BNKyzXrSdsBhAHSHhcmit8UWW2Q3vOENc/l8DFAKGA/I/5/+6Z+yseHYZeOEp98GhoKEMrkLQgheOkKqVNh7771HP89Ad5R79SeP/z//8z/zebnPPvsM9r4ZuTYYkjvAAKgKLXb11Mthha7tzAPDEfrcKkSb1YzAq1r2kgRJ/IccckhO/H22Aw78A2R95VYwFvEnOG5b//Z5w3ySvyCUIWmUWqRKgeIRWBzqNunh+XvO991338aSvLZ1hKRvXXjnO9+ZOwZd3tu1BbAQUlM78/D6p0eQ/yoDC1pSWBMQ/+mnn77e7+wLvvvuu+cxfuRfRBgA/eV5JKh0b2wg1bb7uywVDeT/wGLQtDsfY00S76677po9+clP3mAtSGjzvr/whS/ksj8Hoi2DP8n/fcMKkvuK6FMtEGhGkP8qQdGC9kBDWaKv26THrnweQlnAL3vZyyql/TAA+kG828LbdZvVMsjomrOUd1+7ylWukv3sZz9bF2dfRsgDkJsgvhyYP7psy+sZf8UrXpE97GEPy3bYYYc8tFfXP6QugTPV9JP9k6de996i/N+2w2AxrCBXwPskpfq/n4trV2A4gvxXCaos6DJBS+4rW/kscruCeYD/67/+qzFTOwyA7uD5y4qv8v4tyjLrzz333DxOXlz0VFnYXc09cU9VDJRVBcTPAFhWmB+S/0L2X07iL0roJ510UnaXu9wle/CDH5x99atf3eA9vGyGbBMYDslTb3uvfJg+SX1A4n/AAx4QUv/ICPJfBaizoBO0462ymtWbUws8VKeeemqnut8wALrBOFkIZcUXx+gzn/lM3k5VzFXHtVQHnWDRvv3tb58nYvHOJFyWyV/J4KLJH8mkqoAyzA3Xr4IgsJzEn+A+idnf4AY3yD3373//++v9vYuk73uTp972Xk2qkvcfSX2LRZD/KkCbBS0Rq2w1I49//dd/zRPISGp9OmaFAdANyJ+XXkx0oqwYO33V7Y9AIi8nM9k/QdKcRbXYehVS451ZJf2J4zJMHvnIR2bbbrtt9qlPfWq9vzsnxqS/S9BiwJRzEKgZGhdNU9YYmD3xF/NI3vve9+bzkTNQVpva5P9iUl9dol7Ck570pEjqWxIE+a+BBL+yBc2blKhz4YUX5hb7kNhsGADt4NkY26LUeec73znPrXBPLLYW2uLYGVeLLIL37/JCDDLrZ9XjnzFicRZ6qMKb3/zm7F3veldeKqY6JNWLUyMSGCwMzsDyE3+Cvgwf+MAHcu9dyKlolAKP/m53u1unBMCqRL1yHlEk9S0eQf6rOMGvyoJGNKxvsX6LuF7+QxEGQDOMv+Y+pM5iF7QUnuFxuY9VHdLEzKkxkv7KIMUy+GYx3uK/T3ziE/P7Wj6+8xQeesITnpBtueWWeQ8DKgEDRb03+Iwkx0j2WznEn2CdkBN0zjnn5G2Ai/PSnHOPdQ2t6/WREgAZD8ibY3L88cfnfyvPpUjqWzyC/Fdxgl+VBf3Sl740e9Ob3pT3cteEZlqEAdAM8XuefJWnrktfVUZ/ObO/DAsj71o53axQdR9dA0nfXhDFJkD6Gth3AFJ1QyT7rSziT7AmKAE85ZRTKhs0danpTwmAjInrXve6je+NpL7FIch/icDqFXsrlsOMmeDHsibR8taqam6HIgyAZjlVMlVR+k9AkDwfZXFVEBOt8/wXkfFPpeD1FeeUnyUh+lsx0z88/5VH/Ay3E088MX9+VQZpAPT6179+cAKgdawtqa+YABiYL4L8lwB1Xa6qOmINTfCzmxzCV9Kjde/YCAOgGsiR9I/Ey7X5DAPjVYyXF6FJTiLVIoQDjO8sO/01tXFuureux/kpcwysHOJnSL7qVa/KvvzlL+fSvmZfVAC5HypU5pEAWLfeBWaDIP8lQFOXqyr0LZHxUEnEIcGR/Ge161oYANW43e1ul49NKqNKxOp+kO6TUZCUHJI+pcDfeEWvfOUrs5e//OXZl770pXWfl/Q3b89f6Z57Wl6k/ZzK+s4777z8Os1fOxpSNmIeLDfxpzlm22kVQFQbZL3XXntl17/+9bOHP/zhGxias0oADMwPQf4LRluXqypJLFneXUpkeJU6ePEgJfPM2iMLA2BDSOwrtvtFiLbQlXSJwO2zztN697vfnf9dvFUSpwSr613verlqI/va2Ca4jyTTWSEtzsX7R6lA8v/zP/+z7ncMFOeXNhoyn/1OiIknqY2sjaI0kHI9NvupC1cF5kv87u2nP/3pPCnPsVPpb3GOMQCEcawrRYVqVgmAEQKYH2JXvwVj6NaVHiaWcnHXraoEP9vyfuhDH8rLeNoUg7ENgJW0G6DFCIl9+MMfzjPZvcaEMbBwi6vy4CVe8qrEVnnxJP7b3va2+Xtl05NDm5Ay/i2wYyo5tutlVKTF+Uc/+lG+ICMCOQrbb799rh6p43fOYsT+r200BQPx3/Oe98xJQUkpo1M1gHnMaHCujmVOM2L9X2LjvOeH/gXuh14Gwm3LPj/HJn5ky0DjcVOghKaq5tGNbnSj3BDV9tv/JQqXEwCtO86tLQFQDlJV7ksRsVXv/BDkv2B0lfDLW15a/D1MFmYPTPp9EYgM+fMsLXLzxEoyAHjivG4LGNJDeIhJItss2v1aLMsyaBFdFnb3371HrqoGxoK2w7K83Ssv3jvw/Pbff/88jkuFOOqoo3JDRkjj8MMPz1Un3Qx9hkKQ5gAjwSsRGEOAvOx7xJJdq/cbH1UDyGZWYakE50AFc/7GEPHJtVnWjoRjEz8D7+STT84++9nP5tUo5noTyPvWGJt/mbfClOUEQAbUGAmA0dVvfthoErrswiHZhQVelEMtph40TVU8bEUP30LsgWuqhSUne7Atqrz+RXVb4/0xAJzrshkAPFWbHBl7hKaEjRer/4EFT7hkTLztbW/LCe9BD3rQ1ONgAWew7Lbbbusk96EgyRsH82yaeWKDKGN54IEH5iWAbVDlwBCgNJivZGXxZvfhNre5TR7ymMV80c8e8Ul+ZeghVk2VPG/2uNB8abUSP8PnDW94Q26EOl7XnRetTbYCpo5RcPR4KK9hZ555ZmXPigT3NcX2y+sdg09HzLe+9a3h+c8JEfNfAjR1ueqbDAgewMc//vH5/0m0i2yzuqw5AJLSjjnmmOwd73hHvgAiAmRj4efNIunvfve7o34nY4zBUZXB3xfIyn1ddI//ch8A6kYX4gdjbczvete7Zg95yENy4kVujNUjjzwyL1kde75Qz5CXe6FVstCLe8/oMBfsdCcvYTUSv708JPa5PuGmPlsum2tPe9rT8vwVCYBlku+SAJi29a1a79K1Rub//BDkvwRIEn65y5XysL7JgKBvPCsc8ScJdpFYJgOAt4lcZM8bX0lOPI6igaTrIWLiWTd5MkPb/bbleXSFXAGe87JARvjQEAQP32e1P5YghmTKrY+nheeGqmM+Fj1XRgBVCiEZT3ODgV1XgrkSid8OktoxU7iQ65DEX3N3p512yg3ncvvnLgmAVV39qAFl5yQy/+eDIP8lauhT7nLVdcvLIkjsBx98cN57nXW/LFgGA4C8fOyxx2ZnnHFGvvgj/qpF0OKlxlnZmnMdCxY5xy23+x0KOQmzzPjvC/d2jOY+xoY6YqzGjP/z+D0zjltFUAwOITVqABXAXJnVHgrzIn7HQrRvfOMb8/ki90f2/lA4H+uKRM9UndK3A2B6pqwBrrOvcxMYB0H+S9zQZ0g9P4uZjPrc5z43WzYsygCwAPJKeHTI0gIoptxELJqTIDIGWnlb3WkgpFDX7rcvUvvfcvOgRQBRGacx2vq6R5QX0vxY+OMf/5gTCqm7KbHPvVF1sc022+TyuDlz9tlnz3WujkX8vHz5DUjaemOnyDGMKd6/5Ex7QJQ7UHbpAPiSl7ykk3MjubRJ/u/aETVQjSD/OaNPDL9PPT+Q4iwakgRJmcuIeRsAxkNCm9p5ZG7cumbxywInZavJHwvCMFSHtpKnLnAdFvhliPvL9Dcv68JM7jNi66J4SEYTehmzRbBkRONU3JegzbBilDMUkJkkObtgrhTitwfDq1/96jx3hTNwq1vdarTzpByI/zu/f//3f69ct5R+Nikw8jvaQkQpR2DajqiBagT5L3lDn65bXpKyLVDqccmWy4x5GQBkeyVpOo1JRkLmfZIfJa4xsJRMilOOAXIzAqpq9zuE/MWll4H8eesMzrLnL8dCrNkibqHecccdc2+0DowZY+1ejQUG3FlnnZV7qxIl+4ZpkKeY+dFHH50/w8tO/GLyEhdTWekstle2xjziEY/ImwQJAZTBOGiC8OSznvWsxjbBdevikCTowIYI8p8jusbwi3JWXTJgscwPidqC0+L6H//xH9lKwCwNAAupxUA3MeQoj2Jo4qMyOiTtfowp/SOh1O53KJCtcZxlj/+uEMbgJZfL5MSaJVjKQfFvkjFlSp19FVRYMLqEZcaAeeW5QSRDvV/kaQ4xTBgyjMGx5+tYxM9b1ptBDwPecJ3KZTzMa6Gauo2lqAfWLOtSlVctMVOy7H777bdB4qnfNyHV/ttnpO29RZVsiAMVqEaQ/xzRFsMng9XJWU1bXj796U/PY5rIbpnq6BdhAFjMeJYStkjH9773vddri9sXvD+LE89vrIWl3O53GmjHugwZ/5SMKhmX+kLiNYbyKHT/829NfurK0RC/zYHGgO+h/EhCm6bklbEmD0ATotNOOy03YBgDy0L8nh2dPO3CpwqEx181732fcr+dd945e9jDHpaXBKsO0u+gfB+0ZUbsdgLVkVJHySJ47JwO3/e4xz1u0OY/Ps+gakIxhDkkCTpQjSD/OaIthk8G6ytnkft5VOTtWch7K8kAUBpmITnnnHPy5CYkMtQYsrlO8nZInLxRiVNj9aVHgBZ8Hto0oABJTCuOG7XDuVMWvvrVr+bSLG/V+f/3f/93ngOhht5YIQKkwcsbCoTi81XJfpQTMV7k4n2axDAI3J8yxNS1B27zBLvCOCjtY0hoYev7/c6rap6lHgwMGedRhrkkGVDrZ+2Bjd80PRvGIn7nrTlOMngdq87Qcd3UFaRrHvC8KUfWnuLcP+KII3LSFUoU7jAehx122LpjJFhzHvnIR+ZNk1Lf/r61/0n+rztnVTnJCYoOgeNhObPCVjHqevJrw1vVT74oZ5W9fguPfts6xomlrlSM0QpYxztNeyykxpN3XQWLmBi59yF1iV1FWOxOPfXU3Kuz0EhoQlRivwjUIicGPGa739TTfyj52yuAEYg8kayYOSnX3EF0xpIc72VBT/9OLXx9bhryN56IrIr8eYRUKf+3uCMOc7YqIYxX53rE5scAowfRmQ8S3yR98gzdWy2Ji0aGMTB/vM+YOYenPvWpOZmWoTERg0IiqNg6z7gvcY9F/D6vnwejSo+Etnwf9yBl2wM1RqKwe8JY9HkhHAYaFYGy5CWGv/vuu69rJV6E9YcydtBBB+UNk1I751T7T/mxwU+VwZXWN88VFNfFKidIyJOhUNchMNAd4fnPGXUx/LaEsio5i9yP9GT1riS5fxYKgPdbABynuDNZEY5LyrRY619v7/IieMA843333Tf3ihCA95M7GQm8HPdqWm8dLPaMHOQ0jdpBkbDwi6H7PzBaJMzd6173yuOyNuPxf6EkXpRQCPI13jyzuvHqCqSBVNKiXwSDCUkqPX3ta1+bj72wjDyAIoyB40iGnKYOvUjmiASZiXszhowJokMaRS/T317zmtfkXigFzXmSspFZ3b1B/kIBnru+PRvGIn5JlpQba4h7OjTR19rDGEyGMCPMtVFLEsEK6cjpqArXeO523XXXfMyEEYbU/jOCPVt15F90gqJD4DgI8l8QyjH8tthY2dqWvczi1wZ1Jcr9YxsASNBueBYJsn8VLNS8IzFOC2452z5tXMKzV2a2xx575HXh5HIEYQETWkBoY4Cn4rjTSMepZh3xOnfXZwE0JxiaiHTWhiESQhZVe02QghECYyPtYkgmFjMvE5B7N1ZtP8+QfJ2Op/McFYeCUy45pEww/BCYmL57vs8+++RqiD0P6rbC9X+KW58KgrGIXzgH8TtHnnBZweoKn7dTn/FhBLoHjNsUZ09zh7Hk73UKkTHT9pcHbw+LvrX/FBRoC6txgooOVHQIHI4g/wUj1ax6VaGqph9hICZe20rJ7p+HAaB+3mY8YpjJCy6TrUXBAs9YQDhFEpA4Z5wtfOn3yFTyk0XPuckYRwhjJNmN0e6X0SjEschyP2PBCKkyYBlY5XtY5Slb1FMPhDGMETKzfIMyuaZzLJ4TmVuiaHGDJEYTI4r8XUW85o651sfbHoP4nTclhTphPjKm+hgfRVANJfIZE4l94N9UgPI98nvhkKakSZI/tYzhVE6GbKv9Fx7ou+tfdAicDkH+C0ZVzWpbTb+uYxYllv+stz9daQYAT4CiYoGuan2b+rWTghleaeFI3k5a9NJ38mjkCfAiQSVG2gt92uoE926Mdr+It9xpbZ6ghtQ15JEvISGVpywfgWIlW17Wf4Lx9Le6PeX7wD2h1PBYqypjkidbvHfure8tVhjUebpCE6Rvce4+MeYxiN/cpU4JTTE6eOtDm3kxyhA/w0dyXyrRND7mvOfBe9L98HvPS1MHR2NGCWFU2Nmxb+2/jn5yEOqSohkPjMRE6pH5Px1WH3OsINTVrCaIi5Zr+i2SttaUfLOaE1ymMQB4Q6R7GdnlxTst/ggTaaWx93uLfzn3QhwTLGhpEUJS4sNV6kJfkKUtsOVSqz4g+RevZZ5AEIwji3YV5KVI+JIxrrxMQxjNYYqK1ZjtfL/yla/krzpDIv2uaGylRMTi79I8KYZMkF+qJNEiep7Eb4x5+zoVMnA9+0PDOZRDhI8c3ZeyciAZlfJRdEpct2egrf8C9YRRIoeiTM5t61XTrn+MdWpOsQS6rUNgZP43I8h/gWizXKt2FZOM5mFVHbDaMdQAsMA/6lGPyhcJi2VVb36eqsU8jbEwABIl8adjJJAw04LtHMTTZeqnXIBpwMsidU8j/TsfJLwI6V8yJBKqSvYDc1XWvAVdoyTVFHIzisTl2lMIZBoYA/eEsVzX1KlK9ve9CLpo+Hmfn5NRg/jI7cI+cha6Eu8YxC+MZZOhr33ta7liImw1DeQJUWJI/YxjrZnN+1TeaG5LEpXtr1RSMqm8AGpHnZFXhBwPxvWTnvSkXrX/Vbv+UdgYE2UjnmFSVyJY1/48sD6C/BeIvjWrJFOLqIS1rv3p16oBYJFFMrwDi3bZK0YOFpQiefM8ZR3ziNLinhrxpHuVfk+ut2hSF6aB4/FSp2n3e4Mb3CC/vro8BH0AJLQhXpJxCmGMgaZM/y5gWFEtuvbcb4JSUSqCe1OHKtnfuZsnPMsESox5wFs1toxIkjdi61qNMAbxCzFIhkvbT3ch3zYgWMYMVcbmPEiakpgSZY0RlUaFiPki1KByxPu7gPHls/o76D1QhPWra0c/5O25kw9QF9fXp6BL+/PAhog6/wUiWcLlmlWLqQlcl+SH1NYShvYBYCCJQfKakLRjpM8hf3HNoroipmgHN3XQSsIsvBZEC1mShtPnJdkhXaEZi9mQ/dET1Pkrh2JMDPFWUla/+G25pEoPAA19ZLQbDyoBMqrrg9AXvtO1U06GILXznabXATDkzjzzzFxFqeoOiOwYQcnA4umaV8ZOSdujH/3o3DjisRon1QgkbvcW+aR4dtf7PC3xm2vmrJ4TQk+Iv9w6eSi6VquojqjauKcJqYmQ/xtL24tLBEy5CSnzX+7MGB39GEVUAnkAqQdBePzdEOS/pE1/yparBVyMWTON1ZjkNysDQEMW4yvWLBZMZpcsqcafx6lrmYWdtLjddtvlmcpq/PWiJ1lrgUrmLRJ/USkgizLexLGnbfdb1cipKxBWOekPIepTYAEXBoHU4W4skKTbYq9NSO18p+01wAhjzKl3r4JnR8gsZbOLSYPYsZ4PZG4GuOREhpIqD8Y248k42pOga0nttMTvPDRtQtIMTKrISujjIYym1E+YzfgJEzBaPE+UhDanJ8Fn/N0a2FUd9dwE6fdDkP+CkWpWmyxXsThNUkiObc0yVjOGGgA20uHVW4TUQ/PqeHup7z85N3kiFnjEXzawqr6Ht424yMW6MzrmULgWhp17PYQIxa3LMX+EKD4sOU3nOrFU54tQxgJiHJpYhRxd77RzmmIihk09qPOOEWibx8v79yoaJp5JhkHXjYamJX6GB9Izv6kOKyFpjarifKlAzpenn0hbBv8hhxySVzUVEwurnJ4+Hf2q1NFAPwT5LwmaLFddx8S8GQBrHUMMAIs4D45nmLKmKQJ16KOsWOwYbhQA/dKHemgSySgAznWIBC5uLUGK15U2dEmdCc0f+QDkYzKyhZjhM62CZCwt/E3lX02QTzFtO19ka+xJxW1eYh8wlBhjEuyKZYmzJH7KDQOVMUOJGjqu8wIypqJRVRifWjjLtygm4ElMNrflLaReAkWnh4GK3Ns6+nVRRwP9sPb04xUGi5AEPwk5Y3psayUJ0I5uNmAhde+55545SdgEZaykNwQqYU8mNgNjUe1+GTOukfeVIOYqSdRCK49BiANB6sA2RgMU52qhF0rpi2I732li2e4/AiIzjyWNMxLF+Rlhwj5djjst8Ytt69vBSCN7LzvxMyxVVpgDyu+EVO5yl7tskHnPOJZQaO5VdQdsK091f7tsax7ojyD/JUfaSauqacZaRpsBkDqh8aQkadmOlWdtIdL3XX/5MbZkBeSHaC1MQzP2Uw6BxE65CH2h6QsCKpJ/ImVxbdduzHhQjIQxehQgAMbUEPLn5Vr4p+lVQeVQPogox8iCB+Mvs1/4R65EF8NkWuKXVGp/DuOB+MfazngWYDST4MX2hdOQPvJvSviUd5I2UyqjTa1JbX+haVvzQH8E+S8xeEYmvwdsrMVtLRgAaW9zErfsbxUSySMxjuRJmd/KmKbprFcE71+ZGY9xKCyEiCyVF/YdC7J+Me5PDSDHiiMniLt63xjKB0NDWGGI587Tnbadb2qzPFYejHkjf8NYqqjpknsxDfGnkAVDVNKkUMwYmxrNAsibkaKiQnLpbrvtllc/dFEoGId77bVX3lCo3Myqa9vfwPgI8l9iSJTxoMlGDnQzACyo4ogak1hYeNNl2dbvJSXJ+C/vLjcUiAJ5MzqG7ig2bbtfMmiR/OUBUD2K9evCIN7TNYGtzXsfYpSmdr6udahULxxmrHmBqQvjtEDiJH8efxc1Yxrip1qoLCBfq/SQMLqMVTyuUckriZ9iJoFPGaw8jT73Tryf4XnooYcOavsbu/SNj+WbbYEcZFl1x7pYTVsGtVYMAKVG9mRXJiXJqLhRSxneb8HlWUjsGgMIFXlY0IeClDq03S9PGikmBYThqHxR3N9+EKRlMrkENkrFtKRAPRhC/sIF1ALXOhTGmDfadI/7KhES7exM1yUBcRriN0/loWiC47NNNe+LBGUnxdipEvvvv3/upQ/ZT0DYSehSsm3Zk+/a9jcwLoL8lxQvetGLcs/tyU9+8qJPZUXA4ot4ebnGrcsCLpmLNM5YSG19p0HqT08eHXo8HqfyvCHtfsWpjQFCShCPZUCqxxfq0KlN2GNapJh9XRvdJghrSAQb2s4XeSBOpDF0Y5siKCFUI3khQkSzJH4JckJ5Qnoy1oeM36zBw5f3oMkQlYzyyCiaNhdBm2fGogTmIW1/Q/4fF0H+SwgeiFp0sf5ljQEuE3i6YpESkXgoCFQsuC1r3mKjeQvl4JRTTsk9smmBuJGBWO4Q6Z6UKgN+SLtffQZ8Z3E3w1SN8IIXvCBvhWoRH0NJMkeHtPWdtp0vIiBBSzAbo/pFuSKDkSHxkIc8pFXKnob4GRg8fpI/shury+JYkOxIBRMK80xIjvXq2tyoDY4p9i8Jt7zjZpe2v8YvMB6C/JcQttq0MOyyyy6LPpUVAbI2siX1i5/KfFd/3sUAYFxRV3jMEq+qNgHqA+Qhli1OiiSGgBwuPopg+yB5kXU9/seEsIRz7FtuxfMVox+acyDLXOOdafIFEhhX5o75ovdB01710xB/ykNBep5rTZeG9PmfFTwjxtQzxDDTrZK3r9Rx7M6Cu+66a37/bS5URGr72zXzvwhhCeGsUAb6Ich/Tug6QUmQWo/aRGOsRKbVDL349cUnHSJ+IAV3NQD8Tca6LWYRmh4A01YAyNymPrjfaSvgPpCk51r6hg5ct8/OY3c/8WDljX2T1KZp55vyKXii7tk0cI/lezgPWettexMMJX5KB1JLCai2mm4zMuaJ1BtfnwrXJa4/y6oD85P8L/+kXNLaN/OfUqeMVc5EcavfSA7shiD/GaPvBFUOYxHXVzzQDAuWHccQfdmTrDIAeHo8TwaDVq/irsmzufGNb5znAGgYI8lpWpDaxdn1GhgC5WsS6tI2q30Mj+LWtLOChbtvsl9q5zu0tt89873T9AZIkDNA5dEyu+06hhK/pjbHH3983noY6TPolqVHv/JP4Q7lkp4TzobWxvPYLdR3GdMqT74t8z/t+AfUGqG+qrbAgXZEe98Zo2mClrPCLfa6fJHGontVMySvvelNb8pl1Lr4cTIAkDyvXl2/ZDyeF4+PQaBzYmqnq0MZwmYcIAQ/DwVJnMFHVmYI9CVKIQxzQHJcn6x40j9iExuflYfJiELifRP2XAuPfUg7XwYcojIuxR7xQ1U4MWfPZlvv/KHEb36q1uFZSyRclufZvPjqV7+ae9Bq9CleDM15lhl6FoQ0VaDYSKuoArUZdul+uYdV+wIUkwOjGVAzwvOfIdIErduLuhwCeNWrXpV7qpJiAs0e1etf//p8YS5u09tkADC41IWrN7Yop938GARFaV79v6Q93n/RyxgCnp4kKvJ/35a9SMZCyHDp81lJf8i5vMPfmFCqZ8z7dPabpp2vz7ofnptpy+KEK7Rhvu9975uXes6C+B3fsyxrXmLfMhB/2mpXZQvDR3KjhGKG6SL6C/hu40oZqcr8LxuuzlFIIBF6WzXMtM/uWkCQ/wzRZ4JasEn+LPG+GdRrDYiN/Evi7rJwMQAsfkhduZJ/UwzErC0yRePM8cSAvU8FwDTxc8dG4AhkSDKSz5oXfdr9yoAvt/mdBfm7tj5Z4Kk0UClkXwjFqPVGVNOoGZQ1qo5kQW1im4zGIcRvXglN2D5aDgEDY1qVYqx16Nhjj82VE9fOANZGOG0AtQgwyDVTetnLXrbBFtNyJJRBlu+HMEUKmXbd6jdQjyD/GaLPBOWBkjZ1zwpkreOmZI2ULwmoy/70Nn6hGCgTo7oopRT3rCp9k+xElkS8FqJie9y+0EcAEfjetk1MypCHwLvuU/PPy+RZzzLjn+cocatPQqprYNT2befr3spC933TlJxJvFO77pncYYcdGo2IIcRP4Tn55JOz0047Lb9vPrfoxD7z/XWve112wgkn5IYPY1m3PP9fBljrGJISdotIG/nY2bBs3Cvp1biqTiHws9+H5N+OIP8Zg8zZZYLqTKcESEwz0Awemy51O++8c560ZUFoy6rXCU4uhcYlJFnZ12RZBkQVKUt8cnyevwqAvsRdPFeGB/L7zGc+0+uzqUa/7hzr4NxnmfEvL6IPgaR2vq6lb8Kb+0Wu5rEOhe+XeIlUJPg1eeNDiN88UqHDM3WvZ1Ei1weMVsamnRyNO2/ZdtOMWMmHywLKFinf2lcVMmXYlytvkgJwj3vcI3+OywpBbPXbHUH+M87wt5CUF+7yBJWg5aGMDP9+QOjKhpAdb76pSY8yMVvZbrXVVvnYa3hDguat1WXk89q33377fCESKx0KpCMW7xz7Zu87x77tfiXizTLjn0fZJ9kvtfPtK/kjYPXxQhlDG+KQ4iV5egZt1iPUMybxC6/IWheaUCJHzl4kNOnRHZTRJJHPNta6Orpu85mh7FlYFsju9/zZZ6OINrXrk5/8ZL65UGz1OxxB/nPK8LeAUwGqJqh4nEVDEk6gH0jBDAAyoMx6SWV13irpU5UFGZ78zHtgONjspg7umcUTgVhwpvFyGCeSDvtARrZchT47/ZHXEfS0DYuqwHihsvQhfws5latvxYNnCBFPU9pnjwz3ntTfFHIYQvyOrTpHDJqS12RYzBqqC4466qg8fChUxNN/5CMfmYdLEhhf5qDwx7JA2M18NY59QqbuVzGrP7b67Y8g/zll+KfFpQyLNFlZl7lFxwhXKixwYvT6susAx4soZ8hL4LOwp8Y5kgDJoOLXYtdNGfVUHMaF+8rDGwLJVbL/SZl9kvHIx+TyPu1+qQzm3yyS/lJb36496RkgCKfvtrvUAsaWMRvacMa91QsCMTS1E+5L/OaK+0jqp2hInmtrEjQrMMaUvCJPeQdq9T0LvPyqOUiNlPg3y2qQPjB+zld3TeGTrv3+EyKrfziC/EdG3xIU23p6aPWYDwwHgpDMpFEPLxlxFA0wsjH5mMoiKcuCKZtfcpaSr7ZOgDbDoRKkxMwhSGVq4rF9yvfEkMWpxb67wHW69lkk/fEwGU5dy/xSO9/US6ELjI0xsvAP9eYY1aRvzXVk3Y9F/BIQzR8hJARLPRpjc6G+cB5CIiR+810vAQl0bTX7copS8uOyAPkzxMuxej+3bbQUWf3DEeS/wAx/i5yNPh760Icu5e5eKw28ZEmTyiXFNcnGSfpmHNjdzgIvPEDqtxAKGSCmtlbAFnjqDLJQKdA3dl8M/agD55H2UTbkN3Qlfx4ewiV3jw1qgkY9XWv1xZjlKxjvomfXBOOjEc3QGnT3UhyZ9/ioRz2q9hh9id+ckj2vnA/JCkcsIrGPsnX44Yfn12heyBWiPnS5J1QbTZaEsfqUkM4SjKgHPehB+VpYfP6ERiksVVn/kdU/PYL8RwR5U4JNFaomq+xvJBDb9o4LsU3JQKRY+RW8wOT926VMZzGbJ1FbSORd9wJQEqgCwH1mAFBs+kJ8k4LAs+3zeWST2uN2gYVzFtKuY3aN3ZPuSe/GLSVZUlv8vg5CG5K3xM/7NBEqZ/b7vAS/OkLvS/yqJ6hGX/nKV/JKE3kY84a56RzMvVSNIoel7z4H1iDjjFiXBXIU7NpXtXOfUsCyehNZ/dMjyH/GiX5Nk5X0jAx4q4Fxgcx5RIhHbLbN0+5qAEgwlDwmd+Ad73jHoE2AlK1JTNRwpiuoFBb8rol/lKSxyd+1SprsSv5kdwqEUIzabAl3fnfEEUfktedCYOVxRkgMBl5/XziW4/PGNWqq61Pfl/gllYmpMwB42H0TF6cFSZzRpAkY9cR4Mm6FrIaAI0IVMVbJMF40OEbGVey/jFT3H1n94yLIf8aJfglqWYuTNTUF6bKVaGAYeDfuB0JneEl0GsMAECZgzCGQtmPWyfiIkCSOTLtA2IL3L+GuS74A8idTdz1+ny59XUJUCJbBhWSQq/NnwKhocR2I3zNB6vXsuCZZ86ohhM6G7PqnzA1B84arEt76En8yJrSg9W/EP+S8hsK5UjHE9Y2lmnib4thzYtqWvO6LeT5NBcuY8Oy5b57TujU0svrHRZD/SGgqF6tK9JOsoxZbi8vAbLyllEypnanFTo99uwA2NczpagBQa+wkSOkhBfeFzXp4cQyAPuEM19MlVusakEef/gBjZvorg5NvUc7yR1rOTQUFEpNASMq2VwNjmMFS3qGxC/TJkIyZEh6nJX5zRG8HlTjKLZV79t2TYBqcf/75eZMeDoU8IRtQiYunlrzOT+KeMS6qT+Yrb56y5BheVbkfrsVxNczpmosxa1gL5ZTIyRlri/RAPWJXv5FQ1aWqKSuVvCVZZ0iv80AzLIZkUgtg6mGusxuDS7KWmL2Fpq48q7gbIANA7LkqsYv8n6oHqDp92s/yhJEc6V+1QZfmMMV2v20d9hJBW0zH6hrJkDCWXWLMEsqMSV02tvEU8nKecgAs+K5LVUVfkvU5cWHVFIwL90TSZ9FI6UP8SSnyfs/nPD1NDsGpp56ah3ecv2Tg4i6IyF2mvvdwKMyjF7/4xesqSVzfq1/96jxpkvLFWDPOEh81uCrCcZGo8ljVAouG7ojGWji03LkvwbNLLS3u6Cdk4H5FGKAfwvMfAR4gFnQdZKsWFxCWtngxAlqW/b1XE0iZJGCLXVGmZQiQFmXNWyCbWuB2UQC8R5mSeygJy8LbB4jRMbqW/vVp9+u4wgtjxv0ZEl02U0I6iEmNftt7jR2SY2gxbNqqZcqggvzXf/1XbnghBUQgfMAAoFT0JX7kq20sJa+4i9ysYcysCfIhnIPdJeWsVG1/7HqUGPp7IvgExoCERMehpBgHYyN0QCkownvNcWtX1x4Ss4S5YE1k2NTtp9G0RXqgH4L851DbX27b6yFHKiZyYFzwIm0EI6ZeJU/z5PT4RwSSzhhu0xgA1AMVBI5HzemTwZ8a+IjntoWNhrT7RdRjkj+vq0uym3bV0NRYpwhqjDEWCugTyyZ5i8dLKvQsIXX9EGSGM45SUmFX4udta9Ur4dAxhlQb9AUiF7J44QtfmJ+nUIiKIYZHVS5QKmflyQsdIe2i7O/69TZw7saSSsMgUiXCKCqDgcYItmviMgD5c46q2mn33SI90Iwg/xHQ1tazHPcka1ED6mKTgWHg2YjRQlNLWMlge+21V04E7kVT1n0XA0BM2KLFexV37lMB4LMIVfyy7JlVwaJO/u+S9e+9POOhmxIVgWQsyl3a+iJ/hpeX79aQpu4ckLKkSUmUfcrnjLGae+cl/FIMRQgbkLHdq8MOOyzPP2gjfudMDXKuyFJHyFlDxYgtbW0yZU4ySmXyd00qTMZBeb65bome4v3CL/JcGAxVxozvMv/cgyGVK2ODGsYA8lz2dbKqygQD9QjyHwHPfvazK3/PSi/X9luMyVTh9Y8PBErSr/OaiiCJ87AoBJQCC3AdQXUxAMizMpHFWnmyfcBDTtsTd31/l3a/CMV7xvD+ecPmc5s3LNlMeIChIO6uxA+h7b333nlsuQyxevKz56QPSMPOKZUQ1jWzce8kZNYpJQjPvEE2DAhGw9B2wl1hjCQ4MjaMKcn6iU98Yh6b7wPXZi5WkT/S33fffbPnPve5uZHhHtSB9y9E0qSCzRMMaaV85UqVtpAQ1SbQHUH+UyJJUVXwEGpsUoQ6VQ+rRJ7AuPdBWRQptKvXZpFHULxC3v8b3vCG2lhjFwNAHJbKI3mtjxfC++LxKHNr2pmwb7tf5ztWj39Z+Sl5rAkkbJ63XgaMqxNPPDEnOUmHOiwWSRjh6OSnhWufZC1GEk9dbLtqzwD3xjXz4h/xiEfk9+61r33tBps+CRsgfTkXDIUxSui6brVrPOWg2NXO/RzyvamtcNlodSyePgPJ+JvfBx98cG3HR56/8FXfLadnBWuje8cAKELFDsO+aV6E9N8dQf5Tok2KKntdPEzZ3dHOdzwgbHI7Eu2SoCWhihfqXogtWvTtgGbhECeu2w63iwHgOBKsHDslnHWBzH/HLS94VWDcmD9tjYtSG94x2vzysn1vmyQtd4F8L2Yun0GYwHgwsoxf8i4ZwMhJXgIS7wpSNgOakVeVEZ6IXwiF8kHqt9VuChOk51H8m1FiHkgMrUqsGxPi+Vry6hsgJKVen8owTflgneyfDADHRuxyUpB7046SvGoKyZh9IYbCM2aMPENlMJaaEBv9dEeQ/xx7+VuQqASxde+4QJgWfIt4W/UEj0smtG5p5F7yKELgqVoked4pUWyIAWDR1TaYqiDbuirJqu64kvmQUZ1Baf7wrJ27agbeb52hkqCl8RjkLymsLdnP2JK0i5v48Ep52OY9slLeCs7dMRkJXQnQdfDUjX/q2e/4jD+JlmXiT56x/6vTF4ogtzOaSMSUEwZEnxLNIQmo2knbCIghZI459+JWu0ORxq04B/1br4QizCek3lQeKnTiPi1L4p81kpFXTqBt2945NvrpjiD/KZG2nizHmKt6+ZOlLUDilIFxwLtWqoRw2rZVtTAedNBBuXTNC1TS9ZznPGddjT2P1c5o7h2SYRgMMQDUwlvkZVgrAeySyJcWYJ4qabjozTmOZkAywjUuspAjLcRXtU10OaGwzUDoAkZMW2+B1M43kT8vXR6EsjWka6wZEORvhpfExa67/SF4bZqRppgw4jOuRx55ZH58hhbiR2BF4k9gjFEAGB0kcPfO88k4mgXSvdcW2HlShMyJMZJ8kbutpSUyAmPGXBXb9zffab6QwXnPfjZfm3bIM57miuP02XFyVrBGMiTLHQj7rLeBZgT5j9BJSoOJsgRZ1cvfg+jh77O9aaAeCNKYWri6PPSMhNRrntcnMU8M2u8SxJ4ZAGR1JZkpR6OvAYAobSzD89NwqEsmNdVCoxNzDUlZyM09pO86ye4PfOAD120s4/vFzJuOzdCxiHY1QOqIzHU2Jfuldr6azaSseqqYPAryuvOWfCbuTgXg0TEMusS6HRvxM3Zs25y8ZiqJl4Q1VQOu0ZhUbbHrGEI8vt9mTmLiqVvemHCOEnpJ/O6jeyX3YegOhVVA/Dr+HXDAAbnBy1A99NBDc6PR2PseSgPjVmMraos6/7aQDa+ZetMnXDUrSGo1d6uk/67rbaAZ0eGvBn06SaWNJzzs5GIPUZmMkIPFh0UbjX3GgYWfcWaB7TKmaTtaTWF4SSmrmzFAfk6Ls9/z0iw8SqB4zsrJyqVibZ0AzQP3W0a7+YEA25B2s5Og5t+UIiRKti5noctVkOtgsa4rk0N0CImRM3Qnui5tfXmhyLcoyxqfZDC4BqSVmiEhQ+fWBbx6IQL3IPXsR1IMApU2wiCMiSqPv6gapDCDsZxFYh9DzL1mtDFI9C1oKwMeAmPXVFEiy78vkvFKORH7r6qgmCfcH4qOZ1CYrvhcdVlvA+0Iz78GfTpJJXUA6jaeUAKGJELyHw8pMx/xlOOcVbDLG2kaGfKm1VgjRARa7s9v8WEUeDm+PICqTPw2BUAeApImX1aVutV5Pb4T6ernjlCrys8kvfn+psoCSpPrdW5DQb0oEnkV5CIwrOpirsiZ3K8/AaVFpnsXIDnPjuS4pJgZa2oCcqUCuD7/ryJ+eQLuM/WD8eA4YxO/79BJT0jGeSjbE5qYBfGPDSEk+SNI1j20djFclgHWSvkKjMYqxEY/0yE8/x7le8VOUiZcH3WAfEx265PZHGiGsRSzNbaML/eExFlFApAWY/dIfBMs0hrByFJHpmXolkbCJ18zABBI2StqUwCULvE6ybLOoW0rVmV8EhAZC/pC1CWk+V4yu8URuVYlzpG2ScPTJP1RDVLlQBUSqTN0ErEaK1Utxk7YgOEsB8A9UnrWpRyTQSZ2rZyPt57ke88b9UBppf8brypC930kcYQsXFC3099Q8JL1iECevoOh6JpnWS44BhhPlC+hL/82JxlFEk6N0bIok87JvfXcjLU/ReAfWO5ZuqTleykTvI86oPbbYjXrBiJrCRZZXjKZk5dA1rcYW9SqkpYkmzHK1BAnWFwYZU19+Xmz4raIR8igytNuUgCcJ28QCZOwu+zKx6t1zLqcg6JxIjSQkr+qgLinafTjs03JfknRIEcXEwTFvVU+HHjggblMz6BJ5N8G91K3RsrMwx/+8HWESg1hiCkdZFQgLuND+fFzgmQ3SYbixk95ylNGJX7f5/iMxi9/+cv59Sjdcy+Wlfg5LghfuZ9nhKGK7Hfbbbc8AVJ2vfm7LMSfnk1jayOjwPgIz39g+V5XdSB5RmRf2c6B8cG7JSMjHwqAZDn3B9kU2776t3Ir8mZqFoI0LYTItgnIT0tgVQLCBAhRklFxsW9SAFIewVFHHZXvAfDkJz+5MeHM+0madgxEMHW7P5qrjBclWlXKBVA5htY/IzrScFOJFc83tfNN2H///TdItmTIuE9tpX1IXIyeocaQLr6fYU7CLx6focXL99wZL/0DzAHjoaxuzK14zSuJoM5B5rk8ji4tjxcB40LxMWaMKTkr1iRETyErJrouKyg+di1ksNcpeoFhiNGsQCon4cUXu2dJerLge4BkcDfBYpvI30IkPq3UKDA78AJtCcsD492IF5PMEVfy8EmzSp8sfEIGvHgk0VQGlYCs9V9HLpQciYBlcmkyAJAZj5Ukzqu1zXBTG2LGC6PRPBSHTd+DjB1b2Mk1iIUr+TPHqsodjQHjgLrRt76ckeMZSGGSMpCgsECT8UQeJ997rtriyRZ542PMKGvF8AAyEzLRNdM1ITPvf8ELXpA36RGSOe644/KGRCTjsnE2DYy1HvmIlJHj3i2rFG1+OE9qizEzVjodmudt5ZrLSP6UCWE5z0NgPAT510DcntdR9O6L5STHHHNM4+eLiU+IwqLb1qAiMA6MvU5gjC5KAI8TOXjxPBkJSqEoMuLJPKGu4RhkomYbGTquhVbeQJFUmwwAMraFmHogltmUAOq7vFfJlh4R5p92rbxo35vySoQ+EKwFssqIcS48eKTYl/xTW9+6vAMJlMauaQc/hhhQMtqgGiDl0hSVhNTAxziKqxdb2zo//zc27qn7U9X2dwhSTwKtbxmMPH1SdNveEfOG+0/W90pxfM4GxWjZ5Pw+UPrKoCX9B/mPiyD/GjSVk5D+LMB1sGNfMQPVxPW7kK3mB4uzLHteMQUAeUpKQwoWkWkXEvdTDgEJX+Z5OaGsyQDw3eRYXr1jSJRrytbnLdt7wELIo9M/wL8pAQwIHeQQkvBAFfknEnUefb1Vmf4Uj2L4pAiKggTIOqPCdQoLuMY69SBBTbowDCOheJ51nfvAmHoxfEjZO+644yhlaowluQyI37/dM4Zj1x335gEGj/mF8OWRODdkz8mQCLoa1huGZYr7DylhDNRj5c+OGQOJl0tJ2hIC99hjj3X/TvF+DU4C8wevQb0wsuSpW9DFhy3m03Z3oyS41+LTvE6JacUGTk0GAILzOwYmL40kXgehCnFP7y1uFGXx9zff7Ri8dKGIsrTrPJCzioO+cI6OVyWfp3a+aufrIETiu6v68BeBvBlpvHqJsV2IH3SkExpAdtSCOiOlDyQVkviNpTCDezXLFsBD4/juDQPQ3DHHV0ocf4j0L3k04v7jYjlTU1d4QmBRckQ2ZLhUqhRYDHid4u1i9khfDBpxtG2L2+W4EgH1EJDJj8CK2fl1VQDIVNwYcQkBNBEz8pSgqN497eTnO6gbyRBl3PhdXbtfxsGQjH8eZV1P/9TO16ZEVdDxD5Ga+02tlxkRwjCM7OJul03E71o11JF8xwiTTDkt8cuJUEkgzOK75RCoVlgG4hfmcW9ds4RVHjFjUyWFOc1oWo3ED+aPe8NADIyHIP859PO3eI8VgwwMB6+bnKx9r4VdiZx4NCWgS/vdOiA27VbJ84wKXmNxQ5I6A8ACLuvfe8W667YTBp6zpMUkQydPXCdAUq/5JUSgNr7qWkj/iLy8/WsTGEbGqCqb3XfoaFds51v+O6JCnMIvdbCoq6BgYMixSc9UE/E7L2qLODyVQJJn1Tl0Rdo+lnfJWDHWSjuN6yJL98TxhUHcc0mfDACJjIxNErh/r7QEviGg0qW4f2A8BPkPRNf+0rxLXtmyJQitZSASMXvlYryK1KFxmi54jkl2JoHz0EjxiLPNAGAY8i555QyAOnL2eYmJQghi6KCjHAmYgmBxtEiSqqt6syNhpNnH+5cgyGCq6uyH+BktdUmsFmole039+53P8ccfn0vXxi6pA03EL8ygna9zE/KQgDcNQfMm9b2XwyMbHul7jscsD+wD9z/tO6EduH8LJfHuZb1LEGXkrdQEviFICaVdO2QGuiECKAPRtb+0hdrCFlg+kNxl0/NMKQCS6sjj+gUMTezijfFihQAQWzFrvS4HAMEpGVT+x1t2TlXgidprQPUIEpTDQDkw75CGv/u88sVyH39JcN6DVJva9FZl+muUUwaj1jNQ1c4X6TtHKktdu1/KAOOFgaRaIqkLTcTPqGFUIQMGzzTbtypPpND4v3vCSFlUP3vXLOyT6vHTRlVaOwuprFY5vw88k6lqJDAOgvxnkBCY4IGWLV3sfBZYPvCKkahsednzjLq03ewQD9DnyLGkabL89ttvvy57vc4A4EGbL0jTZ4tJb0UoY9NZThmj46beEUlZqmv3i6j93KfNL2JkIJUNodTOVxZ2ldfNY3WdTaV9DBdkR81IyY5NxM+IRtZyLBgLQ+Vuhonzkz9hTIwhr3IR8j4Z3ziaC4whRhY1gxG3FuT8PrCGUnwYvfJr6kDFM69is592BPnPECn5Ksh/+YGAyb6Sx0jAYqwS8SwgQ8iBty82q2GNUJBwgFBDkwGglAw5+26Lf1VDHL9HkEiMTK7dMAmcV//oRz86L6kT95dsV+wK6PgSHftk/DuXqmQ/Xj9U5bE4F8Rq34W6jW3It8ZYWWIqc6wjfqQoJKOdLsNGrkZT8mAdHEcognHFUHJ+DKdpcgWGxvFJ+crztCRO9fjm3lqT8/sgraFUrapmaX32WQn8H4L8ZwjeCiu1bSOXQD1Y+khIhcU8ynxIyqR7pC8xEJEhO15s3y1xecyaDekFgMDE22WzI586A0DS2yte8Yq8RM6iVd5G13sk7qm9pywYFwTN05Ht7t++13mXWwLzmvvE/PXnr7pmRi0vtWqLX96586jrZon0tOBlZJG1m4ifwmBjHmE1RoJytiG5Mwwh4RAGEwXGvZznjnsMMyEUXj6SIuNTh1I9/qLyC1YSjJNxs6ZWza2mfVYoeYENEeQ/Q5iovMaw5ocBKYibWzh5vBLaeEj2gZ/1mPIwEBzvFHEjWgs2b6KPJ4HINJ6xAPE8EaoFifdaZQD43S677JJvQysBUDii2OLW3yWD8WAtbo5d7hFQ1+4XWZNFkWybx4soJSeW8wOcv3CARLuq5DkkTkqvOr7P2mzHMTVFQuR1xK8KgGpCGkf6Xdovl8HQYYzwtIV2nFdTP4VZxPERvvGKOP50MFcYSynZtYg++6wE/oEg/xnCRCVTBoYB6Vs4kZnEMGV0XkiCDMgQGKOpSxky5snMvETSOw8a4Uq2s9DwQlUJ9PHY9L6X1IaMUiKgn6sMAJ47A8AeBGRLOwKWv4tsrd7b4sb7L3rEiFLyIgOmuIOecUtJf23JbZLrHLPs3aca87Lkr1xOQpZrqWr1mzL7KRZi9v5fR/zuu/I/Pyvj60vYpHW5G/IiVFPIkJfUOY+KG0aLmHM5jm+u1vVLCHRD2rhryC6sQf4bIsh/RkAgFoCI9w+H2DV4cHn6CCd1NxOPl7hFPvZ73c3UwY8BJC9hjtQISEg8HqmSrG2Lqq3ttttu26sWHCkiAEmAlATJe4itygBAuhQCsrfv9N7i9/i3EIKmNOrdi54xlYRhYfyGkr/YvfMqe/68e2GsohoBjDKkW1XahwRl6VMStCYmudcRv3G1aZZrKFYBdIHvYfQ4F2CkKdsbkiMwTRyfQco446lGHH88WEu1sqYGFbtzdtmFNbAhgvwHoEtGqTpoqNtmNdCM1K2OXJsWT6SSto7laSJLsipC4uGlvubuyVAvjzSNTJFy+Rg8ciVmPFMePJKSvIbwuu4X731yCZC/XACftQthlQHAoJEoiMyQoVyEIqgSSFw4wXUXSY6h4XOk7+Rx+rtXl4x/5I/EioqD67bwMoTK3q4EPuNfZVSIt7suHjDDoY749fansFjMGT59yi09j/Ik3D/3jtLStaRxCBhRKnl8b4rjk/MZohHHnw1SDovGR56Ztl1YrReen/D6qxHk3wN9MkoZCCZfm1UaqIaFFXFpa1sFhIFIvHiUjABhFvso8BaRn8WiaDx0gZa1PLkmqRlhkeV1b0RYkut42GLTZY+4CpJANZORqX/66afnsWGfrTIAED6yRopIvLh3AIhjH3nkkfnCV9whULtX58aAMkcTEHqXpD/KVVny51Uj5LJBq8UuGb/4PcXxTJ34NLuqIn6GnGdIYp73uI6u5Inskb64rvGiFjCaZgHnbuwQforjcwDkPyD+Zdr0ZzUiefDW1iL5g/njWZALU3QgKHjmSGT8b4gg/x7ok1FqgsqU7rpVbGB9WMwttl3qncn9FnwvD7rFOeUHINOUH9C2ADAiEJz71lRZ4Li8fsag70ZklADkJRTAEGgjL/Ni5513zmPTDBbHkgSHRMsGgLwRFQDkf4ZDUWVgECBMhg/CT94uD5/kTIHi/SQpXsZ/W4zUoqnKolgt4Hc8LmpD8dpI3a6bvF7eKEmslXHjvvDEq4hfYqEwCFKlgtT1N6jKIWCEMy5cq+N3GfchoGykenyepTi+kIvxiTj+/EBdkexrbS3Ds+2ZSts7JzDQI+O/GkH+HdE3o9T755VZvBqhUY3YcBevHVFJUEOWvEgkyPP3s0VbfgASkh/g9wisKj9AgphjFePkVeAR6+XPE+HtIVO7+8mul5AkDEEar6rTLwIha3KDkBG7hDieq+suGwCpAkAXQBUARaLleYqV+27JgQmS3Bgp4tGp3JQSQqlAaHXb8PL6zeviFryMCIRbbOfLIHDeCFCMu3wMyobFWv8B97FM/K5N+INRYIHu6rG7T4wmXh3Dzlh3UVz6wHmmOD4DBbkwTFJoI+L4i4E1tYr8I+O/P4L8O6JvRqnJWCWDBtphsbXodtl7HoHYhc3DzTNAiggHIfHQvJBE2vccSSIKJOaFwFPJmUx2RNuWOFjexc4xfJ+FiUxPBpeo1zX2zFihcCBLBgBPH1mXDQCkL+FJCSBjIHm51AIEiBCRdCJR50kST0l64JgWRDH9OvL3ncakuJsd6b7czle+A5J3vkWPW9hEmZ5xppbxyMrE7zxJtZQM76lqIVxGyrUQBqHO9Mm16BPHZzDqpZDi+OYJwzHi+IuHZ4raU0Zk/PdHkH9H9Mko5X2ajOH5DwOSJsF3IYRnPetZ+dgjTV44okc+yDx5ZxZt98+Ld+74vEdJavIDeI9IyMKfOs51AVJGasgVUZL8ncs+++yTL1Bi7gwTx2/LOkfOEgFdhwx+OQD6GpQNAKVvauVtgStMkOR8552+07xzzUgWaRXb/aY4PgKtM66MA4MilVEibWNWbOdLBaA0pDbIRTWAjO/vtlA2rmXil6DIG+NBI/42r12ZJ4OKwcBIct2+c4yWvHVxfIZFxPGXD+a256O4syVExn9/BPnPACRoi22Q/zAgGt53mwfO80QmyuDEzMW9eYQIsw4IOOUH+AwvDxEhPJnsvlNooK3EjIGHhBkQPFsZ3gwWsCghSqSvhz1SRlyk8aZ6c561lsBq3MnpSIl6VDQAzCkyPy8fEabMe99pf3cetxwCfQhAYpQ9C1K7X+OFbJsy/n2PY6fFNe2mVqzfT1sLl3fVE2JBou6J8y4Sv/cJW1BfeNM2MGrypo1x6q9gjBlQxnAMD7wcx2cUiePLDelTXhiYL8x/Brw5RuEr/l64jGJTht+H178hgvw7oo+slGJSQf7DQMLvkugnS57Mzws25ogtbX2LNNs8Q56tF1JDBOr3EY0GP4grlW5Veey+h4e/33775UbDsccemxMv8k4tcXnPCE5Pf3K1vAMGCq+yzhNBcuR95XGSlSxmdvwrGgAqIJC3vws3pIY7vB9zkEHC8EDyPPNyu19jS66vg+8szl3nTIVJ4QtGkzAAZaKozhg7jYUoIMi9SPyUAEaN8/d34ZGm+8NgMQYMqiGdFZvi+F7UBMdzb1I9/iI29wn0Q5qXnvci+fu5ivjB7yPmvyGC/Duij6zEELCIFydnoBsQaerq1wbEr+++BjfPe97zcgtfVjzvE1FVbTxTBYu+++fFq3BMJXKaCMnsd+95hOVMd//mNTIgJOrZbY9XW+6Hj6Dtx556zGt409RjPnnxPFBd84wJebxoAPg744dBgcRSfT1j46UvfWku/yt9AucuzCGXgiHAy3V9ZekUkDRiTMl+qieQeLGdr/EVDy/W+7s2aoDv0nu9SPyOwTDiyTNkynsOFOFz8hQoMT47ZE+FIlJ+A+MdCTDkklEXcfyVB/PcnLXGFvteRMy/P4L8O6KukQQJlxxZnFjIi0cUnkR/WPSRRjHTvA5pa0/3JSWniYkjYeTWlfyLQA4kcy/esdK/JJvzpFNHQYYd4kgSvrg/cmkiKsaDz6fd5SxIZPm63eWEDhgOkgeRp8S6ZAAgfpn9tjk9+eSTsyc96Um5EcIQcEyeuURCBCofQCiAYeKYxkpyo+srS9yIUq5E8vJdf7GdLw+LSsIYSPFwxogkROfG4KBKJOL3Xudv7DRIqkvQY3Qxtoyj+8q4oSwMeYbE8V2b8U1xfAac5EtGZcTxVy7cS2uD+1pExPz7I8i/B2QnK0kqlpQgfr8vey9VO54F2oFISOpdWvUiO0RRNMZ8zuLOW54W5HENZ7yQmNg9cqIMiMcLFzACUr4Bg6FcCVAGMuOxIGZkR7onyftd1dbBjE47AyqJk2OgS558BQYAIP1UAeDfjAjGEPmdJ64qwHVYMFMzIt5T8ojL5M/4YtAkOd9nUjtfSoHEO3M7lUNSE5wbFYY6gXQT8TNAKBf+TRkp9wEAxxQuENt37WR4YyFk0heeO0ZOMr7dG/eO0hBx/NUD88+9HuqcBf4PQf49wKvSLEL8iFdR1943yH84EFLXmm3Eb5yRTEpwc2/EdMt159MidRMkXTMAjjnmmDzpjpfJCOGl6lvfta0wA4Uh6bzlA3ilVsHlFrm8f7kEsujlNzA81JwjauBRi6dTACgfPHWeuWPy9nntXkIYFAPGAAOrKukvjb/zS+18ecyAWPVB8H2u01g4p1Snr6894qcsCEcwknjakv+qlA1VCIwJyXcpDNIl16MIn6ViuCeMMMqNEkbVEsISob6tPjDsyp5/H+cs8H8I8h8AhN9kSSL/rp3KAusD4STZFrk3ddqz0POESd/ei4R54LyAWY2/80H0avKL+QGIVBOeuvyAOjBeNAhCXrzktHUwwi16yjzh3XbbLSd/iYnGR3a6uSb+LslRPgHjFPE7R4l/3kuNKLb7dWzjVdXm13UkAkb2jACfVz7JeDC2qUSQseEYwhFINoVrGAQME4ZNFQE7d4aJqg4LuTyFPsmx8hIoG/IYfI97wmDyfcaeisBIWUbiVwXEAEvJqqn/QqA7Us7KUOeszx4tqxlB/jMAqzQ8//5A+sjTg424LJRID7mleLYFk2eaPGyWPSJDRAhK5jaDYIhsPKv8gC6Z5M4byZItVRukrYOLpW2OgWgRLO9GIp2fER3y837jhryRvfi7bYHlFyDh1O7Xv8ngVeTvWPIWUjtf5+T7GRZyAVLin/O0a6BjSVpE/O6TEIT7gNDLO1oibWoJhYNRwWCRn9CklpgDFAb/V0LLuLOwmyvGQetiY1ysBBBmcG4+12Q8zhLGz/1hTCF64SyGin8bBy9j8NznPncuc3W1y/5FIHLzwzxJPw/do2U1I8h/ZHioJX51aVATWB/IRQMXxIGY0sLpQacIeJGKedwIhxzuZTF49rOfXduxbh4o5gfwJpIUzTt1juL0YvpNsjai4pWrXiCHI1iyPQOn2NSGsYG8xfnJ/TLolcTx9o0ZgmUs8Wh8r3PR/7/Y7tf85CEh7QSyvbFFqowEhJu2UUa64vy+l4Hj3JC7hdUxEC1DA5HtuOOO6yU+IkKhGYutfzNMGA1NTY8cT+UGZYVh5doZVBQVn3dedcmDYv0p/DOPRC95D+apcfJi/HsZT2PIuGEYMVKNF4IRl2YsuraoCuoHzztjyhiWDccuxN5nj5bVjCD/kWFSQnj+wyFmLW5cbC/LkudJPfOZz8z/jaTSdr6AHCywySBAYDLWkVxVvHmWSN0EEZiEOcTH+5bYlvoHlLfgLYIRI3+Ap0se1xgn5QOkMUGCwgXCBDqepR39vMf7kbx+AbLmX/SiF+WLGiNB8yCSuXOweBY9qNTW15hZPBkQZOnjjjsuPyeJeHICHN/vGRPIzTEkL5rzcg5SZ0Bwj5TuWZRT57y2ZwOZGithB8aS73JP3Wsk61rNgTogWfMhSbpjGvZlo5Q3Ty0xDgyblHNgDJ0HwqlKXjU3vBwvyL8fjK2xNnbl1tltxB57APwDQf490RYnSotpkP/4qgA5GcGnEjiwgBpzxMXbYnzxlhkHiMzLIpwy3r3cG5/vmpw3FDx53r6X82EECGlIhhN/ZyA09Y0n02v5Sz3QKRAJ83h5zSRjC5+/p0RAJYPkf+TI0znppJPyCgD5D6oKSOw6EVJPyOUWvGSsAmXFOSMspK2ZEAXA2AqlpNa9VBeGAMKjAlAW5AEIQSQJGyEifc+LMbcoN1VCVMXxeWxi+F6O61w0VmpLqDVXnCPZd8j+Gq6TsVL05ouSfQpHuQfGikGH4N1D89H/GQBNoR7Xxyjtsr1yYH2ke28eFMm/C7FHP4B/IMi/I7rGiXinUPR+AuPAQmnxLSbCWUTJv2UJ2HvF3j3wSE1yGSPA4oz0qQsIglFAyrag8CiqytHGAI8QOXs5t6r8AEYCIimShn+TuRkJPBdEKxavJI4RhICe+tSn5jkPPJyU2S/bHfn6vTI7yoHSP2EFaoTxYEgVyd9iat7ysBGoEjmJjcbWuZHhU+kUz1syIXWCkZDa/Lo/EgNdH0L0jPh7lXGDZN0fJZRtcXxAwgizS1zW/UQGwiF1ZaO+jzSfPHn/p2wwIhlrSN78cu+Kkn05EZXRQoERZnBMIZY999yzsoFTEc6rritdoB5pbU1rbUIXYo9+AP9AkH9HdI0T6Y4GY28xGvi/Np1I26sJ7seLX/zifIHmgSFIpPqf//mfuXrAk2UQIL60018xdJAMgqJRMGbogOogU1/Cm+9HlMnrTfkB4ulF8nDNPHpEKhRACfAZKgCvG8Gbj15pW2K5ATLfvddn5QiIMZubrjll/Cdjw99cq/i+8AIjAznaktdnLbbJkxY+8DfXQf4Hn5NvwABICkVVHoZxT8aP++E82uL4iJmSwXjidRc3bqqCe8jI8V3yD4qSvZffp1LGJNm798bGtTdJ9kVQciTtCXcwrJyX43dJNHRs9yrQD2ltTWttQhdiZ8BFP4D/Q5B/B/SJE4lXQnQRGx8e9i4kzHtH9gyAcnMXXhzPobgvfTF04P9eiAO5lUMHKcGQ3OjY04QOkG4xPwAhS3Ar5gdI9OOBp/wA507K58Xw7N/4xjeu2+zH4sVzFpNX/65SgGTumM5VbNmxGQu+y2JIzvY3pIWI/E6mPJLViZAhYn6ff/75eSKic/a9jBH1/t6PRP0uEW3VVrueC6oFg4URh/ict2sTimgaR/f9iCOOyA0JYY4m4k/3kiLBsJIPgdR59ikxsSjZC634P0JpMiaq4PmX68AgS5tLGZeu3qPzCvLvj7S2prW2L6IfwP8hyL8D+sSJLFQWl0WVGK1m8NK6kL/FgSdHUrdAIHH3p66kqi50UFQJSMEIxL3mKSJBCz2DICkFDAJeI5LqSyTOgbfv5ZwRNqJUYmeRQigMFsSNKP2877775klxvBiZ9uRmsfjdd989j81TQCgAyNa/eTx6CfCCXVsaG/9O2yAjTmPMKCDVUwJ8VoKh7/V510oJY5DwxhkLjBIKATIvbvvrGigCxtDn5SQko6RLiRvZnhHHmNFYKRF/isu7P86V4UG5SN5gyrBPOzUyNBhwbb0j+pI/w0gIZu+9987XCQYW40fYpQ3Gj0rQpmIE1of7aY6VPf+u63TffgCrFcFQHdAnTmRBDcl/NuAlNZWHFckfcak5pwJYXJEXabxYQdAG5IQ0yg1oyN88yxQf7hI68Opaz+38kbhXMT9Awlsqd2MIUAYQD9JHygwB7+O1P/3pT8/j0Dx9hGzsePI8cwl/juM6EJi/mbeMFiRqcbQo+h6JicbMGFIjjIWqAV68JELj7PsQOqMBKVMJJDdaXP1sDOri+E1gPPD4kbsOh86fccIIc87F/A3j7TlMRhijZdalnwjb/TdG9lk44IAD8vF+1atelc8B49JGYgxJ+QXeH+g+7p6RsuffN55/s5ZmbasdQf4d0KdvNGs0yH824MV1GVsEYzFGjmR6nievEVnsv//+U3t+ju9VFTpAVIwCJJpCBwwC3zkkdFDMD0j7C7ieJOUjaGoB2TltHaxHgPwB3ieDwPupGrxk50H+No+9nHdqOoPgkRGDg5El3IWUqAJITrUA44FRhbCEBMS5ef0pjk8F4K27VkZJUxy/SbI3hvIH/GzR1s/Aou/+O57KASEOhokxXUQ3v/Sdxj95+korjbNwQBv5J2MpyL8/zIOy5x/9/fshyL8DyIsWxeKEAt5OOU6Utk0NjItU259K/JqAeMRh0+f8231R+87rbdt8Zwj6hA7Ikwi4WHXguoqhA4tbOes/bTvclB/wH//xH7kSIVwg3s04QMAMAISOpP3ffE6Jbua1fzMAXIcxI7P7twWWd697IMOGx+8axUydb2pmlAwGCyyjqCmOnyT7RPIIXmiiLNmn0kMKAuL3e+ey7bbbjr53wxA4J8pSMa/EfXIvGUFtQP7GnrEU6Icqzx8inj8j8rdVqsQeCyjJSgLQ4Ycfnj/ooNSlbktTCy+5ECyG+pRbuNxEHcEcu+iRHXroofk2pmKErP4+vb/HhvgmibMID7mFqCxjhuc/G6T66r5Z94gGaViQfZ4nPk90DR14doqhA0TqnHm1DIIkZad8knJ+gKxzhJ/6B/BExZMZBskwQaYpVppizMnbZ1AwSJIB4O9IiVfvRXFgVFEg/F3MNMXxJc1RHYQXyqENBpvn3Yvh0UWyT8YPGX2ZYYyoH8IcCcaQcde0tXPZ8w/yH8fzh5UUz7/wwguzZz3rWXnljOeCkW6fEopZejYPOeSQnAdTBY+QUvF6PJe41N8da+edd54N+SNANcVOzsN74IEH5uU8EqtY6haYcs/l448/PnvJS16SJ8EAS/dBD3pQ/pCTCb1fNzNE+sIXvjB/D6mS5GcxEzvUycyitkyZ/h7aqo5QFrsucelAP1ggjXlbmV9Cav3p5d/q3Hnh6umXAVWhg9R0B1Gm0AEP0jNQFTogezMIeMHyA5C9xSDlB4h5UzlS/bqxQ+7G0cviktSsoufvd/7OqzVmvHRGeCJ9f/fdPHD1/4wD64HvYBD4v+9k4DC2fM59cL0+55xSHsSiJPuxyF+4RSjpTW96U26MMcLcM85LG9yPIP9hwDdNhvxKiOfvsssu+VxRseM5NoeoFPiUASzRVYhNrw3GJHIX1vD3ZGQj++c973n5s4RH8XHXMFsv8i/3Pba/OGudpKiLmAe83G6RVSMLOEnhSNzJi8tYCCx+Tl7b1uc85zn5A2HRMBgygi0qvmdR6NsRysIYmf7jAzkhqy5j670sZEYqQlOvTp6mPM2qic8Y8PyU2xoXQwcpn4DEbt65tqrQgb0ReKAWFoYAguFlptJF45PK3oypV6oAQMTeQ9lLqom/USYYEwhOu13HcC46C8qyTxKs93vWkTqDISU8Whfm3WZ5Hkjrl+oKJZYWaf0khGDaYKyNvXEO9IN51jZuy7xr35/+9Kc8P4eDm3YgxX9yRaxd5tRRRx2VHXzwwXnODwjj4Uw5PfZAAc80A9xzxriuUkPqsPG0CVhN3ewYBeKBypASeCYeDBeRwJohXfBWSB9+1k2MB20h+e///u9sUeibQWpCrlRPZpmRPNUuY2th4Hmadz5jQWYV845XIppCB8kooKCl0IFrNgaeH6VniBlBp8Uy/Z8BkDx+ihVPliGRlCvGQSpp9DvHlEjIkPJvZI7kLaxlyX4tQZOj1OioD4x3KlsM9IN5WTduK2HXvosvvjh3FMthMka3nTnl7VD+KAEJHBfzDIcm8rehmfJfx8OhcnxmTv4GXsMNcYi6BCrWsBOTG5DggorED+nn1GpUCIDKIA5C5uwq9c4CFlxeVVUbTr8vW5RB/sORJOkqICcPC8Ly7zYcdNBBlcdYTUC+ZXnT+KXudSnBUPJe8uKNX5L7k+Tsd17J60+VAGkeex+SYuR7HtKmSeZ/1Vwf2nxlNSKFnuoQ5D8++a+EXfs222yzPImWh48jPVOME8TOoUxcWMWVxZbcZH+GgLWzr2EzmPzF/smKrJQqWFS0BBWnGIpyd7YieCzzAHkVaVS1+fR7yY9FdSB5S/M6v9UC8hxjsVxRUZxPvFox1UB/IKAk86eYv5ffpUU07TSXKgCEWFK4hTflRUoNdAdHxuJetbcBcGxivegPRlOqWCmv15JcqxxGvy+v17NC3f0uQqx/p512ytUyzyf5noFCMe+b/zCkVHQQ+UvA01TEYNZtR0mqR47k1iJ4DLKTiyDRpr91hc1D5vXANJWJyPQtZvuKx5qY+qkHusND6cGti5UK/4jhF/efD9QDicsA5vWLA4rn8w5SVn8yBIrEk2LQ/pZIP21uw/ilwvH2vVZj/L4KxkpclZrhZQzlInVR93xOKEaORF0oxKKfcjkC3UHRIplXrbN91utZwLOh/0UbGCGS6M0Tz6ncGDtjmi+JC3FjcQdLPxeThKdBL/K3GDztaU/Lk/hSt7A68OJsJlKuyyZ1vOAFL8hvXvLsEblkoj7xCh3D5gGEJMmpDjzRoiWZvFe91gPdgVCUvnWt37YIyxGhPlk4hZ5kui4yRLQImGuepSTxMz695OMkad8i6f9IPJXYpYQpf0uyNG/FwoXo/d/PKXcg1VW7R5oN+V3K3pecywngwaymZFcxY0lXaYMo3pV+CqoculT0WKiNr4ZTciMC40HTLsZoeZ3tu14vA5LnLofHnJPlj1sZAHbOTGTPQFD5I7Y/BjbuK/WT8mUosmRT7EEiQlEWT9JLlVVmgUbyNgVxkY4ho9Gx+3gTXWSVMUCyk41Z1zWqXDqWFth5nd9qQZI/u2yUwwgVu6M+iUNbWJMM2LYL20oFoubJI/lULy+JTy5KakCVtrtFwhZAXqv38T4TjG/yWs1Vi07q9Ofzxb+B3xlvxoTjyuD3Hb7XsSUmMcDSs5Ey/Xkr3q8HgHu0EvNgXGfdBlFdYE667mRIBcZDqvwpj6v53VQ6mRpFLQMQvevQJwdn7rfffjmfMBbNHTl1z3/+8/OcnlTqx9B+2MMeNn/yV4IAtgot4sQTT8w7iyVoysMTQPRlpM1BWC9UAIuPJj+2xVxW9OkalRKmAsMSeLpsciIpRu2rZJkUJlhNYy5cViR5njyiT0mPxoonSlXjxSAotb1+J9HPZjo8BHJ/2mcAefMcktxvASzW9FNSkJTfpfuQmv0AEhc60JvDHJf4p32tRYlsmfoSJKNElY9zSLkDqT+BxSud77K3tO27QVQZKVFymp0fA9WoS6zuW5q9SHgmNbIS9mEgb7/99rkqnowT/SPMuSc/+cm54a9TKaen6/xrw0YTT3mgE7p0jaJoKL8qdwQMNEM9+nHHHZdbtU2WuYde0yh4ylOesk6RYUgilZUEHjuyVKaXdqUrSvYeTQRpYUietGsktRcXPl44wueBO14iZy/EZd5SRBxT0h5CSvX9KdkPsXtPIirnRtpG3Ejbd/h+pUYMDDkaybhggKnoKYb4HNf1pC2SUzgibSbECPHZYujAtS1T6ICqwfNyzkM2iBIeMf6al621cNSsYZ8J3RWFWYuQkJo6zlbB35eF/BeN5XjKVghMGgsAAyD93LXndKDbNp2k6iby9x5Ne7SSTWqRzwpFSUQtlpUuEqlbHwJB5sgbAdRJ9qx53jFS2WKLLdZ5x3WkQQVQ/cBoYmw6hs9o8GPx0zo7hd2EABgAvAff473GOGX2p6z/5OmncACvw/spBkjfwqm9t7E31uL/zoHhQY1B/jKWvZfhkHY19P4E15tUDTHxFDpwHcngEVJMbY0piK6rrqxwlph2gyhz2f1bFpl5NaFuD5W0uY88smIpYGzusyGC/Duia+OIup7Tge7k37YxEmLRCWvXXXfNlQKEcuSRR+btMT3cXTb/mRWQMunRdrrIMYUxEEaSvZNk71yRG0m9y/azyJHhg3AZoGKbjql50ZZbbpmPC6ldgyyEjfQZEKRC34+IebHG1xxN5JVk/9Qt0P+dN2/Xubs3jqstt+Oq1uHRkv09E1QDMj8Cl6CkiyfCdE6Iv0iSiND1ehXhfCgEKXGRcZQ2L6oKHSSjYJabaE27QZS5zIhqC2MF+qNuD5W0CVu5B0DVJmxrHUH+HdG1cURaWAP9kDrIdSnl49kiCpY8svJiBIiXSW6bB/mXJfsUl+flI1LeOC9EghwSQRYI8qUvfWmvzG+LWIrjI37ka6yQqlBHagLCGDAPxQ8RK4/VlsKnn356TuLGRImTsePBMwRSCAAhMyRSSZ/7wOtXcpTe6xhydSgrknN9l/mv259tbP3eyxjIqFaJkbYX9p3OtSnL2kLuVexiWAwdUAm8jDM5PfUkMBbCIs4xhUVmEToYskEUoyh2+Jyv51+1CVtK8luW7n7LgiD/KTb34ZGUN/exgIXs3x88pLZM3QRxV2SIvFJraaRl7Enbs9hKmMeMfBAoAipu81yU7PUiSFv7FiV750WSRwhd4PiJRH0vVSSRKFJOErjQASLmiVsM5ZwgUH02eM5ptzyyvHACVYKczojwe8dmjDBYHNMCyZiRyEeOR+gf//jH88+6RmTv7xJ8GVq+294b3u/6kKNEX4YZ5cN9Yvi4DufHWy7nB9TB+aTQQRHl0IH74VxS1YF7Rkkp5kowiIaEDqbZIMq8oVIE5uP591mnA0H+nTaC6JNBmmL+0ea3HxAlAu/Sghf581jFtdPeCkpLqQbTbP2MAJE8oka+CDIZcjwHf0OIvEvf00WyT7I/AkWedftggGvnrXulOD4jAqmq9S16s67V9ZPjecCkfzK88xVy8HmGgu8kxSNn4+vaSKD6dLgGxOn8XWuS+pEq0qQi+B4qg3g3UmccMCTsNmZXMioAg4C3JfTC+FF7zSDynV7IOikfdfkBfdAldJASDMuhg6SCdAkdTLtBlM8s80ZSK3177/J9W0mZ/suAIP8O8fw+m/ska5QsuNY2OJkWiKqL58+Ts0W0HeXcO4uBRd/ukQihrVwQESA7ZJ7I3v1KyYaIi3dsoSCr8zz9HxmqSBD77tpPwHnwzvXHMMfKROdcEjGmVtLICZEjxvICx6ikCCB+167b3EMe8pD8fcrtfI9rMz7m33vf+978/xpuOXdGBHI0r3034k8bzDBMjKVrZ+TIGUDUGnsZI0aE8Ipjf/jDH84b4Ogtbn8PG3IJA9j4B+EyFBgfDGBjqiLAy/VV5Qe4VtcyjVzfNXTgfqTQgTFwL4uhg2LDomk2iDKfYg0YHymsWh7bvpuwrXUE+Y+8EURarHlg8eD3gwW42JCmCfZR97Az2BgNOj6mzl6J+C3YSB1xJaK3cCCg1CCEFIwsEF4iejJ4FQkhEgoF8qhra10FGeKkeqTZFMdHfiTx8mYeCWR0Gfy8ep65jPtUckby1nnTtfNM0+ZYyHz33XfPEyR9r4ZVvFnfQ+kqyu+u27GVURlXx3FceQPK244//vj8mOqRGQEyqhkUfubFMzB4yd7z7ne/Ozcc5AMUF2XXWZUfIExRzA8wXmOgKXRA4WAI1YUOPL+UF9eUVB7zpQsYFsbe3AyMi6TGlQ3jlOlf15AtvP71sebJv0ucqI+clGQ+hFPsyRzoRv5i110XdWSfCN9CyxNOkr3EOySfGtpYKCzgae/rRPR9OgLylhEk0mgj/6Q+nHTSSbkXbetNnqAmOa4R4aR6fF4vr6QuTORazEXhAI14kLLrAIROwueJI/IHP/jB+XeT4RGaXggSExkZvHE5C4gPoSFnxJw6dRoP5EfmdzweuoZeyJ+qYPcwDb2QPvUD2VMgZL+7HsaNOS/Z0HG874QTTsivkRFQTrgyllX5AT7rfqX+AbNojWtOpNyMMrEU8wkYKMZdrD/F/1PVQVIJqkIHDDoG5CIrT1YrUl5PVUilT0O2tY41T/5diL2PnJQ2ZLB4aA0c6A4LaiLsOtm+SrJPG64kyR4BJck+kXwqW5sGPo/IyhtT1b2XBE7WRqDIFMGlOD7PmQTf1PwFScsV+OQnP5knmSk1o3AkVcLfecu8Z4l0W2+9dX58pM1oZSQgJ7I1eZ/X799IiyHi84iruH0oY8I9UKVAvt93333zeL8+Cs985jOzhz70oXm4Ra4BDz3lAThPx5Fw6PycDy/eudv5U5UDInf+5Wtm9BTzAxhHCNd1MZbcP2GFIfkBfYHEU4OkutBBKkVk1KXQgfNiFKSGRcaAoRA9/cdHmq9VG8GZi5SnLg3Z1jrWPPl3IXaTp6uclLx93kOgH3hJSJNUn5rMFBPwkHyVZG/Mkzfvd7PsEGe+8LSRcV2bTXMEcWpC5N/en7raWZzEjZsMQ2RDCuc5IxqZ5YyFooRsLMT3EZCNZiRBInThBF6qpD6qCPI1F2XnWzS9qAN+lxoDJWMGaZnTpH8hCFK895v72im7DvFuYQ/nZsyNhzCBf/O2JAJqR4pE3SOGD5WCEURpYEhQDeo2X/EZyoOXe506F3r2fCfpnWoxbX7AmKGDYrknAy+FDoQNJF8ytopqU8qzCAxDWlubdoG1JgfpN2PNk3/XOFFXOcmi52VBCPQDL8niz0su9qC3iPJgkXxaQPtK9mOBMYj0LUDluDTiRW4kdgaL/AIGjfebR4jLfGsyOB1Xkh5FiiFDti/vnoloED+DyJw0bogfWZrHzpEE72fyv88zINTpA+JFpEIIRenUv3mwJH5JhM4DYcuvYKyQ+DXuQeg8X/cp5ScYC7kzavtl/UsETPkIyM4xeO6OyaigFMgVKMvuRTgXyYRejCCKBmKdVX5AXzBO3QMGqvUi7WKaQgcMRHOAcZX6AlA9zOe0+VIK3wS6w9q6lraVnhXWPPl3JfY+chIPKsi/P3i2ZGQLZdFTGkOyHwsWbuTNw0M65Xp8JGBeILbDDjusc7knwuAdIzifIa/zcMufZ1ggWIaRDoepKyJSYRAYK9I7OJ7j8sTTBjXmrffyUssxeGOMvBgXFlaGCrJVasiYMO8lDnpWxPAZOOL9DBRVGr4b6TuPY489Ns8RSBsvAaJXHkgVYaQIQejP7lhtzXDMg5QfIDHPOM0rP6AKxkjipPWASuXaGajGL4UOikjJpykvJc2XIP/+sLZGPtX0CPLvSexd5CQTM8i/P5DP/e9//2zZQWIXizZX+sbxy/DZFBfnJZLQEW3VMbwHoTOSnvSkJ+XvR/wSJW1w4liImFpi/jFKGBAIEVHyUEn+gPyrGtB4L0IF14JkGRxImueun4KQgs8yAlQAaPKjHBCxUWMYGwwAL2QtLJHAWBG/lxNASVA3/6IXvSjPRxBSaJPyfZ7R5UV2p7TwrBkTVAUqB3UitTueFWyvap1w/cjeufD06/JV/C6pgkItlJMumwMFNgRVJZonTY8g/wFxorpmQAlB/qsPPGfxdWSIsMTFqQAkcIQ9pI0rQqY2mSvIjCdf1QQIqcu4F8vnUSq7Q96I31x74xvfmMfhlfSl80CEiFJ8HZy38AP5XzhABYGufWVQWyTzITJzm2GMXJE/clafb3MfZYaun9TP8FAFYJvuFI+V8S9JECnzknfYYYcNevzz5J2DMRCecH2k86Ja0AQ5CJQHRodrS7kSxoaRJMzCYGFojJkf4DwdTyjDdzNAGB19dpVkuAX5D4PnpamZV9v6HPg/BPnPYHMfCzKvK7Dygbhknlvg/duib5Hn/Q7t2y5+jZyV3ZGLd9ppp9rFDFGbX1Qphob5ZvFD/GRmBGuhK24zy3OnSojbUxC814KIwBkEKdmvKt5u7nqPhkYWTyoHY0c1hVCA5kPInzFBGfB+YQHniIg9Hwwjnq3fUxIYAMIArrM8ZowdCoKmO8aEWpC6GjYldKVzZfA4T8c1DhQIKoK/Ma6ck/Nl9DDSxsgPcP/cN1UPxtWc8DLe7k9bqMdYpmZKgf4w/z1/Q9fnwP8hyH8GzYBIUhbYtk5zgeUEr4yHi/CREqJErErtkNnQe4rIJcnxHM0NIQ7HrCMLJIMMebK6F5LLE/EjSGEA50haT94y+VkyH1Ll9QLjxXdLjgOxZt9f5akizZTxj1TFpFOWvs9LUlPCKPafPGoGghI+5O36KAQ+73ss0sZMAyIdAcX8q0gPKVMOjA2P/uijj86vV5iiTr4v76rnfH2XZFFj6yU/IPUPMA7UCpUCrmVofgDip4bIMXje856XJ5/ZSVEiomtz3k1wPxlSIV33h3lbF/Mfs1nbWkCQf0f02TSCBCjRihQbdb4rA6l3e8ool8AmectCjvgR4lCQo5EFUiO3I1D975ti0uYbMnFewgG8/CLxIzMLG28e+SfIH0C64u7JqGDI8HySMuDvktSq8grE7OUUJPkeQVlokXJq1ysnQQmb7085GrztVAEgOQ8xMwCoJc7R9/PAkOTjHve4yo1xHJvBkpoMGTP3gjHh+HVGUiq3c+9coxyD9N5ifkDqH8B4MU5CHO4vRaCubLMKqeSSV5nG1DVJ8KT4tZG/c7UudO0WGPgHzEvPQFnBiU19+iPIvyP6dPlLEq4JGeS/MuL4XhLieIbuoyY3fRL3muYNr0MZIE9bvX2b3EtmTz35ydo8zSLxI2+eNONERn2C5kfUAPMvLY6MDdeoAVDR82zaYMhxqQ4JiNwCKksd8RkbSoNyPd5v2thIhQLplRyO2FxvMgAYEQwSHQ/1DGBAIPQqIGLGkXwAYyd+Lw9BQqXyviJ4+RIOXbf75e9V+0MU+wcwzNP+AlSS1NVQFYd70ybbGzvjUCwNZjQJPRjvNhh/iZihCvaHNRXKYbLY1Kc/Ytu5jujT5S/9O03UwHIBeSKUww8/PG9KwwtkpPFieXMWlmmJHwmS7F/3utflhCAmj8ibiJ8xohZfch9Pf88999yA+FMOAOJQVldMZHNNiE+8PIFcjyB5t+k7eOhNpVLInyGUQPpHnoySBGNFulZvn0AdIb0aS9ftXBkAzokBwJgh+5PdGTfi8c6nDhQEDZG8GASSCmXXO/8E17/PPvvkuQ/UCIqGlsIMnjogaeEWcjDDRqyeCkNpMPaUgeL1l4H4jR+DJIFnKcRQDkWUQclhfJR7NwS6wZpqnpXHLzb16Y/w/GcAXoBFL8h/OeP4qS0rb3TaOH4ZSFrmujg5qVmCnES9tmxz2fVvfetbczlfUxtZ+s6pSPzinTxnHrhs+2LyHGWBN8sTL3YClP1Omk7euc+27TNPDkdSydP3WYut4yeZn1Hiu0j/yh3T9rpIlKGDiBE1A6aoADB+ZP4zMIRBELlEwCbZXYiA12ZMlRoeccQReXiAOsBIY5jwwnnkvpv8rpdAG8HyBo2DzyAUzY18DvkLOzgnKgcVpdhQyjVSIeQlpG2azStGY52akZB6KAT5D4M11f1wzwPTIci/I/rKShaCIP/FAoEhUwlfSBDpIXpZ6tPG8cvgwabmNbx+HiAZvEtFgNwQpI7oee1q1FNiUyJ+UjRPGYlq4lNUEHw3TxoRSrxLQGbIhmeb4JiIMpF1FVLSH1JPhgSZX3UCIyNVCUjmc82aDj3jGc9YJ5fz2JXBuSZliMr+ygaAPAUGAOXgZS97Wd63oClE5nwYau6dMRZbZ4woF6RqpHvpd8azjVwZf86HAZEMM2qLFwOHJ+/aHE+ugJwFpOM6vN/5G5uTTz45N9ycF4OgLXfAPTH3msIugXpYU6sqY0L2748g/47oKyuZoGKigfkCEaYOcEg/xfHdP4QwRhy/DISIfCkKiI2839S2tgif4fGTxhEggikTP7JBeMhIWEJ2fRF+7zgIt3h9rh+KXeQcF0nXbRsM/uY4yv3EwhP5p3a/6dp4X0jQ+fOWGS3F+Y9EVQX4HCWjbAA4diJQ4Rfyfps8y5hCsjx/x5ZAKP9BEqUx5IFTWtrkd2TBAy+ecwJDgtrgpe8AwzEZkIwO524+yUkQu+8K91UuBYMlMJz8U++KIkL2748g/47ou1e094t7IqOuLV4D08XxUyY3cnFfeLcWd+Q/C0iwkwiHfJEl8q3bsKYKzlWMn6TMc+YNVhG/45PIeZeIrQjvMycRUvG7zdFiO99ishkZv2lOGjsJe8VGVandr2MW5zSjQKz8Pe95zwbdDVUH+D5GMIMCWZYNAPeI0SM/QrMgZJtKEptAnZDzgAxSm1/KAWKgnjSpOsbY55xPmwfu3nifF0Un9XxI8X73iMHWpY5c7of7EkQ0DMJoSm+rPP++63MgyL8XJFpZ4MUDE0w0k5KHWVwATEZyIO+pT+evQP84Pm/MojCrOH7dVrta/PI267aqrQPylJznGMhDzNtnq4ifqkAaR3a26C1DfgGZ+6lPfep6v0duxXa+Cci4yx7zxo/sX4QStmK7X2AEkM6PO+64PDMfeReBjJGmRjsMitQJr2gAeG4kAgprSNzzeyGTNqPZwm6r4OLWx+YDY6/pfrgu98A86QOGAuNLuMNznYzNpvyA8vfKlfC+QH9Q9DzjdQ2xum6+Fvg/BPn3gEWK1GlRKmYpW4DLjSRSHTOPJMh//Dh+qsefZRy/Cr4TcZNvLUK8zGKCXRsQu1I4x6FKkLDNpyriR94WLiTGyy2TIVIlw/O+y2EGakFq51s0VBkKbRIp8NQRadHL57EiQFn/ifzBuDMM/B6hFr1p90M54qtf/eq8JI/C4TkqGwCUBYl3ySgyvnIFuhhUnkm9AFKrYGPCIGR4lDfOMc7keyGHrqGZMhiVPuuV8gOEBRgDDCPXl4ycYqInQ05+QiSrDYP7BlU9Ivru0RII8u+FPo0kWPcmo0WIZxQYN44v9ovEjPM8tvZEzGLXFhXkpma9b6tY503e5jVKwpPVD1XE79/eqyxMy9qqRDJzjtfLSy6i3M63GBrx/i7GKPI37s4rNbJxLFv7IldGWJGYxbHTjoNk/CKcuyY4sv+99tprr/yzZQPA8ZEpY044RCKgce7amlU4gzrCqEICjCz1/3YNTESPgHmP5fDJUBTzAxhyKS8g5QkYR/PUHDVmyhwDwyDcYjzbdvTrukfLWkeQfw/0ySjlHfA6TNjAMPD+eLDGEAlZaBHGLOP4ZVAWeKMWdOSEtCWb9c3jQDq8eGTOo03SZRXxI13ExUjw3iqZXpiDeqCUsFxRkNr5JuMioamnfxnCJ8bbeRc3oJFXgPx1/Cse3zloJCT2X9VNjeSvxO8Nb3hDXq/PQEj7JBQNAM9NisVLBNQSWGOkPqVxKY8A+ZLk7StAHRECSXsSzEJ6b8oPEB4ypl1Ul0A1jKX5F82RxkGQfw/0zSg1USPe1A/IsdhXn6c6jzh+GUiSjC2k45xkdZORh1QLMGDEspEdLz6ReRXxA2MDsTM0quKbqbRPvXmVB4t0kGfZQ2JM8UC7hCnEph2fAVKEY3q5P4n8JbKlJEvHl32/7777bmAgUUqMoRwG48EjrzMAvDd1BNS0R3ilahfCOvhuz5+sf8mS7qX6f0bJPLLty/kB7icDZtZhqdUKz4o5Z8vqwDgI8u+BvhmlFp8Xv/jFnZOs1ioQfKrHX0QcvwySOdmYp2zBRkJD2jQjaZ4n8kFqEvtSP/864pdAJuZN3Sh77gm8boSim165eZDGPEIkxXa+RfLvmp+APM1ZoYIyEKrx8V2InrTOACDPS3IFyXdV58CI8jxo1mNMZPbXGQDUAmOvlNA+B8aL8dBHdWGMeGZ9L6NKhYZzpgLMIxenmB8QGA79EczfPtU0gWYE+fdEn4zSNFFZrKkzWiBbR34pjk9SL9bjzyuOX4Zuc2Rrhoj4Mcm93Eu+j0Ej/s3rl1xmV75EWnXEr1ZfrNvvxI+rQD5mTHhP1b73xrLYzrd8fW3x0iIYPIyxMoSzGDXkf6Ew9fnIVSLbu9/97rzznex+v6vKVfAsSDzUSpeBQTGrMwB83vGNi+9DAJoc9VVgeOISD32egSWcwPCgAlA5AsuNFD4N8h8PQf490SejlHTJ0wry/wcsvqlEalFx/DJ4q2kXOd46QmjaRa5LCaJkPcYNr7MozdcRPzLk4YobUwjqvvtDH/pQ7nHvuOOOlX9H1sV2vgnUFJ8rZ783QXKVMXGuRWPMsRloDJvnP//5635PDWO0qNf3fQhbaWwZro0xRM63yc/Tn/703NCoMwC8XwkhQ8GzpyEQRaB8jV2g+6BNhRgtFBbGp7JAKktk4S8vrKHuXTH/JDAdgvwHoktGaST9rR/H55VadFMc34JrQV9UAg+iZ4ScddZZOTEKM6RNXoZCqADxOx4PtdiNr474GR9i27z6lAlfheS1Kqur2iCINEqmL7bzTUCmyLmP1E0lcG8k/ZXzWagZkhJTu19jyZBzf5E1VcK8J/1XdRNMpX0MAC/XzcuvMwCApy4UIASgEoCRNEROdzzX43vMS8dj5KjKUSERCWXLh0j2Gx/Rem7GMGEtLBb+tQQEb2HV2/15z3teTm7IK/VAt5Cz5Bf1MJPYNaYR/5WpbgMa2ejTEL/yLl4vErfxThfiR5o8fn+T1d5U1ibJz/vLjXuKC2QyOMtwfJ/tQ5aIF6Ej4qq4vx30SPGQlArXzzAgsfPMhT7q4FqNuRK41A0TkgGQdgMsPjvybjQEItW7fzz3oWBkeT4pPQxUZYg2JGLABZYH7r88lybJX56O54MiG+iG8PxnDPLxS17ykpxs+taFr+Q4vuQ95U6I1XUvKo5fhtwC0jF5HNFLmquKnfcB0pLAJhGUkqEhT7H8ro74IeUYyGZvmh/eY2Md4aMqA4VXr85ezkSVckARQNZ97oHvEbYqtvlNcBz5EAye1AiIoed7/vM//zOX8WW6i+sb67pe+8rySPq8by/hAGhSABiNZH95NgynafvlM1I0CUL61CnjrLpELk+XjZkCs4W5L0m0asdEa4xnuJiDJdRmbnTtD7FWEeQ/Y1hELIyStFYr+XswUz2+BTTF8ZVmDYnLzkqJIO8r+eJpIiYLfttWu12Om/aA1+gFSYlJ8841dEGMyKuK+J2LFsHCH1UbzJSbSPF261rS8nyEGsoNf4rJfiTzvkDiVRn/QMVJDW3kLDBkkLJwmHOWdOjvxocKUpfHIIxhDrk/xi8t8k0GAMOEUqJk0LPl71XVD30gFOU7jKXcCgYso0Jfh2nnSWA43F/jr412Ge45o7sIP5c7rgY2RMzoGYPnZHGzsIlRrhaQSXl0FneJj8sSx6/batdijgDFdNWXj+HRGQMehjh3KvXUvta164RHUeA1MzbKxJ9kSqWEVbuUFcFAcJymREBqi5h5XV8A5DqkcoGXrd9CFcTNGRQWWd6ZcI6mQ5DKMykVmvqY/9tuu23t9xg/BoQxMX+MX5sB4DsoJgwUC74d/oQEprm3xpcR574YU/eXkcaYM7bLMq/XGvkzjilXQzuuBjZEkP8cINtbtzLy70pePBA8STTV4//hD3/IF38xXvugL1sDk+JWu5LObH4zVr01IpLYh7B4GWRt8W5eor8xDOqIn0xN4lbdIGu/qarAcWSlU43qNjSRMGihK7fzTVCDL/vePeoL40a1oCqUewQkotS3n8LjvbL3JR5agEn4DA5evwXc2NQRs2OpDPA9xlXOREoUbDIAgFLAAFBeKBGQAdCnpDGBcWiuuG+eVYasMafqvOpVr8qNeJUCDKLAfOA+mDvuaRlt+R7FjquBDRHkPyfyP+KII3IPaqW190xxfN4zLz/F8XlG4vhVddyLhlI7DV0YKeLf22+/fa/ucG3g5UpkU0+/66675uRuodHY5pWvfGV28MEH18b4kTByYxTsvvvurfXqPFrX43vqUNfOd0hb3zKQaEr6q2oQRPpnBJoHjB9ee6rdTxv88P6ND/mfTFsHpXYqABgTKgCoKMlYaDMAGBhivMbWPZBI2CeXg6GoDbD/M8qcO+KnQFAl/N58EuKgbnim63bvC2SjPmuM5apOlsccc0zjZ4sVKlQCCl1s9vMPBPnPOe6/UsifTJzq8ZGH85ectUxx/CplAgHrOCdTXMxZ8s+Qlrx1cPwUf9c/Po0FwhJOIE0iSx4sAikSPwImIxtbZN7WbY8HLZuex65iBLnxPsvXo6qiqp1vgpi9+zfEG+Z9+z7kV7UpDYOCx+7aVExUgTrE69cqOZUG1sF4MhBk/3sxkNIYthkAri8lAjIC1O/L6+hi4B500EF5U6JDDz00v15ziYEGvsP3qjH/2te+luc2yD5n1HgehvaDCAyP9yNzz3nTmovkIyGwHjFr5xj3N5GXGTw48U0Spz7oerCLF3vwZGTz8paV+HlkPD7xZySgt7x697GIH7kZDx3sKB569KexQNAWKGPE40fEsuHLErfkNPK8nefavHDk4x4wwBzfZ8XOKUjF1tKqFygz7k0dkL9zHUJSDBnXU5XxnyDcwEB0LnXgLTuO0so2IFmGFI9PuKyIpjJA4LXrzOh5O/PMM/NFvrj9dhWQCKNNzoKx1PDJ9ZRjzMaCmqAfQKpukGdQlxMRmF28v22TNc9nW0LgWkd4/nOCxY83smxx/xTHFz/jQTIALNLLGscvAwGk+l7nzRsfW10hqSMh46RpjbhvkUjtU08eFnPm2Xofz5/neeCBB+ayMYKhopAvm4g6QdmesIJYJ1IyZ1RTHHDAAXmMO0n8pGj3sKqdbwKlYcjeBAlk/O9973u1f0/tfhmOxqYKjCFeuFwH4aO2ToNyKIwbj81i7d8JbQqA8AE1wjU7r5QIWNfDIRls8hXE/JPBaNzdw7LRRO7nWcoRcE/Jz1QDSkAKdQSmB6MN+SudLaPtGWf8RUJgM8LznxNITbwJsfNlADmMN6k9q2YpiF8cX1azRZrEv8zEj5DFkKkUvDUZ83vvvffoxG+BF39OHnt5YxkJeRLAEBSvlreKAHj99rDXzAiRy0EQQ+7S5hmZO56FiQfsPvhORoMFsRhKkHhJRahTZCx07vUQyb9I/jbEqfOgfbeExLYELAuyipDUrKgNjBxGgkoN87OPAmC8zGOxf4aYRMC6kkXKHHXFWL3whS/M3+tZYKhU7W2QwLjwXAuH2LZXPw9hgcA4YFh5nqqembTJWnmN8rPfe3a6bMG+lhGe/5xgIbNIIqwunt+soSkNiVw2tgV26OYmMs3tMIeALbI8YDLwrGCBttDyCCTC8bjIsLNIPLQ4nHLKKXns11aiDKIyeJM2ntHRjuHhPHjokt+MLdJEIuKLjIEukN1v0Uvbl0p6Mr48a6VtKZGNyoDQhBvq4O/Of0imfwLDAVk7Vp0R4ZycZ11M32cZBwjTsagjqZyvDgic9y2coJkPo6rY271NAUjnhdx9ngLgHpRLHlP/A6SRKgwkHgq7OOeqXIcE38dQcG6eJ9dZ7OwYGA5rpXGtqu/vssla3y3Y1xrC858TSIksWBN6GYDILJ4s5Cbi51EhIglnXjzuBBKp1r2y25Ek0rJb2hve8IZ1nx0TZDwZ2WlR4Okjw1kQv4QuMV0SsqzzKuJ3fUjHOCKU1D2P108xQEop1CMc0aVRDGNBUmGqNTfe2s46F7Flx2QIJMkf+fCo60DSZjBVnX9X8NZ5VE3SP4J03XoSJLhuSYtUD9fkOPvtt1/enIeHnLb/bYLxF7dF0AwqSksfBQAYIwwp3y9EY56WlQ3GmTBLUdp3Pe5HFzASGFiUnsA48Jwz7Ouem7TJmnVBEmbaijsl8nVRB9YygvxHRFt/aR4ar9CCuGjwzj0kTdIX0hAakAktds0TIiEXk6s0btHRDkGRPcW0ebrizGPlNqilf9Ob3pTHZC3+auNly1u0xwbycI/EihGAxKGqrPyqlr3peiUEMoicN6+13O63CbwYpJi29PU542pvBLFlho5xYAgIJ/BempIaeaL+3lZZ0ATGIYWjad4iaYutczImPHvJkYwo4yNrX+2+8zVnGG9d+/IbAwYAJcA8K5J0VwOA6ibuTwlwXuZoCj04F6EbykqC62Bo1bUlLsJ3utdCQstY+roSwcAV6mlStdJ6C3JNqsicClDMF2nagn2tIch/BCBEXj3vj6WaYrvl7GcTlNVpq9NFI21q4iFr8tAt+pq1HHLIIbl8nMqfgIQrrpqanjgmDxNBj7E9LxJk0SM9ZOKhfeYzn9kqFw+FWLtwAlJH2MIz4o7l8Wnq1Z+I0PkiSzHnrtuQ8qzlhEgmK5K1OcMQQ8La9yIaRCXM0pToB4ywaUuakC5DC8k1wXiZHwwVRqWfqSYMNUpGMo6QOc9LuKhoTDaBpK9fg2tmCJbRxQBwX4RnzFmqiVwXc8z5MLaEwuSQUGtUdlAz6iTnBIYIRYyRIEk2MA7OOOOM/H6ZJ0PX2y7qwFpGxPxHQNf+0jwMC7uJneK5i4RYf+qLXhXLRTppwxRVABZW3eLKIE1bTC34vOZnPetZU3lAPDLH0RLWA21RlYg4y01WXJ+xcN48RGRlUSETI+SUp9FG/OA4MtplindtNOOazRXf73MJSN998PIe8rlzJUfXtfMtk3/V9r99wdBrSn4DXr04K+OMp98UTlL3L3eDceV6u6hEjms+WsR5fOXKgi45AAwZx2DMkJWFqYRk/E5owTbFDBihlC6loua9+5AqMgLjwBpJRaxKZB3Sz7/LFuxrDUH+U6JvOQkZi4RuAS/Xrs4byMti6RybssERXmpew+ssQ1atOL+FFSmSzHlCQ2R5SoSF3QLOY3784x8/VaZ6F4jPiwP7Psl7iSx5fnIKEIJrd01txE+qdP1Iv0uDmSKJuHYVBem4jC2NbpAej5fU7z3K2PQ1cD5NtfuMMp9rK6vrAolwPFzEWEeIzgVpMkza5rbxJJOnrnrmYRekEjsNg5xT+dq6GADgPHl/SjiFrdx3DXv6dIJ0fN+DdKLl73jgYDCgjzzyyA3+FuV74yFk/ynRVk5iUS+CN4E8JEEtGhZFHpiEPkRThySh8uTEkMtlWvIHdLgjmSqV8h7GQNdkqfTAW4jtp87AIJeLEc+a+JGphSZ5q2UvGdnw6iwqZOEm4idjK/dDBGlr2i5IBpNrLZIZkiVxik/ybBCmLHSJZU3tfIvkZFHsSqxNQLTmC7JrAs/f/RP2aINF2vV6RoqNi9rgGfJZLZYZDkNCACk3g9fPSJVMWIz5t4ER5P0MxLbQS6AfeO9CcO7zkH7+gW4I8p8SbeUk5f7TFi1eodKjZYC4Pw9IglMd0uKJ1Hi+5YSr5H36PfLUCIeXyuvsWtPO+9LNDtnaD37W5ZCuKW1DbHvfpqQ8ZZpp73rlhVXEz9BB0gha2KDPFrDCG0heTLsIxxJC0WeAh7zXXnvl2eTUBRJ1m5zvXjHUpinzK2f8V5FtEQxEiZJdkvkYE6R7Rk6f+njnwdtOpF01z7oaAKkxlDCPOL8E1y49CKgg8lrcs2jvOy6sjdalqgqVPv38A82IWTslxFzr9lgHnd3K2f9qjcUb+3jGs4J4JQ+SB1wm9TKQCK++7KUh8LTgitEr90KkTYluaatdpI/8PeiS+STuzHrvdOdP5pdgZ/Emo0suqjtPnily0DaW0sNIKV+/JDf3s6mTXBV4yWLfDMIuiYHG13l3SS5zr8jvY2SguyZJiBpVtUGJojES2moDAtf9klJQLCPtcj5ivwwHxlExEbWvAaBE0zPJyHMvqE9Vx0tg2MqlMG+io9+4YATL6ajqidG1n3+gG4L8R0DqI91ViuK1kHq1g10GkP4tgHWSWYqZWtQ9nBZphIdEeaHKr8TpxacPP/zwdVvV1nUIlAXPY2PhO/Zuu+2Wx1znsW8AIhBykeW900475UlFdYlaiF/iHlK3sDBM5ABY/FMVgPfICSCHk+RTk5g+Eiejq6mkqQiGiPe3ZaGD2PiY5CTpT4ioDeaJio+2BMEEyotxM9Z9kMIrvkv5Y5XH3tUA4L3LHBfiMT+PPvroSkWB8uM8qVtNzX8Cw6AE0/xWlVFGm5rUtg4H1keQ/whok6jLUpSYsQWPt7gMIPtLdGJZVy2O5GMkZTHX2MfubRq1sNAt2n5HyaBwSEJT2lXV5cwizeBRYsWD1Lq2roHOLMBwcR2k6ac+9amNNdxF4qeMMI4YCe6bhQmRSDpjSPByEQd1oA+MQarV76p2MLYoMG2VD85/rEz/Itk2bd6TQGkQlijnu9RBmIBhZUydcx8YO6EDc7CuhLarAQA2kZFkyrhVCVBsbISU5H3IFVB9Etn948OaqKS3at62Sf5Nza4CGyKy/UdA6iRFvi5K4jxfE7lKiuIl2n4UAYinLhoITgITD7ZMxghHa1Rxb6oFY8F7JMkhoZe+9KWNxzYmStRI7aRgCVIW+zG32m2D6xKndc4W9yaVoYr4i3D+JHDeIeKXtMYT7AMExJPhwSNLjWfMEwZE3biIt/O8u6gEEigpNGPE+4vkT7HiEbc1DdLr39hQH7psKiTGa/7JwfAs9SFW98P3kIQZo5SsMrpWASSDwrOJiCSyCg25x+awe2X+RDOf8cHQYlylDqFFhOQ/PoL8R0Jbn+kyxAt5n6RvbWoXDSQh7iypzSJZXBgRdZcNaaqQNrWhHkiOtJDOM06KZF2TmDKiNe5NRkcb8SdQD/xN7N0x+0LuAE+S8sFLpiIwjqgnxokRUCaYLu18y21927YOHpr010b+vheRMwC6lDyS3XnTckB48YyHPqC8MAAk7ckjqPp8HwOAwSIRUAWKsA7VyzX7Xd/QTqAbrJVyOSiCZXTdwjfQHSH7j4S+naQsJBa7qm5li4L4t0SnLkldbeChapCjJz1vUSKchXOexI/8JB9aOHTGY5yNQfzivq7NseQA9M32NsbUFMYIMpKUh7xs16v2nfRNwrbTXGqq5Fq6tPNNQG7Oa8xSSaQqMbKt3A8YCb6bAdB1jwe5AmR3iaApibQrXKtwjO90b+o6B/YJAaRNm9wnRpnrL28KFBgH7oO1wnNaFdLqsoVvoB+C/EcG6Sn1mW7r9S+jlTfHM10GWHzJ4ry1oZvypK12X/nKV+YeHFLbd999516CI6HPVrBpLwAqTJOU3JX4kRKDDXEwloZUJiB+SZHFTn4gFEFh0QRKsx+Ef+aZZ+bKCTmU3N514xiZ/o43Zhka4qdStLX5TeB9S57rYiwkuH7GUNdkwSIoJZ4pOQR1FQB9DQDjJ8ziuIxiBNXUEyMwDAw+5Z51O1+mqqryfI5NeoYjyH8G6Np72t/Ii0qLlgHIUdkV4qzb+7yJPHmq4uD+L4TAk616YGcN3rLwCxJQSdCWkNmV+JGExjKMNWVhfUr6EnwHo4gxUtf+FvlJLNTvgFpiYWMw+L6ui1zXWHtf8H67JuUledzC3hWUMhv/UGvKO/h1AWWJAoCgVZTU1exXGQCMBSWv1CJNlxgtyWAUhjGXKRkSVqs6XQaGg7FGtSkbxMX1VMy/fD9jk57hCPKfAZp6TxeBZNSOkymXxZtALoyVci17E5QIakKjQYpwhji2OPgikqJ4msZaRrYOgW3d7boSP+gEaAG6853vvG4P+L5QIuic2rrzJYKSUyA5lBctJNDFkKIYIKdZdEdE/saqSyMcxCkxFGH2kfGRrJ4HPjdUwRJS03FRDkAdigYAr16HSjtYInclZ3axZHQlyBFATnIekrIVmB6MPIqKRltV/Taq1lPPgSTb2KRnOIL8R0bqPV1uhFPsPV2ErGJyrqSiZYAFm+clK79t62EEIyP6xBNPzAlBFjRPe1EJUWLiVAfkbOOktkWhD/EjAZuNUHOGliYiGPea4lPXVKjuuqgxbZv4FPMteLFjZvonMCiMW1dliNHCc/NcdIX7YIzMr64hhjKUriIHFR5NWeLJAEAuwkT77bdfnm2O+EnKjICiYS6UQmZ2PxgJQw2UwD8g6dl6Q+Xqup6agylBNjAMQf4joy0rlSRZlP/FwnkTvI5lAYIj28tHqPLwJPCxuJX/nXfeeXk2N4laj/9FwDkqE5PRz+MTN2xTHfoQP0+PtMiY6LK/e9P3Gde+46QkUI5A110NGRlj9fSvIn+kWKx/b4LQhnBF15r/BA109IpArl1UhirYqc/9UkbZZHwwAMj+FAPj7N/Om7qTtlMuwlxhIFO5eKzIaeg5rnUYa2sfY69qvratp9HLfziC/EdGW1aqhbws//OWU43zMiD1XPdgFi1rCxzZWjmW0jQhAi15LYSL6m/Ow+WxMaiQvthg27n0IX6eOk/QZ2R9D23skja66dscxjlKfkNMXcErVxEwCzkU4SHzPhUhQjCUky7tfhOMkbFCvEO9O/NA4qSyQ0maTbkK1CL3mqGAzN/85jfnyavKzqqMLkaB5EuGMkXI+xnFgX6w7nkWrYFD1tPo5T8cQf4joJjVnxr+1LW2RSJl+d/uVaxenvSyQMzV4iYDF8Hy9DQ8kfCGLPUoEIvr6o3OAoiRAkFCJ/N32Y61D/FbzHl2kuck4NXd0zaQiI0jGbpvHB5pkp0RaFcguVnFQRGqREJ9BLqib7vfBGEL90iCZVOv/Sa4v3ImePSSyur2D6DG6EwpbMQTVbGipDOpKHVQHeM5QWKejy6bWQX+AWsegm/qI6LBUmT5j48g/xlk9Vs82jZeKcpVZEeWL2kZ0SwLZNLyIPVNt3A6N56U9r6ziCf3gViwOC2vToOPLk1h+hC/94r3Muxk9qscGApqjyx0CklfOF9Jdn26ISJ/n5kVHLuujr6p3W/f3v0gJCbO3qdioAwSvnCbpkr2n6iS6KkS8m4Quefw+c9/fv4Ma/JD5WozlD0r9nxAZm07Hwb+8Qwbc45EmdyLa6t5E1n+4yPIfwZZ/YnI+8hVmuCATXKWAbwd3qqkK4sZslS6V9xvflGgmkji0tiDt9Yl874P8af7yAvUKnYaL1o4QtY5L6WvSmJxRCh9ut1RGXifXXYIHAoJnciyjzfuGty3vsYt4he7V4KXGh4NASNRAxljesopp1SGShxfSE5Yg9LC6BPm6LI9sfchK+Oi8mVoouJagoRJqp2Kpy5rK2/f+tPWQC3QDUH+M8rqF7Nskv95q8XEP1KqZjTq5BdZ9ifO79rE9cUxqRmazsgBmPVWu10I/LOf/WwuHyME3de6eOR9id97dWmUcDaNwmEs5Uggvqp+821Qbunc++z9kGTqWSozyN/87tO8B/kq9xviwfPGkbGxnAY8eY2ZnMNZZ5213t+EBVIPBjDXhQhUvOi70KXplXnFWHHPhjbJWisQBrJRj501y62im9bWIepRoBpB/gPRJQuV90+eqkJV3f/++++fe0ZK5xYBcrEYN8/Fv8nUNk1Zhk1MEIc6e2Vsxk2eRJcYfF/i52GSehGceO40oJjwBCWu9c0XcN4SQFM//a7gcfrsLDL9q3r8d0Vq95u2Qu4D3qEeB+5hW/lpG1SmaPqka2Kxs6bQgBJOc/+0007LEwQpBAw3LYfbOgECpYyCYJvhWfRYWE0QRnQ/df8sIzL854Mg/4HokoVKluJBV6Gq7t8xd9hhh+zFL35x797m04DSQEazOx+iJK2JtS6LrMZLSGqKvggMki4Z832JX5xRZj+isuBPs2Wr+6u8zVgOSUrigSKcvhvc+AxPdZYGG1kcWfbdA8L89pmuZYJFMMR47gyipgS8Nogt24+BksA4T/K8nIpnPetZ+TyhCpD6fad4tPLMtlbArknZK0PPDoWBrDGR1lojEbOqZ0Zk+M8HQf4DUZfVX85CbbNiy/XP6uUtJBpfzEtG9yDaSIZUnCoPlmWvcgqE/vY8cQtxVyLtS/xi5YhfvHyazP6iF4hQhEuGjCXyIT33bdFLOZrH5kmS/qgwfbcERr5dYuhlGENJte5LKpscCkqCmDK5mQea2ggzaDSaYbB7JkjSnom2vQBUPniOVHMMSepca6AuGjNlwtOsrYHpEOQ/Bapk/XIWapsVK+5Vbm5C4nzRi14008YhPEstSmXyp4WVhzMt6Y0JyW4yrTVq2X333XPymAXxez+pn6GG+Nve3wYkIW4pvjwk614iHaOQV9THcHAdjCVtaGcNRkl5r4o2uBYk6tqGKFuuSxKejofT5sWI8TMAwB4AKgGaUGcAkPk/+clP5n0CKArLYjQvK6g2lM2HPexhjWG1LmtrYDoE+c94G9+0G1UdZK2Xm5jIquc5ah4yNizYHiDejSx0ZOf8hmxSMytYWBEED1GMVjYwKXsWxA96NPDcNPGp22ynD0jTDBXkPwTIjQLRV/KXrS5JbZaZ/kUiJt8a5z5wTSpIhnrv5oPqjiHqQVXuAsJmMHUhlbIBQPnw/ArtMCQWnRC7EqBPiPXOGjfmFumB/gjyH3kb37rM/j4tf5EWCVF/8bGyhi3UOuG95CUvyRuS8PKVJs2yHnwIeGC2r2WY6Cmgw1rXRXUI8ev9LvnLeIyRpEV25w0a26G9ARg+ssb7lgaSUmfV1rcu6a9v/J5xxZAbSt4+a2wl/vXpNVAHzX14lIxt86CrASB3gXFOqdNZss9eDWsV1jJrmtAIpWSMtTUwHEH+c0DblrJVLX+V133mM5/ptCC1PXBKm4488sg8ixnZS0rigS2bRMlrdb0kYX0PGEBdz3EI8ZP5NfLhKWsmMi2MNQWB2jM06cv5y0Lv09EvgTdqvOaRaW4eIbwhDW10/Ovb7rcIxCHpa0jlQBWEEnSHtI1vl1JERoe5YwwYjUH83cBYsta1ef2B+SDIfw4Y0vLX+5GYBMChsX/es5ajYpriyDwmjXGWcbEiBRsDyWoS+/qU2Q0hfh66xCPv7dIWuGsehXFmXA3d62BIO98EMjTPeh77LJhD5Pc+bX4TXBviL26X2weeI3kxjMU+vQbqYLy22267PD9HeV+TQcPAokwx7g455JD8Oig1UdffDIoUh+be9753HroJLB5B/nOCmGJby99i5j8P7vDDD88tZclofYAExdZ4+zwUsWyx/UX24W8C6Vh51S1vecuc+Pt4rkOIH2lIdJTlTV0YgyyFK3iNSgT7bMJTBAKRL9C3nW+C2HWXbodjJv01bZZTB2WIjLy+O/0VQQZGwI4xTelf0Zihvhk/LYCrchlI/WL8vtf21Qwtc07ILgyAZuibQNGSyLxsiuNaRZD/nCBRpS2pqJz5b2FRenfwwQd3aqVKLueVyKaVJU/KFi+bR/b3EFgsdbEjlZNeSf2ysGdJ/IjCfdDMh0E0hGSroOugpMmmDUraIFeAetA30S9dF/WkTzfAaSGpUZLhEGWKl03pGmI8JJjb7nmxWc80YBynxD0lgMVnjhF99tln58adGH+aNwyZMACy1jLaZz/72dn222+fj19gORDkP0cMyfx/4QtfmBPCa17zmtrPWXAkLB111FG5SsAjIT0j/0VttduFrJRIIWGLguS+PuGIIcRvnMQdLdLuQx9DowkUBF3HJI5Nk41MOejbzrco+SOreWT6JzAqjSmjpS/Uz1NLGH/TKA8kZM/M0PyBqmsyFxk1vFX3g/rm3ri/GtOU52kYAM2w0ZkEzRe84AWLPpVAAcvJDKtwq9+umf/l1pVq3EmMz33uc9c1IynHILUDFttHhHreS4gay6OdBcS0Ne4hvyvjEwfsW8/el/jBRj2SuiRgaho0Fkj1SLfJsJtVO99yT/+qjmmzQjrXIXH3adr9FkG9cS+nCSGUkXbn9CwKAbi+Rz7ykfnGQHX3JgyAajCikL6GSWMk1QbGQ5D/HLf6tTC0Zf5Xta5E/D7Ls0/g6fBijzjiiFxyJqcpoRmjTn2WcB0S+5SyadwjW7oPhhK/uvJTTz01J8e29qDG1pjKQ0gbvdQt5owvyYNJgp6moZFjtTWFqgPvm8E3zzpoHfKUMw7tty+8MbTdb5F0jb3rnyaEUCQrc1SejM2YXJvnSliqzUANA2BDWJ88T5IjA8uF6Eoxx61+JRRpVCGT38/FRCUeRV1CIMJClGL5O++8cy6VI1AxXlnxjIxl6szXVH2gfJExZEe+vobKUOJHDCRcNeIasjDOeHN6H6jzFut1bCES79Xa1RgjNp8RQpFdnt5T9tYdoy2Zsw2k5ZRBPwSIr7w72qxhLCQnDt2+ttjud0h1Q4IKFr0rqAiM7CqSppoJjZg76vTLLZC1dmYcmhMMMPK+fBtzQy8IxnWXnhjJABDSYgA4t7Wa4KYSRNLx05/+9NpwFHVUPgWDPGr554vw/Oe81a8QQFXryrRdZVElKOKggw7KF0rx8ZNOOiknPqqCbWenIX7fK1/AMZUETts3vQo8IElZFmib8ticZ17Eb9GX2S/piDcn3KDO2MuYplI1Y2vhZyQgCTkWdnij1GiDzAMs50+QhY0fw2CaBd73IsC+7XyLoD50bX88JhAiI3QIUrtf93WajazcF/fAMar20kDCEs70kt977703KDHU/Eq/BzvMmSuqTryfKqEaJM2hrnkFoQD8Y5dSBnRVD/8mdTQwHwT5jxzX77IdZbF1JU+0TCoISnyxnNy055575uQsKcke520d5BAmr4y3Xe4jkBYkXo3yGx4sI8C/3/3ud6/7/LRAjmLtvts1UT/6yuNDiV9CGaMGcWu1Sxb34snrNGbcixnd3s9jS6oEr+8pT3lKfr/kChThc0IDzsde9dNAO1+LXluWfx2JMGy0A55npn8CgwMpdqlGqboOXjYimNbopByQ6RF72ZBgZMiDoZyZO+VzVRbLGGeYup499tgjf8Y8Bz4rJ4VS9OY3v7l1D4CEtW4AqDpiSCtXrgpFNamjgfkgyH8g6izXtl3YivFmCwJSK5Osnz/+8Y/nXkfRErblqAz1d7zjHa21zbxJrXx5M694xSuy008/Pf9ZExOwqJG4eftka/LcoYcemi+SEggR7bSVAqmlsGPtuOOO+TbBfY85lPiNrXFCBhLxyPeumRFAzuXRW8iL4+t8xXxloqdjAHWF0VYkDdnf8hZc07Tg9SdjI4G36dz1NWdc8kKdfxWJUC9cy7RGyBAgSedV1xhHcidiZzwxQIV+iteR2hiPkbAnnOY+lysI3Gukov+CckwqSfGZYyCTnJX4pd97DuR7MKqcnznknsuz6Urka9UAMBcZUIyp//iP/xikjgZmjyD/gaizXBF03XaUFhAk0lUlUFdctITFhCX9eXiQeRMssORYXbXEM3k9PCPyZUqMuvDCC/PYdnpALXJinTwnEv00QKIeZAvgrrvumsc++2Io8QPjSa8DDVnKsdq06CACY5QWZeTuPiWST78XhzdWqfGLa5OkprICeU2D1M632BgI4bhfvCZkwwBQ8mneVIUFkL+xmkdP/z4Z/4jffJWwSoFxLa6D0lG8Dl47FaWqmqUP5Dzw4JG2+1VE8ti9h+Ge5gDVokj66Z4zapyPew0UAXNYEqjnsivWogEgTOZ++n+Vsd9FHQ3MHkH+A9BmuT7/+c/fIKZv0VHH30clqGr7aytMXgnyb9rYhLyNQHitFloekZJBC3Ja0NL/i7IcD1RyjgdwqOzPS2UIISMewJBkrmmIH5ny+knKTd32JH2J76f76DsYQM4f0kKddjxUmghCJOLzQi/TgpfqnhRL9PRqMMckHqqR1uKZQVJn8FFw3F9EM28YG3Omqs2vvSQk4XkeKEzPec5z8jH1++LcSu1+Eca0YGBTbtyjIpKxwZBj8KV77vfUNGpAEWkXyeLWweaTc3X+5513XudzWksGABVFvgSDX0izCm3qX1s1TmAcBPkPQJvlyrMubkdpQeLN1akEbQ9DWRKVjIb4efRdkBZa3rCFLmU6+73FL3lJ6X3+7nyH7JlO4uUZ6ZdvAShnVc+a+BG32Cxjqy0DX324xSrFiBlBiEPuAyT1BvHyHFNZG6NJgtm0eySksE+5na9rsFtc6syYMqWpDFUGmfk2ZJzHgvOvavTDsNKnIikSjF1jiAyLsfPU7tdYTAvjyMD2fFQZJDx4f0vfz3ihXqSSzuKzKAyU5l4ibN4/A1E8u0+Vw1oxACT5uQcMvrpQaV0XTM+b9TCy/ueDIP8BaKvFTparSey9PP4mlUAWep+2v7xZGfOS07p4SxY0BE/yt3958vSRiQdVHDadE/idxbFrchMgJcmDiFPdNZVhiCc6DfH7jGt03sa0LXMeqSLO4r2hqhjTtOUsA8i/EReC4lEyKvpsPFQH5IF0yvNJXgJpXOkZI/Hoo4/ODQGbz5QNRePlGhbZwtnYlI1bcP9cn4Q6hqeWueaWbZrLTaiMAbVpjFp9vSMYHe5V2VjSWMi5FpMC3U99Fnx/mjN+TucF6ff+77oYBq9//es3CC+sZQPAPbZZlqThKmO0KlRaBLW0rQV6YDwE+Y+4S5+fy1JXF5XAQ9O0BWxd21/SpA5kXTKtJf3xdIUN0kJmISSDptKndD0WNiTTtRzP94uFkk71PecVD0kWnIb4Lea8MR4o8hTHrUO6flI7InC9yQAQx0ekL3/5y/PyL3F356XDG1XDGPEsx6jdJvlXtfOVXS73wvUgGGEMXjTCKBtkyEc4Yp5tfcswXioOypvhMKR0cHzb296Wx38Zq1QT41g2hiku7mGXLXXb4N6Yg8g1PTfFOS/EUBxHyhwDRkIso0vIiCGbnvEySVN8zDHKglyGPkbyajUAGMn25pDk5553DZUm2MqbWjrPJlVrHUH+A9G1Vr+rSkAua8K//du/rZeZbgHiSfFWLEBVSAuLxZdHrsUmQnee/sbz97DKxObdImxEY8FMZWdtcX/k46G2SCqLs+APwTTEnxYfXmZSM5rAQFBOiXypHioiLFzInoG033775efAoGFE+JvxQAwqMMbwsl2veDjSLhtK5FFxZSqN0I7WzfIL3Edlm0UIQzhWqlBYBBCq+1/u1Jd2l2RQMWRUkVBkXAeDtgifZwTx1scgxNRu2Xxm3InzM7IZuv6t1NN9lkfhfu6zzz65MSi/4q1vfWtuPDD4nEuVoWd+CqEx7hk+fbAaDQAhTPffPR6S5NfHgAqMgyD/gWir1U81q11Vgra2v8i5XAOrzMwC5TyqdjazaFlc1Csj/iRVF70ZUjLiEFqgJvB+nAuFAJo8eCTKYrdoS+wb2pp2WuIHpC/UYBFxTik5rwoIQBY6EnCdPG21/bw5kC+gkyJv1Y6K7pNxpJJo9ToGyMrGr6q2XwUGA0ZJovF3H52nWHO5Hj7Fnftsgzw2xNEZoyl8lOBnhqbGVIwo10HyJwlXzVfzR76D6x8DjHPGLjXBPX/e856X/9v9Nl7CA6nfPGMB8b/zne/MyZ+xDVXETzkwx0AJ65CtsleTASDHR6mw8dUgqQpdnaCq/VACs0G0950SKWmrjHJHP8Tt5yqVgHHgPVVtf6sy/4sJMbrQeeCoACTqInHySDyUCETZEmJnnSN/yXiMAcRv0XvXu96Ve5EWampAynCvA8WBQYIYLZRt758l8SdIkiPf8paNFc+vqiUrT9SrK3jixoYUn7LAp0VTO1+/853GOIWDjBGiN0eKEA5g+DSFOWYN14HQU5VEAiMKuTF0UgwYCTMKqiol3Ctz09g0VWl0Bc/ceCFzhkAi7Dp0CVUZb+ELxgJjcxqjazW0AmZkKxVWRqx7Yh3SOlfV1ty9MeeppcU1Mq2LEQqYDcLznxJjdvQz0dsy1MvyvwVEXNgCK9mmCN+DtBCDqgMxVcTOECmW3yHuRz/60dlee+2Ve5tNPcwZO6RZkjnlgeezDMSfQIV46lOfmjcu0mWMVD+NV+Wz5HmeyVh7kZOhLfZ17XyFHnjTDDtzggJBPmcIlJUHOSNtJaPTgkIhBEK6N1erxtOcKZfLWdDdD+dP6lelooxR+WmV8TVWu98izHdzfdrdA9O22eYUxcAcG0NtWekKAGVMjwdyf1ub8apQaUryi45/80d4/lOiq5zVpBKkjn4k+OOOO66RZJL8z5hIIFfvsMMOuWTpszxgIB2X29JOAwuy82TtM0J4b0M9lVkQf9HjE+bgRegwKDFLrHlI9YGFzfWKAY+1eRKDROJbXZ8A52kXNNn+xojagPTlGxTHiQcldKGsclZw/ZIfSd3k7TQHNO4pgrGiSqK4+ZFzdR2IX4tnZX7I2Hytk8qFQRjM6uj77vhYBYavds76JVAchnRBlE9C2jYGjGOENeZGWitVAZC3IXymn0id3F/euMe6Rb10j9PvUjJgk3oa5X/jI8h/SrTJWcVJ26WjX6r9b5P/eTLFRV82v8/wrjyMYzd8ETbQMc9xn/SkJ021N/csib+46CNsC4yWxuKIpMk+/e+NP2OLxz3m4mOBT21t60AyZ8C0SdAqLWaV7Oc+IX5Gq/It8XOLtjCRhETx+wRJc95PJSh6xD4jYbIr0rgY9zHIH8xVeSzGPXUk7ArKmcx/ygaVa1YNaFaaAcAgNj8ZcxTDMoStePNVMr5nqc+6aM4F+Y+PkP1HQJOc1UclSMSu9r9N/pdZXwQCFesm/x9//PHZmCAti5daACX2LTvxF+Fcn/GMZ+SLKe/zs5/9bOu+CAlkXuqJvgVjwXU77hgxbTkArqXYHXBM8OCFd4SEkDivH/khUopKsR1vU5vfvjA2Y7T7TUCiyjOdX9fOfBJHkb4214w/c2jWnedWUgjANr2UlDq5v4+M30c9DYyHIP8RUIzpi637f1XNalIJ2hKLkG1bswsEWs6IJQs/7WlPy+OzY8n9yud4/Jqm7L777nk8eqUQfzEMwGsTquCRuEdtzWR4Nu7jNttsM2pMvaqd71AIZzBOZpkQhfRl5iMiiX2UBtn4vLFiYx9KReqAOC3GbPebYN6m5kltnSvNDXPE9SExiX1DMvpXqwFgbaIwqhCqcgT6btzTVBEVHf9mhyD/EWGS8hKbJqsHp62jH0vXA1HXG7su+Q9e8IIX5A+k5L9y6VUfWHRIr8haaRSJb5oFcFHEn5A6s5EoeRoMGotrnQrgXMWx73nPe452DilZstzOdyiQFNKdJYROeGyS9sxd9fGkeQZVsX0ug9Z19Wl5WwdzQ7JguT//tDCPnWPdDoLmgu80Nzx/stenyWtZjQYA4tZdlFFUF5YasnFPV/U0MB6C/OcMXpqEKWVoZQWgXPsv+a8JFgZVAkU4pngsz0kewJCsaZKnrGYS7qMe9ai82cw0pWSLJv4iELqQietCVHIByn3pkaq/kYrHzJ0wDpoiyYqXLJUa9AyF47ieLkAgrpMXn4zCLqSijEsPBOEk8WgJefe4xz3yeVz2oCkkEhCHwlgYE2NDoZEUOc34lKEqRTkZo6V8nmkuGFPJswhu1lUUK80AUKVibOR3WJvqjKIhNf1d1dPAeIiEvwVBZ7Gutf/Kq6oWQQsCQ4Lc73jpQZFwRZYjV+p13yfhyoL+kY98ZF1nO2VZ02CZiL9oZPHojbNWrsgGiUqgtOhKptQDYcg2xG3fu9tuu+XSvzHxPcbHYqpu3H3rulmQHg5k6dQcClEiTuEKyhO5PnWn8zv7A0gopTj4Psl6PKsupFLejIVn7PvLyZOkdTkVQgNdlQ3vRbwMEsYJ41VGvn4TqlaGtIlugnssjm/slRua77z9tAkRY3qR+yQscxKgjoiMR+NH+ZlFTX85GTAwO2w0WQaTcg2D1Uu+J7EXCT49KEkOa9rxzAKp5r5Y/gdi9MqstC6VldsG3haP3yIuRt4nM36lEH/VOVpYeRvIhxHA25LQNGQr4q7w2PFANb0R20bciJCkbtwZAhrj1C32cjEkdrpPlAr18z/4wQ9yZeFlL3vZuoRRi6/2z8pAjzjiiNxAtOshdUh/CN9lu13kq2a7KnmLx8cY9Dfxfs2kzJG0RW86R3KuYzEa67w/4218NQRy/eYGQ0HFAvKV4Y98Z0lyzlMYI23p7J4rB2RILWOGPUOLAeDeLcoASO2mqYl6HLTBPS47N4ng/b7OMCivYYHZIch/wSBvNWXP+7tb1CXD3nuLVrOHS6YyQtB6s4nMSfy8Nh6vzXmQ0Gon/iJ4xzLY0yZL5M15ggyNlNxDGeky3d13MX1kiGz9O5EzLx6hH3roofk4I1Pkueeee+bVIsVeERZbC7dQR4JuhalJk82h6sjfeRiTVFbI8yOfSywtN7kxhlpEW8RTq2RzkELBu2dcIQXGKs9RbTgvkQw87y2JGUAMbucpF0Cy4jJjkQYAQ1M4UvKr/S+qvrtcz59QVdPftt6F5z8fhOy/YHRJjpFE2CT/J1AQWNRJ/reQCwcgs9R7u7zIIRiep4dOIiK5ddpktJVG/IDQNHDRTGcRREAK9dKLQM4FMuZlmx/mgJ7+fq/hD8PM7/2bNFxMILUwU3CKXrufk4qRmvBQBizMckOa4Pi8fj3xjQvZHGFWdbczhsINMup9RiiCQeDfzhUBGF/nIsyxyJbEDCL7JQztTrlWQgCMP6EQxhlVp/ydTfX81qGo6V9eBPkvGG3JMeTgtD+ADoDl3dCqEgBJ9wnapfqsGK+4r90DUxyVV6b2PW1ww7KfdkFZicRfxDKQAVJEkF6IVtImidyLB03et+gWt/F1Lxl7DANJa+ln5C6PICV+JqGP1G1uIei2c6EQeHWBc3KeFn4SPiOBckF1WiTZl2GeL8O9XmYDwLMs2ZPnL85fVVnSVM9fJeFHTf/yILL9F4y6Gtf0UOum5z0eJl58VZVAVQJgsQSQDMvrJxWTO5OM6CFFDvbf5pGtdeJfViBvRhxVgHEn5mrhT5v+FMFDS+QPCFeJZrmiIRFfW817X5B0lcc5R+cq/ODcl4n4VzLmWQUgpCQh1pphr4xp6/khavqXB0H+S4CqGtfyQ52saQZA2/a/SL7cSUuHMt69h1l5DaucFCspMO0FMA2C+OcHBps8jipPjJctATDtj04JkEyXtgIuqj5i+GOHOHj8VImxjYrAfA0AicL2b9A3RDhsrHp+iJr+5UCQ/xKgWONa15o3WdO8uraHpLj9bxFacarTluVt0deqd8hGJ1XfF8Q/P/DiyfhVNdBkdmGcojcmWQv5S9aj7iAL/6YIkOnHJA/nxKiQIBhYmQaA46WOmPZxqIK1qq2JWJ2EHzX9y4Eg/yUCyattkxbWdNc2weUOgKQ1Xj+P0R7nyTucBkH88wdiNe7FWusUsmHMUQUk+iVCkMshxi/pUw8HZW6qAyhBxc+OAUoDw6McZgisDAPAfROu0d+jLsFPjb7wjkZIVegq4XfpiBqYHYL8lwxdE2K6tAmu6gAoo5wqIItXEuA08mwQ/2JggRazLxp/pH57OugbIOFO2Z6QjvpsoQANWmT4n3DCCbkipJzTPRsbFn7nFp7/yjMAhJMYhJQb4cGqhMiqBL+ygRAS/spAZOEsGOX62KbuWBKpUhzNe1Nynxh/nw6Assj9LMmPOvD2t7+9d0JWEP/iwGsv92HQNZBn795qS5wk/dSlUKtaPQBmASEIVQNeavqRyBg9/gPzqwJwD+3eyHhkRFYpkCnBr4xkcDAsdc4MT35lIJr8LAhN9bFQ7o7FYy/2Iy++d2gHwHe/+925MiDbX65B1wUjiH9xMPbPetaz8tK5qgzsIUgd/sR3zRVLgu8RFhI+KL5Uiajdpxj5mZfopSLByzx1blSpIIGV0QjI/bYG6ARpTdD2uApChgzLOojfj7n9dWC2CM9/QWirj/VK3bF0TVOPX4SGP6mmnxHQ1DWrmABYXJDt2Gbht3mLRDHZvW0I4l+80Yh8x0yOQvjyBEi9KZSAOLwoTn7nhdwpCnJGKAxpdz+NfeyWR12I+bDyFIADDjgg3wME+dcR/zQJfoHlRJD/AlAnnxXrY1NnLFZ5VWMfJFyU9Id0AARZvWLIz3zmM/MWsk19u4P4Fw+x9LpM/6GQE2Ce6cnvnhbJXlWIl/ivzo/L2Ps+MNwAsA+EvRr8n0PSRaEsI/XlD6VnZSHIfwHo0+Ky7b2ppr9LB0C9zKs6b0kGE6PVr11WeLEHfEIQ/3KAoWaxHbM+3/Hcd/0euu4qGFj5BgBPf++9984Nf31AqkBdtMYUkcpFEyLBb2Uisv3ngOK+1X1bXLa9N0n66v8pAU0dAOvq/z3ML33pS3PDQBY4BaH8uSD+5SF/zZkCgWmqAKxHwn2Uv8MOO6zS46cqcibKamIxwS9q9FcugvxniGJNrEQZmfx+Fh/t2uKyb01/lw6AVZ23HF8TIFY8BUHGLwTxLxfEXcn+3/ve9/LM+nJr1UCgzQD4wAc+kJf5WpMQeJUqwOOnHDRBNUlI/SsXke0/QyD6un2r077WdbthFeHhbZP0PcC8fgmA02ybKWPYg++7ZP5K8AriXx5QZciw7gkjQEa+eLyFniKQ4vNe/u2eeSnlrIv9IgMZ+zzAkP1XdxUAhyTtXqnEt/xM+3t6/tsQ2++ubAT5zwhdCbi833UTmmr6ExgAvH+GRZ3hUbXbVhHKuCwQvgsh7LrrrkH8SwSPrFp6oR7NfbwYiF5q7ZNh4N6bK16IH7EnI4DSk4wBC76s/SD/1W0A6Ox40EEH5TtFquxgMFY5LG2Jw3Wlw4GVhSD/GWEWNbEW9641/X2UhTI8+IhfAiDjhAKgeUdgZQDpMw50cUw1+V7p38koSPX8vH7vf/zjHx/kv0rBEaAeatv78pe/PG8YVlaC2hyWsoMRcf6VjSD/GeGCCy5oTNYbKpl1fUCHKAvlGL8sYV2/SIZnnHFGLhUGVh+oBIxRxmqQ/+oDB0DbXh4/4//cc8/doBEQ9YfT0ORYlEOLxc6kgRUI5B+YDR70oAdNLnnJSzKu1r38fL/73a/Xcc4///zJe97znsk3vvGN/Gefv8QlLrHeccsv7+97fP//7Gc/O/nQhz40+fOf/5z/7Y9//OPk/ve//+Qyl7lMr2MGVg7+8pe/TN7xjnfk/w+sLpx++umTTTbZZPLgBz943TP9pz/9afLBD35wcu65507+/ve/r1tTymtV+XX3u9998u1vfzt/b/H3fv7Vr3614CsN9EWQ/wzhIZvmQfnlL39Z+fkLLrggfxCbHtRkKHQ9PmNi7733nrzuda+b/OQnP9ngOrbbbrvJxhtvPPmv//qvweMRWE4E+a9OvPa1r80J/RGPeMTkoosuWu9vRQPgvPPOa1xLNtpoo8nWW29dayQMcWgCi0eQ/xyAiIuee1e0PWgMgLIC0OdBTMdPxH/00UdPrnzlK6970Iv461//Otlpp53y73jJS17S6zoCy40g/9UF3vwLX/jC/FndddddJxdffHHl+5IBQB1oUhLveMc75g4LZXBahyOwPAjyX1J0edA8kEOVhXT8IvFf8YpXXE/iKx/HonLggQfmf99nn30mf/vb32Y4AoF5Ich/9cAzueeee+bP6HOe85x1sn4dGAAcE5+pMwASqXvfWKHGwOIR7X1XeAvg4gZAfZJvHF9lgLaeN7jBDbJnP/vZeZlYuW1wsZxHws8LXvCCvBf805/+9Lzb3Ote97pIEgsElgB2WdSx721ve1v2qle9Ki/RrUI5We/e9753/iyr7jnmmGPWlfmVe/b36UwaWAFYtPURqMasJTZxviqPv+v3vOUtb5lc6lKXypWGCy+8cKpzCSwW4fmvfPzud7+bbLvttnly39vf/vZeOUQUvh//+MeTE088cT0FoEpF7BLzLycoB5YTQf5LjFkl15AGZfVL7hPjHyrlnXnmmZNNN900jwn+4Ac/mOqcAotDkP/Kxne/+93J7W9/+8kVrnCFyUc+8pHB60kKAcgBQOBVaAo1NhkXgeVDkP8SY5qYfhvxK+eT1T9t1cDnPve5yfWud73J5ptvPjn77LMHn1dgcQjyX7n4+Mc/Prn61a8+ueENbzj50pe+VPu+973vfZ2e86oywK5JzFEJsLIQ5L+KqwWaiD/V/I5RNcCIuNvd7pZLjq9//eunOsfA/BHkvzJxwgkn5KG3e97znpOf//znle+p8sbbFL6uBkARUQmw8hC7+q0ASLjRCniaTlpNu/Np1am7VxF99ujefPPNsw9/+MP5dsC2Cd1nn33yDWcCgcD48Gztueee2ZOe9KRs5513znvxX+1qV6t872Mf+9i8tW8bisl6bdsBD01QDiwXItt/DaBtW16tPodWDSQ45mte85rs9re/fbbXXntlX/3qV7O3vvWt2ZWudKWRryYQWLvQhlfL7Y9+9KPZsccem+22226175XVX9zbowrljP6yAaC1NwOg2Aq4ClEJsPIQnv8aJ/4xFQaLA4+EIfGZz3wmu8td7pIbAYFAYHp86UtfyrbccsvsC1/4Qr4NcxvxM77b0KTw9VEAbn7zm+cbhzEmivCz30f//+VDkP8qRh/iHxNCCOecc05e/3/nO985e+1rX9tJOgwEAhvCs3PcccflxH/5y18+f7bU5tcpA7bltfnXIYcc0nhcBgRDvWl3vj4GACOCMTE0fBiYL4L8VynmQfy8C1sXCxeUwdK3SP37v/97tssuu+T5ABdeeOHo5xAIrGZovLXDDjvkXv5OO+2UffrTn85ufOMb176/S4w/eePlPJ9pDYAUPrQu2CXS/9uMi8ACseiMw8D4qMvqHwt963nf/OY35/0AbnrTm+YZxIHlQmT7LyfOOeecyY1vfOO8fv+UU06ZOuN+2nLhIVUAgeVFeP6rDPPw+Ku8CxnHD33oQyvfr02wc9pss82yrbbaKnvFK14RYYBAoAaejZe97GX583vVq14197Yf9ahHTZ1xf+ihh07ljQ+pAggsL4L8VxHmJfXLIP7b3/62wXd//OMfz7beeut8cagKA3zqU5/KnvKUp+Q9xLfffvvs5z//+ejnFwisZOixz4jee++98+fkE5/4RKPM3yfjnhE+beJdGACrB0H+qwTzSu5r8y5sCCTJpyoPwDm9/OUvz0477bS8VOmf/umfsre//e0zOc9AYCUBiZ588sn5M8FI1nvjiCOOyDbZZJPO+TZtGfe+oy5Hpw/CAFglWHTcIbD8Mf4hccW22KKugA9/+MPz9+2www61HcoCs0fE/BeLn/70p5Ptt98+fxYe9ahHTX72s58Nzrepagl+73vfe7LNNtuM3nM/cgBWNoL8VzjmSfwJFo66vb+LL+/Zeuuta49jwTjppJMmV7nKVSbXuMY1ancjC8wWQf6Lw8knnzy56lWvOrna1a6W/7sNXVtxF1uCz7LnfhgAKxdB/isY8yL+8hadPIa2DYGKL+9t8jJsJ/rQhz40f++//du/TX7xi1/M7FoCGyLIfzHe/iMf+ch8zvP6/dz0/DEM7nSnO/Xunz+PnvthAKxMRMx/hWIeMf5iw5AHPvCBeUzRzyC57+53v3t2iUu0TyF5AJKN6nDNa14zzwN405velCcT3vrWt87e+MY3RiwxsCqf2xNPPDGP7Z911ll5F763ve1t2TWucY3G50+t/7nnntu7f/48eu5HDsAKxaKtj8Dyevx1cuEd73jH3GOoii9O62X86Ec/mjz60Y9epxh88YtfnNn1Bf4P4fnPB7a/3mqrrfK5/ZjHPCbPe+n7/C2j558QCsDKQnj+KwzzyuqvK+nzs++nAvDmte703jve8Y6NG3909TKuda1r5VnP+gj84he/yI/79Kc/Pe90FgisRPCI99hjj2yLLbbIn1se/5vf/OZ8N8y+z18VqG91/fPn2XM/FICVhSD/FYR59upvkwsBQade3v7tnMba2WvbbbfNvvjFL2aHHXZYvjcA6fMNb3hDLCiBFSfxp7n7kpe8JCfFe93rXqM8fwl3u9vd1hnhVaV88+y5HwbACsKipYdAf7l/Hln9fUr6iqVDXbOR++AHP/hBXg6YQgHGIDAeQvYfH5/5zGcmd73rXfM5+9jHPnbywx/+cPTnL1XTdG23XawAmDWEAP7nf/4nX7MCy4kg/xWGWcfSipn9fWKOieCr8gDGqCkG8cRb3/rW6+qh57GIrQUE+Y+Hr3/965NHPOIR+Ry9zW1uM/nIRz7Su5omoe35m6XBPQYi7r/cCPIP5KjyHjQGKTcH6Zp0NCsv469//evkta997eS6171uvsA95SlPyZMEA8MR5D89/vd//3eyyy675HPy+te//uT1r3/95OKLL278zJCGPTx9ZX+eK59vK7kNAzlQhyD/QI6mRiAWEBn+XRr7IPx54I9//OPkpS99ad4g6LKXvezkgAMOmPz617+ey3evNgT5DweC3n///SeXucxl8mY9L3vZyzqH5bo236kypKkFnsmNNtpoKZ7HwMpDkH+gUzlQ17K+sTyNOim0DIR/4IEH5gbAla985cnhhx8++d3vfjfKOawVBPn3x29/+9vJC1/4wsmVrnSlyeUvf/nJs571rPx3XTG0BK9KLQjPPzAEQf6BnGS7eg91KsBYMcaqxY20maTOOpD+d91118mlLnWp3AiwGMd+Ad0Q5N8dOvExNq94xStONtlkk8lTn/rU1nr9aZ+5Irrm4Xg+Fx3zDyw3gvwDvb2QWSb1dU1yaqoM2GuvvSaXu9zl8tfTn/70yfe///2pz2s1I8i/Hd/97ncne+yxR64w8fT32Wef3hn803r+fSpw2lpqBwJB/oEcQzb/GDupr8vi1lVh4PU/+9nPzlUAasATn/jEyXnnnTfKea42BPnX46tf/erkCU94wmTjjTfOY/qHHnpork6NEbbq+8y1qQVdNtMKBBKC/NcoqjbrmZU33xVdFre+sUzxf4mB17rWtfLkKBsIKRmMMqR/IMh/fahNf//73z958IMfnM81lSUS+X7/+993qu8XFuvyHPV95roYx+nzXXNmAmsXQf5TQMLPFltsMdl0000nV7/61XNiKXqXPARS4c1vfvM8G/h617ve5GlPe9rkN7/5zXrHqXqI3/KWt6z3nuc85zmT61znOpN/+Zd/yR/soWgrL5pnI5BpZM2+WcwysE844YS89trnb3WrW01e+cpXRnJgkP86SNh7+ctfnj+v5sjtb3/7yete97rJRRdd1PrZpkS8MRW0tv02ujb8mTU++tGP5sYTo9s5nHbaaev9/ZBDDpnc4ha3yENzkia33Xbbyac//en13nODG9xgg7E87LDD1nvP8ccfn5dW3uEOd9jg84FmBPlPAQ/ViSeeOPnKV74y+cIXvjB54AMfmE/E5CF8+ctfzht+nH766ZNvfetb+UY8N7vZzfItPIswqR3H1rbppUNWwic+8YnJne9857xjFsK6733vO9U5z2pv7zHQNaFpqHHC4z/rrLPye+B7GG56Bdh0Za1irZO/jpFq9BGROWFjqY997GO91KEu83YMg7pNLViW55sxc9BBB01OPfXUSvI/6aSTJmeeeebk29/+dr5+7rzzzpMrXOEKk5/97Gfrkf9zn/vc9dbFovryve99b3LTm950cvbZZ0/e9ra35QZ9oDuC/EeEiWuis3rrcMopp+RZwprVJFQ9HEWcccYZuapgcWbdMgSGYJ47fA1FW0nhmAuZREAeyLWvfe382FtuueXkVa961eQXv/jFZC1hLZK/nBCG9J3udKd10r54vmY9s1Ksxqy5r6v9X8bnu219S6qL9wnJFclfuKUOnCvKK4PgggsumNzwhjcc9bxXO4L8R8Q3v/nNfAKblHUgPV/taldb73c+g4AkFCF2HeyKXodFGeFJOiKRFR+QeZQXLQIWKuV95Q5ms5AwGWLI7wEPeECeMCVBcLvttssNNc2EVjvWCvn/4Q9/yMNp5GjPEkPyQQ96UK7MFY3xWeWqzJp8l/X5biN/YZWXvOQleflksTwX+W+++eZ5Iy+y/otf/OIN7tNOO+2U30dVGG9605tmeh2rDUH+IyYJWUjE5OtgYgsLqBMugrRF2ic9v+hFL5pc+tKXnhx99NGVNcZd4o91WFbPoA3zzENQs23sGWHGZLPNNssrBRhcbe1aVypWM/m7Zx/4wAfyjH0hHvfUhjvHHHNM/jyNgbbnal4198v6fNeRP0VT2aREXM7POeecs97fjzjiiDxE98UvfjFX5Dg+ynjLoNStBSN9bAT5jwQNZliq6szrZC2y8v3vf//WRVaDGjLkLPCQhzxkKWKCKwEWU2GBm9zkJuvUGQmcMsHnsbPivLDayN+9ee973zvZfffd1yWcybUh61PnZoGmmP88E+6WJebfhfzJ9e7Hpz71qdyDJ9s3GWQUUYrNanr2Fokg/xGgyxeyFneqgozyrbbaKs9oLSby1eFd73pX/sDMYpKTzWwxuqjFaSVCCMYCpVKDcpMUgUc+8pGTN7zhDSs+R2A1kD9VzWY6EjmTh49MNHniUc66tLMqV0UG/ry3n16Gkt0hMX+QvKeCqg4SAx0r+nWMg42zwGCY10972tOy0047LfvIRz6S3ehGN9rgPb/73e+y+93vftmlL33p7PTTT88uc5nLtB73C1/4QnblK185/8zY2HjjjbOTTjopO+yww7KvfvWr2U1vetPsZje7WbZW8Y1vfCP79re/3TgOG220UXbXu941fx199NHZl770peyMM87I7+cTnvCE7BKXuET2L//yL9l2222X3+t/+qd/yn8XmB3+/ve/Z1/5yley973vffm9OPvss/Pnccstt8wOOOCA7CEPeUh2m9vcJr9384Dn1bl885vfzL71rW8t7LlalvMYek8vuuiixnXRc3WNa1xjrue1ajGSEbEmsdtuu+VJKvbsLpajpPgTqf8ud7nL5La3vW1e6ld8T4ofSzaSBChJkAR27LHH5iVHutMFZoex6qHtKaDWWBKZXg6OI6GTByqu7L7KB1lmrATP3xh+6UtfyuvwH/7wh+dJYMZaopfkzNe85jX5c9UH0Qhndrjwwgsnn//85/OX+3TkkUfm/1aeR+63Cyc1TdtkJczyauQ68e5B+Z5MfyXUygEl8+mlIncjMA6C/KdAXWKNmn2QrFL3nu985zv5e8QmZbKSKiW/aCxy3HHHLT1hrHTMIjYqm1xi4MEHH5xXKagaSMaAEMErXvGKfDFbNpJdRvJ3LsgC2euVoRLGWCqTvcc97pEbxx/+8Id7J3oh/HlVkaxl1K19O+64Yx76ZMDJoXE/5WUw4IoJf+eee27uOHGuGNVq+IUEIt4/Hjbyn0WrD4HAvKX+W9ziFo1/L0qlXUIDVfjjH/+YfepTn8pDQl6f+cxnsr/+9a956Od2t7tddqc73WndS6jgUpe6VLYIOKf3vOc92QMf+MCFnMNf/vKXPAR17rnnrnsJrZCAnY9wy73uda/8tdVWW2WXvexlex3f/SMZH3PMMdknPvGJyvdc8pKXzO5zn/vkknkgsBYQMf/AmgMib4JYKZL/1a9+lT32sY/N3v/+96/7m5j+W97yljy22obLXe5y2bbbbpu/4A9/+EP2uc99Lic3///oRz+avfrVr85jnfI7GAR3vOMds1ve8pb599/85jfPbnjDGy7MKJiFkfHd7343J2Ov8847Lx8HRM8AEM+91a1ulRtDj3vc4/Kx8DKOfdGF8Iv429/+lt9nsfKVEiMPBKZBeP6BNYeunv/973//7IMf/GBODLPyEBkESCp5vP6NgP70pz+tS9C88Y1vnBsC6XX9618/u9a1rpW/rn71q0+dXDiW58+I+fnPf5796Ec/yn784x9n3//+99cRvdd3vvOd7OKLL87fy3t3LXe4wx3WqR+3v/3ts8tf/vKDv78v4VfBODzgAQ8YfA6BwEpBkH9gTaKN2PuGBsYEEv3hD3+4HnEWCbR8zte85jXXGQNesqE322yzda9NN910g38jeUaDl+OdeeaZuULheL6fQXDhhRfmr9///veV//7Zz362jui9fvrTn25wbmXDJb2ufe1rj1YRUaXQDMUs72sgsEwI8g+sSfz617/OHvOYx9RK+u9973tzT3iIhzg0R6ALkPJPfvKTdYRbJN/0M+87kXSRjMcAQk+GBNWBsYHIi8ZH+t3mm28+l5BFlSHXFxHzD6w1BPkH1hyK5AxV9dBDPP8qD/Tud7973gvin//5n/M69FkZBVXwfZLmqrx38jsPP9VWf/7zn8+22GKLbJNNNsk9cuGGolKQ/i83YV61812MqLb71BV9cjkCgVWBESsHAoFVVdvftxyw63bEXkrNlJwtQ435MpX69S3F67qpTtVr6623Xpp7EAjMG0H+gTWDvmTep1Vq121dl9EQWDT51xF+l/vUd9yD8AOB/0PI/oE1gWkS+Lq0Sm3LERhbfh4zr2DMOv+686r6/ZBEvar71Bbz33rrrbM99tgjD71EMl8g8P/x/42AQGBVY9Z7nU/j+ffpMlgVuigqB8WWtU3ta4t/+9rXvpZ7/l//+tdr39P0+brz8rPWrHXqSZ8wSdN9qlJowsMPBJoR5B9YE5jHXudDyKzv+Qz9jkS4VSStPz7y9/82wq4j+W222aYypKItb9XvmyT+offJ36JXfyDQDSH7B9YMZt20p6p8cCiqSgmnyWxP1wnlMdBwR6jBueu0d6UrXSn7zW9+UzlOVZ/3t7FLCuvOP0rxAoFxEPuOBtYMEFwisAQ/+/2Y26ki6ZNPPjkv8xuKVIbYpy1xl/a1Xk1E7W+//OUvN3hP0+dnTfxj36dAIBC9/QNrCPPa69wxCWoHHnhgXi+vpj6RuXr6LhvMVJ3XTW5yk2w1gXFk46NI1AsEFoCO4YFAINABbQl5Cf49ZGvZMfMKqmL+0xznEpe4ROeYfzHpry1RrynxMBAIDEOQfyAwItrIuYrc+ySqVRFml1ci3KrzK5J/G2HX9UqQ8FeVCHjBBRe09kpw3ccff/zkhBNOWG8M+jZlCgQC3RHkHwiMhC7lfm2lfF1Rpxy0GR1VxkM527+JsNsaH9UZMnW/byL4vk2ZAoFAd0S2fyAwEvo0+hlr9zjH+djHPpb/+573vGf+/5TPUPx3+buKeQ9i7ueff35eSXDLW96y8j3lz3/gAx/IPv3pT2dbbbVVdt/73ndwA6K6CgzHbdqWN3bfCwSmQyT8BQIjoU9CHlKdhryquuOl7oDF49Z9R9Hmd97Iv3z+Pttl86L0vY5Z97eqjoUIvKoskiHQRPxjjF8gsNYRpX6BwEiwTz2y47kOKeXrAyTLYy7Cz2r1m4C8edu8fCqFc37EIx4xyvf2PadpShenHb9AYM2jR4ggEAhMmZA3Rsx6mm6FVXH0TTfdtNPGPtO0MK5rEdz0GfkMEfMPBGaD8PwDgRHR1uhnjGY1bR4zSbwKSWava9LTdtxpPPWqc6pTSvzs96effvpMmzIFAmsZEfMPBGaAFC9/9KMfPXpTobbcgjpJvI28L7jggvUS/vp+75BzSm2Fi7H/RPDzasoUCKxFRLZ/ILBG9imo2xsg9fYvZ/v3/V4YundCEHwgMF+E7B8IrJF9Cppk9q6efdP3TrN3AsK3kRFfRMkkYyAQCMwO4fkHAisYfT3mqp0HH/zgB2e77LJLnv1/qUtdaurvHeLFN5UQVpUJBgKB6RDkHwisYPRpqFNH0De84Q3zLYT7kP9K2245EAisjyD/QGAFYkxP+a9//etCyb8uF6H498gDCATGRcT8A4EViKFNfpYRQ0sXA4HAcAT5BwIrDE31+n6/0pLlhpYuBgKB4QjyDwRWGFabp9zW7Cck/0BgfAT5BwIrDKvRU56mTDAQCPRHdPgLBFYYkqdclx2/Ej3l6OYXCMwX4fkHAisQq9VTTs1+gvgDgdkiPP9AYAWCp/zyl788+9jHPpb/fM973jMIMxAIdEaQfyCwwhDd8AKBwLQI2T8QWGFYTTX+gUBgMQjyDwRWEFZbjX8gEFgMgvwDgRWE1VbjHwgEFoMg/0BgBWE11vgHAoH5I8g/EFhBiG54gUBgDAT5BwIrDKu1xj8QCMwPUeoXCKzQbng//OEPs+985zvZta997ezGN77xok8rEAisIGw0mUwmiz6JQCCwOKgU+PrXv57d6la32iCcEAgEVieC/AOBQCAQWGOImH8gEAgEAmsMQf6BQCAQCKwxBPkHAoFAILDGEOQfCAQCgcAaQ5B/IBAIBAJrDEH+gUAgEAisMQT5BwKBQCCwxhDkHwgEAoHAGkOQfyAQCAQCawxB/oFAIBAIrDEE+QcCgUAgsMYQ5B8IBAKBwBpDkH8gEAgEAmsMQf6BwCrBxz72sewhD3lIdu1rXzvbaKONsne84x3r/f33v/99tscee2TXve51s8te9rLZrW996+y4445b7z1//vOfs6c+9anZVa961WzTTTfNtt9+++ynP/3peu85/fTTs5vf/ObZLW5xi+xd73rXXK4tEAiMiyD/QGCV4A9/+EN2+9vfPnvlK19Z+fe99947e9/73pe96U1vyr7+9a9nz3jGM3JjAJkn7LXXXtkZZ5yRve1tb8s++tGPZj/60Y+yRzziEev+ftFFF+XGwbHHHpu94hWvyHbbbbfsL3/5y1yuLxAIjIeNRzxWIBBYIB7wgAfkrzqcffbZ2Y477pjd6173yn9+8pOfnL361a/OzjnnnGy77bbLfvvb32avfe1rsze/+c3ZNttsk7/nxBNPzG51q1tln/70p7O73vWuOflf8pKXzO5whzvkf994443z322yySZzuspAIDAGwvMPBNYI7na3u+Ve/g9/+MNsMplkZ511VvaNb3wj+9d//df87+eee27217/+NbvPfe6z7jO3vOUts+tf//rZpz71qfznK1zhCtkTn/jE7FrXulYeXuD5b7bZZgu7pkAgMAzh+QcCawTHHHNM7u2L+fPYL3GJS2QnnHBCdo973CP/+09+8pPcg7/Sla603uc233zz/G8JhxxySB4y8Pkg/kBgZSLIPxBYQ+RPvuf93+AGN8gTBMXvefBFb78LrnjFK87sPAOBwOwR5B8IrAH86U9/yg488MDstNNOyx70oAflv7vd7W6XfeELX8he+tKX5uR/zWteM0/e+81vfrOe9y/b398CgcDqQcT8A4E1ALF8L1J9EZL3/v73v+f/vtOd7pRd6lKXyj70oQ+t+/v555+fff/738+22mqruZ9zIBCYHcLzDwRWCdTxf+tb31r383e+853cs7/KVa6SJ+3d8573zPbbb7+8xp/sr5TvDW94Q3bkkUeuk/J33nnnvCTQZyT3Pe1pT8uJX6Z/IBBYPdhoIu03EAiseHzkIx/J7n3ve2/we+V9r3/96/OkvQMOOCD7wAc+kP3qV7/KDQAJgGr7NQVKTX722Wef7C1veUtewne/+90vr+kP2T8QWF0I8g8EAoFAYI0hYv6BQCAQCKwxBPkHAoFAILDGEOQfCAQCgcAaQ5B/IBAIBAJrDEH+gUAgEAisMQT5BwKBQCCwxhDkHwgEAoHAGkOQfyAQCAQCawxB/oFAIBAIrDEE+QcCgUAgsMYQ5B8IBAKBQLa28P8AbD7EIXk/v5oAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAHwCAYAAACop2ZrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7/tJREFUeJzt3Qm4deX4P/BVKlOZyTzP85DIT6LMQ4YQfogKlUQjDSRTQimRFDKFQlHmkDFE5qEMmX7mWaaI/b8+y/95rXe9a95r77PPOff3una955y9117rWc96vvf9vYdnvclkMskCgUAgEAisGqy/1CcQCAQCgUBgvgjyDwQCgUBglSHIPxAIBAKBVYYg/0AgEAgEVhmC/AOBQCAQWGUI8g8EAoFAYJUhyD8QCAQCgVWGIP9AIBAIBFYZgvwDgUAgEFhlCPIPBAKBQGCVIcg/EFhleNWrXpVd97rXzS5xiUtkd7rTnbKzzz57zd/OO++87H/+53+ya17zmtkLXvCCJT3PQCAwOwT5BwKrCCeddFK21157ZQcffHD2pS99KbvNbW6T3ec+98l+9atf5X/ffffds8c+9rHZe97znvx11llnLfUpBwKBGSDIPxBYRTjiiCOyJz3pSdkTn/jE7OY3v3l27LHHZpe61KWy17/+9fnff//732d3uMMdslvf+tbZ1a9+9ewPf/jDUp9yIBCYAYL8A4FVgn/84x/ZOeeck93znvdc87v1118///mzn/1s/vPznve8/GcGgb9RBQKBwMrDBkt9AoFAYD74zW9+k/3rX//KNt1007V+7+dzzz03//f973//7Ne//nX2pz/9Kbvyla8ctyYQWKEIzz8QCKyFi1/84kH8gcAKR5B/ILBKcKUrXSm72MUulv3yl79c6/d+vupVr7pk5xUIBOaPIP9AYJVgo402ypP5PvrRj6753b///e/85y222GJJzy0QCMwXEfMPBFYRlPntsMMO2WabbZZtvvnm2ZFHHpn95S9/ybP/A4HA6kGQfyCwirD99tvnCX3Pec5zsl/84hfZbW972+yDH/zgOkmAgUBgZWO9yWQyWeqTCAQCgUAgMD9EzD8QCAQCgVWGIP9AIBAIBFYZgvwDgUAgEFhlCPIPBAKBQGCVIcg/EAgEAoFVhiD/QCAQCARWGYL8A4FAIBBYZQjyDwQCgUBglSHIPxAIBAKBVYYg/0AgEAgEVhmC/AOBQCAQWGUI8g8EAoFAYJUhyD8QCAQCgVWGIP9AYJXDxp7//ve/8/8HAoHVgSD/QGCV46KLLspOP/30/P+BQGB1YIOlPoFAILAy8J3vfCf7/ve/n93whjfMbnSjGy316QQCgQaE5x8IBKbC7373u+y+971vdpOb3CS7//3vn934xjfOf/79738fIxsILCiC/AOBwFR4zGMek33kIx9Z63d+fvSjHx0jGwgsKIL8A4HAVFL/hz70oexf//rXWr/3s99/97vfjdENBBYQQf6BQGAwxPib8L3vfS9GNxBYQAT5BwKBwbjBDW7Q+HfJf4FAYPEQ5B8IBAZDct997nOf7GIXu9hav/ez30fWfyCwmAjyDwQCU+Ftb3tbds973nOt3/nZ7wOBwGIi6vwDgcBUuPzlL5+94hWvyD75yU/mP2+11Vbh8QcCC44g/0AgMFWNv1I/mf0J5H5eP6MgEAgsJkL2DwQCgxE1/oHA8kSQfyCwhDXyH/jAB5ZtLXzU+AcCyxdB/oHAnLFS2uFGjX8gsHwR5B8IzBkrRSqPGv9AYPkiyD8QmCNWklQeNf6BwPJFkH8gMEesNKk8avwDgeWJKPULBOaIRZfKKRMMFOfRpTufcr4PfvCDuWLBcOn6uUAgsLQIzz8QWGZSeVOVwDQVBA972MMGJyFOJpPe3xcIBJYOQf6BwDKRypuqBMaoIPj4xz/eOwlxpVQuBAKrDetNwmQPBJYEvHOEu95663VqiYtUEXIxWZBikAyJur+R5Zvw7W9/O1cMEP3f/va3df7ub3Xn1nRObd8bCASWDkH+gcASxNH7tsV1DN710O9vMize//73Z//85z9ryd/f73e/+/U+p7bvnUUOQiAQ6IaQ/QOBGaFJEu9b699WJTBNBcH1rne9QUmIs6xcqBu7L3zhC8u6K2IgsCgI8g8EZoQ6gt9222171/q3VQlMU0GQ/t43CXGWlQtVY2dsNt9888gtCARGQJB/IDDnZj6f/vSne3vMbVUC01YQwN3vfvdeSYizavJTN3ZlLMeuiIHAoiDIPxCYAaaR6es85qYqgTGa7Zxyyik58Yrx+7+EvbZteWfR5Kfr2C3HroiBwKIgmvwEAjNAmyS+5ZZbZmeddVZllnydx9zWUMffPvzhD2ef+9znsi222CK7173u1Sl5LikN/rb++tX+QPmzxZ/HbvLTN8TheyMZMBDoCaV+gUBgfNznPveZXOxiF9P9Zs3Lz37/u9/9Lv9/8W/p911w3nnnTd7//vdPvvOd7+Q///a3v609Xt3fvv/97+f/v+QlLzl597vfnf+/7j3F31/xildc6+e73vWuk5NOOik/l/J5jTl2da9pvysQWI0I8g8EZoQuBI+4msiyK8lvvfXWtYZGnRGCxP2/jvyL7+lCwuVXH2Omy9itt956ldcXCAT6I+r8A4EZo0oSb5LR/VzXB0A9/ic+8Ym1wgWk+n//+9+Dz++Sl7xkHqOvq/Mfiq7NforXziEpjkMauytf+crZQQcd1LkvQiAQaEaQfyAwJyC5r3zlK9krX/nK7FOf+tSa31/xilfMfvvb386c5OdN/m3NfqoMnCLuete7Zk972tOy293udms+P48NhKKxUGA1IBL+AoEZo43kisQPZ5xxRiXJz4L454G6hLyqWv4ilESmssiiISAhMCUpjmkA9O26GAgsZ4TnHwjMGFX972cBMnufvv+Xu9zlsj/84Q/ZRhttVOn5F98zzblXef7TtCsuYkxyjn0KAqsJUecfCAxEl+1zuzas6YOqpjpbb7117x4AWuWWf9/lPcIUXc+zrtnPNH0QZtHop6kpU/QSCKxEhOwfCIwQt6/zQKchuSpP3u5/G2644VrSdCJ5393UA6Dqb35/7rnnZuedd172pS99Kf+OqveUP+vnL3/5y+uMQ9dmP9O0K64j52lCAF32KYheAoGVhJD9A4GBhN8ls32IvF1H8kUDY8zEN8mFuvrZQMd39kXxXKDreY0ZDqnbebBrAt88digMBBYKA8oDA4EVD/X1GtdsueWWvWrbq+r12xrWlJvmFOvj2/oAjIF//OMfeZ2//88TVbX8Q19V49PU+KhvU6ZAYKUhyD8QmJLwiy9E3YXkil3x5kXyCRdddNHk73//++Svf/3r5M9//vPkxz/+8eQNb3jD5Pe//33+O3/znnmheO1efe5BEzn3JfNpuy4GAssJIfsHVj3aSvH6oEkeHrtG/S9/+Uv285//PH/97Gc/W/PvX/3qV9mf//zn7IILLljn/15///vfO9f/b7zxxtkmm2yy5v/Ff2u8c/WrXz272tWulr/Svy91qUtlY6BLXkFdrkVfGb8YGoBZ9xIIBJYaQf6BVY8xYs9du9n1wUUXXZT98Ic/zIkpvRDiT37yk5zk//SnP61D1sj3Kle5yjpEXSTvS1/60nl5n6ZBzhux/vjHP84e+chHrmkk9I9//CM3GJqMCEYGo6NsTFzmMpfJDYFrXvOa+ba/xdd1rnOdbIMNNph5XoEqDDkMbTkCUdsfWK0I8g+saixCvTmjw3mcc845eWJhIvrzzz8/T8aDS1ziEjnReSHQoqed/o1011tvvbkm/Akd/vGPf1xHffDvH/3oRzlpe1144YX5+x1fpn8yBm5729tmd7jDHfJ/1+0oOARdPf+o7Q+sVgT5B1Y12jzEJlS1n+1C9ErrlNUhey/SNgkfrne962U3u9nNcjJ0zESSvOgxyXHMbP82UBKoFYyAoorx7W9/O1c2gDJhHBkC6eW6yz0N+qCN2CPDP7CaEXX+gVWNvvXmfQmfJH722WdnH//4x/PX5z//+eyvf/1r/jeyNZLbdttt8//f/va3zzvqrTQwWqgVXuWGQb///e/XMoROP/307Mgjj8z/JjxxpzvdKbv73e+evzbffPPs4he/eOfvTV0Lq3oiQNT2B1Y1ljrjcDnjmGOOmdzqVreabLLJJvnrzne+81rZ3q95zWsmW221Vf43Qy2buozrXOc662QwH3rooWu957jjjptc+9rXntz2tredfO5zn5vLta0mtJXilTPzm/C3v/1t8olPfGJyyCGHTO5xj3tMLnGJS+THuNzlLjd58IMfPHnJS14y+djHPlY5F5YKS1XqVwdj89GPfnRy2GGHTbbddtvJZS972XwMjaWti5/3vOdNPvnJT+ZVCV1QV0mhuqNv+WBgHFjjjPHTn/70Nb+zVpbvwVOe8pS1Pvee97xncqMb3Why4xvfeHL66afH7ZgCQf5T4LTTTpu8733vyxcJC8kBBxww2XDDDSff+MY38r+//OUvzyd5muh15G8x+/nPf77mpfwq4Uc/+tHkhje84eSss86avOMd75jc7GY3m+aUAxXoUorXhO9///uTI488cnLPe95zHbI3B7785S/PtXRuuZN/GcbunHPOmRx++OGTBz3oQWsZA/e6170mr3jFKyY/+MEPBh07avvnj7PPPnty3eted3LrW996HfJ/0pOetNZa+Mc//nHN3xl717zmNSdnnHHG5MMf/nD+7wsvvHAJrmBlIMh/ZFz+8pefvPa1r13rd2eeeWYj+SOIOnz961+fbLbZZrlBcP755+cPTWA26Fpr/69//Wvy2c9+drL//vtPbnnLW+b3ltGHSI444oiFJ/vlRv51xsDLXvaynPyNvXuATA488MDJ5z//+fwedUHU9s8XF1xwQe65I3BkXyb/4s9lMASsl7/+9a/zl7XwT3/605zOfOUhyH/EBeltb3vbZKONNpp885vf7EX+m2666eQKV7hCLuuThf/5z3+u9Z4dd9wxl6UveclLTt7ylreMdcrLHtSWeTXG4WFQetyLq1zlKms68z3+8Y+fvPOd71zWi9ByI/8qUjj55JMnj33sY/PnyL256lWvOtl5550n733vezt5h/NssrQcnqmf/vSnMzm+5+UZz3hG/u8q8r/Sla6UP1e3uMUtJs961rMmf/nLX9b6/HOf+9zJBhtskBt8wkKB4QjynxJf+9rXJpe+9KVzciZHCgOU0UT+pEx//+pXvzp59atfncvFe+655zrv+81vfpN3X1tNhFv3/VUd4GbRiY33+KlPfSqPOyZSuelNbzrZd999898vJ+9+JZN/EQxnORd777137mEmI2233XabfOYzn5n8+9//XupTXEhUtUJmPI05xzlHlDJ5MVXkL0fqgx/8YL6mcnKucY1rTB760Ieuc5w//OEPy9rYXhQE+U8JXsV3v/vdyRe/+MXcUmW59vH8y3jd616XW7Zdk5nmhb590ufx/bPqwf6tb30rz98gKzq2ZEv3VghmJWIlkX8ZjOr99tsvjw+7l9e//vUnBx100OTb3/72Up/aQqEu9+HhD3/4KMfXQppi5n50lfklfTqP733ve6OcQ2BtBPmPjG222Wby5Cc/eTD5Sxb03nPPPXeySFjqxKi2jPxpM7QpK3Ivbn/7269J2HMfeZFd48fLFSuZ/BPcQ8/hTjvttCZh8A53uEOeqMmwXMlqWRvmUfVw6qmnrlkz0svP6623Xv7vKoVBnpP3UAMC42M2XUNWMTQ0Sd3MhkCHN3XRWrQuCjRDUStdbn9b3Et9Kb6/Ctq+dgXj9zOf+Uz2uMc9LrvGNa6R7bfffnmTnVNOOSX7xS9+kb3mNa/J7na3u82suU5gfnAP9Qp47Wtfm9/bd77zndm1rnWtbN99983v/ROe8ITss5/9bD4nxoLWwRoN6TSogZKmRVtuuWV28sknz/yZ6YMu/Q6mxTbbbJN9/etfz9e39Npss82y//3f/83/XdXMye9BB8vADDADg2LVgBTMM1RmJE7lZ5asMhRQqiLz+/jjj88tWLXJfk6ehvI93uZXvvKVvFxMnOvKV75ynhSzSOC19N3Jbp7f39dL4VEce+yxazL1b3CDG+SJlr/61a8mqxGrwfOvwy9+8Yu8FPd617tePhduc5vb5H01yolms1CrFmXHwKXqd1CU/Un7Sp6FT62n6vmFaO52t7vN5LsDIftPBZnfsvVl+CNtkn8ifjj44IMrH6YTTjgh/7typTvd6U65DKlmWQ3/i170ooWL9/dZHGYhcbZ9f9cQhAVGMqXxXn/99ScPechD8vu10mX9Nqxm8k8wB8jLmgox4JXs7rPPPnl57VLO2ZUc1iuSv5wARC+x9uIXv3je20RibbHOPzAuwvMPjLI4zDohcBovitqy/fbb54RvcXnmM585+eEPfxh3/v8jyH9tIHzEzwAw5x7zmMfkyt5SqlVjo2ykR7+D1Ycg/0AnNC0OFhKJckM9hy5qwZAufMIs97vf/fL3ytx/1atetRDlkouGIP9qkP6PPvrovNrDHHrgAx+YlwuO5fnPK2xWRJuRHv0OVg+C/AO9UFwc2srv2jybIWpB2+KkjluvBYaB42kW8uY3v3mdxkmB/yLIv3183vCGN+RhOXOKPC1E0NYzYNYVKsuxaiewOAjyDwxCnbffx7MZcyGyEL/rXe/KE7YcxyZLkoZWezy/C4L8u8FcOuWUUyZ3vOMd8zl2u9vdLs+VqDMCqtSqWZNuk4oWGxkFigjyD/RCV2+/zbMZcyGyS97mm2+ef87mOuq5o5NbdwT594O59ZGPfCTftdGcu8td7pKHmOpgLs+6K2UXFW2pq3YCi4Ug/0AvdJUy2zybMRaiL33pS2sWPN6YjmCB/gjyHw7VIqkx1AMe8IC1OthVYVYx9arnUoKr8FdCeP6BIoL8A53RJ4mp6HlUSZHTLERK9h796Efn77Ovt411wtMfjiD/6cMBPHvlacoEbTA0dIvhIWh7ligOSQGImH8gIcg/MGr5Em+DJ1SXEFiUIvsuRI63++6753sfXP3qV8+bsUQi3/QI8h9vHG3OZUdBu86pYe/S0nvWzyWDJD2TUdIXSAjyX2bQDGOpvNwunn+f8r+uCxHP6rWvfW2+adJlLnOZyYtf/OJROrAF/oMg/3Ghg+QLX/jCycYbb5xvZqNSYKzE0yEqWtXzNeuSPtf7k5/8ZCbHDoyDIP9ltkhLNNIZcB4GQNVCUxdbbPL222T9poVIu09dEH3mcY97XN4yOTAugvxng5/+9Kd5g6CUFKjZ1FB0UdE8h9Pk4YxJ/F/4whfyHJxQ5hYXQf7LDPbCnrUB0LTQtHnrEoy6LEJtCX3OYZdddskly1vd6laN2dSB6RDkP1uoPtFvwnMhbDUkFNCW0Of5S70turxm6fEn4l+0NuWBtRHkvwwxawOgSyy+7K0j6zEWH4uHjZCueMUr5hL/UUcdFd7DjBHkP58xPvzww/NQgH1AXv/613d+dttkfVsTp06XkvvGML6HIIh/eSHIf5liVgbA0Cz8MWRHOxve/e53z99nZ8OQ+OeDIP+lCQXYCKzLHhN99gnYeuut89e8Pf8g/uWH2Kh8meISl7hE9j//8z/Z73//++zLX/7yaPuQD9nb+zvf+U72oQ99KPv3v//devx73vOe2dve9ra1fudzr3rVq7Jb3/rW2Q9/+MPsox/9aPbGN74xu+pVrzrgCgKBxcXVr3717MQTT8w+/OEP58/NLW95y+w1r3lN4/N7gxvcoPPxP/GJT2Qbbrhhfuzb3/722cUudrG1/u7n+9znPtmNbnSjbCx4fr/0pS9lf/rTn/I16eIXv/hoxw7MDkH+yxizMADaFpob3vCGvQ2G9dZbL1+ILEgf/OAHs8tf/vJr/vaDH/wg22abbbLdd989e/zjH599/etfz7beeuspriAQWHzc6173yr7xjW9kj370o7Nddtklu/e975396Ec/qnzvjW9845yw11+/fbn+17/+lRvi8JGPfCQ3ttuM72kQxL98EeS/zDG2AZAWmjqPwfE/8IEPZN/97nc7Gwx3vetd84Wo6G0kb/9Wt7pVbgDw9o855phs4403nur8A4Hlgstc5jLZcccdlxvE5557bqMKgLDvcpe7dD72ox71qPz/js3ofv/7319pfE+DIP5ljqWOOwQWLwegKqO/KpbY1rCn3F404Uc/+tGavugy+v/0pz9Ndb6B6RAx/6XHH/7wh8nOO++8Zn+K//u//6t8X9eEvlmX9EWMf/kjyH8FYewkwGJGf1sFQNeGPXbau/zlLz+51rWuNTnjjDOmPsfA9AjyXxzYKvga17hGXu1ia+q+OwXOo6QviH9lIMh/hWEWVQB9KgDqGvZceOGFk2c84xn5+x/84AfnpYGBxUCQ/2Lh17/+db5JkGdln332ye9P3U6B+gfMs6QviH/lIGL+KwyzSALsUwEgrn+/+91vrfi+zzsnMf2jjjoqO/XUU7MrXOEKU59XILAScaUrXSk77bTTssMPPzw78sgjsy233DKvginC8/XIRz4yO+WUU3on6A5FxPhXFoL8VyDGMgAkCEnuKyf/9VlgTj755Ox2t7tdfi5nnXVWtscee+TZ/4FAoB4y+/faa6/sM5/5TPbLX/4yu+1tb1tJ9G0JumOV9AXxrzwE+a9QTGMA/O53v8vue9/7Zje5yU2y+9///vkicsUrXrHXAnPhhRfmJUzbb799fgx1wHe4wx1GubZAYLVg8803z59fJXrbbbdd9rSnPS37xz/+sU4lwCxL+oL4VybWo/0v9UkE+nvkpHQed5tl//e//z33HpT38MC7eN1kRl56sWkPT8Qxfvvb3675HeK3wJRLh37xi19kD3vYw3LCP/roo7Odd945vP0Fxj//+c+8FIyRpkFMYPFgmX71q1+d7bnnnrlB8K53vSu7ylWustZ7lN8KwXVZF7oiiH/lIsh/GYFH/pjHPGZNE48mAh5iADj+gx/84OzTn/507bF0JrvoootqF5hzzjkne8hDHpI3G3n3u9+dL1SBxUaQ//IBo5xhrYvee97znjwcMCsE8a9shOy/jID4Ncspws+6hI0RAnB8i0sTEH85oS/h7W9/e97Q52pXu1r2xS9+MYg/EBgZGv184QtfyJMCPdMUgKFIOT3Fhl0JQfwrH0H+ywSpfz6PuqqdZ9UD3McA6Nqfvyq5z2cOPPDA3Ah5+MMfnvcX18M8EAiMj2td61rZpz71qexBD3pQ/rw997nP7bSvRl1Oj6RBP1sb0vMcvfpXPoL8lwmGbLjTxwBoO76Yf1Vy3wUXXJA99KEPzQ499NDsJS95SfamN70pu+QlL9l6LoFAYDgudalL5eG+F77whdkhhxySl/395S9/GawgnnHGGdm2224bxL+KEOS/TNB1w50mKa/JAGg7vs+Us4d/9rOf5TL/xz/+8ey9731vtu+++0ZiXyAwJ8jdOeCAA/LcGqrd3e52t7wscIiCyNsX8mPAWxvG3J2vbU0KLA2C/JcJ2up5leI1SXllA8B2uT/5yU9yiZ4BUHd8Hj+C/+QnP7lWUqEH2gIh+18yoe8MBALzR0rSZYx7JptUvLq/ec6f8YxnZJe+9KXzZlxjEH9beCGwxFjqFoOB7mjqn9/Wez9BW910DD32jz766Mlhhx2W/75rf/6zzz57cqUrXWlys5vdLN+kJ7C8Ee19VwbOP//8yY1udKPJpptuOvnSl77UuVW3jYL22muvyVFHHTW57GUvO9qeAF3XpMDSIMh/GaLcP79P7/3yA8kAeOUrX5kbAGkvgLr+/PChD31oculLX3py5zvfefKb3/xmjlcdmBWC/FcOfvWrX00222yzySabbDL56Ec/Wvkea0DaGbCK+PvuCWD9Ka8XfdakwNIgyH8FwIPXZXOPugcyKQBnnnlm42ZAJ5544mSDDTbINx3585//PMcrXN246KKLJj/72c8m5557br6xytgI8l9ZuOCCCyb3vve9JxtttFG++U8ZlDxbbdcRf1dyLqqIZaWw65oUWDpssNRhh8B8kgHF3+r6AYjBPec5z8lOOOGEPAmwqhGQDUZ0F9thhx2y448/PjrBzQgSr3RIlI+R/v/Tn/40+9vf/pb//VGPelR25zvfeVZfH1gB2HjjjbPTTz8923HHHfP58utf/zp76lOfuubvcnfk+kjuE+N/9rOfnf3xj3/M/ybnR2vgLh0Cm6oGXve6181tw6HAMAT5rwCkZD0PYjGLt/gga9mL2OvAAPC+n//85+sYAMqJDjrooGy//fbLXvziF0dG/4igviF5u7adf/75eUb0H/7wh7zrnoX5spe9bHbta187T+jU3MX9CQTasNFGG+Vlt1oA77777tlf//rXvBqnWMdvrw3JfYn4++wJkKoGynBsyYdaem+99da5kVG3Js2inXmgO4L8Vwg8sDz74gPpIfNwI/6mlr3pgbz5zW+eXf/618+z95MB8LznPS9vIqKWmDoQmB5//vOf88XMovatb31rDdlf5jKXyRfrm970ptmVr3zldSovLne5y+UqQCDQBTL4bQusJwDDXXfOZz7zmWsa+CgNvNe97jVoT4C2viDWkLvf/e75ulJek7puOFTXzvwd73hHtskmm3Q6RqAe0dt/haH8ICN+D2LT/k23v/3tc9UglfLZC4CxcNJJJ2Wvfe1rc89fPXFgOu/+29/+dv76wQ9+kMv4PHsll7ohVpF9GQyF//u//8te8IIX5Av7WOD5vf71r8/nihIvio/jb7DBBnnDpuJrzO8NzG/+Md69nvKUp+QNgfrW8Ze9bz8r4evyORiy4ZCywDo184Mf/GDn4wSqEZ7/CoOHy4vV3ObxF3vyF2v49QE488wzc+LfY489sv3333/GZ70yoQfCN77xjVxF+dGPfpR7Xnqy8+yvcY1r9O6E6B4x7txbxxkLdvQjz5533nlrDJAU8vEzwvfyb14khcK5UCJ4YF7+zYDx/zAQFgvuJdVOA6Bjjz0233uDJD/tZmL+L8bf1FpYzgEC7yvX14UViu3MIwQwHYL8Vyi6bNJjkSb7lR+i5z//+dmLXvSi/P9bbLFFbRJgoBq/+c1vcmnSAmXv9U033TSPr1p027z7JiBW4QGL+Jjk7xzlFNgtzpywmPMWLbQXXnhh/vIeipB/Uy0YMxbo9LcUZ04NpFyrHedigV56pBj/Ix7xiDysJIznPgkBTLOZGANAcl+Tg/HVr341f29fT71LO/OYW9MhyH8Fos5q7tKyV0IfL4G0bLOetB1wGADdYWGy6G222WbZda973Vw+HwOUAsYD8r/FLW6RjQ3HLhsnPP02MBQklMldEELw0hFSpcJee+01+nkGuqO8SU/y+J/1rGfl83Lvvfce7H0zcm0wJHeAAVAVWuzqqZfDCl3bmQeGIwJ4KxBtVjMPvqplL0mQxH/wwQfnxN9nO+DAf0HWV24FYxF/guO29W+fN8wn+QtCGZJGqUWqFCgegaVD3e58PH/P+T777NNYkte2jpD0rQvvec97cmWwy3u7tgAWQmpqZx5e//QI8l9hYEFLCmsC4j/ttNPW+p19wXfbbbc8xo/8iwgDoL88jwSV7o0NpNp2fxelooH8H1gaNG3Ly1iTxLvLLrtkT37yk9dZCxLavO+vfOUruezPgWjL4E/yf9+wguS+IvpUCwSaEeS/QlC0oD3QUI7R123SY1c+D6Es4Je//OWVsf0wAPpBvNvC23Wb1TLI6JqzlHdfu8IVrpD96le/WhNnX0TIA5CbIL4cWCziT/CMv/KVr8we8pCHZNtvv30e2qvrH1KXwJlq+sn+yVOve29R/m/bYbAYVpAr4H2SUv3fz8W1KzAcQf4rBFUWdFmil9xXtvJZ5HYF8wC/8Y1vbMzUDgOgO3j+suKrvH+Lssz6c845J4+TFxc9VRZ2V3NP3FMVA2VVAfEzABYV5F3JfyH7LybxFyX0E088MbvTne6UPfCBD8y++c1vrvMeXjZDtgkMh+Spt71XPkyfpD4g8d/vfvcLqX9kBPmvANRZ0Ana8VZZzerNqQUerlNOOaVT3W8YAN1gnCyEsuKLRtjnP//5vJ2qmKuOa6kOOsGifZvb3CZPxOKdSbgsk7+SwaUmfySTqgKqyN/1qyAILCbxJ7hPYvbXuc51cs/9xz/+8Vp/7yLp+97kqbe9V5Oq5P1HUt/SIsh/BaDNgpaIVU6QQR73vve98wQyklqfjllhAHQD8uelFxOdKCsWZn3VN9xww1wiLycz2T9B0pxFtdh6FVLjnVkl/YnjMkwe/vCHZ9tss0322c9+dq2/OyfGpL9L0GLAlHMQqBkaF01T1hiYPfEX80g+8IEP5PORM1BWm9rk/2JSX12iXsKTnvSkSOpbEAT5r4IEv3JZDG9Sos4FF1yQW+xDYrNhALSDZ2Nsi1LnHe94xzy3wj2x2Fpoi96zcbXIInj/Li/EILN+Vj3+GSMWe6GHKrz1rW/N3vve9+alYqpDUr04NSKBwcLgDCw+8Sfoy/DhD384996FnIpGKfDo73KXu3RKAKxK1CvnEUVS39IjyH8FJ/hVlcUgGta3WL9FXC//oQgDoBnGX3MfUmexC1oKz/C43MeqDmli5tQYSX9lkGIZfLMouxT/feITn5iTSPn4zlN46PGPf3y2+eab5z0MqAQMFPXe4DOSHCPZb/kQf4J1Qk7Q2WefnbcBLs5Lc8491jW0rtlXSgBkPDAAOCbHHXdc/rfyXIqkvqVHkP8KTvCrKot52ctelr3lLW/Je7lrQjMtwgBohvg9T77KU9elryqjv5zZX4aFmHetnG5WqDIsXANJ314QxSZA+hrYdwBSdUMk+y0v4k+wJigBPPnkkysbNHWp6U8JgIyJa17zmo3vjaS+pUOQ/wKBpSz2ViyHGTPBT2yfRMtbq6q5HYowAJrlVMlURek/AUGSWZXFVUH8tM7zX4qMfyoFr684p/wsCdHfipn+4fkvP+JnuJ1wwgm54acySAOgN7zhDYMTAK1jbUl9xQTAwHwR5L8AqOtyVdURa2iCn93kEL6SHq17x0YYANVAjqR/JF6uzWcYuMfFeHkRmuQkUi1COMACPctOf037ODSFG1yP81PmGFg+xM+QfPWrX519/etfz6V9zb6oAHI/VKjMIwGwbr0LzAZB/guApi5XVehbIuOhkohDgiP5z2rXtTAAqnHrW986H5tURpWI1f0g3SejICk5JH1Kgb/xil71qldlr3jFK7Kvfe1raz4v6W/enr/SPcRfXqT9nMr6zj333Pw6zV87GlI2oiX0YhN/mmO2nVYBRLVB1nvuuWd27WtfO3voQx+6jqE5qwTAwPwQ5L/EaOtyVSWJJcu7S99rXqUOXjxIyTyz9sjCAFgXEvuK7X4Roi10JV0icPus87Te97735X8Xb5XEKcHqWte6Vq7ayL42tgnuI8l0VkiLc5G4KRVI/otf/OKa3zFQnF/aaMh89jshJp6kNrI2itJAyvXY7KcuXBWYL/G7t5/73OfypDzHTqW/xTnGABDGsa4UFapZJQBGCGB+iF39lhhDt670MLGUi7tuVSX42Zb3ox/9aF7G06YYjG0ALKfdAC1GSOxjH/tYnsnuNSaMgYVbXJUHL/GSVyW2yosn8d/qVrfK3yubnhzahJTxb4EdU8mxXS+jIi3OP/vZz/IFGRHIUdhuu+1y9Ugdv3MWI/Z/baMpGIh/q622yklBSSmjUzWAecxocK6OZU4zYv1fYuO854f+Be6HXgbCbYs+P8cmfmTLQONxU6CEpqrm0fWud73cENX22/8lCpcTAK07zq0tAVAOUlXuSxGxVe/8EOS/xOgq4Ze3vLT4e5gszB6Y9PsiEBny51la5OaJ5WQA8MR53RYwpIfwEJNEtlm0+7VYlmXQIros7O6/e49cVQ2MBW2HZXm7V168d+D57bfffnkclwpx5JFH5oaMkMZhhx2Wq066GfoMhSDNAUaCVyIwhgB52feIJbtW7zc+qgaQzazCUgnOgQrm/I0h4pNrs6gdCccmfgbeSSedlH3hC1/Iq1HM9SaQ960xNv8yb4UpywmADKgxEgBjq975Yb1JBOSWHJJdWOBFOdRi6kHTVMXDVvTwLcQeuKYNLsjJHmyLKq9/qbqt8f4YAM510QwAnqpNjow9QlPCxovV/8CCJ1wyJt7xjnfkhPeABzxg6nGwgDNYdt111zWS+1CQ5I2DeTbNPLFBlLE84IAD8hLANqhyYAhQGsxXsrJ4s/twy1veMg95zGK+6GeP+CS/MvQQq6ZKnjd7XGi+tFKJn+Hzpje9KTdCHa/rzovWJlsBU8coOHo8lNewM844o7JnRYL7mmL75fWOwacj5tvf/vbo4T8nRMx/AdC0dWXfZEDwAD7ucY/L/0+iXco2q4uaAyAp7eijj87e/e535wsgIkA2Fn7eLJL+4Q9/OOp3MsYYHFUZ/H2BrNzXpe7xX+4DQN3oQvxgrI35ne985+xBD3pQTrzIjbF6xBFH5CWrY88X6hnyci+0ShZ6ce8ZHeaCne7kJaxE4reXh8Q+1yfc1GfLZXPtaU97Wp6/IgGwTPJdEgDTtr5V61261sj8nx+C/BcAScIvb12pPKxvMiDoG88KR/xJgl1KLJIBwNtELrLnja8kJx5H0UDS9RAx8aybPJmh7X7b8jy6Qq4Az3lRICN8aAiCh++z2h9LEEMy5dbH08JzQ9UxH4ueKyOAKoWQjKe5wcCuK8FcjsRvB0ntmClcvPQhib/m7o477pgbzuX2z10SAKu6+lEDys5JZP7PB0H+C9TQp7x1ZdctL4sgsR900EF573XW/aJgEQwA8vIxxxyTnX766fnij/irFkGLlxpnZWvOdSxY5By33O53KOQkzDLjvy/c2zGa+xgb6oixGjP+z+P3zDhuFUExOITUqAFUAHNlVnsozIv4HQvRvvnNb87ni9wf2ftD4XysKxI9U3VK3w6A6ZmyBrjOvs5NYBwE+S9wQ58h9fxkNTLq8573vGzRsFQGgAWQV8KjQ5YWQDHlJmLRnASRMdDK2+pOAyGFuna/fZHa/5abBy0FEJVxGqOtr3tEeSHNj4W//vWvOaGQupsS+9wbVRdbb711Lo+bM2edddZc5+pYxM/Ll9+ApK03doocw5ji/UvOtAdEuQNllw6AL33pSzs5N5JLmxr/dO2IGqhGkP+c0SeG36eeH0hxFg1JgqTMRcS8DQDjIaFN7TwyN25ds/hlgZOy1eSPBWEYqkNbyVMXuA4L/CLE/WX6m5d1YSb3GbF1UTwkowm9jNkiWDKicSruS9BmWDHKGQrITJKcXTCXC/Hbg+E1r3lNnrvCGbjZzW422nlSDsT/nd///u//Vq5bSj+bFBj5HW0hopQjMG1H1EA1gvwXvKFPUzJgEaRsC5R6XLLlImNeBgDZXkmaTmOSkZB5n+RHiWsMLCWT4pRjgNyMgKra/Q4hf3HpRSB/3jqDs+z5y7EQa7aIW6h32GGH3ButA2PGWLtXY4EBd+aZZ+beqkTJvmEa5ClmftRRR+XP8KITv5i8xMVUVjqL7ZWtMQ972MPyJkFCAGUwDpogPPnsZz+7sU1w3bo4JAk6sC6C/OeIrjH8opxVlwxYLPNDorbgtLg+4QlPyJYDZmkAWEgtBrqJIUd5FEMTH5XRIWn3Y0zpHwmldr9DgWyN4yx7/HeFMAYvuVwmJ9YswVIOin+TjClT6uyroMKC0SUsMwbMK88NIhnq/SJPc4hhwpBhDI49X8cift6y3gx6GPCG61Qu42FeC9XUbSxFPbBmWZeqvGqJmZJl991333UST/2+Can23z4jbe8tqmRDHKhANYL854i2GD4ZrE7OKicDFvH0pz89j2kiu0Wqo18KA8BixrOUsEU6vsc97rFWW9y+4P1ZnHh+Yy0s5Xa/00A71kXI+KdkVMm41BcSrzGUR6H7n39r8lNXjob4bQ40BnwP5UcS2jQlr4w1eQCaEJ166qm5AcMYWBTi9+zo5GkXPlUgPP6qee/7lPvttNNO2UMe8pC8JFh1kH4H5fugLTNitxOojpQ6ShbBY+d0+L7HPvaxgzb/8XkGVROKIcwhSdCBagT5zxFtMXwyWF85i9zPoyJvz0LeW04GgNIwC8nZZ5+dJzchkaHGkM11krdD4uSNSpwaqy89ArTg89CmAQVIYlpx3Kgdzp2y8M1vfjOXZnmrzv+d73xnngOhht5YIQKkwcsbCoTi81XJfpQTMV7k4n2axDAI3J8yxNS1B27zBLvCOCjtY0hoYev7/c6rap6lHgwMGedRhrkkGVDrZ+2Bjd80PRvGIn7nrTlOMngdq87Qcd3UFaRrHvC8KUfWnuLcP/zww3PSFUoU7jAehx566JpjJFhzHv7wh+dNk1Lf/r61/0n+rztnVTnJCYoOgeNhMbPCVjDqevJrw1vVT74oZ5W9fguPfts6xomlLleM0QpYxztNeyykxpN3XQWLmBi59yF1iV1FWOxOOeWU3Kuz0EhoQlRivwjUIicGPGa739TTfyj52yuAEYg8kayYOSnX3EF0xpIc72VBT/9OLXx9bhryN56IrIr8eYRUKf+3uCMOc7YqIYxX53rE5scAowfRmQ8S3yR98gzdWy2Ji0aGMTB/vM+YOYenPvWpOZmWoTERg0IiqNg6z7gvcY9F/D6vnwejSo+Etnwf9yBl2wM1RqKwe8JY9HkhHAYaFYGy5CWGv9tuu61pJV6E9YcyduCBB+YNk1I751T7T/mxwU+VwZXWN88VFNfFKidIyJOhUNchMNAd4fnPGXUx/LaEsio5i9yP9GT1Lie5fxYKgPdbABynuDNZEY5LyrRY619v7/IieMA843322Sf3ihCA95M7GQm8HPdqWm8dLPaMHOQ0jdpBkbDwi6H7PzBaJMzd/e53z+OyNuPxf6EkXpRQCPI13jyzuvHqCqSBVNKiXwSDCUkqPX3d616Xj72wjDyAIoyB40iGnKYOvUjmiASZiXszhowJokMaRS/T31772tfmXigFzXmSspFZ3b1B/kIBnru+PRvGIn5JlpQba4h7OjTR19rDGEyGMCPMtVFLEsEK6cjpqArXeO522WWXfMyEEYbU/jOCPVt15F90gqJD4DgI8l8ilGP4bbGxsrUte5nFrw3qcpT7xzYAkKDd8CwSZP8qWKh5R2KcFtxytn3auIRnr8xs9913z+vCyeUIwgImtIDQxgBPxXGnkY5TzTride6uT3jJnGBoItJZG4ZICFlU7TVBCkYIjI20iyGZWMy8TEDu3Vi1/TxD8nU6ns5zVBwKTrnkkDLB8ENgYvru+d57752rIfY8qNsK1/8pbn0qCMYifuEcxO8cecJlBasrfN5OfcaHEegeMG5TnD3NHcaSv9cpRMZM218evD0s+tb+U1CgLazGCSo6UNEhcDiC/JcYqWbVqwpVNf0IAzHx2pZLdv88DAD18zbjEcNMXnCZbEmHFnjGAsIpkoDEOeNs4Uu/R6aSnyx6zk3GOEIYI8lujHa/jEYhjqUs9zMWjJAqA5aBVb6HVZ6yRT31QBjDGCEzyzcok2s6x+I5kbklihY3SGI0MaLI31XEa+6Ya3287TGI33lTUqgT5iNjqo/xUQTVUCKfMZHYB/5NBSjfI78XDmlKmiT5U8sYTuVkyLbaf+GBvrv+RYfA6RDkv8Soqlltq+nXdcyixPKf9fany80A4AlQVCzQVa1vU792UjDDK3kaydtJi176Th6NPAFeJKjESHuhT1ud4N6N0e4X8ZY7rc0T1JC6hjzyJSSk8pTlI1CsZMvL+k8wnv5Wt6d8H7gnlBoea1VlTPJki/fOvfW9xQqDOk9XaIL0Lc7dJ8Y8BvGbu9QpoSlGB299aDMvRhniZ/hI7kslmsbHnPc8eE+6H37veWnq4GjMKCGMCjs79q3919FPDkJdUjTjgZGYqm4i8386rDzmWEaoq1lNEBct1/RbJG2tKflmJSe4TGMA8IZI9zKyy4t3WvwRJtJKY+/3Fv9y7oU4JljQ0iKEpMSHq9SFviBLW2DLpVZ9QPIvXss8gSAYRxbtKshLkfAlY1x5mYYwmsMUFasx2/l+4xvfyF91hkT6XdHYSomIxd+leVIMmSC/VEmiRfQ8id8Y8/Z1KmTgevaHhnMohwgfkbovZeVAMirlo+iUuG7PQFv/BeoJo0QORZmc29arpl3/GOvUnGIJdFuHwHKoNLA2gvyXEG2Wa9WuYpLRPKyqA1Y6hhoAFvhHPOIR+SJhsazqzc9TtZinMRYGQKIk/nSMBBJmWrCdg3i6TP2UCzANeFmk7mmkf+eDhJdC+pcMiYSqkv3AXJU1b0HXKEk1hdyMInG59hQCmQbGwD1hLNc1daqS/X0vgi4aft7n52TUID5yu7CPnIWuxDsG8Qtj2WToW9/6Vq6YCFtNA3lClBhSP+NYa2bzPpU3mtuSRGX7K5WUTCovgNpRZ+QVIceDcf2kJz2pV+1/1a5/FDbGRNmIZ5jUlQjWtT8PrI0g/yVE35pVkqlFVMJa1/70q9UAsMgiGd6BRbvsFSMHC0qRvHmeso55RGlxT4140r1KvyfXWzSpC9PA8Xip07T7vc51rpNfX10egj4AEtoQL8k4hTDGQFOmfxcwrKgWXXvuN0GpKBXBvalDlezv3M0TnmUCJcY84K0aW0YkyRuxda1GGIP4hRgkw6Xtp7uQbxsQLGOGKmNzHiRNSUyJssaISqNCxHwRalA54v1dwPjyWf0d9B4owvrVtaMf8vbcyQeo6+inT0GX9ueBdRF1/kuIZAmXa1YtpiZwXZIfUltNGNoHgIEkBslrQtKOkT6H/MU1i+qKmKId3NRBKwmz8FoQLWRJGk6fl2SHdIVmLGZD9kdPUOevHIoxMcRbSVn94rflkio9ADT0kdFuPKgEyKiuD0Jf+E7XTjkZgtTOd5peB8CQO+OMM3IVpao7ILJjBCUDi6drXhk7JW2PfOQjc+OIx2qcVCOQuN1b5JPi2V3v87TEb66Zs3pOCD0h/nLr5KHoWq2iOqJq454mpCZC/m8sbS8uETDlJqTMf7kzY3T0YxRRCeQBpB4E4fF3Q5D/gjb9KVuuFnAxZs00VmKS36wMAA1ZjK9Ys1gwmV2ypBp/HqeuZRZ20uK2226bZyqr8deLnmStBSqZt0j8RaWALMp4E8eett1vVSOnrkBY5aQ/hKhPgQVcGARSh7uxQJJui702IbXznbbXACOMMafevQqeHSGzlM0uJg1ix3o+kLkZ4JITGUqqPBjbjCfjaE+CriW10xK/89C0CUkzMKkiy6GPhzCaUj9hNuMnTMBo8TxREtqcngSf8XdrYFd11HMTpN8PQf5LjFSz2mS5isVpkkJybGuWsZIx1ACwkQ6v3iKkHppXx9tLff/JuckTscAj/rKBVfU9vG3ERS7WndExh8K1MOzc6yFEKG5djvkjRPFhyWk614mlOl+EMhYQ49DEKuToeqed0xQTMWzqQZ13jEDbPF7ev1fRMPFMMgy6bjQ0LfEzPJCe+U11WA5Ja1QV50sFcr48/UTaMvgPPvjgvKqpmFhY5fT06ehXpY4G+iHIf0HQZLnqOibmzQBY7RhiAFjEeXA8w5Q1TRGoQx9lxWLHcKMA6Jc+1EOTSEYBcK5DJHBxawlSvK60oUvqTGj+yAcgH5ORLcQMn2kVJGNp4W8q/2qCfIpp2/kiW2NPKm7zEvuAocQYk2BXLEucJfFTbhiojBlK1NBxnReQMRWNqsL41MJZvkUxAU9isrktbyH1Eig6PQxU5N7W0a+LOhroh9WnHy8zWIQk+EnIGdNjWy1JgHZ0swELqXuPPfbIScImKGMlvSFQCXsysRkYS9XulzHjGnlfCWKukkQttPIYhDgQpA5sY+xQ6Fwt9EIpfVFs5ztNLNv9R0Bk5rGkcUaiOD8jTNiny3GnJX6xbX07GGlk70UnfoalygpzQPmdkMqd7nSndTLvGccSCs29qu6AbeWp7m+Xbc0D/RHkv+BIO2lVNc1YzWgzAFInNJ6UJC3bsfKsLUT6vusvP8aWrID8EK2FaWjGfsohkNgpF6EvNH1BQEXyT6Qsru3ajRkPipEwRo8CBMCYGkL+vFwL/zS9KqgcygcR5RhZ8GD8ZfYL/8iV6GKYTEv8kkrtz2E8EP9Y2xnPAoxmErzYvnAa0kf+TQmf8k7SZkpltKk1qe0vNG1rHuiPIP8FBs/I5PeAjbW4rQYDIO1tTuKW/a1CInkkxpE8KfNbGdM0nfWK4P0rM+MxDoWFEJGl8sK+Y0HWL8b9qQHkWHHkBHFX7xtD+WBoCCsM8dx5utO2801tlsfKgzFv5G8YSxU1XXIvpiH+FLJgiEqaFIoZY1OjWQB5M1JUVEgu3XXXXfPqhy4KBeNwzz33zBsKlZtZdW37GxgfQf4LDIkyHjTZyIFuBoAFVRxRYxILC2+6LNv6vaQkGf/l3eWGAlEgb0aHc1mKdr9k0CL5ywOgehTr14VBvKdrAlub9z7EKE3tfF3rUKleOMxY8wJTF8ZpgcRJ/jz+LmrGNMRPtVBZQL5W6SFhdBGreFyjklcSP8VMAp8yWHkafe6deD/D85BDDhnU9nfoMxWox+LNtkAOsqy6Y12spi2DWi0GgFIje7Irk5JkVNyopQzvt+DyLCR2jQGEijws6ENBSh3a7pcnjRSTAsJwVL4o7m8/CNIymVwCG6ViWlKgHgwhf+ECaoFrHQpjzBttusd9lQiJdnam65KAOA3xm6fyUDTB8dmmmvelBGUnxdipEvvtt1/upQ/ZT0DYSehSsm3Zk+/a9jcwLoL8FxQvfvGLc8/tyU9+8lKfyrKAxRfx8nKNW5cFXDIXaZyxkNr6ToPUn548OvR4PE7leUPa/YpTGwOElCAey4BUjy/UoVObsMe0SDH7uja6TRDWkAg2tJ0v8kCcSGPoxjZFUEKoRvJChIhmSfwS5ITyhPRkrA8Zv1mDhy/vQZMhKhnlkVE0bS6CNs+MRQnMQ9r+hvw/LoL8FxA8ELXoYv2LGgNcJPB0xSIlIvFQEKhYcFvWvMVG8xbKwcknn5x7ZNMCcSMDsdwh0j0pVQb8kHa/+gz4zuJuhqka4YUvfGHeCtUiPoaSZI4Oaes7bTtfRECClmA2RvWLckUGI0PiQQ96UKuUPQ3xMzB4/CR/ZDdWl8WxINmRCiYU5pmQHOvVtblRGxxT7F8SbnnHzS5tf41fYDwE+S8gbLVpYdh5552X+lSWBcjayJbUL34q8139eRcDgHFFXeExS7yq2gSoD5CHWLY4KZIYAnK4+CiC7YPkRdb1+B8TwhLOsW+5Fc9XjH5ozoEsc413pskXSGBcmTvmi94HTXvVT0P8KQ8F6XmuNV0a0ud/VvCMGFPPEMNMt0revlLHsTsL7rLLLvn9t7lQEantb9fM/yKEJYSzQhnohyD/OaHrBCVBaj1qE42xEplWMvTi1xefdIj4gRTc1QDwNxnrtphFaHoATFsBIHOb+uB+p62A+0CSnmvpGzpw3T47j939xIOVN/ZNUpumnW/Kp+CJumfTwD2W7+E8ZK237U0wlPgpHUgtJaDaarrNyJgnUm98fSpcl7j+LKsOzE/yv/yTcklr38x/Sp0yVjkTxa1+IzmwG4L8Z4y+E1Q5jEVcX/FAMyxYdhxD9GVPssoA4OnxPBkMWr2KuybP5vrXv36eA6BhjCSnaUFqF2fXa2AIlK9JqEvbrPYxPIpb084KFu6+yX6pne/Q2n73zPdO0xsgQc4AlUfL7LbrGEr8mtocd9xxeethpM+gW5Qe/co/hTuUS3pOOBtaG89jt1DfZUyrPPm2zP+04x9Qa4T6qtoCB9oR7X1njKYJWs4Kt9jr8kUai+5VzZC89pa3vCWXUevix8kAQPK8enX9kvF4Xjw+BoHOiamdrg5lCJtxgBD8PBQkcQYfWZkh0JcohTDMAclxfbLiSf+ITWx8Vh4mIwqJ903Ycy089iHtfBlwiMq4FHvED1XhxJw9m22984cSv/mpWodnLZFwUZ5n8+Kb3/xm7kGr0ad4MTTnWWboWRDSVIFiI62iCtRm2KX75R5W7QtQTA6MZkDNCM9/hkgTtG4v6nII4NWvfnXuqUqKCTR7VG94wxvyhbm4TW+TAcDgUheu3tiinHbzYxAUpXn1/5L2eP9FL2MIeHqSqMj/fVv2IhkLIcOlz2cl/SHn8g5/Y0KpnjHv09lvmna+Put+eG6mLYsTrtCG+V73ulde6jkL4nd8z7KseYl9i0D8aatdlS0MH8mNEooZpkvRX8B3G1fKSFXmf9lwdY5CAonQ26phpn12VwOC/GeIPhPUgk3yZ4n3zaBebUBs5F8Sd5eFiwFg8UPqypX8m2IgZm2RKRpnjicG7H0qAKaJnzs2AkcgQ5KRfNa86NPuVwZ8uc3vLMjftfXJAk+lgUoh+0IoRq03oppGzaCsUXUkC2oT22Q0DiF+80powvbRcggYGNOqFGOtQ8ccc0yunLh2BrA2wmkDqKUAg1wzpZe//OXrbDEtR0IZZPl+CFOkkGnXrX4D9QjynyH6TFAeKGlT96xA1jpuStZI+ZKAuuxPb+MXioEyMaqLUkpxz6rSN8lOZEnEayEqtsftC30EEIHvbdvEpAx5CLzrPjX/vEye9Swz/nmOErf6JKS6BkZt33a+7q0sdN83TcmZxDu1657J7bffvtGIGEL8FJ6TTjopO/XUU/P75nNLndhnvr/+9a/Pjj/++NzwYSzrluf/iwBrHUNSwm4RaSMfOxuWjXslvRpX1SkEfvb7kPzbEeQ/Y5A5u0xQnemUAIlpBprBY9OlbqeddsqTtiwIbVn1OsHJpdC4hCQr+5osy4CoImWJT47P81cB0Je4i+fK8EB+n//853t9NtXo151jHZz7LDP+5UX0IZDUzte19E14c7/I1TzWofD9Ei+RigS/Jm98CPGbRyp0eKbu9SxK5PqA0crYtJOjcect226aESv5cFFA2SLlW/uqQqYM+3LlTVIA7na3u+XPcVkhiK1+uyPIf8YZ/haS8sJdnqAStDyUkeHfDwhd2RCy4803NelRJmYr2y222CIfew1vSNC8tbqMfF77dtttly9EYqVDgXTE4p1j3+x959i33a9EvFlm/PMo+yT7pXa+fSV/BKw+XihjaEMcUrwkT8+gzXqEesYkfuEVWetCE0rkyNlLCU16dAdlNEnks421ro6u23xmKHsWFgWy+z1/9tkook3t+sxnPpNvLhRb/Q5HkP+cMvwt4FSAqr2oxeMsGpJwAv1ACmYAkAFl1ksqq/NWSZ+qLMjw5GfeA8PBZjd1cM8sngjEgjONl8M4kXTYBzKy5Sr02emPvI6gp21YVAXGC5WlD/lbyKlcfSsePEOIeJrSPntkuPek/qaQwxDid2zVOWLQlLwmw2LWUF1w5JFH5uFDoSKe/sMf/vA8XJLA+DIHhT8WBcJu5qtx7BMydb+KWf2x1W9/BPnPKcM/LS5lWKTJyrrMLXWMcLnCAidGry+7DnC8iHKGvAQ+C3tqnCMJkAwqfi123ZRRT8VhXLivPLwhkFwl+5+U2ScZj3xMLu/T7pfKYP7NIukvtfXt2pOeAYJw+m67Sy1gbBmzoQ1n3Fu9IBBDUzvhvsRvrriPpH6KhuS5tiZBswJjTMkr8pR3oFbfs8DLr5qD1EiJf7OsBukD4+d8ddcUPuna7z8hsvqHI8h/ZPQtQbGtp4dWj/nAcCAIyUwa9fCSEUfRACMbk4+pLJKyLJiy+SVnKflq6wRoMxwqQUrMHIJUpiYe26d8TwxZnFrsuwtcp2ufRdIfD5Ph1LXML7XzTb0UusDYGCML/9DELUY16VtzHVn3YxG/BETzRwgJwVKPxthcqC+ch5AIid9810tAAl1bzb6copT8uChA/gzxcntfP7dttBRZ/cMR5L+EGf4WORt9PPjBD17I3b2WG3jJkiaVS4prko2T9M04sLudBV54gNRvIRQyQExtrYAt8NQZZKFSoG/svhj6UQfOI+2jbMhv6Er+PDyES+4eG9QEjXq61uqLMctXMN5Fz64JxkcjmqE16O6lODLv8RGPeETtMfoSvzkle145H5IVjliKxD7K1mGHHZZfo3khV4j60OWeUG00WRLG6lNCOkswoh7wgAfka2Hx+RMapbBUZf1HVv/0CPIfEeRNCTZVqJqssr+RQGzbOy7ENiUDkWLlV/ACk/dvlzKdxWyeRG0hkXfdC0BJoAoA95kBQLHpC/FNCgLPts/nkU1qj9sFFs5ZSLuO2TV2T7onvRu3lGRJbfH7OghtaOgjft6niVA5s9/nJfjVEXpf4lc9QTX6xje+kVeayMOYN8xN52DupWoUOSx99zmwBhlnxLookKNg176qnfuUApbVm8jqnx5B/jNO9GuarKRnZMBbDYwLZM4jQjxis22edlcDQIKh5DG5A+9+97sHbQKkbE1iooYzXUGlsOB3TfyjJI1N/q5V0mRX8ie7UyCEYtRmS7jzu8MPPzyvPRcCK48zQmIw8Pr7wrEcnzeuUVNdn/q+xC+pTEydAcDD7pu4OC1I4owmTcCoJ8aTcStkNQQcEaqIsUqG8VKDY2Rcxf7LSHX/8qkYhlVJ04H+CPKfcaJfglrW4mRNTUG6bCUaGAbejfuB0BleEp3GMACECRhzCKTtmHUyPiIkiSPTLhC24P1LuOuSL4D8ydRdj9+nS1+XEBWCZXAhGeTq/BkwKlpcB+L3TJB6PTuuSda8agihsyG7/ilzQ9C84aqEt77En4wJLWj9G/EPOa+hcK5UDHF9Y6km3qY49pyYtiWv+2KeT1PBMiY8e+6b57RuDY2s/nER5D8SmsrFqhL9JOuoxdbiMjAbbyklU2pnarHTY98ugE0Nc7oaANQaOwlSekjBfWGzHl4cA6BPOMP1dInVugbk0ac/wJiZ/srg5FuUs/yRlnNTQYHEJBCSsu3VwBhmsJR3aOwCfTIkY6aEx2mJ3xzR20EljnJL5Z599ySYBuedd17epIdDIU/IBlTi4qklr/OTuGeMi+qT+cqbpyw5hldV7odrcVwNc7rmYswa1kI5JXJyxtoiPVCP2NVvJFR1qWrKSiVvSdYZ0us80AyLIZnUAph6mOvsxuCSrCVmb6GpK88q7gbIABB7rkrsIv+n6gGqTp/2szxhJEf6V23QpTlMsd1vW4e9RNAW07G6RjIkjGWXGLOEMmNSl41tPIW8nKccAAu+61JV0ZdkfU5cWDUF48I9kfRZNFL6EH9Sirzf8znPVrEcglNOOSUP7zh/ycDFXRCRu0x97+FQmEcveclL1lSSuL7XvOY1edIk5YuxZpwlPmpwVYTjIlHlsaoFlhq6Ixpr4dBy574Ezy61tLijn5CB+xVhgH4Iz38EeIBY0HWQrVpcQFja4sUIaFH2915JIGWSgC12RZmWIUBalDVvgWxqgdtFAfAeZUruoSQsC28fIEbH6Fr616fdr+MKL4wZ92dIdNlMCekgJjX6be81dkiOocWwaauWKYMK8sY3vjE3vJACIhA+YABQKvoSP/LVNpaSV9xFbtYwZtYE+RDOwe6Sclaqtj92PUoM/T0RfAJjQEKi41BSjIOxETqgFBThvea4tatrD4lZwlywJjJs6vbTaNoiPdAPQf5zqO0vt+31kCMVEzkwLniRNoIRU6+Sp3lyevwjAklnDLdpDADqgQoCx6Pm9MngTw18xHPbwkZD2v0i6jHJn9fVJdlNu2poaqxTBDXGGAsF9Illk7zF4yUVepaQun4IMsMZRympsCvx87a16pVw6BhDqg36ApELWbzoRS/Kz1MoRMUQw6MqFyiVs/LkhY6QdlH2d/16Gzh3Y0mlYRCpEmEUlcFAYwTbNXERgPw5R1XttPtukR5oRpD/CGhr61mOe5K1qAF1scnAMPBsxGihqSWsZLA999wzJwL3oinrvosBICZs0eK9ijv3qQDwWYQqfln2zKpgUSf/d8n6916e8dBNiYpAMhblLm19kT/Dy8t3a0hTdw5IWdKkJMo+5XPGWM298xJ+KYYihA3I2O7VoYcemucftBG/c6YGOVdkqSPkrKFixJa2NpkyJxmlMvm7JhUm46A831y3RE/xfuEXeS4MhipjxneZf+7BkMqVsUENYwB5Lvs6WVVlgoF6BPmPgOc85zmVv2ell2v7LcZkqvD6xwcCJenXeU1FkMR5WBQCSoEFuI6guhgA5FltZMVaebJ9wENO2xN3fX+Xdr8IxXvG8P55w+Zzmzcs2Ux4gKEg7q7ED6HttddeeWy5DLF68rPnpA9Iw84plRDWNbNx7yRk1iklCM+8QTYMCEbD0HbCXWGMJDgyNowpyfqJT3xiHpvvA9dmLlaRP9LfZ599suc973m5keEe1IH3L0TSpILNEwxppXzlSpW2kBDVJtAdQf5TIklRVfAQamxShDpVD6tEnsC490FZFCm0q9dmkUdQvELe/5ve9KbaWGMXA0Aclsojea2PF8L74vEoc2vambBvu1/nO1aPf1n5KXmsCSRsnrdeBoyrE044ISc5SYc6LBZJGOHo5KeFa59kLUYST11su2rPAPfGNfPiH/awh+X37nWve906mz4JGyB9ORcMhTFK6LputWs85aDY1c79HPK9qa1w2Wh1LJ4+A8n4m98HHXRQbcdHnr/wVd8tp2cFa6N7xwAoQsUOw75pXoT03x1B/lOiTYoqe108TNnd0c53PCBscjsS7ZKgJaGKF+peiC1a9O2AZuEQJ67bDreLAeA4EqwcOyWcdYHMf8ctL3hVYNyYP22Ni1Ib3jHa/PKyfW+bJC13gXwvZi6fQZjAeDCyjF/yLhnAyEleAhLvClI2A5qRV5URnohfCIXyQeq31W4KE6TnUfybUWIeSAytSqwbE+L5WvLqGyAkpV6fyjBN+WCd7J8MAMdG7HJSkHvTjpK8agrJmH0hhsIzZow8Q2UwlpoQG/10R5D/HHv5W5CoBLF177hAmBZ8i3hb9QSPSya0bmnkXvIoQuCpWiR53ilRbIgBYNHVNpiqINu6Ksmq7riS+ZBRnUFp/vCsnbtqBt5vnaGSoKXxGOQvKawt2c/YkrSLm/jwSnnY5j2yUt4Kzt0xGQldCdB18NSNf+rZ7/iMP4mWZeJPnrH/q9MXiiC3M5pIxJQTBkSfEs0hCajaSdsIiCFkjjn34la7Q5HGrTgH/VuvhCLMJ6TeVB4qdOI+LUrinzWSkVdOoG3b3jk2+umOIP8pkbaeLMeYq3r5k6UtQOKUgXHAu1aqhHDatlW1MB544IG5dM0LVNL13Oc+d02NPY/VzmjuHZJhGAwxANTCW+RlWCsB7JLIlxZgnippuOjNOY5mQDLCNS6ykCMtxFe1TXQ5obDNQOgCRkxbb4HUzjeRPy9dHoSyNaRrrBkQ5G+Gl8TFrrv9IXhtmpGmmDDiM65HHHFEfnyGFuJHYEXiT2CMUQAYHSRw987zyTiaBdK91xbYeVKEzIkxknyRu62lJTICY8ZcFdv3N99pvpDBec9+Nl+bdsgznuaK4/TZcXJWsEYyJMsdCPust4FmBPmP0ElKg4myBFnVy9+D6OHvs71poB4I0phauLo89IyE1Gue1ycxTwza7xLEnhkAZHUlmSlHo68BgChtLMPz03CoSyY11UKjE3MNSVnIzT2k7zrJ7ve///3XbCzj+8XMm47N0LGIdjVA6ojMdTYl+6V2vprNpKx6qpg8CvK685Z8Ju5OBeDRMQy6xLodG/EzdmzbnLxmKomXhDVVA67RmFRtsesYQjy+32ZOYuKpW96YcI4Sekn87qN7Jfdh6A6FVUD8Ov7tv//+ucHLUD3kkENyo9HY+x5KA+NWYytqizr/tpANr5l60ydcNStIajV3q6T/ruttoBnR4a8GfTpJpY0nPOzkYg9RmYyQg8WHRRuNfcaBhZ9xZoHtMqZpO1pNYXhJKaubMUB+Touz3/PSLDxKoHjOysnKpWJtnQDNA/dbRrv5gQDbkHazk6Dm35QiJEq2Lmehy1WQ62CxriuTQ3QIiZEzdCe6Lm19eaHItyjLGp9kMLgGpJWaISFD59YFvHohAvcg9exHUgwClTbCIIyJKo+/qBqkMIOxnEViH0PMvWa0MUj0LWgrAx4CY9dUUSLLvy+S8Uo5EfuvqqCYJ9wfio5nUJiu+Fx1WW8D7QjPvwZ9OkkldQB4M1UTUQkYkgjJfzykzHzEU45zVsEub6RpZMibVmONEBFouT+/xYdR4OX48gCqMvHbFAB5CEiafFlV6lbn9fhOpKufO0KtKj+T9Ob7myoLKE2u17kNBfWiSORVkIvAsKqLuSJncr/+BJQWme5dgOQ8O5LjkmJmrKkJyJUK4Pr8v4r45Qm4z9QPxoPjjE38vkMnPSEZ56FsT2hiFsQ/NoSQ5I8gWffQ2sVwWQRYK+UrMBqrEBv9TIfw/HuU7xU7SZl4fdQB8jHZrU9mc6AZxlLM1tgyvtwTEmcVCUBajN0j8U2wSGsEI0sdmZahWxoJn3zNAEAgZa+oTQFQusTrJMs6h7atWJXxSUBkLOgLUZeQ5nvJ7BZH5FqVOEfaJg1Pk/RHNUiVA1VIpM7QScRqrFS1GDthA4azHAD3SOlZl3JMBpnYtXI+3nqS7z1v1AOllf5vvKoI3feRxBGycEHdTn9DwUvWIwJ5+g6GomueZbngGGA8Ub6EvvzbnGQUSTg1RouiTDon99ZzM9b+FIH/YrFn6YKW76VM8D7qgNpvi9WsG4isJlhkeclkTl4CWd9ibFGrSlqSbMYoU0OcYHFhlDX15efNitsiHiGDKk+7SQFwnrxBJEzC7rIrH6/WMetyDorGidBASv6qAuKeptGPzzYl+yVFgxxdTBAU91b5cMABB+QyPYMmkX8b3EvdGikzD33oQ9cQKjWEIaZ0kFGBuIwP5cfPCZLdJBmKGz/lKU8Zlfh9n+MzGr/+9a/n16N0z71YVOLnuCB85X6eEYYqst91113zBEjZ9ebvohB/ejaNrY2MAuMjPP+B5Xtd1YHkGZF9ZTsHxgfvloyMfCgAkuXcH2RTbPvq38qtyJupWQjStBAi2yYgPy2BVQkIEyBESUbFxb5JAUh5BEceeWS+B8CTn/zkxoQz7xdCsmMggqnb/dFcZbwo0apSLoDKMbT+GdGRhptKrHi+qZ1vwn777bdOsiVDxn1qK+1D4mL0DDWGdPH9DHMSfvH4DC1evufOeOkfYA4YD2V1Y27Fa15JBHUOMs/lcXRpebwUMC4UH2PGmJKzYk1C9BSyYqLrooLiY9dCBnudohcYhhjNCqRyEl58sXuWpCcLvgdIBncTLLaJ/C1E4tNKjQKzAy/QlrA8MN6NeDHJHHElD580q/TJwidkwItHEk1lUAnIWv915ELJkQhYJpcmAwCZ8VhJ4rxa2ww3tSFmvDAazUNx2PQ9yNixhZ1cg1i4kj9zrKrc0RgwDqgbfevLGTmegRQmKQMJCgs0GU/kcfK956otnmyRNz7GjLJWDA8gMyETXTNdEzLz/he+8IV5kx4hmWOPPTZvSEQyLhtn08BY65GPSBk57t2iStHmh/OkthgzY6XToXneVq65iORPmRCW8zwExkOQfw3E7XkdRe++WE5y9NFHNw5sMfEJUVh02xpUBMaBsdcJjNFFCeBxIgcvnicjQSkURUY8mSfUNRyDTNRsI0PHtdDKGyiSapMBQMa2EFMPxDKbEkB9l/cq2dIjwvzTrpUX7XtTXonQB4K1QFYZMc6FB48U+5J/autbl3cggdLYNe3gxxADSkYbVAOkXJqikpAa+BhHcfVia1vn5//Gxj11f6ra/g5B6kmg9S2DkadPim7bO2LecP/J+l4pjs/ZoBgtmpzfB0pfGbSk/yD/cRHkX4OmchLSnwW4DnbsK2b8m7h+F7LV/GBxlmXPK6YAIE9JaUjBIjLtQuJ+yiEg4cs8LyeUNRkAvpscy6t3DIlyTdn6vGV7D1gIeXT6B/g3JYABoYMcQhIeqCL/RKLOo6+3KtOf4lEMnxRBUZAAWWdUuE5hAddYpx4kqEkXhmEkFM+zrnMfGFMvhg8pe4cddhilTI2xJJcB8fu3e8Zw7Lrj3jzA4DG/EL48EueG7DkZEkFXwnrDsExx/yEljIF6LP/ZMWMg8XLpXltC4O67777m3yner8FJYP7gNagXRpY8dQu6+LDFfNrubpQE91p8mtcpMa3YwKnJAEBwfsfA5KWRxOsgVCHu6b3FjaIs/v7mux2Dly4UUZZ2nQdyVnHQF87R8ark89TOV+18HYRIfHdVH/4ikDcjjVcvMbYL8YOOdEIDyI5aUGek9IGkQhK/sRRmcK9m2QJ4aBzfvWEAmjvm+HKJ4w+R/iWPRtx/XCxmauoyTwgsSo7IhgyXSpUCSwNep3i7mD3SF4NGHG3b4nY5rkRAPQRk8iOwYnZ+XRUAMhU3RlxCAE3EjDwlKKp3Tzv5+Q7qRjJEGTd+V9ful3EwJOOfR1nX0z+187UpURV0/EOk5n5T62VGhDAMI7u422UT8btWDXUk3zHCJFNOS/xyIlQSCLP4bjkEqhUWgfiFedxb1yxhlUfM2FRJYU4zmlYi8YP5494wEAPjIch/Dv38Ld5jxSADw8HrJidr32thVyInHk0J6NJ+tw6ITbtV8jyjgtdY3JCkzgCwgMv6916x7rrthIHnLGkxydDJE9cJkNRrfgkRqI2vuhbSPyIvb//aBIaRMarKZvcdOtoV2/mW/46oEKfwSx0s6iooGBhybNIz1UT8zovaIg5PJZDkWXUOXZG2j+VdMlaMtdJO47qUpXvi+MIg7rmkTwaAREbGJgncv5dbAt8QUOlS3D8wHoL8B6Jrf2neJa9s0RKEVjMQiZi9cjFeRerQOE0XPMckO5PAeWikeMTZZgAwDHmXvHIGQB05+7zERCEEMXTQUY4ETEGwOFokSdVVvdmRMNLs4/1LEGQwVXX2Q/yMlrokVgu1kr2m/v3O57jjjsula2OX1IEm4hdm0M7XuQl5SMCbhqB5k/rey+GRDY/0Pcdjlgf2gfuf9p3QDty/hZJ497LeJYgy8pZrAt8QpITSrh0yA90QMf+B6Npf2kJtYQssHkjusul5phQASXXkcf0ChiZ28cZ4sUIAiK2YtV6XA4DglAwq/+MtO6cq8ETtNaB6BAnKYaAcmHdIw999XvliuY+/JDjvQapNbXqrMv01yimDUesZqGrni/SdI5Wlrt0vZYDxwkBSLZHUhSbiZ9QwqpABg2ea7VuVJ1Jo/N89YaQsVT971yzsk+rx00ZVWjsLqaxUOb8PPJOpaiQwDoL8Z5AQmOCBli1d7HwWWDzwipGobHnZ84y6tN3sEA/Q58ixpGmy/Hbbbbcme73OAOBBmy9I02eLSW9FKGPTWU4Zo+Om3hFJWapr94uo/dynzS9iZCCVDaHUzlcWdpXXzWN1nU2lfQwXZEfNSMmOTcTPiEbWciwYC0PlboaJ85M/YUyMIa9yKeR9Mr5xNBcYQ4wsagYjbjXI+X1gDaX4MHrl19SBimdexWY/7QjynyFS8lWQ/+IDAZN9JY+RgMVYJeIx7IaQA29fbFbDGqEg4QChhiYDQCkZcvbdFv+qhjh+jyCRGJlcu2ESOK/+kY98ZF5SJ+4v2a7YFdDxJTr2yfh3LlXJfrx+qMpjcS6I1b4LdRvbkG+NsbLEVOZYR/xIUUhGO12GjVyNpuTBOjiOUATjiqHk/BhO0+QKDI3jk/KV52lJnOrxzb3VJuf3QVpDqVpVzdL67LMS+A+C/GcI3gortW0jl0A9WPpISIXFPOqWScqke6QvMRCRITtebN8tcXnMmg3pBYDAxNtlsyOfOgNA0tsrX/nKvETOolXeRtd7JO6pvacsGBcEzdOR7e7fvtd5l1sC85r7xPz156+6ZkYtL7Vqi1/eufOo62aJ9LTgZWSRtZuIn8JgYx5hNUaCcrYhuTMMIeEQBhMFxr2c5457DDMhFF4+kiLjU4dSPf5S5RcsJxgn42ZNrZpbTfusUPIC6yLIf4YwUXmNYc0PA1IQN7dw8ngltPGQ7AM/6zHlYSA43iniRrQWbN5EH08CkWk8YwHieSJUCxLvtcoA8Ludd94534ZWAqBwRLHFrb9LBuPBWtwcu9wjoK7dL7ImiyLZNo8XUUpOLOcHOH/hAIl2VclzSJyUXnV8n7XZjmNqioTI64hfFQDVhDSO9Lu0Xy6DocMY4WkL7Tivpn4Ks4jjI3zjFXH86WCuMJZSsmsRffZZCfwXQf4zhIlKpgwMA9K3cCIziWHK6LyQBBmQITBGU5cyZMyTmXmJpHceNMKVbGeh4YWqEujjsel9L6kNGaVEQD9XGQA8dwaAPQjIlnYELH8X2Vq9t8WN91/0iBGl5EUGTHEHPeOWkv7aktsk1zlm2btPNeZlyV+5nIQs11LV6jdl9lMsxOz9v4743Xflf35WxteXsEnrcjfkRaimkCEvqXMeFTeMFjHnchzfXK3rlxDohrRx15BdWIP810WQ/4yAQCwAEe8fDrFr8ODy9BFO6m4mHi9xi3zs97qbqYMfA0hewhypEZCQeDxSJVnbFlVb22222aZXLThSRACSACkJkvcQW5UBgHQpBGRv3+m9xe/xbyEETWnUuxc9YyoJw8L4DSV/sXvnVfb8effCWEU1AhhlSLeqtA8JytKnJGhNTHKvI37jatMs11CsAugC38PocS7ASFO2NyRHYJo4PoOUccZTjTj+eLCWamVNDSp25+yyC2tgXQT5D0CXjFJ10FC3zWqgGalbHbk2SfxIJW0dy9NElmRVhMTDS33N3ZOhXh5pGpki5fIxeORKzHimPHgkJXkN4XXdL9775BIgf7kAPmsXwioDgEEjURCZIUO5CEVQJZC4cILrLpIcQ8PnSN/J4/R3ry4Z/8gfiRUVB9dt4WUIlb1dCXzGv8qoEG93XTxghkMd8evtT2GxmDN8+pRbeh7lSbh/7h2lpWtJ4xAwolTy+N4Ux1eWxxCNOP5skHJYND7yzLTtwmq98PyE11+NIP8e6JNRykAw+dqs0kA1LKyIS1vbyom7wQY5kXjxKBkBwiz2UeAtIj+LRdF46AIta3lyTVIzwiLL696IsCTX8bDFpssecRUkgWomI1P/tNNOy2PDPltlACB8ZI0UkXhx7wAQxz7iiCPyha+4Q6B2r86NAWWOJiD0Lkl/lKuy5M+rRshlg1aLXTJ+8XuK45k68Wl2VUX8DDnPkMQ873EdXUMqyB7pi+saL2oBo2kWcO7GDuGnOD4HQP4D4l+kTX9WIpIHb20tkj+YP54FuTBFB4KCZ45Exv+6CPLvgT4ZpSaoTOmuW8UG1obF3GLbpd6Z3G/B9/KgW5xTfgAyTfkBbQsAIwLBuW9NlQWOy+tnDPpuREYJQF5CAQyBNvIyL3baaac8Ns1gcSxJcEi0bADIG1EBQP5nOBRVBgYBwmT4IPzk7fLwSc4UKN5PkuJl/LfFSC2aqiyK1QJ+x+OiNhSvjdTtusnr5Y2SxFoZN+4LT7yK+CUWCoMgVSpIXX+DqhwCRjjjwrU6fpdxHwLKRqrH51mK4wu5GJ+I488P1BXJvtbWMjzbnqm0vXMCAz0y/qsR5N8RfTNKvX9emcUrERrViA138doRlQQ1ZMmLRII8fz9btOUHICH5AX6PwKryAySIOVYxTl4FHrFe/jwR3h4ytbuf7HoJScIQpPGqOv0iELImNwgZsUuI47m67rIBkCoAdAFUAVAkWp6nWLnvlhyYIMmNkSIencpNKSGUCoRWtw0vr9+8Lm7By4hAuMV2vgwC540AxbjLx6BsWKz1H3Afy8Tv2oQ/GAUW6K4eu/vEaOLVMeyMdRfFpQ+cZ4rjM1CQC8MkhTaigmdpYE2tIv/I+O+PIP+O6JtRajJWyaCBdlhsLbpd9p5HIHZhY3zxDJAiwkFIPDQvJJH2PUeSiAKJeSHwVHImkx3RtiUOlnexcwzfZ2Ei05PBJep1jT0zVigcyJIBwNNH1mUDAOlLeFICyBhIXi61AAEiRCSdSNR5ksRTkh44JmIX068jf99pTIq72ZHuy+185Tsgeedb9LiFTZTpGWdqGY+sTPzOk1RLyfCeqhbCZaRcC2EQ6kyfXIs+cXwGo14KKY5vnjAcox5/6eGZovaUERn//RHk3xF9Mkp5nyZjeP7DgKRJ8F0I4dnPfnY+9kiTF47okQ8yT96ZRdv98+KdOz7vUZKa/ADeIxKy8KeOc12AlJEackWUJH/nsvfee+cLlJg7w8Tx27LOkbNEQNchg18OgL4GZQNA6ZtaeVvgChMkOd95p+8071wzkkVaxXa/KY6PQOuMK+PAoEhllEjbmBXb+VIBKA2pDXJRDSDj+7stlI1rmfglKFLLeNCIv81rV+bJoGIwMJJct+8coyVvXRyfYRFx/MWDue35KO5sCZHx3x9B/jMACdpiG+Q/DIiG993mgfM8kYkyODFzcW8eIcKsAwJO+QE+w8tDRAhPJrvvFBpoKzFj4CFhBgTPVoY3gwUsSogS6ethj5QRF2m8qd6cZ60lsBp3cjpSoh4VDQBziszPy0eEKfPed9rfnccth0AfApAYZc+C1O7XeCHbpox/3+PYaXFNu6kV6/fT1sLlXfWEWJCoe+K8i8TvfcIW1BfetA2MmrxpY5z6KxhjBpQxHMMDL8fxGUXi+HJD+pQXBuYL858Bb45R+Iq/Fy6j2JTh95Hxvy6C/Duij6yUYlJB/sNAwu+S6CdLnszPCzbmiC1tfYs02zxDnq0XUkME6vcRjQY/iCuVblV57L6Hh7/vvvvmRsMxxxyTEy/yTi1xec8ITk9/crW8AwYKr7Ku9hjJkfeVx0lWspjZ8a9oAKiAQN7+LtyQGu7wfsxBBgnDA8nzzMvtfo0tub4OvrM4d50zFSaFLxhNwgCUiaI6Y+w0FqKAIPci8VMCGDXO39+FR5ruD4PFGDCohnRWbIrje1ETHM+9SfX4S7G5T6Af0rz0vBfJ389VxA9+H13+1kWQf0f0kZUYAhbx4uQMdAMiTV392oD49d3X4Ob5z39+buHLiud9IqqqjWeqYNF3/7x4FY6pRE4TIZn97j2PsJzp7t+8RgaERD277fFqy/3wEbT92FOPeQ1vmnrMJy+eB6prnjEhjxcNAH9n/DAokFiqr2dsvOxlL8vlf6VP4NyFOeRSMAR4ua6vLJ0CkkaMKdlP9QQSL7bzNb7i4cV6f9dGDfBdeq8Xid8xGEY8eYZMec+BInxOngIlxmeH7KlQRMpvYLwjAYZcMuoijr/8YJ6bs9bYYt+LiPn3R5B/R9Q1kiDhkiOLshLy4hGFJ9EfFn2kUcw0r0Pa2tN9SclpYuJIGLl1Jf8ikAPJ3It3rPQvyeY86dRRkGGH/JOEL+6PXJqIivHg82l3OQsYWb5udzmhA4aD5EHkKbEuGQCIX2a/bU5POumk7ElPelJuhDAEHJNnLpEQgcoHEApgmDimsZLc6PrKEjeilCuRvHzXX2zny8OikjAGUl07Y0QSonNjcFAlEvF7r/M3dhok1SXoMboYW8bRfWXcUBaGPEPi+K7N+KY4PgNO8iWjMurxly/cS2uD+1pExPz7I8i/B2QnK0kqlvwhfr8vey9VO54F2oFISOpdWvUiO0RRNMZ8zuLOW54W5HENZ7yQmNg9cqIMiMcLFzACUr4Bg6FcCVAGMuOxIGZkR7onyftd1dbBjE47AyqJk2OgS558BQYAIP1UAeDfjAjGEPmdJ64qwHVYMFMzIt5T8ojL5M/4YtAkOd9nUjtfSoHEO3M7lUNSE5wbFYY6gXQT8TNAKBf+TRkp9wEAxxQuENt37WR4YyFk0heeO0ZOMr7dG/eO0hBx/JUD88+9HuqcBf6DIP8e4FVp5iN+xKuoa+8b5D8cCKlrzTbitxAgmZTg5t6I6ZbrzqdF6iZIumYAHH300XnSHS+TEcJL1be+a1thBgpD0nnLB/BKrYLLLXJ5/3IJZNHLb2B4qDlH1MCjFk+nAFA+eOo8c8fk7fPavYQwKAaMAQZWVdJfGn/nl9r58pgBseqD4Ptcp7FwTqlOX197xE9ZEI5gJPG0Jf9VKRuqEBgTku9SGKRLrkcRPkvFcE8YYZQbJYyqJYQlQn1beWDYlT3/Ps5Z4D8I8h8AhN9kSSL/rp3KAmsD4STZFrk3ddqz0POESd/ei4R54LyAWY2/80H0avKL+QGIVBOeuvyAOjBeNAhCXrzktHUwwi16yjzhXXfdNSd/iYnGR3a6uSb+LslRPgHjFPE7R4l/3kuNKLb7dWzjVdXm13UkAkb2jACfVz7JeDC2qUSQseEYwhFINoVrGAQME4ZNFQE7d4aJqg4LuTyFPsmx8hIoG/IYfI97wmDyfcaeisBIWUTiVwXEAEvJqqn/QqA7Us7KUOeszx4tKxlB/jMAqzRk//5A+sjTg424LJRID7mleLYFk2eaPGyWPSJDRAhK5jaDYIhsPKv8gC6Z5M4byZItVRukrYOLpW2OgWgRLO9GIp2fER3y837jhryRvfi7bYHlFyDh1O7Xv8ngVeTvWPIWUjtf5+T7GRZyAVLin/O0a6BjSVpE/O6TEIT7gNDLO1oibWoJhYNRwWCRn9CklpgDFAb/V0LLuLOwmyvGQetiY1ysBBBmcG4+12Q8zhLGz/1hTCF64SyGin8bBy9j8LznPW8uc3Wly/5FIHLzwzxJPw/do2UlI8h/ZHioJX51aVATWBvIRQMXxIGY0sLpQacIeJGKedwIhxzuZTF4znOeU9uxbh4o5gfwJpIUzTt1juL0YvpNsjai4pWrXiCHI1iyPQOn2NSGsYG8xfnJ/TLolcTx9o0ZgmUs8Wh8r3PR/7/Y7tf85CEh7QSyvbFFqowEhJu2UUa64vy+l4Hj3JC7hdUxEC1DA5HtsMMOayU+IkKhGYutfzNMGA1NTY8cT+UGZYVh5doZVBQVn3dedcmDYv0p/DOP7VzlPZinxsmL8e9lPI0h44ZhxEg1XghGXJqx6NqiKqgfPO+MKWNYNhy7EHufPVpWMoL8R4ZJCeH5D4eYtbhxsb0sS54n9cxnPjP/N5JK2/kCcrDAJoMAgclYR3JV8eZZInUTRGAS5hAf71tiW+ofUN6CtwhGjPwBni55XGOclA+QxgQJChcIE+h4lnb08x7vR/L6Bciaf/GLX5wvaowEzYNI5s7B4ln0oFJbX2Nm8WRAkKWPPfbY/Jwk4skJcHy/Z0wgN8eQvGjOyzlInQHBPVK6Z1FOnfPang1kaqyEHRhLvss9da+RrGs1B+qAZM2HJOmOadiXjVLePLXEODBsUs6BMXQeCKcqedXc8HK8IP9+MLbG2tiVW2e3EXvsAfBfBPn3RFucKC2mQf7jqwLkZASfSuDAAmrMERdvi/HFW2YcIDIvi3DKePdyb3y+a3LeUPDkeftezocRIKQhGU78nYHQ1DeeTK/lL/VAp0AkzOPlNZOMLXz+nhIBlQyS/5EjT+fEE0/MKwDkP6gqILHrREg9IZcj/2SsAmXFOSMspK2ZEAXA2AqlpNa9VBeGAMKjAlAW5AEIQSQJGyEifc+LMbcoN1VCVMXxeWxi+F6O61w0VmpLqDVXnCPZd8j+Gq6TsVL05ouSfQpHuQfGikGH4N1D89H/GQBNoR7Xxyjtsr1yYG2ke28eFMm/C7FHP4D/Isi/I7rGiXinUPR+AuPAQmnxLSbCWUTJv2UJ2HvF3j3wSE1yGSPA4oz0qQsIglFAyrag8CiqytHGAI8QOXs5t6r8AEYCIimShn+TuRkJPBdEKxavJI4RhICe+tSn5jkPPJyU2S/bHfn6vTI7yoHSP2EFaoTxYEgVyd9iat7ysBGoEjmJjcbWuZHhU+kUz1syIXWCkZDa/Lo/EgNdH0L0jPh7lXGDZN0fJZRtcXxAwgizS1zW/UQGwiF1ZaO+jzSfPHn/p2wwIhlrSN78cu+Kkn05EZXRQoERZnBMIZY99tijsoFTEc6rritdoB5pbU1rbUIXYo9+AP9FkH9HdI0T6Y4GY28xGvhPm06k7dUE9+MlL3lJvkDzwBAkUn3Ws56Vqwc8WQYB4ks7/RVDB8kgKBoFY4YOqA4y9SW8+X5EmbzelB8gnl4kD9fMo0ekQgGUAJ+hAvC6Ebz56JW2JZYbIPPde31WjoAYs7npmlPGfzI2/M21iu8LLzAykKMteX3WYps8aeEDf3Md5H/wOfkGDICkUFTlYRj3ZPy4H86jLY6PmCkZjCded3Hjpiq4h4wc3yX/oCjZe/l9KmVMkr17b2xce5NkXwQlR9KecAfDynk5fpdEQ8d2rwL9kNbWtNYmdCF2Blz0A/gPgvw7oE+cSLwSoovY+PCwdyFh3juyZwCUm7vw4ngOxX3pi6ED//dCHMitHDpICYbkRseeJnSAdIv5AQhZglsxP0CiHw885Qc4d1I+L4Zn/+Y3v3nNZj88cp6zmLz6d5UCJHPHdK5iy47NWPBdFkNytr8hLUTkdzLlkaxOhAwR8/u8887LExGds+9ljKj3934k6neJaKu22vVcUC0YLIw4xOe8XZtQRNM4uu+HH354bkgIczQRf7qXFAmGlXwIpM6zT4mJRcleaMX/EUqTMVEFz79cBwZZ2lzKuHTNM3BeQf79kdbWtNb2RfQD+A+C/DugT5zIQmVxWaoSo5UMXloX8rc48ORI6hYIJO7+1JVU1YUOiioBKRiBuNc8RSRooWcQJKWAQcBrRFJ9icQ58Pa9nDPCRpRK7BiYCIXBgrgRpZ/32WefPCmOty/TntwsFr/bbrvlsXkKCAUA2fo3j0cvAV6wa0tj499pG2TEaYwZBaR6SoDPSjD0vT7vWilhDBLeOGOBUUIhQObFbX9dA0XAGPq8nIRklHQpcSPbM+IYMxorJeJPcXn3x7kyPCgXyRtMGfZpp0aGBgOurXdEX/JnGAnB7LXXXvk6wcBi/Ai7tMH4UQnaVIzA2nA/zbGy5991ne7bD2ClIhiqA/rEiSyoIfnPBrykpvKwIvkjLjXnVACLK/IijRcrCNqAnJBGuQEN+ZtnmeLDXUIHXl3ruZ0/Evcq5gdIeEvlbgwBygDiQfpImSHgfbz2pz/96XkcmqePkI0dT55nLuHPcVwHAvM385bRgkQtjhZF3yMx0ZgZQ2qEsVA1wIuXRGicfR9CZzQgZSqB5EaLq5+NQV0cvwmMBx4/ctfh0PkzThhhzrmYv2G8PYfJCGO0zLr0E2G7/8bIPgv7779/Pt6vfvWr8zlgXNpIjCEpv8D7A93H3TNS9vz7xvNv1NKsbaUjyL8D+vSNZo0G+c8GvLguY4tgLMbIkUzP8+Q1Iov99ttvas/P8b2qQgeIilGARFPogEHgO4eEDor5AWl/AdeTpHwETS0gO6etg/UIkD/A+2QQeD9Vg5fsPMjf5rGX805NZxA8MmJwMLKEu5ASVQDJqRZgPDCqEJaQgDg3rz/F8akAvHXXyihpiuM3SfbGUP6Any3a+hlY9N1/x1M5IMTBMDGmS9HNL32n8U+evtJK4ywc0Eb+yVgK8u8P86Ds+Ud//34I8u8A8qJFsUj8wNsp941O26YGxkWq7U8lfk1APOKw6XP+7b6ofef1tm2+MwR9QgfkSQRcrDpwXcXQgcWtnPWfth1uyg94whOekCsRwgXi3YwDBMwAQOhI2v/N55ToZl77NwPAdRgzMrt/W2B597oHMmx4/K5RoqvzTc2MksHAEGYUNcXxk2SfSB7BC02UJftUekhBQPx+71y22Wab0fduGALnRFkq5pW4T+4lI6gNyN/YM5YC/VDl+UPE82dE/rZKldhjASVZSQA67LDD8gcdlLrUbWlq4SUXgsVQn3ILl5uoI5hjFz2yQw45JN/GVIyQ1d+n9/fYEN8kcRbhIbcQlWXM8Pxng1Rf3TfrHtEgDQuyz/PE54muoQPPTjF0gEidM6+WQZCk7JRPUs4PkHWO8FP/AJ6oeDLDIBkmyDTFSlOMOXn7DAoGSTIA/B0p8eq9KA6MKgqEv4uZpji+pDmqg/BCObTBYPO8ezE8ukj2yfghoy8yjBH1Q5gjwRgy7pq2di57/kH+43j+sJzi+RdccEH27Gc/O6+c8Vww0u1TQjFLz+bBBx+c82Cq4BFSKl6P5xKX+rtj7bTTTrMhfwSoptjJeXgPOOCAvJxHYhVL3QJT7rl83HHHZS996UvzJBhg6T7gAQ/IH3IyoffrZoZIX/SiF+XvIVWS/CxmYoc6mVnUFinT30NbzvRPi12XuHSgHyyQxrytzC8htf708m917rxw9fSLgKrQQWq6gyhT6IAH6RmoCh2QvRkEvGD5AcjeYpDyA8S8qRypft3YIXfj6GVxSWpW0fP3O3/n1RozXjojPJG+v/tuHrj6f8aB9cB3MAj833cycBhbPuc+uF6fc04pD2KpJPuxyF+4RSjpLW95S26MMcLcM85LG9yPIP9hwDdNhvxyiOfvvPPO+VxRseM5NoeEkfEpA1iiqxCbXhuMSeQu/OzvychG9s9//vPzZwmP4uOuYbZe5F/ue2x/cdY6SVEXMQ94ud0iq0YWcJLCkbiTFz+3EFj8nLy2rc997nPzB8KiYTBkBFtUfM9SoW9HKAtjZPqPD+SErLqMrfeykBmpCE29Onma8jSrJj5jwPNTbmtcDB2kfAISu3nn2qpCB/ZG4IFaWBgCCIaXmUoXjU8qezOmXqkCABF7D2UvqSb+RplgTCA47XYdw7noLCjLPkmw3u9ZR+oMhpTwaF2Yd5vleSCtX6orlFhapPWTEIJpg7E29sY50A/mWdu4LfKufX/729/y/BwObtqBFP/JFbF2mVNHHnlkdtBBB+U5PyCMhzPl9NgDBTzTDHDPGeO6Sg2ZScxfAlZTNztGgXigMqQEnokHw0UksGZIF7wV0oefdRPjQVtI3vnOd2ZLhb4ZpCbkcvVkFhnJU+0ythYGnqd55zMWZFYx73g5oil0kIwCCloKHbhmY+D5UXqGmBF0WizT/xkAyeOnWPFkGRJJuWIcpJJGv3NMiYQMKf9G5kjewlqW7FcTNDlKjY76wHinssVAP5iXdeO2HHbtu+iii3JHsRwmY3TbmVPeDuWPEpDAcTHPcGgifxuaKf91PBwqx2fm5G/gNdwQh6hLoGINOzG5AQkuqEj8kH5OrUaFAKgM4iBkzq5S7yxgweVVVbXh9PuyRRnkPxxJkq4CcvKwICz/bsOBBx5YeYyVBORbljeNX+pelxIMJe8lL974Jbk/Sc5+55W8/lQJkAwt70NSjHzPQ9o0yfyvMsaGNl9ZiUihpzoE+Y9P/sth175NNtkkT6Ll4eNIzxTjBLFzKBMXVnFlsSU32Z8hYO3sa9gMJn+xf7IiK6UKFhUtQcUphqLcna0IHss8QF5FGlVtPv1e8mNRHUje0rzOb6WAPMdYLFdUFOcTr1ZMNdAfCCjJ/Cnm7+V3aRFNO82lCgAhlhRu4U15kVID3cGRsbhX7W0AHJtYL/qD0ZQqVsrrtSTXKofR78vr9axQd7+LEOvfcccdc7XM80m+Z6BQzPvmPwzpEzGI/CXgaSpiMOu2oyTVI0dyaxE8BtnJRZBo09+6wuYh8yLYcjlfETJ9i9m+4rEmpn7qge7wUHpw62Klwj9i+MX95wP1QOIygHn94oDi+byDlNWfDIEi8aQYtL8l0k+b2zB+qXC8fa+VGL+vgrESV6VmeBlDuUhdwk8+JxQjR6IuFGLRT7kcge6gaJHMq9bZPuv1LODZ0P+iDYwQSfTmiedUboydMc2XxIW4sbiDpZ+LScLToBf5Wwye9rSn5Ul8qVtYHXhxNhMp12WTOl74whfmNy959ohcMlGfeIWOYfMAQpLkVAeeaNGSTN6rXuuB7kAoSt+61m9bhOWIUJ8snEJPMl2XMkS0FDDXPEtJ4md8esnHSdK+RdL/kXgqsUsJU/6WZGneioUL0fu/n1PuQKqrdo80G/K7lL0vOZcTwINZScmuYsaSrtIGUbwr/RRUOXSp6LFQG18Np+RGBMaDpl2M0fI623e9XgQkz10Ojzknyx+3MgDsnJnInoGg8kdsfwxs0FfqJ+XLUGTJptiDRISiLJ6klyqrzAKN5G0K4iIdQ0ajY/fxJrrIKmOAZCcbs667X7l0LC2w8zq/lYIkf3bZKIcRKnZHfRKHtrAmGbBtF7blCkTNk0fyqV5eEp9clNSAKm13i4QtgLxW7+N9Jhjf5LWaqxad1OnP54t/A78z3owJx5XB7zt8r2NLTGKApWcjZfrzVrxfDwD3aDkmwbrOug2iusCcdN3JkAqMh1T5Ux5X87upb0JqFLUIQPSuQ58cnLnvvvvmfMJYNHfk1L3gBS/Ic3pSqR9D+yEPecj8yV8JAtgqtIgTTjgh7yyWoCkPTwDRl5E2B2G9UAEsPpr82BZzUdGna1RKmAoMS+DpssmJpBi1r5JlUphgJY25cFmR5HnyiD4lPRornihVjReDoNT2+p1EP5vp8BDI/WmfAeTNc0hyvwWwWNNPSUFSfpfuQ2r2A0hc6EBvDnNc4p/2tRYlsmXqS5CMElU+ziHlDqT+BBavdL6L3s++7wZRZaREyWl2fgzUj22VQdm3NHsp4ZnUyErYh4G83Xbb5ap4Mk70jzDnnvzkJ+eGv06lnJ6u868N60085YFO6NI1iqKh/KrcETDQDPXoxx57bG7VNlnmHnpNo+ApT3nKGkWGIYlUlhN47MhSmV7ala4o2Xs0EaSFIXnSrpHUXlz4eOEInwfueImcvRCXeUsRcUxJewgp1fenZD/E7j2JqJwbaRtxI23f4fuVGjEw5Ggk44IBpqKnGOJzXNeTtkhO4Yi0mRAjxGeLoQPXtkihA6oGz8s5D9kgSnjE+GtettrCUbOGfSZ0VxRmLUJCauo4WwV/XxTyX2osxlO2TGDSWAAYAOnnrj2nA9226SRVN5G/92jao5VsUot8VihKImqxrHQpkbr1IRBkjrwRQJ1kz5rnHSOVzTbbbI13XEcaVADVD4wmxqZj+IwGPxY/rbNT2E0IgAHAe/A93muMU2Z/yvpPnn4KB/A6vJ9igPQtnNp7G3tjLf7vHBge1BjkL2PZexkOaVdD709wvUnVEBNPoQPXkQweIcXU1piC6LrqygpniWk3iDKX3b9FkZlXEur2UEmb+8gjK5YCVm3CttoR5N8RXRtH1PWcDnQn/7aNkRCLTli77LJLrhQglCOOOCJvj+nh7rL5z6yAlEmPttNFjimMgTCS7J0ke+eK3EjqXbafRY4MH4TLABXbdEzNizbffPN8XEjtGmQhbKTPgCAV+n5EzIs1vuZoIq8k+6dugf7vvHm7zt29cVxtuR1XtQ6PluzvmaAakPkRuAQlXTwRpnNC/EWSRISu16sI50MhSImLjKO0eVFV6CAZBbPcRGvaDaLMZUZUWxgr0B91e6ikTdjKPQCqNmFb7Qjy74iujSPSwhroh9RBrkspH88WUbDkkZUXI0C8THLbPMi/LNmnuDwvH5HyxnkhEuSQCLJAkC972ct6ZX5bxFIcH/EjX2OFVIU6UhMQxoB5KH6IWHmsthQ+7bTTchI3JkqcjB0PniGQQgAImSGRSvrcB16/kqP0XseQq0NZkZzru8x/3f5sY+v3XsZARrVKjLS9sO90rk1Z1hZyr2IXw2LogErgZZzJ6akngbEQFnGOKSwyi9DBkA2iGEWxw+d8Pf+qTdhSkt+idPdbFAT5T7G5D4+kvLmPBSxk//7gIbVl6iaIuyJD5JVaSyMtY0/ansVWwjxm5INAEVBxm+eiZK8XQdratyjZOy+SPELoAsdPJOp7qSKJRJFyksCFDhAxT9xiKOcEgeqzwXNOu+WR5YUTqBLkdEaE3zs2Y4TB4pgWSMaMRD5yPEL/1Kc+lX/WNSJ7f5fgy9Dy3fbe8H7Xhxwl+jLMKB/uE8PHdTg/3nI5P6AOzieFDooohw7cD+eSqg7cM0pKMVeCQTQkdDDNBlHmDZUiMB/Pv886HQjy77QRRJ8M0hTzjza//YAoEXiXFrzIn8cqrp32VlBaSjWYZutnBIjkETXyRZDJkOM5+BtC5F36ni6SfZL9ESjyrNsHA1w7b90rxfEZEUhVrW/Rm3Wtrp8czwMm/ZPhna+Qg88zFHwnKR45G1/XRgLVp8M1IE7n71qT1I9UkSYVwfdQGcS7kTrjgCFhtzG7klEBGAS8LaEXxo/aawaR7/RC1kn5qMsP6IMuoYOUYFgOHSQVpEvoYNoNonxmkTeSWu7be5fv23LK9F8EhOffIZ7fZ3OfZI2SBVfbBifTAlF18fx5craItqOce2cxsOjbPRIhtJULIgJkh8wT2btfKdkQcfGOLRRkdZ6n/yNDFQli3137CTgP3rn+GOZYmeicSyLG1EoaOSFyxFhe4BiVFAHE79p1m3vQgx6Uv0+5ne9xbcbH/PvABz6Q/1/DLefOiECO5rXvRvxpgxmGibF07YwcOQOIWmMvY8SIEF5x7I997GN5Axy9xe3vYUMuYQAb/yBchgLjg6dtTFUEeLm+qvwA1+pappHru4YO3I8UOjAG7mUxdFBsWDTNBlHmU6wB4yOFVctj23cTttWOIP+RN4JIizUPLB78frAAFxvSNME+6h52BhujQcfH1NkrEb8FG6kjrkT0Fg4ElBqEkIKRBcJLRE8GryIhREKhQB51ba2rIEOcVI80m+L4yI8kXt7MI4GMLoOfV88zl3GfSs5I3jpvunaeadocC5nvtttueYKk79WwijfreyhdRfnddTu2Mirj6jiOK29Aedtxxx2XH1M9MiNARjWDws+8eAYGL9l73ve+9+WGg3yA4qLsOqvyA4QpivkBxmsMNIUOKBwMobrQgeeX8uKakspjvnQBw8LYm5uBcZHUuLJhnDL96xqyhde/NlY9+XeJE/WRk5LMh3CKPZkD3chf7Lrroo7sE+FbaHnCSbKXeIfkU0MbC4UFPO19nYi+T0dA3jKCRBpt5J/UhxNPPDH3om29yRPUJMc1IpxUj8/r5ZXUxaNdi7koHKARD1J2HYDQSfg8cUT+wAc+MP9uMjxC0wtBYiIjgzcuZwHxITTkjJhTp07jgfzI/I7HQ9fQC/lTFewepqEX0qd+IHsKhOx318O4MeclGzqO9x1//PH5NTICyglXxrIqP8Bn3a/UP2AWrXHNiZSbUSaWYj4BA8W4i/Wn+H+qOkgqQVXogEHHgFzKypOVipTXUxVS6dOQbbVj1ZN/F2LvIyelDRksHloDB7rDgpoIu062r5Ls04YrSbJHQEmyTySfytamgc8jsvLGVHXvJYGTtREoMkVwKY7PcybBNzV/QdJyBT7zmc/kSWZKzSgcSZXwd94y71ki3ZZbbpkfH2kzWhkJyIlsTd7n9fs30mKI+DziKm4fyphwD1QpkO/32WefPN6vj8Izn/nM7MEPfnAebpFrwENPeQDO03EkHDo/58OLd+52/lTlgMidf/maGT3F/ADGEcJ1XYwl909YYUh+QF8g8dQgqS50kEoRGXUpdOC8GAWpYZExYChET//xkeZr1UZw5iLlqUtDttWOVU/+XYjd5OkqJyVvn/cQ6AdeEtIk1acmM8UEPCRfJdkb8+TN+90sO8SZLzxtZFzXZtMcQZyaEPm396eudhYnceMmwxDZkMJ5zohGZjljoSghGwvxfQRkoxlJkAhdOIGXKqmPKoJ8zUXZ+RZNL+qA36XGQMmYQVrmNOlfCIIU7/3mvnbKrkO8W9jDuRlz4yFM4N+8LYmA2pEiUfeI4UOlYARRGhgSVIO6zVd8hvLg5V6nzoWePd9JeqdaTJsfMGbooFjuycBLoQNhA8mXjK2i2pTyLALDkNbWpl1grclB+s1Y9eTfNU7UVU6y6HlZEAL9wEuy+POSiz3oLaI8WCSfFtC+kv1YYAwifQtQOS6NeJEbiZ3BIr+AQeP95hHiMt+aDE7HlaRHkWLIkO3Lu2ciGsTPIDInjRviR5bmsXMkwfuZ/O/zDAh1+oB4EakQQlE69W8eLIlfEqHzQNjyKxgrJH6NexA6z9d9SvkJxkLujNp+Wf8SAVM+ArJzDJ67YzIqKAVyBcqyexHORTKhFyOIooFYZ5Uf0BeMU/eAgWq9SLuYptABA9EcYFylvgBUD/M5bb6UwjeB7rC2rqZtpWeFVU/+XYm9j5zEgwry7w+eLRnZQln0lMaQ7MeChRt58/CQTrkeHwmYF4jt0EMP7VxXjjB4xwjOZ8jrPNzy5xkWCJZhpMNh6oqIVBgExor0Do7nuDzxtEGNeeu9vNRyDN4YIy/GhYWVoYJslRoyJsx7iYOeFTF8Bo54PwNFlYbvRvrO45hjjslzBNLGS4DolQdSRRgpQhD6sztWWzMc8yDlB0jMM07zyg+ogjGSOGk9oFK5dgaq8UuhgyJS8mnKS0nzJci/P6ytkU81PYL8exJ7FznJxAzy7w/kc9/73jdbdJDYxaLNlb5x/DJ8NsXFeYkkdERbdQzvQeiMpCc96Un5+xG/REkbnDgWIqaWmH+MEgYEQkSUPFSSPyD/qgY03otQwbUgWQYHkua566cgpOCzjAAVAJr8KAdEbNQYxgYDwAtZC0skMFbE7+UEUBLUzb/4xS/O8xGEFNqkfJ9ndHmR3SktPGvGBFWBykGdSO2OZwXbq1onXD+ydy48/bp8Fb9LqqBQC+Wky+ZAgXVBVYnmSdMjyH9AnKiuGVBCkP/KA89ZfB0ZIixxcSoACRxhD2njipCpTYgamfHkq5oAIXUZ92L5PEpld8gb8Ztrb37zm/M4vJK+dB6IEFGKr4PzFn4g/wsHqCDQta8MaotkPkRmbjOMkSvyR87q823uo8zQ9ZP6GR6qAGzTneKxMv4lCSJlXvL222+/To9/nrxzMAbCE66PdF5UC5ogB4HywOhwbSlXwtgwkoRZGCwMjTHzA5yn4wll+G4GCKOjz66SDLcg/2HwvDQ182pbnwP/QZD/DDb3sSDzugLLH4hL5rkF3r8t+hZ53u/Qvu3i18hZ2R25eMcdd6xdzBC1+UWVYmiYbxY/xE9mRrAWuuI2szx3qoS4PQXBey2ICJxBkJL9quLt5q73aGhk8aRyMHZUUwgFaD6E/BkTlAHvFxZwjojY88Ew4tn6PSWBASAM4DrLY8bYoSBoumNMqAWpq2FTQlc6VwaP83Rc40CBoCL4G+PKOTlfRg8jbYz8APfPfVP1YFzNCS/j7f60hXqMZWqmFOgP89/zN3R9DvwHQf4zaAZEkrLAtnWaCywmeGU8XISPlBAlYlVqh8yG3lNELkmO52huCHE4Zh1ZIBlkyJPVvZBcnogfQQoDOEfSevKWyc+S+ZAqrxcYL75bchyINfv+Kk8VaaaMf6QqJp2y9H1ekpoSRrH/5FEzEJTwIW/XRyHwed9jkTZmGhDpCCjmX0V6SJlyYGx49EcddVR+vcIUdfJ9eVc95+u7JIsaWy/5Aal/gHGgVqgUcC1D8wMQPzVEjsHzn//8PPnMTooSEV2b826C+8mQCum6P8zbupj/mM3aVgOC/Duiz6YRJECJVqTYqPNdHki921NGuQQ2yVsWcsSPEIeCHI0skBq5HYHqf98UkzbfkInzEg7g5ReJH5lZ2HjzyD9B/gDSFXdPRgVDhueTlAF/l6RWlVcgZi+nIMn3CMpCi5RTu145CUrYfH/K0eBtpwoAyXmImQFALXGOvp8HhiQf+9jHVm6M49gMltRkyJi5F4wJx68zklK5nXvnGuUYpPcW8wNS/wDGi3ES4nB/KQJ1ZZtVSCWXvMo0pq5JgifFr438nat1oWu3wMB/YV56BsoKTmzq0x9B/h3Rp8tfknBNyCD/5RHH95IQxzN0HzW56ZO41zRveB3KAHna6u3b5F4ye+rJT9bmaRaJH3nzpBknMuoTND+iBph/aXFkbLhGDYCKnmfTBkOOS3VIQOQMXFnqiM/YUBqU6/F+08ZGKhRIr+RwxOZ6kwHAiGCQ6HioZwADAqFXAREzjuQDGDvxe3kIEiqV9xXBy5dw6LrdL3+v2h+i2D+AYZ72F6CSpK6GqjjcmzbZ3tgZh2JpMKNJ6MF4t8H4S8QMVbA/rKlQDpPFpj790W9/y1WMPl3+0r/TRA0sFpAnQjnssMPypjS8QEYaL5Y3Z2GZlviRIMn+9a9/fU4IYvKIvIn4GSNq8SX38fT32GOPdYg/5QAgDmV1xUQ214T4xMsTyPUIknebvoOH3lQqhfwZQgmkf+TJKEkwVqRr9fYJ1BHSq7F03c6VAeCcGACMGbI/2Z1xIx7vfOpAQdAQyYtBIKlQdr3zT3D9e++9d577QI2gaGgpzOCpA5IWbiEHM2zE6qkwlAZjTxkoXn8ZiN/4MUgSKH9CDOVQRBmUHMZHuXdDoBusqeZZefxiU5/+CM9/BuAFWPSC/Bczjp/asvJGp43jl4GkZa6Lk5OaJchJ1GvLNpdd//a3vz2X8zW1kaXvnIrEL97Jc+aBy7YvJs9RFnizPPFiJ0DZ76Tp5J37bNs+8+RwJJU8fZ+12Dp+kvkZJb6L9K/cMW2vi0QZOogYUTNgigoA40fmPwNDGASRSwRskt2FCKgxxlSp4eGHH56HB6gDjDSGCS+cR+67ye96CbQRLLXOOPgMQtHcyOeQv7CDc6JyUFGKDaVcIxVCXkLaptm8YjTWqRkJqYdCkP8wWFPdD/c8MB2C/Duir6xkIQjyX1ogMGQq4QsJIj1EL0t92jh+GTzY1LyG188DJIN3qQiQG4LUET2vXY16SmxKxE+K5ikjUU18igqC7+ZJI0KJdwnIDNnwbBMcE1Emsq5CSvpD6smQIPOrTmBkpCoByXyuWdOhZzzjGWvkch67MjjXpAxR2V/ZAJCnwACgHLz85S/P+xY0hcicD0PNvTPGYuuMEeWCVI10L/3OeLaRK+PP+TAgkmFGbfFi4PDkXZvjyRWQs4B0XIf3O39jc9JJJ+WGm/NiELTlDrgn5l5T2CVQD2tqVWVMyP79EeTfEX1lJRNUTDQwXyDC1AEO6ac4vvuHEMaI45eBEJEvRQGxkfeb2tYW4TM8ftI4AkQwZeJHNggPGQlLyK4vwu8dB+EWr8/1Q7GLnOMi6bptg8HfHEe5n1h4Iv/U7jddG+8LCTp/3jKjpTj/kaiqAJ+jZJQNAMdOBCr8Qt5v23OdMYVkef6OLYFQ/oMkSmPIA6e0tMnvyIIHXjznBIYEtcFL3wGGYzIgGR3O3XySkyB23xXuq1wKBktgOPmn3hVFhOzfH0H+HdF3r2jvF/dERl1bvAami+OnTG7k4r7wbi3uyH8WkGAnEQ75IkvkW7dhTRWcqxg/SZnnzBusIn7HJ5HzLhFbEd5nTiKk4nebo8V2vsVkMzJ+05w0dhL2il0qU7tfxyzOaUaBWPn73//+dbobqg7wfYxgBgWyLBsA7hGjR36EZkHINpUkNoE6IecBGaQ2v5QDxEA9aVJ1jLHPOZ82D9y98T4vik7q+ZDi/e4Rg61LHbncD/elzcAJVEMYTeltleffd30OBPn3gkQrC7x4YIKJZlLyMIsLgMlIDuQ99en8Fegfx+eNWRRmFcev22pXi1/eZt1WtXVAnpLzHAN5iHn7bBXxUxVI48jOFr1lyC8gcz/1qU9d6/fIrdjONwEZd9lj3viR/YtQwlZs9wuMANL5sccem2fmI+8ikDHS1GiHQZE64RUNAM+NREBhDYl7fi9k0mY0W9htFVzc+th8YOw13Q/X5R6YJ33AUGB8CXd4rpOx2ZQfUP5euRLeF+gPip5nvK4hVtfN1wL/QXj+PWCRInValIpZyhbgciOJVMfMIwnyHz+On+rxZxnHr4LvRNzkW4sQL7OYYNcGxK4UznGoEiRs86mK+JG3hQuJ8XLLZIhUyfC873KYgVqQ2vkWDVWGQptECjx1RFr08nmsCFDWfyJ/MO4MA79HqEVv2v1Qjvia17wmL8mjcHiOygYAZUHiXTKKjK9cgS4GlWdSL4DUKtiYMAgZHuWNc4wz+V7IoWtopgxGpc96pfwAYQHGAMPI9SUjp5joyZCTnxDJasPgvkFVj4i+e7QEgvx7oU8jCda9yWgR4hkFxo3ji/0iMeM8j609EbPYtUUFualZ79sq1nmTt3mNkvBk9UMV8fu39yoL07K2KpHMnOP18pKLKLfzLYZGvL+LMYr8jbvzSo1sHMvWvsiVEVYkZnHstOMgGb8I564Jjux/rz333DP/bNkAcHxkypgTDpEIaJy7tmYVzqCOMKqQACNL/b9dAxPRI2DeYzl8MhTF/ACGXMoLSHkCxtE8NUeNmTLHwDAItxjPth39uu7RstoRnn8P9Mko5R3wOkzYwDDw/niwxhAJWWgRxizj+GVQFnijFnTkhLQlm/XN40A6vHhkzqNN0mUV8SNdxMVI8N4qmV6Yg3qglLBcUZDa+SbjIqGpp38ZwifG23kXN6CRV4D8dfwrHt85aCQk9l80ghNI/kr83vSmN+X1+gyEtE9C0QDw3KRYvERALYE1RupTGpfyCJAvSd6+AtQRIZC0J8EspPem/ADhIWPaRXUJVMNYmn/RHGkcBPn3QN+MUhM14k39gByLffV5qvOI45eBJMnYQjrOSVY3GXlItQADRiwb2fHiE5lXET8wNhA7Q6MqvplK+9SbV3mwSAd5lj0kxhQPtEuYQmza8RkgRTiml/uTyF8iW0qydHzZ9/vss886BhKlxBjKYTAePPI6A8B7U0dATXuEV6p2IayD7/b8yfqXLOleqv9nlMwj276cH+B+MmBmHZZaqfCsmHO2rA6MgyD/HuibUWrxeclLXtI5yWq1AsGnevyliOOXQTInG/OULdhIaEibZiTN80Q+SE1iX+rnX0f8EsjEvKkbZc89gdeNUHTTKzcP0phHiKTYzrdI/l3zE5CnOStUUAZCNT6+C9GT1hkA5HlJriD5ruocGFGeB816jInM/joDgFpg7JUS2ufAeDEe+qgujBHPrO9lVKnQcM5UgHnk4hTzAwLDoT+C+dunmibQjCD/nuiTUZomKos1dUYLZGvIL8XxSerFevx5xfHL0G2ObM0QET8muZd7yfcxaMS/ef2Sy+zKl0irjvjV6ot1+534cRXIx4wJ76na995YFtv5lq+vLV5aBIOHMVaGcBajhvwvFKY+H7lKZHvf+96Xd76T3e93VbkKngWJh1rpMjAoZnUGgM87vnHxfQhAk6O+CgxPXOKhzzOwhBMYHlQAKkdgsZHCp0H+4yHIvyf6ZJSSLnlaQf7/hcU3lUgtVRy/DN5q2kWOt44QmnaR61KCKFmPccPrLErzdcSPDHm44sYUgrrv/uhHP5p73DvssEPl35F1sZ1vAjXF58rZ702QXGVMnGvRGHNsBhrD5gUveMGa31PDGC3q9X0fwlYaW4ZrYwyR823y8/SnPz03NOoMAO9XQshQ8OxpCEQRKF9jF+g+aFMhRguFhfGpLJDKEln4iwtrqHtXzD8JTIcg/4HoklEaSX9rx/F5pRbdFMe34FrQlyqBB9EzQs4888ycGIUZ0iYvQyFUgPgdj4da7MZXR/yMD7FtXn3KhK9C8lqV1VVtEEQaJdMX2/kmIFPk3EfqphK4N5L+yvks1AxJiandr7FkyLm/yJoqYcEm/Vd1E0ylfQwAL9fNy68zAICnLhQgBKASgJE0RE53PNfje8xLx2PkqMpRIREJZYuHSPYbH9F6bsYgU1lYLPyrCQjewqq3+/Of//yc3JBX6oFuIWfJL9VCS2LXmEb8V6a6DWhko09D/Mq7eL1I3MY7XYgfafL4/U1We1NZmyQ/7y837ikukMngLMPxfbYPWSJehI6Iq+L+dtAjxUNSKlw/w4DEzjMX+qiDazXmSuBSN0xIBkDaDbD47Mi70RCIVO/+8dyHgpHl+aT0MFCVIdqQiAEXWBy4//JcmiR/eTqeD4psoBvC858xyMcvfelLc7LpWxe+nOP4kveUOyFW171Ucfwy5BaQjsnjiF7SXFXsvA+QlgQ2iaCUDA15iuV3dcQPKcdANnvT/PAeG+uIl1cZKLx6dfZyJqqUA4oAsu5zD3yPsFWxzW+C48iHYPCkRkAMPd/zrGc9K5fxZbqL6xvrul77yvJI+rxvL+EAaFIAGI1kf3k2DKdp++UzUjQJQvrUKeOsukQuT5eNmQKzhbkvSbRqx0RrjGe4mIMl1GZudO0PsVoR5D9jWEQsjJK0Vir5ezBTPb4FNMXxlWYNicvOSokg7yv54mkiJgt+21a7XY6b9oDX6AVJiUnzzjV0QYzIq4r4nYsWwcIfVRvMlJtI8XbrWtLyfIQayg1/isl+JPO+QOJVGf9AxUkNbeQsMGSQsnCYc5Z06O/GhwpSl8cgjGEOuT/GLy3yTQYAw4RSomTQs+XvVdUPfSAU5TuMpdwKBiyjQl+HaedJYDjcX+OvjXYZ7jmjuwg/lzuuBtZFzOgZg+dkcbOwiVGuFJBJeXQWd4mPixLHr9tq12KOAMV01ZeP4dEZAx6GOHcq9dS+1rXrhEdR4DUzNsrEn2RKpYRVu5QVwUBwnKZEQGqLmHldXwDkOqRygZet30IVxM0ZFBZZ3plwjqZDkMozKRWa+pj/22yzTe33GD8GhDExf4xfmwHgOygmDBQLvh3+hASmubfGlxHnvhhT95eRxpgztosyr1cb+TOOKVdDO64G1kWQ/xwg21u3MvLvcl48EDxJNNXj/+Uvf8kXfzFe+6AvWgOT4la7ks5sfjNWvTUiktiHsHgZZG3xbl6ivzEM6oifTE3iVt0ga7+pqsBxZKVTjeo2NJEwaKErt/NNUIMv+9496gvjRrWgKpR7BCSi1LefwuO9svclHlqASfgMDl6/BdzY1BGzY6kM8D3GVc5EShRsMgCAUsAAUF4oEZAB0KekMYFxaK64b55Vhqwxp+q8+tWvzo14lQIMosB84D6YO+5pGW35HsWOq4F1EeQ/J/I//PDDcw9qubX3THF83jMvP8XxeUbi+FV13EsNpXYaujBSxL+32267Xt3h2sDLlcimnn6XXXbJyd1Co7HNq171quyggw6qjfEjYeTGKNhtt91a69V5tK7H99Shrp3vkLa+ZSDRlPRX1SCI9M8INA8YP7z2VLufNvjh/Rsf8j+Ztg5K7VQAMCZUAFBRkrHQZgAwMMR4ja17IJGwTy4HQ1EbYP9nlDl3xE+BoEr4vfkkxEHd8EzX7d4XyEZ91hjLVZ0sjz766MbPFitUqAQUutjs578I8p9z3H+5kD+ZONXjIw/nLzlrkeL4VcoEAtZxTqa4mLPknyEteevg+Cn+rn98GguEJZxAmkSWPFgEUiR+BExGNrbIvK3bHg9aNj2PXcUIcuN9lq9HVUVVO98EMXv3b4g3zPv2fcivalMaBgWP3bWpmKgCdYjXr1VyKg2sg/FkIMj+92IgpTFsMwBcX0oEZASo35fX0cXAPfDAA/OmRIccckh+veYSAw18h+9VY/6tb30rz22Qfc6o8TwM7QcRGB7vR+ae86Y1l9cfCYH1iFk7x7i/ibzI4MGJb5I49UHXg1282IMnI5uXt6jEzyPj8Yk/IwG95dW7j0X8yM146GBH8dCjP40FgrZAGSMePyKWDV+WuCWnkeftPNfmhSMf94AB5vg+K3ZOQSq2lla9QJlxb+qA/J3rEJJiyLieqoz/BOEGBqJzqQNv2XGUVrYByTKkeHzCZUU0lQECr11nRs/bGWeckRsCxe23q4BEGG1yFoylhk+upxxjNhbUBP0AUnWDPIO6nIjA7OL9bZuseT7bEgJXO8LznxMsfryRRYv7pzi++BkPkgFgkV7UOH4ZCCDV9zpv3vjY6gpJHQkZJ01rxH2LRGqfevKwmDPP1vt4/jzPAw44IJeNEQwVhXzZRNQJyvaEFcQ6kZI5o5pi//33z2PcSeInRbuHVe18EygNQ/YmSCDj/+hHP6r9e2r3y3A0NlVgDPHC5ToIH7V1GpRDYdyoLBZr/05oUwCED6gRrtl5pUTAuh4OyWCTryDmnwxG4+4elo0mcj/PUo6Ae0p+phpQAlKoIzA9GG3IX+lsGW3POOMvEgKbEZ7/nEB+5k2InS8CyGG8Se1ZNUtB/OL4spot0iT+RSZ+hCyGTKXgrcmY32uvvUYnfgu8+HPy2Msby0jIkwCGoHi1vFUEwOu3h71mRohcDoIYcpc9HpC545EtecDug+9kNFgQi6EEiZdUhDpFhkrgXg+R/Ivkb0OcOg/ad0tIbEvAsiCrCEnNitrAyGEkqNQwP/soAMbLPBb7Z4hJBKwrWaTMUVeM1Yte9KL8vZ4FhkrV3gYJjAvPtXCIbXv18xAWCIwDhpXnqeqZSZusldcoP/u9Z6fLFuyrGeH5zwkWMoskwuri+c0amtKQyGVjW2CHbm4i09wOcwjYIssDJgPPChZoCy2PQCIcj4sMO4vEQ4vDySefnMd+bSXKICqDN2njGR3tGB7Og4cu+c3YIk0kIl7PGOgC2f0WvbR9qaQn48uzVtqWEtmoDAhNuKEO/u78h2T6JzAckLVj1RkRzsl51sX0fZZxgDAdizqSyvnqgMB538IJmvkwqoq93dsUgHReyN3nKQDuQbnkMfU/QBqpwkDiobCLc67KdUjwfQwF5+Z5cp3Fzo6B4bBWGteq+v4um6z13YJ9tSE8/zmBlMiCNaEXAYjM4slCbiJ+HhUiknDmxeNOIJFq3Su7HUkiLbulvelNb1rz2TFBxpORnRYFnj4ynAXxS+gS0yUhyzqvIn7Xh3SMI0JJ3fN4/RQDpJRCPcIRXRrFMBYkFaZac+Ot7axzEVt2TIZAkvyRD4+6DiRtBlPV+XcFb51H1ST9I0jXrSdBguuWtEj1cE2Os+++++bNeXjIafvfJhh/cVsEzaCitPRRAIAxwpDy/UI05mlZ2WCcCbMUpX3X4350ASOBgUXpCYwDzznDvu65SZusWRckYaatuFNnvy7qwGpGkP+IaOsvzUPjFVoQlxq8cw9Jk/SFNIQGZEKLXfOESMjF5CqNW3S0Q1BkTzFtnq4481i5DWrp3/KWt+QxWYu/2njZ8hbtsYE83COxYgQgcagqK7+qZW+6XgmBDCLnzWstt/ttAi8GKaYtfX3OuNobQWyZoWMcGALCCbyXpqRGnqi/t1UWNIFxSOFomrdI2mLrnIwJz15yJCPK+MjaV7vvfM0ZxlvXvvzGgAFACTDPiiTd1QCguon7UwKclzmaQg/OReiGspLgOhhadW2Ji/Cd7rWQ0CKWvi5HMHCFeppUrbTeglyTKjKnAhTzRZq2YF9tCPIfAQiRV8/7Y6mm2G45+9kEZXXa6nSpkTY18ZA1eegWfc1aDj744Fw+TuVPQMIVV01NTxyTh4mgx9ieFwmy6JEeMvHQPvOZz2yVi4dCrF04AakjbOEZccfy+DT16k9E6HyRpZhz121IedZyQiSTFcnanGGIIWHtexENohJmaUr0A0bYtD3OkS5DC8k1wXiZHwwVRqWfqSYMNUpGMo6QOc9LuKhoTDaBpK9fg2tmCJbRxQBwX4RnzFmqiVwXc8z5MLaEwuSQUGtUdlAz6iTnBIYIRYyRIEk2MA5OP/30/H6ZJ0PX2y7qwGpGxPxHQNf+0jwMC7uJneK5Swmx/tQXvSqWi3TShimqACysusWVQZq2mFrwec3Pfvazp/KAeGSOoyWsB9qiKhFxlpusuD5j4bx5iMjKokImRsgpT6ON+MFxZLTLFO/aaMY1myu+3+cSkL774OU95HPnSo6ua+dbJv+q7X/7gqHXlPwGvHpxVsYZT78pnKTuX+4G48r1dlGJHNd8tIjz+MqVBV1yABgyjsGYISsLUwnJ+J3Qgm2KGTBCKV1KRc179yFVZATGgTWSiliVyDqkn3+XLdhXG4L8p0TfchIyFgndAl6uXZ03kJfF0jk2ZYMjvNS8htdZhqxacX4LK1IkmfOEhsjylAgLuwWcx/y4xz1uqkz1LhCfFwf2fZL3Elny/OQUIATX7praiJ9U6fqRfpcGM0USce0qCtJxGVsa3SA9Hi+p33uUselr4HyaavcZZT7XVlbXBRLheLiIsY4QnQvSZJi0zW3jSSZPXfXMwy5IJXYaBjmn8rV1MQDAefL+lHAKW7nvGvb06QTp+L4H6UTL3/HAwWBAH3HEEev8Lcr3xkPI/lOirZzEol4EbwJ5SIJaalgUeWAS+hBNHZKEypMTQy6Xackf0OGOZKpUynsYA12TpdIDbyG2nzoDg1wuRjxr4kemFprkrZa9ZGTDq2MgkYWbiJ+MrdwPEaStabsgGUyutUhmSJbEKT7Js0GYstAlljW18y2SEyO0K7E2AdGaL8iuCTx/90/Yow2MYtfrGSk2LmqDZ8hntVhmOAwJAaTcDF4/I1UyYTHm3wZGkPczENtCL4F+4L0LwbnPQ/r5B7ohyH9KtJWTlPtPW7R4hUqPFgHi/jwgCU51SIsnUuP5lhOukvfp98hTIxxeKq+za00770s3O2RrP/hZl0O6prQNse19m5LylGmmveuVF1YRP0MHSSNoYYM+W8AKbyB5Me0iHEsIRZ8BHvKee+6ZZ5NTF0jUbXK+e8VQm6bMr5zxX0W2RTAQJUp2SeZjTJDuGTl96uOdB287kXbVPOtqAKTGUMI84vwSXLv0IKCCyGtxz6K977iwNlqXqipU+vTzDzQjyH9KiLnW7bEOOruVs//VGos39vGMZwXxSh4kD7hM6mUgEV592UtD4GnBFaNX7oVImxLd0la7SB/5e9Al80ncmfXe6c6fzC/BzuJNRpdcVHeePFPkoG0spYeRUr5+SW7uZ1MnuSrwksW+GYRdEgONr/PuklzmXpHfx8hAd02SEDWqaoMSRWMktNUGBK77JaWgWEba5XzEfhkOjKNiImpfA0CJpmeSkedeUJ+qjpfAsJVLYd5ER79xwQiW01HVE6NrP/9ANwT5j4DUR7qrFMVrIfVqB7sIIP1bAOsksxQztah7OC3SCA+J8kKVX4nTi08fdthha7aqresQKAuex8bCd+xdd901j7nOY98ARCDkIst7xx13zJOK6hK1EL/EPaRuYWGYyAGw+KcqAO+RE0AOJ8mnJjF9JE5GV1NJUxEMEe9vy0IHsfExyUnSnxBRG8wTFR9tCYIJlBfjZqz7IIVXfJfyxyqPvasBwHuXOS7EY34eddRRlYoC5cd5Ureamv8EhkEJpvmtKqOMNjWpbR0OrI0g/xHQJlGXpSgxYwseb3ERQPaX6MSyrlocycdIymKusY/d2zRqYaFbtP2OkkHhkISmtKuqy5lFmsGjxIoHqXVtXQOdWYDh4jpI00996lMba7iLxE8ZYRwxEtw3CxMikXTGkODlIg7qQB8Yg1Sr31XtYGxRYNoqH5z/WJn+RbJt2rwngdIgLFHOd6mDMAHDypg65z4wdkIH5mBdCW1XAwBsIiPJlHGrEqDY2AgpyfuQK6D6JLL7x4c1UUlv1bxtk/ybml0F1kVk+4+A1EmKfF2UxHm+JnKVFMVLtP0oAhBPXWogOAlMPNgyGSMcrVHFvakWjAXvkSSHhF72spc1HtuYKFEjtZOCJUhZ7MfcarcNrkuc1jlb3JtUhiriL8L5k8B5h4hf0hpPsA8QEE+GB48sNZ4xTxgQdeMi3s7z7qISSKCk0IwR7y+SP8WKR9zWNEivf2NDfeiyqZAYr/knB8Oz1IdY3Q/fQxJmjFKyyuhaBZAMCs8mIpLIKjTkHpvD7pX5E818xgdDi3GVOoQWEZL/+AjyHwltfabLEC/kfZK+taldaiAJcWdJbRbJ4sKIqLtsSFOFtKkN9UBypIV0nnFSJOuaxJQRrXFvMjraiD+BeuBvYu+O2RdyB3iSlA9eMhWBcUQ9MU6MgDLBdGnnW27r27Z18NCkvzby972InAHQpeSR7M6blgPCi2c89AHlhQEgaU8eQdXn+xgADBaJgCpQhHWoXq7Z7/qGdgLdYK2Uy0ERLKPrFr6B7gjZfyT07SRlIbHYVXUrWyqIf0t06pLU1QYeqgY5etLzFiXCWTjnSfzIT/KhhUNnPMbZGMQv7uvaHEsOQN9sb2NMTWGMICNJecjLdr1q30nfJGw7zaWmSq6lSzvfBOTmvMYslUSqEiPbyv2AkeC7GQBd93iQK0B2lwiakki7wrUKx/hO96auc2CfEEDatMl9YpS5/vKmQIFx4D5YKzynVSGtLlv4BvohyH9kkG5Tn+m2Xv8yWnlzPNNFgMWXLM5bG7opT9pq91WvelXuwSG1ffbZZ+4lOBL6bAWb9gKgwjRJyV2JHykx2BAHY2lIZQLilxRZ7OQHQhEUFk2gNPtB+GeccUaunJBDye1dN46R6e94Y5ahIX4qRVub3wTet+S5LsZCgutnDHVNFiyCUuKZkkNQVwHQ1wAwfsIsjssoRlBNPTECw8DgU+5Zt/Nlqqoqz+fYpGc4gvxngK69p/2NvKi0aBGAHJVdIc66vc+byJOnKg7u/0IIPNmqB3bW4C0LvyABlQRtCZldiR9JaCzDWFMW1qekL8F3MIoYI3Xtb5GfxEL9DqglDEkGg+/rWsrUNdbeF7zfrkl5SR63sHcFpczGP9Sa8g5+XUBZogAgaBUldTX7VQYAY0HJK7VI0yVGSzIYhWHMZUqGhNWqTpeB4WCsUW3KBnFxPZXTUb6fsUnPcAT5zwBNvaeLQDJqx8mUi+JNIBfGSrmWvQlKBDWh0SBFOEMcWxx8KZKieJrGWka2DoFt3e26Ej/oBGgBuuMd77hmD/i+UCLonNq68yWCklMgOZQXLSTQxZCiGCCnWXRHRP7GqksjHMQpMRRh9pHxkayeBz43VMESUtNxUQ5AHYoGAK9eh0o7WCJ3JWd2sWR0JcgRQE5yHpKyFZgejDyKikZbVf02qtZTz4Ek29ikZziC/EdG6j1dboRT7PVfhKxicq6kokWABZvnJSu/bethBCMj+oQTTsgJQRY0T3upEqLExKkOyNnGSW07d/UhfiRgsxFqztDSRATjXlN86poK1V0XNaZtE59ivgUvdsxM/wQGhXHrqgwxWnhunouucB+MkfnVNcRQhtJV5KDCo6kxTDIAkIsw0b777ptnmyN+kjIjoGiYC6WoRnA/GAlDDZTAfyHp2XpD5eq6npqDKUE2MAxB/iOjLSuVJFmU/8XCeRO8jkUBgiPby0eo8vAk8LG4lf+de+65eTY3iVqP/6WAc1QmJqOfxydu2KY69CF+np5MZMZEl/3dm77PuPYdJyWBcgS67mrIyBirp38V+SPFYv17E4Q2hCu61vwnaKCjVwRy7aIyVMFOfe6XMsom44MBQPanGBhn/3be1J20nXIR5goDmcrFY0VOQ89xtcNYW/sYe1XztW09jV7+wxHkPzLaslIt5GX5n7ecapwXAannugezaFlb4MjWyrGUpgkRaMlrIVyq/uY8XB4bgwrpiw22nUsf4uep8wR9Rtb30MYuaaObvs1hnKPkN8TUFbxyFQGz2LMc4SHzPhUhQjCUky7tfhOMkbFCvEO9O/NA4qSyQ0maTbkK1CL3mqGAzN/61rfmyavKzqqMLkaB5EuGMkXI+xnFgX6w7nkWrYFD1tPo5T8cQf4joJjVnxr+1LW2RSJl+d/uVaxenvSiQMzV4iYDF8Hy9DQ8kfCGLPUoEIvr6o3OAoiRAkFCJ/N32Y61D/FbzHl2kuck4NXd0zaQiI0jGbpvHB5pkp0RaFcguVkQfyJUiYT6CHRF33a/CcIW7pEEy6Ze+01wf+VM8OglldXtH0CN0ZlS2IgnqmJFSWdSUeqgOsZzgsQ8H102swr8F9Y8BN/UR0SDpcjyHx9B/jPI6rd4tG28UpSryI4sX9IyolkUyKTlQeqbbuF0bjwp7X1nEU/uA7FgcVpenQYfXZrC9CF+7xXvZdjJ7Fc5MBTUHlnoFJK+cL6S7Pp0Q0T+PjMrOHZdHX1Tu9++vftBSEycvU/FQBkkfOE2TZXsP1El0VMl5N0gcs/hC17wgvwZ1uSHytVmKHtW7PmAzNp2Pgz89xk25hyJMrkX11bzJrL8x0eQ/wyy+hOR95GrNMEBm+QsAng7vFVJVxYzZKl0r7jf/FKBaiKJS2MP3lqXzPs+xJ/uIy9Qq9hpvGjhCFnn1KC+KonFEaH06XZHZeB9dtkhcCgkdCLLPt64a3Df+hq3iF/sXgleang0BIxEDWSM6cknn1wZKnF8ITlhDUoLo0+Yo8v2xN6HrIyLypehiYqrCRImqXYqnrqsrZQ3609bA7VANwT5zyirX8yySf7nrRYT/0ipmtGok1/Ksj9xftcmri+OSc3QdEYOwKy32u1C4F/4whdy+Rgh6L7WxSPvS/zeq0ujhLNpFA5jKUcC8VX1m2+Dckvn3mfvhyRTz1KZQf7md5/mPchXud8QD543joyN5TTgyWvM5BzOPPPMtf4mLJB6MIC5LkSg4kXfhS5Nr8wrxop7NrRJ1mqBMJCNeuysWW4V3bS2DlGPAtUI8h+ILlmovH9yYBWq6v7322+/3DNSOrcUIBeLcfNc/JtMbdOURdjEBHGos1fGZtzkSXSJwfclfh4mqRfBiedOA4oJT1DiWt98AectATT10+8KHqfPziLTv6rHf1ekdr9pK+Q+4B3qceAetpWftkFliqZPuiYWO2sKDSjhNPdPPfXUPEGQQsBw03K4rRMgUMooCLYZnkWPhZUEYUT3U/fPMiLDfz4I8h+ILlmoZCkedBWq6v4dc/vtt89e8pKX9O5tPg0oDWQ0u/MhStKaWOuiyGq8hKSm6IvAIOmSMd+X+MUZZfYjKgv+NFu2ur/K24xl1658RfBAEU7fDW58hqc6S4ONLI4s++4BYX77TNcywSIYYjx3BlFTAl4bxJbtx0BJYJwneV5OxbOf/ex8nlAFSP2+UzxaeWZbK2DXpOyVoWeHwkDWmEhrrZGIWdUzIzL854Mg/4Goy+ov95pus2LL9c/q5S0kGl/MS0b3INpIhlScKg8WZa9yCoT+9jxxC3FXIu1L/GLliF+8fJrM/qIXiFCES4aMJfIhPfdt0Us5msfmSZL+qDB9twRGvl1i6GUYQ0m17ksqmxwKSoKYMrmZB5raCDNoNJphsHsmSNKeiba9AFQ+eI5UcwxJ6lxtoC4aM2XC06ytgekQ5D8FqmT9cq/pNitW3Kvc3ITE+eIXv3imjUN4llqUyuRPCysPZ1rSGxOS3WRaa9Sy22675eQxC+L3flI/Qw3xt72/DUhC3FJ8eUjWvUQ6RiGvqI/h4DoYS9rQzhqMkvJeFW1wLUjUtQ1RtlyXJDwdD6fNixHjZwCAPQBUAjShzgAg83/mM5/J+wRQFBbFaF5UUG0omw95yEMaw2pd1tbAdAjyn/E2vmk3qjrIWi83MZFVz3PUPGRsWLA9QLwbWejIzvkN2aRmVrCwIggeohitbGBS9iyIH/Ro4Llp4lO32U4fkKYZKsh/CJAbBaKv5C9bXZLaLDP9i0RMvjXOfeCaVJAM9d7NB9UdQ9SDqtwFhM1g6kIqZQOA8uH5FdphSCx1QuxygD4h1jtr3JhbpAf6I8h/5G186zL7+7T8RVokRP3Fx8oatlDrhPfSl740b0jCy1eaNMt68CHggdm+lmGip4AOa10X1SHEr/e75C/jMUaSFtmdN2hsh/YGYPjIGu9bGkhKnVVb37qkv77xe8YVQ24oefussZX416fXQB009+FRMrbNg64GgNwFxjmlTmfJPns1rFZYy6xpQiOUkjHW1sBwBPnPAW1byla1/FVe9/nPf77TgtT2wCltOuKII/IsZmQvKYkHtmgSJa/V9ZKE9T1gAHU9xyHET+bXyIenrJnItDDWFARqz9CkL+cvC71PR78E3qjxmkemuXmE8IY0tNHxr2+73yIQh4TaIZUDVRBK0B3SNr5dShEZHeaOMWA0BvF3A2PJWtfm9QfmgyD/OWBIy1/vR2ISAIfG/nnPWo6KaYoj85g0xlnExYoUbAwkq0ns61NmN4T4eegSj7y3S1vgrnkUxplxNXSvgyHtfBPI0DzreeyzYA6R3/u0+U1wbYi/uF1uH3iO5MUwFvv0GqiD8dp2223z/BzlfU0GDQOLMsW4O/jgg/ProNREXX8zKFIcmnvc4x556Caw9AjynxPEFNta/hYz/3lwhx12WG4pS0brAyQotsbb56GIZYvtL2Uf/iaQjpVX3fSmN82Jv4/nOoT4kYZER1ne1IUxyFK4gteoRLDPJjxFIBD5An3b+SaIXXfpdjhm0l/TZjl1UIbIyOu7018RZGAE7BjTlP4VjRnqm/HTArgql4HUL8bve21fzdAy54TswgBohr4JFC2JzIumOK5WBPnPCRJV2pKKypn/FhaldwcddFCnVqrkcl6JbFpZ8qRs8bJ5ZH8PJTtd7EjlpFdSvyzsWRI/onAfNPNhEA0h2SroOihpsmmDkjbIFaAe9E30S9dFPenTDXBaSGqUZDhEmeJlU7qGGA8J5rZ7XmzWMw0YxylxTwlg8ZljRJ911lm5cSfGn+YNQyYMgKy1jPY5z3lOtt122+XjF1gMBPnPEUMy/1/0ohflhPDa1762kUQlLB155JG5SsAjIT0j/6XaarcLWSmRQsIWBcl9fcIRQ4jfOIk78tLchz6GRhMoCDo6ShybJhuZctC3nW9R8kdW88j0T2BUGlNGS1+on6eWMP6mUR5IyJ6ZofkDVddkLjJqeKvuB/XNvXF/NaYpz9MwAJphozMJmi984QtHuUeBcbCYzLACt/rtmvlf3O0P1LiTGJ/3vOetaUZSjkFqByy2jwj1vJcQNZZHOwuIaWvcQ35XxicO2LeevS/xg416JHVJwNQ0aCyQ6pFuk2E3q3a+5Z7+VR3TZoV0rkPi7tO0+y2CeuNeThNCKCPtzulZFAJwfQ9/+MPzjYHq7k0YANVgRCF9DZPGSKoNjIcg/zlu9Ss22Jb5X97tDxC/z/LsE3g6vNjDDz88l5zJaUpoxqhTnyVch8Q+pWwa98iW7oOhxK+u/JRTTsnJsWqMizC2xlQeQtropY6gGF+SB5MEPU1DI8dqawpVB943g2+eddA65ClnHNpvX3hjaLvfIukae9c/TQihSFbmqDwZmzG5Ns+VsFSbgRoGwLqwPnmeJEcGFgvRlWKOW/1KKNKoQia/n4uJSjyKuoRAhIUoxfJ32mmnXCpHoGK8suIZGYvUma+p+kD5ImPIjnx9DZWhxI8YSLhqxDVkYZzx5vQ+UOct1uvYQiTeq7WrMUZsPiOEIrs8vafsrTtGWzJnG0jLKYN+CBBfeXe0WcNYSE4cun1tsd3vkOqGBBUseldQERjZVSRNNRMaMXfU6ZdbIGvtzDg0Jxhg5H35NuaGXhCM6y49MZIBIKRFjXBuqzXBTSWIpOOnP/3pteEo6qh8CgZ51PLPF+H5z3mrXyGAqtaVabvKokpQxIEHHpgvlOLjJ554Yk58VAXbzk5D/L5XvoBjKgmctm96FXjNkrIs0DblsTnPvIjfoi+zX9IRb064QZ2xlzFNpWrG1sLPSEAScizs8Eap0QaZB1jOnyALGz+GwTQLvO9FgH3b+RZBfeja/nhMIERG6BCkdr/u6zQbWbkv7oFjVO2lgYQlnOklv9dee61TYqj5lX4PdpgzV1SdeD9VQjVImkNd8wpCAfjvLqUM6Koe/k3qaGA+CPIfOa7fZTvKYutKnmiZVBCU+GI5uWmPPfbIyVlSkj3O2zrIIUxeGW+73Ecgydi8GuU3PFhGgH+/733vW/P5aYEcxdp9t2uifvSVx4cSv4QyRg3i1mqXLO7Fk9dpzLgXM7q9n8eWVAle31Oe8pT8fskVKMLnhAacj73qp4F2vha9tiz/utADw0Y74Hlm+icwOJBil2qUquvgZSOCaY1OygGZHrGXDQlGhjwYypm5Uz5XZbGMcYap69l9993zZ8xz4LNyUihFb33rW1v3AEhY7QaAqiOGtHLlqlBUkzoamA+C/AeiznJt24WtGG+2ICC1Msn6+VOf+lTudRQtYVuOylB/97vf3VrbzJvUypc388pXvjI77bTT8p81MQGLGombt0+2Js8dcsgh+SIpgRDRTlspkFoKO9YOO+yQbxPc95hDid/YGidkIBGPfO+aGQHkXB69hbw4vs5XzFcmejoGUFcYbUXSkP0tb8E1TQtefzI2Enibzl1fc8YlL9T5V5EI9cK1TGuEDAGSdF51jXEkdyJ2xhMDVOineB2pjfEYCXvCae5zuYLAvUYq+i8ox6SSFJ85BjLJWYlf+r3nQL4Ho8r5mUPuuTybrkS+Wg0Ac5EBxZh6whOeMEgdDcweQf4DUWe5Iui67SgtIEikq0qgrrhoCYsJS/rz8CDzJlhgybG6aoln8np4RuTLlBh1wQUX5LHt9IBa5MQ6eU4k+mmARD3IFsBddtklj332xVDiB8aTXgcaspRjtWnRQQTGKC3KyN19SiSffi8Ob6xS4xfXJklNZQXymgapnW+xMRDCcb94TciGAaDk07ypCgsgf2M1j57+fTL+Eb/5KmGVAuNaXAelo3gdvHYqSlU1Sx/IeeDBI233q4jksXsPwz3NAapFkfTTPWfUOB/3GigC5rAkUM9lV6xGA0CYzP30/ypjv4s6Gpg9gvwHoM1yfcELXrBOTN+io46/j0pQ1fbXVpi8EuTftLEJeRuB8FottDwiJYMW5LSgpf8XZTkeqOQcD+BQ2Z+XyhBCRjyAIclc0xA/MuX1k5Sbuu1J+hLfT/fRdzCAnD+khTrteKg0EYRIxOeFXqYFL9U9KZbo6dVgjkk8VCOtxTODpM7go+C4v4hm3jA25kxVm197SUjC8zxQmJ773OfmY+r3xbmV2v0ijGnBwKbcuEdFJGODIcfgS/fc76lp1IAi0i6Sxa2DzSfn6vzPPffczue0mgwAKop8CQa/kGYV2tS/tmqcwDgI8h+ANsuVZ13cjtKCxJurUwnaHoayJCoZDfHz6LsgLbS8YQtdynT2e4tf8pLS+/zd+Q7ZM53EyzPSL98CUM6qnjXxI26xWcZWWwa++nCLVYoRM4IQh9wHSOoN4uU5prI2RpMEs2n3SEhhn3I7X9dgt7jUmTFlSlMZqgwy823IOI8F51/V6IdhpU9FUiQYu8YQGRZj56ndr7GYFsaRge35qDJIePD+lr6f8UK9SCWdxWdRGCjNvUTYvH8Gonh2nyqH1WIASPJzDxh8daHSui6YnjfrYWT9zwdB/gPQVoudLFeT2Ht5/E0qgSz0Pm1/ebMy5iWndfGWLGgInuRv//Lk6SMTD6o4bDon8DuLY9fkJkBKkgcRp7prKsMQT3Qa4vcZ1+i8jWlb5jxSRZzFe0NVMaZpy1kGkH8jLgTFo2RU9Nl4qA7IA+mU55O8BNK40jNG4lFHHZUbAjafKRuKxss1LGULZ2NTNm7B/XN9EuoYnlrmmlu2aS43oTIG1KYxavX1jmB0uFdlY0ljIedaTAp0P/VZ8P1pzvg5nRek3/u/62IYvOENb1gnvLCaDQD32GZZkoarjNGqUGkR1NK2FuiB8RDkP+IufX4uS11dVAIPTdMWsHVtf0mTOpB1ybSW9MfTFTZIC5mFkAyaSp/S9VjYkEzXcjzfLxZKOtX3nFc8JFlwGuK3mPPGeKDIUxy3Dun6Se2IwPUmA0AcH5G+4hWvyMu/xN2dlw5vVA1jxLMco3ab5F/Vzld2udwL14NghDF40QijbJAhH+GIebb1LcN4qTgob4bDkNLB8R3veEce/2WsUk2MY9kYpri4h1221G2De2MOItf03BTnvBBDcRwpcwwYCbGMLiEjhmx6xsskTfExxygLchn6GMkr1QBgJNubQ5Kfe941VJpgK29q6TybVK12BPkPRNda/a4qAbmsCY961KPWyky3APGkeCsWoCqkhcXiyyPXYhOhO09/4/l7WGVi824RNqKxYKays7a4P/LxUFsklcVZ8IdgGuJPiw8vM6kZTWAgKKdEvlQPFREWLmTPQNp3333zc2DQMCL8zXggBhUYY3jZrlc8HGmXDSXyqLgylUZoR+tm+QXuo7LNIoQhHCtVKCwFEKr7X+7Ul3aXZFAxZFSRUGRcB4O2CJ9nBPHWxyDE1G7ZfGbcifMzshm6/q3U032WR+F+7r333rkxKL/i7W9/e248MPicS5WhZ34KoTHuGT59sBINACFM9989HpLk18eACoyDIP+BaKvVTzWrXVWCtra/yLlcA6vMzALlPKp2NrNoWVzUKyP+JFUXvRlSMuIQWqAm8H6cC4UAmjx4JMpit2hL7BvamnZa4gekL9RgEXFOKTmvCghAFjoScJ08bbX9vDmQL6CTIm/Vjoruk3Gkkmj1OgbIysavqrZfBQYDRkmi8XcfnadYc7kePsWd+2yDPDbE0RmjKXyU4GeGpsZUjCjXQfInCVfNV/NHvoPrHwOMc8YuNcE9f/7zn5//2/02XsIDqd88YwHxv+c978nJn7ENVcRPOTDHQAnrkK2yV5IBIMdHqbDx1SCpCl2doKr9UAKzQbT3nRIpaauMckc/xO3nKpWAceA9VW1/qzL/iwkxutB54KgAJOoicfJIPJQIRNkSYmedI3/JeIwBxG/Re+9735t7kRZqakDKcK8DxYFBghgtlG3vnyXxJ0iSI9/ylo0Vz6+qJStP1KsreOLGhhSfssCnRVM7X7/zncY4hYOMEaI3R4oQDmD4NIU5Zg3XgdBTlUQCIwq5MXRSDBgJMwqqKiXcK3PT2DRVaXQFz9x4IXOGQCLsOnQJVRlv4QvGAmNzGqNrJbQCZmQrFVZGrHtiHdI6V9XW3L0x56mlxTUyrYsRCpgNwvOfEmN29DPR2zLUy/K/BURc2AIr2aYI34O0EIOqAzFVxM4QKZbfIe5HPvKR2Z577pl7m009zBk7pFmSOeWB57MIxJ9AhXjqU5+aNy7SZYxUP41X5bPkeZ7JWHuRk6Et9nXtfIUeeNMMO3OCAkE+ZwiUlQc5I20lo9OCQiEEQro3V6vG05wpl8tZ0N0P50/qV6WijFH5aZXxNVa73yLMd3N92t0D07bZ5hTFwBwbQ21Z7goAZUyPB3J/W5vxqlBpSvKLjn/zR3j+U6KrnNWkEqSOfiT4Y489tpFkkvzPmEggV2+//fa5ZOmzPGAgHZfb0k4DC7LzZO0zQnhvQz2VWRB/0eMT5uBF6DAoMUuseUj1gYXN9YoBj7V5EoNE4ltdnwDnaRc02f7GiNqA9OUbFMeJByV0oaxyVnD9kh9J3eTtNAc07imCsaJKorj5kXN1HYhfi2dlfsjYfK2TyoVBGMzq6Pvu+FgFhq92zvolUByGdEGUT0LaNgaMY4Q15kZay1UBkLchfKafSJ3cX964x7pFvXSP0+9SMmCTehrlf+MjyH9KtMlZxUnbpaNfqv1vk/95MsVFXza/z/CuPIxjN3wRNtAxz3Gf9KQnTbU39yyJv7joI2wLjJbG4oikyT79740/Y4vHPebiY4FPbW3rQDJnwLRJ0CotZpXs5z4hfkar8i3xc4u2MJGERPH7BElz3k8lKHrEPiNhsivSuBj3McgfzFV5LMY9dSTsCsqZzH/KBpVrVg1olpsBwCA2PxlzFMMyhK1481Uyvmepz7pozgX5j4+Q/UdAk5zVRyVIxK72v03+l1lfBAIV6yb/H3fccdmYIC2Ll1oAJfYtOvEX4Vyf8Yxn5Isp7/MLX/hC674ICWRe6om+BWPBdTvuGDFtOQCupdgdcEzw4IV3hISQOK8f+SFSikqxHW9Tm9++MDZjtPtNQKLKM51f1858EkeRvjbXjD9zaNad55ZTCMA2vZSUOrm/j4zfRz0NjIcg/xFQjOmLrft/Vc1qUgnaEouQbVuzCwRazoglCz/taU/L47Njyf3K53j8mqbstttueTx6uRB/MQzAaxOq4JG4R23NZHg27uPWW289aky9qp3vUAhnME5mmRCF9GXmIyKJfZQG2fi8sWJjH0pF6oA4LcZs95tg3qbmSW2dK80Nc8T1ITGJfUMy+leqAWBtojCqEKpyBPpu3NNUERUd/2aHIP8RQZriJTZJVB6cto5+LF0PRF1v7LrkP3jhC1+YP5CS/8qlV31g0SG9ImulUSS+aRbApSL+hNSZjUTJ02DQWFzrVADnKo691VZbjXYOKVmy3M53KJAU0p0lhE54bJL2zF318aR5BlWxfS6D1nX1aXlbB3NDsmC5P/+0MI+dY90OguaC7zQ3PH+y16fJa1mJBgDi1l2UUVQXlhqycU9X9TQwHoL85wxemoQpZWhlBaBc+y/5rwkWBlUCRTimeCzPSR7AkKxpkqesZhLuIx7xiLzZzDSlZEtN/EUgdCET14Wo5AKU+9IjVX8jFY+ZO2EcNEWSFS9ZKjXoGQrHcT1dgEBcJy8+GYVdSEUZlx4Iwkni0RLy7na3u+XzuOxBU0gkIA6FsTAmxoZCIylymvEpQ1WKcjJGS/k801wwppJnEdysqyiWmwGgSsXYyO+wNtUZRUNq+ruqp4HxEAl/SwSdxbrW/iuvqloELQgMCXK/46UHRcIVWY5cqdd9n4QrC/rHP/7xNZ3tlGVNg0Ui/qKRxaM3zlq5IhskKoHSoiuZUg+EIdsQt33vrrvumkv/xsT3GB+Lqbpx963rZkF6OJClU3MoRIk4hSsoT+T61J3O7+wPIKGU4uD7JOvxrLqQSnkzFp6x7y8nT5LW5VQIDXRVNrwX8TJIGCeMVxn5+k2oWhnSJroJ7rE4vrFXbmi+8/bTJkSM6aXcJ2GRkwB1RGQ8Gj/Kzyxq+svJgIHZYb3JIpiUqxisXvI9ib1I8OlBSXJY045nFkg198XyPxCjV2aldams3Dbwtnj8FnEx8j6Z8cuF+KvO0cLK20A+jADeloSmIVsRd4XHjgeq6Y3YNuJGhCR1484Q0BinbrGXiyGx032iVKif/8lPfpIrCy9/+cvXJIxafLV/VgZ6+OGH5waiXQ+pQ/pD+C7b7SJfNdtVyVs8Psagv4n3ayZljqQtetM5knMdi9FY5/0Zb+OrIZDrNzcYCioWkK8Mf+Q7S5JznsIYaUtn91w5IENqETPsGVoMAPduqQyA1G6amqjHQRvc47Jzkwje7+sMg/IaFpgdgvyXGOStpux5f7fAdsmw996i1ezhkqmMELTebCJzEj+vjcdrcx4ktNKJvwjesQz2tMkSeXOeIEMjJfdQRrpMd/ddTB8ZIlv/TuTMi0fohxxySD7OyBR57rHHHnm1SLFXhMXWwi3UkaBbYWrSZHOoOvJ3HsYklRXy/MjnEkvLTW6MoRbRFvHUKtkcpFDw7hlXSIGxynNUG85LJAPPe0tiBhCD23nKBZCsuMhYSgOAoSkcKfnV/hdV312u50+oqulvW+/C858PQvZfYnRJjpFE2CT/J1AQWNRJ/reQCwcgs9R7u7zIIRiep4dOIiK5ddpktOVG/IDQNHDRTGcpiIAU6qUXgZwLZMzLNj/MAT39/V7DH4aZ3/s3abiYQGphpuAUvXY/JxUjNeGhDFiY5YY0wfF5/XriGxeyOcKs6m5nDIUbZNT7jFAEg8C/nSsCML7ORZhjKVsSM4jslzC0O+VqCQEw/oRCGGdUnfJ3NtXzW4eipn9xEeS/xGhLjiEHp/0BdAAs74ZWlQBIuk/QLtVnxXjFfe0emOKovDK172mDG5b9tAvKciT+IhaBDJAigvRCtJI2SeRePGjyvkW3uI2ve8nYYxhIWks/I3d5BCnxM0X5SN3mFoJuOxcKgVcXOCfnaeEn4TMSKBdUp6Uk+zLM80W414tsAHiWJXvy/MX5qypLmur5qyT8qOlfHES2/xKjrsY1PdS66XmPh4kXX1UlUJUAWCwBJMPy+knF5M4kI3pIkYP9t3lkq534FxXImxFHFWDcibla+NOmP0Xw0BL5A8JVolmuaEjE11bz3hckXeVxztG5Cj8490Ui/uWMeVYBCClJiLVm2Ctj2np+iJr+xUGQ/wKgqsa1/FAna5oB0Lb9L5Ivd9LSoYx372FWXsMqJ8VKCkx7AUyDIP75gcEmj6PKE+NlSwBM+6NTAiTTpa2Ai6qPGP7YIQ4eP1VibKMiMF8DQKKw/Rv0DREOG6ueH6KmfzEQ5L8AKNa41rXmTdY0r66t8UVx+98itOJUpy3L26KvVe+QjU6qvi88/vmBF0/Gr6qBJrML4xS9MclayF+yHnUHWfg3RYBMPyZ5OCdGhQTBwPI0ABwvdcS0j0MVrFVtTcTq2vJGTf9iIMh/gSA5pm2TFtZ01zbB5Q6AQgu8fh6jPc6TdzgNgvjnD8Rq3Iu11ilkw5ijCkj0S4Qgl0OMX9KnHg7K3FQHUIKKnx0DlAaGRznMEFgeBoD7Jlyjv0ddgp8afeEdjZCq0LUtb5eOqIHZIch/wdA1IaZLm+CqDoAyyqkCsnglAU4jzwbxLw0s0GL2ReOP1G9PB30DJNwp2xPSUZ8tFKBBiwz/448/PleElHMijrFh4Xdu4fkvPwNAOIlBSLkRHqxKiKxK8CsbCNGWd3kgsnCWGOX62KbuWBKpUhzNe1Nynxh/nw6Assj9LMmPOvCud72rd0JWEP/Sgdde7sOgayDP3r3VljhJ+qlLoVa1egDMAkIQqga81PQjkTF6/AfmVwXgHtq9kfHIiKxSIFOCXxnJ4GBY6pwZnvzyQDT5WSI01cdCuTsWj73Yj7z43qEdAN/3vvflyoBsf7kGXReMIP6lg7F/9rOfnZfOVWVgD0Hq8Ce+a65YzH2PsJDwQfGlSkTtPsXIz7xELxUJXuapc6NKBQksj0ZA7rc1QCdIa4K2x1UQMmRY1kGXzDG3vw7MFuH5LxHa6mO9UncsXdPU4xeh4U+q6WcENHXNKiYAFhdkO7ZZ+G3eIlFMdm8bgviX3mhEvmNueILw5QmQelMoAXF4UZz8zgu5UxTkjFAY0u5+GvvYLY+6EOWdy08B2H///fM9QJB/HfFPk+AXWEwE+S8B6uSzYn1s6ozFKq9q7IOEi5L+kA6AIKtXDPmZz3xm3kK2qW93EP/SQyy9LtN/KOQEmGd68iPvItmrCvES/9X5cRF73weGGwD2gbBXg/9zSLoolGWkvvyh9CwvBPkvAbrUx6YHqe29qaa/SwdAvcyrOm9JBhOj1a9dVnixB3xCEP9igKFmsR2zPt/x3Hf9HrruKhhY/gYAT3+vvfbKDX99QKpAXbTGFJHKRRMiwW95IrL954DivtV9W1y2vTdJ+ur/KQFNHQDr6v89zC972ctyw0AWOAWh/Lmo418c8tecKRCYpgrAeiTcR/k79NBDKz1+qiJnoqwmFhP8rG2ciTGVqMB8EOQ/QxRrYiXKyOT3s/hoVUvfqvrYvjX9XToAVnXecnxNgFjxFAQZvxDEv1gQdyX7/+hHP8oz68utVQOBNgPgwx/+cF7ma01C4FWqAI+fctAE1SQh9S9fRLb/DIHo6/atTvta1+2GVYSHt03S9wDz+iUATrNtpoxhD77vkvkrwSt69S8OqDJkWPeEESAjXzzeQk8RSPF5L/8Ww/dSylkX+0UGMvZ5gCH7r+wqAA5J2r1SiW85QdPf0/Pfhth+d3kjyH9G6ErA5f2um9BU05/AAOD9MyzqDI+q3baKUMZlgfBdCGGXXXaJLO4FAg9OLb1Qj+Y+XgxEL7X2yTBw780VL8SP2JMRQOlJxoAFX9Z+kP/KNgB0djzwwAPznSJVdjAYqxyWtsThutLhwPJCkP+MMIuaWIt715r+PspCGR58xC8BkHFCAdC8I7A8gPQZB7o4ppp8r/TvZBSken5ev/c/7nGPC89/hYIjQD3UtvcVr3hF3jCsrAS1OSxlByPi/MsbQf4zwvnnn9+YrDdUMuv6gA5RFsoxflnCun6RDE8//fRcKgysPFAJGKOM1ZD9Vx44ANr28vgZ/+ecc846jYCoP5yGJseiHFosdiYNLENMAjPDAx7wgMnFLnYxWTZrXn6+z33u0+s455133uT973//5Dvf+U7+s8+vv/76ax23/PL+vsf3/y984QuTj370o5O///3v+d/++te/Tu573/tOLnGJS/Q6ZmD54B//+Mfk3e9+d/7/wMrCaaedNtloo40mD3zgA9c803/7298mH/nIRybnnHPO5N///veaNaW8VpVfd73rXSff//738/cWf+/n3/3ud0t8pYG+CPKfITxk0zwov/3tbys/f/755+cPYtODmgyFrsdnTOy1116T17/+9ZNf/OIX61zHtttuO9lggw0mb3zjGwePR2AxEeS/MvG6170uJ/SHPexhkwsvvHCtvxUNgHPPPbdxLVlvvfUmW265Za2RMMShCSw9gvznAERc9Ny7ou1BYwCUFYA+D2I6fiL+o446anL5y19+zYNexD//+c/JjjvumH/HS1/60l7XEVhsBPmvLPDmX/SiF+XP6i677DK56KKLKt+XDADqQJOSePvb3z53WCiD0zocgcVBkP+CosuD5oEcqiyk4xeJ/7KXvexaEl/5OBaVAw44IP/73nvvPfnXv/41wxEIzAtB/isHnsk99tgjf0af+9znrpH168AA4Jj4TJ0BkEjd+8YKNQaWHtHed5m3AC5uANQn+cbxVQZo63md61wne85znpOXiZXbBhfLeST8vPCFL8x7wT/96U/Pu829/vWvjySxQGABYJdFHfve8Y53ZK9+9avzEt0qlJP17nGPe+TPsuqeo48+ek2ZX7lnf5/OpIFlgKW2PgLVmLXEJs5X5fF3/Z63ve1tkw033DBXGi644IK4jcsY4fkvf/zpT3+abLPNNnly37ve9a5eOUQUvp///OeTE044YS0FoEpF7BLzLycoBxYTQf4LjFkl15AGZfVL7hPjHyrlnXHGGZONN944jwn+5Cc/meqcAkuHIP/ljR/+8IeT29zmNpPLXOYyk49//OOD15MUApADgMCr0BRqbDIuAouHIP8FxjQx/TbiV84nq3/aqoEvfelLk2td61qTTTfddHLWWWcNPq/A0iHIf/niU5/61OTKV77y5LrXve7ka1/7Wu37PvjBD3Z6zqvKALsmMUclwPJCkP8KrhZoIv5U8ztG1QAj4i53uUsuOb7hDW+Y6hwD80eQ//LE8ccfn4fettpqq8mvf/3ryvdUeeNtCl9XA6CIqARYfohd/ZYBJNxoBTxNJ62m3fm06tTdq4g+e3Rvuumm2cc+9rF8O2DbhO699975hjOBQGB8eLb22GOP7ElPelK200475b34r3SlK1W+9zGPeUze2rcNxWS9tu2AhyYoBxYLke2/CtC2La9Wn0OrBhIc87WvfW12m9vcJttzzz2zb37zm9nb3/727HKXu9zIVxMIrF5ow6vl9ic+8YnsmGOOyXbdddfa98rqL+7tUYVyRn/ZANDamwFQbAVchagEWH4Iz3+VE/+YCoPFgUfCkPj85z+f3elOd8qNgEAgMD2+9rWvZZtvvnn2la98Jd+GuY34Gd9taFL4+igAN77xjfONwxgTRfjZ76P//+IhyH8Fow/xjwkhhLPPPjuv/7/jHe+Yve51r+skHQYCgXXh2Tn22GNz4r/0pS+dP1tq8+uUAdvy2vzr4IMPbhxOBgRDvWl3vj4GACOCMTE0fBiYL4L8VyjmQfy8C1sXCxeUwdK3SP3v//5vtvPOO+f5ABdccMHo5xAIrGRovLX99tvnXv6OO+6Yfe5zn8uuf/3r176/S4w/eePlPJ9pDYAUPrQu2CXS/9uMi8ASYqkzDgPjoy6rfyz0red961vfmvcDuOENb5hnEAcWC5Htv5g4++yzJ9e//vXz+v2TTz556oz7acuFh1QBBBYX4fmvMMzD46/yLmQcP/jBD658vzbBzmmTTTbJtthii+yVr3xlhAECgRrwrF/+8pfnz+8Vr3jF3Nt+xCMeMXXG/SGHHDKVNz6kCiCwuAjyX0GYl9Qvg/hf//rXOt/9qU99Kttyyy3zxaEqDPDZz342e8pTnpL3EN9uu+2yX//616OfXyCwnKHHPiN6r732yp+TT3/6040yf5+Me0b4tIl3YQCsHAT5rxDMK7mvzbuwIZAkn6o8AOf0ile8Ijv11FPzUqVb3OIW2bve9a6ZnGcgsJzAiz7ppJPyZ4KRrPfG4Ycfnm200Uad823aMu59R12OTh+EAbBCsNRxh8Dix/iHxBXbYou6Aj70oQ/N37f99tvXdigLzB4R819a/PKXv5xst912+bPwiEc8YvKrX/1qcL5NVUvwe9zjHpOtt9569J77kQOwvBHkv8wxT+JPsHDU7f1dfHnPlltuWXscSUMnnnji5ApXuMLkKle5Su1uZIHZIsh/6XDSSSdNrnjFK06udKUr5f9uQ9dW3MWW4LPsuR8GwPJFkP8yxryIv7xFJ4+hbUOg4st7m7wM24k++MEPzt/7qEc9avKb3/xmZtcSWBdB/kvj7T/84Q/P5zyv389Nzx/D4A53uEPvTbjm0XM/DIDliYj5L1PMI8ZfbBhy//vfP48p+hkk9931rnfN1l+/fQrJA5BsVIerXvWqeR7AW97yljyZ8OY3v3n25je/ObKJAyvyuT3hhBPy2P6ZZ56Zd+F7xzvekV3lKldpfP7U+p9zzjm9++fPo+d+5AAsUyy19RFYXI+/Ti68/e1vn3sMVfHFab2Mn/3sZ5NHPvKRaxSDr371qzO7vsB/EJ7/fGD76y222CKf249+9KPzvJe+z98iev4JoQAsL4Tnv8wwr6z+upI+P/t+KgBvXutO77397W/fuPFHVy/jale7Wp71rI/Ab37zm/y4T3/60/NOZ4HAcoTS19133z3bbLPN8ueWx//Wt7413w2z7/NXBepbXf/8efbcDwVgeSHIfxlhnr362+RCQNCpl7d/O6eu24a2YZtttsm++tWvZoceemi+NwDp801velOEAgLLTuJPc/elL31p3hzn7ne/+yjPX8Jd7nKXNUZ4VSnfPHvuhwGwjLDU0kOgv9w/j6z+PiV9xdKhrtnIffCTn/wkLwdMoQBjEBgPIfuPj89//vOTO9/5zvmcfcxjHjP56U9/Ovrzl6ppurbbLlYAzBpCAF/84hfzNSuwmAjyX2aYdU/tYmZ/n5hjIviqPIAxaopBX/Gb3/zma+qh57GIrQYE+Y+Hb3/725OHPexh+Ry95S1vOfn4xz/eu5omoe35m6XBPQai//9iI8g/kKPKe9AYpNwcpGvS0ay8jH/+85+T173udZNrXvOa+QL3lKc8JU8SDAxHkP/0+L//+7/JzjvvnM/Ja1/72pM3vOENk4suuqjxM0Ma9vD0lf15rny+reQ2DORAHYL8AzmaGoFYQGT4d2nsg/Dngb/+9a+Tl73sZXmDoEte8pKT/ffff/L73/8+7uYABPkPB4Leb7/9Jpe4xCXyZj0vf/nLO4flujbfqTKkqQWeyfXWW28hnsfA8kOQf6BTOVDXsr6xPI06KbQMhH/AAQfkBsDlL3/5yWGHHTb505/+FHe1B4L8++OPf/zj5EUvetHkcpe73OTSl7705NnPfnb+u64YWoJXpRaE5x8YgiD/QE6yXb2HOhVgrBhj1eJG2kxSZx1I/7vssstkww03zI0Ai3HsF9ANQf7doRMfY/Oyl73sZKONNpo89alPba3Xn/aZK6JrHo7nc6lj/oHFRpB/oLcXMsukvq5JTk2VAXvuuefkUpe6VP56+tOfPvnxj38cd7kBQf7t+OEPfzjZfffdc4WJp7/33nv3zuCf1vPvU4HT1lI7EAjyD+QYsvnH2El9XRa3rgoDr/85z3lOrgJQA574xCdOzj333LjbFQjyr8c3v/nNyeMf//jJBhtskMf0DznkkFyd6jKX256Nvs9cm1rQZTOtQCAhyH+Vomqznll5813RZXHrm1sg/i8x8GpXu1qeHGUDISWDUYb0XwT5rw216R/60IcmD3zgA/O5prJEIt+f//znTvX9wmJdnqO+z1wX4zh9vmvOTGD1Ish/Ckj42WyzzSYbb7zx5MpXvnJOLEXvkodAKrzxjW+cZwNf61rXmjztaU+b/OEPf1j7JlQ8xG9729vWes9zn/vcyTWucY3J//zP/+QP9lC0lRfNsxHINLJm3yxmGdjHH398Xnvt8ze72c0mr3rVqyI5MMh/DSTsveIVr8ifV3PkNre5zeT1r3/95MILL2ydX02JeGMqaG37bXRt+DNrfOITn8iNJ0a3czj11FPX+vvBBx88uclNbpKH5iRNbrPNNpPPfe5za73nOte5zjpjeeihh671nuOOOy4vrbztbW+7zucDzQjynwIeqhNOOGHyjW98Y/KVr3xlcv/73z+fiMlD+PrXv543/DjttNMm3/ve9/KNeG50oxvlW3iudROyLD+OrW3TS4eshE9/+tOTO97xjnnHLIR1r3vda6pzntXe3mOga0LTUOOEx3/mmWfm98D3MNz0CrDpymrFavf8dYxUo4+IzAkbS33yk5/spQ51mbdjGNRtasGiPN+MmQMPPHByyimnVJL/iSeeODnjjDMm3//+9/P1c6eddppc5jKXmfzqV79ai/yf97znrbUuFtWXH/3oR5Mb3vCGk7POOmvyjne8IzfoA90R5D8iTFwTndVbh5NPPjnPEtasZs1NqHg4ijj99NNzVcHizLplCAzBPHf4Goq2ksIxFzKJgDyQq1/96vmxN99888mrX/3qyW9+85vJasJqJH85IQzpO9zhDmukffF8zXpmpViNWXNfV/u/iM932/qWVBfvE5Irkr9wSx04V5RXBsH5558/ue51rzvqea90BPmPiO9+97v5BDYp60B6vtKVrrT2TciynIAkFCF2HeyKXodFGeFJOiKRFR+QeZQXLQUsVMr7yh3MZiFhMsSQ3/3ud788YUqC4LbbbpsbapoJrXSsFvL/y1/+kofTyNGeJYbkAx7wgFyZKxrjs8pVmTX5Lurz3Ub+wiovfelL8/LJYnku8t90003zRl5k/Ze85CXr3Kcdd9wxv4+qMN7ylrfM9DpWGoL8R0wSspCIydfBxBYWUCdcBGmLtE96fvGLXzy5+MUvPjnqqKMqa4y7xB/rsKieQRvmmYegZtvYM8KMySabbJJXCjC42tq1LlesZPJ3zz784Q/nGftCPO6pDXeOPvro/HkaA23P1bxq7hf1+a4jf4qmskmJuJyfs88+e62/H3744XmI7qtf/WquyHF8lPGWQalbDUb62AjyHwkazLBU1ZnXyVpk5fve976ti6wGNWTIWeBBD3rQQsQElwMspsICN7jBDdaoMxI4ZYLPY2fFeWGlkb9784EPfGCy2267rUk4k2tD1qfOzQJNMf95JtwtSsy/C/mT692Pz372s7kHT7ZvMsgoohSblfTsLSWC/EeALl/IWtyprtxsiy22yDNai4l8dXjve9+bPzCzmORkM1uMLtXitBwhBGOBUqlBuUmKwMMf/vDJm970pmWfI7ASyJ+qZjMdiZzJw0cmmjzxKGdd2lmVqyIDf97bTy9Cye6QmD9I3lNBVQeJgY4V/TrGwQZZYDDM66c97WnZqaeemn384x/Prne9663znj/96U/Zfe5zn+ziF794dtppp2WXuMQlWo/7la98Jbv85S+ff2ZsbLDBBtmJJ56YHXroodk3v/nN7IY3vGF2oxvdKFut+M53vpN9//vfbxyH9dZbL7vzne+cv4466qjsa1/7Wnb66afn9/Pxj398tv7662f/8z//k2277bb5vb7FLW6R/y4wO/z73//OvvGNb2Qf/OAH83tx1lln5c/j5ptvnu2///7Zgx70oOyWt7xlfu/mAc+rc/nud7+bfe9731uy52pRzmPoPb3wwgsb10XP1VWucpW5nteKxUhGxKrErrvumiep2LO7WI6S4k+k/jvd6U6TW93qVnmpX/E9KX4s2UgSoCRBEtgxxxyTlxzpTheYHcaqh7angFpjSWR6OTiOhE4eqLiy+yofZJGxHDx/Y/i1r30tr8N/6EMfmieBGWuJXpIzX/va1+bPVR9EI5zZ4YILLph8+ctfzl/u0xFHHJH/W3keud8unNQ0bZOVMMurkevEuwflezL9lVArB5TMp5eK3I3AOAjyn2bwahJr1OyDZJW69/zgBz/I3yM2KZOVVCn5RWORY489duEJY7ljFrFR2eQSAw866KC8SkHVQDIGhAhe+cpX5ovZopHsIpK/c0EWyF6vDJUwxlKZ7N3udrfcOP7Yxz7WO9EL4c+rimQ1o27t22GHHfLQJwNODo37KS+DAVdM+DvnnHNyx4lzxahWwy8kEPH+8bCe/yy1+hAIzFvqv8lNbtL496JU2iU0UIW//vWv2Wc/+9k8JOT1+c9/PvvnP/+Zh35ufetbZ3e4wx3WvIQKNtxww2wp4Jze//73Z/e///2X5Bz+8Y9/5CGoc845Z81LaIUE7HyEW+5+97vnry222CK75CUv2ev47h/J+Oijj84+/elPV77nYhe7WHbPe94zl8wDgdWAiPkHVh0QeRPESpH87373u+wxj3lM9qEPfWjN38T03/a2t+Wx1TZc6lKXyrbZZpv8BX/5y1+yL33pSzm5+f8nPvGJ7DWveU0e65TfwSC4/e1vn930pjfNv//GN75xdt3rXnfJjIJZGBk//OEPczL2Ovfcc/NxQPQMAPHcm93sZrkx9NjHPjYfCy/j2BddCL+If/3rX/l9FitfLjHyQGAahOcfWHXo6vnf9773zT7ykY/kxDArD5FBgKSSx+vfCOhvf/vbmgTN61//+rkhkF7Xvva1s6td7Wr568pXvvLUyYVjef6MmF//+tfZz372s+znP/959uMf/3gN0Xv94Ac/yC666KL8vbx313Lb2952jfpxm9vcJrv0pS89+Pv7En4VjMP97ne/wecQCCwXBPkHViXaiL1vaGBMINGf/vSnaxFnkUDL53zVq151jTHgJRt6k002WfPaeOON1/k3kmc0eDneGWeckSsUjuf7GQQXXHBB/vrzn/9c+e9f/epXa4je65e//OU651Y2XNLr6le/+mgVEVUKzVDM8r4GAouEIP/AqsTvf//77NGPfnStpP+BD3wg94SHeIhDcwS6ACn/4he/WEO4RfJNP/O+E0kXyXgMIPRkSFAdGBuIvGh8pN9tuummcwlZVBlyfREx/8BqQ5B/YNWhSM5QVQ89xPOv8kDvete75r0gbne72+V16LMyCqrg+yTNVXnv5Hcefqqt/vKXv5xtttlm2UYbbZR75MINRaUg/V9uwrxq57sYUW33qSv65HIEAisCI1YOBAIrqra/bzlg1+2IvZSaKTlbhP0UFqnUr28pXtdNdapeW2655cLcg0Bg3gjyD6wa9CXzPq1Su27ruoiGwFKTfx3hd7lPfcc9CD8Q+A9C9g+sCkyTwNelVWpbjsDY8vOYeQVj1vnXnVfV74ck6lXdp7aY/5ZbbpntvvvueeglkvkCgf+P/28EBAIrGrPe63waz79Pl8Gq0EVROSi2rG1qX1v827e+9a3c8//2t79d+56mz9edl5+1Zq1TT/qESZruU5VCEx5+INCMIP/AqsA89jofQmZ9z2fodyTCrSJp/fGRv/+3EXYdyW+99daVIRVteat+3yTxD71P/lZnrAQCgbURsn9g1WDWTXuqygeHoqqUcJrM9nSdUB4DDXeEGpy7TnuXu9zlsj/84Q+V41T1eX8bu6Sw7vyj/W4gMA5i39HAqgGCSwSW4Ge/H3M7VSR90kkn5WV+Q5HKEPu0Je7Svtariaj97be//e0672n6/KyJf+z7FAgEord/YBVhXnudO6aQ2gEHHJDXy6upT2Sunr7LBjNV53WDG9wgW0lgHNn4KBL1AoElQCkMEAgEpkBbQl6Cfw/ZWnbMvIKqmP80x1l//fU7x/yLSX9tiXpNiYeBQGAYgvwDgRHRRs5V5N4nUa2KMLu8EuFWnV+R/NsIu65XgoS/qkTA888/v7VXgus+7rjjJscff/xaY9C3KVMgEOiOIP9AYCR0KfdrK+XrijrloM3oqDIeytn+TYTd1viozpCp+30TwfdtyhQIBLojsv0DgZHQp9HPWLvHOc4nP/nJ/N9bbbVV/v+Uz1D8d/m7inkPYu7nnXdeXklw05vetPI95c9/+MMfzj73uc9lW2yxRXave91rcAOiugoMx23aljd23wsEpsMGU34+EAgMSMhDqtOQf1V3vNQdsHjcuu+g+hXPG/mXz99nu2xelL7XMev+VtWxEIFXlUUyBJqIf4zxCwRWO6LULxAYCfapR3Y81yGlfH2AZHnMRfhZrX4TkDdvm5dPpXDOD3vYw0b53r7nNE3p4rTjFwisevQIEQQCgSkT8saIWU/TrbAqjr7xxht32thnmhbGdS2Cmz4jnyFi/oHAbBCefyAwItoa/YzRrKbNYyaJVyHJ7HVNetqOO42nXnVOdUqJn/3+tNNOm2lTpkBgNSNi/oHADJDi5Y985CNHbyrUlltQJ4m3kff555+/VsJf3+8dck6prXAx9p8Ifl5NmQKB1YjI9g8EVsk+BXV7A6Te/uVs/77fC0P3TgiCDwTmi5D9A4FVsk9Bk8ze1bNv+t5p9k7g0dvISMWAkknGQCAQmB3C8w8EljH6esxVOw8+8IEPzHbeeec8+3/DDTec+nuHePFNJYRVZYKBQGA6BPkHAssYfRrq1BH0da973XwL4T7kv9y2Ww4EAmsjyD8QWIYY01P+5z//uaTkX5eLUPx7JPoFAuMiYv6BwDLE0CY/i4ihpYuBQGA4gvwDgWWGpnp9v19uyXJDSxcDgcBwBPkHAssMK81Tbmv2E5J/IDA+gvwDgWWGlegpT1MmGAgE+iM6/AUCywzJU67Ljl+OnnJ08wsE5ovw/AOBZYiV6imnZj/L0YAJBJYTwvMPBJYheMqveMUrsk9+8pP5z1tttVUQZiAQ6Iwg/0BgmSG64QUCgWkRsn8gsMywkmr8A4HA0iDIPxBYRlhpNf6BQGBpEOQfCCwjrLQa/0AgsDQI8g8ElhFWYo1/IBCYP4L8A4FlhOiGFwgExkCQfyCwzLBSa/wDgcD8EKV+gcAy7Yb305/+NPvBD36QXf3qV8+uf/3rL/VpBQKBZYT1JpPJZKlPIhAILB1UCnz729/Obnazm62zuU4gEFiZCPIPBAKBQGCVIWL+gUAgEAisMgT5BwKBQCCwyhDkHwgEAoHAKkOQfyAQCAQCqwxB/oFAIBAIrDIE+QcCgUAgsMoQ5B8IBAKBwCpDkH8gEAgEAqsMQf6BQCAQCKwyBPkHAoFAILDKEOQfCAQCgcAqQ5B/IBAIBAKrDEH+gUAgEAisMgT5BwIrBJ/85CezBz3oQdnVr371bL311sve/e53r/X3P//5z9nuu++eXfOa18wueclLZje/+c2zY489dq33/P3vf8+e+tSnZle84hWzjTfeONtuu+2yX/7yl2u957TTTstufOMbZze5yU2y9773vXO5tkAgMC6C/AOBFYK//OUv2W1uc5vsVa96VeXf99prr+yDH/xg9pa3vCX79re/nT3jGc/IjQFknrDnnntmp59+evaOd7wj+8QnPpH97Gc/yx72sIet+fuFF16YGwfHHHNM9spXvjLbdddds3/84x9zub5AIDAeNhjxWIFAYAlxv/vdL3/V4ayzzsp22GGH7O53v3v+85Of/OTsNa95TXb22Wdn2267bfbHP/4xe93rXpe99a1vzbbeeuv8PSeccEJ2s5vdLPvc5z6X3fnOd87J/2IXu1h229veNv/7BhtskP9uo402mtNVBgKBMRCefyCwSnCXu9wl9/J/+tOfZpPJJDvzzDOz73znO9m9733v/O/nnHNO9s9//jO75z3vueYzN73pTbNrX/va2Wc/+9n858tc5jLZE5/4xOxqV7taHl7g+W+yySZLdk2BQGAYwvMPBFYJjj766NzbF/Pnsa+//vrZ8ccfn93tbnfL//6LX/wi9+Avd7nLrfW5TTfdNP9bwsEHH5yHDHw+iD8QWJ4I8g8EVhH5k+95/9e5znXyBEHxex580dvvgste9rIzO89AIDB7BPkHAqsAf/vb37IDDjggO/XUU7MHPOAB+e9ufetbZ1/5yleyl73sZTn5X/WqV82T9/7whz+s5f3L9ve3QCCwchAx/0BgFUAs34tUX4TkvX//+9/5v+9whztkG264YfbRj350zd/PO++87Mc//nG2xRZbzP2cA4HA7BCefyCwQqCO/3vf+96an3/wgx/knv0VrnCFPGlvq622yvbdd9+8xp/sr5TvTW96U3bEEUeskfJ32mmnvCTQZyT3Pe1pT8uJX6Z/IBBYOVhvIu03EAgse3z84x/P7nGPe6zze+V9b3jDG/Kkvf333z/78Ic/nP3ud7/LDQAJgGr7NQVKTX723nvv7G1ve1tewnef+9wnr+kP2T8QWFkI8g8EAoFAYJUhYv6BQCAQCKwyBPkHAoFAILDKEOQfCAQCgcAqQ5B/IBAIBAKrDEH+gUAgEAisMgT5BwKBQCCwyhDkHwgEAoHAKkOQfyAQCAQCqwxB/oFAIBAIrDIE+QcCgUAgsMoQ5B8IBAKBQLa68P8AbD7EITc5iCsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -200,7 +200,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAPzCAYAAAD7/FyjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWUE9fbxi/u7u7FilPcoUBpi7W4Oy2UFi/QIm2xosXditPi7tBSKBR3d3eXAvOd5/1/kyYh2U2y2UwyeX7nzEZ2ktxM7ty5z30tgqZpmiKEEEIIIYQQQkjAENHoBhBCCCGEEEIIIcQ9KOYJIYQQQgghhJAAg2KeEEIIIYQQQggJMCjmCSGEEEIIIYSQAINinhBCCCGEEEIICTAo5gkhhBBCCCGEkACDYp4QQgghhBBCCAkwKOYJIYQQQgghhJAAg2KeEEIIIYQQQggJMCjmCSGEEEKI6tu3r4oQIYJshBBC/B+KeUIIIYQQ4nXWrFmjatSooVKnTq2iRYsmt3iM543mzJkzat68eapjx46qePHiKmbMmJaFjBkzZnj98549e6Z+/vln9cEHH6iECROqWLFiqWzZsqnOnTurixcvuvVely5dUn369FEFCxZUSZIkUdGjR1dp0qRRJUuWVL1791ZHjhzxevsJIf5JZKMbQAghhBBCzMPbt29V69at1dSpU22ev3r1qmxLly5VLVu2VBMnTlQRI/rerrRt2zZVpkwZny4cVKlSRZ0+fdrm+ZMnT8o2ZcoUNWfOHPXJJ5+E+l6jR49WPXr0UE+fPrV5/sqVK7L9+eef6tGjR2rkyJFe/x6EEP+DlnlCCCGEEOI1evXqZRHy+fLlEwv47t275RaPAQTsd999Z0j7NE2z3MdiQs6cOVWhQoXC5bMeP36sPv74Y4uQb9Wqldq0aZP666+/VP/+/VXs2LFFfNepU0cdOHAgxPf66aefVIcOHUTIv/fee2rIkCFq69atav/+/Wrjxo3yuFixYoYskBBCjCGCZj2iEUIIIYSQoI2Z79evn9z3dHp46tQpEcevX78WN/Dt27erGDFi2Libly5dWv3zzz8qcuTI6vjx4ypz5szKl0BYL1u2TFzeCxQoIIIarvXNmjWT/0+fPl01bdrUK58Ft/cff/xR7sPNvmvXrjb/h6jH8cDxwi3EuSOwAFChQgW537hxY1kMiRIlisN9X716paJGjeqV9hNC/Bsu3RFDGTt2rEqfPr3EexUuXFhW7kPi0KFDEhOmx4fhwmjPokWLJA4N++TKlUutXr06HL8BIYQQQnTg3g1hqruEWwt5gNh0PA+w34gRI3zexixZsqguXbqIeIaQDy/+/fdfNWrUKLmfPXt2iY+3B5b0Fi1aWNz/9+zZ4zBs4YsvvpD7efLkEa8HZ0IeUMgTEjxQzBPDWLBggerUqZMkcdm3b59coCpVqqRu3brlcH+4oVWsWFGlS5dO7d27V9zJYEWYNGmSzQp3vXr15MIIt7Pq1avLxmQwhBBCiHu8ePFCrrX58+dXceLEkQ3u6GPGjLEIdmtgzYfFG2BRvUiRIg7fF89nzZpV7mN/szqJbtmyRT18+FDuN2nSxKn7u7UXwJIlS975//r16y1u+t27dxePBkIIARTzxDCGDx8usWNwa8uRI4eaMGGCrNhPmzbN4f5IDgPXMfwfLnx169aV2DG8j84vv/yiKleuLG5sWAWHaxsmIZh4EEIIIcQ1bt68qYoWLaq6desmi+NPnjyRDZbjr776StWsWVMsxtacP39eXbt2Te7D6h0S+v+REO/ChQvKjCAZnU5IxwPhCJj/gB07djj0OATItG+dJO/evXsi8nFLCAlOKOaJIUCUw7qux38BrFjj8c6dOy0r1dbZZvF8qVKlbNzHYMlHJtj79+9b9rF+T30f/T0JIYQQEjoQ68eOHZNF8w0bNsg1e+7cubJQDlasWKEmT55s8xrsrwPLfEhY/x9x82bE1eMBS7ueN8DRsdi1a5fcIiwR3hH4HRBGmChRIkmEh1t4OgwdOlS9fPkyXL4LIcQ/oZgnhnDnzh315s0blSxZMpvn8fjGjRtyP0WKFCpt2rSW/+F5R/vr/wtpH/3/hBBCCAkdWODXrVsnHm9YJIeXG8LYYG3Wr7Pjxo2zeQ1Ko+mgpnxIIO+NzuXLl9/5Pxb09brvnm6+LD/nCP14oKZ8/PjxXToet2/fthHk8H44ceKE3E+cOLH6+uuvVYMGDd4JH0TiQXgllitXTj148CAcvg0hxB+hmCd+y8CBA9WsWbOMbgYhhBASdMCV3pEYTpgwoSXr++HDhy0x4XoZNp3QEstB4OrAfd+M6MfDlSR7zo4Hjq8ezoDjjYR6MHbMnj1b3OtRHQCJ8/T8BMgd1Lx583D4NoQQf4QZNIghYHU5UqRIEpNnDR4nT57c4WvwvKP99f+FtI+z9ySEEELIu8D66wyUcwNIXIc4+bx581oS5rmaUT1atGiW+8+fP3/n/6jBjozzYcFaIBuBfjxcyS7v7Higprz1+yG2Hon19ASCACGImzdvlhwHBw8elCR6f//9t1QJIoSYG4p5Ygi4sGEygLqpyDYPsPKMx+3bt3f4GlykevXqJaVe9JIsiOPDBS1BggSWffAe33zzjeV12AfPE0IIIcQ1QorxhnXekTUeJWGtc+OEhLUruX35OpAqVSrZAhn9eIR2LEI6HtbHFLRs2dJGyFu/BgsgeoI8VAyimCfE/NDNnhgGytIhec7MmTMl4QtqqGIFWnff69Gjh2rcuLFl//r168siAMrOHT16VC5UiOXD++gglmzt2rVq2LBhEmOG0nX//POP0wUCQgghhLyLnl3dEdYl1pD/RgfJ2Vx1nbe2OIdnrXcj0Y+HK2EEzo6H9TEFKNHrjPLly1vK1jmqV08IMR+0zBPDqFOnjiR66d27tySog5sehLieWOf69evq0qVLlv3jxYsntVbbtWsnVn246uO1rVu3tuxTrFgxyfL63XffqZ49e6osWbKopUuXqvfff9+Q70gIIYQEC9ZJ76yT4TnCOumddTI8HZSs0yvVhMXNPkOGDMrI4wF3dwh1JKULKQmefjySJEli43KP+3gO8yVnx8raio+5EeZU+v6EEHNDMU8MBRZzZ1bzGTNmvPNc7ty51R9//BHie9aqVUs2QgghhPiOHDlyWO7rGdidYf1/vdydNQirg+deWEBt961btyojj8fvv/9u+b56kjp7Xr9+rc6ePev0WOTMmdPyPaw9IRyh/1+30BNCzA3d7AkhhBBCSJiBFTxlypRyHxnWQ2L79u1yi7h41E83IyVKlLDcD+l4IBxQd7MvXrz4O/9Hgjudc+fOOX2fR48eSelfEOj5BgghrkExTwghhBBCwgxqu1erVs1iid61a5fD/fC8bpnH/nidI+88ZMsPy2akVR6gtB9CBAG8DNCm0DwRa9So8c7/P/vsM8t9ZKp3Bv6nf0bJkiXD1HZCSGBAMU8IIYQQQrwCqsmg9Kxeq96+7Bwe43ndFdy6+kyg0bRpU1mIwOZo4QBJezt06CD3keh36NCh7+yzc+dONXXqVEtYwAcffOAwxPCjjz6S+/PmzZOqPfYgTh75gvTP1ZMJE0LMDQNqCCGEEEKIV3jvvfdU165d1aBBg8R9HG7j3bt3V5kyZZK48MGDB6v9+/fLvtgPiWqN4LfffrPJMv/nn386vA+SJ0+uKleu7NHn4Dui+s6pU6dUt27d1JkzZ1TdunWllBzqxQ8YMEBi5vF45MiRTt8H/4PwRyI9lJ/DIkiVKlXkdbt371YDBw60JB388ccf6WZPSJAQQXPm80MIIYQQQoIGlHPt16+f3A9peggrdNmyZeU+BCncya15+/atatWqlZo2bZrT90CZ2UmTJtmUufMliNO/ePFimBLpwTKvJ+lzdBx0IOAhvE+fPu3w/3HjxlVz5syx1Ih3BhYZPv/8c3Xz5k2H/4eHABIHQswTQoIDutkTQgghhBCvAYEO1/FVq1ZJTDyS4sH1G7d4vHr1ajVlyhTDhLyvyZw5s3gjwCuhYMGCUqIuZsyYKmvWrKpjx47q0KFDoQp5PaHe0aNHVZ8+fVSePHlkEQDl6JB4EG71e/fupZAnJMigZZ4QQgghhBBCCAkwgmNJlBBCCCGEEEIIMREU84QQQgghhBBCSIBBMU8IIYQQQgghhAQYFPOEEEIIIYQQQkiAQTFPCCGEEEIIIYQEGBTzhBBCCCGEEEJIgBHZ6AYQ4iqooogtQoQIshFC/Iu3b9+qa9euqThx4vAcJYQQQgjxAOidx48fq5QpU6qIEUO2vVPMk4Dh9evXavXq1apKlSoqSpQoRjeHEGIHhHyaNGmMbgYhhBBCSMBz+fJllTp16hD3oZgnhBDiFWCR1y8+cePGNbo5hBBCCCEBx6NHj8Q4os+rQoJinhBCiFfQXesh5CnmCSGEEEI8x5WQRSbAI4QQQgghhBBCAgyKeUIIIYQQQgghJMCgmCeEEEIIIYQQQgIMinlCCCGEEEIIISTAoJgnhBBCCCGEEEICDIp5QgghhBBCCCEkwGBpOkIIIYQQP0fTNPXgwQN1+/ZtqUGcKFEilSJFChU9enSjm0YI8fOx4+HDhzJ24DZhwoQydsSIEcPophEvQDFPwoWnT5+q69evq5s3b6pbt25ZbvX7jx8/Vi9fvlQvXryQzfo+Bp1o0aKpqFGjyq1+f+fOnfLelSpVUrlz51ZJkiRRiRMnlltsGJhSp06tIkakwwkhhJDA5/79+2rVqlVq2bJlat26dXLttAfXv1y5cqm8efOqPHnyyJY9e3a5bhJCghMs+K1evVrGjjVr1oiItwcLghg79HEDY0iOHDlk3k0ChwgalBMhHgABfu7cOXXq1CnZTp8+bbm9du2aIW3C5CVjxowqc+bMKlOmTJZbTGzSpUunIkSIYEi7CAmWyUO8ePFk0hA3blyjm0NIQPL27Vu1efNmNXXqVLVkyRK51loTJ04cOb/u3Lnzzv90okSJokqWLKk+++wzVb16dZUyZUoftZ4QYhSQdNu3b5ex47ffflPPnz+3+X/s2LHlGn3v3r13/qcTOXJkVaxYMVWzZk3Z0qRJ46PWE0/nUxTzxCX+/fdfdeTIEfXPP/+oPXv2yIbHr1+/dvqaWLFiqWTJkqmkSZPKrX4fGzooXAOx+md/C8H96tUrmaTotxh0MDAdPnxYVatWTSz4cBfCZAa32LCAgHY6AyuQBQsWtNlSpUpFgU+Il6CYJyRsIn7x4sWqb9++6ujRo5bnYSmrUaOGqlq1qnil6W71uuvs2bNn1cGDB2U7cOCA3Fpb4XCNq1ChgmrRooVcP+mWT4i5wFiwYsUK1adPHxkDdN577z0ZO3De58uXz2bswPUaBrlDhw5Zxg3cwhvImjJlysjYAWEfM2ZMn3+3YOURxTwJK+g8W7duFevA7t275QSHgLYHFoIsWbLIgKHf6vcTJEjg1TZBqMNlqEqVKmJ1sOfNmzfq8uXL6syZMzK5wa2+nTx50qHQxwJD0aJF1YcffigbLPkU94R4BsU8IZ6xdu1a9e2338qEGuD8adiwoUyiMQl357qEaR2ue3CvxeKAHqIGEJqGz/nyyy8ZL0uICdiyZYvq3r27GNl063u9evVk7ChUqJDbY8f58+fV8uXLZez4888/5TmAOX2XLl1Uhw4d5DNI+EIxT9wGFvBdu3apjRs3qg0bNoiAh5XAGnQqWLM/+OADi2U7bdq0PhO/oYn5kIB1H1Z9eBboGzwLsABgDb6PLuzLly8vEx9CiGtQzBPiHrguYYK8fv16eYzzpmPHjuqbb75R8ePH98pnwPo2Y8YMNX36dHXlyhV5Dm73AwYMUI0bN+YCNiEBCIxUXbt2FYs8gNUcQhvjCTxRvcGlS5csY8eFCxfkOXjX9uvXT7Vp04ZjRzhCMU9cAi7qWLlHTB6s8EhaZw0s7HDNK168uAh4xJ4bmVwuLGLeEXDd379/v3x3LGDs2LHDxnqPQQpxQ7Vq1VKff/65uOQTQpxDMU+Iazx58kT17t1b/fLLL7JwjmsaJuI9e/aUTNPhAcLiZs2aJRNxTNJBo0aN1Pjx4yUsjhDi/zx79kz99NNPasiQIXJOR4oUSX3xxRfq+++/F6EdHsDwNW/ePAkBgucrwLwYsfm81ocPFPPEKcgkv3TpUok/h2uOtWUaGXFhjYZVGiIeVmp/wtti3h4sZiBxiO6dAIuJNSVKlFC1a9eWhEJMJkTIu1DMExI6K1euFDd3hIUBXFMGDx4sC+a+AJ5qw4YNk8UEzAFy5swpi/oIjyOE+C+Yn8IiDm8b8PHHH6uhQ4eqbNmy+WwePmbMGHHrx32MGRg7MIYQA+dTmgkZMGCAVrBgQS127NhakiRJtGrVqmknTpyw2WfixIla6dKltThx4mAxQ7t//75L771lyxYtX758WtSoUbVMmTJp06dPf2efMWPGaOnSpdOiRYumFSpUSPv77781I7l79642duxYrUyZMlrEiBHl++obvstPP/2k7d+/X3vz5o3mz7x69UpbunSp3PqCK1euaL/88otWvHhxm2MWIUIE6TuzZ8/WXrx4oZmBcePGably5ZLzAVuRIkW01atXh/iagwcPaiVKlJB+njp1am3w4MHv7LNw4UIta9asss/777+vrVq1Khy/BTGahw8fyjmCW0KILU+fPtXatGljuZZkyJBBW7NmjWHt2bp1q5Y8eXJpC26PHz9uWFsIIc7BXLNjx46WsQNzriVLlhjWnp07d2pp0qSRtiRMmFA0BDFuPmVKMV+pUiUR2UeOHNEOHDigValSRUubNq325MkTyz4jRozQBg4cKJurYv7cuXNazJgxtU6dOmnHjh3TRo8erUWKFElbu3atZZ/58+eL0J82bZp29OhRrVWrVlr8+PG1mzdvar7k7du32rZt27SGDRuKkLIWox988IEIrzNnzmiBhK/FvDWXL1+WPlO0aFGbY5k4cWKte/fu0jcCmeXLl4vQPnXqlHby5EmtZ8+eWpQoUeQccgQGl2TJkmkNGjSQfebNm6fFiBFDFsl0duzYIefHzz//LOfLd999J+95+PBhH34z4kso5glxzKFDh7Ts2bNbrh2YR0DcG821a9e03LlzS5swpmOsJoT4DzBG5smTxzJ2fPHFF9qjR4+MbpZ2+/ZtMVjqgn7fvn1GN8lUBL2Yt+fWrVtyQCBuHVnaXRXz3bp103LmzGnzXJ06dWTxQAcdu127dpbHsHanTJlSFg189V2HDh0q1lBr0Zk3b15t2LBh2oULF7RAxUgxb83Fixe1H374QUuVKpWNtf6jjz7SVqxYob1+/VozAwkSJNCmTJni1JKP/798+dLyHBY10O90ateurX388cc2rytcuLBYpog5oZgn5F3mzp0ri526BXz9+vWaP4FJuS4WkiZN+o4nIyHEGGB91z2IYTyC4cWfePDggczr0D7MCeGxSXw/nzIum5kP0eutuptUBrUVmzZtanmM8i6IJbemUqVKlrIvyAi/d+9em32QMA6PrUvDhAdI5IZSFEjShkyWyHKJhDatWrWSchX79u1TnTp1UunSpQvXdgQDyCWARCPI7IlYIeQYwMLYmjVr1KeffiqxQ7Nnz5bEJIEIYijnz58vOQRQtg/gPMD5oIP+XKpUKRU1alSbcwH9Tq9RGtr5QgghZgbXgM6dO6v69etLwlVcK1DTGbf+BKq2bNq0SeXNm1fdunVL8tLcvn3b6GYRErQgKSbmmagR//jxY5lvYezAHNOfQEz3unXrVJEiRWTuhxj+a9euGd2soCNiMJwQKPGCjOzvv/++26ItRYoUlsc3btyQuuTW4DGSFOBCjezwEEKO9sFrvQ0E5LZt21TlypVV/vz5RYAhIQVKxk2aNEldv35dbvGY5SO8T+TIkVX16tWlpNCpU6dksQSlhCBokSE4e/bsUtIjUEQ9Ev6hdmi0aNFU27ZtZaEiR44c8j+cB9YJEZ2dC/r/QtonPM4FQgjxNyMCJrbDhw+Xx6jtjgVfJJr1R1DKCpPyDBkySHItXNtevHhhdLMICcpKFzVr1pSM9eDrr7+WxHfWesTfBD2SUyMJH0pffvLJJ/IdiO8wvZhv166d1BOH0HUXlHAZOHCg8scFCtSVxAIFrKW4AMMDAKv/8AyAJR4W+Thx4hjd1KABGT2RHfjixYtSuxcTozNnzqhmzZqprFmzSvkO67J3/gjaeeDAAfX3339LmZMmTZqoY8eOyf9wHuB8IIQQEjIQw/BqwkIvaj8vWrRIxlCUkPJnUNZq1apVsij9119/iUcW5huEEN8AMVyyZEkpGw3DCuZdI0eODJcKTt4kQYIEMnZgsRKewtAj1tWySPhiajHfvn17KQGDEmypU6cO8/slT55cSrtZg8coGRAjRgxxVcPF2tE+eK03LPELFy5UefLkUVWrVhV3Zd2Kevr0aTVnzhyx0BPjQF/o0aOHuOD//PPPMrBhYteyZUux1C9fvlx+R38ELvOZM2dWBQoUkIkn+hlqILtzLuj/C2kfb5wLhBDij/zxxx+qUKFC6vjx4xL29ueff0o95kAB16nFixeL59mCBQvE1ZcQEv7AEIexA0YVLKxBu8DLM1DImDGjzHGjR48uBkd4qxLfYEoxD7EEIQ834c2bN4vbmDfASjviyqxBPXI9rhhiCELIeh+sauOxvo+nYJUc71GnTh3xNIDVHXUeIRrHjx8vJxHxH+Cu3rVrV3X+/Hlxs4R7+dmzZ1W1atUkLAITPX8HfRf1iB2Bvrh9+3YbbwOcC7DuY4XWlfOFEELMxMyZM1X58uXV3bt3ZS6we/dulS9fPhVolC1bVk2ePFnuw9Ns2rRpRjeJEFMD7x3ExSM8FiHBGDsCca6E2Hndi3PUqFGyER+gmRCUbYgXL57UUL1+/bple/bsmWUfPEZdxMmTJ0u2wO3bt8tj1GTXadSokfbtt9++U5qua9euUo8VtdsdlaZDKbgZM2ZIiZfWrVtLabobN2549F1QPu7zzz+3ZE2PFSuW1rdvX5ey75sNf8lm7wkoI9KjRw8pW4jfEf3m66+/9pvfEf0c1R7Onz8vJZTwGBn69azLeIzzwTqDKcoY4TmUpkO/x7lhX5oucuTIUl0B50ufPn1Yms7kMJs9CUZQCrZXr16W6zSu2f5Qdi6soJwovg/G8Y0bNxrdHEJMOXYMGDDAMnagApA/lJ0LKyh/je8TMWJEv8vAHygEfWk665Js1htqz+tAWIS2T+nSpbUmTZq8U8oOZd4gyjJmzGizvw7qz6OuPfZBqbpdu3a5/R2wqNCxY0cRP/oJgZr1qAkbrASymLdenKlWrZpNnfqpU6fKgG4kzZs319KlSyd9NkmSJFr58uVtyifhPMD5YA1KkJQoUUIWr1Cmb9CgQe+878KFC7X33ntP3hdlHVHLnpgXinkSbKD8bNu2bS1jOkQ9njMDuC7Vq1dPvhfKY+3du9foJhFiGnB+denSxTJ2YM5vltLG+G7QLPheKMv5559/Gt0kU8+nIuCPLzwAiGvg54CrHsrZ3Lt3z1LOa8iQISpXrlwqmIFLNzJmomyOvycDCQ24myNDqe5u/9FHH4lbI2IsCQlUUNkDmW2RyRv5IwgxM6hUgiSnKEWKijETJkxQrVu3VmYCGe0RGobKOcgBg5wACKcihHgOksMhQffEiRPl8YgRI6Tyltnm7AgtRRUPzAswhiAXE/H+fMqUMfOByqVLl0SoYnIAIY+4mbVr18oW7ELebKDO8MGDB2WRBkkMMdjh9/7111/9NkEeIYSQ/ybjDRo0ECGPxLdIQGs2IQ+QzApJrZBcF7Xnce26fPmy0c0iJGBBPiIkRYaQxyLglClTTCfkAYxuv/32m1TegiCFYRJVnoj3oZj3kxMbJ7Uu3iHuBg8eLOUd0PmJOcFA16VLF/mdP/jgA/XgwQPVuHFjVaNGjXeywBNCCPGvyTiqy2Ac//3331W9evWUWYFVCHMTWOQh5CHoIewJIe4BY02HDh3UjBkzZBFw7ty5qkWLFsqsoDQnqorBIo95LcaOq1evGt0s00ExbzAoW1ahQgUpL/f48WPJXomyFN26dZPSMMT8oBQQqhX0799fJoaoL5ozZ04p7UECn2PHjsnKO8r9wcJlLQhevXplaNsIIWGbjKN8G1xJzQ5c7BEeliZNGnXy5ElxvYcbKCHE9bHj22+/VWPHjhWLPMaQunXrKrMTP358tW7dOil9jApcFStWlIofxHtQzBt4UiNGGu7zqCWJOvUjR46UeLRs2bIZ3TziY7Bw07NnT6kzihVMDHRVq1ZVffr0EdFHAg9YsLBQh3O8TZs26rvvvlNLly61/B/nP857+/J9hJDAmYzDkypYgJCHoIew37dvn1yjnj9/bnSzCAkIYLD5+eef5T7yazRs2FAFCyjPjLEDeaFg4EBI8ZMnT4xulmmgmDeAp0+fqiZNmkh83bNnz1SZMmXU4cOHJSEaVvqJ82RD2MwMhDzqi3711Vfy+IcffpAJE1zwSeCAnBelS5dWmzdvFi+LL7744p1cCLVr11YRI0a0sdYTQvyXYJ6M68DVHi73ceLEkYRWderUkURXhBDnIMHd999/L/eHDRtmyvwaoZE+fXq1fv16lTBhQpnnVq9eXb18+dLoZpkCZrP3MSdOnFCff/65Onr0qAh3TA66du0qk/pgAhd/JPy7fv26bNeuXbPc17cbN27Iqj/2hYjXLdSwiMAdHdZs5BfAil+KFCksW8qUKW0ep02bViyggcasWbPEootswnBPWrJkieRVIP5P9+7dJbkhciIg/wX6LM7xpk2bqmnTpln2Q1Ip/G/v3r3KDDCbPTHzZLxTp05yf/jw4apjx44qmIGQh6s9rk+NGjUSL4Vgm8cQ4grwwtPFe79+/VTv3r1VMAMhX758ebHM16xZU0KVGFYctvkUxbwPQYdF0hx04OTJk8vjUqVKKbODuOAjR46IYNG3Q4cO2cQLI2OutQDXt1ixYslJjg1x5adOnZIkcRD2EPgQ+0iqYb0IgIUBeD/oYNEkR44cIpwKFCggW968eSUxh78DV0a4cWLhA8cCEyYsBnkbDAMQlcQ7IFQG/RuZW/UJriMxj99yx44d0m/NAMU8MSNjxoyx8ZbSLWzBDhJbwbqGzP7II4BQQV5HCPkPXO8x78ccC4Y7fXE/2IHXIkoyY56ECl5Tp07lcQnLfCr8y94HHydOnNCePn1qefzy5Uvtq6++wqKJbGXKlNGuX7+umZVLly5pkyZN0lq3bq0VKFBAixo1qnzviBEjau+//77WpEkTbdSoUdqGDRu0o0ePavfu3dPevn0rr921a5c2a9YsbcqUKXKLx/pzf/31l7Z06VLt1atXNp+n/x+3Oo8ePdJOnjypbdmyRZs4caLDtuTMmVNr3LixtOX48eOWNvgbt2/f1sqXL2/pP7/88otX3x/H8/Dhw377/QOR6NGja5999pnNcxEiRNCaNWtm81y9evWkT3rCmDFjtHTp0mnRokXTChUqpP39999O9/3999+l/8eLF0+LGTOmlidPHjlnrMHv//3332vJkyeX9qPPnTp1yq02PXz4UPoobgkxA7g+6GPvt99+y3HSjtmzZ1uOD677hJD/MXXqVLnu49xo164dxw47lixZInNxHJ9hw4YZ3Ry/w535FMW8l8HJevDgQW3dunUi6O/fv6+VLl3acrHr2bOn9u+//2pm4s2bN9qePXu03r17a3nz5pXvGSlSJC1Xrlxa06ZNtdGjR4sQt17gcES3bt0sx8nRFiNGjHfEvP1r8NiRwNcf//HHH9q+ffu0yZMna23bttU++OADi8DPnDmz1qlTJ23r1q1+9xuhPe3bt7d8T4gub1wYcCzxfXfu3Cm/I/EO8ePH1ypWrBiqmC9evLiWJEkSt99//vz50m+nTZsmC2KtWrWSz7x586bD/bGotXjxYu3YsWPamTNntJEjR8o5unbtWss+gwYNErGPcwxjWNWqVbUMGTJoz58/d7ldFPPETFDIu8aAAQPkGGFMwlyAkGDHWshj7saxwzHQB7pm2L59u9HN8Sso5v1E0P/6669a9uzZ5ceIEyeOtmLFCs0sPHv2TFu5cqXWpk0bLWXKlPIdISbq168vQgOLGDqOrO324LmQhLy1mMfCQEivadSokc1jWC2tHzds2PCd74LfBtb7FClSyD4JEiTQGjRooC1YsEB78OCB5i/96ocffrB8DyxGvH792itCPizvQ96lSJEiWuLEibUnT544FfPwuIgdO7ZYwN0FfRor/TpYiMF5OHDgQJffI1++fNp3331n6VuwyA8ZMsTyf/R7WP3nzZvn8ntSzBOzAA8ofazt0aMHJ+MhgPEHi384VvAWunPnjtFNIsQwMNfVxw4K+ZDBsYFuwLHCHOTatWtGN8lvoJj3AyDmkyZNKj8EBOKBAwc0M5x0sPDhxIOrLr5bpkyZtI4dO8rzusXcWrx//PHHDgW3bkHXwf6uinndPdiV1zjbIPidTUp2794tlm+4ImPfKFGiaJ988om2bNkyv7DYjxs3zrLiW7t2bQnjcBcK+fBl6NCh8hthgUj3eLAX8/BagYuZu66p+L2xig0XNWsQMoIJtSvn8caNG+UcXr9+vTx39uxZ6U/79++32bdUqVJahw4dnL7Xixcv5EKjb5cvX6aYJwEPhbz7YAEf8wEcsypVqvCYES3YhTzCa3kehA6MHgjBxTGDJzO9RP8HxbzBbNq0SYsbN678CBkzZhQLfWgu5v7MrVu3tJ9//ll777335DtlyZJF69+/v7js2g9UobnKW2/WFnpvWuY9+XxnXLhwQVwtEW+M18D62atXL+38+fOakcBjAIsMaFOlSpXccoWmkA9/8HsgzARiHX0H5wvEPMQxYsNgucf/8ufP/04OiNC4evWq/O76eaDTtWtXsdg7A5b2WLFiaZEjRxaLO9wAdXbs2CHvab8qXqtWLVkwckafPn0cnlsU8yRQQS4K67A4TsbdM2JgbMGxg6ghJJiYPn26ZezAIjjHDtdBjit4KuLYIQyQaBTzRjJnzhyLyMLE/e7duzYx9IEEvAlgScTFGRvcziECMUA5S1Tnjpi2T8DlScw8XObtLe6efn5oSfUQa//ll1/KQg2EWI0aNSzHwwjQpyDO8F1gkXVFFFLI+w4IY8TEQ8Sjv+i3+n0Ib09cyjwV81jtPn36tFjf4TmA+Hh41IRFzNMyT8yazI0Wec9AqA6OH66TFy9eNLo5hPgE5KTRk7lRyHvG+PHjLXN9d5PvmhGKeT9wr8EEWLeW2ifF82fQViTF0pP2pU6dWhJjWcfAORPdzlzq3bGM2y8SWItzezFv3w7ddd7+eWStd8cy7yypnrVL0IQJEyz5EOCOj0mgEeIYYky3hGCxJST3JAp5Y8D5BHc7nB8fffSRuN7DRd7Ti31Y3ex1WrRoYUnS56mbvT2MmSeBCnLA4LziZDxs4NpStGhROY4ffvghjyMJCm9cPZEyrqvs856B41ahQgU5jjCEBPs89SHFvDHuNdaZK+1FVSAIeohblM3DdyhcuLC4cltbe/F/Z261nmz2ItlRexxZ5mGRdOYFYJ+9Xn9sb7Hv3r27S59p/b7274nfFDHHEGjYJ3fu3DIh9PVAjuR9cJ3Wk+I5+nwKeXMBCzzGGR2MN6lSpXIrAR68brBoZ50ADxZ7HVxAmACPBAMYF1GOEX0X3l6M2Qx7eV79eKJyDCFmBQvgunt4zZo1/SKvUiCD0FYkDMfxHD58uBbMPKSY9y2IiXelBIW/CnrUWIfLONqPJBQQh57GwjuzzhcrVswt67ijBHfWCfCcJb9z13U+tM909r3sFyKwwAArJv5XsmTJd1ygwxsILr0Pom3Wvx+FvO/p16+fJEwMjeXLl8u+7oKKERDaM2bMkNwVsPajmsSNGzcsi1copWVdOgoLT7DAY3+IdiwAWU+04YGD90C7Dx06pFWrVo2l6YjpuXTpkpYsWTLLOO9uDgviGOQG0SvDIO8OIWYD19s0adJIPy9XrpyEnZGwM3HiRDmmCCNF6F6w8pBi3nfMnTvXEifzxRdfhGqV9SdBj5MELkFoP8rJzJw506HYcycW3jrUwHpzZtEPTXx7apn3FHe+q721Hr/tqlWrxEKP/0MMoQa4r0BWdL1tgwcPluco5I3BUU15R7Rs2VLOP0/rs6ZNm1bc+2Cpt+77sLg3adLE8hhJGzNnzizWMkyu4QaLBQFr0H9RxQHCBgsFKJmHpDTuQDFPAglcg5GEUvesevz4sdFNMg2wUObNm1eOrStjISGBBIQ7XMHRv5Ec2rocMwkb8IzSDYCff/65Fqw8pJj3DQsXLrQI+VatWrnsmme0oH/06JFYbzGxRy3sESNGhLii6GoJOLiuO9vXmZgPTXxbewSEFjPvzHXeXezf15m3gTNrPfoBvDXSp08v/QMTmevXr2u+ABZXtAViEglZKOT9W8w3b95c4nTNAsU8CRRwHa5Tp470V1wHja5QYkaw8K5fH//880+jm0OI14AhDP0aiWQRVkK8CzSSnsMEeYeCkYduzKci4I8ibrNixQpVo0YN9ebNG9WsWTM1ZcoUFTFiRJdfj8N++PBhdePGDVWiRAkVM2ZM5Qs2b96smjdvrm7fvq06d+6sunTpoo4fP65OnTqlXr16paJGjaree+89VbhwYctr/v77b1WkSJF33qtPnz4qTZo0Nq9xtu+uXbtUhw4d1O7duy3PYX88Hxp4T7Qvc+bM6tatW6pKlSoqSpQoNv+zb3NYsX5f4Og7OUL/Pnht+vTp1YEDB9QPP/wg/WT06NGqfv36KkKECCo8+fLLL9X48eOlT6Ff1q5dW0WKFClcP5PYgrGgadOmatq0aSHuV7FiRTknHjx4oMzAo0ePVLx48dTDhw9V3LhxjW4OIU6ZNGmSatOmjYocObLatGmTKlWqlNFNMiWtWrWS61CuXLnUvn375HgTEsjMmzdP5nK4zq9evVpVqlTJ6CaZkk6dOqkRI0bI3B96KXr06CqYeOTOfMoXqwtm459//tFixoxpSZbjqdXTlxZ6uA8iDABtRpI7xM6GFAtvHxPuaD9nCewcWbadud+74xYPi7x9aTpf4Oi7u2qtx2OsKtatW1ceV69ePdyt9OhLyLCPz4Nr9b1798L188j/QJiKvsEyj9wJ1s9Zb6jx3qlTJ4lbx35mgZZ5Egig7JF+DbdO+ki8DyrhJEqUSI71qFGjjG4OIWHOsQFrvO5xSsIPzCNSpkwpx7p///5asPGQbvbheyKnSJFCDjDKOoVVWPpC0KNsBly+MXkZM2aMuIG7kpneWmi7G6OO510pVRdSzLw/iHln37tnz54uhR5YL3z8/vvvWtKkSbWECRNqc+bMCZes93qM/OrVqyUPgl4eiBlWwx/7OvL6fWcb9oEbmSuJ8gIFinni72AsRLUW9NOyZcsyc70P60fj2sfFZRKoYKzAmIG+jDw1TJYZ/qDsM443Kgb4Klw1EOdTrvuFE/X48WP1ySefqOvXr6ucOXOqhQsXWty9PQUu13A/S548ufrzzz/Vs2fPvNbeJ0+eqHbt2qny5curdOnSiZtKwYIFVdWqVcVtvF+/fiG+Hq7iju4728eeVatWhdpG3Y3dX3H2/QYMGPDOcx9//LHT9/n555/VoUOH1KxZs9SHH36oGjRooGrWrKlu3rzptbb++++/6q+//lLRokUT9+1ly5aJq/2GDRtUt27dvPY5xDGNGze2bCBTpkw2z1lvLVu2lPNv//79cj4SQnxD//79JYwK7oszZ850KzyOeAbGO8yZ7t27p3766Sejm0OIR4wcOVJt2bJF5lWzZ88O8/yfhE69evXUBx98IHqmd+/eRjfHf/HJ8oJJVvOrVKkiqyTI9oxaiN7E2xZ6JD1DWSlY45H1GiuKrpaX84Zl3pWkee4mrPMny7z9hjACZ6EE9htCM3777TctSZIkYqlAorqw4ixrPT5H/9yVK1eG+XOIdxPgmQ1a5ok/g+oiUaJEkT4K7yjiOxBuhuOO448wB0ICCYSmIgkz+jBKpxHfgeSZOO7waIROChYe0s3e+6B+PA4qTua///47XD7DW4J++vTpUq4KpR3OnDnjdsk1bHBDtMed7PHOPg+CN7Ra74EQM2+/uRJSYL2hDjhq79asWVMe9+3b12N3z9DKz3Xs2FE+Ay7+N2/e9MIRIaGBxT7EigYbFPPEX8H4WqJECemfn376abiEOZGQqVy5siV3DCGBAsYKve/CzZ5jh++pVauWHP8KFSoEzfF/SDHvXbAKp4swWDrDk7AIengP6MINpfJevnzpdnm50Kzu1nXVQ8PbpeOMEvPW39vdWPnQji9+byT2wOPPPvtMe/LkiVvtcqWO/PPnz7X3339fPqNq1apBMxAS30MxT/wV3XMK3mre9qwjrntG6OWmcM0iJBBYsGCB9FkYyViGzjjPCBx//A4bN27UgoGHFPPe49ChQ1KPHQd0wIABPvlMTwQ9ksogIR8ulEhypws2XYSG5AJevHjxMCenc4Y74t+fxXxIFnpnVnnUIYUFwtlxb9OmjeW44HshwQey0Ls60XRFyOugP+kD4aRJk7xyPIhrYIHmwIED2vbt27Vt27Y53MwCxTzxR+CRlCBBAumbzF5vLE2bNpXfoVKlSkY3hZBQuX//vpY8eXKLByUx3kMamiUYjFIPKea9NwnPli2bHEzEy/sy6607gh4rhe+9957EXyNzvTPxieyb7liOsQDgTxhtmQ9rrLyzTS/xd/jwYclzgFh6CD9vCXkdTGJ1yxRjFn2zkvzJJ59I+bmQstpjAc4sUMwTf6R58+bSL7FYysoexoLQP906/9dffxndHEJCpEOHDtJXMcd+8eKF0c0Jaq5evapFixZNfo/169drZuchxbx3V5BR5/D27ds+/3xXBD1KkKHmZY4cOWzi452VnYPwDK0knSOhGexi3lmYgrux8iG53APEWSMmC0mCnFnQPRHy9mVVihQpwpJM4ci1a9ckRwES4aVKlUqSZuI+8lhgsUYvXYcV5jJlymhmgWKe+Bv79++X843i0f8WV1A2lRB/BYYyLMajr27YsMHo5hCrxZWiRYua3jr/kKXpwg7KTsyYMUPK1sydO1clTpzY520IrWzd9OnTpVReqVKl1M6dOy2lsEIqO7dnzx6nn9eiRQuHJdVQxifYefXqlcvl9xwdR9CnTx9VvXr1EEvgJUqUSK1bt061bt1atu+++w4Lbg7Lz6FcR6RIkVz+DujLKMUUJ04ctWvXLuk/JHwYNGiQun37turZs6e6cuWK+uijj+R83rFjh7p165Zas2aNlIuMESOGlA4khHgfjJ2dO3eW27p166qiRYsa3SSilFzXIkeOLGMfxkRC/BGU9H39+rXMsytUqGB0c4hS6ttvv1XRo0cXzbN+/Xqjm+M/+GR5IcA4efKkFitWLL+JkXFkoR83bpwl7hoWVlh2YfULi3XYmcXeG7Hz3sDfstk7s8o7O47IYB+aZd6RW3ynTp2kD3hqkXf2vokTJ9bu3r0bxqNDHJE1a1YtderUlt8JXj6wxNuv+iOPwaBBgzSzQMs88SeWL18u/RGumefPnze6OcSKli1b0jpP/BaErKJ/IiTk+PHjRjeHWPHNN98EhXX+Id3sPQeCKV++fHIA4f4aFtEUXoIek3+07+uvv5bnQxKJrm7INO8sLhzi1BsJ7MKKP9WZR7iCs//hefsFgJB+o5Cy/COZIfZp27attnnz5jALeYDjh7AMvO+XX34ZpvcijkEJS8TLW7uVQszbx+uWL19ey507t2YWKOaJv4BxDnGu6I/ffvut0c0hdmBxRY+d37dvn9HNIcQC5lh58+aVvomka8S/uH79uiWh8x9//KGZFYr5MKALZSSTQ7IFfwLCHVZaa2ttw4YNQxXqzjKqQ6TbZ5oPqaa60fHzRoh5Z7HyurdCSOX3rDP5O3sf/AahMX78eIn5xO/oreRNWBjA50NgciLlfeLGjavVqVPH8virr76SY42LkDX16tWTKgZmgWKe+Au69xpyV7A/+id169aV36h+/fpGN4UQC/p8DfmojMiXRUIH5bf1cstmhWLeQ06fPm0pQzdz5kzN39CttCh5tnbtWu3PP/8MVcjDIhySddkRISXQM9JCb4SYd5ap3vo4hFZ+z9Pjqb/vypUrtV69etl4Y3hzIgVXJSbD8y6ogoGwF53hw4eLmF+xYoXNfrDKQ2yYBYp54g8gHC1FihTSF0ePHm10c4gT9u7da3FldrUkKyHhycuXL6WqEPrlwIEDjW4OcQLCFPXEpsdNGgZBMe8BEEhwecWBq1Chgt/FYUyePNlikYfwgsv9r7/+KkIgJCEfmsXdmbU9NIt0MIh5Z8csJLd4V98jtPfB65C3YciQISLksS8s9LrLqDf655UrV8QqjPecN29emN+P/EeDBg2krrXuSYHzFReenDlzakeOHNEePXqk9e/fX54zU8woxTzxB37++Wfph+nTp5fJOfFf9HkX4mAJ8RePHtSWR3lq4r9Uq1ZNfquWLVtqZoRi3gNmzJghBw2Web3Em7/w22+/yaQf8c26iEPsNNxMUL7MXtCj3JUji68rVmYdd635ZhPz3vj+nuYgwP+shbxeGgXPjxgxQu4PHjzYK9/zhx9+kPdDwjbWX/YeWGjDOWttia9Ro4alJJ11jXl42JgFinliNA8ePJAwOfRDXNeJfwMvQ/xWuObdu3fP6OaQIIYePYHFjh075LeKGjWqlAM2GyxN5yYoFdWpUye537dvXynx5i/s379fNWrUSNWuXVuNHj1ayluB06dPq8mTJ0upuZ9++kklTZpUns+SJYsaNmyYKly48DvvFTVq1BDLolmD16Mshz0tW7ZU3bt3V2bH0TEJ6Rjag3J+zkq/oX85+n3wml9//VXKbaAfPnjwQA0ePFhKo+ht+uabb9T3338v5TlWrFihwsrXX3+tEiZMqE6ePKnmzZsX5vcj/wNlsC5fvqzKlCljU+6yffv2cq6iLBPKTi5atEgVL17c0LYSYiaGDx+u7t27p7Jnz64aNmxodHNIKFSsWFHlzp1bPX36VE2cONHo5pAgZuzYser69etSNrZVq1ZGN4eEQrFixWR79eqV/HZBjU+WFwLAJRaHIk+ePD4vexYSN27c0NKkSaMVKFDAUpJOj6O2trI7stA7cp8PKfu6M9yx5geDZd6V7x2Sa72z99Bf48gib2/RR5gFrLxwkYfLtreSPmbKlInWeRImaJknRoJSm3roEDzaSGAwffp0S1iEv1QQIsHF48ePtUSJEkk/RH8kgQHGeaWUlixZMtOFVNHN3g1Q1gAHCy6vu3fv1vwFdEq4y6ODXr582aFILFSoUIiCPiTR6Gr8tz/FzvtSzDsS5K7EyjtbBAjpPfTXhCTkrTe0DReeXLlyaRkzZtTu3LkTpu+K90qSJIm899SpU8P0XiS4oZgnRtKvXz/Lwry/5b0hznn27JkWP358+e1WrVpldHNIEDJs2DDpf5kzZ6ZRI4CAHkjx/6ERCxYs0MwE3exdBIsZXbt2lfstWrRQH3zwgfKXdrVr105c6JcsWaJSp04tLtg///yzzX67d+9WU6ZMUW3atHHocg83b7zOGrht79q1S82aNUtuBw0aFGJb3nvvPYfPw63FrDg61qBGjRoeu+fjN3J2vPGaWLFiveNa36dPH9nsQduOHj2qli9frh49eiQhGP/++6/ylNixY4vbPvjxxx9N/dsSQswJ3LRHjRol9zGe6SFpxP+JESOGatq0qdyfMGGC0c0hQcbLly8lPBUgjBRhcCQwiBIlioT/BvvYEdRifvHixSKwYsaMqfr166f8BcR+QKRPmjRJFS1aNNQY7mbNmsl9e0GP+LMiRYq8E+OOeG3E4TuK27YnGGPnnR1rZ8+7sviB38jZ8c6cObPDGPmPPvrIaf4GtCV9+vTqt99+U9u3b1edO3dWYaFt27YqefLk6sKFC2rOnDlhei/yP/A7Ig8BzpUqVaqocuXKOdzKly9vdFMJCXhw/bt7966MmZ9//rnRzSEeXIPAqlWr1KVLl4xuDgkikM/m2rVrKmXKlDI3JoFFq1atVMSIEdWWLVvUiRMnVFCiBbFrBtxpcAh69+6t+QsbN26UDNcoQecsRt5R/LW1W7irLvfu4A+x875ysw9LvLy7oQz4Llu3btWmTZtm41qvvyakrPp6bfsJEybIc/jNwwIy5NNF1TvcunVLy5s3r4TvIIN9SBv2MQt0sydGhaWlTp1a+t7EiRONbg7xkLJly8pv+N133xndFBIkIEdDlixZpN/B1Z4EJlWrVjVdiUvGzLvAmDFj5CBB8KLms78kvEucOLFWqVIlidkJKUbekUiEsGvTpo1DQY/nwyK8/SF23siYeXdqy1svwoR0zHUhjzKDuKA4e419WwoXLvxODD3KFkaJEkXqmYcleVSMGDHkPdEu4jlNmzYVoY5JwvDhw6VEHY6ps80sUMwTI0CuD/Q7xE6+ePHC6OYQD0HMq17j25+SERPzsnDhQulzKGeJ/EEkMFm9erX8jsi9gRwcZoBiPhRwYPSEX+PGjdP8AVhCa9asKe2CVc8Vi6wjrF/napZ7X1irA03MuyrIPcVeyLvaFmceEtu3b9fef/99LV++fGE6PvpiELLlE8/BohwmpFggCSYo5okR187s2bNLv0MCURLYHhZI+ovfctGiRUY3hwTB2PHBBx9YqgWRwOXNmzdSDcNM1QiYAC8Uhg4dqm7fvi3xzXriBKNZsGCBxPCPGzdOJUmSRK1Zs8bhfqhd7WqMu6OkeEieZp8UzxUcxc4jZt6VuPtAxZ3cAu6AZHV//fWXihYtmiRdjBQpksuvdfb7b9q0Sc2YMUMdOnRIDRw40OO2dejQQW6XLVsm8fPEM54/fy714xMmTGh0UwgxNRs3blTHjx+XRJ6tW7c2ujkkDCAHEJIRB3syK+IbMBfGHBlzMSSdJoFLxIgRJdF00I4dWpDx4MEDLW7cuH5Vhxbu9ahvWbt2bZfqlLtiZQ8vl/vwtFb7m2U+PHDXIu9uf0CsIWLvDxw44HEbP/zwQ3m/zp07e/wewQ7i5atUqaIFG7TME1/z6aefSp9r37690U0hXuDChQsSooTf9OTJk0Y3h5iY+vXrSz9DWBwJfG7evCnhpvhN9+3bpwU6dLMPgUGDBsnByZEjh7hl+IObD1yaQ3Ovd7aFJKrDy+XeKAJdzHsi5N3tD3/88YfUn4eY9PQ4rVy50hJ79Pz5c4/eI9gZPXq0FjNmTO3y5ctGN8WnUMwTX3L27FmL8Dtx4oTRzSFe4uOPP5bfVE8ETIi3uXbtmkX47d271+jmEC9Rt25d+U1bt26tBTp0sw+hluSIESMsLuJwyzCa+fPnSy358ePHi3u9sxJjpUqVcrtcWni53BPfudY7+32rV6/u8Pnz58+Lu/3hw4fVgAEDPGorSuKlSZNGSuWtXLnSo/cIdtq3b68++eQTKT23bt069fbtW6ObRIjpQBlXGCUqVaqksmbNanRziJf44osv5BbXMoQsEeJtULoZ8zKEw+XPn9/o5hAvjx1z5sxRjx49UsGC8WrWh8ycOVPdvHlThEq9evWMbo66ceOGTPrr1KmjPvvsM4nP3rFjh8N9UUvcnbrmOqhbvmvXLoklcSTop0+fTkEfzoQlRt7Z7wuh6Gx/XJh69uwpv/OBAwfcbi8WuRo0aCD3f/31V7dfT/6bLMSIEUNqzOM2ffr0KmPGjO9sqItNCHGPJ0+eqKlTp8r9r776yujmEC9SuXJllS5dOnXv3j21aNEio5tDTMarV68scdUcO8xFyZIlVY4cOdTTp0/V7NmzVdCgBQlwa86UKZO4LIwcOVLzBxAjD/f627dvu+1Oja1Ro0Yuf5YZXO4D0c3eE9d6V8vkhVQ+D1mB4W6P7PaehJMcPXpU3hPx9+ifxD0uXbqkpUuXjnXmCQknJkyYIH0N13V/CJkj3qV///7y+xYpUsTophCTMWfOHOlbKVOmDKj5JHGNUaNGye+LCk8IZQ5UGDMfSi3JJ0+eGN0c7e+//7YpoYCyGO6KeXdFuLX4cyTojUhqZ2Yx7w0hH1riQfvnrR/v2LFDftfZs2d79Jn58+eX148ZMyZMbQ9G6tWrJ0K9ZMmS2pIlS7QjR45IYidnmyfgd8GCQbRo0bRChQrJmOIMnOslSpSQPAjYypcv/87+TZo0eWd8qVSpklttopgnvqJgwYLS14YNG2Z0U0g4cP36dVlMxm8cloSuhNhTtmxZ6Vf9+vUzuikkHLh//77kLMJv/Oeff2qBCsW8HViZ0YWJP9SSRHswmOTMmVNEnqvZyj1JgudOlnuIQH8mkMS8N4W8q9j3IzyuWrWqliFDBrHUu8vw4cPlfQoXLhwu7TUz8LhBzdMXL16Ey/vPnz9fixo1qjZt2jTxosC5DJGObK7OsvaOHTtW279/v3b8+HHJ3hsvXjztypUrNmK+cuXKMonWt3v37rnVLop54gsOHjwo/QwJrJA4lpgTeC/id8achRBvJc1En8Ji+8WLF41uDgknWrRoIb9zgwYNtECFYt4OZKrEAYkePbpfuAyvW7dO2rNs2bIQ3evhJu2KmMcChTvl4py53NMyH3hCXrfET5kyxWHfmDt3rrhxI7u6u0DM4bV4nzNnzoRL+81K7NixLaUmwwNY4tu1a2d5DDdjuAwOHDjQpdejX8aJE0ebOXOmjZivVq2aW+3AYgUuNPqG7P0U8yS8+eabb6SfffbZZ0Y3hYQjW7Zskd85VqxYHFOIV/j++++lT1WsWNHoppBwZM+ePfI7w+gRqAu+zGbvIOMtqF27tkqcOLGhbUFW62+//VYVK1ZMffrpp2rNmjVO90VGclfo16+faty4sSpSpIhk6Q8NR1nuR40apXLlyuXGNyHeTnbnLvit8Zvjt2/ZsqXDfV6/fi3///HHHyVhlDskT55clS1bVu6vWLHCK20OFpCABcmbwit5z969e1WFChVskhbi8c6dO116j2fPnklfTZgwoc3zW7duleSYyAyOrLB3794N8X0GDhyo4sWLZ9mQXJSQ8AT9X09s1Lx5c6ObQ8KR0qVLq+zZswdfMisSLrx580YqJACOHeamYMGCsuF6MW3aNGV2TC/mUdYE5d9Aq1atjG6OWrhwodq/f78aNGiQiHoIcVfo06ePZKXXRbgzXC03p2e5nzVrlgxquGD++eefMskn/i/k8Rvjtw4NZLfv27evlJkbPny425/z8ccfyy1L1LkHMuRu27ZNHTlyxOvvfefOHZmUJEuWzOZ5PEaFDFcXglKmTGmzIIAM0hgPNm3aJOMD2o8yhfgsZ/To0UM9fPjQsl2+fDkM34yQ0MFYhHMA/bdixYpGN4eEIxEiRFBt27aV+yjfC29SQjwF1zZcoxIkSKCqVatmdHOIj8rUTZw40fTlgU0v5iHkIVAhVlFP0kiwQvTdd9+JQIoaNapLYsy+5njNmjUtIhwC39l+rgALPcrhwboLqzwssRT0/i/kXf2N8dtiPwi8du3aqSFDhqjbt2+79Tl6CTyURgymmp1hpWHDhqpLly5SZx4XkkuXLil/AQuJGBeXLFmiokePbnm+bt26qmrVqjIWVK9eXUQTvHZgrXcG+nvcuHFtNkLCE93K0qRJExU5cmSjm0PCGXiWxYwZUxZGnZXuJcSdsQOld62vfcSc1K1bV8WPH1+dP39erVu3TpkZ04v50aNHW6zyWOU1kilTpqhz586Ja6ozMQbX+9Bc6RcvXixCDVYzT2rPOwLHhoI+MIR8SL8x+hgWetA/UCNe7zNoI1yx+/fv79bnZMmSRTa8fsOGDV5qvflBH4B1G27qX375pcqQIYM852hzV5AgVAivu3nzps3zeIzzNySGDh0qYn79+vUqd+7cIe6bMWNG+awzZ8641T5Cwotr165ZQtOaNWtmdHOID8BkvF69ehbrPCGegLA3LGADutgHBzFjxpRF32AYO0wt5uFOA5d2WMEhbowEYmjAgAGyIgjR7EyMuRKbDIv+1KlTZUHA/nvBfRYWd0+goA8MIW+f98D6t2/RooX0LQh5a8aMGSOrlBjQ7EWgq9b5VatWeaHlwcH/Jxd1aXPX/QvjWYECBcRlUAfvgcdFixYNcdxA7oS1a9dKLFloXLlyRRYjUqRI4Vb7CAkv4FGCvg4vOywykuByl/3tt9/c9i4jBPz+++/iHYtF7Hz58hndHOIj2v5/mA7mr/7kIeltTC3mJ02aJLdwTTc68R0GkqtXr1oEmCMx5o6lHgnPYHWFaINLL6yxcL+H1S0sUND7v5B3lPfA+rd35vWRN29eaSPcvj2Jm8dgaPa4I2+B4+TO5i6dOnWS5JUzZ85Ux48fl8kukkTp1kqMDYhnt+4r33//vbgZpk+fXkIvsOlJEXHbtWtX6UcXLlyQhQHEFGbOnFlVqlTJi0eGEM9ZsGCB3NavX9/ophAfgsVLXGODJZkV8T567iyOHcFFtmzZJJEz5lm6JjQlmklBLXfUXcZX3Lhxo9HN0YoUKSK15Z2VFkN5ubDUmsfrvVlaDscPtXxRRu/p06eaP+BPpemMqCPvKs7KHeJ51OtNnjy5W3XnsW/MmDHlPVDTnPgHKDeYNm1aKb2CUnXW53/p0qWl1JxOunTpnI4b4NmzZ1KqJ0mSJFK7G/ujbOWNGzfcahPrzJPwrg+Ncpnu9ksS+EybNk1+/wwZMkgpTkI8KbN77tw5o5tDfMzChQvlt0+WLJlbc1+jYZ15TZMTFgcB9dONFlt///23pa68tYC3nnyHVG/ena1bt26mFfT+Iub9WcjroB9Y94uPP/5Y+hjEOB7/+uuvbr0fFqLwuokTJ4Zbm0ngQzFPwouBAwdK3ypfvrzRTSEGgDmIbqBZvXq10c0hAbbwjX6DRW8SfLx69UqMWOgDCxYs0AIF1plXSi1atEhua9So4XP3Z0d17pEAC+7K1rXBrevCu+p2j5hob5SmcwW63Pufa727LvjWLvLob3DLRjkn9El30CtBMJswIcRIN1nk/iDBmcyqadOmQZHMioRPeA7HjuAkSpQoEpps5rEjAhS9Mhn4SkjahERfyNr84YcfGtYW1PdGPdzevXtL3AYElaMM5EhqpSfFQ8wzYsP0zmcNBBqy2YdU1k7PZu7N43n48GGJsS1RooRcVI0S0qtXr1ZVqlSRk9OIzw8EIa+DRR1H/Q3VFBBPjd/0/fffd+m9kDQN1ROQ4fzs2bPh0NrABscFi18bN26UhTs8dhW8zizHFOUL48WLJzXnWaaOeIsTJ05IeVlUfsB1PWHChEY3iRjAyZMnJQYWlVlQbipt2rRGN4kEQCJsvZ/gfurUqY1uEjGAy5cvS74gxM4fO3ZMridmmk+Z0jKPiz22BAkSqDJlyhjaljlz5ogwx4qys8RkejI767JzsMA7ylYOC75udXVWZ96T0nQhQQt94Al54Ky/JUuWTCVNmlQSqLkKsqSjH6C0IhZ1iC1IGocN/cT6sasbISR0yxq8iijkg5esWbOqcuXKyYR83LhxRjeHBJCXbsmSJSnkg5g0adJYKjOhupPZcK/AcYCwcuVKuUU2ZiMsuNYWbQgmZKSHEHZFZMPijv1gqUcWfmwQZXjOuuQc7mN7/vy5jZU+LKXpXBH0AILeSAu9rwlEIQ+c9bccOXLI4hL6JhaGokePHup7YXUQv/+hQ4fE1f6zzz4LhxYHLrASgVSpUtk8JoSE/Tqqi/k6deoY3RxiMF9//bXavHmzmjBhgurVq5eKEyeO0U0ifgzHDmI9dixfvlxNnz5d9evXz/AqZ15FMxlI2pYlSxZJGrBy5UpD23LgwAGbdiABGRKReTuhnaOEeuGFkUnxjEiAFwjJ7txJhNe9e3d5/tSpU/IYWT5dpW3btvKarl27hmOLSSDDBHjE2xw7dkz6FKo2PHjwwOjmEINBJvts2bJJnxg2bJjRzSF+zKVLl6SfRIgQQTLak+Dm7du3Wv78+aVP9OvXT/N3gjoBHizVp0+fltXaChUqGNoWrAAhzgEx+3riOyQiA0hMhlj50HAloR0s8XDNDw+LfDC73AeqRd6VWvRZsmRRuXPnlj7qKqhTDxBrT0Jm+/btTsMcrMFYhX0JIY5ZunSp3JYvX148hEhwg3j5zp07y/2RI0daQpsIcTZ2IIEv5qwkuIkQIYLq2rWrxdUeetEsmE7MnzlzxnLhhwgzEgilypUrq/3797+TsA6iHsnHXElU54oo8CXBIOjNIORDW+ypWrWq9MPXr1+79D56mAXFfOggVwcWUkID4wISYxJCHLNkyRK5rV69utFNIX5Cw4YNJfcLklrpbtSEOBPzHDuIzueffy6J8G7fvi3VncyC6cQ8xCUoXbq0oe24du2a+ueff0QwORPjP/74o/r1118tjyH8fZHQzhuYWdCbSciHBPrm/fv3XS43p2e+v3r1qryOhIwJC4UQ4lOuXLmi9uzZI9cbjFeEAOR56dChg9wfMmQIx1ryDvfu3VPbtm2T+xTzRAcVUTp27Cj3hw0bpt68eaPMgOnE/O+//y63RmexRxI+iECU80I2e0foLvfW5b/sCa+Edt7AjII+WIQ8KFCggPx2K1ascGl/hIykS5dO7tM67x2wKOJKAkJCghE9DAjVNOgmS6z54osvVKxYsSQpq6O5EwluMAeHUMMcNVOmTEY3h/gRzZs3l2pn8ORGBTEzYCoxj9XZnTt3yo+EeGCjJyHI+I4yOshM7ymIbYb1PrS4eaMwk6APJiGvxx6i0sKyZctctmzQ1d45ly5dsmzgyZMnNs9Zbyjxh0WU9evXc6JBiBPoJkucgXle27Zt5f4PP/xA6zyxgWMHcUbs2LEtnj0//fSTlLoMdEwl5u/cuSMJDVBPEkLFKJ4+fao2btxocQsMi5u8dQ16WOn9ETMI+mAT8jroo1idPHnypEv7U8w7B3FYGTJkkE33EtIf229YpMMkA4If8Z+EkHe9VrZs2SL3OSEnjujSpYt4NiG566ZNm4xuDvETMAfVvTVq1KhhdHOIn5apixMnjnj2uJMI2l8xlZg/ePCgX7jYQ8i/fPlSrJ7AkRsHEpIho707uJLZ3igCWdAHq5DXE0XGiBHDZVd7iFDAOurvkjZtWsuG8yFmzJg2z1lvmTNnlnEKGVX17KqEkP9YvXq1JOfMmTOnZdwhxBrMN1q3bm3JQUQI2LBhgxj2cK3Vq/AQYu/Z89VXX1nGjkD37DGVmF+3bp1fJL9DrE7WrFllAgLxbZ/JHsB13r5MnSvi3t8y2we6oA9mIQ8g5FE60VUxD+szuHDhQji3LPDAMcEiBzZcGGrVqmV5bL/BEwKWpC+//FLOG0KILXSTJa7QrVs3CWVEiU894RkJbqzHDl5fiTOQCA95N/bt2yeLx4GMqcQ8RBl+mDx58hjaDsTt694BrohviHq407tSg94fM9sHqqAPdiGvg8UvVF5wpUSdLuYR9x3oK5nhyfTp01WLFi2MbgYhAQmSxuqL88xiT0IiVapUlrEWsfMkuEH8sy7MOHaQkEicOLEYVMyQdyOimU7gAwcOSPksI0UZ4uWPHz8umcI9Fd96DXqsOAdKZvtAE/QU8v+BvgqXNPTb0EidOrXko3jx4oW6efOmT9oXiDRp0kQVL17c6GYQEpDguvH48WOpJV6wYEGjm0P8HMyNokSJojZv3szY+SAHholbt25JPDTyZxESEp07dxYP1d27d7vsoeqPmEbM3759W0SjnqDLyLh9LCzoYh64GxuvW/QHDx4siV1mzZolt4MGDVKBgj8Legp5W/Llyye3e/fuDXVfTJhgCQF0tXfOgwcPJLEKknhZgwWQZs2ayTFHYh7sQwh5N1QNoLSrkclsSWCAkql6ZvsePXoEtIWNeGfsqFixYpgqSZHgIFmyZOqbb76R+z179gzYuvOmuUrq7uywaBsJBBEGELQDq8XIQm/tPg9RjuR3oaFb9GGJx/6BYJEPBEFPIe+4fjz6myti3trVnknwnDNw4EAR7NbHCH0P5SqxOIdFP5QELFu2rLp27ZqhbSXE37C+ZhLiCr169ZIwyz179pimdjTxfOz45JNPjG4KCRC6desmCfGOHj2qZs+erQIR04l5oy3zSKSANuzfv/+dxHcYZMaOHSvJ73RQlspe3AeKO32gCXoKeefAkwR91xV0y/yNGzfCuVWBC0pqwVqUP39+y3OLFi1SZ8+eVUWLFpUEPYjzhOV+3LhxhraVEH8CpTJxPY8cObJY1whx1cLWqVMni7B3JQcMMRfXr1+3zGPg1UOIK8SPH199++23cr93795SjSzQMI2Y1+N9/cEyD2HkLPGdtZAHWAWyF/eB5E4fKIKeQj5k0GeRc8IVF6MkSZLI7Z07d3zQssDk8uXL75TTgvsfzoVp06ZJYp7JkyeL4NctCYSQ/yxrpUqVEq8hQtypO58oUSKpFjJjxgyjm0N8jJ74DnM8LO4Q4iooU5cyZUpJ7jx+/HgVaJhGzMNVNWnSpLIZBZKIHTt2TIQRsvF6AsS9v9aSD1RBTyEfOuiz+E1OnDjhUgZQQDHvnHv37lkWPayrXGTMmNEmKSYs9xD+hJD/QRd74ilY/IFVHnz//feSRJEEDxw7iKcgCV7fvn0tdecxhwskIprJvSZnzpyGtgFxsLBsQhiFJfGGP9eSDzRBTyHvHCwawSsEt+4kwaOYDx30NyTB00FIwsWLFyVm3v4CgkVAQogS8bV161a5zwk58QSUmsqUKZOMuchdQoIDuEavX79e7nPsIJ6A5MTw7oaQ14V9oGAqyzwGcCM5cuSICFZ0BmeWeSTECw1/ryUfKIKeQt45enLGxo0by+2AAQNUhgwZpA+HBsW8cukc3rFjh6V/IyET+r69mNc9igghSm3cuFHGbVzLzXwdJOEHrvfDhw+X+8OGDVPnzp0zuknEB2zfvl1KQ2NuaZ2rhhBXQZ6WkSNHyn3kMkJCvEDBVJb5FClSGNoGfWKOi4kz11lksw+W5HdGCnoKeefAEm+fnBGP48WL51JmdYr50KlTp456+PChKl26tOrYsaMkV0FfRKy8DhI0IVmPfWw9IcGKdSZqXCcI8YRPP/1UVahQQYwqXbt2Nbo5xIdjR5UqVVjOknhM+fLlVfXq1cXLGgk1A6XMpSl6/IsXL8Q9D8kLAmlBIRiS3xkh6CnkPQvjQGgI+nBoJEyYUG4DLabIl3z99deqXLlyErbwyy+/iCv9kCFDbOLoN2zYoB49eqRKlixpaFsJ8QcwadITWNFNloR1fjFixAgRdfCK2rx5s9FNIuEM4+WJtxg6dKjMhxG2sWLFChUImELM3759W26Ntsxbi3lPymKYNfmdLwU9hXzoOHNfhZu9K2I+ZsyYcstYb+fgQgCxvm3bNrVw4ULJrtyuXTubfaJHjy4TTiziERLsoJwrxh/UCkcme0LCAsIdv/jiC7mPWxh9iHkNFChpGSVKFPXhhx8a3RwS4GTKlEk8KvUs90+ePFH+jinEvO4abLSYRzt07wC4ynfr1s3t9zBr8jtfCHoKeddw1DcR3oE4M1fc7JG0DVDMh963YXX//PPPJYu9PWXLlhULPhZRCAl2ULoRYDKOMZyQsPLTTz/J3ALzqmDxegzmsQNhbXHixDG6OcQEfP/991I6GKXq+vTpo/wdU4h5ZIkG/uZmX7NmTekE2BArbx8f74hgTPrjDUFPIe8egwcPlj45a9YsucVEB30Xcd6hiXRdzCMe0ZW69ESJ1QCl6YJtsY4QV6GbLPE28ePHV6NGjZL7yGzvSulVEnhw7CDeBh5ier15JMVDfiN/xhRiHtZECMJkyZIZ1oa3b99KKRRdzOvZwvv16ydbhw4d3omPd2QdNXvyu/AQ9BTynoG+hgUmvc/pfTc0V3tdzAO6LjoHCx26ZShr1qySyd7aOjRnzhxVrFixgMqYSkh4cOvWLbVnzx5LAitCvAU8oyDysPjcpk0bmasR84C8M8hkDyjmiTdBuDSSGWPMaN26tSQt9ldMIeaRVTtRokQSL2MUd+/elR8agshRtvDdu3e/Ex8Py729dTSY8UTQU8h7D0/EfHiWFgx0IY+M3PDKuX//vsqePfs7WVGLFy8u5z0SNBESzKxZs0bOD4T6GO1hR8w3rxgzZozkeoHoQ0JSYh6QmwZzb1SFYWUY4m1glUelJyQzRgln04h5DIYo+4ELLgbJpUuX2vwfiQLat2+vUqdOLZP+HDlyqAkTJoT6vocOHZL4UiSFSpMmzTtiGCxatEhly5ZN9oHo0zPfYsUVLhFGogsgHBdXXWmxn711NNhxR9BTyHsXfRIdWtw8MgQjwZtRlvmrV6+KZwsW8DDGoL/8888/Ib4GcU9YtceEDuUjUa7IfpV169atIibQnzJnzqxmzJjhcRsx5q1bt07i4s+fP6+OHDnyzj7p06eXRCvImEpIMKPHvNKyRsIDjLWoOa97QCLZIjHX2IHFc0K8DbQIFgMBvKx37NihTCHmnz59qvLkyaPGjh3r8P+oy7d27VqxPB8/flx98803Iu6XL18eoptMxYoVJdkAVj9Qwqlv375q0qRJln0g2urVq6datGghAzHqAGLDJBmTcgh8I8F3AHHjxnU57j0Y4+O9Jegp5L0PVh8ByjyGhlE1oGHlhkUbXjiw5h07dkwmaQkSJAjRSq67WaLPzJw5U4R67969LftAcGMfiO8DBw7IuNWyZUsR5J6Az0AJPyxAhmRphMUeCw2egDEYk1SMfVgMtPf+sWby5MmyWIrjhA01mO33h2UUxwQeGlgkwT6nT59W/gpyOzBnQ+CDsVxf0KKYJ+EFXOwxZ0R/w1wSc1kS2MD9meUsSXgD41GDBg2kv+H2wYMHyu/QwgBevmTJEpvncubMqf3www82z+XPn1/r1auX0/cZN26cliBBAu3ly5eW57p3765lzZrV8rh27draxx9/bPO6woULa23atNHat2+v5cmTRzOSLVu2yPE4ffq0PO7WrZs81je01foxvh/YtWuXNmvWLLl19NjZc8HA27dvtYMHD2rr1q3Tnj59qr169UpbunSp3N+6dau2c+dO7fXr10Y301REjBhRmzhxYqj7RYkSRfrxlStXNF+C86ZEiRJuvWb16tXyvW7cuGF5bvz48VrcuHEtYw7OV4xd1tSpU0erVKmSR+2MEyeO9tFHH9k8FyFCBK1Zs2Y2zzVs2FCLHj262+8/f/58LWrUqNq0adO0o0ePaq1atdLix4+v3bx50+H+9evX18aOHavt379fO378uNa0aVMtXrx4Nr/foEGD5DmcYzjvqlatqmXIkEF7/vy5y+16+PCh9AvchifXrl3TChYsqHXt2jVcP4eEP5s3b5Y+kyRJEu3NmzdGN4eYmDt37mgpU6aU/ta8eXOZY5DAZffu3fJb4nprrR8I8TaY02A+hP6GuaEvxg535lNej5lHQidY4eEKC72/ZcsWcSeH5V2nadOmqkyZMpbHyPKMurK66y6oVKmS1GaGJU7fB5Yia7APnvcHyzxWe4GzuH37eFk81pPkNW7cWG5hXbN+jP/b74PHwW6hh0WRFvnwIXLkyJa+HBJ6EiG43PsSjC0FCxZUtWrVEnf5fPnyidXZGnj1wGKtgzEC/cg6QSbGDnjT6MnnQhpfPAEWY1fKayE8x5MyXMOHD1etWrVSzZo1s4QyIYRg2rRpDvdHsr0vv/xS5c2bV0KVpkyZIr/hpk2bLOMRYsO+++47Va1aNZU7d27J5YGQC/tQKn8Arm4IrYAX19SpU41uDvFCJmokvvP1eEKCC4RmwWsUcwuMlaNHjza6ScQLYwfKWVrrB0K8Dbyu586dK5pj2bJlfue1GNnbb4jBEVn/EDMPYYCLMybbEOs6cOO0ziiKLPD2tZb1iTf+B7dQ3Npnq8djPA/xgQmxKyIkvNBjhzEphgDAcbBOFHb48GGbx/pFxN198BxcxSBoggWID/QXuEgDnEwQJXiOmWm9C87Zly9fhnou6e7NuA2P8w6TLbTFnnPnzkm5EITz9OzZUzJgo1IELuRNmjSRfRInTiyx6DrOxg79fyHtA8EPd27rc9AVEDKEPCAhgeOGMCF3k/YgXADhSD169LA8h3EWixGuLj5gYQyfj1AAPcwAx8B6QQNhF1hgxHvWrVvX4fugr2CzDzfyRYZqJBdEDFvbtm3l97ZeICaBA8tKEV+CUCosAnbp0kV17NhRxg72vcAeOxgvT3wBDKrQs4UKFfK7MOlwEfPI0AwLGia0SJjXrl07iRvVJ4qo9+ntbPaYROqxM0agl9WBJwImyPPmzQvXMj5GflejuXfvnsexzCRksDgCgRlS/7L2Mtm8ebMl1t6b4BxCjLej9mEhS88qCss82gvLtC7mkaMDm5FUrlxZsiYj7wcWN52Nlbdv3xYx6u54h0UUR4sPrtZRhoeP9ZisL2o4WzB1BsZyCGojgJiH99b8+fOlMggWHVACkAQOZ8+elT6LhTtr7z1CwhMsBqPfwUMJC5Xw9IE3Egkc4NWmJ75FCTFCfAG8If0Rr4p5WLBgLVuyZIllpRMDJBJKDR069B03Vh24Ud+8edPmOf0x/hfSPng+SZIkMrk1sj6t7u4N6xAmv+XLlw+3z4JrbDBZ5mFBhGs9rI8Iu4AXRtGiRcWtmIRPaENI55J10jFMwOG6GB7tcAS8euBWbp9E7vfff3f6Xhgj7JO9uTq+wLXKXas8QLZ8JNmDazuS9NWuXVueR9Klffv2qYULF4qrPLwIfL3wgBKYEMDI3h/W8CR4B2BirINFVVQj8QXoI9OnT1cXLlyQBWS4Wm7btu0dLy/i/5a1EiVKhMuiICHOxg4kEMViEgwwuI5hPIQXIAkMkAAXYC6sX8cJCVYie1t0YbOPe4PQDckdGsKsV69e8lo95hy1I2Fl0bNUYx+IWGSZ1sE+eB6fh9cZWWden/DjIoE2ffXVVzbl9eCuivrz1pYxWDjd3QfP4f2DBfQJeD1AdMC1HhZ5DNw4TpgAUtB7Fz3/REjnEty8deLEiePT8w6Z7GGNtQY5OeAF5AycL/379xePFsTZ62MHhLq+MIB97L0R9PHFE7DogFhzWIxHjRolVniMDb/99ptsOK/jx48vixAQ9O6A/TGmOlvcDAksqkLMb9y40cYSpb8O74G2W78nzjtnYGHNk5h/b4G+ivi10qVLi6UNLrTwBkubNq1hbSKuQxd7YhQIzcL4izHj4MGDqly5crIYyFrlgQHHDkKscDe73uPHjyUjMja8fPjw4XL/4sWL8v/SpUtLVmhkdz937pw2ffp0ydaMjPU63377rdaoUSPL4wcPHmjJkiWT544cOSKZmmPGjGmTVXvHjh1a5MiRtaFDh0o25j59+khG7cOHD2sdOnR4J3O0r0F2dRyPU6dOWZ6bMmWKZNvHrauZ6pnN/j+Qvd46a72ezR5ZS62z3BPvgOyc6MOTJk0Kcb/r16/LfsjO7utswMhei3Ggf//+Ujlizpw5MlbMnj3bss/o0aO1cuXKWR6j77z//vtaxYoVtQMHDmhr166VzNk9evSw7IOxCu+D7OgYX5D5PVKkSLJvWEAGfWTgz5UrlxYrViwtRowY2nvvvad9/fXXYaoEUKhQIanioYMs4KlSpdIGDhzo9DWDBw+WDP44n+zB75g8eXIZX3WQQTVatGjavHnz/C6bvaPs9lmyZJHPzpgxo3b58mWffj5xH8wlUJEBvxnOOUKM4Pbt23J9QD9MnTq1dvbsWaObREIBc8DYsWPLb7Znzx6jm0NIuODOfEp5WoLNfmvSpIlloo+yRyj/ARGP8nLDhg2zmfRjX4h+ayDOUHIKk0dMSlEmyZ6FCxfKRBgTACwYrFq1Sp7v1KmTVqZMGc1IsNiA44DFCEel6fDYlwT6ooC9kNefg5jHrX3ZOhJ2/v33X+mrKHcWEhDRejkYI1ixYoVMvjBWZMuW7Z3FByz0pUuXzua5CxcuyIIfxHTixIm1zp07y/e1H9vy5s0r4wsEIRYi/RUseOL7z5gxQzt27JjWunVrKU2nl9/DwigWTXUwnuJ7/fbbbzJG6xsElfU+eI9ly5Zphw4d0qpVq+a3pekcAQGP3w2fD2EPgU/8F5S11RdfWCKMGAnGTVxL0B9x7cD1gvgvGzZskN8KRkCWsyRmJVzFvD8CoYw67kZy4sQJOejbtm0TsexowcObIjoki76jhQSjFxfCKuTtxTygoPcuusV9+fLlIe63b98+2Q8LdsQ44IGQNm1aEemw1FuPL1gs1RdYASaojsYkLHzo4Hz6/vvvZYKEhYLy5ctrJ0+edKtNRop5gEm4/l0xOdcXN4j/0bJlS/mdvvrqK6ObQgi9ewKIb775Rn6nZs2aGd0UQsINd+ZTXs9mb1S8OpLvGYkeZ4q6zM5KdSG2F3Hx7oL4cLwWpRDwesTNW8fRo0yCfYIva6z3tX4O8byetCc8wbFDCTpX6sjrydoA6tAzhj5soO8C65hpRzx58kRuY8eO7ZN2EceElLUfyZysQZK40MD59MMPP8gWqCB3Aios6DH0SESK/ABMkORfwJCg56hgzCvxB3Dd08cOlEBFLD0e+yqhJ3Edjh2E2GKbqS5AQfkko8U8EoFBSKJchrP6g46eh1D/9ddfbRLfWT8H4Y7aho0bN5bbRo0avSPOQxLyIYEFgkAV8vaCHpN1CHrUzyaegb7riph//Pixpc8T4m9kzJhRJuEovXf06FFVqlQpdenSJaObRaxAOUksHmIhHuKJEH8gderUMnakT59enTlzRsqj4pb4D+fPn5e5K8pZooIJISQc6swbAcSH0WIeohLtgCCCtbtbt242ohsiXM9Wr1vZFy9ebLMPXuPMkq4ze/Zsr7XZ2aJDoAh5HVroPcPe4wN9F8fSvta4PSgPCJANnhB/BBmpkdUelvnTp0/LpBzVUDJnzmx004hSUpVEL+Ua1vKIhHjbu8d67MBiICqb5MyZ0+imEauxA5VmOAch5H9QzHu5Hbp1c/DgwWJ50MU3LO0oqeWuO7w3cFbizl9c7MMi5HUo6N3DPlQDC0lwm0+SJImseIeEXhItNNFPiJFkypRJ/fHHH6pChQqyaAVBD5d7Tsr9Z0JeqVIlo5tCyDvAtR6CHpZfeJHAewR9tkCBAkY3Lejh2EGISd3s4U754MED9ebNG8Pboccdw+ppb0X31B3eHlj5rbEX5RBqu3btUrNmzZJb1JXG4oL9c2YR8jp0uXcN9E37hSM83r9/v/Th0NDFPOOQSaBMyjEu3LhxQyble/fuNbpZQQ3GZSyyAE7Iib+C6xtyjxQsWFDdvXtX6tDv2LHD6GYFNZgvwsMKcOwgxGSWeQy6b9++Vbdu3Qo13jc8wWcfPnw4XOPRIdQhxNu1a2fjIm3vMu1I5OOxv1jjvS3kdWihDx1nffPixYsunT+0zJNAAv0Uk/LKlSurPXv2yKR81apVMjYQ37Nt2zb18uVLlTZtWpU1a1ajm0OIUxIlSiTi8ZNPPpEFqIoVK6ply5aJtw/xPTBEIWcPfpf8+fMb3RxC/AZTWOajRIkiJ7duFfcHN3tP4tEh1PW4eevnHFnUIcr1OHz9MT4TQs06mZ6/Eh5CXocW+pBx1jdfvHhBMU9MScKECcXFHvGvjx49EqsOHhPj3GQhjDBWE+LPIC577dq10l8xl0AG9eXLlxvdrKAeOxD+EDGiKeQLIV7BNGcDRMjVq1cNd+mEuz82PQmeN9zh7YW7K1nv8TgYhbwOBb1zHPVNPL5z545LZXgo5kMH5+CcOXOclqkkxkzK16xZIxZ6TsqNgzGvJNCAdx/Giho1aqhXr15JWd/58+cb3aygg2MHIY6JgGLzygRggla9enXVtm1bw9pw7NgxSa6E0iaoUQqmTp0qrp0QrS1atHDoDu+NBGaOwGKAP7nVh1XI47WoL1qlShXxxnAFdG+EPiBeli73tlj3RZTkwbZkyRI5j0ICCyQQ9Ig9pqubY2A1wIISEgq2atVKxqVUqVIpswOrd7x48dTDhw/9NtMwXLzr1asnfR3jD24//fRTo5sVFKBEILKF4/zA4mGCBAmMbhIhLvP69WvVtGlTWajF+D537lxVt25do5sVFGC8SJo0qczpYLhzJb8PIcEyn6Jl3osg/i9WrFiWBEsQ3C1btlQTJ06UWz2DvCMruyvolngsELiS+d4MdeTDCi30zrHui3qfDS1b75MnTyyW+QwZMviknYEIrDZYPEIejwEDBsixqlWrlsQLE2PB+LNw4UJVv359SZpau3ZtSZJHwp/169fLLcYcCnkSaKDSC7wmMZ+DqIQnpG4tJuELwqJwzDGfo5AnxBaKeS8CcZo3b14RRs4yhrsTz+7MjR4XkmCqIx9WKOhDB30WVmRY50Pi3LlzlhhkTsadA4EI4Q6vEFjm0e9///13Sb6WO3duWeBjPzR2Uj5jxgyxyCNXBG4PHDhgdLNMD91kSaADr5IJEyaoOnXqyLwGLvfwgiThC8cOQoJAzGOl7sqVK0Y3QyybEEbOrOI//vhjqMId2MfAu1uD3mx15MMKBX3IoM+i74aWkOrs2bOWGt4kdBB2g4kfFhpHjhypsmTJInWLv/zyS3G779ixozp9+rTRzQxKEKqzYMECqT8PdzaEasENnISfi7KedJATchLIYA4DC711UjyO4+EHLPK6Vw/HDkJMLOZR5ubkyZNGN0MEEQZ1Z25AKIkEwR5S8jq4Pnsi3s1eRz6sUNCHLuZDg2LeMxDv1KFDB3XixAmZlMASjDioUaNGqezZs0seCL1+LvEdMWLEkMRWGBcQPoLfBaWPiPdB7hgkh4VHD64FhAQyUaNGFW8r9OV79+5J+br79+8b3SxTggVwVKvCeM2SooSYtM48yJcvn1hVYGExMvGSnhAMohWrtRDvjqzzjp7XmT17tkufNWXKFLmghFRb3kj8ScjrsA79u+AiiQSBriSz08V85syZfdAy8/H06VNZ7Dtz5ozF4gC3TZQ+ghvhRx99JMmVkPSE+Ib48eOrlStXqkKFCqlDhw6pBg0aWJLjEe+7yaJGN48tMQOxY8eWxUCMHfDG/Pzzz2UsdzVBL3Fv7ChTpoyKHj260c0hxO8wjWUeJbUQ84uM8kaSLVs2WT2EpfP77793uE9IQt4dSzyy43uaTC8YhbwOLfS2uJr8DuiuhLTMuwcmerDMw7W+ffv2Mk4hfn7p0qVirZw0aZJKnz69lE7r3Lmz0c0NOuDZtWzZMhmvVqxYoXr06GF0k0wHY16JGcE8AouBEPaoZIRxnoTP2IGwBkKIicW8LkaOHj1qeGIlJMH7559/LNnCPcH+df7qRh9oQl6Hgt5WzCdKlEgETUjAigzLJXj//fd91LrABccLAhETELjSjxkzRs4NLMLhOCJ+uGrVqlIBA0kt8Ryy3kNMEt+D8RpJ8cCQIUPktyPeAe7Hu3fvlvuckBOzgaSm8+bNk3kFcqTAu4p4B8zN/vjjD7nPhUBCgkDMw00YsTVGU6pUKZmoo+zRhx9+6PbrIdx10W4t3sNS1s5XBIKQ16Gg/2/VG302tOR3cMe/ffu2/KZI7EacM3jwYJUxY0bJdIyxAFUCBg4cqC5fvixWeEeLIRD1CPtAPV1iDKgZjaSEAPWkz58/b3STTAHOgbdv38qiFrzoCDEbiJnXvTHbtGmjjh8/bnSTTAHKhr58+VLGDXi+EkJMLub9wTIPYG3DhBzJ7VwpD2dtdUccPIQSXhsI4j1QhbxOsAt6JP1CX0OfDQ29dJceSkKcAzftixcvqmLFiklNc5T0w3mOkn4hAZGPhRViHFg4RSJShD+gxCAmkiRs0MWeBAO9e/eW8CnkRqlVq5bcEu+NHaEZHAgJVkwn5v3BMg/xjfh9JEbB/W7dutn8HwLdkdUdbYe7rZ7VHpP/8MC+DF6wCnmdYBb0ev4GJGt0VcwjjISEDM5hhC/APRBJkVw9H7p06aK2bNkS7u0jzkFSUZSsw8ILwqX69u1rdJMCGpaVIsECxvm5c+fKXAKGpfCawwUTXAgkJMjEfLp06dSrV6/E2mgkeiZ7iHnd5bZhw4aW/0NIL1682BIXj8dTp059pxwdHntTcAP7MnjeuNgEspAPdkGPPlq0aFFZfAqN/fv3WypHkJBB7DWPU+CC/BHTpk2T+0OHDlWHDx82ukkBC8oxIrwE1wd6nRCzkyxZMpnTgXHjxonBhngGxg2EK6DiS/ny5Y1uDiF+i6nEvG6dhxgzGrgtYxBCCSoIcvtycxDqEPO6sIZF3lkWbG9Z4sNjwcAMQj5YBf3z58/Vhg0bXHKxtxbztMyHDs4DJLoLjVatWknSTOJ/VKtWTXIevH79WrVu3VpivonnljUI+WAvA0qCA5RfxLwOXimIn8c8iXg+dsBzNUGCBEY3hxC/xZRiXs98aSRIfKeXOXImyF2pJ+9KzL2rlnhvLxiYScgHo6BHGR18P1fEPLxdEPeN4+NKPfpgB5M4bK7uS/yTUaNGqThx4oh1DYkLifvQTZYEI/DoQZUYVCkZOXKk0c0JSFiSjhDXoJgPJ1BzFIlQ4MbsqSCHEPck+V1IlnhHeNI+Mwp5swh6RzkRHD2Hvol68a5kiNW9XZCgjSvk3gN9K0qUKEY3gzghVapUqn///nL/22+/VTdu3DC6SQHFixcv1LZt2+Q+xTwJJhC6BkEP+vTpIwlRievAIwpVMADHDkKCUMwjUdejR4+MbopYPLGwALHsSoIxULly5TDVknfFEh/WBQMzC/lAF/SOciI4eg4uwytXrpQ+6kqGWF3MlyxZ0gffIjhAtnQc1xQpUhjdFBICX375pSpYsKB6+PAhk+G5Ca5/COfBogjLWZJgo0mTJqp06dJyDvTs2dPo5gQUSD6Ka2T8+PFlnkkICSIxnz59epUyZUoRm0YDoQQX2kWLFlnqj4bG2rVrRfx7apF3xRKP8neeLhgEg5APVEHv6PfHY0fPTZgwQerGV69e3aX31r1dUAedOAZ15fUN/PbbbzbPWW9IsJY0aVJ15coV9dFHHxnddBICGOOGDx9uGTtZP9ozN1mWlSLBBvq8PnYgyz0EKnFv7ED+AeaVISTIxDz45JNP/MLVHosKsLRPnjzZYYk6Z7gbw667UK9ZsybUfWGVRWIuT+rXB5OQD0RB706/Qb6GLFmyuGRpf/z4sSX5HS3zzrlw4YJlQ7958uSJzXPWG0Q8MvR+9tlnasCAAUY3nYQC+j0S4r1584blptyAMa8k2EGOGb2aUdeuXZkjxUWYa4MQ14mgmXBkWb16tRo4cKBfCPqlS5eqGjVqiBh6+fKluDmHBizmrgptTCxDs8bDmoTayZ5a/P1FyKMN+G2rVKni8zhjnCYoT4WYWVin/TErMxZ1XOlfAP3hxx9/dGmBCRnvMRlH6UcIUeIYPSYSfQXWd9SXHzJkiNPjj5hKs1kcEN4UL148cUmPGzeuMhMnT54UV3EI+q1bt4r7LHHO1atXVerUqWVh6/bt25IMjJBgvTZkzZpV5oBIigyDE3HO/fv3VeLEiSUc8NKlSypNmjRGN4kQv55PmdIyj3qUyCB67949o5sisfKIiYWgdsVyCos59gutXBz+j/jN0IR8WCzx/iTkjSZQLPSu5GbIkSOHCM6mTZu69J56EhqKl5DBYgc2hPogVhJeOfpz9hvGBLMJebODyThK1AFa2JRLi4AA+QYo5EkwgzH/66+/tszJsCBInLNp0yYR8tmzZ6eQJ8QFTCnmIToh6FetWmV0U8SC3Lx5c4lRRxKgkGLY4YoFd3nrRGWO0BOa9evXz+H/kTk1LEn0rKGQDwxBj8Ua9Am9z0PUo1854unTp+IyjJhtV/M4AIhT4hrTp0+X856YCyygxooVS+3Zs0cSSBLn0E2WkP/o0aOHSpgwoTp27JhasGCB0c3xazh2EOIephTz4NNPP1VLlixR/kDbtm1F+B09evQdt2aIMLjcvnr16p2687C66xZ6d8rNIaFWWCzxOhTygSHosfhj33esRb01tWrVEpe/Dh06uOwqCy8XfO8PP/zQi60mJPDAAthXX31lEfa0zjsGlkfdMs8JOSFKsrJ37txZ7v/www+0zjsBYypzbRDiHqaMmQeI0cuQIYO6deuWX8Q3161bV+3bt0+dOHFCrDpwpV+/fv07IsweWNiPHDniUpZ63WofVmu8vwp5I2Pm/TWG3tU4eYh6VFSANwfavHfvXpeyS0+bNk3CNLAwBE8P4hhY4XE8kcwuWbJkblnl8Tos0pkBM8fM69y5c0dCKeDhsnz5clk4JrbgGleoUCHpAzheRo/XhPjL+Ih5KUJA58yZo+rXr290k/wOzJHhXo+5J46TP8zfCfH3+ZRpgzaRXCpPnjxiHYBLsdEgXqpYsWKScV63lsKi6srA5oqQh+Bq1apVmK3x/irk/dVCD2ChN0rQu5rBHpZ69Df0vxkzZrhcJkqvkEAX+5DRjykW0yDm8TgYxXwwgMRMsM5j0RTWeSSzYtk1W3TLGsLdKOQJ+R+YkMM636tXL7HO16lTh/MrJ2MHKohQyBPiGqYV8wAWE2ST9wcxD+sphPZPP/0klmVXysgBV8tWQQwgyZAu5mGxhdBzN4M9hXxgCXr8vq4yatQoCQ+Al4grvH792uIqy1roocfIAyS2s34cnowdO1ay5cPTAguXo0ePFmuoIxDi07t3b/HIQJjFiBEj1DfffGOzD4SpfR4OJH3DgiKxBRPyMWPGiLcVYudpnbeFMa+EOKZ9+/Zq2LBhUh0DsfO0ztvCsYMQD9BMzNGjR7VEiRJp//77r+YPbNiwASEN2pIlS7Q+ffrIffutRIkSDp+335o0aeLw+V27dmndunWzeQ6PXeHVq1fa1q1btZ07d2qvX7/W/A20b+nSpXLrT7x9+1Y7ePCgtm7dOu3p06c+/3z739vZFiFCBG3s2LEuv+/GjRvldTiH/LE/BDPz58/XokaNqk2bNk3GuVatWmnx48fXbt686XD/3bt3a126dNHmzZunJU+eXBsxYsQ7+2BMypkzp3b9+nXLdvv2bbfa9fDhQ+kzuDU7PXr0kO9asGBBGQPI/3jw4IEWKVIkOTbnzp0zujmE+B0DBgyQ8yN79uzamzdvjG6O3/D8+XMtRowYcmwOHTpkdHMIMRR35lOmTYCnl+BC0hG9tJbRVKhQQbaePXs6TSYGC68rzJw50+HzsPjbu+VbJ9JzBi3ygZsUb/DgwRLPjvwKzjLYo5ICap8jFMNVFi5cKLc1a9Zkf/Azhg8fLr9ls2bNZJybMGGCeIUgx4EjcE7Dig+vDJzjzkC5PPRjfYNLOXFMx44dVYwYMdQ///yjtmzZYnRz/IbNmzdLcq8sWbJIfDAhxJZ27dpJLOzx48dZFcMKzJ+eP3+uUqZMqd5//32jm0NIwGBqMQ/gYj958mTlLyDOEgM4XKzsM9uHBBYAXOHgwYNux1ZTyAe+oEcoBSoYIHeCfb+Cuxqy0iPEw9X4VbjY//7773IfcX3Ee5w/f14tW7ZMHThwwKPXo/IF3OWxMKgTMWJEebxz584wte306dMykcLCT4MGDdSlS5dC3P/ly5eSpMV6CxaQl0VPdOhqgtJgAIldAd1kCXEeO//FF19YFuPJ/7DOYs88JIS4junFfJMmTSTj8M2bN5U/UKBAAVW7dm2pBY8YVdyGBkTa3bt3XXp/5AhwJ7aaQt48gt6RpR7i7vHjxypfvnzS71wFlkb0OQiW0qVLh2t7zQjGHHg07N692+Z5WMdxLuJ/GAs8qUWP7OCwfCLRnjV4jPj5sCwIIXHf2rVr1fjx42XRAUmI0H+cMXDgQLEw6VuaNGlUsMXOY8zEJNTTxRmzlpWimCck5KTImHdh/uWqR6bZ4dhBiGeYXsznzp1b5c+f363s0uENLKSYdCOBlbPEYrDEQ4w1bNhQ6stPnDjR4X6wxGILCWTYdpQEj0LevIJet9SjNCN+Y3iEwHrrrov9Z599Jq7XxD1w7kIUo8SODhLJffvttyJ4kLAObvEIl1mxYoXyBzAW1apVS8ZMTKZQBvLBgweWvuCIHj16SNkUfbt8+bIKJuBGri+S0Tqv1JkzZ2QRCB5AZcqUMbo5hPgtmCPA2ARonVfq2rVrUu4XcyhrrzNCSOiYXswDxJYilhiTaH8AsYQtW7aUTPXIFu3I3R7/mzt3bqh16JHF3llZqzZt2oiF1lHdeQp58wt6WG+xKFSuXDmnORocgb6xePFiue+ONZ/8x/79+0Wwx4kTx/Ic6gqDcePGSRZ01OLGeTdp0iS33htx7HidvbcRHqPPeQvkG4EXAQSaMzB+wGXUegs2unbtKrfITA0hG8zoljVU9ogdO7bRzSHE7z17MF9A3DwqjgQzeuUceKwxVwsh7hEUYr5evXoy0d26davyF77//nv14sULcVPFqqyjxGWw7IUFJMeiRT54BT2svpggoI+5E38Gi+y9e/fEbbtUqVLh2kazAld4JB20BuMPEqY1bdpUHmfLlk1Ej7uTuKhRo8qEZ9OmTZbn3r59K4+LFi3qpW+g1JMnT9TZs2ct5faIYxDCghhP/Aa//PKLCmboJkuI6+ghVwDlQoMZjh2EeE5QiPlYsWKJoHfXAhaeIMkUXG5RbxRWOkzQvYkZXeuRNdr61t8xUtBfv35ddenSRZKYOas97gz9PIELYCD1D38CC3XWxw5eEjjPcU5an+sYBzyJc+/UqZMk9sSCDRJqIpnS06dPZQEPNG7cWFzgrZPmIaYbG+4jISLuW1vd0V+2bdumLly4IGNEjRo15Dtg7CShZ7YH06dPl0WQYAT9Ss/qzwk5Ie6NHfDcwiJ6MIKFUN0yz7GDEPcJCjEP2rZtK67DEDn+AsQ8ym/AUueNEj6w7iNW14yu9VicKF++vNzHLR6bUdCjhCByJIRWSjAkEE6CEAuIRncthchernuEIBSEeEbSpEklM7wOzkmU3ClevLjNfngOi43uggoDQ4cOVb1791Z58+YVYY7fTU+Kh9/ReqxDPCIsyNjwPF6L+9a/8ZUrV0S4I/QH4RWJEiWSdiMJIgkZWOYRPoVs/jh/g5EdO3bIghL6IPIuEEJCp1ixYjIWYwHYWcik2cFCN7zZEJZWpEgRo5tDSOChBRElSpTQunXrpvkT+/fv1yJHjqx99913WqNGjRDU79HWvXv3ED/n1atX2tatW7WdO3dqr1+/1gKJXbt2yXeMESOGtnTpUrnFYzwfKLx9+1Y7ePCgtm7dOu3p06cO90HftP5NPe2rs2bNktcvWbLE7df26dNHXlu2bFmPPpv8j9q1a2sRI0bU5s2bpz148ECrUqWKPN62bZvNftmzZ9dy586tmYWHDx9K/8FtsDFy5Ej57jly5JDzPdjANQjfH9cxQojrTJ06Vc6d9OnTB9z8zBv89NNP8v2rV69udFMICcj5VNBY5vVSIEg+df/+feUvwKr23XffSVwz2odVWkc4i12uXr26U0u8GSzy4NSpU249H4gWelji7bNh47G7FnpYYDt06KDq168vfcMd4AquWwaQNJJ4DjxHUAUAYQ4JEyZUa9askaoa1ucxMr8jwz3OSRL4wMMKXhbHjh1TmzdvVsEGY14J8Qx4RMETCiFOSIYXbHDsICRsBJWYRwwoJtYoCedPIOM4hB4mg85E+fbt253Wldczj5tRyOtJYtx5PhAFvbOFCcTguirodfd6/NajRo1yu31w04arNSYVOFeI50C4I5Fg6dKlpTwdzm37SRpKvqE2ux4+QgIb/JZ6qakxY8aoYAIJZhHqAdypnEEIUZIYVQ95CraxA6FJO3fulPsU84R4iBZkDB48WEuUKJH25MkTzZ84cOCAuNv36tXrHXdrVzZHLueB7FpvD46JtZt9aGEFgeZyr4cSONtccbmfOXOm7Itj5AmVK1eW13fs2NGj1xMSzG724NixY/L9EVJx4cIFLVj49ddf5Xvny5fP6KYQEpBgvMC4gfMI40iwgPkKvnPmzJmNbgohfgXd7EMAlksknXJUCs5IUJMa5epgma9Vq5bq06ePU4ufI+wtu2awyIdmhQ5UHFnokeW8W7duTl8Tmss9spMjTANu3dWqVXO7TUeOHBHLfMSIEVX79u3dfj0hRIkXRrly5SQ7M7xqggW6yRISNtKlS6c+/fRTuR9MifA4dhASdiIGoyvkV199JdmcUUrHn0ApKWQ1/eyzzxyWldOzfobmcm42Ie+teHJ/F/SDBw+W/AdYcHLH5R5ZcNFnEK/riXs9QIlEgPfJmDGjR+9BCPkv38S0adMkD4XZwcLF+vXr5T4n5ISEfexAyVF/m5+GFxTzhISdoBPzumhGCR1/W/2MEiWKxL+/fPlSEuJ17tzZ7ZryZhPyZkmA546FXq8Vbs/EiROlbIt1WT54KLRu3VodPHhQ8icgJ4S7IGkeatwCV/scCR2Uh0P9d5QsixkzppyLjjYkyiPmAYkncR4iwaFeO9nMYOy5deuWih07ttMEroSQ0IGgTZUqlZRpW758uTI7Z86cUefOnZO5b9myZY1uDiEBS1CKeVjnUeMdruxIvuFPpEmTRi1ZskQssHpiEGeWWoBwAT1pnhmFvL8lwPNGHXhvutwPHz5c2gMrYMGCBT1qw+jRo6XvlCxZ0qlHCHEPZKmHl82kSZPU2bNnxXsCCy+ONlg2iXmIHj26atSokdyfPHmyChbLGibjUaNGNbo5hAQsWNjVF/ODaewoXry4LAYSQjwjKMU8QPkuTDxCKulmFEWLFlUTJkyQwXzv3r1OLbUA1h8zC3kAgVmoUKF3nvO18IRFHJbxxo0bv2Mh97XLPbwSUO4Moh+eJiht4wlPnjyRvga6dOkSpu9B/qNXr15SArNixYryOz58+FBEu7ONmIsWLVrILaxryPRuZpBrA9BNlpCw07x5c7mFVw9K1ZkZjh2EeAktiJk8ebIWLVo0v806jKzikSJF0jZt2qQ1atTIaabzHj16mCZrvSP0TO/W2eydZfAP7za4UkXAF1nu58+fr8WNG1f79NNPtTdv3nj8mQMHDpT3e++998L0PsQWVMxIly6d9vLlSy2YCPZs9tYULlxYjsXPP/+smZUHDx7INQrf8+zZs0Y3hxBTUKFCBTmnevfurZmV58+fW+ZymPcQQmxhNnsXgcU7ffr0UufdH4E7NWpQ69ntGzZs+M4+SHqG+Exk6DebRd6fYuZ90QZXXe6Rtb53794qderUavbs2ZKB3hMePHhgSSyISgqevg95F/x28Cah23HwoteNRihUIFffCAlYD5HkL1u2bEycSYiXxw4zJ9Hctm2bzFuRIwDzHkKI5wT17B3Ct3///mru3Llq9+7dyh/jp+bPn68SJUqkqlatqn755RebknUQ8n379hVRdvv27XAR8t6OEffks/whZt7ZZyEe2pvHJiSX+1mzZqnt27erY8eOye8NF964ceN6/FkjRowQV/AcOXJ47KZPHANhgySbJHipU6eOjNFY8MO5bEZWr14tt1WqVDG6KYSYLonmlStXLJUizDx2YN5DCAkDodrug4BChQppxYsXFzdnf+TEiRNa4sSJtQIFCmgbN24Ut4tYsWJpQ4YM0Xr16qVFjhw5XFzOu3XrZuPajcfhRWifhd/I2s0eLqy+xr6N4XlsHLncv3r1SqtWrZqEhmzZsiVM73/79m0tduzY0vbffvvNS60mOoMGDZLje+vWLS2YoJu9LS1btpTj0bhxY81sICwnefLk8v1wXSKEeI9vvvlGzq2aNWtqZiRz5szy/ZYsWWJ0UwgJ+PkUxbymSbw5DtiMGTM0f+XAgQNaggQJtKJFi2qdOnWyEfLdu3e37AdRP2vWrHfEvbPnjYwRd/Wz/CFm3rqtffr08cmxsRb0OJlr1aqlRYkSRVu9enWY37tr167S5nz58jFWPhz4999/tQ8//FAW4A4fPqwFCxTztliPXffv39fMxN69e+W7YdHqxYsXRjeHEFNx5MgROb8wx7tx44ZmJk6dOiXfDfOZR48eGd0cQvwSxsy7SenSpSWbZseOHdWNGzeUP5InTx4p43H06FG1adMmlSlTJpU1a1Zx39Qz8ttnW8etp1nYfRmnHtpn+UPMvA5i2HHsfdEe3eU+SZIkqmbNmmrx4sVqwYIF6qOPPgrT+16/fl2NGTNG7v/000+MlQ8HkMUe8YD79u1TefPmFbf7MmXKqHLlyr2zIS8GMSfIm/D+++9LX5g3b54yo5tshQoVpIoKIcR75MyZUyobvX79Ws2cOVOZcewoVaqUihMnjtHNISTg4Sz+/xk1apR6/Pixat++vfJXIAoGDBigTp8+rYYOHaqqVatmKc+GuG09mZkO4s8h/Oyft65T7gj8D7HgrsSOeyOmPrSYeH+ImXflc1+9euX1z8KFHL/X1q1bJRGeN0q4oJQdxAUmCmFdGCCOwe+1Y8cOuY/ScygxhHwHeN7RRswJFuT0ZFZmqxvNeHlCwhezJtHk2EGIl/GJr0CAgDIg/hpDjHhpvfzcn3/+qcWLF0/iyO/duyf/hwu9s3huR5vucm/veh9SXLi1O7+jfT2NG3f0mY4+y9rN3v7/vsbZcXL1GLgS9gDX1Ro1aogr2qJFi96JofeEv/76y9LWv//+2+P3ISGDc9WdzSzQzf5d7ty5o0WNGlWOC1zTzQBybkSIEEG+0+XLl41uDiGm5PHjx5bcNtu2bTO6OV7hyZMnlvHw+PHjRjeHEL+FMfNhiHPNlSuXlixZMu3u3buaPwp5vY48JoWoZZ03b17t2rVrTuPOnW0NGza0eYw69s7eAzHijmLwvRE37ur72Iv58EzG5ypTpkzx6Bi4sgiCi3iVKlXkordixQqnSfHcAbHxiOHGZzZr1szt1xMSGhTzjqlbt64cly+++EIzA7Nnz5bvkzt3bqObQoipadWqlWWOZgaWLVsm3ydDhgx+m3SaEH+AMfNhLAV39+5d1blzZ+UP/Pvvv+qvv/6SmETrOvL58+cX99xbt25Znm/UqJFL74n9UJ/cGrjKf/755w73R4y47s6v4604dlfex1EIQWihAr7AWQ3xNWvWOH2NK98FLtnFixcXt+yVK1eqTz75xGnZOneYPn262rt3r5SzGzhwoFuvJYSE3V12zpw5bp+3/siyZcvk9uOPPza6KYQExdixaNEiKUNsprGDJekI8Q4U83ag5nbPnj3VjBkz1KpVq/xSyOsgsdKePXtUqlSpVMmSJSX+qGHDhiG+Z4sWLVTMmDEd/g81TV2NEXcWH+5uHLsr8fD+lADPlbb369fvnSSDem4BZ0Jf/y4Q8Pitnzx5IrXlP/zwQ5v9PBX0mAQgVh707dtXJUuWzKXXkbAB7yfEB3733XeqTZs2atq0aZb/3b59W373N2/eGNpGEv6ULVtWkiA+evRI/fbbbyqQefnypWUcQz1sQkj4gfkArvkvXrxQc+fOVYEMrnUrVqyQ+xw7CPEiPvEVCDDgyg73QbixGxUP6Mi13hnPnz8XFyz8nD179pS4aGfl09zdHMWmO4sX9zSO3f797N/Hn0rT2RNSjgG9fSHtY73vxIkTpQxN2bJlJc42JNx1uW/fvr18Tvbs2aVvEd+Uk8yaNasWMWJEiS/GrXV4w5w5c+S55cuXa2aBbvbO6d+/vxybkiVLaoEMSmPie6RMmZJlLQnxAb/88ouccwirDGTX9D/++EO+R/z48TkPISQU6GYfRmABRwmwhw8fqnr16klGcX+yyNsTPXp0KV0yZMgQcZ/G1qlTJ8l+Hhb69OmjatSoYZOt3pGbuJ5tVS+RF1bss7bCxR8lnuyfs3f9N4LBgwfLcXIErK7Ojpc1Xbp0kWMMy23btm2lBGGiRIlCfI07FnpY+/VSdKjaECVKFJe+G/EceLmgZBf6gF5Rwr5fwzKB30J3OyTmpmnTplIG8o8//lAnT55UgcrSpUvlFtVUWNaSkPAHHpeYDx44cEDKnQb62IHQQc5DCPEevBI7IVu2bOIuDaHUu3dvvxXy1uIOohAx1tu2bVPFihVTrVu3FlftWbNmORWcIYHydPZ16xF37U78eGi4EkOO+7t3737ndWGNmfdGWT3grLwbQhGchQLg98DvAuGOOPaJEyfKNnr0aJcvcq4I+qdPn6pmzZpZYu8gMEn4gxKSyL0xcuRIOSdxbtqDcJc8efJIqAwxPylTprTEmE+dOlUFIiizuHz5crlPN1lCfEPChAlVzZo1LYaTQASL2bqY59hBiJcJ1XYfxMCFME+ePOLmsGbNGr9yrQ8JlPvIkiWLlK+bMWOGuGW5m+1ed9t3dfPU5d1ZST08b7+PvZu99T7uloJzt6xeaKXknLnSOzuOeB+4yKdJk0ZLnDixtn37ds1TQnK5/+qrr+Tz8Dl0ffYdyNSLkAZr4GpvX0Wgdu3aWpIkSTSzQDd71zI54zd/+fKlFmjg2oT2x40bNyDbT0igsnnzZsu5h/JugcaRI0ek/dGiRZNqPYSQkKGbvZeACyGSdcBSigzwV69e9TuLvDOvAliyq1atKq6dn376qUqTJo1bbvf37t1zeV8ke/PU5d2VBHiu7BNa++w9DNzJjm//evvkdrq7feXKld95HpZ/+6SE33zzjayuV6pUSWXNmlUs80hg6CnOLPTw0IClH+DzkMWe+IZr167Jb+LKb4ekaCQ4QJLSFClSSPJDPRFUIKFb1vA9PPXGIoS4T+nSpaWyUKAm0dTHDngHxo4d2+jmEGIqKOZDASJ43Lhx6s6dO6pu3bpOs7j7i5DXiR8/vrhxIx4XYjFnzpyy7dy5U8qehYY7mfwRV+8pixcvDnVxAPftFyJcXUBw5MYPge0IRy7xoYUB6K76cJtdu3atw/etWLGiJdzhl19+Ub///ruUQJwwYYJav369Sps2rQor9oIeYqF58+byv1atWkkbiO+IFSuW/Aahcf78eXGhJMFT/hQLrIHqLks3WUKMMy6hGhHg2EEIsYZi3gUwgMK6CpGEBGX2iaz8TchbA+v80aNHJeFIkyZNVP/+/dXChQtDLWHnDp6WiHOWHM6VxQFXfwN32ubI0h9SWTx4a+gWe70WrLP3zZ49uyS++vrrr+XxkSNHJOGdN+usWgt6tO3cuXOyUDB06FCvfQZxDfwOWETDIqAzLl68qA4ePKgKFCjg07YRY9En5MiXcenSJRUoHDt2TBL3wVPNWZ4QQkj4gTkc5oiYix4/flwFChjn/vnnH5mjwFOUEOJdKOZdAAMQEr/ly5dPbpEtPhCEvA4sf7Aew0qPARUWetQvh5VeT8gUFtytLe9u/XhXkuS52zZHLvGOvAScvR71XmfPnh3q50NUoyoCxN28efPU+PHj1YYNG1S6dOlUePVV/MYQCljJh/Wf7vW+B4tljx8/lkUeR4kJ4eHz5ZdfyhjgzYU14v/AVbZcuXKyIOksoag/ggovAOFBHFMI8T2BmkQTBiRQqlQplSxZMqObQ4j5CDWqnlh49OiRljRpUklIMH/+fL9Iducud+/e1Ro0aCDfoVChQpJUBcnYPv74Y6/VoXc1kZyzpHz2SebCmgDPPjldjhw53Erk50qdeEfbJ598olWpUkXulytXTjt//rwW3iARXvTo0eUz27Vr53IdeuJdcE6XKVNGkt4h+WCrVq3kfv78+SUpYbp06eTxhx9+qJkJJsBzjblz58pxSps2rU/H/7Ak2cyaNau0+ddffzW6OYQELcuXL5fzEIlzAyUJZcGCBaXN48aNM7ophJhyPkUx7yZnz57VokSJIhk5d+zYEVBC3ppNmzZpH3zwgXSUSpUqafv27RMh26dPH7ez3oeU5d0aRxnksaBg/VzhwoXfeZ0u+u3FvDsZ9Bs2bOjS93G0QOBOJYApU6Zow4YN0ypXrixiLXPmzNqCBQukMkJ4gxMeVQzQDnw++pazLPck/EHG3vr162sRI0aUvmC/ff7556bL6ksx7xrPnz/XEiRIIMdq7dq1mr9z4MABaSsWCvnbEmIc//77r5YiRQo5HxctWqT5O6dPn5a2RooUSbt586bRzSEkYKCYD2fWr19vWRk9c+ZMwAl5a2sLLgbvvfeefJ969erJ9/HUEh1SeTd3BLEjkQ7Rby3mHYl+b3x2ixYtZEHDug3OyufZbxBnsLpisSd58uTa+PHj5ff21W9Zq1YtaUfq1Km127dvW56noDcWlIrEAg88Jb744gttwIAB2v79+zUzQjHvOh06dLCMG/7Ot99+K22tWbOm0U0hJOjp2bOnxRDj7/Tv31/aajYvNELCG4p5HzB48GA5yBDCN27cCDghb7/SO2nSJC1lypRa5MiRRXSsWrVKRKyrFm1rIa670sNKrVvtXRXEjqzjYbXMu/PZjhYnXFkMyJ07txY7dmypAYuLl6/rwA4fPlzagd/vr7/+svkfBT3xFRTzroNzEscKi3/+bLHC+JEhQwZp68KFC41uDiFBD4wuOB/h4XXhwgXNn8mVK5e0derUqUY3hZCAgmLeRxMcWLJxoHPmzKndunUrIIW8NRB6gwYN0uLHjy9hBM2aNRP3Sndi6p3tB3d8Ty3zYY2Zd8cy76wt9t4KyBWwePFicWePFSuWHK/OnTtrd+7c0XwN2oGLOto1cuRIh/tQ0JuPMWPGSOw9+h48V/7++2+n+x45ckSsqtgf/WTEiBFhfk9HUMy7hx5mNGTIEM1fQR9AGzHOcewgxD8oX768nJfwJPRXjh49almwvHfvntHNISSgcGc+xWz2YcgajgzxRYsWldJvFSpUUHfv3jU0a31YiRkzptRvR0mzvn37Stb1vHnzynOoWY5yKKFlv3dWn95RbXe8L7K9W4PHyGZvnaneWUZ5/Xm91rv1a6yfc5Sl3lX0zPqDBw+WWvEzZsxQY8aMkRJNn3/+ubx/+/bt1ZkzZ6QEXKJEiZQvQZvq168vmbFRNrFDhw4u1aF3lGGdeI/9+/dLxQWUEkJZSJTjwX30kUOHDnkls3inTp1Unz591L59+1SePHkky/itW7cc7o/fO2PGjGrQoEHSB7zxniTstGrVylI32pslT8Mjiz3KnOIaQQgxHr0c7rRp09SbN2+Uv1fASJAggdHNIcS8+GR5wcS8ePFCkpzhUObLl++d1cdAsMg7A21H8rZixYrJ90uWLJnETiLO3pELvrsZ8e1fb59l3joGH/etLfP4LLjx238m9vM05j8ky/z169cl1jlTpkyWtk6cONFQSxVc7ZC3QT/2CJcIDVrowxe4PFaoUEGS3umbnvDO+jl4dFy6dClMFl2Ew+ggwSLCZAYOHBjqa2F5d2SZD8t76tAy736FFFi8ccz++OMPzd/AmII+gPZh7CWE+E8SzYQJE8q5uXr1as3fwFxDnxuzAgYh7kM3ex8DUaS7ryJD/IMHDwJeyNsDAdi+fXtxwcf3LFWqlCT10oV9SKXmvCGm7cW8tz/H0fbll1+KYIdQRiZWZHJu3LixTLpxoTISJLjTM9cXKFDArazoFPThw7lz5yTLsC7gEyVKJEl/EI5Tp04dcYvE5EsX9khU6Em8I8oRoT8uWbLE5nn0zapVq3ok5j19Tyxm4kKjb5cvX6aYdxMk3cQxa9KkieZvrFixIuDKYBESLHz99dd+m5hyy5Yt0rY4ceKYrmoLIb6AbvY+Bq6HR44cUalTp1Z79uxRlStXFpf7QHCtd5XcuXOr0aNHq2vXrqlZs2ap2LFjq549e6patWqpgQMHqiVLlqjXr1+rLl26ePVzdZd7uCz7AoQVlClTRmXPnl2NGzdOffHFF+rJkyfql19+UdevX1czZ85UJUqUELd1o3j69KmqVq2aOn36tEqXLp1auXKl/B6uQpf78AGhKDdu3FCZM2eWcJM7d+6o9evXq7lz56r58+erjRs3yriwYsUKlSlTJnX16lXVokULtz8H7wu3ymTJktk8j8f4fE/w9D1x7seLF8+ypUmTxqPPD2Z0d9mFCxeqhw8fKn9i8uTJcosQkahRoxrdHEKIFfr1Y/ny5ermzZvKH8eOevXquTU/IYS4D8W8l8Bghdh5CCTEMSOWHiLQDELemhgxYkhcuy5WIOKLFCkicVsQuYgpR1z9V199JfHBEP44Ht26dbN5H/tYeWcgLl6PW/c2aMPYsWPV119/LTkP8NsdOHBA7d27V8QuYu4RL7x161bVrl07FT9+fGU0EPI4vlgoQntWr17tNAY6JCjovQsW8bZt2yb9dffu3eqjjz5yui9+P+yfJUsWtWXLFulvgUqPHj1EgOrb5cuXjW5SwFG4cGGVM2dO9fz5czVv3jzlL2DhVs+Boi84EEL8B1zDMX7AkIK5lr9w79499fvvv9vkBSGEhB+Rw/G9g464ceOKoM+aNatYTSFo165d6zSBmxkWMKpXry4brHoQMVghxqZPAiEWCxQoIBus67Du4OKDBYAUKVLYWNzxvHUSOyTIw3PugNcgfMT6ffFcjRo1RDThd7ly5YpYSP/44w9LYj5YuJHQDkmeSpcu7ZdWKF3IQzSir61Zs0blyJHD4/fTBT2AoC9btqyKEiWKF1scPMCqiuM5cuRIsVCHBvbBvvg98VqcH66SOHFiWSC0t8TgsScLO2F5T3geYSOeg34DsdyxY0c1adIk1aZNG0M9f3SwMItxHYu02bJlM7o5hBAHYOzAvAmW8M6dO6uIEY230c2ePVu9fPlSPB3dubYRQjwjAnztPXwtcQLE4ocffqhOnDghk2QI20KFCqlg4tKlSyKerbfbt29bXHcxwEOIvnr1SrL9Q1SWL19ejh3cj7EAYi3kIcjh5g/LFdy2YMWyBqKoa9eu4uYLi9L27dvV8ePH5cL2+PFj+Xy0CUAI58+f37LIgA1WUn+YQLsq5NetWycLIt4AQwAWN9BXiWeUK1dOstTDW8UdcMwRwrJ582a3XodzA2MKzgnw9u1blTZtWqms8O2334b42vTp06tvvvlGNm+9p86jR49koQJWevRT4ho4/xCm9eLFC7Vjxw5VrFgxQ9uD3x7hIufPn5fQosaNGxvaHkKIYzC/wdiBsRfGI2SONxLMJ3BNQ+gpKv/Aq5EQ4j7uzKco5sMJrEpigg93aMTUL1q0SFWpUkUFK+hmEOrW4h5WcsShQ6haEytWLLHaY8P9yJEjy4YOjeMKIY/3g2sZLEdwEX/w4ME78aawGOI9MmTIYCPcEa/sD6vX/iDkiXfAIhKslyjn6A4VK1aURSd33dNR8gdxzBMnThQBDis/LPxYQMRiGcRXqlSpJKYdYNHs2LFjch/jUIMGDWSDdw1Emyvv6QoU82GzsE2dOlXVqVNHciwYCfI7YEEavyUWR1mSjhD/BQuzyOuDsd1ZeWBfoYeZIiQTY4c/hCcSEoi4M5+im304ASEJ8fXZZ5+J2znct+EG1axZMxWMwOoNwYMNbvn2K8sY9CHs7TdYqmC5hxiBoEcsFgQ63ODxGMcZQkMX/9hSpkwpt7iI+LO13RWwSIFkd/A0oJD3XzDYeuLZgNd4kvQMgg+eLr1795YEdXBnhFVGF93wQrFesML5lS9fPstj5LPAhpAS5IRw5T1J+IKwLIj53377TRY+YW0zigkTJsht/fr1KeQJ8XPgPTVq1CjJoQMjCTwNjR47ELZIIU+Ib6Bl3gfuisiIjlhI0KlTJzV48GARosQ9IOpxscLqczDEdkOQ4bsiDwOFvH+DeHNYtZEI0h2wuIfERfAwMQO0zIcNLK5g4a5Xr17qp59+MqQNFy9eVBkzZpRr1+HDh9X7779vSDsIIa7zySefiFW+Q4cOYqU3AuRYQWgWjC+w0Lub84gQ4tl8KnB8jQMUWMewUjlo0CB5PHz4cMmc7m9lRIh/sW/fPrkQQsjD0wBeHhTy/gvXRIk3wEQcYPEXXklGgAofEPIIE6OQJySwxo7p06eLt6MRIEQLQh5hWhTyhPgOmod9AFy9kcANZergMg1hhthtuFNSoBF74H1Qu3ZtiZVHYkCstrN+t/9z5swZt8sD4TWE6OD6gHMdORQQN9+0aVOffj7GHL0+NEp2EkICA+S4QN4W5DhBJQqE7fgSiPjx48fLfY4dhPgWutn7GMSuIms7Bly4isMdqm3btgEf2+0LgsHNHl4cyP4Kyxg8OLDg40qpM2K8B44n5zCGX7yObvZEB2FYqB6A2vOokODLZJ0YfxAWBjf7U6dOSfgIISQwGDdunMwfkPQX568vwzlRjq5Ro0aSr+jChQt+Wd6XkECCbvZ+DFymDxw4oGrVqiXi9Msvv1TNmzd/J6M7CS7gUou+gIk0hDwscli4oJAPDBAn6MmWLl06uSVEB3Xm48SJIyE2K1eu9NnnYmEJSbQArHoU8oQEFpg3JEmSREpKojqJL8cOPU4f8xgKeUJ8Cy3zBqFPnJAQD+IN5dJQz7d48eJGN81vMatl/ty5c7K4gzh5WGl/+OEHSYBFbw0SaNAy7x169OgheVYQd7pz506fjAVr1qyRsRXlCpFNnwuJhAQeAwYMkPmDLz17/vjjD1WqVCmpLoQQISwoEELCRtBb5pEN+NNPPxUrOCZBS5cufWf1Es9bb5UrVw71fVHCKX/+/DJgoTYz4pIcJQ9Knz69ih49ukzEdu/e7fC98JmIK0IdesRInj17VpUsWVJ169bNsMRHxPcsWbJE+hSEfKJEiWSx4rvvvjNEyCNpDurVwlqMGrHFihVTe/bsCTXj/scffyzlq5ImTaq6du2qXr9+7fZ5Qwj5D5yHuIb8/fffltKB4b243KdPH7nfqlUrCnlCAhRYxjHx96Vnjz52NG7cmEKeEAMwpZiHy3qePHlEWDsD4t26nvm8efNCfE+4LUG0lC1bVtzkMdlq2bKllAvTgVsTLO0Y2CDO0IZKlSqpW7duOX1fCP5jx47JAgMmVEOGDFEFCxaU1xNzexl07txZ1axZU1bdIJz379/v0qJSeIH+vGHDBvXrr79KSaqKFStK3P7Vq1cd7o84b5wTSHyDRSl4lkCoo065O+cNIcSWZMmSyXmiW9rCG0z6sXCHRTkkayWEBCao7Y64edC/f/9wr7SyZcsW2eAtCY8AQogBaCYHX3HJkiU2zzVp0kSrVq2aW+/TrVs3LWfOnDbP1alTR6tUqZLlcaFChbR27dpZHr9580ZLmTKlNnDgQJc+Y9myZVrSpEmlzZEjR9b69u2rvXr1yq12mhkci6VLlwb8MTl+/LhWuHBh+Z2xde7c2fDv9OzZMy1SpEjaypUrbZ7Pnz+/1qtXL4evWb16tRYxYkTtxo0blufGjx+vxY0bV3v58qXL5w0xDw8fPpQ+jVsSNi5cuCDXARzPnTt3htvn4DqVN29e+Zzu3buH2+cQQnzDzZs3tejRo8s5vWHDhnD7nLdv32rFixeXz7Ge+xJCfDufMqVl3hXgugi34KxZs0rSsbt379r8v0yZMjZlgRC3CCulNbC643kA6+TevXtt9kGsEh7r+4RG1apVxUr/+eefi6ty3759Vb58+dTmzZvD+G2JP4DfFJmq8+bNK+6zcGVFCMjQoUMNzwGAtsHSDtdea+Bu/+eff8p99EeEkOigX6N0HqyI1ucE4nzg4ufKeUMIcQzCXZAdGiD8KrwsbAj1gdcMku4hTIYQEthgbtu6dWu5D08b5GUKD9avX6927Ngh84aePXuGy2cQQkInKMU8XJlRD3rTpk0irlD3/aOPPrIpD4UM0yixoXPjxg0b0QLwGMLl+fPn6s6dO/J6R/vgta6CuOmFCxequXPnyn2IIpSyQ4K0ixcvhul7E+PA7whXepScevnypfRBuLKjrrQ/gIl80aJF1Y8//ijlE9GXUWoGohthKCBx4sSSqDG0c0L/nyvnDSHEOUiGiYkyEkwtW7YsXBbx9HhXhMDgmkMICXyQewex8wjZnDNnjtffHwsE33//vdyHQQw5qgghxhCUYr5u3bpiBYdVsXr16pZ4QetEQxD7AwcONKR9SH5Wr149dfr0adW+fXux8KPeePbs2WVyRxEUWLHxiFtDAjj0MVjjp0+fLonukPjQn0CsPKx/qVKlkmR1qLaAfqhnw0VfxAIYIcQ3pE6dWnJr6NZ5eIB5k2HDhslCY4IECSTfCyHEHCARnW4tx+2zZ8+8+v7jx4+XOU2sWLHESEEIMY6gFPP2ZMyYUayOZ86ccbpP8uTJ1c2bN22ew2OsfMIVGa9HXV5H++C1noAJ1ujRoyUxWunSpUXEw4qSI0cOtXjx4nBPbELCBhaHPvjgA1khxyT8k08+kYmzXk3B34DVHV4qT548kfIyqMSAxQicH+6cE/r/XDlvCCEhAzdZuM1icXfixIlee9/jx49bklWOGDFCEmcRQswDKibByxSlJkeOHOm190ViWz1RJrxbMT4RQoyDYl4pGegQM2/tVm8PXJDtrZLI/I3nQdSoUVWBAgVs9oEbEh7r+3hK7ty5JVsosuXDUnPhwgX12WefqUKFCqlVq1ZR1PsZKDOILPXI4H7w4EFZlIHVe/ny5WL19new0o5z4f79+5J13lkoAPo1QgWsqzXgnIBQx4KTK+cNIST0EBh4ZOl5K+wXxzwBYTTNmzeXRUaEmKGkFCHEXCBER/cwxS1KyYYVzDdRaQNVo2Bkgos9IcRgNBPy+PFjbf/+/bLhKw4fPlzuX7x4Uf7XpUsXyQ58/vx5bePGjZKxO0uWLNqLFy8s79GoUSPt22+/tTw+d+6cFjNmTK1r166SjXzs2LGS/Xvt2rWWfebPn69FixZNmzFjhnbs2DGtdevWWvz48W2yfYeVJ0+eaN99950WK1YsSzZ0ZNFfs2aNZBY1M/6ezf7BgwfSt6JEiSK/C/rHl19+qd26dUsLBNCX0Y/Q19evX6/lyZNHsu7rx3v06NFauXLlLPu/fv1ae//997WKFStqBw4ckNcnSZJE69Gjh1vnDTEPzGYfPvz7779yPuLYVqlSJcxj/c8//yzvhcoTly9f9lo7CSH+BapVFC1aVM730qVLy3U7LIwbN07eK0aMGNrp06e91k5CiOfzKVOK+S1btliErvWGknQowQXxAdEB0ZUuXTqtVatW7whuDHrY3/59UcInatSoWsaMGbXp06e/89kQPGnTppV9ILJ37doVLt8RAhECCUJJ/35FihTR1q1bZ1pR769iHmXYcIFLnDix5bdA6bUjR45ogcSCBQukX6PvJk+eXErNYIFCp0+fPnK+2JfP+uijj+TCju+PMnsQHu6eN8QcUMyHH4cPH5bFYhxfLIp5CkqgoqQk3mfy5MlebSMhxP+A6NYNQIMGDfL4fVDmTjdWjBgxwqttJIR4Pp+KgD9GewcQz4HL5c8//6zGjRunXrx4Ic8VKVJEMhPD1dvokmfeBPHbSBxXpUoVv/heSCgzZcoUNWTIEAnVANmyZVPDhw8X11VCgg1UKUCSx4cPH0q4BfEuSEqJOFi4z6IUqh7O4iqoToHqKMi/0qxZMzV16lS/zN9BCPEu06ZNUy1atFCRI0dWu3btkrBQd0DuplKlSklOndq1a6t58+ZZkuMSQoydT/FMDHBQ5gsZiZGQBAIeWcgxUCNjP2qCI5P67du3jW6mqXjw4IEaMGCA1IHGxBpCHjHmSFZ46NAhCnlCSLjw1VdfSVlLLNyiEgsSVbrKkSNHJAknhPzHH3+sJk2aRCFPSJCAxTvkWkI5Shh6kNvHVZB8E0YUCPkyZcpItScKeUL8B56NJgFZw5GRGMnxkPEeIh/1wpFJHSXQMJCj3ijxHNRMR4kXiPhevXqpO3fuSKZ3ZJjGYgpKt/mDxwAhxJxAfKO0JTJUY4JdokSJEKuw6KD8arFixdS9e/ckcSqSqcJCRwgJnrEDc5UsWbJIIrySJUtKdZ3QQALbwoULy/wHyZiXLl0qRiNCiP9AMW9CUY+MxxcvXlSzZ8+W0mgvX75UM2bMELcqZBGHSz6EKAkdrGKjYkCNGjVkUQQZYeH6kjNnTjm+J0+eVK1bt+bFjRDiszH+zz//VO+9955lUr5582anoUkYs6pWraoeP34sbrIIVULFCkJIcJEoUSK1fft29f7776vr169LNvo1a9Y4rIiEuQ/K2VWqVEkq22ARENVt4PZLCPEvGDMfBPz9998Sa7lo0SKZ3AFYZeCu2aBBA5noxYwZU/k7voyZP3funMSYwQoGDwcdLIZ069ZNjhndzAixhTHzvs2XUrFiRQntAeXKlZOxCSE/GN9hjce4f/XqVfl/mzZt5DHKqBJCghd46GD+t2fPHnkMD58ePXpI6VyMDxDtv/zyi3h6gkaNGklYDnJ1EEL8bz5FMR9EwE1q/vz5YlFG8iSd2LFjSwxVvXr1JB7KXwfs8BbzWKnGBBjHyNrShdVs1GFG8hhY5AkhjqGY933+DoRSYaKtL9Tag5CrH3/8UbVq1crn7SOE+Cfw1EFIJjw14b3pCMx9evfuLbk6mF+DEN9CMU9C5cSJE2rOnDki7PXVVwALfdmyZWXVFlvmzJmVWcU8uj6sWsuXL1crVqywrFIDXLhg9YKAhxWebvSEhA7FvDEgrOqnn35SGzZskIk5tgwZMsgkHIu0HL8IIY6A5w4SJcPdHok1X716pVKnTi05gBo2bKhixIhhdBMJCUoeUcwTV8HP/9dff4moX7ZsmVinrYGY14U9EiglSJAgoMU8XOZRnmnLli0i4BFzai3gERcG8Y7wAyS6I4S4DsU8IYQQQkjYoJgnHoGucPjwYVmhXbt2rSRZQhIUa5AJFYJX3/Lmzeszt3x3xTxWmA8cOCDiXd+sxTvAqvOHH34oAh7lmpBcihDiGRTzhBBCCCFhg2KeeK0jIXYcwh7lSRyVQEKiJZQryZUrl8qUKZNlQ8m2xIkTezXOypmYR0c/deqUlGrCrb6h7ArcxqxB0jq0FV4GeJ/y5cvTjYwQL0ExTwghhBASNijmSbhw9+5d9c8//6jdu3dbtlu3bjndP06cOCLs06dPL4lU4sePL2762KzvQ5ijG759+/adWwh4fC42fBY+H50b2VhRXg/13UNqQ8KECVWRIkUkCz02eBOgXYQQ70MxTwghhBASNijmiU9A17l8+bKIetRbP3v2rJR0w+2VK1d82ha4x6Pusr4hHCBHjhxyyyyshPgGinlCCCGEEN/NpyKH8bNIEAORnDZtWtnsgXs7rOYQ9ohTv3//vpRRsr7VN8Tlw/0d76ff6vfhxg/rOlz2YcXHaz/44AOVNGlSsfYjSR0EO63thBBCCCGEkGCCYp6EC0iKlz17dtkCpc48IYQQQgghhAQKEY1uACGEEEIIIYQQQtyDYp4QQgghhBBCCAkw6GZPCCHEK+j5VJG4hRBCCCGEuI8+j3IlTz2z2ZOAAV31zZs3KlKkSMxQT4gfgioWadKkMboZhBBCCCEBD6qGpU6dOsR9KOYJIYR4hbdv36pr165JdYnwXnDDqjUWDnChYxk8Hg9reCxs4fGwhcfDFh6P/+CxsIXHw7jjAXn++PFjlTJlSqnuFRJ0syeEEOIVcMEJbQXZ2+CCyknGf/B4/AePhS08HrbweNjC4/EfPBa28HgYczxQZ94VmACPEEIIIYQQQggJMCjmCSGEEEIIIYSQAINinhBCSMARLVo01adPH7klPB7W8FjYwuNhC4+HLTwe/8FjYQuPR2AcDybAI4QQQgghhBBCAgxa5gkhhBBCCCGEkACDYp4QQgghhBBCCAkwKOYJIYQQQgghhJAAg2KeEEJIwBIhQgS1dOlSo5vhN6RPn16NHDnS6Gb4JRcuXJD+cuDAAaOb4hcE+7kT7N/fHo4dzuHYYUuwnzsR/Oz7U8wTQgjxa8aOHSsTzejRo6vChQur3bt3q2Dl6tWrqmHDhipRokQqRowYKleuXOqff/5RwcD27dvVp59+qlKmTPnOZOrff/9V3bt3l+MRK1Ys2adx48bq2rVrKtiOBXjy5Ilq3769Sp06tfSTHDlyqAkTJqhgg2PHf3Ds4NgBOHaYb+ygmCeEEOK3LFiwQHXq1EnKwezbt0/lyZNHVapUSd26dUsFG/fv31fFixdXUaJEUWvWrFHHjh1Tw4YNUwkSJFDBwNOnT+X3xyTLnmfPnkn/+P777+V28eLF6uTJk6pq1aoq2I4FwDmzdu1aNXv2bHX8+HH1zTffyAR9+fLlKljg2PEfHDs4duhw7DDh2IHSdIQQQog/UqhQIa1du3aWx2/evNFSpkypDRw4UB7jMjZ58mStevXqWowYMbTMmTNry5Yt08xI9+7dtRIlSoS4T7p06bT+/ftrzZo102LHjq2lSZNGmzhxomY28LsvWbIkxH12794t+128eFEenz9/Xh7//vvvWpkyZaS/5M6dW/vrr780sx2LnDlzaj/88IPNc/nz59d69epl8zoznzscO/6DY8d/cOz4D44d5hg7aJknAe3itHXrVpU/f34VLVo0lTlzZjVjxoyAdpUhhPzHq1ev1N69e1WFChUsz0WMGFEe79y50/Jcv379VO3atdWhQ4dUlSpVVIMGDdS9e/eU2YBlpGDBgqpWrVoqadKkKl++fGry5Mnv7AeLG/bbv3+/+vLLL9UXX3whlqZg4+HDh3K9iR8/vs3zvXr1Ul26dJH41/fee0/Vq1dPvX79WpmJYsWKSX+BazXmnlu2bFGnTp1SFStWtNnPrOcOxw5bOHa4B8cOjh0VAmnsMGwZgQQVq1evllW9xYsXv7MS+ODBA61ChQraggULtBMnTmg7d+6UVbECBQqE+J7nzp3TYsaMqXXq1Ek7duyYNnr0aC1SpEja2rVrLfvMnz9fixo1qjZt2jTt6NGjWqtWrbT48eNrN2/eDNfvSwgJO1evXpXxwt760bVrVxkjAP7/3XffWf735MkTeW7NmjWa2YgWLZpsPXr00Pbt2ydWs+jRo2szZsywsa41bNjQ8vjt27da0qRJtfHjx2vBZF17/vy5WJPq169veU63rk2ZMsXyHK4LeO748eOamY7FixcvtMaNG8v/IkeOLNfBmTNnvvM6s547HDts4djxHxw7/oNjhznGjsjGLCGQYOOjjz6SzRHx4sVTGzZssHluzJgxqlChQurSpUsqbdq0Dl+HhBwZMmSQlWSQPXt29eeff6oRI0ZIbAsYPny4atWqlWrWrJnlNatWrVLTpk1T3377rZe/JSHECHLnzm25D++euHHj+m9sWxh4+/atWM0GDBggj2FdO3LkiIxrTZo0cXg8YF1Knjy5KY+HM+DtBYsJ5lzjx49/5//WxydFihRyi+OTLVs2ZRZGjx6tdu3aJRa2dOnSiXdcu3btxPPN2uIULOeOM4Ll+3PscA2OHRw7XMWfvj/d7EnAuDiVKVNGNW3a1PIY7i7WAwuAiNfdYFx1lSGE+CeJEydWkSJFUjdv3rR5Ho8xydRBUidrMHZg8mo2MHlEZmFrsIiJRU9rguV4hDQZv3jxoiwSY4Jlj/XxwbEBZjo+z58/Vz179pTFbIS3YdKJBFZ16tRRQ4cODYq+wrHDFo4docOxg2NHoI4dFPPE73jx4oXE0CMWyXowhYVeXwkFN27cUMmSJbN5LR4/evRIBqQ7d+6oN2/eONwHryWE+DdRo0ZVBQoUUJs2bbI8h4slHhctWlQFG8hGbR+/ilhGWE/If5Px06dPq40bN0oJrmA9DtiweG0NJqhmmGy7AscOWzh2hAzHjv/BsUMF5NhBN3sSMC5Os2bNMqxdhBBjQHkYuIHCRRShNyNHjpTSOnroTDDRsWNHSU4EV1mMk0jmOWnSJNmCAdQ/PnPmjOXx+fPnJRFVwoQJZaH3888/lzJCK1eulIVcfdEW/8cELViOBRa+S5curbp27Sp1oiHYtm3bJtdQWNyCBY4d/8Gxg2OHDscO840dFPPEL12cNm/e7NDFyRq4uzhyg8HrMAhhJdEVVxlCiP8C977bt2+r3r17ywQrb968UgPX3uMmGPjggw/UkiVLVI8ePdQPP/wgOUMwyUAW3WDgn3/+UWXLlrWZcAFMuvr27Wupg4w+Yg2yMSNMK1iOBaq6zJ8/X/qJnmEZk/L+/furtm3bqmCBY8d/cOzg2KHDscN8Y0eE/8/KR4jPQFwJLirVq1d36OKEwTNJkiShvg9c8VevXq0OHz5sea5+/foy+OCkAyhFh1U1JPTQXWWw8ogYICbAI4QQQgghhAQqtMyTgHFxQu35VKlSqYEDB8pjrBIi6323bt1U8+bNxZq/cOFCyVYfqK4yhBBCCCGEEOIKtMwTn7B161Ybtx4d3cUJLl+OsHZxwm369OnFDcj6fRELduzYMZU6dWr1/fff22S8BxD8Q4YMsbjKjBo1Siz2hBBCCCGEEBKoUMwTQgghhBBCCCEBBkvTEUIIIYQQQgghAQbFPCGEEEIIIYQQEmBQzBNCCCGEEEIIIQEGxTwhhBBCCCGEEBJgUMwTQgghhBBCCCEBBsU8IYQQQoiH5MmTR0WIEEFFixZN3b171yefiZKu+EzcGkV4tQHlZ/G+9mVmg4FffvlFvvvvv/9u8zyOBZ63Ls0bDLx580Zly5ZNpUuXTj1//tzo5hDil1DME0IIIYR4wJ49e9ShQ4fk/qtXr9Ts2bONbpJfc+HCBRGl6dOnN7opfsft27dlYeSDDz5Qn332mdHN8QsiRYqkfvrpJ3Xp0iX1888/G90cQvwSinlCCCGEEA+YOnWq3KZKlcrmcXjTvn17dfz4cbk1GzVq1JDvNnDgQBVM9OvXTz148MBQbwt/5PPPP1e5cuVSgwcPVjdu3DC6OYT4HRTzhBBCCCFu8uzZMzVv3jy5/+uvv6rYsWOrw4cPi7U+vEmcOLG4H+PWbMSLF0++W4oUKVSwABEPF3osClWuXNno5vgdzZs3Fzf7SZMmGd0UQvwOinlCCCGEEDdZtGiRevTokXr//fdV2bJlVZ06dUK1zpcpU0bczLdu3ar++OMP9emnn6okSZKoiBEjWuKh4YKOfeCSvmzZMlWuXDmVMGFCy+ucxav36NFDnmvbtq3Tzz9y5IjskyxZMvXvv/9anl+8eLFq2bKlfJcECRKo6NGjqwwZMoiIOnnypFeOF+K+8Z7g4sWL0g7rLbSYeXx3PI9j+PLlS7Fkv/fee9LWtGnTqu7du6sXL17Ivg8fPlRdunRRGTNmlP/jmOJYvX792mn7Nm3apGrWrCmLCFGjRlVJkyYVL4GdO3c63P/06dNyfPCdkC8BizmI7f7444/V9OnT3To22P/p06eqUaNG0hdC4vz587Jf8uTJ5XMzZcqkvvvuOzkmzpg/f74qX7689CO8Bu1E20+dOuVwf/vfJKR+7G7/fvv2rYjy4sWLq/jx46soUaLIsUbuia+++kr6vT0NGjRQkSNHVhMnTgzxNyQkGKGYJ4QQQghxE120QxRZ30I4hZasCwsBED7nzp1TFSpUUB9++KGILGuGDRumqlevrh4/fizW2tKlS0sMsTOaNWsmtwsWLLCIWnt0kdmwYUMRUTq1a9cWL4MYMWLI4kGlSpVEgGH/AgUKqL/++kuFlRIlSlhiwWPFiqWaNGlis7kKchOgfcOHD1fZs2eXY4dFFcRU16pVS927d08VLlxYzZo1S+XPn1+O282bN0X8Qyw6AsIfvwMWT7AwgOOOhQA8Llmy5DviHIsiBQsWlOfxu33yySeqSpUqYlnfvn27JLJzh6VLl8ot2hASBw4cUHnz5hWhjO9VqlQpdf36ddW/f39Vt27dd/bXNE2Obb169aRd+fLlkwULLHCg7Xi8du1a5W1C6t9YNGrTpo3at2+f5AfAb4bfCefMmDFj5DvagwUBfO9r1675xPOFkIBCI4QQQgghLnPy5EkNU6goUaJot27dsjyfLVs2eX7WrFkOX1e6dGn5P7axY8c63CddunTy/0iRImnLli1zuE+fPn1kH9xaU7x4cXl+3rx577zm33//1ZImTSr/P3z4sM3/5s+frz158sTmubdv30obsX/OnDnlsSttCInz58/La/AdnTF9+nTZp0mTJjbPb9myxXLsChUqpN25c8fyvwsXLmgJEiSQ/+XKlUv79NNPtadPn1r+v2fPHi1y5MhaxIgRtYsXL9q876RJk+R1mTNn1g4ePGjzv23btmlx4sTRokaNqp06dcryfLNmzeQ1P/300zvtf/bsmbzOVbA/3h9te/TokcN9cCz0796rVy/t9evXlv/ht4wVK5b876+//rJ53fjx4+X5xIkTa/v377c8j99S//3ix49v04eB/lnO0PsxfhN3+jeOPf6XOnVq7fr16+/8/9ixY+/8PjodOnSQ1/74449O20VIMELLPCGEEEKIG0ybNk1uq1atKlZDHd06H1oiPFi/v/zyyxD3gUUV7+8O+uc7cvNetWqVunXrlliU4U5vDUIEYC23Bu7SaGPRokXV0aNHJSmdP4B24fgmSpTI8hzcxuF6rruhT5kyRcWMGdPyf3znjz76SFy8rV3D8VgPVYBHRe7cuW0+C5bv77//XrwB4OKtA0s/gDXeHng34HWugmOL90+dOrWKEydOiPvCS+LHH3+08dDAb6l/940bN9rsP3ToULnt3bu3WLatj2GfPn3k+yJef/LkycqbOOvf+nGDJR5hAvbA0wKeEY7ImTOn3MKiTwj5D4p5QgghhBAXQczuzJkzbcSzTuPGjSW2Fy7NZ8+eDTFDd2i4so89cJeHKIeou3Llis3/dIFv32adM2fOiJvzN998o1q0aCEx69h0Aeat2PmwArFnvxgBsmTJYhG8iMF29n+4auvs379fHiPuHK9zBNzFgXWoQaFCheT2iy++UOvWrXMa1uAK+vG1XpxwBtz5HcWyQwSDq1evWp7D76/3QUdhDHgfPTRjy5Ytyps467tIbIgFi9WrV0toABZeXEU/PvrxIoT8D4p5QgghhBAXgYUbJbIQH43YbWuQWA7WWngq69Z7R7hSZ92TWuxIwoYYZFicETOuA4s82o1YacRPW/PmzRsRpUgmh5hyxHuj7ViwwIa4Z4C4dH/AmeUW3z2k/+tWb2vhrX83iF77hHz6pgt31IHX6dq1q8SC//3335LPIG7cuBL/3blzZ7djupGsD+A9QsPZd9Nfa/3ddGEPEezsvbGIYb2vt3DWd/EbYFEJ3gtI2oe8BClTppQ4fiTFe/LkidP31L/D/fv3vdpWQgKdyEY3gBBCCCEkUNBd6CGckITMHl0YIXv3Dz/84DBpHcRMaLiyjyNgecdnQ4j37NlTnps9e7Z4FMBiigzi1kC8T5gwQdyekVSuWLFisigB4Q/q168vyfH+F0ptPKFlew/t/9Zg0QPgu9svzNhjXQYQLvwbNmwQ4Y4EcrDaY/vnn3/kGMLFfOzYsS61Qf89XFkscee7hSf6cfOk7yIJIhZCli9fLon8duzYoZYsWSIbwgFwXFFX3tmiB6otEEL+g2KeEEIIIcQFkDkcLsLg7t27IkScAfdtCD2UKvMlyL6eOXNmKTuG9qEEmF4WzJGL/cKFC+UWMeGOYvRRgs2spEmTxmK91o+RO8Aajw1gsQRZ6RFqMW7cOFk4QcnC0NBDAtCfvAk8R/T3xUKBI+u87pmg76uDSgcoXYhKCo7i+FFaMCzEixdP4vz1WP/Lly+LVwiqB7Rv315t27btndfoxwcLTYSQ//CPJT5CCCGEED8Hgg9u6Sh9Bku1s61bt24uJcILL/RYaLR379696vDhwyJcUWvcHpRy05PIOUrO5qhUmKegfjvwl1rhEOKwuB87dky+a1hArgQIeN3C7+pxQ2I3HBfEuEM8ewsk1NPd6B0tVKCf6s/bLzro4t5R0sNDhw6J+PYm6JsoHRjScUM5QOAstwEhwQrFPCGEEEKIC+hx8KHVRYd1FqxcudIm1tpXoH1wyYbVXXf31p9zljwN+1m7T8MLAd/Dm8Ibmf8hXJFzQF9EMBJYoJHVHcK2Ro0a6s8//3xnHyzebN68We3atcvyHCzvjhIC4nvB1d7Z4ogzl/QiRYrIsUcMvjfp0qWL3CID/sGDBy3P4/v+9NNPIpzh5t+qVSub1+n17iGwX758aXn+woUL0o88DblAwsEFCxZITXl7VqxYEeJx0xMQIlM+IeQ/KOYJIYQQQkIBrr/I+B4tWjRVt27dUK2tKL8FV2XrRHS+ApbVihUrins1Eo5ZZy63B3H1ENgoT5Y1a1YpU4cybrDqQshB5HpTPMOVHwIZpdIQj9+yZUvZjAJu3Uhoh3AChCggU3716tUlUSAs1rDcw6PB2mKMZG3IzI4Ebvg+DRs2FIs8HsPCDsHpTllBfB5AvLg3adOmjbiy37lzR8rzQaTjmGMBB/HpWEiYO3euTXlFvU9A5COkBIkR4XGA/BA5cuSQ44G8Cp4A93ycOwhrKFGihBxjJGzEsUQJQPTDn3/++Z3XYUEMHgFIlqeHNRBC/gfFPCGEEEJIKOgu859++qlLSbh067xRrvbW8fGoew6h6QiEDMCaDPH59OlTSUyG7O6IYd65c6dLWdbdAbH5EJlYYPjtt9/k+Bh1jHQgIJFfoEGDBpJRHbkOkP0feQ9Qmg5167HIoYOyaqgAAMELi/2iRYvEVR/HEokH8Xq43bsKFlpQUhCJCrHQ4S1wjLGYBMEO8YyQCxzzZ8+eSdlBWMqxcGNPhgwZxBKOLPNw/YeHCUrC9erVSwQ+FmU8AR4IgwYNkkUSHFv0tfXr10uSyHbt2olgR3UAe/QEjug37hxXQoKBCJq/pCclhBBCCCEkCIGHAEIdIHCxYET+B2RKnjx5xCsGCftQeYAQ8h+0zBNCCCGEEGIgiN2HpR/lDMl/wJMACRy7d+9OIU+IA2iZJ4QQQgghxGB++eUX9c0334jbPuLUgx2EHCD/BBLmnThxIsT69YQEKxTzhBBCCCGEEEJIgEE3e0IIIYQQQgghJMCgmCeEEEIIIYQQQgIMinlCCCGEEEIIISTAoJgnhBBCCCGEEEICDIp5QgghhBBCCCEkwKCYJ4QQQgghhBBCAgyKeUIIIYQQQgghJMCgmCeEEEIIIYQQQgIMinlCCCGEEKL69u2rIkSIIBshhBD/h2KeEEIIIYR4nTVr1qgaNWqo1KlTq2jRosktHuN5f+Gvv/5SDRs2VOnSpVPRo0dXyZMnV5UqVVLz5s3zyvs3bdrUskAS2nbhwgWH7/Ho0SM1f/581blzZ1W6dGmVOXNmFS9ePBU1alSVNGlSVaZMGfXzzz+ru3fveqXNhJDAIYKmaZrRjSCEEEIIIcZb5vv16yf3wzI9fPv2rWrdurWaOnWq031atmypJk6cqCJGjGjo9/3xxx+lvY74+OOP1W+//SYiPyxifubMmS7te/78eZU+ffp3nt+4caP68MMPQ3194sSJ1ezZs2UxghASHEQ2ugGEEEIIIcQ89OrVyyLk8+XLp7p166YyZcqkzp49Kxbk/fv3qylTpqgkSZKoAQMGGNJGLCToCxdoW8+ePVWuXLnUtWvX1C+//KK2bNmiVq1apZo3b67mzp0b5s9LmTKlWrduXYj7pEqVyun/0qRJo8qWLasKFCgg91OkSCGLEFeuXJEFh8WLF6s7d+6oqlWrqt27d6s8efKEuc2EEP+HlnlCCCGEEOIVy/ypU6dUzpw51evXr1XBggXV9u3bVYwYMSz/f/bsmbiK//PPPypy5Mjq+PHj4jbuS+7du6cyZsyoHj58qNKmTav27t0rVm2dN2/eSDjAihUr5DGEPVzZw2KZhxu/Mzf60EB7IkWKFOI+S5culTYD3ELcE0LMD2PmiaGMHTtWXMrgwla4cGFZTQ6JQ4cOqZIlS8r+WJnGCr89ixYtUtmyZZN9sMq+evXqcPwGhBBCCNEZOXKkCHkwevRoGyEPYsaMKc8D7DdixAiftxFeARDyYPDgwTZCHkA4jxs3ziKghwwZ4vM22rcnNKpXr66yZs0q9//44w8ftIoQ4g9QzBPDWLBggerUqZPq06eP2rdvn7iEIc7r1q1bThPAVKxYUVa3sYqOiyusCJMmTbJJZFOvXj3VokULcePDxQ3bkSNHfPjNCCGEkMDnxYsXcq3Nnz+/ihMnjmyFChVSY8aMsQh2a2DNX7ZsmdzHonqRIkUcvi+e14Un9ve1kyis2CBu3Ljq/9g7D2gnqq+LX3qV3nsV6VVQRLpUUVQUKYIgoBQBpQgCIiJNAUVAQKoIUqVJk45SVFA6iFTpVUC6lPnWPv/vxry8JC99Jsn+rTUvL5PJ5GYyc+eee87Z58UXX3S6DcT6atasKf+vXbtWXb9+XVkd/D76dyOERAc05olpjBw5UrVt21a1atVKFSlSRI0fP15m7KdMmeJ0+5kzZ6p///1XXkcI36uvvqo6d+4s+9Egz61OnTqqR48eqnDhwiJsg0EIBh6EEEII8Yzz58+rJ598UvLdMTl+48YNWbZt26befvttMYIdheMg4Iacc4BQenfo10+fPu1z+LkvYByhowDx/aAIH1cb7969K2kBVubgwYNq586dtokUQkh0QGOemAJupvCu61lvAEVbPN+6dastz8w+Rw3rK1euHOPGC08+bmBXrlyxbWO/T72N3ichhBBC4gbG+v79+2XSfPXq1XLPhhAcJsoB8sknTpwY4z3YXhOXQWn/OvLmQwVy+pGD7tiGYLcRZeMwOZA+fXop0wcBO4xP4GyAjoAv4H2HDh0Spwb2raMlunbt6ldbCSHhA415YgpQXMXNNHPmzDHW4/m5c+fkf9zoIEyjwXpn2+vX3G2jXyeEEEJI3MADD/V1RLxhkhxRbkhj27Rpk+0+i7xye6Csbh+m7g7o3mhOnjzpV312V4sz0bpAttEbENUAMUCI78GhgXHJqlWrJMrh0UcflTRBT5g2bZrt+6VIkULei/rziKQAvXr1Uk2bNvWrrYSQ8IGl6YhlGTJkiNlNIIQQQqISGJnOjOF06dJJetzQoUPVnj17REguderU8pp9XnnKlCnd7h+GqL2hGypC3UYY3dAIaNCggUyIYCIEOe04dijfh5B/pBpAEwjCdSjl5wulSpUSDaHHH3/cp/cTQsITGvPEFKAcC3VWPZOswfMsWbI4fQ/WO9tev+ZuG1f7JIQQQkhsmjVr5vI11DoHEK5DnjwMSUfhNXe56ACh5prbt2/Hen3QoEGqe/fuyh/sjXFNINvoCVDrT5MmTaz1yNeHblDfvn3V4MGD1c2bN1WbNm0kNx8TAK6AqC9K/uk2HTlyRM2dO1ctXLhQIidQTeDZZ5/1qa2EkPCDxjwxBdxAMRiAQixuTABCOnjeqVMnp+/Bja9Pnz7q3r17KlGiRLIOeXxQxE2bNq1tG+zDPl8M22A9IYQQQjzDXT45vPPOPN0oCatBKLk7ICqncSxfB7Jnzy5LoAlkGz3BmSGvgdGOSYtffvlFxi6o7INw+6eeesrt/uz3CU88BIG/+eYb1bJlS/X888+Lxx9pCoSQyIc588Q0UJYO4jlff/21CMu0b99eZqYRvgd69+6tWrRoYdseOWCYBEDZuX379klpO+TyYT+aLl26qJUrV6oRI0aoP/74Q0rXYZbb1QQBIYQQQmKD6jKugGCtRovJ2ZdG8yQsHfd7T8PdA4kV2/jmm2/a/t+4caNP+3jttdfUyy+/LI4RjHmQm08IiXzomSem0bhxY3Xx4kX1wQcfiBAMwvRgiGthnbNnz6oTJ07YtkdOHsRiOnbsKF59hOrjve3atbNtU7FiRVHbRdja+++/rwoWLCj1ZIsVK2bKdySEEEKiBXtBOXuhOWfYC8rZC81pkEeuK9X4E2afN2/eoLUxUKA8r/339hV45RFyj0kIjKcohEdI5ENjnpgKZo9dec2h2OpIiRIlRCDGHZiZxkIIIYSQ0GFvlCI6zh32r+tyd/YgrQ6Re/6Acm0bNmyIsQ7q79DsQUSBv20MFO5y5L0hY8aMtv//+uuvgOyTEGJtGGZPCCGEEEL8Bl7wbNmyeRQujjJtAHnxefLkUaEC6Xrly5eX/7du3eo2b15/BwjhadG5YLB//37b//r4+YK9Vz+UqQuEEPOgMU8IIYQQQgLiYUaot/Zq//zzz063w3rt9cb2zjzTiM6DWr4/i6NXXqOFd//55x+1YMECp9sgBH/NmjXyf40aNWLk2geaCRMmxIgm8JV58+bZ/i9evLjf7SKEWB8a84QQQgghJCCgmgzC2HWteseSbniO9SBhwoQxqs+ECpSAgw4P6NWrl7p8+XKM1xGC36FDB5u4X48ePZzuByK7mIjA4iw1EJMW0P9xBSYcoPGjJw1KlizpVMke+7YvqeeqBN7y5cttERJPP/202+0JIZEBc+YJIYQQQkhAQE46jN+hQ4dKNRkYp++9957Knz+/1EQfNmyY2rFjh2yL7SBUG2pQWg/teOuttyS3vEKFCpKjD2/2mTNnpFb7+vXrZVvUbq9atapPnwMROhyHOnXqqGeeeUY0BVBWDiXvdu/eraZMmSJl6XT1AFT4cRalgEmDbt26qZdeeklVqlRJjiXC6FEWcM+ePWrmzJlq8+bNtjSCr776yjahQgiJbGjME0IIIYSQgIHa6RcuXBBjFYY76qA7gjKzH3/8sTILlIOD4T5w4ECZZGjdunWsberVqyffwR9guC9evFgWV+TKlUsq8aBmvCtQag7GPhZXQKkf7a1Zs6ZfbSaEhA805gkhhBBCSMBAHfrJkyeLJxle4m3btqlLly5JSVkYrDCk69ata3Yz1YABA1Tt2rXV2LFjpVLO+fPnxXOOcPdWrVqJV94fsA+U24XQHjzxmOBASD/SC3AsypQpoxo0aCAl5JImTepyPz/88INatmyZeN8PHz4s7cR+kiVLpjJlyiSlfZ999ln1yiuviIefEBI9xDOQsEMIIYQQQgghhJCwgQJ4hBBCCCGEEEJImEFjnhBCCCGEEEIICTNozBNCCCGEEEIIIWEGjXlCCCGEEEIIISTMoDFPCCGEEEIIIYSEGTTmCSGEEEIIIYSQMIN15gkhhASEhw8fqjNnzqhHHnlExYsXz+zmEEIIIYSEHagcf/36dZUtWzYVP7573zuNeRI23Lt3Ty1fvlzVq1dPJUqUyOzmEEIcgCGfM2dOs5tBCCGEEBL2nDx5UuXIkcPtNjTmCSGEBAR45PXNJ1WqVGY3hxBCCCEk7Pjnn3/EOaLHVe6gMU8IISQg6NB6GPI05gkhhBBCfMeTlEUK4BFCCCGEEEIIIWEGjXlCCCGEEEIIISTMoDFPCCGEEEIIIYSEGTTmCSGEEEIIIYSQMIPGPCGEEEIIIYQQEmbQmCeEEEIIIYQQQsIMGvOEEEIIIYQQQkiYQWOeEEIIIcRi3Lp1SzVq1EjVqlVLrVixQhmGYXaTCCFhwN27d1Xz5s1V9erV1eLFi9XDhw/NbhIJIjTmCSGEEEIsxIMHD1SzZs3Ud999p1avXq3q1aunypQpo7Zu3Wp20wghFgaTfm+88YaaOXOmWr9+vWrYsKEqUaKE2rBhg9lNI0GCxjwhhBBCiIXo1q2bWrRokUqSJIlq27atSpEihdq5c6d64YUX1I0bN8xuHiHEovTr108M+QQJEkjfkSpVKrVv3z7pO/7++2+zm0eCAI15QgghhBCL8OWXX6pRo0bJ/19//bX66quv1F9//aUKFCigzp8/rz755BOzm0gIsSDTp09XgwYNkv/Rb2A5ceKEKl68uLp69aoaOHCg2U0kQYDGPCGEEEKIBbhz54541sDQoUNV48aN5f/06dOrYcOGyf/Dhw9Xp06dMrWdhBBrcf/+ffX+++/L/3379lWtW7eW/1OnTi19Bhg7dqw6fPiwqe0kgSdhEPZJogiIaiDk759//om1XL9+XcJ8EidOLKGCjo8YnGTKlEk98sgjKl68eGZ/FUIIIcRUkCOPUNicOXOq7t27x3gNYbKVKlVSmzZtEoN/6tSpprWTEGItli9frk6fPq0yZMggxrw9ENGsU6eOWrlyperVq5eaP3++ae0kgYfGPHHLvXv31KFDh9Tx48clVMdxgXcAQj3+AMMeRn3GjBnlUS+ZM2eOsej2EEIIIZHIhAkT5LFNmzYyGW4PJr1HjBihKlSoIOH3nTt3VqVLlzappYQQK/YdrVq1knG1I59++qlatWqVTBhiQhATgyQyiGdEYK2TIUOGqAULFqg//vhDJUuWTFWsWFHC0woVKmTbBnkk3377rfr999/Fg3zlyhWVJk2aOPcNNch3331XxCQwc47Zr9dffz3GNghjwUVz7tw5VbJkSTV69GhVvnx5ZWVwGmBGb8+ePbLs3r1bHg8cOOCRAY1BB0J5ILShl5QpU8p+USLj33//lUX/f/v2bXX58mV18+ZNn9pbsGBB8exjBlIvmAzQhr+eDMA6RAIQ94wbN04WTNqAokWLqg8++EDVrVvX5XtwjnTs2FFt27ZNjvPbb7+tevbsGWObefPmiQcJ+8VvhusQqswkMkFEDvqBa9euSR9ACPGc/fv3S9+L+yly5LNnz+50uyZNmqjZs2eL2v2MGTNC3k5CiLVAf5E3b14Zc8MBB30NZ7Rr105NnDhRPf/88yKwSSJjPBWRnvmNGzeKkfH444/bckgQYoIbJRRhdf1WhJxg6d27t0f7PXbsmKpfv7566623RCly7dq1MnueNWtWVbt2bdlmzpw5YuyPHz9eZs8///xzee3gwYNiYFoJGFgoeYOZOpSvgHHtDITB58+fX+XKlSvWggkNGNVJkyb1KVQexvzFixfVhQsXbI8Q+NGPejlz5kwMFU50Vlg8AZM0aKP9ki5dOttkAAxRveA51idMGJGXhkty5Mgh+ZkwuHEzgNcHnf2OHTtkcOmsk8E1VbNmTTnXMfGD/Cwca9wswJYtW2TQicm1Z599VibPUCIFE2jFihUz4VsSQoh1gZMBoL90ZciDd955R4x5eNjGjBnjkSOCEBK5TJo0ScZuNWrUcGnI674DxvzSpUvF4ZglS5aQtpMEh4j0zDsCIxGGNIz8ypUrx/K0V6tWzSPP/HvvvaeWLVum9u7da1v36quvikIk8lAADHhMIuAGq3PKYfDCa4k8FTNBBAKMdhjvMOL//PPPGK/DG4DoBaheoiYlHrHkzp3bEjntyM2fMmWKqlKlihiTly5dirFgAsB+EgC/uy8pAPiuadOmlcGU48QFHnE88L8VjkkwwYQHIkxQr9QRePH79OkjNwMd+YDzGzO9iIgBEG7CZA1uGponnnhClSpVSiYAiH94EwGESKXBgweL8A0ibTBpg9JXr732mm0bRBhhEsceTETqvs0T6JknxDcQrZYtWzYZTyD31V1UFIZtuEdjLALl+/bt24e0rYQQ64B7OsalZ8+eVXPnzlUvv/yy2+0Rrbx161apitGjR4+QtZN4R9R75h3BgdDGiTdUrVpV5cmTR02bNk2e4+SHJ9JxsNu1a1f5H+Hjv/32WwxPf/z48eU9eK9ZyrgwphBJgIkI+5B5GO8wruBhfeaZZyT3Dh52q4IcIHRYRYoUUYkSJYpze0ykwJsPox5RB3rBOv0/JgHwul7wGgZKeMQCj7MzMPFTpkwZWcqWLSsLohfwe4c7mABBeDwM8SeffNJm6CGSA5NfAOczJsbsUxhwLSCMHhNjmAzBNohSsQfbMLTLf7yNAELfh8mXxx57TH4z9AnIq8O2OqoIIFLJXlTLWd4dISTwQJAKhjzucbgnuwMTyYiEQh8wefJkGvOERDEY28OQx/0cEZVxgb4D4zP0HRDZjHTHVDQQ8cY8DDoY20899ZTXob3wwiKEXgMPmBZi0+A5Zk8wqw4jBoaQs220tzIUoA2IQkAuHcLw0D4Nwm9guGOwgIgEzPpEKjCsdT69pyAtA0Y8PPwQ94PI38mTJ2OI/uE5Bl3r1q2TRYOZs3LlykmIJMLJkb8UTmDiAsY7JoCgd7Bw4UKZOAG4DnAt2V8Ljt9Pn/d4Dca8q+sF64l/jBw5UrVt21YMcgCjHjd0RK44iwDCxKQ9Xbp0ES88RHDsjXkY7wy7IyT06KgYREI5Ct85A1E1iBaEA2HXrl0SnUMIid6+A04XTzSiEDUJuwiT/0iHhH1EwpuIN+aRO49QNAxavWX69OkqnEBOP8Kf4YVHjrn9pETTpk1FLIe5yu5BrrxW03d1rBCBAQFE5H5jIIVHDKYwaaINfHhMMLiCUY9yQgiJtPrsJ1Isdu7cKZEs8BK1bNlSJoVg0CPvnVgDfyOAEHmCcxQ3cl23WoPIC5z7mIypXr26+vjjj0VDwhUQtMSisZ84JIR4Bu7XemK4efPmHr0Hk9TwwqGvxiTeqFGjgtxKQojVgPMJaTnAPm3OHdDBeuWVVyQKD30HjfnwJ/xjgt3QqVMnCSdFnjgEvvwFHivkYtuD5/DIQjUfN1fMqDvbJljeLgzM8f1gMMLrjhxaDAwwGIcQGYwxGPkwxmjIBwbMfCIlAR4U5Cv+/PPPYsRA3R3hzoh4wHkAA3/AgAGSI54vXz4xvuDZt/L3wjmElAGcL5iMcDVAdHUt6NfcbUPPr38gNcRVBJC7qAdM0iDiAr8zhDyRY48oHfsQe0xgQtgTRj76DuTtutOdwHmC6B69QEuCEOIds2bNkns5BtXeRHQhXBYgCs9+Uo0QEh1gMg8T/BiveTPG130HUvagp0XCm4g05nFThCGPMGHMdgcq3BkhyBjo2gMhOZ1XjEEyDCH7bRCajOd6m0CBsH7ku8BQhAcNecj4LITP43sjfwY1J5HXHAl53FYHOfwQC0T4Ms45GK3QWoBnHhM9yDeHWjyMeoiTIFLE6tqTOJ9cDRBxPv/4448xNBhwLcC7j4kkT64XElowG4/IC5QSHDRokESPaA0ELeb53HPPyXmM8xYTodjWfhtHMEGFSQK9IAWFEOIdiKYDiJ7zBtzv4aiAd27x4sVBah0hxKro0pTe9h2YOMR4DdpIEM0jYY4RgbRv395InTq1sWHDBuPs2bO25datW7Zt8HzHjh3GxIkTYVEZP/74ozy/fPmybZvXXnvN6NWrl+350aNHjeTJkxs9evQwDhw4YIwdO9ZIkCCBsXLlSts2s2fPNpIkSWJMmzbN2L9/v9GuXTsjTZo0xrlz5wLy3f7++2/jgw8+MNKnTy/txoI24Tvj8yKZf//911i0aJE8hhM3b9405s+fb1SrVs32m2EpXbq0nCd37twxu4lynm/cuNE4duyYsXv3bnkeL148Y9WqVbbXcT1orl69amTOnFnW7d27V857nIcTJkywbbN582YjYcKExvDhw+V66d+/v5EoUSJjz549pnzHSOHu3bvS7yxcuDDG+hYtWhjPPfecx/t54403jFq1arndJkOGDMb48eM93ue1a9fk3MYjISRu0H/imkFfeenSJa/f37dvX3l/XNcyISSyOH78uFz7GKudPHnS6/cPGzZM3v/kk08GpX3EP7wZT0WkMW9vMNkvU6dOtW0DwyKubapUqWK0bNkyxr7Xr19vlCpVykicOLGRL1++GNtrRo8ebeTKlUu2KV++vPHzzz/7/Z2uXLkibU6VKpWtrXny5BFDCQZ+NBCuxrw9MJTbtGljJE2a1PY7wijGpNL9+/dNa1fr1q2N3LlzyzmbMWNGo0aNGjZDHuA6wPVgz65du4xKlSrJ5FX27NmNoUOHxtrv3LlzjUcffVT2W7RoUWPZsmUh+T6RDvqVTp062Z4/ePBAfoMhQ4Z4vI9WrVrF+k3tweAAg4TFixd7vE8a84R4R+/eveWaadCggU/vP3LkiG1Aj8E9ISQ6GDx4sFz7cBT5ApyacAxgH5HuDAxHot6YjyTgAR0wYIBEGmjjr1ixYsa8efNMNf7MIBKMeQ08MDC8cuTIYftdy5Yta2zZssXsppEwIK4IIMeoItz0MTmDgT+2xyQgPIGYRALXr183unfvbmzdulWiM9asWWOUKVPGKFiwoFeRIzTmCfEcTMJhEhXXzJw5c3zej476+vDDDwPaPkKINXn48KFRpEgRue4nT57s834QzYd94P5PrIU34ykmU1sU5LFASRp17vv37y/5qEWLFpXcFgirNWrUyKPyNcSaQCEcJcSOHj0qZcYgogiF8ooVK6oWLVqI5gEh7krLDB8+XH3wwQeim4Fc+JUrV9pE8SC0aH8OoT/p0KGD9CHIlUPJSuTatWnTRl5HXwIBR+TMP/rooyLuCP2Pn376ibXmCQkSmzdvVn/99ZfoWTRo0MDn/eB6BVCnti8hSgiJTGAH7N+/X+7PL730kt99B8Rv7TWQSHgRDxa92Y0gMfn+++9FwE8rnxcuXFgMeginRbOYHToalOCoV6+eCM5FEhDMe//992UwhksSquP9+vUTkTKUyyMkHEBVB6jaY/IRE1SEENe89dZbIlSL+tDo+/0RxM2aNatcdxAZRZlKQkjk0r17dzVixAhx7M2bN8+vcTWq0GAMumDBAqmMRcJvPBW9lqEFgfGOCwneMfyP+vBQud2zZ4944qLZkI904FFFdYJffvlFVahQQd24cUO99957UjrMXbkxYn0wez5p0iQp47ZkyRLbenjQUFKGEBJ9oFKIVpH2tLa8K1AxpWnTpvI/7iOEkMgF5WK//fbbgPQdcIy1bNlS/mffEb7QOrQAmBnDDFuRIkWkxBw8sTDkYATgBs1w+ujh8ccfV1u2bFFTpkwR7zzKgiGM2l15MGJNUKYNHjKUenvzzTdV37595frWTJw4UQbhjuX7CCGRz4oVK9SVK1fEo161alW/96fDZeFd01F9hJDIA+NBpNGhDHDdunX93p+uOY8+6Y8//ghAC0mooTFvMr/++qsqV66chMwgr7VSpUpqx44dUpM8RYoUZjePmAAiMFq1aqW2b9+uihUrJuFPNWrUUIMHD2Y+ZJiAus9VqlRR69atkzz19u3bS/qEPa+88or81vbeekJIdNWWD9SEPTQuqlWrJtE+AwYMCEALCSFWri2PMUTixIn93h/qzUOzA+NLpPSS8IPGvIlhMgi7heAZhKfSpUsnIS4bN24UA44QdLAIu0cIFDrZPn36SId7+fJls5tG4mDYsGHq+PHjMkkHoZoxY8bE2gaz6vDab9q0yZQ2EkLMATmQ0MYJRJisPYMGDZLHadOmqYMHDwZsv4QQawB9DAjYBrrvgOB2vHjxJPXn999/D9h+SWigMW8Cp0+fllxoCJ7BqEc+PG68CHVhXjyxJ3ny5CKMhJzrpEmTigAgJoBwDhHrsnjxYqlEgQgb3CBdkS9fPnXmzJmQto0QYi4YjCNnHql1JUuWDNh+n3zySZuHDQKqhJDIApOA169fV7lz55axYKAoUaKEatKkifyPlEASXlAmOwjgQkOIvDPDHBciQqjhXcU2o0ePFiVbdwP+aOH+/fvqwoULkgsEAwfCb0g9wHos8+fPlzzkt99+W8pxQLgDBm6WLFkk7xAL/g9E2JGVwLmBfEikY0Ac8c8//5Qcy/Xr16scOXL4vX+Ef8NTlCZNmoC0lygpN1W/fv04J+dwriIknxASfWGy8KwF+t4PD9vSpUtF4RoetjJlygR0/4QQ8/uOZs2aBdz5h/QceOaRO4+ytE8//XRA90+CB435AIMZcdQLh3gZbqL6Yrtz547q0aOHLdy2dOnSavbs2VLTOZqASjtqYuMY7d27V4x2bbxfvHgxRk44BjnwTEMQEIsOLx81apTNwEfIEaIb7MmQIYPNuM+WLZt67LHHJJ8QvwfSGcIVeHCQhoG8yMOHD9tysjFD648hD8ETGJ/Iy4+0kn9mgUkmTOrFBYSqUHqEEBIdQNgWE7G4v2kF+kCiPWxQu+7WrZvcI+gsICT8OXbsmERnamM+0BQoUEAcRyiXiRRBiDFTgDs8oDEfYGC8I9Rt8+bNtllxeJjhUYUBC1A7HGJm8C5HMjBmIOaH760XpBPAgMR3R4gh6luWL19ejG57AxyPmTJlitGROKszD+MfRr6eFNATA/r/AwcOiEcfkwggb968YtjbL+Fk4CN0GwZ99erV1ZEjR8Sgx8AQ38sfQ/6pp56iIR9AMIGE6x+RJa6ELC9duiT59ChFSAiJHj0N0LBhQ78mYuPyzi9cuFBUr5GmpdWqCSHhC6pewXmFNF2Mn4PBBx98oGbNmiXi3GPHjlWdO3cOyueQwBLPcJRYJgEB+XAw6KFE3rNnT3Xq1CnxGH/zzTeqTp06KhLBqQTjHakEUOjG/1gHLyW8ytp4xgQHFL6dGY8QfEMYORR5EYKsIxewDrOGCMO3N+b19tjO3iiyX49yb/jfflIBbdOeU63kiQkXTMQgCsDq4HyCQX/o0CGZEIFBnz9/fp8N+UceeSSo7Y3Gmy4icdq2bavGjRsnk3xYkFKDsoMA6TbTp09X48ePl+0igX/++UciDZC2kSpVKrObQ4ilQH+L+xiiynCPwkR2sPj0009l7IH0KUxqIwWNEBKewJaAMwdRvoi2QYRmsMCYBBV44IjYt29f0CYdSQDHUzDmSXBYvHixkSxZMkyWGIUKFTIOHz5sRBq3b982li9fbrz11ltGjhw55LumTp3aePXVV43Jkycbu3btMjZt2mRMnz7dmDRpkjz+/PPPTvfVs2dPeb+rBcdy0aJFxr///ut0ezx3tr558+axPv/BgwfGwYMHjW+//dZo06aNkTlzZtk2Xbp0xmuvvWbMmzfPuHbtmmFlTp8+LecV2l2wYEHj6tWrHr3v4cOHxv79+40VK1YY//zzT9DbGY3guihevLgRP358o2zZssagQYOMePHiGZUrVzZGjBhhPPHEE/JamTJlbOdzJIBrBuej1a8dQszg7bffluujevXqQf+se/fuGaVLl5bPe/nll4P+eYSQ4PH+++/LtVy+fHkZwwUTjI8rVaokn1e3bt2gfx7xfzxFYz5IjB07Vgbr+CFKlSplrF27Vi6QSDFUZs6cabz44otGihQp5DvmzZvX6NKli3xPGCcwmGE416lTx6lhrg1vDbZ3Z8jbG/NbtmxxuT0M9rj24+zz8dtgn3369BEjDNskSpTIqFWrljFu3DiPDeVQc/bsWSNXrlzS3ueeey7Oc4yGfOg4c+aM8dRTT4kRj75AP+r/cVPGNpEEjXlCnHPhwgXb5P7q1atD8pm///67kSBBAvnMuXPnhuQzCSGBBfdTOMlwHS9cuDAkn3ngwAEjceLE8plTpkwJyWeSmNCYN5H79+8bXbt2tRmNrVq1EqMJRu62bdvC2qDfs2eP0blzZyNt2rTy3SpUqGAMHjzY2Lt3b4yZu7g87Hqx99DD8PfUmMe2rrZ/8803Pfpsx8935NixY8YXX3xh1KxZUwZD+OyWLVtKlIHVZim3b99uJEmSRL7Txx9/7HI7GvLmsHLlSvHI1a9fX2a527VrJzdkq51HgYDGPCHO6du3r1wbiNQJ5bXfu3dv+dyUKVMa+/btC9nnEkICw7Bhw+QaLly4cEhtCIzv8blJkyY1fvvtt5B9LvkfNOZNAhfZ66+/bjMWcSHom/adO3fC0qBHqN6cOXPEw4jvlClTJjHW//zzT5v33T583RMPu17wHrM8846fb4/+XtrYRzg7wqQRfYD3FS1a1JgwYYJx8+ZNwyogpQFtg8cXxrojNORJKKAxT0hsLl68aDzyyCNybcyfPz+kn41IuapVq9rSsa5cuRLSzyeE+A7upenTp5frd9q0aSH9bNgqcELgsxEBiugiEjpozJsAjKWOHTvKgYcnF7nYjoSTQX/58mVjyJAhtjx4DAYwCLl7965b77u+8H3xjHubM48wZfvXESngyX7ceeZd5eED/GYIj2zYsKEYzYhQwOsnTpwwrAA8vmgz2nX06FHbehryoWfAgAGimREXS5YskW0jBRrzhMSmW7ducl0gh92Mez8G4Tlz5rTdowPZBtxfkC70yy+/iH7OjBkzjJ07dwZs/4REMx9++KFct4899pg410INJv8wCYg2VKtWLaBtQN9x7tw549dff5XxKfoORJpGYtSiL9CYDzE48bQRCCMPJ6QrrG7Qw9uMiALk5yB0G2kC9jdmGMD9+/f32GD3Jm9d7197+x0/xxPPvDbQ9X4gZudsu/fee8/pZ3uyTzzCWH733XeNVKlSSV7RO++8I94XM8G5pSc4oNOAiRca8uaAfgDXTlxAfBE59JECjXlCYnLy5ElbGpSzqKlQgUEywmXRjn79+vm1L2jIYLL/8ccft0UcOC4Q94R2EDR2CCH+RfRAlNkskJ6DNB20A2Ndf7h+/boxfPhwcb5pHQDHBbpVn3/+uXHjxg0jmrlGYz60DBw40HYSIvw6Lqxo0MPbDaG3rFmzivAbcnwxY2aPpx5vf7zz9jjmxXuSM+8sdN5ZOoAnn2e/T1ceexjI8Kyio4Nhj3PBzA4IA0cdkvXJJ5/QkLe4Md+6dWuJ5IkUaMwT4jxi6umnnzbd42R/j1uwYIHX78e9DarauNfZ3w8xIYkoPkQeQAUbYwj9Gr437z+EeA8cRnpizGxb4bvvvrNd0998843X78ekHqIMtOaWXjBWyp49uzig0FfoiU8s5cqVkyjhaOUajfnQ8dlnn9lOvJEjR3r8PqsY9Phs5MQjjAYXVbNmzYwjR47E2s6bXHhs6+gRr1ixosfGt6vP9MYz7wve5uHbTw4gjBFq/vDSo8wdPBJmlRzT+fPJkyeXKBEOpKxrzD/zzDMyOx0p0Jgn5D+gLaPV5H/66SfDCkDEFu3BBDQme73xxmvtHCxFihSRew28dhjPOHoUMTbSnjeU4mSuPiG+RfRARNcKoNoT2oMIH1TK8GYSsEaNGra+49FHHxXHJ0S1HSN3/v77b2PMmDE2pxSM/GjN1b9GYz40TJ061XZy+pL3arZBv2bNGlHWRfuhsu0uz80TtXkdvu6t4e8Oe494XHXmnYXOe4uzfXry3bWnHir4mMiAMZc/f37RTgi1NwYVFUqUKCHtatSoUUg/O5r5+uuvbQt+f8wy26+zXzAIxqx7woQJZbtIgcY8If/RpEkTuR7q1atnWAXcP6tUqSLtgjd948aNcb4H3jGE1OM9adKkES+dJ2MWhPanS5fO5l1kv0CIZ7Rt21aum8qVK5se0WM/tkRfhnbBabVq1ao43wNnEsY4egIRY2LsJy5g6OMztOj0pUuXjGjjGo354AOxF12DsXv37j5fbGYY9LgxN2/eXNqOvJUNGza4VHK3X+/MiEVeu2P4uivj1zH8HkavJ+g2wSNvb8y7a68/OO7TU4V8+zbs2rXLePbZZ2U9ytsdP37cCAU6Rx5l9WBQ4vPXr18fks+OdhzryOv/XS3YBl47T4TywgUa84T8D0yO63vDjh07DCtx/vx58Y6hbeiHEDrv6F3XYHxQrFgx2RbeMm88cvo4ZMyYUd4PIUBCiOcRPSiHbCUQYYOcdt23wSlx69Ytp9tizK4dhkjNwXNv+OOPP4xs2bLZyk5HG9dozAf/RqhV3qFs7q8RHkqDHurZyItH+BsiC/QkBAxRR2PbUaDOWc68KxE7T8Pvnb3fFTDiHY35YOOpTgAWPQFgn58PEQ+cKxAxQVhRMGdYHcXu3nrrLdusplkh/9FEy5YtpTQlFgyQkbqinzsuyKP96KOPjN27dxuRBI15Qv6Hnsx99dVXDSuCewRSgfT9C2OCpk2bSuQQ0rNwv6pevbrtdXjJ4C3zBajcYx/IpT906FDAvwshkQT6DO0AsyIQym7fvr2tb4DH/ZVXXhGbAn3HV199ZdSpU8f2OqJzEKXjCz/++KPsAw6QSBsvxQWN+SCCsgw6RK1QoUIBG7QG26BHHkqLFi1sIfWnTp2KU/Hd0dvsTZ66MyNYRwN4G2pvljHv6vvCaHO23tVxRC79G2+8If8jR/qvv/4KeFudqdYjAkPnHY0aNSrgn0n8z5mPNGjME2KINw3XAbxr8LJZmblz59q8X84WGOAdOnQwTp8+7df9qVatWrK/F198MaDtJySSQBSPVSN6nDkHUX/eVd+B/g8Ve/wd87700ku28bNVUg5CAY35IIKyDL6Ix5hp0C9dulRu1ghzmTJlirF161aPFeftBeq8VZD3xqNtRWPeU50Ad4a8fToCBBKh2gkvPWYuA9UpuSs/hwoF+Hz8/q7CKEngQVoFc7wIiT7QHyPPFdcB8l7DAeSwbt68WVIG0XYMmp977jmja9euAZt8hlcf3jUcF/vUPkLIf+ixuVUjehyBrYLxPvSl4OhEWin6DlTEOnz4cEA+A6LcOq0Z9ky0cI3GfHCAcIM/ZV1CbdCjniNCetFehLxAHdObsHF/PPPeGMLh5pl3XBBSD2Pdk20RiqRDG2vXrm2cPXvWrzbGVUceteYxgYDPmzhxol+fRawFFF9z584tirfly5cXHQ9XQLAKuWsIpUWVg5IlS8aaRMO5hPrTWbJkEbVaqM9661WkMU+iHWiU4BrAdYl7LvkPnfplhVJbhFgNjPvDJaIn1PTo0cMWEY0I6WjgGo35wAODCYNgHNjevXsH9bMCYdBDVR2K5ogggHI2BureeMu1OJ4jnirIu/osRw+2Nwr0Vs2Z9zTKwf4YLFu2TIwm5NP7mksUlyGvQUQAPhc53J6oiJLAgrIsEIFC7heUo50t3jJ79myZqUakDUpDwQMIlWnoebgyMDABifMFs+XQcsCAwb7kzdChQ8XYxzUGAUfMrufNmzdW6Rh30JgnVgb309WrV8u5Ds2KDz74wBg/frxcF4GKlGrQoIFcA8gpJTFBiSlEpuH4IESXkHAB/QMiStB3DBw4UPoOlCBGxEmgJqZ09QukpJLYpTF12ujMmTONaOAajfnAAgMIhi0OKsLPQmEQ+WPQw2jIkCGDDMTR0ejceE+9x3F5zT1VkHdl+PuqQG+GMQ/sRe28PX6uFvwW33//vZT7gRd01qxZQTHkdYRG2rRp5XPnzZvn59Eg3oSGQQQL5efcqdrDqPYWeOI7duxoe44+AqkUQ4YM8XgfpUuXNvr27Ws7nzC59Omnn8a4ecK76M25SWOeWBHoh+DayJcvn8s+OVOmTJKW5A8HDx60VRHB/8T1uODJJ5+MqvxXEp7gXjZ8+HBb9QdnC4zMESNG+PU5J06ckLEC9vfbb78FrP2RBCZRcHygph8Nfcc1GvOBBQNcHFDknIcybM4Xgx4KtOgQqlWrJjm7nobV25ea8CWf3RWBLB1nljGvcXYsXXnl4Z1BpYO4jjs0GLQwIMoDefI7e2PIazCLjM9AqHU0dIJmc+bMGTEOMLBHmgOUoPF/xYoVpUyTLl331FNPGVWrVvVq30idwATAwoULY6yHwCW86XGB33/NmjUSaaTrxGLiwZngDvJnO3fu7LaPwo1GL+gfacwTq4D+ER543Lt1n4v/kY+KaBZ4z3GvxISqfh1RK74CoTjsA5N4xDlILcMkIY4Tc+eJVYFi+7Bhw0SJ3VG1XfcdyA/XEbtYYGz6O770djwQTUDIG78BjhOcYZHONRrzgQOz6/pGD89sqPHUoIeBC08d2olHPPc2rN7ZYsZ3tqIx7+pYwgD39xhDkPCTTz4RAw+TAO4uXF8MeXDx4kUjWbJk8nnagCPBAwYwfs8+ffrIc2hXwHjXILwdkTMYDHib/wVVafyOjjVbkVMGj70r4GlPkSKFTPZhMI30Gw3Er7BPTELY8/LLL8vgxRWuon1ozBMzQd1jeMoQoWY/YY20FKS9OLvP2vflX3zxhU/efz2wX7duXYC+SWTnzkM3hhArgb5g9OjREqmm+wPkacNR5mzMhfHooEGDbNsOHjzY689E9CTS5PD+xYsXB+ibRHbuPBwjke6YukZjPjAgnB6eMxxMlFUx68SJy6CHBx7eBQzSkf+njc8333zT6UAbA3BvQu69qQUfqca8N4J+3i46+gF59PAaoS68MxVQXw15ewNTRw2Q4IKbP/QQdEqOozEP/vjjD8l7Rw5eKIx59B2o8QzvO8IGkR+PXHp/jHl65omVwDkOoU/7UmvQCkGqSFxRT+hfoYej3+cY+RIXCOPH+yAuGemDTH9BJJBWtmdIMbECuGYxFoOorO4D8uTJY0ybNs2jCXcY8Y5jOm/EbPG+AgUKUBgyDjBG0cr2vugNhRM05gMEwu10aE0waoMHwqBHvXjk8sADoU9sT8qkuTLmdT10xyUQYfLhbMx7mi/v6vhhvauwe/tjC2MdHTp+T4imBcqQBwcOHJDPwyAK5w0JHoiCsA+1bd26tRx3x0EBFOMhVBnKMHsNzklMUvoTZu8Ic+aJWaB/q1Spkq1fRf1j9NveRL6gn0VJJbw/f/78Ht9rcH/WEwgY/JO4adq0qRwvd5OFhIQC3P9wL9Z9R9asWY0vv/xS7rXeoKN7kFqHMH1PwIQ/+hq8D0Y9iZt27drJ8apbt64RyVyjMe8/8IzqsGR/RXGCZdCjljUEfTBogccNoASdP15iV0a+v7nz4WzMe1POz1uRQWdq/oi0QG47ROt+/fXXgBjymqefflo+9+OPP/ZrP8Q9iLBo3Lix7TkMBBjzjqUIoV6LyUJvgQe+U6dOtufoDzCA8EYADyUSURfWXgAPHnsNbiAUwCPhAFSltbcGqSSo4IH7pS8g5BV6F9gX9usJSFnRRoCvnxttoGIGjhkmJiH+RYgZTJ061TbWR0otPOxI0/EFXPvas+9pxN3cuXNle+TmO0sBIrGBvaOFRhHhGKnQmA8A8HDhICJ83UphL9qgR5kpGPEw5mHUw7uLHBJXRqMnYmwwLF3lhsNINds7b4Yx722uPLb3xPiP63heuXJF1H5hFKIMRyAMefD111/L5yNf20rndaTx2GOPyfWogXEBY95RtAVeeRgOvpSmg6ENLyAmejBTjZy7c+fO2aJzevXqZdseAxRoJcADge1htCMtByHJGgw+sA/k7O3evdt4/vnnWZqOWB77FCh4agIRRQcjHvvDtQnj3h3oR5FWg+2hfUI8B+OrUJT7JcQZ8+fPtxmF1atXd5re6Gt/hDQ26Gi4A5PocNxge4gUE+9LgNo7NSINGvN+AmNZzxhj4Gs10CaEYcOYx4y2p8ajs/UItXVUm3e3PzPz580w5l3lymO9q9J79ir+rsLuPYl0wAVcrlw5mTVGbeRAgNAv3GTQBgrhBY9mzZpJZIUO8YUXCoMG6CHs3btXJmYgmoN1KHfpCxDpQR8AjyQ89fbXMDzuLVu2tD2HEB/SN+B5QLswUYQJAceBRb9+/UR5HxMFCDv0trwWjXkSSiAkqcs5devWLWC56rjH4HrBfgcMGOB2W6S76ME7z3vvgFNCl/by1RtKiC+ghLOuqgB9qUD1HQibxyQ99tu9e3e326KqDLbDGA8ixcRzMCbGsUNk47UI7XdpzAfoQrTijA+8DhDlQI4NwnMwmNFCMq4WeOncKds7M9CxvasJALM89GYY865y5fUxcFd6z92kiLtjqPeJzgoDRXh4MVDcvn17QL6TrnoAcTMSHL755hsx1O098S+88IKtJJ19jflNmzYZkQKNeRIqoCmCkHqcb5g8C3SkkQ5/xWDRMT1GAwOgQoUK9C77CCY7dViyfXUNQoIJQrO1ejyiVrVQbaBYvny57BuTBceOHXO5HSbyrWprWB30vYULF5bjN2rUKCMSoTHvBwg7xcHDhY7cZSsBFWt4C2DMwyOPkHuU2nn33XddGvTIoffVuHTnlY4GY97V8XKW5+6Iu8kTd+/XnwlxIPy2mFDBhYwBI3Kq4OENxCAYn5EoUSLLneORNEiFyKB9iC6iIpA7j9x0eNOheg3PVCRBY56ECghM4lxDeUdvhao8HSwi4kVPiDsDddL1oF2nuBDvQGoCjmGpUqVYBYCEhFdffVXOOThKghERgvNYp5BgssAZcM7oCGB3Bj9xDUQKI7kKwDUa876BA4YQUxy8zz77zLASCMtFnVyUuzp69KjNYITHFrNSzgx6ZwMQbwTuXBmkZtWeD6Ux7+93dzURguMf12dqQx6CZnqiBTn0ZcqUkfMzEGJBpUuX9krgiRBPoDFPQgHugTrX9c8//wza50CAVH8OwnLtweSc7kcRpkt8A3nFWoDM8RgTEozSZjo15/fffw/a5+zZs0cMdXwOPPX2YPJRl73GeI/4BpwlOm102bJlRjSPp+IrYmPIkCHq/PnzqmDBgqpDhw7KKjx8+FC1aNFCHT9+XK1cuVLlzZtX1v/555/q2rVr6oMPPlC5c+dWXbt2VfHjx1e5cuVSkyZNUtOnT4+1r7p16zr9jEcffTTWugoVKqiePXvGWt+mTRv13nvvqUhmxYoVTtcnTpw4zvf+8ssv6siRI05fc3X88Z6pU6eqpk2bqpo1a6p+/fqp06dP237nNGnSSJuSJEmiGjZsqG7duqX8AecTcHaOEEKIlRk3bhwcEap27dpyvw4Wjz/+uGrbtq3837FjR3X//n35H5+N9Tt27FDp06dXffr0CVobIp106dKpZs2ayf8TJkwwuzkkwpk4caJcxxUrVlSlS5cO2ucUK1ZMdenSRf5/++231Z07d2yvde7cWW3evFmlSpVKDRgwIGhtiHRSpkypWrduLf9/9dVXKqoJyfRCGHDy5EmbGAbUnK0ERKngHViyZEmMnGr7fG5nHnpXYnXuhNt8yRuPNM+8r7nucb3X1XF2DK3XHnn7aACdl4864MmTJ5eyZ/6EJCIkVM8aR3JpDxJa6JknwQZhsUg5wnmm74nBBKlI+vMgaIVKD6j8oENk169fH/Q2RDo6Kg0e+kBUbSHEGRg7onwkzrVvv/026J+H+yDS6vB5HTp0kPEbasnjOcb0kehNDjUQFFZKSbRFpIkIMszeB2AE46ChDreV8rbmzJkj7dL1ox2NRZ3T58qgd2V8uhNuC0TIeLga877murt7r7sydK5C6/WixZX0gt8f5VTwP9TQ/aF+/fqyHyidk+DkzWPAgIoGKJmFHDpnC0riRAo05kmwQT+JcwzaMYEWrnLFhAkTnPbtX3zxRUg+P9LBmOvRRx+VY4rfl5BgoEUtka4YDJ0NZ6C0sLO+A+ViSWAo+//l/SKtP6Yx70POFhRrcdBQz9sqIJ8HM9VNmjSRm527PG7k7Dkz6LHeXw+6t0r44WzM+zNx4YtgIF5zZsjjd3MXEaG1D3A8/J0oQnmzSBQPMZMLFy6IoBOuQczAu1uwTaRAY54EE9wHoR2Cc2zYsGEh+1z0j5hQR56rztEMZDkrYsjkNI5r1apVzW4KiVAqV64s5xiiXUMF+oiRI0eKoxBlYXX1DfYdgeOLL76Q44pSzpEEjXkvGThwoBwwqEtb5QJDGHTOnDllxkmrbbozFu0Nbm9C7kMReh4JnnlPvqO378W5hvJzzjzyOnLC1e+NweWLL74ok1AQWvEFnFd6YApVZhI4Xn/9dTHUCxYsKDdylKjDMXa1RAo05kkw0QrQSIkzK6QS/TYcAFYZK0QKKLurxQap7k0CzYEDB2ypMag0YwbsO4LnPEn4/6KG+/btMyIFCuB5AYTERo0aJf9D1C1evHhmN0ndu3dPvfTSS/K4aNEilSxZMreiahCvsxercyaK98knn8g+fGXYsGGqf//+Tl+DQFuk4Ez0D+cF1gfyvZhI++OPP0SI5a+//rKJ3dm/x5koIcB5sG3bNvX111+rfPnyqeeee079/fffyltwXr344ovy/7x587x+P3HN0qVLVebMmdXPP/+s3nnnHfXss8+qKlWquFwIIZ4Lk9avX19lyJDBlDZgjADRNiuMFSIJCPdWq1ZN/p8xY4bZzSERBsSjQY0aNVT27NlNaQP7juCQMWNGVa9evegWdTainNGjR8vMR968eSXH1Qp8+OGHMnu4ZcsWr0XV4NENVsi9P17rcCxN56mmgLfvxazs/v37JaVDi/24eo+73x6vwYORJk0an8ubQIAF+4IoDEPtA0eKFCmMl156yYg26JknwQQh2Di/UF+YRB7Tpk2T3xcRTfRekkDy7LPPyrn1ySefmN0UEgS++xJF2f8AAQAASURBVO47+X0R5RoqLZVgwzB7D4FRmDt3bksNDqB2iXCRvn37ujWgGzZs6LLmeTBD7r1Vwg9XYz5YODPk4wK/M35vVxMpOhx/4cKFXrfnzp07tlD7TZs2+fCNiDOQL1+vXj0j2qAxT4IF6ronTpw46LXlibl1o1GtBb+xdmYQ4i8YMz7yyCNyXv32229mN4cEgTt37tg0CVatWmVEAgyz9xCEsCPEOVOmTOr11183uznq33//lXYULlxY6oy7q3eOtruq9x7MkHuE2yN0GKEseBw6dKhP+4lGdGg9zrmnnnpKPfLII3G+B78vfmf83s7A+dG8eXPVoEED9dZbb6nLly971SbUrUeYPpg/f75X7yWueeONN9SGDRvUqVOnzG4KIRHBpk2b5B6ZM2dOVaBAAbObQ4JUNxophlEdLksCDtISr1+/LiHupUqVMrs5JAgkSZJENWnSJGr7jqg25vUPjoE38ofNZvDgwWrfvn1q2rRpKnHixKpFixZqwIABbt/jyjDXRvebb77p1KCfOnWqzwY9Jgtee+01j/LIie+GPH4f/L7uwPnRq1cvNWHCBBnovv322163TQ+evvvuO2kn8Z9OnTpJnnz16tXVDz/8oB4+fGh2kwgJa9auXWvLeWXOaeTSsmVLeZw9e7a6c+eO2c0hEdR34H6M8S+JTFq0aCGPCxYskMmbaCJqz+oLFy7YvN76BDCTnTt3qkGDBqn3339flSlTRozlb775xqP3uhKgg7HdqlUr+d/RoJ84caJ64oknnHr2ifmGvDfCgjD4T5w4ob744gs1a9YstXDhQq/aV6tWLfGInDx5UmawSWDABAsmCSHMgsc8efKIYKHjkj9/frObSkjYDMhr1qxpdlNIEKlatarKkSOHunr1qgiJEhLIiUASuZQvX16EoyFsDudUNBG1xjxmfR88eKAef/xx9dhjj5naFnhUMRtdtGhR1adPH/HIeqPm6kr1HARb5Z4Ex5CP63d1Zvg3a9ZMQuYRbn/p0iWP3wtDs27duvL/8uXLPX4fcQ0mRhDOt3fvXjkHUJkCEy7Hjx93uhBCXINqHb///rvNu0YilwQJEkjqGEDFFkL8AYbd1q1b5X8a85FNvHjxbJE90dZ3RK0xr73e8IBbIbx+//79tvD6gQMHevxeT8qmBTPkngTHkHdV6s7V+QrDHx3Z+PHjxXD0Nty+Tp06Mcq3EP/AdQnjHb87Qr727Nmjjh075nQ5evSo2c0lxNKsX79e+tMiRYqorFmzmt0cEmR0tCSiJxFFSYivUGsjumjevLmMhaFZhLF3tBCVxvyBAwfU9u3bVcKECdWrr75qalsw4B8yZIjkPcOTB6N62bJlHr0Xuf7w5ntiiDPkPrwMeVeCg3h0V8seA93PP/9cIk9wE/OU2rVry+Ovv/7qtYgeic2aNWvk+lq9erVq2LChXKd47mohhLiGIfbRBUSAETWJ6EmkjhHiz71Y9x3U2oh8cuXKpapVqyb/exPhHO7Ej2avPEKLM2bMaGpb+vfvr9KkSWMzpF2p1ztj8uTJMoPtqSHOkPvwMuRdCQ46qyiA3w3nNR4xM1m6dGk5JzwVtMuePbsqXry4bA8DlPjH7du3JX8LCquEkMAMyBkmGz1Ea7gsCSzMl4/eyJ6vv/46akSdo86Yxw87c+ZMS4TYQ7keBhnK0EGADMZXXOr1roAh/uGHH8ZpjMcVcu+p6BoJjSHviYGP8wYTOnpip3fv3hLtsWXLFvX99997vE+G2gcOhAMjz5cQ4h8Isz506JB41apUqWJ2c0iIQNRkokSJ1I4dO9Tu3bvNbg4JQ6BoDnFpoL21JPJ56aWXVPLkyeW+AXsnGog6Yx4iOghtxw+N0lFmAuV6KFy3a9fObRkyKF7bAyPRGZgI8MRL7y7kvmDBgj5/n2gnVIY80J54RGc4njd4njp1arl54RxDqKK3xny0zGYGC2gWbNy4UQTwCCG+oytsQKgW/RqJDtKnT68aNGgg/9M7T3wd76MsLKojZMuWzezmkBCRMmVK1ahRI/kfWmTRQNQZ8xCjArpclFls3rxZLVmyRMTuIHrnLrxeC2TVr19fZplGjBjhdt+ehMs7C7kvV66c6AiwJra1DXl7T3ybNm2cboMZSYTfI/rD0xKHaHfSpEnV+fPn1cGDBwPc6ugCqQ7du3cX5W2UqMMEIiHEe6DjAZBDTaKL119/3Zb7CmFXQnyZCGTfEb19x+zZsyXtMdKJWmP+hRdeMNXw04J3CCXzNLwewnja6HcUQXPEk3B5+9zrH374Qb344ovqn3/+sc1mEmt65F1FcNhz5MgRaRfCjTBRc+fOnTjfg/xu5HnrySbiX3klXF8QE+zQoYPKmzevrHO2YAKNEOIcDsijF0SLZcqUSVItMEYhxBvYd0QvVapUkYhj2DSLFy9WkU78aFOxh9GFPCx4uc0CRjmUxpHXjM7GE+PMMZQewBCHgJ4/Ncrtc69hzMEYpUFvTUMeeKppoM8TiCueOXNGffnllx69r1KlSvLojRI+cX5eeLrwOiPEObg+9IBcTzSS6AFjtWbNmkVVuCwJHOw7opf48ePbhPCioe+IKmN+4cKFthIVZuXeYXACwbuqVatKOTBfBecwAYB83Pz588cS8vOk9rwraNBb15B3N0kzadIkpxM7yKmHNsTgwYPVrVu34tw/jfnAgOvGm8UXxo4dK5obSI3A9a7DkZ2B8pNPP/20Sps2rSzoAx23R1gaRMbsF62jQIgZoG+9dOmSGHUlS5Y0uznExHBZpCWybCrxFPQbx44dk//Lli1rdnOIiRUxVq9erU6fPq0imag05s0MsYcoFtQ1+/TpI4NlTz3ozkC+NGaekBONHF37UmX+QIPemoa8o9aB/eTNG2+8IRM7zqhcubK6cuWKRzU3n3zySTkvDx8+LLnzxJrMmTNHvfvuuzKBg2sUhg4mBxGO6owNGzaoJk2aqPXr16utW7eqnDlzqlq1asW6wcF4P3v2rG1hjWdiBc9aiRIlWOYxSsFvj1KryJlnf0Q8Zfv27fKIMTYiFEn0kT9/fnFiwIbxVDsqXIkaY/7UqVNyccNQef75501rx6hRo1TRokVtNS+dGWe+AEPt33//FU9/IGrF06C3niGvcVZnHriaGEIbn3vuOfXFF1/EqVKPm16xYsXkf3rnrcvIkSNV27ZtpSoFyuCNHz9eKnRMmTLF6fYox4ncfeh0QBUckRy4pnUNXvvrPkuWLLYFXnxCzII5r8TeO497HiGewL6DOPYdkVylKWqMeS2eAuMZgipmgJAfCDF07txZJhV0eTEIz2njDINsfz31npSn8wQa9NYz5J1pHdivc5wY0toQXbp0EWV7R+PNlXce/PbbbwFvN/EfTNrht0GovH1+GJ7D6+4JSLmApytdunSxPPjoHwsVKqTat28fZ1jr3bt3pX+wXwgJFByQE9C4cWPp43A+QNyVkLhgFQwCIAKNimHQTNuzZ4+KVKLOmEcoqllAhAyeT4TE25cXwyNU9mGcIVw6EJ56T8rTeQINeusZ8p547bURD7FFnF/Lly+XUOzRo0fHuY/ixYvLI4x/4hn58uWTkC6do4fnni6u0iPc5QI+ePBAZc6cOcZ6PD937pxH+0D/g7q79hMCCLHHhCImfHAeISWobt268lmugIgn9Ef0gvB9QgIB7jV6QpED8ugGfRvKfOoUI0I8Fc5k3xHdpE6dWkqR6zJ1EYsRBdy/f99ImzYt4iuMLVu2mNKGO3fuGBkyZDDeeecd4+eff5a2OC6TJk0ypk+fLq9jwf9Y52zb1157zel6+wXvD2T7165da2zbts148OCBYQb//vuvsWjRInkMNQ8fPjT2799vrFixwvjnn38MK+Pq/OrZs6cRP35849SpU27fv27dOtk+X758IWtzuBMvXjw5tgcPHrQ993TB+7zh9OnTTvuyHj16GOXLl4/z/UOGDJH+cNeuXW63O3LkiHzOmjVr3PYL165dsy0nT56U9+B/QvwB/S3OpeTJkxv37t0zuznEZCZPniznQ/Hixc1uCrE4J06ckHMlQYIExs2bN81uDjGZOXPmyPmQN29eGcuHCxhHeTqeiooCx5jdhwAYZmjMmqVDeD08ashz1cIczsLkNfDOwzsGkAdvX74OXjXkSXfs2FFeQ9it/Xs1/ojrufLQo/44PPRlypSRsLdoIBw88va4qpAADzCUz6dOnar69u3r8v06Z/7o0aPq5s2bKkWKFEFra6SgPfLZs2eP8TwYZMiQQerTOwoU4jny3N0xfPhw6TvWrFkjwlLuQNQAPgtiiFrjw1m/QGEyEgy0Zw33moQJo2KoQtwA4eK33npLQmURNQbtIULc9R0Yy0BLhkQ39evXl3EsxmVIv/C12peViR9NIfYYkJo1KEBpKBiChQsX9sjIhvGOsmKOOfX2gmc6b9pZaL4/5elcEY0h9+FmyANX5xfC7JF7qMXPXJExY0abrgTyjEjc5M6dWxbdv+jnni7egPwvlNqx1z/QYnZa78BVnzJw4EC1cuVKVa5cOY9EQ5EznzVrVq/aR0ggYJgssQdinLpUZkSHyxK/Yd9B7IEhDxHoSO47osKYX7VqlTyiFJMZnDx5Ujxh8MprdE6zp4J2OqfelYHuSuE80ESTQR+Ohry78nVYj3MQ3wdCZ+7Q3vm9e/cGta2Ryo8//ugyQsKeQ4cOybbegrJ0mCD8+uuvZcIFYnWIooC6PUC/0bt37xj9Q79+/UTtHrXpkVuP5caNG/I6Hnv06CF9x/Hjx2ViAFU/ChQoYKrOCIledAQbB+REg/KaekAeycrUxD/YdxBXfQc0N9zpAIUtRoSDXAPkzeCrHj161JQ2jB071kiYMKFx5coVyVu2z2OuX7++y7x4xwW50FbBjBz6UObMh1OOvCu07oL9eYPvlT17dqNLly5u39uxY0c553r16hWClkYeyIVv3bp1nNu1adPG65x5zejRo41cuXIZiRMnllx5+9+5SpUqRsuWLW3Pc+fO7bRP6d+/v7x+69Yto1atWkbGjBmNRIkSyfZt27Y1zp07F7QcL0JcgRz5pEmTyrn0559/mt0cYhGuX79uJEuWTM6L7du3m90cYkEwxtEaWb/99pvZzSEWslnSpEkj58WGDRuMcMCb8VTEe+bhacIsTN68eWUxg++//15VrlxZHTx4MEbuu1Yb99RT74mnL1REsoc+XD3ynpSvQ0nEBg0aqCVLlrj1bMB7C3AMiG8E23PUqVMn+X1QHg6VK+x/Z0ReTJs2zfYc3na0x3H58MMP5fVkyZJJOtKFCxdEgwPbf/XVV7EU8wkJBYg2uXPnjvS93lZ7IJFLypQp5f4F5s2bZ3ZziAXBvQsaWYkSJaKuAolhsyBlOVL7jog35rds2SKPFStWNOXzr1+/rtatWyf5Gq6McYTT2xv177//vtPtAiloFwgi0aCPFEPeHTgXIQSyf/9+l9voPG7cGEnwwKADooSEkP/QJemiSWiVeEbDhg3lcenSpWY3hVgQ3XegxC7FWYmrviPS0nQiXiJ269atphrzq1evFk8XZpPXr18f5/Yw6rVhbw88rHoywEpKjJGkch8NhjyoVq2aCIIgYsTVzLU25umZ95wTJ07EeI48dMd1mvv374siM/Q86HkkxPmAHEKPhNgDETxU80D/iUlpsyIuiTVh30FcARF0OE8wrkX/obWhIoHwtLo8BOH1CLM305hHODMMJpR5ggq1rzcvqNprMTyImVmJSPDQR4shD9CZQQwS56YrtDF/9uxZmYwicYPUBPt0nu+++8723HEpWLCgzBLD4G/evLnZTSfEUnBATtyp2leqVEn+p3eeOMK+g7gCZQp1mV04syKJiDbmEUYMAxNeSDNmYDCZAC+7zvHSqvreglJS9iDvHjmyViKcDfpoMuQ1OCcx0YUcaWegNB2MfhwbVGMgcZMrVy7bAm0C3Djs19kvUImvWrWqGjNmjKjIE0L+u2/u3LlT/kekFyGOPPvss/JIY57Yg/EKxp+AxjyJpr4jfjSE2CMs3Yz68jCWLl26JDnKML5nzJgRaxtfQ8SsJIYXzgZ9NBry9oKLzlI6AIzRnDlz2uqNk7iBvgDCPrHgvHr55Zdtzx0XiGGi/FuHDh3kWBNC/gf649u3b4vYmdV0Yoi1BuQQ+oQuESEAaW2XL1+W8X4khVCTwPcdW7duFfssUohoY95s8bvly5erjBkzqvLly7s0vjGw1yDcFrnx9jg+11h1kBNOBn20GvLa846UDVfGPMC5CyKpwwsVU6dOVW+88YbZzSAkbMNkS5cuHbb6KyS4FCpUSKKbkAIGXSJC7PsOGPIUliXOyJEjhypVqpSM/2GjRQoRfafcvn27qYJx8MZjIgFiLZ4Y3/DcIzfe3rifPn266tmzZ4ztkDNvJRG8cDToo9mQ1yDv8Ndff3X5Oo1532nZsqWcV4QQ72DOK4kLRDNFargs8R32HcQTIrHviFhjHrWXYawBzMKYlbujOxUY345GuSfGPSYEhg0bJiH7MOzxOHToUGV1rGzQ05D/Hzg3kQ9/8eJFp69nyJBBHmnMe8/Vq1fV7t27pfScPefPn1etWrUSr+MLL7wg2xBCnJelIySuATmiy6w0viDmQWOeeILWMfvhhx8iRuA5Yo35AwcOiJAOlE+zZ88e8s9H+DwG8rpTgVGO0J9JkyaJUY5HT7AvR4eQeyt75MPBoKch/x/63NQ3QFfGPHLQiHcMGTJEDHb7NJp79+5JNASu/127dqnFixdLmcAzZ86Y2lZCrCh+xwE5ccfTTz+tUqVKJSKu27ZtM7s5xGQofkc8pVy5cpJqCtvkp59+UpFAxBrz2uNVokQJUwSm7GcIERaP/GSUlmvTpo3au3evxwJ2Vs2ND0eDnoZ8TFDfPHXq1HEa8/TMe8/69eulvJ+9d3HevHnqyJEj6sknn1SLFi2SnHpM+H355ZemtpUQq4D74s2bN6UCDfKiCXEFSv3Wrl074sJliW9AqBdRhkhrLV68uNnNIRYmfvz4NhHoSOk7osKYNwMYSIgIgMI1SsnZg+eO65xh9dz4cDLoacjHBpNcMDZdGfPp06eXR3rmvQfpC6glbw9uGjjmU6ZMkQoXEydOFIPfnQghIdGE7ouQGodBOSHRlvtK/Os7ihYtqpIlS2Z2c0iYhNp///33Yh+EOxFrzO/Zs8d0Yx5e+RUrVvi8D+TURgpmGvQ05F2Dc9SVMa+PE0v/eM/ff/9tExDUoBRKvnz5YkTbYDIFhj8hhDmvxDvq1q0rE6RIzWA/Gt2w7yDeULNmTYnuQbQkSgWHOxFrzJvpmYfxqI15f7BiLflwM+hpyLsH5yhqszoLpUedZ0Bj3rdzHSJ4mnPnzsk5iJx5e+BBQE1tQgjF74h3YMIUaUuAEU7RDY154g2wBapWrRoxkT0RaczDMMHgGTO2CLkJNRi0a/G7nDlzOt2mTp06EZ8vb7ZBT0PeORBjRAlEPLoTwdPH68aNGyFvY7iDa3fz5s3q1q1b8nzBggXSHzka8xC/gxALIdEO7gU7duyQ/zkgJ57CUHuiHWiAfQfxNtQ+EvqOiDTmDx06JI8wpCGkE2oQtgEee+wxCeNwBnLh+/fvLwvKzUGpPhLz5c0y6GnIO8dejBGPyNtOmDChOnr0aKxtGWbvO40bN1bXrl1TVapUUe+8847q1auXnPfIldfcv39fzn/H3HpifllT/C5Tp05Vn332mZQTJKG5b2PiENEquHcS4o0xv3btWtvkqVmgzBUqlXz99ddq5MiRrFQSInCcUdUAwmZmpdaS8KP+/4vgbdq0KVYZ4XAjoYpADh8+bFPrNgPdgWfNmtVlDcMBAwbY/kde/a+//mp73rx587CoJR8Igx7eSwycEVaJjjgQ0JB3DjzxjsKLn376qXiGnQ06aMz7TpcuXaSG6bp168RjADGvzz//PEYe/erVq2VCCyWWiHWuEdzg7UUfx4wZI78V9A5IaMTvMMFIiCeg5C+ERHG/h0GvvW2hBkY8Ii4RFarBZCD6Dk5OhabvKFKkiEqePLnZzSFhQt68eSV6e9++fWrlypWqSZMmKlyJSM+89owXKFDAlM8/e/aslPxCp+LKM2+PvSEPZsyYIYPKSCcYHnoa8t5rMCA3HuesI/rYwduB+s/Ec3DdYxC3ceNGNXfuXBFY6dixY4xtkiZNKoM9TN4R84EB//LLL8tjmjRpVLVq1cRIQNQK0iO0qCoJDsyXJ76A9CWzQ+0RhdWoUSMx5FOlSiURWXAmoVwaJmu3b99uSruiBYbYk2gPtY8fyZ55M415eOX9yXuPNPG7UBj0NOTd4+pcRAlFZ8a8FsADzJv3bZCJgRwGec68ujAW4cHH7DAxF/Q7SHXSJQXRhyCqAhUI4PnD9YEBOhWzgwcH5MRX7I35UJe+xbijTZs2Mu7MlSuXTP5t2LBB0ifLlSsnGk7Vq1e3jUtJ4GHfQfztOxAhfe/ePRWu0JgPAhj4ZcuWTf5H3rtjPrwnRKL4XTANehrycYNzsWfPnrFy6BFm5MyYx++iw10Zau9/nwTDMFom6cINpDXhZo5oifnz54t3DWBS9scff5TQb+TUDR8+3OymRiQUvyP+AFVq6CMhXcxVqdVgMXr0aOkzEiVKJFFY6dOnl/UZMmSQCUGo7eP+OWTIkJC2K5rAuBGw7yDeAu0oXKu4vyN3PlyJaGPezJx57ZmHsQTlcA1Cah2Ne0ehu0gWvwuGQU9D3nOGDRsmHoPp06fLI4wYnKvOcubhWWbevO8gNeHjjz9WWbJkUYUKFZJQbXstjJkzZ6qKFStKvhYxNy3rgw8+kP+//PLLWAJKadOmtWlNQDDSWRlH4v9vgL4fkynIeyXEG3DeoOY8WLx4ccg+F/dNPUGOiT7HcRvunxDCAxgHIuyeBBY4IrBAc6lkyZJmN4eEGQkSJLB550PZdwSaiDPmUdtZixeZZczrMHtngmPIh3c07mFUORpY0YgvBj0Nee/R0SJ64IFzFUqwUFd3hMa874Y8bhCoVoEZ38KFC8u5ag/OV1zvKFtHzAN9NH6v2rVrq1atWjndpmbNmuL1uX37tnjiSGDR3lRMpFD8jvjC888/H/IBOQx1VL/ApOzbb7/t0vOHFB2E8EIjhQSn74DIoBnVq0j407BhQ1vf4ThOi1hjHiGHEAxAGDk8d4sWLYrxOnJrO3XqpHLkyCElZjDLPn78+Dj3u3v3bskvxQwrSso5GsFg3rx5csFim+LFi6vly5fH2ub06dPymC5duhg5v2YY856E1GqxO0cDK1rxxqCnIR8YcK7iWMKgDwdjHtc4JsEQzog+Bn1BXAJDJ06cEJVyiFJCvb9Hjx6xJi+Q5wjxLZyDSNGZNm2az21Enwc1e+TFHzt2TO3duzfWNnny5JEJx1WrVvn8OcT/c0n/zn379nW5He51KC8IYMxTQyKwMOeV+Eu9evXEy4a+VosgBxM4jfTYFn0H+ghX6L5jwoQJ6u+//w5626IJ9h3EX5555hkZSx4/flxs0agw5m/evCmhLGPHjnX6+rvvvisS/zBSDxw4oLp27SrG/ZIlS1zuE4ZbrVq1RDkYFybKZX344Yfqq6++sm2zZcsWKRvwxhtvSG4dZlKwOA6SdQgkciDMAJ4bHCMYDJ7mvTOP1nuDnoZ84MicObM8OjPmUZVBR7xYAXi58XsjPxE5zvv371cjRoyQUGhXwOsKQx5lItGPoAYwDDgdWg1gcGMbGN87d+6UfguiRjDIfQGfgQlFTEBq/QxnwGOPiQZfQB+MCQFMbmIS0LEqhj0ID8dkKY4TFniaHbfHNYVjgskd3NiwDWp/RzIIjcV5UblyZUmDcMcLL7wg4ng4B3E8SeDggJz4C/pbeMBD5Z0fNWqUjPVKly4tJencgagfjJuxvauxM/EN9h3EX+DkgUEf1qH2hh/g7QsXLoyxrmjRosZHH30UY12ZMmWMPn36uNzPl19+aaRNm9a4e/eubd17771nFCpUyPb8lVdeMerXrx/jfRUqVDDefPPNGOvmz58v7apYsaJhBlevXpXPnzdvnjzv2bOnPHe3/Pzzz6a01ercuXPHWLt2rbFt2zbjwYMHxr///mssWrRIzpP9+/cbK1asMP755x+zmxn27Nq1S87DX3/9NdZrzz33nLw2YcIEwwqgX6hUqZJX71m+fLkRP35849y5c7Z148aNM1KlSmXrc3Cdou+yp3Hjxkbt2rV9aucjjzxi1K1bN8a6ePHiGa1atYqxrnnz5kbSpEm93v/s2bONxIkTG1OmTDH27dtntG3b1kiTJo1x/vx5p9s3bdrUGDt2rLFjxw7jwIEDxuuvv26kTp3aOHXqlG2boUOHyjpcYzgn8NvnzZvXuH37tsftunbtmpwveLQ6Fy5cMJIlSybtXblypUfvmThxomyfI0cO6ZOI/zx8+FDOOxxXnJ+E+MqoUaPkPKpcuXJQPwf9G/pb+7FeXMyaNUu2z5AhQ4yxLvGP7Nmzy3H96aefzG4KCWMmT54s5xHsVavgzXgq4DnzyB2CFx7hi7D3169fL55neN41r7/+uqiPaqDyDM+IfU12zGSiNjO8IHobeIrswTZYb4/Ol9eKoqFGh+7qvD8Ijk2aNEm9+eab8uhMTRxeNYTaI5de15eP63k0e+hxPtEjHzj0ueosZ15HuOjrymzQt6DcD+qBI/oFXhFHLymieuCx1qCPQCi+jkDQfQfOKy0+52n/4imIBsD560lKjifbOcvVbNu2reR461QmzC5PmTLF6fYQ2+vQoYOosiNVCX0Rrqe1a9fK6+irP//8cwkXRe4pcpeh4QGBJ8dUqkgBnjVEUsGjY39/cgdSoaB0DyEr1o4ODCjlhTrduP9T/I4EIm8eqtTBFKocN26cRKuhL33xxRc9eg9KlOKehXaFs2q2lTh//rzYGkhxwL2NEF+BxhHOI9ga4ViCNuDGPPIJcUNGzjxuzgg/QlgRjHUNwjhRj1Nz7ty5GANtoJ/jNXfb6NetEmav6xRqAwnGOsJ1kSuFR+Tl2oNBNLaBSEqLFi3kEca9u+fYPhoNeoQ/AwykacgHDn2uOquxqa8jqyh4Y+CPgRTCnREC3759e9W5c2cJa7dvs734pT/9C847GHzegpShuHKvcLyRJoTv4g0IC0doof3kA5R88dzTyYdbt27J5yM0VacZ4BjY7xMpFuh73O0T4k84RvZLOIDJFkxogN69e7vNd3XsjzDJA77//vugtjFa0JMimECyn9AnxJd+F0YdJipRcz4YYMyG8RzAWAx9r6f3WaRyAfYdge07UC3GLI0sEhlkypRJ7IpwDbVPGAxjHgrN8KChY4VgXseOHSVvVA8UA11vEwMz7bW9ePGiPCIv1JlxEmzsB/4YBON4IP9Us2fPnhjPtTKyu22cvQd6AfBQRgO4WT7++OMS5QFws0aesBm/bySi1Tvv3LkT65imSZPGlk8fyuMN48qZqjWuc5z3gwcPlufwzMMghme6ZcuWsg4aHVjMBJOY8PxC96Ndu3ZOt8F1jP7qrbfe8mrfmFhBn+ds8gE6Ep6AQah9n6wnNTyZMLUHffmAAQNUuLFx40bx6uA+AUFXb2fwoYWAAfnAgQOD1sZoG5CjjyckEN55TPxjDIoo0GCcr5j8RCQUIsS87TumTp0qfQeiqzydRCTOYd9BAt13bNq0SfoOs8eQphrzMGTff/99tXDhQtsMJGbb0bFCaMgxjFWDOswYWNmjn+M1d9tgPYxdhF2DXbt22Qa8ztTug41WKkU4PIyOWbNmBeVzYFyZ8f2sQDSlGoQChHqDbdu2xfJC6/rzELMM5fmGNBlngmSI6nEMxYWI3HfffedyX+gjHMXePO1fEFJtP5HmKVDLh8geQtsh0vfKK6/IegggIYxr7ty5MphDFEGobxoofTl79myJEsKkmD/Aqw3RUw0886hGYnXmzJkjjy+99JLX3mCoZmOCEfcahOOFw/cNhwF5tExOk+CCyTlMMK5evVqimAId7aH7DnyOt6XQkM6D9kBtH2mkCNMnvsO+gwSSBg0ayNgNk/2oWBNO0R4BNebhucPiGHaEciHuSow9+eSTqk+fPvJeqFQDdMQIndEq1dgG+Z1QmdZgG6xHPmzRokVlnVbAx3oMukKNjgyAxxBhGzVq1AjK5+BYREMHBq8xcuQxaEbZMER9YEYcIcBQh/U0xI24RntzYTxD88IeeIDHjBkjHoRQXk+uPBYIg8IgyB6cH4gCcgX6gkGDBskEGK5J3XfAUNcTA9jGcbJC9y++gEkH5Jojn/KLL74QLzy+0/z582XBeY2oB0xCeJsShO3Rp7qa3HQHJlVhzK9Zs0YmWjX6fdgH2m6/T3e5iAg79yXn30xwn9GTP40bN/b6/Tj+OC82b94sobxI9SC+gXGBVqOmd40EAoy9EFGEvgteturVqwf0fMVErK99B4wDVExBihi88zTmfQf3UDggAPsOEghQgSxfvnySzgkbS2twhAXequtdv35dFGex4O0jR46U///66y95vUqVKqIKvX79euPo0aPG1KlTRa0ZivWaXr16Ga+99loMBfjMmTPLur1794pSc/LkyWMoaG/evNlImDChMXz4cFFj7t+/v5EoUSJjz549MdpXo0YNadeMGTMMM/j777/l86Gq70zNHgr89s+hzh3XNs7eEy0qx/aq9VrN/saNGzFU7ol/7N6922VVha1bt8prefLkMawAFPfRDwwaNMg4dOiQMXPmTOkr7K/30aNHG9WrV7c9v3//vlGsWDGjVq1axs6dO0W5PGPGjEbv3r1t26Cvwn569Ogh/QuU3xMkSOCxyrkroKCP67V48eJGihQpRD390UcfNbp06RJDSd5bypcvb3Tq1Mn2HNcBVH2HDBni8j3Dhg0TBX/8ps6utSxZskj/qoGCapIkSUSFOZLU7NGfoI04B+7du+fTPnCcsQ/HigXEO3Ct4TjiuvD1tyDEEVTrwHn17rvvBnS/mzZtkv2iWok3VT7swf0J+3j66acD2rZo4+TJk3IccZ++efOm2c0hEUKnTp3kvGrXrp3ZTfFqPOW1MQ8j3Vl5tZYtW8rrZ8+elY40W7ZsYsSjvNyIESNksKjBtjD67UEpJJScwuARg1KUSXJk7ty5MhBGSSZMGCxbtizWNuggvSkXEmhgdOLz9QDY0VDHcxhN06dPj2E8Oa6L67mnBGo/ZhvyQBvzeHQsW0d85/fff5dzc/v27bFeO3z4sLwGQ9QqfP/992Kco6947LHHjK+++irG65joy507d4x1x48fF8MLRgNKA3Xr1i2W8YC+rVSpUtK/5MuXTyYirQomPPH9p02bJtcJbjwolaTL72FiFJOmGvSn+F6YZEQfrRdMztpvg30sXrxYJnief/75iCxNpwf67du393kfmHTGPvAbYHKR+MY333xjailZEplgrIjzCveHQPL222/LflFS1FeOHTsm+0C51MuXLwe0fdEEymLjOJYoUcLsppAIYvny5bbys/Z2a8QZ81YHHit8+SVLlpjy+TAsMVOIOtYwmENZV97RUHecSNDHxn5iIVwMeUdjHtCgDww4hjgf4Ol21Zlg4ey3tYCHJ1euXGKk49q271cwWaonWAEmN5z1RZj4sL/u+vXrJ1FSMFIR5XTw4EGv2mR1Yx59hq5pvmHDBp/3g2OFaBXsB30S8Q1EqOAY4pGQQHHlyhUZh+HcOnLkSED2iQgvRC9hn0uXLvVrX5iMNjOCNBLo06ePHMPWrVub3RQSQdy6dUucPji34NSI2jrzZoNSScCsEjfI4Ua+FkTFkMvrDFfr48Jd7XnH8naoh/zJJ5/EeL+jCBhet5qYHCaYkMPtSR15V3XoiW8CePa50hocf50TrfUgiDWAcB6uE/R5uI5RRk4DcTsI8GmOHz8u15bj8uGHH9q2QU7/Rx99JOr1qGyAvHrkkEUSq1atkprmONedCSx6Co6VVsFnmSnf0Tmv0aD/QkIH9Ej09b1ixYqA7POnn36SvhE6Ts8884xf+2Lf4T/MlyfBIFmyZDadjXASGY9YY95MUSYMFGEguRoIO1vvzlAHcdWidzTcZ8yY4VFbfZ1YMNuQ19Cg9x+cqzjWzpR5YbRkzJhR/oeAHCHhDMQHQaNGjURE0N/yg3qQT7zn/v37aseOHfI/jXkSaLRga6AG5LrvQFlgf51Fuu9A6WZdGpZ4Do4ZlexJuPQdoYDGfBBA/WaU9ILB3bNnzxivwWOO9e686o6Guidedl+xiufNF0NeQ4PeOxwninCu4px1VybOvuwiIeFqPEJ9HqDKgL/oSAhMiF6+fNnv/UUbKHeJUpjo661yHyKRNyBft25drJKrvoxPFi9eHLC+AwYoJhMxkX7q1Cm/9xdtINIM4xFUv0I1K0ICSd26deURFWuuXLmiwoGIM+ZRV9QqnnkwbNgw1bx5c9trMKLi8qo7GuqeetkdwSSAPfZhuACTCI7rws2Q19Cg9wzHiSM8x7nqLMReoz32qJFOSLiCMlUYAKZLl86vEHv7SS5thFotXSkc0J61smXLssQoCTgoV5wzZ05JGULakT9gTAGjG/fCQJQbRnldlNYFW7du9Xt/0dp3oLxquJVGJdYnb968qnDhwlKaGSWKw4GIu4Pi4AMzBwf2xjwGeY7GeKC86u6AkTZ9+nSpy64f9aKfo950JBjyGhr07sG56DhxhOeo2+7OmEdtXEBjnoQz2rOGfNWECRMGZJ+YEAPoT4l3MF+eBBOkiAUqXHbRokXyWLt2bcmpDQTsO3yH+fIk2NQLs1D7iDPmEXYD7t27Z1obELJ8/vx5mVgIVE66J152Z4Y6ttOh/c6eR4ohr6FB7xpX5yImntyF2dMzT8Id9DV6QI6c10DBAbn/3jUOyEmwB+TLli3zKzddTwSy77AGzJcnoeo7VqxYERZ2RMQZ81qYxExjHl5O/PgQDPMlF9CZoe6Jl10b6sA+J9qKBMOQ19Cgd46rcxHHyZMw+xs3bgStbYQEk927d0ueZdKkSf1WorbnySeflEf0texnvEuH27Vrl/zPATkJFlClxpjw2LFjEoHmC0eOHFF79uyRHPf69esHvO/47bffbFpPJG7Qz+KYAfYdJFhUqlRJ7BLYcbAjrE7EeuZ17rwZ5MiRQx4xeHQmgheXV91VOLwrLztwJaaH59FkyGto0MfG2bnYuXNndevWLds56wx65r0H197MmTNNnVQksT1rtWrVclq1wVeKFSsm+a/oZ9CnEc8nV3CPhn4B8hMJCQZIEatatapf4bK676hcubKcr4Eif/78oruB62Dnzp0B2280RBiiv0W6A3QRCAkGmATUE/+I7LE6EWvMmzmIhnACcjJ12R2I4E2aNEm9+eab8ujOqx5XOHxcJeuc5URbyUMfCkNeQ4M+NjgX7c89Xe9Wi/E4QwvM0HvgOdDFwDUJAaZ+/fqp06dPm92kqCYYIfYA/bwOE6eQlW9hsshtJsSqua/BCLEHOO8Zau9731G6dOmAaZ8QEu558xFnzFshzB6hnPDY6FAgGNxt2rRREyZMkEcM8n3JXXc03J2VrLNyLflQGvIaGvSxsT/3cI7Ce+EuHcQK5R7DjdmzZ0uYFkK0Bg8eLN7Hl19+WW3cuNHspkUdJ06ckIlViKI+++yzAd8/B+TeQwErEuoBOWq6X79+3av3Xrx4UapggOeffz7gbWPf4T0UziShLlG3bds2GctZmYgz5q3gmdfldmAoOVMQh2fdUdDOFdoTP3ny5Fj78bRknRVq+JphyGto0LsG5yhmuN1Vf9DGPCapiGe88sorYrgj17Jt27ZyDn733XeSw4lyOpjYQ3oDCT5IdwBPP/20ypgxY8D3r3NfOSD3HBrzJFQULFhQFShQQMaEa9eu9XpSFuOFMmXKqNy5cwet72BUj+ew7yChIlu2bKpUqVJiv/zwww/KykSsZ97MnHltzO/bt0/t3bvX6eswxJ2Fv9uH0dt74uHR9wUr1JI305DX0KB3bczjXHUH6vQCeua9Bzl948ePlzD7zz//XAaW6BM6dOigsmfPrt555x116NAhs5sZsaDvmTp1qvzfsmXLoHyG7l/R36N/Ie6B9gaOFeCAnFg5XDbYfQfOf4TbY2ykyxkT12BCRqevsu8goaBemITaR5wxbxWxLhhI9+/fd5sPiPB3V8a7s/x3Zzh6+F2VqItmQ15Dgz4mV65cUUePHo3TmKdn3n9SpUolYoO4FlatWiVaBdeuXVNffPGFaGzghuGt14jEzZYtW2SyBPcFpDkEgyxZsqg8efJIX6e9RsQ1GIyj74XXw11JTEKCMSD3tEQdROlwrsJB1KxZs6DdF7SIm5W0jawKJgHhXMBxw8Q4IaHqO3744Qex6axKxBnzuMgBBspmglBaiHPAEHIVUo9BvbfGe1wl65yJ6ZmFlQx5DQ36/9DlNuiZDx2YZIRxefjwYds1ggm/lStXitI6crrN7rsiiSlTptjSHqANESx07isH5HHDMFkSaqpUqSJVJxAh5WlIu/bKP/fcc6I6HyzYd/iWL+8uNZCQQAE7Km3atOL8srLDJWKNebPDHeHFxIwrwphhaDdv3jzWNp7mvNsDNfy4StZZASsa8hoa9P8D5yY8lnFpKujcbpSCIb6BKBx45hFa36lTJ7V//37Jn4fK+tWrV9VXX30l3t0VK1aobt26md3ciJk4mTt3rvzfunXroH6WnhALh3q0ZkNjnpgxHnv11Vfl/88++yzO7ZGmqbU22HdYT8mefQcJFQkTJrQ5ZJEqaVVozAcRzB6iRBXAAN5f4Il/4403LGe4h5Mhr6FB/79BNcTvEiRI4Ha7c+fOyWPmzJlD1LLIANcByhrB445Q+jFjxkjOH65h1Nles2aNeH0woQJNDKyD6v33339vdtMjgvnz56sbN25IOCau9WACgSyg8zmJa6hGTcwA+iRgwYIF6tixY263RR98+fJlSQNB/x2qvsPTFIBohROBxAy6dOlii6DUei9WI+KM+dSpU1vGmK9Ro4aoWZ86dcqn8nBWy3+PFENeE80GPYzK1atXq5o1a8a5rTbms2bNGoKWRQbDhg1T+fLlUy+++KIY7Tly5FBDhgxRJ0+eFC88Slc6AqMe5ewuXbpkSpsjNcT+9ddfD3otc0yKAWhQIByPOAfHRqeY0JgnoQR9Lgxz3OehVeJJ34EUyLgmu/2lePHi8hkog4c0AOI63Q/jaUBjnoSSfPnyqRdeeMHjyB4ziDhj3kqe+Tp16kgnvXTpUo/Kw9kb7win18IoVvfEh6MhH+0G/U8//SS52RBic8ft27dtOdwQ+iKe0bt3b7kOKlasKKHeMPJwfadLly7OAWflypVD1s5IBUJXqCuN/hcD8mCDnDqkSWjhLOI6tUcPjoKZh0yIM9599115xPjKlTYJSopq5epWrVoFvU1IX0PkFmCovWvQr0KADOVFc+bMaXZzSJT2HTNmzFDnz59XVoPGfJAHeBiYL1myRIzxnj17xngdRroz4x2lqxB2q4XxYAQEGnsV/Wg15KPZoMc5ifxt7VF0he60cIx01AuJG1y7MFwwadKoUSOPvTvdu3dX69evD3r7IoGJEyeq48ePO82VR+k/0LVrV4mKCAU6XJYDctcwTJaYCTzzRYoUkfQb9B+OQLD4zTfflP/x6IkTJhAwTce7viPYkVaEOALHDOw49BHjxo1TViPijHkY0ODvv/9WVgCez3Xr1snNA6G39kJ4MKaRv+VovDuq2uN5IJVOHUvg+TtZEM6GfDQa9Pi9YMzj3Izrpqhr3yLEnjdQz5k2bVqcEyXEd9BvtmvXTpUvX17Kz9nTv39/6Yty586tBgwYELI2cUAeNzTmiZngHqY9bB9//HEsdWqkQh08eFCi0EKZ1siJwLhh30Gs0nd8+eWXErVqJSLOmC9QoIA8Ik/dCkDgCjM5yE+GQe6oYA9D3ZOSdL7k3DvzxE+ePDmgkwWRYMhHm0EPJXUIAOHcjAudw8cQe++AJx5Cd3HRtm1bUUsl3gEjHpMlyDOtVq2aRDfBSz9v3jxbThtmz6FDECr05A0H5K7hgJyYDRwquM8jzB6pkBMmTFAnTpyQCe7BgwfLNqNHj1Zp0qQJWZtozMcNleyJ2bz44otiY9auXVtdv35dWYmIG0XqXJozZ85Ifo3ZA+X8+fNLWBduFChF5Sv+hHvB8x7XhAEmC7zNy48kQ97RoN+8ebPcWHGTDZd6ppiQwe+Ic8Xdb4lzEUYOjCBPDH/w2GOPBbStkQ6uDU+Vialg7D0InUcKA1KVFi5cqFq2bBnj9SZNmqi6deuGtE16QI4+EaH+oZxICAcgpIlJdng49LEixIx7PERJEQ2J8nNvvfVWjNcRsfbSSy+FtE0lS5aUR1wfmKBEXjj5DxhO6FcBjXliFgkTJpRIavQhViM8rBQvc+YTJUokXlUY9FYAN4dly5aJYe+rMe6LAB6Muw8//NAjz7+3kwWRaMiHs4feVeqEM20ElN1B7iBq78aFVo91pr5O/OfWrVvSXxHvgbGM8nPvv/++3GQTJ06sChUqJAY+PGuhBtErSEdB34gyg8S5Vx5iXylTpjS7OSSKwb0P90WE2qPfQB+MEpaoRY9qI6FOKcO4FZ8PmKYTG+jPoF/NlSuXypQpk9nNIVFMEgsa8hFpzKMT1oJHCJ2yAghnxmwrjML69et7/D7kfvpakk4bd57kjHo7WRDJhnw4GvQw1J2lTsAz6WjgwzuGc8qTEHuAWUhdPocElqtXr6pNmzb5XPJv7NixoqCOgSmu319//dXltqiNCm8Ttkcf+fnnn8faBhN/eM1+sXpEBqJmBg0aJNcpctjQLyHk3iyldIbau4Yh9sRKoH/r06ePhNuj70BU26xZs0xLKWOovWvYdxASZWH22suMnGDUdLYCMKQgxgRRrH79+omX3hPgyffGyNZh1v/++2+c3nio52NGOq6Q7Gg05MMt5N6VnsLKlStjPMc5gfBffC9PjHnUdT106JD8T8983KDclj3wGm/YsMHptkgBwsTKgwcPbOrJ3jBnzhwRYxk/frxcvzDOkccF8SZnngtEAKB9L7/8snrnnXdc7hcVNRCCqjE7Tcmb8k5WAH0EylpxQB4b5rwSK+JJhFqoJgLRr9MzHxsa84S4JzxGal6CQe0PP/xgGc88DECIYcHDPnLkSAkDRYhXIEPfPcmLt9/WE3GuaDbkw8mg9+Y8gYGJUmlx1TsH+K1hbKJChK/e42jCvkwavD6oYIHFFZhMa9iwoU10yRvQj0A8T9dBhlGPScIpU6aoXr16xdoegyA9EHL2ur3xTrFD36Givet7BwfkhLiGnnnXsO8gxD3WskoCxNNPPy2PVvHMAwy64elEGNczzzwT5/aehOO7U6gPdNh+NBry4RRy72n6BurGwwj0hF27dtm88ixLFzeIBsJy9OhRuV4waaLXOS6oEgBDf+7cuV6rJiPyBjmENWvWtK3DBBOeb9261a/vgEiMbNmyiRe/WbNmcU6IolIHrgv7JZrRYfZIT8GxIf8D941Lly5JbrIW+yKExO47Dh8+LKH/5H+g39AT5RTOJCSKjHmEisL4QJ6oVUAePwwulEHRQifOQt+1UQYvm7sa8PaCZ1BljQtsj5xYX4T0otmQt7pBr88DnbqB8wfnkTOQLw2BMD3ZFRfr1q2Tx4oVKwawxZELUmmw4DhDXR1lj/Q6xwWRDr6GsGNwg4iJzJkzx1iP5wjd9xX0DUgFQnoGyrph0gHnirsSLKjLnDp1atuiq4lEK/htEcly7949S91/rOJZK1GihGUFhAgxkwwZMojAm/1EOvkvPQcRiKEsF0hIOBGRxjzyJ1GHGIJQyE21Cu3bt5fwSwzEe/bsGeM1eyPeVQ14bz3xMOogBuWrNx7QkLeuQe9M+M7eqLcH4mcoe4Nz0BMvO3731atXy/9QvifeMXXqVNW6dWsVTkAwETn1MLiQqoTcb4j0IXrAFb179xYvkl6sFA1lBvZl1xhqH9uYL1eunNlNIcSyUEAzNgyxJyRKjXmAEFeIPunSWlYAA2TMLo4aNUoNGzZMjGx7I96Vhx0CZ7544pEXj/x8X7zxgIa8tQ36gQMHOl2P88PeqMd5BlVyTHLpHOu4gFfx7Nmz8h58X2ItD06CBAkkZcIePA9kvju8IOivEPbp7npAWSX7JdrhgDw2HJATEjfMm48N+w5ColQAT3sie/ToIYaMHlyZDfJaO3furLp06WLzYHmibO+JOj2A8Y5wfnjYfDXgNTTkrS2KB6+8J+cOtkEUCNI7YMh7amytWrVKHqtUqcKwWA+AFx5eWYjZIdzdG6883odoG0+BcF7ZsmXV2rVrRUAPYFIJzzt16qQCBXL6jxw5IhOCxHM4II8Jzk1oPAAOyAlxDaN6YkLhTEKi3JjPmzev5K5CEAqhxVYBubSobQrvvCdCQBhI684sLrRBgJqp2pjX5eq8KUFHQ976Br2rcnSuQr4vX76s3n77bY/fo0PsPRFrJEpyzWGUIyIGxjyeB8uYByhLh74EYctIKUJpOpQd1JEXiODJnj275LTrCcH9+/fb/ocA386dO1XKlClVgQIFZH337t1VgwYNJO/7zJkzIpiJCIAmTZp41bZoRw/IkfeKlCocw2gG5RKhu4AonyJFipjdHEIsi3Y8oa9GZGny5MlVNIP7FHRg0IeWKlXK7OYQYlki1pgHGJiuWLFCWQkMnrt27Sph9u5yUTGQhlfMXQk75MTDwz9gwIAY6+HFf/HFF9WCBQtiePThocXnuoOGfHgY9N6Uo4N3vnHjxjajLS5gFG7cuFH+pzHv+YQJ0CX89PNggd/z4sWL6oMPPpDBDgY6EK7TonhQobc/F2Gc20coDR8+XBZEXmzYsEHWQVMBhjsmfjJmzKgqVaokkU34n3gOBE5TpEgh1xEM2Wg3YPVkNPpHX0UfCYkGUEkkU6ZM6sKFC5Ii6m+EZaT0HaioE+0TG4S4I6LvrM8995waPXq0qD8jz9QqwKs2duxYtXjxYslpdhYujYH1jBkz3HrsEW7rCkxiOIbmayPf1Q2Chnz4GPT4DTE5E1f6BXLlkfPsKr/eVS16RHfkz59fbqIkbuAld/c8GCCk3lVYvTbQNYhSwvXtjtmzZwe0fdEKrn9Mrug+IdqNeVbFIMQ7AU1MzCLUPtqNefYdhES5AB6A1wk5wj/99JOyEmhT3759xXvnKh/VVdjtm2++qZo3by4ee4TSOnrl7ScDvAnPpiEffqJ4WkQRFQtclaNDmFq7du089sqDKVOmyCNCtllfnhDvYd78f/cVrb/BqhiExA37jv/44Ycf5JF9ByFRbMwnSpRIaj3PmTNHWY233npLaooi1N6xTJ070qdP79ZjH9dkgLPwbBry4WvQY+YeE0IQP3Q8j/Aacnb79evn8f7gxf/xxx/FiA+FdzkaQf12ROUgZ51EJhSy+h979+61VcVA2gYhxD2shvHfffLQoUOSmlO9enWzm0OIpYloYx4gBxQDZxhZVjP+PvroI8lrR+g7cuQ9AWrZzqhcuXKc74U4l2PYFg35yClbZ++pX7JkiQhwIaXDm3JlWrgNZRRRGYH4Bo4/rutff/01xvpPP/1UJtTwGhTpw60WPfF+QG5m+UqreNaqVq2qkiZNanZzCAmbiUDkzN+7d09FKzqi58knn2TJU0Ki3Zh/9tlnVdq0adXChQuV1WjatKkqXry46tWrl0QQ+AO8qc7AJAGMOxh5Q4cOjfEaDfnIM+i1p/77778XES6UZ/QUePG1Me9pPXriHFxzyHssXLiwbR2uNVzruO5QyQKCPl9//bX8ViSyQJ48NE3QD8DDFK0wTJYQ7ysxpU6dOkYFkmiEfQchnhPxxjxCdGCYeBKaHmpQbgOloyBWdeXKFa/C7T0FNedh3NEjHz0GPX5X5L2jBKI3M9rwJiPHPl26dOr5558PahsjHYRXw2C3v65mzpwpj19++aWcF1DqRR/w1VdfmdhSEqwUrxIlSkR1qD1Ka2m9GkT6EELiBiluOrInWvsORCSsXbtW/mffQUjcRLwxD5BPvH79einPZDXq1asnIYhQpUaZKU/D7e3DsbwJqw9nQ3779u0xHq2MWQY9PgciidBjaN++vVfv+/DDD216Dmg/8R1U0ECdd3swaYfc4ddff91WaQB5xPv27TOplSSYRHvuK8pb3r17V+XMmVPOdUKIZ0S7CN4vv/wiYydoRMU1ziWERIkxny9fPlWtWjVLll7CLOzEiRNFJAghuPCke4qrjh4TAs7C6sPZkMfERI0aNeR/POJ5JBn0uHmhQgEe/WHMmDGScgHPvDc5qkhD2b17t5wP3bp186sNRKk7d+6I190+hQHnACbX7EtKoq4w6sSTyCPaB+T2KvasikGI57Dv+F/fUbNmzRj3UUJIFBvzAOW5kMcaV61lM0DZMBjeMMRQ39tVuTpPgJELD2skeeRh4DrWU8dzfw1fqxj0+M2eeOIJKTWIR18nKqBEjwmhjh07SrSHL175rl27Spg98Y9MmTKJEq8Gk2u4tnEu2IN10DYgkTsg/+233yx53wlVzivDZAnxre9AxZP79++raIN9ByHeETXG/AsvvKAuX76sli9frqwIwuyhSA91a+TUVqxY0as0Alcid+FuyIM///zTq/XhZNAHaqIC+8S5A+V6V+eAK+bPny8lpCC6884773j1XuIcXL+oJoBooGvXrkkVCngn4Wmw58CBA+KdJ5EHNBNw7SPlAhNt0QRE/3Bux48fP9Y5TwhxDyqe4H588+ZNUbWPJs6fPy96MoDid4R4RtQY8xDC69Chg4iCWbFUEAY9CI1GRwbP7MiRIz1+L2rKwxhz5o0Pd0Ne39i8WR9OBr2rCYkVK1Z4FXY/evRoEZvCOZQyZUqP24Xwb+2VhyGPyg/Ef3ANo89p1qyZRDrg94S3xb6E5MmTJ+W6fPzxx01tKwneNa9/202bNqloYty4cfKI9Db2KYR4B0LLtUMn2voOCMJizIrxrKPuDCEkyo15AGEwGE/z5s1TViR//vziVYVnHjOy3qjbu/LmhrshD9CpOx4LV+J+4WbQu5qQGDBggMdh9wjn7t27t0R3eBNeD6DXAA8aBtwIsSeBAYY7ooCqVKki5ekgerd06dIY28ydO1e8L1oLgkQeEDiMtgE57l3oV0CXLl3Mbg4hYUk09h0ox4fxL2DfQYjnRJUxDw8ZPGVQjbdqHhLynWEAIHS+b9++XqnbO3p5I8GQd0W45qA6GvTw3MU1aeMu7B6edYTXZ82a1evw+r///lsiVfTkAQxLEjhgpK9bt06iZhAxkTlz5hivQ2gQJSmbNGliWhtJcInGATlSvq5evSqT0/Xr1ze7OYSEfd8RruMdb8EENwRhkXrWqFEjs5tDSNgQVcY8ePfdd8XoxYDDiuhwe+T3wzPrjQCIvZc3kgz5cBbA88SgHzJkiOgd4Jx0NXkzdepUp98XHvktW7bI694KqWFSCwZ90aJFvSpjRwjxDB0qi3vOhQsXVKSDaKMvvvhC/u/cubPczwgh3oOJ/kSJEklJ5ePHj6tIB2PWzz//XP5HSiy+OyHEM6LuTouQV3gLkCeMGrhWLaU3c+ZMtXjxYsm19STc3j7sPJIM+UgQwPPUQ48qBq5KE06YMCFWyD1y6j/99FM1YsSIGLnYnoAydDqvFYNv5HcTQgIL0leKFSsm/2/evFlFQ0kp3Htwz0FqCSHEN5IlS6bKlSsXNZE9cEqg8gdK6qL6FCHEc6LOmAcwgE6fPm3zIFiRBg0aiAL2wIEDVdmyZd2G20+aNMkWYh1phrzVBPACVQ/eVQ69M30AZxEJWNq2batatWrldW4ZzhF4zfB5CGWrXr2639+FxObEiRMS8VCwYEGVPHlyETVytnAiJbKJplD7zz77TB6RJpYqVSqzm0NIWBNNfYcWfUYqbMaMGc1uDiFhRVQa8/DOI0+1X79+at++fcqqwAuLdsLDkTdvXpfboYwHjLtINOQBDNzy5cvHWhdqAbxA1YOPy6AfNmyYhN1DsNEZeA2lFiGyBu86Sp55w6xZs9TGjRtlBnz48OF+fwcSG1yHpUuXFmXeI0eOqDt37sj16WyxYnUNEjiiZUCO2tDwzGOC6u233za7OYSEPdHSd+D7LViwQMYyFL4jxAeMKOXs2bNG4sSJjVKlShl37941rMqtW7eMsmXLGjly5DAaNWoEFRSXy+jRo40VK1YY//zzjxFJ/Pzzz/L9kiVLZixatEge8RzrQ90GxyVQbbhz546xdu1aY9u2bcaDBw/cfmbhwoXlfMA57C2XL182MmbMKPv56KOPAtJ2EpsXX3zRiBcvnlGnTh3jl19+ibhr0hXXrl2TcwuP5H8cP35cjknChAmNmzdvGpEI7qGPPvqofM933nnH7OYQEhFcvHjRdt+/dOmSEYncv3/fKFmypHzHtm3bmt0cQsJyPBWVnnmQJUsWqau9c+dOUfK2ct7UokWLRH0fQiiulK+bNm0qAmjwxkeKR95KOfPBboOnIfdFihQRMRzoKeAc9pYePXqoixcvyn4CEVlAnIPIh1y5csnvhKiSSLsmiefgPMiRI4f04b/++quKRCBchb4QFRu8qcBCCHFNhgwZJJJU55RHItAD2rVrl+iLILWUEOI9UWvMA4jgpUyZUvLNrSxOhIHgwoUL1fbt20UdGJ26fQg2DPmaNWtK2sDRo0ctmyPu62dZIWfe1WehLmqgcBdyD6X7Nm3aqP3794tyPULsvWX9+vVSKQEg/Dtx4sQBazuJya1bt8SI5zEmCB2N5HDZU6dOqY8++sim6cESl4QEjkjuO+BY0OVxP/74Y5m8IIR4T1Qb88gZhpEEowl50NevX1dWBTnaaCvynWHMaaVge0Meon4wOt0Z4N4Y58HIEffls6yQM+9KmA4GdiCPiysPPWqvQuhw0KBBqnHjxl7vFznbegIIj/gMEtyKFDdv3jS7GcRiA/INGzaoSAKaD8hxxbmOPgUVOQghgSNS+w6AMdXVq1dVqVKlXGoEEUI8wIhyHj58aJQuXVryEt544w3D6kybNk3a2qlTJ+OLL74wpkyZYmTPnl3Wvffee0bPnj1j5Ffjucbda6HOEffms6yQM6+ZNGlSSI6LfQ79qFGj5DP69u3r8/769Okj+8iSJYtx5cqVgLaVxGbo0KFGypQpjQsXLhjRBHPmnXPgwAE5LkmSJImovPk5c+bY9AB27txpdnMIiThOnTol11j8+PFF8yZSWLp0qXwvaMts2bLF7OYQYjmYM+9lCOSSJUvkcfLkyWrixInKyrRs2VKNHz9ejRkzRmZqUfZqyJAhNoVzhDm6KmXm6jVnoL59qPLU48pHt0LOvMZV2LSr4+Wvh37mzJni+erWrZstlNVbUO1Aly4cPXq0SpMmTUDbSmKD3+vJJ59UdevWVXv37jW7OcRkChUqpHLmzKnu3r2rfvrpJxUJXLhwQXXs2FH+R6hsyZIlzW4SIRFH9uzZReMGUXrr1q1TkcCVK1dsteShXYV7JSHEd6LemNc56aNGjZL/MTix8mALYY2VK1dWHTp0kFIes2fPlrqcCMV2ZdyiVr2r12CEOobdI2zclSigs9xxf/Pq48qJt0LOfFyfieMV6DQElJ2DsNRLL70kofX47b3l9u3bMgH04MED2QfqypPgU6tWLTn2SJVACCHC7qtWraqqV68ea6lRo4ZPnzF27FiVJ08eSRfC9e9OXA0lOHEeYXtMXOK88nefxHNwzHFOgNWrV6twB30R7kGXLl0SI/799983u0mERCzPPPNMxPQd4N133xVBZ4ynkCtPCPGTkMQKhEm4/csvvywhDRkyZJByQlZs4/79+23l57766isJUWrTpo2U93AVrq5TCNyVtcPy2muvud0Hwvgd8SZ03x3ly5ePsZ8KFSrE+hz7MHtnbQkVjt/Z23B7bDN9+nS32w4ZMsR2zG/fvh2rbJ2ndOvWzRZeH6mlbawIrktPF4RPesvs2bOltCbSbPbt2yclfdKkSWOcP3/e6fa//vqr0b17d2PWrFlyLnz22Wd+79MZDLN3DY4vjk3x4sWNcGfkyJG28PodO3aY3RxCIpply5bJ9ZYnTx4ZB4YzEyZMsIXXb9682ezmEGJZvBlP0Zi3A0aTzp8vUaKEcf36dcOqhrwGRiGMgVdeeUVyMevXrx+n0e5uKVCggNP1/fv3D1pevSf7cTTmfZ00CBQ4Hs7ajN/DHXFNfmBSpkePHvLahx9+aLtxO6tDHxc//vij3DCxr++//96Pb0u8ZcOGDV4tvkx+dezY0fYc50S2bNlkEigucufO7dSY92WfOC9xo9HLyZMnacy7qRmtr8czZ84Y4awHofsvT843Qoh/3Lhxw0iUKJFcc4cOHTLClTFjxtj6Duj4EEJcQ2PeDzAYzZQpkxzAl156yWtPaCgNec13331nJE+e3ChbtqyxZMmSOA12GKKujFFvPM4wXH0xaL3dj5UE8OKagIBAnrfv0d8DFywmYzA548zY8sagx3mSL18+2X/r1q0D8I2JVbh7966RIEECY+HChTHWt2jRwnjuued8MuZ93aerfoTGvHPQR/vSR1oBTBa///77tt/YfrKREBJcqlatKtfdl19+aYSjo+zjjz+29R2IEmPfQYh7KIAXgJruiRIlUt99953L3PFQgQmXP/74Q/31118iiPbII4/E2ubFF19Umzdvlpqdbdu2lRz6QIJccGdl4FzVWPc2lz2unHgrCeD5UqpOawq4ExU8fPiwlORDLdlly5aprl27elS2ztU5A3GZo0ePqly5cqmRI0f6/D2J9UCeMjQQMmfOHGM9nqOEYSj32bt3b3Xt2jXbcvLkSZ8+P1oIx7z548ePS1+He+PgwYNlHUpk9u/fX7QACCGhy5tftWqVChdOnTql+vbtK+KfeATQ14D4MvsOQgJInOZ+lDJ58mTbLKJZM6FxeeQdQW7rU089JXmv/fr189r77o2n2VXeuC+57M72Zb8fK3rmPS1V5y6/Xi8oMZg2bVrj0UcfNf744484PzMuD/3YsWNt+azMSTMXXMPId0RIYbt27aRf0aBs3cGDByW1whtOnz4tv69jOR+kZyBU3hfPvL/71DBn3j3r1q2T4wPdAit7ptA29DENGzaUSCHdV+XNm9eYOnWq2c0jJOqA7gmuwVSpUhn37t0zrMxPP/0kGlSI9tJ9R86cOWUsbeV+jxArwTD7AAGDGAcSeY7ffvutpQ15+3BZLXb37rvvSjiTP8a8FmqzF2zzJcTcFZ7m3cOgsDfmHQXyzMJdioA7MUG91KhRQ254tWvX9qr+uyuDHs8xmYN9jxgxIkjfmngC6m4XKlRIjCEtdNeqVSvb6zNnzpR1SI0J1zB7R2jMx33dIiUKx2j37t2GFcG9580334zRT9WsWdNYvHix1xNPhJDAgGsvXbp0cj1adZIefYcW3dVLlSpVjPnz51t+AoIQq8Ew+wCBEHuUqsOkR4sWLST82Sqh9e7qoE+cOFF98cUXUm5v9+7dEt49ffp0CYv0FoR0Ifwb318/Tp061eVne4snIfQIU3cskYV1vpbCC0Q5vbhSBJCC4Oq74XfAb9SgQQO1du1aCanHueVN/XdnIfeo3fryyy/LZ7/wwgtSv5WYF15Ys2ZNOQdQax5hhY6lBRs2bCjpPIsXL/Zq37jOypYtK+eOBr8/nvtarzcY+yTOr1uUKASu0m7MBv3ThAkTVPz48VX79u3V/v37JS3gueeeUwkSJDC7eYREJbj2cE8BK1euVFZk+PDhasSIEbaUw127dqkNGzZIWdSECROa3TxCIpeQTC+EMfB6Nm3aVGZHkiZNKgrhVvTIO2PNmjVG+vTpjYwZMxrz5s3zyFPsWKrOm+19CXv3xDOvvd+OYfaeikg5RhZ4W04vrlJyrkLpXR2/8ePHG/nz55fzadq0aYY/aA/9L7/8Yjz77LOyfwjfeePlJ4Gnffv24o0fNWqUbR2e23vmdcQJKmf4UuYsSZIkcv6gv0AIP8rInTt3Tl7HuderV68YnneUEMOSNWtWidjB//bKyHHt0xPomY8bnQaDlCirgTBY3U+hhBQhxDp8/fXXcm2WLFnSsBr2UYqMCiTEfxhmH2D+/fdfm6GEfKXff//d8oa8BgPxF154QdqO8nWdOnXy2DivWLGix9v6U/fd0Rh23Jc/OfOO+3ZlYHtqqNsb/vZGfp06dZzut3nz5jGelytXTow6HFvkSwcCGPQtW7aU/cMYC9b5STwHucWFCxeOsc6ZMY9rEpNtvjB69GgjV65cklaBSQH7cxihjTgnNMeOHXN6fmI7T/fpCTTm40aX78P5AJ0Tq4ASibp0HpTqCSHW4tKlS7Y8dPTpVsrnh0YP2oUwe0KI/9CYDwK3bt0yKleuLAcWg++9e/da3pC33zdy/pFvhbYPHjxYvELeeN3dLb7kytvjiafcl5x5byIRnHn53UUNOBrp7vaL7SGABgEYeOMxax3I3NMFCxbYPu+DDz6wRDnFaAeTKjDU4zLmGzduLNtGCjTmPaNMmTJynOwFEc0E/REiRNAm6CRQpIoQa4IJWFyn9lFfZoK+4oknnrBUOWdCIgHmzAeBZMmSqe+//17ySlECrnr16pJLaHaOvCegBEiTJk3Uvn37ZP8oDYIyQ40aNQrI/n3JldcgZx35xPbguX0uu685896UrnOW++7q/d26dVMzZszwaL8oDTd79mwp6YRjvnPnTvXuu+8GLPcUvyl0DAD0HapUqeK2bB0JDSlSpJB+Ii6OHTum0qVLF5I2Eevw/PPPy+OSJUuUFZg0aZLoq6RNm1ZKWbJsFCHWBNoVVuo7Zs2apX7++We550GrCVobhJDQwqvOC1KlSiWCcKVLl1YXLlxQ1apV89ugD7Yhb0+WLFnUggUL1MyZM0XQ6Mcff1S9evUSgS5/8KauvKPwnCcCeL7WmXfVriJFisRah+Pi6fs3b96sPAGGddu2bdX48ePVp59+qn766SdVqFAhFSj+/vtvMQpu3Lghk0ufffaZR3XoSfApXry4+u2336R+uytwzUMgCBOEJDoH5Lif3Lp1y9S2XLt2zVYD+sMPP1Tp06c3tT2EkLgnAjdu3KiuXr1qaltu3ryp3nvvPfm/d+/eKlu2bKa2h5Bohca8l8CLtmbNGlWqVCkx6GFEHThwwPKGvAYel6ZNm4pHt0aNGmro0KHq6NGj4jmuV6+e1/urUKGCPHqiDI9O314ZH89dGcz26z3ZxlXbevbsGWu9swkYx2gAd+/3hAwZMsjNNnfu3OKNhzc/kErQ9+/fV6+++qo6cuSIypMnj5ozZ44ooztTuSehp3nz5ur69eui6OvMWEPFgQ4dOqh79+7JtiS6KFmypETt3L59O0YFATMYOHCgTDoVLlxY1OsJIdYlf/784pDAGMDsihhQr0flFoxzEHFICDGJkAT+R6gQSalSpSSfIXPmzJLvbpUceW+AWBpqnON7IC8dSsvI8/Y0J9xxcaUM7yr/3NnnOBPTw37tc+Y9FdzzNm/emXI9NAHiei+E9b755htb3mnZsmWN1atXG8GiR48e8jmoWb1r1y6P69CT0OUgV61aVfLkoZXQtm1b+R+50m+//bbUesfzZ555xogkmDPvOVqM9I033jBVjC9RokTSDtyLCCHWp3fv3nLNQnPFLC5evCjjD7Rj7ty5prWDkEiFAnghNOhRIkQb9Pv27QsrQ96edevWiTGP7wLjHkY+DNr+/ft7bdDjfdoohiGMR2/240xB29GYj6ucnLNyKd6q9+vPiGsfDRs2NJo1aybGWcGCBeXGFkwDetasWbbPnjNnjsvtaNCby/Xr16WsZfz48eXccFwaNWok20QSNOY9B5N9OFaZMmUKqCCmL+KjEHclhIQH2kmB6kooO2oGAwcOlDZggpqCmYQEHhrzIZ6d1N7YtGnTGps3bw47Q96+bfPnzzcKFSpkUybdtGmTzQvs6VK/fn2fvPr2HvJAlabzxjPvbmLC2WuoJf7888+LZwu1u1E/HmUMg8nOnTtt39+T6AQa9OZz4MABqWDQsWNHOWdQTQI13iMRGvOeg0F46tSp5XihLFyowUSS/vwlS5aE/PMJIb6Be3mWLFnk2l26dGnIPx/jCjiw8PkzZ84M+ecTEg1co5p96EBu9Lp16yQH/MqVK5KHDtV7q+TIe5tP/9JLL6m9e/eqiRMnqj179qhKlSrJ9+vfv7+qU6eOR/tZtmyZR9u99tprHuXC+yKAp4X2gLOc5Lx583rURnyGs9x55IiNGzdOVPaRc3r48GH15ptvSt56sLh8+bJ64YUXJM+2Vq1aatCgQXG+hzn05vPYY49JPuGYMWPUl19+KUJB0Nwg0Q2qgLz44os2RehQM3XqVBG/K1iwoKpfv37IP58Q4htQjH/llVdM6zvwmefPn5cKPS+//HLIP58QEhMa8wEA6r8QxcOA6M6dO2JwTZ48OawMeXsSJkwowl0Q9lu+fLl8vwEDBqjt27erZs2aSQk0GPcoR+Jo5HozKMQxcWbgw4C2F6NzJXSH4wn1ZSz22zsK7TkrI4eSYJ6gP7tz586qXbt2MnkDMmfOLFUBjh8/Lp+XPHlyFUwePHgg5QXR7nz58snN1FNBPRr0hFgTiJGCefPmiShiqEB/8vnnn8v/77zzDstJERKmfceiRYtEVT5UYNyG8pV6XBRMBwYhxDPiwT3v4bYkDqBMDe8sPB7g448/lpruIFwMeVfAsP/qq6/U9OnTpSRa5cqVxfB+9tln5XvBANeGLwzoQICJgmHDhsn/8I4jUgBGLIxaeKedbQ9PV6A+v0uXLrKvb7/9VqINkiZNqho3bixGfaA+w1N69OghyrGYNNi6dasqUaKE1/u4e/eulNVDicUyZcpwAB9EduzYIeUfUTUCERWIekElDJSsQ1SFL79fOIAJo9SpU4vHF+cZiduozp49u3i5li5dGjIPOUpxIgoL5+SJEyekRjQhJHzA0L1AgQJSjQjjIlS3CQW4r+Eehj4DSvZp0qQJyecSEm384814KhRx/9EE8s7ff//9GHnVUBu3Yo68L9y+fdv49ttvjerVq4uwF75jhQoVjI8//tjYvXu3fH8tqhSIxT5n3TFn3tnii2Cf41KkSBGjXLlyRsKECeU5/h83bpxx9epVU475jBkzPBK88wTm0AeX48ePGzVr1pRrQy9a8M5+XZ06dYwTJ04YkQZz5r2nS5cucswglhgqnn76aflM3KsIIeFJnz595Dp+7rnnQvaZ9erVk8/s3LlzyD6TkGjkmhfjKXrmg8To0aPFs4vDC28cQqEQHh1JoDYxwvCXLFmifvjhB3Xjxg2ped6gQQPJw0yZMqWEdCM3dNWqVTHC3eHV1znt7kAkAEDIfLJkydx65gHC/5ESEBfw9NuH5uO3gef69OnT0t7q1avL98CSM2dOZRa//fab6BYgfQO51oMHD/Z7n/TQBwekQCDyBl5WXPfweuL4IjUD1wGuF3jsoa0BT322bNnUpk2bRH8hUqBn3nugu4H+CFE3Fy5cCLqXHJoouCchTQdeeZyHhJDwY//+/apo0aIS6n7u3Dm55wT7Hoc697i/HTp0SCIDCCHmj6cSBqkNUU+nTp3kEfnUCA+vUqWK+u6771T58uVVpAAjBUY2FhiIGzZsEMN+4cKFEn4FoxjhxGXLlpWw/Jo1a4pRU6RIERm8Zs2aVX3yySduP8NVvrwr6tatK4a+q/2iHVWrVlVXr14VAxnpD2g7LhakDMB4RwiZFVIhYBQ2bNhQ2onwWwjtBQKdQw+DHjn0NOgDQ+vWrWVAhYks5CPjXHQGUjaQpwzRxDfeeEP0Nkj08vjjj8sA+ciRI9J/YrIymEyYMEEen3/+eRryhIQxGEuVLFlS7dq1S8aXbdu2DernQRgZhjzGSDTkCbEO9MwHAXuxu4wZM4po3MGDB8W4HTt2rIjLRfr3x83lp59+Es8yFswgay89vEIwIKHoDeGWW7duyfONGzeqESNG2PaDiZChQ4fa/ke0gzvPPLaBwvvFixclEmD37t0yY41B8s6dO9XJkyfFMAa4EWGSAUvFihUlB95TQblQADEsVEaA57ZQoUISRYAZukBCD33g2LZtm0xQYfLJk98Kk0eY2INBD88szsNIgJ553+jXr59orGBC0VU1lECA/hYGPH4n9JHPPPNM0D6LEBJ84LjA2AdOivXr1wd1TIIoRUQPQXMDQs+EEGuMp2jMBxhnqvX4QVq2bCmh9gACal988YV4SKMFGOww8LVxD48wxMEgAKVB6DHEVHDMMOAsXLiwhOpDXV+HkcGIv379uk1wEGJ8GKDCEMUJjxuN4z7hKdWGO4zW0qVLW1q0BecQvLzTpk2TCxjGHgz6YGBv0OP44HgR3wQKofALr7unJRxXrFghERd4rxZ6DHdozPsuMAovG/o69HOoIBIMUGUFk8mIBIBoKSfwCAlvkCqDVC3cu/E/ysUFg7lz54oAMMZmqOJDFXtCggvD7E3m/v37MVTr8SMgBApe5r59+4oqPAxa5INjABcNIB/0ySeflEUDoxte9LNnz6ozZ87Io17wHMY+JgFwPPUCwx3HEzcSDHwxIQJvKEL29YKbjf4fJeTC7abTq1cvMeQx0EYkQrAMefuQe0ROYBKBxrxv4HpOmzatx4Y8QBg+chzh1SfRDSYuEamECCLcKzDhG8wQe1RdoSFPSPiTK1cu9fTTT0sk5Jw5c1S3bt2C8jnjx4+XR0wGhtuYipBIh575IODOKFq5cqXUB4UIFkLOIdbWvXt3MUyJe+CJh+BevXr1IvZmgvJz8NSCKVOmqFatWoXkc2nI+wfCDx977DEp2+MNyD2EVxYpIJEAPfO+8+mnn0p5TeirQH8kGBNO5cqVk/sONE2QAkYICX/GjRunOnToIJGHuM4DDdJEcX/DBCC88maKAhMSLfzjxXiKU/NBwJ1RBM8dBPEQXoscJCiUI2cbnlES3Xz99dc2Qx5h16Ey5AENef9AZwtBSG/Be/BeQnSd6B9//DEokzvaK4/68jTkCYkcXn75ZXEIIX0RaZ6BBtGkAONWGvKEWA8a8yaQPXt2ETmaOnWqzLogzBZ53DDgEEpOog+cD1A2BwiT00Y9CQ+Q/oHSib6kOeC9hGCQjGobiJJBuGwgwYTRt99+K/+/9dZbAd03IcRcMCmMKC+A1LxAAp0ipP0B9h2EWBMa8yYBT+jrr78ueeHInYWXHrnS8NIzhza6QGj2K6+8IhoCKPMHdVp6ysMLZiuRQIAULKAN70Axc+ZMmTRCbj7yawkhkdl3wJgP5P1o/vz5IjQMkb3atWsHbL+EkMDBRG0LeOmhgI2ZT9Se1iWuoGY+ePBglSlTJrObSIII6kojRA6TOShLNWnSJApThSkoMwdRS2/fQ4imUaNGqlOnTmrHjh0SLos8VX/BwF6LV8GzxolCQiKP559/XqLDDh06ZNPHCAS674Aop5XK9xJC/oMCeBYCCu7wzn/zzTfyHIIHEMjr2LFjxAq+RbMA3uzZs1Xz5s3FI4+arZhRj6ZyhZEEJmB8MZK08KB9OcVwhgJ4/oNJPUzwovLJwIED/d7f1q1bJeILA/3Tp09L1QVCSOTRpEkTGVd06dJFff75537vb/fu3apkyZKSjw8djyxZsgSknYSQuKEAXpiCkmrw7KHuN1RJ8UPCW4/OdM2aNWY3jwQQKNUjLA5GXLNmzaSGKw358C4P5MuC0EU8+sLYsWNVnjx5VNKkSSWa59dff3W7/bx588TTi+2LFy8uE2P2IO0HEwv2izel9khgeO211+QR0VqBmOTRnjUI7NGQJyRygXMAzJgxQ929ezdgoplwNtCQJ8TCwDNPrMf9+/eNiRMnGhkyZEDkhCwNGjQw/vjjDyNa+ffff41FixbJYzgzevRo22/arl0748GDB2Y3iYQZs2fPNhInTmxMmTLF2Ldvn9G2bVsjTZo0xvnz551uv3nzZiNBggTGJ598Yuzfv9/o27evkShRImPPnj22bVq2bGnUqVPHOHv2rG35+++/vWrXtWvX5LzGI/GNO3fuGOnTp5fjuHTpUr/2dfnyZSNJkiSyr19++SVgbSSEWI979+4ZOXLkkOt91qxZfu3r+vXrxiOPPCL7Wrt2bcDaSAgJ/HgqIj3zKO3ToEED8XTDu7Ro0aKAeKBQ+xcec3hQCxQoYFP49Mdb5grkJrVp00b9+eefqnPnzvIciufFihVTb7/9trp06ZJP+yXm8fDhQwmdxe8HEHUBr5lVcuSvX7+uunbtKt5ihOR6IsZ44sQJKVeTPHly0XeACr9jRQZPrhviHSNHjlRt27aV8oVFihSR8wi/ASI+nDFq1Cjp4/D7QAQN4dv4TcaMGRNjO/xG8MDohZ7c0IPfoGXLljFKQvmK9tCVKlVKPf744wFqISHEiiAcXlfF8bfvQLQgxgQFCxZU1apVC1ALCSHBwBpWRICBai9C02FYuwID27Nnz9qWuMp5HDt2TIwWdGo7d+4UowfG9g8//GDbBuWE3n33XdW/f3+p94k2QP3zwoULPn8XDKYxEN+7d69MUMBQwgAcRtHw4cMDEkpFgg/KuyCfbdCgQfIc58iIESMsJUaF8xnK+tBs2LNnj5S6qVmzpuTZOgMhwLgmIN63ZcsW9fXXX4uh/sEHH3h13RDvwPGGwBF+Gw0mhPAc+dHOwHr77QH6JsftMfGCSZlChQqp9u3bq8uXL7ttC/ofpAPZL8R/MFEDli5d6vL680SPYfLkyfI/rjkr9TWEkOAA8WTcD9avXy/OIF/RE8OYHGDfQYjFMSIcfMWFCxfGWIdw0ueff96r/fTs2dMoWrRojHWNGzc2ateubXtevnx5o2PHjrbnCJ/Oli2bMWTIECNQINypVKlStjDtvHnzGnPmzDEePnxoRDrhGmZ/7tw5o0KFCvJ7IbR56tSphtW4deuWhGE7hvWWKVPG6NOnj9P3LF++3IgfP758P824ceOMVKlSGXfv3vX4uiHecfr0aTmXtmzZEmN9jx49pA9yBs67b7/9Nsa6sWPHGpkyZbI9R1jm4sWLjd27d0ufWbhwYePxxx+XlB9X9O/f39YX2S8Ms/efypUry7H86KOPfHr/b7/9Ju9HmD3C7Qkh0UG9evXk2sc9wReQzon3Y0xw5syZgLePEBI3UR9m7wlxeaCqVq0q4fieerZ88Zb5QvXq1dX27dvV1KlTJY0Ans/GjRtL7WDWp7ce+/btk3SLX375RaIs4Pm2P6+sAiI+4GlHeog9CLfftGmT/P/hhx9KCokG5zWE1DJnzhzjmoB3Ft/bG48wMR8IpD333HPymzZs2FC8wuhT0Fe6onfv3qK0qhcoHpPAgFJQAOUqfRHC0541iFelS5cu4O0jhFi770CkHMam3oLxJahbt67KmjVrwNtHCAksUWnMI8QeqvFr165Vw4YNUxs3bpROy37ABIVp+07s3LlzMYwWgOcwXBBCjRx2vN/ZNnhvIEH+PAxChFDBwEKuLBTwy5cvr1q0aKFOnToV0M8jvrFixQrJO//rr78k7+znn39WVapUUVbkkUceUU8++aTkUqNEIs5l5NvC6EYaCsiQIYPKnz9/nNeEfs2T64Z4D34H9AHnz5+PsR7PXSkOY70324N8+fLJZx0+fNhtfjdKptgvJDC89NJLMgEIXQr0Jd5w584dNXPmTFvYLSEkekBqG8avFy9eVAsWLPB6Yh8pc4B9ByHhQVQa8554oGDsDxkyRFmZFClSSO41jHoY8QD5zo8++qjUp4d2AAk9mAl/7733VL169cRorVy5shjF+F2sDM4dZKZkz55djLQvvvhC8vy1QF+nTp1kAoyYS+LEiVXZsmVj/BYQV8RzTMg4A+sdfztEibjaHmBSEBFL9MyYA6Jk9GD6008/9eq9EH29evWqypkzp0RzEUKiSwjvzTfftPUd/8s49YyVK1fKJDwmcjEpQAixPlFpzPvigXLl2YInCqHIvnjLAgWML8ykQjn/qaeeEo8nPPZIIYB3xpuOnPjHkSNHVKVKldQnn3wiz5HCsWrVKpU+fXpldeB1R5TKjRs3JFwa59O9e/fk+vDmmtCveXLdEN+A0ObEiRPluj9w4ICcZ5i8g7o9wOQeQuA1Xbp0kUEaRBf/+OMP6R+QroMJGoDfHEr3iB45fvy4GP7PP/+8CG0iLYKYAypeJEqUSCq0eJOaokPsEcGF+xIhJLpA346oTYgxr1mzxuu+47XXXpOJY0KI9aEx76EHKi7Pli/eskCD0kM//fSTlBRBbjNUkJs3by7GJQbuJLhg4qR06dIS5YHwWIS3ffnll+LlDicQ8YFr4cqVK6I6D6POGTivoXpvX60B1wQMdZRL89UjTOIGOhmoZoHKASg7hkoBMNZ1SgNCs3V6BEC6x7fffivlilBlY/78+eK9RalLAINv9+7dErGECBIoGKM/Q38SbudvJIGJWgyqAVLCPAGRWnrwbkV9DkJI8IEDQVfF8LTvwCQ+SiADPTFMCAkDjAjk+vXrxo4dO2TBVxw5cqT8/9dff8lr3bt3N7Zu3WocO3bMWLNmjSh2FyxY0Lhz545tH6+99prRq1cv2/OjR48ayZMnF3XQAwcOiBI0lD5Xrlxp22b27NmiHDxt2jRj//79Rrt27Yw0adLEUPsOFbdv3zYGDRokbcYxiBcvntG6dWtT2hLpavb//POP0aJFC5uS99NPP22cOHHCCDdwLq9YsULO9VWrVhklS5YUFX59vEePHm1Ur17dtj1UzosVK2bUqlXL2Llzp7w/Y8aMRu/evb26bkjk4I36KvEMXDfov3FccV+JC9x3sG2DBg1C0j5CiDXBmDdhwoTSH2zbti3O7d99913ZtmrVqiFpHyEkMOOpiDTm169f77RcEkrSoQQXjA8YHSjXlDt3bqNt27axjNwqVarI9o77RVm4xIkTG/ny5XNaYgwGT65cuWQblIn6+eefDTM5deqU0axZM9sxeOSRR4xPP/3UVjosnLCiMY9SXjlz5pRjizJtH374oXHv3j0jHEGJQ5zXOHezZMkiZRavXr0aowwZrhd7jh8/btStW9dIliyZkSFDBqNbt26xvr8n1w2JDGjMB4cXXnhBjuvrr7/udjvcxzChjG1//PHHkLWPEGJNtKOhUaNGbre7cuWKkTJlStkWZWcJIeEznoqHP2ZHB5Dgs2XLFsmb1eH2uXPnVv369ZPcWuRkhgPI316+fLkIy5ndZoSjde7cWUKVAdIakL8MsTtCohUIPqZOnVrK1FHZPnCgtOUTTzwhwla7du2ypbE40rdvXzVo0CDZFn1+vHjxQt5WQoh1QJlYpFOhL0AKINKnnDF06FDRWcG2SLli30FI+IynmDMfJSBnFgNCiJtAlAzl0tq0aaMKFy4syv0oR0LiBsfp888/l8E0DHkMrqFcjxsmDXlCSDCoUKGC6Bmg/4HCvbO68xAxhEYHgJghB+OEkKJFi6qmTZuKEDL6Dmd15+/evatGjRol/7PvICT8oDEfRaDEGERNjh49KqrWGTNmFPX1li1bymzsrFmznA4Syf+A0nf58uVFYRoDZ0yQQCkWM9pQjSWEkGAxduxYmZ3HpCzKRjoyadIkEa0sWLCgS9FKQkj0AQcEBPHgcXcmhjdjxgwpRwfBTZRuJoSEFzTmoxCUBENpKxj1METTpUunDh48KLO3MOrR8V+6dMnsZloCzGZDjb1mzZqiwL5jxw6VJk0aUQWH0nfx4sXNbiIhJArIkSOHrd58nz59pP/WQL1elyLs1q0by9ERQmzAcaMnAAcOHCiRhJrNmzerrl27yv94ZDk6QsIP5swTyctARw9v/dWrV2UdctLh3UFYVq1atSwxOAxlzjzKCiKMHpMdyDMDCKmHxsDgwYNtJcAIIf/BnPnggtt1jRo11Pr160Wno1evXipnzpzqpZdeUnfu3FENGjRQ3333nemaIoQQ6/UdSNVZunSpeOCRHoh0wYYNG0qkIfoVvJY0aVKzm0oIUd6Np2jMExs4YVArHXn1v/32m209On6E4sOQLVSoUEQb8xgQz549W0LR/vjjD1skA/QF4PGCcCAhxDk05oMPPPKVKlVSZ8+ejbH+2WefVfPnz1dJkiQxrW2EEOty+vRpSQ88ceJEjPXVq1eX+vJMFyTEOtCYJ34DxeSpU6eqb775Rv3999+29Xnz5hVPPRbcABByHu7GPC4U7HfBggVqxYoV6ubNm7IeF1GnTp2kCgDC1Agh7qExHxrQRyFHfvjw4erUqVPSJ6L/oiFPCHHH7du31bRp0yRl59ixY6pq1apq2bJlNOQJsRg05knAgMrpkiVLxFuP3HEY1PaCehCEg2GPEK0yZcqolClThoUxf/78ebV48WK1cOHCWN8LYasw4t966y0aJIR4AY350AJlaky8ou+1QioUISQ8QGUMaACVKlWKaTmEWBAa8yQoIK9q48aNatWqVbLoMHQNyplASbl06dIyuMQjlgwZMphmzOP0hucKA1775dChQ/Ka5rHHHlMvvPCCLOXKlWNpFkJ8gMY8IYQQQoh/0JgnIeHkyZNq9erVYthD2f3MmTNOt0POfb58+USNGf/jUS94DmMf4aFxGdDOjHmEjMHLjvxRlFbBov8/fPiwGO72aQL2wGjXBnzhwoUDcEQIiW5ozBNCCCGE+AeNeWIKFy5ckLAtLKi/jkcY1J4AQx5Cc1iQu6UfYeQjlBQLQv5xUiOcVD/X+e3uwPYw1kuWLKlKlCghjwgtoyI9IYGFxjwhhBBCiH/QmCeWOhn37t0rXnyEu0NNFY/6f3jzkbvlDzD4s2bNKkuWLFlkwf+5cuUS4x3lVygMRUjwoTFPCCGEEBK68VRCPz+LELfgBEQpFFc8ePBAvOsIl79161asR3jgEVIPYxyCe6j5Xq1aNZUiRQqVOHFilT59evkM5rgTQgghhBBCogka88RUEAIPY9wTLx5y5q9evSredqqvEkIIIYQQQqKZ+GY3gBBCCCGEEEIIId5BY54QQgghhBBCCAkzGGZPCCEkIGg9VQi3EEIIIYQQ79HjKE906mnMk7DKr0dJOTwSQqzH9evX5TFnzpxmN4UQQgghJOzHVVC1dwdL0xFCCAkIDx8+lHKTjzzySNArTGDWGpMGKHvJMng8HvbwWMSExyMmPB4x4fH4Dx6LmPB4mHc8YJ7DkM+WLZtU83IHPfOEEEICAm44OXLkCOlneloNI1rg8fgPHouY8HjEhMcjJjwe/8FjERMeD3OOR1weeQ0F8AghhBBCCCGEkDCDxjwhhBBCCCGEEBJm0JgnhBASdiRJkkT1799fHgmPhz08FjHh8YgJj0dMeDz+g8ciJjwe4XE8KIBHCCGEEEIIIYSEGfTME0IIIYQQQgghYQaNeUIIIYQQQgghJMygMU8IIYQQQgghhIQZNOYJIYQQQgghhJAwg8Y8IYSQsCVevHhq0aJFZjfDMuTJk0d9/vnnZjfDkhw/flzOl507d5rdFEsQ7ddOtH9/R9h3uIZ9R0yi/dqJZ7HvT2OeEEKIpRk7dqwMNJMmTaoqVKigfv31VxWtnD59WjVv3lylT59eJUuWTBUvXlxt375dRQM//vijatCggcqWLVuswdS9e/fUe++9J8cjRYoUsk2LFi3UmTNnVLQdC3Djxg3VqVMnlSNHDjlPihQposaPH6+iDfYd/8G+g30HYN8ReX0HjXlCCCGWZc6cOerdd9+V2q6///67KlmypKpdu7a6cOGCijauXLminnrqKZUoUSK1YsUKtX//fjVixAiVNm1aFQ3cvHlTfn8Mshy5deuWnB/9+vWTxwULFqiDBw+q5557TkXbsQC4ZlauXKlmzJihDhw4oLp27SoD9CVLlqhogX3Hf7DvYN+hYd8RgX0H6swTEmw2btxoPPvss0bWrFkNnHYLFy60vfbvv/8aPXv2NIoVK2YkT55ctnnttdeM06dPx7nf9evXG6VLlzYSJ05s5M+f35g6dWqsbcaMGWPkzp3bSJIkiVG+fHnjl19+Cfj3I4QEB1yzHTt2tD1/8OCBkS1bNmPIkCHyHP3JxIkTjYYNGxrJkiUzChQoYCxevNiIRN577z2jUqVKbrdBXzdo0CCjVatWRsqUKY2cOXMaEyZMMCINx/uIM3799VfZ7q+//pLnx44dk+ffffedUbVqVTlfSpQoYWzZssWItGNRtGhR46OPPoqxrkyZMkafPn1ivC+Srx32Hf/BvuM/2Hf8B/uOyOg76JknYTsreuzYMVW/fn1VrVo1yWPC7GGbNm3UDz/8EL6za4QQG//++6/67bffVM2aNW3r4sePL8+3bt1qWzdgwAD1yiuvqN27d6t69eqpZs2aqb///ltFGvCMlCtXTr388ssqU6ZMqnTp0mrixImxtoPHDdvt2LFDdejQQbVv31761Gjj2rVrEkaaJk2aGOv79OmjunfvLveNRx99VDVp0kTdv39fRRIVK1aU8wWh1Rh7rl+/Xv3555+qVq1aMbaL1GuHfUdM2Hd4B/sO9h01w6nvMG0agUQtvsyKOgPefMwg2tO4cWOjdu3aHs+uEUKsC6Jz0A84ej969Ogh1zbA63379rW9duPGDVm3YsUKI9JAdBGW3r17G7///rt4zZImTWpMmzYthnetefPmtucPHz40MmXKZIwbN86IpvvI7du3xZvUtGlT2zrtXZs0aZJt3b59+2TdgQMHjEg6Fnfu3DFatGghryVMmFCi177++utY74vUa4d9R0zYd/wH+47/YN8RGX0HPfMkbGZFq1atql5//XXbc8yQ2c+cAXjd9cyZp7NrhJDwpkSJErb/IWCUKlWqiIy+efjwoSpTpowaPHiweNbatWun2rZtG0ucyP54oB/NkiVLRB4PV0DQCh4TjLnGjRsX63X745M1a1Z5jLTjM3r0aPXzzz+Lhw33QXhcO3bsqNasWROV144rouX7s+/wDPYd7Ds8xUrfP6Epn0qIG+7cuSPKoghfwsWhyZUrl63zBOfOnVOZM2eO8V48/+eff9Tt27dF8OXBgwdOt/njjz9C8E0IIf6QIUMGlSBBAnX+/PkY6/Ecg0wNRJ3swSAUg9dIA/0flIXtKVy4sPruu+9irIuW4+FuMP7XX3+pdevWxbiHODs+ODYgko4P7n/vv/++WrhwoaSi6YEnQoOHDx8eY4I7Us8V9h0xYd8RN+w72HeEa99BzzwJm1nR6dOnqyFDhpjWNkJIaEmcOLEqW7asWrt2rW0dbpZ4/uSTT6poA2rUjvmryGXMnTu3aW2y4v3j0KFD4kVCCa5oPQ5YEIlmDwaokTDY9gT2HTFh3+Ee9h3/g32HCsu+g555ElazovZghszZzBneh9qY6Hw8mV0jhFgXCFi2bNlSRJnKly+vPv/8cxHUbNWqlYo23nnnHREnQqgs+krUvf3qq69kiQZQ//jw4cMxRFDhMUqXLp14Hhs1aiRCp0uXLpWoLERvAbyOAVq0HAtEsVWpUkX16NFD7oUw2DZu3CgT4iNHjlTRAvuO/2Dfwb5Dw74j8voOGvPEcrOiUM70ZFYUM2TLly+PsW716tW2mTP72bWGDRvGmF1DzUxCiPVp3Lixunjxovrggw9kgFWqVCmpgeuYPhMNPP744xL+2Lt3b/XRRx+pvHnzyiADKrrRwPbt26V6if2AC2DQ9eGHH9rqIOMcsQf3FGiuRMuxmDZtmpo9e7acJ1phGYPyQYMGqbfeektFC+w7/oN9B/sODfuOyOs74v2/Kh8hIZsJhPgKZvjQmTibFbW/WOxnRVu0aKGyZ89uC7XHbGKxYsVEmKN169bize/cubNatmyZCOHp0nTooCZMmGCbXZs7d67kzFv1oiSEEEIIIYSQuKAxT0LChg0bYswEavSsKGaJnWE/K4rHPHnyyMyh/X4RPrZ//36VI0cOqVVvr3gPxowZoz799FPb7NoXX3yhKlSoEPDvSAghhBBCCCGhgsY8IYQQQgghhBASZlDNnhBCCCGEEEIICTNozBNCCCGEEEIIIWEGjXlCCCGEEEIIISTMoDFPCCGEEEIIIYSEGTTmCSGEEEIIIYSQMIPGPCGEEEKIj5QsWVLFixdPJUmSRF2+fDkkn4mSrvhMPJpFsNqA8rPYr2OZ2Whg1KhR8t2/++67GOtxLLDevjRvNPDgwQP12GOPqdy5c6vbt2+b3RxCLAmNeUIIIYQQH9i2bZvavXu3/P/vv/+qGTNmmN0kS3P8+HExSvPkyWN2UyzHxYsXZWLk8ccfVy+99JLZzbEECRIkUB9//LE6ceKE+uSTT8xuDiGWhMY8IYQQQogPTJ48WR6zZ88e43mw6dSpkzpw4IA8RhovvPCCfLchQ4aoaGLAgAHq6tWrpkZbWJFGjRqp4sWLq2HDhqlz586Z3RxCLAeNeUIIIYQQL7l165aaNWuW/P/NN9+olClTqj179oi3PthkyJBBwo/xGGmkTp1avlvWrFlVtAAjHiH0mBSqU6eO2c2xHK1bt5Yw+6+++srsphBiOWjME0IIIYR4ybx589Q///yjihUrpqpVq6YaN24cp3e+atWqEma+YcMG9dNPP6kGDRqojBkzqvjx49vyoRGCjm0Qkr548WJVvXp1lS5dOtv7XOWr9+7dW9a99dZbLj9/7969sk3mzJnVvXv3bOsXLFig2rRpI98lbdq0KmnSpCpv3rxiRB08eDAgxwt539gn+Ouvv6Qd9ktcOfP47liPY3j37l3xZD/66KPS1ly5cqn33ntP3blzR7a9du2a6t69u8qXL5+8jmOKY3X//n2X7Vu7dq168cUXZRIhceLEKlOmTBIlsHXrVqfbHzp0SI4PvhP0EjCZg9zu+vXrq6lTp3p1bLD9zZs31WuvvSbngjuOHTsm22XJkkU+N3/+/Kpv375yTFwxe/ZsVaNGDTmP8B60E23/888/nW7v+Ju4O4+9Pb8fPnwoRvlTTz2l0qRJoxIlSiTHGtoTb7/9tpz3jjRr1kwlTJhQTZgwwe1vSEg0QmOeEEIIIcRLtNEOo8j+EYZTXGJdmAiA4XP06FFVs2ZN9cwzz4iRZc+IESNUw4YN1fXr18VbW6VKFckhdkWrVq3kcc6cOTaj1hFtZDZv3lyMKM0rr7wiUQbJkiWTyYPatWuLAYbty5Ytq7Zs2aL8pVKlSrZc8BQpUqiWLVvGWDwF2gRo38iRI1XhwoXl2GFSBTnVL7/8svr7779VhQoV1PTp01WZMmXkuJ0/f16MfxiLzoDhj98BkyeYGMBxx0QAnj/99NOxjHNMipQrV07W43d79tlnVb169cSz/uOPP4qQnTcsWrRIHtEGd+zcuVOVKlVKDGV8r8qVK6uzZ8+qQYMGqVdffTXW9oZhyLFt0qSJtKt06dIyYYEJDrQdz1euXKkCjbvzG5NGb775pvr9999FHwC/GX4nXDNjxoyR7+gIJgTwvc+cOROSyBdCwgqDEEIIIYR4zMGDBw0MoRIlSmRcuHDBtv6xxx6T9dOnT3f6vipVqsjrWMaOHet0m9y5c8vrCRIkMBYvXux0m/79+8s2eLTnqaeekvWzZs2K9Z579+4ZmTJlktf37NkT47XZs2cbN27ciLHu4cOH0kZsX7RoUXnuSRvccezYMXkPvqMrpk6dKtu0bNkyxvr169fbjl358uWNS5cu2V47fvy4kTZtWnmtePHiRoMGDYybN2/aXt+2bZuRMGFCI378+MZff/0VY79fffWVvK9AgQLGrl27Yry2ceNG45FHHjESJ05s/Pnnn7b1rVq1kvd8/PHHsdp/69YteZ+nYHvsH237559/nG6DY6G/e58+fYz79+/bXsNvmSJFCnlty5YtMd43btw4WZ8hQwZjx44dtvX4LfXvlyZNmhjnMNCf5Qp9HuM38eb8xrHHazly5DDOnj0b6/X9+/fH+n00nTt3lvcOHDjQZbsIiUbomSeEEEII8YIpU6bI43PPPSdeQ432zsclhAfvd4cOHdxuA48q9u8N+vOdhXkvW7ZMXbhwQTzKCKe3BykC8Jbbg3BptPHJJ59U+/btE1E6K4B24fimT5/etg5h4wg912HokyZNUsmTJ7e9ju9ct25dCfG2Dw3Hc52qgIiKEiVKxPgseL779esn0QAI8dbA0w/gjXcE0Q14n6fg2GL/OXLkUI888ojbbRElMXDgwBgRGvgt9Xdfs2ZNjO2HDx8ujx988IF4tu2PYf/+/eX7Il9/4sSJKpC4Or/1cYMnHmkCjiDSApERzihatKg8wqNPCPkPGvOEEEIIIR6CnN2vv/46hvGsadGiheT2IqT5yJEjbhW648KTbRxBuDyMchh1p06divGaNvAd26w5fPiwhDl37dpVvfHGG5KzjkUbYIHKnfcXGHuOkxGgYMGCNoMXOdiuXkeotmbHjh3yHHnneJ8zEC4O7FMNypcvL4/t27dXP/zwg8u0Bk/Qx9d+csIVCOd3lssOIxicPn3atg6/vz4HnaUxYD86NWP9+vUqkLg6dyFsiAmL5cuXS2oAJl48RR8ffbwIIf+DxjwhhBBCiIfAw40SWciPRu62PRCWg7cWkcrae+8MT+qs+1KLHSJsyEGGxxk54xp45NFu5Eojf9qeBw8eiFEKMTnklCPfG23HhAUW5D0D5KVbAVeeW3x3d69rr7e94a2/G4xeR0E+vWjDHXXgNT169JBc8F9++UX0DFKlSiX53926dfM6pxtifQD7iAtX302/1/67acMeRrCrfWMSw37bQOHq3MVvgEklRC9AtA+6BNmyZZM8foji3bhxw+U+9Xe4cuVKQNtKSLiT0OwGEEIIIYSECzqEHoYTRMgc0YYR1Ls/+ugjp6J1MGbiwpNtnAHPOz4bhvj7778v62bMmCERBfCYQkHcHhjv48ePl7BniMpVrFhRJiVg+IOmTZuKON7/UqnNJy6197hetweTHgDf3XFixhH7MoAI4V+9erUY7hCQg9cey/bt2+UYIsR87NixHrVB/x6eTJZ4892CiT5uvpy7EEHERMiSJUtEyG/z5s1q4cKFsiAdAMcVdeVdTXqg2gIh5D9ozBNCCCGEeACUwxEiDC5fviyGiCsQvg1DD6XKQgnU1wsUKCBlx9A+lADTZcGchdjPnTtXHpET7ixHHyXYIpWcOXPavNf6GHkDvPFYACZLoEqPVIsvv/xSJk5QsjAudEoAzqdAgsgRvV9MFDjzzuvIBL2tBpUOULoQlRSc5fGjtKA/pE6dWvL8da7/yZMnJSoE1QM6deqkNm7cGOs9+vhgookQ8h/WmOIjhBBCCLE4MPgQlo7SZ/BUu1p69uzpkRBesNC50Gjvb7/9pvbs2SOGK2qNO4JSblpEzpk4m7NSYb6C+u3AKrXCYYjD475//375rv4ArQQY8NrD7+lxg7Abjgty3GE8BwoI6ukwemcTFThP9XrHSQdt3DsTPdy9e7cY34EE5yZKB7o7bigHCFxpGxASrdCYJ4QQQgjxAJ0HH1dddHhnwdKlS2PkWocKtA8h2fC663Bvvc6VeBq2sw+fRhQCvkcgDW8o/8NwheaAnkQwE3igoeoOw/aFF15QmzZtirUNJm/WrVunfv75Z9s6eN6dCQLieyHU3tXkiKuQ9CeeeEKOPXLwA0n37t3lEQr4u3btsq3H9/3444/FcEaYf9u2bWO8T9e7h4F99+5d2/rjx4/LeeRrygUEB+fMmSM15R35/vvv3R43LUAIpXxCyH/QmCeEEEIIiQOE/kLxPUmSJOrVV1+N09uK8lsIVbYXogsV8KzWqlVLwqshOGavXO4I8uphYKM8WaFChaRMHcq4wasLQw5GbiCNZ4Tyw0BGqTTk47dp00YWs0BYNwTtkE6AFAUo5Tds2FCEAuGxhuceEQ32HmOItUGZHQJu+D7NmzcXjzyew8MOg9ObsoL4PIB88UDy5ptvSij7pUuXpDwfjHQcc0zgID8dEwnffvttjPKK+pyAkY+UEggjIuIA+hBFihSR4wFdBV9AeD6uHaQ1VKpUSY4xBBtxLFECEOfhJ598Eut9mBBDRADE8nRaAyHkf9CYJ4QQQgiJAx0y36BBA49EuLR33qxQe/v8eNQ9h6HpDKQMwJsM4/PmzZsiTAZ1d+Qwb9261SOVdW9Abj6MTEwwzJ8/X46PWcdIAwMS+gLNmjUTRXVoHUD9H7oHKE2HuvWY5NCgrBoqAMDghcd+3rx5EqqPYwnhQbwfYfeegokWlBSEUCEmOgIFjjEmk2Cww3hGygWO+a1bt6TsIDzlmLhxJG/evOIJh8o8Qv8RYYKScH369BEDH5MyvoAIhKFDh8okCY4tzrVVq1aJSGTHjh3FYEd1AEe0gCPOG2+OKyHRQDzDKvKkhBBCCCGERCGIEECqAwxcTBiR/wEzpWTJkhIVA8E+VB4ghPwHPfOEEEIIIYSYCHL34elHOUPyH4gkgIDje++9R0OeECfQM08IIYQQQojJjBo1SnXt2lXC9pGnHu0g5QD6ExDM++OPP9zWryckWqExTwghhBBCCCGEhBkMsyeEEEIIIYQQQsIMGvOEEEIIIYQQQkiYQWOeEEIIIYQQQggJM2jME0IIIYQQQgghYQaNeUIIIYQQQgghJMygMU8IIYQQQgghhIQZNOYJIYQQQgghhJAwg8Y8IYQQQgghhBASZtCYJ4QQQgghhBBCwgwa84QQQgghRH344YcqXrx4shBCCLE+NOYJIYQQQkjAWbFihXrhhRdUjhw5VJIkSeQRz7HeKmzZskU1b95c5c6dWyVNmlRlyZJF1a5dW82aNSsg+z9//ryaNGmSatq0qSpSpIhKmTKlSpw4scqaNauqU6eO+uqrr9Tt27e92ueJEydU//79Vbly5VTGjBml3Tlz5lRPP/20+uCDD9TevXsD0nZCiPWJZxiGYXYjCCGEEEKI+Z75AQMGyP/+DA8fPnyo2rVrpyZPnuxymzZt2qgJEyao+PHjm/p9Bw4cKO11Rv369dX8+fPFWPaFiRMnqvbt26sHDx643a5gwYLyOSVKlIhzn6NHj1a9e/dWN2/edLlNly5d1Oeff+5Tmwkh4QU984QQQgghJGD06dPHZsiXLl1avNy//vqrPOI5gLe6b9++prUREwmYuIAhnz9/fmkv2rho0SJVrVo12WbZsmWqdevWfnnlYcjDE//iiy+q8ePHq40bN6rff/9dzZs3T9WqVUu2O3TokKpZs6Y6deqU2/19/PHHqnPnzmLIP/roo+rTTz9VGzZsUDt27FBr1qyR5xUrVjR1goQQElromSeEEEIIIQHxzP/555+qaNGi6v79+xIG/uOPP6pkyZLZXr9165aqUqWK2r59u0qYMKE6cOCAKlCggAolf//9t8qXL5+6du2aypUrl/rtt99UhgwZbK/DAEc6wPfffy/P169fr6pWrer153z22Wdi0Hfr1k3C4Z2B10aOHCn/t2rVSk2ZMsXpdmvXrhWDH7Ro0UImQxIlSuR023///VcmEAghkQ+n7oipjB07VuXJk0dC2CpUqCCz4u7YvXu35ITp/LBPPvkk1jaY7X7sscdkm+LFi6vly5cH8RsQQgghRIPwbhjyOiTc3pAHyZMnl/UA28HgDTUwhGHIg2HDhsUw5EGCBAnUl19+KY8AHm9feOedd9TQoUNdGvJgyJAhkj8PFixY4DTkH+sQrg9KliwpUQSuDHlAQ56Q6IHGPDGNOXPmqHfffVdEXBByhhsURGcuXLjgdPt//vlHQtIgUoNZdNxc4UWAeIy9kE2TJk3UG2+8IWFnDRs2lIViMIQQQoh33LlzR+61ZcqUUY888ogs5cuXV2PGjLEZ7PbAm7948WL5H5PqTzzxhNP9Yn2hQoXkf2wf6iBRhNKDVKlSSfi7MyDWpz3h8Ipfv349KG2B4f3UU0/J/5hguHz5cqxtVq1aJaH44L333pOIBkIIATTmiWkgrKxt27YSVgaFV+SSYcbeVYjZzJkzJXQMryOE79VXX5XcMR2eBkaNGiXqsD169FCFCxcWYRsMQjDwIIQQQohnIDz8ySefVD179pTJ8Rs3bsiybds29fbbb4sR7OhFPnbsmDpz5oz8j1B6d+jXT58+rY4fP65CBcYROgoQ38+dF1u38e7du5IWECywf42OBnCMOAQoGfjss8/GSBeAkY9HQkh0QmOemAJupvCu61lvAMEWPN+6das8f/3112PkqGF95cqVY9x44ck/ePCgunLlim0b+33qbfQ+CSGEEBI3MNb3798vk+arV6+We/a3334rE+UA+eRQa7cH22vgmXeH/evImw8VyOnX6vJWaOO9e/dsY5TMmTOrdOnSxdrm559/lkekJSI6Ar8D0gjTp08vQnh4RKTD8OHDY0wMEEIiHxrzxBQuXbokN1PcuOzB83Pnzsn/yCGDMI0G651tr19zt41+nRBCCCFxAw/8Dz/8IBFvmCRHlBvS2DZt2mS7zyKv3B57NXaEqbsDujeakydPxnodE/rwRPuzOBOtC2QbAwFSBTEmAi+//HKs1xH98Mcff8j/yO1H2blmzZrFSh/EJAWiEqtXr66uXr0alLYSQqwHjXliWSAKM336dLObQQghhEQdCKV3ZgzDc4z0OLBnzx6bkBywzytPmTKl2/2nSJHC9j/C90OFldp49OhRKeOn24L68Y7g+Op0BhzvL774QpwdM2bMkPB6VAdAuTutTwDtIH/K6RFCwgsqaBBTwOwy8sKQk2cPnmfJksXpe7De2fb6NXfbuNonIYQQQmID768rypYtK48QrkOefKlSpWyCeZ4qqidJksT2/+3bt2O9PmjQINW9e3flD/bGuCaQbfQHGOFIZdCTIVD4z5YtW6ztUFPevu3QFkKpPC0gCJCCuG7dOtEA2LVrl1q4cKH65ZdfpEoQISSyoTFPTAE3UAwGoBALtXmAmWc879Spk9P34CaFGWzkl+mSLMjjww0tbdq0tm2wj65du9reh22wnhBCCCGe4S6f3D6v297TjZKw9to47rDP7XYsXweyZ88uS6AJZBt9BZUAEFIPwxug7BzSCuJqL2jTpk0MQ96+fZgA0QJ5qBhEY56QyIdh9sQ0UJYO4jlff/21CMvgZoYZaB2+h3CzFi1a2LZv2rSpTAKg7Ny+ffvkRoVcPuxHg1yylStXqhEjRkiOGUrXQYHW1QQBIYQQQmIDD7ArIFir0WJyAOJsnoal23uc4wp3DyRmtxHRDDDcly9fLs9feeUVtxV37NsLUKLXFTVq1LCVrYPmASEk8qFnnphG48aN1cWLF9UHH3wgAnUI04MhroV1zp49q06cOGHbPnXq1FJrtWPHjuLVR6g+3tuuXTvbNhUrVhSV1759+6r3339fFSxYUOrJFitWzJTvSAghhEQL9oJy9kJzzrAXlLMXmtOgZJ2uVONPmH3evHmD1kZfwBgGpXZB3bp1JffdfnLEWah/xowZZbwUVzvgxcfYCGMqvT0hJLKhMU9MBR5zV17zadOmxVpXokQJ9dNPP7ndJ0LXnCnCEkIIISR4FClSxPa/VmB3hf3rutydPUirQ+SeP6BO/IYNG2KsQyk3aPYgosDfNnrLe++9p8aNG2fLc//uu+9saYPuKFq0qO172EdCOEO/rj30hJDIhmH2hBBCCCHEb+AF1yJuUFh3x48//iiPyItH/fRQgXS98uXLy/+o7+4ub15/B3jHy5Ur59fnfvzxx+qTTz6R/x9//HG1dOlSj/PwYfjbK+C74p9//rGVuQuG3gAhxHrQmCeEEEIIIX6D2u7PP/+8zav9888/O90O67XXG9vjfc6i85Bf7s/i6JXXaOFdGL8LFixwug1C8NesWWPLRXfMXfcG6Pv069dP/i9evLikFHqzv5deesn2P5TqXYHX8L3B008/7XN7CSHhA415QgghhBASEFBNBmHsula9Y0k3PMd6HQpuX30mVEARHjo8oFevXury5cuxQtU7dOhgC1nv0aOH0/1AZBcTEVicpQaCqVOnqnfeeccW4o8KO/bVADwBKYbIrwezZs2Sqj2OIE8eekE6+kCLCRNCIhsa84QQQgghJCDAYNXGL6rJPPXUU1J9Bv/jEc/xP8B2EKoNNTCmhw0bJv//9ddfUsINRjfatWTJEvXMM8+o77//Xl5v0qSJqlq1qk+fAwHetm3birc8VapU4qGHMN3evXtdLvYK+vZ8/vnnKk2aNFLGF+XnUPEHGkJo85dffimh+1rQb+DAgQyzJyRKoDoGIYQQQggJGKh3fuHCBTVlyhS1Y8cO9eqrr8baBmVmkUduFm+++aY6c+aMGL5HjhxRrVu3jrVNvXr15Dv4Cox57d1HSL/2rrtj/fr1TicPMEmCCYZGjRqp8+fPq6FDh8piDyIEIBzYs2dPn9tMCAkv6JknhBBCCCEBA6XWJk+erJYtWyY58RDFQ+g3HvEcNdYnTZrktiRbKBgwYIDatGmTatq0qZR8QxszZcoknnmUuUX7Ue7NKlSqVEnt27dP9e/fX5UsWVK8/WgfhAcRVv/bb7/J5AQhJHqIZ2ilDEIIIYQQQgghhIQF9MwTQgghhBBCCCFhBo35/2vvTOBmqr8/fpNIKIkWhSxFZYtWFNqRoizZQqWNiqKUSoXwa7NXiPgJiex7oogWKkIpoYREi2RL3P/rfX7/7zTPmOXOzJ2ZOzPn/XrdZ56ZuTNz5869537P95zzOZaiKIqiKIqiKIqipBfqzCuKoiiKoiiKoihKmqHOvKIoiqIoiqIoiqKkGerMK4qiKIqiKIqiKEqaoX3mFUVRFFc4cuSI9G0uWLCg9DtWFEVRFEVRooNmc3v27JF2npFaeKozr6QN//zzj/Xll19aVapUsXLn1kNXUbwGjjy9mhVFURRFUZT42LJli3XWWWeFXUc9IiWtZqm2bt1qVa5cOdWboihKEIjIm4vPiSeemOrNURRFURRFSTv+/PNPCY6YcVU41JlXFEVRXMGk1uPIqzOvKIqiKIoSO05KFlUAT1EURVEURVEURVHSDHXmFUVRFEVRFEVRFCXNUGdeURRFURRFURRFUdIMdeYVRVEURVEURVEUJc1QZ15RFEVRFEVRFEVR0gx15hVFURRFURRFURQlzVBnXlEURVEURVEURVHSDHXmFUVRFEVRksyRI0esQYMGWUuWLEn1piiKkkbYtm299tpr1sKFC1O9KYoHUGdeURRFURQlySxdutR68MEHrdq1a1svvfSSDNAVRVEi8cUXX1j33Xefdc0111g9e/ZU25HlqDOvKIqiKIqSZL799ltfhL5Lly5WmzZtrAMHDqR6sxRFSRPbAU8//bTVtGlTa+/evSndJiV1qDOvKIqiKIqSZDZv3iy35557rnXsscda//3vf61XXnkl1ZulKIrH+eGHH+S2bNmy1nHHHWdNmjTJev7551O9WUqKUGdeURRFURQlRQPydu3aWX369JH/ly1bluKtUhQlXSYCmzVrZg0cOFD+V9uRveRO9QYoiqIoiqJkqzN/9tlnW6effrr8v27duhRvlaIo6WQ7qlSpIv+r7cheNDKvKIqiKIqSogF5yZIlrfPOO0/+37Rpk7V///4Ub5miKOliO8qXLy////LLL9avv/6a4i1TUkFGOvOkq1188cVWwYIFrVNPPdVq2LChtX79+hzrDBs2TBRkTzzxROuYY46x/vjjD0fvvXjxYqtq1apW3rx5pVblzTffPGqdIUOGyGzZ8ccfb1166aXWp59+6tp3U5RE8Oqrr1qVKlWS84Hl8ssvt+bMmRP2NatXr7auuOIKOc6LFy9u/ec//zlqnXfeeUcuNKxTsWJFa/bs2Qn8FoqiKOnBP//8Y23dutU3IGesUrhwYVGlDhyvKIqiGLAR/s58gQIFrBIlSsj9r7/+OsVbp6SCjHTmP/jgA6tDhw7Wxx9/bC1YsMA6dOiQdd111+VQety3b591ww03WE888YTj92XGvH79+ladOnWsL7/80urUqZN11113WfPmzfOt8/bbb1sPP/yw1aNHD+vzzz+3KleubF1//fUyY5bpoMK7atUqa9y4cVb37t2tRo0ayX6//fbbrUcffVSEfcaPHy8TIt9884118ODBVG+y8v+cddZZVt++fa2VK1daK1assK666irr5ptvttauXRt0/T///FN+Wy4kvOaFF16wnnnmGZkkM1C/1bx5c+vOO++UNipMqrGsWbMmid8su4l1YnHChAkyycnvpSiK+/z000/W4cOHrTx58kiKPeebic5ruqyiKKH47bfffP6MceLPP/98uVXbkaXYWcAvv/xCA0b7gw8+OOq5RYsWyXO///57xPd59NFH7QsuuCDHY82aNbOvv/563/1LLrnE7tChg+/+4cOH7WLFitl9+vSxM4kjR47Y69evtwcMGGDfcsst9rnnnmvnypVL9qXTJU+ePPZll11mP/zww/akSZPsrVu3hv3Mv//+2546darcKonn5JNPtkeMGBH0uaFDh8rzBw8e9D322GOP2eXKlfPdb9q0qV2/fv0cr7v00kvte+65J4FbrRgmTJgg59jIkSPttWvX2u3bt7cLFSpk79ixI+zrNm3aZJ955pn2FVdcYd98881Rfebu3bvl3OZWUZTQLF68WM6VsmXL+h7jHOWxJ598MqXbpiiKd1m5cqXYidNOO833WOfOneWxTp06pXTbFPeIZjyVFQJ4u3fvlltS2KKBNHyiWiaVfvny5dY111yTYx2i7kTo4e+//5Yo5eOPP+57PleuXPIaXpvu7Nmzx3r//fetuXPnSjYCmQqBFCpUyLrgggt8C/d//vlna/v27b5blm3btll//fWXZE+wvPzyy/J6Ir2keFevXl0WUr9pu6EkD6JFpMcz88tvAW3bthX1VLIqgOP5yiuvlKiS/7nQr18/6/fff7dOPvlkWYcsFX9YZ+rUqUn+RtkJ51T79u1FKRtee+01a9asWdbIkSOtbt26hfztW7ZsaT377LPWkiVLHJcfKYoSHf5psgaNzCuK4lTJ3t92aGQ+u8l4Z/7IkSPibNeoUcOqUKFCVK8lfeWMM87w3ccZPe2003Ksw31SjhGswYlhMBxsHdLK0w2+D6nSS5cutT766CNxzqjzM+DIUTNNujU6AhgT9hfpgk5qfjZu3Cjvz/ty+9VXX8kAh4U0XzjhhBOsSy65RJxKdApOOeUUea3iPux/9jPlEtRgTZkyxXeB4HflXPI/F0qVKpXj9ea45zmc+VDnC48riSXWicXnnntOancpjcCZjwSlMv7lMthCRVFic+aNvdW6V0VRnCjZB04Equ3ITjLemad2nhpdHNJoGTNmjJVNIMazcOFCcdzZX8Fm+BD9Q2uAhcyF/Pnzx/RZOPxlypSRpXXr1r7IPzW9ZuKAiD2RQaLBJiIMDzzwgHXZZZeJsBpLuXLlJAuAbXMykZAKcHhwdIoUKeLZbWQ/ogVBJsukSZOsNm3aiP4EA0zTA1lJD3bt2hX1xCLn/BtvvCHHgFM4LojiK4riXmT+u+++E60fzUpTFCUa27FlyxYZSyMArmQPGe3Md+zY0Zo5c6b14YcfisBXvCBSs2PHjhyPcR/173z58lnHHnusLMHWMT1kvQSR1s8++0z2Eem3iJQFcu6551o1a9aUzIZatWqJ850oMD5XX321LGb7cDyI2iNkOHHiRN+6Jj3fHxTVzUQDEUh+l2RDhgZKxEyE+C8bNmwQ5wohMjI+MMLMqnLLQpSbDIRUDt7ItGBCBKpVqybHxoABA6zXX3/d8blgngu3jhfPhWyHiz+TasOHD5cJJ6cQ+fcvpWDCivNQUZToU2U5d8iKogSNa4YZoCuKooRz5ikjZrKeMRbjZjp6KdlDRjrzpGETvSVNmIhuYDpwrJCCHNhaCyfT1BXjDOEEEd02KtA4pNxnYsELkOLM5Abfg2Xnzp2+54gYYwCohcaBp2a9aNGiKdtW0oKJCrPQNWDs2LGilE+5BCn6GCyzoLrOjCTOCEvu3Lll+3HsUVT3T0dy8zhDN2DRokWiJUBWAdvln44eCCns3377rSyB8L2IiBMh9wJ8j1AdBzjm6VjgHz3iXGDbSbE363DsG02JwPNFSRw45NFMLH7//ffiXDRo0MD3mDmOOZeYoAo2kUfpC4uiKPGnynINJtuMjiJMAqszryiKE2ceGCtzjcd2qDOfXeTO1NR6nL5p06ZJtNfU6J500kkSQQceY2H229QLsy5RUyOUR0u1M88805difO+991qDBw+WNmt33HGHOHBEi4lqG4hSkZ580UUXSaS1f//+IiRmRKiSCc4mg3RqX81ivq+B6DWiZLTcq1u3rtTLehkE9RDFY9IkMCJOSji90RHow1lm0oIFp5NoP3XATLIQHY+nFME47yzGqPqDM0vav5mIMAsTI7QjMroAOE/mltRmykE4bkh1btq0qZVMiLDy+3P8E6Xl/GEizLRd5Hm+uyk9adGihaRXs08fe+wx2Xai+LQfNDz00EOSzfHSSy/J8YUOAoNU//Z1SmKIdmIRBwIb6M+TTz4pxwK/q0bbFcU9OBd//PHHkANy7KTWviqKEo0zz+Qf41O1HVmInYGEaoU2atQo3zo9evSIuE6tWrXsNm3aHNXKrkqVKtLyqXTp0jnWNwwaNMguUaKErEOruo8//thOBrTBW7VqlXw+bcHOOOOMo77fMcccY1eqVEnawb3//vtp1eYtmtZ033//vT1kyBD76quvzvH9CxcubD/44IPS2mPv3r1hW+9t27bNnjNnjt23b1+7efPm0n4vcH/mzp3brlGjhv3UU0/Z8+fPt7dv3y6vjRY+i+PNvO8DDzyQo+1bornjjjvskiVLyjFbtGhR2W98HwPnAdvnD8dazZo17bx580orM/ZTIBMnTpT9xvvS1nHWrFlJ+T7K/1rT8du8+eab9rp16+y7775bWtP9/PPP8nzr1q3tbt26hXw9v7m2plMU98Hec57QzjXweoYd5TmuOYqiKP78+eefvnFi4HV28ODB8niDBg1Stn2Ke0QznjqGP6meUFBiV6z+/PPPJfpM1B0Bq8BWUqRAk26D6jwLqecmDTrdIKWb0oB69epFVVtOKvyoUaNkITIemJlA2jFq7dySlUH2ApFy/xIE/9R/lPuvuuoqWdASoMbRDegU8PTTT/syQcjsIPMjcPZVUZxCJtELL7wgWUhVqlSxBg4caF166aVBW28GQjtC7Ek0rQSpmScDChHFVGhWKEo6gN4L5UZkvJgIvWH69OnWzTffLOdrMB0bRVGyF7IgK1asKOP43377LcdzZIuShYr2ESKaSnoTzXhKnfk0TM8jnZx0Z+qrEcrxB3V5HEzjvOMQmtKCdCdWZ96AAB0126Sxk45P+UM4cNwRAKxcubIsDK4YgJHqn0gQJKTEw/RrJ22Kz1cUr6POvKJEhpIjtFy4RjMZ7w+Tyeecc46Ug3F9R/tCURQFKOu98cYbg072MWlPYIqxK+PbeEpKlfQaT2VkzXwmQg04Dvx///vfHDP59F03jjvCdZzgCFYpR8OgyKjdM4dFPfD27dvFAJpbWnoRCWc/UvdOn/tkg6Em46JJkyZSO4lWA+36MNCKoihKZta8AoK9iEoilsp6pUuXTsEWKoqSbrYDNXuCTWTU4TOgL6VkB+r1eTwKT2o4kWT6rhuYqWnWrJlEb4kUq5MXPagGM9PF4hX1eH9If0bAkcwAUjLfeustaR2mKIqiZO6AnElnrkmrV68WVWp15hVFcWI7GNcioEk7Z2yHOvPZg3qBHk6vQIWalmw48lzgSS8nPY8oMr2/SadXRz5zKVasmCiKAx0UyCRQMg8uuiNGjBCtBOpl/Sfz0MVQFCV7BuTAJC5o3auiKP6o7VCCoZ6gB6Fm7rLLLrNmzJgh6XYM8hFuo1aGiHym1MArkencubP096YEoHfv3qneHMVFtmzZYl1zzTUiZnPPPffIxI2/2Nzw4cPlXKednKIomYMOyBVFicd2kL0ZDLUd2Yk68x4DgTZE6+gTSWQWlfpu3bqJ0rqSfTCZY3q3c6sGOjNAhbZWrVqiPos2w3333Sc6Dv40bdpUMm/8o/WKoqQ3nOeRBuQI4AF1r4qiKNFOBKrtyC7UmffQBR5nDXE2VMyJzCN+Rls5JbtBEO/666+XlOuHH3441ZujuEC/fv2szZs3W126dLFWrVolLeQCoZMBUXtaTiqKkhns37/f14Um1CS9DsgVRQnmJ/zyyy9hbYdOBGYn6swnAGpdoz1B77//fnHUeG27du2sxYsXS4sJRUHUpH///tKlgLZ1ga2M3IC2fUryQNyQqFzfvn3l9w0F4lfbtm1L6rYpipI4UJoGdHAKFiwYdkBOKQ7Ov6IoCpOAZqzGZH8w6DEPBAV//fXXpG6fkjrUmXcZnHFS46lxd8rTTz9tvfbaa5JSi9OGej3p1YpiKF++vNWmTRv5nw4HboLBp5f9oUOHXH1fJXyqXNWqVSMKWObJk0dS8hVFyQwYZAMtpEJN5BUpUkSeNxo6iqIoxnYwLgilnUU75bPOOkv+1+h89qDOvMswOD/vvPOsL7/80pFDjxPfq1cv3/8PPfRQ2Eidkr20bdtWbidNmmTt27fPNUee1nfM5h533HGuvKcSmeOPP95Rd4Iff/xRWlEqipJZA/JQkTVgDGCi86qToihKoO0I5yeoCF72oc58Ajj11FNFxC6SQ49ydYcOHeT/Hj16WO3bt0/iVnobHB1mFVeuXGl98skn1kcffWQNGzZM9hn/44CiKYBQIAYuUDwsE6EVYalSpSTVyl/1PF5HHgG2UEJMSuIyLT7//HNr7969IdfZtWuX1NNrr1hFyS5nPpq6ebR2rr322qiyARVFyVzb4bRungDiVVddZW3cuNHFrVRSQe6UfGoWOfSffvqp3DdpL4Zly5ZZzZs3l7R8esnjzGcLfOfvv//e+uKLLyTdmJrg7du3+xbuh3Ny3nzzzaCRTjQGzEInAG6LFy9uValSRZwnas7TGWZiW7dubT333HPWmDFjrBYtWsT8XurIp5bGjRtbXbt2FZ2MV199NWi6Pc+TgUE7SkVRMqtm3qTRh8JJZP7AgQPWU089JdfLm266SUr88ufP7/IWK4qSTrbDSWT+n3/+kXa4jAURWV6+fLlmAaYx6e3dpKlDv27dOqtBgwZyIa5fv74M5jM1tR7HnZo/IuxmISL5559/yvMnnniiz/Fm/6Deb+6zYFxI/8YR37lzpwxW2HfsL4wRUWr/SQDz/zfffCO3pt6Y+qLKlStb1apV8y3nn39+2jn4xpmnhSHfLxaRRHXkUw8ZOaNHj7ZGjBgh58Qtt9wijzPJ9fLLL1vvvPOO2A0mokx5haIo6Y+bkXlaW5qJbybHW7VqZU2ePDmiFoeiKNkdmcd5NwJ5ZLjSCnfWrFlpNyZW/of+akl26FevXi0R1d27d8vjb7/9dsadPKTszJgxQ5TXSZE3tcH0xcSJfuyxx+QWAbCiRYvmeC3rY4CISKLkixNOSzYeo64bB5Qou6nvZn0mRS699FJZ/N+DwRDrUu5gJhLee+89a+jQoZKWTzSfbahXr55MENAGzOuTKuyD6tWrS2bHuHHjrEceeSSq16sj7w049ubNm2c1adJEfksG4kAbOhaOTya2KKdQLQNFyd4BebjoGl0x4IorrpDrHvaCSH3v3r1d3WZFUdJvIhDbwVgi2LjW2A7Gk4yR58+fL+PJAQMGJGTblcRyjJ0NxcYeYMeOHdajjz5q/fe//5WTixOIC2+gM5uO0CqDyYrp06eLE7927VpR26QWp1atWj7H/ZRTTsnhaBvn24CT/5///Cfk5+DYjx8/XpxvHJzA9dm/EPgYUU8+k0kBtuvMM8+UCRQyBHCccKqI8DPZQKoijj3bzbpehDqn++67T2qpMcJOJyDUkfcmHH/MiDMJRiYLpSF169a1br75Zs9PLgVCxg3ZNExWknWjKEpOOnXqJAPmbt26WX369Am5HueQSacNdj5hK7iW/fzzz9bcuXOl//Ttt98u1zbWR9VaUZTMgYk6BLPJ7Bs8eHDI9RjrMl7GRmzdulWyXf3BB2EMTtYsgsq0yWzUqJGMN8iAZayupNl4CmdeSSx79uyxGzduzKSJLK1atbIPHjxopzOHDh2yZ86cabdr184uWrSofK8iRYrYbdu2tSdPnmy///779pgxY+wRI0b4buvXr+/bByyPPvqo7/0+/vjjHM8FW/Lly2dPnTrVXrZsmaP1wy3+n33gwAF73rx5docOHewSJUrI8wULFrSbNGlijxs3zt63b5/tJX799Vc7b968sp1Llixx9Jpdu3bJ77Vp06aEb5+SvezevVuOS24VRTma22+/Xc6Rvn37Rlz31FNPlXVXrFhx1HPmGsi1imvYkSNH7NNOO00eW758eYK2XlGUVMEYlfO7e/fuEdctU6aMrLt48eKjnlu7dq08xzgS/8R//QULFiRk25XEjqe0sCrBUAN7+eWXy+wX0eQXXnhBBK2YRU9HEKx7+umnJbJrRDPuuOMOiXATIaAHOtF3ovJECRD3M7dEH/0hgs660fbDZDYx3v6Z/p+dN29e67rrrpOZzs2bN0u0m4g+/1MSQfSDloFr1qyxvEDhwoVlnwLHUyQ0Iu890D0gkyUSZLqwrqIomSViFSlVNlLdvLEfZPFwDSOqduGFF8pjpmxHUZTMwS3bYVLsr776aqtAgQLyP9mzoLYjPVFnPoHgvFL3ihN4+umnW4sXL7a6dOniqG2dlyAlB8E1nHdao/Xv31/+pzUcyvI4iQjOUcP9xhtvhE2VD8QYGmN4nNaNR7N+pM/2hwERNfik3A8aNEjWoWXghAkTpKa+Zs2a1sSJE0V8L5WYWnkGdOvXrw+5njry3uSZZ55x1F6Q3/fZZ59NyjYpiuKdutdIdfNmQE5pmMEMyCkhUxQls1DboYRCnfkEgKP3xBNPiMPLyUdtOOJr1MlH04c+1eDUvv7661aFChUkcs22Dh8+XFTjqdvGqb3sssuOisBHg3HK2Uem5j0SF110kazPPvQnmvfw/2x/qMM334lb1Mb79esnYnwmu4LMCiY1+vbt6zOuyaZcuXI+Q/zSSy8FXUcd+fSHmrd0q5tXFMWdAXmo6BoZf2jTUOuKhoxBB+SKkrm4YTvogmSyUtGHMpisHrUd6Yk68y7DiXLNNdf4hG06duxoffDBB0cJUHjZoWcyYuTIkTKzd//994vjyHcg/ebOO++UQQSRxWgi8MHwV6AHnGacT3qo40T36NEj6OvICMAYmQ4BBh5D7M68B7ehnHuc9kABPl4f+J24T7YBXQdonbdo0SL5zZjcYB+ULl1a1tm/f7+VbOhDDnxXBBb9UUc+M2ASyaTBKYqSOQPySL2iw7WYMpE1hFr9B/bGmf/qq69EBEtRlMzBDdtB6R7gf/j7JcaZZ33TgUpJHzKrJ1qKIY3+tttuE8eKATgOKVHcaPvQpzKdntTf7t27+/pOopxpjIITxflowHlm8Xeq/R18lP9D1cyHAkNEL3bzHtwGqtkHU9I3rw2Gf7YBkwNMOuDg0/6H/cP+Qp0Y575du3ZJazVYo0YN+R7swyFDhvhqq9WR9yZMugQex4GP+U+oMWnG5BGaG4qiZHfdq3+LKXNt5NrmD/aegT6fsW7dOqtKlSoJ+AaKoqSL7SCLh45TZPHA2LFjg9oO/BF8EIKLq1atkpJSJY2IQWBPCQAV2T59+ti5cuUS5cEKFSrY33zzjePX79ixw54xY4a9ZcsWO1WgeHnZZZfJ9l977bVh1XOdLE888YSj9VC6D0Xg5zlRs+fxWHH6/ViPhW3ndsOGDXbz5s3luXLlytmTJk2SYyIZ8Fl87sknn2z/8ccfqlrvYY455hixESz+/4daWOfYY4+1p02bZqcLqmavKKH5+++/fdcRupJEgk4qxx9/fI7OJV988YXcz5Mnj9j7QOrUqSPPv/HGGwn5DoqipAbTxWjz5s0R1/3nn3/sE088UdafPXu2PPbdd9/JfcYXP/3001Gvuemmm+T5AQMGJGT7lehQNfskQ0T08ccfl/rWtm3bSqSU1HSnpDLlnugfNXe1a9eWaOB7771n9ezZU2b1TV2NwamCPNH78uXLO1o3nJBdqBp4UzMf+Fyw1PlocFpzz/7xr6sfNmyYiP9Ra0RkpHHjxvJeH374oZVoGjZsKPua9CuyBDQi7104XswCZcqUyfGY/0I2CMJ3lLb4i9QoipK++Gus0D84EvSKDuxcQscYwC4E6wetdfOKknlQynnw4EHHkXki8Sar9MUXX5RbBKuBMlG6NAWidfNpTJQTBUoAQ4YM8c20v/zyy3G9VzIj9PSJ79Wrl33cccfZZcuWtSdOnCi9aWPpBd+jRw9fP3kTGXca5fZ//1CYKDgReSLzRDcCn4snIh/q8/hOTjMR/KP1HBMXX3yxPE5fUNPHM1G88847vsyFYBkVivcg6t6uXTs709DIvKKEhow9zo+TTjop6tewrF692j7llFPk/1mzZgVd/6233pLnq1ev7uKWK4qSSrZu3eqLqjvN/Pzhhx8ku4/Xffrpp/ZZZ50l/7/99ttB1ycLkOcrVark8tYriR5PqTMfB+PHj5dBuXFo3SAZDv2aNWvsiy66SIxCt27d7P3794tTHc5RNQRbL5RDHu49Y0mNx4kPdOYTSbDtD5zsCPV4y5YtJVUJB7tUqVJSxpAodu7cKRMyfG7nzp0T9jmKe5AmFyxFNt1RZ17JRP766y/7ggsusBs0aCAT4bFiJrlLliwZ1etM+qux82eccUbI7Vi3bp2sc8IJJ0iqraIoqePAgQMy3r766qtlrB0ra9eulfO6cOHCUb2Osai/7aAkM9R24HewDhMA8Wyr4g6aZp8E5s+fL+lvTIh06NAhpPJ6tCQy5Z40elT2ScPbu3evtXz5cknTpsVaOFE7//T6QNEM4LWBKfmh1o30/l4hmLI9VK5cOej6s2bNynH/rbfeEtX91atXi6gIZQwPPPCA7Hc3QeyObX3yySfl/tChQ0UBXfE2JUuWDJoiqyiKO3BdoZSFsqh44VpJSRpK0AidJqO1VLDOJUb8lbFHKKFVStdOOOEEa9++fZ68tiqK1/nhhx+kVLZbt25xvxelcowFFy5cKKWgybYdXbp0yWE7WrRoYR1//PFB1yX1vkiRIiKYR0cMJX1QZz4GcJ4aNWpkHTp0SNTqBw4c6Gov6EQ49NTA0+cep69z585SEzN48GCp+aY212lde6jBQbDHnQ4kwtXNp4pQ2/78888f9Vj9+vWDroviMMqhqN/3799fFPArVarkWi29v2o9g7srr7xSaqrcGLwqyYMJHtRjlyxZIsdGsEVRlOhAQ2Tjxo1is3ft2hXXe/kPbHk/BubJHJCbziUGtHnC1coaFXutfVWU6CGQwxiQWvN4x+D+tgNfYfr06Um1HdgC2mU7sR34Maq5kZ6oMx8l27ZtE+eNWW9EJGgtlSuX+7vRLYeezAGitQhb0Dty2bJlEolv3759yNZv4UTlQjnewR534qTHK1qXKJxOMNB+kImdUDBRwiTKggULrNGjR0tfT3oDM+PL7GesBLafwwibiYaRI0f62h0q3gVHo0GDBtJKigso2Rt16tQ5arnqqqtSvamKklZwzRw/frz8f+DAAREpjQcyrMxAmmtqq1atrF9++SVpA3LsOyK7wPUjksCsGZATFVQUxTlM/BmRScZojJ/dsh1A++JYsidjtR1gMgyqVasmSzjUdqQn6sxHSceOHcWRwjmePHmy9C1PFPE69PRVv++++6QM4O6775aT0/QlN70mI8HAxZ9oVORDrYsTyiQIt0wseBGnyvZTpkzJ0Yc+FKThN23aVDIhiNSjTIwa8e7du6PetlB95InekELFBah169Yy4aR4k+3bt0v/eI6L0047zSpatKicaxwfpN+b8451rrjiilRvrqKkFUTAKCs78cQT5T4DcjLp4h2QDxo0SOzuzz//LF1sYh2QM4EXLTfffLOk+zPuiISqUitKbLz66quiHG9sBxOB3I/XdhDtx5H+7bffrKeeeiqptuPqq6+WAA/jjUhZxGo70hSX6vSzgnfffVfECHLnzm2vWrUqaZ8biyjeL7/8YteqVUvU6lFlB6O2jlifU5X2UAJ10ajIu6U4n2wBPGCbQ4nexbrwe8ydO1cUjcuXL29/++23jrcnUh95ehcXK1ZMPueBBx5wcU8obvLggw+KeGb37t3lftu2bUWQ0sDxgXDiNddcE5fgVrJRATwl1XDsmf7KkyZNsk877TT5H8HaWOD8M73e6dP83//+V/6vXbt21O/VpUsXee0jjzxiJ5KVK1f6xLKcKl8rSraD6FvRokXl3Bk7dqx99tlny//Dhw+P6f049xCc4z2++OILe8qUKfI/gnjR8uyzz8pr7777bjuRrF+/Xj4Hm5dOY49MRNXsE8Dvv/8uCrLs2CeeeCLpnx+NQ89EA0bo1FNPtZcuXRqVsnyw5Z577nG19Vu6OfOh9ks8Tj6/B0azXLlydqFChez58+fH7cgb5s2b5/ucBQsWuLg3FLfgd6dNjFGbDnTmTUuqPHny2H379rXTBXXmlVTz0ksvyTHIROnhw4ftZ555Ru5fdtllMb3f119/7VOH5/3oTML9c845J+r3uvPOO+W1tIVNtFNC0IHP+vHHHxPyGR9++KHYrWHDhtnbtm2zf/75Z3vo0KH2jTfeKO1ZFSXd4FjmnClRooQ4si+++KLcr1ChQkyTYv7q8Kja0zrYdKOIlk6dOslrH3vsMTuRMCbJnz+/fBadMRIBbfLatGkj9oJ9REcm9j1dO9jnyv9QZz4B4NCyU88999yUtWxw4tCTPcCJeOGFF0qPSZzRaCPx4RzQbHPmySgIti/Yp9H0oQ+V8fDHH3/YdevWFWNPK7tQFwynjrzh/vvvl8/AYWQiSvEWtCxk0Gu44447xJkPnAmnnU069XxVZ15JJQxEixcvLscgg0PAyWRSjMc++eSTqN9z4sSJ8tpLLrlE7hOd5z7ncLQD/FtuuUVemwxnt2LFivJZ06dPT8j74+D4X8+wX/7/f/nllwn5XEVJBJzLTABy/L788svyGGMn49guXLgw6vecPXu2vPb888+X+9u3b5f7ZOVFO47F+eW1yZjcv/zyy+Wzxo0bl9D3D2Y7WJYtW5aQz003tDWdy6Ay/frrr/vqZ0K1dUg04WromZih7Rzt4BDoW7p0qSjXh1OrR/08GkK1oMtkQgnhIV7mpFY+HKilnnTSSdLu6OGHH7Yeeugh0Tag1tNJjXyk3+qcc86R4wSxw0DtAyW1HHfccVb+/Pl9983/garbnPMca4qiRIbrHuJSiEShGwJoUtx6663yP7Y21ppXOpGY9k1AHe0ff/yRtLrXaDFtVOmU4TZcu9asWSPt8RiTwJEjR+R/xhz8j1aPXneUdAFNqW+++UbaOt55552+8xQdIohFhT7QdnA955zhvEB3Ixttx9atW0X7w2gCUcOPvUB4z+gD3X///XEJRGcj6sxHgFZfOEPALUqyqSSYQ49hQOn2iSeekB64EyZMsO65556IavWhWl6h0M7rg5FtfWvffffdox5jkBhs37L/Y5kooJUQzjdq96iocvEwYk2xOPLGOWQbcRonTZpkvfTSS1Ftm5JY6Grgr2hbqlQpuaUfrT/0tmZwoSiKc3uNuKj/pLsZTP/4449xD8jz5ctnFS5c2DcwjQbj/MeiSB0tpj0dYwW3MSJ8dNpggh/HhPEI/7/zzjty/fnoo48cdcxRFC/Zjrp16/rE79y2HXS+4tqfzbYD0WigyxPdtegKwr5duXKl2BUmK/jc1157zfXPzmTUmY/Ayy+/bK1fv15m93G4vIC/Q49D0KlTJ1FIf+WVV6wePXpIazKnavWBoDbPrCTtM0Ip5GcLDEyC/ealS5cOuj7tgpwo4IfqAECveBzvqVOnWk2aNJE2iLE48gbef8CAAb7Pe//996N+DyUxoGr79ddf+7IwUJtlUo4WMjjwtJGk1SA9as0suaIooeH8MQPFwHahJUqUiHlAbvpEV6xY0ffYWWedJbfRdpmJp72UF515k/HA+MhkLLBvnn76afm/a9euUWcvKEoqUNuRGttRpEgRq3jx4vI/XX169+4t/3fv3j2m9p9ZS1IS/9MUas6pizPKll6DWkDqrdk+hCSgdevWUdduU/8dTG0+lGheqmrnk10zH65ePlQNvJOuATwejlmzZtl58+a1q1WrJiJo8daBIVLE5xYpUiRhYkhKdKCITd0cGhiGRo0ayWPUj5kFLQUjYpkOaM28kio+++wzn1Ddvn37jhJr47nSpUvHdDyzoFtiMNdd0ynGKXQw4XXx2nUnICpltv3PP/907X3RbTF1ruj4BOPgwYO++uOnnnrKtc9WlETA+cixSvenQI0hVOh5DkHpaOAcMCKU+BKGJk2ayGP9+/eP6v3QP+J12LlE89dff8lYhM+jzt8t6LJl6uND6T+he4LmF+sg+pfN7NaaeXfo3Lmz1MVRW27qZryCqZGfM2eO1bFjR6tBgwaSHhQure2GG24Im/IdGCkm2k/KfbbWzofKQmA/B0bg/SPt3IaqtTevDwb7lN+vYMGC0oeUWV0+J57+yNQj0WOZeiTqsZkNPXDgQMzvp7jDbbfdJlk1tWvX9j1GNg3nsqmrYzaflNUaNWqkdFsVJZ0ia9hXUuGDRdeIhlGf6RTqwoHU2FNOOcX3uIlCR5MqSw3o7t27kxZdI+JlttOk+7qZjkx9K7YqGHny5PGVnc2cOdO1z1aURNoOykYCa9JN1JgocTT95qm/J/MOXSTzHrHajmRH5imTMWNYN+vmyTrF/pKZGCrblLJTxr+gtsM56syHYN68eXLR4sAaPHiwOEVewdTIk0I9ZMgQOfBxBPfu3RvyNdR54/gHSwNHIA/RGhzSYBflbKydZ18EE7gzTjsTHaTAjxkzRm779u2bY51QwoPB0uv9X8MEDQNO6j0xfPxmLVu2PEoULxoY2JLaRJ3nZ599Zj333HMxv5fiDjjrXNQLFCjge4za+IEDB1rbt28XrQ5S3AJT/hRFCe9kIgIbCM449apM0EaTumnSZE3NazypssaRT5aIlX+6rJsD8sA02VBcd911PmGxnTt3uvb5ipJM28G4yejWRHO++6fY+/sPsdgOAjpmfJ8NtoNJFXyvDRs2WJs3b3bt8zOapOQKpBn0g6SHrFfTPJ5//vkc7TNI665SpYo9fvx4+4orrjgqrTswFTBcu7rAVPtQfdajTS9MpzT7eL5zqNeyvwP3beBrzjvvPGkFcu211/p+iylTpkiqNanysfQ5DWxbaFoquZk6pSgGTbNXUgH9kE2aLO0+g3HmmWfKOvQ4dopp8RlYWjZ8+HB5vF69eo7f6/vvv/eVASSLJ554Qj6zffv2rrzf1q1bfde0n376KeL6tNVk3QkTJrjy+YriNpQemnZxlK4Go1y5clG3pzNlqtgQfxin8/iVV14ZVXq6Oe9IQ0+mn9G8eXNX3u+3337zlR2sX78+4vrVq1eXdbG12cpuTbOPX/Tuu+++s04//XRRh/daOhDpa0TjKQMwUXKieESLaelg2juYlEPTZsNAZLhMmTKOIu6sGyyaT9Q6WCQ/EwiVdRAqS8EfIunBYH8Hi8iTUYGC/XnnnSe/Kf8vWLDAtx0NGza03nzzTVniVaTnvYj+kypmREYURVEyJU0WIUnSWoMRi5CVSU/3F7DyT5WNJrqWzDTZRAlZkS0GXEfMPgjHNddcI7fmmqYoXsMc05SzIeToZduByj4R63S0HaTMk2FaoUKFsGWoBrUd0aHOfJC6Npx5UxseamCQCkjbIV2eFBUmGUyNtantDubQ41wGc7pDnUzBHs+22vlQtfKRDBD7OVhqfajXmtR6WgQGOvJmO/h96RePyjmTKrNnz7ZihVQv48S//vrr1g8//BDzeynxw4Vt/PjxMjFWr149SS0LtuCgKIoSGtMDOlxZiqlbjWZATscJYADqj0mVjabuNZXOPGOHeEq1DKaGlYlhJ1x77bVyy3VNe84r6Wo7jDPv307WDdvh9JxIpe2gm1c0WgFu246FCxdGpXOStSQlVyCN+OijjyStAdXZZKmmO1WmPfvss+3KlSuL0mSg0vwll1zi+z9Yyn2wFO/A93jsscdiUnbPpDT7UAr+4fZNuPT6UK8NlVpvlksvvTTH/S5dutg33nijfeKJJ9pff/11XN/x6quvlvds165dXO+jxA5pc5ynKLuS3hduYZ10QdPslWTD9ZBSJI67zZs3h1wPG8o6nTt3dvS+e/fu9dnfQIXrX3/91ffc/v37Hb3fxIkTZf2aNWvayeLw4cN2/vz55XMpRYgH9sfxxx8v7/XVV185fk2ePHnkNd9++21cn68obsNYkrIXjs81a9aEXO+ZZ56Rde666y5H70sqvLFJW7ZsOaqMN1iHjHDMmTNH1mf8nywo60TBP9rSpFD72XTyWL58uePXFCxYUF6zcuVKOxvZrWn28c8ekZ5+3HHHWV4A8YvGjRuLAMa0adNEYTew//mnn34q0fN77rknaISeqG9gFD2ciJvTqDSR6ExJtw/VV579Gm7fhEvN79GjR9DXsn6w1Hp+Pz4v8Ld68cUXpayCFK2bbrrJN1MbCyY6P3r0aFFcVZIPWRYIy1B+QfkE0YFFixYFXd5///1Ub66ieBauXWTUEfEyETQ3IvMmCkd3kcAMPSJkiJRGE503/daTGV1D9M+I98WbLosdohMK+/iCCy5w9BqEw0w3Dk2XVbwG4oz79u2Tc5LxmFuR+Z9//llsEinxZ5xxRo7n8ubNK50mokm1T4XtIJOzcuXKrtiOZcuWiQAo3/viiy929Br8L9PtR21HZNSZD2DGjBlye+ONN1pe4aGHHrI++ugjUYIsWbJk2Jrudu3ayf+BDj1p1cEU66njJnU/WD23k9r5TEq3j6dWPtRkR6g2dLTlCJZaz+8X6vMYNOL00WKuWbNmMadN8lvSypDUpWDlE0pyJg2pz8MRYZIGe1OrVq2Qi6IowVmyZInccp0L13Um2gG5cfp5XeD7cj/aVPtUpMrCRRddJLeLFy+O631mzZolt/Xr14+qu4/Wvipetx01a9aUiS+3JgLNetiIYDXu2Wo7GA9HU/OvtsM56sz7QQsEot6c1KGcsGTz2muvWa+++qr0CmewgtP8/fffh+0Vb5zuYBH6eBxv3otIc6a2qotGR8DJZEeoNnS//vqr9eeff1rbtm3LYaTM+qE+j9+d19J7nChJqMkVJ9x+++0+8RetZUw+1KARsaLtjaIosbN06VK59Rd+dXNAHiraH22/6FQNyE1ggqy+WGtPuUb4O/PRYGpfyTIKNgFN+6kXXnhBggobN26MafsUJd6JwHD4TwQ6GS9liu0g6AOc+6G0pJwQr+3Axger29+0aZNonLVu3dpat26dldUkJfE/TRg8eLDUJ1Br7gWojc6bN6993333ha3nDlaXTU32PffcE7SGnsdDtUmLRKja8Fjfz+s185Fq5QNhP6AvEGp/UCM1c+ZMe9OmTWHXD/db81z//v3l/3nz5sX0Pffs2SPHVjT1j4p7cE5G09YqXdCaeSVVNa+R7Jh/eyfqViPx9NNP+66XwWjRooU8/5///MfRtprrcTJ1ZuDgwYOitcJnL1u2LKb3WL16tbyemnnq4KOB+uGTTz5ZXr9kyZIcv4dpP2WWu+++O6btU5RYasJPOeUUR+eFv34GLdYi8cILL8i62IhgcJzzPDbGCUbv4+GHH7aTCZobp512mnz2/PnzY3oPxrq8Hg2BQO0RJ7+RaSk6e/Zs3+O8T506dXLYjuYutdDzElozH2eKvZmNSiXU25Byzcwe9dJvvPFG0HpulCGD1XQT4Y025d4J0USg05FodASCEa5sgag670m9IWn24dY3HQSCKX9yHOTPn19UzlFCpxYpWgoUKOCb9TStWZTkQbtIUteiaU8TC0OGDJFjjfpejjG0NULx7rvvSlpdoUKF5PhCzZZuCoqSDjWv559/fth1qdeMps7dpOObiH66pspStmUiYqaFX6yRNbprUAcfDaTVmjHVgAEDcmi3UEvL80bxm/uKkgzQC2JMli9fPqtatWph1+WYN3XuTsp0IkXm08V2kKV88803u2I7yERkbBENlPOYMbC/7cAnItOH7TOt/5Zlu+1IyvRCGsBMvYlUrl27NtWbI7P9KFkvXbo0bJTWP1obDP/XOlW5dyMCna6R+UQRGJGPhJPfnEhPgQIFHCusBvLGG2/I+1StWjWm1yvx0bRpU/ucc86x586dKzPgbjNhwgRRkh45cqTYtPbt29uFChWyd+zYEXT9RYsW2e+++66oXm/YsEGyP5hNZ/ucopF5JZm89NJLcrzR6cMJnG+sz7HutOsH17lgDBgwQJ5v3Lixo8++7rrrZP3Ro0fbycYo6ZctW1aiXdGCAj+vHzJkSEyfj1I4r2dMgy3atm2bTxmfiN/PP//se/6PP/6I6TMUJRpef/11OeZq167taH3GSaw/Y8aMiOvefPPNsu7QoUPDjr1uuOEGR5996623yvpkDycbo6RfrFixmMYpdevWldf369cvps/fuHGjrzMAqvqMpY3K/eTJk2Wsccwxx8h97EomEc14Sp35/4eDhJ1G2k0sFzs3YTDNxAIpNeFanjlNdU9Uyn2ySVdnPlpHPprfnDIAbqNxuPzTHGl7xut/+OGHGL6ZEg+kilWqVEl+A5zukiVL2qVKlTpqKV26dEzvT7vKDh06+O5zIeaC3KdPH8fvceGFF9pPPvmk4/XVmVeSScOGDaMaKF511VVhHfRgjv/ixYuDPj9p0iR5/rLLLnP02RdffLGsP336dDvZ/Pnnn74WcYHBii+//FJSWXGuWYeU/EaNGtlvvvmmPWvWLPuBBx7wXSfCtf6LBO/Je7Rq1cp+6KGH5P8aNWr4xlvYunjSeRUlGjgOOd6cXt8iOeiB103WZdwXDMZrPF+hQoWo7NZbb71lpyLQaZznTz75JMdz69evt0uUKGHny5dPbAfBpQYNGtgjRoyQ70gbUGN3wrX+i8Ttt98u78Fv0L17d58vY2xHxYoVfc59JqHOfBz18swipRLqy+gxfu6559r79u2Ti51Txy7cAMXfQQwWoQ8V2fcS6ejMR+vIA7+j09+cKM8111xjn3XWWTFFNEzNopPBreIeP/74ozjvieozT50ss9lTpkw56qJ40003RXw9F8n33ntP6pHDDa650HOhMQs9ddWZV5IBx2iRIkWiqgVv27atrN+rV6+I720y9YgMhbumFi9e3NFnExUPrBtPJmh08Pm9e/cOOlCOtFx++eVxff6KFSvkfbBnZt8uWLDA93zLli3lsWeffTauz1EUJ5x99tlR6Q4xqcX63bp1i7iusUurVq0Km6mCloQTzOSAf914MmnWrJl8/uOPP57j8fvvv9+R7SBoEU+QFP0wE31n4oBb/7HNPf8frERbIJPQmvkY+Oyzz+TWaQ/EREHPabblzTfftO6++25pSeeUcKrriVS5V4ITrEbeCU7U8w3lypUTPQXq5h955JGot9H0VlUV4eSCzgR1ddSRUav+1VdfiTJrsCWW34b2hehu0P7OH+7TAzcUHEfoKZg620GDBvm0FYLRp08f6cFtllD1xYriNuvXr5fjnDr4SDWvBnN8Rqp73blzp3Xw4EGp2TTK04GYx7dv3y7nmtO612jrRt3C1J76177u2bPHmjRpkk8zCJvE+OPpp58WzYzSpUtb7du3l9e89957cX0+vxFdglDUZ99i+9B9MVx++eVym/W1r0rCQauG7lXUXJvjLhJOu2Gg4YFdcqJmj01g/XS0HQcOHLDGjx8v/0+YMEH2y+eff24999xzor3DmPeOO+6Q7kv4MdG0swykfPnyVpMmTeR/VO2xTaaWHy5X26E184bzzjsvbFpMMvjmm29kxprZpWhSrVnq16/vKF0+nVPu0ykyH0tEPpKqfjil/WHDhkU1y2wgQsXr2rRpE9N2KrFRtGhRiQw4UdWOha1btwaNWHbt2lXS70NBKv53331nf/HFF/aLL75on3TSSWHrizUyr6QKY/Nq1arl+DXDhw93lIFnoshnnHFGyHUOHTrkSz+PVKtJVMrUff700092KqAu3US3vv322xy1u+XKlUtKeeFHH33ku375R+Vh5cqV8jg2JxEaIopiGDdunBxr1apVi0qDxkm3K8bxrEdqeqhzisdNFw5zLoYDrRvWJUKdCrieH3fccbINjA38dTjICiWjONGQ5WBsR2DG4fr16+Vx/CeyEjMFjcxHCdEolC1THZknWlesWDGZ2ZozZ07UipFOFOoTpXKvxB+Rj6SqH+wxsilQHEfRs1atWtbDDz/sKEpkKFWqlNwSAVaSB7PLl1xyiZU3b96EvD/Ku6hE79ixI8fj3D/99NNDvo5IRdmyZWXmm0yPxo0bS/Q9FGz/iSeemGNJZ3777TeJFtJJQvE2K1askNvq1as7fo1/v+h41Kghd+7cvnMpkir1X3/95bPLyVak9s/KueGGG+T/Bx98UPplkwEIbdu2jSty5hR+K3rKP//88zmi8lCpUiVRDfcfj6UTZDmwfwcOHJjqTVEc2g6nUfloIvP+tiPUOcXjThXtyWQxHYtSZTu4rjdq1MhnO9gmYztuv/12GWskGuwDmYI9evTIEZWHc845xzrllFMk44cOJ1lJUqYXPM7ChQtl9oNIWaowM9Zjx451pGQebnESXU+Uyn22R+bjjchHQ+Bx0rp1a7lFuMgpRG55DSImSvIgOo7WQaI/o2PHjr77RLsQuopGAK9du3ZRRT7TXQDPRCoRA8s0ZdxMw1yvohGFQlyW1yDyFg46ObBekyZNHInacV0KBwKjrIcYVCoFdolgGUGq559/3lfDnqpsgUBQFmebENBKN0ykMnfu3CF1FhRvYBTWX3vtNcevMVln/L7hItFOlepNn3TG/OGgr70Z4yUqk88J2DCTTUBGp8lKwqZ4gRtvvFG255VXXrEzBY3MR4mps0hVVJ4Z8m7dulmVK1eWGrVg/eTB9FOMxKhRoyLWv5so7z333BO0hv7bb7+N4ZtkN25E5CNhIvHUyQceJzxep04dqXeknskJZjupITt06FBCtlk5mgceeMD64IMPrDVr1iTsM8jSGD58uDV69Gjr66+/tu677z5r7969vswcZtQff/xx3/pE4BcsWCA1+qyPfgfHVKtWraxswUQEOX+wiYp34Rj11/2IJrr2559/+qJdsUbm/WtfI0XX/GtekxEBD6fHYs75J554Qm7RxAilC5BsTKR0+fLlVrrajn/++cfq3bt3qjdHcdl2nHHGGRKB5vcNpzuTKNuRL1++hGXyOYHv8+yzz8r/Tz75pETnybSJRuMpkVyexrbDDdSZ9xN1uOaaa1Ly+bNnz7aWLFkig+kNGzaEXA+RLCc4TZcPl3LvlRM0XUiGI8/vye+KE3bXXXcFXYc0Py4Or776qqP3JE0UASkMc6TUU8U9cJC7dOliXXXVVXK+Rkrdi4VmzZpZL774ok/MinN87ty5PlE8PhPxLgOOPuc/xzDiVJMnT7bGjh0b8ljLRPzTe1977bWIAy0lNSBQh8gUjjEioE5B3NGkqoY758xzkQQdzbn0yy+/hF3vjz/+SGmarD8EDkhLNZBi7xXSWcjK33aQgvz999+ndHuU4HCdQ/wOzj//fMevw5E3DrgT2xHJmU9H2/HQQw9JurtBbYd3yHpnnigUCozUipqakGRCHR0z5VdeeaU4YvPnz3f0OupGcB6NQn0wnCjUB1O579Spk2dm6tOBZEXkQ2Vs+EPdPBM0RAbCRZ4MDIapNfKfAVYSDwMDzjWOHRxotAt4LNhCbW6sdOzY0frhhx+kloxjiPPdsHjxYl/dG/Tq1cv67rvvpJ6f2nEuikwIZBNmQM7AiX2GLoXi3cga9pY662goWbKk3HJehMJMbDodkAdqUwRibKsXBuRM3jJRBYULFz6q/jSVMFltft90ux752w7GdT179kz1JikhumAYXRkWt21HtM58OtmO4447ToIPjBuZGG3atKnlFS6++GLx48gyZck2st6ZJ/oEtWvXtooWLZr0z6e1AxF3BvaffvqpRMKcQir8Lbfc4kuXD7VOJPyF1bjI16xZUxz7bDwhvOjIO/0daSUGzzzzjMw+kybtBCNaRuqpkrzSGqcLWRNK4vn77799bQCNiNWwYcM0Y8WDrFu3Luo0WQOlbBAucprJA3IgI4jJPEp9SN/1CozBEOD0bxecDmCjjTM/YMAAuaVEScsVs892mOuF06yedLMdTLiRSfzhhx9KO1qvUKBAAV/WQDa22c56Z970WEW1OdkQ+XnqqaekhyMnSDSGn9oV0q15HX2qTbp8IE7T5YnYtW7dWm5PPfVUUdpWh94bjny43xHVbePEm44GOCIojr788stha7sMBQsW9KnxKskb/EWzKImHARoRNQYFLVu2lCwXHHw0B5T0r3k1lClTRm7NxE2w67IpP4nkzHOtjGZAnqo+0cHg+K5QoYLlNapWrSq3jD/SBcpx6BdOFtVtt90m12TsNto2ijdtRzQp9k5tB5PvTicC09l2UIZ34YUXWl6jahraDrfIameeVBmi4aSMpCLFnqg8tTtGLCXWOnXSr2llhzMeWGPtn1YbDerQe8eRDyyH8P99GYzhxAceD+g/kKLtpE2OOvOK8m+abPny5eWacP3118v9cDomSvoNyE10LdSA3OgkkI4eKQ03XaNrXgZ9D1i1apWVbraDrAJSkdV2eJd4JgIj2Q50PBBP5foRqVRVbYf7VElD2+EWsRdjZgBEtIF69XC9lxMBM3ikY9WrV883IDEOm5Pa6ECMyiTCWtddd51MDMTqyAc69Ex4gOmLme0k25H3L4egrIIMDvP7ksoXDCLyd9xxh6QJozwarq7UpNmrM69kM/7OvH99pBFLUjIjVTZSdM0/TTaS8nw6ilh5Hbr6pFt0LZTtCFdbraTWdsQzERgqzd5E5fEnIinPG9uBmCdZHNR7B0NtR/S2Y1UWOvNZHZk3Kva33npr0j+behMuVqhDBqtfR+AuFqi5JzUUh8+NuhGN0HvDkQ9WDhEum4PHaX+GkNlbb73lKDKvNfNKNhM4IDfntw7IvQV2ykTP442uBSthcZom6z8gZyIU4chQaHQt+gE5QmVOW6x61XboRKC3YGxssiXimQhkLEw5Tqz18mA0urBBjCtDobbDOZX+v2YeG87YN5vIWmeeH/qjjz6S/2+66aakfz7pzxgTerz69w83itOImIVTqg8HraRMPX2k9nROUIfeG4680/R7U0PPoLVBgwZyrJEJEgojYqLOfOLgt2AgsGnTJt99p4sZQCipia4xQKO3sOKt34m+z7HUkeKkU4KEoxhMUyQaZ56sJhOBC5cu68W6V69SrFgxKW9Av2Lt2rVWOtsOxgx//fVXSrdN+RcceY4rAhixdGzCAc+fP7+Mp4JN8kZjOyjHMJ2E1Ha4Q6FChXxj89WrV1vZRNY68/RbZkaMmmNjeJPFtm3brGnTplkdOnSQND7//uHGAcepZ9sQOENlnttYcNKezgnZ7tB70ZEPzOYIFMLjOCI6v2bNmrC9N81FIt1aAaUTRGhYDh06lOO+00VJLAzOAgfkOIsMuBj8ab/5zEixB35TM9gOlmpvBulOBuRcv50IWWl0zTns03RLtQ+0HUyQm+uqZvZ403ZEKqEJBq8Jl2ofje0AtR3uUzlLU+2z1pk3omE33nhj0j971KhRVp48eaS+PVj/cO4b554oO87YnXfeGVQAzUn03q32KNnq0HvZkfcnmBAes8j0MB8+fHjI15mLhKnNUtyHiDyOgxkIcN/pEqq2V3EPIrRkplC3aFpj8b/WvmaWgJUh3IDcRHScCtI6qZvXutfMHZBjNwjQQLly5XyPa6p9ZtqOcJobxnb4HwfhUNuR3bbDTbJSAI+USdTfwUQzk4VpV9KsWTOZvXXiaOOU0QsW8bNAATQwj1EPhPMfSKwq+cHINlG8dHHkQx1HpJVxTPTq1cvq379/0FQt85g684kjMPsn2dlAirPIGk6ev3ARvxPnEANyhFKV9FayN/A7L1y48KgBOddQEw2++OKLHb2XE1Vqja5l7oDcXHsRPfO/vjJe4FhSZz7zbAcE2g6yu1asWCH/q+1IHZXTLKvHLbIyMr98+XI5QQoXLiwR8GSyaNEiiba1b9/eN3hwqlZvesr7C6D5i6KFit7Hq2qfrRH6dHHkIwnhtWvXTo4zWiEGQ9PsrZQIYDqZyPvuu+9kXSU5znxgREWja5mXZh8uukaNNsJW2ESToREJHZAntsVUOL0XL9sOzerJTNsRKquH+wREmAymRNYJajsSZzvWrl3rK2vMBrLSmTfpyHXr1rVy505ucsLkyZMl7fnyyy8XRztYJD2eGnhTP02dPbd9+/a1EkGmO/Tp5MiH60PP49T+Xn311b5WjIGYi4Q688mjdu3acq46Od/r1KmTlG3KZgJrXg2qaO8tUIw3IpKJGJB/9tlncnvRRRc5rqmNNCBnm43ytYpYOYPzEG2D3bt3e/7ci2Q7dCLQG6B9QoeERE0EGtuBM8mx64btYCJLBfCi4+yzzxaBQwJY5vfOBrLSmX/vvfd8znwy4cScMWOGKIyTph6sn/wTTzwRMfU/UkQvsH1ZoshUhz7dHHknEzl0bPjggw9kcBSqRUowZWclcXg94pRNhBqQa695b8G1j1I1JiDNQDgRA3KnabJORKzMYBwNBtMGVAkPmkImFdrrqfbqzKcH/A50sCByTkDNjTR7/2t4ImwHnRCYhACNzDsjV65cvhZ1XrcdbpJ1zjwnsxGpqFGjRlI/2zi9OFY9e/YMus7zzz/vyxyoXr160HXcrIGPl0xz6NPVkY80kYPQIylH8+bNO+o1xmEhRUzb03kLHIHjjz8+1ZuR8ZgZfB2QexvK1Ez0KxY16sABOYPovXv3Bo3MOyWSiJXRIiGyxkBTyay6+UgTgV7PLMgWFi9eLLcVK1aU1pSxwu+K7cFu+J/zsTjzTm0Hkf4TTjgh5m3ONipnYd181l1ZuDDg1NDHNNkiVETlTV/aQOXxYARrJ5aIGvh4yRSHPt0d+XBwrGPgpk+fftRzBQoUEP0I0IFH4qAHrVnMrLv/Y/4Ls/7Yi/nz52uf+QRDGrQ57kPVvdJr3kRIlNQxadIkuW3YsGFc74NjbSJdJm2f44DOMbEOyCNF5jWyFlvtq5cH5GSJoGsSTm8DR23fvn0p2T7FfdvB+L148eI5Mnu4Nnz++ecxTwQ6sR3xTF5ms+ZGtpB1zryZPcP5TPbJgSNFar8ZPMTCOeecY/33v/91pXe8m6S7Q5/JjryBjJDZs2dLN4dANIqQeDiuSO8zKX5GPyPYwnnOoAOHnxaWSuLYvn273JIBwSSvP8WKFRNdFSaAzXpKati6dav10Ucf+Tq4xIuZJDN181y7GJQzwI6mS4vTAbnWvGZeZH7Xrl0+EePAY4bfm+ANmAlcJTVwDpry2saNG8f9foGaG6jkM2FDYMRpW7pA2xGs7E5tR+baDrfJOmfetFSLZubdrYHIypUrpV6eaFusIJhH/3mU7YnSe4l0deizwZEHjj0uDmZA7I8684mnRIkSvoWJRNLm/B/zX1DSRiRv8ODBVteuXVO96RmNccIYWAVO8OLImyiMptqnlilTpsgt4rFutEQNbDEVi/id/4D8t99+C6qerJH5+Abk/D5co71sO0455ZSjRM84hlRzwxsQSCOIgcp8NM52tLajWrVqUaXwm5p5JoSC6Rmp7YiNChUqyO9AVgxZddlAVkfmk8nMmTPl4EJsbOzYsUc9T8Q+2p73kZTtU0G6OfTZ4sibCw3K9sFS7dWZTzwM6MjKYWEWvkmTJr77gQs13PTBvv/++zW9LkkDcvpEB0PPDW+lyboRWQs3II92op8SJTOA37lzZ8i6Vx2QRwcOsqlDDzYBnQ62QzU3MtN2BApoxmo78uXL5xPFDFY3r7YjNk444QTrwgsvlP+XLFliZQNZ5cwz82WEjpIdmadGvmbNmiFT8ebMmeOro8epHzFihCPn3kmv6mSTLg59NjnygPgSQnjB9BrMxcnU/ymJZdSoUdadd96Z6s1Q/Lo4hFJH1wF56uG6+eGHH8r/t956qyvvGZhmv2LFipjGBthV0xEk2PVdo2uxc8UVV3h6QO7UduhEYGrH/SYb1u2JwHhtR6QyHbUdmWs73CarnHkcFSJiRCfNxTcZ8JlE0Dm4nCjR42yRTh/o3Htd2T6dHPpsc+QNHINMaJkZX4NJPcumvpyppE2bNknvpqFETrMPhjrz3kix5zrKYNkt4VozIEf0juuzsX3RCFhFMyDXutfMG5BHsh2aZp96yIoljZ0sD9Pu0C3bQScDymdNbbbaDu9whcdth9tklTNvBCboYZrsenlSaEhzRon+0Ucfjer1OPXUgAS+zovK9ung0GerIw8cg2CUVwOd+Q0bNgQVyFPchckUWmSai7WBC3q7du0kRaxRo0a+NppK4tA0e2/DOYLoq5uRNX+bR00lGjSMD9CrMHWs0aDRtcQOyHGY/FsIegVNs/c2tNp98803fbbDrZI1BGrJyEEAEQeeyQLKQmLpX6+2IzHUrFlTbteuXetZzQ03ySpn3vR4pZ1IMjGOk3GkUOLt0aOHLKEi7sHS6fv16ydO6JgxY+S2b9++ltfxmkOfzY68GcDmz5//KGcekS/UvBFw0oFH4unTp4847P6dLdj3XIA4v5npnzZtmlWnTh1r27ZtKd3WTEfT7L0JUS86OvC70KaVgbhbKfZw5plnykD/uuuuk9pVo10TC2YCQAfk7sJEGr8TE8xe0wcCTbP3JlxX0aThvHRTxd7AufzWW2+JvTD932+44YaYJgvUdiSGokWLel5zw03UmU8CzCpzYKHASzSdKMCzzz4ry7Bhwxy9h0mnJxLfunVrT0fkverQZ7sjDwg10YOTYzLw3GC22as6DJnGokWLZKBatWpV32PvvPOO1OCh1j116lSpqediPnTo0JRua6bjNFWWAXmyrx3ZClFyHHcmtJjkqlixogyeTZ27m+Uu8+bNk/OMCbT+/fvH9D7m2FERK3fBOfJyuqxT20FbywMHDiR127KZ2267TUTvDh48KA7dyJEjfd0R3PwMWv0a2+F0LB+I2o7EcYWHbYfbqDOfBHCciMrTFg8F+mCt8sLh9XT6dHDo1ZH/F47FQGfeP+1UnfnEQ2qvmTzxr+1j8MrA46abbrKGDx8ug8FggoVK8lJlmYTl2kEqpYnEKYmFSPy6desk6sU1g3KT5s2bJ+zz8ubNa1WqVEmyk2JBU2Wzc0AeyXaQek0mHGiv+eSAY824mlaBZHNgRyhdSxSU7WI7TIQ+WtR2ZKftcJuscuZNCkyqnHkU62OB2tlMIFUOvTryOeFYRAwysK9pYLsVJXHQkzpQhHP58uUirOMvaknkPlv6pHo1VZZBoelrrumyyYGJLGjWrJnrEbVEoCJWiR+QYx/J0kgn28GYU1PtU2M7KNFhvOn11q5qO7JXc8NNssqZT0VknnpXDL6pl4+FTIqUJtuhV0f+aMyx+MUXX4Ttu6xYCY0E+ncUwEYw2DOiLQZqeffv35+CLcwOuMCbi3yo6BpQtwuqX5B4OC8mTpwo/7dv395KBzS6lji4drPv9u3bd9Q1K5UcPnzY2rlzZ1hnHtR2JA+OkbFjx8r/ajuUkiVLykS8VzU33CSrnHmMr7+qfTIwFx8ibIiMxYJX28953aFXR/5fMGQoQnNLDRkpYYEieOrMJw/OaURZGHzAu+++KxGEQGeeAWAs6tqKM8wAikmTAgUKhFyPdqam9lVJLNTGM4FFBxf0ZdIBc44G1r0SSTaTRTogjz0IY9p4eildlvEFgSHsdrhWx2aSUG1H4kF3hoxDVOWvvvpqK51tB2jNfGZrbrhJVjnzpBZDLO0jYoVoW+7cucWRp1duOFq1apV27ee86tCrI/8vRnTx9ttvl9snnnhCZiwDa/iMM48SrAp9JRbShxl01KpVy+rcubPVrVs3idZTK29gNpkJl8DaeiUxabLh0jF1QJ4cmGg3abJE1ryeIhsYXSNS6287/bNvTjrppJRsWyZgBuRGmdxLtoO6eEpxQqETgcnD2A7EY00mbrrYjr/++ss3uQ8IJhrRRHXm47cdCxYssDKZ9DjaXWLNmjVyy4x/siCyhjH/7LPPIgpZkR4UaPCTmUWQKQ69OvL/QiQ+UHSR+4jyBKb9MeGE2j0XEB14JJaHHnrIuuqqq6SWa8CAARKJfOGFF3JEeLj40CfXXIyU5AtYGXRAnhxWrFghAlZMbDG5nS6Y85bsP/+exiZNtmDBgjKpr8TGzTffLBM7c+fOlb7R6aBkb1DbkRwQuiPbjTFMIgXv3AbbYIQ3/VPtje3guGcdJTbq168vtpdjI5NT7bPSmafNTbLAgGPMnda9kwod6Hhl8gHotkOvjnxOQh13KLAGDi78hb5UeTexsP9x1j/44AOpD16/fr3VoUOHHOtwgX/llVfSyqlJN3RA7r0Ue6AtXeHCha10AdtpJoT8y5S05tUd6LTCMQHPP/+85QV0ItBbjBs3zue8FStWzEoXcNbNuCuY7UD8Ll2yDLxIiRIlfGOo3r17W5lKVh0hX331VdIj88aZj6fuPZME8BLp0KsjfzShjjtKTYINLsxFJRXtA7O1nqtx48a+Egd/6tSpIxH8ZJYFZRuR1KgNOiBPPGShTZ8+Xf5v0qSJlW6YcYV/5FhrXt2D8jCYMGGCtWHDhlRvjtoOj5EJtsMEHEFth3t069ZNxlszZsyQNqeZSNY486SxmgtAstPsmSWk7j2wHj6wFr5169ZZIYCXCIdeHfngBDvuqKFH0Z5jM7CMQ5351IBtovVSpk/ceY1oo2vaZz5x4ASj10GK/bXXXmulG2ZcYYIGoJF597jwwgutevXqiSZBv3790jKrJ5PLJlMJdoPzjhR7jpFMcObVdrib2dPk/yd5vJLZ4zZZ48x/8803chEgdS/SwC0RkflgBBp21ssWATw3HXp15MPDwIf9M2bMGLnt27evHGtMcFGT7Y8688mD+tpevXqJPeJig5I9v41/ynH16tU9UyOaiUQ7IEdxGGFCJXGRtWuuuUY0PdINU74XbECufaLdoXv37nI7evRoa8uWLWk1EYi42Z49e5KybdkGEVfgGppO5TmBtiPYRKDaDndtx8T/L2vMNHJlY4p9shRyGfShbosxDyZE9umnn+a4z/O33HLLUY5XNhGtQ6+OvDOYECLzw0wMhUr9U2c+eY78jTfeaPXo0UMu2uedd95Rk3u0Y+LYpm2dktpUWQTOqFvkNwrWQkhxz5n37+iQ7pF5Y19RPFfih8lNyo9o+YdgaDrYDiamjICZptonhkyxHUzcm24YajvcpVKlSlaDBg3kGp6JflXUzvyHH34oO4TUcZziqVOn5nie9godO3YUp4Deveeff7712muvRXxf6hioH0X0CVXtQMfX9JCkRzbrMJM1e/Zsx9ttempXqVLFSubMLQdONAJ4rBfoeGUbTh16deRjxwjEhHLmt27dankVtg1BEy5y2BhsASrY4UDQD2GcE044QY6vrl27HhVhXbx4sVW1alVJ8y1btqz15ptvJuw7YBPnzZsnA1NSBP2jeQaO6TJlyljz589P2HZkO06ja6RvmkG7DsgT4xgZoVcmudIRrkPmmGISH5YtWya3lDUp7kbYaEPmr/7t1awe0Lr5xEFtOUKygG+SjtB+FlFc/CfaWYPajsTZjrFjx1qbN2+2stqZ37t3r1W5cmVryJAhQZ9/+OGHpX0IO+vrr7+2OnXqJM69mTkLBqm+1113nfS+plUTM67PPPOMNWzYMN86HNjNmzeX/pFffPGF1bBhQ1mCDYLDOfPJPDE4MU1/Wad179lQH++GQ6+OfHyceOKJOY7RwMc5z70IUWwi1qhHz5kzR9rRvPTSS2HryoiC48j//fffYkdI0cRRf/rpp33r4FCzDs41xxx266677hKHOxGwDaQDMkEZTnmXiL12FkgcOiD3BjNnzpTbiy++OK2UqAMjsEbIknGJsTdw5ZVXpnjrMgdaehLooIXqyy+/7PmJQFDNjcSBv8HEPNdKnOJ0hPEMgUpjO4jOL1myRO6r7XCPSy+9VMq4OF6CBYyzypmvW7eu1Hk2atQo6PNcvNq0aWPVrl1bnKy7775bnP/AlHJ/qA3lwjdy5Ehxzm677TbrwQcfzGGo6cV8ww03SESNk7Znz54SRRs8eHDEbebEYAIAeE2yMJE/ehw6EcCjPt60pzNRCm7D3c9Gh/63335TRz5OTM/jwOg0s8PA+ejV+n8yd0aNGiXHBkrvTAQSwQ4FkW2cfiYYyczBhmE/mJA035NIOe/FxAD2hQlIVOZpDZcoDQ+2P5K4DROBmtadGJjIMpNW6synlnRPkw1WN08AAV0SMoiwKYo7kBFqImxDhw6V8UCyYYLYZF+o7fBGvXym2A7KdAiEErAikzCZPks20P3/bQf+Ziadj7kSUdPEhZlUWFLMFy1aJKnjDLgNbdu2FWffgIozs0/GkYDrr79eRAqMCATrMKPiD+vwuBOlaAZupOSa2a9kO/PBCKyRZV9ddtll1u233y63OPvh7hvnP1scetTXgZRqdeTjnwkO58wfPHjQ8iLYlosuukiUSTk2UDgm3dIfsnr8jw1sBBdK/0EXtoOMICMuF499iXUwSDp/JLjYOFlPiT2yxoCpQIECEdfXAXliQBhswYIFGTEg96+bN5E1RLm0T7S7UIpBkIhx3aBBg5L++bt27ZIgERML6GlEQm1HYkA7wZTbZortYCLQ2A7G+f5+kRI/tWrVEj+VMS7Bm0whuJcZBxhWovHU3uLEchFjsO2fKoJhMyIPJvUosJeyGXjzHNErbgNnQLnP4wyM/d8vEBPFRgABBxoDkAxIAwM+E6eAfcOEgoELfjz3eT9KDXBuMhl+f2YnTV00Udgzzzwzab9jJmImkjhG/fejGXQSsU7l/mWQFGwSbOPGjdarr74q5Tz0Hf7ss88ki4cLHhlBUKRIkRyR+lC2wzwXbh0cfqJr/uedG1BSFKnfKfufC3u6pg6mU4q9E1FUHZAnBnR4sEMlSpTwRacyYUBujhNNk3Ufzlfsf7NmzSSDc/fu3TIOImiE/U+W7eCzQgVr/DGp+Go73IWMX2rm+R3SXWMqmKK92o7E2I4nn3xSWhgylmSche2gHWoyO52lhTNPCjQRNAasXKg7dOggdXAm8tWnTx9XP5NBcbi6UqMGTbpbNKJ58WL62i9dulRq6caPH+/6Z5CCm8zv5AXI2MjE1hLJxETeKT8xdfJgREFwYlN5XHGuEtEKhEk7DK/pFUpknoEzafLGmSdFnsXLUDJE6RC6IEx+hrKlpHLee++9Sd++bMCpGrVBnfnEwPURyNZLVqeZZKTZI5oIOiBPDLfeequUTZG1Z8qh0CGhhhrthUSitsNbtoNzzJxv6T4RSAkemR+gtiNx468aNWpYH330kTVw4EB5jHEw2i0IsVvZ7swTwWK2dMqUKSImZaLhGNsXX3zxqDRWA7MhgaqkgeIiodbhcT7DnAjB6N+/v9wSxWY2JlnwveHyyy+XSOjVV1/t+mcsXLgw4yPz1MQRgSVCiaFjwEeKXboKJXkB01+eY8f/nDBp50QbknmuBBJqUM+giA4Z/lCPOnny5JDvhY0I1Oxwal8w8G5H5QHtD0T47r//fqnnb9q0qTxODTe1tvRCJeJExMHrExPpSjQCVqAD8sQOyNN1EBUoYEsJk+knTvlGMjvoZBM4b6iYM95EOBmxUko6EcibNm2a3HpBOBPUdiQGk46eCbaDzCRaGGI7mCzCjqR7toFXOeaYY8ReEOjFdlDmxTiMzJ5Jkyb5/NesdeZJV2AJrA/D6IZLg8fZRZSA15paXnZuuXLlfAJRrIPjisq0gXV4nPcPNStHurBJszcq2MmCWkwD2/nAAw/kUFDkRPUXsov2PjXzvG8mgwgI6fVM1pBajzOPA4rDw29uWqkpsYGj6n9OGEGwQoUKJfVccQrncGBWBgM4soBCwTnSu3dvyWKhzt7YDhx1MzHAOoGZCMa+JAIGd7T1vOWWW2RmmCg8FxguJCxM/vEbMEmRjLTRbCTWAbkqUrubIWSuacEycdJVldqkylKb6SQNW4kNbDgZWSzUzxOwYZyIyClRNlJnE4E686kHn4LIaqbYDq7/jHONTg/jXH8fQnG/+0jr1q1lIRBNQAWbgQ1hDHbzzTdb6UTUqiwYTCLOJupMSyf+J80dw4q4AFEnejbzHNGnMWPG5FC/f/zxx0XEzdCiRQupeaXtHJHBt99+W1JQqYs1PPTQQ5I+hWABDh0iVzh5kaJWRHT5oRApSbaibCjFcAP7ipIE9g+3ZnF6v2/fvjFtV7oo4odqP8dv6aQPvRK9OCP73KQrepHOnTvLMUGaPWUs48aNk1R1SnkMdLjwz4JhthWnHaO9atUqmZGlZorXGHE5Utmpx6fjBPYFlWSi43xeoiCFDnvHZ3KMM7FietyjA4BDkAmDFK8Sa6osrwsUL1Vig0lZ6uWZsGLyPhPwzxLUNNnkQRbErFmzZDBOEOe5555LuO2INqsHQWejpaTEB5FU6uVxyjIl+8VfM0RtR/LIly+fROlbtmwpY2P8y7TDjpJFixYxijlqadOmjTy/fft2u23btnaxYsXs448/3i5Xrpz90ksv2UeOHPG9B+vWqlUrx/uuWrXKrlmzpp03b177zDPPtPv27XvUZ0+cONE+99xz7Tx58tgXXHCBPWvWrIjb27t3b9m+xo0b28lmy5Yt8tmzZ8+2P/7446D7jcfdhvccM2aM77397z/66KM5Pp/7XmTXrl32zJkz7U2bNvke+/vvv+2pU6fKLezYscOeMWOG7GclOr777jv5/d97770cj48aNUoev+GGG2yvwm9eoUIFsRXly5e3hw0bluP5Hj162CVLlszx2ObNm+26deva+fLls4sUKWI/8sgj9qFDh46ybVWqVBH7Urp0adkXSnTs3r1bjh9uvU7Dhg1lW4cOHepo/YMHD/rsJvZJiZ///Oc/sj/5LTKF559/3necfPDBB6nenKzj22+/lX2PHd+/f39CPqNVq1byGf369XO0PuNfrle8xn9Mo8QOdpv9efXVV9uZwsCBA322g/Gvkly2bdsm+/6YY46x//jjj7QaT0Wd/4VITbioBDOV9IAOB9H6QKh7N/UvoaAdFUs0kCFgouDJxkR8SK0yghaBkCIcbV0MEXVeR32eSb0395ld8k/lJ4IdWC/sD+uS6uul2pxQEflQbevM99OUe+eYdD8TMTCYnr1ejcybtkQsoWBWNXBmlTT8SIJ+2DYEAZXsINpUWbLHEGbEPnH+8L/iTr18JmWgmMg8xwvXJyW5kNnE2ICyKuphKc1Kte0ghZqx8Q8//CC2Q9vqxk8m2g4Tmed4ScRxq4SH8TCdkL7//nspd0AoL13I6GIuavBNTU0qnHnq50gJpz96qNotHPBEOuvhnotnQiHVjrxBHfr4nPlAEUGvp9krSqrS7M3F3jjz4URXleyreTXUqVNHBLkYjB9//PGp3pysA0eI44mxEg5fIpyiaNPsje0wzrwSP5kknGmgrzxC4ZQFopmjJJ+aNWuKM8/xlU7OfNQ18+kENfX79u2TCArOYSrAgGO8cZapjfUHATvwr1/nMU5oNAW45XX+9/0deafOeiSCTSikgyMf6NBrDb1znQSOSQaaJ510Uo71iGaAiq5lBkOGDJFzid8aWxLOXgwfPlwGRoiOsjCocMO+ZIqavf+6OiCPH7QpsPnUK1atWtXKpNptWvK63YJXcY6ZHDIOX6oj86AieO6BRhcLIsheCUS5AddphHfRDFMy03YkioyOzNO2xAhJBCrsJ9uZD8aiRYusfv36+e63atXKGjt2bI51Ej2YZvLAC8YwVkfeoBH68L+x/ySQmVTi2AxsAUcWCdA5QElvEBJFRPS1116Tc5wWnddff710AzCq/oElSc2bNxcFbgYV2CbEAxHpy7TjASFXJnpBB+SpwQyWmKT2YucMJf0H5GR+kAHi5vjv8OHDvrJJtR2ptR0XXnihTJ4pitu2g8AXQpqUS6UDGR2ZR8keUll7QhozxpsDI1JUPdCRd4NARx3Hzg1FfC858gaN0B9NsOOO+yilB6bYw9atW+U205y3bIQ+9e3bt7fatWsnaXs49bS6GTlyZND133rrLel7jzIw7bVGjBghA2FaPWUaJk2W/RHNYFAH5O6RiTWvijfAhnFuox7/9ddfu/reO3fuFLvIRDhllE5R2+EeajuURFGuXDnJ5qbrBN1W0oVcmd66IrDdQ7LBgBPtpC49EURy1oO1s+M1tOnKhIh8IOrQ5yTUcUeKWqD4nb8zH8zRV9IHZpQRfyJV3kB0ivumj20kiFyjOxJOP4E+4X/++WeOJVNT7EEH5O6RiTWvijcg04OMj0SkyxrbQSlaYGvXcGiJjnuo7VASrbmRbqn2GevMM8j87rvv5P9U1cubwR9RoHPOOcfR+jjZbjnrQJ20eV8vOO+JdOQN6tBH1kPYv3//Uc4854xJH9TIfHrD70g6aGAaKPdNVDoS2BomdfwnBAKhLhjdBbMUL17cSgdiqXkFdebdAfuzadMm+b9atWqp3hwlA0nUgDxe2+HU/irB4bqG3gao7VASQU115r0Djjwn/YknnpjSKGOJEiUkSkYNd6AAXjBH3Tjl0UTWA513UqsDhfSM2F6mO/IGdej/RzDhRe4jdMexGWyQQlRD225lN9iZCRMmWFOmTAmryP34449bu3fv9i1btmyxMlXJHnRA7g6oegPXZ8QWFSVdBuSxKNmDTgS6A/uPjDGyIjTooCTadthhWrF7idyZnmJPrWigyFcyQaADqL1AUIqe7nPmzJHH6tatK7f+beiAW39HP/C+IVzLOi/3k0+0I29QUbz/YY47c6wQQeV4MMemgckv48yn8pzJBphge+CBB6ymTZsmRPyLFFCUfs0EjYH7kQahL774ojjz7733nlWpUqWw6+bNm1eWdCPeNHtKp7jI63kSG5s3b5Zb7L/uQyVRNpbSIo41JvTduv7HG5lnIv2ff/6JKkVfOdp2kAWm+1BJBFWrVpUgBr4KgsFoCHmdXNngzKcSLiCIpFC/Cjjdzz77rCxcbGgd5SQFPrC1WGDkPZwjb0hU3b4XHXmDRuj/h382hzkWA9tBGaeMdHslsTDBxLnLgOSpp57yaRW4BQqspCD6i9cZMbvLL7885OuwIz179rTmzp1rXXTRRVamEuuAnN8L53Pv3r2+khQlPmdeURJBwYIFRQjP7eh8rLaD9bnGYofRrFFiQ22Hkmjy5Mnj88mWLFlipQMZ78ynsl4eGPgxqMaBCqYsjoMeWCcf6LwHOu6s78R591o/+WQ78gZ16HPCsVi6dOmj0luNM0+E3kTplcRACjupXERpnn/+eatUqVJWkyZNfO003YC2dPSOHz16tCg633fffeKEom4P2BPS5P0zOJhYQO2e85N0UhbauGUasabZM1tvdAE2bNiQkG3LBnRAriQDI4JnJrBTmWZPlkCZMmXkf7UdsaO2Q0lX25FIMtaZN+1IzjvvvFRvis+ZDxUZpyXdG2+8EdJ5D3TcY2lhl+p+8qly5A3q0P8Lx2Iw4Rj/dGmNzicW0utx3GkRSPs49v3kyZOtq666SlLbX3/9dV8f9Fhp1qyZpMw//fTTEqHi2CfibhxYokP+9Zuvvvqq6Hs0btxYUkLNwntkGrGm2UPZsmXlVgfksaMDciUZmFKyL774IuWReVDbET9qO5R0tR2JJGMLTkwdKilNqQbHqXfv3mGFfu666y5XPxPnvVGjRkfV42ejI2/QGvr/nQ8Yp+7du0d05unTqyQWzgn6vzNh9+abb1pDhw611qxZI/3eu3XrZrVt21b+d9oNI5COHTvKEozFixcHHSRlA/EOyN9//31ftxQlenRAriRzQM5EplsaF24482o7Ykdth5JM27F69eq00LjI2Mi8cdS8EIU1tclcTIKl1MdC4PsEtqzzSj95rzjyhmyP0DOI2LNnz1H18oCxIhUQSMdWkgeq3g8++KC03Jk/f77VoEEDUYcfOHCgZBfVq1cvR/27EjvY4VjT7EGja/GjA3IlGTDuQAiUcYhb1/tY0+zBTMqq7YgdtR1KMihbtqyVP39+68CBA57QG8taZ97UNXqhVRItwGj1RXozzna8onzBWth5xXn3siNvyGaHPpT4HRC1MDV9pkxFSS5MojDhYgZ7JppEevx1111n3XjjjeLkK7GDBgB9zmN15nVAHh/sexPd9NJ1Qck80Lgw4y030mWJ0BnhS50ITD5o+RjxQLUdSiLJlSuXVblyZfkfX8HrZKwz76XIPINxHGwUVamJN+J8TgkWdQevOe/p4Mhnu0PPMYjDHqqPvDFeq1atSvKWZTfM/BKZp28uafHYCOrnp06dav3xxx/WsGHD5DyireUjjzyS6s1Na4wjyax7gQIF4kqVTZcetF7tMV+oUKFUb46SRan28YIjbyZYaf8Zq+3YuHGjiszG2WO+WLFiqd4cJcO5MI3q5jM+Mu8VR400WQSvnFxQ/J33ESNG+BT5veq4p5sjn60OPYOQmTNnWvXr1w+5jnHmqRNSEv97TJs2TSLupNIPHjxYBip33nmn7H/6vN90003idKKpwWOo3s+YMSPVm57WxFPzCnSCACZZfvvtN1e3LRvQHvNKMjHt6dwYkBvbQbvhWGpoGZfS9gqhUS9kjaYb2mNeSYXt+DINIvO5Mz0y7xWDSXosEbdQvYlx2jHy/mJ19KT3V7J/9NFHpX2Um5Ap4KZIXro48tkoike0nfOBeuxQoKRu1lUSB+cxwnekDOLUMzhB6A5l+8KFCwd9DU497ezoeqGkpuYVEIYkg2Lr1q2SLhsqy0UJjta8KukamY9HawOo32cyEG0UbIeeA7Fl9eh+U5IdmbddEtBMFFkRmfdCKmTJkiUl6kktMk65P0RKK1So4BO1Y7BOq7rAlnTcx/l2i8AWeNzPJkc+2yL006dPl9TWK6+8MmJknuOU6IGSGOjvzsCkevXq1sSJEyXtkvMvlCNvwE6E+/2UxEfmQevm43fmuSYqSqIx1zSOu99//z3ltkPr5mNHbYeSKgHNrVu3Wl4mY515Iqy02qJXMw6mFyAiOnv2bGlTxzaZdOdZs2aJM01k3DjXoVrVxauqyGRAIiYL0tWRzyaHHme+bt26kgESTqzxpJNOknRvFcFLHJzjiBEuWbJE+rpzwXBCly5drEWLFiV8+zIZNwfk2mIqejQyryQTWgKbYy3ejDNjO2LN6gG1HbGjtkNJZwHNRJKxzjyOfPPmzeX/AQMGWF6A+ldmhj/66COfE++PSfUOB+nwbkTi3ZwsSHdHPhscemYVcR45BsNBGpFJtf/qq6+StHXZBz3lTQqXkl5p9qDRtdjRAbmSrnXz8abZg2b1xI7aDiXZVEmTuvmMdebhoYcekttJkyZ5ona+WrVqMoBEwApV6lic8Wjr2sNF4t2YLMgURz6dHXrzG5usisD7gPAd0V8i85EwzryK4CUOfgvTJMiMAABWM0lEQVSE7iJBDb0K/biLpsqmFh2QK+laN6+2I7Wo7VCSzYVpomifK9NnVGrXri0tQIYMGeKJvoWk2qNgHU0dP+n4/i3p3IzExzNZkGmOfDo69IG6B/wWwXQQSLG/4oorJOUwEurMJx7Of6c2wAuaH5mEmzXzmiobHdpjXknnyLybafbff/+9deTIkbi2J5tgX6kAnpJsqmhk3ht07txZbunTvHfv3lRvjtWoUSOZkaXFlFMC0/EjQUT2mWeecRSJR0U/sH99Njvy6eTQ8zsH/sb0J/eH58kCWbBggRx7TqhYsaLcqjOfetD8OO6441K9GRmFG2n2ZcqUkVta02l7OueYwXjBggUdTSwqipvRNa6PBw4cSGmaPbo02PSDBw96dmzh5R7zZLXRTURRkunMb9q0SdrRepWMd+aJajPwolbdCy2d6CmNON+yZcuOUrUPh9NadhOpffbZZx2tS6pvtP3rM92RTxeH3ukxMXr0aKmFb9mypaP1UUw3F8+dO3fGtY1K7HDhWLp0qXXGGWekelMyBrIc3IjM0ybQ/C5E2BRnaI95JRUw5qKFJFma8UTY3LAdlE2ZYI6m2jtHe8wrqRbQXLFiheVVMt6ZZxbvwQcflP/79++f8rQmUys7fvx466mnnrJ69Ojh6HXh2oRFUxcfayQ+2xz5dHDonbaOW758uXXrrbc67odN1IxeuKAieO7BPjWL0fLwf8x/IXrDsccx50TnQHHGX3/9Jane8Q7IQVWpo0drXpVUwMRRjRo15H86iMTCP//8Y+3atSvurB5Q2xE9ajuUVFEjTtuRDDLemYd27dpJf+3169eL+FyqueOOOyTlH4fe6UCdmvdgfeCjqYuPNRKfrY68lx16fksnOghkgvz4448ipBYN/MbwzTffxLyNytGDEbMwuMSx9H/Mf+E4Q2ODSZjnn38+1ZueMZg02QIFCkh0PR5UlTp6dECupIpatWrJ7QcffBDT68lSI7MHu1ykSJG4tkVtR/So7VDS1XYkg6xw5ok0dujQQf5nYJxqQSmibqT/Dx48WJzEwHR7nnviiSeOel1gH/hgNdPBIPofayQ+2x15Lzr0oX53U+tuYNKGSSw6FCAEGQ2mTltTYd2DmiuWjRs3ig2iv7x5LHChlSDO/sSJE61ChQqletMzBjfSZA0aXYseHZArqeLKK6+UW0qXSLeP1XbgyJNhGQ9qO6JHbYeSatvx8ccfx6W5kUiywpmHTp06Wccff7z0cn///fdTvTmS+o/AGDM9/fr1k4MEJ94I3oWKxpk6aRy6UaNGOYrgIoYXSyTekO2OvNcc+p49ewZ93KTEm+4HvXr1sqZMmSLHWrROuUlFzpcvnwtbrEDJkiVl4Rxq06aNdcMNN/geC1yox9a6QG878+XLl5dbLUVxDllCZkJbUZItZEVgZ/fu3TGJu6rtSC1qO5RUce6558p5j2jlZ599ZnmRXNnkiJlUYy+krV5zzTXW+eefbw0YMCAq1XoOKpNa//rrrwddh6h+PHXx/qgj7y2HnkmcSMeJeZ52jKQT4zjGoqIO6swnBibiKLdR0k/J3nDxxRfL7Zo1a3znixKeLVu2+ESsFCWZMDlas2ZN+f/DDz9Mqe2oVq2a3JKlxRhLiYzaDiVVHHPMMb7ovFdT7bPGmYcuXbqIQScyj4Oa6oODiCk950m1cqJMTsSVgWOk1HomK1jPROONQJ5/ir4T1JH3nkPvVMF+1apV1vDhw0UjAYc+Wkxk/oQTToj6tYriVdyMrtEeiQwKUnbj7V+dDSAgtm3bNvlfB+RKKohnQO6m7UAhm8AMeDXS5yUoS1NnXvFC3fyHMUwEJoOsyuMkPYc6YqJiffr0EUc6lSBaR8r0008/LWUAoahevbq0siPi6rTnPA7/LbfcYr377rs5nH/q80nrj4Q68s4ceso2TOubZGAGAJGYOXOmOOSdO3eO6XM0zd5diMIzgcdEG4PBaKLyvI5OFYp7fc7dGBDyu2ADuI5gB4zirRIcWl3STYYJdTccIkWJZ0COgxhN+ZmbtgOwHUzOYzsouVJCQ2kEGjKgzrySStuxbNky69ChQz5dKc9gZxnffPONfcwxx6CAZ69duzbVm2MPHz5ctmXlypV2/fr15X+3lh49egR9/OOPPw67Tbt27bJnzpxpb9q0yfYSf//9tz116lS59Qo7duywZ8yYYW/ZsiVpn/noo49G/O3z5s1rd+3aNebPKFOmjLzP0qVLXd32bAWbkytXLnv9+vW++04XXpcu7N69W44bbr3IlVdeKds3btw4V96vd+/e8n633XabK++XySxbtkz2VcmSJVO9KUqWcvDgQTtfvnxyHK5Zsyaq19arV09e9/rrr7uyLQMHDpT3Y9ynhGf16tWyrwoXLpzqTVGylMOHD8vxx3G4fPlyz42nsioyD+XKlZN2cLNnz5boJXXrqaRt27bWSy+9ZD3++OPWc8895zjy7jTVOhjMBocSxNOIvPcj9GRWkHXB70iv+WAt6vLkyWN169YtZqEZFNVNKrESP0askrRs//tKcjHHdalSpVx5P859MOe/EhqTJpusLCZFCXZdJNNx4cKFkmpvWrCm2nZEmyWQbZhyRo3KK6kiV65cUqYzdepUyexBt8xLZJ0zD9dee60484sXLz6qLVyyIeWwd+/e0k8aYTvKAKhvj0SDBg2sGTNmhF2Hgy6aVG115NPHoWcyxkzI4NT7l1JgdBBBLFy4cEzv/dprr0k67FVXXaXHgUsEihDGIkqo/AvHJ237GJwzseUEJr7MoNCtAflFF13kE7LatWtX3P2nMxmteVW8ki6LM//WW29Z999/v6PX4Gyb1mhu2Y7KlStLqi7960nh12ttaHQiUPECV/6/M89EYKp9x6wWwDOYnttLliwRUZ5U06hRI3EGiaSicu+EUI581apVw76OCYNgUXl15NNXFM+0NqSDwfXXXy/1qIgrxgI9NBHOgw4dOri8pYriDqNHj7aaN28uWiO0i3E6IGRQjg4E56sbFCpUSLK9QIWswqPOvOIFzPiH2ldThx2JX375RXRkiJ67dfzSKhmHHjSzJzxqOxQv1c0vXbpUhG+9RFY685UqVRI1UQz5559/nurNkQsELeQYDG7dujXkehUrVoz4XqG+zz333BOyVZ068unv0DNA4bieP3++1aNHj5hV6N955x2JMDIDftNNN7m+nYqzdE5E1TiOlODgyHOMMsgL1aIzVJosNs7NlFZNtXeGDsgVL+AfMPFvDRwO/7KzvHnzurYtajucobZD8QKVK1eWlrS33Xab44nAZJErm2sfgFR7L1CnTh2Jqr755pvWI488EnSdr776Kub3b9eunUbkM9ihJ+JI1kXZsmXj6l9Ob3q49957pQRESQzTp0+X9PDAQdwLL7wgZTA8Ry9i7UUfOqr11FNPyf+UKTm5sLpd82rQAbkztO5V8cr4b9y4cT57+/vvv0d8jdqO1KLOvOIFjj32WDlXCSCcdNJJlpfISmfeP9XeK868ubBQe5k/f36JrjrFpHlmemr9ihUrctx6lVQ49AxO5s2bJ8dQrC0z3n//feuTTz6ROuT27du7vo3Kv1ASMXfuXOu8887zPfbNN99IqQ0TM8wAk11BOnkkbYxshQnKMmXKSArswIEDI65val7dtnWBQlZKcLTuVfEKzZo1k0xHWp5xzYyE2/XygbZj5cqVnij59CrqzCtKeLLemfdK3Txwcenevbv0oo7morF+/fqgjzMhkCmp9UxIXH311fI/t9zPBIce5xnBQ27j6d/8wAMPSOrxzTffHNN7bNu2zWrRooXPSXKrplgJzhdffCEOe8GCBX2PIcgEQ4cOlXIZym6YCR42bFgKt9S7MGlFBxBAADJShC1R0TUjZEV5ihn0K0eLD/7888/yvw7IFS9E53v16uVLtTfHppMSHTchEMM1YN++fda6detcfe9MgQlSzepRlPBkrTNPfTGRL9IzvTQAQ4UcB5t2dca5igWc3WeeeSYjIvI4uv5q7cD9eBxgLzj0/Ea0t7j99tvlNpYJCi506CEQTR80aFDMA+0mTZpYO3bskPPi5Zdfjul9FOfg+AW2/SNLCHE22lVC+fLlrZo1a1pr165N0VZ6H2rXKlSoIBG2/v37p2RATg1tlSpV5P/ly5e7+t6ZApOF2CrsVNGiRVO9OYoiHYEYH+FIR4rOJ2oikEkFanBBbUdwfvvtNxEfBG2VqyjByVpnHiNqBhU4t16BwQ51819//bVVunRp6YkaDfXr1w8ZjU9HR960Xovm8XRw6N2aoBg7dqykYdNO7pRTTolpG7t27SrKvtQATZ48OWbxPCW6rgFE3Q0ooxKNZ3CJDTAUK1YsYtQomzFtGIGShHBp7olKlQXaOJpz2Gsqt15Lsec3U5RUgwjmk08+6buOhsvQTKTtQC8JmERnYl0JbjsYr6OVoijK0WT1VdU4P0TJvARRHi4yffr0se6+++6oXjtr1qyQz6WjIw8IgkXzeDo49KEmIubMmeM47Z5oFy3oyOBo2LBhzLX2pt6Yz0VAT0nOMfHdd9/57nNeEn2oUaNGjvV4DA0NJTSUlhQoUEB6NTMpFQz2o5kUScSAvEuXLtKmbtWqVdaIESOsdIdjE10Ht5wLTZNVvAiiw0WKFBHdDXrPB4PJOWwLJGLcxDWcdrKMCZxof3gdshgISJloerxovbyiRCarnXmMuNci8waiTdTQv/jii9bDDz8c1WuDOYrp6sgD0UojFOP/WLASgnRx6ENNRDz77LOO0u5Nej0pvrEOAN577z3rrrvukv/RaiDtUEkOZNzg+E2YMEFSxNHJIFLk3zYJyNAhOq+EhkwS1P/9dQcCMYNx6lNpS5qIa4mp3+dccqKQ7UUo6WBykBKPNm3a+OqK40UH5IoXQesCMbxwtgNNmkOHDkl3l0SIN5544okSuAFsCOVu6QjjTkrEzjnnHNHdwQ66gdoORYlMVjvzXo3Mm4sMs5soXJOWGE20J9BRTGdHHohSB7Zu4TGv18yHc+ip/Xr00UfDrk/KLroHwb4nx8PMmTOlRUYs6fU4kfXq1ZPZc26ZRFCSBxM1DA5btmxpFS5cWDIyqlat6muZaQYxnP+mplIJjdEXmThxogy8w9W8utlj3h/aOZ5//vlib8moQpQScTwm3dJB5Z7WpxyD48ePt44cOSKPjRo1ypWyAVWyV7xuO6ZMmSL186FsR4kSJXKURrkJE2cXXXSRtWfPHukk06lTJ8nQZGLfnItez+S58MILpdTJ2Au3MnvUmVeUyKgz79HIPDAQpPad6DzCWJGcv2Bt6NLdkU/3mvlwDj2DfX4bLnqhWhHiZAdG6T/66COrQ4cO4jDEol5PJB/le5yepk2bWu+++27CBilKcHCaZs+ebdWqVUva0xHRYHLGHxxTdAxMFwclNOwjzi3s3fz585MmYBU4AYsyNkyaNMkaPHiwtXr1aulG8M4771heZ9q0aTL4ZlCOGBdlA2QRLVq0KO731gG54lUuv/xysQuIIQdrA5oo4Ux/CNiYDDu2ATtC5halb0yoeR2uZUyEMJlJqdMZZ5whtpjH40Vth6JEJqudeS+n2RtIsW/durV15513Wo0bNw7bf55orb/wXSY48l6pmXejhVyoCD2/b926dcO+xojj/fjjj5JSzIRNtOr1RAcff/xx66GHHpL7HTt2lCgcqfpKahzQ999/31qzZo01cuRIqZv055FHHpF0bSZelPCQ5YCyfah02UT1mA+EMonOnTtLidT999/v60xApO3PP/+0vN4uEcgWYQLRHHdkiMWLDsgVr0KmjonOh7MdiZwINJMKaCUxXiObhwUI4ngxezSY7SA4wPdgTOOW7VC9DUVxgJ3FDBo0iNxH+9Zbb7W9zP79++1LL73ULlasmD1z5kzZ5mDLPffcY3/88cfyml27dsm6mzZtsjOBSy65xM6XL589depUuWV/JItHH300x37mvhvs2LHDnjFjhr1ly5agnxO4DB8+3L7wwgvtEiVKyGujPYbatGnje6/evXvbR44cceV7KIph9+7dcnxxm2w++eQT+ewTTjjB3rNnT47nGjduLM/1798/qdvEeXfOOefIZz/44IO2lylVqpRs58KFC3PsT+ztH3/8Edd7n3rqqfJeX3zxhUtbqyjusW7dOjk+c+fOLWMnf9q2bSvP9erVK6nb9Pfff9uVKlWSz27Xrp3tZcx2Tps2Te6vXbvWtz+jHasEUrp0aXmvJUuWuLS1ipJ546msduYnTZokO+riiy+2vc62bdvEmceJbdGiRVinr2fPnhnlyDNBYQaVxpnnvpm4SMZnBy5ufXagQ8/79ujRI+hnXn311eKofPnll1F9xo8//ijHOO+RK1cue8SIEa5su6J4yZlncqps2bLy+ePGjcvxXLVq1eRx7EeyWbBgge/cW7lype1FfvvtN5+d+fXXX33787zzzvNNJMbKgQMHfO8d6CgpildgopxjdNiwYTker1Wrljw+duzYpG/TsmXLfOeOV51ZJiyPPfZY2UbGGv4BGB575ZVXYn7vw4cP23ny5JH3yZTxrKIkYjyV1Wn2FSpU8Cn4er03MDVIU6dOlToq6ptJhQwG9bdlypQRhed0Tq33Ss18oj87UOWe9HlE7wL1Ea644gppnUN9PVoKTlm8eLFVrVo167PPPhOhtblz50rJhpJ6KJm47777RP2X85XzOthCCrniLF2WUiSYPn16SlJlQ6XeUwKAkFXPnj0tL4L9gZIlS4qdMPvTlAnEky5r0mTpEW3eW1G8hhdtBynrCOKBV0VqKRNj/IwGlb/ApRu2Y+fOnaLjgS2iJFFRlOBktTNPT20GGAh3bNy40fI6qFq/8cYbUrtdqVIlqYc3dVXGkX/qqadEMMUMoLxYMx7tZ6SyZj7UZ3z//feu7Ytgfej79evnE8dDB2HJkiXi5N96662O3pOsm1deeUUcCS6IKOOuWLHCuvbaa13ZZiU+UKlHaAxxNI6lAwcOyG8WbEkHNWOvcNNNN8ktwktGSRmFaKOLkqoJTjM5hzgfv7VXa145Jv1p1aqViHMhuhnrNdK/Xj5RnQQUxS3bQcvWvXv3yv+IxJrjNxXOvL/tYGLei7ob/rbD//xmAjNPnjwSgKJTRiyYfX/66aeLwKiiKMHJameeqJeJzsdqbJINQi30oEfdHKVk+nkGOvILFixw1dHlsxBEctL/PBGfQbQ6MFIdqNqfKIJ9diiVebcdej4bUbSnn37aatKkify+TmAAwqw44onMmDMgZzCeqsGIcjSmF/l1110nkzb0msdpD7UozuAc4lxi0Pvhhx/mUKMmKkxP51TAZFqxYsVk4viDDz6wvDogp8uCP2xz9erVfc5ELKj4nZIOIDzHNZLJNsZQ5tjF/iISGyhQmsygE+O5f/75x7dd6WA7Tj75ZF8nllg7YqjtUBRnZLUzD6gOA45xutCrVy9RSiYqT7o3qZv+jrxxdENFuqOJsrMOSurBlNXdIpbPSGbfZhMlD9ZJwM19EejQM+hv2LChRNf5vYiQRYKBCI4/EX0mq2hxw/+kcSvegd+WvsW0A+M3L1iwYKo3KSPgmG/QoEGOdFnTFo62SamCiFX9+vXl/8AWhF6OzEPNmjXllgnBWPjhhx/kluNdUbwK56hp9RpoOwiWOLn+Joobb7zRs7bj888/l1u1HYqSOrLemW/UqFHaOfNcdGhLdscdd0gEljRS0pBoB4LTSVp2YKSb21ii7MmoV4/0GcmYUIgEkyNoESR6XxiHnpZx9erVs2rUqGFNnjzZUfs4UgNxZHAQWR+NhQcffFBTWz0IEVp+Z9IQlcSkyzIgp8Skf//+cp9MlVRinPlZs2YldTIyEvv375eyj1ADcmxQPANyYx+T2UpUUeKxHTjNZE4xkQ+0m/SC7aB8yEuZWmT+mbFzONuxdOnSmGye2g5FcUbWO/NXXXWVRHPSyZkHZomff/55q1atWtaLL75obd26VZx5E5EPdH6J7NLLPFqn2NSdBhJoXOOpqY9UE59KAbxg2+N0H8XK119/LfXxpPwNGTJEdB0i8ccff0jKNvV++fPnt+bMmeObzVe8R+nSpX11mYq7kMnCOUNUh0nLv/76S0QgyXJJJaScMslG2j/nuFegxIxBedGiRSWtPhCTZr9+/XqZHIkWHZAr6QKR5EKFCslxTkkjDn358uVDCg4nc7soEfrll19E+8YrYBOYDGTMgZBrMJ0nBFy3bdvmi7JHg9oORXFG1jvzGCGi24hQEeFOFxB0QqF8+PDhsv0MWhHHC+fkomQeDBw/HHEjrmcccqL2d91111HrB9arx1tTz3sRpQx8zHxGKgXwnNTPs4+cfGcnEx6USTDpwgCa6AC/ZSQxQwYcTEotW7ZMBiI49HXq1HH4rZRUwMQbNd2xOEdKeCgpMUKPxuZRmpTqDJUCBQpYtWvX9kXnvZgmG2wfoTVAmjFgY6KBaBwDftABueJ1EFkjI87fdjz33HMS8EklZHAxWe8122HKc+iwE6wMAVtsauljyexRZ15RHJKUZnlp0MP9+OOPt/v27WunA/Tq9e8jTy/O++67T/oRvvTSS/by5cvD9qF3stxwww1BHw/sUe5GH3Yn70HPUv8+85deeqmdKtgH0X7nRx99NMe63A9k8uTJdt68ee169epJ79ZgfegDOXjwoF2nTh15z1NPPdVetWqVi99USRSHDh2yr732Wul//tVXX9mZQir7zIc6R2vUqCE9073AwIEDZZuuvPJK2yvcfffdsk3dunULuc5dd90l63Tt2jWq9965c6fvd9i3b58LW6soieXtt9/2HbOVK1eW8ZUXGDVqlGxT1apVba/w8MMPyzZ17Ngx5DqdO3eWdRijRsPevXt9vwNjXkXJNnZrn/noe7h37NjR6t27t6QxeT0iT108yqumzRIzoqRjEx1+5JFHrBEjRkiKWDyEiuIH1vi6kQLvpGb+008/zfEcjyWzZt6fUHXOZDgEI1LNP9ErRAxpO4cAz5QpU3yp9cFU7g28DiFElGKJ+tH2ipaFivchykJ6IlFRlM5JuydqS4ZF4GIUgRXnUGJiosxeiMoH1r4SpSKjxuvid/HWzRsbjoBVvnz54tpORUkG119/ve8az3U5lcJ3/pCxhx3jmkHaeqbbjg0bNvgyg+hhryhKaHKHeS6roP3XuHHjRLH81VdftdLFkTdg5BG+Q7G5ffv2UquEc4h4WiiuvPJKX/smpwSmOzmtqY/mPQMfD+fsJ6M9ndPtpV0dDpoRzcFZZxsp4QgGz9EakfaCqOYycKBlWaDjYRx6M6Fx1llnye0LL7wgpREMNt5++21JdVPSA/82Xwgabd68WZZgeMURTSdoI/XWW29JvbxJbfcCTNqQsk7NPCU1TZs2Ten20O7KtGV1MiCnXpeOGU50PEDTZJV046STThIBWhxmL+nOYNMY1zEOINiCAHIqIZhAkMGp7cDO0IKV/esEtR2K4hx15v8fWkNRf44aOFF6HOZ0ceT9oW4d44dK/48//miNHj3a2rhxoziagUTryJuokoFMgMCIs3k8Gif73XffDfseXqmZD6ydD/bdeeyWW26R7xTseX8QtEHY5rvvvpP1TWeFYAQ69NyaOn3az5k6PyU9iLXvbrSQscOkz88//yyTPXTBCNSnMKxdu1YmNVeuXCliRa+88orVqVMnK11p3ry55UXItsCZ5xxOtTPPBBLOOVHzUN06TK9rbBCZaxwfZoAeCR2QK+kI13Cv2g7sBkuqnfkdO3ZIdhGTzeHaftJpiUlMxqGMYcl8cILaDkWJgqQk/qcRbdu2lXpxL9fIO+Gnn36yL7roIqkvnzhx4lE129Es1I0F1nuHqnMPrKmPhNOaey/VzBt69OgRdNtDPe6/tGzZ0i5atKh99tln26tXr3b8mdTQDxkyRDQeeJ8HHnggod9RSV8mTJhg58mTxx45cqS9du1au3379nahQoXkGArGp59+anfp0sUeP368ffrpp9uvvPJK2tbMexlTz3/VVVelelPs+fPny7acd955Eddt1KiRrNuvXz/H73/rrbfKa/r37x/nliqKYur5GQ+lmmXLlsm2FC9ePOK6rVu3lnWfeuopx+/fpk0beU2vXr3i3FJFSU+0Zj4O6ElMOlComnGvRuQDOfPMMyXyTrSX6A8qrfT6HDNmjJQSRMOqVaty3CfiTEp/MKLtm+2k5t7tmvl42ugF1rAFI5T6PPudTAki6hMnTpTZbDoSVKxY0fFnEs0fPHiwRNOuuOIK6+WXX455+5XMhmODkhvKODjWXnvtNVEXHjlyZND1SeEkin/bbbdJCzUlMZiUVGpfU91vnjZ5QOQsErHUvmp0TVHctx20UqZEJt1sB2NQp6jtUBTnqDMfAPU8pNszCJ43b15aOvIGUifHjh0rjnefPn2shx56SC4GoZxQJ6n1hqlTpwZ9PFrD6ySFPl6RPX/nPdo2euEc/1Ct6kyLwEDodT1hwgSpqaedHTWzRYoUsaKB7SVFl9dxjJI+raQvOHOzZ8+2nnzySeuee+7J4WjTto5jnB7g0YKWBenQ9Fw3oK3A/eXLl7u2/QcPHrT+/PPPHIsSHuw5vZf/+OOPmHovuwmpr1CqVCnHA3La0zmZhEALghIi0AG5osQPpTCUhDKZ/80336Sd7WAcdejQIUfvb8Z3wfrXK4qSE3Xmg4CzS5/iG264wWrcuLG1ZcuWtHPkDdQz4QDyXoiz4VAuXLjQatmypaPXR+NIRFsr76THfLw184HOezhV+Uiv9Xf8jZPvVFWWY4re4mQ50D9+6NChki0RDfSXHThwoPxPhJ/as2Aq90p6wLGAGBo6Hc8//7x0ofCPXDDZw/M4+9Gya9cuOXcRTfKH+25OADFJyASoWYoXL+7ae2cqZD0gfOmvBp3q6JqTATn9ohG+49hyMpGKXcLpwM6VLFnSle1VlGyGCVm6n6Sb7SAzrFChQta+ffuOyvQMNf5lMXodiqKER535MMJRDEBQgy9fvrxEU0Mpt3vVkQ9MoSVS9/DDD1tPPfWUtX79ekdKrU7LDXBEQqXeh8NJCr0Thz/Ue0cSoYNgA9Nw7eRwyo2TT+ZDKEirp2yjevXq0rauYcOG1po1a0JmO4Rj+/btki4NZFggeBeubZ3ibfi9iJJz7DHRw7EVGO3keMERmjZtmuVVHn/8cVEoNksqJj7TOV02nQbklFBxHXGaam/sKtFEMhEURclO28EkBOMgp7bDZPRQLkrbXUVRwqPOfJgUdWrnqUtmNrFbt27Sw5uodro58gaiKkTSSLPdu3ev9CW/7777fEY2HqKtlU9GzbzTNPxgkzShXvvII4+EdeD9ITKKQ89Fb8aMGdabb75pnXzyyVYsdO7cWdKuOQb9J03UoU9PiMRzrjPZQ6ZGly5djlqH+nYU6NFViBbKMI499lhRHPaH+6gLuxllRsfBf1HSb0DupO412rp5rXlVlMy3HU6ceVDboSiJQ535MFCb9MEHH4hoHE4T0WyiaUTSevfuLdFWN1NWE+nI+4Pzh/gSDuLrr78ujj0tT+LBqdENrEFPZM28022ifj2wdj7Ua52KP5HV0atXL+vmm2+Wll/x9KulRh7BPJNeH9jjWR369IOMFzJ+HnzwwbDrYQfIyohlcs2U1PjXMHP/8ssvj2mblcSI4KWKPXv2SMp8LANyJ0JWOiBXlMQ686kS0ER8z2RhxTIRGGm71XYoSnSoM++g5py0ahz5Bx54QNKFGIgjWEWq8xlnnCEL/3fv3t2aNGmS9f3330dtZJPlyBtwCInw8plMWrz//vtSExlLlN70GI2kEB+sBp1UefZv4Hpu1MyHEqgLRmDtfLDtcgLHAuTPn19q3HG+Y43GG8im4Hgi7drUywWiDn16gdaCky4G2J9YReUoqUHMk2OQCSGycJi4M+UanIekyftnqHD8sPD/1q1b5f8NGzbE9PlKaMi44LflOKB3eyoja4ULF3acUWGuDwy2yRQKhw7IFcV9GG8xWUtZkzmHkw2OPJmHZGY5zfSiRIdyG2xeJOFPtR2KEiVJaZaXQdCv+cUXX7RbtGghvXlz5coVtI94wYIF7QoVKtjXXnut9Mt8/PHH7YEDB9qTJk2S/pz0jD9w4EDMfeTd5MiRI/aMGTNke9n22rVr23379rVbtWoVU196+tA77Scf+BncD0asfeZDfW6w5c4777THjBnj63HP/05ex/6qU6eOfeyxx0rPVfp6//PPP7YbbNiwQd6Xz/nss88irk8PcX7LLVu2uPL5SmIoXLiwHDP+HHPMMXa7du2OOu7POOOMmD9n0KBBdokSJaTfPO9ljm2oVauW2CYD9ifY8c16TtE+884599xzZV/NnTs3JZ+PLeXzq1WrFtXrzj//fHkdrw9HmTJlZL3FixfHuaWKovjDOcu5xXgyFbz33nvy+eXKlYvqdVyDeN3YsWPDrle5cmVZj7GMomQru6MYT6kzHyd79+61ly9fbg8dOtRu3769GFkGzk4dyOrVq9uvvPJKyhx5f3BAR48eLYN/Jinuuusue/r06XaPHj2iduhxGlh4rVmieW0wh9zfmQ+2XjCcOuTBJiScTARccMEFsj04Z0zy7N+/39XfhN+Az7nhhhscv0Ydeu+Dg3ziiSfaO3fuDOnMb9682c6bN69944032umCOvPOadasmeyrPn36pOTzue7w+U2aNInqdVzneF3Xrl1DrnPw4EHfRPe2bdtc2FpFUQLHBd27d0/J5w8fPjzqcQl07txZXnfvvfeGXOfw4cP2CSecIOutX7/eha1VlPQkmvGUptnHCSJVpIyTwjps2DBrxYoV1l9//SV10rSWIsWVNGlS9GlzR5oiafRGMI6evdSuI5RGWmsqQTCL1FtSnF566SVrypQpss2kcvF4NPTs2VP2y7PPPutbnBJYCx9Pn/lY07SMkn1gmj4lAJRSXHfddfLbs29IZ6bnKuJ4gfXs8fDjjz/K8QOUdThFU+69T6tWraRmGb0GBDYDIc39/vvvl568rKtkHqmum49WwCoaISvKOtBoQInaTcFFRVEy23bw3lwTGY9G+/6Kkq1ov5gEQDsp6ppMLXkwEB6aPn261FW/++67IrKHk4jz2LVrV3EUUwV1UJ06dbLuuOMOEcgbPHiwOJbUeaLujxONEn44+F6RQB+ASY9A0Bygft3UzYdyyL/55hvrmWeekf8RJTTr81q2kdexb2OF96Al4S233CKfRY3ae++9J44+daa0iGOSxtTJuw0TKjhzderU8V0Eo3XoTReAs846KyHbqMQGdetvvfWW2ACE8G644QZ5nB68iOLxOOccgpvNmjVL9eYqGahKzQRkPANyJq7pIx9sAtMIdtauXVu0ARRFyRzbEa8zT4veP/74Q3rPh7IdNWvWlLG0oigOSEqugJKDwBr5Tz/91K5Ro4YvdfvMM8+U9HavcOjQIfudd96xa9asKdtXtGhRu2XLlna/fv0kFZ2UdP/U8/r16ztOZzf1l6FS3UPVzIdaP3Bb4ln4bj/99JPds2dP++yzz5bH0BUgxWzfvn0J3ee///67nT9/fvnMefPmxfw+mnLvXfbs2SPaG6Qjk2IfuDRu3FjWSSc0zd45v/zyi8/WpGJ/USIUS80+GiunnnqqvHbp0qVB02Qp1eL5t99+28UtVhQF/vrrL18Zy/bt25P++ZdddlnMNfulS5eW186ZMyeobUGLiudHjBjh0tYqSnoSzXjqGP44cfoVdwilWs/P8M4770hkHqVPouNErcuUKWN5CWZUR4wYIcr1v/32m0R/b7rpJvkuqJuWK1dO1iPF3g3YV+b98uXLZ40fP95q3ry5tX//fiuRXH311fKb0JqQkgiio+3bt5e2XsmINL3wwgtyLFSoUMFavXp1XJ+JWjYRepTwNULvPcj6mD17tkRKSU0uXry4ZJqE6lzgZVDeP+mkkySLRXvOR4bfmlKYDz/8ULKekgW2jRR40lnJQDrnnHOiej3ZSpRhkbkUWIrEd6lVq5b8/rRuxW4riuIuZH5SzsK1g+tFMjnttNNkXLFy5UrpghQNlGwyfqR0kHJMfygboKUq2T7YDq4lipKt/BnFeEpr5pNIuPZzOGtNmzaVgT1p1QcPHpRUd6+Bc9m/f3+p7x83bpxVokQJaXFHXe/TTz8tqcMcgNSPuwEDTSe18W5Av9QzzzxT/l+yZIk48UOGDJE+36NGjRK9g2Q48qTWDxo0SP5HTyHez9Qaem9Dmj26C5SzDB06VNrFpaMjr6RPuixt5XDksS3Y8GghBRZw6APjAQzUoUmTJurIK0qG2Q7am5p2mrHUtBvbMW3aNJm8DmY7CBCpI68ozlFnPkk47SPPjCQDemqFZs6cac2YMcPyImwnEXKyCaj/nzt3rnXjjTdaU6dOFXE4+lsT3WbG+M4777QWL158VATHSR936t4T0Wu0fv36sl3UcJkZLyYhqFGePHmyfKc5c+ZY99xzT9IvKnw+fVxxwlu0aOHKe6pDryjeI1VCVqZenslLssCiBdvPNYBr2rx583yPU0PPNcGpfVcUJb1sx+bNm+WWcdHJJ58c9etvvfVWq2DBgtZXX32VQ9Pon3/+kcxLUNuhKNGhAngecuT9I3VEZBFaQ2QNB9PLEQ4Gg9dff70sRJQR8WISgskIZo2JNL/55puSFoYTjXjclVdeKY4q4nFGOT4QlOONqB0TASZaHQrWJ0rk/35dunSRbALS5RnAIiqGM4tAX65cuWSb7r33XpkJJpUfBdVUwva//PLL8j9q5m6q46sonnfgvKDbBaU02AcipJwXFStWlMmwSpUqpXoTlQyOrsUqYGXAbnfo0EFEOkmXxfZzDGP3SQkk2p/MsgFFyTbS1XaccsopkolGhyOyORs1aiTjLq6HO3bssIoUKSL2RFEU52jNvMcceQPt7XDqSWdHsZ3WdekI5QLU2VNbZRZmZGm9hTNdrFgxiYzjtJYsWVIMOTO07C+UkJn9JUshd+7cElUmYs7Ca4kCoS/AvuLCwoQHKfF8Hg476WCsy2QC65933nlSj2UWUpnz589veQlatpCGxgQJEw844G6jNfSpg+OVdnTvv/++7zFjgv3LKXDoaXVJTXU6oTXz0cE5jt3DvmHHYomSx8Lzzz9vde/e3WrTpo1MtMaaqo/dxc6Sbk8mVoMGDWTilFIRPkNRlMSAZhGOMaAMn6wMQoIqdFxBN4Mswljg+oDt+P333yW1nvciYk+GZ8eOHSMGbhQlG/gzivGURuY96MgD4kREaBFeoyYd0ZB07LnJ4NQ4zwYceRxu0sNwbnDAt23bJjO+y5YtE2czljkmLmxEjJggIH2e/3GGmMEm0uk1xz0QvjODYECDIBGOPGiEPjVwfHNcEn3gtyYSj3gQE1jUDjLxRJSFAQ6tH9FoWLp0qTh7SmaCfeI4YGCOTfS3k16OrkHRokVF16V3796SScbkKqJVRNm4XimKkjiwG1wbGEMR6EB0Ml1sBw4K2ZaMd1ieeOIJKS1kQpu2rYqiRIc68x505A0ICNHnnSgeqp8jR460MgGE5XBiQqmgEpnHocfJ37Nnj0TWeYzBIr2NSYcnkk8064QTThCn/fTTT5f3TWeoF0N4jwwD0s8SiTr0yeeOO+4QZwflcEQkQykQUwKCc7RhwwbRdXjvvfeSvq1KcmDwymTjwoULZSInWc58rD3mA0HoFOFGU0dbtmxZuU9WmaIoiQXbgTOP7UiWM++W7XjggQesV155xafhw8TEgAEDolbHVxRFnXnPOvJmoEddEc48okKkHnk9uuwGOOlE11n8MenyN9xwg6TeZ1o6DfX9QPprLArT0aIOffL47LPPJP0YMcdPPvkkbEokuhKUWvDbLFq0SEpTkuXkKcnHOPPJFLL6/vvvfR084gEBLAbgvXr1ktadaLwkq1RAUbIdbAeiw+loOxjLMvFHZJ5Mnq5du3paG0pRvIyq2bsM6bL0BY/XkTeQlkuveeop/ZU/lcyCzAsyEfit3WrrF41Dv27dOpksURLDxIkTZXKOiLyT2kbWYV3S8XmtkrmYSFSyhKxoSUc0D9yIoFN3/91330narDryipK5tuPw4cO+VsFu2A6yT8lAIxNRHXlFiR115l2GyDFK7W448oADwGAJYhUqUrwNjjSOGwwcONBVBXunDv1VV12VcdkOXoLoOlFMskqcQho+dZFE9ZXMV6VmEpjBcqIxg3E0RtBrUBQlvW3H119/be3fvz/hn0c5DZpHjFGSkT2oKIoz1JlPAG63NzNiQqTcmoiKkhkQeUUZFk0A2uPVq1cvZaUNSuIgcmkGXtFGXnitkrmgoYD2BxFz42gnkm+++UZuta5dUdIbShERomQSEAHNZNkOysVS3cZXUZR/UWc+DUAYpE6dOuL40cZDyQz4PR977DGplyU9FTEYJTOhtUgsUVBew2uVzIVBceXKlZOWLqvOvKJkloAmqO1QlOxFnfk0oW3btnI7evTomNq2Kd7TVujQoYP1wgsvyH0c+XgFZRTvQi/uWGoCmeThtUpmYwbkyRCyWr9+vdzqgFxR0p9k2g515hXFm6gznybccsstov6JWAi92JX0hZR6JmdeffVVmVkfPny4dd9996V6s5QEohNwileErHRAriiZg9oORVG0UDZNKFCggCh/IoLXp08fa+bMmaneJCUGDh48aLVo0UI6E5BeS9lE8+bNU71ZShJgIm7MmDFRv0bJngH5ihUrZLIvURoWZASZyHy5cuUS8hmKoiTfdqxatco6cOBAQgV0jTOvtkNRvMUxtoaM0gbEkWh5x2Bv/vz51rXXXmtlE7ROmz17tojEpaPyOr3kmzVrZs2dO9fKkyePtBy7+eabU71ZSpK6XJCFES2YZ16XDJVzt45x2upR53/iiSemenPSBn5f1OXZb3QvuOiiixLyOQio0mkF+4ngngpfKkp6wzXizDPPlNa2iCTXrl07IZ/z66+/+nRf9uzZIwEmRVG8MZ7SK3kagYJox44dpY3Zww8/LGlVOhhLD6hna9q0qfX999+LcvXUqVOzbjImm6GNTyzOvJIdkKVDS9MZM2bIgDxRzryJrKGgr9cORUl/uK4gkDxu3LiEOvMmo6d48eLqyCuKx8jImvkPP/zQatCggbTtwNDhOPlDvTKP+y9O+j8vXrxYUpoQpSpbtmzQvu9DhgyRyAepTpdeeqn16aefuvrdnn76aek9TRuSESNGuPreSmJmzQcNGmRdfvnl4sjj1L3//vuedOSZbe/UqZN0T0CsrXr16hF7nP/4449W/fr1ZYKCfvVdu3aVzJFoz5tMh/68mzZtinlRMh8G5MCAPFFozauiZB5qOxQlu8lIZx71Z1r94FiHAuedtCSzjB8/Pux7MqDGacFofvnll+L03HXXXda8efN867z99tsSMe/Ro4dEYtmG66+/3vrll19c+24nn3yy9cwzz/gce21b5V1+//13ES6kj/zff/8tKfVkUzDJ40U4nhcsWCB1/F999ZV13XXXWddcc421devWkKnBnBN8N0QZ6bSAo85xGc15oyjKvwPyJUuWSElRItABuaJkHiYa//HHH0v5TCJQ26EoHsbOcPiKU6ZMyfFYmzZt7Jtvvjmq93n00UftCy64IMdjzZo1s6+//nrf/UsuucTu0KGD7/7hw4ftYsWK2X369LHd5O+//7bLly8v361r1652tsD3njp1qtx6nSVLltglS5aU3+i4446zBwwYYB85csT2Kvv27bOPPfZYe+bMmTker1q1qt29e/egr5k9e7adK1cu++eff/Y99uqrr9onnniiffDgQcfnjZI57N69W455bpXo4Hpx8skny/5bvnx5Qj6jdu3a8v5jxoxJyPsripJ8GFucddZZcm4vWLAgIZ/RoEEDef8hQ4Yk5P0VRYl9PJWRkXknkPpLWjCqnLQFQ9wjcKbT9HaH5cuXS5TSH6LuPA5EJ1euXJljHUSvuG/WcQvEi1566SX5n/p5M2OqpJ5t27ZZt99+u3XFFVeI2FSZMmUkak103ss106TGE2kPVMIl3X7p0qXyPxkhlJAYOK4rVqxonXbaaTnOCUQ71q5d6+i8URTl3+tFrVq1fNenRKDRNUXJ3Lp5UNuhKNlHVjrzpNjTImrhwoVWv379rA8++MCqW7duDsVoapvPOOMM3/2ff/45h9MC3Mdx2b9/v7Vr1y55fbB1eK3bsL2kQZOOSdo2vcq1MUFqW8795z//kckh0tS5uN55551SbpEoMSs3KViwoNT19+zZUyYkOJbHjh0rTjdlKICSLZMTkc4J85yT80ZRlOTUvlKSZc5LbS2lKJmZap8I28H4ZuPGjfK/OvOK4j2y0pm/7bbbrJtuukmiig0bNpSe7Qh9+c9o4uzTz92r4Cy+8cYb1mWXXSaO0d133y3OPUJbSnKhXR7H0mOPPWb99ddf8pt88sknIlCYTu25mIQwbW4Qqxs4cKDVvHlziRgCnRSYAFMUJbHOPNkwZHslQo0aYdh0skuKoji3HYguMw5xE8R7meBn0t8/yKUoijfISmc+kNKlS0vUccOGDSHXOf30060dO3bkeIz7DIpIReb1tBcKtg6vTQRnnXWWDPpIuSc9+r333rMqVKggwn9HjhxJyGcq/wNRQ/Yz0WwE3r777jv5nRGB++ijj6yLL77YSjeIupOlwkBgy5YtMigg84PzI5pzwjzn5LxRFOVfLrjgArmWIGIVqZNEtGiarKJkLqVKlZJONJTMMQZJlO3wcrmgomQr6sxblvXTTz9JzXy4GUectsCoJMrfPA558uSxqlWrlmMdHGrum3USARMIKOivXr1a+hSj5E8ElVnad955RxTE3Z6lzVbIgCBjgzINolvsZ9Rj0TB49NFHrW+//Vbq5U0kO13Jnz+/nAuo8aM6jwp/MDiuUb3379bAOYGjfv755zs6bxRFCV43TwtLN+FcBU2xV5TMjs6r7VCU7CK3lYHgvPpH2WmPhVNLf3aWZ5991rr11lslakj6EI4Y/a8R5jLglJFubFLt7733Xmvw4MGy7h133CHGcuLEidasWbN8r8GpbtOmjdRIX3LJJSJOh3Pdrl27hH/nc845R2qlhg4danXr1s368MMPZTHgnLEOC9+V746zxiQGy2+//eb7n4V6ZnqH49iZW7MUKlTIqlGjhqT149RmOgjYDRgwwJo+fbp14MAB3+NE31u0aGE1a9YsI1LPcNxJs+eCzflDz3hm4s3xy/E/ZcoUn3PO74/T3rp1a9ELoB73ySeftDp06CBp+k7PG0VR/oXJwsmTJ1ujRo2yHn/8cSt37vgv05zXnLtQs2ZNF7ZSURSvwRiW9rAEHRjnBgraxoqxHQj7KoriQewMZNGiRSLnH7jQko4WXNddd51dtGhRaRlG+7D27dvnaK8FtWrVkvUD37dKlSp2njx57NKlS9ujRo066rMHDRpklyhRQtahVd3HH39sJ5uNGzfKd7rsssvsU045Jei+cGupWLGi/cgjj9jz58+39+/fnzGt6WgTNW3aNLtGjRo5vm+5cuXsZ5991v7222/tTOPtt9+W45pj9/TTT5c2i3/88Yfv+R49esj54s/mzZvtunXr2vny5bOLFCkix8KhQ4eiPm+UzEBb08XP3r175VxiP44bN86V9/z000/l/ThP9+zZ48p7KoriLWgJW7x4cTnXhw0b5sp7rlu3Tt4vd+7c9q5du1x5T0VR3B1PHcOfVE8oKImFCDw13URbuWVBff/kk0+2TjnllKAL9czUbbKQXWBuWbZu3Sqp0rTi8z98mAW+8cYbrVdeeUXq+d2G+m3E5urVqyep7YkA1VZU3F988UVfnRglFK1atbLuv/9+q2rVqlozpihhSlFOOukkUU5XkbXY6dWrl/XUU09ZlSpVkqyyeG3OI488Yr388suSRTRhwgTXtlNRFG9BFmGnTp0kA5MxDKWY8dCjRw/rueeeE20gxKIVRfHeeEqdeSVmmBBAdI/07Pnz50tLM+DgGzRokDjAbjq+iXTmEY2hRIGyCtO+ie9Bmjg94rOhnEBR4kWdefcmYGmPSskYJSnYvFhBu4X3YhJ26tSpITUwFEVJfwi4cL5TOvn2229bTZs2jfm9cA8otUMPiCBHy5YtXd1WRVHcGU+lt1KXklJQXabNH7WdiAiuWLFCtAI48NAcuOWWW3KIo3kVtAaqVKliPfTQQ+LIk1VAh4Aff/zR6tu3rzryiqIkFbKm7rnnHvkfGxQPS5YsEUeeQQH1+IqiZC7oGhGAMLYjnnjdF198IY48WZe0c1YUxZuoM6+4AhF41PxpidK7d2+JnBMFotXSu+++a3kRnHVmra+66ipr7dq1Io746quviigiYoYaWVQUJVV07txZ7CjO+LBhw2J+H5NWz+SqEaZUFCVzodMOwsU445TXxOrQG9vRoEED6TGvKIo3UWdecRWUl5944gnpkUy9J6n4dA5A8Zy0Ly+AIj01qaSP0b6PdlDUw6MlQFo9NfKKoiiphG4qDzzwgPxPlJ4FTQ8DA3Q6S2Czrr32WulUQp/p++67T7pGkGX0+eefi42D5s2bp+y7KIqSPNA96tKli/zPLZmS6B752w66HdF5BgV8OtgUL17cat++vZRM7tixQyYCjDOvtkNRvI3WzCsJg4EnwimkelG3STs86tIbNWqUkpr5zZs3W6NHj7beeOMNa8uWLb5WK9T3V65cOaZtUhTlX7Rm3l2wm+h4IIbHpfrss88WEU4G3nPmzJEUWCeceuqpkmrvRps7RVG8D/YCMWLawh4+fFhsBtmTTPihdUQ2ohOw4zj3brW5UxTFGSqAp3iKjz/+WHqVG3V4UttxoBlgJtqZRwyGns30XqU23j/q9cILL0jNv6rTK4o7qDOfGObOnWu1aNFChPH8IfUVUarLLrtMHH2ib9g7+kKz7mmnnSYaIJQNaXRNUbKPxYsXSxeLQP0i0vCxKdWrV7dKlSpl/f3331ISybJz506xHYyTSNln/KYoSnJRZ17xHKS29+zZ0+rXr5/MEpMGhkMfjTPt1Jnfv3+/tWzZMmv8+PHWxIkTrT179sjjfA718VyYyA7gYqYoinuoM584cM4/+eQTicZv2rTJOu+888RBD1bLSkQfO5uoFp6KoqSXXSaogu1AE4iSHCYBsdWBqO1QFG+gzrziWajhxJlevXq13EchldR7ZoBjdeY50HHeqQFjoV6fdQ2lS5e22rZtK3VjpJgpipIY1JlXFEVRFEWJD3XmFU9DOhcReiL1ON1EzM8991zrwgsvzLHQ+s7AYbp9+3aJtuP4U/+5ceNGa/ny5daqVatkNtmfM844Q9ow4cRTF6+p9IqSeNSZVxRFURRFiQ915pW0YM2aNdbdd98tDnkwEGwpW7asOPG0kfNXYw2kTJky1pVXXikLzjvReHXgFSW5qDOvKIqiKIoSH+rMK2mFaYPiv2zYsCHouieffLJE8RF7ImUeZWec92LFiiV9uxVFyYk684qiKIqiKPGhzryS9nDwkj5POzkcdRx3WtvRPznW1nSKoiQWdeYVRVEURVGSN57SprOKJ+EANmnzBn9RO0VRFEVRFEVRlGwmV6o3QFEURVEURVEURVGU6FBnXlEURVEURVEURVHSDHXmFUVRFEVRFEVRFCXN0Jp5JW2g1dypp56qLecUxaMYPVWEWxRFURRFUZToMeMoJzr1qmavKIqiuMJPP/1kFS9ePNWboSiKoiiKkvZs2bLFOuuss8Kuo868oiiK4gpHjhyxtm3bZhUsWDDhGTTMWjNxwIVO2+Dp/vBH90VOdH/kRPdHTnR//Ivui5zo/kjd/sA937Nnj7TnzpUrfFW8ptkriqIorsAFJ9IMsttwQdVBxr/o/vgX3Rc50f2RE90fOdH98S+6L3Ki+yM1+4M23U5QATxFURRFURRFURRFSTPUmVcURVEURVEURVGUNEOdeUVRFCXtyJs3r9WjRw+5VXR/+KP7Iie6P3Ki+yMnuj/+RfdFTnR/pMf+UAE8RVEURVEURVEURUkzNDKvKIqiKIqiKIqiKGmGOvOKoiiKoiiKoiiKkmaoM68oiqIoiqIoiqIoaYY684qiKEracswxx1hTp05N9WZ4hrPPPtvq379/qjfDk2zevFmOly+//DLVm+IJsv3cyfbvH4jajtCo7chJtp87x3js+6szryiKoniaIUOGyEDz+OOPty699FLr008/tbKVrVu3Wq1atbJOOeUUK1++fFbFihWtFStWWNnAhx9+aDVo0MAqVqzYUYOpQ4cOWY899pjsj/z588s6t99+u7Vt2zYr2/YF/PXXX1bHjh2ts846S46T888/33rttdesbENtx7+o7VDbAWo7Ms92qDOvKIqieJa3337bevjhh6UdzOeff25VrlzZuv76661ffvnFyjZ+//13q0aNGtZxxx1nzZkzx1q3bp310ksvWSeffLKVDezdu1d+fwZZgezbt0+Oj6eeekpu3333XWv9+vXWTTfdZGXbvgDOmblz51pjx461vv76a6tTp04yQJ8+fbqVLajt+Be1HWo7DGo7MtB20JpOURRFUbzIJZdcYnfo0MF3//Dhw3axYsXsPn36yH0uY8OHD7cbNmxo58uXzy5btqw9bdo0OxN57LHH7Jo1a4Zdp2TJknbv3r3tdu3a2QUKFLCLFy9uv/7663amwe8+ZcqUsOt8+umnst4PP/wg9zdt2iT3J0+ebNeuXVuOl0qVKtnLli2zM21fXHDBBfZzzz2X47GqVava3bt3z/G6TD531Hb8i9qOf1Hb8S9qOzLDdmhkXknrFKfFixdbVatWtfLmzWuVLVvWevPNN9M6VUZRlH/5+++/rZUrV1rXXHON77FcuXLJ/eXLl/see/bZZ62mTZtaq1evturVq2e1bNnS+u2336xMg8jIRRddZDVp0sQ69dRTrQsvvNAaPnz4UesRcWO9L774wrr//vut++67TyJN2cbu3bvlelOoUKEcj3fv3t3q0qWL1L+ee+65VvPmza1//vnHyiSqV68uxwup1Yw9Fy1aZH377bfWddddl2O9TD131HbkRG1HdKjtUNtxTTrZjpRNIyhZxezZs2VW79133z1qJvCPP/6wr7nmGvvtt9+2v/nmG3v58uUyK1atWrWw77lx40b7hBNOsB9++GF73bp19qBBg+xjjz3Wnjt3rm+dCRMm2Hny5LFHjhxpr1271m7fvr1dqFAhe8eOHQn9voqixM/WrVvFXgRGP7p27So2Anj+ySef9D33119/yWNz5syxM428efPK8vjjj9uff/65RM2OP/54+80338wRXWvVqpXv/pEjR+xTTz3VfvXVV+1siq7t379fokktWrTwPWaiayNGjPA9xnWBx77++ms7k/bFgQMH7Ntvv12ey507t1wHR48efdTrMvXcUduRE7Ud/6K241/UdmSG7cidmikEJduoW7euLME46aSTrAULFuR4bPDgwdYll1xi/fjjj1aJEiWCvg5BjlKlSslMMpx33nnW0qVLrVdeeUVqW+Dll1+22rdvb7Vr1873mlmzZlkjR460unXr5vK3VBQlFVSqVMn3P9k9J554ondr2+LgyJEjEjV7/vnn5T7RtTVr1ohda9OmTdD9QXTp9NNPz8j9EQqyvYiYMOZ69dVXj3ref/+cccYZcsv+KV++vJUpDBo0yPr4448lwlayZEnJjuvQoYNkvvlHnLLl3AlFtnx/tR3OUNuhtsMpXvr+mmavpE2KU+3ata22bdv67pPu4m9YACfepME4TZVRFMWbFClSxDr22GOtHTt25Hic+wwyDYg6+YPtYPCaaTB4RFnYHyYxmfT0J1v2R7jB+A8//CCTxAywAvHfP+wbyKT9s3//fuuJJ56QyWzK2xh0ImDVrFkz68UXX8yKY0VtR07UdkRGbYfajnS1HerMK57jwIEDUkNPLZK/MSVCb2ZC4eeff7ZOO+20HK/l/p9//ikGadeuXdbhw4eDrsNrFUXxNnny5LGqVatmLVy40PcYF0vuX3755Va2gRp1YP0qtYxET5R/B+Pfffed9d5770kLrmzdDyxMXvvDADUTBttOUNuRE7Ud4VHb8T/UdlhpaTs0zV5JmxSnMWPGpGy7FEVJDbSHIQ2UFFFKb/r37y+tdUzpTDbRuXNnESciVRY7iZjnsGHDZMkG6H+8YcMG3/1NmzaJEFXhwoVlordx48bSRmjmzJkykWsmbXmeAVq27AsmvmvVqmV17dpV+kTjsH3wwQdyDSXili2o7fgXtR1qOwxqOzLPdqgzr3gyxen9998PmuLkD+kuwdJgeB1GiJlEJ6kyiqJ4F9L7du7caT399NMywKpSpYr0wA3MuMkGLr74YmvKlCnW448/bj333HOiGcIgAxXdbGDFihVWnTp1cgy4gEHXM8884+uDzDHiD2rMlGlly76gq8uECRPkODEKywzKe/fubd17771WtqC241/UdqjtMKjtyDzbccz/q/IpStKgroSLSsOGDYOmOGE8ixYtGvF9SMWfPXu29dVXX/kea9GihRgfTjqgFR2zagh6mFQZZh6pAVIBPEVRFEVRFEVR0hWNzCtpk+JE7/kzzzzT6tOnj9xnlhDV+0cffdS64447JJo/ceJEUatP11QZRVEURVEURVEUJ2hkXkkKixcvzpHWYzApTqR8BcM/xYnbs88+W9KA/N+XWrB169ZZZ511lvXUU0/lULwHHP4XXnjBlyozcOBAidgriqIoiqIoiqKkK+rMK4qiKIqiKIqiKEqaoa3pFEVRFEVRFEVRFCXNUGdeURRFURRFURRFUdIMdeYVRVEURVEURVEUJc1QZ15RFEVRFEVRFEVR0gx15hVFURRFURRFURQlzVBnXlEURVEUJUYqV65sHXPMMVbevHmtX3/9NSmfSUtXPpPbVJGobaD9LO8b2GY2GxgwYIB898mTJ+d4nH3B4/6tebOBw4cPW+XLl7dKlixp7d+/P9WboyieRJ15RVEURVGUGPjss8+s1atXy/9///23NXbs2FRvkqfZvHmzOKVnn312qjfFc+zcuVMmRi6++GLr1ltvTfXmeIJjjz3W6tWrl/Xjjz9a//nPf1K9OYriSdSZVxRFURRFiYE33nhDbs8888wc9xNNx44dra+//lpuM41GjRrJd+vTp4+VTTz77LPWH3/8kdJsCy/SuHFjq2LFila/fv2sn3/+OdWboyieQ515RVEURVGUKNm3b581fvx4+f+///2vVaBAAeurr76SaH2iKVKkiKQfc5tpnHTSSfLdzjjjDCtbwIknhZ5JoRtuuCHVm+M57rjjDkmzHzZsWKo3RVE8hzrziqIoiqIoUfLOO+9Yf/75p1WhQgWrTp06VrNmzSJG52vXri1p5osXL7aWLFliNWjQwCpatKiVK1cuXz00KeisQ0r6tGnTrKuuusoqXLiw73Wh6tUff/xxeezee+8N+flr1qyRdU477TTr0KFDvsffffdd66677pLvcvLJJ1vHH3+8VapUKXGi1q9f78r+ou6b94QffvhBtsN/iVQzz3fncfbhwYMHJZJ97rnnyraWKFHCeuyxx6wDBw7Iurt377a6dOlilS5dWp5nn7Kv/vnnn5Dbt3DhQuuWW26RSYQ8efJYp556qmQJLF++POj63333newfvhN6CUzmUNtdv359a9SoUVHtG9bfu3ev1bp1azkWwrFp0yZZ7/TTT5fPLVOmjPXkk0/KPgnFhAkTrKuvvlqOI17DdrLt3377bdD1A3+TcMdxtMf3kSNHxCmvUaOGVahQIeu4446TfY32xAMPPCDHfSAtW7a0cufObb3++uthf0NFyUbUmVcURVEURYkS47TjFPnf4jhFEutiIgDHZ+PGjdY111xjXXvtteJk+fPSSy9ZDRs2tPbs2SPR2lq1akkNcSjatWsnt2+//bbPqQ3EOJmtWrUSJ8rQtGlTyTLIly+fTB5cf/314oCxfrVq1axly5ZZ8VKzZk1fLXj+/PmtNm3a5FicgjYB2/fyyy9b5513nuw7JlWoqW7SpIn122+/WZdeeqk1ZswYq2rVqrLfduzYIc4/zmIwcPz5HZg8YWKA/c5EAPevuOKKo5xzJkUuuugieZzf7cYbb7Tq1asnkfUPP/xQhOyiYerUqXLLNoTjyy+/tKpUqSKOMt/ryiuvtLZv32717t3buu22245a37Zt2bfNmzeX7brwwgtlwoIJDrad+3PnzrXcJtzxzaTRPffcY33++eeiD8Bvxu/EOTN48GD5joEwIcD33rZtW1IyXxQlrbAVRVEURVEUx6xfv95mCHXcccfZv/zyi+/x8uXLy+NjxowJ+rpatWrJ8yxDhgwJuk7JkiXl+WOPPdaeNm1a0HV69Ogh63DrT40aNeTx8ePHH/WaQ4cO2aeeeqo8/9VXX+V4bsKECfZff/2V47EjR47INrL+BRdcIPedbEM4Nm3aJK/hO4Zi1KhRsk6bNm1yPL5o0SLfvrvkkkvsXbt2+Z7bvHmzffLJJ8tzFStWtBs0aGDv3bvX9/xnn31m586d286VK5f9ww8/5HjfYcOGyevKli1rr1q1KsdzH3zwgV2wYEE7T5489rfffut7vF27dvKaXr16HbX9+/btk9c5hfV5f7btzz//DLoO+8J89+7du9v//POP7zl+y/z588tzy5Yty/G6V199VR4vUqSI/cUXX/ge57c0v1+hQoVyHMNgPisU5jjmN4nm+Gbf89xZZ51lb9++/ajn161bd9TvY3jwwQfltT179gy5XYqSjWhkXlEURVEUJQpGjhwptzfddJNEDQ0mOh9JCI/o9/333x92HSKqvH80mM8PluY9a9Ys65dffpGIMun0/lAiQLTcH9Kl2cbLL7/cWrt2rYjSeQG2i/17yimn+B4jbZzUc5OGPmLECOuEE07wPc93rlu3rqR4+6eGc9+UKpBRUalSpRyfReT7qaeekmwAUrwNRPqBaHwgZDfwOqewb3n/s846yypYsGDYdcmS6NmzZ44MDX5L893fe++9HOu/+OKLcvv0009LZNt/H/bo0UO+L/X6w4cPt9wk1PFt9huReMoEAiHTgsyIYFxwwQVyS0RfUZR/UWdeURRFURTFIdTsjh49OofzbLj99tultpeU5u+//z6sQncknKwTCOnyOOU4dT/99FOO54yDH7jNhg0bNkiac6dOnaw777xTatZZjAPmVu18vODsBU5GwDnnnONzeKnBDvU8qdqGL774Qu5Td87rgkG6OPiXGlxyySVye99991nz5s0LWdbgBLN//ScnQkE6f7Badpxg2Lp1q+8xfn9zDAYrY+B9TGnGokWLLDcJdewibMiExezZs6U0gIkXp5j9Y/aXoij/Q515RVEURVEUhxDhpkUW9dHUbvuDsBzRWjKVTfQ+GE76rMfSix0RNmqQiThTM24gIs92UytN/bQ/hw8fFqcUMTlqyqn3ZtuZsGCh7hmoS/cCoSK3fPdwz5uot7/jbb4bTm+gIJ9ZjONOH3hD165dpRb8k08+ET2DE088Ueq/H3nkkahruhHrA94jEqG+m3mt/3czjj1OcKj3ZhLDf123CHXs8hswqUT2AqJ96BIUK1ZM6vgRxfvrr79Cvqf5Dr///rur26oo6U7uVG+AoiiKoihKumBS6HGcECELxDhGqHc/99xzQUXrcGYi4WSdYBB557NxxJ944gl5bOzYsZJRQMQUBXF/cN5fe+01SXtGVK569eoyKYHjDy1atBBxvP+VUqeeSGrvkZ73h0kP4LsHTswE4t8GkBT+BQsWiOOOgBxRe5YVK1bIPiTFfMiQIY62wfweTiZLovluicTst1iOXUQQmQiZPn26CPl99NFH1pQpU2ShHID9Sl/5UJMedFtQFOVf1JlXFEVRFEVxAMrhpAjDr7/+Ko5IKEjfxtGjVVkyQX29bNmy0naM7aMFmGkLFizFfuLEiXJLTXiwGn1asGUqxYsX90WvzT6KBqLxLMBkCar0lFoMHTpUJk5oWRgJUxLA8eQmZI6Y92WiIFh03mQmmHUNdDqgdSGdFILV8dNaMB5OOukkqfM3tf5btmyRrBC6B3Ts2NH64IMPjnqN2T9MNCmK8i/emOJTFEVRFEXxODh8pKXT+oxIdajl0UcfdSSElyhMLTTbu3LlSuurr74Sx5Ve44HQys2IyAUTZwvWKixW6N8OXukVjiNOxH3dunXyXeMBrQQceBPhd7rfEHZjv1DjjvPsFgjqmTT6YBMVHKfm8cBJB+PcBxM9XL16tTjfbsKxSevAcPuNdoAQSttAUbIVdeYVRVEURVEcYOrgI/VFJzoLM2fOzFFrnSzYPlKyibqbdG/zWCjxNNbzT58mC4Hv4abjjfI/jiuaA2YSIZUQgUbVHce2UaNG1tKlS49ah8mb999/3/r44499jxF5DyYIyPci1T7U5EiolPTLLrtM9j01+G7SpUsXuUUBf9WqVb7H+b69evUSx5k0//bt2+d4nel3j4N98OBB3+ObN2+W4yjWkgsEB99++23pKR/IjBkzwu43I0CIUr6iKP+izryiKIqiKEoESP1F8T1v3rzWbbfdFjHaSvstUpX9heiSBZHV6667TtKrERzzVy4PhLp6HGzak5UrV07a1NHGjagujhxOrpvOM6n8OMi0SqMe/6677pIlVZDWjaAd5QSUKKCU37BhQxEKJGJN5J6MBv+IMWJtKLMj4Mb3adWqlUTkuU+EHYczmraCfB5QL+4m99xzj6Sy79q1S9rz4aSzz5nAoT6diYRx48blaK9ojgmcfEpKEEYk4wB9iPPPP1/2B7oKsUB6PucOZQ01a9aUfYxgI/uSFoAch//5z3+Oeh0TYmQEIJZnyhoURfkf6swriqIoiqJEwKTMN2jQwJEIl4nOpyrV3r8+nr7nOJrBoGSAaDLO5969e0WYDHV3apiXL1/uSGU9GqjNx8lkgmHSpEmyf1K1jww4kOgLtGzZUhTV0TpA/R/dA1rT0beeSQ4DbdXoAIDDS8T+nXfekVR99iXCg7yetHunMNFCS0GECpnocAv2MZNJOOw4z5RcsM/37dsnbQeJlDNxE0ipUqUkEo7KPKn/ZJjQEq579+7i4DMpEwtkIPTt21cmSdi3HGvz588XkcgOHTqIw053gECMgCPHTTT7VVGygWNsr8iTKoqiKIqiKEoWQoYApQ44uEwYKf8DN6Vy5cqSFYNgH50HFEX5F43MK4qiKIqiKEoKoXafSD/tDJV/IZMAAcfHHntMHXlFCYJG5hVFURRFURQlxQwYMMDq1KmTpO1Tp57tUHKA/gSCed98803Y/vWKkq2oM68oiqIoiqIoiqIoaYam2SuKoiiKoiiKoihKmqHOvKIoiqIoiqIoiqKkGerMK4qiKIqiKIqiKEqaoc68oiiKoiiKoiiKoqQZ6swriqIoiqIoiqIoSpqhzryiKIqiKIqiKIqipBnqzCuKoiiKoiiKoihKmqHOvKIoiqIoiqIoiqKkGerMK4qiKIqiKIqiKIqVXvwfX6rtUuMuzlAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAPzCAYAAAD7/FyjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWYE9fXxi/u7u7FilPcoUBpi7W4Oy2UFi9SpC1WtLhbcVrcHQqFQnF3d3cpMN/znv83aTabZJNsdieZvL/nmU0yO0luRu7cc88574mgaZqmCCGEEEIIIYQQ4jdENLoBhBBCCCGEEEIIcQ8a84QQQgghhBBCiJ9BY54QQgghhBBCCPEzaMwTQgghhBBCCCF+Bo15QgghhBBCCCHEz6AxTwghhBBCCCGE+Bk05gkhhBBCCCGEED+DxjwhhBBCCCGEEOJn0JgnhBBCCCGEEEL8DBrzhBBCCCFE9evXT0WIEEEWQgghvg+NeUIIIYQQ4nXWrl2ratSooVKnTq2iRYsmj3iN9UZz7tw5NX/+fNWxY0dVvHhxFTNmTMtExsyZM73+fS9evFC//PKL+uijj1TChAlVrFixVLZs2VTnzp3V5cuX3fqsK1euqL59+6qCBQuqJEmSqOjRo6s0adKokiVLqj59+qhjx455vf2EEN8kstENIIQQQggh5uH9+/eqdevWatq0aUHWX79+XZZly5apli1bqkmTJqmIEcPfr7R9+3ZVpkyZcJ04qFKlijp79myQ9adPn5Zl6tSpau7cueqzzz4L8bPGjBmjevTooZ4/fx5k/bVr12TZuXOnevLkiRo1apTXfwchxPegZ54QQgghhHiNXr16WQz5fPnyiQd879698ojXAAZs7969DdnrmqZZnmMyIWfOnKpQoUJh8l1Pnz5Vn376qcWQb9Wqldq8ebP666+/1IABA1Ts2LHF+K5Tp446dOiQ08/6+eefVYcOHcSQ/+CDD9TQoUPVtm3b1MGDB9WmTZvkdbFixQyZICGEGEMEzbpHI4QQQgghAZsz379/f3nu6fDwzJkzYhy/fftWwsB37NihYsSIESTcvHTp0uqff/5RkSNHVidPnlSZM2dW4QkM6+XLl0vIe4ECBcSgRmh9s2bN5P8zZsxQTZs29cp3Iez9p59+kucIs+/atWuQ/8Oox/7A/sIjjHN7YAKgQoUK8rxx48YyGRIlShS7275580ZFjRrVK+0nhPg2nLojhjJu3DiVPn16yfcqXLiwzNw748iRI5ITpueH4cZoy+LFiyUPDdvkypVLrVmzJgx/ASGEEEJ0EN4Nw1QPCbc25AFy07EeYLuRI0eG+87LkiWL6tKlixjPMOTDin///VeNHj1anmfPnl3y422BJ71FixaW8P99+/bZTVv46quv5HmePHkk6sGRIQ9oyBMSONCYJ4axcOFC1alTJxFxOXDggNygKlWqpO7cuWN3e4ShVaxYUaVLl07t379fwsngRZg8eXKQGe569erJjRFhZ9WrV5eFYjCEEEKIe7x69Urutfnz51dx4sSRBeHoY8eOtRjs1sCbD483wKR6kSJF7H4u1mfNmlWeY3uzBolu3bpVPX78WJ43adLEYfi7dRTA0qVLg/1/w4YNljD97t27S0QDIYQAGvPEMEaMGCG5Ywhry5Ejh5o4caLM2E+fPt3u9hCHQegY/o8Qvrp160ruGD5H59dff1WVK1eWMDbMgiO0DYMQDDwIIYQQ4hq3b99WRYsWVd26dZPJ8WfPnskCz/E333yjatasKR5jay5evKhu3Lghz+H1dob+fwjiXbp0yZSHBWJ0Os72B9IRMP4Bu3btshtxCKC0by2S9+DBAzHy8UgICUxozBNDgFEO77qe/yUnY8SI8nr37t2WmWprtVmsL1WqVJDwMXjyoQT78OFDyzbWn6lvo38mIYQQQkIGxvqJEydk0nzjxo1yz543b55MlIOVK1eqKVOmBHkPtteBZ94Z1v9H3rwZcXV/wNOu6wbY2xd79uyRR6QlIjoCxwFphIkSJRIhPDwi0mHYsGHq9evXYfJbCCG+CY15Ygj37t1T7969U8mSJQuyHq9v3bolz1OkSKHSpk1r+R/W29te/5+zbfT/E0IIISRk4IFfv369RLxhkhxRbkhjg7dZv8+OHz8+yHtQGk0HNeWdAd0bnatXrwb7Pyb09brvni7hWX7OHvr+QE35+PHju7Q/7t69G8QgR/TDqVOn5HnixInVt99+qxo0aBAsfRDCg4hKLFeunHr06FEY/BpCiC9CY574LIMGDVKzZ882uhmEEEJIwIFQenvGcMKECS2q70ePHrXkhOtl2HRCEpaDgauD8H0zou8PV0T2HO0P7F89nQH7G4J6cHbMmTNHwutRHQDCebo+AbSDmjdvHga/hhDii1BBgxgCZpcjRYokOXnW4HXy5Mntvgfr7W2v/8/ZNo4+kxBCCCHBgffXESjnBiBchzz5vHnzWgTzXFVUjxYtmuX5y5cvg/0fNdihOB8arA1kI9D3hyvq8o72B2rKW38ecushrKcLCAKkIG7ZskU0Dg4fPiwien///bdUCSKEmBsa88QQcGPDYAB1U6E2DzDzjNft27e3+x7cpHr16iWlXvSSLMjjww0tQYIElm3wGd99953lfdgG6wkhhBDiGs5yvOGdt+eNR0lYa20cZ1iHktuWrwOpUqWSxZ/R90dI+8LZ/rDep6Bly5ZBDHnr92ACRBfIQ8UgGvOEmB+G2RPDQFk6iOfMmjVLBF9QQxUz0Hr4Xo8ePVTjxo0t29evX18mAVB27vjx43KjQi4fPkcHuWTr1q1Tw4cPlxwzlK77559/HE4QEEIIISQ4urq6PaxLrEH/RgfibK6Gzlt7nMOy1ruR6PvDlTQCR/vDep8ClOh1RPny5S1l6+zVqyeEmA965olh1KlTR4Re+vTpIwJ1CNODIa4L69y8eVNduXLFsn28ePGk1mq7du3Eq49Qfby3devWlm2KFSsmKq+9e/dWPXv2VFmyZFHLli1TH374oSG/kRBCCAkUrEXvrMXw7GEtemcthqeDknV6pZrQhNlnyJBBGbk/EO4OQx2idM5E8PT9kSRJkiAh93iOdRgvOdpX1l58jI0wptK3J4SYGxrzxFDgMXfkNZ85c2awdblz51Z//vmn08+sVauWLIQQQggJP3LkyGF5riuwO8L6/3q5O2uQVofIvdCA2u7btm1TRu6PP/74w/J7dZE6W96+favOnz/vcF/kzJnT8jusIyHsof9f99ATQswNw+wJIYQQQkiogRc8ZcqU8hwK687YsWOHPCIvHvXTzUiJEiUsz53tD6QD6mH2xYsXD/Z/CNzpXLhwweHnPHnyREr/An/XGyCEuAaNeUIIIYQQEmpQ271atWoWT/SePXvsbof1umce2+N99qLzoJYfmsVIrzxAaT+kCAJEGaBNIUUi1qhRI9j/v/jiC8tzKNU7Av/Tv6NkyZKhajshxD+gMU8IIYQQQrwCqsmg9Kxeq9627BxeY70eCm5dfcbfaNq0qUxEYLE3cQDR3g4dOshzCP0OGzYs2Da7d+9W06ZNs6QFfPTRR3ZTDD/55BN5Pn/+fKnaYwvy5KEXpH+vLiZMCDE3TKghhBBCCCFe4YMPPlBdu3ZVgwcPlvBxhI13795dZcqUSfLChwwZog4ePCjbYjsI1RrB77//HkRlfufOnXafg+TJk6vKlSt79D34jai+c+bMGdWtWzd17tw5VbduXSklh3rxAwcOlJx5vB41apTDz8H/YPhDSA/l5zAJUqVKFXnf3r171aBBgyyigz/99BPD7AkJECJojmJ+CCGEEEJIwIByrv3795fnzoaH8EKXLVtWnsMgRTi5Ne/fv1etWrVS06dPd/gZKDM7efLkIGXuwhPk6V++fDlUQnrwzOsiffb2gw4MeBjeZ8+etfv/uHHjqrlz51pqxDsCkwxffvmlun37tt3/I0IAwoEw5gkhgQHD7AkhhBBCiPcGlxEjSuj46tWrJSceongI/cYjXq9Zs0ZNnTrVMEM+vMmcObNEIyAqoWDBglKiLmbMmCpr1qyqY8eO6siRIyEa8rqg3vHjx1Xfvn1Vnjx5ZBIA5eggPIiw+v3799OQJyTAoGeeEEIIIYQQQgjxMwJjSpQQQgghhBBCCDERNOYJIYQQQgghhBA/g8Y8IYQQQgghhBDiZ9CYJ4QQQgghhBBC/Awa84QQQgghhBBCiJ9BY54QQgghhBBCCPEzIhvdAEJcRdM0WSJEiCALIcS3eP/+vbpx44aKEycOr1FCCCGEEA+AvfP06VOVMmVKFTGic987jXniN7x9+1atWbNGValSRUWJEsXo5hBCbIAhnyZNGu4XQgghhJBQcvXqVZU6dWqn29CYJ4QQ4hXgkddvPnHjxuVeJYQQQghxkydPnohzRB9XOYPGPCGEEK+gp7/AkKcxTwghhBDiOa6kFVMAjxBCCCGEEEII8TNozBNCCCGEEEIIIX4GjXlCCCGEEEIIIcTPoDFPCCGEEEIIIYT4GTTmCSGEEEIIIYQQP4PGPCGEEEIIIYQQ4mewNB0hhBBCiI+jaZp69OiRunv3rtQgTpQokUqRIoWKHj260U0jhPh43/H48WPpO/CYMGFC6TtixIhhdNOIF6AxT8KE58+fq5s3b6rbt2+rO3fuWB7150+fPlWvX79Wr169ksX6OTqdaNGiqahRo8qj/nz37t3y2ZUqVVK5c+dWSZIkUYkTJ5ZHLOiYUqdOrSJGZMAJIYQQ/+fhw4dq9erVavny5Wr9+vVy77QF979cuXKpvHnzqjx58siSPXt2uW8SQgITTPitWbNG+o61a9eKEW8LJgTRd+j9BvqQHDlyyLib+A8RNFhOhHgADPALFy6oM2fOyHL27FnL440bNwzZpxi8ZMyYUWXOnFllypTJ8oiBTbp06VSECBEMaRchgTJ4iBcvngwa4saNa3RzCPFL3r9/r7Zs2aKmTZumli5dKvdaa+LEiSPX171794L9TydKlCiqZMmS6osvvlDVq1dXKVOmDKfWE0KMAibdjh07pO/4/fff1cuXL4P8P3bs2HKPfvDgQbD/6USOHFkVK1ZM1axZU5Y0adKEU+uJp+MpGvPEJf7991917Ngx9c8//6h9+/bJgtdv3751+J5YsWKpZMmSqaRJk8qj/hwLTlCEBmL2z/YRBvebN29kkKI/otNBx3T06FFVrVo18eAjXAiDGTxiwQQC2ukIzEAWLFgwyJIqVSoa+IR4CRrzhITOiF+yZInq16+fOn78uGU9PGU1atRQVatWlag0PaxeD509f/68Onz4sCyHDh2SR2svHO6pFSpUUC1atJD7J8PyCTEX6AtWrlyp+vbtK32AzgcffCB9B677fPnyBek7cL+GQ+7IkSOWfgOPiAaypkyZMtJ3wLCPGTNmuP+2QOUJjXkSWjAQ2LZtm3gH9u7dKxc4DGhb4CHIkiWLdBj6o/48QYIEXj0QMNQRMlSlShXxOtjy7t07dfXqVXXu3DkZ3OBRX06fPm3X0McEQ9GiRdXHH38sCzz59N4T4hk05gnxjHXr1qnvv/9eBtQAnpiGDRvKIBqDcHfuSxio476H8FpMDugpagCpafier7/+mvmyhJiArVu3qu7du4uTTfe+16tXT/qOQoUKud13XLx4Ua1YsUL6jp07d8o6gDF9ly5dVIcOHeQ7SNhCY564DTzge/bsUZs2bVIbN24UAx5eAmvgTYc3+6OPPrJ4ttOmTRtuxm9Ixrwz4N2HVx+RBfqCyAJMAFiD36Mb9uXLl5eBDyHENWjME+IeuC9hgLxhwwaLEd+xY0f13Xffqfjx43tld8L7NnPmTDVjxgx17do1WYew+4EDB6rGjRtzApsQPwROqq5du4pHHsBrDkMb/QkiUb3BlStXLH3HpUuXZB2ia/v376/atGnDviMMoTFPXAIh6pi5R04evPAQrbMGHnaE5hUvXlwMeOSeGykuFxpj3h4I3T948KD8dkxg7Nq1K4j3HpMUyBuqVauW+vLLLyUknxDiGBrzhLjGs2fPVJ8+fdSvv/4qE+e4p2Eg3rNnT1GaDguQFjd79mwZiGOQDho1aqQmTJggaXGEEN/nxYsX6ueff1ZDhw6VazpSpEjqq6++Uj/88IMY2mEBHF/z58+XFCBEvgKMi5GbT32csIHGPHEIlOSXLVsm+ecIzbH2TEMRF95oeKVhxMNL7Ut425i3BZMZEA7RoxPgMbGmRIkSqnbt2iIoRDEhQoJDY56QkFm1apWEuSMtDOCeMmTIEJkwDw8QqTZ8+HCZTMAYIGfOnDKpj/Q4QojvgvEpPOKItgGffvqpGjZsmMqWLVu4jcPHjh0rYf14jj4DfQf6EGLgeEozIQMHDtQKFiyoxY4dW0uSJIlWrVo17dSpU0G2mTRpkla6dGktTpw4SAbRHj586NJnb926VcuXL58WNWpULVOmTNqMGTOCbTN27FgtXbp0WrRo0bRChQppf//9t2Yk9+/f18aNG6eVKVNGixgxovxefcFv+fnnn7WDBw9q796903yZN2/eaMuWLZPH8ODatWvar7/+qhUvXjzIPosQIYKcO3PmzNFevXqlmYHx48druXLlkusBS5EiRbQ1a9Y4fc/hw4e1EiVKyHmeOnVqbciQIcG2WbRokZY1a1bZ5sMPP9RWr14dhr+CGM3jx4/lGsEjISQoz58/19q0aWO5l2TIkEFbu3atYbtp27ZtWvLkyaUteDx58qRhbSGEOAZjzY4dO1r6Doy5li5datgu2717t5YmTRppS8KECcWGIMaNp0xpzFeqVEmM7GPHjmmHDh3SqlSpoqVNm1Z79uyZZZuRI0dqgwYNksVVY/7ChQtazJgxtU6dOmknTpzQxowZo0WKFElbt26dZZsFCxaIoT99+nTt+PHjWqtWrbT48eNrt2/f1sKT9+/fa9u3b9caNmwohpS1MfrRRx+J4XXu3DnNnwhvY96aq1evyjlTtGjRIPsyceLEWvfu3eXc8GdWrFghhvaZM2e006dPaz179tSiRIki15A90LkkS5ZMa9CggWwzf/58LUaMGDJJprNr1y65Pn755Re5Xnr37i2fefTo0XD8ZSQ8oTFPiH2OHDmiZc+e3XLvwDgCxr3R3LhxQ8udO7e0CX06+mpCiO8AZ2SePHksfcdXX32lPXnyxOhmaXfv3hWHpW7QHzhwwOgmmYqAN+ZtuXPnjpxsMG7tedpdNea7deum5cyZM8i6OnXqyOSBDk7sdu3aWV7D250yZUqZNAiv3zps2DDxhlobnXnz5tWGDx+uXbp0SfNXjDTmrbl8+bL2448/aqlSpQrirf/kk0+0lStXam/fvtXMQIIECbSpU6c69OTj/69fv7asw6QGzjud2rVra59++mmQ9xUuXFg8U8Sc0JgnJDjz5s2TyU7dA75hwwaf2k0YlOvGQtKkSYNFMhJCjAHedz2CGM4jOF58iUePHsm4Du3DmBARmyT8x1PGqZmFI3q9VXdFZVBbsWnTppbXKO+CXHJrKlWqZCn7AkX4/fv3B9kGgnF4bV0aJiyAkBtKUUCkDUqWULmEoE2rVq2kXMWBAwdUp06dVLp06cK0HYEAtAQgNAJlT+QKQWMAUS5r165Vn3/+ueQOzZkzR4RJ/BHkUC5YsEA0BFC2D+A6wPWgg/O5VKlSKmrUqEGuBZx3eo3SkK4XQggxM7gHdO7cWdWvX18EV3GvQE1nPPoSqNqyefNmlTdvXnXnzh3Rpbl7967RzSIkYIEoJsaZqBH/9OlTGW+h78AY05dATvf69etVkSJFZOyHHP4bN24Y3ayAI2IgXBAo8QJF9g8//NBtoy1FihSW17du3ZK65NbgNUQKcKOGOjwMIXvb4L3eBgbk9u3bVeXKlVX+/PnFAIMgBUrGTZ48Wd28eVMe8Zq1071P5MiRVfXq1aWk0JkzZ2SyBKWEYNBCITh79uxS0sNfjHoI/qF2aLRo0VTbtm1loiJHjhzyP1wH1oKIjq4F/X/OtgmLa4EQQnzNiYCB7YgRI+Q1artjwhdCs74ISllhUJ4hQwYR18K97dWrV0Y3i5CArHRRs2ZNUawH3377rQjfWdsjvmbQQ5waInwoffnZZ5/JbyDhh+mN+Xbt2kk9cRi67oISLoMGDVK+OEGBupKYoIC3FDdgRABg9h+RAfDEwyMfJ04co5saMEDRE+rAly9fltq9GBidO3dONWvWTGXNmlXKd1iXvfNF0M5Dhw6pv//+W8qcNGnSRJ04cUL+h+sA1wMhhBDnwBhGVBMmelH7efHixdKHooSUL4OyVqtXr5ZJ6b/++ksisjDeIISEDzCGS5YsKWWj4VjBuGvUqFFhUsHJmyRIkED6DkxWIlIY9oh1tSwStpjamG/fvr2UgEEJttSpU4f685InTy6l3azBa5QMiBEjhoSq4WZtbxu81xue+EWLFqk8efKoqlWrSriy7kU9e/asmjt3rnjoiXHgXOjRo4eE4P/yyy/SsWFg17JlS/HUr1ixQo6jL4KQ+cyZM6sCBQrIwBPnGWogu3Mt6P9zto03rgVCCPFF/vzzT1WoUCF18uRJSXvbuXOn1GP2F3CfWrJkiUSeLVy4UEJ9CSFhDxxx6DvgVMHEGmwXRHn6CxkzZpQxbvTo0cXhiGhVEj6Y0piHsQRDHmHCW7ZskbAxb4CZduSVWYN65HpeMYwhGELW22BWG6/1bTwFs+T4jDp16kikAbzuqPMIo3HChAlyERHfAeHqXbt2VRcvXpQwS4SXnz9/XlWrVk3SIjDQ83Vw7qIesT1wLu7YsSNItAGuBXj3MUPryvVCCCFmYtasWap8+fLq/v37MhbYu3evypcvn/I3ypYtq6ZMmSLPEWk2ffp0o5tEiKlB9A7y4pEei5Rg9B3+OFZC7rwexTl69GhZSDigmRCUbYgXL57UUL1586ZlefHihWUbvEZdxClTpoha4I4dO+Q1arLrNGrUSPv++++Dlabr2rWr1GNF7XZ7pelQCm7mzJlS4qV169ZSmu7WrVse/RaUj/vyyy8tqumxYsXS+vXr55L6vtnwFTV7T0AZkR49ekjZQhxHnDfffvutzxxHnOeo9nDx4kUpoYTXUOjXVZfxGteDtYIpyhhhHUrT4bzHtWFbmi5y5MhSXQHXS9++fVmazuRQzZ4EIigF26tXL8t9GvdsXyg7F1pQThS/B/34pk2bjG4OIabsOwYOHGjpO1AByBfKzoUWlL/G74kYMaLPKfD7CwFfms66JJv1gtrzOjAsQtqmdOnSWpMmTYKVskOZNxhlGTNmDLK9DurPo649tkGpuj179rh9EDGp0LFjRzF+9AsCNetREzZQ8Wdj3npyplq1akHq1E+bNk06dCNp3ry5li5dOjlnkyRJopUvXz5I+SRcB7gerEEJkhIlSsjkFcr0DR48ONjnLlq0SPvggw/kc1HWEbXsiXmhMU8CDZSfbdu2raVPh1GPdWYA96V69erJ70J5rP379xvdJEJMA66vLl26WPoOjPnNUtoYvw02C34XynLu3LnT6CaZejwVAX/CIwKAuAYOB0L1UM7mwYMHlnJeQ4cOVbly5Qro3YiQbihmomyOr4uBhATCzaFQqofbf/LJJxLWiBxLQvwVVPaAsi2UvKEfQYiZQaUSiJyiFCkqxkycOFG1bt1amQko2iM1DJVzoAEDTQCkUxFCPAficBDonjRpkrweOXKkVN4y25gdqaWo4oFxAfoQaDER74+nTJkz769cuXJFDFUMDmDII29m3bp1sgS6IW82UGf48OHDMkkDEUN0djjev/32m88K5BFCCPlvMN6gQQMx5CF8CwFasxnyAGJWELWCuC5qz+PedfXqVaObRYjfAj0iiCLDkMck4NSpU01nyAM43X7//XepvAWDFI5JVHki3ofGvI9c2LiodeMdxt2QIUOkvANOfmJO0NF16dJFjvNHH32kHj16pBo3bqxq1KgRTAWeEEKIbw3GUV0G/fgff/yh6tWrp8wKvEIYm8AjD0MeBj0Me0KIe8BZ06FDBzVz5kyZBJw3b55q0aKFaXcjSnOiqhg88hjXou+4fv260c0yHTTmDQZlyypUqCDl5Z4+fSrqlShL0a1bNykNQ8wPSgGhWsGAAQNkYIj6ojlz5pTSHsT/OXHihMy8o9wfPFzWBsGbN28MbRshJHSDcZRvQyip2UGIPdLD0qRJo06fPi2h9wgDJYS43nd8//33aty4ceKRRx9St25d0++++PHjq/Xr10vpY1TgqlixolT8IN6DxryBFzVypBE+j1qSqFM/atQoyUfLli2bUc0iBoGJm549e0qdUcxgoqOrWrWq6tu3rxh9xP+ABwsTdbjG27Rpo3r37q2WLVtm+T+uf1z3tuX7CCH+MxhHJFWgAEMeBj0M+wMHDsg96uXLl0Y3ixC/AA6bX375RZ5DX6Nhw4YqUEB5ZvQd0IWCgwMpxc+ePTO6WaaBxrwBPH/+XDVp0kTy6168eKHKlCmjjh49KoJomOknjsWGsJgZGPKoL/rNN9/I6x9//FEGTAjBJ/4DNC9Kly6ttmzZIlEWX331VTAthNq1a6uIESMG8dYTQnyXQB6M6yDUHiH3ceLEEUGrOnXqiNAVIcQxELj74Ycf5Pnw4cNNqa8REunTp1cbNmxQCRMmlHFu9erV1evXr41ulimgmn04c+rUKfXll1+q48ePi+GOwUHXrl1lUB9I4OYPwb+bN2/KcuPGDctzfbl165bM+mNbGPG6hxoeEYSjw5sNfQHM+KVIkcKypEyZMsjrtGnTigfU35g9e7Z4dKEmjPCkpUuXiq4C8X26d+8u4obQRID+Bc5ZXONNmzZV06dPt2wHUSn8b//+/coMUM2emHkw3qlTJ3k+YsQI1bFjRxXIwJBHqD3uT40aNZIohUAbxxDiCojC0433/v37qz59+gT0joMhX758efHM16xZU1KVmFYcuvEUjflwBCcsRHNwAidPnlxelypVSpkd5AUfO3ZMDBZ9OXLkSJB8YSjmWhvg+hIrViy5yLEgr/zMmTMiEgfDHgY+jH2IalhPAmBiANEPOpg0yZEjhxhOBQoUkCVv3rwizOHrIJQRYZyY+MC+wIAJk0HeBl5jGJXEOyBVBuc3lFv1Aa49Yx7HcteuXXLemgEa88SMjB07Nki0lO5hC3QgbAXvGpT9oSOAVEHeRwj5D9zvMe7HGAuOO31yP9BB1CJKMmOchApe06ZN434JzXgqPArfBxqnTp3Snj9/bnn9+vVr7ZtvvkGMrSxlypTRbt68qZmVK1euaJMnT9Zat26tFShQQIsaNar87ogRI2offvih1qRJE2306NHaxo0btePHj2sPHjzQ3r9/L+/ds2ePNnv2bG3q1KnyiNf6ur/++ktbtmyZ9ubNmyDfp/8fjzpPnjzRTp8+rW3dulWbNGmS3bbkzJlTa9y4sbTl5MmTljb4Gnfv3tXKly9vOX9+/fVXr34+9ufRo0d99vf7I9GjR9e++OKLIOsiRIigNWvWLMi6evXqyTnpCWPHjtXSpUunRYsWTStUqJD2999/O9z2jz/+kPM/Xrx4WsyYMbU8efLINWMNjv8PP/ygJU+eXNqPc+7MmTNutenx48dyjuKREDOA+4Pe937//ffsJ22YM2eOZf/gvk8I+R/Tpk2T+z6ujXbt2rHvsGHp0qUyFsf+GT58OE+bUIynaMx7GQyIDx8+rK1fv14M+ocPH2qlS5e23Ox69uyp/fvvv5qZePfunbZv3z6tT58+Wt68eeV3RooUScuVK5fWtGlTbcyYMWKIW09w2KNbt26W/WRviREjRjBj3vY9eG3PwNdf//nnn9qBAwe0KVOmaG3bttU++ugji4GfOXNmrVOnTtq2bdt87hihPe3bt7f8Thhd3jC+sS/xe3fv3i3HkXiH+PHjaxUrVgzRmC9evLiWJEkStz9/wYIFct5Onz5dJsRatWol33n79m2722NSa8mSJdqJEye0c+fOaaNGjZJrdN26dZZtBg8eLMY+rjH0YVWrVtUyZMigvXz50uV20ZgnZoKGvGsMHDhQ7kvokzAWICTQsTbkMXajs8Q+sA90m2HHjh3hfJR8GxrzPmLQ//bbb1r27NnlRI0TJ462cuVKzSy8ePFCW7VqldamTRstZcqU8hthTNSvX18MDUxi6NjzttuCdc4MeWtjHhMDzt7TqFGjIK/htbR+3bBhw2C/BccG3vsUKVLINgkSJNAaNGigLVy4UHv06JHmK+fVjz/+aPkdmIx4+/atVwz50HwOCU6RIkW0xIkTa8+ePXNozCPiInbs2OIBdxec05jp18FEDK7DQYMGufwZ+fLl03r37m05t+CRHzp0qOX/OO/h9Z8/f77Ln0ljnpgFREDpfW2PHj04GHcC+h9M/mFfIVro3r174XegCPExMNbV+w4a8s7B2AN2A/YVxiA3btwIp6Pk+9CY9wFgzCdNmlROUBiIhw4d0sxw0cHDhwsPobr4bZkyZdI6duwo63WPubXx/umnn9o1uHUPug62d9WY18ODXXmPowUGv6NByd69e8XzjVBkbBslShTts88+05YvX+4THvvx48dbZnxr164taRzuQkM+bBk2bJgcI0wQ6REPtsY8olYQYuZuaCqON2axEaJmDVJGMKB25TretGmTXMMbNmyQdefPn5fz6eDBg0G2LVWqlNahQweHn/Xq1Su54ejL1atXGWZP/B4a8u6DCXyMB9CPVKlShZMfRAt0Qx7ptfTIhwycHkjBxT5DJDOjRP8HjXmD2bx5sxY3blw5MTNmzCge+pBCzH2ZO3fuaL/88ov2wQcfyG/KkiWLNmDAAAnZte2oQgqVt16sPfTe9Mx78v2OuHTpkoRaIt8Y74H3s1evXtrFixc1I0HEACYZ0KZKlSq5FQpNQz7swfFAmgmMdZw7uF5gzMM4Rm4YPPf4X/78+YNpQITE9evX5bjr14FO165dxWPvCHjaY8WKpUWOHFk87ggD1Nm1a5d8pu2seK1atWTCyBF9+/a1e20xZ574K9CisE6L42DcPScG+hbsOxg1hAQSM2bMsPQdmARn3+E60LhCpCL2HdIAiUZj3kjmzp1rMbIwcL9//36QHHp/AtEE8CTi5owFYecIy0YH5Uiozh1j2laAy5OceYTMOwuxd+f7QxLVQ679119/LRM1MMRq1Khh2R9GgHMKxhl+CzyyrhiFNOTDDxjGyImHEY/zRX/Un8Pw9iSkzFNjHrPdZ8+eFe87IgeQH4+ImtAY8/TME7OKuTG03jOQqoP9h/vk5cuXvXyECPFNoEmji7nRkPeMCRMmWMb67orvmhF65n0gvAYDYN1baiuK58ugrRDF0kX7UqdOLcJY1jlwjoxuRyH17njGbScJrI1zW2Peth166LzteqjWu+OZdySqZx0SNHHiRIseAsLxMQg0Iu8cxpjuCcFki7PwJBryxoDrCeF2uD4++eQTCb1HiLynk0ChDbPXadGihUWkz9Mwe1uYM0/8FWjA4LriYDx04D5YtGhR2Y8ff/wxvZMkIKJxdSFl3FfpkfcM7LcKFSrIfoQjJNC1nB5Tzd6Y8Bpr5Upbo8ofDHoYtyibh99QuHBhCeW29vbi/47Caj1ZbI1ke+2x55mHR9JRFICter3+2tZj3717d5e+0/pzbT8TxxQ5xzDQsE3u3LllQBjeHTnE+xA6rYvi2ft+GvLmAh549DM66G9SpUrllgAeom4waWctgAePvfWNhAJ4JBCACCjKMaIPRbQXczZDX55X35+oHEOIWcEEuB4eXrNmTZ/QVfJnkNoKwXDszxEjRmiBzGMa8+ELcuJdKUHhqwY9aqwjZBzthwgFjENPc+EdeeeLFSvmlnfcnsCdtQCeI/E7d0PnQ/pOR7/LdiICEwzwYuJ/JUuWDBYCHdZAcVw/B9E26+NHQz786d+/vwgmhsSKFStkW3dBxQgY2jNnzhTtCnj7UU3i1q1blskr1MS2Lh2FiSd44LE9jHZMAFkPtBGBg89Au48cOaJVq1aNpemI6bly5YqWLFkySz/vroYFsQ+0QfTKMNDdIcRs4H6bJk0aOc/LlSsnaWck9EyaNEn2KdJIIaobqDymMR9+zJs3z5In89VXX4XolfUlgx4XCUKC0H6Uk5k1a5bdsBZ3cuGtUw2sF0ce/ZCMb089857izm+19dbj2K5evVo89Pg/jCHUAA8voIqut23IkCGyjoa8MdirKW+Pli1byvXnaX3WtGnTSngfPPXW5z487k2aNLG8hmhj5syZxVuGwTXCYDEhYA3OX1RxgGGDiQKUzIMojTswzJ74E7gHQ4RSj6x6+vSp0U0yDfBQ5s2bV/atK30hIf4EDHeEguP8hji0dTlmEjoQGaU7AL/88suA3Z2PacyHD4sWLbIY8q1atXI5NM9og/7JkyfivcXAHrWwR44c6XRG0dUScAhdd7StI2M+JOPbOiIgpJx5R6Hz7mL7uY6iDRx563EeIFojffr0cn5gIHPz5k0tPIDHFW2BMQlBFtaR921jvnnz5pKnaxZozBN/AffhOnXqSH+J+6DRFUrMCCbe9fvjzp07jW4OIV4DjjCc1xCSRVoJ8S6wkXQNE+gOBSKP3TDmI+CPIm6zcuVKVaNGDfXu3TvVrFkzNXXqVBUxYkSX34/dfvToUXXr1i1VokQJFTNmzHA5Clu2bFHNmzdXd+/eVZ07d1ZdunRRJ0+eVGfOnFFv3rxRUaNGVR988IEqXLiw5T1///23KlKkSLDP6tu3r0qTJk2Q9zjads+ePapDhw5q7969lnXYHutDAp+J9mXOnFnduXNHValSRUWJEiXI/2zbHFqsPxfY+0320H8P3ps+fXp16NAh9eOPP8p5MmbMGFW/fn0VIUIEFZZ8/fXXasKECXJO4bysXbu2ihQpUph+JwkK+oKmTZuq6dOnO901FStWlGvi0aNHptiFT548UfHixVOPHz9WcePGNbo5hDhk8uTJqk2bNipy5Mhq8+bNqlSpUtxbYUCrVq3kPpQrVy514MAB2d+E+DPz58+XsRzu82vWrFGVKlUyukmmpFOnTmrkyJEy9oe9FD16dBVIPHFnPBUeswtm459//tFixoxpEcvxVHExPD30CB9EGgDaDJE75M46y4W3zQm3t50jATt7nm1H4ffuhMXDI29bmi48sPfbXfXW4zVmFevWrSuvq1evHuZeepxLUNjH9yG0+sGDB2H6feR/IE1FX+CZh3aC9TrrBTXeO3XqJHnr2M4s0DNP/AGUPdLv4daij8T7oBJOokSJZF+PHj2au5j4vcYGvPF6xCkJ2/FEypQpZV8PGDAg4Hb1Y4bZh+2FnCJFCjm5UNYptIZleBj0KJuBkG8MXsaOHSth4K4o01sb2u7mqGO9K6XqnOXM+4Ix7+h39+zZ0+Xcen3i448//tCSJk2qJUyYUJs7d26YqN7rOfJr1qwRHQS9PBAVVsMe2zry+nNHC7ZBGJkrQnn+Ao154uugL0S1FvSNZcuWpXJ9ONaPxr2Pk8vEX8HYGX0GzmXo1FAsM+xB2Wfsb1QMCK90VX8cT7keF07U06dP1WeffaZu3rypcubMqRYtWmQJ9/YUhFwj/Cx58uRq586d6sWLF17b08+ePVPt2rVT5cuXV+nSpZMwlYIFC6qqVatK2Hj//v2dvh+h4vaeO9rGltWrV4fYRj2M3Vdx9PsGDhwYbN2nn37q8HN++eUXdeTIETV79mz18ccfqwYNGqiaNWuq27dve62t//77r/rrr79UtGjRJHx7+fLlEmq/ceNG1a1bN699D7FP48aNLQvIlClTkHXWS8uWLeX6O3jwoFyPhJDwYcCAAZJGhfDFWbNmuZUeRzwD/R3GTA8ePFA///wzdyPxS0aNGqW2bt0q46o5c+aEevxPQqZevXrqo48+EnumT58+3GWOCJfpBZPM5lepUkVmSaD2jFqI3sTbHnrUzc2QIYN446F6jRlFV8vLecMz74ponruCdb7kmbddkEbgKJXAdkFqxu+//64lSZJEPBUQqgstjlTr8T36965atSrU30O8K4BnNuiZJ74MqotEiRJF+kNER5HwA+lm2O/Y/0hzIMSfQGoqRJhxDqN0Ggk/IJ6J/Y6IRthJgcJjhtl7H9SPx8mEi/nvv/8Og2/wnkE/Y8YMKVeF0g7nzp1zu+QaFoQh2uKOeryj74PBG1Ktd3/ImbddXEkpsF5QBxy1d2vWrCmv+/Xr53G4Z0jl5zp27CjfgRD/27dve2GPkJDAZB9yRQMNGvPEV0H/WqJECekLP//88zBJcyLOqVy5skU7hhB/AX2Ffu4izJ59R/hTq1Yt2f8VKlQImP3/mMa8d8EsnG6EwdMZloTGoEf0gG64oVTe69ev3S4vF5LX3bquekh4u3ScUca89e92N1c+pP2L4w1hD7z+4osvtGfPnrnVLlfqyL98+VL78MMP5TuqVq0aMB0hCX9ozBNfRY+cQrSatyPriOuREXq5KdyzCPEHFi5cKOcsnGQsQ2dcZAT2P47Dpk2btEDgMY1573HkyBGpx44TaODAgVp44IlBD1EZCPLhRgmRO91g041QZyHgxYsXD7U4nSPcMf592Zh35qF35JVHHVJ4IBzt9zZt2lj2C34XBD6gQu/qQNMVQ14H55PeEU6ePNkr+4O4BiZoDh06pO3YsUPbvn273cUs0JgnvggikhIkSCD9H9XrjaVp06ZyHCpVqmRwSwgJmYcPH2rJkye3RFAS4yOkYbMEglPqMY157w3Cs2XLJicP8uU9DYMOa4MeM4UffPCB5F9Dud6R8Qn1TXc8x5gA8CWM9syHNlfe0aKX+Dt69KjoHCCXHoaftwx5HQxidc8UcxbDZyb5s88+k/JzzlTtMQFnFmjME1+kefPm0vdhspSVPYwFqX+6d/6vv/4yuDWEOKdDhw5yrmKM/erVK+4uA7l+/boWLVo0OR4bNmww/bF4TGPeuzPIqHN49+5dLbxxxaBHCTLUvMyRI0eQ/HhHZedgeIZUks6eoRnoxryjNAV3c+WdhdwD5FkjJwsiQY486J4Y8rZlVYoUKcKSTGHIjRs3RKMAQnipUqUS0Uw8h44FJmv00nWYYS5TpoxmFmjME1/j4MGDcr3RePS9yRWUTSXEV4GjDJPxOFc3btxodHOI1eRK0aJFTe+df8zSdKEHZSdmzpwpZWvmzZunEidOrMKbkMrWzZgxQ0rllSpVSu3evdtSCstZ2bl9+/Y5/L4WLVrYLamGMj6Bzps3b1wuv2dvP4K+ffuq6tWrOy2BlyhRIrV+/XrVunVrWXr37o2KE3bLz6FcR6RIkVz+DTiXUYopTpw4as+ePXL+kLBh8ODB6u7du6pnz57q2rVr6pNPPpHredeuXerOnTtq7dq1Ui4yRowYUjqQEOJ90Hd27txZHuvWrauKFi3K3ewD4L4WOXJk6fvQJxLii6Ck79u3b2WcXaFCBaObQ5RS33//vYoePbrYPBs2bOA+0TF65sEXOX36tBYrViyfyZGx56EfP368Je8aHld4duH1C4132JHH3hu5897A19TsHXnlHe1HKNiH5Jm3FxbfqVMnOQc89cg7+tzEiRNr9+/fD+XeIfbImjWrljp1astxQpQPPPG2s/7QMRg8eLBpdiI988SXWLFihfR1CM28ePGi0c0hVrRs2ZLeeeKzIGUVfQdSQk6ePGl0c4gV3333XUB45x8zzN5zYDDly5dPThSEv4bGaAorgx6Df7Tv22+/lfXOjERXFyjNO8oLh3HqDQG70OJLdeaRruDof1hvOwHg7Bg5U/mHmCG2adu2rbZly5ZQG/IA+w9pGfjcr7/+OlSfReyDEpbIl7cOK4Uxb5uvW758eS137tym2Y005omvgH4Oea7o577//nujm0NswOSKnjt/4MAB7h/iM2CMlTdvXjk3IbpGfIubN29aBJ3//PNPzazQmA8FuqEMMTmILfgSMNzhpbX21jZs2DBEQ92RojqMdFuleWc11Y3OnzfCmHeUK69HKzgrv2et5O/oc3AMQmLChAmS84nj6C3xJkwM4PthYHIg5X3ixo2r1alTx/L6m2++kX2Nm5A19erVkyoGZoHGPPEV9Og1aFfgvCS+R926deUY1a9f3+imEGJBH69Bj8oIvSwSMii/rZdbNis05j3k7NmzljJ0s2bN0nwN3UuLkmfr1q3Tdu7cGaIhD4+wM++yPZwJ6BnpoTfCmHekVG+9H0Iqv+fp/tQ/d9WqVVqvXr2CRGN4cyCFUKXwrNQQCKAKBtJedEaMGCHG/MqVK4NsB688jA2zQGOe+AJIR0uRIoX0b2PGjDG6OcQB+/fvt4Qyu1qSlZCw5PXr11JVCOfloEGDuLN9FKQp6sKmJ02aBkFj3gNgICHkFSdGhQoVfC4PY8qUKRaPPAwvhNz/9ttvYgg4M+RD8rg78raH5JEOBGPe0T5zFhbv6meE9Dl4H3Qbhg4dKoY8toWHXg8Z9cb5ee3aNfEK4zPnz58f6s8j/9GgQQOpa61HUuB6xY0nZ86c2rFjx7QnT55oAwYMkHVmUnSmMU98gV9++UX6tfTp08vgnPgu+rgLebCE+EpED2rLozw18V2qVasmx6ply5aaGaEx7wEzZ86UkwKeeb3Em6/w+++/y6Af+c26EYfcaYSZoHyZrUGPclf2PL6ueJl13PXmm82Y98bv91SDAP+zNuT10ihYP3LkSHk+ZMgQr/zOH3/8UT4Pgm2sv+w9MNGGa9baE1+jRg1LSTrrGvOIsDELNOaJ0Tx69EjS5NCv4b5OfBtEGeJY4Z734MEDo5tDAhhG9PgXu3btkr4jatSoUg7YbLA0nZugVFSnTp3keb9+/aTEm69w8OBB1ahRI1W7dm01ZswYKW8Fzp49q6ZMmSKl5n7++WeVNGlSWZ8lSxY1fPhwVbhw4WCfFTVqVKdl0azB+1GWw5aWLVuq7t27K7Njb58424e2oJyfo9JvOL/sHR+857fffpNyGzgPHz16pIYMGSKlUfQ2fffdd+qHH36Q8hwrV65UoeXbb79VCRMmVKdPn1bz588P9eeR/4EyWFevXlVlypQJUu6yffv2cq2iLBPKTi5evFgVL16cu40QLzFixAj14MEDlT17dtWwYUPuVx+nYsWKKnfu3Or58+dq0qRJRjeHBDDjxo1TN2/elLKxrVq1Mro5JASKFSsmy5s3b+TYBTRGzzz4SkgsdkWePHnCveyZM27duqWlSZNGK1CggKUknZ5Hbe1lt+ehtxc+70x93RHuePMDwTPvyu92Flrv6DP099jzyNt69JFmAS8vQuQRsu0t0cdMmTLRO09CBT3zxEhQalNPHUJEG/EPZsyYYUmL8JUKQiSwePr0qZYoUSI5D3E+Ev8A/bxSSkuWLJnpUqoYZu8GKGuAEwEhr3v37tV8BZyUCJfHCXr16lW7RmKhQoWcGvTOjEZX8799KXc+PI15ewa5K7nyjiYBnH2G/h5nhrytzgFuPLly5dIyZsyo3bt3L1S/FZ+VJEkS+exp06aF6rNIYENjnhhJ//79LRPzvqZ7Qxzz4sULLX78+HLsVq9ezV1Fwp3hw4fL+Zc5c2Y6NfwI2AMp/l/sdOHChZqZYJi961EJqmvXrvK8RYsW6qOPPlK+0q527dpJCP3SpUtV6tSpJQT7l19+CbLd3r171dSpU1WbNm3shtwjzBvvswZh23v27FGzZ8+Wx8GDBzttywcffGB3PcJazIq9fQ1q1KjhcXg+jpGj/Y33xIoVK1hofd++fWWxBW07fvy4WrFihXry5ImkYPz777/KU2LHji1h++Cnn34y9bElhJgThGmPHj1anqM/01PSiO8TI0YM1bRpU3k+ceJEo5tDAozXr19LeipAGinS4Ih/ECVKFEn/DfS+I6IKYJYsWSIGVsyYMVX//v2Vr4DcDxjpkydPVkWLFg0xh7tZs2by3NagR/5ZkSJFguW4I18befj28rZtCcTceUf72tF6VyY/cIwc7e/MmTPbzZH/5JNPHOo3oC3p06dXv//+u9qxY4fq3LmzCg1t27ZVyZMnV5cuXVJz584N1WeR/4HjCB0CXCtVqlRR5cqVs7uUL1+eu4yQUIL73/3796XP/PLLL7k//Qzcg8Dq1avVlStXjG4OCSCgZ3Pjxg2VMmVKGRsT/6JVq1YqYsSIauvWrerUqVMqINECODQD4TTYBX369NF8hU2bNonCNUrQOcqRt5d/bR0W7mrIvTv4Qu58eIXZhyZf3t1UBvyWbdu2adOnTw8SWq+/x5mqvl7bfuLEibIOxzw0QCGfIare4c6dO1revHklfQcK9s4WbGMWGGZPjEpLS506tfRfkyZN4kHwU8qWLSvHsHfv3kY3hQQI0GjIkiWLnHcItSf+SdWqVU1X4pI58y4wduxYOfAweFHz2VcE7xInTqxVqlRJcnac5cjbMxJh2LVp08auQY/1oTG8fSF33siceXdqy1tPwjjb57ohjzKDuKE4eo9tWwoXLhwshx5lC6NEiSL1zEMjHhUjRgz5TLSLeE7Tpk3FUMcgYcSIEVKiDvvU0WIWaMwTI4DWB/ot5E6+evWKB8FPQc6rXuPbl8SIiXlZtGiRnHMoZwn9IOKfrFmzRo4jtDegwWEGaMy7sIN0wa/x48drvgDEemrWrCntglfPFY+sPazf56rKfXh4q/3NmHfVIPcUW0Pe1bY4ipDYsWOH9uGHH2r58uUL1f7RJ4Oglk88B5NyGJBigiSQoDFPjLh3Zs+eXfotCIgS/46wgOgvjuXixYuNbg4JgL7jo48+slQLIv7Lu3fvpBqGmaoRUAAvBIYNG6bu3r0r+c26cILRLFy4UHL4x48fr5IkSaLWrl1rdzvUrnY1x92eKB7E02xF8VzBXu48cuZdybv3V9zRFnAHiNX99ddfKlq0aCK6GClSJJff6+j4b968Wc2cOVMdOXJEDRo0yOO2dejQQR6XL18u+fPEM16+fCn14xMmTMhdSEgYsmnTJnXy5EkR8mzdujX3tR8DDSCIEQe6mBUJHzAWxhgZYzGIThP/JWLEiCI0HbB9hxZgPHr0SIsbN65P1aFFeD3qW9auXdulOuWueNnDKuQ+LL3VvuaZDwvc9ci7ez4g1xC594cOHfK4jR9//LF8XufOnT3+jEAH+fJVqlTRAg165kl48/nnn0t/1b59e+58E3Dp0iVJUcIxPX36tNHNISamfv36cp4hLY74P7dv35Z0UxzTAwcOaP4Ow+ydMHjwYDnQOXLkkLAMXwjzQUhzSOH1jhZnRnVYhdwbhb8b854Y8u6eD3/++afUn4cx6el+WrVqlSX36OXLlx59RqAzZswYLWbMmNrVq1eNbkq4QmOehCfnz5+3GH6nTp3izjcJn376qRxTXQiYEG9z48YNi+G3f/9+7mCTULduXTmmrVu31vwdhtk7qSU5cuRIS4g4wjKMZsGCBVJLfsKECRJe76jEWKlSpdwulxZWIfck/ELrHR3f6tWr211/8eJFCbc/evSoGjhwoEeHCiXx0qRJI6XyVq1a5dFnBDrt27dXn332mZSeW79+vXr//r3RTSLEdKCMq6ZpqlKlSipr1qxGN4d4ia+++koecS9DyhIh3galmzEuQzpc/vz5uYNN1nfMnTtXPXnyRAUKxluz4cisWbPU7du3xVCpV6+e0c1Rt27dkkF/nTp11BdffCH52bt27bK7LWqJu1PXXAd1y/fs2SO5JPYM+hkzZtCgD2NCkyPv6PjCUHS0PW5MPXv2lON86NAht9uLSa4GDRrI899++83t95P/BgsxYsSQGvN4TJ8+vcqYMWOwBXWxCSHu8ezZMzVt2jR5/s0333D3mYjKlSurdOnSqQcPHqjFixcb3RxiMt68eWPJq2bfYS5KliypcuTIoZ4/f67mzJmjAgYtQEBYc6ZMmST8YtSoUZovgBx5hNffvXvX7XBqLI0aNXL5u8wQcu+PYfaehNa7WibPWfk8qAIj3B7q9p6kkxw/flw+E/n3OD+Je1y5ckVLly4d68wTEkZMnDhR+ijc130hZY54lwEDBsjxLVKkCHct8Spz586VcytlypR+NZ4krjF69Gg5vqjwhFRmf4U58yHUknz27JlmNH///XeQEgooi+GuMe+uEW5t/Nkz6I0QtTOzMe8NQz4k4UHb9davd+3aJcd1zpw5Hn1n/vz55f1jx44NVdsDkXr16kkub8mSJbWlS5dqx44dE2EnR4sn4LhgwiBatGhaoUKFpE9xBK71EiVKiA4ClvLlywfbvkmTJsH6l0qVKrnVJubMk/CiYMGCco4OHz6cO92E3Lx5UyaTcYxDI+hKiC1ly5aV86p///7cOSbk4cOHolmEY7xz507NX6ExbwNmZnTDxBdqSaI96Exy5swpRp6rauWeiOC5o3IPI9CX8Sdj3puGvKvYnkd4XbVqVS1DhgziqXeXESNGyOcULlw4TNprZhBxg5qnr169CpPPX7BggRY1alRt+vTpEkWBaxlGOtRcHan2jhs3Tjt48KB28uRJUe+NFy+edu3atSDGfOXKlWUQrS8PHjxwq1005kl4cPjwYembIGAF4VhiThC9qFfgIcRbopk4pzDZfvnyZe5Uk9KiRQs5zg0aNND8FRrzNkCpEgc1evToPhEyvH79emnP8uXLnYbXI0zaFWMeExTulItzFHJPz7z/GfK6J37q1Kl2z4158+ZJqDfU1d0Fxhzei885d+5cmLTfrMSOHdtSajIsgCe+Xbt2ltcIM0bI4KBBg1x6P87LOHHiaLNmzQpizFerVs2tdmCyAjccfYF6P84XPCckrPjuu+/kPPviiy+4k03M1q1b5TjHihWLfQrxCj/88IOcUxUrVuQeNTH79u2T4wynh79O+FLN3o7iLahdu7ZKnDixMhKoWn///feqWLFi6vPPP1dr1651uC0UyV2hf//+qnHjxqpIkSKi0h8S9lTuR48erXLlyuXGLyHeFrtzFxxrHHMc+5YtW9rd5u3bt/L/n376SQSj3CF58uSqbNmy8nzlypVeaXOgAAEWiDeFlXjP/v37VYUKFYKIFuL17t27XfqMFy9eyLmaMGHCIOu3bdsm4phQBocq7P37951+zqBBg1S8ePEsC8RFCQlLcP7rwkbNmzfnzjYxpUuXVtmzZw88MSsSJrx7904qJAD2HeamYMGCsuB+MX36dGV2TK9mj7ImKP8GWrVqZXRz1KJFi9TBgwfV4MGDxaiHIe4Kffv2FVV63Qh3hKvl5nSV+9mzZ0unhhvmzp07ZZBPfN+QxzHGsQ4JqNv369dPysyNGDHC7e/59NNP5ZEl6twDCrnbt29Xx44dU97m3r17MihJlixZkPV4jQoZrk4EpUyZMsiEABSk0R9s3rxZ+ge0H2UK8V2O6NGjh3r8+LFluXr1aih+GSEhg74I1wDO34oVK3KXmZgIESKotm3bynOU70UZQkI8Bfc23KMSJEigqlWrxh0ZIGXqJk2aZPrywKY35mHIw0CFsYp6kkaCGaLevXuLgRQ1alSXjDHbmuM1a9a0GOEw8B1t5wrw0KMcHry78MrDE0uD3vcNeVePMY4ttoOB165dOzV06FB19+5dt75HL4GH0oiBVLMztDRs2FB16dJF6szjRnLlyhXlK2AiEf3i0qVLVfTo0S3r69atq6pWrSp9QfXq1cVoQtQOvPWOwPkeN27cIAshYYnuZWnSpImKHDkyd7bJQWRZzJgxZWLUUeleQtzpO1B61/reR8xJ3bp1Vfz48dXFixfV+vXrlZkxvTE/ZswYi1ces7xGMnXqVHXhwgUJTXVkjCH0PqRQ+iVLloihBq+ZJ7Xn7YF9Q4PePwx5Z8cY5xgmenB+oEa8fs6gjQjFHjBggFvfkyVLFlnw/o0bN3qp9eYH5wC82whT//rrr1WGDBlknb3FXYMEqUJ43+3bt4Osx2tMyDlj2LBhYsxv2LBB5c6d2+m2GTNmlO86d+6cW+0jJKy4ceOGJTWtWbNm3NEBAAbj9erVs3jnCfEEpL1hAhswxD4wiBkzpkz6BkLfYWpjHuE0CGmHFxzGjZHAGBo4cKDMCMJodmSMuZKbDI/+tGnTZELA9nchfBYed0+gQe8fhryt7oH1sW/RooWcWzDkrRk7dqzMUqJDszUCXfXOr1692gstDwwQDurq4m74F/qzAgUKSMigDj4Dr4sWLeq034B2wrp16ySXLCSuXbsmkxEpUqRwq32EhBWIKMG5jig7TDKSwAqX/f33392OLiME/PHHHxIdi0nsfPnycacECG3/P00H41dfipD0NqY25idPniyPCE03WvgOHcn169ctBpg9Y8wdTz0Ez+B1hdGGkF54YxF+D69baKBB7/uGvD3dA+tj7yjqI2/evNJGhH17kjePztDseUfeAvvJncVdOnXqJOKVs2bNUidPnpTBLkSidG8l+gbks1ufKz/88IOEGaZPn15SL7Doooh47Nq1q5xHly5dkokB5BRmzpxZVapUyYt7hhDPWbhwoTzWr1+fuzGAwOQl7rGBImZFvI+uncW+I7DIli2bCDljnKXbhKZEMymo5Y66y/iJmzZtMro5WpEiRaS2vKPSYigvF5pa83i/N0vLYf+hli/K6D1//lzzBXypzrwRdeRdxVG5Q6xHvd7kyZO7VXce28aMGVM+AzXNiW+AcoNp06aV0isoVWd9/ZcuXVpKzemkS5fOYb8BXrx4IaV6kiRJIrW7sT3KVt66dcutNrHOPAnr+tAol+nueUn8n+nTp8vxz5Ahg5TiJMSTMrsXLlzgjgswFi1aJMc+WbJkbo19jYZ15jVNLlgcPNRPN9rY+vvvvy115a0NeOvBt7N68+4s3bp1M61B7yvGvC8b8jo4D6zPi08//VTOMRjjeP3bb7+59XmYiML7Jk2aFGZtJv4PjXkSVgwaNEj6oPLly3MnByAYg+gOmjVr1hjdHOJnE984bzDpTQKPN2/eiBML58DChQs1f4F15pVSixcvlsiDGjVqhHv4s7069xDAQriydW1w67rwrobdIyfaG6XpXIEh974XWu9uCL51iDzON4Rlo5wTzkl30CtBUE2YEGJkmCy0P0hgilk1bdo0IMSsSNik57DvCEyiRIkiqclm7jsiwPpXJgM/CaJNEPqCavPHH39sWFtQ3xv1cPv06SN5GzCo7CmQQ9RKF8VDzjNyw/STzxoYaFCzd1bWTlcz9+b+PHr0qOTYlihRQm6qRhnSa9asUVWqVJGL04jv9wdDXgeTOvbON1RTQD41jumHH37o0mdBNA3VE6Bwfv78+TBorX+D/YLJr02bNsnEHV67Ct5nln2K8oXx4sWTmvMsU0e8xalTp6S8LCo/4L6eMGFC7twA5PTp05IDi8osKDeVNm1ao5tE/EAIWz9P8Dx16tRGN4kYwNWrV0UvCLnzJ06ckPuJmcZTphTAw80eS4IECVSZMmUMbcvcuXPFMMeMsiNhMl3MzrrsHDzw9tTK4cHXva6O6sx7UprOGfTQ+58hDxydb8mSJVNJkyYVATVXgUo6zgOUVsSkDgkKROOw4Dyxfu3qQggJ2bOGqCIa8oFL1qxZVbly5WRAPn78eKObQ/woSrdkyZI05AOYNGnSWCozobqT2XCvwLGfsGrVKnmEGrMRHlxrjzYMJijSo/6zK0Y2PO7YDp56qPBjgVGGddYl5/Acy8uXL4N46UNTms4Vgx7s3LnTUA99eOOPhjxwdL7lyJFDJpdwbmJiKHr06CF+FmYHcfyPHDkiofZffPFFGLTYf4GXCKRKlSrIa0JI6O+jujFfp04d7s4A59tvv1VbtmxREydOVL169VJx4sQxuknEh2HfQaz7jhUrVqgZM2ao/v37G17lzKtoJgOibVmyZBGhg1WrVhnalkOHDgVpBwTIIETmbUE7e4J6YYWRonhGCOD5g9idO0J43bt3l/VnzpyR11D5dJW2bdvKe7p27RqGLSb+DAXwiLc5ceKE9Duo2vDo0SPu4AAHSvbZsmWTc2L48OFGN4f4MFeuXJHzJEKECKJoTwKb9+/fa/nz55dzon///pqvE9ACePBUnz17VmZrK1SoYGhbMAOEPAfk7OvCdxAiAxAmQ658SLgiaAdPPELzw8IjH8gh9/7qkXelFn2WLFlU7ty55Rx1FdSpB8i1J87ZsWOHwzQHa9BXYVtCiH2WLVsmj+XLl5cIIRLYIF++c+fO8nzUqFGW1CZCHPUdEPDFmJUENhEiRFBdu3a1hNrDXjQLpjPmz507Z7nxwwgzEhhKlStXVgcPHgwmWAejHuJjrgjVuWIUhCeBYNCbwZAPabKnatWqch6+ffvWpc/R0yxozIcMtDowkRIS6BcgjEkIsc/SpUvlsXr16txFRGjYsKFov0DUSg+jJsSRMc++g+h8+eWXIoR39+5dqe5kFkxnzMO4BKVLlza0HTdu3FD//POPGEyOjPGffvpJ/fbbb5bXMPzDQ9DOG5jZoDeTIe8MnJsPHz50udycrnx//fp1eR9xjgkLhRASrly7dk3t27dP7jforwgB0Hnp0KGDPB86dCj7WhKMBw8eqO3bt8tzGvNEBxVROnbsKM+HDx+u3r17p8yA6Yz5P/74Qx6NVrGHCB+MQJTzgpq9PfSQe+vyX7aElaCdNzCjQR8ohjwoUKCAHLuVK1e6tD1SRtKlSyfP6Z33DpgUcUWAkJBARE8DQjUNhskSa7766isVK1YsEWW1N3YigQ3G4DDUMEbNlCmT0c0hPkTz5s2l2hkiuVFBzAxENJsnbPfu3XKQkA9s9CAEiu8oowNlek9BbjO89yHlzRuFmQz6QDLk9dxDVFpYvny5y54Nhto75sqVK5YFPHv2LMg66wUl/jCJsmHDBg40CHEAw2SJIzDOa9u2rTz/8ccf6Z0n7DuIS8SOHdsS2fPzzz9LqUt/x1TG/L1790TQAPUkYagYxfPnz9WmTZssYYGhCZO3rkEPL70vYgaDPtAMeR2co5idPH36tEvb05h3DPKwMmTIIIseJaS/tl0wSYfQPxj8yP8khASPWtm6das8Z5gssUeXLl0ksgnirps3b+ZOIgLGoHq0Ro0aNbhXiN0ydRBKR2SPO0LQvoqpjPnDhw/7RIg9DPnXr1+L1xPYC+OAIBkU7d3BFWV7o/Bngz5QDXldKDJGjBguh9rDCAWsox6ctGnTWhZcDzFjxgyyznrJnDmz9FNQVNXVVQkh/7FmzRoR58yZM6el3yHEGow3WrdubdEgIgRs3LhRHHu41+pVeAixjez55ptvLH2Hv2scmcqYX79+vU+I3yFXJ2vWrDIAgfFtq2QPEDpvW6bOFePe15Tt/d2gD2RDHsCQR+lEV415eJ/BpUuXwrhl/gf2CSY5sODGUKtWLctr2wWREPAkff3113LdEEKCwhB74grdunWTVEaU+NQFz0hgY9138P5KHAEhPOhuHDhwQCaP/RlTGfMwynBg8uTJY2g7kLevRwe4YnzDqEc4vSs16H1R2d5fDfpAN+R1MPmFyguulKjTjXnkffv7TGZYMmPGDNWiRQujm0GIXwLRWH1ynir2xBmpUqWy9LXInSeBDfKfdcOMfQdxRuLEicWhYgbdjYhmuoAPHTok5bOMNMqQL3/y5ElRCvfU+NZr0GPG2V+U7f3NoKch/x84VxGShvM2JFKnTi16FK9evVK3b98O02PkzzRp0kQVL17c6GYQ4pfgvvH06VOpJV6wYEGjm0N8HIyNokSJorZs2cLc+QAHjok7d+5IPjT0swhxRufOnSVCde/evS5HqPoipjHm7969K0ajLtBlZN4+JhZ0Yx64mxuve/SHDBkiwi6zZ8+Wx8GDByt/wZcNehryQcmXL5887t+/P8R9hwETPCGAofaOefTokQirQMTLGkyANGvWTPY5hHmwDSEkeKoaQGlXI8VsiX+Akqm6sn2PHj382sNGvNN3VKxYMVSVpEhgkCxZMvXdd9/J8549e/pt3XnT3CX1cHZ4tI0EBhE6ELQDs8VQobcOn4dRDvG7kNA9+vDEY3t/8Mj7g0FPQ95+/Xicb64Y89ah9hTBc8ygQYPEYLfeRzj3UK4Sk3OY9ENJwLJly6obN264fR4TYmas75mEuEKvXr0kzXLfvn2mqR1NPO87PvvsM+4+4hKIgoYg3vHjx9WcOXOUP2I6Y95ozzyEFNCGgwcPBhO+Qyczbtw4Eb/TQVkqW+PeX8Lp/c2gpyHvGESS4Nx1Bd0zf+vWLS8dGfOBklrwFuXPn9+ybvHixer8+fOqaNGiItCDPE947sePH29oWwnxJVAqE/fzyJEji3eNEFc9bJ06dbIY9q5owBBzcfPmTcs4BlE9hLhC/Pjx1ffffy/P+/TpI9XI/A3TGPN6vq8veOZhGDkSvrM25AFmgWyNe38Kp/cXg56GvHNwzkJzwpUQoyRJksjjvXv3vHR0zMfVq1eDldNC+B+uhenTp4swz5QpU8Tg1z0JhJD/PGulSpWSqCFC3Kk7nyhRIqkWMnPmTO64AEMXvoOgMSZ3CHEVlKlLmTKliDtPmDBB+RumMeYRqpo0aVJZjAIiYidOnBDDCGq8ngDj3ldryfurQU9DPmRwzuKYnDp1yiUFUEBj3jEPHjywTHpYV7nImDFjEFFMeO5h+BNC/gdD7ImnYPIHXnnwww8/iIgiCRzYdxBPgQhev379LHXnMYbzJyKaKbwmZ86chrYBebDwbMIwCo3whi/Xkvc3g56GvGMwaYSoEDy6I4JHYz5kUO4QIng6SEm4fPmy5Mzb3kAwCUgIUWJ8bdu2TXYF8+WJJ6DUVKZMmaTPhXYJCQwQGr1hwwZ5zr6DeALEiRHdDUNeN+z9BVN55tGBG8mxY8fEYMXJ4MgzD0G8kPD1WvL+YtDTkHeMLs7YuHFjeRw4cKDKkCGDnMMhQWNeuXQN79q1y3J+Q5AJ576tMa9HFBFClNq0aZP027iXm/k+SMJ2InXEiBHyfPjw4erChQvc3QHAjh07pDQ0xpbWWjWEuAp0WkaNGiXPoWUEQTx/wVSe+RQpUhjaBn1gjpuJo9BZqNkHividkQY9DXnHwBNvK86I1/HixXNJWZ3GfMjUqVNHPX78WJUuXVp17NhRxFXQLyBXXgcCTRDrsc2tJyRQsVaixn2CEE/4/PPPVYUKFcSp0rVrV+7EAOo7qlSpwnKWxGPKly+vqlevLlHWENT0lzKXpjDmX716JeF5EC/wpwmFQBC/M8KgpyHvWRoHUkNwDodEwoQJ5dHfcorCk2+//VaVK1dO0hZ+/fVXCaUfOnRokDz6jRs3qidPnqiSJUsa2lZCfAEMmnQBK4bJktCOL0aOHClGHaKitmzZwh1qcpgvT7zFsGHDZDyMtI2VK1cqf8AUxvzdu3fl0WjPvLUx70lZDLOK34WnQU9DPmQcha8izN4VYz5mzJjyyFxvx+BGAGN9+/btatGiRaKu3K5duyDbRI8eXQacmMQjJNBBOVf0P6gVDiV7QkID0h2/+uoreY5HOH2IeR0UKGkZJUoU9fHHHxvdHOLnZMqUSSIqdZX7Z8+eKV/HFMa8HhpstDGPdujRAQiV79atm9ufYVbxu/Aw6GnIu4a9cxPpHcgzcyXMHqJtgMZ8yOc2vO5ffvmlqNjbUrZsWfHgYxKFkEAHpRsBBuNISSEktPz8888ytsC4KlCiHgO570BaW5w4cYxuDjEBP/zwg5QORqm6vn37Kl/HFMY8VKKBr4XZ16xZU04CLMiVt82Pt0cgiv54w6CnIe8eQ4YMkXNy9uzZ8oiBDs5d5HmHZKTrxjzyEV2pS0+UeA1Qmi7QJusIcRWGyRJvEz9+fDV69Gh5DmV7V0qvEv+DfQfxNogQ0+vNQxQP+ka+jCmMeXgTYRAmS5bMsDa8f/9eSqHoxryuFt6/f39ZOnToECw/3p531Ozid2Fh0NOQ9wyca5hg0s85/dwNKdReN+YBQxcdg4kO3TOUNWtWUbK39g7NnTtXFStWzK8UUwkJC+7cuaP27dtnEbAixFsgMgoaDJh8btOmjYzViHmA7gyU7AG1Nog3Qbo0xIzRZ7Ru3VpEi30VUxjz9+7dU4kSJZJ8GaO4f/++HGgYRPbUwvfu3RssPx6ee1vvaCDjiUFPQ957eGLMh2VpQX835KHIjaichw8fquzZswdTRS1evLhc9xBoIiSQWbt2rVwfSPUxOsKOmG9cMXbsWNF6gdEHQVJiHqBNg7E3qsKwMgzxNvDKo9ITxIxRwtk0xjw6Q5T9wA0XneSyZcuC/B9CAe3bt1epU6eWQX+OHDnUxIkTQ/zcI0eOSH4pRKHSpEkTzBgGixcvVtmyZZNtYPTpyreYcUVIhJHoBhD2i6uhtNjO1jsa6Lhj0NOQ9y76IDqkvHkoBEPgzSjP/PXr1yWyBRN46GNwvvzzzz9O34O8J8zaY0CH8pEoV2Q7y7pt2zYxJpCvmzlzZjVz5kyP24g+b/369ZIXf/HiRXXs2LFg26RPn16EVqCYSkggo+e80rNGwgL0tag5r0dAQmyRmKvvwOQ5Id4GtggmAwGirHft2qVMYcw/f/5c5cmTR40bN87u/1GXb926deJ5PnnypPruu+/EuF+xYoXTMJmKFSuK2ABmP1DCqV+/fmry5MmWbf766y9Vr1491aJFC+mIUQcQCwbJGJTDwDcS/AYQN25cl/PeAzE/3lsGPQ1574PZR4Ayj64cIyOAlxsebUThwJt34sQJGaQlSJDAqZdcD7NEPzJr1iwx1Pv06WPZBgY3toHxfejQIem3WrZsKQa5J+A7UMIPE5DOPI3w2GOiwRPQB2OQir4Pk4G20T/WTJkyRSZLsZ+woAaz7fbwjGKfIEIDkyTY5uzZs8pXgbYDNRv8H/Tl+oQWjXkSViDEHmNGnG8YS2IsS/wbhD+znCUJa+A8atCggZxveHz06JHyObRQgLcvXbo0yLqcOXNqP/74Y5B1+fPn13r16uXwc8aPH68lSJBAe/36tWVd9+7dtaxZs1pe165dW/v000+DvK9w4cJamzZttPbt22t58uTRjGTr1q2yP86ePSuvu3XrJq/1BW21fo3fB/bs2aPNnj1bHu29drQuEHj//r12+PBhbf369drz58+1N2/eaMuWLZPn27Zt03bv3q29ffvW6GaaiogRI2qTJk0KcbsoUaLIeXzt2jUtPMF1U6JECbfes2bNGvldt27dsqybMGGCFjduXEufg+sVfZc1derU0SpVquRRO+PEiaN98sknQdZFiBBBa9asWZB1DRs21KJHj+725y9YsECLGjWqNn36dO348eNaq1attPjx42u3b9+2u339+vW1cePGaQcPHtROnjypNW3aVIsXL16Q4zd48GBZh2sM113VqlW1DBkyaC9fvnS5XY8fP5bzAo9hyY0bN7SCBQtqXbt2DdPvIWHPli1b5JxJkiSJ9u7dO+5yEmbcu3dPS5kypZxvzZs3lzEG8V/27t0rxxL3W2v7gRBvgzENxkM43zA2DI++w53xlNdz5iHoBC88QmFh72/dulXCyeF512natKkqU6aM5TVUnlFXVg/dBZUqVZLazPDE6dvAU2QNtsF6X/DMY7YXOMrbt82XxWtdJK9x48byCO+a9Wv833YbvA50Dz08igiF/uijj1SkSJGMbqapiBw5suVcdoYuIoSQ+/AEfUvBggVVrVq1JFw+X7584nW2BlE98FjroI/AeWQtkIm+A9E0uvics/7FE+AxdqW8FtJzPCnDNWLECNWqVSvVrFkzSyoTUgimT59ud3uI7X399dcqb968kqo0depUOYabN2+29EfIDevdu7eqVq2ayp07t2h5IOXCNpXKF0CoG1IrEMU1bdo0o5tDvKBEDeG78O5PSGCB1CxEjWJsgb5yzJgxRjeJeKHvQDlLa/uBEG+DqOt58+aJzbF8+XKfi1qM7O0PROcI1T/kzMMwwM0Zg20Y6zoI47RWFIUKvG2tZX3gjf8hLBSPtmr1eI31MD4wIHbFCAkr9NxhDIphAGA/WAuFHT16NMhr/Sbi7jZYh1AxGDSBAowPnC8IkQa4mGCUYB2Vab0LrtnXr1+HeC3p4c14DIvrDoMttMWWCxcuSLkQpPP07NlTFLBRKQI38iZNmsg2iRMnllx0HUd9h/4/Z9vA4Ec4t/U16ApIGYIOiDOw35Am5K5oD9IFkI7Uo0cPyzr0s5iMcHXyARNj+H6kAuhpBtgH1hMaSLvABCM+s27dunY/B+cKFtt0o/BQqIa4IHLY2rZtK8fbeoKY+A8sK0XCE6RSYRKwS5cuqmPHjtJ3ML3Dv/sO5suT8AAOVdizhQoV8rk06TAx5qHQDA8aBrQQzGvXrp3kjeoDRdT79LaaPQaReu6MEehldRCJgAHy/Pnzw7SMj5G/1WgePHjgcS4zcQ4mR2BgOju/rKNMtmzZYsm19ya4hpDjba99mMjSVUXhmUd74ZnWjXlodGAxksqVK4tqMnQ/MLnpqK+8e/euGKPu9neYRLE3+eBqHWVE+Fj3yfqkhqMJU0egL4dBbQQw5hG9tWDBAqkMgkkHlAAk/sP58+flnMXEnXX0HiFhCSaDcd4hQgkTlYj0QTQS8R8Q1aYL36KEGCHhAaIhfRGvGvPwYMFbtnTpUstMJzpICEoNGzYsWBirDsKob9++HWSd/hr/c7YN1idJkkQGt0bWp9XDveEdwuC3fPnyYfZdCI0NJM88PIgIrYf3EWkXiMIoWrSohBWTsEltcHYtWYuOYQCO0EVv40hgD1E9CCu3FZH7448/HH4W+ghbsTdX+xeEVrnrlQdQy4fIHkLbIdJXu3ZtWQ/RpQMHDqhFixZJqDyiCMJ74gElMGEAQ70/tOlJiA7AwFgHk6qoRhIe4ByZMWOGunTpkkwgI9Ry+/btwaK8iO971kqUKBEmk4KEOOo7ICCKySQ4YHAfQ3+IKEDiH0AAF2AsrN/HCQlUInvb6MJim/cGQ9dZODQMs169esl79Zxz1I6El0VXqcY2MGKhMq2DbbAe34f3GVlnXh/w4yaBNn3zzTdByushXBX15609Y/BwursN1uHzAwWcE4h6gNGB0Hp45NFxYz9hAEiD3rvo+hPOriWEeevEiRMnXK87KNnDG2sNNDkQBeQIXC8DBgyQiBbk2et9Bwx1fWIA29hGI+j9iydg0gG55vAYjx49Wrzw6Bt+//13WXBdx48fXyYhYNC7A7ZHn+poctMZmFSFMb9p06Ygnij9ffgMtN36M3HdOQITa57k/HsLnKvIXytdurR42hBCi2iwtGnTGtYm4joMsSdGgdQs9L/oMw4fPqzKlSsnk4GsVe4fsO8gxAp31fWePn0qishY8PYRI0bI88uXL8v/S5cuLarQUHe/cOGCNmPGDFFrhmK9zvfff681atTI8vrRo0dasmTJZN2xY8dEqTlmzJhBVLV37dqlRY4cWRs2bJioMfft21cUtY8ePap16NAhmHJ0eAN1deyPM2fOWNZNnTpV1Pbx6KpSPdXs/wPq9daq9bqaPVRLrVXuiXeAOifO4cmTJzvd7ubNm7Id1NnDWw0Y6rXoBwYMGCCVI+bOnSt9xZw5cyzbjBkzRitXrpzlNc6dDz/8UKtYsaJ26NAhbd26daKc3aNHD8s26KvwOVBHR/8C5fdIkSLJtqEBCvpQ4M+VK5cWK1YsLUaMGNoHH3ygffvtt6GqBFCoUCGp4qEDFfBUqVJpgwYNcvieIUOGiII/ridbcByTJ08u/asOFFSjRYumzZ8/3+fU7O2p22fJkkW+O2PGjNrVq1fD9fuJ+2AsgYoMOGa45ggxgrt378r9Aedh6tSptfPnz/NA+DgYA8aOHVuO2b59+4xuDiFhgjvjKeVpCTbbpUmTJpaBPsoeofwHjHiUlxs+fHiQQT+2hdFvDYwzlJzC4BGDUpRJsmXRokUyEMYAABMGq1evlvWdOnXSypQpoxkJJhuwHzAZYa80HV6HJ/4+KWBryOvrYMzj0bZsHQk9//77r5yrKHfmDBjRejkYI1i5cqUMvtBXZMuWLdjkAyb60qVLF2TdpUuXZMIPxnTixIm1zp07y++17dvy5s0r/QsMQkxE+iqY8MTvnzlzpnbixAmtdevWUppOL7+HiVFMmuqgP8Xv+v3336WP1hcYVNbb4DOWL1+uHTlyRKtWrZrPlqazBwx4HDd8Pwx7GPjEd0FZW33yhSXCiJGg38S9BOcj7h24XxDfZePGjXKs4ARkOUtiVsLUmPdFYCijjruRnDp1Snb69u3bxVi2N+HhTSPamUff3kSC0ZMLoTXkbY15QIPeu+ge9xUrVjjd7sCBA7IdJuyIcSACIW3atGKkw1Nv3b9gslSfYAUYoNrrkzDxoYPr6YcffpABEiYKypcvr50+fdqtNhlpzAMMwvXfisG5PrlBfI+WLVvKcfrmm2+MbgohjO7xI7777jvpO5o1a2Z0UwgJM9wZT3ldzd6ofHWI7xmJnmeKusyOSnUhtxd58e6C/HC8F6UQ8H7kzVvn0aNMgq3AlzXW21qvQz6vJ+0JS7DvUILOlTryulgbQB165tCHDpy7wDpn2h7Pnj2Tx9ixY4fyG0locKbaDzEnayASFxK4nn788UdZ/BVoJ6DCgp5DDyFS6ANQIMm3gCNB16hgWTDiC+C+p/cdKIGKXHq8Di9BT+I67DsICUpQpTo/BeWTjDbmIQQGMTaUy3BUf9Deehjqv/32WxDhO+t1MNxR27Bx48by2KhRo2DGuTND3hmYIPBXQ97WoMdgHQY96mcTz8C564ox//TpU8s5T4ivkTFjRhmEo/Te8ePHValSpdSVK1eMbhaxAuUkMXmIiXgYT4T4AqlTp5a+I3369OrcuXNSHhWPxHe4ePGijF1RzhIVTAghYVBn3ghgfBhtzMOoRDtgEMHb3a1btyBGN4xwXa1e97IvWbIkyDZ4jyNPus6cOXO81mZHkw7+Ysjr0EPvGbYRHzh3sS9ta43bgvKAAGrwhPgiUKSGqj0882fPnpVBOaqhZM6c2eimEaWkKoleyjW05REJ8XZ0j3XfgclAVDbJmTMnd7QP9R2oNMMxCCH/g8a8F9GNeTBkyBDxPOjGNzztKKnlbji8N3BU4s5XQuxDY8jr0KB3D9tUDUwkIWw+SZIkMuPtDL0kWkhGPyFGkilTJvXnn3+qChUqyKQVDHqE3HNQ7jsD8kqVKhndFEKCgdB6GPTw/CKKBNEjOGcLFCjAvWUw7DsIMWmYPcIpHz16pN69e2d4O/S8Y3g9bb3onobD2wIvvzW2RjkMtT179qjZs2fLI+pKY3LBdp1ZDHkdhty7Bs5N24kjvD548KCcwyGhG/PMQyb+MihHKs6tW7dkUL5//36jmxXQIBUKkyyAxjzxVXB/g/ZIwYIF1f3796UO/a5du4xuVkCD8SIirAD7DkJM5plHp/v+/Xt1586dEPN9wxJ899GjR8M0Hx2GOgzxdu3aBQmRtg2Ztmfk47WveOO9bcjr0EMfMo7OzcuXL7t0/dAzT/wJRJBgUF65cmW1b98+GZSvXr1aBDNJ+LN9+3b1+vVrlTZtWpU1a1YeAuKzJEqUSIzHzz77TCagKlasqJYvXy7RPiT8gSMKmj04Lvnz5+chIMRMnvkoUaLIxa17xX0hzN6TfHQY6nrevPU6ex51GOV6Hr7+Gt8JQ81aTM9XCQtDXoceeuc4OjdfvXpFY56YkoQJE0qIPfJfnzx5Il4dvCbGhcnCMEJfTYgvg7zsdevWyfmKqBJUX1ixYoXRzQrovgPpDxEjmsJ8IcQrmOZqgCF9/fp1w0M6Ee6PRRfB80Y4vK3h7orqPV4HoiGvQ4PeMfbOTby+d++eS2V46JkPGVyDc+fOdVimkhgzKF+7dq146DkoNw7mvBJ/A5WKYMDXqFFDvXnzRsr6LliwwOhmBRzsOwixTwQUm1cmAAO06tWrq7Zt2xrWhhMnToi4EkqboEYpmDZtmoR2wmht0aKF3XB4bwiY2QOTAb4UVh9aQx7vRX3RKlWqSDSGK+D0RuoD8mVZhz4o1uciSvJgWbp0qVxHIaW1wKBH7jFD3ewDrwEmlCAo2KpVK+mXUqVKpcwOvN7x4sVTjx8/9lmlYYR416tXT8519D94/Pzzz41uVkCAEoFQC8f1gcnDBAkSGN0kQlzm7du3qmnTpjJRi/593rx5qm7dutyD4QD6i6RJk8qYDo47V/R9CAmU8RQ9814E+X+xYsWyCCzB4G7ZsqWaNGmSPOoK8va87K6ge+IxQeCK8r0Z6siHFnroHWN9LurnbEhqvc+ePbN45jNkyODVY2Um4LXB5BF0PAYOHCj7qlatWpIvTIwF/c+iRYtU/fr1RTS1du3aIpJHwp4NGzbII/ocGvLE30ClF0RNYjwHoxKRkLq3mIQtSIvCPoeYKQ15QoJCY96LwDjNmzevGEaOFMPdyWd3FEaPG0kg1ZEPLTToQwbnLLzI8M4748KFC5YcZA7GHQMDEYY7okLgmcd5/8cff4j4Wu7cuWWCD6HexLhB+cyZM8UjD60IPB46dIiHI4xhmCzxdxBVMnHiRFWnTh0Z1yDkHlGQJGxh30FIABjzmKm7du2a0c0QzyYMI0de8Z9++ilEwx3Y5sC7W4PebHXkQwsNeufgnMW5G5Ig1fnz5y01vEnIIO0GAz+EBY4aNUplyZJF6hZ//fXXEnbfsWNHdfbsWe5KA0CqzsKFC6X+PMLZkKqFMHASdiHKuuggy0oRfwZjGHjorUXx2I+HHfDI61E97DsIMbExjzI3p0+fNroZYhChU3cUBoSSSDDYnYnXIfTZE+Pd7HXkQwsN+pCN+ZCgMe8ZyHfq0KGDOnXqlAxK4AlGHtTo0aNV9uzZRQdCr59Lwo8YMWKIsBVCN5E+guOC0kfE+0A7BuKwiOjBvYAQfyZq1KgSbYVz+cGDB1K+7uHDh0Y3y5RgAhzVqtBfs6QoISatMw/y5csnXhV4WIwUXtIFwWC0YrYWxrs977y99Tpz5sxx6bumTp0qNxRnteWNxJcMeR3WoQ8ObpIQCHRFzE435jNnzhwGR8f8PH/+XCb7zp07Z/E4IGwTpY8QRvjJJ5+IuBJET0j4ED9+fLVq1SpVqFAhdeTIEdWgQQOLOB7xfpgsanRz3xIzEDt2bJkMRN+BaMwvv/xS+nJXBXqJe31HmTJlVPTo0bnbCDGrZx4ltZDzC0V5I8mWLZvMHsLT+cMPP9jdxpkh744nHur4norpBaIhr0MPfVBcFb8Deighw+zdAwM9eOYRWt++fXvpp5A/v2zZMvFWTp48WaVPn15Kp3Xu3NnNTyfeiOxavny59FcrV65UPXr04E71Msx5JWYE1V0wGQjDHpWM0M+TsOk7kNZACDGxMa8bI8ePHzdcWAkieP/8849FLdwTbN/nq2H0/mbI69CgD2rMJ0qUSAwaZ8CLDM8l+PDDD8P4CPk/2F8wEDEAQSj92LFj5drAJBz2I/KHq1atKhUwIGqJdVC9hzFJwh/01xDFA0OHDpVjR7wDwo/37t0rzzkgJ2YDoqbz58+XcQU0UhBdRbwDNAn+/PNPec58eUICwJhHmDBya4ymVKlSMlBH2aOPP/7Y7ffDcNeNdmvjPTRl7cILfzDkdWjQ/zfrjXM2JPE7hOPfvXtXjimE3YhjhgwZojJmzChKx+gLUCVg0KBB6urVq+KFtzcZAqMe+YCop0uMATWjIUoIUE/64sWLPBReANfA+/fvZVILUXSEmA3kzOvRmG3atFEnT540ukmmAGVDX79+Lf0GIl8JISY35n3BMw/gbcOAHOJ2rpSHs/a6Iw8ehhLe6w/Gu78a8jqBbtBD9AvnGs7ZkNBLd+mpJMQxCNO+fPmyKlasmNQ0R0k/XOco6ecMGPmYWCHGgYlTCJEi/QElBjGQJKGDIfYkEOjTp4+kT0EbpVatWvJIvNd3hORwICRQMZ0x7wueeRjfyN+HMAqed+vWLcj/YaDb87qj7Qi31VXtMfgPC2zL4AWqIa8TyAa9rt8AsUZXjXmkkRDn4BpG+gLCAyGK5Or10KVLF7V161buXgOBqChK1mHiBelS/fr14/EIBSwrRQIF9PPz5s2TsQQcS2E1hgskOBFISIAZ8+nSpVNv3rwRb6OR6Er2MOb1kNuGDRta/g9DesmSJZa8eLyeNm1asHJ0eO1NgxvYlsHzxs3Gnw35QDfocY4WLVpUJp9C4uDBg5bKEcQ5yL3mfvJfoB8xffp0eT5s2DB19OhRo5vkt6AcI9JLcH9g1AkxO8mSJZMxHRg/frw4bIhnoN9AugIqvpQvX567kZBAMOZ17zyMMaNB2DI6IZSggkFuW24OhjqMed2whkfekQq2tzzxYTFhYAZDPlAN+pcvX6qNGze6FGJvbczTMx8yuA4gdBcSrVq1EtFM4ntUq1ZNNA/evn2rWrduLTnfxHPPGgz5mDFjchcS04PyixjXISoF+fMYJxHP+w5EriZIkIC7kJBAMuZ15UsjgfCdXubIkUHuSj15V3LuXfXEe3vCwEyGfCAa9Cijg9/nijGPaBfkfWP/uFKPPtDBIA6Lq9sS32T06NEqTpw44l2DcCFxH4bJkkAEET2oEoMqJaNGjTK6OX4JS9IR4ho05sMI1ByFEArCmD01yGGIeyJ+58wTbw9P2mdGQ94sBr09TQR763Buol68KwqxerQLBNo4Q+49cG5FiRLFi59IvEmqVKnUgAED5Pn333+vbt26xR3sBq9evVLbt2+X5ywrRQIJpK7BoAd9+/YVQVTiOoiIQhUMwL6DkAA05iHU9eTJE6ObIh5PRAnAWHZFYAxUrlw5VLXkXfHEh3bCwMyGvL8b9PY0EeytQ8jwqlWr5Bx1RSFWN+ZLliwZDr8iMIBaOvZrihQpjG4KccLXX3+tChYsqB4/fkwxPDfB/Q/pPJgUYTlLEmg0adJElS5dWq6Bnj17Gt0cvwLio7hHxo8fX8aZhJAAMubTp0+vUqZMKcam0cBQQgjt4sWLLfVHQ2LdunVi/HvqkXfFE4/yd55OGASCIe+vBr2944/X9tZNnDhR6sZXr17dpc/WU1dQB53YB3Xl9QX8/vvvQdZZLxBYS5o0qbp27Zr65JNPuEt9GPRxI0aMsPSdrB/tWZgsy0qRQAPnvN53QOUeBipxr++A/gB1ZQgJMGMefPbZZz6RN49JBXjap0yZYrdEnSPczWHXQ6jXrl0b4rbwykKYy5P69YFkyPujQe/OeQO9hixZsrjkaX/69KlF/I6eecdcunTJsuC8efbsWZB11guMeCj0fvHFF2rgwIEuHzdiDDjvIYj37t07lptyA+a8kkAHGjN6NaOuXbtSI8VFqLVBiOtE0EyovrRmzRo1aNAgnzDoly1bpmrUqCHG0OvXryXMOSTgMXfV0IZxHpI3Ht4k1E721OPvK4Y82oBjW6VKlXDPM8ZlgvJUyJmFd9oXVZkxqePK+QVwPvz0008uTTBB8R6eNZR+hCFK7KPnROJcgfcd9eWHDh3qcP8jp9JsHgekN8WLF09C0uPGjavMxOnTpyVUHAb9tm3bJHyWOOb69esqderUMrF19+5dEQMjJFDvDVmzZpUxIESR4XAijnn48KFKnDixpANeuXJFpUmThruLBBxP3BhPmdIzj3qUUBB98OCB0U2RXHnkxMKgdsVzCo85tgupXBz+369fvxAN+dB44n3JkDcaf/HQu6LNkCNHDjE4mzZt6tJn6iI0NF6cg8kOLEj1Qa4konL0dbYL+gSzGfJmB4NxlKgD9LAplyYBAfQGaMiTQAZ9/rfffmsZk2FCkDhm8+bNYshnz56dhjwhLmBKYx5GJwz61atXG90U8SA3b95cctQhAuQshx2hWAiXtxYqs4cuaNa/f3+7/4dyamhE9KyhIe8fBj0ma3BO6Oc8jHqcV/Z4/vy5hAwjZ9tVHQcA45S4xowZM+S6J+YCE6ixYsVS+/btEwFJ4hiGyRLyHz169FAJEyZUJ06cUAsXLuSuYd9BiNcwpTEPPv/8c7V06VLlC7Rt21YMv+PHjwcLa4YRhpDbN2/eBKs7D6+77qF3p9wcBLVC44nXoSHvHwY9Jn9szx1ro96aWrVqSchfhw4dXA6VRZQLfvfHH3/sxVYT4n9gAuybb76xGPYmzFLzCvA86p55lpUiRIkqe+fOnWVX/Pjjj/TOOwB9KrU2CHEPU+bMA+ToZciQQd25c8cn8pvr1q2rDhw4oE6dOiVeHYTSb9iwIZgRZgs87MeOHXNJpV732ofWG++rhryROfO+mkPvap48jHpUVEA0B9q8f/9+l9Slp0+fLmkamBhCpAexD7zw2J8Qs0uWLJlbXnm8D5N0ZsDMOfM69+7dk1QKRLisWLFCJo5JUHCPK1SokJwD2F9G99eE+Er/iHEpUkDnzp2r6tevb3STfA6MkRFej7En9pMvjN8J8fXxlGmTNiEulSdPHvEOIKTYaJAvVaxYMVGc172l8Ki60rG5YsjD4GrVqlWovfG+asj7qocewENvlEHvqoI9PPU433D+zZw50+UyUXqFBIbYO0ffp5hMgzGP14FozAcCEGaCdx6TpvDOQ8yKZdeConvWkO5GQ56Q/4EBObzzvXr1Eu98nTp1OL5y0HeggggNeUJcw7TGPIDHBGryvmDMw3sKQ/vnn38Wz7IrZeSAq2WrYAxAZEg35uGxhaHnroI9DXn/MuhxfF1l9OjRkh6AKBFXePv2rSVUlrXQQ86RBxC2s34dlowbN07U8hFpgYnLMWPGiDfUHkjx6dOnj0RkIM1i5MiR6rvvvguyDQxTWx0OiL5hQpEEBQPysWPHSrQVcufpnQ8K8+UJsU/79u3V8OHDpToGcufpnWffQUio0UzM8ePHtUSJEmn//vuv5gts3LgRKQ3a0qVLtb59+8pz26VEiRJ219suTZo0sbt+z549Wrdu3YKsw2tXePPmjbZt2zZt9+7d2tu3bzVfA+1btmyZPPoS79+/1w4fPqytX79ee/78ebh/v+3xdrREiBBBGzdunMufu2nTJnkfriFfPB8CmQULFmhRo0bVpk+fLv1cq1attPjx42u3b9+2u/3evXu1Ll26aPPnz9eSJ0+ujRw5Mtg26JNy5syp3bx507LcvXvXrXY9fvxYzhk8mp0ePXrIby1YsKD0AeR/PHr0SIsUKZLsmwsXLnC3EGLDwIED5frInj279u7dO+6f/+fly5dajBgxZN8cOXKE+4UENI/dGE+ZVgBPL8EF0RG9tJbRVKhQQZaePXs6FBODh9cVZs2aZXc9PP62YfnWQnqOoEfef0XxhgwZIvns0FdwpGCPSgqofY5UDFdZtGiRPNasWZOhgD7GiBEj5Fg2a9ZM+rmJEydKVAg0DuyBdBl48RGVgfQZR6BcHs5jfUFIObFPx44dVYwYMdQ///yjtm7dyt30/2zZskXEvbJkySL5wYSQoLRr105yYU+ePMmqGFZg/PTy5UuVMmVK9eGHH/K0IcRFTG3MA4TYT5kyRfkKyLNEB44QK1tle2dgAsAVDh8+7HZuNQ15/zfokUqBCgbQTrA9r6AmDVV6pHi4mr+KEPs//vhDniOvj3iPixcvquXLl6tDhw559H5UvkC4PCYGdSJGjCivd+/eHaq2nT17VgZSmPhp0KCBunLlitPtX79+LSIt1kugAF0WXejQVYHSQADCroAq9oQ4zp3/6quvLJPx5H9Yq9hTh4QQ1zG9Md+kSRNRHL59+7byBQoUKKBq164tteCRo4rHkICRdv/+fZc+HxoB7uRW05A3j0Fvz1MP4+7p06cqX758ct65CjyNOOdgsJQuXTpM22tG0OcgomHv3r1B1sM7jmsR/0Nf4EkteqiDw/MJoT1r8Br586GZEIJw37p169SECRNk0gEiRDh/HDFo0CDxMOlLmjRpVKDlzkMgFINQTydnzFpWisY8Ic5FkRElBbFhVyMyzQ77DkI8w/TGfO7cuVX+/PndUpcOa+AhxaAbAlaOhMXgiYcx1rBhQ6kvP2nSJLvbwROLxRlQ2LYngkdD3rwGve6pR2lGDBYQEQLvrbsh9l988YWEXhP3wLULoxgldnQgJPf999+LwQPBOoTFI11m5cqVPrF70RfVqlVL+kwYYigD+ejRI8u5YI8ePXpI2RR9uXr1qgokEEauT5LRO6/UuXPnZBIIEUBlypQx+vAQ4rNgjABnE6B3XqkbN25IuV+MoayjzgghIWN6Yx4gtxS5xBhE+wLIJWzZsqUo1UMt2l64Pf43b968EOvQQ8XeUVmrNm3aiIfWXt15GvLmN+jhvcWkULly5RxqNNgD58aSJUvkuTvefPIfBw8eFIM9Tpw4lnWoKwzGjx8vKuioxQ2v7uTJk93adchjx/tso43wGuect4DeCKIIYKA5Ap4lhIxaL4FG165d5RHK1DBkAxnds4bKHrFjxza6OYT4fGQPxguoiIGKI4GMXjkHEWvUaiHEPQLCmK9Xr54MdLdt26Z8hR9++EG9evVKwlQxK2tPuAyevdAAcSx65APXoIfXFwMEnGPu5J/BI/vgwQMJ2y5VqlSYttGsIBQeooPWoP+BYFrTpk3ldbZs2cTocXcQFzVqVBnwbN682bLu/fv38rpo0aJe+gVKPXv2TJ0/f95Sbo/YByksyPHEMfj1118DejcxTJYQ19FTrgDKhQYy7DsI8ZyAMOZjxYolBr27HrCwBCJTCLlFvVF46TBA9yZmDK2HarT1o69jpEF/8+ZN1aVLFxExc1R73BH6dYIQQH86P3wJTNRZ7ztESeA6xzVpfa2jH/Akz71Tp04i7IkJGwhqQkzp+fPnMoEHGjduLCHw1qJ5yOnGgucQRMRza687zpft27erS5cuSR9Ro0YN+Q3oO0nIyvZgxowZMgkSiOC80lX9mS9PiHt9ByK3MIkeiGAiVPfMs+8gxH0CwpgHbdu2ldBhGDm+Aox5lN+Ap84bJXzg3UeurhlD6zE5Ub58eXmOR7w2o0GPEoLQSAiplKAzkE6CFAsYje56CqFerkeEIBWEeEbSpElFGV4H1yRK7hQvXjzIdliHyUZ3QYWBYcOGqT59+qi8efOKYY7jpovi4Tha93XIR4QHGQvW4714bn2Mr127JoY7Un+QXpEoUSJpN0QQiXPgmUf6FNT8cf0GIrt27ZIJJZyD0F0ghIRMsWLFpC/GBLCjlEmzg4luRLMhLa1IkSJGN4cQ/0MLIEqUKKF169ZN8yUOHjyoRY4cWevdu7fWqFEjJPV7tHTv3t3p97x580bbtm2btnv3bu3t27eaP7Fnzx75jTFixNCWLVsmj3iN9f7C+/fvtcOHD2vr16/Xnj9/bncbnJvWx9TTc3X27Nny/qVLl7r93r59+8p7y5Yt69F3k/9Ru3ZtLWLEiNr8+fO1R48eaVWqVJHX27dvD7KLsmfPruXOnds0u+3x48dy/uAx0Bg1apT89hw5csj1HmjgHoTfj/sYIcR1pk2bJtdO+vTp/W585g1+/vln+f3Vq1c3uimE+OV4KmA883opEIhPPXz4UPkK8Kr17t1b8prRPszS2sNR7nL16tUdeuLN4JEHZ86ccWu9P3ro4Ym3VcPGa3c99PDAdujQQdWvX1/ODXdAKLjuGYBoJPEcRI6gCgDSHBImTKjWrl0rVTWsr2Mov0PhHtck8X8QYYUoixMnTqgtW7aoQIM5r4R4BiKiEAmFFCeI4QUa7DsICR0BZcwjBxQDa5SE8yWgOA5DD4NBR0b5jh07HNaV15XHzWjI6yIx7qz3R4Pe0cQEcnBdNej18Hoc69GjR7vdPoRpI9QagwpcK8RzYLhDSLB06dJSng7Xtu0gDSXfUJtdTx8h/g2OpV5qauzYsSqQgMAsUj2AO5UzCCFKhFH1lKdA6zuQmrR79255znx5QjxECzCGDBmiJUqUSHv27JnmSxw6dEjC7Xv16hUs3NqVxV7IuT+H1tuCfWIdZh9SWoG/hdzrqQSOFldC7mfNmiXbYh95QuXKleX9HTt29Oj9hARymD04ceKE/H6kVFy6dEkLFH777Tf53fny5TO6KYT4Jegv0G/gOkI/EihgvILfnDlzZqObQohPwTB7J8BzCdEpe6XgjAQ1qVGuDp75WrVqqb59+zr0+NnD1rNrBo98SF5of8Wehx4q5926dXP4npBC7qFOjjQNhHVXq1bN7TYdO3ZMPPMRI0ZU7du3d/v9hBAlURjlypUTdWZE1QQKDJMlJHSkS5dOff755/I8kITw2HcQEnoCKsxeD4X85ptvRM0ZpXR8CZSSgqrpF198YbesnK76GVLIudkMeW/lk/u6QT9kyBDRP8CEkzsh91DBxTmDfF1PwusBSiQCfE7GjBk9+gxCyH96E9OnTxcdCrODiYsNGzbIc4bJEhL6vgMlR31tfBpW0JgnJPQEnDGvG80ooeNrs59RokSR/PfXr1+LIF7nzp3drilvNkPeLAJ47njo9VrhtkyaNEnKtliX5UOEQuvWrdXhw4dFPwGaEO4C0TzUuAWunnMkZFAeDvXfUbIsZsyYci3aWyCUR8wDhCdxHULgUK+dbGbQ99y5c0fFjh3boYArISRkMBmWKlUqKdO2YsUK0++yc+fOqQsXLsjYt2zZskY3hxC/JSCNeXjnUeMdoewQ3/Al0qRJo5YuXSoeWF0YxJGnFiBdQBfNM6Mh72sCeN6oA+/NkPsRI0ZIe+AFLFiwoEdtGDNmjJw7JUuWdBgRQtwDKvWIspk8ebI6f/68RE9g4sXeAs8mMQ/Ro0dXjRo1kudTpkxRgeJZw2A8atSoRjeHEL8FE7v6ZH4g9R3FixeXyUBCiGcEpDEPUL4LAw9nJd2MomjRomrixInSme/fv9+hpxbA+2NmQx7AwCxUqFCwdeFteMIjDs9448aNg3nIwzvkHlEJKHcGox+RJiht4wnPnj2Tcw106dIlVL+D/EevXr2kBGbFihXlOD5+/FiMdkcLMRctWrSQR3jXoPRuZqC1ARhiT0joad68uTwiqgel6swM+w5CvIQWwEyZMkWLFi2az6oOQ1U8UqRI2ubNm7VGjRo5VDrv0aOHaVTr7aErvVur2TtS8A/rNrhSRSA8VO4XLFigxY0bV/v888+1d+/eefydgwYNks/74IMPQvU5JCiomJEuXTrt9evXAbVrAl3N3prChQvLvvjll180s/Lo0SO5R+F3nj9/3ujmEGIKKlSoINdUnz59NLPy8uVLy1gO4x5CSFCoZu8i8HinT59e6rz7IginRg1qXd2+YcOGwbaB6BnyM6HQbzaPvC/lzIdHG1wNuYdqfZ8+fVTq1KnVnDlzRIHeEx49emQRFkQlBU8/hwQHxw7RJAw7Dlz0utFIhfLn6hvOgPcQIn/ZsmWjcCYhXu47zCyiuX37dhm3QiMA4x5CiOcE9Ogdhu+AAQPUvHnz1N69e5Uv5k8tWLBAJUqUSFWtWlX9+uuvQUrWwZDv16+fGGV3794NE0Pe2zninnyXL+TMO/ou5EN7c984C7mfPXu22rFjhzpx4oQcb4Twxo0b1+PvGjlypISC58iRw+MwfWIfVASAyCYJXOrUqSN9NCb8cC2bkTVr1shjlSpVjG4KIaYT0bx27ZqlUoSZ+w6MewghocDGqx+QFCpUSCtevLiEOfsip06d0hInTqwVKFBA27Rpk4QlxYoVSxs6dKjWq1cvLXLkyGESct6tW7cgod14HVaE9F04RtZh9ghhDW9s2xiW+8ZeyP2bN2+0atWqSWrI1q1bQ/X5d+/e1WLHji1t//33373UaqIzePBg2b937twJqJ3CMPugtGzZUq6xxo0ba2YDaTnJkyeX34f7EiHEe3z33XdybdWsWdOUuzVz5szy+5YuXWp0Uwjx+/EUjXlNk3xz7LCZM2dqvsqhQ4e0BAkSaEWLFtU6deoUxJDv3r27ZTsY9bNnzw5m3Dtab2SOuKvf5Qs589Zt7du3b7jsG2uDHhdzrVq1tChRomhr1qwJ9Wd37dpV2pwvXz7myocB//77r/bxxx/LBNzRo0e1QIHGfFCs+66HDx9qZmL//v3y2zBp9erVK6ObQ4ipOHbsmFxfGOPdunVLMxNnzpyR34bxzJMnT4xuDiE+CXPm3aR06dKixNuxY0d169Yt5YvkyZNHyngcP35cbd68WWXKlEllzZpVwjd1RX5btXU8eqrCHp556iF9ly/kzOsghx37Pjzao4fcJ0mSRNWsWVMtWbJELVy4UH3yySeh+tybN2+qsWPHyvOff/6ZufJhAFTskQ944MABlTdvXgm7L1OmjCpXrlywBboYxJxAN+HDDz+Uc2H+/PnKjGGyFSpUkCoqhBDvkTNnTqls9PbtWzVr1ixT9h2lSpVSceLEMbo5hPg9AZ0zb83o0aPV06dPVfv27ZWvAqNg4MCB6uzZs2rYsGGqWrVqlvJsyNvWxcx0kH8Ow892vXWdcnvgf8gFdyV33Bs59SHlxPtCzrwr3/vmzRuvfxdu5Dhe27ZtEyE8b5R/Qik7GBcYKIR2YoDYB8dr165d8hyl51BiCHoHWG9vIeYEE3K6mJXZ6kYzX56QsMWsIprsOwjxMkaHEfgSKAPiqznEyJfWy8/t3LlTixcvnuSRP3jwQP6PEHpH+dz2Fj3k3jb03lleuHU4v71tPc0bt/ed9r7LOsze9v/hjaP95Oo+cCXtAaGrNWrUkFC0xYsXB8uh94S//vrL0ta///7b488hzsG16s5iFhhmH5x79+5pUaNGlWsOoelmAJobESJEkN909epVo5tDiCl5+vSpRdtm+/btRjfHKzx79szSH548edLo5hDiszBnPhR5rrly5dKSJUum3b9/X/NFQ16vI49BIWpZ582bV7tx44bDvHNHS8OGDYO8Rh17R5+BHHF7OfjeyBt39XNsjfmwFONzlalTp3q0D1yZBMFNvEqVKnLTW7lypUNRPHcFq5DDje9s1qyZ2+8nJCRozNunbt26ct199dVXpjiJ5syZI78nd+7cRjeFEFPTqlUryxjNDCxfvlx+T4YMGXxWdJoQX4A586EsBXf//n3VuXNn5Qv8+++/6q+//pKcROs68vnz55fw3Dt37ljWN2rUyKXPxHaoT24NQuW//PJLu9sjR1wP59fxVh67K59jL4UgpFSB8MBRDfG1a9c6fI8rvwUh2cWLF5ew7FWrVqnPPvvMYdk6d5gxY4bav3+/lLMbNGiQW+8lhIQ+XHbu3LluX7e+yPLly+Xx008/NbophARE37F48WIpQ2ymvoMl6QjxDsyZtwE1t3v27KlmzpypVq9erXzRkNeBsNK+fftUqlSpVMmSJaVeZ8OGDZ1+ZosWLVTMmDHt/g81TV3NEXeUH+5uHrsr+fC+JIDnStv79+8fTGRQ1xZwZOjrvwUGPI71s2fPpLb8xx9/HGQ7Tw16DAKQKw/69eunkiVL5tL7SOhAniPyA3v37q3atGmjpk+fbvnf3bt35bi/e/eOu9nklC1bVkQQnzx5on7//Xflz7x+/drSj6EeNiEk7MB4APf8V69eqXnz5vn1rsa9buXKlfKcfQchXsToMAJfBKHsCB9EGLtR+YD2Qusd8fLlSwnBwuHs2bOn5EU7Kp/m7mIvN91Rvrineey2n2f7Ob5Ums4WZxoDevucbWO97aRJk6QMTdmyZSXP1hnuhty3b99evid79uxybpHwKSeZNWtWLWLEiJJfjEfr9Ia5c+fKuhUrVpjmcDDM3jEDBgyQa7BkyZKaP4PSmPgdKVOmZFlLQsKBX3/9Va45pFX6c2j6n3/+Kb8jfvz4HIcQEgIMsw8l8ICjBNjjx49VvXr1RFHclzzytkSPHl1KlwwdOlTCp7F06tRJ1M9DQ9++fVWNGjWCqNXbCxPX1Vb1EnmhxVa1FSH+KPFku8429N8IhgwZIvvJHvC6Otpf1nTp0kX2MTy3bdu2lRKEiRIlcvoedzz08PbrpehQtSFKlCgu/TbiOYhyQckunAN6RQnb8xqeCRwLPeyQmJumTZtKGcg///xTnT59Wvkry5Ytk0dUU8HvIYSELYi4xHjw0KFDUu7U3/sOpA5yHEKI9+Cd2AHZsmWTcGkYSn369FG+ashbG3cwCpFjvX37dlWsWDHVunVrCdWePXu2Q4PTGShPZ1u3HnnX7uSPh4QrOeR4vnfv3mDvC23OvDfK6gFH5d2QiuAoFQDHA8cFhjvy2CdNmiTLmDFjXL7JuWLQP3/+XDVr1sySewcDk4Q9KCEJ7Y1Ro0bJNYlr0xaku+TJk0dSZYj5SZkypSXHfNq0acofQZnFFStWyHOGyRISPiRMmFDVrFnT4jjxRzCZrRvz7DsI8TIhufkDGah/58mTR8KC1q5d61Oh9c5AuY8sWbJI+bqZM2dKWJa7avd62L6ri6ch745K6mG97Ta2YfbW27hbCs7dsnohlZJzFErvaD/icxAinyZNGi1x4sTajh07NE9xFnL/zTffyPfhexCyQ8IHKPUipcEahNrbVhGoXbu2liRJEtMcFobZu6bkjGP++vVrzd/AvQntjxs3rl+2nxB/ZcuWLZZrD+Xd/I1jx45J+6NFiybVegghzmGYvZdACCHEOuAphQL89evXla955B1FFcCTXbVqVQnt/Pzzz1WaNGncCrt/8OCBy9tC7M3TkHdXBPBc2Sak9tlGGLijjm/7fltxOz3cvnLlysHWw/NvK0r43Xffyex6pUqVVNasWcUzDwFDT3HkoUeEBjz9AN8HFXsSPty4cUOOiSvHDqJoJDCASGmKFClE/FAXgvIndM8afoen0ViEEPcpXbq0VBbyVxFNve9AdGDs2LGNbg4hpoJh9iEAI3j8+PHq3r17qm7dug5V3H3FkNeJHz++hHEjHxfGYs6cOWXZvXu3lD0LCXeU/JFX7ylLliwJcXIAz20nIlydQLAXxg8D2x72QuJDSgPQQ/URNrtu3Tq7n1uxYkVLusOvv/6q/vjjDymBOHHiRLVhwwaVNm1aFVpsDXoYC82bN5f/tWrVStpAwo9YsWLJMQiJixcvSgglCZzyp5hg9ddwWYbJEmKccwnViAD7DkKINTTmXQAdKLyrMJIgUGYrZOVrhrw18M4fP35cBEeaNGmiBgwYoBYtWhRiCTt38LREnCNxOFcmB1w9Bu60zZ6n31lZPERr6B57vRaso8/Nnj27CF99++238vrYsWMieOfNOqvWBj3aduHCBZkoGDZsmNe+g7gGjgMm0TAJ6IjLly+rw4cPqwIFCnC3BhD6gBx6GVeuXFH+wokTJ0S4D5FqjnRCCCFhB8ZwGCNiLHry5Em/2dXo5/755x8ZoyBSlBDiXWjMuwA6IAi/5cuXTx6hFu8PhrwOPH/wHsNLjw4VHnrUL4eXXhdkCg3u1pZ3t368KyJ57rbNXki8vSgBR+9Hvdc5c+aE+P0wqlEVAcbd/Pnz1YQJE9TGjRtVunTpVFidqzjGMBQwkw/vP8Prwx9Mlj19+lQmeewJEyLC5+uvv5Y+wJsTa8T3QahsuXLlZELSkaCoL4IKLwDpQexTCAl//FVEEw4kUKpUKZUsWTKjm0OI+Qgh/55Y8eTJEy1p0qQi4rFgwQKfELtzl/v372sNGjSQ31CoUCERVYEY26effuq1OvSuCsk5EuWzFZkLrQCerThdjhw53BLyc6VOvL3ls88+06pUqSLPy5Urp128eFELayCEFz16dPnOdu3auVyHnngXXNNlypQR0TuID7Zq1Uqe58+fX0QJ06VLJ68//vhjU+16CuC5xrx58+QaTZs2bbj2/6ER2cyaNau0+bfffjO6OYQELCtWrJDrEMK5/iJCWbBgQWnz+PHjjW4KIaYcT9GYd5Pz589rUaJEEUXOXbt2+ZUhb83mzZu1jz76SE6USpUqaQcOHBBDtm/fvm6r3jtTebfGnoI8JhSs1xUuXDjY+3Sj39aYd0dBv2HDhi79HnsTBO5UApg6dao2fPhwrXLlymKsZc6cWVu4cKFURghrcMGjigHage/HueVI5Z6EPVDsrV+/vhYxYkQ5F2yXL7/80nSqvjTmXePly5daggQJ5Fpdt26d5uscOnRI2oqJQlbFIMQ4/v33Xy1FihRyPS5evNjnD8XZs2elrZEiRdJu375tdHMI8RtozIcxGzZssMyMnjt3zu8MeWtvC24GH3zwgfyeevXqye/x1BPtrLybOwaxPSMdRr+1MW/P6PfGd7do0UImNKzb4Kh8nu0C4wxeV0z2JE+eXJswYYIc7/A6lrVq1ZJ2pE6dWrt7965lPQ16Y0GpSEzwIFLiq6++0gYOHKgdPHhQMyM05l2nQ4cOln7D1/n++++lrTVr1jS6KYQEPD179rQ4YnydAQMGSFvNFoVGSFhDYz4cGDJkiHRQMIRv3brld4a87Uzv5MmTtZQpU2qRI0cWo2P16tVixLrq0bY2xPVQenipda+9qwaxPe94aD3z7ny3vckJVyYDcufOrcWOHVtqwOLmFd51YEeMGCHtwPH766+/gvyPBj0JL2jMuw4m2XDNYvLPlz1W6D8yZMggbV20aJHRzSEk4IHTBdcjIrwuXbrk0/sjV65c0tZp06YZ3RRC/Aoa8+E0wIEnG51Uzpw5tTt37vilIW8NQrEHDx6sxY8fX9IImjVrJuGV7uTUO9oO4fieeuZDmzPvjmfeUVtsoxWgFbBkyRIJZ48VK5bsr86dO2v37t3Twhu0Azd1tGvUqFF2t6FBbz7Gjh0rufc49xC58vfffzvc9tixY+JVxfY4T0aOHBnqz7QHjXn30NOMhg4dqvkqOAfQRvRzTNchxDcoX768XJeIJPRVjh8/bpmwfPDggdHNIcSvcGc8RTX7UKiGQyG+aNGiUvqtQoUK6v79+4aq1oeWmDFjSv12lDTr16+fqK7nzZtX1qFmOcqhhKR+76g+vb3a7vhcqL1bg9dQs7dWqnekKK+v12u9W7/Hep09lXpX0ZX1hwwZIrXiZ86cqcaOHSslmr788kv5/Pbt26tz585JCbhEiRKp8ARtql+/vihjo2xihw4dXKpDb09hnXiPgwcPSsUFlBJCWUiU48FznCNHjhzxirJ4p06dVN++fdWBAwdUnjx5RGX8zp07drfH8c6YMaMaPHiwnAPe+EwSelq1amWpG+3NkqdhoWKPMqe4RxBCjEcvhzt9+nT17t075esVMBIkSGB0cwgxL+EyvWBiXr16JSJn2JX58uULNvvoDx55R6DtEG8rVqyY/L5kyZJJ7iTy7O2F4LuriG/7fluVeescfDy39szjuxDGb/ud2M7TnH9nnvmbN29KrnOmTJksbZ00aZKhniqE2kG3Qd/3SJcICXrowxaEPFaoUEFE7/RFF7yzXoeIjitXroTKo4t0GB0ILCJNZtCgQSG+F553e5750HymDj3z7ldIgccb1/Cff/6p+RroU3AOoH3oewkhviOimTBhQrk216xZo/kaGGvoY2NWwCDEfRhmH87AoNPDV6EQ/+jRI7835O3ld7Zv315C8PE7S5UqJaJeumHvrNScN4xpW2Pe299jb/n666/FYIehDCVWKDk3btxYBt24URkJBO505foCBQq4pYpOgz5suHDhgqgM6wZ8okSJRPQH6Th16tSRsEgMvnTDHkKFnuQ7ohwRzselS5cGWY9zs2rVqh4Z855+JiYzccPRl6tXr7ocFkb+B0Q3sc+aNGnic7tk5cqVflcGi5BA4dtvv/VZYcqtW7dK2+LEiWO6qi2EhAcMsw9nEHp47NgxlTp1arVv3z5VuXJlCbn3h9B6V8mdO7caM2aMunHjhpo9e7aKHTu26tmzp6pVq5YaNGiQWrp0qXr79q3q0qWLV79XD7lHyHJ4gLSCMmXKqOzZs6vx48err776Sj179kz9+uuv6ubNm2rWrFmqRIkSErZuFM+fP1fVqlVTZ8+eVenSpVOrVq2S4+EqDLkPG5CKcuvWLZU5c2ZJN7l3757asGGDmjdvnlqwYIHatGmT9AsrV65UmTJlUtevX1ctWrRw+3vwuQirTJYsWZD1eI3v9wRPPxPXfrx48SxLmjRpPPr+QEYPl120aJF6/Pix8iWmTJkij0gRiRo1qtHNIYRYod8/VqxYoW7fvu2TfUe9evXcGp8QQtyHOfNeAp0VcueRj4o8ZuTSwwg0gyFvTYwYMSSvXTdWYMQXKVJE8rZg5CKnHHn133zzjeQHw/DH/ujWrVuQz7HNlXcE8uL1vHVvgzaMGzdOffvtt6J5gGN36NAhtX//fskvR8498oW3bdum2rVrp+LHj6+MBoY89i8mitCeNWvWOMyBdgYNeu+CSbzt27fL+bp37171ySefONwWxw/bZ8mSRW3dulXON3+lR48eYoDqy9WrV41ukt9RuHBhlTNnTvXy5Us1f/585Stg4lbXQNEnHAghvgPGKeg/4EjBWMtXePDggfrjjz+C6IIQQsKOyGH42QFH3LhxxaDPmjWreE1h0K5bt86hgJsZJjCqV68uC7x6MGIwQ4xFHwTC0CxQoIAs8K7Du4ObDyYAUqRIEcTjjvXWInYQyMM6d8B7ICRl/blYV6NGDTGacFyuXbsmHtI///zTIswHDzcE7SDyVLp0aZ/0QumGPIxGnGtr165VOXLk8PjzdIMeQBSvbNmyKkqUKF5sceAAryr256hRo8RDHRLYBtvieOK9uD5cJXHixDJBaOuJwWtPJnZC85mIPMJCPAfnDYzljh07qsmTJ6s2bdoYGvmjg4lZ9OuYpM2WLZvRzSGE2AF9B8ZN8IR37txZRYxovI9uzpw56vXr1xLp6M69jRDiGREQl+/he4kDYCx+/PHH6tSpUzJIhmFbqFChgNpfV65cEePZerl7964ldBcdPAzRN2/eiNo/jMry5cvLvkP4MSZArA15GOQI84fnCmFb8GJZA6Ooa9euEuYLj9KOHTvUyZMn5cb29OlT+X60CcAQzp8/v2WSAQu8pL4wgHbVkF+/fr1MiHgDdAGY3MC5SjyjXLlyolKPaBV3wD5HCsuWLVvceh+uDfQpuCbA+/fvVdq0aaWywvfff+/0venTp1ffffedLN76TJ0nT57IRAW89DhPiWvg+kOa1qtXr9SuXbtUsWLFDN11OPZIF7l48aKkFjVu3NjQ9hBC7IPxDfoO9L1wHkE53kgwnsA9DamnqPyDqEZCiPu4M56iMR9GYFYSA3yEQyOnfvHixapKlSoqUEEHD0Pd2riHlxx56DBUrYkVK5Z47bHgeeTIkWXBCY39CkMen4fQMniOUHbr0aNHwfJN4THEZ2TIkCGI4Y58ZV+YvfYFQ554B0wiwXuJco7uULFiRZl0cjc8HSV/kMc8adIkMcDh5YeHHxOImCyD8ZUqVSrJaQeYNDtx4oQ8Rz/UoEEDWRBdA6PNlc90BRrzofOwTZs2TdWpU0c0FowE+g6YkMZAApOjLElHiO+CiVno+qBvd1QeOLzQ00yRkom+wxfSEwnxR9wZTzHMPoyAIQnj64svvpCwc4RvIwyqWbNmKhCB1xsGDxaE5dvOLKPTh2Fvu8BTBc89jBEY9MjFgoGOMHi8xn6GoaEb/1hSpkwpj7iJ+LK33RUwSQGxO0Qa0JD3XdDZehLZgPd4InoGgw+RLn369BGBOoQzwiujG92IQrGesML1lS9fPstr6FlgQUoJNCFc+UwStiAtC8b877//LhOf8LYZxcSJE+Wxfv36NOQJ8XEQPTV69GjR0IGTBJGGRvcdSFukIU9I+EDPfDiEK0IRHbmQoFOnTmrIkCFiiBL3gFGPmxVmnwMhtxsGGX4rdBhoyPs2yDeHVxtCkO6AyT0IFyHCxAzQMx86MLmCibtevXqpn3/+WRnB5cuXVcaMGeXedfToUfXhhx8a0g5CiOt89tln4pXv0KGDeOmNABorSM2C8wUeenc1jwghno2n/CfW2E+BdwwzlYMHD5bXI0aMEOV0XysjQnyLAwcOyI0QhjwiDRDlwdB634XSI8QbYCAOMPmLqCQjQIUPGPJIE6MhT4h/9R0zZsyQaEcjQIoWDHmkadGQJyT8oHs4HECoNwTcUKYOIdMwzJC7jXBKGmjEFkQf1K5dW3LlIQyI2XbW7/Z9zp0753Z5ILyHEB3cH3CtQ0MBefNNmzYN152DPkevD42SnYQQ/wAaF9BtgcYJKlEgbSc8gRE/YcIEec6+g5DwhWH24QxyV6Hajg4XoeIIh2rbtq3f53aHB4EQZo8oDqi/wjOGCA5M+LhS6owYH4HjyTUMjz7exzB7ooM0LFQPQO15VEgIT7FO9D9IC0OY/ZkzZyR9hBDiH4wfP17GDxD9xfUbnumcKEfXqFEj0Su6dOmST5b3JcSfYJi9D4OQ6UOHDqlatWqJcfr111+r5s2bB1N0J4EFQmpxLmAgDUMeHjlMXNCQ9w+QJ+jJki5dOnkkRAd15uPEiSMpNqtWrQq3HYOJJYhoAXj1aMgT4l9g3JAkSRIpKYnqJOHZd+h5+hjH0JAnJHyhZ94g9IETBPFgvKFcGur5Fi9e3Kgm+Txm9cxfuHBBJneQJw8v7Y8//igCWIzWIP4GBfC8Q48ePURnBXmnu3fvDpe+YO3atdK3olwh1PQ5kUiI/zFw4EAZP4RnZM+ff/6pSpUqJdWFkCKECQVCSOgIeM881IA///xz8YJjELRs2bJgs5dYb71Urlw5xB2LEk758+eXDgu1mZGXZE88KH369Cp69OgyENu7d6/dz8J3Iq8IdeiRI3n+/HlVsmRJ1a1bN8OEj0j4s3TpUjmnYMgnSpRIJit69+5tiCEP0RzUq4W3GDViixUrpvbt2xei4v6nn34q5auSJk2qunbtqt6+fev2dUMI+Q9ch7iH/P3335bSgWE9udy3b1953qpVKxryhPgp8IxD+To8I3v0vqNx48Y05AkxAFOq2SNkPU+ePGJYOwLGu3U98/nz5zv9TIQtwWgpW7ashMljsNWyZUu1fv16yzYIa4KnHR0bjDO0oVKlSurOnTsOPxcG/4kTJ2SCAQOqoUOHqoIFC8r7ibmjDDp37qxq1qwpZSdgOB88eNClSaWwAufzxo0b1W+//SYlqSpWrCh5+9evX7e7PfK8cU1A+AaTUogsgaGOOuXuXDeEkKAkS5ZMrhPd0xbWYNCPiTtMykGslRDin6C2O/LmwYABA8K80srWrVtlQbQkIgIIIQagmRz8xKVLlwZZ16RJE61atWpufU63bt20nDlzBllXp04drVKlSpbXhQoV0tq1a2d5/e7dOy1lypTaoEGDXPqO5cuXa0mTJpU2R44cWevXr5/25s0bt9ppZrAvli1b5vf75OTJk1rhwoXlOGPp3Lmz4b/pxYsXWqRIkbRVq1YFWZ8/f36tV69edt+zZs0aLWLEiNqtW7cs6yZMmKDFjRtXe/36tcvXDTEPjx8/lnMajyR0XLp0Se4D2J+7d+8Os92J+1TevHnle7p37x5m30MICR9u376tRY8eXa7pjRs3htn3vH//XitevLh8j/XYlxASvuMpU3rmXQGhiwgLzpo1q4iO3b9/P8j/y5QpE6QsEPIW4aW0Bl53rAfwTu7fvz/INshVwmt9m5CoWrWqeOm//PJLCVXu16+fypcvn9qyZUsofy3xBXBMoVSdN29eCZ9FTipSQIYNG2a4BgDaBk87QnutQbj9zp075TnOR6SQ6OC8Ruk8eBGtrwnk+SDEz5XrhhBiH6S7QB0aIP0qrDxsSPVB1AxE95AmQwjxbzC2bd26tTxHpA10mcKCDRs2qF27dsm4oWfPnmHyHYSQkAlIYx6hzKgHvXnzZjGuUPf9k08+CVIeCgrTKLGhc+vWrSBGC8BrGC4vX75U9+7dk/fb2wbvdRXkTS9atEjNmzdPnsMoQik7CKRdvnw5VL+bGAeOI0LpUXLq9evXcg4ilB11pX0BDOSLFi2qfvrpJymfiHMZpWZgdCMNBSROnFiEGkO6JvT/uXLdEEIcAzFMDJQhMLV8+fIwmcTT812RAoN7DiHE/4H2DnLnkbI5d+5cr38+Jgh++OEHeQ6HGDSqCCHGEJDGfN26dcULDq9i9erVLfmC1kJDMPYHDRpkSPsgflavXj119uxZ1b59e/Hwo9549uzZZXBHI8i/cuORtwYBOJxj8MbPmDFDhO4gfOhLIFce3r9UqVKJWB2qLeA81NVwcS5iAowQEj6kTp1atDV07zwiwLzJ8OHDZaIxQYIEovdCCDEHUJTXveV4fPHihVc/f8KECTKmiRUrljgpCCHGEZDGvC0ZM2YUr+O5c+ccbpM8eXJ1+/btIOvwGjOfCEXG+1GX1942eK8nYIA1ZswYEUYrXbq0GPHwouTIkUMtWbIkzIVNSOjA5NBHH30kM+QYhH/22WcycNarKfga8LojSuXZs2dSXgaVGDAZgevDnWtC/58r1w0hxDkIk0XYLCZ3J02a5LXddfLkSYtY5ciRI0U4ixBiHlAxCVGmKDU5atQor30uhG11oUxEt6J/IoQYB415paSjQ868dVi9LQhBtvVKQvkb60HUqFFVgQIFgmyDMCS81rfxlNy5c4taKNTy4am5dOmS+uKLL1ShQoXU6tWradT7GCgzCJV6KLgfPnxYJmXg9V6xYoV4vX0dzLTjWnj48KGozjtKBcB5jVQB62oNuCZgqGPCyZXrhhAScgoMIrJ03QrbyTFPQBpN8+bNZZIRKWYoKUUIMRdI0dEjTPGIUrKhBU4kVNpA1Sg4mRBiTwgxGM2EPH36VDt48KAs+IkjRoyQ55cvX5b/denSRdSBL168qG3atEkUu7NkyaK9evXK8hmNGjXSvv/+e8vrCxcuaDFjxtS6du0qauTjxo0T9e9169ZZtlmwYIEWLVo0bebMmdqJEye01q1ba/Hjxw+i9h1anj17pvXu3VuLFSuWRQ0dKvpr164VZVEz4+tq9o8ePZJzK0qUKHJccH58/fXX2p07dzR/AOcyziOc6xs2bNDy5Mkjqvv6/h4zZoxWrlw5y/Zv377VPvzwQ61ixYraoUOH5P1JkiTRevTo4dZ1Q8wD1ezDhn///VeuR/QrVapUCXVf/8svv8hnofLE1atXvdZOQohvgWoVRYsWleu9dOnSct8ODePHj5fPihEjhnb27FmvtZMQ4vl4ypTG/NatWy2GrvWCknQowQXjA0YHjK506dJprVq1CmZwo9PD9rafixI+UaNG1TJmzKjNmDEj2HfD4EmbNq1sAyN7z549YfIbYSDCQIKhpP++IkWKaOvXrzetUe+rxjzKsOEGlzhxYsuxQOm1Y8eOaf7EwoUL5bzGuZs8eXIpNYMJCp2+ffvK9WJbPuuTTz6RGzt+P8rswfBw97oh5oDGfNhx9OhRmSxG/4JJMU9BCVSUlMTnTJkyxattJIT4HjC6dQfQ4MGDPf4clLnTnRUjR470ahsJIZ6PpyLgj9HRAcRzEHL5yy+/qPHjx6tXr17JuiJFiogyMUK9jS555k2Qvw3huCpVqvjE74KgzNSpU9XQoUMlVQNky5ZNjRgxQkJXCQk0UKUAIo+PHz+WdAviXSBKiTxYhM+iFKqezuIqqE6B6ijQX2nWrJmaNm2aT+p3EEK8y/Tp01WLFi1U5MiR1Z49eyQt1B2g3VSqVCnR1Kldu7aaP3++RRyXEGLseIpXop+DMl9QJIYgCQx4qJCjo4ZiP2qCQ0n97t27RjfTVDx69EgNHDhQ6kBjYA1DHjnmECs8cuQIDXlCSJjwzTffSFlLTNyiEguEKl3l2LFjIsIJQ/7TTz9VkydPpiFPSICAyTtoLaEcJRw90PZxFYhvwokCQ75MmTJS7YmGPCG+A415kwDVcCgSQxwPivcw8lEvHErqKIGGjhz1RonnoGY6SrzAiO/Vq5e6d++eKL1DYRqTKSjd5gsRA4QQcwIvOkpbQqEaA+wSJUo4rcKig/KrxYoVUw8ePBDhVIipwkNHCAmcvgNjlSxZsogQXsmSJaW6TkhAwLZw4cIy/oEY87Jly8RpRAjxHWjMm9Coh+Lx5cuX1Zw5c6Q02uvXr9XMmTMlrAoq4gjJhyFKQgaz2KgYUKNGDZkUgSIsQl9y5swp+/f06dOqdevWvLkRQsKtj9+5c6f64IMPLIPyLVu2OExNQp9VtWpV9fTpUwmTRaoSKlYQQgKLRIkSqR07dqgPP/xQ3bx5U9To165da7ciEsY+KGdXqVIlqWyDSUBUt0HYLyHEt2DOfADw999/S67l4sWLZXAH4JVBuGaDBg1koBczZkzl64RnzvyFCxckxwxeMEQ46GAypFu3brLPGGZGSFCYMx++eikVK1aU1B5Qrlw56ZuQ8oP+Hd549PvXr1+X/7dp00Zeo4wqISRwQYQOxn/79u2T14jw6dGjh5TORf8Ao/3XX3+VSE/QqFEjScuBVgchxPfGUzTmAwiESS1YsEA8yhBP0okdO7bkUNWrV0/yoXy1ww5rYx4z1RgAYx9Ze7owm406zBCPgUeeEGIfGvPhr9+BVCoMtPWJWluQcvXTTz+pVq1ahXPrCCG+CiJ1kJKJSE1Eb9oDY58+ffqIVgeFMgkJX2jMkxA5deqUmjt3rhj2+uwrgIe+bNmyMmuLJXPmzKY15hFaBq/WihUr1MqVKy2z1AA3Lni9YMDDC88cMUJChsa8MSCt6ueff1YbN26UgTmWDBkyyCAck7Tsvwgh9kDkDoSSEW4PYc03b96o1KlTiwZQw4YNVYwYMbjjCDEAGvPELYP2r7/+EqN++fLl4p22Bsa8bthDQClBggR+bcwjZB7lmbZu3SoGPHJOrQ145IXBeEf6AYTuCCGuQ2OeEEIIISR00JgnHhv2R48elRnadevWicgSRFCsgRIqDF59yZs3b7iF5btrzGOG+dChQ2K864u18Q4w6/zxxx+LAY9yTRCXIoR4Bo15QgghhJDQQWOeeO1EQu44DHuUJ7FXAglCSyhXkitXLpUpUybLgpJtiRMn9mqelSNjHuIQZ86ckVJNeNQXlF1B2Jg1EK1DWxFlgM8pX748w8gI8RI05gkhhBBCQgeNeRIm3L9/X/3zzz9q7969luXOnTsOt48TJ44Y9unTpxchlfjx40uYPhbr5zDMERXw/v37YI8w4PG9WPBd+H6oO0KNFeX1UN/dWRsSJkyoihQpIir0WBBNgHYRQrwPjXlCCCGEkNBBY56ECzC4r169KkY96q2fP39eSrrh8dq1a+F6FBAej7rL+oJ0gBw5csgjVVgJCR9ozBNCCCGEhN94KnIov4sEMDCS06ZNK4stCG+H1xyGPfLUHz58KGWUrB/1BXn5CH/H5+mP+nOE8cO7jpB9ePHx3o8++kglTZpUvP0QqYPBTm87IYQQQgghJJCgMU/CBIjiZc+eXRZ/qTNPCCGEEEIIIf5CRKMbQAghhBBCCCGEEPegMU8IIYQQQgghhPgZDLMnhBDiNVFMXbiFEEIIIYS4jz6O0sdVzoigubIVIT4ATtV3796pSJEiUaGeEB8EVSzSpEljdDMIIYQQQvweVA1LnTq1021ozBNCCPEK79+/Vzdu3JDqEmFdEhKz1pg4wI0upLItgQD3B/cFzw1eK+w72I/yvmKO+ywcmE+fPlUpU6aU6l7OYJg9IYQQr4AbTkgzyN4GN1Qa89wfPDd4rbDvYF/K+wrvs2Yad6DOvCtQAI8QQgghhBBCCPEzaMwTQgghhBBCCCF+Bo15Qgghfke0aNFU37595ZFwf/Dc4LXCvoN9Ke8rvM8G4riDAniEEEIIIYQQQoifQc88IYQQQgghhBDiZ9CYJ4QQQgghhBBC/Awa84QQQgghhBBCiJ9BY54QQojfEiFCBLVs2TKjm+EzpE+fXo0aNcroZvgkly5dkvPl0KFDRjfFJwj0ayfQf78t7Dscw74jKIF+7UTwsd9PY54QQohPM27cOBloRo8eXRUuXFjt3btXBSrXr19XDRs2VIkSJVIxYsRQuXLlUv/8848KBHbs2KE+//xzlTJlymCDqX///Vd1795d9kesWLFkm8aNG6sbN26oQNsX4NmzZ6p9+/YqderUcp7kyJFDTZw4UQUa7Dv+g30H+w7AvsN8fQeNeUIIIT7LwoULVadOnaQczIEDB1SePHlUpUqV1J07d1Sg8fDhQ1W8eHEVJUoUtXbtWnXixAk1fPhwlSBBAhUIPH/+XI4/Blm2vHjxQs6PH374QR6XLFmiTp8+rapWraoCbV8AXDPr1q1Tc+bMUSdPnlTfffedGPcrVqxQgQL7jv9g38G+Q4d9hwn7Do0QQgjxUQoVKqS1a9fO8vrdu3daypQptUGDBslr3MamTJmiVa9eXYsRI4aWOXNmbfny5ZoZ6d69u1aiRAmn26RLl04bMGCA1qxZMy127NhamjRptEmTJmlmA8d96dKlTrfZu3evbHf58mV5ffHiRXn9xx9/aGXKlJHzJXfu3Npff/2lmW1f5MyZU/vxxx+DrMufP7/Wq1evIO8z87XDvuM/2Hf8B/sO5/uCfYfmd30HPfPEr8Mjt23bpvLnz6+iRYumMmfOrGbOnOnXoTKEkP948+aN2r9/v6pQoYJlXcSIEeX17t27Lev69++vateurY4cOaKqVKmiGjRooB48eGC6XQmvasGCBVWtWrVU0qRJVb58+dSUKVOCbQdvPbY7ePCg+vrrr9VXX30lXupA4/Hjx3K/iR8/fpD1vXr1Ul26dJHc+Q8++EDVq1dPvX37VpmJYsWKyfmC0GqMPbdu3arOnDmjKlasGGQ7s1477DuCwr7DPdh3sO+o4E/jDsOmEUhAsWbNGvEILFmyJNhM4KNHj7QKFSpoCxcu1E6dOqXt3r1bZsUKFCjg9DMvXLigxYwZU+vUqZN24sQJbcyYMVqkSJG0devWWbZZsGCBFjVqVG369Ona8ePHtVatWmnx48fXbt++Haa/lxASeq5fvy79ha3ntGvXrtJHAPy/d+/elv89e/ZM1q1du9Z0hyBatGiy9OjRQztw4IB43KNHj67NnDkziGe+YcOGltfv37/XkiZNqk2YMEELJO/ay5cvxRNdv359yzrdMz916lTLOtwXsO7kyZOamfbFq1evtMaNG8v/IkeOLPfBWbNmBXufWa8d9h1BYd/xH+w7nO8L9h3X/W7cEdmYKQQSaHzyySey2CNevHhq48aNQdaNHTtWFSpUSF25ckWlTZvW7vsg5pMhQwbxQoHs2bOrnTt3qpEjR0puCxgxYoRq1aqVatasmeU9q1evVtOnT1fff/+9l38lIcQIcufObXmO6J64ceP6bm5bKHj//r143AcOHCiv4Zk/duyY9GtNmjSxuz/gmU6ePLkp94cjEO0FjwnGXBMmTAj2f+v9kyJFCnnE/smWLZsyC2PGjFF79uwRj2y6dOkkOq5du3YS+WbtcQqUa8cRgfL72Xe4BvsO9h3+2HcwzJ74TYhTmTJlVNOmTS2vEe5iPSgBMOL1MBhXw+wIIb5J4sSJVaRIkdTt27eDrMdrGKg6EISzBn0HBq9mA4YnVMmtwSQmJj2tCZT94WwwfvnyZZkkxgDLFuv9g30DzLR/Xr58qXr27CmT2Uhvw6AT4nd16tRRw4YNC4hzhX1HUNh3hAz7DvYd/tp30JgnPserV68khx55jNYDMXjodS8KuHXrlkqWLFmQ9+L1kydPZDBz79499e7dO7vb4L2EEN8matSoqkCBAmrz5s2WdbhZ4nXRokVVoAEle9vcd+RBw/NK/huMnz17Vm3atEnK9wXqfsCCyWtrMEA1g6HuCuw7gsK+wznsO/7bD+w7ovrduINh9sRvQpxmz55tWLsIIcaA8jAIIUd4OVJvRo0aJaV19NSZQKJjx44ibIYwe/STEPOcPHmyLIEAaqefO3fO8vrixYsiYpcwYUKZ6P3yyy+ljNCqVatkIleftMX/YdwFyr7AxHfp0qVV165dpcY8Jnu2b98u91B46wMF9h3/wb6DfYcO+w7z9R005olPhjht2bLFbnikNQh3sRcGg/dhAAMvhCuhMoQQ3wWhwXfv3lV9+vQR4yxv3rxSP9s24iYQ+Oijj9TSpUtVjx491I8//iiaIRhkQEU3EPjnn39U2bJlgwy4AAZd/fr1s9RQxzliDZTckaYVKPsCVV0WLFgg54musAyDfsCAAapt27YqUGDf8R/sO9h36LDvMF/fEeH/VfkICb+TLkIEGZBWr17dbogTBl5JkiQJ8XMQir9mzRp19OhRy7r69evLwAUXHUApOsyqQQxID5WB1wL5gxTAI4QQQgghhPgr9MwTvwmPRO35VKlSqUGDBslreBiget+tWzfVvHlz8eYvWrRI1Or9NVSGEEIIIYQQQlyBnnkSLmzbti1ISKCOHh6JcFF7WIdH4jF9+vQSQmj9ucgFO3HihEqdOrX64YcfgijeAxj8Q4cOtYTKjB49Wjz2hBBCCCGEEOKv0JgnhBBCCCGEEEL8DJamI4QQQgghhBBC/Awa84QQQgghhBBCiJ9BY54QQgghhBBCCPEzaMwTQgghhBBCCCF+Bo15QgghhBBCCCHEz6AxTwghhBDiIXny5FERIkRQ0aJFU/fv3w+X/YiSrvhOPBpFWLUB5WfxubZlZgOBX3/9VX77H3/8EWQ99gXWW5fmDQTevXunsmXLptKlS6devnxpdHMI8UlozBNCCCGEeMC+ffvUkSNH5PmbN2/UnDlzuB+dcOnSJTFK06dPz/1kw927d2Vi5KOPPlJffPEF949SKlKkSOrnn39WV65cUb/88gv3CSF2oDFPCCGEEOIB06ZNk8dUqVIFeR3WtG/fXp08eVIezUaNGjXktw0aNEgFEv3791ePHj0yNNrCF/nyyy9Vrly51JAhQ9StW7eMbg4hPgeNeUIIIYQQN3nx4oWaP3++PP/tt99U7Nix1dGjR8VbH9YkTpxYwo/xaDbixYsnvy1FihQqUIARjxB6TApVrlzZ6Ob4HM2bN5cw+8mTJxvdFEJ8DhrzhBBCCCFusnjxYvXkyRP14YcfqrJly6o6deqE6J0vU6aMhJlv27ZN/fnnn+rzzz9XSZIkUREjRrTkQyMEHdsgJH358uWqXLlyKmHChJb3OcpX79Gjh6xr27atw+8/duyYbJMsWTL177//WtYvWbJEtWzZUn5LggQJVPTo0VWGDBnEiDp9+rRXzg3kfeMzweXLl6Ud1ktIOfP47ViPffj69WvxZH/wwQfS1rRp06ru3burV69eybaPHz9WXbp0URkzZpT/Y59iX719+9Zh+zZv3qxq1qwpkwhRo0ZVSZMmlSiB3bt3293+7Nmzsn/wm6CXgMkc5HZ/+umnasaMGW7tG2z//Plz1ahRIzkXnHHx4kXZLnny5PK9mTJlUr1795Z94ogFCxao8uXLy3mE96CdaPuZM2fsbm97TJydx+6e3+/fvxejvHjx4ip+/PgqSpQosq+hPfHNN9/IeW9LgwYNVOTIkdWkSZOcHkNCAhEa84QQQgghbqIb7TCKrB9hOIUk1oWJABg+Fy5cUBUqVFAff/yxGFnWDB8+XFWvXl09ffpUvLWlS5eWHGJHNGvWTB4XLlxoMWpt0Y3Mhg0bihGlU7t2bYkyiBEjhkweVKpUSQwwbF+gQAH1119/qdBSokQJSy54rFixVJMmTYIsrgJtArRvxIgRKnv27LLvMKmCnOpatWqpBw8eqMKFC6vZs2er/Pnzy367ffu2GP8wFu0Bwx/HAZMnmBjAfsdEAF6XLFkymHGOSZGCBQvKehy3zz77TFWpUkU86zt27BAhO3dYtmyZPKINzjh06JDKmzevGMr4XaVKlVI3b95UAwYMUHXr1g22vaZpsm/r1asn7cqXL59MWGCCA23H63Xr1ilv4+z8xqRRmzZt1IEDB0QfAMcMxwnXzNixY+U32oIJAfzuGzduhEvkCyF+hUYIIYQQQlzm9OnTGoZQUaJE0e7cuWNZny1bNlk/e/Zsu+8rXbq0/B/LuHHj7G6TLl06+X+kSJG05cuX292mb9++sg0erSlevLisnz9/frD3/Pvvv1rSpEnl/0ePHg3yvwULFmjPnj0Lsu79+/fSRmyfM2dOee1KG5xx8eJFeQ9+oyNmzJgh2zRp0iTI+q1bt1r2XaFChbR79+5Z/nfp0iUtQYIE8r9cuXJpn3/+ufb8+XPL//ft26dFjhxZixgxonb58uUgnzt58mR5X+bMmbXDhw8H+d/27du1OHHiaFGjRtXOnDljWd+sWTN5z88//xys/S9evJD3uQq2x+ejbU+ePLG7DfaF/tt79eqlvX371vI/HMtYsWLJ//76668g75swYYKsT5w4sXbw4EHLehxL/fjFjx8/yDkM9O9yhH4e45i4c35j3+N/qVOn1m7evBns/ydOnAh2fHQ6dOgg7/3pp58ctouQQISeeUIIIYQQN5g+fbo8Vq1aVbyGOrp3PiQhPHi/v/76a6fbwKOKz3cH/fvthXmvXr1a3blzRzzKCKe3BikC8JZbg3BptLFo0aLq+PHjIkrnC6Bd2L+JEiWyrEPYOELP9TD0qVOnqpgxY1r+j9/8ySefSIi3dWg4XuupCoioyJ07d5Dvguf7hx9+kGgAhHjrwNMP4I23BdENeJ+rYN/i81OnTq3ixInjdFtESfz0009BIjRwLPXfvmnTpiDbDxs2TB779Okjnm3rfdi3b1/5vcjXnzJlivImjs5vfb/BE480AVsQaYHICHvkzJlTHuHRJ4T8B415QgghhBAXQc7urFmzghjPOo0bN5bcXoQ0nz9/3qlCd0i4so0tCJeHUQ6j7tq1a0H+pxv4tm3WOXfunIQ5f/fdd6pFixaSs45FN8C8lTsfWmDs2U5GgCxZslgMXuRgO/o/QrV1Dh48KK+Rd4732QPh4sA61aBQoULy+NVXX6n169c7TGtwBX3/Wk9OOALh/PZy2WEEg+vXr1vW4fjr56C9NAZ8jp6asXXrVuVNHJ27EDbEhMWaNWskNQATL66i7x99fxFC/geNeUIIIYQQF4GHGyWykB+N3G1rICwHby0ilXXvvT1cqbPuSS12iLAhBxkeZ+SM68Ajj3YjVxr509a8e/dOjFKIySGnHPneaDsmLLAg7xkgL90XcOS5xW939n/d621teOu/DUavrSCfvuiGO+rA63Tt2lVywf/++2/RM4gbN67kf3fu3NntnG6I9QF8Rkg4+m36e61/m27Ywwh29NmYxLDe1ls4OndxDDCphOgFiPZBlyBlypSSxw9RvGfPnjn8TP03PHz40KttJcTfiWx0AwghhBBC/AU9hB6GE0TIbNENI6h3//jjj3ZF62DMhIQr29gDnnd8Nwzxnj17yro5c+ZIRAE8plAQtwbG+8SJEyXsGaJyxYoVk0kJGP6gfv36Io73v1Rq4wlJ7T2k/1uDSQ+A3247MWOLdRlAhPBv3LhRDHcIyMFrj+Wff/6RfYgQ83HjxrnUBv14uDJZ4s5vC0v0/ebJuQsRREyErFixQoT8du3apZYuXSoL0gGwX1FX3tGkB6otEEL+g8Y8IYQQQogLQDkcIcLg/v37Yog4AuHbMPRQqiw8gfp65syZpewY2ocSYHpZMHsh9osWLZJH5ITby9FHCTazkiZNGov3Wt9H7gBvPBaAyRKo0iPVYvz48TJxgpKFIaGnBOB88iaIHNE/FxMF9rzzemSCvq0OKh2gdCEqKdjL40dpwdAQL148yfPXc/2vXr0qUSGoHtC+fXu1ffv2YO/R9w8mmggh/+EbU3yEEEIIIT4ODD6EpaP0GTzVjpZu3bq5JIQXVui50Gjv/v371dGjR8VwRa1xW1DKTReRsyfOZq9UmKegfjvwlVrhMMThcT9x4oT81tAArQQY8LqH39X9BmE37BfkuMN49hYQ1NPD6O1NVOA81dfbTjroxr090cMjR46I8e1NcG6idKCz/YZygMCRtgEhgQqNeUIIIYQQF9Dz4EOqiw7vLFi1alWQXOvwAu1DSDa87nq4t77OkXgatrMOn0YUAn6HNw1vKP/DcIXmgD6JYCTwQEPVHYZtjRo11M6dO4Ntg8mbLVu2qD179ljWwfNuTxAQvwuh9o4mRxyFpBcpUkT2PXLwvUmXLl3kEQr4hw8ftqzH7/3555/FcEaYf6tWrYK8T693DwP79evXlvWXLl2S88jTlAsIDi5cuFBqytuycuVKp/tNFyCEUj4h5D9ozBNCCCGEhABCf6H4Hi1aNFW3bt0Qva0ov4VQZWshuvACntWKFStKeDUEx6yVy21BXj0MbJQny5o1q5SpQxk3eHVhyMHI9abxjFB+GMgolYZ8/JYtW8piFAjrhqAd0gmQogCl/OrVq4tQIDzW8NwjosHaYwyxNiizQ8ANv6dhw4bikcdreNhhcLpTVhDfB5Av7k3atGkjoez37t2T8nww0rHPMYGD/HRMJMybNy9IeUX9nICRj5QSCCMi4gD6EDly5JD9AV0FT0B4Pq4dpDWUKFFC9jEEG7EvUQIQ5+Evv/wS7H2YEENEAMTy9LQGQsj/oDFPCCGEEBICesj8559/7pIIl+6dNyrU3jo/HnXPYWjaAykD8CbD+Hz+/LkIk0HdHTnMu3fvdkll3R2Qmw8jExMMv//+u+wfo/aRDgxI6As0aNBAFNWhdQD1f+geoDQd6tZjkkMHZdVQAQAGLzz2ixcvllB97EsID+L9CLt3FUy0oKQghAox0eEtsI8xmQSDHcYzUi6wz1+8eCFlB+Epx8SNLRkyZBBPOFTmEfqPCBOUhOvVq5cY+JiU8QREIAwePFgmSbBvca5t2LBBRCLbtWsnBjuqA9iiCzjivHFnvxISCETQfEWelBBCCCGEkAAEEQJIdYCBiwkj8j9gpuTJk0eiYiDYh8oDhJD/oGeeEEIIIYQQA0HuPjz9KGdI/gORBBBw7N69Ow15QuxAzzwhhBBCCCEG8+uvv6rvvvtOwvaRpx7oIOUA+hMQzDt16pTT+vWEBCo05gkhhBBCCCGEED+DYfaEEEIIIYQQQoifQWOeEEIIIYQQQgjxM2jME0IIIYQQQgghfgaNeUIIIYQQQgghxM+gMU8IIYQQQgghhPgZNOYJIYQQQgghhBA/g8Y8IYQQQgghhBDiZ9CYJ4QQQgghhBBC/Awa84QQQgghRPXr109FiBBBFkIIIb4PjXlCCCGEEOJ11q5dq2rUqKFSp06tokWLJo94jfW+wl9//aUaNmyo0qVLp6JHj66SJ0+uKlWqpObPn++Vz2/atKllgiSk5dKlS3Y/48mTJ2rBggWqc+fOqnTp0ipz5swqXrx4KmrUqCpp0qSqTJky6pdfflH379/3SpsJIf5DBE3TNKMbQQghhBBCjPfM9+/fX56HZnj4/v171bp1azVt2jSH27Rs2VJNmjRJRYwY0dDf+9NPP0l77fHpp5+q33//XYz80Bjzs2bNcmnbixcvqvTp0wdbv2nTJvXxxx+H+P7EiROrOXPmyGQEISQwiGx0AwghhBBCiHno1auXxZDPly+f6tatm8qUKZM6f/68eJAPHjyopk6dqpIkSaIGDhxoSBsxkaBPXKBtPXv2VLly5VI3btxQv/76q9q6datavXq1at68uZo3b16ovy9lypRq/fr1TrdJlSqVw/+lSZNGlS1bVhUoUECep0iRQiYhrl27JhMOS5YsUffu3VNVq1ZVe/fuVXny5Al1mwkhvg8984QQQgghxCue+TNnzqicOXOqt2/fqoIFC6odO3aoGDFiWP7/4sULCRX/559/VOTIkdXJkyclbDw8efDggcqYMaN6/PixSps2rdq/f794tXXevXsn6QArV66U1zDsEcoeGs88wvgdhdGHBNoTKVIkp9ssW7ZM2gzwCOOeEGJ+mDNPDGXcuHESUoYQtsKFC8tssjOOHDmiSpYsKdtjZhoz/LYsXrxYZcuWTbbBLPuaNWvC8BcQQgghRGfUqFFiyIMxY8YEMeRBzJgxZT3AdiNHjgz3nYeoABjyYMiQIUEMeQDDefz48RYDeujQoeHeRtv2hET16tVV1qxZ5fmff/4ZDq0ihPgCNOaJYSxcuFB16tRJ9e3bVx04cEBCwpDndefOHYcCMBUrVpTZbcyi4+YKL8LkyZODCNnUq1dPtWjRQsL4cHPDcuzYsXD8ZYQQQoj/8+rVK7nX5s+fX8WJE0eWQoUKqbFjx1oMdmvgzV++fLk8x6R6kSJF7H4u1uuGJ7YPb/kmeLFB3LhxVc2aNe1uA7G+ChUqyPPNmzerp0+fKl8Hx0c/boSQwIDGPDGMESNGqFatWqlmzZqpHDlyqIkTJ8qM/fTp0+1uP3fuXPXmzRv5P0L46v4fe2cBLkX5tvEXpLu7Q6RTEERaUhQVRUIQJCQElBAERERKQUVAQFIESSkpaZRQAemSlE7pkpjvup//965z9mx33L/rmrNnd2d3Z2dn3nmfup833lCdO3eW99Ggzq127dqqR48eqmDBgiJsg0kIJh6EEEIIcY0LFy6o8uXLS707nOO3bt2SZevWrerdd98VI9haOA4Cbqg5B0ild4R+/syZMx6nn3sC5hE6CxDfD4rwzrbx/v37UhYQyhw6dEjt3LnT4kghhEQHNOZJUMDFFNF17fWWgzFuXLm/ZcsWS52ZuUYNj1eqVCnGhReRfFzArl69alnH/J56Hf2ehBBCCHEOjPX9+/eL03zVqlVyzYYQHBzlAPXkEyZMiPEarK9xZlCan0fdfKBATT9q0K23wd/biLZxcA6kTZtW2vRBwA7zEwQboCPgCXjd4cOHJaiB99bZEl27dvVqWwkh4QONeRIUoLiKi2nGjBljPI7758+fl/9xoYMwjQaP21pfP+doHf08IYQQQpyDCDzU15HxBic5stxQxrZx40bLdRZ15WagrG5OU3cEdG80p06d8qo/u73FlmidL7fRHZDVADFAiO8hoIF5ycqVKyXL4cknn5QyQVeYOnWq5fslTZpUXov+88ikAL169VJNmjTxalsJIeEDW9ORkGXIkCHB3gRCCCEkKoGRacsYTpMmjZTHDR06VO3Zs0eE5FKmTCnPmevKkyVL5vD9YYiaDd1AEehthNENjYD69euLQwSOENS0Y9+hfR9S/lFqAE0gCNehlZ8nlChRQjSEnn76aY9eTwgJT2jMk6AA5Vios2pPsgb3M2XKZPM1eNzW+vo5R+vYe09CCCGExKZp06Z2dwt6nQMI16FOHoaktfCao1p0gFRzzd27d2M9P2jQINW9e3evfhqzMa7x5Ta6AtT6U6VKFetx1OtDN6hv375q8ODB6vbt26p169ZSmw8HgD0g6ouWf3qbjh49qubMmaMWLFggmRPoJvDCCy94tK2EkPCDxjwJCriAYjIAhVhcmACEdHC/U6dONl+DC1+fPn3UgwcPVPz48eUx1PFBETd16tSWdfAe5noxrIPHCSGEEOIajurJEZ23FelGS1gNUskdAVE5jXX7OpA1a1ZZfI0vt9EVbBnyGhjtcFr8/vvvMndBZx+k2z/77LMO38/8nojEQxD4+++/Vy1atFAvvfSSRPxRpkAIiXxYM0+CBtrSQTznu+++E2GZ9u3bi2ca6Xugd+/eqnnz5pb1UQMGJwDazu3bt09a26GWD++j6dKli1qxYoUaMWKEOnjwoLSug5fbnoOAEEIIIbFBdxl7QLBWo8XkzK3RXElLx/Xe1XR3XxKK29iuXTvL/xs2bPDoPd5880312muvSWAEcx7U5hNCIh9G5knQaNSokbp06ZL66KOPRAgGaXowxLWwzrlz59TJkyct66MmD2IxHTt2lKg+UvXx2rZt21rWqVChgqjtIm3tww8/VPnz55d+skWKFAnKdySEEEKiBbOgnFlozhZmQTmz0JwGdeS6U403afa5c+f22zb6CrTnNX9vT0FUHin3cEJgPkUhPEIiHxrzJKjAe2wvag7FVmuKFSsmAjGOgGcaCyGEEEICh9koRXacI8zP63Z3ZlBWh8w9b0C7tvXr18d4DOrv0OxBRoG32+grHNXIu0P69Okt///9998+eU9CSGjDNHtCCCGEEOI1iIJnyZLFpXRxtGkDqIvPlStXwPY+yvXKli0r/2/ZssVh3bz+DhDC06Jz/mD//v2W//X+8wRzVD+QpQuEkOBBY54QQgghhPgkwoxUbx3V/u2332yuh8d11Bvr24pMIzsPavneLNZReY0W3r1x44aaP3++zXWQgr969Wr5v3r16jFq7X3N+PHjY2QTeMrcuXMt/xctWtTr7SKEhD405gkhhBBCiE9ANxmksete9dYt3XAfj4N48eLF6D4TKNACDjo8oFevXurKlSsxnkcKfocOHSzifj169LD5PhDZhSMCi63SQDgtoP9jDzgcoPGjnQbFixe3qWSP9za31LPXAm/ZsmWWDInnnnvO4fqEkMiANfOEEEIIIcQnoCYdxu/QoUOlmwyM0w8++EDlzZtXeqIPGzZM7dixQ9bFehCqDTRorYfteOedd6S2vFy5clKjj2j22bNnpVf7unXrZF30bq9SpYpHnwMROuyH2rVrq+eff140BdBWDi3vdu/erSZPnixt6XT3AHT4sZWlAKdBt27d1KuvvqoqVqwo+xJp9GgLuGfPHjVjxgy1adMmSxnBt99+a3GoEEIiGxrzhBBCCCHEZ6B3+sWLF8VYheGOPujWoM3sp59+GrS9jnZwMNwHDhwoToZWrVrFWqdu3bryHbwBhvuiRYtksUeOHDmkEw96xtsDreZg7GOxB5T6sb01atTwapsJIeEDjXlCCCGEEOIz0Id+0qRJEklGlHjr1q3q8uXL0lIWBisM6Tp16gR9jw8YMEDVqlVLjRkzRjrlXLhwQSLnSHdv2bKlROW9Ae+BdrsQ2kMkHg4OpPSjvAD7olSpUqp+/frSQi5RokR23+fnn39WS5culej7kSNHZDvxPokTJ1YZMmSQ1r4vvPCCev311yXCTwiJHuIYKNghhBBCCCGEEEJI2EABPEIIIYQQQgghJMygMU8IIYQQQgghhIQZNOYJIYQQQgghhJAwg8Y8IYQQQgghhBASZtCYJ4QQQgghhBBCwgwa84QQQgghhBBCSJjBPvOEEEJ8wuPHj9XZs2dV8uTJVZw4cbhXCSGEEELcBJ3jb968qbJkyaLixnUce6cxT8KGBw8eqGXLlqm6deuq+PHjB3tzCCFWwJDPnj079wshhBBCiJecOnVKZcuWzeE6NOYJIYT4BETk9cUnRYoU3KuEEEIIIW5y48YNCY7oeZUjaMwTQgjxCTq1HoY8jXlCCCGEEM9xpWSRAniEEEIIIYQQQkiYQWOeEEIIIYQQQggJM2jME0IIIYQQQgghYQaNeUIIIYQQQgghJMygMU8IIYQQQgghhIQZNOYJIYQQQgghhJAwg8Y8IYQQQgghhBASZtCYJ4QQQggJMe7cuaMaNmyoatasqZYvX64Mwwj2JhFCwoD79++rZs2aqWrVqqlFixapx48fB3uTiB+hMU8IIYQQEkI8evRINW3aVP34449q1apVqm7duqpUqVJqy5Ytwd40QkgIA6ff22+/rWbMmKHWrVunGjRooIoVK6bWr18f7E0jfoLGPCGEEEJICNGtWze1cOFClTBhQtWmTRuVNGlStXPnTvXyyy+rW7duBXvzCCEhSr9+/cSQf+KJJ2TsSJEihdq3b5+MHf/880+wN4/4ARrzhBBCCCEhwjfffKNGjhwp/3/33Xfq22+/VX///bfKly+funDhgvrss8+CvYmEkBBk2rRpatCgQfI/xg0sJ0+eVEWLFlXXrl1TAwcODPYmEj9AY54QQgghJAS4d++eRNbA0KFDVaNGjeT/tGnTqmHDhsn/w4cPV6dPnw7qdhJCQouHDx+qDz/8UP7v27evatWqlfyfMmVKGTPAmDFj1JEjR4K6ncT3xPPDe5IoAqIaSPm7ceNGrOXmzZuS5pMgQQJJFbS+xeQkQ4YMKnny5CpOnDjB/iqEEEJIUEGNPFJhs2fPrrp37x7jOaTJVqxYUW3cuFEM/ilTpgRtOwkhocWyZcvUmTNnVLp06cSYNwMRzdq1a6sVK1aoXr16qXnz5gVtO4nvoTFPHPLgwQN1+PBhdeLECUnVsV4QHYBQjzfAsIdRnz59ernVS8aMGWMsensIIYSQSGT8+PFy27p1a3GGm4HTe8SIEapcuXKSft+5c2dVsmTJIG0pISQUx46WLVvKvNqazz//XK1cuVIchnAIwjFIIoM4RgT2OhkyZIiaP3++OnjwoEqcOLGqUKGCpKcVKFDAsg7qSH744Qf1559/SgT56tWrKlWqVE7fG2qQ77//vohJwHMO79dbb70VYx2kseCkOX/+vCpevLgaNWqUKlu2rAplcBjAo7dnzx5Zdu/eLbcHDhxwyYDGpAOpPBDa0EuyZMnkfdEi499//5VF/3/37l115coVdfv2bY+2N3/+/BLZhwdSL3AGaMNfOwPwGDIBiGPGjh0rC5w2oHDhwuqjjz5SderUsfsaHCMdO3ZUW7dulf387rvvqp49e8ZYZ+7cuRJBwvviN8N5CFVmEpkgIwfjwPXr12UMIIS4zv79+2XsxfUUNfJZs2a1uV7jxo3VrFmzRO1++vTp3MWERDkYL3Lnzi1zbgTgoK9hi7Zt26oJEyaol156SQQ2SWTMpyIyMr9hwwYxMp5++mlLDQlSTHChhCKs7t+KlBMsvXv3dul9jx8/rurVq6feeecdUYpcs2aNeM8zZ86satWqJevMnj1bjP1x48aJ9/yrr76S5w4dOiQGZigBAwstb+CpQ/sKGNe2QBp83rx5VY4cOWItcGjAqE6UKJFHqfIw5i9duqQuXrxouYXAj77Vy9mzZ2OocGKwwuIKcNJgG81LmjRpLM4AGKJ6wX08Hi9eRJ4adsmWLZvUZ8LgxsUAUR8M9jt27JDJpa1BBudUjRo15FiH4wf1WdjXuFiAzZs3y6QTzrUXXnhBnGdokQIHWpEiRYLwLQkhJHRBkAFgvLRnyIP33ntPjHlE2EaPHu1SIIIQErlMnDhR5m7Vq1e3a8jrsQPG/JIlSyTgmClTpoBuJ/EPERmZtwZGIgxpGPmVKlWKFWmvWrWqS5H5Dz74QC1dulTt3bvX8tgbb7whCpGoQwEw4OFEwAVW15TD4EXUEnUqwQQZCDDaYbzDiP/rr79iPI9oALIXoHqJnpS4xZIzZ86QqGlHbf7kyZNV5cqVxZi8fPlyjAUOALMTAL+7JyUA+K6pU6eWyZS14wK32B/4PxT2iT+BwwMZJuhXag2i+H369JGLgc58wPENTy8yYgCEm+CswUVD88wzz6gSJUqIA4B4hzsZQMhUGjx4sAjfINMGThu0vnrzzTct6yDDCE4cM3BE6rHNFRiZJ8QzkK2WJUsWmU+g9tVRVhSmbbhGYy4C5fv27dtztxMSpeCajnnpuXPn1Jw5c9Rrr73mcH1kK2/ZskW6YvTo0SNg20ncI+oj89YgRUEbJ+5QpUoVlStXLjV16lS5j4MfkUjryW7Xrl3lf6SPb9++PUakP27cuPIavDZYyrgwppBJAEeEOWUexjuMK0RYn3/+eam9Q4Q9VEENEAasQoUKqfjx4ztdH44URPNh1CPrQC94TP8PJwCe1wuew0QJt1gQcbYFHD+lSpWSpXTp0rIgewG/d7gDBwjS42GIly9f3mLoIZMDzi+A4xmOMXMJA84FpNHDMQZnCNZBlooZrMPULu9xNwMIYx+cL0899ZT8ZhgTUFeHdXVWEUCmkllUy1bdHSHE90CQCoY8rnG4JjsCjmRkQmEMmDRpEo15QqIYzO1hyON6joxKZ2DswPwMYwdENiM9MBUNRHwuMQw6GNvPPvus26m9iMIihV6DCJgWYtPgPrwn8KrDiIEhZGsdHa0MBNgGZCGglg5peNg+DdJvYLhjsoCMBNRjRCowrHU9vaugLANGPCL8EPeDyN+pU6diiP7hPiZda9eulUWDmpYyZcpIiiTSyVG/FE7AcQHjHQ4g6B0sWLBAHCcA5wHOJfO5YP399HGP52DM2ztf8Djxji+++EK1adNGDHIAox4XdGSu2MoAgmPSTJcuXSQKDxEcszEP451pd4QEHp0Vg0woa+E7WyCrBtmCCCDs2rVLsnMIIdE7diDo4opGFLImYRfB+Y9ySNhHJLyJeGMetfNIRcOk1V2mTZumwgnU9CP9GVF41JibnRJNmjQRsRzWKjsGtfJaTd/evkIGBgQQUfuNiRRuMZmC00Qb+IiYYHIFox7thJASGereT5RY7Ny5UzJZECVq0aKFOIVg0KPunYQG3mYAIfMExygu5LpvtQaZFzj24YypVq2a+vTTT0VDwh4QtMSiMTsOCSGugeu1dgw3a9bMpdfASY0oHMZqOPFGjhzJ3U1IlIHgE8pygLlszhHQwXr99dclCw9jB4358Cf8c4Id0KlTJ0knRZ04BL68BREr1GKbwX1EZKGaj4srPOq21vFXtAsTc3w/GIyIuqOGFhMDTMYhRAZjDEY+jDEa8r4Bnk+UJCCCgnrF3377TYwYqLsj3RkZDzgOYOAPGDBAasTz5Mkjxhci+6H8vXAMoWQAxwucEfYmiPbOBf2co3UY+fUOlIbYywBylPUAJw0yLvA7Q8gTNfbI0jGn2MOBCWFPGPkYO1C360h3AscJsnv0Ai0JQoh7zJw5U67lmFS7k9GFdFmALDyzU40QEh3AmQcHP+Zr7szx9diBkj3oaZHwJiKNeVwUYcgjTRjebl+lOyMFGRNdMxCS03XFmCTDEDKvg9Rk3Nfr+Aqk9aPeBYYiImioQ8ZnIX0e3xv1M+g5ibrmSKjjDnVQww+xQKQv45iD0QqtBUTm4ehBvTnU4mHUQ5wEmSKhrj2J48neBBHH8y+//BJDgwHnAqL7cCS5cr6QwAJvPDIv0Epw0KBBkj2iNRC0mOeLL74oxzGOWzhCsa55HWvgoIKTQC8oQSGEuAey6QCy59wB13sEKhCdW7RoEXc7IVGGbk3p7tgBxyHma9BGgmgeCXOMCKR9+/ZGypQpjfXr1xvnzp2zLHfu3LGsg/s7duwwJkyYAIvK+OWXX+T+lStXLOu8+eabRq9evSz3jx07ZiRJksTo0aOHceDAAWPMmDHGE088YaxYscKyzqxZs4yECRMaU6dONfbv32+0bdvWSJUqlXH+/HmffLd//vnH+Oijj4y0adPKdmPBNuE74/MimX///ddYuHCh3IYTt2/fNubNm2dUrVrV8pthKVmypBwn9+7dC/YmynG+YcMG4/jx48bu3bvlfpw4cYyVK1dansf5oLl27ZqRMWNGeWzv3r1y3OM4HD9+vGWdTZs2GfHixTOGDx8u50v//v2N+PHjG3v27AnKd4wU7t+/L+POggULYjzevHlz48UXX3T5fd5++22jZs2aDtdJly6dMW7cOJff8/r163Js45YQ4hyMnzhnMFZevnzZ7V3Wt29feb2zc5kQElmcOHFCzn3M1U6dOuX264cNGyavL1++vF+2j3iHO/OpiDTmzQaTeZkyZYplHRgWztapXLmy0aJFixjvvW7dOqNEiRJGggQJjDx58sRYXzNq1CgjR44csk7ZsmWN3377zevvdPXqVdnmFClSWLY1V65cYijBwI8GwtWYNwNDuXXr1kaiRIksvyOMYjiVHj58GLTtatWqlZEzZ045ZtOnT29Ur17dYsgDnAc4H8zs2rXLqFixojivsmbNagwdOjTW+86ZM8d48skn5X0LFy5sLF26NCDfJ9LBuNKpUyfL/UePHslvMGTIEJffo2XLlrF+UzOYHGCSsGjRIpffk8Y8Ie7Ru3dvuQ7Ur1/fo1139OhRy4Qek3tCSHQwePBgOfcRKPIEBDURGMB7RHowMByJemM+kkAEdMCAAZJpoI2/IkWKGHPnzg2q8RcMIsGY1yACA8MrW7Zslt+1dOnSxubNm4O9aSQMcJYBZJ1VhIs+nDOY+GN9OAERCYQTCdy8edPo3r27sWXLFsnOWL16tVGqVCkjf/78bmWO0JgnxHXghIMTFeP/7NmzPd51Ouvr448/5u4nJAp4/PixUahQITnvJ02a5PH7IJsP74HrPwkt3JlPsZg6REEdC5Sk0ee+f//+Uo9auHBhqW2BsFrDhg1dal9DQhMohKOF2LFjx6TNGEQUoVBeoUIF1bx5c9E8IMRRa5nhw4erjz76SHQzUAu/YsUKiygehBbNxxDGkw4dOsgYglo5tKxErV3r1q3leYwlEHBEzfyTTz4p4o7Q//j111/Za54QP7Fp0yb1999/i55F/fr1PX4fnK8A6tTmFqKEkMgEdsD+/fvl+vzqq696PXZA/NasgUTCiziw6IO9ESQmP/30kwj4aeXzggULikEP4bRoFrPDQIMWHHXr1hXBuUgCgnkffvihTMZwSkJ1vF+/fiJShnZ5hIQD6OoAVXs4H+GgIoTY55133hGhWvSHxtjvjSBu5syZ5byDyCjaVBJCIpfu3burESNGSGBv7ty5Xs2r0YUGc9D58+dLZywSfvOp6LUMQxAY7ziREB3D/+gPD5XbPXv2SCQumg35SAcRVXQn+P3331W5cuXUrVu31AcffCCtwxy1GyOhD7znEydOlDZuixcvtjyOCBpayhBCog90CtEq0q72lrcHOqY0adJE/sd1hBASuaBd7A8//OCTsQOBsRYtWsj/HDvCF1qHIQA8Y/CwFSpUSFrMIRILQw5GAC7QTKePHp5++mm1efNmNXnyZInOoy0Y0qgdtQcjoQnatCFChlZv7dq1U3379pXzWzNhwgSZhFu37yOERD7Lly9XV69elYh6lSpVvH4/nS6L6JrO6iOERB6YD6KMDm2A69Sp4/X76Z7zGJMOHjzogy0kgYbGfJD5448/VJkyZSRlBnWtFStWVDt27JCe5EmTJg325pEggAyMli1bqm3btqkiRYpI+lP16tXV4MGDWQ8ZJqDvc+XKldXatWulTr19+/ZSPmHm9ddfl9/aHK0nhERXb3lfOeyhcVG1alXJ9hkwYIAPtpAQEsq95TGHSJAggdfvh37z0OxAtiBKekn4QWM+iGkySLuF4BmEp9KkSSMpLhs2bBADjhAMsEi7RwoUBtk+ffrIgHvlyhXunBBn2LBh6sSJE+Kkg1DN6NGjY60Drzqi9hs3bgzKNhJCggNqIKGN44s0WTODBg2S26lTp6pDhw757H0JIaEB9DEgYOvrsQOC23HixJHSnz///NNn70sCA435IHDmzBmphYbgGYx61MPjwotUF9bFEzNJkiQRYSTUXCdKlEgEAOEAwjFEQpdFixZJJwpk2OACaY88efKos2fPBnTbCCHBBZNx1MyjtK548eI+e9/y5ctbImwQUCWERBZwAt68eVPlzJlT5oK+olixYqpx48byP0oCSXhBmWw/gBMNKfK2DHOciEihRnQV64waNUqUbB1N+KOFhw8fqosXL0otEAwcCL+h9ACPY5k3b57UIb/77rvSjgPCHTBwM2XKJHWHWPC/L9KOQgkcG6iHRDkGxBH/+usvqbFct26dypYtm9fvj/RvRIpSpUrlk+0lStpN1atXz6lzDscqUvIJIdGXJovImq+v/YiwLVmyRBSuEWErVaqUT9+fEBL8saNp06Y+D/6hPAeRedTOoy3tc88959P3J/6DxryPgUcc/cIhXoaLqD7Z7t27p3r06GFJty1ZsqSaNWuW9HSOJqDSjp7Y2Ed79+4Vo10b75cuXYpRE45JDiLTEATEotPLR44caTHwkXKE7AYz6dKlsxj3WbJkUU899ZTUE+L3QDlDuIIIDsowUBd55MgRS002PLTeGPIQPIHxibr8SGv5FyzgZIJTzxkQqkLrEUJIdABhWzhicX3TCvS+REfYoHbdrVs3uUYwWEBI+HP8+HHJztTGvK/Jly+fBI7QLhMlghBjpgB3eEBj3sfAeEeq26ZNmyxecUSYEVGFAQvQOxxiZoguRzIwZiDmh++tF5QTwIDEd0eKIfpbli1bVoxuswGO2wwZMsQYSGz1mYfxDyNfOwW0Y0D/f+DAAYnow4kAcufOLYa9eQknAx+p2zDoq1Wrpo4ePSoGPSaG+F7eGPLPPvssDXkfAgcSzn9kltgTsrx8+bLU06MVISEkevQ0QIMGDbxyxDqLzi9YsEBUr1GmpdWqCSHhC7peIXiFMl3Mn/3BRx99pGbOnCni3GPGjFGdO3f2y+cQ3xLHsJZYJj4B9XAw6KFE3rNnT3X69GmJGH///feqdu3aEbmXcSjBeEcpARS68T8eQ5QSUWVtPMPBAYVvW1FgCL4hjRyKvEhB1pkLeAxeQ6Thm415vT7WMxtF5sfR7g3/m50K2DYdOdVKnnC4wBGDLIBQB8cTDPrDhw+LQwQGfd68eT025JMnT+7X7Y3Giy4ycdq0aaPGjh0rTj4sKKlB20GAcptp06apcePGyXqRwI0bNyTTAGUbKVKkCPbmEBJSYLzFdQxZZbhGwZHtLz7//HOZe6B8Ck5tlKARQsIT2BII5iDLF9k2yND0F5iToAMPAhH79u3zm9OR+HA+BWOe+IdFixYZiRMnhrPEKFCggHHkyJGI29V37941li1bZrzzzjtGtmzZ5LumTJnSeOONN4xJkyYZu3btMjZu3GhMmzbNmDhxotz+9ttvNt+rZ8+e8np7C/blwoULjX///dfm+rhv6/FmzZrF+vxHjx4Zhw4dMn744QejdevWRsaMGWXdNGnSGG+++aYxd+5c4/r160Yoc+bMGTmusN358+c3rl275tLrHj9+bOzfv99Yvny5cePGDb9vZzSC86Jo0aJG3LhxjdKlSxuDBg0y4sSJY1SqVMkYMWKE8cwzz8hzpUqVshzPkQDOGRyPoX7uEBIM3n33XTk/qlWr5vfPevDggVGyZEn5vNdee83vn0cI8R8ffvihnMtly5aVOZw/wfy4YsWK8nl16tTx++cR7+dTNOb9xJgxY2Syjh+iRIkSxpo1a+QEiRRDZcaMGcYrr7xiJE2aVL5j7ty5jS5dusj3hHECgxmGc+3atW0a5trw1mB9R4a82ZjfvHmz3fVhsDt7H1ufj98G79mnTx8xwrBO/PjxjZo1axpjx4512VAONOfOnTNy5Mgh2/viiy86PcZoyAeOs2fPGs8++6wY8RgL9K3+HxdlrBNJ0JgnxDYXL160OPdXrVoVkN30559/Gk888YR85pw5c/jTEBKm11UEyXAeL1iwICCfeeDAASNBggTymZMnTw7IZ5KY0JgPIg8fPjS6du1qMRpbtmwp0U8YuVu3bg1rg37Pnj1G586djdSpU8t3K1eunDF48GBj7969MTx3ziLsejFH6GH4u2rMY11767dr186lz7b+fGuOHz9ufP3110aNGjVkMoTPbtGihWQZhJqXctu2bUbChAnlO3366ad216MhHxxWrFghEbl69eqJl7tt27ZyQQ6148gX0JgnxDZ9+/aVMRqZOoE893v37i2fmyxZMmPfvn38eQgJM4YNGybncMGCBQNqQ2B+j89NlCiRsX379oB9LvkfNOaDBE6yt956y2Is4kTQF+179+6FpUGPVL3Zs2dLhBHfKUOGDGKs//XXX5bouzl93ZUIu17wmmBF5q0/34z+XtrYRzo70qSRfYDXFS5c2Bg/frxx+/ZtI1RASQO2DRFfpM9bQ0OeBAIa84TE5tKlS0by5MlljJ43b15AdxEy5apUqWIpx7p69Sp/IkLC6JqaNm1aOX+nTp0a0M+GrYIgBD4bGaDILiKBg8Z8EICx1LFjRznoEclFLbY14WTQX7lyxRgyZIilDh6TAUxC7t+/7zD6rk98TyLj7tbMI03Z/DwyBVx5H0eReXt1+AC/GdIjGzRoIEYzMhTw/MmTJ41QABFfbDO269ixY5bHacgHngEDBohmhjMWL14s60YKNOYJiU23bt1kbEYNezCu/ZiEZ8+e3XKN9uU24PqCcqHff/9d9HOmT59u7Ny502fvT0g08/HHH8t5+9RTT0lwLdDA+QcnILahatWqPt0GjB3nz583/vjjDwlCYexApmkkZi16Ao35AIMDTxuBMPJwQNoj1A16RJuRUYD6HKRuo0zAfGGGAdy/f3+XDXZ36tb1++tov/XnuBKZ1wa6fh+I2dla74MPPrD52a68J25hLL///vtGihQppK7ovffek+hLMMGxpR0c0GmA44WGfHDAOIBzxxkQX0QNfaRAY56QmJw6dcpSBmUraypQYJKMdFlsR79+/bx6L2jIwNn/9NNPWzIOrBeIe0I7CBo7hBDvMnogyhwsUJ6DMh1sB+a63nDz5k1j+PDhEnzTOgDWC3SrvvrqK+PWrVtGNHOdAniBZeDAgZaDEOnXzghFgx7Rbgi9Zc6cWYTfUOMLj5kZVyPe3kTnzVjXxbtSM28rdd5WOYArn2d+T3sRe+ghILKKgQ6GPY6FYA5AmDjqlKzPPvuMqvUhbsy3atVKMnkiBRrzhNjOmHruueeCHnEyX+Pmz5/v9utxbYOqNq515ushHJLI4kPmAVSwMYfQz+F7s2sKIe6DgJF2jAXbVvjxxx8t5/T333/v9uvh1EOWgdbc0gvmSlmzZpUAFMYK7fjEUqZMGckSjlau05gPHF9++aXlwPviiy9cfl2oGPT4bNTEI40GJ1XTpk2No0ePxlrPnVp4rGsdEa9QoYLLxre9z3QnMu8J7tbhm50DSGOEmj+i9Ghzh4hEsFqO6fr5JEmSSJYIJ1Kha8w///zz4p2OFGjME/If0JbRavK//vprSOwaiNhie+CARotSd6LxWjsHS6FCheRag6gd5jPWEUXMjXTkDa04WatPiGcZPRDRDQXQ7QnbgwwfdMpwxwlYvXp1y9jx5JNPSuATotrWmTv//POPMXr0aEtQCkZ+tNbqX6cxHximTJliOTg9qXsNtkG/evVqUdbF9kNl21Gdmytq8zp93V3D3xHmiLizPvO2UufdxdZ7uvLddaQeKvhwZMCYy5s3r2gnBDoag44KxYoVk+1q2LBhQD87mvnuu+8sC35/eJnNj5kXTILhdY8XL56sFynQmCfkPxo3bizjcN26dUNmt+D6WblyZdkuRNM3bNjg9DWIjiGlHq9JlSqVROlcmbMgtT9NmjSW6KIr/ZIJIYbRpk0bOW8qVaoU9Iwe89wSYxm2C0GrlStXOn0NgkmY42gHIubEeB9nwNDHZ2jR6cuXLxvRxnUa8/4HYi+6B2P37t09PtmCYdDjwtysWTPZdtStrF+/3q6Su/lxW0Ys6tqt09ftGb/W6fcwel1BbxMi8mZj3tH2eoP1e7qqkG/ehl27dhkvvPCCPI72didOnDACga6RR1s9GJT4/HXr1gXks6Md6z7y+n97C9ZB1M4VobxwgcY8If8DznF9bdixY0dI7ZYLFy5IdEynuSJ13jq6rsH8oEiRIrIuomXuROT0fkifPr28HkKAhBDXM3rQDjmUQIYNatr12IagxJ07d2yuizm7DhiiNAf33eHgwYNGlixZLG2no43rNOb9fyHUKu9QNvfWCA+kQQ/1bNTFI/0NmQXaCQFD1NrYthaos1Uzb0/EztX0e1uvtweMeGtj3t+4qhOARTsAzPX5EPHAsQIRE6QV+dPDai12984771i8msFK+Y8mWrRoIa0psWCCjNIVfd96QR3tJ598YuzevduIJGjME/I/tDP3jTfeCMldgmsESoH09QtzgiZNmkjmEMqzcL2qVq2a5XlEyRAt8wSo3OM9UEt/+PBhn38XQiIJjBk6ABaKQCi7ffv2lrEBEffXX39dbAqMHd9++61Ru3Zty/PIzkGWjif88ssv8h4IgETafMkZNOb9CNoy6BS1AgUK+CxtzN8GPepQmjdvbkmpP336tFPFd+toszt16raMYJ0N4G6qfbCMeXvfF0abrcft7UfU0r/99tvyP2qk//77b59vqy3VemRg6LqjkSNH+vwzifc185EGjXlCDImmYdxFdA1RtlBmzpw5luiXrQUGeIcOHYwzZ854dX2qWbOmvN8rr7zi0+0nJJJAFk+oZvTYCg6i/7y9sQPjHzr2eDvnffXVVy3z51ApOQgENOb9CNoyeCIeE0yDfsmSJXKxRprL5MmTjS1btrisOG8WqHNXQd6diHYoGvOu6gQ4MuTN5QgQSIRqJ6L08Fz6alBy1H4OHQrw+fj97aVREt+DsgrWeBESfWA8Rp0rxl3UvYYDqGHdtGmTlAxi2zFpfvHFF42uXbv6zPmMqD6ia9gv5tI+Qsh/6Ll5qGb0WANbBfN96Esh0ImyUowd6Ih15MgRn3wGRLl1WTPsmWjhOtPs/QOEG7xp6xJogx79HJHSi+1FygvUMd1JG/cmMu+OIRxukXnrBSn1MNZdWRepSDq1sVatWsa5c+e82kZnfeTRax4OBHzehAkTvPosElpA8TVnzpyieFu2bFnR8bAHBKtQu4ZUWnQ5KF68eCwnGo4l9J/OlCmTqNVCfdbdqCIj8yTagUYJxlucl7jmkv/QpV+h0GqLkFAD8/5wyegJND169LBkRCNDOhq4TmPe98BgwiQYB1Pv3r0Nf+ILgx6q6lA0RwYBlLMxUXcnWq7F8axxVUHe3mdZR7DdUaAP1Zp5V7MczPtg6dKlYjShnt7TWiJnhrwGGQH4XNRwu6IiSnwL2rJABAq1X1COtrW4y6xZs8RTjUwbtIZCBBAq09DzsGdgwAGJ4wXecmg5YMJgbnkzdOhQMfZxjkHAEd713Llzx2od4wga8ySUwfV01apVcqxDs+Kjjz4yxo0bJ+eFrzKl6tevL+MtakpJTNBiCplp2D9I0SUkXMD4gIwSjB0DBw6UsQMtiJFx4ivHlO5+gZJUErs1pi4bnTFjRlTsnus05n0LDCAYtjiIkH4WCIPIG4MeRkO6dOlkIo6BRtfGuxo9dhY1d1VB3p7h76kCfTCMeWAWtXN3/9lb8Fv89NNP0u4HUdCZM2f6xZDXGRqpU6eWz507d66Xe4O4kxoGESy0n3Okag+j2l0Qie/YsaPlPsYIlFIMGTLE5fcoWbKk0bdvX8vxBOfS559/HuPiieiiO8cmjXkSikA/BOdGnjx57I7JGTJkkLIkbzh06JCliwj+J/bnBeXLl4+q+lcSnuCaNnz4cEv3B1sLjMwRI0Z49TknT56UuQLeb/v27T7b/kgCThTsH6jpR8PYcZ3GvG/BBBcHEGrOA5k254lBDwVaDAhVq1aVml1X0+rNrSY8qWe3hy9bxwXLmNfY2pf2ovKIzqDTgbP9Dg0GLQyI9kCu/M7uGPIaeJHxGUi1joZBMNicPXtWjANM7FHmACVo/F+hQgVp06Rb1z377LNGlSpV3HpvlE7AAbBgwYIYj0PgEtF0Z+D3X716tWQa6T6xcDzYEtxB/Wznzp0djlG44OgF4yPeh/2kSSiA8REReFy79ZiL/1GPimwWRM9xrYRDVT+PrBVPgVAc3gNOPGIblJbBSYj9xNp5EqpAsX3YsGGixG6t2q7HDtSH64xdLDA2vZ1fujsfiCYg5I3fAPsJwbBI5zqNed8B77q+0CMyG2hcNehh4CJSh+3ELe67m1ZvawnGdw5FY97evoQB7u0+hiDhZ599JgYenACODCFPDHlw6dIlI3HixPJ52oAj/gMGMH7PPn36yH1oV8B41yC9HZkzmAy4W/8FVWn8jtY9W1FThoi9PRBpT5o0qTj7MJlG+Y0G4ld4TzghzLz22msyebGHvWwfGvMkmKDvMSJlyFAzO6xRloKyF1vXWfNY/vXXX3sU/dcT+7Vr1/rom0R27Tx0YwgJJTAWjBo1SjLV9HiAOm0EymzNuTAfHTRokGXdwYMHu/2ZyJ5EmRxev2jRIh99k8iunUdgJNIDU9dpzPsGpNMjcoYDB21VgnXgODPoEYFHdAGTdNT/aeOzXbt2NifamIC7k3LvTi/4SDXm3RH0c3fR2Q+oo0fUCH3hbamAemrImw1MnTVA/Asu/tBD0CU51sY8OHjwoNS9owYvEMY8xg70eEb0HWmDqI9HLb03xjwj8ySUwDEOoU9zqzVohaBUxFnWE8ZX6OHo11lnvjgDafx4HcQlI32S6S3IBNLK9kwpJqEAzlnMxSAqq8eAXLlyGVOnTnXJ4Q4j3npO546YLV6XL18+CkM6AXMUrWzvid5QOEFj3kcg3U6n1vijN7gvDHr0i0ctDyIQ+sB2pU2aPWNe90O3XnyRJh/Oxryr9fL29h8et5d2b963MNYxoOP3hGiarwx5cODAAfk8TKJw3BD/gSwIc6ptq1atZL9bTwqgGA+hykCm2WtwTMJJ6U2avTWsmSfBAuNbxYoVLeMq+h9j3HYn8wXjLFoq4fV58+Z1+VqD67N2IGDyT5zTpEkT2V+OnIWEBAJc/3At1mNH5syZjW+++Uaute6gs3tQWoc0fVeAwx9jDV4Ho544p23btrK/6tSpE9G76zoj896DyKhOS/ZWFMdfBj16WUPQB5MWRNwAWtB5EyW2Z+R7Wzsfzsa8O+383BUZtKXmj0wL1LZDtO6PP/7wiSGvee655+RzP/30U6/ehzgGGRaNGjWy3IeBAGPeuhUh1GvhLHQXROA7depkuY/xABMIdwTw0CIRfWHNAniI2JsvJBTAI+EAVKV1tAalJOjggeulJyDlFXoXeC+8ryugZEUbAZ5+brSBjhnYZ3BMQvyLkGAwZcoUy1wfJbWIsKNMxxNw7uvIvqsZd3PmzJH1UZtvqwSIxAb2jhYaRYZjpEJj3gcgwoUDBenrodQPVRv0aDMFIx7GPIx6RHdRQ2LPaHRFjA2Gpb3acBipwY7OB8OYd7dWHuu7Yvw7259Xr14VtV8YhWjD4QtDHnz33Xfy+ajXDqXjOtJ46qmn5HzUwLiAMW8t2oKoPAwHT1rTwdBGFBCOHniqUXN3/vx5S3ZOr169LOtjggKtBEQgsD6MdpTlICVZg8kH3gM1e7t37zZeeukltqYjIY+5BAqRGl9k0cGIx/vh3IRx7wiMoyirwfrQPiGug/lVINr9EmKLefPmWYzCatWq2Sxv9HQ8QhkbdDQcASc6AjdYHyLFxP0WoOagRqRBY95LYCxrjzEmvqEGtglp2DDm4dF21Xi09ThSba3V5h29XzDr54NhzNurlcfj9lrvmVX87aXdu5LpgBO5TJky4jVGb2RfgNQvXGSwDRTC8x9NmzaVzAqd4osoFCYN0EPYu3evOGYgmoPH0O7SEyDSgzEAEUlE6s3nMCLuLVq0sNyHEB/KNxB5wHbBUQSHgPXEol+/fqK8D0cB0g7dba/FNHsSSCAkqds5devWzWe16rjG4HzB+w4YMMDhuih30ZN3Cj+6B4ISurWXp9FQQjwBLZx1VwXoS/lq7EDaPJz0eN/u3bs7XBddZbAe5ngQKSaugzkx9h0yG687EI0OZ2jM++hEDEWPD6IOEOVAjQ3SczCZ0UIy9hZE6Rwp29sy0LG+PQdAsCL0wTDm7dXK633gqPWeI6eIo32o3xODFSaKiPBiorht2zaffCfd9QDiZsQ/fP/992KomyPxL7/8sqUlnbnH/MaNGyPmZ6AxTwIFNEWQUo+xDM4zX2ca6fRXTBaty2M0MADKlSvH6LKHwNmp05LN3TUI8SdIzdbq8cha1UK1vmLZsmXy3nAWHD9+3O56cOSHqq0R6mDsLViwoOy/kSNHGpEIjXkvQNopDg6c6KhdDiWgYo1oAYx5ROSRco9WO++//75dgx419J4al46i0tFgzNvbX7bq3K1x5Dxx9Hr9mRAHwm8LhwpOaEwYUVOFCK8vJsH4jPjx44fcMR5Jk1SIDJpTdJEVgdp51KYjmg7Va0SmIgka8yRQQGAS4xjaO7orVOXqZBEZL9ohbgv0SdeTdl3iQtwDpQnYhyVKlGAXABIQ3njjDTnmECjxR0YIxg5dQgJngS0QnNEZwI4MfmIfiBRGcheA6xTA83zHIcUUB8eXX35phBJIy0WfXLS7OnbsmMVgRMQWXilbBr2tCYg7Anf2DNJg9Z4PpDHv7Xe35wjB/nf2mdqQh6CZdrSghr5UqVJyfPpCLKhkyZJuCTwR4go05kkgwDVQ17r+9ddffvscCJDqz0Farhk45/Q4ijRd4hmoK9YCZNb7mBB/tDbTpTl//vmn33bwnj17xFDH5yBSbwbOR932GvM94hkIluiy0aVLl0b1fCquIhaGDBmiLly4oPLnz686dOgQMnvm8ePHqnnz5urEiRNqxYoVKnfu3PL4X3/9pa5fv64++ugjlTNnTtW1a1cVN25clSNHDjVx4kQ1bdq0WO9Vp04dm5/x5JNPxnqsXLlyqmfPnrEeb926tfrggw9UJLN8+XKbjydIkMDpa3///Xd19OhRm8/Z2/94zZQpU1STJk1UjRo1VL9+/dSZM2csv3OqVKlkmxImTKgaNGig7ty5o7wBxxOwdYwQQkgoM3bsWGUYhqpVq5Zcr/3F008/rdq0aSP/d+zYUT18+FD+x2fj8R07dqi0adOqPn36+G0bIp00adKopk2byv/jx48P9uaQCGfChAlyHleoUEGVLFnSb59TpEgR1aVLF/n/3XffVffu3bM817lzZ7Vp0yaVIkUKNWDAAL9tQ6STLFky1apVK/n/22+/VVFNQNwLYcCpU6csYhhQcw4lIEqF6MDixYtj1FSb67ltRejtidU5Em7zpG480iLznta6O3utvf1snVqvI/LmbABdl48+4EmSJJG2Z94ItiAlVHuNI7m1BwksjMwTf4O0WJQcYezS10R/glIk/XkQtEKnB3R+0Cmy69at8/s2RDo6Kw0Rel90bSHEFpg7on0kjrUffvghINdDlNXh8zp06CDzN/SSx33M6SMxmhxoICislJJsi0gTEWSavQfACMYBgT7cvlK19AWzZ8+W7dL9o62NRV3TZ8+gt2d8OhJu80XKeLga857Wujt6raM2dPZS6/WixZX0gt8f7VTwP9TQvaFevXryPlA6J/6pm8eEAR0N0DILNXS2FrTEiRRozBN/g3ES4xa0Y3wtXGWP8ePH2xzbv/7664B8fqSDOdeTTz4p+xS/LyH+QItaolzRHzobtkBrYVtjB9rFEt9Q+v/b+0XaeExj3oOaLSjW4mBAP+9QAfU88FQ3btxYLnaO6rhRs2fLoMfj3kbQ3VXCD2dj3hvHhSeCgXjOliGP381RRoTWPsD+8NZRhPZmkSgeEkwuXrwogk44B+GBd7RgnUiBxjzxJ7gOQjsE49awYcMCtrMxPsKhjjpXXaPpy3ZWxBDnNPZrlSpVuDuIX6hUqZIcY8h2DRQYI7744gsJFKItrO6+wbHDd3z99deyX9HKOZKgMe8mAwcOlAMB6tKhcoIhDTp79uzicdJqm46MRbPB7U7KfSBSzyMhMu/Kd3T3tTjW0H7OVkReZ07Y+70xuXzllVfECQWhFU/AcaUnplBlJr7jrbfeEkM9f/78ciFHizrsY3tLpEBjnvgTrQCNkrhgpVRi3EYAIFTmCpEC2u5qsUGqexNfc+DAAUtpDDrNBAOOHf4LnsT7f1HDffv2GZECBfDcAEJiI0eOlP8h6hYnThwVbB48eKBeffVVuV24cKFKnDixQ1E1iNeZxepsieJ99tln8h6eMmzYMNW/f3+bz0GgLVKwJfqH4wKP+/K1EFA6ePCgCLH8/fffFrE782tsiRICHAdbt25V3333ncqTJ4968cUX1T///KPcBcfVK6+8Iv/PnTvX7dcT+yxZskRlzJhR/fbbb+q9995TL7zwgqpcubLdhRDiujBpvXr1VLp06YKyyzBHgGhbKMwVIgkI91atWlX+nz59erA3h0QYEI8G1atXV1mzZg3KNnDs8A/p06dXdevWjW5RZyPKGTVqlHhzcufOLTWuocDHH38s3sPNmze7LaqGiK6/Uu69iVqHY2s6VzUF3H0tvLP79++Xkg4t9mPvNY5+ezyHCEaqVKk8bm8CARa8F0RhmGrvO5ImTWq8+uqrRrTByDzxJ0jBxniF/sIk8pg6dar8vshoYuYD8SUvvPCCHFufffYZd2wE8uOPP8rviyzXQGmp+Bum2bsIjMKcOXOG1OQAapdIF+nbt4ksamEAAQAASURBVK9DA7pBgwZ2e577M+XeXSX8cDXm/YUtQ94Z+J3xe9tzpOh0/AULFri9Pffu3bOk2m/cuNGDb0RsgXr5unXrRt3OoTFP/AX6uidIkMDvveVJcPtGo1sLfmMdzCDEWzBnTJ48uRxX27dv5w6NQO7du2fRJFi5cqURCTDN3kWQwo4U5wwZMqi33npLBZt///1XtqNgwYLSZ9xRv3Nsu71+7/5MuUe6PVKHkcqC26FDh3r0PtGITq3HMffss8+q5MmTO30Nfl/8zvi9bYHjo1mzZqp+/frqnXfeUVeuXHFrm9C3Hmn6YN68eW69ltjn7bffVuvXr1enT5/mbiLEB2zcuFGukdmzZ1f58uXjPo3QvtEoMYzqdFnic1CWePPmTSmPKVGiBPdwBJIwYULVuHHjqB074qooRv/gmHijfjjYDB48WO3bt09NnTpVJUiQQDVv3lwNGDDA4WvsGeba6G7Xrp1Ng37KlCkeG/RwFrz55psu1ZETzw15/D74fR2B46NXr15q/PjxMtF999133d7levL0448/ynYS7+nUqZPUyVerVk39/PPP6vHjx9ythHjBmjVrLDWvrFePXFq0aCG3s2bNUvfu3Qv25pAIGjtwPcb8l0QmzZs3l9v58+eL8yaaiNqj+uLFi5aotz4AgsnOnTvVoEGD1IcffqhKlSolxvL333/v0mvtCdDB2G7ZsqX8b23QT5gwQT3zzDM2I/sk+Ia8O8KCMPhPnjypvv76azVz5ky1YMECt7avZs2aEhE5deqUeLCJb4CDBU5CCLPgNleuXCJYaL3kzZuXu5wQFyfkNWrU4L6KYKpUqaKyZcumrl27JkKihPjSEUgil7Jly4pwNITNEZyKJqLWmIfX99GjR+rpp59WTz31VFC3BRFVeKMLFy6s+vTpIxFZd9Rc7ameA3+r3BP/GPLOfldbhn/Tpk0lZR7p9pcvX3b5tTA069SpI/8vW7bM5dcR+8AxgnS+vXv3yjGAzhRwuJw4ccLmQgixD7p1/Pnnn5boGolcnnjiCSkdA+jYQog3wLDbsmWL/E9jPrKJEyeOJbMn2saOqDXmddQbEfBQSK/fv3+/Jb1+4MCBLr/WlbZp/ky5J/4x5O21urN3vMLwx0A2btw4MRzdTbevXbt2jPYtxDtwXsJ4x++OlK89e/ao48eP21yOHTvG3U2IA9atWyfjaaFChVTmzJm5ryIcnS2J7ElkURLiKdTaiC6aNWsmc2FoFmHuHS1EpTF/4MABtW3bNhUvXjz1xhtvBHVbMOEfMmSI1D0jkgejeunSpS69FrX+iOa7Yogz5T68DHl7goO4ddTLHhPdr776SjJPcBFzlVq1asntH3/84baIHonN6tWrxWG2atUq1aBBAzlPcd/eQgixD1PsowuIACNrEtmTKB0jxJtrsS7PodZG5JMjRw5VtWpV+d+dDOdwJ240R+WRWpw+ffqgbkv//v1VqlSpLLXr9tTrbTFp0iTxYLta+86U+/Ay5O0JDtrqKACHDo5r3MIzWbJkSTkmXBW0y5o1qypatKisDwOUeMfdu3elfgsKq4QQ30zImSYbPURruizxLayXj97Mnu+++y5qRJ2jzpjHDztjxoyQSLGHcj0MMrShgwAZjC9n6vX2QO37xx9/7DRK7yzl3lXRNRIYQ94VAx/HDRw62rHTu3dvyfbYvHmz+umnn1x+T6ba+w6kA6POlxDiHUizPnz4sETVKleuzN0ZJSBrMn78+GrHjh1q9+7dwd4cEoZA0Rzi0kBHa0nk8+qrr6okSZLIdQP2TjQQdcY8RHSQ2o4fGq2jggmU66Fw3bZtW4dtyKB4bQZGoi3gCHAlSu8o5T5//vwef59oJ1CGPNCReGRnWB83uJ8yZUq5eOEYQ6qiu8Z8tHgz/QU0CzZs2CACeIQQz9EdNiBUi3GNRAdp06ZV9evXl/8ZnSeezvfRFhbdEbJkycKdGCUkS5ZMNWzYUP6HFlk0EHXGPMSogG4XFSw2bdqkFi9eLGJ3EL1zlF6vBbLq1asnXqYRI0Y4fG9XFOptpdyXKVNGdATYEzu0DXlzJL5169Y214FHEun3yP5wtcUhtjtRokTqwoUL6tChQz7e6ugCpQ7du3cX5W20qIMDkRDiPtDxAKihJtHFW2+9Zal9hbArIZ44Ajl2RO/YMWvWLCl7jHSi1ph/+eWXg2r4acE7pJK5ml4PYTxt9FuLoFnjSrq8ufb6559/Vq+88oq6ceOGxZtJQjMiby+Dw8zRo0dlu5BuBEfNvXv3nL4G9d2o89bOJuJdeyWcXxAT7NChg8qdO7c8ZmuBA40QYhtOyKMXZItlyJBBSi0wRyHEHTh2RC+VK1eWjGPYNIsWLVKRTtxoU7GH0YU6LES5gwWMciiNo64Zg40rxpl1Kj2AIQ4BPW96lJtrr2HMwRilQR+ahjxwVdNAHycQVzx79qz65ptvXHpdxYoV5dYdJXxi+7hwdaHjjBDb4PzQE3LtaCTRA+ZqTZs2jap0WeI7OHZEL3HjxrUI4UXD2BFVxvyCBQssLSqCVXuHyQkE76pUqSLtwDwVnIMDAPW4efPmjSXk50rveXvQoA9dQ96Rk2bixIk2HTuoqYc2xODBg9WdO3ecvj+Ned8AA92dxRPGjBkjmhsojcD5rtORbTFhwgT13HPPqdSpU8uCMdB6faSlQWTMvGgdBUKCAcbWy5cvi1FXvHhx/ghRnC6LskS2TSWugnHj+PHj8n/p0qW546K4I8aqVavUmTNnVCQTlcZ8MFPsIYoFdc0+ffrIZNnVCLotUC8NzxNqolGja25V5g006EPTkLfWOjA7b95++21x7NiiUqVK6urVqy713Cxfvrwcl0eOHJHaeRKazJ49W73//vviwEFZDAwdOAeRjmqL9evXq8aNG6t169apLVu2qOzZs6uaNWvGusDBeD937pxlYY9nEgqRtWLFirHNY5SC3x6tVlEzz/GIuMq2bdvkFnNsZCiS6CNv3rwSxEDAxFXtqHAlaoz506dPy8kNQ+Wll14K2naMHDlSFS5c2NIv15Zx5gkw1P7991+J9DsTv3MFGvShZ8hrbPWZB/YcQ9jGF198UX399ddOVepx0StSpIj8z1T70OWLL75Qbdq0ka4UaIM3btw46dAxefJkm+ujHSdq96HTAVVwZHLgAqd78JrP+0yZMlkWRPEJCRaseSXm6DyueYRw7CCejB1GBHdpihpjXounwHiGoEowQMoPhBg6d+4sTgXdXgzCc9o4wyTb20i9K+3pXIEGfegZ8ra0DsyPWTuGtDZEly5dRNne2nizF50H27dv9/l2E++B0w6/DVLlzfVhuI+ouyug5AKRrjRp0sSK4GN8LFCggGrfvr3TtNb79++LxoZ5IcRX0JgnoFGjRjLG4XiAuCshzmAXDAIgAo2OYdBM27Nnj4pUos6YRypqsIAIGSKfSIk3txfDLVT2YZwhXdoXkXpX2tO5Ag360DPkXYnaayMeYos4vpYtWyap2KNGjXL6HkWLFpVbGP/ENfLkySMpXbpGD/ddXeyVRziqBXz06JHKmDFjjMdx//z58y69B8Yf9N01OwSQYg+HIhw+OI5QElSnTh35LHtAxBP6I3pB+j4hvgCZI9qhyNZS0Q3GNrT51CVGhLgqnMmxI7pJmTKltCLXbeoiFiMKePjwoZE6dWrkVxibN28Oyjbcu3fPSJcunfHee+8Zv/32m2yL9TJx4kRj2rRp8jwW/I/HbK375ptv2nzcvOD1vtz+NWvWGFu3bjUePXpkBIN///3XWLhwodwGmsePHxv79+83li9fbty4ccMIZewdXz179jTixo1rnD592uHr165dK+vnyZMnYNsc7sSJE0f27aFDhyz3XV3wOnc4c+aMzbGsR48eRtmyZZ2+fsiQITIe7tq1y+F6R48elc9ZvXq1w3Hh+vXrluXUqVPyGvxPiDdgvMWxlCRJEuPBgwfcmVHOpEmT5HgoWrRosDeFhDgnT56UY+WJJ54wbt++HezNIUFm9uzZcjzkzp1b5vLhAuZRrs6noqLBMbz7EACDhyZYXjqk1yOihjpXLcxhK01eg+g8omMAdfDm9nWIqqFOumPHjvIc0m7Nr9V4I65nL0KP/uMQ3CpVqpSkvUUD4RCRN2OvQwIiwFA+nzJliurbt6/d1+ua+WPHjqnbt2+rpEmT+m1bIwUdkc+aNWuM+/4gXbp00p/eWqAQ91Hn7ojhw4fL2LF69WoRlnIEsgbwWRBD1BoftsYFLIT4Gh1Zw7UmXryomKoQB0C4+J133pFUWWSNQXuIEEdjB+Yy0JIh0U29evVkHot5GcovPO32FcrEjaYUe0xIgzUpQGsoGIIFCxZ0yciG8Y62YtY19WbBM103bSs135v2dPaIxpT7cDPkgb3jC2n2qD3U4mf2SJ8+vUVXAnVGxDk5c+aURY8v+r6rizug/gutdsz6B1rMTusd2BtTBg4cqFasWKHKlCnjkmgoauYzZ87s1vYR4guYJkvMQIxTt8qM6HRZ4jUcO4gZGPIQgY7ksSMqjPmVK1fKLVoxBYNTp05JJAxReY2uaXZV0E7X1Nsz0O0pnPuaaDLow9GQd9S+Do/jGMT3gdCZI3R0fu/evX7d1kjll19+sZshYebw4cOyrrugLR0chN999504XCBWhywKqNsDjBu9e/eOMT7069dP1O7Rmx619Vhu3bolz+O2R48eMnacOHFCHAPo+pEvX76g6oyQ6EVnsLHmlWjQXlNPyCNZmZp4B8cOYm/sgOaGIx2gsMWIcFBrgLoZfNVjx44FZRvGjBljxIsXz7h69arULZvrmOvVq2e3Lt56QS10qBCMGvpA1syHU428PbTugvm4wffKmjWr0aVLF4ev7dixoxxzvXr1CsCWRh6ohW/VqpXT9Vq3bu12zbxm1KhRRo4cOYwECRJIrbz5d65cubLRokULy/2cOXPaHFP69+8vz9+5c8eoWbOmkT59eiN+/Piyfps2bYzz58/7rcaLEHugRj5RokRyLP3111/cUUS4efOmkThxYjkutm3bxr1CYoE5jtbI2r59O/cQsdgsqVKlkuNi/fr1Rjjgznwq4iPziDTBC5M7d25ZgsFPP/2kKlWqpA4dOhSj9l2rjbsaqXcl0hcoIjlCH64ReVfa16ElYv369dXixYsdRjYQvQXYB8Qz/B056tSpk/w+aA+HzhXm3xmZF1OnTrXcR7Qd22O9fPzxx/J84sSJpRzp4sWLosGB9b/99ttYivmEBAJkm9y7d0/GXne7PZDIJVmyZHL9AnPnzg325pAQBNcuaGTFjx+fugokhs2CkuVIHTsi3pjfvHmz3FaoUCEon3/z5k21du1aqdewZ4wjnd5s1H/44Yc21/OloJ0viESDPlIMeUfgWIQQyP79++2uo+u4cWEk/gOTDogSEkL+Q7ekiyahVeIaDRo0kNslS5ZwlxG7Ywda7FKcldgbOyKtTCfiJWK3bNkSVGN+1apVEumCN3ndunVO14dRrw17M4iwamdAKCkxRpLKfTQY8qBq1aoiCIKMEXuKwNqYZ2TedU6ePBnjPurQrR/TPHz4UBSZoefByCMhtifkEHokxAxE8NDNA+MnnNLByrgkoQnHDmIPiKAjeIJ5LcYPrQ0VCYSn1eUiSK9Hmn0wjXmkM8NgQpsnqFB7evGCqr0Ww4OYWSgRCRH6aDHkAQYziEHi2LSHNubPnTsnzijiHJQmmMt5fvzxR8t96yV//vziJYbB36xZM+5eQkxwQk4cqdpXrFhR/md0nljDsYPYA20KdZtdBLMiiYg25pFGDAMTUchgeGDgTECUXdd4aVV9d0ErKTOou0eNbCgRzgZ9NBnyGhyTcHShRtoWaE0Hox/7Bt0YiHNy5MhhWaBNgAuH+THzApX4KlWqqNGjR4uKPCHkv+vmzp075X9kehFizQsvvCC3NOaJGcxXMP8EzOoh0TR2xI2GFHukpQejvzyMpcuXL0uNMozv6dOnx1rH0xSxUBLDC2eDPhoNebPgoq2SDgBjNHv27JZ+48Q50BdA2icWHFevvfaa5b71AjFMtH/r0KGD7GtCyP/AeHz37l0ROws1nRgSWhNyCH1Cl4gQgLK2K1euyHw/klKoie/Hji1btoh9FilEtDEfbPG7ZcuWqfTp06uyZcvaNb4xsdcg3Ra18Was72tCdZITTgZ9tBryOvKOkg17xjzAsQsiacALFFOmTFFvv/12sDeDkLBNky1ZsmTY6q8Q/1KgQAHJbkIJGHSJCDGPHTDkKSxLbJEtWzZVokQJmf/DRosUIvpKuW3btqAKxiEaD0cCxFpcMb4RuUdtvNm4nzZtmurZs2eM9VAzH0oieOFo0EezIa9B3eEff/xh93ka857TokULOa4IIe7BmlfiDGQzRWq6LPEcjh3EFSJx7IhYYx69l2GsAXhhglW7o+t2YHxbG+WuGPdwCAwbNkxS9mHY43bo0KEq1Allg56G/P/AsYl6+EuXLtncT+nSpZNbRubd59q1a2r37t3Ses7MhQsXVMuWLSXq+PLLL8s6hBDbbekIcTYhR3ZZKM0vSPCgMU9cQeuY/fzzzxEj8ByxxvyBAwdESAfKp1mzZg345yN9HhN5bczDKEfqz8SJE8Uox60rmNvRIeU+lCPy4WDQ05D/D31s6gugPWMeNWjEPYYMGSIGu7mM5sGDB5INgfN/165datGiRdIm8OzZs9y9hFiJ31HAijjiueeeUylSpBAR161bt3JnRTkUvyOuUqZMGSk1hW3y66+/RsSOi1hjXke8ihUrFhSBKbOHEGnxqE9Ga7nWrVurvXv3uixgF6q18eFo0NOQjwn6m6dMmdKpMc/IvPusW7dO2vuZo4tz585VR48eVeXLl1cLFy6Umno4/L755hsPPoGQyAPXxdu3b0sHGtRFE2IPtPqtVatWxKXLEs+AUC+yDFHWWrRoUe5GYhdosWgR6EgZO6LCmA8GMJCQEQCFa7SSM4P71o/ZItRr48PJoKchHxs4uWBs2jPm06ZNK7eMzLsPyhfQS94MLhrY55MnT5YOFxMmTBCD35EIISHRhB6LUBqHSTkh0Vb7SrwbOwoXLqwSJ07M3UhcSrVHv3nYB+FOxBrze/bsCboxj6j88uXLPX4P1NRGCsE06GnI2wfHqD1jXosCsvWP+/zzzz8WAUENWqHkyZMnRrYNnCkw/AkhrHkl7lGnTh1xkKI0g+NodMN6eeIONWrUkOweZEuiVXC4E7HGfDAj8zAetTHvDaHYSz7cDHoa8o7BMYrerLZS6dHnGdCY9+xYhwie5vz589I5ATXzZhBBQE9tQgjF74h7wGGKsiXADKfohsY8cQcEq6pUqRIxmT0RaczDMMHkGR5bpNwEGkzatfhd9uzZba5Tu3btiK+XD7ZBT0PeNhBjRAtE3DoSwdOR+Vu3bvntN4pUcO5u2rRJ3blzR+7Pnz9fxiNrYx7idxBiISTawbVgx44d8j/F74irMNWe6AAaxw7iSao9jfkQ5fDhw3ILQxpCOoEGaRvgqaeekjQOW6AWvn///rKg3RyU6iOxXj5YBj0NeduYxRhxi7rtePHiqWPHjsVal2n2ntOoUSN1/fp1VblyZfXee++pXr16yXGPWnnNw4cP5fi3rq0nwW9rit9lypQp6ssvv5R2giQw1204DpGtgmsnIe4Y82vWrLE4T4MF2lyhU8l3332nvvjiC3YqCRBwiqOrAYTNglVaS8KPev8vgrdx48ZYbYTDjXgqAjly5IhFrTsY6FZTmTNnttvDcMCAAZb/UVf/xx9/WO43a9YsLHrJ+8KgR/QSE2fUDmMg9gU05G2DSLy18OLnn38ukWFb7dFozHtOly5dpIfp2rVrJWIAMa+vvvoqRh39qlWrxKGFFkskdM4RXODNoo+jR4+W3wp6ByQw4ndwMBLiCmj5CyFRZETCoNfRtkADIx4Zl8gK1cAZiLGDzqnAjB2FChVSSZIk8fOnkUghd+7ckr29b98+tWLFCtW4cWMVrkRkmr2OjOfLly8on3/u3Dlp+YVBxV5k3ozZkAfTp0+XSWWk448IPQ159zUYUBuPY9aeMY9oB/o/E9fBeY9J3IYNG9ScOXNEYKVjx44x1kmUKJFM9uC8I8EHBvxrr70mt6lSpVJVq1YVIwFZKyiP0KKqxL8TcnM7R0KcgfKlYKfaIwurYcOGYsinSJFCMrIQTEK7NDhrt23bFpTtihaYYk+iPdU+biRH5oNpzCMq703de6SJ3wXCoKch7xh7xyJaKNoy5rUAHmDdvGeTTEzkMMmzFdWFsYgIPrzDJLhg3EGpk24piCgfsirQgQCRP5wfmKBTMdt/cEJOPMVszAe69S3mHa1bt5Z5Z44cOcT5t379eimfLFOmjGg4VatWzTIvJb6HYwfxduxAhvSDBw9UuEJj3g9g4pclSxb5H3Xv1vXwrhCJ4nf+NOhpyDsHx2LPnj1j1dAjzciWMY/fRae7UtHeOzCRg2EYLU66cANlTbiYI1ti3rx5El0DcMr+8ssvkvqNmrrhw4cHe1MjEorfEW+AKjX0kVAuZq/Vqr8YNWqUjBnx48eXLKy0adPK4+nSpROHINT2cf0cMmRIQLcrmsC8EVA4k7gLtKNwruL6jtr5cCWijflg1szryDyMJSiHa5BSa23cWwvdRbL4nT8MehryrjNs2DCJGEybNk1uYcTgWLVVM4/IMuvmPQelCZ9++qnKlCmTKlCggKRqm7UwZsyYoSpUqCD1WiS4ZVkfffSR/P/NN9/EElBKnTq1RWsCgpG22jgS738DjP1wpqDulRB3wHGDnvNg0aJFAdt5uG5qBzkcfdbzNlw/IYQHMA9E2j3xLQhEYIHmUvHixbl7iVtAz0hH5wM5dviaiDPm0dtZixcFy5jXafa2BMdQD29t3MOosjawohFPDHoa8u6js0X0xAPHKpRgoa5uDY15zw15XCDQrQIe34IFC8qxagbHOs53tK0jwQNjNH6vWrVqqZYtW9pcp0aNGhL1uXv3rkTiiG/R0VQ4Uih+RzzhpZdeCviEHIY6ul/AKfvuu+/ajfyhRAcpvNBIIf4ZOyAyGIzuVST8adCggWXssJ6nRawxj5RDCAYgjRyRu4ULF8Z4HrW1nTp1UtmyZZMWM/Cyjxs3zun77t69W+pL4WFFSzlrIxjMnTtXTlisU7RoUbVs2bJY65w5c0Zu06RJE6PmNxjGvCsptVrsztrAilbcMehpyPsGHKvYlzDow8GYxzkOJxjSGTHGYCxwJjB08uRJUSmHKCXU+3v06BHLeYE6R4hv4RiE3sbUqVM93kaMeVCzR1388ePH1d69e2OtkytXLnE4rly50uPPId4fS/p37tu3r931cK1De0EAY54aEr6FNa/EW+rWrStRNoy1WgTZnyBopOe2GDswRthDjx3jx49X//zzj9+3LZrg2EG85fnnn5e55IkTJ8QWjQpj/vbt25LKMmbMGJvPv//++yLxDyP1wIEDqmvXrmLcL1682O57wnCrWbOmKAfjxES7rI8//lh9++23lnU2b94sbQPefvtttWPHDvGkYLGeJOsUSNRABANEbrCPYDC4WvfOOlr3DXoa8r4jY8aMcmvLmEdXBp3xEgogyo1jA/WJqHHev3+/GjFihKRC2wNRVxjyaBOJcQQ9gGHA6dRqAIMb68D43rlzp4xbEDWCQe4J+Aw4FOGA1PoZtkDEHo4GT8AYDIcAnJtwAlp3xTCD9HA4S7GfsCDSbL0+zinsEzh3cGHDOuj9HckgNRbHRaVKlaQMwhEvv/yyiOPhGMT+JL6DE3LiLRhvEQEPVHR+5MiRMtcrWbKktKRzBLJ+MG/G+vbmzsQzOHYQb0GQBwZ9WKfaG16Aly9YsCDGY4ULFzY++eSTGI+VKlXK6NOnj933+eabb4zUqVMb9+/ftzz2wQcfGAUKFLDcf/3114169erFeF25cuWMdu3axXhs3rx5sl0VKlQwgsG1a9fk8+fOnSv3e/bsKfcdLb/99ltQtjXUuXfvnrFmzRpj69atxqNHj4x///3XWLhwoRwn+/fvN5YvX27cuHEj2JsZ9uzatUuOwz/++CPWcy+++KI8N378eCMUwLhQsWJFt16zbNkyI27cuMb58+ctj40dO9ZIkSKFZczBeYqxy0yjRo2MWrVqebSdyZMnN+rUqRPjsThx4hgtW7aM8VizZs2MRIkSuf3+s2bNMhIkSGBMnjzZ2Ldvn9GmTRsjVapUxoULF2yu36RJE2PMmDHGjh07jAMHDhhvvfWWkTJlSuP06dOWdYYOHSqP4RzDMYHfPnfu3Mbdu3dd3q7r16/L8YLbUOfixYtG4sSJZXtXrFjh0msmTJgg62fLlk3GJOI9jx8/luMO+xXHJyGeMnLkSDmOKlWq5NediPEN4615rueMmTNnyvrp0qWLMdcl3pE1a1bZr7/++it3JfGYSZMmyXEEezVUcGc+5fOaedQOIQqP9EXY++vWrZPIMyLvmrfeekvURzVQeUZkxNyTHZ5M9GZGFESvg0iRGayDx83oenmtKBpodOqurvuD4NjEiRNVu3bt5NaWmjiiaki1Ry297i/v7H40R+hxPKF1FJ7TaeDEc/SxaqtmXme46PMq2GBsQbsf9ANH9guiItZRUmT1IGKtwRiBVHydgaDHDhxXWnzO1fHFVZANgOPXlZIcV9azVavZpk0bqfHWpUzwLk+ePNnm+hDb69Chg6iyo1QJYxHOpzVr1sjzGKu/+uorSRdF7Slql6HhAYEn61KqSAGRNWRSoRbefH1yBEqhoHQPISv2jvYNaOWFPt24/lP8jviibh6q1P4Uqhw7dqxkq2EsfeWVV1x6DVqU4pqF7Qpn1exQ4sKFC2JroMQB1zZCPAUaRziOYGuEYwtanxvzqCfEBRk187g4I/0IaUUw1jVI40Q/Ts358+djTLSBvo/nHK2jnw+VNHvdp1AbSDDWka6LWincoi7XDCbRWAciKc2bN5dbGPeO7mP9aDTokf4MMJGmIe879LFqq8emPo9CRcEbE39MpJDujBT49u3bq86dO0tau3mbzeKX3owvOO5g8LkLSoac1V5hf6NMCN/FHZAWjtRCs/MBSr6476rz4c6dO/L5SE3VZQbYB+b3RIkFxh5H7wnxJ+wj8xIOwNkChwbo3bu3w3pX6/EITh7w008/+XUbowXtFIEDyezQJ8STcRdGHRyV6DnvDzBnw3wOYC6GsdfV6yxKuQDHDt+OHegWEyyNLBIZZMiQQeyKcE21/98s3sfGPBSaEUHDwArBvI4dO0rdqJ4o+rrfJiZmOmp76dIluUVdqC3jxN+YJ/6YBGN/oP5Us2fPnhj3tTKyo3VsvQZ6AYhQRgO4WD799NOS5QFwsUadcDB+30hEq3feu3cv1j5NlSqVpZ4+kPsbxpUtVWuc5zjuBw8eLPcRmYdBjMh0ixYt5DFodGAJJnBiIvIL3Y+2bdvaXAfnMcard955x633hmMFY54t58PBgwddeg9MQs1jsnZquOIwNYOxfMCAASrc2LBhg0R1cJ2AoKu7HnxoIWBCPnDgQL9tY7RNyDHGE+KL6Dwc/5iDIgvUH8crnJ/IhEKGmLtjx5QpU2TsQHaVq05EYv+3ABw7iK/GDmTNYOwI9hwyqMY8DNkPP/xQLViwwOKBhLcdAyuEhqzTWDXow4yJlRl9H885WgePw9hF2jXYtWuXZcJrS+3e32ilUqTDw+iYOXOmXz4HxlUwvl8oEE2lBoEAqd5g69atsaLQuv88xCwDebyhTMaWIBmyeqxTcSEi9+OPP9p9L4wR1mJvro4vSKk2O9JcBWr5ENlDajtE+l5//XV5HAJISOOaM2eOTOaQRRDoiwZaX86aNUuyhOAU8wZEtSF6qkFkHt1IQp3Zs2fL7auvvup2NBiq2XAw4lqDdLxw+L7hMCGPFuc08S9wzsHBuGrVKsli8nW2hx478DnutkJDOQ+2B2r7KCNFmj7xHI4dxJfUr19f5m5w9qNjTThle/jUmEfkDot12hHahThqMVa+fHnVp08feS1UqgEGYqTOaJVqrIP6TqhMa7AOHkc9bOHCheUxrYCPxzHpCjQ6MwARQ6RtVK9e3S+fg30RDZMfRI1RI49JM9qGIesDHnGkAEMd1tUUN2IfHc2F8QzNCzOIAI8ePVoiCIE8n+xFLJAGhUmQGRwfyAKyB8aCQYMGiQMM56QeO2Coa8cA1rF2VujxxRPgdECtOeopv/76a4nC4zvNmzdPFhzXyHqAE8LdkiCsjzHVnnPTEXCqwphfvXq1OFo1+nV4D2y7+T0d1SIi7dyTmv9gguuMdv40atTI7ddj/+O42LRpk6TyotSDeAbmBVqNmtE14gsw90JGEcYuRNmqVavm0+MVjlhPxw4YB+iYghIxROdpzHsOrqEIQACOHcQXoANZnjx5pJwTNpbW4AgL3FXXu3nzpijOYsHLv/jiC/n/77//lucrV64sqtDr1q0zjh07ZkyZMkXUmqFYr+nVq5fx5ptvxlCAz5gxozy2d+9eUWpOkiRJDAXtTZs2GfHixTOGDx8uasz9+/c34sePb+zZsyfG9lWvXl22a/r06UYw+Oeff+TzoapvS80eCvzm+1DndraOrddEi8qxWbVeq9nfunUrhso98Y7du3fb7aqwZcsWeS5XrlwhsZuhuI9xYNCgQcbhw4eNGTNmyFhhPt9HjRplVKtWzXL/4cOHRpEiRYyaNWsaO3fuFOXy9OnTG71797asg7EK79OjRw8ZX6D8/sQTT7iscm4PKOjjfC1atKiRNGlSUU9/8sknjS5dusRQkneXsmXLGp06dbLcx3kAVd8hQ4bYfc2wYcNEwR+/qa1zLVOmTDK+aqCgmjBhQlFhjiQ1e4wn2EYcAw8ePPDoPbCf8R7WHQuIe+Bcw37EeeHpb0GINejWgePq/fff9+nO2bhxo7wvupW40+XDDK5PeI/nnnvOp9sWbZw6dUr2I67Tt2/fDvbmkAihU6dOcly1bds22Jvi1nzKbWMeRrqt9motWrSQ58+dOycDaZYsWcSIR3u5ESNGyGRRg3Vh9JtBKyS0nMLkEZNStEmyZs6cOTIRRksmOAyWLl0aax0MkO60C/E1MDrx+XoCbG2o4z6MpmnTpsUwnqwfc3bfVXz1PsE25IE25nFr3baOeM6ff/4px+a2bdtiPXfkyBF5DoZoqPDTTz+JcY6x4qmnnjK+/fbbGM/D0ZczZ84Yj504cUIMLxgNaA3UrVu3WMYDxrYSJUrI+JInTx5xRIYqcHji+0+dOlXOE1x40CpJt9+DYxROUw3GU3wvOBkxRusFzlnzOniPRYsWiYPnpZdeisjWdHqi3759e4/fA05nvAd+AzgXiWd8//33QW0lSyITzBVxXOH64EveffddeV+0FPWU48ePy3ugXeqVK1d8un3RBNpiYz8WK1Ys2JtCIohly5ZZ2s+a7daIM+ZDHUSs8OUXL14clM+HYQlPIfpYw2AOZF95a0Pd2pGg943ZsRAuhry1MQ9o0PsGOEVwPCDSbW8wwULvd2iBCE+OHDnESMe5bR5X4CzVDlYA54atsQiOD/N5169fP8mSgpGKLKdDhw65tU2hbsxjzNA9zdevX+/x+2BfIVsF74MxiXgGMlSwD3FLiK+4evWqzMNwbB09etQn74kML2Qv4T2XLFni1XvBGR3MDNJIoE+fPrIPW7VqFexNIRHEnTt3JOiDYwtBjajtMx9s0CoJBKvFDWq4Ua8FUTHU8trC3uPOcNR73rq9Hfohf/bZZzFeby0ChudDTUwODibUcLvSR95eH3rimQCeuVZag/2va6K1HgQJDSCch/MEYx7OY7SR00DcDgJ8mhMnTsi5Zb18/PHHlnVQ0//JJ5+Iej06G6CuHjVkkcTKlSulpzmOdVsCi66CfaVV8NlmynN0zWs06L+QwAE9En1+L1++3Cfv+euvv8rYCB2n559/3qv34tjhPayXJ/4gceLEFp2NcBIZj1hjPpiiTJgowkCyNxG29bgjQx0460VvbbhPnz7dpW311LEQbENeQ4Pee3CsYl/bUuaF0ZI+fXr5HwJyhIQzEB8EDRs2FBFBb9sP6kk+cZ+HDx+qHTt2yP805omv0YKtvpqQ67EDbYG9DRbpsQOtm3VrWOI62GdUsifhMnYEAhrzfgD9m9HSCwZ3z549YzyHiDkedxRVtzbUXYmye0qoRN48MeQ1NOjdw9pRhGMVx6yjNnHmtouEhKvxCPV5gC4D3qIzIeAQvXLlitfvF22g3SVaYWKsD5XrEIm8CfnatWtjtVz1ZH6yaNEin40dcF7BmQhH+unTp71+v2gDmWaYj6D7FbpZEeJL6tSpI7foWHP16lUVDkScMY++oqESmQfDhg1TzZo1szwHI8pZVN3aUHc1ym4NnABmzGm4AE4E68fCzZDX0KB3DWvHEe7jWLWVYq/REXv0SCckXEGbKkwA06RJ41WKvdnJpY3QUCtXCgd0ZK106dJsMUp8DtoVZ8+eXUqGUHbkDSjjg9GNa6Ev2g2jvS5a64ItW7Z4/X7ROnagvWq4tUYloU/u3LlVwYIFpTUzWhSHAxFnzGPng2D2Hzcb85jkWRvjvoqqOwJG2rRp06Qvu77Vi76PftORYMhraNA7BseiteMI99G33ZExj964gMY8CWd0ZA31qvHixfPJe8IhBjCeEvdgvTzxJygR81W67MKFC+W2Vq1aUlPrCzh2eA7r5Ym/qRtmqfYRZ8wj7QY8ePAgaNuAlOULFy6IY8FXNemuRNltGepYT6f227ofKYa8hga9fewdi3A8OUqzZ2SehDsYa/SEHDWvvoITcu+ja08//bTPfg9CbE3Ily5d6lVtunYEcuwIDVgvTwI1dixfvjwsxLUjzpjXwiTBNOYR5cSPD8EwT2oBbRnqrkTZtaEOzDXRoYg/DHkNDXrb2DsW0Q3AlTT7W7du+eT3ISTQ7N69W+osEyVK5LUStZny5cvLLcbacLjgh1I53K5du+R/it8RfwFVaswJjx8/LhlonnD06FG1Z88eqXGvV6+ez8eO7du3W4SbiXMwzmKfAY4dxF9UrFhR7BLYcSizCXUiNjKva+eDQbZs2eQWk0dbInjOour20uHtRdmBPTE93I8mQ15Dgz42to7Fzp07qzt37liOWVswMu8+OPdmzJgRVKciiR1Zq1mzps2uDZ5SpEgRqX+FQwxjGnHduYJrNPQLUJ9IiD9AiViVKlW8SpfVY0elSpXkePUVefPmFd0NnAc7d+702ftGQ4YhxluUO0AXgRB/ACegdvwjsyfUiVhjPpiTaAgnoCZTt92BCN7EiRNVu3bt5NZRVN1ZOryzlnW2aqJDKUIfCENeQ4M+NjgWzcee7nerxXjs7UfA6IHrQBcD5yQEmPr166fOnDnj9vFLfIc/UuwBxnmdJk4hK8/SZFHbTEio1r76I8Ue4LhnmY7nY0fJkiV9pn1CSLjXzUecMR8KafZI5UTERqcCweBu3bq1Gj9+vNxiku9J7bq14W6rZV0o95IPpCGvoUEfG/Oxh2MU0QtH5SDaiKdqrOvMmjVL0rSQojV48GCJPr722mtqw4YNHhzFxBtOnjwpjlWIor7wwgs+35mckLsPBaxIoCfk6Ol+8+ZNt1576dIl6YIBXnrpJZ9vG8cO96FwJgl0i7qtW7fKXC6UiThjPhQi87rdDgwlWwriiKxbC9rZQ0fiJ02aFOt9XG1ZFwo9fINhyGto0NsHxyg83I66P2hjHk4q4hqvv/66GO6otWzTpo0cgz/++KPUcKKdDhx7KG8g/gflDuC5555T6dOn9/n769pXKtq7Do15Eijy58+v8uXLJ3PCNWvWuO2URY12qVKlVM6cOf02djCrx3U4dpBAkSVLFlWiRAmxX37++eeQ3vERG5kPZs28Nub37dun9u7da/N5GOK20t/NafTmSDwi+p4QCr3kg2nIa2jQ2zfmcaw6An169T4k7oGavnHjxkma/VdffSUTS4wJHTp0UFmzZlXvvfeeOnz4MHerH8eeKVOmyP8tWrTwy2fo8RXjPWo5iWPQ4hL7ClDJnoRyuqy/xw4c/0i3x9xItzMm9oFDRpevcuwggaBumKTaR5wxHypiXTCQHj586LAeEOnv9ox3W/XvtrCO8NtrURfNhryGBn1Mrl69qo4dO+bUmGdk3ntSpEghYoM4F1auXClaBdevX1dff/21aGzgguFu1Ig4Z/PmzeIswXUBZQ7+IFOmTCpXrlwy1umoEbEPJuOIdiLq4aglJiH+mJC72qIOonQ4VhEgatq0qd+uC1rELZS0jUIVOAERXMB+g2OckECNHT///LPYdKFKxBnzOMkBJsrBBKm0EOeAIWQvpR6TeneNd2ct62yJ6QWLUDLkNTTo/0O322BkPnDAyQjj8siRI5ZzBA6/FStWiNI6arqDPXZFEpMnT7aUPUAbwl/o2ldOyJ3DNFkSaCpXrixdJ5Ah5WpKu47Kv/jii6I67y84dnhWL++oNJAQXwE7KnXq1BL8CuWAS8Qa88FOd0R9MTyuSGOGod2sWbNY67ha824GavjOWtaFAqFoyGto0P8PHJuIWDrTVNC13WgFQzwDWTiIzCO1vlOnTmr//v1SPw+V9WvXrqlvv/1WorvLly9X3bp14272keNkzpw58n+rVq38uk+1Qywc+tEGGxrzJBjzsTfeeEP+//LLL52ujzJNrbXBsSP0lOyZYk8CRbx48SwBWZRKhio05v0IvIdoUQUwgfcWROLffvvtkDPcw8mQ19Cg/9+kGuJ3TzzxhMN9df78ebnNmDFjgH6dyADnAdoaIeKOVPrRo0dLzR/OYfTZXr16tUR94FCBJgYeg+r9Tz/9FOxNjwjmzZunbt26JemYGIf8CQSygK7nJPahGjUJBtAnAfPnz1fHjx93uC7G4CtXrkgZCMbvQI0drpYARCt0BJJg0KVLF0sGpdZ7CTUizphPmTJlSETmQfXq1UXN+vTp0x61hwu1+vdIMeQ10WzQw6hctWqVqlGjhtN1tTGfOXPmAGxZZDBs2DCVJ08e9corr4jRni1bNjVkyBB16tQpicKjdaU1MOrRzu7y5ctB2eZITbF/6623/N7LHE4xAA0KpOMR22Df6BITOLsJCRQYc2GY4zoPrRJXxg6UQDpzdntL0aJF5TPQBg9lAMQ2qJXHfBowMk8CSZ48edTLL7/scmZPMIg4Yz5U0uxB7dq1ZZBesmSJS+3hzMY70um1MEqoR+LD0ZCPdoP+119/ldpsCLE54u7du5Yabgh9Edfo3bu3nAcVKlSQVG8YeTi/06RJ43TCWalSJe5mL4HQFfpKY/zFhNzfoKYOZRJaOIvYL+3RkyN/1iETYov3339fbjG/sqdNgpaiWrm6ZcuWft+RKF9D5hZgmY59MK5CgAztRbNnz+7334UQW2MHyqMvXLigQg0a836e4GFivnjxYjHGe/bsGeN5GOm2jHe0rkLarRbGgxHga8wq+tFqyEezQY9jEvXbOqJoDz1oYR/prBfiHJy7MFzgNGnYsKHL0Z3u3burdevWcRe7wIQJE9SJEyds1sqj9R/o2rWrZEUEAp0uywm5fZgmS4IJIvOFChWS8huMH9ZAsLhdu3byP25dCcL4ApbpuDd2+DvTihBrEJiBHYcxYuzYsSrUiDhjHgY0+Oeff1QogMjn2rVr5eKB1FuzEB6MadRvWRvv1qr2uO9LlWTrFnjeOgvC2ZCPRoMevxeMeRybzi6KuvctUux5AXWdqVOnOnWUEM/BuNm2bVtVtmxZaT9npn///jIW5cyZUw0YMCBgu5kTcufQmCfBBNcwHWH79NNPY6lToxTq0KFDkoUWyLJGOgKdw7GDhMrY8c0330jWaigRccZ8vnz55BZ16qEABK7gyUF9MgxyawV7GOqutKTzpObeViR+0qRJPnUWRIIhH20GPZTUIQCEY9MZuoaPKfbugUg8hO6c0aZNG1FLJe4BIx7OEtSZVq1aVbKbEKWfO3eupaYN3nPoEAQK7bxhZN4+nJCTYIOACq7zSLNHKeT48ePVyZMnxcE9ePBgWWfUqFEqVapUAdsmGvPOoZI9CTavvPKK2Ji1atVSN2/eVKFExM0idS3N2bNnpb4m2BPlvHnzSloXLhRoReUp3qR7IfLuzGEAZ4G7dfmRZMhbG/SbNm2SSTkusuHSzxQOGfyOOFYc/ZY4FmHkwAhyxfAHTz31lE+3NdLBueGqMjEVjN0HqfMoYUCp0oIFC1SLFi1iPN+4cWNVp04dFUj0hBxjIlL9A+lICAcgpAknOyIcel8REoxrPERJkQ2J9nPvvPNOjOeRsfbqq68GdJuKFy8utzg/4KBEXTj5DxhOGFcBxe9IsIgXL55kUmMMCTXCw0pxUwAvfvz4ElWFQR8K4OKwdOlSMew9NcY9EcCDcffxxx+7FPl311kQiYZ8OEfo7ZVO2NJGQNsd1A6i964ztHqsLfV14j137tyR8Yq4D4xltJ/78MMP5SKbIEECVaBAATHwEVkLNMheQTkKxka0GSS2o/IQ+0qWLBl3DwkauPbhuohUe4wbGIPRwhK96NFtJNAlZZi34vMB21vGBvozGFdz5MihMmTIENDfhhAzoWjIR6Qxj0FYCx4hdSoUQDozvK0wCuvVq+fy61D76WlLOm3cuVIz6q6zIJIN+XA06GGo2yqdQGTS2sBHdAzHlCsp9gBeSN0+h/iWa9euqY0bN3rc8m/MmDGioI6JKc7fP/74w+666I2KaBPWxxj51VdfxVoHjj88Z15CPSMDWTODBg2S8xQ1bBiXkHIfLKV0ptrbhyn2JJTA+NanTx9Jt8fYgay2mTNnBq2kjKn29uHYQUiUpdnrKDNqgtHTORSAIQUxJohi9evXT6L0roBIvjtGtk6z/vfff51G46GeD4+0s5TsaDTkwy3l3p6ewooVK2LcxzGB9F98L1eMefR1PXz4sPzPyLxz0G7LDKLG69evt7kuSoDgWHn06JFFPdkdZs+eLWIs48aNk/MXxjnquCDeZCtygQwAbN9rr72m3nvvPbvvi44aSEHVBLtMyZ32TqEAxgi0tWLdfGxY80pCEVcy1ALlCMS4zsh8bGjME+KY8JipuQkmtT///HPIROZhAEIMCxH2L774QtJAkeLly9R3V+rizeu6Is4VzYZ8OBn07hwnMDDRKs1Zv3OA3xrGJjpEeBo9jibMbdIQ9UEHCyz2gDOtQYMGFtEld8A4AvE83QcZRj2chJMnT1a9evWKtT7qDHWtoa3nzcY7xQ49h4r29q8dnJAT4nzsoCMwNhw7CHFMaFklPuK5556T21CJzANMuhHpRBrX888/73R9V9LxHSnU+zptPxoN+XBKuXe1fAN942EEusKuXbssUXm2pXMOsoGwHDt2TM4XOE30Y9YLugTA0J8zZ47bqsnIvEENYY0aNSyPwcGE+1u2bFHegEyMLFmySBS/adOmTh2i6NSB88K8RDM6zR7lKdg35H/gunH58mWpTdZiX4SQ2GPHkSNHJPWf/A+MG9pRTuFMQqLImEeqKIwP1ImGCqjjh8GFNiha6MRW6rs2yhBlc9QD3ix4BlVWZ2B91MR6IqQXzYZ8qBv0+jjQpRs4fnAc2QL10hAI084uZ6xdu1ZuK1So4MMtjlxQSoMF+xnq6mh7pB+zXpDp4GkKOyY3yJjImDFjjMdxH6n7noKxAaVAKM9AWzc4HXCsOGrBgr7MKVOmtCy6m0i0gt8WmSwPHjwIqetPqETWihUrFrICQoQEk3Tp0onAm9mRTv4rz0EGYiDbBRISTkSkMY/6SfQhhiAUalNDhfbt20s9FCbiPXv2jPGc2Yi31wPe3Ug8jDqIQXkajQc05EPXoLclfGc26s1A/Axtb3AMuhJlx+++atUq+R/K98Q9pkyZolq1ahVWuw2Ciaiph8GFUiXUfkOkD9kD9ujdu7dEkfQSStlQwcDcdo21r7GN+TJlygTplyEk9KGAZmyYYk9IlBrzACmuEH3SrbVCAUyQ4V0cOXKkGjZsmBjZZiPeXoQdAmeeROJRF4/6fE+i8YCGfGgb9AMHDrT5OI4Ps1GP4wyq5HBy6RprZyCqeO7cOXkNvi8JrQjOE088ISUTZnDfl/XuiIJgvELap6PzAW2VzEu0wwl5bDghJ8Q5rJvn2EGIJ0SkAJ6ORPbo0UMMGT25Cjaoa+3cubPq0qWLJYLlirK9K+r0AMY70vkRYfPUgNfQkA9tUTxE5V05drAOskBQ3gFD3lVja+XKlXJbuXJlpsW6AKLwiMpCzA7p7u5E5fE6ZNu4CoTzSpcurdasWSMCegBOJdzv1KmT8hWo6T969Kg4BInrcEIeExyb0HgAWoSREGJ/7GBWz/+gcCYhUW7M586dW2pXIQiF1OJQAbW06G2K6LwrQkCYSOuohjO0QYCeqdqY1+3q3GlBR0M+9A16e+3o7KV8X7lyRb377rsuv0an2Lsi1kiU1JrDKEdGDIx53PeXMQ/Qlg5jCdKWUVKE1nRoO6gzL5DBkzVrVqlp1w7B/fv3W/6HAN/OnTtVsmTJVL58+eTx7t27q/r160vd99mzZ0UwExkAjRs35k/swYQcda8oqcI+jGbQLhG6C8jyKVSoULA3h5CQRQeeMFYjszRJkiQqmsF1CjowGENLlCgR7M0hJGSJWGMeYGK6fPlyFUpg8ty1a1dJs3dUi4qJNKJijlrYoSYeEf4BAwbEeBxR/FdeeUXNnz8/RkQfEVp8riNoyIeHQe9OOzpE5xs1amQx2pwBo3DDhg3yP4151x0mQLfw0/f9BX7PS5cuqY8++kgmO5joQLhOi+JBhd58LMI4N2coDR8+XBZkXqxfv14eg6YCDHc4ftKnT68qVqwomU34n7gOBE6TJk0q5xEM2Wg3YLUzGuOjp6KPhEQD6CSSIUMGdfHiRSkR9TbDMlLGDnTUiXbHBiGOiOgr64svvqhGjRol6s+oMw0VEFUbM2aMWrRokdQ020qXxsR6+vTpDiP2SLe1B5wY1qn52si3d4GgIR8+Bj1+QzhnnJVfoFYeNc/26uvt9aJHdkfevHnlIkqcgyi5o/v+ACn19tLqtYGuQZYSzm9HzJo1y6fbF63g/IdzRY8J0W7MsysGIe4JaMIxi1T7aDfmOXYQEuUCeABRJ9QI//rrryqUwDb17dtXonf26lHtpd22a9dONWvWTCL2SKW1jsqbnQHupGfTkA8/UTwtooiOBfba0SFNrW3bti5H5cHkyZPlFinb7C9PiPuwbv6/64rW32BXDEI4drjDzz//zLGDkGg35uPHjy+9nmfPnq1CjXfeeUd6iiLV3rpNnSPSpk3rMGLvzBlgKz2bhnz4GvTw3MMhBPFD6+MIz6Fmt1+/fi6/H6L4v/zyixjxgYguRyPo346sHNSsk8iEQlb/Y+/evZauGCjbIIQ4ht0w/rtOHj58WEpzqlWrxsOGkGg15gFqQDFxhpEVasbfJ598InXtSH1HjbwrQC3bFpUqVXL6WohzWadt0ZCPnLZ15kj94sWLRYALJR3utCvTwm1oo4jOCMQzsP9xXv/xxx8xHv/888/FoYbnoEgfbr3oifsT8mC2rwyVyFqVKlVUokSJgr05hISNIxA18w8ePFDRis7oKV++PFueEhLtxvwLL7ygUqdOrRYsWKBCjSZNmqiiRYuqXr16SQaBNyCaags4CWDcwcgbOnRojOdoyEeeQa8j9T/99JOIcKE9o6sgiq+NeVf70RPb4JxD3WPBggUtjx08eFDOdZx36GQBQZ/vvvtOfisSWaBOHpomGAcQYYpWmCZLiPudmFKmTBmjA0k0wrGDENeJeGMeKTowTFxJTQ80aLeB1lEQq7p69apb6faugp7zMO4YkY8egx5GI+re0QLR1b7yOpqMGvs0adKol156ya/bGOlAvAgGe/LkyS2PzZgxQ26/+eYbOS6g1Isx4Ntvvw3ilhJ/lXgVK1YsqntGo7WW1qtBpg8hxDkocdOZPdE6diAjYc2aNfI/xw5CnBPxxjxAPfG6deukPVOoUbduXUlBhCo12ky5mm5vTsdyJ60+nCPy27Zti3EbygTLoMfnQCQRegzt27d363Uff/yxRc8B2088Bx000OfdDJx2qB1+6623LJ0GUEe8b98+7uoIJNprX9He8v79+yp79uxyrBNCXCPaBTR///13mTtBI8rZPJcQEiXGfJ48eVTVqlVDsvUSvLATJkwQkSCk4CKS7ir2Bno4BGyl1YezIQ/HRPXq1eV/3OJ+JBn0uHihQwFuvWH06NFScoHIvDs1qihD2b17txwP3bp182obiFL37t2TqLu5hAHHAJxr5paS6CuMPvEk8oj2CblZxZ5dMQhxHY4d/xs7atSoEeM6SgiJYmMeoD0X6lid9VoOBmgbBsMbhhj6e9trV+cKMHIRYY2kiDwMXOt+6rjvreEbKgY9frNnnnlGWg3i1lNHBZTo4RDq2LGjZHt4EpXv2rWrpNkT78iQIYMo8WrgXMO5jWPBDB6DtgGJ3An59u3bQ/K6E6iaV6bJEuLZ2IGOJw8fPoy63cexgxD3iBpj/uWXX1ZXrlxRy5YtU6EI0uyhSA91a9TUVqhQwa0yAnsid+FuyIO//vrLrcfDyaD3laMC74ljB8r19o4Be8ybN09aSEF057333nPrtcQ2OH/RTQDZQNevX5cuFIhOItJg5sCBAxKdJ5EHNBNw7qPkAo62aAKifzi248aNG+uYJ4Q4Bh1PcD2+ffu2qNpHExcuXBA9GZ3VQwhxTtQY8xDC69Chg4iChWKrIEx6kBqNgQyR2S+++MLl16KnPIwxW9H4cDfk9YXNncfDyaC355BYvny5W2n3o0aNErEpHEPJkiVzebuQ/q2j8jDk0fmBeA/OYYw5TZs2lUwH/J6ItphbSJ46dUrOy6effpq7PALBOa9/240bN6poYuzYsXKL8jaOKYS4B1LLdUAn2sYOCMJizor5rLXuDCEkyo15AGEwGE9z585VoUjevHklqorIPDyy7qjb24vmhrshDzCoW+8Le+J+4WbQ23NIDBgwwOW0e6Rz9+7dW7I73EmvB9BrQAQNE26k2BPfAMMdWUCVK1eW9nQQvVuyZEmMdebMmSPRF60FQSIPCBxG24Qc1y6MK6BLly7B3hxCwpJoHDvQjg/zX8CxgxDXiSpjHhEyRMqgGh+qdUiod4YBgNT5vn37uqVubx3ljQRD3h7hWoNqbdAjcufMaeMo7R6RdaTXZ86c2e30+n/++UcyVbTzAIYl8R0w0teuXStZM8iYyJgxY4znITSIlpSNGzfmbo9QonFCjpKva9euiXO6Xr16wd4cQsJ+7AjX+Y67wMENQViUnjVs2DDYm0NI2BBVxjx4//33xejFhCMU0en2qO9HZNYd8SBzlDeSDPlwFsBzxaAfMmSI6B3gmLTnvJkyZYrN74uI/ObNm+V5d4XU4NSCQV+4cGG32tgRQlxDp8rimnPx4sWI323INvr666/l/86dO8v1jBDiPnD0x48fX1oqnzhxIuJ3IeasX331lfyPklh8d0KIa0TdlRYpr4gWoE4YPXBDtZXejBkz1KJFi6TW1pV0e3PaeSQZ8pEggOdqhB5dDOy1Jhw/fnyslHvU1H/++edqxIgRMWqxXQFt6HRdKybfqO8mhPgWlK8UKVJE/t+0aVNUtKPDtQfXHJSWEEI8I3HixKpMmTJRk9mDoAQ6f6ClLrpPEUJcJ+qMeQAD6MyZM5YIQihSv359UcAeOHCgKl26tMN0+4kTJ1pSrCPNkA81ATxf9YO3V0NvSx/AVkYCljZt2qiWLVu6XVuGYwRRM3weUtmqVavm9XchsTl58qRkPOTPn18lSZJERI1sLXSkRDbRlGr/5Zdfyi3KxFKkSBHszSEkrImmsUOLPqMUNn369MHeHELCiqg05hGdR51qv3791L59+1SogigsthMRjty5c9tdD208YNxFoiEPYOCWLVs21mOBFsDzVT94Zwb9sGHDJO0ego22wHNotQiRNUTX0fLMHWbOnKk2bNggHvDhw4d7/R1IbHAelixZUpR5jx49qu7duyfnp60lFLtrEN8RLRNy9IZGZB4OqnfffTfYm0NI2BMtYwe+3/z582UuQ+E7QjzAiFLOnTtnJEiQwChRooRx//59I1S5c+eOUbp0aSNbtmxGw4YNoYJidxk1apSxfPly48aNG0Yk8dtvv8n3S5w4sbFw4UK5xX08HuhtsF58tQ337t0z1qxZY2zdutV49OiRw88sWLCgHA84ht3lypUrRvr06eV9PvnkE59sO4nNK6+8YsSJE8eoXbu28fvvv0fcOWmP69evy7GFW/I/Tpw4IfskXrx4xu3btyNyt+Aa+uSTT8r3fO+994K9OYREBJcuXbJc9y9fvmxEIg8fPjSKFy8u37FNmzbB3hxCwnI+FZWReZApUybpq71z505R8g7luqmFCxeK+j6EUOwpXzdp0kQE0BCNj5SIfCjVzPt7G1xNuS9UqJCI4UBPAcewu/To0UNdunRJ3scXmQXENsh8yJEjh/xOyCqJtHOSuA6Og2zZsskY/scff0TkroNwFcZCdGxwpwMLIcQ+6dKlk0xSXVMeiUAPaNeuXaIvgtJSQoj7RK0xDyCClyxZMqk3D2VxIkwEFyxYoLZt2ybqwBjUzSnYMORr1KghZQPHjh0L2RpxTz8rFGrm7X0W+qL6Ckcp91C6b926tdq/f78o1yPF3l3WrVsnnRIA0r8TJEjgs20nMblz544Y8dzHBKmjkZwue/r0afXJJ59YND3Y4pIQ3xHJYwcCC7o97qeffirOC0KI+0S1MY+aYRhJMJpQB33z5k0VqqBGG9uKemcYc1op2GzIQ9QPRqcjA9wd49wfNeKefFYo1MzbE6aDge3L/WIvQo/eqxA6HDRokGrUqJHb74uabe0Awi0+g/i3I8Xt27e5i0mMCfn69esjao9A8wE1rjjWMaagIwchxHdE6tgBMKe6du2aKlGihF2NIEKICxhRzuPHj42SJUtKXcLbb79thDpTp06Vbe3UqZPx9ddfG5MnTzayZs0qj33wwQdGz549Y9RX477G0XOBrhF357NCoWZeM3HixIDsF3MN/ciRI+Uz+vbt6/H79enTR94jU6ZMxtWrV326rSQ2Q4cONZIlS2ZcvHgxqnYPa+Ztc+DAATn/EiZMGFF187Nnz7boAezcuTPYm0NIxHH69Gk5x+LGjSuaN5HCkiVL5HtBW2bz5s3B3hxCQg7WzLuZArl48WK5nTRpkpowYYIKZVq0aKHGjRunRo8eLZ5atL0aMmSIReEcaY72WpnZe84W6G8fqDp1Z/XooVAzr7GXNm1vf3kboZ8xY4ZEvrp162ZJZXUXdDvQrQtHjRqlUqVK5dNtJbHB71W+fHlVp04dtXfvXu6iKKdAgQIqe/bs6v79++rXX39VkcDFixdVx44d5X+kyhYvXjzYm0RIxJE1a1bRuEGW3tq1a1UkcPXqVUsveWhX4VpJCPGcqE6zN9ekjxw5Uv7H5CSUJ1tIa6xUqZLq0KGDtPKYNWuW9OVEKrY94xa96u09ByPUOu0eaeP2RAFt1Y57W1fvrCY+FGrmnX0m9pevyxDQdg7CUq+++qqk1uO3d5e7d++KA+jRo0fyHugrT/xPzZo1Zd+jVAIphEi7r1KliqpWrVqspXr16h59xpgxY1SuXLmkXAjnvyNxNbTgxHGE9eG4xHHl7XsS18E+xzEBVq1aFfa7DmMRrkGXL18WI/7DDz8M9iYRErE8//zzETN2gPfff18EnTGfQq08IcRLgp1GEErp9q+99pqk/aRLl07aCYXiNu7fv9/Sfu7bb7+VFKXWrVtLew976eq6hMBRWzssb775psP3QBq/Ne6k7juibNmyMd6nXLlysT7HnGZva1sChfV3djfdHutMmzbN4bpDhgyx7PO7d+/GalvnKt26dbOk10dqa5tQBOelqwvSJ91l1qxZ0loTZTb79u2Tlj6pUqUyLly4YHP9P/74w+jevbsxc+ZMORa+/PJLr9/TFkyzd/yb4VwsWrSoEe588cUXlvT6HTt2BHtzCIloli5dKudbrly5ZB4YzowfP96SXr9p06Zgbw4hIYs78yka8yZgNOn6+WLFihk3b940QtWQ18AohDHw+uuvSy1mvXr1nBrtjpZ8+fLZfLx///5+q6t35X2sjXlPnQa+AvvD1jbj93CEM+cHnDI9evSQ5z7++GPLhdtWH3pn/PLLL3LBxHv99NNPXnxb4i7r1693a/HE+dWxY0fLfRwTWbJkESeQM3LmzGnTmPfkPXFc4kKjl1OnTrHPvIOe0fp8PHv2rBHOehB6/HLleCOEeMetW7eM+PHjyzl3+PDhsN2do0ePtowd0PEhhNiHxrwXYDKaIUMGGWxeffVVtyOhgTTkNT/++KORJEkSo3Tp0sbixYudGuwwRO0Zo+5EnGG4emLQuvs+oSSA58wBAYE8d1+jvwdOXDhj4JyxZWy5Y9DjOMmTJ4+8f6tWrXzwjUmocP/+feOJJ54wFixYEOPx5s2bGy+++KJHxryn72lvHHHFkxyNYIz2ZIwMBeAs/vDDDy2/sdnZSAjxL1WqVJHz7ptvvgnLQNmnn35qGTuQJcaxgxDHUADPBz3d48ePr3788Ue7teOBAtkTBw8eVH///bcIoiVPnjzWOq+88oratGmT9Oxs06aN1ND7EtSC22oDZ6/Huru17M5q4kNJAM+TVnVaU8CRqOCRI0ekJR96yS5dulR17drVpbZ19o4ZiMscO3ZM5ciRQ33xxRcef08SeqBOGRoIGTNmjPE47qOFYSDfs3fv3ur69euW5dSpUx59frQQjnXzJ06ckLEO18bBgwfLY2iR2b9/f9ECIIQErm5+5cqVYbO7T58+rfr27Svin7gF0NeA+DLHDkJ8iBPHQNQyadIkixcxWJ5QZxF5a1Db+uyzz0rda79+/dyOvrsTabZXN+5JLbut9zK/TyhG5l1tVeeovl4vaDGYOnVq48knnzQOHjzo9DOdRejHjBljqWdlTVpwwTmMekekFLZt21bGFQ3a1h06dEhKK9zhzJkz8vtat/NBeQZS5T2JzHv7nhrWzDtm7dq1sp+hWxDKkSlsG8aYBg0aSKaQHqty585tTJkyJdibR0jUAd0TnIMpUqQwHjx4YIQyv/76q2hQIdtLjx3Zs2eXuXQoj3uEhBJMs/cRMIgxCKHO8YcffjBC2ZA3p8tqsbv3339f0pm8Mea1UJtZsM2TFHN7uFp3D4PCbMxbC+QFC0clAo7EBPVSvXp1ueDVqlXLrf7v9gx63IczB+89YsQIP31r4grou12gQAExhrTQXcuWLS3Pz5gxQx5DaUy4ptlbQ2Pe+XmLkiicn7t37zZCEVx72rVrF2OcqlGjhrFo0SK3HU+EEN+Acy9NmjRyPoaqkx5jhxbd1UvlypWNefPmhbwDgpBQg2n2PgIp9mhVh7Tl5s2bS/pzqKTWO+qDPmHCBPX1119Lu73du3dLeve0adMkLdJdkNKF9G98f307ZcoUu5/tLq6k0CNN3bpFFh7ztBWeL9rpOSsRQAmCve+G3wG/Uf369dWaNWskpR7Hljv9322l3KN362uvvSaf/fLLL0v/VhK89MIaNWrIMYBe80grtG4t2KBBAynnWbRokVvvjfOsdOnScuxo8Pvjvqf9ev3xnsT2eYsWhcBe2U2wwfg0fvx4FTduXNW+fXu1f/9+KQt48cUX1RNPPBHszSMkKsG5h2sKWLFihQpFhg8frkaMGGEpOdy1a5dav369tEWNFy9esDePkMgl2J6HUAdRzyZNmoiHMVGiRKIQHooReVusXr3aSJs2rZE+fXpj7ty5LkWKrVvVubO+J2nvrkTmdfTbOs3eVREp68wCd9vpOWslZy+V3t7+GzdunJE3b145nqZOnWp4g47Q//7778YLL7wg7w/hO3ei/MT3tG/fXqLxI0eOtDyG++bIvM44QecMT9qcJUyYUI4fjBdI4UcbufPnz8vzOPZ69eoVI/KOFmJYMmfOLBk7+N+sjOzsPV2BkXnn6DIYlESFGkiD1eMUWkgRQkKH7777Ts7N4sWLG6GGOUuRWYGEeA/T7H3Mv//+azGUUK/0559/GqFuyGswEX/55Zdl29G+rlOnTi4b5xUqVHB5XW/6vlsbw9bv5U3NvPV72zOwXTXUzYa/2civXbu2zfdt1qxZjPtlypQRow77FvXSvgAGfYsWLeT9YYz56/gkroPa4oIFC8Z4zJYxj3MSzjZPGDVqlJEjRw4pq4BTwHwMI7URx4Tm+PHjNo9PrOfqe7oCjXnn6PZ9OB6gcxIqoEWibp0HpXpCSGhx+fJlSx06xvRQqueHRg+2C2n2hBDvoTHvB+7cuWNUqlRJBitMvvfu3Rvyhrz5vVHzj3orbPvgwYMlKuRO1N3R4kmtvBlXIuWe1My7k4lgK8rvKGvA2kh39L5YHwJoEIBBNB5ea1/Wns6fP9/yeR999FFItFOMduBUgaHuzJhv1KiRrBsp0Jh3jVKlSsn5ahZEDCYYj5Ahgm2CTgJFqggJTeCAxXlqzvoKJhgrnnnmmZBq50xIJMCaeT+QOHFi9dNPP0ldKVrAVatWTWoJg10j7wpoAdK4cWO1b98+eX+0BkGboYYNG/rk/T2pldegZh31xGZw31zL7mnNvDut62zVvtt7fbdu3dT06dNdel+0hps1a5a0dMI+37lzp3r//fd9VnuK3xQ6BgD6DpUrV3bYto4EhqRJk8o44Yzjx4+rNGnSBGSbSOjw0ksvye3ixYtVKDBx4kTRV0mdOrW0smTbKEJCE2hXhNLYMXPmTPXbb7/JNQ9aTdDaIIQEFp51bpAiRQoRhCtZsqS6ePGiqlq1qtcGvb8NeTOZMmVS8+fPVzNmzBBBo19++UX16tVLBLq8wZ2+8tbCc64I4HnaZ97edhUqVCjWY9gvrr5+06ZNyhVgWLdp00aNGzdOff755+rXX39VBQoUUL7in3/+EaPg1q1b4lz68ssvXepDT/xP0aJF1fbt26V/uz1wzkMgCA5CEp0TclxP7ty5E9RtuX79uqUH9Mcff6zSpk0b1O0hhDh3BG7YsEFdu3YtqLvq9u3b6oMPPpD/e/furbJkyRLU7SEkWqEx7yaIoq1evVqVKFFCDHoYUQcOHAh5Q16DiEuTJk0kolu9enU1dOhQdezYMYkc161b1+33K1eunNy6ogyPQd+sjI/79gxm8+OurGNv23r27BnrcVsOGOtsAEevd4V06dLJxTZnzpwSjUc035dK0A8fPlRvvPGGOnr0qMqVK5eaPXu2KKPbUrkngadZs2bq5s2bouhry1hDx4EOHTqoBw8eyLokuihevLhk7dy9ezdGB4FgMHDgQHE6FSxYUNTrCSGhS968eSUggTlAsDtiQL0enVswz0HGISEkSAS7JiCchUhKlCghdUIZM2aUevdQqZF3B4ilocc5vgfq0qG0jDpvV2vCrRd7yvD26s9tfY4tMT28r7lm3lXBPXfr5m0p10MTwNlrIaz3/fffW+pOS5cubaxatcrwFz169JDPQc/qXbt2udyHngSuBrlKlSpSJw+thDZt2sj/qJV+9913pdc77j///PMR9ZOwZt51tBjp22+/bQRTjC9+/PiyHbgWEUJCn969e8s5C82VYHHp0iWZf2A75syZE7TtICRSoQBeAA16tAjRBv2+ffvCypA3s3btWjHm8V1g3MPIh0Hbv39/tw16vE4bxTCEcevO+9hS0LY25p21k7PVLsVd9X79Gc7eo0GDBkbTpk3FOMufP79c2PxpQM+cOdPy2bNnz7a7Hg364HLz5k1paxk3blw5NqyXhg0byjqRBI1514GzD+dwhgwZfCqI6Yn4KMRdCSHhgQ5SoLsS2o4Gg4EDB8o2wEFNwUxCfA+N+QB7J3U0NnXq1MamTZvCzpA3b9u8efOMAgUKWJRJN27caIkCu7rUq1fPo6i+OULuq9Z07kTmHTkmbD2HXuIvvfSSRLbQuxv949HG0J/s3LnT8v1dyU6gQR98Dhw4IB0MOnbsKMcMukmgx3skQmPedTAJT5kypZzLaAsXaOBI0p+/ePHigH8+IcQzECzIlCmTnLtLliwJ+G7EvAIBLHz+jBkzAv75hEQD169fl3MMt85gzbyXoDZ67dq1UgN+9epVqUOH6n2o1Mi7W0//6quvqr1796oJEyaoPXv2qIoVK8r369+/v6pdu7ZL77N06VKX1nvzzTddqoX3RABPC+0BWzXJuXPndmkb8Rm2audRIzZ27FhR2UfN6ZEjR1S7du2kbt1fXLlyRb388stSZ1uzZk01aNAgp69hDX3weeqpp6SecPTo0eqbb74RoSBobpDoBl1AXnnlFYsidKCZMmWKiN/lz59f1atXL+CfTwjxDCjGv/7660EbO/CZFy5ckA49r732WsA/nxASExrzPgDqvxDFw4To3r17YnBNmjQprAx5M/HixRPhLgj7LVu2TL7fgAED1LZt21TTpk2lBRqMe7QjsTZy3ZkUYp/YMvBhQJvF6OwJ3WF/Qn0Zi3l9a6E9W23k0BLMFfRnd+7cWbVt21acNyBjxozSFeDEiRPyeUmSJFH+5NGjR9JeENudJ08euZi6KqhHg56Q0ARipGDu3LkiihgoMJ589dVX8v97773HdlKEhOnYsXDhQlGVDxSYt6F9pZ4X+TOAQQhxjTgIz7u4LnEClKkRnUXEA3z66afS0x2EiyFvDxj23377rZo2bZq0RKtUqZIY3i+88IJ8Lxjg2vCFAe0L4CgYNmyY/I/oODIFYMTCqEV02tb6iHT56vO7dOki7/XDDz9ItkGiRIlUo0aNxKj31We4So8ePUQ5Fk6DLVu2qGLFirn9Hvfv35e2emixWKpUKU7g/ciOHTuk/SO6RiCjAlkv6ISBlnXIqvDk9wsH0EUhZcqUEvHFcUacG9VZs2aVKNeSJUsCFiFHK05kYeGYPHnypPSIJoSED5i658uXT7oRYV6E7jaBANc1XMMwZkDJPlWqVAH5XEKijRvuzKcCkfcfTaDu/MMPP4xRVw218VCskfeEu3fvGj/88INRrVo1EfbCdyxXrpzx6aefGrt375bvr0WVfLGYa9ata+ZtLZ4I9lkvhQoVMsqUKWPEixdP7uP/sWPHGteuXQvKPp8+fbpLgneuwBp6/3LixAmjRo0acm7oRQvemR+rXbu2cfLkSSPSYM28+3Tp0kXObYglBornnntOPhPXKkJIeNKnTx85j1988cWAfWbdunXlMzt37hywzyQkGrnuRs08I/N+YtSoURLZhfcU0TikQiE9OpJAb2Kk4S9evFj9/PPP6tatW9LzvH79+lKHmSxZMulzjtrQlStXxkh3R1Rf17Q7ApkAACnziRMndhiZB0j/R0mAMxDpN6fm47dB5PrMmTOyvdWqVZPvgSV79uwqWGzfvl10C1C+gVrrwYMHe/2ejND7B5RAIPMGUVac94h6IgMCpRk4D3C+IGIPbQ1E6rNkyaI2btwo+guRAiPz7gPdDYxHyLq5ePGi36Pk0ETBNQllOojK4zgkhIQf+/fvV4ULF5ZU9/Pnz8s1x9/XOPS5x/Xt8OHDkhlACAn+fCqen7Yh6unUqZPsA9RTIz28cuXK6scff1Rly5aNmH0DIwVGNhYYiOvXrxfDfsGCBZJ+BaMY6cSlS5eWtPwaNWqIUVOoUCGZvGbOnFl99tlnDj/DXr28PerUqSOGvr33xXZUqVJFXbt2TQxklD9g23GyoGQAxjtSyEKhFAJGYYMGDWQ7kX4LoT1foGvokXL/559/MuXeR7Rq1UomVHBkoR4Zx6ItULKBOmWIJr799tuit0Gil6efflomyEePHpXxE85KfzJ+/Hi5femll2jIExLGYC5VvHhxtWvXLplftmnTxq+fB2FkGPKYI9GQJyR0YGTeD5jF7tKnTy+icYcOHRLjdsyYMSIuF+nfHxeXX3/9VSLLWOBB1lF6RIUQsYSiN4Rb7ty5I/c3bNigRowYYXkfOEKGDh1q+R/ZDo4i81gHCu+XLl2STIDdu3eLxxqT5J07d6pTp06JYQxwIYKTAUuFChWkBt5VQblAADEsdEZA5LZAgQKSRQAPnS9hhN53bN26VRxUcD658lvBeQTHHgx6RGZxHEYCjMx7Rr9+/URjBQ5Fe91QfAHGW0Ti8TthjHz++ef99lmEEP+DwAXmPghSrFu3zq9zEmQpInsImhsQeiaEhMZ8isa8j7GlWo8fpEWLFpJqDyCg9vXXX0uENFqAwQ4DXxv3iAhDHAwCUBqkHkNMBfsME86CBQtKqj7U9XUaGYz4mzdvWgQHIcaHCSpateCAx4XG+j0RKdWGO5wGJUuWDGnRFhxDiPJOnTpVTmAYezDo/YHZoMf+wf4ingkUQuEXUXdXWzguX75cMi7wWi30GO7QmPdcYBRRNox1GOfQQcQfoMsKnMnIBIBoKcZNQkj4glIZlGrh2o3/0S7OH8yZM0cEgDE3QxcfqtgT4l+YZh9kHj58GEO1HoYSUqAQZe7bt6+owsOgRT04JnDRAOpBy5cvL4sGRjei6OfOnVNnz56VW73gPox9OAGwP/UCwx37ExcSTHzhEEE0FCn7esHFRv+PFnLhdtHp1auXGPKYaCMTwV+GvDnlHpkTcCLQmPcMnM+pU6d22ZAHSMNHjSOi+iS6geMSmUrIIMK1Ag5ff6bYo+sKDXlCwp8cOXKo5557TjIhZ8+erbp16+aXzxk3bpzcwhkYbnMqQiIdRub9gCOjaMWKFdIfFCJYSDmHWFv37t3FMCWOQSQegnt169aN2IsJ2s8hUgsmT56sWrZsGZDPpSHvHUg/fOqpp6Rtjzug9hBRWZSARAKMzHvO559/Lu01oa8C/RF/OJzKlCkj1x1omqAEjBAS/owdO1Z16NBBMg9xnvsalIni+gYHIKLywRQFJiRauOFGmj1z7PyAo+gmIncQxEN6LWqQoFCOmm1ERkl0891331kMeaRdB8qQB4zIewcGWwhCugteg9cSovtE//LLL35x7uioPPrL05AnJHJ47bXXJCCE8kWUefoaZJMCzFtpyBMSetCYDwJZs2YVkaMpU6aI1wVptqjjhgGHVHISfeB4gLI5QJqcNupJeIDyD7RO9KTMAa8lBJNkdNtAlgzSZX0JHEY//PCD/P/OO+9wZxMSQcApjCwvgNI8XwKdIpT9AY4dhIQmNOaDBCKhb731ltSFo3YWUXrUSiNKzxra6AKp2a+//rpoCKDNH9RpGSkPL2CAEeItKMEC2vD2FTNmzBCnEWrzUV9LCInMsQPGvC+vR/PmzROhYYjs1apVy2fvSwjxHSzUDoEoPRSw4flE72nd4gpq5oMHD1YZMmQI9iYSP4K+0kiRgzMHbakmTpxIYaowBW3mIGrp7msI0TRs2FB16tRJ7dixQ9JlUafqLZjYa/EqRNboKCQk8njppZckO+zw4cMWfQxfoMcOiHKGUvteQsh/UAAvhICCO6Lz33//vdyH4AEE8jp27Bixgm/RLIA3a9Ys1axZM4nIo2crPOrR1K4wkoAwkCdGkhYeNLdTDGcogOc9cOrBwYvOJwMHDvT6/bZs2SIZX5jonzlzRrouEEIij8aNG8u8okuXLuqrr77y+v12796tihcvLvX40PHIlCmTT7aTEOIcCuCFKWiphsge+n5DlRQ/JKL1GExXr14d7M0jPgRK9UiLgxHXtGlT6eFKQz682wN5siB1EbeeMGbMGJUrVy6VKFEiyeb5448/HK4/d+5cifRi/aJFi4pjzAzKfuBYMC/utNojvuHNN9+UW2Rr+cLJoyNrENijIU9I5ILgAJg+fbq6f/++z0QzEWygIU9ICGOQkOThw4fGhAkTjHTp0qH4SZb69esbBw8eNKKVf//911i4cKHchjOjRo2y/KZt27Y1Hj16FOxNImHGrFmzjAQJEhiTJ0829u3bZ7Rp08ZIlSqVceHCBZvrb9q0yXjiiSeMzz77zNi/f7/Rt29fI378+MaePXss67Ro0cKoXbu2ce7cOcvyzz//uLVd169fl+Mat8Qz7t27Z6RNm1b245IlS7zajVeuXDESJkwo7/X777/zJyEkgnnw4IGRLVs2Od9nzpzp1XvdvHnTSJ48ubzXmjVrfLaNhBDfz6ciUgAPrX3q168vkW5ElxYuXOiTCBR6/yJijghqvnz5LAqf3kTL7IHapNatW6u//vpLde7cWe5D8bxIkSLq3XffVZcvX/bofUnwePz4saTO4vcDyLpA1Awp2qHAzZs3VdeuXSVajJRcV8QYT548Ke1qkiRJIvoOUOG37sjgynlD3OOLL75Qbdq0kfaFhQoVkuMIvwEyPmwxcuRIGePw+0AEDenb+E1Gjx4dYz38RojA6IWR3MCD36BFixYxWkJ5io7QlShRQj399NM+2kJCSCiCdHjdFcfbsQPZgpgT5M+fX1WtWtVHW0gI8QehYUX4GKj2IjUdhrU9MLE9d+6cZXHWzuP48eNitGBQ27lzpxg9MLZ//vlnyzpoJ/T++++r/v37S79PbAPUPy9evOjxd8FkGhPxvXv3ioMChhIm4DCKhg8f7pNUKuJ/0N4F9WyDBg2S+zhGRowYEVJiVDieoawPzYY9e/ZIq5saNWpIna0tkAKMcwLifZs3b1bfffedGOofffSRW+cNcQ/sbwgc4bfRwCGE+6iPtgUeN68PMDZZrw/HC5wyBQoUUO3bt1dXrlxxuC0Yf1AOZF6I98BRA5YsWWL3/HNFj2HSpEnyP865UBprCCH+AeLJuB6sW7dOgkGeoh3DcA5w7CAkxDEiHHzFBQsWxHgM6aQvvfSSW+/Ts2dPo3DhwjEea9SokVGrVi3L/bJlyxodO3a03Ef6dJYsWYwhQ4YYvgLpTiVKlLCkaefOnduYPXu28fjxYyPSCdc0+/PnzxvlypWT3wupzVOmTDFCjTt37kgatnVab6lSpYw+ffrYfM2yZcuMuHHjyvfTjB071kiRIoVx//59l88b4h5nzpyRY2nz5s0xHu/Ro4eMQbbAcffDDz/EeGzMmDFGhgwZLPeRlrlo0SJj9+7dMmYWLFjQePrpp6Xkxx79+/e3jEXmhWn23lOpUiXZl5988olHr9++fbu8Hmn2SLcnhEQHdevWlXMf1wRPQDknXo85wdmzZ32+fYQQ50R9mr0rOItAValSRdLxXY1seRIt84Rq1aqpbdu2qSlTpkgZASKfjRo1kt7B7E8feuzbt0/KLX7//XfJskDk23xchQrI+ECkHeUhZpBuv3HjRvn/448/lhISDY5rCKllzJgxxjmB6Cy+tzsRYRJ8IJD24osvym/aoEEDiQpjTMFYaY/evXur69evWxYoHhPfgFZQAO0qPRHC05E1iFelSZOGPwshUTZ2IFMOc1N3wfwS1KlTR2XOnNnn20cI8S0RmWbvDKTYQzV+zZo1atiwYWrDhg0yaJknTFCYNg9i58+fj2G0ANyH4YIUatSw4/W21sFrfQnq52EQIoUKBhZqZaGAX7ZsWdW8eXN1+vRpn34e8Yzly5dL3fnff/8tdWe//fabqly5ckjuzuTJk6vy5ctLLTVaJOJYRr0tjG6UoYB06dKpvHnzOj0n9HOunDfEffA7YAy4cOFCjMdx357iMB53Z32QJ08e+awjR444rO9GC03zQnzDq6++Kg5A6FJgLHGHe/fuqRkzZljSbgkh0QNK2zB/vXTpkpo/f77bjn2UzAGOHYSEB1FpzLsSgYKxP2TIEBXKJE2aVGqvYdTDiAeod37yySelPz20A0jggSf8gw8+UHXr1hWjtVKlSmIU43cJZXDsoDIla9asYqR9/fXXUuevBfo6deokDjASXBIkSKBKly4d47eAuCLuwyFjCzxu/dshS8Te+gBOQWQsMTITHJAloyfTn3/+uVuvhejrtWvXVPbs2SWbixASXUJ47dq1s4wd/6s4dY0VK1aIEx6OXDgFCCGhT1Qa855EoOxFthCJQiqyJ9EyXwHjC55UKOc/++yzEvFExB4lBIjOuDOQE+84evSoqlixovrss8/kPko4Vq5cqdKmTRvyuxZRd2Sp3Lp1S9KlcTw9ePBAzg93zgn9nCvnDfEMCG1OmDBBzvsDBw7IcQbnHdTtAZx7SIHXdOnSRSZpEF08ePCgjA8o14GDBuA3h9I9skdOnDghhv9LL70kQpsoiyDBAR0v4sePLx1a3ClN0Sn2yODCdYkQEl1gbEfWJsSYV69e7fbY8eabb4rjmBAS+tCYdzEC5Syy5Um0zNeg9dCvv/4qLUVQ2wwV5GbNmolxiYk78S9wnJQsWVKyPJAei/S2b775RqLc4QQyPnAuXL16VVTnYdTZAsc1VO/N3RpwTsBQR7s0TyPCxDnQyUA3C3QOQNsxdAqAsa5LGpCarcsjAMo9fvjhB2lXhC4b8+bNk+gtWl0CGHy7d++WjCVkkEDBGOMZxpNwO34jCThqMakGKAlzBWRq6cl7KOpzEEL8DwIIuiuGq2MHnPhogQy0Y5gQEgYYEcjNmzeNHTt2yIKv+MUXX8j/f//9tzzXvXt3Y8uWLcbx48eN1atXi2J3/vz5jXv37lne48033zR69epluX/s2DEjSZIkog564MABUYKG0ueKFSss68yaNUuUg6dOnWrs37/faNu2rZEqVaoYat+B4u7du8agQYNkm7EP4sSJY7Rq1Soo2xLpavY3btwwmjdvblHyfu6554yTJ08a4QaO5eXLl8uxvnLlSqN48eKiwq/396hRo4xq1apZ1ofKeZEiRYyaNWsaO3fulNenT5/e6N27t1vnDYkc3FFfJa6B8wbjN/YrrivOwHUH69avX5+7mJAoBnPeePHiyXiwdetWp+u///77sm6VKlUCsn2EEN/MpyLSmF+3bp3NdkloSYcWXDA+YHSgXVPOnDmNNm3axDJyK1euLOtbvy/awiVIkMDIkyePzRZjMHhy5Mgh66BN1G+//WYEk9OnTxtNmza17IPkyZMbn3/+uaV1WDgRisY8Wnllz55d9i3atH388cfGgwcPjHAELQ5xXOPYzZQpk7RZvHbtWow2ZDhfzJw4ccKoU6eOkThxYiNdunRGt27dYn1/V84bEhnQmPcPL7/8sowxb731lsP1cB2DQxnr/vLLL37aGkJIuKADDQ0bNnS43tWrV41kyZLJumg7SwgJn/lUHPwJdnYA8T+bN2+Wulmdbp8zZ07Vr18/qa1FTWY4gPrtZcuWibBcsLcZ6WidO3eWVGWAsgbUL0PsjpBoBYKPKVOmlDZ1VLb3HWht+cwzz4iw1a5duyxlLNb07dtXDRo0SNbFmB8nThwfbgUhJNxAm1iUU2EsQAkgyqdsMXToUNFZwbooueLYQUj4zKdYMx8loGYWE0KIm0CUDO3SWrdurQoWLCjK/WhHQpyD/fTVV1/JZBqGPCbXUK7HBZOGPCHEH5QrV070DDD+QOHeVt95iBhCowNAzJCTcUJI4cKFVZMmTUQIGWOHrb7z9+/fVyNHjuTYQUiYQmM+ikCLMYiaHDt2TFSt06dPL+rrLVq0EG/szJkzbU4Syf+A0nfZsmVFYRoTZzhIoBQLjzZUYwkhxF+MGTNGvPNwyqJtpDUTJ04U0cr8+fPbFa0khEQfCEBAEA8Rd1tieNOnT5d2dBDcROtmQkh4QWM+CkFLMLS2glEPQzRNmjTq0KFD4r2FUY+B//Lly8HezJAA3myosdeoUUMU2Hfs2KFSpUolquBQ+i5atGiwN5EQEgVky5bN0m++T58+Mn5roF6vWxF269aN7egIIRYQuNEOwIEDB0omoWbTpk2qa9eu8j9u2Y6OkPCDNfNE6jIw0CNaf+3aNdkjqElHdAdpWTVr1gyJyWEga+bRVhBp9HB2oM4MIKUeGgODBw+2tAAjhPwHa+b971ysXr26Wrduneh09OrVS2XPnl29+uqr6t69e6p+/frqxx9/DLqmCCEk9MYOlOosWbJEIvAoD0S5YIMGDSTTEOMKnkuUKFGwN5UQotybT9GYJxZwwKBXOurqt2/fbnkcAz9S8WHIFihQIKKNeUyIZ82aJaloBw8etGQyQF8AES8IBxJCbENj3v8gIl+xYkV17ty5GI+/8MILat68eSphwoQ8PAkhsThz5oyUB548eTLG49WqVZP+8iwXJCR0oDFPvAaKyVOmTFHff/+9+ueffyyP586dWyL1WHABQMp5uBvzcGLgfefPn6+WL1+ubt++LY/DI9apUyfpAoA0NUKIY2jMBwaMUaiRHz58uDp9+rSMiRi/aMgTQhxx9+5dNXXqVCnZOX78uKpSpYpaunQpDXlCQgwa88RnQOV08eLFEq1H7TgMarOgHgThYNgjRatUqVIqWbJkYWHMX7hwQS1atEgtWLAg1vdC2iqM+HfeeYfttQhxAxrzgQXK1HC8YuwNhVIoQkh4gM4Y0AAqUaIEy3IICUFozBO/gLqqDRs2qJUrV8qi09A1aIUEJeWSJUvK5BK3WNKlSxc0Yx51YohcYcJrXg4fPizPaZ566in18ssvy1KmTBm2dSLEA2jME0IIIYR4B415EhBOnTqlVq1aJYY9lN3Pnj1rcz3U3OfJk0fUmPE/bvWC+zD2kR7qrC+yLWMeKWOIsqN+FK1VsOj/jxw5Ioa7uUzADIx2bcAXLFjQB3uEkOiGxjwhhBBCiHfQmCdB4eLFi5K2hQX913ELg9oVYMhDaA4LRFj0LYx8pJJiQco/6tuRTqrv6/p2R2B9GOvFixdXxYoVk1ukllGRnhDfQmOeEEIIIcQ7aMyTkDoY9+7dK1F8pLtDTRW3+n9E81G75Q0w+DNnzixLpkyZZMH/OXLkEOMd7VcoDEWI/6ExTwghhBASuPlUPC8/ixCH4ABEKxR7PHr0SKLrSJe/c+dOrFtE4JFSD2Mcgnvo+V61alWVNGlSlSBBApU2bVr5DGcp+oQQQgghhBASSdCYJ0EFKfAwxp15nXTN/LVr1yTa7q8+84QQQgghhBASDsQN9gYQQgghhBBCCCHEPWjME0IIIYQQQgghYQbT7AkhhPgEwzAswi2EEEIIIcR99DxKz6scQWOehFV9PVrK4ZYQEnrcvHlTbrNnzx7sTSGEEEIICft5FVTtHRHHcMXkJ4QQQpzw+PFjaTeZPHlyv3eYgNcaTgO0vXRFQDPS4f7gvuCxwXOFYwfHUV5XIuM6C/MchnyWLFmkm5cjGJknhBDiE3DByZYtW0D3pqvdMKIF7g/uCx4bPFc4dnAc5XUl/K+zziLyGgrgEUIIIYQQQgghYQaNeUIIIYQQQgghJMygMU8IISTsSJgwoerfv7/cEu4PHhs8Vzh2cCzldYXX2Wicd1AAjxBCCCGEEEIICTMYmSeEEEIIIYQQQsIMGvOEEEIIIYQQQkiYQWOeEEIIIYQQQggJM2jME0IIIYQQQgghYQaNeUIIIWFLnDhx1MKFC4O9GSFDrly51FdffRXszQhJTpw4IcfLzp07g70pIUG0nzvR/v2t4dhhH44dMYn2cydOiH1/GvOEEEJCmjFjxshEM1GiRKpcuXLqjz/+UNHKmTNnVLNmzVTatGlV4sSJVdGiRdW2bdtUNPDLL7+o+vXrqyxZssSaTD148EB98MEHsj+SJk0q6zRv3lydPXtWRdu+ALdu3VKdOnVS2bJlk+OkUKFCaty4cSra4NjxHxw7OHYAjh2RN3bQmCeEEBKyzJ49W73//vvS2/XPP/9UxYsXV7Vq1VIXL15U0cbVq1fVs88+q+LHj6+WL1+u9u/fr0aMGKFSp06tooHbt2/L749JljV37tyR46Nfv35yO3/+fHXo0CH14osvqmjbFwDnzIoVK9T06dPVgQMHVNeuXcW4X7x4sYoWOHb8B8cOjh0ajh0ROHYYhASADRs2GC+88IKROXNmA4fdggULLM/9+++/Rs+ePY0iRYoYSZIkkXXefPNN48yZM07fd926dUbJkiWNBAkSGHnz5jWmTJkSa53Ro0cbOXPmNBImTGiULVvW+P33333+/Qgh/gHnbMeOHS33Hz16ZGTJksUYMmSI3Md4MmHCBKNBgwZG4sSJjXz58hmLFi2KyJ/jgw8+MCpWrOhwHYx1gwYNMlq2bGkkS5bMyJ49uzF+/Hgj0rC+jtjijz/+kPX+/vtvuX/8+HG5/+OPPxpVqlSR46VYsWLG5s2bjUjbF4ULFzY++eSTGI+VKlXK6NOnT4zXRfK5w7HjPzh2/AfHDsf7gmOHEXZjByPzJGwjKsePH1f16tVTVatWlRpIRB5at26tfv755/D1rhFCLPz7779q+/btqkaNGpbH4saNK/e3bNlieWzAgAHq9ddfV7t371Z169ZVTZs2Vf/880/E7UlEVcuUKaNee+01lSFDBlWyZEk1YcKEWOshWo/1duzYoTp06KDat28vY2q0cf36dUlBT5UqVYzH+/Tpo7p37y7XjSeffFI1btxYPXz4UEUSFSpUkOMFqdWYe65bt0799ddfqmbNmjHWi9Rzh2NHTDh2uAfHDo4dNcJp3hE0NwKJWjzxitoC0Xx4EM00atTIqFWrlsveNUJI6ILsHIwD1pHTHj16yLkN8Hzfvn0tz926dUseW758uRFpILsIS+/evY0///xTIu6JEiUypk6dGiMy36xZM8v9x48fGxkyZDDGjh1rRNN15O7duxKJbtKkieUxHZmfOHGi5bF9+/bJYwcOHDAiaV/cu3fPaN68uTwXL148yV777rvvYr0uUs8djh0x4djxHxw7HO8Ljh1nwm7ewcg8CRuvaJUqVdRbb71luQ8PmdlzBhB1154zVz3zhJDwplixYpb/IX6WIkWKiMy+efz4sSpVqpQaPHiwROXbtm2r2rRpE0vYzLw/MI5mypQpIveHPSCGh4gJ5lxjx46N9bx5/2TOnFluI23/jBo1Sv32228SkcV1ENkaHTt2VKtXr47Kc8ce0fL9OXa4BscOjh3hOHbEC8qnEuKAe/fuiSoxUh9xcmhy5MhhmXiB8+fPq4wZM8Z4Le7fuHFD3b17VwRfHj16ZHOdgwcP8jcgJMRJly6deuKJJ9SFCxdiPI77MFA1EIQzAwMWk9dIA+MfVMnNFCxYUP34448xHouW/eFoMv7333+rtWvXxriG2No/2DcgkvYPrn8ffvihWrBggZSi6YknygqGDx8ew8EdqccKx46YcOxwDscOjh3hOnYwMk/Cxis6bdo0NWTIkKBtGyEksCRIkECVLl1arVmzxvIYLpa4X758+aj7OaBkb137jjronDlzBm2bQvH6cfjwYYlAo31ftO4HLMhEM4MJaiQY6q7AsSMmHDscw7Hjv/3AsSNB2M07GJknYeUVNQMPmS3PGV6HvrqYuLjiXSOEhC4QsGzRooUIupUtW1Z99dVXIqjZsmVLFW289957ImyGNHuMleh7++2338oSDaB3+pEjR2KIoCLanCZNGok8NmzYUIROlyxZIllZyN4CeB7GXbTsC2SxVa5cWfXo0UOuhXD2bNiwQRziX3zxhYoWOHb8B8cOjh0ajh2RN3bQmCch5xWF6q4rERV4yJYtWxbjsVWrVlk8Z2bPfIMGDWJ419BvlxAS+jRq1EhdunRJffTRR2KclShRQvpnW5fPRANPP/20pE737t1bffLJJyp37twyyYCKbjSwbds26V5innABTLo+/vhjSw91HCNmcE2B5kq07IupU6eqWbNmyXGiFZZh0A8aNEi98847Klrg2PEfHDs4dmg4dkTe2BHn/1X5CAmYJxDCTYgOYCJiK6JiPlnMEZXmzZurrFmzWlLtEYkoUqSIiPq0atVKovmdO3dWS5cuFSE83ZoOk5vx48dbvGtz5syRmvlQPSkJIYQQQgghxBk05klAWL9+fYwogkZHVBBhsoU5ooLbXLlySdTB/L5IH9u/f7/Kli2b9Ko3K96D0aNHq88//9ziXfv6669VuXLlfP4dCSGEEEIIISRQ0JgnhBBCCCGEEELCDKrZE0IIIYQQQgghYQaNeUIIIYQQQgghJMygMU8IIYQQQgghhIQZNOYJIYQQQgghhJAwg8Y8IYQQQgghhBASZtCYJ4QQQgjxkOLFi6s4ceKohAkTqitXrgRkP6KlKz4Tt8HCX9uA9rN4X+s2s9HAyJEj5bv/+OOPMR7HvsDj5ta80cCjR4/UU089pXLmzKnu3r0b7M0hJCShMU8IIYQQ4gFbt25Vu3fvlv///fdfNX36dO5HB5w4cUKM0ly5cnE/WXHp0iVxjDz99NPq1Vdf5f5RSj3xxBPq008/VSdPnlSfffYZ9wkhNqAxTwghhBDiAZMmTZLbrFmzxrjvbzp16qQOHDggt5HGyy+/LN9tyJAhKpoYMGCAunbtWlCzLUKRhg0bqqJFi6phw4ap8+fPB3tzCAk5aMwTQgghhLjJnTt31MyZM+X/77//XiVLlkzt2bNHovX+Jl26dJJ+jNtII2XKlPLdMmfOrKIFGPFIoYdTqHbt2sHenJCjVatWkmb/7bffBntTCAk5aMwTQgghhLjJ3Llz1Y0bN1SRIkVU1apVVaNGjZxG56tUqSJp5uvXr1e//vqrql+/vkqfPr2KGzeupR4aKehYBynpixYtUtWqVVNp0qSxvM5evXrv3r3lsXfeecfu5+/du1fWyZgxo3rw4IHl8fnz56vWrVvLd0mdOrVKlCiRyp07txhRhw4d8smxgbpvvCf4+++/ZTvMi7OaeXx3PI59eP/+fYlkP/nkk7KtOXLkUB988IG6d++erHv9+nXVvXt3lSdPHnke+xT76uHDh3a3b82aNeqVV14RJ0KCBAlUhgwZJEtgy5YtNtc/fPiw7B98J+glwJmD2u569eqpKVOmuLVvsP7t27fVm2++KceCI44fPy7rZcqUST43b968qm/fvrJP7DFr1ixVvXp1OY7wGmwntv2vv/6yub71b+LoOHb3+H78+LEY5c8++6xKlSqVih8/vuxraE+8++67ctxb07RpUxUvXjw1fvx4h78hIdEIjXlCCCGEEDfRRjuMIvMtDCdnYl1wBMDwOXbsmKpRo4Z6/vnnxcgyM2LECNWgQQN18+ZNidZWrlxZaojt0bJlS7mdPXu2xai1RhuZzZo1EyNK8/rrr0uWQeLEicV5UKtWLTHAsH7p0qXV5s2blbdUrFjRUgueNGlS1aJFixiLq0CbANv3xRdfqIIFC8q+g1MFNdWvvfaa+ueff1S5cuXUtGnTVKlSpWS/XbhwQYx/GIu2gOGP3wHOEzgGsN/hCMD95557LpZxDqdImTJl5HH8bi+88IKqW7euRNZ/+eUXEbJzh4ULF8ottsERO3fuVCVKlBBDGd+rUqVK6ty5c2rQoEHqjTfeiLW+YRiybxs3bizbVbJkSXFYwMGBbcf9FStWKF/j6PiG06hdu3bqzz//FH0A/Gb4nXDOjB49Wr6jNXAI4HufPXs2IJkvhIQVBiGEEEIIcZlDhw4ZmELFjx/fuHjxouXxp556Sh6fNm2azddVrlxZnscyZswYm+vkzJlTnn/iiSeMRYsW2Vynf//+sg5uzTz77LPy+MyZM2O95sGDB0aGDBnk+T179sR4btasWcatW7diPPb48WPZRqxfuHBhue/KNjji+PHj8hp8R3tMmTJF1mnRokWMx9etW2fZd2XLljUuX75see7EiRNG6tSp5bmiRYsa9evXN27fvm15fuvWrUa8ePGMuHHjGn///XeM9/3222/ldfny5TN27doV47kNGzYYyZMnNxIkSGD89ddflsdbtmwpr/n0009jbf+dO3fkda6C9fH+2LYbN27YXAf7Qn/3Pn36GA8fPrQ8h98yadKk8tzmzZtjvG7s2LHyeLp06YwdO3ZYHsdvqX+/VKlSxTiGgf4se+jjGL+JO8c39j2ey5Ytm3Hu3LlYz+/fvz/W76Pp3LmzvHbgwIF2t4uQaISReUIIIYQQN5g8ebLcvvjiixI11OjovDMhPES/O3To4HAdRFTx/u6gP99WmvfSpUvVxYsXJaKMdHozKBFAtNwM0qWxjeXLl1f79u0TUbpQANuF/Zs2bVrLY0gbR+q5TkOfOHGiSpIkieV5fOc6depIirc5NRz3dakCMiqKFSsW47MQ+e7Xr59kAyDFW4NIP0A03hpkN+B1roJ9i/fPli2bSp48ucN1kSUxcODAGBka+C31d1+9enWM9YcPHy63H330kUS2zfuwf//+8n1Rrz9hwgTlS+wd33q/IRKPMgFrkGmBzAhbFC5cWG4R0SeE/AeNeUIIIYQQF0HN7nfffRfDeNY0b95canuR0nz06FGHCt3OcGUda5AuD6McRt3p06djPKcNfOtt1hw5ckTSnLt27arefvttqVnHog0wX9XOewuMPWtnBMifP7/F4EUNtr3nkaqt2bFjh9xH3TleZwukiwNzqUHZsmXltn379urnn3+2W9bgCnr/mp0T9kA6v61adhjB4MyZM5bH8PvrY9BWGQPeR5dmrFu3TvkSe8cuhA3hsFi2bJmUBsDx4ip6/+j9RQj5HzTmCSGEEEJcBBFutMhCfTRqt81AWA7RWmQq6+i9LVzps+5JL3aIsKEGGRFn1IxrEJHHdqNWGvXTZh49eiRGKcTkUFOOem9sOxwWWFD3DFCXHgrYi9ziuzt6Xke9zYa3/m4weq0F+fSiDXf0gdf06NFDasF///130TNIkSKF1H9369bN7ZpuiPUBvIcz7H03/Vrzd9OGPYxge+8NJ4Z5XV9h79jFbwCnErIXINoHXYIsWbJIHT9E8W7dumX3PfV3uHr1qk+3lZBwJ16wN4AQQgghJFzQKfQwnCBCZo02jKDe/cknn9gUrYMx4wxX1rEFIu/4bBjiH374oTw2ffp0yShAxBQK4mZgvI8bN07SniEqV6FCBXFKwPAHTZo0EXG8/5VSBx9nau/OnjcDpwfAd7d2zFhjbgOIFP5Vq1aJ4Q4BOUTtsWzbtk32IVLMx4wZ49I26N/DFWeJO9/Nn+j95smxCxFEOEIWL14sQn6bNm1SCxYskAXlANiv6Ctvz+mBbguEkP+gMU8IIYQQ4gJQDkeKMLhy5YoYIvZA+jYMPbQqCyRQX8+XL5+0HcP2oQWYbgtmK8V+zpw5couacFs1+mjBFqlkz57dEr3W+8gdEI3HAuAsgSo9Si2++eYbcZygZaEzdEkAjidfgswR/b5wFNiKzuvMBL2uBp0O0LoQnRRs1fGjtaA3pEyZUur8da3/qVOnJCsE3QM6deqkNmzYEOs1ev/A0UQI+Y/QcPERQgghhIQ4MPiQlo7WZ4hU21t69uzpkhCev9C10Nje7du3qz179ojhil7j1qCVmxaRsyXOZqtVmKegfzsIlV7hMMQRcd+/f798V2+AVgIMeB3hd3W/QdgN+wU17jCefQUE9XQavS1HBY5T/bi100Eb97ZED3fv3i3Gty/BsYnWgY72G9oBAnvaBoREKzTmCSGEEEJcQNfBO+uLjugsWLJkSYxa60CB7UNKNqLuOt1bP2ZPPA3rmdOnkYWA7+FLwxvK/zBcoTmgnQjBBBFoqLrDsH355ZfVxo0bY60D583atWvVb7/9ZnkMkXdbgoD4Xki1t+ccsZeS/swzz8i+Rw2+L+nevbvcQgF/165dlsfxfT/99FMxnJHm36ZNmxiv0/3uYWDfv3/f8viJEyfkOPK05AKCg7Nnz5ae8tb89NNPDvebFiCEUj4h5D9ozBNCCCGEOAGpv1B8T5gwoXrjjTecRlvRfgupymYhukCByGrNmjUlvRqCY2blcmtQVw8DG+3JChQoIG3q0MYNUV0YcjByfWk8I5UfBjJapaEev3Xr1rIEC6R1Q9AO5QQoUYBSfoMGDUQoEBFrRO6R0WCOGEOsDcrsEHDD92nWrJlE5HEfEXYYnO60FcTnAdSL+5J27dpJKvvly5elPR+MdOxzOHBQnw5Hwg8//BCjvaI+JmDko6QEwojIOIA+RKFChWR/QFfBE5Cej3MHZQ0VK1aUfQzBRuxLtADEcfjZZ5/Feh0cYsgIgFieLmsghPwPGvOEEEIIIU7QKfP169d3SYRLR+eDlWpvro9H33MYmrZAyQCiyTA+b9++LcJkUHdHDfOWLVtcUll3B9Tmw8iEg2HevHmyf4K1jzQwIKEv0LRpU1FUh9YB1P+he4DWdOhbDyeHBm3V0AEABi8i9nPnzpVUfexLCA/i9Ui7dxU4WtBSEEKFcHT4CuxjOJNgsMN4RskF9vmdO3ek7SAi5XDcWJM7d26JhENlHqn/yDBBS7g+ffqIgQ+njCcgA2Ho0KHiJMG+xbG2cuVKEYns2LGjGOzoDmCNFnDEcePOfiUkGohjhIo8KSGEEEIIIVEIMgRQ6gADFw4j8j9gphQvXlyyYiDYh84DhJD/YGSeEEIIIYSQIILafUT60c6Q/AcyCSDg+MEHH9CQJ8QGjMwTQgghhBASZEaOHKm6du0qafuoU492UHIA/QkI5h08eNBh/3pCohUa84QQQgghhBBCSJjBNHtCCCGEEEIIISTMoDFPCCGEEEIIIYSEGTTmCSGEEEIIIYSQMIPGPCGEEEIIIYQQEmbQmCeEEEIIIYQQQsIMGvOEEEIIIYQQQkiYQWOeEEIIIYQQQggJM2jME0IIIYQQQgghYQaNeUIIIYQQQgghJMygMU8IIYQQQtTHH3+s4sSJIwshhJDQh8Y8IYQQQgjxOcuXL1cvv/yyypYtm0qYMKHc4j4eDxU2b96smjVrpnLmzKkSJUqkMmXKpGrVqqVmzpzpk/e/cOGCmjhxomrSpIkqVKiQSpYsmUqQIIHKnDmzql27tvr222/V3bt33XrPkydPqv79+6syZcqo9OnTy3Znz55dPffcc+qjjz5Se/fu9cm2E0JCnziGYRjB3ghCCCGEEBL8yPyAAQPkf2+mh48fP1Zt27ZVkyZNsrtO69at1fjx41XcuHGD+n0HDhwo22uLevXqqXnz5omx7AkTJkxQ7du3V48ePXK4Xv78+eVzihUr5vQ9R40apXr37q1u375td50uXbqor776yqNtJoSEF4zME0IIIYQQn9GnTx+LIV+yZEmJcv/xxx9yi/sA0eq+ffsGba/DkQDHBQz5vHnzyvZiGxcuXKiqVq0q6yxdulS1atXKq6g8DHlE4l955RU1btw4tWHDBvXnn3+quXPnqpo1a8p6hw8fVjVq1FCnT592+H6ffvqp6ty5sxjyTz75pPr888/V+vXr1Y4dO9Tq1avlfoUKFYLqICGEBBZG5gkhhBBCiE8i83/99ZcqXLiwevjwoaSB//LLLypx4sSW5+/cuaMqV66stm3bpuLFi6cOHDig8uXLF9C9/88//6g8efKo69evqxw5cqjt27erdOnSWZ6HAY5ygJ9++knur1u3TlWpUsXtz/nyyy/FoO/WrZukw9sCz33xxRfyf8uWLdXkyZNtrrdmzRox+EHz5s3FGRI/fnyb6/7777/iQCCERD503ZGgMmbMGJUrVy5JYStXrpx4xR2xe/duqQnT9WGfffZZrHXg7X7qqadknaJFi6ply5b58RsQQgghRIP0bhjyOiXcbMiDJEmSyOMA68HgDTQwhGHIg2HDhsUw5METTzyhvvnmG7kFiHh7wnvvvaeGDh1q15AHQ4YMkfp5MH/+fJsp/3gM6fqgePHikkVgz5AHNOQJiR5ozJOgMXv2bPX++++LiAtSznCBgujMxYsXba5/48YNSUmDSA286Li4IooA8RizkE3jxo3V22+/LWlnDRo0kIViMIQQQoh73Lt3T661pUqVUsmTJ5elbNmyavTo0RaD3Qyi+YsWLZL/4VR/5plnbL4vHi9QoID8j/UDLd+EVHqQIkUKSX+3BcT6dCQcUfGbN2/6ZVtgeD/77LPyPxwMV65cibXOypUrJRUffPDBB5LRQAghgMY8CRpIK2vTpo2klUHhFbVk8NjbSzGbMWOGpI7heaTwvfHGG1I7ptPTwMiRI0UdtkePHqpgwYIibINJCCYehBBCCHENpIeXL19e9ezZU5zjt27dkmXr1q3q3XffFSPYOop8/PhxdfbsWfkfqfSO0M+fOXNGnThxImA/C+YROgsQ389RFFtv4/3796UswF/g/TU6G8A64xCgZeALL7wQo1wARj5uCSHRCY15EhRwMUV0XXu95WCMG1fub9myRe6/9dZbMWrU8HilSpViXHgRyT906JC6evWqZR3ze+p19HsSQgghxDkw1vfv3y9O81WrVsk1+4cffhBHOUA9OdTazWB9DSLzjjA/j7r5QIGafq0uHwrb+ODBA8scJWPGjCpNmjSx1vntt9/kFmWJyI7A74AywrRp04oQHm6R6TB8+PAYjgFCSORDY54EhcuXL8vFFBcuM7h//vx5+R81ZBCm0eBxW+vr5xyto58nhBBCiHMQgf/5558l4w1OcmS5oYxt48aNluss6srNmNXYkabuCOjeaE6dOhXreTj0EYn2ZrElWufLbfQFKBXEnAi89tprsZ5H9sPBgwflf9T2o+1c06ZNY5UPwkmBrMRq1aqpa9eu+WVbCSGhB415ErJAFGbatGnB3gxCCCEk6kAqvS1jGJFjlMeBPXv2WITkgLmuPFmyZA7fP2nSpJb/kb4fKEJpG48dOyZt/PS2oH+8Ndi/upwB+/vrr7+WYMf06dMlvR7dAdDuTusTQDvIm3Z6hJDwggoaJCjAu4y6MNTkmcH9TJky2XwNHre1vn7O0Tr23pMQQgghsUH01x6lS5eWWwjXoU6+RIkSFsE8VxXVEyZMaPn/7t27sZ4fNGiQ6t69u1c/jdkY1/hyG70BRjhKGbQzBAr/WbJkibUeesqbtx3aQmiVpwUEAUoQ165dKxoAu3btUgsWLFC///67dAkihEQ2NOZJUMAFFJMBKMRCbR7A84z7nTp1svkaXKTgwUZ9mW7Jgjo+XNBSp05tWQfv0bVrV8vrsA4eJ4QQQohrOKonN9d1myPdaAlr1sZxhLm227p9HciaNassvsaX2+gp6ASAlHoY3gBt51BW4Gx7QevWrWMY8ubtgwNEC+ShYxCNeUIiH6bZk6CBtnQQz/nuu+9EWAYXM3igdfoe0s2aN29uWb9JkybiBEDbuX379smFCrV8eB8NaslWrFihRowYITVmaF0HBVp7DgJCCCGExAYRYHtAsFajxeQAxNlcTUs3R5ydpbv7kmBvI7IZYLgvW7ZM7r/++usOO+6YtxegRa89qlevbmlbB80DQkjkw8g8CRqNGjVSly5dUh999JEI1CFND4a4FtY5d+6cOnnypGX9lClTSq/Vjh07SlQfqfp4bdu2bS3rVKhQQVRe+/btqz788EOVP39+6SdbpEiRoHxHQgghJFowC8qZheZsYRaUMwvNadCyTneq8SbNPnfu3H7bRk/AHAatdkGdOnWk9t3sHLGV6p8+fXqZLznbDkTxMTfCnEqvTwiJbGjMk6CCiLm9qPnUqVNjPVasWDH166+/OnxPpK7ZUoQlhBBCiP8oVKiQ5X+twG4P8/O63Z0ZlNUhc88b0Cd+/fr1MR5DKzdo9iCjwNttdJcPPvhAjR071lLn/uOPP1rKBh1RuHBhy/cwZ0LYQj+vI/SEkMiGafaEEEIIIcRrEAXXIm5QWHfEL7/8Ireoi0f/9ECBcr2yZcvK/+jv7qhuXn8HRMfLlCnj1ed++umn6rPPPpP/n376abVkyRKX6/Bh+JsV8O1x48YNS5s7f+gNEEJCDxrzhBBCCCHEa9Db/aWXXrJEtX/77Teb6+FxHfXG+nidrew81Jd7s1hH5TVaeBfG7/z5822ugxT81atXW2rRrWvX3QH6Pv369ZP/ixYtKiWF7rzfq6++avkfSvX2wHP43uC5557zeHsJIeEDjXlCCCGEEOIT0E0Gaey6V711Szfcx+M6FdzcfSZQQBEeOjygV69e6sqVK7FS1Tt06GBJWe/Ro4fN94HILhwRWGyVBoIpU6ao9957z5Lijw475m4AroASQ9TXg5kzZ0rXHmtQJw+9IJ19oMWECSGRDY15QgghhBDiE2CwauMX3WSeffZZ6T6D/3GL+/gfYD0I1QYaGNPDhg2T///++29p4QajG9u1ePFi9fzzz6uffvpJnm/cuLGqUqWKR58DAd42bdpItDxFihQSoYcw3d69e+0uZgV9M1999ZVKlSqVtPFF+zl0/IGGELb5m2++kdR9Leg3cOBAptkTEiVQHYMQQgghhPgM9Du/ePGimjx5stqxY4d64403Yq2DNrOoIw8W7dq1U2fPnhXD9+jRo6pVq1ax1qlbt658B0+BMa+j+0jp19F1R6xbt86m8wBOEjgYGjZsqC5cuKCGDh0qixlkCEA4sGfPnh5vMyEkvGBknhBCCCGE+G5yGTeumjRpklq6dKnUxEMUD6nfuMV99FifOHGiw5ZsgWDAgAFq48aNqkmTJtLyDduYIUMGicyjzS22H+3eQoWKFSuqffv2qf79+6vixYtLtB/bB+FBpNVv375dnBOEkOghjqGVMgghhBBCCCGEEBIWMDJPCCGEEEIIIYSEGTTmCSGEEEIIIYSQMIPGPCGEEEIIIYQQEmbQmCeEEEIIIYQQQsIMGvOEEEIIIYQQQkiYwT7zhBBCfMLjx4+lb3Py5Mml3zEhhBBCCHEPNJu7efOmtPN01sKTxjwJGx7+X3tnAjdT/f3xm0RCSbTIkqWobNGKQjtSlCVbqLRRUUhJWoh+bfYKqfyERPY9UUQLFaGUUEKiRfbE/b/e5/f/TvOMWe7M3Jm5M3Per9d95pmZOzN37tx77vd8zzmf888/1ldffWVVrVrVyp1bD11F8Ro48vRqVhRFURRFUeJj8+bNVvHixcOuox6RklazVFu2bLGqVKmS6k1RFCUIROTNxefEE0/UfaQoiqIoihIlf/31lwRHzLgqHOrMK4qiKK5gUutx5NWZVxRFURRFiR0nJYsqgKcoiqIoiqIoiqIoaYY684qiKIqiKIqiKIqSZqgzryiKoiiKoiiKoihphjrziqIoiqIoiqIoipJmqDOvKIqiKIqiKIqiKGmGOvOKoiiKoiiKoiiKkmaoM68oiqIoiqIoiqIoaYY684qiKIqiKEnmyJEj1uDBg63FixfrvlcUxTG2bVuvvvqqtWDBAt1rijrziqIoiqIoyWbJkiXWAw88YNWpU8d68cUXZYCuKIoSiS+//NK69957rauvvtp65pln1HZkORqZVxRFURRFSTLfffedL0LftWtXq23bttaBAwf0d1AUxZHtgCeeeMJq1qyZtXfvXt1rWYo684qiKIqiKElm06ZNcnvOOedYxx57rPXf//7Xevnll/V3UBQlLD/++KPclitXzjruuOOsiRMnWs8++6zutSxFnXlFURRFUZQUDcjbt29v9evXT/5funSp/g6KojiaCGzevLk1aNAgtR1ZTu5Ub4CiKIqiKEq2OvNnnXWWdfrpp8v/a9euTfFWKYqSTrajatWq8r/ajuxFI/OKoiiKoigpGpCXKlXKOvfcc+X/jRs3Wvv379ffQlEUR7ajQoUK8v+vv/5q/fbbb7rXspCMdOZJV7vooousggULWqeeeqrVqFEja926dTnWGT58uCjInnjiidYxxxxj/fnnn47ee9GiRVa1atWsvHnzSq3Km2++edQ6Q4cOldmy448/3rrkkkuszz77zLXvpiiJ4JVXXrEqV64s5wPLZZddZs2ePTvsa1atWmVdfvnlcpyXKFHC+s9//nPUOu+++65caFinUqVK1qxZs/QHVBQl6/nnn3+sLVu2+AbkjFUKFy4sqtSB4xVFURQDNsLfmS9QoIBVsmRJuf/NN9/ojspCMtKZ//DDD62OHTtan3zyiTV//nzr0KFD1rXXXptD6XHfvn3W9ddfbz322GOO35cZ8wYNGlh169a1vvrqK6tz587WnXfeac2dO9e3zjvvvGM99NBDVu/eva0vvvjCqlKlinXdddfJjFmmgwrvypUrrbFjx1o9e/a0GjduLPv9tttus7p37y7CPuPGjZMJkW+//dY6ePBgqjdZ+X+KFy9u9e/f31qxYoW1fPly68orr7Ruuukma82aNUH30V9//SW/LRcSXvP8889bTz75pEySGaj9bNGihXXHHXdIGxUm1VhWr16t+z1JxDqxOH78eJnk5PdSFMV9fv75Z+vw4cNWnjx5JMWe881E5zVdVlGUUPz+++8+f8Y48eedd57ajmzGzgJ+/fVXmrfaH3744VHPLVy4UJ77448/Ir5P9+7d7fPPPz/HY82bN7evu+463/2LL77Y7tixo+/+4cOH7WLFitn9+vWzM4kjR47Y69atswcOHGjffPPN9jnnnGPnypVL9qXTJU+ePPall15qP/TQQ/bEiRPtLVu2hP3Mv//+254yZYrcKonn5JNPtkeOHBn0uWHDhsnzBw8e9D32yCOP2OXLl/fdb9asmd2gQYMcr7vkkkvsu+++O4FbrRjGjx8v59ioUaPsNWvW2B06dLALFSpkb9++PexO2rhxo33mmWfal19+uX3TTTdFtUN37dol5za3iqKEZtGiRXKulCtXzvcY5yiPPf7447rrFEUJyooVK8ROnHbaab7HunTpIo917txZ91qGEM14KisE8Hbt2iW3pLBFA2n4RLVMKv2yZcusq6++Osc6RN2J0MPff/8tUcpHH33U93yuXLnkNbw23dm9e7f1wQcfWHPmzJFsBDIVAilUqJB1/vnn+xbu//LLL9a2bdt8tyxbt2619uzZI9kTLC+99JK8nkgvKd41atSQhdRv2m4oyYNoEenxzPzyW0C7du1EPZWsCuB4vuKKKySq5H8uPPfcc9Yff/xhnXzyybIOWSr+sM6UKVP050wCnFMdOnQQpWx49dVXrZkzZ1qjRo2yevToEfK3b9WqlfXUU09Zixcvdlx+pChKdPinyRo0Mq8oilMle3/boZH57CbjnfkjR46Is12zZk2rYsWKUb2W9JUzzjjDdx9n9LTTTsuxDvdJOUawBieGwXCwdUgrTzf4PqRKL1myxPr444/FOaPOz4AjR8006dboCGBM2F+kCzqp+dmwYYO8P+/L7ddffy0DHBbSfOGEE06wLr74YnEq0Sk45ZRT5LWK+7D/2c+US1CDNXnyZN8Fgt+Vc8n/XChdunSO15vjnudw5kOdLzyuJJZYJxaffvppqd2lNAJnPhKUyviXy2ALFUWJzZk39lbrXhVFiWQ7CDYGTgSq7chOMt6Zp3aeGl0c0mgZPXq0lU0gxrNgwQJx3Nlfwer2EP1Da4CFzIX8+fPH9Fk4/GXLlpWlTZs2vsg/Nb1m4oCIPZFBosEmIgz333+/demll4qwGkv58uUlC4BtczKRkApweHB0ihQp4tltZD+iBUEmy8SJE622bduK/gQDTNMDWUkPdu7cGfXEIuf866+/LseAUzguiOIriuJeZP77778XrR/NSlMUJRrbsXnzZhlLIwCuZA8Z7cx36tTJmjFjhvXRRx+JwFe8IFKzffv2HI9xH/XvfPnyWccee6wswdYxPWS9BJHWzz//XPYR6beIlAVyzjnnWLVq1ZLMhtq1a4vznSgwPldddZUsZvtwPIjaI2Q4YcIE37omPd8fFNXNRAMRSH6XZEOGBkrETIT4L+vXrxfnCiEyMj4wwsyqcstClJsMhFQO3si0YEIEqlevLsfGwIEDrddee83xuWCeC7eOF8+FbIeLP5NqI0aMkAknpxD59y+lYMKK81BRlOhTZTl3yIqiBI1rhhmgK4qihHPmKSNmsp4xFuNmOnop2UNGOvOkYRO9JU2YiG5gOnCskIIc2FoLJ9PUFeMM4QQR3TYq0Dik3GdiwQuQ4szkBt+DZceOHb7niBhjAKiFxoGnZr1o0aIp21bSgokKs9A1YMyYMaKUT7kEKfoYLLOgus6MJM4IS+7cuWX7cexRVPdPR3LzOEM3YOHChaIlQFYB2+Wfjh4IKezfffedLIHwvYiIEyH3AnyPUB0HOObpWOAfPeJcYNtJsTfrcOwbTYnA80VJHDjk0Uws/vDDD+JcNGzY0PeYOY45l5igCjaRR+kLi6Io8afKcg0m24yOIkwCqzOvKIoTZx4YK3ONx3aoM59d5M7U1HqcvqlTp0q019TonnTSSRJBBx5jYfbb1AuzLlFTI5RHS7UzzzzTl2J8zz33WEOGDJE2a7fffrs4cESLiWobiFKRnnzhhRdKpHXAgAEiJGZEqJIJziaDdGpfzWK+r4HoNaJktNyrV6+e1Mt6GQT1EMVj0iQwIk5KOL3REejDWWbSggWnk2g/dcBMshAdj6cUwTjvLMao+oMzS9q/mYgwCxMjtCMyugA4T+aW1GbKQThuSHVu1qyZlUyIsPL7c/wTpeX8YSLMtF3keb67KT1p2bKlpFezTx955BHZdqL4tB80PPjgg5LN8eKLL8rxhQ4Cg1T/9nVKYoh2YhEHAhvoz+OPPy7HAr+rRtsVxT04F3/66aeQA3LspNa+KooSjTPP5B/jU7UdWYidgYRqhfbGG2/41undu3fEdWrXrm23bdv2qFZ2VatWlZZPZcqUybG+YfDgwXbJkiVlHVrVffLJJ3YyoA3eypUr5fNpC3bGGWcc9f2OOeYYu3LlytIO7oMPPkirNm/RtKb74Ycf7KFDh9pXXXVVju9fuHBh+4EHHpDWHnv37g3bem/r1q327Nmz7f79+9stWrSQ9nuB+zN37tx2zZo17V69etnz5s2zt23bJq+NFj6L48287/3335+j7Vuiuf322+1SpUrJMVu0aFHZb3wfA+cB2+cPx1qtWrXsvHnzSisz9lMgEyZMkP3G+9LWcebMmUn5Psr/WtPx27z55pv22rVr7bvuukta0/3yyy+ye9q0aWP36NEj5K7iN9fWdIriPth77DztXAOvZ9hRnuOaoyiK4s9ff/3lGycGtiwbMmSIPN6wYUPdaVnWmu4Y/qR6QkGJXbH6iy++kOgzUXcErAJbSZECTboNqvMspJ6bNOh0g5RuSgPq168fVW05qfBvvPGGLETGAzMTSDtGrZ1bsjLIXiBS7l+C4J/6j3L/lVdeKQtaAtQ4ugGdAp544glfJgiZHWR+BM6+KopTyCR6/vnnJQupatWq1qBBg6xLLrkkaOvNQGhHiD2JppUgNfNkQCGimArNCkVJB9B7odyIjBcToTdMmzbNuummm+R8DaZjoyhK9kIWZKVKlWQc//vvv+d4jmxRslDRPkJEU0lvohlPqTOfhul5pJOT7kx9NUI5/qAuj4NpnHccQlNakO7E6swbEKCjZps0dtLxKX8IB447AoBVqlSRhcEVAzBS/RMJgoSUeJh+7aRN8fmK4nXUmVeUyFByhJYL12gm4/1hMvnss8+WcjCu72hfKIqiAGW9N9xwQ9DJPibtCUwxdmV8G09JqZJe46mMrJnPRKgBx4H/73//m2Mmn77rxnFHuI4THMEq5WgYFBm1exJSqAfetm2bGEBzS0svIuHsR+re6XOfbDDUZFw0bdpUaifRaqBdHwZaURRFycyaV0CwF1FJxFJZr0yZMinYQkVR0s12oGZPsImMOnwG9KWU7EC9Po9H4UkNJ5JM33UDMzXNmzeX6C2RYnXyogfVYGa6WLyiHu8P6c8IOJIZQErm22+/La3DFEVRlMwdkDPpzDVp1apVokqtzryiKE5sB+NaBDRp54ztUGc+e9BQn4fTK1ChpiUbjjwXeNLLSc8jikzvb9Lp1ZHPXIoVKyaK4kAHBTIJlMyDi+7IkSNFK4F6Wf/JPHQxFEXJngE5MIkLWveqKIraDiUS6sx7EGrmLr30Umv69OmSbscgH+E2amWIyGdKDbwSmS5dukh/b0oA+vbtq7ssg9i8ebN19dVXi5jN3XffLRM3/mJzI0aMkHOddnKKomQO6swrihKP7SB7Mxg6EZidqDPvMRBoQ7SOPpFEZlGp79GjhyitK9kHkzmmdzu3GqnJDFChrV27tqjPos1w7733io6DP82aNZPMG/9ovaIo6Q3neaQBOQJ4QN2roihKtBOBajuyC3XmPXSBx1lDnA0VcyLziJ/RVk7JbhDEu+666yTl+qGHHkr15igu8Nxzz1mbNm2yunbtaq1cuVJayAVCJwOi9rScVBQlM9i/f7+vC02oSXodkCuKEsxP+PXXX8PaDp0IzE7UmU8A1LpGe4Led9994qjx2vbt21uLFi2SFhOKgqjJgAEDpEsBbesCWxm5AW37lOSBuCFRuf79+8vvGwrEr7Zu3ao/jaJkCChNAzo4BQsWDDsgpxQH519RFIVJQDNWY7I/GPSYB4KCv/32m+60LEGdeZfBGSc1nhp3pzzxxBPWq6++Kim1OG2o15NerSiGChUqWG3btpX/6XDgJhh8etkfOnRId3gSU+WqVasWUcAyT548kpKvKEpmwCAbaCEVaiKvSJEi8rzR0FEURTG2g3FBKO0s2ikXL15c/tdU++xBnXm3d2iuXNa5555rffXVV44cepz4Pn36+P5/8MEHw0bqlOylXbt2cjtx4kRr3759rjnytL5jNve4445z5T2VyBx//PGOuhP89NNP0opSUZTMGpCHiqwBYwATnVedFEVRAm1HOD9BRfCyD3XmE8Cpp54qInaRHHqUqzt27Cj/9+7d2+rQoUMiNictwdFhVnHFihXWp59+an388cfW8OHDZZ/xPw4omgIIBWLgAsXDMhFaEZYuXVpSrfxVz+N15BFgCyXEpCQu0+KLL76w9u7dG3KdnTt3Sj299opVlOxy5qOpm0dr55prrokqG1BRlMy1HU7r5gkgXnnlldaGDRtc3EolFeROyadmkUP/2WefyX2T9mJYunSp1aJFC0nLp5c8zny2wHf+4YcfrC+//FLSjakJ3rZtm2/hfjgn58033wwa6URjwCx0AuC2RIkSVtWqVcV5ouY8nWEmtk2bNtbTTz9tjR492mrZsmXM76WOfGpp0qSJ1a1bN9HJeOWVV4Km2/M8GRi0o1QUJbNq5k0afSicROYPHDhg9erVS66XN954o5T45c+f3+UtVhQlnWyHk8j8P//8I+1wGQsisrxs2TLNAkxj0tu7SVOHfu3atVbDhg3lQtygQQMZzGdqaj2OOzV/RNjNQkTyr7/+kudPPPFEn+PN/kG939xnIcWY9G8c8R07dshghX3H/sIYEaX2nwQw/3/77bdya+qNqS+qUqWKVb16dd9y3nnnpZ2Db5x5Whjy/WIRSVRHPvWQkfPWW29ZI0eOlHPi5ptvlseZ5HrppZesd999V+wGE1GmvEJRlPTHzcg8rS3NxDeT461bt7YmTZoUUYtDUZTsjszjvBuBPDJcaYU7c+bMtBsTK/9Df7UkO/SrVq2SiOquXbvk8XfeeSfjTh5SdqZPny7K66TIm9pg+mLiRD/yyCNyiwBY0aJFc7yW9TFARCRR8sUJpyUbj1HXTUo4UXZT3836TIpccsklsvi/B4Mh1qXcwUwkvP/++9awYcMkLZ9oPttQv359mSCgDZjXJ1XYBzVq1JDMjrFjx1oPP/xwVK9XR94bcOzNnTvXatq0qfyWDMSBNnQsHJ9MbFFOoVoGipK9A/Jw0TW6YsDll18u1z3sBZH6vn37urrNiqKk30QgtoOxRLBxrbEdjCcZI8+bN0/GkwMHDkzItiuJ5Rg7G4qNPcD27dut7t27W//973/l5OIE4sIb6MymI7TKYLJi2rRp4sSvWbNG1Dapxaldu7bPcT/llFNyONrG+Tbg5P/nP/8J+Tk49uPGjRPnGwcncH32LwQ+RtSTz2RSgO0688wzZQKFDAEcJ5wqIvxMNpCqiGPPdrOuF6HO6d5775Vaaoyw0wkIdeS9CccfM+JMgpHJQmlIvXr1rJtuusnzk0uBkHFDNg2TlWTdKIqSk86dO8uAuUePHla/fv1C7h7OIZNOG+x8wlZwLfvll1+sOXPmSP/p2267Ta5trI+qtaIomQMTdQhmk9k3ZMiQkOsx1mW8jI3YsmWLZLv6gw/CGJysWQSVaZPZuHFjGW+QActYXUmz8RTOvJJYdu/ebTdp0oRJE1lat25tHzx4MK13+6FDh+wZM2bY7du3t4sWLSrfq0iRIna7du3sSZMm2R988IE9evRoe+TIkb7bBg0a+PYBS/fu3X3v98knn+R4LtiSL18+e8qUKfbSpUsdrR9u8f/sAwcO2HPnzrU7duxolyxZUp4vWLCg3bRpU3vs2LH2vn37bC/x22+/2Xnz5pXtXLx4saPX7Ny5U36vjRs3Jnz7lOxl165dclxyqyjK0dx2221yjvTv3z/i7jn11FNl3eXLlx/1nLkGcq3iGnbkyBH7tNNOk8eWLVumu15RMgzGqJzfPXv2jLhu2bJlZd1FixYd9dyaNWvkOcaR+Cf+68+fPz8h264kdjylhVUJhhrYyy67TGa/iCY///zzImjFLHo6gmDdE088IernRjTj9ttvlwg3EQJ6oBN9JypPlABxP3NL9NEfIuisG20/TGYT4+2f6f/ZefPmta699lqZ6dy0aZNEu4no8z8lEUQ/aBm4evVqywsULlxY9ilwPEVCI/LeA90DMlkiQaYL6yqKklkiVpFSZSPVzRv7QRYP1zCiahdccIE8Zsp2FEXJHNyyHSbF/qqrrrIKFCgg/5M9C2o70hN15hMIzit1rziBp59+urVo0SKra9eujtrWeQlSchBcw3mnNdqAAQPkf1rDoSxPHTuCc9Rwv/7662FT5QMxhsYYHqd149GsH+mz/WFARA0+KfeDBw+WdWgZOH78eKmpr1WrljVhwgQR30slplaeAd26detCrqeOvDd58sknHbUX5Pd96qmnkrJNiqJ4p+41Ut28GZBTGmYwA3JKyBRFySzUdiihUGc+AeDoPfbYY+LwcvJRG474GnXy0fShTzU4ta+99ppVsWJFiVyzrSNGjBDVeOq2cWovvfTSoyLw0WCccvaRqXmPxIUXXijrsw/9ieY9/D/bH+rwzXfiFrXx5557TsT4THYFmRVMavTv399nXJNN+fLlfYO4F198Meg66sinP9S8pVvdvKIo7gzIQ0XXyPhDm4ZaVzRkDOrMK0rm4obtoAuSyUpFH8pgsnp0IjA9UWfeZThRrr76ap+wTadOnawPP/zwKAEKLzv0TEaMGjVKogL33XefOI58B9Jv7rjjDhlEEFmMJgIfDH8FesBp/uSTT6SHOk507969g76OjACMkekQYOAxxO7Me3AbyrnHaQ8U4OP1gd+J+2Qb0HWA1nkLFy6U34zJDfZBmTJlZJ39+/dbyYY+5MB3RWDRH3XkMwMmkUwanKIomTMgj9QrOlyLKROVR6jVf2BvnPmvv/5aRLAURckc3LAdlO4B/oe/X2KcedY3HaiU9CGzeqKlGNLob731VnGsGIDjkBLFjbYPfSrT6Un97dmzp6/vJMqZxig4UZyPBpxnFn+n2t/BR/k/VM18KDBE9GI378FtoJp9MCV989pg+GcbMDnApAMOPu1/2D/sL9SJce7bt2+ftFaDNWvWlO/BPhw6dKivtlodeW/CpEvgcRz4mP+EGpNmTB6huaEoSnbXvfq3mDLXRq5t/qBlw0Cfz1i7dq1VtWrVBHwDRVHSxXaQxUPHKbJ4YMyYMUFtB/4IPgjBxZUrV0pJqZJGxCCwpwSAimy/fv3sXLlyifJgxYoV7W+//dbxftq+fbs9ffp0e/PmzSnbtyheXnrppbL911xzTVj1XCfLY4895mg9lO5DEfh5TtTseTxWnH4/1mNh27ldv3693aJFC3mufPny9sSJE+WYSAZ8Fp978skn23/++aeq1nuYY445RmwEi///oRbWOfbYY+2pU6fa6YKq2StKaP7++2/fdYSuJJGgk8rxxx+fo3PJl19+Kffz5Mkj9j6QunXryvOvv/66/hSKkkGYLkabNm2KuO4///xjn3jiibL+rFmz5LHvv/9e7jO++Pnnn496zY033ijPDxw4MCHbr0SHqtknGSKijz76qNS3tmvXTiKlpKY7JZUp90T/qLmrU6eORAPff/9965lnnpFZfVNXY3CqIE/0vkKFCo7WDSdkF6oG3tTMBz4XLHU+GpzW3LN//Ovqhw8fLuJ/1BoRGWnSpIm810cffWQlmkaNGsm+Jv2KLAFKCxAkZDsUb8HxYhYoW7Zsjsf8F7JBEL6jtMVf4EpRlPTFX2OF/sGRoFd0YOcSOsYAdiFYP2itm1eUzINSzoMHDzqOzBOJN1mlL7zwgtwiWA2UidKlKRCtm09jopwoUAIYOnSob6b9pZdeimv/JDNCT5/4Pn362Mcdd5xdrlw5e8KECdKbNpZe8L179/b1kzeRcadRbv/3D4WJghORJzJPdCPwuXgi8qE+j+/kNBPBP1rPMXHRRRfJ4/QFNX08E8W7777ry1wIllGheA+i7u3bt7czDY3MK0poyNjDVp900klRv4Zl1apV9imnnCL/z5w5M+j6b7/9tjxfo0YN/SkUJUPYsmWLL6ruNPPzxx9/lOw+XvfZZ5/ZxYsXl//feeedoOuTBcjzlStXdnnrlUSPp9SZj4Nx48bJoNw4tG6QDId+9erV9oUXXihGoUePHvb+/fvFqQ7nqBqCrRfKIQ/3nrGkxuPEBzrziSTY9gdOdoR6vFWrVpKqhINdunRpKWNIFDt27JAJGT63S5cuCfscxT1IkwuWIpvuqDOvZCJ79uyxzz//fLthw4YyER4rZpK7VKlSUb3OpL8aO3/GGWeE3I61a9fKOieccIKk2iqKkjoOHDgg4+2rrrpKxtqxsmbNGjmvCxcuHNXrGIv62w5KMkNtB34H6zABEM+2Ku6gafZJYN68eZL+xoRIx44dQyqvR0siU+5Jo0dlnzS8vXv3WsuWLZM0bVqshRO180+vDxTNAF4bmJIfat1I7+8VginbQ5UqVYKuP3PmzBz33377bVHdX7VqlYiKUMZw//33y353E8Tu2NbHH39c7g8bNkwU0BVvU6pUqaApsoqiuAPXFUpZKIuKF66VlKShBI3QaTJaSwXrXGLEXxl7hBJapXTthBNOsPbt2+fJa6uieJ0ff/xRSmV79OgR93tRKsdYcMGCBVIKmmzb0bVr1xy2o2XLltbxxx8fdF1S74sUKSKCeXTEUNIHbU0XAzhPjRs3tg4dOiRq9YMGDXK1F3QiHHpq4Olzj9PXpUsXqe8eMmSI1HxTm+u0rj3U4CDY404HEuHq5lNFqG1/9tlnj3qsQYMGQddFcRjlUNTvBwwYIAr4lStXdq2W3l+1nsHdFVdcITVVbgxeleTBBA/qsYsXL5ZjI9iiKEp0oCGyYcMGsdk7d+6Ma/f5D2x5PwbmyRyQm84lBrR5wtXKGhV77RmtKNFDIIcxILXm8Y7B/W0HvsK0adOSajuwBbTLdmI78GNUcyM9UWc+SrZu3SrOG7PeiEjQWipXLvd3o1sOPZkDRGsRtqB35NKlSyUS36FDh5Ct38KJyoVyvIM97sRJj1e0LlE4nWCg/SATO6FgooRJlPnz51tvvfWW9PWkNzAzvsx+xkpg+zmMsJloGDVqlK/doeJdcDQaNmworaS4gJK9Ubdu3aOWK6+8MtWbqihpBdfMcePGyf8HDhwQkdJ4IMPKDKS5prZu3dr69ddfkzYgx74jsgtcPyIJzJoBOVFBRVGcw8SfEZlkjMb42S3bAbQvjiV7MlbbASbDoHr16rKEQ21HeqLOfJR06tRJHCmc40mTJknf8kQRr0NPX/V7771XygDuuusuubCbvuSm12QkGLj4E42KfKh1cUKZBOGWiQUv4lTZfvLkyTn60IeCNPxmzZpJJgSRepSJUSPetWtX1NsWqo880RtSqLgAtWnTRiacFG+ybds26R/PcXHaaadZRYsWlXON44P0e3Pesc7ll1+e6s1VlLSCCBhlZSeeeKLcZ0BOJl28A/LBgweL3f3ll1+ki02sA3Im8KLlpptuknR/xh2RUFVqRYmNV155RZTjje1gIpD78doOov040r///rvVq1evpNqOq666SgI8jDciZRGr7UhTXKrTzwree+89EYfInTu3vXLlyqR9biyieL/++qtdu3ZtUatHlR2M2jpifU5V2kMJ1EWjIu+W4nyyBfCAbQ4lehfrwu8xZ84cUTSuUKGC/d133zneHkTTZsyYYW/cuDHo8/QuLlasmHzO/fff7+KeUNzkgQceEPHMnj17yv127dqJIKWB4wPhxKuvvjouwa1kowJ4iheOQdNfeeLEifZpp50m/yNYGwucf6bXO32a//vf/8r/derUifq9unbtKq99+OGH7USyYsUKn1iWU+VrRcl2EH0rWrSonDtjxoyxzzrrLPl/xIgRMb0f5x6Cc7zHl19+aU+ePFn+RxAvWp566il57V133WUnknXr1snnYPPSaeyRiaiafQL4448/REGWg/yxxx6zk000Dj0TDRihU0891V6yZElUyvLBlrvvvtvV1m/p5syH2i/xOPn8HhjN8uXL24UKFbLnzZsXtyNvmDt3ru9z5s+f7+LeUNyC3502MUZtOtCZNy2p8uTJY/fv3z9tdrw680qqefHFF8X2MVF6+PBh+8knn5T7l156aUzv98033/jU4Xk/OpNw/+yzz476ve644w55LW1hE+2UEHTgs3766aeEfMZHH30kdmv48OH21q1b7V9++cUeNmyYfcMNN0h7VkVJNziWOWdKliwpjuwLL7wg9ytWrBjTpJi/Ojyq9rQONt0ooqVz587y2kceecROJIxJ8ufPL59FZ4xEQJu8tm3bir1gH9GRiX1P1w72ufI/1JlPADi0HNznnHNOylo2OHHoyR7gRLzgggukxyTOaLSR+HAOaLY582QUBNsX7NNo+tCHynj4888/7Xr16omxp5VdqAuGU0fecN9998ln4DAyEaV4C1oWMug13H777eLMB86E084mnXq+qjOvpBIGoiVKlBDbx+AQcDKZFOOxTz/9NOr3nDBhgrz24osvlvtE57nPORztAP/mm2+W1ybD2a1UqZJ81rRp0xLy/jg4/tcz7Jf//1999VVCPldREgHnMhOAHL8vvfSSPMbYyTi2CxYsiPo9Z82aJa8977zz5P62bdvkPll50Y5jcX55bTIm9y+77DL5rLFjxyb0/YPZDpalS5cm5HPTDW1N5zKoTL/22mu++plQbR0STbgaempsaTtHOzgE+pYsWSLK9eHU6lE/j4ZQLegymVBCeIiXOamVDwdqqSeddJK0O3rooYesBx98ULQNqPV0UiMf6bc6++yz5ThB7DBQ+0BJLccdd5yVP39+333zf6DqNuc8x5qiKJHhuoe4FCJR6IYAmhS33HKL/I+tjbXmlU4kpn0TUEf7559/Jq3uNVpMG1U6ZbgN167Vq1dLezzGJHDkyBH5nzEH/6PVo9cdJV1AU+rbb7+Vto533HGH7zxFhwhiUaEPtB1czzlnOC/Q3chG27FlyxbR/jCaQNTwYy8Q3jP6QPfdd19cAtHZiArgRYBWXzhDwC1KsqkkmEOPYUDp9rHHHpMeuOPHj7fuvvvuiGr1oVpeodDO64ORbX1r33vvvaMeY5AYbN+y/2OZKKCVEM43aveoqHLxMGJNsTjyxjlkG3EaJ06caL344otRbZuSWOhq4K9oW7p0abmlH60/9LZmcKEoinN7jbio/6S7GUz/9NNPcQ/I8+XLZxUuXNg3MI0G4/zHokgdLaY9HWMFtzEifHTaYIIfx4TxCP+/++67cv35+OOPHXXMURQv2Y569er5xO/cth10vuLan822A9FooMsT3bXoCsK+XbFihdgVJiv43FdffdX1z85k1JmPwEsvvWStW7dOZvdxuLyAv0OPQ9C5c2dRSH/55Zet3r17S2syp2r1gaA2z6wk7TNCKeRnCwxMgv3mZcqUCbo+7YKcKOCH6gBAr3gc7ylTplhNmzaVNoixOPIG3n/gwIG+z/vggw+ifg8lMaBq+8033/iyMFCbZVKOFjI48LSRpNUgPWrNLLmiKKHh/DEDxcB2oSVLlox5QG76RFeqVMn3WPHixeU22i4z8bSX8qIzbzIeGB+ZjAX2zRNPPCH/d+vWLersBUVJBWo7UmM7ihQpYpUoUUL+p6tP37595f+ePXvG1P4za0l1TYCXoeacujijbOk1qAWk3prtQ0gC2rRpE3XtNvXfwdTmQ4nmpap2Ptk18+Hq5UPVwDvpGsDj4Zg5c6adN29eu3r16iKCFm8dGCJFfG6RIkUSJoakRAeK2NTNoYFhaNy4sTxG/ZhZ0FIwIpbpgNbMK6ni888/9wnV7du37yixNp4rU6ZMTMczC7olBnPdNZ1inEIHE14Xr113AqJSZtv/+usv194X3RZT54qOTzAOHjzoqz/u1auXa5+tKImA85Fjle5PgRpDqNDzHILS0cA5YEQo8SUMTZs2lccGDBgQ1fuhf8TrsHOJZs+ePTIW4fOo83cLumyZ+vhQ+k/onqD5xTqI/mUzu/7/+sNtJDQyH4YuXbpIXRy15aZuxiuYGvnZs2dbnTp1sho2bCjpQeHS2q6//vqwKd+BkWKi/aTcZ2vtfKgsBPZzYATeP9LObahae/P6YLBP+f0KFiwofUiJCPE58fRHph6JHsvUI1GPzWzogQMHYn4/xR1uvfVWyaqpU6eO7zGyaTiXTV0dkUBSVmvWrKm7XVEcRtawr6TCB4vME0mnPtMp1IUDqbGnnHKK73EThY4mVZYa0F27diUtMk/Ey2ynSfd1Mx2Z+lZsVTDy5MnjKzubMWOGa5+tKIm0HZSNBNakm6gxUeJo+s1Tf0/mHbpI5j1itR3JzuqhTMaMYd2smyfrFPtLZmKobFPKThn/gtoO56gzH4K5c+fKRYsDa8iQIeIUeQVTI08K9dChQ+XAxxHcu3dvyNdQ543jHywNHIE8RGtwSINdlLOxdp59EUzgzjjtTHSQAj969Gi57d+/f451QgkPBkuv938NEzQMOKn3xPDxm7Vq1eooUbxoYGBLahN1np9//rn19NNPx/xeijvgrHNRL1CggO8xauMHDRpkbdu2TbQ6SHELTBdWFCW8k4kIbCA449SrMkEbTeqmSbE3Na/xpNkbRz5ZIlb+6bJuDsgD02RDce211/qExXbs2OHa5ytKMm0H4yajWxPN+e5fnuPvP8RiOwjomPF9NtgOJlXwvdavX29t2rTJtc/PaJKSK5Bm0A+SHrJeTfN49tlnc7TPIK27atWq9rhx4+zLL7/8qLTuwFTAcO3qAlPtQ/VZjza9MJ3S7OP5zqFey/4O3LeBrzn33HOlFcg111zj+y0mT54sqdakysfS5zSwbaFpqeRm6pSiGDTNXkkF9EM2abK0+wzGmWeeKevQ49gppsVnYGnZiBEj5PH69es7fq8ffvjBVwaQLB577DH5zA4dOrjyflu2bPFd037++eeI69NWk3XHjx/vyucrittQemjaxVG6Gozy5ctH3Z7OlKliQ/xhnM7jV1xxRVTp6ea8Iw09mX5GixYtXHm/33//3Vd2sG7duojr16hRQ9bF1mYruzTNPn7Ru++//946/fTTRR3ea+lApK8RjacMwETJieIRLaalg2nvYFIOTZsNA5HhsmXLOoq4s26waD5R62CR/EwgVNZBqCwFf4ikB4P9HSwiT0YFCvbnnnuu/Kb8P3/+fN92NGrUyHrzzTdliVeRnvci+k+qmBEZURRFyZQ0WYQkSWsNRiwieCY93V/8zj9VNproWjLTZBMlZEW2GHAdMfsgHFdffbXcmmuaongNc0xTzoaQo5dtByr7RKzT0XaQMk+GacWKFcOWoRrUdkSHptkHqWvDmTe14aEGBqmAtB3S5UlRYZLB1Fib2u5gDj3OZTCnO9TJFOzxbKudD1UrH8kAsZ+DpdaHeq1JradFYKAjb7aD35d+8aicM6kya9YsK1ZI9TJO/GuvvWb9+OOPMb+XEj9c2MaNGycTY/Xr15fUsmALDoqiKKExPaDDlaWYutVoBuR0nAAGoP6YVNlo6l5T6cwzdoinVMtgaliZGHbCNddcI7dc17TnvJKutsM48/7tZN2wHU7PiVTaDrp5RaMV4LbtWLBgQVQ6J1lLqtMIvMbHH38sqR2oziZLNd2pMu1ZZ51lV6lSRZQmA5XmL774Yt//wVLug6V4B77HI488EpOyeyal2YdS8A+3b8Kl14d6bajUerNccsklOe537drVvuGGG+wTTzzR/uabb+L6jldddZW8Z/v27eN6HyV2SJvjPEXZlfS+cAvrpAuaZq8kG66HlCJh0zZt2hRyPWwo63Tp0sXR++7du9dnfwMVrn/77Tffc/v373f0fhMmTJD1a9WqZSeLw4cP2/nz55fPpRQhHtgfxx9/vLzX119/7fg1efLkkdd89913cX2+orgNY0nKXjg+V69eHXK9J598Uta58847Hb0vqfDGJm3evPmoMt5gHTLCMXv2bFmf8X+yoKwTBf9oS5NC7WfTyWPZsmWOX1OwYEF5zYoVK+xsZJem2cc/e0R6+nHHHWd5AcQvmjRpIgIYU6dOFYXdwP7nn332mUTP77777qAReqK+gVH0cCJuTqPSRKIzJd0+VF959mu4fRMuNb93795BX8v6wVLr+f34vMDf6oUXXpCyClK0brzxRt9MbSyY6Pxbb70liqtK8iHLAmEZyi8onyA6sHDhwqDLBx98oD+RooSAaxcZdUS8TATNjci8icLRXSQwQ48IGSKl0UTnTb/1ZEbXEP0z4n3xpstih+iEwj4+//zzHb0G4TDTjUNT7RWvgTjjvn375JxkPOZWZP6XX34Rm0RK/BlnnJHjubx580qniWhS7VNhO8jkrFKliiu2Y+nSpSIAyve+6KKLHL0G/8t0+1HbERlNsw9g+vTpcnvDDTdYXuHBBx+0Pv74Y1GCLFWqVNia7vbt28v/gQ49adXBFOup4yZ1P1g9t5Pa+UxKt4+nVj7UZEeoNnS05QiWWs/vF+rzGDTi9NFirnnz5jGnTfJb0sqQ1KVg5RNKciYNqc/DEWGSBntTu3btkIuiKMFZvHix3HKdC9d1JtoBuXH6eV3g+3I/2lT7VKTKwoUXXii3ixYtiut9Zs6cKbcNGjSIqruP1r4qXrcdtWrVkokvtyYCzXrYiGA17tlqOxgPR1Pzr7bDOerM+0ELBKLenNShnLBk8+qrr1qvvPKK9ApnsILT/MMPP4TtFW+c7mAR+ngcb96LSHOmtqqLRkfAyWRHqDZ0v/32m/XXX39ZW7duzeHIm/VDfR6/O6+l9zhRklCTK0647bbbfOIvWsuYfKhBI2JF2xtFUWJnyZIlcusv/OrmgDxUtD/aftGpGpCbwARZfbHWnnKN8Hfmo8HUvpJlFGwCmvZTzz//vAQVNmzYENP2KUq8E4Hh8J8IdDJeyhTbQdAHOPdDaUk5IV7bgY0PVre/ceNG0Thr06aNtXbtWiurSXVNgJcYMmSI1GdQa+4FqI3Omzevfe+994at5w5Wl01N9t133x20hp7HQ7VJi0So2vBY38/rNfORauUDYT+gLxBqf1AjNWPGDHvjxo1h1w/3W/PcgAED5P+5c+fG9D13794tx1Y09Y+Ke3BORtPWKl3QmnklVTWvkeyYf3sn6lYj8cQTT/iul8Fo2bKlPP+f//zH0baa63EydWbg4MGDorXCZy9dujSm91i1apW8npp56uCjgfrhk08+WV6/ePHiHL+HaT9llrvuuium7VOUWGrCTznlFEfnhb9+Bi3WIvH888/LutiIYHCc8zw2xglG7+Ohhx6ykwmaG6eddpp89rx582J6D8a6vB4NgUDtESe/kWkpOmvWLN/jvE/dunVz2I4WLrXQ8xJaMx9nir2ZjUol1NuQcs3MHvXSr7/+etB6bpQhg9V0E+GNNuXeCdFEoNORaHQEghGubIGoOu9JvSFp9uHWNx0Egil/chzkz59fVM5RQqcWKVoKFCjgm/U0rVmU5EG7SFLXomlPEwtDhw6VY436Xo4xtDVC8d5770laXaFCheT4Qs2WbgqKkg41r+edd17YdanXjKbO3aTjm4h+uqbKUrZlImKmhV+skTW6a1AHHw2k1Zox1cCBA3Not1BLy/NG8Zv7ipIM0AtiTJYvXz6revXqYdflmDd17k7KdCJF5tPFdpClfNNNN7liO8hEZGwRDZTzmDGwv+3AJyLTh+0zrf+WZrvtSPXMg1dgpt5EKtesWZPqzZHZfpSslyxZEjZK6x+tDYb/a52q3LsRgU7XyHyiCIzIR8LJb06kp0CBAo4VVgN5/fXX5X2qVasW0+uV+GjWrJl99tln23PmzJEZcLcZP368KEmPGjVKbFqHDh3sQoUK2du3bw+6/sKFC+333ntPVK/Xr18v2R/MprN9TtHIvJJMXnzxRbFhdPpwAucb63OsO+36wXUuGAMHDpTnmzRp4uizr732Wln/rbfespONUdIvV66cRLuiBQV+Xj906NCYPh+lcF7PmAZbtHXrVp8yPhG/X375xff8n3/+GdNnKEo0vPbaa3LM1alTx9H6jJNYf/r06RHXvemmm2TdYcOGhR17XX/99Y4++5ZbbpH1yR5ONkZJv1ixYjGNU+rVqyevf+6552L6/A0bNvg6A6Cqz1jaqNxPmjRJxhzHHHOM3MeuZBLRjKfUmf9/OEjYaaTdxHKxcxMG00wskFITruWZ01T3RKXcJ5t0deajdeSj+c0pA+A2GofLP82Rtme8/scff4zhmynxQKpY5cqV5TfA6S5VqpRdunTpo5YyZcrE9P60q+zYsaPvPhdiLsj9+vVz/B4XXHCB/fjjjzteX515JZk0atQoqoHilVdeGdZBD+b4L1q0KOjzEydOlOcvvfRSR5990UUXyfrTpk2zk81ff/3laxEXGKz46quvJJUV55p1SMlv3Lix/eabb9ozZ86077//ft91Ilzrv0jwnrxH69at7QcffFD+r1mzpm+8ha2LJ51XUaKB45Djzen1LZKDHnjdZF3GfcFgvMbzFStWjMpuvf3223YqAp3Gef70009zPLdu3Tq7ZMmSdr58+cR2EFxq2LChPXLkSPmOtAE1didc679I3HbbbfIe/AY9e/b0+TLGdlSqVMnn3GcS6szHUS/PLFIqob6MHuPnnHOOvW/fPrnYOXXswg1Q/B3EYBH6UJF9L5GOzny0jjzwOzr9zYnyXH311Xbx4sVjimiYmkUng1vFPX766Sdx3hPVZ546WWazJ0+efNRF8cYbb4z4ei6S77//vtQjhxtcc6HngmMWeuo6nUlWlHjgGC1SpIijmldDu3btZP0+ffpEfG+TqUdkKNw1tUSJEo4+m6h4YN14MkGjg8/v27dv0IFypOWyyy6L6/OXL18u74M9M/t2/vz5vudbtWoljz311FNxfY6iOOGss86KSneISS3W79GjR8R1jV1auXJl2EwVtCScYCYH/OvGk0nz5s3l8x999NEcj993332ObAdBi3iCpOiHmeg7Ewfc+o9t7v7/YCXaApmE1szHwOeffy63TnsgJgp6TrMtb775pnXXXXdJSzqnhFNdT6TKvRKcYDXyTnCinm8oX7686ClQN//www9H/VOY3qqqIpxc0Jmgro46MmrVv/76a1FmDbbE8tvQvhDdDdrf+cN9euCGguMIPQVTZzt48GCftkIw+vXrJz24zRKqvlhR3GbdunVynFMHH6nm1WCOz0h1rzt27LAOHjwoNZtGeToQ8/i2bdvkXHNa9xpt3ahbmNpT/9rX3bt3WxMnTvRpBmGTGH888cQToplRpkwZq0OHDvKa999/P67P5zeiSxCK+uxbbB+6L4bLLrtMbrO+9lVJOGjV0L2Kmmtz3EXCaTcMNDywS07U7LEJrJ+OtuPAgQPWuHHj5P/x48fLfvniiy+sp59+WrR3GPPefvvt0n0JPyaadpaBVKhQwWratKn8j6o9tsnU8sNlaju0Zt5w7rnnhk2LSQbffvutzFgzuxRNqjVLgwYNHKXLp3PKfTpF5mOJyEdS1Q+ntD98+PCoZpkNRKh4Xdu2bWPaTiU2ihYtKpEBJ6rasbBly5agEctu3bpJ+n0oSMX//vvv7S+//NJ+4YUX7JNOOilsfbFG5pVUYWxe7dq1Hb9mxIgRjjLwTBT5jDPOCLnOoUOHfOnnkWo1iUqZus+ff/7ZTgXUpZvo1nfffZejdrd8+fJJKS/8+OOPfdcv/6g8rFixQh7H5iRCQ0RRDGPHjpVjrXr16lFp0DjpdsU4nvVITQ91TvG46cJhzsVwoHXDukSoUxUhPu6442QbGBv463CQFUpGcaIhy8HYjsCMw3Xr1snj+E9kJWYKGpmPEqJRKFumOjJPtK5YsWIyszV79uyoFSOdKNQnSuVeiT8iH0lVP9hjZFOgOI6iZ+3ata2HHnrIUZTIULp0abklAqwkD2aXL774Yitv3rwJeX+Ud1GJ3r59e47HuX/66aeHfB2RinLlysnMN5keTZo0keh7KNj+E088MceSzvz+++8SLaSThOJtli9fLrc1atRw/Br/ftHxqFFD7ty5fedSJFXqPXv2+OxyshWp/bNyrr/+evn/gQcekH7ZZABCu3bt4oqcOYXfip7yzz77bI6oPFSuXFlUw/3HY+kEWQ7s30GDBqV6UxSHtsNpVD6ayLy/7Qh1TvG4U0V7MllMx6JU2Q6u640bN/bZDrbJ2I7bbrtNxhqJBvtApmDv3r1zROXh7LPPtk455RTJ+KHDSVaS6pkHL7BgwQKZ1SFSlirMjPWYMWMcKZmHW5xE1xOlcp/tkfl4I/LREHictGnTRm4RLnIKkVteg4iJkjyIjqN1kOjP6NSpk+8+0S6ErqIRwGvfvn1Ukc90F8AzkUrEwDJNGTfTMNeraEShEJflNYi8hYNODqzXtGlTR6J2XJfCgcAo6yEGlUqBXSJYRpDq2Wef9dWwpypbIBCUxdkmBLTSDROpzJ07d0idBcUbGIX1V1991fFrjB4Mv2+4SLRTpXrTJ50xfzjoa2/GeInK5HMCNsxkE5DRabKSsCle4IYbbpDtefnll+1MQSPzUWJqtFIVlWeGvEePHlaVKlWkRi1YP3kw/RQj8cYbb0SsfzdR3rvvvjtoDf13330XwzfJbtyIyEfCROKpkw88Tni8bt26Uu9IPZMTzHZSQ3bo0KGEbLNyNPfff7/14YcfWqtXr07Y7iFLY8SIEdZbb71lffPNN9a9995r7d2715eZw4z6o48+6lufCPz8+fOlRp/10e/gmGrdunXW/IQmIsj5g01UvAvHqL/uRzTRtb/++ssX7Yo1Mu9f+xopuuZf85qMCHg4PRZzzj/22GNyiyZGKF2AZGMipcuWLbPS1Xb8888/Vt++fVO9OYrLtuOMM86QCDS/bzjdmUTZjnz58iUsk88JfJ+nnnpK/n/88cclOk+mTTQaT4nksjS2HW6QK9Ub4AWMqMPVV1+dks+fNWuWtXjxYhlMr1+/PuR6iGQ5wWm6fLiUe6+coOlCMhx5fk9+V5ywO++8M+g6pPlxcXjllVccvSdpoghIYZgjpZ4q7oGD3LVrV+vKK6+U8zVS6l4sNG/e3HrhhRd8Ylac43PmzPGJ4vGZiHcZcPQ5/zmGEaeaNGmSNWbMmJDHWibin9776quvRhxoKakBgTpEpnCMEQF1CuKOJlU13Dlnnosk6GjOpV9//TXsen/++WdK02T9IXBAWqqBFHuvkM5CVv62gxTkH374IaXbowSH6xzid3Deeec53k048sYBd2I7Ijnz6Wg7HnzwQUl3N6jt8A5Z78wThUKBkVpRUxOSTKijY6b8iiuuEEds3rx5jl5H3QjOo1GoD4YThfpgKvedO3f2zEx9OpCsiHyojA1/qJtngobIQLjIk4HBMLVG/jPASuJhYMC5xrGDA412AY8FW6jNjZVOnTpZP/74o9SScQxxvhsWLVrkq3uDPn36WN9//73U81M7zoCaCYFswgzIGTixz9ClULwbWcPeUmcdDaVKlZJbzotQmIlNpwPyQG2KQIxt9cKAnMlbJqqgcOHCR9WfphImq83vm27XI3/bwbjumWeeSfUmKSG6YBhdGRa3bUe0znw62Y7jjjtOgg+MG5kYbdasmeUVLrroIvHjyDJlyTay3pkn+gR16tSxihYtmvQfgNYORNwZ2H/22WcSCXMKqfA333yzL10+1DqR8BdW4yJfq1Ytceyz8YTwoiPv9HeklRg8+eSTMvtMmrQTjGgZqadK8kprnC5kTSiJ5++///a1ATQiVsOHD9eMFQ+ydu3aqNNkDZSyQbjIaSYPyIGMICbzKPUhfdcrMAZDgNO/XXA6gI02zvzAgQPllhIlLVfMPtthJgKdZvWkm+1gwo1M4o8++kja0XqFAgUK+LIGsrHNdtY786bHKqrNyYbIT69evaSHIydINIaf2hXSrXkdfapNunwgTtPlidi1adNGbk899VRR2laH3huOfLjfEdVt48SbjgY4IiiOvvTSS2FruwwFCxb0qfEqyRv8RbMoiYcBGhE1BgWtWrWSLBccfDQHlPSveTWULVtWbs3ETbDrsik/ieTMc62MZkCeqj7RweD4rlixouU1qlWrJreMP9IFynHoF04W1a233irXZOw22jaKN21HNCn2Tm0Hk+9OJwLT2XZQhnfBBRdYXqNaGtoOt8hqZ55UGaLhpIykIsWeqDy1O0YsJdY6ddKvaWWHMx5YY+2fVhsN6tB7x5EPLIfw/30ZjOHEBx4P6D+Qou2kTY4684ryb5pshQoV5Jpw3XXXyf1wOiZK+g3ITXQt1IDc6CSQjh4pDTddo2teBn0PWLlypZVutoOsAlKR1XZ4l3gmAiPZDnQ8EE/l+hGpVFVth/tUTUPb4RaxF2NmAES0gXr1cL2XEwEzeKRj1a9f3zcgMQ6bk9roQIzKJMJa1157rUwMxOrIBzr0THiA6YuZ7STbkfcvh6CsggwO8/uSyhcMIvK33367pAmjPBqurtSk2WtkXslm/J15//pII5akZEaqbKTomn+abCTl+XQUsfI6dPVJt+haKNsRrrZaSa3tiGciMFSavYnK409EUp43tgMxT7I4qPcOhtqO6G3Hyix05rM6Mm9U7G+55Zakfzb1JlysUIcMVr+OwF0sUHNPaigOnxt1Ixqh94YjH6wcIlw2B4/T/gwhs7fffttRZF5r5pVsJnBAbs5vHZB7C+yUiZ7HG10LVsLiNE3Wf0DORCjCkaHQyHz0A3KEypy2WPWq7dCJQG/B2NhkWsUzEYieFOU4sdbLg9HowgYxrgyF2g7nVP7/mnlsOGPfbCJrnXl+6I8//lj+v/HGG5P++aQ/Y0zo8erfP9woTiNiFk6pPhy0kjL19JHa0zlBHXpvOPJO0+9NDT2D1oYNG8qxRiZIKIyIiTrziYPfgoHAxo0bffedLmYAoaQmusYAjd7Cird+J/o+x1JHipNOCRKOYjBNkWicebKaTAQuXKq9F+tevUqxYsWkvAH9ijVr1ljpbDsYM+zZsyel26b8C448xxUBjFg6NuGA58+fX8ZTwSZ5o7EdlGOYTkJqO9yhUKFCvrH5qlWrrGwia515+i0zI0bNsTG8yWLr1q3W1KlTrY4dO0oan3//cOOA49SzbQicoTLPbSw4aU/nhGx36L3oyAdmcwQK4XEcEZ1fvXp12L69ZoCZbq2A0gkiNCyHDh3Kcd/poiQWBmeBA3KcRQZcDP6033xmpNgDv6kZbAdLtTeDdCcDcq7fToSsNLrmHPZpuqXaB9oOJsjNdVUze7xpOyKV0ASD14RLtY/GdoDaDvepkqWp9lnrzBvRsBtuuCHpn/3GG29YefLkkfr2YP3DuW+ce6LsOGN33HFHUAE0J9F7t9qjZKtD72VH3p9gQnjMItPDfMSIESFfZ+o4TW2W4j5E5HEczECA+06XULW9insQoSUzhbpF0xqL/7X2NbMErAzhBuQmouNUkNZJ3bzWvWbugBy7QYAGypcv73tcU+0z03aE09wwtsP/OAiH2o7sth1ukpUCeKRMov4OJpqZLEy7kubNm8vsrRNHG6eMXrCInwUKoIF5jHognP9AYlXJD0a2ieKliyMf6jgirYxjok+fPtaAAQOCpnmax9SZTxyB2T/JzgZSnEXWcPL8hYv4nTiHyI5AKFVJbyV7A7/zggULjhqQcw010eCLLrrI0Xs5UaXWyHzmDsjNtRfRM//rK+MFjiXNrMo82wGBtoPsruXLl8v/ajtSR5U0y+pxi6yMzC9btkwuroULF5YIeDJZuHChRNs6dOjgGzw4Vas3PeX9BdD8RdFCRe/jVbXP1gh9ujjykYTw2rdvL8cZrRCDoWn2VkoEMJ1M5H3//feyrpIcZz4woqLRtcxLsw8XXaNGG2ErbKLJ0IiEOvOJbTEVTu/Fy7ZDs3oy03aEyurhPgERJoMpkXWC2o7E2Y41a9b4yhqzgax05k06cr169azcuZObnDBp0iRJe77sssvE0Q4WSY+nBt7UT1Nnz23//v2tRJDpDn06OfLh+tDzOLW/V111la8VY6g0e62ZTx516tSRc9XJ+V63bt2kbFM2E1jzalBFe2+BYrwRkUzEgPzzzz+X2wsvvNBxTW2kATnbbJSvVQDPGZyHaBvs2rXL8zXnkWyHRua9AdondEhI1ESgsR04kxy7btgOJrJUPDM6zjrrLBE4JIBlfu9sICud+ffff9/nzCcTTszp06eLwjhp6sH6yT/22GMRU/8jRfQC25clikx16NPNkXcykUPHhg8//FAGR6FapARTdlYSh9cjTtlEqAG59pr3Flz7KFVjAtIMhBMxIHeaJutExMoMxtFgMG1AlfCgKWRSob2eaq/OfHrApAodLIicE1BzI83e/xqeCNtBJwQmIfyDLkp4cuXK5WtR53Xb4SZZ58xzMhuRipo1ayb1s43Ti2P1zDPPBF3n2Wef9WUO1KhRI+g6btbAx0umOfTp6shHmshB6JGUo7lz5x71GuOwkCKm7em8BY7A8ccfn+rNyHjMDL5G17wNZWom+hWLGnXggJxB9N69e4NG5p0SScTKaJEQlWegqWRW3XykiUCvZxZkC4sWLZLbSpUqSWvKWOF3xfZgN/zP+Viceae2g0j/CSecEPM2ZxtVsrBuPuuuLFwYcGroY5psESqi8qYvbaDyeDCCtRNLRA18vGSKQ5/ujnw4ONYxcNOmTTvquQIFCoh+BOjAI3HQg9YsZtbd/zH/hVl/7MW8efO0z3yCIQ3aHPeh6l7pNW8iJErqmDhxotw2atQorvfBsTaRLpO2z3FA55hYB+SRIvMaWYut9tXLA3KyRNA1Cae3gaO2b9++lGyf4r7tYPxeokSJHJk9XBu++OKLmCcCndiOeCYvs1lzI1vIOmfezJ7hfCb75MCRIrXfDB5i4eyzz7b++9//utI73k3S3aHPZEfeQEbIrFmzpJtDIBpFSDwcV6T3mRQ/o58RbOE8Z9CBw08LSyVxbNu2TW7JgGCS159ixYqJrgoTwGY9JTVs2bLF+vjjj30dXOLFpNqbunmuXQzKGWBH06XF6YBc6+UzLzK/c+dOn4hx4DHD703wBswErpIaOAdNeW2TJk3ifr9AzQ1U8pmwITDitC1doO0IVnantiNzbYfbZJ0zb1qqRTPz7tZAZMWKFVIvT7QtVhDMo/88yvZE6b1Eujr02eDIA8ceFwczIPZHnfnEU7JkSd/CRCJpc/6P+S8oaSOSN2TIEKtbt25J2LrsxThhDKwCJ3hx5E0URoWsUsvkyZPlFvFYN1qiBraYikX8zn9A/vvvvwdVT9bIfHwDcn4frtFeth2nnHLKUaJnHEOqueENCKQRxEBlPhpnO1rbUb169ahS+E3NPBNCwfSM1HbERsWKFeV3ICuGrLpsIKsj88lkxowZcnAhNjZmzJijnidiH23P+0jK9qkg3Rz6bHHkzYUGZftgqfbqzCcenEGycliYhW/atKnvfuBCDTd9sO+77z5Nr0vSgJw+0cHQc8NbabJuRNbCDcijneinRMkM4Hfs2BGy7lXT7KMDB9nUoQebgE4H26GK9plpOwIFNGO1Hfny5fOJYgarm1fbERsnnHCCdcEFF8j/ixcvtrKBrHLmmfkyQkfJjsxTI1+rVq2QqXizZ8/21dHj1I8cOdKRc++kV3WySReHPpsceUB8CSG8YHoN5uJk6v+UxPLGG29Yd9xxh+5mD2C6OIRSR9cBeerhuvnRRx/J/7fccosr7xmYZr98+fKYxgbYVdMRJNj1XaNrsXP55Zd7ekDu1HaoFk1qx/0mG9bticB4bUekMh21HZlrO9wmq5x5HBUiYkQnzcU3GfCZRNA5uJwo0eNskU4f6Nx7Xdk+nRz6bHPkDRyDTGiZGV+DST3Lpr6cqaRt27ZJ76ahRE6zD4Y6895Isec6ymDZLeFaMyBH9I7rs7F90QhYRTMg15r5zBuQR7IdmmafesiKJY2dLA/T7tAt20EnA8pnTW222g7vcLnHbYfbZJUzbwQm6GGa7Hp5UmhIc0aJvnv37lG9HqeeGpDA13lR2T4dHPpsdeSBYxCM8mqgM79+/fqgAnmKuzCZQotMM9D3Hxy2b99eUsQaN27sa6OpJA5Ns/c2nCOIvroZWfO3edRUokHD+AC9ClPHGg0aXUvsgByHyb+FoFfQNHtvQ6vdN99802c73BK9RqCWjBwEEHHgmSygLCSW/vVqOxJDrVq15HbNmjWe1dxwk6xy5k2PV9qJJBPjOBlHCiXe3r17yxIq4h4snf65554TJ3T06NFy279/f8vreM2hz2ZH3gxg8+fPf5Qzj8gXat4IOKnQV+Lp16+fOOz+nS3Y91yAOL+Z6Z86dapVt25da+vWrUnYouxF0+y9CVEvOjow2KVNKwNxt1Ls4cwzz5SB/rXXXiu1q0a7JhbMBICmyroLkW1+JyaYvaYPBJpm7024rqJJw3nppoq9Af2Lt99+W+yF6f9+/fXXxzRZoLYjMRQtWtTzmhtuos58EmBWmQMLBV6i6UQBnnrqKVmGDx/u6D1MOj2R+DZt2ng6Iu9Vhz7bHXlAqIkenByTgRNdzDZ7VYch01i4cKEMVKtVq+Z77N1335UaPNS6p0yZIjX1RCWHDRuW0m3NdJymylL3muyJ4GyFKDmOOxNaTHJVqlRJBs+mzt3Ncpe5c+fKecYE2oABA2J6H3PsqIiVu+AceTld1qntoK3lgQMHkrpt2cytt94qoncHDx4Uh27UqFG+7ghufgatfo3tcDqWD0RtR+K43MO2w23UmU8COE5E5WmLhwJ9sFZ54fB6On06OPTqyP8Lx2KgM++fdqrOfOIhtddMnvjX9jF4ZeBx4403WiNGjJDBYDDBQiV5qbJMwjLZRSqlicQpiYVI/Nq1ayXqxTWDcpMWLVok7PPy5s1rVa5cWbKTYkFTZbNzQB7JdpB6TSYcaK/55IBjzbiaVoFkc2BHKF1LFJTtYjtMhD5a1HZkp+1wm6xy5k0KTKqceRTrY4Ha2UwgVQ69OvI54VhEDDKwr2lguxUlcdCTOlCEc9myZSKs4y9qSeQ+W/qkejVVlkGh6WuuqtTJgYksaN68uesRtUSgAniJH5BjH8nSSCfbwZhTFe1TYzso0WG86VadfKJQ25G9mhtuklXOfCpq5ql3xeCbevlYyKRIabIdenXkj8Yci19++WXYvsuKldBIoH9HAWwEjqIRbTFQy7t//379KRIEF3hzkQ8VXQPqdkH1CxIP58WECRPk/w4dOljpgEbXEgdlcdQo79u376hrVio5fPiwtWPHjrDOPKjtSB4cI2PGjJH/1XYopUqVkol4r2puuElWOfMYX39V+2RgLj5E2BAZiwWvtp/zukOvjvy/YMhQhOaWGjJSwgJF8NSZTx6c04iyMPiA9957TyIIgc48zmMs6tpKdGmyTJoUKFAg5Hq0MzW1r0pioTaeCSw6uKAvkw6YczSwZp5IspkswiFVYgvCmDaeXkqXZXxBYAi7Ha7VsZkkVNuReNCdIeMQVfmrrrrKSmfbAWbCX21HZmpuuElWOfOkFkMs7SNihWhb7ty5xZGnV244WrdunXbt57zq0Ksj/y9GdPG2226T28cee0xmLANr+IwzjxKsCn0lFtKHGXTUrl3b6tKli9WjRw+J1lMrb2A2mQmXwNp6JTFpsuHSMXVAnhyYaDdpskTWvJ4iazCRWSK1/rbTP/vmpJNOSsm2ZQJmQG6Uyb1kO6iLpxQnFDoRmDyM7UA81mTipovt2LNnj29yHxBMNKKJ6szHbzvmz59vZTLpcbS7xOrVq+WWGf9kQWQNY/75559HFLIiPShw9jaZWQSZ4tCrI/8vROIDRRe5jyhPYMowE06o3XMB0ShCYnnwwQetK6+8Umq5Bg4cKJHI559/PkeEh4sPfXLNxUhJvoCVQQfkyWH58uUiYMXEFpPb6YI5b8n+8+9pjNI1FCxYUCb1ldi46aabZGJnzpw50jc6HZTsDWo7kgNCd2S7MYZJpOCd22AbjPCmf2tLYzs47llHiY0GDRqI7eXYyORU+6x05mlzkyxwijDmTuveSYUOdLwy+QB026FXRz4noY47FFgDHXZ/oS9V3k0s7H+c9Q8//FDqg9etW2d17Ngxxzpc4F9++eW0cmrSDR2Qey/FHmhLV7hwYStdwHaaCSF/zREzINfIWnzQaYVjAp599lnLC+hEoLcYO3asz3krVqyYlS7grJtxVzDbUahQobTJMvAiJUuW9I2h+vbta2UqWXWEfP3110mPzBtnPp6690wSwEukQ6+O/NGEOu4oNQkWfTcXlVS0D8zWeq4mTZr4Shz8qVu3rkTwk1kWlG1EUqM2aHQt8ZCFNm3aNPm/adOmVrphxhX+kWOteXUPysNg/Pjx1vr1661Uo7bDW2SC7TABR1Db4R49evSQ8db06dOlzWkmkjXOPGms5gKQ7DR7Zgmpew+shw+shW/Tpk1WCOAlwqFXRz44wY47auhRtOfYDCzjUGc+NWCbaL2U6RN3XiPa6Jr2mU8cOMHodZBif80111jphhlXmKABaGTePS644AKrfv36oknw3HPPWemY1ZPJZZOpBLvBeUeKPcdIJjjzajvczexp+v+TPF7J7HGbrHHmv/32W7kIkLoXaeCWiMh8MAINO+tliwCemw69OvLhYeDzySefWKNHj5bb/v37y7HGBBc12f6oM588qK/t06eP2CMuNijZ89v4pxzXqFHDMzWimUi0A3IUhxEmVBIXWbv66qtF0yPdMOV7wQbkpMoq8dOzZ0+5feutt6zNmzen1UQg4ma7d+9OyrZlG0RcgWtoOpXnBNqOYBOBajvctR0T/r+sMdPIlY0p9slSyGXQh7otxjyYENlnn32W4z7P33zzzUc5XtlEtA69OvLOYEKIzA8zMRQqbVid+eQ58jfccIPVu3dvuWife+65R03u0Y4JG0DbOiW1qbIInFG3yG8UrIWQ4p4z79/RId0j88a+oniuxA+Tm5Qf0fIPwdB0sB1MTBkBMxWWTQyZYjuYuDfdMNR2uEvlypWthg0byjU8E/2qqJ35jz76SHYIqeM4xVOmTMnxPO0VOnXqJE4BvXvPO+8869VXX434vtQxUD+K6BOq2oGOr+khSY9s1mEma9asWY632/TUrlq1qpXMmVsOnGgE8Fgv0PHKNpw69OrIx44RiAnlzG/ZssXyKmwbgiYMkLEx2AJUsMOBoB/COCeccIIcX926dTsqwrpo0SKrWrVqkuZbrlw5680330zYd8Amzp07VwampAj6R/MMZ511llW2bFlr3rx5CduObMdpdI30TTNo1wF5YhwjI/TKJFc6cv755/uOKSbxYenSpXJLWZPiboSNNmT+6t9ezeoB1dxIHNSWIyQL+CbpCO1nEcXFf6KdNajtSJztGDNmjLVp0yYrq535vXv3WlWqVLGGDh0a9PmHHnpI2oews7755hurc+fO4tybmbNgkOp77bXXSu9rWjUx4/rkk09aw4cP963Dgd2iRQvpH/nll19ajRo1kiXYIDicM5/Miyonpukv67TuPRvq491w6NWRj48TTzwxxzEa+DjnuRchik3EGvXo2bNnSzuaF198MaxaNFFwHPm///5b7AgpmjjqTzzxhG8dHGrWwbnmmMNu3XnnneJwJwK2gXRAJijDKe8SsdfOAolDB+TeYMaMGXJ70UUXpZUSdWAE1ghZMi4x9gauuOKKFG9d5kBLTwIdtFB96aWXPD8RCKq5kTjwN5iY51qJU5yOMJ4hUGlsB9H5xYsXy321He5xySWXSBkXx0uwgHFWOfP16tWTOs/GjRsHfZ6LV9u2ba06depIZOmuu+4S5z8wpdwfakO58I0aNUpmt2+99VbrgQceyGGo6cV8/fXXS0SNk/aZZ56RKNqQIUMibjMnBhMAwGuShYn80ePQiQAe9fGmPZ2JUnAb7n42OvS///67pB9zrHCMKdFjeh4HRqeZHQbOR6/W/5O588Ybb8ixgdI7E4FEsENBZBunnwlGMnOwYdgPJiTN9yRSznsxMYB9YQISlXlawyVKw4Ptj9SyiolATetODExkmUkrja6llnRPkw1WN08AAV0SMoiwKYo7kBFqImzDhg2T8UCyYYLYZF+o7fBGvXym2A7KdAiEErAikzCZPks20PP/bQf+ZiZl2eVKRE0TF2ZSYUkxX7hwoaSOM+A2tGvXTpx9AyrOzD4ZRwKuu+46ESkwIhCsw4yKP6zD406Uohm4kZJrZr+S7cwHI7BGln116aWXWrfddpvc4uyHu2+c/2xx6FFfB1Kq1ZGPfyY4nDN/8OBBy4tgWy688EJRJuXYQOGYdEt/yOrxn+TBRnCh9B90YTvICDLicvHYl1gHg6TzR4KLjZP1lNgjawyYChQoEHF9TZVNDAiDzZ8/PyMG5P518yayhiiX9ol2F0oxCBIxrhs8eLCVbHbu3ClBIiYW0NOIhNqOxIB2gim3zRTbwUSgsR2M8/39IiV+ateuLX4qY1yCN5lCcC8zDjCsROOpvcWJ5SLGYNs/VQTDZkQeTL1cYC9lM/DmOaJX3AbOgHKfxxkY+79fICaKjQACDjQGIBmQBgZ8Jk4B+4YJBQMX/Hju836UGuDcZDL8/sxOmrpoorBnnnlm0n7HTMRMJHGM+u9HM+gkYp3K/csgKdgk2IYNG6xXXnlFynnoO/z5559LFg8XPDKCoEiRIjki9aFsh3ku3Do4/ETX/M87N6CkKFK/U/Y/F/Z0TR1MpxR7J6KoOiBPDOjwYIdKlizpi05lwoDcRH00TdZ9OF+x/82bN5cMzl27dsk4iKAR9j9ZtoPPChWs8cek4mdSJNALkPFLzTy/Q7prTAVTtFfbkRjb8fjjj0sLQ8aSjLOwHbRDTWans7Rw5kmBJoLGgJULdceOHaUOzkS++vXr5+pnMigOV1dq1KBJd4tGNC9eTF/7JUuWSC3duHHjXP8MUnCT+Z28ABkbmdhaIpmYyDvlJ6ZOHowoCE5sKo8rzlUiWoEwaYfhNb1CicwzcCZN3jjzpMizeBlKhigdQheEyc9QtpRUznvuuSfp25cNOFWjNqgznxi4PgLZesnqNJOMNHtEE0EH5InhlltukbIpsvZMORQ6JNRQo72QSNR2eMt2cI6Z8y3dJwIpwSPzA9R2JG78VbNmTevjjz+2Bg0aJI8xDka7BSF2K9udeSJYzJZOnjxZxKRMNBxj+8ILLxyVxmpgNiRQlTRQXCTUOjzOZ5gTIRgDBgyQW6LYzMYkC743XHbZZRIJveqqq1z/jAULFmR8ZJ6aOCKwRCgxdAz4SLFLV6EkL2D6y3Ps+J8TJu2caEMyz5VAQg3qcajokOEP9aiTJk0K+V7YiEDNDqf2BQPvdlQe0P5AhO++++6Tev5mzZrJ49RwU2tLL1QiTkQcvD4xka5EI2AF6swndkCeroOoQAFbSphMP3HKN5LZQSebwHlDxZzxJsLJiJVS0olA3tSpU+XWC8KZoLYjMZh09EywHWQm0cIQ28FkEXYk3bMNvMoxxxwj9oJAL7aDMi/GYWT2TJw40ee/Zq0zT7oCS2B9GEY3XBo8zi6iBLzW1PKyc8uXL+8TiGIdHFdUpg2sw+O8f6hZOdKFTZq9UcFOFtRiGtjO+++/P4eCIieqv5BdtPepmed9MxlEQEivZ7KG1HqceRxQHB5+c9NKTYkNHFX/c8IIghUqVCip54pTOIcDszIYwJEFFArOkb59+0oWC3X2xnbgqJuJAdYJzEQw9iURMLijrefNN98sM8NE4bnAcCFhYfKP34BJimSkjWYjsQ7ITVROcSdDyFzTgmXipKsqtUmVpTbTSRq2EhvYcDKyWKifJ2DDOBGRU6JspM4mAnXmUw8+BZHVTLEdXP8Z5xqdHsa5/j6E4n73kTZt2shCIJqACjYDG8IY7KabbspsATwMJhFnE3WmpRP/k+aOYUVcgKgTPZt5jujT6NGjc6jfP/rooyLiZmjZsqXUvNJ2jsjgO++8Iymo1MUaHnzwQUmfQrAAhw6RK5y8SFErIrr8UIiUJFtRNpRiuIF9RUkC+4dbszi9379//5i2K10U8UO1n+O3dNKHXolenJF9btIVvUiXLl3kmCDNnjKWsWPHSqo6pTwGOlz4Z8Ew24rTjtFeuXKlzMhSM8VrjLgcqezU49NxAvuCSjLRcT4vUZBCh73jMznGmVgxPe7RAcAhyIRBileJNVWW1wWKlyqxwaQs9fJMWDF5nwn4ZwlqmmzyIAti5syZMhgniPP0008n3HZEm9WDoLPRUlLig0gq9fI4ZZmS/eKvGaK2I3nky5dPovStWrWSsTH+ZdphR8nChQsZxRy1tG3bVp7ftm2b3a5dO7tYsWL28ccfb5cvX95+8cUX7SNHjvjeg3Vr166d431Xrlxp16pVy86bN6995pln2v379z/qsydMmGCfc845dp48eezzzz/fnjlzZsTt7du3r2xfkyZN7GSzefNm+exZs2bZn3zySdD9xuNuw3uOHj3a997+97t3757j87nvRXbu3GnPmDHD3rhxo++xv//+254yZYrcwvbt2+3p06fLflai4/vvv5ff//3338/x+BtvvCGPX3/99Z7dpfzmFStWFFtRoUIFe/jw4Tme7927t12qVKkcj23atMmuV6+enS9fPrtIkSL2ww8/bB86dOgo21a1alWxL2XKlJF9oUTHrl275Pjh1us0atRItnXYsGGO1j948KDPbmKflPj5z3/+I/uT3yJTePbZZ33HyYcffpjqzck6vvvuO9n32PH9+/cn5DNat24tn/Hcc885Wp/xL9crXuM/plFiB7vN/rzqqqsyZjcOGjTIZzsY/yrJZevWrbLvjznmGPvPP/9Mq/FU1PlfiNSEi0owU0kP6HAQrQ+EundT/xIK2lGxRAMZAiYKnmxMxAcFUyNoEQgpwtHWxRBR53XU55nUe3Of2SX/VH4i2IH1wv6wLqm+XqrNCRWRD9W2znw/Tbl3jlHVNREDg+nZ69XIvGlLxBIKZlUDZ1ZJw48k6IdtQxBQyQ6iTZUlewxhRuwT5w//K+7Uy2dSBoqJzHO8cH1SkguZTYwNKKuiHpbSrFTbDlKoGRv/+OOPYjvCjWuU7LUdJjLP8ZKI41YJD+NhOiH98MMPUu6AUF66kNHFXNTgm5qaVDjz1M+REk5/9FC1WzjgiXTWwz0Xz4RCqh15gzr08TnzgSKCXk+zV5RUpdmbi71x5sOJrirZV/NqqFu3rghyMRg//vjjU705WQeOEMcTYyUcvkQ4RdGm2RvbYZx5JX4ySTjTQF95hMIpC0QzR0k+tWrVEmee4yudnPmoa+bTCWrq9+3bJxEUnMNUgAHHeOMsUxvrDwJ24F+/zmOc0GgKcMvr/O/7O/JOnfVIBJtQSAdHPtCh1xp65zoJHJMMNE866aQc6xHNABVdywyGDh0q5xK/NbYknL0YMWKEDIwQHWVhUOGGfckUNXv/dXVAHj9oU2DzqVesVq2alUm127TkdbsFr+IcMzlkHL5UR+ZBFe3dA40uFkSQvRKIcgOu0wjvohmmZKbtSBQZHZmnbYkRkghU2E+2Mx+MhQsXWs8995zvfuvWra0xY8bkWCfRg2kmD7xgDGN15A0aoQ//G/tPAplJJY7NwBZwZJEAnQOU9AYhUUREX331VTnHadF53XXXSTcAo+ofWJLUokULUeBmUIFtQjwQkb5MOx4QcmWiF3RAnhrMYIlJai92zlDSf0BO5gcZIG6O/w4fPuwrm1TbkVrbccEFF8jkmaK4bTsIfCGkSblUOpDRkXmU7CGVtSekMePMc2BEiqoHOvJuEOio49i5oYjvJUfeoBH6owl23HEfpfTAFHvYsmWL3Gaa85aN0Ke+Q4cOVvv27SVtD6eeVjejRo0Kuv7bb78tfe9RBqa91siRI2UgTKunTMOkybI/ohkManTNPTKx5lXxBtgwzm3U47/55htX33vHjh1iF5kIp4zSKWo73ENth5IoypcvL9ncdJ2g20q6kCvTW1cEtntINhhwop3UpSeCSM56sHZ2vIY2XZkQkQ9EHfqchDruSFELFL/zd+aDOfpK+sCMMuJPpMobiE5x3/SxjQSRa3RHwukn0Cf8r7/+yrFkaoo96IDcPTKx5lXxBmR6kPGRiHRZYzsoRQts7RoOLdFxD7UdSqI1N9It1T5jnXkGmd9//738n6p6eTP4Iwp09tlnO1ofJ9stZx2okzbv6wXnPZGOvEEd+sh6CPv37z/KmeecMemDGplPb/gdSQcNTAPlvolKRwJbw6SO/4RAINQFo7tglhIlSljpQCw1r6DOvDtgfzZu3Cj/V69e3aV3VZR/SdSAPF7b4dT+KsHhuobeBqjtUBJBLXXmvQOOPCf9iSeemNIoY8mSJSVKRtu0QAG8YI66ccqjiawHOu+kVgcK6RmxvUx35A3q0P+PYMKL3EfojmMz2CCFqIa23cpusDPjx4+3Jk+eHFaR+9FHH7V27drlWzZv3mxlqpI96IDcHVD1Bq7PiC0qSroMyGNRsgedCHQHylbJGCMrQoMOSqJthx2mFbuXyJ3pKfbUigaKfCUTBDqA2gsEpejpPnv2bHmsXr16cuvfhg649Xf0A+8bwrWs83I/+UQ78gYVxfsf5rgzxwoRVI4Hc2wamPwyznwqz5lsgAm2+++/32rWrFlCxL9IAUXp10zQGLgfaRD6wgsviDP//vvvW5UrVw67bt68eWVJN+JNs6d0iou8niexsWnTJrnF/us+VBJlYykt4lj7+eefJaDihcg8E+n//PNPVCn6ytG2gyww3YdKIqhWrZoEMfBVEAxGQ8jr5MoGZz6VcAFBJIX6VcDpfuqpp2ThYkPrKCcp8IGtxQIj7+EceUOi6va96MgbNEL/P/yzOcyxGNgOyjhlpNsriQXxS85dBiS9evXyaRW4BQqspCD6i9cZMbvLLrss5OuwI88884w1Z84c68ILL7QylVgH5PxeOJ979+71laQo8TnzipIIChYsKEJ4bkfnY7UdrM81FjuMZo0SG2o7lESTJ08en0+2ePHitNjhGe/Mp7JeHhj4MajGgQqmLI6DHlgnH+i8BzrurO/EefdaP/lkO/IGdehzwrFYpkyZo9JbjTNPhN5E6ZXEQAo7qVxEaZ599lmrdOnSVtOmTX3tNN2AtnT0jn/rrbdE0fnee+8VJxR1e8CekCbvn8HBxAJq95yfpJOy0MYt04g1zZ7ZeqMLsH79+oRsWzagA3IlGRgRPDOBnco0e7IEypYtK/+r7YgdtR1KutqORJKxzrxpR3LuueemelN8znyoyDgt6V5//fWQznug4x5LC7tU95NPlSNvUIf+XzgWgwnH+KdLa3Q+sZBej+NOi0Dax7HvJ02aZF155ZWS2v7aa6/5+qDHSvPmzSVl/oknnpAI1VdffSURd+PAEh2i/tDwyiuviL5HkyZNJCXULLxHphFrmj2UK1dObnVAHjs6IFeSgSkl+/LLL1MemQe1HfGjtkNJV9uRSDK2aMfUoZLSlGpwnPr27RtW6OfOO+909TNx3hs3bnxUPX42OvIGraH/3/mAcerZs2dEZ54+vUpi4Zyg/zsTdm+++aY1bNgwa/Xq1dLvvUePHla7du3kf6fdMALp1KmTLMFYtGhR0EFSNhDvgPyDDz7wdUtRokcH5EoyB+RMZLqlceGGM6+2I3bUdijJtB2rVq1KC42LjI3MG7EThE9SjalN5mISLKU+FgLfJ7BlnVf6yXvFkTdke4SeQcTu3buPqpcHjBWpgEA6tpI8UPV+4IEHpOXOvHnzrIYNG4o6/KBBgyS7qH79+jnq35XYwQ7HmmYPGl2LHx2QK8mAcQdCoIxD3Lrex5pmD2ZSVrN6Ykdth5IMypUrZ+XPn986cOCAJ/TGstaZN3WNXmiVRAswWn2R3oyzHa8oX7AWdl5x3r3syBuy2aEPJX4HRC1MTZ8pU1GSC5MoTLiYwZ6JJpEef+2111o33HCDOPlK7KABQJ/zWJ15HZDHB/veRDe9dF1QMg80Lsx4y410WSJ0RvhSJwKTD1o+RjxQbYeSSHLlymVVqVJF/sdX8DoZ68x7KTLPYBwHG0VVauKNOJ9TgkXdwWvOezo48tnu0HMM4rCH6iNvjNfKlSuTvGXZDTO/RObpm0taPDaC+vkpU6ZYf/75pzV8+HA5j2hr+fDDD6d6c9Ma40gy616gQIG4UmXTpQetV3vMFypUKNWbo2RRqn284MibCVbaf8ZqOzZs2KAis3H2mC9WrFgsb6EoGVk3n/GRea84aqTJInjl5ILi77yPHDnSp8jvVcc93Rz5bHXoGYTMmDHDatCgQch1jDNPnZCS+N9j6tSpEnEnlX7IkCEyULnjjjtk/9Pn/cYbbxSnE00NHkP1fvr06frTpKjmFegEAUyy/P777/pbRIn2mFeSiWlP58aA3NgO2g3HUkPLuJS2VwiNeiFrNN3QHvNKKmzHV2kQmfd2Rb8LkXmvGEzSY4m4hepNjNOOkfcXq6Mnvb+Sfffu3aV9lJuQKeCmSF66OPLZKIpHtJ3zgXrsUKCkbtZVEgfnMcJ3pAzi1DPIQ+gOZfvChQsHfQ1OPe3s6HqhpKbmFRCGJINiy5YtUg4RKstFCY7WvCrpGpmPR2sDqN9nMhBtFGxHOoyRvJjVo/tNSXZk3nZJQDNRZEVk3gupkKVKlZKoJ7XIOOX+ECmtWLGiT9SOwTqt6gJb0nEf59stAlvgcT+bHPlsi9BPmzZNUluvuOKKiJF5jlOiB0pioL87A5MaNWpYEyZMkLRLzr9QjrwBOxHu91MSH5kHrZuP35nnmqgoicZc0zju/vjjj5TbDhXQjB21HUqqBDS3bNni6Z2fsc48EVZabdGrGQfTCxARnTVrlrSpY5tMuvPMmTPFmSYybpzrUK3q4lVVZDIgEZMF6erIZ5NDjzNfr149yQAJJ9Z40kknSbq3iuAlDs5xxAgXL14sfd25YDiha9eu1sKFCxO4ZZmPmwNybTEVPRqZV5IJLYHNmCTejDNjO2LN6gG1HbGjtkNJZwHNRJKxzjyOfIsWLeT/gQMHWl6A+ldmhj/++GOfE++PSfUOB+nwbkTi3ZwsSHdHPhscemYVcR45BsNBGpFJtf/666+TtHXZBz3lTQqXkl5p9qDRtdjRAbmSrnXz8abZg2b1xI7aDiXZVE2TuvmMdebhwQcflNuJEyd6ona+evXqMoBEwApV6lic8Wjr2sNF4t2YLMgURz6dHXrzG5usisD7gPAd0V8i85EwzrxtkAUxAABWRUlEQVSK4CUOfguE7iJBDX0sQktKaDRVNrXogFxJ17p5tR2pRW2HkmwuSBNF+1yZPqNSp04daQEydOhQT/QtJNUeBeto6vhJx/dvSedmJD6eyYJMc+TT0aEP1D3gtwimg0CK/eWXXy4ph5FQZz7xcP47tQFe0PzIJNysmdc0++jQHvNKOkfm3Uyz/+GHH6wjR47EtT3ZBPtKBfCUZFNVI/PeoEuXLnJLn+a9e/emenOsxo0bi4opLaacEpiOHwkisk8++aSjSDwq+oH967PZkU8nh57fOfA3pj+5PzxPFsj8+fPl2HNCpUqV5FYj86kHzY/jjjsu1ZuRUbiRZl+2bFm5pTWdtqdzjhmMFyxY0NHEoqK4GV3j+njgwIGUptmjS4NNP3jwoGfHFl7uMU9WG91EFCWZzvzGjRulHa1XyejIvIlqM/CiVt0LLZ3oKY0439KlS49StQ+H01p2E6l96qmnHK1Lqm+0/esz3ZFPF4fe6THx1ltvSS18q1atHK2PYrq5eO7YsSOubVRihwvHkiVLrDPOOEN3o0uQ5eBGZJ42geZ3IcKmOEN7zCupgDEXLSTJ0own1d4N20HZlAnmENhRnKE95pVUC2guX77csz9CxjvzzOI98MAD8v+AAQNSntZkamXHjRtn9erVy+rdu7ej14VrExZNXXyskfhsc+TTwaF32jpu2bJl1i233OK4HzZRM3rhgorguQf71CxGy8P/Mf+F6A3HHsecE50DxRl79uyRVO94B+SgqtTRozWvSipgMrtmzZryPx1EYuGff/6xdu7cGXdWD6jtiB61HUqqqBmn7UgGGe/MQ/v27aW/9rp160R8LtXcfvvtkvKPQ+90oE7Ne7A+8NHUxccaic9WR97LDj2/pRMdBDJBfvrpJxFSiwZ+Y/j2229j3kbl6MGIWRhc4lj6P+a/cJyhscEkzLPPPqu70iVMmmyBAgUkuh4PqkodPTogV1JF7dq15fbDDz+M6fVkqZHZg10uUqRIXNuitiN61HYo6Wo7kkFWOPNEGjt27Cj/MzBOtaAUUTfS/4cMGSJOYmC6Pc899thjR70usA98sJrpYBD9jzUSn+2OvBcd+lC/u6l1NzBpwyQWHQoQgowGU6eN06m4AzVXLBs2bBAbRH9581jgQitBnP0JEyZYhQoV0p/AJdxIkzVodC16dECupIorrrhCbildIt0+VtuBI0+GZTyo7YgetR1Kqm3HJ598EpfmRiLJCmceOnfubB1//PHSy/2DDz5I9eZI6j8CY8z0PPfcc3KQ4MQbwbtQ0ThTJ41D98YbbziK4CKGF0sk3pDtjrzXHPpnnnkm6OMmJd50P+jTp481efJkOdaidcpNKnK+fPlc2GIFSpUqJQvnUNu2ba3rr7/e91jgQj22tqTztjNfoUIFudVSFOeQJWQmtBUl2UJWBHZ27doVk7ir2o7UorZDSRXnnHOOjBkQrfz88889+UPkyiZHzKQaeyFt9eqrr7bOO+88a+DAgVGp1nNQmdT61157Leg6RPXjqYv3Rx15bzn0TOJEOk7M87RjJJ0YxzEWFXVQZz4xMBFHuY2Sfkr2hosuukhuV69e7TtflPBs3rxZbkuUKKG7SkkqTI7WqlVL/v/oo49SajuqV68ut2RpMcZSIqO2Q0kVxxxzjC8679VU+6xx5qFr165i0InM4+im+uAgYkrPeXoVO1EmJ+LKwDFSaj2TFaxnovFGIM8/Rd8J6sh7z6F3qmC/cuVKa8SIEaKRgEMfLSYyf8IJJ0T9WkXxKm5G12iPRAYFKbvx9q/OBhAQ27p1q/yvzrySCuIZkLtpO1DIJjADXo30eQnK0tSZV7xQN/9RDBOBySC3lUWQ2kcdMVGxfv36iSOdShCtI2X6iSeekDKAUNSoUUNa2RFxddpzHof/5ptvtt57770czj/1+aT1R0IdeWcOPWUbpvVNMjADgEjMmDFDHPIuXbrE9DmaZu8uROGZwGOijcFgNFF5XkenCsW9PuduOJP8LtgAriPYAaN4qwSHVpd0k2FC3Q2HSFHiGZDjIEZTfuam7QBsB5Pz2A5KrpTQUBqBhoyb+19RYrEd+GKHDh3y6Up5BjvL+Pbbb+1jjjkGBTx7zZo1qd4ce8SIEbItK1assBs0aCD/u7X07t076OOffPJJ2G3auXOnPWPGDHvjxo22l/j777/tKVOmyK1X2L59uz19+nR78+bNSfvM7t27R/zt8+bNa3fr1i3mzyhbtqy8z5IlS1zd9mwFm5MrVy573bp1vvtOF16XLuzatUuOG269yBVXXCHbN3bsWFfer2/fvvJ+t956qyvvl8ksXbpU9lWpUqVSvSlKlnLw4EE7X758chyuXr06qtfWr19fXvfaa6+5si2DBg2S92Pcp4Rn1apVsq8KFy6su0pJCYcPH5bjj+Nw2bJlnhtPZVVkHsqXLy/t4GbNmiXRS+rWU0m7du2sF1980Xr00Uetp59+2nHk3WmqdTCYDQ4liKcRee9H6MmsIOuC35Fe88Fa1OXJk8fq0aNHzEIzKKqbVGIlfoxYJWnZ/veV5GKO69KlS7vyfpz7YM5/JTQmTTZZWUyKEuy6SKbjggULJNXetGBNte2INksg2zDljBqVV1JFrly5pExnypQpktmDbpmXyDpnHq655hpx5hctWnRUW7hkQ8ph3759pZ80wnaUAVDfHomGDRta06dPD7sOB100qdrqyKePQ89kjJmQwan3L6XA6CCCWLhw4Zje+9VXX5V02CuvvDKruxe4SaAIYSyihMq/cHzSto/BORNbTmDiywwK3RqQX3jhhT4hq507d8bdfzqT0ZpXxSvpsjjzb7/9tnXfffc5eg3OtmmN5pbtqFKliqTq0r+eFH691oZGJwIVL3DF/zvzTASm2nfMagE8g+m5vXjxYhHlSTWNGzcWZ5BIKir3TgjlyFerVi3s65gwCBaVV0c+fUXxTGtDOhhcd911Uo+KuGIs0EMT4Tzo2LGjy1uqKO7w1ltvWS1atBCtEdrFOB0QMiinQwPnqxsUKlRIsr1Ahawi73/Q6JqSSsz4h9pXU4cdiV9//VV0ZIieu3X80ioZhx40syc8ajsUL9XNL1myRIRvvURWOvOVK1cWNVEM+RdffJHqzZELBC3kGAxu2bIl5HqVKlWK+F6hvs/dd98dslWdOvLp79AzQOG4njdvntW7d++YVejfffddiTCSXXDjjTe6vp2Ks3RORNU4jpTg4MhzjDLIC9WiM9h+BSJgbqa0aqq9M3RArngB/4CJf2vgcPiXneXNm9e1bVHb4Qy1HYoXqFKlirSkvfXWWx1PBCaLXNlc+wCk2nuBunXrSlT1zTfftB5++OGg63z99dcxv3/79u01Ip/BDj0RR7IuypUrF1f/cnrTwz333CMlIEpimDZtmqSHB0Zknn/+eSmD4Tl6EWsv+tBRrV69esn/lCk5ubC6XfNq0AG5M7TuVfHK+G/s2LE+e/vHH39EfI3ajtSizrziBY499lgZsxFAOOmkkywvkZXOvH+qvVeceXNhofYyf/78El11iknzzPTU+uXLl+e49SqpcOgZnMydO1eOoVhbZnzwwQfWp59+KnXIHTp0cH0blX+hJGLOnDnWueee63vs22+/lVIbJmaYASa7gnTySNoY2QoTlGXLlpUU2EGDBkVc39S8um3rAoWslOBo3aviFZo3by6ZjrQ845oZCbfr5QNtx4oVKzxR8ulV1JlXlPBkvTPvlbp54OLSs2dP6UUdzUVj3bp1QR9nQiBTUuuZkLjqqqvkf265nwkOPc4zgofcxtO/+f7775fU45tuuimm99i6davVsmVLn5PkVk2xEpwvv/xSHPaCBQv6HkOQCYYNGyblMpTdMBM8fPhw3Y1BYNKKDiCAAGSkCFuiomtGyIryFDPoV44WH/zll1/kf62ZV7wQne/Tp48v1d4cm05KdNyEQAzXgH379llr16519b0zBSZINatHUcKTtc489cVEvkjP9NIADBVyHGza1RnnKhZwdp988smMiMjj6PqrtQP343GAveDQ8xvR3uK2226T21gmKLjQoYdANH3w4MExD7SbNm1qbd++Xc6Ll156Kab3UZyD4xfY9o8sIcTZaFcJFSpUsGrVqmWtWbNGd20IqF2rWLGiRNgGDBiQkgE5NbRVq1aV/5ctW6a/VYjJQmwVdqpo0aK6j5SUQ0cgxkc40pGi84maCGRSgRpcUNsRnN9//13EB0Fb5SpKcLLWmceImkEFzq1XYLBD3fw333xjlSlTRnqiRkODBg1CRuPT0ZE3rdeieTwdHHq3JijGjBkjadi0kzvllFNi2sZu3bqJsi81QJMmTYpZPE+JrmsAUXcDyqhE4xlcYgMMxYoVixg1ymZMG0agJCFcmnuiUmWBNo7mHPaayq3XUuz5zRQl1SCC+fjjj/uuo+EyNBNpO9BLAibRmVhXgtsOxutopSiKcjRZfVU1zg9RMi9BlIeLTL9+/ay77rorqtfOnDkz5HPp6MgDgmDRPJ4ODn2oiYjZs2c7Trsn2kULOjI4GjVqFHOtvak35nMR0FOSc0x8//33vvucl0QfatasmWM9HkNDQwkNpSUFChSQXs1MSgWD/WgmRRIxIO/atau0qVu5cqU1cuTItP+5ODbRdXDLudA0WcWLIDpcpEgR0d2g93wwmJzDtkAixk1cw2kny5jAifaH1yGLgYCUiabHi9bLK0pkstqZx4h7LTJvINpEDf0LL7xgPfTQQ1G9NpijmK6OPBCtNEIx/o8FKyFIF4c+1ETEU0895Sjt3qTXk+Ib6wDg/ffft+688075H60G0g6V5EDGDY7f+PHjJUUcnQwiRf5tk4AMHaLzSmjIJEH93193IBAzGKc+lbakibiWmPp9ziUnCtlehJIOJgcp8Wjbtq2vrjhedECueBG0LhDDC2c70KQ5dOiQdHchs8RtTjzxRAncADaEcrd0hHEnJWJnn3226O5gB91AbYeiRCarnXmvRubNRYbZTRSuSUuMJtoT6CimsyMPRKkDW3jxmNdr5sM59NR+de/ePez6pOyiexDse3I8zJgxQ1pkxJJejxNZv359mT3nlkkEJXkwUcPgsFWrVlbhwoUlI6NatWq+lplmEMP5b2oqldAYfZEJEybIwDtczaubPeb9oZ3jeeedJ/aWjCpEKRHHY9ItHVTuaX3KMThu3DjryJEj8tgbb7zhStmAKtkrXrcdkydPlvr5ULajZMmSOUqj3ISJswsvvNDavXu3dJLp3LmzZGgysW/ORa9n8lxwwQVS6mTshVuZPerMK0pk1Jn3aGQeGAhS+050HmGsSM5fsDZ06e7Ip3vNfDiHnsE+vw0XvVCtCHGyA6P0H3/8sdWxY0dxGGJRryeSj/I9Tk+zZs2s9957L2GDFCU4OE2zZs2yateuLe3piGgwOeMPjik6BqaLgxIa9hHnFvZu3rx5SROwCpyARRkbJk6caA0ZMsRatWqVdCN49913La8zdepUGXwzKEeMi7IBsogWLlwY93vrgFzxKpdddpnYBcSQg7UBTZRwpj8EbEyGHduAHSFzi9I3JtS8DtcyJkKYzKTU6YwzzhBbzOPxorZDUSKT1c68l9PsDaTYt2nTxrrjjjusJk2ahO0/T7TWX/guExx5r9TMu9FCLlSEnt+3Xr16YV9jxPF++uknSSlmwiZa9Xqig48++qj14IMPyv1OnTpJFI5UfSU1DugHH3xgrV692ho1apTUTfrz8MMPS7o2Ey9KeMhyQNk+VLpsonrMB0KZRJcuXaRE6r777vN1JiDS9tdff1leb5cIZIswgWiOOzLE4kUH5IpXIVPHROfD2Y5ETgSaSQW0khivkc3DAgRxvJg9Gsx2EBzgezCmcct2qN6GojjAzmIGDx5M7qN9yy232F5m//799iWXXGIXK1bMnjFjhmxzsOXuu++2P/nkE3nNzp07Zd2NGzfamcDFF19s58uXz54yZYrcsj+SRffu3XPsZ+67wfbt2+3p06fbmzdvDvo5gcuIESPsCy64wC5ZsqS8NtpjqG3btr736tu3r33kyBFXvoeiGHbt2iXHF7fJ5tNPP5XPPuGEE+zdu3fneK5Jkyby3IABA5K6TZx3Z599tnz2Aw88YHuZ0qVLy3YuWLAgx/7E3v75559xvfepp54q7/Xll1+6tLWK4h5r166V4zN37twydvKnXbt28lyfPn2Susv//vtvu3LlyvLZ7du3t72M2c6pU6fK/TVr1vj2Z7RjlUDKlCkj77V48WKXtlZRMm88ldXO/MSJE2VHXXTRRbbX2bp1qzjzOLEtW7YM6/Q988wzGeXIM0FhBpXGmee+mbhIxmcHLm59dqBDz/v27t076GdeddVV4qh89dVXUX3GTz/9JMc475ErVy575MiRrmy7onjJmWdyqly5cvL5Y8eOzfFc9erV5XHsR7KZP3++79xbsWKF7UV+//13n5357bfffPvz3HPP9U0kxsqBAwd87x3oKCmKV2CinGN0+PDhOR6vXbu2PD5mzJikb9PSpUt9545XnVkmLI899ljZRsYa/gEYHnv55Zdjfu/Dhw/befLkkffJlPGsoiRiPJXVafYVK1b0Kfh6vTcwNUhTpkyROirqm0mFDAb1t2XLlhWF53ROrfdKzXyiPztQ5Z70eUTvAvURLr/8cmmdQ309WgpOWbRokVW9enXr888/F6G1OXPmSMmGknoombj33ntF/ZfzlfM62EIKueIsXZZSJJg2bVpKUmVDpd5TAoCQ1TPPPGN5EewPlCpVSuyE2Z+mTCCedFmTJkuPaPPeiuI1vGg7SFlHEA+8KlJLmRjjZ4R4/dX+3bAdO3bsEB0PbBEliYqiBCernXl6ajPAQLhjw4YNltdB1fr111+X2u3KlStLPbypqzKOfK9evUQwxQygvFgzHu1npLJmPtRn/PDDD67ti2B96J977jmfOB46CIsXLxYn/5ZbbnH0nmTdvPzyy+JIcEFEGXf58uXWNddc48o2K/GBSj1CY4ijcSwdOHBAfrNgSzqoGXuFG2+8UW4RXjJKyihEG12UVE1wmsk5xPn4rb1a88ox6U/r1q1FnAvRzVivkf718onqJKAobtkOWrbu3btX/kck1hy/qXDm/W0HE/Ne1N3wtx3+5zcTmHny5JEAFJ0yYsHs+9NPP10ERhVFCU5WO/NEvUx0PlZjk2wQaqEHPermKCXTzzPQkZ8/f76rji6fhSCSk/7nifgMotWBkepA1f5EEeyzQ6nMu+3Q89mIoj3xxBNW06ZN5fd1AgMQZsURT2TGnAE5g/FUDUaUozG9yK+99lqZtKHXPE57qEVxBucQ5xKD3o8++iiHGjVRYXo6pwIm04oVKyYTxx9++KHl1QE5XRb8YZtr1KjhcyZiQcXvlHQA4TmukUy2MYYyxy72F5HYQIHSZAadGM/9888/vu1KB9tx8skn+zqxxNoRQ22Hojgjq515QHUYcIzThT59+ohSMlF50r1J3fR35I2jGyrSHU2UnXVQUg+mrO4WsXxGMvs2myh5sE4Cbu6LQIeeQX+jRo0kus7vRYQsEgxEcPyJ6DNZRYsb/ieNW/EO/Lb0LaYdGL95wYIFU71JGQHHfMOGDXOky5q2cLRNShVErBo0aCD/B7Yg9HJkHmrVqiW3TAjGwo8//ii3HO+K4lU4R02r10DbQbDEyfU3Udxwww2etR1ffPGF3KrtUJTUkfXOfOPGjdPOmeeiQ1uy22+/XSKwpJGShkQ7EJxO0rIDI93cxhJlT0a9eqTPSMaEQiSYHEGLINH7wjj0tIyrX7++VbNmTWvSpEmO2seRGogjg4PI+mgsPPDAA5ra6kGI0PI7k4aoJCZdlgE5JSYDBgyQ+2SqpBLjzM+cOTOpk5GR2L9/v5R9hBqQY4PiceaNfUxmK1FFicd24DSTOcVEPtBu0gu2g/IhL2Vqkflnxs7hbMeSJUtisnlqOxTFGVnvzF955ZUSzUknZx6YJX722Wet2rVrWy+88IK1ZcsWceZNRD7Q+SWySy/zaJ1iU3caSODALJ6a+kg18akUwAu2PU73Uax88803Uh9Pyt/QoUNF1yESf/75p6RsU++XP39+a/bs2b7ZfMV7lClTxleXqbgLmSycM0SEmbTcs2ePiECS5ZJKSDllko20f85xr0CJGYPyokWLSlp9ICbNft26dTI5Ei06IFfSBbJQChUqJMc5JY049BUqVAgpOJzM7aJE6NdffxXtG6+ATWAykDEHQq7BdJ4QcN26dasvQyca1HYoijOy3pnHCBHdRoSKCHe6gKATCuUjRoyQ7WfQijheOCcXJfNg4PjhiBtxPeOQE7W/8847j1o/sF493pp63osoZeBj5jNSKYDnpH6efeTkOzuZ8KBMgkkXBtBEB/gtI4kZMuBgUmrp0qUyEMGhr1u3rsNvpaQCJt6o6Y7FOVLCQ0mJEXo0No/SpFSLrxUoUMCqU6eOLzrvxTTZYPsIrQHSjAEbEw1E4xjwg0bmFa+DyBoZcf624+mnn5aATyohg4vJeq/ZDlOeQ4edYGUI2GJTSx9LZo8684riEO34978e7scff7zdv3//tNgd9Or17yNPL857771X+hG++OKL9rJly8L2oXeyXH/99UEfD+xR7kYfdifvQc9S/z7zl1xyiZ0q2AfRfufu3bvnWJf7gUyaNMnOmzevXb9+fendGqwPfSAHDx6069atK+956qmn2itXrnTxmyqJ4tChQ/Y111wj/c+//vrrjNnRqewzH+ocrVmzpvRM9wKDBg2Sbbriiitsr3DXXXfJNvXo0SPkOnfeeaes061bt6jee8eOHb7fYd++fS5sraIklnfeecd3zFapUkXGV17gjTfekG2qVq2a7RUeeugh2aZOnTqFXKdLly6yDmPUaNi7d6/vd2DMqyjZxi7tMx99D/dOnTpZffv2lTQmr0fkqYtHedW0WWJGlHRsosMPP/ywNXLkSEkRi4dQUfzAGl83UuCd1Mx/9tlnOZ7jsWTWzPsTqs6ZDIdgRKr5J3qFiCFt5xDgmTx5si+1PpjKvYHXIYSIUixRP9pe0bJQ8T5EWUhPJCqK0jlp90RtybAIXIwisOIcSkxMlNkLUfnA2leiVGTUeF38Lt66eWPDEb/Lly9fXNupKMnguuuu813juS6nUvjOHzL2sGNcM0hbz3TbsX79el9mED3sFUUJTe4wz2UVtP8aO3asKJa/8sorVro48gaMPMJ3KDZ36NBBapVwDhFPC8UVV1zha9/klMBUSac19dG8Z+Dj4Zz9ZLSnc7q9tKvDQTOiOTjrbCMlHMHgOVoj0l4Q1VwGDrQsC3Q8jENvJjSKFy8ut88//7yURjDYeOeddyTVTUkP/Nt8IWi0adMmWYLhFUc0naCN1Ntvvy318ia13QswaUPKOjXzlNQ0a9YspdtDuyvTltXJgJx6XTpmONHxAE2TVdKNk046SQRocZi9pDuDTWNcxziAYAsCyKmEYAJBBqe2AztDC1b2rxPUdiiKc9SZ/39oDUX9OWrgROlxmNPFkfeHunWcTVT6f/rpJ+utt96yNmzYII5mINE68iaqZCATIDDibB6Pxsl+7733wr6HV2rmA2vng313Hrv55pvlOwV73h8EbRC2+f7772V901khGIEOPbemTp/2c6bOT0kPYu27Gy1k7DDp88svv8hkD10wAvUpDGvWrJFJzRUrVohY0csvv2x17tzZSldatGhheRGyLXDmOYdT7cwzgYRzTtQ8VLcO0+saG0TmGseHGaBHQgfkSjrCNdyrtgO7wZJqZ3779u2SXcRkc7i2n3RaYhKTcShjWDIfnKC2Q1GiINU1AV6jXbt2Ui/u5Rp5J/z888/2hRdeKPXlEyZMOKpmO5qFurHAeu9Qde6BNfWRcFpz76WaeUPv3r2Dbnuox/2XVq1a2UWLFrXPOusse9WqVY4/kxr6oUOHisYD73P//fcn9Dsq6cv48ePtPHny2KNGjbLXrFljd+jQwS5UqJAcQ8H47LPP7K5du9rjxo2zTz/9dPvll19O25p5L2Pq+a+88spUb4o9b9482ZZzzz034rqNGzeWdZ977jnH73/LLbfIawYMGBDnliqKYur5GQ+lmqVLl8q2lChRIuK6bdq0kXV79erl+P3btm0rr+nTp0+cW6oo6YnWzMcBPYlJBwpVM+7ViHwgZ555pkTeifYS/UGllV6fo0ePllKCaFi5cmWO+0ScSekPRrR9s53U3LtdMx9PG73AGrZghFKfZ7+TKUFEfcKECTKbTUeCSpUqOf5MovlDhgyRaNrll19uvfTSSzFvv5LZcGxQckMZB8faq6++KurCo0aNCro+KZxE8W+99VZpoaYkBpOSSu1rqvvN0yYPiJxFIpbaV42uKYr7toNWypTIpJvtYAzqFLUdiuIcbyh7eAjqeUi3ZxA8d+7ctHTkDaROjhkzRhzvfv36WQ8++KBcDEI5oU5S6w1TpkxxJfXdSQp9vCJ7/s57tG30wjn+oVrVmRaBgdDrevz48VJTTzs7amaLFCliRQPbS4our+MYJX1aSV9w5mbNmmU9/vjj1t13353D0aZtHcc4PcCjBS0L0qHpuW5AW4H7y5Ytc237Dx48aP311185FiU82HN6L//5558x9V52E1JfoXTp0o4H5LSnczIJgRYEJUSgbekUJX4ohaEklMn8b7/9Nu1sB+OoQ4cOOXp/M74L1r9eUZScqDMfBJxd+hRff/31VpMmTazNmzdb6ebIG6hnwgHkvRBnw6FcsGCB1apVK0evj8aRiLZW3kmP+Xhr5gOd93Cq8pFe6+/4GyffqaosxxS9xclyoH/8sGHDJFsiGugvO2jQIPmfCD+1Z8FU7pX0gGMBMTR0Op599lnpQuEfuWCyh+dx9qNl586dcu4imuQP992cAGKSkAlQs5QoUcK1985UyHpA+NJfDTrV0TUnA3L6RSN8x7HlZCIVu4TTgZ0rVaqUK9urKNkME7J0P0k320FmWKFChax9+/YdlekZavzLYvQ6FEUJjzrzYYSjGICgBl+hQgWJpoZSbveqIx+YQkuk7qGHHrJ69eplrVu3zpFSq9NyAxyRUKn34XCSQu/E4Q/13pFE6CDYwDRcOzmccuPkk/kQCtLqKduoUaOGtK1r1KiRtXr16pDZDuHYtm2bpEsDGRYI3oVrW6d4G34vouQce0z0cGwFRjs5XnCEpk6danmVRx99VBSKzZKKic90TpdNpwE5JVRcR5ym2hu7SjSRTARFUbLTdjAJwTjIqe0wGT2Ui9J2V1GU8KgzHyZFndp56pKZTezRo4f08CaqnW6OvIGoCpE00mz37t0rfcnvvfden5GNh2hr5ZNRM+80DT/YJE2o1z788MNhHXh/iIzi0HPRmz59uvXmm29aJ598shULXbp0kbRrjkH/SRN16NMTIvGc60z2kKnRtWvXo9ahvh0FenQVooUyjGOPPVYUh/3hPurCbkaZ0XHwX5T0G5A7qXuNtm5ea14VJfNthxNnHtR2KEriUGc+DNQmffjhhyIah9NENJtoGpG0vn37SrTVzZTVRDry/hDNRXwJB/G1114Tx56WJ/HgtCYysAY9kTXzTreJ+vXA2vlQr3Uq/kRWR58+faybbrpJWn7F06+WGnkE80x6fWCPZ3Xo0w8yXsj4eeCBB8Kuhx0gKyOWyTVTUuNfw8z9yy67LKZtVhIjgpcqdu/eLSnzsQzInQhZqTOvKIl15lMloIn4nsnCimUiMNJ2q+1QlOhQZ95BzTlp1Tjy999/v6QLMRBHsIpU5zPOOEMW/u/Zs6c1ceJE64cffojayCbLkTfgEBLh5TOZtPjggw+kJjKWKL3pMRpJIT5YDTqp8uzfwPXcqJkPJVAXjMDa+WDb5QSOBcifP7/UuON8xxqNN5BNwfFE2rWplwtEHfr0Aq0FJ10MsD+xispRUoOYJ8cgE0Jk4TBxZ8o1OA9Jk/fPUKFkg4X/t2zZIv+vX78+ps9XQkPGBb8txwG921MZWStcuLDjjApzfWCwTaZQOHRArijuw3iLyVrKmsw5nGxw5Mk8JDPLaaYXJTqU22DzIgl/qu1QlChJdR+9dIN+zS+88ILdsmVL6c2bK1euoH3ECxYsaFesWNG+5pprpF/mo48+ag8aNMieOHGi9OekZ/yBAwdi7iPvJkeOHLGnT58u28u216lTx+7fv7/dunXrmPrS04feaT/5wM/gfjBi7TMf6nODLXfccYc9evRoX497/nfyOvZX3bp17WOPPVZ6rtLX+59//rHdYP369fK+fM7nn38ecX16iPNbbt682ZXPVxJD4cKF5Zjx55hjjrHbt29/1HF/xhlnxPw5gwcPtkuWLCn95nkvc2xD7dq1xTYZsD/Bjm/Wc4r2mXfOOeecI/t3zpw5dirAlvL51atXj+p15513nryO14ejbNmyst6iRYvi3FJFUfzhnOXcYjyZCt5//335/PLly0f1Oq5BvG7MmDFh16tSpYqsx1hGUbKVXbt2yXnAbSTUmY+TvXv32suWLbOHDRtmd+jQQYwsA2enDmSNGjXsl19+OWWOvD84oG+99ZYM/pmkuPPOO+1p06bZvXv3jtqhx2lg4bVmiea1wRxyf2c+2HrBcOqQB5uQcDIRcP7558v24JwxybN//35XfxN+Az7n+uuvd/wadei9Dw7yiSeeaO/YsSOkM79p0yY7b9689g033GCnC+rMO6d58+Zybvfr189OBVx3+PymTZtG9Tquc7yuW7duIdc5ePCgb6J769atLmytoiiB44KePXumZKeMGDEi6nEJdOnSRV53zz33hFzn8OHD9gknnCDrrVu3zoWtVZT0JJrxlKbZxwkiVaSMk8I6fPhwa/ny5daePXukTprWUqS4kiZNij5t7khTJI3eCMbRs5fadYTSSGtNJQhmkXpLitOLL75oTZ48WbaZVC4ej4ZnnnlG9stTTz3lW5wSWAsfT5/5WPsbGyX7wDR9SgAopbj22mvlt2ffkM5Mz1XE8QLr2ePhp59+kuMHKOtwiqbce5/WrVtLzTJ6DQhsBkKa+3333Sc9eVlXyTxSXTcfrYBVNEJWlHWg0YAStZuCi4qiZLbt4L25JjIejfb9FSVb0X4xCYB2UtQ1mVryYCA8NG3aNKmrfu+990RkDycR57Fbt27iKKYK6qA6d+5s3X777SKQN2TIEHEsqfNE3R8nGiX8cPC9IoE+AJMegaA5QP26qZsP5ZB/++231pNPPin/I0po1ue1bCOvY9/GCu9BS8Kbb75ZPosatffff18cfepMaRHHJI2pk3cbJlRw5urWreu7CEbr0JsuAMWLF0/INiqxQd3622+/LTYAIbzrr79eHqcHL6J4PM45h+Bm8+bNdTdnIKlWpWYCMp4BORPX9JEPNoFpBDvr1Kkj2gCKomSO7YjXmadF759//im950PZjlq1aslYWlEUByQlV0DJQWCN/GeffWbXrFnTl7p95plnSnq7Vzh06JD97rvv2rVq1ZLtK1q0qN2qVSv7ueeek1R0UtL9U88bNGjgOJ3d1F+GSnUPVTMfav3AbYln4bv9/PPP9jPPPGOfddZZ8hi6AqSY7du3L6H7/I8//rDz588vnzl37tyY30dT7r3L7t27RXuDdGRS7AOXJk2ayDrphKbZO+fXX3/12RonaXRuQ4lQLDX7aKyceuqp8tolS5YETZOlVIvn33nnHRe3WFEU2LNnj6+MZdu2bUnfKZdeemnMNftlypSR186ePTuobUGLiudHjhzp0tYqSnoSzXjqGP44cfoVdwilWs/P8O6770pkHqVPouNErcuWLeupXc+M6siRI0W5/vfff5fo74033ijfBXXT8uXLy3qk2LsB+8q8X758+axx48ZZLVq0sPbv328lkquuukp+E1oTUhJBdLRDhw7S1isZkabnn39ejoWKFStaq1atiuszUcsmQo8SvkbovQdZH7NmzZJIKanJJUqUkEyTUJ0LvAzK+yeddJJksWjP+cjwW//888/WRx99JFlPyQLbRgo86axkIJ199tlRvZ5sJcqwyFwKLEXiu9SuXVt+f1q3YrcVRXEXMj8pZ+HawfUimZx22mkyrlixYoV0QYoGSjYZP1I6SDmmP5QN0FKVbB9sB9cSRclW/opiPKU180kkXPs5nLVmzZrJwJ606oMHD0qqu9fAuRwwYIDU948dO9YqWbKktLijrveJJ56Q1GEOQOrH3YCBppPaeDegX+qZZ54p/y9evFic+KFDh0qf7zfeeEP0DpLhyJNaP3jwYPkfPYV4P1Nr6L0NafboLlDOMmzYMGkXl46OvJI+6bK0lcORx7Zgw6OFFFjAoQ+MBzBQh6ZNm6ojrygZZjtob2raacZS025sx9SpU2XyOpjtIECkjryiOEed+SThtI88M5IM6KkVmjFjhjV9+nTLi7CdRMjJJqD+f86cOdYNN9xgTZkyRcTh6G9NdJsZ4zvuuMNatGjRUREcJ33cqXuPVcQuHA0aNJDtoobLzHgxCUGN8qRJk+Q7zZ4927r77ruTflHh8+njihPesmVLV95THXpF8R6pErIy9fJMXpIFFi3Yfq4BXNPmzp3re5waeq4JTu27oijpZTs2bdokt4yLTj755Khff8stt1gFCxa0vv766xyaRv/8849kXoLaDkWJDhXA85Aj7x+pIyKL0BoiaziYXk5VZDB43XXXyUJEGREvJiGYjGDWmEjzm2++KWlhONGIx11xxRXiqCIeZ5TjA0E53ojaMRFgotWhYH2iRP7v17VrV8kmIF2eASyiYqS1ItCXK1cu2aZ77rlHZoJJ5UdBNZWw/S+99JL8j5q5m+r4KornHTgv6HZBKQ32gQgp50WlSpVkMqxy5cqp3kQlg6NrsQpYGbDbHTt2FJFO0mWx/RzD2H1SAon2J7NsQFGyjXS1HaeccopkotHhiGzOxo0by7iL6+H27dutIkWKiD1RFMU5WjPvMUfeQHs7nHrS2VFsp3VdOkK5AHX21FaZhRlZWm/hTBcrVkwi4zitpUqVEkPODC37CyVkZn/JUsidO7f11VdfScSchdcSBUJfgH3FhYUJD1Li+TwcdtLBWJfJBNY/99xzpR7LLKQy58+f3/IStGwhDY0JEiYecMDdRmvoUwfHK+3oPvjgA99jJk3Zv5wCh55Wl9RUpxNaMx8dnOPYPewbdiyWKHksPPvss1bPnj2ttm3bykRrrKn62F3sLOn2ZGI1bNhQJk4pFeEzFEVJDGgW4RgDyvDJyiAkqELHFXQzyCKMBSb8sB1//PGHpNbzXkTsyfDs1KlTxMCNomQDf0VRM6+ReQ868oA4ERFahNeoSUc0JB17bjI4Nc6zAUceh5v0MJwbHPCtW7fKjO/SpUvF2YxFl5ELGxEjJghIn+d/nCFmsIl0es1xD4TvzCAY0CBIhCMPGqFPDRzfHJdEH/iticQjHsQEFrWDTDwRZWGAQ+tHNBqWLFkizp6SmWCfOA4YmGMT/e2kl6NrULRoUdF16du3r2SSMbmKaBVRNq5XiqIkDuwG1wbGUAQ6EJ1MF9uBg0K2JeMdlscee0xKC5nQpm2roijRoc68Bx15AwJC9Hkniofq56hRo6xMAGE5nJhQKqhE5nHocfJ3794tkXUeY7BIb2PS4YnkE8064YQTxGk//fTT5X3TGerFEN4jw4D0s0SiDn3yuf3228XZQTkcEclQCsSUgOAcrV+/XnQd3n///aRvq5IcGLwy2bhgwQKZyEmWMx9rj/lAEDpFuNHU0ZYrV07uk1WmKEpiwXbgzGM7kuXMu2U77r//fuvll1+WLEpgYmLgwIFRq+MriqLOvGcdeTPQo64IZx5RIVKPvB5ddgOcdKLrLP6YdPnrr79eUu8zLZ2G+n4g/TUWheloUYc+eXz++eeSfoyY46effho2JRJdCUotaPu4cOFCKU1JlpOnJB/jzCdTyOqHH37wdfCIBwSwGID36dNHWnei8ZKsUgFFyXawHYgOp6PtYCzLxB+ReTJ5unXr5mltKEXxMqpm7zKky9IXPF5H3kBaLr3mqaf0V/5UMgsyL8hE4Ld2q61fNA792rVrZbJESQwTJkyQyTki8k5qG1mHdUnH57VK5mIiUckSsqIlHdE8cCOCTt39999/L2mz6sgrSubajsOHD/taBbthO8g+JQONTER15BUldtSZdxkixyi1u+HIAw4AgyWIVahI8TY40jhuMGjQIFcV7J069FdeeWXGZTt4CaLrRDHJKnEKafjURRLVVzJflZpJYAbLicYMxtEYQa9BUZT0th3ffPONtX///oR/HuU0aB4xRklG9qCiKM5QZz4BuN3ezIgJkXJrIipKZkDkFWVYNAFoj1e/fv2UlTYoiYPIpRl4RRt54bVK5oKGAtofRMyNo51Ivv32W7nVunZFSW8oRUSIkklABDSTZTsoF0t1G19FUf5Fnfk0AGGQunXriuNHGw8lM+D3fOSRR6RelvRUxGCUzITWIrFEQXkNr1UyFwbFVapUSVq6rDrzipJZApqgtkNRshd15tOEdu3aye1bb70VU9s2xXvaCh07drSef/55uY8jH6+gjOJd6MUdS00gkzy8VslszIA8GUJW69atk1uNzCtK+pNM26ETgYriTdSZTxNuvvlmUf9ELIRe7Er6Qko9kzOvvPKKzKyPGDHCuvfee1O9WUoC0Qk4xStCVjogV5TMQW2HoihaKJsmFChQQJQ/EcHr16+fNWPGjFRvkhIDBw8etFq2bCmdCUivpWyiRYsWui+zACbiRo8eHfVrlOwZkC9fvlwm+xKlYUFGkInMly9fPiGfoShK8m3HypUrrQMHDiRUQNdMBKrtUBRvcYytIaO0AXEkWt4x2Js3b551zTXXWNkErdNmzZolInHpqLxOL/nmzZtbc+bMsfLkySMtx2666aZUb5aSpC4XZGFEC+aZ1yVD5dytY5y2etT5n3jiianenLSB3xd1efYb3QsuvPDChHwOAqp0WsF+IrinwpeKkt5wjTjzzDOltS0iyXXq1EnI5/z2228+3Zfdu3dLgElRFG+MpzQyn0agINqpUydpY/bQQw9JSqYOxtID6tmaNWtm/fDDD6JcPWXKlKybjMlmaOMTizOvZAdk6dDSdPr06TIgT5QzbyJrKOjrtUNR0h+uKwgkjx07NqHOvMnoKVGihDryiuIxMrJm/qOPPrIaNmwobTswdDhO/lCvzOP+i5P+z4sWLZKUJkSpypUrF7Tv+9ChQyXyQarTJZdcYn322WeufrcnnnhCek/ThmTkyJGuvreSmFnzwYMHW5dddpk48jh1H3zwgScdeWbbO3fuLN0TEGurUaNGxB7nP/30k9WgQQOZoKBffbdu3SRzJNrzJtOhP+/GjRtjXpTMhwE5MCBPFFovryiZh9oORcluMtKZR/2ZVj841qHAeSctySzjxo0L+54MqHFaMJpfffWVOD133nmnNXfuXN8677zzjkTMe/fuLZFYtuG6666zfv31V9e+28knn2w9+eSTPsde21Z5lz/++EOEC+kj//fff0tKPdkUTPJ4EY7n+fPnSx3/119/bV177bXW1VdfbW3ZsiVkajDnBN8NUUY6LeCoc1xGc94oivLvgHzx4sVSUpQI1JlXlMzDROM/+eQTKZ9JBGo7FMXD2BkOX3Hy5Mk5Hmvbtq190003RfU+3bt3t88///wcjzVv3ty+7rrrfPcvvvhiu2PHjr77hw8ftosVK2b369fPdpO///7brlChgny3bt262dkC33vKlCly63UWL15slypVSn6j4447zh44cKB95MgR26vs27fPPvbYY+0ZM2bkeLxatWp2z549g75m1qxZdq5cuexffvnF99grr7xin3jiifbBgwcdnzdK5rBr1y455rlVooPrxcknnyz7b9myZQnZfXXq1JH3Hz16tP48ipIhMLYoXry4nNvz589PyGc0bNhQ3n/o0KEJeX9FUWIfT2VkZN4JpP6SFowqJ23BEPcInOk0vd1h2bJlEqX0h6g7jwPRyRUrVuRYB9Er7pt13ALxohdffFH+p37ezJgqqWfr1q3WbbfdZl1++eUiNlW2bFmJWhOd93LNNKnxRNoDlXBJt1+yZIn8T0YIJSQGjutKlSpZp512Wo5zAtGONWvWODpvFEX593pRu3Zt3/UpEWh0TVEyt24e1HYoSvaRlc48Kfa0iFqwYIH13HPPWR9++KFVr169HIrR1DafccYZvvu//PJLDqcFuI/jsn//fmvnzp3y+mDr8Fq3YXtJgyYdk7RtepVrY4LUtpz7z3/+I5NDpKlzcb3jjjuk3CJRYlZuUrBgQanrf+aZZ2RCgmN5zJgx4nRThgIo2TI5EemcMM85OW8URUlO7SslWea81NZSipKZqfaJsB2MbzZs2CD/V6hQwfX3VxQlPrLSmb/11lutG2+8UaKKjRo1kp7tCH35z2ji7NPP3avgLL7++uvWpZdeKo7RXXfdJc49QltKcqFdHsfSI488Yu3Zs0d+k08//VQECtOpPReTEKbNDWJ1gwYNslq0aCERQ6CTAhNgiqIk1pknG4Zsr0SoUSMMm052SVEU57YD0WXGIW6CeC8T/Ez6+we5FEXxBlnpzAdSpkwZiTquX78+5Dqnn366tX379hyPcZ9BEanIvJ72QsHW4bWJoHjx4jLoI+We9Oj333/fqlixogj/HTlyJCGfqfwPRA3Zz0SzEXj7/vvv5XdGBO7jjz+2LrroorTbVUTdyVJhILB582YZFJD5wfkRzTlhnnNy3iiK8i/nn3++XEsQsYrUSSJaNMVeUTKX0qVLSycaSuYYgyTKdni5XFBRshV15i3L+vnnn6VmPtyMI05bYFQS5W8ehzx58ljVq1fPsQ4ONffNOomACQQU9FetWiV9ilHyJ4LKLO27774rCuJuz9JmK2RAkLFBmQbRLfYz6rFoGHTv3t367rvvpF7eRLLTlfz588u5gBo/qvOo8AeD4xrVe/9uDZwTOOrnnXeeo/NGUZTgdfO0sHQTzlXQFHtFyezovNoORckuclsZCM6rf5Sd9lg4tfRnZ3nqqaesW265RaKGpA/hiNH/GmEuA04Z6cYm1f6ee+6xhgwZIuvefvvtYiwnTJhgzZw50/canOq2bdtKjfTFF18s4nQ41+3bt0/4dz777LOlVmrYsGFWjx49rI8++kgWA84Z67DwXfnuOGtMYrD8/vvvvv9ZqGemdziOnbk1S6FChayaNWtKWj9ObaaDgN3AgQOtadOmWQcOHPA9TvS9ZcuWVvPmzTMi9QzHnTR7BvucP/SMZybeHL8c/5MnT/Y55/z+OO1t2rQRvQDqcR9//HGrY8eOkqbv9LxRFOVfmCycNGmS9cYbb1iPPvqolTt3/JdpzmvOXahVq5bubkXJQBjD0h6WoAPj3EBB21gxtgNhX0VRPIidgSxcuFDk/AMXWtLRguvaa6+1ixYtKi3DaB/WoUOHHO21oHbt2rJ+4PtWrVrVzpMnj12mTBn7jTfeOOqzBw8ebJcsWVLWoVXdJ598YiebDRs2yHe69NJL7VNOOSXovnBrqVSpkv3www/b8+bNs/fv358xreloEzV16lS7Zs2aOb5v+fLl7aeeesr+7rvv7EzjnXfekeOaY/f000+XNot//vmn7/nevXvL+eLPpk2b7Hr16tn58uWzixQpIsfCoUOHoj5vlMxAW9PFz969e+Vcwt6MHTvWhXe07c8++0zej/N09+7drrynoijegpawJUqUkHN9+PDhrrzn2rVr5f1y585t79y505X3VBTF3fHUMfxJ9YSCkliIwFPTTbSVWxbU908++WTrlFNOCbpQz0zdJgvZBeaWZcuWLZIqTSs+/8OHWeAbbrjBevnll6We322o30Zsrn79+pLanghQbUXF/YUXXvDViVFC0bp1a+u+++6zqlWrpjVjihKmFOWkk04S5XQVWYudPn36WL169bIqV64sWWXx1qk+/PDD1ksvvSRZROPHj4/rvRRF8S5kEXbu3FkyMBnDUIoZD71797aefvpp0QZCLFpRFO+Np9SZV2KGCQFE90jPnjdvnrQ0Aw6+wYMHiwPsplhKIp15RGMoUaCswrRv4nuQJk6P+GwoJ1CUeFFn3r0JWNqjUjJGSQo2L1bQbuG9mISdMmVKSA0MRVHSHwIunO+UTr7zzjtWs2bNYn4vgjWU2qEHRJCjVatWrm6roijujKfSW6lLSSmoLtPmj9pORASXL18uWgEceGgO3HzzzTnE0bwKWgNVq1a1HnzwQXHkySqgQ8BPP/1k9e/fXx15RVGSCllTd999t/yPDYqHxYsXiyPPoIB6fEVRMhd0jQhAGNsRT/Ltl19+KY48WZe0c1YUxZuoM6+4AhF41PxpidK3b1+JnBMFotXSe++958m9jLPOrPWVV15prVmzRsQRX3nlFRFFRMxQ04QVRUkVXbp0ETuKMz58+PCY38ek1TO5aoQpFUXJXOi0g3AxzjjlNbE69MZ2NGzYUHrMK4riTdSZV1wF5eXHHntMeiRT70kqPp0DUDwn7csLoEhPTSrpY7Tvox0U9fBoCZBWT428oihKKqGbyv333y//E6VnQdPDwACdzhLYrGuuuUY6ldBn+t5775WuEWQZffHFF2LjoEWLFin7LoqiJA90j7p27Sr/c0umJLpH/raDbkd0nkEBnw42JUqUsDp06CAlk9u3b5eJAOPMq+1QFG+jNfNKwmDgiXAKqV7UbdIOj7r0xo0bp6RmftOmTdZbb71lvf7669bmzZt9rVao769SpUpM26Qoyr9ozby7YDfR8UAMjwH4WWedJSKcDLxnz54tKbBOOPXUUyXV3o02d4qieB/sBWLEtIU9fPiw2AyyJ5nwQ+uIbEQnkKGIc+9WmztFUZyhAniKp/jkk0+kV7lRhye1HQeaAWainXnEYOjZTO9VauP9o17PP/+81Py7KdKnKNmMOvOJYc6cOVbLli1FGM8fUl8Rpbr00kvF0Sf6hr2jLzTrnnbaaaIBQtmQRtcUJftYtGiRdLEI1C8iDR+bUqNGDat06dLW33//LSWRLDt27BDbwTiJlH3Gb4qiJBd15hXPQWr7M888Yz333HMyS0waGA59NM60U2d+//791tKlS61x48ZZEyZMsHbv3i2P8znUx3NhIjuAi5miKO6hznziwDn/9NNPJRq/ceNG69xzzxUHPVgtKxF97GyiWngqipJedpmgCrYDTSBKcpgERBQzELUdiuIN1JlXPAs1nDjTq1atkvsopJJ6zwxwrM486vk479SAsVCvz7qGMmXKWO3atZO6MVLMFEVJDOrMK4qiKIqixIc684qnIZ2LCD2RepxuIubnnHOOdcEFF+RYaH3nX/+1bds2ibbj+FP/uWHDBmvZsmXWypUrZTbZnzPOOEPaMOHEUxevqfSKknjUmVcURVEURYkPdeaVtGD16tXWXXfdJQ55MBBsKVeunDjxtJHzV2MNpGzZstYVV1whC8470Xh14BUluagzryiKoiiKEh/qzCtphWmD4r+sX78+6Lonn3yyRPEReyJlHmVnnPdixYolfbsVRcmJOvOKoiiKoijxoc68kvZQB0/6PO3kcNRx3GltR//kWFvTKYqSWNSZVxRFURRFSd54SpvOKp6EA9ikzRv8Re0URVEURVEURVGymVyp3gBFURRFURRFURRFUaJDnXlFURRFURRFURRFSTPUmVcURVEURVEURVGUNENr5pW0gVZzp556qracUxSPYtu2T7hFURRFURRFiR4zjjLjqnAcYztZS1EURVEi8PPPP1slSpTQ/aQoiqIoihInmzdvtooXLx52HXXmFUVRFFc4cuSItXXrVqtgwYIJz6Bh1pqJAy50kdq2ZAO6P3Rf6LGh54raDrWjel3JjOsssfbdu3dLe+5cucJXxWuavaIoiuIKXHAizSC7DRdUdeZ1f+ixoeeK2g61pXpd0etsJo07aNPtBBXAUxRFURRFURRFUZQ0Q515RVEURVEURVEURUkz1JlXFEVR0o68efNavXv3lltF94ceG3quqO1QW6rXFb3OZuO4QwXwFEVRFEVRFEVRFCXN0Mi8oiiKoiiKoiiKoqQZ6swriqIoiqIoiqIoSpqhzryiKIqiKIqiKIqipBnqzCuKoihpyzHHHGNNmTIl1ZvhGc466yxrwIABqd4MT7Jp0yY5Xr766qtUb4onyPZzJ9u/fyBqO0KjtiMn2X7uHOOx76/OvKIoiuJphg4dKgPN448/3rrkkkuszz77zMpWtmzZYrVu3do65ZRTrHz58lmVKlWyli9fbmUDH330kdWwYUOrWLFiRw2mDh06ZD3yyCOyP/Lnzy/r3HbbbdbWrVutbNsXsGfPHqtTp05W8eLF5Tg577zzrFdffdXKNtR2/IvaDrUdoLYj82yHOvOKoiiKZ3nnnXeshx56SNrBfPHFF1aVKlWs6667zvr111+tbOOPP/6watasaR133HHW7NmzrbVr11ovvviidfLJJ1vZwN69e+X3Z5AVyL59++T46NWrl9y+99571rp166wbb7zRyrZ9AZwzc+bMscaMGWN98803VufOncW5nzZtmpUtqO34F7UdajsMajsy0HbYiqIoiuJRLr74Yrtjx46++4cPH7aLFStm9+vXT+5zGRsxYoTdqFEjO1++fHa5cuXsqVOn2pnII488YteqVSvsOqVKlbL79u1rt2/f3i5QoIBdokQJ+7XXXrMzDX73yZMnh13ns88+k/V+/PFHub9x40a5P2nSJLtOnTpyvFSuXNleunSpnWn74vzzz7effvrpHI9Vq1bN7tmzZ47XZfK5o7bjX9R2/IvajvD7Qm2HnXa2QyPzSlqnRy5atMiqVq2alTdvXqtcuXLWm2++mdapMoqi/Mvff/9trVixwrr66qt9j+XKlUvuL1u2zPfYU089ZTVr1sxatWqVVb9+fatVq1bW77//nnG7kqjqhRdeaDVt2tQ69dRTrQsuuMAaMWLEUesRrWe9L7/80rrvvvuse++9V6LU2cauXbvkelOoUKEcj/fs2dPq2rWr1M6fc845VosWLax//vnHyiRq1Kghxwup1Yw9Fy5caH333XfWtddem2O9TD131HbkRG1HdKjtUNtxdTqNO1I2jaBkFbNmzZKIwHvvvXfUTOCff/5pX3311fY777xjf/vtt/ayZctkVqx69eph33PDhg32CSecYD/00EP22rVr7cGDB9vHHnusPWfOHN8648ePt/PkyWOPGjXKXrNmjd2hQwe7UKFC9vbt2xP6fRVFiZ8tW7aIvQiMnHbr1k1sBPD8448/7ntuz5498tjs2bMz7ifImzevLI8++qj9xRdfSMT9+OOPt998880ckfnWrVv77h85csQ+9dRT7VdeecXOpuja/v37JRLdsmVL32MmMj9y5EjfY1wXeOybb76xM2lfHDhwwL7tttvkudy5c8t18K233jrqdZl67qjtyInajn9R2xF+X6jt2JJ2447cqZlCULKNevXqyRKMk046yZo/f36Ox4YMGWJdfPHF1k8//WSVLFky6OsQ8yldurREoeDcc8+1lixZYr388stS2wIvvfSS1aFDB6t9+/a+18ycOdMaNWqU1aNHD5e/paIoqaBy5cq+/8nuOfHEE71b2xYHR44ckYj7s88+K/eJzK9evVrsWtu2bYPuDyLTp59+ekbuj1CQ7UXEhDHXK6+8ctTz/vvnjDPOkFv2T4UKFaxMYfDgwdYnn3wiEdlSpUpJdlzHjh0l880/4pQt504osuX7q+1whtoOtR3paDs0zV5JmxSnOnXqWO3atfPdJ93Ff1ACOPEmDcZpmp2iKN6kSJEi1rHHHmtt3749x+Pcx0E1IAjnD7aDwWumgeOJKrk/TGIy6elPtuyPcIPxH3/8USaJGWAF4r9/2DeQSftn//791mOPPSaT2ZS3MehE/K558+bWCy+8kBXHitqOnKjtiIzaDrUd6Wo71JlXPMeBAwekhp46Rv+BGBF6E0WBX375xTrttNNyvJb7f/31lwxmdu7caR0+fDjoOrxWURRvkydPHqt69erWggULfI9xseT+ZZddZmUbKNkH1r5TB03kVfl3MP79999b77//vrTvy9b9wMLktT8MUDPBUXeC2o6cqO0Ij9qOf/eD2o48aTfu0DR7JW1SnEaPHp2y7VIUJTXQHoYUctLLKb0ZMGCAtNYxpTPZRJcuXUTYjDR77CRinsOHD5clG6B3+vr16333N27cKCJ2hQsXloneJk2aSBuhGTNmyESumbTleZy7bNkXTHzXrl3b6tatm/SYZ7Lnww8/lGso0fpsQW3Hv6jtUNthUNuRebZDnXnFkylOH3zwQdD0SH9IdwmWBsPrGMAQhXCSKqMoinchNXjHjh3WE088Ic5Z1apVpX92YMZNNnDRRRdZkydPth599FHr6aefFs0QBhmo6GYDy5cvt+rWrZtjwAUMup588klfD3WOEX9QcqdMK1v2BV1dxo8fL8eJUVjGoe/bt691zz33WNmC2o5/UduhtsOgtiPzbMcx/6/KpyjJO+iOOUYGpI0aNQqa4sTAq2jRohHfh1T8WbNmWV9//bXvsZYtW8rAhZMOaEXHrBpiQCZVhqgF9YMqgKcoiqIoiqIoSrqikXklbdIj6T1/5plnWv369ZP7RBhQve/evbt1++23SzR/woQJolafrqkyiqIoiqIoiqIoTtDIvJIUFi1alCMl0GDSI0kXDYZ/eiS3Z511lqQQ+r8vtWBr1661ihcvbvXq1SuH4j3g8D///PO+VJlBgwZJxF5RFEVRFEVRFCVdUWdeURRFURRFURRFUdIMbU2nKIqiKIqiKIqiKGmGOvOKoiiKoiiKoiiKkmaoM68oiqIoiqIoiqIoaYY684qiKIqiKIqiKIqSZqgzryiKoiiKoiiKoihphjrziqIoiqIoMVKlShXrmGOOsfLmzWv99ttvSdmPtHTlM7lNFYnaBtrP8r6BbWazgYEDB8p3nzRpUo7H2Rc87t+aNxs4fPiwVaFCBatUqVLW/v37U705iuJJ1JlXFEVRFEWJgc8//9xatWqV/P/3339bY8aM0f0Yhk2bNolTetZZZ+l+CmDHjh0yMXLRRRdZt9xyi+4fy7KOPfZYq0+fPtZPP/1k/ec//9F9oihBUGdeURRFURQlBl5//XW5PfPMM3PcTzSdOnWyvvnmG7nNNBo3bizfrV+/flY28dRTT1l//vlnSrMtvEiTJk2sSpUqWc8995z1yy+/pHpzFMVzqDOvKIqiKIoSJfv27bPGjRsn///3v/+1ChQoYH399dcSrU80RYoUkfRjbjONk046Sb7bGWecYWULOPGk0DMpdP3116d6czzH7bffLmn2w4cPT/WmKIrnUGdeURRFURQlSt59913rr7/+sipWrGjVrVvXat68ecTofJ06dSTNfNGiRdbixYuthg0bWkWLFrVy5crlq4cmBZ11SEmfOnWqdeWVV1qFCxf2vS5Uvfqjjz4qj91zzz0hP3/16tWyzmmnnWYdOnTI9/h7771n3XnnnfJdTj75ZOv444+3SpcuLU7UunXrXDk2qPvmPeHHH3+U7fBfItXM8915nH148OBBiWSfc845sq0lS5a0HnnkEevAgQOy7q5du6yuXbtaZcqUkefZp+yrf/75J+T2LViwwLr55ptlEiFPnjzWqaeeKlkCy5YtC7r+999/L/uH74ReApM51HY3aNDAeuONN6LaN6y/d+9eq02bNnIshGPjxo2y3umnny6fW7ZsWevxxx+XfRKK8ePHW1dddZUcR7yG7WTbv/vuu6DrB/4m4Y7jaI/vI0eOiFNes2ZNq1ChQtZxxx0n+xrtifvvv1+O+0BatWpl5c6d23rttdfC/oaKko2oM68oiqIoihIlxmnHKfK/xXGKJNbFRACOz4YNG6yrr77auuaaa8TJ8ufFF1+0GjVqZO3evVuitbVr15Ya4lC0b99ebt955x2fUxuIcTJbt24tTpShWbNmkmWQL18+mTy47rrrxAFj/erVq1tLly614qVWrVq+WvD8+fNbbdu2zbE4BW0Ctu+ll16yzj33XNl3TKpQU920aVPr999/ty655BJr9OjRVrVq1WS/bd++XZx/nMVg4PjzOzB5wsQA+52JAO5ffvnlRznnTIpceOGF8ji/2w033GDVr19fIusfffSRCNlFw5QpU+SWbQjHV199ZVWtWlUcZb7XFVdcYW3bts3q27evdeuttx61vm3bsm9btGgh23XBBRfIhAUTHGw79+fMmWO5Tbjjm0mju+++2/riiy9EH4DfjN+Jc2bIkCHyHQNhQoDvvXXr1qRkvihKWmEriqIoiqIojlm3bp3NEOq4446zf/31V9/jFSpUkMdHjx4d9HW1a9eW51mGDh0adJ1SpUrJ88cee6w9derUoOv07t1b1uHWn5o1a8rj48aNO+o1hw4dsk899VR5/uuvv87x3Pjx4+09e/bkeOzIkSOyjax//vnny30n2xCOjRs3ymv4jqF44403ZJ22bdvmeHzhwoW+fXfxxRfbO3fu9D23adMm++STT5bnKlWqZDds2NDeu3ev7/nPP//czp07t50rVy77xx9/zPG+w4cPl9eVK1fOXrlyZY7nPvzwQ7tgwYJ2njx57O+++873ePv27eU1ffr0OWr79+3bJ69zCuvz/mzbX3/9FXQd9oX57j179rT/+ecf33P8lvnz55fnli5dmuN1r7zyijxepEgR+8svv/Q9zm9pfr9ChQrlOIbBfFYozHHMbxLN8c2+57nixYvb27ZtO+r5tWvXHvX7GB544AF57TPPPBNyuxQlG9HIvKIoiqIoShSMGjVKbm+88UaJGhpMdD6SEB7R7/vuuy/sOkRUef9oMJ8fLM175syZ1q+//ioRZdLp/aFEgGi5P6RLs42XXXaZtWbNGhGl8wJsF/v3lFNO8T1G2jip5yYNfeTIkdYJJ5zge57vXK9ePUnx9k8N574pVSCjonLlyjk+i8h3r169JBuAFG8DkX4gGh8I2Q28zinsW96/ePHiVsGCBcOuS5bEM888kyNDg9/SfPf3338/x/ovvPCC3D7xxBMS2fbfh71795bvS73+iBEjLDcJdXyb/UYknjKBQMi0IDMiGOeff77cEtFXFOVf1JlXFEVRFEVxCDW7b731Vg7n2XDbbbdJbS8pzT/88ENYhe5IOFknENLlccpx6n7++ecczxkHP3CbDevXr5c0586dO1t33HGH1KyzGAfMrdr5eMHZC5yMgLPPPtvn8FKDHep5UrUNX375pdyn7pzXBYN0cfAvNbj44ovl9t5777Xmzp0bsqzBCWb/+k9OhIJ0/mC17DjBsGXLFt9j/P7mGAxWxsD7mNKMhQsXWm4S6thF2JAJi1mzZklpABMvTjH7x+wvRVH+hzrziqIoiqIoDiHCTYss6qOp3fYHYTmitWQqm+h9MJz0WY+lFzsibNQgE3GmZtxARJ7tplaa+ml/Dh8+LE4pYnLUlFPvzbYzYcFC3TNQl+4FQkVu+e7hnjdRb3/H23w3nN5AQT6zGMedPvCGbt26SS34p59+KnoGJ554otR/P/zww1HXdCPWB7xHJEJ9N/Na/+9mHHuc4FDvzSSG/7puEerY5TdgUonsBUT70CUoVqyY1PEjirdnz56Q72m+wx9//OHqtipKupM71RugKIqiKIqSLpgUehwnRMgCMY4R6t1PP/10UNE6nJlIOFknGETe+Wwc8ccee0weGzNmjGQUEDFFQdwfnPdXX31V0p4RlatRo4ZMSuD4Q8uWLUUc73+l1Kknktp7pOf9YdID+O6BEzOB+LcBJIV//vz54rgjIEfUnmX58uWyD0kxHzp0qKNtML+Hk8mSaL5bIjH7LZZjFxFEJkKmTZsmQn4ff/yxNXnyZFkoB2C/0lc+1KQH3RYURfkXdeYVRVEURVEcgHI4KcLw22+/iSMSCtK3cfRoVZZMUF8vV66ctB1j+2gBZtqCBUuxnzBhgtxSEx6sRp8WbJlKiRIlfNFrs4+igWg8CzBZgio9pRbDhg2TiRNaFkbClARwPLkJmSPmfZkoCBadN5kJZl0DnQ5oXUgnhWB1/LQWjIeTTjpJ6vxNrf/mzZslK4TuAZ06dbI+/PDDo15j9g8TTYqi/Is3pvgURVEURVE8Dg4faem0PiNSHWrp3r27IyG8RGFqodneFStWWF9//bU4rvQaD4RWbkZELpg4W7BWYbFC/3bwSq9wHHEi7mvXrpXvGg9oJeDAmwi/0/2GsBv7hRp3nGe3QFDPpNEHm6jgODWPB046GOc+mOjhqlWrxPl2E45NWgeG22+0A4RQ2gaKkq2oM68oiqIoiuIAUwcfqS860VmYMWNGjlrrZMH2kZJN1N2ke5vHQomnsZ5/+jRZCHwPNx1vlP9xXNEcMJMIqYQINKruOLaNGze2lixZctQ6TN588MEH1ieffOJ7jMh7MEFAvhep9qEmR0KlpF966aWy76nBd5OuXbvKLQr4K1eu9D3O9+3Tp484zqT5d+jQIcfrTL97HOyDBw/6Ht+0aZMcR7GWXCA4+M4770hP+UCmT58edr8ZAUKU8hVF+Rd15hVFURRFUSJA6i+K73nz5rVuvfXWiNFW2m+RquwvRJcsiKxee+21kl6N4Ji/cnkg1NXjYNOerHz58tKmjjZuRHVx5HBy3XSeSeXHQaZVGvX4d955pyypgrRuBO0oJ6BEAaX8Ro0aiVAgEWsi92Q0+EeMEWtDmR0BN75P69atJSLPfSLsOJzRtBXk84B6cTe5++67JZV9586d0p4PJ519zgQO9elMJIwdOzZHe0VzTODkU1KCMCIZB+hDnHfeebI/0FWIBdLzOXcoa6hVq5bsYwQb2Ze0AOQ4/M9//nPU65gQIyMAsTxT1qAoyv9QZ15RFEVRFCUCJmW+YcOGjkS4THQ+Van2/vXx9D3H0QwGJQNEk3E+9+7dK8JkqLtTw7xs2TJHKuvRQG0+TiYTDBMnTpT9k6p9ZMCBRF+gVatWoqiO1gHq/+ge0JqOvvVMchhoq0YHABxeIvbvvvuupOqzLxEe5PWk3TuFiRZaCiJUyESHW7CPmUzCYcd5puSCfb5v3z5pO0iknImbQEqXLi2RcFTmSf0nw4SWcD179hQHn0mZWCADoX///jJJwr7lWJs3b56IRHbs2FEcdroDBGIEHDluotmvipINHGN7RZ5UURRFURRFUbIQMgQodcDBZcJI+R+4KVWqVJGsGAT76DygKMq/aGReURRFURRFUVIItftE+mlnqPwLmQQIOD7yyCPqyCtKEDQyryiKoiiKoigpZuDAgVbnzp0lbZ869WyHkgP0JxDM+/bbb8P2r1eUbEWdeUVRFEVRFEVRFEVJMzTNXlEURVEURVEURVHSDHXmFUVRFEVRFEVRFCXNUGdeURRFURRFURRFUdIMdeYVRVEURVEURVEUJc1QZ15RFEVRFEVRFEVR0gx15hVFURRFURRFURQlzVBnXlEURVEURVEURVHSDHXmFUVRFEVRFEVRFCXNUGdeURRFURRFURRFUaz04v8AX6rtUhGVnpoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -312,7 +312,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/ziweih/Works/pycircstat2/.venv/lib/python3.12/site-packages/pycircstat2/descriptive.py:514: RuntimeWarning: divide by zero encountered in log\n", + "/Users/ziweih/Works/pycircstat2/pycircstat2/descriptive.py:524: RuntimeWarning: divide by zero encountered in log\n", " s = np.sqrt(-2 * np.log(1 - var)) # eq(26.21)\n" ] } @@ -332,7 +332,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAALHCAYAAABRxGVLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQfczeX7x++KKGRLQkP9KiUatJNKigYa0pK0tJd2aSjtJZFVNKRphQaSipKWIqUhRQlZhaLzf72v/+8+v/Mc5zzP2fPzfr2+z9nn+Z5zvuP+3Nd1fa5NAoFAwAkhhBBCCCGEEHnIptleASGEEEIIIYQQIlEkaoUQQgghhBBC5C0StUIIIYQQQggh8haJWiGEEEIIIYQQeYtErRBCCCGEEEKIvEWiVgghhBBCCCFE3iJRK4QQQgghhBAib5GoFUIIIYQQQgiRt0jUCiGEEEIIIYTIWyRqhRBCCCFEmdx2221uk002sUUIIXIJiVohhBBCCJFxxo8f7zp06ODq16/vKlSoYJfc5v5c4YMPPnBnnHGG22677VzFihVd3bp1XZs2bdzw4cNT8v5TpkxxvXv3ts+9++67u6233tptvvnmrmrVqq5Jkyaue/fububMmTG/35IlS9ytt97q9txzT7fVVlvZwnXuW7p0aUrWWYhcZJNAIBDI9koIIYQQQojcj9Tefvvtdj2Z4eO///7rzj//fDd48OCozzn33HPdk08+6TbddNOsft4777zT1jcS7dq1cy+//LKJ3URByP/yyy+lPofI+CWXXOIeeeSRUr+PDz/80LVv3979+uuvER/fZptt3MiRI12LFi0SXl8hchVFaoUQQgghRMa46aabgoJ2r732sqjnRx99ZJfchkGDBrmbb745a+uIoEbAI2gbNWpk68s6IgpbtWplz3n99dfdOeeck9T/qVSpkkV+EdDPPfecmzRpkvv444/d2LFjLbpK5JYJhD59+rgbb7wx6vssWLDAHXfccSZoy5Ur56699lr37rvv2sJ17lu0aJE95+eff05qnYXIRRSpFUIIIYQQGYnUfvPNN5Zmu379erfvvvua6Npiiy2Cj//111+uZcuWJuwQYnPmzHE77bSTyyTLli1zO+64o1uxYoVr2LChpf/WqlUr+PiGDRssXXjMmDF2e/Lkye6www5L6H/xPfA5o0HKMJHV77//3p6HaK1Zs+ZGzzvrrLPcM888Y9dffPFFd/LJJ5d4nPs6depk17t06eKefvrphNZXiFxFkVqRV/Tt29dtv/32luqz33772aypZ+7cue6ggw6yVJ5evXpldT2FEEIIsTGk0CLkgOhjqKCFLbfc0u4Hnvfwww9nfB2JEiNo4d577y0haGGzzTZzTzzxhF3C/fffn/D/Kk3QAgL2vPPOC34f06dP3+g5CF2ivEDUN1zQwimnnGKPAeI3WoqyEPmKRK3IG0aMGOGuuuoq17NnT/fJJ5+4pk2b2gF68eLF9jj1Jpg5jBo1yhbMHYQQQgiRHtauXWuCbu+993ZVqlSxhaji448/HhSuoRDd5fwMu+66q9t///0jvi/377LLLnad52c6qZAUY8BkqWPHjhGfwwT6kUceadcnTpzoVq1albb14XsN/c7DGT16dLDut2vXrlHf5+yzz7ZLnstrhCgkJGpF3vDQQw/ZbCUH7MaNG7v+/fvbjO6QIUPs8T/++MPts88+5vJXr149t3z58myvshBCCFGQ/Pbbb+6AAw6wes1PP/3UrV692pYZM2a4Sy+91MRguMHSDz/84BYuXGjXSTEuDf84Jko//vijyxR///13MAuMz4cTcVnruG7dOkuXTgd8h6QOe5gMCOe9997baJ0iEfrY+++/n9L1FCLbSNSKvICTDDUtflYUcADk9rRp0+z2HXfcYbcRujzm02yEEEIIkVoQrbNnz3aXXXaZe+utt+wc/fzzz7vddtvNHqfedODAgSVew/NLE2ehhD5OXW2moOaXmtnwdcjkOvL/EfOYRR1++OFWdwyMcahHDsd/r7QBouVQNHA/Jvqc6vUVIhcoPZFfiByBvmsc5HEBDIXbX3/9tV1v27at+/33393KlStd7dq1s7SmQgghROFDRPbNN98sYZBEGjITymRTEcml7vSCCy4IPh7qukv6bmk0aNCghLNvpFTaoUOHJvUZiFy+8847Je5L5TrGC617osF3G+3z+nUua339On/11VcpWV8hcglFakVBQfN2CVohhBAivZBiHMnxt0aNGsG6zlmzZgUNlyC07rRy5cpltrrxkNacKXJtHck+69evn/mEUFpV2jqXtb6h65zJ71SITKBIrcgLcB7EZZCZ31C4XVqqjRBCCCFSz+mnnx71MfwtAIMn6mibNWu2kclRabWqfpLas2bNmo0ev+uuu9w111zjkiFUlHpSuY7xwiQAkJnG+IZWQfiH8Dnp8HDfffe58uXLR13nstY3dJ1Tsb5C5BIStSIv4EDNSRKHwfbt2wfNE7iN67EQQgghMkdp9aZEayNFPmnHF+qVURqYL3nC2/7Atttua0uqSeU6xssee+xR4vZRRx3lLrroIkuTphUSacPjx48PthIKXWf6+5a1vqHrnIr1FSKXUPqxyBto54PpBDUlGBx0797d/fnnn6Xa1wshhBAiPWmx0cCs0eNNl8Jb05SV/sr53RNLWm2qyLV1pAa2b9++dh1DrsGDB0dd51hSiv06Z/I7FSITKFIr8oZOnTqZEdStt95qTcNJZ5owYcJG5lFCCCGEyD1CjYxCDZkiEWpkFGrI5MEdmFZ+yaYf77DDDmlbx1RBxJbIKinDL7/8sjv//PM3WmfSlcta39B1Tuf6CpENJGpFXkGqsdKNhRBCiPwDV2SP71wQjdDHfZugUG666aa0uB//5z//sfReIszJrmOqYH2qV69uonb+/PkRv1daKmHKxaR/NK+RRYsWWYeIdK+vENlA6cdCCCGEECLtEBX1Dr5Tpkwp9bm+Nyt1s9tvv73LpIdHixYt7Pq0adNKrVP1nwHzpX333Tdt68Q60NowWtrwwQcfvNE6RSL0sYMOOijl6ylENpGoFUIIIYQQaYc+rCeccEIwyjl9+vSIz+N+HwXl+ZH6tz799NPmrpzMEh6l9XhDSqKar776asTnkOr79ttv2/UjjjiiRC1uqhk1alRQXDdp0mSjx48//vhgHfNTTz0V9X34zoDn8hohCgmJWiGEEEIIkRGuuOKKoHsvvW7DW8twm/uhXLly9vxMc+6557qqVava9euvv94tXbq0xOOkJuNK7E2wevToEfF9brvtNhPkLF5QhoIonjdvXqnrMnv2bHfZZZcFb5911lkbPYd0Y99i6Y033rC623BeeuklewzOPPNMtUMUBYdErRBCCCGEyAjUrHoR+PHHH1sa7IgRI+w6l9zmOvC8nXfeOePrSEuie++9165Tw7rffvtZBJT1Gj16tGvdurUbM2aMPd65c2d32GGHJfR/3nvvPWuN1KZNG/fQQw+ZyP3000/djBkzgoZQtDOkThbOOeccd/jhh0d8L/r21q5dO7hOiHHen4Xrp512mj3Gc3r16pXQ+gqRy8goSgghhBBCZAwE2OLFi92QIUNMxJ166qkbPadbt25ZFV8XXHCBW7hwobvzzjvdd999Z4IynLZt29pnSAaivW+++aYt0SCyTVvD3r17R30ObsYIbVKnEcGIci/MPURnR44cWcLhWYhCQaJWCCGEEEJkDGo66bd64oknugEDBlhkEiOkWrVquebNm5ugPOaYY7K9mu7222+3KCp9YqdOnWptc6pVq+aaNm3qunbtahHRZLjyyistUktt7+eff27uxIj9f//919yOeezQQw+1lONGjRqV+X5ElGfNmuUeffRRE68//vhj0KCL2mRSuWvWrJnUOguRq2wSoFJeCCGEEEIIIYTIQ1RTK4QQQgghhBAib5GoFUIIIYQQQgiRt0jUCiGEEEIIIYTIWyRqhRBCCCGEEELkLRK1QgghhBBCCCHyFolaIYQQQgghhBB5i/rUipzmn3/+sSbi9G1bv369NSD3S/ny5a0x+lZbbeWaNGniKlasmO3VFUKIuKAfJcexKlWquE022STbqyOEEELkFHSfXbVqlatXr571uI6GRK3IKn/99ZcN6ObNm+c+++wzN3fuXGs+zsL9S5cutY05Fs4991zXqVMnd9hhh7ly5bRpCyFyH45zDRo0yPZqCCGEEDnNggULXP369aM+vkkgVsUgRAqZPXu2u/baa93rr79e4n6ir/vuu687+OCDbTnooIMsAvvbb79ttCCAn3/++Y3eu3bt2u7EE090p5xyijv00EMtqiuEELnIihUrXLVq1exkTdaJEEIIIf7HypUrbfJ3+fLlrmrVqi4aErUioyBGb7vtNjdw4EC3YcMGi6geccQR7pBDDjER27x5c7flllvGlZ48ZswYV7lyZffKK6/YQnTXU7duXRO3l1xyidt5553T9KmEECLxkzUnacStRK0QQgiR2HlSolZkhDVr1riHH37Y3XPPPZYXDx06dLDb//nPfxJ+X0TtuHHjXNu2bS3Ky+3Jkye7ESNGuFdffdVmdYBateOOO85dddVVFr1V7ZoQIheQqBVCCCGSP0/K/Vik3QTlmWeecbvssou76aabTNCSXjxlyhQTnckI2kggbI866ig3ePBgiwqPHTvWtWvXzupyR48ebfW2/P/nnnvO/f333yn930IIIYQQQojMI1Er0gauxURFzzrrLKsXa9iwoYnJDz/80O5PN5tvvrkJWoTtnDlz3IUXXui22GIL98knn7gzzjjD7bDDDhYp/uOPP9K+LkIIIYQQQoj0IFEr0sLnn3/uWrRo4d5//31rVdG7d2/39ddfu9NOO61UO+50seuuu7p+/fq5n376yfXq1ctqbXEdveGGG9z2229v961evTrj6yWEEEIIIYRIDolakXJI88W1mOgs6cUzZ850119/vUVJs02tWrUsDfrHH390Q4cOtf625OrfcsstrlGjRq5Pnz5u3bp12V5NIYQQQgghRIxI1IqUQd3qfffd59q3b+/+/PNPd+SRR7rp06fnpOtwhQoVLC2a3ri0BULQLl682F122WUW1R02bJi5MwshhBBCCCFyG4lakRKIbp5zzjnuuuuuM3HbvXt3cyWuXr26y2VIhe7cubPV3Pbv399ts802FsXt0qWLa9q0qRs1apR9HiGEEEIIIURuIlErkmbJkiWudevW7umnnzaRSArvE088YU7E+QLresEFF7h58+a5e++918T4V199ZVFnIs5ffvlltldRCCGEEEKInOH111+38XIuIFErkuLbb791+++/v5s6dar1jiI6e8kll7h8Zcstt3TXXnut+/77781EijTlSZMmuWbNmllqspyShRBCCCFEsTN58mR37LHHulatWrm//vor26sjUSsSh3rZAw880H333XfWHmfatGmuTZs2rhCoVq2au/vuuy0tuWPHjlZfSwSa+uABAwao3lYIIYTIYygtoiPC+PHj3QMPPGDZWpQcCSFi45FHHrHL33//3Q0cONBlm00CKhgUCcCBn1rUNWvWuH322cfSD7beeuuMr8c///xj0eG2bdumNd357bffdpdffrmbPXu23d5rr73cY4895g4++OC0/U8hROGD+3rVqlXdihUrLNtFCJF+vvjiCyubwiAyfEKbkqrNNtssa+smRD7www8/mMmql5HbbrutBbnIcMzWeVKRWhE3ffv2teglghYx+c4772RF0GYS6mpxSn700Udtx/r000/dIYcc4s4++2yboRJCCCFEfjB8+HATtEyG77777u6UU05xlSpVcsuXLzfBK4QoWwsgaA877DATtL/88ot1DskmErUiZv7991/rN0vNLNfPO+88i9hWrlzZFQOc/KirpY6Yzw70ut1ll13ck08+ad+JEEIIIXKb9957zy45d2MEOWLECNeyZUu7j4l6IUR0aNs5ePBgu3711Ve7a665xq5jtLp+/XqXLSRqRUywkZ555pm2wUKvXr3sZFCuXDlXbNSuXdvqaqkhpu0P5lEXXnih1RcTzRVCCCFE7rYgnDFjhl0PLSEi4gQStUKUzrPPPmtZDaQfk7FJoKdWrVqWfvziiy+6bCFRK8qE9AJE2/PPP28ilujkTTfd5DbZZBNXzOD6/PHHH1uhfJUqVdyHH35o9cVXXHGFXJKFEEKIHGTmzJkmbJmg3mmnnYL3+0gt3RyUeSVEdE2AcSpcfPHF1sqT1H3GvoDJarb2H4laUSa33nqrpRmw4b700kvurLPOyvYq5QyIfAykcEmmJocdmbpbZqyaN2/uevToYUZWFLkLIYQQIjdSj4nShk7O77333lZOxaS06mqFiN7Gh760CNmuXbsG70fgYuLEY6NHj3bZoKBFbb9+/dyee+5pXzLLAQccYNbtHlJISTfhMQ5shNLD2X777e2x0OWee+4p8RxsrLfbbjtzxCVaV0g88cQTlmoM/fv3d+3bt8/2KuUkFMlTk/PGG2+4Jk2amLglikubgHbt2rkaNWq4/fbbz1133XVu5MiRlqbMibPQzMfZN9hH/IwdsI+F70NE/kPhAPif//zH6pPHjh2bhTUXojCgPvD000933bp1y/aqCJGTvP/++3Z50EEHbTRJjQEkKAVZiMjQ+QMIcOEW7uE6wtZHa7Mxvi3olj5jxowxW3Z6i/IxSZu9//77zbkWtzvSRteuXWvPveGGG0xkhP5AXtQyOPDGQECqKTMUQI+zI444why/cP4iqunbvuQ7L7/8skUf+e5uv/12+2y5RqZa+sTLzz//7KZMmWIzWpwcqTOIBNtSw4YNbVLEX5IOtccee9hlPtUsU6PE9sIkEY24ff8yRC2C9Y477gg+d8sttwzaspMGxmd96qmnbFs755xz7PvafPPNs/ZZhMjXlj6c34g4cS5btmxZ0ZeJCBEK5xjSjpcuXeqmT59uk82h3HfffTb5fMIJJ9gEtBDif/z4449WR0vghohs48aNQx515iiObqI7yrvvvhucJMrUeTJ/RswJcNxxx5W4fdddd1n0lgMZotZHk8qakUN41K1bN+oXzeCBiDDP4YcsBPhOmO339bS33HJLtlcpr6hfv759fyywYMEC+04RuaQ1zZ8/33rhrVq1yg4MLOEg6nbbbTcTuKELwjfXBqqrV6+2z0rWgo/sh4KIjbYPIWqZfGrWrJndRshzn0StEPHDuY0JPjKPGIDssMMO2V4lIXKGuXPnmqCtWLGiZdeF4+tqGZAzcKfsSgjx/zDRw35B4CJc0EKdOnUseMh5J9SELVMUtKgNZcOGDVYPig01acjxplTeeeedFkk77bTT3JVXXhmMoCEyELTMIDAIZ1Cf73z++ec2S/n3339bP9rHH38850RUvtGgQQNzj2bx/PXXXxbpZ0Hk+ktOuohctlV+C5bwVGfqGMggYEYsFyDlhDRr+vlGErXPPfecueUhbJlsYpIEoQvMuvF5ttlmG9vOeD0TSUKI+OE8RAnEJ598YoY4ErVCbFxPS4Q20sRpaF3trFmzrMOBEOL/8Zmo4an7ofgU5GxQ8KKWgxIiljRjDlSvvfZaxNmFaNCXlIMcNZEffPCBpSkvWrTIPfTQQ8HnYKJEygqD9C222MLlM7j+IWiJQB966KEmRoiiidTD9rLrrrvaEg4zYQhc6uPYhrlk+frrry3NHeFH5gEi8txzz7XfrEKFCln5HC+88IINoH2LhHCYCCK6XK9ePYtSk9qFcH/11VeDz+nZs6dlTjArLkErRHLgws4+yXLSSSdle3WEyPl6Wg9ZDkSYJkyYYNlVErVCbCxq49FRmaTgRS3GM5jykIdNjWiXLl2s1jHWH+Sqq64KXiciy8zeBRdc4Hr37l1CRNSsWdPlO0SyiSSS+sks5qhRoyxFR2QexB0RFpbQNHp+G36XQYMGubfeeiu4sP1RtI/AzeTBhrRq3J9Zh2jbyvnnnx+8TgSJiCx16NTNUpvhIdtBCJE8TMQColYIEdn5OBr4QHhRy/lNCOGsHDHXRW3BFwsgQjGhYeYaIcqsGy1XEgWxt379eqtVKqQN9cEHHzSTH0QTUb9JkyZtZJolsg8TKfxOb775pvv+++/dzTffbBFQaoQefvhhq6c79dRTLZU5E5DeiDEAg2hS8lmYNMIdj+uk/YfjjTnmzZuXkXUUophFbQF7QQoRF7/99puddyhzKa0MLbyuVgjhbP8hLZ+gC+afuUjBi9pwOEAh3BKFqC8/KMXQhQCig5nIa665xm5fcskl7pVXXgnWO4rchSgutd6kKdMGh8kITta0FiKl+bbbbrO63XRCxJX0aPYLv+y7775mGsX1SKnr3A9EbIUQqYeMCPa933//3coVhBD/Sz3GC6W0SXuCIHS4wD2csh8hhAtGaXfcccecLbUs6PRj6l+POeYYM3jCZfb555+3dBJ6icKvv/5qi48YMTj3LVaooZ02bZr1ncXli/u5jUnUGWec4apXr+7yHQQPn4U6Y8Cx7Oqrr85LUyh6wvI7Ym5FdJ5ZpHCr/kKFiCgmTSwIRiYpmGGmDdOQIUOs3rtTp05p+V3ZLxgghMJggHRo7ifFmP2OlkvcR00t+xD12qTzCyFSDwMO0sM4pxGtxY1diGKnrHra8LpaxoqMGXWuEsLlfOpxwUdqSYukzpC6WiJKGNlwkGrdurU93r9/f7N09z1oGWhze/To0cFUT0xwSEUhrRNjHgbkAwYMcPkOjrpE1BC0iEA+J9HafBS0wO/ra0q53H///c2QqNigLQ4nYeqjMWei5rVz587WK4xU4UzDtvX222+7o446yqLHTJqceOKJ1kNaCJE+VFcrRPz1tKF1tbG0fBSi2ETtbrvtlu1VicomARXcFBX83NQ7XnvttRbVpMUK6aoI+nyE6DmTFwi3SD2CIzVXLxb4PqiVppacqDwTFkRt8zUaL0QhEmtT+Xjp06ePufdjNOcnaoUoVjgHsp/hifLDDz+U2Q6PscWBBx5oGUaMMdSvVhQ7hx12mHmmDB061IJHuXie1F5aRHBgJkWV1ikI2mOPPdbSQfNV0MZiNvTNN9+4Yk5BxEiK9jmkHzOh0aNHD3fhhRe6f/75J9urJ4TIQKQ2GxkaQuQaH330kQla+ryTxVQWZLLh6I8Jo0wNhXBKPxa5A2nX1IWMHz/e0qqZxWf2vnbt2i6fwdm6NHLVoS2TUE83fPhwc0cmQkv6PJMbzHgJIQoTnP7Z3xcuXGjeEUIUMz71mHraWDKVqKv1fhGUawlRzPz++++2AKVkuYpEbRG4Pffs2dMdffTRZsdNbTC1xbgc53IKKgZdzzzzjBs8eLC5+LJwX6TZ1GjQc7dYU4/D4bcmQj9y5EhztqavLKlVhdSaSgjxPypXrmx+EvDpp59me3WEyCqYpkGLFi3imhgCMtqEKGbmzJljl2Q5cG7JVQra/bjYIQcdYefrqUg7feihh3LGihuRSnqwdyz2lwguBG04uPlSC3zvvffG9P68B21jwp8f/n+LySn5+OOPd1OnTrU6O1JJ+NyjRo0yYy0hROGlIH/99ddmFkUnACGKFepooVGjRnGLWkVqRbEz57+iNpdTj0GitkD59ttvrW8pGyLpxjg9n3322Vlbn3AhGU24lgVGRx07dgyKUFr5xPN8HJG5Lxwvlv16FrLQZaDL50TY0gKI4n8cimNxhBRC5Ne+TkstOSCLYseL2rIMokKRqBUif+ppQenHBciECRNc8+bNTdDWq1fPepZmU9AiJIkEhrbcSUTQRjJ/isXAwT8fIRdJ0AL3+1ZA0VoC+ZToSGnQ+VhnS8SW6M26deusX7FqbEUx0LdvXxvYYgLDxBUGMtF49dVXrcShWrVq1n+Zllnhxy6OraT3hy6Ue+QC++yzj11K1IpiZvXq1W7JkiV2fYcddoj5db4/7U8//eT++OOPtK2fELnObIlakQ1IL27btq0JlAMOOMAimfHUkCRLuPArTUgmSqj5U1lGUaHPL8sJOXywynr7zxEqzLkkrTvfoS6Cdk6c5OfPn2/tP4QoZNjer7rqKvMZQOgRiWnTpo05w0eiRo0a7qabbrL2HtTVde3a1RaM90JBxC5atCi4YMyWCyDCgdr5ZcuWZXt1hMhqlLZ69erWFiRWmMzyTsmqqxXFzGyJ2uKEVimYM2Ua2rVQc0oPUq6fd955bvLkyVZTminChR+3U91Sh/cMTQsuzSgq/PmJOCGz/pGE+bPPPmtRznyP3FapUsU+Az34hg0b5l588cUyXxOpH7AQ+TLpx7ERYcrJmbIMjNOGDBkS8fmk5nfo0MGazVOLd/nll1v0xjupeijxoOe3Xxg85wIMyn0NocyiRLGL2niitOHRWolaUawsX77cXPSBc2Euo5raFIKYJDK62WabmdjKVLNu/i/9SO+++2673bt3bxNz6XY3Dq0/hXDhx+1BgwYl9N5EQlu3bm01uKT+0DidqEqdOnXcmDFjrN8cCym0nGxuvPFGczfkO996661tUEk9Wag5CuKW2tlIkWP+X6SUaD5bNGFOmjcLxGNglWvQ4oDvr1evXmYmhisy6cmRwHRmwYIFrlWrVq5cOR0+RPpmhT/44ANrIYBjOwZnwIQh+z11+fHCsYSerTfccEPwPo4XRx55pEViYznOTpo0yfo+h+/r77zzjh2bOO4cfvjhti/VrFkz4vuQ7s8SauiXTjgOfvfdd/bZjzjiiLT+LyFyEe/yn4ioZdzBmEN1taLYTaK23XbbuDIdsoFGpSkEEUkN0/vvv2/iNhPCloEWguqBBx4IRiKuvPJKl27CDZfoexoJBp+lCUmEK4KVwev3339vadN8Ji7ppUsqHz0WGciWxpQpU6L+Jgw2iVizUGNMlIb/QUSFKEaTJk1M8PJ46HqGR4XjMaSKxXAql0ypbr31VhPobLfUCL755psbbbsIWgYHiF4JWpEOmDBh/yTLxNOlS5egqB04cKC76KKLbPuMV6BRU7dhwwab9AqF22zb0eBYxMkcIcqE5RNPPGHHrdDUY/Z9BsyIRyaImExDKPP8cJh0JKsmUyBqX3rpJdXViqIlmUitzKJEsTP7v6nHuR6lBY1MUwwijshXJoQtwozeo4899pjdfvzxx93FF1+c8v8TLr4ipeO+/vrrEV/LaxCvDPp4DwQs9WuksGK8gHAl0sqAMVSAIj5J+6HezQtSFoQoLYkQVTRHJ92b+jaex+sRv7wX/yO0xo2F9An+V6hQ5rdhR2UyguXJJ5+0+7zQBS4xUiLluDT4fDw3XPBHiuLG8pxMwnf53HPPub322stNnDjRPfrooyUmR0IF7VZbbZW19RSFCzWfLVu2tO1sjz32cIceeqgJyFBOOeUU67FNm7JMRR1J0cclHLMZ9g1qcnfccUdLTYZTTz01+FyOGxy3mCwjehtpHYkU8x6hkdoGDRqkVdSCRK0oVlIhar/88ksbM2hCVxQbs/OkntYIiLSwbt26wKRJkwIffvhhYMOGDSl//3///Tdw0UUXBfgJWZ588slAOrj22muD/4OF28OGDStxn1/atWtX4vZ1111n38Obb74ZuPTSSwP77LNPYPPNN7fHNt1008Duu+8eOOusswKPPvpo4L333gusXr067vX7+++/AyNHjrTLeGC9Pvnkk8DAgQMDF154YaB58+aBChUqBNetcePGgbPPPjvw0ksvBVauXGmvOfPMMyN+br9Mnz7dlmiPeWJ5Trbo16+frUvFihUDv/76q903Z86cwPjx4wMrVqzI9uqJAoZjyyabbBLo0aOHHd+A2127di3xvL322iuw9957x/3+7PObbbZZ4LXXXitxP8eg448/Pub36datW+Coo44q9Tm1atUK9O/fP6b3Y79in0vX/vX7778HjzHah0Uxsueee9r2P27cuLhfy/itUqVK9vrZs2enZf2EyGWOPvpo2/5jPaelg1jPkzKKSnPE9s8//7SIbarNo0gXJYpBdBKTk/PPP9+lmkgRWW5TmxaJW265xU2fPt3WC3dRZkdr1arljjrqKDdy5EiLvpAmTRSb6AQzn0OHDjXXXb4rWmZk8vchKkmLoX79+llbj1WrVpmZyoABAyxixO928skn22cgxZAoLJ8DQ6Vw92Ofqhyt/jb0/lieky0uuOACc8teu3attT5RhFZkilGjRlmrnXvuuadUPwCipN60It59nmwMoq0ejsvcxik+VnhNaE1sOD///LNbunRpRk36SoPjl6+Rx3dAiGKCjLZkIrU+cwtkFiWKkdl5FKlVHkUepiIjGjEiAdw7qUFLR5pxNJEVqU4WR1E+J2mBOINSu8bn7dGjh9XDkZKXbuOqVKTg0gKDpVu3bnYfJ0NMIvhcpHqTfsTjfKannnrKfs9ddtmlTIfl0PujTQok4s6caviN+M0Q86SGk7qI8Y0ErUg3tJWiNr+sYyTHn0Tb05D2S40uxyYmbx555BGbePTHUJzbqZ+l7hW45LmkEyNkx40bZ4ZyTIQBKcnUx5544olWGkFNLcdGWo1REpErcPxFbDMo55wkRLHAsYIJa/DteRLZf5iwp662U6dOKV5DIXKX1atXm1lrvohapR/nWSoy6bCk5PHT3X777WlNMy4rTXbixImWGkiqrk9ZJQWZVOhffvklkAkSTT9OhOXLlwdeeOGFwGmnnRaoVq2afeZGjRoFevfuHVi0aFHU75I07GiPRXpOKHzXpHtnMjV5/fr1gfr169t6Pfjggxn7v6K4YZ8KT+uNlH580EEHBWrXrp3w/+nTp0+gYcOGVgrRokWLEvtWy5YtA126dAnevummmwI77bSTHduqV68eOOCAA+wY4Pnrr79snVmf8uXLB7bbbrvAeeedF0zdz4X0Y7j++uvtf1xwwQVp+x9C5CIzZsywbb9u3boJv0ffvn3tPdq2bZvSdRMiX/afOnXqZHU9Yj1PStTmkbCdPHlysCaVOlBfd5YoXjANGjQoqniNJNBmzpwZOPfccwOVK1e2QecxxxwTePnllxOqic0nURv+fxH11Nky4C1XrlygQ4cOgQkTJtjvEkmMRpsk4PuPdaIhE1BDy/bF/2RAj8gVIt3sv//+VosaehwJF7XUh3LcOeKIIwKFQiZE7fDhw+1/IMqFKCZefPHFpLd9PD94j2233Tal6yZErjN06FDb9g877LCsrodqagusxpa0lxNOOMFSV3ESxuk4mXReakD3339/S7ejrjQSpB/jyEvaDam29MElxZi6NNq/XH311VZvSUoe6XeZrInNhVRl0nKpr6W+7+GHH3bz5s2z2ltSNHAaDW3xA6Wlc8daz3zbbbfZY+nC19BSH12tWjX7TKRfC5FuTjrpJKtFJUU42vGR1Hgc1JUCGH/6JJB+nGp/ByFymWTqacP3n19++cWOUUIUC7PzqJ4WJGrzQNjSToLWEJgr0eaC1iuR+h/GSiTBFK3GkzoyRC3GT/RfREi//PLLdqJAYDVs2NAVO9WrV7c2I0w80C+XnZ/bmLNcf/31wfq/WOptyxLA1O8xGcGkRKoJNYWipVL37t3tft8DWYh0QjsyzOQGDRpk9a5MogF1qvTfxsyJSSRq2umlLGKHY0yFChXs3OMH+UIUA6kQtbT1wqAOZBYliol58+bljOdLLEjU5riwnTlzpkUEmR1s3ry5OYRWrFgxqXWIxWWXiAgihw2ZyAluwEQf3333XYvKqlfbxiD4mXR45ZVXbCBOBJyIOidDDGdwUMREJpJrcjjRzKQ8TEqkMmIbyeX40ksvtYg00fl0RoeFAI5r9JxGvHKsIVsAMJ7jeMQ2iGnT2LFjbbsUscPxevfdd7frGpSLYoLzWrKiNrRfLZPXQhQLP/3XJCpRk7VMI1Gbw8KWQRwR2j/++MMGem+99ZalhCZLtBkXIiS02Ln//vvd+PHjLRrCIPKrr76yCAktcERs0JqE7xFxS/sfIt04oiJwGaTzfRIBp31JOAjdaCnh6WgBFK1tDy1JTjnlFLuOUBci3bDNsX9w/CFy27ZtW3MRZn949dVXbZ/JlVY5+YYG5aIYSUWkNjQFWfuPKLauBCBRK5ISth988IFr3bq1W7FihTv44IMtglG1atWU/G8ig5Eihrvuuqv1aCUqUrt2bRPViBnuF4mx9dZbW2schGOrVq3chRdeaO1DiEqRYploaniq0kHK6kN7zDHH2GVob08h0g1C9rHHHrOoLDX7Tz75pGvfvn3OtwXLl7paIYoBxlWK1AqRGGvWrHGLFy+26/lSaihRm4PClrpMBnX0VjvssMMsakFNRzwgjuinGC1t1BtAETF84YUXrBgc8cy6YAKFiIkkukRiEKGlFvrTTz+1iC0RUNLJ+a0Tib5GS1tOpaAFUt+B9U60N6gQsXDHHXdYP+iywLiM54r4UKRJFBu//vqr+YLgQdKgQYOUiFoy1+hXL0Shs2DBArvEBLZGjRouH5CozTFhi8A86qijrOHxkUce6V5//XVXuXLlhJ2NSzMVIrV40aJFrkuXLnagfv75562GF0GtiEh6wOSGyNM777xjdW5MWmDI5JvDxxJ9JZ05UtpyqgUtkOpJLR7tvyZPnpzU/xSiNDCeGzlyZJnPQ/himCYSE7Xff/998HgjRDGkHiNok/UBoaSI4AJ+F3Pnzk3RGgqR+/W0DRs2zBtNIFGbQ8L26aefdp07d7aDZocOHWzwtuWWW8b1XoMHD47YCiY8Youo4X/izosh0Jdffmn/e9NNtUlkAoy3SDHHSIpoOQPOSZMmWfT1jDPOKPW1pUXgUyloPdR1w9tvv53w/xQiVZDRki8n2FyiVq1a5moOs2bNyvbqCJExUYsgTRbGRsp2EMXE/DyrpwUpmBwZpN1www2uX79+dvvkk092I0aMcFtssUVc71OawZBPa92wYYMZGBExxIAKZ1tux/u/hEvJSRIzHAaYHDQQj9xmO6DfbTpMouIVtKGiVnW1IldSouLNXhElUyhVVyuKgVSZRHlUVyuKNVKbL6gvS5ah3oP0X0Qs3HXXXZYyTA0j6cGxRk7LMhgirRVBg0kRz6VNz5133ikxmyP1tkRpn3jiCZuYID15yJAhZtZFVDba78nviLjleiz1tYkIWh9VZjv89ttvTVAkW5skhIcshfCeeOH3eahjo0yCNHjc4EX8EGnCo0GiVhQD6RK1n332WUreT4hcZn4eRmolarMsaI8//nj35ptvWt9F0o9PO+00Sz8mgkqNbazCtrTIHU7HvN+NN95oMy5Tp0611GORO/AbX3LJJeY2fM4555hB00UXXWS1t0TSqa32IHxpbxI6icFvjPlXqgUt4LqNaRjGYqQgMzEiRCqgbVhoKjHHKZZoUNvNvnLNNddkaA0LC6VPimJCkVohEkeRWhEzpAFj+IOgxVls1KhRwTRPX2Mbj7CNZjDUt29fE0YIoCuvvNL16tUr7jpdkTkaNWpkkSh+N8TrRx99ZOY5P//8czAqC0TzQ+H37dixY8SIbTKC1oN5GaL2tddek6gVKQMzOy9q6ZHN9h9two3jYv369a21T5MmTTK8poWBH5RT8kDZizwURCGTalG7xx572PHqt99+s4WWfUIUKvPzMFLLzLfIMP/++2/g/PPPD/D1ly9fPvDWW29FfN66desCkyZNCnz44YeBDRs2lPm+1157rb2nX7p37x5o1qxZoFKlSoFXX301UIj8/fffgZEjR9ploTFz5sxA/fr1A3Xr1g1Mnz49eP+wYcNK/M5+4f5w5syZExg/fnxgxYoVSa3L7Nmz7X+UK1cu8NtvvyX1XkJEYpNNNgl07do1UGywb7JvJbuPxgLHyc0339z+33fffZf2/ydEtmBb33TTTW1b/+WXX1L2vrvssou95xtvvJGy9xQi19iwYYPpE7b1H3/8MW/Ok5qmzQI33XSTGzBggM2S00aH1j3x9LGNRmjv2f79+7uXX37ZzKBw2cVNWeQXe++9t/3u1NxS1+prDaNF5cPvT0WE1rPbbrtZX13qGmk7JUQ6oiqk2ov0QZkLLbpAdbWikCG7iTFThQoVXN26dVP2vkpBFsXS4/mff/4xnbLtttu6fEGiNsM8+OCDrnfv3nYd4XnSSSeV+vx4hS3pp9Tk0qYHITJjxoxgHZXIP0hvwkSKWmsMxXr06GHp6NTQhkKqMr895lGYS1H7mipBG5oqCtGMfIRIBlKcatasme3VKHhUVyuKrZ1PKtPsZRYliqmedtttt026x3MmyZ81LQAw9/EGJ/fcc48777zzYnpdrDW2RNGuvvpq99hjj7kLLrjALnmtyG+Yaab/MCdTXKvpKTx8+HCroQ11P0bYUlt76qmnWksgTupltQaKB96XuuyZM2eaC62P+AiRapjEwwl55cqVZg4ViUMPPTTj61VIojbbkVp+4+7du7saNWq422+/3QzphMjVetpcjdS+++67lv3HcXLChAlqdyaKt55WojZzLFu2zE7gcMUVV2wUaSsLWvz88ssvrnr16hGF7erVq03k+NYw/n+JwgBzissvv9yi7506dTKjqDfeeCNoDOVbOnlBe8stt1j7HdyUY2n3Ewu1atVybdu2daNHj7ZoMBMzQqSS77//3rZzBmelZaWwPzCJJ/KzVy0D8PPPP9/Kb4BSGUpyOL4IkepIbTr2H8p71q5d6ypWrOiyAZN+vhOChw4adFEQohidj0HpxxmCCOrixYtd48aNTQyEtrEoCw5ciBjckjt37mwHs9BU5BUrVrg2bdpYPS1uyhK0hQsuxDgiU+tApOq7776z+4nYhgtaf38q8SnIzz33nDl4C5EqFi1aZP1naV9F2j19mhE/HPtIS/YRW55zyCGHZHt18xYfqeXYwWRoNujXr58J2s0228wiaUzYtmvXzkosmAAWIlcjtaRjcjzi/Dd79myXaRj3EZllLImgJbjh+3Y/8sgjOi+Loo7UStRmAOobmUFDyA4aNMjSSWPFR+A8q1atchdeeKH7/fffTdguWbLEtW7d2g6u/B/6m4rCZuedd7aUI2aIEbbMGG+zzTYbCdrSTKUS5dhjj7VsAUw4XnnllZS+tyhumOzjuEY/bbYvsgw4ZlJ2wYTg+PHj7QS7xRZbuLfeeivbq5u3MFnA8YJJAlr7ZBom5chW8uaGlFNQVsFvTb0+PbH/+uuvjK+XKCzSJWrZTrOZgsxk0N13320T2wQzyLjgeMh5mYmqMWPGZHydROHxkyK1IhKcnEmzgosvvjg4oxYrkSJtCFtcjRcuXGi1tqTskXbMYEAUB8wWT5kyxU5kBx98sJ3MOImHCloi/ECqMJMjqYAJGdJD4dZbb1UKqEgZpNOzXVNfGQkGcAhbJnQw3BP5V1fLJCzmiAzIKZdBzNI3nd+TyQsEN8cyenULkYuiNptmUdShX3/99Xa9Z8+eVqaBt0WlSpUs2AEPPfRQRtdJFCbzFakVkeDAw8G1QYMGNrsWL9EibVjU33HHHRbB6NOnT/AgK4oHtoGBAweawQoCE4dk39KJS5+6Scowl0RZUyFuMYsi/Wru3Lnu2WefTclnEYKZ4WbNmllKKnjPgNCJk1122cVSj30tpkiMbESaSIs8/fTTbeKNbJMhQ4aUKMNhwhehC2QdCZFMMIGWJEBLvFSTrUgtmQ2k6lMn7MWth1paWnZNnTrVul4IkYpIrUStCMKg38+aUUNUpUqVuN8Dk59wUylSt26++WabSeHkj7iJpd2PKCxIO6aemtQjTJxIPSfSQe01hKatA7WKvjY7GWgR5KPARNVoISVEsjAgI+Lg8deJ7oVSp04dy04R+RWppb81ng+kj1O6EMnt2PdsV3q5SAba2flzFdlM6RS10dzZ0yEyfB9vLsMNqurVq2e+GvDwww9nZJ1EYbJy5Uq3fPlyu670YxGkb9++JjQxwGBJZnbOR+BIy6KlCoKGAcI+++wTVx9bURjw+/s+tMxET5w40dL4ELac/EoziCK66g2fEoVUeiZTWAfqxIVIFgZloenzPm2Q41ootJNiWxepcUDO1DnjqaeesksmxJo0aRLxOa1atbLoLb8xxmFCJJt6HI8pZ6xg0sQkHAP/0GNWOmG/wW0ZH40TTzwxahYVvPjiixlbL1G4UdoaNWrkXYsoido0gavk0KFD7fpll12W9PsRsSV16/HHH3effPKJ1ZYhaEP72ErYFp+gZSYaEJjUVXMCJ824fv36pb5HsnW2iAqyBaBXr14ydhFJw/Fszpw5wXTjI444wqIgpNkhcvASoIQDcyOVWyQHadycN/hOfVQrnTDA5vgEOBxHg7KGvffe264zUSdEMqI2HanHwL5De71MpSBTb06mA+d3HI6jCfW99trLJoZI9acsTYhk6mnzLUoLErVpgpYnhPB32mmnYEpVsiAeSNsi0hZuOCVhW7yC1oOQHTt2rJ3QOaH16NGj1PdiYiQZzjvvPKu3IKIicwqRLLh3E/nA/MSnyLZv396c3blerVo1c/em1havApE4RJkwmMnUoJzzIRMULVu2LLNvqD9fqq5WJIovT0iHSVSmzaIYy3m38G7duplwLQ3M14C+z0xaCVEs9bQgUZsGOHk/8cQTdv2iiy4KGp6UBZGzaBE0+pExkLvzzjttoBcJCdviFbQeBqqY6IwcOdJq10hb5/mRoB7W18YmAtubNz9ju6Q1hxCJQj0YEb3DDjsseB8TeBigUEdbrlw5S1t96aWX7Dgn8qOulvOhz1qKpewhVNRmql5RFBbpjtRm0iyKiWrGc3iyENgoi7Zt25rBKH4bvFaIeFGkVpTggw8+sIECouLss8+O6TWIi1Cn2lCxwUETc5+TTz7Zmm6XhoRt8Qpaz3HHHefuuusuc8dmxo3UpWjmUJhJJZOG3LlzZ0t3xiyqa9euavEjEgbRSkuf0Boe0twfe+wxywZYt26dRUU6dOiQ1fUsFDI1KOc8xPGL8yHtfMqC8xetw3B55XVC5FI7n0zvP3in+LT9rbfeusznE0Sh/ZnvCS1EvChSK0rgo7QM+GNx3kNUhDvVerHx+++/uxNOOMFqoDDaiMX0QMK2eAWthzpEIl+cCD/99FMzGYuWslmaqVRZsD0++eSTlhrKtha+HQshcpNMDco59gCTEbEcvxC/9N4GpSCLeCG6n8n0Y/oq46GSLt555x27xAQyVpo3b26XErUiERSpFUEo0B89erRdP//882N6DambkaCWjJntNWvWWDppaLuLspCwLV5B68Xm4MGDzaWRSZHffvvNHXPMMXH1Qo7HtZZoGtx2221KQxY570pPXSctMTDgK23gR9nHvvvua5M2HH/po0uJSPggmj7R22yzjQky0me//fZbly/pxwgA/B/SARkcw4cPt+vxOK63bt3aLiVqRbwsW7YsWEtaVv12MtA+j3Mf+z/mdelg8eLFZpIHuB7HSosWLeySCW1lT4l4UaRWBGFAz6wd9Q8MhsqCaCz9QyMxZswYN23aNBtYJTJjImFbnII2NHWTyRAGlrQAwGAivOcxae4M7JPljDPOsLTnf/75x1LudSIVicB2gwg699xzrTaM6ESkBWfkRBgxYoQZqZC1gIs80RZS9Rg8RoKWBpR8cBympIQUe5Y33ngj+ByyE5jU6d+/vx3PEb+8J+03chl6WzMoh3RNRI0bN84tXbrUBH88hon+ubSw07FEJJJ67CeZ0km6zaLefffd4AQUzuCxsvPOO9uYgYCIF8VCxAJjuIULF+ZtpJZZJpFC+vXrh7NF4Igjjojp+cOGDbPnhy977723XQ4YMCDpdVq3bl1g0qRJgQ8//DCwYcOGQCHx999/B0aOHGmXhcScOXMC48ePD6xYsSLp9/rggw8C5cqVC9xyyy12e/r06bbdcZlKFi5cGKhWrZptt9dee21K31sUPosXLw40a9YssOmmmwY22WSTUheekwgtWrQIXHzxxcHbHA/r1asX6N27d8zvsddeewVuvvlmu/7vv/8G6tatG7j//vuDjy9fvjxQoUKFwPDhw2N6P/Zx9plU7Ovxcswxx9j/fuKJJ9Ly/h06dLD379GjR1yvW79+faBGjRr2Wo5fQsTKiBEjbLs58MAD0/6/rr/+evtfF1xwQVren2MV73/ppZfG/drDDz/cXjtw4MC0rJsoTH744QfbbjiH5ZJeiPU8qUhtimFGH6I5zsaa+slsI2mjRCySRRHb4orQhkP7J3rK4lRMdIrILMZRPkJbmut2PDAzTrTKR69oKSBErJBFQH1no0aN3IMPPmhlHETqIi2+52k8kLEwc+bMEhFDTFW47Y/bpUGaIb1T586dG0wF5Dj966+/lnjPqlWr2r4V7T0xvCLdN3QpxLpaIrTefTWe1GPYbLPNgjWESkEWueZ8nKm6dF9PG+oIH29d7YwZM1K+XqLw62kbNGgQc+eWXCL/1jjH8QOZ8D6y4XghAeEpoTT1piYSgRCLMVQsSNgWp6D13HjjjdYOhdRgBvexuG4nQqdOnayu1rezSrYXrigeEEC4e9KG6sorrzRXbfqaRlviZcmSJeZ5EO4gym2EaTRojYEjM8fQdu3aWQ9oX/PpXxfPe/bu3duEr18YPGSLdA7KSfUmlY2yhz322CPu1/uJgrfeeivl6yYKl0w4H4fvP9TUpnpMhUloIvW0HolaUWz1tCBRm0IYNHmDEARCNMKFBDCQwyWSAc+cOXNs4FS3bt2Urp+EbXEKWihfvrx7+umnbdvyxmSluW4nA6Y5iGcEBG2oiA4LURbUf3F8oo41l8AfgZo5Boe0yqIm10dQEuGGG24woewXevNm2ywqHYNyH00/5ZRTEnq9F7VMFKfTXVYUFplwPg6tXcVwjjEVLsjpqKdlMpr690RFLft2rtf3i9xhfh47H4NEbRqitLvuumvUVj7RhATgTvvwww+79u3bWzugdCBhW3yCNnRW+ZZbbrGJE9Iwo7XySabFT2ibH8x82M6IbvnZPyFKGyAibNMFA0PSWnECD4XbpU0gkoK10047mfPx1VdfbY707EPgXxfPe9KDlX08dMkWlL+wPuynXgykCo4xoU6s8UL6KO61GEVNnTo1pesmCpdMph/TW9tnIaQ62yGZ1GMgA6ROnTq2/6TLyEoUHj8pUis87733Xpn1tKUJiUsuucQOQP369UtZ2nEkJGyLT9CGRomIzhBJjdbuINkWP34be+WVV+yETxomTrbLly9P+n1F4dKtWzcbyP38889peX+2yX322cfqYj0c+7hdVrlIKLyGulgfDUK8hr4nNbJMXsbzntkiXYNy6mk5psHee++d0HtwDvTfYbp76YrCgOwgH2nKRKQWmOzKRVHL/qMUZBEvitSKuA5C0QQDAzlqkB5//PGUpx1HQsK2+ARtaBoy/5e2JOlq8QPUC9LSg7Yh1AYRsVUaoYgGk3rU0WIQxLaZjmMSqcMDBw50Q4cOtVT87t272zGQNj1ASQgTPx4istR0EsXk+RhY4YVACys/cLziiitcr169zNiKVD/eg22ejJt8wKcgp3JQ7ksOMP2ix2+ieMGttiQiFn755Rer4+Y8t+222+ZtXTr1tL7NViL1tB6JWhEvfjIyXyO15bK9AoUCs/M+3ao0ExMEA0IiNAWZQdEjjzziOnTo4E499VSXKbywff/9903Y0lc3H93O8pVMC9rQQSxpyHfccYc1Z+/YsaNlCjDhkipBG5oChbBloueDDz4wR2/6MlOHJEQ4pK1z/CSyTxQRR+1IxyTEZCI1bBiZMWCk7psMAqIsEyZMCBo9kXoV+v8QvBieMelIz0tKS5599ll7Hw/Hc553/vnnWzbCwQcfbO+ZL9u4H5TThzdV+HMhkfFk2H333dPaR1cUZuoxA3JKDfJV1CZbT+uRqBXxZjp4UcuEZF6SsSZDBc64ceOsh9KOO+4Y0/NDe4XSP7RixYqBn3/+OZAN8rmPbb72qU1lH9pEf/NGjRoFjj322Iz8P7bzypUr2z7Srl07+/9ChPLTTz8Ftttuu7T2qc1FstmnFiZPnmz/f/vtt0/Ze5500kn2nvfee29S7zNv3rxgz0R61wpRGkOGDLHtpXXr1hn7n/Sl5n+yLFu2LCXveckll9j7cZls72/eh2Nmto4vIn+YP3++bS/ly5fPueOt+tRmmHjrH3yvUOoaH3roIXfZZZdlLF0mHKUiF0eENvw3xwWZNiq+FjydsL3zv4h2Eak9/fTTrX5ciNDUdyKlHIteffVVS+Ul8hJpSbWpUTHj0485JuHGnEuRWuoiOWZQw5xqd1lReGSynU9omY33p0hVtkOy9bSe2rVrW9SaHtt+nxQiGv4Yy/acqUyHVCNRmyISPQghLKj/uP766102kbAtHkHrIYWSHpKICU566Ya00tdee822tZdfftmdc8452s5EkLffftsGYNSwUo9K6im3oy0iNdBCqX79+ikblC9btiwoLhI1ifKQCt64cWO7rhRkkUvOx5FSkFPhMpyqelqPdx//6KOPkn4vURyitlG+ph5L1KbOLSyWetpIGxA1ZAjaaC2AMomEbfEIWj9gxAiHWtcxY8Zk5H+2adPGvfjiizYLiOEOGQpCAO18GIDRYkZkllTWBXqTKIRFKs5r3ixKolbkUo/adO0/vp6W7Z5Ia7KorlbEu/9I1BY5uGVSYI1rZzw22Jj10Efs0ksvdbmChG1xCFrPUUcd5Vq1auVuvPFG24YzAWZRCFrMfvr27evGjx+fkf8rchsickT5RObxbUkwjsuV1GOPRK3I5fTjVIta35M5ngBJaUjUingjtZnOdEglErVJMn36dDd8+HAboNPuIVYYPPC62267zW255ZYul5CwLQ5BC2y399xzj7XMQGhmis6dO7srr7zSrvu2KqK4YXJvypQpEi9ZwAvQVNTdpVrUegdktfURZWV6LFq0KKvpx2yjyXpF+IklnzacLOyHnOfxK1i8eHFK3lMUJt8p/bi4oQ6RvodAn0M/2x1rdHeXXXYJ9kfMNSRsC1/Qejh5nnjiidbmZO3atRn7v7fffrvVRpK+37Nnz4z9X5Gb0Pv1mmuusYwXyjIYhInMQDs3YEIBcZCLkVrajmEYJUQkfCuSKlWqWJ14JiEyXLlyZds+586dm9SY0kd74xlPlgbfB63IQNFaURoStUUOtYHTpk1zlSpVMsOnWKGG8Y033nB33XWX9WLMVSRsC1/QetgWFy5c6AYNGpSx/8kg4IknnrDr9GlOReqjyF+os7733nvd0qVLrTcsA0Xui7Tk8nEzH8Eoivo9ShCSMYv6448/gnVZyZpEha4bx08iYAhbIcpKPSYymWl/Cu8inkwKMhO8OJAz9vJCNJUpyIzjhIh27KbPejbS91OJRG2CMJuNayxce+21rl69ejG/9uGHH3b/+c9/XIcOHVyuI2Fb+IIWyBro2LGje+yxxzb6jT/88ENLTeYy1bRt29adcsopNpg+//zzM1bXK3IPohSxLjoOpRZEQCpSkL1JFIOiVEXLWDcfrVUKssg15+NU1tV692T8BRh7pYrQbAchSovS1q1b1wJ1+YpEbQKQYnLSSSfZrBq9Za+++uqYX0tKHW1NcH1ldi8fkLAtbEHrufzyy923337rJkyYELyPiZv999/fnXXWWXZJb+VU8+ijj1qvP7atxx9/POXvL/IDjivxLCK1pELUpjr1OLyuVvXWItecj9MhalOVeuzZaaed7JLzuxCFmnoM+aGqcoi///7bIkvjxo2zpvDPPfdcXLMapFuSdtmlSxeXT0jYFragBdaZwSgiE4jM3nfffSWe8+yzz5rATSXMDJJ2CjfddFMwBUYIkTlSGalNtaiVA7LI9UitF6K5LGrnzZuX0vcVhTcptGMeOx+DRG0c/PPPP+60005zo0ePtl6KXMZju07K8sCBA123bt1M2OYbEraFK2h9mt8VV1zh3nzzTfss0VKV0pGKfN5557ntt98+uG0JIfLPLCpdkVqlH4tcbecTuo1yDv31118TdhlOtUmUx0ffqJtU2zQRCUVqiwxMKki9fOWVV0zcjRw50h155JFxvQev5YBy4YUXunxFwrYwBa3n5JNPdjVr1jTDKOq+o5Hq2hxS8b2xzKxZs1L63kKI9JtFYXDjI0GpMokKTz9m4PXXX3+l9L1F/kOdfbbTj8nY23nnnROO1pKh5B2cfSpzqqBtJKVyoGitiIREbRHBSf7ss892I0aMcOXLlzdxevTRR8f9PkRpW7VqFTzw5SsStoUpaIEMBFLjhw4darPF0bZz0vBTbSLVpEkTu0zGfVXkD6Q5cQINTRuMdcn3E28hmkX51GMyLpgYSyV16tRxtWrVMvEyZ86clL63yH8QhCtXrgxuf9kimbpa/xra3FWrVi3l66YUZFEaErVFBCmZ1M7SRoI2Pscee2xCwufdd9+1NMtCQMK28ASt59xzz3VLliyxbATS7aP9/uEmUt4NPFF8SwRFaosD9hsWyjpCb8e6iNSTjKhNV+pxuAOy6mpFOP54wOQHUclsi1pfG5sL9bQeiVpRmvntzz//XBA1tWr2VwZ9+vQxR1ZOqgjb9u3bJ/Q+gwcPthYH+dDGJ15h+/7775uwpSYrXxydU0EhClrYbbfd3MEHH2wpyL169Yr4nOeff76ESzJgKkVboP322y+pSC11c2RH0I9UFC4+QuvT4vxtkf262lwTtT4F+Z133lFdrdgIOlH4KGc22WuvvRLefyRqRbb48ccfLQuGFHomhvIZidpSeP311y1KC7iz4nqcCGwspCxTr1ixYkVXSBSrsC1UQeuhfvyiiy6yVPkzzjjDXI9DCRe0obW2iYpaZgiZZadmjhMvvXNF4RI+AM32gFT8T5B6sygc/mNlxowZJd4j1ShSK8oStdlMPQ6dFJo7d66lQ8czNkiXSZRHbX1ELKnHBPDymcJXHwlCXd+pp55qabWkY15zzTUJv9fs2bMtCnHCCSe4QqTYUpELXdACKfZES8ePH++OOuqomF9XmrlUWRCZ9YYwSkEuPijPiMWAjEEZzxW5Yxa1dOnS4MCoefPmaVk3iVpRVvpxtifGiHI1bNjQAhm+xjwW8KjwGQipNonyKFIrCr2dD0jURmDRokU2qF+9erU7/PDDrbdsMrMXtP4hrI9JVKFSLMK2GAQt1KtXz2ad2XajCVWiuaFQU5tolNbjU1F/+umnpN5H5B+HHXZYsF9xaZDmXsjH0nw0i/JRWo4V1atXT8u6+QmvBQsWBE2BMsHatWutHOP444+3Lggi98iVSG3opI7fJ2IdVyBsGVOk6zN4AyD8MrLVC/7JJ5+0cUKhjg/zle8KxCQKJGrDIPWRkxcnTtIfX375ZXM8joVoTrAIA6JdhZZ6XGzCtlgErYf9gEgtdULXXntticc4MQ0bNsxNnz49eHnPPfck9f+Y3f7oo4/SmoIlchu2AZF/dbX+nNeiRYu0rRdimck2yGRd7ZQpU6y8ZsyYMTFNuojijdSG7j/x9FsPradNV/pnlSpVXN26dUuImEyCrwztLJmU/OCDDzL+/0V0JGoLGHY4Dka0JKCmNtZZ52hOsL/99pud8BEIxUChCttiE7Rw3HHHuVWrVlmqJ4M5L2AxkCJqwnZNZJaIbbIRWp9WunDhQtuGDjjggJR8BlF4/PHHHwU/QZhNEonU+smoVBwHci0F+Y033ghev/322xNq1yKKwygq0Uhtuutps52CjMEbgtYzbdq0jP5/UToStQUKQgy3YyDlONYfmME9YjgUbnM/whjatm3rioVCE7bFKGh9bU+DBg0s08APWBlMUmOeqjY+oUyePNkuEbTxGNSI/IU0c78AJR+h94Uu1P0QLXvzzTcL4uSbL2ZR8WRYpDNSG5qCjE9FpmB786URtJ+ij7fv0y2yDxOvy5YtyxlR6/cffFSoNc8F5+Nsilp8EuiKQOo+vaZBkdrcIRAIqKa2UCE9goMjO/6JJ54Y8+uimZtwP4KAQXq+22QXq7AtVkELpEERrWUb5sBX2uRNKkWt6iWLB+rHdthhB1sAl3h/O3zBiZuWaghfHLlFbphFMXinTo9jfrpMbjx+MiNT7Z/o3UiqM47+b7/9tmVwEVWL1upMZC9KS1ZdLpyjq1WrZseqWFOQObd6UZvu/SfTDsiMp/GnIbuGSfAXXnghGKlVqUnueAitXbvWjDpzYVIoWSRq/wszsA8++KBdx+k4nh6Z0Yx0cMF76623iib1uNCEbTELWg/bLoMGojalTd4kCyc4UpS8YZAoDjhG+oVJFFo6hd4XujAgY9ugb3iPHj2yveoFS7xmUaF18BUqVEjruvlIgo8spBvO3z6ldNddd3X9+vWz23fffXdcNZMi/fW0uWASlUgKMhMniL9y5cq5xo0bF0yklnM6bTAR0By/R44caeNBPGooy1Nf8txKPW7YsGHM/kG5jETtfxkxYoSluBFRJb0oHkjLjGSkQ4oSxlPMVBUr+SpsJWj/H0QEzt30pY02eZNMGx/PnDlz7ERHrSQzuqI4YB9jcMPCIIhe3v52+ELvx4kTJ1r/5HzvpZfrxGN2k6nU41BR67eXTNXT+rZmbJ+dOnWyKDbjBLkhZ59cqqdNZP/xUdrddtst7V4BmRS1TIRzvOYzjR071m299dZ2fe+997bHVVebG3xfQKnHIFH73xkln1Z5+eWXJ3RgoWagZ8+etngnWA5oCCIOVsVMvglbCdr/QeSFkxC/W6TJG3j11VdTlnrMd57uaI/ITZ566inXrVu3bK+GCBGosQw8MylqvXAhBZ2U53SCcPWR2jZt2gTv79u3r6tatarV9X766adpXQdR+JHaTJlEhYpaJpCpRU4nft/guNCkSZPg/ZzjQXW1ucF3BWQSBRK1/zWCmDVrlqtcubLr3r173K/3zsc4I7L4QT6pWwgC6nGKnXwRthK0G0Mqok9DZPImnFTU1b722mt2qXra4oXIF8cIkX38wJPj4e+//15q2Y4/NqTb+RiYcPa9rNOdgsygnLRQzgOhgp26Wj9Iz1QatMivSC1t8Bj34ebPUhqZqqcFJmOol89EW59o5le+s4EitbnBdxK1hQcGEHDaaafF3Ti+NPMcTva+NknkvrCVoI0M2zAHPhq2p6OuFjMa0pQYBMgAqHhh+2JbwFQkFKIKXbt2tYFihw4dYjIvEsmBcPNOw++9916pKYaYjGCO46NA6SZTdbU+9fjwww/fqNYs07W9Ir8itZTs+PrY0lKQGQNNnTq1RMpyuslUCnJZopYINRkXIrt8J1FbeCxYsMAud9lll7hfG20wj6DlYOvrB0RuC1sJ2uj4bfiTTz6JWj/r0/QS4aGHHrJLHMdzaWAiMkvv3r1NuIYaiBAJPPjgg60/MoOgUaNGWTS/rOiHSJ5DDjnELv2gu7TUY9ItM5WRFFpXm4lWPqGpx+HrIFGbfXIxUhtrCjLCb/HixZYlmKne7JlwQA51dA4Xtbir0yqQsV88vXxFevheNbWFK2rZ0eIl2iDfG0goUpv7wlaCtnSY7GHmmYkaUgwjRVOfeeaZhFKQsZN//vnn7frVV1+dkvUV+Ql11QxMQycCX3rpJZtJZsCHeyY1t0Ry6SMuMiNq33333ajP8ft8JlKPPb79UzoF5cqVK4M1f94kKhSJ2twAI05EIeTahGgsZlE+G4CJOsZFhRKpZUzNcZoMB5/xEYrqanODVatWBctLJGoLCCzVExW1kUxyqLHlYFulSpVgvzKRm8JWgrZsaG/FbKuvnYs0yEs0BRnTFaJxfP+ZHBiL3IOBUPjxEtdMnI6HDBli7aUGDhxowvf1119P+P+wzTEApj6Tbc5HGyPB/0PcUZbCcuSRR270/LPPPtvWMXQ5+uijXaGIWmpLo5nKZNIkKpOCkvZiTEwjACIN9iRqcwM6VgBjLVLgczVSG82p24vaTB4vMiFqvUkUKdiRxLrqanOvx3PVqlVdIVD0ohaHw19++SWYFlEWzEz7qFSkelqg7otUTW8WIHJT2ErQxk6oWVSqWvvwu/u+j4rSCkx5vImJh0EPAiJ02yKS67NrEmnddtVVV5lLPcdozFlIL/XRnkjipnPnzhZFZl2Y+GRSx58zPAxKyTrwy/Dhw12+w2dF/HNcjjT4ROjiAJwtUZvO9OPwVj7R1gFRxaScyH49ba61+dpzzz0tUrl06dKgeAjff95///2oKe75LGqjpR6HR2o5rmSiNZfIr9T9ZCh6xfXrr7+asCUatc0228TkcnzWWWfZ5Z133hk1YiWTqNwWthK08cG2zElwxYoVUfsyxxtppU4SIcMA8YQTTkjxGot8g1ZOmEWFHps56VJTG8oWW2zh1qxZk3D99nnnnWfGU0QR+vfv77bcckuLBEfiueees764DM523XVXN2jQIDtGYWwWvu5169YNLvEaDuZjXS3HawakDIjoQZkpMiEofT1tNFHLb0ykn23BRwtF5snlQTnHBIQtRKodnTRpkmUDYNCTSZMeL2rxJWDclQ1Ry2Qi+w/n/2RMJkXhmawlS9GLWj/jX69ePRO20YgUlY2WAscBlrQkf0ATuSVsJWjjx2/Lc+bMsct7773X+jEjTH1f5njgN3744Yft+hVXXFHqvieKA6KxRC4o3fClHURfwkUtg7E6derE/f5///23TTaSQuwhk4bbsabBsW4IqRo1amwU0WWdqD+nLRzRmWisW7fOajZDl3wUtdlIPc6EoOTczQReuXLlorYYY7tUCnLuDMpzUdSWZRblswEyGaUFjl1+0i1d264XtWQrRhvz+e9GdbXZY34OTwolStGLWl8rRE1GacQzm+QHNL6fnsgdYStBmxh+Wya10kNk9swzz0yoFpa2LLgv4vpI1EyITp06WSZAy5Yt3ZVXXumuv/56i3ZQS+shskHacCJeBUuWLLGsnPCoIreJCscCGQlMgIYKY1KPmdwhestkz5QpU9wxxxxj/yuayzP1S35JxMsh06KWSV3EeCRRm+laeARlOs2ifEooYr20c4SPrknUZn9QnquRJm8WFS5qyXCYMGGCXc9G/b0/fqYjBRmDKD/ZUFrvXdXVZp8fFakt3MF6eI1UMvWCDLqgrHRmkVlhK0GbXN9K6oPCW6mE1pjHg3eEZOCIsBXi8ssvt56gRFMfffRRSzG+//77S9TZ0jqKyKYXW5mEbIQXXnjBvfbaaxYp9Jx66qkmvJs0aeLat29v5lYMYoneRuKGG24w8e6XROuDMwGRZ75/etH6mnogWu0jLJmO1Ka7rpbeu6VFmcLXwfd5FJkn1yO1XriR6RDaXxsxybbLOTVaNkC+tvWh9ZoXSqWZd8kBOfvMV6S28PCz5AwuSksDi1RHSJQqEtRoATP6IjeErQRtcpCmSdpfaKQ2vMac2/GKWp+CJAT7PqKVSOeLL77o5s6d6y6++OISz0FMkrYeqa1UWdSqVcvS3H/77bcS93Obbbs0HnjgARO11FqWVVaC2OF/RYuCEH3mGBS65Cqh6d+hKch8H0S3+Zw+GpVJ0hmp/eqrr+wyUiuSUJR+nH1yPVJL3X7Hjh0ta4OyBD+e8anHjHWyMambTrOosuppwwU/ZnOhXgoic/yoSG3hQdqxry8oa8Y8vI6Qy0iGORykGLgUillIvgtbCdrUQOaBF7WRasy5HWvE1ovabAyIhctpEUUU9qSTTorYSoWoBhFdL2riPa5geBZq8uRNn/wAKxJs15gCki4Yy/ZKizhKUAolUye8rpbozu23327XmWDAuCvTpFNQ+kjtHnvskbV1EGVDOrw/H+VypOmRRx6xPu9EJJ9++umstfLJVKS2rHpaDx4EpPCTip1Ij3uRHGvWrAm6/ufy/hMvRS9qQ6O1sZhOhNcRRjLM4UDLzH+uWcwXo7CVoE0dZB74QUS0GvNYas8ZjPhULIlaEQ2iCNRbpdIdk3Y+9J4dOnSomZ4RPeEY4+u6yTogPdjD8f2WW24xd2Rms4lOsqxevdoe57JHjx527Oc4g0DGyZtBY6YNYNItaqk1JeJ04YUX2j7cunVrd/rpp2dlndKVfozHho/+xRqpJf1YbUkyD0EIvncmVcJbgeXa+NJPAhEEoYQH52PI1jHCl9Olw3nY96gtK1Ib+hyyckRmmf/f41xoYK8QkKh1zjVs2NAuE3VSDBe6HLQKZZY+n4WtBG1qYZv2NbXJ9KpF0FKTR+piIc0QiuRBNPXq1csmBannJPU11FmbFjvszz5FNBEzKlJnb731VhtQEVUgAuvNozgHhKbY00cZ12Qix2z/fuE9gHRmtmdqatn2u3XrZtFgoppk6xQCfE9kH5EiSCYSA3LSwPlusjVxm64oqe+7y28c7nAdjk/Zo2wJcxyRvXrAXA8gXHbZZVZzTwZH27ZtzUWdY062OmRwbAXO594sNRUw2eX3oVhEbayeNiK99eib5Pj+Ew8StSGiNlWGHQyKJGqzK2wlaNObfpxMr9rQ1ONCOpiK5AXtscce63r27GkiYbfddtsoAsaxgKgo7X4S5ZJLLrEBMQMw0t5Ct1nMnXyKIHAMYR3Cl9tuu80eJ0pEKiFpXIhfnj9gwICM9m1NN7S28enZDz74oF3y+TPZWzMcn35On8tU1uPFmnrsvTP8eV4pyJknn+oBMYRiEijUSIkeyHhVZAMMnHxbtFRGaxG0ONQT+YvF1V2iNnvMz/F69ESJa4+iFQHGLoSr2SFwegxNG+AgwyA10vLSSy8Fn8dseLt27eykwPuQvsWOEArpGvXr17eZ+nQ3Z/ai1h8kk4WBv0yisidsJWjTAwO433//PbivJtqr1h8zYhk4pgNmpumNywwlooTtJLTlAqKFSB6fl8dp3xJee0RaLDPRnBAGDx6chU9RePTv398EInWzpJV6gREK3zdiCsMmkTlC3aaJLpHGnU2IHPuU01SmIMcjakF1tdkj35xbGcOcc845wdvZqqcNz6pKZepvqElULBPWErXZ48c8mhRKm6jFlRI3SgawuFSSQshsE2IDmJlB0IUuiFNOQPTt87PxCFpmtSmcp7aJmXEGkR5qd15//XU3atQod9ppp9nMej4VzTN7XFbqkkiPsJWgTR+kCyP4QiMjifSq9Tb/vi4x05x77rl2/KIV0axZs+wYhnD1J1aMgR577DETWUTyMPmg9om2Jh7STKm1fP75522yL5fbsuQLnAs4bjIBWtqkIBHcREtFRGIceuihdslAlZpkIk/ZJh11tbE6H4evg0Rt5snHQTkTwWRxMDbhvJNNfApyKkWtr6ctyyTKI1GbPebn2aRQWkQttUdnn322HfBpqowYZXDh+9dRX0QtVOhCT79TTjklaFvODDspCs8++6zN5iB2cZbs27evCV0g9YxBDTPC1Cel2+47tGg+FYYPRLIQYSKzwlaCNr34gWx4VkW8+NRMDHey4fj3yiuvmHBloM6EFqmUXJIexv6PW+XNN99shj8cg4hEU3s0cuTI4PuwDe699952HCTVKpV1ScUK+y89T8syrahatWrQtVFkLlJ74403mmFWNvrSZkpQKlKbP+TjoJyJYWrw2c64XmiiNtZ2Ph6yMb2oldlaZvkxDyeFYiGphH56u0K0qCRil42cqEZo2h4F86E1R0RBMFvws6Q+KkJ6MikaRELSia8NQjxTyJ8sDPqpQxKZE7ZMSEjQphe/TadK1Ib3C80ErDvZIhjdhEKa8XvvvWdRH8Q2kdtQEUUkmmOXh8wSIoY8Ro9e+hGK5OB3icVciQygQjFhyheo/bvrrrtsUjtXSHWvWjKsvGdArPuzRG1uGN3kE5TcxVJvmilRm6ryPsZi8YpaH6nFOMvrCZEZ5ufhpFBaRS0bMHVpCIxos5rUmjHwQ2h4GDCGm2iER26ICBEVZvaGge8RRxzh0gni2c8YpSIFmbRsidrMCFt/ECVjQII2vfhtmu07GcjgyFakFj8ATG/IDiH6ipAiawTByoDWr1OkY1To+jJRxwQYNcZ9+vTJ+OcoRDi5+lZP0WDbI8qx8847Z2y9RG6S6vRjP6nOdshxIp51kKjN/OSkT1kttEhTNkRtKqKkTDKQscSE46677hrTa5hM9pk5SkHOHOvWrQt2sii0/Sdh5UVtLYMLohvR0vyoN6PuLFG8O1skkh1Yh8Mg6eeff7behcn2zuSAS+1RqtdR/A++X9Lg6AsJpIFygNR3nn7Yt5P5nn1mBxNWlByk0gEZ4V3W+1FLi2EHs8SUTJBG3Llz52AZRaxQa8siUgNZOY8++qi5B59//vkRn8MEAhMJ9EoVxU2qBWW8qceh68CkKsfEXKg1LgYYqzEhyQS3nyQV8cG2y/mS4ACC0gd2kq2npTwxnv2A8zAlh6xDrLXsIjkW/NcDhDFzttPgc0LUYtw0duxY9+6770bdEV5++WVLKaCZfSgcgD766KMS9/k0xHgOTm+//XawBjcV+BpYIsQ1a9ZM6r2Y9WLWd9y4cSlaO1EWoe61Ij1gqgT04EwmowFRDBwfaM3CgTVVYL5R1vtRboDpHSdzyh5wOaZ/KSd5fwzimBTalovbsaZUicTABR+fhosuush8F/BiAH6nTz75xL344ovuoYcespNwus0DRe7j04+JECFwmKDKtKjleEEpA+VSDBS9yBXpxUfn6VyRrbY4+Q7Ck+2VSC11tcmKWp81F6tJVKioZd9TpDY79bSbFFhbxXLxirVLL73UzJ/o5+dPKtFSj2lI7233PaT+UZuD0YePxOJEStpoPHVpoTVvqYCdinYSnKBojp0MvAeR32TfR0SHAzGz4xxAvUMtKWMID53k0oOf+GHf822wEgXjONyPmZmNNVUpFuJJ+/eRVmaJ2fcxj+KYxkCVDAAvYhG+bGPdu3dP2XqKjWESATOujh07mvs0UVlOuEyQsnD+wTkbo69Cm10W8cMgnP2dyW1S6ZKtU4zX+Rg413DMIMOLiLFEbWbw5kbe5FMkBt+fF7XJlvn5SG28k7++rpbou8gM8wu0njZuUUvKMSnFtNpBQPgaM8xSQqMj8+bNsyhupEglkRTEK21AGETyHjiN8t7xmH+kK82HdUj2vTnRUnOsVKT0uaQyK05drd/umCwhA4DG5qSPS9imHl93w3ee7LaN2zAzuxxcMY7LJAhYPgs1RRyriBAirLt27WoiCq+AXr162cQUA1ZKKHBjpy+3SC84UiMuHn74YTt/IBQ4liJYcMrnt/KDIFHccJ5lUPbdd99Z5C4ZUcvxIJFILSBkEbWsR6on20VkvLmRrwsVicH3R9ZlKhyQk4nUgiK1mePHAnU+hrhG/rS8wKHssMMOs1l1v4wYMaLE87D9ZxY1Uh8uUoTYibhEiJxxxhmWonzHHXe4bOJ7UIa7oiZ6sk3WIVZEJlrbnlj72IrE8dt0KkzQQttoZRqOYUyiIWQ59hx88MEmdL1Qv/baay0jhbrO5s2bW0SZsoRUHBtE2WDKdc8995hpFN89aeoMumi1JEEr0lFXS3kBxm9MhsabOSKzqMzjzxuK1OZGWx98DhClTArTBi8eJGozz4956hyelvTjWLj77rttiQZfZK7Vm6ZS1JLSyGBMpJay+tB6Yfv++++bsFXENrX4bRq38HwWtdRq+nrNSHBiZpIt2xNtQojMtPXxqcfU28db4y9Rm3m8CFOkNjfa+vgoLRlYsTqHeyRqs5d+vH2xR2oLmWRELfV2OKpyCdTk+X53IjOC1qOIbfpgm6YWliWfRa0QojBIVVufRFOPQ9dBojYzUEPtf29FalMjahlb+TFwIsTbnzYUidrM82MBR2olapMUtdddd53bf//9LY2RS26Tki1Rm3lB65GwTQ9s06GOwMng+4xK1AohEoXIEOCWnQwStfkD3zNu12TE4XUgEgezVjxxyMLEXyLTJlHgXZcxj01lRxMRGVqPFXKPZ4naJEQtkVnMrkLhNimvErXZEbQeCdvUg8NoqgYRfoadgyu/kRBCxIvvKU/9tW8Vlinn4/AU6OXLl5uTushcPW2htSPJNHx/qairTdQkCnCy950VNG5OPz///LONhzHFxb+i0JCo/S84FwKzVrESLcrErJd2zuwJWo+EbXojteFp9/FQo0YNV7169RKpMEIIEQ+0FmNghokdvYwz7XwMRAz94FDR2vSjetrU4ieYExW13sgv0UgtwtpPlisFOXP1tA0LtMdz4X2iBCDtYtq0afYDx9NbNlo9B+6JzNomM3Nc7CQraD0StukRtZHS7uMVut5QgpOiEEIkMiDm+AOJTK4B7eFWrVplru6+LCJelIKcOeR8nFqSjdTOmjXLxlVM7CRanqS62szxYwG38wGJWufc0KFD7ZIWRPGkV+63337W/iMUBve0CAFFaxMjVYLWI2GbWlEbLe3eC9xwoRsN35c6GYMKIURxw3k4GVHrU48Z3Ps0yHjxhisIZJFe1KM2txyQkzGJChe1pMaKzERqtytAkygoelGLwBk2bJhdP/vss+N+/b333uumT59u78El/RW9MJaozb6g9UjYJgff28qVK23bjnbyI0IbLnRLG2j6+vV169aleG2FEMVCsqI2mdRjjwblmcNHFBWpTX2kNta2nZFMohKpp/UoUps5flSktrCZMmWK++mnn6yW9oQTTkj4pHrmmWcGT64+BUOiNjcErUfCNnH8tsy2Hc9gorTZXx+plagVQHT/ueeeM3dGIeIxiyINmQjEr7/+Gvfr6WsOGpTnPitWrHC//fabXZeoTQ2k3LP/YHK2ZMmSrEZqtf+kn/mK1BY2Tz/9tF126tQpoR61ntBaQgxwEMlqV5I7gtYjYZsYfltmdo/JmxYtWpR4PJpraGkDD7+/Kf1YwEcffWSp6w0aNHC33HKLBjgiJjhfNG7cOKFoLa1hmNiGVq1aJbwOvi2JttnMnIfq1q2b1nFCMbHFFluYaVAidbXsPziPg0RtfvCjIrWFy+rVq90rr7yScOqxJ9w05/rrr3d77723mzlzZgrXtnDJlKD1SNjGD9sykzW0r2DgiAAJr0s744wzNtovfPZCJBSpFaG88MIL5kdAv8K7777btrWTTz45KDqESHUK8ueff26mjpjWcc5OFKUfZwaZROWWAzK/B4aoOID7ntGJIFGbGTZs2BCs+1ektgB56aWXTNiQfuEdFOMlmmkOtYcStbknaD0StvHBtsygjzSlaBkIGK2F15fHghquCzjllFNMwOKmed5559mkB5OOhx9+uNtzzz3dk08+KadskVJRO3nyZLs89NBDzf042UE5vbx1LkkfaueTWw7IPvWY4/Nmm22WElGbSF2viI2FCxda+zOOdfGY4uYTRS1qBwwYYJddu3ZNuIl3tAE+6cfkri9dujSpdSxksiVoPRK28YnaffbZx66/9dZbUWd7w+vLSxOyfgDapEmTNKyxyFdIZe/fv78NcB555BGbdMTM56KLLrLBz5VXXum+/fbbbK+myCH88WbGjBkWjYhX1CaTeuy9BhhDUA+eSF2iiA1FanNL1KbCJAq8wCJra9myZUm9l4iOP2+Sbp7MJEQuU7SilrQjoknMWJxzzjkJv0+0g+thhx1ml4rW5qag9UjYlg3poKTVIWp97Xg4sQjZcHMW0v/r1KmT9AlRFCYcFy677DI7Vrz55pvuuOOOM6OYxx57zO22227WU3zixInZXk2RIxMhpEDSb5btJRaIWLz77rspEbWcRziWgVIo04citbnV1icVJlHeX6NWrVp2XftP+pgxY4ZdJlNqkesUragllQ06dOhgTaMTJZJpDvedeOKJVqcjUZu7gtYjYVs6fhtG1EY76bVu3Tqu95wwYYJdHn300W7TTYv2MCRigP2SGeZ58+bZbdLTiIqxDZHyfuyxx5rYFcULk9O4IMeTgvzJJ5+YCK5WrZpr2rRp0uugutr0wn6vSG168NlSTBrE6iDO7+EjtcmKWlBdbeZEbYswzVJIFOVokgjRs88+a9cvuOCCpN4rkmkO97HxyCwq9wWtR8I2OmzDDPx23HHHqIOJeAcZ48ePD4paISLBAJZILYOdSy65xM2ePdvqa0eOHGnmPpSP4ODItnT11Vdne3VFntXVhtbTpiIVTw7I6a8HpKae34pzkUgduEmz/yBUOb7G+nuQas/vkUyPZ49Ebfr56L9aRaK2AF02maGlVivZtKNokSvuJ7LFbLDIbUHrkbCNDNuwN4nixHfttdfG5XIcDpEMzIB4PyJtQngYVI0aNcq2C1KMH3/8catT7Natm7WOePvtt93xxx9vqabnnnuu3YdL8pgxY7K96iLL+GMQZUWZrKf1aFCemdRjBG358uWzvToFx0knnWSXL7/8ckzP91HaXXfd1doCJYsyHdLLokWLzPmYzDjvj1KIFKWoxYQEzj///KRTH6NFqKgBY8P54YcfZBaVB4LWI2G7scjgewg9CN57770JuRx73njjjeBsYc2aNVO+ziI/YbtiwNqxY0cTr0S+evfubSdiorKRogGIW9oAyZxHeFGLqRjZWKXBRMl7772XFlGrQXl68AEE1dOmB0rm4J133nG///57zFG/VHliaFIoM6nHjRs3dpUrV3aFyqbFmErJgnhJpjetx7u9hkN6MzW1XuAWM/kiaD0StiV/O0QFKXoe0vsYYHi343hgMPnEE0/Y9WOOOSbl6yvylxtuuMEc4zlOvPjii+7777+3LIAaNWqU+jrEbuj2WRZ9+/a1tGXMSdh+w8tHQhk4cKA75JBDrEczy5FHHrnR85n4ufXWW80Bl4gFz5E7c+ZhUMzC8bqssh8GeBzfmVRLlfu6BuWZidSqnjY9kPHC5DXu4WWlIGOy9vTTT9v1VGVbaf9JLx8VQepxUYrap556Kphq4d3WkiWaSQ51X8xiFXNqXL4JWo+E7f/DtstA/YgjjrDbiAx6Op911ll2ye14uP/++y2dmRpdMiWE8LBNIUamTp1qx+dY6xyvueaaYCppWYwYMcJdddVVrmfPnrYdYhDUpk0bc/iOBFGLzp072/tPmzbNNWjQwAZxoQMv+pLjyEwGEBM+RI95z7Vr18b4yUWm62r99tKyZcuUGdWppja9KFKbOynIY8eOtcluxtAnn3xySv63RG16+ahIRC2zzEXFMcccQ2fnwJAhQ1L2ntOnT7f3DF+4v2fPnoGqVasG/v7770CxMWfOnMD48eMDK1asSNv/4HsdOXJk2r7fdevWBSZNmhT48MMPAxs2bAgUGwcddFDghBNOKHM7j4Uvv/wysPnmm9trhg0bluY1F2JjWrRoEbj44ouDt9mn69WrF+jdu3dMr1+/fn2gSpUqgaFDh9rtf//9N1C3bt3A/fffH3zO8uXLAxUqVAgMHz48pvfk+Mg+kc7jZLFw77332nfZsWPHUp93xBFH2PP69OmTsv89e/Zse8+tttoqZe8p/kejRo3s+508eXK2V6Vg+eabb+w73myzzQJLliyJ+rwjjzzSnnf99den7H9//vnn9p41a9ZM2XuKQPA8Va1aNft+Z86cGchHYj1PFl2kFvc8YDY9VZRmnuN7KxJ9KCbyNUIbTjFHbKmrITrFNlyWKVpZkK7UtWtX9/fff7t27dq5M844I+XrK/IbIrMYQpXFeeedZy1c4oVtj0gw6cEeonTcZjuP9fxBCr1PicYzgRYYoe9ZtWpVO/ZHe89169a5lStXllhEaiB7BDjf+nN9pO+fPtmprKcNjTTxe5ZV0yvi33fZ10CR2vSBeSrZK6Qgjx49OmoaOJ4HHDsvvPDClO8/eNAoyyW1zJs3zzJHK1SokLJyi1yl6EQt4iTVojbcPGfQoEHWDJ4UKFxj69WrF/UAUYgUiqAtdmE7btw4qxekDygk087nwQcftDo2Bvz0iMb5WIhQ2NZYYn1uvGAmxWAtvC85t2PtzchkJcdzL2L96+J5T8yv2A/8QkqzSA1MJpAGzIRcr169oqbhMWiuU6eOmaakCs513kdDKZSp5bvvvrPzLgY3tJ8R2UtB9p4YjAu22267lP1fJgrxOfDtgkTqU4/33nvvgncOLzpR62dvt9xyy7ScUHFepNWErzm8/vrrrQUFojaRgVi+UWiCtpiFLdss27QfsCfazmfOnDlWwwgPP/xwcEZWiESP4dk4MePyTTu41157LTj4StQQi+wdv1CbJlIDkQjqm339/ldffRW1nvawww5L+eSa6gLTg88GYgJVE6KZEbVvvfWWRfdCIQPBG0RdfPHFKf2//K7af9LDR8VSTytRmxqIyD7zzDNu8ODBZhoSCrc5EJM6M3v2bFfIFKqgLUZhSySD1js+9TjRdj4Y8HCSJOXv6KOPTonjuCheGGTRigWn4XjB1IQU599++63E/dwuK/rzwAMP2LaOk/2ee+4ZvN+/Lp73RHhxfAxdROpo3769TSRT8kB6ZOhxGnMwL3oPP/zwlP9vtfVJD974K5WRdREZ+s6SaUiZRbjJ6XPPPWfp9aQph5ZcpAqJ2vTwkURt4ZLq9ONQN1gitJFg0IKILuQU5EIXtMUmbHF95TMyOIzWxqqsCC3pnrgmM5lDyibtUTTLLkKhL61ffMpb6H2hS8OGDS1lFMGQSDso9l1aVkycODF4H/svtw844ICor2Ni8s4773QTJkxw++6770ZtMBCvoe/JoI9BeGnvKdIHx5g+ffrYOZ4JEN/xgN8EIUvNHoO7dNT1ywE59ZDh9sorr9h1/BhEdlKQ+R1ohwYXXXRRylzDQ9GkUHrq0T/99NOiEbVF535cqVIlc9D67rvvkn6vaG6wkdxhcWPca6+9AoVIJlyOs+V+XKyuyN26dQvssMMO5pqXCDgn7rnnnrb9b7PNNoG5c+emfB1F/rPJJpsEl0033bTE7UgLrsInn3xy4I8//kjo/73wwgv2Hk8//bS51Z5//vnmCvnrr7/a42eeeWYJR8977rnHHLtffvnlwKJFi4LLqlWrSjyH9xg1alTgiy++MLdw9p01a9bEtE5yP04PDzzwgH2vNWrUCLz66quBypUr2+2DDz44bd/1jTfeaP8j1GFbJAeu+Xyn7IcrV67M9uoUBbNmzQq6IOMUfu2115pDPPdtueWWCR9/y+Kaa66x/3H55Zen5f2LkY8//ti+0+rVqyc8nssFYj1Pxm8hmed4V7VURIxicX0FZre6dOniTjjhBEt/oli7UCiWCG20iC0umkRsieCkY+YyG6xatcpqB6mfTWQ/WbZsmaUmffHFF1aPO2nSpJjMpETx4R1NiQIQjSVCQC1ktH2udu3aCTkfezp16mQmQrfeeqsZOTVr1swisL5u/KeffiqxH/fr189mun3kwkON+G233WbX2U/IaqDvMunRBx98sL1nMnW3Inkuv/xyKwv6/PPPXceOHe0+IrVkTKXaKNKjSFPqefXVV+2S/tDeiEukF9KPOY6R6UAWSmgmyumnn2595tPB9ttvb5eMKUXqU483KYJMuaITtQxiaOuA2cdVV12V1HvFOlDnxIrrpk/BZKBUCBSroC10YTt8+HC3Zs0ad84558T92j/++MO1bt3affbZZ5YqiqClRkeISIS6ZzLxd8ghh6TUUTMSl1xyiS3R0u5DiWVwxUDhjjvusEXkDkx+4LROGjiTJtT0I5C22GKLtP1P1QSmT9T6iQmRfjimYag2a9YsGy+zMMZh8i7cLDKVNGrUKOh2LVLDR0VUTwubEK51RQQnOcwjGGhT65fszAU1taHmUNR8vP766xGfi0kOtSGLFi1K20xxsQlazAxoPdO2bdusWZUTyUHY8psWgrBt3ry5Ra7Gjh0b1+s44REJ4SCKKQ8nxT322CNt6ylEIUANLq19cEIuxsnBdPP8889bn0bO1Zh0pRMG/5wDMDJTW5Lk+f77703oYPBGZgXnFVG4kP1IH2I8aHBaLobIYrrZY489zAUe0y/fnrGQz5P5PfpOgM6dO9sOgygjtSJZwt1gb7nllqjPpekxOyqpnflMrgjaXKGQzKNIj+cznHfeeXG9jrmxbt26maCtWbOmpStJ0Aohss1pp51m6ebpFrShkVoEGBOuIjnIqIOWLVtK0BYBpB8TFKBLSbijvEislGz2f7uuEKwoBoou/RgRhrCl/Q6pwKS7JQsusKFOsKQ5UVMVDrMMRBRpKUBqZz7OQknQFnYqMtsmLrPxukxSBzlixAhL+WMgEtr2RIhI+GPg3XffbZkB8aS78zqO4ULkEpRccAyknRDCtkGDBtlepbzGux4r9bh4xlHsM/Pnz7cU5LJarYmyM0cCgYCV9HjfiEKn6EQtEIViQPTSSy+5Rx991FWvXj3lM8ORRC07LOYVGB5MmTLFmr/nExK0hS1smRmlnrZXr15xmfGwrV9//fVBUZyKiSJR+Dz99NMmTkkL5YTL7ViRqBW5CMd7vDMwHKOuVqI2cUjfnjZtWrD3sCgOSDf3opbxlEic0f9tI1pW+8VCoihFLQXTpAJTBP/ss8+6Sy+9NKXvH81Aivv53zQQR0znk6iVoC18YUu9OWI2Wr/lSFCrRuYDs4G8jnp1IWLB9w+l/jD0thD5DCnIiFo5ICfHyJEj7XL//fcPpnWLwgcXfAwmZRaVHMuXL7dsVOjatasrFopS1DLLT/sFxCziEtfNVAo1ZkVwiAs1kCIa4WdLLrvsMte9e3f37bffup133tnlOhK0hS9sqWF54okn3FlnnRVz5gL1Gsygc/Bk4PH444/nZUq9yA4cd0u7LUQ+Igfk1Loen3jiidleFZFBvAMyJmEicfr3728ePgTw2rRp44qF3B5pp5EzzzzTTj7MBp166qnWcieVhBtI3XPPPcHHEA6kKGFeketI0BaHeVSfPn3c0qVL3dVXXx3XNo6rHpE2ap8yYcQihBC5TP369e1SojZxOBf59lodOnTI9uqIDKK2Psmzbt06C9jBNddcU1TBhqIVtZg2jRo1ynrWjR8/3vXo0SPl/4PILOI5PJ+d/3nbbbeZCzJus7mKBG1xCFt6yzLpQvbCTjvtFNNr+CxM2MDDDz9skzRCpIsffvjBjtf0PxaiGCK1ixcvdi+//HLKJ9zzpRaQz920adOgyBHFgURt8jz77LNmVMcEG0G7YqJoRS3ss88+bujQocGB+aBBgzL2v+lZS6/cG264weUiErTFI2wRtPTaLa0dVTgYnS1YsMAmh0444YS0rp8onoEsLqe+WXyoszZ+BDzGMTsel2QhsiVqk62pZTB68sknu5tuuskVE/gz4O8Acj0uzppaP6lD+myy0Frriy++MEfyYuDff/91DzzwgF2/4oorbAxaTBS1qAVOGrfffrtdp87Vp7ykGwx57rrrLvfmm29aUXwuIUFbPMKWgReOxVdddVVc9vk+SnvKKae4ihUrpnENRbHANoWT9m677VbiWISzNgNdojb0GGcikkbyQhRqpHbq1Klu8uTJwUmdDz/80BULZM7xecloI3tIFBfVqlVzNWrUSLqudsWKFbbvIJI5d9x5552uGHj99dftvMnYnU4vxUbRi1ogQtWpUyebycGUIFNpD9SKkJrsB225gARtcQlbJnQqVaoUV/o9plKkxfn6cCFSwaeffmqDjypVqgTve+655+wSEzNKNWbMmOE222wzN2DAgCyuqRCx1dQmel6nrRpUrlzZzhVkdq1du9YVOnxf3mvk4osvVp/SIiWZFGTKqa688krbDzFs9RkTpOTmyjg7ndx///12SSeKYhzDS9T+1w2ZdhLNmzd3y5Ytc+3atXO///57Rv4vqZ8M1HyT8WwiQVtcwpbfe8iQIZbeFs/vTW0jaUE77LCD+siJlLFkyZKNWneQOUPEhkE9ULJx8MEHm0GZELmI9xdAhDKeiBfS78ngYvKG7R9hx7E6H4wlk4UMjJkzZ9pEK4JEFCfJOCATnXzkkUdsjLL77rubCzBjL95r7ty5rpD58MMPLcujfPny7vLLL3fFiETtf2HgRF80ZnfY8Fu3bm0zPumGXrVHH320CYts5vxL0BafsGWbY3sn7T4enn/+ebs844wzispVT6QXRAADeQ9GMURnyWYJrQtCNGCCIUQuQjlGzZo1E05B9lFaTCapIff1pdTJffDBB65Q4VzohTvtFmvXrp3tVRJZrquNN1KLazaT7kA22axZs9wFF1xg42wYO3asK2Tuvfdeuzz99NOL1rxTojYENoKJEye6rbfe2n3++ecmNleuXJn2/3v33Xe7b775xvXr189lAwna4hO27777rvUBJP2YQRgzfM8880yZtVuk79B/F44//vgMra0oBurUqWO9uz20QluzZs1G2QDcRyRHiEJr64O7N9FKJgu9iSTHWco8OPZ27drVtv9ChKAC4y7KD2hDIoqXRNOPyXgkONSsWTMrJfST7scee2zBi1oE/GuvvWafuZizHCRqw8Bl8+2337ZCddKA2BmoIUwne+21l0XLqK3NdMNpCdriE7b8Txxk+c2JBlx33XVu//33t4ETl9yOBtsKGQysP029hUgVbI8Maml1hskHk32coI888sgSz5szZ07RzkKLwnZAxjwS8PhgLOIhnZJtnsnvhx56yBUanP969uwZdGz1kW5RnCQqan0WWefOnUvcT0khvPfeexnJwMwGnC/hpJNOKmG2WHQEREQ+/vjjwFZbbUVVeaB169aBNWvWpPx/TJ8+PTBs2DC7XLVqVWD77bcPtGzZMrBhw4ZAJpgzZ05g/PjxgRUrVgTylb///jswcuRIu8xH1q1bF5g0aVLgww8/zNjvftlllwUqVqwYmDt3rm17bOPhC/dH4sUXX7TH99lnn4ysqygeZs6cGdh8880Dm266qS2bbLJJYN999y3xnJ9++snu79atW6BQ4PjLPpXPx2FRkvPOO89+0549e8b8mq+++sq2bV43a9asjR5/4okn7LHDDz88UGiMGDHCPlvVqlUDy5Yty/bqiCyzYMEC2x7KlSsX+Oeff2J+jd9/5s+fv9HjjRs3tseGDx8eKDS+/vrr4Gf//PPPA4VIrOdJRWqjQC0L1vKkub311lvWuoR+V6kiPDqG3TimPfT/xOkz3ShCW5wRW9KOaeHDrB6RAGb+IxHtfkw8YN99903reoriY++993bjxo1zLVu2tJlmzKHC08VefPFF6418xBFHZG09hSgLTPR8VkGs9O7d21KM6Yqwxx57bPQ4teXeJbyQXFz5LHfccYddp7Vc9erVs71KIsuQlVChQgVLJV6wYEFMrxkxYoRtSxgJNmzYcKPHCzkFmfEcn/344493e+65pytqMiaz85SJEydaVIuv6vLLL0/Je5YWHbvooosCW265ZWDevHmBdFEIEdpCidRmMmK7evXqwI477hg46KCDAuvXr7f74o3UHnHEEfb4wIED07KOQhQbitQWHpMnT7bfdJtttgn8+++/ZT6f6GT58uXtNTNmzIj4nLVr11rkiuf8+OOPgUJh3Lhx9pmqVKkS+OOPP7K9OiJH2HXXXW27eOutt2J6PtljPL9v374RH586dao9XqNGjZijv/nAd999F9hss81KPXYUAorUpojDDz/cDR8+3K4/+uijwf6cyVBadAz3MoyqqHlMR9ROEdrijdhiPLJo0SJrX+VdZpn9DzcVIIvARwVCYSbQR2rJZBBCCLExHD9pq8HxNhafDEz7yATDpyBaFgyRK1qU+GhtoYCrs2/FUq1atWyvjsjDtj6MnRmbMK45+eSTIz6HjEi8cmizNW3aNFco0BaUTgEY2+6rDDoZRcVC+/btXY8ePew6YjPUoTMRQg0gwu+n2TppyKSJPv744y6VSNAWr7Alrb1Pnz6WprLzzjvbfd7xuGPHjuY0O2zYMLvkIBntxLF8+XJbTz+4EkIIsXGLQPreA+fyWA1uTjvttDJNJQtJ1PI5Jk2aZGKkWPtqiuTb+vjAE604o7WCKleunDvmmGMKKgX5p59+ck8//bRdv/nmm7O9OjmBRG0croTk6q9atcrcxZKx1S8rOkZPrYsvvtjckJMV0B4J2uIVtmyzTMYccsgh7rLLLrP7cD0OrekmUsB9kSK0HmrMgfcJ7RsqRCpP0jjBM/Gy5ZZb2mA30sIARYhc5tBDD41J1C5cuNBNnjzZrp966qlFJWoffPBBu8SzJFIdpCheYnVAJoPMi9qyJoUKra72vvvuswyPVq1abdT6rmjJWEJ0AfDLL78E6tSpY3ndqXDfDHU/juSG/J///Mcc25KttSqkGtpCralNV40trz3hhBOsXunbb7+1+84888y46mjD62kffvjhhNdHiNKOU9Q7eefjspZCQTW1hYmvFW3UqFGpz3vooYfseXgdlMW7775rz61fv34g38HJ3NcC0m1CiFDGjBlj28Zee+1V6vM++eQTex7eNytXriyzdt1vc9Si5jPLly83/x0+y9tvvx0odFaopjY9jmykCdE7cfDgwW7o0KFJvR9RMR8di+SGPGrUKOtzd/rpp1vOfCIoQlvcEVt6/40ePdq225122imYchxPrTfQN5QU5tDZTiFSyU033WQ9BI866ihLg2ebY7uPtgiRy3DOZaxApIlobLKpx9C0aVO7ZFzw+++/u3wGF37GNWSmyaNBlBapLc3t2+8/xx13nKtSpUqp74mzNhmX8Prrr7t85rnnnnN//fWXdQrA+0f8PxK1cUIridtvv92uk8r522+/Jf2eCA3SCELhNoO6F154wXa+W265Je73laAtbmGLxX2vXr2sVYQXoqUJ12i13vDmm2+avf4uu+xi4liIVMOkCSmITOa1aNGizAGKELkMraeaNWtm16dOnRrxORyPObaXZnATCudx74mQzynIjG2efPJJu37NNddke3VEDrL99tvb5cqVK93SpUsjPofUWy9qO3fuHNP7+rFQPotaRH7//v3t+oUXXmiTZ+L/kahNgBtvvNFMINjZvIFUMkQTGrjU4taGwEWY+LqBWJCgLW5h+8knn7iuXbva7H9o/XY04VpWPa2vQVGUVqQLZp0Rs6rXFoUC/gOl1dXGYnBTiHW1gwYNMq8HokzevEeIcLO1bbfdttS62pEjR1oWRJ06dVzbtm3jqnX//PPPXb5CJtOsWbNcxYoVbewm/odEbQIwq9q3b1+bHSGVMxZ3w9KIJjSYySQVmZ2PDRezH4RNWUjQFrewJXvghBNOMIdiBg+hs3iRTMrYtnA+jgYpYuPGjbPrErUinW6XbONCFINZFNGWeFKPC0XUkvFDe0S46qqr3KabahgqEmvrQwq7j1bS8ioWyDaDX3/91QJT+YjPcujUqZOlVIv/oaNJghCpPf/88+06TsWkQSRKJKERyrPPPmsngj333NPaC9H7LhoStMUtbNetW2ctethemMVktjMceiGHtvApTdACvZmXLFliPQTlsCfSBZMrDP7zvVZQCI+v3/vyyy+tP2Z4Ng1ZWkRbOK8Xi6ilhc+CBQssC+2MM87I9uqIPHVAZvt/7733zAkfURtPWcDWW29dZjlWroLvBKVlEM/nLhYkapNs81OzZk07YRG5TQYvNC644IKoaUrU1TK726FDB0vVC0eCtriFLdsGBzmakCNofepOWSZlpfH3339buj1cccUVrnz58in6NEKU5Oqrr3YHHHCApSNyTBUi32Hw7CNDDMAjpR4ff/zxcdWPe1FLu7/Vq1e7fMMbFdK+CEEvRCK9avv06WOX1KJvs802CWVHzp071+UbBCHWrl1rQa6yxm/FiERtEiBo77nnHrt+6623lupwGAtsoNRBRoPCcMQKAz7SS9mwPRK0xS1sEbSIThpx48ydqoPdgAEDLPWHwRmiQ4h0gesx/b+JYGGww4AGZ1ScHcMXDPuEyKcU5FCzKLbzWHtrhkP9IJ0YOObnW10gIpye6KAorSgLb0pJH+dQsyiyeXzqPoat8eInmvJN1LLP+9RjAmAyiIpAxpoMFSj0AW3RooX1T+revXtK3jNaH1HfS/Sdd94JbLHFFoF27dpZP9NC7kNbrH1q4+lju379+sC1115r20f//v0j9kBOBLan2rVr2/s+8cQTKVx7ITYmlt60fqGXbSI8/vjjge222y5QoUIFO26z/0Tjyy+/DHTs2NGeH60/c8+ePTc6Ru+yyy5xrZP61BY2HIf5fdnegHMV527u4/i6du3auN/Tv75Pnz6BfOKZZ56x9d5pp50C//77b7ZXR+Q4f/zxR6Bhw4bBPs5r1qyx+++66y67b999901oO7r//vvt9Z06dQrkE75PdaVKlYrufLEixvNkuWyL6nwHkwNSh1u1amVRMvrLEsFNNr2AdIsPPvhgo8eoASBtlLYX9OVq166du/zyy202WBHa4ovYvv/++zZjR3T2kUcesev0PA5tEUW9NttovDzwwAM2I0qqzrnnnpviTyBESZiNTyfUIWFMQ8YLmQzsL23atLHZeqJf4VDiQbSY9LYrr7wy6vtiyPb2228Hb1PjJUR4pJayEBx/KRGhnQh+B0QtYzW4CWXvvfe298i3ulqfekyUVlEmURb4eGBS6cc6jH3pz9qvX79glDaR7ShfI7W+jQ/tizTej0LGZHYBw0xRs2bNbBbh7rvvTsl7EmGLFqn19OvXL1CuXLnAsccem9BsbyFQrJFav91df/31tl1cfPHFljUQy3YTC4sWLQpsueWW9tqXX345bZ9BiExBpIz9xMP+Uq9evUDv3r3LfC3R2miR2qZNm8a1HhyrmW32y4IFCxSpLXAaNGgQjDZxyXn79ddfT/j9Xn31VXufvfbaK5AvLFy40DIsWO9vv/0226sj8ojJkycHNt98c9t2DjjgALusU6dOwuPer7/+2t6DMQ7ngXzg999/D34HM2bMCBQbK2KM1KqmNgUwU0QEwBevY66TLJEckYnA+dlOIgM0p6Yu56233jLzKOp0RHFAbQVN66npZjnxxBOtxjaam188Ln/U6Xbr1s0iVWyHuCkLkc9wTCZSduSRR5bIsuH2tGnTknpvDHuocSSqe/rpp7uffvqp1OfTcxwHTr80aNAgqf8v8idaS7SJ8QLZWLH21SzNLAp/jVSMNzIBYxXOLZjB+VpJIWIBbwUyIcEfr8lKSyTLAThWk1HDGCdZL5xM8dRTT9m+vs8++7h9990326uTs0jUpgj6ReHARrudF198MSXvGd56BSFD31rSMX755Re776STTnJjx45177zzjvUQVZ/HwoeBwaWXXuoeeugh9/jjj9tkhzePql27tvVRjrUXciRIXWYb44SBKYHSxEQm4TjH9nfzzTfbwGXIkCHBx0iHZ4KG3snxQEsqXuNbOXi4Tb/CRGHSh8HWhAkTLCXuhx9+cIcccoilmUbjhhtucCtWrAgutDcRxSFqgWM26YPJsN1221l/SloJfvXVVy6fUo9JIRUiXthnfBlVvG18wqGLg3dWzocUZMZ83iCqe/fu2V6d3CZjseMioFevXsGUoFSbIPi00lNPPTXw9NNPB9OZfFrplClTApUrV7b/PX/+/ECxUGzpx6tWrQq0b9/ezHIGDBgQ0Txq8ODBgc022yyYenzdddfF/P6YkPkUsYEDB6bhEwgRnc8++8yMltgGvSFU165dg48/99xzdt/o0aPjet9ffvnFtukPPvigxP09evQIGvgkkn4cydhkq622CgwaNCjmdZNRVOHDdnHccccF+vbtm7L3bNWqlW03HO9znVmzZtm6li9fPrBkyZJsr47IUxhXDx06NKnUfQ/7I9tkKvfJdDFhwgRb16pVqwZWr14dKEZWKP048xBVwPwB84YpU6ak9L2JTtDX7eijj7Z+tX5236eVMhNMHzwavDdv3tzSnERhQRSIlk2knmMUdt5550U0j9phhx0seu8j/L7tVFn89ttvto0xK3jWWWdZCrIQmeLnn3+2dGCOafSqJWOAqG0o7du3t1l2tv94qFWrlmUwsI2Hwu26deu6VBqbkBUxb968lL2nyH/YLkaPHu0uuuiilL2nT0HOB7OoZ5991i5JuU7WSFMUL2SNMTZJJnU/PHstntKsbOGNsbp06eIqVaqU7dXJaSRqUwgDJ59aM3To0JS+N6nN4YLW75gffvihpfbQt3bGjBlu1113NTfm0LQ9kd+QXs5kBSnGCFWcryPhhS2pwzj88ZpYIDWTfomkYuLm+sQTTyjtWGSUu+++23oR4krMpAw14+FsueWWrmnTpnaciwf2C2qRJk6cGLyPyRtuU+OXyj6cONdzvBYinXhR+9lnn7lchv0Mx1pQ6rHIFfLFAZnJ3jFjxtj1ZFKuiwWJ2hRDjSu88cYbG0UZEuXrr79269evt0hdqKCllpKWANTZMnvFJW1YMI7q2rWrRdquuOIKe63IX7Bxb926tQ3mP/roIxOdpeGFLQIY8ygGFaXB47SFmjRpks0CvvTSS5oNFBmHulQm5GjTUBoY5OFdEC+Y+Q0cONAmHOfMmWO1SewjHCuBYyj1rh5MORAMLFzHx4DroVFYhDdZOT/++KO1YMOwj4hwsjWTQpRF48aNsxJp4v+RFRZPKy0G5pii0YJQiGIUtWQFYXIVry7gnMUYrWXLlm633XZL2/oVDBlLiC4SaA69xRZbWO73559/nvT7zZkzJzB+/PhgHjk1tDRz57K09i3UHlArQG3lkUceGVi6dGmgECnkmlo+U/fu3e03vfTSS+126O9fFr7G9sMPP4xqW//PP/8Ezj777OC28/zzz6fhkwhRNhUqVAiccsopJe6jrja0phY6depkz02EPn36BBo2bGitEailDd2PWrZsGejSpUvw9g8//BDx+MrzQtdlm222sffbdttt7fa8efPiWifV1IpEWL58eXCbXLlyZdr/33vvvRc4/vjjg/8zllZYtCGpVauWPf+OO+5I+zoKEU/bQrZLzjGM29MJPjecJ/h/u+++e+Cpp56KqR0RYz7/uhdeeCFQzKyI8TwpUZsG2rZta1/+vffem1JBGw7iJtKgi/s9EydODNSoUSOw0047BT799NNAoVGoovbnn38OHHbYYWas4Q2hrr322hK/M7eTEbYcVDt27GjvxeQHBgxCZAuOU5jflCVqEaOc6AsFiVqRKF4wpvPczhjiwAMPjDjWeOCBB0p97emnn27P22OPPexcJESuQOAHUz+2zy+//DKtJnEI2fB9h3MYGqE0cfvyyy/bc7feeuui339WyCgqe1D76tPpkkk5JqUNY6Ctttoq4nOitWkJrbMljZT6My6pr7ztttvypq9dMcJEE+mRpBiTFkPNH4ZQgwcPNuOcULjN75xIKjK3qcslfZ3nvPzyy5Z+KUS2aNKkifWSpf1ONObPn+8+//xzq48Vothp1KiRXVLHnQ7og3vUUUdZaj3niXPPPddS9++4445g+v2jjz4a8bW05aKWln7QnL94vRC5Ap4h6U5BZqzdsWNHa7tFL/NZs2bZuI3rlNBQQnj88cdbv9zSDKIoJdT+EyMZk9lFxDfffBO0r08kLaisCG0o4dE72reE39euXbvA1KlTA7feemugXLlygaZNm1rrjEKgkCK1tB3ht+I3O/PMMwPLli2z+8N/z2hR+VgjtqSi+5n3SpUqBd566600fzIhyoYWUkRmTzjhhMCff/65UaSWbZgsGFr6FFIqliK1IlFOO+20lGSFRYtkHXHEEfb+lDAtXLiwxOO33HJL8DwU3haFbdm3HbzqqqtSvm5CpIIzzjjDttG77747LfuPf3/abYZmU3AuoxUX4y8eP+SQQ0oc/ykLu++++4Lp0T/++GOg2Fmh9OPswca844472g8watSotAlaTyx1tl4offLJJ4EmTZqYuL3tttvyXgwWgqj1vdeqVasWqFu3bokenKX9nqF9imOBA+lLL71kqei8lv8X3rdTiGyxfv16S7nnJM6A+LzzzrPre++9t9WU0yuW261btw4UEhK1IlGYqGbbYV9JNZxXeW/qxb/77ruI563rr78+eC7aa6+97PbkyZMDF1xwgd3HOKhY+2qK3Ic6b7ZTfEVSjZ/0obSLPrOReP/99633LM9r3ry5BRxmzpxp5zy/X6Vj385HJGqzzEUXXWQ/wIUXXphWQRtrna1fjj76aBM37HDsbJyIUmFolS3yXdQSnT322GPtt2FWL9zQq7Tfk6h8PGBgs8MOO9hrqV8sxBprkd+sWrXKok9EYxGw4ctJJ51kzykkJGpFojAZyrZz+OGHp/R9qfNr1KiRvfcNN9wQ9XkIWx5n34x0jqIeV4hcZcSIEbadHnDAASl93++//z64TwwaNKjU5yJia9asac9lMpdxOderV68eGDJkiO1jIiBRm23Gjh1rP0C9evWiOs+mWtDGEtnz4gk+/vhjM3AgTRqRmwkHxVSTr6KW9JInn3wyGJ2NFtGP9nuWdaAMBwGL2YCfPX/22WdLdUUWIptwPHzwwQcDF198sTmAkx5WqJMwErUiGUdith2yGFIJ6czezCaWccGvv/4aeOaZZ2xsUbt2bXst+60QuQxleH6SPx0RYNL3YwGjKu9yzEIXANyZxf+QqM0yzHR6ZzXqWTMhaD2kGZclbH3aKut58803W4sMTkaPPfZYXrms5ZuoZdYNR7tddtklmBK+ZMmSuOum4+Gdd94JbovUU3OwjKXdjxAi/UjUikRBTPq6u1hahMQC5wdqAHnfRBzxOZ9QA6jzish18G7w4yraT6VqjLfzzjvbez799NNxZdKRtj9mzJiUrEehIffjLFOhQgV3wgkn2PWXXnopKZfjeMBNDdfjsvAN21nPO++8024fe+yx7oorrnC77rqruRZ6p1yRGiZNmuT2228/d9JJJ7ntt9/effLJJ27YsGFu3rx59ptFczK+99573fTp0+25XN5zzz0x/88xY8a4Nm3auJUrV7pDDz3UTZkyxdWtWzeqK7IQQoj8oE6dOtbZgAAF44hUcOONN7rVq1e7Fi1auDPOOCPu1+N2vN1229mlELnMlltu6Ro0aFBiTJwsH330kfv222/dFltsYc7H8TiZ9+/f38bhInF01EkjJ598sl3SLiWSaEi1oEUUhbd9iUZ4O6CGDRu6IUOGuC+++MLtueeedjLba6+9zJafE6ZInE8//dSE5RFHHGE28ohb2j3x/TIJsf/++1s7HS65HQnE8JlnnmmXscL/OPHEE926detsguWNN95wVatWDT4uYStybT/h+NWlSxc7sdNyiusPPPCAHZeEECXhfJLKtj6063nqqafsOq16JExFoZPqtj4+qNShQwdXpUqVlLyniB0dsdII/d0QqwsXLnTTpk1Lq6CNZ6YJ4RRJHCGKiR7ecMMN7v333zcB1K5dO3fYYYe5d999V+I2gQFC586d3d577239NZncINLK7CAHvkR7z8bCO++8YwfVf/75xyZX+N8VK1bc6HkStiLbsG+0bt3a7bvvvnbsefbZZ20y7fXXX7frHK+YADrmmGPcggULsr26QuQUXtSS8ZMsY8eOtcujjz7aJlmFKHRSKWrpS/vCCy/YdYIQIvNI1KYRUntprByegpwOQRsp+hqJQYMGRUxfDY8Yjho1ylJVOcn98ccfrmXLlm6fffZxQ4cOtcifiAyikAE5kdnGjRvbZMCAAQOsiT1R0+uvvz74PdPIPhLJpsEwgUKka+3atRbtQhiUK1cu6vMlbEW2+OGHH9wBBxxg2QtMmlWvXt0yGk499VR3yimnuFatWrlq1arZY2+++aYdMxHBQoj/Z6eddkpZpPbtt9+2S85fQhQDftycivRjsuOWLl1qJV5HHnlkCtZOxItEbYZTkNMlaIHo67XXXlvqcxAwsaQtc5vaACK1n332mRs/frzbeuut3dlnn22pyrfccosGlyEsW7bMPfbYY2633Xaz74wDGzWw33//vTvvvPNMVMaaHh7L5EQ0iLQT0UKgEv168cUXI/7m4UjYimxwzjnnuF9//dUG5kRmlyxZYuL1+eeftxlvBtnsS9SGE5H65ZdfXLdu3bK92kLkDKlKP2ayeurUqXadiSUhioFURmp96vFpp51WaiBBpA+J2gykIJNXz2AM86V0CdpwU6GePXvGLJiizVD5+6mrIR0JYUtKLUZHjzzyiNthhx3s/ldeecXSXIsNokdEs6k/rlevnrv66qtd06ZN3XvvvedmzJhh3zWi0qcTxzITGC01PBZmz55t29uKFSvcwQcf7F577bWIKcfRkLAVmYR9hP2H/YQJNCZjosFEEc/feeed3eTJk93MmTMzuq5CFHr6MeOGNWvWmPnUHnvskaK1EyI/RC37z4YNGxJ+n+XLl9vkKyj1OHtI1KYZRAVpdECUjlS7dAlaD6Lotttu2yhqG00wUQcQiwBGnDGwJHV20aJFbuDAgbYjI3IRdV27djUhhXNioYJ4J1USl2gGE9QbMyC/44473M8//2wiFmEYmmbsDaCiRWBJCU/E2TgUJkuIzBLVat68uUW9cMWMFwlbkSnYVzC6YYIs1MAsGjyH5zKZxGuFEP9LPyaVP5lB+cSJE+3SGxoKUQyQecg4nXFwMg7ilBiS7cCEEMENkSUy1mSoiJk4cWJg8803tx5L9CjNJPSjHTZsWLAvbVk9UKP1Qg1/Hrc9X3zxhT2/cePG9hg9b4855phAv379AgsWLMj7PrXLli0LPP/884FTTz01ULVqVfuM2267beDCCy8MTJ482fqShcJ3Ha03cLI9Z6P1Ktxpp53s/XbffffA0qVLk35P9bEV6aZVq1aBmjVrxv06XsNrCwX1qRXJsH79+kD58uVtG5o/f37C73PggQfaewwaNCil6ydErtOkSRPb9l9//fWE3+OQQw6x97j33ntTum7i/1Gf2hyBGlpmgIjsQY8ePTJqtFRaK5hoNZ7hZlLRam59Wu1ff/3ldt99d2sJRH+u3r17m0nRJZdcYj3AMJgicoxp0qpVq1yuw+9DlPLhhx92hx9+uKtdu7bVSJA+fOWVV1rqIy6s/fr1C0ZqQ/vMlpbOnUzP2UiQakwKOKkz9L6lbU+NGjVcsihiK9INxwpcjeMFN3FeK4RwbrPNNrNjfzIpyPQx9+cv1dOKYiPZuloivNSjk+HAWFFkD1Uyp5FQUyhqHHGhJUWI/m9lGTplgmjiK9xYqDSR9uqrr5YQvAho0mARtqTb4gY3evRoSxu8/fbbbafnfoSuXxjYpjslOxqI71mzZplQ9QtOxaQZ8z1wgn/88cfNTbh+/fp24v/qq6/scSYKSCsO/fz8rtEabvv0Y16XaN1sKNQ/4a6NkRd1UBjsbLvtti5VeGFLeyeELS1X1LdQpAomZGrVqhX363gNrxVC/C8FmYkezKKYiI0XJpxJXd5xxx2DAlmIYiFZUetdwxkvMU4U2UOiNk1Ecjm+++67zT24V69erkuXLuYmnE2i1XiG3x/teUSgwyO4RCy9AxzmLrgkDx8+3EQgRka483rxiCBGVPr/QQQG8ynqc7fZZhtbuI49ejyGR6Hwf3/77TerAWahZzCXRFo//fRTE7Dr16+32W6izYhs3FW53HPPPa2nrCdcwCLg/Wf18DiiFnEb+txkDKCifa5OnTrZYITti8kDTHRSjYStSBdkAWyxxRYJtUrjtUKI1Dgg+3patSERxSxqGbcnAuMjOPTQQ1O6XiJ+JGrTQLS2PYigPn36mKC79dZb3ZNPPpnV9fQtgMoSX9GeV1arGMyKWHgtabcUz7NgKAWISdyUvcgl4kiPVURnuHkV/SsRuQhcBsLYpZcvX94EFs8nnZcUWd6T9OHFixfb/b///rsZy3gQr0wmIJYR0bTb8QI2dIBNRBZXZ8Q2nz9SCna4oA1PM0bcct2/R6oghZtWUaQaI/Zx3EskjTNWJGxFOgjdL4UQ2XNADjWJEqLY2HXXXZOK1HpRyzhJZJdNKKzN8joUFGX1oaXdyyGHHGKi4IMPPkip2EkUBFss4iv8edzG2TcWqB/1rwn/X+H3sUnS9zU8uspC1JXoLuKVhYglwhWxi8j1C3WwPtLro74s3I+wDf2/CGiEm49I33nnnSbGPYhyHO1wMo7ns6YDvgMi4ESZiSLT/7i0ViiphO+JgzeuyjgsyyFTJAPHQMoyzj333Lheh+s6x85knF5zCeoZcXYmpTpbZRgivxk7dqw77rjjXLNmzezcEA9MAPusMa5zjhSimPDHYIj3OBy6/zBuJQAjsneelKhNMfSjpS9taV96586d3QsvvGAnDwZn3pI/HwlPyY0GkVRSfcPrTyH0Pp+yHM3YKlwQI2rHjRvn2rZta2I2/Pn01gUMq0oTrmWBeVakwTc9aqmVDv0+kjV/igZRbQTs/PnzrYaWgQziMpMgbPn/6Uh1FsUnahOZGOGUxeskaoX437mhcePGNvZgO4pnv2IswpiELCqypYQoRgh6/Prrr2b8Gc+4auTIka5Dhw5WvsYYV2T3PKn04xQTi1EPacekOTCj2qZNG4t+EWnMR0LTbDEqChV4ZdXfRhLD4SnL0cQzkXAMqfj+khHbsYIgjpSCjYDF5Tkdacah4Kx3wgknuD/++MMEJTW0mHpkGr4HCVqRqv6AivYLkTx4UbAvUZpC5hKTnvGa3KieVhR7XS2ilrF5PKKW7EtQ6nGOUGrDH5E26C3aqFEj67vUrFmzgulRSC/Wdu3abdSLlV65kXq3lrb43rrR+r6ybLHFFhv1qS3t+YkuoetSWt/fdPDss89a71/W44ADDgj8/vvvGfvfQoj0oj61IhXUr1/ftqMPPvggrtdtv/329rpx48albd2EyHXOP/982w9uvvnmuF63//772+uGDh2atnUTAfWpzXXIwcfohxlVUn5IX8hk/9p0QaSStNjwXqzRHJRLw7cSitZSKBQMjMJflypCzbNK6/ubamjZg5EVKc5sG2wjGHok0gZFCCFE4eLLmOJxQP7+++/NAwTjRbw+hChWEnFAZoyGySkoUpsbSNRm2bGQms/KlSu7SZMmmVgqlDqxcPHnHZTDxWJp/Xq9EI5FEIe6PiYioCNBfa8X5ZmGAyvfGbW8pJXhlv3SSy8l1AJFCCFEYZOIA7J3PcbwkXGIEMVKIr1qCabg60KQKhvlYGJjVFObZWgrQ6E5BkCIFpx5+/fvH3RiKySitbnhvnDjpvDoaHg9azihZluxPD9UuBIBDTWRSnd9bFnQKqh79+7Wi5OD5XPPPadWC0IIIVLaq3bKlCl22apVq7StlxD51Nbn22+/tfaQsbQt9K18cPGXP0RuIPfjHGHEiBHutNNOs50Jp96nnnqq6IRMWa2FeJzviJQpD5HL4cOHx+1+nG3hGom//vrLXXrppW7IkCF2+/DDDzdBm68mYkKIspH7sUgFTIqfcsop7oADDrCuCrGw3XbbuZ9++snMooptvCFEKGRJ0iYRU9MffvjBbb/99mW+hjZalNs99NBD7sorr8zIehYrK+V+nF906tTJhBe9UJlpxYkQV12im+xoxQACsyyRGSpow9NAOJnH+n65JGa9yD7ppJPcrFmzbMbvtttuczfddFOwp64QQgiRqvRjWrMhaKmnjbXfvBCFCmMtMv5mz55tKchliVoCUH7ySPW0uYNqanMI2tR8/vnn7qKLLrLbjz/+uDVTp65TlG4AFU8dUS7OsO+7774maEk3ZtacGloJWiGEELFAqzUmRGnpQ2uSsnj33Xftcp999nGVKlXKwBoKUTh1tTxn2bJlli241157ZWDthCt2Udu7d2/rN0VDclyG27dvX2JjZYMk3ZMNmQ2TvomXXXaZhbdD4UQRvtCwPJTbb7/d1a9f33Lrk3Hf5eTSt29fc0am5y35/cwC3XDDDdaDrpgpzQAqtKY2XyDNhe2NlDF+25YtW1rvYtKOcxUGQqTc1KtXz/YD6sFDIcJMbQrbcfXq1S3jgDTwUJgBDd+fws24Bg4caKlxnCzCXy9EonBsZfurWLGiZWt89NFHUZ/71VdfuRNPPDG4vT7yyCNJv6cQ6YJxzu67727Xp02bFrOoPfTQQ9O+bkIUmgOyr6dt0aLFRqVvInsUtKjFBOHiiy+2SOdbb71lLmVHHXWUGfDAwoULbXnggQfcl19+6Z5++mk3YcIE161bt43eixrXRYsWBRcEcujGjcnRqFGjrOaTtOFkYT2J3NHOhTQHBv00WCcdefXq1a4YieSg7CHSmU+Q9sVgok+fPnb7+uuvtwjtNtts43IZ9p2mTZvaQD7axAMZBmy7NCVnsM+2TPQglDvuuKPE/sTkUuh3g8kXE0ekYHft2jXtn0sUh2/BVVdd5Xr27Ok++eQT247btGnjFi9eHLXGHUdLjr3R6trjfU8h0p3tBbHU1ErUCpF4pJbxDSj1OMcIFBGLFy+25r1TpkyJ+pwXX3wxsPnmmwf++eef4H285rXXXov6mjFjxgROOOGEwN9//x2YPn16oHnz5ild71dffTWw884723qw1KxZM3DPPfcEVq1aFShG+I579uxpC43mR44cad99vvDxxx/bb8hvWa1aNdt+8pGy9ovQhtlvv/128L7tttsu8PDDD0d9zaxZswL77rtvYPXq1YHvv/8+sP3226d0vUVx0qJFi8DFF18cvL1hw4ZAvXr1Ar179y7ztdG22WTeM96m8kKUxdNPP23b0oEHHljq8xYtWmTP22STTQLLli3L2PoJkctMmzbN9ottt922zOfutNNO9tzXX389I+tW7KyI8TxZ0JHacHxacY0aNUp9Ds5amCeEQsS3Vq1almqAO22oaTQz82vXrjVDp6OPPtrSnlMJLWcoXh82bJil2S5dutQie0TBijFyS8SWNFeWfIvQfvbZZ65169b2G9LOiejOscce6woR0qsHDBhgjnVEsEIh+lWzZk1LL77//vvd+vXrg4/tsccebs8997TXkU7Xq1evLKy9KLRtcebMmZYO76FlA7djSdVM5XuuW7fOnBxDFyFSGanFOJHtrKwoE8dZykSEEP+L1P7yyy+ljqt/++23oI9LuEGpyC5FI2pJ4b3iiissVYBBcySWLFli/VLPP//8jVIlX3zxRUthpsYKIyefNgrk05O2zI7Axp4Oa3xE9plnnunmzJnjhg4dWkLcUntImjL3k04tchNS3Bnw/vHHH3YgfOeddyylvNDA4r5y5cpWY/jwww/bfsOEkIc6YlKLJ0+e7C644AJ39913b5RWPnjwYNuX2MZPP/30LHwKUUhwbKdlA0ZsoXA7FlOdVL4nk55M2PgF13shUgHjgtq1a9uECxOmZaUeH3LIIRlcOyFyGyZ42H+gNG8cn97PpLsmhXKLohG1RFoRFeEGTx5my9u1a+caN25sEcBQbrnlFhPDRJWuu+46G4ATXQoHMyp6oaYTxC1tf0LFLYZX9DM9++yzzVyKHQ0BT51vsUVxcxV+LyY7EGmYl9E/F2OPQqRVq1YWkebAT+YCRlihNYbUIB522GEWJbjwwgvdgw8+aJNE4ZEFIrkYuAlRSGD6R0aQXxYsWJDtVRIFAoZmsdTVqp5WiMTNoghigSaFco+iELUYNxE9IjKEQ3E4OM8y+EZkvPbaa2U6mZH++vPPP5ea3pNuQsXtpEmTbKBEKi4nNVKVH330UUtrJdWa9aUPbo8ePczEZ/To0SY6EMOhadQiPTDjh6Mxwo6JEZytidAUKjgfM9lC70MirmyrXEaD7ZP04x9//DGj6ymKBzIFaJFF9D8UbkczgUrXe1aoUMFKXEIXIVKFF7XenTUcMoW++OILu65BuRDxmUUxVnnllVfsOpmbIrcoWThaYCDYcFVFqEZL9SRCS00sAw3EHimTZYEgJOWA12QbBAORMRbSOIkEInJJ+WRBKNBiIlqbCQQItbnsyCy0Y/HXq1WrlvHPU2h89913JmhJRyQyyW9SbOkqpP6XNgHE/kQtIpkOQqQDMmjoxzlx4sSgcz3bJbcTdatPx3sKkSyhkVrGQEx0h4LY5X6c6hOd0BGiWEUtwTHG2UxqknEmcotyhZ5y/Pzzz1urHaKwvs6JKBlpjQha2o3QuuHZZ58tYdpBXj2z8GPGjLGZd6JOCF5ECeLxmmuucbkIKZsnn3yyLZy4EFWIBlLcaJUSuhA5pEUL/RhZwqE2jB0cYyPSREPrIkXZzJ8/3wQttdaktdOyh98nnyGd3RskwA8//GDbFxkBfLa77rrLHX/88daaiJpDWv/w+dkeAQMd+s4yCcM+ye0rr7zSasKLTeyLzELae5cuXSyjBcM/+s5y/PMto8h8oXzDG/1Rl0jWi7/Odsy2Tr2474td1nsKkWmYaCHbjHELx2faUoWi1GMhEhe1+Ov4KG24oazIAQIFjG+BE7489dRT9vjkyZOjPueHH36w54wfPz7QrFmzQOXKlQOVKlUKNG3aNNC/f39r3ZDvrFmzJvDtt98GJkyYEHj00UcD3bt3Dxx++OHWkiL8+9hiiy3s8W+++SaQS9DKJxdb+ixYsCCwww472He3yy67WAuFQiDaPtOlSxfbnjp06GDbD22xttlmm8Dxxx8f+Oijj4KvnzlzZmC//fYLVK1aNVCxYsXAbrvtFrj77rsDa9euzernEsVBnz59Ag0bNrTtk3Y8tAfztGzZ0rZjD+eASNs6z4v1PWNBLX1EquEYyzb1zDPPbPTY/vvvb48NGzYsK+smRC4zd+5c2z+23HLLjcb5jDNr1Khhj0+cODFr61iMrIjxPLkJf7ItrEXuQZ0xM1VEJvr16xd0UiSViUjc1Vdf7Q4++OCNUpsyzT///OPGjRvn2rZtW2YtdKZYtGiRa9mypfv2229do0aN3JQpUywCJIQQ4ZAdRPaQbycnRLKQQYDzfPfu3d0TTzwRvJ8sAsqKqAskikvpkRCi5JiS9pyR9hH8UPDfoVSKzB1FanPvPFkURlEifkgNJaXu3HPPtZ531BFgPMUcCOncpC5h8ONd4MT/Q0o3LscIWg6G1DdL0AohhMgU0RyQp0+fboN12kjRClAIURKCIxh6wj333FPisZdeeskulXqcu0jUijIhGktBPPXFuC3TxxeTrBkzZrhjjjnGnJWJThY7mAfQh5bvCJdtBG3Dhg2zvVpCCCGKUNTOmjUr6BMCnJOASelsZ1kJkav4lp1PPvmkmzp1ajCC++qrr9p12hSK3ESiVsQF7sjs6BhNYfCDmRaF89yPKdCGDRtcMbJ8+XIzHWMQgaMkg4dIbttCCCFEOqlXr55lCuHG7TsfYHL5wAMP2HXMH4UQkaF8jCxFIIhD9wZc7WmHhYGqWmHlLhK1IiGoKXjooYcsNRnXT2aDaWNxwAEHuE8//dQVE9RW4HJM3TGu2Rz8dt5552yvlhBCiCIlNAWZhbZTuHh37NjRnX766dlePSFymvvuu88E7Ndff22O+KGuxwRzRG4iUSuSolmzZnbCJEpL8TYpydTiYlQRmvZUqCDqmzdvbkIeQUvbHtr3CCGEENkWtSNGjDAjRVoXtmnTxtocqh5QiNKhxeBjjz1m12nj+fLLL9t1pR7nNhK1ImmYtbroootsRov6WlKecF6kufvgwYMLNiWZgxy1SdQT77HHHpbmteeee2Z7tYQQQhQ5XtTSaxnHULoVUBOIH4YQomxOPvlkM0ilnpaOIJSWsR+J3EWiVqSMbbbZxr3wwgtu/Pjxln5L83fqEojcvvPOO65QwAH6rrvusgPemjVrzCzr/fffV3sEIYQQOUGTJk1cpUqV7Pree+/txo4da61KhBCxgZkaLbEqV65st0866SSlHuc4ErUi5dDH68svv7SaW/pK0eu2VatWVovw/fffu3wGw4CzzjrL3XzzzXb78ssvd6NHj1Z/SSGEEDkDKcbUAjIQp78m52IhRHzQ/uqpp54ycyjMUUVus0mAsJMQaWLJkiWuZ8+ern///paWvPnmm7srrrjC3XDDDdYEPllICxk3bpzVDNFfLJ38+uuvNkAgKsts3eOPP+4uvPDCtP5PIURhE2tTeSGEEKIYWRnjeVKRWpFWatWqZSZSn3/+ubURwH0RVzkav994443u999/d/kAM91NmzY1QcuONWHCBAlaIYQQQgghcgCJWpERMFJCGFLXs/vuu9usC6lRiFsitz///LPLRRDhPXr0sJTqxYsXmxHUhx9+6I488shsr5oQQgghhBBColZkuui+Xbt27osvvnCvvfaaGUhhtPToo4+6HXfc0V1wwQU5VXM7b948d9BBBwUb1tOHF0G7yy67ZHvVhBBCCCGEEP9FolZknE033dQawdMCh+gtbXGojR0wYIC1AaIx/HvvvWcuw9niueeec3vttZf1oa1Ro4YbOXKk69Onj6tYsWLW1kkIIYQQQgixMRK1IquR26OOOspNmTLFTZ061VJ86WlLc3ic5khZJor7xx9/ZGydli1b5s4++2x3xhlnuNWrV5vgph74hBNOyNg6CCGEEEIIIWJHolbkBDS0pr/tzJkzXbdu3ayfHk3jqbetV6+etdHBpCkd0VveE2GNkOV/DR061KLJt99+u5s0aZKrX79+yv+nEEIIIYQQIjWopY/ISbDtJmL75JNPWqTU07hxY3fmmWe6li1bun322ceivYm29MH4CQE7aNAg98033wTvb9asmXvssccsWiyEEOlELX2EEEKI5M+TErUip2HznDFjhonbF154wf3111/Bx6hvbdGihdt6661dly5dLFW4SpUqUd+HnWLp0qVu7ty5bsiQIW7UqFFWywuVK1d2nTt3dueff35QLAshRLqRqBVCCCGiI1ErCg425uHDh7s333zTanCXLFlS4nFShomy0jKI5yJg/UKtLPW6HsyfttlmG9eqVSt34oknugMOOMBVqFAhC59KCFHMSNQKIYQQ0ZGoFQUNm+0vv/xiqckTJkxwf/75p1u+fLkrV65ccEGk1qlTx8QrtbL+sm7duhKwQoicgJN0tWrV3IIFCyRqhRBCiAiitkGDBjbOR9xGQ6JWCCGEyBI///yznayFEEIIER0mf0szb5WoFUIIIbLEv//+6xYuXGh+AKmq5fez2or+5ib6fXIb/T65jX6f4iMQCLhVq1ZZtiWlhtEol9G1EkIIIUQQTtDpahvGgE+DvtxFv09uo98nt9HvU1xULSXt2KM+tUIIIYQQQggh8haJWiGEEEIIIYQQeYtErRBCCFFA4O7es2dPubznKPp9chv9PrmNfh8RDRlFCSGEEEIIIYTIWxSpFUIIIYQQQgiRt0jUCiGEEEIIIYTIWyRqhRBCCCGEEELkLRK1QgghhBBCCCHyFolaIYQQokDo27ev23777V3FihXdfvvt5z766KNsr5L4L7/88os744wzXM2aNd0WW2zhmjRp4j7++ONsr1bR8u6777rjjjvO1atXz22yySZu5MiRwcf++ecfd91119lvVKlSJXvOWWed5RYuXJjVdS4mSvt9YPXq1e6SSy5x9evXt/2pcePGrn///llbX5F9JGqFEEKIAmDEiBHuqquusnYXn3zyiWvatKlr06aNW7x4cbZXrej5448/3EEHHeTKly/vxo8f72bPnu0efPBBV7169WyvWtHy559/2j7CRFA4f/31l+1Dt9xyi12++uqrbu7cue7444/PyroWI6X9PsCxbsKECe7ZZ591c+bMcVdccYWJ3NGjR2d8XUVuoJY+QgghRAFAZLZ58+bu8ccft9v//vuva9Cggbv00kvd9ddfn+3VK2r4/t9//303derUbK+KiACRwNdee821b98+6nNmzJjhWrRo4ebPn+8aNmyY0fUrdiL9PnvssYfr1KmTTTx49tlnH3fMMce4Xr16ZWlNRTZRpFYUTJrJ2rVr3cUXX2ypXZUrV3Ynnnii++2330o8hxm8//znP26XXXZxY8eOzchnE0KIdPP333+7mTNnuiOPPDJ436abbmq3p02bltV1E/9/7tl3333dySef7OrUqeP22msvN3DgwGyvloiDFStW2PikWrVq2V4V4Zw78MADbb8irZ/43OTJk90333zjjjrqqGyvmsgSErWiYNJMrrzySjdmzBj30ksvuSlTpljtS8eOHYOPr1u3zkTvE088YZGM7t2720BQCCHynSVLlrgNGza4rbfeusT93P7111+ztl7i//n+++9dv3793M477+zeeOMNO/9cdtllbujQodleNREDTJpTY9u5c2e31VZbZXt1hHOuT58+FuAg2LH55pu7o48+2saQhx56aLZXTWSJctn6x0KEQroISzQ++OAD16VLF3fYYYfZ7fPPP989+eSTZoJCjQszqIMHD3bPP/+8O/zww+05Tz31lNttt93c9OnT3f7772+idrPNNnPNmjWzx8uVK2f3cTAUQggh0gWp4ERq7777brtNpPbLL7+0jCPObSJ3wTTqlFNOsWggExMid0Qt4zuCG9ttt51l/BG4IOMvNGNFFA+K1IqCSDMh7Y4TT+iBbNddd7W6F596x+xq165d3TbbbGMHPWbKq1SpkrXPJIQQqaJWrVo2aRdecsHtunXrZm29xP/DeYeoUihMuv70009ZWycRu6Cljvatt95SlDZHWLNmjbvxxhvdQw89ZKVre+65p2XvUWP7wAMPZHv1RJaQqBUFkWZCeh33h9e6hKfe4QpKmt7SpUvdtddem/HPIYQQ6YDjHyYpEydOLBEd5PYBBxyQ1XUTzpyPcc8NhYlZIkwitwXtt99+695++23z6xC589uw4BsQChN7HPdEcaL0Y1F0aSZVq1ZN23oKIUS2wHuAVFbSXHFpfeSRR8yvgAwVkV3wfCDjiPRjhBKlMwMGDLBFZAcMKOfNmxe8/cMPP7jPPvvM1ahRwyLrJ510krXzwVSSenU/Qc7jKlvK7u9DFl7Lli1djx49zDyUcSFeKsOGDbPorShSaOkjRC7BZvnaa68Fb//111+B8uXLB8aOHVvied26dQu0adPGrk+cONFe98cff5R4TsOGDQMPPfRQhtZcCCGyS58+fey4t/nmmwdatGgRmD59erZXSfyXMWPGBPbYY49AhQoVArvuumtgwIAB2V6lomby5Mk2bghfunTpEvjhhx8iPsbC60R2fx9YtGhR4Oyzzw7Uq1cvULFixcAuu+wSePDBBwP//vtvtlddZAn1qRU5349s5cqVFl0dN25cCTOpCy64wGbu3nzzTTOKql27ths+fLi18gFSvairpaYWoyghhBBCCCFE4aH0Y1EQaSaI3m7duln6Ha/BzOHSSy+1WjIJWiGEEEIIIQoXRWpFTvDOO++4Vq1abXQ/9WFPP/201bLccMMNFpVdtmyZCVva+lCnRGTX95G7+uqrLVpLq542bdpYT1o5fwohhBBCCFG4SNQKIYQQQgghhMhb1NJHCCGEEEIIIUTeIlErhBBCCCGEECJvkagVQgghhBBCCJG3SNQKIYQQQgghhMhbJGqFEEIIIYQQQuQtErVCCCGEEGmkadOm1n6uQoUKbunSpRn5n7fddpv9Ty6zRbrWgVZ/vO/ZZ5/tio1HH33UPvsrr7xS4n6+C+7nuykmNmzY4HbddVdr9bhmzZpsr47IIhK1QgghhBBpYsaMGe6LL76w63///bd79tlns71KOc2PP/5o4mz77bfP9qrkHL///rtNEDRv3tydeOKJ2V6dnGCzzTZzvXr1cj/99JO77777sr06IotI1AohhBBCpInBgwfb5bbbblvidrq55JJL3Jw5c+yy0OjQoYN9tt69e7ti4vbbb3fLly/PavQ9FznppJNckyZN3L333ut+/fXXbK+OyBIStUIIIYQQaeCvv/5yw4cPt+vPPPOMq1y5sps1a5ZFb9NNrVq1LC2Ty0KjatWq9tm22WYbVywgZkktZnLk6KOPzvbq5BznnHOOpR8PGDAg26sisoRErRBCCCFEGnjppZfcypUr3R577OFatWrlOnXqVGa09rDDDrP023feecdNnTrVHXfcca527dpu0003DdZLkprLc0jVHTVqlDv88MNdjRo1gq+LVs96ww032H0XXnhh1P//5Zdf2nO23npr988//wTvf/XVV925555rn6V69equYsWKbocddjAxMXfu3JR8X9SF8p4wf/58W4/QpayaWj479/Mdrlu3ziKb//nPf2xdGzZs6K677jq3du1ae+6KFSvcNddc43bccUd7nO+U72r9+vVR12/ixImuY8eOJqY333xzV6dOHYsaT5s2LeLzv/32W/t++EzUUzOpQe1nu3bt3FNPPRXXd8Pz//zzT3fmmWfatlAaP/zwgz2vbt269n8bNWrkbr75ZvtOovHCCy+4I444wrYjXsN6su7ffPNNxOeH/yalbcfxbt///vuvidODDjrIVatWzZUvX96+a2rTL730Utvuwzn99NNduXLl3JNPPlnqbygKF4laIYQQQog04MUr4iD0EgFRlqkNghgB8P3337sjjzzStW7d2sRGKA8++KBr3769W7VqlUXvWrZsaTWG0ejatatdjhgxIijuwvFi64wzzjAx4TnllFMs6rzFFluYiG7Tpo0JEZ6/zz77uA8++MAly8EHHxysFa1UqZLr0qVLiSVWqF1m/R566CG322672XfH5AI1lyeffLJbtmyZ22+//dywYcPc3nvvbd/bb7/9ZiIY0RQJBDC/A5MICGS+dwQxtw855JCNRCqTA/vuu6/dz+927LHHurZt21qk9d133zXDp3gYOXKkXbIOpfHZZ5+5Zs2amWDkcx166KFu0aJF7q677nKnnnrqRs8PBAL23Xbu3NnWa6+99jLhjtBn3bk9YcIEl2pK276ZPLngggvcJ598YvXD/Gb8Tuwzjz/+uH3GcBDGfO6FCxdmJBNC5CABIYQQQgiRUubOnRtgmFW+fPnA4sWLg/fvuuuudv+wYcMivq5ly5b2OEvfvn0jPme77bazxzfbbLPAqFGjIj6nZ8+e9hwuQznooIPs/uHDh2/0mn/++SdQp04de3zWrFklHnvhhRcCq1evLnHfv//+a+vI83fffXe7Hcs6lMYPP/xgr+EzRuOpp56y53Tp0qXE/ZMnTw5+dy1atAgsWbIk+NiPP/4YqF69uj3WpEmTwHHHHRf4888/g4/PmDEjUK5cucCmm24amD9/fon3HTBggL1up512Cnz++eclHpsyZUqgSpUqgc033zzwzTffBO/v2rWrvaZXr14brf9ff/1lr4sVns/7s24rV66M+By+C//Zb7rppsD69euDj/FbVqpUyR774IMPSryuX79+dn+tWrUCn376afB+fkv/+1WrVq3ENgz+f0XDb8f8JvFs33z3PFa/fv3AokWLNnp89uzZG/0+nssuu8xee+edd0ZdL1G4KFIrhBBCCJFihgwZYpfHH3+8RZE8PlpblmEU0dCLLrqo1OcQYeP948H//0jpr6+//rpbvHixRRhJMw6F1Gmip6GQRso6HnDAAe6rr74y86ZcgPXi+61Zs2bwPtJpScn16bmDBg1yW265ZfBxPvMxxxxjqa+hKbPc9incRNj33HPPEv+LSOgtt9xi0WFSXz1EfoHobDhEu3ldrPDd8v7169d3VapUKfW5RM3vvPPOEhF7fkv/2d9+++0Sz3/ggQfs8tZbb7VIZ+h32LNnT/u81PMOHDjQpZJo27f/3ojMkj4dDpF3IuWR2H333e2SCK8oPiRqhRBCCCFSCDV9Q4cOLSEiPWeddZbV/pHq+d1335Xq6FoWsTwnHNKIEaeIm59//rnEY17ohq+zZ968eZb+ecUVV7hu3bpZTSuLFyKpqq1NFkRPuCiHnXfeOSj8qNGM9jgprJ5PP/3UblOXyusiQRothKZgt2jRwi67d+/u3njjjajp3rHgv99QkR4N0pwj1boiBuGXX34J3sfv77fBSOndvI9PWZ88ebJLJdG2XQzAEO7jxo2zlGkmIGLFfz/++xLFhUStEEIIIUQKIeJJaxHqJ6ntDAUDJqJ3ZHD6aG4kYunTmkgvV8yKqFEkAklNqYcILetNLSX1laFs2LDBxBmmS9ScUg/KuiPcWaiLBOpWc4FokTw+e2mP+yhoqAD1nw3xF25c5RcvYOkj6+nRo4fVin744YdW77zVVltZfejVV18dd80nplbAe5RFtM/mXxv62bzARQxGe2/EfOhzU0W0bZffgMkVotmYW1G3XK9ePavzxTxq9erVUd/Tf4Y//vgjpesq8oNy2V4BIYQQQohCwqcWIyAw6wnHCwTcXu+4446I5k4M6ssiludEgkgs/xtBeuONN9p9zz77rEWYiaDhOBsKIrZ///6WDor50oEHHmjiHAEMp512mplI/X+pZfYpyx24rMdDQfwDnz18giKc0PZJpDa/9dZbJmAxWiKKy/Lxxx/bd0jqbd++fWNaB/97xDJpEM9nSyf+e0tk28UsjAmB0aNHm+HV+++/71577TVbSJPme6UvbTTxjzu3KD4kaoUQQgghUgROs6ROwtKlS21AHg3SWhE8tHjJJLj17rTTTtauhfWjdYpvpxIp9fjFF1+0S2pGI9Xw0rqmUGnQoEEwmum/o3ggOssCTBrgYkwK+hNPPGETCLR6KgufKs32lErIJPDvi2COFK31kWr/XA/O2LR8wnk7Up0vLZmS7UVMHbCvBV6wYIFlCeA2fckll7gpU6Zs9Br//TDhIoqP3JjOEUIIIYQoABA+pOvSMobIZbTl2muvjckwKl34WknWd+bMmW7WrFkm4OhVGg4tcLzZUiQTo0gtVhKF/q+QK71GEaREYGfPnm2fNRmopUbI+ohvrN8bBkh8L9TAIiJTBcZTPr04kmBnO/X3h4tvL3IjmYN98cUXJkJTCdsmLZdK+95oowTRap9FYSNRK4QQQgiRInydbFl9VYnWwdixY0vUYmYK1o9UVaKwPg3W3xfNZIjnhaaVEpXmc6RSgOIUjYCjJtmL6WxCRBIXYARehw4d3HvvvbfRc5jEmDRpkps+fXrwPiKxkYyz+FykIEebJIiWqrv//vvbd0+Nbiqh/y7gmPz5558H7+fz9urVywQk6c/nnXdeidf5frkIzXXr1gXv//HHH207SjQVHWMu+ihH6uM8ZsyYUr83b9SFs7IoPiRqhRBCCCFSACmROARXqFDBnXrqqWVG32hbQgpnqGFTpiDSdtRRR1naKcY8oU634VB3i9Ckrcsuu+xi7X1of0OUD0GD2EuliCTFGaFIixnqdc8991xbsgXprhg/kWZN6jbOyu3btzdDLSKYRHKJcIdGEDE1wskXoyM+zxlnnGERWm4TcUV4xdOOif8H1JOmkgsuuMBSfJcsWWJtjRCrfOdMZFC/iqB+/vnnS7Sl8tsEYpdUewzEiEBTP964cWP7Pqi7TgTSltl3SPc++OCD7TvG2IzvktZJbIf33XffRq9jYogIMaZSPt1bFBcStUIIIYQQKcCnEh933HExmdX4aG22UpBD62fpm4rgigSp1EQXEWF//vmnGfjgBkyN47Rp02Jy5Y0HancRWwjtl19+2b6fbH1HHoQU9cenn366OfBSC41bNHXRtPSh7y1i30M7GhyjEX5EcF966SVLYea7xKCL15OOHCtMONCKCUMvBH+q4DtmUgXhiogkFZ3v/K+//rJ2TUROmcAIZ4cddrDIKK7EpESTcUArnZtuusmELpMTiUBE+p577rHJAr5btrU333zTzNQuvvhiE664SYfjjc7YbuL5XkXhsEkgV6zqhBBCCCGEEFEjxqSAI/SYOBH/D1KmadOmliWBsRVO1aL4UKRWCCGEEEKIHIfaXiK/tIES/4PIMkZn1113nQRtEaNIrRBCCCGEEHkAPYOvuOIKS2emjrXYIRWb+nSMpb7++uuEezeL/EeiVgghhBBCCCFE3qL0YyGEEEIIIYQQeYtErRBCCCGEEEKIvEWiVgghhBBCCCFE3iJRK4QQQgghhBAib5GoFUIIIYQQQgiRt0jUCiGEEEIIIYTIWyRqhRBCCCGEEELkLRK1QgghhBBCCCHyFolaIYQQQghRJrfddpvbZJNNbBFCiFxColYIIYQQQmSc8ePHuw4dOrj69eu7ChUq2CW3uT9X+OCDD9wZZ5zhtttuO1exYkVXt25d16ZNGzd8+PC0/t8vvvjClS9fPjiJcPbZZ5f6fP+8spbDDjssrestRLYol7X/LIQQQgghio5///3XnX/++W7w4MEl7v/ll19sGTlypDv33HPdk08+6TbddNOsRqbvvPNOW1/Pb7/95t58801bnnvuOffyyy+b2E0l/L/zzjvPrV+/PqXvK0QhI1ErhBBCCCEyxk033RQUtHvttZe79tprXaNGjdx3333n7rvvPvfpp5+6QYMGudq1a7u77747K+uIoL799tvtOut24403uiZNmriFCxe6Rx991E2ePNm9/vrr7pxzznHPP/98Sv/3448/7j766CNXp04dt3jx4rhe2717d3fRRRdFfbxSpUopWEMhco9NAoFAINsrIYQQQgghchsil17oJTp8/Oabb9zuu+9uUch9993Xvfvuu26LLbYIPv7XX3+5li1buo8//tiVK1fOzZkzx+20004ukyxbtsztuOOObsWKFa5hw4Zu5syZrlatWsHHN2zYYGnSY8aMsdsI3FSl9f7888+ucePGbvXq1e7pp592Xbp0sfu55HY0fJ1zz5497XcSothQTa3IK/r27eu23357S/XZb7/9bCbTM3fuXHfQQQdZTU6vXr2yup5CCCGE2JhHHnkkmFbbp0+fEoIWttxyS7sfeN7DDz+c8XUkSoyghXvvvbeEoIXNNtvMPfHEE3YJ999/f8r+98UXX+xWrVplNbSHHnpoyt5XiEJHolbkDSNGjHBXXXWVzUJ+8sknrmnTpmbW4FNzLrnkEjNzGDVqlC2YOwghhBAiPaxdu9YE3d577+2qVKliS4sWLSx9NlI9KNFdzs+w6667uv333z/i+3L/LrvsYtd5fqaTCqnpha222sp17Ngx4nOYQD/yyCPt+sSJE02IJgv1uaNHj3Y1a9ZMqVAWohiQqBV5w0MPPWTGCV27drXUnP79+9uM7pAhQ+zxP/74w+2zzz5uzz33dPXq1XPLly/P9ioLIYQQBQmGSQcccIDVw1IDS7osy4wZM9yll15qYjDUYAl++OEHq0kFUoxLwz+OcdSPP/7oMsXff/8dzALj822++eZlruO6dessXToZiAxfdtlldp26YoStECJ2JGpFXsBJhpoWPysKOCJye9q0aXb7jjvusNsIXR4jiiuEEEKI1INonT17tgmxt956y87RGCbttttu9jj1pgMHDizxGp7vIVJbGqGPU1ebKaj5pWY2fB3SvY7XXXedW7RokTvkkENs8j5RXnrpJZv4ZyxE5HznnXe2elzqfoUoZCRqRV6wZMkSO8lsvfXWJe7n9q+//mrX27Zt637//XebBX7ttdeCtS5CCCGESC1EZN944w1zAmZCmRTkzp07u/feey94rqbuNNwEKTR9tzQaNGgQvL5gwYKNHqfmNNberPH0bE3lOsbK+++/7wYMGGB9afv16xc0fUoEJg4Q2GvWrLHI+bx589ywYcPc4YcfbuZWvlZYiEJDolYUFDRvpwWAEEIIIdIHKcaRRGGNGjWCkcZZs2aVEFGhdaeVK1cu9f1DW88gzjJFpteRTDR69lI3jG8IztCJQGT21FNPtej41KlTLSWcXrq0T/KpzNQKn3DCCe6ff/5J6H8IkcuoT63IC3AeJPJKDU8o3K5bt27W1ksIIYQoRk4//fSoj+FvAQg16mibNWsWNJbylFar6iepPUQdw7nrrrvcNddc45IhUs/WVK5jLNxzzz0WXaWzw6233uoShdrjatWqbXR/69atbQLimGOOMaE7ZcoUiwb7+l0hCgWJWpEXcGLhJInDYPv27e0+DCi4jeuxEEIIITJHafWmRGsjRT5pxxcaoSwNzJc84W1/YNttt7Ul1aRyHcuCVoR33323XaeNEdHWRIkkaD2kg+OszG9GlJb/JVErCg2lH4u8gbQc0mqGDh1q9SLdu3d3f/75Z1KGCkIIIYSIn9IEGGaNHm+6BBgXxZquy/k91jTgVJKpdSSKfcEFF5gwptb12GOPdelkxx13tKgtUGfrXaiFKBQUqRV5Q6dOncwIivQczKFIZ5owYcJG5lFCCCGEyD1CjZdCDZkiEWq8FGrIFJpuSyu/ZNOPd9hhh7StY2lMnz7dUoHhwAMPdC+88MJGz2HM4yGN2z9njz32sCVecEUeN25c8Puj/aEQhYJErcgrSDVWurEQQgiRfyCqPF9//XWpzw193LcJCgUDJDK3koE+s++8806J+/7zn/+YhwcR5mTXMdbU5R49epT5/HfffdcW6NmzZ0KiNhlXZSFyHaUfCyGEEEKItENU1EcHfZQyGl7AUTeLiVImPTxatGhh16dNm1ZqXa3/DBhG7bvvvi7XCe0TrCitKDQkaoUQQgghRNohUkhLGR/lJAU3Etzvo6A8P1KE8emnn7a61GSW8CitxxtSrly50r366qsRn0Nq8ttvv23XjzjiiBK1uLFAO6Sy1o+UY0+XLl2C9992220uXnivt956y643atQoLSZbQmQTiVohhBBCCJERrrjiCkvvBVrNhLfC4Tb3Q7ly5ez5mebcc891VatWtevXX3+9W7p0aYnHSU2+6KKLgiZY0dKHEZ8IchZEeLoYM2aMW79+fdTHaX944oknBqPOrLsQhYZErRBCCCGEyAjUrHoR+PHHH7uDDjrIjRgxwq5zyW2uA8/beeedM76OtCS699577fr8+fPdfvvt55566ilbr9GjR5uLMEISOnfubFHXbMIkwHbbbWdteoYPH25p05999plFkm+++Warv6VHLRx88MHu4osvzur6CpEOZBQlhBBCCCEyxl133eUWL17shgwZYmLr1FNP3eg53bp1c7169XLZgnY7tL2588473XfffefOOeecjZ7Ttm1b+wy5AOtK/1mWaBCtHTRokNUAC1FoSNQKIYQQQoiMQR/bwYMHm8gaMGCAmzFjhluyZImrVauWa968uQnKY445Jtur6W6//XbXpk0b17dvXzd16lRL461WrZpr2rSp69q1q0VpcwFcoDGtIkL7/fff23dJPTC9c2k1RMsganIPOOCAbK+qEGljkwAV50IIIYQQQgghRB6imlohhBBCCCGEEHmLRK0QQgghhBBCiLxFolYIIYQQQgghRN4iUSuEEEIIIYQQIm+RqBVCCCGEEEIIkbdI1AohhBBCCCGEyFvUp1bkNP/884/79ddfbVmzZo1bv369LdzvL+lKVa5cOevHttVWW7kqVaq4SpUq2W2WzTff3G2yySbZ/ihCCLER//77r1u4cKEdt3ScEkIIIUrCOH/VqlWuXr161uM6GhK1Imts2LDBLVu2zP3yyy9u3rx5btasWe6nn35yixYtsoWB3tKlS21j9lSoUMFVrFjRFgaAiN2y2GyzzayJO03ejzzySFf//9o7C3Cpyu6Lv5T0R3cjHaKUIi0pDYIggjSKtICCpICACkqDhIRISiPdSIhKh7R0d+f5P2t//zPf3GHm3okzdc76Pc/cuVNnzsyceNe79147fXo/fzJCCHEPHOcyZMgQ7NUghBBCQpqzZ89GOoaPptkrBkL8DCKr69atUxMnTlTLli1TT548ifA4IqxvvPGGKlSokO2CmRmIWERcHWdosLzly5erkiVLqtOnT6tjx46po0eP2q5xgXC2J0eOHKp69eqqWrVqqnjx4ipWrFgB+eyEEOLI7du3VeLEieVkjUwTQgghhPyPO3fuyOTvrVu3VKJEiZQrKGqJ38Emtm3bNjVjxgw1Z84cdfPmTdtj+fLlk+ipLmAhOBFZdRdd1FapUsWlOD158qQI6KVLl6pNmzbJa3QwmMRrW7durUqVKsX0P0JIwE/WOElD3FLUEkIIId6dJylqid/AjMqIESPUtGnT1KlTp2z3I/LasGFD1ahRI1WgQAGf3sMdUeu4Y6xevVpE7m+//aauXbtme+y1115THTp0kHWLGzeuT+tFCCHuQFFLCCGE+H6epPsxMRykFA8fPly9+uqrql+/fiJoYdjUpEkTtXbtWqmb/e6773wWtN6AnaFu3bpq6tSpUo+7detW9cknn6h48eKpffv2qZYtW0q+fo8ePSQdkBBiLsaMGaMyZ84sJQ1vvvmm2rlzp8vnLliwQBUuXFgyOlAa8frrr6uff/45wnOaNm0qGR72l8qVKwfgkxBCCCFEh6KWGAaC/vPmzVN58uRRnTt3llpW/P/LL7+oy5cvi5AsV66cR+nF/gTr8fbbb6tx48apc+fOidDOlCmTrPeQIUNUlixZVL169dTmzZsjmFURQsITlD989tlnqm/fvmrXrl0ysVapUiV15coVp89PmjSp6tmzp9q+fbtMejVr1kwuq1ativA8iFjd4A6XWbNmBegTEUIIIQQw/ZgYAmpmu3btKoM/kDp1atW/f38ZAKLdjr/wNP3YHUdm1N6OHDlSbdiwwXZ/3rx5JaLbuHHjSIvUCSGhCyKzRYoUUaNHj7a104H5RPv27VX37t3dWkbBggVV1apV1YABA2yRWpRaLFq0yKt1YvoxIYQQ4hqmH5OAAMdhpPPCRRiCFmm8iILAfbhVq1Z+FbT+it7WqlVLrV+/XiIz+Az4TAcPHpSBL+qBcR+iPISQ8CqL+Pvvv8WYTgdu6ritT8ZFBuZ/4dx+5MgRMZWzZ+PGjSplypQqZ86cqk2bNtKKzBWPHz+WE7T9hRBCCCG+QVFLvAIDvOnTp6v8+fOr+fPny+AQ9agQs6ijRQ1tuIPPNmHCBOmji8gtUqkfPHigJk2aJE7NiPpMmTJF3bt3L9irSgiJApjCIRMjVapUEe7H7cj6XWNmGMcztBRDhHbUqFGqQoUKEVKPcSyE4P3mm2/EYR19sfFezhg8eLDMOOsX9qglhBBCfIeilngMak7r168vxk93796VutQ9e/ZI71lEMs0GTGIQpT1w4IAMWD/44ANJdYbBTPPmzWVQDCfnlStXqmfPngV7dQkhBpIwYUI5vv3555/q66+/lppcRGZ1GjRooGrUqCGTYMjygLM6nmv/HHtgQgehrF9oSEcIIYT4DkUt8Yg1a9bI4A2GUEgtHjhwoAg93Gd24GqKtMOZM2eKsRTMpLJlyybRW5hhITqTLl061bFjRxnUslydkNAhefLkUl4A0zp7cBseAK5AFgr2czgfd+nSRcotEG11RdasWeW9jh8/7vTx2LFjS02Q/YUQElxwvkabv3/++SfYq0II8RKKWuIWDx8+FLFWsWJFdeHCBakdQx0anEHDrW7WCFA/98UXX6ijR4+qHTt2qHbt2qkUKVKIiypSlYsWLapy5colZjInT54M9uoSYnmQPoyyAaQJ68AoCreLFSvm9nLwGtTFugITXqipTZMmjQoWKANBuzJCiHugdKBatWpiJAcPDUKIe2CMu2XLFjGM/eOPP9Rff/2ldu/eLUauAQfux4RExqFDh7Q8efIg7CiXTz/9VLt//74WCjx58kRbtGiRXAcbrMNvv/2mffDBB1rcuHFt3xcub7/9tjZ27Fjt2rVrwV5NQizL7NmztdixY2tTp06V41rr1q21xIkTa5cuXZLHGzdurHXv3t32/EGDBmmrV6/WTpw4Ic8fOnSoFjNmTG3ixIny+N27d7WuXbtq27dv106dOqWtXbtWK1iwoJY9e3bt0aNHbq3T7du35RiBayOYP3++LC9fvnzaixcvDFkmIWY/Ltifr7Nly6bduHEj2KtFSMhz4MABLVasWBH2H/2in1eNwN3zpPVCbMQjEMV47733pPYLKXo//fSTpNmSl0GdLVoL4YJa44ULF0pa8tq1a2UGC5cOHTrI94ca3OrVq6u4ceMGe7UJsQzwArh69arq06ePmEMhpRi18Lp51JkzZyTdWOf+/fvq008/legr9lVkX8yYMUOWA5DODJf0adOmSVsfeAogmwUZGkgzDgboBQ7HdngA4JgDZ3pCiHOQ0QB/EIDOBqtXr5bSgYYNG0p9PPZxQohzvv32W4nIJkuWTPxnYJCoX4KRxck+tcQlcPlFewqYH2FgtGDBAkm7DSWM7lPrDy5evKhmz54tg2H7VkCopUPfW3zH6INLCLEe/uhTCyf6yZMny+TZzz//bMgyCTEbEK9vvfWWlAvUrFlTOjlgkgrjHZRcoXd1ZPXzhFiZs2fPiocENAKMU5G67y/Yp5Z4DWrGcDDHrCU2VsxYImIbaoI2XEBtXefOnaVHJmp1vvzyS5UxY0bZSceMGaPy5cunSpcuLcIXvTQJIcQXPvnkE7mGoR9aGRFCInLz5k2ZDIegLVy4sGRVISr7xhtvyIQQgBnk3Llzg72qhIQkw4cPF41QpkwZvwpaT6CoJRGAk+/7778vpgmgb9++EmEMViqd2UCvW7QFOXXqlDhJ16lTR06kmzdvllZB6FkJ0Xv69OlgryohJEzBIB2mWDC0Qmo0ISQi48aNE0M1TDAvXbpUxY8f3/YYzsWff/65/I+2fSgtIIT8D+wTEyZMkP/1fSUUoKglNlBjhhkXpODAKRRpa/369ZNWNsRYULdXvnx5+a4hYDF5gIgu3JOR7pQlSxZxYkSLAdQmEEKIN9HaH3/8UbJvCCH/49dff5Xr3r17O23pNWjQIJUjRw6pq0edLSHkf4wfP17du3dPMg0rV66sQgWKWiKgNQ3aWqC/Kgq+YW6Eeizif9DbFpMHELc40cLoRe+ZB2GLmgVEdzHpQAgh7tCgQQOpPUI0asOGDcFeHUJChhMnTkjLEWRJ1apVy+lz8BjMHAHOxYSQ/4IMoBEjRsj/3bp1C6nAV3Szp5e89tprtgb3EG0rVqywPY7QOSKTeAw/irMUk8yZM8tj9hfUWdgzceJElSlTJqnFQI+mcAMF3jBG+Pfff9Wrr74q/WdLliwZ7NWyHDC6gtM0JhTQAP6zzz5TSZIkEUfWXr16SWpyvXr1pL45VCMv2Dewj3Tq1Ml2H/Yxx31IjyLpLFmyRGbF0f8YjpOEEN9IkCCBGNHps+qEkP+CDCn93JQ8eXKXz6tatapcY9wYqudcQgLNjBkzJMiSPn16mTwNJUwtavGFY5ANgx40A37nnXfE4U5vrI36UYTNUcMYGf379xcHW/3Svn1722MQHLC0hslPz549VbNmzVQ4gYN12bJlxUwENVhoAZE9e/Zgr5blgbgbNmyYOn/+vJo+fbp6++23pSAfkVykLcMtGcYWoZSajCg/Uh0xkeQITMfs9yHsM/azfm3btlVjx45Vo0ePFjdoGmYR4jsff/yxXC9atEj2O0LI/1KP69atG+nzSpQooRImTChtwDCGJMTqvHjxQg0dOlT+R/ACpYqhhKlFLVJH4G4HkYYoEFI4MXu9Y8cO2w8Cl19YukcGDmqoudAv9oYCcLBFbyYM5CEKYQMfLkAs1ahRQ8Q9eitu3LiRDschBnpjItqCXnp79+6VnpnYHhHJRXo4xO3MmTODLm5RW/Hhhx9K1gKiy46gb6b9PmRvyQ5Ri1Qv9AxFtgN6m+E+Qohv5M+fX7JwMCGGHuOEWB2U+WACFhlDtWvXjjJ7CmMjgNaBhFidVatWyfgT7XUQrAg1TC1q7cGgH9FUFP0jDdkTEO1FnSkG3N99950MEHRQJA1Bix8YAmPgwIEq1EG9JiJlaDiOzwIxAvc/CH4SumA7QwsgRG9hYpE0aVJ15MgR+f2CLW4RaUWqFqLIzkBUGWle2F969OghEyk6ELjIcIBRVtq0aSVSC+FOCPEdPdUf5TbBnvwiJFRSj0uVKqVSpUoV5fP1FGTW1RKibJM7GHca1VfdUDSTs2/fPi1+/PhajBgxtESJEmm//fbbS8/ZsGGDhq/i5s2bLz02bNgweXzv3r3auHHjtMSJE2udO3d+6XnXrl3THjx4oIU6L1680Lp16yafF5euXbtqz58/18KVJ0+eaIsWLZJrq3Hnzh1t0KBBWtKkSW2/Z86cObWZM2fK7xwoZs2apeXLl097+PCh3C5durTWsWNH2+M//vijtnLlStkXZ8yYoaVLl06rXbv2S8u5deuWfCZCrMTt27dl38W1P8B+mTBhQnmPXbt2+eU9CAkXihUrJvvCqFGj3Hr+xYsXbedX/E+IlcmXL5/sC7/++mtInidNL2ofP36sHTt2TPvrr7+07t27a8mTJ9cOHjzotqh1ZPLkyVrMmDG1R48eaeGGo6CFYA93dFG7bds2bfr06dqOHTs0q+FM3JYtW1a2e39z5swZLWXKlDLpo+Moah1Zt26drOPx48f9vn6EWF3UgsqVK8t7jBgxwm/vQUioc/bsWds58vz5826/rlChQvKaKVOm+HX9CAllrl69att/rly5EpLnSdOnH6OIOVu2bFLviv6fBQoUsFlRe8Obb74pKbtwCg4nMIGB+mGkTwOY8sBd1yygDc5HH30k9dFogxOOLtTeglRdpPRim0T6O+pw0cID9XSO6fJGAxM29NYtWLCg1MLismnTJjVy5Ej531m6I/YhcPz4cb+tFyHkf+hu9lu2bAn2qhASNBYuXCjXqDNHqYu7MAWZEKU2b94s1yh3S5EihQpFTC9qnTl3+WJCs2fPHhU9evSwMlSCoIXDs+44i7pM1C2aAWeOhDjxQNx+8cUXykpA3MKB+8CBA1Lb+ujRI/X555/Ld4Ht1l+TCfv375fl65fChQtLvQX+hwGUI/q6oIaWEBJYUYvzASFWxF3XY1eidvXq1erp06d+WTdCQp2NGzfaWmGFKqYWtYheYWYBESwMvHEbPwoG3AB9ljDA1iNG+uD8xo0bchv9WocPHy6usydPnhSzm86dO4vrrDOH11AEAxgIHb237qhRo8RB1yxEFu2DiLdSxFYna9ascvKF2ymcuRFNhdDExAaErtFCGuZP9he4g8NYDf+jyf2AAQNkHbAfoh8tIuow6XDW+ocQYjxFihSRrKXLly8zQ4JYEoz39EyFOnXqePRanD8RmUK3C3QiIMSKbNq0Sa5Lly6tQhVTi1qkRWIAjZ6fiCjBxh121BUqVLA1pIejsW5LjYE2bmPgDWLHji2OyfgBEW5HSyCIWrhIhoug7dOnj6RdA6SEtmvXTpkJpJZHxtGjR5UVQbsCOAofPnxYZqWRBoztACdntDQIFBhIr127Vtoi5MqVS3Xp0kW999574rZNCAkMceLEUUWLFpX/mYJMrJp6jDERyl8yZszo0WuRnffuu+/K/0xBJlbk+vXrat++fSEvak1vFGVVYAoFYyy9qHv48OFauALzJ1cmULpRVNy4cW2f1f5iReMoZyxcuFBLnTq1fCdp0qTRdu/eHexVIoQEyCgK9OjRQ96nadOmfn0fQkKROnXqyPYPU0VvmDNnjrw+T548hq8bIeEwhlRB3P7dPU/GDLaoJsaD2UiYQCF1GuC6Y8eOKlRBivCKFSvkf8yGYiYV9yHKit6rK1eutD0XNaLffPON28tesGCBzZjI8T2x/CdPnkg0MUeOHE6fZxZq1aolUVp8v6i5RY0d+vXpjeUJIeYG+zyyNRipJVZk165dcu3teR7nSnhEHDp0SJ06dUplyZLF4DUkJPTraUuHcpQWBExmk4CAnrNt2rSxRSrRWzdUo664VK1a9aXoatGiRZ1GXZ1FX9HKJ7JIrbNo7eeff+70ebjfcR3NBnrBot0PPi9aU7FFASHWiNRi348WLZq814ULF/z6XoSEEjdu3LCd5/G/txQvXlyWMW3aNEPXj5BQp0CBArLtI2MhGLCljwVB3STqg8eNGyc1lZMnT1affPKJCgUQGUWrHTjx6q13cHFWn7Jz506362TdMT2xfz7WQ3eBdgT36+umX5vNQTlRokQS+YZZGlr9oO62f//+dEQlxORg30dLO8BoLbESu3fvluvMmTP7ZPKp16U767pAiFm5ceOGrZ4W3kOhDEWtSYBAadq0qTjewtTg559/Vs2bNw/oOkAw4n0dHYchDF0JWG9AqrC7RlGOz4/KOArr78pBWf98mCxw9jnDBaRbY/3hBg769u0rLZ4obAkxN+xXS6wsatFP3RdQwgMoaomV2PL/reBg9pk6dWoVylDUmoAHDx6Iw+2MGTNUzJgxxbFZb1sUKHTh6hjhjCwy6g2NGzeOUBOjn2QiWy/759sLXHeBELb/fC1btgz7SC4i+YMGDVJjx46VSZAff/zR0N+JEBJ6UNQSK9fTGiVq0foRgQRCrMCmMGjlo0OjqDDn2rVrqnr16mrHjh3Sgmju3LmqRo0afn9f3WhJF4mOggi30QvOm5Y6ulGUM0E7ffp0p69Zt26dpCLD+Ons2bMRTKcclw2zKWcCDst3jNQCLDOylOW4ceM6fa9wABFaCFxcI3KL1lVIEyeEmFfUIpXs1q1b0seaEKtEatGy0ReQGYbe7Hfv3pV2efnz5zdoDQkJfZOoMmXKqFAnGgprg70SxDtOnDghYurYsWNSJ4Len8WLF/f7+yI6aS/yqlat6jS1GAIUohcRzah4++23pX9w5cqVVfbs2aWf8N69e0W04wQC4YVNFb2HITKfPn0qM6WYMQWvvfaapNUiUh0rViyVLFkylSZNGrmkTZvW9j8uaKKO9CFn7seOnw23IfQQmY0KT52ZQ4lPP/1UarFxwsYESZ48eYK9SoRYgjt37ki96+3bt9V//vMfv78fjq+YAMQxu0qVKn5/P0KCyf379+W8hvHDxYsXfU6fLFu2rAzyUeoFTwpCzMzNmzdlPI3958KFCzKGDuXzJCO1BgOxBdt3pHT6kz///FMiahB5mTJlEvMf5Lv7G2fpxK5qZXWh6BgZhQju1auXunr1qkRYIVovXbqkpk2bJi0nIDTtgWDXBWm6dOlUnDhxRLzigtfhAjEPoywIXbweYnjbtm1yEsN3ZA9+n1SpUsn6FSpUSC54jxcvXogo1SPM+vq7WzurR6f1iK19NDuyKK67z/MnI0aMkJlnnKwR6YdZV9KkSZ0+9+HDhxKdJoSEZ7QWohYpyBS1xOwgKwEDcohZI+oBkYKM8yQmxilqidn5/fffZf/B+DRYgtYTKGoNBD88DnQQTTjw+UvYLl++XNWrV09qaZFOA1Hpr43NUXC5Sid2jNba17JCKEJ0rl+/XmZbIEJr1qxpE5uInEJYvv/++yp9+vQvRVYhYl2BHrz4PjA4Q4TW1UTD5cuXReDigtkmXA4ePKh+/fVXNWzYMHkeZn/wfepCF6l5ELqRpSw7gu/HWcTXVRTX3ef5G3x38+bNU0WKFJEMAPwWmCjBxIE9//zzj6R3Y7ba8TFCjAK9IDEphYkvZEroJRXYHzFxhewK4r2onTJlCutqiSUwqp5Wh2ZRxIr1tGXCIPVYCFSPIavw+PFjbf369doff/whPWONZtKkSVqMGDGkX1PFihW1O3fuaP7CsZ8rbqN3q6tesPb9XZ8+fapt3LhR69Kli5Y9e3bb81KlSqVVqVJF6927t/SXPXv2rPbixQuv1/HJkyeyHFx7y9WrV7VVq1ZpgwYN0t577z0tc+bMtvVNnTq11rJlS23JkiXyefD58Bv07ds30u/BnX657j4vkOzbt0+LHz++rEeHDh0iPHb48GFtxYoVfu+nSazLmTNntHLlymnRo0e3XZo1a2Z7fPz48XLf2rVrNbMQqD61OseOHZP3e+WVV7SHDx8G5D0JCRbNmzeX7b1nz56G7j+xY8f2adxBSDhQoUIF2d4x7g2H8yRFbZgIWwi/fv362YTPRx995NcDamSCy1HsfvHFF/KaW7duSWPmRo0aaUmSJIkgChcsWKCdO3fOJwHrL1HrjOvXr2urV6/WunbtahPlcePG1apXr65NnDhRu3jxosvvAcLX2XeH++1x93mBBr+Vvi4rV66U+yhoib/BPpclSxYtWrRoWv78+bW2bdvK//ai9saNG1rMmDFfmnAJZwItanEMxnEZ77l58+aAvCchweKNN96QbX3+/PmG7T+JEiWSZe7evduQZRISqqRNm1a29e3bt4fFeZItffwAUuOQbguDAqSoIGXOF5Bu17p1a9WvXz+53bNnTzV16lSX6bZG9Jh1lWaM+5EeCzMhGEGtWLFCUoYrVqwoacT169eXGpa2bdvKss6fP68mTpyoateuLfWwMHwKB1BPCuOq7777Tj4z0m779+8vjqEff/yxpEWjrga/y9ChQ+X7GDJkSKRtg+zvx3eDNN+onhcM8Ft16tRJ/v/kk08kfevff/8VM69AGNkQa4LjCrazrl27iknc6NGjX3oOat/hOIo6H+IdOAbr5n16aiYhZgT+GgcOHDDE+dh+/2EKMrECt27dklI9kDt3bhUWBExmWxAjIrb37t3TqlatKjMUSLsbN25c0NOM8VnWrFmjvf/++1qsWLHkglToUaNGaf/++68WSPwVqY2Ma9euSTS1bt26WoIECeR7Qcrk7NmztUePHslzXEVxnT3m6nn22Kd2B4K7d+9qGTNmlHXC52SElvibnDlzSqTW/ljpGKkFKBFApNEsBDpSC/SsnyZNmgTsPQkJNLt27ZLtPHHixIZmieE8jeV+/PHHhi2TkFBj27Ztsp2nS5cu2KvCSK0ZIrbXr18XQx4YMMEsacGCBRI5MzIq68zNWL8N0yJ7OnbsqDZv3iwtIRDF3L9/v0RXMJODFjzt2rUTJ2azA3tz9LSFsRIMqODa/PjxY9WgQQOJWuN7Q4scPZptH8V19n2Dvn37Rnieo5kUIitoK4Rr3PY3CRIkUF9++aX8v3DhQpdRZUKM4vTp02LmEpXBHo6rN27cCNh6mRE9aqW3RCPE7CZRRmaJMVJLrGLYCMKpxSPtSwMkbLdu3SoHQHddkdEbCsIRTcMhotCDtlixYn7pMRtZmjFa1GzYsEFavCCNGKnQcMaFkMPnCpd0Yn8RL148EZu44ACA72jChAniqIw0XkwEFC1a1PZ8V2ndr776qtN2Pq4mHdBSBz2K/dUCCOnWmKDA74/JlFatWonopuMx8ReYuEN7r6g4c+aM9Ksj3vP666/LNRzgMSEXO3bsYK8SIYaD8ZORqcc66I4AUGrF/YeYlUNhKGoZqQ3BiC2aC1eqVEkOyClTppToqBGC1tMeszhgDxw4UPXo0UNt375dBDEGlIjylihRwvKC1hHs+D/88IM6d+6cGjVqlNTylCpVSkTt6tWrbb2+nOHqflci+KuvvvJb1BaCVq+hHTNmjLQ2+vvvv+UzEeIv0GcbkRUcJ12B/tOot33ttdcCum5mI0OGDOIbgElKfeBCiNkwup2PTubMmWX/QbtAvWaXELNxiKKW+CpsEalABO7PP/+UCO26desM26Ai6zFrD4yQYNKC2XwIHKTQIjWwT58+KlWqVIasi5lB6i7Sj3FAgJEWfntMUpQvX16i9I5p3fY9fe2JzExKB5MUurmX0YIWplBoVg+zLNCrVy/ZDgjxB3Xr1pWSi88++8zl8bFbt27SnxuGdMR7MCGpR2v1aBYhZuL58+cyAeaPSC3NoogVOERRS3wRtri/SpUqEhWFy+fatWtVvnz5DHt/V9HA3r17S2ophGy9evXUTz/9JO89duxY2ahRP4p1J54BAVu5cmVxal28eLHU3yJqe/LkSTVnzpyX6m2d1dEiIuvtZIWvglanefPmqmTJkiImunfvbsh7EeIIHNNxvJs0aZLsJ4MGDZL7MbHz/fffS7YK9hmIsaZNmwZ7dcMe1tUSM4PzIs5ZKBHyR0cBilpiZu7evSuZmYCilngsbB8+fKiqV68uAgj1YmvWrLHNpBsFooHOooTYYBFRhGCB4RNaBx0/flxMqYxsG2RVMKtbo0YNmTWeMmWKRFYbNmyotmzZIsZSjrgyk3KFESdsV4JWF+cjR46UzzF79mxDI8OE2NfU4vgD8Yq0QUy2ARwTEaHFdoeB5LJly3hcMgBGaokVUo8LFCigYsSIYfjy9bpailpiRv755x+5RrYeUu3DBYraEBC2SJNp0aKFGDIlTJhQBnb6AdOInrP22PeY3bZtm8qYMaOYFCFaCBGLKCJcb+PHj+/jpySO4MSKCBNmkJHSO3/+fJUtWzapWcaMsjeRV1epy0YJWvsBcJMmTeT/Ll26SH0wIUaD/s8QsZhkQ+QWmStI3W/ZsqUYluHYhecQ4yK1mGzztZc6IaGGPlljdD2tY6QWNbWPHj3yy3sQEiwOhWHqsRCwJkPEZR/btm3bSv+lmDFjym2je84649ixY1rJkiXlOU2bNtXOnDmjhSPB6FNrFLdu3dJ69eqlxYkTR8uWLZu2ZcsWud9Vj2D7y9tvv21Iz9rDhw9rK1ascKtH5rlz57S4cePK+8+fP9/n9yaEBKdPLXj69KkWO3ZseW+cDwgxE2XLlpVte/LkyX5ZPvrepkiRQt7jjz/+8Mt7EBIsunXrJtt2u3bttFCAfWrDJGJ769YtqV0Fw4cPl7603oCoLNKGnbV/sY/YYkYeqaRwD4VLL6LDSImFGyYJLEgzHzBggNS0pUiRQpySYZKTP3/+l9LEHUGU3VfcidDaky5dOtW1a1dbhPjJkyc+rwMhOv3791dLliyJ8nlob4bnEt9Aey4cawDraolZI036Nm409mZRMPYkxEwcCtNILUVtEDl8+LCkdCKVE/W0RYoU8SoNLCpTIT2dFYYrEM3onQrzH7TsKVOmjM+fg/hGzpw5pb4WKcnjxo2TVN+aNWtKqiUEpz8MojwVtDqobYQDNmqusa6EGAUm5RYtWhTl8yB83TFQI1FDsyhiRtAWEcaM+vnVX1DUErNyiKKWeMLNmzfFPAgOY4jQzZw50+0+tp6aCqFuE87GiM6ePXtWrV+/Xm6j9QwJnXpb1KpicIlWTugDPHfuXHGhhoNyZAZRkdVQGyloAWq+EV0GEBbYjgkJJDg+ske2MdAsipgRfcIXJjeenuM8AS7tYOfOnX57D0ICzf3792WMCChqSZQgMtuoUSOJdmXKlEn9+uuvIjDd6WPrabQO5k8wfmrfvr1q1qyZRGe9TXEm/gezyjDKwUTFmDFjZNCJCBbaKjkziNKj9B999JFc47a/BK0OtqO8efOKoIXxGCGBBBNznJAzBkZqiRk5cuSI36O09qIW51VEhwkxy/6jaZpKnjy5lMaFExS1QWDy5Mlq+fLl0sIC6Xb6RhNVH1tP2rn07dtXanUhmE+dOsXobJhFbVG7ioEm+hWjRyzSxHXXar23rbMovWMNtdGCVq/FGzx4sPw/YsQIdf78ea+XRawNtmf9AjDRZ3+f/QX9s5HNAB8AZJ14CyaLMmfOLMdfTAxFFmWB4zJSDBMnTiyO8JhkQlaEPTj59+nTR1yZ48aNq8qXL6+OHTumwgHUGyLqfeHCBXXlypVgrw4hYSVqU6ZMKccSHAPY2oeYhUNhmnosBMy6iginT5/WEiZMKC5eQ4cOjdQVGY56z58/99jx+IsvvtDGjx8vbsrlypXTrl+/rpmVcHY/dgdsC61bt5bftVOnTuJYqjN9+nSnzsi43xeXY3edH4sXLy7vh/UjxBuiRYumRY8eXS72/7u64DkxYsTQFi9e7NX7zZ49W3vllVe0n376STt48KDWqlUrLXHixNrly5edPn/Dhg3aggULtEOHDmnHjx/Xhg8fLu+/cuVK23OGDBmiJUqUSI5De/fu1WrUqKFlyZJFe/jwYUi7H+vkzJlT3n/VqlVBeX9CjKZevXqyTQ8bNszv71W/fn15r0GDBvn9vQgJBD169JBt+pNPPtFCBXfPkzGDLaqtBGbzWrduLXW0xYoVU506dXL6PD1iu3XrVpn9Q6QgenTXQXWkgNapU0dSkbNmzSr1uUg7RsrxsGHDVKxYsfz4qYg/wbYwfvx4aSDfoUMHdfDgQTVnzhyJ4LqK0jveb1SE1h5EdxAtRhQZmQeIoLlaH0JcgbR5vT522rRp0jMbxz5X+0L69OlVrVq1vHY0/f7771WrVq0khR5g3/rtt98kCty9e/eXnu9opAeTPawnSgTQPxfHdLjW9+rVS8zdAKLKMFNDFk6DBg1UqIPoMyJbqKutWLFisFeHEMMitYE4JyEFGedkdz0tCAmXSG3evHlV2BEwmU20iRMnykwD+pL+888/UT7f04jt1atXtTJlymixYsXSJkyYoFkBs0dq7Vm3bp2WNGlS6WmLyJGrKD1AD1tEbNesWWNohNaRqlWryvtiZpwQX0AUtlmzZn5bPo6niLIuXLgwwv0fffSRRFfdyU5Yu3atFi9ePG316tVy34kTJ2T73717d4TnlipVSuvQoYPT5Tx69Ej2R/1y9uzZoEZqEWnG+zdo0CAo70+IkWCspPdTP3r0qN/f7/fff5f3Sp06tRwjCAl3smfPLts0xpyhAvvUhhhnzpyRHqRg4MCBbtV6eFJje+DAAZkxRCRv3bp1Eo0g5uKdd96R1gGxY8cWUyjUZSNK71hrq5tH4XHUu+J+fzlADho0SCJt8+bNY00R8QnU/qOtlb+4du2aev78uURR7cHtS5cuuXwdDGDgRYDjcdWqVdWoUaNUhQoV5DH9dZ4sE/Xo6FGtX4LdI5wOyMRMnDt3Tj18+FAy1LJkyRIQszX4YGB/x3sTEs48evRI2n+Ga00tRW0AQIpamzZtokw7dgYGGhAmV69edSlskT6H5UK4QPQgJZSYE6SXb9++XdIiq1WrJumUMLuBOzKudfMopD2iFVDv3r2l9Y6/UqNg2PPhhx/K/0jfxLZOiDfACR7trEINtLGCaRuOrV9//bVMTm7cuNHr5fXo0UOEsn6Bm3MoiFqUr2AClRAzpB6jlAGmhv4mXrx4NuM6tvYhZth/Xrx4ISVujpO14QBragMAIma4YOYQtVuY1XMHRNx0d1sMrFD/BexrbBEha9iwoQicGTNmiEMnMTfYFhYuXKh69uwptawYGKPtDyKmGJjaC1p9wIz7IXr9Qf/+/aWnLjIEVq5cqd59912/vA+xDhBXcEK+c+eOy4kS9Pf2BLQnwLH38uXLEe7HbfSzdAWOtej1rQvAw4cPS7QVE0v667AMuB/bL1MXi44g0wKXUAEDF6z7xYsXpeUbJkgJCVcC5XxsD7LkEICAqH3vvfcC9r6E+NP5OFoY9oNnpNbPPHnyRHXu3Fn+x3WuXLncep1juxZEeWH+ZB+xhYiFgMEF4paC1jpgoI2BNdKNISr1KCkGp46C1t+GGUjxgikZQCuiZ8+e+e29iLk5efKkql69urTQKViwoAhH9NV2vCAV31OQPlyoUCGZfNHBcRS3PRFyeM3jx49t2z6Erf0yIcRx/A4ncRiMFGSka+KcqE/WEhLOohYEyiwKZRS4EGI0h8K5nQ9Frf9B/RV6FmI2HJE1d0FkzREI25s3b0oUA30R4RwKF8+pU6cGJM2GhB6I5sN9FRMgTZo0UU+fPpXaRHtBi+cA9Nf010kX23bSpEnlgAg3ZEI8BZFCCEGUU+B4if7dmKhBfTjSkvWILZ7jbYkFUocnTpwoDsaIuKIsBMdT3Q0Zx1SkB+tg4mjNmjUitvF8uMljP2rUqJE8jplslJPAJ2HJkiVq//79soy0adOKS3O4gO8YoAewv8GkwIQJE1Tu3Lnl2IXfALcJCTfnYx09CwoBB3+LTZxj06VLJ0EMpD2///77Mh70pSSCELOIWrof+5FLly5p//nPf8SxC30RPQHutc56kOJ+OBvj//feey9C31IrYiX348jo27evbBNt2rQRB0bd/RjXjg7JcCzG/UYzYsQIWX7KlCm1O3fuGL58Ym7gFgwH5J49e8rtpk2bSm9aHfSGRf/X8uXL+3TcGzVqlJYxY0bpV1u0aNEI+0Lp0qW1Jk2a2G5jXeA2Dsf6JEmSaMWKFZNet/Zgf+vdu7eWKlUqLXbs2NIb/MiRI26vT7D71IKdO3fKOuB85c9jKXoDlyhRwnYsSpcunVzDlZp9cokRZMqUSbapLVu2BOw9nz17piVIkEDed9++fX57HzilZ8iQwenYEMfKAwcO+O29iTXInTu3bE/2vdhDAXfPkxS1fqRly5byIxQqVMitljyOOGvX8ssvv8jAr1WrVmK37W67H7NCUatphw8flrY9aDSvbyd6awFXkyO4YPsyumUKBACWrQsTQtwlZ86cWvr06WWA6EzUArRCgxhFGxqzEAqiFueQFClSyHps3LjRL++xadMm+e3wHvHjx9e+//57mZxo3Lix3JcwYUJt//79fnlvYg0ePHgg4yNsT1euXAnoe5ctW1bed9KkSX5Z/s2bN7V8+fLJe+BYiTZiy5Yt04YOHaoVLFhQ7m/RooVf3ptYg2fPntmO0SdPntRCCYraILNr1y7bwRV9zLzFPuL266+/yow2BnsYhHjax9aMWF3U6oJW39ExUMQ2169fP7mNbceVqNUj/0ayYMECWy/mM2fOGLpsYm7QW7JatWq2282bNxdR6xiVRST0tdde08xCKIhavV+vPya7dLGhT3jh9zt9+nSEvr2IkOMxRNAvXLhg+PsTa7B3717ZjpBVEeiesZhMxnu3bt3a8GU/fPhQel9j+WnSpNFOnToV4fGtW7fKYxAkFy9eNPz9iTU4deqUbTvSJ5dDBfapDSKYLIBhDq5h4oRes96it2tB37UPPvhA6icmTZokRkGe9LEl5uOff/5R//77r3r77bdtfWhhvII6QLghjxkzJsq6ogEDBhi6TqgjRL0jep19/vnnhi6bmBu4w9ub3en/o7+sPSlTppQaV2IsVapUkWs49RsNzOzgZo1awPnz56uMGTPaHoMT9IIFC+RYhX7uNWvWpNkc8dkkKtDOrXpdrdG+FajRRQ3/5s2b5Ty/YsUKlTlz5gjPwRgAdfEwJsV5nxBvgP+P3g7L3S4toQZFrR9AW5P169eL6ITA8BUY/9StW1daWMDgxH5jo7C1Js4ErQ6ckGFe07FjR9kuIhOXMOUx0tgJAwmYv2DSZfbs2WKyQ4g7wFzJ3uAMzsIAxzV7Dh48KL0hibFUrFhR9tsDBw6IuDQK9Pj97rvv5P+xY8eqRIkSvfQcmMxBTOMx9APetGmTYe9PrEMwnI8dHZCx/xjZ7xlBDEwEYay3aNEiVaBAAafPQ3s/MG7cOPXgwQPD3p9YT9Rmz55dhSsUtQaDWTVdRHTo0OGlGTVPgeNxjRo1pMUFeoEimuEIha21iEzQ6mAQibYn9erVU61bt1Y7duxweTJs2bKlzSHZCNCKpV27dvJ/27ZtJWpLSFSg3Q4chvUoXbly5STbBZM0ELI4Fg4aNEgchl1ty8R7kiRJIscUI6O1+C1xfMF5EccinMtcgegAngMweCfEU/SuEcEQtchCwAXb+q5duwxZJiKvX3/9tfyP9n1oZ+aK2rVry0Tg9evXJfhBiKdQ1JKXQHsdzNRhgPDll19G+XykqrhqtQJxivYQp0+flnYRmM12BYWtNXBH0AK0eJozZ45sMxhIon3Gjz/+6PL5aAlkZNoU0prRMxcHyW+++caw5RLzgv7Kt27dkkwXgHYVSGdHiwH8j4k99F9GNLFv377BXl1TYnQK8ogRI9Tff/8tv93IkSOjfL7eBgmiVm/hREgot/NxFq3duXOnIcubMmWKZK/gXIrWV5GBDD5kaIEffviBY0Di9aRQOItaGkUZyL1796SIH18rDHuiQnd9dOVGizYRMJtaunSp2+tgNfMoKxlFOZpCucOhQ4ekTUf16tVle3B01La/wFTKSObMmWMzHTh69KihyybmA4ZQ586d0+7evWu77/79+1r79u211KlTy3ZUoEABMSMzE6FiFAX27Nkj6xIvXjwxp/GFEydOiPkXljd58mS3XoP3hDMyXvPXX3/59P7EWsAYKlGiRLLtBMtFe/DgwfL+9oZ33oKxHIzTsDy0y3MHHDsTJ04sr8G4iBBPyJ49u2w76KwSatD9OAj0799fvnT0UoSjY2Q0atQoUjdaXRB407rCSsLWKqLWG0Gr89tvv8nkyJdffim30XIgEE7IGGRUqlRJll2hQoWAu1ESEg6EkqjFPpo2bVpZH1/7xtauXVuW884773i079etW1de16tXL5/en1iLS5cuyXaDc52vEzK+9GHW1+H48eM+LWvChAmyLEzowT3cUxfmkiVL+vT+xHqTyjFjxpRtJyQ2QNIAAINKSURBVBQ7V9D9OMAgRVg3hcI1HB1dgTTPGTNmuAz/7969WzVt2lQ1bNjQKwdZpiJbM+U4spRCpACjHnHWrFmqRYsWL21XqKnV3RuNNI2CEyP2BRhGIR2aEBK6YJ81IgV5+/btauHChZIqPmrUKI+caPUUZLyeEE9Tj+FjEidOnKCsQ548eaSMAgEjpN4bUUsLT4G4ceO6/dr27dtL+dGWLVsMq+0l5ufff/8VDwTsO6gND1coag3is88+k7Y7pUuXlrY77uStOwO1E2hpkDdvXnG989aWnsLWHPgqaHXQYgptAZo3by413xC5MI+aPn26XMOEwh/A/KVnz57yP4Q09hFCSOjiq6jFgF43nsPxBgN9T98fg3KYg+nGJYSEskmUMxfin376Sd28edOrZeC8jEBJ6tSpxejREyBIdEO2ZcuWefX+xHoc+/9jbbZs2WQyMlwJ3zUPIVavXi199lCoP3r06CiFqCsTA/Sj/eWXX9Tt27fFwt2T2TlnUNiGN0YJWoBtcuLEiSpr1qySBfD06VNbD2T7CG1kxmW+COoMGTKI4QXa/RDiCswUI5sAjrkQN3DwdnaBMzLxD/hu4bKPQY43ohJtwhAlwow/+mV7CkwWy5QpI/8vXrzY49cTaxLMdj6O+w+M7TDuisyc0RU4N+tRWkwEezMOLF++vFxv2LDB49cSa3LMBM7HQsASok0K6ldz5Mghud6dOnVy+3WOhj0wjVq2bJlHphqerKNZa2zNWlPrSw1tZGAbiB49ujZw4MAot0lH4zJfmDFjhiwzQYIEUvtEiCNXrlzRXn/9ddk+UZMW2QXPMQuhVFOrgzpYTwxqdJ49e6blzZtXXtu9e3ev33/06NGyjOLFi3u9DGItYIaIbWbMmDHBXhVt6tSpsi6oT8f4yxNgMorXpkqVSozyvB0/YBmxY8cOWn0xCS/atWtn+LjPSGgUFSBg5KQfgG7duhXl82HGA5dZXNv/f+PGDXFOfvfdd/1iqGNWYWtGUesvQauDwWasWLG0ffv22e7DNuhP8yhsc4ULF5Zlfvzxx4Ysk5iLpk2bimCFAyMGdnB937hxo8uLWQhFUTt06FBZp0yZMslkg7tMmTJFXpckSRLt5s2bXr8/jEp0wx1OghF30IMLa9euDfaqyHhL74Qxbdo0t183a9Ys2ebxupEjR3r9/hhDwmAKy9mwYYPXyyHWodL/m3pOnDhRC0UoagPA2bNnbe0H3GmHElkk7KOPPhI7eizTX5hR2JpN1Ppb0AI4c+fJk0crWLCg7XvD9uvvNj+bN2+WZSLKduDAAcOWS8xB8uTJZSB2/fp1zUqEoqjFJOurr74q61WiRIko3fwBHFrTp08vr4Eo9hV9EixUB1kkNJ1b/TmG8oRBgwbJ+qANmTuBiiVLltg+AyZ+fQ1ufPDBB7KsPn36+LQcYg2yZs0q20uoThjT/TgAdOzYUeomULcKE57IQI3it99+G+E+3Mb9S5cuFWMANMxOnz6939aXNbbWqaGNDLgRT506Ve3du1cMoyKr8zayiX3JkiVV7dq1Zbvr1q2bYcsl5gAmYjg+JU2aNNirYnlQ14rzEo5Dv//+u2rTpo0YQLnizp07Uv937tw5qZ9v27atz+uguyAvWrTI52URcwNTJdTjo/40bdq0KhT4+OOPVbx48eQ8u379+kifu27dOlWvXj35DB9++KEaO3as1yahOnpdOutqiTtu2xh7mqGmlqLWS+AMqZtDjRs3LsoDkCvHY7TvwcEPpigw8PE3FLbWFrQ6RYoUkUFo//791b59+8QsKhBtfiCi4Wy6YsUKtXnzZkOXTcIbnEzpjh065M6dW9pwwQlzypQpatiwYS89B+ZvmKCCkIVJIhg4cKAhLVV0UYt2YHfv3vV5ecS8nDhxQq5hhBgqzq2YnGvWrJn837lzZ7Vq1aqXJoYgJn799VfpePH48WPZ5jHhbMRnKFu2rFyju8GDBw98Xh4xL6dOnRItED9+fOnAEtYELHZsIlC8nyVLFgmFd+3a1a3XuKpZRA0t0o7PnTunBRKzpCKbIf04ECnHzkBKIUxd3njjDdv3Z1/n7S9atWol2379+vX99h4k/Bg1apQWL168kEkftHL6sT0wi9LrW7t06aK1b99ee//997VSpUrZ0iVxyZUrl9QPGuUJgeVky5ZNlr1gwQJDlknMCcyhsJ3UrFlTCyVOnDihJUyYMMI+gnVdvny51qxZMy1x4sS2xypUqOBWmr8n+0+6dOlk2WvWrDFsucR8LF261JYqH6qwptaPfPnll/LlZsiQQbt7967br3OsqW3YsKFc//TTT1owMIOwDXdRGyxBq/PXX39JjaunLqe+sGvXLtnuYVZ1+fLlgL0vCX0glmAUtXLlyrA9JplN1GJwjBo/Z5OyuJQpU0ac+/3xe33yySfyHp999pnhyybmAdtHqG4nELYdO3aMIG7tLzCUwmTRvXv3DH/vRo0ayXtgzEpIVI7bdevW1cL9PBkz2JHicOPw4cPqu+++k/9HjBihEiRI4FHqZZ06dSQVGal2SEkpWLCgatKkiQoGeiry1q1bJRW5cOHCIZO6YwUCnXLsjEKFCknaO1IGkSqVMGFCv7/nG2+8Idsatrlp06axvpbYQF/H0qVLSzkG0tSRCuXsmIRyDz3lkPgXfNejRo2SdMqrV6+qlClT2i558+aVnpz+AsfG8ePHq23btvntPUj4c/z4cbl+9dVXVaiBlGj0Z0epD853KFdDDTpSjuvXry9jMJSx+QOkIM+YMYN1tcQaPWpxvoKyDfZKhAv4qipUqCBF/dWqVVNLlizxupgf5hcwzVm9erUsM5igrgPCFvn04SZs0agc9c0YBMeKFUuFC6EgaO3r4nAw6969u+rXr19A3nPSpEmqVatWKlu2bOrIkSNhtc0R/22HMBPDdVSnJRx3nz9/rswABriJEiVSt2/fDvqxINTAxAWOETi243syolaXmI98+fKpgwcPSt1qxYoVg706IVUrCVGNCcKbN296FIQh1qFChQpq7dq16qeffrLVgYfreZIjSQ/Ajw5BiwjnyJEjvRa0GIx9+eWXqly5ckEXtIDmUdYVtAAmL+3btxcjmCtXrgTkPRs0aCBRYcywcxaZ6MZkZ86ckWMRTPj2798vgzJnl5MnTwZ7dUkAwIAcEWFMXv7999/BXh0SgmC8oh8PQjFSG0yyZMmiMmXKJK7KCFwQElmk1shuF8GCotZNEDno1auX/I/2BjhYeAva9yCNeciQISpUoLC1pqDV6dGjh6RAIQ05EGDGWG+DhZRTQjBpiAEY3G7hAorUVtx2dSHmBxPHOC8BpiATZ1y8eFFc03H+ypgxY7BXJ+TQXZA5eUyc8ejRI5lMNkv6MUWtm6Bn386dO6XvGASALxtQ3759pScZUn1DCQpbawpagHo5RMpQvxaoKFjr1q3leuHCheratWsBeU8SumBgWrRoUemjTIgOjpeAkSbiDL22PnPmzGFVghQoKGpJZGC8h6AdxqQpUqRQ4Q5FrRtA3PXu3Vv+79Chg0qVKpXXyxozZoy6cOFCwCJinkJhaz1Bq9OxY0eVPHlymXQJBK+//rpE45AaxRMuyZMnj7px40awV4OEqKhFpJYWIMSVqGXqsXPKlCkj10jfR10iIa5MorwtqQwlKGrdYN68eWrfvn0iRnxxakWB86BBg1TLli1DOnedwtZ6ghYgCwGC9pdffpHtPRCgrhxQ1BLUdW/atEkdOHAg2KtCQgh0CMA5Cc7LdLwm4eR8HAogJRu16fBy2bJlS7BXh4QYx0zkfAwoaqMABwI9ctW1a1dJ0/QWmEshxa5Pnz4q1KGwtZag1WnevLm4jQbKBVlPjVq/fn1A3o+ELqixxjH2nXfekTprvc6HWBs4HqP1GGBdLXFEn+jAeYtEfp7FpCEh9lDUWrCWFi1HIGaRnulL25yxY8dKT9q0adOqcIDC1lqCFqAmCcICLafgMmvPH3/8oX7++We5Ngr0JEXKC/YxpOUT6wKjF/Tyvn79uvr000/FjA/3ObugRQWxDjSLIq5gpDZq0CoNcP8hjhw9elSuKWotwujRo22mNr4Ik7lz56pLly5JTW44QWFrHUFrHzFLkiSJbdsHMJF666231EcffSTXjRs3NuS98D5ILwRMQbY2qJd098LjkHXragmxhzW17u8/GMM9fvw42KtDQohjjNRah0OHDklf2ujRo6tPPvnE6+VgEDZixAhpCp47d24VblDYWkfQ6rW1rVq1UpMnT1b37t2TyOy3334b4TkzZswQgWsETEEmAMcVTy7EOhQrVkyuUW9969atYK8OCRFgLKdvD6gbJc5BajZMICFod+/eHezVISHCw4cP1fnz5+V/iloLAKdiULNmTZ/6Iu7YsUPEoC/py8GGwtYaglYH6Z8QtOiprKenOGJUKjJqKAFFLSHEGalTpxbRggliI8sfiDlSj1HShclY4hyU+DDbgTiil5glSpTIJ7+gUIKiNhKn4mnTpsn/7dq182lZMD1BfVjlypVVOENhaw1BqzsmVq9eXbbdyGbwBgwY4PN7lShRQrIh8N2xrpYQ4gwOyokjNIlyH+4/xFmPWoAJQzO08wEUtS6AoIV4Q+9EPT3SG5Aag3patPHBwD3cobA1v6DVQQoyWvtgu0WdrTN+++03iZz4YiKVMGFCW1o+eukRQogjHJQTR1hP6/n+s3XrVvZ7Ji+JWrNAC0knYIcfN26cLUrrywzGzJkzxfm4WbNmyizowhYHRwjbwoULm0Kwe4sZBS2oVKmSypAhg5o4caIIVqSq4Dd3Fq2FuNX5/PPPxcXWE9Cy4+DBg7I9IUJMzI8+O7x27VrJZPHkxIrXsWepNR2QUc6DVntwwSbWhs7H7oNxGlzjYVh6+vRplTlz5mCvEgkyJ00oaq2rRCJh7969IlTQH+/DDz/0aVkQBNWqVVNp0qRRZoIRW3MLWoBBI/rWzpo1S929e1cNGzbM6fPsBS2AqZSnEVu9DyUjtdYB+w0uT58+jXDb3QuxFnnz5pWsDtT6wzCKEKYfu0/cuHFtnQaY7UDs9x+KWpODQTyoWrWqT0IFBjt79uyR3rRmxOrC1syCVgfbLn7fFStWqDfffNNlGrIjrsylIptFBhS11gGRf8wU6ydU3Hb3os8wE+uASTa0EwPOMkaI9WCk1jOYwk/s0c+jZtp/KGqdpB7Pnj1b/v/ggw98WtbSpUsl2otWPmbFqsLWCoIWIC30tddeU0uWLJHb7m7LOXLk8Oh9Xn/9dUlhR2oUzaKsARzlcUFKnP1tdy/EuoPy33//PdirQoIMxhw4X5htUO5PKGqJvdZh+rEF2L59uzpz5oykOVWpUsVnUVuuXDkVP358ZWasJmytImh1atSooZYvX66ePXvmllj94osvJKrrCWjHQLMoa7N582a3IvxoFo/nEutRsmRJud6yZQvNbiyOPiBHK5IkSZIEe3XCqt8zSuyQxk+sy6VLl9SjR48kmIBuF2aBotYBPUpbq1YtqUFwB2fOr2gKjtlkCAIrYBVhazVBC2DcdPPmTUn5g1iFEZSjiIV5C3ra4nrIkCFevQ/raq1NmTJl3DIYQ822L470JHxB+jEi++fOnROzG2JdmHrsOenTpxcBg/HZzp07g706JAQmhTJmzKhixYqlzAJFrR1wVET7HdCgQQO3XoMBPU60H330kVzjNkANIpYHkyirYHZha0VBq9e7pk6dWjIPAISHo4iF2G3cuLHHEVp78uXLJ9dHjhwxbN1JeMHoG4kMZD3pZjeI1hLrwnY+3sEUZALMmHoMKGrtQGT18uXLks5SoUKFKJ+PyCyiBs6cX1GDCDGQNm1aZSXMKmytKmgB0lMQrV28eLFNdOgiFnjbn9aRnDlzyjVFLYkMZA3Aq4BYE/sUZGJd6Hzsm6hFqR2xLicpas3PokWL5Bopw+6E413Vfx06dEgitVZJPTa7sLWyoNWBqEW6l73gdJWl4C16vS72K0bsrAH8C/QLQJ2X/X32F5yEkS2wevVqRmcsDEUtAUw/9l3UhvvYjHjPCRO28wEUtf8PBtG6qEU9rTu4Ms3BwAx9PSEErIpZhC0F7X+B4RlqzPUU5MiyFLwFB1e07cA2c/HiRZ/XmYQ+mTNnFodtXMD8+fNttx0v2bNnl2Mzjq/utpZyxpgxY+R9Ee1FxkFktWXoMw4RBSMaXMqXL//S85s2baqiRYsW4VK5cmWv149ETokSJWzH5qtXrwZ7dUiQYPqxd6CbAYwZkfHCrCjrctKE7XwARe3/s2/fPhEvGLi7k3oMXJnmYAYxQ4YMqkCBAsrKhLuwpaD9HzgJYr/QRa2rLAVP+9M6bi+6uOHJ1hrApEK/QAxiO7O/z/6CNEOYSY0ePVp169bNq/ebM2eO+uyzz1Tfvn3Vrl275BhdqVIldeXKFafP37hxo7R227Bhg0Q2cFxHW6vz589HeB5ELCZi9Ive65wYT7JkyVSePHnkf7b2sSZPnjyxGYUx/dgzkIVYtGhR+Z91tdblJNOPzY0epcUABwMrd3FmmoMDBdw5MUizOuEqbCloXwbbNKJUT58+dZml4Gl/Wld1tb6IYxI+YB87deqUXJAtU69ePdttxwsmOtatW6c+/fRTr4+t33//vWrVqpVq1qyZCKPx48fL8f6nn35y+vxffvlF3g99lHPlyqUmTZokxzCshz2xY8cWMzX9whYj/oUpyNYGghb7IfZd7G/EuxRkdDQg1uPBgwe2bDiKWpPiaeqxfSsfoDu/YgYRUV+9PQkJP2FLQescbNOPHz+WmnF/oYtiRmqtx5QpU1SLFi38tnwcm9EuCinE9iZouO2uaQoGA5jUgZmgY0Q3ZcqUMinTpk0bdf36dZfLwD50586dCBfiGRS11sa+HpDBA8/BeAyw37c1+ffff+U6UaJEppuApaj9/x94z549MsBxtwWPK5OcgwcPyuCJojY8hS0FrWveeOMNGUAgbdMf6ccAtY4AfSiJtWjSpIltsOUPrl27Jm3WUqVKFeF+3EYjenfAcR6O9vbCGKnHyNRB9BaZO5s2bVLvvvuuvJczBg8eLIMJ/YKUZuKdqN29e7fUWBNrmkQx9dj7unT4V2BygP2erZ16HM1kk0IUtUqpZcuW2XZ01OtERWQmOYgEQBwjXY2El7CloI2cBAkSSCQK27i/0o/17x1Ga8Ra3Lp1S7JcYGBiD9qsIV0Ykyq1a9eW5wQDlJbMnj1bLVy4MEJLIfQ0h9N9/vz5JdMH55M///xTorfO6NGjh7p9+7btcvbs2QB+CnOg11lj4oCtSawHRa3y+TxbpEgR+R9+AcRanDRpPS2gqFVK/fbbb3LtbpQ2sigVBvyovUKTeBI+wpaC1j2QgYBt3JlJGliwYIFPy0+YMKFcU9RaD0QwIVxRP6uDVF9MNiISunfvXumVjNruCxcueLz85MmTS3QCItke3I6qLm/o0KEiatFOCO6hkYGBAt5LH3g7gvpbHGPsL8RzmIJsXeh87DvvvPOOXFPUWo8TJm3nAywvalEjpe/UVapUces1kUWpMOBn6nF4CVsKWvfBtg1x8ezZM1WnTp2XHve1rQ8jtdYFx+FMmTKpggUL2u6bN2+enICLFSsmvgeouUUkd+zYsV4dd7D92ps86aZPWL4rsE0PGDBArVy5UhUuXDjK90HqPGpq06RJ4/E6EvehqLUujNQaJ2rXr1/PvvAW46RJ2/kAy4taDKRg3IHBlN4mwFsw0KdJVHgJWwpaz8C2/fDhQ3X48GG/1NXqkVqa51gPpOGiF609SOVFzQ/ciZHii76xOFbr2TWegnY+WMa0adNkG4apE45BSG8G8EhAerAOamR79+4t7496b9Te4qLXceIa7YXgfI/jCARyzZo1ZbANJ33if1GL7x4+FsQaIOVcH5RT1HoPxjwYh2ESzlVWCTEnJ5l+bF6WL19ui9JGVjCtOx3j2tWgXRfIFLXhIWwpaL03i/JXXS3Tj63LjRs3VIoUKSLch3pJnHjttylEcr2tQ61fv76kEvfp00d8D2AQiAisbh515swZW6sDMG7cOBFMdevWlcirfsEyANKZMZEJwY11RCQZx39ED5FmTPxH7ty5xQPj0aNHcjwi1gA9orFPot8qTda8J27cuLYMFURriTXQNI2i1sw/rj7jH1nqsaPTMeqqnIGTKwb8NIkKfWFLQeu96NTT7J3V1WJfwf3ewvRj6wIRCLMoHURE4cyJmlrHwRiyBbylXbt2slxMQGKS0n57hbnT1KlTbbdxjMB5wvHSr18/27qsWrVKXblyRQbaeP6ECRNeclgmxoNzrb5tMAXZOuhRxSxZssikEjEmBZlYg0uXLolWgaEtzPbMhqVFLdLPMLjBYErfud1xOp4xY8ZLz8NgHifZdOnSiUssCV1hS0HrGxC1upkP0jOR/gcjH1zDTMcX9H0HAgEmQcRa29XWrVvF50A3HbMXLjowiUJPWEL0FGRXTtPEfNAkyj9mUayrtQYn/z9KC0GLbAezYWlRu2bNGrkuXbq0ihcvnk/1gWg1gcEWehiS0BW2FLS+g23c3n0Wka7GjRv7FKHV0QVNzJgx5UKsA1KD0eIGx+POnTur7t27y4QjUnvtfQvQJ9mx9pZYk4oVK9oiTexXaw1oEmUcRYsWlbHv1atX1cGDB4O9OiQAnDRx6rGyuqjVXTDLly/v8jnu1gdC/KIWi46XoStsKWiNAdu4fd2hY825L+jpp4kTJzZdU3ASOR07dpTIAVLbR4wYISnG3333XYQ6W0xEwkRMj9ARa5MvXz5JQ0UquauyIGIuKGqNHXPpx1KmIFuDEyZu52NpUYsZ/02bNsn/rlKPgat+nM7EL0Vt6ApbClrjwDaOGkK4UDqrOcdtb0G7Fl3UEuvt+xCtOC7PnTtXHTlyRLVt2zbCc+LEiaN++OEH1ahRo6CtJwkdMPFVq1Yt+R89jIn5YfqxsbCu1lqcNHE7H0uLWkQDMOOPwXNUxk6OdYOuzHEoakNT2FLQGgu2cfwmELbOas596VVrH6kl1hQpiBzAbdjZTHLZsmUloovoHCFAF7VLly6VyWpiXlD3yUitf0Qt6tL1iWpiXk6aPP3YskVr+qwUBknuOOhBtOo1g7iuU6eOpBwjQovbOJlikM+aWmOFLYxjIGwLFy4sbm2eQkFrPPo2jrrayHrVelNjS1FLdDB4Ra0X2rb40iaKmBsc25MnT66uXbsmLsg4pxNzgjEWJrsx+YW+0cSYNn2JEiUSP4Pdu3fLWIuYl5MmF7XRrV5PG1nqcWQ4muNcvnxZZhEZqQ2diC0FrX/Qt3FkJhjdq5ai1togUjBw4ECVOnVqlTNnTnE+tnfU/uWXX2R/pqkJ0YGhXLVq1eR/piCbGz1KC+dW9oE2BgR1YM4HmIJsbh48eGDzQ6GoNRHo0YQIoC+i1hF9Q6GoDQ1hS0HrP9BOBTPl2OaN7lVLUWttQQtx0rdvX6mtzp0790ttJnAsQAkI2v0Q4piCvGjRIrYmMTFMPfZ/ax9iXv7991+5RmQ+SZIkSlld1A4ePFgVKVJEJUyYUAa2OJHAzMP+C8Ng19ll3rx5tuedOXNGVa1aVazEsZxu3bq9VAvz1VdfqfTp08tMvbttddwF4gjCFu+NgZORopbpx8EXthS0/o+MpEqVyrbNG9mrFn2jASJ1/uLu3buqU6dOKlOmTCpu3Liynfz555+2xzEo7tOnj0xQ4XG4ox87dizCMrZv3y61+EiBmzx5st/W1UqMHz9erVq1StJH0Qf5wIEDLz0H3zcMLuh0S+ypUKGC7Ks4fuzduzfYq0P8BE2i/F9Xe+PGjWCvDvETR/9fS2FSyKzdJTwStXClhBslBq5wqXz69Kn0iYPYABkyZJCBrv0F4jRBggTq3Xfftc3GQ9A+efJEbdu2TU2bNk1NnTpVBpE6iKL+9ttvkkrUsGFD1a5dO0M/NAakAELJqB+WEabQELYUtIEBs3z6Nm9kr1p9QPraa68pf9GyZUs5fqEF0f79++UYBuF6/vx5m9HVyJEjRWTB8Cp+/PiqUqVKMhGm06JFC9W7d281c+ZMmew7e/as39bXKuBckDRpUpkAjWxyEBORmBglRAcT5NhHAVOQzQsjtf5rjVWgQAE5x02ZMiXYq0P8xJH/D0KitMeseCRqV65cqZo2bary5s0rOwDEKAYXcBLWc/MRYbG/LFy4UL3//vsibAFm2A8dOqRmzJghkQ6I3QEDBqgxY8aI0AVIPcOgBgPbQoUKRRg8GwHENChWrJhhy9QjzbFixTJsmcQzYUtBG9hordFOo5jw0qNzOL74A/Q+nT9/vgjXUqVKyeCoX79+cj1u3DiJ0g4fPlz16tVL1axZU45BiEDDFAupjTrYBgsWLCjrCYGP6C/xDey/RYsWjTItCqlTMIwhxB7sr8B+PyXmgpFa/4Dgjh48Gjt2LF2QTXyOBRS1LoBbGsDsujMgdvfs2SNRDfsoaf78+SV9UQczrGivo5t/6FERzL5WrlxZIiFGgUGrHqmF+DEKfYDvjUMv8V3YIq2Cgja8RS1m4SE6kUbor0EL1hknbPQ7tQfv+fvvv0va66VLlyRyay+iEIHWjxsAmSWIGOIx9ObNkyePX9bXSuB3ccf8BRlANIkhjqAeG+dfjDn02jFiLhip9R/IisSEItxxEcAi5o3U5sqVS5kVrxUYxATq0iAwkLrgDNSaYeBnLx4xYLQXtEC/jcf0aCd2KqQDwlW4XLlyyigwaMUy8R6IAhsFUrEx0DdrnnqoClsMYAAyBihow1vU6qnHmPRyp82WN8APABkayA5B9BVCClkjEKwQS/oxyNkxSn8MYKLu+vXr0nJm1KhRfllXq4Ea53379kV5nEU0P3v27AFbLxIeoK0PehyDJUuWBHt1iMEgg0+v92Sk1ngQRNIDUKNHjw726hCD0TTNEpFar/vUorYWgwtEN5yBiAvqzVB35i0wcopscOMN6GOn9+bCwNnb5Tjy+PFjGegbtTwSOZg8QKqi3poJaaCItvH7DwzYd1AuYOT3vWvXLpuo9Xa57kwsoZa2efPmKl26dPI5kEb8wQcf2Moo3AW1trgQY0BWzogRI9SECRNU69atnT4HEwiYSPjkk08Cvn4k9IF5Jbw/UPbUoUMHt16Dunlkg6HUAH4f6NPpr0k14nvqMcraeNz1D23atFHDhg2ToBKy39xtzQexNGnSJHGlf++996S8hwGe0OLatWsyMQTMPCnslahF7v2yZcvU5s2bxaHYGb/++qv0RProo48i3I8D0s6dOyPch8ip/pi7rF271laD6wlz5syxRV6WL1+ujAI7NSJXRi6TuI+9ey3xP5gxR6TTyO1dn6DAgNLb5cL0CZMbkYFZfgx8EelH2QNcjuvXry992/RjEI5J9u25cBseAMR/wAUfPg2ffvqp+C7AiwHgd8KEx9y5c9X3338vETmjzQOJeUTtZ599Ji6u8O/A8SAyMCkPX4979+6JwRQyOLB94b4ePXoY1h2B+A5Tj/0PzoGY2MH4HrW18JdwBbKcELjCJKR9cGvo0KHyGMQxhW3opR5nypRJovJmJaan4ev27dvLLChOGlmyZHH5XKQe16hRQ6VIkSLC/Uj9+/rrr8XoQ4/EwokUaaOe1KXZ17x5At4bYBBbpUoVZRRIlUZKtpHLJK7BLCJSjhFx1x1qkVoK4cG6Zv/Tv39/2f+N2t5xbMEsMUDUFOnl3kZqPY20YvYSrWQwu4zPBGELga2LWAhfbGP6+hH/gEkEmPzUqVNH3KcRlcWgCBOkuGAbgbs8jL4gPAhx1vIJEVpE/BHtRzaZblLpCCa2MIDHpAlaB2L7w3EAEQ1kc6Bn5+HDh12+ngRH1DL12L/oQSu4IA8cONDp9o9jcbNmzWQ/ARhzYV9CtgPG2D/88INMLuvjbRJ8jljA+VjQPKBNmzZaokSJtI0bN2oXL160XR48eBDheceOHdOiRYumrVix4qVlPHv2TMuXL59WsWJFbc+ePdrKlSu1FClSaD169NACQfLkydGZXd7bSCZNmiTLff78uaHLJS9z+PBh2bZu376tPXnyRFu0aJF27949bf369doff/zB3yAAFChQQGvXrp1hyzt69KjsP7Fjx9YePnyo+RMcc7D9nDx5Ulu9erV8ljfffFO2JTBkyBAtceLE2uLFi7V9+/ZpNWvW1LJkyeL39SL/5dKlS9oXX3yh5c+fX4sfP74WN25cLUeOHFrHjh21c+fOaWYDxzFs+7gmvnP37l0tc+bM8p126NDB6XPWrVsn2xWeg7GIPobBMWDDhg2yv+OxLl26BHjtiSuaNm0qv8mAAQOCvSqmBuOn7Nmzy3c9btw4p88ZNGiQPB4jRgytf//+EY7Lo0ePlsf4W4UWXbt2ld+kffv2mpnPkx6JWn1DdbxMmTIlwvMgUDNkyOBSXPz777/au+++KycViEycOJ4+faoF4mSnr/OtW7cMXfa0adNkufrAmPhf0AJd1OL68ePHFLYBIm/evFqnTp0MW97EiRNl/ylVqpTmb+bMmaNlzZpVe+WVV7TUqVNrbdu2jXA8ePHihda7d28tVapUIrLLlSunHTlyxO/rRawJRa3xrFq1Sr5TTK5v3bo1wr49d+5cLU6cOPJ45cqVnU5W4RyjD9qNngAn3lGiRAn5TWbOnBnsVTE9w4cPl+86d+7c2p07dyI8Nn/+fNs42pXoHTp0qO05w4YNC9Bak8ioXr26/B5jxozRwhG/iNpwZ//+/fKlJEmSxC8DZSz75s2bhi+bOBe0jqIWUNgGBkQyunfvbtjyPvzwQ9l/ICYJsRIUtf6N7OXKlUuE699//62VKVPGNtiuWrWq9ujRI5evr1evnjwPWRw8lwSfNGnSyO+xc+fOYK+K6cEkb4IECeT7TpkypTZ27FgZY+3atUuLFy+eWxE/RGn1iaEDBw4EbN2Jc5DthN9j7dq1mpnPk5YqPkQ7HxBZLbC7oMYO9QS4BrrBjH3bD6IMNeJypw+tqz62xDgwGYb2N54Yu0W1PNS3gTJlyhiyTEKItYFRDQwhce6AlwdcjeEFgh7HX375pdRmR9bvGHWB8GnAOX7ixIkBXXcSEZzPcc4BNIryP+i/DuM0uOTC/wbmfehKUL16dTGArVSpkpj2RUbPnj1VzZo1xTQK5m3/TfYkweDJkyc293Cz19RaStTqDdlhJuELX3zxhXrrrbfE2RnXuK07peoHXhJ4QatDYetfbt++rR49ehTBHdgX0Oz93Llz0jsa+xMhhPhK0qRJ1ZgxY+R/9DPHoLphw4ZimAIDm8gELUDLLxjlgO7du9u6NJDAow/IkyRJIhfif9555x118OBB6VkLYz7sNzBEhSM4uohEZcoIkz84IeO8DifyFStWBGzdyctjLEwuwBgTxzUzYylRa0SkFrO2cEm1B7cxKAcUtcEVtDoUtv5D38bTpk1ryPL0KO2bb75paqt5QkhgQc9MRGURMcK5+5dffpGWFu6CCBX6WN+6dUuiTSS4opZR2sACQdq2bVv5/nv16iXdDuCMjEiuO+D36tixo/yP/cfIvvbEO+fjaCZvs2QpUWtEpBatZJwBUYtUJfTuJMEVtDoUtv5B38aNitQiJRCULl3akOURQogOorJoFVW0aFGPX4to1Pjx42UgiJ6caC1FAo8+7qKoDQ4Yf6GH82+//Sa9bD0BYhitPSGsxo0b57d1JK7BWNoKqceWE7XoN6mnJXlLjhw5XN6PQT4jtaEhaHUobI1H38btRa1jjbmr+xxBSuDatWtt6U6EEBJKFClSRNKPAXrf6llZJHCgXzDIlStXsFeFeAiiuhDEoF+/furGjRvBXiXLRmpzWWD/sZSo1fEl/I4Uyc8//zzCfaipxf0UtaElaHUobI0F2zh+Fz1V2FmNubP7nIGaHSwPjdrxGxFCSKiBwTiMpm7evKmaNGnCc0iQRC3qOUn40bJlS/Xaa6/J/vPVV18Fe3UsnX5sdiwpan3lm2++UTt27FDTp0+X6yFDhthqDClqQ0vQ6lDYGge2cb2e1lWNubP7nEVs16xZI9elSpWK0riFEEKCAc4fqMfFRN769eujdH4lxoFsHora8CZGjBjiJg5g3rZq1apgr5Kl+Ifpx+bESEtxRGYbN24s1zqI1LKmNvQErQ6FrTFgG9dTj13VmDvD2XN1UVuhQgUD15CEI4joQzjQTISEIigx0gfmMJ+CozIJzPnm7t27Knr06NJihoQnKC9C5hZceGvXrq22bt0a7FWyBNeuXbOlfLsqnzQTlhK1/gZW2ai3oVgKPUGrQ2HrO2fOnLHZwuui1B0cD6iPHz+2OR9T1JKdO3fKoCdDhgyqd+/e0j6CkFCiVatW4qSMiRe0B4LYIv5Fj9K++uqrzOYJc9Dv+d1331UPHz5UVatW5cRQAFOPM2bMaInuEhS1PuBohIOaATSm9iR6RQInaHUobL0Hs6x79+5VBQoUsG3/jiCDwVXduT3bt2+X/SVlypTS2J1Ym9mzZ6sSJUqoK1euqEGDBknrtXr16tkmPggJBT+OSZMmSaYKxBZaBj158iTYq2VqmHpsHjD2goN4yZIlpd99xYoVOV72M/9YKPUYUNR6iTMjHPSzA3///XewVy9sCLSg1aGw9X7WD0K0UKFCLk9GiLq6qju3R6+rKV++vOl7p5Goef/990XA7t+/XyJiiMrMnz9f0tYwYfjjjz/KtkdIMEmePLlavHixih8/vmSqNG/enOcPP0JRay4QLVy6dKl644031NWrV+X8z6wc/3HEQs7HlhO1qMkAz54982k5rsxxjh07JtEFitrQFrQ6FLaeo2/bmMCJrL2Vq7pze5YsWSLXaOhOiE7evHmlNygGOsOHD5c6ugMHDqhPP/1U0t47d+4sx1pCgtnmBxEn9LFFHbgrd3fiOxS15mzzg0ltCK2zZ8/SUdyPHLGQ87HlRG2qVKnk+vLlyz4tx1WECvcjgkVRG/qCVofC1jOwbWfLlk1OShCrRYsWjfA47nMlYu2BKDl06JAMClFbQ4gjOC506NBBjhWrV69W1atXl5S1kSNHygAXkyHr1q0L9moSi1K5cmU1efJk+X/o0KE2EyliLBS15iRFihRq0aJF0s4Px/ERI0YEe5VMyT9MPzYvehsSX1MdXEWoMPCCqN29ezfFURgIWh0KW89ELbZxPWMB5j724D5nrXscQfoeKFOmjEqcOLGf1paYAeyXmAQ5fvy4zcUe6eorV66Umqxq1aqJ2CUk0KD8SC+t+OyzzzwyziNRg76mehDCKumTVgJCS2+P1b17dyk9Icbx9OlTdfLkSUvtP5YUtb623dHTKh2ZMWOG1AvAEZHpceEhaHUobN0zicKEjS5qI8tYiArM0AI4iRLiajtCpBYpx+3atZPIPuprse3cunVLTZgwQWXOnFmtWLFCdenSJdirSywKTPFQAw46duzoc3kTeTlKi2NAKI0XiHF8/PHHMjEJwzU4ij969CjYq2QaTp48Kccj1P/rHSvMDkWtl7hqQYJ0SsAU5PARtDoUtlGLDHw3uqiNqqbWFXC33bZtm/xPUUvsQRQWUXxEYJFuOHr0aJltbtGihdq3b59au3atqlGjhpykW7ZsKffBxwDGI4QEA2QNwFMjWbJkIsJgaEaMganH1th/kMaPLgjwTkAPaGJs6nGOHDksY8ZJUeslrgbuGPAjekBRG16CVofC1jX6Ng3XQj1jwZ3WPY4sW7ZMxAvMptCTlBAAx+ysWbOqOnXqiHhNnz69Gjx4sBiJICqbL1++l14DcYs2QGgwT0iwQAnFgAED5P++fftK2izxHYpaawBBq9enozadXgnG8I/F6mktLWoxqPYFZwN6sGDBAnFGRA9OEl6CVofC1jnYpl999VWVJEkSuY3aWQgN9G2MrHWPI0w9Js7o0aOHOn36tBwn5s6dK6lTmCRJmjRppK/DNliqVKmArSchzkAKMpy7r1+/bhO4xDcoaq0DUpCRigwQrfV1jE6Ubf/JkyePsgqWErVomA6Qs2/ETCoiCo4gDQktKDDARw8uqxNuglaHwjYiOMEgwgrHT8c+zUgDRdqQO67HqDeHoRqoXbu239ebhA/YlpANsGXLFlW3bl0VI0YMt17XtWtXtWHDBr+vHyGRgdIj3fRm1KhRbnkLkMihqLUW/fv3l/7kMKDEeYD4xmEL7j+WErWwDteFrR6W9wVXJy39PZYvX66sTLgKWh0K2/8BV8IzZ85IPaOrPs3uuB7Dsfbx48cS8XWWTkqsy9SpU22p7YSEI6gFR4symLN069Yt2KsT1jx8+FDGD1YblFs9Dblp06byv+MYg3geiDhMUWt+Xn/9dbneu3ev3+pqkX6MqNWSJUuUVQl3QatDYftfsC0nTJhQlS5d2ifX44ULF9qyHKxiXEDcA5FZGEK5k+apG/IREmqgZy22TxwzWRvoPUeOHJGBOcpdIHaINYCTPcYGv/32m2SAEe84f/68ZMbhvIrsUatgOVFboEABud6zZ4/Py4rMKKd69epq1apVlrQnN4ug1aGw/a+orVSpkqQGeet6jAgtUpgBU4+JIxjAultH5Uu91ZgxY8TML06cOHKsduy1bM/EiRNVyZIlZWCNS/ny5V96PtalT58+kqGDbCA8hy3drAv6QX7yySfyv56OTDzHPsrECVDrAAGml/Zhgoj4tv9ky5ZNxrBWwXKi1shIre7YifpZOB7iog/WkaYJEbRx40ZlJcwmaHWsLGxhrPbnn3/KNu2L6/H69etl5hCDf3fqbwlxxoMHD1SsWLG8eu2cOXPUZ599JsfqXbt2ySQnJmvQZsoZOH5/8MEHUrMLozS4dSPFFLPgOkiTGzlypBo/fryk4MORGcu04oQm+S/t27eXa0xsX758OdirE5ZYMXWS/Bc9df+XX35R586dC/bqhCWHLbr/WDZSixrB58+fG7JMOB5/9dVXcoF5Dgb4cEFE/0QrpSCbVdBaXdgiDSh69OiqSpUqL03meOJ6jP0E1KpVS5ZHiKfcunVL/f777zbfAk9B5Azpy82aNRNHSAjRePHiqZ9++snp8zGo+vTTT2UyFBE4OH1jv9fTShGlHT58uOrVq5e4eb/22muyT2AiSHf5JtYDWStFixaVMcbs2bODvTphiVUH5eS/E+codUJt+ogRI4K9OmHJYYvuP9GtmNqAFDHM9h8/ftzr5WBG/ueff5beWs5Mc5CihhTkpUuXWsKa3OyC1srCFhMz+MzJkiV76cTTuHFjt6KuiFrNnz/fpWs4sSboS6tfwK+//hrhPvtLxowZpbYOM/fvvvuux+/15MkTcVdGerAOJldw290WbDhvPH361NZm6NSpU+rSpUsRlpkoUSLZJ1wtE2n4d+7ciXAh5gPHRoBxAvEcqw7KyX/Rs8F+/PFHmcwknnHo0CHLtfOxpKhF0XT+/Pl9SkF2bGfijBUrVki6JgZgRtTvhjJWEbRWFLYYxK9du9aWeuwtiFqhjRbSN8uWLWvY+pHwBscN/YK6uXv37kW4z/6CYylE6HvvvacGDRrk8Xtdu3ZNImepUqWKcD9uQ5i6e+xHv3NdxOqv82SZgwcPFuGrX7BPEPPRoEEDMYzCRIou0Ih7IEKnGw9S1FoTTFyiQwJKlpBRQzzjsEUnhSwnau3ranGy8RRn7UycgVRkCFuYi5g5/chqgtZqwnbx4sUSZUVqpS8gowHArt/d/qPE/CDSicvJkyclowX9afX7HC+oY4XonTt3rkqcOHHA1xUp9jiWw8EbJlPe0qNHD3X79m3b5ezZs4auJwkNkidPbssoYLTWM3A8QEYEsuoyZcoU7NUhQQCTnOhBro8frJDxaBTXrl1TV69elf9RNmMlLClqUesCInO9dIUnDdWHDRumKlSoIP0XkfpmNqwqaK0kbHX3V18s4bGNINoLUMtIiA4GrLjAjbhJkyaqcuXKtvscL6ij9aWVD0QGJlQcjXtwO3Xq1JG+Fi6cELWrV6+Wulkd/XWeLBMO4jhe2l+IuVOQUZttxvODv6NMOXPmpP+ChUGpEkwBUSroydjb6hz+//0H500YF1oJSx4t9BpAOLp6ahblqm2Jq/6KiArDWRO1tWbC6oLWCsIWJxK4vsJYxxcwqQPKlSsn5mmEOGPKlCmqefPmft1XCxUqFKF3qG76VKxYMZevQ2bOgAED1MqVK1XhwoUjPIbtGeLVfpmokUVGT2TLJNYAvhpIMT9z5ozavHlzsFcnbLBq6iSJSMKECVWZMmXkf70dIImawxbefywpavFDJ0iQQITIwYMHPXqtq3YmrgYwMDZB/S0iXmaBgtYawhZOr0jzREqot2DSCGIlsokfQgIF2vngWDxt2jQ58bdp00b2Wz2DAD4JSA+2d/nu3bu3uCMjmow6WVyQBq2nyHXq1EkNHDhQDNXgqo9loO4WLt/E2iBNvV69evI/U5Ddx8qDchKRatWqyTVFrfsctvD+430uVxiDFDSkIKNvJmbU7dPJ3AEDHaRFIB0CkVsIXVcnLNRfIdIFQynUiegun+EKBW3kwnbr1q0ibBHRCee0KTi0IsKK9DnUNXnLmjVrJEqB2nK9hzMhAFFZiEKYPsFYyZMoLV6n12l7Qv369aXWqE+fPiJOkUmDCKxu9IRt1X6/HTdunJSOOE7soM9tv3795H9MckIYt27dWlw6S5QoIcv0pe6WmAccQzFBCGfv0aNH+3Q8tQr79u2Ta0/HZsScorZjx45qy5YtcnwNhp9CuDof57agqEXxtSXp0aMHqs61Fi1aGLK8HTt2yPKcXTZu3KglTZpU69y5sxbOHD58WFuxYoV2+/ZtLVR48uSJtmjRIrkOBR4/fqytX79e++OPP7Tnz59r4cr06dNl28Vv7gvvvPOOLKdTp06GrRsxB9GiRdOiR4+uHTlyxHbb3QteZxZwPMU+EkrHVWIcOA9kypRJfuPZs2cHe3VCHpzLX3nlFfm+Tp48GezVISFAnjx5uP94QIYMGeT7+v333zWrnSctGam1r6tFpNao5VWtWlX99ttvLz2G2X/M4o8dO1ZckVEnEG4wQmudiC1cBtHwvFKlSj455+HzIxsC5j6dO3c2dB1J+KOnpcMAyv42IWYCx/9GjRqpr7/+Ws2YMUOyBYhrkAGH7AiMk+h8TPRoLaKPSEHm/hM59+7dsznqWzFSGw3KVlkQpJ5hMIU0ths3bhiS0gCBjPpZR3bs2CE1VjAVGT58uGrXrp0KJ0JZ0ML2f/ny5apKlSrikhcq4KQMYQvnuXATtlhvpFDie9VbUnjD+++/r+bNmyfpd9OnTzd0HQkxCzCWgpkQ2vuE2vGVGMPevXsl1T1evHjSrxuTn8Q5s2bNUg0bNpTxBs5FhCD1uFSpUipp0qTiLO+LC77Z+euvv1SRIkXEz8fRld8K58nwGWkbDBwr8+TJI1EpZ9FVb3BlIoX7M2TIoN577z2JgKGxeLgQyoI2lAln86jvv/9easURqfXFOXn+/Pnyf7du3QxcO0IICS/y588vg8wHDx7IJDdxDetpiSMwYoUvBwJQ3H/cq6fNkyePsiKWFbUAZk9AH3wbAUyksNMhMoVr9Da0F7gY7MN5MxygoLWesP3777/VggULZFv1JbqMHs34vIigY0BHiC+cOnVKLV68WO3ZsyfYq0KIx+BY+s4778j/es9u4hw4iAOKWqKDyKyeNUYX5Mg5bGHnY2V1UYvIKYBTJYSHUSAyi5RLvW5Xp2DBglIPAOfMhw8fqlCGgtaawrZ79+5yMERbEm9ByoteH+mYuUCIK9ASBxONO3fujHD/d999J5kDeAx9Zv3Zy5YQf1G+fHm5tu9pTF6GkVriDLb2cY/DFLXWpUCBAlLnCoEJYRsI0M8Qg35Y+4cqFLTWFLaIIOCCFiu+1KygXQpaAmFSB3UwhLgDsltwHLY/GeNYhIkWlIngeI2aRGS6LF26NKjrSoinlCtXzua9gfow8jKoN9ZNbvLlyxfs1SEhROXKlaUd58GDByVzhzjnkJXb+Vhd1MIkSo/WGpmCHBnZsmWTvrWDBw+WnluhBgWtNYUt1gfiAbUrNWvW9Ho5SA+dOHGiLcKGfYwQd9i9e7cIV3t3+F9++UWu4Ry/a9cu9eeff8rAZsKECUFcU0I8J3PmzOrVV19Vz58/V5s2bQr26oR06jG+K5jCEKKDmloYWAKjfHDMxuPHj9WJEyfkf9bUWryuFikN2CACQe/eveW9vv32WxVKUNBaV9hiUgf1tKgB91aIIprWqVMnuUaafcmSJQ1fT2Jerl27ptKlSxfhvo0bN6q4ceOqpk2bym20mMLABrP1hIQbTEGOHKYek8hgCnLkHDt2TMaVGL/rrfKshuVFLVIk0W7n7t27avXq1QF5T2xsGPyjvc+FCxdUKEBBa11hi7ZIPXv2FFMnX9KFIYwRgYgTJ07ITdiQ0OfRo0cShdVBRAvRWRyj7Vug4HiNlmyEhGsKMs2inENRS9wRtRs2bBAnceK6njaaRbPkLC9q4UrYoEEDWyuTQAEDHUQg+vfvr4INBa21he1PP/0krtxIifcW1KV37drVtm1nzJjRwDUkVgAtTzDTrAP3eGxX2FfswX3o/0xIuFG2bFkZbCLTgBMzL0NRSyIjZ86cks3z5MkTtX379mCvTshxyOLtfIDlRS3o3LmzihUrlqS6bdu2LSDviXqRL7/8Uk2aNMk2uxIMKGitLWyRofDVV1+pDz/80DaQgJHJzz//LNfuggmh06dPq/Tp09PxmHgFjkF79+5Vs2fPlgbrMCyDANBTNnVwvES0lpBwI3ny5Or111+X/5mCHBGcA9nOh0QGzgeYGNKjtcT5pFAeilprg4F4kyZN5P+vv/46YO/btm1blTVrVtWiRQtJtQs0FLTBJRSEbbdu3cSJE67cAP1p33rrLWnpg2vcjgo4Eer7Dfo0M4pGvAHbGly3McGSNGlStWLFCmmDZp8SD2dUHLeKFCkS1HUlxFv0SRqmIEfk5MmTklKK8hUYahLiDL3fM0VtROBlsv3/o9dFixZVVoWi1m5AhVTk5cuXiwunP9EjYYhKoJ8n0ux++OEHFUgoaEODYApbDKp+/PFHcSnOlCmTbJeOtbC4HVnEFgfSdu3aSUpomTJl1AcffBCANSdmBAIWx9/SpUtLTRDMoRwNQebOnStZLnptIiHhbBaF4yeJGGVCKx/72npC7NEjtehnfu/evWCvTshw5swZdfHiRZkYLly4sLIqFLX/D2YG9dpapL35C8dI2JIlS8Q0qlevXiI0AwEFbWgRDGGL6CwyBDDr+fHHH8t9R48edfpcV/eDhQsXihBB+v64ceMsa05AjAFidf369erAgQNS650qVaoIj3fp0kV6WXLyhIQrcO/GMR9ZB/Y15FaH9bTEHdDuCZdnz56p33//PdirEzLopZNvvPGG9HO3KhS1dvTo0cPm4uqPOldXkTD0BYWxTrNmzfyehkxBG5oEWtgi7fjGjRtq8uTJkqEAcuTI4fS5ru5HPW6HDh1skzVot0IIIcQ1GHDi/AtYV/s/KGqJu7Cu1rWoffv/jy1WhaLWDqS91KpVS1KCYJ5jNK4iXkgbQBoyRK8/HZgpaEObQAnbNWvWqAkTJkjaMWY8ddA6xdHkCWIV9zujb9++6vz581IXDtMzQgghUcPWPi9DUUvchaLWtagtVqyYsjLRNBZ1RAD1tIUKFRJhixOOkbVbEK1IOXYENbUQDkitGzNmjKwDasqMxKyCFj1Wkf6KHqtIgTUDsKvfunWrGC6hNkKPpBqVdozJG0RfIW6RLoztEhMuuA/boeNtZ+zZs0f2EwhvGPpUrlzZsHUk1gUTfGgthWMvJkweP37s9HnYbpF+ZgawT6JOGI7PZjo2E9fgnI/BZ+LEidW1a9csX0OK2siECRPK/1evXhWXaEJcce7cOZUhQwYZGyHjDMdPK4NACL6D58+fyzkU343ZcPc8yUitA8hHhysxaNOmjXr06JFhy44qEgYHWhj2GJ2GbFZBa1b8GbHVaxKRdgxh4MztGNtj48aNXQpaTPigDhzrVa9ePQpaYthxCsdfZBGcOHFCjr3Y1pxdgt3bmRBfwGQlBmi3bt1Sf//9t7I6qKEHaNVFQUvc6VgCHxycB7Zs2aKszp9//imaIX369KYUtJ5AUesEiMvUqVOLiYNjDayvoOUJZmmnT58u10OGDLE9FjduXElDhqtbv379DHk/CtrwxB/CFrXi6Is8dOhQr92OdXOoTZs2SesFLIsQI+jZs6dMuFSsWFGOjZiRxXbv6kJIuAKHUj2FkinITD0mnsPWPv+Dqcf/g6LWCZhBHT58uM0J2WiHQsdImN7iB9cQn3hPCOt58+b59D4UtOGNkcIW7aMQjX3//fdV69at5b4BAwZ47HaMdFCYTIGuXbuKwRkhRoCJEmxPixcvlj57ejoiIWakQoUKco0yEKtDUUs8hXW1/4MmUf+DotYFGPwjYoBBPNKR/VV67Cz9Exe0rGjSpInXPXMpaM2BEcL2ypUrqkaNGipnzpySCaDX0f72228euR2DkSNHqpMnT6o0adLIdkqIUTx48EDELLZ5QqzSrxb+CTi+WxlMugKKWuIuZcqUsfl7oK7WqkCbbN++Xf5/m6KWotYVGPjDtCl27NgykzpnzhzD38NV+ifSj1HzmCdPHmn3c/nyZY+WS0FrLnwRtjCdqlu3rtQnIgKm9y9zFY2tWrWqy1paiGNkEACY+SRIkMCrz0OIM+CibfXBPbEO2bNnl8wEmB1u3rxZWRUYwOglL5jUIsQdUCIIQ1WIOivvPxjLQdSjHOz1119XVoeiNhJQiI46L91gBw59RuJKWCCahnScRYsWyQnvvffeE3HiDhS05sQbYYuDfbt27aQ+EXWw9gYCrqKxvXv3drm8Pn36yAAErsdInyfESLBNYXAC91NCrDBxzhRkpVavXi3jHJyTIPQJcRemIP8v9Rjmc68wy4miNipQP4gIwoULFyQ6ZSSuhMWPP/4oqcjo/QkxAmezTz/9NMoUaApac+OpsB07dqyaOHGiGj9+/EtpKZ72pD148KAsC/zwww+GthkiRJ84hNHFu+++a3NDJcTMUNQqtXTpUrmuXr16sFeFhKmoXb9+vbIqrKeNCPvUugEiprVr15ZU5EOHDonINQoIicgcltEupUGDBqpp06ZqxIgRqkOHDk6fZ1VBa8Y+tUb0sV23bp2qVKmSat++vYhQV7jTk1ZPS8b3XKdOHXFRJsQfbpbYn7FtY5tGaiYuzrZvRLmwjZsB9qm1LuhRmzJlSpmwvnjxoqRUWgm0IcFnxvewceNGVbp06WCvEgkjsN2kSJFC/keZHvYlq5EvXz4JOkCn1KxZU5kVd8+TFLVugK8IAgGzqbVq1ZLoqZFAWCDlGBFaZzRq1EilSpVKxMmCBQte2nCtKmitKmqjErb79++XwQHux3eD9hG+gJYTiChgOZjUYYoY8QeeRP8hao3s5R1MKGqtDco5du3aJR0QcK63EjiHlShRQiVOnFg8G6x0DifGgN7mMIuaNm2aGK5aCfS5TpIkiSVE/R03z5O+jXYtAgZQaPEDZz7MhkDc6mlDRqBHyFyJ2hkzZsjB//Tp0+LKDMMfRHCtLmitjJ6KjO0Cqci6sMX2AFdN9KGFuZmvghbCAa17AFLgKWiJv7ByXRSxLhhLQNRiXGE1UaunHqPkgIKWeAM6O0DUYluymqiFXwp49dVXTS1oPYGi1k3gRAzTHaQAd+zYUSzojTwI671rMVvrjBMnTqiZM2eKaRRSodGOJW3atBS0FsZR2GK2GymcSMfBAAkzeO6mF7sC2yO2dcyQRWYiRYivMPWQWFXUfvPNN3LMRlYYJtGtAutpia9g2+nfv79auXKltOBEmaBVYD3ty9DtxQP69eunkidPrg4fPizmO0Yzffp0WwTWEYgSiOh58+bJ4K9atWpyQqCgtTa6sD1+/LhsFwkTJpR0YWynznoge9o3VHf/xjWWSQghxDhw/EY7DtTUorzDKqDfOT5vjBgxXI57CImKggULSoAH3UlQl20lENAAFLX/g6LWAxAJ0/t0YmYIud1Gs2LFipdSkHQxgqgZ0izgwpwzZ04R2XBGJtYG0XpsI0g/Hjp0qKShuOqBrPcDdAds63D9RiozDKcICQSIVqEWvFevXurjjz9WP/30k+0xtPtB5oFZ6mkJgaAtWbKk5VyQ9SgtPrteF0iIp2Dco0f6lyxZoqzCqVOnbCJed4EmFLUe06JFC5UrVy5xXYvMtdgXIF6RK4/ILa4xyNMjbqjtRVQOqRalSpWyudISa4KZbkRoEyRIILN2uEYqsqseyK7udwRuet999538j20OAy9C/A1S3XPnzi2DlEGDBqlJkyap33//3fY4Bv14nMc8Yias2NqHqcfEyLpaXdRaxft29OjR0tYRxw4Euch/oaj1EBjvDBkyRP6HG/H58+f98j56jS3QxTNa+yBNB/0cEZ2DaRVuw5EZrsjEWiBqD0GLGtpNmzapzJkz2/rY4j6kdbnbG9kenBRgCvXs2TMZcJjZJp6EDufOnROTM0y8wDgGxz3HAQqOdSjDgFkeIWYTtTiOw9ne7CDLDZ8VUNQSX4GXSLx48eQcgnGR2bl7966aPHmy/N+pU6dgr05IQVHr5awQbOgfPnyo+vbt69f30iNruqCFWc/Zs2flfhTEo8YWvUPr1q0rZhNWmaWyOpjEwDaI1GC4xurOd3qNLbaNCRMmRBC2SFF2xywKGQKbN2+Wk8SoUaMsZVxCggcis9evX5fMgGXLltlct+3BNlmgQAGWXRBTgc4KOIZjQtIKLuCrVq2SSVNEmOioT3wFmWQVK1a0TAoy2hdhYghBCtajR4Si1gswyNejp+gvi1RNf4GN1lHQ6vcDRC3gioz6s+7du0s9LsQ2MSdIN0E9N1yw0ZsXs93JkiWL8Bxd2GbJkkXEgZ7GrmcYRAZEhS4mMGED0UxIIEBJBUo7OnToEOnzkJEAUx1CzFQXiGM6mDVrljI7OC8BRmmJP1KQzT4GRBcWgE4snvR3twL8NrykWLFichLCBgYx6S/QSgWRWHtBq0fcYPqD+ltELSB00Jd04cKFUmvrr7RoEjwwi1+/fn0RmwMGDJDfO378+E6fax+xxWx4kSJF3HoPbFuoF8+bN6/q3LmzwZ+AENfAlCx//vxuTSqiETshZqJhw4a2LBwzT0wjdRItCQFFLTEK+Mvg3ICez0hDNivwk4CvDoxrrdaX1x0oan1Ml0N6J2Yd9foQI/nnn3+kdrZSpUqSZmwfcXPWruX9998Xs6DLly+rwoULe+R0S0Kb06dPi0iFOzYGPYjMR5UWrAtbiGGYR2ECJjIww6nXaaBllZF9mAmJCkzQwN3YHdfHpEmTBmSdCAkUaMuRMWPGCKLPjHz++efqxo0bknHBViTEKJC+j2CTvQmZGUF5DmjVqpUYg5KIUNT6AFKAW7duLf/36NHD0HpWXdDqfWh14yg9QuuqXcsbb7whkdusWbOKiRCEMAlvtmzZIpFW1FBs375d1a5d2xalj2riwl1hiyyAZs2a2YwHUK9LSCBBlPbvv/+WTIHIJnfgkFyoUKGArhsh/gZphB988IH8j5IiMwJ3Z0yYAkygwniTEKNTkM0qavfv36/WrVsnwbR27doFe3VCEopaH0FaMMxLIDaM2pEcBa0jUbVrSZUqlVq/fr368MMPVZMmTSSN9NGjR4asGwkcmCQZM2aMKleunMqTJ49MVmDg7yxK74uwhWEHthXMnkMsuFN7S4jRwA8AUaqWLVuqBw8evPQ4XGHhyv306dOXenkTYqYUZERqb926pcwESgbQEhG0bdtWHGsJMRI9nR3C7969e8psjBw5Uq5RkoisDuIEjfjMl19+iRCtljdvXu3Zs2c+Levw4cPaihUrtNu3b7t8zo4dO+T9HC+4X398+vTp2vbt27URI0Zor7zyipY7d27tjz/+0MzGkydPtEWLFsm1mfj333+1cuXKye/atm1b7fHjx/K79u3bN9LfPjKwjPXr18t28Pz5c9v9ffr0kWUkTJhQO3bsmJ8/GSHOwbGzTJkyWrRo0bQMGTJorVq1kv8LFiyotW/fXsuUKZPcrlChgmYmcKzH/hfZMZ9YgxcvXsg4AtvD5MmTNTPRsmVL+VxZs2bV7t27F+zVISbdf1599VXZzubOnauZiY0bN8pYHp9t69atmtW47eZ5kqLWAG7evKklSZJEvvCpU6f6VdDqfP755xFEzRdffOH0/saNG2v79+/XChUqpEWPHl3r3r279ujRI80smE3U4qA8fvx4LUGCBDKwX7VqldPf1fGCSQx3cBS2+B9CAcuYOXOmnz8dIZFz9+5drWHDhnKswnbpeKlbt648x0xQ1BJ7vv76a9keMKlpFjCuwWfCPrx58+Zgrw4xMRgLY1urWrWqZhb27dunJUqUSD4XzoEYJ1qN2xS1geW7776TLzxjxozaw4cP/SpodfSIrH2E1pngefvtt7Xff/9dTpaxYsXS8uTJo+3cuVMzA2YStadPn5YoFH4zzGrfunUr0t/V00ito7BdtmyZljZtWnl98+bN/fjJCPH8eDhs2DDJUmjTpo02aNAgbffu3T4vd/To0RLxjR07tla0aNFIs1cOHDig1alTR56PfeSHH3546TnOMidy5szp0TpR1BJ7Tp48aROAFy5c0MKdK1euaOnSpZPP1KlTp2CvDjE5//zzj2xrmBg9d+6cZoZxob7/lChRQnvw4IFmRW5T1AYWbGj6huds8GO0oHUGBG5kwsc+ahsjRgytR48eYR+1NYOoxazbhAkTJP03ffr02sqVKz36XfUovacDDaSB4fVITWc6GDE7s2fPlvStn376STt48KCkNydOnFi7fPmy0+dj4q9r167arFmztNSpU7sUtUgXvXjxou1y9epVj9aLopY4golob8YSoQayKooUKSKfJXv27Nr9+/eDvUrEAkD8YZtDICecuX79uozP9PLGGzduaFblNkVt4Jk4caJ86UmTJpWNMZCC1t2IXqNGjUQADhgwQKK22FEQxQ1Xwl3UHj16VKtYsaL8Ni1atLBFZ935XTGg9iRCq4NMAtQu6tvqwoULI9TYEmJGEJlF5FcH2zwyFQYPHhzlaxGtdSVqCxQo4NN6UdQSZxkF2CYgCMMVZATp57ZkyZLJWIeQQDBlyhTZ7lBfG66puhinFS9eXD4Hgh1nzpzRrMxtN8+TdD82kKZNm6p8+fKJi2yfPn18djn2hqj6vs2YMUOaU6PPKZxw48SJI+1batasqQ4ePGjIOpCouXjxomrTpo3KnTu3Onz4sPSfnTRpkkqUKNFLz0UbJ/T2sweOx/369ZPHPOH58+fSGmrjxo0qYcKE8r54T3f62BLiT3bv3i2tyeDYXq1aNXGyxP9Dhw5V+/bt82nZcE5Gu6Dy5ctHaKGC23Cu94Vjx46ptGnTShs1uIifOXMm0uc/fvxYnGDtL4TYU69ePWnbAcd7bF/hBs4laBG3evVq6Q6xfPlylStXrmCvFrEIdevWlR6uJ06cUJs3b1bhBgKOaBe6detWlThxYrVy5UqVIUOGYK9WeBAwmW0RUKuo5/Pv3bs3IBFad4yEXJkKIVrxyy+/SCoqaniaNGkizrvhQrhFamEqBrfsePHiSZR06NChthoJxxppR6J6PCowY9muXTvZBhClX7duXaSuyIQEAhxvypcvL8dM/aIbQ9nfV7lyZa9nq8+fPy/b/bZt2yLc361bN4ngehupXb58ubhs4liPsoFixYqJr8KdO3dcLsuVgzkjtcQebO/elpcEE5xnUDuLdY8ZM+ZL5TSEBNJtG2V34cb3338v644yQX2cZnVuM/04eNSrV0++/NKlSztNfTBa0LpKT0XKgrumQhA2SHlKmTKl1J117tzZ49qwYBAuohapJDATg5CNGzeuCFsIXFeTErjtL1dNXFBfaA+FLQmWKU6aNGlsQhZpijBL++CDD7T69euLAyz2GV3g4pjmzaSbv0StI9in//Of/2iTJk1y+Rz4GODYr1/Onj1LUUteAuc1vUQknMxhxo0bZzvPzJgxI9irQywKWlpiG8R4y1lZV6iyevVqOddh3dGSk/wXitoggkEXdiT8AHPmzPGroHXHSMgTUyEYO/Tv319MizA4Q+1tKLfQCHVR+/TpU+k3iME4Zt0++eSTlxwto+o77CuYWPnqq69syx0+fLjT51HYkkCj96XNkSOHRD1dAaduGM3gud60OsG2jf0P9eP2fPTRR1qNGjUME7WgcOHC0jrNXVhTS1z1bc6cObNsG5FNkoQShw4d0uLEiSPrPGTIkGCvDrEwGPfoJktokxgOHDt2zNYetFmzZmFbD+wPWFMbRDJlyqS6d+8u/3ft2lXdv3/fbzW0IEeOHFE+p2/fvmrHjh1qyJAhTh//448/1M8//yx1tb1795ZahObNm6sBAwZILn+3bt3U6dOnDVtns4O6atQHvvrqq6pFixbym6N2dty4cSpNmjS27xvXR48edboMV/d7Aiau8Nvh9wf4PTt27Oj0ua+88ooqXry4bK+ssSX+BvWCmzZtkuPXzp071bvvvuvyuVWrVpXnZ8+eXW3YsEHqYz0B23ahQoXUunXrbPdh+8btYsWKKaO4d++eHDuxjxPiC6ipbdu2rfw/atQoOZaHMqgVb9iwoXr06JGqWLGinHcICRbRokWTsReYPHmyCnXu3r0r3jY3b95Ub731lowV8RmIh/hFUhNJF9L7G/bq1csvEVpPamrt62ijeq196it6ZKGtBVpfICUCfRs3btwYMjNIoRapRW/Ljz/+WGpmkcbdtGnTl/prOn7fqPnwR6QWM/2tW7eOMkLrCCO2JBDguIJjCo6L7oJoLqK13qTnI+Ue/WmnTp0qESXsGziuXbp0SR7HfmgfYcV+gH0XF6RIY33xP2bTdbp06SLHw1OnTmlbt26V2uDkyZNLyyx3YaSWuAJdFPSsr02bNmmhDFL5dadjM/TXJeEP2rWhrhvb5b59+7RQBs78WE848nP/eRmmH4cA8+fPt5nyjBo1yu+DFoggVyYkkZkPufN89DFFrYyezpEzZ04xOfJk8GZWUYvvBr0vYRKD7wY9LZHC7az/pavvG62WPEkTjwp8Hw0bNrSZliEF2hMobIm/KVu2rAyAPQWvwWu9AcdhGDlhwgm1tPbHOXggwChPB0LV2b6K5+mg7heCF8tDn3LcPn78uEfrRFFLIkOfmKxbt64WquBcgckmrKdjij8hwQSBGGyX2I9ClT179tjqaNeuXRvs1QlJKGpDAEQzMXOPHwI1Y4FqPO4YCYxMILmqx3WM7OrOuyi+37Bhgxi5YCAHwQ5jLNQOB6MYP1iiFmYviDAhKovaY5zQ0ZNv3rx5IghdORZH9n376m5snyWAOkHdfdKxrttdKGyJP0GdOY6PngIjKbzWLFDUkshAhEl3Qg3FXpWIJmNCB+vYqlWrYK8OIRHYvHmzbXIfmXShqBNKliwp64ixNHEORW0IgJRjCArM5OPHgElQoHBXIMGAIqpIrav0ZLgjw3r89ddftwkoDFLh2AZXU7OJWkSlkbr43nvvaQkSJJDPDCOPnj17Ov28zr43f5tCITr81ltvyTJh2AGDHV+gsCX+AmZ0DRo08Ph1mFDDa80CRS2JCmQmYBvp0aOHFqqtU2DkhqwlQkKN2rVryzaKNlmhxsyZM2XdUGaAcj/iHIraIGNfQ7tmzRqbeFm8eLEWKriqw7WP7LorwuD4jJZAiFYieovn5MuXT1rX4Ln+EkT+FLWYQUPt3TfffKMVL17c1nYEohHtcfbv32+rLXacRIjse/Mkku4J//zzj/QbxjLhoGdUDRaFLfEH2J/g8OgpqFPHa80CRS2JigULFtjqVUOpvQ9S9PWaxS1btgR7dQhxCnwQ9HGpJx4O/gadRVBDi/VCpxHiGoraIOLMFAqGIvhBYCISCkXgrkSXY+uAqNKTnUWE8bmRhgvjFZyE9ZNxpUqVROSi1hgi2AizKSNFLaKcMKIZOHCgzOxlyJDBNoNWs2ZNqUvVTWWiish68735mmKjW8FD2ELgGgmFLTEaTBBR1FLUEvdaw+nGk6HUngTZZ1gnb8oICAkkn332mWyrefPmlf0pFEBAQx+zPXz4MNirY4rzZDT88dQxmbjGVdse2N3DpnvPnj1id79ixQoVPXrwOiqhncxHH3300v3Tp09XjRs3tt1GyxmstyNoD7RgwQJpW6OD11WoUEE9efJEWmigVQfaaGzfvl1aZ6ANBy4XL16U5ydLlkwVLFhQnoNLgQIFVLp06VS8ePHc/hxPnz5Vy5cvV1WqVFGxYsVy6zVYv0uXLqkDBw7Y1gmXc+fOyeOJEye2rVepUqVUuXLlVNy4cSN8J2i3o7dScvb9TJo0SbVs2dLp9/bmm28qI5k1a5Zq2rSpfC4se8mSJSplypTKaLD8rVu3qvjx46siRYrQbp74BI5/JUqUcLqfRMbEiRPVtm3b1PPnz5UZuHPnjkqUKJG6ffu2oa3eiLn4/vvvVZcuXVTChAmlBVauXLmCuj7nz59XWbNmlfMCWnPhXElIqIJWOWgJd/36dWmX88knnwR1fTCGzJcvn4xhFy9erGrUqBHU9THLeZKi1g8Hepx0nH3p6FMKsYQ+bgMHDlQ9e/ZUwSIyseoour744osI4hW3a9eu7fT1jnz++efqm2++iXAfRK29mMTlwoULtsex4aLPIy5p06a1/Y9LqlSpVOzYsUXAxowZU3r3/f7777Zek8+ePZODxNWrV+V9cMGy9f9xuXbtmu29kiRJYhPVupDFidqVYHP8LtA/87fffnM6OQDR7Pi9ueoT7C3fffedfMegTp06asaMGREEuNFgAIN+xTg5EOKrqPVmYgT7PF5HUUusBM5t5cuXFwGZO3duEbYJEiQI2vqg3/nIkSNFzGKdCAl1Ro8erdq3b69SpEihjh07JsfdYPH++++refPmSX92jCEZJIgcitoQ5ccff7TNEKGhert27YK2Ls7EqivRZR+dhOh1Fel1hr1QdlyODiKnBw8edCpC9dv379/36PMhWuxMGOu3c+bMqTJnzvzSwQTriEg6wAHHft3dEfL2n9nV5/UV7Lb4vSBqwWeffSb/BzP6T4gnONv3POHUqVPKDFDUEne5fPmyTL7inIhB8ezZs4MyGMb5OkuWLDJBv2bNGhHbhIQ6CHjkz59fHTlyRHXu3FmyH4LBmTNnJHiCidm9e/eq1157LSjrYcrzZGCyoYk9vXv3dlnDGmi8re10VZMbWR2pKxdlvb8uLpGtx507d6QHJMyb0OZg165d2rZt27Rvv/1Waj337t2rHTx4UDty5Ii0GYisZtf+PfEb6N+BM/MsfT1d1clWrVrVL8ZPrnj27JnWokUL2/t99913fn0/Qoj/YE0t8YStW7fazJnQfSAYdOvWTd4fpolGeGMQEijQEUIfO02bNi0o66CPM73tt25FbrOmNnTBV96tWzc1bNgwmWVFymjDhg1VuOEY6Y0sagmcRTkbNWoknz+qlGWgRz2RAnv27Fm5r1KlSurKlStOa2qdPR+RV8daYHeI7DPoj/kjIusIarOxreAzICqL+sLmzZv77f0IIf6FkVribRpljBgx1Pr16wNaz4ryHWRZIHMKaZM49xISjmNXlLCtWrVKvfPOOwF7b+w3GTJkkBrfRYsWqZo1awbsvcMZRmpDHMxutmnTxtZUHY7A4Yge6W3UqFGk7YFcRTldXRwjtq7aD8GZ2Jn7savne3txFW32d1TWMVJdrlw5ed9XXnklbLcZQsj/YKSWeDN++PDDD2W7SZkyZUD7W6IvO963UKFCjNKSsAQdHOrXry/bcaJEibQDBw4E7L3hXo73zZIli2TdEfdgpDYMePHihWrRooWaOnWqRBkxaxPOs572kVHd/dibelRHF+bIXgtTJLj/wu1XN4vy9L2Mqgv2J5idQlQa7w1zEGwrcGUmhIQ3jNQSbyM+xYsXl5q8N954QwwTPekc4A0PHjyQDgW3bt2SbCEYRhISjqAeHN06sN9kzJhRxnjwWvEnkFtwPD506JDU86Kulxh7nqSrTBBB+ihav9SvX18K2HGCGDNmjGz44QgEHoQohDqu7QUf/tddenXsWwc5orfLARCQUXH8+HGPnu9pqorjZ3H8fP7emStXriyCNmnSpJJuRkFLCCHWBa3V0AoETq67d++WMhR/jx1mzpwpghYmN0ybJOFMnDhxJDiAsSaMm6pVqyaTNv5k7dq1ImgRmGDZmH+gqA0yqImBk3C9evUkwgk3ZLgaYjbCbKBOFrNhiMLq145C15mItBe4rsiWLZtHz3cF3hvr1rdvX7ngf6Pb8HjC3bt3pQ4Y66ELWvSIJYQQYm0yZcqk5s+fL7WBc+bM8eu5CoIZtbygbdu2dNonYU+yZMmk0wUmhnbt2uX3iaERI0bIddOmTYPaTsjMMP04RMDPMHz4cBFViNpiJnTu3LnSN9XsuGqh444plZ5+7GgUFZmJld5nV39PFO07pkuHAvfu3ZPvA+kxiRMnVuvWrZN2DoQQ88D0Y2JUq0AYTyJ6W716dcPfA+ehkiVLyjn3/Pnz0uOdEDOwZcsWMYtCL+ivv/5affnll4a/B/ri6gEXtBTyJfhiRe7QKErTBg0apBUuXFhLkCCBliJFCq1mzZraP//8Y3scbV/atWun5ciRQ4sTJ46WIUMGrX379tqtW7ciLMeZcdCsWbMiPKdfv35aunTptOLFi0tLGW9Ba5rMmTPbzIBGjhxJM4b/B+ZRju1zXBlF6c+HwRNa9rjTMiiUuHfvnla6dGmbkcGff/6phQKbNm3SqlWrpqVJk0bWbeHChREex3ecM2dOLV68eFrixInF2MrxO8+UKdNL+9PgwYMjPGfChAlaxowZtddffz1sfjNCvIFGUcQIdOPJhAkTSts7o9GNdVq1amX4sgkJNj/++KNs39GiRdMWL15s+PKhLbD8KlWqGL5sK3DbzfOkqUVtpUqVtClTpoiz2Z49e2RjwkAZggHs379fq1OnjrZkyRLpf7pu3Tote/bs2nvvvRdhOfgisZyLFy/aLg8fPrQ9/vvvv2tFihTR/vrrL23MmDFahQoVfFrvGzduaLVq1bIN+LGO165d06yOs964uqhFv1qzcP/+fe2dd96Rz/ef//wnpETd8uXLxf1ywYIFTkXtL7/8oq1Zs0Y7ceKE7Hfop4vPcOXKlQiitn///hH2J32fBHDyzJYtm/ym8+bN03Lnzh3Qz0hIIKGoJUaAiV19IhTjmJs3bxq27PPnz9t642IsRYgZadu2rWzjCIQZ6YiMQBmWiWWvWrXKsOVaidsUtS+DgTW+FESbXDF37lyJkD59+tR2n7PBuz1Lly6VKDBOKhAgELi+gujsiBEjtFixYsn7J0mSRG47i0haBWdtgXRRq7fcCXeww5YsWdJ2YA1lsR7VfmF/IFq7dm0EUfvDDz+4fA0mm5BhAaF78uRJyVwgxKxQ1BIjxziYuNcjQka1DEEGDpaJcxMhZgXj67Jly8q2njVr1peyNr0F4x0sExP0zLz073nSUpX+uvkSDHciew7ytWG8YA+MEZInT66KFi2qfvrppwjF5Gi1Antw2OnDpXbw4ME+rytqYzp06KC2bt2q8ufPL42aO3bsKP+j4bkVS6Ejq0GwN4oKV9DUHnUdqO/ANrhy5Upbm6JwBMZnEyZMkDqIAgUKRHgMhiYwaUAriu+++05qWXRgef/aa6/J6/LmzasGDhwYhLUnhJDwAoY3CxcuFGfX5cuXi9mhEcdx1OwCGFkSYlbgywIvm8yZM6uTJ0+qTp06+bzM58+fq5EjR8r/GMNjbE/8iGahZsuox0TNqyuuXr0qs5xffvllhPuRKokU4127dmlDhgzRYseOLVFTRy5fvqw9fvzY8HXHbCvy/VEXrEcokeKMiJbV+Pzzz92uqQ0nkN6VJ08e+UzJkyfX/v77by3UcRWpReZC/PjxpTYlbdq02s6dOyM8PmzYMG3Dhg3a3r17tXHjxkntbefOnV9aDlLuHzx44NfPQEiwYaSWGM2MGTNs50iUcPgC/EOwHPgohPt5lhB3wHgf4xds9xjP+ALGp3q2JUrLiHcw/diBTz75RNIez5496/RxfFFFixbVKleuHOWBu3fv3lr69Om1QINUiG7dutlSkqNHjy7mEK4+k1lBirdu/IT03HAXtag/zZIli/ymMBvzh8lHIEUt0oaPHTumbd++XWvevLmkD2PCxxWTJ0+Weq1Hjx75eY0JCT0oaok/6NKli2xXmGDEOcZbEAjAcr766itD14+QUAZjbWz3qVOn9snTpkyZMrKc7t27G7p+VuM2RW3E4m+IUNTnOePOnTtasWLFxKnV3gDKFcuWLZMvN1iDcJhawTxKn4mNESOGOBNCRFgNiNlwFrUHDx6UaKZew3Hq1CktXHCnphbA9AlO5K6AIQOWZe9MTohVoKgl/gC+ILpxVO3atb2OWOH1mEi/cOGC4etISKgCLaBnzzVo0MCrZcBUTR+jnzlzxvB1tBK3WVP7396vqAFBjcn69etVlixZnPY+qlixovQpXbJkidSiRMWePXukR1vs2LFVMHj11Vel4fqGDRtU6dKlJWcfjddRf4k+qzNnzpQ6GBL6/XlLlSqlLly4ILWjqKVFLYfZePHihXr8+HGk+1P06NFVypQpA7pehBBiVuALMmbMGBUjRgwZA6HPuaf0799frps2barSpEnjh7UkJDSBFpg2bZrsP7Nnz1bz5s3zeBkjRoyQ67p166oMGTL4YS2JI6YWtTB3mjFjhoi8hAkTqkuXLsnl4cOHEQTt/fv31eTJk+W2/hwIRbB06VI1adIkdeDAAXX8+HE1btw4NWjQINW+ffsgfzqlypQpozZu3Kh2796tmjVrJsJ8586d6sMPPxQBjybSV69eDfZqEicsW7ZMlS1bVl2/fl0VKVJEbdq0SaVNm1aFOvfu3RMRigs4deqU/H/mzBnZj9C0fMeOHer06dPq77//Vs2bN1fnz59X9erVk+dv375dDR8+XO3du1eMGH755RfVuXNn1ahRI5koIoQQYgyYLP30009tJjX2hnxRgeP46tWrRRz36NHDj2tJSGhSuHBhGdOANm3aqMuXL7v92itXrsj4Rt/3SIDQTIxj+xf9gp6zAGY1rp6jp4GuWLFCe/3116W9CmpTChQooI0fP16Mp0KNS5cuSd0LagD0zwFTq8aNG0tqshmtxMMx/XjixIlSD43f591339Xu3r2rhQuu9pkmTZpIug7S3JBOjbZYMBapUaNGBKMoGGC9+eabWqJEibQ4ceKIxT1Sk1lPS6wK04+JP0Hf+2TJksk2NnLkSLdfh3MTXgNfBEKsCsxfoQGwL3z44Yduvw4Gs3gNvHrMOPYO1fNkNPwJlIAmgQGpx7AlR0QM0TIdtE/BrO0HH3yg4sePr8zA06dPpXVBlSpVxI49lMGuNmDAAFubBaR0oeVNqK83IcR/IEMI7av0dnKEGM348eMl0pQ4cWJ17NgxaU8YGX/++ae0L0Tq5ZEjR6TkiRCrgnE0MuowhkMpI7Lsospoy549u2R9IlrbsGHDgK2r1c+Tpk4/tipIQ0Y6519//SXpyBBPqP9FmnKrVq1UunTppP/WP//8E+xVtQxI+/r4449tgrZnz57S75iClhBCiD/BeR+9wm/duqX69OkT5fMx+QowjqCgJVanUKFCtjR+XEflWdO9e3cRtPBIQT0tCRyM1FoE1G5OnTpVaoJPnDhhu7948eJS94iaR9QdhxvhEKm9e/eu1DmjPhuGSKNHj5ZZc0IIYaSWBAL4NsCHA+cgeBsgEuuMXbt2ySAez8PENyJOhFgdTAjlzJlTamUHDx4swjWy/QysWbNGlS9fPsBrak4YqSURSJYsmerSpYs6evSoWrlypapevbqctLZu3apatGghzoYwm4IDL+c5jOPQoUOStgJBCzc9uFZT0BJCCAkk6JRQv359caOvVq2apCFHFqVFyiQFLSH/Ban7Q4cOtbmCwwzTEZhlIkikZ0dQ0AYeilqLASFbqVIlaV909uxZNWTIEJUjRw7ZGRHJRYsZ3IZzsrOdlrgP2ixhNhw1SenTpxen6lq1agV7tQghhFgQeDjAWwNdEdD5Ae3k7EtkEIFatGiRihYtmpTIEEL+B9LxMUZGBxVnjsbYZ9DVAe17dAFMAgtFrYVBC5kvvvhCUoz0iG2CBAmkdVGvXr2kHqBkyZKSsnzt2rVgr27YgHoL1Cw3aNBAJgvKlSsnKV3oIUwIIYQEA6TtrVixQmXLlk39+++/qnLlypJWiXM+But6+5IOHTqoXLlyBXt1CQkpMNkzduxYaXO1ePFiEbZoe4VxHsbQI0eOlOdNnDiRpSRBgjW15CXXNqTIImqL2gB988BOjJldpCTVrFlTxG8oEGo1tejJ+v7776tt27bJbfT3QzoXXCQJIcQR1tSSQIP+4m+//baY2eTLl0+iSw8ePJDtb9SoUapx48YygCeEvAzqab/55hvbbYw948aNK8dylPHBBJQE5zxJUUsiFWizZ89WM2fOlEijTrx48SSNFq7KiEIipTlYhJKohSkA0lNgJICdb9q0aTIBQAghrqCoJcFg3759Ep3FdgfQpmTKlCkqU6ZMwV41QkIa1KWjvGzVqlXS4gelfHr248GDB6X+lhgLRS0xFKQoz5o1SwQuUpV0UDvQpEkTEbjBsP4PBVGL1GyYcE2fPl1uv/baaxLtRooXIYREBkUtCRZImUTKcZ06dVT79u2DOkFNSDgCCYVMBziKFytWjC2w/ARFLfEL2FzQmB3pyRC5qMfRwawvUi/QlytQ6cnBFLX4Ln7++Wf12WefScskpGuhh9m3334r0WxCCIkKilpCCCHENWzpQ/wChBscfVEsf/HiRUlPhpsy7t+8ebOIWrQHateunbQPMitoh1ChQgWJUkPQ5s+fX+po0YOWgpYQQgghhJDAQVFLvAZ9V9H3Dn1vz5w5I22AkHILs6kxY8ZIo2r0w123bp1pet/C2XjQoEEiYvG58B2gLdLff/+t3nrrrWCvHiGEEEIIIZaDopYYAvqwojYH0dm1a9dKc3ewbNkyaUCNOtPJkydLf69wBM6QEOq5c+eWXmSPHz+WSO2BAwekLVKwTaoIIYQQQgixKhS1xFCQhgxH5KVLl6ojR46otm3bSjouxF/Lli1VxowZRfwifTccgAlUv379ZL2RUg1DgJQpU6oZM2aI8x1NAQghhBBCCAkuFLXEb+TIkUNqTM+dO6e+++47EYYQiYMHD5bHihcvLk2q9ZYCoQTEK0Qs1vmrr76SutksWbLI50GPvw8//JB9/AghhBBCCAkB6H5MAsazZ8/UokWLpDE1opzo9QVQl1q7dm1b39sYMWK4vUwj3Y9v3rwpdbJz586Vljz6+hUqVEh9/vnn0vYgZsyYPr0HIYTYQ/djQgghxDVs6UNCmgsXLqhffvlFWgMdOnTIdn+6dOlUjRo1JIr79ttvq8yZM0caEfVF1EJk79y5U61evVpENv7XhSyoXLmyiNkyZcowKksI8QsUtYQQQohrKGpJWIDN76+//lLTpk1TM2fOlGipPalTpxZxq18KFiyoYseO7bGohWsx0qDh0vzPP/+oNWvWSFTWMfUZRlBoUYT637x58/rhExNCyP+gqCWEEEJcQ1FLwg44Cq9YsUL63aLn665du0S02vPKK6+orFmzysaNS4IECWRjz5cvn0qSJIls7NGjR1dnz54VAXv69Gm5vnTpUoS2QkmTJpV+uqjtfeedd9Sbb76pcuXKpRImTBiET04IsSoUtYQQQohrKGpJ2PP8+XN15coVMW3at2+fOnjwoERykTYMsatf37p1SyVLlkwEL2pe9QsiunAqhnhNmzatXNB6CPfhuYQQEmxwkk6cOLFMxFHUEkIIIS+L2gwZMsh4H+LWFRS1hBBCSJBAWQRO1oQQQghxDSZ/EZxyBUUtIYQQEiRgTgfjPJQ+GGVIp89qM/obmvD3CW34+4Q2/H2sh6Zp6u7du5JxiRJDV7A/CSGEEBIkcIKObObZFzDg46AvdOHvE9rw9wlt+PtYi0SRpB3ruJa7hBBCCCGEEEJIiENRSwghhBBCCCEkbKGoJYQQQkwEnN/79u0boac3CR34+4Q2/H1CG/4+xBU0iiKEEEIIIYQQErYwUksIIYQQQgghJGyhqCWEEEIIIYQQErZQ1BJCCCGEEEIICVsoagkhhBBCCCGEhC0UtYQQQohJGDNmjMqcObOKEyeOevPNN9XOnTuDvUrk/zl//rxq1KiRSpYsmYobN67Knz+/+uuvv4K9WpZl8+bNqnr16ipt2rQqWrRoatGiRbbHnj59qr744gv5jeLHjy/P+eijj9SFCxeCus5WIrLfB9y7d0+1a9dOpU+fXvanPHnyqPHjxwdtfUnwoaglhBBCTMCcOXPUZ599Ju0udu3apQoUKKAqVaqkrly5EuxVszw3b95UxYsXV7FixVIrVqxQhw4dUsOGDVNJkiQJ9qpZlvv378s+gokgRx48eCD7UO/eveV6wYIF6siRI6pGjRpBWVcrEtnvA3CsW7lypZoxY4Y6fPiw6tSpk4jcJUuWBHxdSWjAlj6EEEKICUBktkiRImr06NFy+8WLFypDhgyqffv2qnv37sFePUuD73/r1q1qy5YtwV4V4gREAhcuXKhq1arl8jl//vmnKlq0qDp9+rTKmDFjQNfP6jj7ffLly6fq168vEw86hQoVUu+++64aOHBgkNaUBBNGaolp0kwePXqk2rZtK6ldCRIkUO+99566fPlyhOdgBi9HjhwqZ86catmyZQH5bIQQ4m+ePHmi/v77b1W+fHnbfdGjR5fb27dvD+q6kf+eewoXLqzq1aunUqZMqd544w01ceLEYK8W8YDbt2/L+CRx4sTBXhWilHr77bdlv0JaP+JzGzZsUEePHlUVK1YM9qqRIEFRS0yTZtK5c2e1dOlSNW/ePLVp0yapfalTp47t8cePH4voHTt2rEQy2rRpIwNBQggJd65du6aeP3+uUqVKFeF+3L506VLQ1ov8l5MnT6px48ap7Nmzq1WrVsn5p0OHDmratGnBXjXiBpg0R43tBx98oP7zn/8Ee3WIUmrUqFES4ECw45VXXlGVK1eWMWSpUqWCvWokSMQM1hsTYg/SRXBxxbZt21STJk1UmTJl5Hbr1q3Vjz/+KCYoqHHBDOrkyZPVzJkz1TvvvCPPmTJlisqdO7fasWOHeuutt0TUxogRQ73++uvyeMyYMeU+HAwJIYQQf4FUcERqBw0aJLcRqT1w4IBkHOHcRkIXmEa9//77Eg3ExAQJHVGL8R2CG5kyZZKMPwQukPFnn7FCrAMjtcQUaSZIu8OJx/5AlitXLql70VPvMLvarFkzlSZNGjnoYaY8YcKEQftMhBBiFMmTJ5dJO8eSC9xOnTp10NaL/BecdxBVsgeTrmfOnAnaOhH3BS3qaNesWcMobYjw8OFD9eWXX6rvv/9eStdee+01yd5Dje3QoUODvXokSFDUElOkmSC9Dvc71ro4pt7BFRRpetevX1eff/55wD8HIYT4Axz/YJKybt26CNFB3C5WrFhQ140ocT6Ge649mJhFhImEtqA9duyYWrt2rfh1kND5bXCBb4A9mNjDcY9YE6YfE8ulmSRKlMhv60kIIcEC3gNIZUWaK1xahw8fLn4FyFAhwQWeD8g4QvoxhBJKZyZMmCAXEhxgQHn8+HHb7VOnTqk9e/aopEmTSmS9bt260s4HppKoV9cnyPE4y5aC+/sgC6906dKqW7duYh6KcSG8VKZPny7RW2JR0NKHkFACm+XChQtttx88eKDFihVLW7ZsWYTntWjRQqtUqZL8v27dOnndzZs3IzwnY8aM2vfffx+gNSeEkOAyatQoOe698sorWtGiRbUdO3YEe5XI/7N06VItX758WuzYsbVcuXJpEyZMCPYqWZoNGzbIuMHx0qRJE+3UqVNOH8MFryPB/X3AxYsXtaZNm2pp06bV4sSJo+XMmVMbNmyY9uLFi2CvOgkS7FNLQr4f2Z07dyS6unz58ghmUh9//LHM3K1evVqMolKkSKFmzZolrXwAUr1QV4uaWhhFEUIIIYQQQswH04+JKdJMIHpbtGgh6Xd4Dcwc2rdvL7VkFLSEEEIIIYSYF0ZqSUiwceNGVbZs2ZfuR33Y1KlTpZalR48eEpW9ceOGCFu09UGdEiK7eh+5Ll26SLQWrXoqVaokPWnp/EkIIYQQQoh5oaglhBBCCCGEEBK2sKUPIYQQQgghhJCwhaKWEEIIIYQQQkjYQlFLCCGEEEIIISRsoaglhBBCCCGEEBK2UNQSQgghhBBCCAlbKGoJIYQQQvxIgQIFpP1c7Nix1fXr1wPynv369ZP3xHWw8Nc6oNUfltu0aVNlNUaMGCGfff78+RHux3eB+/HdWInnz5+rXLlySavHhw8fBnt1SBChqCWEEEII8RN//vmn2rdvn/z/5MkTNWPGjGCvUkjz77//ijjLnDlzsFcl5Lh69apMEBQpUkS99957wV6dkCBGjBhq4MCB6syZM+rbb78N9uqQIEJRSwghhBDiJyZPnizX6dKli3Db37Rr104dPnxYrs1G7dq15bMNHjxYWYmvvvpK3bp1K6jR91Ckbt26Kn/+/Oqbb75Rly5dCvbqkCBBUUsIIYQQ4gcePHigZs2aJf///PPPKkGCBGr//v0SvfU3yZMnl7RMXJuNRIkSyWdLkyaNsgoQs0gtxuRI5cqVg706IUfz5s0l/XjChAnBXhUSJChqCSGEEEL8wLx589SdO3dUvnz5VNmyZVX9+vWjjNaWKVNG0m83btyotmzZoqpXr65SpEihokePbquXRGounoNU3cWLF6t33nlHJU2a1PY6V/WsPXr0kPs++eQTl+9/4MABeU6qVKnU06dPbfcvWLBAtWzZUj5LkiRJVJw4cVSWLFlETBw5csSQ7wt1oVgmOH36tKyH/SWqmlp8dtyP7/Dx48cS2cyRI4esa8aMGdUXX3yhHj16JM+9ffu26tq1q8qaNas8ju8U39WzZ89crt+6detUnTp1REy/8sorKmXKlBI13r59u9PnHzt2TL4ffCbUU2NSA7WfVatWVVOmTPHou8Hz79+/rxo3bizbQmScOnVKnpc6dWp531dffVX16tVLvhNXzJ49W5UrV062I7wG64l1P3r0qNPnO/4mkW3Hnm7fL168EHFavHhxlThxYhUrViz5rlGb3r59e9nuHfnwww9VzJgx1Y8//hjpb0jMC0UtIYQQQogf0MUrxIH9NQREVKY2EMQQACdPnlTly5dXFSpUELFhz7Bhw1StWrXU3bt3JXpXunRpqTF0RbNmzeR6zpw5NnHniC62GjVqJGJC5/3335eoc9y4cUVEV6pUSYQInl+oUCG1bds25SslSpSw1YrGjx9fNWnSJMLFXVC7jPX7/vvvVe7cueW7w+QCai7r1aunbty4od588001ffp0VbBgQfneLl++LCIYoskZEMD4HTCJAIGM7x2CGLdLliz5kkjF5EDhwoXlfvxu1apVU1WqVJFI6+bNm8XwyRMWLVok11iHyNizZ496/fXXRTDic5UqVUpdvHhRff3116pBgwYvPV/TNPluP/jgA1mvN954Q4Q7hD7WHbdXrlypjCay7RuTJx9//LHatWuX1A/jN8PvhH1m9OjR8hkdgTDG575w4UJAMiFICKIRQgghhBBDOXLkiIZhVqxYsbQrV67Y7s+VK5fcP336dKevK126tDyOy5gxY5w+J1OmTPJ4jBgxtMWLFzt9Tt++feU5uLanePHicv+sWbNees3Tp0+1lClTyuP79++P8Njs2bO1e/fuRbjvxYsXso54ft68eeW2O+sQGadOnZLX4DO6YsqUKfKcJk2aRLh/w4YNtu+uaNGi2rVr12yP/fvvv1qSJEnksfz582vVq1fX7t+/b3v8zz//1GLGjKlFjx5dO336dITlTpgwQV6XLVs2be/evREe27Rpk5YwYULtlVde0Y4ePWq7v1mzZvKagQMHvrT+Dx48kNe5C56P5WPd7ty54/Q5+C70z96zZ0/t2bNntsfwW8aPH18e27ZtW4TXjRs3Tu5Pnjy5tnv3btv9+C313y9x4sQRtmGgv5cr9O0Yv4kn2ze+ezyWPn167eLFiy89fujQoZd+H50OHTrIawcMGOByvYh5YaSWEEIIIcRgfvrpJ7muUaOGRJF09GhtVIZRiIZ++umnkT4HETYs3xP093eW/vrbb7+pK1euSIQRacb2IHUa0VN7kEaKdSxWrJg6ePCgmDeFAlgvfL/JkiWz3Yd0WqTk6um5kyZNUvHixbM9js/87rvvSuqrfcosbusp3Iiwv/baaxHeC5HQ3r17S3QYqa86iPwCRGcdQbQbr3MXfLdYfvr06VXChAkjfS6i5gMGDIgQscdvqX/2tWvXRnj+0KFD5bpPnz4S6bT/Dvv27SufF/W8EydOVEbiavvWvzdEZpE+7Qgi74iUOyNv3rxyjQgvsR4UtYQQQgghBoKavmnTpkUQkTofffSR1P4h1fPEiROROrpGhTvPcQRpxBCnEDfnzp2L8JgudB3XWef48eOS/tmpUyfVokULqWnFRRciRtXW+gpEj6MoB9mzZ7cJP9RounocKaw6u3fvltuoS8XrnIE0WmCfgl20aFG5btOmjVq1apXLdG930L9fe5HuCqQ5O6t1hRgE58+ft92H31/fBp2ld2M5esr6hg0blJG42nZhAAbhvnz5ckmZxgSEu+jfj/59EWtBUUsIIYQQYiCIeKK1COonUdtpDwyYEL1DBqcezXWGO31avenlCrMi1CgiAomaUh1EaLHeqKVEfaU9z58/F3EG0yXUnKIeFOsO4Y4L6iIB6lZDAVeRPHz2yB7Xo6D2AlT/bBB/jsZV+kUXsOgjq9OtWzepFf3jjz+k3vk///mP1Id26dLF45pPmFoBLCMqXH02/bX2n00XuBCDrpYNMW//XKNwte3iN8DkCqLZMLdC3XLatGmlzhfmUffu3XO5TP0z3Lx509B1JeFBzGCvACGEEEKImdBTiyEgYNbjiC4Q4Pbav39/p+ZOGNRHhTvPcQYisXhvCNIvv/xS7psxY4ZEmBFBg+OsPRCx48ePl3RQmC+9/fbbIs4hgEHDhg3FROq/pZbBJyp34KgetwfiH+CzO05QOGLfPgmpzWvWrBEBC6MlRHFx+euvv+Q7ROrtmDFj3FoH/fdwZ9LAk8/mT/TvzZttF2ZhmBBYsmSJGF5t3bpVLVy4UC5Ik8b3ir60rsQ/3LmJ9aCoJYQQQggxCDjNInUSXL9+XQbkrkBaKwQPWrwEErj1ZsuWTdq1YP3QOkVvp+Is9Xju3LlyjZpRZzW8aF1jVjJkyGCLZurfkScgOosLwKQBXIyRgj527FiZQECrp6jQU6WxPRkJMgn05UIwO4vW6pFq/bk6cMZGyyc4bzur80VLJl97EaMOWK8FPnv2rGQJwG26Xbt2atOmTS+9Rv9+MOFCrEdoTOcQQgghhJgACB+k66JlDCKXri6ff/65W4ZR/kKvlcT6/v3332r//v0i4NCr1BG0wNHNlpyZGDlrseIt6P8KQqXXKAQpIrCHDh2Sz+oLqKWGkNUjvu5+bzBAwveCGliISKOA8ZSeXuxMsGM71e93FN+6yHVmDrZv3z4RoUaCbRMtlyL73tBGCbiqfSbmhqKWEEIIIcQg9DrZqPqqIloHli1bFqEWM1Bg/ZCqiiisngar3+fKZAjPs08rRVQan8NIAQqnaAg41CTrYjqYICIJF2AIvNq1a6vff//9pedgEmP9+vVqx44dtvsQiXVmnIXPhRRkV5MErlJ133rrLfnuUaNrJOi/C+CYvHfvXtv9+LwDBw4UAYn051atWkV4nd4vF0Lz8ePHtvv//fdf2Y68TUWHMRf6KDvr47x06dJIvzfdqAvOysR6UNQSQgghhBgAUiLhEBw7dmzVoEGDKKNvaFuCFE57w6ZAgUhbxYoVJe0Uxjz2TreOoO4WQhNtXXLmzCntfdD+BlE+CBqIPSNFJFKcIRTRYgb1ui1btpRLsEC6K4yfkGaN1G04K9eqVUsMtRDBRCQXEW77CCJMjeDkC6MjfJ5GjRpJhBa3EXGF8PKkHRPeD6Ce1Eg+/vhjSfG9du2atDWCWMV3jokM1K9CUM+cOTNCWyp9m4DYRao9DMQQgUb9eJ48eeT7QN21NyBtGfsO0r1LlCgh3zGMzfBdonUStsNvv/32pddhYggRYphK6enexFpQ1BJCCCGEGICeSly9enW3zGr0aG2wUpDt62fRNxWCyxlIpUZ0ESLs/v37YuADN2DUOG7fvt0tV15PQO0uxBaE9q+//irfT7C+Ix0IKdQff/jhh+LAi1pouEWjLhotfdD3FmJfB+1o4BgN4YcI7rx58ySFGd8lDLrweqQjuwsmHNCKCYZeEPxGge8YkyoQrhCRSEXHd/7gwQNp14TIKSYwHMmSJYtERuFKjJRoZByglU7Pnj1F6GJywhsQkR4yZIhMFuC7xba2evVqMVNr27atCFe4STuiG51hu/HkeyXmIZoWKlZ1hBBCCCGEEJcRY6SAQ+hh4oT8F0iZAgUKSJYEjK3gVE2sByO1hBBCCCGEhDio7UXkF22gyP9AZBlGZ1988QUFrYVhpJYQQgghhJAwAD2DO3XqJOnMqGO1OkjFRn06jKX++ecfr3s3k/CHopYQQgghhBBCSNjC9GNCCCGEEEIIIWELRS0hhBBCCCGEkLCFopYQQgghhBBCSNhCUUsIIYQQQgghJGyhqCWEEEIIIYQQErZQ1BJCCCGEEEIICVsoagkhhBBCCCGEhC0UtYQQQgghhBBCwhaKWkIIIYQQQgghKlz5PyH2x8AkEQzaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAALHCAYAAABRxGVLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQW4VNXXxjfSJY2AgCggIV2CorQIKJ2CAtKhYoBgAYqEASLdIQ3SJd0pIKIg0tKd0jDf867PPf9zh5m5E2fyvL/nmTs998yZE/vda613xbHZbDZFCCGEEEIIIYREII+FegEIIYQQQgghhBBfoaglhBBCCCGEEBKxUNQSQgghhBBCCIlYKGoJIYQQQgghhEQsFLWEEEIIIYQQQiIWilpCCCGEEEIIIRELRS0hhBBCCCGEkIiFopYQQgghhBBCSMRCUUsIIYQQQgghJGKhqCWEEEIIIbHSo0cPFSdOHLkQQkg4QVFLCCGEEEKCzpIlS1StWrVU5syZVcKECeUa9/F4uLBp0ybVpEkT9dRTT6lEiRKpDBkyqMqVK6upU6ea8vlr165Vffr0ke/93HPPqSeeeEIlSJBApUiRQuXPn1+1a9dO7dixw+PPu3Dhgvriiy9UgQIF1OOPPy4X3MZjFy9eNGWZCQlH4thsNluoF4IQQgghhIR/pLZnz55y25/h48OHD1Xr1q3VmDFjXL6mZcuWasSIEeqxxx4L6ff96quvZHmdUa1aNTVr1iwRu74CIX/y5Em3r0FkvGPHjuqHH35wuz62bt2qatasqc6cOeP0+YwZM6q5c+eqEiVK+Ly8hIQrjNQSQgghhJCg8emnn9oFbeHChSXquW3bNrnGfTB69Gj12WefhexXgaCGgIegzZ49uywvlhGisFy5cvKaRYsWqbffftuv/5M0aVKJ/EJAT548Wa1atUr9+uuvauHChRJdReQWEwiDBg1Sn3zyicvPOX78uHr99ddF0MaLF0916dJFrVu3Ti64jcdOnz4trzlx4oRfy0xIOMJILSGEEEIICUqk9u+//5Y02/v376tixYqJ6EqcOLH9+Zs3b6oyZcqIsIMQ27dvn8qRI0dQf51Lly6pZ555Rl29elVlzZpV0n/Tpk1rf/7BgweSLrxgwQK5v3r1alW2bFmf/hfWA76nK5AyjMjq4cOH5XUQrWnSpHnkdW+99Zb66aef5PaMGTNUvXr1YjyPxxo0aCC3mzZtqsaPH+/T8hISrjBSSyKKIUOGqGzZskmqz/PPPy+zppr9+/erF198UVJ5evXqFdLlJIQQQsijIIUWQg4g+mgUtCBJkiTyOMDrBgwYEPTViCgxBC3o169fDEEL4saNq4YOHSrX4Ntvv/X5f7kTtAACtlWrVvb1sWXLlkdeA6GLKC9A1NdR0IL69evLcwDi11WKMiGRCkUtiRimT5+uPvjgA9W9e3e1c+dOVbBgQTlAnzt3Tp5HvQnMHObNmycXmDsQQgghJDDcvn1bBF2RIkVU8uTJ5YKo4uDBg+3C1Qiiuzg/g9y5c6uSJUs6/Vw8nitXLrmN1wfb/gUpxgAmS7Vr13b6GkygV6xYUW6vXLlSXb9+PWDLg/VqXOeOzJ8/317327x5c5ef06xZM7nGa/EeQqIJiloSMfTv319mK3HAzps3rxo+fLjM6I4dO1aev3z5sipatKi4/GXKlElduXIl1ItMCCGERCVnz55VpUqVknrNXbt2qRs3bshl+/bt6p133hEx6GiwdOTIEXXq1Cm5jRRjd+jnYaJ09OhRFSzu3r1rzwLD94MTcWzLeOfOHUmXDgRYh0gd1mAywJENGzY8skzOMD63ceNGU5eTkFBDUUsiApxkUNOiZ0UBHABxf/PmzXL/yy+/lPsQunhOp9kQQgghxFwgWvfu3aveffddtXz5cjlHT5kyReXJk0eeR73pqFGjYrwHr3cnzowYn0ddbbBAzS9qZh2XIZjLiP8PMQ+zqPLly0vdMcAYB/XIjuj1ijZAaDnkCrgfI/ps9vISEg64T+QnJExA3zUc5OECaAT3//rrL7ldtWpVdf78eXXt2jWVLl26EC0pIYQQEv0gIrts2bIYBklIQ8aEMrKpEMlF3WmbNm3szxtdd5G+644sWbLEcPZ1lko7YcIEv74DIpdr1qyJ8ZiZy+gtaN3jCqxbV99XL3Nsy6uX+c8//zRleQkJJxipJVEFmrdT0BJCCCGBBSnGzhx/U6dOba/r3LNnj91wCRjrTpMlSxZrqxsN0pqDRbgtI7LPhg0bJj4hKK1yt8yxLa9xmYO5TgkJBozUkogAzoNwGcTMrxHcd5dqQwghhBDzady4scvn4G8BYPCEOtpChQo9YnLkrlZVT1Jrbt269cjzX3/9tfroo4+UPxhFqcbMZfQWTAIAZKZhfINWQfAPwfdEh4dvvvlGxY8f3+Uyx7a8xmU2Y3kJCScoaklEgAM1TpJwGKxZs6bdPAH34XpMCCGEkODhrt4U0VpnkU+04zN6ZbgD5ksax7Y/4Mknn5SL2Zi5jN6SL1++GPdfeeUV1b59e0mTRiskpA0vWbLE3krIuMzo7xvb8hqX2YzlJSScYPoxiRjQzgemE6gpgcFBu3bt1L///uvWvp4QQgghgUmLdQXMGjXadMmxNU1s6a84v2s8Sas1i3BbRtTADhkyRG7DkGvMmDEul9mTlGK9zMFcp4QEA0ZqScTQoEEDMYL64osvpGk40pmWLl36iHkUIYQQQsIPo5GR0ZDJGUYjI6MhkwbuwGjl52/68dNPPx2wZTQLRGwRWUXK8KxZs1Tr1q0fWWakK8e2vMZlDuTyEhIKKGpJRIFUY6YbE0IIIZEHXJE1unOBK4zP6zZBRj799NOAuB8/++yzkt6LCLO/y2gWWJ5UqVKJqD127JjT9YqWSjDlwqS/K6+R06dPS4eIQC8vIaGA6ceEEEIIISTgICqqHXzXrl3r9rW6NyvqZrNlyxZUD48SJUrI7c2bN7utU9XfAeZLxYoVC9gyYRnQ2tBV2nDp0qUfWSZnGJ978cUXTV9OQkIJRS0hhBBCCAk46MNao0YNe5Rzy5YtTl+Hx3UUFK931r91/Pjx4q7sz8UxSqvRhpSIas6ePdvpa5Dqu2LFCrldoUKFGLW4ZjNv3jy7uM6fP/8jz1evXt1exzxu3DiXn4N1BvBavIeQaIKilhBCCCGEBIVOnTrZ3XvR69axtQzu43EQL148eX2wadmypUqRIoXc7tq1q7p48WKM55GaDFdibYLVuXNnp5/To0cPEeS4aEFpBKL44MGDbpdl79696t1337Xff+uttx55DdKNdYulX375RepuHZk5c6Y8B9588022QyRRB0UtIYQQQggJCqhZ1SLw119/lTTY6dOny21c4z5uA7wuZ86cQf9l0JKoX79+chs1rM8//7xEQLFc8+fPV5UqVVILFiyQ5xs1aqTKli3r0//ZsGGDtEaqXLmy6t+/v4jcXbt2qe3bt9sNodDOEHWy4O2331bly5d3+lno25suXTr7MkGM4/Nxwe033nhDnsNrevXq5dPyEhLO0CiKEEIIIYQEDQiwc+fOqbFjx4qIa9iw4SOvadGiRUjFV5s2bdSpU6fUV199pQ4dOiSC0pGqVavKd/AHRHuXLVsmF1cgso22hn369HH5GrgZQ2gjdRoiGKJcC3NjRHfu3LkxHJ4JiRYoagkhhBBCSNBATSf6rdapU0eNHDlSIpMwQkqbNq0qXry4CMoqVaqE/Bfp2bOnRFHRJ3b9+vXSNidlypSqYMGCqnnz5hIR9Yf3339fIrWo7d29e7e4E0PsP3z4UNyO8dzLL78sKcfZs2eP9fMQUd6zZ48aOHCgiNejR4/aDbpQm4xU7jRp0vi1zISEK3FsqJQnhBBCCCGEEEIiENbUEkIIIYQQQgiJWChqCSGEEEIIIYRELBS1hBBCCCGEEEIiFopaQgghhBBCCCERC0UtIYQQQgghhJCIhaKWEEIIIYQQQkjEwj61JKy5d++eNBFH37b79+9LA3J9iR8/vjRGf/zxx1X+/PlVokSJQr24hBDiFehHieNY8uTJVZw4cbj2CCGEEAPoPnv9+nWVKVMm6XHtCopaElJu3rwpA7qDBw+q3377Te3fv1+aj+OCxy9evCgbsye0bNlSNWjQQJUtW1bFi8dNmxAS/uA4lyVLllAvBiGEEBLWHD9+XGXOnNnl83FsnioGQkxk7969qkuXLmrRokUxHkf0tVixYqp06dJyefHFFyUCe/bs2UcuEMBTpkx55LPTpUun6tSpo+rXr69efvllieoSQkg4cvXqVZUyZUo5WSPrhBBCCCH/49q1azL5e+XKFZUiRQrlCopaElQgRnv06KFGjRqlHjx4IBHVChUqqJdeeklEbPHixVWSJEm8Sk9esGCBSpYsmfr555/lguiuJkOGDCJuO3bsqHLmzBmgb0UIIb6frHGShrilqCWEEEJ8O09S1JKgcOvWLTVgwADVt29fyYsHtWrVkvvPPvusz58LUbt48WJVtWpVifLi/urVq9X06dPV7NmzZVYHoFbt9ddfVx988IFEb1m7RggJByhqCSGEEP/Pk3Q/JgE3Qfnpp59Urly51KeffiqCFunFa9euFdHpj6B1BoTtK6+8osaMGSNR4YULF6pq1apJXe78+fOl3hb/f/Lkyeru3bum/m9CCCGEEEJI8KGoJQEDrsWIir711ltSL5Y1a1YRk1u3bpXHA02CBAlE0ELY7tu3T7Vt21YlTpxY7dy5UzVp0kQ9/fTTEim+fPlywJeFEEIIIYQQEhgoaklA2L17typRooTauHGjtKro06eP+uuvv9Qbb7zh1o47UOTOnVsNGzZM/fPPP6pXr15SawvX0W7duqls2bLJYzdu3Aj6chFCCCGEEEL8g6KWmA7SfOFajOgs0ot37NihunbtKlHSUJM2bVpJgz569KiaMGGC9LdFrv7nn3+usmfPrgYNGqTu3LkT6sUkhBBCCCGEeAhFLTEN1K1+8803qmbNmurff/9VFStWVFu2bAlL1+GECRNKWjR646ItEATtuXPn1LvvvitR3YkTJ4o7MyGEEEIIISS8oaglpoDo5ttvv60+/vhjEbft2rUTV+JUqVKF9RpGKnSjRo2k5nb48OEqY8aMEsVt2rSpKliwoJo3b558H0IIIYQQQkh4QlFL/ObChQuqUqVKavz48SISkcI7dOhQcSKOFLCsbdq0UQcPHlT9+vUTMf7nn39K1BkR5z/++CPUi0gIIYQQQkjYsGjRIhkvhwMUtcQvDhw4oEqWLKnWr18vvaMQne3YsWPErtUkSZKoLl26qMOHD4uJFNKUV61apQoVKiSpyXRKJoQQQgghVmf16tXqtddeU+XKlVM3b94M9eJQ1BLfQb3sCy+8oA4dOiTtcTZv3qwqV64cFas0ZcqUqnfv3pKWXLt2bamvRQQa9cEjR45kvS0hhBASwaC0CB0RlixZor777jvJ1kLJESHEM3744Qe5Pn/+vBo1apQKNXFsLBgkPoADP2pRb926pYoWLSrpB0888UTQ1+W9e/ckOly1atWApjuvWLFCvffee2rv3r1yv3DhwurHH39UpUuXDtj/JIREP3BfT5Eihbp69apkuxBCAs/vv/8uZVMwiHSc0EZJVdy4cfkzEOKGI0eOiMmqlpFPPvmkBLmQ4Riq8yTTj4nXDBkyRKKXELQQk2vWrAmJoA0mqKuFU/LAgQNlx9q1a5d66aWXVLNmzWSGihBCCCGRwdSpU0XQYjL8ueeeU/Xr11dJkyZVV65cEcFLCIldC0DQli1bVgTtyZMnpXNIKKGoJR7z8OFD6TeLmlncbtWqlURskyVLZom1iJMf6mpRR4zvDtDrNleuXGrEiBGyTgghhBAS3mzYsEGuce6GEeT06dNVmTJl5DFM1BNCXIO2nWPGjJHbH374ofroo4/kNoxW79+/r0IFRS3xCGykb775pmywoFevXnIyiBcvnuXWYLp06aSuFjXEaPsD86i2bdtKfTGiuYQQQggJ3xaE27dvl9vGEiJEnABFLSHumTRpkmQ1IP0YGZsI9KRNm1bSj2fMmKFCBUUtiRWkF0C0TZkyRUQsopOffvqpihMnjqXXHlyff/31VymUT548udq6davUF3fq1IkuyYQQQkgYsmPHDhG2mKDOkSOH/XEdqUU3B2ZeEeJaE8A4FXTo0EFaeSJ1H2NfAJPVUO0/FLUkVr744gtJM8CGO3PmTPXWW29xrf0HRD4MpOCSjJoc7Miou8WMVfHixVXnzp3FyApF7oQQQggJj9RjRGmNk/NFihSRcipkX7GulhDXbXzQlxZCtnnz5vbHIXBh4oTn5s+fr0JBVIvaYcOGqQIFCshKxqVUqVJi3a5BCinSTfAcDmwIpTuSLVs2ec546du3b4zXwMb6qaeeEkdcROuiiaFDh0qqMRg+fLiqWbNmqBcpLEGRPGpyfvnlF5U/f34Rt4jiok1AtWrVVOrUqdXzzz+vPv74YzV37lxJU8aJM9rMx7FvYB/RM3YA+5jjPoTIvxEcAJ999lmpT164cGEIlpyQ6AD1gY0bN1YtWrQI9aIQEpZs3LhRrl988cVHJqlhAAmYgkyIc9D5AyDABbdwDW5D2OpobSjGt1Hd0mfBggViy47eoviaSJv99ttvxbkWbndIG719+7a8tlu3biIyjD+QFrUYHGhjIIBUU8xQAPQ4q1Chgjh+wfkLUU3d9iXSmTVrlkQfse569uwp3y3cCFZLH285ceKEWrt2rcxo4eSIOgNnYFvKmjWrTIroa6RD5cuXT64jqWYZNUrYXjBJhEbcun8ZRC0E65dffml/bZIkSey27EgDw3cdN26cbGtvv/22rK8ECRKE7LsQEqktfXB+Q8QJ57JLly5ZvkyEECM4xyDt+OLFi2rLli0y2Wzkm2++kcnnGjVqyAQ0IeR/HD16VOpoEbhBRDZv3ryGZ5U4ikM3oTvKunXr7JNEwTpPRs6I2Qdef/31GPe//vprid7iQAZRq6NJsc3IQXhkyJDB5YrG4AERYbwGP2Q0gHWC2X5dT/v555+HepEiisyZM8v6wwUcP35c1ilELtKajh07Jr3wrl+/LgcGXByBqMuTJ48IXOMFwjfc6plv3Lgh3xVZCzqybwQi1tU+BFGLyadChQrJfQh5PEZRS4j34NyGCT5kHmEA8vTTT3M1EvIf+/fvF0GbKFEiya5zRNfVYkCOgTvKrggh/w8merBfIHDhKGhB+vTpJXiI847RhC1YRLWoNfLgwQOpB4UNNdKQvU2p/OqrrySS9sYbb6j333/fHkGDyICgxQwCBuEY1Ec6u3fvllnKu3fvSj/awYMHh52IijSyZMki7tG4aG7evCmRflwgcvU1TroQudhW8Vvg4pjqjDoGZBBgRiwcQMoJ0qzRz9eZqJ08ebK45UHYYrIJkyQQugCzbvg+GTNmlO0M78dEEiHEe3AeQgnEzp07xRCHopaQR+tpEaF1NnFqrKvds2ePdDgghPw/OhPVMXXfiE5BDgVRL2pxUIKIRZoxDlRz5sxxOrvgCvQlxUEONZGbNm2SNOXTp0+r/v37218DEyWkrGCQnjhxYhXJwPUPghYR6JdfflnECKJoxHywveTOnVsujmAmDAIX9XHYhnGNy19//SVp7hB+yDyAiGzZsqX8ZgkTJgzJzzRt2jQZQOsWCY5gIgjR5UyZMkmUGqldEO6zZ8+2v6Z79+6SOYFZcQpaQvwDLuzYJ3GpW7cuVychsdTTapDlgAjT0qVLJbuKopaQR0WtNzoqmES9qIXxDEx5kIeNGtGmTZtKraOnP8gHH3xgv42ILGb22rRpo/r06RNDRKRJk0ZFOohkI5KI1E/MYs6bN09SdEjwgbhDhAUXYxo9fhv8LqNHj1bLly+3X7D9oWgfAjeYBxukVcP9Gcvgaltp3bq1/TYiSIjIog4ddbOozdAg24EQ4j+YiAUQtYQQ587HroAPhBa1OL8RQpSUI4a7qI36YgGIUJjQYOYaQhSzbmi54isQe/fv35dapWjaUL///nsx+YFoQtRv1apVj5hmkdCDiRT8TsuWLVOHDx9Wn332mURAUSM0YMAAqadr2LChpDIHA6Q3whgAg2ik5OOCSSO44+E20v4d0cYcBw8eDMoyEmJlURvFXpCEeMXZs2flvIMyF3dlaI51tYQQJfsP0vIRdIH5ZzgS9aLWERygINx8BVFf/KAoho4GIDowE/nRRx/J/Y4dO6qff/7ZXu9IwhdEcVHrjTRltMHBZARO1mgthJTmHj16SN1uIEHEFenR2C/0pVixYmIahdvOUtfxOEDElhBiPsiIwL53/vx5KVcghPwv9RheKO4m7REEQYcLuIej7IcQouxR2meeeSZsSy2jOv0Y9a9VqlQRgye4zE6ZMkXSSdBLFJw5c0YuOmKEwblusYIa2s2bN0vfWbh84XHch0lUkyZNVKpUqVSkA8GD74I6YwDHsg8//DAiTaHQExa/I8ytEJ3HLJKjVX+0gogoTJpwgWDEJAVmmNGGaezYsVLv3aBBg4D8rtgvMEAwgsEA0qHxOFKMsd+h5RIeQ00t9iHUayOdnxBiPhhwID0M5zREa+HGTojVia2e1rGuFmNFjBl5riJEhX3qcdRHapEWiTpD1NUiogQjGxykKlWqJM8PHz5cLN11D1oMtHF//vz59lRPmOAgFQVpnTDmwYB85MiRKtKBoy4iahC0EIH4nojWRqKgBfh9dU0prkuWLCmGRFYDbXFwEkZ9NMyZUPPaqFEj6RWGVOFgg21rxYoV6pVXXpHoMSZN6tSpIz2kCSGBg3W1hHhfT2usq/Wk5SMhVhO1efLkCfWiuCSOjQU3lgI/N+odu3TpIlFNtFhBuioEfSSC6DkmLyDcnPUIdtZc3SpgfaBWGrXkiMpjwgJR20iNxhMSjXjaVN5bBg0aJO79MJrTE7WEWBWcA7GfwRPlyJEjsbbDw9jihRdekAwjjDHYr5ZYnbJly4pnyoQJEyR4FI7nyaiO1JKY4MCMFFW0ToGgfe211yQdNFIFrSdmQ3///beycgoijKTQPgfpx5jQ6Ny5s2rbtq26d+9eqBePEBKESG0oMjQICTe2bdsmghZ93pHFFBvIZIOjP0wYaWpIiGL6MQkfkHaNupAlS5ZIWjVm8TF7ny5dOhXJwNnaHeHq0BZMUE83depUcUdGhBbp85jcwIwXISQ6gdM/9vdTp06JdwQhVkanHqOe1pNMJdTVar8IlGsRYmXOnz8vF4BSsnCFkVoLuD13795dvfrqq2LHjdpg1BbD5TicU1Bh0PXTTz+pMWPGiIsvLnjM2WyqK9Bz16qpx47gt0aEfu7cueJsjb6ySK2KptZUhJD/kSxZMvGTALt27eKqIZYGpmmgRIkSXk0MAWS0EWJl9u3bJ9fIcsC5JVyJavdjq4McdAg7XU+FtNP+/fuHjRU3RCrSg7Vjsb6G4IKgdQRuvqgF7tevn0efj89A2xjH1zv+Xys5JVevXl2tX79e6uxQ9I/vPW/ePDHWIoREXwryX3/9JQ7I6ARAiFVBHS3Inj2716KWkVpidfb9J2rD2fkYUNRGKQcOHJC+pdgQkW4Mp+dmzZqFbHkchaQr4RobMDqqXbu2XYSilY83r4cjMh5zRItlvZzRLHQx0MX3hLBFCyAU/8Oh2BNHSEJIZO3raKkFUUuIldGiNjaDKCMUtYRETjsfwPTjKGTp0qWqePHiImgzZcokPUtDKWghJBEJNLbc8UXQOjN/8sTAQb8eQs6ZoAV4XLcCctUSSKdEO0uDjsQ6W0RsEb25c+eO9CtmjS2xAkOGDJGBLUxgMHEFAxlXzJ49W0ocUqZMKf2X0TLL8diFYyvS+40XlHuEA0WLFpVrilpiZW7cuKEuXLggt59++mmP36f70/7zzz/q8uXLAVs+QsKdvRS1JBQgvbhq1aoiUEqVKiWRTG9qSPzFUfi5E5K+YjR/is0oyvj62JyQHQerWG79PYzCHNdI6450UBeBdk44yR87dkzafxASzWB7/+CDD8RnAEIPkZjKlSuLM7wzUqdOrT799FNp74G6uubNm8sFxntGIGJPnz5tv8CYLRyACAeonb906VKoF4eQkEZpU6VKJW1BPAWTWdopmXW1xMrspai1JmiVAnOmYIN2Lag5RQ9S3G7VqpVavXq11JQGC0fhh/tmt9TBZxrTgt0ZRTm+3hcnZCy/M2E+adIkiXJGeuQ2efLk8h3Qg2/ixIlqxowZsb7HWT9gQiJl0g/HRghTpFGhLAPGaWPHjnX6eqTm16pVS5rNoxbvvffek+iNdlLVoMQDPb/1BYPncACDcl1DSLMoYnVR602U1jFaS1FLrMqVK1fERR/gXBjOsKbWRCAmERmNGzeuiK1gNevG/0U/0t69e8v9Pn36iJgLtLuxsf4UOAo/3B89erRPn41IaKVKlaQGF6k/aJyOqEr69OnVggULpN8cLkihxcnmk08+EXdDrPMnnnhCBpWoJzOao0DconbWWeQY/89ZSjS+mythjjRvXIA3BlbhBlocYP316tVLzMTgioz0ZGfAdOb48eOqXLlyKl48Hj5I4GaFN23aJC0E4NgOgzOACUPs96jL9xYcS9CztVu3bvbHcLyoWLGiRGI9Oc6uWrVK+j477utr1qyRYxOOO+XLl5d9KU2aNE4/B+n+uBgN/QIJjoOHDh2S716hQoWA/i9CwhHt8u+LqMW4A2MOmkURq5tEPfnkk15lOoQCjkpNBCISNUwbN24UcRsMYYuBFgTVd999Z49EvP/++yrQOBouoe+pMzD4dCckIVwhWDF4PXz4sKRN4zvhGr10kcqHHosYyLpj7dq1Ln8TDDYRscYFNcaI0uB/IKKCKEb+/PlF8OJ543I6RoW9MaTyxHAqnEypvvjiCxHo2G5RI7hs2bJHtl0IWgwOIHopaEkgwIQJ9k9kmWiaNm1qF7WjRo1S7du3l+3TW4GGmroHDx7IpJcR3Me27Qoci3AyhxDFhOXQoUPluGVMPca+jwEzxCMmiDCZBqGM1zuCSUdk1QQLiNqZM2eyrpZYFn8itTSLIlZn73+px+EepQUUtSYDEYfIVzCELYQZeo/++OOPcn/w4MGqQ4cOpv8fR/HlLB130aJFTt+L90C8YtCHz4CARf0aUlhhvADhikgrBoxGAQrxibQf1LtpQYoLhChaEkFUoTk60r1R34bX4f0Qv/gs/A9jjRsuSJ/A/zIKZfw22FExGYHLiBEj5DEtdAGuYaSElGN34PvhtY6C31kU15PXBBOsy8mTJ6vChQurlStXqoEDB8aYHDEK2scffzxky0miF9R8lilTRrazfPnyqZdfflkEpJH69etLj220KQtW1BEp+nAJh9kM9g3U5D7zzDOSmgwaNmxofy2OGzhuYbIM0Vtny4hIMT7DGKnNkiVLQEUtoFkUsSpmiNo//vhDxgyc0CVWY2+E1NMKNhIQ7ty5Y1u1apVt69attgcPHpj++Q8fPrS1b9/ehp8QlxEjRtgCQZcuXez/AxfcnzhxYozH9KVatWox7n/88ceyHpYtW2Z75513bEWLFrUlSJBAnnvsscdszz33nO2tt96yDRw40LZhwwbbjRs3vF6+u3fv2ubOnSvX3oDl2rlzp23UqFG2tm3b2ooXL25LmDChfdny5s1ra9asmW3mzJm2a9euyXvefPNNp99bX7Zs2SIXV89pPHlNqBg2bJgsS6JEiWxnzpyRx/bt22dbsmSJ7erVq6FePBLF4NgSJ04cW+fOneX4BnC/efPmMV5XuHBhW5EiRbz+fOzzcePGtc2ZMyfG4zgGVa9e3ePPadGihe2VV15x+5q0adPahg8f7tHnYb/CPheo/ev8+fP2Ywz3YWJFChQoINv/4sWLvX4vxm9JkyaV9+/duzcgy0dIOPPqq6/K9u/pOS0QeHqeZEufAEds//33X4nYmm0ehXRRRDEQnYTJSevWrZXZOIvI4j5q05zx+eefqy1btshywV0Us6Np06ZVr7zyipo7d65EX5AmjSg2ohOY+ZwwYYK47mJdoWVGMH8fRCXRYmjYsGHS1uP69etipjJy5EiJGOF3q1evnnwHpBgiCovvAUMlR/djnarsqv7W+LgnrwkVbdq0Ebfs27dvS+sTRmhJsJg3b5602unbt69bPwBESbVphbf7PLIxEG3V4LiM+3CK9xS8x1gT68iJEyfUxYsXg2rS5w4cv3SNPHwHCLESyGjzJ1KrM7cAzaKIFdkbQZFaph9HYCoyRCOMSADcO1GDFog0Y1ciy1mdLBxF8T2RFghnUNSu4ft27txZ6uGQkhdo4yozUnDRAgOXFi1ayGM4GcIkAt8Lqd5IP8Lz+E7jxo2T3zNXrlyxOiwbH3c1KeCLO7PZ4DfCbwYxj9RwpC7C+IYpxyTQoK0UavNjO0bi+ONrexqk/aJGF8cmTN788MMPMvGoj6Fwbkf9LOpeAa7xWqQTQ8guXrxYDOUwEQaQkoz62Dp16khpBGpqcWxEqzGURIQLOP5CbGNQjnMSIVYBxwpMWAPdnseX/QcT9jCLatCggclLSEj4cuPGDTFrjRRRy/TjCEtFRjosUvLw0/Xs2TOgacaxpcmuXLlSUgORqqtTVpGCjFTokydP2oKBr+nHvnDlyhXbtGnTbG+88YYtZcqU8p2zZ89u69Onj+306dMu1yXSsF095+w1RrCuke4dzNTk+/fv2zJnzizL9f333wft/xJrg33KMa3XWfrxiy++aEuXLp3P/2fQoEG2rFmzSilEiRIlYuxbZcqUsTVt2tR+/9NPP7XlyJFDjm2pUqWylSpVSo4Bmps3b8oyY3nix49ve+qpp2ytWrWyp+6HQ/ox6Nq1q/yPNm3aBOx/EBKObN++Xbb9DBky+PwZQ4YMkc+oWrWqqctGSKTsP+nTpw/pcnh6nqSojSBhu3r1antNKupAdd2Zr2jBNHr0aJfi1ZlA27Fjh61ly5a2ZMmSyaCzSpUqtlmzZvlUExtJotbx/0LUo84WA9548eLZatWqZVu6dKn8Ls7EqKtJAqx/TycaggFqaLF94X9iQA+RS0igKVmypNSiGo8jjqIW9aE47lSoUCFqfpBgiNqpU6fK/4AoJ8RKzJgxw+9tH54f+Iwnn3zS1GUjJNyZMGGCbPtly5YN6XKwpjbKamyR9lKjRg1JXYWTMJyO/UnnRQ1oyZIlJd0OdaXOQPoxHHmRdoNUW/TBRYox6tLQ/uXDDz8Up1Kk5CH9Lpg1seGQqoy0XNTXor5vwIAB6uDBg1J7ixQNOI0aW/wAd+ncntYz9+jRQ54LFLqGFvXRKVOmlO+E9GtCAk3dunWlFhUpwq6Oj0iNh4M6UwC9T58ESD8229+BkHDGn3pax/3n5MmTcowixCrsjaB6WkCjqAgQtmgngdYQMFdCmwu0XnHW/9BTnAkmVzWeqCODqIXxE/ovQkjPmjVLThQQWFmzZlVWJ1WqVNJmBBMP6JeLnR/3Yc7StWtXe/2fJ/W2sQlg1O9hMgKTEmZjNIVCS6V27drJ47oHMiGBBO3IYCY3evRoqXfFJBpAnSr6b8PMCZNIqGlHL2XiOTjGJEyYUM49epBPiBUwQ9SirRcM6gDNooiVOHjwYNh4vngCRW2YC9sdO3ZIRBCzg8WLFxeH0ESJEvm1DJ647CIiApGDDRmRE7gBI/q4bt06icqyV9ujQPBj0uHnn3+WgTgi4Iio42QIwxk4KMJExplrsiOuzKQ0mJQwM2LrzOX4nXfekYg0ovOBjA4TAnBcQ89piFcca5AtAGA8h+MRtkGYNi1cuFC2S+I5OF4/99xzcpuDcmIlcF7zV9Qa+9Vi8poQq/DPfyZRvpqsBRuK2jAWthjEIUJ7+fJlGegtX75cUkL9xdWMCyIkaLHz7bffqiVLlkg0BIPIP//8UyIkaIFDPAOtSbAeIW7R/geRbjiiQuBikI71iQg42pc4AqHrKiU8EC2AXLXtQUuS+vXry20IdUICDbY57B84/iByW7VqVXERxv4we/Zs2WfCpVVOpMFBObEiZkRqjSnIFLXEal0JAEUt8UvYbtq0SVWqVEldvXpVlS5dWiIYKVKkMGWtIjLoLGKYO3du6dGKqEi6dOlEVEPM4HHiG0888YS0xoFwLFeunGrbtq20D0FUCimWvqaGm5UOElsf2ipVqsi1sbcnIYEGQvbHH3+UqCxq9keMGKFq1qwZ9m3BIqWulhArgHEVI7WE+MatW7fUuXPn5HaklBoyUhuGwhZ1mRjUobda2bJlJWqBmg5vgDhCP0VXaaPaAAoRw2nTpkkxOMQzlgUmUBAxzkQX8Q1EaFELvWvXLonYIgKKdHL81r5EX12lLZspaAFS3wGW29feoIR4wpdffin9oGMDxmV4LfEORpqI1Thz5oz4gsCDJEuWLKZkOiBzDf3qCYl2jh8/LtcwgU2dOrWKBChqw0zYQmC+8sor0vC4YsWKatGiRSpZsmQ+Oxu7MxVCavHp06dV06ZN5UA9ZcoUqeGFoGZEJDDA5AaRpzVr1kidGyYtYMikm8N7En1FOrOztGWzBS1Aqidq8dD+a/Xq1X79T0LcAeO5uXPnxrqSIHxhmEZ8E7WHDx+2H28IsULqMQStvz4gKClCcAF+F/v37zdpCQkJ/3rarFmzRowmoKgNI2E7fvx41ahRIzlo1qpVSwZvSZIk8eqzxowZ47QVjGPEFqIG/xPuvDAE+uOPP+R/P/YYN4lgAOMtpJjDSArRcgw4V61aJdHXJk2auH2vuwi8mYJWg7pusGLFCp//JyFmgYyWSDnBhhNp06YVV3OwZ8+eUC8OIUETtRCk/oKxEbMdiJU4FmH1tIAKJkwGad26dVPDhg2T+/Xq1VPTp09XiRMn9upz3BkM6bTWBw8eiIERIoYwoIKzLe57+7+IMuUkCTMcDDBx0IB4xH1sB+h3GwiTKG8FrVHUsq6WhEtKlLfZKyRmCiXraokVMMskSkOzNWLVSG2k4F8+BvEb1Hsg/RciFnz99deSMowaRqQHexo5jc1gCGmtEDQwKcJr0abnq6++opgNk3pbRGmHDh0qExNITx47dqyYdSEq6+r3xO8IcYvbntTX+iJodVQZ2+GBAwdEUPhbm0SIBlkKjj3xHB/ToI4NZRJIg4cbPPEeRJrg0UBRS6xAoETtb7/9ZsrnERLOHIvASC1FbYgFbfXq1dWyZcuk7yLSj9944w1JP0YEFTW2ngpbd5E7OB3j8z755BOZcVm/fr2kHpPwAb9xx44dxW347bffFoOm9u3bS+0tIumordZA+KK9iXESA78xzL/MFrQArtswDYOxGFKQMTFCiBmgbZgxlRjHKVxcgdpu7CsfffQRfwAfYPoksRKM1BLiO4zUEo9BGjAMfyBo4Sw2b948e5qnrrH1Rti6MhgaMmSICCMIoPfff1/16tXL6zpdEjyyZ88ukSj8bhCv27ZtE/OcEydO2KOyANF8I/h9a9eu7TRi64+g1cC8DKJ2zpw5FLXENGBmp0UtemRj+3c14YbjYubMmaW1T/78+fkr+BFpQskDyl7ooUCiGbNFbb58+eR4dfbsWbmgZR8h0cqxCIzUYuabBJmHDx/aWrdubcPqjx8/vm358uVOX3fnzh3bqlWrbFu3brU9ePAg1s/t0qWLfKa+tGvXzlaoUCFb0qRJbbNnz7ZFI3fv3rXNnTtXrqONHTt22DJnzmzLkCGDbcuWLfbHJ06cGON31hc87si+fftsS5YssV29etWvZdm7d6/8j3jx4tnOnj3r12cR4ow4ceLYmjdvbrmVg30T+5a/+6gn4DiZIEEC+X+HDh0K+P8jJFRgW3/sscdkWz958qRpn5srVy75zF9++cW0zyQk3Hjw4IHoE2zrR48ejZjzJI2iQsCnn36qRo4cKbPkaKOD1j3e9LF1hbH37PDhw9WsWbPEDAouu3BTJpFFkSJF5HdHzS3qWnWtoauovOPjZkRoNXny5JG+uqhrRNspQgIRVUGqPQkcKHNBiy7AuloSzSC7CWOmhAkTqgwZMpj2uTSLIlbp8Xzv3j3RKU8++aSKFChqg8z333+v+vTpI7chPOvWrev29d4KW6SfoiYXbXogRLZv326voyKRB9KbYCKFWmsYinXu3FnS0VFDawSpyvjtYR4FcynUvpolaI2posCVkQ8h/oAUpzRp0nAlBhjW1RKrtfMxM82eZlHESvW0Tz75pN89noNJ5CxpFABzH21w0rdvX9WqVSuP3udpjS2iaB9++KH68ccfVZs2beQa7yWRDWaa0X8YJ1O4VqOn8NSpU6WG1uh+DGGL2tqGDRtKSyCc1GNrDeQN+FzUZe/YsUNcaHXEhxCzwSQenJCvXbsm5lDOePnll7ni/RC1oY7U4jdu166dSp06terZs6cY0hESrvW04RqpXbdunWT/4Ti5dOlStjsj1q2npagNHpcuXZITOOjUqdMjkbbYQIufkydPqlSpUjkVtjdu3BCRo1vD6P9FogOYU7z33nsSfW/QoIEYRf3yyy92Yyjd0kkL2s8//1za78BN2ZN2P56QNm1aVbVqVTV//nyJBmNihhAzOXz4sGznGJy5y0rB/oBJPBKZvWoxAG/durWU3wCUyqAkB8cXQsyO1AZi/0F5z+3bt1WiRIlUKMCkn+6EoEEHDXRRIMSKzseA6cdBAhHUc+fOqbx584oYMLaxiA0cuCBi4JbcqFEjOZgZU5GvXr2qKleuLPW0cFOmoI1e4EIMR2TUOiBSdejQIXkcEVtHQasfNxOdgjx58mRx8CbELE6fPi39Z9G+Cmn36NMM8YNjH9KSdcQWr3nppZe44v2M1OLYgcnQUDBs2DARtHHjxpVIGiZsq1WrJiUWmAAmJFwjtUjHxPEI57+9e/eqYINxHyKzGEtC0CK4oft2//DDDzwvE0tHailqgwDqGzGDBiE7evRoSSf1FB2B01y/fl21bdtWnT9/XoTthQsXVKVKleTgiv+D/qYkusmZM6ekHGGGGMIWM8YZM2Z8RNC6M5Xylddee02yBWDC8fPPP5v62cTaYLIPxzX008b2hSwDHDNRdoEJwSVLlsgJNnHixGr58uWhXtyIBZMFOF5gkgCtfYINJuWQraTNDVFOgbIK/Nao10dP7Js3bwZ9uUh0EShRi+00lCnImAzq3bu3TGwjmIGMCxwPcV7GRNWCBQuCvkwk+viHkVriDJyckWYFOnToYJ9R8xRnkTYIW7ganzp1SmptkbKHtGMMBog1wGzx2rVr5URWunRpOZnhJG4UtIjwA6QKY3LEDDAhg/RQ8MUXXzAFlJgG0umxXaO+0hkYwEHYYkIHhnsk8upqMQkLc0QMyFEuAzGLvun4PTF5AcGNYxl6dRMSjqI2lGZRqEPv2rWr3O7evbuUacDbImnSpBLsAP379w/qMpHo5BgjtcQZOPDg4JolSxaZXfMWV5E2WNR/+eWXEsEYNGiQ/SBLrAO2gVGjRonBCgQmHJJ1Sydc69RNpAzjGlFWM8QtzKKQfrV//341adIkU74LIZgZLlSokKSkAu0ZYKydzZUrl6Qe61pM4huhiDQhXbNx48Yy8YZsk7Fjx8Yow8GEL4QuQNYRIf4EE9CSBKAlntmEKlKLzAak6qNOWItbDWpp0bJr/fr10vWCEDMitUw/JnYw6NezZqghSp48uddrByY/jqZSSN367LPPZCYFJ3+IG0/a/ZDoAmnHqKdG6hFMnJB6jkgHaq+BMW0doFZR12b7A1oE6SgwompoIUWIv2BAhoiDRt9GdM9I+vTpJTuFRFakFv2t4fmA9HGULjhzO9Y925leTvwB7ez0uQrZTIEUta7c2QMhMnQfb1w7GlRlypRJfDXAgAEDgrJMJDq5du2aunLlitymURSxM2TIEBGaMMDAxZ/ZOR2BQ1oWWqpA0GCAULRoUa/62JLoAL+/7kOLmeiVK1dKGh+ELU5+7gyiEF3Vhk++glR6TKZgGVAnToi/YFBmTJ/XaYM4rhlBOyls68QcB+RgnTPGjRsn15gQy58/v9PXlCtXTqK3+I1hHEaIv6nH3phyegpMmjAJh4G/8ZgVSLDfwG0ZPhp16tRxmUUFZsyYEbTlItEbpU2dOnXEtYiiUVSAgKvkhAkT5Pa7777r9+chYovUrcGDB6udO3dKbRkErbGPLYWt9QQtZqIBBCbqqnECR5px5syZ3X6Gv3W2EBXIFgC9evWisQvxGxzP9u3bZ083rlChgkRBkGYHkQMvAZRwwNyI5Rb+gTRunDewTnVUK5BggI3jE4DDsStQ1lCkSBG5jYk6QvwRtYFIPQbYd9BeL1gpyKg3R6YDzu9wOHYl1AsXLiwTQ0j1R1kaIf7U00ZalBZQ1AYItDxBCD9Hjhz2lCp/gXhA2hYibY6GUxS21hW0GgjZhQsXygkdJ7TOnTu7/SxMjPhDq1atpN4CERWaUxB/gXs3Ih8wP9EpsjVr1hRnd9xOmTKluHuj1hZeBcR3EGWCwUywBuU4H2KCokyZMrH2DdXnS9bVEl/R5QmBMIkKtlkUMim0W3iLFi1EuLoD5msAfZ8xaUWIVeppAUVtAMDJe+jQoXK7ffv2dsOT2EDkzFUEDf3IMJD76quvZKDnDApb6wpaDQaqMNGZO3eu1K4hbR2vdwbqYXVtrC9ge9PmZ9gu0ZqDEF9BPRgiemXLlrU/hgk8GKCgjjZevHiStjpz5kzJTCGRUVeL86HOWvKk7MEoaoNVr0iii0BHaoNpFoWJapRgwJMFgY3YqFq1qhiMwm8D7yXEWxipJTHYtGmTDBQgKpo1a+bR2oG4MDrVGsUGDpow96lXr5403XYHha11Ba3m9ddfV19//bW4Y2PGDalLrsyhYCblTxpyo0aNJN0ZZlHNmzdnix/iMxCtaOljrOFBmvuPP/4o2QB37tyRqEitWrW4liNoUI4BOY5fOB+inU9sYMICrcPg8or3ERJO7XyCvf/AO0Wn7T/xxBOxvh5BFLQ/0z2hCfEWRmpJDHSUFgN+T5z3ICocnWq12Dh//ryqUaOG1EDBaMMT0wMKW+sKWg3qEBH5wolw165dYjLmKmXTnalUbGB7HDFihKSGYvDquB0TQsKTYA3KcewBmIzw5PgF8Yve24ApyMRbEN0PZvox+irDQyVQrFmzRq5hAukpxYsXl2uKWuILjNQSOyjQnz9/vtxu3bq1R2sGqZvOQC0ZZrZv3bol6aTGdhexQWFrXUGrxeaYMWPEpRGTImfPnlVVqlTxqheyN661iKaBHj16MA2ZhL0rPeo60RIDBnzuBn4o+yhWrJhM2uD4iz66KBFxHESjT3TGjBlFkCF99sCBAypS0o8hAOD/EAiQwTF16lS57Y3jeqVKleSaopZ4y6VLl+y1pLHVb/sD2ufh3If9H+Z1geDcuXNikgfgeuwpJUqUkGtMaBv7fBPiCYzUEjuoK8SsHeofMBiKDURj0T/UGQsWLFCbN2+WgZUvLmQUttYUtMbUTUyGYGCJFgAwmHDseYw0dwzs/aVJkyaS9nzv3j1JueeJlPgCthuIoJYtW0ptGKITzi5wRvaF6dOni5EKshbgIo9oC1L1MHh0BloaoOQDx2GUlCDFHpdffvnF/hpkJ2BSZ/jw4XI8h/jFZ6L9RjiD3tYYlINA1cMvXrxYXbx4UQS/N4aJ+rVoYcdjCfEl9VhPMgWSQJtFrVu3zj4BBWdwT8mZM6eMGRAQ0aKYEE/AGO7UqVMR636MWSZiIsOGDYOzha1ChQoevX7ixInyesdLkSJF5HrkyJF+L9OdO3dsq1atsm3dutX24MEDWzRx9+5d29y5c+U6mti3b59tyZIltqtXr/r9WZs2bbLFixfP9vnnn8v9LVu2yHaHazM5deqULWXKlLLddunSxdTPJtHPuXPnbIUKFbI99thjtjhx4ri94DW+UKJECVuHDh3s93E8zJQpk61Pnz4ef0bhwoVtn332mdx++PChLUOGDLZvv/3W/vyVK1dsCRMmtE2dOtWjz8M+jn3GjH3dW6pUqSL/e+jQoQH5/Fq1asnnd+7c2av33b9/35Y6dWp5L45fhHjK9OnTZbt54YUXAr7SunbtKv+rTZs2Afl8HKvw+e+8847X7y1fvry8d9SoUQFZNhKdHDlyRLYbnMPCSS94ep6k+7HJYEYfuHKc9TT1E7ONSBtFxMJfGLG1VoTWEbR/Qk9ZOBUjOoXILIyjdITWneu2N2BmHNEqHb1CSwFCPAVZBKjvzJ49u/r++++ljAOROmcX3fPUG5CxsGPHjhgRQ5iq4L4+brsDaYbonbp//357KiCO02fOnInxmSlSpJB9y9VnwvAK6b7GSzTW1SJCq91XvUk9BnHjxrXXEDIFmYSb83Gw6tJ1Pa3REd7butrt27ebvlwk+utps2TJ4nHnlnAi8pY4zNEDGcc+so5oIQEcU0LR1Bs1kRAInhhDeQKFrTUFreaTTz6RdihIDcbg3hPXbV9o0KCB1NXqdlb+9sIl1gECCO6eaEP1/vvvi6s2+pq6unjLhQsXxPPA0UEU9yFMXYHWGHBkxjG0WrVq0gNa13zq93nzmX369BHhqy8YPISKQA7KkeqNVDaUPeTLl8/r9+uJguXLl5u+bCR6CYbzseP+g5pa9JM1E5iE+lJPq6GoJVarpwUUtSaCQZM2CIFAcIWjkAAYyMElEgOeffv2ycApQ4YMZi4eha1FBS2IHz++Gj9+vGxb2pjMneu2P8A0B+IZAgJtqBAdJiQ2UP+Fdi6oYw0n4I+AmjlEPNAqCzW5OoLiC926dROhrC/ozRtqs6hADMp1NL1+/fo+vV+LWkwUB9JdlkQXwXA+NtauwnDu33//FRfkQNTTYjIa9e++ilrs2+Fe30/Ch2P/RWojsp6WojYwUdrcuXO7bOXjSkgAuNMOGDBA1axZU9oBBQJGbK0naI2zyp9//rlMnCAN01UrH39a/Bjb/MDMByd7RLf07B8h7gaIELaBAgNDpLXCCdwI7rubQEQKVo4cOcT5+MMPPxRHeuxDQL/Pm89ED1bs48ZLqED5C5YH+6kWA2aBY4zRidVbkD4K91oYRa1fv97UZSPRSzDTj9FbW2chmJ3t4E/qMUAGSPr06WX/CZSRFYk+/mGklmg2bNgQaz2tOyHRsWNHOQANGzbMtLRjZ1DYWk/QGqNEiM4gkuqq3YG/LX70Nvbzzz/LCR9pmHCyvXLlit+fS6KXFi1ayEDuxIkTAfl8bJNFixaVulgNopO4H1u5iBG8B3WxOhoE8Wr8TNTIYvLSm88MFYEalKOeFsc0UKRIEZ8+A+dAvQ4D3UuXRAfIDtKRpmBEagEmu8JR1GL/YQoy8RZGaolXByFXggEDOdQgDR482PS0Y2dQ2FpP0BrTkPF/0ZYkUC1+AOoF0dIDbUNQG4SILdMIiSswqYc6WhgEYds0Ox0WIHV41KhRasKECZKK365dO4lSok0PQEkIJn40iMiiphNRTLweBlbwQkALKz1w7NSpk+rVq5cYWyHVD5+BbR4ZN5GATkE2c1CuSw5g+oUev76iBTfbkhBPOHnypNRx4zz35JNPRmxdOuppdZstX+ppNRS1xFv0ZGSk1tTGC/UCRAuYndfpVu5MTCAYICSMKcgYFP3www+qVq1aqmHDhipYaGG7ceNG9euvv0pf3Uh0O4tUgi1ojYNYpCF/+eWX0py9du3akimACRezBK0xBQrCFhM9mzZtEkdv9GVGHRIhjiBtHcdPRPYRRYSjtrNjEsSkLzVsMDLDgBF138ggQJRl6dKldqMnpF4Z/x8ELwzPMOmInpcoLZk0aZJ8jgbHc7yudevWko1QunRp+cxI2cb1oBx9eM1CnwsRGfeH5557LqB9dEl0ph5jQI5Sg0gVtf7W02ooaom3mQ5a1GJCMiIJWpOhKGfx4sXSQ+mZZ57x6PXGXqHoH5ooUSLbiRMnbKEgkvvYRmqfWjP70Pr6m2fPnt322muvBeX/YTtPliyZ7CPVqlWT/0+IkX/++cf21FNPBbRPbTgSyj61YPXq1fL/s2XLZtpn1q1bVz6zX79+fn3OwYMH7T0T0buWEHeMHTtWtpdKlSoFbUWhLzX+Jy6XLl0y5TM7duwon4drf3t/43NwzAzV8YVEDseOHZPtJX78+GF3vGWf2iDjbf2D7hWKusb+/furd999N2jpMo4wFdkaEVrH3xwuyGijomvBAwm2d/wvRLsQqW3cuLHUjxNiTH1HpBTZI7Nnz5ZUXkRenF3MNjWyMjr9GMckuDGHU6QWdZE4ZqCG2Wx3WRJ9BLOdj7HMRvtTmJXt4G89rSZdunQStUaPbb1PEuIKfYzF9hysTAezYa6pSfh6EIKwQP1H165dVSihsLWOoNUghRI9JCEmcNILNEgrnTNnjmxrs2bNUm+//XZA6iZJZLJixQoZgKGGFfWoSD3FfVcXYg5ooZQ5c2bTBuWXLl2yiwtfTaI0SAXPmzev3GYKMgkn52NnKchmuAybVU+r0e7j27Zt8/uziDVEbfZITT2mqDXPLcyTelpnGxBqyCBoXbUACiYUttYRtHrACCMc1LouWLAgKP+zcuXKasaMGTILCMMdZCgQAtDOBwMwtJghwcXMukBtEgVhYcZ5TZtFUdSScOpRG6j9R9fTYrtHpNVfWFdLvN1/KGotDtwyUWAN105vGhbDrAd9xN555x0VLlDYWkPQal555RVVrlw59cknn8g2HAxgFgVBC7OfIUOGqCVLlgTl/5LwBhE5RPlI8NFtSWAcFy6pxxqKWhLO6cdmi1rdk9mbAIk7KGqJt5HaYGc6mAnTj/1ky5YtaurUqTJAR7sHT8HgAe/r0aOHSpIkiQonKGytIWgBttu+fftKywwIzWDRqFEj9f7778tt3VaFWBtM7q1du5YRuRCgBagZdXdmi1rtgMy2PiS2TI/Tp0+HNP0Y26i/XhF6YkmnDfsL9kOc5+FXcO7cOVM+k0Qnh5h+bG1Qh4i+hwB9DvVst6fR3Vy5ctn7I4YbFLbRL2g1OHnWqVNH2pzcvn07aP+3Z8+eUhuJ9P3u3bsH7f+S8AS9Xz/66CPJeEFZBgZhJDignZtO8YU4CMdILdqOwTCKEGfoViTJkyeXOvFggshwsmTJZPvcv3+/X2NKHe31ZjzpDqwPtCID27dvN+UzSXRyiKLW2qA2cPPmzSpp0qRi+OQpqGH85Zdf1Ndffy29GMMVCtvoF7QabIunTp1So0ePDtr/xCBg6NChcht9ms1IfSSRC+qs+/Xrpy5evCi9YTFQxGPOLuF83IxEYBSF+j2UIPhjFnX58mV7XZa/JlHGZcPxExEwCFtCYks9RmQy2P4U2kXcnxRkTPDCgRxjLy1EzUxB/vXXX037TBJdXL58WfqshyJ930yYfuwjmM2Gayzo0qWLypQpk8fvHTBggHr22WdVrVq1VLhDYRv9ghYga6B27drqxx9/fMSReOvWrZKajGuzqVq1qqpfv74Mplu3bh20ul4SfiBK4emFrtnmAhFgRgqyNonCoMisaBmWTUdrmYJMws352My6Wu2eDH8BjL3MwpjtQIi7KG2GDBkkUBepUNT6AFJM6tatK7Nq6C374YcfevxepNShrQlcXzG7FwlQ2Ea3oNW899576sCBA2rp0qX2xzBxU7JkSfXWW2/JNXorm83AgQOl1x9mkQcPHmz655PIAELVmwsxFzNErdmpx451tXRAJuHmfBwIUWtW6rEmR44cco3zOyHRmnoMIkNVhRF3796VyNLixYulKfzkyZO9mtVAuiXSLps2baoiCQrb6Ba0AMuMwShEJkBk9ptvvonxmkmTJonANRPMDCLtFHz66af2FBhCSPAwM1JrtqilAzIJ90itFqLhLGoPHjxo6ueS6JsUeiaCnY8BRa0X3Lt3T73xxhtq/vz50ksR197YriNledSoUapFixYibCMNCtvoFbQ6za9Tp05q2bJl8l1cpSoFIhW5VatWKlu2bOKCzLofQiLTLCpQkVqmH5Nwbedj3EZxDj1z5ozPLsNmm0RpdPQNdZNsm0acwUitxYBJBVIvf/75ZxF3c+fOVRUrVvTqM/BeHFDatm2rIhUK2+gUtJp69eqpNGnSiGEU6r5dYXZtDlLxtbHMnj17TP1sQkjgzaJgcKMjQWaZRDmmH2PgdfPmTVM/m0Q+qLMPdfoxMvZy5szpc7QWGUrawVmnMpsF2kaiVA4wWkucQVFrIXCSb9asmZo+fbqKHz++iNNXX33V689BlLZcuXL2A1+kQmEbnYIWIAMBqfETJkyQ2WJX2znS8M02kcqfP79c++O+SiIHpDkhgmBMG/T0Eul1P9FoFqVTj5FxgYkxM0mfPr1KmzatiJd9+/aZ+tkk8oEgvHbtmn37CxX+1NXq96DNXcqUKU1fNqYgE3dQ1FoIpGSidhZtJNDG57XXXvNJ+Kxbt07SLKMBCtvoE7Sali1bqgsXLkg2AtLtXf3+jiZS2g3cV3RLBEZqrQH2G1xQ1mG87+mFmI8/ojZQqceODsg0iyKO6OMBJj8QlQy1qNW1seFQT6uhqCXuzG9PnDgRFTW1bPYXC4MGDRJHVpxUIWxr1qzp04oeM2aMtDiIhDY+3grbjRs3Sh0karIixdHZDKJR0II8efKo0qVLSwpyr169nL5mypQpMVySAUyl0Bbo+eef9ytSi7YdyI5AP1ISvegIrU6L0/dJ6Otqw03U6hTkNWvWsK0PeQR0otBRzlBSuHBhn/cfiloSKo4ePSpZMEihx8RQJENR64ZFixZJlBbAnRWux76AjQUpy6hXTJQokYomrCpso1XQalA/3r59e0mVb9KkibgeG3EUtMZaW19FLWYIMcuOmjnU/aB3LoleHAegoR6Qkv8JUm0WBYd/T9m+fXtARS0jtSQ2URvK1GPjpND+/fslHdqbsUGgTKI0bOtDPEk9RgAvkol+9eEjqOtr2LCh9ENEOuZHH33k82ft3btXohA1atRQ0YjVUpGjXdACpNgjWrpkyRL1yiuvePw+d+ZSsYHIrDaEYQqy9UB5hicGZOi1iNeS8DGLunjxon1gVLx48YD8NBS1JLb041BPjCHKlTVrVglk6BpzT4BHBTKUAmESpWH6MYn2dj6AotYJp0+flkH9jRs3VPny5aW3rD+zF2j9g7A+TKKiFasIWysIWpApUyaZdca260qoIpprBDW1vkZpNToV9Z9//vHrc0jkUbZsWXu/YncgzT2aj6WRaBalo7Q4VqRKlSogy6YnvI4fP243BQoGt2/flnKM6tWrSxcEEn6ES6TWOKmj9wlPxxUQthhTBOo7aHM9+GWEqhf8iBEjZJwQrePDSOWQIVIb6VDUOoDUR5y8cOJE+uOsWbPE8dgTXDnBQhgg2hVtqcdWE7ZWEbQa7AeI1KJOqEuXLjGew4lp4sSJasuWLfbrvn37+vX/MLu9bdu2gKZgkfAG2wCJvLpafc4rUaJEwJYLYhmTbUBHtYLB2rVrpbxmwYIFHk26EOtGao37jzf91o31tIFK/0yePLnKkCFDDBETTOArg3aWmJTctGlT0P8/cQ1FbRSDHQ4HI7QkQE2tp7POrpxgz549Kyd8CAQrEK3C1mqCFrz++uvq+vXrkuqJwZwWsDCQQtQE2zUis4jY+huh1Wmlp06dkm2oVKlSpnwHEn1cvnw56icIQ4kvkVo9GWXGcSDcUpB/+eUX++2ePXv61K6FWMMoytdIbaDraUOdggyDNwhazebNm4P6/4l7KGqjFAgxuB0DpBx7GorH4B5i2Aju43EIY1C1alVlFaJN2FpR0OranixZskimgR6wYjCJGnOz2vgYWb16tVxD0HpjUEMiF6SZ6wtAyYfxMeMFdT+Ili1btiwq0qQixSzKmwyLQEZqjSnI8KkIFtjedGkE2k+hj7fu001CDyZeL126FDaiVu8/8FFBrXk4OB+HUtTCJwFdEZC6j17TgJHa8MFms7GmNlpBegQOjtjx69Sp4/H7XJmb4HEIAgzSI90m26rC1qqCFiANCtFabMM48LmbvDFT1LJe0jqgfuzpp5+WC4BLvL7veIETN1qqQfjCkZuEh1kUBu+o08MxP1AmNxo9mRGs9k/o3YhUZzj6r1ixQjK4EFVz1eqMhC5Ki6y6cDhHp0yZUo5VnqYg49yqRW2g959gOyBjPA1/GmTXYBJ82rRp9kgtS03Cx0Po9u3bYtQZDpNC/sKa2v/ADOz3338vt+F07E2PTFdGOnDBW758uWVSj6NN2FpZ0Gqw7WLQgKiNu8kbf8EJDilK2jCIWAMcI/UFkyho6WR8zHjBgAzbBvqGd+7cOdSLHrV4axZlrINPmDBhQJdNu3Nqt85Ag/O3TinNnTu3GjZsmNzv3bu3VzWTJPD1tOFgEuVLCjImTiD+4sWLp/LmzRs1kVqc09EGEwIax++5c+fKeBAeNSjLY1/y8Eo9zpo1q8f+QeEMRe1/TJ8+XVLcEFFFepE3IC3TmZEOUpRgPIWZKqsSqcKWgvb/gYiAczf60rqavPGnjY9m3759cqJDrSRmdIl1BqQY3OCCQRB6eev7jhf0fly5cqX0T470XnrhjjdmN8FKPTaKWr29BKueVrc1w/bZoEEDiWJjnEA35NATTvW0vuw/OkqbJ0+egHsFBFPUYiIcx2t8p4ULF6onnnhCbhcpUkSeZ11teHA4itr5AIra/2aUdFrle++959OBBTUD3bt3l4t2gsUBDRE+HKysTKQJWwra/4HIC05C+N2cTd6A2bNnm5Z6jKh4oKM9JDwZN26catGiRagXgxgEqicDz2CKWi1ckIKOlOdAAuGqI7WVK1e2Pz5kyBCVIkUKqevdtWtXQJeBRH+kNlgmUUZRiwlk1CIHEr1v4LiQP39+++M4xwPW1YYHh6KonQ+gqP3PCGLPnj0qWbJkql27dl6vRO18DGdEXPQgH6lbEASox7E6kSJsKWgfBamIOg0RkzeOmFFXO2fOHLlmPa11QeQLxwgSevTAE8fD8+fPuy3b0ceGQDsfA0w4617WgU5BxqAcaaGYmDYKdtTV6kF6sNKgSWRFatEGD+M+uPnj4o5g1dMCTMagXj4YbX1cmV/pzgaM1IYHhyhqow8YQIA33njD68bx7sxzcLLXtUkk/IUtBa1zsA3jwIeG7YGoq4UZDdKUMAigAZB1wfaFbQGmIkYQVWjevLkMFGvVquWReRHxDwg37TS8YcMGtymGMBmBOY6OAgWaYNXV6tTj8uXLP1JrFuzaXhJZkVqU7Oj6WHcpyBgDrV+/PkbKcqAJVgpybKIWEWpkXJDQcoiiNvo4fvy4XOfKlcvr97oazEPQ4mCr6wdIeAtbClrX6G14586dLutndZqeL/Tv31+u4TgeTgMTElz69OkjwtVoIIJIYOnSpaU/MgZB8+bNk2h+bNEP4j8vvfSSXOtBt7vUY6RbBisjyVhXG4xWPsbUY8dloKgNPeEYqfU0BRnC79y5c5IlGKze7MFwQDY6OjuKWriro1Ugxn7e9PIlgeEwa2qjV9RiR/MWV4N8bSDBSG34C1sKWvdgsgczz5ioQYqhs2jqTz/95FMKMuzkp0yZIrc//PBDr99PogfUVWNgapwInDlzpswkY8AH90zU3CKSiz7iJDiidt26dS5fo/f5YKQea3T7p0AKymvXrtlr/rRJlBGK2vAARpwQhSDcJkQ9MYvS2QCYqMO4KFoitRhT4ziNDAed8WGEdbXhwfXr1+3lJTSKiiJgqe6rqHVmkoMaWxxskydPbu9XRsJT2FLQxg7aW2G2VdfOORvk+ZqCDNMVRONwkgvmwJiEHxgIOR4v4ZoJp+OxY8dKe6lRo0aJ8F20aJHP/wfbHAbAqM/ENqejjc7A/4O4Q1kKLhUrVnzk9c2aNZNlNF5effVVFS2iFrWlrkxlgmkSFUxBifZimJiGAHA22KOoDQ/QsQJgrIUU+HCN1Lpy6taiNpjHi2CIWm0ShRRsZ2KddbXh1+M5RYoUKhqwvIMRHA5PnjxpT4uIDcxM66iUs3pagLovpGpqswASnsKWgtZzjGZRZrX2we+u+z4ySktgyqNNTDQwE4GAMG5biOTq7BpfWrd98MEH4lKPYzTMWZBeqqM9zsRNo0aNJIqMZcHEJyZ19DlDg0Epsg70ZerUqRH/g+K7QvzjuOzM1AVCFw7AoRK1gUw/dmzl42oZIKowKUdCX08bbm2+ChQoIJHKixcv2sWD4/6zceNGlynukSxqXaUeO0ZqcVwJRmsuElmp+/5gecV15swZEbaIRmXMmNEjl+O33npLrr/66iuXESuaRIW3sKWg9V7U4iR49epVl32ZvY20ok4SQgYDxBo1ani5RCTaQCsnmEUZj8046aKm1kjixInVrVu3fK7fbtWqlRhPIYowfPhwlSRJEokEO2Py5MnSFxeDs9y5c6vRo0fLMQrGZo7LniFDBvvFW8PBSKyrxfEaA1IMiNCDMlgEQ1DqelpXoha/MSL92BZ0tJAEn3AelOOYAGELnNWOrlq1SrIB0EolmO1UtKiFLwHGXaEQtZhMxP6D878/JpMk+kzW/MXyolbP+GfKlEmErSucRWVdpcDhAIvUKH1AI+ElbClovUdvy/v27ZPrfv36ST9mCFPdl9kb8BsPGDBAbnfq1MntvkesAaKxiFygdEOXdiD64ihqMRhLnz69159/9+5dmWxECrEGmTS472l7CSwbhFTq1KkfiehimVB/jrZwiM644s6dO1KzabxEoqgNRepxMAQlzt2YwIsXL57LFmPYLpmCHD6D8nAUtbGZRelsgGBGaQGOXXrSLVAp/FrUIlvR1ZhPrxv2qw0dx8J4UshXLC9qda0QajLc4c1skh7Q6H56JHyELQWtb+htGamVGkRm33zzTZ9qYdGWBe6LcH1E1IyQBg0aSCZAmTJl1Pvvv6+6du0q0Q7U0moQ2UDasC9eBRcuXJCsHMeoIu4jKuwJyEjABKhRGCP1GJM7iN5ismft2rWqSpUq8r9cuTyjfklffPFyCLaoxaQuxLgzURvsWngIykCaRemUUIh19Kh1hY6u0QE59IPycI00abMoR1GLDIelS5fK7VDU3+vjZyBSkGEQpScb3PXeZV1t6DnKSG30DtYda6T8qRfEoAvEls5MgitsKWj961uJ+iDHVirGGnNv0I6QGDhC2BLy3nvvSU9QRFMHDhwoKcbffvttjDpbtI5CZFOLrWCCbIRp06apOXPmSKRQ07BhQxHe+fPnVzVr1hRzKwxiEb11Rrdu3US864uv9cHBAJFnrH/0otU19QDRah1hCXakNtB1tei96y7K5LgMus8jCT7hHqnVwg2ZDsb+2hCT2HZxTnWVDRCpbX3Qek1PNLgz76IDcug5xkht9KFnyTG4cJcG5qyOEFEqZ6BGC2BGn4SHsKWg9Q+kaSLtzxipdawxx31vRa1OQSIE+z5EKyKdM2bMUPv371cdOnSIsWIgJpG27qytVGykTZtW0tzPnj0b43Hcx7btju+++05ELWotYysrgdjB/3IVBUH0GRFA4yVcMaZ/G1OQsT4Q3cb31NGoYBLISO2ff/4p185akRhh+nHoCfdILer2a9euLVkbKEvQ4xmdeoyxTigmdQNpFhVbPa2j4IfZnNFLgQSPo4zURh9IO9b1BbHNmDvWEeLamWEODlIYuESLWUikC1sKWnNA5oEWtc5qzHHf04itFrWhGBATFdYiClHYunXrOm2lgqgGIrpa1Hh7XIHhmdHkSZs+6QGWM7BdwxQQ6YKebK9oEYcSlGjJ1HGsq0V0p2fPnnIbEwww7go2gRSUOlKbL1++kC0DiR2kw+vzUbhGasEPP/wgfd6R2TB+/PiQtfIJVqQ2tnpaDTwIkMKPVGxfetwT/7h165bd9T+c9x9vsXxNrTFa64nphGMdoTPDHBxoMfMfbhbzVhS2FLTmgcwDPYhwVWPuSe05BiM6FYuilrgCUQQYOJnpjol2Pug9O2HCBDE9Q/QExxhd142sA6QHa3B8//zzz8UdGdEgRCdxuXHjhjyP686dO8uxH7PeEMhw8sagMdgGMIEWtag1RcSpbdu2sg9XqlRJNW7cOCTLFKj0Y3hs6Oifp5FapB+zLUnwQRAC6x2TKo6twMJtfKkngRAEQQkPnI9BqI4RupwuEM7DukdtbJFa42uQlUOCy7H/jnPGwF40QFGrlMqaNausDF+dFB2FLg5a0TJLH8nCloLWXLBN65paf3rVQtCiJg+pi9E0Q0j8B6KpV69eMimIek6kvhqdtdFiB7VYOkXUFzMqpM5+8cUXMqBCVAERWG0ehXOAMcUefZThmozIMbZ/fcFnAKQzY3tGTS22/RYtWkg0GFFNZOtEA1hPyD5CiiAykTAgRxo41k2oJm4DFSXVfXfxGzs6XDuiU15RtgRzHBK6esBwDyC8++67UnOPDI6qVauKizqOOaHqkIFjK8D5XJulmgEmu/Q+5Imo9dTThgS2Hj1OmO8/3kBRaxC1Zhl2YFBEURtaYUtBG9j0Y3961RpTj6PpYEr8F7Svvfaa6t69u4iEPHnyPBIBw7EAUVG0+/GVjh07yoAYAzCkvRm3WZg76RRBfeLHMjheevToIc8jSoRUQqRxQfzi9SNHjgxq39ZAg9Y2Oj37+++/l2t8/2D21nREp5+jz6WZ9Xieph5r7wx9nmcKcvCJpHpAGEJhEshopIQeyPCqCAUwcNJt0cyM1kLQwqEekT9PXN0pakPHsTCvR/cVr/YotCKAsQvC1dgh4PRoTBvAQQaDVGeXmTNn2l+H2fBq1arJSQGfg/Qt7AhGkK6ROXNmmakPdHNmLWr1QdJfMPCnSVTohC0FbWDAAO78+fP2fdXXXrX6mOHJwDEQYGYavXExQwlRgsifseUCRAsiefi+eB7tWxxrj5AWi5lonBDGjBkTgm8RfQwfPlwEIupmkVaqBYYRrG+IKRg2keBhdJtGdAlp3KEEkWOdcmpmCrI3ohawrjZ0RJpzK8Ywb7/9tv1+qOppHbOqzEz9NZpEeTJhTVEbOo5G0KRQwEQtXCnhRokBLFwqkUKI2SaIDYCZGQg64wXiFCcg9O3Ts/EQtJjVRuE8apswM45BpAa1O4sWLVLz5s1Tb7zxhsysR1LRPGaPY0tdIoERthS0gQPpwhB8xsiIL71qtc2/rksMNi1btpTjF1oR7dmzR45hEK46BQrGQD/++KOILETyYPKB2ie0NdEgzRS1llOmTJHJvnBuyxIp4FyA4yYmQN1NCiKC62upCPGNl19+Wa4xUEVNMiJPoSYQdbWeOh87LgMjtcEnEgflmAhGFgccz3HeCSU6BdlMUavraWMzidJQ1IaOYxE2KRQQUYvao2bNmskBH02VIUYxuND961BfhFoo4wU9/erXr2+3LccMO1IUJk2aJLM5ELtwlhwyZIgIXYDUMwxqMCOM+qRA230bi+bNMHxAJAsijARX2FLQBhY9kHXMqvAWnZoJw51QOP79/PPPIlwxUMeEFlIpcY30MOz/cKv87LPPxPAHxyBEolF7NHfuXPvnYBssUqSIHAeRamVmXZJVwf6LnqexmVakSJHC7tpIghep/eSTT8QwKxR9aYMlKBmpjRwicVCOiWHU4GM7w+1oE7WetvPRIBsTYEKZZmvB5WgETgp5gl8J/ejtClxFJSF2sZEjqmFM20PBvLHmCFEQmC3oWVIdFUF6MlI0EAkJJLo2COIZhfz+gkE/6pBI8IQtJiSwkyKVNJz7PkYyeps2S9Q69gsNBlh2ZIvA6MYI0ow3bNggUR+IbURujSIKkWgcuzTILEHEEM+hRy/6ERL/wO/iibkSMoCixYQpUkDt39dffy2T2uGC2b1qkWGlPQM83Z8ZqQ0Po5tIAiV3ntSbBkvUmlXeh7GYt6JWR2phnKX1BAkOxyJwUiigohYbMOrSIDBc1Z+g1gwDPwgNDQaMjiYajpEbRIQQFcbsDQa+FSpUUIEE4lnPGJmRgoy0bIra4AhbfRBFxgAFbWDR2zS2b39ABkeoIrXwA4DpDbJDEH2FkELWCAQrBrR6mZwdo4zLi4k6TIChxnjQoEFB/x7RCE6uutWTK7DtIcqRM2fOoC0XCU/MTj/Wk+rYDnGc8GYZmH4c/MlJXS4SbZGmUIhaM6KkmGRAxhImHHPnzu3RezCZrDNz6IAcPO7cuWPvZBFt+4/P4UTU1mJwgeiGqzQ/1Juh7sxXtDubM/wdWDuCQdKJEyekd6G/vTNxwEXtkdnLSP4H1i/S4NAXEiANFAdIrvPAg33bn/WsMzswYYWSAzMdkCG8Y/s81NLCsAOzxCiZQBpxo0aN7GUUnoJaW1yIOSArZ+DAgeIe3Lp1a6evwQQCJhLQK5VYG7MFpbepx8ZlwKQqjonhUGtsBTBWw4QkJrj1JCnxDmy7OF8iOABBqQM7/tbTojzRm/0A52GUHGIZPK1lJ/5x/D8PEIyZQ50GHxaiFsZNCxcuVOvWrXO5I8yaNUtSCtDM3ggOQNu2bYvxmE5D9ObgtGLFCnsNrhnoGlhEiNOkSePXZ2HWC7O+ixcvNmnpSGwY3WtJYICpEkAPTn8yGiCKAY4PaM2CA6tZwHwjts9DuQFM73AyR9kDXI7RvxQneX0MwjHJ2JYL9z1NqSK+ARd8+DS0b99efBfgxQDwO+3cuVPNmDFD9e/fX07CgTYPJOGPTj9GhAgCBxNUwRa1OF6glAHlUhgoapFLAouOzqNzRaja4kQ6EJ7YXhGpRV2tv6JWZ815ahJlFLXY9xipDU09bZwoa6sYz1ux9s4774j5E/r56ZOKq9RjNKTXtvsapP6hNgdGHzoSCydS1EF6U5dmrHkzA+xUaCeBExSaY/sDPgORX38/h7gGB2LMjuMAqh1qkTIG4cGTXGDQEz/Y93QbLF+BcRzcjzEz62mqkid4k/avI62YJca+D/MoHNMwUEUGgBaxEL7Yxtq1a2facpJHwSQCzLhq164t7tOIyuKEiwlSXHD+gXM2jL6ibXaZeA8G4djfMbmNVDp/6xS9dT4GONfgmIEML0SMKWqDgzY30iafxDew/rSo9bfMT0dqvZ381XW1iL6T4HAsSutpvRa1SDlGSjFa7UBA6BozmKUYoyMHDx6UKK6zSCUiKRCvaAOCQSQ+A06j+GxvzD8CleaDZfD3s3GiRc0xU5EC55KKWXHU1ertDpMlyABAY3Okj1PYmo+uu8E693fbhtswZnZxcIVxXDCBgMV3QU0RjlWIEEJYN2/eXEQUvAJ69eolE1MYsKKEAm7s6MtNAgscqSEuBgwYIOcPCAUcSyFY4JSP30oPgoi1wXkWg7JDhw5J5M4fUYvjgS+RWgAhC1GL5TB7sp04R5sb6bpQ4htYf8i6NMMB2Z9ILWCkNngcjVLnY+BV3gZaXsChrGzZsjKrri/Tp0+P8TrY/mMW1VkfLqQIYSfCNYRIkyZNJEX5yy+/VKFE96B0dEX19WTrr0MscY6rtj2e9rElvqO3aTNM0IxttIINjmGYRIOQxbGndOnSInS1UO/SpYtkpKCus3jx4hJRRlmCGccGEjsw5erbt6+YRmHdI00dgy60WqKgJYGoq0V5AYzfMBnqbeYIzaKCjz5vMFIbHm194HMAUYpJYbTB8waK2uBzNEKdwwOSfuwJvXv3losrsCLDrd7UTFGLlEYMxoi5xNaHVgvbjRs3irBlxNZc9DYNt/BIFrWo1dT1ms7AiRmTbKGeaCOEBKetj049Rr29tzX+FLXBR4swRmrDo62PjtIiA8tT53ANRW3o0o+zWT1SG834I2pRbwdHVVwD1OTpfnckOIJWw4ht4MA2jVpYXCJZ1BJCogOz2vr4mnpsXAa29QkOqKHWvzcjteaIWoyt9BjYF7ztT2uEojb4HI3iSC1FrZ+i9uOPP1YlS5aUNEZc4z5Ssilqgy9oNRS2gQHbtNER2B90n1GKWkKIryAyBOCW7Q8UtZEDJg/gdo2MOHgdEN+BWSs8cZCFCX+JYJtEAe26DPNYMzuaEOeg9Vg093imqPVD1CIyC7MrI7iPuhyK2tAIWg2FrfnAYdSsQYSeYcfBFXXQhBDiLbqnPOqvdauwYDkfO6ZAX7lyRZzUSfDqaaOtHUmwwfozo67WV5MoACd73VmB4+bAc+LECfGcgSku/CuiDYra/4BzIcCslae4ijJh1os7Z+gErYbCNrCRWse0e29InTq1SpUqVYxUGEII8Qa0FsPADCZ26GUcbOdjgIihHhwyBTnwsJ7WXPQEs6+iVhv5+RqphbDWk+V0QA5ePW3WKO3xHH3fyAeQdrF582b5gb3pLeuqngPuiZi19Wfm2Or4K2g1FLaBEbXO0u69FbraUAInRUII8WVAjOOPPvb4AtrDXb9+XVzddVmEt7CuNnjQ+dhc/I3U7tmzRyJ/mNjxtTyJdbXB42gUt/MBFLVKqQkTJsjKQAsib9Irn3/+eWn/YQSDe7QIAYzW+oZZglZDYWuuqHWVdq8FrqPQdYXuS+2PQQUhxNrgPOyPqNWpxxjc6zRIb9GGKxDIJLCwR214OSD7YxLlKGqRGkuCE6l9KgpNooDlRS1mmCZOnCgro1mzZl6vwH79+qktW7bIZ+Aa/RW1MKaoDb2g1VDY+gfqXq9duybbtquTHyK0jkLX3UBT16/fuXPHz6UjhFgVf0WtP6nHGg7Kg4eOKNL52PxIradtO52ZRPlST6thpDZ4HGWkNrpZu3at+ueff6SWtkaNGj6fVN988037yVWnYFDUhoeg1VDY+o7elrFtezOYcDf7qyO1FLUEILo/efJkcWckxBuzKKQhIwJx5swZr1cc+poDDsrDn6tXr6qzZ8/KbYpac0DKPfYfmJxduHAhpJFa1tQGnmOM1EY348ePl+sGDRr41KNWY6wlhAEORDLblYSPoNVQ2PqG3pZRh4HJmxIlSsR43pVrqLuBh97fmH5MwLZt2yR1PUuWLOrzzz/nAId4BM4XefPm9Slai9YwmNgG5cqV83mN67YkHJQH5zyUIUOGgI4TrETixInFNMiXulrsP3AeBxS1kcFRRmqjlxs3bqiff/7Z59RjjaNpTteuXVWRIkXUjh07TFza6CVYglZDYes92JYxWYP2FRg4QoA41qU1adLkkf1CZy84g5FaYmTatGniR4B+hb1795ZtrV69enbRQYjZKci7d+8WU0eY1uGc7StMPw4ONIkKLwdk/B4wRIUDuO4Z7QuM1AaHBw8e2Ov+WVMbhcycOVNqBZF+oR0UvcWVaQ5qDylqw0/QaihsvQPbMgZ9SFNylYEAozXH+nJPYMN1AurXry8CFm6arVq1kkkPTDqWL19eFShQQI0YMYJO2cRUUbt69Wq5fvnll8X92N9BOXp5w6eDBAa28wkvB2Sdeozjc9y4cU0Rtb7U9RLPOHXqlLQ/w7HOG1PcSMLSRlEjR46U6+bNm/vcxNvVAB/px8hdv3jxol/LGM2EStBqKGy9E7VFixaV28uXL3c52+tYX+5OyOoBaP78+b1YEhLtIJV9+PDhMsD54YcfZNIRZj7t27eXwc/777+vDhw4EOrFJGGEPt5s375dohHeilp/Uo+11wDGEKgH96UukXgGI7XhJWrNMIkCWmDBX+PSpUt+fRZxjT5vIt3cn0mIcMayohZpR4gmYcbi7bff9vlzXNUMli1bVq4ZrQ1PQauhsI0dpIPCah+iVteOO+KJkHU0Z0H6f/r06f0+IZLoBMeFd999V44Vy5YtU6+//roYxfz4448qT5480lN85cqVoV5MEiYTIUiBRL9ZbC+egIjFunXrTBG1OI/gWAZYVxs4GKkNr7Y+ZphEaX+NtGnTym3uP4Fj+/btcu1PqUW4Y1lRi1Q2UKtWLWka7SvOTHPwWJ06daROh6I2fAWthsLWPXobhqh1ddKrVKmSV+t86dKlcv3qq6+qxx6z7GGIeABKRDDDfPDgQbmP9DRExbANIeX9tddeE7FLrAsmp+GC7E0K8s6dO0UEp0yZUhUsWNDvZWBdbWDBfs9IbWDQ2VKYNPDUQRy/h47U+itqAetqgydqSzholmjCkqNJRIgmTZokt9u0aePXZzkzzcFj2HhoFhX+glZDYete1GLg98wzz7jMTPC2vcKSJUvsopYQZ2AAi0gtBjsdO3ZUe/fulfrauXPnirkPykfgxo1t6cMPP+RKtDje1tUa62nNSMWjA3Lg6wFv3rwpvxXORcQ84CaN/QdCFcdXT38PpNrj9/Cnx7OGojbwbPtPq1DURqHLJmZoUavlb9qRq8gVHkdkC7PBJLwFrYbC1jnYhrVJFE58Xbp08crl2BGkMsMMCJ+HSBshGgyq5s2bJ9sFUowHDx4sdYotWrSQ1hErVqxQ1atXl1TTli1bymNwSV6wYAFXosXRxyCUFQWznlbDQXlwUo8haOPHjx/g/2Y96tatK9ezZs3y6PU6Sps7d25pC+QvzHQILKdPnxbnY2TGaX+UaMSSkVqYkIDWrVv7nfroKkKFGjBsOEeOHKFZVAQIWg2F7aMi49dff41xEOzXr59PLseaX375xT5bmCZNGlN+NxL5YLvCgLV27doiXhH56tOnj5yIEZV1Fg2AuEUbIJrzEC1qYSqGbCx3YKJkw4YNARG1mLQj5qMDCLr+k5gLSubAmjVr1Pnz5z2O+pnlicFJoeCkHufNm1clS5ZMRSuPWTGVEheIF39602q026sjSG9GTa0WuFYmUgSthsI25m8HUYEUPQ3S+zDA0G7H3oDB5NChQ+V2lSpVTPvNSOTTrVs3cYzHcWLGjBnq8OHDkgWQOnVqt++D2DVun7ExZMgQSVuGOQm2X8fyESOjRo1SL730kvRoxqVixYqPvB4TP1988YU44CJigdfQnTn4YFCMC1rqxOZlgQEearUxqWaW+zoH5cGJ1Hpb6kI8AxkvmLyGe3hsKcgwWRs/frzcNivbivtPYNlmgdRjS4racePG2VMttNuav7gyyUHdF2axrJwaF2mCVkNh+/9g28VAvUKFCnIfIgM9nd966y25xn1v+PbbbyWdGTW6yJQgRINtCmJk/fr1cnz2tM7xo48+sqeSxsb06dPVBx98oLp37y7bIQyCKleuLA7fzkDUolGjRvL5mzdvVlmyZJFBnNGhE33J4ciMDCBM+CB6jM+8ffs2f9wwravV20uZMmVMM6pjTW1gYaQ2fFKQFy5cKJPdGEPXq1fPlP9NURtYtllE1GKW2VJUqVIFnZ1tY8eONe0zt2zZIp/peMHj3bt3t6VIkcJ29+5dm9XYt2+fbcmSJbarV68G7H9gvc6dOzdg6/fOnTu2VatW2bZu3Wp78OCBzWq8+OKLtho1asS6nXvCH3/8YUuQIIG8Z+LEiQFeckIepUSJErYOHTrY72OfzpQpk61Pnz4era779+/bkidPbpswYYLcf/jwoS1Dhgy2b7/91v6aK1eu2BImTGibOnWqR5+J4yP2iUAeJ61Cv379ZF3Wrl3b7esqVKggrxs0aJBp/3vv3r3ymY8//rhpn0n+R/bs2WX9rl69mqslQPz999+yjuPGjWu7cOGCy9dVrFhRXte1a1fT/vfu3bvlM9OkSWPaZxKb/TyVMmVKWb87duywRSKenictF6mFex7AbLpZuDPP0b0VEX2wEpEaoXXEyhFb1NUgOoVtODZTtNhAulLz5s3V3bt3VbVq1VSTJk1MX14S2SAyC0Oo2GjVqpW0cPEWbHuIBCM9WIMoHe5jO/f0/IEUep0SDc8EtMAwfmaKFCnk2O/qM+/cuaOuXbsW40LMAdkjAOdbfa53tv7RJ9vMelpjpAm/Z2w1vcT7fRf7GmBNbeCAeSqyV5CCPH/+fJdp4PA8wLGzbdu2pu8/Fy9eZJaLyRw8eFAyRxMmTGhauUW4YjlRC3Fitqh1NM8ZPXq0NINHChRcYzNlyuTyABGNRIugtbqwXbx4sdQLog8o8Kedz/fffy91bBjwo0c0nI8JMYJtDRdP8PR1RmAmhcGaY19y3Pe0NyMmK3E81yJWv8+bz4T5FfYDfUFKMzEHTCYgDRgTcr169XKZhofU8PTp04tpilngXKd9NIzp6cR/Dh06JOddGNyg/QwJXQqy9sTAuOCpp54y7f9iohA+B7pdEDE/9bhIkSJR7xxuOVGrZ2+TJEkSkBMqnBfRakLXHHbt2lVaUEDU+jIQizSiTdBaWdhim8U2rQfsvrbz2bdvn9QwggEDBthnZAnx9RgeihMzXL7RDm7OnDn2wZevhljI3tEX1KYRc0AkAvXNun7/zz//dFlPW7ZsWdMn11gXGBh0NhAmUDkhGhxRu3z5conuGUEGgjaI6tChg6n/F78r95/AsM0q9bQUteaAiOxPP/2kxowZI6YhRnAfB2Kkzuzdu1dFM9EqaK0obBHJQOsdnXrsazsfGPDgJImUv1dffdUUx3FiXTDIQisWOA17C0xNkOJ89uzZGI/jfmzRn++++062dTjZFyhQwP64fp83nwnhheOj8ULMo2bNmjKRjJIHpEcaj9MwB9Oit3z58qavdrb1CQza+MvMyDpxDvrOItMQZRaOJqeTJ0+W9HqkKRtLLsyCojYwbKOojV7MTj82usEiQusMDFoQGY7mFORoF7RWE7ZwfcV3xODQVRur2CK0SPeEazImc5CyifYonGUnRtCXVl90ypvxMeMla9askjKKPqC+tIPCvouWFStXrrQ/hv0X90uVKuXyfZiY/Oqrr9TSpUtVsWLFHmmDAfFq/EwM+jAId/eZJHDgGDNo0CA5x2MCRHc8wG8CIYuaPUQsAlHXTwdk80GG288//yy34cdAQpOCjN8B7dBA+/btTXMNN8JJocDUo+/atcsykVrLuR8nTZpUHLQOHTrk92e5coN15g4LN8bChQvbopFguByHyv3Yqq7ILVq0sD399NPimucLcE4sUKCAbP8ZM2a07d+/3/RlJJFPnDhx7JfHHnssxn1nF7gK16tXz3b58mWf/t+0adPkM8aPHy9uta1btxZXyDNnzsjzb775ZgxHz759+4pj96xZs2ynT5+2X65fvx7jNfiMefPm2X7//XdxC8e+c+vWLY+Wie7HgeG7776T40/q1Klts2fPtiVLlkzuly5dOmDnqk8++UT+h9Fhm/gHXPOxTrEfXrt2jaszCOzZs8fuggyn8C5duohDPB5LkiSJz8ff2Pjoo4/kf7z33nsB+Xwr8uuvv8o6TZUqlc/juXDA0/Ok9xaSEY7uHWhGxMgT11eA2a2mTZuqGjVqSPoTirWjBatEaF1FbOGiiYgtIjiBmLkMBdevX5faQdTP+rKfXLp0SVKTfv/9d6nHXbVqlUdmUsR6aEdTRAEQjUWEALWQrva5dOnS+eR8rGnQoIGYCH3xxRdi5FSoUCGJwOq68X/++SfGfjxs2DCZ6daRCw1qxHv06CG3sZ8gqwF9l5EeXbp0aflMf+puif+89957Uha0e/duVbt2bXkMkVpkTJltFKlhpMl8Zs+eLdfoD62NuEhgQfoxjmPIdEAWijETpXHjxtJnPhBky5ZNrjGmJOanHsexgEGn5UQtBjFo6wCzjw8++MCvz/J0oI4TK1w3dQomBkrRgFUFbbQL26lTp6pbt26pt99+2+v3Xr58WVWqVEn99ttvkioKQYsaHUKcYXTPxMTfSy+9ZKqjpjM6duwoF1dp90Y8GVxhoPDll1/KhYQPmPyA0zrSwDFpgpp+CKTEiRMH7H+yJjBwolZPTJDAg2MaDNX27Nkj42VcMMbB5J2jWaSZZM+e3e52Tcxhm4XqaUEchGuVhcBJDuYRGGij1s/fmQvU1BrNoVDzsWjRIqevhUkOakNOnz4dsJliqwlamBmg9UzVqlVDZlWOSA6ELX7TaBC2xYsXl8jVwoULvXofTniIhOAgClMenBTz5csXsOUkJBpADS5a+8AJ2YqTg4FmypQp0qcR52qYdAUSDP5xDoCRGduS+M/hw4dF6MDgDZkVOK+Q6AXZj+hDDA8aOC1bIbIYaPLlyycu8DD90u0Zo/k8Gdmjbx9o1KiR7DAQZUit8BdHN9jPP//c5WvR9Bg7KlI7I5lwEbThQjSZRyE9Ht+hVatWXr0Pc2MtWrQQQZsmTRpJV6KgJYSEmjfeeEPSzQMtaI2RWggwTLgS/0BGHShTpgwFrQVA+jGCAmjb5ugoT3wrJdv7X9cVBCusgOXSjyHCIGzRfgepwEh38xe4wBqdYJHmhJoqRzDLgIgiWgogtTMSZ6EoaKM7FRnbJlxmvXWZRB3k9OnTJeUPAxFj2xNCnKGPgb1795bMAG/S3fE+HMMJCSdQcoFjINoJQdhmyZIl1IsU0WjXY6YeW2cchX3m2LFjkoIcW6s1EnvmiM1mk5Ie7RsR7VhO1AJEoTAgmjlzpho4cKBKlSqV6TPDzkQtdliYV8DwYO3atdL8PZKgoI1uYYuZUdTT9urVyyszHmzrXbt2tYtiMyaKSPQzfvx4EadIC8UJF/c9haKWhCM43sM7A4ZjJ0+epKj1A6Rvb9682d57mFgDpJtrUYvxFPGd+f+1EY2t/WI0YUlRi4JppAKjCH7SpEnqnXfeMfXzXRlI4XH8bzQQh5iOJFFLQRv9whb15hCzrvotOwO1ash8wGwg3od6dUI8QfcPRf2h8T4hkQxSkCFq0U+Z+M7cuXPlumTJkva0bhL9wAUfBpM0i/KPK1euSDYqaN68ubIKlhS1mOVH+wWIWYhLuG6aWRuKWRE4xBkNpBCN0LMl7777rmrXrp06cOCAypkzpwp3KGijX9iihmXo0KHqrbfe8jhzAfUamEHHwRMDj8GDB0dkSj0JDTjuurtPSCRCB2RzXY/r1Klj0ieSSEA7IMMkjPjO8OHDxcMHAbzKlStbZlWG90g7gLz55pty8sFsUMOGDaXljpk4Gkj17dvX/hyEA1KUYF4R7lDQWsM8atCgQerixYvqww8/9Gobh6seIm2ofQqGEQshhIQzmTNnlmukHxPfwLlIt9eqVasWV6OFYFsf/7lz544E7MBHH31kqWCDZUUtTJvmzZsnPeuWLFmiOnfubPr/QGQW4tkxnx3/s0ePHuKCDLfZcIWC1hrCFr1lMemC7IUcOXJ49B58F0zYgAEDBsgkDSGB4siRI3K8Rv9jQqwQqT137pyaNWuW6RPukVILiO9dsGBBu8gh1oCi1n8mTZokRnWYYEPQzkpYVtSCokWLqgkTJtgH5qNHjw7a/0bPWvTK7datmwpHKGitI2whaNFr1107KkdgdHb8+HGZHKpRo0ZAl49YZyALl1PdLN7orA0/AjyHY7Y3LsmEhErU+ltTi8FovXr11KeffqqsBPwZ4O8A6HpszZpaPamD9Fl/QWut33//XRzJrcDDhw/Vd999J7c7deokY1ArYWlRC3DS6Nmzp9xGnatOeQk0MOT5+uuv1bJly6QoPpygoLWOsMXAC47FH3zwgVf2+TpKW79+fZUoUaIALiGxCtim4KSdJ0+eGMciOGtjoIuoDXqMYyISjeQJidZI7fr169Xq1avtkzpbt25VVgGZc/i+yGhD9hCxFilTplSpU6f2u6726tWrsu9AJOPc8dVXXykrsGjRIjlvwicInV6shuVFLUCEqkGDBjKTA1OCYLmuoVYEqcl60BYOUNBaS9hiQidp0qRepd/DVAppcbo+nBAz2LVrlww+kidPbn9s8uTJcg0TM5RqbN++XcWNG1eNHDmSK52EfU2tr+d1tFUDyZIlk3MFMrtu376toh2sL+010qFDB/YptSj+pCCjnOr999+X/RCGrTpjAim54TLODiTffvutXKMThZkGuJECRe1/bshoJ1G8eHF16dIlVa1aNXX+/Pmg/F+kfmKgppuMhxIKWmsJW/zeY8eOlfQ2bw5+qG1EWtDTTz/NPnLENC5cuPBI6w5kziBig0E9QMlG6dKlxaCMkHBE+wtAhGI84S1Iv0cGFyZvsP0jgwbH6kgwlvQXZGDs2LFDJlohSIg18ccBGdHJH374QcYozz33nLgAY+yFz9q/f7+KZrZu3SpZHvHjx1fvvfeesiIUtf+BgRP6omF2Bxt+pUqVZMYn0KBX7auvvirCIpQ5/xS01hO22OawvSPt3humTJki102aNLGUqx4JLBABGMhrYBSD6CyyWYx1QRANMMEgJBxBOUaaNGl8TkHWUVqYTKKGXNeXok5u06ZNKlrBuVALd7RbTJcuXagXiYS4rtbbSC1cszHpDpBNtmfPHtWmTRsZZ4OFCxeqaKZfv35y3bhxY8uad1LUGsBGsHLlSvXEE0+o3bt3i9i8du1awH+E3r17q7///lsNGzZMhQIKWusJ23Xr1kkfQKQfYxCGGb6ffvop1totpO+g/y6oXr16kJaWWIH06dNL724NWqHdunXrkWwAPIZIDiHR1tYH7t6IVmKyUJtI4jiLMg8ce5s3by7bfzSCoALGXSg/QBsSYl18TT9GxiOCQ4UKFZJSQj3p/tprr0W9qIWAnzNnjnxnK2c5UNQ6AJfNFStWSKE60oCwM6CGMJAULlxYomWorQ12w2kKWusJW/xPOMi+8MILEg34+OOPVcmSJWXghGvcd8XRo0clgwHLj6behJgFtkcMatHqDCYfmOzDCbpixYoxXrdv3z7LzkKT6HZAhnkkgMcHxiIapFNim8fkd//+/VW0gfNf9+7d7Y6tOtJNrImvolZnkTVq1CjG4ygpBBs2bAhKBmYowPkS1K1bN4bZouWwEaf8+uuvtscffxxV5bZKlSrZbt26Zfqa2rJli23ixIlyff36dVu2bNlsZcqUsT148CAov8q+fftsS5YssV29etUWqdy9e9c2d+5cuY5E7ty5Y1u1apVt69atQfvd3333XVuiRIls+/fvl20P27jjBY87Y8aMGfJ80aJFg7KsxDrs2LHDliBBAttjjz0mlzhx4tiKFSsW4zX//POPPN6iRQtbtIDjL/apSD4Ok5i0atVKftPu3bt7vGr+/PNP2bbxvj179jzy/NChQ+W58uXLR93qnj59uny3FClS2C5duhTqxSEh5vjx47I9xIsXz3bv3j2P36P3n2PHjj3yfN68eeW5qVOn2qKNv/76y/7dd+/ebYtGPD1PMlLrAtSywFoeaW7Lly+X1iXod2UWjtEx2I3DtAf9P+H0GWgYobVmxBZpx2jhg1k9RAIw8+8MV4/DxAMUK1YsoMtJrEeRIkXU4sWLVZkyZWSmGeZQjuliM2bMkN7IFSpUCNlyEhIbMNHTWQWe0qdPH0kxRleEfPnyPfI8asu1S3g0ubjiu3z55ZdyG63lUqVKFepFIiEGWQkJEyaUVOLjx4979J7p06fLtgQjwaxZsz7yfDSnIGM8h+9evXp1VaBAAWVpgiazI5SVK1dKVAur6r333jPlM91Fx9q3b29LkiSJ7eDBg7ZAEQ0R2miJ1AYzYnvjxg3bM888Y3vxxRdt9+/fl8e8jdRWqFBBnh81alRAlpEQq8FIbfSxevVqOU5mzJjR9vDhw1hfj+hk/Pjx5T3bt293+prbt29L5AqvOXr0qC1aWLx4sXyn5MmT2y5fvhzqxSFhQu7cuWW7WL58uUevR/YYXj9kyBCnz69fv16eT506tcfR30jg0KFDtrhx47o9dkQDjNSaRPny5dXUqVPl9sCBA+39Of3BXXQM7mUwqkLNYyCidozQWjdiC+OR06dPS/sq7TKL2X9HUwFkEeiogBHMBOpILTIZCCGEPAqOn2irgeOtJz4ZMO1DJhh8ClxlwSByhRYlOlobLcDVWbdiSZkyZagXh0RgWx+MnTE2wbimXr16Tl+DjEh45aDN1ubNm1W0gLag6BQAY9tizKCjUZQn1KxZU3Xu3FluQ2waHTp9wWgA4fg4mq0jDRlpooMHD1ZmQkFrXWGLtPZBgwZJmkrOnDnlMe14XLt2bXGanThxolzjIOnqxHHlyhVZTj24IoQQ8miLQPS9BziXe2pw88Ybb8RqKhlNohbfY9WqVSJGrNpXk/jf1kcHntCK01UrqHjx4qkqVapEVQryP//8o8aPHy+3P/vss1AvTljAmlovXAmRq3/9+nVxF/PHVj+26Bh6anXo0EHckP0V0BoKWusKW2yzmIx56aWX1LvvviuPwfXYWNONSAEecxah1aDGHOBzjH1DCTHzJA0neEy8JEmSRAa7zi4YoBASzrz88sseidpTp06p1atXy+2GDRtaStR+//33cg3PEmd1kMS6eOqAjAwyLWpjmxSKtrrab775RjI8ypUr90jrO8sS6jzpSOLkyZO29OnTS+66Ge6bRvdjZ27Izz77rDi2+Vv7Gk01tNFaUxuoGlu8t0aNGlKvdODAAXnszTff9KqO1rGedsCAAT4vDyHujlOod9LOx7FdogXW1EYnulY0e/bsbl/Xv39/eR28DmJj3bp18trMmTPbIh04metaQHSbIMTIggULZNsoXLiw2xWzc+dOeR28b65duxZr7bre5lCLGslcuXJF/HfwXVasWGGLdq7S/TgwjmxIE0LvxDFjxqgJEyb49XmIiunomDM35Hnz5kmfu8aNG0vOvC8wQmvtiC16/82fP1+22xw5cthTjr2p9QboG4oUZuNsJyFm8umnn0oPwVdeeUXS4LHNYbt3dSEk3PsuY6yASBOisf6mHoOCBQvKNcYF58+fV5EMXPgxrkFmGj0aiLtIrTu3b73/vP766yp58uRuVySctZFxCRYtWhTRK33y5Mnq5s2b0ikA3j/k/2H6sZeglUTPnj3lNlI5z549q/wFQgNpBEZwH4O6adOmyc73+eefe/25FLTWFrawuO/Vq5e0itBC1J1wdVXrDZYtWyb2+rly5RJxTIjZYNIEKYiYzCtRokSsAxRCwhm0nipUqJDcXr9+vdPX4HiMY7s7gxsjjz/+uN0TIZJTkDG2GTFihNz+6KOPQr04JAzJli2bXF+7dk1dvHjR6WuQeqtFbaNGjTz6XD0WimRRC5E/fPhwud22bVuZPCP/D0WtD3zyySdiAoGdTRtI+YMroQGXWri1QeBCmOi6AU+goLW2sN25c6dq3ry5zP4b67ddCdfY6ml1DQqjtCRQYNYZYpb12iRagP+Au7paTwxuorGudvTo0eL1gCiTNu8hxNFs7cknn3RbVzt37lzJgkifPr2qWrWqV7Xuu3fvjtgVjkymPXv2qESJEsnYjfwPilofwKzqkCFDZHYEqZyeuBu6w5XQwEwmUpGx82HDhdkPhE1sUNBaW9gie6BGjRriUIzBg3EWz5lJGbYtOB+7AiliixcvltsUtSSQbpfYxgmxglkUoi3epB5Hi6hFxg/aI4IPPvhAPfYYh6HEt7Y+SGHX0Uq0vPIEZJuBM2fOSGAqEtFZDg0aNJCUavI/eDTxEURqW7duLbfhVIw0CF9xJjSMTJo0SU4EBQoUkPZC6H3nCgpaawvbO3fuSIsebC+YxcRspyPohWxs4eNO0AL0Zr5w4YL0EKTDHgkUmFzB4D/SawUJ0ej6vT/++EP6Yzpm0yBLC9EWnNetImrRwuf48eOShdakSZNQLw6JUAdkbP8bNmwQJ3yIWm/KAp544olYy7HCFfhOoLQMePO9rQJFrZ9tftKkSSMnLERu/UELjTZt2rhMU0JdLWZ3a9WqJal6jlDQWlvYYtvAQQ5NyCFodepObCZl7rh7966k24NOnTqp+PHjm/RtCInJhx9+qEqVKiXpiDimEhLpYPCsI0MYgDtLPa5evbpX9eNa1KLd340bN1SkoY0K0b4Igp4QX3rVDho0SK5Ri54xY0afsiP3798fcSsfQYjbt29LkCu28ZsVoaj1Awjavn37yu0vvvjCrcOhJ2ADRR2kK1AYDrGCAR/SS7FhayhorS1sIWghOtGIG87cZh3sRo4cKak/GJxBdBASKOB6jP7fiGDBYAcDGjijwtnR8QLDPkIiKQXZaBaF7dzT3pqOoH4QnRhwzI+0ukCIcPREB4zSktjQppTo42w0i0I2j07dh2Grt+iJpkgTtdjndeoxAmA0iHK+kogfoA9oiRIlpFdUu3btTFmXrvqI6l6ia9assSVOnNhWrVo16WcazX1ordqn1ps+tvfv37d16dJFto/hw4c77YHsC9ie0qVLJ587dOhQE5eekEfxpDetvqCXrS8MHjzY9tRTT9kSJkwox23sP674448/bLVr15bXu+rP3L1790eO0bly5fJqmdinNrrBcRjbBbY3gHMVzt14DMfX27dve/2Z+v2DBg2yRRI//fSTLHeOHDlsDx8+DPXikDDn8uXLtqxZs9r7ON+6dUse//rrr+WxYsWK+bQdffvtt/L+Bg0a2CIJ3ac6adKklhvvX/WwT228YM80RBswOUDqcLly5SRKhv6yiOD6m16AdItNmzY98hxqAJA2irYX6MtVrVo19d5778lsMOz+ibUiths3bpQZO0Rnf/jhB7mNnsfGFlGo18Y26i3fffedzIgiVadly5YmfwNCYoLZ+ECCOiQY0yDjBZkM2F8qV64ss/WIfjmCEg9Ei5He9v7777v8XBiyrVixwn4fNV6EOEZqURYCx1+UiKCdCPwOELX01ODGSJEiReQzIq2uVqceI0rLKBOJDfh4wKRSj3Uw9kV/1mHDhtmjtL5sR5EaqdVtfNC+iON9FwRNZkcxmCkqVKiQzCL07t3blM9EhM1VpFYzbNgwW7x48WyvvfaaT7O90YBVI7V6u+vatatsFx06dJCsAU+2G084ffq0LUmSJPLeWbNmBew7EBIsECnDfqLB/pIpUyZbnz59Yn0vorWuIrUFCxb0ajlwrMZss74cP37coxloErlkyZLFHm3CNc7bixYt8vnzZs+eLZ9TuHBhW6Rw6tQpybDAch84cCDUi0MiiNWrV9sSJEgg206pUqXkOn369D6Pe//66y/5DIxxcB6IBM6fP29fB9u3b7dZjaseRmpZU2sCmClCBEAXr8Ncx1+cOSIjAqdnOxEZQHNq1OUsX75czKNQp0OsAWor0LQeNd241KlTR2psXbn5eePyhzrdFi1aSKQK2yHclAmJZHBMRqSsYsWKMbJscH/z5s1+fTYMe1DjiKhu48aN1T///OP29eg5DgdOfcmSJYtf/59ETrQW0SaMF5CN5WlfTXdmUfDXMGO8EQwwVsG5BWZwulaSEE+AtwIyIYE+XiMrzZcsB4BjNTJqMMbx1wsnWIwbN0729aJFi6pixYqFenHCFopak0C/KDiwod3OjBkzTPlMx9YrEDLoW4t0jJMnT8pjdevWVQsXLlRr1qyRHqLs8xj9YGDwzjvvqP79+6vBgwfLZIc2j0qXLp30Ufa0F7IzkLqMbQwnDJgSME2MBBMc57D9ffbZZzJwGTt2rP05pMNjgga9k70BLanwHt3KQYP76FfoK5j0wWBr6dKlkhJ35MgR9dJLL0maqSu6deumrl69ar+gvQmxhqgFOGYjfdAfnnrqKelPiVaCf/75p4qk1GOkkBLiLdhndBmVt218HEEXB+2sHAkpyBjzaYOodu3ahXpxwpugxY4tQK9evewpQWabIOi00oYNG9rGjx9vT2fSaaVr1661JUuWTP73sWPHbFbBaunH169ft9WsWVPMckaOHOnUPGrMmDG2uHHj2lOPP/74Y48/HyZkOkVs1KhRAfgGhLjmt99+E6MlbIPaEKp58+b25ydPniyPzZ8/36vVePLkSdmmN23aFOPxzp072w18fEk/dmZs8vjjj9tGjx7t8bLRKCr6wXbx+uuv24YMGWLaZ5YrV062aRzvw509e/bIssaPH9924cKFUC8OiVAwrp4wYYJfqfsa7I/YJs3cJwPF0qVLZVlTpEhhu3Hjhs2KXGX6cfBBVAHmDzBvWLt2ramfjegE+rq9+uqr0q9Wz+7rtFLMBKMPHhq8Fy9eXNKcSHSBKNALL7wgqecwCmvVqpVT86inn35aovc6wq/bTsXG2bNnZRvDrOBbb70lKciEBIsTJ05IOjCOaehVi4wBRG2N1KxZU2bZsf17Q9q0aSWDAdu4EdzPkCGDMtPYBFkRBw8eNO0zSeSD7WL+/Pmqffv2pn2mTkGOBLOoSZMmyTVSrv010iTWBVljGJv4k7rvmL3mTWlWqNDGWE2bNlVJkyYN9eKENUw/NhEMnHRqzYQJE8z8aEltdhS0esfcunWrpPagb+327dtV7ty5xY3ZmLZHIhukl2OyAinGEKpwvnaGFrZIHYbDH97jCUjNRL9EpGLCzXXo0KFMOyZBpXfv3tKLEK7EmJRBzbgjSZIkUQULFpTjnDdgv0At0sqVK+2PYfIG91HjZ2YfTjjX43hNSCDRova3334L6xWN/QyOtYCpxyRciBQHZEz2LliwQG77k3JtFShqTQY1ruCXX355JMrgK3/99Ze6f/++ROqMgha1lGgJgDpbzF7hGm1YYBzVvHlzibR16tRJ3ksiF9i4V6pUSQbz27ZtE9HpDi1sIYBhHoVBhTvwPNpCrVq1SmYBZ86cydlAEnRQl4oJObRpcAcM8uBd4C0w8xs1apRMOO7bt09qk7CP4FgJcAxFvasGphwQDLjgNnwMcNsYhYXwRlbO0aNHpQUbDPsQEfa3ZpKQ2MibN29IIk34f8gK86aVFgbmMEVDC0JCrChqkRUEkytvdQHOWRijlSlTRuXJkydgyxc1hDpPOtpAc+jEiRNL/vvu3bv9/rx9+/bZlixZYrexRg0tmrnj2l37FtQeoFYAtZUVK1a0Xbx40RaNRHNNLb5Tu3bt5Dd955135L7x948NXWO7detWl7b19+7dszVr1sy+7UyZMiUA34SQ2EmYMKGtfv36MR5DXa2xphY0aNBAXusLgwYNsmXNmlVaI6CW1rgflSlTxta0aVP7/SNHjjg9vuJ1xmXJmDGjfN6TTz4p9w8ePOjVMrGmlvjClStX7NvktWvXAr4SN2zYYKtevbr9f3rSCgttSNKmTSuv//LLLwO+jIR407YQ2yXOMRi3BxL43OA8gf/33HPP2caNG+dROyKM+fT7pk2bZrMyVz2sqaWoDQBVq1aVld+vXz9TBa0jEDfOBl14XLNy5Upb6tSpbTly5LDt2rXLFm1Eq6g9ceKErWzZsmKsoQ2hunTpEuN3xn1/hC0OqrVr15bPwuQHDBgICRU4TsH8JjZRCzGKE320QFFLfEULxkCe2zGGeOGFF5yONb777ju3723cuLG8Ll++fHIuIiRcQOAHpn7YPv/444+AmsRByDruOziHQSO4E7ezZs2S1z7xxBOW33+u0igqdKD2VafT+ZNyjJQ2GAM9/vjjTl/jqk2Lsc4W6aSoP8M16it79OgRMX3trAgmmpAeiRRjpMWg5g+GUGPGjBHjHCO4j9/Zl1Rk3EddLtLX8ZpZs2ZJ+iUhoSJ//vzSSxbtd1xx7NgxtXv3bqmPJcTqZM+eXa5Rxx0I0Af3lVdekdR6nCdatmwpqftffvmlPf1+4MCBTt+LtlyopUU/aJy/8H5Cwsl0KtApyBhr165dW9puoZf5nj17ZNyG2yihQQlh9erVpV+uO4MolBJy//GQgE1PWJi///7bbl/vS1pQbBFaI47RO7RvcXysWrVqtvXr19u++OILW7x48WwFCxaU1hnRQDRFatF2BL8VfrM333zTdunSJXnc8fd0FZX3NGKLVHQ98540aVLb8uXLA/zNCIkdtJBCZLZGjRq2f//995FILbZhZMGgpU80pWIxUkt85Y033jAlK8xVJKtChQry+ShhOnXqVIznP//8c/t5yLEtCrZp3Xbwgw8+MH3ZCDGDJk2ayDbau3fvgOw/+vPRbtOYTYFzGVpxYfyF51966aUY432UhX3zzTf29OijR4/arM5Vph+HDmzMzzzzjGyQ8+bNC5ig1XhSZ6uF0s6dO2358+cXcdujR4+IF4PRIGp177WUKVPaMmTIEKMHp7vf09in2BNwIJ05c6akouO9+H+OfTsJCRX379+XlHucxDEgbtWqldwuUqSI1JSjVyzuV6pUKap+JIpa4iuYqMaxHPuK2eC8is9GvfihQ4ecnre6du1qPxcVLlxY7q9evdrWpk0beQzjIKv21SThD+q8sZ3CV8Rs9KQPSrvQZ9YZGzdulN6zeF3x4sUl4LBjxw455+n9KhD7diRCURti2rdvLxtk27ZtAypoPa2z1ZdXX31VxA12OOxsOBGZYWgVKiJd1CI6+9prr8lvg1k9R0Mvd78novLeAAObp59+Wt6L+sVorLEmkc3169cl+oRoLASs46Vu3brymmiCopb4CiZDcTwvX768qSsRdX7Zs2eXz+7WrZvL10HY4nnsm87OUajHJSRcmT59umynpUqVMvVzDx8+bN8nRo8e7fa1ELFp0qSR12IyF+Ny3E6VKpVt7Nixso8RG0VtqFm4cKFsmJkyZXLpPGu2oPUksqfFE/j111/FwAFp0hC5wXBQNJtIFbVILxkxYoQ9Ousqou/q94ztQOkIBCzMBvTs+aRJk9y6IhMSSnA8/P77720dOnQQB3Ckh0XrJAxFLfHHkRjHdGQxmAnSmbWZjSfjgjNnzth++uknGVukS5dO3ov9lpBwBmV4epI/EBFgpO97AoyqtMsxLugCAHdm8j8YqQ0xmOnUzmqoZw2GoNUgzTg2YavTVrGcn332mbTIwMnoxx9/jCiXtUgTtZh1g6Ndrly57CnhFy5c8Lpu2hvWrFlj3xZRT42DpSftfgghgYeilvgKxKSuu/OkRYgn4PyAGkB8ri+O+DifoAaQ5xUS7sC7QY+r0H7KrDFezpw55TPHjx/vVSYd0vYXLFhgynJEG3Q/DjEJEyZUNWrUkNszZ870y+XYG+CmBtfj2NAN27GcX331ldx/7bXXVKdOnVTu3LnFtVA75RJzWLVqlXr++edV3bp1VbZs2dTOnTvVxIkT1cGDB+U3c+Vk3K9fP7VlyxZ5La779u3r8f9csGCBqly5srp27Zp6+eWX1dq1a1WGDBlcuiITQgiJDNKnTy+dDeCaj3GEGXzyySfqxo0bqkSJEqpJkyZevx9ux0899ZRcExLOJEmSRGXJkiXGmNhftm3bpg4cOKASJ04szsfeOJkPHz5cxuHEd3jUCSD16tWTa7RLcSYazBa0EEWObV9c4dgOKGvWrGrs2LHq999/VwUKFJCTWeHChcWWHydM4ju7du0SYVmhQgWxkYe4RbsnrF9MQpQsWVLa6eAa950BMfzmm2/Ktafgf9SpU0fduXNHJlh++eUXlSJFCvvzFLYk3PYTHL+aNm0qJ3a0nMLt7777To5LhJCY4HxiZlsftOsZN26c3EarHgpTEu2Y3dZHB5Vq1aqlkidPbspnEs+hqA0g6O8GsXrq1Cm1efPmgApab2aaIJyciSOIYkQPu3XrpjZu3CgCqFq1aqps2bJq3bp1FLc+DBAaNWqkihQpIv01MbmBSCtmB3Hg87X3rCesWbNGDqr37t2TyRX870SJEj3yOgpbEmqwb1SqVEkVK1ZMjj2TJk2SybRFixbJbRyvMAFUpUoVdfz48VAvLiFhhRa1yPjxl4ULF8r1q6++KpOshEQ7Zopa9KWdNm2a3EYQggQfitoAgtReNFZ2TEEOhKB1Fn11xujRo52mrzpGDOfNmyepqjjJXb58WZUpU0YVLVpUTZgwQSJ/xDmIyGNAjshs3rx5ZTJg5MiR0sQeUdOuXbva1zMa2TvD3zQYTKAg0nX79m2JdkEYxIsXz+XrKWxJqDhy5IgqVaqUZC8gIyRVqlSS0dCwYUNVv359Va5cOZUyZUp5btmyZXLMhAgmhPw/OXLkMC1Su2LFCrnG+YsQK6DHzWakHyM77uLFi1LiVbFiRROWjngLRW2QU5ADJWgBoq9dunRx+xoIGE/SlnEftQGI1P72229qyZIl6oknnlDNmjWTVOXPP/+cg0sDly5dUj/++KPKkyePrDMc2FADe/jwYdWqVSsRlZ6mh3syOeEKRNoR0UKtLKJfM2bMcPqbO0JhS0LB22+/rc6cOSMDc0RmL1y4IOJ1ypQpMuONQTb2JdSGIyJ18uRJ1aJFC/5YhPyHWenHmKxev3693MbEEiFWwMxIrU49fuONN9wGEkjgoKgNQgoy8uoxGIP5UqAEraOpUPfu3T0WTK5mqPTjqKtBOhKELVJqYXT0ww8/qKeffloe//nnnyXN1WogeoRoNuqPM2XKpD788ENVsGBBtWHDBrV9+3ZZ1xCVOp3Yk5lAV6nhnrB3717Z3q5evapKly6t5syZ4zTl2BUUtiSYYB/B/oP9BBNomIxxBSaK8PqcOXOq1atXqx07dgR1WQmJ9vRjjBtu3bol5lP58uUzaekIiQxRi/3nwYMHPn/OlStXZPIVMPU4dFDUBhiICqTRAUTpkGoXKEGrgSjq0aPHI1FbV4IJdQCeCGCIMwwskTp7+vRpNWrUKNmRIXIh6po3by5CCs6J0QrEO1Il4RKNwQTqjTEg//LLL9WJEydExMJV2JhmrA2gXEVgkRLui7OxEUyWIDKLqFbx4sUl6gVXTG+hsCXBAvsKjG4wQWY0MHMFXoPXYjIJ7yWE/C/9GKn8/gzKV65cKdfa0JAQK4DMQ4zTMQ72x0EcJYbIdsCEEIIbJESEuveQFVi5cqUtQYIE0rcKPUqDCfrRTpw40d6XNrYeqK56oTq+Dvc1v//+u7w+b9688hx63lapUsU2bNgw2/HjxyO+T+2lS5dsU6ZMsTVs2NCWIkUK+Y5PPvmkrW3btrbVq1dLXzIjWNeuegP723PWVa/CHDlyyOc999xztosXL/r9mexjSwJNuXLlbGnSpPH6fXgP3hstsE8t8Yf79+/b4sePL8f/Y8eO+fw5L7zwgnzG6NGj+YMQS5E/f37Z9hctWuTzZ7z00kvyGf369TN12cj/wz61YQJqaDEDhMge6Ny5c1CNlty1gnFV4+loJuWq5lan1d68eVM999xz0hII/bn69OkjJkUdO3aUHmAwmELkGKZJ169fV+EOfh/0bh0wYIAqX768SpcundRIIH34/fffl9RHuLAOGzbMHqk19pl1l87tT89ZZyDVGCngSJ1B71u07UmdOrXyF0ZsSaDBsQKuxt4CN3G8lxCiVNy4ceXY708KMvqY6/MX62mJ1fC3rhYRXtSjI8MBY0USOljJHECMplCocYQLLVKE0P8tNkOnYOBKfDkaC7kTabNnz44heCGgkQYLYYt0W7jBzZ8/X9IGe/bsKTs9HofQ1RcMbAOdku0KiO89e/aIUNUXOBUjzRjrASf4wYMHi5tw5syZ5cT/559/yvOYKEBasfH743d11XBbpx/jfb7WzRpB/RPctWHkhTooGOw8+eSTyiy0sEV7J4h8tFxh30JiFpiQSZs2rdfvw3vwXkLI/1KQMdEDsyhMxHoLJpyRuvzMM8/YBTIhVsFfUatdwzFewjiRhA6K2gDhzOW4d+/e4h7cq1cv1bRpU3ETDiWuajwdH3f1OkSgHSO4iFhqBziYu8AleerUqSICYWQEd14tHiGIISr1/0AEBuZTqM/NmDGjXHAb9ujeGB4Zwf89e/as1ADjgp7BuEakddeuXSJg79+/L7PdiDZDZMNdFdcFChSQnrIaRwELAa+/qwbPQ9RC3Bpf648BlKvv1aBBAxmMYPvC5AFMdMyGwpYECjh0J06c2KdWaXgvIcQcB2RdT8s2JMTKohbjdl/AxD94+eWXTV0u4j0UtQHAVdseiKBBgwaJoPviiy/UiBEjVCjRLYBiE1+uXhdbqxiYFeGC9yLtFsXzuMBQCkBMwk1Zi1xEHNFjFaLT0bwK/SshciFwMRCGXXr8+PElcojXI50XLZPwmUgfPnfunDx+/vx5MZbRQLxiMgFiGSIa7Xa0gDUOsBGRhaszxDa+v7MUbEdB65hmDHGL2/ozzAIp3GgVhVRjiH047vmSxukpFLYkEBj3S0JI6ByQjSZRhFiN3Llz+xWp1aIWkVoSWuKgADfEyxBVxNaHFu1eXnrpJRFjmzZtMlXs+AoEmyfiy/F1uA9nX09A/ah+j+P/cnwMmyT6vjpGV3FB1BXRXYhXXBCxhHCF2IXI1RfUwepIr4764oLHIWyN/xcCGsJNR6S/+uorEeMaiHI42sHJ2JvvGgiwDhABR5QZUWT0P3bXCsVMsJ5w8IarMhyW6ZBJ/AHHQJRltGzZ0qv3wXUdx05/nF7DCdQzwtkZKdWhKsMgkc3ChQvV66+/rgoVKiTnBm/ABLDOGsNtnCMJsRL6GAy8PQ4b9x+MWxGAIaE7T1LUmgz60aIvrbuV3qhRIzVt2jQ5eWBwpi35IxHHlFxXIJKKVF/H+lNgfEynLLsytnIUxBC1ixcvVlWrVhUx6/h69NYFMKxyJ1xjA+ZZzgbf6FGLWmnj+vDX/MkViGpDwB47dkxqaDGQgbgMJhC2+P+BSHUm1hO1vkyMYNIL76OoJeR/54a8efPK2AODPm/2K4xFMCZBFhWypQixIgh6nDlzRow/vRlXzZ07V9WqVUvK1zDGJaEVtUw/NhlPjHqQdow0B8yoVq5cWaJfiDRGIsY0WxgVGQVebPW3zsSwY8qyK/GMSDgMqbD+/BHbngJB7CwFGwIWLs+BSDM2Ame9GjVqqMuXL4ugRA0tTD2CDdYDBS0xqz8go/2E+A+8KLAvoTQFmUuY9PTW5Ib1tMTqdbUQtRibeyNqkX0JmHocJvzXAogEGfQWzZ49u/S1KlSokPRgigbQi7VatWqP9GJFr1xnvVvdXXRvXVd9X3FJnDjxI31q3b3e14txWdz1/Q0EkyZNkt6/WI5SpUrZzp8/H7T/TQgJLOxTS8wgc+bMco7YtGmTV+/Lli2bvG/x4sX8IYhlad26tewHn332mVfvK1mypLxvwoQJAVs2YmOf2nAHOfgw+sGMKlJ+kL4QzP61gQKRSqTFOvZideWg7A7dSshVSyEjaDnj+D6zMJpnuev7azZo2QMjK6Q4Y9vANgJDD1/aoBBCCIledBmTNw7Ihw8fFg8QGC/C64MQq+KLAzLGaDA5BYzUhgePhXoBrO5YiJrPZMmSqVWrVolYipY6MUfxpx2UHcWiu369Wgh7IoiNro++CGhnoL5Xi/JggwMr1hlqeZFWBrfsmTNn+tQChRBCSHTjiwOydj2G4SPGIYRYFV961SKYAl8XBKlCUQ5GHoU1tSEGbWVQaA4DIIgWOPMOHz7c7sQWTbhqc4PHHI2bHKOjjvWsjhjNtjx5vVG4IgJqNJEKdH1sbKBVULt27aQXJw6WkydPZqsFQgghpvaqXbt2rVyXK1eOa5ZYGt3W58CBA9IeEkaGnrbygYs//SHCA7ofhwnTp09Xb7zxhuxMcOodN26c5YRMbK2F8DzWEVKmNIhcTp061Wv341ALV2fcvHlTvfPOO2rs2LFyv3z58iJoI9VEjBASO2zpQ8wAk+L169dXpUqVkq4KnvDUU0+pf/75R8yirDbeIMQIsiTRJhGmpkeOHFHZsmWLdQWhjRbK7fr376/ef/99rtAAQvfjCKNBgwYivNALFTOtcCKEqy6im9jRrAAEZmwi0yhoHdNAcDL39PPCScxqkV23bl21Z88emfHr0aOH+vTTT+09dQkhhBCz0o/Rmg2CFvW0nvabJyRawVgLGX979+6VFOTYRC0CUHryiPW04QNrasMItKnZvXu3at++vdwfPHiwNFNHXSdxbwDlTR1ROM6wFytWTAQt0o0xa44aWgpaQgghnoBWa5gQRUsftCaJjXXr1sl10aJFVdKkSbmSieXxpq4Wr7l06ZJkCxYuXNjy6y5ciGpR26dPH+k3hYbkcBmuWbNmjI0VGyTSPbEhY8NE38R3331XmvsawYnC8YKG5UZ69uypMmfOLLn1/rjv4uQyZMgQcUZGz1vk92MWqFu3btKDzsq4M4Ay1tRGCkhzwfaGlDH8tmXKlJHexUg7DlcwEELKTaZMmWQ/QD24EUSYUZuC7ThVqlSScYA0cCOYAXXcnxzNuEaNGiWpcThZOL6fEF/BsRXbX6JEiSRbY9u2bS5f++eff6o6derYt9cffvjB788kJFBgnPPcc8/J7c2bN3ssal9++WX+KIR46YCs62lLlCjxSOkbCR1RLWphgtChQweJdC5fvlxcyl555RUx4AGnTp2Sy3fffaf++OMPNX78eLV06VLVokWLRz4LNa6nT5+2XyCQjRs3TI7mzZsnNZ9IG/YXLCcid2jngjQHDPrRYB3pyDdu3FBWxJmDsgaRzkgCaV8YTAwaNEjud+3aVSK0GTNmVOEM9p2CBQvKQN7VxAMyDLDtoik5BvvYlhE9MPLll1/G2J8wuWRcNzD5wsQRUrCbN28e8O9FrOFb8MEHH6ju3burnTt3ynZcuXJlde7cOZc17nC0xLHXVV27t59JSKCzvYAnNbUUtYT4HqnF+AYw9TjMsFJT33PnzkmT5LVr17p8zYwZM2wJEiSw3bt3z/4Y3jNnzhyX71mwYIGtRo0atrt379q2bNliK168uKnLPXv2bFvOnDllOXBJkyaNrW/fvrbr16/brAjWcffu3eWCRvNz586VdR8p/Prrr/Ib4rdMmTKlbD+RSGz7Bbh69aq8bsWKFfbHnnrqKduAAQNcvmfPnj22YsWK2W7cuGE7fPiwLVu2bKYuN7EmJUqUsHXo0MF+/8GDB7ZMmTLZ+vTpE+t7XW2z/nym4z6Ca0L8Yfz48bItvfDCC25fd/r0aXldnDhxbJcuXeJKJ8Rms23evFn2iyeffDLW9ZEjRw557aJFi7jugoCn58mojtQ6otOKU6dO7fY1jz/+uJgnGEHEN23atJJqAHfa/x/T/z+Ymb99+7YYOr366quS9mwmaDmD4vWJEydKmu3FixclsocomBUjt4jYIs0Vl0iL0P7222+qUqVK8huinROiO6+99pqKRpBePXLkSGlPhQiWEUS/0qRJI+nF3377rbp//779uXz58qkCBQrI+5BO16tXrxAsPYm2bXHHjh2SDq9Bywbc9yRV08zPvHPnjjg5Gi+EmBmphXEitrPYokw4zqJMhBDyv0jtyZMn3Y6rz549a/dxcTQoJaHFMqIWKbydOnWSVAEMmp1x4cIF6ZfaunXrR1IlZ8yYISnMqLGCkZNOGwXIp0faMnYEbOyBsMaHyH7zzTfVvn371IQJE2KIW9QeIk0ZjyOdmoQnSHHHgPfy5ctyIFyzZo2klEcbsLhPliyZ1BgOGDBA9htMCGlQR4zU4tWrV6s2bdqo3r17P5JWPmbMGNmXsI03btw4BN+CRBM4tqNlA4zYjOC+J6Y6Zn4mJj0xYaMvcL0nxAwwLkiXLp1MuGDCNLbU45deeokrnpD/wAQP9h/gzhtHp/dj0p2TQuGFZUQtIq0QFY4GTxrMllerVk3lzZtXIoBGPv/8cxHDiCp9/PHHMgBHdMkRmFGhF2oggbhF2x+juIXhFfqZNmvWTMylsKNBwKPO12pR3HAFvxcmOyDSYF6G/rkw9ohGypUrJxFpHPiRuQAjLGONIWoQy5YtK1GCtm3bqu+//14miRwjC4jkwsCNkGgCpn/ICNKX48ePh3qRSJQAQzNP6mpZT0uI72ZRCGIBTgqFH5YQtTBuQvQIkSE4FDsC51kMviEy5syZE6uTGdJfT5w44Ta9J9AYxe2qVatkoIRUXJzUkKo8cOBASWtFqjWWF31wO3fuLCY+8+fPF9EBMWxMoyaBATN+cDSGsMPECJytEaGJVuB8jMkW9D5ExBXbKq5dge0T6cdHjx4N6nIS64BMAbTIQvTfCO67MoEK1GcmTJhQSlyMF0LMQota7c7qCDKFfv/9d7nNQTkh3plFYazy888/y21kbpLwImbhaJQBwQZXVQhVV6meiNCiJhYDDYg9pEzGBgQhUg7wnlADwYDIGC5I40QkECIXKZ+4QCigxYSrNhMQIKjNxY6MC9qx6NspU6YM+veJNg4dOiSCFumIiEziN7FaugpS/91NAGF/Qi0iMh0ICQTIoEE/zpUrV9qd67Fd4r6vbvWB+ExC/MUYqcUYCBPdRiB28Tic6n2d0CHEqqIWwTGMszGpiYwzEl7Ei/aU4ylTpkirHURhdZ0TomRIa4SgRbsRtG6YNGlSDNMO5NVjFn7BggUy846oEwQvRAnE40cffaTCEaRs1qtXTy44cUFUQTQgxQ2tUowXRA7RogX9GHFxBLVh2MFhbIQ0UWNdJImdY8eOiaBFrTXS2tGyB79PJIN0dm2QAI4cOSLbFzIC8N2+/vprVb16dWlNhJpDtP7B98f2CGCgg76zmITBPon777//vtSEW03sk+CCtPemTZtKRgsM/9B3Fsc/3TIKmS8o39BGf6hLRNaLvo3tGNs66sV1X+zYPpOQYIOJFmSbYdyC4zPaUhlh6jEhvota+OvoKK2joSwJA2xRjG6B43gZN26cPL969WqXrzly5Ii8ZsmSJbZChQrZkiVLZkuaNKmtYMGCtuHDh0vrhkjn1q1btgMHDtiWLl1qGzhwoK1du3a28uXLS0sKx/WROHFief7vv/+2hRNo5ROOLX2OHz9ue/rpp2Xd5cqVS1ooRAOu9pmmTZvK9lSrVi3ZftAWK2PGjLbq1avbtm3bZn//jh07bM8//7wtRYoUtkSJEtny5Mlj6927t+327dsh/V7EGgwaNMiWNWtW2T7RjgftwTRlypSR7ViDc4CzbR2v8/QzPYEtfYjZ4BiLbfWnn3565LmSJUvKcxMnTuSKJ8SB/fv3y/6RJEmSR8b5GGemTp1anl+5ciXXXRDx9DwZB39CLaxJ+IE6Y8xUITIxbNgwu5MiUpkQifvwww9V6dKlH0ltCjb37t1TixcvVlWrVo21FjpYnD59WpUpU0YdOHBAZc+eXa1du1YiQIQQ4giyg5A9pNvJEeIvyCCA83y7du3U0KFD7Y8jiwBlRagLRBQXpUeEkJhjSrTndLaPwA8F/jsolULmDiO14XeetIRRFPEepIYipa5ly5bS8w51BDCewhwI0rlffvllMfjRLnDk/0FKN1yOIWhxMER9MwUtIYSQYOHKAXnLli0yWEcbKbQCJITEBMERGHqCvn37xnhu5syZcs3U4/CFopbECqKxKIhHfTHcltHHFyZZ27dvV1WqVBFnZUQnrQ7MA9CHFusILtsQtFmzZg31YhFCCLGgqN2zZ4/dJwTgnAQwKR3qLCtCwhXdsnPEiBFq/fr19gju7Nmz5TbaFJLwhKKWeAXckbGjw2gKBj8w00LhPB6HKdCDBw8suUavXLkipmMYRMBREoMHZ27bhBBCSCDJlCmTZArBjVt3PoDJ5XfffSe3Yf5ICHEOyseQpQgQxEH3Brjaox0WDFTZCit8oaglPoGagv79+0tqMlw/MRuMNhalSpVSu3btstRaRW0FXI5RdwzXbBz8cubMGerFIoQQYlGMKci4oO0UXLxr166tGjduHOrFIySs+eabb0TA/vXXX+KIb3Q9RjCHhCcUtcQvChUqJCdMRGlRvI2UZNTiwqjCmPYUrUDUFy9eXIQ8BC3a9qB9DyGEEBJqUTt9+nQxUkTrwsqVK0ubQxrcEOIetBj88ccf5TbaeM6aNUtuM/U4vKGoJX6DWav27dvLjBbqa5HyBOdFNHcfM2ZM1KYk4yCH2iTUE+fLl0/SvAoUKBDqxSKEEGJxtKhFr2U4hqJbAWoC4YdBCImdevXqiUEq6mnREQSlZdiPSPhCUUtMI2PGjGratGlqyZIlkn6L5u+oS0Dkds2aNVGzpuEA/fXXX8sB79atW2KWtXHjRrZHIIQQEhbkz59fJU2aVG4XKVJELVy4UFqVEEI8A2ZqaImVLFkyuV+3bl2mHoc5FLXEdNDH648//pCaW/SVQq/bcuXKSS3C4cOHI3qNwzDgrbfeUp999pncf++999T8+fPZX5IQQkjYgBRj1AJiII7+mjgXE0K8A+2vxo0bJ+ZQMEcl4U0cG8JOhASICxcuqO7du6vhw4dLWnKCBAlUp06dVLdu3aQJvL8gLWTx4sVSM4T+YoHkzJkzMkBAVBYp14MHD1Zt27YN6P8khEQ3njaVJ4QQQqzINQ/Pk4zUkoCSNm1aMZHavXu3tBGA+yJc5dD4/ZNPPlHnz5+PiF8AM90FCxYUQYsda+nSpRS0hBBCCCGEhAEUtSQowEgJwhB1Pc8995zMuiA1CuIWkdsTJ06E5S8BEd65c2dJqT537pwYQW3dulVVrFgx1ItGCCGEEEIIoaglwS66r1atmvr999/VnDlzxEAKRksDBw5UzzzzjGrTpk1Y1dwePHhQvfjii/aG9ejDC0GbK1euUC8aIYQQQggh5D8YqSVB57HHHpNG8GiBg+gt2uKgNnbkyJHSBgiN4Tds2CAuw6Fi8uTJqnDhwtKHNnXq1Gru3Llq0KBBKlGiRCFbJkIIIYQQQsijUNSSkEZuX3nlFbV27Vq1fv16SfFFT1s0h4fTHFKWEcW9fPly0Jbp0qVLqlmzZqpJkybqxo0bIrhRD1yjRo2gLQMhhBBCCCHEcyhqSViAhtbob7tjxw7VokUL6aeHpvGot82UKZO00YFJUyCit/hMCGsIWfyvCRMmSDS5Z8+eatWqVSpz5sym/09CCCGEEEKIObClDwlLYNuNiO2IESMkUqrJmzevevPNN1WZMmVU0aJFJdrra0sfGD9BwI4ePVr9/fff9scLFSqkfvzxR4kWE0JIIGFLH0IIIcT/8yRFLQlrEEXdvn27iNtp06apmzdv2p9DfWuJEiXUE088oZo2bSqpwsmTJ3f5OdgpLl68qPbv36/Gjh2r5s2bJ7W8IFmyZKpRo0aqdevWdrFMCCGBhqKWEEIIcQ1FLYk6MEMzdepUtWzZMqnBvXDhQoznkTKMKCtaBuG1ELD6glpZ1OtqYP6UMWNGVa5cOVWnTh1VqlQplTBhwhB8K0KIlaGoJYQQQlxDUUuiGkReT548KanJS5cuVf/++6+6cuWKihcvnv0CkZo+fXoRr6iV1dcZMmSggCWEhAWYgEuZMqU6fvy427QqQgghxIpA1GbJkkXG+UhDdgXTjwkhhJAQceLECTlZE0IIIcQ1mPx1Z95KUUsIIYSEiIcPH6pTp06JH4BZtfx6VpvR3/CEv094w98nvOHvY83szOvXr0u2JUoNXREvqEtFCCGEEDs4QQeqbRjSmZnSHL7w9wlv+PuEN/x9rEUKN2nHGvapJYQQQgghhBASsVDUEkIIIYQQQgiJWChqCSGEkCgCzu/du3eny3uYwt8nvOHvE97w9yGuoFEUIYQQQgghhJCIhZFaQgghhBBCCCERC0UtIYQQQgghhJCIhaKWEEIIIYQQQkjEQlFLCCGEEEIIISRioaglhBBCooQhQ4aobNmyqUSJEqnnn39ebdu2LdSLRP7j5MmTqkmTJipNmjQqceLEKn/+/OrXX3/l+gkR69atU6+//rrKlCmTihMnjpo7d679uXv37qmPP/5YfqOkSZPKa9566y116tQp/l5h8PuAGzduqI4dO6rMmTPL/pQ3b141fPhw/j4WhqKWEEIIiQKmT5+uPvjgA2nns3PnTlWwYEFVuXJlde7cuVAvmuW5fPmyevHFF1X8+PHVkiVL1N69e9X333+vUqVKZfl1Eyr+/fdf2UcwEeTIzZs3ZR/6/PPP5Xr27Nlq//79qnr16iFZVivi7vcBONYtXbpUTZo0Se3bt0916tRJRO78+fODvqwkPGBLH0IIISQKQGS2ePHiavDgwXL/4cOHKkuWLOqdd95RXbt2DfXiWRqs/40bN6r169eHelGIExAJnDNnjqpZs6bL9bN9+3ZVokQJdezYMZU1a1auxxD/Pvny5VMNGjSQiQdN0aJFVZUqVVSvXr34+1gQRmpJ1KSZ3L59W3Xo0EFSu5IlS6bq1Kmjzp49G+M1mMF79tlnVa5cudTChQuD8t0IISTQ3L17V+3YsUNVrFjR/thjjz0m9zdv3swfIMTg3FOsWDFVr149lT59elW4cGE1atSoUC8W8YKrV6/K+CRlypRcb2HACy+8IPsV0vptNptavXq1+vvvv9Urr7wS6kUjIYKilkRNmsn777+vFixYoGbOnKnWrl0rtS+1a9e2P3/nzh0RvUOHDpVIRrt27WQgSAghkc6FCxfUgwcP1BNPPBHjcdw/c+ZMyJaL/D+HDx9Ww4YNUzlz5lS//PKLnH/effddNWHCBK6iCACT5qixbdSokXr88cdDvThEKTVo0CAJcCDYkSBBAvXqq6/KGPLll1/m+rEo8UK9AIQApIvg4opNmzappk2bqrJly8r91q1bqxEjRogJCmpcMIM6ZswYNWXKFFW+fHl5zbhx41SePHnUli1bVMmSJUXUxo0bVxUqVEiejxcvnjyGgyEhhBASKJAKjkht79695T4itX/88YdkHOHcRsIXmEbVr19fooGYmCDhI2oxvkNw46mnnpKMPwQukPFnzFgh1oGRWhIVaSZIu8OJx3ggy507t9S96NQ7zK42b95cZcyYUQ56mClPnjx5yL4TIYSYRdq0aWXSzrHkAvczZMjAFR1icN5BVMkIJl3/+eefkC0T8VzQoo52+fLljNKGCbdu3VKffPKJ6t+/v5SuFShQQLL3UGP73XffhXrxSIigqCVRkWaC9Do87ljr4ph6B1dQpOldvHhRdenSJejfgxBCAgGOfzBJWblyZYzoIO6XKlWKKz3EwPkY7rlGMDGLCBMJb0F74MABtWLFCvHrIOHz2+AC3wAjmNjDcY9YE6YfE8ulmaRIkSJgy0kIIaEC3gNIZUWaK1xaf/jhB/ErQIYKCS3wfEDGEdKPIZRQOjNy5Ei5kNAAA8qDBw/a7x85ckT99ttvKnXq1BJZr1u3rrTzgakk6tX1BDmeZ9lSaH8fZOGVKVNGde7cWcxDMS6El8rEiRMlekssio2QMAOb5Zw5c+z3b968aYsfP75t4cKFMV7XokULW+XKleX2ypUr5X2XL1+O8ZqsWbPa+vfvH6QlJ4SQ0DJo0CA57iVIkMBWokQJ25YtW/iThAkLFiyw5cuXz5YwYUJb7ty5bSNHjgz1Ilma1atXy7jB8dK0aVPbkSNHnD6HC95HQvv7gNOnT9uaNWtmy5Qpky1RokS2XLly2b7//nvbw4cP+fNYFPapJWHfj+zatWsSXV28eHEMM6k2bdrIzN2yZcvEKCpdunRq6tSp0soHINULdbWoqYVRFCGEEEIIIST6YPoxiYo0E4jeFi1aSPod3gNTqHfeeUdqyShoCSGEEEIIiV4YqSVhwZo1a1S5cuUeeRz1YePHj5dalm7duklU9tKlSyJs0dYHdUqI7Oo+ch9++KFEa9Gqp3LlytKTls6fhBBCCCGERC8UtYQQQgghhBBCIha29CGEEEIIIYQQErFQ1BJCCCGEEEIIiVgoagkhhBBCCCGERCwUtYQQQgghhBBCIhaKWkIIIYQQQgghEQtFLSGEEEJIAClYsKC0n0uYMKG6ePFiUNZ1jx495H/iOlQEahnQ6g+f26xZM2U1Bg4cKN/9559/jvE41gUex7qxEg8ePFC5c+eWVo+3bt0K9eKQEEJRSwghhBASILZv365+//13uX337l01adIkrms3HD16VMRZtmzZuJ4cOH/+vEwQFC9eXNWpU4frRykVN25c1atXL/XPP/+ob775huvEwlDUEkIIIYQEiDFjxsj1k08+GeN+oOnYsaPat2+fXEcbtWrVku/Wp08fZSV69uyprly5EtLoezhSt25dlT9/ftWvXz915syZUC8OCREUtYQQQgghAeDmzZtq6tSpcvunn35SyZIlU3v27JHobaBJmzatpGXiOtpIkSKFfLeMGTMqqwAxi9RiTI68+uqroV6csOPtt9+W9OORI0eGelFIiKCoJYQQQggJADNnzlTXrl1T+fLlU+XKlVMNGjSINVpbtmxZSb9ds2aNWr9+vXr99ddVunTp1GOPPWavl0RqLl6DVN158+ap8uXLq9SpU9vf56qetVu3bvJY27ZtXf7/P/74Q17zxBNPqHv37tkfnz17tmrZsqV8l1SpUqlEiRKpp59+WsTE/v37TVlfqAvFZ4Jjx47JchgvsdXU4rvjcazDO3fuSGTz2WeflWXNmjWr+vjjj9Xt27fltVevXlUfffSReuaZZ+R5rFOsq/v377tcvpUrV6ratWuLmE6QIIFKnz69RI03b97s9PUHDhyQ9YPvhHpqTGqg9rNatWpq3LhxXq0bvP7ff/9Vb775pmwL7jhy5Ii8LkOGDPJ/s2fPrj777DNZJ66YNm2aqlChgmxHeA+WE8v+999/O32942/ibjv2dvt++PChiNMXX3xRpUyZUsWPH1/WNWrT33nnHdnuHWncuLGKFy+eGjFihNvfkEQvFLWEEEIIIQFAi1eIA+M1BERspjYQxBAAhw8fVhUrVlSVKlUSsWHk+++/VzVr1lTXr1+X6F2ZMmWkxtAVzZs3l+vp06fbxZ0jWmw1adJExISmfv36EnVOnDixiOjKlSuLEMHrixYtqjZt2qT8pXTp0vZa0aRJk6qmTZvGuHgKapexfP3791d58uSRdYfJBdRc1qtXT126dEk9//zzauLEiapIkSKy3s6ePSsiGKLJGRDA+B0wiQCBjPUOQYz7L7300iMiFZMDxYoVk8fxu7322muqatWqEmldt26dGD55w9y5c+Uay+CO3377TRUqVEgEI77Xyy+/rE6fPq2+/vpr1bBhw0deb7PZZN02atRIlqtw4cIi3CH0sey4v3TpUmU27rZvTJ60adNG7dy5U+qH8Zvhd8I+M3jwYPmOjkAY43ufOnUqKJkQJAyxEUIIIYQQU9m/f78Nw6z48ePbzp07Z388d+7c8vjEiROdvq9MmTLyPC5Dhgxx+pqnnnpKno8bN65t3rx5Tl/TvXt3eQ2ujbz44ovy+NSpUx95z71792zp06eX5/fs2RPjuWnTptlu3LgR47GHDx/KMuL1zz33nNz3ZBncceTIEXkPvqMrxo0bJ69p2rRpjMdXr15tX3clSpSwXbhwwf7c0aNHbalSpZLn8ufPb3v99ddt//77r/357du32+LFi2d77LHHbMeOHYvxuSNHjpT35ciRw7Z79+4Yz61du9aWPHlyW4IECWx///23/fHmzZvLe3r16vXI8t+8eVPe5yl4PT4fy3bt2jWnr8G60N/9008/td2/f9/+HH7LpEmTynObNm2K8b5hw4bJ42nTprXt2rXL/jh+S/37pUyZMsY2DPT/coXejvGbeLN9Y93jucyZM9tOnz79yPN79+595PfRvPvuu/Ler776yuVykeiFkVpCCCGEEJMZO3asXFevXl2iSBodrY3NMArR0Pbt27t9DSJs+Hxv0P/fWfrrokWL1Llz5yTCiDRjI0idRvTUCNJIsYylSpVSf/75p5g3hQNYLqzfNGnS2B9DOi1ScnV67ujRo1WSJEnsz+M7V6lSRVJfjSmzuK9TuBFhL1CgQIz/hUjo559/LtFhpL5qEPkFiM46gmg33ucpWLf4/MyZM6vkyZO7fS2i5l999VWMiD1+S/3dV6xYEeP13333nVx/8cUXEuk0rsPu3bvL90U976hRo5SZuNq+9XpDZBbp044g8o5IuTOee+45uUaEl1gPilpCCCGEEBNBTd+ECRNiiEjNW2+9JbV/SPU8dOiQW0fX2PDkNY4gjRjiFOLmxIkTMZ7TQtdxmTUHDx6U9M9OnTqpFi1aSE0rLlqImFVb6y8QPY6iHOTMmdMu/FCj6ep5pLBqdu3aJfdRl4r3OQNptMCYgl2iRAm5bteunfrll19cpnt7gl6/RpHuCqQ5O6t1hRgEJ0+etD+G319vg87Su/E5OmV99erVykxcbbswAINwX7x4saRMYwLCU/T60euLWAuKWkIIIYQQE0HEE61FUD+J2k4jMGBC9A4ZnDqa6wxP+rT60ssVZkWoUUQEEjWlGkRosdyopUR9pZEHDx6IOIPpEmpOUQ+KZYdwxwV1kQB1q+GAq0gevru753UU1ChA9XeD+HM0rtIXLWDRR1bTuXNnqRXdunWr1Ds//vjjUh/64Ycfel3zCVMrgM+IDVffTb/X+N20wIUYdPXZEPPG15qFq20XvwEmVxDNhrkV6pYzZcokdb4wj7px44bLz9Tf4fLly6YuK4kM4oV6AQghhBBCogmdWgwBAbMeR7RAgNvrl19+6dTcCYP62PDkNc5AJBb/G4L0k08+kccmTZokEWZE0OA4awQidvjw4ZIOCvOlF154QcQ5BDB44403xETq/0stQ09s7sCxPW8E4h/guztOUDhibJ+E1Obly5eLgIXREqK4uPz666+yDpF6O2TIEI+WQf8enkwaePPdAoleb75suzALw4TA/PnzxfBq48aNas6cOXJBmjTWK/rSuhL/cOcm1oOilhBCCCHEJOA0i9RJcPHiRRmQuwJprRA8aPESTODWmyNHDmnXguVD6xTdTsVZ6vGMGTPkGjWjzmp40bomWsmSJYs9mqnXkTcgOosLwKQBXIyRgj506FCZQECrp9jQqdLYnswEmQT6cyGYnUVrdaRav1YDZ2y0fILztrM6X7Rk8rcXMeqAdS3w8ePHJUsAbtMdO3ZUa9eufeQ9ev1gwoVYj/CYziGEEEIIiQIgfJCui5YxiFy6unTp0sUjw6hAoWslsbw7duxQe/bsEQGHXqWOoAWONltyZmLkrMWKr6D/KwiXXqMQpIjA7t27V76rP6CWGkJWR3w9XW8wQMJ6QQ0sRKRZwHhKpxc7E+zYTvXjjuJbi1xn5mC///67iFAzwbaJlkvu1hvaKAFXtc8kuqGoJYQQQggxCV0nG1tfVUTrwMKFC2PUYgYLLB9SVRGF1Wmw+jFXJkN4nTGtFFFpfA8zBSicoiHgUJOsxXQoQUQSLsAQeLVq1VIbNmx45DWYxFi1apXasmWL/TFEYp0ZZ+F7IQXZ1SSBq1TdkiVLyrpHja6ZoP8ugGPy7t277Y/j+/bq1UsEJNKfW7VqFeN9ul8uhOadO3fsjx89elS2I19T0WHMhT7Kzvo4L1iwwO1600ZdcFYm1oOilhBCCCHEBJASCYfghAkTqoYNG8YafUPbEqRwGg2bggUiba+88oqkncKYx+h06wjqbiE00dYlV65c0t4H7W8Q5YOggdgzU0QixRlCES1mUK/bsmVLuYQKpLvC+Alp1kjdhrNyzZo1xVALEUxEchHhNkYQYWoEJ18YHeH7NGnSRCK0uI+IK4SXN+2Y8P8A6knNpE2bNpLie+HCBWlrBLGKdY6JDNSvQlBPmTIlRlsqvU1A7CLVHgZiiECjfjxv3ryyPlB37QtIW8a+g3Tv0qVLyzqGsRnWJVonYTv85ptvHnkfJoYQIYaplE73JtaCopYQQgghxAR0KvHrr7/ukVmNjtaGKgXZWD+LvqkQXM5AKjWiixBh//77rxj4wA0YNY6bN2/2yJXXG1C7C7EFoT1r1ixZP6FaRxoIKdQfN27cWBx4UQsNt2jURaOlD/reQuxr0I4GjtEQfojgzpw5U1KYsS5h0IX3Ix3ZUzDhgFZMMPSC4DcLrGNMqkC4QkQiFR3r/ObNm9KuCZFTTGA48vTTT0tkFK7ESIlGxgFa6Xz66acidDE54QuISPft21cmC7Busa0tW7ZMzNQ6dOggwhVu0o5oozNsN96sVxI9xLGFi1UdIYQQQgghxGXEGCngEHqYOCH/D6RMwYIFJUsCxlZwqibWg5FaQgghhBBCwhzU9iLyizZQ5H8gsgyjs48//piC1sIwUksIIYQQQkgEgJ7BnTp1knRm1LFaHaRioz4dxlJ//fWXz72bSeRDUUsIIYQQQgghJGJh+jEhhBBCCCGEkIiFopYQQgghhBBCSMRCUUsIIYQQQgghJGKhqCWEEEIIIYQQErFQ1BJCCCGEEEIIiVgoagkhhBBCCCGERCwUtYQQQgghhBBCIhaKWkIIIYQQQgghEQtFLSGEEEIIiZUePXqoOHHiyIUQQsIJilpCCCGEEBJ0lixZomrVqqUyZ86sEiZMKNe4j8fDhU2bNqkmTZqop556SiVKlEhlyJBBVa5cWU2dOjWg//f3339X8ePHt08iNGvWzO3r9etiu5QtWzagy01IqIgXsv9MCCGEEEIsx8OHD1Xr1q3VmDFjYjx+8uRJucydO1e1bNlSjRgxQj322GMhjUx/9dVXsryas2fPqmXLlsll8uTJatasWSJ2zQT/r1WrVur+/fumfi4h0QxFLSGEEEIICRqffvqpXdAWLlxYdenSRWXPnl0dOnRIffPNN2rXrl1q9OjRKl26dKp3794h+WUgqHv27Cm3sWyffPKJyp8/vzp16pQaOHCgWr16tVq0aJF6++231ZQpU0z934MHD1bbtm1T6dOnV+fOnfPqve3atVPt27d3+XzSpElNWEJCwo84NpvNFuqFIIQQQggh4Q0il1ro+Tp8/Pvvv9Vzzz0nUchixYqpdevWqcSJE9ufv3nzpipTpoz69ddfVbx48dS+fftUjhw5VDC5dOmSeuaZZ9TVq1dV1qxZ1Y4dO1TatGntzz948EDSpBcsWCD3IXDNSus9ceKEyps3r7px44YaP368atq0qTyOa9x3ha5z7t69u/xOhFgN1tSSiGLIkCEqW7Zskurz/PPPy0ymZv/+/erFF1+UmpxevXqFdDkJIYQQ8ig//PCDPa120KBBMQQtSJIkiTwO8LoBAwYEfTUiSgxBC/r16xdD0IK4ceOqoUOHyjX49ttvTfvfHTp0UNevX5ca2pdfftm0zyUk2qGoJRHD9OnT1QcffCCzkDt37lQFCxYUswadmtOxY0cxc5g3b55cYO5ACCGEkMBw+/ZtEXRFihRRyZMnl0uJEiUkfdZZPSiiuzg/g9y5c6uSJUs6/Vw8nitXLrmN1wc7qRA1veDxxx9XtWvXdvoaTKBXrFhRbq9cuVKEqL+gPnf+/PkqTZo0pgplQqwARS2JGPr37y/GCc2bN5fUnOHDh8uM7tixY+X5y5cvq6JFi6oCBQqoTJkyqStXroR6kQkhhJCoBIZJpUqVknpY1MAiXRaX7du3q3feeUfEoNFgCRw5ckRqUgFSjN2hn4dx1NGjR1WwuHv3rj0LDN8vQYIEsS7jnTt3JF3aHxAZfvfdd+U26oohbAkhnkNRSyICnGRQ06JnRQEcEXF/8+bNcv/LL7+U+xC6eA5RXEIIIYSYD0Tr3r17RYgtX75cztEwTMqTJ488j3rTUaNGxXgPXq9BpNYdxudRVxssUPOLmlnHZQj0Mn788cfq9OnT6qWXXpLJe1+ZOXOmTPxjLITIec6cOaUeF3W/hEQzFLUkIrhw4YKcZJ544okYj+P+mTNn5HbVqlXV+fPnZRZ4zpw59loXQgghhJgLIrK//PKLOAFjQhkpyI0aNVIbNmywn6tRd+pogmRM33VHlixZ7LePHz/+yPOoOfW0N6s3PVvNXEZP2bhxoxo5cqT0pR02bJjd9MkXMHEAgX3r1i2JnB88eFBNnDhRlS9fXsytdK0wIdEGRS2JKtC8HS0ACCGEEBI4kGLsTBSmTp3aHmncs2dPDBFlrDtNliyZ2883tp6BOAsWwV5GZKKhZy/qhuEbAmdoX0BktmHDhhIdX79+vaSEo5cu2ifpVGbUCteoUUPdu3fPp/9BSDjDPrUkIoDzICKvqOExgvsZMmQI2XIRQgghVqRx48Yun4O/BYBQQx1toUKF7MZSGne1qnqSWoOooyNff/21+uijj5Q/OOvZauYyekLfvn0luorODl988YXyFdQep0yZ8pHHK1WqJBMQVapUEaG7du1aiQbr+l1CogWKWhIR4MSCkyQcBmvWrCmPwYAC9+F6TAghhJDg4a7eFNFaZ5FPtOMzRijdAfMljWPbH/Dkk0/KxWzMXMbYQCvC3r17y220MUK01VecCVoN0sHhrIzfDFFa/C+KWhJtMP2YRAxIy0FazYQJE6RepF27durff//1y1CBEEIIId7jToDBrFGjTZcAjIs8TdfF+d3TNGAzCdYyIordpk0bEcaodX3ttddUIHnmmWckagtQZ6tdqAmJFhipJRFDgwYNxAgK6Tkwh0I609KlSx8xjyKEEEJI+GE0XjIaMjnDaLxkNGQyptuilZ+/6cdPP/10wJbRHVu2bJFUYPDCCy+oadOmPfIajHk0SOPWr8mXL59cvAWuyIsXL7avP7Q/JCRaoKglEQVSjZluTAghhEQeEFWav/76y+1rjc/rNkFGYICEzC1/QJ/ZNWvWxHjs2WefFQ8PRJj9XUZPU5c7d+4c6+vXrVsnF9C9e3efRK0/rsqEhDtMPyaEEEIIIQEHUVEdHdRRSldoAYe6WZgoBdPDo0SJEnJ78+bNbutq9XeAYVSxYsVUuGPsE8woLYk2KGoJIYQQQkjAQaQQLWV0lBMpuM7A4zoKitc7izCOHz9e6lL9uThGaTXakPLatWtq9uzZTl+D1OQVK1bI7QoVKsSoxfUEtEOKbfmQcqxp2rSp/fEePXoob8FnLV++XG5nz549ICZbhIQSilpCCCGEEBIUOnXqJOm9AK1mHFvh4D4eB/HixZPXB5uWLVuqFClSyO2uXbuqixcvxngeqcnt27e3m2C5Sh+G+IQgxwUiPFAsWLBA3b9/3+XzaH9Yp04de9QZy05ItEFRSwghhBBCggJqVrUI/PXXX9WLL76opk+fLrdxjfu4DfC6nDlzBv2XQUuifv36ye1jx46p559/Xo0bN06Wa/78+eIiDCEJGjVqJFHXUIJJgKeeekra9EydOlXSpn/77TeJJH/22WdSf4setaB06dKqQ4cOIV1eQgIBjaIIIYQQQkjQ+Prrr9W5c+fU2LFjRWw1bNjwkde0aNFC9erVK2S/CtrtoO3NV199pQ4dOqTefvvtR15TtWpV+Q7hAJYV/WdxcQWitaNHj5YaYEKiDYpaQgghhBASNNDHdsyYMSKyRo4cqbZv364uXLig0qZNq4oXLy6CskqVKiH/RXr27KkqV66shgwZotavXy9pvClTplQFCxZUzZs3lyhtOAAXaJhWIUJ7+PBhWZeoB0bvXLQaQssg1OSWKlUq1ItKSMCIY0PFOSGEEEIIIYQQEoGwppYQQgghhBBCSMRCUUsIIYQQQgghJGKhqCWEEEIIIYQQErFQ1BJCCCGEEEIIiVgoagkhhBBCCCGERCwUtYQQQgghhBBCIhb2qSVhzb1799SZM2fkcuvWLXX//n254HF9ja5U8eLFk35sjz/+uEqePLlKmjSp3MclQYIEKk6cOKH+KoQQ8ggPHz5Up06dkuMWj1OEEEJITDDOv379usqUKZP0uHYFRS0JGQ8ePFCXLl1SJ0+eVAcPHlR79uxR//zzjzp9+rRcMNC7ePGibMyahAkTqkSJEskFA0CI3diIGzeuNHFHk/eK/9feeYA5UX5d/KVJl95776A0RaRJlQ7SRJCOIl1AQaqAgApKBylSRKr03psUUXqTLr333pzvOff/TcyGZDdlsklmzu95stnNJpPJZMp73nvvueXKqbRp0/r5kxFCiHvgPJcuXTpuLkIIISQczp8/H+4YPopmrxgI8TOIrK5fv15NnDhRLVu2TD179izM/xFhffPNN1WhQoVsN8zMQMQi4uo4Q4PlrVixQpUoUUKdPXtWnThxQh0/ftx2jxuEsz3Zs2dX1apVU1WrVlXFixdXMWLE4PdOCAkId+/eVQkTJpSLNTJNCCGEEPIf9+7dk8nfO3fuqAQJEihXUNQSv4N5k+3bt6sZM2aoOXPmqNu3b9v+lzdvXome6gIWghORVXfRRW3lypVditPTp0+LgF66dKnavHmzvEYHg0m8tnXr1qpkyZJM/yOERPrFGhdpiFuKWkIIIcS76yRFLfEbmFEZMWKEmjZtmjpz5oztcUReGzZsqBo1aqQKFCjg03u4I2odD4w1a9aIyF2+fLm6ceOG7X/58+dXHTp0kHWLHTu2T+tFCCHuQFFLCCGE+H6dpPsxMRykFA8fPlxlyZJF9evXTwQtDJuaNGmi1q1bJ3Wz33//vc+C1htwMNSpU0dNnTpV6nG3bdumPv30UxUnThx14MAB1bJlS8nX79Gjh6QDEkLMxZgxY1TGjBmlpOGtt95Su3btcvncBQsWqMKFC0tGB0oj3njjDfXLL7+EeU7Tpk0lw8P+VqlSpUj4JIQQQgjRoaglhqYZz5s3T+XOnVt17txZalnx+6+//qquXr0qQrJs2bIepRf7E6zHO++8o8aNG6cuXLggQjtDhgyy3kOGDFGZMmVSdevWVVu2bAljVkUICU1Q/vD555+rvn37qj179sjEWsWKFdW1a9ecPj9x4sSqZ8+easeOHTLp1axZM7mtXr06zPMgYnWDO9xmzZoVSZ+IEEIIIYDpx8QQUDPbtWtXGfyBlClTqv79+8sAEO12/IWn6cfuODKj9nbkyJFq48aNtsfz5MkjEd3GjRuHW6ROCAleEJktUqSIGj16tK2dDswn2rdvr7p37+7WMgoWLKiqVKmiBgwYYIvUotRi0aJFXq0T048JIYQQ1zD9mEQKcBxGOi9chCFokcaLKAjch1u1auVXQeuv6G3NmjXVhg0bJDKDz4DPdPjwYRn4oh4YjyHKQwgJrbKI3bt3izGdDtzU8bc+GRceyNaAc/uxY8fEVM6eTZs2qeTJk6scOXKoNm3aSCsyVzx9+lQu0PY3QgghhPgG04+JV2CAN336dJUvXz41f/58GRyiHhViFnW0qKENdfDZJkyYIH10EblFKvWjR4/UpEmTxKkZUZ8pU6aoBw8eBHpVCSERAFM4ZGKkSJEizOP4O7x+1zCmwPkMLcUQoR01apQqX758mNRjnAsheL/99ltxWEdfbLyXMwYPHizZHvqNPWoJIYQQ36GoJR6DmtP69euL8dP9+/elLnXfvn3SexaRTLMBkxhEaQ8dOiQD1g8//FBSnWEw07x5cxkUw8l51apV6sWLF4FeXUKIgcSPH1/Ob3/++af65ptvpCYXkVmdBg0aqOrVq8skGLI84KyO59o/xx6Y0EEo6zca0hFCCCG+Q1FLPGLt2rUyeIMhFFKLBw4cKEIPj5kduJoi7XDmzJliLAUzqaxZs0r0FmZYiM6kSZNGdezYUQa1NJciJHhImjSplBfAtM4e/A0PAFcgCwXHOZyPu3TpIuUWiLa6InPmzPJeJ0+edPr/mDFjigu7/Y0QElhwvUabv7///ptfBSEhCkUtcYvHjx+LWKtQoYK6dOmS1I6hDg3OoKFWN2sEqJ/78ssv1fHjx9XOnTtVu3btVLJkycRFFanKRYsWVTlz5hQzmdOnTwd6dQmxPEgfRtkA0oR1YBSFv4sVK+b29sFrUBfrCkx4oaY2VapUAdvmKANBuzJCiHugdKBq1apiJAcPDUKIe2CMu3XrVjGM/eOPP9Rff/2l9u7dK0aukY5GSAQcOXJEy507N3rayO2zzz7THj58GBTb7dmzZ9qiRYvkPtBgHZYvX659+OGHWuzYsW3bC7d33nlHGzt2rHbjxo1AryYhlmX27NlazJgxtalTp8p5rXXr1lrChAm1K1euyP8bN26sde/e3fb8QYMGaWvWrNFOnTolzx86dKgWPXp0beLEifL/+/fva127dtV27NihnTlzRlu3bp1WsGBBLVu2bNqTJ0/cWqe7d+/KOQL3RjB//nxZXt68ebV///3XkGUSYvbzgv31OmvWrNqtW7cCvVqEBD2HDh3SYsSIEeb40W/6ddUI3L1OWi/ERjwCUYwPPvhAar+Qovfzzz9Lmi15FdTZorUQbqg1XrhwoaQlr1u3TmawcOvQoYNsP9TgVqtWTcWOHZubkpBIAl4A169fV3369BFzKKQUoxZeN486d+6cpBvrPHz4UH322WcSfcWxiuyLGTNmyHIA0pnhkj5t2jRp6wNPAWSzIEMDacaBAL3A4dgODwCcc+BMTwhxDjIa4A8C0NlgzZo1UjrQsGFDqY/HMU4Icc53330nEdkkSZKI/wwMEvVbILI42aeWuAQuv2hPAfMjDIwWLFggabfBhNF9av3B5cuX1ezZs2UwbN8KCLV06HuLbYw+uIQQ6+GPPrVwop88ebJMnv3yyy+GLJMQswHx+vbbb0u5QI0aNaSTAyapMN5ByRV6V4dXP0+IlTl//rx4SEAjwDgVqfv+gn1qidegZgwnc8xaYmfFjCUitsEmaEMF1NZ17txZemSiVuerr75S6dOnl4N0zJgxKm/evKpUqVIifNFLkxBCfOHTTz+Vexj6oZURISQst2/flslwCNrChQtLVhWism+++aZMCAGYQc6dO5ebjhAnDB8+XDRC6dKl/SpoPYFGUSQMcPKtV6+emCaAvn37SoQxUKl0ZgO9btEW5MyZM+IkXbt2bbmQbtmyRVoFoWclRO/Zs2cDvaqEkBAFg3SYYsHQCqnRhJCwjBs3TgzVMMG8dOlSFTduXNv/cC3+4osv5He07UNpASHkP3BMTJgwQX7Xj5VggKKW2ECNGWZckIIDp1CkrfXr109a2RCDD7yoUVW5cuVkW0PAYvIAEV24JyPdKVOmTOLEiBYDqE0ghBBvorU//fSTZN8QQv7jt99+k/vevXs7bek1aNAglT17dqmrR50tIeQ/xo8frx48eCCZhpUqVVLBAkUtEdCaBm0t0F8VBd8wN0I9FvE/6G2LyQOIW1xoYfSi98yDsEXNAqK7mHQghBB3aNCggdToIhq1ceNGbjRC/p9Tp05JyxFkSdWsWdPpdsH/YOYIcC0mhPwPZACNGDFCfu/WrVtQBb6imj29JH/+/LYG9xBtK1eutP0foXNEJvE/fCnOUkwyZswo/7O/oc7CnokTJ6oMGTJILQZ6NIUaKPCGMcI///yjsmTJIv1nS5QoEejVshwwuoLTNCYU0AD+888/V4kSJRJH1l69eklqct26daW+OVgjLzg2cIx06tTJ9hiOMcdjSI8i6SxZskRmxdH/GI6ThBDfiBcvnhjR6bPqhJD/gQwp/dqUNGlSl5ulSpUqco9xY7BecwmJbGbMmCFBlrRp08rkaTBhalGLDY5BNgx60Az4vffeE4c7vbE26kcRNkcNY3j0799fHGz1W/v27W3/g+CApTVMfnr27KmaNWumQgmcrMuUKSNmIqjBQguIbNmyBXq1LA/E3bBhw9TFixfV9OnT1TvvvCMF+YjkIm0Zbskwtgim1GRE+ZHqiIkkR2A6Zn8M4Zixn/Vr27atGjt2rBo9erS4QdMwixDf+eSTT+R+0aJFctwRQv5LPa5Tp064m+Pdd99V8ePHlzZgGEMSYnX+/fdfNXToUPkdwQuUKgYTpha1SB2Bux1EGqJASOHE7PXOnTttXwhcfmHpHh44qaHmQr/ZGwrAwRa9mTCQhyiEDXyoALFUvXp1Efforbhp0yY6HAcZ6I2JaAt66e3fv196ZmJ/RCQX6eEQtzNnzgy4uEVtxUcffSRZC4guO4K+mfbHkH3rEohapHqhZyiyHdDbDI8RQnwjX758koWDCTH0GCfE6qDMBxOwyBiqVatWhNlTGBsBtA4kxOqsXr1axp9oQ4dgRbBhalFrDwb9iKai6B9pyJ6AaC/qTDHg/v7772WAoIMiaQhafMEQGAMHDlTBDuo1ESlDw3F8FogRuP9B8JPgBfsZWgAhegsTi8SJE6tjx47J9xdocYtIK1K1EEV2BqLKSPPC8dKjRw+ZSNGBwEWGA4yyUqdOLZFaCHdCiO/oqf4otwn05BchwZJ6XLJkSZUiRYoIn6+nILOulhBlm9zBuNOovuqGopmcAwcOaHHjxtWiRYumJUiQQFu+fPkrz9m4caOGTXH79u1X/jds2DD5//79+7Vx48ZpCRMm1Dp37vzK827cuKE9evRIC3b+/fdfrVu3bvJ5cevatav28uVLLVR59uyZtmjRIrm3Gvfu3dMGDRqkJU6c2PZ95siRQ5s5c6Z8z5HFrFmztLx582qPHz+Wv0uVKqV17NjR9v+ffvpJW7VqlRyLM2bM0NKkSaPVqlXrleXcuXNHPhMhVuLu3bty7OLeH+C4jB8/vrzHnj17/PIehIQKxYoVk2Nh1KhRbj3/8uXLtusrfifEyuTNm1eOhd9++y0or5OmF7VPnz7VTpw4of31119a9+7dtaRJk2qHDx92W9Q6MnnyZC169OjakydPtFDDUdBCsIc6uqjdvn27Nn36dG3nzp2a1XAmbsuUKSP7vb85d+6cljx5cpn00XEUtY6sX79e1vHkyZN+Xz9CrC5qQaVKleQ9RowY4bf3ICTYOX/+vO0aefHiRbdfV6hQIXnNlClT/Lp+hAQz169ftx0/165dC8rrpOnTj1HEnDVrVql3Rf/PAgUK2KyoveGtt96SlF04BYcSmMBA/TDSpwFMeeCuaxbQBufjjz+W+mi0wQlFF2pvQaouUnqxTyL9HXW4aOGBejrHdHmjgQkbeusWLFhQamFx27x5sxo5cqT87izdEccQOHnypN/WixDyH7qb/datW7lZiGVZuHCh3KPOHKUu7sIUZEKU2rJli2wGlLslS5YsKDeJ6UWtM+cuX0xo9u3bp6JGjRpShkoQtHB41h1nUZeJukUz4MyRELUvELdffvmlshIQt3DgPnTokNS2PnnyRH3xxReyLbDf+msy4eDBg7J8/Va4cGGpt8DvMIByRF8X1NASQiJX1OJ6QIgVcdf12JWoXbNmjXr+/Llf1o2QYGfTpk22VljBiqlFLaJXmFlABAsDb/yNLwUDboA+Sxhg6xEjfXB+69Yt+Rv9WocPHy6us6dPnxazm86dO4vrrDOH12AEAxgIHb237qhRo8RB1yyEF+2DiLdSxFYnc+bMcvGF2ymcuRFNhdDExAaErtFCGuZP9je4g8NYDb+jyf2AAQNkHXAcoh8tIuow6XDW+ocQYjxFihSRrKWrV68yQ4JYEoz39EyF2rVre/RaXD8RmUK3C3QiIMSKbN68We5LlSqlghVTi1qkRWIAjZ6fiCjBxh121OXLl7c1pIejsW5LjYE2/sbAG8SMGVMck/EFItyOlkAQtXCRDBVB26dPH0m7BkgJbdeunTITSC0Pj+PHjysrgnYFcBQ+evSozEojDRj7AS7OaGkQWWAgvW7dOmmLkDNnTtWlSxf1wQcfiNs2ISRyiBUrlipatKj8zhRkYtXUY4yJUP6SPn16j16L7Lz3339ffqcLMrEiN2/eVAcOHAh6UWt6oyirAlMoGGPpRd3Dhw/XQhWYP7kygdKNomLHjm37rPY3KxpHOWPhwoVaypQpZZukSpVK27t3b6BXiRASSUZRoEePHvI+TZs25XYnlqN27dqy/8NU0RvmzJkjr8+dO7fh60ZIKIwhVQD3f3evk9EDLaqJ8WA2EiZQSJ0GuO/YsWPQbmqkCK9cuVJ+x2woZlLxGKKs6L26atUq23NRI/rtt9+6vewFCxbYjIkc3xPLf/bsmUQTs2fP7vR5ZqFmzZoSpcX2Rc0tauzQr09vLE8IMTc45pGtwUgtsSJ79uyRe2+v87hWwiPiyJEj6syZMypTpkwGryEhwV9PWyqYo7Qg0mQ2iRTQc7ZNmza2SCV66wZr1BW3KlWqvBJdLVq0qNOoq7PoK1r5hBepdRat/eKLL5w+D487rqPZQC9YtPvB50VrKrYoIMQakVoc+1GiRJH3unTpkl/fi5Bg4tatW7brPH73luLFi8sypk2bZuj6ERLsFChQQPZ9ZCwEArb0sSCom0R98Lhx46SmcvLkyerTTz9VwQAio2i1AydevfUObs7qU3bt2uV2naw7bWHsn4/10F2gHcHj+rrp92ZzUE6QIIFEvmGWhlY/qLvt378/HVEJMTk49tHSDjBaS6zE3r175T5jxow+mXzqdenOui4QYlZu3bplq6eF91AwY2qjKCsBgdK0aVNxvIWpwS+//KKaN28eqesAwYj3dXQchjB0JWC9AanC7hpFOT4/IuMorL8rB2X982GywNnnDBWQbo31hxs46Nu3r7R4YqsPQswN+9USK4ta9FP3BZTwAIpaYiW2/n8rOJh9pkyZUgUzFLUm4NGjR+JwO2PGDBU9enRxbNbbFkUWunB1jHCGFxn1hsaNG4epidEvMuGtl/3z7QWuu0AI23++li1bhnwkF5H8QYMGqbFjx8okyE8//WTo90QICT4oaomV62mNErVo/YhAAiFWYHMItPLRoVFUiHPjxg1VrVo1tXPnTmlBNHfuXFW9enW/v69utKSLREdBhL/RC86bljq6UZQzQTt9+nSnr1m/fr2kIsP46fz582FMpxyXDbMpZwIOy3eM1AIsM7yU5dixYzt9r1AAEVoIXNwjcovWVUgTJ4SYV9QilezOnTvSx5oQq0Rq0bLRF5AZht7s9+/fl3Z5+fLlM2gNCQl+k6jSpUurYCcKCnADvRLEO06dOiVi6sSJE1Ingt6fxYsX9/vmRHTSXuRVqVLFaWoxBChELyKaEfHOO+9I/+BKlSqpbNmyST/h/fv3i2jHBQTCC7sqeg9DZD5//lxmSjFjCvLnzy9ptYhUx4gRQyVJkkSlSpVKbqlTp7b9jhuaqCN9yJn7seNnw98QeojMRoSnzszBxGeffSa12LhgY4Ikd+7cgV4lQizBvXv3pN717t276vXXX/f7++H8iglAnLMrV67s9/cjJJA8fPhQrmsYP1y+fNnn9MkyZcrIIB+lXvCkIMTM3L59W8bTOH4uXbokY+hgvk4yUmswEFuwfUdKpz/5888/JaIGkZchQwYx/0G+u79xlk7sqlZWF4qOkVGI4F69eqnr169LhBWi9cqVK2ratGnScgJC0x4Idl2QpkmTRsWKFUvEK254HW4Q8zDKgtDF6yGGt2/fLhcxbCN78P2kSJFC1q9QoUJyw3v8+++/Ikr1CLO+/u7WzurRaT1iax/NDi+K6+7z/MmIESNk5hkXa0T6YdaVOHFip899/PixRKcJIaEZrYWoRZ0URS0xO8hKwIAcYtaIekCkIOM6iYlxilpidn7//Xc5fjA+DZSg9QSKWgPBF48THUQTTnz+ErYrVqxQdevWlVpapNNAVPprZ3MUXK7SiR2jtfa1rBCKEJ0bNmyQ2RaI0Bo1atjEJiKnEJb16tVTadOmfSWyChHrCvTgxfbA4AwRWlcTDVevXhWBixtmm3A7fPiw+u2339SwYcPkeZj9wfbUhS5S8yB0w0tZdgTbx1nE11UU193n+Rtsu3nz5qkiRYpIBgC+C0yUYOLAnr///lvSuzFb7fg/QowCvSAxKYWJL2RK6CUVOB4xcYXsCuK9qJ0yZQodkIklMKqeVodmUcSK9bSlQyD1WAhIwyET8/TpU23Dhg3aH3/8IT1jjWbSpElatGjRpF9UhQoVtHv37mn+wrGfK/5G71ZXvWDt+7s+f/5c27Rpk9alSxctW7ZstuelSJFCq1y5sta7d2/pL3v+/Hnt33//9Xodnz17JsvBvbdcv35dW716tTZo0CDtgw8+0DJmzGhb35QpU2otW7bUlixZIp8Hnw/fQd++fcPdDu70y3X3eZHJgQMHtLhx48p6dOjQIcz/jh49qq1cudLv/TSJdTl37pxWtmxZLWrUqLZbs2bNbP8fP368PLZu3TrNLERWn1qdEydOyPu99tpr2uPHjyPlPQkJFM2bN5f9vWfPnoYePzFjxvRp3EFIKFC+fHnZ3zHuDYXrJEVtiAhbCL9+/frZhM/HH3/s1xNqeILLUex++eWX8po7d+5IY+ZGjRppiRIlCiMKFyxYoF24cMEnAesvUeuMmzdvamvWrNG6du1qE+WxY8fWqlWrpk2cOFG7fPmyy+0A4ets2+Fxe9x9XmSD70pfl1WrVsljFLTE3+CYy5QpkxYlShQtX758Wtu2beV3e1F769YtLXr06K9MuIQykS1qcQ7GeRnvuWXLlkh5T0ICxZtvvin7+vz58w07fhIkSCDL3Lt3ryHLJCRYSZ06tezrO3bsCInrJFv6+AGkxiHdFgYFSEdGypwvIN2udevWql+/fvJ3z5491dSpU12m2xrRY9ZVmjEeR3oszIRgBLVy5UpJGa5QoYKkEdevX19qWNq2bSvLunjxopo4caKqVauW1MPC8CkUQD0pjKu+//57+cxIu+3fv784hn7yySeSFo26GnwvQ4cOle0xZMiQcNsG2T+ObYM034ieFwjwXXXq1El+//TTTyV9659//hEzr8gwsiHWBOcV7Gddu3YVk7jRo0e/8hzUvsNxFHU+xDtwDtbN+/TUTELMCPw1Dh06ZIjzsf3xwxRkYgXu3LkjpXogV65cKiSINJltQYyI2D548ECrUqWKzFAg7W7cuHEBTzPGZ1m7dq1Wr149LUaMGHJDKvSoUaO0f/75R4tM/BWpDY8bN25INLVOnTpavHjxZLsgZXL27NnakydP5DmuorjO/ufqefbYp3ZHBvfv39fSp08v64TPyZRj4m9y5MghkVr7c6VjpBagRACRRrMQ2ZFaoGf9NGnSJNLek5DIZs+ePbKfJ0yY0NAsMVynsdxPPvnEsGUSEmxs375d9vM0adIEelUYqTVDxPbmzZtiyAMDJpglLViwQCJnRkZlnbkZ63/DtMiejh07qi1btkhLCEQxDx48KNEVzOSgBU+7du3EidnswN4cPW1hrAQDKrg2P336VDVo0ECi1thuaJGjR7Pto7jOtjfo27dvmOc5mkkhsoK2QrjH3/4mXrx46quvvpLfFy5c6DKqTIhRnD17VsxcIjLYw3n11q1b3PA+oEet9JZohJjdJMrILDFGaolVDBtBKLV4pH1pJAnbbdu2ibB11xUZvaEgHNE0HCIKPWiLFSvmlx6z4aUZo0XNxo0bpcUL0oiRCg1nXAg5fK5QSSf2F3HixBGxiRtOANhGEyZMEEdlpPFiIqBo0aK257tK686SJYvTdj6uJh3QUgc9iv3VAgjp1pigwPePyZRWrVqJ6KbjMfEXmLhDe6+IOHfunPSrI97zxhtvyD0c4DEhFzNmTG5OYjowfjIy9VgH3REASq14/BCzciQERS1raoMwYovmwhUrVpQTcvLkySU6aoSg9bTHLE7YAwcOVD169FA7duwQQYwBJaK87777ruUFrSM48H/88Ud14cIFNWrUKKnlKVmypIjaNWvW2Hp9udreznAlgr/++mu/RW0haPUa2jFjxkhro927d8tnIsRfoM82Iis4T7oC/adRb5s/f35+ET6QLl068Q3AJKU+cCHEbBjdzkcnY8aMcvygXaBes0uI2ThCUUt8FbaIVCAC9+eff0qEdv369YbNkoTXY9YeGCHBpAWz+RA4SKFFamCfPn1UihQpDFkXM4PUXaQf44QAIy1895ikKFeunETpHdO67Xv62hOemZQOJil0cy+jBS1ModCsHmZZoFevXrIfEOIP6tSpIyUXn3/+ucvzY7du3aQ/NwzpiPcgw0aP1urRLELMxMuXL2UCzB+RWppFEStwhKKW+CJs8XjlypUlKgqXz3Xr1qm8efMatlFdRQN79+4tqaUQsnXr1lU///yzvPfYsWNlp0b9KNadeAYEbKVKlcSpdfHixVJ/i6jt6dOn1Zw5c16pt3VWR4uIrLeTFb4KWp3mzZurEiVKiJjo3r27Ie9FiCNwTMf5btKkSXKcDBo0SB7HxM4PP/wg2So4ZiDGmjZtyg3oI6yrJWYG10Vcs1Ai5I+OAqyrJWbm/v37kpkJmH5MPBa2jx8/VtWqVRMBhHqxtWvX2mbSjQLRQGdRQuywiChCsMDwCa2DTp48KaZURrYNsiqY1a1evbrMGk+ZMkUiqw0bNlRbt24VYylHXJlJucKIC7YrQauL85EjR8rnmD17tqGRYULsa2px/oF4RdogJtsAzomI0GK/w0By2bJlPC8ZACO1xAqpxwUKFFDRokUzfPl6XS3GcYSYjb///lvuka2HVPtQgTW1QSBskSbTokULMWSKHz++DOz0E6YRPWftse8xu337dpU+fXoxKUK0ECIWUUS43saNG9fHT0kcwYUVESbMICOld/78+Spr1qxSs4wZZW8ir65Sl40StPYD4CZNmsjvXbp0kfpgQowG/Z8hYjHJhsgtMleQut+yZUsxLMO5C88hxkVqMdnmay91QoINPa3e6Hpax0gtamqfPHnil/cgJFAcCcHUYyHQvYesjN7Htm3bttILKnr06PK30T1nnXHixAmtRIkS8pymTZtq586d00KRQPSpNYo7d+5ovXr10mLFiqVlzZpV27p1qzzuqkew/e2dd94xpGft0aNHtZUrV7rVI/PChQta7Nix5f3nz5/v83sTQgLTpxY8f/5cixkzprw3rgeEmIkyZcrIvj158mS/LB99b5MlSybv8ccff/jlPQgJFN26dZN9u127diF1nWSkNsAR2zt37kjtKhg+fLj0pfUGRGWRNuys/Yt9xBYz8kglhXsoXHoRHUZKLNwwSeSCNPMBAwZIr8hkyZKJUzJMcvLly/dKmrgjiLL7ijsRWnvSpEmjunbtaosQP3v2zOd1IESnf//+asmSJRFuELQ3w3OJb6A9F841gP1qiVkjTfo+bjT2ZlEw9iTETBwJ0UgtRW0AOXr0qKR0IpUT9bRFihTxKg0sIlMhPZ0VhisQzeidCvMftOwpXbq0z5+D+EaOHDmkvhYpyePGjZNU3xo1akiqJQSnPwyiPBW0OqhthAM2aq6xroQYBSblFi1aFOHzIHzdMVAjEUOzKGJG0BYRxoz69dVfUNQSs3KEopZ4wu3bt8U8CA5jiNDNnDnT7T62npoKoW4TzsaIzp4/f15t2LBB/kbrGRI89baoVUXEBK2c0Ad47ty54kINB+XwDKLCq6E2UtAC1HwjugwgLLAfExKZ4PyIKAnxHZpFETOiT/jC5MbTa5wnwKUd7Nq1y2/vQUhk8/DhQxkjAkZqSYQgMtuoUSOJdmXIkEH99ttvIjDd6WPrabQO5k8wfmrfvr1q1qyZRGe9TXEm/gezyjDKwUTFmDFjZNCJCBbaKjkziNKj9B9//LHc429/CVod7Ed58uQRQQvjMUIiE0zMcULOGBipJWbk2LFjfo/S2otaXFcRHSbELMePpmkqadKkUhoXSjD9OABMnjxZrVixQlpYIN1O32ki6mPrSTuXvn37Sq0uBPOZM2cYnQ2xqC1qVxG1Rb9i9IhFmrjuWq33tnUWpXesoTZa0Oq1eIMHD5bfR4wYoS5evOj1soi1wf6s3wAm+uwfs7+hfzayGeADgKwTb8FkUcaMGeX8i4mh8KIscFxGimHChAnFER6TTMiKsAcX/z59+ogrc+zYsVW5cuXUiRMnVCiAekNEvS9duqSuXbsW6NUhJKREbfLkyeVcgnMAW/sQs3AkRFOPhUizriLC2bNntfjx44uL19ChQ8N1RYaj3suXLz12PP7yyy+18ePHi5ty2bJltZs3b5p264ey+7E7YF9o3bq1fK+dOnUSx1Kd6dOnO3VGxuO+uBy76/xYvHhxeT+sHyHeECVKFC1q1Khys//d1Q3PiRYtmrZ48WKv3m/27Nnaa6+9pv3888/a4cOHtVatWmkJEybUrl696vT5Gzdu1BYsWKAdOXJEO3nypDZ8+HB5/1WrVtmeM2TIEC1BggRyHtq/f79WvXp1LVOmTNrjx4+D2v1YJ0eOHPL+q1evDsj7E2I0devWlX162LBhft+49evXl/caNGiQ39+LkMigR48esk9/+umnQbPB3b1ORg+0qLYSmM1r3bq11NEWK1ZMderUyenz9Ijttm3bZPYPkYKoUV0H1ZECWrt2bUlFzpw5s9TnIu0YKcfDhg1TMWLE8OOnIv4E+8L48eOlgXyHDh3U4cOH1Zw5cySC6ypK7/i4URFaexDdQbQYUWRkHiCC5mp9CHEF0ub1+thp06ZJz2yc+1wdC2nTplU1a9b02tH0hx9+UK1atZIUeoBja/ny5RIF7t69+yvPdzTSg8ke1hMlAuifi3M6XOt79eol5m4AUWWYqSELp0GDBkH/5SP6jMgW+npWqFAh0KtDiGGR2si4JiEFGddkdz0tCAmVSG2ePHlUyBFpMptoEydOlJkG9CX9+++/I9winkZsr1+/rpUuXVqLESOGNmHCBEtscbNHau1Zv369ljhxYulpi8iRqyg9QA9bRGzXrl1raITWkSpVqsj7YmacEF9AFLZZs2Z+24g4nyLKunDhwjCPf/zxxxJddSc7Yd26dVqcOHG0NWvWyGOnTp2S/X/v3r1hnluyZEmtQ4cOTpfz5MkTOR712/nz5wMaqUWkGe/foEGDgLw/IUaCsZLeT/348eN+37i///67vFfKlCnlHEFIqJMtWzbZpzHmDBbYpzbIOHfunPQgBQMHDnSr1sOTGttDhw7JjCEieevXr5doBDEX7733nvTDixkzpphCoS4bUXrHWlvdPAr/R70rHveXA+SgQYMk0jZv3jzWFBGfQO0/2lr5ixs3bqiXL19KFNUe/H3lyhWXr4MBDIypcD6uUqWKGjVqlCpfvrz8T3+dJ8tEPTp6VOu3QPcIpwMyMRMXLlxQjx8/lgy1TJkyRYrZGnwwcLzjvQkJZZ48eSLtP0O1ppZGUZEAUtTatGkTYdqxM5ASBmFy/fp1l8IW6XNYLoQLRA9SQok5QXr5jh07JC2yatWqkk4Jsxu4I+NeN49C2iNaAfXu3Vta7/grNQqGPR999JH8jvRN7OuEeAOc4NHOKthAGyuYtuHc+s0338jk5KZNm7xeXo8ePUQo6ze4OQeDqEX5CiZQCTFD6jFKGWBq6G/ixIljM65jax9ihuPn33//lRI3x8naUIA1tZEAIma4YeYQtVuY1XMHRNx0d1sMrFD/BexrbBEha9iwoQicGTNmiEMnMTfYFxYuXKh69uwptawYGKPtDyKmGJjaC1p9wIzHIXr9Qf/+/aWnLjIEVq1apd5//32/vA+xDhBXcEK+d++ey4kS9Pf2BLQnwLn36tWrYR7H3+hn6Qqca9HrWxeAR48elWgrJpb012EZcD+2X6YuFh1BpgVuwQIGLlj3y5cvS8s3TJASEqpElvOxPciSQwACovaDDz6ItPclxJ/Ox1FCsB88I7V+5tmzZ6pz587yO+5z5szp1usc27UgygvzJ/uILUQsBAxuELcUtNYBA20MrJFuDFGpR0kxOHUUtP42zECKF0zJAFoRvXjxwm/vRczN6dOnVbVq1aSFTsGCBUU4oq+24w2p+J6C9OFChQrJ5IsOzqP42xMhh9c8ffrUtu9D2NovE0Ic5+9QEoeBSEFGuiauifpkLSGhLGpBZJlFoYwCN0KM5kgot/OhqPU/qL9Cz0LMhiOy5i6IrDkCYXv79m2JYqAvIpxD4eI5derUSEmzIcEHovlwX8UESJMmTdTz58+lNtFe0OI5AP01/XXRxb6dOHFiOSHCDZkQT0GkEEIQ5RQ4X6J/NyZqUB+OtGQ9YovneFtigdThiRMnioMxIq4oC8H5VHdDxjkV6cE6mDhau3atiG08H27yOI4aNWok/8dMNspJ4JOwZMkSdfDgQVlG6tSpxaU5VMA2BugB7G8wKTBhwgSVK1cuOXfhO8DfhISa87GOngWFgIO/xSausWnSpJEgBtKe69WrJ+NBX0oiCDGLqKX7sR+5cuWK9vrrr4uLGPoiegLca531IMXjcDbG7x988EGYvqVWxErux+HRt29f2SfatGkjDoy6+zHuHR2S4ViMx41mxIgRsvzkyZNr9+7dM3z5xNzALRgOyD179pS/mzZtKr1pddAbFv1fy5Ur59N5b9SoUVr69OmlX23RokXDHAulSpXSmjRpYvsb6wK3cTjWJ0qUSCtWrJj0urUHx1vv3r21FClSaDFjxpTe4MeOHXN7fQLdpxbs2rVL1gHXK3+eS9Eb+N1337Wdi9KkSSP3cKVmn1xiBBkyZJB9auvWrZG2QV+8eKHFixdP3vfAgQN+ex84padLl87p2BDnykOHDvntvYk1yJUrl+xP9r3YgwF3r5MUtX6kZcuW8iUUKlTIrZY8jjhr1/Lrr7/KwK9Vq1Zit+1uux+zQlGraUePHpW2PWg0r+8nemsBV5MjuGH/MrplCgQAlq0LE0LcJUeOHFratGllgOhM1AK0QoMYRRsasxAMohbXkGTJksl6bNq0yS/vsXnzZvnu8B5x48bVfvjhB5mcaNy4sTwWP3587eDBg355b2INHj16JOMj7E/Xrl2L1PcuU6aMvO+kSZP8svzbt29refPmlffAuRJtxJYtW6YNHTpUK1iwoDzeokULv7w3sQYvXrywnaNPnz6tBRMUtQFmz549tpMr+ph5i33E7bfffpMZbQz2MAjxtI+tGbG6qNUFrT4gxkAR+1y/fv3kb+w7rkStHvk3kgULFth6MZ87d87QZRNzg96SVatWtf3dvHlzEbWOUVlEQvPnz6+ZhWAQtXq/Xn9MduliQ5/wwvd39uzZMH17ESHH/xBBv3TpkuHvT6zB/v37ZT9CVkVk94zFZDLeu3Xr1oYv+/Hjx9L7GstPlSqVdubMmTD/37Ztm/wPguTy5cuGvz+xBmfOnLHtR/rkcrDAPrWBTekWwxzcw8QJvWa9RW/Xgr5rH374odRPTJo0SYyCPOljS8zH33//rf755x/1zjvv2PrQwngFdYBwQx4zZkyEdUUDBgwwdJ1QR4h6R/Q6++KLLwxdNjE3cIe3N7vTf0d/WXuSJ08uNa7EWCpXriz3cOo3GpjZwc0atYDz589X6dOnt/0PTtALFiyQcxX6udeoUYNmc8Rnk6jIdm7V62qN9q1AjS5q+Lds2SLX+ZUrV6qMGTOGeQ7GAKiLhzEprvuEeAP8f/R2WO52aQk26H7sB9DWZMOGDSI6ITB8BcY/derUkRYWMDix39kobK2JM0GrAydkmNd07NhRJjzCE5cw5THS2AkDCZi/YNJl9uzZYrJDiDvAXMne4AzOwgATdvYcPnxYekMSY6lQoYIct4cOHRJxaRTo8fv999/L72PHjlUJEiR45TkwmYOYxv/QD3jz5s2GvT+xDoFwPnZ0QMbxY2S/ZwQxMBGEsd6iRYtUgQIFnD4P7f3AuHHj1KNHjwx7f2I9UZstWzYVqlDUGgxm1XQR0aFDh1dm1DwFjsfVq1eXFhfoBYpohiMUttYiPEGrg0Ek2p7UrVtXtW7dWu3cudPlxbBly5Y2h2QjQCuWdu3aye9t27aVqC0hEYF2O3AY1ltClS1bVrJdMEkDIYtz4aBBg8Rh2NW+TLwnUaJEck4xMlqL7xLnF1wXcS7CtcwViA7gOQCDd0I8Re8aEQhRiywE3LCv79mzx5BlIvL6zTffyO9o34d2Zq6oVauWTATevHlTgh+EeApFLXkFtNfBTB0GCF999VWEWwipKq5arSCdGO0hzp49K+0iMJvtCgpba+COoAVo8TRnzhzZZzCQRPuMn376yeXz0RLIyLQppDWjZy5Okt9++61hyyXmBf2V79y5I5kuAO0qkM6OFgP4HRN76L+MaGLfvn0DvbqmxOgU5BEjRqjdu3fLdzdy5MgIn6+3QYKo1Vs4ERLM7XycRWt37dplyPKmTJki2Su4lqL1VXgggw8ZWuDHH39kORrxelIolCO1dD82kAcPHkgRPzYrDHsiQnd9dOVGizYRMJtaunSp2+tgNfMoKxlFOZpCucORI0ekTUe1atVkf3B01La/wVTKSObMmWMzHTh+/LihyybmA4ZQFy5c0O7fv2977OHDh1r79u21lClTyn5UoEABMSMzE8FiFAX27dsn6xInThwxp/GFU6dOifkXljd58mS3XoP3hDMyXvPXX3/59P7EWsAYKkGCBLLvBMpFe/DgwfL+9oZ33oKxHIzTsDy0y3MHnDsTJkwor8G4iBBPyJYtm+w76KwSbND9OAD0799fdgj0UoSjY3g0atQoXDdaXRB407rCSsLWKqLWG0Grs3z5cpkc+eqrr+RvtByIDCdkDDIqVqwoyy5fvnyku1ESEgoEk6jFMZo6dWpZH1/7xtaqVUuW89ZO/p0AAIO0SURBVN5773l07NepU0de16tXL5/en1iLK1euyH6Da52vEzK+9GHW1+HkyZM+LWvChAmyLEzowT3cUxfmEiVK+PT+xHqTytGjR5d9Jxg7V9D9OJJBirBuCoV7ODq6AmmeM2bMcBn+37t3r2ratKlq2LChVw6yTEW2ZspxeCmFSAFGPeKsWbNUixYtXtmvUFOruzcaaRoFJ0YcCzCMQjo0ISR4wTFrRAryjh071MKFCyVVfNSoUR450eopyHg9IZ6mHsPHJFasWAHZcLlz55YyCqTOI/XeiFpaeArEjh3b7de2b99eyo+2bt1qWG0vMT///POPeCDg2EFteKhCoyiD+Pzzz6XtTqlSpaTtjjt5685A7QRaGuTJk0dc77y1paewNQe+ClodtJhCW4DmzZtLzTdELsyjpk+fLvcwofAHMH/p2bOn/A4hjWOEEBK8+CpqMaDXjedwvsFA39P3x6Ac5mC6cQkhwWwS5cyF+Oeff1a3b9/2ahm4LiNQkjJlSjF69AQIEt2QbdmyZV69P7EeJ/7/XJs1a1aZjAxVQnfNg4g1a9ZInz0U6o8ePTpCIerKxAD9aH/99Vd19+5dsXD3ZHbOGRS2oY1RghZgn5w4caLKnDmzZAE8f/7c1gPZPkIbnnGZL4I6Xbp0YniBdj+EuAIzxcgmgGMuxA0cvJ3d4IxM/AO2LVz2McjxRlSiTRiiRJjxR79sT4HJYunSpeX3xYsXe/x6Yk0C2c7H8fiBsR3a+oRnzugKXJv1KC0mgr0ZB5YrV07uN27c6PFriTU5YYJ2PkKg86RDHdSvZs+eXfLQO3Xq5PbrHA17YBq1bNkyj0w1PFlHs9bYmrWm1pca2vDAPhA1alRt4MCBEe6TjsZlvjBjxgxZZrx48aT2iRBHrl27pr3xxhuyf6ImLbwbnmMWgqmmVgd1sJ4Y1Oi8ePFCy5Mnj7y2e/fuXr//6NGjZRnFixf3ehnEWsAMEfvMmDFjAr0q2tSpU2VdUJ+O8ZcnwGQUr02RIoUY5Xk7fsAyYsaMGbD6YhJatGvXzvBxn5HQKCqSgJGTfgK6c+dOhM+HGQ9cZnFv//utW7fEOfn999/3i6GOWYWtGUWtvwStDgabMWLE0A4cOGB7DPugP82jsM8VLlxYlvnJJ58YskxiLpo2bSqCFQ6MGNjB9X3Tpk0ub2YhGEXt0KFDZZ0yZMggkw3uMmXKFHldokSJtNu3b3v9/jAq0Q13OAlG3EEPLqxbty7gGwzjLb0TxrRp09x+3axZs2Sfx+tGjhzp9ftjDAmDKSxn48aNXi+HWIeK/2/qOXHiRC0YoaiNBM6fP29rP+BOO5TwImEff/yx2NFjmf7CjMLWbKLW34IWwJk7d+7cWsGCBW3bDfuvv9v8bNmyRZaJKNuhQ4cMWy4xB0mTJpWB2M2bNzUrEYyiFpOsWbJkkfV69913I3TzB3BoTZs2rbwGothX9EmwYB1kkeB0bvXnGMoTBg0aJOuDNmTuBCqWLFli+wyY+PU1uPHhhx/Ksvr06ePTcog1yJw5s+wvwTphTPfjSKBjx45SN1G8eHEx4QkP1Ch+9913YR7D33h86dKlYgyAhtlp06b12/qyxtY6NbThATfiqVOnqv3794thVHh13kY2sS9RooSqVauWNIXv1q2bYcsl5gAmYjiXJk6cONCrYnlQ14rrEs5Dv//+u2rTpo0YQLni3r17Uv934cIFqZ9v27atz9tQd0FetGiR5b8PEj4wVUI9PupPU6dOHRSb65NPPlFx4sSR6+yGDRvCfe769etV3bp15TN89NFHauzYsV6bhOrodemsqyXuuG1j7GmGmloaRXkJnCF1c6hx48ZFeAJy5XiM9j04+cEUBQY+/obC1tqCVqdIkSIyCO3fv786cOCAmEVFRpsfiGg4m65cuVJt2bLF0GWT0AYXU7pjBw+5cuWSNlxwwpwyZYoaNmzYK8+B+RsmqCBkYZIIBg4caEhLFV3Uoh3Y/fv3fV4eMS+nTp2SexghBotzKybnmjVrJr937txZrV69+pWJIYiJ3377TTpePH36VPZ5TDgb8RnKlCkj9+hu8OjRI5+XR8zLmTNnJNgQN25c6cAS0gQ6pByKoHg/U6ZMEqrv2rWrW69xVbOIGlqkHV+4cEGLTMySimyG9OPISDl2BlIKYery5ptv2raffZ23v2jVqpXs+/Xr1/fbe5DQY9SoUVqcOHGCJn3QyunH9sAsSq9v7dKli9a+fXutXr16WsmSJW3pkrjlzJlT6geN8oTAcrJmzSrLXrBggSHLJOYE5lDYT2rUqKEFE6dOndLix48f5hjBuq5YsUJr1qyZljBhQtv/ypcv71aavyfHT5o0aWTZa9euNWy5xHwsXbrUliofrLCm1o989dVXsgOkS5dOu3//vtuvc6ypbdiwodz//PPPWiAwg7ANdVEbKEGr89dff0mNq6cup76wZ88e2e9hVnX16tVIe18S/EAswShq1apVIXtOMpuoxeAYNX7OJmVxK126tDj3++P7+vTTT+U9Pv/8c8OXTcwD9o9g3U8gbDt27BhG3NrfYCiFyaIHDx4Y/t6NGjWS98CYlZCIHLfr1Kmjhfp1MnqgI8WhxtGjR9X3338vv48YMULFixfPo9TL2rVrSyoyUu2QklKwYEHVpEkTFQj0VORt27apv/76SxUuXDhoUnesQGSnHDujUKFCkvaOlEGkSsWPH9/v7/nmm2/KvoZ9btq0aayvJTbQ17FUqVJSjoE0daRCOTsnodxDTzkk/gXbetSoUZJOef36dZU8eXLbLU+ePNKT01/g3Dh+/Hi1fft2v70HCX1Onjwp91myZFHBBlKi0Z8dpT643qFcDTXoSDmuX7++jMFQxuYPkII8Y8YM1tUSa/SoxfUKyjbQKxEqYFOVL19eivqrVq2qlixZ4nUxP8wvYJqzZs0aWWYgQV0HhC3y6UNN2KJROeqbMQiOESOGChWCQdDa18XhZNa9e3fVr1+/SHnPSZMmqVatWqmsWbOqY8eOhdQ+R/y3H8JMDPcRXZZw3n358qUpvgoMcBMkSKDu3r0b8HNBsIGJC5wjcG7HdjKiVpeYj7x586rDhw9L3WqFChUCvTpBVSsJUY0Jwtu3b3sUhCHWoXz58mrdunXq559/ttWBh+p1kiNJD8CXDkGLCOfIkSO9FrQYjH311VeqbNmyARe0gOZR1hW0ACYv7du3FyOYa9euRcp7NmjQQKLCmGGnOyPRjcnOnTsnkQuY8B08eFAGZc5up0+f5kazABiQIyKMycvdu3cHenVIEAKDG/18EIyR2kCSKVMmlSFDBnFVRuCCkPAitUZ2uwgUFLVugshBr1695He0N8DJwlvQvgdpzEOGDFHBAoWtNQWtTo8ePSQFCmnIkQFmjPU2WEg5JQSThhiAwe0WLqBIbcXfrm7E/GDiGJMcgCnIxBmXL18W13Rcv9KnT8+N5MIFmZPHxBlPnjyRyWSzpB9T1LoJevbt2rVL+o5BAPiyA/Xt21d6kiHVN5igsLWmoAWol0OkDPVrkRUFa926tdwvXLhQ3bhxI1LekwQvGJgWLVpU+igTooPzJWCkiThDr63PmDFjSJUgRRYUtSQ8MN5D0A5j0mTJkqlQh6LWzfSW3r17y+8dOnRQKVKk8HqDjxkzRl26dCnSImKeQmFrPUGr07FjR5U0aVKZdIkM3njjDYnGITWKs8gkd+7c6tatW9wQxKmoRaSWFiDElahl6rFzSpcuLfdI30ddIiGuTKK8LakMJihq3WDevHnqwIEDIkbQaN5bUOA8aNAg1bJly6DOXaewtZ6gBchCgKD99ddfZX+PDFBXDihqCeq6N2/erA4dOsSNQWygQwCuSXBepuM1CSXn42AAKdmoTYeXy9atWwO9OiTIOGEi52NAURsBOBHokauuXbtKmqa3wFwKKXZ9+vRRwQ6FrbUErU7z5s3FbTSyXJD11KgNGzZEyvuR4AU11jjHvvfee1Jnrdf5EGsDx2O0HgOsqyWO6BMduG6R8K+zmDQkxB6KWgvW0qLlCMQs0jN9aZszduxY6UmbOnVqFQpQ2FpL0ALUJEFYoOUUXGbt+eOPP9Qvv/wi90aBnqRIecExhrR8Yl1g9IJe3jdv3lSfffaZmPHhMWc3tKgg1oFmUcQVjNRGDFqlAU4KEUeOHz8u94zUWoTRo0fbTG18ESZz585VV65ckZrcUILC1jqC1j5ilihRItu+D2Ai9fbbb6uPP/5Y7hs3bmzIe+F9kF4ImIJsbVAv6e4NPgfEmnW1hNjDmlr3j5+//vpLPX36lDsQscFIrYU4cuSI9KWNGjWq+vTTT71eDgZhI0aMkKbguXLlUqEGha11BK1eW9uqVSs1efJk9eDBA4nMfvfdd2GeM2PGDBG4RsAUZAIgVD25EetQrFgxuUe99Z07dwK9OiRIgLGcvj+gbpQ4B6nZMIGEoN27dy83ExFQDnnx4kX5nZFaCwCnYlCjRg2f+iLu3LlTZsh8SV8ONBS21hC0Okj/hKBFT2U9PcURo1KRUUMJWFdLCHFGypQpRbRggtjI8gdijtRjlHRhMpY4ByU+zHYgjuglZgkSJPDJLyiYoFFUOE7F06ZNk9/btWvn00aG6QnqwypVqqRCGQpbawha3TGxWrVqsu+GN4M3YMAAn9/r3XfflWwIbDvW1RJCnMFBOXGEJlHuw+OHOOtRCzBhaIZ2PoCi1gUQtA8fPpTeiXp6pDcgNQb1tGjjg4F7qENha35Bq4MUZLT2wX6LOltnLF++XCInvphIxY8f35aWj156hBDiCAflxBHW03p+/Gzbto39nskrotYs0ELSCUhxGjdunC1K68sMxsyZM8X5uFmzZsos6MIWJ0ekVRcuXNgUgt1bzChoQcWKFVW6dOnUxIkTRbAiVQXfubNoLcStzhdffCEutp6Alh2HDx+W/QkRYmJ+9NnhdevWSSaLJxdWvI49S63pgIxyHrTagws2sTZ0PnYfjNPgGg/D0rNnz6qMGTP68ZshocBpE4pa6yqRcNi/f78IFfTH++ijj3xaFgRB1apVVapUqZSZYMTW3IIWYNCIvrWzZs1S9+/fV8OGDXP6PHtBC2Aq5WnEVu9DyUitdcBxg9vz58/D/O3ujViLPHnySFYHav1hGEUI04/dJ3bs2LZOA3QRJ/bHD0WtycEgHlSpUsUnoQKDnX379klvWjNidWFrZkGrg30X3+/KlSvVW2+95TIN2RFX5lLhzSIDilrrgMg/Zor1Cyr+dvemzzAT64BJNrQTA84yRoj1YKTWM5jCT+zRr6NZsmRRZoGRWiepx7Nnz5bfP/zwQ5827tKlSyXai1Y+ZsWqwtYKghYgLTR//vxqyZIl8re7+3L27Nk9ep833nhDUtiRGkWzKGsAR3nckBJn/7e7N2LdQfnvv/8e6FUhAQZjDlwvzDYo9ycUtcRe6zD92ALs2LFDnTt3TtKcKleu7LOoLVu2rIobN64yM1YTtlYRtDrVq1dXK1asUC9evHBLrH755ZcS1fUEtGOgWZS12bJli1sRfjSLx3OJ9ShRooTcb926lWY3FkcfkKMVSaJEiQK9OiHV7xkldkjjJ9blypUr6smTJxJMQLcLs8BIrQN6lLZmzZpSg+AOzpxf0RQcs8kQBFbAKsLWaoIWwLjp9u3bkvIHsQojKEcRC/MW9LTF/ZAhQ7x6H9bVWpvSpUu7ZTCGmm1fHOlJ6IL0Y0T2L1y4IGY3xLow9dhz0qZNKwIG47Ndu3b54VshoTYplD59ehUjRgxlFihq7YCjItrvgAYNGri1ATGgx4X2448/lnv8DVCDiOXBJMoqmF3YWlHQ6vWuKVOmlMwDAOHhKGIhdhs3buxxhNaevHnzyv2xY8cMW3cSeilRhLgCWU+62Q2itcS6sJ2PdzAFmQAzph4Dilo7EFm9evWqpLOUL18+wo2HyCyiBs6cX1GDCDGQOnVqZSXMKmytKmgB0lMQrV28eLFNdOgiFnjbn9aRHDlyyD1FLQkPZA3Aq4BYE/sUZGJd6Hzsm6hFqR2xLqcpas3PokWL5B4pw+6E413Vfx05ckQitVZJPTa7sLWyoNWBqEW6l73gdJWl4C16vS6OK0bsrAH8C/QbQJ2X/WP2N1yEkS2wZs0aGsNYGIpaAph+7LuoDfWxGfGeUyZs5wMYqf1/MIjWRS3qad3BlWkOBmbo6wkhYFXMImwpaP8HDM9QY66nIIeXpeAtOLmibQf2mcuXL/v0vZHQIGPGjOKwjRuYP3++7W/HW7Zs2eTcjPOru62lnDFmzBh5X0R7kXEQXm0Z+oxDRMGIBrdy5cq98vymTZuqKFGihLlVqlTJ6/Uj4fPuu+/azs3Xr1/n5rIoTD/2DnQzgDEjMl6YFWVdTpuwnQ+gqP1/Dhw4INE4DNzdST0GrkxzMIOYLl06VaBAAWVlQl3YUtD+By6COC50UesqS8HT/rSO+4subnixtQYwqdBvEIPYz+wfs79lzZpVzKRGjx6tunXr5tX7zZkzR33++eeqb9++as+ePXKOrlixorp27ZrT52/atElau23cuFEiGzivo63VxYsXwzwPIhYTMfpN73VOjCdJkiQqd+7c8jtb+1iTZ8+e2YzCcF4g7oMsxKJFi8rv27dv56azKKeZfmxu9CgtBjgYWLmLM9McnCjgzolBmtUJVWFLQfsq2KcRpXr+/LnLLAVP+9O6qqv1RRyT0AETiWfOnJEbsmXq1q1r+9vxhomO9evXq88++8zrc+sPP/ygWrVqpZo1aybCaPz48XK+//nnn50+/9dff5X3Qx/lnDlzqkmTJsk5DOthT8yYMcVMTb+xxYh/YQqytYGgxXGIYxfHG/EuBRkdDYj1ePTokS0bjunHJsXT1GP7Vj5Ad37FDCKivnp7EhJ6wpaC1jnYp58+fSo14/5CF8WM1FqPKVOmqBYtWvht+Tg37969W1KI7U3Q8Le7pikYDGBSB2aCjhHd5MmTy6RMmzZt1M2bN10uA8fQvXv3wtyIZ1DUWhv7ekAGDzwH4zHAft/WnUwGCRIkMN0ELNOP//8L3rdvnwxw3G3B48ok5/DhwzJ4oqgNTWFLQeuaN998UwYQSNv0R/oxQK0jQB9KYi2aNGliG2z5gxs3bkibtRQpUoR5HH+jEb074DwPR3t7YYzUY2TqIHqLzJ3Nmzer999/X97LGYMHD5bBhH5DSjPxTtTu3btXaqyJNU2imHrsfV06/CswOcB+z9ZOPY5isoxSilql1LJly2wHOup1IiI8kxxEAiCOka5GQkvYUtCGT7x48SQShX3cX+nHurs0jNaItbhz545kucDAxB60WUO6MCZVatWqJc8JBCgtmT17tlq4cGGYlkLoaQ6n+3z58kmmD64nf/75p0RvndGjRw919+5d2+38+fOR+CnMgV5njYkDtiaxHhS1yufrbJEiReR3+AUQa3HapPW0gKJWKbV8+XLZGO5GacOLUmHAj9orNIknoSNsKWjdAxkI2MedmaSBBQsW+PQ9xI8fX+4paq0HIpgQrqif1UGqLyYbEQndv3+/9EpGbfelS5c8Xn7SpEklOgGRbA/+jqgub+jQoSJq0U4I7qHhgYEC3ksfeDuC+lsMKu1vxHOYgmxd6HzsO++9957cU9Raj1MmbecDLC9qUSOlH9SVK1d2a6OFF6XCgJ+px6ElbClo3Qf7NsTFixcvVO3atV/5v69tfRiptS44D2fIkEEVLFjQ9ti8efPkAlysWDHxPUDNLSK5Y8eO9eq8g/3X3uRJN33C8l2BfXrAgAFq1apVqnDhwhG+D1LnUVObKlUqj9eRuA9FrXVhpNY4Ubthwwb2hbcYp03azgdYXtRiIAXjDgym9DYB3oKBPk2iQkvYUtB6BkTB48eP1dGjR/1SV6tHammeYz2QhotetPYglRc1P3AnRoov+sbiXK1n13gK2vlgGdOmTZN9GKZOOAchvRnAIwHpwTqoke3du7e8P+q9UXuLm17HiXu0F4LzPbwZIJBr1KghtX5w0if+F7XY9vCxINYAKef6oJw1tb45IGMchkk4V1klxJycZvqxeVmxYoUtShtewbTudIx7V4N2XSAzUhsawpaC1nuzKH/V1TL92LrcunVLJUuWLMxjqJdEipT9PoVIrrd1qPXr15dU4j59+ojvAQwCEYHVzaPOnTtna3UAxo0bJ4KpTp06EnnVb1gGQDozJjIhuLGOiCTj/L9161ZJMyb+I1euXOKB8eTJEzkfEWuAHtE4JtFvlSZr3hM7dmxbhgqitcQaaJpGUWvmL1ef8Q8v9djR6Rh1Vc7AxRUDfppEBb+wpaD1XnTqafbO6mpxrOBxb2H6sXWBCIRZlA4ionDmRE2t42AM2QLe0q5dO1kuJiAxSWm/v8LcaerUqba/EX3FdcLx1q9fP9u6rF69Wl27dk0G2nj+hAkTXnFYJsaDa62+b2ASgVgDPaqYKVMmmVQixqQgE2tw5coV0SowtIXZntmwdPox0s8wuMFgSj+43XE6njFjxivPw2AeF9k0adKISywJXmFLQesbELW6mQ/SM5H+ByMf3MNMxxf0YwcCASZBxFr71bZt28TnQDcdsxcuOjCJQk9YQvQUZFdO08R80CTKP2ZRmKwj1kk9Tp8+vWQ7mA1Li9q1a9fKfalSpVScOHF8qg9EqwkMttDDkASvsKWg9R3s4/bus4h0NW7c2KcIrY4uaKJHjy43Yh2QGowWNzgfd+7cWXXv3l0mHJHaa+9bgD7JjrW3xJpUqFDBFmliv1prQJMo4yhatKiMfa9fv64OHz5s4JJJsHLaxPW0yuqiVnfBLFeunMvnuFsfCPGLWiw6XgavsKWgNQbs4/Z1h441576gp58mTJjQdE3BSfh07NhRIgdIbR8xYoSkGH///fdh6mwxEQkTMT1CR6xN3rx5JQ0VqeSuyoKIuaCoNXbMpZ9LmYJsDU6ZuJ2PpUUtZvw3b94sv7tKPQau+nE6E78UtcErbClojRW1qCGEC6WzmnP87S1o16KLWmK9Yx+iFefluXPnqmPHjqm2bduGeU6sWLHUjz/+qBo1ahSw9STBAya+atasKb+jhzExP0w/NhbW1VqL0yZu52NpUYtoAGb8MXiOyNjJsW7QlTkORW1wClsKWuNFLb4TCFtnNee+9Kq1j9QSa4oURA7gNuxsJrlMmTIS0UV0jhCgi9qlS5fKZDUxL6j7ZKTWP6IWden6RDUxL6dNnn5s2aI1PdUCgyR3HPQgWvWaQdzXrl1bUo4RocXfuJhikM+aWmOFLYxjIGwLFy4sbm2eQkFrPPo+jrra8HrVelNjS1FLdDB4Ra0X2rb40iaKmL/fZtKkSdWNGzfEBRnXdGJOMMbCZDcmv9A3mhjTpi9BggTiZ7B3714ZaxHzctrkojaq1etpw0s9Dg9Hc5yrV6/KLCJraoMnYktB6x/0fRyZCUb3qqWotTaIFAwcOFClTJlS5ciRQ5yP7R21f/31VxExNDUhOjCUq1q1qvzOFGRzo0dp4dzKPtDGgKAOzPkA62rNzaNHj2x+KBS1JgI9mhAB9EXUOqLvKBS1wSFsKWj9B9qpYKYc+7zRvWopaq0taCFO+vbtK7XVuXLleqXNBM4FKAFBux9CHFOQFy1axNYkJoapx/5v7UPMyz///CP3iMwnSpRIKatHagcPHqyKFCmi4sePLwNbXEhg5mG/wTDYdXabN2+e7Xnnzp1TVapUEStxLKdbt26v1MJ8/fXXKm3atDJT725bHXeBOIKwxXtj4GSkqGX6ceCFLQWt/yMjKVKksO3zRvaqRd9ogEidv7h//77q1KmTypAhg4odO7ZE/v7880/b/yGk+vTpIxNU+D/c0U+cOBFmGTt27JBafKTATZ482W/raiXGjx+vVq9eLemj6IN86NChV56D7Q2DCzrdEnvKly8vxyrOH/v37+fGMSk0ifJ/Xe2tW7f89C4k0Bz/fy2VNWtW03aX8EjUwpUSbpQYuMKl8vnz59InDmIDpEuXTga69jeI03jx4qn333/fNhsPQfvs2TO1fft2NW3aNDV16lQZROogirp8+XJJJWrYsKFq166doR8aA1IAoWTUF8sIU3AIWwrayAGzfPo+b2SvWn1Amj9/fuUvWrZsKecvtCA6ePCgnMMgXC9evGgzuho5cqSILBhexY0bV1WsWFEmwnRatGihevfurWbOnCmTfefPn/fb+loFXAsSJ04sE6DhTQ5iIhITo4ToYIIcxyhgCrJ5YaTWf62xChQoINe4KVOm+OldSKA59v9BSJT2mBWPRO2qVatU06ZNVZ48eeQAgBjF4AJOwnpuPiIs9reFCxeqevXqibAFmGE/cuSImjFjhkQ6IHYHDBigxowZI0IXIPUMgxoMbAsVKhRm8GwEENOgWLFihi1TjzTHiBHDsGUSz4QtBW3kRmuNdhrFhJcencP5xR+g9+n8+fNFuJYsWVJmLPv16yf348aNkyjt8OHDVa9evVSNGjXkHIQINEyxkNqog32wYMGCsp4Q+Ij+Et/A8Vu0aNEI06KQOgXDGELswfEK7I9TYi4YqfUPCO7owaOxY8fSBdnE11hAUesCuKUBzK47A2J33759EtWwj5Lmy5dP0hd1MMOK9jq6+YceFcHsa6VKlSQSYhQYtOqRWqQdGoU+wPfGoZf4LmyRVoH0d3ynr7/+OjdpCIpazMJDdCKN0F891LDOEM/od2oP3vP333+XtNcrV65I5NZeRCECrZ83ADJLEDHE/9CbN3fu3H5ZXyuB78Ud8xdkANEkhjiCemxcfzHm0GvHiLlgpNZ/ICsSE4pwx0UAi5g3UpszZ05lVrxWYBATqEuDwEDqgjNQa4aBn714xIDRXtAC/W/8T4924qBCOiBchcuWLauMAoNWLBPvgSiwUSAVGwN9s+apB6uwxQAGIGOAgja0Ra2eeoxJL3fabHkD/ACQoYHsEERfIaSQNQLBCrGkn4OcnaP0/wFM1N28eVNazowaNcov62o1UON84MCBCM+ziOZny5Yt0taLhAZo64Mex2DJkiWBXh1iMMjg0+s9/TXpaWUQRNIDUKNHjw706hCD0TTNEpFar/vUorYWgwtEN5yBiAvqzVB35i0wcgpvcOMN6GOn9+bCwNnb5Tjy9OlTGegbtTwSPpg8QKqi3poJaaCItnH7Rw44dlAuYOT23rNnj03UertcdyaWUEvbvHlzlSZNGvkcSCP+8MMPbWUU7oJaW9yIMSArZ8SIEWrChAmqdevWTp+DCQRMJHz66afc7OQVYF4J7w+UPXXo0MGtLYS6eWSDodQAfh/o0+mvSTXie+oxytp43vUPbdq0UcOGDZOgErLf3G3NB7E0adIkcaX/4IMPpLyHAZ7g4saNGzIxBMw8KeyVqEXu/bJly9SWLVvEodgZv/32m/RE+vjjj8M8jhPSrl27wjyGyKn+P3dZt26drQbXE+bMmWOLvKxYsUIZBQ5qRK6MXCZxH3v3WuJ/MGOOSKeR+7s+QYEBpbfLhekTJjfCA7P8GPgi0o+yB7gc169fX/q26ecgnJPs23Phb3gAEP8BF3z4NHz22WfiuwAvBoDvCRMec+fOVT/88INE5Iw2DyTmEbWff/65uLjCvwPng/DApDx8PR48eCAGU8jgwP6Fx3r06GFYdwTiO0w99j+4BmJiB+N71NbCX8IVyHJC4AqTkPbBraFDh8r/II4pbIMv9ThDhgwSlTcr0T0NX7dv315mQXHRyJQpk8vnIvW4evXqKlmyZGEeR+rfN998I0YfeiQWTqSog/SkLs2+5s0T8N4Ag9jKlSsro0CqNFKyjVwmcQ1mEZFyjIi77lCL1FIID9Y1+5/+/fvL8W/U/o5zC2aJAaKmSC/3NlLraaQVs5doJYPZZXwmCFsIbF3EQvhiH9PXj/gHTCLA5Kd27driPo2oLAZFmCDFDftIwoQJxegLwoMQZy2fEKFFxB/RfmST6SaVjmBiCwN4TJqgdSD2P5wHENFANgd6dh49etTl60lgRC1Tj/2LHrSCC/LAgQOd7v84Fzdr1kyOE4AxF44lZDtgjP3jjz/K5LI+3iaB55gFnI8FzQPatGmjJUiQQNu0aZN2+fJl2+3Ro0dhnnfixAktSpQo2sqVK19ZxosXL7S8efNqFSpU0Pbt26etWrVKS5YsmdajRw8tMkiaNKmGj433NpJJkybJcl++fGnocsmrHD16VPatu3fvas+ePdMWLVqkPXjwQNuwYYP2xx9/8DuIBAoUKKC1a9fOsOUdP35cjp+YMWNqjx8/1vwJzjnYf06fPq2tWbNGPstbb70l+xIYMmSIljBhQm3x4sXagQMHtBo1amiZMmXy+3qR/3HlyhXtyy+/1PLly6fFjRtXix07tpY9e3atY8eO2oULF0y3mXAew76Pe+I79+/f1zJmzCjbtEOHDk6fs379etmv8ByMRfQxDM4BGzdulOMd/+vSpQu/kiChadOm8p0MGDAg0KtiajCGzZYtm2zrcePGOX3OoEGD5P/RokXT+vfvH+a8PHr0aPkfv6vgomvXrvKdtG/fXjPzddIjUavvqI63KVOmhHkeBGq6dOlciot//vlHe//99+WiApGJC8fz58+1yLjY6et8584dQ5c9bdo0Wa4+MCb+F7RAF7W4f/r0KYVtJJEnTx6tU6dOhi1v4sSJcvyULFlS8zdz5szRMmfOrL322mtaypQptbZt24Y5H/z7779a7969tRQpUojILlu2rHbs2DG/rxexJhS1xrN69Wo5n2Byfdu2bWGO7blz52qxYsWS/1eqVMnpZBWuMfqg3egJcOId7777rnwnM2fO5Cb0M8OHD5dtnStXLu3evXth/jd//nzbONqV6B06dKjtOcOGDeP3FQRUq1ZNvo8xY8ZooYhfRG2oc/DgQdkoiRIl8stAGcu+ffu24csmzgWto6gFFLaRAyIZ3bt3N2x5H330kRw/EJOEWAmKWv9G9nLmzCnCdffu3Vrp0qVtg+0qVapoT548cfn6unXryvOQxcEMrMCTKlUq+T527doV6FUxPZjkjRcvnmzv5MmTa2PHjpUx1p49e7Q4ceK4FfFDRF2fGDp06FCkrTtxDrKd8H2sW7dOM/N10lJNVdHOB4RXC+wuqLFDPQHugW4wY9/2gyhDjbjc6UPrqo8tMQ5MhqH9jSfGbhEtD/VtoHTp0oYskxBibWBUA0NIXDvg5QFXY3iBoMfxV199JbXZ4fU7Rl0gfBpwjZ84cWKkrjsJC67nuOaArFmzcvP4GfRfh3EaXHLhfwPzPnQlqFatmhjAVqxYUUz7wqNnz56qRo0aYhoF87b/JXuSQPDs2TObe7jZa2otJWr1huwwk/CFL7/8Ur399tvi7Ix7/K07peonXhL5glaHwta/3L17Vz158iSMO7AvoNn7hQsXpHc0jidCCPGVxIkTqzFjxsjv6GeOQXXDhg3FMAUGNuEJWoCWXzDKAd27d7d1aSCRjz4gT5QokdyI/3nvvffU4cOHpWctjPlw3MAQFY7g6CISkSkjTP7ghIzrOpzIV65cya8tQJw+fVomF2CMifOambGUqDUiUotZW7ik2oO/MSgHFLWBFbQ6FLb+Q9/HU6dObcjy9CjtW2+9ZWqreUJI5IKemYjKImKEa/evv/4qLS3cBREq9LG+c+eORJtIYEUto7SRCwRp27ZtZfv36tVLuh3AGRmRXHfA99WxY0f5HcePkX3tiXfOx1GiRDH1prOUqDUiUotWMs6AqEWqEnp3ksAKWh0KW/+g7+NGRWqREghKlSplyPIIIUQHUVm0iipatKjHGwXRqPHjx8tAED050VqKRD76uIuiNjBg/IUezsuXL5detp4AMYzWnhBW48aN89s6EtdgLG2F1GPLiVr0m9TTkrwle/bsLh/HIJ+R2uAQtDoUtsaj7+P2otaxxtzVY44gJXDdunW2dCdCCAkmihQpIunHAL1v9awsEnmgXzDImTMnN3uIgaguBDHo16+funXrVqBXybKR2pwWOH4sJWp1fAm/I0Xyiy++CPMYamrxOEVtcAlaHQpb40Utvhc9VdhZjbmzx5yBmh0sD43aYfBFCCHBBgbjMJq6ffu2atKkCQ0IAyRqUc9JQo+WLVuq/Pnzy/Hz9ddfB3p1LJ1+bHYsKWp95dtvv1U7d+5U06dPl/shQ4bYagwZqQ0uQatDYWsc2Mf1elpXNebOHnMWsV27dq3clyxZMkLjFkIICQS4fqAeFxN5GzZsiND5lRgHsnkoakObaNGiiZs4gHnb6tWrA71KluJvph+bEyMtxRGZbdy4sdzrIFLLmtrgE7Q6FLbGgH1cTz12VWPuDGfP1UVt+fLlDVo7Eqogog/hQDMREoygxEgfmMN8Co7KJHKuN/fv31dRo0aVFjMkNEF5ETK34MJbq1YttW3btkCvkiW4ceOGLeXbVfmkmWCk1kBglY16G/ZGDT5Bq0Nh6zvnzp2z2cLrotQdHE+oT58+tTkfU9SSXbt2yaAnXbp0qnfv3tI+gpBgolWrVuKkjIkXtAeC2CL+RY/SZsmShdk8IQ76Pb///vvq8ePHqkqVKpwYisTU4/Tp01uiuwRFrQ84GuGgZgCNqT2JXpHIE7Q6FLbeg1nW/fv3qwIFCtj2f0eQweCq7tyeHTt2yPGSPHlyaexOrM3s2bPVu+++q65du6YGDRokrdfq1q1rm/ggJBj8OCZNmiSZKhBbaBn07NmzQK+WqWHqsXnA2AsO4iVKlJB+9xUqVOB42c/8baHUY0BR6yXOjHDQzw7s3r3byO/I1ES2oNWhsPV+1g9CtFChQi4vRoi6uqo7t0evqylXrpzpe6eRiKlXr54I2IMHD0pEDDXW8+fPl7Q1TBj+9NNPsu8REkiSJk2qFi9erOLGjSuZKs2bN2d2lh+hqDUXiBYuXbpUvfnmm+r69ety/WdWjv84ZiHnY8uJWtRkgBcvXvi0HFfmOCdOnJDoAkVtcAtaHQpbz9H3bUzghNfeylXduT1LliyRezR0J0QnT5480hsUA53hw4dLHd2hQ4fUZ599JmnvnTt3lnMtIYFs84OIE/rYog7clbs78R2KWnO2+cGkNoTW+fPn6SjuR45ZyPnYcqI2RYoUcn/16lWfluMqQoXHEcGiqA1+QatDYesZ2LezZs0qFyWI1aJFi4b5Px5zJWLtgSg5cuSIDApRW0OIIzgvdOjQQc4Va9asUdWqVZOUtZEjR0prD0yGrF+/nhuOBIRKlSqpyZMny+9Dhw61mUgRY6GoNSfJkiVTixYtknZ+OI+PGDEi0KtkSv5m+rF50duQ+Jrq4CpChYEXRO3evXuZjhQCglaHwtYzUYt9XM9YgLmPPXjMWeseR5C+B0qXLq0SJkzo4TdGrMTDhw9lEuTkyZM2F3ukq69atUpqsqpWrSpil5DIBuVHemnF559/7pFxHokY9DXVgxBWSZ+0Eoge6u2xunfvLqUnxDieP3+uTp8+banjx5Ki1te2O3papSMzZsyQegE4IjI9LjQErQ6FrXsmUZiw0UVteBkLEYEZWgAnUUJc7UeI1CLluF27dhLZR30t9p07d+6oCRMmqIwZM6qVK1eqLl26cCOSgABTPNSAg44dO/pc3kRejdLiHBBM4wViHJ988olMTMJwDY7iT5484eY1iNOnT8v5CPX/escKs0NR6yWuWpAgnRIwBTl0BK0OhW3EIgNRM13URlRT6wq4227fvl1+p6gl9iAKiyg+IrBIMR49erTMNrdo0UIdOHBArVu3TlWvXl0u0i1btpTH4GMA4xFCAgGyBuCpkSRJEhFhMDQjxsDUY2scP0jjRxcEeCegBzQxNvU4e/bsljHjpKj1ElcDdwz4ET2gqA0tQatDYesafZ+Ga6GeseBO6x5Hli1bJuIFZlPoSUoIgGN25syZVe3atUW8pk2bVg0ePFiMRBCVzZs37ysbCuIWbYDQYJ6QQIESigEDBsjvffv2lbRZ4jsUtdYAglavT0dtOr0SjOFvi9XTWlrUYlDtC84G9GDBggXijIgenCS0BK0Oha1zsE9nyZJFJUqUSP5G7SyEBvo2hte6xxGmHhNn9OjRQ509e1bOE3PnzpXUKUySJE6cONwNhn2wZMmS3KgkoCAFGc7dN2/etAlc4hsUtdYBKchIRQaI1vo6RifKdvzkzp3bMpvDUqIWDdMBcvaNmElFRMERpCGhBQUG+OjBZXVCTdDqUNiGBRcYRFjh+OnYpxlpoEgbcsf1GPXmMFQDtWrV8st3R0IT7EvIBti6dauqU6eOihYtmluv69q1q9q4caPf14+Q8EDpkW56M2rUKLe8BUj4UNRai/79+0t/chhQ4jpAfOPo/4talPJYBUuJWliH68JWD8v7gquLlv4eK1asUFYmVAWtDoXtf8CV8Ny5c1LP6KpPszuux3Csffr0qUR8naWTEusydepUW2o7IaEIasHRogzmLN26dQv06oQ0jx8/lvGD1QblVk9Dbtq0qfzuOMYgngcijlLUmp833nhD7vfv3++3ulqkHyNqtWTJEmVVQl3Q6lDY/g/sy/Hjx1elSpXyyfV44cKFtiwHqxgXEPdAZBaGUO6keeqGfIQEG+hZi/0T50zWBnrPsWPHZGCOcheIHWIN4GSPscHy5cslA4x4x8WLFyUzDtdVZI9aBUtFakGBAgXkft++fT4vKzyjnGrVqqnVq1db0p7cLIJWh8L2f6K2YsWKkhrkresxIrRIYQZMPSaOYADrbh2VL/VWY8aMETO/WLFiybnasdeyPRMnTlQlSpSQgTVu5cqVe+X5WJc+ffpIhg6ygfActnSzLugH+emnn8rvejoy8Rz7KBMnQK0DBJhe2ocJIuLb8ZM1a1YZw1oFy4laIyO1umMn6mfheIibPlhHmiban2zatElZCbMJWh0rC1sYq/3555+yT/vierxhwwaZOcTg3536W0Kc8ejRIxUjRgyvNs6cOXPU559/LufqPXv2yCQnJmvQZsoZOH9/+OGHUrMLozS4dSPFFLPgOkiTGzlypBo/fryk4MORGcu04oQm+R/t27eXe0xsX716lZvFC6yYOkn+h566/+uvv6oLFy5ws3jBUYseP5aN1KJG8OXLl4YsE47HX3/9tdxgnoMBPlwQ0T/RSinIZhW0Vhe2SAOKGjWqqly58iuTOZ64HuM4ATVr1pTlEeIpd+7cUb///rvNt8BTEDlD+nKzZs3EERJCNE6cOOrnn392+nwMqj777DOZDEUEDk7fOO71tFJEaYcPH6569eolPZfz588vxwQmgnSXb2I9kLVStGhRGWPMnj070KsTklh1UE7+N3GOUifUpo8YMYKbxAuOWvT4iWrF1AakiGG2/+TJk14vBzPyv/zyi/TWcmaagxQ1pCAvXbrUEtbkZhe0Vha2mJjBZ06SJMkrF57GjRu7FXVF1Gr+/PkuXcOJNUFfWv0GfvvttzCP2d/Sp08vtXWYuX///fc9fq9nz56JuzLSg3UwuYK/3W3BhuvG8+fPbW2Gzpw5o65cuRJmmQkSJJBjwtUykYZ/7969MDdiPnBuBBgnEM+x6qCc/A89G+ynn36SyUziGUeOHLFcOx9LiloUTefLl8+nFGTHdibOWLlypaRrYgBmRP1uMGMVQWtFYYtB/Lp162ypx96CqBXaaCF9s0yZMoatHwltcN7Qb6ibe/DgQZjH7G84l0KEfvDBB2rQoEEev9eNGzckcpYiRYowj+NvCFN3z/3od66LWP11nixz8ODBInz1G44JYj4aNGgghlGYSNEFGnEPROh040GKWmuCiUt0SEDJEjJqiGccteikkOVErX1dLS42nuKsnYkzkIoMYQtzETOnH1lN0FpN2C5evFiirEit9AVkNADY9bvbf5SYH0Q6cTt9+rRktKA/rf6Y4w11rBC9c+fOVQkTJoz0dUWKPc7lcPCGyZS39OjRQ929e9d2O3/+vKHrSYKDpEmT2jIKGK31DJwPkBGBrLoMGTL45fshwQ0mOdGDXB8/WCHj0Shu3Lihrl+/Lr+jbMZKWFLUotYFhOd66QpPGqoPGzZMlS9fXvovIvXNbFhV0FpJ2Orur75YwmMfQbQXoJaREB0MWHGDG3GTJk1UpUqVbI853lBH60srH4gMTKg4Gvfg75QpU4b7WrhwQtSuWbNG6mZ19Nd5skw4iON8aX8j5k5BRm22Ga8P/o4y5ciRg/4LFgalSjAFRKmgJ2Nvq3P0/48fXDdhXGglLClq9RpAOLp6ahblqm2Jq/6KiArDWRO1tWbC6oLWCsIWFxK4vsJYxxcwqQPKli0r5mmEOGPKlCmqefPmfj1WCxUqFKZ3qG76VKxYMZevQ2bOgAED1KpVq1ThwoXD/A/7M8Sr/TJRI4uMnvCWSawBfDWQYn7u3Dm1ZcuWQK9OyGDV1EkSlvjx46vSpUvL73o7QBIxRy18/FhS1OKLjhcvngiRw4cPe/RaV+1MXA1gYGyC+ltEvMwCBa01hC2cXpHmiZRQb8GkEcRKeBM/hEQWaOeDc/G0adPkwt+mTRs5bvUMAvgkID3Y3uW7d+/e4o6MaDLqZHFDGrSeItepUyc1cOBAMVSDqz6WgbpbuHwTa4M09bp168rvTEF2HysPyklYqlatKvcUte5z1MLHj/e5XCEMUtCQgoy+mZhRt08ncwcMdJAWgXQIRG4hdF1dsFB/hUgXDKVQJ6K7fIYqFLThC9tt27aJsEVEJ5Tb1sChFRFWpM+hrslb1q5dK1EK1JbrPZwJAYjKQhTC9AnGSp5EafE6vU7bE+rXry+1Rn369BFxikwaRGB1oyfsq/bH7bhx46R0xHFiB31u+/XrJ79jkhPCuHXr1uLS+e6778oyfam7JeYB51BMEMLZe/To0T6dT63CgQMH5N7TsRkxp6jt2LGj2rp1q5xfA+GnEKrOx7ksKGpRfG1JevTogapzrUWLFoYsb+fOnbI8Z7dNmzZpiRMn1jp37qyFMkePHtVWrlyp3b17VwsWnj17pi1atEjug4GnT59qGzZs0P744w/t5cuXWqgyffp02XfxnfvCe++9J8vp1KmTYetGzEGUKFG0qFGjaseOHbP97e4NrzMLOJ/iGAmm8yoxDlwHMmTIIN/x7NmzuWkjANfy1157TbbX6dOnub2Iljt3bh4/HpAuXTrZXr///rvlrpOWjNTa19UiUmvU8qpUqaKWL1/+yv8w+49Z/LFjx4orMuoEQg1GaK0TsYXLIBqeV6xY0SfnPHx+ZEPA3Kdz586GriMJffS0dBhA2f9NiJnA+b9Ro0bqm2++UTNmzJBsAeIaZMAhOwLjJDofEz1ai+gjUpB5/ITPgwcPbI76VozURoGyVRYEqWcYTCGN7datW4akNEAgo37WkZ07d0qNFUxFhg8frtq1a6dCiWAWtLD9X7FihapcubK45AULuChD2MJ5LtSELdYbKZTYrnpLCm+oV6+emjdvnqTfTZ8+3dB1JMQswFgKZkJo7xNs51diDPv375dU9zhx4ki/bkx+EufMmjVLNWzYUMYbuBYRgtTjkiVLqsSJE4uzvC8u+Gbnr7/+UkWKFBE/H0dXfitcJ0NnpG0wcKzMnTu3RKWcRVe9wZWJFB5Ply6d+uCDDyQChsbioUIwC9pgJpTNo3744QepFUek1hfn5Pnz58vv3bp1M3DtCCEktMiXL58MMh89eiST3MQ1rKcljsCIFb4cCEDx+HGvnjZ37tyW3JEsK2oBzJ6APvg2AphI4aBDZAr36G1oL3Ax2IfzZihAQWs9Ybt79261YMEC2Vd9iS6jRzM+LyLoGNAR4gtnzpxRixcvVvv27eOGJCEHzqXvvfee/K737CbOgYM4oEkU0UFkVs8aowty+By1sPOxsrqoReQUwKkSwsMoEJlFyqVet6tTsGBBqQeAc+bjx49VMENBa01h2717dzkZoi2JtyDlRa+PdMxcIMQVaImDicZdu3aFefz777+XzAH8D31m/dnLlhB/Ua5cObm372lMXoWRWuIMtvZxj6MUtdalQIECUucKgQlhGxmgnyEG/bD2D1YoaK0pbBFBwA0tVnypWUG7FLQEwqQO6mAIcQdkt+A8bD/DjHMRJlpQJoLzNWoSkemydOlSblQSUpQtW9bmvYH6MPIqqDfWTW7y5s3LTURsVKpUSdpxHj58WDJ3iHOOWLmdj9UjtTCJ0qO1RqYgh0fWrFmlb+3gwYOl51awQUFrTWGL9YF4QO1KjRo1vF4O0kMnTpxoi7DhGCPEHfbu3SvC1d4d/tdff5V7OMfv2bNH/fnnnzKwmTBhAjcqCSkyZsyosmTJol6+fKk2b94c6NUJ6tRjbCuYwhCig5paGFgCo3xwzMbTp0/VqVOn5HfW1Fq8rhZ5+tghIoPevXvLe3333XcqmKCgta6wxaQO6mlRA+6tEEU0rVOnTnKPNPsSJUoYvp7EvNy4cUOlSZMmzGObNm1SsWPHVk2bNpW/0WIKAxvM1hMSajAFOXyYekzCgynI4XPixAkZV8LUVW+VZzUsHakFSJFEu5379++rNWvWRMp7YmfD4B/tfS5duqSCAQpa6wpbtEXq2bOnmDr5ki4MYYwIRKxYsYJuwoYEP0+ePJEorA4iWojO4hxt3wIF52u0ZCMkVFOQaRblHIpa4o6o3bhxoziJE9f1tFEsmiVneVELV8IGDRrYWplEFjDQQQSif//+KtBQ0Fpb2P7888/iyo2UeG9BXXrXrl1t+3b69OkNXENiBdDyBDPNOnCPx36FY8UePIb+z4SEGmXKlJHBJjINODHzKhS1JDxy5Mgh2TzPnj1TO3bs4MZy4IjF2/kAy4ta0LlzZxUjRgxJddu+fXukbHjUi3z11Vdq0qRJttmVQEBBa21hiwyFr7/+Wn300Ue2FgowMvnll1/k3l0wIXT27FmVNm1aOh4Tr0Av7P3796vZs2dLg3UYlkEA6CmbOjhfIlpLSKiRNGlS9cYbb8jvdEEOC66BbOdDwgPXA0wM6dFa4nxSKDdFrbXBQLxJkyby+zfffBNp79u2bVuVOXNm1aJFC0m1i2woaANLMAjbbt26iRMnXLkB+tO+/fbb0tIH9/g7IuBEqB836NPMKBrxBuxrcN3GBEvixInVypUrpQ2afUo8nFFx3ipSpAg3MglJ9EkapiCH5fTp05JSivIVGGoS4gy93zNFbVjgZbLj/6PXRYsWtezOw0it3YAKqcgrVqwQF05/okfCEJVAP0+k2f34448qMqGgDQ4CKWwxqPrpp5/EpThDhgyyXzrWwuLv8CK2OJG2a9dOUkJLly6tPvzww0hYc2JGIGBx/i1VqpTUBMEcCgZ+9sydO1eyXPTaREJC2SwK508SNsqEVj72tfWE2KNHatHP/MGDB9w4/8+5c+fU5cuXZWK4cOHClt0uFLX/D2YG9dpapL35C8dI2JIlS8Q0qlevXiI0IwMK2uAiEMIW0VlkCGDW85NPPpHHjh8/7vS5rh4HCxcuFCGC9P1x48ZZ1pyAGAPE6oYNG9ShQ4ek1jtFihRh/t+lSxfpZcnJExKqwL0b53xkHdjXkFsd1tMSd0C7J9xevHihfv/9d260/0cvnXzzzTeln7tVoai1o0ePHjYXV3/UubqKhKEvKIx1mjVr5vc0ZAra4CSyhS3Sjm/duqUmT54sGQoge/bsTp/r6nHU43bo0ME2WYN2K4QQQlyDASfqxwHrav+Dopa4C+tqXYvad/7/3GJVKGrtQNpLzZo1JSUI5jlG4yrihbQBpCFD9PrTgZmCNriJLGG7du1aNWHCBEk7xoynDlqnwLnYHohVPO6Mvn37qosXL0pdOEzPCCGERAxb+7wKRS1xF4pa16K2WLFilt6Romgs6ggD6mkLFSokwhY1h0bWbkG0IuXYEdTUQjggtW7MmDGyDqgpMxKzClr0WEX6K3qsIgXWDMCuftu2bWK4hNoIPZJqVNoxJm8QfYW4Rbow9ktMuOAx7IeOfztj3759cpxAeMPQp1KlSoatI7EumOBDaymcezFh8vTpU6fPw36L9DMzgGMSdcJwfDbTuZm4Btd8DD4TJkyobty4YfkaUtRGxo8fX7bN9evXxSWaEFdcuHBBpUuXTsZGyDjD+dPKIBCCbfDy5Uu5hmLbmA13r5OM1DqAfHS4EoM2bdqoJ0+eGPalRBQJgwMtDHuMTkM2q6A1K/6M2Oo1iUg7hjBw5naM/bFx48YuBS0mfFAHjvWqW7cuBS0x7DyF8y+yCE6dOiXnXuxrzm6B7u1MiC9gshIDtDt37qjdu3dbfmOihh6gVRcFLXGnYwl8cHAd2Lp1q+U32J9//imaIW3atKYUtJ5AUesEiMuUKVOKiYNjDayvoOUJZmmnT58u90OGDLH9L3bs2JKGDFe3fv36GfJ+FLShiT+ELWrF0Rd56NChXrsd6+ZQmzdvltYLWBYhRtCzZ0+ZcKlQoYKcGzEji/3e1Y2QUAUOpXoKJVv7MPWYeA5b+/wHU4//g6LWCZhBHT58uM0J2WiHQsdImN7iB/eIpuI9IaznzZvn0/tQ0IY2RgpbtI9CNLZevXqqdevW8tiAAQM8djtGOihMpkDXrl3F4IwQI8BECfanxYsXS589PR2REDNSvnx5uUcZiNVhPS3xFNbV/gdNov6DotYFGPwjYoBBPNKR/VV67Cz9Eze0rGjSpInXPXMpaM2BEcL22rVrqnr16ipHjhySCaDX0S5fvtwjt2MwcuRIdfr0aZUqVSrZTwkxikePHomYxT5PiFX61cI/Aed3K4NJV5A/f/5ArwoJEUqXLm3z90BdrVWBNtmxY4f8/o7FnY8BRa0LMPCHaVPMmDFlJnXOnDmGb3xX6Z9IP0bNY+7cuaXdz9WrVz1aLgWtufBF2MJ0qk6dOlKfiAiY3r/MVTS2SpUqLmtpIY6RQQBg5hMvXjyvPg8hzoCLttUH98Q6ZMuWTTITYHa4ZcsWZVVgAKOXvGBSixB3QIkgDFUh6qx8/GAsB1GPcrA33nhDWR2K2nBAITrqvHSDHTj0GYkrYYFoGtJxFi1aJBe8Dz74QMSJO1DQmhNvhC1O9u3atZP6RNTB2hsIuIrG9u7d2+Xy+vTpIwMQuB4jfZ4QI8E+hcEJ3E8JscLEOVOQlVqzZo2Mc3BNgtAnxF2Ygvxf6jHM515jlhNFbUSgfhARhEuXLkl0ykhcCYuffvpJUpHR+xNiBM5mn332WYQp0BS05sZTYTt27Fg1ceJENX78+FfSUjztSXv48GFZFvjxxx8NbTNEiD5xiDYn77//vs0NlRAzQ1Gr1NKlS2VbVKtWLdBfBwlRUbthwwZlVVhPGxb2qXUDRExr1aolqchHjhwRkWsUEBLhOSyj/2eDBg1U06ZN1YgRI1SHDh2cPs+qgtaMfWqN6GO7fv16VbFiRdW+fXsRoa5wpyetnpaM7Vy7dm1xUSbEH26WOJ6xb2OfRmombs72b0S5sI+bAfaptS7oUZs8eXKZsL58+bKkVFoJtCHBZ8Z22LRpkypVqlSgV4mEENhvkiVLJr+jTA/HktXImzevBB2gU2rUqKHMirvXSYpaN8AFBwIBtbU1a9aU6KmRQFgg5RgRWmc0atRIpUiRQsTJggULXtlxrSporSpqIxK2Bw8elMEBHse2QfsIX0DLCUQUsBxM6jBFjPgDT6L/ELVG9vIOJBS11gblHHv27JEOCLjWWwlcw959912VMGFC8Wyw0jWcGAN6m8Msatq0aWK4aiXQ5zpRokSWEPX33BS1vo12LQIGUGjxA2c+zIZA3OppQ0agR8hcidoZM2bIyf/s2bPiygzDH0RwrS5orYyeioz9AqnIurDF/gBXTfShhbmZr4IWwgGtewBS4Cloib/YuHEjNy6xHBhLQNRiXGE1UaunHqPkgIKWeAM6O0DUYl+ymqiFXwrIkiWLqQWtJ1DUugmciGG6gxTgjh07igW9kSdhvXctZmudcerUKTVz5kwxjUIqNNqxpE6dmoLWwjgKW8x2I4UT6TgYIGEGz930Yldgf8S+jhmy8EykCPEVph4Sq4rab7/9Vs7ZyArDJLpVYD0t8RXUYvfv31+tWrVKWnCiTNAqsJ72Vej24gH9+vVTSZMmVUePHhXzHaOZPn26LQLrCEQJRPS8efNk8Fe1alW5IDBCa210YXvy5EnZL+LHjy/pwthPnfVA9rRvqO7+jXsskxBCiHHg/I12HKipRXmHVUC/c3zeaNGiuRz3EBIRBQsWlAAPupOgLttKIKAB2J/2PyhqPQCRML1PJ2aGkNttNCtXrnwlBUkXI4iaIc0CLsw5cuQQkQ1nZGJtkH6OfQTpx0OHDpU0FFc9kPV+gO6AfR2u30hlhuEUIZEBolWoBe/Vq5f65JNP1M8//2z7H9r9IPPALPW0hEDQlihRQjYEorVWi9Lis+t1gYR4CsY9unP2kiVLLLMBz5w5YxPxugs0oaj1mBYtWqicOXOK61p4rsW+APGKXHlEbnGPQZ4ecUNtL6JySLUoWbKkzZWWWBPMdCNCGy9ePJm1wz1SkV31QHb1uCNw0/v+++/ld+xzGHgR4m+Q6p4rVy4ZpAwaNEhNmjRJ/f7777b/Y9CP//OcR8yEFVv7MPWYGFlXq4vaiFpfmoXRo0dLW0ecOxDkIv+DkVoPgfHOkCFD5He4EV+8eFH5A73GFujiGa19kKaDfo6IzsG0Cn/DkRmuyMRaIGoPQYsa2s2bN6uMGTPa+tjiMaR1udsb2R5cFGAK9eLFCxEXZraJJ8HDhQsXxOQMEy8wjsF5z3GAgnMdyjBglkeI2UQtzuNwtjc7yHLDZwXsT0t8BV4iceLEkWsIxkVm5/79+2ry5Mnye6dOnQK9OkEFRa2Xs0KwoX/8+LHq27ev8id6ZE0XtDDrOX/+vDyOgnjU2KJ3aJ06dcRswiqzVFYHkxjYB5EaDNdY3flOr7HFvjFhwoQwwhYpyu6YRSFDYMuWLXKRGDVqlKWMS0jgQGT25s2bkhmwbNkym+u2PdgnCxQowLILYirQWQHncExIWsEFfPXq1TJpiggTHfWJryCTrEKFCpZJQUb7IkwMIUjBevSwUNR6AQb5evQU/WWRqukvsNM6Clr9cYCoBVyRUX/WvXt3qceF2CbmBOkmqOeGCzZ682K2O0mSJGGeowvbTJkyiTjQ09j1DIPwgKjQxQQmbCCaCYkMUFKB0o4OHTqE+zxkJMBUhxAz1QXinA5mzZqlzA6uS4BRWuKPFGSzjwHRhQWgE4sn/d2tALeGlxQrVkwuQtjBICb9BVqpIBJrL2j1iBtMf1B/C7MoCB30JV24cKHU2vorLZoEDszi169fX8TmgAED5PuOGzeu0+faR2wxG16kSBG33gP7FurF8+TJozp37mzwJyDENTAly5cvn1uTimjEToiZaNiwoS0Lx8wT00idREtCQFFLjAL+Mrg2oOcz0pDNCvwk4KsD41qr9eV1B4paH9PlkN6JWUe9PsRI/v77b6mdrVixoqQZ20fcnLVrqVevnpgFXb16VRUuXNgjp1sS3Jw9e1ZEKtyxMehBZD6itGBd2EIMwzwKEzDhgRlOvU4DLauM7MNMSERgggbuxu64PiZOnJgblJgKtOVInz59GNFnRr744gt169YtybhgKxJiFEjfR7DJ3oTMjKA8B7Rq1UqMQUlYKGp9ACnArVu3lt979OhhaD2rLmj1PrS6cZQeoXXVruXNN9+UyG3mzJnFRAhCmIQ2W7dulUgraih27NihatWqZYvSRzRx4a6wRRZAs2bNbMYDqNclJDJBlHb37t2SKRDe5A4ckgsVKhSp60aIv0Ea4Ycffii/o6TIjMDdGROmABOoMN4kxOgUZLOK2oMHD6r169dLMK1du3aBXp2ghKLWR5AWDPMSiA2jDiRHQetIRO1aUqRIoTZs2KA++ugj1aRJE0kjffLkiSHrRiIPTJKMGTNGlS1bVuXOnVsmKzDwdxal90XYwrAD+wpmzyEW3Km9JcRo4AeAKFXLli3Vo0ePXvk/XGHhyv38+fNXenkTYqYUZERq79y5o8wESgbQEhG0bdtWHGsJMRI9nR3C78GDB6bbuCNHjpR7lCQiq4M4QSM+89VXXyFEq+XJk0d78eKFT8s6evSotnLlSu3u3bsun7Nz5055P8cbHtf/P336dG3Hjh3aiBEjtNdee03LlSuX9scff2hm49mzZ9qiRYvk3kz8888/WtmyZeV7bdu2rfb06VP5Xvv27Rvudx8eWMaGDRtkP3j58qXt8T59+sgy4sePr504ccLPn4wQ5+DcWbp0aS1KlChaunTptFatWsnvBQsW1Nq3b69lyJBB/i5fvrypNiHO9Tj+wjvnE2vw77//yjgC+8PkyZM1M9GyZUv5XJkzZ9YePHgQ6NUhJj1+smTJIvvZ3LlzNTOxadMmGcvjs23btk2zGnfdvE5S1BrA7du3tUSJEskGnzp1ql8Frc4XX3wRRtR8+eWXTh9v3LixdvDgQa1QoUJa1KhRte7du2tPnjzRzILZRC1OyuPHj9fixYsnA/vVq1c7/V4db5jEcAdHYYvfIRSwjJkzZ/r50xESPvfv39caNmwo5yrsl463OnXqyHPMBEUtseebb76R8zEmNc0CxjX4TDiGt2zZEujVISYGY2Hsa1WqVNHMwoEDB7QECRLI58I1EONEq3GXojZy+f7772WHS58+vfb48WO/ClodPSJrH6F1Jnjeeecd7ffff5eLZYwYMbTcuXNru3bt0syAmUTt2bNnJQqF7wyz2nfu3An3e/U0UusobJctW6alTp1aXt+8eXM/fjJCPD8fDhs2TLIU2rRpow0aNEjbu3evz5tx9OjREvGNGTOmVrRo0XCzVw4dOqTVrl1bno9j5Mcff3zlOc4yJ3LkyOHROlHUEntOnz5tE4CXLl0K+Y1z7do1LU2aNPKZOnXqFOjVISbn77//ln0NE6MXLlzQzDAu1I+fd999V3v06JFmRe5S1EYu2NH0Hc/Z4MdoQesMCNzwhI991DZatGhajx49Qj5qawZRi1m3CRMmSPpv2rRptVWrVnn0vepRek8HGkgDw+uRms50MGJ2Zs+eLelbP//8s3b48GFJb06YMKF29epVp8/HxF/Xrl21WbNmaSlTpnQpapEuevnyZdvt+vXrHq0XRS1xBBPR3owlgg1kVRQpUkQ+S7Zs2bSHDx8GepWIBYD4wz6HQE4oc/PmTRmf6eWNt27d0qzKXYrayGfixImy8yVOnFh2xsgUtO5G9Bo1aiQCcMCAARK1xYGCKG6oEuqi9vjx41qFChXku2nRooUtOuvO94oBtScRWh1kEqB2Ud9XFy5cGKbGlhAzgsgsIr862OeRqTB48OAIX4torStRW6BAAZ/Wi6KWOMsowPkZgjBUQUaQfm1LkiSJjHUIiQymTJki+x3qa0M1VRfjtOLFi8vnQLDj3LlzmpW566aopfuxgTRt2lTlzZtXXGT79Onjs8uxN0TU923GjBnSnBp9TuGEGytWLGnfUqNGDXX48GFD1oFEzOXLl1WbNm1Urly51NGjR6X/7KRJk1SCBAleeS7aOKG3nz1wPO7Xr5/8zxNevnwpraE2bdqk4sePL++L93Snjy0h/mTv3r3SmgyO7VWrVhUnS/w+dOhQdeDAAZ+WDedktAsqV65cmBYq+BvO9b5w4sQJlTp1ammjBhfxc+fOhfv8p0+fihOs/Y0Qe+rWrSttO+B4j/0r1MC1BC3i1qxZI90hVqxYoXLmzBno1SIWoU6dOtLD9dSpU2rLli0q1IDfEdqFbtu2TSVMmFCtWrVKpUuXLtCrFRpEmsy2CKhV1PP59+/fHykRWneMhFyZCiFa8euvv0oqKmp4mjRpIs67oUKoRWphKga37Dhx4kiUdOjQobYaCccaaUci+n9EYMayXbt2sg8gSr9+/fpwXZEJiQxwvilXrpycM/Wbbgxl/1ilSpW8nq2+ePGi7Pfbt28P83i3bt0kguttpHbFihXisolzPcoGihUrJr4K9+7dc7ksVw7mdD8m9mB/97a8JJDgOoPaWax79OjRXymnISQy3bZRdhdq/PDDD7LuKBPUx2lW5y7TjwNH3bp1ZYcsVaqU09QHowWtq/RUpCy4ayoEYYOUp+TJk0vdWefOnT2uDQsEoSJqkUoCMzEI2dixY4uwhcB1NSmBv/3lqokb6gvtobAlgTLFSZUqlU3IIk0RZmkffvihVr9+fXGAxTGjC1yc07yZdPOXqHUEx/Trr7+uTZo0yeVz4GOAc79+O3/+PEUteQVc1/QSkVAyhxk3bpztOjNjxoxArw6xKGhpiX0Q4y1nZV3Bypo1a+Rah3VHS07yPyhqAwgGXTiQsFPOmTPHr4LWHSMhT0yFYOzQv39/MS3C4Ay1t8HcQiPYRe3z58+l3yAG45h1+/TTT19xtIyo77CvYGLl66+/ti13+PDhTp9HYUsiG70vbfbs2SXq6Qo4dcNoBs/1ptUJ9m0cf6gft+fjjz/WqlevbpioBYULF5bWae7Cmlriqm9zxowZ5Zwd3iRJMHHkyBEtVqxYss5DhgwJ9OoQC4Nxj26yhDaJocCJEyds7UGbNWsWsvXA/oA1tQEkQ4YMqnv37vJ7165d1cOHD/1WQwuyZ88e4XP69u2rdu7cqYYMGeL0/3/88Yf65ZdfpK62d+/eUovQvHlzNWDAAMnl79atmzp79qxh62x2UFeN+sAsWbKoFi1ayHeO2tlx48apVKlS2bY37o8fP+50Ga4e97Q2A98dvn+A77Njx45On/vaa6+p4sWLy/7KGlvib1AvuHnzZjl/7dq1S73//vsun1ulShV5frZs2dTGjRulPtYTsG8XKlRIrV+/PkzdH/4uVqyYMooHDx7IuRPHOCG+gJratm3byu+jRo2Sc3kwg1rxhg0bqidPnqgKFSrIdYeQQBElShQZe4HJkycH/Rdx//598ba5ffu2evvtt2WsiM9APMQvkppIupDe37BXr15+idB6UlNrX0cb0WvtU1/RIwttLdD6AikR6Nu4adOmoJlBCrZILXpbfvLJJ1IzizTupk2bvtJf03F7o+bDH5FazPS3bt06wgitI4zYksgA5xWcU3BedBdEcxGt9SY9Hyn36E87depUiSjh2MB57cqVK/J/HIf2EVYcBzh2cUOKNNYXv2M2XadLly5yPjxz5oy2bds2qQ1OmjSptMxyF0ZqiSvQRUHP+tq8eXNQbyik8utOx2bor0tCH7RrQ1039ssDBw5owQyc+bGecOTn8fMqTD8OAubPn28z5Rk1apTfjUAgglyZkIRnPuTO89HHFLUyejpHjhw5xOTIk8GbWUUttg16X8IkBtsGPS2Rwu2s/6Wr7Y1WS56kiUcEtkfDhg1tpmVIgfYEClvib8qUKSMDYE/Ba/Bab8B5GEZOmHBCLa39eQ4eCDDK04FQdXas4nk6qPuF4MXy0Kccf588edKjdaKoJeGhT0zWqVMnaDcUjAYx2YT1dEzxJySQIBCD/RLHUbCyb98+Wx3tunXrAr06QQlFbRCAaCZm7rGjomYsshqPO0YCwxNIrupxHSO7uvMuiu83btwoRi4YyEGwwxgLtcOBKMYPlKiF2QsiTIjKovYYF3T05Js3b54IQleOxeFtb1/dje2zBFAnqLtPOtZ1uwuFLfEnqDPH+dFTYCSF15oFiloSHogw6U6owdirEtFkTOhgHVu1ahXo1SEkDFu2bLFN7iOTLhh1QokSJWQdMZYmzqGoDQKQcgxBgZl87LAwCYos3BVIMKCIKFLrKj0Z7siwHn/jjTdsAgqDVDi2wdXUbKIWUWmkLn7wwQdavHjx5DPDyKNnz55OP6+z7eZvUyhEh99++21ZJgw7YLDjCxS2xF/AjK5BgwYevw4TanitWaCoJRGBzASc03v06BG0rVNg5IasJUKCjVq1ask+ijZZwcbMmTNtLs0o9yPOoagNMPY1tGvXrrWJl8WLF2vBgqs6XPvIrrsiDI7PaAmEaCWit3hO3rx5pXUNnuuv/qf+FLWYQUPt3bfffqsVL17c1nYEohHtcQ4ePGirLXacRAhvu3kSSfeEv//+W/oNY5lw0DOqBovClvgDHE9wePQU1KnjtWaBopZExIIFC2z1qsHU3gcp+nrN4tatWwO9OoQ4BT4I+rjUEw8Hf4POIqihxXqh0whxDUVtAHFmCgVDEey4MBEJhiJwV6LLsXVAROnJziLC+NxIw4XxCi7C+sW4YsWKInJRawwRbITZlJGiFlFOGNEMHDhQZvbSpUtnm0GrUaOG1KXqpjIRRWS92W6+ptjoVvAQthC4RkJhS4wGE0QUtRS1xL3WcLrxZDC1J0H2GdbJmzICQiKTzz//XPbVPHnyyPEUDCCgoY/ZHj9+HOjVMYWojYIfnjomE9e4atsDu3vYdO/bt0/s7leuXKmiRo0asE2JdjIff/zxK49Pnz5dNW7c2PY3Ws5gvR1Be6AFCxZI2xodvK58+fLq2bNn0kIDrTrQRmPHjh3SOgNtOHC7fPmyPD9JkiSqYMGC8hzcChQooNKkSaPixInj9ud4/vy5WrFihapcubKKESOGW6/B+l25ckUdOnTItk64XbhwQf6fMGFC23qVLFlSlS1bVsWOHTvMNkG7Hb2VkrPtM2nSJNWyZUun2+2tt95SRjJr1izVtGlT+VxY9pIlS1Ty5MmV0WD527ZtU3HjxlVFihSh3TzxCZz/3n33XafHSXhMnDhRbd++Xb18+dIU38C9e/dUggQJ1N27dw1t9UbMxQ8//KC6dOmi4sePLy2wcubMGdD1uXjxosqcObNcF9CaC9dKQoIVtMpBS7ibN29Ku5xPP/00oOuDMWTevHllDLt48WJVvXr1gK6PWa6TFLV+ONHjouNso6NPKcQS+rgNHDhQ9ezZUwWK8MSqo+j68ssvw4hX/F2rVi2nr3fkiy++UN9++22YxyBq7cUkbpcuXbL9Hzsu+jziljp1atvvuKVIkULFjBlTBGz06NGld9/vv/9u6zX54sULOUlcv35d3gc3LFv/HbcbN27Y3itRokQ2Ua0LWVyoXfUHc9wW6J+5fPlyp5MDEM2O281Vn2Bv+f7772Ubg9q1a6sZM2aEEeBGgwEM+hXj4kCIr6LWmz58OObxOopaYiVwbStXrpwIyFy5comwjRcvXsDWB/3OR44cKWIW60RIsDN69GjVvn17lSxZMnXixAkZawaKevXqqXnz5kl/dowh2ZM2fChqg5SffvrJNkOEhurt2rUL2Lo4E6uuRJd9dBKi11Wk1xn2QtlxOTqInB4+fNipCNX/fvjwoUefD9FiZ8JY/ztHjhwqY8aMr5xMsI6IpAOccOzX3R0hb/+ZXX1eX8HAHt8XRC34/PPP5fdARv8J8QRnx54nnDlzxhQbnJFa4i5Xr16VyVdcEzEonj17dkAGw7heZ8qUSSbo165dK2KbkGAHAY98+fKpY8eOqc6dO0v2QyA4d+6cBE8wMbt//36VP3/+gKyHKa+TkZUPTf6jd+/eLmtYIxtvaztd1eSGV0fqykVZ76+LW3jrce/ePekBCfMmtDnYs2ePtn37du27777T/vjjD23//v3a4cOHtWPHjkmbgfBqdu3fE9+Bvg2cmWfp6+mqTrZKlSp+MX5yxYsXL7QWLVrY3u/777/36/sRQvwHjaKIJ2zbts1mzoTuA4GgW7du8v4wTTTCG4OQyAIdIfSx07Rp0wKy4fVxprf91q3IXdbUBi+IsnXr1k0NGzZMZlmRMtqwYUMVajhGesOLWgJnUc5GjRrJ548oZRnoUU+kwJ4/f14eq1ixorp27ZrTmlpnz0fk1bEW2B3C+wz6//wRkXUEtdnYV/AZEJVFfWHz5s399n6EEP/CSC3xNo0yWrRoasOGDZFaz4ryHWRZIHMKaZO49hISimNXlLCtXr1avffee5H23jhu0qVLJzW+ixYtUjVq1Ii09w5lGKkNcjC72aZNG1tTdTgChyJ6pLdRo0bhtgdyFeV0dXOM2LpqPwRnYmfux66e7+3NVbTZ31FZx0h12bJl5X1fe+21kN1nCCH/wUgt8Wb88NFHH8m1IHny5JHa3xJ92fG+hQoVYpSWhCRoMVm/fn3ZjxMkSKAdOnQo0t4b7uV430yZMknWHXEPRmpDgH///Ve1aNFCTZ06VaKMmLUJ5VlP+8io7n7sTT2qowtzeK+FKRLcf+H2q5tFefpeRtUF+xPUESAqjfeGOQj2FbgyE0JCG0ZqibcRn+LFi0tN3ptvvimGiZ50DvCGR48eSYeCO3fuSLYQDCMJCUVQD45uHThu0qdPL2M8eK34O0sTjsdHjhyRel7U9RJjr5N0lQkgSB9F65f69etLATsuEGPGjJEdPxSBwIMQhVDHvb3gw++6S6+OfesgR/R2OQACMiJOnjzp0fM9TVVx/CyOn8/fB3OlSpVE0CZOnFjSzShoCSHEuqC1GlqBwMl17969Uobi77HDzJkzRdDC5IZpkySUiRUrlgQHMNaEcVPVqlVl0safrFu3TgQtAhMsG/MPFLUBBjUxcBKuW7euRDjhhgxXQ8xGmA3UyWI2DFFY/d5R6DoTkfYC1xVZs2b16PmuwHtj3fr27Ss3/G50Gx5PuH//vtQBYz10QYsesYQQQqxNhgwZ1Pz586U2cM6cOX69VkEwo5YXtG3blk77JORJkiSJdLrAxNCePXv8PjE0YsQIuW/atGlA2wmZGfapDRJwIA0fPlxEFaK2mAmdO3eu9E01O65a6LhjSqWnHzsaRYVnYqX32dXfE0X7junSwcCDBw9keyA9JmHChGr9+vXSzoEQYh6YfkyMahUI40lEb6tVq2b4RsV1qESJEnLNvXjxovR4J8QMbN26Vcyi0Av6m2++UV999ZXh74G+uHrABS2FfAm+WJF7bOmjaYMGDdIKFy6sxYsXT0uWLJlWo0YN7e+//7YVHqPtS7t27bTs2bNrsWLF0tKlS6e1b99eu3PnTpgCZWfGQbNmzQrznH79+mlp0qTRihcvLi1lvAWtaTJmzGgzAxo5ciTNGP4fmEc5ts9xZRSlPx8GT2jZ407LoGDiwYMHWqlSpWxGBn/++acWDGzevFmrWrWqlipVKlm3hQsXhvk/tnGOHDm0OHHiaAkTJhRjK8dtniFDhleOp8GDB4d5zoQJE7T06dNrb7zxRsh8Z4R4A42iiBHoxpPx48eXtndGoxvrtGrVyvBlExJofvrpJ9m/o0SJoi1evNjw5UNbYPmVK1c2fNlW4K6bLX1M3ae2YsWK2pQpU8TZbN++fbIzYaAMwQAOHjyo1a5dW1uyZIn0P12/fr2WLVs27YMPPgizHGxILOfy5cu22+PHj23///3337UiRYpof/31lzZmzBitfPnyPq33rVu3tJo1a9oG/FjHGzduaFbHWW9cXdSiX61ZePjwofbee+/J53v99deDStStWLFC3C8XLFjgVNT++uuv2tq1a7VTp07JcYd+uvgM165dCyNq+/fvH+Z40o9JACfPrFmzync6b948LVeuXJH6GQmJTChqiRFgYlefCMU45vbt24Zt2IsXL9p642IsRYgZadu2rezjCIQZ6YiMQBmWiWWvXr3asOVaibsUta+CgTV2KkSbXDF37lyJkD5//tz2mLPBuz1Lly6VKDAuKhAgELhGWPaPGDFCixEjhrx/okSJ5G9nEUmr4KwtkC5q9ZY7ZjhwS5QoYTuxBrNYj+i4sD8RrVu3Loyo/fHHH12+BpNNyLCA0D19+rRkLhBiVihqiZFjHEzc6xEho1qGIAMHy8S1iRCzgvF1mTJlZF/PnDnzK1mb3oLxDpaJCXqM7Yn/rpOWMorSzZdguBPec2AXDeMFe2CMkDRpUlW0aFH1888/hykmR6sV2IPDTh8utYMHD/Z5XVEb06FDB7Vt2zaVL18+adTcsWNH+R0Nz0PVIdkXwqtBsDeKClXQ1B51HajvwD64atUqW5uiUATGZxMmTBBDhAIFCoT5HwxNYNKAVhTff/+91LLowPI+f/788ro8efKogQMHBmDtCSEktIDhzcKFC8XZdcWKFWJ2aMR5HDW7AEaWhJgV+LLAyyZjxozq9OnTqlOnTj4v8+XLl2rkyJHyO8bwGNsTP6JZqNky6jFR8+qK69evyyznV199FeZxpEoixXjPnj3akCFDtJgxY0rU1JGrV69qT58+NXzdMduKfH/UBesRSqQ4I6JlNb744gu3a2pDCaR35c6dWz5T0qRJtd27d2vBjqtILTIX4saNK7UpqVOn1nbt2hXm/8OGDdM2btyo7d+/Xxs3bpzU3nbu3PmV5SDl/tGjR379DIQEGkZqidHMmDHDdo1ECYcvwD8Ey4GPQqhfZwlxB4z3MX7Bfo/xjC9gfKpnW6K0jHgH048d+PTTTyXt8fz58y43WNGiRbVKlSpFeOLu3bu3ljZtWi2yQSpEt27dbCnJUaNGFXMIV5/JrCDFWzd+QnpuqIta1J9mypRJvlOYjfnD5CMyRS3Shk+cOKHt2LFDa968uaQPY8LHFZMnT5Z6rSdPnvh5jQkJPihqiT/o0qWLnKMxwYhrjLcgEIDlfP3114auHyHBDMba2O9Tpkzpk6dN6dKlZTndu3c3dP2sxl3W1IYt/oYIRX2eM+7du6cVK1ZMnFrtDaBcsWzZMtlJAzUIh6kVzKP0mdho0aKJMyFEhNWAmA1lUXv48GGJZuo1HGfOnNFCBXdqagFMn+BE7goYMmBZ9s7khFgFilriD+ALohtH1apVy+uIFV6PifRLly4Zvo6EBCvQAnr2XIMGDbxaBkzV9DH6uXPnDF9HK3GXNbX/6/2KGhDUmGzYsEFlypTJae+jChUqSJ/SJUuWSC1KROzbt096tMWMGVMFgixZskjD9Y0bN6pSpUpJzj4ar6P+En1WZ86cKXUwJPj785YsWVJdunRJakdRS4taDrPx77//qqdPn4Z7PEWNGlUlT548UteLEELMCnxBxowZo6JFiyZjIPQ595T+/fvLfdOmTVWqVKn8sJaEBCfQAtOmTZPjZ/bs2WrevHkeL2PEiBFyX6dOHZUuXTo/rCVxxNRGUTB3mjFjhoi8+PHjqytXrsjt8ePHYQTtw4cP1eTJk+Vv/TkQimDp0qVq0qRJ6tChQ+rkyZNq3LhxatCgQap9+/YB/nRKlS5dWm3atEnt3btXNWvWTIT5rl271EcffSQCHk2kr1+/HujVJE5YtmyZKlOmjLp586YqUqSI2rx5s0qdOnXQb6sHDx6ICMUNnDlzRn4/d+6cHEdoWr5z50519uxZtXv3btW8eXN18eJFVbduXXn+jh071PDhw9X+/fvFiOHXX39VnTt3Vo0aNZKJIkIIIcaAydLPPvvMZlJjb8gXETiPr1mzRsRxjx49+JUQy1G4cGEZ04A2bdqoq1evuv3aa9euyfhGP/ZIJKGZGMf2L/oNPWcBzGpcPUdPA125cqX2xhtvSHsV1KYUKFBAGz9+vBhPBRtXrlyRuhfUAOifA6ZWjRs3ltRkM1qJh2L68cSJE6UeGt/P+++/r92/f18LFVwdM02aNJF0HaS5IZ0abbFgLFK9evUwRlEwwHrrrbe0BAkSaLFixRKLe6Qms56WWBWmHxN/gr73SZIkkfP0yJEj3X4drk14DXwRCLEqMH+FBsCx8NFHH7n9OhjM4jXw6jHj2DtYr5NR8COyBDSJHJB6DFtyRMQQLdNB+xTM2n744Ycqbty4pvg6nj9/Lq0LKleuLHbswQwOtQEDBtjaLCClCy1vgn29CSH+AxlCaF+lt5MjxGjGjx8vkaaECROqEydOSHvC8Pjzzz+lfSFSL48dOyYlT4RYFYyjkVGHMRxKGZFlF1FGW7Zs2STrE9Hahg0bRtq6Wv06aer0Y6uCNGSkc/7111+SjgzxhPpfpCm3atVKpUmTRvpv/f3334FeVcuAtK9PPvnEJmh79uwp/Y4paAkhhPgTXPfRK/zOnTuqT58+ET4fk68A4wgKWmJ1ChUqZEvjx31EnjXdu3cXQQuPFNTTksiDkVqLgNrNqVOnSk3wqVOnbI8XL15c6h5R84i641AjFCK19+/flzpn1GfDEGn06NEya04IIYzUksgAvg3w4cA1CN4GiMQ6Y8+ePTKIx/Mw8Y2IEyFWBxNCOXLkkFrZwYMHi3AN7zgDa9euVeXKlYvkNTUnjNSSMCRJkkR16dJFHT9+XK1atUpVq1ZNLlrbtm1TLVq0EGdDmE3BgZcZ6cZx5MgRSVuBoIWbHlyrKWgJIYREJuiUUL9+fXGjr1q1qqQhhxelRcokBS0h/wOp+0OHDrW5gsMM0xGYZSJIpGdHUNBGPkw/thgQshUrVpT2RefPn1dDhgxR2bNnl4MRkVy0mMHfcE52dtAS90GbJcyGoyYpbdq04lRds2ZNbkJCCCGRDjwc4K2Brgjo/IB2cvYlMohALVq0SEWJEkVKZAgh/4F0fIyR0UHFmaMxjhl0dUD7Hl0Ak8iFotbCoIXMl19+KSlGesQ2Xrx40rqoV69eUg9QokQJSVm+ceNGoFc3ZEC9BWqWGzRoIJMFZcuWlZQu9BAmhBBCAgEMVlauXKmyZs2q/vnnH1WpUiVJq8Q1H4N1vX1Jhw4dVM6cOfklEWIHJnvGjh0rba4WL14swhZtrzDOwxh65MiR8ryJEyfS9C9AsKaWvOLahhRZRG1RG6CnIuMgxswuUpJq1Kgh4jcYCLaaWvRkrVevntq+fbv8jf5+SOeCiyQhhDjCmloS2aC/+DvvvCNmNnnz5pXo0qNHj2QgPmrUKNW4cWMZwBNCXgX1tN9++63tb4w9Y8eOLedylPHBBJQE5jpJUUvCFWizZ89WM2fOlEijTpw4cSSNFq7KiEIipTlQBJOohSkA0lNgJICDb9q0aTIBQAghrqCoJYHgwIEDEp3FIBGgTcmUKVNUhgwZ+IUQEg6oS0d52erVq6XFD0r59OzHw4cPS/0tMRaKWmIoSFGeNWuWCFykKumgdqBJkyYicANh/R8Mohap2TDhmj59uvydP39+iXYjxYsQQsKDopYECqRMIuW4du3aqn379gGdoCYkFEE2IzId4CherFgxtsDyExS1xG8HMBqzIz0ZIhf1ODqY9UXqBfpyRVZ6ciBFLbbFL7/8oj7//HNpmYR0LfQw++677ySaTQghEUFRSwghhLiGLX2IX4Bwg6MviuUvX74s6clwU8bjW7ZsEVGL9kDt2rWT9kFmBe0QypcvL1FqCNp8+fJJHS160FLQEkIIIYQQEnkw14R4Dfquou8d+t6eO3dO2gAh5RZmU2PGjJFG1eiHu379etP0voWz8aBBg0TE4nNhG6At0u7du9Xbb78d6NUjhBBCCCHEclDUEkNAH1bU5iA6u27dOmnuDpYtWyYNqFFnOnnyZOnvFYrAGRJCPVeuXNKL7OnTpxKpPXTokLRFCrRJFSGEEEIIIVaFopYYCtKQ4Yi8dOlSdezYMdW2bVtJx4X4a9mypUqfPr2IX6TvhgIwgerXr5+sN1KqYQiQPHlyNWPGDHG+C4Q5FiGEEEIIIeQ/KGqJ38iePbvUmF64cEF9//33IgwhEgcPHiz/K168uDSp1lsKBBMQrxCxWOevv/5a6mYzZcoknwc9/j766CP28SOEEEIIISQIYJ9aEmm8ePFCLVq0SBpTI8qJXl8Adam1atWy9b2NFi2a28s00v349u3bUic7d+5cacmjr1+hQoXUF198IW0PokeP7tN7EEKIPXQ/JoQQQlzDlj4kqLl06ZL69ddfpTXQkSNHbI+nSZNGVa9eXaK477zzjsqYMWO4EVFfRC1E9q5du9SaNWtEZON3XciCSpUqiZgtXbo0o7KEEL9AUUsIIYS4hqKWhARwRf7rr7/UtGnT1MyZMyVaak/KlClF3Oq3ggULqpgxY3osauFajDRouDT//fffau3atRKVdUx9hhEUWhSh/jdPnjx++MSEEPIfFLWEEEKIayhqScgBR+GVK1dKv1v0fN2zZ4+IVntee+01lTlzZpUgQQK5xYsXT3b2vHnzqkSJEqnXX39dRY0aVZ0/f14E7NmzZ+X+ypUrYdoKJU6cWPrporb3vffeU2+99ZbKmTOnih8/fgA+OSHEqlDUEkIIIa6hqCUhz8uXL9W1a9fEtOnAgQPq8OHDEslF2jDErn5/584dlSRJEhG8qHnVb4jowqkY4jV16tRyQ+shPIbnEkJIoEG2SMKECWUiDpNyhBBCCAkratOlSyfjfQS0XEGjKEIIISRAoCwCF2tCCCGEuAaTvwhOuYKilhBCCAkQMKeDcR5KH8IzxfNmVpvR3+CE309ww+8nuOH3Yz00TVP379+XjEuUGLqC/UkIIYSQAIELdHgzz76AdGamNAcv/H6CG34/wQ2/H2uRIJy0Yx3XcpcQQgghhBBCCAlyKGoJIYQQQgghhIQsFLWEEEKIiYDze9++fcP09CbBA7+f4IbfT3DD74e4gkZRhBBCCCGEEEJCFkZqCSGEEEIIIYSELBS1hBBCCCGEEEJCFopaQgghhBBCCCEhC0UtIYQQQgghhJCQhaKWEEIIMQljxoxRGTNmVLFixVJvvfWW2rVrV6BXifw/Fy9eVI0aNVJJkiRRsWPHVvny5VN//fUXt0+A2LJli6pWrZpKnTq1ihIlilq0aJHtf8+fP1dffvmlfEdx48aV53z88cfq0qVL/L6C4PsBDx48UO3atVNp06aV4yl37txq/Pjx/H4sDEUtIYQQYgLmzJmjPv/8c2nns2fPHlWgQAFVsWJFde3atUCvmuW5ffu2Kl68uIoRI4ZauXKlOnLkiBo2bJhKlCiR5bdNoHj48KEcI5gIcuTRo0dyDPXu3VvuFyxYoI4dO6aqV68ekHW1IuF9PwDnulWrVqkZM2aoo0ePqk6dOonIXbJkSaSvKwkO2NKHEEIIMQGIzBYpUkSNHj1a/v73339VunTpVPv27VX37t0DvXqWBtt/27ZtauvWrYFeFeIERAIXLlyoatas6XL7/Pnnn6po0aLq7NmzKn369NyOAf5+8ubNq+rXry8TDzqFChVS77//vho4cCC/HwvCSC0xTZrJkydPVNu2bSW1K168eOqDDz5QV69eDfMczOBlz55d5ciRQy1btixSPhshhPibZ8+eqd27d6ty5crZHosaNar8vWPHDn4BAQbXnsKFC6u6deuq5MmTqzfffFNNnDgx0KtFPODu3bsyPkmYMCG3WxDwzjvvyHGFtH5N09TGjRvV8ePHVYUKFQK9aiRAUNQS06SZdO7cWS1dulTNmzdPbd68WWpfateubfv/06dPRfSOHTtWIhlt2rSRgSAhhIQ6N27cUC9fvlQpUqQI8zj+vnLlSsDWi/yP06dPq3Hjxqls2bKp1atXy/WnQ4cOatq0adxEIQAmzVFj++GHH6rXX3890KtDlFKjRo2SAAeCHa+99pqqVKmSjCFLlizJ7WNRogd6BQgBSBfBzRXbt29XTZo0UaVLl5a/W7durX766ScxQUGNC2ZQJ0+erGbOnKnee+89ec6UKVNUrly51M6dO9Xbb78tojZatGjqjTfekP9Hjx5dHsPJkBBCCPEXSAVHpHbQoEHyNyK1hw4dkowjXNtI8ALTqHr16kk0EBMTJHhELcZ3CG5kyJBBMv4QuEDGn33GCrEOjNQSU6SZIO0OFx77E1nOnDml7kVPvcPsarNmzVSqVKnkpIeZ8vjx4wfsMxFCiFEkTZpUJu0cSy7wd8qUKbmhAwyuO4gq2YNJ13PnzgVsnYj7ghZ1tGvXrmWUNkh4/Pix+uqrr9QPP/wgpWv58+eX7D3U2A4dOjTQq0cCBEUtMUWaCdLr8LhjrYtj6h1cQZGmd/PmTfXFF19E+ucghBB/gPMfTFLWr18fJjqIv4sVK8aNHmDgfAz3XHswMYsIEwluQXvixAm1bt068esgwfPd4AbfAHswsYfzHrEmTD8mlkszSZAggd/WkxBCAgW8B5DKijRXuLQOHz5c/AqQoUICCzwfkHGE9GMIJZTOTJgwQW4kMMCA8uTJk7a/z5w5o/bt26cSJ04skfU6depIOx+YSqJeXZ8gx/9ZthTY7wdZeKVKlVLdunUT81CMC+GlMn36dIneEouiERJkYLdcuHCh7e9Hjx5pMWLE0JYtWxbmeS1atNAqVqwov69fv15ed/v27TDPSZ8+vfbDDz9E0poTQkhgGTVqlJz3XnvtNa1o0aLazp07+ZUECUuXLtXy5s2rxYwZU8uZM6c2YcKEQK+Spdm4caOMGxxvTZo00c6cOeP0f7jhdSSw3w+4fPmy1rRpUy116tRarFixtBw5cmjDhg3T/v33X349FoV9aknQ9yO7d++eRFdXrFgRxkzqk08+kZm7NWvWiFFUsmTJ1KxZs6SVD0CqF+pqUVMLoyhCCCGEEEKI+WD6MTFFmglEb4sWLST9Dq+BKVT79u2lloyClhBCCCGEEPPCSC0JCjZt2qTKlCnzyuOoD5s6darUsvTo0UOisrdu3RJhi7Y+qFNCZFfvI9elSxeJ1qJVT8WKFaUnLZ0/CSGEEEIIMS8UtYQQQgghhBBCQha29CGEEEIIIYQQErJQ1BJCCCGEEEIICVkoagkhhBBCCCGEhCwUtYQQQgghhBBCQhaKWkIIIYQQQgghIQtFLSGEEEKIHylQoIC0n4sZM6a6efNmpGzrfv36yXviPlD4ax3Q6g/Lbdq0qbIaI0aMkM8+f/78MI9jW+BxbBsr8fLlS5UzZ05p9fj48eNArw4JIBS1hBBCCCF+4s8//1QHDhyQ3589e6ZmzJjBbR0O//zzj4izjBkzcjs5cP36dZkgKFKkiPrggw+4fZRS0aJFUwMHDlTnzp1T3333HbeJhaGoJYQQQgjxE5MnT5b7NGnShPnb37Rr104dPXpU7s1GrVq15LMNHjxYWYmvv/5a3blzJ6DR92CkTp06Kl++fOrbb79VV65cCfTqkABBUUsIIYQQ4gcePXqkZs2aJb//8ssvKl68eOrgwYMSvfU3SZMmlbRM3JuNBAkSyGdLlSqVsgoQs0gtxuRIpUqVAr06QUfz5s0l/XjChAmBXhUSIChqCSGEEEL8wLx589S9e/dU3rx5VZkyZVT9+vUjjNaWLl1a0m83bdqktm7dqqpVq6aSJUumokaNaquXRGounoNU3cWLF6v33ntPJU6c2PY6V/WsPXr0kMc+/fRTl+9/6NAheU6KFCnU8+fPbY8vWLBAtWzZUj5LokSJVKxYsVSmTJlETBw7dsyQ7YW6UCwTnD17VtbD/hZRTS0+Ox7HNnz69KlENrNnzy7rmj59evXll1+qJ0+eyHPv3r2runbtqjJnziz/xzbFtnrx4oXL9Vu/fr2qXbu2iOnXXntNJU+eXKLGO3bscPr8EydOyPbBZ0I9NSY1UPtZpUoVNWXKFI+2DZ7/8OFD1bhxY9kXwuPMmTPyvJQpU8r7ZsmSRfXq1Uu2iStmz56typYtK/sRXoP1xLofP37c6fMdv5Pw9mNP9+9///1XxGnx4sVVwoQJVYwYMWRboza9ffv2st878tFHH6no0aOrn376KdzvkJgXilpCCCGEED+gi1eIA/t7CIiITG0giCEATp8+rcqVK6fKly8vYsOeYcOGqZo1a6r79+9L9K5UqVJSY+iKZs2ayf2cOXNs4s4RXWw1atRIxIROvXr1JOocO3ZsEdEVK1YUIYLnFypUSG3fvl35yrvvvmurFY0bN65q0qRJmJu7oHYZ6/fDDz+oXLlyybbD5AJqLuvWratu3bql3nrrLTV9+nRVsGBB2W5Xr14VEQzR5AwIYHwPmESAQMZ2hyDG3yVKlHhFpGJyoHDhwvI4vreqVauqypUrS6R1y5YtYvjkCYsWLZJ7rEN47Nu3T73xxhsiGPG5SpYsqS5fvqy++eYb1aBBg1eer2mabNsPP/xQ1uvNN98U4Q6hj3XH36tWrVJGE97+jcmTTz75RO3Zs0fqh/Gd4XvCMTN69Gj5jI5AGONzX7p0KVIyIUgQohFCCCGEEEM5duyYhmFWjBgxtGvXrtkez5kzpzw+ffp0p68rVaqU/B+3MWPGOH1OhgwZ5P/RokXTFi9e7PQ5ffv2lefg3p7ixYvL47NmzXrlNc+fP9eSJ08u/z948GCY/82ePVt78OBBmMf+/fdfWUc8P0+ePPK3O+sQHmfOnJHX4DO6YsqUKfKcJk2ahHl848aNtm1XtGhR7caNG7b//fPPP1qiRInkf/ny5dOqVaumPXz40Pb/P//8U4sePboWNWpU7ezZs2GWO2HCBHld1qxZtf3794f53+bNm7X48eNrr732mnb8+HHb482aNZPXDBw48JX1f/TokbzOXfB8LB/rdu/ePafPwbbQP3vPnj21Fy9e2P6H7zJu3Ljyv+3bt4d53bhx4+TxpEmTanv37rU9ju9S//4SJkwYZh8G+nu5Qt+P8Z14sn9j2+N/adOm1S5fvvzK/48cOfLK96PToUMHee2AAQNcrhcxL4zUEkIIIYQYzM8//yz31atXlyiSjh6tjcgwCtHQzz77LNznIMKG5XuC/v7O0l+XL1+url27JhFGpBnbg9RpRE/tQRop1rFYsWLq8OHDYt4UDGC9sH2TJEliewzptEjJ1dNzJ02apOLEiWP7Pz7z+++/L6mv9imz+FtP4UaEPX/+/GHeC5HQ3r17S3QYqa86iPwCRGcdQbQbr3MXbFssP23atCp+/PjhPhdR8wEDBoSJ2OO71D/7unXrwjx/6NChct+nTx+JdNpvw759+8rnRT3vxIkTlZG42r/17YbILNKnHUHkHZFyZ+TJk0fuEeEl1oOilhBCCCHEQFDTN23atDAiUufjjz+W2j+kep46dSpcR9eIcOc5jiCNGOIU4ubChQth/qcLXcd11jl58qSkf3bq1Em1aNFCalpx04WIUbW1vgLR4yjKQbZs2WzCDzWarv6PFFadvXv3yt+oS8XrnIE0WmCfgl20aFG5b9OmjVq9erXLdG930LevvUh3BdKcndW6QgyCixcv2h7D96/vg87Su7EcPWV948aNykhc7bswAINwX7FihaRMYwLCXfTto28vYi0oagkhhBBCDAQRT7QWQf0kajvtgQETonfI4NSjuc5wp0+rN71cYVaEGkVEIFFTqoMILdYbtZSor7Tn5cuXIs5guoSaU9SDYt0h3HFDXSRA3Wow4CqSh88e3v/1KKi9ANU/G8Sfo3GVftMFLPrI6nTr1k1qRf/44w+pd3799delPrRLly4e13zC1ApgGRHh6rPpr7X/bLrAhRh0tWyIefvnGoWrfRffASZXEM2GuRXqllOnTi11vjCPevDggctl6p/h9u3bhq4rCQ2iB3oFCCGEEELMhJ5aDAEBsx5HdIEAt9f+/fs7NXfCoD4i3HmOMxCJxXtDkH711Vfy2IwZMyTCjAgaHGftgYgdP368pIPCfOmdd94RcQ4BDBo2bCgmUv8rtQw8EbkDR/R/eyD+AT674wSFI/btk5DavHbtWhGwMFpCFBe3v/76S7YhUm/HjBnj1jro34c7kwaefDZ/om83b/ZdmIVhQmDJkiVieLVt2za1cOFCuSFNGtsVfWldiX+4cxPrQVFLCCGEEGIQcJpF6iS4efOmDMhdgbRWCB60eIlM4NabNWtWadeC9UPrFL2dirPU47lz58o9akad1fCidY1ZSZcunS2aqW8jT0B0FjeASQO4GCMFfezYsTKBgFZPEaGnSmN/MhJkEujLhWB2Fq3VI9X6c3XgjI2WT3Dedlbni5ZMvvYiRh2wXgt8/vx5yRKA23S7du3U5s2bX3mNvn0w4UKsR3BM5xBCCCGEmAAIH6TromUMIpeubl988YVbhlH+Qq+VxPru3r1bHTx4UAQcepU6ghY4utmSMxMjZy1WvAX9X0Gw9BqFIEUE9siRI/JZfQG11BCyesTX3e0GAyRsF9TAQkQaBYyn9PRiZ4Id+6n+uKP41kWuM3OwAwcOiAg1EuybaLkU3nZDGyXgqvaZmBuKWkIIIYQQg9DrZCPqq4poHVi2bFmYWszIAuuHVFVEYfU0WP0xVyZDeJ59Wimi0vgcRgpQOEVDwKEmWRfTgQQRSbgAQ+DVqlVL/f777688B5MYGzZsUDt37rQ9hkisM+MsfC6kILuaJHCVqvv222/LtkeNrpGg/y6AY/L+/fttj+PzDhw4UAQk0p9btWoV5nV6v1wIzadPn9oe/+eff2Q/8jYVHcZc6KPsrI/z0qVLw91uulEXnJWJ9aCoJYQQQggxAKREwiE4ZsyYqkGDBhFG39C2BCmc9oZNkQUibRUqVJC0Uxjz2DvdOoK6WwhNtHXJkSOHtPdB+xtE+SBoIPaMFJFIcYZQRIsZ1Ou2bNlSboEC6a4wfkKaNVK34axcs2ZNMdRCBBORXES47SOIMDWCky+MjvB5GjVqJBFa/I2IK4SXJ+2Y8H4A9aRG8sknn0iK740bN6StEcQqtjkmMlC/CkE9c+bMMG2p9H0CYhep9jAQQwQa9eO5c+eW7YG6a29A2jKOHaR7v/vuu7KNYWyGbYnWSdgPv/vuu1deh4khRIhhKqWnexNrQVFLCCGEEGIAeipxtWrV3DKr0aO1gUpBtq+fRd9UCC5nIJUa0UWIsIcPH4qBD9yAUeO4Y8cOt1x5PQG1uxBbENq//fabbJ9AbSMdCCnUH3/00UfiwItaaLhFoy4aLX3Q9xZiXwftaOAYDeGHCO68efMkhRnbEgZdeD3Skd0FEw5oxQRDLwh+o8A2xqQKhCtEJFLRsc0fPXok7ZoQOcUEhiOZMmWSyChciZESjYwDtNLp2bOnCF1MTngDItJDhgyRyQJsW+xra9asETO1tm3binCFm7QjutEZ9htPtisxD1G0YLGqI4QQQgghhLiMGCMFHEIPEyfkf0DKFChQQLIkYGwFp2piPRipJYQQQgghJMhBbS8iv2gDRf4DkWUYnX355ZcUtBaGkVpCCCGEEEJCAPQM7tSpk6Qzo47V6iAVG/XpMJb6+++/ve7dTEIfilpCCCGEEEIIISEL048JIYQQQgghhIQsFLWEEEIIIYQQQkIWilpCCCGEEEIIISELRS0hhBBCCCGEkJCFopYQQgghhBBCSMhCUUsIIYQQQgghJGShqCWEEEIIIYQQErJQ1BJCCCGEEEIICVkoagkhhBBCCCGEqFDl/wAh9sfA5wFOCwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -442,7 +442,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAAGbCAYAAAArwGQ+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAefpJREFUeJzt3QeYE2XXBuBD7whI74KAgCAgvTcpCmKhCEoTQQEpKnwCgoggRemgIgKCqCAdBemC0nuVotKrSO89//Wc75v82Wx22ewmmcnMc19X2M1kdnl3N5nMmfec88ZzuVwuISIiIiIispD4Zg+AiIiIiIjIGwMVIiIiIiKyHAYqRERERERkOQxUiIiIiIjIchioEBERERGR5TBQISIiIiIiy2GgQkRERERElsNAhYiIiIiILIeBChERERERWQ4DFSIiIiIishwGKuR4rVq1knjx4sngwYMjbJ83b55uJyIiIqLQY6BCJCJJkyaVIUOGyMWLF80eChERERExUCH6r5o1a0rmzJll0KBBZg+FiIiIiBioEP1XggQJZODAgTJmzBg5ceKE2cMhIiIicjwGKkT/8+KLL0qxYsWkb9++Zg+FiIiIyPEYqBB5QJ3KlClTZN++fWYPhYiIiMjRGKgQeahcubLUrl1bevbsafZQiIiIiBwtodkDILIatClGCliBAgXMHgoRERGRY3FGhchLkSJF5NVXX5XRo0ebPRQiIiIix2KgQuTDxx9/LA8ePDB7GERERESOFc/lcrnMHgQREREREZEnzqgQEREREZHlMFAhIiIiIiLLYaBCRERERESWw0CFiIiIiIgsh4EKERERERFZDgMVIiIiIiKyHAYqRERERERkOQxUiIiIiIjIchioEBERERGR5TBQISIiIiIiy2GgQkRERERElsNAhYiIiIiILIeBChERERERWU5CswdAZCUul0tv8eLF0xsRkbcHDx7IqVOnJFWqVDxOEBH5CedZV69elaxZs0r8+NHPmTBQIfJw7949+eWXX+TZZ5+VRIkSmT0cIrIgBCk5cuQwexhERGHt+PHjkj179mj3YaBCRETkB8ykGG+yqVOnNns4RERh5cqVK3qxxziWRoeBChERkR+MdC8EKQxUiIhiJyapsyymJyIiIiIiy2GgQkRERERElsNAhYiIiIiILIeBChERERERWQ4DFSIiIiIishwGKkREREREZDlsT0xERETk4f79+7J69Wo5ffq0ZMmSRSpVqiQJEiQwe1gUC/xbhjcGKkRERET/M2fOHOnSpYucOHHCvQ2rZ48aNUpeeuklU8dG/uHfMvwx9YuIiIjofye2DRs2jHBiCydPntTteJzCA/+W9sBAhYiIiBwPKUK4+u5yuSI9Zmzr2rWr7kfWxr+lfTBQISJHq1q1qr5hGXLnzi0jR440dUxEFHqoY/C++u59gnv8+HHdj6yNf0v7YI0KEZGHzZs3S4oUKcweBhGFGIqtA7kfmYd/S/tgoEJE5CFDhgxmD4GITICOUIHcj8zDv6V9MPWLyGMq+MaNG3Lt2jW5d++ez9xWO7l+/brePH/OO3fu6Lbbt2/73PfBgwfubXfv3tVtt27ditG+sUnJ6tSpk6ZlpU2bVjJlyiRff/21fu/WrVtLqlSp5PHHH5dFixa5v2bPnj1St25dSZkype7fvHlzOXfuXISxtWjRQh/HG9SwYcMi/b/eqV/Dhw+XIkWK6CxLjhw5pEOHDvocMUyePFnSpEkjS5YskYIFC+r3rlOnDq/UEYUZtK1FR6h48eL5fBzbcQzAfmRt/FvaBwMVshWcdF++fFn2798vK1eulO+//16GDh0q7733njRr1kxPfgsUKCDp06fXk0ucVCZJkkR7qsePH1+3vfbaa5I8eXK9nyhRIkmWLJmeFKdLl06yZs0qJUqUkOeee07eeOMN+fDDD+XLL7+UefPmycaNGzXnNTYn5WbAz46b54n8Z599ptvefvvtCPtmzJhRtx87dsy97fPPP9dtbdq0iXSij+379u2LcDIfG1OmTNG/1aZNmzRoad++vTRq1EjKly8v27Ztk1q1amkwggDz0qVLUr16dSlevLhs2bJFFi9eLP/88480btzY/f26d+8uv/32m8yfP1+WLl0qq1at0u8THTwPRo8eLX/88YeO59dff5X//Oc/EfbB/4/n2dSpU+X333/X31O3bt1i9TMTkTnwPoC2teB9gmvcx0UMrsFhffxb2gdTvyjs4Go/rpxv3bpV9u7dK6dOndKr18YNJ42eEGQgwMAVdHx8+umn9eQXQQhuCRMmdN/+/vtvPYHFCTGCHsyseN7wvc+cOaP/565du/QqOu7jMU/4/sb/iVvOnDmlWLFi+n/jKk5UV3kooqeeekp69+6tn/fs2VMGDx6sv9u2bdvqNiNQxN9i+fLlGqQMHDjQ/fWTJk3S3/eff/6pf4+JEyfKd999JzVq1NDHEXjgqlt0vAvtBwwYIG+99ZZ88cUX7u0ITseNGyd58+bV+wj0Pv744wD/Nogo2LC2xqxZs3yuvYETW669ET74t7QHBipk+aAEJ6EISowbghScGOJKSL58+SRbtmzy2GOP6VV2IzDwDBL8KYzG9y1btqw8++yzGsTEBFKcMCvhGSzhZgRQBw4c0PQkXN0HnGgjYPG8IZAJdfBipC9h9shzxgEn5gjaPJ09e1Y/YnbJ0LFjRw0YvK9IHTlyJNK+rVq1itUYixYt6v4c/8+jjz6qaVgGpHcZ49u5c6fOomE2x9vBgwfl5s2bmtpWpkwZ93bMkmGGLToIgAYNGqSzdFeuXNGgFOluCFqN3x0+GkEK4Hln/M6IKLzgBLZBgwZczdwG+LcMfwxUyDJw8ucrKMGJIQ4qhQsX1pN6pBrhI662e54MmwWpQUiNwg1jigoCF8+f7ZtvvnFf/ccJuHfwkitXrqAGL74CuMSJE+stJvsaM1Ix3Tc2vL8Ovw/PbcbvB8EiAq/69evLkCFDIn0fvDlhtsxfCLrq1aunM2yffPKJBjZr1qzR5yCCHiNQ8TVOu9c4EVkJ1sMI5MkovhapwhT+AvW3DPRzjGKGgQqZBieXqD346aeftJ5g9+7dGpTgar4RlOCKPT7iyroVgpK4wCwPbjiZNuCA5xm8IBUJV+8BJ8UVKlTQ/XGyzO4k0UPt0OzZszU9y3tGCDDjgYACtUSYwYKLFy9qWliVKlV8fk/8TfA8RdE9AlKYMWNGkH8SIvIHVhj3ld6DGgWm91Ag8DlmHgYqFFLourRs2TL5+eefZcGCBZoeg9kEpFp5BiVJkyYVJ0DwgSAENwNqXozAZcWKFVoPgZPlUqVKadDy/PPP6++IdS4RIRUNXcGaNm2qxe4I9DCLMn36dJkwYYK78B/pbXjOYQbsgw8+cAcgvqCrGNIBx4wZo7/7tWvXai0KEVnnBLJhw4aRZjBPnjyp21GjwBNJigs+x8zFrl8UdHgxf/XVV9opCyeIL774oqxbt07rFjCNitqNb7/9VtNrSpcu7ZggJSqZM2fW3xUKxdGhCsEcuklhpgBduVCUj89RsI3Cf+9Wwk6F2SoEEpieRzcw1LKg3gad3IxgBL8/TNcj6KhZs6ZUrFhRg+OoIJUP7YmRTvbkk09qFzljxouIzIXXOq5y+0qzNLbhGID9iGKDzzELcBEF2IMHD1zbtm1z9evXz/X000/jlexKkCCBq2rVqq5hw4a5/vzzT5dV3blzxzVv3jz9aEW3b992LV261NWpUydXrly59HebMmVKV8OGDV3ffvut69y5c2YPkSjgxo4dq8/3JEmSuEqXLu3auHFjtPvPmDHDVaBAAd3/ySefdC1cuDDSPnv37nXVr1/flTp1alfy5MldJUuWdB09ejRG47l8+bK+9vCRzLNy5Ur9Ozzshv2IYoPPseDw5xjKGRUKGHRFwnolKAJHvQDy+pE6g3awmBVAR6Z3331XO3VR7KDQ/ZlnntF1PQ4fPqydrnr06KHrdmAhQ6QzVa5cWdvwei5KSBSufvzxRz1u9O3bV9e8wSxX7dq1o+yqhtlapP8hzW/79u3ywgsv6A2NOTy7wGE27YknntC1dNDEo0+fPo6fzQ03MV1UlYuvUmzxOWa+eIhWzB4EhS+0fJ05c6bWBqAbElK7cJKAEwOk2PjqIGVlqEf45Zdf/GpPbBU4UC5cuFD/HqgDQk0GFrk0an+IwhHaSaM+a+zYsXof9VpYGwcLgCJI99akSROthUMNnAEtx5EyadQXvfLKK/r6RkplbKBN9SOPPKKLy6ZOnTrWPxvFDYLMatWqPXQ/XCRjBy+KDT7HgsOfYyhnVChWcAUSJwooBm/ZsqWu7o6iZdSjoPAYC+qFW5AS7vC3eOONN3QRykOHDmneLE7WSpYsqTNcWBgRBwWicIEW0GgqgXoiA+qNcH/9+vU+vwbbPfcHzMAY+yPQQUCfP39+3Y5ZSARD8+bNi3IcqAPDG6vnjcyHi2HovBRVYxFsR1CL/Yhig88x8zFQsTG0XcVCg3/99VdAvh9aB6P9K1KLkH6BK/cogEdnJSyKhyuZCFjIfCi2x8roWAcEHdZwoEXxPT4iwMRzg8jqsJAqilSNhT0NuI/ueL5ge3T7I2UMaZGDBw+WOnXqaEMKNPhA1x40r/AFDRRw9c+44cSEzIc1LNAeFrxPJI37WIGca11QbPE5Zj4GKjZ04cIFfQPGittIYcKVQ9zHmhGxga9DtySsQ2G06MNaEsePH9c3cM8VuclasJ4IWh9jrRrUsWCWBTNfeG6gsxhO0pj9SU6CGRXAatXvvPOOpoQhhQyvk6haT/fs2VNnI40bjn1kDQgw0R42W7ZsEbbjogzbxlIg8DlmLgYqNoS6BMxweMJ91I74AzMxmDHBi7F3796af7llyxZtKdyoUaOwq+FwOhxk+/fvrydZkyZN0jQ9pL5gcU2coLHNMVlN+vTp9UolWph7wn208fYF26PbH98TAXyhQoUi7FOwYEEN5n3BTDHyqD1vZB04UcTsMeoEfvjhB/2IZiM8gaRA4XPMPAxUbAYpPahR8O7pjfvYHpM0MBRlY5FBvHHPnTtXF8/DGzhWTWdRdvhDZ6PWrVtrRyQUCqLzERZLxCwL1rNhP3iyCtS54ZiDhU89Z0Rwv1y5cj6/Bts99wc0lzD2x/dEcf6BAwciHTvRsZDCEwJaXEzDBTl8ZCoOBRqfY+ZgoGIzaLsZHdSTROXSpUvSq1cvTeVC/QkWucMVA7QF9c75pvCH/NoqVaroqrt//PGHnhCiMQJSYVDXwpQwsgK0JkZXQVwo2bdvn87yoqsXgm1AW26kZhmwONvixYu1PTpapn/00Uc6E4waLUP37t217TG+L46J6CiG53yHDh1M+RmJiMg3Bio287B6Eaxr4qvF8NChQyVPnjxaFIa8bQQ8WBMlWbJkQRwtWQVmVdAoYcOGDZoa8/zzz2sXE6z0TmQmNOnA8enDDz/UIHrHjh0aiBgXTzDb67mGQfny5TU1Y/z48dr0Aznk6Oj15JNPuvdB8TzSHT/99FMpUqSITJgwQZ//WFuFiIisg+uo2BAK51GT4pnCgylKtOzEG7xnFy+k+mDGBG/0WG8DJwNoc+tU4byOSqDgkIA0QVylxklh/fr1ZeDAgRFO9IicjOuoEBHFHtdRcbhp06ZFWkcA97HdOBFF7UnRokV19WZcgURKBdbZcHKQQv+fEoZgF+tX4Mo00sLwXGnVqpUcPXrU7OERERGRQzBQsaG0adPqzAmKQzE7gI+4j+1YJwCBCTpVoJsXcreRq50vXz6zh00Wg4X1UDSIIBaLeGJNHrS6Rs0A1rcgIiIiCiYGKjaG4KNu3br6EVfCsU4AOlUg5QupYVhDg1286GHQJQldwVC3hDbVyOdHLRSKldkhjIiIiIKFgYrNIc0LRaUoGN25c6fOnmzatElq1Khh9tAozKRMmVL69OmjAQu6g6FzEgruvdu8EhEREQUCAxUbQzccLOj35ptvSuPGjWXPnj36ETUIRLGVIUMGGT16tC78iRQwdGLi7AoREREFGgMVm86iYH0AdGlCfQFqC5Cugw4LRIFSoUIF7QqGdS0wu1K5cmWthyIiIiIKBAYqNnP8+HGtS2nXrp00atRIZ1HQwYkoGJInTy7Dhw+X33//Xc6ePavrVowYMYKzK0RERBRnDFRsNIsyceJEnUVBcIJuX7jPWRQKBSyUhxoopBlioVCseP/XX3+ZPSwichhcJFm1apW248dHXjQhf/E5ZC0MVGw0i/LGG2/Iyy+/rIEK7hOFenZl5MiR2gL7zJkzuvYKZ1eIKFTmzJkjuXPnlmrVqkmzZs30I+5jO1FM8DlkPQxUbDKLsnv3blm4cKFMmjRJ0qRJY/bQyMHQCQyzK0g/xJoraIn9999/mz0sIrIxnEg2bNhQTpw4EWH7yZMndTtPNOlh+ByyJgYqYerq1au6aCNmUfARq4c/++yzZg+LSKVIkUJGjRqlsyunTp3S2RWsck9EFGiYte3SpYtevPNmbOvatStndylKfA5ZFwOVMHTo0CEpV66crFixQubNmyfffPMNZ1HIktAJbNeuXdoW+9VXX5UePXrwQE9EAYVW6d5Xwb1PNJEijf2IfOFzyLoSmj0A8s/KlSt1CjJdunSyceNGKViwoNlDInro7AqCacyqoI0xaqgwu5I6dWqzh0ZENnD69OmA7kfOw+eQdXFGJUwgmv/iiy/kmWeekRIlSjBIobCCRUZRr4I6qjVr1kjZsmVZt0JEAZElS5aA7kfOw+eQdTFQCQN37tzRRfU6duwob7/9ti7giBkVonCDNX0QZCP9q3Tp0rJ8+XKzh0RENmjgkT17dr0g4gu258iRQ/cj8oXPIetioBIiWLEbAYa/a0v8+++/OouCbl5YXR7tXxMmZMYeha8CBQposIJABYHL6NGjfRYwEhHFRIIECbR5B3ifaBr38d6J/Yh84XPIuhioBNmFCxf0ZAwnZ+jKlT9/fr1/8eLFh34tipBLlSol+/fv19qUNm3ahGTMRMGG5g9IA0MXFXRaadu2rdy+fdvsYRFRmEL3y1mzZkm2bNkibMdVcmzH40TR4XPImuK5eCkzqBCUIL3Fs9MRIvKaNWvK4sWLo/w69Otu0aKF5MuXT+bPny85c+YM0Yid7e7du/LLL79oUJkoUSKzh+MIU6ZM0TVXEJTPnj1bMmXKZPaQiKJ15coVeeSRR+Ty5ctsCmExeK9FZyYUPaOeAKk6vApO/uBzyFrHUAYqQU73wkxKdI8jEPH04MED6d+/v3z00UfSqFEj7ZaErkkUGgxUzLFhwwZ58cUX9XeOwLx48eJmD4koSgxU7C+mJ6s8qQ0u/h3syZ9jKFO/gujgwYPRPu7d9ejevXvSqlUrDVIGDBggP/74I4MUcgR0Adu8ebNkzJhRKlSoIMuWLTN7SETkUMhoyJ07t1SrVk2aNWumH3Hfe2XymO5HscO/AynMqFBwHDhwALNVUd7+/PNP97537txxNWrUyJUgQQLXtGnTTB23k+HvMG/ePP1IoXf9+nVX3bp1XUmSJHEtWLDA7OEQ+XT58mU9huMj2cvs2bNd8eLFi/R+jW244XF/9qPY4d/B3i77cQxl6pcFalRQRNykSRNNOcIsClJgyBxM/TIfXw9kdUz9sie8T+NKfFQrlKP7EwqrkQ2RN2/eh+53+PBhph/FAv8O9neFqV/WMW3aNA1KPOE+tsPNmzf1RAxBy7x583hSRo6XJEkSmTlzpnZYQZ3W9OnTzR4SETkAahyiOukFXNc9fvy4Lr4ck/3w/ch//DuQJy7IEWRp06bVIATrpyD6f/zxx90F9NevX5fnn39e1q9fr61aa9SoYfZwiSwBs1nff/+9Bi2vvvqqzrK0bNnS7GERkY2hEDsQ9af+fj+KiH8H8sRAJUQQnHh2+Lpx44bUq1dPtmzZIkuWLOFqp0ReMFWPrncIVtBkAlfH8JGIKBjQLSomkG4UyO9HEfHvQJ6Y+mWCW7duaYoXuhxhtoVBCpFv8ePHl6+++krXWcGCp0wDI6JgwXsxahq8VyY3YHuOHDmkQ4cOMdqP7+2xw78DeWKgEmJ37tzRvPvff/9dfv75Z23FSkRRw5vNl19+Ka+99pre5s6da/aQiMims7ijRo3Sz71Pfo37I0eOlMSJE8doPxZwxw7/DuSJgUoIYZ0U9PheunSpFs6j1zcRxWxmZeLEidKwYUN3RzAiokBDE49Zs2ZJtmzZImzHlXtsx+P+7Eexw78DGdieOITt9lq0aCEzZsyQ2bNnaxE9WQ/bE1v/79O4cWNZtGiRLFiwIFJHPaJQYHti++OK6NbAv4M9+XMMZaASIp07d5bPP/9cc+yR+kXWxEDF+tABDDVeq1atkjVr1kiJEiXMHhI5DAMVIqLY4zoqFjN+/HgZM2aMjB07lkEKURyhCxhmJQsXLiwNGjSQf/75x+whERERURAwUAkyFM137NhR2rdvrzciirtkyZJpnRfqvpCDjFkWIiIishcGKkF09OhRefnll6VixYruzhREFBgonkSwsnXrVr0IwCxWIiIie2GgEiTXrl3TgvmUKVPKzJkzWe9AFARlypTR1EosDDl69Gizh0NEREQBxJXpg+DBgwe6gvbBgwdl/fr1kj59erOHRGRb6Ka3e/dueffdd6VgwYJSq1Yts4dEREREAcAZlSDo37+/Fvt+9913UqRIEbOHQ2R7gwcPltq1a+saK3/99ZfZwyEiIqIAYKASYAhQPvroIxkwYIC88MILZg+HyBHQL3/atGmSKVMmTblEy0MiIiIKbwxUAmjnzp2ahoKrur169TJ7OESOgp7sP/30k5w5c0aaNWumC4ARERFR+GKgEiBnz57VK7kFChSQSZMmSbx48cweEpHj5M+fX3788UdZvHix9OzZ0+zhEBERURwwUAmAO3fuaBviW7duyfz58yV58uRmD4nIsVBMP2zYMPnss89k6tSpZg+HAuDzzz+X3LlzS9KkSbXT26ZNm6LdH50Wn3jiCd0fdYK//PJLlPu+9dZbemFp5MiRQRg5ERHFBQOVAOjTp49s3LhR5s6dKzly5DB7OESO16VLF2ndurW0a9dODhw4YPZwKA4wQ4aObn379pVt27bJU089pY0TMIvty7p166Rp06bSpk0b2b59u9YK4rZnz55I++KYvWHDBsmaNWsIfhIiIvIXA5U4wpvc0KFDpV+/flK+fHmzh0NEInqFfOzYsXrhAAEL61XC1/Dhw6Vt27b6dyxUqJCMGzdOZ62RYusLFtetU6eOdO/eXdtVowtjiRIl9Png6eTJk9KpUyf5/vvvuc4VEZFFMVCJA6R64c3z6aef1jdFIrIOnMxiIUhcTGBaT/im1W7dulVq1qzp3hY/fny9jzWqfMF2z/0BMzCe+2Otq+bNm+txu3Dhwg8dx+3bt+XKlSsRbkREFHwMVOLgww8/lEOHDsnkyZMlYUKunUlkNRUqVJCuXbtK7969mQIWhs6dO6ezYWg77Qn30d3NF2x/2P5DhgzRY3bnzp1jNI5BgwZpVznjxhRfIqLQYKDi4c8//5RFixbFaME4XKVFwe7HH3+s6QhEZE1Y04gpYGTADA3Sw3CBKabdGdFBDmvzGLfjx48HfZxERMRARV24cEFzmtFa+Nlnn9UWp7h/8eJFn/vfvHlTWrVqJSVLlpT33nsv5OMlotilgI0YMcLs4ZAf0qdPr4t5/vPPPxG2437mzJl9fg22R7f/6tWrtRA/Z86cOquC29GjR/VYjs5iviRJkkRSp04d4UZERMHHQEVEF4dbvnx5hG24j84xUaV8HTlyhClfRGGUAvbOO+9oCtj+/fvNHg7FUOLEibUGcMWKFRHqS3C/XLlyPr8G2z33h2XLlrn3R23Krl27ZMeOHe4bun6hXmXJkiVB/omIiMgfjj/LRrqXrzcnpIhgO9LA8uXL596OgkykfA0ePFg7yhBR+KSALViwQFPA1qxZo1fqyfrQmrhly5Y6g126dGltjHD9+nX9O0KLFi0kW7ZsWkditKauUqWKHqefe+45mT59umzZskXGjx+vjz/66KN684SuX5hxwaw6ERFZh+NnVA4ePBjt43///XeklC+8WTLliyi8JEuWTGdBsVggWt5SeGjSpIm2gMdMdrFixXQGZPHixe6C+WPHjsnp06fd+6NN/A8//KCBCdZcmTVrlsybN0+efPJJE38KIiKKjXgul8slDp9Rie4qGh43ZlS6deumvfjxRolVj8l+7t69q6tYo1aJayvYE1J8xowZo4sBclaUYgPtidH9C4X1rFchIgreMdTxMyoonEePfe80ENzHdiNIWbt2rV6FxeJhDFKIwhc69aFoGrOj9+7dM3s4REREFAXHByowbdq0SAuE4T62GylfyIcuU6aM5ksTUfingKFugSlgMYduWa+99poWpWNVd5g6darW+xAREQUDAxURSZs2reY8I80LaT/4iPvYDkj3Onz4sLY4ZQEuUfgrW7asFl1jdgWtail6s2fP1hlmBHlImcNK7YBp+4EDB5o9PCIisikGKh6Q5lW3bt0IXb4uXbqk3WTatWvHlC8iG0GrYtQhoRsYRQ+/o3HjxsnXX38doXYLbZ+3bdtm6tiIiMi+GKg8xJAhQ/TqYZ8+fcweChEFULp06eT999/XE/BDhw6ZPRxLO3DggFSuXDnSdhRD4mIOERFRMDBQicapU6dk1KhRWpcS1SrIRBS+OnfurKufo/UtRQ3HP89W7QbUp+TJk8eUMRERkf0xUIlGv379JHny5NqWmIjsB6/vvn376robO3fuNHs4ltW2bVut6dm4caPEixdPL+J8//33emxs37692cMjIiKbcvzK9NGlOkycOFE+/fRTTW8gInt6/fXXdRXznj17ajMNiqxHjx7y4MEDqVGjhty4cUPTwJIkSaKBSqdOncweHhER2ZTjF3yMSqNGjfTqITqAJU2a1OzhUIhwwUdnmjlzpjRu3FhWrVolVapUMXs4lnXnzh1NAbt27ZoUKlRIUqZMKU7EBR+JiEJzDOWMig+bN2+WWbNmaTtiBilE9tewYUMpWbKkzhysW7dO05sossSJE2uAQkREFAoMVHxACkjhwoWlefPmZg+FiEIAgcngwYN1odf58+fLCy+8IE730ksvxXjfOXPmBHUsRETkTI4KVJDGdfDgQXn88ccjrJXiadmyZbJixQo9WeHijkTOgfqLZ555Rnr16iX16tWThAkddXiMhLV5RERkNkfUqFy4cEGaNWsmS5YscW/DKsvTpk1zrz4PKBYtVaqUpnuh7SbTP5yHNSrOtnXrVk0BQyMNFNkT+cIaFSKi0BxDHdGeGEHK8uXLI2zD/aZNm0YqqMUqy0gBYZBC5DxPP/20FtWjZfHNmzfNHg4REZGj2X5GBeleBQoUiPZxpIFhNgV1KVi8bOHChSEdI1kHZ1Tor7/+koIFC8qIESMc3Xq3RIkSmgaLWefixYtHe/EGF3ichDMqRESxx65fHlCTEh202kSgsnTpUtm/f798/fXXIRsbEVkPjgfoAjZmzBjp2LGjxI/viInnSBo0aKBrpRifc5aZiIhCjTMq/5tRqVu3rpw9e1a2bNnCN2QH44wKwfr166V8+fKyYMECee6558weDlkMZ1SIiGKPNSoe8ufPr4Xz3h28cB/bEaRgJmXx4sXSpUsXBilEJGXLltXGGqNGjTJ7KJaAlNjz589H2n7p0iV9jIiIKBhsH6gAunthfQRPuI/tgBSPTJkySZMmTUwaIRFZCS5Y4MIF2pX/8ccf4nRHjhyR+/fvR9p++/ZtOXHihCljIiIi+7N9jQqgGBQzJiiSRU2K5zoquCI4ZcoU6datmzsfm4ioUaNG0r17dxk9erR89dVX4kQ//fST+3O0d/dcWwWBC4rtH3vsMZNGR0REdpfQSQs8GjdPkyZNkjt37shbb71l2jiJyHoSJ04s7du3l0GDBuktXbp04jQvvPCCe4apZcuWER5DDVfu3Lll2LBhJo2OiIjsLr5dF3isU6eOFtGjKBp1Krh/8eLFCPuhjwCulOLKaebMmU0bLxFZ05tvvin37t2TqVOnihOhbTtuOXPm1GYjxn3ckPZ14MABqVevntnDJCIim0rotAUekQJm+P3333XWZfz48SaMkoisLmPGjNqaF23LO3fu7NhmG4cPHzZ7CESWhBTI1atXy+nTpyVLlixSqVKlSM17rPA9rTYeq/2MZF22C1QQeCCX2teLAttRp2KkfyFAwWxL5cqVTRgpEYWDtm3baofADRs2SLly5cSpUI+CmzGz4p1CS+Q0c+bM0aYbng0lsmfPrt0CX3rpJct8z7hwws9I1hbfiQs8Gulhs2fPljfeeMOxV0mJ6OHQIRC1GE6eee3Xr5/UqlVLA5Vz585pGq3njchpcLKNhWG9u96dPHlSt+NxK3zPuHDCz0jWZ7sFH2O6wCMid3T0wYsF6R1EwAUfyZcBAwbIwIEDNU3Bs/OVUyA149NPP5XmzZubPRRL4IKPzoYMDVy8iKo1Ny5+YoYAKZMxTWcKxveMCyf8jGQeRy/4GJMFHhGb4eooOtowSCGih2ndurV2B/zhhx/EifCzly9f3uxhEFkCaiuiWz8I5xjHjx/X/cz8nnHhhJ+RwoPtApWYLPC4detW2bt3r6Z9ERE9TLZs2XSWbfLkyeJEOFY6NUgj8oaZ1UDuF6zvGRdO+BkpPNiumB7+/fdfLdR67733tLWo5wKPMH/+fF0Esnr16qaOk4jCB9qYt2jRwt2lxklu3bqls9Donli0aNFIaZHDhw83bWxEoRbT178/x4lgfM+4cMLPSOHBVjUqKJBHa2LPrl9I98JMCgITQ7FixaRIkSKOXRuBosYaFYrK+fPnNVUUay85bTa2WrVqUT6GvPJff/1VnIQ1Ks5m1FqgANzXKVRc6jcC+T3jwgk/I5nHsTUq0a2fYjh69Kjs3LlT6tevb8IIiShcPfroo1KhQgX56aefxGlWrlwZ5c1pQQoRTqLRkAe8u4Ya90eOHOnXyXYwvmdcOOFnpPAQ327rpyBij2r9FPj555/1SjlmWoiI/PH888/LsmXL5MaNG2YPhYhMhPU+Zs2apfVrnjAjgO2xWQ8kGN8zLpzwM5L12Sb1a9GiRZquExWk89StW1cDFCxWhpMNIm9M/aLoHDhwQJ544gmdVXHarOyWLVtkxowZcuzYMe0C5slpax8w9YuctGq7E35Gsu4x1DbF9Hnz5o32cRTU4xeDVIVhw4aFbFxEZB9Yowkt0J0WqEyfPl0bCeBCz9KlS3XxR8xi//PPP/Liiy+aPbywwhM0e8HfrmrVqkH9nnjOrFq1KujPmaiem6H4GSm83A/lccxlI7Vr13YlSJAAM0TuG+5jO8yYMUO3HT582OyhkkXduXPHNW/ePP1I5Mt7773nypQpk+v+/fsupyhSpIhr7Nix+nnKlCldBw8edD148MDVtm1b14cffuhymsuXL+t7CT76Y/bs2a7s2bNHeI/CfWwnMvM5w+cmhfK54s8x1FaByoULFzQo8fzl4T62Q/PmzfUNlygqDFToYX777Tc9tmzcuNHlFMmTJ3df4EmXLp1r165d+vnevXtdmTNndjlNbAIVvInHixcvwvsTbtiGG08IyaznDJ+bFOrnij/HUNsU0wNaEC9evFhTElBngI+4j+1YT2XhwoVaDEtEFFtYoT1dunSO6v6FY+jVq1f1cxTB7tmzRz+/dOkSGwvEME0Ca3v5Kgk1tnXt2jVSMxhyrlA9Z/jcJKs/V2wVqBiwuCMK5z0XeVy/fr2us+KkvHIiCryECRNqswV0EHSKypUruxuQYOFLvFm1bdtWW7/XqFHD7OFZHnK5T5w4EeXjeJM/fvy47kcUyucMn5tk9eeKLQMVX3D1M1OmTFKqVCmzh0JEYQ4zs7t27ZIjR46IE4wdO1ZeeeUV/fyDDz6Qd999VwvpX375ZZk4cWLQ///PP/9cF4pLmjSplClTRjZt2hTt/jNnztTubNgfi/tiht2zs9/777+v21OkSCFZs2bVRgGnTp0K2vhRcBrI/cj+QvWc4XOTrP5ccVSgUq9ePYkf3zE/MhEFCbpfoX21U2ZVkOqGE3rAMbRHjx56TEUHRaSFBdOPP/6ogVHfvn1l27Zt8tRTT+nv/+zZsz73X7dunc70tGnTRrZv3y4vvPCC3ox0NaSq4fv06dNHP6K1MtpOBzMtGF1xArkf2V+onjN8bpLVnyu2WUclOqhVQVvR+fPns0aFosV1VCim0KIX0K7X7rB2SnRy5swZtP8bMyiYCcesDmAdrBw5ckinTp00YPLWpEkTuX79uixYsMC9rWzZslKsWDEZN26cz/9j8+bNUrp0aTl69GiMfhZ/11FBzjZmhE6ePOkzvxurcmPBu8OHD7NVMYX0OcPnJpnxXPHnGOqI6YW1a9fqL7BatWpmD4WIbKJmzZpa+4YTZ7vDm9Njjz0W5S1YsLDk1q1b9XdtwIyO8bv3Bds99wfMwES1P+DNEu8RadKk8fn47du39Y3V8+YPvGmPGjVKP8f/48m4P3LkSJ4IUsifM3xuktWfK44IVPBGhxmVVKlSmT0UIrKJp59+Wq5du6YztnaHFCqkSRm3jRs36uwEFr9EPUiwnDt3Tq/iob7QE+6fOXPG59dguz/737p1S2tWkC4W1ZW9QYMG6dU/44YZHX+99NJLMmvWLO2a5glXILEdjxOZ8Zzhc5Os/Fyxxcr0OFE4ePCgrj7v2enLM1DBSQURUaCUKFHCfXxB4badoS7EW8mSJbVu5bPPPgvbExmkejZu3FjTGL788sso9+vZs6fWyRgwoxLbYKVBgwZcmZ4s95zhc5Os+lwJ60AF7YabNWsmS5YsiTDFP23aNHeBJ9ZP2blzp74ZEREFCo4xefLk0UDl1VdfFSfCTDXqO4Ilffr0+uaHDmOecD9z5sw+vwbbY7K/EaSgLuXXX3+NNk86SZIkegsE/DxVq1YNyPciZwjVc4bPTbLicyWsU78QpCxfvjzCNtzHFL5h3759cvPmTc6oEFHA4biCQMXuvOszUNOxf/9+6d27t89Z7EBJnDix/o5XrFjh3oaaINwvV66cz6/Bds/9AWvAeO5vBCl//fWXvmc8+uijQfsZiIjIgTMqSPfynEkxIJ8Z2/EGhDdQ4yQCHV+IiAKd/jVw4EA9ebZz63MUmXsXTyJdCulP06dPD+r/jZSrli1baqoZOnOhWBNdvVq3bq2PYw0U5EujjgSwGGWVKlW0dfJzzz2n49uyZYuMHz/eHaQ0bNhQa23QGQzvGUb9CtowIzgiIiJrCNtABTUp0fn777/dgQoKPmPSQpKIyB+42n/16lW9MII0KLtauXJlhPsIyjJkyKB1gQkTBvdtBO2G//33X/nwww81oMBFp8WLF7sL5tE62TNILF++vPzwww8629OrVy99H5g3b548+eST+jhaa2INGF8XsPBzMvWFiMg6wnYdFWNtlOgexxtUhQoVJFeuXPrGRfQwXEeF/HH+/Hmto/j+++81FZWcwd91VIiIKHbH0LCdUcEsCQrnkV+MqXvPAh/00EeQgu07duwI2440RGRtqG3AGiOYubVzoGLMQMQEF9UlIqJACdtABdDdC4XznrUqCFKwHVDseePGDRbSE1HQOKGg/oUXXtAaFe8JeO9tuO954YiIiCgu4od7e1DkKiPNC+k6+Ij7Rmti4+ShePHiJo+UiOwcqKAw284r1C9dulTrORYtWiSXLl3SGz5HMwFcKMLPjhuDFCIiCqSwnlExIM0rqoUesR15cEREwSyoRwMPpKTaUdeuXXUl+ooVK7q3IfU2efLk0q5dO20DT0REFGhhPaOCGRRc1UPHHV+4Ij0RBZtxjLFz+he6LKJFsTdcBDpy5IgpYyIiIvuLH64r0tepU0e7fqE7E65i4v7Fixfd+yBvGoX0SE0gIgpmQT06C27fvl3sqlSpUrqeieeK7/i8e/fuurYJERFRMMS364r0aBuKRcHy5s1rwgiJyEny5Mmj63nY1aRJk+T06dOSM2dOXTsFN3yONUkmTpxo9vCIiMimEtp1RXq8qUKWLFlMGCUROQmOMydOnBC7QmCya9cuWbZsmXZThIIFC2qXRe8V64mIiBwbqMR0RXoGKkQUKjjObN68WewMAUmtWrX0RkREFAphl/r1sFQuXPkDI1DJnDlzSMZFRM4OVE6dOmX2MIiIiGwlfriuSI8V6D3hPrYbbYpx0pAuXTpJmjSpSSMlIqfImjWr1sShTTERERE5NFABrDyP3GhPnivSGzMqTPsiolAwjjXGTC4RERE5sEbFc0V6FM6jJgXpXt4LPjJQIaJQMY41mMm166KPREREoRaWgcrDVqQ3AhW0DCUiCjY7zqhcuXIlxvumTp06qGMhIiJnCutAJTq4slmxYkWzh0FEDpAqVSpJkSKFrQIVrEQf09bDaA9PREQUaLYMVLAqPVO/iChUcEKP442dApWVK1e6Pz9y5Ij06NFDWrVqJeXKldNt69evlylTpsigQYNMHCUREdmZLQOVy5cvy61btxioEFHI2K1FcZUqVdyff/zxxzJ8+HBp2rSpe9vzzz8vRYoUkfHjx0vLli1NGqVzYRZr9erV7otylSpVitQNk+wlrn9zPmec574N/uZh2fXrYbjYIxGFmt1mVDxh9qRkyZKRtmPbpk2bTBmTk82ZM0dy584t1apVk2bNmulH3Md2sqe4/s35nHGeOTb5m4dtoPLnn3/KokWLtPOXN+NkAWsbEBGFAo43dg1UcuTIIV9//XWk7RMmTNDHKHRwktGwYUM5ceJEhO0nT57U7eF2EkLB/5vzOeM8c2z0Nw+7QOXChQtSp04dKVCggDz77LPaChT3L1686N7nzJkz+pGr0hNRqNh5RmXEiBEyZswYTfV644039Fa0aFHdhscodGkcXbp00TpMb8a2rl27srmBjcT1b87njPPct9nfPOwCFUxfLV++PMI23PfMnb5586Z+TJ48ecjHR0TOhOMNauPsCBeFMItdv359vViEGz7HNjxGoYFcc+8rpN4nIcePH9f9yB7i+jfnc8Z5Vtvsbx7jQGXcuHHagvPevXvubdeuXZNEiRJJ1apVI+y7atUq7YJz8ODBgA4Wb4pLliyJFAXiPrYbaWAYI4qFYtpak4gorhImTBjh+Gg2dOjCMdD7hhno2ECK18CBAzVlALdPPvmEaV8hFtMZO7vO7DlRXP/mfM44z2mb/c1jHKigCAeByZYtW9zbEI0hvWrjxo0RriSirWXOnDklb968AR3swwIfrFIPd+/e1ZMGIqJQwTEHF018TbebBUEJ3ow8b9OmTYvV98Lx/rXXXpPy5ctrnjNMnTpV1qxZE+BRU1Ri2iCGjWTsI65/cz5nnCeLzf7mMQ5UUBOCHwqzJQZ83qBBA3nsscdkw4YNEbYjsAm0hwU+jz/+uH7EVU0GKkQUSsYxx0p5v0mSJNGLSZ63tGnT+v19Zs+eLbVr15ZkyZLJtm3b5Pbt2+5W8JhlodBAa9Hs2bNHmS2A7Zjlwn5kD3H9m/M54zyVbPY396tGBcGH5yJg+BxpX+i3b2xHfQhmWIIRqKBwHm+W3j2gcR/b8+XL5w5UkJJGRBQqxjHHSulfgTJgwABN/0XnL89ja4UKFTRwodDAe92oUaP0c++TEOP+yJEjw26dBAre35zPGedJYLO/ud+Bytq1a/WN+OrVq7J9+3YNUipXruyeaUG/fVxtC0agAkhbqFmzZoRtuO+ZzsAZFYotPK+JYsM45lgpUFmwYIGkTJkywi02MyAHDhzQ47y3Rx55RC5duhSg0VJMvPTSSzJr1izJli1bhO24gorteJzsJa5/cz5nnOclG/3N/Tqbx+zJ9evXZfPmzdoOGDMcGTJk0GCldevWWqeCgCVPnjxaoxIbeJOPLscbb7Q///yz1qscOnRI/y8jJQy1KYBACZGicZ/oYfCc+89//qNXjHEiZ6S2EPnrxo0bmnIVFzh+xY8f96aMuGD05ZdfRtiWLl06v78PUsZQA4jFwjyhPgXHYAotnGQg7TrcV5ym0P3N+Zxxnpds8jf3K1BBDQiiMaR5IVBBgGIsdIZ8t3Xr1ulj1atXj/WAkEbgTycCXOnDzRO6fyFo+uWXX2I9DnIeNIrASSZOvrxPyIgeZuvWrfpxxYoVcW6NjoJ1XASKqxQpUrhr9+Kibdu22pd/0qRJmjpw6tQpnT3v1q2b9OnTJ87fn/yHkw3vjptkb3H9m/M54zwJbPA3TxibK3SYNUGg0r17d/d2pAVgpfhNmzZJ+/btYz2gEiVKxLlrzt69e3Us7O9PUUEK4+jRozXv3iguRnCC3uKY1atRo0acr4qTs1y5ckU/4rgT10DFale8evToIQ8ePNDXBYJ5HO/x+kCg0qlTJ7OHR0RENhWrQKVjx46aVmXMqAA+f/vtt+XOnTtxqk8JRG0J3kBZUE9RQSCMq8O7du2Sp59+Wj744APd/tRTT0mhQoV0Jg7PIT5/KDbQGcsqzx2kMJ45cybSMTZ9+vR+fR/MouB1gotTSAFDq3q8VpCKS0REFCx+J0EjCEFnL6QTZMqUKUKggkJko42xmfBGzPoUMiB4/vHHH91tY3HS1bt3b2nXrp00btzY7OGRTRjHHCs18li8eLEejz1vFStW9Pv7fPvtt7Jv3z5JnDixBiilS5fWIAUptniMiIjIEoEK0mNwRRpvWp5y5cql2/fv3y+hgFXqkd5lrEbvCVczrdR5h8yD5yROql555RWZP3++e3ujRo3kq6++cre0JoorHHMQBAeiCD4QJk+erM9/71tsjtFY5R6vI6yn4gnrqKCRChERUTBY59JfDF24cEGaNWsmS5YscW/DGipoT2zUGuCKpmeg8uuvv8qJEyc0hxyzPsZH43M0AkC9AtkD/q6pUqXSz3HiWL9+ffnnn3/06i9RsNi9LXq/fv2kefPmsnv3bvnoo4/MHg4RETlA2L2rIkhZvnx5hG2437RpU01zAJws4MqhceKANB90qInKk08+GfRxU/Dhb/7OO+9oi2EsOmr8XdF2GPn1SZMmNXuIZPPULzsHKq+99pp2I3vxxRdlz549MnXqVLOHRERENmeNHAU/0r0wk2LUGhhwH9uNNDBjnYDz58/rR+Pq+sO69VB4w+wJZs7QlQg1KQb8/RmkULCdO3cuVmuUhANjNeOyZcvqRQAU1CNoOXLkiNlDIyIiGwurQAWLPEYHb55gFPMb67G89dZb8vnnn2vRZ7169fQN9rnnntOrgidPnpQ//vgjBKOnQM+e/P7779KwYcMIK2MjPQUzbB9//LGp4yPnMRbUsiPPlvFYzBdrZqFe8ZlnnjF1XEREZG9hladgrEAfFWNhM89ApVixYpqqYECONdlDhw4dNMgsWbKkrvMAhQsX1htRqOF4g8Vv7ahv374RWhFjnZi5c+fqdlwwICIiEqfPqOTPn18L570XQ8N9bDc6OGXOnFk/+rPCPYVHi2EsOufZYvjNN9/UWRUis9l5RgUBia9FLDGDuXLlSlPGRERE9hdWMyqA7l4onPfs+lWzZk3d7tmeOEOGDHLq1CmTRkmBhOAECzMiVQ8LMb7wwgu6HS2HcSOyAhxv7BSo/PTTT1K3bl09nuLzqBid9YjIvAt5X3zxhabHI/ME2QZY84jIDsIuUEELYnT3QuE8alKQ7uVrLQycMHBGxR4thrEuBU6E0BwBi40SWQ06DJ49e9ZWgQouCGBV+4wZM7ovDkQVqHg3OAk01Bh+9tlnOp6nnnpKxowZo+u6RGXmzJnSp08fLfbH+8OQIUPk2WefjVBzg1kidAhEjVuFChXkyy+/5LpKFHbQ1XL48OERXoPdunWTd999Vz799FNTx0bkuNQvT3hDwdW+qN5YogpUtmzZoie9uEI/bty4EIyU/J096dy5s6bveS4q2rNnTzl8+LDOphFZDYIUnPzaqUYFr0UEKcbnUd2CHaQg5RMnXQgstm3bpoEKUn3xO/cFhf44TrRp00a2b9+uQRZumJE14AQOa2fhPQBdzFKkSKHfk2stUbgFKQjgfXVCxXY8ThTu4rk827nYCFZLxgrM3uunrFmzRipVqqSfd+nSRUaOHGnSCCkqaH4wb948PTEJ9cJyWAvjl19+0auvSHkhiomtW7dqUwdcCMFFEDvBa6JOnTp6Um/GjEOZMmWkVKlSMnbsWL2P4AiL9Hbq1MndRMNTkyZN5Pr167JgwQL3NrRVRmMV/AxGQPnee+/plWe4fPmyZMqUSSZPnhyjdFK0tH/kkUfk33//ldSpU0d6HLPAnmvqIDUnuhkpz2ONP/vibxPVW3iw9gXPtCJ/9sXMo1FnGNd9MV6jbXaw9sUJf3SBuD/74vmA50Wg9sXzBCnu+Gj8PPgazxpefI7nqPF79fy++BrPhbG94WuN72WFffEcw3MtEPt6vj6Dte/DXstOP0ZcuXJFn7849vo6hoZ16ldM4Y0IK9J7wxsc4AnCNCJrtBhGGsekSZPcT1a0FsZJSLVq1cweIlGMGPVwdkr9MuDNadeuXab833hDRhCIGVXPN3jUJUa1iC+2YwbGE2ZLcPEDMDOLFDJ8DwOCDgRE+Fpfgcrt27f15r321rBhw3yu0YSADosTG4YOHRrlCU6uXLmkVatW7vujRo3StaCiel9r27ZthJQ4vNH7gpMA1CoYkOaGk1Zf8PN37drVfR8BW1Q1nmiq0L17d/f977//Xo4ePRrlc6dXr17u+zNmzHCvd+YLLk4Z0FVu7969Ue6L54RxMoSgdOfOnVHui4AUs2aA+lZcUIgKLmCmSZNGP1+xYkW0i0W3b9/ePeu4evVq+e2336Lc94033pBs2bLp5xs2bIi0cLWnli1bavtvwPN/0aJFPvdDoI7fv/E7LVq0aKQ0TTxHDWg8Y3TFRMbCrFmzohxDgwYNNLgHpNl71gF7Q3aLkYp57NgxmTJlSpT74nWHVEtA1suECROi3LdKlSpStWpV/RzPXaRnRqVcuXJSq1Yt/RyvCbyOooKLSliiAvBaw+szKpjBNX6neA0PGjQoyn0LFSokjRo1ct+Pbl+nHyNu+TF7HbapXw+DEwa8GXlHcdmzZ9dFAfFL+uqrr0wbH/03UMGBfvbs2RH+FkWKFJHq1au7r1QRWR3ecHECbZy02HFV+okTJ5qyiCauJmO2wxPu4/juC7ZHt7/x0Z/viRMOvFEbN+OCFxERBZdtU79w8ourB3ije/TRR80eDv3v6iiukuGKgzH9/MMPP+iVKFzxetg6OaHA1C+KDbTpRVqRXRt4YIYTC+biKiBS24yr0wYU8wYDrtjhKjTqTnDF1IDce1y9Rn2JN1xlxxVdz3o2dETC3+iff/7R74Urut5d2ho3bqwXR1ATE5MZFQQrTP1i6pdZqV+4Uv7+++/rY1GlfgEaSXTs2DHS97VCOhdTv5x7jLjC1K+Iiz4yUDEfDkjFixfXqXxMCxrtTDH16Tn9SRSO7LyGCqAQvUSJEvr5n3/+GbL/N3369HrygQDDE+4b62V5w/bo9jc+Ypvn3wz3jVQXb2iLjpuvN+OYtIH1p1WsP/v6czHFCvt6npiFw76eJ79W2xfBB9JrPIMuo8GF59diP1/PKZwox/S5ZoV9caIcTvuCFfZNZIHXva99/fkZbJv6ZXTf4Voq5rYYNhgthnFiEFVuJVG4stsaKt6wqGN0t2DBmxlmcFArYMCJGO57zrB4wnbP/WHZsmXu/R977DENVjz3wdU9zM5E9T2JrAavDe9aLG94nOupULizbaBiXDU7efJkpMdQo4LibUybrlq1yoTR2RtOJN5++239Gxw4cMC9/YMPPtBCVnTlIbITuwcqr7/+eoQLDwZ018JjwYSTLRR5Ip0LBcCoa8P/i86O0KJFiwjF9iiGxlpbKCJG50d0DkTxNI5JxlVRFIUOGDBAF7LcvXu3fg9c3IpuvRgiq0GbbcyqeM+44D62cx0VsgPbBiroxJInTx59E/K2Y8cO7bGPFzGutFFgYfbk+PHjOnOCLi8GLODoK32CKJwhxxopjej4YlcIEnx1ScQ21K4EEy5soCPOhx9+qKlZOH4jEDGK4dFlyLM2qHz58lr7Nn78eO3Yg85G6Pj15JNPRqhxQd1Nu3bttPXxtWvX9Hv66uBFZGU4j8F77YgRIzQYx0fcZ5BCdmHbYnqjOBKLgnnPmhw6dMhduI0WfEbbSvIfnj74/WKNA7SrM1aTRzvTCxcuaHvBcOrexWJ6ik39BjrV4XWA57udICUKr/G0adNqC1QUPxpQxPvzzz9ri1Snpdga66jEpBCUnAmvDzSKMerXsH5bTOtSrMZOPwuF3zHUtsX0gOLPgQMHaiqS0ekC0J8cXWrQTxwnGBT3FsNI8cKVTCyiZvRzJ3ICrHMAaBZhN1hPAhcacMufP3+kx7Ed3bSI6P/NmTNHUxCRZu65NALWv3jppZcknNjpZ6HwZOtABUWYyKvGYkWeb7IIWt555x1Txxau0KITM1BGK0/8Lnv37q2LYmFFeSInBio4vtjxyjoK5XExAusaoeV7unTp3I+hSBcLkRmNS4jovyf2WBrBO1kF9bLYjlTEcDnBt9PPQuHL1qlf58+f1/aWyFf27KlPsZ/+xSwUZk8WLlyo6VF2w9Qv8hfW5MiZM2e0KzeHO6wqjJ8xnNI4g4mpXxTVeyQyNjxnHzzh9YPZCDSVsXrqlJ1+FgrvY6hti+kB66fghWakZpD/PDv94GCEFsNYgA1dd4icDm/mKO7G7K2dYeZkzZo1ukI9UjyNbopTp07V7UQkWscR1Yk94LowGs1gP6uz089C4c3WgQrgBCKqQAUR3a+//qotKinyCViHDh20xTCKaA19+vTRZgRYXZ7I6dD+Fh127B6oIO2rdu3akixZMtm2bZt7lXZcDUMdIBH9d+HXQO5nJjv9LBTeHBGo4I3Vc7VWo6UoTsJr1Kjx0EWTnAizJ2j7iZOwmTNnurdjio4LSBH9l3ERxFi13a6w5si4ceN0PRPPlEikveH4SkQS47WUwmHNJTv9LBTeHBGoYObk4MGDEbYnTJjQ3aUHj6GNsVNhChczSyiOw3oChk8++URbrnoupkZEEQOVxx9/XHNt7Qx1aZUrV460HT/3pUuXTBkTkdWgbS/qNqKq5cL2HDly6H5WZ6efhcKbbQKVP//8UxYtWhQhTcnzSqev9C90rkJrXeRZI6XBqTDb9NZbb2l6x4QJE9zbsVhauK2DQhRKOK7YPe0LMPuM7oneUJ+ChXWJ6L+ZCGjbC97vm8b9kSNHhkXxuZ1+Fgpv8cM9GMGignXq1JECBQpopya0CcX9ixcv6uPo+oVuNb4CFfQG/+KLL7RA1Fio0AmQX44V442GbzjQoMVwx44ddQFMIopZHdf27dsdEai0bdtWj5cbN27UkxQs8Pj9999Lt27d9GIPEf0X2vWibS+aznjC7ES4tfO1089C4Sss2hMjGGnWrJksWbLEvQ2FnWgHirbDy5cv15MGA068a9asKYsXL9b7eDEhPQHpTU6H31OhQoU06MPvB79H+n9sT0wxtXfvXm3XvWLFCl1nxM7wNoGi+UGDBmndGiRJkkQDlf79+4vTsD0xOWk1dzv9LGQNtluZHkEKghFPuP/888/7bI2JFxWCGsy85MuXT694fvbZZ/pm68Q0JrQYNmaMcHB57rnn9GSDLYaJYs8phfSA4+YHH3wg3bt31xQw1LLhgkfKlCnNHhqRJeG9tmrVqmIHdvpZKPxYPvULrXARdHjOmADuP6x/v5FTXbJkSY3a9u3bF2WNBlI4MMtgJ/gdofYE+eWezQQ++ugjvc9pW6LY27BhgxbSp0mTRpwCHf8QoJQuXZpBChERBZ3lAxUEGLGFkwjANCWK5bGaujcEKDiRx1XRESNGiJ3gKghWlGaLYaLAwuzsggULtB7OCW7duqWz0kiJxIUfHC89b0RERMFg+dSvxx57LNrHK1asKOvXr/dZo4K0L0iePLne//nnnzV1wRP2MdpromYjXNPDjBbDaA7w7bffSooUKXQ78sp79eqlvyciCozdu3frOkP169cXJ2jTpo0sXbpUW5hjNiUcj5FERBR+LB+oIK0CBd9RFcwbBfWehfZoq4sFyjyhnuXNN9+Uc+fOaScwA9IXcJUQJ/p169bVNLBwLBLDuNu1a6epcmgp3LlzZ91urBVDRIHz008/ad0XXmtOgNkjNJnAAo9EREShYvnUL5g+fboGJZ6MICVt2rQ6E7Jp0yZ3CgJWSi5VqlSENsUoIMfJPN5svc2bN0/mz5+v9RzhEqQgFcNXi+G3335bgzIiCm6gggso6HzlBGhP6qQW7kREZA1h0Z7YgC5eKJBH7YmR1mVAUPKwNsVlypTRNVU86zXC0b1796RgwYL6u0A6xjPPPGP2kGyD7YnpYdCiM2vWrJpi2bx5c3ECrF81evRoGTdunOTKlUucju2JiYhCcwwNixkVA4ITpGd5Byno1hVVZzCjTTFgpgFBCxY8DMcWw4aECRPqiXSOHDm0TSgRhTYNKn78+PoadAoU0GMWF6vQY2YlXbp0EW5ERESOrFGJCc/Wu75g5gHBDQpfkR7122+/Sa1ataL8Xjj5R52LVWZPsGI8VoFGAa/RXACLrA0dOpRX/YlCDE05UKvx6KOPilOgDvDkyZPanCNTpkwspiciopCwRaCSN2/eGLUpLlKkiKYtIL/cO1A5e/aspo+hXTEe8yzONxNmTw4fPqyLM86aNcvdtYzpBkShh1bfy5Ytc9xq7OvWrdPuila5gENERM4QVqlfUcmfP78WtnoXwuM+thupYrgKiPQvXBH1Ls3JkCGDu/B+xYoV8u+//0qoYUyos0ELUJwQGQYPHiyrV6+O1FqZiEILxwakQDmtYcUTTzwhN2/eNHsYRETkMLYIVAAdwKLqDOYJ6V9Y/2DXrl0RtiOIady4sTz99NMyaNAgnckINdTUoMXw7Nmz5ZtvvnFvRzczroNCZD7MxuLCCG5Ogosl7733nqxatUrOnz+vhZCeNyIiInF616+4dgaDO3fu6DoqmJ3o06dPpHqQUAYouDKLtsgIkIyc74kTJ2oQ9e6777K7jgnY9Yuigvbm6PaFTl9Ypd1J0DwAvGtTjAVyvRuZ2B27fhERheYYaosaFU8ITnwFKIbEiRNrLQrSv7wDlVAGKTghLlSokNafIHCqUaOGewVoIrKeLVu2yD///OOY1eg9rVy50uwhEBGRA9kuUPFuW4wuXt6zK8gvx1VRdLHBQmahbDFsLJqGq/VYhBIzKmwxTGR9eK2iFW/58uXFaapUqWL2EIiIyIFsU6Pi6cKFCzprUqBAAU3hQT655yr19erVk6RJk8rUqVOj/B7Iw/7qq68CktKA2ZO2bdtKlixZ5OjRo+7tAwYM0ECqQYMGcf4/iCh4cBzA8eKll14ypX7NCpCqumnTJl1HBrU6njciIqJgsOU7brNmzbR7lifcx1oAWPAxTZo00qhRI5kwYYL85z//cedfG4YNGya9evXSehYsqhjXhd0we2K0GEahPOpPAPl5RGR9S5culePHj+sFByfCcbNFixZy7ty5SI85sUaFiIhCw3YzKjFdpR4nHJjNQBcbb0gVQ5ACmFXxB4pL8f+gxbBnO88hQ4bImjVr3EEKEYWPr7/+WooWLSqlSpUSJ+rUqZNe3Dl9+rQ2FfC8MUghIqJgsV2gEpNV6gHtfrE2AE5AvKF2BCcl77zzjgYY/kDnMKPF8JQpU9zb0fYYq1kTUXjByTmab+DihlNXZEcTAVxkwar0REREoWK71K+YrlKPEw6cePTs2VPTGdB5y4Ac9B07dsTopASzJsjRNloMI82rd+/e8scff8Q5ZYyIzDd58mQ9Jrz66qviVJghxuzzw46vREREgWS7dVQAhfOoSfFMScAq9VgAErnWBgQo6PqFBR5jk5KFInl0E0OBPNp3Vq1aNWA/A5mD66iQJ6Q24TWO2dBvv/1WnOrGjRua+pUhQwYpUqRIpNdG586dxUm4jgoRUew5eh0VwGr0KJxHrUh0q9RjFgVdfFCH0rVr10hF9TFpMYwT2oULF+p2IrIXXPA4dOiQzqo4GY6daCiAbomYWfGcbcbnTgtUiIgoNGw5oxLTVeph7dq1Wq+Cq+h169aN9DhmZbB+wqxZsyRZsmTy448/yr59+7QbGCAaTJ48Oa++2wRnVMi7Xg3rLW3fvt2x9SmQOXNmDUZ69OgRows6dscZFSKi0BxDbf2Og+AEwUd0K9Vj8TYUuo8aNcrn4y1btpSXX35ZryhiDQG0GJ47d677cfyieUJLZD/oIIigtUuXLo4OUgBdEJs0acIghYiIQsrx7zo4AcGJCNLE9u/fH+nxV155xf35Y489pjMwTHMgsr8xY8ZoTQbSSJ0OF2wwm0xERBRKtqxR8Rc6dnXv3l1Gjx4tX3zxRYTHkAL0+uuvayFp7dq1HX9llcgJMB2NuhTUrqEuw+mQAvvpp5/qBR20bveeRR4+fLhpYyMiIvtK6MR0Dqy14lm3kiRJEmnfvr2+EX/yySeSNm1a9/5IdZg4caKJIyaiUJs0aZLcunVLjwsksnv3bilevLh+vmfPngiP8eINEREFi2MClQsXLkizZs0idALDDAlqTxCYvPXWWzJw4ECZMGGCzq4QkTNh0daxY8dqTUbWrFnNHo4loP06ERFRqDmmRgVBClqNesJ9I/8cKy4jDxuzKuhGEJ0TJ06IjZulETkaUr7Qkrhbt25mD8UyvvnmG13cloiIKJTi2znFa9GiRdqiGJ9jJsVzAUjAfWzHPvDhhx/KtWvXZNiwYT6/J9qUYuYFRfWeMzNEZA84Gf/oo4+0iUaxYsXMHo5loC0xLua0adNG1q1bF9KZ8FdffVXbV6ZJk0b/fxyjo4OUvY4dO8qjjz4qKVOm1K6N//zzj/vxnTt36gUqtJhHy/mCBQtG2fWRiIjMZbtABW9sWJm+QIECWgifP3/+h3btwVorkD17dunUqZMGKp5vbAa8QWNxSKSG9OzZU1etJiJ7dfrCa79///5mD8VScJFmypQpcu7cOalatao88cQTMmTIEDlz5kxQ/18EKX/88YcsW7ZMFixYIL///ru0a9cu2q9555135Oeff5aZM2fKb7/9JqdOndKFfQ1bt26VjBkzynfffaff+4MPPtDjOdL9iIjIYlw2U7t2bVeCBAmQl+W+ed/3vv3555/urz9//rwrTZo0rrfffjvS975//76rRIkSrpQpU7r69evnun37doh/Ogq2O3fuuObNm6cfyVkuXLigr/0OHTqYPRRLO3PmjGvo0KGuIkWKuBIlSuSqX7++vmZwfAykvXv36vF58+bN7m2LFi1yxYsXz3Xy5EmfX3Pp0iUd08yZM93b9u3bp99n/fr1Uf5f+JtXq1YtxmO7fPmyfk98JCIi//hzDLXVjEp0KV7gvVhZggQJtKDec0HIdOnSyfvvv68zJ8hT94Sv//bbb7VrGNLEEidOHNSfh4hCBzMEWNiwT58+Zg/F0pACVrFiRSlXrpweE9ERDPV9efPmlVWrVgXs/1m/fr2me5UsWdK9rWbNmvp/bty40efXYLbk7t27up8Bsz85c+bU7xddO2oc+6Ny+/ZtrV30vBERUfDZKlBBABEd75xzvJkhxcOoZTFgQUcs9ObrhKVw4cKaNkBE9kptQp3Cu+++K5kzZzZ7OJaElLihQ4fqMRDpXzhZRzrW4cOH9feH9agQsAQK0sq8j7UJEybUgCKqlDNsxwUkBDjewVVUX4OUXixmGV1K2aBBg+SRRx5x31DfQkREwWerQAULkUVn+vTpOuvyyy+/yKZNm3Rb6dKl3bUsqG25ePGiJE+eXPr27Ss//PCD7NixI0SjJyKzfPzxx5IiRQq2Jo9C/fr19eQcHdHatm2rgQlauxszF/jdvffee3L8+PEYFeZj7ZXobvv37w/BT/XfNWEaNGigx/tatWpFuR9qWDDrYtxi8nMSEVHc2WodlWzZsmkqF9oOe6Z/IcULb6hGihc+IiiJql3x4sWLdTV6FNX36tVLAxtf8H9gMUi82WFVeyIKPwcOHNDX8WeffabdpSgyzGygMB3pXlHBLDRmVx4GAU2rVq2i3SdPnjw6s3X27NkI29HIBA1Topr1wnak7126dCnCrApmg7y/Zu/evVKjRg2dSendu3e048GiwLgREVGIuWzmypUrWlDvWSyP+yiUNRw4cCBGxfUoyMT9VatW+fy/atWq5f6aqPah8MJieudp2LChK2fOnK6bN2+aPRTyUUy/ZcsW97YlS5bEqJh+1qxZ7m379++PVEy/Z88eV8aMGV3du3eP1dhYTE9EFHuOLaaHVKlS6YyIkeKFj7iP1edjWsuyfft2/Yj++yjkRHG9rwUePVte/vrrrwH9OYgo+DZv3iyzZs2Sfv36SdKkSc0ejuWgAB11KJ7QUARrSWGWBbMRKDQPBqxvgplvpJohVXft2rXy9ttv6xo3WbNm1X2QgoZieSOVF/UjWGsFtUYrV67U4vrWrVvrTFDZsmV1H8yAV6tWTVO9sB9qV3D7999/g/JzEBFRHLgc6GEzKhUrVnTvu3z5ct02Z86cSN8H7ThbtGjB2RQb4YyKczx48MBVvXp1V+HChV337t0zeziWVKdOHdfgwYPd93ft2uVKmDCh64033nANGzbMlTlzZlffvn2D9v+jXXzTpk21JXzq1KldrVu3dl29etX9+OHDh/X4vHLlSvc2zIyh3XDatGldyZMnd7344ouu06dPux/HeH0d93PlyhXjcXFGhYgo9vw5hsbDP+JAlSpVkjVr1kT5OGZijJoWXHlD8STacKLrDNkXWptiJg4NFhIlSmT2cCiIli5dqjVt8+fPl+eff97s4VhSlixZdPFEo0UwFkdErYpx7MSiiihER72Hk6DjGWZvUFjPuiYiouAdQ22X+hVTWIE+OngzNgwePFgLbkeOHBmCkRFRsN28eVPbkGM9EHS0It/QBRGtfT2Pi3Xr1nXfL1WqFDtgERFR0Dg2UPFeU8Ub8qKNdsUlSpSQd955RzvDPKxtJvKip06dGuDRElEgYcHWI0eOyPjx47UdLvmGIMXo5IVuWtu2bXPXesDVq1c580hEREHj2EAF66Yg7QOti6NitCuGAQMGSK5cubQw07P1sQEZdJilqV69urz55psRFpAkImsViKP1ONZOQcE2RQ0pkFj3ZPXq1bqWCNaYQtqsYdeuXboiPRERUTA4NlABzwXLfEFAsmTJEg06kiVLJt98841s3LhRhg8fHmlfXJU1yn2QVvLll18GdexE5D+8NrGGBxZ6xXoeFL3+/ftrXV6VKlXk66+/1htWfjdMmjQp2oUSiYiI4sKxxfSeJkyYoKleUUFxtZGX3a1bNxk7dqy2MPa+Gnv9+nUpX768vPHGG9KxY0eJH9/RcWBYYjG9vRmv3x07dmhbW4oZFDymTJky0gw0Fl/Eds/gxQlYTE9EFJpjKFtYiUjlypWjffzxxx+PcIUR6wrgqiz6+nt2AUuRIoXmcEeXTkZE5li3bp3Ohg4ZMoRBip/whuJLunTpQj4WIiJyDl7yj6ZeBfex3WhTDEYK2JYtWzTP3RuDFCJrpnyhvqxMmTK6yB8RERFZHwOVaOpVcB/bvWGVY5zsoHPQw9YP+Pvvv6VXr14+V7YnotBAx76jR4/qRQZeTCAiIgoPTP36n7Rp08rixYu1cB7BBdK9PGdSvKFjEBZCQwoYUkp8LQQ5Z84cfRwtPDNmzChdu3YN8k9BRN6QojlixAj59NNPmfJFREQURjij4gXBCQrnowtSjBSwyZMny9atW2Xo0KE+90ExNoIUwJVcFGoTUejcuHFDU76w9gfWQiIiIqLwwUAlDnDygxanffv2lT/++CPS41jx+v3339e1WHBVl12kiEKf8oWV05nyRUREFH7YnjiObt26JcWLF9cWnWvWrJEkSZJEePzBgwe6xgpXvw4PbE9sH7/99ptUq1ZNPvvsM66ZQgHF9sRERKE5hnJGJY6SJk0q3377ra7Q3KFDh0hF81hLxTtIQfCC/XAbOHAgF4ckCrBjx45Jo0aNdKFC1oYRERGFJxbTB0CpUqVk/PjxWjj/1FNPSefOnaPc99q1a9K8eXNNG0PRPhabRDCTM2dOee6550I6biI7wsKrDRo00HWNZs6cyZQvIiKiMMVAJUBatmwpu3fv1oJdrFj/zDPP+EwTq1Spkq6KPW/evAgzLH/++ScDFaI4wiwlLhige9/69eslffr0Zg+JiIiIYompX7GEwGLRokV6QmTAite1atWSJk2aRNjumSZWvXr1CNsSJ04s06dPZ0ciogAYMGCAzJo1S7777jspUqSI2cMhIiKiOGCg4qcLFy5InTp1pECBAlpwjVXtcf/ixYuaYoIFIjNkyKCpJygS8oSZFM8FJNOlSycrVqzQwIaI4mbu3Lm6CGv//v3lhRdeMHs4REREFEcMVPzUrFkzWb58eYRtuI8WxJAmTRr56aef5NSpU/Lqq6/K/fv33UEK0r5Onz6t9/PkyaMLRVasWNGEn4LIXtDMArVfKKD/4IMPzB4OERERBQADFT/TvZYsWeIOPgy4j+1GuhdmW3788UdNDTNOmgoVKiRlypTRz1FIv2HDBt2PiOLm33//leeff15nN7FeCluBExER2QMDFT8cPHgw2sfRxctQu3ZtXb8BdSvff/+91qLMnj1bunXrJr/++qumhxFR3Ny5c0caNmwoN2/e1AYV6PRFRERE9sCuX37ImzdvtI8//vjjEe6jQB4pKW3atNGrvWhjjOCFiAKjS5cu2t1r5cqV2uKbiIiI7IMzKn5AsIGZEu91GXAf29Ea1bMTGFJQxo0bpyvXo7gXdStEFBhYKBWvL9wqVKhg9nCIiIgowBio+Aldu2rWrBlhG1a/vnv3rs9OYGhJPGfOHA1a0Ans6tWrpo2dyC5QE4aFVTGj8vrrr5s9HCIiIgoCBip+Sps2rSxevFgL63/55Rf9mChRIvntt9+i7ASWJUsW+fnnn3WmBYs6YuVsIoodpHlhhrJu3boydOhQs4dDREREQcJAJZby5cunJ0pI94pJJzCkfyEtbPv27TqzguJfIvLP2rVrpV69elK5cmWZMWOGJEzIMjsiIiK7YqASwk5g5cqVk4ULF+r6KehUdPv27RCMkMgeNm3apBcHSpcurYs7Iq2SiIiI7IuBSiwg3csomve3ExiuBGNBSKxI/8orr2htCxFFDwumomFFkSJFNI0yefLkZg+JiIiIgoyBih8uXLigRfKeRfMo6K1evXqUncCQIuYNxfhYUwWzK6+99hqDFaJooMU3XjMI+lEXljJlSrOHRERERCHAQMUPzZo10yJ5T8Z9705guI8OYVFBUT1y7JHC0qRJE6aBEfmwdetWqVatmq6RgpqvRx55xOwhERERUYiwEtWPdC+cKHlD0TxWmsfjRk0Krvz6mknxhs5FCFRefvlleemll3SWhXn3RP+FhRwxg1mwYEHttJcmTRqzh0REREQhxBmVGMKaKNFBgGJ0AotJkOI5s4Kce7RcrV+/PlsXE4lou+9nnnlGnnrqKVm2bBmDFCIiIgdioBJDJUuWlIwZM8a4aD4mhfgGnJBhG64gI9DhopDkZAhM8DooW7asvi5SpUpl9pCIiIjIBAxUYgjF8Vu2bJFkyZLFuGj+YYX4xur1xur2S5culZ07d0qNGjXk9OnTQf15iKwIdVuYWURdCmYaU6RIYfaQiIiIyCQMVPyQI0cOLe5NkiRJjIvmH1aIb6xeD+XLl9cUsJMnT0qpUqVk8+bNAf4JiKzpwYMH0qdPH20sgZqtOXPmRLooQERERM7CQMVPKOw9f/68pqQgjQtFvmnTpo1RIf7DVq+HEiVKaICSLVs2XXPlhx9+CNrPQmQFSHVEM4lPPvlEBg8eLN99912EiwFERETkTAxUYgHpKEjbimnRvD+r10PWrFm1mLhRo0by6quvSs+ePSMFOUR2cPjwYZ1JROc8LIT6/vvvS7x48cweFhEREVkA2xMHEWZSEKR4LwYZk0J8tCmeMmWKFC1aVP7zn//Inj175Pvvv5fUqVMHccREobNq1Spp2LChdvTasGGDFCpUyOwhERERkYVwRiUIvAvnUWz/6KOPSvz48f0qxMeV5W7dusmCBQvk999/1y5I3rMvROHoyy+/1G53xYoVk02bNjFIISIiokgYqASBr8L5S5cuRapliWkhPoKdjRs3yr1796R06dKyYsWKgI+ZKBTu3r0r7du3lw4dOuhH1HqlS5fO7GERERGRBTFQCbDoCudRhI8WxL/88kuMC/ENTzzxhAYrWM8FszBjxowRl8sVpJ+CKPDOnTunsygTJ06U8ePHy+jRoyVRokRmD4ssPjuNOj2kvCJFsE2bNnLt2rVov+bWrVvSsWNHncVOmTKldpH7559/fO6LY3L27Nl19hoXk4iIyFoYqATYwwrnMSvi7+r1BgQ1CHI6d+6st3bt2smdO3fiMFqi0Ni1a5e23N67d6/OCLZt29bsIVEYQJDyxx9/6CKgRgosjnvReeedd3QNnpkzZ2pTklOnTmlXOV8Q+KAOkIiIrImBSoChvXB0YrqCfVQSJkwow4cPl0mTJsm3334rlSpVkn379sXpexIFC2b9vvrqK+3s9cgjj2jrbTxniR4GxzXMOk+YMEHKlCkjFStW1Jnk6dOna/Dhy+XLl3XGDsfI6tWry9NPPy3ffPONrFu3Ths2eNdJYRYFdYAPc/v2bbly5UqEGxERBR8DlQDLlCmTjB07NlKnr5iuYB9TrVu31quLeKMtXry4fPbZZ2xhTJZy9OhRTfV66623tG5r7dq1kitXLrOHRWFi/fr1mu6FdFfPuj40JUEarC9YkBd1UNjPM202Z86c+v0MmNn7+OOP9WKPd5MTXwYNGqSBtnHD4r9ERBR8DFSCAPnRuFoXm8J5f+Aq444dO/T/w/oTuOK4f//+gP4fRLGdRXnyySfdNVuoScH6Q0QxdebMGcmYMWOkGWU0X8BjUX1N4sSJNcDxvoBkfA1mR5o2baoXdxDAxATWssJsjXE7fvx4rH8uIiKKOQYqQYIcfBSCxqZw3h/JkiWTYcOGyerVq7UwFO1ehw4dytkVMsWxY8d05hCzKK+88ors3r1batWqZfawyEJ69OihxevR3YJ5wQVBR8GCBeW1116L8dckSZJEC/o9b0REFHxc8DGIEJigcD4UKlSooLMrvXv31gUi58yZo7nZWMuFKBSzKKgleO+99zQ1BoE5AhYib3iOtGrVKtp98uTJI5kzZ5azZ89GakaCC0B4zBdsR4MRpMR6zqqg65fxNb/++qsG0LNmzdL7RvfE9OnTywcffCD9+vWL889IRESBwUAlzFe9R3G+UfeSPHlyLSJFhxvUsGB2ZcCAAdK1a9dINTNEgZxFwQwiWm+jixJm+BCsEPmSIUMGvT1MuXLlNOBA3QmK4o0g48GDB5r26gv2Q8trdJZDW2I4cOCAPkfx/WD27Nly8+ZN99egwcPrr7+us9J58+YVJ8CMO37e06dPS5YsWbTBBd8jiGKPr6kgclFYOX/+vKt27dq4BOi+lShRwrV58+YI+12/ft3VtWtXV7x48Vzly5d3HThwwLQxh5M7d+645s2bpx8peg8ePHCNHz/elSpVKlf27NldixYtMntIZDN16tRxFS9e3LVx40bXmjVrXPny5XM1bdrU/fiJEydcBQoU0McNb731litnzpyuX3/91bVlyxZXuXLl9BaVlStX6nH04sWLMR7X5cuX9WvwMdzMnj1bX6+e7yG4j+1E5D++pvznzzGUgUqYQZCSIEGCCC8I44bHLly4EGH/33//3fX444+7kiZN6ho2bJjr3r17po09HDBQiZljx465A+bXX3/ddenSJbOHRDa9MIPAJGXKlK7UqVO7Wrdu7bp69ar78cOHD+tzEMGG4ebNm64OHTq40qZN60qePLnrxRdfdJ0+fTrK/8NJgQpOnHDxyvu9A9tw44kVkX/4moodf46h8fBPMGdsKLDpXtHVnKDNJtrBoj7A040bN6RXr166EnjhwoVl4MCBUq9ePS1apYjQ2hQNEJ599lmumu4DUnGGDBkio0aN0u5LX3/9dcjqsIisAuuoIL0RHcDCpbAeqSm5c+eWEydO+Hwc7wfZs2eXw4cPM2WFKAb4mgrNMZRdv2y06j1yt9EK9q+//oqwHbUrI0eO1AXPUDD6/PPPa/4k1rUgignk9KOdK4qcEaRg9W+sGM4ghSg8IH8+qhMqwDVLtF3GfkT0cHxNhQYDlTAS00LPv//+2+f20qVLazHqokWL5Pr167ruCoKWPXv2BHikZBfosoSVvvPnz69tXZs0aaIB8yeffMKCeaIwgiLfQO5H5HR8TYUGA5UwgpNFtHx92BQiOoFFBVORderU0U46P/zwg14VL1q0qLYLxUriRMaVoLlz5+pz44033tD21/v27dOFTNHRhIjCS0xft3x9E8UMX1OhwUAlzGB1e6xy7wsCGAQyRrvi6KCeBasz4+RzzJgxOsuCQOjdd9+Vc+fOBWHkFC5+++03KV++vLa5Rn7tli1bZPr06TF6XhGRNSHdF6/nqGoTsT1Hjhy6HxE9HF9TocFAJQwXkUSxPHr/lyhRIsJjCGAQyPgjceLE0rFjR03n6dOnjy7ahxQzrL9y7dq1AI+erGznzp3aRKBq1aqa8rV8+XJdG8VYw4KIwhcuZKG+DLxPrIz7qGVk0S9RzPA1FRoMVMJUyZIlNX0LncDQpQofEcAgkImNlClT6qr2hw4d0kX7+vfvrylkeJFdvXo14OMn69i1a5e89tprUrx4ca1vmjFjhmzatElq1Khh9tCIKIAwSzpr1izJli1bhO24KozteJyIYo6vqeBje2LyCfUqH330kXz33XeSLFkyXbm5U6dOtl+52SntidFW8eeff9arQatWrdKDKgJV/J3t/HMTObU9sSeuok0UWHxNBe8YykCFonXy5En54osv5KuvvpILFy7o+itdunSR6tWr23IdFrsHKlgHZdKkSTJ27Fjt7Y5aFPw9X3zxRVv+vETBEO6BChGRmbiOCgUMpjPRiha9wLG435EjR7QWpkiRInqyixNfsr5t27ZJ+/btdeakR48e2sUL6V1YS6dx48YMUoiIiMhyGKhQjCD9C7UrKLjGWiwFChTQRf8wxdmiRQud8uTknPWuWIwbN06L4XH76aef5L333tO0vqlTp0qpUqXMHiIRERFRlBiokF+Q7lWtWjWZPXu2zrL07dtX1q1bJ5UrV5ZChQrJsGHD5OzZs2YP07EQLK5fv16DSgSR6OiGWTEEKQhQ+vXrx57uREREFBZYo0Jx9uDBAy3IRmrYnDlztM4DtQ/169fXle+feOKJsKlnCccalVu3buksF4rjcUNdUa5cuXShxtatW0fqRkJEccMaFSKi2GMxPZkGi0Xi6j1OmLEGx40bN7TNsRG0VKxYURImTChWFS6BCmatFi5c6P49X79+XfLkyaO/Y9yqVKmii3oSUeAxUCEiij0GKmQJN2/ejHCl/9SpU7rOS926dfVkuk6dOvpEtRKrBip4me7bt88dBCK9C8qVK6e/SwSCBQsWDJuZK6JwxkCFiCj2GKiQJdPD0HkKJ9k42d6xY4fOrODKP0600fb4scceM/1E20qByp07d7Qrl/E7O3jwoCRPnlxq166tvzOMMWPGjKaOkciJGKgQEcUeAxWyvGPHjsmCBQv0BHzlypV6Uo6TbqNDlXFDO91QBi9mBSr4+ffs2SNbt25137BiPLajxsRInUMjg6RJk4ZsXEQUGQMVIqLYY6BCYeXq1asarGzevNl9km50DsuQIUOk4CVHjhxBC15CEajcvn1bdu/e7f5ZMdOE+whKUFeC7mnGz4r1TooXL276TBMR/T8GKkREscdAhcIanpKoZ/GcXcDtzJkz+nj69OmlRIkSeiJftGhRnXHImjWrtt1FapQVAhWkup0/f15Onz6tN6wCb/wcmDnB/5MgQQIpXLiw+2fB7amnnorzz0BEwcVAhYgoNMdQ67ZfIsfC7AGCD9yQ7mTwDl4mT56sQYAnPOERsBiBi3Hzvp8qVapYzVLcv39f/v33Xx2LEYTg5n0fQRWCEQPqcRCUIBhB22AjyMJCmkREsTkWYaFdHG9wTKtUqZJe/CCi8MDXcMxwRoXC2qVLl3wGCt73r127FuHrMFti3BBEeN6wLknixInl3r17kW5I28JsiQHBDtLTvAMhX8ERvmds/Pnnn1pIjzbP+fLli/PvjIjCe0YF61V16dJFTpw44d6Ger5Ro0bJSy+9FPLxEJF/nP4avsLUL6LIdTCegQvSsozgAzMfnoHIX3/9Jfnz59eidc8ABkFNkiRJIgQfaAAQrFqWCxcuSLNmzWTJkiXubej4NW3aNG3zTETOC1RwgtOwYUNNkfVkzBDPmjXLESc6ROGKr2FhoEJkh/bEWGdm+fLlOj1swLRwzZo1ZfHixaaOjcjJzApUcCzInTt3hKuw3ic6uCqLmjimkBBZD1/D/h9DuXQ12Q5SpRYtWqQzI+H8M2AmxTNIAdzH9nD+2YgodpDPHtUJDuC64/Hjx3U/IrIevob9x0CFbAOpUpiFKFCggM6IIH0L9y9evBh2QRBqUqLz999/B/X/JyLr8W4eEtf9iCi0+Br2HwMVsg3UcyBVyhPuN23aNCyCIE958+aN9nEU1hORs6AuLpD7EVFo8TXsPwYqZAvBTpUKZhDkCwIhFM5756jiPraz+xeR86B9KfLXo2qtju1YEBf7EZH18DXsPwYqZAvBTJUyq14E3b1QOO8J97GdiJwHFyrQvhS8T3SM+yNHjrR1ES5ROONr2H8MVMgWgpkqZVa9CFoQo7sXAiV0IsNH3GdrYiLnQttStC/FgriecJXWCW1NicIdX8P+YXtiso1AtPP11Z4YAQJqU6KCx5mKReQcZi/4CFzVmii8Ofk1fMWPY2jCkI2KKMiQEoWaEc8FEgORKmXUi0QVBDFIIaJQw/GnatWqZg+DiGKJr+GYYaBCtmGkSqFmBOlYSPcKVBDhKwgqV64c60WIiIiIgoQ1KmQ7CE7q1q0b0JkOBEE//PBDhE4ca9as0eAlWC2KiYiIiJyMgQqRHy2K161bF7IWxUREREROxkCFyMItiomIiIicioEKkYVbFBMRERE5FQMVIpPXaSEiIiKiyBioEPnRoti7xznuYztbFBMREREFFtsTE3mIFy+eZMyYUT96mzNnjnb+2rFjhz6OBZrKly8vFSpUMGWsRGQOY51kLFpGRET+MY6dMVlznivTExER+eHEiROSI0cOs4dBRBTWjh8/LtmzZ492HwYqREREfnjw4IGcOnVKUqVK5XP2NRBXGxEI4U08derUEk44dnNw7Obg2GMHocfVq1cla9asEj9+9FUoTP0iIiLyA95YH3YVMBBw8hBuJz8Gjt0cHLs5OHb/PfLIIzHaj8X0RERERERkOQxUiIiIiIjIchioEBERWUiSJEmkb9+++jHccOzm4NjNwbEHH4vpiYiIiIjIcjijQkRERERElsNAhYiIiIiILIeBChERERERWQ4DFSIiIiIishwGKkRERCa7cOGCvPrqq7rwWpo0aaRNmzZy7dq1h37d+vXrpXr16pIiRQr92sqVK8vNmzclHMYO6OdTt25diRcvnsybN09Czd+xY/9OnTpJgQIFJFmyZJIzZ07p3LmzXL58Oehj/fzzzyV37tySNGlSKVOmjGzatCna/WfOnClPPPGE7l+kSBH55ZdfxCz+jP3rr7+WSpUqSdq0afVWs2bNh/6sVvq9G6ZPn67P6xdeeEHCZeyXLl2Sjh07SpYsWbQbWP78+U193gADFSIiIpPhZPmPP/6QZcuWyYIFC+T333+Xdu3aPTRIqVOnjtSqVUtPQDZv3ixvv/22xI8f3/JjN4wcOVJP5szi79hPnTqlt6FDh8qePXtk8uTJsnjxYg1wgunHH3+Ud999V9vJbtu2TZ566impXbu2nD171uf+69atk6ZNm+q4tm/frifLuGHMoebv2FetWqVjX7lypT7Hc+TIoc/xkydPWn7shiNHjki3bt004DLLj36O/c6dO/LMM8/o2GfNmiUHDhzQoDFbtmxiKrQnJiIiInPs3bsXywS4Nm/e7N62aNEiV7x48VwnT56M8uvKlCnj6t27tyscxw7bt293ZcuWzXX69Gn9HnPnznWFy9g9zZgxw5U4cWLX3bt3gzRSl6t06dKujh07uu/fv3/flTVrVtegQYN87t+4cWPXc889F+n58uabb7pCzd+xe7t3754rVapUrilTprjCYewYb/ny5V0TJkxwtWzZ0tWgQQOXGUr7OfYvv/zSlSdPHtedO3dcVsIZFaL/+ffff6V9+/Y6lY8pz8yZM+vVh7Vr15o9NCKyMVw1RtpRyZIl3duQ7oKZkY0bN/r8GlwVxWMZM2aU8uXLS6ZMmaRKlSqyZs0ay48dbty4Ic2aNdPUFBxrzRDbsXtD2hdSxxImTBiUceJK99atW3VsBowR9/Ez+ILtnvsD3s+i2j9YYjN2X8+Vu3fvSrp06SQcxv7xxx/r6zLYs2yBHvtPP/0k5cqV09QvHE+efPJJGThwoNy/f1/MFJxXFVEYevnll/XFPWXKFMmTJ4/8888/smLFCjl//rzZQyMiGztz5oye2HjCSS9OzPCYL4cOHdKPH330kaYhFStWTL799lupUaOGpvfky5fPsmOHd955RwOsBg0aiFliO3ZP586dk/79+8c41S028H/gZBEnj55wf//+/T6/BuP3tX9Mfy4zx+7t/fffl6xZs0YKvKw4dlwomDhxouzYsUPMdC4WY8cx5ddff9V0SNSl/P3339KhQwcNEpE+ZhYGKkT/KyBbvXq15sbiqiTkypVLSpcubfbQiChM9ejRQ4YMGRLtPvv27YvV937w4IF+fPPNN6V169b6efHixfXiyqRJk2TQoEFi1bHjyi1OiFA7EQzBHLunK1euyHPPPSeFChXSgJECb/DgwVqUjvdmFIRb2dWrV6V58+Za15E+fXoJNw8ePNDAffz48ZIgQQJ5+umntS7os88+Y6BCZLaUKVPqDV1nypYtq6lfRERx8d5770mrVq2i3Qezt0h98i5wvXfvnnaYiiotCl15ACfJngoWLCjHjh2z9NgRpBw8eFDTrrxntVF8jJNSq47d86QUjQxSpUolc+fOlUSJEkmw4KQXJ46Y5feE+1GNE9v92d9KYzdgphCByvLly6Vo0aISav6OHc9pFKLXr18/0gUFzNShOD1v3ryW/b1nyZJFn8f4Os/jCWbhkG2SOHFiMYXZRTJEVjFr1ixX2rRpXUmTJtVCuJ49e7p27txp9rCIyOaMou4tW7a4ty1ZsiTaou4HDx5oYax3MX2xYsX02GXlsaN4fvfu3RFu+B6jRo1yHTp0yNJjh8uXL7vKli3rqlKliuv69eshK4x+++23IxRGoxFBdMX09erVi7CtXLlyphXT+zN2GDJkiCt16tSu9evXu8zkz9hv3rwZ6XmNQvrq1avr57dv37bs2AHHjVy5cul+hpEjR7qyZMniMhMDFSKvA83SpUtdH3/8sR7UEyRI4Prmm2/MHhYR2VydOnVcxYsXd23cuNG1Zs0aV758+VxNmzZ1P37ixAlXgQIF9HHDiBEj9GRu5syZrr/++kuDFlxo+fvvvy0/dm9mdP2KzdgRpKB7VpEiRfT3jKDLuKHbU7BMnz7dlSRJEtfkyZM1wGrXrp0rTZo0rjNnzujjzZs3d/Xo0cO9/9q1a10JEyZ0DR061LVv3z5X3759XYkSJdIT5lDzd+yDBw/WLmq4eOj5+7169arlx+7NzK5f0/0c+7Fjx7S7GoKbAwcOuBYsWODKmDGja8CAAS4zMVAhikabNm1cOXPmNHsYRGRz58+f1xPklClTavDRunXrCCdmhw8f1pP5lStXRvg6XB3Nnj27K3ny5HpxZfXq1WEzdisEKv6OHR9x39cN+wbTmDFj9P0IJ/G4Wr5hwwb3Y5jdwUmxd9vk/Pnz6/6FCxd2LVy40GUWf8aOq/q+fr8Itqw+disFKrEZ+7p16zQQR4CDVsWffPJJUAPwmIiHf8xJOiOyvuHDh2t7PnTQICIiIqLQYTE9kYi2IG7UqJG8/vrrWrSHAsktW7bIp59+amr7TCIiIiKnYqBC9L+uX2XKlJERI0Zo5w70Dc+RI4e0bdtWevXqZfbwiIiIiByHqV9ERERERGQ58c0eABERERERkTcGKkREREREZDkMVIiIiIiIyHIYqBARERERkeUwUCEiIiIiIsthoEJEREREsmrVKokXL55cunRJ70+ePFnSpElj9rDIwRioEBEREYXA8ePHdWHhrFmzSuLEiSVXrlzSpUsXXXQ41KpWrSpdu3aNsK18+fJy+vRpeeSRR0I+HiJfGKgQERERBdmhQ4ekZMmS8tdff8m0adPk77//lnHjxsmKFSukXLlycuHCBbOHqMFT5syZdVaFyAoYqBAREREFWceOHTUQWLp0qVSpUkVy5swpdevWleXLl8vJkyflgw8+0P0QJMybNy/C1yL9CmlYhvfff1/y588vyZMnlzx58kifPn3k7t277sc/+ugjKVasmEydOlVy586tMySvvPKKXL16VR9v1aqV/PbbbzJq1Cj9/3A7cuRIpNQvX+bPny8lSpSQpEmT6v/dr18/uXfvXhB+Y0QMVIiIiIiCCrMlS5YskQ4dOkiyZMkiPIYZjFdffVV+/PFHcblcMfp+qVKl0sBl7969Gmx8/fXXMmLEiAj7HDx4UAOeBQsW6A2ByeDBg/UxfA1mcdq2baupXrjlyJHjof/v6tWrpUWLFpquhv/7q6++0nF88sknfv0+iGKKgQoRERFRECHdC0FIwYIFfT6O7RcvXpR///03Rt+vd+/eWk+C2ZL69etLt27dZMaMGRH2efDggQYRTz75pFSqVEmaN2+uaWaAGRbM7mBGBoESbgkSJHjo/4vZkx49ekjLli11NuWZZ56R/v37a8BCFAwJg/JdiYiIiCiCh82YIHiICcy+jB49WmdNrl27pqlXqVOnjrAPghjMvBiyZMkiZ8+elbjYuXOnrF27NsIMyv379+XWrVty48YNDXyIAokzKkRERERB9Pjjj2vtx759+3w+ju0ZMmTQWhTs5x3QeNafrF+/XlPFnn32WU3p2r59u9a33LlzJ8LXJEqUKMJ9fF/MssQFgiLMquzYscN92717t84YoWaFKNA4o0JEREQURI8++qimSX3xxRfyzjvvRKhTOXPmjHz//fdabA8IWFAzYkAQgNkKw7p167StsVF8D0ePHvV7TJi9wWyIP1BEf+DAAQ28iEKBgQoRERFRkI0dO1brSmrXri0DBgyQxx57TP744w/p3r27dvD68MMPdb/q1avrvih2RyCBDl+esyP58uWTY8eOyfTp06VUqVKycOFCmTt3rt/jQWrYxo0btdtXypQpJV26dA/9GoyxXr162rGsYcOGEj9+fE0H27Nnj/5MRIHG1C8iIiKiIEOAsXnzZi1Cb9y4sc6KoD0xghTUfSBYgGHDhmkHLhTAN2vWTAvlPWs/nn/+eZ2Vefvtt7UFMWZY0J7YX/i+KKAvVKiQzuIg+HkYBFlIN0OLZQRJZcuW1W5j+FmIgiGeK6a98IiIiIgoYPr27SvDhw+XZcuW6Uk/EUXEQIWIiIjIJN98841cvnxZOnfurKlURPT/GKgQEREREZHlMHQnIiIiIiLLYaBCRERERESWw0CFiIiIiIgsh4EKERERERFZDgMVIiIiIiKyHAYqRERERERkOQxUiIiIiIjIchioEBERERGR5TBQISIiIiIisZr/A1S/LCI/j8MsAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAAGbCAYAAAArwGQ+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAed5JREFUeJzt3QeYE2XXBuBD71V6VRCQKiC9N2lSLBQBaSKoIE3gExBEBCkKSFMRAUFEUIqg9K406b0qvffeS/7rOd83+bPZ7LLZTZnMPPd1hSWT2d3ZSTKZM+85543lcDgcQkREREREZCKxg70BRERERERE7hioEBERERGR6TBQISIiIiIi02GgQkREREREpsNAhYiIiIiITIeBChERERERmQ4DFSIiIiIiMh0GKkREREREZDoMVIiIiIiIyHQYqBARERERkekwUCHba9WqlcSKFUuGDBkSZl/MnTtXlxMRERFR4DFQIRKRhAkTytChQ+Xq1avcH0REREQmwECFSESqVasmGTJkkMGDB3N/EBEREZkAAxUiEYkTJ44MGjRIxowZI6dOneI+ISIiIgoyBipE//Paa69J4cKFpV+/ftwnREREREHGQIXIBepUpkyZIvv37+d+ISIiIgoiBipELipUqCA1atSQXr16cb8QERERBVHcYP5yIjNCm2KkgOXJkyfYm0JERERkWxxRIXJTsGBBadasmYwePZr7hoiIiChIGKgQefDZZ5/JkydPuG+IiIiIgiSWw+FwBOuXExERERERecIRFSIiIiIiMh0GKkREREREZDoMVIiIiIiIyHQYqBARERERkekwUCEiIiIiItNhoEJERERERKbDQIWIiIiIiEyHgQoREREREZkOAxUiIiIiIjIdBipERERERGQ6DFSIiIiIiMh0GKgQEREREZHpMFAhIiIiIiLTiRvsDSAyE4fDobdYsWLpjYjI3ZMnT+TMmTOSLFkyHieIiLyE86ybN29KpkyZJHbsyMdMGKgQuXj06JEsXLhQateuLfHixeO+IaJwEKRkzZqVe4aIKAZOnjwpWbJkiXQdBipERERewEiK8SGbPHly7jsiIi/cuHFDL/YYx9LIMFAhIiLygpEWiiCFgQoRUfREJcWexfRERERERGQ6DFSIiIiIiMh0GKgQEREREZHpMFAhIiIiIiLTYaBCRERERESmw0CFiIiIiIhMh+2JiYiIiFw8fvxY1qxZI2fPnpWMGTNK+fLlJU6cONxHIYjPZWhjoEJERET0P3PmzJHOnTvLqVOnnPsEs2ePGjVKXn/9de6nEMLnMvQx9YuIiIjofye2DRo0CBOkwOnTp3U5HqfQwOfSGhioEBERke0hRQgjKQ6HI9y+MJZ16dJF1yNz43NpHQxUiMjWKlWqpCcfhmeffVZGjhwZ1G0iosBDTYr7SIp7sHLy5Eldj8yNz6V1sEaFiMjF5s2bJUmSJNwnRDaDwnlfrkfBw+fSOhioEBG5SJs2LfcHkQ2hu5cv16Pg4XNpHUz9InIZ1r9z547cunVLHj165DFP2Upu376tN9e/88GDB7rs/v37Htd98uSJc9nDhw912b1796K0bnRSsjp27KhpWalSpZL06dPL999/rz+7devWkixZMnn++edl0aJFzu/Zs2eP1KpVS5ImTarrN2/eXC5duhRm21q0aKGP44Ns+PDh4X6ve+rXiBEjpGDBgjrKkjVrVmnfvr2+RgyTJ0+WlClTypIlSyRv3rz6s2vWrMmrrkQhBi2I0d0rVqxYHh/HchwDsB6ZG59L62CgQpaCk+7r16/LgQMHZNWqVTJt2jQZNmyYdOvWTZo2baonv3ny5JE0adLoySVOKhMkSKD98WPHjq3L3nrrLUmcOLHejxcvniRKlEhPilOnTi2ZMmWSokWLyiuvvCLvvPOOfPLJJ/Ltt9/K3LlzZePGjZq/HJ2T8mDA346b64n8l19+qcs++OCDMOumS5dOl584ccK57Ouvv9Zlbdq0CXeij+X79+8PczIfHVOmTNHnatOmTRq0vP/++9KwYUMpU6aMbNu2TapXr67BCALMa9euSZUqVaRIkSKyZcsWWbx4sZw/f14aNWrk/Hk9evSQP//8U+bNmydLly6V1atX68+JDF4Ho0ePlr179+r2rFy5Uv7zn/+EWQe/H6+zqVOnyl9//aX7qXv37tH6m4koOPA5gBbE4B6sGPdxEYPzqZgfn0vrYOoXhRxc7ceV861bt8q+ffvkzJkzevXauOGk0RWCDAQYuIKOry+99JKe/CIIwS1u3LjO27///qsnsDghRtCDkRXXG372uXPn9Hfu2rVLr6LjPh5zhZ9v/E7csmXLJoULF9bfjStyEV2xo7BefPFF6dOnj/6/V69eMmTIEN23bdu21WVGoIjnYvny5RqkDBo0yPn9kyZN0v196NAhfT4mTpwoP/30k1StWlUfR+CBK6iRcS+0HzhwoLz33nvyzTffOJcjOB03bpzkzJlT7yPQ++yzz/h0EoUYzJMya9Ysj/OoIEjhPCqhg8+lNTBQIdMHJTgJRVBi3BCk4MQQV0xy5colmTNnlueee06vshuBgWuQ4E1hNH5uqVKlpHbt2hrERAVSnDAq4Ros4WYEUAcPHtT0JFzdB5xoI2BxvSGQCXTwYqQvYfTIdcQBJ+YI2lxduHBBv2J0ydChQwcNGNyvLh47dizcuq1atYrWNhYqVMj5f/yeZ555RtOwDEjvMrZv586dOoqG0Rx3hw8flrt372pqW8mSJZ3LMUqGEbbIIAAaPHiwjtLduHFDg1KkuyFoNfYdvhpBCuB1Z+wzIgq9E9z69etzZnoL4HMZ+hiokGng5M9TUIITQ5yk5s+fX0/qkWqEr7ja7noyHCxIDUJqFG7YpoggcHH923744Qfn1X+cgLsHL9mzZ/dr8OIpgIsfP77eorKuMSIV1XWjw/37sD9clxn7B8EiAq+6devK0KFDw/0cBA4YLfMWgq46deroCNvnn3+ugc3atWv1NYigxwhUPG2n1WuciMw2bwZa0uLiEN7vqFGISYoWvhepwhT6fPVc+vo1RlHDQIWCBieXqD34/ffftZ5g9+7dGpTgar4RlOCKPb7iyroZgpKYwCgPbjiZNuCA5xq8IBUJV+8BJ8Vly5bV9XGyzE4zkUPt0OzZszU9y31ECDDigYACtUQYwYKrV69qWljFihU9/kw8J3idougeASn8+uuvMXgVEJE/ZiD3lKqFehOmahFfY6GNgQoFFLouLVu2TP744w+ZP3++psdgNAGpVq5BScKECW3xzCD4QBCCmwE1L0bgsmLFCq2HwMly8eLFNWipV6+e7iPWuYSFVDR0BWvSpIkWuyPQwyjKjBkzZMKECc7Cf6S34TWHEbCPP/7YGYB4gq5iSAccM2aM7vt169ZpLQoRmSdIadCgQbgRzNOnT+ty1JswWCG+xkIXu36R3+ED47vvvtNOWThBfO2112T9+vVat4BhVNRu/Pjjj5peU6JECdsEKRHJkCGD7isUiqNDFYI5dJPCSAG6cqEoH/9HwTYK/91bCdsVRqsQSGB4Ht3AUMuCeht0cjOCEew/DNcj6KhWrZqUK1dOg+OIIJUP7YmRTlagQAHtImeMeBFRcOG9jpEUT2mWxjIcA7AeEV9jIcpB5GNPnjxxbNu2zdG/f3/HSy+9hE8LR5w4cRyVKlVyDB8+3HHo0CHT7vMHDx445s6dq1/N6P79+46lS5c6Onbs6MiePbvu26RJkzoaNGjg+PHHHx2XLl0K9iYS+dzYsWP19Z4gQQJHiRIlHBs3box0/V9//dWRJ08eXb9AgQKOBQsWhFtn3759jrp16zqSJ0/uSJw4saNYsWKO48ePR2l7rl+/ru89fKXgWbVqlT4PT7thPSK+xszDm2MoR1TIZ9AVCfOVoAgc9QLI60fqDNrBYlQAHZk+/PBD7dRF0YNC95dfflnn9Th69Kh2uurZs6fO24GJDJHOVKFCBW3D6zopIVGo+uWXX/S40a9fP53zBqNcNWrUiLCrGkZrkf6HNL/t27fLq6++qjc05nDtAofRtBdeeEHn0kETj759+9p+NDfUoMbPl+sR8TVmPrEQrQR7Iyh0oeXrzJkztTYA3ZCQ2oWTBJwYIMXGUwcpM0M9wsKFC71qT2wW+DBesGCBPh+oA0JNBia5NGp/iEIR2kmjPmvs2LF6H/VamBsHE4AiSHfXuHFjrYVDDZwBLceRMmnUF7355pv6/kZKZXSgTXWKFCl0ctnkyZNH+2+jmEGQWbly5aeuh4tk7OBFfI2ZhzfHUI6oULTgCiROFFAM3rJlS53dHUXLqEdB4TEm1Au1ICXU4bl45513dBLKI0eOaG42TtaKFSumI1yYGBEHBaJQgRbQaCqBeiID6o1wf8OGDR6/B8td1weMwBjrI9BBQJ87d25djlFIBENz586NcDtQB4YPVtcbBR8uhqG7V0SNRbAcQS3WI+JrLDQxULEwtF3FRIP//POPT34eWgej/StSi5B+gSv3KIBHZyVMiocrmQhYKPhQbI+Z0TEPCDqs4cMcxff4igATrw0is8NEqiiENib2NOA+uuN5guWRrY+UMaRFDhkyRGrWrKkNKdDgA52h0LzCEzRQwNU/44aTXwo+zGGBFsTgHqwY9zGbPOe6IL7GQhcDFQu6cuWKfgBjxm2kMOHKIe5jzojowPehWxLmoTDaQGIuiZMnT+oHuOuM3GQumE8ErY8xVw3qWDDKgpEvvDbQWQwnacz+JDvBiApg5vGuXbtqShhSyPA+iaj1dK9evXQ00rjh2EfmgAATLYgzZ84cZjkuyrA1MfE1FvoYqFgQ6hIwwuEK91E74g2MxGDEBAf8Pn36aI7vli1btKVww4YNQ66Gw+7wQT5gwAA9yZo0aZKm6SH1BZNr4gSNbY7JbNKkSaNXw9HC3BXuo423J1ge2fr4mQjg8+XLF2advHnzajDvCUaKkUfteiNzBSsYPUYtys8//6xf0WyE86cQX2Ohj4GKxSClBzUK7n3jcR/Lo5IGhqJsTDKID+7ffvtNJ8/DBzhmTWdRdujDPDWtW7fWjkgoRkXnI0yWiFEWzGfDOQfILFDnhmMOJj51HRHB/dKlS3v8Hix3XR/QXMJYHz8TxfkHDx4Md+xEx0IKTQhocTENF+TwlelexNeYNTBQsRi03YwM6kkicu3aNendu7emcqH+BJPc4aoU2oK653xT6EMOd8WKFXVm57179+oJIRojIBUGdS1MCSMzQGtidBXEhZL9+/frKC+6eiHYBrTlRmqWARMALl68WNujo2X6p59+qiPBqNEy9OjRQ9se4+fimIiOYnjNt2/fPih/IxERecZAxWKeVi+CeU08tRgeNmyY5MiRQwsPkbeNgAdzoiRKlMiPW0tmgVEVNEr4+++/NTWmXr162ikHM70TBROadOD49Mknn2gQvWPHDg1EjIsnGO11nSejTJkymv4zfvx4bfqBOgV09CpQoIBzHRTPI93xiy++kIIFC8qECRP09Y+5VYiIyDw4j4oFoXAeNSmuKTwYBkfLTnzAu3bxQqoPRkzwQY/5NnAygDa3dhXK86j4CkZSkCaIq9Q4Kaxbt64MGjQozIkekZ1xHhUioujjPCo2N3369HDzCOA+lhsnoqg9KVSokM7ejCuQSKnAPBt2DlLo/1PCEOxi/gpcmUZaGF4rrVq1kuPHj3M3ERERUUAw9cuCUqVKpSMnKA7F6AC+4j6WY54ABCbohoJuXsjdRq52rly5gr3ZZDKYWA+FqQhiMYkn5uRBq2vUDGB+CyIiIiJ/YqBiYQg+atWqpV9xJRzzBKAbClK+kBqGOTTYxYueBl2S0BUMdUtoU418ftRCoViZHcKIiIjIXxioWBzSvFBUioLRnTt36ujJpk2bpGrVqsHeNAoxSZMmlb59+2rAgu5g6JyEgnv3Nq9EREREvsBAxcLQDQcT+r377rvSqFEj2bNnj35FDQJRdKVNm1ZGjx6tE38iBQydmDi6QkRERL7GQMWioyiYHwBdmlBfgNoCpOukSJEi2JtGFlK2bFntCoZ5LTC6UqFCBa2HIiIiIvIFBioWc/LkSa1LadeunTRs2FBHUdDBicgfEidOLCNGjJC//vpLLly4oPNWfPXVV6xdISIiohhjoGKhUZSJEyfqKAqCE3T7wn2OolAgYKI81EAhzRAThWLG+3/++Yc7n4gCCg0+Vq9ere348ZUNP4ivodDGQMVCoyjvvPOOvPHGGxqo4D5RoEdXRo4cqS2wz507p3OvcHSFiAJlzpw58uyzz0rlypWladOm+hX3sZyIr6HQxEDFIqMou3fvlgULFsikSZMkZcqUwd40sjF0AsPoCtIPMecKWmL/+++/wd4sIrIwBCMNGjSQU6dOhVl++vRpXc5ghfgaCk0MVELUzZs3ddJGjKLgK2YPr127drA3i0glSZJERo0apaMrZ86c0dEVzHJPRORrSO/q3LmzXrxzZyzr0qUL08CIr6EQxEAlBB05ckRKly4tK1askLlz58oPP/zAURQyJXQC27Vrl7bFbtasmfTs2ZMnC0TkU2iV7j6S4h6sIEUa6xHxNRRa4gZ7A8g7q1at0mHs1KlTy8aNGyVv3rzchWT60RUE0xhVQRtj1FBhdCV58uTB3jQisoCzZ8/6dD2yH76GzIsjKiECV4S++eYbefnll6Vo0aIMUiikYJJR1Kugjmrt2rVSqlQp1q0QkU9kzJjRp+uR/fA1ZF4MVELAgwcPdFK9Dh06yAcffKATOGJEhSjUYE4fjAQip7xEiRKyfPnyYG8SEVmggUeWLFn0gognWJ41a1Zdj4ivodDCQCVAMGM3Agxv55a4ePGijqKgmxdml0f717hxmbFHoStPnjwarCBQQeAyevRoj0WwRERRESdOHG3eAe7BinEfn51Yj4ivodDCQMXPrly5oidjODlDV67cuXPr/atXrz71e1GEXLx4cTlw4IDWprRp08bfm0sUEGihjTQwdOJBt562bdvK/fv3ufeJKFrQ/XLWrFmSOXPmMMsx0oLleJyIr6HQE8vBS5l+haAE6S2us+Piqk61atVk8eLFEX4fer63aNFCcuXKJfPmzZNs2bL5d0NJPXz4UBYuXKhBZbx48bhXAmDKlCk65wqC8tmzZ0v69Om538nUbty4ISlSpJDr16+zKYTJ4LMW3b1QHI26A6R7cSSF+BoK3WMoAxU/p3thJCWyxxGIuHry5IkMGDBAPv30U2nYsKF2S0LXJAoMBirB8ffff8trr72mwSEC8yJFigRpS4iejoGK9UU14GFgxOeB/HsMZeqXHx0+fDjSx91n63706JG0atVKg5SBAwfKL7/8wiCFbAFdwDZv3izp0qWTsmXLyrJly4K9SURkU8hoePbZZ6Vy5crStGlT/Yr77rPbR3U94vNAMYDUL/KPgwcPokI4wtuhQ4ec6z548MDRsGFDR5w4cRzTp0/nUxIkeB7mzp2rXynwbt++7ahVq5YjQYIEjvnz5/MpIFO6fv26HsPxlaxl9uzZjlixYoX7vMYy3PC4N+sRnweK2TGUqV8mqFFBEXHjxo21NgKjKEiBoeBg6lfw8f1AZsfUL2vC5zRGRCKa5R4dxFCcj2yInDlzPnW9o0ePsj6GzwN5wNQvE5k+fboGJa5wH8vh7t27GpggaJk7dy6DFLK9BAkSyMyZM7VLD+q0ZsyYYft9QkT+h5qUiIIPQO+hkydP6uTLUVkPP4/4PFDMcEIOP0uVKpUGIZg/BVdhnn/+eWcB/e3bt6VevXqyYcMGbdVatWpVf28OUUhAUf20adM0aGnWrJmOsrRs2TLYm0VEFobCeV/Un3r784jPA0WMgUqAIDhx7fB1584dqVOnjmzZskWWLFnCGXOJ3CBFEl3vEKygyQSuUuIrEZE/oLtXVCDty5c/j/g8UMTY9SsI7t27pyle6HKE0Ra0PSSi8GLHji3fffedzrOCCU+ZBkZE/oLPYtSWuM9ub8DyrFmzSvv27aO0Hj/b+TxQzDFQCbAHDx5o3v1ff/0lf/zxh7ZiJaKI4UP/22+/lbfeektvv/32G3cXEfllFHfUqFHO4477cQhGjhwp8ePHj9J6nGiSzwPFHAOVAMI8Kei1vnTpUi2cR891IorayMrEiROlQYMGzg55RES+hiYes2bNksyZM4dZjhEULMfj3qxHfB4oZtieOIBtD1u0aCG//vqrzJ49W4voyXzYntj8z0+jRo1k0aJFMn/+/HAd9YgCge2JrY8z05sDnwdr8uYYykAlQDp16iRff/215tgj9YvMiYGK+aEDGGq8Vq9eLWvXrpWiRYsGe5PIZhioEBFFH+dRMZnx48fLmDFjZOzYsQxSiGIIXcAwKpk/f36pX7++nD9/nvuUiIjIglij4mcomu/QoYO8//77eiOimEuUKJHWeaHuC7ngGGUhIiIia2Gg4kfHjx+XN954Q8qVK+fsEEJEvoEiVgQrW7du1YsAmGeFiIiIrIOBip/cunVLC+aTJk0qM2fO1Jm2ici3SpYsqamVmBhy9OjR3L1EREQWwpnp/eDJkyc6g/bhw4dlw4YNkiZNGn/8GiIS0W56u3fvlg8//FDy5s0r1atX534hIiKyAI6o+MGAAQO02Penn36SggUL+uNXEJGLIUOGSI0aNXSOlX/++Yf7hoiIyAIYqPgYApRPP/1UBg4cKK+++qqvfzwReYAZoKdPny7p06fXlEv0ZiciIqLQxkDFh3bu3KlpKLiq27t3b1/+aCJ6Ckwe9fvvv8u5c+ekadOmOlEYERERhS4GKj5y4cIFvZKbJ08emTRpksSKFctXP5qIoih37tzyyy+/yOLFi6VXr17cb0RERCGMgYoPPHjwQNsQ37t3T+bNmyeJEyf2xY8lomhAMf3w4cPlyy+/lKlTp3IfWsDXX38tzz77rCRMmFA7vW3atCnS9dFp8YUXXtD1USe4cOHCCNd977339MLSyJEj/bDlREQUEwxUfKBv376yceNG+e233yRr1qy++JFEFAOdO3eW1q1bS7t27eTgwYPclyEMI2To6NavXz/Ztm2bvPjii9o4AaPYnqxfv16aNGkibdq0ke3bt2utIG579uwJty6O2X///bdkypQpAH8JERF5i4FKDOFDbtiwYdK/f38pU6ZMTH8cEfkArpCPHTtWLxwgYGG9SugaMWKEtG3bVp/HfPnyybhx43TUGim2nmBy3Zo1a0qPHj20XTW6MBYtWlRfD65Onz4tHTt2lGnTpnGeKyIik2KgEgNI9cKH50svvaQfikRkHjiZxUSQuJjAtJ7QTavdunWrVKtWzbksduzYeh9zVHmC5a7rA0ZgXNfHXFfNmzfX43b+/Pmfuh3379+XGzduhLkREZH/MVCJgU8++USOHDkikydPlrhxOXcmkdmULVtWunTpIn369GEKWAi6dOmSjoah7bQr3Ed3N0+w/GnrDx06VI/ZnTp1itJ2DB48WLvKGTem+BIRBQYDFReHDh2SRYsWRWnCOFylRcHuZ599pukIRGROmNOIKWBkwAgN0sNwgSmq3RnRQQ5z8xi3kydPcocSEQUAAxURuXLliuY0o7Vw7dq1tcUp7l+9etXjTrt79660atVKihUrJt26dQvE80REPkgB++qrr7gfQ0iaNGl0Ms/z58+HWY77GTJk8Pg9WB7Z+mvWrNFC/GzZsumoCm7Hjx/XYzk6i3mSIEECSZ48eZgbERH5HwMVEZ0cbvny5WF2DO6jc0xEKV/Hjh1jyhdRCKWAde3aVVPADhw4EOzNoSiKHz++1gCuWLEiTH0J7pcuXdrj92C56/qwbNky5/qoTdm1a5fs2LHDeUPXL9SrLFmyhM8NEZGJ2L6wAulenj6ckBeN5UgDy5Url3M5CjKR8jVkyBDtKENEoZMCNn/+fG2AsXbtWr1ST+aH1sQtW7bUEewSJUpoY4Tbt2/r8wgtWrSQzJkzax2J0Zq6YsWKepx+5ZVXZMaMGbJlyxYZP368Pv7MM8/ozVW8ePF0xAWj6kREZB62H1E5fPhwpDvo33//DZfyhQ9LpnwRhZZEiRLpKCgmC0TLWwoNjRs31hbwGMkuXLiwjoAsXrzYWTB/4sQJOXv2rHN9tIn/+eefNTDBnCuzZs2SuXPnSoECBYL4VxARUXTEcjgcDrH5iEpkV9HwuDGi0r17d+3Fjw9KzHpM1vPw4UOdxRq1SrjKStaDFJ8xY8boZIAcFaXoQHtidP9CYT3rVYiI/HcMtf2ICgrn0WPfPQ0E97HcCFLWrVunV2ExeRiDFKLQhU59KJrG6OijR4+CvTlEREQUAdsHKjB9+vRwE4ThPpYbKV/Ihy5ZsqTmSxNR6KeAoW6BKWBRh25Zb731lhalY1Z3mDp1qtb7EBER+QMDFRFJlSqV5jwjzQtpP/iK+1gOSPc6evSotjhlAS5R6CtVqpQWXWN0Ba1qKXKzZ8/WEWYEeUiZw0ztgGH7QYMGcfcREZFfMFBxgTSvWrVqhenyde3aNe0m065dO6Z8EVkIWhWjDgndwChy2Efjxo2T77//PkztFto+b9u2jbuPiIj8goHKUwwdOlSvHvbt29c/zwARBUXq1Knlo48+0hPwI0eO8FmIxMGDB6VChQrhlqMYEhdziIiI/IGBSiTOnDkjo0aN0rqUiGZBJqLQ1alTJ539HK1vKWI4/rm2ajegPiVHjhzcdURE5BcMVCLRv39/SZw4sbYlJiLrwfu7X79+Ou/Gzp07g705ptW2bVut6dm4caPEihVLL+JMmzZNj43vv/9+sDePiIgsyvYz00eW6jBx4kT54osvNL2BiKzp7bff1lnMe/Xqpc00KLyePXvKkydPpGrVqnLnzh1NA0uQIIEGKh07duQuIyIiv7D9hI8RadiwoV49RAewhAkT+mfvk+lwwkd7mjlzpjRq1EhWr14tFStWDPbmmNaDBw80BezWrVuSL18+SZo0qdgRJ3wkIgrMMZQjKh5s3rxZZs2ape2IGaQQWV+DBg2kWLFiOnKwfv16TW+i8OLHj68BChERUSAwUPEAKSD58+eX5s2bB+RJIKLgQmAyZMgQneh13rx58uqrr9r+KXn99dejvA/mzJlj+/1FRES+Z6tABWlchw8flueffz7MXCmuli1bJitWrNCTFU7uSGQfqL94+eWXpXfv3lKnTh2JG9dWh8dwWJtHRETBZosalStXrkjTpk1lyZIlzmWYZXn69OnO2ecBxaLFixfXdC+03WT6h/2wRsXetm7dqilgaKSBInsiT1ijQkQUmGOoLdoTI0hZvnx5mGW436RJk3AFtZhlGSkgDFKI7Oell17Sonq0LL57926wN4eIiMjWLD+ignSvPHnyRPo40sAwmoK6FExetmDBgoBuI5kHR1Ton3/+kbx588pXX31l69a7RYsW1TRYjDoXKVIk0os3uMBjJxxRISKKPnb9coGalMig1SYClaVLl8qBAwfk+++/j8GuJ6JQh+MBuoCNGTNGOnToILFj22LgOZz69evrXCnG/znKTEREgcYRlf+NqNSqVUsuXLggW7Zs4QeyjXFEhWDDhg1SpkwZmT9/vrzyyivcKRQGR1SIiKKPNSoucufOrYXz7h28cB/LEaRgJGXx4sXSuXNnBilEJKVKldLGGqNGjeLeENGU2MuXL4fbF9euXdPHiIiI/MEWOQ3o7oX5EVzhPpYDUjzSp08vjRs3DtIWEpGZIM0JFy7Qrnzv3r1id8eOHZPHjx+HW37//n05depUULaJiIiszxYTBaAYFCMmKJJFTYrrPCq4IjhlyhTp3r27Mx+biKhhw4bSo0cPGT16tHz33Xe23CG///678/9o7+46twoCFxTbP/fcc0HaOiIisrq4dprg0bi5mjRpkjx48EDee++9oG0nEZlP/Pjx5f3335fBgwfrLXXq1GI3r776qnOEqWXLlmEeixcvnjz77LMyfPjwIG0dERFZXWyrTvBYs2ZNbUtcu3ZtrVPB/atXr4ZZD52ZcaUUV04zZMgQtO0lInN699135dGjRzJ16lSxI7Rtxy1btmzabMS4jxvSvg4ePCh16tQJ9mYSEZFFxbXbBI9IATP89ddfOuoyfvz4IGwlEZldunTptDUv2pZ36tTJts02jh49GuxNIDIlpECuWbNGzp49KxkzZpTy5cuHa95jhp9ptu0x299I5mW5QAWBB3KpPb0psBx1Kkb6FwIUjLZUqFAhCFtKRKGgbdu22iHw77//ltKlS4tdoR4FN2NkxT2Flshu5syZo003XBtKZMmSRbsFvv7666b5mTFhh7+RzC22HSd4NNLDZs+eLe+8845tr5IS0dOhQyBqMew88tq/f3+pXr26BiqXLl3SNFrXG5Hd4GQbE8O6d707ffq0LsfjZviZMWGHv5HMz3ITPmJEBbUpkT2OERVE7ujogzcL0juIgBM+kicDBw6UQYMGaZqCa+cru0BqxhdffCHNmzcP9qaYAid8tDdkaODiRUStuXHxEyMESJmMajqTP35mTNjhb6TgsfWEj1GZ4BGxGa6OoqMNgxQieprWrVtrd8Cff/7ZljsLf3uZMmWCvRlEpoDaisjmD8I5xsmTJ3W9YP7MmLDD30ihwXKBSlQmeNy6davs27dP076IiJ4mc+bM2kFw8uTJttxZOFbaNUgjcoeRVV+u56+fGRN2+BspNFiumB4uXryohVrdunXT1qKuEzzCvHnzdBLIKlWqBHU7iSh0oI15ixYtnF1q7OTevXs6Co3uiYUKFdI5VFyNGDEiaNtGFGhRff97c5zwx8+MCTv8jRQaLFWjggJ5tCZ27fqFdC+MpCAwMRQuXFgKFixo27kRKGKsUaGIXL58WVNFMfeS3UZjK1euHOFjyCtfuXKl2AlrVOzNqLVAAbinU6iY1G/48mfGhB3+Rgoe29aoRDZ/iuH48eOyc+dOqVu3bhC2kIhC1TPPPCNly5aV33//Xexm1apVEd7sFqQQ4SQaDXnAvWuocX/kyJFenWz742fGhB3+RgoNsa02fwoi9ojmT4E//vhD0xYw0kJE5I169erJsmXL5M6dO9xxRDaG+T5mzZql9WuuMCKA5dGZD8QfPzMm7PA3kvlZJvVr0aJFWuwakYULF0qtWrU0QMFkZTjZIHLH1C+KzMGDB+WFF17QURW7jcpu2bJFfv31Vzlx4oR2AXNlt7kPmPpFdpq13Q5/I5n3GGqZYvqcOXNG+jgK6rFjkKowfPjwgG0XEVkH5mhCC3S7BSozZszQRgK40LN06VKd/BGj2OfPn5fXXnst2JsXUniCZi04ua5UqZJffyZeM6tXr/b7SX1Er81A/I0UWh4HMtB0WEiNGjUcceLEwQiR84b7WA6//vqrLjt69GiwN5VM6sGDB465c+fqVyJPunXr5kifPr3j8ePHttlBBQsWdIwdO1b/nzRpUsfhw4cdT548cbRt29bxySefOOzm+vXr+lmCr96YPXu2I0uWLGE+o3Afy4mC+Zrha5MC+Vrx5hhqqUDlypUrGpS47jzcx3Jo3ry5fuASRYSBCj3Nn3/+qceWjRs32mZnJU6c2HmBJ3Xq1I5du3bp//ft2+fIkCGDw26iE6jgQzxWrFhhPp9wwzLcGKxQsF4zfG1SoF8r3hxDLVNMD2hBvHjxYk1JQE0KvuI+lmM+lQULFmgxLBFRdGGG9tSpU9uq+xeOoTdv3tT/owh2z549+v9r166xsUAU0yQwt5enklBjWZcuXcI1gyH7CtRrhq9NMvtrxVKBigGTO6Jw3nWSxw0bNug8K3bKKyci34sbN6427kAHQbuoUKGCswEJJr7Eh1Xbtm219XvVqlWDvXmmh1zuU6dORfg4PuRPnjyp6xEF8jXD1yaZ/bViyUDFE1z9TJ8+vRQvXjzYm0JEIQ4js7t27ZJjx46JHYwdO1befPNN/f/HH38sH374oRbSv/HGGzJx4kS///6vv/5aJ4pLmDChlCxZUjZt2hTp+jNnztTubFgfk/tihN21s99HH32ky5MkSSKZMmXSRgFnzpzx2/aj4NSX65H1Beo1w9cmmf21YqtApU6dOhI7tm3+ZCLyE3S/wnxMdhlVQaobTugBx9CePXvqMRUdFJEW5k+//PKLBkb9+vWTbdu2yYsvvqj7/8KFCx7XX79+vY70tGnTRrZv3y6vvvqq3ox0NcyBg5/Tt29f/YrWymg77c+0YHTF8eV6ZH2Bes3wtUlmf61YZh6VyKBWBW1F582bxxoVihTnUaGoQoteQLteq8PcKZHJli2b3343RlAwEo5RHcA8WFmzZpWOHTtqwOSucePGcvv2bZk/f75zWalSpaRw4cIybtw4j79j8+bNUqJECTl+/HiU/hZv51FBzjZGhE6fPu0xvxuzcmPCu6NHj3IuCQroa4avTQrGa8WbY6gthhfWrVunO7By5crB3hQisohq1app7RtOnK0OH07PPfdchDd/wcSSW7du1X1twIiOse89wXLX9QEjMBGtD/iwxGdEypQpPT5+//59/WB1vXkDH9qjRo3S/+P3uDLujxw5kkEKBfw1w9cmmf21YotABR90GFFJlixZsDeFiCzipZdeklu3bumIrdUhhQppUsZt48aNOjqByS9RD+Ivly5d0qt4qC90hfvnzp3z+D1Y7s369+7d05oVpItFdGVv8ODBevXPuGFEx1uvv/66zJo1S7umucIVSCzH40TBeM3wtUlmfq1YYmZ6nCgcPnxYZ5937fTlGqjgpIKIyFeKFi3qPL6gcNvKUBfirlixYlq38uWXX4bsSTZSPRs1aqRpDN9++22E6/Xq1UvrZAwYUYlusFK/fv3AzehMIS9Qrxm+Nsmsr5WQDlTQbrhp06ayZMmSMEP806dPdxZ4Yv6UnTt36ocREZGv4BiTI0cODVSaNWtmyx2LkWrUd/hLmjRp9MMPHcZc4X6GDBk8fg+WR2V9I0hBXcrKlSsjzZNOkCCB3nwBf0+lSpV88rPIHgL1muFrk8z4Wgnp1C8EKcuXLw+zDPcxhG/Yv3+/3L17lyMqRORzGKlFoGJ17vUZqOk4cOCA9OnTx+Motq/Ejx9f9/GKFSucy1AThPulS5f2+D1Y7ro+YA4Y1/WNIOWff/7Rz4xnnnnGb38DERHZcEQF6V6uIykG5DNjOT6A8AFqnESg4wsRka/TvwYNGqQnz1ZufY4ic/fiSaRLIf1pxowZfv3dSLlq2bKlppqhMxeKNdHVq3Xr1vo45kBBvjTqSACTUVasWFFbJ7/yyiu6fVu2bJHx48c7g5QGDRporQ06g+Ezw6hfQRtmBEdERGQOIRuooCYlMv/++68zUEHBZ1RaSBIReQNX+2/evKkXRpAGZVWrVq0Kcx9BWdq0abUuMG5c/36MoN3wxYsX5ZNPPtGAAhedFi9e7CyYR+tk1yCxTJky8vPPP+toT+/evfVzYO7cuVKgQAF9HK01MQeMpwtY+DuZlkVEZB4hO4+KMTdKZI/jA6ps2bKSPXt2/eAiehrOo0LeuHz5stZRTJs2TVNRyR68nUeFiIiidwwN2REVjJKgcB75xRi6dy3wQQ99BClYvmPHjpDtSENE5obaBswxgpFbKwcqxghEVPhzhnciIrKXkA1UAN29UDjvWquCIAXLAcWed+7cYSE9EfmNHQrqX331Va1RcR+Ad1+G+64XjoiIiGIidqi3B0WuMtK8Fi5cqF9x32hNbJw8FClSJMhbSkRWDlRQmG3lGeqXLl2q9RyLFi2Sa9eu6Q3/RzMBXCjC344bgxQiIvKlkB5RMSDNK6KJHrEceXBERP4sqEcDD6SkWlGXLl10Jvpy5co5lyH1NnHixNKuXTttA09ERORrIT2ighEUXNVDxx1POCM9EQUiUDGON1aFLotoUewOF4GOHTsWlG0iIiLrix2qM9LXrFlTu37Vrl1br2Li/tWrV53rIG8ahfRITSAi8mdBPToLbt++3bI7uXjx4jqfieuM7/h/jx49dG4TIiIif4ht1Rnp0TYUk4LlzJkzCFtIRHaSI0cOnc/DqiZNmiRnz56VbNmy6dwpuOH/mJNk4sSJwd48IiKyqLhWnZEeH6qQMWPGIGwlEdkJjjOnTp0Sq0JgsmvXLlm2bJl2U4S8efNql0X3GeuJiIhsG6hEdUZ6BipEFMhAZfPmzZbe4QhIqlevrjciIqJACLnUr6elcuHKHxiBSoYMGQKyXURk70DlzJkzwd4MIiIiS4kdqjPSYwZ6V7iP5UabYpw0pE6dWhImTBikLSUiu8iUKZPWxKFNMREREdk0UAHMPI/caFeuM9IbIyqsTyGiQDCONcZILhEREdmwRsV1RnoUzqMmBele7hM+MlAhokAHKhjJteqkj0RERIEWkoHK02akNwIVtAwlIvI3K46o3LhxI8rrJk+e3K/bQkRE9hTSgUpkcGWzXLlywd4MIrKBZMmSSZIkSSwVqGAm+qi2HkZ7eCIiIl+zZKCCWemZ+kVEgYITeoyqWClQWbVqlfP/x44dk549e0qrVq2kdOnSumzDhg0yZcoUGTx4cBC3koiIrMySgcr169fl3r17LKYnooCxWoviihUrOv//2WefyYgRI6RJkybOZfXq1ZOCBQvK+PHjpWXLlkHaSvvCKNaaNWucF+XKly8frhsmWUtMn3O+ZuznsQWOEyHZ9etpONkjEQWa1UZUXGH0pFixYuGWY9mmTZuCsk12NmfOHHn22WelcuXK0rRpU/2K+1hO1hTT55yvGfuZY5HjRMgGKocOHZJFixZp5y93xskC5jYgIgoEHG+sGqhkzZpVvv/++3DLJ0yYoI9R4OAko0GDBnLq1Kkwy0+fPq3LQ+0khPz/nPM1Yz9zLHScCLlA5cqVK1KzZk3JkyeP1K5dW1uB4v7Vq1ed65w7d06/clZ6IgoUK4+ofPXVVzJmzBhN9XrnnXf0VqhQIV2GxyhwaRydO3fWOkx3xrIuXbqwuYGFxPQ552vGfh5b7DgRcoEKhq+WL18eZhnuu+ZO3717V78mTpw44NtHRPaE4w1q46wIF4Uwil23bl29WIQb/o9leIwCA7nm7ldI3U9CTp48qeuRNcT0Oedrxn7WWOw4EeVAZdy4cdqC89GjR85lt27dknjx4kmlSpXCrLt69WrtgnP48GGfbiw+FJcsWRIuCsR9LDfSwLCNKBaKamtNIqKYihs3bpjjY7ChQxeOge43jEBHB1K8Bg0apCkDuH3++edM+wqwqI7YWXVkz45i+pzzNWM/Zy12nIhyoIIiHAQmW7ZscS5DNIb0qo0bN4a5koi2ltmyZZOcOXP6dGOfFvhglnp4+PChnjQQEQUKjjm4aOJpuD1YEJTgw8j1Nn369Gj9LBzv33rrLSlTpozmOcPUqVNl7dq1Pt5qetrEor5aj6z/nPM1Yz8ZLXaciHKggpoQ/FEYLTHg//Xr15fnnntO/v777zDLEdj42tMCn+eff16/4qomAxUiCiTjmGOmvN8ECRLoxSTXW6pUqbz+ObNnz5YaNWpIokSJZNu2bXL//n1nK3iMslBgoLVolixZIswWwHKMfGE9soaYPud8zdhPeYsdJ7yqUUHw4ToJGP6PtC/02zeWoz4EIyz+CFRQOI8PS/ce0LiP5bly5XIGKkhJIyIKFOOYY6b0L18ZOHCgpv+i85frsbVs2bIauFBg4LNu1KhR+n/3kxDj/siRI0NungTy33PO14z9xLHYccLrQGXdunX6QXzz5k3Zvn27BikVKlRwjrSg3z6utvkjUAGkLVSrVi3MMtx3TWfgiApFF17XRDEZUTFToDJ//nxJmjRpmFt0RkAOHjyox3l3KVKkkGvXrvloaykqXn/9dZk1a5Zkzpw5zHJcQcVyPE7WEtPnnK8Z+3ndQscJrwo5MHpy+/Zt2bx5s7YDxghH2rRpNVhp3bq11qkgYMmRI4fWqEQHPuQjy/HGB+0ff/yh9SpHjhzR32WkhKE2BRAoIVI07hM9DV5z//nPf/SKMU7kjNQWIm/duXNHU65iAsev2LFj3pQRF4y+/fbbMMtSp07t9c9ByhhqADFZmCvUp+AYTIGFkwykXYf6jNMUuOecrxn7ed0ixwmvAhXUgCAaQ5oXAhUEKMZEZ8h3W79+vT5WpUqVaG8Q0gi86USAK324uUL3LwRNCxcujPZ2kP2gUQROMnHy5X5CRvQ0W7du1a8rVqyIcWt0FKzjIlBMJUmSxFm7FxNt27bVvvyTJk3S1IEzZ87o6Hn37t2lb9++Mf755D2cbLh33CRri+lzzteM/cSxwHEibnSu0GHUBIFKjx49nMuRFoCZ4jdt2iTvv/9+tDeoaNGiMe6as2/fPt0W9veniCCFcfTo0Zp3bxQXIzhBb3GM6lWtWjXGV8XJXm7cuKFfcdyJaaBititePXv2lCdPnuj7AsE8jvd4fyBQ6dixY7A3j4iILCpagUqHDh00rcoYUQH8/4MPPpAHDx7EqD7FF9268AHKgnqKCAJhXB3etWuXvPTSS/Lxxx/r8hdffFHy5cunI3F4DbEhA0UHOmOZ5bWDFMZz586FO8amSZPGq5+DURS8T3BxCilgaFWP9wpScYmIiPzF6yRoBCHo7IV0gvTp04cJVFCIbLQxDiZ8ELM+hQwInn/55Rdn21icdPXp00fatWsnjRo14o4inzCOOWZqjb548WI9HrveypUr5/XP+fHHH2X//v0SP358DVBKlCihQQpSbPEYERGRKQIVpMfgijQ+tFxlz55dlx84cEACAbPUI73LmI3eFa5mmqnzDgUPXpM4qXrzzTdl3rx5zuUNGzaU7777ztnSmiimcMxBEOyLInhfmDx5sr7+3W/ROUZjlnu8jzCfiivMo4JGKkRERP5gnkt/UXTlyhVp2rSpLFmyxLkMc6igPbFRa4Armq6BysqVK+XUqVOaQ45RH+Or8X80AkC9AlkDntdkyZLp/3HiWLduXTl//rxe/SXyF6u3Re/fv780b95cdu/eLZ9++mmwN4eIiGwg5D5VEaQsX748zDLcb9KkiaY5AE4WcOXQOHFAmg861ESkQIECft9u8j885127dtUWw5h01Hhe0XYY+fUJEybk00B+Tf2ycqDy1ltvaTey1157Tfbs2SNTp04N9iYREZHFmSNHwYt0L4ykGLUGBtzHciMNzJgn4PLly/rVuLr+tG49FNoweoKRM3QlQk2KAc8/gxTyt0uXLkVrjpJQYMxmXKpUKb0IgIJ6BC3Hjh0L9qYREZGFhVSggkkeI4MPTzCK+Y35WN577z35+uuvteizTp06+gH7yiuv6FXB06dPy969ewOw9eTr0ZO//vpLGjRoEGZmbKSnYITts88+4w6ngDIm1LIi15bxmMwXc2ahXvHll18O6nYREZG1hVSegjEDfUSMic1cA5XChQtrqoIBOdZkDe3bt9cgs1ixYjrPA+TPn19vRIGG4w0mv7Wifv36hWlFjHlifvvtN12OCwZERERi9xGV3Llza+G8+2RouI/lRgenDBky6FdvZrin0GgxjEnnXFsMv/vuuzqqQhRsVh5RQUDiaRJLjGCuWrUqKNtERETWF1IjKoDuXiicd+36Va1aNV3u2p44bdq0cubMmSBtJfkSghNMzIhUPUzE+Oqrr+pytBzGjcgMcLyxUqDy+++/S61atfR4iv9HxOisR0TBu5D3zTffaHo8Mk+QbYA5j4isIOQCFbQgRncvFM6jJgXpXp7mwsAJA0dUrNFiGPNS4EQIzREw2SiR2aDD4IULFywVqOCCAGa1T5cunfPiQESBinuDE19DjeGXX36p2/Piiy/KmDFjdF6XiMycOVP69u2rxf74fBg6dKjUrl07TM0NRonQIRA1bmXLlpVvv/2W8ypRyEFXyxEjRoR5D3bv3l0+/PBD+eKLL4K6bUS2S/1yhQ8fXO2LaMK+iAKVLVu26EkvrtCPGzcuAFtK3o6edOrUSdP3XCcV7dWrlxw9elRH04jMBkEKTn6tVKOC9yKCFOP/Ed38HaQg5RMnXQgstm3bpoEKUn2xzz1BoT+OE23atJHt27drkIUbRmQNOIHD3Fn4DEAXsyRJkujP5FxLFGpBCgJ4T51QsRyPE4W6WA7Xdi4WgtmSMQOz+/wpa9eulfLly+v/O3fuLCNHjgzSFlJE0Pxg7ty5emIS6InlMBfGwoUL9eorUl6IomLr1q3a1AEXQnARxErwnqhZs6ae1Ed0YcifSpYsKcWLF5exY8fqfQRHmKS3Y8eOziYarho3biy3b9+W+fPnO5ehrTIaq+BvMALKbt266ZVnuH79uqRPn14mT54cpXRStLRPkSKFXLx4UZInTx7ucYwCu86pg9ScyEakXI813qyL5yaij3B/rQuuaUXerIuRR6POMKbrYnuNttn+Whcn/JEF4t6si9cDXhe+WhevE6S446vx9+B7XGt48X+8Ro396vpz8T2uE2O7w/caP8sM6+I1hteaL9Z1fX/6a92nvZftfoy4ceOGvn5x7PV0DA3p1K+owgcRZqR3hw84wAuEaUTmaDGMNI5JkyY5X6xoLYyTkMqVKwd5C4mixqiHs1LqlwEfTrt27QrK78YHMoJAjKi6fsCjLjGiSXyxHCMwrjBagosfgJFZpJDhZxgQdCAgwvd6ClTu37+vN/e5t4YPH+5xjiYEdJic2DBs2LAIT3CyZ88urVq1ct4fNWqUzgUV0eda27Ztw6TE4YPeE5wEoFbBgDQ3nLR6gr+/S5cuzvsI2CKq8URThR49ejjvT5s2TY4fPx7ha6d3797O+7/++qtzvjNPcHHKgK5y+/bti3BdvCaMkyEEpTt37oxwXQSkGDUD1LfigkJEcAEzZcqU+v8VK1ZEOln0+++/7xx1XLNmjfz5558RrvvOO+9I5syZ9f9///13uImrXbVs2VLbfwNe/4sWLfK4HgJ17H9jnxYqVChcmiZeowY0njG6YiJjYdasWRFuQ/369TW4B6TZu9YBu0N2i5GKeeLECZkyZUqE6+J9h1RLQNbLhAkTIly3YsWKUqlSJf0/XrtIz4xI6dKlpXr16vp/vCfwPooILiphigrAew3vz4hgBNfYp3gPDx48OMJ18+XLJw0bNnTej2xdux8j7t27J5ZP/XoanDDgw8g9isuSJYtOCoid9N133wVt++i/gQoO9LNnzw7zXBQsWFCqVKnivFJFZHb4wMUJtHHSYsVZ6SdOnBiUSTRxNRmjHa5wH8d3T7A8svWNr978TJxw4IPauBkXvIiIyL8sm/qFk19cPcAH3TPPPBPszaH/XR3FVTJccTCGn3/++We9EoUrXk+bJycQmPpF0YE2vUgrsmoDD4xwYsJcXAVEaptxddqAYl5/wBU7XIVG3QmumBqQe4+r16gvcYer7Lii61rPho5IeI7Onz+vPwtXdN27tDVq1EgvjqAmJiojKghWmPrF1K9gpX7hSvlHH32kj0WU+gVoJNGhQ4dwP9cM6VxM/WLq13U7p365TvrIQCX4cEAqUqSIDuVjWNBoZ4qhT9fhT6JQZOU5VACF6EWLFtX/Hzp0KGC/N02aNHpSgwDDFe4b82W5w/LI1je+Ypnrc4b7RqqLO7RFx81TUBSVNrDetIr1Zl1v6ujMsK5rTn4orOt6Um22dRF8IL3Gtd7GaHDh+r1Yz9NrCgFLVF9rZlgXAWEorQtmWDeeCd73ntb15m+wbOqX0X2Hc6kEt8WwwWgxjBODiHIriUKV1eZQcYdJHSO7+Qs+zDCCg1oBA07EcN91hMUVlruuD8uWLXOu/9xzz2mw4roORkgwOhPRzyQyG7w33Gux3OFxzqdCoc6ygYpx1ez06dPhHkONCoq3MWy6evXqIGydteFE4oMPPtDn4ODBg87lH3/8sRayoisPkZVYPVB5++23w1x4MKC7Fh7zJ5xsocgT6VwoAEZdG34vOjtCixYtwhTboxgac22hiBidH9E5EMXTOCYZV0VRFDpw4ECdyHL37t36M3BxK7L5YojMBm22MariPuKC+1jOeVTICiwbqKATS44cOfRDyN2OHTu0xz7exLjSRr6F0ZOTJ0/qyAm6vBgwgaOn9AmiUIZ8bKQ0ouOLVSFI8NQlEctQu+JPuLCBjjiffPKJpmbh+I1AxCiGR5ch19qgMmXKaO3b+PHjtWMPOhuh41eBAgXC1Lig7qZdu3ba+vjWrVv6Mz118CIyM5zH4LP2q6++0mAcX3GfQQpZhWWL6Y3iSEwK5j5qcuTIEWfhNlrwGW0ryXt4+WD/Yo4DtKszZpNHO9MrV65oe8FQ6t7FYnqKTv0GOtXhfYDXu5UgJQrv8VSpUmkLVLSzNKCI948//tAWqXZLsTXmUYlKISjZE94faBRj1K9h/rao1qWYjZX+Fgq9Y6hli+kBxZ+DBg3SVCSj0wWgPzm61KCfOE4wKOYthpHihSuZmETN6OdOZAeY5wDQLMJqMJ8ELjTgljt37nCPYzm6aRHR/5szZ46mICLN3HVqBMx/8frrr4fUrrLS30KhydKBCoowkVeNyYpcP2QRtHTt2jWo2xaq0KITI1BGK0/syz59+uikWJhRnsiOgQqOL1a8so5CeVyMwLxGaPmeOnVq52Mo0sVEZEbjEiL674k9pkZwT1ZBvSyWIxUxVE7wrfS3UOiydOrX5cuXtb0l8pVde+pT9Id/MQqF0ZMFCxZI7dq1LbcrmfpF3sKcHNmyZYt05uZQh1mF8TeGUhqnPzH1iyL6jETGhuvogyu8fzAagaYyZk+dstLfQqF9DLVsMT1g/hS80YzUDPKea6cfHIzQYhgTsKHrDpHd4cMcxd0YvbUyjJysXbtWZ6hHiqfRTXHq1Km6nIhE6zgiOrEHXBdGoxmsZ3ZW+lsotFk6UAGcQEQUqCCiW7lypbaopPAnYO3bt9cWwyiiNfTt21ebEWB2eSK7Q/tbdNixeqCCtK8aNWpIokSJZNu2bc5Z2nE1DHWARPTfiV99uV4wWelvodBmi0AFH6yus7UaLUVxEl61atWnTppkRxg9QdtPnITNnDnTuRxDdJxAiui/jIsgxqztVoU5R8aNG6fzmbjOMoy0NxxfiUiiPJdSKMy5ZKW/hUKbLQIVjJwcPnw4zPK4ceM6u/TgMbQxtisM4WJkCcVxmE/A8Pnnn2vLVdfJ1IgobKDy/PPPa66tlaEurUKFCuGW4+++du1aULaJyGzQthd1GxHVcmF51qxZdT2zs9LfQqHNMoHKoUOHZNGiRWHSlFyvdHpK/0LnKrTWRZ41UhrsCqNN7733nqZ3TJgwwbkck6WF2jwoRIGE44rV074Ao8/onugO9SmYWJeI/puJgLa94P65adwfOXJkSBSfW+lvodAWO9SDEUwqWLNmTcmTJ492oUKbUNy/evWqPo6uX+hW4ylQQW/wb775RgtEjYkK7QD55Zgx3mj4hgMNWgx36NBBJ8AkoqjVcW3fvt0WgUrbtm31eLlx40Y9ScEEj9OmTZPu3bvrxR4i+i+060XbXjSdcYXRiVBr52ulv4VCV0i0J0Yw0rRpU1myZIlzGQo70Q4UbYeXL1+uJw0GnHhXq1ZNFi9erPfxZkJ6AtKb7A77KV++fBr0Yf9gP9L/Y3tiiqp9+/Zpu+4VK1boPCNWho8JFM0PHjxY69YgQYIEGqgMGDBA7IbticlOs7lb6W8hc7DczPQIUhCMuML9evXqeWyNiTcVghqMvOTKlUuveH755Zf6YWvHNCa0GDZGjHBweeWVV/Rkgy2GiaLPLoX0gOPmxx9/LD169NAUMNSy4YJH0qRJg71pRKaEz9pKlSqJFVjpb6HQY/rUL7TCRdDhOmICuP+0/v1GTnWxYsU0atu/f3+ENRpI4cAog5VgH6H2BPnlrs0EPv30U73PYVui6Pv777+1kD5lypS22Y3o+IcApUSJEgxSiIjI70wfqCDAiC6cRACGKVEsj9nU3SFAwYk8rop+9dVXYiW4CoIZpdlimMi3MDo7f/58rYezg3v37umoNOoAceEHx0vXGxERkT+YPvXrueeei/TxcuXKyYYNGzzWqCDtCxInTqz3//jjD01dcIV1jPaaqNkI1fQwo8UwmgP8+OOPkiRJEl2OvPLevXvrfiIi39i9e7fOM1S3bl1b7NI2bdrI0qVLtYU5RlNC8RhJREShx/SBCtIqUPAdUcG8UVDvWmiPtrqYoMwV6lneffdduXTpknYCMyDHGlcJcaJfq1YtTQMLxSIxbHe7du00VQ4thTt16qTLjbliiMh3fv/9d637wnvNDjB6tHDhQp3gkYiIKFBMn/oFM2bM0KDElRGkpEqVSkdCNm3a5ExBwEzJxYsXD9OmGAXkOJnHh627uXPnyrx587SeI1SCFKRieGox/MEHH2hQRkT+DVRwAQWdr+wA7Unt1MKdiIjMISTaExvQxQsF8qg9MdK6DAhKntamuGTJkjqnysyZMyWUPXr0SPLmzav7AukYL7/8crA3yTLYnpieBi06M2XKpCmWzZs3t8UOw/xVo0ePlnHjxkn27NnF7tiemIgoMMfQkBhRMSA4QXqWe5CCbl0RdQYz2hQDRhoQtGDCw1BsMWyIGzeupqtlzZpV24QSUWDToGLHjq3vQbtAAT1GcTELPUZWUqdOHeZGRERkyxqVqHBtvesJRh4Q3KDwFelRf/75p1SvXj3Cn4WTf9S5mGX0BDPGYxZoFPAazQUwydqwYcMkXrx4wd5EIltBUw7UajzzzDNiF6gDPH36tDbnSJ8+PYvpiYgoICwRqOTMmTNKbYoLFiyoaQvIL3cPVC5cuKDpY2hXjMdci/ODCaMnR48e1ckZZ82a5exa9rShMiLyPbT6XrZsme1mY1+/fr12VzTLBRwiIrKHkEr9ikju3Lm1sNW9EB73sdxIFUNLTaR/4Yqoe2lO2rRpnYX3K1askIsXL0qgYZtQZ4MWoDghMgwZMkTWrFkTrrUyEQUWjg1IgbJbw4oXXnhB7t69G+zNICIim7FEoALoABZRZzBXSP/C/Ae7du0KsxxBTKNGjeSll16SwYMH60hGoKGmBi2GZ8+eLT/88INzObqZcR4UouDDaCwujOBmJ7hY0q1bN1m9erVcvnxZCyFdb0RERGL3rl8x7QwGDx480HlUMDrRt2/fcPUggQxQcGUWbZERIBkTqE2cOFGDqA8//JDddYKAXb8oImhvjm5f6PSFWdrtBM0DwH2iR2OCXPdGJlbHrl9ERIE5hlqiRsUVghNPAYohfvz4WouC9C/3QCWQQQpOiPPly6f1Jwicqlat6pwBmojMZ8uWLXL+/HnbzEbvatWqVcHeBCIisiHLBSrubYvRxct9dAX55bgqii42mMgskC2GjUnT0K0Lk1BiRIUthonMD+9VtOItU6aM2E3FihWDvQlERGRDlqlRcXXlyhUdNcmTJ4/OdYB8ctdZ6uvUqSMJEyaUqVOnRvgzkIf93Xff+SSlAaMnbdu2lYwZM8rx48edywcOHKiBVP369WP8O4jIf3AcwPHi9ddfD0r9mhkgVXXTpk06jwxqdVxvRERE/mDJT9ymTZtq9yxXuI+5ADDhY8qUKaVhw4YyYcIE+c9//uPMvzYMHz5cevfurfUsmFQxphO7YfTEaDGMQnnUnwDy84jI/JYuXSonT57UCw52hONmixYt5NKlS+Ees2ONChERBYblRlSiOks9TjgwmoEuNu6QKoYgBTCq4g0Ul+L3oMWwazvPoUOHytq1a51BChGFju+//14KFSokxYsXFzvq2LGjXtw5e/asNhVwvTFIISIif7FcoBKVWeoB7X4xNwBOQNyhdgQnJV27dtUAwxvoHGa0GJ4yZYpzOdoeYzZrIgotODlH8w1c3HDvemUXaCKAiyyYlZ6IiChQLJf6FdVZ6nHCgROPXr16aToDOm8ZkIO+Y8eOKJ2UYNQEOdpGi2GkefXp00f27t0b45QxIgq+yZMn6zGhWbNmYlcYIcbo89OOr0RERL5kuXlUAIXzqElxTUnALPWYABK51gYEKOj6hQkeo5OShSJ5dBNDgTzad1aqVMlnfwMFB+dRIVdIbcJ7HKOhP/74o213zp07dzT1K23atFKwYEG9IOOqU6dOYiecR4WIKPpsPY8KYDZ6FM6jViSyWeoxioIuPqhD6dKlS7ii+qi0GMaoyYIFC3Q5EVkLLngcOXJER1XsDMdONBRAt0SMrLiONuP/dgtUiIgoMCw5ohLVWeph3bp1Wq+ycOFCqVWrVrjHMSqD+RNmzZoliRIlkl9++UX279+v3cAA0WDixInDXWGk0MQRFXKvV8N8S9u3b7dtfQpkyJBBg5GePXtG6YKO1XFEhYgoMMdQS3/iIDhB8BHZTPWYvA2F7qNGjfL4eMuWLeWNN97QK4qYQwAthn/77Tfn49jRDFKIrAcdBHEBo3PnzrYOUgBdEBs3bswghYiIAsrSgUpU4AQEJyJIEztw4EC4x998803n/5977jkdgWGaA5H1jRkzRmsykEZqd7hgg9FkIiKiQLJkjYq30LGrR48eMnr0aPnmm2/CPIYalLffflsLSWvUqGH7K6tEdoDhaNSloHYNdRl2hxTYL774Qi/ooHW7+yjyiBEjgrZtRERkXXHtmM6BuVZc61YSJEgg77//vn4Qf/7555IqVSrn+sjHnjhxYhC3mIgCbdKkSXLv3j09LpDI7t27pUiRIror9uzZE2aX2D0tjoiI/Mc2gcqVK1ekadOmYTqBYYQEtScITN577z0ZNGiQTJgwQUdXiMieMGnr2LFjtSYjU6ZMwd4cU0D7dSIiokCzTY0KghS0GnWF+0b+OWZcRh42RlXQjSAyp06dEgs3SyOyNaR8oSVx9+7dg70ppvHDDz/o5LZERESBFNvKKV6LFi3SFsX4P0ZSXCeABNzHcqwDn3zyidy6dUuGDx/u8WeiTSlGXlBU7zoyQ0TWgJPxTz/9VJtoFC5cONibYxpoS4yLOW3atJH169cHdCS8WbNm2r4yZcqU+vtxjI4MUvY6dOggzzzzjCRNmlS7Np4/f975+M6dO/UCFVrMo+V83rx5I+z6SEREwWW5QAUfbJiZPk+ePFoInzt37qd27cFcK5AlSxbp2LGjBiquH2wGfEBjckikhvTq1UtnrSYia3X6wnt/wIABwd4UU8FFmilTpsilS5ekUqVK8sILL8jQoUPl3Llzfv29CFL27t0ry5Ytk/nz58tff/0l7dq1i/R7unbtKn/88YfMnDlT/vzzTzlz5oxO7GvYunWrpEuXTn766Sf92R9//LEez5HuR0REJuOwmBo1ajjixImDvCznzf2+++3QoUPO7798+bIjZcqUjg8++CDcz378+LGjaNGijqRJkzr69+/vuH//foD/OvK3Bw8eOObOnatfyV6uXLmi7/327dsHe1NM7dy5c45hw4Y5ChYs6IgXL56jbt26+p7B8dGX9u3bp8fnzZs3O5ctWrTIEStWLMfp06c9fs+1a9d0m2bOnOlctn//fv05GzZsiPB34TmvXLlylLft+vXr+jPxlYiIvOPNMdRSIyqRpXiB+4zKceLE0YJ61wkhU6dOLR999JGOnCBP3RW+/8cff9SuYUgTix8/vl//HiIKHIwQYGLDvn37crdHAilg5cqVk9KlS+sxER3BUN+XM2dOWb16tc/23YYNGzTdq1ixYs5l1apV09+5ceNGj9+D0ZKHDx/qegaM/mTLlk1/XmTtqHHsj8j9+/e1dtH1RkRE/mepQAUBRGTcc87xYYYUD6OWxYAJHTHRm6cTlvz582vaABFZK7UJdQoffvihZMiQIdibY0pIiRs2bJgeA5H+hZN1pGMdPXpU9x/mo0LA4itIK3M/1saNG1cDiohSzrAcF5AQ4LgHVxF9D1J6MZllZCllgwcPlhQpUjhvqG8hIiL/s1SggonIIjNjxgwddVm4cKFs2rRJl5UoUcJZy4LalqtXr0rixImlX79+8vPPP8uOHTsCtPVEFCyfffaZJEmShK3JI1C3bl09OUdHtLZt22pggtbuxsgF9l23bt3k5MmTUSrMx9wrkd0OHDgggYA5YerXr6/H++rVq0e4HmpYMOpi3KLydxIRUcxZah6VzJkzayoX2g67pn8hxQsfqEaKF74iKImoXfHixYt1NnoU1ffu3VsDG0/wOzAZJD7sMKs9EYWegwcP6vv4yy+/1O5SFB5GNlCYjnSviGAUGqMrT4OAplWrVpGukyNHDh3ZunDhQpjlaGSChikRjXphOdL3rl27FmZUBaNB7t+zb98+qVq1qo6k9OnTJ9LtwaTAuBERUYA5LObGjRtaUO9aLI/7KJQ1HDx4MErF9SjIxP3Vq1d7/F3Vq1d3fk9E61BoYTG9/TRo0MCRLVs2x927d4O9KeShmH7Lli3OZUuWLIlSMf2sWbOcyw4cOBCumH7Pnj2OdOnSOXr06BGtfc5ieiKi6LNtMT0kS5ZMR0SMFC98xX3MPh/VWpbt27frV/TfRyEnius9TfDo2vJy5cqVPv07iMj/Nm/eLLNmzZL+/ftLwoQJucvdoAAddSiu0FAEc0lhlAWjESg09wfMb4KRb6SaIVV33bp18sEHH+gcN5kyZdJ1kIKGYnkjlRf1I5hrBbVGq1at0uL61q1b60hQqVKldB2MgFeuXFlTvbAealdwu3jxIp9/IiKzcdjQ00ZUypUr51x3+fLlumzOnDnhfg7acbZo0YKjKRbCERX7ePLkiaNKlSqO/PnzOx49ehTszTGlmjVrOoYMGeK8v2vXLkfcuHEd77zzjmP48OGODBkyOPr16+e334928U2aNNGW8MmTJ3e0bt3acfPmTefjR48e1ePzqlWrnMswMoZ2w6lSpXIkTpzY8dprrznOnj3rfBzb6+m4nz179ihvF0dUiIiiz5tjaCz8IzZUvnx5Wbt2bYSPYyTGqGnBlTcUT6INJ7rOkHWhtSlG4tBgIV68eMHeHPKjpUuXak3bvHnzpF69etzXHmTMmFEnTzRaBGNyRNSqGMdOTKqIQnTUe9gJOp5h9AaF9axrIiLy3zHUcqlfUYUZ6CODD2PDkCFDtOB25MiRAdgyIvK3u3fvahtyzAeCjlbkGbogorWv63GxVq1azvvFixdnBywiIvIb2wYq7nOquENetNGuuGjRotK1a1ftDPO0tpnIi546daqPt5aIfAkTth47dkzGjx+v7XDJMwQpRicvdNPatm2bs9YDbt68yZFHIiLyG9sGKpg3BWkfaF0cEaNdMQwcOFCyZ8+uhZmurY8NyKDDKE2VKlXk3XffDTOBJBGZq0AcrccxdwoKtiliSIHEvCdr1qzRuUQwxxTSZg27du3SGemJiIj8wbaBCrhOWOYJApIlS5Zo0JEoUSL54YcfZOPGjTJixIhw6+KqrFHug7SSb7/91q/bTkTew3sTc3hgolfM50GRGzBggNblVaxYUb7//nu9YeZ3w6RJkyKdKJGIiCgmbFtM72rChAma6hURFFcbedndu3eXsWPHagtj96uxt2/fljJlysg777wjHTp0kNixbR0HhiQW01ub8f7dsWOHtrWlqEHBY9KkScONQGPyRSx3DV7sgMX0RESBOYayhZWIVKhQIdKd9Pzzz4e5woh5BXBVFn39XbuAJUmSRHO4I0snI6LgWL9+vY6GDh06lEGKl/CB4knq1Kl98dQQERF5xEv+kdSr4D6WG22KwUgB27Jli+a5u2OQQmTOlC/Ul5UsWVIn+SMiIiLzY6ASSb0K7mO5O8xyjJMddA562vwB//77r/Tu3dvjzPZEFBjo2Hf8+HG9yMCLCURERKGBqV//kypVKlm8eLEWziO4QLqX60iKO3QMwkRoSAFDSomniSDnzJmjj6OFZ7p06aRLly7+eyaJyCOkaH711VfyxRdfMOWLiIgohHBExQ2CExTORxakGClgkydPlq1bt8qwYcM8roOZzRGkAK7kolCbiALnzp07mvKFuT8wFxIRERGFDgYqMYCTH7Q47devn+zduzfc45jx+qOPPtK5WHBVF4ELEQU25evkyZNM+SIiIgpBbE8cQ/fu3ZMiRYpoi861a9dKggQJwjz+5MkTnWOFs1+HBrYnto4///xTKleuLF9++SXnTCGfYntiIqLAHEM5ohJDCRMmlB9//FFnaG7fvn24onnMpeIepCB4wXq4DRo0iJNDEvnYiRMnpGHDhjpRIWvDiIiIQhOL6X2gePHiMn78eC2cf/HFF6VTp04Rrnvr1i1p3ry5po2haB+TTSKYyZYtm7zyyiu+2BwiW8PEq/Xr19d5jWbOnMkuX0RERCGKgYqPtGzZUnbv3q0Fu5ix/uWXX/aYJla+fHmdFXvu3LlhRlgOHTrEQIUohjBKiQsG6N63YcMGSZMmDfcpERFRiGLqVzQhsFi0aJGeEBkw43X16tWlcePGYZa7polVqVIlzLL48ePLjBkz2JGIyAcGDhwos2bNkp9++kkKFizIfUpERBTCGKh46cqVK1KzZk3JkyeP1K5dW2e1x/2rV69qigkmiEybNq2mnqBIyBVGUlwnkEydOrWsWLFCAxsiipnffvtNJ2EdMGCAvPrqq9ydREREIY6BipeaNm0qy5cvD7MM99GCGFKmTCm///67nDlzRpo1ayaPHz92BilI+zp79qzez5Ejh04UWa5cOd88k0Q2hmYWqP1CAf3HH38c7M0hIiIiH2Cg4mW615IlS5zBhwH3sdxI98Joyy+//KKpYcZJU758+aRkyZL6fxTS//3337oeEcXMxYsXpV69ejq6iYlV2QqciIjIGhioeOHw4cORPo4uXoYaNWro/A2oW5k2bZrWosyePVu6d+8uK1eu1PQwIoqZBw8eSIMGDeTu3bvaoAKdvoiIiMga2PXLCzlz5oz08eeffz7MfXQAQ0pKmzZt9Gov2hgjeCEi3+jcubN291q1apW2+CYiIiLr4IiKFxBsYKQERfOucB/L0RrVtRMYUlDGjRunM9ejuBd1K0TkG99++62+v3ArW7YsdysREZHFMFDxErp2VatWLcwyzH798OFDj53A0JJ4zpw5GrSgE9jNmzd9+fwR2RJqwjCxKkZU3n777WBvDhEREfkBAxUvpUqVShYvXqyF9QsXLtSv8eLFkz///DPCTmAZM2aUP/74Q0daMPs8Zs4mouhBmhdGKGvVqiXDhg3jbiQiIrIoBirRlCtXLj1RQrpXVDqBIf0LaWHbt2/XkRUU/xKRd9atWyd16tSRChUqyK+//ipx47LMjoiIyKoYqASwE1jp0qVlwYIFOn8KOhXdv38/pr+eyDY2bdqkFwdKlCihkzsirZKIiIisi4FKNCDdyyia97YTGK4EY0JIzEj/5ptvam0LEUUOE6aiYUXBggU1jTJx4sTcZURERBbHQMULV65c0SJ516J5FPRWqVIlwk5gSBFzh2J8zKmC0ZW33nqLwQpRJNDiG+8ZBP2oC0uaNCn3FxERkQ0wUPFC06ZNtUjelXHfvRMY7qNDWERQVI8ce6SwNG7cmGlgRB5s3bpVKleurHOkoOYrRYoU3E9EREQ2wUpUL9K9cKLkDkXzmGkejxs1Kbjy62kkxR06FyFQeeONN+T111/XURbm3RP9FyZyxAhm3rx5tdNeypQpuWuIiIhshCMqUYQ5USKDAMXoBBaVIMV1ZAU592i5WrduXbYuJhLRdt8vv/yyvPjii7Js2TIGKURERDbEQCWKihUrJunSpYty0XxUCvENOCHDMlxBRqDDSSHJzhCY4H1QqlQpfV8kS5Ys2JtEREREQcBAJYpQHL9lyxZJlChRlIvmn1aIb8xeb8xuv3TpUtm5c6dUrVpVzp49G93nlChkoW4LI4uoS8FIY5IkSYK9SURERBQkDFS8kDVrVi3uTZAgQZSL5p9WiG/MXg9lypTRFLDTp09L8eLFZfPmzd5sHlHIevLkifTt21cbS6Bma86cOeEuChAREZG9MFDxEgp7L1++rCkpSONCkW+qVKmiVIj/tNnroWjRohqgZM6cWedc+fnnn73dRKKQglRHNJP4/PPPZciQIfLTTz+FuRhARERE9sRAJRqQjoK0ragWzXszez1kypRJi4kbNmwozZo1k169eoULcois4OjRozqSiM55mAj1o48+klixYgV7s4iIiMgE2J7YjzCSgiDFfTLIqBTio03xlClTpFChQvKf//xH9uzZI9OmTZPkyZP7cYuJAmf16tXSoEED7ej1999/S758+bj7iYiIyIkjKn7gXjiPYvtnnnlGYseO7VUhPq4sd+/eXebPny9//fWXdkFyH30hCkXffvutdrsrXLiwbNq0iUEKERERhcNAxQ88Fc5fu3YtXC1LVAvxEexs3LhRHj16JCVKlJAVK1b4fJuJAuHhw4fy/vvvS/v27fUrar1Sp07NnU9EREThMFDxscgK51GEjxbECxcujHIhvuGFF17QYAXzuWAUZsyYMeJwOHy9+UR+c+nSJR1FmThxoowfP15Gjx4t8eLF4x6nSEenUaeHlFekCLZp00Zu3boV6R67d++edOjQQUexkyZNql3kzp8/73FdHJOzZMmio9e4mERERObCQMXHnlY4j1ERb2evNyCoQZDTqVMnvbVr104ePHgQg60lCoxdu3Zpy+19+/bpiGDbtm256+mpEKTs3btXJwE1UmBx3ItM165ddQ6emTNnalOSM2fOaFc5TxD4oA6QiIjMiYGKj6G9cGSiOoN9ROLGjSsjRoyQSZMmyY8//ijly5eX/fv3x+hnEvkLRv2+++477eyVIkUKbb2N1yzR0+C4hlHnCRMmSMmSJaVcuXI6kjxjxgwNPjy5fv26jtjhGFmlShV56aWX5IcffpD169drwwb3OimMoqAO8Gnu378vN27cCHMjIiL/Y6DiY+nTp5exY8eG6/QV1Rnso6p169Z6dREftEWKFJEvv/ySLYzJVI4fP66pXu+9957Wba1bt06yZ88e7M2iELFhwwZN90K6q2tdH5qSIA3WE0zIizoorOeaNpstWzb9eQaM7H322Wd6sce9yYkngwcP1kDbuGHyXyIi8j8GKn6A/GhcrYtO4bw3cJVxx44d+vsw/wSuOB44cMCnv4MouqMoBQoUcNZsoSYF8w8RRdW5c+ckXbp04UaU0XwBj0X0PfHjx9cAx/0CkvE9GB1p0qSJXtxBABMVmMsKozXG7eTJk3wiiYgCgIGKnyAHH4Wg0Smc90aiRIlk+PDhsmbNGi0MRbvXYcOGcXSFguLEiRM6cohRlDfffFN2794t1atX57NBTj179tTi9chu/rzggqAjb9688tZbb0X5exIkSKAF/a43IiLyP0746EcITFA4Hwhly5bV0ZU+ffroBJFz5szR3GzM5UIUiFEU1BJ069ZNU2MQmCNgIXKH10irVq0i3TE5cuSQDBkyyIULF8I1I8EFIDzmCZajwQhSYl1HVdD1y/ielStXagA9a9Ys52sX0qRJIx9//LH079+fTxoRkUkwUAnxWe9RnG/UvSROnFiLSNHhBjUsGF0ZOHCgdOnSJVzNDJEvR1EwgojW2+iihBE+BCtEnqRNm1ZvT1O6dGkNOFB3gqJ4I8h48uSJpr16gvXQ8hqd5dCWGA4ePKivUfw8mD17tty9e9f5PWjw8Pbbb+uodM6cOW3xpKFdPv7es2fPSsaMGbXBBT8jiPieMiUHhZTLly87atSogUuAzlvRokUdmzdvDrPe7du3HV26dHHEihXLUaZMGcfBgweDts2h5MGDB465c+fqV4rckydPHOPHj3ckS5bMkSVLFseiRYu4y8inatas6ShSpIhj48aNjrVr1zpy5crlaNKkifPxU6dOOfLkyaOPG9577z1HtmzZHCtXrnRs2bLFUbp0ab1FZNWqVXocvXr1apS36/r16/o9+BpqZs+ere9X188Q3MdyIuJ7KhC8OYYyUAkxCFLixIkT5kPGuOGxK1euhFn/r7/+cjz//POOhAkTOoYPH+549OhR0LY9FDBQiZoTJ044A+a3337bce3aNT8/M2TXCzMITJImTepInjy5o3Xr1o6bN286Hz969Ki+BhFsGO7eveto3769I1WqVI7EiRM7XnvtNcfZs2cj/B12ClQQjODilftnB5bhxmCFiO+pQPDmGBoL/wR7VIeinu4VWc0J2myiHSzqA1zduXNHevfurTOB58+fXwYNGiR16tTRolUKC61N0QChdu3anDXdA6TiDB06VEaNGqXdl77//vuA1WERmQXmUUF6IzqAhUphPdK9nn32WTl16pTHx/F5kCVLFjl69CjTwIj4njLNMZRdvyw06z1yt9EK9p9//gmzHLUrI0eO1AnPUDBar149zUnGvBZEUYGcfrRzRZEzghTM/o0ZwxmkEIUG1KREFKQArlmi7TLWIyK+p8yCgUoIiWqh57///utxeYkSJbQYddGiRXL79m2ddwVBy549e3y8pWQV6LKEmb5z586tbV0bN26sAfPnn3/OgnmiEILCeV+uR2R3fE8FBgOVEIKTRbR8fVp3FnQCiwiG92vWrKmddH7++We9Kl6oUCFtF4qZxImMq6u//fabvjbeeecdbX+9f/9+ncgUXYKIKLRE9X3L9zcR31NmwkAlxGB2e8xy7wkCGAQyRrviyKCeBbMz4+RzzJgxOsqCQOjDDz+US5cu+WHLKVT8+eefUqZMGW1zjZz1LVu2yIwZM6L0uiIic0K6L97PEdUmYnnWrFl1PSLie8osGKiE4CSSKJZH7/+iRYuGeQwBDAIZb8SPH186dOig6Tx9+/bVSfuQYob5V27duuXjrScz27lzpzYRqFSpkqZ8LV++XOdGMeawIKLQhQtZqC8D92DFuI9aRs6nQsT3lJkwUAlRxYoV0/QtdAJDlyp8RQCDQCY6kiZNqrPaHzlyRCftGzBggKaQ4YPr5s2bPt9+Mo9du3bJW2+9JUWKFNH6pl9//VU2bdokVatWDfamEZEPYZR01qxZkjlz5jDLMdKC5XiciPieMhO2JyaPUK/y6aefyk8//SSJEiXSmZs7duxo+Zmb7dKeGK1K//jjD73Cunr1aj1RQaCK59nKfzeRXdsTu+LM9ER8T4XKMZSBCkXq9OnT8s0338h3330nV65c0flXOnfuLFWqVLHkPCxWD1QwD8qkSZNk7NixOl8CalHwfL722muW/HuJ/CHUAxUiomDiPCrkM0gRQCta9NfH5H7Hjh3TWpiCBQvqyS5OfMn8tm3bJu+//76OnPTs2VO7eCG9C3PpNGrUiEEKERERmQ5rVChKkP6F2hUUXGMuljx58uikf2hl2aJFC50kDC1tyVxXLMaNG6fF8Lj9/vvv0q1bN03rmzp1qhQvXjzYm0hEREQUIQYq5BWke1WuXFlmz56toyz9+vWT9evXS4UKFSRfvnwyfPhwuXDhAvdqkCBY3LBhgwaVCCLR0Q2jYghSEKD079+f8yQQERFRSGCNCsXYkydPtCAbqWFz5szROg/UPtStW1dnvn/hhRdCpp4lFGtU7t27p6NcKI7HDXVF2bNn14kaW7duHa7DDxHFDGtUiIiij8X0FDSYLBJX73HCjDk47ty5o22OjaClXLlyEjduXNM+Q6ESqGDUasGCBc79fPv2bcmRI4fuY9wqVqyok3oSke8xUCEiij4GKmQKd+/eDXOl/8yZMzrPS61atfRkumbNmto5x0zMGqggpWv//v3OIBDpXVC6dGndlwgE8+bNGzIjV0ShjIEKEVH0MVAhU6aHofMUTrJxsr1jxw4dWcGVf5xoo+3xc889F/QTbTMFKg8ePNCuXMY+O3z4sCROnFhq1Kih+wzbmC5duqBuI5EdMVAhIoo+BipkeidOnJD58+frCfiqVav0pBwn3UaHKuOGdrqBDF6CFajg79+zZ49s3brVecOM8ViOGhMjdQ6NDBImTBiw7SKi8BioEBFFHwMVCik3b97UYGXz5s3Ok3Sjc1jatGnDBS9Zs2b1W/ASiEDl/v37snv3buffipEm3EdQgroSdE8z/lbMd1KkSJGgjzQR0f9joEJEFH0MVCikoR4D9Syuowu4nTt3Th9PkyaNFC1aVE/kCxUqpCMOmTJl0ra7SI0yQ6CCVLfLly/L2bNn9YZZ4I2/AyMn+D1x4sSR/PnzO/8W3F588cUY/w1E5F8MVIiIAnMMNW/7JbItjB4g+MAN6U4G9+Bl8uTJGgS4wgseAYsRuBg39/vJkiWL1ijF48eP5eLFi7otRhCCm/t9BFUIRgyox0FQgmAEbYONIAsTaRIRRedYhIl2cbzBMa18+fJ68YOIQgPfw1HDeVQopF27ds1joOB+/9atW2G+D6Mlxg1BhOsN85LEjx9fHj16FO6GtC2MlhgQ7CA9zT0Q8hQc4WdGx6FDh7SQHm2ec+XKFeN9RkShPaKC+ao6d+4sp06dci5DPd+oUaPk9ddfD/j2EJF37P4evuHFMZSBCtmmDsY1cEFalhF8YOTDNRD5559/JHfu3Fq07hrAIKhJkCBBmOADDQD8Vcty5coVadq0qSxZssS5DB2/pk+frm2eich+gQpOcBo0aKApsq6MEeJZs2bZ4kSHKFTxPSwMVIis0J4Y88wsX75ch4cNSO2oVq2aLF68OKjbRmRnwQpUcCx49tlnw1yFdQ9WcFUWNXFMAyMyH76HvT+GcupqshykSi1atEhHRkL5b8BIimuQAriP5aH8txFR9KAmJaIgBTDKcvLkSV2PiMyH72HvMVAhy0CqFEYh8uTJoyMiSN/C/atXr4ZcEISalMj8+++/fv39RGQ+7s1DYroeEQUW38PeY6BCloF6DqRKucL9Jk2ahEQQ5CpnzpyRPo7CeiKyF9TF+XI9Igosvoe9x0CFLMHfqVL+DII8QSCEwnn3PHPcx3J2/yKyH7QgRg1KRK3VsRwT4mI9IjIfvoe9x0CFLMGfqVLBqhdBdy8UzrvCfSwnIvvBhQq0LwX3YMW4P3LkSBbSE5kU38PeY6BCluDPVKlg1YugBTG6eyFQQicyfMV9tiYmsi+0HkYLYkyI6wojLWxNTGR+fA97h/OokGX4op2vp/bECBBQmxIRPM5ULCL7CPaEj8BZrYlCm53fwze8OIbGDdhWEfkZUqJQM+I6QaIvUqWMepGIgiAGKUQUaDj+VKpUiTueKETxPRw1DFTIMoxUKdSMIB0L6V6+CiI8BUGlS5dmvQgRERGRn7BGhSwHwUmtWrV8OtKBIOjnn38O001n7dq1Grz4q0UxERERkZ0xUCHyokXx+vXrA9aimIiIiMjOGKgQmbhFMREREZFdMVAhMnGLYiIiIiK7YqBCFOR5WoiIiIgoPAYqRF60KHbvcY77WM4WxURERES+xfbERC5ixYol6dKl06/u5syZo52/duzYoY9jgqYyZcpI2bJluQ+JbMThcDgnLSMiIu8Yx07jWBoZzkxPRETkhVOnTknWrFm5z4iIYuDkyZOSJUuWSNdhoEJEROSFJ0+eyJkzZyRZsmQeR199cbURgRA+xJMnTx5Szw23nfudr5nQcCOIxxmMpNy8eVMyZcoksWNHXoXC1C8iIiIv4IP1aVcBfQEnD6EWqBi47dzvfM2EhuRBOs6kSJEiSuuxmJ6IiIiIiEyHgQoREREREZkOAxUiIiITSZAggfTr10+/hhpuO/c7XzOhIUGIHGdYTE9ERERERKbDERUiIiIiIjIdBipERERERGQ6DFSIiIiIiMh0GKgQEREREZHpMFAhIiIKsitXrkizZs104rWUKVNKmzZt5NatW0/9vg0bNkiVKlUkSZIk+r0VKlSQu3fvSihsuzFDda1atSRWrFgyd+5cCTRvtx3rd+zYUfLkySOJEiWSbNmySadOneT69et+39avv/5ann32WUmYMKGULFlSNm3aFOn6M2fOlBdeeEHXL1iwoCxcuFCCxZtt//7776V8+fKSKlUqvVWrVu2pf6uZ9rthxowZ+rp+9dVXJVS2/dq1a9KhQwfJmDGjdgPLnTt3UF83wECFiIgoyHCyvHfvXlm2bJnMnz9f/vrrL2nXrt1Tg5SaNWtK9erV9QRk8+bN8sEHH0js2LFNv+2GkSNH6slcsHi77WfOnNHbsGHDZM+ePTJ58mRZvHixBjj+9Msvv8iHH36o7WS3bdsmL774otSoUUMuXLjgcf3169dLkyZNdLu2b9+uJ8u4YZsDzdttX716tW77qlWr9DWeNWtWfY2fPn3a9NtuOHbsmHTv3l0DrmD5xcttf/Dggbz88su67bNmzZKDBw9q0Jg5c2YJKgcREREFzb59+xz4ON68ebNz2aJFixyxYsVynD59OsLvK1mypKNPnz6OUNx22L59uyNz5syOs2fP6s/47bffHKGy7a5+/fVXR/z48R0PHz7005Y6HCVKlHB06NDBef/x48eOTJkyOQYPHuxx/UaNGjleeeWVcK+Xd9991xFo3m67u0ePHjmSJUvmmDJliiMUth3bW6ZMGceECRMcLVu2dNSvX98RDCW83PZvv/3WkSNHDseDBw8cZsIRFaL/uXjxorz//vs6lI8hzwwZMujVh3Xr1nEfEZHf4Kox0o6KFSvmXIZ0F4yMbNy40eP34KooHkuXLp2UKVNG0qdPLxUrVpS1a9eaftvhzp070rRpU01NwbE2GKK77e6Q9oXUsbhx4/plO3Gle+vWrbptBmwj7uNv8ATLXdcHfJ5FtL6/RGfbPb1WHj58KKlTp5ZQ2PbPPvtM35f+HmXz9bb//vvvUrp0aU39wvGkQIECMmjQIHn8+LEEk3/eVUQh6I033tA395QpUyRHjhxy/vx5WbFihVy+fDnYm0ZEFnbu3Dk9sXGFk16cmOExT44cOaJfP/30U01DKly4sPz4449StWpVTe/JlSuXabcdunbtqgFW/fr1JViiu+2uLl26JAMGDIhyqlt04HfgZBEnj65w/8CBAx6/B9vvaf2o/l3B3HZ3H330kWTKlClc4GXGbceFgokTJ8qOHTskmC5FY9txTFm5cqWmQ6Iu5d9//5X27dtrkIj0sWBhoEL0vwKyNWvWaG4srkpC9uzZpUSJEtw/RBQtPXv2lKFDh0a6zv79+6P1s588eaJf3333XWndurX+v0iRInpxZdKkSTJ48GAx67bjyi1OiFA74Q/+3HZXN27ckFdeeUXy5cunASP53pAhQ7QoHZ/NKAg3s5s3b0rz5s21riNNmjQSap48eaKB+/jx4yVOnDjy0ksvaV3Ql19+yUCFKNiSJk2qN3SdKVWqlKZ+ERHFRLdu3aRVq1aRroPRW6Q+uRe4Pnr0SDtMRZQWha48gJNkV3nz5pUTJ06YetsRpBw+fFjTrtxHtVF8jJNSs26760kpGhkkS5ZMfvvtN4kXL574C056ceKIUX5XuB/RdmK5N+ubadsNGClEoLJ8+XIpVKiQBJq3247XNArR69atG+6CAkbqUJyeM2dO0+73jBkz6usY3+d6PMEoHLJN4sePL0ER7CIZIrOYNWuWI1WqVI6ECRNqIVyvXr0cO3fuDPZmEZHFGUXdW7ZscS5bsmRJpEXdT5480cJY92L6woUL67HLzNuO4vndu3eHueFnjBo1ynHkyBFTbztcv37dUapUKUfFihUdt2/fDlhh9AcffBCmMBqNCCIrpq9Tp06YZaVLlw5aMb032w5Dhw51JE+e3LFhwwZHMHmz7Xfv3g33ukYhfZUqVfT/9+/fN+22A44b2bNn1/UMI0eOdGTMmNERTAxUiNwONEuXLnV89tlnelCPEyeO44cffuA+IiK/qlmzpqNIkSKOjRs3OtauXevIlSuXo0mTJs7HT5065ciTJ48+bvjqq6/0ZG7mzJmOf/75R4MWXGj5999/Tb/t7oLR9Ss6244gBd2zChYsqPsZQZdxQ7cnf5kxY4YjQYIEjsmTJ2uA1a5dO0fKlCkd586d08ebN2/u6Nmzp3P9devWOeLGjesYNmyYY//+/Y5+/fo54sWLpyfMgebttg8ZMkS7qOHioev+vXnzpum33V0wu37N8HLbT5w4od3VENwcPHjQMX/+fEe6dOkcAwcOdAQTAxWiSLRp08aRLVs27iMi8qvLly/rCXLSpEk1+GjdunWYE7OjR4/qyfyqVavCfB+ujmbJksWROHFivbiyZs2akNl2MwQq3m47vuK+pxvW9acxY8bo5xFO4nG1/O+//3Y+htEdnBS7t03OnTu3rp8/f37HggULHMHizbbjqr6n/Ytgy+zbbqZAJTrbvn79eg3EEeCgVfHnn3/u1wA8KmLhn+AknRGZ34gRI7Q9HzpoEBEREVHgsOsXkYi2IG7YsKG8/fbbWrSHAsktW7bIF198EdT2mURERER2xUCF6H9dv0qWLClfffWVdu5A3/CsWbNK27ZtpXfv3txHRERERAHG1C8iIiIiIjKd2MHeACIiIiIiIncMVIiIiIiIyHQYqBARERERkekwUCEiIiIiItNhoEJERERERKbDQIWIiIiIZPXq1RIrViy5du2a7o3JkydLypQpuWcoaBioEBEREQXAyZMndWLhTJkySfz48SV79uzSuXNnnXQ40CpVqiRdunQJs6xMmTJy9uxZSZEiRcC3h8gTBipEREREfnbkyBEpVqyY/PPPPzJ9+nT5999/Zdy4cbJixQopXbq0XLlyJejPAYKnDBky6KgKkRkwUCEiIiLysw4dOmggsHTpUqlYsaJky5ZNatWqJcuXL5fTp0/Lxx9/rOshSJg7d26Y70X6FdKwDB999JHkzp1bEidOLDly5JC+ffvKw4cPnY9/+umnUrhwYZk6dao8++yzOkLy5ptvys2bN/XxVq1ayZ9//imjRo3S34fbsWPHwqV+eTJv3jwpWrSoJEyYUH93//795dGjR37YY0QMVIiIiIj8CqMlS5Yskfbt20uiRInCPIYRjGbNmskvv/wiDocjSj8vWbJkGrjs27dPg43vv/9evvrqqzDrHD58WAOe+fPn6w2ByZAhQ/QxfA9Gcdq2baupXrhlzZr1qb93zZo10qJFC01Xw+/+7rvvdDs+//xzr/YHUVRxRIWIiIjIj5DuhSAkb968Hh/H8qtXr8rFixej9PP69Omj9SQYLalbt650795dfv311zDrPHnyRIOIAgUKSPny5aV58+aaZgYYYcHoDkZkECjhFidOnKf+Xoye9OzZU1q2bKmjKS+//LIMGDBAAxYif4jrl59KRERERGE8bcQEwUNUYPRl9OjROmpy69YtTb1Knjx5mHUQxGDkxZAxY0a5cOFCjJ6RnTt3yrp168KMoDx+/Fju3bsnd+7c0cCHyJc4okJERETkR88//7zWfuzfv9/j41ieNm1arUXBeu4BjWv9yYYNGzRVrHbt2prStX37dq1vefDgQZjviRcvXpj7+LkYZYkJBEUYVdmxY4fztnv3bh0xQs0Kka9xRIWIiIjIj5555hlNk/rmm2+ka9euYepUzp07J9OmTdNie0DAgpoRA4IAjFYY1q9fr22NjeJ7OH78uNfbhNEbjIZ4A0X0Bw8e1MCLKBAYqBARERH52dixY7WupEaNGjJw4EB57rnnZO/evdKjRw/t4PXJJ5/oelWqVNF1UeyOQAIdvlxHR3LlyiUnTpyQGTNmSPHixWXBggXy22+/eb09SA3buHGjdvtKmjSppE6d+qnfg22sU6eOdixr0KCBxI4dW9PB9uzZo38Tka8x9YuIiIjIzxBgbN68WYvQGzVqpKMiaE+MIAV1HwgWYPjw4dqBCwXwTZs21UJ519qPevXq6ajMBx98oC2IMcKC9sTews9FAX2+fPl0FAfBz9MgyEK6GVosI0gqVaqUdhvD30LkD7EcUe2FR0REREQ+069fPxkxYoQsW7ZMT/qJKCwGKkRERERB8sMPP8j169elU6dOmkpFRP+PgQoREREREZkOQ3ciIiIiIjIdBipERERERGQ6DFSIiIiIiMh0GKgQEREREZHpMFAhIiIiIiLTYaBCRERERESmw0CFiIiIiIhMh4EKERERERGZDgMVIiIiIiISs/k/VL8sIvDLqvEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -535,7 +535,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiZFJREFUeJzt3QeY01X2//EDivTee5cm0kVgURQEpIiIAlLFtq697CqsugiusnZXxd7pIE0EKaIoS5EuiNJ7772K+T+f+3sy/8yQ6el5v54nTJLJzHwTZr43595zz8ni8Xg8BgAAAABIVtbkPwUAAAAAEAInAAAAAEgFgRMAAAAApILACQAAAABSQeAEAAAAAKkgcAIAAACAVBA4AQAAAEAqCJwAAAAAIBUETgAAAACQCgInxKwtW7ZYlixZ7PPPP7doOr7p06db3bp1LUeOHO7zR44csUhwxx13WIUKFSxSzJkzx70++ggA0U7ns+eeey4mzpEa1/SzNc75euWVV6xSpUp2ySWXuHEuUmhs0xgXKfR7oNcPkYfACSE7gfpeihUrZtddd519++234T68iHLw4EHr2rWr5cyZ04YOHWrDhg2z3LlzWyQ6deqUO7kHelBO+vuiAPLyyy+3Bx980Pbu3RuQnzFt2rSAvkEBEN4xxfeycOHCdH2/Xbt2ufPBihUrgnbMMJs5c6Y9+eST1qxZM/vss8/sxRdftEj122+/ud+JpIFfZik48/1dzZcvn9WpU8dee+01O3v2bEB+xrvvvhuxE8ax4NJwHwDix+DBg61ixYrm8XjcG2D9Ybdr186mTJliHTp0CPjPK1++vJ0+fdqyZctmkcjf8S1evNiOHz9uzz//vLVq1coiyUcffWR//vlnosBp0KBB7nqLFi2C9vty5swZ+9///mfvvfeeC3h+/fVXy5UrV6a+t76PAlOCJyB6ec8RSVWpUiXdgZPOZVp1iKRVkGjWu3dv6969u2XPnj3hvu+//96yZs1qn3zyiV122WUWSdauXeuOzTdw0u+ExrZAZ1roNfn444/ddWWUjB8/3v7+97+78X/06NEBCZyKFCkSUStosYTACSFz4403WsOGDRNu33XXXVa8eHEbNWpUUAIn72pFpPJ3fPv27XMfCxQoELCfc/LkyYCsWoU6APX9fbn77rutcOHC9vrrr9vkyZPt9ttvD+mxAIj8MQWRQ6l4uiQd35RNEaigSZOwmljT98ws3wAv2C699FLr1atXwu3777/fGjdubGPGjHFjXKlSpUJ2LEg/UvUQNgoOdMLTScTXq6++ak2bNnVvlPX5Bg0a2FdffXXR18+aNcv+8pe/uO+TJ08eq1atmv3zn/9MdQ/RmjVrXDpc0aJF3ffX1z399NMZytf2l0OuGaorrrjCzVgpHVGrI6VLl7aXX3450dcmPT59Xd++fd31Ro0auc/5zhiNGzfOvRY6Zs0m6cS7c+fORN9Tj9drsXHjRrealzdvXuvZs6f7nL6f0t30fWrWrOm+T5MmTWzVqlXu8x988IGbqVUwp2NJ+lx99zjpc3r9RLNy3rQDreAoBUPXly9fftHrqNQMDaZJjzstrr/+evdx8+bNKT4utddJz0OrTd7XxHsBEFsGDhzoVhFmz56d6P57773XvXn/5Zdf3Llb51vp169fwvnAd9z4+eefrW3btpY/f353Pr/22mtt3rx5fvekbNiwwZ1jNC7p8fqeWp33pZSsxx57zJ1DdY6+6aabbMeOHX6fg85dd955p5tk1Jv7WrVq2aeffnrR4/T1N998s5skUyq8vn9aU7+S27/qb5+NdxyZNGmSG+e8x6S9uSmNmbqusUETeUlf4z/++MNlWVSuXNl9Px2LxvKkx6/7Nck6Y8YMFzDrHK9xyzsOjx071o1HGm/1ut5666129OhR930effRR97pofNT/ib/v7R1vdVy33Xabu64x3Hu8+jkaozWunD9//qLXq3Xr1u79RHrpd9SbtZFSamBaXifdt3r1avvxxx8TjjsYGSHxjBUnhIxOYAcOHHCzRJp5evvtt+3EiROJZl7kv//9rxtI9Ib/3LlzbulaJ7FvvvnG2rdv7x6jE4NOoFdeeaVL19BJRANW0sEsqZUrV1rz5s3d6okGT51kFGQoXfCFF14I2HM9fPiwG2hvueUWF6Qp8Hvqqaesdu3abpbUHwVvOul++OGHCSkoOkF6T+Q62WuAHzJkiEt11Ouk56sAxXeFSifXNm3auKBSQahvWtvcuXPt66+/tgceeMDd1vfS66i8cy3va+ZLx64gT4O1Uiv80YCv1Lm//e1v1rlzZ/c8Rf8fOm59/xEjRli9evUSfZ3u00lcA1t66f9JFFAnJy2v01//+leXmqPAW3vIAET3mOJLbxS954hnnnnGnduV3aAJIr2Z1ptupR3rDaj2lugcofPtv/71LzcmaHwQTd6JzoE6Z2syxhuIKQDQRI7Op1dddVWin6/zvc6BOv8sW7bMpWTpDftLL72U8BitoA8fPtx69Ojhfo5+hnds86Vju/rqqxOCFZ13tS9Yz+fYsWMuGBClfLds2dK2bdtmDz/8sFux0LktufN3Zil1esKECW680Gv61ltvWZcuXdzPT+78rOPR2LZo0aKENDXva6zX44svvnCBzhNPPOECVb1+v//+u02cOPGilDplHOg8fs899yQKVPQ1Cqb69+/v3g/oPYbGev2faVxTIKj9bxon9H+k/3N/rrnmGvc66nkpMKlRo4a7Xx+Vgvjll1+63yPfTJk9e/a411u/IxmRlvEtLa/Tm2++aQ899JALEL0Twgq6EUAeIMg+++wzj37Vkl6yZ8/u+fzzzy96/KlTpxLdPnfunOeKK67wXH/99Qn3vfHGG+577N+/P9mfu3nzZvcY/Xyva665xpM3b17P1q1bEz32zz//TNNz0Pf09cMPP7j79dHr2muvdfd9+eWXCfedPXvWU6JECU+XLl1SPD7vz1m8eHGi51+sWDH3Gpw+fTrh/m+++cY99l//+lfCfX379nX39e/f/6Ln4H3NfZ/DBx984O7XsR07dizh/gEDBlz0fPW9y5cvn3Bbr70eM3DgwIt+1u233+4pVaqU58KFCwn3LVu27KLn64/3Nfjuu+/cz9i+fbtn9OjRnsKFC3ty5szp2bFjh9/XPj2v0wMPPODuAxA7Y4r3HOdr1apVnssuu8xz9913ew4fPuwpXbq0p2HDhp7z588nPEbnW3/nJo0LVatW9bRp0ybRGKExqmLFip4bbrgh4T6dB/U97rzzzkTfo3Pnzu7c5bVixQr3uPvvvz/R43r06HHR+fSuu+7ylCxZ0nPgwIFEj+3evbsnf/78CWPlm2++6b527NixCY85efKkp0qVKheNT/4kPbcnfU6+dFuv54YNGxLu++WXX9z9b7/9dopjpn5O7ty5E30/7+uh/x9ff//7393933//fcJ9OkbdN3369ESP9Y4FOvdrHPAdh7JkyeK58cYbEz2+SZMmFz1f3dbxeY0bN87va6cxrUyZMp5u3boluv/11193P2vTpk2elHhfA41tuuh1fPHFF93XXnnllcm+9ul5nWrVquXehyA4SNVDyCg9SrP8umi2TUvgmkHRzJUv33xlzRJpVlGzgJq98/KusGi/i2/BgpTs37/ffvrpJ7eSUq5cuUSfC3SqlmZ7fFfSlBaimclNmzal+3stWbLErdBpds93T5RmKKtXr25Tp0696Gu0EuSPZiV9UzKUVy2aLdTMYdL7M3K80qdPH7eq88MPPyRabdL/rX5WWqg4hmZYy5Yt6zYZ6zXVrFpyq1UZeZ0AxMaY4r0krdSqdDKlb2mVQyvxWqHSrH3SFHF/VGVv/fr1bmVIFU/1tboo3UznUo0nScef++67L9FtjV36Wq0QeQvTiFY0fHlXj7wUo6hoQMeOHd1178/WRc9D46J3TNT3LFmypFuJ8FKmgVbQgkHnZm82hDfTQNXhMjJeeF+Pxx9/PNH9WlGRpOdtrRTp+Sc37vjuxdU4ptdOY74v3b99+3aXnZFeWr1SNowyN1TIyXd80wqav2IlSen3R2ObLkqP16qW0uaTrq5l5nVC8JCqh5BR4OC7kVfL7UrlUgqClry9G0aVkvfvf//bDVq+ubu+wU23bt3cQKjAS8vyGsSULqaBw7cyji/vSV0DabCVKVPmomCsYMGCLlUwvbZu3eo++sudVkCgtAlfekOgn+9P0oBROfii4MTf/QpcM+KGG25wA7kGE/3f6M2FioB06tQpUYCW2psilSHX81GqgZ5/cv+3GXmdAMTWmJKcf/zjHy7lW2li2mepPZ5poaBJvHtP/VEAo3N7cudY7+d0LlVwofOUzmO+gYe/85Ym+lRxTeltuvjjLSak76k34EnHnIzst0mLpM/R+zwzMl54X4+klRBLlCjhJki953WvlAKT9IxvGpP0f5dSalxyFKAp9VKBjq4rfXDp0qX2/vvvp+nrNbGnFFLRNgM9p+TG7Iy+TggeAieEjU4CWnXSHhQNUNpgqpxx7W9SjrH23OjNt2aQlFM+cuTIhK/VyoVm+7SioZkWbUxVRRrlnatXRNJqPpmV3IrUhQsX/N6f3M//v0yH4NKJOLkAI7njCvTx6vtpllZ7CfT/qD1GWoFKup8tEG+KACAlmjTzBkHeYjhp4V1NUtPW5MqUayU8GOdS78/WOTO5wE0rPbEyvqU16yOlCnqhGt8UeGvPmzJnFDjpoyZ+tb8tLXQ8GW03QiGj8CNwQlh5l8pVJEKUmqDZGG289C0PqsApKQUHWs3QRSU8NZOozZAKpvydlNStXNQHKL28s4aaAfQVilke9XsSzWp5K8t56T7v50MttRO4BhQ19dPMmtJnlJaQXIpFqF8nBh8gPigAUbU0rfYoHU7jhDITvAVtUjofeFeF9LWB6qun85COScUAfFeEdI7y5a24p+AltZ+t76lxTYGA73NJ+j1TGt+Sjm2hHN/0eiiw9RZh8BbG0DFF8vimtLndu3e7SV2lhPuuPIbzdWJ8Cy72OCFsVM5Tq0OaqfGeCDQToz9635kuledU6VNfhw4duuj7eWcEkyvBqoFIK1kq5arqP+mZefIOoFrl8tIxJpdCEUhadVFVJqUB+D43BSOqpuOvGlMoeKv1+RtwvbOhuiilUgGx9imlZV9BKF4nb1+r5I4dQGzQpNr8+fPduVqV9LQPRXtAfavxJXc+0KqCzv2qTuqd3EuaTpde3qqqqtjmS9XQfGks1H5QnTv9Tfb5/my1ntCKvm/bDpVAT+v4pOeotDXfVHIFBCntuQkUHbu/56//NwnX+JbaGKGtBnqv8sgjj7gVzfRkUwT7ddKxM7YFDytOCBm9gVUPJW9utmZpNHuiPUqa0fP+8etEoFLeSvXS47TXRXm9vid1lY9VEKPHa6ZFj1NKmPKEVYY7ORqs9Pn69eu7jbPKLVZgpnQ/7alKjtIIVRZ2wIABLmgrVKiQy5nPyObS9FKqovKpVWZb/UN0wvaW2VahB/XrCAelTChlQSmS2ouk10T7x3z3kGlWTh3RJdgDS3peJ70h8m7Q1iqY3qQosAMQnWOKLwVHyjDQhMmzzz7rVpxUZEFUilqTbCoio74/3sBB+0Q06aJVHr3xVAEBjQ+a+FGwozFA5xYVp1FvJWU2aNzy7lVJK/1snZs0XilY0bGqz5TKZyf1n//8x/0cHYtKb+t8q/FHRSG+++67hAlEfe6dd95x51vttVGKu8p/+7aiSInOfWqXodYSOicq6FK7CZ3XfYsyBYNKwisVUUGe3uzr3K29aCrgob5USucPB/0/aVzQmKL/J2XAKJNBk3PeiVi9T1HfQP3uBDvAS8/rpPFN/3/aK673TjrmpFkYyIQgVesDUiwdmyNHDk/dunU977333kWlwD/55BNXAlZlZatXr+6+PmlpztmzZ3s6derkSl6rNKo+qvTounXrUiz3Lb/++qsrEVugQAF3HNWqVfM8++yzqT6PjRs3elq1auWOq3jx4p5//vOfnlmzZvktR65yoKmVfE1rOXKvMWPGeOrVq+d+fqFChTw9e/ZMKM2dUrlXL31fleH25T2GV155xW95V5VkTe74Zf78+Z4GDRq4/wN/pcl3797tueSSSzyXX365J61Seg38HWPScrFpeZ3++OMPz0MPPeQpWrSoKwPLqRCIjXLk3nOq/sYbNWrkSkcfOXIk0df/97//dY/TucJr8uTJnpo1a3ouvfTSi87Ly5cv99xyyy2urLjOKzoPdu3a1Y1DXt4xKmmLDH9ludUu4eGHH3bfT+frjh07urYL/s6he/fudeftsmXLerJly+ZaR7Rs2dLz4YcfJnqcWmzcdNNNnly5cnmKFCnieeSRR1zZ7rSUI5eZM2e6ct46l2tMHD58eLLlyJOOI/7Keae1HLmoNPygQYNciXc9Rz1XtcQ4c+bMRT+jffv2F329v/EqpbHE3/9V0uOXjz76yFOpUiU3hvl7HVX+Xfffe++9nrRKaYz2d4wZeZ327NnjXie1XtH3oDR5YGXRP5kJvAAgOUqH0eynGg1q5hcAgFigdiha7VH2i7dxMmIfe5wABI3SYrQXTN3WAQCIFaoaq5TQlLYHIPawxwlAwH3//ff222+/2QsvvOBm5Hyb7gIAEK20v1l7rrU3WntoqWIXX0jVAxBwLVq0cJWsmjVr5npcaEM1AADRToGS+nd169bNFRQJZrVYRB4CJwAAAABIBXucAAAAACAVBE4AAAAAkIq4S8z8888/XYdtNbljQx8AhJayw48fP26lSpWyrFmZu/NibAKAyB+X4i5w0sBUtmzZcB8GAMS17du3W5kyZcJ9GBGDsQkAIn9cirvASbN53hcnX7584T4cAIgrx44dcwGC91yM/8PYBACRPy7FXeDkTYHQwMTgBADhQTpaYoxNABD54xIJ5gAAAACQCgInAAAAAEgFgRMAAAAApILACQAAAABSQeAEAAAAAKkgcAIAAACAVBA4AQAAAEAqCJwAAAAAIBUETgAAAACQCgInAAAAAIjkwOmnn36yjh07WqlSpSxLliw2adKkVL9mzpw5Vr9+fcuePbtVqVLFPv/885AcKwAgPqR3bJowYYLdcMMNVrRoUcuXL581adLEZsyYEbLjBQDEQeB08uRJq1Onjg0dOjRNj9+8ebO1b9/errvuOluxYoU9+uijdvfddzNAAQDCNjYp0FLgNG3aNFu6dKkboxR4LV++POjHCgAInSwej8djEUCzehMnTrSbb7452cc89dRTNnXqVPv1118T7uvevbsdOXLEpk+fnqafc+zYMcufP78dPXrUzQwCAEIn2s7BaRmb/KlVq5Z169bN/vWvf8Xk6wIAsSI9599LLYosWLDAWrVqlei+Nm3auJWn5Jw9e9ZdfF8cAACC5c8//7Tjx49boUKFkn0MYxMARJ+oKg6xZ88eK168eKL7dFsDzunTp/1+zZAhQ1wU6b2ULVs2REcLAIhHr776qp04ccK6du2a7GMYmwAg+kRV4JQRAwYMcEtv3sv27dvDfUgAEFUUBERIVnfEGzlypA0aNMjGjh1rxYoVS/ZxjE0AkDla2Q+1qErVK1GihO3duzfRfbqtfMScOXP6/RpV39MFAJCxgenTTz+1MmXKuH0+l1xySbgPKWKNHj3aFSwaN27cRWnlSTE2AUDGbdq0yUaNGuW27DRs2NBCJapWnFTidfbs2YnumzVrlrsfABBYZ86csREjRrgCPDt37nS34Z8G8H79+rmPqv4KAAiOXbt22ZgxY+yPP/5wFbdDmRGRNdzpHyorrovoyev6tm3bElIZ+vTpk/D4++67z0WYTz75pK1Zs8beffddlw7x2GOPhe05AEAsOn/+vAsCtKqfJ08e6927t+XOndviQXrHJqXn6fZrr71mjRs3dvtxdVEKHgAgcA4ePOgm9M6dO2cVK1a0zp07u+qncRE4LVmyxOrVq+cu8vjjj7vr3vKtu3fvThioRC+QypFrlUk9NjRIffzxx26ZDgAQuKpw48ePd+dfpZP17NnTChYsaPEivWPThx9+6GY+H3jgAStZsmTC5ZFHHgnbcwCAWHPs2DEbNmyYnTp1yp1j1fLh0ksvjc8+TqFCrwwASJ6GhEmTJtnKlSvtwoULbk/T008/HbDBiXOwf7wuAJA8Vc/+7LPPbP/+/a7Vw5133hmwLIiY7eMEAAiuffv2uaBJq05KhV63bp1Lg0hrI1cAAAJt1apVLmjKmzdvWFPHCZwAII4pxezFF1+0//3vf/aXv/zF/vnPf9qvv/5q69evt7Vr17rH6HMAAIRLo0aN3HhVpUoVK1CgQNiOg8AJAOKYgqbnnnvOsmbNat999527r3bt2m6Pk2i1SQEVAAChTh1X9oNSxjUWNW3a1MKNwAkA4nh1SderVq1qN954o6sOp9vTpk1zj/d9HAAAoQyaZs6c6dLHu3btGjF97wicACDOVpc0IHlXl5o1a2ZXXXWVZcuWzTURvPrqq10hCPY0AQDCZd68ebZw4UJ3fcuWLVatWjWLBFHVABcAkHFaQfIWUtXHZcuWuVk8BU2HDh1yPYhYXQIAhNOyZcts9uzZ7nrr1q0jJmgSVpwAIE4o7U4rTQqa1JdJvYnOnj1r5cqVcwGTAigAAMJlzZo19s033yRkRDRp0sQiCYETAMTJfibvatLPP//s0vOkWLFi1r17d4ImAEBYbdmyxb766is3uaeJvZYtW1qkIXACgDjZz6R9S7qowe0vv/ziSrr26tXLcubMGe7DBQDEsQsXLrixSR+rV69uHTp0cJX0Ig17nAAgyleWBg8e7PLA9VG3/e1n8u3F1LZtW6tZs6YLmtRMEACAcLrkkktc9kOtWrWsS5curkVGZsbAYGHFCQBicGXJdz+TZu2UK+6VI0cOu+2228J41AAAWMIYJSVKlLBbb701IGNgsBA4AUCU92Hyt7Lk3c+k2wqalC++YMGCiNtoCwCIT2fOnLExY8bYdddd54oUZURK2RXBQOAEAFHC38xa0pUl3RbfXkzff/+9zZ07132+cuXKriAEAADhcv78eRs1apRt27bNJk6caA8++KBL10uv5MbAYCFwAoAo4W9mbdq0aQmf865C+VIDQQVN0r59e4ImAEBY/fnnnzZ+/HgXNKmXYLdu3TIUNCXNrvA3BgYagRMARAl/M2u+K0tJrVy50mbMmOGuKxWiQYMGIT5iAAD+P41fU6ZMsbVr17rx6/bbb3d7mzIqpTEwGAicACDK+jClZWZtw4YNNnnyZHe9cePG1rx585AdOwAA/syePdtWrFjhJv9UCKJ8+fKW2bFRwVOoEDgBQJj5GwhS6sOUmmPHjtnYsWNdOkTt2rWtTZs2EdkPAwAQP3799VebN2+eu96xY0erVq1aur9HqKvoJUXgBABh5m8gyEyloHz58tn1119vmzZtsk6dOhE0AQDCrnr16lajRg0rXbq0q/QaDVX0kiJwAoAw8zcQZLZS0NVXX+1S9AiaAACR4NJLL013D8GkGRlNmzYNaRW9pAicACDM/AVJ6a0UdPLkSZs1a5ZLy8uZM6e7j6AJABBO27Zts3Xr1lnLli3dmJTauJQ0UFLK+eDBgxMyMp599lmXoRGqKnpJETgBQJj5C5LSUyno7NmzNnLkSNu1a5edOnXKevToEeQjBgAgZXv37nVjk8aovHnzuiyI9KauV6xYMVFGhhq5z5w508KFwAkAwiwz5VQ1O6dCEAqatNLUunXrgB8fAADpcfjwYRs+fLgLmsqVK2f169fPUOq6aJUqXKl5SRE4AUCUUgrDpEmTXBGIbNmyWc+ePa1IkSLhPiwAQBw7efKkC5pOnDjhmq53797djVEZSV3v1auXa44brtS8pAicACAKaVD59ttvbfXq1ZY1a1bXeV2VigAACJezZ8/aiBEj7NChQ1agQAEX+Hj33WYmdT1SRM6RAECMC2TjPvXCWLJkibt+yy23WOXKlQN8tAAApG9Cb+zYsbZ7927LlSuXC5q0tylUqeuhQOAEACESyMZ9ahy4ePFiF4DVqlUrwEcKAED6ZMmSxe1lUuCkoKlw4cIhn1QMtsg8KgCIQYFs3Fe0aFG7//77LXv27AE8QgAAMq5WrVpWpUqVdI1NgZxUDLas4T4AAIgXmknz9rDISHUgFYHQxYugCQAQbosWLbJjx45leGwK5KRisLHiBAAhkt6mtr527txpo0ePdpX0+vTp48q7AgAQTj///LNNnz7d5s+fb3/7298yNKHnrwl8pCJwAoAQyeim1wMHDrgqRefPn7dKlSpZqVKlgnJ8AACk1apVq1zQJNrblNagKemepieffNLdHyklx1NC4AQAQRCoza5Kf1A/jNOnT7uAqWvXrhG7aRYAEB82bNjg+gjKVVddZc2bN0/zeKjMicGDB0fFnqakGH0BIAgCsdn11KlTLmg6evSoq07Uo0cP9jUBAMJqx44druy4AqArrrjC2rZtm7B/Ny3jYcWKFaNmT1NSFIcAgCDI7GZXpeWNGjXK9u/f7/pgqLRr7ty5g3S0AACkbv/+/TZy5Eg3Rql/4M0335xi0ORvPJTMFEoKJ1acACAIMrvZNWvWrFaoUCG3v0lBkzqwAwAQTjly5HCTeRqflDp+ySWXpHs81Jimr4uGPU1JETgBQIRV0BMNKprJO3LkiBUsWDBIRwkAQNrlzZvX7rjjDhcEXXbZZRkeD6N1r24Wj3fNLE5oo3X+/PndnoF8+fKF+3AAIIFOx7///rtVr17drTjFIs7B/vG6AIhUZ8+etW3btlnVqlUt3s+/sTkyA0AU0mzcuHHjbMKECQl54AAAhIsq4qkQhPY1LV261OIdgRMARAANSN9//727XqZMmVQ32wIAEEyqmqeS45s2bbJs2bJZiRIl0hxsqdx469at3UfdjhXRmWAIADHUs0npeVOnTnXX9fVXX311EI8WAICUKetBzW1Xr17tUse7detmpUuXTrGJ7csvv+xu63Nz5syJyj5NqSFwAoAw9mzavHmzjR8/3n1tvXr17Prrrw/y0SI1P/30k73yyituFXD37t02ceJEV6gjJXqT8Pjjj7s3GWXLlrVnnnnGbaAGgGj0448/2uLFi931zp07u9LjKY17Ogd6gyVf0danKTWk6gFAmHo26U356NGj7cKFC64gRIcOHUjRiwAnT560OnXq2NChQ9Mc/LZv396uu+46W7FihT366KN2991324wZM4J+rAAQaAqYFDjJxo0b3b7bM2fOJEq/mzt3bqJx75dffvG7Nzfa+jSlhhUnAAhTz6YTJ064HPIKFSpYly5dYraSXrS58cYb3SWt3n//fatYsaK99tpr7naNGjVc8PzGG29YmzZtgnikABB4qi4n3lUkjWu+K0rfffedtWjRwt3vHfc02eS74qSJJKWsR1ufptQQOAFAmHo2qbRr3759rUiRIlHb0wJmCxYssFatWiW6TwGTVp5SKu+ri285XACIBDqfffDBBy4Q8rei5PF43ESfUvX87XGK9l5NKYm9ZwQAIabBIa17mpTuoEuBAgUSKughuu3Zs8eKFy+e6D7dVjB0+vRpy5kz50VfM2TIEBs0aFAIjxIAknfgwAE3LnmDndq1ayfsv026opQlSxa75pprLhr3YqUAREoInAAgRM6fP2+jRo2yQ4cOWa9evS56s434MWDAAFdMwktBlopKAEA4gqbPPvvMihYtat27d7ccOXJclEnhb0UpHhE4AUAIaC/TV1995bqvZ8+ePdyHgwBSb5O9e/cmuk+31YHe32qT6HeA3wMA4aZJm+HDh9upU6fs3LlzCQWK/GVS/CsOVpRSw05kAEiHjDT2U2rD119/bevWrXOD0e23385qUwxp0qSJzZ49O9F9s2bNcvcDQKRSKrGCJhWDKFy4sPXs2ZMJnVSw4gQAQe7ZpMdpY61m8m699VYrX758iI4WGaFqhxs2bEhUblxlxgsVKmTlypVzaXY7d+60L7/80n3+vvvus3feecelstx55532/fff29ixYxOaGgNApNHq0ogRI2z//v2uUM3BgwcJmtKAwAkAgtizad68eTZ//nx3/aabbrJq1aqF5DiRcUuWLHGldL28e5FUAfHzzz93/beUcumlUuQKkh577DH773//6wp+fPzxx5QiBxBRlCGhyT+NS02bNk1Ydfr000/dPidN7pGOlzICJwAIUs8mNbb97bffEsq71q1bN4RHioxSfxJ/jRy9FDz5+5rly5cH+cgAIPMZE0rLq1evnmXLls1GjhzpVp0krc3b4xmBEwAEqWfTJZdcYn369LHVq1db/fr1Q3iUAIB4511h8o5Xc+fOdZNCWl3SKpMyIHbs2OEem57m7fEsiyelabUYrR6SP39+txFOFY8AINBOnjxpuXPnDvdhRCTOwf7xugAINBUw8u7JVWB0ww03uMI13tvPPvusm+CL9aa1gTz/xt+rAwAZmKlL64CiMtRK5WrWrJm7eEu7AgAQyrFr48aNCWnHSs276qqr3N4m7XGK50ApM3i1ACBA1fMOHz7sSrueOXPG1q9f78pRazYPAIBQj11eNWrUsA4dOljWrFmtefPmNnDgwLAeYzQjcAKAAFTPUwnrYcOGuY/q0aReTQRNAIBw7GPy0gSeUvQUNKlAkW/FUKQfgRMAZLJ6nlaY1A9DK04FChRwTQRz5MgR0uMFAMRfoPTnn3+6vUze7AhV+NSYpdslS5ZMaItQvXp169ixI+njmUTgBACZqJ6nQWzMmDG2Z88eVxCid+/eljdv3hAfLQAgHtPI1UfONztCK0v6vPrRNWjQwN2vputdunRxn0PmEDgBgB/aMJuWRoBr1661LVu22GWXXeZWmgoVKhSS4wMAxJ+kaeTiXWHSx2uuucaNXV9//bXrLVeiRAnr3r07RSAChFcRADKhVq1arvN6kSJFXFoEAADBSs1TVTzfNPJevXpdVFJc2rdv71LG9XhSx2Ooj9PQoUPtlVdecWkuderUsbffftuVS0zOm2++ae+9955t27bNvVG59dZbbciQIWn+paBXBoBAuHDhAsUfMoBzsH+8LgD8BUu6PmfOnDT1XtK4pHQ89jHFaB8n7Qt4/PHH7f3337fGjRu7oEib2JT6UqxYsYseP3LkSOvfv7/rdqwIet26dXbHHXe4X5DXX389LM8BQPxZuHChrV692nr06GE5c+YM9+EAAGK8pLjo9oIFC2zmzJkXfY2KRIwdO9YVKGrbti3BU5CEdZeYgp177rnH+vXrZzVr1nQBVK5cuVxg5M/8+fNdQ0m9WalQoYK1bt3alfxdtGhRyI8dQHxauXKlzZgxw3bs2OGCJwAAgrWPyVdyFV712ClTprgFhWXLltn+/ftDdKTxJ2yB07lz52zp0qXWqlWr/38wWbO624qm/dEqk77GGyht2rTJpk2bZu3atUv255w9e9YtwfleACAj1NR28uTJ7rpWyb0ViwAACBQFR74rRuq9pF5MWoXyV+FVe55WrFjhvkZbWPxlbSEwwpaqd+DAAZeLqUaRvnR7zZo1fr9GK036Ov1CKbpW3ud9992XbJlg0f6nQYMGBfz4AcTu5lvfnHGv7du3uzQIpUPUrl3bpRWTCgEACEU7jOSq4s2bN89lZMlNN91k1apVC+mxxpuoqqqnzXF6c/Puu++62d4NGzbYI488Ys8//7zbLOfPgAED3D4qL604lS1bNoRHDSDa+mKIbynyffv2uT2WCrCqVKlinTp1ImgCAIS1HYZWmbxjljK26tatG4Kji29hC5xUEU9VQfbu3Zvoft1WzXl/FBypueTdd9/tbmvW9+TJk3bvvffa008/7bexV/bs2d0FANLaF0O3vXR70qRJdubMGStTpozddtttVNMDAIQ06yEpLQR88803CVtZVAMAMbzHSc0itT9g9uzZCfcpBUa3mzRp4vdrTp06dVFw5H0DE+aq6gBiJJ886eZb3VbH9apVq7p0YZ27AAAIdNbDrFmz3EfdTo3KZmts0ntp33oBiOFUPaXQ9e3b1xo2bOh6N6kcuVaQVGVP+vTpY6VLl3b7lKRjx46uEl+9evUSUvW0CqX7mQEGkNGZPX/55L4KFy7sgiYAAEKZ9ZCSGjVquAviJHDq1q2bK5moPE41wFVu5vTp0xMKRqjJre8K0zPPPONmf/Vx586dVrRoURc0vfDCC2F8FgBiYT+Tbz65gqvRo0e7SR3taQIAIFg0YafxyNvk1l/JcTl8+LB9/fXXbp+t+jUh9LJ44izHje7sQHxT/zelQ3ipxKtvM0GlDI8fP95+++03y5EjhytAo48IDM7B/vG6APGb+fDkk0/ayy+/nOIepxMnTthnn31mhw4dchN6PXv2DNvxx/P5N6qq6gFAMGf2dN+3337rgiatdqsQBEETACCUlVz99SQdMWKEC5q00qSy4wgPAicAcSWl/Uw//vijLVmyxF2/5ZZbrFKlSmE7TgBAbErPniZv6ri2tOTOndt69eplefPmDeHRwheBE4C4klx/jMWLF7vASdq1a2e1atUKw9EBAGJdWvc0KXV8woQJtmXLFlfRVel5KlaE8CFwAhD3NChNmzbNXb/22mutUaNG4T4kAECMSq2Sq5cm837//XdXObp79+5WsmTJEB8pkiJwAhD3ypUr56p6ZsuWzQVOAACEOvMhKU3irV+/3po3b24VK1YMybEhZQROAOKeCkF4N9t6G+ECABCs/oFJq+b5kydPHrv77rsTteZBeBE4AYhLBw4csKVLl7py5BqUCJgAAOGuordy5Uq3t0lZEELQFFkInADEHfVqGDZsmOvdoFm/li1bhvuQAABxXkVPaXmTJ092gZP6CpGeF3kIYwHElVOnTtnw4cNd0KTqRE2aNAn3IQEAYpjS87xZDclV0du+fbuNHTvWBU21a9e2ChUqhOFIkRpWnADEjXPnztnIkSNdmp76YPTu3dty5coV7sMCAMRxFb19+/a5sUl7oapUqWKdOnUifTxCETgBiAsXLlxws3k7d+60HDlyuKBJqRAAAISrIMSRI0dcFsSZM2esTJkydtttt7ny44hMBE4A4sKUKVNs48aNruS4mggWLVo03IcEAIjjghBnz551QdPx48fdmNSjRw/X6BaRiz1OAOJCrVq1LHv27Na1a1c3qwcAQDgLQihI0tik7IdevXpZzpw5w3CkSA9WnADETarE448/7vpiAAAQTBpztNKkoCm5ghC6/7rrrnNFipRCjshH4AQgZr3wwgv21ltv2aFDh1LtnQEAQKAm6p588km/BSFUNW/hwoXWqFEjlzouBE3Rg8AJQEz67bff3EzfnXfeaR9++KErP55c7wwAAIK9p0mf+/bbb23JkiWuZ1OfPn2onhdl2OMEIOZs3rzZJkyY4AaktWvXuqApuVQJAABCsafpxx9/dEGTNGzYkKApCrHiBCCm7Nq1y0aPHu3Kj1erVs3dpzKv/npnAAAQij1NixcvdoGTtGvXzhWFQPQhcAIQMw4ePGgjRoxwjW7Vdf3WW2/12zcDAIBQNbldvXq1TZs2zV2/9tpr3f4mRCdS9QDEBPXBUD+MU6dOWYkSJax79+4ETciwoUOHuuBbm7YbN25sixYtSvHxb775plvhVDnhsmXL2mOPPeZWOgHEB4032tM0c+ZM99E7/qh/oFLHvel5CpwQvXhXASAmqNN67ty5LWvWrK7BrXo2ARkxZswYV7r+/fffd0GTgqI2bdq4/XLFihW76PEjR460/v3726effmpNmza1devW2R133OHSdV5//fWwPAcAkUGTLxqPKlWqZDfeeCP7mqJcFo93J1uc0CZxNRo7evSo5cuXL9yHAyCAlKJ3+vRp9zeOyBQN52AFS0qleeeddxLKB2sV6aGHHnIBUlIPPvig/f777zZ79uyE+5544gn7+eef01zJMRpeFwAZc/jwYcubNy9ZEBEqPedfUvUARC0VgNDsvm8XdoImZDb4Xrp0qbVq1SrhPq1i6vaCBQv8fo1WmfQ13nS+TZs2uf0M2gCenLNnz7rB2vcCIDbo71mFirwKFixI0BQjCJwARCUtlk+ZMsVGjRplc+fODffhIEYcOHDABeTFixdPdL9u79mzx+/X9OjRwwYPHuw2hKuhZeXKla1FixYpVnEcMmSIC/K9F61oAYiuhrf6u2/durX7qNuifbbDhg2zzz//3LZs2RLuw0SAETgBiMqgSRtwf/nlF5cv7m/fCRAqc+bMcc0v3333XVu2bJnbCD516lR7/vnnk/2aAQMGuLQQ72X79u0hPWYAgWl4O2vWLPdRt7VirT2PmoDR3qYCBQqE+zARYKwbAog68+fPt4ULF7rrN910U0K/JiCzihQp4gqN7N27N9H9uq1qjf48++yz1rt3b7v77rvd7dq1a9vJkyft3nvvtaefftql+iWlzeIUMAGih1aUFBx5y40r08G34e28efNs7NixtnPnThc09erVi8ApBrHiBCCqLF++3DUZlBtuuMHq1q2bbMoEkF7aJ9egQYNEhR5UHEK3mzRp4vdrlJqTNDhS8CVxVn8JiJsVJqX0eivk6aP2Oqr0uNJ1lb5LJkRsYsUJQNRQOWjtaxINUrr4Dmh6k+oNqtRHA8gIlSLv27ev67ly1VVXuXLkWkHq16+f+3yfPn2sdOnSbp+SdOzY0ZUdr1evnqvIt2HDBrcKpfu9ARSA6KaVJt8VJk2WaNzR/c2aNXP3677bbruNPYsxjMAJQNQ4ePBgwsD1yiuvuCpn2oCfdEBLawlowJ9u3brZ/v37XfCtghBa1Zw+fXpCwYht27YlWmF65pln3IyzPipNp2jRoi5oeuGFF8L4LAAEktLzNDGnMUZ/79dcc407R2jlSb3f1q9fb506dbKqVauG+1ARRPRxAhBVBg0a5NLxlD6lwUszfuJdcfLex4pTZOIc7B+vCxBde5w0aectMa7gafPmzValSpVwHyaCfP5lxQlARDty5IjlzJkzYSO9NuAqaPJdXVLPHPEd0AAACBQFSb4Tcvv27XOry5qsU0ouQVN8IHACELFOnDhhX375pQuctNk2d+7cF6VL6HbSAQ0AgGDR6tKIESNcGq8aXfurnInYROAEICKdOXPGDUyHDx92QZJ3lcm7msTqEgAg1Hbv3m2jR4926XkqGoP4QuAEICJzyTUwaWO+VpnUIydv3rzuc6wuAQDCVaBo+PDhrtFthQoVrEuXLqw2xRn+twFEFK0sjR8/3rZu3er2NfXs2dMKFSoU7sMCAMSx48ePu6BJfdvUDLt79+4JxSEQPwicAEQMpeR98803tmbNGrfZVgNTyZIlw31YAIA4dvr0aRc0qVhRwYIF3YSet2AR4guBE4CIKgahXhgq+qAUiDJlyrjS461bt3YflcIHAEAobd++3fV2y5Mnj0sd10fEJ9YYAUQM7WO68847XRPRGjVquGDJ259JlfSE/U0AgFD3bmrWrJnLgtCKE+IXgROAiEiDUMlx0aDkHZg0WHl7dHt7NgEAEGwac1544QXXdN07eadsCCbv4hupegDCat26dfbmm2/a2rVrL/qcyo1roBJvzyYAAIJt1qxZblKvQIEC7jaTd8jQitOyZcssW7ZsVrt2bXd78uTJ9tlnn1nNmjVdSs1ll13GKwsgzXnj48aNc+kQKghRrVq1RJ+nZxMAINTmzZtnCxYscJkQ2murfoJM3iFDgdNf//pX69+/vwucNm3a5PI9O3fu7N78qESjZo4BIDX79u2zkSNHuqCpatWq1qFDh4seQ88mAEAoLV++PGFPbcuWLV3ApPLjTN4hQ4GT0mrq1q3rritYuuaaa9ybH0XnCqIInACkRiVdVdr1zJkzVrZsWbvttttc+XEAAMJFKeNTpkxx15s2beqCJVaZkKk9TsrxVINKUUTerl07d11vfg4cOJDebwcgzpw8edKGDRvmmgkWLVrUbr/9dpf+CwBAuKjp+ldffeXe52qBoFWrVuE+JMRC4NSwYUP797//7d74/Pjjj9a+fXt3/+bNm6148eLBOEYAMeTnn3+2Q4cOWf78+a1Xr14J1fQAAAgHBUsqBqHUce217dixY0JhIiBTqXpKxVPH5EmTJtnTTz9tVapUcfcrSteyJgCkpEWLFnbhwgWrX7++5cuXL9yHAwCIcwqSlP0wZ84c13A9a1aKTsO/LB5vk5RM0l4F7VGI9JSbY8eOuZnuo0eP8qYNCBGl92pgYgYPnIP943UBwjM2+QZJvg1vvcUgVKQIse1YOs6/l2Z0Y7dWmDZu3Gj/+Mc/rFChQvbbb7+5VL3SpUtn9LgBxCDNzUybNs0NSEp/oAgEACDcNOGvbScNGjRwGRCioEmtdbwNb4XKrshU4LRy5UpXnlENwbZs2WL33HOPC5wmTJhg27Ztsy+//DK93xJADFPqw9KlS911bbitUKFCuA8JABDHNJE3evRo27Vrl7to60mTJk1s7ty5LmgSGt7Cn3QncT7++OPWr18/W79+veXIkSPhflXX++mnn9L77QDEsEWLFiWcF1RIhqAJABDu9Lzx48e7KnrywQcf2PTp091Kk/bfelPKaXiLgKw4LV682P2SJaUUvT179qT32wGIUb/++qt9++23CQUhVJETAIBw0SrSN998Y2vWrHFp4ytWrLDdu3cnfE77nRRA+e5xAjIVOGXPnt1tovLXGFc9WQBA+x8nTpzorjdq1Mg1ygYAIJy+//57W758uVtN6tKli1t90lYTBU26T2MVe5oQ0MDppptussGDB9vYsWPdbf2iaW/TU0895X4JAcS3s2fPuuIxGpCuuOIKu/HGG6mmBwAIK/Ub9e5Z6tChg9WoUSNhRYkVJgStHLlK9d166622ZMkSO378uJUqVcql6GlTnSpn5c6d2yIZJV+B4Nu0aZM7R2gyhSp68MU52D9eFyC49Hb3xx9/dJd58+ZRbhyhKUeub6zuyorOVWHvxIkTroxjq1at0vutAMSoSpUquQsAAJFAmQ8qVjRo0CDKjSPDMhxmK1Kn2ggAOXXqlMsTb9u2rRUpUiTchwMAgG3fvt3mz59vnTt3tssuu8xN+lNuHEEPnN566600f8OHH344M8cDIMqcO3fORo4caTt37nQlXu+99172NAEAwmrfvn1ubFKjW6Xn3XDDDW7CXytN3mIQLAAgKIHTG2+8kaZvpl9CAicgfqjnhQrFKGjKmTOn3XLLLQRNAICwOnLkiA0fPtwFTWXKlLFrr73W3U8xCIQkcFIlEgDwpRm7SZMmudLj2bJlsx49etCSAAAQVidPnnRBkwqYaUzS2KQ0PVEhCPY0ITOyWpgNHTrUKlSoYDly5LDGjRvbokWLUp1FeOCBB6xkyZKup9Tll1/uqvkBCG3QpE7ranKrhoFdu3Z1s3oAAISzHYbS8w4ePOiKmfXq1ctlQwAhXXF6/PHH7fnnn3elxnU9Ja+//nqaf/iYMWPc93v//fdd0PTmm29amzZtbO3atVasWDG/eymUo6rPqU9M6dKlbevWrVagQIE0/0wAmbd06dKESY6bb77ZqlSpEu5DAgDEucmTJ9uuXbssV65cLmiitD/CEjipy/L58+cTrgeKgqx77rnH+vXr524rgJo6dap9+umn1r9//4ser/sPHTrkKqQoNUi0WgUgtGrVquXaEehj7dq1w304AABY8+bNXW9R9RulwisiogFuoGj1SDMCWjnSjLVX3759XTqeZg2SateunRUqVMh9nT7vzV196qmnkm2yqWVbXXybXJUtW5Ymg0Am/fnnny5ND0gPGr36x+sCBAZjE4J5/k33b9add97pNtz524ynz6XVgQMHXEWu4sWLJ7pftzVb4M+mTZtcoKWv076mZ5991l577TX797//nezPGTJkiHsxvBcFTQDST39/P//8c8JtBiYAQLipQp76NXkxNiGY0v3b9cUXX9jp06cvul/3ffnllxbsWQTtb/rwww+tQYMG1q1bN3v66addil9yBgwY4CJI78X3jwtA2ihnXHsSvQUhAAAIN+21nT17tg0bNsy9xwMiYo+TdxlLWX26aMVJVfC8vCtA/go6JEe5p0qv27t3b6L7dbtEiRJ+v0aV9LS3yTctr0aNGm6FSql/3nKTvlR5TxcAGaPqRCNGjHB/YxUrVrTq1auH+5AAAHFOk3jffvutu96sWTOXVQREzIqTKtdpf5GaW6oEeMGCBRMuCoKUpqcy4WmlIEerRpop8F1R0u0mTZr4/Rr9YWzYsME9zmvdunUuoPIXNAHIHE2YaCbv1KlT7u9Mq7zqgwEAQLiof+DEiRPd9UaNGtk111wT7kNCnEjzO6AffvjBrTZdf/31Nn78eBdEeSloKV++vJUqVSpdP1ylyFUMomHDhnbVVVe5cuTaK+WtstenTx9Xclz7lORvf/ubvfPOO/bII4/YQw89ZOvXr7cXX3zRHn744XT9XACpU/qtmggq/UF/7z179gzq6u0ff/zh/p59O7oTpAEAfO3cudOljmsS/YorrrAbb7zRTeoDoZDmdyXXXnut+7h582ZXYCEQm+80e71//37XxVnpdnXr1nV7KLwFI7Zt25bo5+jnzpgxwx577DG78sorXVClIEpV9QAEjtJvR40a5f4+8+TJY71793Z93IJJQdNzzz3nJmi+++47dx8d3gEAXmpJo9RxtcipXLmyq8pM0IRQSvd0rlaWVC5cG/L27duXKG3Ou0qUHg8++KC7+DNnzpyL7lMa38KFC9N51ADSQ/sItZdJgZOaCIaiybRWmrzdEfRRt4FwGTp0qL3yyituUq9OnTr29ttvu8yI5GhcVLGiCRMmuDd3GiuVRaE2GgACQ6Wi9belvfZdu3ZNthUNEDGB05QpU1zKzokTJ9wvsG+kr+vpDZwARKamTZu6VWD1TQsFpedppUlBk84lug2Eg9KAlEquiq2NGzd2AVCbNm1s7dq1fosgqXDKDTfc4D6nlhnKhti6dWtIJhyAeKL07dtuuy3ZgmBAxDXAVWEIzaAprSZUb6gCiSaDgH86FSxdutTljPtWzQwV9jjFh2g4BytY0oZz7akVZVYoVVx7a/v373/R4xVgaXVqzZo1rvJrrL4uQDgoSFqxYoX7myQtD8GQnvNvugMn7XNYtWqVVapUyaIRgxPgnwIWVbVUO4C7776bFAjE5TlYb9I0KaiVI+2f8FIhI6XjTZ48+aKv0WSiCqjo6/T5okWLWo8ePdz+2+T+js6ePesuvq+LgrNIfV2AcO63VRW9q6++2q38AuEcl9Jd4UG/tEuWLMnM8QGIMMuWLUtoDaDCKwRNiFcHDhxwb9a8RYq8dFv7nfzZtGmTC7S8PQ2fffZZe+211+zf//53sj9H1WI1UHsvCpoA/H+a1580aZILmrSSW6tWrXAfEpD+PU7t27e3f/zjH/bbb79Z7dq1L0pLuOmmmwJ5fACCTOlF33zzTUKvtOT6qAHwT6l82t/04YcfukkH9ShUyWSl7w0cONDv1wwYMMDto0q64gTg/4ImVVlWk1tVV1YhiDJlyoT7sID0B0733HOP+zh48OCLPqfcU824AYgOW7ZscTPlGqRUCKJly5ZB/5nsZUIkU0N3BT979+5NdL9uK43VHzWH1iSi70ptjRo13ApVcpvY1RMtmH3RgGg2d+5cV71ZlDJbpUqVDH8vxhwEUrp/c5KWHwcQnfSmbvTo0W6yo1q1ataxY8eQbLylXxMimYIcrRgpddW7x0njnm4n1zpDK7UjR450j/P2Hly3bp0LqKj8BaSPtoP88MMP7nrbtm1ddlNmMOYgkDLfxRZAVNIbPL2pU0+MLl26BKSpdVrQrwmRTil0H330kX3xxRf2+++/29/+9jc7efKk9evXz31ebTeUauelz6t3kxqyK2CaOnWqe7P2wAMPhPFZANFJK7Eaj5o3b+4qXGYWYw4CKUNrlRpAfvzxR9u2bZtLQ/D18MMPB+rYAASR9mTcddddbpDKaAnljKBfEyJdt27dXPNnzUprZVZprNpv4S0YobHPd6JBe5NmzJhhjz32mCuuoj5OCqJUVQ9A+miFSeOTv55pGcGYg0BKdzny5cuXu9Krp06dcgGUSrCqCpHKsOqXXNWFIlmkl8IFgunMmTPuDWGoNqH7yy0X8s3jF+dg/3hdEM80QaF2N3nz5g3492aPEwJ5/k33b45m1LQXQg3/9EMWLlzoZqt79erlZtgARKbz58+7PU07duxwnde1rynYksstJ78cACAHDx60YcOGudRxpcEWLFgwoN9fQRJjDgIl3Zsa1L35iSeecGkKqiCkBn6avX755ZcTZpMBRBZtWh8/frxt3brVDSKa9AgFcssBAMk5fvy4C5qUxZQzZ06XvRSIFSZVfm7durX7qNtAoKR7xUmrS97cbqXmKddbZVf1Rmz79u0BOzAAgaGAZcqUKbZ27Vo32dG9e/dkyyoHGrnlAAB/Tp8+bcOHD3fpUdr20bNnz4CU6KeKHiIqcKpXr54tXrzYqlatatdee637ZdQeJ80YXHHFFcE5SgAZpjLKWilW4HLrrbdahQoVQrZ3yXt/0scBAOI7dXzUqFG2b98+y5Mnj9vuoT1OgUCmAyIqcNIbIy2tygsvvODyUVWKVYHUp59+GoxjBJBB8+fPt3nz5rnrHTp0sOrVqwfk+/qb0RP2MwEAUqLegePGjXNZSjly5HBBU2b2NSWdyGvatCmZDoicwKlhw4YJ15WqpxKtACKPBg1VKpKWLVta/fr1A/a9k5vRY5YPAJBaddfDhw+7/ba33357Qpn/QE3kPfvss+42mQ4IBuoxAjFKM22dO3e2mjVrBryCXnJ7l5jlAwCkRCl5aiatNL1y5coFfCJvwYIFNnPmzAAcKRCAwKlixYruTVFyIr2PExDrDh065NIe9HeqS6DS83yltHeJWT4AgL+y44ULF3bXVT0vPfttfdPxmjRp4sY2paKTmoeIb4D73//+96INfmqKq5S9f/zjH9a/f3+LZDQZRCzTDN5nn31mVapUsZtvvtlV0QMiCedg/3hdEMv0PlHVXW+88UZr1KhRur9eZcW96Xi+FCgpNU9jHQ1uEZENcJNrcjt06FBbsmRJer8dgAA5cuSIK+2q/HH98at3E4ETACCc1qxZ44ImBT0apzKbjueL1DxEfAPc5GgWQQ02AYTeyZMnXUsAVbxU0RZtuFXPNQAAwkVN17/66isX4NStW9datWqVoe+jlSR/20RIzUOoBWwtU38YamAGILTOnj1rI0aMcHubtNSsJoLqwA4AQLioqqt6Nan8uAoUdezYMcU98mndV5t0jxP7aRHxDXB9f/G9JY/3799v7777bqCPD0AqG2bHjBlju3fvdptte/fuzf4IAEBYqdy4Usc1safKeV26dLGsWTOe5KQ9S/QERFQGTtpw7kt/CEWLFrUWLVoEpXoXgOQpYNq2bZtddtllbqXJW7EIAIBwWb16tUshV48mUscR14HTwIEDg3MkANKtbNmyruu6Vn5LlSoV7sMBAMCaNWtm2bNndxPqOXLkCPfhAOELnFSyL61IGQKCQ5XzvINRenphAAAQrNRxb1qdtnRkpOw4EHOBU4ECBVLd3OdtQqYNgQAC6+eff7Z58+a5lSZV0AMAIJzU/kJFws6dO2fdunVzq01ALEp34KTmmmpye8cdd7jKJqIa+l988YUNGTKE2W8giFatWuWaTcv69esJnAAAYaXJcvVpWrt2resdqGJhZcqUCfdhAZEROH355Zf2+uuvu81+XjfddJPVrl3bPvzwQ5szZ06gjxGAmW3YsMEmTZrkrl911VXWtGnTcB8SACDOzZ4921asWOEyjW699VaCJsS0dNeG1OpSw4YNL7pf9y1atChQxwXAx44dO2zs2LEuHeKKK66wtm3bZrgfBgAAgaD3hEodlw4dOlBdGTEva0aqeH300UcX3f/xxx+7zwEILKU9jBw50s6fP2+VK1d2LQEImgAA4fTLL7/YzJkz3fWWLVta/fr1w31IQOSl6r3xxhuukdm3335rjRs3dvdppUn7LcaPHx+MYwTi2nfffWenT5+20qVLW9euXV0OOQAA4aLGtt6g6eqrr3blx4F4kO4Vp3bt2rkgSfuaDh065C4dO3a0devWuc8BCKzOnTtbvXr1rEePHq7RLQAA4aSqeX369HFBU+vWrcmCQNzI4lE5lDiiPlT58+e3o0eP0mcKEUt7mbJmTfe8BhDxOAf7x+uCaBCqsUk9oV588UX73//+Z3/5y1/sn//8p+sPBYT7/MtvIRBh1P9s1KhRVqlSJSrnAQAiwpEjR9x+2/bt21v58uWD+rMUND333HOu1LnS1eVf//pXUH8mkBZMaQMRRIPExIkTbePGja60v2Y/AAAIp5MnT9qwYcNcsSLtbQp2spJWmrw/Qx91G4gEBE5AhNDgoKIrq1evdqkQ6r6upeNwUrrE4MGDXQ67Puo2ACC+CkGMGDHC7WnXmKSxKdh7mpSe5/0Z+qjbQCQgVQ+IED/99JMtXrzYXVfJcZUeDzfSJQAgfmmybMyYMbZ7927LlSuX9e7dOyR78LSnSXz3OAFRGzjpD0lpREonUqWvvHnz2q5du9wfU548eQJ/lECMW7JkifubkhtvvNFq165tkYB0CQCI30IQSh3fvHmzq+jas2dPK1y4cEh+tgpBMEmHmEjV27p1q3tT16lTJ3vggQdcvqu89NJL9ve//z0YxwjENP0NTZ061V2/5ppr7KqrrrJIQboEAMQnZUD89ttvrndg9+7drVSpUuE+JCD6VpweeeQRa9iwoesY7TvzoF4z99xzT6CPD4h5RYsWdatMCqBatGhhkYR0CQCITw0aNLAdO3ZYjRo1rGLFikH9WZQfR7RI92/l3Llzbf78+Rc14qxQoYLt3LkzkMcGxI1IWmXyRboEAMQnnf+7dOkSkp/FflrEbKqecl7VZyYpzUporxOA1B08eNBGjx5tp0+fDvehAADgrFq1ymbMmBH0cuNJsZ8WMRs4qSzxm2++mXBb+x5OnDhhAwcOtHbt2gX6+ICY7FCtfhhr16616dOnh/twAACwDRs22KRJk2zhwoW2cuXKkLa6ULN39tMiJlP1XnvtNWvTpo3VrFnTzpw546rqrV+/3ooUKWKjRo0KzlECMUIrTMOHD3eNbbVHUIMGAADhpKyhsWPHuqyiK664wq688sqQpuY9++yz7jb7aRFzgVOZMmVcYQilGWlGQqtNd911lytTmTNnzuAcJRADzp8/byNHjnRFIJTW2qtXL8udO3e4DwsAEMc0Jmls0hil/oHqIxjsBrdJU/MWLFhgM2fODOrPBALh0oxuGNSbPgBpo32Bms3TrF6OHDnc30+BAgUsklDVCADii7IflAWhbIjSpUtb165dXfnxYI8xuq7gTEETqXmIJml6V/T111+n+RvedNNNmTkeICZps63yxxWIKL21WLFiFmmoagQA8TWhN2LECLfvVtstNDYlrZgcrDFGrrvuOjcmkpqHmAuctGybFpo18FdxD4h3KjeuwEn9msqWLWuRiKpGABA/tLJ07bXX2uzZs10WRK5cuUI2xoiCJtLzEJNV9bRZMC0XgibAP83mPfDAA1a1alWLVJr1o6oR8H+GDh3q+hMqtbZx48a2aNGiNH2d9v/q7yetE45AONWqVcuNTfnz5w/6z2KMQSxgAwMQJMuXL7d8+fK5zbYSrLzxQO1n8qZKUNUI8W7MmDH2+OOP2/vvv++CJrXgUDVZtRBIKc12y5Yt9ve//92aN28e0uMF0korPlphatSoUUKwFKqxiTEGsSCLJwNdzvRH98Ybb9jvv//ubteoUcMeffRRa9WqlUU65fLqZKENkXpTCwSD/jbGjRvnZtXuueceK1GihEUS9c3w5prrGHWd/UwIhWg4BytY0hvLd955x91WRoVSbB966CHr37+/369RxsU111xjd955p82dO9eOHDnieuLE0uuC6Kbz/bfffmuLFy+2ggUL2v333x/QAkBJJ+SefPJJe/nllyk4hIiXnvNvun+D3333XXvkkUfs1ltvdR9FzdLU/FbBlJZ8gXimWefx48e7Qapu3bpWvHhxizTsZwL8O3funC1dutQGDBiQcF/WrFndxKBKJqc0GaHVKLXnUOCUmrNnz7qL78ANBNNPP/3kgibfwgzBLDA0Z84cd6HgEGLJpRn5w1CA9OCDDybc9/DDD1uzZs3c5wicEM92797tGkFr9rl69erWoUOHoPfDyEhanj5qIKMULJDYgQMH3N9v0gkP3V6zZo3fr9Hf1ieffGIrVqxI888ZMmSIDRo0KNPHC6TFkiVLXBAjbdu2tdq1awd9Qk49P5mgg8V74KT0A/3RJdW6dWt76qmnAnVcQNQ5dOiQK+2qGevy5ctbly5d3Ex1JJYZJ9ccCIzjx49b79697aOPPnJFYNJKK1raR+W74hSpFTcR3VavXm1Tp05115VOqlTUYEzKNW3aNNGEXJ06dRJWnJigQ9wGTurTNHHiRPvHP/6R6P7Jkye72XUgHp08edKGDRvmPmo/U/fu3SMml9tfWp6OjZQJ4GIKfrRZfu/evYnu121/exU3btzo0nM7duyYcJ/2RIn+zlRQwlsgxlf27NndBQgm/W5OmDDBXW/QoIG1aNEioE1sfVPxnn32WTdJl9IeJyDapfudXc2aNe2FF15wfyxNmjRJ2OM0b948e+KJJ+ytt95KlMIHxAOVLNYqk2bVevbs6W5HCtLygLRTA1C9wVQRJG9JcQVCuu2bou6llNxVq1Yluu+ZZ55xK1H//e9/WUVCWBUuXNhNBuiiveiZTR1P2sTWS7e1BzBpXyYm6GDxHjgpj1vVWH777Td38SpQoID7nJf+OAmcEC80Q92pUyc7deqU5c6d2yIJaXlA+iiFrm/fvtawYUPXvFrlyLWa3K9fP/f5Pn36WOnSpd0+JU2SXHHFFYm+XuOhJL0fCLW8efO631utfmYkdTxpOp4Kn/grxsykHOJFugOnzZs3B+dIgCijWehly5ZZ/fr13YCkgSPSgiYhLQ9In27dutn+/fvd382ePXtcdczp06cnFIzYtm1bROxfBPzRfrkdO3a4DCHJTAZE0j2ySvXTWOcNnrzV+ZiUQ7zIUB+nYHRof+WVV9wApc2Eb7/9tpvlS0uH9ttvv93N9Ke1Xwa9MhAI+rP5+uuvXRWtK6+80jp37hzuQwKiAudg/3hdEAinT5+2zz77zAX+em+koD8zVPhr1qxZCbdbtmzpCkzQmwmxJKh9nPSG8auvvrIffvjB9u3bl7AJ1su7CTGt6NCOaKSZNwVNmnlTA2gAAMLp/Pnzrh2GgqY8efJYhQoVAr5HVkETGQyIZ+nONXj00Udd6VWl7OkPUxGa7yW9Xn/9dbvnnntcDq6WlRVA5cqVyz799NNkv0Y9NrQBXz0wKlWqlO6fCWTG/Pnz3UVUSUubw0NNeedquKnZQH3UbX/3AQBin94XjRs3zrZv3+5S8/Q+zbvXLjO0oqRUvRtuuMF9JB0P8S7dK04quaxVJVVniYYO7XRnRyBplcmbtqDf03r16kVMbyZJeh8zgwAQH6nj69evd2lz2sKQUsZOerBHFshk4KRVpUCt8oSiQzvd2REo69atc4OTqBS/mv1FUm8m7/Wk9wEAYpPO9SoBvnLlSpdKd9ttt1m5cuXCfVhAzEp3qp5mtBWIaANiNHRo12qWNnt5L1rGBjJTdlwFTJS2kNl+GJnNO/f+fG8ZWH/3AQBif1wSFYO4/PLLw304QExL94pT165d3eZDLQNr42G2bNkSfV7lmSOpQzvd2REoGpDuvvtu93sbyqApaR8N5Zin1JuJfk0AEB80FiltXHvES5UqFe7DAWJeugMnNQXUvqRevXq5lLrMvIGkQzsi3eHDh10qRKFChdztpGml4drPpJxzf3nn5KIDQOxTL7GSJUsmTF4TNAERGjhNnTrVZsyYEbA0IDq0I1KdOHHChg8f7oqLKEU0FEGTv9Wl5PYzAQDijzJvNDbpvVGPHj3IqgEiOXDSqk4gm/PRoR2RSMHSiBEj7NChQy44V4n8cK0uJe2jwd4lAIhPu3fvdtslVFgrZ86cF22XABBhgdNrr71mTz75pOu3FIjmaqK0PH+peTJnzpwUv/bzzz8PyDEAvqs+o0ePdoG8AialpebNmzfoK0vap+dvdWnatGnuNnuXACB+aSJPE3pq5VK+fHnr0qULE8tApAdOehN56tQpV4RBbyqTznboDxuIVtpjpz5lSoXQHjz9vhcuXDhk+5b8rS7RRwMA4pv2cis9T1sZlJHTvXt3VpuAaAictAcJiEUKVrSH7/fff3fVHjUwafNtMCS3bymlankAgPhz5swZt9KkYkUFCxZ0E3ra8x0MyWVDAMhEVT0gFp0/f96l52mlRykQFStWDNrPSm7fEqtLAABfR44csWPHjlnu3Lld0JQnT56g/azksiEA/J9LMzsLolxbX4EsHAGEklLzVMVx69atQW8iyMoSACAt1NdSlYZVEMLbGiNYqOIKBDhwUn7tU089ZWPHjrWDBw9e9Hn9YQPRxJv+ICrrGorO66wsAQCSo6BFK03esalo0aIh+blUcQUCHDipot4PP/xg7733nuttM3ToUNu5c6d98MEH9p///Cc4RwkEyYYNG1xp1xYtWrgBIjMNnQEACITZs2fb4sWL3V7bYKaNJ0U2BBDgwGnKlCn25ZdfujeaWjpu3ry5ValSxZXG1ObFnj17pvdbAmGxY8cOt3KqSnrqJQYAQLjNnz/f5s2b565r1SmUyIYAUpbuBgAqN16pUqWE/Uze8uOamfjpp5/S++2AsFCgNHLkSFcQQoF/p06dWG0CAITVL7/8YrNmzXLXW7ZsafXq1Qv3IQHITOCkoGnz5s3uevXq1d2MvXclqkCBAun9dkDIHT161IYNG2anT5+20qVL22233ebKjwMAEC7r1q2zyZMnu+tXX321NWvWLOg/U+XHBw8ebK1bt3YfdRtAAFP1lJ6nGZFrr73W+vfvbx07drR33nnHzdy//vrr6f12QEipuImCJjUTLFKkiPXo0cNV0wMAIFy2bdtm48aNc0UZ6tSp4wKZUGRBUH4cCHLg9NhjjyVcb9WqlWsWumzZMpfudOWVV6b32wEhn9FTNUilmaofRq5cucJ9SACAOKdCEFrtqVq1qpuQDmbQ5NvkduPGjZQfB9Ih0+2gK1So4C5ANFC+uAaHcuXKWf78+cN9OAAA2M033+xKjjdp0iToqeO+q0y+KD8OBDBwWrBggZup79ChQ8J9qq43cOBAl/6kP/q3337b9cEBIomq5qm/WLZs2dzt+vXrh/uQAABx7ty5c25cUsCiYOmaa64J+gqTAqO5c+cmCpq0d71y5cqUHwcCGThp06BKkHsDp1WrVtldd91ld9xxh9WoUcNeeeUVK1WqlJvFACKFBofp06fbrl273H4mUvMAAOF29uxZ++KLL6xMmTJ24403BjQ1L2mgpMlDvYfz7mPSezn9PG+T2759+7KvCQh04LRixQp7/vnnE26PHj3aGjdubB999JG7XbZsWbf6ROCESKIS+codl+3bt1u1atXCfUgAgDimwEbvoXbv3u2qvCq40b7bYBV8UANd331MWbNmdZ+nyS0QxMDp8OHDVrx48YTbP/74o5sl8WrUqJF7YwpECgVMc+bMcdfbtWtH0AQACCut/kyYMMG2bNniKrqqSFEggyZRQOQbKInvCpNSAllhAoIcOCloUv8mrSwpL1eV9AYNGpTweZV39u4hAcJt9erVNm3aNHddpfMV2AMAEC4KXKZOneqqEWtPU/fu3a1kyZIB/zlaRdJKkzdQUnCmn8cKExDCwEkz9urb9NJLL9mkSZPcXpHmzZsnfH7lypVucyEQbps2bXIzetKwYUMXOAEAEE4//PCDm3SWW265xaXQBYM3MPINlC69NNNFlAGkJ3DS/ib9oetNaJ48edymRt/GoZ9++qlr2AaEk6rnffPNNy4dolatWgHfdBuIjboMYgAQX/bv35/QI0lFtmrWrBm0n6XxhVQ8IDjS/O6tSJEibqO9NjIqcEraZ0Adr3U/EE76vVRagsqttm/f3m2CDTc6swNAfFOPpq5du9qBAwesQYMGAf3eTM4BoZPuv6zkmoYWKlQoEMcDZIg3l9v7u9ipUyeLFEk36tKZHQDib2yqXr16UH4Gk3NA6IR/Oh7IpNOnT9vHH39s69evt0ikGUDvwElndgCIDzt27LAPP/zQjhw5EtSfw+QcEDoETohqqvA4cuRI1+BWVfSUshBplDah2cAbbrjBfaSiEQDE/p4mjU179uxJaIsRLEzOAaFDEiyiuhCE9tZpVi9Hjhx2++23R2ReNxt1ASB+aC/48OHDXTZE6dKlXVXiYPJXRQ9AcETeu0wgDZSOMHnyZNuwYYMLTHr06GHFihUL92EBAOLYqVOnbNiwYXbs2DFXVEtjk28F4kChIAQQHvyVISqDphkzZtiqVatc1TxVKlJjZgAAwpk6PmLECDt48KDly5fPVXhVz8tgoCAEEB7scULUUdf1n3/+2V1X9byqVauG+5AAAHFOE3rab5szZ07r3bt3slWIA4GCEEB4sOKEqKOSrvXq1XOpeVdeeWW4DwcAALvuuuvcapMKASlNL5iUnqeVJm+5cwpCAKFB4ISoo/S8jh07JlQRiiTknQNAfMqTJ4/17ds3JGMTBSGA8CBVD1Fh8+bN9s0339iff/7pbkdi0OSbdz5r1iz3UbcBRJ+hQ4dahQoVXMXOxo0b26JFi5J97EcffWTNmze3ggULukurVq1SfDxix08//WTLly9PuB2qsclbrXXmzJnuIxN0QGgQOCHi7d6920aPHm1Lly61BQsWWCQj7xyIfmPGjLHHH3/cBg4caMuWLbM6depYmzZtbN++fX4frz49aofwww8/uHOUitW0bt3adu7cGfJjR+gsXrzY/Z9//fXXbpwKdjbD4MGD3e+VPkZiz0IgHjBFgYimfHH1w1C1ovLly7uZ30hG3jkQ/V5//XW75557rF+/fu72+++/b1OnTrVPP/3U+vfvf9HjVUnN18cff2zjx4+32bNnW58+fUJ23Aid1atXu6brcs0111jJkiUDmub95JNP2ssvv5xwW9kWCpioogeEF4ETItbx48dd0KS+GCVKlLDu3btHVDqCv/1M5J0D0U2TNFrdHjBgQKJ9lUq/S+uKt85Z58+ft0KFCiX7mLNnz7qLl/r+IDps2rTJJkyY4K43aNDAWrRoEfDy4lrF1MV7u2LFimQzABEgct6FAj7OnDnjgqYjR464PQM9e/Z0ew0iSXJ9NJgFBKLXgQMH7MKFC1a8ePFE9+v2mjVr0vQ9nnrqKStVqpQLtpIzZMgQGzRoUKaPF6GlcuNK5dQKUM2aNa1du3YZ3tfkO/m2cePGRIHRL7/8kui26OeQzQCEF4ETIo4GhrFjx7r9BKpSpH4Y+hhplfLYzwQgqf/85z9uT6ZWC1Ka7NGKlvZR+a440cg7sp04ccKlZWpVUitAnTt3dquRgUi/86XASPvqvCtOuq1mupdccgnZDECYETgh4miQaNq0qZv51UqTVpwicWWJ/UxA7FH/Hb1B3bt3b6L7dVspwyl59dVXXeCk80JqPeayZ8/uLogeuXPntoYNG9r69eutW7duqaaOpyf9TipVqmSVK1f2G2TR2gKIDPwVIiJVqVLFHn744ZAPFP5Wl5JbWWI/ExB7LrvsMrdvRYUdbr75ZnefVgZ0+8EHH0z26/Qm94UXXrAZM2a4N9eIPZogU5NblZ5Py9iUdOxILf1OPaB8U71J+wYiD4ETIoYGmRo1aljhwoXd7XDMrvlbXUpuZcnbRwNAbFEKnd7EKgC66qqr7M0337STJ08mVNlTpbzSpUu7fUry0ksvuXPByJEjXe+nPXv2uPuVYhzONGNkntLy1KtJlfMUVKdnbEo6dpB+B0Q/AidEhHnz5rkZ3YULF9oDDzxgOXPmDMtx+Ftd8pacZXAD4oPSsPbv3++CIQVBdevWtenTpycUjNi2bVuivS3vvfeee4N96623Jvo+6gOliRhEJxUJGTdunG3YsMHtue3Ro0e6vj5pVgLpd0D04y8WYaeu697VnSZNmoQtaEpudYmVJSD+KC0vudQ8rRr42rJlS4iOCqGiMUCNbRU0aQxQel56+Rs7GEuA6EbghLBau3atTZkyxV1XQYhmzZqF9XjYtwQA8U1Bk/aqrVy50q0sdu3alYqHABwCJ4TN1q1b7auvvnKDlFJhUup5EiqsLgFAfNPE2c8//+yud+rUyapWrRruQwIQIQicEBbKFx81apSrYnf55Zdbx44dM9xEEACAQKWOf//99+56mzZtUi0r71uJVanmGsfmz5/PHiYgRvEXjbDImzevFS1a1KVBaEN1Sk0EAQAIBRUAyZUrl9WvX9+uvvrqVB/vW4l11qxZCff79vwDEDsInBAWKgDRu3dv1x8lW7ZsYTkGfz2bmB0EgPhVqlQpu++++9JcRt63Eqsv355/AGIH7xIRMmfOnHEd12vXru1ue3tihIu/nk3MDgJAfNm9e7ebxFNvLm9GREYqsfry7fkHIHYQOCFkqztjxoxxZXuPHz/uKuiFm7+eTQCA+HHo0CEbMWKE68OlLIj0Vs/zrcTqb48TgNhC4ISg00ze+PHjXdCkVaaKFStaJPDXswkAEB80iTds2DA7efKklShRwu27TS8qsQLxhcAJQaWgZOrUqbZmzRq75JJLrHv37layZEmLBPRsAoD4TR3XStORI0esYMGC1rNnT8uRI0e4DwtAhCNwQlCprOuyZcvcik6XLl0iZrVJmCkEgPhz/vx51w5j7969rgiEUvTSWgyCokJAfOOvHUGzcOHChH1D7du3txo1aoT7kAAAcZ46rsbr27Zts+zZs7uVJq04pRVFhYD4RvMcBM2FCxfcx+uuu84aNGgQ7sMBAMQ577ikVaLbb7/d7W1KD4oKAfGNFScETbNmzax8+fIJJV7DifQKAID6Bnbt2tWl6alnU3pRVAiIb7xzREDt2bPHpT0oBULKlCljkYD0CgCIX0rNU6lxBTsqVJSRoEkoKgTENwInBMy+ffvsiy++SKhQlDt3bosUpFcAQHxasWKFTZ482erXr28dOnRwwVNGUVQIiG/scUJAqKTr8OHDXYlXzeYpHSKSaGbQO1iSXgEA8WHt2rX29ddfu+vKhEhv0KQ078GDB1vr1q3dR90GEL9YcUKmqXmggiY1E1QDwR49erhGt5GE9AoAiC9bt251FfSUZVCnTh274YYb0v09SPMG4IvACZly9uxZGzlypB08eNDy589vvXr1spw5c1qkIb0CAOKHij+oV5NWiC6//HLr2LFjhlL0SPMG4IvACRmmAWnMmDG2a9cuy5Urlwua8uXLF+7DAgDEscOHD7ssCE3slStXzm699VaXQp6RCqxNmzalih6AyNrjNHToUKtQoYLlyJHDGjdubIsWLUr2sR999JE1b97cFSDQpVWrVik+HsGj1Lz9+/e7tDwVgyhSpEi4D4l8dACIc7t373Yp5MWKFbPu3bunuufWd9zQRal5s2bNSkjR00el+ekjad5AfAv7ipNWLB5//HF7//33XdD05ptvWps2bdyGTp30kpozZ45rWqdZIAVaL730kjvRrV69OiL6BcUTBa533nmnHT16NMOlXQONfHQAiG81a9Z0k3l6D5GW1HHfccOXbi9YsMBmzpwZxKMFEE3CvuL0+uuv2z333GP9+vVzJzsFUEr7+vTTT/0+fsSIEXb//fdb3bp1rXr16vbxxx/bn3/+abNnzw75sccrBUq+wZNWC8OxkuTvPvLRASD+6PyvVSavypUrW968edP0tb7jhi9S8wBE1IrTuXPnbOnSpTZgwICE+7JmzerS7zTLkxanTp2y8+fPW6FChfx+XjnOungdO3YsAEcevxYvXuxm35QzXq1atbCuJEnS++jqDgDxRZOnEyZMcA3Ytdc2ufcDyfEdN+S6665zBYWowAogogKnAwcO2IULF6x48eKJ7tftNWvWpOl7PPXUUy5NTMGWP0OGDLFBgwYF5Hjj3a+//mrTpk1z1zVABStwSro5VwNXcitJSe/zHh9lxwEg9uncP3XqVPv9999dAQhNjqY3cPLXrkKBEwAkFdVnhv/85z82evRot+9J+5380WqW9lB56aRatmzZEB5lbNi4caNNnDjRXW/UqJFdc801IV1dSm4lKel9lB0HgPjxww8/2LJly9wY0KVLlwyljjNuAIiKwElV2DRDpH4LvnS7RIkSKX7tq6++6gInvXG+8sork32cOoXrgozbuXOnK+KhdIhatWrZjTfemKHu60lXkSTpfRrA/K0upbSSxOoSAMSfhQsX2ty5c9319u3bW40aNTI8HrHCBCAtwnqmUBnrBg0auMION998s7vPW+jhwQcfTPbrXn75ZXvhhRdsxowZ1rBhwxAecfxROqUKcmgfWaVKlaxz584ZaiKY1j1KmvXzt7qU3Iwgs4QAEH9Wrlzp3gPI9ddf795LpBXVVwFkVNinWJRG17dvXxcAXXXVVa4cuSrjqMqe9OnTx5UZ114lUflxneBGjhzpluS110by5MnjLgisJUuW2OnTp90+sm7duqW5iWBSad2jlFy+OQAA3gnWefPmuetqY5LeIkBUXwUQtYGT3oyriaqCIQVBKjM+ffr0hIIR27Ztc5X2vN577z1XjU9V3XwNHDjQzSAhsFTqW+XhFdhqhTCj0rpHScg3BwAkR+8JNOGqKq/ab5veLAiqrwKI2sBJlJaXXGqeCj/42rJlS4iOKn4p/1srSxpQNEAFohBESqtIrCwBAFKjlPFs2bK565rQu/baazO0p+nJJ5909zP2AIjKwAmRQ+XhVQhCg9JNN92U4dS8pNijBADIqCNHjtjnn39uzZs3T3U/U9JASal9apLOniYAmUXghAQaVCZPnmwbNmxws3pNmza9qMcWAAChpH3Pw4cPt6NHj9rPP/9sderUSbEKXtLiDxUrVmRPE4CA+P+bhxDXNJhob9mqVatcel7Xrl0JmgAAYXX27FlXDOrgwYOWP39+69WrV6qlw5MWfxDvPij2NAHIDFackDDQLFq0yF1XafgqVaqE+5AAAHFMKXdjx461Xbt2ufRxBU358uVLd/EHfZ3SztnTBCCzCJxgS5cute+//95db9u2rdWuXTvchwQAiGPalzRp0iTbtGmTSx3v0aOHFSlSJMPFiGhwCyAQOJPEuRMnTrgUPdGmW/XEAAAgnNasWWOrV692qeNqW6J+jmlFSwsAwULgFOfUNPj222+3devW2XXXXRfuwwEAwGrUqOHGpEKFClnlypXDfTgA4FAcIk55N8xKpUqVXIpeepsIenPQVeZVjXL1Ubf93QcAQGp8izmoh+AVV1yRpq9j3AEQCqw4xSFVJxo/frx17tzZihYtmqnvlbTsq1fS+0ibAACkRKl5y5cvd1VdL7vsslSb2L788sv0agIQUqw4xZnjx4+7fhi7d+9O2NuUGUnLvuq2v/sAIJoMHTrUKlSoYDly5HB7P71VR5Mzbtw4q169unu8CuxMmzYtZMcaCzZu3GgTJkxwH5csWZLsJN2sWbPcx3bt2iW6PWzYMMYdAEHHilMcOX36tAua1IFdeeO33HJLpr9n0rKv3v4Y/u4DgGgwZswYe/zxx+399993QdObb75pbdq0sbVr11qxYsUuevz8+fPdXtEhQ4ZYhw4dXN8htXVYtmxZmlPN4tnOnTvda65VI1Eg1KRJEzd+6LXVGDJ37txEgdEvv/zit1cT4w6AYMri8d3sEgeOHTvmmuipA3la+kHEivPnz7sZue3bt7uCEHfeeacVLFgw0983afqEtwxs0vsoBQsgWs7BCpYaNWpk77zzjrutN/Rly5a1hx56yPr373/R41X17eTJk/bNN98k3Hf11Vdb3bp1XfAVK69LMBw4cMA+/fRTN7Enzz//vF24cCHRYxQItWjRwubMmZMQGCW9/eyzz17Uq4lxB0Cgz7+cVeKABiGlkShoUhqJmgEGImhKqewrueUAotG5c+dcb7sBAwYk3KeS2K1atbIFCxb4/RrdrxUqX1qhUh+i5Jw9e9ZdfAfueKPnrCwIBU2lSpVyqXpJgyZRcKT/A61EJbfHiUAJQChwlokDSnFYv369G1SUTlK8ePFwHxIAROwKiN68Jz1P6rZ6C/mzZ88ev4/X/clRWt+gQYMsXikY+uqrr9wMb+HChV2DW+29nTFjRqKqr74V9pJOyDFBByDUCJzigFJGtm7d6nLGy5UrF+7DAYC4pxUt31Uqrb4oHTBeKBhSgYcpU6a4Knq5c+dOSPXWKlLSPU7ezwFAOBE4xQGl5/Xp0ydDfZoAIJ4UKVLE7ZXZu3dvovt1u0SJEn6/Rven5/GSPXt2d4lnen3uvvvuhLEpudRvAIgUlCOPUeqFsXDhwoTbBE0AkDr1D2rQoIHNnj074T4Vh9BtrYL4o/t9Hy8qk53c4+OVUvCmTp1q27ZtS7iPsQlANGHFKQapZK7SHzRIafa0SpUqQamex0ZcALFIKXR9+/a1hg0b2lVXXeXKkatqXr9+/dzntYJfunRpt09JHnnkEbv22mvttddes/bt29vo0aNdL6IPP/wwzM8kcmg8+vbbb93rokk9jR9PP/004wiAqMIZK8ZoL5M23GqQUincypUrB+T7epsP0pUdQKxTefH9+/e7c5wKPOhcqobh3gIQWjFRlTevpk2but5NzzzzjJtUqlq1qquoF+89nHwn3Jo1a5Zw/+TJk+3XX391q02MIwCiCYFTDNEAP2rUKDdYVatWzTp27BiwNAgNfHRlBxAvHnzwQXfxR/2DkrrtttvcBRdPuNWrVy/hPq06rVq1yl1nHAEQbQicYsThw4ddPwz1BVHlvC5duiSaEc0spedppYmu7ACAtKwybdy40apXr24dOnRwn1u5cqUtWrTIXWccARCNCJxipGHjsGHDXA6+UknUqylbtmwB/Rm+ZWIpDQsASC2tW/vA1J9Jk3hqKqyVpzp16jCOAIhaBE4xQFWgGjVqZIsXL7aePXu68uOBRplYAEBqhYPUcN2b1q2S7Dt37nQ9mlSpkGIQAKIdZ7AYobK3qgAV6JUmAADSWjioRYsWLg1Pty9cuGDly5cnYAIQMziTRSn1Ffnpp5/s6quvTlhhClTQROlxAEB6V5j0UePRwIEDbd68eYwfAGIOZ7MopMHpm2++cU1uN2zYYHfddVdAmwhSehwA4C9Q0qTd4MGD/a4w5cyZ0xo3buy+7qmnnrKWLVuG+/ABIKAInKLQ999/74ImDVbqjRHozuuUHgcA+JtIq1ixYqLxQYUf9Pn58+e7lHHJkyeP1a9fP8xHDgCBF7h61QiJBQsWJAQyKvFao0aNgP8MzSp6gzFKxgJA/Eo6kSa+48M111zj9jD17dvX3Zc9e3br1auXFSxYMIxHDQDBwYpTFPnll19s5syZ7vr1118fkBk9f/uZKD0OAPHLd1zQdW8qnj4qKLrkkksSxocBAwbYlClTbN26dW4vk9phqC0GAMQiAqcosX79eps8ebK7roIQgVoFSm4/E3uaACA+pLSPSa677joXFPkr9jBr1iw3qaeg6tZbb3VV9AAgVhE4RYkCBQpY3rx5rUKFCta6desM7Wvyt7rEfiYAiG8p7WMSBUrebIekSpYs6VaglDperVq1EB41AIQegVOUKFq0qN19992WK1euDBeD8Le6pABK171pGOxnAoD4ktw+prSMC1dccYWVLVvW8ufPH7LjBYBwIXCKYEeOHHEXrTKJVpwyw9/q0rRp0xI+x34mAIg/SSfQku5jSjoubNq0yYoUKWL58uVztwmaAMQLAqcIdfLkSRs+fLgLnLp162ZVq1bN9Pf0t7qkFAz2MwFA/PJXECi5prVbt261UaNGWe7cue3OO+9MCJ4AIB4QOEWgs2fP2siRI+3gwYNuJi9QFYqolgcASCqtE2h79uxxQZP2y2pcUr8mAIgnBE4RRgPSmDFjbNeuXW4/k1ImAjWjx+oSAMBfoaDkVpi8Dh8+bCNGjHATe+XKlXMV9NT8FgDiCYFTBFEJ2IkTJ9rmzZvtsssus549e7o8cgAAAiW5NhTJOXHihA0bNsx9LFasmOvVlC1bthAeMQBEBqaLIoQGMBVq+O2339ymXO1rKlWqVLgPCwAQY9LThuLMmTNupUkrTmqLoSyIHDlyhPBoASByEDhFCA1e586dc9c7d+5slSpVylQahpoXqt+TPuo2AACi9DxvW4vUyo2fP3/eLly44IpBKGjKbHVXAIhmpOpFCOWKK2Bq2LChyx8PZRoGACB+9jQ9+eSTaS4UpECpX79+dvz4cStcuHAIjxoAIg+BU5jt3LnTdV5X4KSZv8wGTelNwwAAxLb0TqbpcRqbypQp427nzJnTXQAg3pGqF0YbN260Tz/91CZMmOBSIcKRhgEAiG3pnUz7/vvv7ZNPPrFFixaF6AgBIDqw4hQmO3bscGXHVUlPwU0gy7rSrwkAkFLz8+QsWLAgIbBSoSIAwP9H4BQG+/fvdw1utem2cuXKdvPNNyesEAUC/ZoAAOmdTFu5cqXNnDnTXb/++uutQYMGIT1OAIh0BE4hdvToURs+fLidPn3aSpcubV27ds3UrF5GGhkCAOJHWibT1q9fb5MnT3bXGzduTIo3APjBO+wQOnXqlAuajh075hrb9ujRwzW6zQwq6AEAMjOptn37dhs7dqxLHa9du7a1adMmoFkQABArCJxCaO/eva6JYL58+Vw/jFy5cmV6IKSCHgAgM5NqKlSk8aVKlSrWqVMngiYASAaBUwhVrFjRevfu7QKm/PnzB2QgTM+mXwBAfEjPpFqLFi2sYMGCVqNGDQpCAEAKCJyCTAPWyZMnLU+ePO52+fLlAzoQTps2LeFzVNADAKRlUk2p40oV96bv1alTJ0xHCgDRg8ApiDRgTZ8+3X777Te30lSsWLGAD4RU0AMApKeS3tmzZ23EiBEucOrevbtlz549jEcKANGDwCmI5s6dm9BAcN++fZkOnOjPBABI6x5Yf5Nqepx6CO7atculjZ84cYLACQDSiMApSJYsWWI//PCDu962bVu74oorMv09WV0CAGS0GISq5k2cONE2b97sVpt69uxphQsXDtMRA0D0yRruA4hFSs2bOnWqu968eXPXEwMAgHAVg9B92hOr8UkFILp162alSpUK09ECQHQicAowzeRNmDDBXVfX9euuuy7chwQAiHFKz/OWEfdXDGLOnDm2dOlSd71z585WqVKlsBwnAEQzUvUCSDN6P/30k124cMGVdW3Xrh39MAAAQZfSHljtY/Lut9W4VKtWrbAdJwBEsywe79p+nDh27JjroXT06FHXiDbQVK1IRSHUFyO5Lu2B7voOANEi2OfgaBXs10UFijZt2mRXX311wL83AMTL+Zd34gGgIMcb1Kg6UatWrULa9R0AgJTGJlV1zWxlVwCId+xxyqTTp0/bRx99ZPPmzUvTIDZ48GBr3bq1+6jb/u5Lb9d3AAB87dy509566y3bsmVLuA8FAGIGK06ZcP78eRs1apRLgVi4cKHVr1/fcubMma5VJPG3spRa13cAAPw5cOCAa3CriT2NTRUqVAj3IQFATIiIFaehQ4e6E3uOHDlc6W7vJtbkjBs3zqpXr+4eX7t2bVdiNdRUAELHsX37dncc2nzbqVOnFFeS/K0iJbeypD1NCqhuuOEG95FmtwAQfIcOHXL9jZTnXqBAAbvrrrvc+T2lxz/00ENWrVo1N3FWrlw5e/jhh12ufLhy9YcNG+aCptKlS9stt9wSluMAgFgU9hUndTB//PHH7f3333dB05tvvmlt2rSxtWvX+s3Hnj9/vt1+++02ZMgQ69Chg40cOdJuvvlmW7ZsWUCazKaFApwpU6bY+vXrXf74mTNnbNCgQamuJCW3iuTvPprdAkDoKWjavXu3zZo1y2UV9OvXz+6991431viza9cud3n11VetZs2atnXrVrvvvvvcfV999VVIj/3UqVMuaFLwpMa2PXr0cI1uAQAxUlVPwVKjRo3snXfeSehsXrZsWTeD179//4ser6Z9J0+etG+++SbhPlUJqlu3rgu+gl25SC/XzJkzXfqDAp3u3bvbgw8+6AZZL60SSdL7tDKWtFKeUD0PQLyI5Kp6v//+uwt+Fi9ebA0bNnT3TZ8+3ZXw3rFjR5obxioboVevXm6sSuv5PLOvy7lz5+zLL790e5vy5s3rVsr0/QAAMVJVTyd6NeQbMGBAwn1Zs2Z1VekWLFjg92t0v1aofGmFatKkScmWB9fF98XJDKXmKWgSpeZdfvnlaV5JSm4ViZUlAAg/jS9Kz/MGTaLxSOPSzz//7BrHpoV38E0paAr02KQCRQqalC7Yu3dvgiYACIJLw72BVXuFihcvnuh+3V6zZo3fr9mzZ4/fx+t+f5TSpzS6QFH++o033uiOu06dOqk2HvR3HwAg8mgcSZoiruCnUKFCyY4x/sa1559/3qX3pSTQY1Pz5s1d8NWgQQMrWrRowL4vAOD/i/mcMK1m+a5QaWBRKmBmXHXVVYlus5IEAJFLad8vvfRSqml6maXxpX379i7dT3tcQzk2aRxSFgQAIEYDpyJFitgll1xie/fuTXS/bpcoUcLv1+j+9DxeDWl1AQDEpyeeeMLuuOOOFB9TqVIlN46ovYQvVURV5bzkxhiv48ePW9u2bd3+ookTJ1q2bNlSfDxjEwBEn7AGTqr2o7SC2bNnu8p43uIQuq2CC/40adLEff7RRx9NuE9FGHQ/AABJKXUtLelrGkeOHDni9t5qbJLvv//ejUsqZJQcrRZpr60Coa+//tq1qAAAxJ6w93FSqsJHH31kX3zxhUuV+Nvf/uYqEakErPTp0ydR8YhHHnnEVTl67bXX3D4opUMsWbIk2UALAIC0qFGjhls1uueee1w/QRVc0Nii6qneinoqwKA+gt5+gwqa1K9P49Ynn3zibms/lC7aCwsAiB1h3+Ok8uL79+93+4E00KisuAIjbwGIbdu2uYpGXk2bNnX9NJ555hlXcKFq1aquol6oejgBAGLXiBEjXLDUsmVLN/Z06dLF3nrrrYTPq7eT+gyqZ5Koh6Aq7kmVKlUSfa/Nmze75u4AgNgQ9j5OoRbJPUQAINZxDvaP1wUAIv/8G/ZUPQAAAACIdAROAAAAAJAKAicAAAAASAWBEwAAAACkgsAJAAAAAFJB4AQAAAAAqSBwAgAAAIBUEDgBAAAAQCoInAAAAAAgFQROAAAAAJCKSy3OeDwe9/HYsWPhPhQAiDvec6/3XIz/w9gEAJE/LsVd4HT8+HH3sWzZsuE+FACIWzoX58+fP9yHETEYmwAg8selLJ44m/b7888/bdeuXZY3b17LkiVLhqJSDWzbt2+3fPnyWbzh+fP8ef7x+/wD8RpoyNHgVKpUKcualWzxeB+bOO7QicZjFo47tKLxuI+FcFyKuxUnvSBlypTJ9PfRf0y0/EIFA8+f58/zj9/nn9nXgJWmi8X72MRxh040HrNw3KEVjcedLwTjEtN9AAAAAJAKAicAAAAASAWBUzplz57dBg4c6D7GI54/z5/nH7/PX3gNIlO0/r9w3KETjccsHHdoReNxZw/hMcddcQgAAAAASC9WnAAAAAAgFQROAAAAAJAKAicAAAAASAWBEwAAAACkgsDJj6FDh1qFChUsR44c1rhxY1u0aFGKjx83bpxVr17dPb527do2bdo0i5fn/9FHH1nz5s2tYMGC7tKqVatUX69Y+//3Gj16tGXJksVuvvlmi6fnf+TIEXvggQesZMmSrqLN5ZdfHtV/A+l9/m+++aZVq1bNcubM6TqXP/bYY3bmzBmLRj/99JN17NjRdU/X7/KkSZNS/Zo5c+ZY/fr13f99lSpV7PPPPw/JscLs0KFD1rNnT9fwsUCBAnbXXXfZiRMnUnz8Qw89lPD7Wq5cOXv44Yft6NGjQT3OaBxTo3UcjNbxK1rHnWgbL6L1HP9TOo97woQJdsMNN1jRokXd+bFJkyY2Y8aMwByMqurh/xs9erTnsssu83z66aee1atXe+655x5PgQIFPHv37vX7+Hnz5nkuueQSz8svv+z57bffPM8884wnW7ZsnlWrVnni4fn36NHDM3ToUM/y5cs9v//+u+eOO+7w5M+f37Njxw5PPDx/r82bN3tKly7tad68uadTp06eaJXe53/27FlPw4YNPe3atfP873//c6/DnDlzPCtWrPDEw/MfMWKEJ3v27O6jnvuMGTM8JUuW9Dz22GOeaDRt2jTP008/7ZkwYYKqrXomTpyY4uM3bdrkyZUrl+fxxx9357+3337bnQ+nT58esmOOZ23btvXUqVPHs3DhQs/cuXM9VapU8dx+++3JPl7j0i233OL5+uuvPRs2bPDMnj3bU7VqVU+XLl2CdozROKZG6zgYreNXtI470TheROs5flo6j/uRRx7xvPTSS55FixZ51q1b5xkwYIA7jyxbtizTx0LglMRVV13leeCBBxJuX7hwwVOqVCnPkCFD/D6+a9eunvbt2ye6r3Hjxp6//vWvnnh4/kn98ccfnrx583q++OILT7w8fz3npk2bej7++GNP3759ozpwSu/zf++99zyVKlXynDt3zhML0vv89djrr78+0X0aYJo1a+aJdmkZnJ588klPrVq1Et3XrVs3T5s2bYJ8dNCbGP0fLV68OOG+b7/91pMlSxbPzp070/x9xo4d6978nT9/PijHGY1jarSOg9E6fkXruBPt40W0nuMtDcftT82aNT2DBg3K9M8nVc/HuXPnbOnSpW6Z3Str1qzu9oIFC/x+je73fby0adMm2cfH2vNP6tSpU3b+/HkrVKiQxcvzHzx4sBUrVsylyUSzjDz/r7/+2i2BK2WiePHidsUVV9iLL75oFy5csHh4/k2bNnVf403P2LRpk0sXadeuncWDWDr/RRu9xkrPa9iwYcJ9+r/Q7+zPP/+c5u+jND2lslx66aUBP8ZoHFOjdRyM1vErWsedeBkvwv33GCh//vmnHT9+PCB/k4E/U0axAwcOuD88/SH60u01a9b4/Zo9e/b4fbzuj4fnn9RTTz3lclCT/qHF6vP/3//+Z5988omtWLHCol1Gnr9O/N9//73bZ6EBYMOGDXb//fe7Nw3q4h3rz79Hjx7u6/7yl79o9d7++OMPu+++++yf//ynxYPkzn/Hjh2z06dPuzx+BO+11xteXwp+9MYgreOPfneff/55u/fee4NyjNE4pkbrOBit41e0jjvxMl7Eyjn+1Vdfdfs/u3btmunvxYoTAuY///mP22A6ceJEt1Ey1mn2onfv3m5jcJEiRSweaRZHb94+/PBDa9CggXXr1s2efvppe//99y0eaNOsZjrfffddW7ZsmduQOnXqVPdmFMiI/v37u83PKV3S+gY+JXrj0759e6tZs6Y999xzATl2RM84GM3jV7SOO4wX4TFy5EgbNGiQjR079qLJpoxgxcmHTh6XXHKJ7d27N9H9ul2iRAm/X6P70/P4WHv+vtG8BozvvvvOrrzySotG6X3+GzdutC1btrhKL74ndO/M79q1a61y5coWy///qmiULVs293VeNWrUcLNUSmW47LLLLJaf/7PPPuvefNx9993utiqAnTx50s3gayBX6kYsS+78p9SvaJmJjDRPPPGE3XHHHSk+plKlSu6137dvX6L7NYOtynmpna/1prlt27aWN29e9wZff8PBEI1jarSOg9E6fkXruBMv40W0n+NHjx7tXm9V6gzUCnDk/S+Fkf7YNHsxe/bsRCcS3VY+rT+63/fxMmvWrGQfH2vPX15++WU3YzJ9+vRE+fax/vxVLnfVqlUuzcF7uemmm+y6665z11VqNNb//5s1a+bSJLwDrqxbt84NbNEUNGX0+WsvQ9LBzjuY/98e1tgWS+e/SKHyuTq3pHTR76peY5Vk1p4JL6Uv6XdWZZFTWmlq3bq1+x7aKxLMVZFoHFOjdRyM1vErWsedeBkvwv33mBmjRo2yfv36uY9aXQ+YTJeXiDEqL6lykZ9//rmrWnTvvfe68pJ79uxxn+/du7enf//+iUqnXnrppZ5XX33VlSEdOHBg1JcjT8/z/89//uMqMn311Vee3bt3J1yOHz/uiYfnn1S0V9VL7/Pftm2bqx714IMPetauXev55ptvPMWKFfP8+9//9sTD89ffu57/qFGjXNnWmTNneipXruwqg0Uj/d2qpLIuGh5ef/11d33r1q3u83rueg2Slqr9xz/+4c5/KslMOfLQliOvV6+e5+eff3ZlmVVa3LccucphV6tWzX1ejh496irU1a5d25Uj9z1nq7paMETjmBqt42C0jl/ROu5E43gRref44+k8bpV813lEx+v7N3nkyJFMHwuBkx+qU1+uXDl3IlS5SfXI8Lr22mvdySVpOdfLL7/cPV5lG6dOneqJl+dfvnx590uc9KITRLz8/8dS4JSR5z9//nz3ZkwDiErEvvDCC0F7ExZpz18lnJ977jk3+OXIkcNTtmxZz/333+85fPiwJxr98MMPfv+evc9ZH/UaJP2aunXrutdL//+fffZZmI4+/hw8eNAFSnny5PHky5fP069fv0Rv1tUrRv9/+j9K6f9XFz02WKJxTI3WcTBax69oHXeibbyI1nP8D+k8bl1P6fGZkUX/BG79CgAAAABiD3ucAAAAACAVBE4AAAAAkAoCJwAAAABIBYETAAAAAKSCwAkAAAAAUkHgBAAAAACpIHACAAAAgFQQOAEAAABAKgicAB8VKlSwN998M+H2nj177IYbbrDcuXNbgQIFwnps0eKOO+6wm2++OeF2ixYt7NFHHw3rMQFAtGJcyjzGJQQKgROiXnInwM8//zzdg8rixYvt3nvvTbj9xhtv2O7du23FihW2bt26gBxvrNiyZYtlyZLFvTa+/vvf/7rXHgDiFeNSeDAuIdguDfpPAKJI0aJFE93euHGjNWjQwKpWrZrh73nu3Dm77LLLLF7kz58/3IcAADGDcSnzGJcQKKw4Ie6W6l999VUrWbKkFS5c2B544AE7f/6835QIXR8/frx9+eWXbgZLXy/btm2zTp06WZ48eSxfvnzWtWtX27t3b8L3eO6556xu3br28ccfW8WKFS1Hjhzufn2PDz74wDp06GC5cuWyGjVq2IIFC2zDhg1udlJpF02bNnWDYkoWLVpk9erVc9+3YcOGNnHixEQzbP5mNCdNmuQe46WfoedQvHhx9zwaNWpk3333XaKv0fN/8cUX7c4777S8efNauXLl7MMPP0z4vJ6b6Fj0vfUcfF/n5Jw9e9b+/ve/W+nSpd1zbty4sc2ZMyfh81u3brWOHTtawYIF3edr1apl06ZNS/E1AYBoxLjEuIToQuCEuPLDDz+4k7M+fvHFF+5kntzyvdIj2rZt6wYgpUVoqf/PP/90J/ZDhw7Zjz/+aLNmzbJNmzZZt27dEn2tBh0NbhMmTEiUMvD8889bnz593H3Vq1e3Hj162F//+lcbMGCALVmyxDwejz344IPJHv+JEyfcAFezZk1bunSpGwx1sk8vfZ927drZ7Nmzbfny5e55alDQ4Ovrtddec4OgHnP//ffb3/72N1u7dm3CQCka2PT66LmmhZ6fBubRo0fbypUr7bbbbnM/f/369e7zetOgQeynn36yVatW2UsvveQGUQCIRYxL///7MC4h4nmAKHfttdd6HnnkkYvu/+yzzzz58+dPuN23b19P+fLlPX/88UfCfbfddpunW7duCbf1+TfeeCPhdqdOndzXec2cOdNzySWXeLZt25Zw3+rVqz36U1q0aJG7PXDgQE+2bNk8+/btS3Q8eswzzzyTcHvBggXuvk8++SThvlGjRnly5MiR7HP94IMPPIULF/acPn064b733nvPfZ/ly5f7fd4yceJE95iU1KpVy/P2228nei169eqVcPvPP//0FCtWzP082bx5c6Kf66XXS6+bv/+frVu3utdv586dib6mZcuWngEDBrjrtWvX9jz33HMpHisARDLGJcYlxCZWnBBXtLx+ySWXJNxWasS+ffvS/PW///67lS1b1l28NMumFAR9zqt8+fIX5aXLlVdemXBd6QhSu3btRPedOXPGjh07luzP1/fwpllIkyZNLCMze5oRVFqGjl0zZ/reSWf2fI9XaQ8lSpRI1+uVlGbqLly4YJdffrn7md6LZkm9qSAPP/yw/fvf/7ZmzZrZwIED3ewfAMQqxqX/w7iEaEBxCEQ95XMfPXr0ovuPHDly0YbQbNmyJbqtk67SHAJNOdD++P58b263v/syc0xZs2Z1qRW+fPPlRYOT0jmUV1+lShXLmTOn3XrrrW7DcHLH6z2+zBybBka9QVA6h+8bBfGmPdx9993Wpk0bmzp1qs2cOdOGDBniUjMeeuihDP9cAAglxqXEGJcQK1hxQtSrVq2aLVu27KL7dZ9mkAJJM2Hbt293F6/ffvvNDYaa4Qs2/XzNdGn2z2vhwoWJHqMZxePHj9vJkycT7ktamnXevHlus2znzp3dzKJm7FTGNT28FZk0U5dW2rCrx2t2UAOj70XH4KWZ0/vuu8/lpz/xxBP20UcfpevYACCcGJcYlxCbCJwQ9bQxVL0stJSuk7c2ib7++us2atQod3ILpFatWrkTes+ePd0AqI2o2lR77bXXus2qwaZNu5pdu+eee9zAqKo+mp3zpWpAqo70z3/+06UZjBw58qKNxipj690g/Msvv7jvm94Zu2LFirkZwenTp7vqTf5mV5PSGwa9dnrN9PM3b97sXkPN3mkmT9T7ZMaMGe5zeo21YVoDMwBEC8YlxiXEJgInRL1KlSq5Sjdr1qxxA4hO0GPHjrVx48a5qjiBpMFh8uTJriTpNddc436efv6YMWMsFJQ2MGXKFJeTrVmyp59+2lX38VWoUCEbPny4G7w0mGqgVpUjXxrA9RxUZlZVi5SCUL9+/XQdy6WXXmpvvfWWK2VbqlQpV9UpLT777DM3QOnNg2ZlVSJWlaJUVlY086cKRhqU9P+nQe3dd99N17EBQDgxLjEuITZlUYWIcB8EgIxTKoN6V6g0q/p0AAAQToxLiFWsOAEAAABAKgicAAAAACAVpOoBAAAAQCpYcQIAAACAVBA4AQAAAEAqCJwAAAAAIBUETgAAAACQCgInAAAAAEgFgRMAAAAApILACQAAAABSQeAEAAAAAJay/wcVFUjxiHTdjAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHWCAYAAABACtmGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAidNJREFUeJzt3QeUVFXWt/ENiOScc5YkkkVgCAoCEkREAYliGsccZhTGgOAoY2ZUzJkMkkSQIIoyBMmCKDnnnONgfet/3lX9VTfVuaorPb+1iq66XeHWLfqe2ufss08mj8fjMQAAAABAojIn/isAAAAAAIETAAAAAKQAI04AAAAAkAwCJwAAAABIBoETAAAAACSDwAkAAAAAkkHgBAAAAADJIHACAAAAgGQQOAEAAABAMgicELW2bdtmmTJlsi+++MIiaf9mzpxpderUsezZs7vfHzt2zMLBnXfeaeXLl7dwMW/ePHd89BMAIp3OZy+88EJUnCPVrum11c75eu2116xixYqWJUsW186FC7VtauPChf4f6Pgh/BA4IcNOoL6XokWL2vXXX2/fffcdn4CPw4cPW7du3SxHjhw2fPhwGzFihOXKlSssj9GZM2fcyT3QjXLC/y8KIK+66ip76KGHbP/+/QF5jRkzZgT0CwqA0LYpvpfFixen6vn27NnjzgerVq0K2j7DbPbs2fbUU09Z06ZN7fPPP7eXX345bA/L77//7v5PJAz80kvBme//1bx581rt2rXtjTfesPPnzwfkNd57772w7TCOBleEegcQO4YMGWIVKlQwj8fjvgDrD7t9+/Y2bdo069ixY8Bfr1y5cnb27FnLmjWrhSN/+7d06VI7efKkvfjii9a6dWsLJx9//LH9+eef8QKnwYMHu+stW7YM2v+Xc+fO2X//+197//33XcDz22+/Wc6cOdP13HoeBaYET0Dk8p4jEqpcuXKqAyedyzTqEE6jIJGsT58+1qNHD8uWLVvcth9++MEyZ85sn376qV155ZUWTtavX+/2zTdw0v8JtW2BzrTQMfnkk0/cdWWUTJw40f7+97+79n/s2LEBCZwKFy4cViNo0YTACRnmpptusgYNGsTdvvvuu61YsWI2ZsyYoARO3tGKcOVv/w4cOOB+5s+fP2Cvc/r06YCMWmV0AOr7/+Wee+6xQoUK2ZtvvmlTp061O+64I0P3BUD4tykIH0rF0yVh+6ZsikAFTeqEVceanjO9fAO8YLviiiusd+/ecbcfeOABa9SokY0bN861cSVLlsywfUHqkaqHkFFwoBOeTiK+Xn/9dWvSpIn7oqzf169f377++uvLHj9nzhz7y1/+4p4nd+7cVrVqVfvnP/+Z7ByidevWuXS4IkWKuOfX45555pk05Wv7yyFXD9XVV1/teqyUjqjRkVKlStmrr74a77EJ90+P69evn7vesGFD9zvfHqMJEya4Y6F9Vm+STry7d++O95y6v47F5s2b3Whenjx5rFevXu53ej6lu+l5atSo4Z6ncePGtmbNGvf7Dz/80PXUKpjTviR8r75znPQ7HT9Rr5w37UAjOErB0PWVK1dedhyVmqHGNOF+p8QNN9zgfm7dujXJ+yV3nPQ+NNrkPSbeC4DoMmjQIDeKMHfu3Hjb77vvPvfl/ddff3Xnbp1vpX///nHnA99245dffrF27dpZvnz53Pm8RYsWtmDBAr9zUjZt2uTOMWqXdH89p0bnfSkl6/HHH3fnUJ2jb775Ztu1a5ff96Bz11133eU6GfXlvmbNmvbZZ59ddj89/pZbbnGdZEqF1/OnNPUrsfmr/ubZeNuRKVOmuHbOu0+am5tUm6nrahvUkZfwGP/vf/9zWRaVKlVyz6d9UVuecP+1XZ2ss2bNcgGzzvFqt7zt8Pjx4117pPZWx/W2226z48ePu+d57LHH3HFR+6jPxN9ze9tb7dftt9/urqsN9+6vXkdttNqVixcvXna82rRp475PpJb+j3qzNpJKDUzJcdK2tWvX2k8//RS338HICIlljDghw+gEdujQIddLpJ6nd955x06dOhWv50X+85//uIZEX/gvXLjghq51Evv222+tQ4cO7j46MegEes0117h0DZ1E1GAlbMwSWr16tTVr1syNnqjx1ElGQYbSBV966aWAvdejR4+6hvbWW291QZoCv6efftpq1arlekn9UfCmk+5HH30Ul4KiE6T3RK6TvRr4oUOHulRHHSe9XwUoviNUOrm2bdvWBZUKQn3T2ubPn2/ffPONPfjgg+62nkvHUXnnGt5Xz5f2XUGeGmulVvijBl+pc3/729+sS5cu7n2KPg/tt55/1KhRVrdu3XiP0zadxNWwpZY+J1FAnZiUHKe//vWvLjVHgbfmkAGI7DbFl74oes8Rzz77rDu3K7tBHUT6Mq0v3Uo71hdQzS3ROULn2+eff961CWofRJ13onOgztnqjPEGYgoA1JGj8+m1114b7/V1vtc5UOefFStWuJQsfWF/5ZVX4u6jEfSRI0daz5493evoNbxtmy/t23XXXRcXrOi8q3nBej8nTpxwwYAo5btVq1a2Y8cOe+SRR9yIhc5tiZ2/00up05MmTXLthY7p22+/bV27dnWvn9j5Wfujtm3JkiVxaWreY6zj8eWXX7pA58knn3SBqo7fH3/8YZMnT74spU4ZBzqP33vvvfECFT1GwdSAAQPc9wF9x1Bbr89M7ZoCQc1/Uzuhz0ifuT/Nmzd3x1HvS4FJ9erV3Xb9VAriV1995f4f+WbK7Nu3zx1v/R9Ji5S0byk5TsOGDbOHH37YBYjeDmEF3QggDxBkn3/+uUf/1RJesmXL5vniiy8uu/+ZM2fi3b5w4YLn6quv9txwww1x29566y33HAcPHkz0dbdu3eruo9f3at68uSdPnjye7du3x7vvn3/+maL3oOf09eOPP7rt+unVokULt+2rr76K23b+/HlP8eLFPV27dk1y/7yvs3Tp0njvv2jRou4YnD17Nm77t99+6+77/PPPx23r16+f2zZgwIDL3oP3mPu+hw8//NBt176dOHEibvvAgQMve7967nLlysXd1rHXfQYNGnTZa91xxx2ekiVLei5duhS3bcWKFZe9X3+8x+D77793r7Fz507P2LFjPYUKFfLkyJHDs2vXLr/HPjXH6cEHH3TbAERPm+I9x/las2aN58orr/Tcc889nqNHj3pKlSrladCggefixYtx99H51t+5Se1ClSpVPG3bto3XRqiNqlChgufGG2+M26bzoJ7jrrvuivccXbp0cecur1WrVrn7PfDAA/Hu17Nnz8vOp3fffbenRIkSnkOHDsW7b48ePTz58uWLayuHDRvmHjt+/Pi4+5w+fdpTuXLly9onfxKe2xO+J1+6reO5adOmuG2//vqr2/7OO+8k2WbqdXLlyhXv+bzHQ5+Pr7///e9u+w8//BC3TfuobTNnzox3X29boHO/2gHfdihTpkyem266Kd79GzdufNn71W3tn9eECRP8Hju1aaVLl/Z079493vY333zTvdaWLVs8SfEeA7Vtuug4vvzyy+6x11xzTaLHPjXHqWbNmu57CIKDVD1kGKVHqZdfF/W2aQhcPSjqufLlm6+sXiL1KqoXUL13Xt4RFs138S1YkJSDBw/azz//7EZSypYtG+93gU7VUm+P70ia0kLUM7lly5ZUP9eyZcvcCJ1693znRKmHslq1ajZ9+vTLHqORIH/UK+mbkqG8alFvoXoOE25Py/5K37593ajOjz/+GG+0SZ+tXislVBxDPaxlypRxk4x1TNWrlthoVVqOE4DoaFO8l4SVWpVOpvQtjXJoJF4jVOq1T5gi7o+q7G3cuNGNDKniqR6ri9LNdC5Ve5Kw/bn//vvj3VbbpcdqhMhbmEY0ouHLO3rkpRhFRQM6derkrntfWxe9D7WL3jZRz1miRAk3EuGlTAONoAWDzs3ebAhvpoGqw6WlvfAejyeeeCLedo2oSMLztkaK9P4Ta3d85+KqHdOxU5vvS9t37tzpsjNSS6NXyoZR5oYKOfm2bxpB81esJCH9/1HbpovS4zWqpbT5hKNr6TlOCB5S9ZBhFDj4TuTVcLtSuZSCoCFv74RRpeT961//co2Wb+6ub3DTvXt31xAq8NKwvBoxpYup4fCtjOPLe1JXQxpspUuXviwYK1CggEsVTK3t27e7n/5ypxUQKG3Cl74Q6PX9SRgwKgdfFJz4267ANS1uvPFG15CrMdFnoy8XKgLSuXPneAFacl+KVIZc70epBnr/iX22aTlOAKKrTUnMP/7xD5fyrTQxzbPUHM+UUNAk3rmn/iiA0bk9sXOs93c6lyq40HlK5zHfwMPfeUsdfaq4pvQ2XfzxFhPSc+oLeMI2Jy3zbVIi4Xv0vs+0tBfe45GwEmLx4sVdB6n3vO6VVGCSmvZNbZI+u6RS4xKjAE2plwp0dF3pg8uXL7cPPvggRY9Xx55SSEXTDPSeEmuz03qcEDwETggZnQQ06qQ5KGqgNMFUOeOa36QcY8250Zdv9SApp3z06NFxj9XIhXr7NKKhnhZNTFVFGuWda62IhNV80iuxEalLly753Z7Y6/9fpkNw6UScWICR2H4Fen/1fOql1VwCfY6aY6QRqITz2QLxpQgAkqJOM28Q5C2GkxLe0SQt2ppYmXKNhAfjXOp9bZ0zEwvcNNITLe1bSrM+kqqgl1HtmwJvzXlT5owCJ/1Ux6/mt6WE9iety41QyCj0CJwQUt6hchWJEKUmqDdGEy99y4MqcEpIwYFGM3RRCU/1JGoypIIpfyclrVYuWgcotby9huoB9JURvTxa70nUq+WtLOelbd7fZ7TkTuBqULSon3rWlD6jtITEUiwy+jjR+ACxQQGIqqVptEfpcGonlJngLWiT1PnAOyqkxwZqXT2dh7RPKgbgOyKkc5Qvb8U9BS/JvbaeU+2aAgHf95LwOZNq3xK2bRnZvul4KLD1FmHwFsbQPoVz+6a0ub1797pOXaWE+448hvI40b4FF3OcEDIq56nRIfXUeE8E6onRH71vT5fKc6r0qa8jR45c9nzeHsHESrCqIdJIlkq5qvpPanqevA2oRrm8tI+JpVAEkkZdVJVJaQC+703BiKrp+KvGlBG81fr8Nbje3lBdlFKpgFjzlFIyryAjjpN3XavE9h1AdFCn2sKFC925WpX0NA9Fc0B9q/Eldj7QqILO/apO6u3cS5hOl1reqqqq2OZL1dB8qS3UfFCdO/119vm+tpae0Ii+77IdKoGe0vZJ71Fpa76p5AoIkppzEyjad3/vX5+bhKp9S66N0FQDfVd59NFH3YhmarIpgn2ctO+0bcHDiBMyjL7Aag0lb262emnUe6I5SurR8/7x60SgUt5K9dL9NNdFeb2+J3WVj1UQo/urp0X3U0qY8oRVhjsxaqz0+3r16rmJs8otVmCmdD/NqUqM0ghVFnbgwIEuaCtYsKDLmU/L5NLUUqqi8qlVZlvrh+iE7S2zrUIPWq8jFJQyoZQFpUhqLpKOieaP+c4hU6+cVkSXYDcsqTlO+kLknaCtUTB9SVFgByAy2xRfCo6UYaAOk+eee86NOKnIgqgUtTrZVERG6/54AwfNE1Gni0Z59MVTBQTUPqjjR8GO2gCdW1ScRmsrKbNB7ZZ3rkpK6bV1blJ7pWBF+6p1plQ+O6F///vf7nW0Lyq9rfOt2h8Vhfj+++/jOhD1u3fffdedbzXXRinuKv/tuxRFUnTu03IZWlpC50QFXVpuQud136JMwaCS8EpFVJCnL/s6d2sumgp4aF0qpfOHgj4ntQtqU/Q5KQNGmQzqnPN2xOp7itYN1P+dYAd4qTlOat/0+WmuuL47aZ8TZmEgHYJUrQ9IsnRs9uzZPXXq1PG8//77l5UC//TTT10JWJWVrVatmnt8wtKcc+fO9XTu3NmVvFZpVP1U6dENGzYkWe5bfvvtN1ciNn/+/G4/qlat6nnuueeS/cQ2b97sad26tduvYsWKef75z3965syZ47ccucqBJlfyNaXlyL3GjRvnqVu3rnv9ggULenr16hVXmjupcq9eel6V4fbl3YfXXnvNb3lXlWRNbP9l4cKFnvr167vPwF9p8r1793qyZMniueqqqzwpldQx8LePCcvFpuQ4/e9///M8/PDDniJFirgysJwKgegoR+49p+pvvGHDhq509LFjx+I9/j//+Y+7n84VXlOnTvXUqFHDc8UVV1x2Xl65cqXn1ltvdWXFdV7RebBbt26uHfLytlEJl8jwV5ZbyyU88sgj7vl0vu7UqZNbdsHfOXT//v3uvF2mTBlP1qxZ3dIRrVq18nz00Ufx7qclNm6++WZPzpw5PYULF/Y8+uijrmx3SsqRy+zZs105b53L1SaOHDky0XLkCdsRf+W8U1qOXFQafvDgwa7Eu96j3quWxDh37txlr9GhQ4fLHu+vvUqqLfH3WSXcf/n44489FStWdG2Yv+Oo8u/aft9993lSKqk22t8+puU47du3zx0nLb2i56A0eWBl0j/pCbwAIDFKh1HvpxYaVM8vAADRQMuhaLRH2S/ehZMR/ZjjBCBolBajuWBabR0AgGihqrFKCU1qegCiD3OcAATcDz/8YL///ru99NJLrkfOd9FdAAAileY3a8615kZrDi1V7GILqXoAAq5ly5auklXTpk3dGheaUA0AQKRToKT1u7p37+4KigSzWizCD4ETAAAAACSDOU4AAAAAkAwCJwAAAABIRswlZv75559uhW0tcseEPgDIWFoB4+TJk1ayZEnLnJm+O9omAIicdinmAicFTWXKlAn1bgBATNu5c6eVLl061LsRNmibACD826WYC5w00uQ9OHnz5g317gBATDlx4oTrvPKei/F/aJsAIPzbpZgLnLzpeQqaCJwAILTnYsQ/HrRNABC+7RIJ5gAAAACQDAInAAAAAEgGgRMAAAAAJIPACQAAAACSQeAEAAAAAMkgcAIAAACAZBA4AQAAAEAyCJwAAAAAIBkETgAAAACQDAInAAAAAAjnwOnnn3+2Tp06WcmSJS1Tpkw2ZcqUZB8zb948q1evnmXLls0qV65sX3zxRYbsKwAgNqS2bZo0aZLdeOONVqRIEcubN681btzYZs2alWH7CwCIgcDp9OnTVrt2bRs+fHiK7r9161br0KGDXX/99bZq1Sp77LHH7J577qGBAgCErG1SoKXAacaMGbZ8+XLXRinwWrlyJZ8KAESRTB6Px2NhQL16kydPtltuuSXR+zz99NM2ffp0++233+K29ejRw44dO2YzZ85M0eucOHHC8uXLZ8ePH3c9gwCAjBNp5+CUtE3+1KxZ07p3727PP/98VB4XAIgWqTn/XmERZNGiRda6det429q2betGnhJz/vx5d/E9OAAABMuff/5pJ0+etIIFC9I2AUAUiajiEPv27bNixYrF26bbCobOnj3r9zFDhw51UaT3UqZMmQzaWwBALHr99dft1KlT1q1bt0TvQ9sEAJEnogKntBg4cKAbevNedu7cGepdAoCIoiAgTLK6w97o0aNt8ODBNn78eCtatGii96NtAoD00ch+RouoVL3ixYvb/v37423TbeUj5siRw+9jVH1PFwBA2hqmzz77zEqXLu3m+WTJkoXDmIixY8e6gkUTJky4LK2ctgkAAmfLli02ZswYN2WnQYMGllEiasRJJV7nzp0bb9ucOXPcdgBAYJ07d85GjRrlCvDs3r3b3YZ/asD79+/vfqr6KwAgOPbs2WPjxo2z//3vf67idkZmRGQOdfqHyorrInrzur5jx464VIa+ffvG3f/+++93EeZTTz1l69ats/fee8+lQzz++OMhew8AEI0uXrzoggCN6ufOndv69OljuXLlsliQ2rZJ6Xm6/cYbb1ijRo3cfFxdlB4OAAicw4cPuw69CxcuWIUKFaxLly6u+mlMBE7Lli2zunXruos88cQT7rq3fOvevXvjGirRAVI5co0yaY0NNVKffPKJG6YDAASuKtzEiRPd+Vepzr169bICBQrEzOFNbdv00UcfuZ7PBx980EqUKBF3efTRR0P2HgAg2pw4ccJGjBhhZ86ccedYLflwxRVXxOY6ThmFtTIAIHFqEqZMmWKrV6+2S5cuuTlNzzzzTMAaJ87BHBcASC1Vz/7888/t4MGDbqmHu+66K2BZEFG7jhMAILgOHDjggiaNOikVesOGDS4NIqULuQIAEGhr1qxxQVOePHlCmjpO4AQAMUwpZi+//LL997//tb/85S/2z3/+03777TfbuHGjrV+/3t1HvwMAIFQaNmzo2qvKlStb/vz5Q7YfBE4AEMMUNL3wwguWOXNm+/777922WrVquTlOotEmBVQAAGR06riyH5QyrraoSZMmFmoETgAQw6NLul6lShW76aabXHU43Z4xY4a7v+/9AADIyKBp9uzZLn28W7duYbMmK4ETAMTY6JIaJO/oUtOmTe3aa6+1rFmzukUEr7vuOlcIgjlNAIBQWbBggS1evNhd37Ztm1WtWjUsPoyIWgAXAJB2GkHyFlLVzxUrVrhePAVNR44ccWsQMboEAAilFStW2Ny5c931Nm3ahE3QJIw4AUCMUNqdRpoUNGldJq1NdP78eStbtqwLmBRAAQAQKuvWrbNvv/02LiOicePGYfVhEDgBQIzMZ/KOJv3yyy8uPU+KFi1qPXr0IGgCAITUtm3b7Ouvv3ade+rYa9WqVdh9IgROABAj85k0b0kXLXD766+/upKuvXv3thw5coR6dwEAMezSpUuubdLPatWqWceOHV0lvXDDHCcAiPCRpSFDhrg8cP3UbX/zmXzXYmrXrp3VqFHDBU1aTBAAgFDKkiWLy36oWbOmde3a1S2RkZ42MFgYcQKAKBxZ8p3PpF475Yp7Zc+e3W6//fYQ7jUAABbXRknx4sXttttuC0gbGCwETgAQ4esw+RtZ8s5n0m0FTcoXX7RoUdhNtAUAxKZz587ZuHHj7Prrr3dFitIiqeyKYCBwAoAI4a9nLeHIkm6L71pMP/zwg82fP9/9vlKlSq4gBAAAoXLx4kUbM2aM7dixwyZPnmwPPfSQS9dLrcTawGAhcAKACOGvZ23GjBlxv/OOQvnSAoIKmqRDhw4ETQCAkPrzzz9t4sSJLmjSWoLdu3dPU9CUMLvCXxsYaAROABAh/PWs+Y4sJbR69WqbNWuWu65UiPr162fwHgMA8P+p/Zo2bZqtX7/etV933HGHm9uUVkm1gcFA4AQAEbYOU0p61jZt2mRTp0511xs1amTNmjXLsH0HAMCfuXPn2qpVq1znnwpBlCtXztLbNip4yigETgAQYv4agqTWYUrOiRMnbPz48S4dolatWta2bduwXA8DABA7fvvtN1uwYIG73qlTJ6tatWqqnyOjq+glROAEACHmryFIT6WgvHnz2g033GBbtmyxzp07EzQBAEKuWrVqVr16dStVqpSr9BoJVfQSInACgBDz1xCkt1LQdddd51L0GGkCAISDK664ItVrCCbMyGjSpEmGVtFLiMAJAELMX5CU2kpBp0+ftjlz5ri0vBw5crhtBE0AgFDasWOHbdiwwVq1auXapOTapYSBklLOhwwZEpeR8dxzz7kMjYyqopcQgRMAhJi/ICk1lYLOnz9vo0ePtj179tiZM2esZ8+eQd5jAACStn//ftc2qY3KkyePy4JIbep6hQoV4mVkaCH32bNnW6gQOAFAiKWnnKp651QIQkGTRpratGkT8P0DACA1jh49aiNHjnRBU9myZa1evXppSl0XjVKFKjUvIQInAIhQSmGYMmWKKwKRNWtW69WrlxUuXDjUuwUAiGGnT592QdOpU6fcous9evRwbVRaUtd79+7tFscNVWpeQgROABCB1Kh89913tnbtWsucObNbeV2VigAACJXz58/bqFGj7MiRI5Y/f34X+Hjn3aYndT1chM+eAECUC+TCfVoLY9myZe76rbfeapUqVQrw3gIAkLoOvfHjx9vevXstZ86cLmjS3KaMSl3PCAROAJBBArlwnxYOXLp0qQvAatasGeA9BQAgdTJlyuTmMilwUtBUqFChDO9UDLbw3CsAiEKBXLivSJEi9sADD1i2bNkCuIcAAKRdzZo1rXLlyqlqmwLZqRhsmUO9AwAQK9ST5l3DIi3VgVQEQhcvgiYAQKgtWbLETpw4kea2KZCdisHGiBMAZJDULmrra/fu3TZ27FhXSa9v376uvCsAAKH0yy+/2MyZM23hwoX2t7/9LU0dev4WgQ9XBE4AkFEn3DROej106JCrUnTx4kWrWLGilSxZMij7BwBASq1Zs8YFTaK5TSkNmhLOaXrqqafc9nApOZ4UAicACIJATXZV+oPWwzh79qwLmLp16xa2k2YBALFh06ZNbh1Bufbaa61Zs2Ypbg+VOTFkyJCImNOUEK0vAARBICa7njlzxgVNx48fd9WJevbsybwmAEBI7dq1y5UdVwB09dVXW7t27eLm76akPaxQoULEzGlKiOIQABAE6Z3sqrS8MWPG2MGDB906GCrtmitXLj4rAEDIHDx40EaPHu3aKK0feMsttyQZNPlrDyU9hZJCiREnAAiC9E52zZw5sxUsWNDNb1LQpBXYAQAIpezZs7vOPLVPSh3PkiVLqttDtWl6XCTMaUqIwAkAwqyCnqhRUU/esWPHrECBAnxGAICQy5Mnj915550uCLryyivT3B5G6lzdTB7vmFmM0ETrfPnyuTkDefPmDfXuAEAcnY7/+OMPq1atmhtxikacgzkuACLL+fPnbceOHValShWL9XYpOltmAIhA6o2bMGGCTZo0KS4PHACAUFFFPBWC0Lym5cuXx/wHQeAEAGFADdIPP/zgrpcuXTrZybYAAASTquap5PiWLVssa9asVrx48RQHWyo33qZNG/dTt6NFZCYYAkAUrdmk9Lzp06e763r8ddddF8S9BQAgacp60OK2a9eudanj3bt3t1KlSiW5iO2rr77qbut38+bNi8h1mpJD4AQAIVyzaevWrTZx4kT32Lp169oNN9zA5xFiP//8s7322mtuFHDv3r02efJkV6gjKfqS8MQTT7gvGWXKlLFnn33WTaAGgEj0008/2dKlS931Ll26uNLjSbV7Ogd6gyVfkbZOU3JI1QOAEK3ZpC/lY8eOtUuXLrmCEB07diRFLwycPn3aateubcOHD09x8NuhQwe7/vrrbdWqVfbYY4/ZPffcY7NmzQr6vgJAoClgUuAkmzdvdvNuz507Fy/9bv78+fHavV9//dXv3NxIW6cpOYw4AUCI1mw6deqUyyEvX768de3aNWor6UWam266yV1S6oMPPrAKFSrYG2+84W5Xr17dBc9vvfWWtW3bNoh7CgCBp+py4h1FUrvmO6L0/fffW8uWLd12b7unzibfESd1JCllPdLWaUoOgRMAhGjNJpV27devnxUuXDhi17SA2aJFi6x169bxDoUCJo08JVXeVxffcrgAEA50Pvvwww9dIORvRMnj8biOPqXq+ZvjFOlrNSUl+t4RAGQwNQ4pndOkdAdd8ufPH1dBD5Ft3759VqxYsXjbdFvB0NmzZy1HjhyXPWbo0KE2ePDgDNxLAEjcoUOHXLvkDXZq1aoVN/824YhSpkyZrHnz5pe1e9FSACIpBE4AkEEuXrxoY8aMsSNHjljv3r0v+7KN2DFw4EBXTMJLQZaKSgBAKIKmzz//3IoUKWI9evSw7NmzX5ZJ4W9EKRYROAFABtBcpq+//tqtvp4tWzaOeRTR2ib79++Pt023tQK9v9Em0f8B/h8ACDV12owcOdLOnDljFy5ciCtQ5C+T4vkYGFFKDjORASAV0rKwn1IbvvnmG9uwYYNrjO644w5Gm6JI48aNbe7cufG2zZkzx20HgHClVGIFTSoGUahQIevVqxcdOslgxAkAgrxmk+6nibXqybvtttusXLlyHPMwpmqHmzZtilduXGXGCxYsaGXLlnVpdrt377avvvrK/f7++++3d99916Wy3HXXXfbDDz/Y+PHj4xY1BoBwo9GlUaNG2cGDB12hmsOHDxM0pQCBEwAEcc2mBQsW2MKFC931m2++2apWrcrxDnPLli1zpXS9vHORVAHxiy++cOtvKeXSS6XIFSQ9/vjj9p///McV/Pjkk08oRQ4grChDQp1/apeaNGkSN+r02WefuXlO6twjHS9pBE4AEKQ1m7Sw7e+//x5X3rVOnToc6wig9Un8LeTopeDJ32NWrlwZ5D0DgPRnTCgtr27dupY1a1YbPXq0G3WSlC7eHssInAAgSGs2ZcmSxfr27Wtr1661evXqcZwBABk+wuRtr+bPn+86hTS6pFEmZUDs2rXL3Tc1i7fHskyepLrVorR6SL58+dxEOFU8AoBAO336tOXKlYsDyzmYtglAyKiAkXdOrgKjG2+80RWu8d5+7rnnXAdftC9aG8jYIPaODgCkoacupQ2KylArlatp06bu4i3tCgBARrZdmzdvjks7Vmretdde6+Y2aY5TLAdK6cHRAoAAVc87evSoK+167tw527hxoytHrd48AAAyuu3yql69unXs2NEyZ85szZo1s0GDBvFhpBGBEwAEoHqeSliPGDHC/SxWrJhbq4mgCQAQinlMXurAU4qegiYVKPKtGIrUI3ACgHRWz9MIk9bD0IhT/vz53SKC2bNn57gCAIIaKP35559uLpM3O0IVPtVm6XaJEiXilkWoVq2aderUifTxdCJwAoB0VM9TIzZu3Djbt2+fKwjRp08fy5MnD8cUABD0NHKtI+ebHaGRJf1e69HVr1/fbdei6127dnW/Q/oQOAGAv5PjFVekaCHA9evX27Zt2+zKK690I00FCxbkeAIAMiSNXLwjTPrZvHlz13Z98803bm254sWLW48ePSgCESAETgCQDjVr1nQrrxcuXNilRQAAEKzUPFXF800j792792UlxaVDhw4uZVz3J3U8itZxGj58uL322msuzaV27dr2zjvvuHKJiRk2bJi9//77tmPHDvdF5bbbbrOhQ4em+D8F6zgBCIRLly5R/CENOAdzXACkPFjS9Xnz5qVo7SW1S0rHYxmMKF3HSfMCnnjiCfvggw+sUaNGLijSJDalvhQtWvSy+48ePdoGDBjgVjtWBL1hwwa788473X+QN998MyTvAUDsWbx4sa1du9Z69uxpOXLkCPXuAACivKS46PaiRYts9uzZlz1GRSLGjx/vChS1a9eO4ClIQjpLTMHOvffea/3797caNWq4ACpnzpwuMPJn4cKFbkFJfVkpX768tWnTxpX8XbJkSYbvO4DYtHr1aps1a5bt2rXLBU8AAARrHpOvxCq86r7Tpk1zAworVqywgwcP8oFEW+B04cIFW758ubVu3fr/70zmzO62oml/NMqkx3gDpS1bttiMGTOsffv2ib7O+fPn3RCc7wUA0kKL2k6dOtVd1yi5t2IRAACBouDIN91Oay9pLSaNQvmr8Ko5T6tWrXKP0RQWf1lbCIyQpeodOnTI5WJqoUhfur1u3Tq/j9FIkx6n/1CKrpX3ef/99ydaJlg0/2nw4MEB338A0Tv51jdn3Gvnzp0uDULpELVq1XJpxeSRAwAyYjmMhG2S14IFC1xGltx8881WtWpVPpAgiqiqepocpy837733nuvt3bRpkz366KP24osvusly/gwcONDNo/LSiFOZMmUycK8BRNq6GOJbivzAgQNujqUCrMqVK1vnzp0JmgAAIV0OQ6NM3jZLGVt16tThE4nWwEkV8VQVZP/+/fG267Zqzvuj4EiLS95zzz3utnp9T58+bffdd58988wzfhf2ypYtm7sAQErXxdBtL92eMmWKnTt3zkqXLm2333471fQAABma9ZCQBgK+/fbbuKksqgGAKJ7jpMUiNT9g7ty5cduUAqPbjRs39vuYM2fOXBYcKfiSEFdVBxAl+eQJJ9/qtlZcr1KliksX1rkLAIBAZz3MmTPH/dTt5KhsttomfZf2rReAKE7VUwpdv379rEGDBm7tJpUj1wiSquxJ3759rVSpUm6eknTq1MlV4qtbt25cqp5GobTdG0ABQGp79vzlk/sqVKiQC5oAAMjIrIekVK9e3V0QI4FT9+7dXclE5XFqAVzlZs6cOTOuYIQWufUdYXr22Wdd769+7t6924oUKeKCppdeeimE7wJANMxn8s0nV3A1duxY16mjOU0AAASLOuzUHnkXufVXclyOHj1q33zzjZtnq/WakPEyeWIsx41V64HYpvXflA7hpRKvvosJKmV44sSJ9vvvv1v27NldARr9RGBwDua4ALEuYebDU089Za+++mqSc5xOnTpln3/+uR05csR16PXq1Stk+x/L7VJEVdUDgGD27Gnbd99954ImjXarEARBEwAgIyu5+luTdNSoUS5o0kiTyo4jNAicAMSUpOYz/fTTT7Zs2TJ3/dZbb7WKFSuGbD8BANEpNXOavKnjmtKSK1cu6927t+XJkycD9xa+CJwAxJTE1sdYunSpC5ykffv2VrNmzRDsHQAg2qV0TpNSxydNmmTbtm1zFV2VnqdiRQgdAicAMU+N0owZM9xxaNGihTVs2DDmjwkAIDiSq+Tqpc68P/74w1WO7tGjh5UoUYKPJMQInADEvLJly7qqnlmzZnWBEwAAGZ35kJA68TZu3GjNmjWzChUq8IGEAQInADFPhSC8k229C+ECABCs9QMTVs3zJ3fu3HbPPffEW5oHoUXgBCAmHTp0yJYvX+7KkatRImACAIS6it7q1avd3CZlQQhBU3ghcAIQc7RWw4gRI9zaDer1a9WqVah3CQAQ41X0lJY3depUFzhpXSHS88IPY38AYsqZM2ds5MiRLmhSdaLGjRuHepcAAFFM6XnerIbEqujt3LnTxo8f74KmWrVqWfny5UOwp0gOI04AYsaFCxds9OjRLk1P62D06dPHcubMGerdAgDEcBW9AwcOuLZJc6EqV65snTt3Jn08TBE4AYgJly5dcr15u3fvtuzZs7ugSakQAACEqiDEsWPHXBbEuXPnrHTp0nb77be78uMITwROAGLCtGnTbPPmza7kuBYRLFKkSKh3CQAQwwUhzp8/74KmkydPujapZ8+ebqFbhC/mOAGICTVr1rRs2bJZt27dXK8eAAChLAihIEltk7IfevfubTly5OADCXOMOAGImVSJJ554wq2LAQBAMKnN0UiTgqbECkJo+/XXX++KFCmFHOGPwAlA1HrppZfs7bfftiNHjiS7dgYAAIHqqHvqqaf8FoRQ1bzFixdbw4YNXeq4EDRFDgInAFHp999/dz19d911l3300Ueu/Hhia2cAABDsOU363XfffWfLli1zazb17duX6nkRhjlOAKLO1q1bbdKkSa5BWr9+vQuaEkuVAAAgI+Y0/fTTTy5okgYNGhA0RSBGnABElT179tjYsWNd+fGqVau6bSrz6m/tDAAAMmJO09KlS13gJO3bt3dFIRB5CJwARI3Dhw/bqFGj3EK3WnX9tttu87tuBgAAGbXI7dq1a23GjBnueosWLdz8JkQmUvUARAWtg6H1MM6cOWPFixe3Hj16EDQhzYYPH+6Cb03abtSokS1ZsiTJ+w8bNsyNcKqccJkyZezxxx93I50AYoM66TSnafbs2e6nt9NO6wcqddybnqfACZGLrlgAUUErrefKlcsyZ87sFrjVmk1AWowbN86Vrv/ggw9c0KSgqG3btm6+XNGiRS+7/+jRo23AgAH22WefWZMmTWzDhg125513unSdN998kw8BiGHqfFF7VLFiRbvpppuY1xThMnm8M9lihCaJa6Gx48ePW968eUO9OwACSCl6Z8+edX/jCE+RcA5WsKRUmnfffTeufLBGkR5++GEXICX00EMP2R9//GFz586N2/bkk0/aL7/8kuJKjpFwXACkzdGjRy1PnjxkQYSp1Jx/SdUDELFUAEK9+76rsBM0Ib3B9/Lly61169Zx2zSKqduLFi3y+xiNMukx3nS+LVu2uPkMmgCemPPnz7vG2vcCIDro71mFirwKFChA0BQlCJwARCQNlk+bNs3GjBlj8+fPD/XuIEocOnTIBeTFihWLt1239+3b5/cxPXv2tCFDhrgJ4VrQslKlStayZcskqzgOHTrUBfnei0a0AETWgrf6u2/Tpo37qduiebYjRoywL774wrZt2xbq3USAETgBiMigSRNwf/31V5cv7m/eCZBR5s2b5xa/fO+992zFihVuIvj06dPtxRdfTPQxAwcOdGkh3svOnTv5wIAIXPB2zpw57qdua8Racx7VAaO5Tfnz5w/1biLAKA4BIOIsXLjQFi9e7K7ffPPNces1AelVuHBhV2hk//798bbrtqo1+vPcc89Znz597J577nG3a9WqZadPn7b77rvPnnnmGZfql5Ami1PABIgcGlFScOQtN65MB98FbxcsWGDjx4+33bt3u6Cpd+/eBE5RiBEnABFl5cqVbpFBufHGG61OnTqJpkwAqaV5cvXr149X6EHFIXS7cePGfh+j1JyEwZGCL4mx+ktAzIwwKaVXGQ+in5rrqNLjStdV+i6ZENGJEScAEUPloDWvSdRI6eLboOlLqjeo0joaQFqoFHm/fv3cmivXXnutK0euEaT+/fu73/ft29dKlSrl5ilJp06dXNnxunXruop8mzZtcqNQ2u4NoABENo00+Y4wqbNE7Y62N23a1G3Xtttvv505i1GMwAlAxDh8+HBcw/Xaa6+5KmeagJ+wQUtpCWjAn+7du9vBgwdd8K2CEBrVnDlzZlzBiB07dsQbYXr22Wddj7N+Kk2nSJEiLmh66aWXOMBAlFB6njrm1Mbo77158+buHKGRJ639tnHjRuvcubNVqVIl1LuKIGIdJwARZfDgwS4dT+lTarzU4yfeESfvNkacwhPrFXFcgGiY46ROuyuu+L/xBwVPW7dutcqVK4d6NxHkdokRJwBh7dixY5YjR464ifSagKugyXd0SWvmiG+DBgBAoChI8u2QO3DggBtdVmedUnIJmmIDgROAsHXq1Cn76quvXOCkyba5cuW6LF1CtxM2aAAABItGl0aNGuXSeLXQtb/KmYhOBE4AwtK5c+dcw3T06FEXJHlHmbyjSYwuAQAy2t69e23s2LEuPU9FYxBbCJwAhGUuuRomTczXKJPWyMmTJ4/7HaNLAIBQFSgaOXKkW+i2fPny1rVrV0abYgxjiwDCikaWJk6caNu3b3fzmnr16mUFCxYM9W4BAGLYyZMnXdCkddu0GHaPHj3iikMgdhA4AQgbSsn79ttvbd26dW6yrRqmEiVKhHq3AAAx7OzZsy5oUrGiAgUKuA49b8EixBYCJwBhVQxCa2Go6INSIEqXLu1Kj7dp08b9VAofAAAZaefOnW5tt9y5c7vUcf1EbGKMEUDY0Dymu+66yy0iWr16dRcseddnUiU9oXoeACCj125q2rSpy4LQiBNiF4ETgLBIg1DJcVGj5G2Y1FgpaPJdswkAgGBTm/PSSy+5Rde9nXfKhqDzLraRqgcgpDZs2GDDhg2z9evXX/Y7rdGkhkq8azYBABBsc+bMcZ16+fPnd7fpvEOaRpxWrFhhWbNmtVq1arnbU6dOtc8//9xq1KjhUmquvPJKjiyAFOeNT5gwwaVDqCBE1apV4/2eNZsAABltwYIFtmjRIpcJobm2Wk+QzjukKXD661//agMGDHCB05YtW1y+Z5cuXdyXH5VoVM8xACTnwIEDNnr0aBc0ValSxTp27HjZfVizCQCQkVauXBk3p7ZVq1YuYFL5cWU8eDvzELuuSEtaTZ06ddx1BUvNmzd3X34UnSuIInACkByVdFVp13PnzlmZMmXs9ttvd+XHAQAIFaWMT5s2zV1v0qSJC5ZIEUe65jgpx1MLVIoi8vbt27vr+vJz6NCh1D4dgBhz+vRpGzFihFtMsEiRInbHHXe49F8AAEJFi65//fXX7nuuBghat27Nh4H0B04NGjSwf/3rX+6Lz08//WQdOnRw27du3WrFihVL7dMBiDG//PKLHTlyxPLly2e9e/eOq6YHAEAoKFhSMQiljmuubadOneIKEwHpStVTKp5WTJ4yZYo988wzVrlyZbddUbqGNQEgKS1btrRLly5ZvXr1LG/evBwsAEBIKUhS9sO8efPcguuZM1N0Gv5l8ngXSUknzVXQHIVwT7k5ceKE6+k+fvw4X9qADKL0XjVM9OCBczBtExBObZNvkOS74K23GISKFCG6nUhFbHBFWid2a4Rp8+bN9o9//MMKFixov//+u0vVK1WqVFr3G0AUUt/MjBkzXIOk9AeKQAAAQk0d/pp2Ur9+fZcBIQqatLSOd8FbYcFbpCtwWr16tSvPqAXBtm3bZvfee68LnCZNmmQ7duywr776KrVPCSCKKfVh+fLl7rom3JYvXz7UuwQAiGHqyBs7dqzt2bPHXTT1pHHjxjZ//nwXNAkL3sKfVCdxPvHEE9a/f3/buHGjZc+ePW67quv9/PPPqX06AFFsyZIlcecFFZIhaAIAhDo9b+LEia6Knnz44Yc2c+ZMN9Kk+bfelHIWvEVARpyWLl3q/pMlpBS9ffv2pfbpAESp3377zb777ru4ghCqyAkAQKhoFOnbb7+1devWubTxVatW2d69e+N+p/lOCqB85zgB6QqcsmXL5iZR+VsYV2uyAIDmP06ePNkdiIYNG7qFsgEACKUffvjBVq5c6UaTunbt6kafNNVEQZO2qa1iThMCGjjdfPPNNmTIEBs/fry7rf9omtv09NNPu/+EAGLb+fPnXfEYNUhXX3213XTTTVTTAwCElNYb1UiSdOzY0apXrx43osQIE4JWjlyl+m677TZbtmyZnTx50kqWLOlS9DSpTpWzcuXKZeGMUrhA8G3ZssWdI9SZQhU9cA5OHm0TEFz6uvvTTz+5y4IFCyg3jowpR64n1urKis5VYe/UqVOujGPr1q1T+1QAolTFihXdBQCAcKAMKRUrGjx4MOXGkWZpXtVLk+Z0AYAzZ864PPF27dpZ4cKFOSAAgJDbuXOnLVy40Lp06WJXXnml6/Sn3DiCHji9/fbbKX7CRx55JD37AyDCXLhwwUaPHm27d+92JV7vu+8+5jQBAELqwIEDrm3SQrdKz7vxxhtdh78WtvUWg2AAAEEJnN56660UPZn+ExI4AbFDa16oUIyCphw5ctitt95K0AQACKljx47ZyJEjXdBUunRpa9GihdtOMQhkSOCkSiQA4Es9dlOmTHGlx7NmzWo9e/ZkSQIAQEidPn3aBU0qYKZlctQ2KU1PrrjiCsqNI10yW4gNHz7cypcvb9mzZ7dGjRrZkiVLku1FePDBB61EiRJuTamrrrrKVfMDkLFBk1Za1yK3WjCwW7durlcPAIBQLoeh9LzDhw+7Yma9e/d22RBAho44PfHEE/biiy+6UuO6npQ333wzxS8+btw493wffPCBC5qGDRtmbdu2tfXr11vRokX9zqVQjqp+p3ViSpUqZdu3b7f8+fOn+DUBpN/y5cvjOjluueUWq1y5MocVABBSU6dOtT179ljOnDld0JRcaWkgKIGTVlm+ePFi3PVAUZB17733Wv/+/d1tBVDTp0+3zz77zAYMGHDZ/bX9yJEjrkKKUoNEo1UAMlbNmjXdcgT6WatWLQ4/ACDkmjVr5tYW1XqjVHhFWCyAGygaPVKPgEaO1GPt1a9fP5eOp16DhNq3b28FCxZ0j9PvvbmrTz/9dKKLbGrYVhffRa7KlCmTokWuACTuzz//dGl6QGqw0CvHBQgm2iYEs11K9beeu+66y0248zcZT79LqUOHDrmKXMWKFYu3XbfVW+DPli1bXKClx2le03PPPWdvvPGG/etf/0r0dYYOHeoOhveioAlA6unv75dffom7TdAEAAg1rc2k9Zq8aJsQTKkOnL788ks7e/bsZdu17auvvrJg9yJoftNHH31k9evXt+7du9szzzzjUvwSM3DgQBdBei++f1wAUkY545qT6C0IAQBAqGmu7dy5c23EiBHuOx4QFnOcvMNYyurTRSNOqoLn5R0B8lfQITHKPVV63f79++Nt1+3ixYv7fYwq6Wluk29aXvXq1d0IlVL/vOUmfanyni4A0kbViUaNGuX+xipUqGDVqlXjUAIAQkqdeN9995273rRpU5dVBITNiJMq12l+kRa5VQnwAgUKxF0UBClNT2XCU0pBjkaN1FPgO6Kk240bN/b7GP1hbNq0yd3Pa8OGDS6g8hc0AUgfdZioJ+/MmTPu70yjvFoHAwCAUNH6gZMnT3bXGzZsaM2bN+fDQIZI8TegH3/80Y023XDDDTZx4kQXRHkpaClXrpyVLFkyVS+uUuQqBtGgQQO79tprXTlyzZXyVtnr27evKzmueUryt7/9zd5991179NFH7eGHH7aNGzfayy+/bI888kiqXhdA8pR+q0UElf6gv/devXoFdfT2f//7n/t7Vr76X/7yF7fCO0EaAMDX7t27Xeq4OtGvvvpqu+mmm1ynPhBWgVOLFi3cz61bt7oCC4GYfKfe64MHD7pVnJVuV6dOHTeHwlswYseOHfFeR687a9Yse/zxx+2aa65xQZWCKFXVAxA4Sr8dM2aM+/vMnTu39enTx63jFkwKml544QXXQfP999+7bTo3AAAgWpJGqeNaIqdSpUquKjNBEzJSqnNuNLKkcuGakHfgwIF4aXPeUaLUeOihh9zFn3nz5l22TWl8ixcvTuVeA0gNzSPUXCYFTlpEMCMWmdZIk3d1BP3UbSBUhg8fbq+99prr1Ktdu7a98847LjMiMWoXVaxo0qRJ7sud2kplUWgZDQCBoVLR+tvSXPtu3boluhQNEDaB07Rp01zKzqlTp9x/YN9IX9dTGzgBCE9NmjRxo8BaNy0jKD1PI00KmnQu0W0gFJQGpFRyVWxt1KiRC4Datm1r69ev91sESYVTbrzxRvc7LZmhbIjt27dnSIcDEEuUvn377bcnWhAMCLsFcFUYQj1oSqvJqC9UgcTii4B/OhUsX77c5Yz7Vs3MKMxxig2RcA5WsKQJ55pTK8qsUKq45tYOGDDgsvsrwNLo1Lp161zl12g9LkAoKEhatWqV+5skLQ/BkJrzb6oDJ81zWLNmjVWsWNEiEY0T4J9S41TVUssB3HPPPaRAICbPwfqSpk5BjRxp/oSXChkpHW/q1KmXPUadiSqgosfp90WKFLGePXu6+beJpRKdP3/eXXyPi4KzcD0uQCjn26qK3nXXXedGfoFQtkuprvCg/7TLli1Lz/4BCDMrVqyIWxpAhVfIG0esOnTokPuy5i1S5KXbmu/kz5YtW1yg5V3T8LnnnrM33njD/vWvfyX6OqoWq4bae1HQBOD/U7/+lClTXNCkkdyaNWtyeBB5c5w6dOhg//jHP+z333+3WrVqXZaWcPPNNwdy/wAEmdKLvv3227i10hJbRw2Af0rl0/ymjz76yHU6aI1ClUxW+t6gQYP8PmbgwIFuHlXCEScA/xc0qcqyFrlVdWUVgihdujSHBpEXON17773u55AhQy77nXJP1eMGIDJs27bN9ZSrkVIhiFatWgX9NZnLhHCmBd0V/Ozfvz/edt1WGqs/WhxanYi+I7XVq1d3I1SJTWLXmmjBXBcNiGTz58931ZtFKbOVK1dO83PR5iCkgVPC8uMAIpO+1I0dO9Z1dlStWtU6deqUIRNvWa8J4UxBjkaMlLrqneOkdk+3E1s6QyO1o0ePdvfzrj24YcMGF1BR+QtIHU0H+fHHH931du3aueym9KDNQSClfxVbABFJX/D0pU5rYnTt2jUgi1qnBOs1Idwphe7jjz+2L7/80v744w/729/+ZqdPn7b+/fu732vZDaXaeen3WrtJC7IrYJo+fbr7svbggw+G8F0AkUkjsWqPmjVr5ipcphdtDkI64iRqQH766SfbsWOHS0Pw9cgjjwRq3wAEkeZk3H333a6RSmsJ5bRgvSaEu+7du7vFn59//nk3Mqs0Vs238BaMUNvn29GguUmzZs2yxx9/3BVX0TpOCqJUVQ9A6miESe2TvzXT0oI2B4GU6nLkK1eudKVXz5w54wIolWBVFSKVYdV/clUXCmfhXgoXCKZz5865L4QZNQndX265JNymRQ0RGzgHc1yAhNRBoeVu8uTJE/CDwxwnBLJdSvW3FfWoaS6EFvzTiyxevNj1Vvfu3dv1sAEITxcvXnRzmnbt2uVWXte8pmBLLLdcFwAADh8+bCNGjHCp40qDLVCgQEAPijrmaHMQKKme1KDVm5988kmXpqAKQlrAT73Xr776alxvMoDwoknrEydOtO3bt7tGRJ0eGYHccgBAYk6ePOmCJmUx5ciRw2UvBWKESZWf27Rp437qNhAoqR5x0uiSN7dbqXnK9VbZVX0R27lzZ8B2DEBgaLRn2rRptn79etfZ0aNHj0TLKgcaueUAAH/Onj1rI0eOdOlRmvbRq1evgJTop4oewipwqlu3ri1dutSqVKliLVq0cMOfmuOkHoOrr746OHsJIM1URlkjxSo1ftttt1n58uUzbO6Sd3vC+wEAYjt1fMyYMXbgwAHLnTu3m+6hOU6BQKYDwipw0hcjDa3KSy+95PJRVYpVgdRnn30WjH0EkEYLFy60BQsWuOsdO3a0atWqBeRY+uvRE+YzAQCSorUDJ0yY4LKUsmfP7oKm9MxrStiR16RJE9cuqX1Sh6G2ASELnBo0aBB3Xal6KtEKIPyo0VClImnVqpXVq1cvYM+dWI+ev20AAPhWdz169Kibb3vHHXfElfkPVEfec889526T6YBgoAYwEKXU09alSxerUaNGwCvoJTZ3iV4+AEBSlJKnxaSVple2bNmAd+QtWrTIZs+ezYeA8AicKlSo4L4oJSbc13ECot2RI0dc2oP+TnUJVHqer6TmLtHLBwDwV3a8UKFC7rqq56Vmvq1vOl7jxo1d26ZUdFLzEPYL4P7nP/+5bIKfFsVVyt4//vEPGzBggIUzFl9ENFMP3ueff26VK1e2W265xVXRA8IJ52COC2KPviequutNN91kDRs2TPXjVVbcm47nSwGUUvPU1rGoOsJyAdzEFrkdPny4LVu2LLVPByBAjh075kq7Kn9cf/xau4nACQAQSuvWrXNBk4IetVPpTcfzRWoewn4B3MSoF0ELbALIeKdPn3ZLAqjipYq2aMKt1lwDACBUtOj6119/7QKcOnXqWOvWrdP0PErJ8zdNhKp5iNjiEPrD0AJmADLW+fPnbdSoUW5uk4aatYigVmAHACBUVNVVazWp/LgKFHXq1CnJOfIpnVebcI4T6wMi7BfA9f2P7y15fPDgQXvvvfcCvX8AkpkwO27cONu7d6+bbNunT59k83MBAAgmlRtX6rg69lQ5r2vXrpY5c9qTnFS6/Pnnnw/oPgIZEjhpwrkv/SEUKVLEWrZsGZTqXQASp4Bpx44dduWVV7qRJm/FIgAAQmXt2rUuhVxrNJE6jpgOnAYNGhScPQGQamXKlHGrrmvkt2TJkhxBAEDINW3a1LJly+Y61LNnzx7q3QFCFzipZF9KkTIEBIcq53kbo9SshQEAQLBSx71pdZrSkZay40DUBU758+dPdnKfer91H00IBBBYv/zyiy1YsMCNNKmCHgAAoaTlL1Qk7MKFC9a9e3c32gREo1QHTlpcU4vc3nnnna6yiSxatMi+/PJLGzp0KL3fQBCtWbPGLTYtGzduJHACAISUOsu1TtP69evd2oEqFla6dGk+FUSlVAdOX331lb355ptusp/XzTffbLVq1bKPPvrI5s2bF+h9BGBmmzZtsilTprhjce2111qTJk04LgCAkJo7d66tWrXKZRrddtttBE2IaqmuDanRpQYNGly2XduWLFkSqP0C4GPXrl02fvx4lw5x9dVXW7t27dK8HgYAAIGg74RKHZeOHTtSXRlRL3Naqnh9/PHHl23/5JNP3O8ABJbSHkaPHm0XL160SpUquSUBCJoAAKH066+/2uzZs931Vq1aWb169fhAEPVSnar31ltvuYXMvvvuO2vUqJHbppEmzbeYOHFiMPYRiGnff/+9nT171kqVKmXdunVzOeQAAISKFrb1Bk3XXXedKz8OxIJUjzi1b9/eBUma13TkyBF36dSpk23YsMH9DkBgdenSxerWrWs9e/Z0C90CABBKqprXt29fFzS1adOGLAjEjEwelUOJIVqHKl++fHb8+HHWmULY0lymzJlT3a8BhD3OwRwXRK6Mapu0JtTLL79s//3vf+0vf/mL/fOf/3TrQwGhbpf4XwiEGa1/NmbMGKtYsSKV8wAAYeHYsWNuvm2HDh2sXLlyQX0tBU0vvPCCK3WudHV5/vnng/qaQErQpQ2EETUSkydPts2bN7vS/ur9AAAglE6fPm0jRoxwxYo0tynYyUoaafK+hn7qNhAOCJyAMKHGQUVX1q5d61IhtPq6ho5DSekSQ4YMcTns+qnbAIDYKgQxatQoN6ddbZLapmBXdlV6nvc19FO3gXBAqh4QJn7++WdbunSpu66S4yo9HmqkSwBA7FJn2bhx42zv3r2WM2dO69OnT4bMD9ecJvGd4wREbOCkPySlESmdSJW+8uTJY3v27HF/TLlz5w78XgJRbtmyZe5vSm666SarVauWhQPSJQAgdgtBKHV869atrqJrr169rFChQhny2ioEwZwmREWq3vbt292Xus6dO9uDDz7o8l3llVdesb///e/B2EcgqulvaPr06e568+bN7dprr7VwQboEAMQmZUD8/vvvbu3AHj16WMmSJUO9S0DkjTg9+uij1qBBA7ditG/Pg9aauffeewO9f0DUK1KkiBtlUgDVsmVLCyekSwBAbKpfv77t2rXLqlevbhUqVAjqa1F+HFEbOM2fP98WLlx42UKc5cuXt927dwdy34CYEU6jTL5IlwCA2KTzf9euXTPktZhPi6hN1VPOq9aZSUi9EprrBCB5hw8ftrFjx9rZs2c5XACAsLBmzRqbNWtW0MuNJ8R8WkRt4KSyxMOGDYu7rTKRp06dskGDBln79u0DvX9AVK5QrfUw1q9fbzNnzgz17gAAYJs2bbIpU6bY4sWLbfXq1Rm61EWTJk0oP47oTNV74403rG3btlajRg07d+6cq6q3ceNGK1y4sI0ZMyY4ewlECY0wjRw50i1sqzmCajQAAAglZQ2NHz/eZRVdffXVds0112Roat5zzz3nblN+HFEXOJUuXdoVhlCakXokNNp09913uzKVOXLkCM5eAlHg4sWLNnr0aFcEQmmtvXv3tly5coV6twAAMUxtktomtVFaP1DrCAZ7gduEqXmLFi2y2bNnB/U1gZCt46QJg/rSByBlNC9QvXnq1cuePbv7+8mfP39YHT6qGgFAbFH2g7IglA1RqlQp69atmys/Huw2RtcVnClo0k8tfQFETeD0zTffpPgJb7755vTsDxCVNNlW+ePqdFB6a9GiRS3cUNUIAGKrQ2/UqFFu3q2mW6htSlgxOVhtjFx//fWuTVTQ5F36AoiKwEnDtimhXgN/FfeAWKdy4wqctF5TmTJlLBxR1QgAYodGllq0aGFz5851WRA5c+bMsDZGFDSRnoeorKqnyYIpuRA0Af6pN+/BBx+0KlWqhO0hUq+fN6+d1AnEuuHDh7v1CZVa26hRI1uyZEmKHqf5v/r7SWmHIxBKNWvWdG1Tvnz5gv5atDGI2TlOAJK3cuVKy5s3r5tsK8HKGw/UfCZvqgRVjRDrxo0bZ0888YR98MEHLmjSEhyqJqslBJJKs922bZv9/e9/t2bNmmXo/gIppREfjTA1bNgwLljKqLaJNgbRIJMnDauc6Y/urbfesj/++MPdrl69uj322GPWunVrC3fK5dXJQhMi9aUWCAb9bUyYMMH1PN97771WvHjxsDrQWjfDm2uufdT1559/PtS7hRgQCedgBUv6Yvnuu++628qoUIrtww8/bAMGDPD7GGVcNG/e3O666y6bP3++HTt2zK2JE03HBZFN5/vvvvvOli5dagUKFLAHHnjApcsFq0PuqaeesldffTVeZ1wgXw8IlNScf1P9P/i9996zRx991G677Tb3U7RYmha/VTClIV8glqnXeeLEia6RqlOnjhUrVszCDfOZAP8uXLhgy5cvt4EDB8Zty5w5s+sYVMnkpDojNBql5TkUOCXn/Pnz7uLbcAPB9PPPP7ugybcwQzALDM2bN89dvLeFDjpEuivS8oehAOmhhx6K2/bII49Y06ZN3e8InBDL9u7d6xaCVu9ztWrVrGPHjkFfDyMtaXn6qYaMUrBAfIcOHXJ/vwk7PHR73bp1fg+X/rY+/fRTW7VqVYoP59ChQ23w4MEcfmSIZcuWuSBG2rVrZ7Vq1Qp6h5zW/PS9rd8DMRc4Kf1Af3QJtWnTxp5++ulA7RcQcY4cOeJKu6rHuly5cta1a1fXUx2OZcbJNQcC4+TJk9anTx/7+OOPXRGYlNKIluZR+Y44hWvFTUS2tWvX2vTp0911pZMqFTUYnXJNmjSJ1yFXu3btuBEnCg4hZgMnrdM0efJk+8c//hFv+9SpU13vOhCLTp8+bSNGjHA/NZ+pR48eYZPL7S8tT/tGygRwOQU/miy/f//+eNt1299cxc2bN7v03E6dOsVt05wo0d+ZCkp4C8T4ypYtm7sAwaT/m5MmTXLX69evby1btgzoIra+qXjPPfec66RLao4TEOlS/c2uRo0a9tJLL7k/lsaNG8fNcVqwYIE9+eST9vbbb8dL4QNigUoWa5RJvWq9evVyt8MFaXlAymkBUH3BVBEkb0lxBUK67Zui7qWU3DVr1sTb9uyzz7qRqP/85z+MIiGkChUq5DoDdNFc9PSmjidcxNZLtzUHMOG6THTQwWI9cFIet6qx/P777+7ilT9/fvc7L/1xEjghVqiHunPnznbmzBnLlSuXhRPS8oDUUQpdv379rEGDBm7xapUj12hy//793e/79u1rpUqVcvOU1Ely9dVXx3u82kNJuB3IaHny5HH/bzX6mZbU8YTpeCp84q8YM6l4iBWpDpy2bt0anD0BIox6oVesWGH16tVzDZIajnALmoS0PCB1unfvbgcPHnS95fv27XPVMWfOnBlXMGLHjh1hMX8R8Efz5Xbt2uUyhCQ9GRAJ58gq1U9tnTd48lbnIxUPsSJN6zgFY4X21157zTVQmkz4zjvvuF6+lKzQfscdd7ie/pSul8FaGQgE/dl88803rorWNddcY126dOHAApyD04y2CYFw9uxZ+/zzz13gr+9GCvrTQ4W/5syZE3e7VatWrsAEazMhmgR1HSd9Yfz666/txx9/tAMHDsRNgvXyTkJMKVZoRyRSz5uCJvW8aQFoAABC6eLFi245DAVNuXPntvLlywd8jqyCJuYtIZalOtfgsccec6VXlbKnP0xFaL6X1HrzzTft3nvvdTm4Glb+4IMPLGfOnPbZZ58l+hitsaEJ+FoDo2LFiql+TSA9Fi5c6C6iSlqaHJ7RlHeuBTfVG6ifuu1vGwAg+ul70YQJE2znzp0uNU/f07xz7dI7R1apejfeeKP7SWU8xLpUjzip5LJGlVSdJRJWaGd1dgSSRpm8aQv6f1q3bt2wWZtJEm6jZxAAYiN1fOPGjW6+kaYw6DtSIDBHFkhn4KRRpUCN8mTECu2szo5A2bBhg2ucRKX4tdhfOK3N5L2ecBsAIDrpXK8S4KtXr3apdLfffruVLVs21LsFRK1Up+qpR1spcpqAGAkrtGs0S5O9vBcNYwPpKTuuAiZKW0jvehjpzTv3vr63DKy/bQCA6G+XRMUgrrrqqlDvDhDVUj3i1K1bNzf5UMPAmniYNWvWeL9XeeZwWqGd1dkRKGqQ7rnnHvf/NiODpoTraCjHPKm1mVilHQBig9oipY1rjnjJkiVDvTtA1Et14KRFATUvqXfv3i6lLj1fIFmhHeHu6NGjLhWiYMGC7nbCtNJQzWfS3CV/85eY0wQA0U9riZUoUSKu85qgCQjTwGn69Ok2a9asgKUBsUI7wtWpU6ds5MiRrsCIUkQzImjyN7qU2HwmAEDsUeaN2qZSpUpZz549XWYNgDANnMqUKZPs4lCpwQrtCEcKlkaNGmVHjhxxJV1VIj9Uo0sJ19Fg7hIAxKa9e/e66RIqrJUjR47LpksACLPA6Y033rCnnnrKrbcUiMXV5KGHHnIXf+bNm5fkY7/44ouA7APgO+ozduxY27dvnwuYlJaaJ0+eoI8saZ6ev9GlGTNmuNvMXQKA2KWOPHXoaSmXcuXKWdeuXd0SLgDCOHDSl8gzZ864Igz6Upmwt0N/2ECkUrERrVOmVAjNwdP/90KFCmXYvCV/o0usowEAsU1VhZWed/r0aZc23qNHD0abgEgInIYNGxacPQFCTMGK5vD98ccfrtqjGiZNvg2GxOYtJVUtDwAQe86dO+dGmlSsqECBAq5DL3v27EF5rcSyIQCko6oeEI0uXrzo0vM00qMUiAoVKgTttRKbt8ToEgDA17Fjx+zEiROWK1cuFzTlzp07aAcosWwIAP/nivT2gijX1lcgC0cAGUmpeX379rXt27cHfRFBRpYAACmhdS379+/vCkJ4l8YIFqq4AgEOnJRf+/TTT9v48ePt8OHDl/1ef9hAJPGmP4jKumbEyuuMLAEAEqMRH400edumIkWKZMjBooorEODASRX1fvzxR3v//ffd2jbDhw+33bt324cffmj//ve/Od6IKJs2bXKlXVu2bOkajPQs6AwAQCDMnTvXli5d6ubaBjNtPCGyIYAAB07Tpk2zr776yn3R1NBxs2bNrHLlyq40piYv9urVK7VPCYTErl273MipKukdPHiQTwEAEHILFy60BQsWuOsadcpIZEMASUv1AgAqN16xYsW4+Uze8uPqrf/5559T+3RASChQGj16tCsIocC/c+fOjDYBAELq119/tTlz5rjrrVq1srp16/KJAJEcOClo2rp1q7terVo112PvHYnKnz9/4PcQCLDjx4/biBEj7OzZs1aqVCm7/fbbXflxAABCZcOGDTZ16lR3/brrrrOmTZsG/TVVfnzIkCHWpk0b91O3AQQwVU/peeoRadGihQ0YMMA6depk7777ruu5f/PNN1P7dECGUnETBU1aTLBw4cLWs2dPV00PAIBQ2bFjh02YMMEVhahdu7YLZDJizi3lx4EgB06PP/543PXWrVu7xUJXrFjh0p2uueaa1D4dkOE9eqoGqTRTrYeRM2dOPgEAQEipEIRGe6pUqeI6pIMZNPkucrt582a/i7ED8C/dy0GXL1/eXYBIoHxxNQ5ly5a1fPnyhXp3AACwW265xZUcb9y4cdBTx31HmXz5LsYOIJ2B06JFi1xPfceOHeO2qbreoEGDXPqT/ujfeecdtw4OEE5UNU/ri2XNmtXdrlevXqh3CQAQ4y5cuODaJQUsCpaaN28e9BEmBUbz58+PFzRp7nqlSpXc77zlyAGkM3DSpEGVIPcGTmvWrLG7777b7rzzTqtevbq99tprVrJkSdeLAYQLNQ4zZ860PXv2uPlMpOYBAELt/Pnz9uWXX1rp0qXtpptuCmhqXsJASZ2H+g6n9vD777933+X0erqtn/369bPnn38+YK8PRLMUB06rVq2yF198Me722LFjrVGjRvbxxx+722XKlHGjTwROCCcqka/ccdm5c6dVrVo11LsEAIhhCmz0HWrv3r2uyquCG827DVbBBy2g6zuPKXPmzO733sCKUSYgCIHT0aNHrVixYnG3f/rpJ9dL4tWwYUP3xRQIFwqY5s2b5663b9+eoAkAEFIa/Zk0aZJt27bNVXRVkaJABk2igMg3UBLfESalBDLCBAQ5cFLQpPWbNLKkvFxV0hs8eHDc71Xe2TuHBAi1tWvX2owZM9x1lc5XYA8AQKgocJk+fbqrRqw5TT169LASJUoE/HU0iqSRJm+gpOBMr8cIE5CBgZN67LVu0yuvvGJTpkxxc0WaNWsW9/vVq1e7yYVAqG3ZssX16EmDBg1c4AQAQCj9+OOPrtNZbr31VpdCFwze1DvfQOmKK9JdRBlAagInzW/SH7q+hObOndtNavRdOPSzzz5zC7YBoaTqed9++61Lh6hZs2bAJ90GYqIujRgAxJaDBw/GrZGkIls1atQI2mspSCIVDwhx4FS4cGE30V4TGRU4JVxnQCteazsQSvp/qbQElVvt0KGDmwQbaqzMDgCxTWs0devWzQ4dOmT169cP6HPTOQdknFSP3Sa2aGjBggUDsT9Amnhzub3/Fzt37hw2RzLhRF1WZgeA2GubqlWrFpTXoHMOyDih744H0uns2bP2ySef2MaNG8PyWCo9z9twsjI7AMSGXbt22UcffWTHjh0L6uvQOQdkHAInRDRVeBw9erRb4FZV9JSyEG40p0lrZtx4443uJ2tmAED0z2lS27Rv3764ZTGChc45IONQZgURXQhCc+vUq5c9e3a74447wrJyEBN1ASB2aC74yJEjXTZEqVKlXFXiYPJXRQ9AcITft0wghXnjU6dOtU2bNrnApGfPnla0aFGOHQAgZM6cOWMjRoywEydOuKJaapt8KxAHCgUhgNAgcEJEBk2zZs2yNWvWuKp5qlSkhZkBAAhl6vioUaPs8OHDljdvXlfhVWteBgMFIYDQYI4TIo5WXf/ll1/cdVXPq1KlSqh3CQAQ49Shp/m2OXLksD59+iRahTgQKAgBhAYjTog4Kulat25dl5p3zTXXhHp3AACw66+/3o02qRCQ0vSCSXOZvv/++7hy57oNIPgInBBxlJ7XqVOnuBLf4YS8cwCITblz57Z+/fplSNtEQQggNEjVQ0TYunWrffvtt/bnn3+62+EYNPnmnc+ZM8f91G0AkWf48OFWvnx5V7GzUaNGtmTJkkTv+/HHH1uzZs2sQIEC7tK6desk74/o8fPPP9vKlSvjbmdU2+St1jp79mz3MxwrygLRiMAJYW/v3r02duxYW758uS1atMjCGXnnQOQbN26cPfHEEzZo0CBbsWKF1a5d29q2bWsHDhzwe3+t06PlEH788Ud3jlKxmjZt2tju3bszfN+RcZYuXeo+82+++ca1U8HOZhgyZIj7f6Wf4bhmIRAL6KJAWFO+uNbDULWicuXKuZ7fcEbeORD53nzzTbv33nutf//+7vYHH3xg06dPt88++8wGDBhw2f1VSc3XJ598YhMnTrS5c+da3759M2y/kXHWrl3rFl2X5s2bW4kSJQKa5v3UU0/Zq6++Gndb2RYKmDSnSXObRCNNADIWgRPC1smTJ13QpHUxihcvbj169AirdAR/85nIOwcimzppNLo9cODAePMqlX6X0hFvnbMuXrxoBQsWTPQ+58+fdxcvrfuDyLBlyxabNGmSu16/fn1r2bJlwMuLaxRTF+/tChUquOuin2p3AGS88PkWCvg4d+6cC5qOHTvm5gz06tXLzTUIJ4mto0EvIBC5Dh06ZJcuXbJixYrF267b69atS9FzPP3001ayZEkXbCVm6NChNnjw4HTvLzKWyo0rlVMjQDVq1LD27duneV6Tb+fb5s2b4wVGv/76a7zbotehih4QWgROCDtqGMaPH+/mE6hKkdbD0M9wq5THfCYACf373/92czI1WpBUZ49GtDSPynfEiYW8w9upU6dcWqZGJTUC1KVLFzcaGYj0O18KkDSvzjvipNtaTDdLlizx2iEAGY/ACWFHjUSTJk1cz69GmjTiFI4jS8xnAqKP1t/RF9T9+/fH267bShlOyuuvv+4CJ50nkltjLlu2bO6CyJErVy5r0KCBbdy40bp3755s6nhq0u+kYsWKVqlSJb9BlrfDDkBo8VeIsFS5cmV75JFHMryh8De6lNjIEvOZgOhz5ZVXunkrKuxwyy23uG0aGdDthx56KNHH6UvuSy+9ZLNmzXJfrhGdnXpa5Fal51PSNiVsO5JLv9MaUL6p3qR9A+GHwAlhQ41M9erVrVChQu52KHrX/I0uJTay5F1HA0B0UQqdvsQqALr22mtt2LBhdvr06bgqe6qUV6pUKTdPSV555RV3Lhg9erRb+2nfvn1uu1KMQ5lmjPRTWp7WalLlPAXVqWmbErYdpN8BkY/ACWFhwYIFrkd38eLF9uCDD1qOHDlCsh/+Rpe8JWfJLQdig9KwDh486IIhBUF16tSxmTNnxhWM2LFjR7y5Le+//777gn3bbbfFex6tA6WOGEQmFQmZMGGCbdq0yc257dmzZ6oenzArgfQ7IPIROCHktOq6d3SncePGIQuaEhtdYmQJiD1Ky0ssNU/zVHxt27Ytg/YKGUVtgBa2VdCkNkDpeanlr+0gSwGIbAROCKn169fbtGnT3HUVhGjatGlI94d5SwAQ2xQ0aa7a6tWr3chit27dqHgIwCFwQshs377dvv76a9dIKRUmqTVPMgqjSwAQ25Ra98svv7jrnTt3tipVqoR6lwCECQInhITyxceMGeOq2F111VXWqVOnNC8iCABAoFLHf/jhB3e9bdu2yZaV963EqlRztWMLFy6khDgQpQicEBJ58uSxIkWKuDQITahOahFBAAAyggqA5MyZ0+rVq2fXXXddsvf3rcQ6Z86cuO2+a/4BiB4ETggJFYDo06ePWx8la9asIdkHf2s2scAgAMSukiVL2v3335/iMvK+lVh9+a75ByB6EDghw5w7d86tuF6rVi1327smRqj4W7OJ3kEAiC179+51nXham8ubEZGWSqy+fNf8AxA9CJyQYaM748aNc2V7T5486SrohZq/NZsAALHjyJEjNmrUKLcOl7IgypQpk+ZKrP7mOAGILgROCDr15E2cONEFTRplqlChQlgcdX9rNgEAYoM68UaMGGGnT5+24sWLu3m3qUUlViC2EDghqBSUTJ8+3datW2dZsmSxHj16WIkSJcLiqLNmEwDEbuq4RpqOHTtmBQoUsF69eln27NlDvVsAwhyBE4JKZV1XrFjhRnS6du0aNqNNQk8hAMSeixcvuuUw9u/f74pAKEUvpcUgKCoExDYCJwTN4sWL4+YNdejQwapXr87RBgCENHVcC6/v2LHDsmXL5kaaNOKUUhQVAmIbi+cgaC5duuR+Xn/99Va/fn2ONAAgLNolZRzccccdbm5TalBUCIhtjDghaJo2bWrlypWLK/EaSqRXAAC0bmC3bt1cmp7WbEotigoBsY3ACQG1b98+l/agFAgpXbp0WBxh0isAIHYpNU+lxjXfVoWK0hI0CUWFgNhG4ISAOXDggH355ZdxFYpy5coVNkeX9AoAiE2rVq2yqVOnWr169axjx44ueEorigoBsY05TggIlXQdOXKkK/Gq3jylQ4QTpVd4G0vWbAKA2LB+/Xr75ptv3HVlQqQ2aFKa95AhQ6xNmzbup24DiF2MOCHdtHiggiYtJqgFBHv27OkWug0npFcAQGzZvn27q6Cn9QRr165tN954Y6qfgzRvAL4InJAu58+ft9GjR9vhw4ctX7581rt3b8uRI0fYHVXSKwAgdqj4g9Zq0gjRVVddZZ06dUpTih5p3gB8ETghzdQgjRs3zvbs2WM5c+Z0QVPevHk5ogCAkDl69KjLglDHXtmyZe22225zKeRpqcDapEkT+/77792oFWneAMJijtPw4cOtfPnylj17dmvUqJEtWbIk0ft+/PHH1qxZM1eAQJfWrVsneX8Ej1LzDh486NLyVAyicOHCIT/c5KMDQGzbu3evSyEvWrSo9ejRI9k5t77thi4vvPCCzZkzx/1UwKSfSvPTT2/aN4DYFPIRJ41YPPHEE/bBBx+4oGnYsGHWtm1bN6FTJ72E5s2b5xatUy+QAq1XXnnFnejWrl0bFusFxRIFrnfddZcdP348zaVdA418dACIbTVq1HCdefoOkZLUcd92w5duL1q0yGbPnh3EvQUQSUI+4vTmm2/avffea/3793cnOwVQSvv67LPP/N5/1KhR9sADD1idOnWsWrVq9sknn9iff/5pc+fOzfB9j1UKlHyDJ40WhmIkyd828tEBIPbo/K9RJq9KlSpZnjx5UvRY33bDF6l5AMJqxOnChQu2fPlyGzhwYNy2zJkzu/Q79fKkxJkzZ+zixYtWsGBBv79XjrMuXidOnAjAnseupUuXut435YxXrVo1pCNJknAbq7oDQGxR5+mkSZPcAuyaa5vY94HE+LYbcv3117uCQtpOah6AsAmcDh06ZJcuXbJixYrF267b69atS9FzPP300y5NTMGWP0OHDrXBgwcHZH9j3W+//WYzZsxw19VABStwSjg5Vw1XYiNJCbd598/3sQCA6KRz//Tp0+2PP/5wBSDUOZrawMnfchUKnAAgoYg+M/z73/+2sWPHunlPmu/kj0azNIfKSyfVMmXKZOBeRofNmzfb5MmT3fWGDRta8+bNM3R0KbGRpITbKDsOALHjxx9/tBUrVrg2oGvXrmlKHafdABARgZOqsKmHSOst+NLt4sWLJ/nY119/3QVO+uJ8zTXXJHo/rRSuC9Ju9+7droiH0iFq1qxpN910U5pWX084iiQJt6kB8ze6lNRIEqNLABB7Fi9ebPPnz3fXO3ToYNWrV09ze8QIE4CwD5xUxrp+/fqusMMtt9zitnkLPTz00EOJPu7VV1+1l156yWbNmmUNGjTIwD2OPUqnVEEOzSOrWLGidenSJU2LCKZ0jtLzzz/vd3QpsR5Bf9sAANFt9erV7juA3HDDDe67REpRfRVAxKbqKY2uX79+LgC69tprXTlyVcZRlT3p27evKzOuuUqi8uP6sjx69Gg3JK+5NpI7d253QWAtW7bMzp496+aRde/ePcWLCCaU0jlKieWbAwDg7WBdsGCBu65lTLyp2+ltjwAg7AMnfRnXIqoKhhQEqcz4zJkz4wpG7Nixw1Xa83r//fddNT5VdfM1aNAgN3qBwFKpb5WHV2CrEcK0SukcJSHfHACQGH0nUIerqrxqvm1qsyCovgogYgMnUVpeYql5Kvzga9u2bRm0V7FL+d8aWVJjpAYqEIUgkhpFYmQJAJAcpYxnzZrVXVeHXosWLdI0p+mpp56i7QEQuYETwofKw6sQhBqlm2++Oc2peQkxRwkAkFbHjh2zL774wpo1a5bsfKaEgZJS+7RIesL5tACQWgROiKNGZerUqbZp0ybXq9ekSZPL1tgCACAjad7zyJEj7fjx4/bLL79Y7dq1k6yCl7D4Q4UKFZjTBCAg/v/kIcQ0NTCaW7ZmzRqXntetWzeCJgBASJ0/f94Vgzp8+LDly5fPevfunWzp8ITFH8Q7D8p3Pi0ApBYjTohraJYsWeKuqzR85cqVOTIAgJBRyt348eNtz549Ln1cQVPevHlTXfxBj1PaOfNpAaQXgRNs+fLl9sMPP7gj0a5dO6tVqxZHBQAQMpqXNGXKFNuyZYtLHe/Zs6cVLlw4zcWIWOAWQCAQOMW4U6dOuRQ90aRbrYkBAEAorVu3ztauXetSx7VsidZzTCmWtAAQLAROMU6LBt9xxx22YcMGu/7660O9OwAAWPXq1V2bVLBgQatUqRJHBEBYoDhEjPJOmJWKFSu6FL3ULiLozUFXmVctlKufuu1vGwAAKW2b1B5pDcGrr746zW0RAAQaI04xSNWJJk6caF26dLEiRYqk67kSln31SriNNTMAAElRat7KlStdVdcrr7wy2UVsX331VdZqApChGHGKMSdPnnTrYezduzdublN6JCz7qtv+tgFAJBk+fLiVL1/esmfP7uZ+equOJmbChAlWrVo1d38V2JkxY0aG7Ws02Lx5s02aNMn9XLZsWaKddHPmzHE/27dvH+/2iBEjaHcABB0jTjHk7NmzLmjSCuzKG7/11lvT/ZwJy75618fwtw0AIsG4cePsiSeesA8++MAFTcOGDbO2bdva+vXrrWjRopfdf+HChW6u6NChQ61jx45u3SEt67BixYoUp5rFst27d7tjrkp6okCocePGrv3QsVUbMn/+/HiB0a+//up3rSbaHQDBlMnjO9klBpw4ccItoqcVyFOyHkS0uHjxouuR27lzpysIcdddd1mBAgXS/bwJ0ye8ZWATbqMULIBIOQcrWGrYsKG9++677ra+0JcpU8YefvhhGzBgwGX3V9W306dP27fffhu37brrrrM6deq44CtajkswHDp0yD777DPXsScvvviiXbp0Kd59FBC1bNnS5s2bFxcYJbz93HPPXbZWE+0OgECffxlxigFqhJRGoqBJaSRaDDAQQVNSZV+Z0wQgEl24cMGtbTdw4MC4bSqJ3bp1a1u0aJHfx2i7Rqh8aYRK6xAl5vz58+7i23DHGr1nZUEoaCpZsqRL1UsYNImCI30GGolKbI4TgRKAjEDgFAOU4rBx40YX5CidpFixYqHeJQAI2xEQfXlPeJ7Uba0t5M++ffv83l/bE6O0vsGDB1usUjD09ddfux7eQoUKuQVuNfd21qxZ8aq++lbYS9ghRwcdgIxG4BQDlDKyfft2lzNetmzZUO8OAMQ8jWj5jlJp9EXpgLFCwZAKPEybNs1V0cuVK1dcqrdGkRLOcfL+DgBCicApBig9r2/fvmlapwkAYknhwoXdXJn9+/fH267bxYsX9/sYbU/N/SVbtmzuEst0fO655564timx1G8ACBeUI49SWgtj8eLFcbcJmgAgeVo/qH79+jZ37ty4bSoOodsaBfFH233vLyqTndj9Y5VS8KZPn247duyI20bbBCCSMOIUhVQyV+kPaqTUe1q5cuWgVM+jYhGAaKQUun79+lmDBg3s2muvdeXIVTWvf//+7vcawS9VqpSbpySPPvqotWjRwt544w3r0KGDjR071q1F9NFHH4X4nYQPtUffffedOy7q1FP78cwzz9COAIgoBE5RRnOZNOFWjZRK4VaqVCkgz+tdfFDPqzWahJQKANFI5cUPHjzoznEq8KBzqRYM9xaA0IiJqrx5NWnSxK3d9Oyzz7pOpSpVqriKerG+hpNvh1vTpk3jtk+dOtV+++03N9pEOwIgkhA4RRE18GPGjHGNVdWqVa1Tp04BS4NQw+e72KBuA0C0euihh9zFH60flNDtt9/uLri8w61u3bpx2zTqtGbNGneddgRApCFwihJHjx5162FoXRBVzuvatWu8HtH0UnqeRppYlR0AkJJRps2bN1u1atWsY8eO7nerV6+2JUuWuOvq1FO7AgCRhMApShZsHDFihMvBVyqJ1mrKmjVrQF/Dt0wspWEBAMmldWsemNZnUieeFhXWyFPt2rVpRwBELAKnKKAqUA0bNrSlS5dar169XPnxQKNMLAAgucJBWnDdm9atkuy7d+92azSpUiHFIABEOgKnKKGyt6oAFeiRJgAAUlo4qGXLli4NT7cvXbpk5cqVI2ACEDUInCKU1hX5+eef7brrrosbYQpU0ETpcQBAakeY9FPt0aBBg2zBggUsXQEg6hA4RSA1Tt9++61b5HbTpk129913B3QRQUqPAwD8BUrqtBsyZIjfEaYcOXJYo0aN3OOefvppa9WqFQcRQFQhcIpAP/zwgwua1FhpbYxAr7xO6XEAgL+OtAoVKsQbYVLhB/1+4cKFLmVccufObfXq1eMAAog6gatXjQyxaNGiuLUvVOK1evXqAX8N9Sp6gzFKxgJA7ErYkSa+7UPz5s3dHKZ+/fq5bdmyZbPevXtbgQIFQrjXABAcjDhFkF9//dVmz57trt9www0B6dHzN5+J0uMAELt82wVd96bi6aeCoixZssS1GQMHDrRp06bZhg0bXPVVLYehZTEAIBoROEWIjRs32tSpU911FYQI1MKBic1n0gUAENvzmOT66693QZG3c03XvebMmeM69RRU3Xbbba6KHgBEKwKnCJE/f37LkyePlS9f3tq0aZOmeU3+RpeYzwQAsS2peUyiQMmb7ZBQiRIl3AiUUserVq2agXsNABmPwClCFClSxO655x7LmTNnmotB+BtdUgCl6940jECNZAEAInseU0rahauvvtrKlClj+fLly7D9BYBQIXAKY8eOHXMXjTKJRpzSw9/o0owZM+J+5x2FAgDEjoQdaAnnMSVsF7Zs2WKFCxe2vHnzutsETQBiBYFTmDp9+rSNHDnSBU7du3e3KlWqpPs5/Y0uKQWD+UwAELv8FQTyncfka/v27TZmzBjLlSuX3XXXXXHBEwDEAgKnMHT+/HkbPXq0HT582PXkBapCEdXyAAAJpbQDbd++fS5o0nxZtUtarwkAYgmBU5hRgzRu3Djbs2ePm8+klIlA9egxugQA8FcoKLERJq+jR4/aqFGjXMde2bJlXQU9LX4LALGEwCmMqATs5MmTbevWrXbllVdar169XB45AACBktgyFIk5deqUjRgxwv0sWrSoW6spa9asfCAAYg7dRWFCDZgKNfz+++9uUq7mNZUsWTLUuwUAiDKpWYbi3LlzbqRJI05aFkNZENmzZ8/AvQWA8EHgFCbUeF24cMFd79Kli1WsWDFdaRhavFDrPemnbgMAIErP8y5rkVy58YsXL9qlS5dcMQgFTemt7goAkYxUvTChXHEFTA0aNHD54xmZhgEAiJ05TU899VSKl6FQoNS/f387efKkFSpUKAP3GgDCD4FTiO3evdutvK7AST1/6Q2aUpuGAQCIbqntTNP91DaVLl3a3c6RI4e7AECsI1UvhDZv3myfffaZTZo0yaVChCINAwAQ3VLbmfbDDz/Yp59+akuWLMmgPQSAyMCIU4js2rXLlR1XJT0FN4Es68p6TQCApBY/T8yiRYviAisVKgIA/H8ETiFw8OBBt8CtJt1WqlTJbrnllrgRokBgvSYAQGo701avXm2zZ89212+44QarX78+BxEAfBA4ZbDjx4/byJEj7ezZs1aqVCnr1q1bunr10rKQIQAgdqSkM23jxo02depUd71Ro0akeAOAH3zDzkBnzpxxQdOJEyfcwrY9e/Z0C92mBxX0AADp6VTbuXOnjR8/3qWO16pVy9q2bRvQLAgAiBYEThlo//79bhHBvHnzuvUwcubMme6GkAp6AID0dKqpUJHal8qVK1vnzp0JmgAgEQROGahChQrWp08fFzDly5cvIA1haib9AgBiQ2o61Vq2bGkFChSw6tWrUxACAJJA4BRkarBOnz5tuXPndrfLlSsX0IZwxowZKV7IEAAQG5LrVFPquFLFvel7tWvXDtGeAkDkIHAKIjVYM2fOtN9//92NNBUtWjTgDSEV9AAAqamkd/78eRs1apQLnHr06GHZsmXjAAJAChA4BdH8+fPjFhA8cOBAugMn1mcCAKR0Dqy/OU26n9YQ3LNnj0sbP3XqFIETAKQQgVOQLFu2zH788Ud3vV27dnb11Ven+zkZXQIApLUYhKrmTZ482bZu3epGm3r16mWFChXigAJACmVO6R2RckrNmz59urverFkztyYGAAChKgahbZoTq/ZJawd2797dSpYsyQcCAKlA4BRg6smbNGmSu65V16+//vpAvwQAAPEoPc+79pK/YhDz5s2z5cuXu+tdunSxihUrcgQBIJVI1Qsg9ej9/PPPdunSJVfWtX379qyHAQAIuqTmwGoek3e+rdqlmjVr8okAQBpk8njH9mPEiRMn3BpKx48fdwvRBpqqFakohNbFSGyV9kCv+g4AkSLY5+BIFezjogJFW7Zsseuuuy7gzw0AsXL+5Zt4ACjI8QY1KuvaunXrDF31HQCApNomVXVNb2VXAIh1zHFKp7Nnz9rHH39sCxYsSFEjNmTIEGvTpo37qdv+tqV21XcAAHzt3r3b3n77bdu2bRsHBgAChBGndLh48aKNGTPGpUAsXrzY6tWrZzly5EjVKJL4G1lKbtV3AAD8OXTokFvgVh17apvKly/PgQKAaBlxGj58uDuxZ8+e3ZXu9k5iTcyECROsWrVq7v61atVyJVYzmgpAaD927tzp9kOTbzt37pzkSJK/UaTERpY0p0kB1Y033uh++k70BQAEx5EjR9z6Rspzz58/v919993u/J7U/R9++GGrWrWq6zgrW7asPfLIIy5XPlS5+iNGjHBBU6lSpezWW28NyX4AQDQK+YiTVjB/4okn7IMPPnBB07Bhw6xt27a2fv16v/nYCxcutDvuuMOGDh1qHTt2tNGjR9stt9xiK1asCMgisymhAGfatGm2ceNGlz9+7tw5Gzx4cLIjSYmNIvnbxmK3AJDxFDTt3bvX5syZ47IK+vfvb/fdd59ra/zZs2ePu7z++utWo0YN2759u91///1u29dff52h+37mzBkXNCl40sK2PXv2dAvdAgCipKqegqWGDRvau+++G7eyeZkyZVwP3oABAy67vxbtO336tH377bdx21QlqE6dOi74CnblIh2u2bNnu/QHBTo9evSwhx56yDWyXholkoTbNDKWsFKeUD0PQKwI56p6f/zxhwt+li5dag0aNHDbZs6c6Up479q1K8ULxioboXfv3q6tSmk11PQelwsXLthXX33l5jblyZPHjZTp+QAAUVJVTyd6Lcg3cODAuG2ZM2d2VekWLVrk9zHarhEqXxqhmjJlSqLlwXXxPTjpodQ8BU2i1LyrrroqxSNJiY0iUS0PAEJP7YvS87xBk6g9Urv0yy+/uIVjU8Lb+CYVNAW6bVKBIgVNShfs06cPQRMABMEVoZ7AqrlCxYoVi7ddt9etW+f3Mfv27fN7f233Ryl9SqMLFOWv33TTTW6/a9eunezCg/62AQDCj9qRhCniCn4KFiyYaBvjr1178cUXXXpfUgLdNjVr1swFX/Xr17ciRYoE7HkBAGE0xynYNJrlO0KlhkWpgOlx7bXXxrvNSBIAhC+lfb/yyivJpumll9qXDh06uHQ/zXHNyLZJ7ZCyIAAAURo4FS5c2LJkyWL79++Pt123ixcv7vcx2p6a+2tBWl0AALHpySeftDvvvDPJ+1SsWNG1I1pewpcqoqpyXmJtjNfJkyetXbt2bn7R5MmTLWvWrEnen7YJACJPSAMnVftRWsHcuXNdZTxvcQjdVsEFfxo3bux+/9hjj8VtUxEGbQcAICGlrqUkfU3tyLFjx9zcW7VN8sMPP7h2SYWMEqPRIs21VTD0zTffuCUqAADRJ+TrOClV4eOPP7Yvv/zSpUr87W9/c5WIVAJW+vbtG694xKOPPuqqHL3xxhtuHpTSIZYtW5ZooAUAQEpUr17djRrde++9bj1BFVxQ26Lqqd6KeirAoHUEvesNKmjSen1qtz799FN3W/OhdNFcWABA9Aj5HCeVFz948KCrLKeGRmXFFRh5C0Ds2LHDVTTyatKkiVtP49lnn3UFF6pUqeIq6mXUGk4AgOg1atQoFyy1atXKtT1du3a1t99+O+73WttJ6wxqzSTRGoKquCeVK1eO91xbt251i7sDAKJDyNdxymjhvIYIAEQ7zsEcFwCI1HYp5Kl6AAAAABDuCJwAAAAAIBkETgAAAACQDAInAAAAAEgGgRMAAAAAJIPACQAAAACSQeAEAAAAAMkgcAIAAACAZBA4AQAAAEAyCJwAAAAAIBlXWIzxeDzu54kTJ0K9KwAQc7znXu+5GP+HtgkAwr9dirnA6eTJk+5nmTJlQr0rABCzdC7Oly9fqHcjbNA2AUD4t0uZPDHW7ffnn3/anj17LE+ePJYpU6Y0RaUKunbu3Gl58+a1WMP75/Pn/3/s/v0H4hygJkeNU8mSJS1zZrLFY71tYr851vwfCS+R+Dd5IgPbpZgbcdIBKV26dLqfRx9MpPyHCgbeP58///9j9+8/vecARpouF+ttE/vNseb/SHiJxL/JvBnQLtHdBwAAAADJIHACAAAAgGQQOKVStmzZbNCgQe5nLOL98/nz/z92//4l1s8B4SpSPxf2m2PN/5HwEol/k9kycJ9jrjgEAAAAAKQWI04AAAAAkAwCJwAAAABIBoETAAAAACSDwAkAAAAAkkHg5Mfw4cOtfPnylj17dmvUqJEtWbIkyYM4YcIEq1atmrt/rVq1bMaMGRYr7//jjz+2Zs2aWYECBdyldevWyR6vaPv8vcaOHWuZMmWyW265xWLp/R87dswefPBBK1GihKtoc9VVV0X030Bq3/+wYcOsatWqliNHDrdy+eOPP27nzp2zSPTzzz9bp06d3Orp+r88ZcqUZB8zb948q1evnvvsK1eubF988UWG7CvMjhw5Yr169XILPubPn9/uvvtuO3XqVJL3f/jhh+P+v5YtW9YeeeQRO378eFAPZyS2qZHaDkZq+xWp7U6ktReReo7/OZX7PWnSJLvxxhutSJEi7vzYuHFjmzVrVmB2RlX18P+NHTvWc+WVV3o+++wzz9q1az333nuvJ3/+/J79+/f7PUwLFizwZMmSxfPqq696fv/9d8+zzz7ryZo1q2fNmjUx8f579uzpGT58uGflypWeP/74w3PnnXd68uXL59m1a5cnFt6/19atWz2lSpXyNGvWzNO5c2dPpErt+z9//rynQYMGnvbt23v++9//uuMwb948z6pVqzyx8P5HjRrlyZYtm/up9z5r1ixPiRIlPI8//rgnEs2YMcPzzDPPeCZNmqRqq57Jkycnef8tW7Z4cubM6XniiSfc+e+dd95x58OZM2dm2D7Hsnbt2nlq167tWbx4sWf+/PmeypUre+64445E76926dZbb/V88803nk2bNnnmzp3rqVKliqdr165B28dIbFMjtR2M1PYrUtudSGwvIvUcPyOV+/3oo496XnnlFc+SJUs8GzZs8AwcONCdR1asWJHufSFwSuDaa6/1PPjgg3G3L1265ClZsqRn6NChfg9gt27dPB06dIi3rVGjRp6//vWvnlh4/wn973//8+TJk8fz5ZdfemLl/es9N2nSxPPJJ594+vXrF9GBU2rf//vvv++pWLGi58KFC55okNr3r/vecMMN8bapgWnatKkn0qWkcXrqqac8NWvWjLete/funrZt2wZ576AvMfqMli5dGncwvvvuO0+mTJk8u3fvTvEBGj9+vPvyd/HixaAc1EhsUyO1HYzU9itS251Iby8i9RxvKdhvf2rUqOEZPHhwul+fVD0fFy5csOXLl7thdq/MmTO724sWLfI7YqftvveXtm3bJnr/aHv/CZ05c8YuXrxoBQsWtFh5/0OGDLGiRYu6NJlIlpb3/80337ghcKVMFCtWzK6++mp7+eWX7dKlSxYL779JkybuMd70jC1btrh0kfbt21ssiKbzX6TRMVZ6XoMGDeK26bPQ/9lffvklxc+jND2lslxxxRUB38dIbFMjtR2M1PYrUtudWGkvQv33GCh//vmnnTx5MiB/k4E/U0awQ4cOuT88/SH60u1169b5fcy+ffv83l/bY+H9J/T000+7HNSEf2jR+v7/+9//2qeffmqrVq2ySJeW968T/w8//ODmWagB2LRpkz3wwAPuS4NW8Y7299+zZ0/3uL/85S8avbf//e9/dv/999s///lPiwWJnf9OnDhhZ8+edXn8CN6x1xdeXwp+9MUgpe2P/u+++OKLdt999wVlHyOxTY3UdjBS269IbXdipb2IlnP866+/7uZ/duvWLd3PxYgTAubf//63m2A6efJkN1Ey2qn3ok+fPm5icOHChS0WqRdHX94++ugjq1+/vnXv3t2eeeYZ++CDDywWaNKsejrfe+89W7FihZuQOn36dPdlFEiLAQMGuMnPSV1S+gU+Kfri06FDB6tRo4a98MILfFgx1g5GcvsVqe0O7UVojB492gYPHmzjx4+/rLMpLRhx8qGTR5YsWWz//v3xDpJuFy9e3O8B1PbU3D/a3r9vNK8G4/vvv7drrrnGIlFq3//mzZtt27ZtrtKL7wnd2/O7fv16q1SpkkXz56+KRlmzZnWP86pevbrrpVIqw5VXXmnR/P6fe+459+XjnnvucbdVAez06dOuB18NuVI3olli5z+lfkVKT2S4efLJJ+3OO+9M8j4VK1Z0x/7AgQPxtqsHW5Xzkjtf60tzu3btLE+ePO4Lvv6GgyES29RIbQcjtf2K1HYnVtqLSD/Hjx071h1vVeoM1Ahw+H1KIaQ/NvVezJ07N96JRLeVT+uPtvveX+bMmZPo/aPt/curr77qethnzpwZL98+2t+/yuWuWbPGpTl4LzfffLNdf/317rpKjUb759+0aVOXJuFtcGXDhg2uYYukoCmt719zGRI2dt7G/P/msEa3aDr/hQuVz9W5JamL/q/qGKsks+ZMeCl9Sf9nVRY5qZGmNm3auOfQXJFgjopEYpsaqe1gpLZfkdruxEp7Eeq/x/QYM2aM9e/f3/3U6HrApLu8RJRReUmVi/ziiy9c1aL77rvPlZfct2+f+32fPn08AwYMiFc69YorrvC8/vrrrgzpoEGDIr4ceWre/7///W9Xkenrr7/27N27N+5y8uRJTyy8/4Qivapeat//jh07XPWohx56yLN+/XrPt99+6ylatKjnX//6lycW3r/+3vX+x4wZ48q2zp4921OpUiVXGSwS6e9WJZV1UfPw5ptvuuvbt293v9d71zFIWKr2H//4hzv/qSQz5cgzthx53bp1Pb/88osry6zS4r7lyFUOu2rVqu73cvz4cVehrlatWq4cue85W9XVgiES29RIbQcjtf2K1HYnEtuLSD3Hn0zlfqvku84j2l/fv8ljx46le18InPxQnfqyZcu6E6HKTWqNDK8WLVq4k0vCcq5XXXWVu7/KNk6fPt0TK++/XLly7j9xwotOELHy+UdT4JSW979w4UL3ZUwNiErEvvTSS0H7EhZu718lnF944QXX+GXPnt1TpkwZzwMPPOA5evSoJxL9+OOPfv+eve9ZP3UMEj6mTp067njp8//8889DtPex5/Dhwy5Qyp07tydv3rye/v37x/uyrrVi9PnpM0rq89VF9w2WSGxTI7UdjNT2K1LbnUhrLyL1HP9jKvdb15O6f3pk0j+BG78CAAAAgOjDHCcAAAAASAaBEwAAAAAkg8AJAAAAAJJB4AQAAAAAySBwAgAAAIBkEDgBAAAAQDIInAAAAAAgGQROAAAAAJAMAifAR/ny5W3YsGFxt/ft22c33nij5cqVy/Lnz8+xSoE777zTbrnllrjbLVu2tMcee4xjBwBpQLuUfrRLCBQCJ0S8xL6Yf/HFF6kOdpYuXWr33Xdf3O233nrL9u7da6tWrbINGzYEZH+jxbZt2yxTpkzu2Pj6z3/+4449AMQq2qXQoF1CsF0R9FcAIkiRIkXi3d68ebPVr1/fqlSpkubnvHDhgl155ZUWK/LlyxfqXQCAqEG7lH60SwgURpwQc0P1r7/+upUoUcIKFSpkDz74oF28eNFvSoSuT5w40b766is3sqLHy44dO6xz586WO3duy5s3r3Xr1s32798f9xwvvPCC1alTxz755BOrUKGCZc+e3W3Xc3z44YfWsWNHy5kzp1WvXt0WLVpkmzZtcr2TSgds0qSJC9aSsmTJEqtbt6573gYNGtjkyZPjjfz4G2mbMmWKu4+XXkPvoVixYu59NGzY0L7//vt4j9H7f/nll+2uu+6yPHnyWNmyZe2jjz6K+73em2hf9Nx6D77HOTHnz5+3v//971aqVCn3nhs1amTz5s2L+/327dutU6dOVqBAAff7mjVr2owZM5I8JgAQiWiXaJcQWQicEFN+/PFHFzTo55dffumCjMTSypS2165dOxcYKV1PKWh//vmnCziOHDliP/30k82ZM8e2bNli3bt3j/dYBUMKuiZNmhQvle3FF1+0vn37um3VqlWznj172l//+lcbOHCgLVu2zDwejz300EOJ7v+pU6dc4FWjRg1bvny5C9IUhKSWnqd9+/Y2d+5cW7lypXufClYUFPp64403XHCm+zzwwAP2t7/9zdavXx8XwIkCLh0fvdeU0PtTwDh27FhbvXq13X777e71N27c6H6vYFbB1c8//2xr1qyxV155xQV3ABCNaJf+D+0SIoIHiHAtWrTwPProo5dt//zzzz358uWLu92vXz9PuXLlPP/73//itt1+++2e7t27x93W799666242507d3aP85o9e7YnS5Ysnh07dsRtW7t2rUd/SkuWLHG3Bw0a5MmaNavnwIED8fZH93n22Wfjbi9atMht+/TTT+O2jRkzxpM9e/ZE3+uHH37oKVSokOfs2bNx295//333PCtXrvT7vmXy5MnuPkmpWbOm55133ol3LHr37h13+88///QULVrUvZ5s3bo13ut66XjpuPn7fLZv3+6O3+7du+M9plWrVp6BAwe667Vq1fK88MILSe4rAIQz2iXaJUQnRpwQU5T2lSVLlrjbStk7cOBAih//xx9/WJkyZdzFS6M/So3T77zKlSt3WV66XHPNNXHXlSYntWrVirft3LlzduLEiURfX8/hTf+Txo0bW1p69jRSpXRB7btGdPTcCUecfPdX6XjFixdP1fFKSCNIly5dsquuusq9pvei0TtviuIjjzxi//rXv6xp06Y2aNAgNyoFANGKdun/0C4hElAcAhFP84yOHz9+2fZjx45dNiE0a9as8W4rGFD6XaBpbo4/vq/vnXPkb1t69ilz5swu5c+X7zwuUdCkNEPN96pcubLlyJHDbrvtNlfIIrH99e5fevZNDaMCV6UZ+gaw4k3Hu+eee6xt27Y2ffp0mz17tg0dOtSlDD788MNpfl0AyEi0S/HRLiFaMOKEiFe1alVbsWLFZdu1TSMbgaQRmp07d7qL1++//+6CNI08BZteXyMwGpXyWrx4cbz7aKTr5MmTdvr06bhtCUuGL1iwwE1K7tKlixvx0kiSyrimhrdSoEaQUkqFJHR/jVopYPO9aB+8NKJ3//33u3lTTz75pH388cep2jcACCXaJdolRCcCJ0Q8FSzQGktK8VJQoeIFb775po0ZM8Z96Q6k1q1bu0CjV69eLjBTgQQVe2jRooUrohBsKiahUZ97773XBWyqNqdRI1+qUqeqff/85z9d+tvo0aMvK4Ch8urewhW//vqre97UjiQVLVrUjVTNnDnTVRX0N+qXkAJZHTsdM73+1q1b3THUqJJGmERrcs2aNcv9TsdYE6cVMAJApKBdol1CdCJwQsSrWLGiq8C2bt06F9gocBg/frxNmDDBVWsLJAUtU6dOdaWymzdv7l5Prz9u3DjLCEpnmzZtmpsrpNGbZ555xlWd81WwYEEbOXKkC6oU5CmAVPU9Xwos9R5U/lzV9JQaV69evVTtyxVXXGFvv/22K7FesmRJV20wJT7//HMXOCmoVa+sSpergqHKnYtGpFRZT8GSPj8FW++9916q9g0AQol2iXYJ0SmTKkSEeicApJ1S7LSmkkqGa/0oAABCiXYJ0YoRJwAAAABIBoETAAAAACSDVD0AAAAASAYjTgAAAACQDAInAAAAAEgGgRMAAAAAJIPACQAAAACSQeAEAAAAAMkgcAIAAACAZBA4AQAAAEAyCJwAAAAAwJL2/wAVFUjxa5k5swAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -593,7 +593,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAHjCAYAAAAT5iygAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQeY1NXVxq8gBJAiBCR0ECV0AgQC+eggTQXpUqWjSJfeREE6SpciIF06SFF6jShFehNpIlIFEkoo4nzPe5I7mV2m7s7Mv72/5xl2dnaYvbs7/3vufe8573nG5XK5FCGEEEIIIYQQQgghhBDiUBIYPQBCCCGEEEIIIYQQQgghxEgolBNCCCGEEEIIIYQQQghxNBTKCSGEEEIIIYQQQgghhDgaCuWEEEIIIYQQQgghhBBCHA2FckIIIYQQQgghhBBCCCGOhkI5IYQQQgghhBBCCCGEEEdDoZwQQgghhBBCCCGEEEKIo6FQTgghhBBCCCGEEEIIIcTRUCgnhBBCCCGEEEIIIYQQ4mgolBNCCCGEEEIIIYQQQghxNBTKCbEhkyZNUtmzZ1dJkiRRf/vb39SePXvcXzt16pT6v//7P5U5c2Y1ZMgQQ8dJCCGEOB3GbEIIIcT8MF4T4gwolBNiMxYtWqS6deum3n//ffX999+rQoUKqSpVqqhr167J1zt06KCaNGmiVq1aJbdvvvnG6CETQgghjoQxmxBCCDE/jNeEOAcK5YTYjI8//li1adNGtWjRQuXNm1dNmTJFJUuWTM2cOVO+fuvWLVW0aFFVsGBBlTFjRnX79m2jh0wIIYQ4EsZsQgghxPwwXhPiHCiUE2IjHj16pPbv368qVarkfixBggTy+e7du+XzDz/8UD5HYMfXcBJOCCGEkOjCmE0IIYSYH8ZrQpzFs0YPgBASPm7cuKGePHmi0qdPH+NxfH7y5Em5X716dXX9+nX1r3/9S6VLl86gkRJCCCHOhjGbEEIIMT+M14Q4C2aUE+JA/vCHPzCAE0IIIRaAMZsQQggxP4zXhNgDCuWE2Ii0adOqhAkTqqtXr8Z4HJ//6U9/MmxchBBCCIkJYzYhhBBifhivCXEWFMoJsRGJEyeWJiKbN292P/b777/L5yVLljR0bIQQQgj5H4zZhBBCiPlhvCbEWdCjnBCb0a1bN/XWW2+pv/71r6p48eJq7Nix6t69e9KhmxBCCCHmgTGbEEIIMT+M14Q4BwrlhNiMBg0aSCORgQMHqitXrqi//OUv6uuvv36q+QghhBBCjIUxmxBCCDE/jNeEOIdnXC6Xy+hBEEIIIYQQQgghhBBCCCFGQY9yQgghhBBCCCGEEEIIIY6GQjkhhBBCCCGEEEIIIYQQR0OhnBBCCCGEEEIIIYQQQoijoVBOCCGEEEIIIYQQQgghxNFQKCeEEEIIIYQQQgghhBDiaCiUE0IIIYQQQgghhBBCCHE0FMoJIYQQQgghhBBCCCGEOBoK5YQQQgghhBBCCCGEEEIcDYVyQgghhBBCCCGEEEIIIY6GQjkhhBBCCCGEEEIIIYQQR0OhnBBCCCGEEEIIIYQQQoijoVBOCCGEEEIIIYQQQgghxNFQKCeEEEIIIYQQQgghhBDiaCiUE0IIIYQQQgghhBBCCHE0FMoJcQC//fab+sc//iEfCSGEEGJeEKu/+eYbxmxCCCHExHCPTYg9oVBOiANwuVzqxo0b8pEQQggh5gWx+vr164zZhBBCiInhHpsQe0KhnBBCCCGEEEIIIYQQQoijoVBOCCGEEEIIIYQQQgghxNFQKCeEEEIIIYQQQgghhBDiaCiUE0IIIYQQQgghhBBCCHE0FMoJIYQQQgghhBBCCCGEOBoK5YQQQgghhBBCCCGEEEIcDYVyQgghhBBCCCGEEEIIIY6GQjkhhBBCCCGEEEIIIYQQR0OhnBBCCCGEEEIIIYQQQoijoVBOCCGEEEIIIYQQQgghxNFQKCeEEEIIIYQQQgghhBDiaJ41egCEkPDhcrnUgwcP1L1799Rvv/2mfv/9d7ldvXpVHT9+XBUoUEAlSZJEJUiQQG5/+MMfVPLkyVXChAmNHjohhBBCCCGEEEIIIYZBoZwQkwret27dUpcvX45x++WXX9SNGzfUnTt31N27d+Wj5318fPLkic/X7du3r9fHkyVLJoJ5ihQp5OZ5P1WqVCpDhgwxbhkzZlTp06dXiRIliuBvgRBCCCGEEEIIIYSQ6EChnBCDgBD+ww8/xLhdvHjRLYo/fPgwxvOff/55EanTpUsnAvYLL7ygcubM6Ra1PT8+99xzImLrzPGzZ8+qbdu2qbfeeks+h5iOG75HbKHdU3y/efOm/N9169apK1euxBDhn3nmGZU2bVq3cP7SSy+pXLlyuW9Zs2ZlpjohhBBCCCGEEEIIsQQUygmJcGb4+fPn1YEDB9SpU6diiOLIDNdkypRJvfzyyyIwly1bVoTn2FncSZMmjfM4Hj9+LN+jcuXKcc4Ch0iOMXtmt+v7P//8s9q6dauaPn26W+BPnDjxU+J5/vz5VcGCBeP1s5DoUq5cObHswaHH7Nmz5e86ZMgQ1ahRI9WhQwe1dOlSqS6YMGGCqlatmvyfo0ePqh49eqidO3fKoQ3ed5988okcrICvv/5aXgPPw+uWLFlSjRs3Tg5+AK6ZHDlyqGXLlsnrfvfdd3J9TJkyRZ5LCCGEkJgwXhNCCCHWgDHb3DzjgpJHCIk3uJSQfb1//365ff/993JDVrbOCP/zn/8cQzjGDWIyssAjCYRyZIVXr149onYpENORFR87Ux43TMz4HWHSzpcvnypatKgqUqSIfCxUqJDYvzgJ/C7u379vyPfG7xoVAcEGcbyPe/bsqRo0aKAWLVqkBg0aJIG5Vq1a8nUE6MWLF6uffvpJPXr0SN7XrVu3Vs2aNVP//ve/Va9evcQzf8uWLfKaCM74/jg0QeXCwIED5f1x8OBBqXjQQTx37txq9OjREsD79eun9u7dq3788Uf17LM84yWE2JdoxWwSHIzXjNeEEOINxmvzYVTMDiVeA8Zsc0OhnJA4cvv2bTnNw00L43gMZM6cWQRgfYMgjBPBUCZPuwVxNBnF6aY+SMDtyJEjMjaI53ny5JHf1d/+9jcJDJjAjfp9RQM0XI30AYkvEDhxCh0M+FvgAATvc4D78K2vXbu2mjNnjjwGWx5UPezevVtt2rRJnrt+/Xr3a6DiIEuWLFJVgQAfG1QqwFII7wdUHegg/tlnn6lWrVrJc9CMFgcsJ06ckPcGIYTYFTPEbPI/GK//B+M1IYT8D8Zr82FUzA4lXgPGbHPDIwNCQhTG4fWNG+xUcM4EUbxYsWKqe/fublEc/uEkJkmSJFF//etf5aaBTcuxY8diiOfz58+Xk1EcLCCA6Buy8e0snJsZnEprcKjxxz/+UUrFNPhbgWvXrqlDhw6JDY+3BcqZM2ckiJ8+fVpOuFHuhQD++++/y9dxWo4g7u37YpGgvweDOCGEEPI0jNeEEEKINWDMNi8UygnxcyqoRXEtjGOygTBevnx59e6778rH7NmzU8CNI3/4wx/kYAG3Nm3auH/v33zzjfv33rFjx6eE80qVKolljZVBeRZ+VqO+dyjEzpDA+93zMf3+x/WBn+n1119XI0aMeOp1dCDG17Nlyyae9vDjx/9D8EZJma/v6/k9CCGEkGjBeM14TQghxBoYFbPjYiPLmG1eKJQT4gHKV9asWaO+/PJL8XpCxrMWxtu3by8iLcpVKIxHDpySwpsLN4Cg8I9//MMtnKO5BUqTcOKJYFCjRg1pPoFTWCuB91Ao5VlWAYce8EfDAZI3n7Nff/1VysMQwEuXLi2P7dq1y4CREkIIIYFhvGa8JoQQYg0YsxmzwwGFcuJoYJ2CTHEI46tXrxafcQiuZcqUUcOGDVOvvfaaZC5TGDdWOK9SpYrcwJ07d+QQA38zdIgeNWqUlCm9+uqrIppDYE+RIoXRw3YsqLRAgG7YsKE0J0mTJo00B/niiy/EDy116tTy95o2bZqcfqMUrHfv3kYPmxBCwgoqoa5evSqlr4hbOPT1/Oh5H4fyOABGNg/+z9dff61efPFF2RBhM4QGTKjAQjxEfIv9Ud/HfPunP/1JnktIIBivCSHkP3rArVu3xA86dnyOHb/hf63jNW7aS7pJkybueI2PiMm+YjU+pkyZUuZV3KfOQIKBMTu6UCgnjgNBbceOHdJBGGLrpUuXpHFCtWrVxGe8atWqMtEQc4IFRc2aNeWGv+WePXvcBx1YrCROnFgqANAtum7duhIwSPRAmRcqANCFG4cWEIBQAobrCotHLAYR0Dt16iSlYPCeHz9+vFRrEEKIFcBGGZuTs2fPqsuXL6tffvlFPuobPr9+/bpsvr2RNGnSGBtnCNs4pMccCaEcYG0Cz0m8Bm5oiO25cb9//77P8SHuYZOEG+Zkz/vIRHr55Zdl3UOcDeM1IcTuQNS+cOGCxGzEVW/xGgI55j9vQPT2FLiRqazjNW6ac+fOSazG3hQH5bEPx33ZWsCuI3as1p+jqh3xOlOmTBTTCWN2lHnG5WsVT4jNQLffefPmqQULFojFCiaWN954Q7KQUZ5i507VTunIDdECgjmEc9i0YCGDnxmn/KgOQENRQgghJJi4ef78efXDDz88dcMawnMTjSxub5tcfEyXLl2MTDLcvJXMhhqzsfmHYO+5EUf2emwBwPNzTyEAfT/Q+Ak3bMT1/Zw5czJWEkIIsQyQs3DI7C1e48DZ0585bdq0XmM1boiLOET2jNk4yPYnUgcTrzG+f//73zEOu2/fvi0Cva94ja97iumecdrzhqxiQkj4oVBObA02sxDG58+frw4fPixZVvXr1xfhFL7WTjmddYpQ7gkWH4sWLZK//d69e6XEDRnm+NuXLVs2RhYAIYQQ54INLNYI+/fvd9+OHTsmWWE6A9zbBhX2KNh0hzueRCJm69JyZL15ExP+9a9/yfOwLkIWUtGiRd23woUL09KMEEKI4SAzG+K3Z7yGjaoWlhGPUTkV+xBYZ2aj8tgKe2ysS2Cdcfr0aYnR+mPsw3qI+/Cu9ozZyER3isZBSKSgUE5sB05rYauC7HFkFeMkGFnjEEjhcx3uAGkFnCiUe4JFBQRzvCeQdY6FUqNGjdRbb72l8uXLZ/TwCCGERDEeoh8JDlD1Jvv48eOSoY34iHJVLQ6jaTQ22Mg4i+bharRjNrYC165dk1iJRlAHDx6U3ws+wvIFG278HvB7wYb8r3/9qypevLgcIBBCCCGRik043P32228lJiF246YPdlEdrsVh7Of0AXY0+3QYscfW9m+I10ePHnWvZbR1GyrZ9O8FMfvvf/+7VL4RQoKHQjmxDYcOHVJTpkwRQRRieYUKFUQcr127tmQTOxmnC+UaTHdYbOE9Ag8vdIcuVaqUateunWSbs9ycEELsF/+wgdy6dascnsPfEZtMxMICBQrEyMLC52ZohGmWmI2M+hMnTsTI3IN4jkw3JB2UKFFCvC9xw30K54QQQuIrjCNW69vFixfla8gS94zXEIBR0WU0ZonX+N3BvsUzXuOGCmuASjEdr1FZDasZQohvKJQTS4NMJ2SPT548WX333Xcy6bdu3VpuWbNmNXp4psEsQdxMwK9u1apVcriyZcsW8Xhr0aKFat++vWQjEEIIsa4wrjfZu3btEmEcXqPoR6I3iX/5y19MIYpbLWZDPIctDZqi69/xzZs3KZwTQggJGS2M68NsCOOoYkJVl44nyIiGfaoZMXO8BhDPsQ7Sv9+TJ0/K46iY8xTOmXFOSEwolBNLAm+uTz/9VE2fPl1dv35dvfLKK+qdd96Rho1mDFJGY/YgbjQoN586daqaNWuWeNzh99SxY0d5X9HLnBBCzA28t7/++mtp5PzVV1+pf/7znyKMo2KofPnyshFE9lmgJppmwUoxG36xKP3Wovn27dtFOIdIXqlSJbG+w9qMm3BCCCE4bP3mm28kXq9evVr2YLGFcRxqP//888oKWCleA2SYI07rmK2Fc6yREK9ff/11+VvQ45w4HQrlxFLAl2zEiBFq2bJl0gG6efPm6t1335VyImKfIG4U9+/fVwsXLlQTJkwQKx943b333nviZW7WzENCCHEiaOalN9rIbobHODZ62ORVrVpVSrOtGu+sHLO1cI6DC/xtIIjgMXia6004LG64CSeEEGcAT/H169dLzEZsw2EqmlAiHrz66quS0Zw6dWplRawcr8Hly5elsnrNmjXyc+BvhWag+NvghmQDWpMSJ0KhnIQNWJ/gVBji4t/+9rewvS7eotgEDx06VG3YsEHlzJlTde3aVTVr1kylSJEibN/Hzlg9iEcbvOfgYzt27Fi1fPlyyYSDYN62bVu+5wghxKB5Gf7YsFvDZhsNOGH3UbFiRdnMIWs5S5Ysyg7YKWbfuHFDfhb8zSCUoIcMGrBBNK9Xr576v//7P1ZuEUKIzUDF95IlS9TKlSslcxlxrWDBghKvMf+jKbQd5n47xWvYku7cuVMOuRGzYYvz3HPPqcqVK6tatWqpN954g/tg4hgolJOw0KtXLzVy5Ej35z179pTM7/iADKS1a9eqYcOGqd27d0tw7dOnjzRdtEr5tFmwUxCPNugojvfy3LlzZXEAS5ZOnTqZ1iuPEELsxIULF9SCBQvUvHnzRBzH3Ks32rDHgsWK3bBrzH748KEIJtiEo0cIbPTQT6Zx48bSfD1v3rxGD5EQQkg8KnMxtyNe42AUlUPISNbZyWjIaTfsGq8hEWLNBcEct2+//VYs1SCWI15j/WWnn5eQ2FAoJ2HJJEfTpthgQo1LZjm8yxYtWqSGDx8u5bvINoJAjgDEUt24YdcgHk3QXGbMmDHiiw+QXY4sc5SnEUIICR8oy166dKlstpHdhM0ZspmwOYPvtd3jmBNiNpIhULmFvzGyDuEzjwar+Bs3bNhQZcyY0eghEkIICWLfDusOzOUrVqyQqiE038QBaP369VXatGmVnXFCvNZJC7AnReIYBHT8Xd98802J2bBWo0ZD7Ib1612I4cBuJZTHfQF/0dmzZ4t1CyZdlFDDcgWdmuFfxgmYGAnej7BiwUIBAvnnn3+uXnzxRRHML126ZPTwLA+a93Tp0sX9ObJO8PsmhDgDbDaxyYYgDrsrNOhGLxJsyq5du6bmz5+vqlWrZuuNqJNAyT0atqGRNjxS8bd/6aWXVL9+/eQAGgcic+bMUf/+97+NHiqJBeM1IeTIkSNihYr9UZUqVdSePXukovzHH3+UQ9D27dvbXiR3ErBM6927tyQxHjhwQPrEwZ4UyZIvv/yyGjRokOyRiflgzI4bFMpJvIGwHcrjsUFRA0p6ChUqJJMumnFhAsbpLDZRhJgJLPo+/PBD9dNPP6mPPvpIFgnY3MN+CBlxJDzs3btXDiEIIfYGc+mAAQNkE1a7dm2p3hk1apQcQKIhJA7O7WivQv4HmmWjnBuZ5VeuXFGfffaZJE+gkTYyyzt37iwZbMScMF4T4gxwcIkDTFR7wxIVtmjIKsYccOLECYnl6CVG7AsSF1H9hXUa1m+bN29WZcqUUR9//LHKkSOHJDdC10GlATEnjNnBQaGcxBvYq+AE2ROIhsHYriBbHGJ4zZo1pfs1TqNRbo0JmBAzA7/yHj16qLNnz8rHSZMmSYY5/Mzh0UfiR7p06SSblBBiT9sN+JfCsxQbq3HjxolQimad+/btE2EUWeXEeTz//POqZcuWauvWrZKZ2K5dOyn3zpcvnypbtqw0c0X1ATEPjNeE2JszZ85INW2mTJnkABPXO/br6DPxySefSGNOVn47j4QJE6oKFSqomTNnql9++UVNmzZNKgCh62BtN3jwYHX16lWjh0liwZgdHBTKSViAOAhPcpwy4yP8xQOVa2GDDJEcoiI2zJs2bVLFihWL2pgJCQcpU6aUDHMsIuHH179/fylBg5e5HU7TUa6FBqYo2UqdOrUcaOFnu3fvnmrRooUcGCCj/quvvnL/H5TlwSIBWaB4ftOmTdWNGzfcX8f/bdasmXw9Q4YM4v0em9hlYchUKFCggHRfR5knSjrhg6iBFQ4EFswlefLkkdeuWrWqlPQTQszBv/71LzV+/Hi5RnF9Inv8008/lQ3W5MmTpbKMEA0yE7GexPvkiy++kMcaNGgg8YEb8KdhvCaEhPNAG1Vdr732muxrcN22atVKnT59Wm3cuFHVqVOHVmjEDebx1q1bS7YyEh4wpw8bNkwadiOuIBmSxIQx29xQKCdhAxnkuFj9ZZKjRAcXLzbDKNFClhAm08qVK/MkmlgaBKuJEyeqkydPStYbSpqQAbds2TKxF/IFAhpuns959OiRPPbw4UOvz8XiVYPMOjz24MGDoJ4bF9A7AJYzWOQgoMM7uF69etKs5/vvv5frF9c+Dr1u374t2QWFCxeWaxuLbIgZaOijQQb+9u3b1apVq9SGDRvUtm3b5HUC+dlCYDt27JiMB42DYley4PuPHj1aPI3R3wDzTffu3eP0MxPixMbcuHbwMdxgMY3rFd7TyErD/IAmnbBZw1xJaxUSyJoFAjnixqFDh6S0W2/A8f5B5nk0YLxmvCbE7vEacw+u2/z584sgBxs02GEhexx2GxDuCPFH0aJFRfDFe2bo0KHiWQ99CJY9a9as8bsvtmrMjiuM2SbGRUgUePDggWvIkCGupEmTutKnT++aPHmy69GjR0YPyzHgd71y5Ur+zqPI999/76pSpQois6tChQqu48ePe30evo7btWvX3I/hWsFjrVu3jvHcZMmSyePnzp1zP/bJJ5/IY40aNYrx3LRp08rjR48edT82bdq0kH+OsmXLukqVKuX+/LfffnM999xzrqZNm7ofu3z5snyv3bt3uwYPHuyqXLlyjNe4ePGifP3UqVOuO3fuuBInTuxavHix++u//vqrzA2dO3d2P5YtWzb52XyxZMkS1x//+Ef357NmzZLv8eOPP7ofmzRpksw3hBD/9OzZ0z0X4YbPw8GZM2dc7dq1c/3hD39wpUyZ0tW7d2/XpUuXwvLadoYxOzA3b950DR8+XOb4BAkSuBo0aOA6cOBARL8n4zXjNSF2jdf37t1zjR8/3pU1a1Z53Ro1arh27tzp+v3338Py+naF8TowiEWrVq1y/f3vf5f3VoECBVzz5893PX782DYxOy4wZpsbZpSTiIPTLpxKoxvyu+++KyVbOC1juRaxMzjtxXt/7dq10gUcTW/g3e9ZymQVMHZPP7o//vGPUqLlmU0P4EuHbD94yyJDVN9y584tX4c9DW44zfesPEmTJo3685//7HcMsGaqWLGi+COiFA2n67/++msMP3j4rXk2EULJGcZECPENMtJGjhwZ4zF8Hp9MtcOHD6tGjRpJuTYaHr///vuSfYIsYDRnJCS+oEwZMfXcuXNSzYX3K+Ju9erVpVrBqTBeE2JfIhGvkaX60UcfiR1D165dxRYVFqnISC1VqhQrvkm8QSyqUaOG9KZDtjNiA+xKEUumTJnyVMa2k2DMNi8UyuMA/DTxpoY3MW4lS5aM4R2ERgbwHMLXEFwQgGKDYISved5i+3qjZCVbtmyy8I9EaVWkOX/+vKpVq5aUbcHvCBc3SrZwARLiFLBph58YhCKUNSGgoRmZLgODcI4byq48y6bwGDb/niAg4XGUm2tw+ITHZsyY8dT1h8fhJaZp3rx5nH6G2IdamK88H0OPAj1n4Xui/wBsZ3RpGm4AjX88QVf0XLlySQCHd7Ev8LPAIxHzLqxs9u/fL81TARYE/sYZrfI+Yk4YrwPzww8/hPS4P7755hu5/mGvhvuY83BQ2KdPH5UqVaowjJaQmCRNmlSSL5CEMW/ePPEzL1OmjAg8OKgOZwywQ7zWohearcFLFtcrmuh6xmy9dhkyZIjXmA3rRBxQeIPxmsQVxuvoxusrV67IYSPmKPR8qFu3rnseRYIbIeEG1yPiM65r2IGgCSz8sNH4Ewc+d+7cCev3i2bMjivcY5sXCuVxAB6bCLp4I8EfCF5BWHDC1wfg9AUG93379vX7OmgACN9OfYMvkQaZV5gw0LyoX79+YuhvFXAqiMV13rx5xW8JPuSbN2+WzwlxIkmSJJEmn9hcomEtvFYrVaokn6NxBm6eGRuJEyeWx+DL6ol+LrzEPAMXHsP3COa54QYb7alTp7o/L1KkiMyFGE+bNm1izHGffPKJnEZjHMgqwAIEDfyQZYpN95MnT7x+D8y18IFDQ5ISJUpI4EfzP0ICwXgdGFxPoTzuDRyEQ1iD/yQyWuBxiA03rnEImYREmmeffVYy1PBeRCYk4gk2f/D5RAZbOLB6vNYxG0AofOGFF2QuhLiI6zR2zB43bpyMA2Ii/FxxPetNOzxMPTfRGsZrElcYr6MTr3HAgJ8d63EcTkCohFiG9TgES0KiAQ6qFi1aJL290HcE++QXX3xRmkzG9g+3QsyOBNxjGwuF8jiAkxxsCFFSjDcTypVQ+vDtt9/K19G5tnfv3vJm8wcyq//0pz+5b7jgNDj5QXdZnO6gIcK///1vZQXQBRvlIh988IFcoJj83nzzTZZtEfLfTJcVK1aodevWue1Y0CzDs7TJSuBkG8IETrk1uO5v3rypjh8/LvMYTrohXCCjFHMc5spWrVrJ59hkY6Gi/7+vII7GQWioMmHCBHX27FlpJIJSPUICwXgdGJRoxm7agywzf425NVh8N2nSRDY8EMYhPqCCBk27aa9GjAAbV5R4o6IBa9LffvtNslBR3YjMaSejYzbAPIg5C/G6YcOGMo8hJut4nS5dOrFJQrxGBh6agiFGI6sXhxJY13sTMxivSVxhvI5svEYiG5rxQUyDqNa5c2fZi+BwAr8nQowA1zqaxSLJAgdjaPiOLOg5c+b43Bc6Ae6xjYdCeTzBmw4bQ7xRUSIWCghM8CHCBhOWJFjMa1DyhCCOUmWUV8QufzQbuFjbtm0rnXnhb0SbFUJ8gw27px3LX/7yF9nUWw0EbGQBIDteg401upsDWMwgAEO0wM+rPegwN6D07tatW/IRG3BkseCU3xuwcfj4448lkw1z4/z58+WEnJBQYLz2Da4tiBHYmOBj7FL12KBEtVOnTrKZQcUYslawcEe1TKQzbAgJBgi5iE2obEQswiYc1y82ntgMOhEdszXYVCNeY26EJzEqQfB1lGwj4xSH+Jjv4FmMpBes9RGv8TjmPG9rfMZrEg4Yr8MXr/Hzz5w5Uw4gcNBQr1499eOPP6qhQ4dKrwdCzABseiGYY7+IzOm33npL9sdr1qyxvcWHN7jHNgFGdxO1KocPH5autAkTJnSlSpXKtXbt2qees3XrVukQe+vWrae+NmbMGPn6oUOHXJ9++qnr+eefd3Xt2vWp5924ccN1//59l5nZsGGDdMjG72Py5MmuJ0+eGD0kEgt25DYvJ06ccJUoUcL1zDPPuLp162b6612zcOFCV/78+V3//ve/3Z27PTtqT5061fX111/LXDlv3jxXpkyZXLVq1XrqdW7fvu3617/+FdWxE2fBeB0+/vnPf7oGDhwov0/8LocOHeq6e/eu0cOyHYzZ4Qe/yylTprgyZMjgSpQokatDhw6uK1euuJwCYzaxAozX4eP33393LV++3JUnTx75fdWrV8916tQpo4dlOxivI8O3337rKleunLx3S5Uq5dq1a5fLKTBemwMK5XHk4cOHrtOnT7v27dvn6t27tytt2rSuY8eOBR3IYzNjxgzXs88+63rw4IHLKuDCa9u2rfyMFSpUcJ07d87oIREfMIibm99++801cuRI1x/+8AdXrly5XN98843LzPz000+uF154QTYimthBPDabN2+WueLHH3+M0igJ+Q+M1/EHB+AzZ850pUuXTuap7t27i9BAIgNjduS4d++eHPBAhIMgN2LECJkj7AxjNrEKjNfh4eDBgyIu4vdUsWJF1969e40ekm1hvI7sYc9XX33lKlSokLyX69Sp47pw4YLLzjBemwcK5WECQQiicVwD+dGjR+W5J0+edFmBjRs3urPIJ02axCxyk8Mgbg2OHz/u+tvf/uZKkCCBCFFmzXZZsWKFzFfI+NE3fI6seNyH8B8bZJ3iOTgBJ8RInBav48v333/vKlmypPzMjRo1kkU8iSyM2ZHn119/dXXq1Enibe7cuV2bNm1y2RXGbGJVGK9DA78Tz3lt/fr1Rg/J9jBeRx7oTHPnzpWKsGTJkslht10PvxivzQONJMMEusXGp0MvGgzB1xMd6M3eWOCdd95Rr7zyinQmhqchumXTk5SQ+JMnTx7pVA1vMDTVgL/id999p8xGxYoV5drHvKVvf/3rX8X7FfcTJkz41P/RTdQyZMhgwIgJcV68ji/wN+zQoYNc2/Am3rZtm3gXwkeSEKuTJk0aNW7cOHXgwAGVNm1a8QGFx/7PP/+s7AZjNrEqjNfBgeRHeJajb8iMGTPEtxz9wtA7jBCrg2sYjeNPnjyp3n77bTVgwADpNQD/bbvBeG0enjV6AFYEnWTRjC9r1qzqzp07asGCBbKBXL9+vXz9ypUrckOjDIA3Oxre4PlYmO/evVvEr/Lly8vj+Lxr164yAZi5qQYCbv369WUTMWnSJJmoKJATEl6effZZ6Wj/+uuvq+bNm6v/+7//Ux999JHq0aOHaa43zFto+OEJum2jeRIeR9M0zIvVq1eXxw4fPixzHJqKYGFDSLRwaryOrzCBpn69evWS5kCjR48WwTxRokRGD42QsIOYtGPHDjVv3jyJs7lz51YDBw5UXbp08dn8ymowZhMrwHgd9/05YjQSbXDYh5idOXNmo4dFSNhJmTKlGjNmjGrRooW856tUqaLq1KkjzSgxD9gBxmsTYXRKuxVp2bKlK1u2bK7EiROLXyfKwtDQUvP+++9L+UPs26xZs+Tr+/fvF3sF+CMmSZJEmmyYuYQE/lBoiAJfUnhEOaV8zU6wLMya4O/Vp08fKbeqUqWK6+rVqy6z4umfBmuGMmXKuNKkSSPzxksvveTq0aOHNAIkJJo4LV6Hw9dU26w0btzY9csvvxg9JEfCmG0MaHzVpUsXKW+GbQF8P+0KYzYxG4zXoYHrU9us4Ge183xlZhivjdOnFixYEMOOxa79RhivjeEZ/GO0WE/Myz//+U/Vpk0btWTJErFYwSlekiRJjB4WCZHHjx+rdevWyekjswKtB0rLmjZtKuVWOEUuV66c0UMihNiIR48eSeXK0KFDpXQbVWNly5Y1eliOhTHbWJCp+u6776qdO3eqdu3aqVGjRkmWFyGEmIGNGzeqVq1aqZs3b6pBgwapzp07M1YYBOO1scAa8MMPP1Rjx45VBQoUUJ9//rkqVKiQ0cMiNsAcdfzElOzdu1c8kiHSLV26VDbOFMkJiT7wGIT/GDzM4V32wQcfqCdPnhg9LEKIDcDcUrx4cRHJ+/Xrp77//nuK5MTRYLMNy4fJkyeLJQs+37x5s9HDIoQ4HIiCOLzDvgCH2seOHVPdu3enQEscbccCu6E9e/bI3hh+3hDOcYBBSHygUE6eAkUGn3zyiXgjp0uXThodwf+JEGIcaNCBQytkjmABgMZjv/zyi9HDIoRYOIsc80mxYsUk7uNwHJ/bxZeZkPiAniBoXn/06FGVM2dOibn4HN7JhBBiRBY5Du1QWTplyhTZE2TLls3oYRFiCooUKaL27dsnvQ6wT/7b3/4m/t2ExBUK5eSpk+patWqpbt26qU6dOknZaY4cOYweFiFEKbFeQafvLVu2qB9++EFKy3CfEEJCbf6FLHLYrfTt21dE8r/85S9GD4sQ05E9e3YRqFBVOXfuXGmWxbhLCIkWOJzTWeQvv/yyWEPh82eeecbooRFiKpDoAZEcTX2RUY7s8sGDBzO7nMQJCuXEDbqIlyhRQspNV69eLWUszCwjxHzAFgF2CbBGwsIZG3i2myCEBOK3336TTQQ2D7///ruUqsLKibGeEP/Z5ejTA4EKwjks0OBhfu/ePaOHRgixMTiUQxb5/Pnz1aeffiqHdpiDCCG+KVq0qGSX9+zZU9a40LdQHUZIKFAoJwK8F5FdBm8nnMK99tprRg+JEOIH2CKheUzHjh1Vhw4d1Ntvvy1WCoQQ4o2LFy+q8uXLi1CO0lRsInDYRggJDlRYYr08ceJEaRgG2yJuvgkhkTjU7t+/v1g+vfjiizLPYJ3PLHJCguMPf/iDGjJkiPr222/Vw4cPJV5Pnz6diWUkaCiUOxxMFhMmTFBVqlQRoRyTCZqDEELMz7PPPiv9BGbOnCmbdiyor1+/bvSwCCEmA1VisFa5cOGC2r59u4jlzCInJG7Z5cgm379/vzTQ4+abEBJOfv75ZznUHj58uDTZ3rRpE7PICYkjqKCEvWDz5s1V27ZtVcOGDcVqmJBAUCh3MMg+xYQBL/LOnTurNWvWqNSpUxs9LEJIiLRo0UJt3bpVfMuxaYf/MCGEIM6j50iNGjVUqVKlxLIJjboJIfEjd+7cklyiN9+NGjXi5psQEi+wF0f/IX2o3bt3bzmcI4TEnaRJk4p10eLFi9VXX30ljT9x2E2IPzjzWgR4iYaTa9euicfinDlz1KxZs9SYMWMkO5UQYk3+/ve/y4n5H//4R7m/bNmysL4+s+UIsda1cvbsWRHHYRMxduxYtXLlSpUmTRqjh0WI7TbfixYtEis0M22+zTIPEeK0PXZcD7Xfe+899frrr8th9oEDB3ioTUiYqVevnlxbSAwtWbKkGj9+vClipRnmIPI0FMot4lO2Y8cO9c9//jMsr3f8+HHJOj19+rQ07kQ2DCHE+mTJkkXt3LlTegzUrVtXSjbDsQBAAMfm/9KlS2EZJyF2Bdfb4cOHpTm2kSxZskT8x3/99Vf1zTffSNUYvU0JiQz169dX33//vXr++edNsfn+5ZdfpN+QGQQAQszMrVu31O7du2WvbfShNqxQYae4atUqSXohhIQfeP7/4x//kP5eWBvXqlVL3bx507Dx/Pvf/5a9+4MHDwwbA/EOhXILgEzvDBkyyGYXYjkWv3PnzpWPoYLFAIJxqlSpJPsUC3pCiH1IliyZ+uKLL9SgQYNUv379xFopPifV+L8QAFBSnjZt2rCOlRC7ATE6W7ZsYoNkhFiOzT6y0iDcVa1aVa5d+DMSQiJLzpw5ZfMN/3Jsvt988011//59Q0RyXPfwNObhGCH+SZEihXyEjZIRYvn69etV0aJF3YfaXbp04XVLSIRBj56PP/5YDqWQjIpqMCS5GCGSY92QMmVKaT5KzAWFcouABps4Adu4caNq0KCBatasmSpRooTq1atXSL5nsFspUKCATArIPiWE2A8sst9//301depUNXnyZGlcgo7f8RHJUQLKIE5IYJBVCvujaIvlt2/flmqScePGyQ0HZjgUJ4REB8RIZIQuXbpU1txITLl48WLURXIcjv3pT3+K2vclxMrJaH/7299k3RxNsRzVHpgrqlevLusFVG3yUJuQ6IL+PejdAysWXIcrVqyIukiO6pG//OUvPCAzIRTKLQQ2wWhC8OGHH0rGGhg5cmRQmeXwIX/jjTckwwyn19jIE0LsDRqMYcOOE3MsxkNpNEaRnBDriOWnTp2Szf6ePXvU119/LZUkXHQTYgx16tSR7FCUc0P8wv1IQ5GcEGuI5UhcadmypTTa7t69u/ryyy+5LyfEILJmzap27dol++TatWuLzhZpz3CK5NaAQrmFwIYbvqPIUvEUy/G4vxPr4cOHS0Bu1aqV/P8kSZJEcdSEECOB99qGDRskW6VcuXLq6tWrAf8PRXJCrCOWf/XVV7LJT5gwoQjllSpVitj3IoQER6FChcTiMHfu3BJ7Z86cGbHvRZGcEGuI5VeuXFHly5dXCxcuFBvVESNGSOwmhBjHc889J025Bw8eLBXZcG+4d+9eRL4XRXLrQKHcQuTKlUs+xhbL9ePexK6uXbuqPn36qIEDB6opU6YwGBPiQMqUKSN2S1igQ/g+c+aMz+dSJCfEGmI5DsLHjBkjdiuweEAPkpdeeims34MQEnfSpUsnloktWrSQZBWsycMtwFEkJ8QaYjkSVooVK6bOnz8va/ImTZqE9fUJIXEH133//v3V8uXLJQEFe+ALFy6E9XtQJLcWFMotBIJ3z549Y4jlo0ePlmyV2Dx+/FgC8Pjx48Wj+IMPPuDFSIiDKViwoJR/47AMwt2BAweeeg5FckKsIZajdLt58+ZStt2jRw+xV6IfOSHmbBqGRJWJEyeqCRMmSHn3rVu3wvLaFMkJsYZYjmxVHGhnyJBBKk2KFy8eltclhIS/Ehv7ZVge42ALtizhgCK59aBQbjFQooXAPWfOHPXee+9JY05czP/85z/dz3n06JGUjMCbGJ7m77zzjqFjJoSYg+zZs0vAhx9bhQoV1L59+9xfo0hOSPTEcvQWQdl1MD1GYoNrtFq1arLxnjdvntirsVqMEPOCDfG7774rNmiIu6jyunTpUrxekyI5IdETy+MTsz/++GP15ptviv/x9u3bVaZMmSIybkJI+JLLcKCVJ08esTOMb5NPiuTWhEK5BUHwbtq0qXz885//rF588UW3WI4ss7p166q1a9dK6QjuE0KIZyn4pk2bpBIFwR+exhTJCYmeWH7w4EE1bNgw1axZM1WiRAnVq1evoF8D9klly5aV6xWiW+PGjSM6ZkJI+MABNTbLWK9jLjh58mScXociOSHRE8sXLFggfQZCjdmwR0MlOBLbYIOKg+2kSZNGfOyEkPDsl7HOrlGjhuhp06ZNi9PrUCS3LhTKbYAWy7dt2yYXMy7qlStXim8pIYTEBhYN69evV/ny5VOvvPKK+vzzzymSExIFTp06JZtsLLpr1qwpj40cOTKoLDVkouMaRUNe+JsiK5UQYi2QoYbkluTJk4sVQ6gZqhTJCYmeWI5qLfgUw7s4SZIkQcdsWKDCHm3UqFFq7NixaujQoRTICLEY2BOj8S7cGdq1ayf9AXEAFiwUya0NhXIbWSp88sknIpbjgkZZNiGE+CJlypRq3bp1KmfOnKpjx46yIaBITkhkgfXK2bNn1fvvvx9DLMfj/oAwBpEc1ylENpSFEkKsSebMmdXOnTulsgtZ5l9//XVQ/48iOSHR5fTp02rIkCFSeekplvuL2ffu3VNvvPGG7MeRjd65c+cojpgQEk5wWIb+IoMHD5a1e4cOHdSTJ08C/j+K5NaHQrkNgCd5vXr1xEft008/lSDu6VlOCCGxwaIfGwAE/kKFCqnXX39d/NgIIZEjV65c8jG2WK4f98bmzZvFbiVbtmzSYwAH44QQa5MmTRqpAK1YsaLEX/gf+4MiOSHRB7EZ++zYYrmvmP3rr7/KNQ0vctigNmzYMOpjJoSEF4jcuPZhv4Lm3Og58ODBA5/Pp0huDyiUWxyUdqFxJ2wUYLfSsmVLt2c5RPPVq1cbPURCiMnw9CSHT7m2YalcubLav3+/0cMjxLbA8xSepZ5iOXqOYDHtDTTkRoUYssm3bNkinomEEHuQLFky6ScE72PcxowZ4/V5FMkJMTZme4rlEMuKFi361HN/+uknsVNCbEeFN6wNCSH2oU2bNmrZsmVqzZo1sjbHPjo2FMntA4VyC4OyjyZNmrgbd1atWtXtWX7o0CH17rvvqjp16lAsJ4S48da4M0WKFFL6jbkDC/ujR48aPUxCbMuIESOkAmzOnDlSlo3sM5Rxw4PcE3wd2WioGPvyyy/F05gQYi9gp/TZZ59Js7/u3buLB6onFMkJMUfMxnWKNTIS0vD5b7/95n7OuXPnpG8IskwhkuF6JYTYD9gqoRrswIEDkmB2+/Zt99coktsLCuUWBY0E4Hm2dOlStWjRIvXqq6/G+NqxY8fkIzLOKZYTQnyJ5J6e5RDLs2bNqqpUqSLNiwghkctSQyY5Pj7//PPq73//ewyxfNasWdIIrEWLFmLJkDhxYqOHTAiJENhMo9mf9kAdOHCgrOEpkhNirphdokQJuY9rVovlZ86cEXu0RIkSSaPtl19+2ejhEkIiSOnSpcUWEet2HJ7dunWLIrkNoVBuUbCgnjRpkvgk1apVK8bXcGFik92oUSP5nGI5IcSfSK6BYPfVV1/J1yCWw2uREBJ5PMXyjz76SGzU2rZtKyXeCRJwqUaIE4AH6vDhw0Uw79Spk1ihUSQnxHxVIFosX7JkiYjkSZMmFbuVLFmyGD08QkgUgP0SLBFRTVK+fHnZP1MktxfcfVkQlH5hMY2FNLySfAXx2bNnUywnhAQlkmsyZMggnuU3b96USpV79+5FdayEOFksR0Y54jts1dBnhCI5Ic6iV69easCAAWrixIlq48aNKn369EYPiRDiZZ8NUQwHWri/adMmlSlTJqOHRQiJIhDF161bJ1XYffv2lapsiuT2gTswi7Fq1SrVrl078R/v16+f3+dqsRydeQHFckKcRygiuQZlozgZh4VT/fr1Ze4ghEQWVIJ16dJFtWrVSuI2yrkJIc4CdivFixcXC5YJEyaoQYMGGT0kQkgs0LATlgsQy8ePHy9CmadnOSHE/sBuBfvrqVOnqhs3bkg1tqdnObE2FMotxM6dO2XzDLF73LhxQZ1YQSyHvykaggGK5YQ4h7iI5J4lZWgSjIy21q1bi18qISQyIE5DINd2K7hevTX4JITYF09PcgjkaCKI5p6oICWEmIPz58+L1QLsVmC9UL169Rie5YQQ++PpSV6vXj3xLIcNC8Tyf/7zn0YPj4QBCuUW4ciRI6pGjRriYYoNdcKECYP+vxDL58yZQxsWQhxEfERyDbJlMHfg1rt374iMkxCns2zZMmncCV/yyZMni92KtwafhBD74q1xZ8+ePaVnAZp7fvzxx0YPkRDHc+XKFVWxYkVp3Ll161aVMWPGGJ7lFMsJsT/eGncWKlRIksuwbod16f37940eJoknFMotsniuWrWqyp49u1qxYkVAwevEiRNyuo0SEH+e5WgYxCxRQuxHOERyDapYUMEycuRIKQMnhIQPNP9CXIbFUezGnRTLCXGuSK6B72mfPn3Ue++9p+bNm2fYGAlxOsgSxX784cOHkj3q6UlOsZwQ54rkmiJFiqivv/5aHThwQPbPnAesDYVyC1yMb7zxhmye0SwgZcqUfp8Pj7TKlSuLv3Dp0qXVpUuXvIrlOPXq2rWrCGmEEPsQTpFcg2ZF3bp1kzkDDYsIIfHn4MGDqmbNmqpMmTISm7017qRYTohzRXINsspRcdKiRQvZhBNCosuDBw9kP459Nq7BbNmyPfUciuWEOFck12AOQKUotDj0FWRSqnWhUG5icGHBr/To0aPSxDNDhgwB/8+9e/dEKAPwTkuePHmMr2uxHH7nBQoUUN988w19lAixCZEQyTXIKIcVCzJfKdgREj/gY1itWjVpnIteAIkTJ/b5XIrlhDhXJAfYjKNZGOYMWCd+9913UR0nIU7myZMnqmnTpiJ+w7Y0f/78Pp9LsZwQ54rkGlSezJw5U279+/eP6jhJ+KBQbmJGjx4tZZazZs2SUo5gyJs3r9q1a5dYr+DEO1WqVF6DeIoUKdSf//xn9eKLL1IsJ8QGRFIkB+iLsHDhQpUuXTrpl8BqFELixrVr16TyCwfZqBRDPA4ExXJCnCmSe67dv/jiC1W4cGHxPz116lRUxkmI05PWUFWJA+1FixapUqVKBfw/FMsJca5IrsHhGrS8oUOH0rrUolAoNynYPPfq1Uv169dPNWjQIKT/myNHDrV27Vr1wgsvBHwuxXJCrE+kRXJPse7LL7+UDT4snJBlQwgJnjt37ojIdffuXbVhw4ag4rSGYjkhzhTJNcmSJZMYjP+DwzZPe0VCSPgZMmSINNlGDxEkiQQLxXJCnCuSa9BbpHv37qpz585y0EasBYVyE4JmnA0bNlSvv/66+vDDDwOedO/YsSNe349iOSHWJVoiued8gaw2eK+xnIyQ4Hn06JHYJkDoxvWDQ+1QoVhOiDNFck2aNGmkYhTrf5R33759OyLjJMTpQBwfOHCg9Aho1apVyP+fYjkhzhXJNSNGjFBNmjSRDHM0ASbWgUK5ybh165acWGfJkkXNnTvXa3Ov2L7BZcuWFcEqPs0CKJYTYj2iLZJrsDnH3DN8+HC1YMGCqHxPQqwM4nOHDh3Utm3bpOcIFtxxhWI5Ic4UyTWZM2dW69evl4xy9A2hAEdIeEHj+vbt20vc7tOnT5xfh2I5Ic4VyQG0vBkzZqiKFStKsgxt06wDhXITARuDN998U928eVM20ilTpvT7/AMHDqjevXvLfZx2Q+SODxTLCbEORonkmm7duqlmzZpJls3+/fuj+r0JsRoo3Z4+fbqaMmWKKleuXLxfj2I5Ic4UyTV58uRRS5YsUVu2bFE9e/YMyxgJIUpiKg6gKlWqpD755JM4C2QaiuWEOFMk1yRKlEisVzJmzCgJsawEswYUyk0EzP43btyoFi9erHLmzBnw+bhwx40bJydVgwcPFrEsvlAsJ8T8GC2SAywapk6dqvLnzy8bCs4XhHgHQhb8Cbt06aJatmwZttelWE6IM0VyDTLUxo4dK2Le559/HrbXJcSpYF0NIQuN62EzCJE7HFAsJ8SZIrkGCbDoMXL9+nVJjGWfL/NDodwkwGd80KBB4oWGhW8w4MJFJ+69e/dK089wQbGcEPNiBpFckyRJEjkhv3Hjhmrbtm287J8IsSNnzpxR9erVUxUqVFCjRo0K++tTLCfEmSK55t1331Vt2rRR7dq1U7t37w776xPiFCBcoVE9rlkIWoiv4YRiOSHOFMk1L730kiTEwtqpV69eYX1tEn4olJsAnCyheWeZMmXUgAEDQv7/RYoUCfuFTLGcEPNhJpFcg3nis88+k8APawlCSMzMNDTfw4FSuDLTYkOxnBBniuQA6/+JEyeq4sWLq1q1aqmff/45It+HELuDfl9otL1w4ULZB0cCiuWEOFMk18DS6eOPP1ZjxoxRs2fPjsj3IOGBQrkJhK+33npLPXr0SM2fP18lTJjQ7/Nhz3Ly5MmojI1iOSHmwYwiuQYZs++8847YSxw+fNjo4RBiiusVXe4hWiEzLXXq1BH9fhTLCXGeSK5JnDixWrZsmawL3njjDXX//v2Ifj9C7AYa06NBPRrVV6tWLaLfi2I5Ic4UyTUdO3aUHl+oxsYcQMwJhXKDwYkSTq/nzp0rBv/+QMdcWKwgawQb72hAsZwQ4zGzSO45l+XKlUs1aNBA3b171+jhEGIoqA5bs2aNZKah6V40oFhOiPNEcs0LL7ygVq1apU6cOCEbcFqhERIc+/btk2sGDerRqD4aUCwnxJkiOcD3mDRpkipWrBgrwUwMhXIDQWDs06ePdKuvWrWq3+cigKK0Ety5c0fdvHkzSqOkWE6IkVhBJPf0K7948aLq0KGD0cMhxDDWrl0r1V/Dhg1T1atXj+r3plhOiPNEcg02+SjlRhPCyZMnR/V7E2JFbt26perWrasKFiwoDeqjIZJpKJYT4jyRXIP9PCrBMA/AgpnXv/mgUG5gYEbHWyykhwwZEvD5uIh27typGjduLCJU8+bNVTShWE5I9LGKSK7JnTu3+vTTT2WjTt814kSQFQI7tddee00OwY2AYjkhzhPJNRD9OnXqJJmxBw4cMGQMhFgBVF20bt1a9rVI9EDCR7ShWE6I80RyTfr06aXyFI24Bw0aFPXvT/xDodwg2rdvL4EZWR+JEiUK6v8kT55cLFrGjh2rjIBiOSHRw2oiuaZp06ZykPfuu++qc+fOGT0cQqIGNriNGjVSSZMmVZ9//rkhi24NxXJCnCeSa+CznD9/flW/fn2pQiWEPA2qLpYvX65mzpypsmfPbtg4KJYT4jyRXFOqVCk1ePBgqUTduHGjYeMgT0Oh3AAQlCGQw5soW7ZsIf1fXMiBGn5GEorlhEQeq4rkmvHjx6u0adOqli1bys9CiBP48MMPJTYiOwSLb6OhWE6I80RygDUDMmSvXr2q2rVrR79yQmJx8OBBqbpAUz14BBsNxXJCnCeSa3r16qUqVaqkmjRpoq5cuWL0cMh/oVAeZW7cuKHeeecd6UoPPyJ/7N27V7Vp08Z0jfEolhMSOawukoMUKVJI8+Ft27aJFQshdmfz5s1io/bBBx9IdohZoFhOiLNEcs1LL72kpk2bJgd3yJglhPwHVFmg2iJfvnxq1KhRyixQLCfEeSI5SJAggbhG4CPE8idPnhg9JEKhPPrAXxyBD+KRv4sT4jhKuD/77DNVpEgRdeHCBWUmKJYTEn7sIJJrKlasqN5++23xaT579qzRwyEkYiBrE/1D8J7v3bu3MhsUywlxlkiuQS8kJNwga/bo0aNGD4cQw0F1Bdamly9flqoLs62zKZYT4iyR3NOvfN68eWrLli1q+PDhRg+HUCiPO999952c/OBjsKCzLYLyxIkTAy6oURKmSy9Sp06tMmbMqMwGxXJCwoedRHJPn9R06dLRgoXYFryvkf0BsCYw0hrNHxTLCXGWSK5BX6OcOXOqBg0aqHv37hk9HEIMZdasWWrBggVSbfHyyy8rM0KxnBBnieQaJNz0799fDRw4UO3cudPo4TgeCuVx9BEqUaKEatasmXzE54G4fv26WK7ABw0ZHoFA6Ta61VeoUEECerANP6MNxXJC4o8dRXJtwYKS7+3bt0vTJELsxrhx49SmTZskC8TMYhmgWE6Is0RykCxZMknSQXPtYPYrhNiVM2fOSHVFq1atAtqfGg3FckKcJZJrIJJDC0ASDnQBYhwUykMEGeTIkvQEnwfKLIflCsSwQJYrsf0F4XuKTBAzQ7GckLhjV5Fcg8M+HBJig45NCiF2AYJz3759VadOnaQJjxWgWE6Ic0RyTd68eaWUe9KkSWrr1q1GD4cQQ9baqG584YUXpMrCClAsJ8RZIrm+7mfPnq1+/fVX1aNHD6OH42golIcINpehPA6WLl2qFi9eLJYr8B+yIxTLCQkdu4vknoeJ2JzQgoXYBTTaadGihcqUKZMaOnSoshIUywlxjkjumbBTpkwZicPog0SIk8Ah0Y4dO6TKMXny5MoqUCwnxDkiuSZHjhzSaBgWURs3bjR6OI6FQnmI5MqVK6THIYChzAuWK/AH9MecOXMk4xyNRqwIxXJCgscpIjnApgSbE2xS4A9JiB0sV3bv3i3v5+eee05ZDYrlhDhHJAcJEiSQOHzt2jVasBBHgWpGNNpu3769Kl++vLIaFMsJcY5IrmnXrp1UZcMqihYsxkChPEQQqHr27BnjMSw48bg3Bg0apO7cuaPGjx/v9yL96aefJNsDQbxq1arq0aNHyopQLCckME4SyTXYnMBvDZuVmzdvGj0cQuLcnPvUqVOqX79+qnPnzqp06dLKqlAsJ8QZIrkGVo6wYEHPkC1bthg9HEIiHrO15QoqukeMGKGsCsVyQpwjkuvD7RkzZqhbt26p7t27Gz0cR0KhPA4g0CJIIQMcH7Ho9MaRI0dEIB8wYIDKnDmz39dcsWKFCOoAz02cOLGyKhTLCfGNE0VyTwuWhw8fSkdvQqzYnFtbrmTJkkV99NFHyupQLCfEGSK55t1331Vly5aVLDW97yDErjEbtqdWtFzxBsVyQpwhkmuyZ8+uRo8eraZPn642bNhg9HAcxzMuq/p8mBz8WsuVK6euXr2qDh8+HJTwvX79ejV48GC1du1alSpVKmV1kHV39uxZ2YTb4eexMo8fP1br1q1T1atXV4kSJTJ6OI7FySK5Bk2UunXrpvbu3auKFi1q9HCIg0E2GjbascEG1FeVGBasqCrbuXOnXMN24fbt23K4DRs5NBInxsKYbQ7sJpJrsDYvUKCAiI2wfCTEjjH79OnTqlChQpJRDsHcLkAgx+8CWgN+HxDQiXEwXpsDu4nkGlznlStXVidPnlRHjx6lphZFmFEeIRYsWCAn2AjMwWaHV6lSRe3atcs2FwAzywn5HxTJ/wMspvLlyydZbWzsSazUnBubblRDdOnSxVYiOWBmOSHOEMkB1uaojp0yZYraunWr0cMhJOwxG+JS69at5dr1VfltVZhZTogzRHKAn+Wzzz4TLS22/TOJLBTKIwCEMHgJ1atXT1WqVEk5GYrlhFAkj73AnzRpkmTDsLEnsUpzbmy60Zg7Q4YMasiQIcqOUCwnxP4iuQY9kXC949AaGZGE2Clmz5s3TxLWpk2bZnnLFW9QLCfE/iK5Jlu2bGrYsGFiwRJsPyUSfyiURwA08IQgNmbMGL/PQ2Dbt2+fsjsUy4mToUj+NGXKlFGNGzdmY09imebcK1euFHu0cePGqWTJkim7QrGcOB0niOS6URgOrWGTiHmNELvEbOw1e/TooerXr2/rhDWK5cTpOEEk17z99tvyM+JwG/2SSOShR3mYgXcQ3sRo8uWvwcijR49UwYIFZTP6zjvviO9p0qRJlZ2hZ7lx0D/NGCiS++by5ctyiNakSRM1efJko4dDHAyyMxCLkZXmTSS/f/++ypMnj8qfP79as2aNrRfiGnqWGwtjtjE4RST3BJUyn3/+uazRM2bMaPRwCIl3zIY9GqwK4OmbOXNmZXfoWW4sjNfG4CSRXLN7927R0WCb1q5dO6OHY3uYUR5m3nvvPZUzZ07VtWtXv8+bMWOGLEoR1LAod4KAxsxy4iQokvsHFhaovpk6dao6fvy40cMhDgYb7aZNm/ps4IlyRzTmHj9+vCMW4oCZ5cRpOFEkB4MHD5ZEHVhGEmL1mH348GHpDzZw4EBHiOSAmeXEaThRJAclS5ZULVq0UH379lU3btwweji2h0J5GNmyZYvasGGDGjp0aMAGnmgwMmrUKJUyZUrpOI8SSCdAsZw4AYrkwYHysaxZs6p+/foZPRRCfDbwHDlypJR74xDcSVAsJ07BqSK5vs4xxy1cuJCNPYmlQfIZ1pUvv/yyZJU7CYrlxCk4VSTXoDkxdAaI5SSyOEOdjVJw7tOnjypevLiqXbt2wOejNAfZGz///LNc5J7Ad+jSpUvKrlAsJ3aGInnw4HeDbDb4P6OcjBCzxfXOnTuLHQH89J0IxXJid5wskmuaNWsm13mHDh3Y2JNYlvnz56tdu3ZJRnmghDU7QrGc2B2ni+TghRdeUEOGDBF7qT179hg9HFtDoTxMLF++XN6sOOUJ5aJNkSLFU48hwxy+ayNGjBAvcztCsZzYEYrkodOoUSPp1wAhki0ziJlYtWqV+uqrr9TYsWNt3cAzEBTLiV2hSB6zsSc8nWExRYjVwF4SCWho4FmxYkXlVCiWE7tCkTxmY89ChQqxsWeEoVAeBhCEYB1QpUoVVb58eb8i2q1bt/y+FnxQ+/fvL83DIBxhIti0aZOyIxTLiZ2gSB73DTo8oHfs2CGiJCFmAIfU6DlSrVo1VaNGDeV0KJYTu0GRPCbYb7zzzjvqgw8+UNevXzd6OISEBGxP79y5o8aMGaOcDsVyYjcoksckYcKEcri9b98+NXfuXKOHY1solIeBWbNmSWNOiD3+mDdvnvimIWPcV9CCuNakSRO3Z/mJEyfUK6+8orJnzy4LertBsZzYAYrk8QNiZJkyZcS+Cr9LQoxm2rRp6vz582r06NGOX5BrKJYTu0CR3DtosI35DqIjIVYBNqaohEBGuVMaeAaCYjmxCxTJvYP1eL169aRx8YMHD4weji2hUB6GixcLy4YNG6rChQv7fB7ewAMGDFC//vqrat++vQQtXxtReKvt3bs3RjfvCxcuyIIeDXfs5h9IsZxYGYrk8QeLHthWHT58WBqKEWIkd+/eFe/8t956S+XNm9fo4ZgKiuXE6lAk903atGlVjx491OTJk2XfQYgVQBVE8uTJpQqM/A+K5cTqUCT3D7zKsaZBzCbhh0J5PJkwYYK6du2abKoDbbxLliwp96tXr65KlSrl9/lFihSRiQEZ6Br49/bq1UsVLVpU7dy5U9kJiuXEilAkDx+YH2vWrCkHinbtzUCswccffyxxCJtv8jQUy4lVoUgemK5du6rUqVNLlhohZge++jNnzhQL1JQpUxo9HNNBsZxYFYrkgUFPw9atW6uPPvqI+lkEoFAeD+CFhizItm3bqpw5cwbM0vjiiy+k4Sc24cGwZMkSdfr0abnvGfyPHDkiNgU9e/ZUdoJiObESFMnDD8q9kcU2Y8YMo4dCHAq8eUeNGqU6dOigsmTJYvRwTAvFcmI1KJIHx3PPPSciOXxPsd8gxMxAIEeshr8+8Q7FcmI1KJIHD+I1fl/Yu5DwQqE8HkydOlUyxeGrGyzFihUTQTgQaOaJ8kcN7AgQ3JBprsFi325QLCdWgCJ5ZIDNRf369cViigt5YgTIykCPkFDiulOhWE6sAkXy0GjTpo2sxfv27Wv0UAjxyXfffaeWL1+uPvzwQ67DA0CxnFgFiuShkTFjRtWlSxf1ySefqMuXLxs9HFtBoTxWwEUGBT4GAp7j6KzdrFmziDQOwakQmpNoqxbcEOCQkQ4fIpj342ZHKJYTM0ORPLL07t1bmiiiAoeQaIL3HZpto1oLC3QSGIrlxOxQJA+dRIkSiaXkmjVr1K5du4weDiFPATtSrBfz58+vGjdubPRwLAHFcmJ2KJLHDexboEcEsoImoUGh/L/A+7tEiRIifOMjPvfH7Nmz1dWrVwPan3z22Wciboe6qEdGpQ5qEOQ1CRMmlPKyxYsX23ryoFhOzAhF8shTqFAhORiErRV+34REs3wxTZo0kplBgodiOTErFMnjToMGDVThwoVlPwRRkhAzsX79erVt2zY1bNgw2RuT4KBYTswKRfL4rcNRCTt9+nSuw8MIhfL/ZpJrYVqDz31lliOo4Ot169YVE31fXLp0SXxOEZDefPPNoBea77//vlivgLffflvlzp1bORGK5cRMUCSPHgj2x44dk2w2QqLBqVOn1Lx586SZLDx6SWhQLCdmgyJ5/IAFFURIrME3bNhg9HAIcYP9NA62EXNeffVVo4djOSiWE7NBkTz+QHNMnz49s8rDCIVypWRjF8rjaLJ59uzZgB6mEydOVA8fPpT7aDQSzEV//Phx6d6tG3g6ves8xXJiBiiSR5dSpUrJDZt0ZrKRaIDDb4hprVq1MnooloViOTELFMnDQ+XKlaW3EmIxIWZhy5Ytau/evbJHpqAWNyiWE7NAkTw8JE2aVHXv3l0tWLBAXbhwwejh2AIK5Ur5zAr39jhEG1gCVKlSRUoS/TFo0CA1ZcoUlS9fvoAWLZ7du7XdAMod06VLp5wOxXJiJBTJjQEHkVi8b9++3eihEJv3Hbl48aI8r1u3bry+4wnFcmI0FMnDBwQLxGLEYazBCTFDnzAc3GAPjoMcEncolhOjoUge/kbcqVKlUqNHjzZ6KLaAQrlSEiRiC9kQqfF4bNatW6cOHz4cMJscYMPdrl07deTIkaAEb5yOr1y5Uu5nyJCBPqkeUCwnRkCR3DiqVasmfuXMZCOR7juCPiDJkyeXeE3iD8VyYhQUycNPzZo1VZ48eRiLiSniNfp+bd68WfbhFNXiD8VyYhQUycMPrCM7deokPRLRS5HEDwrl/2XEiBESIObMmSMfkTXuDSwUS5YsqcqUKRP0awd74ffv3999H+VkyZIlC/p7OAGK5SSaUCQ3FsybvXv3Fm/U/fv3Gz0cYtO+Izdu3JDmN/D2S5EiRRRHaW8olpNoQ5E8cl7lEC7RMwSJP4QY2ScM+3BUfNeuXTtKI7Q/FMtJtKFIHjmwn8E1PW7cOKOHYnkolHuAING0aVOvmeQ64xsXNbLP/V3QcfHUxevqZjk5cuRQLVu2DPk1nADFchINKJKbg3r16sl8yGBPItV3ZPz48fIRGRgkvFAsJ9GCInlkadSokcqaNavPJCJCohGv0ccLldfYhydMmDAKo3MOFMtJtKBIHlnSpEkjFbKTJk2iVhZPKJSHAJpzZs+eXb3++us+n/PgwQNVtGhROfG+detW0K8NP3PNgAEDVOLEieM9XrtCsZxEEork5gEbofbt26tFixapa9euGT0cYrO+I3fu3FETJkwQT7+0adNGaXTOgmI5iTQUySNPokSJpEnYF198oc6ePWv0cIhD+4Sh+jtTpkyS1EbCD8VyEmkokkcH9FyCJvnpp58aPRRLQ6E8SCDSYIEI0cbfKfb8+fPVgQMHVN++fVXHjh2Deu3du3erTZs2yf2cOXNyARAEFMtJJKBIbj5QXYM5d9q0aUYPhdis78jUqVPVvXv31HvvvRflEToLiuUkUlAkjx6tWrUScWPUqFFGD4U4MF5fuHBBLViwQOI1k8kiB8VyEikokkePjBkzqrfeekt98skn8nsncYNCeZDAFB8+fYEsUU6dOuW+8IMt5R4yZIj7PgR2BCkSGIrlJJxQJDdvCVnjxo3VlClT1OPHj40eDrFJ3xG8l7CAbNKkicqSJYth43QKFMtJuKFIHl3QN6lz585q1qxZ6vr160YPhzisT9jYsWNVypQppQKMRBaK5STcUCSPPjiARB8mzKskblAoD4InT56ISAOPPlzg/kADktOnT6sxY8ao4sWLB3ztgwcPqnXr1sn9bNmyMZs8RCiWk3BAkdz8jUkuXbqkvvzyS6OHQmzSd2TFihUitHXp0sWQsTkRiuUkXFAkN4a3335bBA4kDxESrXh99+5dNXPmTNW2bVuVPHlyQ8bnNCiWk3BBkdwYXnrpJbGLhnV0XPonEgrlQfHVV1+pixcvqnfeeSeo58M+Bd5AwZ6ia3r06CE+gCQ0KJaT+ECR3PwUKlRIlSxZUqwyCAkHWDiWKVNGFSxY0OihOAqK5SS+UCQ3DggdDRs2FN9TCmckWsybN0/EchzUkOhBsZzEF4rkxieaHT16VO3YscPooVgSCuVBgGzyIkWKyKI8nJw/f14tXrxY7qdLl061aNEirK/vJCiWk7hAkdw6oIP3xo0bKa6ReHPo0CG1c+fOoPuIkPBCsZzEFYrk5th4I3mIFV4kGiATEgfbNWvWlMprEl0olpO4QpHceCpWrKjy5MmjJkyYYPRQLAmF8gCgeQisUQKdYsMDKFTgjwqhDmDDDv8/EncolpNQoEhuLerXry8C2/Tp040eCrE4kyZNUpkyZVJvvPGG0UNxLBTLSahQJDcHSBzCtQvxkpBIs337dnXs2DH17rvvGj0Ux0KxnIQKRXJzgN87DrdXrlypfv75Z6OHYzkolAdgxowZ4oeGUkNf3L9/X7388suqfPnyatWqVUG97u3bt+W1QdKkSVX79u3DNmYnQ7GcBANFcuuBebJ58+bSSIxNPUlcwTW/YMEC8Tpl42xjoVhOgoUiubmAFeXWrVvl2iUk0lXd2NtVqFDB6KE4GorlJFgokpuLJk2aqCRJkrh1RxI8FMoDlHvBFw2ZjP6ahyxdulSE723btqnly5cH9dpoSnLv3j25D/EnUJNQEjwUy4k/KJJbF9hTXb9+Xa1fv97ooRCLMn/+fPXgwQPVqlUro4dCKJaTIKBIbj7q1q2r0qRJo6ZNm2b0UIgF+e6779TcuXPloz+uXbsm+2rdRJYYC8VyEgiK5OYjZcqUqnHjxtKEm9dsaFAo98Pu3bvVuXPn5M3lDwhtuXLlcvvoBuLJkycxShY7deoUhtESTyiWE29QJLc2aLyYP39+ETsJicvhN5rQ1ahRQ6xXiDmgWE58QZHcnCA7DQfXqPDCwSMhwdKrVy9VokQJ1axZM/mIz32B91eCBAnkucQcUCwnvqBIbl5w2AjrFdhJk+ChUO4HZJNnzpxZlS1b1u/zGjRooE6ePCmibMmSJQO+7ldffSUCPKhSpYrKnTt32MZM/gfFcuIJRXL7lJDBaw1/R0JCAdlrR44cCepAm0QXiuUkNhTJzQ3sq27evKmWLVtm9FCIhWLwyJEjYzyGz71lluNgGxUL2GOjeoGYB4rlJDYUyc1N4cKFVbFixdTUqVONHoqloFDug0ePHqnFixerRo0ayWl2IDAhQCQPZmJAIzENmniSyEGxnACK5PYBczIy2FasWGH0UIjFQKk3Dr9feeUVo4dCvECxnGgokpsfVNKWKlVK5lVCgsGXp723x7FvO3v2rGrZsmUURkZChWI50VAktwaYS2FdCksrEhwUyn2AN9Kvv/4a0HYlVJBJrv11s2fPrqpWrRrW1ydPQ7Hc2VAktxdZsmSRKh/ar5BQQAPYRYsWBX34TYyBYjmhSG6tCq+NGzeqq1evGj0UYgG0TWkwj2ONh/Ve6dKlozAyEhcolhOK5NahXr16sv/BXogEB3eLPkCALlCggHji+uLSpUvq7t27Ib0ujPRRTqbLFhMmTBjvsZLAUCx3JhTJ7bs537x5swgqhBh5+E3CD8Vy50KR3Hobb+xjvvjiC6OHQiwARNWePXvGeAwe5Xg8dlU3D7atAcVy50KR3Frg71StWjWxlibBwejjBYhqq1atCrihRrBPnz69iDbBlDEgeKAxiQ4saIRDogfFcmdBkdy+1K1bV+ZQbs5JsGBhGOjwm5gHiuXOgyK59YB3dPXq1VnhRYJmxIgRIqjOmTNHPg4fPtzrwTb873mwbQ0oljsPiuTWBJrlnj171OnTp40eiiWgUO4FeN/CAxcn2b64c+eOPO/+/fvSnBObukDgeZcvX5b7r7/+OjcCBkCx3BlQJLc3mG9fe+01bs5JWA+/ibmgWO4cKJJbF8yre/fu9ek/TUhsIKo2bdr0qUxyz4NtHGrjcJtYA4rlzoEiuXXB3jlFihTcPwcJhXIvLFy4UDxw4Y3mTyjH4hDZFOjInThx4oCv+/nnn7vvt2rVKmzjJaFBsdzeUCR3Bph/8Xc+deqU0UMhNjj8JuaEYrn9oUhu/Y13ypQpufEmYQFr9y+//JIH2xaEYrn9oUhubZImTSpV2YjX2gqa+IZCuZcAvWXLFlW7dm2/z8uYMaOaPn26unLlivroo48Cvi68UVevXi33sRGoUqVK2MZMQodiuT2hSO4c0Ag5SZIk7nmVEF8gO61cuXJ+D7+JeaFYbl8okttn4415lhtv4ovvvvtOzZ07Vz76Y/ny5erhw4eqYcOGURsbCR8Uy+0LRXL72K9gLQ0LFuIfCuWx2LBhg3r8+LFYowRDokSJVOrUqQM+D01J8Lr6DYpAQoyFYrm9oEjuLJIlS6ZeeeUVyTwixJ8Qh8NvZqdZG4rl9oMiuX3A/Hr27FkRxgiJDRp2lihRQjVr1kw+4nNf4MAlUFU3MTcUy+0HRXL7gPkVCb9s6hkYCuWxgOiSP39+lSNHjrC+rmdJIoRyYg4oltsDiuTOBAeaWLihYocQX7YrCRIkUHXq1DF6KCSeUCy3DxTJ7bfxzpAhg1qyZInRQyEmAxnkI0eOjPEYPveWWX7jxg21detWZpPbAIrl9oEiub1ImDCh2EYvXbpU9BPiGwrlHmASX7dunapRo4bf52GDFkp54fnz50WIBfny5ZMGJcQ8UCy3NhTJne2Nir8/5m1CfB1+Q8QJpvKLmB+K5daHIrk9N96Ix7BCo/0K8cRXk1dvj2MthzVdoH04sQYUy60PRXJ7UrNmTbGP3r9/v9FDMTUUyj3YvXu3ZCb6C9B3796VjHOUhA0cODCo1128eLH7PpqJcZIxHxTLrQlFcmeDDLbixYvTfoV4BfMCstO46bYXFMutC0Vy+4J5FtcjG2wTT3LlyhX04zhowZqOc4N9oFhuXSiS2xdoJkgg4v7ZPxTKYwXo9OnTq2LFivn1MEeTkUuXLqlr166FLJSj1IGYE4rl1oIiOdH2K+vXr5d5mZD49Bwh1oFiufWgSG5vKlasKI09ufEmnkAk7dmzZ4zH4FGOxz3BGu7rr7/mwbYNoVhuPSiS2/+afPXVV0X7JL6hUO4BFncoHYSfqS/SpEmjqlevLqIcyhYCgeY2uqyhSJEiKmfOnGEdMwkvFMutAUVyosGm6s6dO2r79u1GD4U4pOcIMQcUy60DRXL7A5GcDbaJN0aMGCEC6Zw5c+Tj8OHDn3rOtm3bpGqbQrk9oVhuHSiSOwMkER06dEhduHDB6KGYFgrl/wUbLZQLBso8K1eunFq7dq00HKlUqVLA112+fLn7fr169cIyVhJZKJabG4rkxJMCBQqorFmzcnNO4tRzhFgbiuXmhyK5c8B8CxvL69evGz0UYjIgkjZt2vSpTHINMhuzZcsmh9vEnlAsNz8UyZ1DlSpVVKJEiZhV7gcK5f8FG2oIbsGI3yB58uTy5grEypUr3fdr164drzGS6EGx3JxQJCexwSIOB5w4wCQkds8R2q7YH4rl5oUiubNAKTcbbJNQQQNYJDvgoIXCnL2hWG5eKJI7i1SpUqmyZctSKPcDhfL/goZf2Gg999xzYXtNeJhDaAV58+b12dCEmBOK5eaCIjnxBQ44z58/LzdCABZ+L7zwgjQGI/aHYrn5oEjuPPB3hgjGjTcJhcOHD6uLFy+yAswhUCw3HxTJnQnmXGig0FbI01AoV0o9efJE7dixQ2xV/HHz5s2QXhcZFTglBwz+1oRiuTmgSE78UaZMGVnU0aecaCDUBOo5QuwFxXLzQJHcuWC/g6aMjx49MnooxELxOmXKlLKWI86AYrl5oEjuXFB1+/jxY7Vhwwajh2JKuIP870n27du3/Qrl8CRPly6dKly4sJo4cWJQr7tmzRr3fZZ/WxeK5cZCkZwEAk2WCxYsKM2gCIFId/LkSfHfI86CYrnxUCR3NpUrV1b37t1Te/fuNXooxCJs2bJFlS9fXiVOnNjooZAoQrHceCiSO5vs2bOL4wXmYPI0FMr/22k7SZIkPhuMgM2bN4tgd/DgwaC6w3qezmDy8ffaxPxQLDcGiuQkWLDJolBOgK4sgPcecR4Uy42DIjmB2ILsYMZjEgwPHjyQniKBqrqJPaFYbhwUyQnA3Mt47R0K5f8VyrGp8ifCYSJHNjkmkVdeeSXga0JQvXPnjtxHVlvChAnDOmYSfSiWRxeK5CTUQE+fcqJjOvqCpE+f3uihEIOgWB59KJITvV+ChQY33iQY9uzZI2I5hXLnQrE8+lAkJ56JZidOnFBXr141eiimw/FCebD+5HXq1JENACxYgslSW79+vft+1apVwzJWYjwUy6MDRXISKqVLl6ZPORHQmIabbkKxPHpQJCeeYP6FCPPw4UOjh0IsEK9Tp04t9nnEuVAsjx4UyYknWtfk4fbTOF4oP3ToUEB/8theuMGIdps2bXLfDyYDnVgHiuWRhSI5iQuYmwsVKiSbLuJcLl26pE6fPk2hnAgUyyMPRXISG8y/EGPoU04CAXEGFQhsvE0olkceiuQkNhkyZBBti0L50zg+Kml/8uLFi4ftNW/duqX27dsn9wsUKMCNgw2hWB4ZKJKT+ECfNUJ/chIbiuWRgyI58QZ9ykkw0J+cxIZieeSgSE58wf2zdxwvlMN2pWTJkmEV5PCaLpdL7lesWDFsr0vMBcXy8EKRnIQj0KPZcjANl4m9/clfeOEFo4dCTATF8vBDkZz4An2Z6FNOAvHdd9+JPQ+FcuIJxfLwQ5Gc+ANz8MmTJ9WVK1eMHoqpSGDn4Dt37lz56A+UBWIy9gcy09CQ86OPPnIL4P7wLP2HQT6xLxTLwwNFchIOdGXQ/v37jR4KMQgIM9x0E29QLA8fFMlJIDAPY21Mn3LiL17Tn5x4g2J5+KBITgKhq3DZ58sBQnmvXr1UiRIlVLNmzeQjPvcGTk2w2C9atKjP14Jwt2vXLrVhwwa1dOnSoCYXZJQDPBcN5oi9oVgePyiSk3D6rOFGodyZoGM7/Mlpu0J8QbE8/lAkJ8GAeRgCDeMx8cXOnTtln0x/cuINiuXxhyI5CQbsnXPlyuXWMMl/sF1kQgb5yJEjYzyGz71llmOhD/wJ5efOnXOXcEPECwTEPjQI1f7kOCkn9odiedygSE7CDeZzbsydWSWme4MUK1YsiiMjVoNiedyhSE6CBVnCiRMnZjx2IMHEa1Ro473BeE38QbE87lAkJ6GAuZjx2uZCOTY+wT6ONwOE7OzZs/t8vUKFCsnG4MyZM+q9994L+P0xiUP8A6VKlQpp7MTaUCwPDYrkJJJCeTA2WcReVWLBxHRCAMXy0KFITkIBIjkShrjxdhbBxuuzZ8+q27dv+01WIwRQLA8diuQkVDAXI9mX15eNhXKUDQT7OBZveFMEmjzwdQigOXLkCPj90b1bg00YcRYUy4ODIjmJFJjTb9y4oS5evGj0UEiUq8SCjemEAIrlwUORnMQFVng5i1DjNaBQToKBYnnwUCQncQFz8YMHD9Tx48eNHoppsJ1Qjkm0Z8+eMR7Daba3hp16Ux1OMHlrSpYsGdbXJtaAYrl/KJKTSKLndG7OnVklxk03CQWK5YGhSE7iCuZjbLrv379v9FCICeN15syZ3famhASCYnlgKJKTuFK4cGF5v3D/bGOhHIwYMUIm0Dlz5sjH4cOHP/Wca9euqZ9//lkVKVIkbN8Xpf579uyR++nSpQsqA53YE4rl3qFITqLRkCR9+vTuHhTEGVViaOR56dIlCuUkZCiW+4YiOYkPmI+x7jt8+LDRQyEmq+rGvMJ4TUKFYrlvKJKT+JAiRQqZq7l/trlQDjCJNm3a1GsmebAlX7t27VKtW7dWn376qbpw4ULA7wm/tZs3b8r94sWLc4JyOBTLY0KRnEQDzLss93ZelVgwzbkJ8QXF8qehSE7iS/78+VWiRIkYjx1CsPFaN/JkvCZxgWL501AkJ+GA+2eHCOWBwOIfGyMImb7YuXOnmjFjhmrfvr2I5oHQ2eQAr8tmcoRi+X+gSE6iCQO986rE8PdGTGclF4krFMv/B0VyEg6w1mNDT2cRTLw+f/68unXrFoVyEmcolv8PiuQkXGBOPnjwoKOvJ08cK5SfOHFC5cuXz+9kcuTIEfd9LPQCsXnzZvf9CRMmyKarbNmyqkuXLmr27NlSevj48eMwjJ5YCaeL5RTJiRFZbLDX0hU+xBlVYrBS4waBxAeK5RTJSXjhwbXzCEdVNyGBoFhOkZyEF+yj8J46efKk0UMxBY4VyrEJ8uWlppkyZYpMPviYO3fugK95+vRp932UGkIY3LFjhxo3bpxq3ry5KlSokPj/YPPRpk0bNXnyZLV792517969sPxMxLw4VSynSE6MQM/tnnMysTc42MYmgZD44mSxnCI5iUSDMDT0ZKIQ0SBxDPML+skQEh+cLJZTJCfhRu+j2FfkPzyrHAgsUbABql27tt/npUyZUjZLuAWD3lBhk4XGYshaR/nCgQMH5Ib7EAxxku6ZXYGJDUIqFpO44U2Kj2nTpo3nT0rMBP7GAGI53lOpUqVSdoYiOTGKl156ST5inveV0UTsw6NHj9S5c+eCOtAmJBSxHPHac06xMxTJSaTWvhCvYLfx8ssvGz0cYgKwNmO8JuEWy7/77jsRy0uUKCGP2RmK5CRSa18cYDLR7D/YexbxwfXr1yWrN1BGuSdY4M2fP18E7OrVqz/1dZT4Y5MBChYsqBInTiwZ5Li99dZbbuEQm3ktnOvblStXpMQBt4ULF7pfM3PmzG7xXN+yZs3KydDCOEUsp0hOjCR58uQqY8aMshkj9geNtDHnhBLTCQmEk8RyiuQkUuh5GfGYQjnR74VixYoZPQxiI5wkllMkJ5GO2dw//wd7ziAB0H/8UDbVmHT79+8vop+nUN6vXz/15MkTEbE18D73RoIECVTOnDnlVrduXffjEMo9hXNkniM7/eeff5bb6tWr3c9NkyaNO+Nc3/Bz2DUY2BG7i+UUyYkZYKB3DnGJ6YQEgxPEcorkJJLg0DpZsmQyT7/66qtGD4eYpKq7cePGRg+F2AwniOUUyUmkwV7q0KFDRg/DFNhq9sDEqL3H/ZXb4zmYWCBY+2Lfvn3SDA6vlSNHDpUpUyZpTBK7VGz69OmSod6nTx/3Y3jtihUriqD+3nvvBRw3NibVqlWTmwYiI96kngL6sWPHJHN9y5YtctMkTZpUmo16iuf4HI8Tc2JXsZwiOTELmLv37Nlj9DBIFEBMRxUBRT4SCewsllMkJ5EGSULIJOfBNQGXL1+W3lw82CaRwM5iOUVyEg0wNy9ZskQONZ3+HrPHzKGU6tWrlxo5cqT78549e6oRI0Z4fS4Wa7Aw8Sckf/rpp2rmzJlu0bx06dJyiy0KDhgwQCxTIAxqHjx4IEI2rFM8yZs3r2zmYa+iRfr79+9L40/cYvujx/6eDx8+FLHcUzyHmI4FBwQhT1EoYcKEIup7iueYVFOnTh3wd0mig93EcorkxGyBft68eQz0DjgA11/n35lECjuK5RTJSbRghZczCDZeAwrlJFLYUSynSE6iBeZmaDnXrl1zfMNla88a/wUToadIDvA5mnV6C9Q6iPvD08Te13ORJdGxY0e571lO2Lx5cxG4s2XL5n4Mbzg09wSY5DQTJ04USxe8zpgxY9yPQwCHmA5hXQPhsUiRInLTwPYFNi3askUL6Mhyh6iOG8QiTfbs2Z8Sz5EtzwnXGOwillMkJ2YD8zYOIiEGYY4j9j0ADyamExJf7CSWUyQn0QTz8+zZs40eBjFJvEYyF6q1CYkUdhLLKZITo/qKpKdQbn18ZSngcV9Cebly5fy+Zvv27VWpUqVEcE6RIkXAMUCsBvDhw/+LnX3+3HPPiWiN52Gz5fn/Hj9+HEMghbgDERuZkPj+adOmdYvnsF5Bs1AttmOxAbEVtzfffFMew//DJih201A0JNW3FStWuL9funTpnvI9R5kkDgJI5LG6WE6RnJg50J86dYpCuc0PwBHTy5YtG+UREidiB7GcIjkxIh6j5xIqYLEfIs6O1xDJEydOHOVREqdhB7GcIjmJNkjUxfvshx9+eErPdBrWmi184CuTzNfjFy5ckMxqf0B01sJzIH777Td17tw596bJ2yQGQRvWK7h5MmXKFLFv8VwwYBPzwgsviIDumX0+efJkNW3aNMlAHzx4sDz26NEjNXbsWLFZQVY7vg++P4Qh3F577TX3/79161aMrHPcYBsDMX7jxo1y02AhW6hQoRjiOZqUUgSNDFYVyymSE7Oi5/iffvrJ6KGQCB6A37lzRzxPPeM94iMOhPEeQGWX/oiYaLVNEjEfVhbLKZITI9DzM6p1IfYQexFKwhorwEg0sbJYTpGcGAG0HOybTp06pZyONWaKAGACRImX52k2SsC8ZZPfvXtXbujCHi4uXbokojZ48cUXQ/q/yNrOkiVLjMew6bpy5YqM03NSTJMmjZzyQLDWYNGJnxVZ7//85z/dj8NfHUJBrVq1ROQG8CcvX7683Dwn4aNHj8YQzw8fPixZH9gE6o0gQGDB99aWLfoj/NSJ88RyiuTEzOD9iDkTIiqx7wE4Dr6B5+H3l19+Kb1FYoODZPQO0cI5bh06dJCDaULsLpZTJCdGoW02MF9TKLcfoSSsYW/q9CxFEl2sKJZTJCdGx+wL/91fORlzzxIhAB80lHgFaiKiRZMMGTKE7Xsj6GvC6bnm6U8Ohg0bJrfYQjsy39EM1HMSXbBggdq8ebMI91ooP3v2rFjKwON86NCh8hgamhYrVkxunhny+D3Gtm5BRjrsX3DzBOK9Z+Y5btyE2Vssp0hOrAAORCmU2/sAXP99PQ+/fS3u0NMDX/P8etu2bSMweuIErCSWUyQnRgKLRxxUMh7bk1AS1vAeCGeyGiF2E8spkhOjgU76Eyuy7SOUA0yAvgRyz81CIKEc2eGYPIOdmDw33Z4NPKNBnjx51MKFC596vFGjRiKSewrgyBxfv369unr1qlso18/FzwARvkyZMvKz47ABom3jxo3dvue4YLRori1cLl68qM6cOSO3pUuXul8TG7HY4jkOEeh7bn2xnCI5sQqY5/WcT+x5AO4tpqNcUAviOMiO/RG9PgBiXTgPzYnzsIJYTpGcGA3W/mgKRqHc2fEadqE3btxg3CWGYAWxnCI5MQOYo7/99lvldMw1O0QBb9lnsRk9erQaNGiQPGfWrFkBG39CLNZkzZpVmYGWLVvKzROI1fA4Rxa5J9jgQUDwnIzhVw7bFvieL1u2TL6GQwAI5lWqVHG/BhY8sX3PIVLAOuarr76SmwYWLbF9z+HZjmx4Yg2xnCI5sVqg142WiT0PwBHTYSuWJEkS92P4HDdsMrAxhxVLgwYN5LAWNiuwNUPMQ5xCliMhdhXLKZITs4A9FQ+unR2vEXMBM8qJUZhZLKdITsxWke1yuRz9PjTHzBBF8EdPliyZeHr7Ags5bK6Reea5+fYFOrlrYvuNmwmMrU2bNk89DhHh+PHjImJr0OTz4cOHT10clStXFuFp586dIpSmTZtWstrxe4Iwj8kd/ubwOfcUz48cOSLiKv4fbho0Mc2fP38M8bxgwYJP2c44EbOJ5RTJiRUDved8Q+wZ0/1lpyE+16tXT+7j4+LFiyW+oN+GZ78PQuwmllMkJ2YC8zQzyp1NJOxPCbGDWE6RnJgJzNH3799Xd+7ccXQvQkcK5fjj+5uAUB4IsRabjGCCuWeGhBVPyfGz4uZJp06dVI0aNcTT1dO7/Pbt23K65Nm0dMWKFapjx46qZs2aauXKleq5555TJUuWlMxylOGNHTtWBHGI757iOTLR0YAUGzncNPjboGxPC+e6cSg8Dp2GWcRyiuTEyhtzp5+IO1ko9xRmrBifiXUwk1hOkZyYDczT3posE+dAoZyYBTOJ5RTJidnQc/Tly5cplDuJYMTv/v37yy3UwI+JDWXddgDl6GjS6QkCCPzNr1+//pRoDVsWZJZ7iupokga/d2Tm4+sFChSQ/4vPhwwZIoLruXPnnmoait8nRHbcvvjiC/drZsqU6Snfc7yu3QOK0WI5RXJiVTDXP3jwQA74YMVB7BnT/TXRRtz46KOPJK4EslEjxA5iOUVyYkaYUU7w98deEtXIhBiNGcRyiuTEjGit9JdffnHrUE7EcUJ5JLptQzwGEI+NLt2JNN4OAzp06CA3ZG1qUKqBDHMI4Z52NKtXr5YMc2SSlypVSjLTs2fPrubNmyd+5YsWLRLrltiZ56dPn1aXLl2S25o1a9yvp31oPcVzXNB2+zsYJZZTJCdWRs/12sea2A/8bTE3+QLxpW/fvlEdE3E2RorlFMmJmeMx9kuoVGVvCOfGa8xLaO5KiNPFcorkxAoZ5U7GXmpiEFy7dk0E2XABcRivCeySTR5XPCd4iFJLlix56jkQNCCSly1b1v0YmqrBsgX2LMOGDRP/2KpVq8pmD7/bwYMHq+rVq6tDhw7JY1o8P3bsmLp165baunWr3DTwS0f2emzf89hNTK1GtMVyiuTE6sBGKxLzPjEHiL+BrFcIcYpYTpGcmBnM01hXIh5zznYmjNfEjBghllMkJ2YGvRyTJ0/u+AbcjhPKw21Kj+xnlPYDJ3poh0rdunXl5gn+HpMnTxbR2zMwIVht375d1a9fXy5YZKCjxB7ZgWjCBgH3xIkTIpxjM4qGpGgaevfuXbV37165aZC9kDt37hjiOQJTmjRplJWIllhOkZzYAd20GfM+sR9oOI3NBjYahDhZLKdITsyOnqex1qdY6kxu3rzJeE2U08VyiuTECvzxj3+UeO1kHCeUQ0TV4ok3kO3crl07eXOgIWWTJk0CBn2N1URXs4Df9TvvvPPU4/CVrVevnvwdNBDGcTgBz2FkjmvRe+3atWrPnj1q6tSpqnTp0iKeI9hhg3rmzBl148YNEdJxmz9/vvv14HEeWzzPnDmzqYNWpMVyiuTELlAotzf67+ovphNid7GcIjmxAozHBH97zImEOFUsp0hOrBSz7zg8XjtOKMcfHKUEvoCgCp9sgFOUQEK550kLPXDDC+xTcPMEli0nT5586oTr4sWL4nsIkTtXrlxyQ8bKJ598Ih61sG3Rnudff/21iOdXrlwR2xdt/aJBk5nYvucvv/yyqTwVIyWWUyQndgJ2S6gmwQEpsR/67+ovpteqVUs2Jdico8oo2s2QCYmkWE6RnFgFPU8zHjsX7MGxTyPEiWI5RXJitZh91+Hx2jZCOSa0H374QQRSTHDeePTokdz8ZZ95npwEk6WGDHQNhfLIkyhRIq/dd/H3x4bR82+Avw2aB8GbGB9xe/XVV9XSpUtFJF+wYIGI6RDPYfGCgHj9+nU5LNm0aZPcNMmSJVOFChWKIZ7nz5/fUCE53GI5RXJiN7AIRaB3+om4kzPK4YeLeR235557LoqjIySyYjlFcmIlmFFOAlV1E2JXsZwiObEaKZhRbg+hvFevXmrkyJHuz3v27KlGjBjx1PP0qYi/IJ0nTx516tQpeW4w5WEQFTXh9D4noYGAkylTphiPvf7663J7/PhxjMchnCNgFS9eXOXMmVOVK1dO/tarVq1SFSpUkPeOzj5HpjkElvv376vdu3fLTYOgidfSli36YzQzFsMlllMkJ3aFQrl9D7+DyShHk21UFaHiKNLNmQiJllhOkZxYDWaU25tgYnagqm5C7CiWUyQnViQ5M8qtL5RjAvMUyQE+r1279lOBWosl/oI0BEIE+WAJNQOdGJOF7gkyyWMDr3LY7CCAYeOJm8vlUvPmzVO//fabWr16tYjIEM83bNggXud4/PDhw3KbPXu2+7VefPHFGJnnuEWycVF8xXKK5MTOYF52eqC36+F3MBnlK1asiNAoCTFGLKdITqwI1pYQmnhw7eyYzb0ycZJYTpGcWJUUKVJIVa6TsbxQjtNrX4/HFsqDySgPFTSW1LCs27ogkxw3TyCEDxkyRBqIVq5cWSVOnFg1atRIPkIcb9y4sTQb1dnnaCiKrMWzZ8/KbdmyZe7XSp8+/VPiOQR1+CcbKZZTJCd2hxnl9j/85sabOEUsp0hOrAoEIpZyOztm03qFOEksp0hOrEwKxmvrC+W+sr+9PR6JTTUsOTx9rIm9MtE7der01ONNmzaVjS0afJYqVUrVrFlTXb16VTatCIJr1qyRjHOdfQ7Pc3wdTURx8xTwYjcNhZULhPhoiOUUyYkTYKC3/+E3S7mJE8RyiuTE6rCU27kxW/cJY7wmThDLKZITq5Oc8VqFlM46bNgwVaxYMREe4Pv5xhtviJ+35vz58zIReLstWbLE/byffvpJmipCWMbr9OjRQ7J3Pfnggw+kMzaESF9BGGDiQolX7BIwb/5o+o/tL/P7559/Vlu3bpXNC7ypA/HgwQP3/SRJkgR8PrE+uXPnVi1atJD3pgaB8MiRI+rLL79U1atXV927d1fz589XVapUka+/++67avLkyapNmzYSMPX7cdeuXWrChAmqZcuWIpTjvVmwYEHVqlUrNXHiRAmyoUxSEMuRqY73r2ej2dhQJCdOIdKBHiJ8ly5dxL4padKkIn7t3bvX/XVYOA0cOFDsl/D1SpUqqdOnT8d4DfQ+wLwAL+0ZM2aEZVxmjNeROPzGwWJsey1CrCSW45r58ccf/T6XIjmxA2Y4uGbMNiZmB2N/SojZxXJcbxDLY19TnlAkJ3YgBeO1fIOgqVKlimvWrFmuo0ePug4ePOiqXr26K2vWrK67d+/K13/77TfX5cuXY9w++OADV/LkyV137txxPyd//vyuSpUquQ4cOOBat26dK23atK4+ffq4v8+uXbtcxYoVc+3bt881adIk1yuvvBJwbN9++61rzpw58tEXX331lQs/8s8//+zzOZMnT5bn4DZ79uyA3/fDDz90P3/NmjUBn0+cxZMnT1znz593Xbt2zf3YkSNHXOnSpXOlT59e3rNdu3Z1lStXzpUoUSL3eyn2LWPGjK769eu7hg8f7lq/fr3r6tWrfr/vyZMn5dq6ffu2fP7o0SPXypUr5SPGtHfvXtfmzZtdDx48iPjvgBAjqVWrlqtatWoRe31cl3nz5nVt377ddfr0adf777/vSpkypTvO4JpNlSqVXH+HDh1y1ahRw5UjRw7Xv//9b/dr5MmTx7V06VLXP/7xD1fOnDldP/30U7zHZeZ4HYiePXvGmP969erl9XmjR4+W37UvMNd17NjR1b17d9e0adPiPS5CIsGtW7dca9eulflD4xmzL1265Fq9erVco4RYmcKFC7vat29v6BgYs42J2b/88gv3ysTyPH78WK6hnTt3yv3Y8fr+/fuujRs3ur7//nvX77//bvRwCYkzo0aNkljo5HgdklAeG4h/CHoYvC/+8pe/uFq2bOn+HEE7QYIEritXrrgf+/TTT+WHfvjwoXyODUHNmjVlwoHwjYAeDrARwXgRrH3xySefuAP9woULA77mgAED3M+HgElIsOiFraZz586uLFmyyIKzf//+rldffVUWuL7EcyyOS5cuLc9dtmyZ6+zZszGCsqdYroM4hHGK5MRJ1KlTRzagkQAL4oQJEz618StSpIirX79+cj3+6U9/ksWGBtfjH/7whxjxBZthXL/YEP/1r391HTt2LOxjtVq8Dubwe+TIka7nn3/e59exUNLzZZkyZcIyLkKiIZbrmH3hwgWK5MQ2FC1a1PX2228b9v0Zs42L2RA28PNgjITYSSzX8fpf//oXRXJiG8aMGeNKkSKFo+N1vDoJamuHNGnSeP36/v371cGDB8VGwjP9vUCBAtLcUAN7ClhAHDt2zP05LE1QNla1alUpRwsHaLQI/DVQLFKkiJSp4Qa/6GBfE4TaCZk4m9jlh2PHjpWSSXSKHzx4sHidb968WTzQcU3gOqhfv754owPYSezcuVMajtapU0csV2BDgNKSbt26qT179khpGJ6D6wscOnSIdivEUWC+95ynwwmuL7x2bNstlH/BVuncuXPqypUrUgqmQe8AlG8iFmpQNpYnTx75GrwPg4k9do/X+B2hH4Q3GzVPCyl/8ZzxmVjdhgWNw2m3QuwC5mvM20bBmG1czNZ/d38xmxAr27DgPu1WiF1IwHgd92ae+MXBMwaCW/78+b0+Bz4wGBgW/xr8QJ4BHOjP8TUAv1E0Pbx27ZpsHrw1N3z8+HHIY0YTEYBfuq//X7JkSbkF+308v47fSVzGRYgvcP14eg9qxo8fL176CMaXLl2SxTI80jGpXLhwQX3yySfu5yJYQxTH4hne6s2aNZPJj+9V4hT8zfn+SJgwod9NHfzbEC9wsIVrFbFs4cKFEqDRnE/HNG8xT38NYKP75ptvSoxKnTq1CjdGx2v8/iOx2MLf1N9chr/f9u3b5Xvjb8U5j5gZ9ChBTEffnRMnTqhXXnlFvf3227Lx5nuX2AGsR/FejsT7Ga8d6ECUMTtwzEa1uT//5bjy8OFD98/G+YzYgaJFi8p12KdPHxHvMK/ky5cvItcPIdHG5XJFdL5GvPZ3oGSGeB1noRzNCY8ePSqKvq9GBgsWLFADBgyI67eQJiS+2LhxY8h/uH379snHTZs2yalCODh79qz7Pk4S7927F5bXJcQfmCBwA2j+g6Y/EMy3bdsmmSOYfPDexGkbMkdwQ/OD119/Xd7/hDgFBMtbt26pdevWhfx/UWGUJUsWv8+ZO3euNOPNlCmTCLP4Pw0bNpRsr1BFMn+NpuOD0fEamWyYi8LNyZMnZR0QzN8W2Xlo1k2IWecpVJChIbinoIRNAirBCLEDmIdRORmXeBxMDPJMdPIFY7b/mA1xJBJ/n6tXr8pHVLvqxDVCrAiSP7CnXrZsmbtxIAQ/iHGeAh0hVubEiRNy6BOJeACqVavmNbnKTPE6TkJ5hw4dxBZix44d0jXbG0uXLlX379+X7FVPUD6KIOkteIZSWopMm1DRZdgVK1b0u6kPBXQ11iDVv1y5cmF5XULiQps2bWJ8DhFp0qRJ6ptvvpHFL2xb0OU+ZcqUho2RkGgyf/58yaCqXr16yP8XQTkQOXPmlKxlHJLikAqdtxs0aCBWSDqmIcbhcQ0+R+ZoNDBDvEaGDbIBwg2EhPXr18fpb0uI0eAA++OPP5bD69iCGK4ZZMHgQDxXrlyGjZGQcPLRRx+pbNmyRWTODtbqgDE78O8xEn8fHJDo5J647OEJMZrLly+ryZMnq3nz5klymmfmK65FzG2o8KDVH7EDZ8+ejfP+ORiCuU6MjtchXckQ2jp27KhWrFghmas5cuTw+VyUotSoUUOlS5cuxuM47cdCCSVfWqxGdjiEu1A8Y/CHCxV9agHxIy7/P9A4UAIertclJL4gGw2ZaCgNe+eddyRbDUI5FtEI5OGqqiDE7IRzzg90Wo3sdYi3I0eOlBiJQI5rTwdtBPrvvvtOrslIYqZ4jd9/MIcOoYK/KeY5xl1iJeA7jmtuypQp7sxKiFNly5ZVxYsXF4s0bA6QxXP+/HmxTtMVZIRYGcQlbI7NMGczZnsHc1Ek/j66LxL3ysRK4LrE9Yj+YZgnNGnTppXES1yHdevWVV999ZXoTMh0hQ8yxXJidZ555hnTzNdGxetnQy0FQ6nXqlWr5PRMl5dAcIM3kwaNiHAS7i1Vv3LlyhKs0fADPyReo3///vLakW4uqL1mMen5Ys6cOer999+XzcvEiRNVrVq1/L6m50RITypiFiAeff/99+7Gnfq9D6EcghUyzCmWEycQqOFjfEHARkz585//LLEPjaBz584tYhcWGfAZRcNdXHsI6iiVzpgxo9glRRKrx+twNGrF3+X48eNSWYPxRiKrnZBgQCxGbxFcj9oGUIMYjcxyiFu6cae2FkSlos4QpVhOrE6k43EwMGYbg/67G9kcjpBguX37tmhCn376qdj8aTBHfPjhh2IBgSxWCHRa/0H8xt4bVrwUy4nVefLkiePjdUhXMCYLENteZNasWap58+buz2fOnCnlYgjYsYFIh5IyKP04+cbpwFtvvSWTjhmCNErZkMGjNzaB8DxlYXMSYkaRHItjz/cmJhtAsZw4gUhvzOG5ikY+8L9OkyaNqlOnjmR06diAxnwoGWvbtq0svGF9hEZasbt4hxurx+twCeW6ERo2LZ5d0AmJNHj/4T332WefyYZbv1cxN9SsWVM1adJEhHAds7VI7gniM+I04jWgWE6sjBmEcsZsY9B/d38xmxCjQSzGoTYOrfTeGdcRDp+wf3711VfVhQsXpMk2RHJPyycI44jpyGilWE7sEK+fCdLSzK7xOmTrlWAYOnSo3HwBD6dIGcMHY72iGyV5A6f4KFfDc4M5ffd8jr/XJcQokdwbFMuJU8C8HKhZSHyoX7++3Hyhs0+ivVG1erwOBiyE4POMn9XbYg4bc2xSkO3D5mEkWly/fl1NnTpVNtpohuRJpUqVpG+CtkX45ZdffIrkmueff55iObEFaELpmR1tBIzZxqCFC8RsQsw2Ly1evFj8x2N7/H/wwQeStQr7IjwPvem8ieQaiuXELvyb8TpuzTytSvLkyeXjnTt3fD6ncePGcgsWzxMLvKEIMbtIrqFYTpzA3bt3VdasWY0eBolQTNciuK/5DuV5yLJD4xczztmYr0+fPq0uXrwoAgLmYWRQ4Ib7jRo1MnqYJAiQJYmmnNOnT1fLly93i17JkiWTRX7t2rXFEgHe45pgRHINxXJil3is92LEWei/O94DhJgBWDmgVwg8/5GNCpCpiqxVZKmiaqNly5YSx4MRyTUUy4kduMt47SyhHNni4Q7SmDw9bVsIsYJIrqFYTuwODkadHujtHtPxN/Y1502bNk2ZiXPnzqny5cu7xXB/WYSFCxemUG5yfvrpJ7FWmT17ttz3BOI4bBOQiRabUERyDcVyYnUwV+t5m9gLiII//PCDypUrl4iEsYFQiOQyf8lqsfc12K/j+djbwA8acyAh8QHJFbAnQvY4Gt16ViAOHDhQvf322yp9+vQx/k8oIrmGYjmxOncYr50plAcbpIMBvlUanD4SYhWRXEOxnNgZBnpnZKilTZtWWQHMz/C3DAYI6cR8oILhyy+/FHsVZJFrUqdOLb7jZcuWlaZCaPbljbiI5BqK5cSq4FCQGWr2pFevXtI8VAPf2BEjRjz1PKzFPJPV4LeOuVSL4Z4fYye1wbKKB8ckrly+fFkOtZE8Ab9jAMEbWeMHDx6UvTD8/MMhkmsolhMrc5fx2llCeTDWK6HimSkUztclJBoiuYZiObFzoKdQbk8icfgdaSB0wp8ac6y+bd++XbKcILR27txZHtPPI+YBfuMo0Ub2+I0bN2J8rU2bNtIALFADofiI5BqK5cSKQHDCmpXx2F5ABPQUyQE+R0VN7Mxy7MM94/XRo0fVqlWrgvo+VorzxDyHc9u2bZNGuStWrJB1FoBY3a1bN9WuXTux5fv1119FCI9NfERyDcVyYlXuMNHMmUK5P+sVbH5QjoM3R6FChSQ7KFihnNlfxIoiuYZiObEjtF6xL1b0PIVd29WrV2M8lj17dskyx+bp/fffN2xs5GlQKYgmX/Ax9WzyBRsA+N9DpEbzPNjpBNpEh0Mk11AsJ1ZDz9OMx/YCdiu+Ho8tlMfOKPfcQ2P+xOd4Dm76vv7IOY4EC/zG58yZIwL5yZMn3Y8XK1ZMHTp0SAR0xG/duyZSIrmGYjmxInfv3vV6bTgJR12lwfij4U2hN6powBRIKPf0S9ONIAixmkiuoVhO7HadQOhy+om4kzPKURK+bt06Ocjev3+/SpcunTIbGBOEcmQ1oSkkmo8S48Amet++fVKmvXDhwqfeXx988IHq27dvSBvdcIrkGorlxEro64jx2F7AkzzYx/G395xPUUGFrF6I4ThE3rJli9i2IF63atVKKnUICRbEWIjjCxYscPeNQ3NONOR85513JAFy5cqVIphnypTJ5+uEUyTXUCwnVuPOnTuSyONkHHeFxg7SsUHps+bmzZsBXy/U5xNiVpFcQ7Gc2AXdN4Ibc+c26IZAifJuACHajEK5tljB3I4x0nLFGLCGmzdvnniYHjt2zP14zpw5VevWrWWzjAy0N954w3CRXEOxnFgFPU8zHtsLiH8Qtz3tV3BA7a2hJ6oJPOO15x5a93/AXAm0jzQh/oCojaovCOQQoTWI1WfPnpV1VZ8+faTyCyB+B3q9cIvkGorlxErcpXWp84Ty2EE6NjjVXr58uTQG83faqPEsScAGlxAri+QaiuXEDrDU297ovyvmQ18glmOexEdsgMwIbDw8G05RKI9uTIWHKbLHsfZ7+PBhjK/PnTtXNW7cOM6b5UiK5BqK5cQK6CQlxmP7gcad8CSH3Qoyyb2J5ACiiz+bUuypEyRIIAI6K6uIP3788UexRJs1a5Y7URHvmXr16qn27durUqVKSUVC0aJFg15TRVIk11AsJ1bhDq1LnSeUQ/DzF6QxKdaqVSvo14OVixbfr1+/HqZREmKcSK6hWE6sjp7rPX0wiX1InDixbLz9xd5Ro0apjz/+OCIbnnCRMWNG9/1Lly5JeTCJLPg9f/755yKQnz9/3v04fvfYXCOjHPeRfWZmkVxDsZyYnWvXrslHHFoS+wHxz5dArsHfHgKnLzBXPn78WMRyQmKDZpxr1qyR7PENGza4H0+fPr2sA3HAMnPmTJU0aVJ5HPE9WKIhkmsolhMrWBBeu3bN8fHacVclJtMrV66E9TVxUgmhXC8CCbG6SK6hWE6sjJ7rIy1SEWNFZmRh+8IKm4/MmTO777PcPHJAgIFfPTbP+Ii4qoGP6ebNmyULLRwb5GiK5BqK5cTMYJ7Gdeb05mBOBtVT/uI1BXLiDbxnELdhi+a5RqpWrZpkj7/yyiuyX4XdCgTzrFmzhvT60RTJNRTLiZlB38WHDx/GSORxIs86MUh7dkAOB9gEwQcLpT94U0VLxCTOwCiRXEOxnFgVvSHztLYgztp4WwHPTR2aepLwcvr0ackyQ4n21atX3Y+XLl1amnzNmTNHVapUSTLIrSqSayiWE7OCeRrztZmre0hkgeiCpDJkBltFFMQeDMlwrEyMfkYrbNGQPb5ixQp5z+gYh0p+iNpr1651zyeIuWnSpAn5+xghkmsolhOzwv3zf3Dc1Yg/+NatWwN68uDEEpsddEYOFBw9N0LIYNQNIwixukiuoVhOrAjmcCyone6xZveYjr+zlfHsKu9pA0LiDja/y5Ytkyy07du3x/gaNtPYGOfOnVs+b968edi+r5EiuYZiOTGzUE6cC/7+uqTfTJmKsOmD3dbKlSvV8ePHpako/K7PnTsnMblixYoiypLoZLLi8Br+4ydOnHA/jpj2zjvvqDJlysieFO8hHILDEx9YTSTXUCwnZoRC+X941qnZZwjUvibEgQMHqrFjx8r9HTt2SNaRPzybfsL3kkI5sZNIrqFYTqwGN+b2B5vtffv2+fw6qryQTYzDb9ikde7cWZlRKMd6BOuSM2fOGD0cS3PgwAE1Y8YMacKpm7yinL9q1aqqUaNGqm/fvtLsKxLrNDOI5BqK5cRs4PpgPHY2+u+P94IvoRy2WJhHsX4bPXq022863EAERyxARfitW7cCPpdEFvzNkT2+YMECdf/+fXksWbJkImDjUBtxXYPnQFyOz2GLGURyDcVyYjZ0AlIGh8dsx12FmFRxUgybFF8+eZ4TbzAl3VmyZHHfv3jxYphGSpyM2URyDcVyYiUwf5spa4kY43naoUMHmVMhYJpRKEdTcBy4Q8xHhhQJPRsQG2dkjyNuxo5ZGzdudK/TGjZsGBEfXDOJ5BqK5cRMYJ7G+5E4Fy26+IvZyCZetGiR3O/SpYt6+eWXIzIW7F/279/v9zkQanPkyKHy5s0bkTE4HYjVixcvFoEcIrEmX758kj2O33uFChXUnj171Pvvv++2qatVq1a8v69ZRHINxXJiJjBHp0qVSuZAJ/Osk4O0L6G8SJEiqmnTpvLcYAK0ZyOuo0ePyoYXJ9Q4gUbzqCFDhoTxJyB2x6wiuYZiObEKzGCzP/j7wj8UN28WO2geB+ES7wUzH2SjfBhCOQ7xb9y44fhO84FA9v2uXbtEHF+yZIlsfEHixIllE125cmU5IEFzTs+qP6eI5BqK5cQssMKLoKoLc7A/oTx28lmkhPLUqVOLXUeKFCmkCSQEcWSzw0IVtivoF4JECzOIqHbjxx9/FGsV9A3Bmkev1VD5Vb58eTkg0b/3Fi1aqOLFi6t06dKF5XubUSTXUCwnZoHx+j84WijPnz+/1+fAiww3XyB4YlOkxXDPE2mI4p7COALw4MGDTTURE/NidpFcQ7GcWAHM84ULFzZ6GCRKMd3XhnrixInqueeei+EFbjZQWrxlyxa5j4bjEHjJ06AZ5+zZs6UM+4cffojxtXLlyolorg8ZUFaPNVgkMbNIrqFYTowGSUPXr1/nxtvhQICGWO5PKIdFVsmSJSVe58mTJ2Jjwb4cPtcYkwYxY+nSperJkydi/8G9e/hAM074vE+ePFlt2LDB/TiyxNu1ayeaTJ06dSR7HNnkqLQDsM4LF2YWyTUUy4kZoFD+Hxx35QVT9hUIlPjC5zIY0Bj0119/ZXYYsY1IrqFYTswOA7390dY66A/iSyiPb5luNPAs7UZTMQrl/wOixfr16yV7fPXq1bLhBjj8gJUKYlGvXr1EWPFca1Ek/x8Uy4nRB1yoAmE8JojZiNe+QHJDtBIcPEVyoBtDglOnTkUsm91JIEMfsXvq1KlSNQcgUCN7/K233lJ169aVvwMO03QlPw7VPCsLnCKSayiWE6PB+jZLmK9BK+K4qw4nlCi38hekA4HyLG9A2MRmqWbNmvIcXcqFDQohdhLJNRTLiVm5d++eXE/cmNsbNGXEhgcVXsgotiqeFW5HjhwxdCxmARV7KM1GRlnsNRvs8SZNmiRiOIT0+vXru/1Lo4GVRHINxXJiFLpJcc6cOY0eCjEY7I0Rr82IZwb78ePH1WuvvWboeKwKDsW2b98u2eMrVqxwH25DpG7VqpXYq6D6fuzYsRK7tfXKwYMHxQ4n3FhJJNdQLCdGx+xyFt5ThQtHXnEQr4MN0hAwY3taFitWTOxUPMVw7btGiFNEcg3FcmLmjTnmaGLvw2+I5bFtOKxGgQIF3PcPHTqknMrDhw/VypUrJQNt06ZN7sexwYU4js30qFGjJE7qjHFko1EkDw6K5cQIMD9jj8R4TJC1PXfuXGVG0ETSs+cYCb2xNpqxojnniRMn3I8j5sBOBdnjWLMhy3zfvn0iqGOtruMQRfKYUCwnRoCeT1jn5vKosHEqjrza8IcPtKlGGe+yZcvUTz/99FTjT2RE9O/fPwojJXbH6iK5hmI5MRt6jmegtz+BYjo2Yyj9P336tAit2GyYDWwQIfZizYGsKm+H9HYGogR8x7HJ1s29tAgOq7t+/fpJfLx9+7YI5p4HC9HEyiK5hmI5iTaYn5FUhGa7xNkgXqNJJzzAkyVL5vU5+BreM2j6CHE1mr1CEHcRfymUB8+BAwdEHJ8/f7787bQ1WpMmTVTz5s1F6IVwrn3HETthYwsv+khWfVpZJNdQLCfRBnslkIv7Z+WcXViIQjm8xXHKCc8s+JQREm7sIpJ7iuXIFsLmG1kFhBgJ5njYbHkechJnxnSI5NiMlSlTRg0aNEiZFe3LimwOvVC1M1hnIXMcGz8I3yjDhkieKVMmNWDAAGnqBlsVxEgdHyHyUiQPn1iuxShCIgneZ9x0E6DfB/7mHVieIB6iuSb6fEWLpEmTuhN/0CsEGgDxzoMHD+RgG/G7SJEiavr06SKSIysfDdQRL6dMmSKJCl26dJFKMO1RDmrXrk2RPESxHD8DxHJtZUNIJND7qZfZo8G5QjnKfrD58gUCJU5DEagfPXoU1fER+2M3kVxDsZyYbWNu5cUxCQ78nbHphqjqjfTp07urXE6ePKnMCmzdNHv37lV2BJtmbPRat24tm+Q2bdpIphSuU8RBeJJfuHBBffjhh3KDz+knn3xi9LBtJZJrKJaTaEGhnGj0+8Df4TYyuzXRjtkQVQH2/vApJzFBEmGPHj3kQBvNOBG/Uan35ptvSrxes2aN/P1Spkwpz0fWOJ43YcKEGM22I4mdRHINxXISLTA3p0uXTpLNnM6zTg7SyNgqWrSo1+e0b99ederUyRaTKzEXdhXJNbRhIWYA8zs35s4Af2d4W6OcO3v27E99HXG8WbNmItLmzZtXPpoxtnsK5dh8omzZLty4cUN8aWGvgkw9z78dRPMvv/xS7dq1SzLOYLeibe7M0PzPjiK5hjYsJNJA0IG4xnhMAMRLWI35E8rLli0rFUdocp0lS5aojg8JcgsXLpT7mPcLFSqknA6u4bVr14q9yvr1692Pwy6uXbt20qATCQkQyhFD0LcNzbj1/vbzzz+P2ljtKJJraMNCogEPtv+HI68uXUqAN4IvoRyno4SEG7uL5BqK5cRoML9Xq1bN6GGQKGeoeRPKwfjx45XZKV68uPv+7t27lR3i3ebNm8VeBQ06dXUeNnaICYsWLVIVKlSQjSw2fCixR8m9mbCzSK6hWE4iCSpEYGHBjTcJ1i6tQYMGcjMCzPWelV0tWrRQTgXV94jfU6dOddumIF5XrVpVmnNWr15d3bt3L0b2OOJknjx51PXr11XmzJmjOl47i+QaiuUk0mBu9mxs7GQcab2CTQFOOwP5lBMSTpwikmtow0KMAj7HyGDlxtwZIKsJTeKsHtOxNtGLUzT0hFe5FUFm/+DBg2X+r1y5slq8eLGI5EhMmDRpkliuQBTHxltvZEuXLq3eeOMNU234nCCSa2jDQiIFG2uTuPQKMwrEKR2XIEY6DVTcbdu2TQ4qkM2PfiGI1RCfe/bsKfFh3bp10pwXfV8glmuwDjt8+LDauHEjRfIIQhsWEsnrnxnl/8M8O5IoY+YgTeyH00RyDTPLiRGwY7ezgFUHsmBPnDihrA4EY1iTwG8dWeWvvPKKsgIQwuFNiuwzlGYj5unmaDjIQCm7blaaIkUKeT4atZkVJ4nkGmaWk0gAj2nMA9EWzoi59warV682pQ0asqNh0YY4fOjQIcmYRs8yu4OEJjTnhL2K51oKWeKwo61bt65KkiSJ+3HY5+zbt0/unz17Vg7G9ePRxkkiuYaZ5SQSXLt2Td2+fZuNPJ2cUa4FlFOnTvl9Dvwyu3btqipVqiTZXYTEBaeK5BpmlpNoow9BKfQ4B/iIHjhwIKj5+NKlS8qsIENLg6wus4N1FLLMkHlWp04d9dVXX8nvuFy5cmrKlCkihOA52MhqmjZtKp6myZIlU2bEiSK5hpnlJNzgWipYsKBKkMCxW07iJV7funVLbHkCgepAz/gRDSAOAxxY79mzR9kZrJvatm2rMmbMKL3ZIJLjYACP4WvYu6HaCwI6sss1eP6CBQvU+fPn3SK5EThRJNcws5xEIl57NjV2Oo5dteC0GN2s/U0qOCkdO3aseGzu378/quMj9sDpIrmGYjmJJij9zJYtm0qePLnRQyFRLJfGgba/mP7mm2+KEIj4rzOezQaamGm2bNmizAgy7GbPni3Z77lz51ajRo2SLBT8biH0Q2TdunWrNPnq3r27GjlypLu6yOw4WSTXUCwn4QT7J1/9oIgz0e8Hf3trxBis49KlSxf1WFiqVKkYSXN248GDB5I9jgOBIkWKqOnTp6v79+/L2mjixImSTABfci2WIbO+W7duEssRIzU4HIeVmlE4WSTXUCwn4QRzMtaARh5+mYkETg7SmGBREugLZEBo0LGdkFCgSB4TiuUkWnBj7jyCien4+p07d2RONmtMR5YWGmHpRmJmmSuRGY7rCg28MMbmzZuLgIAs0ddff12NGzdOyjUxv3uWqcOrvEePHrKRNTsUyf8HxXISDtBnAXMy4zHxBPMr4og/oRw2Hz/99JPcj3ayGg6BNTt27FB2AesexGPYIL311lsirCZKlEj8yLdv366OHj2q3n33Xcn29zycwB62WbNmIqIbYa3iDYrk/4NiOQkXmGtxeObk68kTx5oZaa9MvCHy58/v9TnFixeXhhVY4KH5JyHBQpHcO/QsJ5EGgh6uPdhBEOcQTExHLMfXsaEw80YCdm8of0bZNzartWrVMmws2DDPnz9fvMeRVaZBFhmy30ePHq0yZcokjyGLHHO8FX0yKZI/DT3LSXxBlQ9iMoVy4ise+wJzMQ5d8RF9LqIJGlXCTgyNqSHGPnz40LL7OKx11q5dK9Yp6B+iwe8UVV+wQUufPr37ccRx9EZBHIT3OBp06gx/s0CR/GnoWU7CAeZkVN8Sh2eUQ6CDUb2/II2y/WrVqlEkJyFBkdw/zCwnkc6YwfuKG3NnxnTtr+eNvn37qp9//lktW7bMnbVtRqpUqeK+77mxjRYQtuCP3qRJExHEO3bsKCI5YlmjRo3U0KFD1eXLl0XER1m8ZsWKFWr48OGWWzNRJPcNM8tJfMAeC/MGLB0I8SaUI954A/sErOUQi1DBFE0gvJYvX94tykJ4tBpXrlxRQ4YMkd8jPMaxlsDPVbVqVfXll1+KCI41EeI19qsazPcQznHNwh/ebFAk9w0zy0l8uH79uhwOcv/8PxwrlAdzmk1IqFAkDw6K5SRS6DkdpWPEWQSK6VbJrkEjTB07kAnmS0gINxC/hw0bJs3OIRIgkxyZdDiAQGNzCMp4DL7jyC6uWbOmWNlYGYrkgaFYTuIK5mM0boS9AyGx4/Wvv/7qtleJDcS+hAkTKqOoWLGi+/7GjRuVFcBaARYqsFJBRjyab0L4gqiMKkvM32i4Dbs0/G7RzwdzOz7XYO1x5MgRtWHDBrHHMRMUyQNDsZzEFZ1oRKH8fzheKEdZIMqbCYkvFMlDg2I5idTGHBsEz0xX4pyYfuDAAcvHdJSb62w2ZMB7Wp6EG2yiVq9eLaI3rhtkmGEznSJFCinLHjhwoDp9+rTM09qbFKIXfIenTZtmCe9xX1AkDx6K5SQusF8IiU9DTyOB/YgGorGZwR5qwoQJYjuHg/bFixdLbEezzrlz58o6YsSIEU816ENMx+8fdh0XLlyI8bjZoEgePBTLSVzAXIDq3Jw5cxo9FNPgeKEcXZ5PnTrl8znYcO/evVt8ONHEghBvUCSPGxTLSbjBdciNuTMJJqbHnrfNymuvvea+v2rVqohYFPXr1098SmvUqCGl2FjvQDQeOXKkZJdPmTJFGnslS5ZMmn9ho6oxMtMvHFAkDx2K5SQU7t27x0aexCew9cItWKE82gfgGFvBggXl/r59+9S1a9eU2UCyX9u2bSXzu1OnTur48eNy0I7HkDSAvRUs1NAYFdVfH3/8sXr//ffd/x9xfeHCher8+fMqW7ZsyqxQJA8diuUkVNjI82kcLZTr0nx/Qfrx48dyOosu0TitJSQ2FMnjB8VyEu5GntyYOxO9wEN2lC8gor/11luSMQFB2KxAvPb0/g4HDx48UAsWLFAVKlQQ6xTtNY7qi/fee0+Ec1w/KMfGZhvAvxSi8tKlS1XSpEmVHaBIHncolpNggbiI9TGuM0K8gfeGv3iNNV2fPn2kMWHx4sVVtEGfMj2Or7/+WpkBxHFkiSNbHE3Mp0+fLgkC8BSHTnHp0iU1depUEZRji+qI88gsh3+5pk6dOqaOgxTJ4w7FchIsmOMwFzNex8TRQjnKC7BZ9CeU4xRWiy7YGMDonhANRfLwQLGchINz586pW7duUSi3KVjEYYPoa2ONmI6NFDw6/TFnzhxpZLVjxw5lVmCDohessF6JjyiJ/49sM2SdNW7cWG3dulU2ThDMZ8+eLWXZqJpDwy/ENDTw8sy2x+/VLlAkjz8Uy0kwYB5OnTq1KlCggNFDISaM16Bs2bKy7n/06JHXryNOwfYEr4F5++bNmyqavPrqq+77a9asUUaCKjD4jCMLvFmzZiJ8wgYNfuS41o4ePao6dOjgjtdYDyPWa0qVKqWaNm0q1fG4Lq0ARfL4Q7GcBAP2RDhkw5xM/oejhXKAE2pYq/ijc+fOcjqLIGRlP04SXiiShxeK5SS+YBEIeCJuP3r16iVZZdgg4iM+9wYqwLA59NUAE40qIZBivjZ7g7l69eq57y9ZsiSk/4u4hHVLsWLFZIOJTDMcIsFqZdCgQap3794y18KXNHHixO7rRjf7SpDAfstDiuThg2I5CQTm4TJlythyLiHhi9cQQ/fu3evztbRwg4xpHOpGE2Rta79uxEU0t44msJuBLVrVqlUlsW/UqFHSABUH6UOGDJFGqF988YVcZ54i8ubNm6UJN6rnUBkP8HUkCbRu3doS+1WK5OGDYjkJJl4jVuNAjfwPx69eEICRUQ7vLl/gtBZ+X/ny5eOCjwgUySMDxXIS30CPeZqNPO0Fssli26Tgc2+Zath4Y/MIz01vYKOwZcsWdfv27Yh4f0dKKF+0aFHA5+NwABvLFi1aiL/q22+/LfYHOBCoXbu2Wrt2rWSNwKMUTb9Qwq0PlzR2beJDkTz8UCwnvsDcgiQkzMfEWdniocRrCKApU6ZU27Zt8/m9unfvLlYhx44dc3uGR1Ng1P1C7t69KwJ0NMDP+9FHH6kcOXJIo+3169fL2gWCOdYtyBaHVZqOZYj92I9qsC/FOjhPnjxSIWY1KJKHH4rlxB+Yg2FfaacK0nDgeNUXizic2O7atcvooRCLQJE8slAsJ/EJ9NyY2w8IccE+Xrp0adkI+Nt4Y/MIWzWzg00yNjbaPgVCgTfQZAzWKfi5kA3y+eefi2cpPh8zZoxk8+H3gYQA3YQTvqTYiBpdTh4NKJJHDorlxBsQRZF9y3jsvGzxUOI14hGyof3Fa1iGpU+fXhlFrVq13PeXLVsWse8DsRsWKm+++aZkjPfv319dvHhRxGL0STt9+rRktaN/iWczbawNkPkO6zQN1jdYL0Bgx6G5laBIHjkolhNfcw/3z95xvFCO0iQEEX9BmhANRfLoQLGchApKciHUMNDbD9ilBPs4vDexubJLTIenuAYZfBoc8KO5WN26dVWmTJlkI41GpcmSJZOMcsyd2Ch369ZNNtXwdl2+fLn7/yN2QeC0+yaUInnkoVhOYoP5F3NxtDOASWQJJls8lHgNsGaDMOrLp9xoqlSp4m5ujcba2sokXGCPA99wVHnhd4HqMQiYEL8R87G2xe/YV7UXrGFQGY8KDgjrno9bDYrkkYdiOfHW/wD+5Nw/P43jhXJMFHhjBLOphpcnMrX8eakR+0KRPLpQLCehoBs4IjuJ2Ass6tHEyhNksels69jomO7Lp9xKwPoNGxuATbO2TkG2ebVq1STDDRsd9FuZNm2a6tu3r5SHIz7pTWa7du3U6tWr1YIFC5SToEgePSiWE08w/9Kf3H4Eky0el3gdyKfcSJImTapef/11uY8+H5s2bQrL6x48eFBiMw66O3bsqI4fPy6CPKxeDxw4IHufJk2axKh+Q1UYqsQ++OAD92PIPl+4cKHYzeG+VaFIHj0olpPY8Zr+5N7hCua/QRqnsZ7+XrFBYMyePbtkas2aNSuq4yPGQ5HcGCiWk1ACPfzJX3jhBaOHQiLAiBEjZEGPZlT4OHz4cJ/PDeRTrjf2EJULFy4szbLMCt7PyGjTwi+yyj788EPJHEPGGJqNHz58WDL62rRpI1nk+Nlnzpzpfg1UzcFn1bNc2+5QJI8+FMsJoD+5fQk2WzyUeA1RFL64/hLWIKIi6/rVV19VLVu2VNEGdiia+Bw449rAgTfmSaw9cLh97949aVSKhtvI6kQTbvxOvAGtAp7t+H1evXrV/Tgqy4y0p4kvFMmjD8VyoqE/uW8olCulypcvL2XMmKR9AR+2xIkTy314hNkhU40EB0VyY6FYToIN9JjLiX3Bor5p06Y+M9M0yGTE4h/NXX0BMW/YsGGS1bVu3TplZt56660Yn1esWFHNnz9fssowL3p6kGITjcq3UaNGKadCkdw4KJYTiC7wJ2c8th+hZIsHG6+1T7m/eI2G1AMGDJBYDfuTaIt6aKKJuQ3g+0PcDtXaAL+3zJkzi7c7DpIgVKJiDGvXo0ePqg4dOjwlVKGCzPMAoWzZsmLHhkMDPR6rQ5HcOCiWE+1PznjtHQrlSqmXXnpJmoX4O81Onjy5evvtt6XkGSVOxBlQJDcHFMuJP+hPTjzBBrJYsWLi4e0LLAr14feNGzeUmUGTLqxB9MZm3rx5qlGjRmr27NlSru6ZPY6sEAjrKBd3IhTJjYdiubPBvJsuXTpVoEABo4dCIkAo2eLBUqlSJbVz50519+5dr19H3KtcubLchz2Jv2qxSIC9X7169eQ+RHKI5YFAAh6q1WCRBp0Bh9e//vqr2KMMGTJEqsK++OILEb+9icMbNmyQPmrNmzd3+6LjeYj/rVq1ssV+lCK58VAsdzY4pEMlCxJwyNNQKA/Bp3zcuHFq0KBBkl3Oydz+UCQ3FxTLiS/oT+48YDWCEmbPJmKewFMUgg0yG72BzTY2u5cvX1ZLly5VZgbrDQgJAJuYGTNmyP1+/fqpjz/+WLVu3drgEZoDiuTmgWK5c4E4CKsn+pPbl2CzxYON13i/oJknxGFfIN7BuxsCM4TnaIOfV4OqLV9cuXJFffTRR7JfqVmzpvvAHlnpq1atUufOnZOfJXaMQmanpwVs6dKlVdq0aVXu3LlFYLcbFMnNA8VyZ8drJOIw0cw7XMX8lwoVKqh9+/bZMhiR0KFIbk4olhNvYHOF7DVksRH7g1JvHFijhBkf8XlsatSoIY2v9CGKN6pXr24JQRWZaTt27HB/Dg9TbGSQad61a1fxKnc6FMnNB8Vy54G/84kTJ2T+JSTYeI11ff78+f32CylYsKChgioa3aFHCEDDbM+sdojcWGvAyxwZ4/3795deIRCBe/ToIdcFbFtxXXjrFYIDAPxu6tSp434MVWG4liC02y2mUSQ3HxTLnQnmXBziUefyDoVyjw0zxFGze5WSyEOR3NxQLCexRcS1a9dKBjGxP8hIGzlyZIzH8HnsTDUcnGTNmlWtXr1aWQlsuLds2aIGDhzofgwxqHfv3lKGDZBRh8w08h8okpsXiuXOAvMt5qtXXnnF6KEQC8VrgDUc1nJY05kRCIiejURheYY9CPzCIfIjI3PRokUiMJYsWVKsaWALiJ9XC+y+SJ06tTTq3LVrl9ggaOx4CE6R3LxQLHcWqH7Zs2cPD7b94BihPFDZF5phwdM0mE01PNSWL18ukwixFxTJrQHFcqJBUyRUAlEodwYQ3IJ5HAt9LP6QLRFs820zNOmGFQy8WAcPHizegRpkpU2aNMn9+dixYw0aobmgSG5+KJY7B8y38DqFtRUhwcZrgHiNfiHB7q2NiNfwC9cZ4WPGjJH+Zh07dlTHjx9XyZIlU23btpXscOxNYNWSJEmSp14D+0v4lSPGa7Jnzy79zy5cuKAyZcqk7ApFcvNDsdw5rFmzRizSkCxMHCyUB1P2pYO0P09TcOjQIfEMQ3nU+PHjIzhqEm0oklsLiuVEb8xfeOEFVbx4caOHQqJArly5gn4chycofz5y5IjP17t165ZkhCEbDH7f0ebgwYNyiK/BxrtJkyaqffv2KkWKFDGeC5/yvHnzyn1knvk6+HcKFMmtA8Vy+4O5FA0ZeWhN4hKvsYbDWs6f/QpAQhv282jIHW0Qn6EjgPv378sNMXnChAkSj2CLBgHYH2jA3bNnTzVs2DB1/fp19+NoFoqf365QJLcOFMudAeZS6F24JolDhfJQy74CeZoiIMI3DMCmBc1HiPWhSG5NKJYTNg5zFli8Y5PpCQ6/vTUVK1u2rIjN/jbeN2/elIwwxH1kdEUTxJzChQurt99+W92+fTtGozBkj2fLli3G87Fp6datm/tzZKU5FYrk1oNiub2BBzNsMxCPCQk1XmMNh/dOIKF8yJAhcriMmO0rYz2S9O3b132/SJEiUvnVoUMHlSpVKq/PP3PmTAxdAT3RGjZsKDHe1/+xGxTJrQfFcnuDQ76NGzfSdiUAtlcWQin7QqOQQJ6miRIlkpNslFctXbrUa1MOYi0oklsbiuXOBfP4qVOnGOgdxogRI2ThDg9QfBw+fLjX52Eur1Klit+NN7xDixYtKvfv3bsncSBSnDt3LsaGGSI5Ntq68WgwNG7c2C0MwwLOCKHAaCiSWxeK5fYF8yzms8yZMxs9FGLBeK0T1k6ePKlOnz7t8zkNGjSQjxCZ8dxog8Z3L730ktxHHDp27JjP56JKHdnzLVq0cAuNEB4XLFggjyVOnFjZHYrk1oViuX1BQ2Jcm6wAc7hQHkrZV7CepuPGjZPyKpRBUyi3NhTJ7QHFcmeCQ014QGIuJs4Ci3d4gHrLTPMEMR2lzmiq5QtYrsACBT6jKVOmjMBolVq/fr2I8tgcI+7oNQeq25DJniVLlqBeB+/3rl27yn2sU/yJDnaEIrn1oVhuPx48eCAZ5Ty0JvGJ12gCixi3YsUKn89p1KiR7NOvXr1qyPsNme+oQvPUBDSIyZ57kDJlyohAnDt3bqlecxoUya0PxXJ7snLlStFCoZ8QBwvloZR9BetpSuwBRXJ7QbHcmUI5G4cRf2Ajjbndn60KNrOFChUK6yYOTclQ7aApXbq0Sp06tXr55Zel+aznJiRUYNUCsRGgBB2Z6k6AIrl9oFhuL9auXStraZ3tS0hcwFoO9ivIuPYF5n7s1Y3cs6Gpp+4hghgMr3HEJvis169f3/08NPhE1jusWu3sP+4NiuT2gWK5/Q624YrBeB0Y2wvloZZ9BeNpSqwPRXJ7QrHcOUBsRENDZrARf6A8G++R+fPnR+17Llq0SOwHPLPOsGGGIIjM8nTp0sXr9ZH13qVLF7mPDcvQoUOV3aFIbj8oltsHzK+wsELmLCHxAc2sDx06JN7fZgUxuE2bNnL/4cOH0hAcB+EHDhyQhraXL192PzdNmjTKaVAktx8Uy+13sA0rR+IfRwjloZR9QTCtVq2aWrJkSVBiK/xGYcNCrANFcntDsdwZrFq1Sq5lNg4j4d54h9qkG97myCDXIKsMr3Hr1i3ZMGqwkQ4XnTt3dtvEzJo1y9ZCI0Vy+0Kx3PpgnsPGm5tuEg6wB0esDPZwGw1kcYsm2Ftg76ibyEMoxwE4KtcuXLigMmTIoJwKRXL7QrHcHsybN0/W07RdCYxjhPJQgP/Z4cOH/W6q4UOGzXC5cuUks4uCnDWgSO4MKJY7I9CXL19eZcyY0eihEJOD5lvI6gq08d60aZOUTWfPnl1KE4Ph888/V5kyZVKDBg1yP5YjRw4pt4Y3etKkSVWkBMb33ntP7kMk8Pz+doIiuf2hWG5tUMINweTNN980eijEBqDBJeIw7Fd0Pw9vwHKsd+/eKlu2bHJQE03QW2TYsGFuERj+49OmTVP16tWLd8WYlaFIbn8ollsbzFWwgkICEQkMhXIfp9mBNtWYIEqUKCH3saFetmxZFEdI4gJFcmdBsdy+oDHjtm3bGOhJSBtvxHR/G2+I3qgmQ9m0L/s1bAo8RXRYrGB+webQswm4r0bi4QSH9LqsG6ICsubtBEVy50Cx3NqH1ugV4uQsWhJeUJ2AfmGIq75A821Yq166dEnNmDEjouPBnLRjx44YTUdxMPTBBx+4Hxs9enTQB+x2hCK5c6BYbl30wTb9yYODQrmPTTVOhQNtqps1ayaiOjaozKQwNxTJnQnFcnuC8lZcw7Vr1zZ6KMQkIMMLTbXw0Rs4VLl48aL4h/qiZcuW8hFNt+7fv//U17EZR7Y5Msc0FSpUkEz0/fv3R31jCOuVfv36yX2I9GhUbhcokjsPiuXWAzYTEBB5aE3CGa+xT0OmOA5hfFGlShWpKIRoh/Wgv/16fEC2Og6+sT7QFi+I9ViHIv7WqlVLHsMB+2effaacCEVy50Gx3JpgTsVBH9fVwUGh3AfBbKphvYLyhYYNG0qjLmJOKJI7G4rl9gz0r7/+ujRqJAQCMSq8cHiNj94EYwhwELn9VYrBSm3lypUS+5s3by7is2eWOHzHkb3m2cMEHqXIptRepdGmffv2KmvWrHIfjUI3bNigrA5FcudCsdxaQCyEvZQWCwkJR7xGPEVWOWItmmX6EurQOBsVhosXLw5bDEbM99wrYF2Ayi00qoVtQWwGDBjgvg87Fs++JE6AIrlzoVhuvYNt6Jo82A4eCuU+wEIdp9nBNhMh5oQiOQEUy+3DkSNHpIcEAz0ByEgbOXJkjMfweexMNSzk9cbbV3k0Nto1a9aUqjLYsOTPn1/EZw3eczikQQa5WUiSJIlszjXwLbfyZoUiOaFYbg0gKGI+xJyZIkUKo4dDbBSvAeI1GsUiIc0XpUqVUunTpw/b+Pbt26eKFSsmCXCa5557TuaiNWvWePUfL1y4sFwDOn5NmTJFOQWK5IRiuXWAAwYSe9944w2jh2IZKJT7IJjTbGJuKJITTyiW2wMcXiK7Bw0aCcEGNtjHkcF2+/ZttXz58oCvC79veKBOnz7d/RjEIKwLzBZLYP2GzT1AE3JPaxgrQZGcaCiWmx+Im8eOHZN5lZBwx+u8efNKLIi0/3jseefAgQNq+/bt6urVq+7HdS8QX3z44Yfu+zi4vnPnjrI7FMmJhmK5NTQxzKWwLE2ePLnRw7EMFMr9gA0xNtX+TrM1Z86cUX379jVVppmToUhOvEGx3PrXNU7E0ZgRWb+E+Gqa6e1xPFa+fHk1derUgK/77rvvqjFjxqiBAwcqKxzsjxs3zv15//791Y0bN5SVoEhOYkOx3NxgHoWdVeXKlY0eCrFhvAbt2rWTPTgsA4KpcDh58mTQY8EeAM1APSuyXnrpJbETOn/+fEiZ6gULFnT3Krt+/bqsHewMRXISG4rl5mbLli2iVb799ttGD8VSUCj3A06zUVKFhiP+gOiG4IpgO3bs2KiNj3iHIjnxB8Vy6wJvNfhH03aFaLAw79mzZ4zH4HmKx72BRSKazyFb3BfwIp85c6bE9NatW8fwKTcrJUuWdF8XKFfv06ePsgoUyYkvKJabE8wxX3zxhWrbtq1KmDCh0cMhNo3XEJ9RyeVZ2eWNFStWSFVVnjx51KlTp4Iay+7du1Xv3r3V0KFDY3iPIxHDm8VKIAYPHixiIRg9erS6cuWKsiMUyYkvKJabF1hCwU4S6ykSPBTKA4CSQviSeZZgeWvqmSVLFrm/efNm9euvv0ZxhMQTiuQkGCiWWxOUjeXMmZOBnsQAWWFYlM+ZM0c+Dh8+3Odz4c33wgsv+M0qT5Qokfr6668lKxuepZgnrMCoUaNUypQp5f5nn31miXFTJCeBoFhuPjDXQgRp0aKF0UMhNo7XsAjAATDWfo8fP/b5PGRK7t+/X+6PHz/e63NOnz4tyRaaKlWqqAYNGqhJkyaFxWMfCXM4OAL37t1T77//vrIbFMlJICiWm4/Lly+rlStXSoUOr9nQoFAehFCOsuZZs2b5nRRQ6vzRRx9JeRgCCIk+FMlJKFAstxY4gFy8eLFsRBjoSWywMG/atKnPzDQNLHtatmypZs+ere7evev1OXh/denSRWJ7o0aNLBPTITQjq02DawXZ8WaFIjkJForl5lprT548WdWqVYvXLYlovNZVYMjORta4L1q1aiVNN4sUKaIqVKjw1NdXr14ta34878mTJ+44j6oI7PNxOB4OII5r0R2H1Wg+bxcokpNgoVhuLlCRA02M1dihQ6E8AGjggRNnNMfC4tAX2JDCoxyZaiT6UCQncYFiuXWAsInrvHnz5kYPhVgcbLzRbGvevHk+n4OS73Pnzknz2Ny5cyurAG/1okWLyn002hs5cqQyIxTJSahQLDcHqJzF36BDhw5GD4U4gAIFCqgyZcqoiRMn+nxO6tSp1cGDB6UCrE6dOmKXhv2gBr1J8Bys+WEbFCmgAUALAFiv4sDdCtZtgaBITkKFYrk5QLIMbFdwMIk1FAkNCuVBbqqxYd64caPRQyFeoEhO4gPFcvODjQasMrAB4mEkiS/ZsmVTNWvWlI23r00sMs8zZ86srAb8gpE9on2DkWEOwdxMUCQncYViufFMmDBBmheWLl3a6KEQh9CxY0exTTl06JBf6xOIcnv37pXY0rhx4xgWLrBeQWZ52rRpIzpWiOM5cuRwN9Bbvny5sjIUyUlcoVhuPJh/YL3Cg+24QaE8CEqUKCGLQpQahiLeem7AcdL9+eefR2iEzoUiOQkHFMvNzdatW0UYgb8aIeEAi0YIyNu2bVN2A03IdcM0ZJPAR9gsGxSK5CS+UCw3DiQNoW8T5k8KZiRa4GA7U6ZMfrPKNalSpVIHDhyQdeP169djVIhHgyRJkqiPP/7Y/XnXrl3Fs9yKUCQn8YViubFgzixXrpw08iShQ6E8CHBxo5wZi8Pz58/7fe6DBw/ElwxvyLVr10qgrlq1qmxc33nnHXXt2rWojdvuUCQn4YRiubkz2PLly6fKli1r9FCITUApNt5TY8aMCer5O3bsEPsfqzBw4EC3ZQwy7Pw1TIsWFMlJuKBYbgxjx46V3z16NxASLeAhjj007NKuXr3q97m5cuWSBp3IQofdilHCPpqFgosXL6oPP/xQWQ2K5CRcUCw3hu+++06uYcyFJG5QKA8SlHClTJlSffrpp36fB3uWNm3aqBMnTshCEk1F1q9f7xbR4RNE4g9FchIJKJabDzRI/vLLL5nBRsIK3kvIusaB9uHDh/3GmkqVKskhDRabkfQ3DXdWG4R9NCMHH3zwgfi3GgVFchJuKJZHF2TnwtYJ8yAaJxISTdq3by+CGw5r/DF+/HixP8Hh8KJFi5RR6wskeMDCDSDD3EqNPSmSk3BDsTz6DBs2TA4OcXBH4gaF8iDBorBly5aSLY4A4o2HDx9KZ27dPRvNwjTZs2eX8ofu3btHbcx2hSI5iSQUy80FDidTpEjBbt0k7DRs2FD8yv1lW0Nozpkzpzumz5kzR1mF4sWLuxuLYVOCa8iIEnCK5CRSUCyPHhAgIXJ06tTJ6KEQB4LscPQMgw2qv7U5rFJhOQbGjRunjOLll19Wffr0ccdfJNE9efJEmR2K5CRSUCyPHrCWXLVqlerVq5e7ZxEJHQrlIZ5mI5sMpV+eQLAdPXq0iGtt27ZVjx8/jhGwFyxYIE1EYN+SLFkyA0ZuHyiSk2hAsdwc3L9/Xw4ncUiJZkyEhBMcauPwGllnZ86c8fk8LDTz5s0rsd9qDXFgwVK0aFG5f+rUKcm0iyYUyUmkoVgeebDmRrIP9jgQ0AgxAvh9ozrbX88wVH/B8hRxGxVjRtK7d2/ZT2gbhGA81o2EIjmJNBTLo8OIESNU5syZmWQWT55xeXacJAGpXbu2Onr0qFir6BMaPLZixYoYz4NxPoI0PMoYaMIDRfK4g8ObdevWqerVq7srHkhgICydPXtWNuFoEESin8HWrVs3OWjMkSOH0cMhFgSbUwhoKD/E4tzbxhAVX7Vq1fJrjYalklVjOX7+IkWKuLPJv/jiC9WgQYOIf1+K5HGHMTt0bt++LYfbuNZfeuklo4djK0aNGqX69esn6yFsvgkxIl4DZJVjz42eYUmTJjV9vN65c6cqU6aM3EeyHCxYkIhjNiiSxx3G69CBQI7rHddqiRIlREAn4QFzI9ZA6MHUuXNno4djaZhRHiIoo4Jos3z5cvdjOsMMQQWbbZyQ6SaeDDThgSI5MQJmlhsHSmdRqQN7DIrkJC7gsBoL8GbNmslHfB4bbLSRZT1r1ix1+fJln69l5VgO0QF+qRqUgGMdE0kokpNow8zyyIAMXngsYx6lSE6MjNegR48e6saNG2rmzJmWiNelS5eWinRdJYkKSexpzQRFchJtmFkeObB3xnqodevWRg/F8lAoD5FixYqpihUrikG+TsYvX768NMo6fvy4COi+TsFJ3KBIToyEYrkxwLLq4sWLUrpKSKggU2XkyJExHsPneDw22MSi+eUnn3wSknhkJZo3b+4uwYTXet26dWXTHgkokhOjoFgefj7//HN19epVaX5MiNHxGj1DUBGFr3tanfoDzwv2uZEAfVBQuQa2b98u1ZJmgSI5MQqK5eEHsXrGjBmSSc6m2/GHQnkcs8oPHDigNmzYIJ/jAocPaO7cuY0emu2gSE7MAMXy6F/38FerUaOGypcvn9HDIRYEQlmwj8NWCWI5GseiD0kgewc0yMySJYsIwlYB6xT8fHqdcvjwYSlhD7f7HkVyYjQUy8MHhAsIkjhYQ2UKIUbHa4AEip9++kktXLjQ7+sivi1ZskTWkdOnT1dGgYb0nhnwGD+a7RkNRXJiNBTLwwsaGON3arV+SmaFQrkXcII9d+5cryfZoEKFCpJZjqxyEjkokhMzQbE8eqxcuVKdPHlSDiUJiUu89iXq+Hoc9itYoAfKKkdmGGI/Sr8HDRqkrAQa4qLqTWeZ4PcWzuZiFMmJWaBYHh7QwPjcuXOs7CKmitcFCxZUr732mvroo4/8CmvwA69fv75YjX344Yfq7t27yihQfa6baT98+FA1atRIPnqC/UW0xkiRnJgFiuXhAfsSrOmRBJM6dWqjh2MLKJTHwSMNFzIyylA+tXv3bkPGaXcokhMzQrE88iADCEIkNhWYgwmJS7zGoju2VQC+7ssaLX369KpTp07ixYvSRV90795dpUyZUiVOnFjEOKv1Q8+TJ4/4sWu6du2qtmzZEu/XpUhOzAbF8vgBeylUy9apU0eaARNilngNIHzj2vbnVQ5BvV69eu7Yd/PmTWUkQ4cOdVdJoqpLH0Bhz4tDePiZt2vXLuLrCorkxGxQLA/P/AJ89XcgofOMy2q7vAiCE25vwgwu2NjBGkGtQIEC4pX25ZdfRnGU9ociefhhR+7wcurUKXX27FnZhMO2gYSPTZs2qVdeeUWsrfCRkPjEazwPm2lkpgXqHwLbFRyENW7c2G+m9erVq1X+/Pkt3WQWG3TYGwFknuD39PLLL8fptSiShx/G7PABuyQcbmMOeOmll4wejmXAoSHES1hEIEmAEDPFa4CsbCStIWM8WbJkXp+DQzJUKL766qumEIQhkBcvXtydTY5+PPPnz1dr1651P2fFihXqjTfeiMj3p0gefhivwwcEcswDkCcxZ0BAJ4G5cOGCzJv9+/dXAwYMMHo4toEZ5XH0SEuQIIGc2GDDjNIuEh4okhMrwMzyyIFs8qJFi6pKlSoZPRRig3iNzXbTpk2D2nRDMIaAPHXqVHXmzBmfz3v99dctLZIDlKxjU6cPCFDGHpdsO4rkxOwwszx0sK7BHNGyZUuK5MSU8RoMHjxYXbt2TU2YMMHnc3A4hvhmFkEYWe6jR492f44m21ok1z3PsMaIBBTJidlhZnnceP/992UPgypREj4olMfDI61hw4bSxdpqPqVmhSI5sRIUy8PPtm3bxAYC1lZcwJNwxutg6dixo3rhhRdsn5GRMGFCaYSmy8AhWNSqVespz1R/UCQnVoFieWiMGjVK3b9/XzbfhJg1XqOqG1YlsC0J1IjbTKB5OARzvfcFEK+//vpr9cEHH0h8DjcUyYlVoFgeGkePHlVz5syRfQt6EZHwQaHcg1A90lBeA480NMfy1fiTBAdFcmJFKJaHD5TZYb5Fo2QIdoT4Iy6epsE060b5Ng6/ISIfPHgwqPftokWL1OzZs5XVgNf6mjVrxJ8d7NixQzVv3ty9cfcHRXJiNSiWB8eVK1ekqXHnzp1VpkyZjB4OcXC8DiZmQxyC9QXE8mCADct7770XVJyLBHfu3JFEO1iwaFKkSKE2b96sKleuHJHvSZGcWA2K5cHTr18/qXJt06aN0UOxH/AoJzH59ttvXXPmzJGPgfjtt99cBQoUcJUrV871+++/R2V8duPJkyeuvXv3ujZv3ux68OCB0cOxJY8ePXKtXLlSPpLwc/LkSde6detct2/fNnoolmX58uXolyHzACGRiNc9e/aU95i+4XNvPH782PXnP//ZVbVqVb+vh/m0QoUK8lopU6Z0XblyxWVF9uzZ40qaNKn799K1a1e/65lLly65Vq9e7bp8+XJUx+kkGLMjx61bt1xr1651nT592uihmJL27du7nn/+edfNmzeNHgpxcLwOJWYPGDDAlSRJEtfPP//s9/XGjRvnevbZZ+W1Zs2a5Yo2hw8fduXKlSvGz/TXv/7Vde/evYh9z/v377s2btzo+v7776lTRAjG68iB9fiuXbtcO3fulPskJvjdYB5ZsGCB0UOxJcwo90IoHmkoj4KnLiwD1q9fH5Xx2QlmkhM7wMzy+IFMAditIJumQoUKRg+H2DBeIxtt5MiRMR7D596y1JDJAn9elEFv3brV52uiqgz2awAxbMmSJcqKoIpj8eLF7nJvZJP6ys5jJjmxOsws9w16M0ybNk316dNH/E4JMWp/HUrM7t69u1gOwLbEH3nz5nVnpn766adSERZN0LRT+7KnSpVKmnbu3bvXZyPS+MJMcmJ1mFnuG8xf6KtUuHBh1aBBA6OHY0solIcBNMQqVaqUvFmNKuWyIhTJiZ2gWB53YFuBclgcOhJidLNuULt2bVmcd+vWTT158sTn6+I9iw0oGnt36NBBWRU0O0MTUw0OriZPnhzjORTJiV2gWO4dWFLAigm9GgixSsyGjVj//v3VjBkz/FqmoUl848aN5bk4BI+2cIzmo9jvQtjav3+/euONNyL2vSiSE7tAsdw7S5cuVbt27ZJ9SIIElHQjAX+rQRDIHw0X7ogRI9ShQ4fUF198EfXxWRGK5MSOUCyP22IeDcNwGl6kSBGjh0NsSqjNxBDXJ0yYIHF9ypQpPl8XjT8RyyA0W51WrVrJWkbz7rvvqs8//1zuUyQndoNieUzWrVunVq1apT7++GOVNGlSo4dDHI6v2LxhwwafDTJz584tB9b+ktawn4dgHaksbn+gCg1Z5NgjoBFppKBITuwGxfKY3L17VxJ5atasqapUqWL0cGwLhfIAoNlIiRIlVLNmzeQjPvcGFts1atSQpiKPHj2K+jitBEVyYmcolofGxIkT1dWrV9WQIUOMHgqxMXFpJgZLktatW0ujnGvXrvl8np02ofgdoTpO07JlSzkwoEhO7AjF8v/w4MED1alTJ7E+q1evntHDIcRt0xKbefPmeU1cgwg9adIkEYghhps1XqdLl04lSZIkYq9PkZzYFYrl/wN75hs3bqixY8caPRRbQ6E8TP5oYOjQoer8+fNq+vTpURqh9aBITpwAxfLguH37tpSMoVP3Sy+9ZPRwiM1BtjQW13PmzJGPvny4Y8d1eHd7iseBQEm1r7JxK4CfGaKZ9kDs0qWLunDhAkVyYksolis1evRoucZxcE1hjZiFV155xevjvuJruXLl1Jtvvql69Ogh68tgwPNQTWEHKJITu0OxXIlVKSq/0EtE90kikYFCeRg9TfPlyyeZ52gmcuvWrQiPznpQJCdOgmJ5YFD++vDhQ6nEIcRszcRA2rRpRTieNWuW2r17d8BNKjboxYsXl0xsf97mZgYbEGSpvPXWW+7YDc9ibcNCiN1wsliOBB80L+7atavKkyeP0cMhJM6WafrQB7F44MCBAV8fVkNo8FmrVi114sQJZWUokhOn4GSxHMkrWI9nyZLlqSpZEn4olIc5QGOxiRLGYAK0k6BITpwIxXLfHD16VI0bN06aKmXIkMHo4RDiE9ivFC1aVDxQA4nfK1eulHiHDStKxK3K5cuXpaFp8+bN3YvzFi1aPNXgkxC74FSxHAJ5mjRpeGBNbGGZlilTJul7AxsWf409AeI0Yh0sU1E5ZVUokhOn4VSxfNmyZWrTpk1q/PjxEbVwIv+BQnmYA3TGjBnVoEGDZDMZKEA7BYrkxMlQLH8aiG5ouITfC5qREGJmYL2CmB6osSca4M2YMUNiHA7NGzdurKyIbtyJzPiZM2e6bVh0g09k2OMaJsRuOE0s/+qrr+RwD2XcKVKkMHo4hARlmQYLVPiQ+7JC7dy5c1CNPVEBjuS3atWqSey2IhTJiVNxmliOBp442EZPxFdffdXo4TiCZ1zc7QQEgRiLZgTTYMq1Hz9+rAoXLqxSpUqldu7cqRIkcO55BEVyc4D3JDz4qlevLg1vSPQ5deqUOnv2rGzCMTc4mYULF6pGjRqpr7/+mt26iWWAl/7SpUvFHzB9+vQ+n4fmtP6+bgWR3LNxJ5aJaGiKfgIaZN+NGTPG0eubSMKYbSzwLf7/9u4E3Mbq/f/4KkORIdJgyBAKSYNIZR7KPCVEUZShUURJGqSMKUlkSjIUmUIKEemrLymVDE0yZQyFQt/a/+tz/659/ucc5xxn2sOzn/frunansx3OY9h7Peuz1rpvLW7rvj9W+2coYKtQoYIrWrSo7VAjYIMXaMNa/P5h2tCmMD2xFStWWHNaLfbqNFRK4/VFF13kyX//hOTRgfE6shSQK6vTvWqVKlUsQI9F6pWkk9ibNm1yJUqUiPTl+AIznBDUNNWbpBri6CZbK+B+RUgO/H/sLP8/ej/o1auXlXUgJIeXKCjW+N69e/cUd1THUkgumnxrF3n85qeqYa4d8+oxEJ/+XAYMGGCLgoBX+WFnuUpE7tixgwae8AyFYfFDctHnSe0sr1Wrlo1ROrWosS2l8dqL//4JyQH/7Cxft26d9V9QuVJC8vAhKA8Rdd6+4447bKU7tZ23YwkhOXA6wnJnIZreE19++eVIXwqQJmrsqRIsc+fOde+8806qf96uXbvcd99957wYkifeyTdhwoS4XeT6M9Bi16FDh+K+ZtSoUVYfVr+OdqkCXhXLYbkaE+tEiMZjGnjCK/RaTMvz2n2p+WfXrl1TXS5MIdvHH3/sohkhOeCfsFy9D9Uv6Oqrr6aBZ5gRlIdQsPO23xrkEJIDyfNzWK6wUDtRtSKu496A17Rq1cq1bt3aap/u3bs3VY13VN5AJyiOHz/uvBqSB3Xu3NnNnz/f5cyZ0z5fuXKlHXX94Ycf3PLly+N6Dhw+fNj99ttvYbl+IFRiMSzXvEST7kqVKtnpLsArVAopLc8rSH7jjTfcwoULrab5mfz000+uWrVqrl69eu6TTz5x0YiQHPBXWK5eCrrHnjx5MqV9woygPIT82NiTkBw4Mz+G5fEbeDI5h5epVIEafJ6pBMs///xj5UoUGitoGzhwoPNySB7UuHFjq/+quq6iG3iFbi1atLDfc3D3eZs2bUJ67UA4xFpYrs0727dvt0l3rNZyRWxSCJZ4R6XGmpRKozZr1sxKsKjBZ0olWESnxRSwaVxXXXPVno4mhOSAv8LytWvXWnkpndS86qqrIn05vkMzzxDTIKvBLFeuXDa4xfJNKSF59KLRSHTyU4PPt956y3axLV682NWvXz/SlwNkiHaKa3f5tGnTrDFtchSuqbm3OtSPHz8+ql7n6QnJ4/vll18sNE9cVkavb+3g02IC0ocxO/rEQoNPXX/VqlVtAY8j3PAq1STX2KrXYmr6h6k82JVXXukqVqzoFixYkGzArIVe7SbX2Kam86ntTRYOhOTRi/E6+sRCg0+VXLnuuuvsBKdCfy/+HryOoDwM9I9bwbGaYWnlOxYRkkc3BvHo5YewfPfu3TZJadKkSaqOvwJe0LZtW7d06VILilMKmvUa14Q+mia2GQ3Jg3QiRjWO9+zZY59rfNm2bZsrXLhwJl6t/zBmRycvh+UK2hSw5cuXzwI3FrLgJ++//77tLtdJio4dOyb7dfv27XM5cuRwefLkcdGCkDy6MV5HJ6+H5U888YT181q/fr0rX758pC/Hlyi9EgZ6carUgDrMb9q0ycUaQnIg/WK9DItuULp06WITDzVWAmKpBItuvLt165ZiCRa9xmMxJJfRo0fHheTBo+uE5IhVXi7Dot4gwZIrhOTwm6ZNm7o777zTSrBo80ZyLr74YkJyIAZ4uQyLAv5hw4ZZyRVC8sghKA8TdZZXGKbSA156oZ4JITmQcbEclqvkinZajBs3zuXPnz/SlwNkmgIFCrixY8dac8sJEyak+uf9+eef7s0333ReD8kXLVpk4ZtoIqLXukrMALHMi2H5smXLbGfa888/78qUKRPpywEiQps1VMagQ4cOcf00UmPmzJnu4MGDLtwIyQH/heVHjx61RT2VXaFEWmQRlIfJueeea7s4dHxi+PDhLhYQkgOZJxbDcu3a6dGjh7vrrrus7AoQa9TAUicmHn74Ybdx48Yzfr3CNd20d+rUyU2cONF5NSRXaKDa7MGd9NoMoPAB8AMvheV79+61SXfdunVppA1f02aNqVOnWjPqQYMGpapGsJp2qzH1HXfckaZwPaMIyQH/heW6p+7atauVgFKfBK+Vi4k1BOVhpBfpY489ZscoUjOhjmaE5EDmi6WwXIP9fffdZ7t3KLmCWPbKK69YveLWrVu748ePp/i169atixv/+/bt644dO+a5kDy4m/7111+3TQBqatqvX79MuU7AK7wQlivYU0gu6g9y9tlM++BvtWvXtpNQmouvWrUqxa89fPiwmzNnTtypDNU5DwdCcsCfYfmkSZMsIH/jjTc81wclFnHHFGbPPfecK1mypLvnnnui9kV6JoTkQOjESliuEzSLFy+2kitqHgbEKtXff/fdd63+70MPPZTi17Zv39498MADVv5Ak/RcuXJ5LiSP/3tZs2aNlZFhIg8/ivawfPDgwW758uVu2rRpVnsZgLOeYVWrVrVd4imVVClYsKCbNWuWO++88+wEmE6QhRohOeDPsPy7776zOcS9995r702IPILyCJVg0aR16NChzmsIyYHQ83pYvmvXLvfoo49aKYbGjRtH+nKAkCtXrpw1tlRorKPdKRkxYoQ16kmpVrBumPWI1pA8SBP5cIT9QLSK1rD8008/tUBQpz3q1KkT6csBoiowmz59ujt58qT1DtPcNjnVq1e3RXCVS0upREtm7DYnJAf8GZard5FOpWruzyns6EFQHgGVK1e24vw69rV27VrnFYTkQPh4NSwPHvXWDhyVpAD8omPHjlaPv1u3bhaaJSd79uwuT548yf74xx9/bMFbgwYNLOiO1pAcQHSG5dolqx1pulfXXANAQoULF3ZTpkyxptRqdJsSBdcpvda0ENWsWTM7WZZehOSAf8Ny9Tnatm2bNQ5WyVJEB4LyCJZgqVixojUIOXLkiIt2hORA+HkxLH/++edtJ5t261ByBX6im27V7dYEXDtDtMsstfX8dcJMj7feesvVr1/fxtqdO3daLdX0ICQH/BmW6/1Eu2T1/qNxmGZgQNIaNmxovcOeeOIJO+WVWuvXr3ctW7a0fiN6zeseXVRW7ejRo2m+DkJywL9huUqjqbTTa6+9ZqdTET0IyiNEO8reeecdaxSihne6sY1WhORA5HgpLF+xYoUbMGCAe/bZZ12NGjUifTlA2KkMiXaVbdmyxT344INnHNuDHe4ff/xxeyjgCt6wN2nSxI0aNSrN10BIDvg3LFddcu2S1aJbkSJFInINgFe88MILtnFNi9v79+8/49erxEq1atXc3Llz7ef98MMPcfXMlyxZ4nLnzp2m709IDvg3LNdim06hqueP+hciuhCUR1Dx4sWtu+17773nxo4d66IRITkQeV4IyzXB0EBfq1Yt9+STT0b6coCI0WRXHeuDO0RSoht07UBPTDvTNBFXCaO0ICQH/BuWL1iwwGqS9+/f3zVq1Cis3xvw6sY1NezUCYxWrVq5U6dOpfj1xYoVi1sAD35t+fLlLWi77rrr0vS9CckB/4blv/32m2vatKnN75UD8vqPPgTlEaajW5oQq/Hdhg0bXDQhJAeiRzSH5XqvUONO3WCokWGWLFkifUlAxOuV9+zZ08b2ZcuWJft1Kr22cuXKuM91o/zSSy/ZTvK0vo4IyQH/huVq/tuuXTvXvHlzO9UFIHUuvfRSW5hWUJbSSTA9v3Tp0gRl1erWretWr17tihYtmqbvSUgO+Dcs//vvv93tt99upZrmz59vp1ERfQjKo8Dw4cNd2bJlrV75sWPHXDQgJAeiT7SG5cOGDXMfffSRheQ6fgr4gWqavv3228nWNh0yZIhNonWkO6mwbPv27a5q1apWskjOPfdc29mmgD2tk2ZCcsC/YXlwZ1qJEiWsQeHZZzO9A9IyXuu1ql2d48ePt14jiSk808a23r17xz2nUmkqc5Q3b940XQshOeDvsFybaNTPa/bs2VZhAtGJO6kooMmxappqotu9e/eI1ysnJAeiV7SF5boOHfXu27evu+WWWyJ9OUBYqJ54lSpV7CSFPurzpG681YvkwgsvtBBLY2qQFsU1vmoXqBQoUMAtX77c3XbbbWm+FkJywL9huXamaTFO7y+qn8zONCDt47V06tTJ9ejRwz3yyCM2Hsf38MMPuzFjxsR9rn48Kp+q0i1pQUgO+DssV2nG0aNH26N69eoh+R7IHATlUeLyyy+3F452ZKquaaQQkgPRL1rC8gMHDrg77rjDJh6aNAB+oB1pQ4cOTfCcPk9qp5qCMoVXCrNVFuGff/6x5xVmBXemlS5d2m7Kb7zxxjRfCyE54O+wvFevXm7VqlXW74idaUD6x+vgCcnatWtbWYSffvopQVCeL18+ly1bNju1oT4AaQ25CckBf4flGqtV3kmnU7p06ZKpvzYyH0F5FNEkWjvK77//fhtIw42QHPCOSIflamKkxkeq1Thjxgy7uQD8QIFXWp7Xa1WnxhYvXuyeeuqpuOe1a021yNesWeNKliyZ5usgJAf8HZarTITeQ9Q0uEaNGpn26wJ+Ha91L6vxWmF2/JNgZcqUcfPmzbMyg3fddVear4OQHPB3WP7LL7/YqVHtIn/55Zcz5ddEaBGUR5mRI0fazbSafO7YsSNs35eQHPCeSIXlKg/10EMP2Q2EGiCpERLgpxNgaXlebr31VtupNnjwYDdhwoS457WzRBPntCIkB/wdli9ZssQ21miDTdeuXTPlGoFYk57xWjvHdRJs165dtrNcG0NEAVetWrXSfA2E5IC/w/JDhw65Ro0auTx58riZM2fayRREP4LyKKMXjo5P5syZ0zVr1swdP3485N+TkBzwrkiE5Wp0NG7cOGt8pIk/4Ce6ee7Tp0+C51TzVM+fqXmPjlsq1FKX+/QiJAf8HZavW7fONtTUr1/fvfrqq5l6jUAsSe94rR3k2gjyySefWO1yzZXTg5Ac8HdY/ueff7omTZq4ffv2uQ8++CBdm2MQGWcFIt05Ekn69ttvrV5pgwYNbOUpVAMrIbk/qNmT3pwbNmzIKmaM2rp1q/v5559tEp43b96QfR81OFLTTtVrHDFiRMi+DxDtVONUgZd2pp1p0h2kGuVt27Z1CxcutB2h1apVS9P3JCT3B8bs2HbkyBFb3NZ7R6lSpdL0c/Weo/t19TZYtmyZbawBkPnjtcyaNcu1adPGmny+9NJLaZqPE5L7A+N1bFNArvcPRabqyZWWUqP6uS1atLC584oVK1zlypVDeq3IXOwoj1JXXXWVNfbU7vKBAweG5HsQkgOxIxw7y9XYSMdQ69Spc1pzJMBvNNlWrdK0TLqzZMliY7sWwlX/VIviqUVIDvh7Z7neA7RQfeGFF9piGyE5ELrxWnTPqx4Aqik8fPjwVP88QnLA3zvLFayrYeeHH37oZs+eTUjuQQTlUax58+bu+eefd08//bQd/8pMhORA7AllWK73CgV7uul/5513aN4JJEM7T95++237mBSNtxrTixcvbqUTtm/ffsZfk5Ac8HdYrl3oOmWqUylqKJg/f/6wXCcQy840Xot6AfTv399KuLz11ltn/DUJyYHYkp6wvF+/fu7NN9+0h+714T0E5VFOLzKtZmsVfMOGDZnyaxKSA7ErFGG5JuZ33nmnNTZSgyM1OgJwOtU+1dHMDh062Ed9nhSVR1q8eLGNv2r0efDgwWR/TUJywN9h+YkTJ6xv0c6dOy0kp4E2EL7xWp577jl33333uc6dO7tFixYl+3WE5EBsSktYPnLkSDdo0CAr16T5M7yJoDzK6cWolSg1FdFOkm3btmXo1yMkB2JfZoblOjqm3TSqv6ed5HovAnA67UhLXJJInye3U02ht+qUHzp0yDVq1MgdO3bstK8hJAf8HZZrMt6uXTtr4KmArly5chG5TsDP47Xm42pkr6Z82sC2Zs2a076GkByIbakJy2fMmGE9DXr37u169uwZketE5iAo94DzzjvPQqpcuXJZbcL9+/en69chJAf8I7PC8meffdaNGzfOTZgwwRbrACRNQVdanhc18tPO8s2bN1tYfvz48bgfIyQH/B2WaxKu3a4LFixwM2fOtN4GACIzXiskmz59uqtUqZKVUtDiVRAhOeAPKYXlqkWuKhAatwcPHhzR60TGEZR7xEUXXWTHLY8ePWqTaX1MC0JywH8yGpZr98yAAQNssL/77rtDco1ArLj88svT9HxQxYoVrdmPxmjtVvvzzz8JyQGfh+UqeXbPPfdYQK7TXI0bN470JQLO7+N1jhw5rJFu+fLlbfPa+vXrCckBn0kqLJ83b55r27ata926tZs0aZI7+2xiVq/jb9BDFHhpMr1161Z32223uVOnTqXq5xGSA/6V3rD8vffecw8++KAdH1MDIwAp001z4teKap7q+TNRQKad5WvXrrWdajrWTUgO+DMs37Jli022tXt12rRpds8PIDrG69y5c9t4rfvrevXqWYNPQnLAv2G5apFrzG7RooWbMmWKy5IlS6QvD5ngrIAK0MJTVqxYYRNp3ThPnTo1xRUrQnLI33//beV7GjZs6LJlyxbpy0EEaIHt559/tkm4Gglm1nsMgIRU41S7QrUzLTWT7vh0bLN9+/b28zQRz5kzZ8iuE9GLMdu/tJNcR7ffffddq5ncq1evSF8SELPjckbG6z179riaNWu6ffv2uY8//thOh8F/GK/9bc6cOa5NmzaWs+m+XadOEBtIPzyoVq1atsNERzHVJCC5tQ5CcgBp3Vn+1VdfuWbNmrkaNWq4yZMnE5IDaaTJtoKutE66VW5F47R2keo4d+Ka5QBim45vd+zY0ULysWPHurJlyybZ4BNA6mmneJUqVaxusD7q84yO1yq38t1337nx48fb/XXdunUT1CwH4J+QvGnTpu65556ze/ekGnzCm0hAPKpVq1Zu9OjRbuTIkW7QoEGn/TghOYC0huWakKthp75OO1uzZ88ekesE/CZ+TfKWLVvarpQvvvjCXo9p7UkCwHs0uVZgp00wM2bMcPfdd1+SDT4BpJ52jOtkRnz6XM+nV/ya5NWqVXNLliyxRS2F5apXDCD2zZo1y8qt6PS1xm3lbUk1+IR3EZR7WPfu3d2zzz7r+vXrZ7WRggjJAaQ1LFdZFp1WUY3URYsWWQ1GAKGXVONOTb7VwHvDhg2uTp067sCBA5G+TAAhoga+WiBTbxDtJtfkO6kGnwDSRq+dtDx/Jkk17lQ5Q43XFSpUsJrlS5cuzeBVA4hmEyZMsMad2k2uEqUquZNUg094G0G5xz399NPuySefdI899pjtLickB5DWsPyXX36xkFx11ZYvX+4uuuiiSF8i4NuQPEgB2SeffOK2b9/uqlataq9TALHl0KFD7pZbbrEax++///5pjTsJy4H0U+3xtDyf1pA8SJtLPvzwQ1vkVtk07TAFEFtU7njgwIF24qtr167WuFMBeRBheWwhKPc4vRD1glXn7h49ergnnniCkBxAqsPyefPmWT1yrYariWehQoUifWmA83tIHnTdddfZxFw32wrLvvnmm7BfJ4DQ2LVrl6tevbrbsmWLLVKr1FJSCMuB9FFopTlyfKpRnp6a5MmF5EHnnXeemz9/vu00veOOO2wDG4DYabT90EMPuf79+1s9cpVAzpIly2lfR1geOwjKY4BeiC+++KJr166dGzZsmE2kCckBnIneJ1S66eTJkxaYFy5cONKXBPgqJNcuNB3TTqleaqlSpWyCfvHFF1uotmrVqrBeK4DMt3nzZgu/1YNg9erVZwzuCMuB9BkyZIgFVtr9qY+DBw9Od0iu+2WVWkhuzNamk8mTJ7vevXvbBra+ffvaLlQA3qXXvRa/xowZY422VdEhqcWyIMLy2EBQHgNUbuWrr75ynTp1skH50UcfdS+//HKkLwtAFFNNcu0kV1iuxmE7d+5MssEngNCE5Bs3bnQ1a9Z0HTp0cFWqVLFdbsnRjvOVK1faDnOVadDCFgBv0sRZ5ZRU21gl0MqUKZOqn0dYDqSPQis1y83ITnKVU7nxxhvPOGafffbZ1jB0+PDhFsp37tyZoAzwKFVqaNiwoZVGUwNPlVxJDcJy7yMo97j4Ncl10z1ixAgrv9KzZ0/bXQ4AiWmCHQzJFb6pPnlSDT4BhG4nuXaaxaeJdUo7y/PkyeMWL17smjRpYnWMx40bF4YrBpCZPvjgA1e7dm1Xrlw5Ox2S1pNchOVAeCTeSa4xOi1jdq9evdzbb79tjxYtWljTXgDesW/fPtvQ8sUXX1jDXjXdTgvCcm8jKPewpBp3BsuwPPXUU1aT7ZlnnuHIF4A4Ks2k8g2qpahGgUWKFEmywSeA0NUk37FjR5Jfo/ArJRrntautW7dutqtF47zqJgKIbroXHzVqlGvatKmrV6+eW7JkicuXL1+6fi3CciC0Etck/+GHH9I1Zt95551uwYIF1oNAG1R2794doisGkJm+/vprC7n37NnjPv30U3v9pgdhuXcRlMdQSB6kF+Lzzz/vBg0a5AYMGGATaibSALR7TSG5ah0rJE/cuJOwHAhP487LL788ya9L7vn41Dzotddecy+99JI9FLzxegWi16lTp1yXLl3cww8/bI/Zs2e7HDlyZOjXJCwHQiOpxp0ZGbPr169vQdvevXvtHiClXegAIk9jtMZXLWbr9VqhQoUM/XqE5d5EUB5jIXl8KsEyadIkN3HiRHf77be7EydOhP1aAUQH1TRWbeOKFStauRWFdUkhLAdCG5KLbpi1Gzw+1TtNbf1U3WyrxNqiRYtsQq96qcnteAMQOfv373d16tSxRoK6J1eJRE2aMwNhORD6kDwzxmz1F1H5Bt1fa2eq3g8ARF/G9txzz7lWrVq5Ro0aWaPtokWLZsqvTVjuPQTlMRqSB91zzz0WkH344Yfu1ltvdUeOHAnbtQKIDqplrJrG2nmq+qiqdZwSwnIgdCF50JAhQ+xmWRNmfVTTr7TSTjXtdlFZh8qVK7ulS5dm4tUDyIgNGza4SpUq2SLWihUr7J48sxGWA6ENyTNrzNZpTpVgadeunevYsaPr3bs3J76BKHH8+HHXunVr9+yzz1plhnfffdfKlGYmwnJvISiP4ZA8qHHjxm7ZsmXu22+/tbILmrgDiH0KzzTYq5Zx9+7d3YwZM1L9vkFYDoQuJA/SDfNdd92V6l1pyb1WdcOtXeUKzkeOHElvEiAKjm7rXr1AgQJu3bp1FmaHCmE5kLkh+dq1a60JZ+IyKRkds3UPrpPer7zyip0u0Ryde2wgsrZv327jtTaWzp0713r9JV4oyyyE5d5BUB7jIXmQbqB1fOTw4cNxN9MAYpd2qTz44IPu6aefdgMHDrQmYqptnBaE5UDoQvLMDsoWLlxo5Vh69Ojh7r33Xpv4Awj/2PvMM8/Y0e0mTZpYbeJLL7005N+XsBzInJBcpUu18NyhQwf7qBIrmUkB2SOPPOIWL15sQZlCsy1btmTq9wCQ+v5dOvmlee6aNWtc8+bNQ/49Ccu9gaDcByF5ULly5Szwypkzp/06+n8AsXl8rE2bNm7s2LFu/Pjxrl+/fuleGY8flus9CEB0heRBWggbNmyYe+utt9z06dNtgr9169awfX/A79SsT2UOdZLrhRdesFNcuucOF8JyIG3UvyvxTvKhQ4cm+Bp9HooGnOobpO939tln2/2CdrADCN+itjaS1apVy1155ZV28uuqq64K2/cnLI9+BOUeoUE0IyF5kHa1aGd52bJl7Y3hzTffzLRrBBB5O3bscNWqVYs7PqadpRmlsLxkyZIM4kAqJ97hDsnj0y44TepPnTplzXuZfAOhp/4AV199tfvuu++s3OGTTz4ZsqPbqQnLT548SQkmIBWb0VQ7PFiTPLkT16E6iV26dGkL6G6//XYbu++++2537NixkHwvAAkXtXXqWmVWNH6rTFq4BcNyLagzXkcfgnKPhOTXXntthkPyoPz589tNvAbjTp062VFtAjDA+7QIpuNjKrGkHeBq3plZLr/8cnvvAJAyncCIVEgeVKFCBZt8q/yDJt9qIqiTJgAyl+6fdWpLk26FbV9//bWrXbt2RK9JYbl2yEUiqAe8RAFV+fLl414rutdNSnLPZwY1DNTGNZ0Ge++99+w+/ptvvgnZ9wP8LPGi9nPPPWeBdaToeyvny5YtW8SuAUkjKPeIzL7ZzZ49u5VlGD16tHv11Vddo0aNLFwD4E1qDqTJuU6LKCBTUAbAv3LlyuUmT55sj5kzZ9oudzX1BpA5du7c6WrWrOmGDBniXnzxRas5fNFFF0X6sgCkc46t3Z19+vRJ8OOqUZ6RhtuppUXtL774wubo+n7jxo1jlykQgkVtBeUbNmyI+KJ2EIva0Ymg3Mf0orz//vvdkiVLbGCmmQjgzYFfTYFUYqVz584ROz4GIDp17NjRrV+/3narVK5cmck3kAnUPFc7yFXubOXKldYAUCdAAXibFr5UM3jKlCn2cfDgwWH73mXKlLHvqVPfXbt2dW3btrUmgwDSb9euXVZyOLiorfKkKrkEpIQ7OthqmnagBlewtSMGQPQ7dOiQa9CggXv99dftMWbMGI5uAUhy8q265QrNNflu1qyZ27NnT6QvC/AcNbW+7777XJMmTVzVqlVtV5p6CAGIHZoP33XXXWHZSZ5Yjhw57H7+3XfftUBPJ0RVIgJA2mhTiEoaqUnnL7/8wqI20oR/JYirqbpmzRo7QqoyLC+88II1OAEQnTQ51+7Qr776yk6FdO/ePdKXBCCKafKtkmtq8rt27VqrYTx16lR2lwOppBNbqmf8zjvv2Gtp3rx59O4AEBKtW7e2ngelSpVy9erVc926dXNHjx6N9GUBnvDrr79ary6dzmjcuLG9lljURloQlCNO7ty5bQLdv39/e9SvX9/t27cv0pcFIB6FWuotoF0uefLkscBLx8kAIDWaN29uTYw0xmvHnD5ndzmQ8i5yncS45ZZbrKnfxo0b7XPqigIIpeLFi9sCne77tbCtnbEff/xxpC8LiOp58ttvv22bQVRaeP78+fY5i9pIK4JyJKCjKOr+q0FZHbfV7IABGYgOR44cca1atXIPPvigTdJ1CkSnQQAgLS644AI3ffp0N2fOHKuHqgnFtGnT2F0OJKL7YYVTer2oHII+L1asWKQvC4CP5ubqKaZm3CVKlHB169a1U6TsLgeS3kWuxriqkKBNIfocSA+C8nQYNGiQq1Spku3AVnd77cbaunVrgrrBDz30kLviiivsqHPRokXdww8/fFozDu1ESfzQcc74FFoXKVLE6iB+//33Yfs91qlTx46oaHKg415PP/20NQ0EEBmqL3zttde65cuXW7j16quvunPOOSds33/VqlVWk7VQoUL2XqUj5/E9++yzVgf5vPPOc/ny5bMbeV1z4p0xid/zEjdJGj9+vIUQ+r0m/vlAWvlhvM6IFi1a2ETi1ltvdXfeead9vnfv3khfFhBxCqFU6kC7yFX6QCGVPvfCLnLGa3gR43XKFJJr89prr71mjUY1R9ecAPA7bfLQiQuVRlPfPVVI0Ode2UXOmB2dCMrTQY0AHnjgAduFpZ0lf//9t91IHz9+PG41S4/hw4fb8czJkydbM47OnTuf9mu9+eabduQ5+NBNQdBnn33mFi1aZEdG2rVrZ7tIw0ndgD/66CM3cOBAq1mupp/qGgwgfNQrQO8lupnXa1I1yRVmhZve33TCRMc/k6Lj6Lp5V5iwevVqG7D1vnjgwIEEXzdgwIAE73ma9ATt2LHDDR061CY0/fr1c/fcc0/If1+IbX4ZrzOiQIECbsaMGW727Nl2SkUhhBbiWByHXyfcej1oUqqJthpl671DY5pXMF7Di/w+Xiu4UomIlAIs7S7Xn5Feu3rdamObFrkpnwa/2rx5s23qVCnBBg0a2OaP+K93L2DMjlIBZNj+/ft1VjmwcuXKZL9m5syZgezZswf+/vvvuOf0c+bOnZvsz1mwYEGgWbNmgVOnTgU+//zzQKVKlQKRsmrVqkDhwoUDF1xwQWDhwoURuw6kj/4NzZs3zz7COw4cOBBo1KiRvVf06dMnav7+zvTeJb///rt93bJly+KeK1asWODll19O9ud8++23geuvvz5w7NixwM8//xwoXrx4pl434IfxOiMOHjwY6Nq1a+Css84KVKhQIfDpp59G+pJ8iTE7MjZu3BioWbOmvd5btmwZ+OWXXwJex3gNr/LTeK17fF138KHPz+Sff/4JTJw4MVCgQIFA7ty5AyNGjGDMiADG68g4evSovU6yZs0aKFmyZGDRokWBWMCYHT3YUZ4Jgke+Ujreoa9R472sWbMmeF6rwtrNVblyZTdp0qQE9UF1FPrEiRMuZ86c1nRLR9IipVq1am7Dhg2uSpUq1jm4S5cu1twIQGjo2JjqBmtnyQcffOCGDBnismXL5rzg1KlTbty4cS5v3ry2Qh6fjoGpPrKOfQ0bNizBrlUdmatQoYL9PP3edZoFyEx+GK8zQq/NsWPHWpNglXbS2N+xY0caeyPmy6w89thj7pprrnG7d++2Xao6YeGHWuSM14hWfhmvdZ+vnZ7x6XOVWzjT7vJOnTpZeRrtpu3Vq5e77rrrrIwDEKv0Wp45c6ad+tLpx2eeecZOmDRs2ND5AWN2GEU6qfc6reZqx+fNN9+c4q7QokWLBp588skEzw8YMCCwevXqwJdffhkYPHhw4JxzzgmMHDnytJ+/b9++wMmTJwPR4N9//w2MHTs2kCtXLvs9LVmyJNKXhFRgtdtbOzrbtWtnK8VNmzYN/PrrrwGvrHZrl855551nu1ELFSoUWLt2bYIff+mllwIrVqwIfP3114ExY8YEzj///MCjjz6a5J/Bn3/+GdLfA/zHb+N1Zvx5jR8/3k6S5cmTx36/8XftIXQYs8N3Tztt2rRAwYIFAzly5Ai8+OKLgRMnTgRiCeM1vMhP4/WUKVMS7CZP/EjN7nJZv359oEqVKvZzNI/YvXt3yK8djNfhtGnTpkDt2rXt33jz5s0D27ZtC8QaxuzoQVCeQd26dbOjDjt37kz2aETlypUD9evXP+MbaP/+/QNFihQJeIHemIJvVF26dAn88ccfkb4kpIBB3Bv0d3TxxRcH8uXLF3j77bdtEu+lQVzHuX744YfAmjVrAp06dbJjXZqIJEdHRnVkLtaCCUQnv47XGaWbav3ZBcuxxD/qidBgzA69L774IlCjRg0bz2677bbA9u3bA7GI8Rpe5KfxWuVfUgrK9dDXpHaBYdKkSVaORZvahgwZQigWYozXoffbb78FevXqFVdm5YMPPgjEKsbs6EHplQxQ84+FCxe6FStWWOfspI5y6kiXunerjMKZyibccMMN1izz5MmTLtqpiYAarajJ0bRp0+w4x7JlyyJ9WYAnHTp0yJrxqPmIjomqEYk+V8dqL1E37lKlSlmJpokTJ9pRWH1M6T1Px8J++eWXsF4n/MfP43VG6RjnmDFjrByLjqrXrVvXGietX78+0pcGpNkPP/zg2rRp466//norKaQyK++9954rWrSo8xPGa0Qrv43Xur4+ffqk+DXff/99qn4tlWNRkz59vcqmPfnkk9YIUK9tGnTDa/78808rJ1KyZEkrCxgss6KmnX7DmB1+BOXpoMUeDeIanJcvX+5KlChx2teofre60WbPnt29//777txzzz3jr6sa4Pny5bO6oF6gwbh79+7WgVdvYJo4d+vWzW5gAKTO/PnzXbly5dyiRYvclClT7POCBQu6WPDvv/+mODHRe57eRy666KKwXhf8g/E68yhY/M9//uPmzJljoYM+V+Co4BGIdnv27LF7Vo23n332mZswYYLdv6peMRivEXl+Hq/Vh+jzzz+3IDApCrvTQr/f1157zW3atMnddNNN7t5777X6xPqzjV+vHYhGf//9t9XhLl26tHv66adt89hPP/3knnrqqVS95v2AMTv0Ena+QKqoQcj06dMt0NJq9t69e+15FcfPkSNH3CCuVbCpU6fa58HGlxdeeKHLkiWLW7Bgge1k0aqQXvDanf3iiy9aMyGv0Y2MdpNrpU8r4mo8+PLLL7uWLVt6bkcsEC47d+50PXv2tJ1sTZo0cW+88UZUB+THjh1zP/74Y9zn27Zts0FYTZa04/SFF15wTZs2td/DwYMH3ejRo60p2u23325fv2bNGmtKVKtWLXvf1OePPvqo3fzohh4IBcbrzKUxvUWLFvaepYU9TerLli1rk3D9fzS/h8Gf1OxPjfFeeeUVC8r02lUYp9d/rGK8hhf5fbzWDlA9/vrrrwTNPR9//HF7Pj0UsL/77ruud+/erm/fvjY315+NdunWqFEjE68eyDgt4mherEBcpyLatWvnnn/+eXfZZZe5WMaYHaUiXfvFi5KrH/bmm2/aj6uQfnJfE2w6sHjx4sA111xj9cNUmP/qq6+2JpmqLeZlP//8c6BJkyb2e61Xr15gy5Ytkb4kUD8tqqhx0KBBgwI5c+YMXHLJJdZILFprkceX3Ptax44dA3/99VegRYsW1lwke/bs1hhNjUjjNxpRk6EbbrghkDdv3sC5554bKFu2bEw2TkN0YbwOLdU+HTZsmPVVUDPEvn37Wk1zZAxjdsapnufw4cMD+fPnt3+bTzzxRODw4cMBP2C8hhcxXv9/qkmuJp+prU2eWkuXLg1UrFjR/swaNGhgr3VkDON1xmke/NFHHwWuv/56+7ep3gNfffVVwC8Ys6PTWfpPpMN6xB7VlnvkkUds12yvXr1sZVC1lRC5I0za6d+wYcMz1vJD6CxZssQ99NBDdnxMrw/twMyTJ0+kLwsAMuTIkSNu2LBhtmtXu867dOliY3/hwoUjfWmexJidfocPH7aSAyNHjrR/l507d7axtlChQpG+NACIipINs2fPdv369bPSadqlr1rm1atX5yR4OjBeZ+zfosoBDRo0yPre6OSETjvUrFkz0pcGUKMcodG4cWNrSKiAXBNnHc3WoMy6DPxox44drlWrVlYLVcemdJzqpZdeIiQHEBPOP/98OxqqpkE67jlp0iQry3bfffdRwxxhq0Gu8gJqyqlSC23btrWjzCprRkgOAP9HdYtVskH1y1XqRiVuFEzefPPNVrqGuTrCsbgwefJkd+WVV9r8WOVCtJlMJUMIyREtCMoRMqoNpwYMGoivvfbauKBwy5Ytkb40ICzUZEMr41ooUhO8adOmuRUrVrjy5ctH+tIAINOpTqzqSWpxcODAgXa6rEyZMtb0UwuEQGbTCa2uXbu64sWLW/MvndrSgo12les5AMDpsmbN6u644w4bmzVWK0BXHWQ1/VSA/r///S/Sl4gYo/4Cr776qitZsqS75557rIa+wnHNjevVq8eJBkQVgnKEnHaVqTGLBmFNaBQSalLz66+/RvrSgJD4559/rNHdFVdcYacqunXrZgtEakrCTQCAWKfTMmrurYZEajq0bt06WzBv0KCBNVdjxxoyau3atRbyaKI9b94899xzz9kCjXaTX3zxxZG+PADwBM1LGjVq5FavXu1WrVrlLr30Ute+fXubw2j8Pnr0aKQvER63f/9+20RRrFgx17NnT2sk++2331o+pOayQDQiKEfYaBBWORZ18lZH41KlSlkHbtWQBGKBwh8tCF1zzTWuY8eOrmLFim7jxo2UWQHg25NlWij8/vvv7USNymOoHmq5cuVsxy8TcKT1lNbbb7/tKleubLVM//vf/7pRo0bZDvInnnjC5c2bN9KXCACeVa1aNau3/dVXX7lKlSpZPyX1Gnn44Yfd1q1bI3158BiN0XfddZctvqgOeevWra0cn8ZxTlcj2hGUI+yTZq0k/vzzz9boS8dvLrvsMmsC9tdff0X68oB0++yzz6wRTpMmTaz8gG4OVJdfZQcAwO9HvHWiRpPvlStX2gSpR48eNgF/4IEH3DfffBPpS0QU0z2jNlZost2hQweXL18+q6WrCff999/vcuTIEelLBICYoQ0/77zzji1CKiTX/2s+o4XuOXPmWI1pICnHjx93EydOtIUW7RbX/FgnvXbv3m0nFFRpAPACgnJEhHb96AiOSrHo6Ky6bZcuXdpNmDCBmmjwFO0YV02/qlWrumPHjrkPP/zQffzxx7bjDQCQ8Ii3FhRnzZplE3DtVtOk++qrr3Y33XSTe+utt1g0h1EQo5Iq9evXtxOIY8aMsQadKmP20UcfWdP4LFmyRPoyASBmFSlSxPqNqKyVxmfNc2677TYrodG/f3+3ffv2SF8iomg+rB4hap6tRu4FChRw77//vi1oa3OkFrgBLyEoR0Rdcskltrq4efNmO+6lN1btNNNgzGo1ov2G4M4777SmNyoppMY369evt4a11CEHgDNPwIONP1WO7bzzznN333231ZdWkyctOKrfA/xVvkynsTTZ1mmDFi1auMOHD9vuNPW10SlE1c0FAIT3RLhO8/znP/+x5p/Nmzd3I0eOtN3BtWrVsvdoSqn6j8blESNGuOuuu85dddVVtglCpwS1EXLx4sV2ypoFbXgVQTmignYLzZgxw3355ZfWmEmTZT2n2pPqkAxEC3Xn1g5y3RB8+umnVmdXCz06GaGO8QCA1MuWLZvtUFOTT+08Unk2vbfWrVvXFS1a1D322GNWsoUGoLFLf+/PPvus3f/pqLbKlqmuqf7eFZxr4SRnzpyRvkwA8D2dAHv99dctJJ00aZKVVtNGN21+a9WqlZs7d671k0Bs+uOPP2xDY7169awcmsqiacFE43awoTblVRALzgow80AUUifkIUOGWE20/Pnz2/FsrVCef/75kb40T9LufDVnadiwoYUSSBu9TSrE0eCv+rqq06fGYaq5y58nAGT+e+7atWvd1KlT3bvvvusOHDhgDUDbt29v77vFixd3scwPY/b+/fvt71Z/x/q7zp07ty2Y6O9YOxTZhQYA3qD605qzq2m3Fjg1X7/99tvt5K1KU8byRiI/jNenTp2ykmf6+50/f747ceKEq1mzpo3XGrcpq4JYRFCOqG/gNHz4cFuxzp49uzVtUgMwrVoj9fwwiIeCjv1rZ4Q6deu0gxqTaOW8WbNmMX3TBwDRNH5poVITNL0fq4a5Go3pZI+O9erIb6y9H8fimK3phuqLq2apGnHqCL/C8AYNGliYor9LmnICgLdt2rTJxms9VMNc5dTUU0Lv8ToppjJrsSQWx2s5dOiQlU/RmK3+W9pJrtPUGq91ilq7yYFYRlAOT9i7d6975ZVX7KiXVjV1JFc1LFUfGv4dxEPl6NGjdqxMpX++//57V6dOHdtBro/UHweAyFAjsYULF1rQqjFNNVHVOEqTcAXntWvXjomwNVbGbP0+PvvsM5to66G6pfr7ueWWWyw00aKzGn4BAGLLv//+a+UqtQNZ7/9bt261WueaS2m81rit8dvrYmW8DpZBCy5mr1692jaMXX/99TZeqy49uQv8hKAcnqJJ8ZgxY6wBqI55qQGoAnO9eXt9cAqlWBrEQ0k3cao5rpBctfHVSKx3796ucuXKkb40AECicU0TOU3ogiGs6lirbqZ2KetYsGpee3Fx08tjtmqUfvLJJ3ZMO7iYUbBgQZtox9JiBgAg9bTxSOO1HupDoiBdIawCc40Lmmudc845zmu8PF5r84EWs9U8XX8vOvWlvwPt/I+lxQwgPQjK4UkalObNm2eh5qpVq+xN/N5777UHR4FiaxAPx5+NdjuMHTvWbhQuvPBC17VrV3sUKVIk0pcHAEhjWY/PP//cdkIpoFVgHnyULl3aE8G5l8bsYDAefGzbts2eV3mcYDgei+VxAADp89tvv1lZD43XWlT9/fffbbf5TTfdFDdeeyU499J4HQzGg+P1unXr7F5JJW11/RqvY7E8DpAeBOXwvK+//tp2masWmnYBN2rUyELOW2+91Tpxw1uDeLhoMj9hwgQ3ceJEt2/fPnfzzTfbv5vWrVt74sYMAJB8+az4k8EvvvjitOBck/Arr7wyKsfEaB2z9WeoXYGaXKuxtf5s1UtGdCQ7+GdbvXp1d8EFF0T6cgEAUU7jiubywfFaG+ASB+eao2nBVU1Co020jtei+e369evt9N2KFSvsXuh///uf1Y1X0+zgmO3V03dAKBGUI6YmxtOnT7edwRs2bLBBoG3bttZ0omLFir4eAKJ5EA/3DoZZs2a5qVOnWoiSJ08eq3evgFwNSgAAsUdNqOIH55o4anKuRVEFvLpHCD4Unqt5uN/HbP35qByZ/qyCj6+++sodP37cfpxgHAAQruBcSpYsmWC8VnieL18+5/fxOtjPLf54rYfK1Ioykfin66644gpf5yJAahCUI+bon7QGB+0wnzFjhq2maqVUgXn79u3dZZdd5vwmWgbxSPjrr7/saJ/+PeiYn2riqYat/j2otj3HywDAX3T8WAvqulf48ssv7ePmzZttfFBIrhD42muvdWXKlLH7Bz1KlCgRtvEznGO2QgmVT9FOcTXyUjiuQFx/PsFQvFSpUnGhRLSEEwCA2Jd40VZjtsYojeOieX1wkTs4XqvMmjZDxeIcW5u+NF4HH99++639ufz666/24/nz50+wkKCPun8hGAfShqAcMU3Hi1R3WiHpnDlzbNJ34403WmDepk0bV6BAAecHfgvKdVOlXQjaOT579mw7baBj9sG/d62sAwAQpPsD7WILTsYVFCs4Vkk3yZIli03IgxNxPfS5eqSopIsmp5k1Ec3MMVu3+dpRv2fPHptIq+xY/En2jz/+6E6dOmVfq0UCheLxd9lrwSAaj7sDAPxJ8zyNz/HDc/Up0ea4INXdDobmwY/qPaXxWvPAzJoPZ/Yc++TJkzZe67Fz5864sVq/X308dOhQ3NeqL1vZsmUT7LIvVqwYoTiQCQjK4atJsBp9KTxV4xCpWrWqNa5QwykNoLHKD0G5dhYsXbrU/o4XLVrkDhw4YEf0tHO8Xbt2dpMEAEBq6RZZ4XL8YDn4UG1uLcYHKWTWBDz4CAboahCdO3due+TKleu0/9eppsSNLpMas3UtCu218KuHxrzE/3/w4MG4CXYwGNdHnawK0gS6ePHiCQL/YJBQtGhRW10H9IUAAArNSURBVBAAAMBrVKIlGCgnfmiMjD8OamxOPF4rXNdO9JTG7MTz6OTm2Aq8kxur9dC1JjVexw/CRWXN4o/XwYcWtXPmzBmGP1XAnwjK4Uv79+93c+fOtZIcy5Yts8FMR6yDobl2ncfSZDFWg/Jdu3a5hQsXWji+fPly+3vUyrr+HlVW5YYbbmBVHQAQknFVY1D8CW7iCa8eCq/PRLXSFZbHf+jX10eVg9FD49uZbtm18zs44U8cAAQf2oGmJmkAAPiBxk7N/TU2pzReq863xt6UaB6dNWvWFMdrLaLHX0hPisbhlMZqfV64cGE7rQYg/AjK4Xvaaa6dyArNFbpqIFVJlkaNGrnGjRtb0wuvl2iJlaBcvw8dr/vwww8tHNf/a0GjWrVqcYscWmEHACAaaNKsneDBnWRJ7S47ceJE3ARbD5VCUU3W8uXL25itCbh2rCfe2RZ/t5t2lkV6gf+///2v7dzTbjctVAMA4BWKxTT+JjdW66MeicdrlX1RjfTgeK0gXeNzUmN18PlINw1nvAZSRlAOxKMBb+3atRbCKjjfuHGjPX/VVVfFdYquXr2654JzrwblWo1X7blg5/PVq1fbDUrevHldgwYNLBjXR5qKAQBihRfH7Mcff9wNHTo07vM+ffq4IUOGRPSaAAAIJcZrIDYRlAMpUBONlStXuhUrVlhQq5qk8YPzWrVqWXCu+mHRzCuDuIJx7RIPBuOffvqpBeOq4ap68sHFCjUriebfBwAAsT5mx9+ZVqVKldOe//zzz9mpBgCIWYzXQGzKGukLAKKZanmqGaQesmPHDgvOFeKqYeSoUaPs+RIlSiToOH3ddddFfXgeDTcWmzZtiutYrsfXX39tR9CDwXi/fv0IxgEAiGI6vp3c80y8AQCIDozXQOoQlANpULRoUXfXXXfZIxica9ezQl7thH7xxRfjumoXK1YsQXiuJpNFihSx2mV+88cff9gAvGHDhrhQ/JtvvrHmZGq2qUaq+jNq27atDdLXX389wTgAAB6gGqdpeR4AAIQf4zWQOgTlQAaD8/bt29sjWOP8xx9/TLBLWjW/FBQHO1yXLl3aBqP4jyuuuMLzO9AVeqs0jQLx+A81JNu3b599jRYJgqG4/sz08ZprrrGmJgAAeJHfm2Lp96wap/FrnqoGqh//LAAA0YvxmvEaSA1qlAMhpvB827ZtFhgnDpFVAz0of/78FrwXLFgw7lGoUKEEn19yySXunHPOCWv9NL1F/Pbbb27Pnj32+PXXX+P+P/jYvXu37a7X71UUfCv8j78YoAWCcuXKWVkVAABiQSiaYqV2zI62CX+0XQ8AAEGM19F7PUC0ISgHIujPP/+0Hejxg/P4gfTevXutwWV8efPmdblz57YwOv7HxM9lyZLFdnDroZe5gnoNhip1okBbD9UDV6kYPdQ0M6n///333+0mID6F+okD/VKlSsWF4hdffLF9HwAAYlWommKlZuIdigk/AACxiPEaQFpQegWIoJw5c7oKFSrYIykKs4O7uYM7uQ8ePBgXZMcPtHft2hX3nB7//PNPXCCuh0qjqPRLMDzXQ58nDtu1az3+cwrmE+9q188DAMDPItUUSxP++JNu0ectW7ZkZxgAAIkwXgNIC4JyIIopzL7wwgvtkVyYHurSKwAAIHqaYkVqwg8AgBcxXgNIi7PT9NUAAAAA4ppixReOpliRmvADAOBFjNcA0oKgHAAAAEgH1RlVjdMpU6bYx8GDB8fshB8AAK9ivAaQWjTzBHyA0isAAMTWmK3apzq+rZ1pTLoBAAgvxmsgNlGjHAAAAPAYTbaZcAMAEN0YrwFvofQKAAAAAAAAAMDX2FEOAAAAeAxHuQEAiH6M14C3sKMcAAAA8BA1A6tSpYrr0KGDfdTnAAAgujBeA95DUA4AAAB4aGfa0KFDEzynz/U8AACIDozXgDcRlAMAAAAeoePbaXkeAACEH+M14E0E5QAAAIBHqMZpWp4HAADhx3gNeBNBOQAAAOARagTWp0+fBM+p5ikNwgAAiB6M14A3ZY30BQAAAABIvSFDhriWLVva8W3tTGPSDQBA9GG8BrznrEAgEIj0RQAIrX/++cdt3rzZlS1b1mXJkiXSlwMAAJLBmA0AQPRjvAZiE0E5AAAAAAAAAMDXqFEOAAAAAAAAAPA1gnIAAAAAAAAAgK8RlAMAAAAAAAAAfI2gHAAAAAAAAADgawTlAAAAAAAAAABfIygHAAAAAAAAAPgaQTkAAAAAAAAAwNcIygEAAAAAAAAAvkZQDgAAAAAAAADwNYJyAAAAAAAAAICvEZQDAAAAAAAAAHyNoBwAAAAAAAAA4GsE5YCHrFq1yjVp0sQVKlTInXXWWW7evHkJfvzYsWPuwQcfdEWKFHE5cuRw5cqVc2PHjk3wNSdOnHAPPPCAu+CCC1yuXLncbbfd5vbt25fga95//313+eWXuyuuuMItXLgwLL83AABiBeM1AADewJgNID6CcsBDjh8/7q6++mo3evToJH+8Z8+e7sMPP3RTp051mzdvdj169LBBXYNy0KOPPuoWLFjgZs2a5VauXOl+/fVX17Jly7gfP3nypA3yr7/+unvttddc9+7d3alTp8Ly+wMAIBYwXgMA4A2M2QDiOysQCAQSPAPAE7TaPXfuXNe8efO458qXL+/atGnj+vfvH/dcxYoVXYMGDdzAgQPd77//7i688EI3ffp016pVK/vxLVu2uLJly7o1a9a4KlWquD/++MNVqFDBffHFF/bjlSpVct98843LnTt3BH6XAAB4G+M1AADewJgNgB3lQAy56aabbGV79+7dTmtgK1ascN9//7275ZZb7MfXr1/v/v77b1e3bt24n1OmTBlXtGhRG8QlT5487p577nEFCxa042da7WYABwAg8zBeAwDgDYzZgL9kjfQFAMg8o0aNcl26dLH6aVmzZnVnn322Gz9+vKtevbr9+N69e1327Nnd+eefn+DnXXzxxfZjQc8884wdKdPPZwAHACBzMV4DAOANjNmAvxCUAzE2iH/++ee24l2sWDFrTKJaaFq1jr/CnRp58+YN2XUCAOBnjNcAAHgDYzbgLwTlQIz466+/3JNPPmk11Ro1amTPqQ7ahg0b3PDhw20Qv+SSS6xpyJEjRxKseKsjt34MAACEFuM1AADewJgN+A81yoEYobpoeugoV3xZsmRx//77b1zTkWzZsrmPP/447se3bt3qduzY4W688cawXzMAAH7DeA0AgDcwZgP+w45ywEOOHTvmfvzxx7jPt23bZqvZ+fPnt2YhNWrUcL1793Y5cuSwY2ErV650U6ZMcSNGjIg76tW5c2fXs2dP+zlqKvLQQw/ZAK5u3AAAIOMYrwEA8AbGbADxnRVQ214AnvDJJ5+4WrVqnfZ8x44d3eTJk61ZSN++fd2SJUvcoUOHbCBX45FHH33UnXXWWfa1J06ccL169XIzZsxwJ0+edLfeeqt7/fXXORYGAEAmYbwGAMAbGLMBxEdQDgAAAAAAAADwNWqUAwAAAAAAAAB8jaAcAAAAAAAAAOBrBOUAAAAAAAAAAF8jKAcAAAAAAAAA+BpBOQAAAAAAAADA1wjKAQAAAAAAAAC+RlAOAAAAAAAAAPA1gnIAAAAAAAAAgK8RlAMAAAAAAAAAfI2gHAAAAAAAAADgawTlAAAAAAAAAABfIygHAAAAAAAAADg/+38G6ymOLZL1UgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAHjCAYAAAAT5iygAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQeYU1XXhY8iVYr03pGPjtJROkhTQLpU6ShSlSYgIiBSBUSQIiBdOkiRXqT33ruI9F6kmv9Z+/9uvswwaTNJblvv84RkMiG5c5Ocfc46e6/9isPhcChCCCGEEEIIIYQQQgghxKa8qvcBEEIIIYQQQgghhBBCCCF6QqGcEEIIIYQQQgghhBBCiK2hUE4IIYQQQgghhBBCCCHE1lAoJ4QQQgghhBBCCCGEEGJrKJQTQgghhBBCCCGEEEIIsTUUygkhhBBCCCGEEEIIIYTYGgrlhBBCCCGEEEIIIYQQQmwNhXJCCCGEEEIIIYQQQgghtoZCOSGEEEIIIYQQQgghhBBbQ6GcEEIIIYQQQgghhBBCiK2hUE6IBRk9erTKkCGDihUrlipcuLDauXOn83cnTpxQ7777rkqTJo3q37+/rsdJCCGE2B3GbEIIIcT4MF4TYg8olBNiMWbPnq0+//xz9fXXX6u9e/eqvHnzqgoVKqhr167J79u2basaNmyoFi9eLJetW7fqfciEEEKILWHMJoQQQowP4zUh9oFCOSEW4/vvv1ctW7ZUTZs2VTly5FBjx45VceLEUZMmTZLf3759W+XPn1/lyZNHpUqVSt25c0fvQyaEEEJsCWM2IYQQYnwYrwmxDxTKCbEQT58+VXv27FHlypVz3vfqq6/Kz9u2bZOf+/btKz9DPMfvkG1OCCGEkNDCmE0IIYQYH8ZrQuzFa3ofACEkcNy4cUO9ePFCJU+ePMz9+Pn48eNyu3Llyur69evq3r17KmnSpDz9hBBCiA4wZhNCCCHGh/GaEHvBjHJCbEjMmDEpkhNCCCEmgDGbEEIIMT6M14RYAwrlhFiIJEmSqGjRoqmrV6+GuR8/p0iRQrfjIoQQQkhYGLMJIYQQ48N4TYi9oFBOiIWIESOGNOpcu3at875///1Xfi5atKiux0YIIYSQ/8GYTQghhBgfxmtC7AU9ygmxGJ9//rn6+OOPVYECBVShQoXUiBEj1MOHD1XTpk31PjRCCCGEuMCYTQghhBgfxmtC7AOFckIsRt26daVZZ+/evdWVK1fUW2+9pVasWPFSg09CCCGE6AtjNiGEEGJ8GK8JsQ+vOBwOh94HQQghhBBCCCGEEEIIIYToBT3KCSGEEEIIIYQQQgghhNgaCuWEEEIIIYQQQgghhBBCbA2FckIIIYQQQgghhBBCCCG2hkI5IYQQQgghhBBCCCGEEFtDoZwQQgghhBBCCCGEEEKIraFQTgghhBBCCCGEEEIIIcTWUCgnhBBCCCGEEEIIIYQQYmsolBNCCCGEEEIIIYQQQgixNRTKCSGEEEIIIYQQQgghhNgaCuWEEEIIIYQQQgghhBBCbA2FckIIIYQQQgghhBBCCCG2hkI5IYQQQgghhBBCCCGEEFtDoZwQQgghhBBCCCGEEEKIraFQTgghhBBCCCGEEEIIIcTWUCgnxAY8f/5cbdmyRa4JIYQQYlwQq7du3cqYTQghhBgYrrEJsSYUygmxAQ6HQ924cUOuCSGEEGJcEKuvX7/OmE0IIYQYGK6xCbEmFMoJIYQQQgghhBBCCCGE2BoK5YQQQgghhBBCCCGEEEJsDYVyQgghhBBCCCGEEEIIIbaGQjkhhBBCCCGEEEIIIYQQW0OhnBBCCCGEEEIIIYQQQoitoVBOCCGEEEIIIYQQQgghxNZQKCeEEEIIIYQQQgghhBBiayiUE0IIIYQQQgghhBBCCLE1FMoJIYQQQgghhBBCCCGE2BoK5YQQQgghhBBCCCGEEEJsDYVyQgghhBBCCCGEEEIIIbbmNb0PgBASOBwOh3r8+LF6+PChev78ufr333/lcvXqVXX06FGVO3duFStWLPXqq6/KJWbMmCpu3LgqWrRofBsIIYQQQgghhBBCiG2hUE6IQQXv27dvq8uXL4e5/P333+rGjRvq/v376sGDB3LtehvXL168cPu8PXr0iPD+OHHiiGAeL148ubjeTpAggUqZMmWYS6pUqVTy5MlV9OjRg3gWCCGEEEIIIYQQQggJDRTKCdEJCOEnT54Mc7l48aJTFH/y5EmYx7/xxhsiUidNmlQE7GTJkqnMmTM7RW3X69dff11EbC1z/OzZs2rDhg3q448/lp8hpuOC1wgvtLuK77du3ZL/u3z5cnXlypUwIvwrr7yikiRJ4hTOs2TJorJmzeq8pEuXjpnqhBBCCCGEEEIIIcQUUCgnJMiZ4efPn1f79u1TJ06cCCOKIzNcI3Xq1OrNN98UgblkyZIiPIfP4o4dO3akj+PZs2fyGuXLl490FjhEchyza3a7dvuvv/5S69evVxMmTHAK/DFixHhJPM+VK5fKkydPlP4WElpKlSollj2w55kyZYq8r/3791f169dXbdu2VfPmzZPqglGjRqlKlSrJ/zl8+LDq0qWL2rRpk2za4HM3fPhw2VgBK1askOfA4/C8RYsWVSNHjpSNH4DvTMaMGdX8+fPleXfs2CHfj7Fjx8pjCSGEEMJ4TQghhJgRrrGNzSsOKHmEkCiDrxKyr/fs2SOXvXv3ygVZ2VpG+H/+858wwjEuEJORBR5MIJQjK7xy5cpBtUuBmI6s+PCZ8rhA/MQ5gjCaM2dOlT9/fpUvXz65zps3r9i/2Amci0ePHuny2jjXqAjwNYjjc9y1a1dVt25dNXv2bNWnTx8Rv6tXry6/hwg+Z84c9eeff6qnT5/K57pFixaqcePG6p9//lHdunUTz/x169bJc0IAx+tj0wSVC71795bPx/79+6XiQRPKs2XLpoYOHSoiec+ePdWuXbvU6dOn1WuvcY+XEGJdQhWziW8wXjNeE0JIRDBeGw+9YrY/62vANbaxoVBOSCS5c+eOZMziognjuA+kSZNGBGDtAkEYWbf+DJ5WC+JoMooMYm0jAZdDhw7JsUE8z549u5yrwoULS+CASKrX+QoFaLga7A0Sd0CcRqa3L+C9wAYIPucAt+FbX6NGDTV16lS5D7Y8qHrYtm2bWrNmjTx25cqVzudAxUHatGmlqgIienhQqQBLIXweUHWgCeU///yzat68uTwGzWixwXLs2DH5bBBCiFUxQswm/4Px+n8wXhNCyP9gvDYeesVsf9bXgGtsY8O0PEL8FMbh9Y0L7FSwYwlRvGDBgqpz585OURz+4SQssWLFUgUKFJCLBmxajhw5EkY8nzFjhmQfY2MBAUS7IBvfysK5kUHmtwY2NRInTix2LBp4r8C1a9fUgQMHxIYnognKmTNnRCg/deqUZJHDUgWL7n///Vd+j4x0COURvS6EeO01KJQTQgghjNeEEEKIWeEa27hQKCfEw66gJoprwjgEPQjjpUuXVp999plcZ8iQgQJuJIkZM6ZsLODSsmVL53nfunWr87y3a9fuJeG8XLlyYlljZlCehb9Vr9f2h/AZjdiwcL1P28DA9wN/U5UqVdSgQYNeeh5N7Mbv06dPL5728OPH/4NADtsWd6/r+hqEEEJIqGC8ZrwmhBBiDvSK2ZGxkeUa27hQKCfEBVhELF26VP3222/ip4yMZ00Yb9OmjYi0sIRgZnPwQCYy/K9xAQh0W7ZscQrnaCAJ+w9kFUNwrVq1qjR4RKazmcBnyJ/yLLOATQ94kGMDKSIv8Zs3b4oFC0Ty4sWLy32bN2/W4UgJIYQQ7zBeM14TQggxB4zZjNmBgEI5sTWwTkGmOITxJUuWiM84BNcSJUqo7777Tn3wwQeSuUxhXF/hvEKFCnIB9+/fl00MvGdTpkxRQ4YMESuQ999/X0RzCOzx4sXT8YjtDSotIILXq1dPGoAmSpRIGnD++uuv4jmeMGFCeb/Gjx8vGeawW+nevbveh00IIQEFlVBXr14VeynELWz6ul673samPDaAUTGD/7NixQqVKVMm2XTEhiOaHKMCC/EQ8S38tXYb422KFCnksYR4g/GaEEL+Xw+4ffu29FwKH5/Dx2/4X2vxGhetX1PDhg2d8RrXiMnuYjWu48ePL+sg3KbOQHyBMTu0UCgntgNB7Y8//lBz5swRsfXSpUvSnLBSpUriM16xYkUR84gxwYSiWrVqcsF7uXPnTudGByYrMWLEkAqA6tWrq1q1aokoS0IHrFRQAdCtWzfZtIAABJsVfK8wecRkEKJ5+/btxW4F3vM//PCDVGsQQogZwEIZG4Bnz55Vly9fVn///bdcaxf8fP36dVl8R0Ts2LHDLJwhbGOTHmMkhHKAuQn6OuA5cEFDbNeF+6NHj9weH+IeFuC4YEx2vY1qnzfffFPmPcTeMF4TQqwORO0LFy5IzEZcjSheQyDHeiUiIHq7CtyoBtbiNS4a586dk1iNtSk2ysNvjruzjoRdR/hYrf2MqnbE69SpU1NMJ4zZIeYVh7tZPCEW49ChQ2r69Olq5syZYrEC8e7DDz+ULGRYQIT3iLISdunIDdECgjmEc9i0YCKDvxm7/KgOQENRQgghxJe4ef78eXXy5MmXLphDuC6ikcUd0SIX10mTJg2TSYZLRLZU/sZsLP4h2LsuxJG9Hl4AcP3ZVQhA3w80V8YFC3HtdubMmRkrCSGEmAbIWdhkjiheY8PZtQdSkiRJIozVuCAuYhPZNWZjI9tTxrcv8RrH988//4TZ7L5z544I9O7iNX7vKqa7xmnXCyrJCCGBh0I5sTRYzEIYnzFjhjp48KBkWdWpU0eEU/ha26XUyS5CuSuYfMyePVve+127dkmJGzLM8d6XLFkyTBYAIYQQ+4IFLOYIe/bscV6OHDkiWWFaBnhEC1TYo2DRHeh4EoyYrZWWI+stIjHh3r178jjMi1Dpkz9/fufl7bffpqUZIYQQ3UFmNsRv13gNG1VNWEY8RuVU+E1gLTMblcdmWGNjXgJ7ylOnTkmM1q7Db9ZD3Ed/KNeYjUx0u2gchAQLCuXEcmC3FrYqyB5HVjF2gpE1DoEUPteBDpBmwI5CuSuYVEAwx2cCWeeYKNWvX199/PHHKmfOnHofHiGEkBDGQ/QjwQaqtsg+evSoZGgjPsISShOH0TQaC2xknIVyczXUMRsi+rVr1yRWotny/v375bzgGpYvWHDjPOC8YEFeoEABVahQIdlAIIQQQoIVm7C5u337dolJiN24aBu7qA7XxGGs57QN7FD26dBjja3ZvyFeHz582DmX0azbUMmmnRfE7HfeeUcq3wghvkOhnFiGAwcOqLFjx4ogCrG8TJkyIo7XqFFDsontjN2FctcJFyZb+IzAJ/vmzZuqWLFiqnXr1pJtTmsWQgixXvzDAnL9+vWyeY4eClhkIhbmzp07TBYWfjZCI0yjxGxk1B87dixM5h7Ec2S6IemgSJEi0l8CF9ymcE4IISSqwjhitXa5ePGi/A5Z4q7xGgIwKrr0xijxGucO9i2u8RoXVFgDVIpp8RqV1bCaIYS4h0I5MTXIdEL2+JgxY9SOHTtk0G/RooVc0qVLp/fhGQajBHEjAb+6xYsXy+bKunXrxOOtadOmqk2bNpKNQAghxLzCuLbI3rx5swjj8BpFPxJtkfjWW28ZQhQ3W8yGeA5bGjRF187xrVu3KJwTQgjxG00Y1zazIYyjiglVXZqwi4xo2KcaESPHawDxHPMg7fweP35c7kfFnKtwzoxzQsJCoZyYEnhz/fTTT2rChAnq+vXr6r333lOffvqpNGw0YpDSG6MHcb1Bufm4cePU5MmTxeMO56ldu3byuaKXOSGEGBt4b69YsUIaOf/+++/q7t27IoyjYqh06dKyEET2mbcmmkbBTDEbfrEo/dZE840bN4pwjuzycuXKifUd5mZchBNCCMFm69atWyVeL1myRNZg4YVxbGq/8cYbpjhZZorXABnmiNNazNaEc8yREK+rVKki7wU9zondoVBOTAV8yQYNGqTmz58vHaCbNGmiPvvsMyknItYJ4nrx6NEjNWvWLDVq1Cix8oHX3RdffCFe5kbNPCSEEDuCZl7aQhvZzfAYx0IPi7yKFStKabZZ452ZY7YmnGPjAu8NBBHcB09zbREOixsuwgkhxB7AU3zlypUSsxHbsJmKJpSIB++//75kNCdMmFCZETPHa3D58mWprF66dKn8HXiv0AwU7w0uSDagNSmxIxTKScCA9Ql2hSEuFi5cOKCeW1gEDxgwQK1atUplzpxZderUSTVu3FjFixcvYK9jZcwexEMNPnPwsR0xYoRasGCBZMJBMG/VqhU/c4QQotO4DH9s2K1hsY0GnPDJLlu2rCzmkLWcNm1aS7w3VorZN27ckL8F7xmEEvSQQQM2iOa1a9dW7777Liu3CCHEYqDie+7cuWrRokWSuYy4lidPHonXGP/RFNoKVbtWitewJd20aZNsciNmwxbn9ddfV+XLl1fVq1dXH374IdfBxDZQKCcBoVu3bmrw4MHOn7t27SqZ31EBGUjLli1T3333ndq2bZsE1y+//FKaLpqlfNooWCmIhxp0FMdnedq0aTI5gCVL+/btDeuVRwghVuLChQtq5syZavr06SKOY+zVFtqwx4LFitWwasx+8uSJCCZYhKNHCGz00E+mQYMG0nw9R44ceh8iIYSQKFTmYmxHvMbGKCqHkJGsZSejIafVsGq8RnIC5lwQzHHZvn27WKpBLEe8xvzLSn8vIeGhUE4CkklepEiRl+7HgBqZzHJ4l82ePVsNHDhQyneRbQSBHAGIpbqRw6pBPJSgucywYcPEFx8guxxZ5ihPI4QQEjhQlj1v3jxZbCO7CYszZDNhcQbfa6vHMTvEbCRDoHIL7zGyDuEzjwareI/r1aunUqVKpfchEkII8WHdDusOjOULFy6UqiE038QGaJ06dVSSJEksfQ7tEK+1pAXYkyJxDAI63tePPvpIYjas1ajREKth/noXojuwW/HnfnfAX3TKlCli3YJBFyXUsFxBp2b4l3EAJnqCzyOsWDBRgED+yy+/qEyZMolgfunSJb45UQTNezp27Oj8GVknON+EEHuAxSYW2RDEYXeFBt3oRYJF2bVr19SMGTNUpUqVLL0QtRMouUfDNjTShkcq3vssWbKonj17ygY0NkSmTp2q/vnnH70PlYSD8ZoQcujQIbFCxfqoQoUKaufOnVJRfvr0adkEbdOmjeVFcjsBy7Tu3btLEuO+ffukTxzsSZEs+eabb6o+ffrIGpkYD8bsyEGhnEQZCNv+3B9RaQ9KevLmzSuDLppxYQDG7iwWUYQYCUz6+vbtq/7880/17bffyiQBi3vYDyEjjgSGXbt2ySYEIcTaYCz96quvZBFWo0YNqd4ZMmSIbECiISQ2zq1or0L+B5plo5wbmeVXrlxRP//8syRPoJE2Mss7dOggGWzEmDBeE2IPsHGJDUxUe8MSFbZoyCrGGHDs2DGJ5eglRqwLEhdR/YV5GuZva9euVSVKlFDff/+9ypgxoyQ3QtdBpQExJozZvkGhnEQZ2KtgB9kViIa+2K4gWxxieLVq1aT7NXajUW6NAZgQIwO/8i5duqizZ8/K9ejRoyXDHH7m8OgjUSNp0qSSTUoIsabtBvxL4VmKhdXIkSNFKEWzzt27d4swiqxyYj/eeOMN1axZM7V+/XrJTGzdurWUe+fMmVOVLFlSmrmi+oAYB8ZrQqzNmTNnpJo2derUsoGJ+TnW6+gzMXz4cGnMycpv+xEtWjRVpkwZNWnSJPX333+r8ePHSwUgdB3M7fr166euXr2q92GScDBm+waFchIQIA7Ckxy7zLiGv7i3ci0skCGSQ1TEgnnNmjWqYMGCfEeIqYgfP75kmGMSCT++Xr16SQkavMytsJuOci00MIUtSsKECWVDC3/bw4cPVdOmTWXDABn1v//+u/P/oCwPFgnIAsXjGzVqpG7cuOH8Pf5v48aN5fcpU6YU7/fwhLdeQaZC7ty5pfs6yjxR0gkfRA1Y4UBgwViSPXt2ee6KFStKST8hxBjcu3dP/fDDD/IdxfcT2eM//fSTLLDGjBkjlWWEaCAzEfNJfE5+/fVXua9u3boSH7gAfxnGa0JIIDe0UdX1wQcfyLoG8+zmzZurU6dOqdWrV6uaNWvSCo04wbqrRYsWkq2MhAfM8b777jtp2I11IJIhCWO2maBQTgIGMsgxEHrKJEeJDgQyLIZRooUsIQym5cuX5040MTUQhH/88Ud1/PhxyXqDbQgy4ObPny/2Qu6AaIyL62OePn0q9z158iTCx2LyqoHMOtz3+PFjnx4bGdA7AJYzmORANId3cO3ataVZz969e+X7i+8+Nr3u3Lkj2QVvv/22fLcxyUY2ARr6aCADf+PGjWrx4sVq1apVasOGDfI83vxsIbAdOXJEjgeNg8JXsuD1hw4dKp7G6G+A8aZz586R+psJsWNjbnx3cB1osGGF7yu8p5GVhvEBTTphs4axktYqxJs1CwRyxI0DBw5Iabe2AMfnB5nnoYDxmvGaEKvHa6wVMM/OlSuXJL3ABg12WMgeh90GkmMI8UT+/PklqQqfmQEDBohnPfQhWPYsXbrU47rYrDE7snCNbWAchISAx48fO/r37++IHTu2I3ny5I4xY8Y4nj59ynMfInCuFy1axHMeQvbu3euoUKECIrOjTJkyjqNHj0b4OPwel2vXrjnvw3cF97Vo0SLMY+PEiSP3nzt3znnf8OHD5b769euHeWySJEnk/sOHDzvvGz9+vN9/R8mSJR3FihVz/vz8+XPH66+/7mjUqJHzvsuXL8trbdu2zdGvXz9H+fLlwzzHxYsX5fcnTpxw3L9/3xEjRgzHnDlznL+/efOmjA0dOnRw3pc+fXr529wxd+5cR+LEiZ0/T548WV7j9OnTzvtGjx4t4w0hxDNdu3Z1jkW44OdAcObMGUfr1q0dMWPGdMSPH9/RvXt3x6VLl/h2eIEx2zu3bt1yDBw4UMb4V1991VG3bl3Hvn37gvrZYrxmvCbEqvH64cOHjh9++MGRLl06ed6qVas6Nm3a5Pj3338D8vxWhfHaO1g7Ll682PHOO+/IZyt37tyOGTNmOJ49e2aZmB0ZuMY2NswoJ0EHGaXYlUY35M8++0xKtpCRGj16dJ59YlmQMYnP/rJly6QLOJrewLvf1S7ELODYXf3oEidOLDYortn0AL50yPaDtywyRLVLtmzZ5Pewp8EFu/mulSeJEiVS//nPfzweA6yZypYtK/6IsHtBBvvNmzfD+MHDM9G1iRBsXXBMhBD3ICNt8ODBYe7Dz1HJVDt48KCqX7++lGuj4fHXX38tFR7IAkZzRkKiCqzAEFPPnTsn1Vz4vCLuVq5cWaoV7ArjNSHWJRjxGpWg3377rVhaderUSWxRYZGKqs9ixYqx4ptEGawdq1atKr3pUBmGtRzsSrH2Gzt27EsZ23aCMdu4UCiPBPDTxIca3sS4FC1aNIw/LxoZwCcQv0NjCwSg8CAY4Xeul/C+3ihZSZ8+vUz8g1FaFWzOnz+vqlevLmVb8BSGgIaSLYhchNgFLNrh2Q2hCNYhEI3RjEwrA4NwjgusTVytSXAfFv+uQPTF/Sg318DmE+6bOHHiS98/3A8vYI0mTZpE6m8Iv6mF8cr1PvQo0MYsvCb6D8B2RitNwwWg8Y8r6IqeNWtWmSjBu9gd+FvgkYhxF1Y2e/bskeapAKK7p+MMVXkfMSaM1945efKkX/d7YuvWrfL9h70abmPMw0bhl19+qRIkSOD38xHijdixY0vyBZIwpk+fLn7mJUqUEIEHG9WBjAFWiNdawz00W4OXLL6vaKLrGrO1uUv//v0jjNmwTsQGRUQwXpPIwngd2nh95coV2WzEGIWeD7Vq1XKOo0hwIyTQIP4gPkM3g+UmmsCi5xQaf2LD5/79+wF9vVDG7MjCNbZxoVAeCeCxCVEbYg08eOHHiwknvHMBMhzRwKBHjx4enwcNAOHbqV3g/auBzCsMGGhe1LNnT2maZxawK4jJdY4cOcTTGD7ka9eulZ8JsSOxYsWSJp9YXKJhLbxWy5UrJz+jOSUurt3iY8SIIffBl9UV7bHw63YNsLgPr+HLYwMNFtrjxo1z/pwvXz4ZC3E8LVu2DDPGDR8+XDK+cRzIKsAEBA38kGWKRfeLFy8ifA2MtfCBQ9PPIkWKyEIdzf8I8QbjtXfwffLn/ojARjiENfhPomoEnotYcOM7DiGTkGDz2muvSYYaPovIhEQ8wQYremkggy0QmD1eazEbIBEnWbJkEq+RvIPvafiYPXLkSDkOJOvAzxXfZ21jHH1CXDeqNRivSWRhvA5NvEYCH7QFzMexOQGhEsIf5uMQLAkJBUgEnT17tvT2Qt8RrJMzZcqkRowY8ZJ/uBlidjDgGltfKJRHAmRfYEGIkmIEJpQrwV5g+/bt8vuOHTuq7t27i6DjCWRWp0iRwnnBF04D2ZVvvPGGZFCiIcI///yjzAC6YMOS4ZtvvpEJNQa/jz76iGVbhPy3kmThwoVq+fLlTjsWNLhztQ8xE9hNhzCBTHINfO9v3bqljh49KuMYstMgXCCjFGMcxsrmzZvLz1hkY6Ki/X93QjkaB6GhyqhRo9TZs2elgRFK9QjxBuO1d2CDFL4xLrLMPDXm1sAGV8OGDWXBA2Ecm/uooEHTbtqrET3AwhUl3qhowJz0+fPnUuWJ6kZkTtsZLWYDxGLMQRCv69WrJ/EaMVmL10mTJhWbJMRrZOCh8TZiNKpmsSkB4SEiMYPxmkQWxuvgxmsksqHhPQRyJK506NBB1iJI/oMOQYgeQEtDs1gkWSDxFA3fUWk8depUt+tCO8A1tv5QKI8i+AJjYQgxCBYs/oDABK9fLDBhSYLJvAZKnjCBRakyyiHDlz8aDUywW7VqpcqXLy++U7RZIcQ9WLC72rG89dZbsqg3GxDFkQWA7HgNLKzR3RzAYgaLZogW+Hs1DzqMdyi9u337tlxjAY4sFuzyRwRsHL7//nvJZMPYOGPGDMlCJ8QfGK/dg+8WNvuxMMF1eCu48KBEtX379rKYQcUYMtGwOYZqmWBn2BDiCxByEZtQ2YhYhEU45tsQirHhake0mK0BsRzxGmMjPIlRCYLfw2IFGafYxEe8hmcxkl4w10e8xv1Yo0Rkpch4TQIB43Xg4jX0hUmTJkmCHxL5ateurU6fPq0GDBggvR4IMQKw6YVgjvUiqpM//vhjWR8vXbrUljaaXGMbAL27iZqVgwcPOl5//XVHtGjRHAkSJHAsW7bspcesX79eOuLevn37pd8NGzZMfn/gwAHHTz/95HjjjTccnTp1eulxN27ccDx69MhhZFatWiUdsnE+xowZ43jx4oXeh0TCwY7cxuXYsWOOIkWKOF555RXH559/bvjvu8asWbMcuXLlcvzzzz/Ozt0dOnRw/n7cuHGOFStWyFg5ffp0R+rUqR3Vq1d/6Xnu3LnjuHfvXkiPndgLxuvAcffuXUfv3r0l3mPuM2DAAMeDBw8C+AoEMGYH55yOHTvWkTJlSkf06NEdbdu2dVy5csU2HzjGbGIGGK8Dx7///utYsGCBI3v27KJH1K5d23HixIkAvgIBjNfBYfv27Y5SpUrJZ7dYsWKOzZs32+YDx3htDCiUR5InT544Tp065di9e7eje/fujiRJkjiOHDnis1AenokTJzpee+01x+PHjx1mAeJWq1at5G8sU6aM49y5c3ofEnEDg7ixef78uWPw4MGOmDFjOrJmzerYunWrw8j8+eefjmTJkslGn0Z4oTw8a9eulbHi9OnTITpKQv4fxuuogw3wSZMmOZImTSrjVOfOnWUjnwQHxuzg8fDhQ9ngwUYPNnwGDRokY4SVYcwmZoHxOjDs379fxEXMu8uWLevYtWtXgJ6ZhIfxOribPb///rsjb9688lmuWbOm48KFC5b+EDJeGwcK5QECQQiicWSF8sOHD8tjjx8/7jADq1evdmaRjx49mlnkBodB3BwcPXrUUbhwYcerr74qQpRRs8sXLlwo4xUqarQLfkZWPG5D+A8Psk7xGGSZE6IndovXUWXv3r2OokWLyt9cv359mcST4MKYHXxu3rzpaN++vcTbbNmyOdasWeOwKozZxKwwXvsH5jCu49rKlSuD9M4QDcbr0CRrTJs2TSrC4sSJI5vdZkou9QfGa+NAI8kA8e+//0apQy8aDMHXEx3ojd5Y4NNPP1XvvfeedCaGpyG6ZdOTlJCokz17drV582bx30bjSvip7tixw3CntmzZsvLdx7ilXQoUKCDer7gdLVq0l/6P1kQtZcqUOhwxIfaL11EFPQTatm0r3214E2/YsEH6A8BHkhCzkyhRIjVy5Ei1b98+lSRJEvEzh8f+X3/9pawGYzYxK4zXvoHkR3iWo2/IxIkTxbcc/cLQO4wQs4M5NxrHHz9+XH3yySfqq6++kj4Z6JlhNRivjcNreh+AGUE3eDTjS5cunbp//76aOXOmLCBXrlwpv79y5Ypc0CgDQFBCwxs8HhPzbdu2ifhVunRpuR8/d+rUSQYAIzfVQMCtU6eOLCJGjx4tAxUFckICy2uvvSYd7atUqaKaNGmi3n33XfXtt9+qLl26GOb7hnELTTVdef3116U5Me5H0zSMi5UrV5b7Dh48KGMcGndiYkNIqLBrvI6qMIGmft26dZMGvEOHDhXBPHr06HofGiEBBzHpjz/+UNOnT5c4my1bNtW7d2/VsWNHtw2mzQZjNjEDjNeRX58jRiPRBpt9iNlp0qQJ8LtDiP7Ejx9fDRs2TDVt2lQ+8xUqVFA1a9ZU33//vczbrQDjtYHQO6XdjDRr1syRPn16R4wYMcSvE2VhaGip8fXXX0uJcvjL5MmT5fd79uwRewX4I8aKFUuabBi5hAT+UGg4Cl9SeETZpdzcSrAszLzv25dffimWJhUqVHBcvXrVYVRcPcphzVCiRAlHokSJZNzIkiWLo0uXLtIIkJBQYrd4HQhfU81mpUGDBo6///5b70OyJYzZ+oDm0h07dhQLMdgWoLeGVWHMJkaD8do/MKfWbFYwN7HyeGVkGK/106dmzpwZxo7Fqv1GGK/14RX8o7dYT4zL3bt3VcuWLdXcuXPFYgW7eLFixdL7sIifPHv2TC1fvlwyfJkVaD5QWtaoUSOxNEFGbKlSpfQ+JEKIhXj69KlUrgwYMEBKt1E1VrJkSb0Py7YwZusLKks+++wztWnTJtW6dWs1ZMgQyfIihBAjsHr1atW8eXN169Yt1adPH9WhQweu73SC8VpfYA3Yt29fNWLECJU7d271yy+/qLx58+p8VMQKGKOOnxiSXbt2iUcyRLp58+bJwpkiOSGhBx6D8EWGhzm8y7755hv14sULvhWEkCiDsaVQoUIikvfs2VPt3buXIjmxNVhsw6JpzJgxYsmCn9euXav3YRFCbA5EQWzeYV2ATe0jR46ozp07UyQntrZjgd3Qzp07ZW2MvjoQzrGBQUhUoFBOXgJFBsOHDxdv5KRJk0qjI/g/EUL0A00wsWmFzBFMANB47O+//+ZbQgiJdBY5xpOCBQtK3MfmOH62ii8zIVEBPUHQvP7w4cMqc+bMEnPxM3odEEKIHlnk2LRDZenYsWNlTZA+fXq+EYQopfLly6d2794tvQ6wTi5cuLD0yCIkslAoJy/tVFevXl19/vnnqn379lJ2mjFjRp4lQgwArFfQ6XvdunXq5MmTUlqG24QQ4m/zL2SRw26lR48eIpK/9dZbPImEhCNDhgwiUKGqctq0adL8k3GXEBIqsDmnZZG/+eabYg2Fn1955RW+CYS4gEQPiOQ7duyQjHJkl/fr14/Z5SRSUCgnTk6fPq2KFCki5aZLliyRMhZmlhFiPOAdDLsEWCNh4owFPNtNEEK88fz5c1lEYPHw77//SqkqrJwY6wnxnF2OPj0QqCCcwwINHuYPHz7kaSOEBA1syiGLfMaMGeqnn36STTuMQYQQ9+TPn1+yy7t27SpzXOhbqA4jxB8olBMB3ovILoO3E3bhPvjgA54ZQgwMbJHQoLVdu3aqbdu26pNPPhErBUIIiYiLFy+q0qVLi1CO0lQsIrDZRgjxDVRYYr78448/SsMw2BZx8U0ICcamdq9evcTyKVOmTDLOYJ7PLHJCfCNmzJiqf//+avv27erJkycSrydMmMDEMuIzFMptDrJQR40apSpUqCBCOQYTNAchhBif1157TfoJTJo0SRbtmFBfv35d78MihBgMVInBWuXChQtq48aNIpYzi5yQyGWXI5t8z5490kCPi29CSCD566+/ZFN74MCB0mR7zZo1zCInJJKgghL2gk2aNFGtWrVS9erVE6thQrxBodzGIPsUAwa8yDt06KCWLl2qEiZMqPdhEUL8pGnTpmr9+vXiW45FO/yHCSEEcR49R6pWraqKFSsmlk1o1E0IiRrZsmWT5BJt8V2/fn0uvgkhUQJrcfQf0ja1u3fvLptzhJDIEzt2bLEumjNnjvr999+l8Sc2uwnxBEdekwAv0UBy7do18VicOnWqmjx5sho2bJhkpxJCzMk777wjO+aJEyeW2/Pnzw/o89MDnRBzfVfOnj0r4jhsIkaMGKEWLVqkEiVKpPdhEWK5xffs2bPFCs1Ii2+jjEOE2G2NHdlN7S+++EJVqVJFNrP37dvHTW1CAkzt2rXlu4XE0KJFi6offvjBELHSCGMQeRkK5SbxKfvjjz/U3bt3A/J8R48elazTU6dOSeNOZMMQQsxP2rRp1aZNm6THQK1ataRkMxATAARwLP4vXboUkOMkxKrg+3bw4EFpjq0nc+fOFf/xmzdvqq1bt0rVGL1NCQkOderUUXv37lVvvPGGIRbff//9t/QbMoIAQIiRuX37ttq2bZustfXe1IYVKuwUFy9eLEkvhJDAA8//LVu2SH8vzI2rV6+ubt26pdup/ueff2Tt/vjxY92OgUQMhXITgEzvlClTymIXYjkmv9OmTZNrf8FkAME4QYIEkn2KCT0hxDrEiRNH/frrr6pPnz6qZ8+eYq0UlZ1q/F8IAPBzS5IkSUCPlRCrATE6ffr0YoOkh1iOxT6y0iDcVaxYUb678GckhASXzJkzy+Ib/uVYfH/00Ufq0aNHuojk+N5nyJCBm2OEeCFevHhyDRslPcTylStXqvz58zs3tTt27MjvLSFBBj16vv/+e9mUQjIqqsGQ5KKHSI55Q/z48aX5KDEWFMpNAhpsYgds9erVqm7duqpx48aqSJEiqlu3bn75nsFuJXfu3DIoIPuUEGJNse7rr79W48aNU2PGjJHGJej4HRWRHKWgDOKEeAdZpbA/CrVYfufOHakmGTlypFywYYZNcUJIaECMREbovHnzZM6NxJSLFy+GXCTH5liKFClC9rqEmDkZrXDhwjJvDqVYjmoPjBWVK1eW+QKqNrmpTUhoQf8e9O6BFQu+hwsXLgy5SI7qkbfeeosbZAaEQrmJwCIYTQj69u0rGWtg8ODBPmWWw4f8ww8/lAwz7F5jIU8IsTZoMIYFO3bMMRn3p8s3RXJCzCOWnzhxQhb7O3fuVCtWrJBKElqtEKIPNWvWlOxQlHND/MLtYEORnBBziOVIXGnWrJk02u7cubP67bffuC4nRCfSpUunNm/eLOvkGjVqiM4WbM9wiuTmgEK5icCCG76jyFJxFctxv6cd64EDB0pAbt68ufz/WLFihfCoCSF6Au+1VatWSbZKqVKl1NWrV73+H4rkhJhHLP/9999lkR8tWjQRysuVKxe01yKE+EbevHnF4jBbtmwSeydNmhS0U0eRnBBziOVXrlxRpUuXVrNmzRIb1UGDBknsJoTox+uvvy5Nufv16ycV2XBvePjwYVBeiyK5eaBQbiKyZs0q1+HFcu3+iMSuTp06qS+//FL17t1bjR07lsGYEBtSokQJsVvCBB0WKmfOnHH7WIrkhJhDLMdG+LBhw8RuBRYP6EGSJUuWgL4GISTyJE2aVCwTmzZtKskqmJMHWoCjSE6IOcRyJKwULFhQnT9/XubkDRs2DOjzE0IiD773vXr1UgsWLJAEFKyXL1y4ENBTSpHcXFAoNxEI3l27dg0jlg8dOlSyVcLz7NkzCcA//PCDeBR/8803LMMmxMbkyZNHyr+RuQLhbt++fS89hiI5IeYQy1G63aRJEynb7tKli9gr0Y+cEGM2DUOiyo8//qhGjRol5d23b98OyHNTJCfEHGI5slWxoZ0yZUqpNClUqFBAnpcQEvhKbKyXYXmMjS3YsgQCiuTmg0K5yUCJFgL31KlT1RdffCGNOfFlvnv3rvMxT58+lZIReBPD0/zTTz/V9ZgJIcYgQ4YMEvDhx1amTBm1e/du5+8okhMSOrEcvUVQdu1Lj5HwoNdApUqVZOE9ffp0sVdj6TYhxgWi22effSY2aIi7qPK6dOlSlJ6TIjkhoRPLoxKzv//+e/XRRx+J//HGjRtV6tSpg3LchJDAJZdhQyt79uxiZxjVJp8Uyc0JhXITguDdqFEjuf7Pf/6jMmXK5BTLkWVWq1YttWzZMikdwW1CCHEtBV+zZo1UoiD4w9OYIjkhoRPL9+/fr7777jvVuHFjVaRIEdWtWzefnwP2SSVLllR79+4V0a1BgwZBPWZCSODABvWWLVtkvo6x4Pjx45F6HorkhIROLJ85c6b0GfA3ZsMeDZXgSGyDDSo2tmPHjs23jhCTrJcxz65ataroaePHj4/U81AkNy8Uyi2AJpZv2LBBvsz4Ui9atEh8SwkhJDywaFi5cqXKmTOneu+999Qvv/wiWarwY4sZMyZPGCFB4sSJE7LIxqS7WrVqct/gwYN9ylJDJjq+o2jIC39TZKUSQswFMtSQ3BI3blyxYvA3Q5UiOSGhE8tRrQWfYngXx4oVy+eYDQtU2KMNGTJEjRgxQg0YMIAWqISYDKyJ0XgX7gytW7eW/oDYAPMViuTmhkK5hSwVhg8fLmI5vtAoyyaEEHfEjx9fLV++XGXOnFm1a9dOFgQUyQkJLrBeOXv2rPr666/DiOW43xPIIIdIju8pRDaUhRJCzEmaNGnUpk2bpLILWeYrVqzw6f9RJCcktJw6dUr1799fKi9dxXJPMfvhw4fqww8/lPU4stE7dOgQwiMmhAQSbJahv0i/fv1k7t62bVv14sULr/+PIrn5oVBuAeBJXrt2bfFR++mnnySIu3qWE0JIeDDpxwIAgT9v3ryqSpUq4sdGCAkeWbNmlevwYrl2f0SsXbtW7FbSp08vPQawMU4IMTeJEiWSCtCyZctK/IX/sScokhMSehCbsc4OL5a7i9k3b96U7zS8yGGDWq9evZAfMyEksMCCCd992K+gOTd6Djx+/Njt4ymSWwMK5SYHpV1o3AkbBditNGvWzOlZDtF8yZIleh8iIcRguHqSw6dcs2EpX7682rNnj96HR4hlgecpPEtdxXL0HEmcOHGEj0dDblSIIZt83bp14plICLEGceLEkX5C8D7GZdiwYRE+jiI5IfrGbFexHGJZ/vz5X3rsn3/+KXZKiO2o8Ia1ISHEOrRs2VLNnz9fLV26VObmWEeHhyK5daBQbmJQ9tGwYUNn486KFSs6PcsPHDigPvvsM1WzZk2K5YQQJxE17owXL56UfmPswMT+8OHDPGOEBIlBgwZJBdjUqVOlLBvZZyjjhge5K/g9stFQMfbbb7+JpzEhxFrATunnn3+WZn+dO3cWD1RXKJITYoyYje8p5shISMPPz58/dz7m3Llz0jcEWaZo2FugQAFdj5kQEhxgq4RqsH379kmC2Z07d5y/o0huLSiUmxQ0EoDn2bx589Ts2bPV+++/H+Z3R44ckWtknFMsJ4S4E8ldPcshlqdLl05VqFBBmhcRQoKXpYZMcly/8cYb6p133gkjlk+ePFkagTVt2lQsGWLEiMG3ghALl3Wj2Z/mgdq7d2+Zw1MkJ8RYMbtIkSJyG99ZTSw/c+aM2KNFjx5dGm2/+eabeh8uISSIFC9eXGwRMW/H5tnt27cpklsQCuUmBRPq0aNHi09S9erVw/wOwRuL7Pr168vPFMsJIZ5Ecg0Idr///rv8DmI5vBYJIcHHVSz/9ttvxUatVatWUuL96qucqhFiB+CBOnDgQBHM27dvL1ZoyExNkSKF3odGCHGpAtHE8rlz54pIHjt2bLFbSZs2Lc8TITYA9kuwREQ1SenSpWX9DBvFt956S8YGYn64+jIhKP3CZBoTaXgluQviU6ZMoVhOCPFJJNdImTKleJbfunVLKlUePnzIM0hIiMRyZJQjvsNWDX1GKJITYi+6deumvvrqK/Xjjz+q1atXq+TJk+t9SISQCNbZEMWwoYXba9asUalTp+Z5IsRGQBRfvny5VGH36NFDqrIpklsHCuUmY/Hixap169biP96zZ0+Pj9XEcnTmBcwsJ8R++COSa6BsFDvjsHCqU6eOjB2EkOCCSrCOHTuq5s2bS9xGOTchxF7AbqVQoUJiwTJq1CjVp08fvQ+JEBIONOyE5QLE8h9++EGEMlfPckKI9YEnOdbX48aNUzdu3JBqbFfPcmJuKJSbiE2bNsniGZ7jI0eO9GnHCmI5/E3REAxQLCfEPkRGJHctKUOTYGS0tWjRQvxSCSHBAXEaArlmt4Lva0QNPgkh1sXVkxwCOZoIorknKkgJIcbg/PnzYrUAuxVYL1SuXDmMZzkhxPq4Nu6sXbu2eJbDhgVi+d27d/U+PBIAKJSbhEOHDqmqVauKhykW1NGiRfP5/0Isnzp1Km1YCLERURHJNZAtg7EDl+7duwflOAmxO/Pnz5fGnfAlHzNmjNitRNTgkxBiXSJq3Nm1a1fpWYDmnt9//73eh0iI7bly5YoqW7asNO5cv369SpUqVRjPcorlhNhLJNc8yfPmzSvJZZi3w7r00aNHeh8miSIUyk0yea5YsaLKkCGDWrhwoVfB69ixY7K7jRIQT57laBjELFFCrEcgRHINVLGggmXw4MFSBk4ICRxo/oW4DIuj8I07KZYTYl+RXAO+p19++aX64osv1PTp03U7RkLsDrJEsR5/8uSJZI+6epJTLCfEviK5Rr58+dSKFSvUvn37ZP3MChNzQ6HcBF/GDz/8UBbPaBYQP358j4+HR1r58uXFX7h48eLq0qVLEYrl2PXq1KmTCGmEEOsQSJFcA82KPv/8cxkz0LCIEBJ19u/fr6pVq6ZKlCghsTmixp0Uywmxr0iugaxyVJw0bdpUFuGEkNDy+PFjWY9jnY3vYPr06V96DMVyQuwrkmugugSVotDi0FeQSanmhUK5gcEXC36lhw8fliaeKVOm9Pp/Hj58KEIZgHda3Lhxw/xeE8vhd547d261detW+igRYhGCIZJrIKMcVizIfKUVBCFRAz6GlSpVksa56AUQI0YMt4+lWE6IfUVygMU4moVhzECfoh07doT0OAmxMy9evFCNGjUSW5UlS5aoXLlyuX0sxXJC7CuSa6DyZNKkSXLp1atXSI+TBA4K5QZm6NChUmY5efJkKeXwhRw5cqjNmzeL9Qp2vBMkSBBhEI8XL576z3/+ozJlykSxnBALEEyRHKAvwqxZs1TSpEmlXwKrUQiJHNeuXZPKL2xko1IM8dgbFMsJsadI7jp3//XXX9Xbb78t/qcnTpwIyXESYvekNVRVYkN79uzZqlixYl7/D8VyQuwrkmtgcw1a3oABA2hdalIolBsULJ67deumevbsqerWrevX/82YMaNatmyZSpYsmdfHUiwnxPwEWyR3Fet+++03WeDDwglZNoQQ37l//76IXA8ePFCrVq3yKU67fv/Y4JMQ+4nkGnHixJEYjP+DzTZXe0VCSODp37+/NNlGDxEkifgKxXJC7CuSa6C3SOfOnVWHDh1ko42YCwrlBgTNOOvVq6eqVKmi+vbt63Wn+48//ojS61EsJ8S8hEokdx0vkNUG7zWWkxHiO0+fPhXbhJMnT8r3B5va/kKxnBB7iuQaiRIlkopRzP9R3n3nzp2gHCchdgfieO/evaVHQPPmzf3+/xTLCbGvSK4xaNAg1bBhQ8kwRxNgYh4olBuM27dvy4512rRp1bRp0yJs7hXeN7hkyZIiWEWlWQDFckLMR6hFcg0szjH2DBw4UM2cOTMkr0mImUF8btu2rdqwYYP0HMGEO7JQLCfEniK5Rpo0adTKlSsloxx9Q54/fx7Q4yTE7qBxfZs2bSRuf/nll5F+HorlhNhXJAfQ8iZOnKjKli0ryTK0TTMPFMoNBGwMPvroI3Xr1i1ZSMePH9/j4/ft26e6d+8ut7HbjcacUYFiOSHmQS+RXOPzzz9XjRs3liybPXv2hPS1CTEbKN2eMGGCGjt2rCpVqlSUn49iOSH2FMk1smfPrubOnavWrVununbtGpBjJIQoaViPDahy5cqp4cOHR1og06BYTog9RXKN6NGji/VKqlSpJCGWlWDmgEK5gYDZ/+rVq9WcOXNU5syZvT4eX9yRI0fKTlW/fv1ELIsqFMsJMT56i+QAk4Zx48apXLlyyYLi7t27IT8GQswAhCz4E3bs2FE1a9YsYM9LsZwQe4rkGshQGzFihIh5v/zyS8CelxC7gnk1hCw0rofNIETuQECxnBB7iuQaSIBFj5Hr169LYiz7fBkfCuUGAT7jffr0ES80THx9AV9cdOLetWuXNP0MFBTLCTEuRhDJNWLFiiU75Ddu3FCtWrWKkv0TIVbkzJkzqnbt2qpMmTJqyJAhAX9+iuWE2FMk1/jss89Uy5YtVevWrdW2bdsC/vyE2AUIV2hUj+8sBC3E10BCsZwQe4rkGlmyZJGEWFg7devWLaDPTQIPhXIDgJ0lNO8sUaKE+uqrr/z+//ny5Qv4F5liOSHGw0giuUamTJnUzz//LIEf1hKEkLCZaWi+hw2lQGWmhYdiOSH2FMkB5v8//vijKlSokKpevbr666+/gvI6hFgd9PtCo+1Zs2bJOjgYUCwnxJ4iuQYsnb7//ns1bNgwNWXKlKC8BgkMFMoNIHx9/PHH6unTp2rGjBkqWrRoHh8Pe5bjx4+H5NgolhNiHIwokmsgY/bTTz8Ve4mDBw/qfTiEGOL7ii73EK2QmZYwYcKgvh7FckLsJ5JrxIgRQ82fP1/mBR9++KF69OhRUF+PEKuBxvRoUI9G9ZUqVQrqa1EsJ8SeIrlGu3btpMcXqrG3b98e1NcikYdCuc5gRwm719OmTRODf0+gYy4sVpA1goV3KKBYToj+GFkkdx3LsmbNqurWrasePHig9+EQoiuoDlu6dKlkpqHpXiigWE6I/URyjWTJkqnFixerY8eOyQKcVmiE+Mbu3bvlO4MG9WhUHwoolhNiT5Ec4DVGjx6tChYsyEowA0OhXEewg/Tll19Kt/qKFSt6fOzz58+ltBLcv39f3bp1K0RHSbGcED0xg0ju6ld+8eJF1bZtW70PhxDdWLZsmVR/fffdd6py5cohfW2K5YTYTyTXwCIfpdxoQjhmzJiQvjYhZuT27duqVq1aKk+ePNKgPhQimQbFckLsJ5JrYD2PSjCMA7BghtZHjAWFch0DMzreYiLdv39/r4/Hl2jTpk2qQYMGIkI1adLkpcegic/NmzeDcrzMLCck9JhFJNfIli2b+umnn2ShTt81YkdgtQI7tQ8++EA2wfWAYjkh9hPJNSD6tW/fXjJj9+3bp8sxEGIGUHXRokULdffuXUn0QMJHqKFYToj9RHKN5MmTS+UpNLw+ffqE/PWJZyiU60SbNm0kMCPrI3r06D79n7hx44pFy4gRI1763alTpyRzDZPzYHkEUywnJHSYTSTXaNSokWzkffbZZ+rcuXN6Hw4hIQPZIPXr11exY8dWv/zyiy6Tbg2K5YTYTyTXgM9yrly5VJ06daQKlRDyMqi6WLBggZo0aZLKkCGDbqeIYjkh9hPJNYoVK6b69esnlairV6/W7TjIy1Ao1wEEZQjk8CZKnz69X/8XX+SIGn5+8skn6s6dO+r8+fOqaNGiau7cuSoYUCwnJPiYVSTX+OGHH1SSJElUs2bN5G8hxA707dtXbd26VbJDMPnWG4rlhNhPJAeYMyBD9urVq6p169b0KyckHPv375eqCzTVq169uu7nh2I5IfYTyTW6deumypUrpxo2bKiuXLmi9+GQ/0KhPMTcuHFDffrpp9KVHn5Enti1a5dq2bKlT43xkL2GCTpAt3tkkRQvXlw9ffpUBRqK5YQED7OL5CBevHjSfHjDhg1ixUKI1Vm7dq3YqH3zzTeSHWIUKJYTYi+RXCNLlixq/PjxsnGHjFlCyP+DKgusk3PmzKmGDBlimNNCsZwQ+4nk4NVXXxXXCFxDLH/x4oXeh0QolIce+IujPBvikacvJ8RxlHD//PPPKl++fOrChQsenzdt2rTqjz/+kI7dGps3b1apU6f2+n8jA8VyQgKPFURyjbJly0qlC3yaz549q/fhEBI0kLWJ/iH4zHfv3t1wZ5piOSH2Esk10AsJCTfImj18+LDeh0OIIXzJMTe9fPmyVF0YbZ5NsZwQe4nkrn7l06dPV+vWrVMDBw7U+3AIhfLIs2PHDtn5wbWvoLMtgvKPP/7odUKNkjCt9CJhwoQqVapUXp8fvqjIGsmRI0eYDHYs3o8dO6YCDcVyQgKHlURyV5/UpEmT0oKFWPp7i+wPgDlBRNZoRoBiOSH2Esk10Ncoc+bMqm7duurhw4d6Hw4hujJ58mQ1c+ZMqbZ48803DfluUCwnxF4iuQY0u169eqnevXurTZs26X04tofWK5H0ESpSpIhkb+MaP3vj+vXrYrkCHzRkeHgDpdvoVl+mTBkJ6L42/IRH6tGjR+W2NgicOXNGFS5cWC1evFgFGorlhEQdK4rkmgULNu82btwoTZMIsRojR45Ua9askSwQI4tlgGI5IfYSyUGcOHEkSQfNtX1ZrxBiVbAeRnVF8+bNvdqf6g3FckLsJZJrQCSHFoAkHOgCRD8olPsJMsiRJekKfvaWWQ7LFYhh3ixXwvsLwvcUmSC+sGLFChHKATyOpkyZovLmzev0Y4MvOrzMAw3FckIij1VFcg1s9mGTEAt0LFIIsQonT55UPXr0UO3bt5cmPGaAYjkh9hHJNVBpilLu0aNHq/Xr1+t9OIToMtdGg/lkyZJJlYUZoFhOiL1Ecu17Dw3v5s2bqkuXLnofjq2hUB6JhbE/94N58+apOXPmiOUK/IeCwcWLF53l32DAgAGqUaNGMjig3BLAvqVChQpBeX2K5YT4j9VFctfNRCxOsEjB30yI2UGjnaZNm0ofEMRbM0GxnBD7iOSuCTslSpSQOIw+SITYCWwSoZcXqhzjxo2rzALFckLsI5JrZMyYURoNwyJq9erVeh+ObaFQ7idZs2b1634IYCjzguWKJli7Y+rUqZJxjkYj/oDmoLBzwc4TqFKlinMH6vXXX5eO94MGDVILFixQKVOmVMGCYjkhvmMXkRxgUYLFCRYp8IckxAqWK9u2bZPPM+Ks2aBYToh9RHKt0hRx+Nq1a7RgIbYC1YxotN2mTRtVunRpZTYolhNiH5Fco3Xr1lKVDasoWrDoA4VyP4HXd9euXcPcB0sB3B8Rffr0EduTH374weOX9M8//5RsDwTxihUrqqdPn/p8THiNrVu3yu0MGTJIuQYmxBp4XRyzu2MMJBTLCfGOnURyDSxOUPWCxcqtW7f0PhxCIt2c+8SJE6pnz56qQ4cOqnjx4qY9kxTLCbGHSK4BK0dYsKBnyLp16/Q+HEKCHrM1yxVUdCNpzKxQLCfEPiI5gJY3ceJEdfv2bdW5c2e9D8eWUCiPBAi027dvlwxwXGPSGRGHDh0Sgfyrr75SadKk8ficCxcuFEEd4LExYsTw6Vgw0dXKvhFEf/31V5UwYUKlJxTLCXGPHUVyVwuWJ0+eSEdvQszYnFuzXEmbNq369ttvldmhWE6IPURyjc8++0yVLFlSstS0dQchVo3ZsD01o+VKRFAsJ8QeIrkGEmCHDh2qJkyYoFatWqX34diOVxz++nwQn8BpLVWqlLp69ao6ePCgT8L3ypUrVb9+/dSyZctUggQJvD4eWZl58uRRly5dcgr44bPd9QRZd2fPnlXvvPOOT38PCR7Pnj1Ty5cvV5UrV1bRo0fnqdYJO4vkGmii9Pnnn6tdu3ap/Pnz6304xMYgGw0L7fBgA9xdBRYmrIizmzZtku+wVbhz545UpsFGDo3Eib4wZhsDq4nkGpib586dW8RGWD4SYsWYferUKZU3b17JKIdgbhVguYpzAa0B5wMCOtEPxmtjYDWRXAPf8/Lly6vjx4+rw4cPU1MLIcwoDxIzZ86UHWwEZl+zw9Foc/PmzT59AfClgXeRJpKXK1fOcGUZzCwn5H9QJP9/YDGVM2dOyWpjY09ipubcWHSjGqJjx46WEskBM8sJsYdIDjJlyiTJNWPHjlXr16/X+3AICXjMxjq5RYsW8t11V/ltVphZTog9RHKAv+Xnn39Wd+/eNVRCrB2gUB4EkC0K0bp27doiYAeD6dOnq3nz5sntRIkSveRLbhQolhNCkTz8BH/06NGSDcPGnsQszbmx6EZjbjTE7t+/v7IiFMsJsb5IroGeSKj4xKY1MiIJsVLMxjoZCWvjx483veVKRFAsJ8T6IrlG+vTp1XfffScWLL72UyJRx3jKqgVAc02I5cOGDfP4OJSK7d692+/n/+uvv2TBroFJQKpUqZRRoVhO7AwzyV+mRIkSqkGDBmzsSUzTnHvRokVijzZy5EgVJ04cZVUolhO7YweRHCC5BpvWsEnEuEaIVWI2Mi+7dOmi6tSpE7SENSNAsZzYHTuI5BqffPKJ/I3Y3Ea/JBJ8KJQHGHgHoYFn7969pdmXO54+faqaNGmiChUqJB94fNF9AVltaMCDSQBo1KiRqlmzpjI6FMuJHaFI7p4hQ4awsScxRXPuR48eid0KejxUqVJFWR2K5cSu2EUk18CiG5nl33zzjfzthFghZn/99dfqwYMHXhPWrADFcmJX7CSSg2jRosnm9p49e8SKhQQfCuUB5osvvlCZM2dWnTp18vi4iRMnShYHhG9Myn1t6oeu3VrX29SpU5sqC4RiObETFMk9AwsLVN+MGzdOHT16NETvCiEvg2w0bDq7a+CJckc05sYmuNUn4hoUy4ndsJtIrtGvXz8VO3Zsw/U5IiQyMfvgwYPSHwwJa2nSpLHFSaRYTuyG3URyjaJFi6qmTZuqHj16qBs3buh9OJaHQnkAWbdunYjYAwYM8NrAEw1GkFEZP3586Tjvi784JvEQ4jXgU5QwYUJlJiiWEztAkdw3UE2TLl061bNnzyC/I4REDjTwHDx4sJR7YxPcTlAsJ3bBriK59j3HGDdr1iw29iSmBslnmFe++eabUgVmJyiWE7tgV5FcA1U00BkglpPgQqE8gMH5yy+/FCuVGjVqeH189OjRJXsDfuP4kvsCyiM1y5XGjRurSpUqKTNCsZxYGYrkvoNKGmSzwf9527ZtQXxXCIlcXO/QoYP0AOnevbstTyHFcmJ17CySa2BNgcaebdu2ZWNPYlpmzJihNm/eLBnl3hLWrAjFcmJ17C6Sg2TJkqn+/fuL/crOnTv1PhxLQ6E8QCxYsEA+rNjl8edLGy9ePJ8et3DhQrV48WK5nTx5cjV8+HBlZiiWEytCkdx/6tevr/LkySNCJIRJQowCYu7vv/+uRowYYekGnt6gWE6sCkXysI09jx8/LhZThJgNJJIhAQ0NPMuWLavsCsVyYlUokodt7Jk3b1429gwyFMoDwPPnz8U6oEKFCqp06dIeRbTbt2/7/fz37t1T7dq1c/4MX/JEiRIps0OxnFgJiuSRX6DDA/qPP/4QUZIQI4CG27A6Q+VW1apVld2hWE6sBkXysCA779NPP5XGntevX9fpXSEkcsD29P79+7Zo4OkNiuXEalAkj7ix5+7du9W0adN0elesD4XyADB58mRpzAmxxxPTp08X3zR4kkNc9xU0vLt06ZLcxqIdu+VWgWI5sQIUyaMGxrUSJUqIfRXOJSF6M378eHX+/Hk1dOhQW5Z2RgTFcmIVKJK7X29gvIPoSIhZgI0pKiGQUW6XBp7eoFhOrAJF8oiBXVrt2rWlcfHjx49D/K7YAwrlAfjyYmJZr1499fbbb7t9HD7AX331lbp586Z4jW/fvt2n5z906JCzDDJWrFiye2S1RTvFcmJmKJJHHYxpsK06ePCgNBQjRE8ePHgg3vkff/yxypEjB98MFyiWE7NDkdw9SZIkUV26dFFjxoxRFy5cCOG7QkjkQRVE3LhxpQqM/A+K5cTsUCT3DLzKMadBzCaBh0J5FBk1apS6du2aLKq9LbyLFi0qtytXrqyKFSvmc/fuFy9eyM+wd8mYMaOyIhTLiRmhSB44MD5Wq1ZNNhRhe0GIXnz//ffid4rFN3kZiuXErFAk906nTp1UwoQJJUuNEKMDX/1JkybJGjl+/Ph6H47hoFhOzApFcu9kzZpVtWjRQn377beybiGBhUJ5FIAXGrIgW7VqpTJnzuw1S+PXX3+Vhp9YhPvC7Nmz1aZNm+R2lixZJMvDylAsJ2aCInngQbk3stgmTpwYhGcnxDvw5h0yZIhq27atSps2LU+ZGyiWE7NBkdw3Xn/9dRHJ4XuKqlZCjAwEcsRq+OuTiKFYTswGRXLfQbzG+cLahQQWCuVRYNy4cZIpDl9dXylYsKAIwt549OhRGGEcDTxjxoyprA7FcmIGKJIHB9hcoAfD4MGD/erjQEigQFYGGsz6E9ftCsVyYhYokvtHy5YtVaZMmVSPHj2C9I4QEnV27NihFixYoPr27WuLNXJUoFhOzAJFcv9IlSqV6tixoxo+fLi6fPlykN4Ve0KhPFzARQYFrr0Bz3F01m7cuHFQGoeggRiak2iN7mDXYhcolhMjQ5E8uHTv3l2aKKICh5BQgs8dmm137dpVJU6cmCffByiWE6NDkdx/okePLpaSS5cuVZs3bw7Cu0JI1IA9KeaLuXLlUg0aNODp9AGK5cToUCSPHFi3YLPQmxU08Q8K5f+lW7duqkiRIiJ84xo/e2LKlCnq6tWr8sH0xM8//yx2K/6A3SBkVGpBzVerFitBsZwYEYrkwSdv3ryyMQhbK5xvQkJZvpgoUSLJzCC+Q7GcGBWK5JGnbt266u2335b1EERJQozEypUr1YYNG9R3332nokWLpvfhmAaK5cSoUCSP2jwclbATJkxQp0+fDuC7Ym8olP83k1wTpjXws7vMclgC4Pe1atUSE313XLp0SXxOCxcurD766COfJ5pff/21evjwodz+5JNPVLZs2ZQdoVhOjARF8tCBYH/kyBHJZiMkFJw4cUJNnz5dmsnCo5f4B8VyYjQokkcNWFBBhNy6datatWpVgN4VQqIO1tPY2H7nnXfU+++/z1PqJxTLidGgSB51oDkmT56cWeUBhEK5UurkyZN+3T937lx19uxZrx6mP/74o3ry5IncRqORV155xesbcuzYMWcjO3TvtnvXeYrlxAhQJA8txYoVkwsW6cxkI6EAm98pUqRQzZs35wmPJBTLiVGgSB4YypcvL72VEIsJMQrr1q1Tu3btkjWyL2tr8jIUy4lRoEgeGGLHjq06d+6sZs6cqS5cuBCgZ7U3FMqVcpsVHtH9EG1gCVChQgUpSfREnz591NixY1XOnDm9WrRo9OrVy2k3AO+1pEmTKrtDsZzoCUVyfcBG5Pbt29XGjRt1OgJil74jFy9elMd9/vnnbAgWRSiWE72hSB44IEIiFiMOI7OcECP0CcPGDdbg2MghkYdiOdEbiuSBb8SdIEEC6XVIog6FcqXEGiW8kA1PPtwfnuXLl6uDBw96zSYHMNVv3bq1OnTokE+CN7zM0b0bpEyZUnXo0MGf99LSUCwnekCRXD/QxBh+5cxkI8HuO4LG3HHjxpV4TaIOxXKiFxTJA0+1atVU9uzZGYuJIeI11spr166VdTizyaMOxXKiFxTJAw+sI9u3by89EtFLkUQNCuX/ZdCgQZK9OHXqVLlG1nhEQLQpWrSoKlGihM8n2ddA7mqzAp/UOHHi+PwadoBiOQklFMn1BeMmqmrgjbpnzx6dj4ZYte/IjRs3pPkNvP3ixYsXwqO0NhTLSaihSB48r3IIl+gZgsQfQvTsE4Z1OCq+a9SowTciQFAsJ6GGInnwwHoG3+mRI0cG8VXsAYVyF5BB3qhRowgzyQH80LZs2SLZ557E78h46uJ50cEbZMiQQbVo0cLv57ADFMtJKKBIbgxq166tMmbMyGBPgtZ35IcffpBrZGCQwEKxnIQKiuTBpX79+ipdunRuk4gICUW8Pnr0qFq0aJGsw6NFi8aTHkAolpNQQZE8uCRKlEgqZEePHq3u3r0b5FezNhTK/QDNOSFiV6lSxe1jHj9+rPLnzy873rdv3/b5ueFn7ppNHj16dH8OzVZQLCfBhCK5ccBCqE2bNmr27Nnq2rVreh8OsVjfkfv376tRo0aJp1+SJElCdHT2gmI5CTYUyYMP1iRoEvbrr7+qs2fPhuAViV3wp08Yqr9Tp04tSW0k8FAsJ8GGInloQM8laJI//fRTiF7RmlAo9xGINJggQrTxtIs9Y8YMtW/fPtWjRw/Vrl07n55727Ztas2aNXI7U6ZMnAD4AMVyEgwokhuPZs2ayZg7fvx4vQ+FWKzvyLhx49TDhw/VF198EeIjtBcUy0mwoEgeOpo3b64SJ06shgwZEsJXJVbH13h94cIFNXPmTInXMWLECPFR2geK5SRYUCQPHalSpVIff/yxGj58uJx3EjkolPsITPHh0wfRxhMnTpxw2rL4Wsrdv39/520I7Mwm9w2K5SSQUCQ3bglZgwYN1NixY9WzZ8/0Phxikb4j+CxhAtmwYUOVNm1a3Y7TLlAsJ4GGInloQd+kDh06qMmTJ6vr16+H+NWJ3fuEjRgxQsWPH18qwEhwoVhOAg1F8tCDDUj0YcK4SiIHhXIfePHihYg08OhDNoUn0IDk1KlTatiwYapQoUJen3v//v1q+fLlchv+fywn8w+K5SQQUCQ3fmOSS5cuqd9++03vQyEW6TuycOFCEdo6duyoy7HZEYrlJFBQJNeHTz75RJKBkDxESKji9YMHD9SkSZNUq1atVNy4cXniQwDFchIoKJLrQ5YsWcQuGtbRkemfSCiU+8Tvv/+uLl68qD799FOfHp85c2bxBvIF107fXbp0YTlZJKBYTqICRXLjkzdvXlW0aFGxyiAkEGDiWKJECZUnTx6e0BBCsZxEFYrk+oFkoXr16onv6fPnz3U8EmInpk+fLmI5NmpI6KBYTqIKRXL9E80OHz6s/vjjD52PxJwwo9wHkE2eL18+VaBAgYCe/HPnzqk5c+bIbTQS82brQtxDsZxEBork5gEdvFevXq1Onz6t96EQk3PgwAG1adMmn/uIkMBCsZxEForkxlh4I3mIFV4kFCATEhvb1apVU+nTp+dJDzEUy0lkoUiuP2XLllXZs2dXo0aN0vtQTAmFci+geQisUbztYsMDyF9Gjhwpti4AC3b4/5HIQ7Gc+ANFcnNRp04dEdgmTJig96EQkzN69GiVOnVq9eGHH+p9KLaFYjnxF4rkxgCJQ++8846Il4QEm40bN6ojR46ozz77jCdbJyiWE3+hSG4MYJWGze1Fixapv/76S+/DMR0Uyr0wceJE8UNDqaE7Hj16pN58801VunRptXjxYp9O/N27d+W5QezYsVWbNm38ed+IGyiWE1+gSG4+ME42adJEGomxqSeJLPfu3VMzZ84Ur1Ms/oh+UCwnvkKR3FjAinL9+vXq5MmTeh8KsUFVN9Z2ZcqU0ftQbA3FcuIrFMmNRcOGDVWsWLGcuiPxHQrlXsq94IuGTEZPzUPmzZun7ty5ozZs2KAWLFjg04nHhxV+a6Bx48ZivUICA8Vy4gmK5OaladOm6vr162rlypV6HwoxKTNmzFCPHz9WzZs31/tQCMVy4gMUyY1HrVq1VKJEidT48eP1PhRiQnbs2KGmTZsm1564du2arKu1JrJEXyiWE29QJDce8ePHVw0aNJAm3Owt4h8Uyj2wbds28RHHh8sTMWPGVFmzZnX66HoDdiuuJYsdO3b0/R0jPkGxnEQERXJzg8aLuXLlErGTkMhsfqMJXdWqVcV6hRgDZpYTd1AkNybITsPGNSq8sPFIiK9069ZNFSlSRJLEcI2f3YHP16uvviqPJcaAYjlxB0Vy44LNRlivwE6a+A6Fcg8gmzxNmjSqZMmSHk9i3bp11fHjx9XWrVtV0aJFvZ70FStWiAAPKlSooLJly+bHW0Z8hWI5cYUiuXVKyOC1BgsNQvwB2WuHDh3yaUObhBaK5SQ8FMmNDeyrbt26pebPn6/3oRATxeDBgweHuQ8/R5RZjo1tVCxgjY3qBWIcKJaT8FAkNzZvv/22KliwoBo3bpzeh2IqKJS74enTp2rOnDmqfv36spvtDZSEQST3pTTMNZuczUmCC8VyAiiSWweMychgW7hwod6HQkwGSr2x+f3ee+/pfSgkAiiWEw2K5MYHlbTFihWTcZUQX3DnaR/R/Ug+O3v2rGrWrBlPrgGhWE40KJKbA4ylsC6FpRXxDQrlbsAH6ebNm15tV/wFmeSav2769OlV5cqVA/r85GUoltsbiuTWIm3atFLlQ/sV4g9oADt79myfN7+JPlAsJxTJzVXhtXr1anX16lW9D4WYAM2m1Jf7McfDfK948eIhODISGSiWE4rk5qF27dqy/sFaiPgGV4tuQIDOnTu3eOK649KlS86GnL4CI32Uk2lli9GiRfPr/5PIQbHcnlAkt+7ifO3atSKoEKLn5jcJPBTL7QtFcvMtvLGO+fXXX/U+FGICChcurLp27RrmPniU4/7wVd3c2DYHFMvtC0Vyc5E4cWJVqVIlsZYmvkGhPALgfbt48WKvC2oE++TJk4to40sZAzrNTpo0yRlYWE4WWiiW2wuK5NalVq1aMoZycU58BRNDb5vfxDhQLLcfFMnNB7yjURnLCi/iK4MGDVLbt29XU6dOleuBAwdGuLEN/3tubJsDiuX2gyK5OYFmuXPnTnXq1Cm9D8UUUCiPAHjfwgMXJdruuH//vjzu0aNH6vfff5dFnS9NPK9cuSK3q1SpolKkSBGV945EAorl9oAiubXBePvBBx9wcU4CuvlNjAXFcvtAkdy8YFzdtWuXW/9pQsKDDPJGjRq9lEnuurGNTW1sbhNzQLHcPlAkNy9YO8eLF4/rZx+hUB4Bs2bNEg9ceKN5EsoxOUQ2BTpyx4gRw+vJnjx5svM2s8n1g2K5taFIbg8w/u7du1edOHFC70MhFtj8JsaEYrn1oUhu/oV3/PjxufAmAdvY/u2337ixbUIollsfiuTmJnbs2FKVjSowzQqauIdCeQQBet26dapGjRoeTptSqVKlUhMmTJAM8W+//VZ5A96oS5Yskduwa6lYsaLX/0OCB8Vya0KR3D5gDI0VK5ZzXCXEHchOK1WqlMfNb2JcKJZbF4rk1ll4Y5zlwpu4Y8eOHWratGly7YkFCxaoJ0+eqHr16vFkmhCK5daFIrl17FdOnz4tFizEMxTKw7Fq1Sr17NkzsUbxhejRo6uECRN6fdzcuXPlebUPKAIJ0ReK5daCIrm9iBMnjnrvvfck84gQT0IcNr9pu2JuKJZbD4rk1gHj69mzZ8VzmpDwoGFnkSJFVOPGjeUaP7sDGy7eqrqJsaFYbj0oklsHjK9I+GVTT+9QKA8HRJdcuXKpjBkzqkDi+mGEUE6MAcVya0CR3J5gQ3PLli1SsUOIO9uVV199VdWsWZMnyORQLLcOFMmtt/BOmTKlJAUR4goyyAcPHhzmPvwcUWb5jRs31Pr165lNbgEollsHiuTWIlq0aGIbPW/ePNFPiHsolLvw/PlztXz5clW1alUPp0xJuYI/5YXnz58XMQfkzJlT5c2b1+f/S4IPxXJzQ5Hc3t6oeP8xbhPibvMbIo4vlV/E+FAsNz8Uya258EY8hhUa7VeIK+6avEZ0P+ZymNN5W4cTc0Cx3PxQJLcm1apVE/voPXv26H0ohoZCuQvbtm2TzERPAfrBgweScY6SsN69e/t0kufMmeO8jWZir7zySlTeMxIEKJabE4rk9gYZbIUKFaL9CnHbcwTZaVx0WwuK5eaFIrl1wTiLRCI22CauZM2a1ef7sdGCOV2KFCl4Ei0CxXLzQpHcurz77ruSQET7Us9QKA8XoNFos2DBgh49zNFk5NKlS+ratWvKX6G8Tp06Pv0fEnoolpsLiuREs19ZuXKljMuERKXnCDEPFMvNB0Vya1O2bFlp7MmFN3GlcOHCqmvXrmHug0c57ncFc7gVK1ZwY9uCUCw3HxTJrf+dfP/990X7JO6hUO4CJncoHYSfqTsSJUqkKleurGLGjCllC95AcxutrCFfvnwqS5YsXv8P0Q+K5eaAIjlxzWK7f/++2rhxI08KCUnPEWIMKJabB4rk1gciORtsk4gYNGiQNHqdOnWqXA8cOPClx2zYsEGqtlkBZk0olpsHiuT2AElEBw4cUBcuXND7UAwLhXIXrzSUC3rLPCtVqpRatmyZNBwpV66cT43ENGrVqhXV94uEAIrlxoYiOXEld+7cKl26dMxiI5HqOULMDcVy40OR3D5gvIWN5fXr1/U+FGIwkEHeqFGjlzLJNZDZmD59etncJtaEYrnxoUhuHypUqKCiR4/OrHIPUCj/L1hQI0vcF/EbxI0bVz5c/gjlNWrU8Om5if5QLDcmFMlJeNDzARuc2MAkJHzPEdquWB+K5caFIrm9QCk3G2wTf0EDWFSAYaOFfbysDcVy40KR3F4kSJBAlSxZkkK5ByiU/xc0/HrnnXfU66+/rgIFPMy3bt0qt7Nnzy7iKzEPFMuNBUVy4g5scJ4/f14uhGjZacmSJZPGYMT6UCw3HhTJ7QeaMCJjmL6nxB8OHjyoLl68yAowm0Cx3HhQJLcn2JyEBnrv3j29D8WQUChXSr148UL98ccfYqviiVu3bvmdpY5dcsDyb3NCsdwYUCQnnihRooRkIdGnnGhAqPHWc4RYC4rlxoEiuX3BegdNGZ8+far3oRATxev48ePLXI7YA4rlxoEiuX1B1e2zZ8/UqlWr9D4UQ8IV5H93su/cueNRKIcnedKkSdXbb7+tfvzxR59O7tKlS523Wf5tXiiW6wtFcuINNFnOkyePNIMiBCLd8ePHxX+P2AuK5fpDkdzelC9fXj18+FDt2rVL70MhJmHdunWqdOnSKkaMGHofCgkhFMv1hyK5vcmQIYPKmjWrjMHkZSiU/7fTdqxYsdw2GAFr164VwW7//v0+dYd13Z1JnDixKlKkiNf/Q4wLxXJ9oEhOfAWLLArlBGiVBfDeI/aDYrl+UCQnb731lmQHMx4TX3j8+LH0FPFW1U2sCcVy/aBITgDGXsbriKFQ/l+hHP7kaObpaSBHNjnK+9977z3lDQT9+/fvy21ktUWLFs3r/yHGhmJ5aKFITvwN9PQpJ1pMz5Ejh0qePDlPiE2hWB56KJITbb0ECw0uvIkv7Ny5U8RyCuX2hWJ56KFITlwTzY4dO6auXr3KkxIO2wvlvvqT16xZU+3du1csWHzJUlu5cqXzNsu/rQPF8tBAkZz4S/HixelTTgQ0puGim1AsDx0UyYkrGH+3bNminjx5whNDvMbrhAkTin0esS8Uy0MHRXLiiqZrcnP7ZWwvlB84cMCrP3l4L1xPmecarqb48Osj1oFieXChSE4iA8bmvHnzyqKL2JdLly6pU6dOUSgnAsXy4EORnIQHayqIMfQpJ96AOIMKBDbeJhTLgw9FchKelClTirZFofxlbC+Ua/7khQoVUoHi9u3bkn0OcufOrVKkSBGw5ybGgGJ5cKBITqICfdYI/clJeCiWBw+K5CQi6FNOfIH+5CQ8FMuDB0Vy4g6unyPG9kI5bFeKFi3qU5a4P88JwQ+UKVMmYM9LjAXF8sBCkZwEItCj2bIvDZeJtf3JkyVLpvehEANBsTzwUCQn7kBfJvqUE2/s2LFD7HlolUZcoVgeeCiSE09gDD5+/Li6cuUKT5QdhHIE32nTpsm1J1AWWLhwYa/ePfAZ//bbb5XD4fD62q6l/xTKrQ3F8sBAkZwEAq0yaM+ePTyhNhbKuegmEUGxPHBQJCfewDi8detW+pQTj/Ga/uQkIiiWBw6K5MRXn3KtKpdYWCjv1q2bKlKkiGrcuLFc4+eIwK4JJvv58+d3+1z37t1TmzdvFs/xefPmSbM4b2zatEmu8Vg0mCPWhmJ51KBITgLps4YLhXJ7go7t8Cf3peE2sScUy6MORXLiCxiHIdAwHhNP62Wsk+lPTiKCYnnUoUhOfAFr56xZs4orBrGwUI4M8sGDB4e5Dz9HlFmu+Yh7EsrPnTvnLOF+9913vb4+hPX9+/fL7Vy5cslOObE+FMsjB0VyEmgwnnNhbs8qsd27d8t1wYIFQ3hkxGxQLI88FMmJr+TJk0fFiBGD8diG+BKvUaGNuRrjNfEExfLIQ5Gc+APGYq6fLS6Unzx50uf78WGAkJ0hQwa3z5c3b15ZGJw5c0Z98cUXXl9/+/btTn9yZpPbC4rl/kGRnARTKPfFJotYq0rMl5hOCKBY7j8UyYk/QCTPnTs3F942w9d4ffbsWXXnzh2PyWqEAIrl/kORnPgLxuIDBw6o58+f8+RZVShH2YCv92NRjQ+FNzsV/D5TpkwqY8aMPgnlGr5koBNrQbHcNyiSk2CBMf3GjRvq4sWLPMk2qxLzNaYTAiiW+w5FchIZWOFlL/yN14BCOfEFiuW+Q5GcRAaMxY8fP1ZHjx7lCbSqUI7GnF27dg1zH3azI2rYqS2qA4mrUI6ddGI/KJZ7hiI5CSbamM7yMXtWiXHRTfyBYrl3KJKTyILxGIvuR48e8STaAH/jdZo0aZz2poR4g2K5dyiSk8jy9ttvS6IR188WFsrBoEGDRLCeOnWqXA8cOPClx1y7dk399ddfKl++fAF7XZT6a7vmSZMm9SkDnVgTiuURQ5GchKIhSfLkyZ09KIg9qsTQyPPSpUsUyonfUCx3D0VyElWhHPO+gwcP8kTaAH+qujFH48Y28ReK5e6hSE6iQrx48WSs5vrZ4kI5QAZ5o0aNIswk97Xka/PmzapFixbqp59+UhcuXPD6mufPn1e3bt1yGuKz/NveUCwPC0VyEgow7rLc235VYr405ybEHRTLX4YiOYkquXLlUtGjR2eGmk3wNV5rjTwZr0lkoFj+MhTJSSDg+tkmQrk3sKjGwgje4+7YtGmTmjhxomrTpo2I5t5w9WDLnDkzm8kRiuX/hSI5CSUM9ParEsOiGzGdlVwkslAs/x8UyUkgiBkzJht62gxf4jUSy27fvk2hnEQaiuX/gyI5CeT6ef/+/WzoaXeh/NixYypnzpwes74PHTrkvI3O7d5Ys2aN8/aoUaNk0VWyZEnVsWNHNWXKFCk9fPbsWQCOnpgJu2eWUyQnemSxwV5Lq/Ah9qgSg5UaK7lIVKBYTpGcBBZuXNuPQFR1E+INiuUUyUlgwToKGy/Hjx/nqbWzUI7GIu681DTGjh2rtmzZItfZsmXz+pynT5923kap4b1799Qff/yhRo4cqZo0aaLy5s0r/j8FChRQLVu2VGPGjFHbtm1TDx8+DMjfRIyLXcVyiuRED7Sx/dSpU3wDbAI2tt966y29D4NYADuL5cwkJ8FoEIaGnkwUIhpIHEuRIoX0kyEkKthZLGcmOQk02jqKfUX+n9eUDYE3GhZANWrU8Pi4+PHjy2IJF1/QFlRYZKGxGLLWUb6wb98+ueA2xHPspLt2lMXgDiEVk0lc8CHFdZIkSaL4lxIjgfcYQCzHZypBggTKylAkJ3qRJUsWucY47y6jiViHp0+fqnPnzvm0oU2IP2I54rXrmGJlKJKTYM19IV7BbuPNN9/kSSYyN2O8JoEWy2GBC7G8SJEicp+VoUhOgjX3xQYmE83+H2uPIm64fv26ZPV6yyh3BRO8GTNmiIBduXLll34Pr7VLly7J7Tx58qgYMWJIBjkuH3/8sVM4xGJeE861y5UrV6TEAZdZs2Y5nzNNmjRO8Vy7pEuXjqXlJsYuYjlFcqIncePGValSpZLFGLE+Z8+elTHHn5hOiDfsJJZTJCfBQhuXEY8plBPts1CwYEGeDBIw7CSWUyQnwY7ZXD//P9YcQbygvfn+LKox6Pbq1Uu9++67YYTynj17qhcvXoinj6s/bkS8+uqr0uQTl1q1ajnvh1DuKpwj8xzZ6X/99ZdclixZ4nxsokSJnBnn2gV/h1WDgRWxulhOkZwYAQZ6+xCZmE6IL9hBLKdIToIJNq3jxIkj4/T777/Pk21ztKruBg0a6H0oxGLYQSynSE6CDdZSBw4c4Im2mlCOgVHzHvdUbo/HwO4EgrU7du/eLc3g8FwZM2ZUqVOnlsYk4UvFJkyYIBnqEMxdJwFly5YVQf2LL77wetzwaatUqZJcNGDRgg+pq4B+5MgRaU63bt06uWjEjh1bmo26iuf4GfcTY2JVsZwiOTEKGLt37typ92GQEICYjioCxFJCAo2VxXKK5CTYIEkImeTMUCPg8uXL0puLG9skGFhZLKdITkIBxua5c+eKngm91M5YY+RQSnXr1k0NHjzY+XPXrl3VoEGDInwsJmuwMPEkJP/0009q0qRJTtG8ePHicgkvCn711VdimXLnzh3n/Y8fPxYhG9YpruTIkUMW87BX0UT6R48eSeNPXML7o4d/zSdPnohY7iqeQ0zHhAOCkKsoFC1aNBH1XcVzZKInTJjQ67kkocFqYjlFcmK0QD99+nQGehtsgGu/t/uEjgQPK4rlFMlJqGCFlz3wNV4DCuUkWFhRLKdITkIFxmYk7F67ds32DZfNPWr8FwyEriI5wM9o1hlRoNaCuCdcTezdPRZZEu3atZPbH3zwgfP+pk2bqhIlSqj06dM778MHDs09QeLEiZ33//jjj2LpgucZNmyY834I4BDTIaxrxIwZUyxeXG1eYPsCmxbNskUT0JHlDlEdF4hFGhkyZHhJPEe2PAUGfbCKWE6RnBgNjNvYiIQYhDGOWHcD3JeYTkhUsZJYTpGchBKMz1OmTOFJtzD+xGskc6Fam5BgYSWxnCI50auvSPLkyW198s05YoTDXTkf7ncnlJcqVcrjc7Zp00YVK1ZMBOd48eJ5PQZNWEeWOnzMw2efv/766yJaQ9TGYksDPz979iyMQApxByI2Sh7w+kmSJHGK57BeQbNQTWzHZANiKy4fffSR3If/h0VQ+KahaEiqXRYuXOh8vaRJk77ke44ySWwEkOBjdrGcIjkxcqA/ceIEhXKLb4AjppcsWTLER0jsiBXEcorkRI94jJ5LqIDFeojYO15DJI8RI0aIj5LYDSuI5RTJSahBoi4SaE+ePPmSnmk3zDVauMFdJpm7+y9cuCCZ1Z6A6KwJz95AVve5c+eci6aIBGYI2rBewcWVsWPHin2L64QBi5hkyZKJgO6afT5mzBg1fvx4yUDv16+f3Pf06VM1YsQIsVlBkxy8Dj7cyKDExTXT/fbt22GyznGBbQzE+NWrV8tFAxPZvHnzhhHPc+bMKVntJPCYVSynSE6MijbG//nnn3ofCgniBvj9+/fF89Q13iM+YkMYnwFUdmnXiIlmWyQR42FmsZwiOdEDbXxGUhESc4i18CdhjRVgJJSYWSynSE70AFof1k0nTpyw/RtgjpHCCxgAUeLlupuNErCIsskfPHggF3RhDxSXLl0SURtkypTJr/8LUT1t2rRh7sOi68qVK3KcrpYoiRIlkl0eCNYamHTib0XW+927d533w18dQkH16tVF5AbwJy9durRcXAfhw4cPhxHPDx48KFkfWARqC0GAwILX1ixbtGv4qRP7ieUUyYnRAz3GTIioxLob4Nj4Bq6b37/99pv0FgkPNpLRO0QTznFp27atbEwTYnWxnCI50QvNZgPjNYVy6+FPwhrWpnbPUiShxYxiOUVyonfMvvDf9ZWdMfYo4QfwQUOJl7cmIppokjJlyoC9tpZNDgLpuebqTw6+++47uYQX2pH5jmagrqL6zJkz1dq1a0W414Tys2fPiqUMPM4HDBjgtIopWLCgXDSeP38u5zG8dQsy0mH/gosrEO9dM89xSZEiRcDOg50wi1hOkZyYAWyIUii39ga49v66bn67m9yh+gu/c/19q1atgnD0xA6YSSynSE70BBaP2KhkPLYm/iSs4TMQyGQ1QqwmllMkJ3oDnfRPVmRbRygHGADdCeSuiwVvQjmywzF4+trg0nXR7c3SJdBkz55dzZo166X769evLyK5qwCOzPGVK1eqq1evOoVy7bH4GyDCowkp/nZsNkC0bdCggdP3HF8YTTTXLFwuXryozpw5I5d58+Y5nxNCeXjxHJsI9D03v1hOkZyYBYzz2phPrLkBHlFMR7mgJogjey38NXp9AMS6QG6aE/thBrGcIjnRG8z90RSMQrm94zXsQm/cuMG4S3TBDGI5RXJiBLA22r59u7I7xhodQkBE2WfhGTp0qOrTp488ZvLkyV4bf6JBjUa6dOmUEWjWrJlcXIFYDY9zZJG7ggUeBATXjQH4lcO2Bb7n8+fPl9+hTB2CeYUKFZzPgQlPeN9ziBSwjvn999/logGLlvC+5/BsRzY8MYdYTpGcmC3Qo2Eyse4GOGI6bMVixYrlvA8/44ISfyzMYcVSt25d2ayFzQpszRDzEKeQ5UiIVcVyiuTEKGBNxY1re8drxFzAjHKiF0YWyymSE6NVZDscDp8Th62IMUaGEII3PU6cOOLp7Q5M5LC4RuaZ6+LbF6Ec/qdGBV7oLVu2fOl+iAhHjx4VEVsDTT6fPHny0pejfPnyIjxt2rRJvfvuuypJkiSS1Y7zBGEezUfhbw6fc1fx/NChQ+revXvy/3DRQBPTXLlyhRHP8+TJ85LtjB0xmlhOkZyYMdC7jjfEmjHdU1Y44nPt2rXlNq7nzJkj8QX9Nlz7fRBiNbGcIjkxEhinmVFub4Jhf0qIFcRyiuTESGCMfvTokbp//76texHaUijHm+9pdwTlgRBrscjwJZijmadG6tSpldnA34qLK+3bt1dVq1YVT1dX7/I7d+7I7pJr09KFCxeqdu3aqWrVqqlFixap119/XRUtWlQyy1GGN2LECBHEIb67iufIREcD0r1798pFA+8NyvY04VxrHAqPQ7thFLGcIjkx88Lc7jvidhbKXYUZZrERu4jlFMmJ0cA4HVGTZWIfKJQTo2AksZwiOTEa2rrq8uXLFMrthC/id69eveTiK1opGYQYlHVbAZSjo0mnKwgg8De/fv36S6I1bFmQWe4qqqNJGvzekZmP3+fOnVv+L37u37+/ZKSjEWr4pqH4UkJkx+XXX38NswkR3vccz2t1AUxvsZwiOTErGOsfP34sG3yw4iDWjOmemmgjbnz77bcSV7zZqBFiBbGcIjkxIswoJ4jDWEuiGpkQvTGCWE6RnBgRTSv9+++/nTqUHbFlRnmgs8o0oRyBX+/SnWAT0WZA27Zt5YKsTQ2UaiDDHEI4LF80lixZIhnmyCQvVqyYZKajAer06dPFr3z27Nli3RI+8/zUqVOSuY/L0qVLnc+n+dC6iuf4QlvtfdBLLKdITsyMNtZrPtbEeuC9xaarOxBfevToEdJjIvZGT7GcIjkxcjxGsg0qVdkbwr7xOkWKFNLclRC7i+UUyYkZMsrtjLXURB+4du2aCLKBAuIwnlOzbLEzrpndEKXmzp370mMgaEAkL1mypPM+NFWDZQvsWb777jvxj61YsaLYseDc9uvXT1WuXFkdOHBA7tPE8yNHjqjbt2+r9evXy0UDfunIXg/vex6+ianZCLVYTpGcmB1tTA70uE+MAeKvN+sVQuwillMkJ0YG4zTmlYjHHLPtCeM1MSJ6iOUUyYmRQS/HuHHj2r4Bt+2E8kCb0mOgQ2k/YCmZd2rVqiUXV/B+jBkzRkRv18CEYLVx40ZVp04d+cIiAx0l9sgORBM2NAc9duyYCOdYjKIhKZqGPnjwQO3atUsuGsheyJYtWxjxHJnoiRIlUmYiVGI5RXJiBbSmzRj3ifVAw2nEYDSRJsTOYjlFcmJ0tHEac30K5fbk1q1bjNdE2V0sp0hOzBKzb9++reyM7YRyiKiaeBIRyHZu3bq1fDjQkLJhw4Yen+/mzZvO21ysRw6ct08//fSl++ErW7t2bXkfNCCMw5oFnsPIHNdE72XLlqmdO3eqcePGqeLFi4t4jmCHBeqZM2fUjRs3REjHZcaMGc7ng8d5ePE8TZo0hvY9D7ZYTpGcWAUK5dZG2wDxFNMJsbpYTpGcmAHGY4KYjTGRELuK5RTJiZli9n2bJ5rZTijHG45SAndAUIVPNsAuijehHLvjGmbLTjY6sE/BxRVYthw/fvylHa6LFy+K7yFE7qxZs8oFGSvDhw8Xj1rYtmie5ytWrBDxHN7ysH3RrF80UBkQ3vf8zTffNJSnYrDEcorkxErAbgnVJNggJdZDe189xfTq1aurLVu2yOIcVUahboZMSDDFcorkxCxo4zTjsX3BGhzrNELsKJZTJCdmi9kPbL5+toxQjgHt5MmTIpBigIuIp0+fysVT9pnrzokvWWqw/9DgLnnwiR49eoTdd/H+Y8Ho2rAP1QFoHgRvYlzj8v7776t58+aJSD5z5kwR0yGew+IFAfH69euyWbJmzRq5aMSJE0flzZs3jHieK1cuFTNmTGUVsZwiObEaqAxBoLf7jridM8rhh4txHZfXX389hEdHSHDFcorkxEwwo5x4q+omxKpiOUVyYjbiMaPcGkJ5t27d1ODBg50/d+3aVQ0aNOilx2m7Ip6CdPbs2dWJEyfksb4I365CeSC9z4n/gljq1KnD3FelShW5PHv2LMz9EM4RsAoVKqQyZ86sSpUqJe/14sWLVZkyZeSzo2WfI9McAsujR4/Utm3b5KKBoInn0ixbtOtQZiwGSiynSE6sCoVy625++5JRnixZMqkqQsVRsJszERIqsZwiOTEbzCi3Nr7EbG9V3YRYUSynSE7MSFxmlJtfKMcA5iqSA/xco0aNlwK1ln3mKUgjQxhB3ldchXLukhs3C90VZJKHB17lsNmB0F2gQAG5OBwONX36dPX8+XO1ZMkSea8hnq9atUq8znH/wYMH5TJlyhTnc2XKlClM5jkuwWxcFFWxnCI5sTIYl+1eOmbVzW9fMsoXLlwYpKMkRB+xnCI5MSNYX0FoYoWXvWM218rETmI5RXJiVuLFiydVuXbG9EI5dq/d3R9eKPclo9xf0FhSg2Xd5gWZ5Li4AiG8f//+0kC0fPnyKkaMGKp+/fpyDXG8QYMG0mxUyz5HQ1FkLZ49e1Yu8+fPdz5X8uTJXxLPIajDP1lPsZwiObE6zCi3/uY3F97ELmI5RXJi5spPlnLbO2bTeoXYSSynSE7MTDxar5hfKHeX/R3R/cFYVGMQdG0cR6yVid6+ffuX7m/UqJEsbNHgs1ixYqpatWrq6tWrKkWKFLIQWLp0qWSca9nn8DzH79FEFBdXAS9801BYuUCID4VYTpGc2AEGeutvfrOUm9hBLKdITswOS7ntG7O1PmGM18QOYjlFcmJ24tJ6RfmVzvrdd9+pggULivAA388PP/xQ/Lw1zp8/L0JhRJe5c+c6H/fnn39KU0U0SMTzdOnSRbJ3Xfnmm2+kMzaESHdBGGDgQolX+BKwiPzRtEW1p8zvv/76S61fv14WL/Cm9ga8qzUolNuDbNmyqaZNm8pnUyNx4sTq0KFD6rffflOVK1dWnTt3VjNmzFAVKlSQ33/22WdqzJgxqmXLliKOa5/HzZs3q1GjRqlmzZqJUI7PZp48eVTz5s3Vjz/+qLZs2eKXbQTEcmSq4/OLZqbuoEhO7EKwAz02YDt27Cj2TYgBEL927drl/D0snHr37i32S/h9uXLl1KlTp8I8B3ofYFyAl/bEiRMDclxGjNfB2PzGxmJ4ey1CzCSW4ztz+vRpj4+lSE6sgBE2rhmz9YnZvtifEmJ0sRxzZIjl4efBrlAkJ1YgHuO1LOJ9pkKFCo7Jkyc7Dh8+7Ni/f7+jcuXKjnTp0jkePHggv3/+/Lnj8uXLYS7ffPONI27cuI779+87H5MrVy5HuXLlHPv27XMsX77ckSRJEseXX37pfJ3Nmzc7ChYs6Ni9e7dj9OjRjvfee8/rsW3fvt0xdepUuXbH77//7sCf/Ndff7l9zJgxY+QxuEyZMsXr6/bt29f5+KVLl3p9PLEXL168cJw/f95x7do1532HDh1yJE2a1JE8eXL5zHbq1MlRqlQpR/To0Z2fpfCXVKlSOerUqeMYOHCgY+XKlY6rV696fN3jx4/Ld+vOnTvy89OnTx2LFi2SaxzTrl27HGvXrnU8fvw46OeAED2pXr26o1KlSkF7fnwvc+TI4di4caPj1KlTjq+//toRP358Z5zBdzZBggTy/Ttw4ICjatWqjowZMzr++ecf53Nkz57dMW/ePMeWLVscmTNndvz5559RPi4jx2tvdO3aNcz4161btwgfN3ToUDnX7sBY165dO0fnzp0d48ePj/JxERIMbt++7Vi2bJmMHxquMfvSpUuOJUuWyHeUEDPz9ttvO9q0aaPrMTBm6xOz//77b66Viel59uyZzHs3bdokt8PH60ePHjlWr17t2Lt3r+Pff//V+3AJiTRDhgyR9aud47VfQnl4IP4hIOLg3fHWW285mjVr5vwZC+1XX33VceXKFed9P/30k/zRT548kZ+xIKhWrZoMOBC+EdADARYiOF4Ea3cMHz7cGehnzZrl9Tl79+7tfPyKFSsCcpzEHmhilEaHDh0cadOmlQlnr169HO+//76IUu7EcwhaxYsXl8fOnz/fcfbs2TBB2VUs14I4hHGK5MRO1KxZU0TjYIAJcbRo0V7aJM2XL5+jZ8+e8n1MkSKFTDY08H2MGTNmmPgCARvfX4jYBQoUcBw5ciTgx2q2eO3L5vfgwYMdb7zxhtvfY6KkjZclSpQIyHEREgqxXIvZFy5coEhOLEP+/Pkdn3zyiW6vz5itX8yGsIFYjHkFIVYSy7V4fe/ePYrkxDIMGzbMES9ePFvH6yh5lGvWDokSJYrw93v27FH79+9Xo0ePDlNinjt3bmluqAF7ik8//VQdOXJE7CfwM2wnUOqNEq158+apQIBGi8BTA8V8+fJJaTmAX7Q3nj175rztbydkYm/Clx+OGDFCLq6gaShsGx4/fqxKlSrlbBwK6wbYSWzatEkurp/B1KlTSxMdfJdQ2o3fFy1aVH5/4MAB+X/vvvuuihkzZoj+UkL0A+O9NvYHGpRe4rljxYoV5n5YrMBW6dy5c+rKlStit6KB3gEo30Qs/Oijj+Q+fMezZ88uz4dY6EvssXq8xjmKyEItvIWUp3ju+r4bJT6vWbNG7OFQvotjh33bhQsX5HewtkmVKpXcjwtsvLT5CLGXZzmsnLQ5QIECBaQHCiFmB+Maxm29YMzWL2Zr77unmE2IGT3L8+fPL/fjdpIkScRKEXM8QszMq4zXkW/miYAHX1YIbrly5YrwMfBaxeIfk38NiAaui26g/YzfAfiNounhtWvXZPEQUXNDV4HaV9BERFs8u/v/EBQ1UdGX13H1qMI5icxxEeIOfH9c/YI1fvjhB/HSRzC+dOmSCFzwSMfnEaLL8OHDnY9FsIYoDsEL3uqNGzeWwY+fVWIXPI35nogWLZrHRR382xAv+vXrJ99VxLJZs2aJwIzmfFpMiyjmab8D6EkA0RwxKmHChCrQ6B2vcf6DIY7gPfU0luH927hxo7w23isjjHk4T3v37o3wd9jEPHv2rPPnjBkzGuKYSWhAjxLEdPTdOXbsmHrvvffUJ598Ij1Q+DkgVgDzUXyWg/F5xnN72xBlzPYes1Ft7sl/ObI8efJErrlWJlYBAjnmzl9++aUkyGAtkDNnzqB8fwgJNQ6HI6jjNeK1pw0lI8TrSAvlaE54+PBhyZpz18hg5syZ6quvvorsS0h2lTtWr17t9xu3e/duZ0YXsvoCgeuiFjuLrs09CQkWGCBwAWjYh0Z9EMw3bNig7t27J4MPPpvIaEU2Oi5oMFilShX5/BNiFxAsb9++rZYvX+73/0WFUdq0aT0+Ztq0adKMF5UcEGbxf+rVqycZ2v6KZJ4aTUcFveM1ss8xFgWa48ePyzzAl/cWGfVo1q032NTE+KxtHHjaQMDxRuZzS8w5Tq1du1YagrsKSlgkoBKMECuAcRgNooMxriEGuSY6uYMx+3/ny504Eoz35+rVq3K9c+dOZ+IaIWYEyR9YU8+fP18qvAEEP4hxrgIdIWbm2LFjsukTrHVIpUqVIkyuMlK8jpRQ3rZtW7V06VL1xx9/SNfsiEApF0RjZK+6gvJRBMmIgqc/paXItPEXrQy7bNmyHhf1/rBlyxbnbZThwB6DEL1o2bJlmJ8hIsFKAeXcmPy++eab0uU+fvz4uh0jIaFkxowZkkEFGwt/QVD2RubMmSVr+eHDh7JJlTJlSlW3bl2VKVMmZ0xDjMP9GvgZmaOhwAjxGhk2yAYINBD/V65cGan3Vi9wrN9++63zZ3x2tPnMF198ofr27evM4kC2vLdJJDEv2MD+/vvvZfM6/CYWvjPIgsGGeNasWXU7RkICCcY+2AoFY8z21eqAMdv7eQzG+4MNEi25JzJreEL05vLly2rMmDFq+vTpkpzmmvmK+TPGNlRlGsXqj5CocPbs2Uivn33Bl++J3vHar28yFm/t2rVTCxculMxVlAW7A6UoVatWVUmTJg1zP3b7MVFCyZcmViM7HMKdP76seOP8RVtwQvyIzP/3dhxY1AbqeQmJKhBakImG0jB4CiNbDUI5hC8E8kBVVRBidAI55nvbrUb2OsTbwYMHS4xEIMd3TwvaCPSoPsJ3MpgYKV7j/Puy6eAveE8xzpk57rr620OggG8ssTbwHcd3buzYsc7MSrz3JUuWVIUKFRKLNCwOkMVz/vx5sU7TKsgIMTOIS1gcG2HMZsyOGIxFwXh/tL5IXCsTs41ZmEMPGjRI5vYa8CJH4iXmzrVq1VK///676EzIdC1SpAjFcmJ6XvlvLyU7x+vX/C3fRnn24sWLZfdMKy+B4AZvJo3Tp09L9lpEqfrly5eXBXajRo3kj8Rz9OrVS5472M0FNa9ZDHrumDp1qvr6669l8YJmJ9WrV/f4nK4fHnpIEqMA8Qg+uBgw4EusffYhlEOwQoY5xXJiB7w1fIwqCNiIKf/5z38k9qH5YrZs2UTswiQD3uD9+/eX7x6COuxN0LARdknBxOzxOhCNWvG+HD16VGIzjjcYWe2BzKjgHMK6IBajtwi+j5oNoAZiNDLLsSGlNe7UPguoVNSqOiiWE7MT7HjsC4zZ+qC973o2cyXEV+7cuSOa0E8//SQ2fxqY16PyDxYQyGKFQKd5kiN+Y+2Npp4Uy4nZefHihe3jtV9COQYLEN5eZPLkyapJkybOnydNmiQl3lhkhwciHcrAofQjWw27Ax9//LEMOkYI0ig/RwaPtrDxhqtQzuYNxIgiOQQiVwEGgh6gWE7sQLAX5vBcRSMf+EknSpRI1axZU7KwtdiAxnwoGWvVqpVMvGF9hEZarpnEwcDs8TpQQrnWvBSLFjSAMRquGw6aNzWxBvj84TP3888/y4Jb+6xibKhWrZpq2LChCOFazNZEclewsYVNbcRrQLGcmBkjCOWM2fqgve+eYjYheoNYjE1tJJpoa2fMfZEwgvXz+++/ry5cuCBNtiGSu1o+IfEBMR0ZrRTLiRXi9Ss+WppZNV77bb3iCwMGDJCLO+DhpEeDKs16xdNiFJl3KDHHY33JmHP1D4XfJCFGE8kjgmI5sQsY74Pp81ynTh25uEPLPgm1uGz2eO0LmAgh7uJvjWgyh4U5Fi7YxDZq8zDX7H40VSXm5/r162rcuHGy0EYzJFfKlSsnfRM0K6O///7brUiu8cYbb1AsJ5YAY5zrmKcHjNn6oAkXXCsTI45Lc+bMEf/x8H15vvnmG6kMheUgHofedBGJ5BoUy4lV+IfxOnLNPM1K3Lhx5fr+/ftuH9OgQQO5+AoXucRsIrkGxXJiBx48eKDSpUun92GQIMV0TQR3N97BAgeZ8Wj8YkRcPcmRFUHMCbIk0ZRzwoQJasGCBc6NKry/EOZq1KghNkbwHtfwRSTXoFhOrBKPtbUYsRfa+47PACFGANaD6BWCniHIRgXIVEXWKuZjqLRs1qyZxHFfRHINiuXECjxgvLaXUI5s8UAHaddFLrPBiFlEcg2K5cTqYGOUC3Nrx3S8x+7GvPHjxysz/A3eNvGJMfnzzz/FWmXKlCly2xWI47A6QiZaePwRyTUolhOzgzHOdcwj1gF2EydPnlRZs2YV+4mIxENklfsa57CuwXodj8faBn7QGAMJiQpIroClILLH0ZzetQKxd+/e6pNPPlHJkycP83/8Eck1KJYTs3Of8dqeQnkgF6PwrdLgIpeYSSTXoFhOrAwDvT0y1JIkSaLMiKtoBC8+YnxQwfDbb7+JvQqyyDUSJkwovuMlS5aUxr1o9hURkRHJNSiWE7OCKgtmqFmTbt26ScNvDfjGDho0KMJ455qshh4pGEs1Mdz1OnxSGyyr6tevH+S/hFiVy5cvy6Y2kifgdwwgeCNrfP/+/bIWRg+eQIjkGhTLiZl5wIxyewnlvliv+ItrphCFcmI2kVyDYjmxcqBnBps1Ccbmd6jBQgp/B/6G27dv6304xAPwG0eJNrLHb9y4EeZ3LVu2lAZg3hoIRUUk16BYTswIBCfMWRmPrZdJ7iqSA/yMiprwmeVYh7vG68OHD6vFixf79DpmjvNEv825DRs2SHP7hQsXSja5Nu/6/PPPVevWrcWW7+bNmyKEhycqIrkGxXJiVu4zo9yeQrkn6xUsflCOgw9H3rx5JTvIExTKidlFcg2K5cSK0HrFuljF8xSd3PE5xWKNGAv4lKLJF3xMXZt8wQYA/vdZsmSRhrelS5f2uogOhEiuQbGcmA1tnKYVmrWA3Yq7+8ML5eEzyl3X0Bg/8TMeg4t2W7vGWEuIL8BvfOrUqSKQHz9+3Hl/wYIF1YEDB0RAR/zWetcESyTXoFhOzMiDBw8i/G7YCVsJ5b74o+FD8fXXX8ttNGDyJpQnSJDAeZvZYMSsIrkGxXJite8JhC5msNk3oxwl4cuXLxdbkz179qikSZMqo4FjunDhgrp165Y0hUTzUaIfWETv3r1byrRnzZr10ufrm2++UT169JA5pa8EUiTXoFhOzIT2PWI8thbwJPf1fq16SqNDhw6S1QsxHD2/1q1bJ7YtiNfNmzeXSh1CfAUxFuL4zJkz1aNHj5zNOdGQ89NPP5UEyEWLFolgnjp1arfPE0iRXINiOTEb9+/fVxkyZFB2xlZCeURBOjzwmNTAotWXTDB/Hk+IUUVyDYrlxCpAJAdcmNu3QTcESpR3A2RsG1EoT5YsmXNsxzFqP5PQgjnc9OnTxcP0yJEjzvszZ86sWrRoIYtlZKB9+OGHuovkGhTLiVnQxmnGY2uBrHGI2672K9igjqihJ6oJXOO165pb6/+AsRJoPtKEeAKiNqq+IJDDBkgDsfrs2bMyr/ryyy+l8gsgfnt7vkCL5BoUy4mZeEDrUvsJ5eGDdHiwq71gwQJpDOZpt1HDtSSBQjkxu0iuQbGcWAGWelsbrYQf46E7EMsxTuIaCyAjAhsP14ZTFMpDG1PhYYrsccz9njx5Eub306ZNUw0aNIj0YjmYIrkGxXJiBrQkJVqvWA807oQnOexWkEkekUiubZJ4alqNNfWrr74qAjorq4gnTp8+LZZokydPduov+MzUrl1btWnTRhUrVkwqEvLnz+/znCqYIrkGxXJiFu7fv2/7eG07oRxWKZ6CNAbF6tWr+/x8WIBr4vv169cDdJSE6CeSa1AsJ2ZHG+tdfTCJdYgRI4YsvD3F3iFDhqjvv/8+KAueQJEqVSrn7UuXLkl5MAkuOM+//PKLCOTnz5933o9zj8U1MspxG9lnRhbJNSiWE6Nz7do1ucamJbEeEMfdCeQaeO8hcLoDY+WzZ89ELCckPGjGuXTpUskeX7VqlfP+5MmTyzwQGyyTJk1SsWPHlvsR330lFCK5BsVyYgYLwmvXrtk+XttOKMdgeuXKlYA/J4Tyq1evBvR5CdFLJNegWE7MjDbWB1ukIvqKzMjCdoc/Fhl6kSZNGuftixcv6nosVgYCDPzqsXjGNeKqBnxM165dK1logVggh1Ik16BYTowMxml8z+zeHMzOoHrKU7ymQE4iAp8ZxG3Yorla8lSqVEmyx9977z1Zr8JuBYJ5unTp/DqRoRTJNSiWE6M3xH3y5EmYRB47YvwVZBCCtGsH5EAJ5WfOnJFmnvhQhUrEJPZAL5Fcg2I5MSvagszV2oLYa+FtBlwXdX/++aeux2JFTp06JVlmKNF2TWgoXry4NPmaOnWqKleunGSQm1Uk16BYTowKxmmM10au7iHBBaILshSRGWyGTWxtDYZkOFYmhj6jFbZoyB5fuHChfGa0GIdKfojay5Ytc44niLmufeOMLJJrUCwnRoXr5//HHFEqgGCStn79eq+ePNixxGIHnZG9BUfXhRAyGLWGEYSYXSTXoFhOzAjGcEyo6Ylq7ZiO99nMuHaVP3funK7HYhWw+J0/f75koW3cuDHM77CYxsI4W7Zs8nOTJk0C9rp6iuQaFMuJkYVyYl/w/msl/UbKVIRNH+y2Fi1apI4ePSpNReF3jXgMa66yZcuKKEtCk8mKzWv4jx87dsx5/zvvvKM+/fRTVaJECVmT4jOETXB44gOzieQaFMuJEaFQbmOhHG8+ArW7AbF3795qxIgRcvuPP/6QrCNPuDb9hO8lhXJiJZFcg2I5MRtcmFsfLLZ3797t9veo8kI2MTa/0dCpQ4cOyshC+dmzZ3U9FrOzb98+NXHiRGnCqTV5RTl/xYoVVf369VWPHj2k2Vcw5mlGEMk1KJYTo4HvB4Vye6O9//gsuBPKYYuFcRTzt6FDhzr9pgMNRHDEAsRcVIR7eywJLnjPkT0+c+ZM9ejRI7kvTpw4ImBjUxtxXQOPgR9+VDZbjCCSa1AsJ0ZDS0BKafPNbdsJ5RhUsVOMDsnufPJcB15fSrrpL0qsLpJrUCwnZgLjt5Gylog+nqdt27aVMRUCphGF8lixYqm0adOKPzkypIj/2YBYOCN7HHEzfMxavXq1nF9Qr169oPjgGkkk16BYTowExmlkhRL7ookunmI2solnz54ttzt27KjefPPNoBxLggQJ1J49ezw+BkJtxowZVY4cOYJyDHYHYvWcOXNEIN+xY4fz/pw5c0r2OM57mTJl1M6dO9XXX3/ttKmrXr16lF/XKCK5BsVyYiQwRidIkEDGQDvzmp2DtDuhPF++fKpRo0byWF8CtLYAA/QXJVYVyTUolhOzwAw264M4Df9QXCKy2EHzOAiX+CwYuVEmyodxfNjEv3Hjhu07zXsDVYGbN28WcXzu3Lmy8AUxYsSQRXT58uVlgwTNOV2r/uwikmtQLCdGgRVeBFVdGIM9CeWua2rExGAJ5QkTJhS7jnjx4kkTSAjiyGaHhSpsVy5cuCCJFkYQUa3G6dOnxVoFfUMw59Hmaqj8Kl26tGyQaOe9adOmqlChQipp0qQBeW0jiuQaFMuJUWC8/n9sLZTnypUrwsfAiwyXyJRNw8uMEKuK5BoUy4kZwDj/9ttv630YJEQx3d2C+scff1Svv/56mFhtNFBavHbtWrkNX05vlm92Bc04p0yZImXYJ0+eDPO7UqVKiWieJEkS+Rll9RBBgomRRXINiuVEb549e6auX79u+zJuuwMBGmK5J6EcFllFixaVeJ09e/agHQsEUvhc45g0EDPmzZunXrx4IfYfRhJRzQ6accLnfcyYMWrVqlXO+5El3rp1a9FkatasKdnjyCZHpR2AdV6gMLJIrkGxnBgBCuX/j62F8kCBXWgNCuXE6iK5BsVyYnQY6K2PZq2D/iDuhPKolumGAldBAM3EKJT/D4gWK1eulOzxJUuWyIIbYPMDViqIRd26dRNhRRPJAUXy/0GxnOi9wYUqELv7nZL/j9mI1+5AckOoEhxcRXKgNYYEJ06cCFo2u51Ahj5i97hx46RXDIBAjezxjz/+WNWqVUveB2ymaZX82FRzrSywi0iuQbGc6A2SQNIG+DtoRgJfg2pwsEOJcitPQdpfkidP7mw2cubMmYA9L7EPZhPJNSBQoGRx69at4hNLiFF4+PChfJ+4MLc2aMqIBY/Zm2C6VrgdOnRI12MxCmighubqeI/ff/99tXDhQqdIDns8bIRNmDBBderUSR6LMu5QYYZMcndiOTLxUfpOSKjQ1kaZM2fmSbc5WDMYNV6H37AmkQObYhs2bFB16tQRse2rr74SkRwiddeuXcXiBvPzESNGOO3QYL2yf/9+qayzs0geXizHsW7fvt059yEkVDE7M+O1/YRyLQPc1yANAdMbGMSyZMkit/G8HMyIHURyDYrlxMgLcyzKiLU3vyGkhrfhMBt58uRx3j548KCyK0+ePJFGbu+99558d/v16yeJDVjgwre0S5cu8jjESS1jHNloWpOvUGBGkVyDYjnRA4zPEMQYjwmyto0ar9FEUuPw4cO6HosZQcLUqFGj5DzCaxxWaNBEsEE7bdo0EcsHDRokYvXu3bsljromGMIzPtCYUSTXoFhO9AA9nzDPzepSYWNXbCmU+xKkUcYL8RuL8Js3b3p9Tq08C6VDaABCiB1Ecg2K5cRoaGM8A7318RbTkd2E8t9NmzZJZo4RQaWbJvYiq8qXTXorAVECmeEoy//oo4/UmjVrnCI4stEglg8fPlz16NFDNhKQSa4HZhbJNSiWk1CD8RlJSmi2S+yN1rgaHuDuwO8QB+EXHupeIVqGM4Vy39m3b59q1aqVxO/27dtLnxVYo8F7fNu2bZJZjvs033HEzpkzZ4pdrZZoGAzMLJJrUCwnoebUqVNynZVCOYVyd9y/f192OSF8w6fMG+F9zQixi0iuQbGcGG1hDvERE2Rib6Ec/riw4ClRooTq06ePMir58uVzzj+0iaqVwd8J79IiRYqo3LlzSxn2rVu3VOrUqUUcR1M3+JMjRmrxESIvHqsHVhDJNSiWk1CC8ZmLbgK0z4En+6cPPvhAfMrRXNOXZLVAARtVrf/SkSNHRAMgEfP48WM1depUid+Yu2DzGhscyCZHA3XEy7Fjx0qiAqrBhgwZ4vQoBzVq1AiqNaIVRHINiuUklGjrqTfZo8G+Qjmyy7D4cgcCJXZDEaifPn3ql68Zdk0JsZNIrkGxnBhtYW7myTHxDbzPWHRDVHXXRyRBggRy+/jx44Y9rRBgNXbt2qWsCBbNyOpv0aKFLJJbtmypduzYId9TxEH4jKMqr2/fvnLZuHGjZJLrjZVEcg2K5SRUUCgn4YVyT5vbyOzWCHXMhqgKsPanT/nLIIkQFmjY0EYzTsRv+IujEgzxeunSpfL+xY8fXx5ftGhReRwsWVybbQcTK4nkGhTLSajA2Jw0aVJJNrM7rykbB2lkbOXPnz/Cx7Rp00bKh3wdXF19zRhYiR1Fcg0tGwMNPuFLpwlUhIQSjO/MYLMHeJ/hbY1y7gwZMrz0e8Txxo0bi0ibI0cOuTbiwqlQoULO21h8NmzYUFmFGzduiEfpxIkTJVPP9b2DaP7bb7+pzZs3S8YZ7FYAGgkZoZmQFUXy8GI54jUIZhk8sSfwKIa4xnhMAMRLeFF7EspLliwpFUdoch3oxo7eQILcrFmz5DbG/bx58yq7g+/wsmXL1E8//aRWrlzpvB92cbBXad68uSQkQChHDEmWLJk02NbWt7/88kvIjtWKInl4sRzzQyQcIJsf9xESSLix/T9s+e3SSgnwQXAnlGN31B+we4rBGAvwQ4cOBeQ4ifWwukiuQbGc6A3G90qVKul9GCTEGWoRCeXghx9+MPx7UbBgQec8QhMuzR7v1q5dK/YqixYtclbnYWGHDVQ07SxTpoz8zVjwocQeJfdGwsoiuQbFchJMUCECCwsK5cRXu7S6devKxQiVXU2bNlV2BdX3iN/jxo1z2qYgXlesWFF9+umnqnLlyurhw4dhsscRJ1Flf/36dZUmTZqQHq+VRXINiuUk2GBsdk0AtjO2tF7BogC7nYHsug2bFi3zCQ1A3JWAE/tiF5FcgzYsRC/gc4wMVi7M7QGymtAkLpAxXa+5iTY5PXDggHSeNyPI7O/Xr5/KlCmTKl++vJozZ46I5EhMGD16tFiuQBTHwltbyBYvXlx9+OGHhsqOsoNIrkEbFhIs2Fib+CuU6wnilBaXkLlrN7BRv2HDBtmoQDY/+oUgVkN87tq1q9jcLV++XJrzou8LxHINzMPQbHv16tUUyYMIbVhIML//zCj/H8ZZkVggSKM8CwEEO5q41rJqCbGbSK7BzHKiB+zYbS9g1YFyXyv0BylWrJhzs33btm3qvffeU2YAQji8SZF9htJsxDytORo2MlDKjpJ2EC9ePHk8GrUZFTuJ5BrMLCfBAB7TGAdCnV1KjL02WLJkiSFt0JAdDYs2WIRhwxoZ00iGszp3796V5pywV3GdSyFLHHa0tWrVUrFixXLeD/uc3bt3y+2zZ8/Kxrh2f6ixQyZ5eJhZToLBtWvX1J07d9jI084Z5ZpQfuLECY+PgV9mp06dVLly5dT+/fu9PmeePHmct/ft2xfmd740BCXWxK4iuQYzy0mo0TZB6bdrH7BRHT7uuhuPL126pIwKMrQ04PdpdDCPQpYZMs9q1qypfv/9dznHpUqVUmPHjhUhBI/BQlajUaNG4mkaJ04cZUTsKJJrMLOcBBp8l7A+evVV2y45SQTx+vbt22LL4w1UB7rGj1AAcRhgw3rnzp3KymDe1KpVK5UqVSrpzQaRHBsDuA+/gw0cqr0goCO7XAOPnzlzpjp//rxTJNcDO4rkGswsJ8GI165Nje2ObWct2C1G0000qHAHdkpHjBghHpt79uzx+pyufucrVqyQplVocoEsKjS5oB2L/bC7SK5BsZyEEpR+pk+fXsWNG5cn3iYg/mJD21NM/+ijj0QIRPzXMp6NBgRmjXXr1ikjggy7KVOmiF0K+rMMGTJEslBwbiH0Y6Nq/fr1Mv/p3LmzGjx4sGkq7OwskmtQLCeBBOsnd/2giD3RPg+e1taIMZjHJU2aNOSxEJVdrklzVuPx48eSPY4NgXz58qkJEyaoR48eydzoxx9/lGQC+JJrYhky6z///HOJ5YiRGtgch5WaXthZJNegWE4CCcZkzAH13PwyEq/aOUhjgEVJoC8Z4ujYHhHIlsKO+Ny5c6UjtGuAb9GihRo/frws3lHG4Om1iPWgSB4WiuUkVHBhbj98ien4/f3792Xj0l1M1xssOtEICyCTDcdqBDDXwfcKDbyQSdakSRMREJAlWqVKFTVy5EiZ5yD7zLVMHV7lXbp0kYWs0aFI/j8olpNAgD4LGJMplBNXsAmJOOJJKIfNx59//im3fUlWCyTYBNb4448/lFXAvAfxGDZIH3/8sdq+fbuKHj26+JGjgg22b5999plk+7tuTiDRq3HjxiKi62GtEhEUyf8HxXISKDDWYvPMjptOEWFbj3LNKxMfiFy5ckX4mEKFCknDCkzw0PwzPFgQ1qhRQ129etXja2EhiQZdCDzEHlAkjxh6lpNgA0EPGaGwgyD2wZeYjliO3xcuXNhj5rnewO4N5c+oQsNiFWXPeoF5y4wZM8R7HFllroJ+yZIl1dChQ1Xq1KnlPmSRY4w3UkNOX6FI/jL0LCdRBYlCiMkUyom7eOwOVPVg0xXX6HMRStCoEnZiaEyNjOUnT56YtiIYcx0k8sE6Bf1DNHBOUfUFGzRUvWsgjqM3CjYz4D2OBp1aAqBRoEj+MvQsJ4EAYzKqb4nNM8oTJEggRvWegjTK9itVqhShSK4FmYhEcjQWw8Kxb9++skOLBhmwAnAt5SLWhSK5Z5hZToKdMYMxlwtze8Z0zV8vInr06KH++usvNX/+fGfWthGpUKGC8zY8v0MNhK0NGzaohg0biiDerl07EckhFNSvX18NGDBAXb58WUR8lMVrLFy4UA0cONDtnMmoUCR3DzPLSVTAGgvjBiwdCIlIKEe8iQiU/mMuh1iECqZQgmzK0qVLO0VZZF6bjStXrqj+/fvLecRmO0Ry/F0VK1ZUv/32m4jgmBMhXrtWrr3zzjsinOM7C394o0GR3D3MLCdR4fr167I5yPXz/zBf2k8Id7O9ATEcmeK4RoYaMtDRoAS70MSeUCT3DWaWk2ChjekoHSP2wltMN0umM3zKIS4hiw1VbRASQlEGCfH7l19+UZMmTVKnT5923o8NiA8++ED16tVLyq6fPXsmj4GQACsbM9iquIMiuXeYWU4iC8ZjrItg70BI+Hh98+ZNsVeBF3l4EPOQeKYXZcuWFR9vsHr1aqmgMjqYK8AqZsyYMWrBggXOyjnEaGSOI4Pc1XsYSXy4D1njWvNwzD0OHTpkGIsVVyiSe4eZ5SSyaIlGFMr/hzlWjUECHwTsqqK8OTLBGEEcfl6EAIrk/kGxnARrYY7NStdMV2IPohrTjQLKzSFCoyk4MuCRzR2sDvRYSCNrHdYqKM/Wmo7HixdPsseRWYbqOFjNaQtniF7wHTbzOQYUyX2HYjmJbDw2g8BI9G3oGZFQrjewH9FYtWqVZGcbFWTeQ9QfO3asOnr0qPN+NOts06aNqlWrlni+hwcxHecfFrHot6a9DxTJzQ3FchIZMBagOjdz5sw8gXa3XtGCNLo8nzhxwu1jsGjctm2b+HCiiQUhEUGRPHLQhoUEY0ecu+H2xJeYHn7cNirI4NZYvHhxUCyKevbsKRZyVatWdW4wwA928ODBkl2ORTcae8WJE0eafyGbS4Miuf2gDQvxh4cPH7KRJ3ELbL1w8bWyW9vEDRU4tjx58sjt3bt3q2vXrikj9gBo1aqVNEZt3769iOTYaMd9+/btkw1uWKhBJEf11/fff6++/vpr5/9HXJ81a5Y6f/68ITcrNJhJ7j+0YSH+wkaeL2NroVwrzfcUpFFijDJodIkeNWpUCI+OmAWK5FGDYjkJdCNPCuX2ROvUvmPHDrePgYj+8ccfS8YEBGGjAvHa1fs7EDx+/FjNnDlTlSlTRmXJksXpNY7qiy+++EKEc3x/UI6NxTaAfykyr+fNm6dix46trAAzySMPxXLiKxAXMT/G5hshEYHPhqd4jTndl19+qYoUKSL2pqEGfcq040CFlxFAHJ82bZpki6OJ+YQJEyRBAJ7i0CkuXbqkxo0b91IVGkR1xPlBgwaJf7lGzZo1pXGnUaFIHnkolhNfwRiHsZjxOiy2FspRXoDFoiehHLuwmuhy8uRJMbonRIMieWCgWE4Cwblz59Tt27cplFsUTOKwQHS3sEZMx+JQ89p0B0qU0cgKXp5GBfZBBQsWlNuwXkEGeGTB/0e2GbLOGjRooNavXy8bChDMp0yZIvYuqJpDwy/ENDTwcs22x3m1ChTJow7FcuILGIcTJkyocufOzRNmQ7zFawBbHmQ9P336NMLfI07B9gTPgU3cW7duqVDy/vvvO28vXbpU6QnmAF27dpUs8MaNG0uDUdig1a1bV75rsIJt27atM15jPoxYr1GsWDHVqFEjqY7H99IMUCSPOhTLiS9gTYRNNlqlhcXWQjnADjWsVTzRoUMH2Z1FEDJz0yoSWCiSBxaK5SSqYOEAuCNuPbp16yZZZVgg4ho/RwQqwLA4RHZERGTNmlWyp9CwyugN5uArqjFnzhy//u+9e/dk3gKxHZsHyDTDJhKsVvr06aO6d+8uAgV8SdHIS/veoIknPMvhWWo1KJIHDorlxBsYh0uUKGHJsYQELl5DDN21a5fb59KEG2RMY1M3lCBrW/PrRlxEg+1QArsZ2KJVrFhREvuGDBkiDVCxkQ7PdDRC/fXXX+V75trwe+3atdKEG9VzqIwH+D2SBFq0aCHzH6NDkTxwUCwnvsRrxGpsqJH/YfvZCwIwMsrh3eUO7NbC7ytnzpyc8BGBInlwoFhOohroMU6zkae1QDZZeJsU/BxRphoW3lg8wnMzIrBYXLdunbpz505QvL8DSe3atZ23Z8+e7fXx2BzYsmWLatq0qfirfvLJJ2J/gA2BGjVqSLNOZI3AozRXrlxSwq1tLmlYtYkPRfLAQ7GcuANjC5KQMB4Te2WL+xOvsYkbP358tWHDBrev1blzZ7EKOXLkiNMzPJQCo9Yv5MGDByJAhwL8vd9++63KmDGjqlatmlq5cqXMXSCYY96CbHFYpWmWKYj92BzXePfdd2UenD17dqkQMxsUyQMPxXLiCYzBsK+0UgVpILC9UI5JHHZsN2/eHJATSqwPRfLgQrGcRCXQc2FuPWB75uv9xYsXlwWlp4U3Fo+wVTM6WCQXLlzYaZ8CoSAi0GQM1in4u5AN8ssvv4hnKX4eNmyYZPPhfCAhQGvCCV9SiOp6l5OHAorkwYNiOYkIiKLIvmU8tl+2uD/xGvEI2dCe4jUsw5InT670onr16s7b8+fPD9rrQOyGhcpHH30kGeO9evVSFy9elEp29Ek7deqUZLWjf4lrM23MDZD5Dus0DcxvMF+AwI5NczNBkTx4UCwn7sYerp8jxvZCOUqTEEQ8BWlCNCiShwaK5cRfUJIL2wguzK0H7FJ8vR/em8hSs0pMr1+/vvP29OnTnbexwY/mYrBnSZ06tSyk0ag0Tpw4klEOWxUslD///HNZVMPbdcGCBc7/j9Lrd955J0y5thWhSB58KJaT8GD8xVgc6gxgElx8yRb3J14DzNmwaevOp1xvKlSo4GxujcbampVJoLh79674hqPKC+cC1WPPnz8X8RtZ+5jb4hy7q/aCNQwq41HBAWHd9X6zQZE8+FAsJxH1P4A/OdfPL2N7oRyLRHwwfFlUw8sTmVqevNSIdaFIHloolhN/0Bo4IjuJWAtkVaOJlSvIYtOyrcOjxXR3PuVmAtllWNgALJo16xRkm1eqVEky3LCoRr+V8ePHqx49ekh5OIRwTQRv3bq1WrJkiZo5c6ayExTJQwfFcuIKxl/6k1sPX7LFIxOvvfmU60ns2LFVlSpV5Db6fKxZsyYgz7t//36JzdjobteunTp69KgI8rB63bdvn2x2N2zYMEz1G6rCUCX2zTffOO9D9vmsWbPEbg63zQpF8tBBsZyEj9f0J48Y2wvlWpDGbqyrv1d4EBgzZMggmVqTJ092+zhiTSiS6wPFcuJPoIc/ebJkyXjSLMigQYPETxvNqHA9cOBAt4/15lOuLewhKr/99tvSLMuo4POMjDaAjA9klfXt21cyx5AxhmbjBw8elIy+li1bShY5/vZJkyY5nwNVc/BZdS3XtjoUyUMPxXIC6E9uXXzNFvcnXqMCDL64nhLWIKIi6/r9999XzZo1U3psWGtEZcMZ3w1seKOaC3MPbG4/fPhQGpWi4TZiPJpw45xEBLQKeLbjfF69etV5PyrL9LSniSoUyUMPxXKiQX9y91AoV0qVLl1ayphR+uUO+LDFiBFDbsMjzAqZasQ3KJLrC8Vy4mugx1hOrAsy0ho1auQ2M00DmYzIpkZzV09C+XfffSdZXcuXL1dG5uOPPw7zc9myZdWMGTMkqwxZZ64epFhEo/JtyJAhyq5QJNcPiuUEwij8yRmPrYc/2eK+xmvNp9xTvEZD6q+++kpiNexPUEUVStBEE2MbwOtD3PbX2gDnLU2aNOLtDpsUCJV169aVuevhw4dV27ZtX2qkhwoy1w2EkiVLqgYNGsimgXY8ZociuX5QLCeaPznjdcRQKFdKZcmSRZqFeNrNjhs3rvrkk0+k5BklTsQeUCQ3BhTLiSfoT05cwQKyYMGC4uHtDkwKtc3vGzduGPoEokkX5iDawgZe5fAunzJlipSru2aPo2s9hHWUi9sRiuT6Q7Hc3mDcTZo0qcqdO7feh0KCgD/Z4r5Srlw5tWnTJvXgwYMIf4+4V758ebkNexJP1WLBAFZmtWvXltsQySGWewMJeKhWg0UadAZsXt+8eVPsUfr37y9VYb/++quI3xH1Clm1apX0UWvSpInTFx2PQ/xv3ry5HJPZoUiuPxTL7Q026VDJggQc8jIUyv3wKR85cqTq06ePZJdbvQEWoUhuNCiWE3fQn9x+wGoEJcyuTcRcgacoBBtkNkYEFttY7F6+fFnNmzdPGRnMN9577z25jUy6iRMnyu2ePXuq77//XrVo0ULnIzQGFMmNA8Vy+wJxEFZP8Dwl1sTXbHFf4zU+L2jmCXHYHYh38O6GwAzhOdTg79VA1ZY7rly5or799luVKVMmVa1aNeeGPbLSFy9erM6dOyd/S4oUKV7K7HS1gC1evLhKkiSJypYtmwjsVoMiuXGgWG7veI1EHDbyjBjOYv5LmTJl1O7duy0ZjIj/MJPcmFAsJxGBxRWy15DFRqwPSr2xYY0SZlzj5/BUrVpVGl9pmygRUbly5ZcWq0YEmWmufwc8TCGYI9O8U6dO4lVudyiSGw+K5fbj9OnT6tixYzL+EuJrvIaonCtXLo/9QvLkySPe3XolqhUrVkx6hAA0zHbNaofIjRgNL3NkjPfq1Ut6hSROnFh16dJFvhewbcX3IqJeIdgAwLmpWbOm8z5UheG7BKHdDPMUf6BIbjwoltsTjLnYxLNChUowoFDusmCGOGp0r1ISfCiSGxuK5SS8iLhs2TLJICbWBxlpgwcPDnMffg6fqYaNk3Tp0qklS5YoM4EF97p161Tv3r2d92EC2717dynDBsioQ2Ya+X8okhsXiuX2AuMtxiutAobYG1/jNcAcDnM5zOmMCAR610aisDy7e/eu+IVD5EdG5uzZs2UTu2jRomJNA1tA/L2awO6OhAkTSqPOzZs3iw2ChhU3wSmSGxeK5fYC1S87d+7kxrYHbCOUeyv7QjMseJr6sqiGh9qCBQvEm41YC4rk5oBiOdFAUyRUAlEotwdowunL/VjUInsL2RK+Nt82QpNuWMHAi7Vfv37iHaiBrDQsyDVGjBih0xEaC4rkxodiuX3AeAuvU1hbEeJrvAaI1+gX4uvaWo94Db9wLSN82LBh0t+sXbt26ujRoypOnDiqVatWkh2OJtuwaokVK9ZLzwF7FfiVI8ZrZMiQQfqfXbhwQaVOnVpZFYrkxodiuX1YunSpWKQhWZjYWCj3pexLC9KePE3BgQMHxDMM5VE//PBDEI+ahBqK5OaCYjnRFubJkiVThQoV4gmxAVmzZvX5fmyeoPz50KFDbp/v9u3bIkAjGwx+36Fm//79somvgYV3w4YNVZs2bVS8ePHCPBZZmjly5JDbyDxDJoidoUhuHiiWWx+MpWjIyE1rEpl4jTkc5nKe7FcAEtqwnkdD7lCD+AwdATx69EguiMmjRo2SeARbNNjDeAINuLt27aq+++47df36def9aBaKv9+qUCQ3DxTL7QHG0nfffVcsoohNhXJ/y768eZoiIMI3DMCmBc1HiPmhSG5OKJYTNg6zF2gehkWmK9j8jqipWMmSJUVs9rTwvnXrlmSEIe4joyuU7N27V7399tvqk08+UXfu3AnTKGz06NEqffr0L2XJw5NcI/zcxk5QJDcfFMutDTyYYZuBxoyE+BuvkdmIz443obx///6yuYyY7S5jPZj06NHDeTtfvnxS+dW2bVuVIEGCCB9/5syZMLoCeqLVq1dPYry7/2M1KJKbD4rl1gabfKtXr6btit2Fcn/KvtAoxJunafTo0WUnG+VV8+bNi7ApBzEXFMnNDcVy+4Jx/MSJEwz0NmPQoEFSng0PUFwPHDgwwsfBK7dChQoeF97wDs2fP7/cfvjwoZRFB4tz586FWTBDJMdCW2s86gvINtcae8ECTg+hQG8okpsXiuXWBeMsxrM0adLofSjEhPFaS1g7fvy4OnXqlNvH1K1bV64hMuOxoQaN77JkyeLc7D5y5Ijbx6JKHdnzTZs2Fe9ybcN75syZcl+MGDGU1aFIbl4ollsXNCTGd5MVYDYXyv0p+/LV03TkyJFSXlWuXDkK5SaHIrk1oFhuT7CpCQ9IjMXEXiAjDR6gEWWmuYKYjlJnNNVyByxXYIECn9H48eMH4WiVWrlypYjyWBwj7mhzDlS3IZM9bdq0Pj0PPu8dO3aU25ineBIdrAhFcvNDsdx6PH78WDLKMd4SEtl4DXsxxLiFCxe6fUz9+vVlnX716lVdPm/IfEcVmqsmoIGYjAafGiVKlBBbg2zZskn1mt2gSG5+KJZbk0WLFokWCv2E2Fgo96fsy1dPU2INKJJbC4rl9hTK2TiMeAILaWSWe7JVwWI2b968IlwHCjQlQ7WDRvHixVXChAnVm2++Kc1nXRch/vLpp5+K2AhQgo5MdTtAkdw6UCy3FsuWLZNqHC3bl5DIgCawsF9BxrU7UFGFtTriul6gqafWQwQxGF7jyC6Hz3qdOnWcj0ODT2S9w6rVyv7jEUGR3DpQLLfexjZcMRivvWN5odzfsi9fPE2J+aFIbk0oltsHiI1oaMgMNuIJlGfjMzJjxoyQnajZs2eL/YBr1hkWzKdPn5bM8qRJk0bp+ZH13r59e7mNcu4BAwYoq0OR3HpQLLcOGF9hYYXMWUKiAuzFDhw4IN7fRgUxuGXLlnL7yZMn0hAcG+H79u2ThraXL192PjZRokTKblAktx4Uy623sd2gQQO9D8Xw2EIo96fsCzvUlSpVUnPnzvVJbIXfKGxYiHmgSG5tKJbbg8WLF8t3mY3DSKAX3v426Ya3OTLINZBVhue4ffu2LBg1sJAOFLBf0RqBofknGoZZFYrk1oViufnBOIeFNxfdJBBgDY5Y6evmNhrI4hJKYK8CvQA2LABCOTbAUbl24cIFlTJlSmVXKJJbF4rl1mD69OmqQIECtF3xAdsI5f4A/7ODBw96XFTDhwyL4VKlSsmC1dWTjBgXiuT2gGK5PQJ96dKlVapUqfQ+FGJw0HwLWV3eFt5r1qyRsukMGTJIaaIvQKROnTq16tOnj/O+jBkzSrk1vNFjx46tggGEhE6dOjmzyl1f30pQJLc+FMvNDUq4MQZ99NFHeh8KsQBocIk4DPsVrZ9HRMByrHv37ip9+vSyURNK0Fvku+++c9q1wX98/Pjxqnbt2lGuGDMzFMmtD8Vyc4OxClZQSCAi3qFQ7mY329uiGsGxSJEichsL6vnz5/twuomeUCS3FxTLrQsaM27YsIGBnvi18EZM97TwhuiNajKUTbuzX4Mg5Cqiw2IFG+VbtmwJ0wTcXSPxQAKhHI3CAP42bPBbCYrk9oFiubk3rdErxM5ZtCSwoDoB/cIQV92B5tuwVr106ZKaOHFiUN8C2Kb98ccfYZqOYmPom2++cd43dOhQnzfYrQhFcvtAsdy8aBvb9Cf3DQrlbhbV2BX2tqhu3LixiOrY9WYmhbGhSG5PKJZbE5S3ouy1Ro0aeh8KMQjI8EJTLVxHBLInLl68KP6h7mjWrJlco+nWo0ePXvo9FuPINkfmmEaZMmUkE33Pnj0BbQbqq09qjx495DZEejQqtwoUye0HxXLzAZsJCIjMTiOBjNfvvvuuZIpjE8YdFSpUkIpCiHaYD3par0cFZKtj4xvzA83iBbEe89CePXuq6tWry33YYP/555+VHaFIbj8olpsTjKnY6ENTZOIdCuVu8GVRDesVlC/Uq1dPGnURY0KR3N5QLLdmoK9SpYrTo5nYGwjEqPDC5jWuIxKM33nnHRG5PVWKwUpt0aJFEvubNGki4rNrljh8x5G95trDBB6lyKbUvEpDTZs2bVS6dOnk9ooVK9SqVauU2aFIbl8olpsLiIWwl9LEQkICEa8RT5FVjliLZpnuhDo0zkaF4Zw5cwIWgxHzXe1UMS9AlTka1cK2IDxfffWV8zbsWFz7ktgBiuT2hWK5+Ta2oWtyY9t3KJS7AYtq7Gb72kyEGBOK5ARQLLcOhw4dEosJBnoCkJE2ePDgMCcDP4fPVEMGmLbwdlcejYV2tWrVpKoMNiy5cuVSK1eudP4enzls0iCD3CjEihVLDRgwwPnzF198IWWVZoUiOaFYbg4gKGI8xJgZL148vQ+HWCheA8RrNIpFQpo7ihUrppInTx6w49u9e7cqWLCgJMBpvP766+rkyZNq6dKlEfqPv/322/Id0OLX2LFjlV2gSE4olpsHOGAgsffDDz/U+1BMA4VydyfGh91sYmwokhNXKJZbA2xeIrsHDRoJwQLW1/uRwXbnzh21YMECryfuwIED4oE6YcIE530QgzAvQJm3kcCiHot7gCbkrtYwZoIiOdGgWG58IG4eOXJExlVCAh2vc+TIoQoUKBB0//Hw486+ffvUxo0b1dWrV533Y87pib59+4bJKr9//76yOhTJiQbFcnNoYhhLYVkaN25cvQ/HNFAo9wAWxFhUe9rN1jhz5ox4hRop08zOUCQnEUGx3Pzfa+yIozEjsn4Jcdc0M6L7cV/p0qXVuHHjvJ64zz77TA0bNkz17t3bFBv7I0eOdP7cq1cvdePGDWUmKJKT8FAsNzYYR2FnVb58eb0PhVgwXoPWrVvLGhyWAb5UOBw/ftznY4G9CpqBQtjWyJIli9gJnT9/3q9M9Tx58jh7lV2/fl3mDlaGIjkJD8VyY7Nu3TrRKj/55BO9D8VUUCj3AHazUVKFhiOe2Lp1qwRXBNsRI0YE+j0ifkKRnHiCYrl5gbca/KNpu0I0ChcurLp27RrmhMDzFPdHBCaJaD6HbHF3wIt80qRJEtNbtGgRxqfcqBQtWlQ1atRIbqNcvXv37sosUCQn7qBYbkwwxvz666+qVatWKlq0aHofDrFovIb4jEou18quiFi4cKFUVWXPnl2dOHHCp2PZtm2bxElYl7l6jyMRIyKLFW/069dPxEIwdOhQdeXKFWVFKJITd1AsNy6whIKdJKylie9QKPcCSgrhS+ZaghVRU8+0adPK7bVr16qbN2/68RaQQEKRnPgCxXJzgrKxzJkzM9CTMCArbPv27Wrq1KlyPXDgQLdnCN58yZIl85hVHj16dGmMiaxseJZiM9ws5yF+/PjO74oZjpsiOfEGxXLjgbEWvRCaNm2q96EQC8drWAQgMQLx7NmzZ24fh0zJPXv2yO0ffvghwsecOnVKki00KlSooOrWratGjx4dEI99JMxh4wg8fPhQff3118pqUCQn3qBYbjwuX76sFi1aJBU66NdEfIdCuQ9COcqaJ0+e7HFQQKnzt99+K+VhiRMn9uMtIIGCIjnxB4rl5gIbkHPmzJGFCAM9CQ8y0pBR7S4zTQOWPc2aNVNTpkxRDx48iPAx+Hx17NhRYnv9+vVNE9NTpkwpWW0a+K4gO96oUCQnvkKx3Fhz7TFjxqjq1aurFClS6H04xMLxWqsCQ3Y2ssbd0bx5c2m6mS9fPlWmTJmXfr9kyRKZ8+NxL168cMZ5VEVgnY/N8UAAcVwT3X/++WdpPm8VKJITX6FYbixQkYPeSqzG9h8K5V5AAw/sOKM5FiaH7sCCFB7lyFQjoYciOYkMFMvNA4RNfM+bNGmi96EQk4OFN5ptTZ8+3e1jUPJ97tw5aR6bLVs2ZRbgrZ4/f365jUZ7yN4zIhTJib9QLDcGqJxF88W2bdvqfSjEBuTOnVuVKFFC/fjjj24fkzBhQrV//36pAKtZs6bYpd27d8/5e/QmwWMw54dtULCABgAtAGC+ig13M1i3eYMiOfEXiuXGAMkysF3BxiTmUMQ/KJT7uKjGgnn16tV+nl4SCiiSk6hAsdz4YKEBqwwsgLgZSaJK+vTpVbVq1WTh7W4Ri8zzNGnSmO5kwy8Y2SOabzAyzCGYGwmK5CSyUCzXn1GjRknzwuLFi+t9KMQmtGvXTmxTDhw44NH6BFniu3btUgUKFFANGjQIY+EC6xVklidJkiSoxwpxPGPGjM4GegsWLFBmhiI5iSwUy/UH4w+sV7ixHTkolPtAkSJFZFKIUkN/xFvXBTh2un/55ZfIvUvE43neu3evZA68++67UlpCiL9QLDc269evlww2+KsREggwaYSAvGHDBsudUDQh79Kli9yGryuqMOAnbAQokpOoQrFcP5A0hL5NGD9pgUZCBTa2U6dO7TGrXCNBggRq3759Mm+8fv16mArxUBArViz1/fffO3/u1KmTeJabEYrkJKpQLNcXjJmlSpWSRp7EfyiU+wAmgyhnxuTw/PnzHh/7+PFj8SXDB3LZsmUSqCtWrCgL108//VRdu3aNn9MAQZGcBBKK5cbOYMuZM6cqWbKk3odCLAJKsfGZGjZsmE+P/+OPP8T+xyzAK1WzjEE5uqeGaaGCIjkJFBTL9WHEiBFy7tG7gZBQAQ9xrKFhl3b16lWPj82aNas06EQWOuxW9BL20SwUXLx4UfXt21eZDYrkJFBQLNeHHTt2qC1btshYSCIHhXIfQQlX/Pjx1U8//eTxcbBnadmypTp27JhMJNFUZOXKlU4RHT5BJOpQJCfBgGK58UCD5N9++40ZbCTgG+Bdu3aVDe2DBw96jDXlypWTTRpMNoPpbxrorDZUsaEZOfjmm2/Unj17dDseiuQk0FAsDy3IzoWtE8ZBNE4kJJS0adNGBDds1njihx9+EPsTbA7Pnj1b6TW/QIIHLNwAMszN1NiTIjkJNBTLQ893330nG4fYuCORg0K5j2BS2KxZM8kWRwCJiCdPnkhnbq17NpqFaWTIkEHKHzp37hzJt4poUCQnwYRiubHA5mS8ePHYrZsEnHr16olfuadsawjNmTNndsb0qVOnmuadKFy4sPryyy/lNqxXsOGvRwk4RXISLCiWhw4IkBAA27dvH8JXJeT/QXY4eobBBvXu3btuTwusUtHADowcOVK30/fmm2+Gib9Ionvx4oUyOhTJSbCgWB46YC25ePFi1a1bN2fPIuI/FMr93M1GNhlKv1yBP/bQoUNVpkyZVKtWrcQT1DVgz5w5U5qIwL4lTpw4kXibiAZFchIKKJYbg0ePHsnmJDYp0YyJkECCTW1sXiPr7MyZM24fh4lmjhw5JPabrSEOLFjy588vt0+cOCF+qaGEIjkJNhTLgw/WOUj2wRonceLEIXhFQl4G8QvV2Z56hqH6C5aniNuoGNOT7t27y3pCs0HwxWNdTyiSk2BDsTw0DBo0SKVJk4ZJZlHkFYdrx0nilRo1aqjDhw+LtYq2Q4P7Fi5cGOZxMM5HkIZHGRveBAaK5JEHmzfLly9XlStXdlY8EO9AWDp79qx65513pEEQCX0G2+effy4bjRkzZuTpJ36DxSkawaL8EBnWES0MUfFVvXp1j9ZomCqZNZbj70efFGw8gV9//VXVrVs36K9LkTzyMGb7z507d9TWrVvlu54lS5YonH0SniFDhqiePXvKfAiLb0L0iNcAWeVYc6NnWOzYsQ0frzdt2qRKlCght5EsBwsWJNYZDYrkkYfx2n9QZYHvO76rRYoUEQGdBAaMjZgDoQdThw4deFqjADPK/QRlVBBtFixY4LxPyzBDUMZie/v27c4mnkYJ1GaHIjnRA2aW6wdKZ1GpA3sMiuQkMmCzGhPwxo0byzV+Dg8W2vAznTx5srp8+bLb5zJzLIfo4JrJhhLw06dPB/U1KZKTUMPM8uCADF54LGMcpUhO9IzXoEuXLurGjRtq0qRJpojXxYsXl4p0gM1qVEhiTWskKJKTUMPM8uCBtTPmQy1atAjiq9gDCuV+UrBgQVW2bFkxyNeS8UuXLi2Nso4ePSoCurtdcBI5KJITPaFYrg+wrLp48aKUrhLiL8hUGTx4cJj78DPuDw8WsWh+OXz4cL/EIzPRpEkTZwkmvNZr1qzpzDAPNBTJiV5QLA88aAp89epVaX5MiN7xGj1DUBGF37tanXoCj/P1scEAfVBQuQY2btwo1ZJGgSI50QuK5YEHsXrixImSSc6m21GHQnkks8r37dunVq1a5dy57t27t8qWLVsA3hLiCkVyYgQolof+ew9/tapVq6qcOXOG+NWJFUD5tq/3w1YJYjkax6IPiTd7hx49eqi0adOKIGwWME/B35c9e3b5+eDBg1LCHmj3PYrkRG8olge2PB6CZK1ataQyhRC94zVAAsWff/6pZs2a5fF5Ed/mzp0r88gJEyYovUBDetcMeBw/mu3pDUVyojcUywMLGhjjnJqtn5JRoVAeAdjBnjZtWoQ72aBMmTKSWY6schI8KJITI0GxPHQsWrRIHT9+XDYlCYlMvHYn6ri7H/YrEIW8ZZUjMwyxH6Xfffr0MdWbg4a48+bNc2aZ4LyNGjUqYM9PkZwYBYrlgQENjM+dO8fKLmKoeJ0nTx71wQcfqG+//VbitjvgB16nTh2xTO3bt6968OCB0gtUn2OeAZ48eaLq168v166gx0KojpEiOTEKFMsDA9YlsFlEEkzChAkD9Kz2hkJ5JDzSkJmFjDKUT23bti1U75WtoEhOjAjF8uCDDCAIkVhUYAwmJDLxGhZo4a0C8Ht31mjJkydX7du3Fy9elC66o3Pnzip+/PgqRowYIsaZrR96jhw5wmS2oVnuunXrovy8FMmJ0aBYHjVgL4VqWdg05cuXL0DvCrErgYzXAMI3Ms49eZVDUK9du7bcRjXVrVu3lJ4MGDDAWSWJqi7NWhBrXmzCw8+8devWQZ9XUCQnRoNieWDGF+CuvwPxn1ccZlvlBRHscEckzKA5Z/hgjaCWO3du8Ur77bffQniU1ocieeBhR+7AcuLECXX27Fn1zjvviG0DCRxr1qxR7733nlhb4ZqQqMRrPA6LaWSmeesfAtuVTJkyqQYNGoRpfhmeJUuWqFy5cpm6ySwW6LA3Asg82blzp8qSJUuknosieeBhzA4csEtCpibGgMh+xu0INg0hXsIiAkkChBgpXgNkZSNpDRnjceLEifAxaFyNCsX333/fEE0+IZAXKlTImU2OfjwzZsxQy5Ytcz5m4cKF6sMPPwzK61MkDzyM14EDFSIYByBPYsyAgE68c+HCBRk3e/Xqpb766iuesgDBjPJIeqS9+uqrsmODBTNKu0hgoEhOzAAzy4MHssnz58+vypUrF8RXIXaJ11hsN2rUyKdFNwRjCMjjxo1TZ86ccfu4KlWqmFokByhZh3CgbRDgtjd/9oigSE6MDjPL/efu3bsyRjRr1owiOTFkvAb9+vVT165d82ghhs0x2LQYQSTXstyHDh3q/BlNtjWRXOt5hjlGMKBITowOM8sjx9dffy1rmE6dOgX4HbE3FMqj4JFWr1496WJtNp9So0KRnJgJiuWBZ8OGDWIDAWsroyxqiDXita+0a9dOJUuWzPIZGdGiRZNMNq0MHIJF9erVX/JM9QRFcmIWKJb7x5AhQ9SjR49k8U2IUeM1qrphVQLbkshs9OoFmodDMNfWviBx4sRqxYoV6ptvvpH4HGgokhOzQLHcPw4fPqymTp0q6xb0IiKBg0K5C/56pEWPHl080hYsWOC28SfxDYrkxIxQLA8cKLPDeItGyRDsCPFEZDxNfWnWjfJtbH7PmjVL7d+/36fP7ezZs9WUKVNM94bBa33p0qWyMQBQwt6kSRPnwt0TFMmJ2aBY7htXrlyRpsYdOnRQqVOnDvK7QuxAZOO1LzEb4hCsLyCW+wJsWL744guf4lwwuH//viTawYJFI168eGrt2rWqfPnyQXlNiuTEbFAs952ePXtKlWvLli2D+I7YFHiUk7Bs377dMXXqVLn2xvPnzx25c+d2lCpVyvHvv//yVEaCFy9eOHbt2uVYu3at4/HjxzyHQeDp06eORYsWyTUJPMePH3csX77ccefOHZ7eSLJgwQL0y5BxgJBgxOuuXbvKZ0y74OeIePbsmeM///mPo2LFih6fD+NpmTJl5Lnix4/vuHLliinfuB07djhix47tPC+dOnV6aT6zd+9ex549e+T2pUuXHEuWLHFcvnxZpyO2PozZweP27duOZcuWOU6dOhXEVzEvbdq0cbzxxhuOW7du6X0oxMbx2p+Y/dVXXzlixYrl+Ouvvzw+38iRIx2vvfaaPNfkyZMdoebgwYOOrFmzhvmbChQo4Hj48GHQXvPRo0eO1atXSwynThEcGK+DB+bjmzdvdmzatEluk7Dg3GAcmTlzJk9NEGAzzwAAbzH4n/3++++qYsWKgXhK28BM8tDARiPBhw0+o9a8Bc2R06VLp1auXBnAd4UQ/5t1g/nz56tatWqJFVDp0qXdnsbmzZurSZMmyW34pLZt29aUpxxNyVHJoWXZDRgwQH355Zdye/fu3dJYF3ZIyJ6HPUuBAgVUihQpdD5q68KYHVzY4DNi0JshW7Zs4k8ePgOYEKPG7Hv37okNC2LY+PHjvTaLB2ioiecKpc2faxPtBAkSqF9++SVoTTsBM8lDA+N1cGGDT/cVrSVKlFAPHz6UeTr6J5LAwjMaACpXrqyKFSsmAVCvUi4zQpGcWAnasEQe2FagHBaNPAnRu1k3qFGjhizGP//8c/XixQu3z4vP7FtvvSWNvc0qkoOqVatKE1MN9AkYM2aMiBVorAthER6wKHOnSE7MDm1YIgaWFMmTJ5deDYSYJWbDRqxXr17q/9q7Eziby/aP43cJ2bMlEsoSkpRIWUKUJVkSIkRlabWkp/IoSllTKvFkSbJUsoVISkR6LKVSlnqy71JZCj11/q/v9X+deWbGzJjDnOV3fp/363XSHIPjjDn3ub+/676u8ePHp9kyTWtZu3bt7HOXLFkS8Vk4Gj5avXp1d/XVV7u1a9cSkgPpQBuWlL333ntu+fLltg8hJA8PKsrTQRtFLcwaOpJaP7XPP//cFr8pU6a4tm3bZvTXKe4QkkcWV7sjh8ry0CteSpcubRcb33777TB9VeB3oVaUy+rVq+3nVCn+wAMPpFnVES/DZ1Xtpov+Qeeff747fvy4/b8Gf86ZM8cq9xBerNmRQWX5/3zwwQeucePGdmqkVatWEfoKAKGt2XfddZf1LE/pNVMXrfPmzeuWLVuWanAU7fX6wIED1pNca2u4UEkeWazXkUFl+f8cPXrUlStXzlWuXNnNnj07Ql8B/6Gi/DQ0bEQLdYcOHexHfZySG264wSqyVG118uTJcHyt4gYhOeIZleWhefXVV92+ffvcwIEDw/QVAc5smJgGy9577702KGf//v2pfl68hOTB5yRxUB4MyStWrGjtWQjJEU+oLP/f9/nDDz/s6tat6+64444of1WA/1+z27dvf8pTMXny5BQHe2bOnNmNGjXKrVixIsUgPVbW64IFCxKSA2eAyvL/0Z754MGD7qWXXuLfUhgRlKdBC/HQoUOT3KePU5u8rZ6eW7dudWPHjs3Yr1IcISSHHxCWp7+aT0fGNKm7VKlSYf6qwO9ULa0K8kmTJtmPgwcPPu2v0bqeKVOmJOHx6ehIdWrHxr3g5ptvtg1JkKrfZs6c6S677LKoPi4gHAjLnRs+fLjbtm2bXbiOdpAIBAX7iSeX2vpau3Zt16ZNG9enTx97f5ke+jydpogHVJIj3hGWO2tVOmLECJsjVKJEiWh/SeIaQXkG9jTVsWRVng8YMMB6eSIpQnL4CWF5+vo1ajCgTuIAkaxSS6uSPLECBQpYWP7GG2+4lStXnnaTqg26hoR17tw5zd7msUrDztR+QUdcg71fV61aRSU54pqfw3IV+Gh4Z8+ePe0oNxAr1PI0lPuDF320Fj/11FOn/f3VSqx8+fI2BHTDhg3OywjJ4Rd+DsvVOkozRC655BIGbkcAQXkGL9B6s6kjjOlZoP2EkBx+RFieuvXr17uRI0faUKXChQtH8KsChEbtV9QH8P777z9t+K1egVrvdPxbR8S95MMPP3RNmjSxDbdoaOeaNWtc2bJlo/3QgLDza1iugDxfvnxcsEZctEy7+OKL3dNPP21tWNIa7Clap/fs2WMtU3v06OG8ipAcfuPXsHzGjBlW0PLyyy+HtYUT/h9BeQYv0EWKFHH9+/d3r7322mkXaL8gJIefEZanfEX8wQcftFYOvXr1isJXBUg/tV7Rmv7111+7MWPGpPp52bJlc+PHj3dZs2a1i+bt2rXz1NOsIWM64SGayaI35Bq0C/iF38LyBQsW2MU9HeNWiyXACy3T1AJVfchTa4X6yCOP2AVevc/UHjQ1OgGu4reGDRva2u1FhOTwK7+F5RrgqQvbmomok58Iv3MCSiyQJi3EetOsxTQ9x7U1/fjqq692efLkcZ999lmqk7f9gJA8NjCRO/o2bdrkfvrpJ9uE67XBz6ZNm+batm3rFi5c6G655ZZoPxwgXdRL/7333rP+gIUKFUr18zScNq2fj2UvvviiBeT6HtXRTkQHa3Z0qW/x559/bu/743V+hgI2DektVqyYVajRmxxeoIK1xPPDVNCmMD25JUuW2HDaCRMmuE6dOqW5Xl944YWe/PdPSB4bWK+jSwG5sjpFmirySDxjJ55oVpJOYn///ffu0ksvjfbD8QX/Jrhh7GmqydsaiKM32boC7leE5MD/UFn+/w4fPux69+7tWrRoQUgOT9HgWa3v3bt3tzfkqfFqSL57926rIJ8+fTohOXzND5XlahG5fft2BnjCMxSGJQ7JRR+nVFlep04dO9WlU4ta29JarwnJAe/yQ2X56tWrbf6C2pUSkkcOQXmYaPL2nXfeaVe60zt5O54QkgOnIix37plnnrHXRFWuAl6iwZ5qwTJr1iz39ttvp/vX7dy503333XculilI+PLLL60vOTMDgPgOyzWY+IUXXrD1mAGe8Ap9L4Zyv6ov1Qqta9euaV7cTkwh28cff+xiGZXkgH/Ccs0+vPvuu91VV13FAM8IIygPo+Dk7X79+jk/ISQHUufnsFxh4UsvvWRXxHXcG/Cali1bulatWlnv0717957289XGRO0NdILi2LFjLtZD8osuuijaDweIGfEYlmtfok13lSpV7HQX4BVqhRTK/fnz53f/+te/3Lx586yn+en85z//cTVr1nT169d3n376qYtFhOSAv8JyzVL44Ycf3MSJE+1UKyKHoDyM/DjYk5AcOD0/huWJB3iyOYeXqbWaBnyergXLX3/9ZYPHfvnlFwvaBg4c6GINITngr7BcxTvbtm2zTXe89nJFfFIIppPayXuWp9UatWnTptaCRQM+02rBIjotpoBN67r6mqv3dCwhJAf8FZavWrXK2ks9/fTT7sorr4z2w/EdhnmGmRbZSpUquZw5c7oVK1bE9ZtSQvLYxaCR2OSnAZ9vvvmmVbEtWLDANWjQINoPBzgrqhRXdfmUKVNsMG1qFK5puLcm1I8dOzamvs8JyWMXa3bsiYcBn3r8NWrUsAt4yQNHwCvUk1xrq74X0zM/7NChQ+6KK65wlStXdnPnzk21J7kubquafOvWrTbQOr2zySKBkDx2sV7HnngY8KmWK9dcc43Lnj27hf5e/Dt4HUF5BOgfd/Xq1d3zzz9vV77jESF5bGMRj11+CMt37dplm5QmTZqk6/gr4AVt2rRxH330kbUUSqtlib7HtaGPpYFhhOSxjTU7Nnk5LFfQpsKdvHnzWuGOTsUAfvH+++9bdblOUnTs2DHVz9u3b5/Lli2by507t4sVhOSxjfU6Nnk9LH/88cdtntfatWtdhQoVov1wfInWKxGgb061GtCE+e+//97FG0Jy4MzFexsWvUHp0qWLbTw0WAmIpxYseuPdrVu3NFuw6HuckBzwPi+3YdFskGDLFUJy+M1tt93m7rrrLmvBouKN1BQqVIiQHIgDXm7DooB/2LBh1nKFkDx6CMojRJPlFYap9YCXvlFPh5AcOHvxHJar5coHH3zgXn/9dZcvX75oPxwgwxQoUMCNGTPGzZkzx40bNy7dv+733393b7zxRlS+ElSSA/4LyxcvXmyVac8++6wrW7ZstB8OEBUq1lAbgw4dOliblfR699133cGDB12kUUkO+C8sP3LkiF3UU9sVWqRFF0F5hJx//vlWxaHjE8OHD3fxgJAcyDjxGJaraqdHjx6uffv21nYFiDfNmze3ExMPP/ywW79+/Wk/X+Ga3rR37tzZjR8/3kUSITngv7B87969tumuV68eg7ThayrWmDx5sluyZIkbNGhQunoEa2h369at3Z133hlSuH62CMkB/4XlOp3atWtXawGlOQleaxcTbwjKI0jfpI8++qgdo0jPhjqWEZIDGS+ewnIt9vfdd59V79ByBfHspZdesn7FrVq1cseOHUvzc1evXp2w/j/xxBPu6NGjEXmMhOSA/8JyBXsKyUXzQc49l20f/K1u3brWhkh78WXLlqX5ub/88oubOXNmwqkM9TmPBEJywJ9h+YQJEywg/9e//uW5OSjxiHdMETZgwABXsmRJ16lTp5j9Jj0dQnIgfOIlLNcJmgULFljLFQ0PA+KV+u+/88471v/3oYceSvNz27Vr5x544AFrf6BNes6cOcP++AjJAX+G5YMHD3affPKJmzJlivVeBuBsZliNGjWsSjytliqFCxd206dPdzly5LATYDpBFm6E5IA/w/LvvvvO9hD33nuvvTYh+gjKo9SC5csvv3RDhw51XkNIDoSf18PynTt3up49e1ofyFtvvTXaDwcIu/Lly7tRo0ZZ73Ed7U7LiBEjbFBPWr2C9YZZt7NFSA74Myz/7LPPLBDs27evu+mmm6L9cICYCsymTp3qTpw4YbPDtLdNTa1atewiuNqlpdWiJSOqzQnJAX+G5ZpdpFOp2vtzCjt2EJRHQdWqVa05v459rVq1ynkFITkQOV4Ny4NHvVWBo5YUgF907NjR+vF369bNQrPUZMmSxeXOnTvVn//4448teGvYsKEF3WeKkBzwZ1iuKllVpFWvXt32GgCSuvjii92kSZPc/PnzbdBtWvLnz5/m95ouRDVt2tROlp0pQnLAv2G55hxt2bLFBgerZSliA0F5FFuwVK5c2QaE/Prrry7WEZIDkefFsPzZZ5+1SjZV69ByBX6iN92vvfaabcBVGaIqs/T289cJM93efPNN16BBA3f48GG3Y8cO66V6JgjJAX+G5Xo9UZWsXn+0DjMMDEhZo0aNbHbY448/bqe80mvt2rWuRYsWNm9E3/N6jy5qq3bkyJGQn25CcsC/Yblao6m106uvvmqnUxE7CMqjRBVlb7/9tg0K0cA7vbGNVYTkQPR4KSxfsmSJe+aZZ1z//v3djTfeGO2HA0Sceo6rqmzjxo3uwQcfPO3aHpxw/49//MNuCriCb9ibNGniXnnllZAfAyE54N+wXH3JVSWri25FixaNymMAvOK5556zwjVd3N6/f/9pP18tVmrWrOlmzZplv+6HH35I6Ge+aNEilytXrpD+fEJywL9huS626RSq5hdpfiFiC0F5FJUoUcKm27733ntuzJgxLhYRkgPR54WwXBsMLfR16tRxTz75ZLQfDhA1lSpVson1wQqRtOgNuirQk1NlmjbiamEUCkJywL9h+dy5c60neb9+/Vzjxo0j+mcDXi1c08BOncBo2bKlO3nyZJqfX7x48YQL4MHPrVChggVt11xzTUh/NiE54N+w/Oeff3a33Xab7e+VA+oxILYQlEeZjm5pQ6zBd+vWrXOxhJAciB2xHJbrtUKDO/UGQ4MMM2XKFO2HBES9X3mvXr1sbV+8eHGqn6fWa0uXLk34WG+UX3jhBaskD/X7iJAc8G9YruG/bdu2dc2aNbNTXQDS55JLLrEL0wrK0joJpvs/+uijJG3V6tWr55YvX+6KFSsW0tNNSA74Nyz/888/3R133GGtmubMmWOnURF7CMpjwPDhw125cuWsX/nRo0ddLCAkB2JPrIblw4YNcx9++KGF5Dp+CviBepq+9dZbqfY2HTJkiG2idaQ7pbBs27ZtrkaNGtaySM4//3yrbFPAHmplCSE54N+wPFiZdumll9qAwnPPZXsHhLJe63tVVZ1jx461WSPJKTxTYVufPn0S7lOrNLU5ypMnT0hPNiE54O+wXEU0muc1Y8YM6zCB2MQ7qRigzbF6mmqj271796j3KyckB2JXrIXlehw66v3EE0+4m2++OdoPB4gI9ROvVq2anaTQj/o4pTfemkVSsGBBC7E0oDNIF8WrV69uVaBSoEAB98knn7jbb7895MdCSA74NyxXZZouxun1Rf2TqUwDQl+vpXPnzq5Hjx7ukUcesfU4sYcfftiNHj064WPN41H7VLVuCQUhOeDvsFytGUeNGmW3WrVqheXPQMYgKI8RZcqUsW8cVWSqr2m0EJIDsS9WwvIDBw64O++80zYe2jQAfqCKtKFDhya5Tx+nVKmmoEzhlcJstUX466+/7H6FWcHKtNKlS9ub8uuvvz7kx0JIDvg7LO/du7dbtmyZzTuiMg048/U6eEKybt261hbhP//5T5KgPG/evC5z5sx2akNzAEI9+UVIDvg7LNdarfZOOp3SpUuXDP29kfEIymOINtGqKL///vvdihUrIv7nE5ID3hHtsFxDjDT4SL0ap02bZm8uAD9Q4BXK/fpe1amxBQsWuH/+858J96tqTb3IV65c6UqWLBny4yAkB/wdlqtNhF5DNDT4xhtvzLDfF/Dreq33slqv8+fPn+QkWNmyZd3s2bOtzWD79u1DfhyE5IC/w/KtW7faqVFVkb/44osZ8nsivAjKY8zIkSPtzbSGfG7fvj1ify4hOeA90QrL1R7qoYcesjcQGoCkQUiAn06AhXK/3HLLLVapNnjwYDdu3LiE+1VZog15qAjJAX+H5YsWLbLCGhXYdO3aNUMeIxBvzmS9VuW4ToLt3LnTKstVGCIKuOrUqRPyYyAkB/wdlh86dMg1btzY5c6d27377rt2MgWxj6A8xugbR8cns2fP7po2beqOHTsW9j+TkBzwrmiE5Rp09Prrr9vgI238AT/Rm+fHHnssyX3qear7Tze8R8ctFWppyv2ZIiQH/B2Wr1692gpqGjRo4F5++eUMfYxAPDnT9VoV5CoE+fTTT613ufbKZ4KQHPB3WP7777+7Jk2auH379rkPPvjgjIpjEB3nBKI9ORIp+vbbb61facOGDe3KU6h90NKLkNwfNOxJL86NGjXiKmac2rRpk/vpp59sE54nT56w/TkacKShnerXOGLEiLD9OUCsU49TBV6qTDvdpjtIPcrbtGnj5s2bZxWhNWvWDOnPJCT3B9bs+Pbrr7/axW29dpQqVSqkX6vXHA0C1myDxYsXW2ENgIxfr2X69OmudevWNuTzhRdeCGk/TkjuD6zX8U0BuV4/FJlqJlcorUb1a5s3b2575yVLlriqVauG9bEiY1FRHqOuvPJKG+yp6vKBAweG5c8gJAfiRyQqyzXYSMdQb7rpplOGIwF+o822epWGsunOlCmTre26EK7+p7oonl6E5IC/K8v1GqAL1QULFrSLbYTkQPjWa9F7Xs0AUE/h4cOHp/vXEZID/q4sV7CugZ0LFy50M2bMICT3IILyGNasWTP37LPPuqeeesqOf2UkQnIg/oQzLNdAIwV7OjL29ttvM7wTSIUqT9566y37MSVZs2a1Nb1EiRLWOmHbtm2nfS4JyQF/h+WqQtcpU51K0UDBfPnyReRxAvHsdOu1aBZAv379rIXLm2++edrfk5AciC9nEpb37dvXvfHGG3bTe314D0F5jNM3ma5m6yr4unXrMuT3JCQH4lc4wnJtzO+66y4bbKQBRxp0BOBU6n2qo5kdOnSwH/VxStQeacGCBRaaa9DnwYMHU306CckBf4flx48ft7lFO3bssJCcAdpA5NZrGTBggLvvvvvcPffc4+bPn5/q5xGSA/EplLB85MiRbtCgQdauSftneBNBeYzTN6OuRGmoiCpJtmzZcla/HyE5EP8yMizX0TFV06jHvSrJ9VoE4FSqSEvekkgfp1apdtFFF1mf8kOHDrnGjRu7o0ePnvI5hOSAv8Nybcbbtm1rAzwV0JUvXz4qjxPw83qt/bgG2WsonwrYVq5cecrnEJID8S09Yfm0adNspkGfPn1cr169ovI4kTEIyj0gR44cFlLlzJnTehPu37//jH4fQnLAPzIqLO/fv797/fXX3bhx4+xiHYCUKegK5X7RID9Vlm/YsMHC8mPHjiX8HCE54O+wXJtwVbvOnTvXvfvuuzbbAEB01muFZFOnTnVVqlSxVgq6eBVESA74Q1phuXqRqwuE1u3BgwdH9XHi7BGUe8SFF15oxy2PHDlim2n9GApCcsB/zjYsV/XMM888Y4v93XffHZbHCMSLMmXKhHR/UOXKlW3Yz5dffmnVar///jshOeDzsFwtzzp16mQBuU5z3XrrrdF+iIDz+3qdLVs2G6RboUIFK15bu3YtITngMymF5bNnz3Zt2rRxrVq1chMmTHDnnkvM6nV8BT1EgZc205s2bXK33367O3nyZLp+HSE54F9nGpa/99577sEHH7TjYxpgBCBtetOc/HtFPU91/+koIFNl+apVq6xSTce6r732WmvPAsBfYfnGjRtts63q1SlTpth7fgCxsV7nypXL1mu9v65fv74N+NSg+0qVKllwBsBfYbl6kWvNbt68uZs0aZLLlClTtB8eMsA5ATWghacsWbLENtJ64zx58uQ0r1gRkkP+/PNPa9/TqFEjlzlzZp4UH9IFtp9++sk24RokmFGvMQCSUo9TVYWqMi09m+7EdGyzXbt29uu0Ec+ePTtPrw+xZvuXKsl1dPudd96xnsm9e/eO9kMC4nZdPpv1es+ePa527dpu37597uOPP7bTYfAf1mt/mzlzpmvdurWrXr26vW/XqRPEB9IPD6pTp45VmOgopoYEpHatg5AcQKiV5V999ZVr2rSpu/HGG93EiRMJyYEQabOtoCvUTbd6kmfNmtWqSHWcO3nPcgDxTce3O3bsaCH5mDFjXLly5VIc8Akg/VQpXq1aNesbrB/18dmu1+pJ/t1337mxY8fa++t69eol6VkOwD8h+W233eYGDBhg791TGvAJbyIo96iWLVu6UaNGuZEjR7pBgwad8vOE5ABCDcu1IdfATn2eKluzZMnCkwhEQOLBnS1atLCqlDVr1tj3Y6gzSQB4jzbXCuxUBDNt2jR33333pTjgE0D6qWJcJzMS08e6/0wlHtxZs2ZNt2jRIruopbBc/YoBxL/p06dbuxWdvta6rYrylAZ8wrsIyj2se/furn///q5v377WGymIkBxAqGG52rLotIp6pM6fP996MAKIbEge7EmuzbcGeK9bt87ddNNN7sCBA3wpgDilAb66QKbZIKom1+Y7pQGfAEKj751Q7g8lJA/2JFc7Q63XFStWtJ7lH330EV8mII6NGzfOBneqmlwtStXWNqUBn/A2gnKPe+qpp9yTTz7pHn30UasuJyQHEGpYvnXrVgvJ1Vftk08+cRdeeCFPIhClkDxIAdmnn37qtm3b5mrUqGHfpwDiy6FDh9zNN99sPY7ff//9UwZ3EpYDZ069x0O5P9SQPEjFJQsXLrSL3GqbpgpTAPFF7Y4HDhxoJ766du1qgzsVkAcRlscXgnKP0yKtb1hN7u7Ro4d7/PHH3eHDh+34h3qdAkBaYfns2bOtH7muhmuIZ5EiRXjCgCiH5EHXXHONbcxVmaLg/JtvvuFrA8SJnTt3ulq1armNGzfaRWq1WkoJYTlwZlThqT1yYupRfiY9yVMLyYNy5Mjh5syZY5Wmd955pxWwAYifQdsPPfSQ69evn/UjVwvkTJkynfJ5hOXxg6A8Dmixfv75513btm3dsGHDbCNNSA7gdPQ6odZNJ06csMD84osv5kkDIhiSqwpNx7TT6pdaqlQp26AXKlTIQrVly5bxNQI8bsOGDXbxSzMIli9fftrgjrAcODNDhgyxVgiq/tSPgwcPPuOQXO+X1WohtTVbRScTJ050ffr0sQK2J554wqpQAXiXvu918Wv06NE2aFsdHVK6WBZEWB4fCMrjgNqtfPXVV65z5862KPfs2dO9+OKL0X5YAGKYepKrklxhuQaH7dixI8UBnwDCE5KvX7/e1a5d23Xo0MFVq1bNqtxSo4rzpUuXWoW52jTowhYAb1JYp3ZK6m2sFmhly5ZN168jLAfOjC5EaVju2VSSq53K9ddff9o1+9xzz7WBocOHD7dQ/p577qFfMeBR6tTQqFEja42mAZ5quZIehOXeR1DucYl7kutN94gRI6z9Sq9evay6HACS01CwYEiu8E39yVMa8AkgfJXkqjRLTBvrtCrLc+fO7RYsWOCaNGlifYxff/11vjyAx3zwwQeubt26rnz58nY6JNSTXITlQGQkryTXGh3Kmt27d2/31ltv2a158+Y2tBeAd+zbt88KWtasWWMDezV0OxSE5d5GUO5hKQ3uDLZh+ec//2k92Z5++mmOfAFIoNZMat+gXooaFFi0aNEUB3wCCF9P8u3bt6f4OZs3b07z99A6r6q2bt26WVWL1nn1TQQQ29R+4ZVXXnG33Xabq1+/vlu0aJHLmzfvGf1ehOVAeCXvSf7DDz+c0Zp91113ublz59oMAhWo7Nq1K0yPGEBG+vrrr+0Eyp49e9xnn31m379ngrDcuwjK4ygkD1JY/uyzz7pBgwa5Z555xjbUbKQBqHpNIbl6HSskTz64k7AciMzgzjJlyqT4eandn5iGB7366qvuhRdesJuCNy5uAbHr5MmTrkuXLu7hhx+224wZM1y2bNnO6vckLAfCI6XBnWezZjdo0MCCtr1799p7gLSq0AFEn9ZozRDRxWx9v1asWPGsfj/Ccm8iKI+zkDwxtWCZMGGCGz9+vLvjjjvc8ePHI/5YAcQG9TRWb+PKlStbuxWFdSkhLAfCG5KLqlRUDZ6Y+p2mt3+qNu5qsTZ//nzb0KtfamoVbwCiZ//+/e6mm26yQYJ6T64Wido0ZwTCciD8IXlGrNmaL6L2DTq5qcpUvR4AiL2MbcCAAa5ly5aucePGNmi7WLFiGfJ7E5Z7D0F5nIbkQZ06dbKAbOHChe6WW25xv/76a8QeK4DYoF7G6mmsylP1R1Wv47QQlgPhC8mDhgwZYkP9tGHWjxr6FSpVqqnaRW0dqlat6j766CO+dECMWLdunatSpYpdxFqyZIm9J89ohOVAeEPyjFqzdZpTLVjatm3rOnbs6Pr06cOJbyBGHDt2zLVq1cr179/fOjO888471qY0IxGWewtBeRyH5EG33nqrW7x4sfv222+t7YI27gDin8IzLfbqZdy9e3c3bdq0dL9uEJYD4QvJg1SN1r59+3RXpaX2vapNu6rKFZyPHDmS2SRADBzd1nv1AgUKuNWrV9sx7nAhLAcyNiRftWqVDeFM3iblbNdsvQfXSe+XXnrJTpdoj07rNCC6tm3bZuu1CktnzZpls/6SXyjLKITl3kFQHucheZDeoOv4yC+//GL/f7rhIwC8TXMJHnzwQffUU0+5gQMH2hAx9TYOBWE5EL6QPKODsnnz5lk7lh49erh7773XNv4AIr/2Pv3003Z0u0mTJtab+JJLLgn7n0tYDmRMSK7Wpbrw3KFDB/tRLVYykgK4Rx55xC1YsMAucit037hxI18+IErzu3TySxesVq5c6Zo1axb2P5Ow3BsIyn0QkgeVL1/eff755y579uz2++j/AcTn8bHWrVu7MWPGuLFjx7q+ffue8ZXxxGG5XoMAxFZIHqQLYcOGDXNvvvmmmzp1qm3wN23aFLE/H/A7DetTm0Od5HruuefsFJfec0cKYTkQGs3vSl5JPnTo0CSfo4/DMYBTc4P055177rn2fkEV7AAid1FbhWR16tRxV1xxhZ38uvLKKyP29BOWxz6Cco/QIno2IXmQqlpUWV6uXDl7YXjjjTcy7DECiL7t27e7mjVrJhwfU2Xp2VJYXrJkSfff//43Qx4jEO8b70iH5ImpCk6b+pMnT9rwXjbfQPhpPsBVV13lvvvuO2t3+OSTT4bt6HZ6wvITJ07QgglIRzGaeocHe5KnduI6XCexS5cubQHdHXfcYWv33Xff7Y4ePRqWPwtA0ovaOnWtNitav9UmLdKCYbkuqKtdKmILQblHQvKrr776rEPyoHz58tmbeC3GnTt3tqPaBGCA9+kimI6PqcWSKsA1vDOjlClTxl47AKRNJzCiFZIHVaxY0Tbfav+gzbeGCOqkCYCMpffPOrWlTbfCtq+//trVrVs3qk+zwnJVyEUjqAe8RAFVhQoVEr5X9F43JandnxE0MFCFazoN9t5779n7+G+++SZsfx7gZ8kvag8YMMAC62jRn62cL3PmzFF7DEgZQblHZPSb3SxZslhbhlGjRrmXX37ZNW7c2MI1AN6k4UDanOu0iAIyBWUA/Ctnzpxu4sSJdnv33Xetyl1DvQFkjB07drjatWu7IUOGuOeff956Dl944YU8vYBH99iq7nzssceS/Lx6lJ/NwO300kXtNWvW2B5df97rr79OlSkQhovaCsrXrVsX9YvaQVzUjk0E5T6mb8r777/fLVq0yBZmhokA3lz4NRRILVbuueeeqB0fAxCbOnbs6NauXWvVKlWrVmXzDWQADc9VBbnanS1dutQGAOoEKABv04UvDdmcNGmS/Th48OCI/dlly5a1P1Onvrt27eratGljQwYBnLmdO3day+HgRW21J1XLJSAtvKODXU1TBWrwCrYqYgDEvkOHDrmGDRu61157zW6jR4/m6BaAFDff6luu0Fyb76ZNm7o9e/bwTAEh0lDr++67zzVp0sTVqFHDqtI0QwhA/NB+uH379hGpJE8uW7Zs9n7+nXfesUBPJ0TVIgJAaNT3Wy2NNKRz69atXNRGSAjKkdBTdeXKlXaEVG1YnnvuORtwAiA2aXOu6tCvvvrKToV079492g8JQAzT5lst1zTkd9WqVdbDePLkyRztBtJJJ7bUz/jtt9+276XZs2czuwNAWLRq1cpmHpQqVcrVr1/fdevWzR05coRnG0iH3bt326wunc649dZb7XuJi9oIBUE5EuTKlcs20P369bNbgwYN3L59+3iGgBi7Oq7ZAqpyyZ07twVeOk4GAOnRrFkzG2KkNV4Vc/qY6nIg7SpyncS4+eabbajf+vXr7WP6igIIpxIlStgFOr3v14VtVcZ+/PHHPOlAGvvkt956y4pB1Fp4zpw59nG+fPl4zhASgnIk/Qdx7rk2/VeLsiZua9gBCzIQG3799VfXsmVL9+CDD9omXadAdBoEAEKRP39+N3XqVDdz5kzrh6oNxZQpU6guB5LR+2GFU/p+UTsEfVy8eHGeJwAR25trppiGcV966aWuXr16doqU6nIg5SpyDcZVhwQVhehj4EwQlJ+BQYMGuSpVqlgFtqbbqxpr06ZNSfoGP/TQQ+7yyy+3o87FihVzDz/88CnDOFSJkvym45yJKbQuWrSo9UHcvHmzi5SbbrrJjqhoc6DjXk899ZQNDQQQHeovfPXVV7tPPvnEwq2XX37ZZc2aNWJ//rJly6wna5EiRey1SkfOE+vfv7/1Qc6RI4fLmzevvZHXY05eGZP8NS/5kKSxY8daCKG/a/JfD4TKD+v12WjevLltJG655RZ311132cd79+6N9sMCok4hlFodqIpcrQ8UUuljL1SRs17Di1iv06aQXMVrr776qg0a1R5dewLA71RFrhMXao2muXvqkKCPvVJFzpodmwjKz4Cm2z/wwANWhaXKkj///NPeSB87dizhapZuw4cPt+OZEydOtGEc99xzzym/1xtvvGFHnoM3beKDVqxY4ebPn29HRtq2bWtVpJGkacAffvihGzhwoPUs19BPTQ0GEDmaFaDXEoVv+p5UT3KFWZGm1zedMNHxz5ToOLrevCtMWL58uYXiel08cOBAks975plnkrzmKaQM2r59uxs6dKgFkH379nWdOnUK+98L8c0v6/XZKFCggJs2bZqbMWOGnVLRRQNdiOPiOPy64db3gy78aqOtQdl67dCa5hWs1/Aiv6/XKg5Ri4i0ikRUXa7nSO+19ZqkwjZd5KZ9Gvxqw4YNVtSpVoINGza04o/E3+9ewJodowI4a/v37w/oqVy6dGmqn/Puu+8GsmTJEvjzzz8T7tOvmTVrVqq/Zu7cuYGmTZsGTp48Gfjiiy8CVapUidpXa9myZYGLL744kD9//sC8efOi9jhwZvRvaPbs2fYjvOPAgQOBxo0b22vFY489FjNfv9O9dslvv/1mn7d48eKE+4oXLx548cUXU/013377beDaa68NHD16NPDTTz8FSpQokaGPG/DDen02Dh48GOjatWvgnHPOCVSsWDHw2WefRfsh+RJrdnSsX78+ULt2bft+b9GiRWDr1q0Br2O9hlf5ab3We3w97uBNH5/OX3/9FRg/fnygQIECgVy5cgVGjBgRM/sEP2G9jo4jR47Y98l5550XKFmyZGD+/PmBeMCaHTuoKM8AwSPaaR3v0Odo8N55552X5H5dFVY1V9WqVd2ECROS9AfVUejjx4+77Nmz29AtHUmLlpo1a7p169a5atWq2eTgLl262HAjAOGhY2PqG6zKkg8++MANGTLEZc6c2RNP98mTJ93rr7/u8uTJY1XoianVivojq7XKsGHDklSt6shcxYoV7dfp767TLEBG8sN6fTb0vTlmzBgbEqzWTlr7O3bsyGBvxH2blUcffdRVqlTJ7dq1y6pUdcLCD73IWa8Rq/yyXut9vk5TJqaP1dLwdNXlnTt3tnZyqqbt3bu3u+aaa6yNAxCv9L387rvv2qkvnX58+umn7YRJo0aNnB+wZkdQtJN6r9PVXFV8Vq9ePc2q0GLFigWefPLJJPc/88wzgeXLlwe+/PLLwODBgwNZs2YNjBw58pRfv2/fvsCJEycCseDvv/8OjBkzJpAzZ077Oy1atCjaDwnpwNVub1V0tm3b1q4o33bbbYHdu3cHvHK1W1U6OXLksGrUIkWKBFatWpXk51944YXAkiVLAl9//XVg9OjRgQsuuCDQs2fPFJ+D33//Pax/B/iP39brjHi+xo4dayfJcufObX/fxFV7CB/W7Mi9p50yZUqgcOHCgWzZsgWef/75wPHjxwPxhPUaXuSn9XrSpElJqsmT39JTXS5r164NVKtWzX6N9hG7du0K+2MH63Ukff/994G6devav/FmzZoFtmzZEnf/BFmzYwdB+Vnq1q2btRPYsWNHqu0HqlatGmjQoMFpj0P169cvULRo0YAX6IUp+ELVpUuXwOHDh6P9kJAGNt3eoPY4hQoVCuTNmzfw1ltv2SbeS4u4Wqb88MMPgZUrVwY6d+5srVO0EUmNjozqyFy8BROITX5dr8+WLlzpuQu2Y0ncTgnhwZodfmvWrAnceOONtp7dfvvtgW3btgXiEes1vMhP67Xav6QVlOumz0nvBYYJEyZYOxYVtQ0ZMoTCkzBjvQ6/n3/+OdC7d++ENisffPBBIF6xZscOWq+cBQ3/mDdvnluyZIkrWrRoikc5daQrV65c1kbhdG0TrrvuOhuWeeLECRfrNEBEg1Y05GjKlCnWMmHx4sXRfliAJx06dMiG8Wj4iI6JahCJPj7nnHOcl+TIkcOVKlXKWjSNHz/ejsLqx7Re89R6ZevWrRF9nPAfP6/XGdGOZfTo0daORUfV69WrZ4OT1q5dG+2HBoTshx9+cK1bt3bXXnuttRRSm5X33nvPFStWzFfPJus1YpXf1ms9vsceeyzNz9m8eXO6fi+1Y+nUqZN9vtqmPfnkk65MmTL2XpwB3fCa33//3Vp2lixZ0toCBtusaGin37BmRx5B+RnQxR4t4lqcP/nkE3fppZee8jnq361J3VmyZHHvv/++O//880/7+6oHeN68ea0vqBdoMe7evbtN3tYLmDbO3bp1szcwANJnzpw5rnz58m7+/Plu0qRJ9nHhwoXj4un7+++/09yY6DVPryMXXnhhRB8X/IP1OuMoWPz888/dzJkzLXTQxwocFTwCsW7Pnj32nlXr7YoVK9y4cePs/av6FYP1GtHn5/Vac4i++OILCwJTorA7FPr7vvrqq+777793N9xwg7v33nttBpCe28T92oFY9Oeff9qsq9KlS7unnnrKisf+85//uH/+85/p+p73A/bY4Zd08gXSRQNCpk6daoGWrmbv3bvX7tcAumzZsiUs4roKNnnyZPs4OPiyYMGCLlOmTG7u3LlWyaLKS33Dqzr7+eeft2FCXqM3Mqom15U+XRHX4MEXX3zRtWjRwnMVsUCk7Nixw/Xq1csq2Zo0aeL+9a9/xXRAfvToUffjjz8mfLxlyxbbfGjIkipOn3vuOXfbbbfZ3+HgwYNu1KhRNhTtjjvusM9fuXKlDSWqU6eOvW7q4549e9qbH72hB8KB9TpjaU1v3ry5vWbpwp429eXKlbNNuP4/ll/D4E8a9qfBeC+99JIFZXqvrTBO79fjFes1vMjv67Uqy3X7448/kgz3/Mc//mH3nwkF7O+8847r06ePe+KJJ2xvrudGVbo33nhjBj564OzpIo72xQrEdSqibdu27tlnn3WXXXZZXD+9rNkxKtq9X7wotf5hb7zxhv28htWl9jnBoQMLFiwIVKpUyfqHafjdVVddZUMy1VvMy3766adAkyZN7O9av379wMaNG6P9kED/tJiiwUGDBg0KZM+ePXDRRRfZILFY7UWeWGqvax07dgz88ccfgebNm9sAzyxZsthgNA0iTTzMU0OGrrvuukCePHkC559/fqBcuXJxOTgNsYX1Orw0dHfYsGE2V0HDEJ944gnraY6zQ8/Ts6eZGcOHDw/ky5fP/m0+/vjjgV9++cUX/zRZr+FFrNf/o57kGvKZ3t7k6fXRRx8FKleubM91w4YN7b05zg7r9dnTPvjDDz8MXHvttfZvU7MHvvrqK9/802TNjk3n6D/RDusRf9Rb7pFHHrGq2d69e9uVQfVWQvSOMKnSv1GjRqft5YfwWbRokXvooYfs+Ji+P1SBmTt3bp5yAJ7266+/umHDhlnVrqrOu3TpYmv/xRdfHO2H5kms2Wful19+sZYDI0eOtH+X99xzj621RYoUycCvEAB4t2XDjBkzXN++fa11mqr01cu8Vq1anAQ/A6zXZ/dvUe2ABg0aZHNvdHJCpx1q1659Fr8rkDHoUY6wuPXWW20goQJybZx1NFuLMtdl4Efbt293LVu2tF6oak2gliUvvPACITmAuHDBBRdY+yUN5lVLpQkTJlhbtvvuu48e5ohYD3K1F9BQTrVaaNOmjbULU1szQnIA+H+aDaS2iOpfrlY3anGjYLJ69erWuoa9OiJxcWHixInuiiuusP2xWi2pmExtOQnJESsIyhE26g2nAQxaiK+++uqEoHDjxo086/AFDbLUlXFdKNIQvClTprglS5a4ChUqRPuhAUCGU59Y9ZPUxcGBAwfa6bKyZcva0E9dIAQymk5ode3a1ZUoUcKGf+nUli7YqKpc9wEATnXeeee5O++809ZmrdUK0DVrSEM/FaD/97//5WlDhtJ8gZdfftmVLFnSderUyXroKxzX3rh+/fqcaEBMIShH2KmqTINZtAhrQ6OQUJua3bt38+wjLv3111826O7yyy+3UxXdunWzC0QaSsKAWwDxTi2lNNxbQ3812Hf16tV2wbxhw4Y2XI2KNZytVatWWcijjfbs2bPdgAED7AKNqskLFSrEEwwA6aB9SePGjd3y5cvdsmXL3CWXXOLatWtnexit30eOHOF5xFnZv3+/FVEUL17c9erVywbJfvvtt5YPabgsEIsIyhExWoTVjkWTvDXRuFSpUjaBWz0kgXig8EcXhCpVquQ6duzoKleu7NavX0+bFQC+PVmmC4WbN2+2EzVqj6F+qOXLl7eKXzbgCPWU1ltvveWqVq1qvUz//e9/u1deecUqyB9//HGXJ08enlAAOEM1a9a0mVZfffWVq1Klis1T0qyRhx9+2G3atInnFSHRGt2+fXu7+KI+5K1atbJ2fFrHOV2NWEdQjohvmnUl8aeffrJBXzp+c9lll9kQsD/++IOvBjxrxYoVNginSZMm1n5Abw7Ul19tBwDA70e8daJGm++lS5faBqlHjx62AX/ggQfcN998E+2HiBim94wqrNBmu0OHDi5v3rzWS1cb7vvvv99ly5Yt2g8RAOKGCn7efvttuwipkFz/r/2MLnTPnDnTekwDKTl27JgbP368XWhRtbj2xzrptWvXLjuhoE4DgBcQlCMqVPWjIzhqxaKjs5q2Xbp0aTdu3Dh6osFTVDGunn41atRwR48edQsXLnQff/yxVbwBAJIe8dYFxenTp9sGXNVq2nRfddVV7oYbbnBvvvkmF81hFMSopUqDBg3sBOLo0aNtQKfamH344Yc2ND5Tpkw8WwAQJkWLFrV5I2prpfVZ+5zbb7/dWmj069fPbdu2jeceCfthzQjR8GwNci9QoIB7//337YK2iiN1gRvwEoJyRNVFF11kVxc3bNhgx730wqpKMy3GXK1GrL8huOuuu2zojVoKafDN2rVrbWAtfcgB4PQb8ODgT7Vjy5Ejh7v77rutv7SGPOmCo+Y9wF/ty3QaS5ttnTZo3ry5++WXX6w6TXNtdApRfXMBAJE9Ea7TPJ9//rkN/2zWrJkbOXKkVQfXqVPHXqNppeo/WpdHjBjhrrnmGnfllVdaEYROCaoQcsGCBXbKmgva8CqCcsQEVQtNmzbNffnllzaYSZtl3afek5qQDMQKTedWBbneEHz22WfWZ1cXenQyQhPjAQDplzlzZqtQ05BPVR6pPZteW+vVq+eKFSvmHn30UWvZwgDQ+KWve//+/e39n45qq22Z+prq667gXBdOsmfPHu2HCQC+pxNgr732moWkEyZMsNZqKnRT8VvLli3drFmzbJ4E4tPhw4etoLF+/frWDk1t0XTBROt2cKA27VUQD84JsPNADNIk5CFDhlhPtHz58tnxbF2hvOCCC6L90DxJ1fkaztKoUSMLJRAavUwqxNHir/666tOnwWHqucvzCQAZ/5q7atUqN3nyZPfOO++4AwcO2ADQdu3a2etuiRIl4vop98OavX//fvva6musr3WuXLnsgom+xqpQpAoNALxB/ae1Z9fQbl3g1H79jjvusJO3ak0Zz4VEflivT548aS3P9PWdM2eOO378uKtdu7at11q3aauCeERQjpgf4DR8+HC7Yp0lSxYb2qQBYLpqjfTzwyIeDjr2r8oITerWaQcNJtGV86ZNm8b1mz4AiKX1SxcqtUHT67EGf2vQmE726FivjvzG2+txPK7Zuvih/uLqWapBnDrCrzC8YcOGFqboa8lQTgDwtu+//97Wa93Uw1zt1DRTQq/xOimmNmvxJB7Xazl06JC1T9GarflbqiTXaWqt1zpFrWpyIJ4RlMMT9u7d61566SU76qWrmjqSqx6W6g8N/y7i4XLkyBE7VqbWP5s3b3Y33XSTVZDrR/qPA0B0aJDYvHnzLGjVmqaeqBocpU24gvO6devGRdgaL2u2/h4rVqywjbZu6luqr8/NN99soYkuOmvgFwAgvvz999/WrlIVyHr937Rpk/U6115K67XWba3fXhcv63WwDVrwYvby5cutYOzaa6+19Vp96cld4CcE5fAUbYpHjx5tA0B1zEsDQBWY68Xb64tTOMXTIh5OehOnnuMKydUbX4PE+vTp46pWrRrthwYASLauaSOnDV0whFUfa/XNVJWyjgWr57UXL256ec1Wj9JPP/3UjmkHL2YULlzYNtrxdDEDAJB+KjzSeq2b5pAoSFcIq8Bc64L2WlmzZvXcU+rl9VrFB7qYreHp+rro1Je+Bqr8j6eLGcCZICiHJ2lRmj17toWay5Ytsxfxe++9124cBYqvRTwSz42qHcaMGWNvFAoWLOi6du1qt2iQlCYAAA63SURBVKJFi0b74QEAQmzr8cUXX1gllAJaBebBW+nSpT0RnHtpzQ4G48Hbli1b7H61xwmG4/HYHgcAcGZ+/vlna+uh9VoXVX/77TerNr/hhhsS1muvBOdeWq+DwXhwvV69erW9V1JLWz1+rdfx2B4HOBME5fC8r7/+2qrM1QtNVcCNGze2kPOWW26xSdzw1iIeKdrMjxs3zo0fP97t27fPVa9e3f7dtGrVyhNvzAAAqbfPSrwZXLNmzSnBuTbhV1xxRUyuibG6Zus5VFWgNtcabK3nVrNkREeyg89trVq1XP78+aP9cAEAMU7rivbywfVaBXDJg3Pt0XTBVUNCY02srtei/e3atWvt9N2SJUvsvdB///tf6xuvodnBNdurp++AcCIoR1xtjKdOnWqVwevWrbNFoE2bNjZ0onLlyr5eAGJ5EY90BcP06dPd5MmTLUTJnTu39btXQK4BJQCA+KMhVImDc20ctTnXRVEFvHqPELwpPNfwcL+v2Xp+1I5Mz1Xw9tVXX7ljx47ZzxOMAwAiFZxLyZIlk6zXCs/z5s3r/L5eB+e5JV6vdVObWlEmkvh03eWXX+7rXARID4JyxOURbC0OqjCfNm2aXU3VlVIF5u3atXOXXXaZ85tYWcSj4Y8//rCjffr3oGN+6omnHrb696De9hwvAwB/0fFjXVDXe4Uvv/zSftywYYOtDwrJFQJfffXVrmzZsvb+QbdLL700YutnJNdshRJqn6JKcQ3yUjiuQFzPTzAUL1WqVEIoESvhBAAg/iW/aKs1W2uU1nHRvj54kTu4XqvNmoqh4nGPraIvrdfB27fffmvPy+7du+3n8+XLl+RCgn7U+xeCcSA0BOWIazpepL7TCklnzpxpm77rr7/eAvPWrVu7AgUKOD/wW1CuN1WqQlDl+IwZM+y0gY7ZB7/uurIOAECQ3h+oii24GVdQrOBYLd0kU6ZMtiEPbsR108eakaKWLtqcZtRGNCPXbBUPqKJ+z549tpFW27HEm+wff/zRnTx50j5XFwkUiieustcFg1g87g4A8Cft87Q+Jw7PNadExXFB6rsdDM2DP2r2lNZr7QMzaj+c0XvsEydO2Hqt244dOxLWav199eOhQ4cSPldz2cqVK5ekyr548eKE4kAGICiHrzbBGvSl8FSDQ6RGjRo2uEIDp7SAxis/BOWqLPjoo4/sazx//nx34MABO6KnyvG2bdvamyQAAEIJmRUuJw6Wgzf15tbF+CCFzNqAB2/BAF0DonPlymW3nDlznvL/OtWUfNBlSmu2HotCe1341U1rXvL/P3jwYMIGOxiM60edrApSmF+iRIkkgX8wSChWrJhdEAAAwGvUoiUYKCe/aY1MvA5qbU6+XitcVyV6Wmt28n10antsBd6prdW66bGmtF4nDsJF8z4Sr9fBmy5qZ8+ePQLPKuBPBOXwpf3797tZs2ZZS47FixfbYqYj1sHQXFXn8bRZjNegfOfOnW7evHkWjn/yySf2ddSVdX0d1Vbluuuu46o6ACAs66rWoMQb3OQbXt0UXp+OeqUrLE980++vH9UORjetbwrL06LK7+CGP3kAELypAk1D0gAA8AOtndr7a21Oa71Wn2+tvWnRPvq8885Lc73WRfTEF9JTonU4rbVaH1988cV2Wg1A5BGUw/dUaa5KZIXmCl21kKolS+PGjd2tt95qQy+83qIlXoJy/T10vG7hwoUWjuv/dUGjZs2aCRc5dIUdAIBYoE2zKsGDlWQpVZcdP348YYOtm1qhqCdrhQoVbM3WBlwV68kr2xJXu6myLNoX+P/9739b5Z6q3XShGgAALwXqWn9TW6v1o27J12u1fVGP9OB6rSBd63NKa3Xw/mgPDWe9BtJGUA4kogVv1apVFsIqOF+/fr3df+WVVyZMiq5Vq5bngnOvBuW6Gq/ec8HJ58uXL7c3KHny5HENGza0YFw/MlQMABAvvLhm/+Mf/3BDhw5N+Pixxx5zQ4YMiepjAgAgnFivgfhEUA6kQUM0li5d6pYsWWJBrXqSJg7O69SpY8G5+ofFMq8s4grGVSUeDMY/++wzC8bVw1X95IMXKzSsJJb/HgAAxPuanbgyrVq1aqfc/8UXX1BZDgCIW6zXQHw6L9oPAIhl6uWpYZC6yfbt2y04V4irgZGvvPKK3X/ppZcmmTh9zTXXxHx4HgtvLL7//vuEieW6ff3113YEPRiM9+3bl2AcAIAYpnYrqd1PCxYAAGID6zWQPgTlQAiKFSvm2rdvb7dgcK6qZ4W8qoR+/vnnE6ZqFy9ePEl4riGTRYsWtd5lfnP48GFbmNetW5cQin/zzTc2nEyTxzVIVc9RmzZtbFN97bXXeqKKDgAAv1NP8lDuBwAAkcd6DaQPQTlwlsF5u3bt7Bbscf7jjz8mqZJWj04FxcEJ16VLl7ZFKvHt8ssv93wFukJvtaZRIJ74poFk+/bts8/RRYJgKK7nTD9WqlTJhpoAAOBFfh+Kpb+zepIn7lGunuV+fC4AALGL9Zr1GkgPepQDYabwfMuWLRYYJw+R1QM9KF++fBa8Fy5cOOFWpEiRJB9fdNFFLmvWrBHtn6YJ4D///LPbs2eP3Xbv3p3w/8Hbrl27rLpef1dR8K3wP/HFAF0gKF++vLVVAQAgHoRjiGV61+xY2/DH2uMBACCI9fp/WK+BtBGUA1H0+++/WwV64uA8cSC9d+9eG3CZWJ48eVyuXLksjE78Y/L7MmXKZBXcuinsVlCvzatanSjQ1k39wNUqRjcNzUzp/3/77TfbtCemUD95oF+qVKmEULxQoUL25wAAEK/CNcQyPUF5ODb8AADEI9ZrAKGg9QoQRdmzZ3cVK1a0W0oUZgeruYOV3AcPHkwIshMH2jt37ky4T7e//vorIRDXTa1R1PolGJ7rpo+Th+2qWk98n4L55FXt+nUAAPhZtIZiacOfOCQXfdyiRQsquQEASGFdTgnrNYCUEJQDMUxhdsGCBe2WWpge7tYrAAAgdoZiRWvDDwCAF7FeAwjFuSF9NgAAAICEIZaJRWKIZbQ2/AAAeBHrNYBQEJQDAAAAZ0B9wdWTfNKkSfbj4MGD43bDDwCAV7FeA0gvhnkCPkDrFQAA4mvNVq9ytVtRJTkhOQAAkcV6DcQnepQDAAAAHqNwnIAcAIDYxnoNeAutVwAAAAAAAAAAvkZFOQAAAOAxtF4BACD2sV4D3kJFOQAAAOAhGt5ZrVo116FDB/tRHwMAgNjCeg14D0E5AAAA4KHKtKFDhya5Tx/rfgAAEBtYrwFvIigHAAAAPGLz5s0h3Q8AACKP9RrwJoJyAAAAwCPKlCkT0v0AACDyWK8BbyIoBwAAADziuuuuc4899tgpPVB1PwAAiA2s14A3nRftBwAAAAAg/YYMGeJatGhhx7pVsUZIDgBA7GG9BrznnEAgEIj2gwAQXn/99ZfbsGGDK1eunMuUKRNPNwAAMYo1GwCA2Md6DcQngnIAAAAAAAAAgK/RoxwAAAAAAAAA4GsE5QAAAAAAAAAAXyMoBwAAAAAAAAD4GkE5AAAAAAAAAMDXCMoBAAAAAAAAAL5GUA4AAAAAAAAA8DWCcgAAAAAAAACArxGUAwAAAAAAAAB8jaAcAAAAAAAAAOBrBOUAAAAAAAAAAF8jKAcAAAAAAAAA+BpBOQAAAAAAAADA1wjKAQ9ZtmyZa9KkiStSpIg755xz3OzZs5P8/NGjR92DDz7oihYt6rJly+bKly/vxowZk+Rzjh8/7h544AGXP39+lzNnTnf77be7ffv2Jfmc999/35UpU8Zdfvnlbt68eRH5uwEAEC9YrwEA8AbWbACJEZQDHnLs2DF31VVXuVGjRqX487169XILFy50kydPdhs2bHA9evSw4FzBd1DPnj3d3Llz3fTp093SpUvd7t27XYsWLRJ+/sSJExakv/baa+7VV1913bt3dydPnozI3w8AgHjAeg0AgDewZgNI7JxAIBBIcg8AT1BF+axZs1yzZs0S7qtQoYJr3bq169evX8J9lStXdg0bNnQDBw50v/32mytYsKCbOnWqa9mypf38xo0bXbly5dzKlStdtWrV3OHDh13FihXdmjVr7OerVKnivvnmG5crV64o/C0BAPA21msAALyBNRsAFeVAHLnhhhusenzXrl1O18CWLFniNm/e7G6++Wb7+bVr17o///zT1atXL+HXlC1b1hUrVsyCcsmdO7fr1KmTK1y4sLV4UUU5ITkAAKzXAAD4DXtswF/Oi/YDAJBxXnnlFdelSxfrUX7eeee5c889140dO9bVqlXLfn7v3r0uS5Ys7oILLkjy6woVKmQ/F/T0009b2xb9ekJyAAAyFus1AADewJoN+AtBORBni/gXX3xhVeXFixe3wSTqN67K8MRV5OmRJ0+esD1OAAD8jPUaAABvYM0G/IWgHIgTf/zxh3vyySetb3njxo3tPvUaX7dunRs+fLgF5RdddJEN5vz111+TVJXv27fPfg4AALBeAwAA9tiAH9GjHIgT6j2um9qlJJYpUyb3999/Jwz2zJw5s/v4448Tfn7Tpk1u+/bt7vrrr4/4YwYAwG9YrwEA8AbWbMB/qCgHPOTo0aPuxx9/TPh4y5YtVjGeL18+G8h54403uj59+rhs2bJZ65WlS5e6SZMmuREjRiS0U7nnnntcr1697NdocOdDDz1kIXm1atWi+DcDACB+sF4DAOANrNkAEjsnEAgEktwDIGZ9+umnrk6dOqfc37FjRzdx4kQbyPnEE0+4RYsWuUOHDllYruGePXv2dOecc4597vHjx13v3r3dtGnT3IkTJ9wtt9ziXnvtNVqvAADAeg0AgK+wxwaQGEE5AAAAAAAAAMDX6FEOAAAAAAAAAPA1gnIAAAAAAAAAgK8RlAMAAAAAAAAAfI2gHAAAAAAAAADgawTlAAAAAAAAAABfIygHAAAAAAAAAPgaQTkAAAAAAAAAwNcIygEAAAAAAAAAvkZQDgAAAAAAAADwNYJyAAAAAAAAAICvEZQDAAAAAAAAAHyNoBwAAAAAAAAA4Pzs/wAWHanx1zwz3QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -648,7 +648,7 @@ "median 279.0 247.5 245.0 \n", "mean 280.8 248.7 247.6 \n", "95% median CI [245. 315.] [229. 277.] [229. 267.] \n", - "95% bootstrap mean CI [262.5 301.1] [219. 266.6] [227.1 259.6] \n", + "95% bootstrap mean CI [258.1 308.9] [225.5 270.3] [234.1 262.5] \n", "95% large-sample mean CI - - [232.7 262.5] \n", "\n", "* The bootstrap CI is a 95% Highest Density Interval (HDI) based on the bootstrap distribution.\n" @@ -735,7 +735,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAIACAYAAADOjTygAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoN1JREFUeJzt3QeUU9X+9vFNb1IFpBcBFUSpF4SLIkWqFEUFRZqKimLDCiIgKiiWa8OGIkWKioKgCAJSROn8aQKKCgJKkd573vXs+57czDAlM5Pk5CTfz1ohpEzmJJOcnGeX387k8/l8BgAAAAAAeEZmtzcAAAAAAACkDWEeAAAAAACPIcwDAAAAAOAxhHkAAAAAADyGMA8AAAAAgMcQ5gEAAAAA8BjCPAAAAAAAHkOYBwAAAADAYwjzAAAAAAB4DGEeAAAAAACPIcwDcWT48OGmXLlyJmfOnKZu3bpm6dKl/tt++eUX8+9//9uUKlXKPP/8865uJwAAAICUEeaBOPHpp5+aPn36mIEDB5qVK1eaatWqmebNm5vdu3fb23v37m1uv/1289VXX9nTTz/95PYmAwAAAEgGYR6IE6+99prp2bOn6dGjh6lSpYp57733TO7cuc3IkSPt7fv37ze1atUyV155pSlRooQ5cOCA25sMAAAAIBmEeSAOnDp1yqxYscI0bdrUf13mzJnt5UWLFtnLgwcPtpcV8HWbeu0BAAAARKesbm8AgPDbs2ePOXv2rLnooosSXK/LGzdutP9v1aqV+eeff8yhQ4dMkSJFXNpSAAAAAMGgZx6AX44cOQjyAAAAgAcQ5oE4ULhwYZMlSxaza9euBNfrcrFixVzbLgAAAADpQ5gH4kD27Nltcbs5c+b4rzt37py9XK9ePVe3DQAAAEDaMWceiBNalq5bt26mdu3apk6dOub11183R48etdXtAQAAAHgLYR6IEx07drQF7gYMGGB27txpqlevbmbMmHFeUTwAAAAA0S+Tz+fzub0RAAAAAAAgeMyZBwAAAADAYwjzAAAAAAB4DGEeAAAAAACPIcwDAAAAAOAxhHkAAAAAADyGMA8AAAAAgMcQ5gEAAAAA8BjCPAAAAAAAHkOYBwAAAADAYwjzAAAAAAB4DGEeAAAAAACPyer2BgAAALjt3Llz5u+//zZ58+Y1mTJlcntzAABxzOfzmcOHD5sSJUqYzJmT738nzAMAgLinIF+6dGm3NwMAAL9t27aZUqVKmeQQ5oE4b/Vz0BMFIJ6pR945cMqXL5/bmwMAiGOHDh2yDczOd1NyCPNAHDtz5oyZPn26adWqlcmWLZvbmwMArnEaNBXkCfMAgGiQWmcbBfAAAAAAAPAYwjwAAAAAAB5DmAcAAAAAwGMI8wAAAAAAeAxhHgAAAAAAjyHMAwAAAADgMYR5AAAAAAA8hjAPAAAAAIDHEOYBAAAAAPAYwjwAAAAAAB5DmAcAAAAAwGMI8wAAAAAAeAxhHgAARMyCBQtMmzZtTIkSJUymTJnMlClTUv2ZefPmmZo1a5ocOXKYihUrmlGjRp13n+HDh5ty5cqZnDlzmrp165qlS5eG6RkAABAdCPMAACBijh49aqpVq2bDdzA2b95sWrdubRo1amRWrVplHn74YXPXXXeZmTNn+u/z6aefmj59+piBAwealStX2sdv3ry52b17dxifCQAA7srk8/l8Lm8DAJecPn3aTJ8+3bRq1cpky5bN7c0BEGfUMz958mTTvn37ZO/z5JNPmm+++casW7fOf12nTp3MgQMHzIwZM+xl9cT/61//Mm+//ba9fO7cOVO6dGnzwAMPmKeeeiqobTl06JDJnz+/OXjwoMmXL1+GnxsAILadOXPGDBkyxCxcuNA0aNDA9OvXz2TNmjUkjx3sd1JofhsAAEAYLFq0yDRt2jTBdep1Vw+9nDp1yqxYscL07dvXf3vmzJntz+hnk3Py5El7CjxwAgAgWArygwYNMuobX716tT3XCLFIYpg9AACIWjt37jQXXXRRgut0WeH7+PHjZs+ePebs2bNJ3kc/m5yhQ4faXg/npJ58AADOnDljBg8ebJo1a2bPdTkp6pFXgC9ZsqS54447zL59+5K9b7gQ5gEAQNxRT76GLzqnbdu2ub1JAIAo6nGfNWuWPdflpGhovUaCaaqYiq8WKlTITvOKJIbZAwCAqFWsWDGza9euBNfpsuYQ5sqVy2TJksWekrqPfjY5qoyvEwAASfW4i851OSmaIy+a6lWkSBHz+OOPm+zZs5tIIswDAICoVa9ePVuoM5B6S3S96MCpVq1aZs6cOf5CeuoZ0eXevXu7ss0AAO9q0KCBmT17tg3yKtSqy4lpOL2K3Q0YMMC4iTAPAAAi5siRI+a3335LsPSclpzT8MQyZcrY4e9//fWXGTNmjL393nvvtVXqn3jiCTsn8fvvvzefffaZrXDv0LJ03bp1M7Vr1zZ16tQxr7/+ul0Cr0ePHq48RwCAd/X7/z3ugVXqA+3YscNMmDDBNiBffPHFxk2EeQAAEDHLly+3a8YHBnFRGB81apQ9SNq6dav/9vLly9vg/sgjj5g33njDlCpVynz44Ye2or2jY8eO5p9//rE9JCp6V716dbtsXeKieAAApCalHnd9x4wdO9YWYP3hhx/sd5R6793COvNAHGOdeQD4L9aZB4DYdCZE68GrFsvo0aNtkFcF+9tvv90WvgsH1pkHAAAAAMS1IQHrwWsuvKR1rvvu3bvt9C8F+RIlSoQ1yKcFS9MBAAAAAOK6On1KQV498seOHbNBvkuXLlER5IUwDwAAAACISQ0aNPDPa0+uOn1Kli5daoN88eLFo6ZH3sEwewAAAABAXFanT03Lli1N7ty57ZKouXLlMtGEMA8AAAAAiElZ07Ee/OHDh80FF1xge/KzZMliGjdubKIRw+wBAAAAADDG7N2713zwwQdm2rRp/rn20YowDwAAAACIe3v37rXF7o4cOWL++usvc/LkSRPNCPMAAAAAgLi2b98+G+Q1xL5o0aKma9euUVXsLimEeQAAAABA3NoXEOSLFClig3yePHlMtCPMAwAAAADi0v79+22QP3TokClcuLBngrwQ5gEAAAAAcemff/6xc+QV5Lt162ar2HsFS9MBAAAAAOLSJZdcYm699VZz0UUXeSrIC2EeAAAAABA3Dh48aJedK1CggL1csWJF40UMswcAAAAAxE2QHzVqlD1pvryXEeYBAAAAADHv0KFDttjdgQMHTObMmU2WLFmMlxHmAQAAAAAxH+RH/f/e+IIFC9pid/ny5TNeRpgHAAAAAMSsw4cP2x55BXnNk1eQz58/v/E6wjwAAAAAIKaD/L59+2IqyAthPp3effddc+WVV9qhGTrVq1fPfPvtt/7bP/jgA3Pttdfa2zJlymTnZSRWrlw5e1vg6cUXX0xwnxEjRpiyZcuaGjVqmCVLlkTkuQFAOGj/pv3cww8/7L9O+8nE+8F77703wc9NnTrVLhtz6aWXmq+//tqFLQcAAF6VOXNme1KAV5B3KtjHApamS6dSpUrZA9NKlSrZZQ3U2tOuXTvzf//3f+byyy83x44dMy1atLCnvn37Jvs4gwcPNj179vRfzps3r///W7duNcOGDTMTJ040f/31l+nRo4dZv3592J8bAITasmXLzPvvv28bQRPTPlD7Qkfu3Ln9/z958qS5//77zccff2z3tXfccYdp1qyZyZ49e8S2HQAAeFeePHlsiD916lRMBXkhzKdTmzZtElx+4YUXbG/94sWLbZh3ep7mzZuX4uMovBcrVizZIg16w+ngV/c5fvx4CJ8BAETGkSNHTOfOne1Io+eff/682xXek9sPKsyr0mz16tXt5axZs9rrCPMAAMSuM2fOmCFDhpiFCxeaBg0amH79+tljgGDvc/ToUbNlyxaby5xAr1OsYZh9CJw9e9b2nutNo+H2aaHe/QsvvNAOo3/55Zftm9JRtWpVG+Q1JERvxKQOggEg2qlnvXXr1qZp06ZJ3j5u3DhTuHBhu8/TSCaNbHJoqpJGJRUvXtyUKFHC9OrVK8EIJgAAEHsU0gcNGmRmzZplz3U52PscPXrUjpqeNGmSWbNmjYll9MxnwNq1a214P3HihLngggvM5MmTTZUqVYL++QcffNDUrFnTFCpUyPz000/2IHbHjh3mtdde89/no48+skPt1XOVK1euMD0TAAgPNXSuXLnSDrNPym233Wbrgiio6wv3ySefNL/88ov58ssv/fcZOHCgHe2k+W4EeQAAYp962zW9TnSuy8Hc5+jRo2bMmDHmn3/+sccMJUuWNLGMMJ8BKsa0atUqc/DgQdvyo7kY8+fPDzrQ9+nTx/9/9cBr2Og999xjhg4danLkyOG/TT33AOA127ZtMw899JBtMc+ZM2eS97n77rv9/7/iiitsD3yTJk3M77//bipUqOC/LVaqzgIAgNRp2Pzs2bNtSFdxXF1O7T7//ve/zdixY83u3bttR6uyWaznKMJ8Bih8V6xY0f6/Vq1atufpjTfesEWe0qNu3bp2mL3md6ihAAC8bMWKFfYLVSOQAqclLViwwLz99tv++fCJ94Py22+/JQjzAAAgfmj+uwTOh0/pPv/+979N0aJFza5du+ImyAthPoTOnTtnD07TS738GkaqNyIAeJ162DUdKZDmv1922WV2OH3iIO/sB0U99AAAID6pkN2AAQOCus+pU6fsqjc7d+70V65XLZ54QJhPJ81vb9mypSlTpow5fPiwGT9+vK1cP3PmTHu73kw6qXdJdECreRu6v+bIL1q0yK4b36hRI3u9Lj/yyCPm9ttvNwULFnT52QFAxmnfpqJ2gfQlq5ZyXa+h9Np3tmrVyl6nOfPaD15zzTVJLmEHAACQWLZs2exoaWWyeAryQphPJw0d7dq1qy1Yp7mcOvBUkL/uuuvs7e+995559tln/ffXwamo1ah79+52TrwKQ6nyonrzy5cvbw9iA+fRA0CsT1XSXLfXX3/dFqwpXbq06dChg+nfv7/bmwYAADwiU6ZMpnHjxnaqnobYx5NMPqcEIIC4c/r0aTN9+nTbM6pWTQCIV4cOHbKN8ypqqyURAQDRS6uJzZ8/34b4WDyGDfY7iXXmAQAAAAARoYLfgwcPNs2aNbPnupzWIP/JJ5+YxYsXm6+++srEM4bZAwAAAAAiYsiQIXaqsQaIa7qdpFbszqHpyePGjTN//fWXyZUrV5JL1sUTeuYBAAAAABGhpeScmd461+Vgg7x65Ldv326DfNeuXU2xYsVMPCPMAwAAAAAiQr3pKlonOg+md93pkVeQz5kzp+nSpUvcB3lhmD0AAAAAICL69etnz9UjryDvXE7Jl19+abZt2+YP8sWLF4/AlkY/wjwAAAAAICKyZs0a9Bz5wGW+tTT4zTffbEqUKBG2bfMawjwAAAAAIGqVLFnS9O7d22TJksXtTYkqzJn3GKdYBAAAAADEotOnT5tPP/3UVq13EOTPR5j3kD179pj169cT6AFEJX3h/vLLL25vBgAA8HiQnzBhgtm4caP57LPP0rwOfTwhzHuICj6oguPPP/9MoAcQdUH+//7v/0yBAgXc3hR4wPDhw025cuXs91rdunXN0qVLk73vtddea6sdJz61bt3af5/u3bufd3uLFi0i9GwAAKEM8hMnTjSbN2822bNnNzfddJOdY4+kEeY95IILLjD//ve/7UEzgR5AtAX5f/3rX+aiiy5ye3MQ5TRssk+fPmbgwIFm5cqVplq1aqZ58+a2sFFyFYx37NjhP61bt84OtVQRpEAK74H3U68OAMB7Qf6PP/4w2bJlM507dzalS5d2e7OiGmHeYwj0AKIJQR5p9dprr5mePXuaHj16mCpVqpj33nvP5M6d24wcOTLJ+xcqVMiuJeycZs2aZe+fOMznyJEjwf0KFiwYoWcEAPFLQ+AHDx5smjVrZs+dIfHJXZ/S46ixNzDIlylTJkLPwrsYs+DhQP/jjz/ay5dffrkdUggAkUSQR1qdOnXKrFixwvTt29d/XebMmU3Tpk3NokWLgnqMjz76yHTq1MnkyZMnwfXz5s0zRYsWtSG+cePG5vnnnzcXXnhhso9z8uRJe3IcOnQoXc8JAOLZkCFDzKBBg2wH4+zZs+11WnYuueuTozXnf//9dxvkb7vtNlO2bNmIPQcvo2feo+ihB+AmgjzSW8j17Nmz571ndHnnzp2p/rzm1muY/V133XXeEPsxY8aYOXPmmJdeesnMnz/ftGzZ0v6u5AwdOtTkz5/ff2IoJwCknUK4k0N0rsspXZ8c5ZrLLrvMBnnVVEFwCPMeRqAH4AaCPNyiXvkrrrjC1KlTJ8H16qlv27atva19+/bm66+/NsuWLbO99cnR6ICDBw/6T9u2bYvAMwCA2NKgQQP/CGGd63JK1wc6d+6cP7+oR75jx44E+TRimL3HMeQeQCQR5JERhQsXtsXrdu3aleB6XdY895QcPXrUFkbS3MvUXHzxxfZ3/fbbb6ZJkyZJ3kdz7HUCAKRfv3797Ll63hXYncvJXe/QyKnPP//c7qu1nya/pA9hPgYQ6AFEAkEeGaVlhmrVqmWHw6sH3emZ0eXevXun+LM66NMc99tvvz3V36NlXPfu3WuKFy8esm0HAJxPy8YlNRc+ueudID9p0iTzyy+/2EbXGjVqpFjjBMljmH2MYMg9gHAiyCNUtCzdiBEjzOjRo82GDRtMr169bK+7qttL165dExTICxxirwaAxAd8R44cMY8//rhZvHix2bJli20YaNeunalYsaJd8g4AED0U5L/44guzceNGO1JL06QI8ulHz3wMoYceQDgQ5BFKmhP5zz//2B4bFb2rXr26mTFjhv+9tXXrVlvhPpB6bzRU87vvvjvv8XQwuGbNGts4cODAAVOiRAm7FNJzzz3HMHoAiMIgr4ZcJ8ir4RXpl8lHF27MUS+FAn3JkiUJ9EjR6dOnzfTp002rVq1s4REgMYI84oWWplNVexXDy5cvn9ubAwAxRVOqFOTXr19vg7waditVquT2Znn+O4lh9jGIIfcAQoEgDwAAQuHPP/+0QV4jr2655RaCfIgwzD5GMeQeQEYQ5AEAQKiUL1/e1jPJlSuXueSSS9zenJhBz3wMo4ceQHoQ5AEAQCiG1h8/ftx/WTVSLr30Ule3KdYQ5mMcgR5AWhDkAQBAYmfOnDGDBw+2BUZ1rsupBfmvvvrKfPzxx7aeF8KDYfZxgCH3AIJBkAcAAEkZMmSIGTRokO0YnD17tr0uuXXkFeSnTp1qVxpR5tixYwdz5MOEnvk4QQ89gJQQ5AEAQHK0PKiTH3Suy0nRbdOmTTOrV6+2Qf6mm24iyIcRYT6OEOgBJIUgDwAAUtKgQQP/yF6d63JyQX7VqlX2Ph06dDBVqlRxYWvjB8Ps4wxD7gEEIsgDAIDU9OvXz56rR15B3rmcOMjrmELZ4sYbb7Q5A+FFmI9DBHoAQpAHAADByJo1a7Jz5OXYsWNm8+bNNlPccMMNpmrVqhHdvnhFmI9TBHogvhHkAQBAqOTJk8d0797dHl8wtD5ymDMfx5hDD8QngjwAAMgoZQdVqnfkz5+fIB9hhPk4R6AH4gtBHgAAZJQyw7fffmtGjBhh1q9f7/bmxC3CPAj0QJwgyAMAgIxSVpg5c6ZZtmyZ/f/Jkyfd3qS4RZiHRaAHYhtBHgAAhCrIL1myxF5u06aNqVGjhtubFbcI8/Aj0AOxiSAPAAAyStngu+++8wf566+/3tSsWdPtzYprhHkkQKAHYgtBHgAABOvMmTNm8ODBplmzZvZcl0WZYNasWWbx4sX+IF+rVi2XtxYsTYfzsGwdEBsI8gAAIC2GDBliBg0aZMP77Nmz7XXO+vKnTp2y561btybIRwnCPJJEoI8PW7Zs8Z9XqlTJ7c1BCBHkAQBAWi1cuNA/MlfnuizKAQrxVatWNeXKlXN5K+FgmD2SxZD72PbHH3+YevXq2f/rXJcRGwjyAAAgPRo0aODvwNO5ssDZs2f9lwny0YUwjxQR6KOHwvbo0aNDFrp/+OEHc+zYMft/netytG0j0o4gDwAA0qtfv352mP11111nBg4caK/74osvyABRimH2SBVD7t2ncHzFFVfY0J07d26zdu1ac/HFF2foMa+++mr7WKJzXY62bUTaEOQBAEBGZM2a1c6Rnzdvnpk/f769rnTp0hz7Ryl65hEUeujdFY5edAXtRYsW2f/rPKPBOxzbiOAR5AEAQCgoxDtBXj30zrRMRB/CPIJGoHdPqHvRHc68p1DMfwrXNiJ1BHkAABAKCxYssL3y0rRpU1O/fn23NwkpYJg90oQh9+5Qr7mGrau3WyE5Goeve2EbYxFBHgAAhIKO7+fOnWv/36RJE3vMj+hGmEeaEejdoXAcTEBWxdF//vnH7Nixw57+/vtve37w4EFz+vRpc+bMGXs6cOCA+eyzz2yv/LRp00z27NntPKls2bKZPHnymOLFiyc4FStWzN4nFNuI0CDIAwCAUClRooQ9FrzmmmtsVXtEv0w+xkojnY4cOWIDfcmSJQn0EXTu3DmzadMms2LFCvPrr78mCOw67dq1y7+EiOjvUqRIEVOwYEEb1J3AfvjwYbNx40Z7H4VBJ+TrpNt27txp/x+ocOHCNthrZ++E/PLly5uaNWva4nephX2EDkEeCK1Dhw6Z/Pnz24bPfPnyub05AOAKdfYUKFDA7c2Ie4eC/E4izCNDCPThD+4K7AruzkkBTmFb1FuuYB0YrhP/v2jRoja8J0U99dOnTzetWrU67z763Xv27PE3EiRuNHD+v23bNntf/bwCfa1atfwnXc6RI0dEXqt4QpAHQo8wDyAeLVu2zI7SVMcPvPedxDB7ZAhD7kNLAfn7779PENzVYCIavq6ArPU/da7e8AsvvDBs25I5c2bbEKBTtWrVkr2fKtevXr3av82LFy82I0eOtKMDFPCrVq3qD/catlW5cmXeIxlAkAcAAKGgY7aZM2fa6ZW9evWy5/AWwjwyjECffhoYs2bNGjN16lQ7b12to1KhQgUbfq+//np/cNcw+WikyvVasiRw2ZLjx4/b5+UEfD2vUaNG2WH7em5t2rQxbdu2tfOxkhs1EC5//PGHZ4v0EeQBAEAoLFmyxAZ50bEmQd6bGGaPkGHIfXBOnjxp1+50AvzWrVtN3rx5TYsWLWzA1bnmpkdCSsPsQ00BXxVSneetUQiak9WyZUv/8w73HC0FeQ3912gCNUKo+r5XAj1BHggvhtkDiBdLly413377rf+yjt/VwaLRn6qtBPcxzB4RRw998vbu3WtDs4KsWkE1571s2bKmXbt2tpe6YcOGMV88LleuXLbRQKd3333XrFy50r4eOk2YMMFfPVXBXicV1gs19cgryIvOddkLYZ4gDwAAwhHkn332WTtSdPbs2fbygAEDXNw6pFXmNP8EEESgV/j4+eef7c4hXqkonHaMt9xyiy1G17VrV9sL/+STT9o55ps3bzZvvvmmue6662I+yCemRh4N6dIXiELqn3/+ad544w37OjzxxBM2YKuB45NPPrE9+qGiofXqkRed63K0I8gDAIBQWL9+vT/IOx1wzrG6zhcuXOjyFiKtCPMIuXgP9KrwPmTIEFOxYkUb1NetW2deeuklO6xc85Oefvppc+WVVzJqIUCZMmXMfffdZ79gVEF/3LhxtgBfly5d7LSNBx980A6Jzyg1EuhxNH/fC0PsCfIAACBUdNxTqlQpU79+fdOkSRM7tN45HtU5a8t7D3PmETZenUOf3gJpqgj6+uuvmy+++MLOP1ePfM+ePe0OM1qfeyTnzKfHpk2bzIcffmjD9+7du+0w/IceeshOT8iSJUtMF74jyAORxZx5APFAx36a2qhjUxUmVgeUeuSZMx9dWGceUcFrgT6tBdJOnTplJk2aZIeIaw6SKrU/8MADplu3bmEv5hYPYT7wdf7qq6/s66z3k+oN9O7d29x5551BVfn3WuE7gjwQeYR5ALFIxxM6/tGoWcTedxLD7BFWXhtyn1SBtORC8HvvvWeLtHXu3Nl+yFSh/ddff7U9x14I8l6iufQ333yzbTlevny57aFX67GGij311FNm//79Ifm7RgOCPAAACAUdT6jQsGo4qWMDsYcwj7DzUqBPrUCaitp99tlndpSB5ng3atTI9vLOmjXLrgmved4ILxXOGzNmjC0mqIaTt956y46IGDZsWLLF8rxS+I4gDwAAQmHVqlU2yIuOK8KxShDcR/JARHgl0KdUIE2BvU6dOqZjx46mUqVKdiepautVq1Z1dZvjVbFixew8r99++8106tTJFhbU30Vz7DUHzGuF7wjyiCfDhw835cqVMzlz5jR169a105SSo8+tpmgFnvRzgfSdouWUtHKIlsFs2rSprbkBAPFIqyZpeqLUrl3btGzZMuqnuiJ9CPOIGC8Fes15dwKfhnXrwLBZs2Z2uPf8+fPNN998YyvSw306eH/nnXfMhg0bbI+7ig5qfvyXX36Z4D2W+O8aTQjyiCeffvqp6dOnjxk4cKBZuXKlqVatmmnevLktcpkcTWXSSiHOSctZBtLIHC31qelPWjUkT5489jFPnDgRgWcEANFjzZo1ZsqUKf7RjKqLRJCPXYR5RJRXAr1o/rsq0itg6eBRO0YVX9N8bUQfLQU4YcIEs2LFCrvUXYcOHcxVV11l5s6da6IZQR7x5rXXXrONbj169DBVqlSxAVzTX0aOHJnsz+hAVKNxnFPgZ0XfI1pJpH///nalCzW0aiqOlgN1DmgBIB5oeV9nv1ezZk3TunVrgnyMI8wj4qI90B8+fNhWStdBppab0wGmWjl1kMgOMfrpy2vmzJlmzpw59r3VuHFj2yq9efNmE20I8og3WplCDW4a7eRQrRFdXrRoUYoro2gVi9KlS9t9sb47HPps79y5M8FjqgKwhu+n9JgnT5601YIDTwDgZYULF7b7who1athaThy3xj7CPFwRrYFe1T41B15zNF988UXbO6/eo7SuaQ73KcRruK2WDly/fr0dev/uu+/aIobRgCCPeO01Onv27HnveV1WIE/KpZdeahtVNf9TdUr0Ga5fv77Zvn27vd35ubQ8pgwdOtSGfuekhgIA8KLA42jtH9u0aUOQjxOEebgmmgK9euN79eplrrvuOlsZXUXSHnvssfOKLMFb9EWm4fb6e95+++12BQL9jbds2eLqdhHkgeDVq1fPdO3a1VSvXt00bNjQ1sMoUqSIef/99zP0uH379rXr9zqnbdu2hWybASBS1GHx8ccfJ6gRQpCPH4R5mHgP9N9//73ttR07dqytsKzeeZbviC158+a183K1IoGq32v0hVu99AR5xPsQUI102rVrV4LrdVlz4YORLVs2O4RUn2Vxfi6tj5kjRw5bWC/wBABeC/IagajGyJRWBUHsIswjbgO95mCqp7ZJkyY2vKv3VpdZKz52aR6Z/s6dO3e2f2utUJC4KnY4EeQR77QiiKorq6aFQ41quqwe+GBomL4+x1rJQrT/VmgPfEzNf9c0m2AfEwC8Rqv4fPHFF/a4WYU/GzRo4PYmwQWkFsRloFeFc/XGjx492rz99tv2IJDe+Pig3jcNz/3uu+9sTQT10utyau+5P/74w75fdJ4eBHngv7Qs3YgRI+znSQejmuJ09OhRW59ENKReQ+AdgwcPtp9Xffa0lJ2mzKgR7q677vIPJ3344YfN888/b6ZOnWqDvh6jRIkSpn379q49TwAIl40bN9oeeTWG6nhWhUHpjIpPWd3eACBxoNfyb3L55ZeHfM6PqhdrLrwCvOZeKsRH47rjCD/NnV+3bp19P9x77732S1HLWTm9fYEUIvRleezYMbuElsJCWt43BHngfzp27Gj++ecfM2DAAFugTnPhZ8yY4f9sbN26NcFB6f79++1SdrpvwYIFbc/+Tz/9ZFcccTzxxBO2QeDuu+82Bw4csD1UekzqngCINb/88ov5/PPPbZBXh4QaLQny8SuTL1rKiAMBw98V6EuWLBnSQK/5kzfeeKNZvny5eeWVV8z9998f9zu/06dPm+nTp9ul2zQPNV6p16979+72/aD1WWvXrp3gdvUg6naHVjvo1q1bUI9NkAe8QUPzVdVexfCYPw8gGp05c8Z2SGk/pWNkHdfG+7FsvH8n8ddHXAy519BMBTT1sM6fP9888MAD7Pzgp7nzauTRsNyrr77aTJw4McHtuk498qJzXQ4GQR4AAIRK1qxZ7VQjHdMS5CG8AxDzgf6zzz6zQy5VIEmB7aqrrgrptiI2KMiroeemm24yt956q3n66af91e41pF5D69UjH+wQe4I8AAAI1TTRwFVBWrduTZCHxbsAMRvoFcSeeeYZOz/zhhtuMAsWLLBD94Hk5MqVy86bHzZsmBk6dKh93xw+fNjepgCvofUEeQAAECm///67ef3119NdgBexjTCPmAz0mnffoUMH88ILL5gXX3zRfPLJJzaoAalRjYbHH3/cfP3112bevHl2aau0fIES5AEAQKiCvKb+nThxwh5bAIkR5hFzgX7z5s2mfv36tlK9lil68sknQ14VH7FPRQEXL15sh7YpmGs5w9QQ5AEAQCioI0FBXkXvLr30UpbaRJII84ipQK8q+ApSWkJMQez666+P+LYidlSuXNksXbrULoWlpew++OCDZO9LkAcAAKGgjqkJEybYIH/JJZeYm2++2WTJksXtzUIUIswjZgK9euJVlVxrbi5ZsiTBGsRAemlday3f16tXL3PPPfeYV1999bz7EOQBAEAobNmyxYwfP94G+UqVKhHkkaKsKd8MRGegVw+8OOvQK2xpiY5GjRqZL7/8kvnxCPlSMG+++aZd7/Oxxx4zx48fN/3797e3EeQBAECorF692gb5ihUrmltuucUegwDJ4d0Bzwf6TZs22Yr1LVu2tMvQ5ciRw+1NRAxSo9Hzzz9vcubMaVdJUDGae++916xatYogDwAAQqJNmzZ2+bm6desS5JEq3iHwdKBXpXqd1Cs/btw4ky1bNrc3DTFOPfIK9Kp4v2HDBjN8+HCCPAAASLe9e/eaQoUK2Y4DrR+vY1wgGMyZh2dpjvxLL71krr76atOvXz9aLxExt956q+nZs6ed0qEwDwAAkB7btm2zBXanTZsW9BLMgIMwD0/69ttvbUGQdu3amcmTJ5tdu3alaR16IL2cOfLPPfecefnll+3Qe50AAADSYvv27eaTTz4xp06dMgcOHDBnz54N2WNr3v3gwYNtcWid63JS18Hb6MqE53z//fd2WH2LFi1stc/s2bMnWRQPCLXExe5UDE9z5zWHXkUXH3300WTXiv3hhx/sKJKLL7444tsNAACiN8iXK1fOjvoL5SjTIUOGmEGDBtmOrtmzZ/uvT3zdgAEDQvY7EXmEeXiKlpxTYZCGDRuazz//3Ab5lKrcA6GSXNV6zaFXoFewz5s3r7n77rvPC/JXXHGFOXbsmMmdO7dZu3YtgR4AgDg/plCQP3nypClbtqwN8qGu+7Rw4UL/iFWd67Lz/8TXwbsYZg9P7fjat29vqlWrZucqJ65an9o69EB6pbb8nIbc33///fY0d+7cBLepR15BXnSuywAAID79/fffZuzYsTbIlylTxtx2223+zqlQatCggb9jS+e6nNR18DZ65uEJWtdbQV7DjxTk1cOZFHroEWrBrCOv99jrr79ufvnlF1vLYenSpf7edw2t1/vV6ZnXZQAAEJ8OHTpkTp8+bYN8586dwxLkRcWhRb3vCu3O5eSugzdl8tF9iSint+jtt99uC91p51OzZs1Uf+bIkSM20JcsWZJAnwJ9mUyfPt20atWKZf3SGeQD7du3z9SpU8fOn//pp5/ssHthzjzgjQPs/Pnzm4MHD5p8+fK5vTkAYtjmzZtNiRIlzhtlCqT1O4lh9oh6w4YNs4XuPv7446CCvDDkHpEO8qI1YqdOnWr+/PNP06VLF3Pu3Dl7vQJ8t27dCPIAAMShnTt32mr1jvLlyxPkERKEeUS1r7/+2vTt29c8/fTTpmPHjmn6WQI9IhnkHVWqVLGNTwr1AwcODNs2AgAAbwT5MWPGmFGjRiUI9EAoEOYRtdavX2+LgrRt29auhZkeBHpEMsg7rr/+ejN06FC7/vynn34a8m0EAADRb9euXTbIq/aTjklz5szp9iYhxhDmEZU091ghXsVBVPEzc+b0v1UJ9IhkkHc88cQTtjGqR48eZuXKlSHbRgAAEP12797tD/KaH6/6T4R5hBphHlHnzJkz5pZbbjH79++3Q5WdImIZQaBHJIO8qOjihx9+aAswtmvXzrbOAwCA+Ajyo0ePtivZFC9enCCPsCHMI+oMGTLEzJs3z0yaNCmkBcMI9IhUkHeoqv2UKVNsA1XXrl15zwEAEOP27Nlje+SdIK+CuDoeAMKBMI+osmrVKvPcc8/ZoneNGjUK+eMT6BGpIO/Q8ogjR4403333nfnoo49C/vgAACB6KLjnyZPHFCtWjCCPsGOdeUSNU6dO2TW6tZzX8uXLTfbs2cP2u1iH/r/ifZ35cAf5QHfeeaf5/PPPzbp162wtCADRhXXmAYTK0aNH7bFl7ty53d4UeBTrzMOTw+sVdLR0RziDvNBDj0gGeXnttdfsTvmuu+7i/QYAQAzZu3evWbNmjf+yeuYJ8ogEwjxC7o8//rBFP3SeluH1L7zwgunXr5+pWbOmiQQCffyKdJAXBXkVxJs1a5Y9j8TnCgAAhD/I6/t58uTJ9ngyI1RjR8sxN2vWzJ6fOHHCf3ngwIFm0KBBSd6W1GU9FmIfw+wRUgoaV1xxhS36oRbJtWvXplrETsPrFapk2bJlYe+VTyyeh9zH4zB7N4J8IPXMf/bZZ2kabp+ezxWAtGGYPYD0LKWsEaWHDx82RYoUMd26dbO98umlEK7Arnim49Frr73WFoVOHNcS35bUZT3OgAEDQvAs4QaG2cMVP/zwgw0conNdTq1XUT3y69evj8jw+qTQQx8/3A7y8uqrr6Y63D7x5yW5zxUAAHCHllDWd3WogrwsXLjQf2yg89WrVyd5rJD4tqQu67EQ+wjzCKmrr77aP0dI57rs9Cp2797dngcGegUrzZXX8PoaNWq4tt0E+tgXDUE+8XD7ESNGnHd7Up+XpD5XAADA3SCv3tPChQvb5WczGuSlQYMG/hGiOq9WrVqSI0YT35bUZT0WYl9WtzcAsUVDfzUEWD2HChy6rJ1d4l5FXa/h9QosGtr+9NNPu73p/kCvIfcSb0PuY1m0BHlH8+bNbc/8o48+av9ftmxZ/21J9cKrtT/x5woAAETe8ePH7bGthj8ryOs7WseQoaDOLVGvusL4E088YYYNG2Yv16tXzx6X/vTTT+fdltRl57EQ25gzj7BLbr7viy++aJ555hk7T7569eomWsTTHPp4mDMfbUHeodb8qlWr2pb0adOm+a9nfjzgDubMAwiGotP3339vNmzYYIN83rx53d4kxPF3EmEeEaGAEtirqIIhOtewpDfffNNEm3gJ9LEe5qM1yDs+/fRT06lTJ7NgwYIEQ+cTf14AhB9hHkCwFJ80wjRHjhxubwpiFGEeUe3xxx837733nvn9999N0aJFTTSKh0Afy2E+2oO8nDt3zm5fzpw57bC4WHyPAV5BmAeQHO0X5s+fb1q2bBlzx0uITlSzR9Tatm2beeutt+x84WgN8kJRPO/yQpCXzJkz2+kmmv8WONQeAABET6jSHHkdV3z77bdubw6QAGEeEad1L9XCpDAf7Qj03uOVIO9o2rSpady4sS1Uc/bsWbc3B3HkwIEDdmWFvn372qlPsnLlSvsZAgD8L8iren3BggVNw4YN3d4kIAHCPCLKWU++f//+nikYQqD3Dq8FedHQevXO6701duxYtzcHcWLNmjXmkksuMS+99JJ55ZVXbLCXL7/80oZ7AIh3Wj9eQV6NnQUKFLDF7jTsGYgmhHlElEJ8mTJlzD333GO8hEAf/bwY5B3a5ptuuskMGDDAnDhxwu3NQRzo06ePXRp006ZNtmaDQ/UzVJAx3IYPH27KlStnf3fdunXN0qVLk73viBEjbDFI9YrppNEsie+v56KGscBTixYtwv48AMR+kFeAJ8gjWhHmETGLFy82kydPNoMHD/Zk9U8CffTycpB3PP/88+bvv/8277zzjtubgjigJUGTalRVwc+dO3eGfRUHNSYMHDjQDuvX8ozNmzc3u3fvTvL+8+bNM7feequZO3euWbRokSldurRp1qzZedMBFN537NjhP02YMCGszwNAbNLx3WeffWb27t3rD/LqmQeiEWEeEdsxPvXUU3b97Ntuu814FYE++sRCkJdLL73U3HHHHeaFF16wlUuBcFKDquaCJvbrr7+aIkWKhPV3v/baa6Znz56mR48epkqVKnZlk9y5c5uRI0cmef9x48aZ++67z1SvXt1cdtlldp6/VoKYM2fOec+pWLFi/pN68QEgrTSyR1XrdUyhIM++BNGMMI+ImDFjhl3SY+jQoSZLlizGywj00SNWgrxDPZXHjh0zL7/8stubghjXtm1bO0pKy1M6B69bt241Tz75pOnQoUPYfq/WZV6xYoUdKh+4qoMuq9c9GPqMaLsLFSp0Xg++VkhRw1ivXr1sr1pKTp48aRs0Ak8A4lfg8VyJEiXs6CWCPKIdYR4RG0KsAKz5mLGAQO++WAvyzhDnBx54wLzxxhsEC4TVq6++ao4cOWLD7/Hjx22F5ooVK9rCpBodEi579uyxqzYk/szqcrDD+9XgoAPtwAYBDbEfM2aM7a1XUT9nPeiUVohQ47KG0DonDd8HEJ+OHj1qCzRv377df50aOYFoR5hH2C1fvtyuo/3YY4/F1I6RQO+eWAzyjoceesgWwfv444/d3hTEMIXXWbNmmWnTppk333zT9O7d20yfPt2G4Dx58phopZUfJk6caOuvBBbu69Spkx1toKlc7du3N19//bWtC6De+uSoar+mtDinbdu2RehZAIgmGu2jxkCNTvrqq6/sNB7AK7K6vQGIfeplLF++vGnTpo2JNU6g//HHH+3lyy+/PKYaLKJRLAd5p3dele3feustG7C8Pi0F0a1Bgwb2FCmFCxe27+ldu3YluF6XNc89JVpCT2F+9uzZ5sorr0zxvhdffLH9Xb/99ptp0qRJkvfRHHsvFmMFEPogrwKcOqbr2LGjnfqTnDNnzpghQ4aYhQsXmnr16tljPnVYOf/X9WoM0H6ufv36592u/2uf+8QTT5hhw4ad9zi6rV+/fiZrViIagsM7BWGlisKqXKwDsFgNJQT6yIn1IB/YO68vd/WUxmIjGNyhHvhgPfjgg2HZhuzZs5tatWrZ4fDqQRenmJ0ar5Kjg14N/585c6apXbt2qr9HQ2U1Z7548eIh3X4AsRXkx44daxsTdSynYndqBEyJgvygQYPsaEyNbnIE/t+hhsekbtf1GjWkU+LHcX5GS9UCwSDMI6xUpVgHb6rSHcsI9OEXL0FerrrqKlOnTh07qoUwj1D5z3/+E9T9tO8KV5gXLUung2aFcr3PX3/9dTtfVdXtpWvXrnaEiua0i+bA68B2/Pjxdm16Z2699rs6ae7/s88+awv3qXf/999/t71eqgGgJe8AIDHVClGQ1/5EU4u030ktyIt60jM6rVI/v3r16iQfR9fpdwDBIswjbFRt+P3334+b9TkJ9OETT0E+sHe+c+fOZuPGjXY5LiCjNm/ebKKBhrH+888/NqDrQFpLzmnFE+ezrXmrgcNc3333XVsFX9NPEq/+oB4yjfpas2aNGT16tDlw4IAtjqd16J977jmG0QNIkuqDOEFex6nBLsmpYfDqPc9IoNexYbVq1fw984lvi+TUJ3hfJh9Vu5BBf/zxh/nhhx/M1VdfbecpOr788kvbU6LWx9TmN8YS9RIp0KtnKdoDvRpcNJRbqwxky5bNRKN4DPLOsll6D3Xv3t3OFQ7mMwcg/bSChAoDqhhevnz53N4cAGE+/lGhTHXCaFWPYDFnHtH2nUSYR4YoVKh6sOYd5c6d26xdu9YfLrQs0P79+83ixYtNvPFKoI/2MB+vQT5wOLKGAWr+r9PDmNJnDkjt/aTeavVE6f8pee2110y8IcwDsU3HPArJ0XpMBqTnO4lmH2SIegcVKkTnuqxg8eeff9pCRSNGjDDxiCH3GRfvQV569uxp5zlrqZxbbrklxc8ckBp9nnQw6/wfAOKFlnz95JNPTNmyZU3Tpk05JkPMIMwjQzTMV72DTi+hLstHH31ke380NzJeEejTjyD/X5UrV7ZD7j744AN/mE/uMwekZu7cuUn+HwBifdrauHHj7LHFvn37TN26dRl9g5iR/EKKQBDUI6hhvqNGjfIP99XMDa3Zedttt9lAG8+cQK8vkJ9//jnDFVDjAUE+obvuussu27Vt27ZkP3NAWmmFkcOHD593varKx/rqIwDiK8irR17T1XLmzGmr1hPkEUsI88gwhQlVAnVChaoKa5h94srD8YpAHzyC/PnatWtn5/ipUE9ynzkgrVT5XUszJabr1BgLALHSIx8Y5LV8JRBLCPMIualTp5q8efOahg0bur0pUYNAnzqCfNK0rOM111xjP1dAKArqqJiO9kHqmddl56SCpSqImZbKzgAQjbSc5fjx4+2oNgX5Ll26mOLFi7u9WUDIMWceITdt2jTTokULkz17drc3Jaowhz55BPmUtW3b1i5jo/ClhjIgI41D2u/odMkll5x3u65/9tlnXdk2AAiVLVu2mK1bt9qVYG6//XZTokQJtzcJCAvCPELq77//NsuWLTMPPvig25sSlQj05yPIp65Nmzbm4YcfNrNmzTI33nij25sDD1PhO/XKN27c2HzxxRemUKFC/tvUAKtKzxz0AvA6NVa2b9/eFC5c2C4TDMQqwjxCSvN6M2fObNeYR9II9P9DkA+O5sbrfaKh9oR5ZIQz/Wnz5s2mdOnSdn8NALFAS29qeL1WU5Jq1aq5vUlA2BHmEfIh9lpK68ILL3R7U6IagZ4gn56h9iNGjDBnz541WbJkcXtz4HHqgT9w4IBZunSp2b17tzl37lyC21UoCgC8FOQnTJhgjhw5Yvdf8b6aEuIHYR4ho3WvZ8+ebZ577jm3N8UT4jnQE+TTN9R+6NChZvHixfZ9A2S04bVz5872wFfLNAXue/R/wjwALwX5iRMn2hFHmi6khkrCPOIFYR4hoyB/4sQJ24OI4MRjoCfIp0+dOnVslXENtSfMI6MeffRRu578kCFDTO7cud3eHAAIypkzZ+x+a+HChaZevXr2mEnhvWDBgnbk2pIlS+zxqGqDaBRb/fr17X10f41Ayuh1V199tenXr59dMhaIBpl8rJGFELnrrrvsDm/jxo1ub4rnqHdMgV5FWiIZ6NWaraWoWrVqZbJlyxb230eQzxiFr0WLFpkNGza4vSnwOM0pXbt2ra3HgP/S8nz58+e3S/dptAKA6DN48GAzaNAgG9YVqDt27GgqVapk58p/8skntoJ9OOn4TL9/wIABYf09wKEgv5OofIOQUIulit9pKDDSLh7WoSfIZ5xGvaixbNOmTW5vCjyuefPmZvny5W5vBgCkiTqNnF73wCA/bty4sAd50e/WNgDRgjEiCAmFi127dpnrrrvO7U3xrFgeck+QD40mTZrY98QPP/xgD2CA9GrdurV5/PHHzfr1680VV1xx3sgcpksBiEYqsqxh9JoepGXnNMJw/Pjx5s8//4zI79d3sLYBiBaEeYTEihUr7HmtWrXc3hRPi8VAT5APnbx585pLL73Uft405B5Ir549e/qHrCamfY7mngJAtNF8dVHvuIYga39VoUIFU758eft/9Zw75+GcMw9EC8I8QkLholy5cixJFwKxFOgJ8qGnBjOn8QxIr8RL0QFAtFMj499//818dSAAc+YREgoX9MqHTizMoSfIh4c+Z6tXr7YVfQEAiJcgP2nSJDNq1Cg7PQjAf9EzjyT98ccfdl6uhhOlVu1YPTwrV640ffv2jdj2xQMv99AT5MMb5rUEpA5mrrzySrc3Bx529OhRM3/+fFs0SgWkAj344IOubRcAJA7yX3zxhS0Aq6HuWksewH8R5pFkkFdBpGPHjtkCI4HLFyUV8n/77Tdz+PBheubDwIuBniAfXjVq1LDvAY2GSRzm09IIh/imz6iWpNR+XqG+UKFCZs+ePXafX7RoUcI8gKgJ8l9++aVdktWpYF+xYkW3NwuIGgyzx3kUBnSAJzrX5cCQ3717d3uuy0Lxu/Dy0pB7gnxkiuBdcskl582bT+7zCSTlkUcesUuJ7t+/3+TKlcssXrzYVoPWfvyVV15xe/MAwI78nDx5sh2JFrgUHYD/IczjPOrVU++M6FyXUwr5ChVly5al+F2cB3qCvLtF8JL7fAJJWbVqlXn00UdN5syZ7UHyyZMnTenSpc2wYcOo1AwgaoK8jnm0n7rlllsI8kASCPM4j4bnami9iowEDrFPLuRT/C4yojnQE+TdL4KX3OcTSIrWldcBsmhYvebNi5Z62rZtm8tbByDeaTpZjhw5/EFeI9IAnI8580iSAnziObdOyA+ck+sUv3vyySdd29Z4Eo1z6AnykVezZk1z/PhxWwyoatWqyX4+gZRqLyxbtsz2dDVs2NAu9aQ582PHjvW/pwDALTq2ad26tW28Ll68uNubA0QteuaRJgoI3bp18weFzZs3m0OHDtEzH6c99AR598K8JB5qn/jzCSRnyJAh/gPkF154wRQsWND06tXL/PPPP+aDDz5we/MAxCF1EKmRUUXvnEBPkAdSRs88MsQpssXwp/jroSfIuydfvnymWLFiZsuWLW5vCjyqdu3a/v9rmP2MGTNc3R4A8U1BfurUqXYKmYpxdujQwfWRh4AX0DOPDNmxY4c9p+U0vnroCfLu02fO+fwBAOBVOn6ZNm2aDfIK8JUrVybIA0GiZx4ZojBRoEABkzNnTrc3JS650UNPkI8OhHlkRPny5VPcV7C0IYBIBnmtsKF9knrkdSwDIDiEeWSIwgS98vET6Any0aNEiRL24AdIj4cffjjB5dOnT9vPtobbP/74465tF4DYpRVYVK9jwYIFdli9jlUqVqxov88U6jds2GDmzZtnl8usX7++vX3hwoX+++o+uk1FXrWEZtasxBiATwEyhDAfP4GeIB9d9Ln79ttv3d4MeNRDDz2U5PXDhw83y5cvj/j2AIh9CvKDBg3yTwts3ry5DfLOmvJakcUxe/bsZB9nzpw59lyrcADxjjnzyJC///7b7ogR23PoCfLRGeZ37dplD4KAUGnZsqX54osv3N4MADFIveyBxya//vqrOXnypJkyZUqCIJ8aPYYeCwBhHhlEz3zsB3qCfHRSI5qGLGptcCBUJk2aZAoVKuT2ZgCIQQ0aNEgwalDLG7/xxhtmzZo1aXocPYYeCwDD7JEBCoqE+dgeck+Qj17O506jY7S0GJAWNWrUSLBf0P58586ddp35d955x9VtAxCb+vbta/c1K1asMEeOHPHPg098HuyceQCEeWTA4cOHzbFjxwjzMRroCfLRzfncqUGtevXqbm8OPKZ9+/YJLmfOnNkUKVLEXHvtteayyy5zbbsAxCYFcWeu+zXXXGMeeOABkyNHDrc3C/A8wjzSzVkWiznzsRfoCfLRz/m7sDwd0mPgwIFubwKAOAry3333nVmyZIm93LhxY4I8ECKEeaSbEyKKFSvm9qYghIGeIO8N2bNnN4ULF7bD7IG0OnToUND3zZcvX1i3BUBsB/lZs2aZxYsX28vXX3+9qVmzptubBcRnAbyhQ4faA/y8efPaOZoapvfLL7/4b9+yZYsNCkmdPv/8c//9tm7dalq3bm1y585tH0dr2qqQU6Bnn33WlCpVyha4ULVLRJ+jR4/ac70fEBtF8Qjy3qLPnqa6wDtTk7S+e9myZU2uXLnsnNBly5b5b9dnU0staQqFbm/atKnZtGlTgsdYtGiRnVZRrlw589FHH6V7WwoUKGAKFiyY4sm5DwCkh/ZpWmJO+y3RsX+tWrXc3iwgfsP8/Pnzzf33329b19TKdvr0adOsWTN/qCtdurTtrQ08KZQrTGi5Gzl79qz9MJ86dcr89NNPZvTo0WbUqFEJ1opUL+I333xjvvrqK3PbbbeZ3r17h/p5IwScBpisWRngEQuBniDvPfrsJW4IRfS666677Hfn2LFj7TJM+v5UYNdnT4YNG2befPNN895779nhqHny5LHrMJ84ccL/GHfeead55plnzPjx420D+7Zt29K1LR9//LFtTH/iiSfs+s466f/67I8cOdJ8//33Zu7cufY8HLSevRokcubMaerWrWuWLl2a4v3VIaC5/Lr/FVdcYaZPn57g9mAaQgBElgrd6VhfWrVqZWrXru32JgGxx5cBu3fvViLwzZ8/P9n7VK9e3XfHHXf4L0+fPt2XOXNm386dO/3Xvfvuu758+fL5Tp48aS9PmzbN165dO9+pU6d8ixcv9v3rX//KyGYiTCZNmmT//vv27XN7UxCkw4cP+2bMmOFbu3at79y5c/YzNmXKFN+ff/5pP3eBn0tEv8qVK/seeeQRtzcDQTh27JgvS5Ysvq+//jrB9TVr1vQ9/fTT9vNYrFgx38svv+y/7cCBA74cOXL4JkyY4L+uTJkyvj/++MN35MgRX+3atX0///xzurancePGvvHjx593/bhx43wNGzb0hdPEiRN92bNn940cOdJuf8+ePX0FChTw7dq1K8n7//jjj/a1GzZsmG/9+vW+/v37+7Jly2b3Y44XX3zRlz9/frs/W716ta9t27a+8uXL+44fPx70dh08eNB+p+kcQMadOHHC99FHH/mWLFni9qYAnhPsd1KG1pk/ePCgPU9uTVq1yK1atcr2JDg01Eat6oE9f+p50Pw99Rg6l9UToWH4LVq0sL0PcNcff/xhR1Ho3KGRGZItWzYXtwyh6KHXGq/0yHuPPntJ9cwn9XmFu/R30sg09SwHUi+yll7SestaGk49yo78+fPbXmtniKqo97ly5cr2tquuuspUqVIlXdujx0yql0zXpdZLnlGvvfaa6dmzp+nRo4fdfo1E0Pe9RgQkRetQ61hAU/L03J977jk75/btt9+2t2s/9vrrr5v+/fubdu3amSuvvNKMGTPG1pOYMmVKWJ8LgOSpyF337t1NnTp13N4UIGale3y01nzU3D8Fg6pVqyZ5H83n0xev5gU6dLCSODA4l3Wbc4A6Y8YMs3v3bjtnT4WeEnOCJMJPtRDq1atn5+bqgEsHgRoe6Qz91IEUfw9vfbkqIGgYrz5jos+wGuX4O3qL1tvVlKXAv1tyn1eEf8pDSsUlVd9AfxcFUX0v6ntvwoQJ9u9TsWJF//dfUt+Pzm2ixvFOnTrZv3tG5rNrWtyIESPs0P5AH374ob0tXLTdaujXetOBy+KpESOw0SKQru/Tp0+C69To7wT11BpC9Hol5eTJk/aUnqKAAJI2b948uz9UzSvn8w0gCsO85s6vW7fO9igk5fjx43ZOn+b2pZfm8yXHmbOPyAgstLR+/Xp70vxqmTlzJr3zHuU0yKxevdqe4L2CagoyiecPJ/V5RXhpqaXUioFqrvwdd9xhSpYsaRti1Lt866232nCbFppLr1NG/Oc//zEdOnQw3377rQ29oh55zTP/4osvTLjs2bPHjlBIqtFi48aNSf5Mcp0ATiNHsA0hiWnUn+r6AAhdkFd9LSlfvrzd1wGIwjCvgnRff/21WbBgga04n5RJkybZnqGuXbsmuF7LmCUewrdr1y7/bcG67rrr0rPpSIfkevoOHDhgb1cRJw0VhXeoOKXCu3oEtVpEmTJl0rQOPaLDoEGDzMUXX2wLCznomXdHMIVAK1SoYA90VTRWvcAq1taxY0f7N3S+//R9qOsduqzq9aGm94yC+7vvvms2bNhgr2vTpo259957w9ozH000OiCwx19/k3h57kCoad/mBHkdoxPkgSgM8xpO/cADD9iqt2p9U6tbctQz1LZtW1OkSJEE1+sg84UXXrDDe52ed/Wyax3btMz9oyc4cipVqmQbYH744Qdz9dVX2wNPCQzw/D28Q/PlNUdec9g0tF5hXoFBf0MCvffmYWsaUuDnL7nPK6KH07O+f/9+O7JJQ931fapAP2fOHH94V7jUdJhevXqFZTvUGK/v40gqXLiwHZXgNOI7dDm5Bn1dn9L909sQoilHOgHIGHXuKReIprsETq8FEF6Z0zq0/pNPPrHD5zWcUMPXdNKQ+kC//fab/WBrGZ7E1Iur0N6lSxfbM6gDGRWt0WPzpRq9FAi6deuWIBg4PVEsjeUdyS0/p0JawaxDj+iiz15SPcJJfV7hPn3fqR6MpkaoEbtRo0Z2uTUVglMjmurQPP/882bq1Kl26TqNbCtRooRp3769iRVqfNI602q0CKzBo8tq7E+Krg+8v+j1c+4f2BDicBpCkntMAKGhhmMtYylNmjSxtbQARGnPvIbjybXXXnveerWqVulQRVq1+Cu4J6YWeQ3RV0+DvmTVO6GDzsGDB6f/WcAVhHlvSWkdeX0O9QX8448/2sv00HuDPnuMivEOrQCjod3bt2+3o2I0Z109487fUOu8awj+3XffbacxqYCUwn/iCvhep6Ht+t5X5XyNEFIlej1vNWqIGjE0RNdZyeahhx4yDRs2NK+++qpp3bq1mThxolm+fLn54IMP7O2BDSEamaJwr3o9sdYQAqTlu2HIkCG2rpWOtfUZ0f/VcKb/q9HeOddxuXrSU7pPcvfVsYNqf4gaKbXaRko/ozXntV/r169fUFOTAKQuk9anC+J+wHlUOEnzLnVgytwobwZ5FZFU8TT9HRUojhw5YgO9/p4E+uinufCdO3eO+FBpIKO0rNzLL79sR/dpKPybb77pL8SnDgO9t0eNGuW//+eff25H8akmhAK7piYE1orQoczAgQNtwHcaQt555x1zySWXBL1N6s1XFXw1umjqH+BV6iBTTZVIHOJrZJ9G3GhEbjB0XKFtU/AHkPHvJJrFkG5aNlD27dtHmPdoj3xy69DTQ+8N+uxlZHkywC0qpKtTUpy5t4Fuvvlme0qO9lMKMIzyA4ztNQ9nkNdyc+rBl8WLF6fpZ7Vdya2EBSDtWPwR6eYUGlJldHg/yCcO9Myhj24alqyl6QILfgFpHYo7e/Zs8/7779v3kvz99992hA4A79LIlHA1xGsEjZbYTO/0H22XswY9gIyjZx7p5lQQJszHTpB30EMf/ZzPHWEe6fHnn3+aFi1amK1bt5qTJ0/apaRU2Pall16yl9977z23NxFAOmlOuoR6zrzqYWmJTVHNDzX+JXff1ObMAwgNwjzSTa2yGuJLmI+tIO8g0Ec353OnIl9AWqmonArQaVWZCy+80H/9DTfcYHr27OnqtgHIGBWXC/WcdC15qlpJomVPnWJ3ANxFmEeGqFeQMB97Qd5BoI9e6hEReuaR3uWk1EumwlWBVHhO+xAAcCxbtswf5HVMoGU1ORYAogNz5pEh6hV0QgViK8g7mEMfndSIlitXLqpuI100lPbs2bPnXa/VSTTcHgBEy0Bq1RvRcHmtJU+QB6IHYR4ZQs98bAd5B4E++uhzp8Y0DqqQHs2aNbPruzv0PlLhOy3vFrjkG4D4pfoZ8+fPt//X3PumTZvynQNEGcI8MoQwH/tB3kGgjy4aEcMQe6TXq6++aqfPVKlSxZw4ccLcdttt/iH2KoIHADly5DDdunUz1157rS2SSZAHog9z5hGSMO9ULkVsBnkHc+ijhz53hHmkl6pSq/jdxIkTzZo1a2yv/J133mk6d+5sp28AiF/aH+j7XgoXLmwaNmzo9iYBSAZhHhmiMHH8+HFz6NAhkz9/frc3J+5EMsg7CPTRE+b12gMZqXh9++23u70ZAKLIqlWr7Bz5jh07+pehAxC9CPPIEGdZLIVKwnzsB3kHgd5dGgnDMHuk1dSpU4O+b9u2bcO6LQCij0brfPXVV/b/v/32G2Ee8ADCPDLk0ksvteeaQ625l4j9IO8g0LtHQf7AgQP+zx8QjPbt2wd1P32Ok6p0DyB2abrNlClT7P9r165ti2QCiH4UwEOGFC1a1M69XLFihdubEjeiIcg7KIrnDufzVqtWLbc3BR5bji6YE0EeiN8gr+8VrWhB4zzgDYR5BO2PP/4wo0ePtueBtOMnzMdfkHcQ6CNPnzcVJSpdurTbmwIA8LC1a9faIK/v7po1a5rWrVsT5AEPYZg9gqIAf8UVV5hjx46Z3Llz253/xRdf7A/z//nPf6hoH4dB3sGQ+8iHeX3ueI2REXPmzLH77g0bNtjLlStXNg8//LBdSxqA+86cOWOGDBliFi5caNd51z5f/9cIGv1fx11ZsmQx9evXT3Cbrrv66qtNv379bKHLlGzatMk+To0aNcz111/P9wrgMYR5BOWHH36wQV50rsuBYX7//v1my5Ytpnz58i5vaWyK5iDvINBHNszfcccdbm8GPOydd94xDz30kLnpppvsuSxevNgOr1XAv//++93eRCDuKcgPGjTIhu1Zs2Yle7/Zs2cn2VgnAwYMSLWWRtmyZW2vPN/ZgPcQ5hEUtfCqR97pmddlhzNvVwGDMB+fQd5BoI9M8budO3cyXx4ZDgkK7b179/Zf9+CDD9rPr24jzAPuU097eqeu6ef080lxVkPR93PmzJn5PgE8jDnzCIp64TW0ftSoUQmG2IsCZsmSJZk3H+dB3sEc+vCi+B1CQashtGjR4rzrVcH64MGDrmwTgIQaNGiQ7gZx/Zx+PjFNq/noo4/MtGnT+H4GYgA98wiaAnxgiA9EEbzQ82KQd9BDHz76nF144YWmTJkybm8KPEzryE+ePNk8/vjjCa7XGtOaNwvAfZrzLhmZMx9o48aNZtKkSfY+mo9PrSPA+wjzCAmF+TfeeIMvhhDxcpB3EOjDg+J3CIUqVaqYF154wcybN8+GBGfOvD6vjz76qHnzzTcTDL8HEHkqXpfanPdg/fLLL+bzzz+3QV4FjTVXXkPsAXgbYR4hoXCxb98+8+eff5py5cq5vTmeFgtB3kGgD72VK1eabt26ub0Z8DgNsy1YsKBZv369PTkKFChgb3Po80qYB7zt119/NZ999pkN8lWrViXIAzGEMI+QcObvLlmyhDCfAbEU5B0E+tDZvn27LVzEfHlk1ObNm93eBAARDvL6/r3hhhsI8kAM4dOMkChWrJht7Z0+fbrbm+JZsRjkHRTFCw19vjQXslGjRm5vCgDAAxTi9Z2rqTU33ngjQR6IMfTMI6QFld5//31z9uxZGzgQvFgO8g566DNu6tSptjpxoUKF3N4UeJwO7lUIa+7cuWb37t32gD/Ql19+6dq2AQidyy67zPTo0cMuRUeQB2IPn2qETJs2bczevXvNokWL3N4UT4mHIO+ghz79jh49ambPnm0bzYCMevjhh02XLl3scHt9LvPnz5/gBMC79LnW8pOOUqVK0ckCxCh65hEyderUMUWLFvX3HiJ18RTkHfTQp4+C/MmTJ22jGZBRY8eOtb3vrVq1cntTAITQH3/8YSZMmGDy5Mlj7rjjDpMvXz63NwlAGNEzj5DR8C2tTzxt2jS3N8UT4jHIO+ihTzs1kmm4ZKVKldzeFMQA9b5ffPHFbm8GgDAEea0hr+MKBXoAsY0wj5DSEOCNGzeaTZs2ub0pUS2eg7yDQB88zWf++uuv6ZVHyAwaNMg8++yz5vjx425vCoAQDa13grwafW+++WaG1gNxgDCPkGratKnJkSMHvfMpIMj/D4E+OEuXLrVFypgvj1C55ZZbzP79++3UqCuuuMLUrFkzwQmAd2zZssWMHz/eH+T1+c6alZm0QDzgk46Q0pAuBXoNCe7Tp4/bmxN1CPLnYw596vR5uvDCC029evXc3hTEiG7dupkVK1aY22+/3e6L+MwB3rR9+3Z/kK9YsSJBHogzfNoRcuo9vO+++8y+fftYQisAQT55BPqUaaRL69atGTKJkPnmm2/MzJkzKVYKeFzBggXtKW/evKZjx44EeSDO8IlHyKkI3j333GOmT59ue31AkA8GgT75eZDr1q2zc5yBUCldujRVroEwUS/5kCFDzIIFC2zNEzXE1q9f336n/fTTT3aUVeL/L1y4MMn7qsGtX79+yYZ0jYjUSJts2bIR5IE4lMnHJFWEwVVXXWWHBav3J95Fc5A/ffq0bXTR8lQ6EIgGR44csYG+ZMmSBHpjzAsvvGBPu3btsj0vQCho3/zWW2+Z9957z5QrV87tzYkKhw4dslX+Dx48SEMHMmTw4MG2ATYUh9j6DtRjDRgwwH/dtm3bzJ49e0yNGjUy/PgAvP2dRBMeQrIUyg8//GCuvvpq/1JHd911l7n77rvN1q1bTZkyZUy8iuYgH63oof8f9dJ8+OGHplOnTgmCfFKfOSAtNGrq2LFjpkKFCiZ37tznNeZpmhSA9FEve6j6yvQ4erzAOfKffPKJOXXqlP3sXnrppSH5PQC8iTCPDFGoUCVkHRTqS2Xt2rU2XCh8PPLII2bkyJFxOzyYIJ9+BPr/mj17tq1S3LNnz1Q/c0BavP76625vAhCzNDRe++9Q9cw7tS10XOEEeY2oKV++fAi2FoCXEeaRIeodVKgQneuygoXC2K233mo++ugj88wzz8Rd4S6CfMYR6I0ZMWKEfd6atpLaZ07osUewNMcWQHhojruEcs68jivGjh1rTp48acqWLWuPsbJnz+72UwXgMsI8MkShQb2DTi+hLjvUm6gwMmPGDFuJO14Q5EMnngO91pX/6quvzMsvv5zgOSf3maPHHul14sQJ29MXiDnjQPqpEF3gHPeM+vvvv/1BXlMXb7vtNoI8ACvzf8+A9FFYUGgYNWrUeeGhdu3atjjLO++8Y+IFQT58gV6v7c8//xyyeYjRTnPl1UPTpUuXoD5zSfXYA8k5evSo6d27tylatKithu0sb+WcAERPESwnyGsVCoI8gECEeWSYwoSGbCbuBVRv4gMPPGCrpW/atMnEOoJ8+MRboNcqA2oEU5GyQoUKBfWZc3rsJfEoGSCxJ554wnz//ffm3XffNTly5LCNR88++6wpUaKEGTNmjNubB+D/U/FTHVcoyHfu3Nl+XgHAQZhHWGlOV5EiRewSSLGMIB9+8RTov/jiC/s8H3zwwZCMkgESmzZtmm0w6tChgx0SrMaf/v3727Wxx40bF7bfqyr5CiQaxl+gQAFz55132uUoU7q/GoVVsTtXrlx2iLE+F1qqJ3HjceLTxIkTw/Y8gEjRe7lRo0ama9euBHkA5yHMI6xy5sxp7rnnHvPxxx+fd/AVKwjykRMvgf6NN96wB2+aAx+KUTJAUiHZeZ8oWDtL0anYlop2hYuCvD67s2bNMl9//bX9XVrGNKW5wjq98sorZt26dbaxSnVY1AiQmL5nduzY4T+1b98+bM8DCKddu3aZSZMm2VFaTqBXoxsAJEaYR9j16tXLFljSgVasIchHXqwH+qVLl5rFixebhx56yO1NQQxTkN+8ebP9/2WXXWY+++wzf4+9eszDYcOGDTaIa0h/3bp1bcOBRm2pB12BPSlVq1a1I1XatGljKlSoYBo3bmxeeOEFu51nzpxJcF9td7FixfwnNSYDXgzymuqi77c5c+a4vTkAohxhHmGnOZgdO3Y0r776qg31sYIg755YDvRDhw61Qev66693e1MQw3r06GFWr15t///UU0+Z4cOH2/D7yCOPmMcffzwsv3PRokU2cKs4qqNp06Ymc+bMZsmSJUE/jkZ5aTRB4p7K+++/3xQuXNjUqVPHjBw5MtX9ggqKqbhY4AlwexUTBXkVMdWx07XXXuv2JgGIcozZQURoiZYqVarYOZp9+vQxXkeQd18sLlunsDNlyhRbuViV7IFwUWgPDNTqNV+5cqWpWLGiufLKK8PyO3fu3Gmr5wdSIFeRR90WjD179pjnnnvuvKH5gwcPtr32Kv743Xffmfvuu8/OxU+p7oQazlT0D4gG//zzjxk9erQN8sWLF7cFUBldAiA1mXyx1KWFqKa585oDpvWw8+fPb7wqloK85uNptYFWrVqZbNmyGS/SAbsCfcmSJT0d6LUrVi/MgQMH7PtLvZWAF6hn/6WXXkrxPmos+PLLL21Y+eWXXxLcpoCvUK0pWSlRz/l1111nw//UqVNT3GepAVlTu7Zt25Ziz7xOgY+viuFOzz8Q6SCvJSMV5LUkqQo+Aohfhw4dsnkpte8kjhYRMQMHDjTHjx83L7/8svGqWArysSJWhtx/++23thiYegsJ8gjn6A8VngukYb3ly5e3oVo93oEBNxiPPvqoDespnTR1RPPYNYw4kOa9q/iebkvJ4cOHTYsWLewyXZMnT0618VFz8rdv357ic1FlcB0gBZ6ASDt37pytWaEgr88BQR5AWnDEiIjR/C8V9frPf/5jKw17DUE+enk90Otgrm/fvnZ5sJYtW7q9OYhhGo6uz4hDyxiqMryG2quHXYXl1KCUFlp+VEX0Ujplz57d1KtXz448WbFihf9ntda93v8K3yn1TjRr1sw+hnrkgxl6vGrVKlOwYEGW8kLUU+PtDTfcYMqVK0eQB5BmDLNHROlATj00nTp1svPnvSJWg3wsDLOPhSH3Wtdb8yN/+uknG3iAcNEQXgV2pwjd008/bebPn28WLlxoL3/++ed2FNX69evD8vvVWKVq3e+9957d/6gQn7Zl/Pjx/n1tkyZN7GgBFbJzgrzmEatHPk+ePAkaEVRbQs9Hj3nVVVfZoK9l7x577DF7Ssuc+GCHNCL2acTIkCFD7OdCqy488cQTZtiwYfay9tH6bnH210n9Xz/Tr1+/FJeTUyNW4CgsHY575TsLQPgF/Z2kMA9E0rBhw3xZs2b1bdq0yecF27dv902bNs23c+dOX6w5deqUb8qUKfY8Vhw+fNg3Y8YM39q1a33nzp3zRbuTJ0/6ypcv72vXrp3bm4I4kCNHDt/WrVv9l//973/7nn/+ef/lzZs3+y644IKw/f69e/f6br31Vvs78uXL5+vRo4f9zAb+fh2azJ07117WuS4nddJ95dtvv/VVr17dPmaePHl81apV87333nu+s2fPpmnbDh48aB9X54hvzz77rC9Tpkz2/aDzRo0a+S8Hc9J99RgpfQ6GDx/u27ZtW0SfFwDvCPY7iWr2iLjevXubN954w/Tv39+uLxzNYrVHPpZ5rcr9+++/b/7888/z5jED4aD9mNaXV6G3U6dO2Qr2gb3XmpsezlE6Kl7n9MInRUONAwcMqihkagMINZdeJyBU1APvvO90rmUc0zKQVfd1RrskphoRKnanXreZM2eaO+64I6q/owBEN+bMI+I0H2zQoEHm008/TTB3MtoQ5L3LK3PoFZy0zFa3bt3s0o1AuGlKjebG//DDD7ZOg5ZyU60Gx5o1a0yFChVc3UbAbRom7wRsnVerVi1NgVv31WMktn//fn+QL1y4sOnYsSNBHkCG0DMPV3Tv3t28+uqr9qBSawJH25cZQd77vNBDr8+ADuoSz+vV8o0KWwpZqjEBhIoaj2688UbTsGFD+xlRsFBhOcfIkSPtHHUgnmm+u2R0znxKQV6NuPoMAkBGUAAPrlHRorZt25qxY8fa4l/RIp6CfKwVwPNSUTwt11WjRg3zyCOPJKgeriB/xRVX2IJf6jVVtXECPUJNBXUUJFRALvEQYF0fGPDjBQXwEM7iv6NGjbLvrQsvvNAGeS2zCADJYZ15RL02bdqYW2+91Tz44INRs1RdPAX5eBGNQ+5VKVmjUzQ/eMCAAQluU4+8grzoXJeBUNMBQuIg78xpj8cgD4TTggUL7AG5Pl8EeQChRJiHq9566y174HjPPfe4HrII8rEr2gK9htcvX77c9tQkXlNYQ+vVIy+B85nVY68hmjoHAHiHRr/VqlWLIA8g5AjzcJWGm2m9YQ25/+STT1zbDoJ87IuWQK/1u9Ub/+ijj9p1sRPTkHoNrVfQd4bYO0Pv1ZuvcwI9AES3EydO+L9ntN789ddfz/QNACFHmIfr2rdvb2677TY73P7vv/+O+O8nyMcPtwO9M7xeAX3w4MHJ3k+3qwfHmSvP0HsA8NZc1w8++MDMnj3b9ZFgAGIbYR5R4c033zQ5c+aM+HB7gnz8cTPQv/LKK3Y5RvW66/0erOSG3gMAoi/Ia0qUqtdrJJZ66AEgXAjziJrh9u+//775+uuvzZgxYyLyOwny8cuNQL9u3TozcOBA89hjj5m6deum6WeTGnoPAIguhw8ftscwWhWiQIECdoRV4rooABBKLE2HqNKlSxc7f14BS0uJhQtBPn6WpouGZes0vF5rEB89etSsXLkyTb3yACKDpemQ0SCvHvm9e/fa95GmVCnQA0B6sDQdPOmNN96wrdh333132HpLCfKIdA/9sGHDbIhP6/B6AIA3GobVI68gr4Nu9cgT5AFEAmEeUUVrsI4YMcL2Fr/44oshf3yCPCId6OfMmWOr1z/55JOmTp06IX1sAID7tm7davbs2WODvHrkCxYs6PYmAYgThHlEHS3f8swzz5inn37aTJ06NWSPS5BHpAP977//bm6++WbTpEmTFKvXAwC8q0qVKqZDhw62R54gDyCSskb0twFBGjRokC301blzZ7N48WI7nzkjCPIINtBrDr1kdA695jq1bdvWFC5c2EycONGuMwwAcI/qlwwZMsQsXLjQNGjQwDzxxBN2GpQuq66J9vk//fSTva1fv34p7rdVA0UNv/rukKpVq0bwmQDAf3F0iaiUOXNmM3bsWFO/fn0biJYuXWor3qcHQR6RDvRnz561DVHbt283S5YsoacGAKKAgrw6CxTCtQb8vHnz7EmXZ82a5b+fbhNNkUrKsWPH7Bz5c+fO2d54J9ADQKQxzB5RS1+OX331la3iqKHKqryeVgR5uDHkXtNEvvnmG9sjf9lll4VlOwEAaaMeeGefrvPVq1cnuY/XdbpvSkF+9+7ddg35kydPhn27ASA5hHlEtfLly5tJkyaZH374wfTp0ydNP0uQhxuBfsKECWbo0KF26GbLli3Dup0AgOBp+Lwz2krn1apVS3L0la7TfRM7fvy4HTW4a9cukydPHtsrn95RgwAQCgyzR9S79tprzVtvvWV69eplrrzyStOzZ89Uf4YgDzeG3K9YscLccccdpkuXLubRRx+N0JYCAIKhefAS7Jz5xEFePfI7d+70B3nVRAEAN2XyhWthZSCd/vjjD9sTf/XVV5uLL77Yf/19991nPvzwQ7vUl25LDkE+eJq6oGUAW7VqZbJly+b25kTt+sEK9CVLlkwx0OsAr3bt2vZ+8+fPT7CefHLvaQDRQ0Ur8+fPb6d2aYkxIHGP/I4dO0zu3Lnt8nNFihRxe7MAxLBgv5PomUdUUei54oor7Jw0fWGqor0Tft544w2zYcMGc+ONN9pglNRcZII83OihP3z4sGnXrp0djj958uTzgnxy72kAQPQ7deqUDfTah6tHniAPIFowZx5RRSFdoUd0rssO9Rx//vnnpmjRonbdbq3hHYggDzfm0Gt5otatW5uNGzeaadOmmRIlSgT9ngYARD/1jqk3XkFexyAAEC0I84gqGoaslm/ReeLh9JqfpmH2CleNGzc2f/75p72eIA83Ar16arR0ot57M2bMMDVr1kzzexoAEH1UpT6w00CBniAPINoQ5uE6DUMePXq0PdfwYw1DHjVqVLLDkYsVK2YDfZYsWWygX758OUEeEQ/0es916NDBLFq0yC5Dp+JJSQnmPQ0AiK4g/8knn5hx48bZ6X0AEK2YMw9XJTefOLXAU6pUKfP999/bYNW+fXvz9ddfE+QRsUCvQncaWq9Ar/feNddck+LPBPOeBgBER5BXiN++fbutf1KgQAG3NwkAkkXPPFyVkfnEmkM/aNAg+3/1kDpD7oFw0tD6zp07m9WrV5sBAwaY4sWLp2kdegBAdAf5bdu22SDftWtXu48HgGhFmIer0juf2BnmrPnKWh9WYUq9o4mL4gGh5BS7U6OTeuQfeuihJIviAQC8V7F+/PjxNsjnyJHDdOnShSAPIOoR5uGq9MwnTlzsrly5cmbBggW2FV2BXlXFgXCs99m8eXNbo0HF7rSiQkpV7gEA3nD69Gkb5Ldu3eoP8olXJgGAaESYh+sU4LXcS3qCfOAc+vnz59u5berd1/+BUNEUDjUUrVu3zsyaNSvBCBICPQB4W9asWe1qOQryt99+uylZsqTbmwQAQSHMwzNSW35OVe7VQ6+Cek2bNjUffPCBK9uJ2KJpHHrPHTx40A6vr1u37nn3IdADgHdlypTJTqG6++67becAAHgFYR6eEOw68hdeeKGZOXOmueeee+ypd+/edvgckB4ffvihXf6wSpUqZtmyZbahKDkEegCILmfOnDGDBw82zZo1s+e67NCxgRpoz5496w/0hQoVcnFrASDtWJoOMRPkA6vcv/322zZ4KcyvX7/efP755zboA8HQAV+fPn3MW2+9ZXr16mXeeOMN+75KjRPof/zxR3v58ssvtweIAIDIGzJkiF31Ro2rs2fPttdpFRIF+YkTJ9rlcffs2WNuuOEGtzcVANKFnnnEVJAPpJ75OXPm2MJ6+nnNdwZSs3fvXtOiRQvz7rvvmnfeeceeggnyDnroASA6OKvdiM51WY21n376qQ3y2rfXrFnT7c0EgHQjzCMmg7xDRcs0PDpv3rymXr16ZurUqSHfTsQOhW/NiV+1apX57rvvbK98ehDoAcB9DRo08I+O0rn2ywryWsZWQb5z586mbNmybm8mAKQbYR4xFeTV0j569Gh77tDSdRr2fN1115n27dvbYXeEKyQ2bdo02+CTK1cus3TpUtOoUaNU31spIdADgLv69etnh9nr+3/gwIGmQoUK5rfffrPV62+77TaCPADPI8wjpoK85sl3797dngeGLgWrSZMm2blyTz/9tGnVqpXZvn17mJ4BvOTYsWPm4YcfNu3atbPF7n766afzlklM6b2VEgI9ALhHoV3f+xpppRom6pF3grwa+gHA6wjziJmh9apKq2AmOtflQJkzZ7Yt9N98841Zs2aNqVq1qvn4448JWHFM75Err7zSvP/+++aVV14xX375pZ2Skdb3VkoI9ADgvtq1a9uRV7feeqspX76825sDACFBmEfMzJG/+uqrTe7cue3/da7LSVGvvIrhacj9HXfcYa6//nr7uxE/FMgfeeQR07BhQ/te0xx5Va9Xg09G3lvJIdADgLvUE69RWIlHXgGAlxHmETNz5PUFrcr1o0aNsucpfWEXLFjQ3k/zpPV7NfxOlwlZsU/1E6pXr27ee+892xu/YMECc+mll6b4M0m9t5hDD6Tdvn37bNGxfPnymQIFCpg777zTHDlyJMWfufbaa23xssDTvffem+A+W7duNa1bt7aNbUWLFjWPP/54gjXFEX+0fry+43fv3u2/Lnv27K5uEwCEGuvMw/Nz5NXLqgM4J2SlpdVdvfIKVmqt79Gjh51XryHXJUuWTOezQbTS+6R///7m9ddfN1dddZU9yEstxAcKfG8l995LDevQI94pyO/YscPMmjXLrvWt/e7dd99txo8fn+LP9ezZ0wwePNh/2Rkp44Q2BflixYrZmhd6/K5du9pq5Sp4ivij98QXX3xhNmzYYAvePfDAA3auPADEGnrmEbNz5IOlXnr1sGrZupUrV9q59LpMz2ns0AG+euO1ZvywYcPseyUtQT4x5tADaadgNWPGDPPhhx/aJSC1bNhbb71lJk6caP7+++8Uf1bhXWHdOaln36HiZuvXrzeffPKJ/Zy3bNnSPPfcc2b48OHm1KlTEXhmiLYgr/oner9lyZLFNtoT5AHEKsI8Yn6OfLDatGlj59LrXFXLmzRpYpcog3dt27bN1kVQaLjwwgvt3PjHHnvMHuBlBHPogbRbtGiRHVqvQmSOpk2b2loVS5YsSfFnx40bZwoXLmwbW/v27etvTHMeVyNlAr9Hmjdvbg4dOmQ/X8k5efKkvU/gCd527tw5M3nyZNu4o/fVLbfcYipVquT2ZgFA2BDm4bkg78xVlmDnyAerUKFCZsyYMbbivebZqffopptuMr/88kuGHxuRs3fvXhvadRD39ddfmzfffNMsXLjQXHbZZSF5fObQA2m3c+dOO589kHpMtd/VbcnRMmLqdZ87d64N8mPHjjW33357gsdN/D3iXE7pcYcOHWry58/vP5UuXToDzw7REuS1P3WC/CWXXOL2ZgFAWDHuCJ4L8onnKnfr1i3k26iK9+rZ0QGk1qjV3Gb18A4cOJD59FHs6NGjdk68htLrwK5fv362an1Sy81lFHPogf966qmnzEsvvZTifTTkOb00p96hz1nx4sXtyCmtGV6hQoV0P64aBrSKhUM98wR671KDrUbXOUE+I1OpAMAr6JmHp4bWh2qefDA0FFsNBeqVf/nll+0cvIoVK5onn3zS7N+/P2y/F2mnQlrvvvuu/fs8++yztqiWArYaYsIR5BNjDj3i2aOPPmrDekonNW5prntgZXFRxXlVuNdtwdKIKVFhM9HP7tq1K8F9nMspPW6OHDns3PvAE7xF7x8VRmzWrJkduVGmTBnbkKuCd7qeFQ0AxDwfECHbt2/3TZs2zbdz5850P8bvv//uy507t9KOPdflUNNjjho16rzHPnDggK9///729xYoUMD34osv+o4ePerzslOnTvmmTJliz73o7NmzvgkTJvgqVKjgy5Qpk69Lly6+zZs3p+nvGgqheF8ePnzYN2PGDN/atWt9586dC/k2Am5bv369/YwsX77cf93MmTPtZ/evv/4K+nEWLlxoH2f16tX28vTp032ZM2f27dq1y3+f999/35cvXz7fiRMngn7cgwcP2sfVObxh0KBB9v2jv5vOGzVqlODys88+6/YmAkC6BPudRM88PNEj70jLWvLp4QyXVgE8nQfOf9acSlVI1tBOLa+kZc40J1u99vTUR5YqVGsKRK1atcytt95q58KruJ3qHZQrVy5Nf9dQCMX7kh56xLrKlSubFi1a2GXmVFxU00t69+5tOnXqZEqUKGHvo/e/Ps9O8VHtb7XfXbFihdmyZYtddUTLzl1zzTXmyiuvtPdRr2yVKlVMly5dzOrVq83MmTPt/vn++++3ve+ITdpHagRG/fr1/Zf193f2nTrX0HsAiGWEeUR9kE9cWExBScPfQx3kgx0urWGbb7/9ttm4caM9iNRBY6lSpUyvXr0yNC8UqdMQXQ2dLFu2rD1wL1KkiFmwYIEtcucc2Ls1PSMU70sCPWKdqtIrrGvOu2qTaKWJDz74IMGUGU1tcj6v2bNnN7Nnz7b7Wv2chvR36NDBTJs2LcGUKO0DdF6vXj1bHE+BP3BdesQW7RvVsKNjCr2XtNKB6o1Uq1bNX3dE53p/AUAsy6Tuebc3ArErFEE+PYXF0is9v089A++//76ds63KyTroVLBv3bq1yZYtm4lmOnCePn26PaiO1m3VLmrx4sX2NZ4wYYI9YNeB+oMPPmh746LxfZRRR44csb2WKrZIUTwgMlQATyOwDh48yPz5KKbvBDXm6NhC+0Zd1v5Swf2JJ56wBVDVI6/LKoLKGvMAYvk7iTCPqB5arx55DY12aBhzOKrXJw5+6rnV2uFpCXwa+v3ZZ5/ZZdCWLVtme/BViO2uu+6K2uAYzWFeRbG0BNWIESNsL7V64++77z77emopq0j9Xd1CoAciizAf/XTIqlEYK1eutPvEG264wTbUAkCsIcwjJubIR6pHNdRBT/P2FEI1r1sfQg0D1FrJ6q3PyOsR62FeS8vNmjXLfP755+aLL74wZ8+eNe3atbNzbK+77jq75FBGeSnUE+iByCHMRzcdrn7zzTe2fgJBHkCsO0SYh5eH1geGrXCHr3A2GOgxFUw/+ugjfyGeq666yrRp08a0bdvWDhN3M6BFQ5jX+0U9LZr/OGfOHHPy5ElbKEsjMjQKI5SNH14bbi8EeiAyCPPRTftvjdYSBfmU6qQAQLx8JzGRCJ6YIx/OwJVUcbRQ/T49BwVSnVS8TcFZc/1eeOEFO5dPv8cJ9mqsiIbe8XBT+6Eqz+t1UIBXL4vmwev5Dx061L4eWi/ea3/rcHGK4inQC4EeQDzSvlo1aXLlykWQB4D/jzCPqBpa70bYUohU6HYaEHQ5HIoWLWp7m3U6ceKEmTt3rg20kyZNMm+88YZtfWvZsqXtJa9Tp45d9i4Uw8qjIbz//fffZvny5ea7776zz3nbtm22lVHPt0+fPna5qvTMg4/Wv3WoEegBxCN9f2gEmVY1EK1WAAD4H4bZIy7nyCf1e0M9lD/Yx9RHUK+d01Otwj6SN29eU6NGDbuWunO65JJLQhrwQz3MXs9F7wX1tgeeVPFftAa8RiGo913rRDsHaNH4d4lGDLkHwodh9tFF3yczZ860jb9aijRnzpxubxIARAxz5uG5IB/psBXO35ORRom9e/fa1zMwDOvxnB7awICvQFeiRAm73np6Qn56w7x2GwcOHDA7duwwv/76a4Jt1XQCZyRCYEOETqVKlQo6gEaiYceLwZ5AD4QHYT566DtGI7m0LKncfPPNQS9FCgCxgDnz8GSQl3DPkY9EUMzIdIELL7zQNG3a1J4c+/fvtz32TmBWL/7rr7/uv11zzrUUXvHixf0nhfzAyxrGrvV2dVJw1/m5c+dsONyzZ499nDNnztjT4cOHbVDXSUPknf87l3fu3GmnCjj0t1dYv+eee/zBXWEzI0Ez3FMuvFgMTxhyDyDWg7xWNXGC/PXXX0+QB4BkEOYRVUE+UsIdFEM9N7tgwYJ2eTudAgP+pk2bkgzcmp+u69RLrsCeEWpccBoEVJhOw+MDGwnKly9vGw5CHSjDPb/di8XwHAR6ALEa5GfPnm0WLVpkL2s5VzUOAwCSxjB7xF2Qj6ch3FqnXYFeAV/D4p2ed+ek3vXVq1fbgnuaj+j02us1UVBXb3+OHDmMW6J1KkS0YMg9EDoMs3eXDke1PKnTSNm8eXM71F7LujZo0MCuACNDhgxJcJ2+twAg1jDMHmHj9SAvCm0Kb+EIioEBVEvSheNxg91eDb93etCTmzOfJ0+ekBXAC3X4dqZc6HFHjx4d0r9VON8DkUIPPYBYoYZVNS6LVjqZMWOGGTRokL+33pH4ugEDBri2zQDgNsI84irIJw6bXunt9UIvshefe+B7IBpGUqQHgR5ALFDDshrA//zzTzu0vn///ja0i87VG+/8P/F1ABCvvL+INSImFoK8QqHWede5UyE+3POwo/lxt2zZkuA8np57pN8bkQj0+oz+/PPP/oNdAIh2qv/iKFy4sH+OvIbROw2TOtflpK4DgHhGzzziIshHquBZuIq2heNxFVjr1atnPvroI3u+dOnSDL0eXnrusVQMz0EPPQCvmTdvnt1nderUyVSoUCHBbc4c+cRz5pO7DgDiEWEecRHkIxUKwzUPOxyPG+oA66Xn7sZ7IxII9AC8YsGCBWb+/Pn2/yrUmjjMq7BdUvPhmSMPAP9DNXvERZB3eHVedLheC1WxV8/8nXfemeGeea+LpfcGVe6BtKOafeRoX/v999/b/zdt2tQ2QgIA0v6dRJhHzAf5SIW0cC+jFo7H1jr169evN1WqVDGVKlWK29fBrd8TTgR6IG0I85GhIfJagk6aNGnCvHcASAJL0yFDYinIR6IKfDh/Tzgfu1y5cjbM6zyeXwc3fk+4MeQeQLTR/sgJ8o0bNybIA0AGUc0eMRvkI1UJPdy/J5yPHcpq9l5+Hdz4PZFAlXsA0UL7nx07dtj/N2rUyLO1SQAgmhDmEbNBPrCwmYSzsFk4f0+4HtupZi86D8VybF58Hdz6PZFCoAcQDTQy6MYbbzS33HKLueaaa9zeHACICQyzR8wG+UhVQg/37wnXY4djOTYvvg5u/Z5IYsg9ALeoobh8+fJ2n5M5c2ZTuXJltzcJAGIGBfAQs0GeYmmxW83eq6+52yiKBySPAnihp++Vb7/91lSvXt20bduWfQ4ABIkCeDDxHuRjpVhauIKrHmvRokW2AJ7OQ/nY4a5oHwsF6txADz2ASAd5Z98DAAg9wnyci8UgH64h5G78Hi8G13Bvc6T+trGKQA8g3JYtW+YP8trfqHI9+xkACD0K4MWxWA3ysVQsLZyV1cNRAC8S1eBjrUCdGyiKByBcli9fbqZPn27/X79+fbuWPEEeAMKDMB+nYjnIBxYxGzVqVFh7s8P9e8IZXMMVusMdtiP1t411BHoAobZixQrzzTff+BuJmzZtSpAHgDBimH0ciuUgn3iudriDXrgLsYWzsnq4QnckqsE7f1u9/qNHj6YQXjox5B5AKOXJk8dWrFdx1euuu479CQCEGdXs40ysB/lIzi/3cvE7x6ZNm2wBvCpVqphKlSp5atu9WE8gWlHlHqCafajs2rXLFC1alP0IAETgO4lh9nEkloN8JOZqR/r3OWG1e/fu9jxUc9oDlStXLsG5l7Y90n/vWMaQewDptW7dOnPgwAH/ZR1fEOQBIDII83Ei1oO8G4XRvFz8zrFly5YE517adgrhhRaBHkBarV692nzxxRe2hsnRo0fd3hwAiDuE+TgQD0HejcJoXi5+F85q9pEK2hTCCz0CPYBgrVmzxkyZMsX+X9O0nH0+ACByKIAX4+IhyEe66F2gcP6+cBeSC+d67ZEoguf8HkJ8aFEUD0BqtH93gnytWrVMq1at2E8AgAsI8zEsXoK8G0XQwl3cLRJhNRJLyMXS3yKeEOgBpDRHfvLkyXbkTo0aNUzr1q3ZPwCASxhmH6PiIci7VQQtEsXdnN+jZdfC9fgKvosWLbL/13m4Ks6H8zlE6m8RjxhyDyCxX3/91Xz55Zd2f1C9enXTpk0bgjwAuIie+RgUL0E+sHfZ6ZmPRBG0cA5Pj/SIA1Wx19J0oa5mH6nnEIm/RTyjhx5AIC1fWaRIEVOiRAnTtm1b9gcA4DJ65mNMPAV5t4qgRaK4W6RGHISrmr1Q0T420EMPwJEnTx7To0ePkPfInzlzxgwePNg0a9bMnusyACB19MzHkHgL8g43it6Fu7hbJEYcONXsP/roI3u+dOnSkD6XSDyHSBXai3f00APxa8OGDeb48eOmZs2a9nLOnDlD/juGDBliBg0aZBsLZ8+eba8bMGBAyH8PAMQaeuZjRLwG+Uhz5oBLt27dwl7JPpwjDsLdcx6pURN6XP0tJJzz8+MdPfQIhX379pnOnTubfPnymQIFCpg777zTHDlyJNn7a9SQGo6SOn3++ef++yV1+8SJEyP0rGLXxo0bzaRJk8y0adPCum9duHChf5+ic10GAKSOnvkYQJCPvcr5kajQHqm14MVpKAjn6+XGqgbxhh56ZJSC/I4dO8ysWbPM6dOn7ZDtu+++24wfPz7J+5cuXdreP9AHH3xgXn75ZdOyZcsE13/88cemRYsW/stqLED6/fLLL7bB5Ny5c6Zq1aphqa3iaNCgge2RV5DXPkWXAQCpI8x7HEE+ciJVbC1SwdSpZq8CeOGsZh+J50IhvMgh0CMjw7VnzJhhli1bZmrXrm2ve+utt+wa5a+88ootqpZYlixZTLFixRJcp2XRbrnlFvteDKTwnvi+SH/V+s8++8wGeX3Gb7jhBpM5c/gGc/br18+eq0deQd65DABIGcPsPYwgH1mRKrbmxnJ74RKp50IhvMhiyD3SQ42GCtxOkJemTZvakLhkyZKgHmPFihVm1apVdnh+Yvfff78pXLiwqVOnjhk5cmSq78uTJ0+aQ4cOJTjBmE2bNvmDfJUqVcyNN94Y1iAvWbNmtXPkv/vuO3uuywCA1BHmPYogH3mRmgMeqWDqFMATnYdjPmSknosbqxrEOwI90mrnzp2maNGiCa5TaCtUqJC9LRgq2Fm5cmVTv379BNerAroCqIbvd+jQwdx333221z8lQ4cONfnz5/efNKQ/3u3du9d8+umn5uzZsxEL8gCA9KPp04MI8pEXOIfdKbYWLpGq0B6JoemRrDYf6VUNwJB7/NdTTz1lXnrppVSH2GeUKqprbv0zzzxz3m2B19WoUcMcPXrUzqt/8MEHk328vn37mj59+vgvq2c+3gO9GlbUULJnzx4b5DXNAQAQvQjzHkOQjzw3iqtFIphGsteckB27CPR49NFHTffu3VO8j/YBms++e/fuBNdrPXFVuA9mrruqqms/3LVr11TvW7duXfPcc8/ZofQ5cuRI8j66Prnb4pU+u40aNbIjbeiRB4DoR5j3kF27dhHkXRDp4mqRqGQfqQJ4iL9ArwCgYdAE+vhRpEgRe0qNpvMcOHDAznuvVauWve7777+3c7MVvoMZYt+2bdugfpfm1RcsWJCwHuR3jmoW3HTTTSZbtmz+pf0AANGPMO8hKhykA55gDmQQ+h5sp2c+nMXVIj0KQEsNKcyHc8khxE+gVxXqU6dOEQSQJDXyaOm4nj17mvfee88uTde7d2/TqVMnfyV7jT5r0qSJGTNmjC1k5/jtt9/MggULzPTp0897XK2Brsbuq666yuTMmdPOmx8yZIh57LHHIvr8vGjz5s1mwoQJdoSEGuOuvfZatzcJAJAGjKHyEPUwEOQjL5LF1SJdyX7Lli0JzoGMyJMnj+0NBZIzbtw4c9lll9nAriXp1ACkdeMdCvha39zZDzpUnb5UqVKmWbNm5z2mepOHDx9ue/6rV69u3n//ffPaa6+ZgQMHRuQ5eZX2+6pBoCBfqVKliKztrt+lYoX6O+pclwEA6ZfJRwliwPUh7270zOt3qedLQ1e1zNPSpUsZag8gbqkAnqraHzx40OTLl8/EQ5BX40nFihVNx44dI7IcnAL8oEGD7Jx8jeDR/7UUHQAgfd9JDLMHoqzwXaSqv0e6FgAAwH1//vmnP8hXqFAhYkFeFi5c6F/GUue6DABIP4bZA1Ey5D3SIwEiVc0eABAdNKz9yy+/9Ad51SuIVJAXDeV3amroPBJD+wEgltEzD0RB4Ts3RgJQzR4A4ouCuwK8esTbt28f0SAv/fr1s+f6/QryzmUAQPoQ5oEoGPLu1rB3qtkDQHz0yDvBvXjx4ubmm292ZTu0DcyRB4DQYZg9kAKF6W7dukWk19qNYe9UsweA2LZ9+3bz1ltv2XMAQGwhzAPJDHkfPXq0PY/FJfBEz01LOYnOI/lcAQDh99dff5lPPvnEVkWORN0XAEBkEebTaejQoeZf//qXyZs3rylatKide6a1cR379u0zDzzwgLn00ktNrly5TJkyZcyDDz5olxcIpAIwiU8TJ05McJ9nn33Wrq+r+WW//vprxJ5jvHLmrnfv3t2eRzrQR2okgBsF/hDbFixYYNq0aWNKlChh92VTpkxJcLuWodIa48569E2bNjVLlixJcB9N+Ui8T3zxxRcT3GfEiBGmbNmypkaNGuf9PID/BfmxY8eakydP2s9Lhw4d3N4kAECIEebTaf78+eb+++83ixcvNrNmzbKVYZs1a2aOHj1qb//777/t6ZVXXjHr1q2zva0zZsyw63kn9vHHH5sdO3b4T2oYcPz444/mm2++MV999ZW57bbbTO/evSP6PONRvIRcqtkj1LT/q1atmhk+fHiSt19yySXm7bfftiNPVABLwV37zX/++ee8tagD94lqGHVs3brVDBs2zDZ6Pv3006ZHjx5hf16A1+j4Qz3yCvLqTNDxQ/bs2SM+T1+fZX3Gda7LAIDQogBeOimYB1JYVw/9ihUrzDXXXGOqVq1qvvjiC//tWgLmhRdeMLfffnuCQjRSoEABU6xYsSR/z/79+20v15VXXml/Tr8HsVXF3i1Us0eotWzZ0p6So0AR6LXXXjMfffSRWbNmjWnSpIn/eo14Sm6fqOHC2mdqn6j7HD9+PITPAPA+NYCpR/7EiROmdOnSrgR5GTJkiB2No/XkZ8+eba+j+B0AhBY98yHiDJ8vVKhQivfJly/feUvBqIe/cOHCpk6dOmbkyJH2i8/RvHlz+4WsUNmiRQs7vB+xNXcdiEenTp0yH3zwgcmfP7/tzQ+kYfUXXnihHUb/8ssvJ+jRU0Opgrx+7vLLLzfPP/+8C1sPRK+ffvrJH+Q7d+5scuTI4cp2aPSNczyjc10GAIQWPfMhcO7cOfPwww+bf//73/ZAMyl79uwxzz33nLn77rsTXK+hZ40bN7Zh/bvvvjP33XefOXLkiJ1fL9myZbOjAHbv3m17o9xoXY8nmh/vLEWnueuxzCmAp55RnS9dupSGC4Td119/bde51sgXLZGlaUpqzHRo31ezZk3bMKpQ0rdvX9vTqF58h96zGmqv/aZqkgD4n3bt2tmOA40SdCvIi+r8qEdeQV61L3QZABBahPkQUM+65sUn1+qsYaGtW7c2VapUsUPOAj3zzDP+/6sXSnNO1RPlhHmHhvAjMoXvnOH1sd4r78a69kCjRo3MqlWrbAOnCtndcssttoids4/r06eP/77qgVcD5j333GNHJQUGE/XcA/ivw4cPmwsuuMCGZo3+u+6669zeJNOvXz97rmMjBXnnMgAgdBhmn0EqSKeeprlz59qK80l9wWp4vOaATp482fa0p6Ru3bp2LVgVrUFkxUvhOwcF8OAGVbKvWLGiueqqq2wPu4KHzlPaJ2qY/ZYtWyK6nYBXaOTee++9Z0e5BE7Tc5s+25ojr1GHOk88xRAAkHGE+XTSF6aCvAL6999/b8qXL59kj7yquKpnaerUqSZnzpypPq56rLRkk5tD4+JVvIVbpwCeUAAPbk5TSqnxUvvEzJkzMzoJSCbIjx492jZAq8FLK+sAAOIHzaQZGFo/fvx4u2Scet137txpr1dRJs3hdIK8vmC1PIwu6yRFihQxWbJkMdOmTTO7du2yPVQK+mpVV/XXxx57zOVnF9+F75w58/EQbrU0mKrZ6xzIKNX7+O233/yXN2/ebMO45r9rWLxW9Gjbtq2dK69h9lrCTmth33zzzf5GJQ2511B87Vd1+ZFHHrGrgKiRE8D/aEnHMWPG+OtPdOnShbo6ABBnMvmiaUyWh2heWlK0Znz37t3NvHnz7AFpUnSAq/CkwnYq7qSDX/0ZNPS0V69epmfPnrYnCu4UvouHEO/YtGmTDfOq51CpUiW3Nwcel9x+T8UkNQxYS2QprCvIK9z/61//Mv3797fnsnLlSlsEdOPGjba3XiOeFFA0j57RSgg3NbirQd5ZeSaa6TOkFVdUZ0dLNHbt2pVikAAQh99JhHnEvXgrfBf4vLUcouYr33nnnVSzBxDXvBLmFeQ1tF4jYSIR5FWzQqMGAwvZOfPfU7oNABD+7yT2uIh78VrVPV6fNwB4mZZqVJC/6KKL7MiVcPfIK6xrJR71/WipOVFBu9RuAwCEH2Eecc8pfOf0zMd64bt4LfgHALFAI8nU+122bFn/Pjyc1OvuDOLUeeAyvCndBgAIPyZmI+45he80/zBehtgL1ewBwBv27dtne+MdlStXjkiQFw2fd+oE6VyXg7kNABB+9MwjrgUWvlORLgAAoi3Ia468KtVrfrxWeogkzYOXwHnxwdwGAAg/wjziVrwWvgt8/vXq1bMF8HROATwAiC779++3QV6FkAoXLpzsSjrhpCH9yc2DT+k2AED4McwecSupAnDxJN6fPwB4Kchr9NgFF1zg9mYBAKIIYR5xK94LwMX78weAaHXgwAEb5LUk0YUXXmiH14cryGt5ucGDB5tmzZrZc10GAHgDw+xh4r3wnTNnPt6GmDsF8NavX08BPACIwiBfqFAh2yMfznnyLC8HAN5FmEdcU4CN5xBbrlw5G+Z1DgBwn+bF6xSJIC8sLwcA3sUweyCObdmyJcE5AMBd+fPntyFep3z58oX997G8HAB4Fz3zQJyimj0ARAcVudu5c6e55JJL/IE+UlheDgC8izAPxKmkqtkT5gEgsg4fPmznyKt6/S233GIuu+yyiP5+lpcDAO9imD0Qp6hmDwDREeT37dtne+OLFSvm9iYBADyEMA/EKaeavVDNHgAi68iRIzbI79271z9PvkCBAiF7fJacA4DYxzB7II5RzR4A3A3yKnIX6iAvLDkHALGPnnkgjlHNHgAi68SJE2bMmDFmz549Nsh3797dFCxYMOS/hyXnACD2EeaBOK9mLzrXZQBAeOXIkcOULVvWrh+vHvlwBHlhyTkAiH0MswfiFNXsASDyFKxbtWplGjZsaC644AI7l11D4gOXhlOF+eQEe3+WnAOA2EeYB+IU1ewBIDLUYPrjjz+axo0bmyxZsthAryCfnrntwd6fJecAIPYxzB6IU1SzB4DIBHnNkf/pp5/M9OnTMzy3nbnwAAAHYR4AACAMjh8/bsaOHWt27dpl8uTJ469TkpG57cyFBwA4CPNAnKIAHoBIe+GFF0z9+vXt1J5gl2JT77OGixcvXtzkypXLNG3a1GzatCnBffbt22c6d+5sq8Prce+88067/Fs0BPmdO3faIK9id4ULFz7vfprLrmHz1113nT1PbW57Wu8PAIhdzJkH4hQF8ABE2qlTp8zNN99sGxA/+uijoH5m2LBh5s0337TrspcvX94888wzpnnz5mb9+vUmZ86c9j4K8jt27DCzZs0yp0+fNj169DB33323GT9+vHFz+TkFeT1nSa5qfVrntjMXHgDgIMwDcYoCeAAi7dlnn7Xno0aNCrpX/vXXXzf9+/c37dq1s9cpJF900UVmypQpplOnTmbDhg1mxowZZtmyZaZ27dr2Pm+99ZatGP/KK6+YEiVKJPnYJ0+etCfHoUOHQvAM/7vNEydOtEH+6NGjthHin3/+sUPiCeEAgFBimD0QpyiAByDabd682YZiDa135M+f39StWzfB/ktD650gL7p/5syZzZIlS5J97KFDh9rHck6lS5cOyTYrtF977bW2d15Bfvfu3RSqAwCEBWEeiGPlypVLcA4A0URBXtQTH0iXndt0XrRo0fOGohcqVMh/n6T07dvXHDx40H/atm1byLZb+1RNAVCPvFCoDgAQDgyzB+LYli1b/OeVKlVye3MAeNBTTz1lXnrppRTvo6Hwl112mYkmOXLksKdwefrpp22IV4+8gjyF6gAAoUaYB+K8mr2KUOl86dKlDLUHkGaPPvqo6d69e4r3Se++pVixYvZcS7upmr1Dl6tXr+6/j4ayBzpz5oytcO/8vBsoVAcACDfCPBCnqGYPIBSKFCliT+Gg6vUK5HPmzPGHdxWq01z4Xr162ctqjDxw4IBZsWKFqVWrlr3u+++/N+fOnbNz6wEAiFXMmQfiFNXsAUTa1q1bzapVq+z52bNn7f91ClwTXsPxJ0+ebP+vYeoPP/ywef75583UqVPN2rVrTdeuXW2F+vbt29v7VK5c2bRo0cL07NnTjjD68ccfTe/evW2l++Qq2QMAEAvomQfivJq91mqmmj2ASNCwc1V4d9SoUcOez50711aAl19++cUWpHM88cQTdok3rRuvHnjNP9dSdM4a8zJu3Dgb4Js0aWKr2Hfo0MGuTQ8AQCzL5NN6KQDi0qZNm2yYr1KlCgXwAMQ1Dd/XEnVqSMiXL5/bmwMAiGOHgvxOYpg9EOcF8ETnugwAAADAGwjzQJxKqgAeAAAAAG8gzANxigJ4AAAAgHcR5oE4L4AnFMADAAAAvIUwD8SxcuXKJTgHAAAA4A2EeSCObdmyJcE5AAAAAG8gzANximr2AAAAgHcR5oE4RTV7AAAAwLsI80Ccopo9AAAA4F2EeSBOqXr90qVLjc/ns+dUswcAAAC8I6vbGwDAPQrwhHgAAADAewjzAAAg7mmUkhw6dMjtTQEAxLlD//+7yPluSg5hHgAAxL3Dhw/b89KlS7u9KQAA+L+b8ufPb5KTyZda3AcAAIhx586dM3///bfJmzevyZQpU4Z7VNQosG3bNpMvXz7jNV7efi9vu7D97mL73cX2/48iuoJ8iRIlTObMyZe5o2ceAADEPR0slSpVKqSPqYM5Lx6QxsL2e3nbhe13F9vvLrb/v1LqkXdQzR4AAAAAAI8hzAMAAAAA4DGEeQAAgBDKkSOHGThwoD33Ii9vv5e3Xdh+d7H97mL7044CeAAAAAAAeAw98wAAAAAAeAxhHgAAAAAAjyHMAwAAAADgMYR5AAAAAAA8hjAPAACQBi+88IKpX7++yZ07tylQoEBQP6N6wwMGDDDFixc3uXLlMk2bNjWbNm1KcJ99+/aZzp07m3z58tnHvfPOO82RI0dCvv1p/T1btmwxmTJlSvL0+eef+++X1O0TJ050ffvl2muvPW/b7r333gT32bp1q2ndurX9uxYtWtQ8/vjj5syZM65vv+7/wAMPmEsvvdS+d8qUKWMefPBBc/DgwQT3C9frP3z4cFOuXDmTM2dOU7duXbN06dIU76/3xGWXXWbvf8UVV5jp06en+bMQSmnZ/hEjRpirr77aFCxY0J60bYnv37179/Ne5xYtWri+7aNGjTpvu/RzXnntk/qM6qTPpBuv/YIFC0ybNm1MiRIl7O+ZMmVKqj8zb948U7NmTVvNvmLFivZvktHPU6pUzR6Ad82fP993/fXX+4oXL66VKXyTJ09OcPvhw4d9999/v69kyZK+nDlz+ipXrux79913E9zn+PHjvvvuu89XqFAhX548eXw33nijb+fOnQnu89VXX/kqVarku+SSS3zTpk2LyHMDgGg0YMAA32uvvebr06ePL3/+/EH9zIsvvmjvO2XKFN/q1at9bdu29ZUvX97ufx0tWrTwVatWzbd48WLfDz/84KtYsaLv1ltvDfn2p/X3nDlzxrdjx44Ep2effdZ3wQUX2O8Yh76DPv744wT3C3x+bm2/NGzY0NezZ88E23bw4MEEz7Fq1aq+pk2b+v7v//7PN336dF/hwoV9ffv2dX37165da7+Xp06d6vvtt998c+bMsd/HHTp0SHC/cLz+EydO9GXPnt03cuRI388//2xfwwIFCvh27dqV5P1//PFHX5YsWXzDhg3zrV+/3te/f39ftmzZ7HNIy2chVNK6/bfddptv+PDh9j2wYcMGX/fu3e22bt++3X+fbt262b9h4Ou8b98+17ddf/t8+fIl2K7Ex3LR/Nrv3bs3wbavW7fOvpf0vCL92ov2AU8//bTvyy+/TPL4OrE//vjDlzt3bvu9oPf+W2+9Zbd/xowZ6X5NgkGYBzwutZ2NdhQVKlTwzZ0717d582bf+++/b3cuCueOe++911e6dGl7gLB8+XLfVVdd5atfv77/9hMnTvhKlSrlmzVrlu+7776z/z958mREnycARBsdZAYT5s+dO+crVqyY7+WXX/Zfd+DAAV+OHDl8EyZMsJd18Kd9+LJly/z3+fbbb32ZMmXy/fXXXyHb5lD9nurVq/vuuOOOBNcFc8Dr1vYrzD/00EMpfpdmzpw5QfhRw7fCUSi/70L1+n/22Wc2FJw+fTqsr3+dOnVsh4Dj7NmzvhIlSviGDh2a5P1vueUWX+vWrRNcV7duXd8999wT9GfBze1PTI08efPm9Y0ePTpBoGzXrp0v3NK67antj7z22v/nP/+xr/2RI0ci/tonFsxn64knnvBdfvnlCa7r2LGjr3nz5iF7TZLCMHvA41q2bGmef/55c8MNNyR5+08//WS6detmhy9pWM/dd99tqlWr5h/Wo2F6H330kXnttddM48aNTa1atczHH39sf27x4sX2PidPnjRZsmQx1atXNzVq1DBZs2a11wEAUrd582azc+dOO6TVkT9/fjvEctGiRfayzjXkunbt2v776P6ZM2c2S5YsCdm2hOL3rFixwqxatcoOD0/s/vvvN4ULFzZ16tQxI0eOtMN6Qykj2z9u3Di7bVWrVjV9+/Y1x44dS/C4GhJ+0UUX+a9r3ry5OXTokPn555+jYvsD6btbw/T1fRyu1//UqVP2bx34vtV26rLzvk1M1wfe33kdnfsH81kIlfRsf2J6j5w+fdoUKlTovOHUmoqhqQ+9evUye/fujYpt13SNsmXLmtKlS5t27doleO967bXXsWmnTp1Mnjx5Ivrap1dq7/1QvCZJIcwDMU7zOqdOnWr++usv+6U+d+5c8+uvv5pmzZrZ27Vj0RdV4M5Fc900J8/ZueiAoUePHnaOleYOaeeZN29e154TAHiJDqAlMCg6l53bdK4D1EAKagoRzn1CtS0Z/T06yK5cubL9fgk0ePBg89lnn5lZs2aZDh06mPvuu8+89dZbIdv2jGz/bbfdZj755BP7HaggP3bsWHP77bcneNyk/j7ObW5vf6A9e/aY5557zjbOh/P11+85e/Zsiu/bxJJ7HQPf5851wT5mJLc/sSeffNIe9wQeI2mO9pgxY8ycOXPMSy+9ZObPn287VvS73Nx2hVs14Hz11Vf2vX7u3Dn7Gd2+fbvnXnt1OK1bt87cddddCa6PxGufXsm999UgePz48ZC8H5OSsDkPQMzRF7m+8EuVKmUPGNQKqAIv11xzjb1dO5Ds2bOfV8Qp8c5l4MCB5uGHH7Y/T5AHEGueeuope3CYkg0bNtjGTi9vf0bpoHT8+PHmmWeeOe+2wOs0iuvo0aPm5ZdftsXa3N7+wOCrHng1Tjdp0sT8/vvvpkKFCsYrr7+CgQqCValSxQwaNChkrz/O9+KLL9oCguoJDiwkp97iwPfSlVdead9Dup/eU26pV6+ePTkU5NXo9v7779vGHy9Rg6FeW40wCRStr72bCPNAHIR5DZdX77yGXqk6p4bhJW5pDoaGYwFALHr00UdtpeSUXHzxxel67GLFitnzXbt22RDp0GVNX3Lus3v37gQ/p0rqqmTu/Hwotj+jv2fSpEl26HHXrl1Tva+G7ypEaFqWqjtHw/YHbpv89ttvNgzoZxNXldbfR6Ll9T98+LDtmVSD+uTJk022bNlC9vonRcP1NcXOeR0cupzctur6lO4fzGchVNKz/Y5XXnnFhvnZs2fbwJja31W/S++lUAXKjGy7Q+8PNepou7z02qsRSo0oGmmSmovD8NqnV3LvfY1u1coBej0y+jdNCsPsgRimHpR+/frZ+fBaXkNfSL179zYdO3a0X1SiHYjm8Rw4cCCkOxcA8JIiRYrYXveUThrFlB7ly5e3+1MNDQ3sYdUcaacnTefaD2vqk+P777+3Q2Wd4BmK7c/o71GPWdu2be3vS43m1Wt5r2CCZKS2P3DbxAk1ety1a9cmCNoarq4DcfWCu739er9oepweQ43ziZccy+jrnxT9LtXRCXzfajt1ObAHOJCuD7y/8zo69w/msxAq6dl+GTZsmG0EmTFjRoLaBsnRMHbN2w4MyG5teyAN6dZ72tkuL7z2ztKGaoAKnAYTydc+vVJ774fib5qkdJfOAxB1Elfb1LI7uk5VegPdfffdvuuuu85fyVTLxkyaNMl/+8aNG+3PLVq0KIJbDwDe8Oeff9qlq5zl2fR/nQKXabv00kvtKiOBS0JpCSKtJLJmzRpbkTmppelq1KjhW7JkiW/hwoV2+bFwLU2X0u/RMlzaft0eaNOmTbbquqqvJ6Zl00aMGGGXINP93nnnHbtMk5bxc3v7tZzb4MGD7WotWtVFf4OLL77Yd80115y3NF2zZs18q1atsstJFSlSJGxL06Vl+/VdrorwV1xxhX0ugctyabvD+fprKS1VOx81apStxK/jB72Pnar/Xbp08T311FMJlqbLmjWr75VXXrFLuw0cODDJpelS+yyESlq3X9umVQJ0TBT4OjufbZ0/9thj9vhI76XZs2f7atasaf+GWvnHzW3X/mjmzJm+33//3bdixQpfp06d7JLEWgLNC6+9o0GDBrYKfGKRfO2d3+fs23VMrOVI9X/t/0XbrueQeGm6xx9/3L73tcRhUkvTpfSapAdhHvC41HY2Wo5HS2VoaTrtaLR0iXbu+qIPXJquTJkyvu+//94e7NSrV8+eAADn0/JI2t8mPmk/m3jN78BloZ555hnfRRddZA/mmjRp4vvll1/OW2dZoU4NBFoSrUePHgkaCEIltd+jA+XEz0cUbLWMqZZTSkwBX8vV6THz5Mlj11F/7733krxvpLd/69atNrgXKlTIvvZa110H3IHrzMuWLVt8LVu29OXKlcuuMf/oo48mWPrNre3XeVLvN51033C//lovW8cICrlaWmvx4sX+23SMoc9D4mXzLrnkEnt/HX988803CW4P5rMQSmnZ/rJlyyb5OqtRQo4dO2YbfNTQo0YK3V9LAGckjIVq2x9++GH/ffXatmrVyrdy5UrPvPaBnUlaBjmxSL/2c5P53DnbrHM9h8Q/o8+hnq8aDAO/A4J5TdIjk/5Jf78+ALep6EejRo3Ou17L0Y0aNcoWsVPl3u+++87OydO8eRUCeuSRR0ymTJnsfU+cOGHn+02YMMEObdJSGu+88w7D7AEAAIAoRZgHAAAAAMBjKIAHAAAAAIDHEOYBAAAAAPAYwjwAAAAAAB5DmAcAAAAAwGMI8wAAAAAAeAxhHgAAAAAAjyHMAwAAAADgMYR5AAAAII6UK1fOvP76625vRlQbNWqUKVCggP/yoEGDTPXq1V3dJiAxwjwAAADgYddee63JlCmTefHFF8+7rXXr1vY2hVHHsmXLzN13323c8vPPP5tbbrnFFClSxOTIkcNccsklZsCAAebYsWNR07jRsWNH8+uvv7qyPUCwCPMAAACAx5UuXdr2Jgf666+/zJw5c0zx4sUTXK8QnTt3buOGxYsXm7p165pTp06Zb775xgbmF154wW77ddddZ6+PBrly5TJFixZ1ezOAFBHmAQAAgAz64IMPTIkSJcy5c+cSXN+uXTtzxx13+C+/++67pkKFCiZ79uzm0ksvNWPHjk1wf/Wif/jhh+aGG26wgbtSpUpm6tSpqf7+66+/3uzZs8f8+OOP/utGjx5tmjVrdl4oDeyJ9vl8tte+TJkytpdcz+HBBx/03/fkyZPmscceMyVLljR58uSxQXzevHn+2//880/Tpk0bU7BgQXv75ZdfbqZPn57kNup33XnnnaZy5crmyy+/NHXq1DFly5Y1N998s5k2bZpZtGiR+c9//mPvu2XLFvtarFq1yv/zBw4csNc5v//s2bP28cqXL2/Dt17PN954I8Hv7N69u2nfvr155ZVXbKPGhRdeaO6//35z+vRp/6gGPYdHHnnEPrZOSQ2zT4r+TnouOXPmNJdddpl55513Uv07AaFEmAcAAAAySIF07969Zu7cuf7r9u3bZ2bMmGE6d+5sL0+ePNk89NBD5tFHHzXr1q0z99xzj+nRo0eCn5Fnn33WDkNfs2aNadWqlf15PVZK1Dig+3388cf+6xRIAxsSkvLFF1/YAP3++++bTZs2mSlTppgrrrjCf3vv3r1tyJ44caLdHj3PFi1a2PuKgrEC/4IFC8zatWvNSy+9ZC644IIkf5eC+fr1602fPn1M5swJY0i1atVM06ZNzYQJE0yw1HBSqlQp8/nnn9vH1VD9fv36mc8++yzB/fT6/v777/ZcDRx6XZxRDGpU0GMMHjzY7Nixw56CMW7cOPv7NKpgw4YNZsiQIeaZZ56xjw9ECmEeAAAAyCD1TLds2dKMHz/ef92kSZNM4cKFTaNGjexl9Q6rp/i+++6z88QVam+88UZ7fSDd59ZbbzUVK1a0IfHIkSNm6dKlqW6DgruC7NGjR224PnjwoO2xT8nWrVtNsWLFbJBW77x6y3v27Om/TY0DCstXX321HVGgXvoGDRr4Gw10n3//+9+2AeDiiy+2v++aa65J8nc5c9DVm50UXZ+WeerZsmWzDR+1a9e2vfNqzFDjSOIwr7/N22+/bXvPtX2qI6DpB1KoUCGTJUsWkzdvXvs66BSMgQMHmldffdX+/fS7da7efTWKAJFCmAcAAABCQGFSPd3qqXZ6bzt16uTvhVYProJvIF3W9YGuvPJK//81dD1fvnxm9+7dqf5+9W5rWL4aEUaOHGm6dOlismbNmuLPqKf9+PHjNogrxGv0wJkzZ+xt6mnXUHY1PKi33TnNnz/f9nSLhuQ///zz9nko4Kr3PjUabp/SCIO0GD58uKlVq5atA6Bt03QHNTAE0tB/BXaHhtsH83omR40lev4a4h/4uuh1cF4XIBJS/nQDAAAACIrmjiuoqrDbv/71L/PDDz/454CnhXqcA2ked+K5+Cn1zivgath5ML35Kpz3yy+/mNmzZ5tZs2bZUQMvv/yyDewaEaAQvGLFigRhWJyh9HfddZdp3ry5fc7fffedGTp0qO2xfuCBB877XWpoEDVe1KhR47zbdb0aDsRpAAkM/s48d4eG/mukgH5fvXr1bO+6tn3JkiUhez2TotdFRowYYWsIBEr8OgHhRM88AAAAEAIqhKbh1uqR19xvFWSrWbNmgmHkgQXqRJerVKkSsm247bbbbI961apVg35cFY9TQ8Sbb75pi8tpjrweQ4FbPfPqxdaQ/8BT4HB0NQjce++9dv656gEo5CZFj6eh7mrgSBymV69ebRsUNMVA1NMugXPYA4vhOa9d/fr1bQOEHlvblZ6ecY0G0PMM1kUXXWQLBf7xxx/nvS4acg9ECj3zAAAAQAiH2mtettZSv/322xPc9vjjj9vCdgqemqOuCu4KwAqxoaL54QrAiXujk6NCcAqy6mFW9fxPPvnEhntVmVfldz2frl272t5vbfc///xj55trKoDmnj/88MO2VoB61Pfv32+LzCU3J96p1K8K+x06dDB9+/a1jQLqSVcjgHr4VRRQtA1XXXWVefHFF21AVoNC//79z+vpHzNmjJk5c6a9j1YGWLZsWZoDtar7q8aApkSoor/qHKRGc/U1xSB//vy2IKCmVixfvty+BqqFAEQCPfMAAABAiDRu3NgWVdPQdfWSB9ISaVo6TQXvNI9bxdJUSE7Lo4WSllTTXPtg76uedM15V0BXw4IaGRTkRdunMK+wrZEGeg4KzCqWJ2oIUEV7BXiFWoX6lJZo0+/RWvMajq5GADUaqIFDS/jp9wYOU9e8f83f15x4NRpoTnogBX+NhOjYsaNtjNBqAuqlTytVstdSeCrw54wISI2mF6hhQq+Piv81bNjQNozQM49IyuRLqQIFAAAAAISJhturkJx61zVP35lXDyB1hHkAAAAArgb6t956yxawUwE/AMEhzAMAAAAA4DHMmQcAAAAAwGMI8wAAAAAAeAxhHgAAAAAAjyHMAwAAAADgMYR5AAAAAAA8hjAPAAAAAIDHEOYBAAAAAPAYwjwAAAAAAB5DmAcAAAAAwHjL/wP+vkiscMV0gAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAIACAYAAADOjTygAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoVFJREFUeJzt3QncVOP///FP+6ZVpUUqCiValZIlpVULfQlpQ9ZsWQuVUGT52rJFWrQgSpGopER7KhRCqWjRvu/zf7yv7//Mb+67e79nn9fz8ZimMzP3zJkz23mf67o+Vw6fz+czAAAAAAAQM3JGegUAAAAAAEDmEOYBAAAAAIgxhHkAAAAAAGIMYR4AAAAAgBhDmAcAAAAAIMYQ5gEAAAAAiDGEeQAAAAAAYgxhHgAAAACAGEOYBwAAAAAgxhDmAQAAAACIMYR5IIEMHTrUKlWqZPnz57cGDRrYwoUL/df9+uuvduGFF9qpp55qTz31VETXEwAAAEDaCPNAgvjggw+sd+/e1r9/f1u6dKnVrFnTWrRoYVu2bHHX9+rVy2644Qb79NNP3en777+P9CoDAAAASAVhHkgQL774ovXs2dN69Ohh1atXtzfffNMKFixow4cPd9fv2LHD6tata+edd56VK1fOdu7cGelVBgAAAJAKwjyQAA4fPmxLliyxZs2a+S/LmTOnW543b55bHjhwoFtWwNd1arUHAAAAEJ1yR3oFAITe1q1b7dixY3bKKackuVzLv/zyi/t/69at7d9//7Xdu3dbqVKleFkAAACAKEbLPAC/fPnyEeQBAACAGECYBxJAyZIlLVeuXLZ58+Ykl2u5TJkyEVsvAAAAAFlDmAcSQN68eV1xu5kzZ/ovO378uFtu2LBhRNcNAAAAQOYxZh5IEJqWrlu3blavXj2rX7++vfTSS7Zv3z5X3R4AAABAbCHMAwmiU6dOrsBdv379bNOmTVarVi2bNm3aCUXxAAAAAES/HD6fzxfplQAAAAAAABnHmHkAAAAAAGIMYR4AAAAAgBhDmAcAAAAAIMYQ5gEAAAAAiDGEeQAAAAAAYgxhHgAAAACAGEOYBwAAAAAgxhDmAQAAAACIMYR5AAAAAABiDGEeAAAAAIAYQ5gHAAAAACDG5I70CgAAAETa8ePH7Z9//rHChQtbjhw5Ir06AIAE5vP5bM+ePVauXDnLmTP19nfCPAAASHgK8hUqVEj47QAAiB7r16+3U089NdXrCfNAgh/189ASBSCRqUXe23EqUqRIpFcHAJDAdu/e7Q4we79NqSHMAwns6NGjNnXqVGvdurXlyZMn0qsDABHjHdBUkCfMAwCiQXqNbRTAAwAAAAAgxhDmAQAAAACIMYR5AAAAAABiDGEeAAAAAIAYQ5gHAAAAACDGEOYBAAAAAIgxhHkAAAAAAGIMYR4AAAAAgBhDmAcAAAAAIMYQ5gEAAAAAiDGEeQAAAAAAYgxhHgAAAACAGEOYBwAAYTNnzhxr27atlStXznLkyGGTJk1K92+++eYbq1OnjuXLl8+qVKliI0aMOOE2Q4cOtUqVKln+/PmtQYMGtnDhwhA9AwAAogNhHgAAhM2+ffusZs2aLnxnxJo1a6xNmzbWpEkTW7Zsmd177712880325dffum/zQcffGC9e/e2/v3729KlS939t2jRwrZs2RLCZwIAQGTl8Pl8vgivA4AIOXLkiE2dOtVat25tefLk4XUAEFZqmZ84caJ16NAh1ds8/PDD9vnnn9tPP/3kv+zaa6+1nTt32rRp09yyWuLPP/98e+2119zy8ePHrUKFCnbXXXfZI488kqF12b17txUtWtR27dplRYoUyfZzAwDEt6NHj9qgQYNs7ty51rhxY+vbt6/lzp07KPed0d+k4DwaAABACMybN8+aNWuW5DK1uquFXg4fPmxLliyxPn36+K/PmTOn+xv9bWoOHTrkToE7TgAAZJSC/IABA0xt48uXL3fn6iEWTnSzBwAAUWvTpk12yimnJLlMywrfBw4csK1bt9qxY8dSvI3+NjWDBw92rR7eSS35AAAcPXrUBg4caM2bN3fnWk6JWuQV4MuXL2833nijbd++PdXbhgphHgAAJBy15Kv7ondav359pFcJABBFLe7Tp09351pOibrWqyeYhoqp+GqJEiXcMK9wops9AACIWmXKlLHNmzcnuUzLGkNYoEABy5UrlzuldBv9bWpUGV8nAABSanEXnWs5JRojLxrqVapUKXvwwQctb968Fk6EeQAAELUaNmzoCnUGUmuJLhftONWtW9dmzpzpL6SnlhEt9+rVKyLrDACIXY0bN7YZM2a4IK9CrVpOTt3pVeyuX79+FkmEeQAAEDZ79+6133//PcnUc5pyTt0TTzvtNNf9/e+//7ZRo0a562+77TZXpf6hhx5yYxK//vpr+/DDD12Fe4+mpevWrZvVq1fP6tevby+99JKbAq9Hjx68sgCATPFa3AOr1AfauHGjjRs3zh1APv300y2SCPMAACBsFi9e7OaMDwziojA+YsQIt5O0bt06//WVK1d2wf2+++6zl19+2U499VR75513XEV7T6dOnezff/91LSQqelerVi03bV3yongAAKQnrRZ3/caMHj3aFWD99ttv3W+UWu8jhXnmgQTGPPMA8D/MMw8A8elokOaDVy2WkSNHuiCvCvY33HCDK3wXCswzDwAAAABIaIMC5oPXWHjJ7Fj3LVu2uOFfCvLlypULaZDPDKamAwAAAAAkdHX6tIK8WuT379/vgnyXLl2iIsgLYR4AAAAAEJcaN27sH9eeWnX6tCxcuNAF+bJly0ZNi7yHAngAAAAAgISsTp+eVq1aWcGCBd2UqAUKFLBoQpgHAAAAAMSl3FmYD37Pnj120kknuZb8XLly2WWXXWbRiG72AAAAAACY2bZt2+ztt9+2KVOm+MfaRyvCPAAAAAAg4W3bts0Vu9u7d6/9/fffdujQoajeJoR5AAAAAEBC2759uwvy6mJfunRp69q1a1QVu0sJYR4AAAAAkLC2BwT5UqVKuSBfqFAhi3aEeQAAAABAQtqxY4cL8rt377aSJUvGTJAXwjwAAAAAICH9+++/boy8gny3bt1cFftYwdR0AAAAAICEdOaZZ9p1111np5xySkwFeSHMAwAAAAASxq5du9y0c8WKFXPLVapUsVhEN3sAAAAAQMIE+REjRriTxsvHMsI8AAAAACDu7d692xW727lzp+XMmdNy5cplsYwwDwAAAACI+yA/4v+3xhcvXtwVuytSpIjFMsI8AAAAACBu7dmzx7XIK8hrnLyCfNGiRS3WEeYBAAAAAHEd5Ldv3x5XQV4I81n0xhtv2Hnnnee6ZujUsGFD++KLL/zXv/3223bppZe663LkyOHGZSRXqVIld13g6Zlnnklym2HDhlnFihWtdu3atmDBgqyuLgBEnL7f9D137733+i/T92Ty78Hbbrstyd9NnjzZTRtz1lln2WeffRaBNQcAALEqZ86c7qQAryDvVbCPB0xNl0Wnnnqq2zGtWrWqm9ZAR3vat29vP/zwg51zzjm2f/9+a9mypTv16dMn1fsZOHCg9ezZ079cuHBh///XrVtnQ4YMsfHjx9vff/9tPXr0sJUrV2Z1lQEgYhYtWmRvvfWWOwianL4D9V3oKViwoP//hw4dsjvvvNPee+8991174403WvPmzS1v3rxhW3cAABC7ChUq5EL84cOH4yrIC2E+i9q2bZtk+emnn3at9fPnz3dh3mt5+uabb9K8H4X3MmXKpFqkQW847fzqNgcOHMjq6gJAxOzdu9c6d+7seho99dRTJ1yv8J7a96DCvCrN1qpVyy3nzp3bXUaYBwAgfh09etQGDRpkc+fOtcaNG1vfvn3dPkBGb7Nv3z5bu3aty2VeoNcp3tDNPgiOHTvmWs/1plF3+8xQ6/7JJ5/sutE/99xz7k3pqVGjhgvy6hKiN2JKO8EAEO3Ust6mTRtr1qxZitePGTPGSpYs6b7z1JNJPZs8GqqkXklly5a1cuXK2e23356kBxMAAIg/CukDBgyw6dOnu3MtZ/Q2+/btc72mJ0yYYCtWrLB4Rst8Nvz4448uvB88eNBOOukkmzhxolWvXj3Df3/33XdbnTp1rESJEvb999+7ndiNGzfaiy++6L/Nu+++67raq+WqQIEC2VldAAg7HehcunSp62afkuuvv97VBVFQ1w/uww8/bL/++qt98skn/tv079/f9XbSeDeCPAAA8U+t7RpeJzrXckZus2/fPhs1apT9+++/bp+hfPnyFs8I89mgYkzLli2zXbt2uSM/Gosxe/bsDAf63r17+/+vFnh1G7311ltt8ODBli9fPv91arkHgFizfv16u+eee9wR8/z586d4m1tuucX//3PPPde1wDdt2tT++OMPO+OMM/zXxUvVWQAAkD51m58xY4YL6SqOq+X0bnPhhRfa6NGjbcuWLa6hVdks3nMUYT4bFL6rVKni/l+3bl3X8vTyyy+7Ik9Z0aBBA9fNXuM7dKAAAGLZkiVL3A+qeiAFDkuaM2eOvfbaa/7x8Mm/B+X3339PEuYBAEDi0Ph3CRwPn9ZtLrzwQitdurRt3rw5YYK8EOaD6Pjx427nNKvUyq9upHojAkCsUwu7hiMF0vj3s88+23WnTx7kve9BUQs9AABITCpk169fvwzd5vDhw27Wm02bNvkr16sWTyIgzGeRxre3atXKTjvtNNuzZ4+NHTvWVa7/8ssv3fV6M+mk1iXRDq3Gbej2GiM/b948N298kyZN3OVavu++++yGG26w4sWLB+8VBoAI0XebitoF0o+sjpTrcnWl13dn69at3WUaM6/vwYsvvjjFKewAAACSy5Mnj+strUyWSEFeCPNZpK6jXbt2dQXrNJZTO54K8pdffrm7/s0337QnnnjCf3vtnIqOGnXv3t2NiVdhKFVeVGt+5cqV3U5s4Dh6AIj3oUoa6/bSSy+5gjUVKlSwjh072mOPPRbpVQMAADEiR44cdtlll7mheupin0hy+LwSgAASzpEjR2zq1KmuZVRHNQEgUe3evdsdnFdRW02JCACIXppNbPbs2S7Ex+M+bEZ/k5hnHgAAAAAQFir4PXDgQGvevLk713Jmg/z7779v8+fPt08//dQSGd3sAQAAAABhMWjQIDfUWB3ENdxO0it259Hw5DFjxtjff/9tBQoUSHHKukRCyzwAAAAAICw0lZw30lvnWs5okFeL/IYNG1yQ79q1q5UpU8YSGWEeAAAAABAWak1X0TrReUZa170WeQX5/PnzW5cuXRI+yAvd7AEAAAAAYdG3b193rhZ5BXlvOS2ffPKJrV+/3h/ky5YtG4Y1jX6EeQAAAABAeAJo7twZHiMfOM23pga/+uqrrVy5ciFbt1hDmAcAAAAARK3y5ctbr169LFeuXJFelajCmPkY4xWLAAAAAIB4dOTIEfvggw9c1XoPQf5EhPkYsnXrVlu5ciWBHkBU0g/ur7/+GunVAAAAMR7kx40bZ7/88ot9+OGHmZ6HPpEQ5mOICj6oguPPP/9MoAcQdUH+hx9+sGLFikV6VRADhg4dapUqVXK/aw0aNLCFCxemettLL73UVTtOfmrTpo3/Nt27dz/h+pYtW4bp2QAAghnkx48fb2vWrLG8efPaf/7zHzfGHikjzMeQk046yS688EK300ygBxBtQf7888+3U045JdKrgyinbpO9e/e2/v3729KlS61mzZrWokULV9gotQrGGzdu9J9++ukn19VSRZACKbwH3k6tOgCA2Avyf/75p+XJk8c6d+5sFSpUiPRqRTXCfIwh0AOIJgR5ZNaLL75oPXv2tB49elj16tXtzTfftIIFC9rw4cNTvH2JEiXcXMLeafr06e72ycN8vnz5ktyuePHivDgAEGLqAj9w4EBr3ry5O/e6xKd2eVr3o4O9gUH+tNNO4/VLB30WYjjQf/fdd275nHPOcV0KASCcCPLIrMOHD9uSJUusT58+/sty5sxpzZo1s3nz5mXoPt5991279tprrVChQkku/+abb6x06dIuxF922WX21FNP2cknn5zq/Rw6dMidPLt37+YFBYBMGjRokA0YMMANAZ4xY4a7TNPOpXZ5ajTn/B9//OGC/PXXX28VK1bktcgAWuZjFC30ACKJII+sFnI9duzYCcMxtLxp06Z0/15j69XN/uabbz6hi/2oUaNs5syZ9uyzz9rs2bOtVatW7rFSM3jwYCtatKj/RFdOAMg8hXBvti2dazmty1Ojhsqzzz7bBXnVVEHGEOZjGIEeQCQQ5BEpapU/99xzrX79+kkuV0t9u3bt3HUdOnSwzz77zBYtWuRa61Oj3gG7du3yn9avXx+GZwAA8aVx48b+HsI613Jalwc6fvy4P/CrRb5Tp04E+Uyim32Mo8s9gHAiyCM7SpYs6YrXbd68OcnlWtY497Ts27fPFUbS2Mv0nH766e6xfv/9d2vatGmKt9EYe50AAFnXt29fd66WdwV2bzm1yz3qOfXRRx+572p9TzNkOGsI83GAQA8gHAjyyC5NM1S3bl3XHV4t6F7LjJZ79eqV5t9qp09j3G+44YZ0H0fTuG7bts3Kli3LiwYAIaRp41IaC5/a5V6QnzBhgv3666/uoGvt2rXTrHGC1NHNPk7Q5R5AKBHkESyalm7YsGE2cuRIW7Vqld1+++2u1V3V7aVr165JCuQFdrHXAYDkO3x79+61Bx980ObPn29r1651Bwbat29vVapUcVPeAQCih4L8xx9/bL/88ovrqaVhUgT5rKNlPo7QQg8gFAjyCCaNifz3339di42K3tWqVcumTZvmL4q3bt06V+E+kFpv1FXzq6++OuH+tDO4YsUKd3Bg586dVq5cOTcV0pNPPkk3egCIwiCvA7lekNeBV2RdDp9XdQBxQ60UmraufPnyTFuHNB05csSmTp1qrVu3doVHgOQI8kgUmppOVe1VDK9IkSKRXh0AiCsaUqUgv3LlShfkdWC3atWqkV6tmP9Nopt9HKLLPYBgIMgDAIBg+Ouvv1yQV8+ra665hiAfJHSzj1N0uQeQHQR5AAAQLJUrV3b1TAoUKGBnnnkmGzZIaJmPY7TQA8gKgjwAAAhG1/oDBw74l1Uj5ayzzmLDBhFhPs4R6AFkBkEeAAAkd/ToURs4cKArMKpzLacX5D/99FN77733XD0vhAbd7BMAXe4BZARBHgAApGTQoEE2YMAAU+30GTNmuMtSm0deQX7y5MluppEcOXLYxo0bGSMfIrTMJwha6AGkhSAPAABSo+lBvUnQdK7llOi6KVOm2PLly12Q/89//kOQDyHCfAIh0ANICUEeAACkpXHjxi6ci861nFqQX7ZsmbtNx44drXr16mzYEKKbfYKhyz2AQAR5AACQnr59+7pztcgryHvLyYP8Dz/84IL8VVddZeeccw4bNsQI8wmIQA9ACPIAACAjcufOneoYedm/f7+tWbPGBfkrr7zSatSowYYNA8J8giLQA4mNIA8AAIKlUKFC1r17d7d/Qdf68GHMfAJjDD2QmAjyAAAgu9S1XpXqPUWLFiXIhxlhPsER6IHEQpAHAADBCPJffPGFDRs2zFauXMkGjRDCPAj0QIIgyAMAgGAE+S+//NIWLVrk/n/o0CE2aoQQ5uHQQg/EN4I8AAAIVpBfsGCBW27btq3Vrl2bDRshhHn4EeiB+ESQBwAAwQjyX331lT/IX3HFFVanTh02bAQR5pEEgR6ILwR5AACQUUePHrWBAwda8+bN3bmWvSA/ffp0mz9/vj/I161blw0bYUxNhxMwbR0QHwjyAAAgMwYNGmQDBgxw4X3GjBnuMm9++cOHD7vzNm3aEOSjBGEeKSLQJ4a1a9f6z6tWrRrp1UEQEeQBAEBmzZ071wV50bmWJUeOHC7E16hRwypVqsSGjRJ0s0eq6HIf3/78809r2LCh+7/OtYz4QJAHAABZ0bhxYxfcRecXXnihHTt2zL9MkI8uhHmkiUAfPRS2R44cGbTQ/e2339r+/fvd/3Wu5WhbR2QeQR4AAGRV3759XTf7yy+/3Pr37+8u+/jjj/2t9YgudLNHuuhyH3kKx+eee64L3QULFrQff/zRTj/99Gzd50UXXeTuS3Su5WhbR2QOQR4AAGRH7ty53Rj5b775xmbPnu0uq1Chgr+1HtGFlnlkCC30kRWKVnQF7Xnz5rn/6zy7wTsU64iMI8gDAIBgUIj3grxa6L1hmYg+hHlkGIE+coLdiu7xxj0FY/xTqNYR6SPIAwCAYJgzZ45rlZdmzZpZo0aN2LBRjG72yBS63EeGWs3VbV2t3QrJ0dh9PRbWMR4R5AEAQDB89913NmvWLPf/pk2buuJ3iG6EeWQagT4yFI4zEpBVcfTff/+1jRs3utM///zjznft2mVHjhyxo0ePutPOnTvtww8/dK3yU6ZMsbx587pxUnny5LFChQpZ2bJlk5zKlCnjbhOMdURwEOQBAECwlCtXzu0LXnzxxa6qPaJfDh+lCZFFe/fudUfwypcvb+eccw6FMcLk+PHjtnr1aluyZIn99ttvSQK7Tps3b/ZPISIqWFKqVCkrXry4C+peYN+zZ4/98ssv7jbnn3++P+TrpOs2bdrk/h+oZMmSLtjry94L+ZUrV7Y6deq44nfphX0ED0EeCK7du3db0aJF3YHPIkWKsHkBJCQ19hQrVizSq5HwdmfwN4kwj2wh0Ic+uCuwK7h7px9++MGFbVFruYJ1YLhO/v/SpUu78J4StdRPnTrVWrdufcJt9Nhbt271HyRIftDA+//69evdbfX3CvR169b1n7ScL1++EG+lxEOQB4KPMA8gES1atMj10lTDD2LvN4lu9sgWutwHlwLy119/nSS464CJqPu6ArLm/9S5WsNPPvlkC5WcOXO6AwE61axZM9XbqXL98uXL/es8f/58Gz58uOsdoIBfo0YNf7hXt61q1arRiyMbCPIAACAYtM/25ZdfuuGVt99+uztHbCHMI9sI9FmnUS4rVqywyZMnu3HrOjoqZ5xxhgu/V1xxhT+4q5t8NFLlek1ZEjhtyYEDB9zz8gK+nteIESNct309t7Zt21q7du3ceKzUeg2Eyp9//hmzRfoI8gAAIBgWLFjggrxoX5MgH5voZo+goct9xhw6dMjN3ekF+HXr1lnhwoWtZcuWLuDqXGPTwyGtbvbBpoCvCqne81YvBI3JatWqlf95h3qMloK8uv6rN4EOQqj6fqwEeoI8EFp0sweQKBYuXGhffPGFf1k1sNTAot6fqq2EyKObPcKOFvrUbdu2zYVmBVkdBdWY94oVK1r79u1dK/Ull1wS98XjChQo4A4a6PTGG2/Y0qVL3fbQady4cf7qqQr2OqmwXrCpRV5BXnSu5VgI8wR5AAAQiiD/xBNPuJ6iM2bMcMv9+vVjQ8eQnJFeAcRnoFf4+Pnnn92XQ6JSUTh9MV5zzTWuGF3Xrl1dK/zDDz/sxpivWbPGXnnlFbv88svjPsgnpwr76tKlHxDVBfjrr7/s5ZdfdtvhoYcecgFbBzjef/9916IfLOparxZ50bmWox1BHgAABMPKlSv9QV7762qR9/bVdT537lw2dIwhzCPoEj3Qq8L7oEGDrEqVKi6o//TTT/bss8+6buUan/Too4/aeeedRxG4AKeddprdcccd7gdGFfTHjBnjCvB16dLFTX149913uy7x2aWDBLofjd+PhS72BHkAABAs2u859dRTrVGjRta0aVPXtV4NLKJz5paPPYyZR8jE6hj6rBZIU0XQl156yT7++GM3/lwt8j179nRfmNH63MM5Zj4rVq9ebe+8844L31u2bHHd8O+55x43PCFXrlxxXfiOIA+EF2PmASQC7ftpaKP2TVWYWA1QapFnzHx0YZ55RIVYC/SZLZB2+PBhmzBhgusirjFIqtR+1113Wbdu3UJezC0Rwnzgdv7000/ddtb7SfUGevXqZTfddFOGqvzHWuE7gjwQfoR5APFIwxm1/6Nes4i/3yS62SOkYq3LfUoF0lILwW+++aYr0ta5c2f3IVOF9t9++821HMdCkI8lGkt/9dVXuyPHixcvdi30qriqrmKPPPKI7dixIyivazQgyAMAgGAFeRUaVg0nNWwg/hDmEXKxFOjTK5CmonYffvih62WgMd5NmjRxrbzTp093c8JrnDdCS4XzRo0a5YoJ6sDJq6++6npEDBkyJNViebFS+I4gDwAAgmHZsmUuyMv5558fklmCEHkkD4RFrAT6tAqkKbDXr1/fOnXqZFWrVnVfkqq2XqNGjYiuc6IqU6aMG+f1+++/27XXXusKC+p10Rh7jQGLtcJ3BHkkkqFDh1qlSpUsf/781qBBAzdMKTX63GqIVuBJfxdIvymaTkkzh2gazGbNmrmaGwCQiDRrkoYnSr169axVq1ZRP9QVWUOYR9jEUqDXmHcv8Klbt3YMmzdv7rp7z5492z7//HNXkR6Rp533119/3VatWuVa3FV0UOPjP/nkkyTvseSvazQhyCORfPDBB9a7d2/r37+/LV261GrWrGktWrRwRS5To6FMminEO2k6y0DqmaOpPjX8SbOGFCpUyN3nwYMHw/CMACB6rFixwiZNmuTvzai6SAT5+EWYR1jFSqAXjX9XRXp1TdLOo74YVXxN47URfTQV4Lhx42zJkiVuqruOHTvaBRdcYLNmzbJoRpBHonnxxRfdQbcePXpY9erVXQDX8Jfhw4en+jfaEVVvHO90yimn+K/T74hmEnnsscfcTBc60KqhOJoO1NuhBYBEoOl9ve+9OnXqWJs2bQjycY4wj7CL9kC/Z88eVyldO5mabk47mDrKqZ1EjmxGP/14ffnllzZz5kz33rrsssvcUek1a9ZYtCHII9FoZgodcFNvJ49qjWh53rx5ac6MolksKlSo4L6L9dvh0Wd706ZNSe5TFYDVfT+t+zx06JCrFhx4AoBYVrJkSfddWLt2bVfLif3W+EeYR0REa6BXtU+NgdcYzWeeeca1zqv1KLNzmiPyFOLV3VZTB65cudJ1vX/jjTdcEcNoQJBHorYaHTt2LEnLumhZgTwlZ511ljuoqvGfqlOiz3CjRo1sw4YN7nrv7zJznzJ48GAX+r2TDhQAQCwK3I/W92Pbtm0J8gmCMI+IiaZAr9b422+/3S6//HJXGV1F0h544IETiiwhtuiItLrb6/W84YYb3AwEeo3Xrl0b0fUiyAMZ17BhQ+vatavVqlXLLrnkElcPo1SpUvbWW29lazP26dPHzd/rndavX8/LAiDmqMHivffeS1IjhBb5xEGYhyV6oP/6669dq+3o0aNdhWW1zjN9R3wpXLiwG5erGQlU/V69LyLVSk+QR6J3AVVPp82bNye5XMsaC58RefLkcV1I9VkW7+8ye5/58uVzhfUCTwAQa0FePRB1MDKtWUEQvwjzSNhArzGYaqlt2rSpC+9qvdUyc8XHL40j0+vcuXNn91prhoLkVbFDiSCPRKcZQVRdWTUtPDqopmW1wGeEuunrc6yZLETf3wrtgfep8e8aZpPR+wSAWKNZfD7++GO336zCn40bN470KiECCPNIyECvCudqjR85cqS99tprbieQ1vjEoNY3dc/96quvXE0EtdJrOb333J9//uneLzrPCoI88D+alm7YsGHu86SdUQ1x2rdvn6tPIupSry7wnoEDB7rPqz57mspOQ2Z0EO7mm2/2dye999577amnnrLJkye7oK/7KFeunHXo0IHNDiDu/PLLL65FXgdDtT+rwqA0RiWm3JFeASB5oNf0b3LOOecEfcyPqhdrLLwCvMZeKsRH47zjCD2Nnf/pp5/c++G2225zP4qazspr7QukEKEfy/3797sptBQWMvO+IcgD/6dTp07277//Wr9+/VyBOo2FnzZtmr+A3bp165LslO7YscNNZafbFi9e3LXsf//9927GEc9DDz3kDgjccssttnPnTtdCpfuk7gmAePPrr7/aRx995IK8GiR00JIgn7hy+KKljDgQ0P1dgb58+fJBDfQaP3nVVVfZ4sWL7fnnn7c777wz4b/8jhw5YlOnTnVTt2kcaqJSq1/37t3d+0Hzs9arVy/J9WpB1PUezXbQrVu3DN03QR6IDeqar6r2KobH+HkA0ejo0aOuQUrfU9pH1n4tQT6xf5PoZo+E6HKvrpkKaGphnT17tt111118+cFPY+d1kEfdci+66CIbP358kq2jy9QiLzrXckYQ5AEAQLDkzp3bDTXSPi1BHkKYR9wH+g8//NB1uVSBJAW2Cy64IKjrivigIK8DPf/5z3/suuuus0cffdRf7V5d6tW1Xi3yGe1iT5AHAADBGiYaOCtImzZtaJSCQ5hH3AZ6BbHHH3/cjc+88sorbc6cOa7rPpCaAgUKuHHzQ4YMscGDB7v3zZ49e9x1CvDqWk+QBwAA4fLHH3/YSy+9lOUCvIhvhHnEZaDXuPuOHTva008/bc8884y9//77LqgB6VGNhgcffNA+++wz++abb9zUVpn5AaVFHgAABCvIa+jfwYMH7YcffmCj4gSEecRdoF+zZo01atTIVarXNEUPP/xw0KviI/6pKOD8+fNd17bzzz/fTWeYHoI8AAAIBjUkKMir6N1ZZ53FVJtIEWEecRXoVQVfwUtTiCmIXXHFFWFfV8SPatWq2cKFC91UWJrK7u233071tgR5AAAQDGqYGjdunAvyZ555pl199dWWK1cuNi5OQJhH3AR6tcSrKrnm3FywYEGSOYiBrNK81pq+7/bbb7dbb73VXnjhhRNuQ5AHAADBsHbtWhs7dqwL8lWrViXII025074aiM5ArxZ48eahV9jSFB1NmjSxTz75hPHxCPpUMK+88oqb7/OBBx6wAwcO2GOPPeauI8gDAIBgWb58uQvyVapUsWuuucbtgwCp4d2BmA/0q1evdhXrW7Vq5aahy5cvX6RXEXFIB42eeuopy58/v5slQcVobrvtNlu2bJkb2nHKKadEehUBAECMa9u2rZt+rkGDBgR5pIswj5gO9KpUr5Na5ceMGWN58uSJ9KohzqlFXoFeFe9XrVplQ4cOJcgDAIAs27Ztm5UoUcI1HOTMmdPt4wIZwZh5xCyNkX/22Wftoosusr59+3L0EmFz3XXXWc+ePd2QDoV5AACArFi/fr0rsDtlypQMT8EMeAjziElffPGFKwjSvn17mzhxom3evDlT89ADWeWNkX/yySftueeec13vdQIAAMiMDRs22Pvvv2+HDx+2nTt32rFjx4K2ATXufuDAga44tM61nNJliG10s0fM+frrr123+pYtW7pqn3nz5k2xKB4QbMmL3akYnsbOawx9gQIF7P777091rthvv/3W9SI5/fTTeWEAAEhwgUG+UqVKrtdfMIvdDRo0yAYMGOAaumbMmOG/PPll/fr1C9pjIvwI84gpmnJOhUEuueQS++ijj1yQT6vKPRAsqVWt1xh6BXoF+8KFC9stt9xyQpA/99xzbf/+/VawYEH78ccfCfQAACT4PoWC/KFDh6xixYouyAe77tPcuXP9PVZ1rmXv/8kvQ+yimz1i6ouvQ4cOVrNmTTdWOXnV+vTmoQeCHeQ96nJ/5513utOsWbOSXKcWeQV50bmWAQBAYvrnn39s9OjRLsifdtppdv311/sbp4KpcePG/oYtnWs5pcsQ22iZR0zQvN4K8up+pCCvFs6U0EKPYMvIPPL6QXzppZfs119/dbUcFi5c6G99V9d6vV+9lnktAwCAxLR79247cuSIC/KdO3cOSZAXFYcWtb4rtHvLqV2G2JTDR/MlopzeojfccIMrdKcvnzp16qT7N3v37nVd7suXL0+X+zTox2Tq1KnWunVrpvXLYpAPtH37dqtfv74bP//999+7bvfCmHkgNnawixYtart27bIiRYpEenUAxLE1a9ZYuXLlTuhlCmT2N4lu9oh6Q4YMcYXu3nvvvQwFeaHLPcId5EVzxE6ePNn++usv69Klix0/ftxdrlb6bt26MVYeAIAEtGnTJlet3lO5cmWCPIKCMI+o9tlnn1mfPn3s0UcftU6dOmXqbwn0CGeQ91SvXt0dfFKo79+/Py8CAAAJHuRHjRplI0aMSBLogWAgzCNqrVy50hUFadeunZsLMysI9AhnkPdcccUVNnjwYDf//AcffMCLAABAAtq8ebML8qr9pH3S/PnzR3qVEGcI84hKGnusEK/iIKr4mTNn1t+qBHqEM8h7HnroIXcwqkePHrZ06VJeBAAAEsiWLVv8QV7j41X/iTCPYCPMI+ocPXrUrrnmGtuxY4frquwVEcsOAj3CGeS9CvfvvPOOK8DYvn17d3QeAAAkRpAfOXKkm8mmbNmyBHmEDGEeUWfQoEH2zTff2IQJE4JaMIxAj3AFeY+q2k+aNMkdoOrataubmQEAAMSvrVu3uhZ5L8irIK72B4BQIMwjqixbtsyefPJJV/SuSZMmQb9/Aj3CFeQ9mh5x+PDh9tVXX9m7777LCwAAQBxTcC9UqJCVKVOGII+QY555RI3Dhw+7Obo1ndfixYstb968IXss5qH/n0SfZz7UQT7QTTfdZB999JH99NNPrhYEgOjCPPMAgmXfvn1uuF3BggXZqMgS5plHTHavV9DR1B2hDPJCCz3CGeTlxRdftKJFi9rNN99Md3sAAOLItm3bbMWKFf5ltcwT5BEOdLNH0P3555+u6IfOM9O9/umnn7a+fftanTp1wvKqEOgTV7iDvCjIqyDe9OnT3Xk4PlcAACD0QV6/zxMnTrSff/45W/elGjuajrl58+bu/ODBg/7l/v3724ABA1K8LqVl3RfiH93sEVQKGueee64r+qEjkj/++GO6RezUvV6hShYtWhTyVvnkErnLfSJ2s49EkA+klvkPP/wwU93ts/K5ApA5dLMHkJWplNWjdM+ePVaqVCnr1q2ba5XPKoVwBXYVzNX+6KWXXuqKQicvoJv8upSWdT/9+vXjRY1RdLNHRHz77bcucIjOtZxeq6Ja5FeuXBmW7vUpoYU+cUQ6yMsLL7yQbnf75J+X1D5XAAAgMjSFsn6rgxXkZe7cuf59A50vX748xX2F5NeltKz7Qvyjmz2C6qKLLvKPEdK5lr1Wxe7du7vzwECvYKWx8upeX7t27Yi9GgT6+BcNQT55d/thw4adcH1Kn5eUPlcAACCyQV6tpyVLlnTTz2Y3yEvjxo39PUR1XrNmzRR7jCa/LqVl3RfiX+5IrwDii7r+qguwWg4VOLSsL7vkrYq6XN3rFVjUtf3RRx+N9Kr7A7263EuidbmPZ9ES5D0tWrRwLfP333+/+3/FihX916XUCq+j/ck/VwAAIPwOHDjg9m137drlgrx+o7UPGQxq3BK1qiuMP/TQQzZkyBC33LBhQ7df+v33359wXUrL3n0hvjFmHiGX2njfZ555xh5//HE3Tr5WrVpR80ok0hj6RBgzH21B3qOj+TVq1HBH0qdMmeK/nPHxQOQ+k+o5ox30IkWK8DIASJG6sH/99de2atUqF+QLFy7MlkLEfpMI8wgLBZTAVkUVDNG5uiW98sorUfcqJEqgj/cwH61B3vPBBx/Ytddea3PmzEnSdT755wVA6BHmAWQm0KuHab58+dhoCAnCPKLagw8+aG+++ab98ccfVrp0aYtGiRDo4znMR3uQl+PHj7v1y58/v+sWF4/vMSBWEOYBpEato7Nnz7ZWrVrF3f4SohPV7BG11q9fb6+++qobLxytQV4oihe7YiHIS86cOd1wE41/C+xqDwAAoidUaYy89iu++OKLSK8OkATV7BF2mvdSYz8U5qMdgT72xEqQ9zRr1swuu+wyV6jm2LFjkV4dJJCdO3e6mRX69Onjhj7J0qVL3WcIAPB/QV7V64sXL26XXHIJmwVRhTCPsPLmk3/sscdipmAIgT52xFqQF3WtV+v8zz//bKNHj4706iBBrFixws4880x79tln7fnnn3fBXj755BMX7gEg0Wn+eAV5HewsVqyYK3angmRANCHMI6wU4k877TS79dZbY2rLE+ijXywGeY/W+T//+Y/169fPDh48GOnVQQLo3bu3mxp09erVrmaDR/UzVJAx1IYOHWqVKlVyj92gQQNbuHBhqrcdNmyYKwapVjGd1Jsl+e31XHRgLPDUsmXLkD8PAPEf5BXgCfKIVoR5hM38+fNt4sSJNnDgwJis/kmgj16xHOQ9Tz31lP3zzz/2+uuvR3pVkAA0JWhKB1VV8HPTpk0hn8VBBxP69+/vuvVresYWLVrYli1bUrz9N998Y9ddd53NmjXL5s2bZxUqVLDmzZufMBxA4X3jxo3+07hx40L6PADEb6X6Dz/80LZt2+YP8mqZB6IRYR5h+2J85JFH3Hzz119/fcxudQJ99ImHIC9nnXWW3Xjjjfb000+7qrlAKOmAqsaCJvfbb79ZqVKlQvrYL774ovXs2dN69Ohh1atXdzObFCxY0IYPH57i7ceMGWN33HGH1apVy84++2w3zl8zQcycOfOE51SmTBn/Sa34AJBZ6tmjqvXap1CQ57sE0Ywwj7CYNm2am9Jj8ODBlitXrpje6gT66BEvQd6jlsr9+/fbc889F+lVQZxr166d6yWl6Sm9ndd169bZww8/bB07dgzZ42pe5iVLlriu8oGzOmhZre4Zoc+I1rtEiRIntOBrhhQdGLv99ttdq1paDh065A5oBJ4AJHbDk6dcuXKu9xJBHtGOMI+wdSG+8MIL3XjMeECgj7x4C/JeF+e77rrLXn75ZYIFQuqFF16wvXv3uvB74MABV6G5SpUqrjCpeoeEytatW92sDck/s1rOaPd+HXDQjnbgAQF1sR81apRrrVdRP28+6LRmiNDBZXWh9U7qvg8gMe3bt88VaN6wYYP/Mh3kBKIdYR4ht3jxYjeP9gMPPBBXX4wE+siJxyDvueeee1wRvPfeey/Sq4I4pvA6ffp0mzJlir3yyivWq1cvmzp1qgvBhQoVsmilmR/Gjx/v6q8EFu679tprXW8DDeXq0KGDffbZZ64ugFrrU6Oq/RrS4p3Wr18fpmcBIJqot48OBqp30qeffuqG8QCxInekVwDxT62MlStXtrZt21q88QL9d99955bPOeecuDpgEY3iOch7rfOqbP/qq6+6gBXrw1IQ3Ro3buxO4VKyZEn3nt68eXOSy7Wsce5p0RR6CvMzZsyw8847L83bnn766e6xfv/9d2vatGmKt9EY+1gsxgog+EFeBTi1T9epUyc39Cc1R48etUGDBtncuXOtYcOGbp9PDVbe/3W5Dgboe65Ro0YnXK//6zv3oYcesiFDhpxwP7qub9++ljs3EQ0ZwzsFIaWKwqpcrB2weA0lBPrwifcgH9g6rx93tZTG40EwRIZa4DPq7rvvDsk65M2b1+rWreu6w6sFXbxidjp4lRrt9Kr7/5dffmn16tVL93HUVVZj5suWLRvU9QcQX0F+9OjR7mCi9uVU7E4HAdOiID9gwAA3vl69mzyB//fowGNK1+ty9RrSKfn9eH+jqWqBjCDMI6RUpVg7b6rSHc8I9KGXKEFeLrjgAqtfv77r1UKYR7D897//zdDt1EIUqjAvmpZOO80K5Xqfv/TSS268qqrbS9euXV0PFY1pF42B147t2LFj3dz03th6fe/qpLH/TzzxhCvcp9b9P/74w7V6qQaAprwDgORUK0RBXt8nGlqk7530gryoJT2wUF5W6O+XL1+e4v3oMj0GkFGEeYSMqg2/9dZbCTM/J4E+dBIpyAe2znfu3Nl++eUXNx0XkF1r1qyJio2obqz//vuvC+jakdaUc5rxxPtsa9xqYDfXN954w1XB1/CT5LM/qIVMvb5WrFhhI0eOtJ07d7rieJqH/sknn6QbPYAUqT6IF+S1n5rRKTnVDV6t59kJ9DpgWrNmTX/LfPLrwjn0CbEvhy+7h5eQ8P7880/79ttv7aKLLnLjFD2ffPKJaynR0cf0xjfGE7USaQy9WpaifQy9DrioK7dmGciTJ49Fo0QM8t60WXoPde/e3Y0VzshnDkDWaWo6FQZUMbwiRYqwKYE4pv0fFcpU3SPN6pFRjJlHtP0mEeaRLQoVqh6scUcFCxa0H3/80R8uNC3Qjh07bP78+Qm3lWMl0Ed7mE/UIB/YHVndADX+1yvUldZnDkjv/aTWarVE6f9pefHFFxNuYxLmgfimfR4VlovWfTIgK79JdLNHtqh1UKFCdK5lBYu//vrLFSoaNmxYQm5hutxnX6IHeenZs6cb56ypcq655po0P3NAevR50s6s938ASBSa8vX999+3ihUrWrNmzQj0iBuEeWSLuvmqddBrJdSyvPvuu671R2MjExWBPusI8v9TrVo1N3bu7bff9of51D5zQHpmzZqV4v8BIN6HrY0ZM8btW2zfvt0aNGjAUBrEjdQnUgQyQC2C6uY7YsQIf3dflWHQnJ3XX3+9C7SJzAv0+gH5+eefs10BNREQ5JO6+eab3bRd69evT/UzB2SWZhjZs2fPCZerqny8zz4CILGCvFrkNVwtf/78rmo9NTEQTwjzyDaFCVUC9UKFqgqrm33yysOJikCfcQT5E7Vv396N8VOhntQ+c0BmqfK7pmZKTpfpYCwAxEuLfGCQ1/SVQDwhzCPoJk+ebIULF7ZLLrmErfv/EejTR5BPmaZ1vPjii93nCghGQR0V01EvIbXMa9k7qWCpCmJmprIzAEQjTWc5duxY16tNQb5Lly5WtmzZSK8WEHSMmUfQTZkyxVq2bGl58+Zl6wZgDH3qCPJpa9eunT300EMufOlAGZCdg0Oq5KzTmWeeecL1uvyJJ55gAwOIaWvXrrV169a5mWBuuOEGK1euXKRXCQgJwjyC6p9//rFFixbZ3XffzZZNAYH+RAT59LVt29buvfdemz59ul111VV8tpBlKnynVvnLLrvMPv74YytRooT/Oh2AVaVndnoBxDodrOzQoYOVLFnSTRMMxCvCPIJK43pz5szp5phHygj0/4cgnzEaG3/OOee4rvaEeWSHN/xpzZo1VqFCBfd9DQDxQFNvqnu9ZlOSmjVrRnqVgJAjzCPoXew1ldbJJ5/Mlk0DgZ4gn5Wu9sOGDbNjx45Zrly5+HwhW9QCv3PnTlu4cKFt2bLFjh8/nuR6FYoCgFgK8uPGjbO9e/e6769En00JiYMwj6DRvNczZsywJ598kq2aAYkc6GmRz1pX+8GDB9v8+fPd+wbI7oHXzp07ux1fTdMU+N2j/xPmAcRSkB8/frzrcaThQjpQSZhHoiDMI2gU5A8ePOhaEJExiRjoCfJZU79+fVdlXF3tCfPIrvvvv9/NJz9o0CArWLAgGxRATDh69Kj73po7d641bNjQ7TMpvBcvXtz1XFuwYIHbH1VtEPVia9SokbuNbq8eSNm97KKLLrK+ffu6KWOBaJDDp3c7EAQ333yz+8L75Zdf2J6ZpNYxBXoVaQlnoNfRbE1F1bp1a8uTJ0/IH48gnz0KX/PmzbNVq1YF6RVBotKY0h9//NHVY8D/aHq+okWLuqn71FsBQPQZOHCgDRgwwIV1BepOnTpZ1apV3Vj5999/31WwDyXtn+nx+/XrF9LHAXZn8DeJyjcICh2xVPE7dQVG5iXCPPQE+exTrxcdLFu9enUQ7g2JrEWLFrZ48eJIrwYAZIoajbxW98AgP2bMmJAHedFjax2AaEEfEQSFwsXmzZvt8ssvZ4tmUTx3uSfIB0fTpk3de+Lbb791OzBAVrVp08YefPBBW7lypZ177rkn9MxhuBSAaKQiy+pGr+FBmnZOPQzHjh1rf/31V1geX7/BWgcgWhDmERRLlixx53Xr1mWLZkM8BnqCfPAULlzYzjrrLPd5U5d7IKt69uzp77KanL5zNPYUAKKNxquLWsfVBVnfV2eccYZVrlzZ/V8t5955KMfMA9GCMI+gULioVKkSU9IFQTwFeoJ88OmAmXfwDMiq5FPRAUC000HGf/75h/HqQADGzCMoFC5olQ+eeBhDT5APDX3Oli9f7ir6AgCQKEF+woQJNmLECDc8CMD/0DKPFP35559uXK66E6VX7VgtPEuXLrU+ffqwNYMollvoCfKhDfOaAlI7M+edd14IHwnxbt++fTZ79mxXNEoFpALdfffdEVsvAEge5D/++GNXAFZd3TWXPID/IcwjxSCvgkj79+93BUYCpy9KKeT//vvvtmfPHlrmQyAWAz1BPrRq167t3gPqDZM8zGfmIBwS2w8//OCmpNT3vEJ9iRIlbOvWre47v3Tp0oR5AFET5D/55BM3JatXwb5KlSqRXi0gatDNHidQGNAOnuhcy4Ehv3v37u5cy0Lxu9CKpS73BPnwFME788wzTxg3n9rnE0jJfffd56YS3bFjhxUoUMDmz5/vqkGr58fzzz/PRgMQcer5OXHiRNcTLXAqOgD/hzCPE6hVT60zonMtpxXyFSoqVqxI8bsED/QE+cgWwUvt8wmkZNmyZXb//fdbzpw53U7yoUOHrEKFCjZkyBAqNQOImiCvfR59T11zzTUEeSAFhHmcQN1z1bVeRUYCu9inFvIpfhce0RzoCfKRL4KX2ucTSInmldcOsqhbvcbNi6Z6Wr9+PRsNQERpOFm+fPn8QV490gCciDHzSJECfPIxt17IDxyT6xW/e/jhh9mSCTqGniAffnXq1LEDBw64YkA1atRI9fMJpFV7YdGiRa6l65JLLnFTPWnM/OjRo/3vKQCIFO3btGnTxh28Llu2LC8EkApa5pEpCgjdunXzB4U1a9bY7t27KX6XoC30BPnIhXlJ3tU++ecTSM2gQYP8O8hPP/20FS9e3G6//Xb7999/7e2332bDAQg7NRDpIKOK3nmBniAPpI2WeWSLV2SL7k+J10JPkI+cIkWKWJkyZWzt2rURXAvEsnr16vn/r27206ZNi+j6AEhsCvKTJ092Q8hUjLNjx44R73kIxAJa5pEtGzdudOccOU2sFnqCfOTpM+d9/gAAiFXaf5kyZYoL8grw1apVI8gDGUTLPLJFYaJYsWKWP39+tmSCtNAT5KMDYR7ZUbly5TS/K5jaEEA4g7xm2NB3klrktS8DIGMI88h2mKdVPnECPUE+epQrV87t/ABZce+99yZZPnLkiP3www+uu/2DDz7IRgUQdJqBRfU65syZ47rVa1+lSpUq7vdMoX7VqlX2zTffuOkyGzVq5K6fO3eu/7a6ja5Tkde+ffta7tzEGIBPAbKFMJ84gZ4gH110EO2LL76I9GogRt1zzz0pXj506FBbvHhx2NcHQPxTkB8wYIB/WGCLFi1ckPfmlNeMLJ4ZM2akej8zZ85055qFA0h0jJlHtvzzzz/uixjxPYaeIB+dYX7z5s1uJwgIllatWtnHH3/MBgUQdGplD9w3+e233+zQoUM2adKkJEE+PboP3RcAwjyyiZb5+A/0BPnopINo6rKoucGBYJkwYYKVKFGCDQog6Bo3bpyk16CmN3755ZdtxYoVmbof3YfuCwBj5pENCoqE+fjuck+Qj15erQr1jtHUYkBm1K5dO8n3gr7PN23a5OaZf/3119mYAIKuT58+7rtmyZIltnfvXv84+OTnGR0zD4Awj2zYs2eP7d+/nwJ4cRroCfKxEeZ1QK1WrVqRXh3EmA4dOiRZzpkzp5UqVcouvfRSO/vssyO2XgDik4K4N9b94osvtrvuusvy5csX6dUCYh4F8JBl3hzXjJmPv0BPkI9+p5xyijtnrnlkRf/+/dlwAMIW5L/66itbsGCBW77ssssI8kCQEOaRZV6IKFOmDFsxjgI9QT425M2b10qWLOm62QOZtXv37gzftkiRImxgAFkO8tOnT7f58+e75SuuuMLq1KnD1gQiUc1+8ODBdv7551vhwoXdGE110/v111/9169du9YFhZROH330kf9269atszZt2ljBggXd/WhOWxVyCvTEE0/Yqaee6gpcqNolos++ffvcud4PiI+ieAT52KLPnoa6IHaGJml+94oVK1qBAgXcmNBFixb5r9dnU1MtaQiFrm/WrJmtXr06yX3MmzfPDauoVKmSvfvuu1lel2LFilnx4sXTPHm3AYCs0HeappjT95Zo379u3bpsTCBSYX727Nl25513uqNrOsp25MgRa968uT/UVahQwbXWBp4UyhUmNN2NHDt2zH2YDx8+bN9//72NHDnSRowYkWSuSLUifv755/bpp5/a9ddfb7169Qrmc0aQeAdgcuemg0c8BHqCfOzRZy/5gVBEr5tvvtn9do4ePdpNw6TfTwV2ffZkyJAh9sorr9ibb77puqMWKlTIzcN88OBB/33cdNNN9vjjj9vYsWPdAfb169dnaV3ee+89dzD9oYcecvM766T/a/jG8OHD7euvv7ZZs2a581DQfPY6IJE/f35r0KCBLVy4MM3bq0FAY/l1+3PPPdemTp2a5PqMHAgBEF4qdKd9fWndurXVq1ePlwAINl82bNmyRYnAN3v27FRvU6tWLd+NN97oX546daovZ86cvk2bNvkve+ONN3xFihTxHTp0yC1PmTLF1759e9/hw4d98+fP951//vnZWU2EyIQJE9zrv337drZxjNizZ49v2rRpvh9//NF3/Phx9xmbNGmS76+//nKfu8DPJaJftWrVfPfdd1+kVwMZsH//fl+uXLl8n332WZLL69Sp43v00Ufd57FMmTK+5557zn/dzp07ffny5fONGzfOf9lpp53m+/PPP3179+711atXz/fzzz9naftfdtllvrFjx55w+ZgxY3yXXHJJSF/T8ePH+/LmzesbPny4W/+ePXv6ihUr5tu8eXOKt//uu+/cthsyZIhv5cqVvscee8yXJ08e9z3meeaZZ3xFixZ132fLly/3tWvXzle5cmXfgQMHMrxeu3btcr9pOgeQfQcPHvS9++67vgULFrA5gUzK6G9Splrmk9u1a5c7T21OWh2RW7ZsmWtJ8KirjY6qe8WbRC0PGr+nFkNvWS0R6obfsmVL1/qAyPrzzz9dLwqde9QzQ/LkyRPBNUMwWug1x6uG0AR+LhH99NlLqWU+pc8rIkuvk3qmqWU5kFqRNfWS5lvW1HBqUfYULVrUtVp7XVRFrc/VqlVz111wwQVWvXr1LK2P7jOlVjJdll4reXa9+OKL1rNnT+vRo4dbf/VE0O+9egSkRPNQa19AQ/L03J988kk35va1115z1+t77KWXXrLHHnvM2rdvb+edd56NGjXK1ZOYNGlSSJ8LgNSpWn337t2tfv36bCYgRLLcP1pzPmrsn4JBjRo1UryNxvPph1fjAj3aWUkeGLxlXeftoE6bNs22bNnixuyp0FNyXpBE6KkWQsOGDd3YXO1waSdQ3SO9rp/akeL1iK0fVwUEdePVZ0z0GdZBOV7H2KL5djVkKfB1S+3zitAPeUiruKTqG+h1URDV76J+98aNG+denypVqvh//1L6ffSuEx0cv/baa93rnp3x7BoWN2zYMNe1P9A777zjrgsVrbcO9Gu+6cBp8XQQI/CgRSBd3rt37ySX6aC/F9TTOxCi7ZWSQ4cOuVNWigICSNk333zjvg9V88r7fAOIwjCvsfM//fSTa1FIyYEDB9yYPo3tyyqN50uNN2Yf4RFYaGnlypXu9MMPP7jlL7/8ktb5GOUdkFm+fLk7IfYKqinIJB8/nNLnFaGlqZbSKwaqsfI33nijlS9f3h2IUevydddd58JtZmgsvU7Z8d///tc6duxoX3zxhQu9ohZ5jTP/+OOPLVS2bt3qeiikdNDil19+SfFvUmsE8A5yZPRASHLq9ae6PgCCF+RVX0sqV67svusARGGYV0G6zz77zObMmeMqzqdkwoQJrmWoa9euSS7XNGbJu/Bt3rzZf11GXX755VlZdWRBai19O3fudNeriJO6iiJ2qDilwrtaBDVbxGmnnZapeegRHQYMGGCnn366KyzkoWU+MjJSCPSMM85wO7oqGqtWYBVr69Spk3sNvd8//R7qco+WVb0+2PSeUXB/4403bNWqVe6ytm3b2m233RbSlvloot4BgS3+ek0S5bkDwabvNi/Iax+dIA9EYZhXd+q77rrLVb3V0TcddUuNWobatWtnpUqVSnK5QuHTTz/tuvd6Le9qZdc8tpkZ+8c47fCpWrWqOwDz7bff2kUXXeR2PCUwwPN6xA6Nl9cYeY1hU9d6hXkFBr2GBPrYG4etYUiBn7/UPq+IHl7L+o4dO1zPJnV11++pAv3MmTP94V3hUsNhbr/99pCshw7G6/c4nEqWLOl6JXgH8T1aTu2Avi5P6/ZZPRCiIUc6AcgeNe4pF4iGuwQOrwUQWjkz27X+/fffd93n1Z1Q3dd0Upf6QL///rv7YGsanuTUiqvQ3qVLF9cyqB0ZFa3RffOjGr0UCLp165YkGHgtUUyNFTtSm35OhbQyMg89oos+eym1CKf0eUXk6fdO9WA0NEIHsZs0aeKmW1MhOPWKUR2ap556yiZPnuymrlPPtnLlylmHDh0sXujgk+aZ1kGLwBo8WtbB/pTo8sDbi7afd/vAAyEe70BIavcJIDh04FjTWErTpk1dLS0AUdoyr+54cumll54wX62qVXpUkVZH/BXck9MReXXRV0uDfmTVOqGdzoEDB2b9WSAiCPOxJa155PU51A/wd99955ZpoY+dME+vmNihGWDUtXvDhg2uV4zGrKtl3HsNNc+7uuDfcsstbhiTCkgp/CevgB/r1LVdv/uqnK8eQqpEr+etgxqigxjqouvNZHPPPffYJZdcYi+88IK1adPGxo8fb4sXL7a3337bXR94IEQ9UxTuVa8n3g6EAJn5bRg0aJCra6V9bX1G9H8dONP/ddDeO9d+uVrS07pNarfVvoNqf4gOUmq2jbT+RnPO63utb9++GRqaBCB9OTQ/XQZuB5xAhZM07lI7poyNis0gryKSKp6m11GBYu/evS7Q6/Uk0Ec/1a7o3Llz2LtKA9mlaeWee+4517tPXeFfeeUVfyE+NRjovT1ixAj/7T/66CPXi081IRTYNTQhsFaEdmX69+/vAr53IOT111+3M888M8PrpNZ8VcHXQRcN/QNilRrIVFMlHLv46tmnHjfqkZsRCvVaNwV/ANn/TeKwGLJM0wbK9u3bCfMx2iKf2jz0tNDHBn32sjM9GRApKqSrU0q8sbeBrr76andKKyAowNDLDzDXah7KIK/p5tSCL/Pnz8/U32q9UpsJC0DmMfkjsswrNKTK6Ij9IJ880DOGPrqpW7Kmpgss+AVktivujBkz7K233nLvJfnnn39cDx0AsUs9U0I1O4160GiKzawO/9F6eXPQA8g+WuaRZV4FYcJ8/AR5Dy300c/73BHmkRV//fWXtWzZ0tatW2eHDh1yU0mpsO2zzz7rlt988002LBCjNCZdgj1mXvWwNMWmqOaHDv6ldtv0xswDCA7CPLJMR2XVxZcwH19B3kOgj27e505FvoDMUlE5FaDTrDInn3yy//Irr7zSevbsyQYFYpiKywV7TLqmPFWtJNG0p16xOwCRRZhHtqhVkDAff0HeQ6CPXmoREVrmkdXppNRKpsJVgVR4Tt8hAOBZtGiRP8hrGJ6m1STIA9GBMfPIFrUKeqEC8RXkPYyhj046iFagQAGqbiNL1JX22LFjJ1yu2UnU3R4ARNNAatYbUXd5zSVPkAeiB2Ee2ULLfHwHeQ+BPjrDvA6msVOFrGjevLmb392j95EK32l6t8Ap3wAkLtXPmD17tvu/xt43a9aM3xwgyhDmkS2E+fgP8h4CfXRRjxi62COrXnjhBTcFZfXq1e3gwYN2/fXX+7vYqwgeAOTLl8+6detml156qSuSycFjIPowZh5BCfNe5VLEZ5D3MIY+euhzR5hHVqkqtYrfjR8/3lasWOFa5W+66Sbr3LmzG74BIHHp+0C/91KyZEm75JJLIr1KAFJBmEe2KEwcOHDAdu/ebUWLFmVrxnGQ9xDooyfMn3POOZFeDcR4xesbbrgh0qsBIIosW7bMjZHv1KmTfxo6ANGLMI9s8abFUqgkzMd/kPcQ6CNLPWHoZo/Mmjx5coZv265dOzYwkGDUW+fTTz91///9998J80AMIMwjW8466yx3/vPPP7uxl4j/IO8h0EeOgvzOnTv9nz8gIzp06JCh22nIVEqV7gHELw23mTRpkvt/vXr1XJFMANGPAnjIltKlS7uxl0uWLGFLJlCQ91AULzK8z1vdunUjtAaI1enoMnIiyAOJG+T1u6IZLaiDBMQGwjwy7M8//7SRI0e680D64ifMJ16Q9xDow0+fNxUlqlChQgQeHQAQL3788UcX5DV8q06dOtamTRuCPBBD6GaPDFGAP/fcc23//v1WsGBB9+V/+umn+8P8f//7XyraJ2CQ99DlPvxhXp87Wk6QHTNnznTf3atWrXLL1apVs3vvvdfNJQ0g8o4ePWqDBg2yuXPnunne9Z2v/6sHjf6vAJ4rVy5r1KhRkut02UUXXWR9+/Z1hS7Tsnr1anc/tWvXtiuuuILfFSDGEOaRId9++60L8qJzLQeG+R07dtjatWutcuXKbNEEC/IeAn14w/yNN94YxkdEvHn99dftnnvusf/85z/uXObPn++61yrg33nnnZFeRSDhKcgPGDDAhe3p06enuj1mzJiR4sE66devX7q1NCpWrOha5TlADMQewjwyREd41SLvtcxr2eON21XAIMwnZpD3EOjDU/xu06ZNjJdHtkOCQnuvXr38l91999124YUXuusI80DkqaVdQT4r9Hf6+5R4s6EovOfMmZPfEyCGMWYeGaJWeHWtHzFiRJIu9qKAWb58ecbNJ3iQ9zCGPrQofodg0GwILVu2POFyVbDetWsXGxmIAo0bN85ya7n+Tn+fnIbVvPvuuzZlypQsHygAED1omUeGKcAHhvhAFMELvlgM8h5a6EMb5k8++WQ77bTTQvgoiHeaR37ixIn24IMPJrlcc0xr3CyAyNOYd8nOmPlAv/zyi02YMMHdRuPx9fd0rQdiG2EeQaEw//LLL/PDECSxHOQ9BPrQoPgdgqF69er29NNP2zfffONCgjdm/rvvvrP777/fXnnllSTd7wGEn4rXpTfmPaN+/fVX++ijj1yQV0FjjZVXF3sAsY0wj6CF+e3bt9tff/1llSpVYqsmeJD3EOiDb+nSpdatW7cQ3DMSibrZFi9e3FauXOlOnmLFirnrPGq1I8wDse23336zDz/80AX5GjVqEOSBOEKYR1B4RfAWLFhAmM+GeAryHgJ98GzYsMEVLvI+b0BWrVmzho0HJFiQP+ecc+zKK6+kRR6II/SvQVCUKVPGHe2dOnUqWzSL4jHIeyiKFxz6fGksZJMmTYJ0jwCAeKYQr7HxGlpz1VVXEeSBOEPLPIJaUOmtt96yY8eOucCBjIvnIO+hhT77Jk+e7KoTlyhRIgj3hkSmnXsVwpo1a5Zt2bLF7fAH+uSTTyK2bgCC5+yzz7YePXq4qegYIw/EH1rmETRt27a1bdu22bx589iqmZAIQd5DC33W7du3z2bMmOEOmgHZde+991qXLl1cd3t9LosWLZrkBCB26XOt6Sc9p556Ko0sQJyiZR5BU79+fStdurS/9RDpS6Qg76GFPmsU5A8dOuQOmgHZNXr0aNf63rp1azYmEEf+/PNPGzdunBUqVMhuvPFGK1KkSKRXCUAI0TKP4L2ZcuZ08xNPmTKFrZoBiRjkPbTQZ54Okqm7ZNWqVUPwiiDRqPX99NNPj/RqAAhBkNcc8tqvUKAHEN8I8wgqdQH+5ZdfbPXq1WzZNCRykPcQ6DNO45k/++wzWuURNAMGDLAnnnjCDhw4wFYF4qRrvRfkddD36quvpms9kAAI8wiqZs2aWb58+WidTwNB/v8Q6DNm4cKFrkgZ4+URLNdcc43t2LHDDY0699xzrU6dOklOAGLH2rVrbezYsf4gr8937tyMpAUSAZ90BJW6dCnQq0tw79692brJEORPxBj69OnzdPLJJ1vDhg35TCEounXrZkuWLLEbbrjB9Q7KkSMHWxaIQRs2bPAH+SpVqhDkgQRDmEfQqfXwjjvusO3btzOFVgCCfOoI9GlTHYo2bdrQZRJB8/nnn9uXX35JsVIgxhUvXtydChcubJ06daJFHkgwhHkEnYrg3XrrrTZ16lTX6gOCfEYQ6FMfB/nTTz+5Mc5AsFSoUIEq10CIqJV80KBBNmfOHFfzJFeuXNaoUSPXA+b77793vayS/3/u3Lkp3lazA/Xt2zfVkK4ekeppkydPHoI8kIBy+Hw+X6RXAvHnggsucN2C1fqT6KK5Rf7IkSPuoIump9KOQDTYu3evfffdd1a+fHk755xzEr7779NPP+1Omzdvdi0vQDDou/nVV1+1N9980ypVqsRGNbPdu3e7Kv+7du3iQAeyZeDAge4AbDB2sRXqdV/9+vXzX7Z+/XrbunWr1a5dm1cKSPDfJFrmEZSpUL799lu76KKL/FMd3XzzzXbLLbfYunXr7LTTTkvYrRzNQT5a0UL/f9RK884779i1116bJMin9JkDMkO9pvbv329nnHGGFSxY8ISDeRomBSBr1MoerLYy3Y/uL3CM/Pvvv2+HDx92n92zzjqLlwlIYIR5ZItChSoha6dQPyo//vijCxcKH/fdd58NHz48YbsHE+SzjkD/PzNmzHBVinv27JnuZw7IjJdeeokNBoSIusbr+ztYLfO6P2+/wgvy6lFTuXLlIKwtgFhGmEe2qHVQoUJ0rmUFC4Wx6667zt599117/PHHE65wF0E++wj0ZsOGDXNDDTRsJb3PnNBij4zSGFsAoaEx7hLMMfParxg9erQdOnTIKlas6Pax8ubNy0sIJDjCPLJF3XzVOui1EmrZo9ZEhZFp06a5StyJgiAfPIkc6DWv/KeffmrPPfdckuec2meOFntk1cGDB11LX6C0xucBSJuK1QWOcc+uf/75xx/kNXTx+uuvJ8gDcHL+7wzIGrUIqpvviBEjTujuW69ePVec5fXXX0+YzUuQD12g17b9+eefgzYOMdpprLxaaLp06ZKhz1xKLfZAavbt22e9evWy0qVLu2rY3vRW3glA9BTB8oK8ZqEgyAMIRJhHtilMqMtm8nG7ak286667XLX01atXx/2WJsiHTqIFes0yoINgKlJWokSJDH3mvBZ7Sd5LBkjuoYcesq+//treeOMNy5cvnzt49MQTT1i5cuVs1KhRbDAgSqj4qYroKsh37tzZfV4BwEOYR0hpTFepUqXcFEjxjCAfeokU6D/++GP3PO++++6g9JIBkpsyZYo7YNSxY0fXJVgHfx577DE3N/aYMWNCtsFUJV+BRN34ixUrZjfddJObjjKt2+ugsCp2FyhQwHUx1udCU/UkP3ic/DR+/PiQPQ8gXPRebtKkiXXt2pUgD+AEhHmEVP78+e3WW2+1995774Sdr3hBkA+fRAn0L7/8stt5U9X6YPSSAVIKyd77RMHam4pOxbZUtCtUFOT12Z0+fbp99tln7rE0jWlaY4V1ev755+2nn35yB6tUh0UHAZLT78zGjRv9pw4dOoTseQChtHnzZpswYYLrpeUFeh10A4DkCPMIudtvv90VWNKOVrwhyIdfvAf6hQsX2vz58+2ee+6J9KogjinIr1mzxv3/7LPPtg8//NDfYq8W81BYtWqVC+Lq0t+gQQN34EC9ttSCrsCekho1arieKm3btrUzzjjDLrvsMnv66afdeh49ejTJbbXeZcqU8Z90MBmIxSCvoS76fZs5c2akVwdAlCPMI+Q0BrNTp072wgsvuFAfLwjykRPPgX7w4MEuaF1xxRWRXhXEsR49etjy5cvd/x955BEbOnSoC7/33XefPfjggyF5zHnz5rnAreKonmbNmlnOnDltwYIFGb4f9fJSb4LkLZV33nmnlSxZ0urXr2/Dhw9P93tBBcVUXCzwBER6FhMFeRUx1b7TpZdeygsCIE302UFYaIqW6tWruzGavXv3jvmtTpCPvHictk5hZ9KkSa5ysSrZA6Gi0B4YqNVqvnTpUqtSpYqdd955IXnMTZs2uer5gRTIVeRR12XE1q1b7cknnzyha/7AgQNdq72KP3711Vd2xx13uLH4adWd0IEzFf0DosG///5rI0eOdEG+bNmyrgAqvUsApCeHL56atBDVNHZeY8A0H3bRokUtVsVTkNd4PM020Lp1a8uTJ4/FIu2wK9CXL18+pgO9vorVCrNz5073/lJrJRAL1LL/7LPPpnkbHSz45JNPXFj59ddfk1yngK9QrSFZaVHL+eWXX+7C/+TJk9P8ztIBZA3tWr9+fZot8zoF3r8qhnst/0C4g7ymjFSQ15SkKvgIIHHt3r3b5aX0fpPYW0TY9O/f3w4cOGDPPfdczG71eAry8SJeutx/8cUXrhiYWgsJ8ghl7w8Vngukbr2VK1d2oVot3oEBNyPuv/9+F9bTOmnoiMaxqxtxII17V/E9XZeWPXv2WMuWLd00XRMnTkz34KPG5G/YsCHN56IpvrSDFHgCwu348eOuZoWCvD4HBHkAmUGYR9ho/JeKev33v/91lYZjDUE+esV6oNfOXJ8+fdz0YK1atYr06iCOqTu6PiMeTWOoyvDqaq8WdhWW0wGlzND0oyqil9Ypb9681rBhQ9fzZMmSJf6/1Vz3ev8rfKfVOtG8eXN3H2qRz0jX42XLllnx4sWZygtRTwdvr7zySqtUqRJBHkCm0c0eYaUdObXQXHvttW78fKyI1yAfD93s46HLveb11vjI77//3gUeIFTUhVeB3StC9+ijj9rs2bNt7ty5bvmjjz5yvahWrlwZksfXwSpV637zzTfd948K8Wldxo4d6/+ubdq0qestoEJ2XpDXOGK1yBcqVCjJQQTVltDz0X1ecMEFLuhr2rsHHnjAnTIzJj6jXRoR/9RjZNCgQe5zoVkXHnroIRsyZIhb1ne0flu87+uU/q+/6du3b5rTyekgVmAvLB2EjpXfLAChl+HfJI2ZB8JpyJAhvty5c/tWr14dExt+w4YNvilTpvg2bdrkizeHDx/2TZo0yZ3Hiz179vimTZvm+/HHH33Hjx/3RbtDhw75Kleu7Gvfvn2kVwUJIF++fL5169b5ly+88ELfU0895V9es2aN76STTgrZ42/bts133XXXuccoUqSIr0ePHu4zG/j42jWZNWuWW9a5llM66bbyxRdf+GrVquXus1ChQr6aNWv63nzzTd+xY8cytW67du1y96tzJLYnnnjClyNHDvd+0HmTJk38yxk56ba6j7Q+B0OHDvWtX78+rM8LQOzI6G8S1ewRdr169bKXX37ZHnvsMTe/cDSL1xb5eBZrVe7feust++uvv04YxwyEgr7HNL+8Cr0dPnzYVbAPbL3W2PRQ9tJR8TqvFT4l6mocOExGRSHTGzajsfQ6AcGiFnjvfadzTeOYmeFbuq3X2yU51YhQsTu1un355Zd24403RvVvFIDoxph5hJ0qtA4YMMA++OCDJGMnow1BPnbFyhh6BSdNs9WtWzc3dSMQahpSo7Hx3377ravToKncVKvBs2LFCjvjjDN4IZDQ1E3eC9g6r1mzZqYCt26r+0hux44d/iBfsmRJ69SpE0EeQLbQMo+I6N69u73wwgtup1JzAkfbUWmCfOyLhRZ6fQa0U5d8XK+mb1TYUshSjQkgWHTw6KqrrrJLLrnEfUYULFRYzjN8+HA3Rh1IZBrvLtkdM59WkNdBXH0GASA7KICHiFHRonbt2tno0aNd8a9okUhBPt4K4MVSUTxN11W7dm277777klQPV5A/99xzXcEvtZqq2jiBHsGmgjoKEiogl7wLsC4PDPiJggJ4CGXx3xEjRrjP3cknn+yCvKZZBIDUMM88ol7btm3tuuuus7vvvjtqpqpLpCCfKKKxy70qJat3isYH9+vXL8l1apFXkBedaxkINlXITR7kvTHtiRjkgVCaM2eOC/L6fBHkAQQTY+YRUa+++qrbcbz11lsjHrII8vEr2gK9utcvXrzYtdSohkQgda1Xi7wEjmdWi726aOocABA71Putbt26BHkAQUeYR0Spu5nmG1aX+/fffz9i60GQj3/REug1f7da4++//343L3Zy6lKvrvUK+l4Xe6/rvVrzdU6gB4DodvDgQf/vjOabv+KKK9KeKxoAsoAwj4jr0KGDXX/99a67/T///BP2xyfIJ45IB3qve70C+sCBA1O9na5XV0xvrDxd7wEgtsa6vv322zZjxoyI9wQDEN8I84gKr7zyiuXPnz/s3e0J8oknkoH++eefd9MxqtVd7/eMSq3rPQAg+oK8hkSper16YqmFHgBChTCPqOlu/9Zbb9lnn31mo0aNCstjEuQTVyQC/U8//WT9+/e3Bx54wBo0aJCpv02p6z0AILrs2bPH7cNoVohixYq5HlbJ66IAQDAxNR2iSpcuXdz4eQUsTSUWKgT5xJmaLhqmrVP3es1BvG/fPlu6dGmmWuUBhAdT0yG7QV4t8tu2bXOzRWhIlQI9AGQFU9MhJr388svuKPYtt9wSstZSgjzC3UI/ZMgQF+Iz270eABAbB4bVIq8gryJ3apEnyAMIB7rZI6poDtZhw4a51uJnnnkm6PdPkEe4A/3MmTNd9fqHH37Y6tevzwsAAHFm3bp1tnXrVhfk1SJfvHjxSK8SgARBmEfU0fQtjz/+uD366KM2efLkoN0vQR7hDvR//PGHXX311da0adM0q9cDAGJX9erVrWPHjq5FniAPIJxyh/XRgAwaMGCAK/TVuXNnmz9/vhvPnB0EeWQ00GsMvWR3DL3GOrVr185Klixp48ePd/MMAwAiR/VLBg0aZHPnzrXGjRvbQw895IZBaVl1TfSd//3337vr+vbtm+b3tmqg6MCvfjukRo0aYXwmAPA/7F0iKuXMmdNGjx5tjRo1coFo4cKFruJ9VhDkEe5Af+zYMXcgasOGDbZgwQJaagAgCijIq7FAIVxzwH/zzTfupOXp06f7b6frREOkUrJ//343Rv748eOuNd4L9AAQbnSzR9TSj+Onn35qu3btcl2VVXk9swjyiESXew0T+fzzz12L/Nlnn82LAABRQC3w3ne6zpcvX57id7wu023TCvJbtmxxc8gfOnQo5OsNAKkhzCOqVa5c2SZMmGDffvut9e7dO1N/S5BHJAL9uHHjbPDgwa7rZqtWrXgRACBKqPu819tK5zVr1kyx95Uu022TO3DggOs1uHnzZitUqJBrlc9qr0EACAa62SPqXXrppfbqq6/a7bffbuedd5717Nkz3b8hyCMSXe6XLFliN954o3Xp0sXuv/9+XgQAiCIaBy8ZHTOfPMirRX7Tpk3+IK+aKAAQSTl8oZpYGciiP//807XEX3TRRXb66af7L7/jjjvsnXfecVN96brUEOQzTkMXNA1g69atLU+ePLxnU5k/WIG+fPnyaQZ67eDVq1fP3W727NlJ5pNP7T0NIHqoaGXRokXd0C5NMQYkb5HfuHGjFSxY0E0/V6pUKTYQgIj/JtEyj6ii0HPuuee6MWn6wVRFey/8vPzyy7Zq1Sq76qqrXDBKaSwyQR6RaKHfs2ePtW/f3nXHnzhx4glBPrX3NAAg+h0+fNgFen2Hq0WeIA8gWjBmHlFFIV2hR3SuZY9ajj/66CMrXbq0m7dbc3gHIsgjEmPoNT1RmzZt7JdffrEpU6ZYuXLlMvyeBgBEP7WOqTVeQV77IAAQLQjziCrqhqwj36Lz5N3pNT5N3ewVri677DL766+/3OUEeUQi0KulRlMn/vDDDzZt2jSrU6dOpt/TAIDooyr1gY0GCvQEeQDRhjCPiFM35JEjR7pzdT9WN+QRI0ak2h25TJkyLtDnypXLBfrFixe7MHX++efbKaecEpHngMQL9HrPdezY0ebNm+emoVPxpJRk5D0NAIiuIP/+++/bmDFj3PA+AIhWjJlHRKU2nji9wHPqqafa119/7YJVhw4d7LPPPiPII2yBXoXu1LVegV7vvYsvvjjNv8nIexoAEB1BXiF+w4YNrv5JsWLFIr1KAJAqWuYRUdkZT6wx9AMGDHD/Vwup1+UeCCV1re/cubMtX77c+vXrZ2XLls3UPPQAgOgO8uvXr3dBvmvXru47HgCiFWEeEZXV8cReN2eNV9b8sApTah1NXhQPCCav2J0OOqlF/p577kmxKB4AIPYq1o8dO9YF+Xz58lmXLl0I8gCiHmEeEZWV8cTJi91VqlTJ5syZ446iK9CrqjgQivk+W7Ro4Wo0qNidZlRIq8o9ACA2HDlyxAX5devW+YN88plJACAaEeYRcQrwmu4lK0E+cAz97Nmz3dg2te7r/0CwaAiHDhT99NNPNn369CQ9SAj0ABDbcufO7WbLUZC/4YYbrHz58pFeJQDIEMI8YkZ608+pyr1a6FVQr1mzZvb2229HZD0RXzSMQ++5Xbt2ue71DRo0OOE2BHoAiF05cuRwQ6huueUW1zgAALGCMI+YkNF55E8++WT78ssv7dZbb3WnXr16ue5zQFa88847bvrD6tWr26JFi9yBotQQ6AEguhw9etQGDhxozZs3d+da9mjfQAdojx075g/0JUqUiODaAkDmMTUd4ibIB1a5f+2111zwUphfuXKlffTRRy7oAxmhHb7evXvbq6++arfffru9/PLL7n2VHi/Qf/fdd275nHPOcTuIAIDwGzRokJv1RvVMZsyY4S7TLCQK8uPHj3fT427dutWuvPJKXh4AMYmWecRVkA+klvmZM2e6wnr6e413BtKzbds2a9mypb3xxhv2+uuvu1NGgryHFnoAiA7ebDeicy3rYO0HH3zggry+2+vUqRPp1QSALCPMIy6DvEdFy9Q9unDhwtawYUObPHly0NcT8UMV6TUmftmyZfbVV1+5VvmsINADQOQ1btzY3ztK5+o5pSCvaWwV5Dt37mwVK1aM9GoCQJYR5hFXQV5H2keOHOnOPZq6Tt2eL7/8cuvQoYPrdscUYkhuypQp7oBPgQIFbOHChdakSZN031tpIdADQGT17dvXdbPX73///v3tjDPOsN9//91Vr7/++usJ8gBiHmEecRXkNU6+e/fu7jwwdClYTZgwwY2Ve/TRR61169a2YcOGED0DxJL9+/fbvffea+3bt3fF7r7//vsTpklM672VFgI9AESOQrt+99XTSjVM1CLvBXkd6AeAWEeYR9x0rVdVWgUz0bmWA+XMmdMdof/8889txYoVVqNGDXvvvfdopU9geo+cd9559tZbb9nzzz9vn3zyiRuSkdn3VloI9AAQefXq1XM9r6677jqrXLlypFcHAIKCMI+4GSN/0UUXWcGCBd3/da7llKhVXsXw1OX+xhtvtCuuuMI9NhKHAvl9991nl1xyiXuvaYy8qtfrgE923lupIdADQGSpJV69sJL3vAKAWEaYR9yMkdcPtCrXjxgxwp2n9YNdvHhxdzuNk9bjqvudlhlLH/9UP6FWrVr25ptvutb4OXPm2FlnnZXm36T03mIMPZB527dvd0XHihQpYsWKFbObbrrJ9u7dm+bfXHrppa54WeDptttuS3KbdevWWZs2bdzBttKlS9uDDz6YZE5xJB7NH6/f+C1btvgvy5s3b0TXCQCCjXnmEfNj5NXKqh04L2Rl5qi7WuVVwVxH63v06OHG1avLdfny5bP4bBCt9D557LHH7KWXXrILLrjA7eSlF+IDBb63UnvvpYd56JHoFOQ3btxo06dPd3N963v3lltusbFjx6b5dz179rSBAwf6l72eMl5oU5AvU6aMq3mh++/ataurVq6Cp0g8ek98/PHHtmrVKlfw7q677nJj5QEg3tAyj7gdI59RaqVX676mrVu6dKkbS69lWunjh3bw1RqvOeOHDBni3iuZCfLJMYYeyDwFq2nTptk777zjpoDUtGGvvvqqjR8/3v755580/1bhXWHdO6ll36PiZitXrrT333/ffc5btWplTz75pA0dOtQOHz7MS5WAQV71T/R+y5UrlztoT5AHEK8I84j7MfIZ1bZtWzeWXueqWt60aVM3RRli1/r1611dBIWGk08+2Y2Nf+CBB9wOXnYwhh7IvHnz5rmu9SpE5mnWrJmrVbFgwYI0/3bMmDFWsmRJd7C1T58+/gO53v2qp0zg70iLFi1s9+7drudVag4dOuRuE3hCbDt+/LhNnDjRHdzR++qaa66xqlWrRnq1ACBkCPOIuSDvjVWWjI6Rz6gSJUrYqFGjXMV7jbNT69F//vMf+/XXX7N93wifbdu2udCunbjPPvvMXnnlFZs7d66dffbZQbl/xtADmbdp0yY3nj2QWkz1vavrUqNpxNTqPmvWLBfkR48ebTfccEOS+03+O+Itp3W/gwcPtqJFi/pPFSpU4GWNgyCvAzhekD/zzDMjvVoAEFIMIELMBfnkY5W7desW9HVUxXu17GgHUnPUqkCeWnj79+/PePootm/fPjcmXl3ptWPXt29fV7U+penmsosx9MD/PPLII/bss8+muTnU5TmrNKbeo+//smXLup5TmjP8jDPOyPL96sCAZrHwqGWeQB+7dMBWveu8IJ+doVQAECtomUdMda0P1jj5jFBXbB0oUKv8c88958bgValSxR5++GHbsWNHyB4XmadCWm+88YZ7fZ544glXVEsHfnQgJhRBPjnG0COR3X///S6sp3XSwS+NdQ+sLC6qOK8K97ouo9RjSlTYTPS3mzdvTnIbbzmt+82XL58bex94QmzR+0eFEZs3b+56bpx22mnuQK4K3ulyZjQAEPd8QJhs2LDBN2XKFN+mTZuyfB9//PGHr2DBgj69dXWu5WDTfY4YMeKE+965c6fvsccec49brFgx3zPPPOPbt2+fL5YdPnzYN2nSJHcei44dO+YbN26c74wzzvDlyJHD16VLF9+aNWsy9boGQzDel3v27PFNmzbN9+OPP/qOHz8e9HUEIm3lypXuM7J48WL/ZV9++aX77P79998Zvp+5c+e6+1m+fLlbnjp1qi9nzpy+zZs3+2/z1ltv+YoUKeI7ePBghu93165d7n51jtgwYMAA9/7R66bzJk2aJFl+4oknIr2KAJAlGf1NomUeMdEi78nMXPJZ4XXjVwE8nWvZozGVqpCsrp2aXknTnGlMtlrtaakPL1Wo1hCIunXr2nXXXefGwqu4neodVKpUKVOvazAE433pTVunz4rGfDKbAuJNtWrVrGXLlm6aORUX/e6776xXr1527bXXWrly5dxt9P7X59krPqrvW33vLlmyxNauXetmHdG0cxdffLGdd9557jZqla1evbp16dLFli9fbl9++aX7fr7zzjtd6zvik74j1QOjUaNG/mW9/t53p87V9R4A4hlhHlEf5L2Cd14AU1BS9/dgB/mMdpdWt83XXnvNfvnlF7cTqZ3GU0891W6//fZsjQtF+tRFV10nK1as6HbcS5UqZXPmzHFF7rwd+6y+rtkVjPclgR7xTlXpFdY15l21STTTxNtvv51kyIyGNnmf17x589qMGTPcd63+Tl36O3bsaFOmTEkyJErfATpv2LChK46nwB84Lz3ii4K6Duxon0LvJc10kCNHDqtZs6Y7F53r/QUA8SyHmucjvRKIX8EI8skL3oUixGfn8dQy8NZbb7kx26qcrJ1OBfs2bdpYnjx5LJppx3nq1Klupzpa11VfUfPnz3fbeNy4cW6HXTvqd999t2uNi8b3UXbt3bvXtVqWL1/eFV/0dk4BhI4K4KkH1q5duxg/H8X0m6CDOdq30HejlvV9qeD+0EMPuQKoapHXsoqgMsc8gHj+TSLMI6q71qtFXl2jPerGHIrq9cmDn1puNZd4ZgKfun5/+OGHbhq0RYsWuRZ8FWK7+eabozY4RnOYV1EsTUE1bNgw1+1crfF33HGH256ayipcr2ukEOiB8CLMRz8Fd/XCWLp0qQvyV155pTtQCwDxhjCPuBgjH64W1WAHPY3bUwjVuG4dUVM3QM2VrNb67GyPeA/zmlpu+vTp9tFHH9nHH39sx44ds/bt27sxtpdffrmbcii7YinUE+iB8CHMR3+Q//zzz139BII8gHi3m5Z5xHLX+sCwFerwFcoDBrpPBdN3333XX4jnggsusLZt21q7du1cN/FIdqGOhjCv94taWjT+cebMmXbo0CFXKEs9MtQLI5gHP2Ktu70Q6IHwIMxHN31/q7eWqEU+rTopAJAov0m5w7pWiHuhGiMfysCVUnG0YD2enoMCqU4q3qbgrLF+Tz/9tBvLp8fxgr0OVkRD63g4WldUeV7bQQFerSwaB6/nP3jwYLc9NF98rL3WoeIVxdOYUGEMPYBEpO9q1aQpUKAAQR4A/j/CPKKqa30kwpZCpEK3dwBBy6FQunRp19qs08GDB23WrFku0E6YMMFefvlld/StVatWrpW8fv36btq7YHQrj4bw/s8//9jixYvtq6++cs95/fr17iijnm/v3r3ddFVZGQcfra91sBHoASQi/X6oB5lmNRDNVgAA+D8UwENCjpFP6XGD3ZU/o/epnRVtO6+lWoV9pHDhwla7dm03l7p3OvPMM4Ma8IPdzV7PRe8FtbYHnlTxXzQHvHohqPVd80R7O2jR+LpEI7rcA6FDN/voot+TL7/80h381VSk+fPnj/QqAUDYMGYeMRfkwx22Qvk42TkosW3bNrc9A8Ow7s9roQ0M+OpyXa5cOTffelZCflbDvHaydu7caRs3brTffvstybpqOIHXEyHwQIROp556aoZrBITjwE4sBnsCPRAahPnood8Y9eTStKRy9dVXZ3gqUgCIB4yZR0wGeQn1GPlwBMXsDBc4+eSTrVmzZu7k2bFjh2ux9wKzWvFfeukl//Uac66p8MqWLes/KeQHLqsbu+bb1UnBXefHjx934XDr1q3ufo4ePepOe/bscUFdJ3WR9/7vLW/atMkNFfDotVdYv/XWW/3BXXOkZ6e4X6iHXMRiMTyhyz2AeA/ymtXEC/JXXHEFQR4AUsGYeURVkA+XUAfFYI/NLl68uJveTqfAgL969eoUA7fGp+sytZIrsGeHDi54BwRUmE7d4wMPElSuXNkdOAh2Vf5Qj2+PxWJ4HgI9gHgN8jNmzLB58+a5ZU3nqoPDAICUMWYeCRfkE6kLt+ZpV6BXwFe3eK/l3TupdX358uWu4J7GI3qt9tomCupq7c+XL59FSrQOhYgWdLkHgodu9pEP8pqe1Ju5o0WLFq6rvaZ1bdy4sZsBRgYNGpTkMv1uAUC8oZs9QibWg7wotCm8hSIoBgZQTUkXivvN6Pqq+73Xgp7amPlChQoFrQBesMO3N+RC9zty5MigvlahfA+ECy30AOKFDqzq4LJoppNp06bZgAED/K31nuSX9evXL2LrDACRxuFMJFSQTx42Y6W1NxZakWPxuQe+B6KhJ0VWEOgBxAMdWNYB8L/++st1rX/sscdcaBedqzXe+3/yywAgUcX+JNYIm3gI8gqFmudd516F+FCPw47m+127dm2S80R67uF+b4Qj0Osz+vPPP/t3dgEg2qn+i6dkyZL+MfLqRu/VYtG5llO6DAASGS3zSIggH66CZ6Eq2haK+1Vgbdiwob377rvufOHChdnaHrH03OOpGJ6HFnoAseabb75xY+SvvfZaO+OMM5Jc542RTz5mPrXLACAREeaREEE+XKEwVOOwQ3G/wQ6wsfTcI/HeCAcCPYBYMWfOHJs9e7b7vwq1Jg/zKmyX0nh4xsgDwP+hmj0SIsh7YnVcdKi2harYq2X+pptuynbLfKyLp/cGVe6BzKOaffjou/brr792/2/WrJkbJgQAyPxvEmEecR/kwxXSQj2NWijuW/PUr1y50qpXr25Vq1ZN2O0QqccJJQI9kDmE+fBQF3lNQSdNmzZl3DsApICp6ZAt8RTkw1EFPpSPE8r7rlSpkgvzOk/k7RCJxwk1utwDiDYaH+8F+csuu4wgDwDZRDV7xG2QD1cl9FA/TijvO5jV7GN5O0TiccKBKvcAooVm2di4caP7f5MmTWK2NgkARBPCPOI2yAcWNpNQFjYL5eOE6r69avai82BMxxaL2yFSjxMuBHoA0UBTyV111VV2zTXX2MUXXxzp1QGAuEA1e8RtkA9XJfRQP06o7jsU07HF4naI1OOEE13uAUSKDhRXrlzZhfmcOXNatWrVeDEAIEgogIe4DfIUS4vfavbxUKAuEiiKB6SOAnjBp9+VL774wmrVqmXt2rVzgR4AkD4K4MESPcjHS7G0UAVX3de8efNcATydB/O+Q13RPh4K1EUCLfQAwh3kve8eAEDw0c0+wcVjkA9VF/JIPE4sBtdQr3O4Xtt4RaAHEGqLFi3yB3nNIa/K9bTKA0DwUQAvgcVrkI+nYmmhrKweigJ44agGH28F6iKBongAQmXx4sU2depU9/9GjRq5ueQJ8gAQGoT5BBXPQT6wiNmIESNC2pod6scJZXANVegOddgO12sb7wj0AIJtyZIl9vnnn/sPEjdr1owgDwAhRDf7BBTPQT75WO1QB71QF2ILZWX1UIXucFSD915bbf+RI0dSCC+L6HIPIJgKFSrkKtaruOrll19OkAeAEKOafYKJ9yAfzvHlsVz8zrN69WpXAK969epWtWrVmFr3WKwnEK2ocg9QzT5YNm/ebKVLlybIA0AYqtnTzT6BxHOQD8dY7XA/nhdWu3fv7s6DNaY9UKVKlZKcx9K6h/v1jmd0uQeQVT/99JPt3LnTv6z9C8bIA0B4EOYTRLwH+UgURovl4neetWvXJjmPpXWnEF5wEegBZNby5cvt448/djVM9u3bxwYEgDAjzCeARAjykSiMFsvF70JZzT5cQZtCeMFHoAeQUStWrLBJkya5/2uYlvedDwAIHwrgxblECPLhLnoXKJSPF+pCcqGcrz0cRfC8x2GcfHBRFA9AevT97gX5unXrWuvWrelaDwARQJiPY4kS5CNRBC3Uxd3CEVbDMYVcPL0WiYRADyCtMfITJ040n89ntWvXtjZt2hDkASBC6GYfpxIhyEeqCFo4irt5j6Np10J1/wq+8+bNc//XeagqzofyOYTrtUhEdLkHkNxvv/1mn3zyiQvytWrVsrZt2xLkASCCaJmPQ4kS5ANbl72W+VAXvQt19/Rw9zhQFXtNTRfsavbheg7heC0SGS30AAKVL1/eSpUqZeXKlbN27doR5AEgwmiZjzOJFOQjVQQtHMXdwtXjIFTV7IWK9vGBFnoAnkKFClmPHj2C3iJ/9OhRGzhwoDVv3tydaxkAkD5a5uNIogV5TySK3oW6uFs4ehx41ezfffddd75w4cKgPpdwPIdwFdpLdLTQA4lr1apVduDAAatTp45bzp8/f9AfY9CgQTZgwADXfX/GjBnusn79+gX9cQAg3tAyHycSNciHmzcGXLp16xbySvah7HEQ6pbzcPWa0P3qtZBQjs9PdLTQIxi2b99unTt3tiJFilixYsXspptusr1796Z6e/UaUgtwSqePPvrIf7uUrh8/fjwvWjb98ssvNmHCBJsyZUpIv1vnzp3rgrzoXMsAgPTRMh8HCPLxVzk/HBXawzUXvHgHCkK5vSIxq0GioYUe2aUgv3HjRps+fbodOXLEddm+5ZZbbOzYsSnevkKFCu72gd5++2177rnnrFWrVkkuf++996xly5b+ZR0sQNb9+uuv7oDJ8ePHrUaNGiGpreJp3Lixa5FXkNeBGC0DANJHmI9xBPnwCVextXAFU6+avQrghbKafTieC4XwwodAj+x01542bZotWrTI6tWr5y579dVX3Rzlzz//vCuqllyuXLmsTJkySS7TtGjXXHONey8GUnhPfltkvWr9hx9+6IL8OeecY1deeaXlzBm6zpx9+/Z152qRV5D3lgEAaaObfQwjyIdXOFqyIzXdXqiE67mE67XB/9DlHlmhg4YK3F6Ql2bNmrmQuGDBggzdx5IlS2zZsmWue35yd955p5UsWdLq169vw4cP93fbTs2hQ4ds9+7dSU4wW716tT/IV69e3a666qqQBnnJnTu3GyP/1VdfuXMtAwDSR5iPUQT58AvXGPBwBVOvAJ7oPBTjIcP1XCIxq0GiI9AjszZt2mSlS5dOcplCW4kSJdx1GaGCndWqVbNGjRoluVwV0BVA1X2/Y8eOdscdd7hW/7QMHjzYihYt6j+pS3+i27Ztm33wwQd27NixsAV5AEDWcegzBhHkwy9wDLtXbC1UwlWhPRxd08NZbT7csxqALvf4n0ceecSeffbZdLvYZ5cqqmts/eOPP37CdYGX1a5d2/bt2+fG1d99992p3l+fPn2sd+/e/mW1zCd6oNeBFR0o2bp1qwvyGuYAAIhehPkYQ5APv0gUVwtHMA1nqzkhO34xhh7333+/de/ePc0Noe8AjWffsmVLkss1n7gq3GdkrLuqqut7uGvXrunetkGDBvbkk0+6rvT58uVL8Ta6PLXrEpWKzzVp0sQNUaBFHgCiH2E+hmzevJnp5yIg3MXVwlHJPlwF8JB4gV4BQN2gFQqQGEqVKuVO6dFwnp07d7px73Xr1nWXff31125stsJ3RrrYt2vXLkOPpXH1xYsXJ6xn8DdHNQv+85//WJ48efxT+wEAoh9hPoaocJB2eDKyI4Pgt2B7LfOhLK4W7l4AmmpIYT6UUw4hcQK9qlAfPnyYIIAU6SCPpo7r2bOnvfnmm25qul69etm1117rr2Sv3mdNmza1UaNGuUJ2nt9//93mzJljU6dOPeF+NQe6DnZfcMEFlj9/fjduftCgQfbAAw/wSqRjzZo1Nm7cONdDQgfjLr30UrYZAMQQqprEEHUHJMiHXziLq4W7kv3atWuTnAPZUahQIdcaCqRmzJgxdvbZZ7vArinpdABI88Z7FPA1v7n3PehRdfpTTz3VmjdvfsJ9qjV56NChruW/Vq1a9tZbb9mLL75o/fv354VIg773VYNAQb5q1aphmdtdj6VihXodda5lAEDW5fClN3cLkMDC1eU9Ei3zeiy1fKnrqqZ5WrhwIV3tASQsFcBTVftdu3ZZkSJFLBGCvA6eVKlSxTp16hSW6eAU4AcMGODG5Ksrv/6vqegAAFn7TaKbPRBlhe/CVf093LUAAACR99dff/mD/BlnnBG2IC9z5851QV50rmUAQNbRzR6Iki7v4e4JEK5q9gCA6KBu7Z988ok/yKteQbiCvKgrv1dcT+fh6NoPAPGMlnkgCgrfRaInANXsASCxKLgrwKtFvEOHDmEN8tK3b193rsdXkPeWAQBZQ5gHoqDLe6S6vVPNHgASo0XeC+5ly5a1q6++OiLroXVgjDwABA/d7IE0KEx369YtLGPJI9HtnWr2ABDfNmzYYK+++qo7BwDEF8I8kEqX95EjR7rzeJwCT/TcNJWT6DyczxUAEHp///23vf/++64qcjjqvgAAwoswn0WDBw+2888/3woXLmylS5d2Y880N65n+/btdtddd9lZZ51lBQoUsNNOO83uvvtuN71AIBWASX4aP358kts88cQTbn5djS/77bffsrrKyOTY9e7du7vzcAf6cPUEiESBP8S3OXPmWNu2ba1cuXLuu2zSpElJrtc0VJpj3JuPvlmzZrZgwYIThn4k/0585plnktxm2LBhVrFiRatdu/YJfw/g/4L86NGj7dChQ+7z0rFjRzYNAMQZwnwWzZ492+68806bP3++TZ8+3VWGbd68ue3bt89d/88//7jT888/bz/99JNrbZ02bZqbzzu59957zzZu3Og/6cCA57vvvrPPP//cPv30U7v++uutV69eWV1lZFCihFyq2SPY9P1Xs2ZNGzp0aIrXn3nmmfbaa6+5nicqgKXgru/Nf//994S5qAO/E3Vg1LNu3TobMmSIO+j56KOPWo8ePXghgWS0/6EWeQV5NSZo/yFv3rxhH6evz7I+4zrXMgAguCiAl0UK5oEU1tVCv2TJErv44outRo0a9vHHH/uv1xQwTz/9tN1www1JCtFIsWLFrEyZMik+zo4dO1wr13nnnef+To+D+KpiHylUs0ewtWrVyp1So0AR6MUXX7R3333XVqxYYU2bNvVfrh5PqX0nqruwvjP1najbHDhwIIjPAIh9OgCmFvmDBw9ahQoVIhLkZdCgQa43juaTnzFjhruM4ncAEFy0zAeJ132+RIkSad6mSJEiJ0wFoxb+kiVLWv369W348OHuh8/TokUL94OsUNmyZUvXvR/xNXYdSESHDx+2t99+24oWLepa8wOpW/3JJ5/sutE/99xzSVr0dKBUQV5/d84559hTTz0VgbUHotf333/vD/KdO3e2fPnyRWQ91PvG25/RuZYBAMFFy3wQHD9+3O6991678MIL3Y5mSrZu3WpPPvmk3XLLLUkuV9ezyy67zIX1r776yu644w7bu3evG18vefLkcb0AtmzZ4lqjInF0PZFofLw3FZ3GrsczrwCeWkZ1vnDhQg5cIOQ+++wzN8+1er5oiiwNU9LBTI++++rUqeMOjCqU9OnTx7U0qhXfo/esutrre1M1SQD8n/bt27uGA/USjFSQF9X5UYu8grxqX2gZABBchPkgUMu6xsWndtRZ3ULbtGlj1atXd13OAj3++OP+/6sVSmNO1RLlhXmPuvAjPIXvvO718d4qH4l57YEmTZrYsmXL3AFOFbK75pprXBE77zuud+/e/o2kFngdwLz11ltdr6TAYKKWewD/s2fPHjvppJNcaFbvv8svvzzim6Zv377uXPtGCvLeMgAgeOhmn00qSKeWplmzZrmK8yn9wKp7vMaATpw40bW0p6VBgwZuLlgVrUF4JUrhOw8F8BAJqmRfpUoVu+CCC1wLu4KHztP6TlQ3+7Vr14Z1PYFYoZ57b775puvlEjhML9L02dYYefU61HnyIYYAgOwjzGeRfjAV5BXQv/76a6tcuXKKLfKq4qqWpcmTJ1v+/PnTvV+1WGnKpkh2jUtUiRZuvQJ4onNa5RGpYUppHbzUd2LOnDnpnQSkEuRHjhzpDkDrgJdm1gEAJA4Ok2aja/3YsWPdlHFqdd+0aZO7XEWZNIbTC/L6gdX0MFrWSUqVKmW5cuWyKVOm2ObNm10LlYK+jqqr+usDDzwQvFcYmS58542ZT4Rwq6nBVq5c6c6B7FK9j99//92/vGbNGhfGNf5d3eI1o0e7du3cWHl1s9cUdpoL++qrr/YfVFKXe3XF1/eqlu+77z43C4gOcgL4P5rScdSoUf76E126dKGuDgAkmBy+aOqTFUM0Li0lmjO+e/fu9s0337gd0pRoB1fhSYXtVNxJO796GdT19Pbbb7eePXu6lihEpvBdIoR4z+rVq12YVz2HqlWrRnp1EONS+95TMUl1A9YUWQrrCvIK9+eff7499thj7lyWLl3qioD+8ssvrrVePZ4UUDSOnt5KCDUdcNcBeW/mmWimz5BmXFGdHU3R2LVrV4pBAkAC/iYR5pHwEq3wXeDz1nSIGq980003Uc0eQEKLlTCvIK+u9eoJE44gr5oV6jUYWMjOG/+e1nUAgND/JvGNi4SXqFXdE/V5A0As01SNCvKnnHKK67kS6ukZFdY1E496EGqqOVFBu/SuAwCEHmEeCc8rfOe1zMd74btELfgHAPFAPcnU+l2xYkX/d3goqdXdG5Gp88BpeNO6DgAQegzMRsLzCt9p/GGidLEXqtkDQGzYvn27a433VKtWLSxBXtR93qsTpHMtZ+Q6AEDo0TKPhBZY+E5FugAAiLYgrzHymuZW4+M100M4aRy8BI6Lz8h1AIDQI8wjYSVq4bvA59+wYUNXAE/nCxcuTKjnDwDRbseOHS7IqxBSyZIlU51JJ5TUpT+1cfBpXQcACD262SNhpVQALpEk+vMHgFgK8uo9dtJJJ0V6tQAAUYQwj4SV6AXgEv35A0C02rlzpwvympLo5JNPdt3rQxXkNb3cwIEDrXnz5u5cywCA2EA3e1iiF77zxswnWhdzrwDeypUr3XmiPX8AiPYgX6JECdciH8px8kwvBwCxizCPhKYAm8ghtlKlSi7M6xwAEHkaF69TOIK8ML0cAMQuutkDCWzt2rVJzgEAkVW0aFEX4nUqUqRIyB+P6eUAIHbRMg8kKKrZA0B0UJG7TZs22ZlnnukP9OHC9HIAELsI80CCSqmafSIPOQCASNizZ48bI6/q9ddcc42dffbZYX18ppcDgNhFN3sgQVHNHgCiI8hv377dtcaXKVOGlwQAkGGEeSBBedXshWr2ABBee/fudUF+27Zt/nHyxYoVC9r9M+UcAMQ/utkDCYxq9gAQ2SCvInfBDvLClHMAEP9omQcSGNXsASC8Dh48aKNGjbKtW7e6IN+9e3crXrx40B+HKecAIP4R5oEEr2YvOtcyACC08uXLZxUrVnTzx6tFPhRBXphyDgDiH93sgQRFNXsACL8cOXJY69at7ZJLLrGTTjrJjW1Xl3i1pCuAa6o4VZhPTUZvz5RzABD/CPNAgqKaPQCEh6b//O677+yyyy6zXLlyuUCvIJ+Vse0ZvT1TzgFA/KObPZCgqGYPAOEJ8hoj//3339vUqVOzPbadsfAAAA9hHgAAIAQOHDhgo0ePts2bN1uhQoX8dUqyM7adsfAAAA9hHkhQFMADEG5PP/20NWrUyAoWLJjhqdjUWq1u5GXLlrUCBQpYs2bNbPXq1Ulus337duvcubOrDq/7vemmm9z0b9EQ5Ddt2uSCvIrdlSxZMsWx7eo2f/nll7tzb6x7ajJ7ewBA/GLMPJCgKIAHINwOHz5sV199tWuhfvfddzP0N0OGDLFXXnnFzcteuXJle/zxx61Fixa2cuVKy58/v7uNgvzGjRtt+vTpduTIEevRo4fdcsstNnbsWIvk9HMK8nrOklrV+syObWcsPADAQ5gHEhQF8ACE2xNPPOHOR4wYkeFW+Zdeeskee+wxa9++vbtMIfmUU06xSZMm2bXXXmurVq2yadOm2aJFi6xevXruNq+++qqrGP/8889buXLlUrzvQ4cOuZNn9+7dQXiG/1vn8ePHuyC/b98+dxDi33//dV3oMxPaAQBID93sgQRFATwA0W7NmjUuFKtrvado0aLWoEEDmzdvnlvWubrWe0FedPucOXPaggULUr3vwYMHu/vyThUqVAjKOiu0X3rppa51XkF+y5YtGSpsBwBAZhHmgQRWqVKlJOcAEE0U5EUt8YG07F2n89KlS5/QFb1EiRL+26SkT58+tmvXLv9p/fr1QVtvfadqCIBa5DNa2A4AgMyimz2QwNauXes/r1q1aqRXB0AMeuSRR+zZZ59N8zbqCn/22WdbNMmXL587hcqjjz7qQrxa5BXkKVQHAAg2wjyQ4NXsVYRK5wsXLnRd7wEgM+6//37r3r17mrfJ6ndLmTJl3LmmdlM1e4+Wa9Wq5b+NurIHOnr0qKtw7/19JFCoDgAQaoR5IEFRzR5AMJQqVcqdQkHV6xXIZ86c6Q/vKlSnsfC33367W9bByJ07d9qSJUusbt267rKvv/7ajh8/7sbWAwAQrxgzDyQoqtkDCLd169bZsmXL3PmxY8fc/3UKnBNe3fEnTpzo/q9u6vfee6899dRTNnnyZPvxxx+ta9eurkJ9hw4d3G2qVatmLVu2tJ49e7oeRt9995316tXLVbpPrZI9AADxgJZ5IMGr2WuuZp3TxR5AqGlqNlV499SuXdudz5o1y1WAl19//dUVpPM89NBDboo3zRuvFniNP9dUdN4c8zJmzBgX4Js2beqq2Hfs2NHNTQ8AQDzL4dN8KQAS0urVq12Yr169OgXwACQ0dd/XFHU6kFCkSJFIrw4AIIHtzuBvEt3sgQQvgCc61zIAAACA2ECYBxJUSgXwAAAAAMQGwjyQoCiABwAAAMQuwjyQ4AXwhAJ4AAAAQGwhzAMJrFKlSknOAQAAAMQGwjyQwNauXZvkHAAAAEBsIMwDCYpq9gAAAEDsIswDCYpq9gAAAEDsIswDCYpq9gAAAEDsIswDCVzNfuHChebz+dy5lgEAAADEhtyRXgEAkaMAT4gHAAAAYg9hHgAAJDz1UpLdu3cn/LYAAESW91vk/TalhjAPAAAS3p49e9w2qFChQsJvCwBA9Pw2FS1aNNXrc/jSi/sAAABx7vjx4/bPP/9Y4cKFLUeOHNluUdFBgfXr11uRIkUs1sTy+sfyugvrz/bn/cPnVxTRFeTLlStnOXOmXuaOlnkAAJDwtLN06qmnBnU7KEzGYqCMh/WP5XUX1p/tz/uHz2/RNFrkPVSzBwAAAAAgxhDmAQAAAACIMYR5AACAIMqXL5/179/fnceiWF7/WF53Yf3Z/rx/+PxmBgXwAAAAAACIMbTMAwAAAAAQYwjzAAAAAADEGMI8AAAAAAAxhjAPAAAAAECMIcwDAABkwtNPP22NGjWyggULWrFixTL0Nz6fz/r162dly5a1AgUKWLNmzWz16tVJbrN9+3br3LmzFSlSxN3vTTfdZHv37g36a5PZx1m7dq3lyJEjxdNHH33kv11K148fPz7i6y+XXnrpCet22223JbnNunXrrE2bNu51LV26tD344IN29OjRiK+/bn/XXXfZWWed5d47p512mt199922a9euJLcL1fYfOnSoVapUyfLnz28NGjSwhQsXpnl7vSfOPvtsd/tzzz3Xpk6dmunPQjBlZv2HDRtmF110kRUvXtydtG7Jb9+9e/cTtnPLli0jvu4jRow4Yb30d7Gy7VP6jOqkz2Qktv2cOXOsbdu2Vq5cOfc4kyZNSvdvvvnmG6tTp46blaJKlSruNcnu5yldPgAxbfbs2b4rrrjCV7ZsWZ8+0hMnTkxy/Z49e3x33nmnr3z58r78+fP7qlWr5nvjjTeS3ObAgQO+O+64w1eiRAlfoUKFfFdddZVv06ZNSW7z6aef+qpWreo788wzfVOmTAnLcwOAaNSvXz/fiy++6Ovdu7evaNGiGfqbZ555xt120qRJvuXLl/vatWvnq1y5svv+9bRs2dJXs2ZN3/z5833ffvutr0qVKr7rrrsu6Ouf2cc5evSob+PGjUlOTzzxhO+kk05yvzEe/Qa99957SW4X+Pwitf5yySWX+Hr27Jlk3Xbt2pXkOdaoUcPXrFkz3w8//OCbOnWqr2TJkr4+ffpEfP1//PFH97s8efJk3++//+6bOXOm+z3u2LFjktuFYvuPHz/elzdvXt/w4cN9P//8s9uGxYoV823evDnF23/33Xe+XLly+YYMGeJbuXKl77HHHvPlyZPHPYfMfBaCJbPrf/311/uGDh3q3gOrVq3yde/e3a3rhg0b/Lfp1q2bew0Dt/P27dsjvu567YsUKZJkvZLvy0Xztt+2bVuSdf/pp5/ce0nPK9zbXvQd8Oijj/o++eSTFPevk/vzzz99BQsWdL8Leu+/+uqrbv2nTZuW5W2SEYR5IMal92WjL4ozzjjDN2vWLN+aNWt8b731lvtyUTj33Hbbbb4KFSq4HYTFixf7LrjgAl+jRo381x88eNB36qmn+qZPn+776quv3P8PHToU1ucJANFGO5kZCfPHjx/3lSlTxvfcc8/5L9u5c6cvX758vnHjxrll7fzpO3zRokX+23zxxRe+HDly+P7++++grXOwHqdWrVq+G2+8McllGdnhjdT6K8zfc889af6W5syZM0n40YFvhaNg/t4Fa/t/+OGHLhQcOXIkpNu/fv36rkHAc+zYMV+5cuV8gwcPTvH211xzja9NmzZJLmvQoIHv1ltvzfBnIZLrn5wO8hQuXNg3cuTIJIGyffv2vlDL7Lqn930Ua9v+v//9r9v2e/fuDfu2Ty4jn62HHnrId8455yS5rFOnTr4WLVoEbZukhG72QIxr1aqVPfXUU3bllVemeP33339v3bp1c92X1K3nlltusZo1a/q79aib3rvvvmsvvviiXXbZZVa3bl1777333N/Nnz/f3ebQoUOWK1cuq1WrltWuXdty587tLgMApG/NmjW2adMm16XVU7RoUdfFct68eW5Z5+pyXa9ePf9tdPucOXPaggULgraZg/E4S5YssWXLlrnu4cndeeedVrJkSatfv74NHz7cdesNpuys/5gxY9y61ahRw/r06WP79+9Pcr/qEn7KKaf4L2vRooXt3r3bfv7556hY/0D67VY3ff0eh2r7Hz582L3Wge9braeWvfdtcro88PbedvRun5HPQrBkZf2T03vkyJEjVqJEiRO6U2sohoY+3H777bZt27aoWHcN16hYsaJVqFDB2rdvn+S9G2vbXvum1157rRUqVCis2z6r0nvvB2ObpIQwD8Q5jeucPHmy/f333+5HfdasWfbbb79Z8+bN3fX6YtEPVeCXi8a6aUye9+WiHYYePXq4MVYaO6Qvz8KFC0fsOQFALNEOtAQGRW/Zu07n2kENpKCmEOHdJljrkt3H0U52tWrV3O9LoIEDB9qHH35o06dPt44dO9odd9xhr776atDWPTvrf/3119v777/vfgMV5EePHm033HBDkvtN6fXxrov0+gfaunWrPfnkk+7gfCi3vx7n2LFjab5vk0ttOwa+z73LMnqf4Vz/5B5++GG33xO4j6Qx2qNGjbKZM2fas88+a7Nnz3YNK3qsSK67wq0O4Hz66afuvX78+HH3Gd2wYUPMbXs1OP3000928803J7k8HNs+q1J77+uA4IEDB4LyfkxJ0sN5AOKOfsj1g3/qqae6HQYdBVSBl4svvthdry+QvHnznlDEKfmXS//+/e3ee+91f0+QBxBvHnnkEbdzmJZVq1a5g52xvP7ZpZ3SsWPH2uOPP37CdYGXqRfXvn377LnnnnPF2iK9/oHBVy3wOjjdtGlT++OPP+yMM86wWNn+CgYqCFa9enUbMGBA0LY/TvTMM8+4AoJqCQ4sJKfW4sD30nnnnefeQ7qd3lOR0rBhQ3fyKMjroNtbb73lDv7EEh0w1LZVD5NA0brtI4kwDyRAmFd3ebXOq+uVqnOqG17yI80Zoe5YABCP7r//flcpOS2nn356lu67TJky7nzz5s0uRHq0rOFL3m22bNmS5O9USV2VzL2/D8b6Z/dxJkyY4Loed+3aNd3bqvuuQoSGZam6czSsf+C6ye+//+7CgP42eVVpvT4SLdt/z549rmVSB9QnTpxoefLkCdr2T4m662uInbcdPFpObV11eVq3z8hnIViysv6e559/3oX5GTNmuMCY3uuqx9J7KViBMjvr7tH7Qwd1tF6xtO11EEoHUdTTJD2nh2DbZ1Vq7331btXMAdoe2X1NU0I3eyCOqQWlb9++bjy8ptfQD1KvXr2sU6dO7odK9AWicTw7d+4M6pcLAMSSUqVKuVb3tE7qxZQVlStXdt+n6hoa2MKqMdJeS5rO9T2soU+er7/+2nWV9YJnMNY/u4+jFrN27dq5x0uPxtVreq+MBMlwrX/guokXanS/P/74Y5Kgre7q2hFXK3ik11/vFw2P033o4HzyKceyu/1TosdSHZ3A963WU8uBLcCBdHng7b3t6N0+I5+FYMnK+suQIUPcQZBp06YlqW2QGnVj17jtwIAcqXUPpC7dek976xUL296b2lAHoAKHwYRz22dVeu/9YLymKcpy6TwAUSd5tU1Nu6PLVKU30C233OK7/PLL/ZVMNW3MhAkT/Nf/8ssv7u/mzZsXxrUHgNjw119/uamrvOnZ9H+dAqdpO+uss9wsI4FTQmkKIs0ksmLFCleROaWp6WrXru1bsGCBb+7cuW76sVBNTZfW42gaLq2/rg+0evVqV3Vd1deT07Rpw4YNc1OQ6Xavv/66m6ZJ0/hFev01ndvAgQPdbC2a1UWvwemnn+67+OKLT5iarnnz5r5ly5a56aRKlSoVsqnpMrP++i1XRfhzzz3XPZfAabm03qHc/ppKS9XOR4wY4Srxa/9B72Ov6n+XLl18jzzySJKp6XLnzu17/vnn3dRu/fv3T3FquvQ+C8GS2fXXummWAO0TBW5n77Ot8wceeMDtH+m9NGPGDF+dOnXca6iZfyK57vo++vLLL31//PGHb8mSJb5rr73WTUmsKdBiYdt7Gjdu7KrAJxfObe89nvfdrn1iTUeq/+v7X7Tueg7Jp6Z78MEH3XtfUxymNDVdWtskKwjzQIxL78tG0/FoqgxNTacvGk1doi93/dAHTk132mmn+b7++mu3s9OwYUN3AgCcSNMj6fs2+Unfs8nn/A6cFurxxx/3nXLKKW5nrmnTpr5ff/31hHmWFep0gEBTovXo0SPJAYJgSe9xtKOc/PmIgq2mMdV0Sskp4Gu6Ot1noUKF3Dzqb775Zoq3Dff6r1u3zgX3EiVKuG2ved21wx04z7ysXbvW16pVK1+BAgXcHPP3339/kqnfIrX+Ok/p/aaTbhvq7a/5srWPoJCrqbXmz5/vv077GPo8JJ8278wzz3S31/7H559/nuT6jHwWgikz61+xYsUUt7MOSsj+/fvdAR8d6NFBCt1eUwBnJ4wFa93vvfde/221bVu3bu1bunRpzGz7wMYkTYOcXLi3/axUPnfeOutczyH53+hzqOerA4aBvwEZ2SZZkUP/ZL1dH0CkqehHkyZNTrhc09GNGDHCFbFT5d6vvvrKjcnTuHkVArrvvvssR44c7rYHDx504/3GjRvnujZpKo3XX3+dbvYAAABAlCLMAwAAAAAQYyiABwAAAABAjCHMAwAAAAAQYwjzAAAAAADEGMI8AAAAAAAxhjAPAAAAAECMIcwDAAAAABBjCPMAAAAAAMQYwjwAAACQQCpVqmQvvfRSpFcjqo0YMcKKFSvmXx4wYIDVqlUrousEJEeYBwAAAGLYpZdeajly5LBnnnnmhOvatGnjrlMY9SxatMhuueUWi5Sff/7ZrrnmGitVqpTly5fPzjzzTOvXr5/t378/ag5udOrUyX777beIrA+QUYR5AAAAIMZVqFDBtSYH+vvvv23mzJlWtmzZJJcrRBcsWNAiYf78+dagQQM7fPiwff755y4wP/30027dL7/8cnd5NChQoICVLl060qsBpIkwDwAAAGTT22+/beXKlbPjx48nubx9+/Z24403+pffeOMNO+OMMyxv3rx21lln2ejRo5PcXq3o77zzjl155ZUucFetWtUmT56c7uNfccUVtnXrVvvuu+/8l40cOdKaN29+QigNbIn2+Xyu1f60005zreR6Dnfffbf/tocOHbIHHnjAypcvb4UKFXJB/JtvvvFf/9dff1nbtm2tePHi7vpzzjnHpk6dmuI66rFuuukmq1atmn3yySdWv359q1ixol199dU2ZcoUmzdvnv33v/91t127dq3bFsuWLfP//c6dO91l3uMfO3bM3V/lypVd+Nb2fPnll5M8Zvfu3a1Dhw72/PPPu4MaJ598st1555125MgRf68GPYf77rvP3bdOKXWzT4leJz2X/Pnz29lnn22vv/56uq8TEEyEeQAAACCbFEi3bdtms2bN8l+2fft2mzZtmnXu3NktT5w40e655x67//777aeffrJbb73VevTokeRv5IknnnDd0FesWGGtW7d2f6/7SosODuh27733nv8yBdLAAwkp+fjjj12Afuutt2z16tU2adIkO/fcc/3X9+rVy4Xs8ePHu/XR82zZsqW7rSgYK/DPmTPHfvzxR3v22WftpJNOSvGxFMxXrlxpvXv3tpw5k8aQmjVrWrNmzWzcuHGWUTpwcuqpp9pHH33k7ldd9fv27Wsffvhhkttp+/7xxx/uXAc4tF28Xgw6qKD7GDhwoG3cuNGdMmLMmDHu8dSrYNWqVTZo0CB7/PHH3f0D4UKYBwAAALJJLdOtWrWysWPH+i+bMGGClSxZ0po0aeKW1TqsluI77rjDjRNXqL3qqqvc5YF0m+uuu86qVKniQuLevXtt4cKF6a6DgruC7L59+1y43rVrl2uxT8u6deusTJkyLkirdV6t5T179vRfp4MDCssXXXSR61GgVvrGjRv7DxroNhdeeKE7AHD66ae7x7v44otTfCxvDLpas1OiyzMzTj1PnjzuwEe9evVc67wOZujgSPIwr9fmtddec63nWj/VEdDwAylRooTlypXLChcu7LaDThnRv39/e+GFF9zrp8fWuVr3dVAECBfCPAAAABAECpNq6VZLtdd6e+211/pbodWCq+AbSMu6PNB5553n/7+6rhcpUsS2bNmS7uOrdVvd8nUQYfjw4dalSxfLnTt3mn+jlvYDBw64IK4Qr94DR48eddeppV1d2XXgQa3t3mn27NmupVvUJf+pp55yz0MBV6336VF3+7R6GGTG0KFDrW7duq4OgNZNwx10gCGQuv4rsHvU3T4j2zM1Olii568u/oHbRdvB2y5AOKT96QYAAACQIRo7rqCqwm7nn3++ffvtt/4x4JmhFudAGsedfCx+Wq3zCrjqdp6R1nwVzvv1119txowZNn36dNdr4LnnnnOBXT0CFIKXLFmSJAyL15X+5ptvthYtWrjn/NVXX9ngwYNdi/Vdd911wmPpQIPo4EXt2rVPuF6X68CBeAdAAoO/N87do67/6imgx2vYsKFrXde6L1iwIGjbMyXaLjJs2DBXQyBQ8u0EhBIt8wAAAEAQqBCaulurRV5jv1WQrU6dOkm6kQcWqBMtV69ePWjb//rrr3ct6jVq1Mjw/ap4nA5EvPLKK664nMbI6z4UuNUyr1ZsdfkPPAV2R9cBgdtuu82NP1c9AIXclOj+1NVdBziSh+nly5e7AwoaYiBqaZfAMeyBxfC8bdeoUSN3AEL3rfXKSsu4egPoeWbUKaec4goF/vnnnydsF3W5B8KFlnkAAAAgiF3tNS5bc6nfcMMNSa578MEHXWE7BU+NUVcFdwVghdhg0fhwBeDkrdGpUSE4BVm1MKt6/vvvv+/CvarMq/K7nk/Xrl1d67fW+99//3XjzTUUQGPP7733XlcrQC3qO3bscEXmUhsT71XqV4X9jh07Wp8+fdxBAbWk6yCAWvhVFFC0DhdccIE988wzLiDrgMJjjz12Qkv/qFGj7Msvv3S30cwAixYtynSgVnV/1RjQkAhV9Fedg/RorL6GGBQtWtQVBNTQisWLF7ttoFoIQDjQMg8AAAAEyWWXXeaKqqnrulrJA2mKNE2dpoJ3GsetYmkqJKfp0YJJU6pprH1Gb6uWdI15V0DXgQUdZFCQF62fwrzCtnoa6DkoMKtYnuhAgCraK8Ar1CrUpzVFmx5Hc82rO7oOAuiggQ5waAo/PW5gN3WN+9f4fY2J10EDjUkPpOCvnhCdOnVyByM0m4Ba6TNLlew1FZ4K/Hk9AtKj4QU6MKHto+J/l1xyiTswQss8wimHL60KFAAAAAAQIupur0Jyal3XOH1vXD2A9BHmAQAAAEQ00L/66quugJ0K+AHIGMI8AAAAAAAxhjHzAAAAAADEGMI8AAAAAAAxhjAPAAAAAECMIcwDAAAAABBjCPMAAAAAAMQYwjwAAAAAADGGMA8AAAAAQIwhzAMAAAAAEGMI8wAAAAAAWGz5f/6+SKw1FXxYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -786,16 +786,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 17:51:10CET\n", + "Last updated: 2025-11-03 14:17:19CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "numpy : 2.2.3\n", - "pycircstat2: 0.1.12\n", - "matplotlib : 3.10.1\n", - "scipy : 1.15.2\n", + "numpy : 2.3.4\n", + "matplotlib : 3.10.7\n", + "scipy : 1.16.2\n", + "pycircstat2: 0.1.15\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -810,7 +810,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -824,7 +824,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/B2-Zar-2010.ipynb b/examples/B2-Zar-2010.ipynb index 2869950..41a6a7e 100644 --- a/examples/B2-Zar-2010.ipynb +++ b/examples/B2-Zar-2010.ipynb @@ -123,7 +123,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGMCAYAAAAMSw/bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASiJJREFUeJztnQeYE9XXxi+9Su+99yZLtwtIBwEFBBQEQRFQioKACiIiRRQpgiBNBKRJFVCaIAIi6ydNqnR26YLS23zPe/5MTMKW7G4m097f8wxLZrLZm2TmvnPOPSWRpmmaIoQQQgwksZEvTgghhACKDSGEEMOh2BBCCDEcig0hhBDDodgQQggxHIoNIYQQw6HYEEIIMRyKDSGEEMOh2BBCCDEcig0hhBDDodgQEiDjx49XBQoUUClTplRVq1ZV27Zt8xzbv3+/euSRR1SePHnUkCFDTB0nIVaEYkNIAMydO1f16tVLDRw4UP3++++qfPnyqk6dOurs2bNyvFu3bqpt27ZqyZIlsm3evNnsIRNiKSg2hATAp59+qjp16qRefvllVapUKTVx4kSVOnVqNXXqVDn+999/q7CwMFWuXDmVK1cudenSJbOHTIiloNgQEgu3bt1S4eHhqlatWp59iRMnlsdbtmyRx4MHD5bHECAcg9VDCPmPpF7/J4REwfnz59Xdu3dV9uzZffbj8b59++T/9evXV+fOnVP//POPypo1q0kjJcS60LIhJEikSJGCQkNINFBsCImFLFmyqCRJkqgzZ8747MfjHDlymDYuQuwExYaQWEiePLks/q9du9az7969e/K4evXqpo6NELvANRtCAgBhz+3atVOVKlVSVapUUaNHj1ZXr16V6DRCSOxQbAgJgJYtW0oAwPvvv69Onz6tKlSooFatWvVA0AAhJGoSaZqmRXOMEEIICQpcsyGEEGI4FBtCCCGGQ7EhhBBiOBQbQgghhkOxIYQQYjgUG0IIIYZDsSGEEGI4FBtCCCGGQ7EhhBBiOBQbQgghhkOxIYQQYjgUG0IIIYZDsSGEEGI4FBtC4gkKpqOJGgunExI7FBtC4smdO3fUsmXL5CchJGYoNoQQQgyHYkMIIcRwKDaEEEIMh2JDCCHEcCg2hBBCDIdiQwghxHAoNoQQQgyHYkMIIcRwKDaEEEIMJ6nxf4IQ64OSM5cuXVKRkZGeLSIiQp09e1bduHFDqgR4b7dv31bz5s2T333++edV8uTJVdKkSX22lClTquzZs6ucOXPKlitXLvmZPn16lShRIrPfMiEhhWJDHM8///yjjh49+oCQeD/GBlHxBqIAsUiVKpWIR7JkyXzEROfixYvq7t27HhHSBen69evq9OnT8ve9gQh5i4/3pu/Lnz+/SpcuXcg+I0KMJpHGKoLEQfz999/q//7v/1R4eLhnO3TokM9zMmXK9MBEH9XEnzp16hj/FoRlxYoVqn79+iJE0XHt2rUoBc7/MUTLm6JFi6qwsDDPVrFiRRFAQuwILRtia2HxFhVshw8flmNp0qRRFSpUECHARF2sWDERkBw5cqgUKVKEdJwQrcKFC8sWE7CsYAlBeA4cOOB5T0uXLhXBAkWKFHlAgDJkyBCid0LAk08+KefW6NGj5XGBAgVUjx49ZCPRQ7EhtgAuqV9++UVt377dMwkfOXJEjqVNm1Y9/PDDqnHjxp5JGOKSJEkSZSfgXsPEha169eqqXbt2sh8uun379nne9++//66WL1+url69KschYt4C9Mgjj8hrkdDw22+/yc0NiRmKDbEsuMv//vvv5c5+9erVIjgPPfSQCMuzzz7rIyyJEzs3sBKiWbp0adleeukljwB5Wz/YPvzwQ3XlyhWxpJ555hkR3wYNGqhs2bKZ/RYcTdasWc0egj3Amg0hVuDevXvazp07tSFDhmhVq1bFWqKWOHFi7dFHH9WGDx+u7d69W7t7965mFW7duqUtXrxYfloBfDb4/IYNG6bVqFFDS5QokWzVq1fXPv74Y/n88BnHhytXrsjm/fs3b96UfTdu3Ijyud7fFT4j7Lt+/XpAz40PTzzxhNatWzftzTff1DJkyKBly5ZNmzRpkrx++/bttbRp02qFCxfWVqxY4fmdXbt2aXXr1tXSpEkjz2/btq127tw5n/G9+OKLcjxHjhzaJ598In8Hf0Mnf/782meffeZ5PGrUKK1MmTJa6tSptTx58mhdunTR/v33X8/xadOmaenTp9dWrVqllShRQl67Tp06WkREhOZkKDbEVDBhrV69WuvevbtWoEABERhMCs2bN9dmzJjhc+FbDauJjT9nzpyRia1p06YyoeGzLVSokEyUa9eujdO48bvYzp4969mHmwLse+WVV3yei0kW+48cOeLZh8kY+1q3bu3z3CxZssh+CKEOBCI+QAQeeugh7cMPP9QOHDggP5MkSaLVq1dPXhP7MPFnzpxZu3r1qvb3339rWbNm1fr166ft3btX+/3337XatWtrTz31lOc18fx8+fJpa9asESFv2LCh/I2YxAb/X7dunbx/fM7FixeX19HBd5IsWTKtVq1a2m+//aaFh4drJUuWfOCzcRoUGxJyLly4oH3zzTdaixYttHTp0slkkzdvXu3111+Xuz3/O2WrYnWx8QYWBe7oX3vtNS137tzymePuulWrVtrs2bO1ixcvOkJsYAXr3LlzR0QWlolOZGSk/L0tW7aIGD3zzDM+r3HixAk5vn//frFGkidPrs2bN8/n3E2VKlWMYuPP/PnzReC8xQZ/49ChQ55948eP17Jnz645Ga7ZkJCAvBOsv0yePFmtWrVK1hwqVaqkevfuLWsL5cuXZ6KjgSBgoF69erJ98cUXEh6OtTC0tW7durWsCyFyr3Pnzqpu3bo+eUQAa0HAOxz87bfflggs/+ciERYgP0mna9euqlOnTg8EbSD/yf+57du3j/f7LFeunOf/+FuZM2dWZcuW9exD3pQ+xh07dqj169dLgIk/f/31l6wR3rp1S1WtWtUnbL548eIxjmHNmjXq448/lqAO5Fjh3L9x44ZEFOqfnx6hqINISf1zcyoUG2IoiBj76quv1LRp0ySkFwIzZswY1aRJE5U7d26zh+dKIOoImcY2aNAgdfLkSbVkyRI1ZcoU1ahRI/leOnTooDp27CjJpSCqaCtUTcDmT1TPRR5SVLlI0T03vvj/Lt6r9z79hubevXsioHi/w4cPf+B1MPn752cFAsSzYcOGqkuXLuqjjz4Scdq0aZN8lhAuXWyiGqfTUx6dG8JDTAPJjvPnz5eIqEKFCqlx48appk2byt00wkRff/11Co2FyJMnj1geCKlGaDkmS+SQFCxYUKychQsXynfqNCC2e/bskVBz5C95bxBBWB4QhV9//dUntwtRgNGBqEAI2ahRo1S1atUkUhLJu4RiQ4LIuXPn1JAhQ+TibdGiheSBwKLBxTZ+/HhJhCPWBqHkEydOlO8MFinqxT333HNy0zBs2DB14cIF5RQgsKja8MILL8hNEFxnP/zwg3r55ZfFzQv3GiwSuAvXrVundu/eLS6+mMLsIVQQ5rFjx0qC8cyZM+XzJBQbEgTg+4bbJW/evOI6QG7Hzp07JQkTFycT3uwHJlp8p1u3blV//PGHWKlwucEKwtoLJl67gxJFOEchLHh/WNvBGhQqMuiCMnLkSPXYY4+Ju61WrVrq0UcfFUGODqw9fvrpp+KaK1OmjJo1a5as3xDWRiPxBK4CLC7D3fLTTz95XDGYiLAo6wYCrY3mJMt10qRJEmAAy+fpp5+WyRluNwZ3kNigZUPiDLL5K1euLFn8WPScO3euuAzeeecd1wiNWzPlBwwYIIvgs2fPFjcpIgkRrQU3EyExQbEhAYPFY7gS4HJAMcsNGzaIGwLrM264syf/A9811jngYkPoMKyamjVrqjp16kgQCCFRQbEhsYLoGwgKrBmELyNMFiLz+OOPmz00YoEKyBAdRKwdO3ZMIrwgRPEJGybOxvViM2HCBEkEQ6MqbKi2u3LlSs9x+KhxQeEY7uAQneMPoq9wzHtD5I43SGZEzgKKSHqHUloZ+OVfffVVVapUKZlQEFmGhX+4TuijJzo4F5o1ayZBAzjPf/75Z1WyZElZw0MxVbuDaxnv0buFAOYE/2v+tdde8/k9JM0i9BlJoMuXLzdh5BZDczlLly7Vvv/+e6mbhBIV/fv3l7pFevkMlKFAEUNs+LhQT8kflKsYPHiwlMLQNxTw0zl27JhWpEgRbfPmzVK6AnWQrAze4zvvvCNlOTJlyiSFBf0LKBJ7lasJJdeuXdNGjBihZcyYUUrXvPvuu9qlS5c0O7Jt2zap2VeuXDmfEjUojdOpUyefa/7y5cue4yi5hCKcqPv3448/yv9RB9DNuF5sogIXyVdffeWzb/369TGKTUy1kVBZtlKlSiJAhw8flpPXDpPEgAEDbDtJhAKKTcyg3pp+04LaYHa7aUFttKJFi4pg+Fd69n/sD4QH8wIKyWIrUKCA9s8//2huxvVuNG8Qb//tt99KlA3caXE1tRGJBTcZYvNRD0kH8fZw1aGlL3qSIPHRamHMKFWCNsT9+/dXrVq1Ep87xsk2xCS+ZMyYUXJMcC41b95c9enTR1xKM2bMkHPO6sANiJwxBMVEBXJosmTJItd3v379PN1UAdzuSA7VW4536dJFejG5GrPVzgqgdDiqw6IcOSrhwq3mT0yWDe7YcHzHjh3ahAkTpJdGz549H3je+fPnxXqwEgcPHtQee+wxeW8tW7aUxyQwaNnEjX379mnPPfecnGso4w8r36rMmTNHetLolpi/JfPll19KhXLMHahgjkraaOXgDzwDbrdodCg293uqYJLdvn27mP0oe75nz56AxcafKVOmaEmTJrV0qXw0qxo9erS4ONDj5KeffjJ7SLaDYhM/0BsGLibc4KG0vpUa4oHjx49LIzXcPAbqNkPfGv+2AcQXik0U1KxZU+vcuXO8xQbBBXgu7uSsCC6Ixx9/XMaIzobewQwkcCg28Qd3++ito1s53r1vzGbRokUyLng69A2P0fUU/0efHH9wDeE5sHZI1HDNJgrgT75582a8fx+1pFBbyWq93/G+UCAQ60cnTpyQhDw8Zu0yEmqwfoG0A/R+QQFMrHvgsRXWcpCgumvXLrmO9Q2tMdq0aSP/9+/JA7AfYI2GRI3r+9lgYQ8NpfLly6f+/fdfKcOBWl+o/gqQJ4BNT1LDSYgLBc9Hr4otW7ZI3sxTTz0l+/G4Z8+eqm3btrJAahVQTgaFFZH1j4VPBDRE1TSKkFBP7MjPQWVltJ5YsGCBBKsgd80scB1D/LzBDRkCgLAf4oh5AjXxsA+5Z7jmkeTs3byN+KG5nA4dOoj/GO1f0Y8cLjTExesMHDjQ0xLXe0NrV4D+4VWrVpXAgpQpU0oOzdChQy2zXgN/+NixYyWUGeGX6I1OggPdaMEF1x3ag6dNm1YCbe7du6dZBe81G6zpwA2NHLQUKVJIDt3bb7/tk2dDHoRVnx2MtzWD0MsRI0bQmgkibqv6HArQRvmtt96SSgSwemDl6N1Cib3hmo0Dgd8bzcpg0qNC79q1a6UsPIWGWB3kp6BEFNzYqMkHt9WXX37p+JbJboBi4zCw7oQWzN26dVMvvviirDGh7wghdgKVxXHuIsEYNcfQLfTKlStmD4skAIqNw9xmqHyAAAc0NkN0j+uzloltQfUKuNMWL16sfvzxR/XII4+IpU7sCcXGISCMGS0AELKNCs3onkiIE2jSpIlEecJqxzmOqtLEflBsbA582ViPqV27tvRG37Ztm5R3J8RJYO3mt99+U2XLlhW3MCweYi8oNjYGLZkRZYa8me7du0tklJVyewgJJshpQeAAeix17txZznlEBBJ74PqkTrty7tw5WTSFewHhoQhxJsTpIMR83LhxYuEgCObPP/9U8+bNEyEi1oaWjUmtDBISyomMZfiu9+3bJ2s1FBriNmDdIKQf10KVKlXUnj17EpQqYIUyOU6HYhNiIDK///67+r//+794Cc53332natSoIaVy4MNGhA4hbgTlYXANIH+sWrVqEoEZF1BmaubMmWr16tVyTTKXx1goNiEGvcrhAvj777/jJDi48xo8eLA0oUJDp02bNkl9NkLcDGqo/fLLLxIgg6g1NGsL5Jrq27ev3LShgOb+/fslvBrXJjGQKErYkBCApkzo64HaarHVgEK/nRYtWkhNtiFDhliqZpSbYW0064AagHodwzZt2sT4nWzdulVLnDix1qtXL+3zzz+Xuob4PewnxkHLxiRSpkwpLrDYLJwbN26oZs2ayZ3XwoUL1YABA3gHRogfaOkxaNAgNXfuXAkYeP7556NtE4IyOD169JCaa++//766fPmyZz8xDoqNhQXn6tWrqlGjRmrdunXij4boEEKip0WLFnJjtmrVKvXss8+q69evP+CORp8pf6EBxYoVM2HE7oFiY1HBQbY0qgkjtHnlypVSK4oQEju4bpYvXy7VzlFJAzdtutAgEADh02fPnvURGqzhVK1a1cRROx+2GLAIcJdhoRNJmQULFpQLBjkEEBosZBLrwRYD1mbjxo0STFOhQgXxDKABIloY4OYuRYoUEo0G1xksGgqN8dCysZiFc+zYMfmJCBnkEVBoCIl/aDTCmlE9+tFHH1UREREeoQEQGFRGp9CEBoqNhcCC5pAhQ9SpU6ek3hlqnRFC4g8SPseOHauOHz8uYdEo8UTMgWJjEdCrA+4YtAlA/aesWbPGO/GTEPLfGk3u3LnFHY0qA1jDuXbtmtlDcyUUGwuAkx9RZzD3ITTIhg4kLJoQErPQ6Gs02CA44eHhkvyJNVISWig2JoOTHp010RoAi80w++OSh0MIiVlo9DUa/B9Raqi+gSK2dKmFFoqNieBkR/IZomYQLYNFTG8oOIQER2h0nnzySbVkyRIJHEDLabYoCB0UG5OAcKAXDdrdLlq0SBpCRQUFh5DgCI0OctZQjQM3eKgkQEIDxcYkECEzdepUNWnSJFW3bt0Yn0vBISQ4QqODQIEJEyZI1OfEiRNDNk43Q7ExAZjwPXv2VL1791bt2rUL6HcoOIQER2h0XnnlFen2iQ3VBoixsIJAiDl48KAkkWHDYmWSJEniXWng4YcfZlFOE2EFAfsKjc6dO3fEs4BWA+iNg+odxBho2YQQ1GJC2CVyaObMmRNnoQG0cAgJjtCApEmTSqXoDBkyyLWJfDdiDBSbELaCbtOmjZTMWLp0qZzc8YWCQ9xOMIRGJ3PmzBKhdvToUfXSSy+xRbRBUGxCRP/+/SWpDHdRxYsXT/DrUXCIWwmm0OiULl1azZo1S9oToC8OCT4UmxDwzTffqBEjRqiRI0eqOnXqBO11KTjEbRghNDqo4jF06FD14YcfSgM2ElwoNgaDygCIekHUGSLQgg0Fh7gFI4XGu6/NCy+8oNq3by/XUyCgVcHMmTPlJ4keio2BYH0G3QIRNYZYfqMixyg4xOmEQmgArtEpU6aoUqVKScDAmTNnYhUn1DLEWg9+om07iRqKjUGgHS2EBr3Rv/vuOxEEI6HgEKcSKqHRSZUqlazdILQdrdjR+iMqYMnAPe4N3HCoLk0ehGJjEN26dZMqzjhpc+bMGZK/ScEhTiPUQqOTJ08eKSO1ffv2aEvaoMtnVGC85EEoNgaAmksoRTN+/HhVqVKlkP5tCg5xCmYJjQ7cYp9//rm4wFetWvXAcbSTjoro9rsdik2QuXjxourcubP0Pn/55ZdNGQMFh9gds4VG59VXX1W1a9dWnTp1kqRsb1AFpE+fPg+s4bDNdNSwXE2QQU9zWDbw26JDoJmwtI2xsFyNs4VGBy2ly5QpI+1AEDwQ1doNXGqwaCg00UPLJoigMgByamB6my00gBYOsRtWExqQL18+NWrUKHGNIzHbHwgMbjIpNDFDyyaI7jNkIYeFhYllYyUrghaOMdCycb7Q6GCaRMFOeCywpU+f3uwh2Q5aNkHijTfekEkd/WmsNpnTwiFWx8pCA3BNT548WcbXq1cvs4djSyg2QQBF/FBXCe6zXLlyKStCwSFWxepC4+1O+/TTT6N1p5GYoRstgVy4cEHcZ5UrV5Y1G6tZNf7QpRY86EZzj9DoYLqsV6+e2r17t2wJqd7uNmjZBMF9hgzjL7/80hYTNy0cYhXsJjTe7rR///2X7rQ4QrFJAKgOMHv2bDVmzBjLus+igoJDzMaOQqOTN29ecadNmzZNLFsSGHSjJdB9VqVKFVmzsYNV4w9dagmDbjT3CY0Opk187zt37pToNLrTYoeWTQLcZ7du3bKN+ywqaOGQUOMEofF2p6GNtBGtQ5wIxSYebN68WdxnMKVDVWTTKCg4JFQ4RWi8i3V+8sknavr06So8PNzs4VgeutHiCD6uJ554Qi4YXDhoIeAE6FKLO3SjuVdodO7evavKlSsna7arV682eziWxhkzZQjB5PLzzz+rjz/+2DFCA2jhEKNwqtCAJEmSSA+bNWvWyEaih5ZNHO9icNefKVMmtX79ekfe/dPCCRxaNu4WGh1MoY8++qikQKANvJNuQoMJP5U4gHUaNEQbNmyYYydhWjgkWLhBaADmAswJWLdZsGCB2cOxLLRsAgR3LcWLF5e7fXTwczq0cGKHlk30uEVovEEPK7Qa+PPPP3k+RAEtmwBBiPOJEyfEP+sGaOGQ+OJGoQFYx/3rr7+i7HlDKDYBgdIUQ4YMUe3bt1clS5ZUboGCQ+KKW4UGICqtTZs26oMPPlBXr141eziWg2ITAGichItn0KBBym1QcEiguFlodAYPHizVRVABnvhCsYmFs2fPith0795daiK5EQoOiQ0Kzf8oWLCg6tKlixo+fLiIDvkPik0swH2GWPp+/fopN0PBIdFBofFlwIAB8plgDYf8B8UmBg4fPqwmTpyo+vbtK7k1boeCQ/yh0DxItmzZ1FtvvaXGjRunjh8/bvZwLAPFJgYGDhyosmTJot58802zh2IZKDhEh0ITPeh1ky5dOleu80YHxSYajh49KkmcMIlTp05t9nAsBQWHUGhi5qGHHhLX+9dff61Onjxp9nAsAcUmGmAC484E4c7kQSg47oVCExgdO3aUG9UvvvjC7KFYAopNFKBHxVdffaU6deqk0qRJY/ZwLAsFx31QaAIHN6sdOnRQkyZNUtevX1duh2ITBTB9kcjZtWtXs4dieSg47oFCE3eQMnHx4kU1a9Ys5XYoNlFcUGPHjlVNmzZV+fPnN3s4toCC43woNPGjcOHCqmHDhmrMmDGuvy4oNn6gAdK+ffsYgRZHKDjOhUKTMDCX7Nq1S/3000/KzVBs/ECZCVQ5Rn8KEjcoOM6DQpNwnn76aVW6dGnXl7Ch2PiFO69atUp169aNJfXjCQXHOVBoggPmkm7duqlly5a5OgyaYuMFSoMjPr5ly5ZmD8XWUHDsD4UmuLRu3Vqui2nTpim3QrG5z507d9TUqVPlpGC4c8Kh4NgXCo0xYdCtWrWSG1p8vm6EYnOflStXqoiICMmtIcGBgmM/KDTG0alTJ3Xs2DEJQnIjFJv7TJ48WVWsWFE2EjwoOPaBQmMsVatWVWXKlJG5xo1QbJSSRbvvv/9ede7c2eyhOBIKjvWh0IQmUKBTp05qyZIl6syZM8ptUGyUUjNmzJAJ8YUXXjB7KI6FgmNdKDSho23btipp0qQy57gNio1SauHChapx48ayiEeMg4JjPSg0oSVTpkyqQYMG6rvvvlNuw/Vic+LECZn4mjRpYvZQXAEFxzpQaMyhcePGatu2ber06dPKTbhebJYvXy5mbd26dc0eimug4JgPhcY86tevL+s3WCd2E64Xm6VLl6rHH39cZciQweyhuAoKjnlQaMwlS5YsqkaNGjL3uAlXiw3aCKxbt07MWhJ6KDihh0JjDRo1aiT5Nm7qc+NqscGXfevWLfniiTlQcEIHhcY6NG7cWIRm7dq1yi24WmxgxqIaa6FChcweiquh4BgPhcZaFC9eXBUtWtRVrjTXis3du3dlgY4uNGtAwTEOCo31SJQokXhUEKDkllpprhWbrVu3qvPnz9OFZiEoOMGHQmNdGjdurCIjI1V4eLhyA64VG5iv2bJlU1WqVDF7KMQLCk7woNBYm0ceeURlzJhR+ty4AVeLDXqDJ0mSxOyhED8oOAmHQmN9kiZNKjk3blm3caXYHDx4UO3bt48uNAtDwYk/FBp7udJ27NghrQecjivFBmYrLsDatWubPRQSAxScuEOhsRd16tQRCweBAk7HlWIDs7VWrVrsyGkDKDiBQ6GxH+nTp1dPPvmkK1xprhOb27dvSyQaxIbYAwpO7FBo7Evt2rXVL7/8IukYTsZ1YvPnn3+qmzdvqkqVKpk9FBIHKDjRQ6GxN2FhYerq1avqwIEDysm4TmwQ046EqgoVKpg9FBJHKDgPQqGxPxXvt6J3er6NK8WmRIkSKm3atGYPhcQDCs5/UGicQcaMGaVkFsXGYeALhdlK7AsFh0LjNMLCwig2TuLOnTsS006xsT9uFhwKjfMICwuT89jJddISuy044MaNGxQbh+BGwaHQOJOwsDB15coVSTh3KondGBzw8MMPmz0UEiTcJDgUGudS0QVBAq4TG/SRYHCAs3CD4FBonE2mTJlUwYIFKTZOAV+kfgdBnIWTBYdC4w4qVqwYo9j8+uuvaubMmfLTjrhGbBgc4HycKDgUGvcQFhYm33VUQQJ9+/ZV1apVUy+99JL8xGO74RqxQZVn9Pym2DgbJwkOhcZdhIWFqX///VcdOnTIZz8smREjRvjsw2O7udxcIzb6F8PgAOfjBMGh0LiPsPs3wv4iEl0ZG0TX2glXiU2xYsVUunTpzB4KCQF2FhwKjTvJnDmzyp8//wNig3krKqLbb1VcIzZYr6FV4y7sKDgUGnfz8MMPy1zlTdWqVVWfPn189mHNBvvthGvE5uTJkypfvnxmD4OEGDsJDoWG5MuXT506deqB/cOHD5fWKF9//bX8HDZsmLIbSZULwAQTGRmpcuXKZfZQiImCg54hEBzcPSK510pQaAjAHIW5KipgydjNmnGdZYMLGJFoOXPmNHsoxCSsbOFQaIgO5qhLly7JfOU0XCE2+p0CxcbdWFFwKDTEG32OOn36tHIaFBviKqwkOBQa4o8+R0XnSrMzrhCbiIgI+UmxIVYRHAoNiQp9XVmfs5yEK8QGdwkovskCnMQKgkOhITF17cT5QMvGpjASjVhFcCg0JCYQJZkjRw6KjV3BF0cXGjFbcCg0JBAwV1FsbAr8nxQbYqbgUGhIoMALwzUbm0LLhpgpOBQaEhdo2dgYig0xS3AoNCSu5KTY2JMrV65IjwgGCJBQCw6FhsSHXLlyqfPnz6tbt24pJ+F4sWFCJzFDcCg0JL7kdGgVAceLzcWLFz29IggJheBQaEhCyJIli8/c5RQcLzZ37tyRn8mTJzd7KMQFgkOhIQklWbJkPnOXK8Xm448/VpUrV1YPPfSQypYtm3r22WfV/v37PcePHj0qSUlRbfPnz/c87/jx46pBgwYqderU8jpvv/32Ax/sBx98oPLkyaMeffTRaNuiBoL+ukmTuqKbAjFRcCg0JBgkvT9X3b59O6ivi7XrHj16SDfQVKlSqRo1aqjffvvNcxzn9vvvvy9uPByvVauWOnjwoM9rbNmyRVWoUEEVKFBATZkyxTix2bBhg+ratas071m9erV8GM8884y6evWqHM+bN6+skXhvEA2UialXr5485+7duyI0WPzavHmzmjFjhpo+fbq8SR30Hfn+++/VkiVLVOvWrVW3bt1UfKHYkFAIDoWGBIuk9+eqYFs2r7zyiszbM2fOVLt27ZK5G4KiN2sbMWKEGjNmjJo4caL69ddfVZo0aVSdOnXUjRs3PK/RsWNH9d5776nZs2eL8XHixInAB6AlgLNnz+Kq0zZs2BDtcypUqKB16NDB83jFihVa4sSJtdOnT3v2TZgwQUuXLp128+ZNebxs2TKtSZMm2q1bt7StW7dqlStXjvcYV65cKWM8fvx4vF+DEHD9+nVtzZo1Wnh4uHbv3j05PxcvXqzduHFD++2337S1a9fK/wlJCIcOHZI5a926dUF7zWvXrmlJkiTRli9f7rO/YsWK2oABA+R8zpEjhzZy5EjPsUuXLmkpUqTQ5syZ49mXL18+7fDhw9qVK1e0SpUqaXv27Al4DAlas7l8+bL8zJQpU5THw8PD1R9//CFq6G2GlS1bVmXPnt2zD+qJO8I9e/Z4HkNN4WarW7euKGh8oWVDjLZw0DOeFg2xsmVz584d8SrhHPYG7rJNmzapI0eOSPQbLB2d9OnTS2dQzNk68ECVLFlSjlWrVk2VKlUq4DHEewaG2wD+P1xgZcqUifI58OlhYPAN6uANeQsN0B/roX5YIFu1apU6e/asypAhQ4IW9/UvTF90IyRYLaZxI7V7925xJzdq1IhCQ4JCsvtzVTDXbLDOXr16dfXhhx/KnIw5d86cOSIkRYoU8cy9Uc3N3iHYMBxatWolyyCoUB0X4i02WLvBhQZVjAq0NYVfD/69+ILggegI9IvQ/Y0Qx2AvuBF3kiRJElWpUiXxfw8ePFguPFjlRYsWlePXrl0TUUqc2PHBnsQA7t2755m7Ap2zArmZxlpNhw4dVO7cueUcrlixonrhhRfEAxUXsJaDLa7ES2ywYL98+XK1ceNGiRiLigULFshF99JLL/nsR/nsbdu2+ew7c+aM51ig6AEKsQEXB/jhhx9UunTpAn59QmID7jScs+gZj6hMPXJn6tSpav369XIh169f3+xhEptx8X5+DVy1EIXYgEWN5YbYKFy4sAR5IaALbl9EnbVs2VIVKlTIM/diLvZOgMdjRJ8FgziJDXzU3bt3V4sWLVI//fSTKliwYLTPhQutcePGKmvWrD77Ycp99NFH4iLTLRcIB4QgLv6/2rVrx+ku4amnnnrARCQkruB8wg0Mwkgfe+wxOYdhweACLVeunIT5jxo1So7Dp62LDaJ2EFmJ38H5j+cREhV6hBfOH0SMBRvdMsHNEm7CEYWGuRyCs3btWo+4QJAQldalS5fQiw1cZ3CNISQZPkDdl4fFIiw06Rw6dEisnhUrVjzwGvjwICovvviivEm8xrvvviuvHRefd6BrMN4LYly3IcEQGtTbQ/6X7ibDjQwuSriVH374YblgsZ6DO0b9nIM1j+dgDdF7DXLcuHFy3uPGjDdDxBvMqcGcsyAsMBiKFy8uczTyG0uUKKFefvllufnBGvyQIUPEHQzxwRII6rQhnzIoxCV8Dk+Paps2bZrP8/r166flzZtXu3v3bpSvc/ToUa1evXpaqlSptCxZsmi9e/fWbt++rRnBjz/+KGM8cuSIIa9P3AHOZf/wZj30GT/9w6L9Qaj/zJkztblz53r24XnZs2eX83PTpk0+18fGjRvlNYn72L9/f6wpJfEB516hQoW05MmTS5hz165dJbzZ+3x877335JxEyHPNmjVlLMEiQXk2dmD9+vXyxR08eNDsoRAHCY2/2IDYBMcfvBZyHHBRewvL0KFD5Zxt0aKFz/MvXrwY1PdFrMmePXvk+//ll180J+H4cBmjsnGJO4hLZYC41lLDa8FtsWbNGh93r96HHuubOlgDwvpnsWLF5P/EudxxaLoGxYaQaIhPCZpgtCd45513pC0w1jF1du7c6Qnfx3qpTt++fSXHB9FvxBnccWgiuuPFRr8w9WoHhARCQmqdBUNwYN1439ni9RASu3jxYp/nIQUBG8ap89dff6m33npL6gsS+3H5/lyFmpJOwvFio8eMO7HNKjGGYBTVNKLFNKpplC9f3mcfith++umnEh2ng2g4hF9/8sknPs+F+Pz555+edABiTSIiIuSn07oLO8tOiwKUVMBkoX+BhMREMKs3e5e2geAgLDrY+TVo+YHNm9KlS6tXX31V8n68XTNI4ENCH8K39WMQQ4TY+tfMIuYRGRkpHpn4ZOlbGcdbNvpiKy0bEhtGtAkwwsKJDfw9lIl//fXXPfsuXLggJXZwLUCMdJDrhoRqJJoSaxAZGenINvaOFxvdHKXYkJgwsh+NGYLjDxJGUfUDvUu8S6DArYagA+/JDYnWiHpD/xO63EJPZGSk41xornCjAVxIFBsSHaFofBYKl1og+BcHRcDB4cOHfdqEYIyo8wb3mvfzR44cKWXqUfMN3R6JMURERFBs7Cw2KJ9DiJkdNq0iON7g76NAo3/dQQQTeBe6hTX2+eefi2WEHie62KAPCtaA8L786yCS+BEZGanCwsKiPIaSRwcOHBDLE9+DnUjsFrFhgACxQitnK7jUYgNrOCgg2qRJE88+WDS9evVSzZs3V1WqVPHsX7hwoWratKnq1KmTz2scPXrUku/Nzms2ffv2leKcqKSPn3hsJ1wjNlggRd8RQswSGjsJjj9IMITYoHWId5QUckEQcIBq1jpoLYJijrB0zp8/b9KI7cmVK1ekQoS/2MCiQTCHN3iM/XbBFWKj+z+9O84R92Km0NhZcKLitddek2rXECIduHkgTniPmTNn9uzHc9C1d9myZSaN1vpE3l9b9l+zwWcaFXoPJTvgCrFhYiexktA4TXCA99oT+qEgCx7Rb977161bJ22Ib9686dmH4AR0j0QXSaI8c5S/ZYM1mqiISw8ws6HYENdgJaFxouB4g5496G3vDdZ3UPHgySef9OxD58hp06apL7/80ue58+bNk5bz3sLkZrGpWrWq6tOnj88+rNmgtbNdcEU0WpYsWcSsZ5CAe7Gi0Fg5Ss0IEPXmH/mGybJfv36qQIECPt9V586dxTravn27JzIL3X3xuTg56i0yMlJCzqNqYT98+HDVrFkzRqNZGeQKsIqAe7Gy0DjdwokN1HobOnSoiIsORKZmzZoiTN614NDVFG24UWTUGyd9VhH3c2yiu9mAwKDLsd2ExjViA/AFIkeAuAs7CI3bBSeqeoZwuaF1sXeZff36RaSbDqLdUB0BrYud0EYkIiLCkaVqXCU2JUuWVLt27TJ7GCSE2ElodCg40TNlyhRJYUAFA53Nmzerc+fOeSLgdNCUDmsce/fuVXZi586dMlc5EdeIDfy++CKZa+MO7Cg0OhSc6EFZHe/1jLp166qtW7eq0aNHPyBMKK9z4sQJn8i3qVOnisVkRa5fvy616qKrHmB3XCU2EJo9e/aYPRRiMHYWGh0KTuBRb1i/eOaZZzz78FkNGjRIqhog014H+T0dO3ZUb775ps9r4Cb0xo0bymx27NghlRooNjYHsf8IFAgPDzd7KMRAnCA0OhSc+IHF9Xbt2qlJkyb5WEEILkClAwQf6CC0GuV30qdPr06ePOnZb0a16/DwcOnOWrZsWeVEXCM2qVOnFl8oxca5OElodCg4wQNrPSjI613tADXcIDTogpo7d27P/t69e6vixYurWbNmhWx84eHhqkyZMo44b10tNnpMP8XGmThRaHQoOMYBQUEZK7jSvMONkfOEoAPvFgvHjh2T4qT+60PBIjw83LEuNNeJjR4k4F06ndgfJwuNDgXHOCAyCJ/2ZtWqVbLGg3YLOj///LNaunSp+vbbb32ei6oIS5YskfMvvty4cUPWkyk2DgFfJHy0iPggzsANQqNDwQlt1FvDhg2l+ogOgg0++eQT1aVLF88+fAdvv/225Pl4zyvIl9m/f3/A39HOnTsdHRzgOrFBkADuYuhKcwZuEhodCo55oNYb1nIQfODdTgFCg7nFu04ZQq9LlCghrbUDITw8XPKEnBoc4DqxQe8NnAAUG/vjRqHRoeBYB/T2mTx5snwPCMP2LrmDcxJ17uISHJAyZUrlVFwlNgBmKsXG3rhZaHQoONYG7jYIzssvvxzQ88MdHhzgWrFB8pQT6ii5EQrNf1BwrA3OTe+upjEFB6ABHcXGYeALxZfLIAH7QaF5EAqO/dm1a5fc/FJsHIbeK4SuNHtBoYkeCo69Cb8fHFCuXDnlZFwnNggSKF26tHQIJPaAQhM7FBz7snHjRunb4+TgAFeKDUD8/Pfffy9x7cTaUGgCh4JjP27fvq1WrFghc5LTcaXYNG7cWJou/frrr2YPhcQAhSbuUHDsxaZNmyRqrVGjRsrpuFJsUOUVfcxReoJYEwpN/KHg2IelS5dKF2HvhFCn4kqxSZIkiZitFBtrQqFJOBQc66NpmsxB8LR4FwF1Kq4UG4AvGC1jrdq1z61QaIIHBcfa7N27V7qHusGF5mqxQTVXTGSo7EqsAYUm+FBwrMvSpUulz9bTTz+t3IBrxQaZvejYR1eaNaDQGAcFx5osW7ZM2lk7PeRZuV1sdFcaelTgIiTmQaExHgqOtTh79qzasmWLzEFuwdVigyAB5NqsXLnS7KG4FgpN6KDgWIfvv/9efjZo0EC5BVeLDXqOox4RXWnmQKEJPRQc67jQqlWrprJly6bcgqvFBsCMhWVz69Yts4fiKig05kHBMZcbN26oH374wVUuNOB6sUHYISY8rN2Q0EChMR8KjnmsX79eOny6JeRZx/Vig3auefLkoSstRFBorAMFxxyWLl2qChUqpEqVKqXchOvFBpm7TZo0UQsWLGBDNYOh0FgPCk7oC28uWrRI5hw3VA3wxvViA9C6NSIiQq1atcrsoTgWCo11oeCENjDgzJkz0baLRnHgmTNnOrJIMMXmfvdONFWbPHmy2UNxJBQa60PBCQ2TJ09WVatWVWXLln3gWN++fSVC7aWXXpKfeOwkKDb36dSpk8S+w8IhwYNCYx8oOMZy9OhRiULDXOMPLJkRI0b47MNjJ9VupNjcp3Xr1jIRTps2zeyhOAYKjf2g4BjH1KlTpUxWy5YtHzh24MCBKH/HSaVsKDb3SZ8+vWrRooWaMmWKTJIkYVBo7AsFJ/jcuXNHxAY3tWhN70+xYsUe2IfnIfHcKVBsvOjcubM6cuSIWrt2rdlDsTUUGvtDwQkuq1atUqdOnZI5JiqwjtOnTx+ffQgUcFLEWiKNZ5EHfBTlypVTRYoUkfBEEnfcJDR6//j69eurZMmSKadmu//yyy8qY8aMEkTjpMkvlNSvX1+dPn1aro2YwNoNXGqwdCBAToKWjRe4kLp3766WLFkiFg6JG24SGrdACyfh7N+/X0pivfHGG7E+FwLz4osvOk5oAMXGj7Zt28pd3Lhx48weiq2g0DgXCk7CGDt2rMqaNatq1aqVcjMUGz/QOQ+hiQgUuHLlitnDsQUUGudDwYkfly5dUtOnT1evvfaaoyLL4gPFJgq6du0qQjNjxgyzh2J5KDTugYITdxCBhoryXbp0UW6HYhMFefPmVc2aNVOff/45w6BjgELjPig4gYPGjHChIaUiZ86cyu1QbKLhzTffVAcPHmQXz2ig0LgXCk7gddBQNQBzCWHoc7TgY8EFhfDWbdu2MeTTCwqNe0KfY4Jh0TFfIxUrVpRk8Q0bNpg9HEtAyyYacOEMHTpUbd++XS1cuNDs4VgGCg3RoYUTPd9++63asWOH+vjjj80eimWgZRML9erVU4cPH1Z79uxRSZMmVW6GQuOL2y0bHVo4viAgoGTJkqpMmTKSs0f+By2bWMCdCTJ6EVXiZig0JDpo4fgyadIkWauBZ4T8B8UmgLbRKJ43aNAg6RvuRig0JDYoOP8DKRMffvih9KQpXbq0q5qjxQbFJgBw8pw7d06NGTNGuQ0KDQkUCo5Sn376qbp8+bL64IMPXNccLTYoNgFQqFAh9eqrr6phw4apixcvKrdAoSFxxc2CgxvSkSNHSlJ4vnz5AmqO9quLLByKTYC899570pMCguMGKDQkvrhVcD766COVOHFi1b9//4Cbox1yUCfO2KDYBEj27NlVr169JCP45MmTyslQaEhCcZvgICBgwoQJ0pMmc+bMATVHAzVq1FBugWITB9566y3pnheVP9YpUGhIsHCT4AwcOFBCv3v06BFwc7R3331XFSxYULkF5tnEkdGjR6vevXtL3k2JEiWUk6DQxA3m2QSG0/Nwdu3apcqXLy9tSV5//XXXNkeLDYpNHLl586acKJUqVXJUZQEKTdyh2ASOkwWnUaNGau/evbLxPIgeutHiCCbhwYMHq++++05t3bpVOQEKDTEap7rUfv75Z7V8+XI1ZMgQCk0s0LKJZ+nwypUry50taqfZeXKm0MQfWjbutnDwXvAe0qVLp7Zs2SKRaCR6+OnEgyRJkkj5mn379knCp12h0JBQ4yQL5/3335e6idOmTaPQBAA/oQSUsUE0CfJuYN3YDQoNMQsnCA5c6KNGjZLI1FKlSpk9HFtAN1oC3ShVqlSRn+Hh4baZsCk0wYFuNHe61K5fvy7jRa8ajN/t1eADhZZNAsAEM336dLV//34JGrADFBpiFexq4cB9duTIEXGfUWgCh2KTQBBfj5Nv+PDhlnenUWiI1bCb4CAQAO4z3FzSfRY36EYLkjsFVVyRg2NVdxqFJvjQjeYulxrcZ1irzZAhA91n8YCWTRDdacgMtmIpGwoNsTp2sHBQjPfYsWNyrVNo4g7FJkiULVvW40777bfflFWg0BC7YGXB2bx5s/SqgfsMLZ9J3KEbzQB3GlwCcKfh4jETCo2x0I3mDpea7j7DeDAu5NmRuEPLxgB32sGDB013p1FoiF2xmoWDfDrdfUahiT8UGwPcaSg3ji5827ZtM2UMFBpid6wiOHCfffbZZ1IpxGlV3kMN3WgGgI6e1atXVxcuXBDByZIlS8j+NoUmdNCN5myX2pkzZ6QGYp48eaTgJq2ahEHLxgAQqbJgwQJ15coV9fzzz8ukFAooNMRpmGXh3Lp1SzVv3lyu3Xnz5lFoggDFxiDy588v/W42bdoUbfe+YEKhIU4l1IKD10cTNESVLlq0SCwbknAoNgby2GOPqS+++EK2iRMnGvZ3KDTE6YRScNBxc8qUKWrSpEkSXUqCA8XGYDp16qS6deumunfvrjZs2BD016fQELcQCsFZs2aN6tmzp7R+b9euXdBf380wQCAEwO9bt25dtWPHDjHNCxYsGJTXpdCYCwMEnBU0cOjQIaniXrVqVem+yXWa4ELLJgRgIsIiI0qSN2nSRP37778Jfk0KDXErRlg4ly9fVo0bN1ZZs2ZVc+bModAYAMUmRGTOnFktXbpUSpO/9NJLIhbxhUJD3E4wBQdt3tu0aaMiIiLkGkWhTRJ8KDYhpHTp0mr27NlqyZIlatCgQfF6DQoNIcEVnAEDBqiVK1equXPnquLFiwd9nOR/UGxCTKNGjdRHH30kGclwrcUFCg0hwRWcWbNmSfHckSNHqjp16hg2TkKxMYV33nlHtWrVSrVv314ukECg0BASXMFBsE7Hjh0l6gwRaMRYKDYmgOgZxPGj0x8WJY8fPx7j8yk0hARXcLB2+uyzz0o0G3LgzK4s7QYoNiaROnVqWbtBpNrTTz8ti5NRQaEhJLiCc+LECbnmcA2iQoDZrUDcAsXGRHLnzq3WrVsn7aRr1qypzp4963OcQkNIcAUnMjJShAbg2suRI8cDr/Hrr7+qmTNnyk8SPCg2JlOgQAE56S9duqRq1aollaIBhYaQ4AoObuZwU4ekUFxzefPmfeB3+/btKyVqkJ6An3hMggMrCFiEP//8Uz355JNyAaxevVodPnyYQmNxWEHAPpUGUBgXFg0EB2WjihUr9sDzYclEVQtt69atUlWAJAxaNhYBwQKoy3T06FERHZj7FBpCEm7hYI3m8ccfl3VRXGNRCQ04cOBAnPaTuEGxsRBlypRRo0ePlkgZ5OFcu3bN7CERYmuuXr0qLdohOGPGjJGbuuiIToQgWCThUGwsgr5Gg6AB3Y0Gs//8+fNmD40QW4JOm/ASnDx5Uq1du1Zly5Ytxig1uMr69Onjs2/69OmqUKFCIRqxs+GajQWIKhhg9+7dspiJwoAw/aOKmiHmwjUb63Lq1Cm5fnBNQWhKliwZcLVorN3AdVaxYkUpMUWCA8XGZGKKOtu3b59cMGnTppULhh0DrQXFxpocO3ZMrhu0dkbUWZEiRQxvT0Bih240E4ktvLlEiRJq48aNcoFggRNrOYSQmHvS4FrBtYVrx1tozGgxTf6DYmMSgebRFC5cWC6axIkTS2Onn3/+OeRjJcQOrF+/XtZdICi4ZpDDFhUUHHOg2JhAXBM2kSOAWH9EqyFoYPLkySEbKyFWB2LxxRdfqNq1a8s6y5YtW2J1OVNwQg/FJsTgpEZ76LgmbGbJkkX9+OOPqnPnzrJ1795d1gwIcTNYl+nSpYvq2rWr6tatm/SlyZQpU0C/6y04O3fupOAYTFKj/wDxBQuSiOdPmjRpnBM2sQg9fvx4VbZsWREbVB1ATxx0ASXEbZw7d04999xzYsl89dVX0i4gruiCA28DgwWMhZaNCaRJkyZBlQFee+01CYeGhYR1nD179gR1fIRYHVgilStXlohNrNXER2i8BQcVoImxUGxsyhNPPCHNnyBcqOe0bNkys4dESEj47rvvVI0aNSR8GdcAM/ztAcXGxhQsWFBt3rxZFkabNGmiPv74Y/qdiWOBq2vw4MGqefPmktu0adMmlS9fPrOHRQKEYmNzkPC5YMEC9d5776n+/fur1q1bs6YacWSNs5YtW6qBAwdK3cC5c+eKVU/sAwMEHABycFBsEKHR6Kd+8OBBtXjxYlYcII6pCADLHQmbcKE1bdrU7CGReEDLxkE8//zzUooDPTuQb7Bw4UKzh0RIgkC0ZVhYmLp8+bJEnVFo7AvFxmGg3tP27dtl0RRhoS+88AIrRxPbgRsm3DzBdYbKzQgEQMg/sS8UGweCUupwN8yaNUv98MMPUrl20aJFZg+LkICYP3++nLMIacbaDNYkkdRM7I3rxQYRXIjXf+ihh2SSfvbZZ9X+/fs9xy9evCgJlMWLF1epUqWS6Jc33nhDzHpvkBDmv3377bc+z8G6CtZRHn30UcO7/+HvI1gAiZ/Vq1dXzZo1EyvnwoULhv5dQhKSpAlrpkWLFhLaj3MX/zca1FFr1KiRypUrl1w3WO/0ZtCgQVIUFwEJCLeuVauWtCHwBnXY/K//YcOG+Txn8uTJUnoK3gf/33cFmsupU6eONm3aNG337t3aH3/8odWvX1/Lly+fduXKFTm+a9curVmzZtrSpUu1Q4cOaWvXrtWKFi2qNW/e3Od18FHidSIjIz3b9evXPcc3bdqkVa5cWdu+fbs2fvx4rXbt2iF7j/fu3dNmzpypZcyYUcuWLZv23XffhexvO5lbt25pixcvlp8kYcybN0/LkiWLljlzZm3OnDlyzoaKFStWaAMGDJDrAtfxokWLfI7PmjVLW716tfbXX3/JPNGxY0ctXbp02tmzZz3PyZ8/vzZ48GCf61+fQ8CxY8e0IkWKaJs3b9bmz5+vlSxZUnMbrhcbf3AC4YTbsGFDjBdG8uTJtdu3b3v2RXWSerNs2TKtSZMmMjFt3bpVhCfUREREaI0aNZKxtm7dWjt//nzIx+AkKDbBud5atGgh52TTpk2106dPmzqe2K5jcPnyZXnemjVrfMTms88+i/Z3du3apVWqVEkE6PDhw1qBAgU0t+F6N5o/unsspmJ+eE66dOmkvpk3KAYI3zJKyEydOtUnwbJOnTrSlwZlMerWrSvuu1CTM2dOtWTJEvX1119L0y/4xfGYEDNAtCTOQZRemj17tjzOnj27snrhz0mTJqn06dOr8uXL+xyD2wx1CuEmGzlypLpz547nWJkyZVS5cuXk9/CehwwZolyH2WpnJe7evas1aNBAe+SRR6J9zrlz58TN1r9/f5/9MKHhKvv999+1YcOGaSlSpNA+//zzB37/zJkz2s2bNzWzOXXqlNawYUO5Q2vTpo124cIFs4dkO2jZxA9cQy1btrSMNROIZQPPRJo0abREiRJpuXLl0rZt2+ZzfNSoUdr69eu1HTt2aBMmTNAyZMig9ezZ84HXOX/+vHbt2jXNjVBsvHjttdfEHD5x4kS05nOVKlW0unXrxjrBvPfee1qePHk0KwO/+IwZM+TCyJEjhzZ58mQf1yCJGYpN3MDnNHHiRFk3zJQpk6yFhHJtJiFiA/fXwYMHtS1btmgdOnQQNxhuHKNjypQpWtKkSbUbN24YPGL7QLG5T9euXUUc4E+Nin/++UerXr26VrNmTZ+F/+hYvny5nLh2ONlOnjzpudMsUaKEtnDhQstNAlaEYhMYOJewzlmsWDHPeiEW0K1IIGs2AIv9Q4cOjfY4AgnwWvv27QvyCO2L69dscH6h6RLyUNatWyfFLf1Bo7NnnnlGJU+eXC1dulRKksfGH3/8IWGSCWklECpy584tYdpIBs2bN68UOkS49E8//WT20IjNWbt2raxhIoS5UKFC0hUT+V85cuRQdi8KevPmzRivf5SRQjoF+R+ur42GRX0sTmKhHLk2p0+flv1YyENejS40KG75zTffyGNsIGvWrCpJkiRS3v/MmTNS6h9CtHr1ajV06FD11ltvKTuBsiDoBooJ4p133lFPPfWUJ5ihQoUKZg+P2Ijw8HDVr18/uRaqVq0qCZqoBGBFrly5InXXdI4cOSJigSAhLPh/9NFHqnHjxhJgg2ocaGB46tQpyQkCKKODvBlcL5hD8Lhnz56qbdu2csNJ7qO5HHwEUW3ImQFY9IvuOUeOHJHnrFy5UqtQoYKWNm1aWUQsX768+KYRcGBn1wfyAbxdH8gzIP9BN9qDHDhwwBPKDJcscles7pKN7hpv166duMwRxICgAKQ75MyZU2vcuLFPgEB4eLhWtWpVLX369FrKlCklhwYuNju40ENJIvyjCw8h/ty+fVtNmzZNsqhxV/fqq6+qd9991/IhqqH6bBBCjt4qaNntZiIjI6XXDNoz49xAtQxUIPdPDyDuxfVrNiRmMIl27txZ3AyYTGbOnKkKFy6s3n//fY87kbgX5JwNGDBAFSlSROqYweWKFhdo00yhId5QbEhAIBkV6ziHDx+WdS4krWHBF82s9HUu4h4iIiKkYR/Ogc8++0y9+eabcm5gnRJrnYT4Q7EhcQKLpsOHD5e711atWqlRo0ZJcdIXX3xRotmIs9m2bZtq06aNFJQcPXq0LILD6kVATIYMGcweHrEwFBsSL1C9ety4cerkyZPiOkE/eFTPRh8dNLzyLtVB7L82hdB4hMMjsmzr1q1i2eK7//zzz6VaMiGxQbEhCQJ3s7179/a07EUuEhpeIV8JQQXHjx83e4gknhw9elRcZSifj/YUcKUiRQDtMXr06CHpAYQECsWGBAXkG6FlL/IpkKNQr149cbFhokK0FpJmcYdMlOULTaIgJgrHYj0GlgtyTHbu3Cn5V/g/vuvoQL4Jgkhc2a+FxExIA62Jq/j333+l3hrqyeFUQ/21d955R3IxnICT8mxQVqVPnz5StwzfFUozTZ061acnS2zg973zVPCYEB3m2ZCQgDtjdCrEXS/CZUuVKiV3ydhQziSmu2WrYuc8m7t378raC8ovYdu3b59kuyPQo1OnTlISPy7AkkEFDX/wN7DOQwjdaCQkoJfH2LFjJfkPbhoIDBIAa9SoIWVAOnToIO14r169avZQHQvKsmBdrX379lKbDO3JkbCL7wBuToQzw20WV6EB0bU5N7r9ObEPzLoiIQU5GM2aNZNNv7tGbTncXWPiQ+HSmjVrisXTsGFDKRJK4g8ixvTPF4VmsSaD5l2wXho1ahQ0q7JYsWJx2k/cB91oxDIgok2fGH/++WcRIxQH1d1t6IyYKFEiZRWs6EbD5YzKyrp7DP+HmDzxxBPyGUJgsPBvBH379lUjRozwPEZIPBKBCQEUG2JJLl68qFatWiUT5sqVK6U0DvI5cCcOAdI3M0u4W0FsUG0cFZb1DUmXcFUiLBnjgrigcneoqg9j7QZjgmsOLdIJ0aHYEMsD1w8sHbQ/0CfVS5cueZJLvcUHW6iKhIZabCAi3sKCDessAGKiv3+0xHjssccsY20RAig2xHbglEXPEf+J9++//5bjsID8BQhBCHYSG4iI//uD2Oglg/zfH/KZrORiJMQfig1xBDiNkfHuP0HDHQfSpEkjIgTR8d7896EiQqCTdlzFBmOERQYhgXB4b/779Kg8uKK8RaVixYpSl4zCQuwGxYY4FpzaKJcD0YElFNXk7t8mAZ1WvcUHIcLYh3L5EBT81DdM+Hv37lVFixaVv4V6cBAg/MR2/fp1qYjt/Xf9WwljbSUq8UO5H4gL2nRTWIgToNgQV4N231FZFvo+LHZDIHQB8d4gLIiY08XIe4MwoU4cxCo6Kwob6o0R4gYoNoTYOBqNELvACgKEEEIMh2JDCCHEcCg2hBBCDIdiQwghxHAoNoQQQgyHYkMIIcRwKDaEEEIMh2JDCCHEcCg2hBBCDIdiQ0g8SZw4sSpcuLD8JITEDMvVEEIIMRzekhFCCDEcig0hhBDDodgQQggxHIoNIYQQw6HYEEIIMRyKDSGEEMOh2BBCCDEcig0hhBDDodgQQggxHIoNIYQQw6HYEEIIMRyKDSGEEMOh2BBCCDEcig1xPRs3blSNGjVSuXLlUokSJVKLFy/2OX7lyhXVrVs3lSdPHpUqVSpVqlQpNXHiRJ/n3LhxQ3Xt2lVlzpxZpU2bVjVv3lydOXPG5zlLly5VxYoVU8WLF1fLly8PyXsjxCpQbIjruXr1qipfvrwaP358lMd79eqlVq1apb755hu1d+9e1aNHDxEfiIdOz5491bJly9T8+fPVhg0bVEREhGrWrJnn+M2bN0WMvvjiCzVu3DjVpUsXdevWrZC8P0IsAfrZEEL+By6JRYsW+ewrXbq0NnjwYJ99FStW1AYMGCD/v3TpkpYsWTJt/vz5nuN79+6V19qyZYs8vnz5spY/f37t3LlzshUoUED7559/QvKeCLECtGwIiYUaNWqIFXPq1CncnKn169erAwcOqGeeeUaOh4eHq9u3b6tatWp5fqdEiRIqX758asuWLfI4Xbp06uWXX1Y5c+YUdx0sm4ceesi090RIqEka8r9IiM0YO3as6ty5s6zZJE2aVNpAT548WT3++ONy/PTp0yp58uQqQ4YMPr+XPXt2OaYzcOBAccHh9yk0xG1QbAgJQGy2bt0q1k3+/PkloADrL7BQvK2ZQEifPr1h4yTEylBsCImB69evq/79+6tFixapBg0ayL5y5cqpP/74Q33yySciNjly5JDF/kuXLvlYN4hGwzFCCKPRCIkRrMVgg+vLmyRJkqh79+7J/8PCwlSyZMnU2rVrPcf379+vjh8/rqpXrx7yMRNiRWjZENeDPJpDhw55Hh85ckQsl0yZMski/xNPPKHefvttybGBGw2hzV9//bX69NNPPa6xjh07Sog0fgfBAN27dxehqVatmonvjBDrkAghaWYPghAz+emnn9RTTz31wP527dqp6dOnyyJ/v3791I8//qguXrwogoOAAeTWIAlUT+rs3bu3mjNnjuTU1KlTR3Jq6EYj5H9QbAghhBgO12wIIYQYDsWGEEKI4VBsCCGEGA7FhhBCiOFQbAghhBgOxYYQQojhUGwIIYQYDsWGEEKI4VBsCCGEGA7FhhBCiOFQbAghhCij+X/+lcEcQAYJCAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGMCAYAAAAMSw/bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASkZJREFUeJztnQm4TIX/xr/2LCH7vmffskZ7yFIofiEqxY8SfiVFaJEkS0qhRKgklWQNZUsJya2QrNndaw/Zt/N/3u/fmWbGXebeO2fmLO/neY5rzsyde+bMOec93z2NYRiGEEIIIRaS1so3J4QQQig2hBBCIgItG0IIIZZDsSGEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGEEGI5FBtCQmTs2LFSokQJue6666Ru3bqyZs0a33NbtmyRW265RYoUKSKDBw/mPiUkCIoNISHwxRdfyLPPPiuvvPKK/Prrr1KtWjVp3LixHDp0SJ/v0aOHPPzwwzJ79mxdVq5cyf1KiB8UG0JC4K233pIuXbrI448/LhUrVpRx48ZJlixZZNKkSfr833//LTVr1pSqVatKoUKF5Pjx49yvhPhBsSEkCS5cuCAxMTHSsGHDf0+ctGn18apVq/TxoEGD9DEECM/B6iGE/Et6v/8TQuLhyJEjcvnyZcmfP3/AejzevHmz/r9Zs2Zy+PBhOXnypOTNm5f7kZAgaNkQEiYyZcpEoSEkASg2hCRBnjx5JF26dHLw4MGA9XhcoEAB7j9CQoBiQ0gSZMyYUYP/S5Ys8a27cuWKPq5Xrx73HyEhwJgNISGAtOeOHTtKrVq1pE6dOjJq1Cg5ffq0ZqcRQpKGYkNICLRt21YTAF5++WU5cOCAVK9eXRYuXHhN0gAhJH7SGIZhJPAcIYQQEhYYsyGEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGEEGI5FBtCUggapmOIGhunE5I0FBtCUsilS5dk7ty5+pMQkjgUG0IIIZZDsSGEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGEEGI5FBtCCCGWk976P0GI/UHLmePHj0tcXJxviY2NlUOHDsm5c+e0S4D/cvHiRfnyyy/1dx988EHJmDGjpE+fPmC57rrrJH/+/FKwYEFdChUqpD9z5MghadKkifZHJiSiUGyI6zl58qTs2rXrGiHxf4wFouIPRAFikTlzZhWPDBkyBIiJybFjx+Ty5cs+ETIF6ezZs3LgwAH9+/5AhPzFx38x1xUvXlyyZ88esX1EiNWkMdhFkLiIv//+W3777TeJiYnxLdu3bw94Ta5cua650Md34c+SJUuifwvCMn/+fGnWrJkKUUKcOXMmXoELfgzR8ufGG2+UmjVr+pYaNWqoABLiRGjZEEcLi7+oYNmxY4c+lzVrVqlevboKAS7UZcuWVQEpUKCAZMqUKaLbCdEqXbq0LokBywqWEIRn69atvs80Z84cFSxQpkyZawQoZ86cEfokBNx55516bI0aNUoflyhRQp555hldSMJQbIgjgEvqp59+krVr1/ouwjt37tTnsmXLJjfddJO0aNHCdxGGuKRLl06cBNxruHBhqVevnnTs2FHXw0W3efNm3+f+9ddfZd68eXL69Gl9HiLmL0C33HKLvheJDL/88ove3JDEodgQ24K7/G+++Ubv7BctWqSCc/3116uw3H///QHCkjatexMrIZqVKlXS5dFHH/UJkL/1g+W1116TU6dOqSV1zz33qPjee++9ki9fvmh/BFeTN2/eaG+CM0DMhhA7cOXKFWP9+vXG4MGDjbp16xo4PNOmTWvceuutxrBhw4w//vjDuHz5smEXLly4YMyaNUt/2gHsG+y/oUOHGvXr1zfSpEmjS7169Yw33nhD9x/2cUo4deqULv6/f/78eV137ty5eF/r/11hH2Hd2bNnQ3ptSrjjjjuMHj16GE8//bSRM2dOI1++fMb48eP1/R977DEjW7ZsRunSpY358+f7fmfDhg1GkyZNjKxZs+rrH374YePw4cMB2/fII4/o8wUKFDDefPNN/Tv4GybFixc33n77bd/jkSNHGpUrVzayZMliFClSxOjWrZvxzz//+J6fPHmykSNHDmPhwoVG+fLl9b0bN25sxMbGGm6GYkOiCi5YixYtMnr27GmUKFFCBQYXhdatWxsff/xxwIlvN+wmNsEcPHhQL2wPPPCAXtCwb0uVKqUXyiVLliRru/G7WA4dOuRbh5sCrPvvf/8b8FpcZLF+586dvnW4GGNd+/btA16bJ08eXQ8hNIFApASIwPXXX2+89tprxtatW/VnunTpjKZNm+p7Yh0u/Llz5zZOnz5t/P3330bevHmNfv36GZs2bTJ+/fVXo1GjRsZdd93le0+8vlixYsbixYtVyO+77z79G4mJDf6/dOlS/fzYz+XKldP3McF3kiFDBqNhw4bGL7/8YsTExBgVKlS4Zt+4DYoNiThHjx41Pv30U6NNmzZG9uzZ9WJTtGhR46mnntK7veA7Zbtid7HxBxYF7uiffPJJo3DhwrrPcXfdrl0747PPPjOOHTvmCrGBFWxy6dIlFVlYJiZxcXH691atWqVidM899wS8x969e/X5LVu2qDWSMWNG48svvww4djNnzpyo2AQzffp0FTh/scHf2L59u2/d2LFjjfz58xtuhjEbEhFQd4L4y4QJE2ThwoUac6hVq5b07t1bYwvVqlVjoaOFIGGgadOmurz33nuaHo5YGMZat2/fXuNCyNzr2rWrNGnSJKCOCCAWBPzTwZ9//nnNwAp+LQphAeqTTLp37y5dunS5JmkD9U/Br33sscdS/DmrVq3q+z/+Vu7cuaVKlSq+daibMrdx3bp1smzZMk0wCeavv/7SGOGFCxekbt26AWnz5cqVS3QbFi9eLG+88YYmdaDGCsf+uXPnNKPQ3H9mhqIJMiXN/eZWKDbEUpAx9uGHH8rkyZM1pRcC8+6770rLli2lcOHC3PtRAN0LkDKNZeDAgbJv3z6ZPXu2TJw4UZo3b67fS6dOnaRz585aXAriy7ZC1wQswcT3WtQhxVeLlNBrU0rw7+Kz+q8zOzdcuXJFBRSfd9iwYde8Dy7+wfVZoQDxvO+++6Rbt27y+uuvqzitWLFC9yWEyxSb+LbT7SWP7k3hIVEDxY7Tp0/XjKhSpUrJmDFj5IEHHtC7aaSJPvXUUxQaG1GkSBG1PJBSjdRyXCxRQ1KyZEm1cmbMmKHfqduA2G7cuFFTzVG/5L9ABGF5QBR+/vnngNouZAEmBLICIWQjR46Um2++WTMlUbxLKDYkjBw+fFgGDx6sJ2+bNm20DgQWDU62sWPHaiEcsTdIJR83bpx+Z7BI0S/uP//5j940DB06VI4ePSpuAQKLrg0PPfSQ3gTBdfbtt9/K448/rm5euNdgkcBduHTpUvnjjz/UxZdYmj2ECsI8evRoLTCeMmWK7k9CsSFhAL5vuF2KFi2qrgPUdqxfv16LMHFysuDNeeBCi+909erV8vvvv6uVCpcbrCDEXnDhdTpoUYRjFMKCz4fYDmJQ6MhgCsqIESPktttuU3dbw4YN5dZbb1VBTgjEHt966y11zVWuXFmmTp2q8RvC3mgkhcBVgOAy3C3ff/+9zxWDCxGCsl4g1N5obrJcx48frwkGsHzuvvtuvTjD7cYu1iQpGLMhyQbV/LVr19YqfgQ9v/jiC3UZvPDCC54RGq9Wyg8YMECD4J999pm6SZFJiGwtuJkISQyKDQkZBI/hSoDLAc0sly9frm4IxGe8cGdP/h9814hzwMWG1GFYNQ0aNJDGjRtrEggh8UGxIUmC7BsICqwZpC8jTRYic/vtt3PveRx0QIboIGNt9+7dmuEFIUpJ2jBxN54Xm/fff18LwTCoCgu67S5YsMC3g+CjxgmF53AHh+ycYJB9hef8F2Tu+INiRtQsoImkfyqlnYFf/oknnpCKFSvqBQWZZQj8w3VCHz0xwbHQqlUrTRrAcf7jjz9KhQoVNIaHZqpOB+cyPqP/CAFcE4LP+SeffDLg91A0i9RnFIHOmzcvCltuMwyPM2fOHOObb77RvkloUdG/f3/tW2S2z0AbCjQxxILdhX5KwaBdxaBBg7QVhrmggZ/J7t27jTJlyhgrV67U1hXog2Rn8BlfeOEFbcuRK1cubSwY3ECROKtdTSQ5c+aMMXz4cOOGG27Q1jUvvviicfz4ccOJrFmzRnv2Va1aNaBFDVrjdOnSJeCcP3HihO95tFxCE070/fvuu+/0/+gD6GU8LzbxgZPkww8/DFi3bNmyRMUmsd5I6Cxbq1YtFaAdO3boweuEi8SAAQMce5GIBBSbxEG/NfOmBb3BnHbTgt5oN954owpGcKfn4MfBQHhwXUAjWSwlSpQwTp48aXgZz7vR/EG+/eeff65ZNnCnJdfURiYW3GTIzUc/JBPk28NVh5G+mEmCwke7pTGjVQnGEPfv31/atWunPndsJ8cQk5Ryww03aI0JjqXWrVtLnz591KX08ccf6zFnd+AGRM0YkmLiAzU0efLk0fO7X79+vmmqAG53FIeaI8e7deums5g8TbTVzg6gdTi6w6IdOTrhwq0WTGKWDe7Y8Py6deuM999/X2dp9OrV65rXHTlyRK0HO7Ft2zbjtttu08/Wtm1bfUxCg5ZN8ti8ebPxn//8R481tPGHlW9Xpk2bpjNpTEss2JL54IMPtEM5rh3oYI5O2hjlEAw8A163aEwoNldnquAiu3btWjX70fZ848aNRqhiE8zEiRON9OnT27pVPoZVjRo1Sl0cmHHy/fffR3uTHAfFJmVgNgxcTLjBQ2t9Ow3EA3v27NFBarh5DNVthrk1wWMDSCAUm3ho0KCB0bVr1xSLDZIL8FrcydkRnBC33367biMmG/onM5DQodikHNztY7aOaeX4z76JNjNnztTtgqfDXPAYU0/xf8zJCQbnEF4Da4fED2M28QB/8vnz51PsmkQvKfRWstvsd3wuNAhE/Gjv3r1akIfH7F1GIg3iFyg7wOwXNMBE3AOP7RDLQYHqhg0b9Dw2F4zG6NChg/4/eCYPwHqAGA2JH8/Ps0FgDwOlihUrJv/884+24UCvL3R/BagTwGIWqeEgxImC12NWxapVq7Ru5q677tL1eNyrVy95+OGHNUBqF9BOBo0VUfWPwCcSGuIbGkVIpC/sqM9BZ2WMnvjqq680WQW1a9EC5zHEzx/ckCEBCOshjrhOoCce1qH2DOc8ipz9h7eRIAyP06lTJ/UfY/wr5pHDhYa8eJNXXnnFNxLXf8FoV4D54XXr1tXEguuuu05raIYMGWKbeA384aNHj9ZUZqRfYjY6CQ90o4UXnHcYD54tWzZNtLly5YphF/xjNojpwA2NGrRMmTJpDd3zzz8fUGdDriUN/gkWIOIO/K0ZpF4OHz6c1kwY8VrX50iAMcrPPfecdiKA1QMrx5wWSpwNYzYuBH5vDCuDSY8OvUuWLNG28HSbEbuD+hS0iIIbGz354Lb64IMPXD8y2QtQbFwG4k4YwdyjRw955JFHNMaEuSOEOAl0FsexiwJj9BzDtNBTp05Fe7NIKqDYuMxths4HSHDAYDNk93i+apk4FnSvgDtt1qxZ8t1338ktt9yiljpxJhQbl4A0ZowAQMo2OjRjeiIhbqBly5aa5QmrHcc4ukoT50GxcTjwZSMe06hRI52NvmbNGm3vToibQOzml19+kSpVqqhbGBYPcRYUGweDkczIMkPdTM+ePTUzyk61PYSEE9S0IHEAM5a6du2qxzwyAokz8HxRp1M5fPiwBk3hXkB6KFKcCXE7SDEfM2aMWjhIgvnzzz/lyy+/VCEi9oaWTZRGGaQmlRMVy/Bdb968WWM1FBriNWDdIKUf50KdOnVk48aNqSoVsEObHLdDsYkwEJlff/1VfvvttxQJztdffy3169fXVjnwYSNDhxAvgvYwOAdQP3bzzTdrBmZyQJupKVOmyKJFi/ScZC2PtVBsIgxmlcMF8PfffydLcHDnNWjQIB1ChYFOK1as0P5shHgZ9FD76aefNEEGWWsY1hbKOdW3b1+9aUMDzS1btmh6Nc5NYiHxtLAhEQBDmTDXA73VkuoBhXk7bdq00Z5sgwcPtlXPKC/D3mj2AT0AzT6GHTp00O8mIVavXm2kTZvWePbZZ4133nlH+xri97CeWActmyhx3XXXqQssKQvn3Llz0qpVK73zmjFjhgwYMIB3YIQEgZEeAwcOlC+++EITBh588MEEx4SgDc4zzzyjPddefvllOXHihG89sQ6KjY0F5/Tp09K8eXNZunSp+qMhOoSQhGnTpo3emC1cuFDuv/9+OXv27DXuaMyZChYaULZsWe5aC6HY2FRwUC2NbsJIbV6wYIH2iiKEJA3Om3nz5mm3c3TSwE2bKTRIBED69KFDhwKEBjGcunXrcvdaCEcM2AS4yxDoRFFmyZIl9YRBDQGEBoFMYj84YsDe/PDDD5pMU716dfUMYAAiRhjg5i5TpkyajQbXGSwaCo310LKxmYWze/du/YkMGdQRUGgISXlqNNKa0T361ltvldjYWJ/QAAgMOqNTaCIDxcZGIKA5ePBg2b9/v/Y7Q68zQkjKQcHn6NGjZc+ePZoWjRZPJDpQbGwCZnXAdYYxAej/lDdv3hQXfhJC/o3RFC5cWN3R6DKAGM6ZM2e4e6IAxcYG4OBH1hnMfQgNqqFDSYsmhCQuNGaMBgsEJyYmRos/ESMlkYViE2Vw0GOyJkYDoGszzP7k1OEQQhIXGjNGg/8jSw3dN9DEli61yEKxiSI42FF8hqwZZMsgiOkPBYeQ8AiNyZ133imzZ8/WxAGMnOaIgshBsYkSsFQwiwbjbmfOnKkDoeKDgkNIeITGBDVr6MaBGzx0EiCRgWITJZAhM2nSJBk/frw0adIk0ddScAgJj9CYIFHg/fff16zPcePGcfdGAIpNFIAJ36tXL+ndu7d07NgxpN+h4BASHqEx+e9//6vTPrGg2wCxFnYQiDDbtm3TIjIsCFamS5cuxZ0GbrrpJjbljCLsIOBcoTG5dOmSehYwagCzcdC9g1gDLZsIgl5MSLtEDc20adOSLTSAFg4h4REakD59eu0UnTNnTj03Ue9GrIFiE8FR0B06dNCWGXPmzNGDO6VQcIjXCYfQmOTOnVsz1Hbt2iWPPvooR0RbBMUmQvTv31+LynAXVa5cuVS/HwWHeJVwCo1JpUqVZOrUqTqeAHNxSPih2ESATz/9VIYPHy4jRoyQxo0bh+19KTjEa1ghNCbo4jFkyBB57bXXdAAbCS8UG4tBZwBkvSDrDBlo4YaCQ7yClULjP9fmoYcekscee0w7d4QCRhVMmTJFf5KEodhYCOIzmBaIrDHk8qdJk8aSv0PBIW4nEkIDcI5OnDhRKlasqAkDBw8eTFKc0MsQsR78xNh2Ej8UG4vAOFoIDWajf/311yoIVkLBIW4lUkJjkjlzZo3dILUdo9gx+iM+YMnAPe4P3HDoLk2uhWJjET169NAuzjhoCxYsKJGAgkPcRqSFxqRIkSLaRmrt2rUJtrTBlM/4wPaSa6HYWAB6LqEVzdixY6VWrVoSSSg4xC1ES2hM4BZ755131AW+cOHCa57HOOn4SGi916HYhJljx45J165ddfb5448/LtGAgkOcTrSFxuSJJ56QRo0aSZcuXbQo2x90AenTp881MRyOmY4ftqsJM5hpDssGfltMCIwmbG1jLWxX426hMcFI6cqVK+s4ECQPxBe7gUsNFg2FJmFo2YQRdAZATQ1M72gLDaCFQ5yG3YQGFCtWTEaOHKmucRRmBwOBwU0mhSZxaNmE0X2GKuSaNWuqZWNVmnNKoIVjDbRs3C80/vOn0LATHgssOXLkiPYmOQ5aNmHif//7n17UMZ/GTkIDaOEQu2NnoQE4pydMmKDb9+yzz0Z7cxwJxSYMoIkf+irBfVaoUCGxIxQcYlfsLjT+7rS33norQXcaSRy60VLJ0aNH1X1Wu3ZtjdnYzaoJhi618EE3mneExt+d1rRpU/njjz90SU33dq9ByyYM7jNUGH/wwQe2FxpAC4fYBacJjb877Z9//qE7LZlQbFIBugN89tln8u6779rWfRYfFBwSbZwoNCZFixZVd9rkyZNl/vz50d4cx0A3WirdZ3Xq1NGYjROsmmDoUksddKN5T2j83WnNmjWT9evXa3Ya3WlJQ8smFe6zCxcuOMZ9Fh+0cEikcYPQ+LvTMEbaitEhboRikwJWrlyp7jOY0pFqsmkVFBwSKdwiNP7NOt9880356KOPJCYmJtqbY3voRkuB+XzHHXfoCYMTByME3ABdasmHbjTvCo3J5cuXpWrVqhqzXbRoUbQ3x9a440oZQRAQ/PHHH+WNN95wjdAAWjjEKtwqNCBdunQ6w2bx4sW6kIShZZPMuxhM3cyVK5csW7bMsbGaxKCFEzq0bLwtNP7ejltvvVVLIDAG3k03oeGEeyUZIE6DgWhDhw51pdAAWjgkXHhBaACuBbgmIG7z1VdfRXtzbAstmxDBXUu5cuXUssEEP7dDCydpaNkkjFeExh/MsMKogT///FMyZMgQ7c2xHbRsQgQpznv37lX/rBeghUNSiheFBiCO+9dff8U784ZQbEICrSkGDx4sjz32mFSoUMEzxw0FhyQXrwoNQFZahw4d5NVXX5XTp09He3NsBy2bEMDgJJw8AwcOFK9BwSGh4mWhMRk0aJB2F0EHeBIIxSYJDh06pGLTs2dP7YnkRSg4JCkoNP9PyZIlpVu3bjJs2DAVHfIvFJskgPsMufT9+vUTL0PBIQlBoQlkwIABuk8QwyH/QrFJhB07dsi4ceOkb9++WlvjdSg4JBgKzbXky5dPnnvuORkzZozs2bOHB81VKDaJ8Morr0iePHnk6aefTuxlnoKCQ0woNAmD0dHZs2f3ZJw3ISg2CbBr1y4t4oRJnCVLlgR3oBeh4BAKTeJcf/316nr/5JNPZN++fTxgKDYJAxMYdyZIdyYUHPIvFJrQ6Ny5s96ovvfeezx8KDbxgxkVH374oXTp0kWyZs3KAyUBaOF4DwpN6OBmtVOnTjJ+/Hg5e/aseB260eIBpi8KObt37x75b8RhUHC8A4Um+aBk4tixYzJ16lTxOhSbeE6o0aNHywMPPCDFixePzrfiMCg47odCkzJKly4t9913n7z77rvaHdrLUGyCwACkzZs3MwMtmVBw3AuFJnUgm3XDhg3y/fffi5eh2ASBNhPo7Iz5FCR5UHDcB4Um9dx9991SqVIlz7ewodgEpTsvXLhQevTo4dp5NVZDwXEPFJrwgGtJjx49ZO7cuZ5Og6bY+IHW4MiPb9u2bfS+ERdAwXE+FJrw0r59ez0vJk+eLF6FYnOVS5cuyaRJk/SgYLpz6qHgOBcKjTVp0O3atdMbWuxfL0KxucqCBQskNjZWa2tIeKDgOA8KjXV06dJFdu/erUlIXoRic5UJEyZIjRo1dCHhg4LjHCg01lK3bl2pXLmyXmu8CMVGRIN233zzjXTt2jXa34croeDYHwpNZBIFunTpIrNnz5aDBw+K16DYiMjHH3+sF8SHHnoo2t+Ha6Hg2BcKTeR4+OGHJX369HrN8RoUGxGZMWOGtGjRQoN4xDooOPaDQhNZcuXKJffee698/fXX4jU8LzZ79+6V3377TVq2bBnt78ITUHDsA4UmOrRo0ULWrFkjBw4cEC/hebGZN2+emrVNmjSJ9nfhGSg40YdCEz2aNWum8RvEib2E58Vmzpw5cvvtt0vOnDmj/V14CgpO9KDQRJc8efJI/fr19drjJTwtNhgjsHTpUjVrSeSh4EQeCo09aN68udbbeGnOjafFBl/2hQsX9Isn0YGCEzkoNPahRYsWKjRLliwRr+BpsYEZi26spUqVivameBoKjvVQaOxFuXLl5MYbb/SUK82zYnP58mUN0NGFZg8oONZBobEfadKkUY8KEpS80ivNs2KzevVqOXLkCF1oNoKCE34oNPalRYsWEhcXJzExMeIFPCs2MF/z5csnderUifamED8oOOGDQmNvbrnlFrnhhht0zo0X8LTYYDZ4unTpor0pJAgKTuqh0Nif9OnTa82NV+I2nhSbbdu2yebNm+lCszEUnJRDoXGWK23dunU6esDteFJsYLZmypRJGjVqFO1NIYlAwUk+FBpn0bhxY7VwkCjgdjwpNjBbGzZsyImcDoCCEzoUGueRI0cOufPOOz3hSvOc2Fy8eFEz0SA2xBlQcJKGQuNcGjVqJD/99JOWY7gZz4nNn3/+KefPn5datWpFe1NIMqDgJAyFxtnUrFlTTp8+LVu3bhU34zmxQU47CqqqV68e7U0hyYSCcy0UGudT4+ooerfX23hSbMqXLy/ZsmWL9qaQFEDB+RcKjTu44YYbtGUWxcZl4AuF2UqcCwWHQuM2atasSbFxE5cuXdKcdoqN8/Gy4NCicR81a9bU49jNfdLSei054Ny5cxQbl+BFwaHQuFdsTp06pQXnbiWtF5MDbrrppmhvCgkTXhIcCo17qeGBJAHPiQ3mSDA5wF14QXAoNO4mV65cUrJkSYqNm8TGvIMg7sLNgkOh8QY1atRIVGx+/vlnmTJliv50Ip6xbJgc4H7cKDgUGm/FbX799dd4kwT69u0rN998szz66KP6E4+dhmfEBl2eMfObmWjuxk2CQ6HxFjVr1pR//vlHtm/fHrAelszw4cMD1uGx0+I7nhEb84thcoD7cYPgUGi8R82r9X/BIpJQGxtk1zoJT4lN2bJlJXv27NHeFBIBnCw4FBpvkjt3bilevPg1YoPrVnwktN6ueEZsUMxJq8ZbOFFwKDTe5qabbtJrlT9169aVPn36BKxDzAbrnYRnxGbfvn1SrFixaG8GiTBOEhwKDSlWrJjs37//mh0xbNgwHY3yySef6M+hQ4c6bmelFw+AC0xcXJwUKlQo2ptCoig4mBkCwcHdI4p77QSFhgBco3Ctig9YMk6zZjxn2Zw8eVIz0QoWLBjtTSFRws4WDoWGmOAadfz4cb1euQ1PiI15p0Cx8TZ2FBwKDfHHvEYdOHBA3AbFhngKOwkOhYYkJDYJudKcjCfEJjY2Vn/SsiF2ERwKDYkPM65sXrPchCfEBncJaL7JBpzEDoJDoSGJTe3MlCkTLRunwkw0YhfBodCQxECWZIECBSg2ThYbutBItAWHQkNCAdcqxmwcCvyfFBsSTcGh0JDkxG0Ys3EotGxINAWHQkOSAy0bB0OxIdESHAoNSS4F6UZzJqdOndIZEWxVQyItOBQakhIKFSokR44ckQsXLrhqB7o+9ZndA0g0BIdCQ1JKQZd2EXC92Bw7dsw3K4KQSAgOhYakhjx58gRcu9yC68Xm0qVL+jNjxozR3hTiAcGh0JDUkiFDhoBrlyfF5o033pDatWvL9ddfL/ny5ZP7779ftmzZ4nt+165dWpQU3zJ9+nTf6/bs2SP33nuvZMmSRd/n+eefv2bHvvrqq1KkSBG59dZbExyLGgrm+6ZP74lpCiSKgkOhIeEg/dVr1cWLF8O6QxG7fuaZZ3QaaObMmaV+/fryyy+/+J7Hsf3yyy+rGw/PN2zYULZt2xbwHqtWrZLq1atLiRIlZOLEidaJzfLly6V79+46vGfRokW6M+655x45ffq0Pl+0aFGNkfgvEA20iWnatKm+5vLlyyo0CH6tXLlSPv74Y/noo4/0Q5pg7sg333wjs2fPlvbt20uPHj0kpVBsSCQEh0JDwi02l8Js2fz3v//V6/aUKVNkw4YNeu2GoJjD2oYPHy7vvvuujBs3Tn7++WfJmjWrNG7cWM6dO+d7j86dO8tLL70kn332mRofe/fuDX0DjFRw6NAhnHXG8uXLE3xN9erVjU6dOvkez58/30ibNq1x4MAB37r333/fyJ49u3H+/Hl9PHfuXKNly5bGhQsXjNWrVxu1a9dO8TYuWLBAt3HPnj0pfg9CwNmzZ43FixcbMTExxpUrV/T4nDVrlnHu3Dnjl19+MZYsWaL/JyQ1bN++Xa9ZS5cuDduOPHPmjJEuXTpj3rx5Aetr1KhhDBgwQI/nAgUKGCNGjPA9d/z4cSNTpkzGtGnTfOuKFStm7Nixwzh16pRRq1YtY+PGjSFvQ6piNidOnNCfuXLlivf5mJgY+f3331UN/c2wKlWqSP78+X3roJ4YcLZx40bfY6gp3GxNmjRRBU0ptGyI1RYOZsbj+MVzaKJIiN0sm0uXLqlXCcewP3CXrVixQnbu3KnZb7B0THLkyKGTQXHNNoEHqkKFCvrczTffLBUrVgx5G1IcyIDbAP4/nGCVK1eO9zXw6WHD4Bs0wQfyFxpgPjZT/RAgW7hwoRw6dEhy5syZquC++YWZQTdCwjViGjdSf/zxh7qTmzdvTqEhYSHD1WtVOGM2iLPXq1dPXnvtNb0m45o7bdo0FZIyZcr4rr3xXZv9U7BhOLRr107DIOhQnRxSLDaI3eBEgyrGB8aawq8H/15KQfJAQoT6RZj+RohjuANuxJukS5dOatWqpf7vQYMG6YkHq/zGG2/U58+cOaOilDat65M9iQVcuXLFd+0K9ZoVys00YjWdOnWSwoUL6zFco0YNeeihh9QDlRwQy8GSXFIkNgjYz5s3T3744QfNGIuPr776Sk+6Rx99NGA92mevWbMmYN3Bgwd9z4WKmaCQFHBxgG+//VayZ88e8vsTkhRwp+GYxcx4ZGWamTuTJk2SZcuW6YncrFkz7kiSLMz6GrhqIQpJAdctwg1JUbp0aU3yQkIX3L7IOmvbtq2UKlXKd+3Ftdi/aTEeI/ssHCRLbOCj7tmzp8ycOVO+//57KVmyZIKvhQutRYsWkjdv3oD1MOVef/11dZGZlguEA0KQHP9fo0aNknWXcNddd11jIhKSXHA84QYGaaS33XabHsOwYHCCVq1aVdP8R44cqc/Dp22KDbJ2kFmJ38Hxj9cREh9mhheOH2SMhRvTMsHNEm7CkYWGazkEZ8mSJT5xgSAhK61bt26RFxu4zuAaQ0oyfICmLw/BIgSaTLZv365Wz/z58695D+w8iMojjzyiHxLv8eKLL+p7Jye4GmoMxj8gxrgNCYfQoN8e6r9MNxluZHBSwq1800036QmLeA7uGM1jDtY8XoMYon8McsyYMXrc48aMN0PEH1xTw3nNgrDAYChXrpxeo1HfWL58eXn88cf15gcx+MGDB6s7GOKDEAj6tKGeMiwkJ30OL49vmTx5csDr+vXrZxQtWtS4fPlyvO+za9cuo2nTpkbmzJmNPHnyGL179zYuXrxoWMF3332n27hz505L3p94AxzLwenNZuozfganRQeDVP8pU6YYX3zxhW8dXpc/f349PlesWBFwfvzwww/6nsR7bNmyJcmSkpSAY69UqVJGxowZNc25e/fumt7sfzy+9NJLekwi5blBgwa6LeEiVXU2TmDZsmX6xW3bti3am0JcJDTBYgOSEpxg8F6occBJ7S8sQ4YM0WO2TZs2Aa8/duxYWD8XsScbN27U7/+nn34y3ITr02WsqsYl3iA5nQGS20sN7wW3xeLFiwPcveYcesQ3TRADQvyzbNmy+n/iXi65tFyDYkNIAqSkBU04xhO88MILOhYYcUyT9evX+9L3ES816du3r9b4IPuNuINLLu3n6HqxMU9Ms9sBIaGQml5n4RAcWDf+d7Z4P6TEzpo1K+B1KEHAgu00+euvv+S5557T/oLEeZy4eq1CT0k34XqxMXPGzSFqhCRFOJpqWjFiGt00qlWrFrAOTWzfeustzY4zQTYc0q/ffPPNgNdCfP78809fOQCxJ7GxsfrTbdOF3WWnxQNaKuBiYX6BhCRGOLs3+7e2geAgLTrc9TUY+YHFn0qVKskTTzyhdT/+rhkU8KGgD+nb5nMQQ6TYBvfMItEjLi5OPTIpqdK3M663bMxgKy0bkhRWjAmwwsJJCvw9tIl/6qmnfOuOHj2qLXZwLkCMTFDrhoJqFJoSexAXFxdQxe8WXC82pjlKsSGJYeU8mmgITjAoGEXXD8wu8W+BArcakg78L24otEbWG+af0OUWeeLi4lznQvOEGw3gRKLYkISIxOCzSLjUQiG4OSgSDnbs2BEwJgTbiD5vcK/5v37EiBHaph493zDtkVhDbGwsxcbJYoP2OYREc8KmXQTHH/x9NGgM7juIZAL/Rrewxt555x21jDDjxBQbzEFBDAifK7gPIkkZcXFxUrNmzXifQ8ujrVu3quWJ78FJpPWK2DBBgNhhlLMdXGpJgRgOGoi2bNnStw4WzbPPPiutW7eWOnXq+NbPmDFDHnjgAenSpUvAe+zatcuWn83JMZu+fftqc0500sdPPHYSnhEbBEgxd4SQaAmNkwQnGBQYQmwwOsQ/Swq1IEg4QDdrE4wWQTNHWDpHjhyJ0hY7k1OnTmmHiGCxgUWDZA5/8BjrnYInxMYMtvlPnCPeJZpC42TBiY8nn3xSu11DiEzg5oE44TPmzp3btx6vwdTeuXPnRmlr7U/c1XrA4AQB7NP4MGcoOQFPiA0LO4mdhMZtggP8Y0+Yh4IqeGS/+a9funSpjiE+f/68bx2SEzA9ElMkifjEJtiyQYwmPpIzAyzaUGyIZ7CT0LhRcPzBzB7MtvcH8R10PLjzzjt96zA5cvLkyfLBBx8EvPbLL7/UkfP+wuRlsalbt6706dMnYB1iNhjt7BQ8kfqcJ08eNeuZJOBd7Cg0ds5SswJkvQVnvuFi2a9fPylRokTAd9W1a1e1jtauXevLzMJ0X+wXN2e9xcXFacp5fCPshw0bJq1atWI2mp1BrQC7CHgXOwuN2y2cpECvtyFDhqi4mEBkGjRooMLk3wsOU00xhhtNRv1x076KvVpjk9DNBiwcTDl2WtqzZ9xoAF8gagSIt3CC0HhdcOLrZwiXG0YX+7fZN89fZLqZINsN3REwutgNM6tiY2Nd2arGU2JToUIF2bBhQ7Q3g0QQJwmNCQUnYSZOnKglDOhgYLJy5Uo5fPiwLwPOBEPpEOPYtGmTOIn169frtcqNeEZs4PfFF8laG2/gRKExoeAkDNrq+MczmjRpIqtXr5ZRo0ZdI0xor7N3796AzLdJkyapxWRHzp49q73qEuoe4HQ8JTYQmo0bN0Z7U4jFOFloTCg4oWe9IX5xzz33+NbB/Thw4EDtaoBKexPU93Tu3FmefvrpgPfATei5c+ck2qxbt047NVBsHA5y/5EoEBMTE+1NIRbiBqExoeCkDATXO3bsKOPHjw+wgpBcgE4HSD4wQWo12u/kyJFD9u3b51sfjW7XMTExOp21SpUq4kY8Y9lkyZJFfaEUG/fiJqExoeCED8R60JDXv9sBerhBaDAFtXDhwr71vXv3lnLlysnUqVMlUsTExEjlypVdcdx6WmzMnH6KjTtxo9CYUHCsA4KCNlZwpfmnG6PmCUkH/iMWdu/erc1Jg+ND4SImJsa1LjTPiY2ZJODfOp04HzcLjQkFxzogMkif9mfhwoUa48G4BZMff/xR5syZI59//nnAa9EVYfbs2Xr8pZRz585pPJli4xLwRcJHi4wP4g68IDQmFJzIZr3dd9992n3EBMkGb775pnTr1i0gGeH555/XOh//6wrqZbZs2RJyrdT69etdnRzgOcsGSQK4i6ErzR14SWhMKDjRA73eEMtB8oH/OAUIDa4t/n3KkHpdvnx5Ha0dCjExMVon5NbkAM+JDWZv4ACg2DgfLwqNCQXHPmC2z4QJE7TjA9Kw/Vvu4JhEn7vkJAdcd9114lY8JTYAZirFxtl4WWhMKDj2Bu42CM7jjz8e0utjXJ4c4FmxQfGUG/ooeREKzb9QcOwNboL8p5omlhyAAXQUG5eBLxRfLpMEnAeF5looOM5nw4YNevNLsXEZ5qwQutKcBYUmYSg4zibmanJA1apVxc14zo2GJIFKlSrphEDiDCg0SUPBcS4//PCDzu1xc3KAJ8UGIH/+m2++0bx2Ym8oNKFDwXEeFy9elPnz5+s1ye14UmxatGihQ5d+/vnnaG8KSQQKTfKh4DiLFStWaNZa8+bNxe14UmzQ5RVzzNF6gtgTCk3KoeA4hzlz5ugUYf+CULfiSbFJly6dmq0UG3tCoUk9FBz7YxiGXoPgafFvAupWPCk2AF8wRsbadWqfV6HQhA8Kjr3ZtGmTTg/1ggvN02KDbq4oukJnV2IPKDThh4JjX+bMmaNztu6++27xAp4VG1T2YmIfXWn2gEJjHRQcezJ37lwdZ+32lGfxutiYrjTMqPj777+jvSmehkJjPRQce3Ho0CFZtWqVXoO8gqfFBkkCqLVZsGBBtDfFs1BoIgcFxz588803+vPee+8Vr+BpscHMcfQjoistOlBoIg8Fxz4utJtvvlny5csnXsHTYgNgxsKyuXDhQrQ3xVNQaKIHBSe6nDt3Tr799ltPudCA58UGaYeYi4LYDYkMFJroQ8GJHsuWLdMJn15JeTbxvNhgnGuRIkXoSosQFBr7QMGJDnPmzJFSpUpJxYoVxUt4XmxQuduyZUv56quvOFDNYig09oOCE/nGmzNnztRrjhe6BvjjebEBGN0aGxsrCxcujPb34VooNPaFghPZxICDBw8mOC4azYGnTJniyibBFJur0zsxVG3ChAnR/j5cCYXG/lBwIsOECROkbt26UqVKlWue69u3r2aoPfroo/oTj90ExeYqXbp00dx3WDgkfFBonAMFx1p27dqlWWi41gQDS2b48OEB6/DYTb0bKTZXad++vfZKmzx5cnS/ERdBoXEeFBzrmDRpkrbJatu27TXPbd26NcHvwy1QbK6SI0cOadOmjUycOFEvkiR1UGicCwUn/Fy6dEnFBje1GE0fTNmyZa9Zh9eh8NwtUGz86Nq1q+zcuVOWLFkSvW/EBVBonA8FJ7wsXLhQ9u/fr9eY+EAcp0+fPgHrkCjgpoy1NAYm+BAFu6Jq1apSpkwZTU8kycdLQmPOj2/WrJlkyJBB3Frt/tNPP8kNN9ygSTRuuvhFkmbNmsmBAwf03EgMxG7gUoOlAwFyE7Rs/MCJ1LNnT5k9e7ZaOCR5eElovAItnNSzZcsWbYn1v//9L8nXQmAeeeQR1wkNoNgE8fDDD+td3JgxY6LzjTgUCo17oeCkjtGjR0vevHmlXbt24mUoNkFgch5SE5EocOrUqeh8Kw6DQuN+KDgp4/jx4/LRRx/Jk08+6arMspRAsYmH7t27q9B8/PHHkf9GHAaFxjtQcJIPMtDQUb5bt27idSg28VC0aFFp1aqVvPPOO0yDTgQKjfeg4IQOBjPChYaSioIFC4rXodgkwNNPPy3btm3jFM8EoNB4FwpO6H3Q0DUA1xLC1OdE06CRUYX01jVr1jDl0w8KjXdSnxODadGJnyM1atTQYvHly5dH8FuxL7RsEkmDHjJkiKxdu1ZmzJgR2W/FxlBoiAktnIT5/PPPZd26dfLGG2/wgLkKizqToGnTprJjxw7ZuHGjpE+fXrwMhSYQr1s2JrRwAkFCQIUKFaRy5cpas0f+H1o2SYA7E1T0IqvEy1BoSELQwglk/PjxGquBZ4T8C8UmhLHRaJ43cOBAnRvuRSg0JCkoOP8PSiZee+01nUlTqVIlTw1HSwqKTQjg4Dl8+LC8++674jUoNCRUKDgib731lpw4cUJeffVVzw1HSwqKTQiUKlVKnnjiCRk6dKgcO3ZMvAKFhiQXLwsObkhHjBihReHFihULaTjazx6ycCg2IfLSSy/pTAoIjheg0JCU4lXBef311yVt2rTSv3//kIejbXfRJM6koNiESP78+eXZZ5/ViuB9+/aJm6HQkNTiNcFBQsD777+vM2ly584d0nA0UL9+ffEKFJtk8Nxzz+n0vPj8sW6BQkPChZcE55VXXtFu8c8880zIw9FefPFFKVmypHgF1tkkk1GjRknv3r217qZ8+fLiJig0yYN1NqHh9jqcDRs2SLVq1XQsyVNPPeXZ4WhJQbFJJufPn9cDpVatWq7qLEChST4Um9Bxs+A0b95cNm3apIuXi3uTgm60ZILpk4MGDZKvv/5aVq9eLW6AQkOsxq0utR9//FHmzZsngwcPptAkAS2bFLYOr127tt7Zoneak8cfU2hSDi0bb1s4+Cz4DNmzZ5dVq1ZpJhpJGO6dFJAuXTptX7N582Yt+HQqFBoSadxk4bz88svaN3Hy5MkUmhCg2KSijQ2ySVB3A+vGaVBoSLRwg+DAhT5y5EjNTK1YsWK0N8cR0I2WSjdKnTp19GdMTIxj3GkUmvBAN5o3XWpnz57V7cWsGmy/17vBhwotm1SAzJOPPvpItmzZokkDToBCQ+yCUy0cuM927typ7jMKTehQbFIJ8utx8A0bNsz27jQKDbEbThMcJALAfYabS7rPkgfdaGFyp6CLK2pw7OpOo9CEH7rRvOVSg/sMsdqcOXPSfZYCaNmE0Z2GymA7trKh0BC74wQLB814d+/erec63WfJh2ITJqpUqeJzp/3yyy9iFyg0xCnYWXBWrlyps2rgPsPIZ5J86EazwJ0GlwDcaTh5ogmFxlroRvOGS810n2F7sF2osyPJh5aNBe60bdu2Rd2dRqEhTsVuFg7q6Uz3GYUm5VBsLHCnod04pvCtWbNGogGFhjgduwgO3Gdvv/22dgpxW5f3SEM3mgVgome9evXk6NGjKjh58uSRSEGhiRx0o7nbpXbw4EHtgVikSBFtuEmrJnXQsrEAZKp89dVXcurUKXnwwQf1ohQJKDTEbUTLwrlw4YK0bt1az90vv/ySQhMGKDYWUbx4cZ13s2LFigSn94UTCg1xK5EWHLw/hqAhq3TmzJlq2ZDUQ7GxkNtuu03ee+89XcaNG2fZ36HQELcTScHBxM2JEyfK+PHjNbuUhAeKjcV06dJFevToIT179pTly5eH/f0pNMQrREJwFi9eLL169dLR7x07dgz7+3sZJghEAPh9mzRpIuvWrVPTvGTJkmF5XwpNdGGCgLuSBrZv365d3OvWravTN5kQEF5o2USo/gZBRrQkb9mypfzzzz+pfk8KDfEqVlg4J06ckBYtWkjevHll2rRpFBoLoNhEiNy5c8ucOXO0Nfmjjz6qYpFSKDTE64RTcDDmvUOHDhIbG6vnKBptkvBDsYkglSpVks8++0xmz54tAwcOTNF7UGgICa/gDBgwQBYsWCBffPGFlCtXjrvXIig2EaZ58+by+uuva0UyXGvJgUJDSHgFZ+rUqdo8d8SIEdK4cWPuXguh2ESBF154Qdq1ayePPfaYniChQKEhJLyCg2Sdzp07a9YZMtCItVBsogCyZ5DHj0l/CEru2bMn0ddTaAgJr+Agdnr//fdrNhtq4KLdWdoLUGyiRJYsWTR2g0y1u+++W4OT8UGhISS8grN3714953AOokNAtEeBeAWKTRQpXLiwLF26VMdJN2jQQA4dOhTwPIWGkPAKTlxcnAoNwLlXoECBa97j559/lilTpuhPEj4oNlGmRIkSetAfP35cGjZsqJ2iAYWGkPAKDm7mcFOHolCcc0WLFr3md/v27astalCegJ94TMIDOwjYhD///FPuvPNOPQEWLVokO3bskJMnT+pJkylTpmhvHokHdhBwTqcBNMaFRQPBQduosmXLXvN6WDLx9UJbvXq1dhUgqYOWjU1AsgD6Mu3atUtFB+Y+hYaQ1Fs4iNHcfvvtGhfFORaf0ICtW7cmaz1JHhQbG1G5cmUZNWqUZsqgDufMmTPR3iRCHM3p06d1RDsE591339WbuoRISIQgWCT1UGxsghmjQdKA6UaD2X/kyJFobxohjgSTNuEl2LdvnyxZskTy5cuXaJYaXGV9+vQJWPfRRx9JqVKlIrTF7oYxGxsQXzLAH3/8ocFMNAaE6R9f1gyJLozZ2Jf9+/fr+YNzCkJToUKFkLtFI3YD11mNGjW0xRQJDxSbKJNY1tnmzZv1hMmWLZueMJwYaC8oNvZk9+7det5gtDOyzsqUKWP5eAKSNHSjRZGk0pvLly8vP/zwg54gCHAilkMISXwmDc4VnFs4d/yFJhojpsm/UGyiRKh1NKVLl9aTJm3atDrY6ccff4z4thLiBJYtW6ZxFwgKzhnUsMUHBSc6UGyiQHILNlEjgFx/ZKshaWDChAkR21ZC7A6sk/fee08aNWqkcZZVq1Yl6XKm4EQeik0UTgyMh05uwWaePHnku+++k65du+rSs2dPjRkQ4mUQl+nWrZt0795devTooXNpcuXKFdLv+gvO+vXr6VKzmPRW/wESCAKSyOdPnz59sjsDoGnn2LFjpUqVKio26DqAmTiYAkqI1zh8+LD85z//UUvmww8/1HEBycUUHHgbmCxgLbRsokDWrFlT1YLmySef1HRoWEiI42zcuDGs20eI3YElUrt2bc3YRKwmJULjLzjoAE2shWLjUO644w4d/gThQj+nuXPnRnuTCIkIX3/9tdSvX1/Tl3EOsMLfGVBsHEzJkiVl5cqVGhht2bKlvPHGG/Q7E9cCV9egQYOkdevW0qxZM1mxYoUUK1Ys2ptFQoRi43BQ8PnVV1/JSy+9JP3795f27duzpxpxZY+ztm3byiuvvKJ9A7/44gu16olzYIKAC0ANDpoNIjUa89S3bdsms2bNYscB4pqOALDcUbAJF9oDDzwQ7U0iKYCWjYt48MEHtRUHZnag3mDGjBnR3iRCUgWyLWvWrCknTpzQrDMKjXOh2LgM9Htau3atBk2RFvrQQw+xczRxHLhhws0TXGfo3IxEAKT8E+dCsXEhaKUOd8PUqVPl22+/1c61M2fOjPZmERIS06dP12MWKc2IzSAmiaJm4mw8LzbI4EK+/vXXX68X6fvvv1+2bNni20HHjh3TAspy5cpJ5syZNfvlf//7n5r1/qAgLHj5/PPPA16DuAraaNx6662WT//D30eyAAo/69WrJ61atVIr5+jRo5b+XUJSU6QJa6ZNmzaa2o9jF/+3GvRRa968uRQqVEjPG8Q7/Rk4cKA2xUVCAtKtGzZsqGMI/EEftuDzf+jQoQGvmTBhgraegvch+Pc9geFxGjdubEyePNn4448/jN9//91o1qyZUaxYMePUqVP6/IYNG4xWrVoZc+bMMbZv324sWbLEuPHGG43WrVsHvA92Jd4nLi7Ot5w9e9b3/IoVK4zatWsba9euNcaOHWs0atQoYp/xypUrxpQpU4wbbrjByJcvn/H1119H7G+7mQsXLhizZs3SnyR1fPnll0aePHmM3LlzG9OmTdNjNlLMnz/fGDBggJ4XOI9nzpwZ8PzUqVONRYsWGX/99ZdeJzp37mxkz57dOHTokO81xYsXNwYNGhRw/pvXELB7926jTJkyxsqVK43p06cbFSpUMLyG58UmGBxAOOCWL1+e6ImRMWNG4+LFi//uyHgOUn/mzp1rtGzZUi9Mq1evVuGJNLGxsUbz5s11W9u3b28cOXIk4tvgJig24Tnf2rRpo8fkAw88YBw4cMCIJkmdx+DEiRP6usWLFweIzdtvv53g72zYsMGoVauWCtCOHTuMEiVKGF7D8260YEz3WGLN/PCa7Nmza38zf9AMEL5ltJCZNGlSQIFl48aNdS4N2mI0adJE3XeRpmDBgjJ79mz55JNPZP78+eoXx2NCogGyJXEMovXSZ599po/z589v+8af48ePlxw5cki1atUCnoPbDH0K4SYbMWKEXLp0yfdc5cqVpWrVqvp7+MyDBw8WzxFttbMTly9fNu69917jlltuSfA1hw8fVjdb//79A9bDhIar7NdffzWGDh1qZMqUyXjnnXeu+f2DBw8a58+fN6LN/v37jfvuu0/v0Dp06GAcPXo02pvkOGjZpAycQ23btrWNNROKZQPPRNasWY00adIYhQoVMtasWRPw/MiRI41ly5YZ69atM95//30jZ86cRq9eva55nyNHjhhnzpwxvAjFxo8nn3xSzeG9e/cmaD7XqVPHaNKkSZJ++pdeeskoUqSIYWfgF//444/1xChQoIAxYcKEANcgSRyKTfL317hx4zRumCtXLo2FRDI2kxqxgftr27ZtxqpVq4xOnTqpGww3jgkxceJEI3369Ma5c+cs3mLnQLG5Svfu3VUc4E+Nj5MnTxr16tUzGjRoEBD4T4h58+bpgeuEg23fvn2+O83y5csbM2bMsN1FwI5QbEIDxxLinGXLlvXFCxFAtyOhxGwAgv1DhgxJ8HkkEuC9Nm/eHOYtdC6ej9ng+MLQJdShLF26VJtbBoNBZ/fcc49kzJhR5syZoy3Jk+L333/XNMnUjBKIFIULF9Y0bRSDFi1aVBsdIl36+++/j/amEYezZMkSjWEihblUqVLy22+/af1XgQIFxOlNQc+fP5/o+Y82UiinIP+P53ujIaiP4CQC5ai1OXDggO4YBPJQV2MKzZkzZ+TTTz/Vx1hA3rx5JV26dNre/+DBg9rqH0K0aNEiGTJkiDz33HPiJNAWBNNAcYF44YUX5K677vIlM1SvXj3am0ccRExMjPTr10/Phbp162qBJjoB2JFTp05p3zWTnTt3qlggSQgB/9dff11atGihCTZHjhzRAYb79+/XmiCANjqom8H5gmsIHvfq1UsefvhhveEkVzE8DnZBfAtqZgCCfgm9ZufOnfqaBQsWGNWrVzeyZcumQcRq1aqpbxoJB052faAewN/1gToD8i90o13L1q1bfanMcMmidsXuLtmEzvGOHTuqyxxJDEgKQLlDwYIFjRYtWgQkCMTExBh169Y1cuTIYVx33XVaQwMXmxNc6JEkDf4xhYeQYC5evCiTJ0/WKmrc1T3xxBPy4osv2j5FNVL7BinkmK2Ckd1eJi4uTmfNYDwzjg10y0AH8uDyAOJdPB+zIYmDi2jXrl3VzYCLyZQpU6R06dLy8ssv+9yJxLug5mzAgAFSpkwZ7WMGlytGXGBMM4WG+EOxISGBYlTEcXbs2KFxLhStIeCLYVZmnIt4h9jYWB3Yh2Pg7bfflqefflqPDcQpEeskJBiKDUkWCJoOGzZM717btWsnI0eO1OakjzzyiGazEXezZs0a6dChgzaUHDVqlAbBYfUiISZnzpzR3jxiYyg2JEWge/WYMWNk37596jrBPHh0z8YcHQy88m/VQZwfm0JqPNLhkVm2evVqtWzx3b/zzjvaLZmQpKDYkFSBu9nevXv7RvaiFgkDr1CvhKSCPXv2cA87lF27dqmrDO3zMZ4CrlSUCGA8xjPPPKPlAYSECsWGhAXUG2FkL+opUKPQtGlTdbHhQoVsLRTN4g6ZiO0bTaIhJhrHIh4DywU1JuvXr9f6K/wf33VCoN4ESSSenNdCEieiidbEU/zzzz/abw395HCoof/aCy+8oLUYbsBNdTZoq9KnTx/tW4bvCq2ZJk2aFDCTJSnw+/51KnhMiAnrbEhEwJ0xJhXirhfpshUrVtS7ZCxoZ5LY3bJdcXKdzeXLlzX2gvZLWDZv3qzV7kj06NKli7bETw6wZNBBIxj8DcR5CKEbjUQEzPIYPXq0Fv/BTQOBQQFg/fr1tQ1Ip06ddBzv6dOn+Y1Y2JYFcbXHHntMe5NhPDkKdvEdwM2JdGa4zZIrNCChMedWjz8nzoHlvSSioAajVatWuph31+gth7trXPjQuLRBgwZq8dx3333aJJSkHGSMmfsXjWYRk8HwLlgvzZs3D5tVWbZs2WStJ96DbjRiG5DRZl4Yf/zxRxUjNAc13W2YjJgmTRqxC3Z0o6H7FDorm+4x/B9icscdd+g+hMAg8G8Fffv2leHDh/seIyUehcCEAIoNsSXHjh2ThQsX6gVzwYIF2hoH9Ry4E4cAmUs0W7jbQWzQbRwdls0FRZdwVSItGdsFcUHn7kh1H0bsBtsE1xxGpBNiQrEhtgeuH1g6GH9gXlSPHz/uKy71Fx8skWoSGmmxgYj4CwsWxFkAxMT8/BiJcdttt9nG2iIEUGyI44CrCDNHgi+8f//9tz4PCyhYgJCE4CSxgYgEfz6IjdkyKPjzoZ7JTi5GQoKh2BDXCBAq3oMv0HDHgaxZs6oIQXT8l+B16IgQ6kU7uWKDbYRFBiGBcPgvwevMrDy4ovxFpUaNGtqXjMJCnAbFhrgWXNzRLgeiA0sovot78JgETFr1Fx+kCGMd2uVDUPDTXHDB37Rpk9x44436t9APDgKEn1jOnj2rHbH9/27wKGHEVuITP7T7gbhgTDeFhbgBig3xNBj3HZ9lYa5DsBsCYQqI/wJhQcacKUb+C4QJfeIgVglZUVjQb4wQL0CxIcTB2WiEOAV2ECCEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGEEGI5FBtCCCGWQ7EhhBBiORQbQlJ68qRNK6VLl9afhJDEYbsaQgghlsNbMkIIIZZDsSGEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGEEGI5FBtCCCGWQ7EhhBBiORQbQgghlkOxIYQQYjkUG0IIIZZDsSGe54cffpDmzZtLoUKFJE2aNDJr1qyAfXLq1Cnp0aOHFClSRDJnziwVK1aUcePGBbzm3Llz0r17d8mdO7dky5ZNWrduLQcPHgx4zZw5c6Rs2bJSrlw5mTdvnuf3O/EWFBvieU6fPi3VqlWTsWPHxrsvnn32WVm4cKF8+umnsmnTJnnmmWdUfCAeJr169ZK5c+fK9OnTZfny5RIbGyutWrXyPX/+/HkVo/fee0/GjBkj3bp1kwsXLnh+3xMPYRBCfOCUmDlzZsAeqVSpkjFo0KCAdTVq1DAGDBig/z9+/LiRIUMGY/r06b7nN23apO+1atUqfXzixAmjePHixuHDh3UpUaKEcfLkSe554hlo2RCSBPXr11crZv/+/bg5k2XLlsnWrVvlnnvu0edjYmLk4sWL0rBhQ9/vlC9fXooVKyarVq3Sx9mzZ5fHH39cChYsqO46WDbXX3899z3xDOmjvQGE2J3Ro0dL165dNWaTPn16HQM9YcIEuf322/X5AwcOSMaMGSVnzpwBv5c/f359zuSVV15RFxx+n0JDvAbFhpAQxGb16tVq3RQvXlwTChB/gYXib82EQo4cObi/iSeh2BCSCGfPnpX+/fvLzJkz5d5779V1VatWld9//13efPNNFZsCBQposP/48eMB1g2y0fAcIYTZaIQkCmIxWOD68iddunRy5coV/X/NmjUlQ4YMsmTJEt/zW7ZskT179ki9evW4hwmhZUPI/9fRbN++3bcrdu7cqZZLrly5NMh/xx13yPPPP681NnCjIbX5k08+kbfeesvnGuvcubOmSON3kAzQs2dPFZqbb76Zu5gQEUmDlDTuCeJlvv/+e7nrrruuWd+xY0f56KOPNMjfr18/+e677+TYsWMqOEgYQG0NikDNos7evXvLtGnTtKamcePGWlNDNxoh/w/FhhBCiOWwzoYQQojlUGwIIYRYDsWGEEKI5VBsCCGEWA7FhhBCiOVQbAghhFgOxYYQQojlUGwIIYRYDsWGEEKI5VBsCCGEWA7FhhBCiFjN/wH+lcEcphxmAAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -165,7 +165,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGMCAYAAAAMSw/bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZGtJREFUeJztnQm4VWP7h9+UKVQilFIpSlF9RSpEMqdIkSH1NZKQylTmDEUDmqRUpoTQZCjDF4lIx18ZmkyhQiKRMfb/up/POt8+p33O2cMa3rXWc1/X5pzOtPbe631/7zOXSiQSCaMoiqIoHrKDl79cURRFUUDFRlEURfEcFRtFURTFc1RsFEVRFM9RsVEURVE8R8VGURRF8RwVG0VRFMVzVGwURVEUz1GxURRFUTxHxUZRFEXxHBUbRUmTcePGmRo1aphddtnFHHnkkWbJkiX5X1u1apU56qijTNWqVc1tt90W6HUqio2o2ChKGjzxxBNmwIAB5qabbjLvvvuuadiwoTn55JPNt99+K1+/9NJLTefOnc3s2bPl8eabbwZ9yYpiFSo2ipIGo0aNMr169TLdunUz9erVMxMmTDBly5Y1U6ZMka//8MMPpkmTJqZBgwamSpUqZvPmzUFfsqJYhYqNopTAH3/8YfLy8swJJ5yQ/2877LCDfL548WL5fMiQIfI5AsTXsHoURfkfZZI+VhQlBd99953566+/zL777lvg3/l85cqV8vFpp51mNm7caLZs2WIqVaoU0JUqir2oZaMoLrHzzjur0ChKEajYKEoJ7L333qZ06dLmm2++KfDvfL7ffvsFdl2KEiZUbBSlBHbaaScJ/r/yyiv5//b333/L582bNw/02hQlLGjMRlHSgLTnrl27msMPP9w0bdrU3HPPPWbr1q2SnaYoSsmo2ChKGnTq1EkSAG688Ubz9ddfm0aNGpl58+ZtlzSgKEpqSiUSiUQRX1MURVEUV9CYjaIoiuI5KjaKoiiK56jYKIqiKJ6jYqMoiqJ4joqNoiiK4jkqNoqiKIrnqNgoiqIonqNioyiKoniOio2iKIriOSo2iqIoiueo2CiKoiieo2KjKIqieI6KjaIoiuI5KjaKkiU0TGeImjZOV5SSUbFRlCzZtm2bmTt3rvxfUZTiUbFRFEVRPEfFRlEURfEcFRtFURTFc1RsFEVRFM9RsVEURVE8p4z3f0JRwgfpzD/++KPZuHGj+fPPP+VB1lny48033zSrV682u+++u9lll11MmTJl8h877rijPCpVqmTKly9vSpUqFfRTUpRAKZXQIgElRnC7b9q0yWzYsCH/sX79+pSf//bbb678zV133dVUrlw5/1GlSpWUn1esWFFFSYksKjZK5OCWXrduncnLy5PHBx98kC8gX3/9tfnjjz8KfP+ee+6ZUgR47LPPPmbnnXcuYLE4H2P1vPHGG6ZNmzYiElg7yRbQ77//br799tuUgsbjhx9+KHAdO+20k9lvv/3kOngceuihpkmTJvLgcxUiJcyo2Cihhtv3yy+/FFF599138wWGTR4Qi4YNG5qqVaumtCbY3HGBZQPC8vzzz5vTTjtNRChTfv31VxG/VFbVV199ZZYtWyaCBvvuu2++8DiP/fffXwVICQ0qNkpo4Fb94osv8gXFEZigNuRcxSad54voJD/fwkLauHHjAs+3WrVqKkCKlajYKFbz6aefmjlz5pj58+ebd955R+ItgEVSWFj8djV5LTbpuAidxzfffCNfJyHh8MMPN6eccopp27atqVmzpi/XpSgloWKjWMVff/1llixZIgJD37EPP/xQYhnHHXecadGiRb6w4AILmiDEJhUsYdxvjvAsXrzYvPrqq3J9hx12mIhOu3btzBFHHGF22EGrHZRgULFRAmfr1q3mpZdeEoF59tlnxS229957S+CdTfLEE080e+yxh7ENW8QmFVu2bDEvvviivKbPPfec+f7778XNePrpp8tresIJJ5iyZcsGfZlKjFCxUQIBVxDCwmb4yiuvSObWIYccIhshJ/FmzZqZ0qVLG5uxWWySITMOawdLkdd71apVkhSB4PBaI0C4IBXFS1RsFN/46KOPzIwZM2TTw92DmBxzzDH5AlO7dm0TJsIiNoWhENURnkWLFslMHlxsvAdnn322qVu3btCXqEQQFRvFU3755Rfz5JNPmkmTJknFfbly5cypp54qAsP/qXEJK2EVm2RIuHjhhRdEeObNm2d++uknc/TRR5vevXubjh07SkGqoriBRgsVT3jvvfdM3759JZDfrVs3s9tuu4noEI95/PHHzfnnnx9qoYkKe+21l+ncuXOB94Yi1i5duohr7bLLLjPLly8P+jKVCKCWjeIaFCk+9thjZsKECWbp0qUiNN27dzc9evSIZApuFCybovjkk0/MAw88YKZOnSpp1U2bNjUXX3yxOe+887IuglXijVo2Ss5QeDh48GApKOzVq5dkPc2aNUsKMG+77bZICk3UqVWrlhk6dKh0Z3jmmWekbxsHhwMOOMDccMMNkmqtKJmgYqNkBQYxGU7nnnuuiMnYsWPNhRdeaNasWSNZZmeccYb0D1PCDRZb+/btJa5DYgHv9z333GOqV69uLrjgAqmJUpR0ULFRMhaZp556yhx55JFSZElW2ahRoySV+e6775YTsRJNDjroIDN69GixZIcPH27eeustuQ+aN29uZs6cKfeGohSFio2SNi+//LKkyJIeS1YZFgw1GwSRbSy6VLyB+TxXXHGFWDqzZ8+WGM5ZZ50lokPnAkVJhYqNUiJYL1Tx88CtwoaC8FDhr+1P4gt1UqSwL1iwQApzqddp1aqVpLSTjagoyehOoRQJ8ZdOnTpJY0fcZLhKqJU59thjg740xTKOP/548/bbb4uLleap//rXvySmw8eKAio2ynYwT6VPnz6mXr16Ii6TJ0+WWoszzzxT29crRcK90aFDB2meOnHiRLGA6UaAm9XpSq3EFxUbJZ/Nmzeb6667TtrGUOQ3bNgw8cuT8qqZZUq6cK+QAo9lfOutt5pHH31UEkduvPFGaRCqxBMVG8X89ttvZsSIEbIhkFFG8JeivoEDB2q7EiVr6Cp9zTXXiCuNbhJksHGPkTpN41UlXsRebO677z7ToEEDya7iQUYNNQUOuAOYpcLXcBNw+i9MjRo15GvJD6yCZOgNRm0Cvmx82zZAquqDDz4oKa3XXnutOeecc0Rkbr/9dlOhQoWgL0+JCLQluvPOO8XSoWbnyiuvNAcffLB55JFHQpEuzVpmTXMIc2BPKLzm6bCQDP3meJ516tSRzM3Yk4g5c+bMSTz33HOJ1atXJ1atWpUYPHhwYscdd0x88MEH8vW77747MXToUHnwcv3www/b/Y7q1asnhgwZktiwYUP+4+eff87/+tq1axO1a9dOvPnmm4kZM2YkDjnkkETQfP7554nWrVvLczrnnHPk+SuZ8ccffyRmzZol/1fSZ8WKFYkOHTrIvXfyyScnvvjii4StLFmyJFGjRo1EgwYNEv369cv/92OPPTbRq1evAmv+xx9/zP/6b7/9lqhatWripZdeSrz44ovy8e+//56IM7F3xNNWPRlO9Vg7FKzVr18//zRTUv0AdSaMKk4FfmosBSwovoceYkHBSRJrjdMlJ04GbJHSrCh+QdIAWWt4EIjtHHrooVIYTGzQpgSUn3/+WTLq8ErQdimVm7CoNY+bkNTwRo0a5cexfv/9d5k6G1di70YrPJKYrrdMjsSdlqmpTQdd3GT4phlY5cBiQmgohkPAUt24frB27Vpz0kkn5TdU/OCDD1RolMCgHod7kAy2nj17SkNTuhPYAnEmaskYMpeKadOmyURZ1vegQYNknIYDbne6ndOMlu7Zffr00cLnoE0rG1i+fHlit912S5QuXTpRvnx5casVZsGCBUW60UaOHClfX7ZsWeK+++5LVKhQIdG/f//tvu+7775L/PLLLwm/+fvvvxP3339/Yo899khUq1YtMX/+fN+vIYqoG809WHNVqlRJlCtXLjF58mS5Z4Nk+vTpiUMPPTTx66+/5rvNkt1orKd58+bJ3vHoo48m9t9//0T79u23+z2bN29ObNmyxddrtxUVm0RCfKlr1qxJLF26NHHttdcm9t5778SHH36YttgUhsVSpkwZ8dsGDfGiE088Ua69Z8+ecvMr7qBi4y7ff/99omvXrnKvnnrqqYkvv/wykOsghrTPPvvI4dGhsNgU5pVXXpHr/vjjj326yvChYpMCAue9e/fOWmxILuB7V65cmQgKToYTJ04Ua4bgJKcwxV1UbLzh2WefTVSuXFm8DFOmTPHdypk5c6asXzwdzoPPS5UqJR9v27Ztu58hIYjv0XVWNBqzSQE9nnKpA6AvFD3D9tlnHxMEzJE55ZRTZLQv6cz4xU8++eRArkVRMoU4CV0IGFNB0sDpp58u7ZL8onXr1ub999+Xdew8aNlEsgAfE/gvjNMLjhiNkprYZ6MR2CNQyVAo5q8zaZLMs/nz58vXv/76a3l8/PHH8jk3IYE+vp+BUsx0oW6GBoT8O5/3799fRu36PfYYS5XWMgMGDJAAJVMkeW6KEjZYOw899JDp2LGjueiiiySx5t5775Vx1V5nrLGOCfonw1hzEoD4d2rR2CdIaODfaOXEmm/ZsqUkAilFkIg53bt3lzqZnXbaKVGpUiVxoZEX73DTTTeJeVz4MXXqVPl6Xl5e4sgjjxSTf5dddpEamjvuuMP3eA1ByDPPPFOurVu3bmm5+5TcUDeaP2zatClx4YUXyr3dsWPHAjVsfpEcsyGm07Jly0TFihUTO++8s9TQXXXVVQXqbJTtKcV/ihIiJRzQDgSXA6nNDz/8sDTMVLznzz//FOuREy6jFxRvefrpp03Xrl2ldx9zdOjIoYQHjdmEHGaJMNCMQlEKUVVolKhCPQ5u6h9//FHu+UWLFgV9SUoGqNiEmPHjx0tRJoWkzIJnJICiRJnDDjvMvPPOO3KvM0PngQceCPqSlDRRsQkhf/zxh1QkU+F8ySWXSNsPkhUUJQ5Qtf/SSy+ZHj16SLubyy+/vEDHDsVOYp+NFjY2btxozj77bBlqRo8zFpuixA1iZE7HdsTmo48+khlMeuiyF7VsQgQplk2bNpWFxcx3FRol7mDh00yWOhdnbSh2omITEmbOnGlatGghzTzxWR9zzDFBX5KiWAE1bsQsGfTXrFkznR1jKSo2lkNmOqN1zzrrLCnQfOONNzTlU1EKceCBB4prmer/du3aybA2reqwCxWbgEYZpLMQaFneqVMnmd0+ZMgQ8UlTyawoSurKf2pxrr/+epk8SxcPRp6n056Kh+ItmiDgM4jMu+++K/2VSFkuqvUGg5sY7IZ7gAWEZaMoSvHQk5CDGW1lKAAloWbWrFky6CwViAzrEZo0aWLV8LaooZaNz3AzUyvwww8/mP/7v/9LaeFQtEbjzLy8POnRpkKjKJlBA1pKAnCt4X6m72FRQsMkXdakCo23qNgEwC677GKOOuqolILz/fffy2RAsmpefvllc/TRRwd6rYoSVo477rj8TDUm1G7evDml0LAWd95550CvNQ6o2FgkOJj8VEV/9tln5j//+Y+kciqKkj1kcFImsGrVKjnEbdq0SYUmIFRsLBEcTmCcxBhnwIgD4jmKouQOs2g4vNGoljRpPAYqNP6jYmOB4NDFlgLN7777ToSm8CwNRVFyo1GjRiI469evl6GCBx98sAqNz6jYBAwCwyRC2tUPHz5c0p21PkBRvJm+O2LECOmQTqYn8VHFP1RsAgT3GYHLb7/9VkYFkEFTXJaaoiiZkxyjOe+88ySG8+WXX8rodDI/FX9QsQkIbnxSMvEj40OuW7dusVlqiqJkTqpkANzUxEjXrFlj2rRpIzVtiveo2ATA1q1b5SZfuXKltEonx99BBUdR3KG4rLPGjRubefPmSXNb2tvgWlO8RcUmgFk0jHAm95+CTW76wqjgKEpupJPefOSRR8pY77ffflsKp4mbKt6hYuMjiMall15qXn/9dfPcc8/JzV4UKjiKkh2Z1NFQND1nzhxxZffv39/X64wbKjY+Mm7cODNp0iQZetayZcsSv18FR1EyI5uCTTpFszZ53H///b5cZxxRsfEJMmCuuOIKM2DAAGkQmC4qOIqSHrl0BqD2hjHreB4WLlzo6XXGlVIJ3b0855NPPjFHHHGEtJ9hsFOZMpk326ZVOrNs9txzz2K7RSv+gY8fn/9pp50mY4qV4HCjBQ3vJw1w33//fRlQWKNGDU+uNa6oZeMx3Pxku1SqVMk8/vjjWQkNqIWjKKlxq9cZB4YZM2bIXBySeDQl2l1UbDweknbBBReYdevWSRCyQoUKOf0+FRxFKYjbTTX32msvWauffvqp6dKliw5VcxEVGw+54YYbxM0yffp0U6dOHVd+pwqOovwXr7o3U/Q5bdo0GbrGIDbFHVRsPAKBGTp0qLnrrrukU4CbqOAoccfrMQG4vm+77TZzyy23mKeeesrV3x1XVGw8YOnSpaZ79+5ihpN95gUqOEpc8WsezaBBg0ynTp0ke5QibCU3VGxcZsOGDebMM880DRs2lJx9L7PGVHCUuOHn4DPW7pQpU6RvIQkDNMxVskfFxkVIT27fvr1s+jNnzhQx8BoVHCUuBDFhs2zZshK7YTxBhw4dpN2Ukh0qNi5C0eayZcvk5qxcubJvf1cFR4k6QY5yrlatmhwelyxZYq688krf/m7UULFxCZpq4ja7++67pYDTb1RwlKgSpNA4NG/eXIYbjhkzRmZPKZmjHQRcgAFMpEvi22VORpDV/dppwD+0g0A8hCb5Wlq1amW++OIL6TKw++67B3YtYUQtGxcYOHCgCM4DDzwQ+OauFo4SFWwSGthhhx0kYYBEgWuuuSbQawkjKjY5wgCmyZMny2zz6tWrGxtQwVHCjm1C41CrVi1z5513mvHjx5v//Oc/QV9OqFA3mgvus0MOOURiNkFbNYVRl5q3qBstXkKTfH2MJfj888/VnZYBatnkAAWbtrjPUqEWjhI2bBcax52GN2Pjxo3m6quvDvpyQoOKTZa88MIL4r8dOXKkOeCAA4ytqOAoYSEMQuNw4IEHijvtvvvuU3damqgbLQs2b94s7rP69etLzMZGq6Yw6lJzH3WjxVNoCrvTPvvsM3GnMZpAKRq1bLJ0n7EoGPEclk1bLRzFVsIoNMnZad99952609JAxSZDOMlOnTpVijdtdp+lQgVHsY2wCo1DzZo1pbP7hAkTZPS7UjTqRsvQfYbrrEGDBiI6YbFqCqMuNXdQN1q8hSb5eZxwwgkycE3daUWjlk0G9O/fX0bFhsl9lgq1cJSgiYrQJLvTNm3aZK666qqgL8daVGzSZPHixebBBx+U7LOqVauasKOCowRFlITGoUaNGpKdRn/EvLy8oC/HStSNlga8RMcdd1z+xly6dGkTFdSllj3qRsucKAqNw7Zt28xhhx0mXaLpkagURC2bNGtqFi5cKGOeoyQ0oBaO4hdRFhooU6aMueOOO8xLL72kyQIpUMsmjQXCib98+fLmtddei+zJXy2czFHLJn2iLjQObKctWrQQK4f5N7qO/odaNiUwffp0s3z5cvHHRvnGUQtH8Yq4CA2wRwwbNswsXbrUPP3000FfjlWoZVMMjIBlRg2pzkzfjANq4aSPWjYlEyehSYZ74pNPPjEffvihuNcUtWyKhcyStWvXih82LqiFo7hFXIUGiO+uWbNGUqKV/6JiUwQ//fSTufXWW03Xrl1NvXr1TJxQwVFyJc5CAw0bNjTnn3++ufnmm80vv/wS9OVYgYpNEYwaNUoWCjdLHFHBUbIl7kLjMGTIEOmbNnr06KAvxQpUbFLA2Fcmb/bt2zd0/c/cRAUn3HzxxRcSa/z66699+5sqNAXHEFx00UWSMPD999+buKNik4Lbb79dWlAMHjzYxB0VnHBC6u0TTzxhnnvuOel6wSiM33//3dO/qUKzPddff728F8OGDTNxR8WmEIx6ZSASLcP32muvoC/HClRwwtleiXuZrCis82effVZEh0aRXrx/KjSp2Xfffc3AgQPNmDFjzFdffWXijIpNIW688UYRmSuuuCLoS7EKFZxwJbfQLqV69eqSwk4LlVNOOUVS+RlhTu0YKe5uoUJTPIjN7rvvbm655RYTZ1Rskli5cqV59NFHRXB22223oC/HOlRwwgHtUhiH0ahRo/x/Y7Ojv1+TJk3E6hk3bpwrsRwVmpIpV66cuNNIg6b2Jq6o2CRx7733mn322cd079496EuxFhUcu8FVs2jRIhlbvtNOO233dVxqJ510kggNWVK8h9miQpM+vXv3FisTd1pcUbH5BzbPhx9+2PTp00cXTQmo4NgJ7wMJATSLPeigg4r8PoZ74VbD2mFsBhlrdEPIBBWazNh1110lMw3rhtcsjqjY/AO+bLJGLr744qAvJRSo4NgHPfxoj4KrjGzK4kCQaBhJPOfll182EydOTDs9V4UmOy655BLz66+/isDHERWbf9JEx44da84991zJHlHSQwXHHgj+06eN5Jb99tsv7Z+rXbu2Of744yWWgBt5xYoVxX6/Ck327L///qZjx47iSuN1jBsqNsaY2bNnSwFcv379gr6U0KGCYwevv/66WbdunVg1mVKxYkVxq9F0lZHnWDqp3kcVmtzp16+f+fjjj+VgEDdUbP5JDDj66KNN48aNg76UUKKCEyy87gzromKdOEw2kExw7LHHyu/g8DV37twC76MKjTs0a9bMNG3aVPacuBF7sVm2bJmcCtWqyQ0VnOCYP3++2bp1q8RfcgHLhiw2mkhSp/PMM8+IyKjQuEu/fv3EeizJZRk1Yi82BEbxcZ9xxhlBX0roUcHxn88++8y8/fbbMnPJrZk6xHFwxy1YsEBa3rzzzjsqNC7SoUMHs/fee4vLMk7EWmxo/T1t2jTTrVs3HX7lEio4/oHFQRsaBAD3l5vUrFnTHHHEEeJOmzNnjrh/VGjcYeedd5bRJZRaeN2vziZiLTYzZswwP/74o+nRo0fQlxIpVHD8AdfWqlWrxApxe6Iq7xkHMCwm3kdELY4ZVF7Rs2dPs2nTJjNz5kwTF2ItNpixrVu3NrVq1Qr6UiKHCo63UK/xwgsviAu4UqVKrv5u3qsNGzbIqfvwww8Xq2bhwoWSOKDvozvUrVvXHHPMMbFypcVWbD766CPzxhtvmF69egV9KZFFBcc7XnvtNfPNN9+4nkGZLDTVqlUzZcqUkRY3/J3//Oc/0qFA30d36NWrl7ympELHgR3i3DGAArgzzzwz6EuJNCo47rNx40YJ3tepU8eULVvWU6FxICZEthtZam+++aZrfzPOdOzY0VSoUEH2ojiwQ1w7BjzyyCMSpNOgp/eo4LgHrx3uMzoG1KtXzxehcTj44INlbAHutLVr17r2t+PcL61z587moYceMn/99ZeJOrEUG9xnzAanPY3iDyo47rBmzRpJDGB8AP3N/BIah3/961/ydbI4f/75Z1f+fpw599xzpQP3kiVLTNSJpdiQylm5cuWsWnso2aOCkxucfomZ4DojjuK30AANPglss0E++eSTrmeocR24CeNybzRr1kxqbtiTok7sxIabmDf29NNPL7EzruI+KjjZw+mXhplkiLmR6pyp0CS7f+gYjYVFgNsNnC4FI0aMMHfeeadZvXq1iQOlS5c2bdq0kXqmqBO73Za6BLI/2rVrF/SlxBYVnMyhHc28efOkczCNM4MSGgdSrklQoKEkayoXaII7YcIEM3XqVLHeuBZ+bxziGMBexGiITz/91ESZ2IkNJwhOZtTXKMGhgpMZNNpk3gwxk6CFxoE+ajT+nD59uryPmUJBNYXV99xzj/n888+lGW7Lli2lUSUW3NKlS00cOOmkk6QRatStm9iJDS60E088UQRHCRYVnPRAGCiqPOSQQ+Q1s0FoAFceAoFoIDhkeaYDU0FfffVVc9ddd0kTXJ7Xqaeemj9LCssNy+mll17KeIJoGNl9991lplDU4zaxEhsy0KgRUBeaPajgpDfqmf/jtrJFaBw4kSM4FEnTfbqkv//BBx+Yu+++2zz11FMiKsROGWFdOAZF52mSEPLy8kwcaNeunRwoNm/ebKJKrMQGPzA3PDe4Yg8qOEXDJv7+++9LBX8uqc5eCI0DxdHU/FBoygC3VKxfv16KF+myTso0riOyQRGrVOyxxx5i3ZCAEAfr5vTTTxfLkLhcVImV2GCm4g/W0c/2oYKzPWyyWDXly5eXxAAbhSa51xfWCWssOR0aYZk1a5YZNWqUJBKQ6ovLqFy5ciX+TpqAIlJkqUWdatWqSTwuyq602IgNCw0zX11o9qKCUxBcvmRq5VIP5ofQAGUEjCTAEsP1xSmd4unhw4dLcgPNbk877TRTpUqVtH8ngsTBEOsm3XhQmGnbtq10h4iqJRcbsSEgySlLxcZuVHD+C8PKCJDXqFFDLBubhcZhn332EXGg/QoiQ9IAiTjUkZAEkE1dG9YNrjnuhajTrl07idksWrTIRJHYiA3mKQu3fv36QV+KUgIqOEaEBsFhsw2D0ADpy0wN5T2jCwDlBbjNcsmgQ2ipsMfKi/p90LhxY7H8oupKi4XYcJOSw87Jwe0hU4o3xFlwvvzyS3FBUcdSVADdJqFBFLFmKMyEc845RwLee+65pyu/nyw8xl9HvflnqVKlxJXGXhXF+z0WYrNs2TJZwOpCCxdxFByeI1MxyTyrXbu21UJDHIUYA+1lEIITTjjBXH755ZK27GYrKLLS+H1xaFbZrl07KWgl9hU1YiE2pGSycdFAUAkXcRMcDkZsNPQ/y3TD9lNo3nvvPTN06FCxwHD19evXT8SGUdJenPgRXhIPfvrpJxNlWrVqJa8hw/GiRizEhpuU01Y2LgkleOIiOIgEtWDEKDJNz/dLaAjWjx492jzxxBNynT179jSdOnXKOokhXRAb+sNFPQ161113FfdpFItZYyM2Ok4g3MRBcGjdQl1JpveqH0JDJifZZWPHjjW//vqr6dChg7nooosk6cYPOCgSPF+8eLHrYw1sTBTIU7EJH5jdFJOp2ISfKAsOTTapR+EET68sW4SGjZ06F+IyrKNjjz1WXGbZuPlyhbY2PNeoJwo0adJEukD/9ttvJkp4nw8ZMPiWWZAqNtESHGIFCA5V11HIMKRNyS+//CIuFFuEhtgRI6CxapxmmbSmCQrcdggc/dVq1qxpokqTJk0k+WL58uXS8SQqRN6ywRzdeeedXZ3XrgRL1Cwc5pi88847Muo5XcHwUmiokbnvvvvMww8/LFZW165dTefOnQMVGuBQQdseDpBRnnXToEEDeT+j5krbIS7JAV5kySjBERXBwU1FqjMHonTjH14JDW4bujHTx4zXlTTcSy65xBx88MHGFrBoEEPqbqJ8b9evXz9yYhN5Nxpv2HHHHRf0ZSgeEAWXGgPC1qxZI7GQdK7dC6FB8KjQp2sBNG/eXNKYy5Yta2yDsQQ8Z2Ia2dQhhcmVlhcxsYm0ZUOq5MqVKzVeYxlsmMyY/+abb2Jt4ZDVRayGNGfiEUEIDSPSR44cKSnXWA19+vQRi8ZGoQEEuWrVqvJeR9mV1qRJE4lN8V5HhUiLjSYH2AlZTbQ2GTFihLiQCIzHUXBoDotLKJ37022h4bWaPHmyzJjBxXzBBReYf//731KtbzvVq1eX66cjdtSTBN5//30TFSItNpih5OdrcoA94LLhNI9AEKPgY8YD08Axl5Nq2ATn22+/lc4WxENKGlHuptD88ccf0nuLrsz8zlNOOcX07ds3VA1qcaUBbV2inCRQunTpSLnSIh2z4Y3iTdPOAfZABTibBHE0spsOPPBAEYdHHnnEvPXWW9KOPltffFhiOIiHM7ekpIOQm0JDfIhhbPxdTs5My2QiZtjgPcXtiIuc2FIU2XXXXSOXJBB5sWE+umKPVfPyyy/L3BMnjZZF1aJFCylqJP2XCnUKBrOt6QiD4BCv4tpKGvXsltDgbnr66afFmiIuw2vL7wszdBNYsWKFxGV32203E0WaRCxJILJuNG5CbkaN19gVq6G3ViqXDa4RTtrUmnACx83z4osvZlVFbbNLDT88cSo2yOI2fDeEhtb/WIzjx48XFyU9zOhlFnahAWJL3BvM0IkqTZo0kZhNVJIEykS5ey4naRUbeyAuwybr+NwLgwVCHIdsI1JbGSKFtcNJHBHKpD2KrRYOrwE1IgwWK+p6chUaBI0WMwsXLhQXMq4mUqujVGvGfURtEq9lmOJNmcDehcuTrLQo7GORFRsneFi3bt2gL0Uxxnz33XdySksnWYPNlUJcYjfEeKZOnSrtUhjIdcABB4RWcGj7grWGgBQ1WCxXoaHFCSJNWvVhhx1mTj75ZNeGmNkGbla6L0SVuv/sXaSnq9hYDAuWtue21gvEDVxjnNIy6RLM6ZUZRMQa+Pl77rlHCg5xt6Xb0t4mwSFeRWyKGJXbQsPPPfPMM+arr76Sn8UajHL/sGSx4b6KktXmwD1OTJP3NgpEWmwqV64c9GUo/6TbkmlGfURxAfGiIKGAzRNrlTb8iAaCg4iks8nYIDiMDli0aJG4fHD/uCU01ChhyeA2rlChgmnfvn0gHZmDEhuahX799deRiEMVhnuUPUzFxnJUbOwBnzNuNDbBXKc14kbDHUcPLydVmk7JJYlHkIKDkJByDKn6jGUjNMQjmeZIrQ7CggV4/PHHy/OMC7gHiU/x2kVRbEDFJgRwkszEv694B5s7p+5M5rQUBQFv/Nds2rjWJk2aJLEJRId0WBsFh2QHBLJZs2bbWRzZCA31JbNmzZJsM6f1fzrtbqIGVjKu1qhsxkWJDXtZFIis2HADHnnkkUFfRuwhPZW6Eoo33YRiROa1sxBJIiCtmpoqMq+KEzW/BYd4AqnOiG1hMcxUaLAOqZchA4vfddZZZ1nVkTkIeF2j3LamcuXK4iqMApEWG3WjBQ9xFmqemEPiBWy61FwgaEy6dOI5HDSK2rz9FBz+BkF7rilboSHmhRuONHCEtG3btmIlZRP/imLcBvHFnebFOOygqVKlSmQstzJRHQXNBqdiEzy0z2dzd8OFVhS4pkgTJfuK5qvTp0+XeA6p0pz8UwmJH4Lz448/Sqoz11WuXLmMhYa4DM9j/vz58jNMbUS0NMPyf/C68jryWgc93M0LKleuLMXJeAjCHo+LZMqK4+MsyYeveAsbJO4tssn8gCwvLBpcaaQYO9MmSZ0OotMAQkNtDTGlTIWGlF6GmOGCI4uP1v9nnnmmCk0KdypWDe9hFKn8z4E5CtZNJC0b541RyyZYOG0ys4bqf7/9+AgO7iviOQToafxJjKdwh2WvLJy1a9eaxYsXF2gEm47QbN68WeplcAsy5+b888+XbDslNYgvFiCvW9TFpmbI66ZUbBTPoG8V8QY2Tb9BMNjQnYaNdFkme42W+oXrUNwWHDY/YiyISa1atdISGl4nJmUyMRNBpPKfhIcoFiu6Ce8jFm1ULZsq/3hn1LKxFN4YYgRhbJ8eJbAs2MhTFTH6BUF0LAM2fawcZ5QB8ZzkDDk3BYe4EQJH7Qu/oyShobMv4oTg8HeJyyTHeJTi4b3DbRpFKlasKJaxio3FMRu1aoKHVF1b2r9jLSAmmzZtkqyuMWPGmCOOOEIsHacxqBuCQyAXK4o4FY/ihObLL78UlxkV8FFp/R8EHCyZeBpFSpUqJdmWUai1iaTYaNqzHRCYt826JGMJFxUuviVLlkixJR2YsUKwwHIVHDotc/8hHEUJDUkDs2fPlr/N9ZxzzjnSeDQOLWa8ittQ4BpVKkeki4CKjeIJxC1wbdgY1EQ8uC4EgFY6VOMjPKeddpps+tkKDlYTrf1pq8MGWFhoklv/E4uhvQyt/4N0M0YB3ExY0VGlsoqN3VlQca+stuE9IAbhZX1NriAAZMo5owwmT54sIxCI5yAQmQrOvHnzpLU/zTYLCw1WDA0zaZxJDAnrqqi5PkrmYsNrHdXCzj333FNcrWEneu/MP8OjNIsnWMgO4n2wzY2WCgSxZcuWkqZNxtrdd98tYwCcztLpCA4zR/hZLCPiB47QcOImLkNLFT4/77zzXG/dE3cQGyxp4mU2H26yxbGKw05GTuKhQ4dKUJUNhOAnRWYU7TngB2cxpnrMmDEj//tYeDROxNXA77nqqqu2ezFvueUWmdhI+ic1B5mgYhM81D3wPtiSIJAOpGjjSqO5JaMM7rrrLpmsSeV+cYWfjFwmmwx3GA+EhlgMInPvvfdKRwta/1OYqULjrdhEkR133NEVseE+vOKKK6RImIQZDlQkyzhwb994443ituPr1KrRASQZasfwBjCXCk+AZ2JDS/O+fftK6ig1ATQZ5PRHaxjg5Ib7IPmBaHDaIGDqLEyEBhcLNQUPPfSQefDBB+VJOnCSZPESRKWo7dJLL83oSUXVnA4TbM5svGHr38XB6KCDDpJ7lOJQDkl0IsCVQQwqleCQusyipMs4Gx6HrhEjRkgxKZbRZZddJp0NNAHAG7jPEBtcmFGkjEuWTc+ePWXfJv0fty57N4Kybt06+TqHq9GjR5sJEybkj3DH3Zss4j169DA33HCDeeyxx8T4IKMy7eeRycXik04GkcAyYbHhhmBjIU0vmZkzZ0q2jWPe0sKDLqZMLeQkiUreeuut5pprrjE333yznFLYqChmovqaF5m/kwkqNsHDDRpm65L7kOJPhIf7m0MRFo8TZ8GlBlgxrAuSCnDDsUjJjKpTp44csPxq1RNnuM8QG96LKFLGBbFBiOkYzgGevRrYb+fOnSuHKfZgJuFef/315owzzpCv0+qJPZoEmnPPPVf+DcOicePGcl9zAMNaSpcdcg0CQ1GBThYpBW6oYbIZRq+o5Kpy1JMFyknQ+ZzNCjcbdRAoaCZgcanYBAsWbFDjl90ezUvWGK40rBfuX/qVYZVj4Sxfvlwy2jgpIjq4H7p06WK6du2qQuMTjsWI4ESRMmXKyJ6WC4gVa7JwM0/uVybI0jmbJAQsneR7H4uce94BDxSHLr5G53ESatJ+HtlePG8s/j/cBEX1bsKnx4Ulz1znCRVuX+J87mRccFJh4VKngSvD6S2VLnGM2bDx2XSy4yTFPUL2VRTgFEdvNeKHdAfA1fDqq6/Kg/gUMRrqdVicWPjU0ij+3WtsxhxQ3Yrb8B7asofs6ELMhjh78+bNxYJhT2bPpTs6QkI2prP3ptqbkzPhMBywcgiDsCYyIWuxIXbDiQ5VLOoGwK+Hfy9bijsZFqf0zhuT62kgTFC74YwetgG6FpOVhQUQRRD2559/XtwKJLLwf1zDPBT/QRzoCuFW9iMnd2LFtrQN2rZtW7H7WTrCSKyme/fuMluK1wt3GNmReKAygVhONok/WYkNbwKuBDY4FloqmBHPqRaXQjLEdCigSwZft/O1dHESFIp6Yxidy2YQF3gveB2dxo9BQ60JRY5RA9cx1g3WDJab45bgXiTtOY7jmW1xpbk1foGD8rJlyyRWYcP7uXr1arEkitrPSJAg3FAS7A0keXEwImxB1lmnTp0kQ9LZe9lDkgvi3ezaXiZTVw2ZNQT9cR8UVx2OC61du3amUqVKBf4dU+72228XF5ljuSAcnCAy8f+deOKJRX4N1eXaSGONC7htsDSpSFe8eX25T8m+4VTICRp/txMfJG5JGQBf47635USsZA5Zh7jjcIt6NWE2E/Aecb+5tZ85lgmJWAzmIwuN/RLBYdqtIy4IEgkvpOz7Lja4znCNkdHAk3d8eZicyXNCKHDjpJ1KiUm3Q1QuvPBCeZL8DjIg+N2ZtO0ozmxk8SOMtvhc/YDnSkA+bKnGtoOVTCo+C54TIf5uXmcSArDqOTTx2rMp4cMmyWXkyJGS8UNigSaqhA9nHbEf2bCHJBIJuY9yvRZn4iuZkuzR1Dcy4bZbt27ynInB33bbbZKBifgQAiErmHpKN8hoJZAiBwyiSmbq1Knm3//+d/7nU6ZMkYVYeO468CbigkMtsXJQWDJ3hgwZYmwrggpjrYHiHqTok6rPgQgXBMkw3FdY9iTF4NpAgDg80e4GlwT/Ti0O7grcxW3bthX3mhIenDoqW+qitrmU8IQLeNCgQTL6A0u8Q4cO4mVyfvfVV18t93Pv3r3FTUxBvZPWH4gbLR3uuOMOeRQFFaxexlOi0t4hE7gh4pQQ4SVYK9yf+MrJhiQDh0MRSQFk7/A6c9p78skn8126uNCoxsb1giuTrDQW6uOPPy7dCFjY2hw2HHCIcIay2cA2l+oGqXfkURRYNxz63Tz4J2OHdLtMHMUGN2bcnrPbkNBCs8xx48ZJ3QE+8oEDB+YLDXUKuMlwkSVnPfExp8BPPvlE3gMCzIj/RRddZM466yz5vVRmIzxRSQWPg9gUHiEeFNsiUqQe/mfgURFU2GBz46bE+oxCMaWf4H4kEErSC0HRJk2aSOdnTrZO92bcwpMmTZINiFhMYXCxUcBMPLNfv37iqiCThy4EFDEzWgC3Gq456nWwfmxx0yjbiw17SKb1fV7xZ0SK1CN5t5MCGbeiOucUptZNZhAoHT9+vIgELjOCpB07diwgNPT8Iw5DJhqZZqkWPn5v3Glk+CAq9EnDwiHew+/CSqJkgOArtTh33nmnpOcr9sF7zh5iy6Ft69at1lhZuRB+uUwBKXxRmP+QqWXDSZmFYkMGje1QA0RMBUuDvn1kR1IbBIUnbCLgCxYsEOuGfn1Fwc8zR4kUaSwaBIcO59yL3JPUbPB3iAWRGUTPP7J+cLUVLhFQgrVs3KrZcYMNGzZYkYKdK5G0bEjXi8Jku0ygroNMP40JFI/TOHPs2LFiWeASowlsUUKDFYMLjOwcgvwl4RTXkWDAzyZbOE6CDYJ0ySWXSKYaosf8HDLc2OQUeywbW9iwYYPsaWEnkpYNWT/r1683cYIaDywaurBqA8jUcRnSk7FQKNrDQmGzTx62lUpoGH6GW4xCt3Q6XPA9xHzIWjvmmGPEYils4Th1HMR56B6NJeQ0raVcgJIAjecEB6Jv0xymDREZcx/JO5o3hg3FpsaUXkMwE+smk5bfcWHt2rXm/vvvlxbrxE+IndATqiShgRdeeEGECmFKFzrnkqHG34OiLBzgBE1LdywdBlLR327UqFGS2aYEg03jzH/66SeJP6vYWIrzxsQtboNFE7fEiJKK2KiFIYsMC4Uag8svv3w7/3dRQuN0eMbVlolbhe+l8JkhasSEShIcwOKhkpthgVg9XDPF0SQcKP5Cq5pMOxp7xYZ/wgFREJtIutEc/yZvFAWkcYEANBtc3CFVlEJK2sywcVADQ6ZYqiyyooSGmhpiO1iLzrCpTKCoE9cYWW60BMEt5ghOYZdaMnQgoJ2I0yKHiZ+M6OD6bUnFjTK871g2ZCbaJDZVNGZjJ84pII5xm6jOYU8H3F0UXRIDoQsAmzyV/kVtHEUJDTD6nPuHNkzZxE+wThgCyIRP6nec2px0BIfYG5YRLeB5LsR/EC5GVRMPUrwDzwDvnVo27hNJNxqDrFiwcctIw43GqSyOgoMw0KOPgVCICNX7CEU2QkNGH73NSEtGsLKFrDMad5KUkOzeLMml5oBVRQYczwVRYmwHo3szmfuuZAbvE++PTWJTtmxZ1+b0BEkkxYaTIoszbmLD6YcAeBTnyBS3OZA2zORMp+iyf//+xY6/KE5ogOab/N50Up1L4tRTT81vPptMuoIDXGPPnj0l5oSLkHY6DMLS+Jw3AXkn2caWQ1TlypWtKTDNhUi60RwfZ9zcaHRyJYsGsYlCEVhJvnUnrsEGwTx0NvaS4holCQ1fI0X6iCOOcGVwFlY28RtGbhD7Sfa9p+NSc8CVR5o0MR0sJdx8w4YN01EGLsO9xPtuS+r5hojU2IAdr6gHcBqIm2XDRkX6bNQtG4oxKcqkcJKNgbkcpA/nKjROqjMbDfERt0AMcMs888wz230tEwsHcA9Ti8MQQwpRcffR+ob5Ooo7YmNTN4cNEamxARWbiIFFE9VaG4L+BNwffvhhiUsxT53ZG1h0JZGO0DDplF5pBPbdzPzCtUnzzXXr1knhZq6CA4gXtUKMP+BjhhrS4y1u6f5e9CGzqSh6Q4TEJrK2d1zFhufNhspm7NbQo6AhYE/LGObFsBHTEoZ05nRdHekIDbEQMr8QLtxebkMW2dKlS83cuXPFFVb4GjJxqSXD/PiLL75YXhuy3u69915xt9G12qaWK2HASa6xyW21IUJiE1nLhhuGk3DcRg2wYSEytLePSut/ZsEQn2GTvvbaayVO4abQAL+f14ymmF746/mdxJS4Dro+pyIbC8f53Qgkow1okUMhKfEcxEent6YPXUewaG3Z3H/99VfpyWeT+OVCZMWGRQtxK3Ik1TcKmXi0a2EMOZlmZAaxkZ599tkZndbTFRpm2JBoQKoyloJXEE9jtg0Fp/xNNwUHOGQwyoDWN7Vr15asuuHDh8sUUaVk6DJBTzQ3EkPc4LPPPiuwl4WdyIoNjROBzKK4QQU6Cyesp0viD7Rqod3MBRdcIJtnOk0wsxEaYFNmc8eq8RpcgIjCrFmzivyeXAQHiDl06dLFdO3aVf4W9UcTJ04M7T3hFyTW8LrbkomWl5dXYC8LO3a8qh5ARgmbjPOGxYlatWqJ7zlMdRiIApv+mDFj8qdZXn311WIJZEomQkNtDkF7WsL40aKkfPny0tWZ50iDUK8Exzl00HSU+A1CM3LkSBE5HWWQGqxNZhbZQl5enlio3DNRILIJAk5QNo5igysIdxN1RriGbIaYwrJlyySOgVVDXIY05my77mYiNPxtUp3x09N7zC8YCc1zpis0k0GLOklnmzSQDAWlJFNwOuY1xtJHXLGwmjZtas0pPmgQYITdpvhIXl5epNoTRfpO441icWVzKgwzjJDlRESqrc1gVTzwwAPSmZkNH3cZbjM/hAbY8PGLU1PjZ5NLamUYQ7Bx40bJIisONywc4DWlTxyZa7w2c+bMkaFtTlwg7uBCI0XdFrH566+/ZBS5ik1I4I0imyOOC4qCPxaQjS4T3BUzZsyQGTNsoB07dpQEADbBbMlUaJysMGfYmd/gHsTdiWVV0nvkluAAmyn1SYwywEriPWA8NeskzvC6Uq9kS0Hn6tWrpeZHxSYkOG9UHF1piA0nta+++srYAmno1MuQyowrh9gFqcy5LqhMhQaovEeM/UgKKC4V2hllUBJuCg4ig7uSLgR0I8DCJGuNwW02Hk78gLR3Yly29CDL+2fPovN3VIi02JCVQ8AvjmJDsJt4jS2p31TnE/wnCYDTNS1m3HBfZSM0xIZo2491kYs15Ua3Bwow6XPGNfkpOI47j1Y6WJXEdHhNaH0TtwxODkF03Siueavf5OXlieVry1wdN4i02MQ5SQAaNmwom1iQp1WEgDRm0pkJyNNeBjeOG4soG6GB+fPnywZDIkLQYFlQ2+GMkPZbcIA6JmqYevXqJQc0XJxYn3EZZYBVgxfANrFpEiEXWizEBjOUNy5uSQJQr149SRYgmymIFjOk2VKYyd9v27atGTBggGtFk9kKzaeffipWFhlhNsyZ5xqo+qeIdc2aNYEJDjDVFsEhhsbrSq81DglhSqHPBrI29913X2uKOf/++29JDoiSCy0WYsPpgDnutriT/IQTK35oNli/W/8z5GvJkiXiJho8eLDEZ9xKs81WaJxUZ9LCqeOxhaOOOkpapNAtId32Ml4JDu8Ra+byyy+XaaEIIK1vSKbgvY2qZcPBzJZ4zerVq0Xg1bIJGXFOEgBqKcj+ohrfj0XCYC+aTTLHBUumffv2rqYVZys0QJoxCRMMWLNp/gu1MLjTyAhDqNPFK8EB3Ep0vyaJgI2YGTrEcxi7HSXY1LmXKBWwhbwIJgfEQmxIbSUgHVexYaPAReBlfyyq02n7Twot7jPGMTPK2G23RC5Cw4ZMY0p+LpuuBF7D+GgSOrAgMhnr7aXgAF2wSZPu1q2bWMpMCMW9FoVGr0AXB0Yu2xavqVmzZlqjM8JE5MUm7kkCbEa4sAj2ut0Bm02RAWYMMmMODKdzWszUrVvXuE0uQgOvvPKKWA5BpTqnA000ofAI6aAFBzj5U3RLYShWMm7Sp556KiNhtBHiiRw+bBrHkRfB5IDYiU0ckwTg8MMPl8XkVnErcQXiMcxOoYMxp3LqZfDxe9H+JFehYdQEs2SIH2Xa0NNPyARjHDX3aqaWgx+Cw3vL+G1SpYkzMR106NChcg+EcZQBLjQKJ22ydP/+JzlAxSaksDBIAY7r6FzSjEmDJtib6yaEYE2YMEGC2WRSEUju1KmTZ4O6chUaICmARUxDStuh7gV3VaoR0jYIDvBe81r27dtX3D28viNGjJCYXZjgXua1tql/YF5entT80Bg2asRCbBi2hV+WflBxhZsXNxppntlARt/06dOllxkf48dns/Fy0JQbQrNy5UqJV9GLLAyTK7lGLERiCdkE4/0SHMcSIz534YUXSkIB9VSTJk1Kq0DVFhcahzCu3RbmzJkjbXNUbEIK2VB0uSVLKq5wAsXdtXz58ow2IATKaf3P5kd9yjXXXOO568ENoSFVlwJOWrTT+TgsMHWTzhezZ8/Oyj3lp+AA9xWjDIg54bLEyuHabW59Q4Ym8Sba9tjE3Llz5XW0KVvSLWIhNkC6K3GGsE+wzBZqCFq3bi0LLJ3XwPEdE5ehnxliRVyGJACvF4IbQgNvvvmm/B7Sr8PUSp9r5XBEPIGU42zwW3BI38aDQDyHGCHuoDvuuEPGetsYz8GF5rR0soW1a9dKJ3L2qigSnhWYI5wWWBCZZvpECXotpWPdJLf+Z9PCXYarxI+Ke7eEhuAvgWs6Fti0oWSS/eXUt2Rbwe+34AD3CBl/pL471hmZazYVVfM6OC40+sPZwrPPPivXQ31TFImN2JCzTqJAnF1pWDcEoNl8UmU7EZikRxdt59nwO3ToIMO9/GpW6ZbQAPUqPB+eQ1jBumHzySXWGITgOE1G6YFH8gh/k6QSarFwXwUNrwMuViwwm5gzZ464qaMymTO2YgOYpy+99JIUHsaVgw46SFrY4CJzNh7iMhQ84jLD/UHMYNCgQb4uRjeFhiQIOhfzPOhkEFa4dp4DWZS5NMUMSnBwB2I9kLFIggZuIroQMFJh27ZtJihIGMEtTC84W9iyZYtYsVF1ocVObGgGScyCU2+crRtOzARvcW0Q9KfFDBsAmWW0/ud18nNypZtC4/Q/w2XqFEmGGXq4YZWTap4LQQlO8mRSRKdBgwZm0aJF0m+NmUZ+QxyMjhcUOtvSCw1IwuHQx9qLKrESG3z3nOrj7EoD4hi8DtRyTJs2TU6ZdPvt0aOHpF36iZtCA4gnHZTxe/spmF5BWi6uT16jXOfMBCk4gHsIt1rPnj3FanviiSckyzHbdPxsoNaMexyLyzYX2mGHHWZq1KhhokqsxAY4OSA2NmbI+AGWHaeoFStWyGbDADMaZpI84DduCw0nQ9ykbGQ0II0KdD5gE2KSZq4th4IWHOC5kEBAPI3rQHCo4fJ6lAFxGrLQcE3aVFuzbds2afsUZasmlmKDT5TgOB2A4wTiysmYGghOUVg3BP9JmggiLdhtoQGyz6jzIBsqTKnO6aZC81ohprlig+DwnIgJkipNUJzuA8RzSLP36iBI3Av3Ki2BbGLx4sUyojzK8RqIzopME3y1nHzj5EojMEs20NSpU2VjOfXUU8WNEFThmBdCQ3NI2vPTBNSmDr5uQTCbeAfPkYaiURAcwMJASCkKxbVLw1RE56OPPnL17/D86CZB6j9d0G1izpw5ck22iaDbxE5sWGQEjuPQuoYNmBG/ZJmRDMBESB6MIQ4KL4QG6BSAi5CuxFGFOBQNVZmA6ga2CA5wAOzcubPp2rWr1OqQJs2U140bN7ry+3l+PE+sKNuYO3eu9JqLkjWeimg/uyLAXCWd1KZCMzch08wZdoVrieJArBl6WQWJV0KD5UahKi1pqAqPKgTYcXtyQndr+qpNguMk8TDK4IwzzhALbtSoUVL7lesoA9Y7lhOp/zaxevVqScWOugsttmLjZCpxE0cJNgoWlbNAOS1yYqIaPeg0T6+EBv8+adu4Y0488UQTdbBMOTRkMkI6bIJDXAV3N/Ec/s9BglEGpExn85x5TiQfkNUX9DooDBmhWKukhkedWIoNHaBxt0yePDnwheUWpI/ScZcHmwaCykwMG9J/vRIaoDgVCxVRjWLzwlQ1K4gqAWV6/bmFbYLjdMDmxN+nTx+Jw5GxNXLkSBnUlwmIlVP2YBOJREL2oI4dO4aiI3muxFJsgLoS0n9p1hhmOLHhw8eawRxnuBWFgAiqDXgpNPxOspcoRiU9OC7Ur19fUtWx6NzsrGyj4AAD7xhlQEwHsaVvH5s0oy5KguxEW62aV199VYSTvSgOxFZsuPk4LWEJhBFy88lMuuuuuySDB1cZNTNVqlQxtuCl0ABxKWanhLn/WTYQSCYGh0uJ076b2Co4QOyRprBkr3FfDR8+XILrxQkuVg1rgyw025g0aZJYW7hG40BsxYYFSyUznY3dSCX1EywYMswohCOzDBcSKb82ZbN4LTS4kWhfT9U1TR/jBoeKxo0by2tA+5W4CA6WDcPliOfgJub5E89h7HdhqKej55iNVs2mTZskropVY9u1eYU9u1MAdOvWTU5Fjz32mAkLuA5wI5ASSlDRtmpoP4QGnGaOccjiKQref9yl2YyQDrPgAM8bi5ZOBLhR2bgZZcDoAOB6aSqLRYPb0TYeeeQRucYuXbqYuBBrseEmxSqYOHGidYupKKhBIBuJE56Nab5+CA1+bor+OOH6MWPHVnjuDCwjDRprN26CA9xjeCjOPfdcOXyMHz9eNnKyMvmcmjrbLIdEIiF7DkP9KlWqZOJCrMUGMGOZjudmZo+XIDIIJO6BXNrOh1VonFRnNloSIeIOqcEcmkgS8aLNSxgExxllgGsNa4/+Z48//rik/vs1iykTFi1aJMlJcUkMcIi92BBsJFFg9OjRJiwQn8FfT6+zIOeC+C00gI/+q6++EveZTTGqIGtSSHOnWwSbmBeEQXCSRxlcdtllkpXJYYzxGbYVb48ePVoSA4glxYnYr1YWKzcniQJ+tjrPBdwCWDe77rprzm3nwyQ0DL0jXZQ+YTb64YM8fLB5MafJq8GAYREcYIQAh5HWrVvLwYRkGiyddFKlvYaYEgW5zPaJ22EpXs+2CBhfSxUvvZjCAi4CWpJz87L4oy40QE0N7kO6OisFIRWazYs59l4RJsEB4iF4Lg499FCppyNVmnvIzdqkTBk3bpy4gOOUGOCgYvNPzymKxu6///6cezD5CZlo+KrfeuutnOec2C40FOcxFoJ0V9u69toASSO07KejgpeHj7AJDl4ACmA5mO29996SuUcXAi8SKtKZEjpp0iRJaIhjYouKzT/gSiOdmNqVsMBJllM+tTZ+u9P8FBpwihdxHyqpIV5BhqIXqdBhFhwnnkOcE0sH19prr73m+zU8+uijEltjnEIcUbH5B3onkSaJfzcMi6ewO41gqF/uNL+FhjRnuuOymeLuVFLDa0M6OPcCqb9eEkbBgZ9++knitHgF/CSRSEhiAN2sozz6uThUbJIgdZI0aDemIQbhTiNTy2t/tN9Cwyhf3g9O7LTXV4qHAVxVq1aVeU1eZyqGTXC4l+g0QNcJBtH5yfPPPy+HJvaYuKJikwTddEmZHDx4sGejab3yS1NNXa5cORkx69Wi91togP5v/M2ojXr2um8aWWkEw70mTILDHCBeHzwBfhZ6spcMHjxYCnB5xBVdvUlwAw4bNkzaXDz11FMmTFSsWNF06tRJ+rxRMBYFocHlwfA3Arw0U1TS48ADD5QMrIULF0rHY68Jg+AQK2FdUNtCF2k/oR3W8uXLZZihbd0M/ETFphCMjeVkeN111wWS4ZVrV1wCoJjrZG+FWWgA9xkZPHHr6uwGFHoSFJ89e7Yvf89mwcGywOKneJvaGz9hzdxwww0yPwuvSZxRsUkBXWQ/+eQTM2XKFBM2CKLjj8b9xMIPq9CsW7dO0nhZoFhtSmbwmtHKhkQBv9oa2So4WDTErxhS5vcwQXqgUQt3xx13mLijYpMCgu3nn3++ueWWWzyryPYKMm1oSkhBW7ZjdIMWGmdOC38PS03J3konW9HrVGibBcdxn3EIo/OEn+AGvvXWW6WG7xAL5+n4jYpNEQwZMkTmhJAKHTZIFEAsyUzDOgiT0ACncToZ4860Yax1WGH0BJssmz5xyLgJDocWOgcE4T4DpufS8eLmm2/2/W/biIpNMUFWZmUQ1GMaZBivHz/x2rVrpUYlLEJDnIweX05FvJK7lc5m+9xzz/napsUGwSF2Sbrz2WefLfErPyFmOmLECCngtLHzdBCo2BTD9ddfL75eYjhhpEWLFpLOTSYMMRDbhQao7KaTg6Y6u5sKjdD4XT8WpODQdJNUZyw7rsFvbr/9dnntBw0a5PvfthVdzcVAD66BAweaMWPGWDc7Jh1Is2zTpo0E2cnGYRStzUKDfx23B1l1fvvXowzvZaNGjeS19bvzcRCCg7CSMk9XkCDcZ8zToanvNddcIzEz5b+o2JQAYsMI2rD6XTldnXPOOdKSv7i6i6CFBhiKxkaB+09xl5NOOklGUtDe3m/8FBx+Nwcr1ixxS7/dZ3DjjTeKyMS5W0AqVGzSCLbjTnvwwQc9KZb0A4LsF154obQxYR5MYd+9DULDgCsSA44++mh5zRV34TXltSV+R1p/VAWHNUphMwXOdHn2G1zW06ZNMzfddJM0yFX+h4pNGlx88cWyUCj0DCu0NO/WrZtsOq+88kp+waoNQkPW0AsvvCCNJPGxK95Abzlcw1g3QbRj8lpwiPWRFEBBK67YIKAtDd0uevToEcjftxkVmzRTSEmFZpFSLBlWOOmxCNjUnSFSQQsNkJZL4RvjA4K6hjiAS4mEEbIradoaBF4JDnOoWJsUNPMcgwCvAVl/t912WyDuO9tRsUkT/L901GXwUZgGrBVm//33l+dA8SfiSTuYIIWG13LBggVyXQSxFW+hZxonbyc+FgXB4ecpYCZOQkEz97bfUPzdq1cvyQClU4GyPSo2acINTNyGYkMCgGGGjZ2xBCwQ/PdBVnljYZEhpf3P/INUaN5zTuFB4abgMMEV65wDYVDxPtxnDGWbOnWqpuwXgb4qGYAfmBY2jJVlFHMYwVfPVE+ClyQ+kDwQ1Fx2UrGXLFkiro/KlSv7/vfjCq81UyvZpOmSEWbBIUazfv16KdykO3gQkGbNYDT6n5FuraRGxSZDrrzySqlsp9+RG40ugxAaWmgQLD7ooINM7969RXBIGvD7+ZAUQIU380UU/1OhSRp5+umnA72OXASH7hhknzFht2nTpiYIcEOTeIP77PLLLw/kGsKCik0WiwNTmcKtMLnTCgsNSQ9AOjRteXA/vPjii1JY6Qek4LJRtGrVSjY9xV/Kli0rjTq5j6m0D5vgkHmGZXbMMccElhDguM+wrNgTgogVhQkVmyzdaWSn4U6jgCysQuNQpUoVc8kll0jVPhaOm7NwUoE1M3/+fBGZ4447ztO/pRQNnSV472fNmhX4ZNpMBIf7GNcVfd9oaxTUQDJaKznuM7wESvGo2OTQWYDsNNvdaSUJjcOee+4pFg7z2ek0gIvCK0i7pVfbGWecocHUAOEkzggHWuGzcQZNOoLD18hepNFs586dA8uixH3WvXt3KZRV91l66ErPEm5ystPYlJnEF2ahcaCdCf5n5qQvXbpUgq9uQwYc9Qg1atQIrPBO+R8EtOvWrSsbuA2zm4oTHJJYuE7qxbp27Sr3a1Bce+21UqOm2Wfpo69SDjAQieFIzK2gyWGYhSZ5sZPZQ9CeuApuQtxebsH4AE7SmupsVyo0G+acOXOMDaQSHIQGFy+xJiwKLPGg4LA0duxYM2zYMKlZUtJDxSZHBgwYIDUruNNsOBnmIjQO+MDJVqKfGsJAfKWoBp6Z4Azxwv3IJFHFDrAUyOZatmyZnNZtExzqV0jPp/MFhZNBpsmzDhA7rH9m1Sjpo2Ljgt8bU5p2K9SthF1okmnSpIksKAaZITi5jlkg1RlIVVXs4vjjjxdrwc8R0ukIDsJCPIkWO7RaoiA5SHCfffPNN2bKlCnqPssQfbVcAJ83/ZDuueceaZsRBaFxIFupb9++krlEASaWSTaZSx9++KFZs2aNWEycUBW74D0hMxArAgvHBnCdITQ0D+XaKEANutvFuHHjxH0WVAFpmFGxcYn+/fvLhkyGDDUAURAaBwKxtAKhbTuuMOIumbgM6TDNlMiKFSua5s2bu3ZdirtQrIzrau7cuTKhNkicGA33cZ8+fSTFmbZG//d//xeI4HDfk5SA+4zDl5I5KjYuutMef/xx2YRpxOdn+xcvhSY5jkOaJwuN+hhcYh9//HFaC59uvCzW9u3bq+vBYnhvSIUmTsIpPihYQxxOOOSQjk/hMZYX93YQgkPfNcQOAX7sscf0Hs4SfdVchFMhPm8yuPya0ueH0CRDyjJWHG4NXGMlpcySYIBrkaI3dT3YT82aNfNrrbin/AYxoZMFHZyxaHDjOgQhOPwN5lmxxih+DTpmFGZUbFyG0z/zxydMmCD/j5LQOHDiJHWZUycbAFZOUd2j2Tg4KXMyVMIBw8folzd79mxf/y6ZcFhUHEroaEGspjB+C869994r9XQTJ06UrFMle1RsPICsGaqKeXDyj5LQFE6MuOKKK6THFiOdC1s5ZK+xIRDLCrIuQskM3isaS2K5etlJIhkOK7hbiRvRHLa4UQF+CQ4HJTqF0Hy3S5cunvyNOKFi4xH0TcPVRIEkM3CiJjQOFNkRo8LK4Tqef/5588EHH4h/G4uHEzInZSVccICg/ga3sJfWA797+fLl5r333jOtW7eWBJt07mevBYeCZhJiyJ4k+0zJHRUbD2sEnnjiCVOhQgXpAUbsImpCU7ibAgWubdq0kdPwtGnTpKMwNTUIjhLOEdI0ZaV1kRfQmYL4JvcJbtkzzzwzo87JXgkOnc/btWsnbrzp06drN2eXULHxEFJ9aQHC5ks1fq6ddW0VmuRYDq1PcK0x7plgM24RJZyQKEDDS6xVt7MrqcSnUJhDGC4qvADZdG92W3AQwPPOO0+yJ1m7HBYVd1Cx8RiaTZIuyY170003RVZoksFtSDYRbggl/KnQ1EkhDG5B4Si/j5ZFl112mfnXv/6V0+9zU3AGDRok14ZXQqduuouKjQ+cfvrpZujQodJlgJs4ykLDSZXAKmng5cuXD/pylBypVq2aiAHuLjbzXHDuY0aqk9lFK6Tk1OagBeeRRx4xw4cPNyNGjNA4oweo2PjE1VdfLVX4tPBnwUVRaIDuAvi8GzVqFPSlKC5BkHy33XbLqW8a6e/cG6Q3Y/FecMEFro8IyEVwmLFEk08a6uIGVtxHxcYn8Ec/8MADpn79+pIwgE84akLDQDQKOHmOmhQQHfbYYw+5/+htR4pypnCvz5s3TzIXqZ9hlLNX0zWzERzcenS3aNy4sdTHBTX5M+qo2PgIJzlnBO8JJ5wgjQWjIjQs6meffVYWqo7IjR7cg/vtt59YN+kmuhDrwWLgAEKyAV01SBrxmkwEhw7OrEWyR3lutq+zMKNi4zO0u6DBIM06cU+k8oOHTWiAok6KAMk+095R0U2F5n5NZ1Ag1gxZbNzD1M4wAwYLyS/SERwOewgN18iaREwV79BdIQCovOfmZgYO2T7JPajCKDSkxT733HOS6q0LNrrgHiVDiyaZpLangmJeRlHQDYBMTGqv6CARxAGkOMHZvHmzHPawbFiLao17j4pNQBx66KGStbVq1SophNy6dWsohQZwkxCv0Zqa6MPhCDhcFIaNm39nIycZhrZNpMAHSSrBIWOS50H9G0kLFCQr3qNiEyAEJMnpp1UHFcu4J8ImNGwsLFiK/xg9oEQbLFcmuNJVgO4CTgt+UqM5dDidJJhbZIs7NVlwWGMc7lasWCGHvQYNGgR9ebGhTNAXEHeoNyCwzkmLlEtcFGERGiDLCKusVatWQV+K4hPEOYjPPf300zJOmo9p3ok1w/1si8gUFpyGDRtK3Im+Z6wzRFPxD/vuipiB64wahttvv92sXLlSWvHTyiMMfP7555JtxOmQALISD0hhplEnMUfGhHPQuOqqq6yyZgpD7Re910jdZq0hPkGOmI4jdt4ZMSE5RsMETMx6PidwyeKw/dqxyKinwYWmxAssGNKZGabHJm6zCxX3GRYNFhguX4ahBTliOq6o2AREqmQAZoiwGLBwcFV8//33xlZYqFwnSQFaBBc/6ITMSAA6AixbtszYCunNuPro18dgtqZNmwY6YjrOqNgEQHFZZ0cccYQsClxULBLqcWyDtFdqKGjBTjNFJZ7w/jPzhnuBJAHboNaHbtII4quvvlqg4acKjv+o2PgMNzUnweKyzugrxuJgseAbR3hs4rXXXpNMJA2wKtwD69evN6+//rqxCWIzrB3EhPuVUoPCJAsOA9xUcLxFxcZncDlRGFdSejMFdAsXLpQTI9YOH9vilsDyogiOQLESb4jV1K5dWwojbXH7Ou4yxIN1U6dOnSK/1xEc7md1B3uLik0AkH2WTnozokQ1NoFY/OMTJ040QcOoZzoGIIaKAlgNv/zyi6TBBwniMm7cOEmwIZZIpmStWrVK/DkERw9O3qNiYzlUYFP4SQbNRRddJDNAaHAYBLjzSHWlDYmOylUcaGKJ6/edd96RQHwQcABijbA+aPhJJwNqfxR7ULEJAdSwjBkzxtx///3yYLDTpk2bfL8OGinS/4yYEz5u+mApCpACjbVOOnyu488zhSQasjcffPBBM2XKFDNy5EgRQMUuVGxCRO/evcU3Todl4jgffPCB71YWxXtt27aVoDAby8cff+z75qLYB/EOXFfMvKGVjV9w8GEt0BVgwYIFMpxQsRMVm5DRsmVLcVdgZVCxPWfOHN9n8mBZMXmUwr6PPvpIRUcRSIMmHZrYDZM5vYZ2OdSmcQhiTfCxYi8qNiF1WdDCnUAo1du03/A7bRN32nnnnSeWDidaGhvOnTtXTph//fWXr9ei2JUKjVuL1H2v4FBz8803m44dO4qVTdp1tWrVPPt7ijuo2IQ45XTGjBnmxhtvNNdff71s/GQE+U3lypWlASOig6XDyAREh/+r6MQPLF+yKHFpOV2h3YS+gWeffba55ZZb5JA1ffp0zSQLCSo2IYamh5zwEB02eGa7f/nll4G1nj/33HPNNddcI3ULuNW4JtxsZAop8YFsRTImSZN30+Jm/gz3Fj0EGa8+ePBgrY0JEbEXm6FDh0qAkRjIPvvsI24pTuUOFKpddtllUhjGqe2AAw4wl19++XaNMrnpCz8ef/zxAt/Daaxq1arm6KOPFneTW+BOwK1GwSUpqJz2gqqG5jXk5ElMB/FjgyCuxBwRW4r+FG8hLZ7WMLSBceM+515+5JFH5N5m8Bmzc8444wzjFhR+4o6rUqWKrFuELBkOdEzXpT6OdGoy36jhKezaLrz+hw0bVuB7Jk2aZKpXry6vTeGfjwOxFxtaWdBx+a233pIZF5zIiIUwowXIuuIxYsQIyf4ivZIAKFMICzN16lTpw+Q8EC4HxIDc/9mzZ4vbiXoAN2EhUgNDd1t+f4cOHWRyYlDQM41rwMWH+GCF4VrhtaOViLrYog0xFDZnkkdySZFnHSEsXbp0MaeddppkuqVqPZMLrHVm3VAQmgrcgmPHjpUsUAbEISzsEYX7Fg4ZMqTA+ueQ6vDFF1+Yu+66Sw6g1113XSyz5mKfjF646hkx4XTOxk3mFzc2WS8OVCTjK+7cubMsouR8/goVKog7KRX0X+LkxOwXfo6/40U2EDczls4ll1wiVf4skk6dOgXmbsBipEcVVg4WIyc6Fi0pq5zyWMh8jxLNVGhS9XnPcX9las1MmzZNvAiMsZg5c2aBw5ubnHrqqfIoCg5vyYwaNcpMnjxZas3o7OHAfVzU+t+yZYvsD6x/vsePbD3biL1lUxjHPUa2VXHfU65cue0Kx7CQ2PDpy0RxWbIri3RhuiUTzGQqJ+47r0BsmN1B12gSB/jci2BtJmDZMDL43//+txk0aJCcUnGJ0B0B3z6xHceaVKIBLicsHGIsmQwEdLwCF154oawV7mWvhCZTiD/SNqp8+fJiDSWD24w0bNxkw4cPL2DRHXrooSI0/ByHwNtuu83EjdhbNoVTKhnNzCmsKFOduMitt94qBZaFTWg2d8SExYVlwQLjZOZ0AcCKYtPnhMNpzWs31pNPPinJA1wLQdvx48ebc845xwQNgswmwuuFtcMJERclgsPpkLgYrgpiZEq4wb2LK405TSUJBoezxx57TNxPrJdnnnnGtG/f3tgAz4EEGDI+ycDE5c597MA6b9y4sRxSiU9yoEI0sYIcJk+eLK409og43tulEtpXO58+ffrIKRu/LIH8VKYwMRFuKILexY1CJiWZGE5Q2WHJIHBYXU899ZRYOfimcRXaBFYfw9hwsXGSRaixHnG1cTq2Mb2VzeOrr76SuJT2iisaarCI0w0YMEBcyalgnAa9zYhpsqnTnil5M/fT/ZfKZYfVjXhw2CTQT2dp3INFrSM8G/Qy5D5Op+luHFA32j8QsOf0QhA7ldDg8uE0zsmbm7E4oQFqTtiIbBgqxYLAwnniiSfk+WHG87lN0HmXUzCuE4S6e/fuEs9hk2I4F8kVVImTrKHJBeHCafHPe1j4bOtYM9yTZJkRHyWbMgihKQ6SHRil0KxZMzlk4ELn/8Wtf9xots2iCpLYu9G42THbERCqnmvWrJnSoiHmwgkFi4aNsSTee+898VnbdKrBhcbkQtxqfEyWGFaObdM2sWJwSfDAbUEnYep2sHgQHDIGsXpojYJLAz+5Whb2QryO95KMT95Dx0VNtiTWDKnGJLGQzGKbyBTnci/uIMn653nb5kEIktiLDe4lTlaY71gtmPNAIA+/KkJDmiOb3qOPPiqf8wA2aTY5ihdZOJx6ECL8uXfccYe58sorjW0kWzlYc5woya4jFdPGTrkID5sTD1JgeZ0/++wzsXho+sjHnCCdGgiEhwdxMRa7Yge4z3hP8B4ceOCB5uGHH5YUYNYP7l3S5IMCVxeHGQfuKcQCdzn3EuujXbt2crDBjcYBbd26dXJYAywyXGqtWrWSPYTP+/fvLxmrOubgf8Q+ZlNUSjDxFjKnsHa4iVLBTUkgm8A/AUFuWF5OzG3iP7169bJ6w2PjZlHgtsDVwaI666yzQlOVzekStxpxMf5PASmHBU6cuNoQIDY4Tsv8nxY/HAbcen4as8kMsjiJZVBWwPvFZsw4gKAt66LWeNeuXc2ECRMk9RkxQWgQH4rAec/5P7z77rviLSDmyL2HdwR3MDEqmzwbQRN7sVH+u1gQS7LoSNsmhbMogbUdFjuCQzCXDY1iOv5PyioWEEKD4GC1Ij48OI06QkSWYLrCoWKTPnQTIDuSDZlqfDbxwqnDSrSxz2+i+A7+dOpdyLC59tprJSWZGBW1QNQMhAlOkmSw8XBAaGiVQ2Etj82bN8vwOSrAnSQOhAhrCGsJ4cClSBKI8zG/FyFCrBxrVeuCSoZ4G5YzbinibKNHjxaLJizWs+IeatkoBeB2oL6BJof0tSINlQK0dGa5h/X5kmmIABGXIwWb6u7k//PvPBAXxIgHP4dFyNdJMFHLpiDENIgL0l4GYaEOZeDAgVbGBRV/ULFRUsJJn7gVTQip06GI9YYbbiiyHUcceeihh6SJIz59FZv/wr2Cu4zCRu4heprddNNN2pJI0TobJTWcQElwIOMLy4aMPawbBKdwx2tFwU1JGxcSTugWQPYW8Rka2KrQKKBio5SYesyMGnzvpEqzeSA6JBHoyACFDC0SJfr16yc1aCSW0DGABIDi+gsq8UPFRkkL6gXuvPNOSe+mJgLXCJ0WKMqjp5kSL7gP7r33XonFEONjHDSthqhFox5FUQqjYqNkxP7772/uv/9+SSkmc41iWApDKXylHQnBcyWa0LmBdkekemPtEq9q06aNNFOlC0Cq7huK4qBio2QFrWLoYUYhJVMUSSk+/fTTpYbinnvukdRiJTquMme2zN133y11TExiJW2cppSpegkqSmE0G01xBW4j2nTgWqHPHLUouNtIMmB4WhTrKqKcjYaFSh86aq8YdEd6OMPQsGiYRaQomaJJ74orICYtWrSQB+mvbMScesliO+igg0zPnj2l/Y82JrQbrBZ6+9GeBcuFTgs0ybzqqqvUglFyQi0bxTO4tTj5Izo0W6RCn/G7NNTE1x/2mp2oWDYIzBtvvCEtZYi/UMxKwJ8mtcw/srm/nxIeVGwUXyBNmkwlOk5T8Iebhpkf1GO0bdtWujqHzdUWVrFhyTNnhfcBFxlp7XRIoMUPkzFJYyYmpyhuomKjBBJwZiAaoxnomE2Ld7pnO8LTsmVLz8dmx01sqOZnlgztY0hRpp0M2WUkdPC64+IsaoqmoriBio0SKDTBpMU7wkNRIOMCaNiIuw3h4f+2FgfaLjZ0eiD2gvWCe4yMQTpD0G2ZURJcN6+1oviBio1iDdyKbIyO8HAKZxM/+uijRXiaN28uGyVzamzANrHBFUb1PhYM/8c9RvyFeT68hsRfqIdKZ9KsoriNio1iLcyhYbIj4kO/LTosE6zG9UMA23k0atRI5tHESWx4LehbRyU/8RdngBziQiIGrxFjIri2evXqhS4epkQPFRslFDCThhM7Ux6dx/Lly8UNx0aaSoC8bgDpl9ggIIx7QFgooiUlmeFwCA7CguVCejnPu3Xr1uaYY44JRcxLiRcqNkpoIcCdLEDMl8ENxyaMAB188MGyAeN6o0aEnl08CIQjRLme9t0SG5YgLjDGdFOjxFA3OjA4E0f5N0dYGKHM82Lg3VFHHSXCol2VlTCgYqNEToCIVyRbQAgSFfCFu1k7wuOIUKrPaUBalCgVJzakdmN18XedKaEE7Hnwb1u2bMkf2sbXEBsyxpwHv486pDp16oiVRswFYbElXqUomaJio8QC0quxEngQ23A+Lvw5m38yZG/hkuL/zqho52PcW8SK+LozUpoHHyN6PJL/nQc/j2BgjVSoUEE6KmB1VatWTRpZ1q5dW1ximiWmRA0VG0VJAgFJFiJcWo5wJFsePLBYiBshFMkihPiQ8UWrF4oj+foBBxwgRZMIjAbrlTiiYqMoWYIAUZxKY0rERlGUotGmR4qiKIrnqNgoiqIonqNioyiKoniOio2iKIriOSo2iqIoiueo2ChKltCnrVatWjpcTFHSQFOfFUVRFM/RI5miKIriOSo2iqIoiueo2CiKoiieo2KjKIqieI6KjaIoiuI5KjaKoiiK56jYKIqiKJ6jYqMoiqJ4joqNoiiK4jkqNoqiKIrnqNgoiqIonqNioyiKoniOio2iKIriOSo2SuxZuHChadu2ralSpYopVaqUmTVrVoGv//zzz+bSSy81VatWNbvuuqupV6+emTBhQoHv+e2330zfvn3NXnvtZXbffXfToUMH88033xT4njlz5piDDz7Y1KlTxzz77LO+PDdFsQUVGyX2bN261TRs2NCMGzcu5dcHDBhg5s2bZx599FGzYsUKc8UVV4j4IB4O/fv3N3PnzjUzZswwr732mlm/fr0566yz8r/++++/ixiNHz/ejB071vTp08f88ccfvjw/RbEC5tkoivJfWBIzZ84s8G/169dPDBkypMC/NW7cOHHdddfJx5s3b07suOOOiRkzZuR/fcWKFfK7Fi9eLJ//+OOPierVqyc2btwojxo1aiS2bNniy3NSFBtQy0ZRSqBFixZixaxbt47DmVmwYIFZvXq1Oemkk+TreXl55s8//zQnnHBC/s/UrVvXHHDAAWbx4sXyebly5Uy3bt1M5cqVxV2HZbPHHnsE9pwUxW/K+P4XFSVkjBkzxvTu3VtiNmXKlJEx0JMmTTItW7aUr3/99ddmp512MhUqVCjwc/vuu698zeGmm24SFxw/r0KjxA0VG0VJQ2zeeustsW6qV68uCQXEX7BQkq2ZdChfvrxn16koNqNioyjF8Ouvv5rBgwebmTNnmjZt2si/NWjQwLz33ntmxIgRIjb77befBPs3b95cwLohG42vKYqi2WiKUizEYnjg+kqmdOnS5u+//5aPmzRpYnbccUfzyiuv5H991apV5osvvjDNmzf3/ZoVxUbUslFiD3U0H3/8cf7nn332mVguFStWlCD/sccea6666iqpscGNRmrzww8/bEaNGpXvGuvRo4ekSPMzJANcdtllIjTNmjUL8Jkpij2UIiUt6ItQlCB59dVXTatWrbb7965du5oHH3xQgvyDBg0yL774ovn+++9FcEgYoLaGIlCnqHPgwIFm+vTpUlNz8sknS02NutEU5b+o2CiKoiieozEbRVEUxXNUbBRFURTPUbFRFEVRPEfFRlEURfEcFRtFURTFc1RsFEVRFM9RsVEURVE8R8VGURRF8RwVG0VRFMVzVGwURVEUz1GxURRFUYzX/D8K6nh0dabQawAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGMCAYAAAAMSw/bAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZJNJREFUeJztnQm8VWP3x5+UoVCJUEqlKEWlSIVIxlKkyJB6G0lIZSpzhqIBTVIqU0JoRKE3eiNvuihDkylUSCQyc/6f73rt+z9d5957hj08e+/1/XwO1a17z7D383uetX5rrRKJRCJhFEVRFMVDdvLymyuKoiiKio2iKIriC3qyURRFUTxHxUZRFEXxHBUbRVEUxXNUbBRFURTPUbFRFEVRPEfFRlEURfEcFRtFURTFc1RsFEVRFM9RsVGUNBk3bpypXr262W233czRRx9tli1blv+1NWvWmGOOOcZUqVLF3H777fqeKkoBVGwUJQ2efPJJM2DAAHPzzTebt956yzRo0MCceuqp5uuvv5avX3bZZaZz585m9uzZ8nj99df1fVWUJFRsFCUNRo0aZXr16mW6detm6tatayZMmGDKlCljpkyZIl//7rvvTOPGjU39+vVN5cqVzdatW/V9VZQkVGwUpRh+++03k5eXZ0466aT/v3F22kl+v3TpUvn9kCFD5PcIEF/j1KMoyv9TKunXiqKk4JtvvjF//vmn2W+//Xb4c36/evVq+XXr1q3N5s2bzbZt20zFihX1fVSUAujJRlFcYtddd1WhUZRCULFRlGLYZ599TMmSJc1XX321w5/z+/3331/fP0VJAxUbRSmGXXbZRZL/CxcuzP+zv/76S37frFkzff8UJQ00Z6MoaYDtuWvXrubII480TZo0Mffee6/Zvn27uNMURSkeFRtFSYNOnTqJAeCmm24yX375pWnYsKGZP3/+P0wDiqKkpkQikUgU8jVFURRFcQXN2SiKoiieo2KjKIqieI6KjaIoiuI5KjaKoiiK56jYKIqiKJ6jYqMoiqJ4joqNoiiK4jkqNoqiKIrnqNgoiqIonqNioyiKoniOio2iKIriOSo2iqIoiueo2CiKoiieo2KjKFlCw3SGqGnjdEUpHhUbRcmSP/74w8ydO1f+ryhK0ajYKIqiKJ6jYqMoiqJ4joqNoiiK4jkqNoqiKIrnqNgoiqIonlPK+x+hKOEDO/P3339vNm/ebH7//Xd54DpLfrz++utm7dq1Zo899jC77babKVWqVP5j5513lkfFihVNuXLlTIkSJYJ+SYoSKCUSWiSgxAgu9y1btphNmzblPzZu3Jjy97/88osrP7N06dKmUqVK+Y/KlSun/H2FChVUlJTIomKjRFJQNmzYYPLy8uTx3nvv5QvIl19+aX777bcd/v5ee+2VUgR47LvvvmbXXXfd4cTi/JpTz2uvvWbatGkjIsFpJ/kE9Ouvv5qvv/46paDx+O6773Z4HrvssovZf//95XnwOOyww0zjxo3lwe/1dKSEGRUbJfTC8vnnn4uovPXWW/kCwyIPiEWDBg1MlSpVUp4mWNwJgWUDwvL888+b1q1biwhlys8//yzil+pU9cUXX5gVK1aIoMF+++2XLzzO44ADDlABUkKDio0SKmH57LPP8gXFEZigFuRcxSad14voJL/egkLaqFGjHV5v1apVVYAUK1GxUazm448/NnPmzDELFiwwb775puRbgBNJQWHxO9TktdikEyJ0Hl999ZV8HUPCkUceaU477TTTtm1bU6NGDV+el6IUh4qNYhV//vmnWbZsmQgMfcfef/99yWWccMIJpnnz5vnCQggsaIIQm8IEiPCbIzxLly41r7zyijy/ww8/XESnXbt25qijjjI77aTVDkowqNgogbN9+3bz0ksvicDMmzdPwmL77LOPJN5ZJE8++WSz5557GtuwRWxSsW3bNvPiiy/Ke/rcc8+Zb7/9VsKMZ5xxhrynJ510kilTpkzQT1OJESo2SiAQCkJYWAwXLlwozq1DDz1UFkJ24k2bNjUlS5a0+tOxWWySwRnHaYeTIu/3mjVrxBSB4PBeI0CEIBXFS1RsFN/44IMPzIwZM2TRI9yDmBx33HH5AlOrVq1QfRphEZuCUIjqCM+SJUtkJg8hNj6Dc845x9SpUyfop6hEEBUbxVN++ukn89RTT5lJkyZJxX3ZsmXN6aefLgLD/6lxCSthFZtkMFy88MILIjzz5883P/zwgzn22GNN7969TceOHaUgVVHcQLOFiie88847pm/fvpLI79atm9l9991FdMjHPPHEE+aCCy4ItdBEhb333tt07tx5h8+GItYuXbpIaO3yyy83K1euDPppKhFATzaKa1Ck+Pjjj5sJEyaY5cuXi9B0797d9OjRI5IW3CicbArjo48+Mg8++KCZOnWq2KqbNGliLrnkEnP++ednXQSrxBs92Sg5Q+Hh4MGDpaCwV69e4nqaNWuWFGDefvvtkRSaqFOzZk0zdOhQ6c7w7LPPSt82Ng4HHnigufHGG8VqrSiZoGKjZF3bgcPpvPPOEzEZO3asueiii8y6devEZXbmmWdK/zAl3HBia9++veR1MBbwed97772mWrVq5sILL5SaKEVJBxUbJWORefrpp83RRx8tRZa4ykaNGiVW5nvuuUd2xEo0Ofjgg83o0aPlJDt8+HDzxhtvyHXQrFkzM3PmTLk2FKUwVGyUtHn55ZfFIos9FlcZJxhqNkgi21h0qXgD83muvPJKOenMnj1bcjhnn322iA6dCxQlFSo2SrFweqGKnwdhFRYUhIcKf21/El+ok8LCvmjRIinMpV6nZcuWYmnHjagoyajYKIVC/qVTp07S2JEwGaESamWOP/54fdeUHTjxxBPNf//7Xwmx0jz1iCOOkJwOv1YUFRslJcxT6dOnj6lbt66Iy+TJk6XW4qyzztL29Uqh0HG7Q4cO0jx14sSJcgKmGwFhVqcrtRJf9GSj5LN161Zz/fXXS9sYivyGDRsmcXksr+osU9KFawULPCfj2267zTz22GNiHLnpppukQagST1RsFPPLL7+YESNGyIKAo4zkL0V9AwcO1HYlStbQVfraa6+VUBrdJHCwcY1hnabxqhIvYi82999/v6lfv764q3jgqKGmwIFwALNU+BphAnb/Balevbp8LfnBqSAZeoNRm0Asm9i2DWBVfeihh8TSet1115lzzz1XROaOO+4w5cuXD/rpKRGBtkR33XWXnHSo2bnqqqvMIYccYh599NFQ2KW5l7mn2YQ5sCYUvOfpsJAM/eZ4nbVr1xbnZuxJxJw5c+YknnvuucTatWsTa9asSQwePDix8847J9577z35+j333JMYOnSoPFifv/vuu398j2rVqiWGDBmS2LRpU/7jxx9/zP/6+vXrE7Vq1Uq8/vrriRkzZiQOPfTQRNB8+umniVatWslrOvfcc+X1K5nx22+/JWbNmiX/V9Jn1apViQ4dOsi1d+qppyY+++wza9++ZcuWJapXr56oX79+ol+/fvl/fvzxxyd69eq1wz3//fff53/9l19+SVSpUiXx0ksvJV588UX59a+//pqIM7Ev8aatejLs6jntULBWr169/N1McfUD1JkwqjgVxKk5KXCC4u/QQywo2ElyWmN3yY6TAVtYmhXFLzAN4FojgkBu57DDDpPCYHKDfo71Lo4ff/xRHHVEJWi7lCpMWNg9T5gQa3jDhg3z81i//vqrTJ2NK7EPoxUcSUzXWyZHEk7L9KhNB13CZMSmGVjlwM2E0FAMh4ClunD9YP369eaUU07Jb6j43nvvqdAogUE9DtcgDraePXtKQ1O6E9gCeSZqyRgyl4pp06bJRFnu70GDBsk4DQfC7nQ7pxkt3bP79Omjhc9BH61sYOXKlYndd989UbJkyUS5cuUkrFaQRYsWFRpGGzlypHx9xYoVifvvvz9Rvnz5RP/+/f/x97755pvETz/9lPCbv/76K/HAAw8k9txzz0TVqlUTCxYs8P05RBENo7kH91zlypUTZcuWTUyePFmu2SCZPn164rDDDkv8/PPP+WGz5DAa99P8+fNl7XjssccSBxxwQKJ9+/b/+D5bt25NbNu2zdfnbisqNomExFLXrVuXWL58eeK6665L7LPPPon3338/bbEpCDdLqVKlJG4bNOSLTj75ZHnuPXv2lItfcQcVG3f59ttvE127dpVr9fTTT098/vnniSAgh7TvvvvK5tGhoNgUZOHChfK8P/zwQ5+eZfhQsUkBifPevXtnLTaYC/i7q1evTgQFO8OJEyfKaYbkJLswxV1UbLxh3rx5iUqVKkmUYcqUKb6fcmbOnCn3L5EO58HvS5QoIb/+448//vFvMATxd/Q+KxzN2aSAHk+51AHQF4qeYfvuu68JAubInHbaaTLaFzszcfFTTz01kOeiKJlCnoQuBIypwDRwxhlnSLskv2jVqpV599135T52HrRswizAr0n8F8TpBUeORklN7N1oJPZIVDIUivnrTJrEebZgwQJ5g7788kt5fPjhh/J7LkKcZ/x9Bkox04W6GRoQ8uf8vn///jJq1++xx5xUaS0zYMAASVAyRZLXpihhg3vn4YcfNh07djQXX3yxGGvuu+8+GVfttWON+5ikfzKMNccAxJ9Ti8Y6gaGBP6OVE/d8ixYtxAikFEIi5nTv3l3qZHbZZZdExYoVJYSGL97h5ptvluNxwcfUqVPl63l5eYmjjz5ajvy77bab1NDceeedvudrSEKeddZZ8ty6deuWVrhPyQ0No/nDli1bEhdddJFc2x07dtyhhs0vknM25HRatGiRqFChQmLXXXeVGrqrr756hzob5Z+U4D+FCZESDmgHQsgBa/MjjzwiDTMV7/n999/l9MgOl9ELirc888wzpmvXrtK7jzk6dORQwoPmbEIOs0QYaEahKIWoKjRKVKEehzD1999/L9f8kiVLgn5KSgao2ISY8ePHS1EmhaTMgmckgKJEmcMPP9y8+eabcq0zQ+fBBx8M+ikpaaJiE0J+++03qUimwvnSSy+Vth+YFRQlDlC1/9JLL5kePXpIu5srrrhih44dip3E3o0WNjZv3mzOOeccGWpGjzNuNkWJG+TInI7tiM0HH3wgM5h002UverIJEVgsmzRpIjcWM99VaJS4wwmfZrLUuTj3hmInKjYhYebMmaZ58+bSzJOY9XHHHRf0U1IUK6DGjZxl6dKlTdOmTXV2jKWo2FgOznRG65599tlSoPnaa6+p5VNRCnDQQQdJaJnq/3bt2smwNq3qsAsVm4BGGaRzI9CyvFOnTjK7fciQIRKTppJZUZTUlf/U4txwww0yeZYuHow8T6c9FQ/FW9Qg4DOIzFtvvSX9lbAsF9Z6g8FNDHYjPMANxMlGUZSioSchGzPaylAAiqFm1qxZMugsFYgM9yM0btzYquFtUUNPNj7DxUytwHfffWfefvvtlCccitZonJmXlyc92lRoFCUzaEBLSQChNcLP9D0sTGiYpMs9qULjLSo2AbDbbruZY445JqXgfPvttzIZEFfNyy+/bI499tggnqKihJ4TTjgh36nGhNqtW7emFBruxV133TXQ5xoHVGwsEhyO/FRFf/LJJ+bf//63WDkVRckeHJyUCaxZs0Y2cVu2bFGhCQgVG0sEhx0YOzHGGTDigHyOoii5wywaNm80qsUmTcRATzT+o2JjgeDQxZYCzW+++UaEpuAsDUVRcqNhw4YiOBs3bpShgocccoiGznxGxSZgEBgmEdKufvjw4WJ31voARfFm+u6IESOkQzpOT/Kjin+o2AQI4TMSl19//bWMCsBBU5RLTVGUzEk2A5x//vmSw/n8889ldDrOT8UfVGwCggsfSyZxZGLIderUKdKlpihK5qRynRGmJke6bt0606ZNG6lpU7xHxSYAtm/fLhf56tWrpVU6Hn8HFRxFcYei7M2NGjUy8+fPl+a2tLchtKZ4i4pNALNoGOGM95+CTS76gqjgKEpupFNHc/TRR8tY7//+979SOE3eVPEOFRsfISx22WWXmf/85z/mueeek4u9MFRwFCU7MinYpGh6zpw5Esru37+/vuUeomLjI+PGjTOTJk2SoWctWrQo9u+r4ChKZmTTGYBO0dybPB544AF9yz1CxcYncMBceeWVZsCAAdIgMF1UcBQlPXJpQUPtDWPWiTwsXrxY33IPKJFQy5PnfPTRR+aoo46S9jPz5s0zpUpl3mybVunMstlrr72K7Bat+AcxfmL+rVu3ljHFSnC40euMz5MGuO+++64MKKxevbonzzWu6MnGY7j4cbtUrFjRPPHEE1kJDegJR1FS41ZTTTYMM2bMkLk4mHjUEu0uKjYeD0m78MILzYYNGyQJWb58+Zy+nwqOouyI292b9957b7lXP/74Y9OlSxcdquYiKjYecuONN0qYZfr06aZ27dqufE8VHEXxdkwARZ/Tpk2ToWsMYlPcQcXGIxCYoUOHmrvvvls6BbiJCo4Sd7yeR0Po+/bbbze33nqrefrpp1393nFFxcYDli9fbrp37y7HcNxnXqCCo8QVvwafDRo0yHTq1EncoxRhK7mhYuMymzZtMmeddZZp0KCBePa9dI2p4Chxw88Jm9y7U6ZMkb6FGAZomKtkj4qNi2BPbt++vXQKmDlzpoiB16jgKHEhiFHOZcqUkdwN4wk6dOgg7aaU7FCxcRGKNlesWCEXZ6VKlYxfqOAoUScIoXGoWrWqbB6XLVtmrrrqKt9+btRQsXEJmmoSNrvnnnukgNNvVHCUqBKk0Dg0a9ZMhhuOGTNGZk8pmaMdBFyAAUzYJYntMicjyOp+7TTgH9pBIB5Ck/xcWrZsaT777DPpMrDHHnsE9lzCiJ5sXGDgwIEiOA8++GDgbWT0hKNEBZuEBnbaaScxDGAUuPbaawN9LmFExSZHGMA0efJkmW1erVo1YwMqOErYsU1oHGrWrGnuuusuM378ePPvf/876KcTKjSM5kL47NBDD5WcTdCnmoJoSM1bNIwWL6FJfn6MJfj00081nJYBerLJAQo2bQmfpUJPOErYsF1onHAa0YzNmzeba665JuinExpUbLLkhRdekPjtyJEjzYEHHmhsRQVHCQthEBqHgw46SMJp999/v4bT0kTDaFmwdetWCZ/Vq1dPcjY2nmoKoiE199EwWjyFpmA47ZNPPpFwGqMJlMLRk02W4TNuCkY8h0FoQE84iq2EUWiS3WnffPONhtPSQMUmQxgZMHXqVCnetDl8lgoVHMU2wio0DjVq1JDO7hMmTJDR70rhaBgtw/AZobP69euL6ITlVFMQDam5g4bR4i00ya/jpJNOkoFrGk4rHD3ZZED//v1lVGyYwmep0BOOEjRREZrkcNqWLVvM1VdfHfTTsRYVmzRZunSpeeihh8R9VqVKFRN2VHCUoIiS0DhUr15d3Gn0R8zLywv66ViJhtHSgJEBJ5xwgvnuu+/M22+/bUqWLGmigobUskfDaJkTRaFx+OOPP8zhhx8uXaLpkajsiJ5s0qypWbx4sYx5jpLQgJ5wFL+IstBAqVKlzJ133mleeuklNQukQE82adwgRxxxhClXrpx59dVXQ52rKQo94WSOnmzSJ+pCkxwFad68uZxymH8T1fUiG/RkUwzTp083K1eulHhslC8cPeEoXhEXoQHWiGHDhpnly5ebZ555JuinYxV6sikCRsAyowarM9M344CecNJHTzbFEyehSaZ169bmo48+Mu+//76E1xQ92RQJzpL169dLHDYu6AlHcYu4Cg2Q3123bp1YopX/oWG0Qvjhhx/MbbfdZrp27Wrq1q1r4oQKjpIrcRYaaNCggbngggvMLbfcYn766aegn44VqNgUwqhRo+RG4WKJIyo4SrbEXWgchgwZIn3TRo8eHfRTsQIVmxQw9pXJm3379g1d/zM3UcEJN5999pnkGr/88kvffqYKzY5jCC6++GIxDHz77bcm7qjYpOCOO+6QFhSDBw82cUcFJ5xgvX3yySfNc889J10vGIXx66+/evozVWj+yQ033CCfxbBhw0zcUbEpAKNeGYjEBL699947mE/FMlRwwtleiWsZVxSn83nz5ono0CiSWhC3UaFJzX777WcGDhxoxowZY7744gsTZ1RsCnDTTTeJyFx55ZXBfCKWooITLnML7VKqVatm9tprL2mhctppp4mVnxHm1I5hcXcLFZqiQWz22GMPc+utt5o4o2KTxOrVq81jjz0mgrP77rsH96lYigpOOKBdCuMwGjZsmP9nLHb092vcuLGcesaNG+dKLkeFpnjKli0r4TRs0NTexBUVmyTuu+8+s++++5ru3bsH94lYjgqO3RCqWbJkiYwt32WXXf7xdUJqp5xyiggNLikay2aLCk369O7dW06ZhNPiiorN39DR+ZFHHjF9+vSJrVUzXVRw7IRcDIYAmsUefPDBhf69PffcU8JqnHYYm4FjjW4ImaBCkxmlS5cWZxqnGyzhcUTF5m+IZeMaueSSS4L9REKCCo590MOP9iiEynBTFgWCRMNI8jkvv/yymThxYtr2XBWa7Lj00kvNzz//LAIfR1Rs/raJjh071px33nniHlHSQwXHHkj+M6occ8v++++f9r+rVauWOfHEEyWXQBh51apVRf59FZrsOeCAA0zHjh0llMb7GDdUbIwxs2fPlgK4fv36Bf15hA4VHDv4z3/+YzZs2CCnmkypUKGChNXoWMzIc046qezRKjS5069fP/Phhx/KxiBuqNj8bQw49thjTaNGjYL+PEKJCk7w+caFCxdKxTp5mGzATHD88cfL92DzNXfu3B0ER4XGHZo2bWqaNGkia07ciL3YrFixQnaFeqrJDRWc4FiwYIHZvn275F9ygZMNLjaaSFKn8+yzz4rIqNC4S79+/eT0WFzIMmrEXmxIjBLjPvPMM4P+LEKPCo7/fPLJJ+a///2vzFzaeeedXfme5HEIxy1atEha3rz55puxb6rpJh06dDD77LOPhCzjRKzFhtbf06ZNM926dXPtRo07Kjj+wYmDNjRY9Ql/uUmNGjXMUUcdJeG0OXPmSPhHSwLcYdddd5XRJZRaeN2vziZiLTYzZsww33//venRo0fQTyVSqOD4A23816xZI6cQt0eWk69hA8aJiZwQohZHB5VX9OzZ02zZssXMnDnTxIVYiw3H2FatWpmaNWsG/VQihwqOt1Cv8cILL0gIuGLFiq4LzaZNm2TXfeSRR8qpZvHixWIc8KKJZxypU6eOOe6442IVSout2HzwwQfmtddeM7169Qr6qUQWFRzvePXVV81XX33luoMyWWiqVq1qSpUqJS1u+Dn//ve/pUOBCo479OrVS95TrNBxYKc4dwygAO6ss84K+qlEGhUc99m8ebMk72vXrm3KlCnjqdA4kBPC7YZL7fXXX3ftZ8aZjh07mvLly8taFAd2imvHgEcffVSSdJr09B4VHOOqIBA+o2NA3bp1fREah0MOOUTGFhBOW79+vWs/O8790jp37mwefvhh8+eff5qoE0uxIXzGbHDa0yj+oILjDuvWrRNjAOMD6G/ml9A4HHHEEfJ1XJw//vijKz8/zpx33nnSgXvZsmUm6sRSbLByVqpUKavWHkr2qODkBrtfciaEzsij+C00QINPEtsskE899ZTrDjWeB2HCuOSFmjZtKjU3rElRJ3Ziw0XMB3vGGWcU2xlXcR8VnOxh90vDTBxiblidMxWa5PAPHaM5YZHgdgOnS8GIESPMXXfdZdauXWviQMmSJU2bNm2kninqxG61pS4B90e7du2CfiqxRQUnc2hHM3/+fOkcTOPMoITGAcs1BgUaSnJP5QJNcCdMmGCmTp0qpzeeC983DnkMYC1iNMTHH39sokzsxIYdBDsz6muU4FDByQwabTJvhpxJ0ELjQB81Gn9Onz5dCj8zhYJqCqvvvfde8+mnn0oz3BYtWkijSk5wy5cvN3HglFNOkUaoUT/dxE5sCKGdfPLJIjhKsKjgpAfCQFHloYceKu+ZDUIDhPIQCEQDwcHlmQ5MBX3llVfM3XffLU1weV2nn356/iwpTm6cnF566aWMJ4iGkT322ENmCkU9bxMrscGBRo2AhtDsQQUnvVHP/J+wlS1C48COHMGhSJru08X9/Pfee8/cc8895umnnxZRIXfKCOuCOSg6T2NCyMvLM3GgXbt2sqHYunWriSqxEhviwFzwXOCKPajgFA6L+LvvvisV/LlYnb0QGgeKo6n5odCUAW6p2LhxoxQv0mUdyzShI9ygiFUq9txzTzndYECIw+nmjDPOkJMhebmoEiux4ZhKPFhHP9uHCs4/YZHlVFOuXDkxBtgoNMm9vjidcI8l26ERllmzZplRo0aJkQCrLyGjsmXLFvs9aQKKSOFSizpVq1aVfFyUQ2mxERtuNI75GkKzFxWcHSHki1Mrl3owP4QGKCNgJAEnMUJf7NIpnh4+fLiYG2h227p1a1O5cuW0vyeCxMaQ0026+aAw07ZtW+kOEdWTXGzEhoQkuywVG7tRwfkf27ZtkwR59erV5WRjs9A47LvvviIOtF9BZDANYMShjgQTQDZ1bZxuCM29/fbbJuq0a9dOcjZLliwxUSQ2YsPxlBu3Xr16QT8VpRhUcIwIDYLDYhsGoQHsy0wNRRjoAkB5AWGzXBx0CC0V9pzyot5VoFGjRnLyi2ooLRZiw0WKh52dg9tDphRviLPgfP755xKCoo6lsAS6TUKDKHKaoTATzj33XEl477XXXq58f1x4jL+OevPPEiVKSCiNtSqK13ssxGbFihVyA2sILVzEUXB4jUzFxHlWq1Ytq4WGPAo5BtrLIAQnnXSSueKKK8S27GYrKFxpfL84NKts166dFLSS+4oasRAbLJksXDQQVMJF3ASHjRELDf3PMl2w/RSad955xwwdOlROYIT6+vXrJ2LDKGkvdvwIL8aDH374wUSZli1bynvIcLyoEQux4SJlt5VNSEIJnrgIDiJBLRg5ikzt+X4JDcn60aNHmyeffFKeZ8+ePU2nTp2yNjGkC2JDf7io26BLly4t4dMoFrPGRmx0nEC4iYPg0LqFupJMr1U/hAYnJ+6ysWPHmp9//tl06NDBXHzxxWK68QM2iiTPly5d6vpYAxuNAnkqNuGDYzfFZCo24SfKgkOTTepR2MHTK8sWoWFhp86FvAz30fHHHy8hs2zCfLlCWxtea9SNAo0bN5Yu0L/88ouJEt77IQOG2DI3pIpNtASHXAGCQ9V1FByGtCn56aefJIRii9CQO2IENKcap1kmrWmCgrAdAkd/tRo1apio0rhxYzFfrFy5UjqeRIXIh9E4ju66666uzmtXgiVqJxzmmLz55psy6jldwfBSaKiRuf/++80jjzwip6yuXbuazp07Byo0wKaCtj1sIKM866Z+/fryeUYtlLZTXMwBXrhklOCIiuAQpsLqzIYo3fyHV0JD2IZuzPQx433FhnvppZeaQw45xNgCJxrEkLqbKF/b9erVi5zYRD6Mxgd2wgknBP00FA+IQkiNAWHr1q2TXEg6z90LoUHwqNCnawE0a9ZMbMxlypQxtsFYAl4zOY1s6pDCFErLi5jYRPpkg1Vy9erVmq+xDBZMZsx/9dVXsT7h4OoiV4PNmXxEEELDiPSRI0eK5ZpTQ58+feREY6PQAIJcpUoV+ayjHEpr3Lix5Kb4rKNCpMVGzQF2gquJ1iYjRoyQEBKJ8TgKDs1hCQmlY15xW2h4ryZPniwzZggxX3jhheZf//qXVOvbTrVq1eT50xE76iaBd99910SFSIsNx1D8+WoOsAdCNuzmEQhyFPya8cA0cMxlpxo2wfn666+lswX5kOJGlLspNL/99pv03qIrM9/ztNNOM3379g1Vg1pCaUBblyibBEqWLBmpUFqkczZ8UHxo2jnAHqgAZ5Egj4a76aCDDhJxePTRR80bb7wh7eizjcWHJYeDeDhzS4rbCLkpNOSHGMbGz2XnzLRMJmKGDT5Two6EyMktRZHSpUtHziQQebFhPrpiz6nm5Zdflrknjo2Wm6p58+ZS1Ij9lwp1CgazrekIg+CQr+K5FTfq2S2hIdz0zDPPyGmKvAzvLd8vzNBNYNWqVZKX3X333U0UaRwxk0Bkw2hchFyMWsxpV66G3lqpQjaERthpU2vCDpwwz4svvphVFbXNITXi8OSpWCCLWvDdEBpa/3NiHD9+vIQo6WFGL7OwCw2QW+LaYIZOVGncuLHkbKJiEigV5e657KRVbOyBvAyLrBNzLwgnEPI4uI2wtjJEitMOO3FEKJP2KLaecHgPqBFhsFhhzydXoUHQaDGzePFiCSETasJaHaVaM64japN4L8OUb8oE1i5CnrjSorCORVZsnORhnTp1gn4qijHmm2++kV1aOmYNFlcKccndkOOZOnWqtEthINeBBx4YWsGh7QunNQSksMFiuQoNLU4QaWzVhx9+uDn11FNdG2JmG4RZ6b4QVer8vXZhT1exsRhuWNqe21ovEDcIjbFLy6RLMLtXZhCRa+Df33vvvVJwSLgt3Zb2NgkO+SpyU+So3BYa/t2zzz5rvvjiC/m3nAaj3D8sWWy4rqJ0anPgGienyWcbBSJ7suEDqlSpUtBPQ/nbbovTjPqIohLihYGhgMWT0ypt+BENBAcRSWeRsUFwGB2wZMkSCfkQ/nFLaKhR4iRD2Lh8+fKmffv2gXRkDkpsaBb65ZdfRiIPVRCuUdYwFRvLUbGxB2LOhNFYBHOd1kgYjXAcPbwcqzSdkosTjyAFByHBcgyp+oxlIzTkI5nmSK0OwsIJ8MQTT5TXGRcID5Kf4r2LotiAik0IYCeZSXxf8Q4Wd3bdmcxpKQwS3sSvWbQJrU2aNElyE4gOdlgbBQezAwLZtGnTf5w4shEa6ktmzZolbjOn9X867W6iBqdkQq1R2fkXJjasZVEg0mG0o48+OuinEXuwp1JXQvGmm1CMyLx2bkRMBNiqqanCeVWUqPktOOQTsDojtgXFMFOh4XRIvQwOLL7X2WefbVVH5iDgfY1y25pKlSpJqDAKRFpsNGcTPORZqHliDokXsOhSc4GgMenSyeew0Shs8fZTcPgZJO15TtkKDTkvwnDYwBHStm3byikpm/xXFPM2iC/hNC/GYQdN5cqVI3NyKxXVUdAscCo2wUP7fBZ3N0JohUFoCpso7iuar06fPl3yOVil2fmnEhI/BOf7778XqzPPq2zZshkLDXkZXseCBQvk3zC1EdFSh+X/w/vK+8h7HfRwNy+oVKmSFCcTIQh7Pi6SlhUnxllcDF/xFhZIwlu4yfwAlxcnGkJpWIydaZNYp4PoNIDQUFtDTilTocHSyxAzQnC4+Gj9f9ZZZ6nQpAincqrhM4wilf521EbhdBPJk43zwejJJljYbTKzhup/v+P4CA7hK/I5JOhp/EmOp2CHZa9OOOvXrzdLly7doRFsOkKzdetWqZchLMicmwsuuEDcdkpqOOVxAuR9i7rY1Ah53ZSKjeIZ9K0i38Ci6TcIBgu607CRLsu412ipX7AOxW3BYfEjx4KY1KxZMy2h4X1iUiYTMxFEKv8xPESxWNFN+Bw50Ub1ZFP57+iMnmwshQ+GHEEY26dHCU4WLOSpihj9giQ6JwMWfU45zigD8jnJDjk3BYe8EQJH7QvfozihobMv4oTg8HPJyyTneJSi4bMjbBpFKlSoICdjFRuLczYaQgserLq2tH/ntICYbNmyRVxdY8aMMUcddZScdJzGoG4IDolcTlHkqXgUJTSff/65hMyogI9K6/8gYGPJxNMoUqJECXFbRqHWJrJhNBWb4CExb9vpEscSISpCfMuWLZNiSzowcwrhBJar4NBpmesP4ShMaDANzJ49W342z+fcc8+VxqNxaDHjVd6GAteoUikiLWtUbBRPIG9BaMPGpCbiwfNCAGilQzU+wtO6dWtZ9LMVHE5NtPanrQ4LYEGhSW79Ty6G9jK0/g8yzBgFCDNxio4qlVRs7HZBxb2y2obPgByEl/U1uYIA4JRzRhlMnjxZRiCQz0EgMhWc+fPnS2t/mm0WFBpOMTTMpHEmOSROV4XN9VEyFxve66gWdu61114Sag070ftk/h4epS6eYMEdxOdgWxgtFQhiixYtxKaNY+2ee+6RMQBOZ+l0BIeZI/xbTkbkDxyhYcdNXoaWKvz+/PPPd711T9xBbDhJky+zeXOTLc6pOOxkFCQeOnSoJFVZQEh+UmRG0Z4DcXBuxlSPGTNm5P89bjwaJxJq4PtcffXV/3gzb731VpnYiP2TmoNMULEJHuoe+BxsMQikAxZtQmk0t2SUwd133y2TNancL6rwk5HLuMkIh/FAaMjFIDL33XefdLSg9T+FmSo03opNFNl5551dERuuwyuvvFKKhDHMsKHCLOPAtX3TTTdJ2I6vU6tGB5BkqB0jGsBcKiIBnokNLc379u0r1lFqAmgyyO6P1jDAzo3wQfID0WC3QcLUuTERGkIs1BQ8/PDD5qGHHpIX6cBOkpuXJCpFbZdddllGLyqqx+kwweLMwhu2/l1sjA4++GC5RikOZZNEJwJCGeSgUgkO1mVuSrqMs+Cx6RoxYoQUk3Iyuvzyy6WzgRoAvIHrDLEhhBlFSrl0sunZs6es29j/CeuydiMoGzZskK+zuRo9erSZMGFC/gh3wr3JIt6jRw9z4403mscff1wOHzgq034dmTxZYtLJIBKcTLjZCEOwsGDTS2bmzJnitnGOt7TwoIspUwvZSaKSt912m7n22mvNLbfcIrsUFiqKmai+5k3m52SCik3wcIGGOZTJdUjxJ8LD9c2miBOPk2chpAacYrgvMBUQhuMmxRlVu3Zt2WD51aonznCdITZ8FlGklAtigxDTMZwNPGs1sN7OnTtXNlOswUzCveGGG8yZZ54pX6fVE2s0BprzzjtP/oyDRaNGjeS6ZgPGaSlddso1CQyFJTq5SSlwQw2Tj2H0ikquKkc9uUHZCTq/Z7EizEYdBAqaCZy49GQTLJxggxq/7PZoXlxjhNI4vXD90q+MUzknnJUrV4qjjZ0iokP4oUuXLqZr164qND7hnBgRnChSqlQpWdNyAbHinizYzJPrlQmydM7GhMBJJ/na50TONe9ABIpNF1+j8ziGmrRfR7ZPng+W+B9hgsJ6NxHT44klz1znBRVsX+L83nFcsFPhxqVOg1CG01sqXeKYs2Hhs2lnx06KawT3VRRgF0dvNfKHdAcg1PDKK6/Ig/wUORrqdbg5OeFTS6P4d62xGLNBdStvw2doyxqysws5G/LszZo1kxMMazJrLt3RERLcmM7am2ptTnbCcXDglEMahHsiE7IWG3I37OhQxcIuAOJ6xPeypagQRFFK73wwue4GwgS1G87oYRugazGuLE4AUQRhf/755yWsgJGF/xMa5qH4D+JAVwi33I/s3MkV29I26I8//ihyPUtHGMnVdO/eXWZL8X4RDsMdSQQqE8jlZGP8yUps+BAIJbDAcaOlghnx7GoJKSRDTocCumSIdTtfSxfHoFDYB8PoXBaDuMBnwfvoNH4MGmpNKHKMGoSOOd1wmuHk5oQluBaxPcdxPLMtoTS35vywUV6xYoXkKmz4PNeuXSsnicLWMwwSpBuKg7UBkxcbI9IWuM46deokDkln7WUNSe6+4mbX9lKZhmpw1pD0J3xQVHU4IbR27dqZihUr7vDnHOXuuOMOCZE5JxeEgx1EJvG/k08+udCvobo8N2yscYGwDSdNKtIVb95frlPcN+wK2UET73byg+QtKQPga1z3tuyIlczBdUg4jrCoVxNmM4HoEdebW+uZczLBiMVgPlxorJcIDtNuHXFBkDC8YNn3XWwInREaw9HAi3dieRw5k+eEUODGTjuVEmO3Q1QuuugieZF8DxwQfO9M2nYUdWzk5kcYbYm5+gGvlYR82KzGtsMpGSs+Nzw7QuLdvM8YAjjVs2nivWdRIoaNyWXkyJHi+MFYoEaV8OHcR6xHNqwhiURCrqNcn4sz8RWnJGs09Y1MuO3WrZu8ZnLwt99+uzgwER9SILiCqaf0XWywyAGDqJKZOnWq+de//pX/+ylTpsiNWHDuOvAhEoJDLTnloLA4d4YMGWJsK4IKY62B4h5Y9LHqsyEiBIEZhuuKkz2mGEIbCBCbJ9rdEJLgz6nFIVxBuLht27YSXlPCg1NHZUtd1B8uGZ4IAQ8aNEhGf3AS79Chg0SZnO99zTXXyPXcu3dvCRNTUO/Y+gMJo6XDnXfeKY/CoILVy3xKVNo7ZAIXRJwMEV7CaYXrk1g5bkgcOGyKMAXg3uF9Zrf31FNP5Yd0CaFRjU3ohVAmrjRu1CeeeEK6EXBjayfycMAmwhnKZgN/uFSkTr0jj8LgdMOm382NfzJ2SLfLxFFsCGPG7TW7DYYWmmWOGzdO6g6IkQ8cODBfaKhTIExGiCzZ9cSv2QV+9NFH8hmQYEb8L774YnP22WfL96UyG+GJihU8DmJTcIR4UPwRkY4o4X8FHhVBhQ0WNy5KTp9RKKb0E8KPJEIxvZAUbdy4sXR+ZmfrdG8mLDxp0iRZgMjFFIQQGwXM5DP79esnoQqcPHQhoIiZ0QKE1QjNUa/D6ceWMI3yT7FhDcm0vs8rfo9IkXokr3YskHErqnN2YXq6yQwSpePHjxeRIGRGkrRjx447CA09/8jD4ETDaZbqxifuTTgNhw+iQp80Tjjke/henJIoGSD5Si3OXXfdJfZ8xT74zFlDbNm0bd++3ZpTVi6EXy5TgIUvCvMfMj3ZsFPmRrHBQWM71ACRU+GkQd8+3JHUBkHBCZsI+KJFi+R0Q7++wuDfM0cJizQnGgSHDudci1yT1Gzwc8gF4Qyi5x+uH0JtBUsElGBPNm7V7LjBpk2brLBg50okTzbY9aIwRjUTqOvA6ac5gaJxGmeOHTtWThaExGgCW5jQcIohBIY7hyR/cTjFdRgM+LfJJxzHYIMgXXrppeJUQ/SYn4PDjUVOsedkYwubNm2SNS3sRPJkg+tn48aNJk5Q48GJhi6s2mk4dV4GezInFIr2OKGw2CcP20olNAw/IyxGoVs6HS74O+R8cK0dd9xxcmIpeMJx6jjI89A9mpOQ07SWcgFKAjSfExyIvk1zmDZt2hQJJ2MkTzZ8MCwoNjWm9BqSmZxuMmn5HRfWr19vHnjgAWmxTv6E3Ak9oYoTGnjhhRdEqBCmdKFzLg41fh4UdsIBdtC0dOekw0Aq+tuNGjVKnG1KMNg0zvyHH36Q/LOKjaU4H0zc8jacaOJmjCiuiI1aGFxknFCoMbjiiiv+Ef8uTGicDs+E2jIJq/B3KXxmiBo5oeIEBzjxUMnNsEBOPTxniqMxHCj+QquaTDsae8Wmv9MBURCbSIbRnPgmHxQFpHGBBDQLXNzBKkohJW1mWDiogcEplspFVpjQUFNDbofTojNsKhMo6iQ0hsuNliCExRzBKRhSS4YOBLQTcVrkMPGTER08f1usuFGGz52TDc5Em8SmsuZs7MTZBcQxbxPVOezpQLiLoktyIHQBYJGn0r+whaMwoQFGn3P90IYpm/wJpxOGADLhk/odpzYnHcEh98bJiBbwvBbyPwgXo6rJByneQWSAz05PNu4TyZwNg6y4YePmSCOMxq4sjoKDMNCjj4FQiAjV+whFNkKDo4/eZtiSEaxswXVG405MCcnhzeJCag6cqnDA8VoQJcZ2MLo3k7nvSmbwOfH52CQ2ZcqUcW1OT5BEUmzYKXJzxk1sONGRAI/iHJmiFgdsw0zOdIou+/fvX+T4i6KEBmi+yfdNx+pcHKeffnp+89lk0hUc4Dn27NlTck6ECGmnwyAszc95k5B3zDa2bKIqVapkTYFpLkQyZ+PEOOMWRqOTKy4axCYKRWDFxdadvAYLBPPQWdiLy2sUJzR8DYv0UUcd5crgLE7Z5G8YuUHuJzn2nk5IzYFQHjZpcjqclAjzDRs2TEcZuAzXEp+7LdbzTRGpsQE73lEPYDcQt5MNCxX22aifbCjGpCiTwkkWBuZyYB/OVWgcqzMLDfkRtyBfQ1jm2Wef/cfXMjnhAOFhanEYYkghKuE+Wt8wX0dxR2xs6uawKSI1NqBiEzE40US11oakPwn3Rx55RPJSzFNn9gYnuuJIR2iYdEqvNBL7bjq/CG3SfHPDhg1SuJmr4ADiRa0Q4w/4NUMN6fEWN7u/F33IbCqK3hQhsYlsGC2OJxvndbOgshi7NfQoaEjY0zKGeTEsxLSEwc6cbqgjHaEhF4LzC+Ei7OU2uMiWL19u5s6dK6Gwgs8hk5BaMsyPv+SSS+S9wfV23333SbiNrtU2tVwJA465xqaw1aYIiU1kTzZcMOyE4zZqgAULkaG9fVRa/zMLhvwMi/R1110neQo3hQb4/rxnNMX0Il7P9ySnxPOg63MqsjnhON8bgWS0AS1yKCQln4P46PTW9KHrCCdaWxb3n3/+WXry2SR+uRBZseGmhbgVOWL1jYITj3YtjCHHaYYziIX0nHPOyWi3nq7QMMMGowFWZU4KXkE+jdk2FJzyM90UHGCTwSgDWt/UqlVLXHXDhw+XKaJK8dBlgp5obhhD3OCTTz7ZYS0LO5EVGxonAs6iuEEFOjdOWHeX5B9o1UK7mQsvvFAWz3SaYGYjNMCizOLOqcZrCAEiCrNmzSr07+QiOEDOoUuXLqZr167ys6g/mjhxYmivCb/AWMP7bosTLS8vb4e1LOzY8a56AI4SFhnnA4sTNWvWlNhzmOowEAUW/TFjxuRPs7zmmmvkJJApmQgNtTkk7WkJ40eLknLlyklXZ14jDUK9Ehxn00HTUfI3CM3IkSNF5HSUQWo4bTKzyBby8vLkhMo1EwUiaxBwkrJxFBtCQYSbqDMiNGQz5BRWrFgheQxONeRlsDFn23U3E6HhZ2N1Jk5P7zG/YCQ0r5mu0EwGLWwnna1pIBkKSjFTsDvmPeakj7hywmrSpIk1u/igQYARdpvyI3l5eZFqTxTpK40Pipsrm11hmGGELDsirLY2w6niwQcflM7MLPiEywib+SE0wIJPXJyaGj+bXFIrwxiCzZs3i4usKNw44QDvKX3icK7x3syZM0eGtjl5gbhDCA2Lui1i8+eff8oochWbkMAHhZsjjjcUBX/cQDaGTAhXzJgxQ2bMsIB27NhRDAAsgtmSqdA4rjBn2JnfEB4k3MnJqrjPyC3BARZT6pMYZcApic+A8dTcJ3GG95V6JVsKOteuXSs1Pyo2IcH5oOIYSkNs2Kl98cUXxhawoVMvg5WZUA65C6zMud5QmQoNUHmPGPthCijKCu2MMigONwUHkSFcSRcCuhFwwsS1xuA2GzcnfoDtnRyXLT3I8v5es+j8HRUiHUbDlUPCL45iQ7KbfI0t1m+q80n+YwJgd02LGTfCV9kIDbkh2vZzusjlNOVGtwcKMOlzxnPyU3CccB6tdDhVktPhPaH1TdwcnGyC6LpRVPNWv8nLy5OTry1zddwg0mITZ5MANGjQQBaxIHerCAE2ZuzMJORpL0MYx42bKBuhgQULFsgCgxEhaDhZUNvhjJD2W3CAOiZqmHr16iUbNEKcnD7jMsqAUw1RANvEpnGEzAGxEBuOoXxwcTMJQN26dcUsgJspiBYz2GwpzOTnt23b1gwYMMC1oslshebjjz+WUxaOMBvmzPMcqPqniHXdunWBCQ4w1RbBIYfG+0qvNTYJYbLQZwOuzf3228+aYs6//vpLzAFRCqHFQmzYHTDH3ZZwkp+wYyUOzQLrd+t/hnwtW7ZMwkSDBw+W/IxbNttshcaxOmMLp47HFo455hhpkUK3hHTby3glOHxG3DNXXHGFTAtFAGl9g5mCzzaqJxs2Zrbka9auXSsCryebkBFnkwBQS4H7i2p8P24SBnvRbJI5Lpxk2rdv76qtOFuhAWzGGCYYsJbJv/MaamEIp+EIQ6jTxSvBAcJKdL/GRMBCzAwd8jmM3Y4SLOpcS5QK2EJeBM0BsTjZYG0lIR1XsWGhIETgZX8sqtNp+4+FlvAZ45gZZex2WCIXoWFBpjEl/y6brgRew/hoDB2cIDIZ6+2l4ABdsLFJd+vWTU7KTAglvBaFRq9AFwdGLtuWr6lRo0ZaozPCROTFJu4mARYjQlgke93ugM2iyAAzBpkxB4bdOS1m6tSpY9wmF6GBhQsXyskhKKtzOtBEEwqOkA5acICdP0W3FIZySiZM+vTTT2ckjDZCPpHNh03jOPIiaA6IndjE0SQARx55pNxMbhW3klcgH8PsFDoYsyunXoYYvxftT3IVGkZNMEuG/FGmDT39BCcY46i5VjM9OfghOHy2jN/GKk2eiemgQ4cOlWsgjKMMCKFROGnTSfevv80BKjYhhRsDC3BcR+diM8YGTbI310UIwZowYYIks3FSkUju1KmTZ4O6chUawBTATUxDStuh7oVwVaoR0jYIDvBZ81727dtXwj28vyNGjJCcXZjgWua9tql/YF5entT80Bg2asTiZMOwLeKy9IOKK1y8hNGweWYDjr7p06dLLzN+TRyfxcbLQVNuCM3q1aslX0UvsjBMruQ5ckIkl5BNMt4vwXFOYuTnLrroIjEUUE81adKktApUbQmhsQnjudvCnDlzpG2Oik1IwQ1Fl1tcUnGFHSjhrpUrV2a0ACFQTut/Fj/qU6699lrPQw9uCA1WXQo4adFO5+OwwNRNOl/Mnj07q/CUn4IDXFeMMiDnRMiSUw7P3ebWNzg0yTfRtscm5s6dK++jTW5Jt4jFyQawu5JnCPsEy2yhhqBVq1Zyg6XzHjixY/Iy9DNDrMjLYALw+kZwQ2jg9ddfl++D/TpMrfR5rmyOyCdgOc4GvwUH+zYRBPI55AgJB915550y1tvGfA4hNKelky2sX79eOpGzVkWR8NyBOcJugRsiU6dPlKDXUjqnm+TW/yxahMsIlfhRce+W0JD8JXFNxwKbFpRM3F9OfUu2Ffx+Cw5wjeD4w/runM5wrtlUVM374ITQ6A9nC/PmzZPnQ31TFImN2OBZxygQ51AapxsS0Cw+qdxOJCbp0UXbeRb8Dh06yHAvv5pVuiU0QL0Kr4fXEFY43bD45JJrDEJwnCaj9MDDPMLPxFRCLRbhq6DhfSDEygnMJubMmSNh6qhM5oyt2ADH05deekkKD+PKwQcfLC1sCJE5Cw95GQoeCZkR/iBnMGjQIF9vRjeFBhMEnYt5HXQyCCs8d14DLspcmmIGJTiEAzk94FjEoEGYiC4EjFT4448/TFBgGCEsTC84W9i2bZucYqMaQoud2NAMkpwFu944n27YMZO8JbRB0p8WMywAOMto/c/75OfkSjeFxul/RsjUKZIMM/Rw41SO1TwXghKc5MmkiE79+vXNkiVLpN8aM438hjwYHS8odLalFxpgwmHTx70XVWIlNsTu2dXHOZQG5DF4H6jlmDZtmuwy6fbbo0cPsV36iZtCA4gnHZSJe/spmF6BLZfQJ+9RrnNmghQcIDxEWK1nz55yanvyySfF5ZitHT8bqDXjGufEZVsI7fDDDzfVq1c3USVWYgPsHBAbGx0yfsDJjl3UqlWrZLFhgBkNMzEP+I3bQsPOkDApCxkNSKMCnQ9YhJikmWvLoaAFB3gtGAjIp/E8EBxquLweZUCeBhcaoUmbamv++OMPafsU5VNNLMWGmCjJcToAxwnElZ0xNRDsojjdkPzHNBGELdhtoQHcZ9R54IYKk9U5XSs07xVimis2CA6viZwgVmmS4nQfIJ+Dzd6rjSB5L8KrtASyiaVLl8qI8ijnayA6d2SaEKtl5xunUBqJWdxAU6dOlYXl9NNPlzBCUIVjXggNzSFpz08TUJs6+LoFyWzyHbxGGopGQXCAEwZCSlEooV0apiI6H3zwgas/h9dHNwms/3RBt4k5c+bIc7JNBN0mdmLDTUbiOA6ta1iAGfGLywwzABMheTCGOCi8EBqgUwAhQroSRxXyUDRUZQKqG9giOMAGsHPnzqZr165Sq4NNmimvmzdvduX78/p4nZyibGPu3LnSay5Kp/FURPvVFQLHVeykNhWauQlOM2fYFaEligM5zdDLKki8EhpObhSq0pKGqvCoQoKdsCc7dLemr9okOI6Jh1EGZ555ppzgRo0aJbVfuY4y4H7n5IT13ybWrl0rVuyoh9BiKzaOU4mLOEqwUHBTOTcou0V2TFSjB23z9EpoiO9j2yYcc/LJJ5uow8mUTUMmI6TDJjjkVQh3k8/h/2wkGGWAZTqb18xrwnyAqy/o+6AgOEI5rWINjzqxFBs6QBNumTx5cuA3lltgH6XjLg8WDQSVmRg22H+9EhqgOJUTKqIaxeaFqWpWEFUSyvT6cwvbBMfpgM2Ov0+fPpKHw7E1cuRIGdSXCYiVU/ZgE4lEQtagjh07hqIjea7EUmyAuhLsvzRrDDPs2Ijhc5rhOM5wKwoBEVQb8FJo+J64lyhGxR4cF+rVqydWdU50bnZWtlFwgIF3jDIgp4PY0rePRZpRF8WBO9HWU80rr7wiwslaFAdiKzZcfOyWOAmEEbz5OJPuvvtucfAQKqNmpnLlysYWvBQaIC/F7JQw9z/LBhLJ5OAIKbHbdxNbBQfIPdIUFvca19Xw4cMluV6U4HKq4d7AhWYbkyZNktMWodE4EFux4YalkpnOxm5YSf2EEwwOMwrhcJYRQsLya5ObxWuhIYxE+3qqrmn6GDfYVDRq1EjeA9qvxEVwONkwXI58DmFiXj/5HMZ+F4R6OnqO2Xiq2bJli+RVOdXY9ty8wp7VKQC6desmu6LHH3/chAVCB4QRsISSVLStGtoPoQGnmWMcXDyFwedPuDSbEdJhFhzgdXOipRMBYVQWbkYZMDoAeL40leVEQ9jRNh599FF5jl26dDFxIdZiw0XKqWDixInW3UyFQQ0CbiR2eDbafP0QGuLcFP2xw/Vjxo6t8NoZWIYNmtNu3AQHuMaIUJx33nmy+Rg/frws5Lgy+T01dbadHBKJhKw5DPWrWLGiiQuxFhvgGMt0PDedPV6CyCCQhAdyaTsfVqFxrM4stBgh4g7WYDZNmES8aPMSBsFxRhkQWuO0R/+zJ554Qqz/fs1iyoQlS5aIOSkuxgCH2IsNyUaMAqNHjzZhgfwM8Xp6nQU5F8RvoQFi9F988YWEz2zKUQVZk4LNnW4RLGJeEAbBSR5lcPnll4srk80Y4zNsK94ePXq0GAPIJcWJ2N+t3KxcnBgF/Gx1nguEBTjdlC5dOue282ESGobeYRelT5iNcfggNx8sXsxp8mowYFgEBxghwGakVatWsjHBTMNJJx2rtNeQU6Igl9k+cdssxevVFgLja6nipRdTWCBEQEtyLl5u/qgLDVBTQ/iQrs7KjmCFZvFijr1XhElwgHwIkYvDDjtM6umwSnMNuVmblCnjxo2TEHCcjAEOKjZ/95yiaOyBBx7IuQeTn+BEI1b9xhtv5DznxHahoTiPsRDYXW3r2msDmEZo2U9HBS83H2ETHKIAFMCyMdtnn33EuUcXAi8MFelMCZ00aZIYGuJobFGx+RtCadiJqV0JC+xk2eVTa+N3OM1PoQGneJHwoZIa8hU4FL2wQodZcJx8DnlOTjqE1l599VXfn8Njjz0muTXGKcQRFZu/oXcSNkniu2G4eQqG00iG+hVO81tosDnTHZfFlHCnkhreG+zgXAtYf70kjIIDP/zwg+RpiQr4SSKREGMA3ayjPPq5KFRsksA6iQ3ajWmIQYTTcGp5HY/2W2gY5cvnwY6d9vpK0TCAq0qVKjKvyWunYtgEh2uJTgN0nWAQnZ88//zzsmlijYkrKjZJ0E0Xy+TgwYM9G03rVVyaauqyZcvKiFmvbnq/hQbo/8bPjNqoZ6/7puFKIxnuNWESHOYA8f4QCfCz0JO1ZPDgwVKAyyOu6N2bBBfgsGHDpM3F008/bcJEhQoVTKdOnaTPGwVjURAaQh4MfyPBSzNFJT0OOuggcWAtXrxYOh57TRgEh1wJ9wW1LXSR9hPaYa1cuVKGGdrWzcBPVGwKwNhYdobXX399IA6vXLvikgDluI57K8xCA4TPcPDErauzG1DoSVJ89uzZvvw8mwWHkwUnfoq3qb3xE+6ZG2+8UeZnETWJMyo2KaCL7EcffWSmTJliwgZJdOLRhJ+48cMqNBs2bBAbLzcopzYlM3jPaGWDUcCvtka2Cg4nGvJXDCnze5ggPdCohbvzzjtN3FGxSQHJ9gsuuMDceuutnlVkewVOG5oSUtCW7RjdoIXGmdPCz+OkpmR/Sset6LUV2mbBccJnbMLoPOEnhIFvu+02qeE71MJ5On6jYlMIQ4YMkTkhWKHDBkYBxBJnGqeDMAkNsBunkzHhTBvGWocVRk+wyLLok4eMm+CwaaFzQBDhM2B6Lh0vbrnlFt9/to2o2BSRZGVWBkk9pkGG8fkTJ16/fr3UqIRFaMiT0ePLqYhXcj+ls9g+99xzvrZpsUFwyF1idz7nnHMkf+Un5ExHjBghBZw2dp4OAhWbIrjhhhsk1ksOJ4w0b95c7Nw4YciB2C40QGU3nRzU6uyuFRqh8bt+LEjBoekmVmdOdjwHv7njjjvkvR80aJDvP9tWVGyKgB5cAwcONGPGjLFudkw6YLNs06aNJNlx4zCK1mahIb5O2ANXnd/x9SjDZ9mwYUN5b/3ufByE4CCsWObpChJE+Ix5OjT1vfbaayVnpvwPFZtiQGwYQRvWuCu7q3PPPVda8hdVdxG00ABD0VgoCP8p7nLKKafISAra2/uNn4LD92ZjxT1L3tLv8BncdNNNIjJx7haQChWbNJLthNMeeughT4ol/YAk+0UXXSRtTJgHUzB2b4PQMOAKY8Cxxx4r77niLrynvLfk77D1R1VwuEcpbKbAmS7PfkPIetq0aebmm2+WBrnK/6NikwaXXHKJ3CgUeoYVWpp369ZNFp2FCxfmF6zaIDS4hl544QVpJEmMXfEGessRGuZ0E0Q7Jq8Fh1wfpgAKWgnFBgFtaeh20aNHj0B+vs2o2KRpIcUKzU1KsWRYYafHTcCi7gyRClpoAFsuhW+MDwjqOcQBQkoYRnBX0rQ1CLwSHOZQcW9S0MxrDAKiBrj+br/99kDCd7ajYpMmxH/pqMvgozANWCvIAQccIK+B4k/Ek3YwQQoN7+WiRYvkeZHEVryFnmnsvJ38WBQEh39PATN5Egqaubb9huLvXr16iQOUTgXKP1GxSRMuYPI2FBuSAAwzLOyMJeAGIX4fZJU3JywcUtr/zD+wQvOZswsPCjcFhwmunM7ZEAaV7yN8xlC2qVOnanfyQlCxyQDiwLSwYawso5jDCLF6pnqSvMT4gHkgqLnsWLGXLVsmoY9KlSr5/vPjCu81UytZpOmSEWbBIUezceNGKdykO3gQYLNmMBr9z7BbK6lRscmQq666Sirb6XfkRqPLIISGFhokiw8++GDTu3dvERxMA36/HkwBVHgzX0Tx3wqNaeSZZ54J9K3PRXDojoH7jAm7TZo0MUFAGBrjDeGzK664IpDnEBZUbLK4OTgqU7gVpnBaQaHB9ADYoWnLQ/jhxRdflMJKP8CCy0LRsmVLWfQUfylTpow06uQ6ptI+bIKD84yT2XHHHReYIcAJn3GyYk0IIlcUJlRssgyn4U4jnEYBWViFxqFy5crm0ksvlap9TjhuzsJJBaeZBQsWiMiccMIJnv4spXDoLMFnP2vWrMAn02YiOFzHhK7o+0Zbo6AGktFayQmfESVQikbFJofOArjTbA+nFSc0DnvttZeccJjPTqcBQhRege2WXm1nnnmmJlMDhJ04Ixxohc/CGTTpCA5fw71Io9nOnTsH5qIkfNa9e3cplNXwWXqo2GQJFznuNBZlJvGFWWgcaGdC/Jk56cuXL5fkq9vggKMeoXr16oEV3in/DwntOnXqyAJuw+ymogQHEwvPk3qxrl27yvUaFNddd53UqKn7LH1UbHKAgUgMR2JuBU0Owyw0yTc7zh6S9uRVCBMS9nILxgewk1ars11WaHrozZkzx9hAKsFBaAjxkmviRMFJPCjYLI0dO9YMGzZMapaU9FCxyZEBAwZIzQrhNBt2hrkIjQMxcNxK9FNDGMivFNbAMxOcIV6EH5kkqtgBJwXcXCtWrJDdum2CQ/0K9nw6X1A4GaRNnvsAseP0z6waJX1UbFyIe3OUpt0KdSthF5pkGjduLDcUg8wQnFzHLGB1Bqyqil2ceOKJclrwc4R0OoKDsJBPosUOrZYoSA4SwmdfffWVmTJliuYbM0TFxgWIedMP6d5775W2GVEQGgfcSn379hXnEgWYnEyycS69//77Zt26dXJiYoeq2AWfCc5AThGccGyA0BlCQ/NQnhsFqEF3uxg3bpyEz4IqIA0zKjYu0b9/f1mQcchQAxAFoXEgEUsrENq2Ewoj75JJyJAO00yJrFChgmnWrJlrz0txF4qVCV3NnTtXJtQGiZOj4Tru06ePWJxpa/T2228HIjhc95gSCJ+x+VIyR8XGxXDaE088IYswjfj8bP/ipdAk53GweXKjUR9DSOzDDz9M68anGy83a/v27TX0YDGYBLBCkydhFx8U3ENsTtjkYMen8JiTF9d2EIJD3zXEDgF+/PHH9RrOEhUbF2FXSMwbB5dfU/r8EJpksCxziiOsQWisOMssBgNCixS9aejBfmrUqJFfa8U15TeICZ0s6ODMiYYwrkMQgsPPYJ4V9xjFr0HnjMKMio3LsPtn/viECRPk/1ESGgd2nFiX2XWyAHDKKax7NAsHO2V2hko4YPgY/fJmz57t68/FCceJik0JHS3I1RTEb8G57777pJ5u4sSJ4jpVskfFxgNwzVBVzIOdf5SEpqAx4sorr5QeW4x0LnjKwb3GgkAuK8i6CCUz+KxoLMnJ1ctOEsmwWSHcSt6I5rBFjQrwS3DYKNEphOa7Xbp08eRnxAkVG4+gbxqhJgokmYETNaFxoMiOHBWnHJ7H888/b9577z2Jb3PiYYfMTlkJF2wgqL8hLOzl6YHvvXLlSvPOO++YVq1aicEmnevZa8GhoBlDDO5J3GdK7qjYeFgj8OSTT5ry5ctLDzByF1ETmoLdFChwbdOmjeyGp02bJh2FqalBcJRwjpCmKSuti7yAzhTkN7lOCMueddZZGXVO9kpw6Hzerl07CeNNnz5duzm7hIqNh2D1pQUIiy/V+Ll21rVVaJJzObQ+IbTGuGeSzYRFlHCCUYCGl5xW3XZXUolPoTCbMEJURAGy6d7stuAggOeff764J7l32Swq7qBi4zE0m8QuyYV78803R1ZokiFsiJuIMIQSfis0dVIIg1tQOMr3o2XR5Zdfbo444oicvp+bgjNo0CB5bkQldOqmu6jY+MAZZ5xhhg4dKl0GuIijLDTsVEmsYgMvV65c0E9HyZGqVauKGBDuYjHPBec6ZqQ6zi5aISVbm4MWnEcffdQMHz7cjBgxQvOMHqBi4xPXXHONVOHTwp8bLopCA3QXIObdsGHDoJ+K4hIkyXffffec+qZhf+fawN7MiffCCy90fURALoLDjCWafNJQlzCw4j4qNj5BPPrBBx809erVE8MAMeGoCQ0D0Sjg5DWqKSA67LnnnnL90dsOi3KmcK3Pnz9fnIvUzzDK2avpmtkIDmE9uls0atRI6uOCmvwZdVRsfISdnDOC96STTpLGglERGm7qefPmyY2qI3KjB9fg/vvvL6ebdI0u5Ho4MbABwWxAVw1MI16TieDQwZl7Efcor832+yzMqNj4DO0uaDBIs07CE6ni4GETGqCokyJA3GcklpVoWqG5XtMZFMhpBhcb1zC1M8yA4YTkF+kIDps9hIbnyD2JmCreoatCAFB5z8XNDBzcPsk9qMIoNNhin3vuObF66w0bXQiP4tCiSSbW9lRQzMsoCroB4MSk9ooOEkFsQIoSnK1bt8pmj5MN96Kexr1HxSYgDjvsMHFtrVmzRgoht2/fHkqhAcIk5Gu0pib6sDkCNhcFYeHmz1nIMcPQtgkLfJCkEhwck7wO6t8wLVCQrHiPik2AkJDE00+rDiqWCU+ETWhYWLhhKf5j9IASbTi5MsGVrgJ0F3Ba8GONZtPhdJJgbpEt4dRkweEeY3O3atUq2ezVr18/6KcXG0oF/QTiDvUGJNbZaWG5JEQRFqEBXEacylq2bBn0U1F8gjwH+blnnnlGxknza5p3cprherZFZAoKToMGDSTvRN8z7jNEU/EP+66KmEHojBqGO+64w6xevVpa8dPKIwx8+umn4jZid0gCWYkHWJhp1EnOkTHhbDSuvvpqq04zBaH2i95rWLe51xCfIEdMxxE7r4yYkJyjYQImx3p+T+KSm8P2586JjHoaQmhKvOAEg52ZYXos4jaHUAmfcaLhBEbIl2FoQY6YjisqNgGRygzADBFuBk44hCq+/fZbYyvcqDxPTAFaBBc/6M7MSAA6AqxYscLYCvZmQn3062MwW5MmTQIdMR1nVGwCoCjX2VFHHSU3BSEqbhLqcWwD2ys1FLRgp5miEk/4/Jl5w7WAScA2qPWhmzSC+Morr+zQ8FMFx39UbHyGXRQ7waJcZ/QV4+bgZiE2jvDYxKuvvipOJE2wKlwDGzduNP/5z3+sejPIzXDvcHrheqXUoCDJgsMANz3heIuKjc8QcqIwrjh7MwV0ixcvlh0jpx1+bUtYgpMXRXAkipV4Q66mVq1aUhhpS9jXCZchHtw3tWvXLvTvOoLD9azhYG9RsQkA3Gfp2JsRJaqxScQSH584caIJGkY90zEAMVQU4NTw008/iQ0+SBCXcePGicGGXCJOyZo1axb77xAc3Th5j4qN5VCBTeEnDpqLL75YZoDQ4DAICOdhdaUNSSbje5VoQxNLQr9vvvmmJOKDgA0Q9wj3Bw0/6WRA7Y9iDyo2IYAaljFjxpgHHnhAHqeeeqrZsmWL78+DRor0PyPnRIybPliKAligOa1jh891/HmmYKLBvfnQQw+ZKVOmmJEjR4oAKnahYhMievfuLbFxOiyTx3nvvfd8P2VRvNe2bVtJCrOwfPjhh74vLop9kO8gdMXMG1rZ+AUbH+4FugIsWrRIhhMqdqJiEzJatGgh4QpOGVRsz5kzx/eZPJysmDxKYd8HH3ygoqMI2KCxQ5O7YTKn19Auh9o0NkHcE/xasRcVm5CGLGjhTiKU6m3ab/ht2yScdv7558tJhx0tjQ3nzp0rO8w///zT1+ei2GWFJqyFdd8rOEnfcsstpmPHjnLKxnZdtWpVz36e4g4qNiG2nM6YMcPcdNNN5oYbbpCFH0eQ31SqVEkaMCI6nHQYmYDo8H8VnfjByRcXJSEtpyu0m9A38JxzzjG33nqrbLKmT5+uTrKQoGITYmh6yA4P0WGBZ7b7559/Hljr+fPOO89ce+21UrdALofnRJgNp5ASH3Ar4pjEJu/miZv5M1xb9BBkvPrgwYO1NiZExF5shg4dKglGciD77ruvhKXYlTtQqHb55ZdLYRi7tgMPPNBcccUV/2iUSYK04OOJJ57Y4e+wG6tSpYo59thjJdzkFoQTCKtRcIkFld1eUNXQvIfsPMnpIH4sEOSVmCNiS9Gf4i3Y4mkNQ98xN65zruVHH31Urm0GnzE758wzzzRuQeEn4bjKlSvLfYuQJcOGjum61Mdhp8b5Rg1PwdB2wft/2LBhO/ydSZMmmWrVqsl7U/Dfx4HYiw2tLOi4/MYbb8iMC3Zk5EKY0QK4rniMGDFC3F/YK0mAMoWwIFOnTpU+TM4D4XJADPD+z549W8JO1AO4CTciNTB0t+X7d+jQQSYnBgU903gOhPgQH05hhFZ472gloiG2aEMOhcUZx2IuFnnuI4SlS5cupnXr1uJ0S9V6Jhe415l1Q0FoKggLjh07VlygDIhDWFgjCvYtHDJkyA73P5tUh88++8zcfffdsgG9/vrrY+mai70ZvWDVM2LC7pyFG+cXFzauFwcqkokVd+7cWW6iZD9/+fLlJZyUCvovsXNi9gv/jp/jhRuIi5mTzqWXXipV/twknTp1CizcwImRHlWccjgxsqPjpsWyyi6PG5m/o0TTCo1Vn8+c8Femp5lp06ZJFIExFjNnztxh8+Ymp59+ujwKg81bMqNGjTKTJ0+WWjM6ezhwHRd2/2/btk3WB+5//o4fbj3biP3JpiBOeAy3VVF/p2zZsv8oHOOExIJPXyaKy5JDWdiF6ZZMWwymchK+8wrEhtkddI3GOMDvvUjWZgInG0YG/+tf/zKDBg2SXSohEbojENsnt+OcJpVoQMiJEw45lkwGAjpRgYsuukjuFa5lr4QmU8g/0jaqXLlychpKhrAZNmzCZMOHD9/hRHfYYYeJ0PDv2ATefvvtJm7E/mRT0FLJaGZ2YYUd1cmL3HbbbVJgWfAIzeKOmHBzcbLgBmNn5nQB4BTFos8Oh92a12Gsp556SswDPBeStuPHjzfnnnuuCRoEmUWE94vTDjtEQpQIDrtD8mKEKsiRKeGG8C6hNOY0FScYbM4ef/xxCT9xvzz77LOmffv2xgZ4DRhgcHziwCTkznXswH3eqFEj2aSSn2RDhWhyCnKYPHmyhNJYI+J4bZdIaF/tfPr06SO7bOKyJPJTHYXJiXBBkfQuahQylmRyOEG5w5JB4Dh1Pf3003LKITZNqNAmOPUxjI0QGztZhJrTI6E2dsc2Nkpk8fjiiy8kL6W94gqHGizydAMGDJBQcioYp0FvM3KaLOq0Z0pezP0M/6UK2XHqRjzYbJLop7M04cHC7iMiG/Qy5DpOp+luHNAw2t+QsGf3QhI7ldAQ8mE3zs6bi7EooQFqTliIbBgqxQ3BCefJJ5+U18cxnt/bBJ132QUTOkGou3fvLvkcFimGc2GuoEocs4aaC8KF0+Kfz7Dg3tY5zXBN4jIjP4qbMgihKQrMDoxSaNq0qWwyCKHz/6Luf8Jots2iCpLYh9G42Dm2IyBUPdeoUSPliYacCzsUTjQsjMXxzjvvSMzapl0NITQmFxJW49e4xDjl2DZtk1MMIQkehC3oJEzdDiceBAfHIKceWqMQ0iBOricLeyFfx2eJ45PP0AlR45bkNIPVGBMLZhbbRKaokHtRG0nuf163bRGEIIm92BBeYmfF8Z1TC8d5IJFHXBWhwebIovfYY4/J73kAizSLHMWL3DjsehAi4rl33nmnueqqq4xtJJ9yOM2xo8RdhxXTxk65CA+LEw8ssLzPn3zyiZx4aPrIr9lBOjUQCA8P8mLc7IodED7jMyF6cNBBB5lHHnlELMDcP4R3sckHBaEuNjMOXFOIBeFyriXuj3bt2snGhjAaG7QNGzbIZg04kRFSa9mypawh/L5///7iWNUxB/9P7HM2hVmCybfgnOK0w0WUCi5KEtkk/kkIcsFyUuK4Tf6nV69eVi94LNzcFIQtCHVwU5199tmhqcpmd0lYjbwY/6eAlM0CO05CbQgQCxy7Zf5Pix82A269Ps3ZZAYuTnIZlBXwebEYMw4g6JN1Yfd4165dzYQJE8T6jJggNIgPReDk6fg/vPXWWxItIOfItUd0hHAwOSqbIhtBE3uxUf53syCWuOiwbWPhLExgbYebHcEhmcuCRjEd/8eyygkIoUFwOLUiPjzYjTpChEsw3ZCcik360E0AdyQLMtX4LOIFrcNKtLEvbqL4DvF06l1w2Fx33XViSSZHRS0QNQNhgp0kDjYeDggNrXIorOWxdetWGT5HBbhj4kCIOA1xWkJsCCliAnF+zfdFiBAr57SqdUHFQ76NkzNhKfJso0ePlhNNWE7PinvoyUbZAcKA1DfQ5JC+VthQKUBLZ5Z7WF8vTkMEiLwcFmyqu5P/z5/zQFwQIx78O06EfB2DiRoUdoScBnlB2ssgLNShDBw40Mq8oOIPKjZKStjpk7eiCSF1OhSx3njjjYW244gjDz/8sDRxJKavYvM/uFYIl1HYyDVET7Obb75ZWxIpWmejpIYdKAYHHF+cbHDscbpBcAp2vFYUwpS0ccFwQrcA3FvkZ2hgq73vFLDXKqVYYz1mRg2xd6zSLB6IDiYCHRmg4NDCKNGvXz+pQcNYQscADABF9RdU4oeKjZIW1AvcddddYu+mJoLQCJ0WKMqjp5kSL7gO7rvvPsnFkONjHDSthqhFox5FUQqiYqNkxAEHHGAeeOABsRTjXKMYlsJQCl9pR0LyXIkmdG6g3RE1Jpx2yVe1adNGmqnSBSBV9w1FcVCxUbKCVjH0MKOQkimKWIrPOOMMqaG49957xVqsRCdU5syWueeee6SOiUms2MZpSpmql6CiFETdaIorYAWmTQehFfrMUYtCuA2TAcPTolhXEWU3GidU+tBRe8WgO+zhDEPjRMMsIkXJFDW9K66AmDRv3lwe2F9ZiNn14mI7+OCDTc+ePaX9jzYmtBtOLfT2oz0LJxc6LdAk8+qrr9YTjJITerJRPD3tsPNHdGi2SIU+43dpqEmsP+w1O1E52SAwr732mrSUIf9CMSsJf5rUMv/I5v5+SnhQsVF8AZs0TiU6TlPwR5iGmR/UY7Rt21a6Ooct1BZWsWETwJwVPgdCZNja6ZBAix8mY2JjJienKG6iYqMEknBmIBqjGeiYTYt3umc7wtOiRQvPx2bHTWyo5meWDO1jsCjTTgZ3GYYO3ndCnIVN0VQUN1CxUQKFJpi0eEd4KApkXAANGwm3ITz839biQNvFhk4P5F44vRAewzFIZwi6LTNKgufNe60ofqBio1gV3mFhdISHXTiL+LHHHivC06xZM1komVNjA7aJDaEwqvc5wfB/wmPkX5jnw3tI/oV6qHQmzSqK26jYKNbCHBomOyI+9NuiwzLJakI/JLCdR8OGDWUeTZzEhveCvnVU8pN/cQbIIS4YMXiPGBPBc6tbt27o8mFK9FCxUUIBM2nYsTPl0XmsXLlSwnAspKkEyOsGkH6JDQLCuAeEhSJaLMkMh0NwEBZOLtjLed2tWrUyxx13XChyXkq8ULFRQgsJ7mQBYr4MYTgWYQTokEMOkQWY0BtV7vTs4kEiHCHKdbfvltgQPiQExphuapQY6kYHBmfiKH/mCAsjlHldDLw75phjRFi0q7ISBlRslMgJEPmK5BMQgkQFfMFu1o7wOCKU6vc0IC1MlIoSG6zdnLr4uc6UUBL2PPizbdu25Q9t42uIDY4x58H3ow6pdu3ackoj54Kw2JKvUpRMUbFRYgH2ak4JPMhtOL8u+HsW/2RwbxGS4v/OqGjn14S3yBXxdWekNA9+jejxSP5zHvx7BIPTSPny5aWjAqeuqlWrSiPLWrVqSUhMXWJK1FCxUZQkEJBkISKk5QhH8smDBycW8kYIRbIIIT44vmj1QnEkXz/wwAOlaBKB0WS9EkdUbBQlSxAgilNpTInYKIpSONr0SFEURfEcFRtFURTFc1RsFEVRFM9RsVEURVE8R8VGURRF8RwVG0XJ9ubZaSdTs2ZNHS6mKGmg1mdFURTFc/RkoyiKoniOio2iKIriOSo2iqIoiueo2CiKoiieo2KjKIqieI6KjaIoiuI5KjaKoiiK56jYKIqiKJ6jYqMoiqJ4joqNoiiK4jkqNoqiKIrnqNgoiqIonqNioyiKoniOio0SexYvXmzatm1rKleubEqUKGFmzZq1w3vy448/mssuu8xUqVLFlC5d2tStW9dMmDBhh7/zyy+/mL59+5q9997b7LHHHqZDhw7mq6++2uHvzJkzxxxyyCGmdu3aZt68ebF/35V4oWKjxJ7t27ebBg0amHHjxqV8LwYMGGDmz59vHnvsMbNq1Spz5ZVXivggHg79+/c3c+fONTNmzDCvvvqq2bhxozn77LPzv/7rr7+KGI0fP96MHTvW9OnTx/z222+xf++VGJFQFCUfbomZM2fu8I7Uq1cvMWTIkB3+rFGjRonrr79efr1169bEzjvvnJgxY0b+11etWiXfa+nSpfL777//PlGtWrXE5s2b5VG9evXEtm3b9J1XYoOebBSlGJo3by6nmA0bNrA5M4sWLTJr1641p5xyinw9Ly/P/P777+akk07K/zd16tQxBx54oFm6dKn8vmzZsqZbt26mUqVKEq7jZLPnnnvqe6/EhlJBPwFFsZ0xY8aY3r17S86mVKlSMgZ60qRJpkWLFvL1L7/80uyyyy6mfPnyO/y7/fbbT77mcPPNN0sIjn+vQqPEDRUbRUlDbN544w053VSrVk0MBeRfOKEkn2bSoVy5cvp+K7FExUZRiuDnn382gwcPNjNnzjRt2rSRP6tfv7555513zIgRI0Rs9t9/f0n2b926dYfTDW40vqYoirrRFKVIyMXwIPSVTMmSJc1ff/0lv27cuLHZeeedzcKFC/O/vmbNGvPZZ5+ZZs2a6TusKHqyUZT/1dF8+OGH+W/FJ598IieXChUqSJL/+OOPN1dffbXU2BBGw9r8yCOPmFGjRuWHxnr06CEWaf4NZoDLL79chKZp06b6FiuKMaYEljR9J5Q488orr5iWLVv+48+7du1qHnroIUnyDxo0yLz44ovm22+/FcHBMEBtDUWgTlHnwIEDzfTp06Wm5tRTT5WaGg2jKcr/ULFRFEVRPEfrbBRFURTPUbFRFEVRPEfFRlEURfEcFRtFURTFc1RsFEVRFM9RsVEURVE8R8VGURRF8RwVG0VRFMVzVGwURVEUz1GxURRFUTxHxUZRFEUxXvN/Cup4dFTqUpAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -461,7 +461,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF8CAYAAAA+d5cqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASatJREFUeJztnQWYVNUbxg+1dHe3dC6goJR0g4JBiKBIS0mJgIS0hIAgLdKoxFLSJSiwNNIh3Q1L3//zfn/uOpuzMTN3Zs77e55hd2J37g73nvd8HcMwDEMRQggh4RAzvCcJIYQQQLEghBBiF4oFIYQQu1AsCCGE2IViQQghxC4UC0IIIXahWBBCCLELxYIQQohdKBaEEELsQrEghBBiF4oFIa+ZOHGiypYtm4oXL55688031a5duwKfO378uHr77bdVpkyZ1ODBgy09TkKsgGJBiFJq4cKFqmvXrqp///5q7969qkiRIqpatWrq+vXr8nyHDh1U06ZN1bJly+S2Y8cOqw+ZEJdCsSBEKTV69GjVqlUr1aJFC5U/f341efJklSBBAjVjxgx5/s6dO8rX11cVLlxYZciQQd29e9fqQybEpVAsiPY8e/ZM+fv7q8qVKwc+FjNmTLm/c+dOuT9w4EC5DwHBc7A6CNGJ2FYfACFWc/PmTfXy5UuVNm3aII/j/rFjx+T7mjVrqhs3bqj79++r1KlTW3SkhFgHLQtCIkjcuHEpFERbKBZEe1KlSqVixYqlrl27FuRx3E+XLp1lx0WIO0GxINrj4+MjwesNGzYEPvbq1Su5X7p0aUuPjRB3gTELQpSStNnmzZurEiVKqFKlSqmxY8eqR48eSXYUIYRiQYjw4YcfSgC7X79+6urVq6po0aJqzZo1IYLehOhKDMMwDKsPghBCiHvDmAUhhBC7UCwIIYTYhWJBCCHELhQLQgghdqFYEEIIsQvFghBCiF0oFoQQQuxCsSCEEGIXigUhhBC7UCwIIYTYhWJBCCHELhQLQgghdqFYEEIIsQvFgpAwQENmzOZmY2ZCKBaEhMmLFy/UihUr5CshukOxIIQQYheKBSGEELtQLAghhNiFYkEIIcQuFAtCCCF2oVgQQgixC8WCEEKIXSgWhBBC7EKxIIQQYheKBSGEELtQLAghhNiFYkEIIcQuFAtCCCF2oVgQQgixC8WCkFDADItHjx6pgIAA9erVK6sPhxDLiW31ARDiTB48eKAuX76srly5Ijfb7837N2/eVM+fP5e5FeYtuEDEiBFDxYkTR8WOHTvwliJFCpU+fXq5ZciQIdTvkyVLJj9LiKcTw+AYMOLB4PQ9d+6c2rt3r/L391dnzpwJIgqwDmxJmDBhiAU9derUysfHJ1AETFH466+/1IkTJ1STJk3kfWzF5NmzZ+r27dshxOfevXtB3i9evHiB74NbtmzZVPHixZWvr6/KnTu3ihmTxj3xDCgWxGPAqXr27FkRBfMGkcCiDbAY582bN4QY2N5PnDhxhN8P1saqVatUzZo1RUAiwuPHj0NYLrb3T548KeIGEiVKpIoVKybCYd7eeOMNFStWrCh+QoQ4D4oFcUtwWsJKCC4Md+7ckeczZswYZJHFbh1i4EiiIhYR4datW/K3mNaQaRGZlk9wAcmTJw8FhFgOxYK4DQ8fPlTr1q1Ty5cvVytXrlQ3btyQxzNnzhwoCOYCmjZtWqcfj7PEIjQggrbigdvp06fluSRJkqhq1aqpunXryrEgVkKIq6FYEEu5ePGiWrFihQjExo0b1dOnT1X+/PlVnTp1VIUKFUQg0qRJY8mxuVIsQuPu3btq3759atu2bfIZ7d69WyyMt99+W4QDnxHcVoS4AooFcSk43bAAQhz8/PxkN40FsFy5coELYM6cOZU7YLVYBAfxD1NYN2zYoJ48eSIuKvNzK126tATmCXEGFAvidLCobdq0KVAgLl26pJImTapq1KghC1316tVV8uTJlbvhbmJhC7K81q9fL58pBOT69esqZcqUcqz4TOG2ikwwnxB7UCyI0zh8+LCaOnWq+uWXX8Qnnz17dlnIcCtbtqzbLcCeJBa2oCZk165dgWKMzz1+/Pjqww8/VK1atRKLg7UeJLpQLIjDd7wLFy4UkUCdAuINn376qWratKkqWLCgRy1aniIWwUFm1fz589W0adMkTbdAgQIiGs2aNWNwnEQZbSuCJk2apAoXLiyZJrhh97V69erA56dMmSIBVjyHBQ7BxuCgwArP2d6GDRsW5DVYNLNmzSrpkH///bfyVv755x/Vrl07SV/9/PPPxc3066+/qgsXLqjhw4erQoUKeZRQeDI5cuRQffr0kWyqP/74Q+XLl091795dak0g2hBxHcG1iXOwc+fOgY/hGg9+Dbdp0ybIz8Fie+ONNyQ+BJefthiasnz5cmPlypXGiRMnjOPHjxtff/21ESdOHOPw4cPy/JgxY4yhQ4fKDR/TnTt3QvyOrFmzGgMHDjSuXLkSeHv48GHg8//++6+RK1cuY8eOHcbixYuNfPnyGd7Ey5cvjRUrVhhVqlSRzyhdunRG3759jbNnzxrewLNnz4ylS5fKV0/n2rVrxogRI4ycOXPK/1WpUqWMuXPnGk+fPjV0YNeuXUa2bNmMwoULG506dQp8vHz58karVq2CXMP37t0LfP7JkydGpkyZjHXr1hlr166V73X5zIKjrViERvLkyY1p06YFeWzTpk3higVEJSwOHTpklChRQgTkzJkzcrJ6A/fv3zd++OEHI3fu3PLZlCxZ0pgzZ47XXUTeJBa2Au/n52dUrlxZ/u/Sp09vDBo0yLh+/brhrTx48EDOVSz4EIfgYmF7PzgQDlznN27ckBuuYZz/OqKtG8qWly9fqgULFoi/He6oyJq2yEKBm2nkyJHSN8gEPnq4uuCSgd948ODBytOL5gYNGqQyZcqkunTpIjUQO3bsEPca+iehvxJxb9CLqnbt2lL8iEA4Um6HDBkihY9wz5iFkN5E+/btVa1atVTlypVDfX7u3LkqVapUcr327t1bWraYwA3dokWLwJYxbdu21TfLzNCYgwcPGgkTJjRixYplJE2aVNxSwQnPsvj+++/l+QMHDhiTJk0ykiVLZnTp0iXE627evGk8fvzY8FRgMUyYMMFImzat4ePjY3Tu3Nm4cOGC4e14o2URGrdu3RJ3apIkSYzEiRMbAwYMkN24NzB//nyjYMGCRkBAQKiWxE8//WSsWbNG1gJYxxkzZjQaNGgQ4vfcvXtXW4vCRGuxwCJ48uRJY8+ePUavXr2MVKlSGUeOHImwWARn+vTpRuzYscXP6S0uC/i1c+TIYcSMGdP49NNPJQ6jC7qIhQncLF27dpUNQZo0aYzx48d7tGvx/Pnz8ndgMxdRt9OGDRvkej916pSLjtJz0FosglOpUiXjiy++iLJYIDiO1x47dszwZF69emWsXr3aKFq0qPw9devWDQz864RuYmGCDQE2BtggYKOADQM2Dp7GkiVL5PyF58C84X6MGDHk+xcvXoT4GcQX8RpYGyQojFkEK25Cb6Kosn//fvEJW9XLyBEg/vDuu+9KdTVaaG/fvl0tW7ZMYi5ED7JkyaJmzpypDh48KCnPiEchPoXU8qiWZeG8QnGmK9PHK1WqpA4dOiTXpXkrUaKE/D34PrROvngcOLqDsVdgaArcTlu2bJE0T/grcR87DqTHAaTQ7du3z5g6darsNLZu3Sr34d8FSIdFJtT+/fuN06dPi78zderUxieffGJ4IkePHhVfLf5W+HiRMQMLQ2d0tSyC8+effxply5aVcwNunJ07d0bq53v06CE/a95w3yps3VBwNSFWAzc01oFly5aJJVWuXDnLjs+d0VYsWrZsKSlx8M9ikYcLyhQK0L9//yAnuHmbOXOmPO/v72+8+eabEhiPFy+e1FAMGTLE4+IVt2/fljxzuBzwecyePTtU81xHKBb/gY0DamoKFSok18F7770nMQF7/PXXX6FeR3g8IuB1OCexmXG0WOD4IQwpUqQw4saNKzVR3bt3D1JnQf5DW7Eg/y9MRJ49BA9WkqcJnbOhWIQEG4lffvlFsoaQPYW6pPAsUCz0oYkFHo+sRTJy5EgH/zUkMlAsNATWBNxluABr1qxpXLx40epDcksoFmGDhI8WLVrIOVS9evUwrYyoWhZh/dzu3bud9BcRezDArRnobYNgNYLWCGLiPkaUEhIZkiVLpmbMmCETDREIR0Hb9OnTQwTA33zzTdWjR48gj/Xs2VMeD48TJ06E+vjRo0cdcPQkKlAsNAEtwps3by4Vu0WLFpXqXXSDZXM/Eh3QkffIkSPqvffekwaSuI/ph7agkSSaF86ePVu+Bm+2GRphTQDkZEALsWt7EI8HgckMGTKIj3nGjBnaZzlFFLqhonaeIQYWlfPMDGabLqrgMYuePXs66chJRKBYeLlfGcVVpl9ZhxYdjoRiEbV4WPPmzSMdDwsrvTa4gBDroFh4KatWrQrMWEEbEloTkYdiEXVQp2Nm2iHdPLzzL7rptcQ1MGbhQlwxlBBV6F9//bX4jhF0RGyiZcuWjE0Ql4LOtohlYIQuurYiXoZZ7JEJZof1eHhw8KfzoFi4CJzEOPltW5g7mvv376v69etLQBHt0tGeAa2nCbGC5MmTS1B73rx5avHixap8+fLq8uXLTglmm+1E0J4GGybieCgWLgIn8M2bNyUbxBmCgRGamMWxZcsWSYf96quvaE0Qt+Djjz9W27ZtU5cuXVIlS5ZUu3fvdkh6re1ry5QpI32d9u3bJym8xPHEgC/KCb+XhAJEAjsgfORvvfWWih07tkN+74YNG1SjRo1kgAvmBefNm9chv1d3nj9/rlatWiUuvThx4lh9OB7PlStXJMXWXNDR0M8WXBuwvmFRRFQo8DMQCgxuwqz7fv36qXv37kk9Bq8Dx0LLwoVAHHARYMfvCAsDojNhwgRVrVo12bHhwuEFQtwVdHLdvHmzWBpNmzZVvXr1kimVJrg2mjVrFmGhABCX4EIBglsvJPpQLDxUMJ49e6Zat26tOnbsqDp16iSVtPARE+LOxI0bVyq/R48eLXG1evXqSawtqq5djAMILhSAxXuOh2LhgYJx/fp16dX/888/y4X3/fffO8ylRYizwXmPGe5w8SEgDZfsqVOnIh3MxhxxuAdxPdgKRWTiHSTiUCw8TDAQxIPL6eTJk2rTpk2SlkiIJwL36a5du8RCKFWqlFq/fn2kgtnHjx9XGzduVIMHD450OxESBVxUz0HC4Pnz58b27duNbdu2yffhgeEsCRIkMIoXLx6hWQIkerAoz3WdBtBhAKNOJ06cGObrUKSHuSuYEz5u3Dgp+GPxnuugZeEhFsaCBQskkwTjTpGGyPoJ4k0dbJHujfhb+/bt1YgRIyIVzI5K8R6JPBQLDxAMxCaQZojbwoULVYIECSw7VkKcAeZhI+jdv39/cTUNHDgwSDU2g9nWQ7Fwc8GYMmWKtBL/7LPPZP5EaEPmCfEGcO5/++23asiQISIaffr0EcGAUOzdu5fBbIthCo0bCgayPSAYyBXv2rWrmOfjxo1jRTbRgt69e6v48eNLxtTjx4/Fon7w4IF6++231bvvviszWSJbvEeiD8XCTQUDIjF+/HjVrVs3yUenUBCdQGwClkSHDh3Uv//+q+bPny81GgDXB0XC9dAN5YbA9QShQJUripZsq1wJ0QG4nsxN09KlS9U333zDjrIWQ7FwM1Bkh4wQmOD4PmbMmE5rPkiIO2LGKFDZjfgFNk4oPEVgm1gH3VBuxNy5c2WOcdu2beXigOvJNobhyOaDhLi7UCBGAdcTXFFPnz6VTsrx4sWTwDdxPbQs3AT0+//kk0+kIhvNAc0YhaObDxLiSUJhgtjdoEGDxB2FjRRxPRQLNwCdOBs3bqw++ugjiVfA9WQLBYPoLBQmEIqqVauKhYHeUMS1UCws5uzZs6phw4aqXLlyatasWWHWUVAwiM5CgeA2UmrXrl0r1wDqjuCeJa6DYmEhyB3HjGK0O1i0aJHdATsUDKKjUGAIFebImw0CUbhXokQJ1aBBA5m+R1wDxcLCiwQxCuSQL1u2TKVMmTJCP0fBIDoJhTm75Z9//hGrGxP2kBW1ZMkSuQ/BCAgIcPmx6wjFwiKwO4JIIAOqQIECkfpZCgbRRShAwoQJZbgX5l/AwgBp06aV6+fw4cOqVatWrMFwARQLC4DLCZkdyCFH64KoQMEg3iwU586dUz/++GPgfcyXR3DbluLFi0ucDxsudDkgzoVi4WIwrB6NATGHGE3QogMFg3ijUBw8eFAGHKE4FQONwuODDz6QLCnM84b1QZwHxcKFXLt2Tdp35M+fX3yvjuj3RMEg3iQUW7ZskczAK1euiHsWjQPtMWDAAEkUwQbs6NGjER7LymyqyEGxcBGoQMXwImR2oNcNumo6CgoG8Qah+O2332TUKlqQv/POOzLkK1OmTHZ/N+qSsPhj1gXcurdv3w7ztbDm0QkBySX4Gl3rXicoFi4AwTe08NizZ49kcUTkAogsFAziyUIxadIk1ahRI9lU1a9fX+opkidPHuH3SJw4sVq+fLm6e/euuKZCO/9hSQSfwof7tDAiBsXCBSBQh8FFqM7GbsZZUDCIJwoF4njt2rWTTVXr1q3Vr7/+GiXLO3v27PKzcGX16NEjxPNhjV/lWNaIQbFwMsePH5f2BAjWNW/e3OnvR8EgnpYeW6xYMfXdd99JOjksjOhMg6xQoYJkRo0ZM0Zt3LgxyHNhjV/lWNaIEcNggrLTwByKsmXLqhs3bqgDBw64dHY2RALmNf572a02aiC+hNz+mjVr2q2uJ5ETCkzAww0psc54bwTGUfB66NAhlShRosDnEKOwdUXhvlkZTsKHloUTGTt2rOzu4YJypVAAWhjEXYUCAegqVaqoGjVqqIcPHzr8/RHwxiwYzOsO7o4aPny4XA9IycVXCkUkgGVBHM+xY8eMePHiGZ07d7b0OJ4/f25s377d2LZtm3xPIs6zZ8+MpUuXylcSMV6+fGns3r3b2LBhg/HkyZMQz58/f97Inz8/vBlGsmTJjL179zrtWMaPHy/vg2Mh0YduKCe6n27evKn279/vcqsiOHRJRQ26oRxrURw5ckRVr15dXbx4UWXMmFGtWbNGFSxY0KnHU6lSJensDHcUMqZI1KEbygkguGaV+yk06JIiVgvFn3/+KbUTEIp8+fKpHTt2OFUoTHcUil+xaQstO4pEDoqFgzl27Ji0H+jcubNcNO4CBYNYJRR//PGHqly5stRAlC5dWm3fvl1lyZLFJceWI0cOiVNMnjxZbdiwwSXv6a3QDeVg9xMuljt37kjuuDtYFcGhSyri0A3lmPTYM2fOSK+nkiVLqoULF7r8usAxQqxwHPbcUbg2UHeBdFpsrsh/0LJwIJgNvGvXLrdxP4UGLQzi6joK7O7hdkL3AiuuC1t3VPfu3cN8HVuBhA/FwkGggRmGsnTt2lV2Ue4MBYM4UyhgYXfo0EH5+fkFEQwrrVhUd6NY76efflLr168P8TxbgdiHYuEAcHGg7Xi2bNlkToUnQMEgzhCKJ0+eSG+miRMnShdYFKS6C2glgmI9zO/GSGNb2ArEPhQLB4DhK3A/wdR1ZDdZZ0PBII4UCgSw0TX2999/Vz4+PjKYKHXq1MpdMN1RKNYbNWpUkOfYCsQ+FItogi6ZcD+h/bg7ZT9FFAoGcYRQXLp0SeZQbN26VSVJkkQyoBo2bKjcDVj/HTt2lPgiRMME10Dw9FrELBjk/g9mQ0WTcePGSZwCBUd58+ZVngqzpELCbKiICQXSxWFRnD9/XqVLl06K7YoUKaLcFbQbyZkzp2rWrJn64YcfgjzHbKiwoWURDXDhDB48WIbIe7JQAFoYJKpZT8j+g1Bggd25c6dbCwVIkSKFWA2ovUA6rS24BiAiFIqQUCyiAUxZNELr37+/8gYoGCQq6bFDhgyRQlQU28HN4wl8+eWX0vEWLmQSMSgWUQTztCEW8H86Y/KdVVAwSESEAjEJuOkA5k8gC9Cdgtn2QL0HNnnz5s2T8QHEPhSLKAL3E/zYvXr1Ut4GBYOEJRSIaaGtNxoCtmrVSu57KnAf58qVS/Xu3dvqQ/EIKBZRAH5OFPfA7wn/pzdCwdCXsIQCj6Pnmbm4pk2bVnky2OxhQt/q1atlFCsJH2ZDRYEmTZqozZs3q5MnT7ptWw9HoXOWlI7ZUGEJBVLE0QZj0aJFgZ2VIRyeDs7rUqVKiSsNwXlsjkjo0LKIJJhPAT8n/J3eLhSAFoY+hCUUuA/BhFBANOfPn+8VQgFwXsOthg3R0qVLrT4ct4aWRSTBRXP69Gmpq9Bpl62jhaGTZRFejKJChQpSbIdZ1mgGiA6u3kbVqlVl1sbBgwe1OLejAi2LSIALBv5N+Dl1O6FoYeiZ9YT/7759+6rMmTOLX98bhQIMHTpUmoH+8ssvVh+K20LLIhLUqVNHio/gitLVt6mThaGDZRGWUDx79kz6O9k2CIwXL57yZho0aCDV24cPH9b2+g4PWhYR5NSpU2rlypWqU6dOWp9ItDC8XyhQQ4Fq7OPHjwe+1tuFAiAO888//4TawpxQLCLM+PHjVcqUKVXjxo2V7lAwvFco0EG5du3a6t9//5VxpDqBRohoVYJ+byQkFIsIcO/ePTVjxgzph6/DDisiUDC8TyjQkaBp06byf4lZFOidpBM4l+E5gAcBafEkKBSLCIBGafDZtmvXzupDcSsoGN4hFHisW7du6quvvpLXdOnSRc2ZMydIzEIXIJJoWwJPAgkKxSICU/Bw4jRq1EhlyJDB6sNxOygYni0UCGSj2G706NHyGowexfcYFKQj8BzAg4ANIjwK5D/0PCMiwbp166S9BxoGktChYHiu6wmbIcQn8H84e/bsQOtCZ9q2basCAgIkfkP+g6mzdnj//ffFf4nOlDpnQemYVustqbP22ozfuXNH0sErVqxo2TG6G/Xr11fnzp1T+/bt43X/GloWdtqQL1++XLpr8oSxDy0MzxAKWMpjx44NfE3y5MkpFMHANY8N4p49e6w+FLeBYhEOGDiPBRAZIiRiUDDcWyiwUy5TpowEsZHhR0IHLdgxp2bq1KlWH4rbQLEIA7hSpk2bJkPnsfMiEYeC4Z5CsWHDBlW+fHmxmFFPUKNGDasP021BF1rMu0DTREzDJBSLMEELclRtwxwlkYeC4V5CsWDBAhGHBw8eiMsJfZ7Sp09v9aG6NRCLR48eyWdHKBZhgsyQ3Llzq7Jly1p9KB4LBcM9hAIVyagfQMD+gw8+kGaYSZMmtfpQ3Z6sWbNKN9qff/7Z6kNxCygWoYB0whUrVkgmFAPb0YOCYa1QIMvJnD2B9G+4VYJnQ5GwwRqwY8cOdfPmTasPxXIoFqGARQ0nR926da0+FK+AgmFdemzRokXVqFGj1JAhQ8TC0LXYLqqgTxY+21WrVind4ZkTCn5+flLyj3GLxDFQMFwnFPhsEcQ2QSsPzM2mlRx5ENfBOuDn56d0h2IRCqitwI4CGRHEcVAwnC8UCGBXqlRJVatWje0qHDjHZs2aNTKHXGcoFsFABhQmZtEF5RwoGM4TiitXrqh33nlHqugvXLggFcgk+mAtePjwoWRI6gzFIhgwN+HvrVKlitWH4rVQMBwvFBhUhGI7fM2SJYvavn271FKQ6FOoUCHJjNLdFUWxCMUFBTM+YcKEVh+KV0PBcJxQ4PPD4B5YFgULFpTsnXz58ll9mF4DztE6derI2qBzKz2KRbCGatu2bZMTgzgfCkb0hWLjxo2B8QnUBG3dulVlzJjR6sP0SlfUhQsX1MGDB5WuUCxsQLESaiwQ3CaugYIRvfTYAgUKyLjfBg0ayOxstqZxDuXLl1eJEycW60JXKBY24ETw9fWVBmLEdVAwol5HgfjEzp071eLFi1X8+PGtPkyvxcfHR5oLUiyITAxDehxdUNZAwYiYUOAz+vLLL9Xvv/8e+DwEg2nernFF7dmzR12+fFnpCMXiNYhVwO/LlFnroGCELxTFihVTjRs3VlOmTFHNmjVT169ft/rwtKJmzZoiymgFpCMUi9egfXO6dOmkPQKxDgpG6EKB7CbE0uAGwZxojPxMkyaN1YeoFSlSpJBzE2uFjlAsXuPv769KlizJlghuAAUjqFDAzYR0bqTEJkuWTObCY+wncT2lSpWStUJHKBavBx3hBEBwm7gHOguGrVAgu6lChQrSVQApsXCXokqbWIOvr686ffq0unv3rtINioVS6vz58+rWrVsUCzdDR8EInvWELKdLly6JGwqWBYruiHX4vl4j8H+kGxSL1y4oQLFwP3QSjNDSYwcPHqwGDhwo7TvgjiLW8sYbb0h3Bx1dURSL12KBVsQcM+me6CAYtkIBF4cZO8P8ib59+0pwlVhPrFixJAmGYqEpjFe4P94sGKZQIHUbnU0xna158+byOHE/fH19KRY6wuC25+CNgmEKBfqSLVy4UA0aNEgez5UrFzPz3BRfX18ZZaDbvBDtxQLNwTBClWLhGXiTYJhCgfNv4sSJaurUqfJ34XuIBsXCPfHVNMitvViY5mTx4sWtPhSikWCYQoHWEQhiL1u2TPoPLVq0SLVr187qwyPhkDdvXpUgQQLtXFEUC39/lTZtWpUhQwarD4VoIhi2MYrhw4erP//8UyVJkkS6xjZs2NDqwyN2iKVpkFt7scBFC7OSJr/n4YmCYZv1hOK67777TmXLlk3mUKD4jngGvr6+dEPpBIPbno8nCYZtjMKso4BAYBQqR6B6FsWLF1cnTpwQ0dcFrcUCXTtxY/NAz8YTBMMUirVr16rPP/9cnTx5MvA5xCqIZ1GsWDH5evjwYaULWosF2igAVsZ6Pu4sGKZQIHjdr18/Oe/GjBlj9WGRaJA5c2b5qtNsC63FAgPuASu3vQN3FAwIBVydkyZNUiNHjpSxvSi4mzx5stWHRqJB8uTJxY1oriE6oLVYYFeAhQXZUMQ7cCfBgFDs3r1bDRkyRM2YMUMe69mzp5o5c6aKEyeOZcdFok+MGDFkk0nLQhOwK8AAGSwwxHtwB8GAUOC9IQ5Lly6Vx8aOHauGDRvGzDsvIX369LQsdAH/0XRBeSdWCoZteiwy7mBFzJ8/X3Xq1Mllx0CcT3qKhT5QLLwbKwTDVigqVqwoY1AxhvOjjz5y+nsT15Kebii9xIKV296NKwUDQrFkyRL1008/BdZRJE2aVJUtW9Zp70msI0OGDLQsdAG7AloW3o8rBANC8csvv6jPPvtMTZs2Tc2ePdvh70Hci/Tp08uEzadPnyod0FYscHFfvXqVYqEJzhQMnEsTJkxQbdq0kX5P6AhQr149h/1+4p6kf712YB3RAW3FAjsCLBgUC31whmBAKNA1tmvXrurJkyeqatWqMsAIWXbEu0n/eu3QxRWlrViY/8GMWeiFIwUDBXZdunRR/fv3l++bNGmi/Pz8VKJEiRx6zMQ9yfB67aBYeDlmFgMtC/1whGDAoliwYIEaP3683O/WrZvEKdjnSR9Spkwp55IuYqFtNZrpZ0yXLp3Vh0IsFIy///5bBOOtt96KcHGmmR6LjcaoUaOklgJiQfQiZsyYsn7okj6rrVg8evRIdoHcCepLVAQDAeydO3fKeYP02Hfffddlx0vcj0SJEqnHjx8rHYiUG2ro0KGqZMmSKnHixBLAq1+/vvTiNzl37pyY9qHdFi9eHPi68+fPq1q1asloQvye7t27h3AFDBgwQGXKlEkGxKBvvKPB+7HNB4mMSwrWaOnSpVXbtm1V/vz5pY6C6E3s2LFd1h3gwYMHqnPnzipr1qwqfvz4qkyZMtJ7zAQWLroaw+LF85UrVw7SCh9go4ORDBi4NX36dOeJxZYtW1T79u3lolq3bp16/vy5ZH9gl2627YX/zvaGRR/qW6NGDXkNAoEQimfPnqkdO3aon3/+Wc2aNUv+SBOMmVy5cqXMJW7cuLHq0KGDcjQUCxIZwcBFh43S0aNH1cOHD2UOCiFx4sRxmVhgDgrWXdTzHDp0SNZeCII5amHEiBHqhx9+kI7GsJYTJkyoqlWrJll6JqgD6tu3r5o3b55s/i9cuBDxAzCiwfXr1w38ii1btoT5mqJFixotW7YMvL9q1SojZsyYxtWrVwMfmzRpkpEkSRLj6dOnct/Pz8+oV6+e8ezZM+Ovv/4ySpYsaTiaoUOHGilTpnT47yWey/Pnz43t27cb27Ztk+9x/i1dutTYuXOnkSJFCjnXs2XLZpw4ccLqQyVuQsmSJY1WrVo5/X0eP35sxIoVy1ixYkWQx4sXL2706dPHePXqlZEuXTpj5MiRgc/dvXvXiBs3rjF//vzAx7JkyWKcOXPGePjwoVGiRAnjyJEjET6GaGVDwX8LUqRIEerz6OO/f/9+UTNbM6hQoUJB2oJD/dBL58iRI4H3oYZwU1WvXl0U0NHQsiARsTAOHDigKlWqpG7fvi2jT3H+5s6d2+pDJZq5oV68eCFemXjx4gV5HO6m7du3q7Nnz4qbFJaGCVrN4HzGOWsCD06+fPnkOcTo4E6NKFFeLZERAv8ZgnwFCxYM9TXwieHA4FszwR8UfH6Eed/MUIJpt2bNGjH1kyVL5pQgNMWC2At6Dx8+XH333XdyrmBWNtyiSZIksfoQiYZuqMSJE0u8bNCgQbKmYs1EJ2MIQa5cuQLXztDWVtsKc2zc0dQSYQAMcIoMUV4tEbvA/FmoWmgEBASIXwz+sagSXhUs4iXRAf1cYsWKFe3fQ7wTxM3g/4U4oBHgnDlzJKDN84UET5/Fwhvd8wKbFHtzThCraNmypcqYMaOsXcWLF1cff/yxeHAiA2IZuEX6GCP9E0pJwHnFihVq69atkrEUGr/++quklH3yySdBHkde8q5du4I8du3atcDnIsr69evlPymqwGxDYH7VqlVR/h3E+0BGCYrr0D0WvP/++1KZjTbjhATnxo0bcs5Edx2pWbOm3emJOXPmlCQjrFtw2yPr6cMPP1Q5cuQIXDuxltoWGuM+sp8cQaTEAh9Kx44d5UJC/5vs2bOH+Vq4oOrWratSp04d5HGYUjDt4WIyLQdE+LGDi4z/zNY3FxUQS8HfgP8kQgB2h1988UWgUMAqxu4N5jp2fciGouuS2AJXJVJZo7uOROa8Mi2DO3fuqD/++EOyoLAWQzCwqTHFAYICdypSvR1CZCLybdu2NZImTWps3rzZuHLlSuANkXpbTp48acSIEcNYvXp1iN/x4sULo2DBgkbVqlWN/fv3G2vWrDFSp05t9O7d23AlzIYitiA7pHr16pLxhGy9KVOmBGZD4fy2zZIixKRUqVIuyYYCWCuxpiKbae3atUaRIkWMN998U85TMGzYMCNZsmTGsmXLjIMHD0pGafbs2Y2AgACHvH+kxAIXUmi3mTNnBnkdFv7MmTMbL1++DPX3nDt3zqhRo4YRP358I1WqVEa3bt1cfhEixQzCR8iNGzfkose5jFTDJUuWyOOmWOBr8LRaQkCxYsVkE+0KFi5caOTIkcPw8fGRNNn27dtLeqwJ0mf79u1rpE2bVs7jSpUqGcePH3fY+8fAP0pDxo0bp/r06SMFVkRv7t69K2mE6PGDWFy5cuUC3VLwRZv+ZGS9wKzHJROZXlLEeylcuLBkyiEZwtvRtuusK8v0ifuCFPBTp07JTApk9plC4S4zvYl780KjFHxtxQLFLEifZSqkniC5YcyYMdI9FoHAOnXqyC7RHhQMYgsyPoMXynkr2oqFmWrGHj/6gbRudAnAdLu1a9dKYWlkmgJSMAiAOxL973SZiaOtWJj/wbr0oif/Z+LEieqDDz6QGh0U26G4NCrdYykY5Pbt23IeUSy8HN3m5+oOdoHffPONFJTie9QAoaUMeuREFQqG3lx5vXZQLLwcFAuiVJ9i4f1gEW/VqpUUg4JPP/1ULVy4UBpVRhcKhr5ceb12mLO4vR1txQK9VRC3oFh4P6hyRUcBbA4Qp0C/f0cGJSkYenKFloU+4D+ZMQvvB4O32rRpo7799ls1ZMgQp0y4o2Dox+XLl6UrNrOhNBELWhbeCUb33rp1S+ookB7bqFEj1aNHD6eOQqVg6MWVK1e0cUEBigXFwutA63zMUEHtBEb3oo4isumxUYWCoQ9XNEqbBRQLioVXsW3bNkmJxVxiDH2Bq8BVQmFCwdCDKxQLfYAJiQUF4wqJ57N06VJVpUoV6fWEauzRo0erevXquVQoTCgY3s/ly5cpFrqA/2j4tDHAhHg2U6ZMkUFFaOGC/k7Dhg2TwLYVQmFCwfD+6u0MjFnoAQvzvIPx48er1q1bi/DDkkDx3bvvvmupUJhQMLyT+/fvy+hoWhaaYO4KLl68aPWhkGiAPk+pUqWSYfSY5AjLwh2EwoSC4X1cfL1m0LLQBPxHY2TmgQMHrD4UEklsx7DkypVLzZs3TzVu3Fi98847biUUJhQM7+LA6zUjMqOgPR2txQIXLmYs+/v7W30oJBIggI1ANiqzzToKVOS7OuspslAwvAd/f3+VLVs2lTJlSqULWosF8PX1pVh4EEiJRWosBtPD7bRz506X1lFEFwqGd+Dv7y9rh05QLHx91YULF5gR5QEcPXpUlS5dWoruEFgcOXKkZD95ilCYUDA8m1evXql9+/ZRLHQDbihA68K9gQWBeASEPU+ePOqnn35SadOm9TihMKFgeC6nT58Wa9ZcO3RBe7HImTOnzDSgWLgvK1asUJUqVZJhM1hgJ0yYoBImTOixQmFCwfBM/F+vFbQsNINBbvdn+fLlktOOIju4ntBq3NOFwoSC4Xn4+/urLFmySLq2TmgvFoBBbvfmxx9/VOPGjVP9+vVTz58/9xqhMKFgeBb+Gga3AcXitVigpfXNmzetPhSilPTqmjZtWuCiCUsCXWQfP37sdUJhQsHwnPqevXv3Uix0xfyPx0lArAXZTR9//LGMQUU1tllH4UnpsVGFguEZwe179+5RLHQOcidJkoSuKIvBRVi9enW1ePFiFSdOHGnboYtQmFAw3Ju9rzeUFAtNgZuDQW5rQTPH8uXLq82bN6vEiROrVatWqdy5c2slFCYUDPfF399fZc6cWaVOnVrpBsXiNdgp7N69O0jPIeIaTpw4ITEJ9NtB7cSmTZtktrGOQmFCwXBPdu/eraVVASgWr6lYsaIEuY8fP271oWjFs2fPVNWqVdW5c+ekIeD27dtFsHUWChMKhnvx4MED9eeff6oKFSooHaFYvAbzD+LHjy85/cR1+Pj4qIkTJ6q33npLRqKiSSCF4j8oGO7D2rVrZXNTt25dpSMUi9dAKLDDpVi4BoiCSa1atUQoMCOAQhESCoZ7sHz5clWwYEGVPXt2pSMUCxvq1KkjPYjYVNB5wMWEKux8+fJJGiJAeuz+/fspFOFAwbC+9mflypWyRugKxcKG2rVry2KGTBzieCAK3bp1Uz169FBXr15Vv/32m1Z1FNGFgmEd2ETeunVLWxcUoFjYgEwcXIx0RTmn2K5JkyZqzJgxcn/UqFHqq6++olBEEgqGNSxfvlylSZNGlSpVSukKxSIYMDMxge3JkydWH4rXADFAXGLBggWy2P3yyy+qS5cuFIooQsGwRixq164tNVm6ou9fHgYwMx89eiTFYST6XL9+XVINMdkObcXRbhyzsikU0YOC4do6oOPHj2vtggIUi2AUKFBAsh38/PysPhSvIEGCBLKwoeIVxXaYnU2hcAwUDNeAtSBevHiqcuXKSmcoFsHAhQdXFMxOVnNHn0SJEkkWCYqZUPlKoXAsFAzng7WgUqVKYhnrDMUiFGBuIucf6Zwk8qxfv16NGDEi8D6sCjRrpFA4BwqG80AGFLoK1NXcBQUoFqFQtmxZ6UJLV1TkmT9/vqpZs6bq2bNnYFYZ02OdDwXDOaxevVrO39q1ayvdoViE0YICIzx///13qw/Fo0BaLILXmGb34YcfqmrVqlEoXAgFw/EsWbJE3KcZMmRQukOxCAPUBKALKtuW2weCgEK7rl27yv0vv/xSzZs3T2ZSUChcCwXDsZl88C40a9bM6kNxCygWYQDLAruJqVOnWn0obg2siE8//VRaeIChQ4eqsWPHyvcUCmugYDiGn3/+WeoqKBb/h2IRzgXXsmVL2SE/fPjQ6sNxW9atWydFdrFixVIzZ85UvXr1CpxTTKGwDgpG9MA5jDnw77//vkqRIoXVh+MWUCzC4bPPPhOhWLRokdWH4rYgmD18+HC1bNkysTAYo3AfKBhRZ+vWrVKMh1nw5P/EMFhMEC6YCY3Z0GgkRv4PBhWh2A69cmzxNqGAiw1NJSGIiL94KhCJv//+W3bLmBsCESHh07RpU7Vr1y6p3IbYEloWdsHOAruyQ4cOWX0obgGC/qVLl5ZUQlv3nLcJhTdBCyNy3L59W/36669y7VMo/oNiYQcU46RPn15NmDBB6Q7adZQrV07ai6PRoikWFAr3h4IRcRCrAHCrkv+gWNgB7od27dpJEBc7Dl1ZvHixuOQgCOXLlxefbrp06SgUHgQFwz74TLAxRL0QOg+Q/6BYRIDWrVvLoqhrGi0uHhTZYf4wskPWrFmjkiVLRqHwQCgY4bN06VJ14cIF1alTJ6sPxe2gWEQA7DCw05g4caJ2FxdqJjp27CjBUVhYCxculA6cFArPhYIRNuPGjRPLuUiRIlYfittBsYgg2Glgx4Hyf51AB15MEBw0aJBYGKinoFB4PhSMkOCcRtNAWhWhw9TZUECaIXKs33jjDbmgTCpWrCiuGLTb9mZwSthmgSBWYxYm6SQU3pI6Gx5Mq/2P5s2bSyzu1KlTsikiQaFlEQx0S8VF88knn8hX3Dfp1q2b2rFjh1Qte3NLZpjhmGhnoqNQ6AItjP+Deoq5c+eqzp07UyjCgJaFDdhhQSCCg4sIFxQ+qnfeeUfSRnfv3u1183jPnz8vnWKPHTumMmbMKDssxCd0FQodLAsT3S2MRo0aBRbhmec8CYp3rXbRBK6n8B7H7mvYsGGyaCKV1JtA0SGK7SAUmTJlUmvXrtVaKHRDZwsDGz8U4Q0YMIBCEQ4UCxsQo7D3OAYj1apVS33zzTey8/QG4KfF33X58mWZQY7WJvnz55fnKBT6oKNgwJJC80uc9+wuGz4UCxtwoWAugy2IWdgGuc023KdPnw6s9PRkkN1VtWpV6X8FMdi2bZtYFoBCoR+6CQbijxs3blRDhgxhrMIOjFlEIhvKFgTAcaLBr+/Jg9xROzFp0iRpa7JgwQIVP358eZxCoVfMQscYBs7xEiVKSFNMbJLYByp8KBbR6LyaJ08e1b9/f/X1118rT+Xly5diIaEdu7kgUCj+j85ioYNgoMD0o48+EqFA4goJH7qhoki2bNlU27ZtZZYD0k09SRxQiW7GW2B6o50JhYLo5JLC+Y+4I7onUygiBsUiGvTp00cWV8QwPIGAgADVsGFD1aFDB9WmTZsQz1MoiC6CAWsacUfEKkjEoFhEs2fUV199JW0wUKPgzty5c0cC2WiUBhFARpctFAqii2A8evRIDRw4UAYcFSpUyOrD8RgoFpEA/lu0KsdXk65du6okSZKob7/9VrkrFy9elNRY9L1JmjSp1FC89957gc9TKIhOgoHmmGhhA8EgkQABbmKfHj16IBEg8Ib7Jj/88IMRM2ZM4+DBg4a7ceTIESNz5sxyzBkyZAhxjC9fvjR2795tbNiwwXjy5Illx+mOPHv2zFi6dKl8Jf/n+fPnxvbt241t27bJ957GtWvXjCRJkhidOnWy+lA8DmZDOaANCJoLoqVxokSJpKDNXbJGcFy5c+cWFxkyt/744w+VNWvWwOdpUYSP7tlQ3pglhbYemzdvVv/88w+HG0USuqEc0AbEx8dHzZo1SxbekSNHKncBx4WBTRiFik65FAqis0tq0aJF0tYD2YAUishDsXBQGxBcPAh2I3Zx+PBhZSW2qbwIamMnlTJlysDHKBREN8G4fv26at++vWQDfvDBB1YfjkdCsXBgGxA0IsuZM6cMereibxTcAt99953KmzdvEGvItjKVQkF0EwxzyiOAVUGiBsUigqD4DhfE7Nmz5Su6zwYHHSvhjtq3b58aMWKEy4vtMP4UhUY3b95Ufn5+IV5DoSA6CgYqtX/77Tf1448/qjRp0lh9OJ6L1RF2b6Rnz55GnDhxXJYdFRAQYDRs2FAynmLEiCHZWcFh1lPkYTaU52dJXb161UiZMqXRqFEjqw/F42E2lBPAcCRfX1+xNLDbcmYmDbrF1qtXT23ZskUC2qgDCe6TpUURNZgN5dlZUjiO999/X+qLjhw5wqB2NKEbygmY7qgDBw6I+8pZXLt2TTKdIBSJEydWq1evplAQy3A3lxS6KKMFP9xPFIroQ7FwEiVLlpSgOKpEDx486JT3gECgtiNdunQywOjdd98N8jyFgugqGFevXpUeaNg8IQOKRB+6oZw4/+Lp06fijoJ7CK9xhisDbQvgisqePXuQxykU0YduKM90SeE90c4GtUV0PzkOWhbRBCm0uBgwDAlfcd8ECzTcUbAsHNXdEq6mwYMHB95PkSIFhYK4HVZaGPPmzZOGmRjqRaFwIFZH2D2Zv/76K0i/KPOGx23p16+fZCmtXLkyWu83a9YsI1asWPIeS5YsCfU1zHpyHMyG8rwsqf379xsJEiQwmjRp4vT30g1aFk5sA2KCaXoYsvLxxx+rY8eORcmsRqAcxX6op0BrZbhGgkOLguhsYaBKG+OBUZQ6ZcoUp72PrlAsotGmPCJtQEDMmDHVnDlzVKZMmeRkxmyJiAIB6NKli+rVq5fcR0uRn3/+WeIgwV9HoSC6CgaaZiKQjTghXFCYq00cjNWmjae3KQ/+GArywuLUqVNG8uTJjSpVqkTIJIcb6aOPPgr83d9//32or6PryTnQDeUZLqlXr14ZrVq1Mnx8fIwdO3Y47PeSoFAsHBCfwG327NkhYhWhsX79eok7dOnSxe5r16xZI++BavC5c+eG+hoKhfOgWHiGYEyYMEGukxkzZjjk95HQoVhEEIhBaGKBxyPL+PHjI3xyjx071li7dm2oz1EonAvFwv0FA+d+RDdfJHowZhFBIhqfiAholdyqVSvVpk0btWPHjiDPnTp1SgqKTDp16qSqVKkS4ncwRkF0j2GcPn1ahhlVqlTJ5Y07dYRi4eA25REBF8mECRNUqVKlVIMGDWSSHdizZ48qU6aMqlGjhohAWFAoiO6CgXMfySKY04K2Hlb3odIBioWD25RHFGQzoW0y+kjVr19fLV++XFWoUEHduHFDLqCAgIBQf45CQXQXDKSPN2nSRF28eFGum+TJkzv9WAnbfVjO/v37xZpA6h8uApjUv//+u0qSJEmI11IoXAvbfbhna5Cvv/5aNmorV64UK5y4BloWFlO0aFGp24BQ5MmTR61YsYJCQbQiMhYGOsgOHTpUrHwKhWuhWLgB6Ln/ww8/qOPHjwfp+2RCoSDeTkQEY/r06ZIcgiJVFKcS10KxcBMwEnXkyJEyQ9tWMCgURBfCE4y5c+dKBmHbtm3V999/H2SuPHENTCFwI7BbwpS9vn37SuC7a9euFAqipWAghgHBQAwDA4zQ1blFixaSRUihsAaKhZvxzTffiGB0795dGqNVr16dQkG0FYxRo0bJ5umjjz6S5oDos0asgWLhhgwYMECdO3dO3FJp06YNMQGPEB0E48qVKyIU2CwhXhErViyrD0trKBZuBmIU+/btE5Mb41LhmoLv1naoEiHeDgrt0IofyR/t2rWTglVXT9wjQeEn70ZjWXPnzi0XA2IU77zzjlgUCRMmlPbkcE3169eP/lri9aAFf8uWLUUsZsyYIfUXtjEMCoY10AHoJmNZMdho8eLF6uTJk4ExCggDXFIYyfrtt99KMRJrKIk3g7gEroXPPvtMzZw5U1xPVo5oJf9BsbAQ7JbQAA1Bu86dO6usWbNKaiCqum3p3bu3Gj16tFStfvnll7xYiNeBTRBSYlu3bi1p5D/99FOQYDYFw3ooFhYC15OtUMDNdO/evVDHtaIQafLkyVLBihGtd+/eteSYCXE0mG4HSwLxOWyMxo0bF6q7lYJhLRQLC0GMIrhQhNf2HLuuNWvWiEWCiwYV34R4MmjHX7FiRTVv3jxp0AmXa3hxOQqGdVAsLJzjDXEoUaJEEKGw1/Ycsy127dolFgleB/EgxBNBwWnJkiUlTXzLli2qWbNmEfo5CoY1UCxcDMQAXWYRl4BlcOTIEfXHH39Equ05LBK8FoHwWrVqia+XgW/iSSxcuFAy/pAevnv37kjPhaFgWEA0J+2RSIAZ3TFjxjS6du1qjBs3zkiaNGngHO+o8OLFC6NHjx7yO5o3b24EBAQ4/Jh1hmNVHQ9GAffp00fO2caNGxuPHz92u5neJHRoWbgQBK5Di1GEFtCOCEgrRKtmuLRQxATfL6peCXFHHjx4oN577z2JS8CCnjNnjoofP360fictDNdBsXARcBOlSZMmhFBEZo63GevAV1tQvLR161b177//ig8Y1a6EuBNnzpxRpUuXVhs3bpTpdnDHOqrAlILhGigWLgR9ntAc0FYoIjrH2yzeQ/dNfA3e/gPzvCESGTJkUGXLllXz5893yt9ASGTZtGmTbGLQhQCLOVK/HY0pGIkSJXL47yavCcM9RZzAq1ev5CtiFLNnz45wrAKvw39V8FtoPw8fcNOmTeX5li1bGnfv3nX436ELjFlEjydPnhi9evWSOF2lSpWMW7duuewaI46HloULMc1u7ICQJhjRDJCwYhqhPQ4fMDKrpk6dKu1DChYsKNlWhLgSZDgVL15cMvUGDhwoKd4pUqRw+vuyd5rzoFh4AGHFNMJ6HBfM559/rg4fPqzy5csnMzFw39b9RYizqrH79Okj8QkM8PL395f7bP7n+VAsPABYID169AjyWERiHVmyZBGrAn12kNcOK2Pt2rVOPlqiKxAGFJliDgsaXyI+UahQIasPizgIioWHgBRZXHyRKd4zrYwvvvhCrIy8efOqatWqySxjtEEnxFHWBCY8YvMSJ04cSbTAfXxPvIcYCFxYfRDEOfMx4KaytT7wX40W0GjYljx5cjVt2jRVtWpVS4/VnXn+/LlatWqVqlmzJhe+cFp2NG/eXB07dkym2qERID8r74SWhZcRXootrAw0Izx06JAICawMWB20MkhkefbsmYgDUrYRj4A1gfohCoUX44QMK2IRkUmxRYrhpEmTjIQJExpZsmQxFi9ezLTDYDB1NnQ2btxoFC5c2IgdO7bx7bff8vPRBG0ti6FDh0qhUOLEiaWyun79+kFaft++fVuGsOTJk0fSUREsxuCh4BlF2K0Hv6H1hi2YdpcpUyZpnBbV1h6OTrHFcbZp00ZiGQUKFFCNGjWSXeKGDRucdnzEs8FseFijGPeLTCekx/bv39+trAl0MqhTp44Up+IcX7p0aZDnEXhH7A7jiuGKrVy5coiOCNmyZQtxTQ8LFiNEajq6MRQrVizEz3sr2ooFWiK3b99egsXr1q0T/zT8948ePZLnL1++LLdRo0bJgjpr1izJFceQluBg/CN6Mpk3CI/Jn3/+qVauXKmWLVumGjdurDp06OA2KbbmhQG/PKps0WsKFw8+B/iiCQGnTp1SH3/8sdRNoKXMb7/9JtdN0aJFlbuB67dIkSJq4sSJYV4LEyZMEFfs9u3b5fzH+X7jxo0gr0NtiO013bFjx8Dnzp8/LxMusSlEWnCLFi2UFlht2rgL169fF5fNli1bwnzNokWLDB8fnyDdLfEzS5YsCfNn/Pz8jHr16ompDndQyZIlDWdidqE1bz179ozwz8IN9fvvvxt58+aVn/3www+NkydPGrqiuxvqypUrRrt27cTdlDFjRmPq1Kke1dnV3rUJ7t27J69bv3594GNZs2Y1xowZE+bPHDp0yChRooTx8OFD48yZM0a2bNkMHaBYvAaLIk4anAhhgYslVapUQR7Dz2TIkMFImTKlCMH06dOD+P6x0FSrVk0uuGTJkgU5KZ1FZNuJBAcLwrRp02SBwHG3bdtWFg7d0FUs0CIGbcQTJEhgJE+e3BgxYkS0W4lbgT2xePr0qTFy5EgZFXDjxo0gYpE2bVojRYoURtGiReXvfx5MJNFKJ1asWEb8+PGNOXPmGDpAsXjdY79WrVrG22+/HeZrcDIhEPz1118HeXzgwIHST3/v3r3GsGHDjLhx48qsiuBcu3ZNTk5PAgsELiYsGFg4sIDo1GtKN7HAPJTvv/9eNj5YBNHX6fbt24anEpZYwNpHYkeMGDFko7dr164gz+Mz2LRpk3HgwAFJAsEmr0uXLiF+z82bNz1SRKMKxcIwjDZt2shu4sKFC2GaqqVKlTKqV69ud+Ho27evkSlTJsObuHPnjtG7d29ZQLCQjBo1ynjw4IHh7egiFtjEzJgxQzZD2C1/8cUXxqVLlwxPJyyxgPsInoSdO3eKhQA3EjZzYQFvQezYsaUxos5oLxbt27eXxR2+x9C4f/++Ubp0aemaGZFJdCtWrJCT1BtPLCwgrVu3lgUFpjsm/oX1uXkD3i4WWCAHDBhgpEuXTs7Zhg0bGseOHTO8hYjELECuXLmMIUOGhPn84cOH5Xd502cTFbTNhsK5hMykJUuWyECW7Nmzh3gNitWQKeHj4yMDW5AuaA/M1kZKXty4cZW3gXTEyZMnyyAbpN0iCyxXrlyqQYMGkl3GZgCekwL76aefqsyZM0sbGWTvYRY8uhQjVVw3Xr16JS1LwrumY8aMKSn2WmNoCoK22B1v3rxZgrfmzfRBwvX05ptvGoUKFTJOnToV5DWYfQ2WL18uQW8ExWHW/vjjj+Lb79evn6EDMOcnT55s5M+fX3ZeRYoUkfv47LwBb7IsYBXPmzfPKFu2rPxfZc6c2Rg+fLhLZky4ErhH9+3bJzf8naNHj5bv//33Xzlf4U6F++ncuXPGnj17jBYtWkicEdYD2LFjh2RC7d+/3zh9+rQEr1OnTm188sknhu5oKxahVTrjNnPmTHkeAa6wXnP27Fl5zerVqyVbIlGiRBIwMxdLBMx1Atlfa9euNWrXri2DbiCY8AXjovTkqnBvEIsjR44YnTt3lswenLvlypWTan1PSoGNDGFdt82bNxfBbNCggQS1kQKfPn16o27dukEC3P7+/rJJxEYyXrx4Rr58+cRF9cQL3cqRhY0EiUO5ePGiuKemT58uBVxoi44utyhITJUqlfIkPLWR4MOHD6VwDk0jd+zYIZ873E6YaaKjm4k4BooFcQovX75U69evlwUL8R74hd9++21Vt25dacfgCYuWJ4nFhQsXlJ+fn9wQg0OjvypVqohQ16tXT+JuhEQHigVxOtevXxfBwA0CEhAQIG0XIBoQjzJlyrjlJDV3FguIL1qyQBzwuSIIi8+wfPny8rlCINDKghBHQbEgLuXx48fSrBAL3IoVK9TVq1dlNjMWZAgHGtUlSZJEuQPuJhYQWVgNpgWB3mXJkiWT44NAYHwu7hPiDCgWxNLdMeYgQDiw+B08eFAW5QoVKohwYJeMGeJWWR1WiwU+HzTxQ8M7fD4YiQuxzZkzZ6A7D52M3UHIiPdDsSBuw7lz58TagHhs3rxZFmu0h0cXUV9f38Bb/vz5XSIgrhQLCANaycO1hFnWuKEeArU+aJFdunTpQIGAgOIxQlwJxYK4JQ8ePJDF0lw4ccO8EZyuKI40BQRts/EVMzkcvaA7SywQ/Icw2P5t+FuRxQRQIGorjrjBVUeIlVAsiEcJCAK5tossZj/jFEbFfOHChWWwTfr06aXaHF9tbxh44wqxePLkicRiMAcBcQXbuQgnT54UYTDnpuTIkSOIKED8KAzEHaFYEI8Gu3EIiOm+OX36dOAijUXbFgTOTeGwFZPUqVNLailcW7hBGEw3165du2QBBy9evAi8QUhu3boVQgxw/86dO0HeF7/PfC9kKJnCgClraA1DiCdAsSBeCU5rjMC1XcRtF3Xbx0z3T2RBPMXWcgluzZj3YSkwxkA8HYoF0R40kYOlYGs14KuZqoritgQJEoSwPOD6oggQXXC/SihCXAwW/dC6BEM0YBlkyZKF6alEe7RtUU4IISTiUCwIIYTYhWJBCCHELhQLQgghdqFYEEIIsQvFghBCiF0oFoQQQuxCsSCEEGIXigUhhBC7UCwIIYTYhWJBCCHELhQLQgghdqFYEEIIsQvFghBCiF0oFoSEQcyYMVXOnDnlKyG6w+FHhBBC7MItEyGEELtQLAghhNiFYkEIIcQuFAtCCCF2oVgQQgixC8WCEEKIXSgWhBBC7EKxIIQQYheKBSGEELtQLAghhNiFYkEIIcQuFAtCCCF2oVgQQgixC8WCeD1bt25VderUURkyZFAxYsRQS5cuDfL8w4cPVYcOHVSmTJlU/PjxVf78+dXkyZODvObJkyeqffv2KmXKlCpRokTq/fffV9euXQvymuXLl6s33nhD5cmTR61YscIlfxshroJiQbyeR48eqSJFiqiJEyeG+nzXrl3VmjVr1Jw5c9TRo0dV586dRTyw+Jt06dJF+fn5qcWLF6stW7aoy5cvq/feey/w+adPn4qY/Pjjj2rChAmqbdu26tmzZy75+whxCZhnQYgu4JRfsmRJkMcKFChgDBw4MMhjxYsXN/r06SPf371714gTJ46xePHiwOePHj0qv2vnzp1y/969e0bWrFmNGzduyC1btmzG/fv3XfI3EeIKaFkQ7SlTpoxYEZcuXcLmSW3atEmdOHFCVa1aVZ739/dXz58/V5UrVw78mbx586osWbKonTt3yv0kSZKoFi1aqPTp04u7C5ZF4sSJLfubCHE0sR3+GwnxMMaPH6+++OILiVnEjh1bxqhOnTpVlStXTp6/evWq8vHxUcmSJQvyc2nTppXnTPr37y8uLPw8hYJ4GxQLoj0Qi7/++kusi6xZs0pAHPEHWAi21kRESJo0qdOOkxAroVgQrQkICFBff/21WrJkiapVq5Y8VrhwYbV//341atQoEYt06dJJsPru3btBrAtkQ+E5QnSAMQuiNYhF4AbXkS2xYsVSr169ku99fX1VnDhx1IYNGwKfP378uDp//rwqXbq0y4+ZECugZUG8HtRRnDp1KvD+2bNnxXJIkSKFBKnLly+vunfvLjUWcEMhNXb27Nlq9OjRga6lzz77TFJs8TMIZnfs2FGE4q233rLwLyPEdcRASpQL348Ql7N582ZVsWLFEI83b95czZo1S4LUvXv3VmvXrlW3b98WwUDAG7UVKOIzi/K6deum5s+fLzUV1apVk5oKuqGILlAsCCGE2IUxC0IIIXahWBBCCLELxYIQQohdKBaEEELsQrEghBBiF4oFIYQQu1AsCCGE2IViQQghxC4UC0IIIXahWBBCCLELxYIQQoiyx/8As9lGCbqcrHUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF8CAYAAAA+d5cqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASdVJREFUeJztnQWYVGUbhj9q6e5u6VxCQEq6QcEgBX+kpaREQEJaQkCQFmlUYinpEpBO6ZDuhoUlzn89r5x1Nmd2d/p77usahondOXvmnPN8b0czDMNQhBBCSDhED+9FQgghhGJBCCHEJmhZEEIIsQrFghBCiFUoFoQQQqxCsSCEEGIVigUhhBCrUCwIIYRYhWJBCCHEKhQLQgghVqFYEPKWSZMmqSxZsqg4ceKokiVLqj179gTum1OnTqkyZcqoDBkyqCFDhnCfEe2gWBCilFq0aJHq1q2bGjBggDpw4IAqVKiQqlatmrp165bsn44dO6qmTZuq5cuXy23nzp3cb0QrKBaEKKXGjBmjWrdurVq2bKny5s2rpkyZouLFi6dmzpwp++f+/fvK19dXFSxYUKVLl049ePCA+41oBcWCaE9AQIDav3+/qly58n8nRvTo8njXrl3yeNCgQfIYAoLXYHUQohMxXb0BhLiaO3fuqNevX6vUqVMHeR6PT548Kf+vWbOmun37tnr06JFKmTKli7aUENdBy4IQG4kdOzaFgmgLxYJoT4oUKVSMGDHUzZs3g+wLPE6TJo32+4cQigUhSikfHx8JXm/cuDFwf7x580YelypVivuIEMYsCPkXpM22aNFCFStWTJUoUUKNGzdOPX36VLKjCCEMcBMifPzxxxLA7t+/v7px44YqXLiwWrt2bYigNyG6Es0wDMPVG0EIIcS9YYCbEEKIVSgWhBBCrEKxIIQQYhWKBSGEEKtQLAghhFiFYkEIIcQqFAtCCCFWoVgQQgixCsWCEEKIVSgWhBBCrEKxIIQQYhWKBSGEEKtQLAghhFiFYkFIGKAhM2ZzszEzIRQLQsLk1atXauXKlXJPiO7QsiCEEGIVigUhhBCrUCwIIYRYhWJBCCHEKhQLQgghVqFYEEIIsQrFghBCiFUoFoQQQqxCsSCEEGIVigUhhBCrUCwIIYRYhWJBCCHEKhQLQgghVqFYEEIIsQrFgpBQwAyLp0+fKn9/f/XmzRvuI6I9MbXfA8Srefz4sbp27Zq6fv263Cz/bz6+c+eOevnypcytMG/BBSJatGgqVqxYKmbMmIG3ZMmSqbRp08otXbp0of4/SZIk8rOEeDrRDI4BIx4MDt+LFy+qAwcOqP3796vz588HEQVYB5bEjx8/xAU9ZcqUysfHJ1AETFHYvXu3On36tGrSpIl8jqWYBAQEqHv37oUQn4cPHwb5vDhx4gR+Dm5ZsmRRRYsWVb6+vipnzpwqenQa98QzoFgQjwEX7AsXLogomDeIBC7aABfj3LlzhxADy8cJEya0+fNgbaxevVrVrFlTBMQWnj17FsJysXx85swZETeQIEECVaRIEREO8/bOO++oGDFiRHIPEeI4KBbEbYUBVkJwYbh//768nj59+iAXWazWIQb2JDJiYQt3796Vv8W0hkyLyLR8ggtIrly5KCDE5VAsiNvw5MkTtX79erVixQq1atUqdfv2bXk+Y8aMgYJgXkBTp07t8O1xlFiEBkTQUjxwO3funLyWKFEiVa1aNVW3bl3ZFsRKCHE2FAviUq5cuaJWrlwpArFp0yb14sULlTdvXlWnTh1VoUIFEYhUqVK5ZNucKRah8eDBA3Xw4EG1fft22Ud79+4VC6NMmTIiHNhHcFsR4gwoFsTp7iVcACEOfn5+sprGBbBcuXKBF8Ds2bO7xbfiarEIDuIfprBu3LhRPX/+XFxU5n4rVaqUBOYJcQQUC+JwcFHbvHlzoEBcvXpVJU6cWNWoUUMudNWrV1dJkyZ1u2/C3cTCEmR5bdiwQfYpBOTWrVsqefLksq3Yp3BbRSSYT4g1KBbEYRw7dkxNmzZN/fLLL+KTz5o1q1zIcCtbtqzbXYA9SSwsQU3Inj17AsUY+z1u3Ljq448/Vq1btxaLg7UeJKpQLIjdV7yLFi0SkUCdAuINn332mWratKnKnz+/R120PEUsgoPMqgULFqjp06dLmm6+fPlENJo1a8bgOIk02lYETZ48WRUsWFAyTXDD6mvNmjWBr0+dOlUCrHgNFzgEG4ODAiu8ZnkbPnx4kPfgopk5c2ZJh/zrr7+Ut/L333+r9u3bS/rq//73P3Ez/frrr+ry5ctqxIgRqkCBAh4lFJ5MtmzZVN++fSWb6o8//lB58uRRPXr0kFoTiDZEXEdwbuIY7NKlS+BzOMeDn8Nt27YN8nOw2N555x2JD8Hlpy2GpqxYscJYtWqVcfr0aePUqVPG119/bcSKFcs4duyYvD527Fhj2LBhcsNuun//fojfkTlzZmPQoEHG9evXA29PnjwJfP2ff/4xcuTIYezcudNYsmSJkSdPHsObeP36tbFy5UqjSpUqso/SpElj9OvXz7hw4YLhDQQEBBjLli2Te0/n5s2bxsiRI43s2bPLd1WiRAlj3rx5xosXLwwd2LNnj5ElSxajYMGCRufOnQOfL1++vNG6desg5/DDhw8DX3/+/LmRIUMGY/369ca6devk/7rss+BoKxahkTRpUmP69OlBntu8eXO4YgFRCYujR48axYoVEwE5f/68HKzewKNHj4wffvjByJkzp+yb4sWLG3PnzvW6k8ibxMJS4P38/IzKlSvLd5c2bVpj8ODBxq1btwxv5fHjx3Ks4oIPcQguFpaPgwPhwHl++/ZtueEcxvGvI9q6oSx5/fq1Wrhwofjb4Y6KqGmLLBS4mUaNGiV9g0zgo4erCy4Z+I2HDBmiPL1obvDgwSpDhgyqa9euUgOxc+dOca+hfxL6KxH3Br2oateuLcWPCIQj5Xbo0KFS+Aj3jFkI6U106NBB1apVS1WuXDnU1+fNm6dSpEgh52ufPn2kZYsJ3NAtW7YMbBnTrl07fbPMDI05cuSIET9+fCNGjBhG4sSJxS0VnPAsi++//15eP3z4sDF58mQjSZIkRteuXUO8786dO8azZ88MTwUWw8SJE43UqVMbPj4+RpcuXYzLly8b3o43WhahcffuXXGnJkqUyEiYMKExcOBAWY17AwsWLDDy589v+Pv7h2pJ/PTTT8batWvlWgDrOH369EaDBg1C/J4HDx5oa1GYaC0WuAieOXPG2Ldvn9G7d28jRYoUxvHjx20Wi+DMmDHDiBkzpvg5vcVlAb92tmzZjOjRoxufffaZxGF0QRexMIGbpVu3brIgSJUqlTFhwgSPdi1eunRJ/g4s5mx1O23cuFHO97NnzzppKz0HrcUiOJUqVTK++OKLSIsFguN478mTJw1P5s2bN8aaNWuMwoULy99Tt27dwMC/TugmFiZYEGBhgAUCFgpYMGDh4GksXbpUjl94DswbHkeLFk3+/+rVqxA/g/gi3gNrgwSFMYtgxU3oTRRZDh06JD5hV/UysgeIP7z//vtSXY0W2jt27FDLly+XmAvRg0yZMqlZs2apI0eOSMoz4lGITyG1PLLjb3BcoTjTmenjlSpVUkePHpXz0rwVK1ZM/h78P7RW8Hge2LuDsVdgaArcTlu3bpU0T/gr8RgrDqTHAaTQHTx40Jg2bZqsNLZt2yaP4d8FSIdFJtShQ4eMc+fOib8zZcqURvPmzQ1P5MSJE+Krxd8KHy8yZmBh6IyulkVw/vzzT6Ns2bJybMCNs2vXrgj9fM+ePeVnzRseuwpLNxRcTYjVwA2N68Dy5cvFkipXrpzLts+d0VYsWrVqJSlx8M/iIg8XlCkUYMCAAUEOcPM2a9YseX3//v1GyZIlJTAeJ04cqaEYOnSox8Ur7t27J3nmcDlgf8yZMydU81xHKBb/gYUDamoKFCgg58EHH3wgMQFr7N69O9TzCM/bAt6HYxKLGXuLBbYfwpAsWTIjduzYUhPVo0ePIHUW5D+0FQvyb2Ei8uwheLCSPE3oHA3FIiRYSPzyyy+SNYTsKdQlhWeB4kIfmljg+YhaJKNGjYriN0qiAsVCQ2BNwF2GE7BmzZrGlStXXL1JbgnFImyQ8NGyZUs5hqpXrx6mlRFZyyKsn9u7d28Uv1USWRjg1gz0tkGwGkFrBDHxGCNKCYkISZIkUTNnzpSJhgiEo6BtxowZIQLgJUuWVD179gzyXK9eveT58Dh9+nSoz584cYJflIugWGgCWoS3aNFCKnYLFy4s1bvoBsvmfiQqoCPv8ePH1QcffCANJPEY0w8tQSNJNC+cM2eO3AdvthkaYU0A5GRAFxJpm4R4DAhMpkuXTnzMM2fO1D7LyVbohorccYYYWGSOMzOYbbqogscsevXqFcEtIvaEYuHlfmUUV5l+ZR1adNgTikXk4mEtWrSIcDwsrPTa4AJCXAfFwktZvXp1YMYK2pDoXjMRGSgWkQd1OmamHdLNwzv+oppeS5wDYxbOdfk5pQr966+/Ft8xgo6ITbRq1YqxCeJU0NkWsQyM0EXXVsTLMIs9IsHssJ539TmmKxQLJ4GDGAe/ZQtze/Po0SNVv359CSiiXTraM6D1NCGuIGnSpBLUnj9/vlqyZIkqX768unbtmkOC2WY7EbSnwYKJ2B+KhZPAAXznzh3JBnGEYGCEJmZxbN26VdJhv/rqK1oTxC349NNP1fbt29XVq1dV8eLF1d69e+2SXmv53tKlS0tfp4MHD0oKL7E/0eCLcsDvJaEAkcAKCLv83XffVTFjxrTLftq4caNq1KiRDHDBvODcuXNz/9uBly9fqtWrV4tLL1asWNynUeT69euSYmte0NHQzxKcG7C+YVHYKhT4GQgFBjdh1n3//v3Vw4cPpR6D54F9oWXhRCAOOAlQ22APCwOiM3HiRFWtWjVZseHE4QlC3BV0ct2yZYtYGk2bNlW9e/eWKZUmODeaNWtms1AAiEtwoQDBrRcSdSgWHioYAQEBqk2bNqpTp06qc+fOUkkLHzEh7kzs2LGl8nvMmDESV6tXr57E2iLr2sU4gOBCAVi8Z38oFh4oGLdu3ZJe/T///LOceN9//73dXFqEOBoc95jhDhcfAtJwyZ49ezbCwWzMEYd7EOeDpVBEJN5BbIdi4WGCgSAeXE5nzpxRmzdvlrREQjwRuE/37NkjFkKJEiXUhg0bIhTMPnXqlNq0aZMaMmRIhNuJkEjgpHoOEgYvX740duzYYWzfvl3+Hx4YzhIvXjyjaNGiNs0SIFGDRXnO6zSADgMYdTpp0qQw34ciPcxdwZzw8ePHS8Efi/ecBy0LD7EwFi5cKJkkGHeKNETWTxBv6mCLdG/E3zp06KBGjhwZoWB2ZIr3SMShWHiAYCA2gTRD3BYtWqTixYvnsm0lxBFgHjaC3gMGDBBX06BBg4JUYzOY7XooFm4uGFOnTpVW4p9//rnMnwhtyDwh3gCO/W+//VYNHTpURKNv374iGBCKAwcOMJjtYphC44aCgWwPCAZyxbt16ybm+fjx41mRTbSgT58+Km7cuJIx9ezZM7GoHz9+rMqUKaPef/99mckS0eI9EnUoFm4qGBCJCRMmqO7du0s+OocUEZ1AbAJpsR07dlT//POPWrBggdRoAJwfFAnnQzeUGwLXE4QCVa4oWrKsciVEB+B6MhdNy5YtU9988w07yroYioWbgSI7ZITABMf/o0eP7rDmg4S4I2aMApXdiF9g4YTCU2RAEddBN5QbMW/ePJlj3K5dOzk54HqyjGHYs/kgIe4uFIhRwPUEV9SLFy+kk3KcOHEk8E2cDy0LNwH9/ps3by4V2WgOaMYo7N18kBBPEgoTxO4GDx4s7igspIjzoVi4AejE2bhxY/XJJ59IvAKuJ0soGERnoTCBUFStWlUsDPSGIs6FYuFiLly4oBo2bKjKlSunZs+eHWYdBQWD6CwUqLdASu26devEykbdEdyzxHlQLFwIcscxoxjtDhYvXmx1wA4Fg+goFBhChTnyZoNAFO4VK1ZMNWjQQKbvEedAsXDhSYIYBXLIly9frpInT27Tz1EwiE5CYc5u+fvvv8XqxoQ9ZEUtXbpUHkMw/P39nb7tOkKxcBFYHUEkkAGVL1++CP0sBYPoIhQgfvz4MtwL8y9gYYDUqVPL+XPs2DHVunVr1mA4AYqFC4DLCZkdyCFH64LIQMEg3iwUFy9eVD/++GPgY8yXR3DbkqJFi0qcDwsudDkgjoVi4WQwrB6NATGHGN01owIFg3ijUBw5ckQGHKE4FQONwuOjjz6SLCnM84b1QRwHxcKJ3Lx5U9p35M2bV3yv9uj3RMEg3iQUW7dulczA69evi3sWjQOtMXDgQEkUwQLsxIkTNo9lZTZVxKBYOAlUoGJ4ETI70OsGXTXtBQWDeINQ/PbbbzJqFUON3nvvPRnylSFDBqu/G3VJuPhjKBLcuvfu3QvzvbDm0QkBySW4j6p1rxMUCyeAHHG08Ni3b59kcdhyAkQUCgbxZKGYPHmyatSokSyq6tevL/UUSZMmtfkzEiZMqFasWKEePHggrqnQOh3Akgg+hQ+PaWHYBsXCCSBQh8FFqM7GasZRUDCIJwoF4njt27eXRVWbNm3Ur7/+GinLO2vWrPKzcGX17NkzxOthjV/lWFbboFg4mFOnTkl7AgTrWrRo4eiPo2AQj0uPLVKkiPruu+8knRwWRlSmQVaoUEEyo8aOHas2bdoU5DUMSwqNsJ4nQYlmWA66JXYFcyjKli2rbt++rQ4fPuzU2dkww2Fe4+tlt9rIgfgScvtr1qxptbqeREwoMAEPN6TEOuKzERhHwevRo0dVggQJAl9DjMLSFYXHZmU4CR9aFg5k3Lhx0ikWLihnCgWgS4q4q1AgAF2lShVVo0YN9eTJE7t/PgLemAVz69atEO6oESNGyDmJlFzcUygiACwLYn9OnjxpxIkTx+jSpYtLd+/Lly+NHTt2GNu3b5f/E9sJCAgwli1bJvfENl6/fm3s3bvX2Lhxo/H8+fMQr1+6dMnImzcvvBlGkiRJjAMHDjhs106YMEE+B9tCog7dUA50P925c0cdOnTI6VZFcOiSihx0Q9nXojh+/LiqXr26unLlikqfPr1au3atyp8/v0O3p1KlStLZGe4oZEyRyEM3lANAcM1V7qfQoEuKuFoo/vzzT6mdgFDkyZNH7dy506FCYbqjUPyKRVto2VEkYlAs7MzJkyel/UCXLl3kpHEXKBjEVULxxx9/qMqVK0sNRKlSpdSOHTtUpkyZnPKFZMuWTeIUU6ZMURs3bnTKZ3ordEPZ2f2Ek+X+/fuSO+4OVkVw6JKyHbqh7JMee/78een1VLx4cbVo0SKnnxfYRogVtsOaOwoZhKi7QDotxhmT/6BlYUcwG3jPnj1u434KDVoYxNl1FFjdw+2E7gWuOC8s3VE9evQI831sBRI+FAs7gQZmGMrSrVs3WUW5MxQM4kihgIXdsWNH5efnF0QwcNy5ClR3o1jvp59+Uhs2bAjxOluBWIdiYQdwcqDteJYsWWROhSdAwSCOEIrnz59Lb6ZJkyZJF1gUpLoLaCWCYj3M78ZIY0vYCsQ6FAs7gOErcD/B1LVnN1lHQ8Eg9hQKBLDRNfb3339XPj4+MpgoZcqUbrOTTXcUivVGjx4d5DW2ArEOxSKKoEsm3E9oP+5O2U+2QsEg9hCKq1evyhyKbdu2qUSJEkkGVMOGDd1u58L679Spk8QXIRomCGYHT69FDINB7v9gNlQUGT9+vMQpUHCUO3du5akwSyokzIayTSiQLg6L4tKlSypNmjRSbFeoUCHlrqDdSPbs2VWzZs3UDz/8EOQ1ZkOFDS2LKIATZ8iQITJE3pOFAtDCIJHNekL2H4QCrpxdu3a5tVCAZMmSidWA2guk01oCSwIiQosiJBSLKABTFo3QBgwYoLwBCgaJTHrs0KFDpRAVxXZw83gCX375pXS8hQuZ2AbFIpJgnjbEAv5PR0y+cxUUDGKLUCAmATcdwPwJZAG6UzDbGqj3wCJv/vz5Mj6AWIdiEUngfsKMg969eytvg4JBwhIKzEdBW280BGzdurU89lTgPs6RI4fq06ePqzfFI6BYRAL4OVHcA78n/J/eCAVDX8ISCjyPnmfmxTV16tTKk8FiDxP61qxZI6NYSfgwGyoSNGnSRG3ZskWdOXPGbdt62Auds6R0zIYKSyiQIt68eXO1ePHiwM7KEA5PB8d1iRIlxJWG4Hy0aNFcvUluCy2LCIL5FPBzwt/p7UIBaGHoQ1hCgccQTAgFRHPBggVeIRQA4gC3GhZEy5Ytc/XmuDW0LCIITppz585JXYVOq2wdLQydLIvwYhQVKlSQYjvMskYzQHRw9TaqVq0qszaOHDmixbEdGWhZRACcMPBvws+p2wFFC0PPrCesvPv166cyZswofn1vFAowbNgwaQb6yy+/uHpT3BZaFhGgTp06UnwEV5Suvk2dLAwdLIuwhCIgIED6O1k2CIwTJ47yZho0aCANBY8dO6bt+R0etCxs5OzZs2rVqlWqc+fOWh9ItDC8XyhQQ4Fq7FOnTgW+19uFAiAO8/fff4fawpxQLGxmwoQJKnny5Kpx48baHzcUDO8VCnRQrl27tvrnn39kHKlOoBEiWpWg3xsJCS0LG3j48KGaOXOm9MPXYYVlCxQM7xMKdCRo2rSpuBoxiwK9k3QCHgN4DuBBQFo8CQrFwgbQKA0+2/bt29vydm2gYHiHUOC57t27q6+++kre07VrVzV37twgMQtdgEiibQk8CSQoFAsbpuDhwGnUqJFKly6dtbdrBwXDs4UCgWwU240ZM0beg9Gj+D8GBekIPAfwIGCBCI8C+Q89j4gIsH79emnvgYaBJHQoGJ7resJiCPEJfIdz5swJtC50pl27dsrf31/iN+Q/mDprhQ8//FD8l+hMqXMWlI5ptd6SOmutzfj9+/clHbxixYou20Z3o379+urixYvq4MGDPO/fQsvCShvyFStWSHdNCoV1aGF4hlDAUh43blzge5ImTUqhCAbOeSwQ9+3b5+yvzG2hWIQDBs7jAogMEWIbFAz3FgqslEuXLi1BbGT4kdBBC3bMqZk2bRp30VsoFmEAV8r06dNl6DxWXsR2KBjuKRQbN25U5cuXF4sZ9QQ1atRw9Wa6LehCi3kXaJqIaZiEYhEmaEGOqm2YoyTiUDDcSygWLlwo4vD48WNxOaHPU9q0aV24le4PxOLp06ey7wjFIkyQGZIzZ05VtmxZHieRhILhHkKBimTUDyBg/9FHH0kzzMSJE7tg6zyLzJkzSzfan3/+2dWb4hbQDRUKSCdcuXKlZEIxsB01KBiuFQpkOZmzJ5D+DbdK8GwoEja4BuzcuVPduXNH+91EsQiF3bt3y8FRt25d7Q8Qe0DBcF16bOHChdXo0aPV0KFDxcLQtdgusqBPFvbt6tWrle7wyAkFPz8/KfnHuEViHygYzhMK1LsgiG2CVh6Ym00rOeIgroPrgJ+fn9IdikUooLYCKwpkRBD7QcFwvFAggF2pUiVVrVo1tquw4xybtWvXyhxynaFYBAMZUJiYRReUY6BgOE4orl+/rt577z2por98+bJUIJOog2vBkydPJENSZygWwYC5CX9vlSpVXPONaAAFw/5CgUFFKLbDfaZMmdSOHTukloJEnQIFCkhmlO6uKIpFKC4omPHx48d3zTeiCRQM+wkFEjIwuAeWRf78+SV7J0+ePHb8tvQGsZ46derItQHFurpCsQjWUG379u1yYBDHQ8GIulBs2rQpMD6BmqBt27ap9OnTO+Db0pu6deuKa+/IkSNKVygWFqBYCTUWCG4T50DBiFp6bL58+WTcb4MGDWR2NlvTOIby5curhAkTinWhKxQLC3Ag+Pr6SgMx4jwoGJGvo0B8YteuXWrJkiUqbty4Dv+udMXHx0eaC1IsiEwMQ3ocXVCugYJhm1CULFlSffnll+r3338PfB2CwTRv57ii9u3bp65du6Z0hJbFWxCrgN+XKbOug4IRvlAUKVJENW7cWE2dOlU1a9ZM3bp1ywXfkr7UrFlTRBmtgHSEYvEWtG9OkyaNtEcgroOCEbpQILsJsTS4QTAnGiM/U6VK5cJvSj+SJUsmlh2uFTpCsXjL/v37VfHixdkSwQ2gYAQVCriZkM6NlNgkSZLIXHiM/STOp0SJEnKt0BGKxdtBRzgAENwm7oHOgmEpFMhuqlChgnQVQEos3KWo0iauwdfXV507d049ePBAu6+AYqGUunTpkrp79y7Fws3QUTCCZz0hy+nq1avihoJlgaI74jp83y4o8R3pBsXirQsK0LJwP3QSjNDSY4cMGaIGDRok7TvgjiKu5Z133pHuDjq6oigWb8UCrYg5ZtI90UEwLIUCLg6znTjmT/Tr10+Cq8T1xIgRQ5JgKBaawniF++PNgmEKBVK30dkU09latGghzxP3w9fXl2KhIwxuew7eKBimUKAv2aJFi9TgwYPl+Rw5cjAzz43F4uzZs9rNC9HeDYXmYBihyniFZ+BNgmEKBY6/SZMmqWnTpsnfhf9DNDjZzj3x1TTIrb1YmL7HokWLuvq7IBoJhikUaB2BIPby5cul/9DixYtV+/btXb15JBxy586t4sWLp50rimKxf79KnTq1Spcunau/C6KJYFjGKEaMGKH+/PNPlShRIuka27BhQ1dvHrFCDE2D3NqLBU5amJU0+T0PTxQMy6wnFNd99913KkuWLDKHAsV3xDPw9fWlG0onGNz2fDxJMCxjFGYdBQQCo1A5AtWzKFq0qDp9+rSIvi5obVmgaydubB7o2XiCYJhCsW7dOvW///1PnTlzJvA1xCqIZ1GkSBG5P3bsmNIFrcUCbRQAK2M9H3cWDFMoELzu37+/HHdjx4519WaRKJAxY0a512m2hdZigQH3gJXb3oE7CgaEAoHQyZMnq1GjRsnYXhTcTZkyxdWbRqJA0qRJxY1oXkN0QGuxwKoAFxZkQxHvwJ0EA0Kxd+9eNXToUDVz5kx5rlevXmrWrFkqVqxYLtsuEnWiRYsmi0xaFpqAVQEGyOACQ7wHdxAMCAU+G+KwbNkyeW7cuHFq+PDhzLzzEtKmTUvLQiexoAvKO3GlYFimxyLjDlbEggULVOfOnZ22DcTxpKVY6APFwrtxhWBYCkXFihVlDCrGcH7yyScO/2ziXNLSDaWXWLBy27txpmBAKJYuXap++umnwDqKxIkTq7JlyzrsM4nrSJcuHd1QuoDgFN1Q3o8zBANC8csvv6jPP/9cTZ8+Xc2ZM8fun0Hci7Rp08qEzRcvXigd0DYbCif3jRs3KBaa4EjBwLE0ceJE1bZtW+n3hFYQ9erVs9vvJ+5J2rRp5R7XER3QViywIsAFg5aFPjhCMCAU6BrbrVs39fz5c1W1alUZYIQsO+LdpH0rFrrUWmgrFuYXzJiFXthTMFBg17VrVzVgwAD5f5MmTZSfn59KkCCBXbeZuCfp3naqplh4OWYxDS0L/bCHYMCiWLhwoZowYYI87t69u8Qp2OdJH5InTy7Hki5ioW01mulnTJMmjas3hbhQMP766y8RjHfffdfm4kwzPRYLjdGjR0stBcSC6EX06NHl+qFLFbe2YvH06VNZBXIlqC+REQwEsHft2iXHDdJj33//fadtL3E/EiRIoJ49e6Z0IEIxi2HDhqnixYurhAkTSgCvfv360ovf5OLFi2Lah3ZbsmRJ4PsuXbqkatWqJaMJ8Xt69OgRwhUwcOBAlSFDBhkQg77x9gafxzYfJCIuKVijpUqVUu3atVN58+aVOgqiNzFjxnRad4DHjx+rLl26qMyZM6u4ceOq0qVLS+8xE1i46GoMixevV65cOUgrfICFDkYyYODWjBkzHCcWW7duVR06dJCTav369erly5eS/YFVutm2F/47yxsu+lDfGjVqyHsQCIRQBAQEqJ07d6qff/5ZzZ49W/5IE4yZXLVqlcwlbty4serYsaOyNxQLEhHBwEmHhdKJEyfUkydPZA4KIbFixXKaWGAOCq67qOc5evSoXHshCOaohZEjR6offvhBOhrDWo4fP76qVq2aZOmZoA6oX79+av78+bL4v3z5su0bYESBW7duGfgVW7duDfM9hQsXNlq1ahX4ePXq1Ub06NGNGzduBD43efJkI1GiRMaLFy/ksZ+fn1GvXj0jICDA2L17t1G8eHHD3gwbNsxInjy53X8v8Vxevnxp7Nixw9i+fbv8H8ffsmXLjF27dhnJkiWTYz1LlizG6dOnXb2pxE0oXry40bp1a4d/zrNnz4wYMWIYK1euDPJ80aJFjb59+xpv3rwx0qRJY4waNSrwtQcPHhixY8c2FixYEPhcpkyZjPPnzxtPnjwxihUrZhw/ftzmbYhS6iz8tyBZsmShvo4+/ocOHRI1szSDChQoEKQtONQPvXSOHz8e+BhqCDdV9erVRQHtDS0LYouFcfjwYVWpUiV17949GX2K4zdnzpzcecSpbih8BrwyceLECfI83E07duxQFy5cEDcpLA0TtJrB8Yxj1gQenDx58shriNHBnerwADcyQuA/Q5Avf/78ob4HPjFsGHxrJviDgs+PMB+bGUow7dauXSumfpIkSRwShKZYEGtB7xEjRqjvvvtOjhXMyoZbNFGiRNxxxOluKMSJES8bPHiwXFNxzUQnYwhBjhw5Aq+doV1bLSvMsXBHU0uEATDAKSJEWiwQu8D8WahaaPj7+4tfDP6xyBJeFSziJVEB/VxixIgR5d9DvBPEzeD/hTigEeDcuXMloM3jhQRPn8WFN6rHBRYpsGjDA7GKVq1aqfTp08u1q2jRourTTz8VD05EQCwDtwhvY4R/QikJOK9cuVJt27ZNMpZC49dff5WUsubNmwd5HnnJe/bsCfLczZs3A1+zlQ0bNsiXFFlgtiEwv3r16kj/DuJ9IKMExXXoHgs+/PBDqcxGm3FCgnP79m05ZqJ6HalZs6bV6YnZs2eXJCNct+C2R9bTxx9/rLJlyxZ47cS11LLQGI+R/WQPIiQW2CmdOnWSEwn9b7JmzRrme+GCqlu3rkqZMmWQ52FKwbSHi8m0HBDhxwouIv4zS99cZEAsBX8DviRCAFaHX3zxRaBQwCrG6g3mOlZ9yIZiujWxBK5KpLJG9ToSkePKtAzu37+v/vjjD8mCwrUYgoFFjSkOEBS4U5HqbRciEpFv166dkThxYmPLli3G9evXA2+I1Fty5swZI1q0aMaaNWtC/I5Xr14Z+fPnN6pWrWocOnTIWLt2rZEyZUqjT58+hjNhNhSxBNkh1atXl4wnZOtNnTo1MBsKx7dllhQhJiVKlHBKNhTAtRLXVGQzrVu3zihUqJBRsmRJOU7B8OHDjSRJkhjLly83jhw5IhmlWbNmNfz9/e3y+RESC5xIod1mzZoV5H248GfMmNF4/fp1qL/n4sWLRo0aNYy4ceMaKVKkMLp37+70kxApZhA+Qm7fvi0nPY5lpBouXbpUdoopFrgPnlZLCChSpIgsop3BokWLjGzZshk+Pj6SJtuhQwdJjzVB+my/fv2M1KlTy3FcqVIl49SpU3b7/Gj4R2nI+PHjVd++faXAiujNgwcPJI0QPX4QiytXrlygWwq+aNOfjKwXmPU4ZSLSS4p4LwULFpRMOSRDeDvatih3Zpk+cV+QAn727FmZSYHMPlMo3GWmN3FvXmnUNkhbsUAxC9JnmQqpJ0huGDt2rHSPRSCwTp06skq0BgWDWIKMz+CFct6KtmJhppqxx49+IK0bXQIw3W7dunVSWBqRpoAUDALgjkT/O11m4mgrFuYXrEsvevIvkyZNUh999JHU6KDYDsWlkekeS8Eg9+7dk+OIYuHl6DY/V3ewCvzmm2+koBT/Rw0QWsqgR05koWDozfW31w6KhZeDYkGU6lMs9AhCtm7dWopBwWeffaYWLVokjSqjCgVDX66/FQtzFre3o60bCr1VELegWHg/qHJFRwEsDhCnQL9/ewYlKRh6cp2WhT7AfGTMwvvB4K22bduqb7/9Vg0dOtQhE+4oGPpx7do16YrNbChNxIKWhXeC0b13796VOgqkxzZq1Ej17NnToaNQKRh6cf36dW1cUFq7oQDFwjtB63zMUEHtBEb3oo4ioumxkYWCoQ/XNUqbBRQLZkN5Fdu3b5eUWMwlxtAXuAqcJRQmFAw9uE6x0AeYkLigYFwh8XyWLVumqlSpIr2eUI09ZswYVa9ePacKhQkFw/u5du0aLQtdgAkJnzYGmBDPZurUqTKoCC1c0N9p+PDhEth2hVCYUDC8v3o7HWMWesDCPO9gwoQJqk2bNiL8sCRQfPf++++7VChMKBjeyaNHj2R0NGMWmmCuCq5cueLqTSFRAH2eUqRIIcPoMckRloU7CIUJBcP7uPL2mkHLQhPwRWNk5uHDh129KSSCWI5hyZEjh5o/f75q3Lixeu+999xKKEwoGN7F4bfXjIiMgvZ0tM6GwlwCzFjev3+/qzeFRAAEsBHIRmW2WUeBinxnZz1FFAqG97B//36VJUsWlTx5cqULWosF8PX1pVh4EEiJRWosBtPD7bRr1y6n1lFEFQqG94iFr6+v0gmKha+vunz5MjOiPIATJ06oUqVKSdEdAoujRo2S7CdPEQoTCoZn8+bNG3Xw4EGKhW7ADQXoinJvYEEgHgFhz5Url/rpp59U6tSpPU4oTCgYnsu5c+fEmjWvHbqgvWWRPXt2mWlAsXBfVq5cqSpVqiTDZjADe+LEiSp+/PgeKxQmFAzPZP/bGCfdUJrBILf7s2LFCslpR5EdXE9oNe7pQmFCwfBMsciUKZOka+uE9pYFYJDbvfnxxx/V+PHjVf/+/dXLly+9RihMKBiexX4Ng9uAYvFWLNDS+s6dO67+PohS0qtr+vTpMuEOwJJAF9lnz555nVCYUDA8p77nwIEDFAtdMVcJOAiIa0F206effipjUFGNbdZReFJ6bGShYHhGcPvhw4cUC52D3IkSJWKQ28XgJKxevbpasmSJihUrlrTt0EUoTCgY7s2BtwtKuqE0BW4OVnK7FnTwLF++vNqyZYtKmDChWr16tcqZM6dWQmFCwXDveEXGjBlVypQplW4wZvEWrBT27t0bpOcQcQ6nT5+WmAT67aB2YvPmzTLbWEehMKFguCd79+7V0qoAFIu3VKxYUYLcp06dcu03ohkBAQGqatWq6uLFi9IQcMeOHSLYOguFCQXDvXj8+LH6888/VYUKFZSOUCzegvkHcePGlZx+4jx8fHzUpEmT1LvvvisjUdEkkELxHxQM92HdunWyuKlbt67SEYrFWyAUWOFSLJwDRMGkVq1aIhSYEUChCAkFwz1YsWKFyp8/v8qaNavSEYqFBXXq1JEeRByz6jjgYkIVdp48eSQNESA99tChQxSKcKBguL72Z9WqVXKN0BWKhQW1a9eWixkycYj9gSh0795d9ezZU924cUP99ttvWtVRRBUKhuvAIvLu3bvauqAAxcICZOKgUR1dUY4ptmvSpIkaO3asPB49erT66quvKBQRhILhGlasWKFSpUqlSpQooXSFYhEMmJmYwPb8+XPXfCNeCKwGxCUWLlwoF7tffvlFde3alUIRSSgYrhGL2rVrS02Wruj7l4cBzMynT59KcRiJOrdu3ZJUQ0y2Q1txtBvHrGy6nqIGBcO5dUCnTp3S2gUFKBbByJcvn2Q7+Pn5ueYb8TLixYsnFzZUvKLYDrOzKRT2gYLhHHAtiBMnjqpcubLSGYpFKPMt4IqC2clq7qiTIEECySJBMRMqXykU9oWC4XhwLahUqZJYxjpDsQgFmJvI+Uc6J4k4GzZsUCNHjgx8DKsCzRopFI6BguE4kAGFrgJ1NXdBAYpFKJQtW1a60NIVFXEWLFigatasqXr16hWYVcb0WMdDwXAMa9askeO3du3aSncoFmG0oMAIz99//93534gHg7RYBK8xze7jjz9W1apVo1A4EQqG/Vm6dKm4T9OlS6d0h2IRBqgJQBdUczg7CRusvFBo161bN3n85Zdfqvnz58tMCrqenAsFw76ZfPAuNGvWzI6/1XOhWIQBLAusJqZNm+bcb8TDgBXx2WefSQsPMGzYMDVu3Dj5P4XCNVAw7MPPP/8sdRUUi3+hWIRzwrVq1UpWyE+ePAnrbdqzfv16KbKLESOGmjVrlurdu3fgnGK28HAdFIyogWMYc+A//PBDlSxZMjt9K54NxSIcPv/8cxGKxYsXO+8b8TAQzB4xYoRavny5WBgMZrsPFIzIs23bNinGwyx48i/RDBYThAtmQmM2NBqJkX/BoCIU26FXjiXeJhRwsaGpJAQR8RdP5dWrV+qvv/6S1TLmhkBESPg0bdpU7dmzRyq3UXtFaFlYBSuL3bt3q6NHj/J4UUqC/qVKlZJUQkv3nLcJhTdBCyNi3Lt3T/36669y7lMo/oNuKCugGCdt2rRq4sSJSnfQrqNcuXLSXhyNFk2xoFC4PxQM20GsAsCtSv6DYmEFuB/at28vQVysOHRlyZIl4pKD5VC+fHnx6aZJk4ZC4UFQMGxz2WFhiHohdB4g/0GxsIE2bdrIRVHXNFqcPCiyw/xhZIesXbtWJUmShELhgVAwwmfZsmXq8uXLqnPnzk76RjwHioUNYIWBlcakSZNk5aETqJno1KmTBEdhYS1atEg6cNL15LlQMMJm/PjxYjkXKlTIid+IZ0CxsBGsNLDiQPm/TqADLyYIDh48WCwM1FNQKDwfCkZIkKCBpoG0KkKHqbOhgDRD5Fi/8847MmbVpGLFiuKKQbttbwZWhGUWCGI1ZmGSTkLhLamz4cG02v9o0aKFxOLOnj0riyISFFoWwUC3VOSiN2/eXO7x2KR79+5q586dUrXszS2ZYYZjop2JjkKhC7Qw/gX1FPPmzVNdunShUIQBLYtgFgUEIjios4CFgRX3e++9J2mje/fu9bp5vJcuXZJOsSdPnlTp06eXFRbiE7oKhQ6WhYnuFkajRo0Ci/DMY54ExbuudlEErqfwnodrZvjw4XLRRCqpN4GiQxTbQSgyZMig1q1bp7VQ6IbOFgYWfijCGzhwIIUiHCgWFiBGYe15DEaqVauW+uabb2Tl6Q3AT4u/69q1azKDHK1N8ubNK69RKPRBR8GAJYXmlzju2V02fCgWFuBEwVwGSxCzsAxym224z507F1jp6ckgu6tq1arS/wpWw/bt28WyABQK/dBNMBB/3LRpkxo6dChjFVZgzCIC2VCWIACOAw1+fU8e5I7aicmTJ0tbk4ULF6q4cePK8xQKvWIWOsYwcIwXK1ZMmmJikcQ+UOFDsYhC59VcuXKpAQMGqK+//lp5Kq9fvxYLCe3YzQsCheJfdBYLHQQDBaaffPKJCAUSV0j40A0VSbJkyaLatWsnsxyQbupJ4oBKdDPegnxytDOhUBCdXFI4/hF3RPdkCoVtUCyiQN++fWUVjhiGJ+Dv768aNmyoOnbsqNq2bRvidVoURBfBgDWNuCNiFcQ2KBZR7Bn11VdfSRsM1Ci4M/fv35dANhqlIfUVGV2WUCiILoLx9OlTNWjQIBlwVKBAAVdvjsdAsYgA8N+iVTnuTbp166YSJUqkvv32W+WuXLlyRVJj0fcmceLEUkPxwQcfBL5OoSA6CQaaY6KFDQSDRACMVSXW6dmzp4HdZd7w2OSHH34wokePbhw5csTtduXx48eNjBkzyjanS5cuxDa+fv3a2Lt3r7Fx40bj+fPnLttOdyQgIMBYtmyZ3JN/efnypbFjxw5j+/bt8n9P4+bNm0aiRImMzp07u3pTPA5mQ9mhDQiaC6KlcYIECaSgzV2yRrBdOXPmFBcZMrf++OMPlTlz5sDXaVGEj+7ZUN6YJYW2Hlu2bFF///03hxtFELqh7NAGxMfHR82ePVtaYowaNUq5C9guDGzCKFR0yqVQEJ1dUosXL5a2HsgG5BS8iEOxsFMbEJw8CHYjdnHs2DHlSixTeRHUxkoqefLkgc/RoiC6CcatW7dUhw4dJBvwo48+cvXmeCQUCzu2AUEjsuzZs8ugd1f0jYJb4LvvvlO5c+cOYg1ZVqZSKIhugmFOeQSwKkjkoFjYCIrvcELMmTNH7tF9Njjo0gp31MGDB9XIkSOVs4vtMP4UhUZ37txRfn5+Id5DoSA6CgYqtX/77Tf1448/qlSpUrl6czwXV0fYvZFevXoZsWLFclp2lL+/v9GwYUPJeIoWLZpkZwWHWU8Rh9lQnp8ldePGDSN58uRGo0aNXL0pHg+zoRwAhiP5+vqKpYHVliMzadAttl69emrr1q0S0EYdSHCfLC2KyMFsKM/OksJ2fPjhh1JfdPz4cQa1owjdUA7AdEcdPnxY3FeO4ubNm5LpBKFImDChWrNmDYWCuAx3c0mhizJa8MP9xOynqEOxcBDFixeXoDiqRI8cOeKQz4BAoLYjTZo0MsDo/fffD/I6LQqiq2DcuHFDeqDBykYGFIk6dEM5cP7FixcvxB0F9xDe4wh3FNoWwBWVNWvWIM9TKKIO3VCe6ZLCZ6KdDWqL6H6yH7QsoghSaHEyYBgS7vHYBA374I6CZWGv7pZwNQ0ZMiTwcbJkySgUxO1wpYUxf/58aZiJoV50P9kRV0fYPZndu3cH6Rdl3vC8Jf3795cspVWrVkXp82bPnm3EiBFDPmPp0qWhvodZT/aD2VCelyV16NAhI168eEaTJk0c/lm6QcvCgW1ATDBND0NWPv30U3Xy5MlImdUIlKPYD/UUaK2MfkXBoeuJ6GxhoEob44FRlDp16lSHfY6uUCyi0KbcljYgspOjR1dz585VGTJkkIMZsyVsBQLQtWtX1bt3b3mMliI///yzxEGCvw+9qR49eqTKlCkjLjBCdBEMNM1EIBtxQrigMFeb2BlXmzae3qY8+HMoyAuLs2fPGkmTJjWqVKlik0mOluGffPJJ4O/+/vvvQ30fXU+OgW4oz3BJvXnzxmjdurXh4+Nj7Ny5026/lwSFYmGH+ARuc+bMCRGrCI0NGzZI3KFr165W37t27Vr5DFSDz5s3L9T3UCgcB8XCMwRj4sSJcp7MnDnTLr+PhA7FwkYgBqGJBZ6PKBMmTLD54B43bpyxbt26UF+jUDgWioX7CwaGdtm6+CJRgzELG7E1PmELaJXcunVr1bZtW7Vz584gr509e1YKikw6d+6sqlSpEuJ3MEZBdI9hnDt3ToYZVapUyemNO3WEYmHnNuW2gJNk4sSJqkSJEqpBgwYyyQ7s27dPlS5dWtWoUUMC1WFBoSC6CwbODySLYE4L2nq4ug+VDlAs7Nym3FaQzYS2yegjVb9+fbVixQpVoUIFdfv2bTmB/P39Q/05CgXRXTCQPt6kSRN15coVOW+SJk3q8G0lbPfhcg4dOiTWBFL/cBLApP79999VokSJQryXQuFc2O7DPVuDfP3117JQW7VqlVjhxDnQsnAxhQsXlroNCEWuXLnUypUrKRREKyJiYaCD7LBhw8TKp1A4F4qFG4Ce+z/88IM6depUkL5PJrQoiLdji2DMmDFDkkNQpIriVOJcKBZuAkaijho1SmZoWwoGhYLoQniCMW/ePMkgbNeunfr++++DzJUnzoEpBG4EVkuYstevXz8JfHfr1o0tPIiWgoEYBgQDMQwMMEJX55YtW0oWIYXCNVAs3IxvvvlGBKNHjx7SGK169ers9US0FYzRo0fL4umTTz6R5oDos0ZcA8XCDRk4cKC6ePGiuKVSp04dYgIeIToIxvXr10Uo0BgT8YoYMWK4erO0hmLhZiBGcfDgQTG5MS4Vrin4bi2HKhHi7aDQDq34kfzRvn17KVh19sQ9EhTueTcay5ozZ045GVCd+t5774lFET9+fGlPDtdU//796a8lXg9a8Ldq1UrEYubMmVJ/YRnDoGC4BjoA3WQsKwYbLVmyRJ05cyYwRoFAHlxSGMn67bffSjESThxCvBXEJXAufP7552rWrFnienLliFbyHxQLF4LVEhqgIWjXpUsXlTlzZkkNRFW3JX369FFjxoyRqtUvv/ySJwvxOrAIQkpsmzZtJI38p59+ChLMpmC4HoqFC4HryVIo4GZ6+PBhqONaUYg0ZcoUqWDFiNYHDx64ZJsJsTeYbgdLAvE5LIzGjx8fqruVguFaKBYuBDGK4EIRXttzrLrWrl0rFgnMclR8E+LJoB1/xYoV1fz586VBJ1yu4dVRUDBcB8XChXO8IQ7FihULIhTW2p5jtsWePXvEIsH7IB6EeCKYGV+8eHFJE9+6datq1qyZTT9HwXANFAsnAzFAl1nEJWAZHD9+XP3xxx8RansOiwTvRSC8Vq1a4utl4Jt4EosWLZKMP6SH7927N8JzYSgYLiCKk/ZIBMCM7ujRoxvdunUzxo8fbyROnDhwjndkePXqldGzZ0/5HS1atDD8/f35fdgRjlW1PxgF3LdvXzlmGzdubDx79sztZnqT0KFl4UQQuA4tRhFaQNsWkFaIVs1waaGICb5fVL0S4o48fvxYffDBBxKXgAU9d+5cFTdu3Cj9TloYzoNi4STgJkqVKlUIoYjIHG8z1oF7S1C8tG3bNvXPP/+IDxjVroS4E+fPn1elSpVSmzZtkul2cMfaqyEgBcM5UCycCPo8oTmgpVDYOsfbLN5D903cB2//gXneEIl06dKpsmXLqgULFjjkbyAkomzevFkWMehCgFgbUr/tjSkYCRIk4BfkKMJwTxEH8ObNG7lHjGLOnDk2xyrwPnxVwW+h/Tx8wE2bNpXXW7VqZTx48MDuf4cuMGYRNZ4/f2707t1b4nSVKlUy7t69azjrHCP2h5aFEzHNbqyAkCZoawZIWDGN0J6HDxiZVdOmTZP2Ifnz55dsK0KcCTKcihYtKpl6gwYNkhTvZMmSOfxzOevCcVAsPICwYhphPY8T5n//+586duyYypMnj8zEwGNL9xchjqrG7tu3r8QnMMBr//798pjN/zwfioUHAAukZ8+eQZ6zJdaRKVMmsSrQZwd57bAy1q1b5+CtJboCYUCRKeawoPEl4hMFChRw9WYRO0Gx8BCQIouTLyLFe6aV8cUXX4iVkTt3blWtWjWZZYw26ITYy5rAhEcsXmLFiiWJFniM/xPvIRoCF67eCOKY+RhwU1laH/iq0QIaDduSJk2qpk+frqpWrcrdHwYvX75Uq1evVjVr1uSFL5yWHS1atFAnT56UqXZoBEiR8E5oWXgZ4aXYwspAM8KjR4+KkMDKgNVBK4NElICAABEHpGwjHgFrAvVDFAovxgEZVsRFRCTFFimGkydPNuLHj29kypTJWLJkCdMOg8HU2dDZtGmTUbBgQSNmzJjGt99+K/uJeD/aWhbDhg2TQqGECRNKZXX9+vWDtPy+d++eDGHJlSuXpKMiWIzBQ8EzirBaD35D6w1LMO0uQ4YM0jgtsq097J1ii+1s27atxDLy5cunGjVqJKvEjRs3Omz7iGeD2fCwRjHuF5lOSI8dMGCAW1kT6GRQp04dKU7FMb5s2bIgryPwjtgdxhXDFVu5cuUQHRGyZMkS4pweHixGiNR0dGMoUqRIiJ/3VrQVC7RE7tChgwSL169fL/5p+O+fPn0qr1+7dk1uo0ePlgvq7NmzJVccQ1qCg/GP6Mlk3iA8Jn/++adatWqVWr58uWrcuLHq2LGj26TYmicG/PKoskWvKZw82A/wRRMCzp49qz799FOpm0BLmd9++03Om8KFC7vdDsL5W6hQITVp0qQwz4WJEyeKK3bHjh1y/ON4v337dpD3oTbE8pzu1KlT4GuXLl2SCZdYFCItuGXLlkoLXG3auAu3bt0Sl83WrVvDfM/ixYsNHx+fIN0t8TNLly4N82f8/PyMevXqiakOd1Dx4sUNR2J2oTVvvXr1svln4Zr6/fffjdy5c8vPfvzxx8aZM2cMXdHdDXX9+nWjffv24m5Knz69MW3aNI/q7Grt3AQPHz6U923YsCHwucyZMxtjx44N82eOHj1qFCtWzHjy5Ilx/vx5I0uWLIYOUCzegosiDhocCGGBkyVFihRBd6BSRrp06YzkyZOLEMyYMSOI7x8XmmrVqskJlyRJkiAHpaOIaDuR4OCCMH36dLlAYLvbtWsnFw7d0FUs0CIGbcTjxYtnJE2a1Bg5cmSUW4m7Amti8eLFC2PUqFEyKuD27dtBxCJ16tRGsmTJjMKFC8vf/zKYSKKVTowYMYy4ceMac+fONXSAYvG2x36tWrWMMmXKhLmjcDAhEPz1118HeX7QoEHST//AgQPG8OHDjdixY8usiuDcvHlTDk5PAhcInEy4YODCgQuITr2mdBMLzEP5/vvvZeGDiyD6Ot27d8/wVMISC1j7SOyIFi2aLPT27NkT5HXsg82bNxuHDx+WJBAs8rp27Rri99y5c8cjRTSyUCwMw2jbtq2sJi5fvhymqVqiRAmjevXqVi8c/fr1MzJkyGB4E/fv3zf69OkjFxBcSEaPHm08fvzY8HZ0EQssYmbOnCmLIayWv/jiC+Pq1auGpxOWWMB9BE/Crl27xEKAGwmLubCAtyBmzJjSGFFntBeLDh06yMUdvsfQePTokVGqVCnpmmnLJLqVK1fKQeqNBxYuIG3atJELCkx3TPwLa795A94uFrhADhw40EiTJo0csw0bNjROnjxpeAu2xCxAjhw5jKFDh4b5+rFjx+R3edO+iQzaZkPhWEJm0tKlS2UgS9asWUO8B8VqyJTw8fGRgS1IF7QGZmsjJS927NjK20A64pQpU2SQDdJukQWWI0cO1aBBA8kuYzMAz0mB/eyzz1TGjBmljQyy9zALHl2KkSquG2/evJGWJeGd09GjR5cUe60xNAVBW6yOt2zZIsFb82b6IOF6KlmypFGgQAHj7NmzQd6D2ddgxYoVEvRGUBxm7Y8//ii+/f79+xs6AHN+ypQpRt68eWXlVahQIXmMfecNeJNlAat4/vz5RtmyZeW7ypgxozFixAinzJhwJnCPHjx4UG74O8eMGSP//+eff+R4hTsV7qeLFy8a+/btM1q2bClxRlgPYOfOnZIJdejQIePcuXMSvE6ZMqXRvHlzQ3e0FYvQKp1xmzVrlryOAFdY77lw4YK8Z82aNZItkSBBAgmYmRdLBMx1Atlf69atM2rXri2DbiCY8AXjpPTkYTTeIBbHjx83unTpIpk9OHbLlSsn1fqelAIbEcI6b1u0aCGC2aBBAwlqIwU+bdq0Rt26dYMEuPfv3y+LRCwk48SJY+TJk0dcVM+90K0cUdhIkNiVK1euiHtqxowZUsCFtujocouCxBQpUnjU3vbURoJPnjyRwjk0jdy5c6fsd7idMNNERzcTsQ8UC+IQXr9+rTZs2CAXLMR74BcuU6aMqlu3rrRj8ISLlieJxeXLl5Wfn5/cEINDo78qVaqIUNerV0/iboREBYoFcTi3bt0SwcANAuLv7y9tFyAaEI/SpUu75SQ1dxYLiC9askAcsF8RhMU+LF++vOxXCARaWRBiLygWxKk8e/ZMmhXiArdy5Up148YNmc2MCzKEA43qEiVK5BbfiruJBUQWVoNpQaB3WZIkSWT7IBAYn4vHhDgCigVx6eoYcxAgHLj4HTlyRC7KFSpUEOHAKhkzxF1ldbhaLLB/0MQPDe+wfzASF2KbPXv2QHceOhm7g5AR74diQdyGixcvirUB8diyZYtcrNEeHl1EfX19A2958+Z1ioA4UywgDGglD9cSZlnjhnoI1PqgRXapUqUCBQICiucIcSYUC+KWPH78WC6W5oUTN8wbQdYziiNNAUHbbNxjJoe9L+iOEgsE/yEMln8b/lZkMQEUiFqKI25w1RHiSigWxKMEBIFcy4ssZj9DQFAxX7BgQRlskzZtWqk2x73lDQNvnCEWz58/l1gM5iAgrmA5F+HMmTMiDObclGzZsgURBYgfhYG4IxQL4tFgNQ4BMd03586dC7xI46JtCQLnpnBYiknKlCkltRSuLdwgDKaba8+ePXIBB69evQq8QUju3r0bQgzw+P79+0E+F7/P/CxkKJnCgClraA1DiCdAsSBeCawNjMC1vIhbXtQtnzPdPxEF8RRLyyW4NWM+hqXAGAPxdCgWRHvQRA6WgqXVgHszVRXFbfHixQthecD1RREguuB+lVCEOBlc9EPrEgzRgGWQKVMmpqcS7dG2RTkhhBDboVgQQgixCsWCEEKIVSgWhBBCrEKxIIQQYhWKBSGEEKtQLAghhFiFYkEIIcQqFAtCCCFWoVgQQgixCsWCEEKIVSgWhBBCrEKxIIQQYhWKBSGEEKtQLAgJ6+SIHl1lz55d7gnRHQ4/IoQQYhUumQghhFiFYkEIIcQqFAtCCCFWoVgQQgixCsWCEEKIVSgWhBBCrEKxIIQQYhWKBSGEEKtQLAghhFiFYkEIIcQqFAtCCCFWoVgQQgixCsWCEEKIVSgWxOvZtm2bqlOnjkqXLp2KFi2aWrZsWZDXnzx5ojp27KgyZMig4saNq/LmzaumTJkS5D3Pnz9XHTp0UMmTJ1cJEiRQH374obp582aQ96xYsUK98847KleuXGrlypVO+dsIcRYUC+L1PH36VBUqVEhNmjQp1Ne7deum1q5dq+bOnatOnDihunTpIuKBi79J165dlZ+fn1qyZInaunWrunbtmvrggw8CX3/x4oWIyY8//qgmTpyo2rVrpwICApzy9xHiFAxCNAKH/NKlS4M8ly9fPmPQoEFBnitatKjRt29f+f+DBw+MWLFiGUuWLAl8/cSJE/K7du3aJY8fPnxoZM6c2bh9+7bcsmTJYjx69MgpfxMhzoCWBdGe0qVLixVx9epVLJ7U5s2b1enTp1XVqlVl3+zfv1+9fPlSVa5cOXBf5c6dW2XKlEnt2rVLHidKlEi1bNlSpU2bVtxdsCwSJkyo/b4l3kNMV28AIa5mwoQJ6osvvpCYRcyYMWWM6rRp01S5cuXk9Rs3bigfHx+VJEmSID+XOnVqec1kwIAB4sLCz1MoiLdBsSDaA7HYvXu3WBeZM2eWgDjiD7AQLK0JW0icOLH2+5N4JxQLojX+/v7q66+/VkuXLlW1atWS5woWLKgOHTqkRo8eLWKRJk0aCVY/ePAgiHWBbCi8RogOMGZBtAaxCNzgOrIkRowY6s2bN/J/X19fFStWLLVx48bA10+dOqUuXbqkSpUq5fRtJsQV0LIgXg/qKM6ePRv4+MKFC2I5JEuWTILU5cuXVz169JAaC7ihkBo7Z84cNWbMmEDX0ueffy4ptvgZBLM7deokQvHuu++68C8jxHlEQ0qUEz+PEKezZcsWVbFixRDPt2jRQs2ePVuC1H369FHr1q1T9+7dE8FAwBu1FSjiM4vyunfvrhYsWCA1FdWqVZOaCrqhiC5QLAghhFiFMQtCCCFWoVgQQgixCsWCEEKIVSgWhBBCKBaEEEKiDi0LQgghVqFYEEIIsQrFghBCiFUoFoQQQqxCsSCEEGIVigUhhBBljf8Ds9lGCW15RfAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -567,7 +567,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF8CAYAAAA+d5cqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAglxJREFUeJztnQf8lvP6x79lZR0z61COUcc4J8fOikR2RoQoZatQsilC5I+iIaNlZCvt0hLKyioHoYysyshMxf1/vS++v/P09Dy/Z933/b3H9Xm97tdvPb/nucf3e32ufdXwPM8zCoVCoVBUg5rV/VGhUCgUCqBkoVAoFIqCULJQKBQKRUEoWSgUCoWiIJQsFAqFQlEQShYKhUKhKAglC4VCoVAUhJKFQqFQKApCyUKhUCgUBaFkoVAoFIqCULJQKP5C3759zdZbb21q1apl9tprL/PKK69U/e399983++67r9lyyy3NjTfe6PQ8FQoXULJQKIwxjz32mOnUqZPp2rWref31102DBg1M06ZNzYIFC+Tv7du3N6eddpp55pln5Jg+fbrrU1YoQoWShUJhjLnjjjvM2Wefbdq0aWN23HFH079/f7PWWmuZgQMHyt+/++47s9tuu5l///vfZosttjDff/+961NWKEKFkoUi9Vi6dKmZOXOmadKkSdXvatasKT/PmDFDfu7WrZv8DIHwN6wOhSJNWNX1CSgUrrFo0SLz+++/m0033XSF3/Pze++9J98fccQRZuHCheaHH34wtWvXdnSmCoU7qGWhUBSJNdZYQ4lCkVooWShSj4033tisssoq5uuvv17h9/y82WabOTsvhSJKULJQpB6rr766BK8nTZpU9bs//vhDfm7YsKHTc1MoogKNWSgUxkjabOvWrc3uu+9u9txzT9OrVy/z888/S3aUQqFQslAoBC1atJAAdpcuXcxXX31ldtllFzNu3LiVgt4KRVpRw/M8z/VJKBQKhSLa0JiFQqFQKApCyUKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUCoWiIJQsFAqFQlEQShYKhUKhKAglC4VCoVAUhJKFQqFQKApCyUKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUeUCPTe2zqVD8CW1RrkgsmKtN2/Evv/xSji+++KLqK8fnn39uFixYYJYtW2aWL18uB//Dz/YrWG211WSS3qqrrlr1ld9xbLTRRmaLLbaQ4+9//7vZfPPNqw5+R4tzXh8nTJs2zfzf//2fmTlzptyvYcOGmWOPPbba/5k6darMBHnnnXfMVlttZa655hpzxhlnhHbOiuARr1WsUGTg119/NW+99ZaZNWuWCH4OSwTMpIAoEPrrrbeejE7lYIY2Avzf//63Ofzww0Wo16pVS+ZrZ5IAxw8//GBeeeUV07hxY5mcB3ksXbpUSIWvHHzO/PnzRai++eab5tlnn5XPXbRokfnuu+9MjRo1hFAYz2oJxZLLTjvtZP7zn/+Yv/3tbyZKYOhTgwYNTNu2bc3xxx9f8PXz5s0zRx55pDnvvPPMww8/LBMGzzrrLLm3TZs2DeWcFcFD51koYoFffvlFiAFt97XXXjOvvvqqef/99826665r6tWrJ4IJEuArArlOnTpVx9prr13WZ0IOY8aMMUcccYSQR6lYsmSJ+eyzz8wnn3wiXy2ZMdsbkvnggw+EVLbZZhuZ0LfHHnvIeNddd901MgQC2RWyLC6//HIzevRoM3v27KrfnXzyyeb777+XAVKKZEAtC0UkiQEtHWKAFCCHOXPmiADdYYcdzL/+9S9xeey3335m++23NzVrRjP0hsXC+XHkw8cff2xefPFFsWBGjRol7h/IJBeBYCFFETNmzDBNmjRZ4XdYFBdffLGzc1L4DyULhXPgxkCDf+mll6qIYf31168ihs6dO5v999/fbLvttpElhnKx9dZby9GyZcuq32GFPP/880Ig3Jfbb79dLJF//OMfQiB77bWXOeyww8yOO+4omr9rcG7Z42f5GTcersI111zT2bkp/IOShSJ04P9HEI4YMcIMHz5c3DH47tGicWlgMaBZJ40YigUB4lNPPVUOC+IiEAiW1jPPPCMBZOIgzZo1M8ccc4yQaTmuMoWiWChZKEILmk6cOFEIYuTIkeLPR8B16NDBnHjiiRJ8VuTHlltuaU455RQ5AFo7pMHRokULCbZjbRBb4OsGG2wQ2rlBWrjOMsHPuA3VqkgO0qm6KUIBwdx7771XAsRkBEEMZCfdd999kjFEUPT8889XoigDCOLTTz/dPPnkk+IGevrpp82GG25orrvuOrPJJpuYRo0amV69epmPPvoo8HNp2LChZEBlgqwwfq9IDjQbSuEbWEpvv/22aLu4l/h+5513Noceeqhov7ia4uRaqjQbyhXee+898+ijj5rx48dLDIhYD+4qDuId1IpUh59++sl8+OGH8j3P7I477jAHHXSQkBHZZVdeeaVkdj3wwANVMSeec7t27STddvLkyebCCy8UZUBTZxMEyEKhqAQLFy70br/9dq9+/fremmuu6TVu3Fh+/uyzz7w4Y+nSpd7w4cPla1yxaNEir3///t5RRx3lrbfeet6WW27pde3a1fv000/z/s+UKVNQIFc6WrduLX/na6NGjVb6n1122cVbffXVvW222cYbNGhQ4NemCBdqWSjKDlJTtXvPPfeIFUGBWatWraQYa5111jFJQFwti3wgrkHR3MCBA83LL78s6a7nnnuuFNTFrcpcET7i4xNQRAK0x7jlllvMdtttZ0444QQJYE6fPt28/vrrklefFKJIIlZffXXTpk0byaqiLQfPkKprgudXXXWV1HwoFPmgZKEoChTJtW7dWtI6qei97LLLxG89ePBgKRpTxAsUCt51111S00FMghoXKuHJpnruuee0gaJiJShZKPKCzCWybEhx3WeffaTACq0UFwYa6VprreX6FBUVAvcT9RwEpemxRdYadRv0hho0aJCkOCsUQMlCsRLI4aftBBXDF1xwgaRAzp071zz++ONmzz33dH16ioBQv359M2DAAPPpp59Kb6cbb7xRXFQUAJKeq0g3lCwUVfjtt9/EJUH7iYceekiEBILj1ltvlcIrRTpADypiGFTW33333eKWIv326quvNosXL3Z9egpHULJQiLtpyJAhEvDs37+/6dOnj3njjTfMOeecI0FRRTpBTQzV9bgecUfSQRZrk15V6p5KH5QsUgyCmLTeYLYDWuOll15q3n33XfFhx6l4ThE8KK6jLxWKBOnSBMhJbkDRUKQDKhFSihdeeMHsu+++kuHUvHlzqdil6rZQda8ivUCBQJFAoSAbDjclXYHp96XZU8mHkkXKQMYLRVhoiqS8QhLXX3+9zF5QKIoBCgV9vlg7J510ktRukC2Hu0qRXChZpARMa6PxHG3A6fHDlLnevXvL9wpFOUDBoHEhzQpZV4yppdodhUSRPChZJByM7aSymrRIxlwSuH7wwQclJVKh8AMMqqLAjwaG1GlAHKeddppWhCcMShYJBT7kRx55RAKRjCelhTTBbKbPKRRBAAUERQSFhBRb+oWRiq1B8GRAySKBYPDMcccdJy2jKa7Dl0wwW6EIAygkKCYoK5DFAQccUNXyXBFfKFkkzJpgjgGbldYc+I7pAqtQuABtQ2hYSJEn7UMYxkS3YkU8oWSRoG6wxx9/vLTnoCssg2/+/ve/uz4tRcpBNTht0YcOHWpuu+02tTJiDCWLBICeTf/85z9lzjXT6ai8ViiiBKb0YWXUrVtXrIw777xTrYyYIbVkQc8bKpeZZcxBs7yxY8dW/Z3Z0QceeKD8rUaNGpJJlA3Ma/6WeaDVZ4J502wQxlPSrdVva4KZEgywufnmm82ECRM0y0kRCyuDfmPMCQ9jRrgFe5M9SnagBXs8ew/TUTkTFB3Wq1dPMgpHjRpl0orUkgVClcVDphBzihs3blyl/YBffvnFHHbYYdJQrTp069bNfPnll1UHxUoWtgkfcQTaaVC85Kc1QWyCDrFYExCGQhEH2H3GHkRhI+02aCuDViW0KeHzsnH22WevsIfZs5nNNUkU6devn7Q6Of/882XiYCoR8hjXSGODDTbw7r///pzziL/77ruVXl+3bl2vZ8+eed9v1qxZ3u677+799NNP3ty5c72tt9664nNcsGCBd/zxx3vrr7++d/fdd1f8fopkz+C26NOnj6zXNdZYw9tzzz29l19+udrXs67r1avn1apVS+Z2X3zxxd6vv/7q+3k9/fTT3hZbbOHtv//+3kcffeQFgR9//NHbfvvtvWeffVZmh1900UVVf8v+ORuLFy+W+7Zw4UI52MM//PCDl0ak1rLIBHngaP/4/HFHlQKsEwqRcDORprp8+fKqv+28886iyWB+k3POfIBK8Oyzz4o1QQ471kS2uawoL4OMWdtkj/H8f/rpJ/Pjjz/KPSYFGWC9cfA3XsNr0S7j0g/pscceM506dTJdu3aV8bfEDGj3ghszF3ATXXHFFfJ6+kAx44L3KGRllwNSvLEytthiC9kr1Gn4DSwDWtwwczwXcI1tvPHGsl+vvPJK8SpY4IbGI7D55pvLOWJZrLvuuiaNqAFjmJSC1FLIgXbLzI5mk9CuIBNTp041Bx10kPnuu++kUjUT5JDvuuuu0jKDOdQsNBYWv8/EN998I1PlmFddDnhEBATZrBAOPlftClscCfBs7YFLIdfPtmgs23dtiZ9pcrxf5gF4BmussYa0vbBH9s8ctHnn/Vxhr732kqpq3CgAlw/jcXGZQgrZaN++vZAEhZwWl1xyicTcaEAZFHCt4hLi6NGjhy9NLVECb7rpJnFD8SyIUeyyyy6Sxmtjk8QUIQIUsMsvv1wGfNGSPROLFy+W551WogCrmhSDgBWzpVkITz75pHRgZdDLjjvuWNT/o61ZoBUhFGywGaFhgeVRLhBoaDMUOQ0fPtwceuihZb9XUoFQ5xmShMDB91gACEUETrbwhvQzhTskDiFkC3TIZsyYMXLPV1tttarfQxZ8Zi7ywfqgxYr9Ha/jfVEWsDD5bPs1jFkhWEDE5VBkLBB6aNkzZszI+T80BWT41SuvvCKCkymJ3Ad6iwUJmhISSCYFHEUOayZbQSsFzBe/6KKLxCLP1ygzM3OQDrpYEAcffLAE3hn4ZLHeeuuZtCPVZMFmZeAPoAMr2gcaPIGwcjU4hAM9cSCiSsEoS8x0hB8b255rmoEA535kkgMCGqGPYOGgvgRLkd9lCnm/gPDnfTn4nOpgSQXy4lyxUFkfuDogkEzyCIJAIC4sp0033XSF3/MzvZxygTbk/N9+++1XRYy4PINwQ2UDrR+SYt1DVGQfQSDlAJLE1Yb1b8G9mDZtmlhZPJds64U9DKgFySQLRcrJIhtooiygcoGVgta2ySabVHwu+JaPPvpo8S+jGRUSSkkF2jmkiSvPEoO1DhCyEIO1FKIILBaOtddee4V1gcafaQnRFdgSCNeFNcooW/4vbOB67d69u2QAITwRnGjoN9xwg7n22msD/3ziB1OmTBGLGsLAwiDGUiqwELI74OImpiYJd1MuNxd7GGBhKFZEaskCs5yWynXq1JGAJvEKNgmVzwABxWGrTVl0+Ct5PTEKNH18uMQz+D0/d+zYUbptbrDBBhWdG5ujbdu2Uo2N7zZN8Qk0WYLJ9v4jSLmftWvXjjwxlAIsCMgjH4EQXCfwi5IAaXBwH0qNfSB4EYo2WG/Bz/nmqkMIuJxsqxjcM1hGuGxIAQ9jPUKw1Cjx2VgZEBVu31Kun31J0DoTkC9EzO9xNdk4Jb8jZsEepso8V4pt2pFassA8bdWqleRVo8mxOCCKQw45RP7OLGqGAlmwgMCgQYPMGWecIS4Ogmf088caYTYxCy0zjlGOZcNGJe+czw/aRxwV4BrAcrAEgdBEiHJPcZdkxn+SjEwCwfWCy411yj156aWXRFBa4oA8EajFvCcuVoLVxx57bNU642cC2bmAhZNNCFYLDzsfhumNZBKecsop5q233pKAtF/KAvdm4sSJEuyGDAn6U+TKBEDFykh1NlSUgHXTsmVLae/81FNPifmdZEAIaLcIQgQigs8KQqsNu4YNcKN5BhH7KAUI+G+//baKUEnfhTAgU+5ZdZl2WKokbxCLY10hHMk8ImbB/6M0YbWRmAFQgMjoQzBbNxQuIUiH93IBrACK+bAMSPRQN1H4SK1lESWQbXLUUUeJy4Egez73QNyBXgIx4J9H4JHDzrUycwPrzmV6adSBpg+J2noAlAvu4fz588VFyu9JAUWIZlsFLVq0MAsXLjRdunSR/yGIPG7cuKqgN50GMv8HzZpnwdfPP/9cSIn4GSmorkCwGbfvySefLKRFC47dd9/d2fmkEWpZOAZxElIF0V4HDhwYSjpl2EALRiBBEmjIxH0QbC6Ct3G1LAolAXB/OThn3Cnc3yTWBLB+yMpiJPD9998v7ilFOFDLwiEo/CEgTqUs2RlJAjoI6ZdYTbib8MMTrESbTVPAPgzgwyfGgYXGPYeUUUIIiG+zzTZibSTFamPt0DWBGCMBd9ZWZmNARXBQsnAEpoiRbUIgG59xkoLVFENBEgT+0XAhCVJCFcECQsBlxMG9x9KYPXu2HJAGzyLKFlIpoBYExQOrHMsqVyW6wl8oWTjA4MGDJS2WzCr8yUkAwokgJAVnBFvxMdNVNAqB6jSCDDIsDZ4DcQqeDQFtXFQUd0bdBVhsHQVFe0zkgzCw0JNiQUURShYhA0uic+fO0ryM/PG4Ax85goiDXHV6EBFs1U0bHbcNfY84qN/gOU2ePFlmseC6inta8v777y/BehoFQhhkdOnaCwZKFiGClEXqKEhbzG5YGMdAI1bE+++/L1lce++9d0U9sBTBg4JGMomwOGgUSGcArAysjzi7p0jv5VqYP0MyBftMCcN/KFmEhNtvv12K/KihiHMzQALXpGvi0sDFRGt2fMe6OeMDUpYRsBRC/ve//zXz5s0TKwNrI65uQ9YhhMHeopcVvZ90TfoLJYsQwMKFKBhYT6CXxVxM9W0UayQQLrie6K+D/1s3ZHyBJUizQDKKeK4kJfBciTXF7bli6VLoiVKGm5cMMfZb3K4jyoiXxIohyAUnUwOLgoAchUW0bsBtExfCoHIYYUIhWNw1UMWKsC1EsA7JYsM9RcU2bfpJd46DsIUoaLxJT7HmzZtL0SJte0i0qHTgmOJ/iIe0iimYCUC3TtJkbddMzP+4EAYBQ5qrYVHg1+bc4+zbVuQHpECxJG0/iEUhfCnqo+txlIv7Moli3333lYA95zx27FhxSfFzGJ1y0wCtjgoITzzxhBQNkSZLap8F5IDQZXNCGJljWKPkckLLJGvGDsphnKsSRfKBxYhiwDOnBQvDwLA0otjoIRdRWBDIJ62WHleMO1ZUDiWLAMBUOxq30WL5xBNPXOnvUSYMrAmGz9Aem6Ah/XeS0BJcURpQDCimZOwwlgbjVJklEgeisODcaTpIe3M7UlZRPpQsfAZtlOlXQ/oeXWTzIWqEkWlNoF02btxYO3sqJAjO3GrSbmkhEgUroxiisGjUqJFY+Zdddpm4phTlQxsJ+gh8+5i/BNl69uxZ1P9AEsQweAyuYhhYE5AcIz/puUMBlyI+jQTDAqm2tNBHOGN1upjeWApRZALLgsFN7DUyvhSlQ8nCJ5C2x9Q8NhAaTCnN8lwRBp9HC2qC2LbRX9wrev2EkkXutUrGFM0KiWPRcyqsjKlyicKCOeIMO2IMQKXTLNMIJQsfwC08++yzzYsvvihCn6KnUhE2YdhMJ7RFskfUmlgZShb5QXdbrAziWWFYGZUShW1yiXuVZ0mLkChnIkYRGrPwAZi4BNIYyFIOUYQdw4AgpkyZItYPm0eJQlEq6P+FJW1jGVioUSYKQCyOsQBUrF966aW+n2fSoWRRIZhlzCwKGgPSc6cShEEYZLbMmDFDXAhkOqnbSVHJesV1yTp68803xT3lt6PCL6LIDNij2NHxmUNRPJQsKgAdPAlm08rDFt1ViqAIg02H24kNjZuLKmxFfNG3b195hriBWC+kO1cHOs62a9dOMtwQuFTi42LzA1SA0/2VnmGch59r1k+isIDgmErJ/Zg+fbov75kGKFmUCRYwc7MpuPPbpPWbMAi+Y03gfiKVEBeCIr547LHHTKdOnWR+A8KUmBPKCtl4+Z4/7S+wKp988knpFEwNENXafgH3K2uLtfr888+bn3/+OZJEYcHQJDwCxx57rKSMKwpDA9xlgEAZJEHPJCpcg5qb7UfQm83Ge1CNu+uuu2pQLwEBbhQJ5obYQjMEK00dO3TokHNiHDNUqGKmU3DQ18G5MJmPGIadbRI1osj8HIaPUTtCcopOc6wealmUgWuuucbMmjVLfJ9BEYUfFgYT0tDyECRsXCWK+AMrYebMmdKOw8K2ZMF6zAUSL6hmxu1Cw0Aa7XXv3l2UHr/BuVCrQ0yMNUswOYpEYc/1wQcflP11xhlnOC82jDpUepQImgKi0ZEBwsYLGpYwSmk+yKL/4IMPzJw5c8Sa0Gyn/EBgkkbMwWhYhBX3j69YjgA3BRo5QgUBg4JArIAjbAImZZVzzl57/IzlkAu0Hqcyn44CWEpo0oz1xXLClRUEiKfQgJAYBoKfOEGh2qMwicKCZwiZ7rnnnkKgFO4pckPJogQQID7rrLPE30uldlgohTAQJOS/I+gIOuJ+SjMQiAR3EUCWFDLJgb9DAggmDtIr+ZkDwQy++OIL+WpJhP+zxMLrLXFkHghK0kqjkG3GeVJ0ee+998r5snZxE+GaCoosbOYRcQzWLVYP1m0+S9wFUVgwv4PplcR9UK4OP/zw0D47TlCyKBIIldNPP12OU089NfTPL4YwbIwDwmCTRkFQuSAGjsWLF8tXAq0Ib0iT+QYUj+FHzxTsCLBcVcg2ZpGrNTvEwd9zERBETTCZz+Yz+WyIwx6VPBfOHYHPwKJM8DNZSblABhTnnzmDBDcRbkrcWkG6UokDoLTgOqMZ4T777LNSY0qXRGHBEKhu3bqZNm3aSMagVnivDCWLInHTTTeZX375RRoEukJ1hIHg4neY+mzINMQnEHQISQ5LDAhnBDICmlhNUNo95IKQ5chXiJlNXrizLHkhjND2cR9xzsWCz8MyoL6HTB4rbPm5ffv2Of8HATx06FB5nXUF4aKERIIkCgvWIlYFFi+BZNanveYoEIVFx44dJQ554YUXSixDsSI0G6oIUHBEgJAWAWjsrpGdJcVXzHw2Jb7XJBMFbbLRiDnQ4BHUCFxcHhCEn8ImiGwo3hPi4NwhOZo3ct5YBRxcT6FeS6TO0gL/nnvukeeNAoMbhZgF96JVq1aSFnvzzTfL6yGpnXbaSf6HjCniWW3bthWhGKaPnnXKXsK9BzFAmlEhCgviObiiKLI9+uijXZ9OpKBkUYT2SoUqZmq/fv1MVJDpcuLA3Oc8kzbulOWJYLUEgXWHK8YK11K08iimzuK2gjS4Nuok0PQR+Gj9EGC+50mSBTEH/m+XXXYxd911l1idgJbiBJgZvGWBMoHmjLCGSM4880ypMwh7vfA8if1xzRAjzzMqRGHBwKRbb71V3VFZULIoAAKAmPCkykZtCBAbzc6fYL53GC6FsIC75tNPP5XupixRBCjkULt27dBqHsKus4D00botMfIzwVcEf7k9x6IIrotsQp4x8YyoCWRcY3gQ6tatK6ORFX9CyaII99P48ePNAQccYKIEBBmtCtDIbP1F1Gd6F7NJEZIEhxGaEASCEt9+WG2wo1KUZy0qyJLMJVxVCC/II87Wo41R4IrDclq4cKFY7UFaiOW28qGbrrqj/gcli2rcTwQSIQn68EQJkENmjIJH6HqAUqX3GqFoC7ggiDp16ji35KJSwc39oe8SJIrbCtL4xz/+ETkBWwjZwWwsYVxSljBcP+9sMMDslltuEXfUhhtuaNIOJYs86NKli3n00UdlMUdpEdtYBYAYrJYZhYl7peLXX3+VrBwCsGQtMUgHV1Mpg6PSQBYWPFssLorsiG8Q16AhYBxcVPmynrgmsqQI9EMYUYpdcM7Ef7Dmhg4datIOJYscYPGS3jdhwgTxqUZp8dqgdnV1FlEnDDRlSAJNGXKgtXsUiwejRhbZWWG4SojrELBmVGhUexsVSo9lvVKH8eOPPwphROleW3fUgw8+aJo1a2bSDCWLPO4nAly2UVtUQJAdkx0Cy7ehokwYnBtaMambmPUUhmFRRBVRJgsLgsSkzH755ZfivsPSiFKiQ7F1FLyOOiEsZVyrLmJU+UBqcvfu3cUdRZwlrVCyyMK1114reexRcz/h03/nnXeExNZee+1qXxs1wkAQcP60xsbPvuOOO0pWU9QRB7KwIGD83//+V4Li2223ndl2220j8dxLqaNAUZs2bZpYSigSUQHXcdBBB0mPNXrDpRVKFhlgYbOoo+Z+Yg4FAW3y6IsVslEgDD6bvkpoZGiKCAD87FHSGpNCFhbENCAN0qrr168v1oaL+11uZTavp1MytSN+ztuoFPPmzZNzGjJkSFXlfNqgZPEXuA0IYwrbolR8x6ZH28K9QAC4FLgkDILXb731lrS6gCRovRGVwHWSyQLwvHFLQRq4pPC509gwLFTawoP06ddee03iF1FyU/bs2VMKIYljxC0TzQ/Ea/cGiGHDhok/3bZIiAIQ9rR4JghMqmQUZ3rnElQEXadMmSICtnHjxpLqGTeiiDN43rhMcJ0QG2JAF3GiMPRCP3o9sd6xilB0aM4YFVx44YWSeda7d2+TRugO/ksoM2HsoosuikxWjk0pROAzTKZcV0KYhIE1wQZHo0WbJVEgSsHWtIFgMYOOyOwjZoR7h4yjoOBnU0DiLrR1QVkKYkhTufezW7duEuzGYk4blCyMkR46aDCXXXaZiQpILSX3nG6dlWrlQRMGxEatRKY1QWxCEQ1gXWRaGTTL89vK8Lt7LGuVGAHniTszKt7y5s2bi0u4R48eJm1IPVmgDVOAd+WVV0amIAh/M24DBLxf5xQUYUCyaH9kaqk1EX0rg/Y11LdgZVCr4QeCajNu02gpQMRFHAXUrFlTXNV33nln1VCstCD1ZEG3TlxP55xzjokC2HBsPNok++0S85swSNOkIRwbSK2JeIA6AaqSad6HlUEwuRIEPY+CQDKEQUYdpBEFHHzwwXKt119/vUkTUk0WuHnQEvBDRqE5GxuPSlaC2UHNzfaLMHA70cgQ3zIZZGpNxAesAWZi4+Yh6wiXZzlunrAGF+E+43z5LGoxooBbb71V0mi5d2lBqsmCJmFkXZx44okmCqBoDdC6IUhUQhgIFVxOVJOj8UEWcambUKwI6hhIT8UthZJSSiA57Al3NJbEGmLdRQH/+c9/pBvtVVddZdKC1JIFbZ9xQZHZEAWQXUH+Nu6nMNJMyyEMO7oV1wXdeGkdrog3qGPgWRK7I47B10JwMQqVddqgQQMZmkRMLwq4+eabpQ4H6ywNSC1Z4G9Eq8L/6BpodGw+tPQwU3dLIQyCoRQHAoTLOuusE9p5KoIFbW1Ir2XtEccgFpUPLmdmc564o8iOioI7arvttjOnnnpqpLIog0QqyQJ3D/5G/I5RAH5PrAlS8sJGMYRB80KIgmIpKsHjVM2sKA7E7Ihh0AGYWBQxqSgRhQXtwnFH0bstCrjpppvEsnj22WdN0pFKssDPeMwxx4jfMQpBdtsG2VWVc3WEgcuJQruddtpJDo1PBAeGbNHLCQ2a50FKcjFg7grPpdKeRbwHDQiJRSGMiWVEiSgy3VFkRkUhdXXTTTc15513nswz5x4lGakji1dffdWMHTtWgttRcD9RpR2FeQ65CIPNiNZEHIWWHYrgQKfjTp06ycx3hDICsWnTpgXTRRHonTt39rXxJbEoLEgSGVBkokIU2e4oCI3Jga7RpUsXiYE++eSTJslIXSPBQw45RLS3++67z/WpSFsMhAExgKj0TrLNBym2I9hJWizupzQizEaCEDXV+naGCgKa5osdOnSQVjT5lA3WTtu2bSU4TZLE8OHDfbV66XZMrQNiIgpEYcH5YHnhPmONukaPHj3M/fffLy7uqOxlv5HMq8oDNCU2FZqAa7ARqUoNK/upFAuDNEUC2kxeoz+PIlgQrCV1tUmTJlW/Y03wM8I6H6gPwgo488wzAzkvrF2ypbAoqPuJClFE0R110UUXCVmjXCQV0ZFSIYAS/cMOO0w0tqi4n6I2P5m0RLJN0NYQDmF1q00zmEHBmsD/nQl+zldh/cILL5gBAwYEZiFb1xMWJi1CcEdFpeVGpjuKJpusV9fuqFq1apmWLVtKG/OkIjVkQTogc3Tx77oGfmY0I8giSkBLQ8PF2qFgK+z25oriQOfY008/XYgiCMsvO0aB9QJh0HIjM+gdBbBOyY6yBa0u0blzZ/Piiy+KByOJiM6A5oBx7733yjhPaitc+8FJlY2a+wkTGh8wWVm21YgNehPDgDCiMKLVb6GIRor2bA9+5hnZAUKAzY9vnGvH2kKLtAc/V9oqBoHPe1Bwlgl+zhUvQstHaFNBnHktgHNEcJLVVA7yBbNpucHzxy3G76LSBwxlhn1NfQjXXGjkcNBpvYcddph4MJA3SUMqAtxoxQS1KcQLyr9bLNDOGJPKRoxKGipC0m42Co2iOKLVj7gAhMjBvGq+MoUQIPwySYBgNs+G50RsiQmF/Mx9yCYWwP/g27c+fr6WOkkNUiZl1Q7WQWgTO2rfvv1KAW4+mzbjmbjmmmvE4kBQUa9TTq+uYrKeiA/gQiX7KkouVM4JV57rYPcLL7wgSTRkR0GwSUL8dn2ZU/AQdK1bt3Z6HmxytEKqZaNCFGwwLAq023zaaBwtDAQ7bjV8/sQEyOwiYG+FOanAjBpFIOaz8Gw2FL26cmVDsaYgDJIBLAEhJPiZ96XDK5YBsYdCwpu0WdYnwg7S6NWrl/n5559NmzZt5O+tWrUSlwstJiAn2o1nwo4fzf59sSg2PRark9ewFho1ahSZBpI8o0mTJskzcDmKdb/99hNLB8siXxZbXBHtHe8T0Lbw8boWcLif8P9GRePIHCxD9W51BBYHwoAQIAdLEJADwpprQ4D4Ldi4X9YayYwdQDIIVCrfUQ7QennmljhyzcNu0aKFvJ5MPc6fcx43blxV0JtRtUG5LUuto6D5Jq+lZolYRhTcqVhyeA+w3Dknl7jgggukXubSSy+NRDdrv5B4NxSLh42Hj9elnxUtcfLkyTJLIJewcAEEGe4McvWLdZtEzSWFZURsgedLEoMVyhyV9q/yq87CkhgxCAiB549lg4/bdeuUcgvuWAekoWM9kZEUFVcjbTdQalymfC9dulSeLRM4WTtJQeLJAvMewqBq2yWohEbLiEKLEYCLBvcTAoJsklIQBcJAAJPKyWxpBBzCl5RoP2sBgijK4z1xVXHexBg4Z2IiLhSISiuzifkQ69phhx1Eq48CsN5RHlCAXLp6zzvvPDmPZ555xiQFiSYL/MlYE4MGDTLNmjVzdh74UQl80eG21MBnELAdZGmZUG7NiSvC4Nzfe+892Yi4aBC0aLdBCIagK7hZFxAe5IEmjN+9VOIuF3618MDdZ92SUSjgZF1OnDhRrJ2gBogVAztmGKUgKpljlcK9szHgwDYaW2aKoQtg2TD9LgpEYQPaVhOP2kzv6iyJN99800yZMkU+mzGuBIIRUFFJFigVxFFIoT700EMl6E6OPnEALI4g4WevJ+4/QXUsZ9eFcYC1QUyFPeeysd9OO+0k8+gHDhxokoJEk8U999wjgUOXATh81PjSo1KAZ3vX4DqoFGEQBv5ftDQyXdD0DzroIIlBucyn9xsIazJosDwJwjPXHGIsZhBRqQiiKSCKR5Sm2HE+WLy52qyHiTZt2kjhZFK60SaWLAjeoqm1a9fO2TmwYNFwIIoopBgG0Y8qKMLg3mHC41LAXYNgo9FekocuYXnS7whChBghSHzwfgmboLrHRq1Pk1WGcFeWMirWb7Rq1UruNYktSUBiyQLzjyCXy9baWBS4FPCru0aQ/aj8Jgw0at4HooXYygnCxxkQIsRIPQ7aMVlHCJ1KEHSb8Sj1aQLEK1iXxINcoVatWjJjhG60SUBiyeLpp582zZs3d3oOaPGQlev0UoCWhcYVlDvMD8Kw1gSaGMKMuERa26MD0oBJtSYuQEJCuVZGWPMoKBok2SAKU+xYhyhp7EGXOTynnXaaJElEYQxspUgkWbBAqB9wSRakFZJbHwWrAgtn3rx5gfejqoQw0EbJrsKaIDDIuUbBdecapFsTLM20MsgIKxZhDi7iuWNdkCHlUqO3IIGDfVjdTPGg0ahRI7Ew7Pz6OCORZDFy5EgROC5T+RDOpHZSRRwF9xP9gsLo5VMOYdAqg3x9BGParYlCVgZfETyFJugBFxPurDsqClPsWItY9sQvXWGVVVaR5zZixAgTd9RMasosIyldAQGJOyUKVgXZT2yaXA0Co0AYBETRltnU9EVSa6J6wUNtDKmqpD8jBPO5WFyOQiVeEBV3FCnrVM7bppEucMwxx0hxXtxL2hJHFmTOkAV18sknOzsHTHAyW9gwLsEGQaCQahp2+nAhwmDjEEfB6sEKJDc+rvUSYYNutLilPvjgA0mxzc74cT0z27qjsH7o3OsSWPZY+C7ncBx77LFyL2bPnm3ijMSRBc3X0Cb8qCMoFyxM2h+4Fn74/wk6UvDlAvkIA+FGERc+eFpdJ6XCNUzgjsIfjgtv+vTpVQFU10SR6Y7CmmXOvGuNmr1II0ZX9Q7rrLOONDfEPR5nJI4sGFiP39sV2Lyky9JIzCU4D1w8tJBwiWzCwI+NCwWrh9TmKM1EiBuwXmmJjesOwqAFfhSIwgI3LMH4fKNhw0Lt2rXFsnZ5Hocffri4x+OMRJEFhUxYFi6zoIhV4LN13U0UqwKNynWAPZMwgK3Exo3iWpglAdxbajJ4znaeQxSIArAHbOsNl9YFigoxMfamK5x00knicnVNnJUgUWRBsz4WKBWwLoB7Zf78+c47cOIn5iADKipgw3IgNOz3Cv9g7ycadJTuLXuBfeG69QZxHlrvuAp0161bV1q6jB492sQViSILMg5wbbgaOILbB1+ty2pjhDG9lPAXR0G7BPiKaZCH0MBFiEALo/lgGmBjFLg+ubf4x3FJYb1FATxrXKGuW2/gsmPwGLELVzjkkEPETR5XJIYsEJKQhctW5GRBUQjkUrPDzEV7yjci1QVoMEcLD4J8bNowu9UmGdnBbO4t6ccoCSQQuA4sW9ghTy4zkgB702Wx4EknnSS9zoJoEBkGEkMW+EWZcUCamgsg9DBzXRaU2caFuJ+i0GLEFidicUEQNo4TdntzV+jbt6+4YbA2uV4C+/lAd1Iyw7BKOZo0aVLt6/NlPaHJQxgoDGQiRQE8Z1wwtCtxafFgWXBfSqmA9xN77LGHpNMTW4ojEkMWpKWxIV1l10AUaHYuu6JiVbAZXcdMLGj7gEuMuRPZgfakE8Zjjz0mUxqZxYxQpysrhaL5Kq9pS37KKafIvI4ZM2aIFsyci1yacKH0WEiZe0tA13WsIFNQ01bepRuI+4KwpkjPBWrWrCnx1LhWcyeGLEhLcznvFkGNVeHSBUVPLGpMXM7vyJw5TpyCauN8xYlJJow77rjDnH322TLTAK26f//+Qpj5huE8/PDD5oILLpACSnz8dCqFFLK10GLrKFBasDDoAuuyN1LUGvuxR11mJB133HFCFnGcceFeqvgAfID4aF25oFj8aCsuXVAID4SCy5bs2dP4KAgsZOUkkTAokJs5c6a4kiwgcH7GaigGuEuwEim+syi14A5tnuJUnoXrPk2AlHKuwaWwZo+SKeiqC+yRRx4p6c1U38cNiSALtCfcT66m0TFUiE2QubHDBhobgcQoZEDZduhYFcUgaYSB+w3CpM1EJvi5WEF5+eWXi3C1hFNuZbadUc4ecR3wZk1g+bJWXQHrjlHLxTRiDAJrrLGGyCmUibghEWTBjUeDcuV+QQAgCFx9Phoo9R1RaofOsPpS7kfSCKMS3HLLLebRRx8V1yrB8UpaeNg+TWjTUZhih+Vrh4Kl1RW10047iSckbkgEWXDj6cbpOl7hChAF2pKrHlDZ7dCp2i0n0SAphEFrfGp9sgOpxbgqb7vtNiGLCRMmiJD3o9cT/2PbhtMSxCU4F3qBuaym5hnwLFzFDXbbbTeJ58UNiSALbjzBPFeBXFLx8A+7gJ0uF4UMKNxPCPxKajySQBj0akIgZAanbbCaWpN8uPXWW80NN9wgLWtYz342BSR+BIlBGK7dUVgXZGm5KtJbf/31hcxddcTde++9pVtw3ILcNZMQ3EZI0VDNlVWBT9hVLyiCZZAVwsAliNv4NY0vCYRB2iy1E0OGDJHal/PPP18UC7KjQKtWrcyVV15Z9foePXqYa6+9VrKlIH5cRlgXaMB+9XqKijsK0mK/uHIFsa5cuqL23HNPCbAzzTNOiEblVgVAU8IF46oPkussKDQ0iMJlEZ5tMYJFwbPwA5YwGLUKYaCNBXWNaLho7xAvB64afmc1Tz4fTRSBjVbKgcuvuvNp0aKF1N506dJFhBIpsVgMNuhNvUEmqd59990iQLKbYF599dWSQeMHOH/85RTr4QpyFWNDWNOrya5dF2DP0lmAJIyw093XyAhyR6l/W+LJghtOXrqLhY/GS+YLBVeuhDSCyNXnW5BZQsDSdpb1C0ERBkTAfeO8IQfOnfe1JEAFNeSAxUjVsW3hghULAZD2SCoqtQz8D5pyrk7D7du3lyNfEV4mbCuMoOdRcC1otHyey4QIyIopjuwhF4oObctRCrDK/VJwSgG1N8RaKcSMC2JPFi6D28yMwD9NZaoLIFDQRl3OGoew0FTRkIJwxflJGNwvhCQJATw3BBbBeAQ+1ffZGiZZZpAF2m/2tSForCWC+w0tlfcjNbTcFOowBhdxjWQOkkqLdu/KIkVAc88hbIg2bKAM8Nxxn7ogi9122y12HWhrJiG4Tc8VF0BQsOBcAe2YwLqrLrsAwRt0i5FKYxhYf/zfc889J//Lex188MHikkFQkXtfqiuClFZcGVi1Bx54oPR1goAoumOmOH3KSgkkhznhjvNGwWHkrktArq5abwCsSBQ+F2jYsGHsgtyxJgu0O5fB7SiQRXbhV5hgoXP/EZhBE1Y5hGErqbFKEAy0iCYAj3vJbz8174+FSz8nhDGaO8RRzPyEsEeh2sZ+uKNcVnbbIkVX2VnsXfawqyD3kiVLnBN2asiC4DYaEq4EF0ArcVXbwELj813XdxArwg8eBkohDITQ5MmTxephzgOuF6yBoIG7iuAllgtuFhoD4vrKJxBdzcyGMHGXuaym5vO5L7iCXJEFe8gFWdWqVSt2ldyxJguXldsIKgKjriwLzHcCsa7ae7DBEDQEScPMJilEGNaaQACjPfNahHbYgDSoYqdegkBuLivDFVFYkL0Gkbmqd2DfltICxW/YDtGuqsl3/CvIHRfEmiy40cX2H/IbaCRs7jC01Si6oEgrRfiFZVUUQxg8EzR5rAlaQRPAdT1ilGeEZWOtDNuTyDVRADKC+FyXA4Fc1jtAVnQacBW32HXXXWNVyR17snAZ3MYF5UIYRWHQEhqpy2yabMJACL/44ouSjeTKmihkZZDiTAdY3HeuiQJw77hfLifYkaBB+ioFi2mLW+yzzz4S5HZdUZ8KsiBlkYwWF0AbceWCYnEjgFyk/FlXD9k+rtuhW8LAksDNQ+yKFF7X1kQ+0BWYlEmIAsvMJVFknhOk5Uq7Zh0TuyBjLW1k0aBBg6rRAnFAbMkCTQRfoyuB5TITyn62K6FI5S2f74qsMsEawB2G/xkCi3JrEFxPuHxwXUJwURASCGvSh1029nMpsF0Guddff31J0GHdxgGxJQtuMJoludppC267Ttnl3qORugbuC1xQpO42atQo0r2kMmMUnCv+agLxrprZZYJnWWpdSFLqHWyQ29Vc7o033th5r65UkIVtBR022PAUYLkKbrtM2cUFhUbsMl4CEGwIXwQdWT1Rbj6YK5iNNk82DISBleESpNFyDq4EttXuXRSo2SC3K8tm4403VssiLLJwATa9q+A2mxotyGXKLpvLdQCZgjLuBQLXIoqEUV3WE8Fl3BA0YXQJFC4Cza6qqdHueWauUljZyzwfF6hdu7aSRZLJgoZyroQlGhgWjcuUXddWBRub2gUyjLItyygRRqH0WM6RayCO4WrMpwXP1JXQ4j64jFuwl10Nhdpkk03UDRU0WNiwsguwsFy6oFxZFQg/hJpLsuAcmMZXXcO+KBBGsXUU9KXCOiKF0qU7inoQzhVFKG1xC56NK7LYfPPNnda5pIIsuMEugtuAfjquyMLWd7gAsQo0eZfjW+mlg/AnqF0dXBJGqQV3NGHEHUX3XlfgHOkI4MrCSatlscUWW6hlEQZZuGhtDFhYrvLjXWZC0cMHbd5Vyi4Cn1kSTHwrJrHBBWGUU5nN+ZFzz0CkYhoPBgWeras+TdaycBHkdmlZbLXVVhqzCBrcYFdTtly5ocgAor7EpvulLWUXYYrbppRYVZiEUUkLD54p7j2XXUhdavdcP/fPRRdc9jLrwoW7sk6dOpJYEIcq7tiSBYFWF32J7IJ2QRakrbKo0hgv4boRpNttt13Jlk0YhOFHryeujeI4V7ELtHsyklylsLrS8EmDZ224IKq6detWdZCOOmJJFjxUNCAX1dt2QbkQ2Hw2gs9FPyYEGFaNq3gF7SAQ8uW6HoMkDL+aAhIzQMN2FfAkboLQdpVGyp5yQRasCVdEteGGG8p1x8EVVTOuVgWL2kUVMQIbTcRFW3SXWViQM4FAV7EaXFBYkpXc9yAIw+/usbglaKfiMoU1jVlJroiqZs2asam1iCVZkD1A1akLDdulwHb52bYQ0QWYt8Bm8sPt6CdhBNFmHAWIILOrQLfLFFZXAtv1Z2+00UZKFkGBG8sNTlsmlMvPdlmIiB/dtmXwA34QRlDzKLBauU5XWUku00gR2K7GvLoki9q1a8cifTaWZIHwcJURlFbLIgq1JX6m7FZCGEEPLnKZlZRW7d7lZ6+77rrOWp0knizY2LRWdiU0XWn3LgW263hJEFlY5RBGGBPu0koWLmMWfDbZhi6w6qqrRqKPma9kcfPNN8tkOpiQnibHHnus9OixYOIWGy/X8cQTT6wQrDzyyCMlZ573ufTSS1e6Wddff734b/fbbz8zZ86cFf7Ga110m7UpnC6C22m2aoKs7yiFMMIahWrjBi5y763AdvHZLomKPe0iZbgUssD6uPjiiyULFHchk/Yyx7LyzLp06SKdLfh7kyZNpIg1EwwJ22WXXaRrwIABA0wpKEnqPffcc6Zdu3ayqZ599llJpzz00EOrRiLaasTMA6GPy+jwww+vClZCFLD49OnTzZAhQ8zgwYPlIi0Yjzl69GjzzDPPmFNPPdW0b99+hfPgc12RBQvKFVlw3a7GmLqKl3C/g54dUgxhhDkzm5gF5+AiyI3ARui40LLxFrjSsHn2rgrjVllllaJqa8466yyRuw8++KCZNWuWyF4IwaZa33rrreauu+4y/fv3Ny+//LKkQjdt2nQFAj7zzDPNtddea4YOHSrKfymZdyVJvXHjxpkzzjhDRpnSngAhj5VAT3570VShZh7Dhg0zJ510UlWMYcKECdID56GHHhKGg0RuuOEG07dv36oFSnCPfHraOjCGMtskd21ZuGp34cqqgeC55y7Ignbs3G+s0CBRHWGESRSAtY317qLegfvA57sINLO2XQls15bFsgJkQYLJU089JYRwwAEHSAHnddddJ1/vvvtuuW+9evUy11xzjWnWrJnIzgceeEAC58OHD696HxR7Bm8hv6nrKSVWUpHksSl2+bp/QiJ004TNMs2gf/3rX9Ll0gL2Y2PYvv6WDREQhx12mDBgVGIWrsnCxWfbTeSCoO2zDuO68xHGW2+9FRpRREHL5jm7EJzcd1cC26VlsVoRz5q/o7Rlu4JxN73wwgtm3rx5Un+GpZHpzmQ9I3Mt8ODssMMO8re99957hXkwhVC2T4OHiv+MDbTzzjvnfA0+MU4M35oFF5RJFMD+zN/szcOKoQMm7gfSCaNiWbh0Q7kiC7uJXHw2GyTMZ20JAzP+lVdekd+hfRE7C9OycqnpuhKcdn25WOcuyWLVVVctaMlhaTZs2FC8MMhUZOYjjzwiRIB1YWVnLtlq/wZQ3E8++WTx4mBZlHSepkwQu5g9e7awWj6zCb8Y/rFyQfA7FyALNpOLHjpsYA5Xn43wDPuzrXuQ+x72huJa2chhXzNDiSZOnCjfY9KHvd64Zu67qz5RfG7Yn83aBlx32AqZy31do8j1Tayibdu20kAVBQp30imnnFIVBigWxDI4SkVZZEHAedSoUWbatGl5W248+eSTEqBr1arVCr8njmE1Ngs7zrHYoTrcKLS9MWPGGBfgfF3NHsA94grjx4939tmunjXAyu3evbvEz4466qjQihOxrF2ts0zXhYv7naZ1tmjRoqLWFLPmSTIi7oBblKynFi1amG222aZKdiKbMuf88DOxYT9QElmgVXbo0EGC1lOnTpVpZfmAC+qYY45ZaZodptRNN90kG8FaDkT4yQAp1n+GmwqXwBFHHGHCBlPa8PfxgMIG9xyXX9jjZNF6eEaHHHJI6LEikh24540bNw7l89AuiVGgjOAeuLtLF7PvzJnm419/lbnfCLJLLrnEnH/++WVpZ6UoBWQXumjDj0VFinzY7V3wRkyZMsXJvsZVQ1dj3OphY/To0SVZUtYyYG+gwBH0RhZDGJMmTaoiBwgFdyprNXSywPWEa4mUVnxo1hfGospkRjYVVkculibdC1I4/fTT5SJ5DyL4vHexPmE2MZvaRZAbqwaz0cVns6D4/LA/2y5kF5/NmsD9xTMP2o9tiYIMLGIU+HtrL15shhpj0O8HrrqqZKIQJCTz5IorrjDnnXdeIJYGLhlidS7WGffBxWdb95OrveXqs3//61kXAsSAwl6/fn2RsdSnMTGyTZs2sjeIId94441m++23F/IgBEBWKfVwfqAkxyApWmRAHXjggWLq2OOxxx5b4XUDBw4U9xTEkA0EDi4svmJlnHbaaeKq6tatWywqHl0Gwlx9Ns/KVTolKddspqBnQ2enx2JNsdY/NEbI4qZatcwqS5easWPHisJ09NFHy2bFNdCnTx9f742tLUEhS1OaNNftKtPQZeLK8r+UoUJgPaJUQxDITBQaCMQS3GWXXSaen3POOUcsQ5QeLGG/imlLujsIqlwHtReZwL9L/UW+m08FIlYHMY2FCxea2267raRis7SSRTH52EmrrrU1B0G2v8hVR2ELndiI19PE8LffTN/69UX7ZaO2bNnSvPfee+Kau+iiiyQj5Z577vGlmA2iYJ256H/GM+azi9F0/UZa66eWF1kKQL0arjIUEwqeUVIyXYWcP0o33hqeI+7EevXqpbs3FELTZk6EDQjQ1We77srp6rODbJudr+DOkgU1RHONMYNWXdW0/vprs1f9+vI/1P+wcelAQH3Q/vvvL75hXARY1pWQum1v4kJ42d5nLj7bZUsZl1bN8iItC9eIJVnAwq4EtsuGY2kcDhNkY73qKrMtWWAF87ouy5aZP375xYw7+GDJT0fzxhU1YsQIcQvgmnr77bfN7rvvLrns5MKT6ljOOrVddl0grZ2NXTYI/f33350VGSeeLMgEsP2owkZaBbbL67Zk4af7r1ALD8iCz6W1DVh7223NsK22Mn8bONCMHTRILAf+fsIJJ0iaOCBTjYaZZG/xPe4q/v/RRx8tqcDO5azztDardElUP//8c6CZdakmC4Lq5Ca7QFp77pPxE3SQOR9Iq7YzwP1AMb2e6KlDJgluJUCa9wUff2z+WG0185/Ro8X9RLyNMahUxNLrzILURfrx0BGUADiFUxT20dunEGnYwLorsuAZuySLNA4WW7hw4Qq1EVFFbMnim2++ceKKch03cDmgxUVjO4A/lxxyP2ZTF9sUEMuCGgdbdErQ+Xt6Ru2/vzH33mta7LmnNHKbO3eu9DrDirj//vtXeA9cUuTQU+AG8TRv3lyqbkk9z2clQVIEtl1kQgGIyq+JhKUirVbNQiWL4MCNJSjkYhShJQsXfXtcEhWaLpq9q2wsNHgy7CpxRZXSPRayQMAjuHER0KiNYrErWHOM9O3aVeotqKAlK4r6i7PPPlsyVLJBwza6LVN7RLyDvHdSG8kIzL4eCJFrdQHOBbJIY7zE5WcvWrRIySJIlwjazyeffBL6Z1sB40Jos5gR1i4sKq6b++5qghtuIISZbQ1TKkptM27Jwga5IUpafTz/+uvmq7PPNuahh0yNd94xgwYNEhcTA7r4O3nupILnAhlTVChPnjxZniVzXWiySXU818a5UZWbr4VOGC4o1lfayIJ77ypm8f3330sJgV1rUUYsyQJQXeuHW6Kc1FkyYVy4g/hc0vtcuaKCTGEt5r7TYoV01aCJAjImj9222rDtE2izgoXVj2y4rbc25pprhECJT1AfMH/+fIlfUKxHJW0+HHTQQeb555+XgirOjeLVRo0aSXErROHKd47gwv3lotbBpcCGIHkOLu77xx9/LPu61A6wLhBbsoCJ2Zxpih3YIUCuMsFczoYGjIJE8+YoFuUMLqJvGYRhtT0aCAKmk1EYNeSRR8wf111nzDPP0HFPXAgjR46UEZasCzqD0mqBNjb53GY8S0iCHlB0NKDalspbWjYwKTJp42sLgTWNQuCCLHhmLlrZALwjKL6uajxSQxZof2ksUHMlsNF+ENSuKtjRwLAuqGcoJmZU7oQ7W2NhLQtqJgDt+OlpRuzkeVxFzHG56irUYrE+yIgieI3LjAI9GmZ27ty52vuFkMAdxShMeqXxbGnjQNFfdnfmoMGzdUUWWKxYNS5abriMV8yfP7/obtuuoWRRBpJYoFYMqGbmuksZxeg3SGUluaGQO6qSUaiWLKxlYdNnmfrIe9Gk7cGhQ+lrQytg2ibL3wlcM9XxlltukQFKtAG54447pKV/deTG55HdR7yDGo3HH39cCIn3IA7CdYThiuEc8s2QSbJV45IsvvjiCyedhVNHFrgL0lag5jJuQAorwiRz8lbYwF3AYKL3338/bypvpTOzEd5cq22vb+MIpDh+++230vyS4rtfDz6YnvtV1oVt5ta6dWtxKR1//PESv6ABJ5lSuRITsFCxlAiSI7DQrE888URxeT388MPi2sINdtxxx8nrggJ7yWZ+pY0sXBbkffFXPU8cEFuycF2Y56pAjQ1F9oSrliOYzOVmJPlp4aDdo4Vna+yVEoUlC9aXdYngKqJRoLUucEXx/iNHjTKG+fBMKnvqqarX0lAQq4C6CkjjqquuMoMHD5b/y26ACQFstNFGKwkMSPHUU0+VvlP8L69r0KCBxEyCGIiEAuDKHWJTdtNYiLhgwQIli6DBDXZFFqTtuipQw29PkNuVK4pgHL5tVzEbC/oxIXjRvP0kisyCvEwQk4A8eH/mBVA78cADDxjTqJExTZtKZpT5iwj43Kefflo0dSyCTp06ma5du4p7yc4/tp/DGoYE8gU4sXCwVKjloOiPOAatROh6S7quH+C+oQC4IguUH56lq0JE1ourz14Yk4K8WJMFN5gb7aI4DlcQbqg0xi3QwLh+l64oYGcQQxYECf0iinxkwcAuyMLOO8ZKYFaAuEKJXbz/vjFDhlS9njRbspyIPVDdffnll0s6LY0H6SfFZ2AZQULFnCuZOjQohCD69esn4zUJvDMeoJx04kzgWoOsXKVvspZRwFyl7Lp0gS1atEgtizDIgqCci7gFGxffrqvYgcu4hb33Lqrns4FwoxIa19D06dN9IYp8ZGEtGfo9ASq3IQ+aBJpddzXmxBONIZ02Q4GAYKidYGASrigyowiAU81Nx1r6RpWqVWJZMp2PSWlM66NWgwA8MZFyi1S5XqwKV+mbLoU1KcsQhloWCSYLHi7uGBdV3K61e9f1DsyGZpHjPnANgtCQJ5k8xBX8KKzKlaFi02fpBUU2GHEG2n/Qhlxwww3GkJ13990r/B8psD179pSsKGIPWBnUYBB3IL0WYVWuhUf2FOdDyi0pu7jHLrjggpLqjyBAXk+Vuiu4jFfY9iYuUnZ/+uknOZQsQgALPIhgX9QFNho1QTlXxXlULRO7cEXUFtb1hIVJhhRBYNw+lYB7igDJJgusAOsmYU43QPC/9tpr5t133yW/1pg2bf50SWWlFiPUsQYgB+IOxC0gEKwUJu1VYiXyLIiJQBo33HCDWDKc64UXXlhUajnEyHu4ckGRIYYbjKQFF3A5O2TWrFmi8OKyjANiTRakFFq3QJqK43CDscBcxg2opoYsXMSMQHaMguZ7ZCCxAXFLldvwMLsgL9P9YwnD1j1QTIeQrbIuunb9kyjuuGOF/8XNAVEw26JHjx7yM24j3EizZ882Bx98sAjMSkAwnbgIDQ+xXDgnChgvueSSvK5azoPX8yxduaCwULEGXbmBXLrApk+fLskNrmZ/l4p4nGUe0AIa4eACLDAC3K6ygvAxuyQL6i3I1LHCNUzkC2bjkqLvEtYBDfvKiWflIwvriiJWZcmCzyWVlXoIIU2qutu1M4ZGggsXVgkjgtG4yXAVYZFRaIcrq02bNqZ3794SfzjwwAN9ib8RKKbNCCRAzcd9990nacZXXHGFnEMmyGrjel1p1pkpuy7IynXK7syZM0WGxQWxtyxwAbjQbm2Q25V1wQZj87tqGc7mto39wmz/USjrCbOeTq7470kzxWVUyj3Krt7OJgv7+Ra2/QftxwVXXsnNMV737pLuSosQfNI0CsRtSoYU2jSFd9w3CvwgDD4XwvArcQABeP3110ujOvpN0TodCwKrw/bW4tlRXEg3XBcuTa7fZX0H18zzdGXVvPPOO0oWYYG0Q8x3tKi0xS0QiixylwVyuH6wrsKycIpNj4XI0KaxMgggYmWwRrIL4nLBatq5KpkhC96PTW7TpiEmSNO6ov7YcEOz+JxzzB99+5pv33pL+jyRSWVdDZAYE/OwNmgHgluLSXoIc8ifuRiVxl0yQSyAHlVcP66w22+/Xe4N2VmQBeSBO5EYR9hg7xCzIFnAZcquCzfQ8uXLJQ3aNqmMA2JNFvhp2XyuunS6TmF1XU2NG6pevXpi3QVtXZRTR4HAR5iTwoqGzdwIzrU6LTpX2qwFQt+ei3V/QkxYB8zh5ncTJ040M5mmt+66puGECTldHJAYtRK0AYEkuI9YGnxPhhmEUWntRDZw0ZE1RSAc9xekce6550rqLfM3Bg4caIbS7ypEoGTglnPls3cZr5g5c6asHbum4oBYkwXAjAu7O2dUUljZaJCFqyAzwLWBduinNpyNSgru2JD0dsLFw1rhPSZNmiTuIQQnlmlmz6ZiyIL3JAsKRQGtnIpq3nfYsGHy/UHHHGNWufZaU2Pw4D+L9XKAAHfHjh3FRURxH4RBtXffvn3lfCAM+l8FoWBcffXV5t5775V2IlSWY12QTQZ5ZFbEBw2XLijgMl4xffp06QfmohAxtWRBUVaQDdaqAwuNFFZXfaLIxEEryw5chgk+H/cMgi2ICX5+VWYj4NGuyZhq2rSpxBEg2pdfflnmZOOq4nMgEFw3xBWsb5/7y2shFlvXQbAawqFGgU3P+/JexDokWHveeUTJjbn22rzn9H//939Sh0GBHyngEAbFelgYZF8R5yBbyk9gAfKePCvmaWDhQKLEdnCxNW7cOJT1jAVFkN9Vl1vWlWvLYo899jBxQuzJwga5XYAgN4LFlSsIoYRm5qpVuwWaOMLN79iRny08MsH7kAbbsGFDEdZNmjSRKmjqDQgwI7QRnrTjALiXiFNgdfB/uLdo00BRHufF/9K/CZdO1VqgMR0V3U888WejwRxAq3zkkUck9kOGFO/JZ5OSS9AbfzoWkZ8tylkruOSIX9AVFwvHTuwDkB8WUtDgPIhVsG5cAAWA+889doF3YhbcFngxx48//ujVqFHDmzt3rpPPnzNnjjdjxgzPFRYuXOiNHj3aW758uecSX3/9tTdq1Cjv559/9uX9fv/9d+/VV1/1Jk2a5C1ZssQLA9zDVVZZxevXr5/8vHTpUm/48OHy1aJdu3beZptt5q2xxhor/H7RokXeaqut5vXq1et/b7hsmef985+ed+ih1X7uvHnzvNq1a3v7779/1bUuW7bMGzNmjLfDDjt46623nvfSSy9VfH2c7/jx4+XzfvrpJznnBQsWyLP78ssvvc8//1yOP/74wwsSvP/kyZO9jz/+2HOFt99+23vjjTecfPayZcu8WrVqebNmzfLihNhbFgS5afOAS8AF0OxxWRSTaRMErHbm2rrAnYALhoK4SoPdQVkUhcBzxD1T3TAaXG5YANTXZFq0PAcsgqoCPbDqqsYwi3vChD+HJFUT90Gbx41FpTf3DwuD6m4K97A8sH6Y210JcHVhFZHCy1fOGbcaz451zPOrcqMFCNw/uKFcDf1xnbL7+l+WYpyC2yD2ZOE6yA1Z4b5A0LgAG5vN77r1BiC4ix+6knNxRRSFCvIyycIqBtnuIdp/4IteoQXN8cezQP+sv6iGRLnWAQMGSP8oYhkAwiCGQOYSWWe4zMi2KgcU/H322WeSbu563jPrg6QDrs8FWKOQvR1u5Sq4vaqj6081WbgMctu4gctqajRPgq/lNqXzM4aDMMIfW06TQZdEUSxZWG0QDdzGNCyIYazQ/gMgmOkX9dJLxowc+efvBgwwZvz4ld6bFFzqH6i2Hj58uPwOgUKqLQTyr3/9S2IbBORLAUWJWHy0G3E1CS/zXFw3LmSvQhSuMpFmxjC4nRiycBnkzqx3CLOSORMIVbJ7XBUnZqfzluOOck0UliwQINVl6HCfCYoibLItC86ZzKaq9h8WTZpQXGHM1VfTOe9PsnjssZzvTzNAUmghDu6hJQxSaWlvjpDh7wxXKhaQNySBu8s1sG4oJnWVhRSFlN3Zs2fHL7idFLIgRxw/MlkeLkBGFMLBplq6AFXE1Dq4av+R7Y6i8K3YSW5RIIpc41RzwRZSIcBzjXWl/QcCkQptAS4rSJPxq6TBPvIIXQmNyTMWl89mAh8ZVsccc0yVxcrn0ZaDAUp8pScVmVSFgBbPdUXB/YTyQGoya9UVqLwnZoJS4wLLY1i5nSiyQFPBRCf33QXY4LZAzhUgLOInQRbHleKO2nPPPaXAq1DgPSpEUaggLztuARlyZBexkY5Lem2VK+qKK2DyPy2KY481pksXcmbxx+R9f6wAJuohWJo1a1ZV9wBhcI8opCP4zWhVYhz5gPKCdYIW69r9BNgfXJOrwLY9B6waVzO3iTmRkGLno8QJiSALcOyxx5oxY8Y4+3zXcQuAkMIV5codlgkK1xh7aokg6kRRCllgWdj4RnbcIrP9h8Rt6LnEe9IChOaEuApRKvJYFhacB4RBjUfbtm2rnimEQQsTYhsU8NG6o3///jk1aJI+OFdXWnQ2sCroS+WyJbdrF9RTTz0lWXNxC24niiww2ekR5WouNn5usixcTo8jVoAALmVSWtDnQ1ozKaHZrdyjRhSlWhY8a15LOit9lbJdUfxdLN06dYzBJUUlN0KdDBzaeBRRJY1FMGTIEBnd2q1bt6rfI2iwYC699FLTvHlzKbAjxdaC9F+IgrgKCkQUQBEcSRgu4ybcF7IWXZLF5MmTxVqMIxJDFmixuKNG2owTB64X8tZd1jugsaFJEuwPovVGOSDlE7OfIVX2nKJIFMWQxV133WWmTp1a5UJA8NFyHLdQJhDQaP9Vrii0SKq5aWNOvII4RpGNAmkwCFFcd911MgUvkzD23ntv6VyLO4o+UwTAsUBsYJzBOq7jFIBzIp3Yr7G3cR20NGvWLIln0W4mjkgMWbApYGybcugCCBrXWj3zsREkroL9uZ4LCQgQBISBzzqKRJFvnGp2yuMJJ5wg54xyAAnyvKl/yAbWxYQJE1aMY+27759BbtImSwjyMsyIpn9nnHHGCvVEljAo5MNVhWuK79HgiRlFpUkd94C0btdWDs8qjKLDfIDs6fflqsVIpUgMWVhXFA3hXHVhRdDgfnDZtpyNQEtuMi6ikBmV6TbBRUjHV+5PlIgC2KFD1ZHFHXfcIQWYCGa0ZJ41a41ryQbZSrb30wogZRSBn6POorpnSsEeGU0oRGin2YRB7ILzopsssbuo3FtrVWBhQrCugBsUq5+aJFcYP358bF1QiSMLql1Ji8NH7gJsBoSN62pqAppkRvk9E6ESIDgRtEuXLpXBTVEL8BVTkIebkbRWFBKux1pvXE+u7LSV2n9UALJ3sJrJpEEpyizA5Fx43iR5tG/fXuIXuKdctq63gNhwP7qu8eA8KJh05YL6+uuvxT1IUkJckSiyYEORUvj44487OwcqU1mYrnpFZVoXzHZ2NSM8EzZGgauHLqoQBu4Ul/eoHLKwCgmBZbRl/gcNPt8ceNp/cN0UxfmlBBCTI10XNxf3Fc2dDrn443FxnHzyyaZz587StZb5FC5jV3w2o2WJo7l0iXGPUOBcVo0/8cQTUjvj8hwqRaLIAqBdMRHNFdBebKtrl7BN4oIYoFMKsoPZaHYEfxEkNH90NQuklHGquaqs2fRcA5Ma87UQp/0HFoZf1gWgpxCuLTKtaAvy0ksvSaYR41vxhTNXgz1A/IIsLeIcrkgZywtrmz5QLkEMB6Up11z1sDBq1Ch5LnFG4sgC0x9txlWA1zb2i0KAmawdNKrqxogGiXxZTwgQCAPhTKUzmzkuabMAVxACG42ZzJbsWovM1+Vs/1EhcGVAWPSLIj5BKxAUFIB7D8KAqLp06SLnSXA87PgVn0fcjDXoOiOLvQhhubJufvvtN0nrj3O8IpFkQb0DpfSZaYZhgyAaAtLlyFWApkl2FG6KsAv1CqXHkuZLwJbAJ104XVeel0IWAIFMijKkR+A0X8o07iKycEi59Qt0kOXe0SOqR48eK8XoLGHQ1py0W2Id1GOE6ZLE9YYy4LogkKQKrHyKAV1h9OjREteKY4uPRJMFYBO5rOZGc0ZIRyHATKdRgqFhBt2LraNA46RPEGmeNFfD9x+mj53YibW6SiULC9KCQT7rgkwlMqf8cEVB+MShiPfgjqJYD7JivVMdnYswiGN0795d0njRbMMoGoXMotKPCqti4403dhbYBswqISnBZeW6H4j32VdjprOh8rWZCAMIQTQaVxXlfrUNLxXlFNxhDeJKwfeOWyqshoyXXXaZbGLAs8KnzT265ZZbJC22GJDlQ71FvrgFwhLroqr9R5mA1HBl0M4FgkAZwc1F+wg0eNZ8dsq2JQzSlrkmqs1x0wbZyj6zHXquLLEwgeIBWbhsXPjHH39I9pxdZ3FGIsmCTCBK+l0W6KHJoNFEIXaBMEZrRvsN0h1VSWU2qZ8QBueJUCTbKGgrA62f9gskAUAWfDbV2FRLF0vykAHdA/JZFoBeUQjoctaj7dSKwMGtyGwLguaZiQwET9HkyYTKDmZbwqB1CDEOCguJswRVC4RSwrOMQtaPnadeXcv5oPHqq6+KEnTwwQebuCORZMEGJvOAdDWXQKOBLKLQegNND+00KPLyo4UHZjrphbTgxpURtJWBWwatnEZ8CFkIgsI7yKKUKWq2YWJ164B7UqoryloTuDMhtnzT1Qi0ky5OFiBps9mwhEH7j9tuu02ImHiG34kFUXI/QbLcN+69y3N56KGHJJ3ftZXlC7yEgoHsDEVnIL0rMJh+0qRJ3ty5c70o4Ouvv/ZGjRrl/fzzz76+7++//+69+uqrcq1Llizx7T3fe+89b8SIEd7MmTN9P2eLc88919t0000xt7z69et7DRo08JYuXSp/4+vw4cOrfs6HoUOHyv9/8803eV/Tv39/r2bNmt6XX35Z8Jy4h7NmzfJGjhzpvfXWW96yZcuKupY+ffrIefBZucD7vPDCC96AAQO8jTbaSK7Vr/3BPRo3bpw3b948LyprffTo0UXfuyCwbNkyWVusoSQgkZYFYL4FQ3j69evn7BzQaEgdxM0RhQK0INxRQTUFtFYGRXCcK21CCIL7ndFDHYLt30Sx23333VdyW4pCQW7b/gMNv7qBRawR1gozD3BbYWGVMqu5Xbt2VQf3K5+FwX3t2bOntOsmAO5H80ueDa7XKLifMluMuOwU8PhfxcHEiZKAxJIFoKna0KFDnbY9IHaCCRqFzKhMd5Qf5xNG91iK5Eg5JJ6BAEWQIlD9qhtAeNr0zg4dOpQ1G5nCPM6zOrKgWJP52blcUbgpCVxzbRAX54TbCRdZqaDVB/5xUmVzFWRawsA9g8uNZ8e9zew3VU5sgCMK7ieAK4xMN5fpsuD++++Xfl1Ra21TLhJNFhREsXAIDrpC1FpvoDUjEClcxMdcLsJuM47gRIAi6DhvmrK9/fbbFWf22PgWWvFNN91U1ntQ7IWgrC5uYdt/QCho4YDqdWo1SGuFLIgpYE2QGFEuEEzUGKGkkCGVKy5hCQMrAMLAooEwypnhTqCc68a6ioJfnnXJPcV6ctli5OOPP5bss7POOsskBYkmC7IyqF69++67nZ4Hm5+slewRnK6Alotgeu2118oSti7nUXAvEah8LtYFigBBYArfyk0kIMCN0Ktk9GihIDc4/PDDZR3weRTSEZDmc7GcyHJi/rcfmjmpvPSQIgsHCyOXFWYJA7ckQW8747vYuekA5YfrwLJy2UojW0hDEi67y4I+ffoIAbtM2/UbiSYLcM4555ixY8c6r6YmdoHm5nKSXibI00ezZLOX4tKJyuAiCA8hS6YJsRgsJawNUkOxJkt1U1UqpNGsEbS56jMgMeID+NGpeaCYDmLCXYS1xPn77b6hEPDpp5+W/lt0os0Vo7KEgRVCWi3WGwLOWj7Vwc4n4TkQG4gCsJCi0GLk999/F+uORo5JQuLJAoGC5uMy0A3YiGhfCLWoAPcYQgsLo5iAd1SIIrvTMM/XCl56JOGrR0GgjQixGQR40O1OsCxsB1i+Eheiah4y5lyoTkfjveCCC0TjJzZRiSVTDAheY8Uw4+LOO+/M+RpLGKQKU7hH/IbOwNXFXwDXAyFDklGIUwCeNa4wl2NTASSNizHuvaCyUYOUKJNw0H0TfzRuIJcl9wgQisCiNC2LDT9t2jTZYAS/40QUhe412jwHfnsEGu4ZSNt+xU1Z3Xrg3tA2hqZ8+TKk2D5Yi7QIR8MmEwlrBy2Xz+G+chAT4Rx4Pf50qrAHDx5swgAt1YlN4JriWnKB84XYcItRmEiMbdy4cUIk2cBCRulhHUchTmFdYiQIcL6VxHz8wP777y8WWrkxsKgiFWRBsRW+WbQsZhq7BEFZtI5cm9AViFtAGKQa5/L1xo0ocp0/1gWuSISh/crvuRasEw77PcQAifB3KpKxwPgZ8kAosZ7sYZMWIH+IAhcI6bf8nC/ASsfYW2+9VYgsaOvCukWOP/54ie9gbfGcqyMM7hUNCHFHQZa0P7eAFHkN7jTiL1EBlg4KAtalS7z55pvS64zYSVTiOH4hFWRh5xhTEUyGgksgXAhsRm2zkWFEPy3rkkgKUeQD15Ut9O33CE3+zsF9wTWD4OewxJJJLhz8jfgYghRXVHVAMyfwSXVvy5YtQ7leCAChz3PkHPO1wLCEgeC9+eabZU2MGDFC3Hz8LzEQyNP15LtMYNlRV4I2X066sZ9o2bKlrJvq6mniitSQBXngLHAWP2mOLoEJj4bG5o2KvxfQJhzLxxJZUomiWBTjhsoElivBZCw1CKSQqwKrAldPWCCGgtZLjAfhmu95WsKAOLGAULKYycH5sodoLxIlkNQAXLcA/+abb8Qyx4LjPicNiQ9wW2ASnnDCCZL14RpkquCKikKTwUyw0HFR2OlraSaKcoPcuHyKySaiEy0Wph/V08WC7Dcm7JHQcPbZZ+cN+tugN4R3+eWXSxU9TQqJ+RFviRJIFMCdh/vPNXr16iX7J4lEkSqyAB07dpTOn4sWLXJ6HmxG2zbc1RS7fLCaI7ULNPFToiitxQzuqEL1FsW2/wgC+PRJ+KCSnOynfLCEwVeIBcJg/2TOt6dRJ24pV4hSO/Tly5dLwgL3KKlIFVnA+GxofLGugc+YWgcWe5Q8gbieIAlmJWQOB1IUBmm7aLjFkAWZUlRY+zmfu1hQqHrttdfKnG7SPPMBNxQWMIKYed9YF/zvkCFD5O/M6OjUqZNxhSj1oxowYIDsHbwXiYWXMkycONFbZ511iur+GTTo1Dl+/PjIdKXN7h7LedGlduHChV4aUWzX2Uy0atXK22OPPYp67TPPPCNdYumQ7OJZn3jiid5aa60lXX2z8cMPP3hjx471Zs+eLddPt9rnnnvOa9u2rZzzPffc4z3++OPy/Zw5c0I//6+++iqQDsrlYMmSJV6dOnW8e++910syUmVZALI6MK/RqlyDoClFTVFwR+UKZtOIzcYwbGdWReG4BUkCxVSQH3bYYZJI4MK6IBUYtwmZTUxxIwHEgtRi3Eto7PyddcqewcXWunVrKSykOpmYG5o9zTpduJ9Ym67dT+D222+X/dKmTRuTZKSOLAAZHviKo9CriTRV1+6o6rKeEBjEV2jtQIVslFxmUSUL0nCLqdTH1Ydrh0wjFwOyELQEvIGdzw1pQBQkYWS2zSB2gVuKeAdt03E/MZaWzCrIIsx1gfuJOhbX/Z8Ae4Z277i2k9JdNh9qpnVD4y/GDxsFoL1hWZTT9bNSFJMeu+WWW0rFMeQKqUVh8l9UQYNGUEzcwmZFIaBddUYmS5A6CvpW4W8nDdW2yMkGGXKjR4+W1v8PPPCAvI7rpB+TTV8NGli4UWqH3q1bN1GoKHpMOlJJFqB79+6y8MNa5MW4o9iwYbqjSqmjYO4z7R14LVXAxc6oThvQeBG0xZKFrXtw4YqywFLo0qWL1HxgVdD9Nl8GF6m+tKwhOyrTdXX11VeH6n4imcA1vvrqK3PPPfeIpyIKxBU0UksWmNn4GDGlowDrjvJzil11KKfgjg1KISHuCwq1XHfyjbLlWqgRnwVCBuviqaeechK3wvVEVwOeq21DUl0MAlcL7dRxnZFGi1uKNugMdgqjpUdU3E+AuCepyBBnKuClGF988YW35pprSkZSFMDM3gkTJngffvhhoJ9T6cxsZouTAcOM6Pnz53tJRTnZUKBHjx6Sccd9LgZknbEVH3zwQS9MkOU2ZswYmfPNufJcyeZaY401vBkzZhT8fzvT+/nnnw981jXZi2Q//fLLL14UMGfOHK9WrVre66+/7qUFqbUsAOb2xRdfLBqCy9GrmVobWimTvoIqHPSjhQfaMK6T3XffXdwCBBw1jvE/4FKk5QedW4sBWWe0/wjLFYXlyrmR5UYQGzcU2VE8V9qZ81yZHkj7l+pgC/f4P94rqDnz9LXCXUw8KAruJ0BlO1lkdv56GpBqsrAPnSwfhpVEAaRS4pMl+8hvt4TfvZ5ovU3zNgKfU6dOzTnCM42wAqTYuAXAFUWL7aDbf0BixCVIeyVpIbshIGuCQj2EMkkguYY5hUkYxCnoU8V5kmgRBbz22mvSMyxpLcgLIfVkQZdKgnP08I+KdszGoKU6TQ/92nxBNQUkzx6tmHgLgW9qRqJyH12BeQr41YuNWwBa55PoEFTNAtYEShGkTvU4A45IWsjXXYDZF2Tn0UW10PMMijA4ZwQzc0fIGIwKLrvsMtO2bVuJe6YJqScLQKdQAn2uZ3VnAuuCPHwEfKUB76C7x+LCYPAPVgbuMwQSLUPSjGJmcofV/sNaEwh/OgrT8qZQTQDrj/GvZAwWk2IeBGGgeLAvSdGNSrbRhAkTxNIheyxtULL4azQnmSA0VotKSigCeI899hABz5jQchFmm3EyVayVQSPCNFsZuKJKJXpcUczCoAI8KGuilBkqtGanOvm2226TrKcwCYN4CQfvV0x7+DDwxx9/SHyTOKfr0a0uoGTxF1q1aiUulRtvvNFEBVgW5OGz4T///POS/9/FPIpMK4OZHQgqCqnSVvmNZUEMp1CQOLv9By4sP6wLPhtrYu7cuZLeWYw1kQsXXXSRDHWiEI906TAIg3OHMFGWcEFFBQ8//LDcz6ik24cNJYu/QN+bfv36Sek++dxRAdo6Zjj+71LqGlwPLuK8IQyqW8lkwdJIUwAcsgClxC1s+w/iFuVaZASkiXURP8KKoCaikpnUCP0+ffqIxUiVMopLkIRBl1vOnxhF5sRG11i4cKG55JJLZB6O62l8rqBkkQE2Fo3SOKLkPsHkRVtnExXjJnNNFJlWBkHAQw45RAQXAoxrKJRhk5S0bMaxlhK3yGz/QZV0KUDIksaMJcfzbtKkiQhcP/oV4QZidgXPkOK7YpSWcgjDTuhjvZNOHCWcddZZ4loksJ1WKFlkgQpWNGB6vkQJ1DWQvUJKbXVEFhWiyBY25PMjwDgfBBoaNwIuqUBI2rhFKcD1gmJQrCuKmSPEhhiTirBF4aEeodBY11LB2hs1apS0uGjRokVRwr8UwsBNCdlh4VP3EZWANmBW+tSpU2VmRZTOK2woWWQBHymtmzE3o+SOssIHMsCtk6uIMIpEkQkEGIIMgQbhIeAQdEkljVIzojLbf1DrUF2dDSRBAz9qMxYvXiztOiimC9LHD4kx8IjnVuxEuGIIA6KgsBMljRgdFmlUQLyNDrs9e/aMTJ2HK0TnqUQIZI3QNypq7ii0LlIfESLZmTZRJ4pMINAQbAg4XFIIPAgwaem2kAVFdmjjpeC0006TZzxs2LCV/sb9ImOKFE4EGZYIxXVkO4U1D6Zv374SxyDGVylhsIbpWIDrLYrrlpGyPMc2CZ9VUQxq0PPD9UlEEeSmk2tOllTUXFLMSyDTZYMNNhBrg0cYF6LId6/JMiFziMA4/mpaZ0OOLkH1MJW6pJCWk75JXcM222wj73H44YeX9L90+OU5QgooAhADVdfUsVCwyfuGRRC5QPoohDF27FiJSRUDG5NgvZKhBYmQFs59Yt2SjRgl4H5q166dWL9bptyqAEoW1QA/JYJixowZVXMKogJcN2QYkemCUEPjjCNRZILrgDA++eQTCeSzQcmmcpV9UilZsLXw9Xfu3LnkFt7333+/TKPD5cO9wDXDveDwOx5RDhD89EYiaQFr4Z///GfJhEG2E0oC6xYlIUqAnFEWcUefccYZrk8nElCyKKK6mw1BYNm1ppsNXBUMzUGQ0CY5CkLED7AkcUmhSeOeWHvttSVDhuwirKmwgoyVkgXguXDOtCAv5rohfdxWDJo67rjjpL7hmmuuEcEateAqsRJcYFi6EECxBX8QBooY1dkQRSmFgmGBanpc0FSwR+2+u4LGLAqgR48eIriuu+46EyXgmsDXC0FgzjPGMym8z+ZEI8dX3LRpU8kEQ7CgwY4fP14yqYgFBNXlNMzZFjzHBQsWSDIFsZtp06bJekOrRXOnEI5eTVEUWFh8ZEhBGkzZI+heDLAmeC3WBGs4as+RKYDM+Ljvvvsied9dQS2LIsCGxeeMhcE4R9fIDmbzMy4pG8OIUjaJn+A66XCLiwDtG1ccGjdWB+RC4NzPa/fDsqDAjmZ8ZPrwfNhuWIQQAtfBAdlby4nrsRYszfwgDALapJNGFcTPCHyTxVWdgOXaUWpsx1ssxuwYRlTcT7Q4IcFF8T8oWRSJDh06yKagC6ZLd1S+rCf82pAZQUIqvpNKGBYsWwLjkAYb3BaKoa0S+LVHJQTiR8yCLC8ylohB4NfnPHmGnCfkwMF55hKwfD6Bfnzm+M6jDLRxhCtClkrnXPeCscGfffbZCsHsXEFvl1D3U34oWRQJtEH665xyyinO+tgXSo/Fd0wwnlkEEIbrjRcmrL8flwgCmYPvAYIZlwn3BbedPbh/tNjIJxQKkQWfyWsgau49X+3BZ3Pwd9bM+eefL32WOA/Op1gCu/DCC6W2ASEbtZhZNq688kpx2z7zzDMidDPXLW42SB2LIrsWJCqEAeFxvyE1SFqxIpQsSgB+THzo5L/zNUwUW0eBL5hgPF/JbWdedlphrQ+Ig/uG2ypTqCOkIIpM8kCI26lx/P/8+fMlVZWfeQYc3Fv7HvyMEM98D75aC8fO+2BGCY3oSgXPkkI1YjWHHnqoiTK4F8QuiL3gFsV1xr3CGudeQQT51qNrwiA9lrqf3r17S52LYmUoWZSIXr16SWdagq1hDT8pteCO11MRS6daBE0Us02iAARUtlXAduD+8ZW/M36UADvCy5II99+Sgk0wqM5lgQsTAUowt1RwHrRKwZUV1tjVSgA5Q47EaEj7JT4BYRLoL+TKc0UYtnIcC/Kuu+4K5TNjCYfzv2MJhtq3adPG22GHHbwff/wx8M/7/fffvVdffdWbNGmSt2TJkpL+d968ed7IkSPlq6J0LF261Bs+fLh8rQQDBgzwatSoUfZ6ufHGG7211lorlPXmBz777DNvk0028erXr++98cYbsmd69+4ta7EQli1b5r3wwgve888/L98HjeXLl3sHHnig17hx41A+L85IdhQ0AKBBMlEP3/NJJ52Us0eTX6i0hQeuDzQ0NFrmAwR5ror8QKtGWyarqRyQTUXqcK72H1ED14m7j9n2WBU2MI9lRX+lQgh6pncuq48iULrqpinGVw6ULMoAQnv48OGy+dkUQcCvXk9UeNM6gpRTgt/F5sIr/AOtwgmklzLbIpv0eYZRd0ORRcSapY6CVt4EjEkdJiGEeECx6y8swujfv7+09KBWJN88csX/oGRRJkh5JA+eZmp+b2K/mwISVMSPjM+Yoi/eVxEeIAoy6UrtQJsJahjQzsuZmBgGsCZILccCgtggDoLd119/vbn22muFJHhNsfcgaMJgH5DiC5lB5orCULKo0L0waNAgc8EFF8hQHz8QVPdYNh9BUvotkdVVaidURfjtyjPRvHlzWQsIt6iBADGFq2SAkRoLORKUJzGAwjsm7DHjnmQA1l6xCIowcDvhQobEGOakKA5KFhWCRUf+PFpUpQI46DbjbDoKw6hCJ52RjKkotWBPMqisJz2TzKtyQIyMau4ouaKIT9DDimJQiIF1RRoxWWOk+kIc1F7wPeePsH/22WdL+gy/CQPLh/vITJWgXMhJhZKFD6CFOcKARVhuTCDMeRTUDeAqQCOkEWGaZmO7tCwQdBB0Ja4oitvKDZT7CQogsRLQ0iGFbbfddoX0YfYD8QD+zvAgrp2D9VZqtr5fhMEeI1mA9xs4cKBWaJcIJQsfgCZFwRVV3uUMSXExuMgWi9HyGs1QrYxgQYEaWnclrigKQekd5dK6sNYEbieCwmjo1QWHmUWOMkVxI/VJrLlyhLQfhNG1a1dZ6yNGjJBqfkVpULLwUfiSVcEwmJtvvrno/3M54Y6Nh/vAWhm0jVYrIxggnPDjV0IWJCjQOgTFxEWn1mxrgoZ7xbYgIV7BTI/JkyeX/fmVEMbjjz9ubr/9diEKLGtF6VCy8BFMeGN2MsE8+uMUQlRGoUJ0pDbWqVNHNC9862pl+A9cM5WQhXVFERujOjpMa4JK9mKtiSBRDmFwz8866yxJleV/FeVBySKA+d20DKC/DCMxo04Uma40rIwDDjhARneqlRFM3ILiyEqsAhpEkqQQliuK9h2kxFJgx/z3UqyJKBAG7lXGCzDEjBHJivKhZBEA0GLwz5LuSD531IkiE6Q/4lfOtDKiNpwmzmRB/ylmOpQLBCTWBdXcCPKgwBrFmkBpYA4HSlCUeowVQxjM96b5ostO0UmCkkVAIJ2WcZjNmjWTxRwHoshlZVD5TTEYmqW2C6kMdnCWdUUxb7wcIrbtP3B5BuFyovCP2AKxCWtNRLEVRnWE8dFHH5kmTZrI/qPNiGY+VQ4liwBx2WWXmY4dO5ojjzxSBEQciCKXlUEmD5sPAYIg0UbFpYHnzmQ87iedilkDuPrq1atXVsCXDLYg2n8sXLhQLGFcN5wnsYkoWRPFEgazPyAKjr59+ypR+AQli4BBleg555xjDjvsMNEE40IUFmw0BsEgOLA2ECQEOpkbrSgOjz32mAh43E+2kpviNAr00NrLAf53gtx+tP9g3gcuR2Zn8KwZkUo/qrhMW8wkDLIRWas00GQ6YVyuIQ7QOxkwWMDdu3c3p556qrQFIfMoLkSRCTYdAg9tjdRDKsARMHacqSI/mBpHmxViWJDDm2++acaNGyf9osqdyGbbf5QzUMmCmAcEQQCbCmuerZ3dETdwzqzLiy++WO4rVpfrQHzSoGQREmHgNyUwyYAVv/pIuQAbEIGCYEHAIGgQOEEGW+MOxog+9dRTEvchYEy9Ahow1ma5wKWFPx6hWKpbkCA7VeBUU1O7gSWx0047SU+nuIJ727hxY7HcqKmII+FFHUoWIRIGw+zPO+88ERKMnYwzECwIGAQNAgfBg8aMIFSsDAry7rvvvqoYBfGBSkfzonzgFiy2/QddX8luI2EBFxgZTgTd417NTEU5MRwKBR955JGCE/kU5UHHqjoAabUQBzMx2LBJACQxZ84c88UXX8gMjW222cZssskmsQ4uLlu2zIwZM0asQb8EEPn+BF15P+5ZJS5Jzg/XC6RBdXIusL0JrjNj4ssvv5RnQmCddNgkgMFeWLnUUtx7770aowgQShaOwOa+7rrrzJNPPlmxhhkl4OLAJcCBQIQ0ttpqq1i6BYIgCzR6Yj+4kSBXP1K0cbuQAZR5j6nAh7ghCVyE1M3wLGgZnhRgyWKlE7+hEFaJIlgoWThEnz59zBVXXGHuueceyZ1PEhBWZOpYYUWAFyG5/vrrx8baCIIs7PsCP95z5syZZvfdd5eAOUoH1gr1EZBHJlknzTWDO69FixamdevWMro1Lmsqzoifupcg4JLAZXPmmWdKGwgaECZFOyIQjjaLoCJjCgFGnIZgL6QBeSRNgBULP6+bgC7xEPoeYTXgcqLTKwTC2kqiEEXJooaJKXydO3dO5DVGEWpZRACkoTILg41PTn6SXAWZoGAKawPioN6EdtubbbaZjKilK2laLAu/zu3rr7+WpoK9e/eWdfPyyy9L36g4pmYXa62ef/75cq2PPvqoxCkU4UHJIiIg+HjsscfKTAw61jJMJsnAXcI1I/DQhnFPQRpoxdSiREFbjBpZsDYgBw7asHCfIFtImCr7wYMHi1smieB6Gc+KssEoAEhRES6S4fMoA7h8mEnNhiNDBEFN4zELOq526NDB1K9fX1ILcalceOGFZvHixSu8D0It+0DryQTmMm4X2oDnC2oiJKmMxrqg+pT0xiSD+05WDu1E8LXjmuLe0m6Ca8ctR5V4mvtRocexDv/73/+Kj56KbciVtUIGEJXKuKAoQiOrLkojV/0E0wHZq6RrU9NTHVGwfiiCpNiRvUjGYSZIKuH/sd7JCOM+YpFlgur17D19yy23rPAa0qBZs7Sdz/7/xMJLKZo2beoNGjTImz17tvfmm296RxxxhFenTh3vp59+kr/PmjXLO/74470RI0Z4H374oTdp0iRv++2390444YQV3odbyPt8+eWXVcevv/5a9fcXXnjB22OPPbzXXnvN69u3r3fIIYdUe15//PGHd9ttt3lrrrmm16tXLy9tWL58uffVV1/JMxk3bpw3atQo75VXXvE+/vhj7/vvv/d+//330M5l6dKl3vDhw+VrGODZ//DDD96nn37qzZw50xszZow3evRoWTuff/55tecxYMAAr0aNGt5nn33mLViwwGvevPkK6zCuePLJJ7311lvP69ixo7ds2bKCr+eeXX311d7TTz8te3PYsGEr/P3hhx/2nn32We+jjz6SvX/mmWd6f/vb3+SeWdStW9fr1q3bCnv6p7/kAvjkk0+87bbbzps+fbr3xBNPeDvssIOXBqSWLLLBYmFxPffcc3lf8/jjj3urr776Cos214LMxMiRI71mzZrJRn/ppZeEOIrB2LFjZRG3bdu2qE2SRCA8v/vuO+/dd9/1nn/+ebmXkPfUqVOFTCAQ/h4UgQRJFlzb4sWLhRjefvttb9q0aVXXxxpEkC1atKjoa+O9atWq5fXo0UPWI+sS0o0ruO6uXbuK0jRw4MCy3qPQ3rT3jddNnDhxBbLo2bNn3v+ZNWuWt/vuuwuBzJ0719t66629NECzof6CdS9VNwGM15Afn10z0K5dO5lhQZoiFdrM4bY+d1wsZG+stdZakglEXUUxIH+ctiBHHXWUuBgwp8luSRO4h8QyOAD7nzRcngMZVqSHUsGMq4rnwutoQcJX7nVUajsIzBJv4JztufOV67Hni5uTr7jnSsmIw+3CjOshQ4aIK/WBBx6QxpW4bEggiCOo1WF4mHVJUpkdBJYuXSqFfDyDBg0arPA33E5MvOS50NetY8eOVeuJ/l7EiPg/7jMuqTQgGrvJMRA2NCCjG2y+LqC0lGbxsBEzwUalJw1kwGQ8mgUi0IhvAAKj5MDjf0cYlNJ/h3gJPtqTTjpJfLYMvLEzEdIIyANhykEMCCBwrSDmIABqBzaxucmysgdZQrl+5nXlBNT5DAQbhXZ8zTwyf0egnFRihAuHrTeB0CpNlWaUL3EwYj/MuCZeRnYdKctxTMNGASDmwPOghoTr8BsEyE8++WSZCUL8hw7AmYoYe5fYIYojzTKvvPJKSca44447ql4zYMAAc+utt8q+j3u7lGKh2VDGSDoejd1oimeFUCZI8zzkkENk8TDwvbrMmC5duphBgwbJovdTMyWvnJbLaDGQhyI/WNJojcUIchQFBDnPFAGFgLVBTZu1hVC378vr+QpRcPC6XESUTUh8DSrDiyFK9OhC+HFNCD4CvPTrihOef/55WdsM3WIPIYgrAfcbBQuLKxMoFwh/FEDbr4sgNYkuuTBw4EBz7rnnihKY1LTkouClHO3atfO23HJL8T3mAgHHhg0begcffHBRAUMCstzWJUuW+H6ugwcP9tZaay2vZcuWEuxVVB43+O2338Rv/c0330iMYOHChd7XX38t/n6CxcQs5s+fL78jrsVreC3/wzPmPaIAgrA777yz+Phr1qzpnXbaaV5cwDPo1KmTnPuNN97o2z0tJmYBCFZ3794979+JHxljvPfee89LM1LrhmItkRqL5kHbaMz5XBYFMQe0CSyKYgrH6FdDSl4QGgg59Phv+Yq77O6775aYhqJ8zRO3YD7XoG3LgcYZhTqL6kC9BanXuKNItY3L3HQ0emJ8WGzswz333DP0c+CzsTar29M1a9bMa3mkBaklC4LSQ4cOlQI4fOAUOgF8yvggIQqGvWPaP/TQQ/IzByBwiOti5MiRkvdOXQREgu+TQUe0IAgKzJLAXO/Vq5eY7CeccIJ0MSXAq0g3rI8dN0626yVqwE1ILKBfv34SI6AWyY8qflxFH374YdXP8+bNE2HPvWFE7E033STdEohV4IZi7xDnOvHEE+X1M2bMEAKjhgW5wM8Et0877bTEdOotG15KwaXnOqiZAFOmTMn7mnnz5lWlt+6yyy7eOuus46299tpegwYNvP79+4dWC4BZvPfee3tbbbWVuL8U8a6zSAtefvllb8cdd/Tq1asn6eR+It++bd26tbiRjzvuOG+LLbaQFPjNN9/cO+aYY6SOx4L6lr322ktqO0hFpoYCF9WSANzKcYMGuGMOgt9YGcz6plUzabpqZSSz3UfcgTVBxhbaPJY92YVR7AmmyI345dYpVgDusEsuucS88cYbkkJJ6wcEnEIRJVAzRDoqbl+yj2grrkQRLyhZJATUZNACnKA9FsYZZ5yhc7EVkbAmLr30UikspUssI2CJ8SniByWLhFkZBNexMhg3yYxsCgIVChegqG633XaT7gM0QcSaSEsBWxKhZJFQK4OsGIYr0dYZS+Ojjz5yfVqKlGDhwoXS6YA0XjIK6SDcsGFD16elqBBKFgm2MjD/MfsBsYyzzz5bNrJCEQRwezImeLvttjMffPCB9HZi1rxaE8mAkkXCQV0GzQsp2CL/nI18+eWXazxD4Wtcgj5JrC3cnk888YQEsRntqkgOlCxSAhoRsoEhDhoesrHZ4Gx0haLcymca6jFMiBngpHC//vrr4nqKwqRDhb9QskgR2MA0RCTweOedd8oGJ75Bg8I0T6RTlA5SYOmATBU2SRXvvfeedHKNY6dbRXHQJ5tCsKFbtGghY2TpZnvVVVdJP38EgEJRHejMTCv/008/XVpkzJ07V9ryl9J6XxFPKFmkGFQl056d/jmQBwIAQUDvKYUiEwyZOvLII2VmNc3+IAm6Btj27YrkQ8lCIcPrr7nmGiGNvfbaS1xV+J3Hjx/v+tQUEai8JvWaYDWN+LBGe/bsmbqpjQolC0UGEAZMA6NtyA477CBCglbovXv3lqE6ivT0G6PTMpXW1EqgTDB9j5GtTPlTpBNKFoqVwNxhAuC0bqa4Ck2S8ZaMnp0/f77r01MEhG+//dZ07dpVZsnTb4wGikx8ZL53vnHDivRAyUKRF3SvZdYA9RmMuZw1a5ak3DIPgHx6zaBKBpjZ0LJlS7EaRo8eLTNZIAlGBKd94I/if1CyUBSVPcVEPvr74I7A8iAgTsEfsQ7mGSvihe+//17qbKjsb9y4sTxj6m9effVVIQ7NblJkQ8lCURJwRzAzA4LAZTFlyhSz9dZbS0dRRtSqtRFtMLqUCYtbbrmlefDBB815550nz5Lv6d+kxXSKfFCyUJSFtdZay7Rq1UraojO2koD4mWeeKbENRlA+9dRT1c41VoQDZnGT1Ubsadttt5X0V9yLVPPT4I8hROuvv77r01TEADopT+EbIAfmkI8YMUKOn3/+2eyzzz7iwkKb3XTTTU2cENdJeYsXLxayZkY8zfzIbuIamMuNBchsaYWiVChZKAIB7ij6BFEVzjwD2kFQJd60aVMhDr6POuJEFiQhPP7442bs2LFSG4GbCXIgGYFCy1VXXdX1KSpiDiULRSj49NNPRdOFOOiAizAjsMq8DQoAoyjMokwWkDEuQDq8Tpw4UWpjqKw+7rjjhCDo+aVQ+AklC0Xo+OGHHyTzBquDVE2WIMVfBFhxW1FFHoX5zFEiC7oDY6mR5spBS5Yff/xRLLVmzZrJOWpVtSJIKFkonAJ/OsJv1KhR5qWXXpKRsL/88ovUczAWdtddd5VKYg6C6mkgC4iBzsBMO+TrO++8I5YDmUq477AgOCfmWq+xxhqhnZci3VCyUEQKLEea1CEkqekg7x8CIVgOgey4447mP//5j1ghEAitKOJMFiQFcJ0QA5YDxMCUOeoeIAbmkNCXiVnWuJaYgKhQuICShSLyYInS5DCTQBCsEAitKRi+s8UWW8jx97//XeIhVCNzVOLO8oMssBKohuYgbkO7FOoaOGjKBzEQr8kmhnr16ikxKCIFJQtFLMGy/fjjj4VAqBegj5UVxF999ZVZtGiRvGaDDTaQBom1a9cWn/5mm21mNt988ypS4SvuLciAg8pl+xW3D21NCMRb8uDAGrBfv/jiC/lc+9lff/21zDnn4Bzot8R5bLjhhlWfDanx2bjZLDHo0CBF1KFkoUhsMdqCBQtEgCPQrTbP9xyQiyUVBH85QPOHiDIJiIPvMw/+ru0zFHGHkoUi9WALEGiHYCAOvtqDFFVrdeAusgdEodaAIk1QslAoFApFQahqpFAoFIqCULJQKBQKRUEoWSgUCoWiIJQsFAqFQlEQShYKhUKhKAglC4VCoVAUhJKFQqFQKApCyUKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUCoWiIJQsFAqFQlEQShaKxGPatGnm6KOPljkSzKgYPnz4Cn//6aefTPv27WXGxJprrinT+Pr377/Ca5YsWWLatWsnLcnXWWcdc8IJJ8jsikyMGDFCZlMw0Y4xsQpFkqBkoUg8mKjHJLq+ffvm/HunTp1kyNFDDz1k3n33XXPxxRcLeSD8LTp27GhGjhxpnnjiCfPcc8/JTIzjjz++6u8MQoJM+vXrZ/r06WPOP/98mZKnUCQGtChXKNIClvywYcNW+N1OO+3kdevWbYXf7brrrt7VV18t33///ffeaqut5j3xxBNVf3/33XflvWbMmCE/L1682Ktbt663cOFCObbeemvvhx9+COWaFIowoJaFIvXYZ599xIpgeh58MmXKFDNnzhxz6KGHyt8Z3cpQpCZNmlT9D3O/69SpY2bMmCE//+1vfzNt2rSpGpuKZbHuuus6uyaFwm+s6vs7KhQxQ+/evc0555wjMQum4DEB77777jMHHHCA/J3xq4xFXX/99Vf4v0033VT+ZtG1a1dxYfH/ShSKpEHJQpF6QBYvvfSSWBd169aVgDjxByyETGuiGKy33nqBnadC4RJKFopU49dffzVXXXWVGTZsmDnyyCPld//+97/Nm2++aW677TYhi80220yC1d9///0K1gXZUPxNoUgDNGahSDWIRXDgOsrEKqusYv744w/5frfddjOrrbaamTRpUtXf33//ffPpp5+ahg0bhn7OCoULqGWhSDyoo/jwww+rfp43b55YDhtuuKEEqRs1amQuvfRSqbHADUVq7AMPPGDuuOOOKtfSmWeeKSm2/A/B7A4dOghR7L333g6vTKEIDzVIiQrx8xSK0DF16lRz0EEHrfT71q1bm8GDB0uQ+sorrzQTJkww3377rRAGAW9qKyjis0V5l1xyiXnkkUekpqJp06ZSU6FuKEVaoGShUCgUioLQmIVCoVAoCkLJQqFQKBQFoWShUCgUioJQslAoFApFQShZKBQKhaIglCwUCoVCURBKFgqFQqEoCCULhUKhUBSEkoVCoVAoCkLJQqFQKBQFoWShUCgUClMI/w/5jLGglg+TMgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF8CAYAAAA+d5cqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAglhJREFUeJztnQm4VfP6x39lynSNmS7lGuoa7s01Z4pE5gwRopRZhZKZIkT+KBpkaDJkVppLk1CmTOUiVMhUGTKmYv2fz8vv3N2299nTWuu3hvf7PPs5nc45e6+99lrv9x2/bw3P8zyjUCgUCkU1qFndDxUKhUKhULJQKBQKRVHQyEKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUCoWiIJQsFAqFQlEQShYKhUKhKAglC4VCoVAUhJKFQqFQKApCyUKh+BN9+/Y1W2+9talVq5bZa6+9zCuvvFJ1bt5//32z7777mi233NLceOONes4UqYOShUJhjHnsscdMp06dTNeuXc3rr79uGjRoYJo2bWoWLlwo56d9+/bmtNNOM88884w8pk+frudNkSooWSgUxpg77rjDnH322aZNmzZmxx13NP379zdrrbWWGThwoJyfb7/91uy2227m3//+t9liiy3Md999p+dNkSooWShSj2XLlpmZM2eaJk2a/O/GqFlTvp8xY4Z8361bN/keAuFnRB0KRZqwqusDUChcY/Hixea3334zm2666Ur/z/fvvfee/PuII44wixYtMt9//72pXbu2oyNVKNxBIwuFokisscYaShSK1ELJQpF6bLzxxmaVVVYxX3311Urngu8322yz1J8fhULJQqEwxqy++upSvJ40aVLV+fj999/l+4YNG+o5Uii0ZqFQ/AHaZlu3bm123313s+eee5pevXqZn376SbqjFAqFFrgVCkGLFi2kgN2lSxfz5Zdfml122cWMGzfuL0VvhSKtqOF5nuf6IBQKhUIRbWiBW6FQKBQFoWShUCgUioJQslAoFApFQShZKBQKhaIglCwUCoVCURBKFgqFQqEoCCULhUKhUBSEkoVCoVAoCkLJQqFQKBQFoWShUCgUioJQslAoFApFQShZKBQKhaIglCwUijxAY1N1NhWKP6A7uBWJBXu1kR3/4osv5PH5559XfeXx2WefmYULF5rly5ebFStWyIO/4Xv7Fay22mqySW/VVVet+sr/8dhoo43MFltsIY+///3vZvPNN6968H9InPP7ccK0adPM//3f/5mZM2fK+Ro2bJg59thjq/2bqVOnyk6Qd955x2y11VbmmmuuMWeccUZox6wIHvG6ihWKDPzyyy/mrbfeMrNmzRLDz8MSATspIAqM/nrrrSerU3nUrl1bDPi///1vc/jhh4tRr1WrluzXziQBHt9//7155ZVXTOPGjWVzHuSxbNkyIRW+8uB1FixYIEb1zTffNM8++6y87uLFi823335ratSoIYTCelZLKJZcdtppJ/Of//zH/O1vf4vU58rSpwYNGpi2bdua448/vuDvz5s3zxx55JHmvPPOMw8//LBsGDzrrLPk3DZt2jSUY1YED91noYgFfv75ZyEGvN3XXnvNvPrqq+b999836667rqlXr54YJkiArxjkOnXqVD3WXnvtsl4TchgzZow54ogjhDxKxdKlS82nn35qPv74Y/lqyYzd3pDMBx98IKSyzTbbyIa+PfbYQ9a77rrrrpEhEMiuUGRx+eWXm9GjR5vZs2dX/d/JJ59svvvuO1kgpUgGNLJQRJIY8NIhBkgBcpgzZ44Y0B122MH861//kpTHfvvtZ7bffntTs2Y0S29ELBwfj3yYP3++efHFFyWCGTVqlKR/IJNcBEKEFEXMmDHDNGnSZKX/I6K4+OKLnR2Twn8oWSicgzQGHvxLL71URQzrr79+FTF07tzZ7L///mbbbbeNLDGUi6233loeLVu2rPo/opDnn39eCITzcvvtt0sk8o9//EMIZK+99jKHHXaY2XHHHcXzdw2OLXv9LN+TxiNVuOaaazo7NoV/ULJQhA7y/xjCESNGmOHDh0s6htw9XjQpDSIGPOukEUOxoEB86qmnysOCuggEQqT1zDPPSAGZOkizZs3MMcccI2RaTqpMoSgWShaK0IqmEydOFIIYOXKk5PMxcB06dDAnnniiFJ8V+bHllluaU045RR4Arx3S4NGiRQspthNtUFvg6wYbbBDa6YS0SJ1lgu9JG2pUkRyk03VThAKKuffee68UiOkIghjoTrrvvvukY4ii6Pnnn69EUQYwxKeffrp58sknJQ309NNPmw033NBcd911ZpNNNjGNGjUyvXr1Mh999JEJGg0bNpQOqEzQFcb/K5ID7YZS+AYG2N5++23xdkkv8e+dd97ZHHrooeL9kmqKU2qp0m4oV3jvvffMo48+asaPHy81IGo9pKt4UO9gVqQ6/Pjjj+bDDz+Uf/OZ3XHHHeaggw4SMqK77Morr5TOrgceeKCq5sTn3K5dO2m3nTx5srnwwgvFGdDW2QTBUygqxKJFi7zbb7/dq1+/vrfmmmt6jRs3lu8//fTTWJ/bZcuWecOHD5evccXixYu9/v37e0cddZS33nrreVtuuaXXtWtX75NPPsn7N1OmTPEwDdmP1q1by8/52qhRo7/8zS677OKtvvrq3jbbbOMNGjQo8PemCBcaWSjKLlIztXvPPfdIFMGAWatWrWQYa5111knEWY1rZJEP1DUYmhs4cKB5+eWXpd313HPPlYG6uE2ZK8JHfHICikgAeYxbbrnFbLfdduaEE06QAub06dPN66+/Ln31SSGKJGL11Vc3bdq0ka4qZDn4DJm6pnh+1VVXycyHQpEPShaKosCQXOvWraWtk4neyy67TPLWgwcPlqExRbzAoOBdd90lMx3UJJhxYRKebqrnnntOBRQVf4GShSIv6Fyiy4YW13322UcGrPBKSWHgka611lp69mIO0k/Mc1CURmOLrjXmNtCGGjRokLQ4KxRAyULxF9DDj+wEE8MXXHCBtEDOnTvXPP7442bPPffUM5ZQ1K9f3wwYMMB88sknou104403SoqKAUDacxXphpKFogq//vqrpCSQn3jooYfESGA4br31Vhm8UqQDaFBRw2Cy/u6775a0FO23V199tVmyZInrw1M4gpKFQtJNQ4YMkYJn//79TZ8+fcwbb7xhzjnnHCmKKtIJZmKYrif1SDoSBVmiTbSqND2VPihZpHyIDukNdjvgNV566aXm3XfflRx2nIbnFMGD4Tp0qXAkaJemQE5zA46GIh1Qi5BSvPDCC2bfffeVDqfmzZvLxC5Tt4WmexXpBQ4EjgQOBd1wpClRBUbvS9fPJh9KFikDHS8MYeEp0vIKSVx//fWye0GhKAY4FOh8ce2cdNJJMrtBtxzpKkVyoWSRErCtDeE5ZMDR+GHLXO/eveXfCkU5wMFAuBCxQq4r1tQy7Y5DokgelCwSDtZ2MllNWyRrLilcP/jgg9ISqVD4ARZVMeCHgCFzGhDHaaedphPhCYOSRUJBDvmRRx6RQiTrSZGQppjN9jmFIgjggOCI4JDQYoteGK3YWgRPBpQsEggWzxx33HEiGc1wHblkitkKRRjAIcExwVmBLA444IAqyXNFfKFkkbBogj0G3KxIc5A7RgVWoXABZEMQLGTIE/kQljGhVqyIJ5QsEqQGe/zxx4s8B6qwLL75+9//7vqwFCkH0+DIog8dOtTcdtttGmXEGEoWCQCaTf/85z9lzzXb6Zi8ViiiBLb0EWXUrVtXoow777xTo4yYIbVkgeYNk8vsMuaBWN7YsWOrfs7u6AMPPFB+VqNGDekkygbhNT/LfODVZ4J909wgrKdErdXvaIKdEiywufnmm82ECRO0y0kRiygDvTH2hIexI9yCe5N7lO5AC+7x7HsYReVMMHRYr1496SgcNWqUSStqprlzg4uHTiH2FDdu3LjK+wE///yzOeyww0RQrTp069bNfPHFF1UPhpUsrAgfdQTkNBhe8jOaoDaBQizRBIShUMQB9j7jHsRho+026FoGUiXIlPB62Tj77LNXuoe5ZzPFNWkU6devn0idnH/++bJxMJUIeY1rpLHBBht4999/f859xN9+++1ffr9u3bpez5498z7frFmzvN1339378ccfvblz53pbb711xce4cOFC7/jjj/fWX3997+677674+RTJ3sFt0adPH7le11hjDW/PPff0Xn755Wp/n+u6Xr16Xq1atWRv98UXX+z98ssvvh/X008/7W2xxRbe/vvv73300UdeEPjhhx+87bff3nv22Wdld/hFF11U9bPs77OxZMkSOW+LFi2SB/fw999/76URqY0sMkEfON4/OX/SUaWA6IRBJNJMtKmuWLGi6mc777yzeDKE3/Scsx+gEjz77LMSTdDDTjSRHS4ryusgY9c23WN8/j/++KP54Ycf5BzTggyI3njwM36H38W7jIse0mOPPWY6depkunbtKutvqRkg90IaMxdIE11xxRXy++hAseOC5ygUZZcDWryJMrbYYgu5V5jT8BtEBkjcsHM8F0iNbbzxxnK/XnnllZJVsCANTUZg8803l2Mkslh33XVNGlEDxjApBa2lkANyy+yO5iZBriATU6dONQcddJD59ttvZVI1E/SQ77rrriKZwR5qLjQuLP4/E19//bVslWNfdTngI6IgyM0K4ZBzVVXY4kiAz9Y+SCnk+t4OjWXnri3xs02O58t8AD6DNdZYQ2Qv7CP7ex7IvPN8rrDXXnvJVDVpFEDKh/W4pEwhhWy0b99eSIJBTotLLrlEam4IUAYFUqukhHj06NHDF1FLnMCbbrpJ0lB8FtQodtllF2njtbVJaooQAQ7Y5ZdfLgu+kGTPxJIlS+TzTitRgFVNikHBit3SXAhPPvmkKLCy6GXHHXcs6u/x1izwijAKttiM0bAg8igXGDS8GYachg8fbg499NCynyupwKjzGdKEwIN/EwFgFDE42cYb0s807pA4hJBt0CGbMWPGyDlfbbXVqv4fsuA1c5EP0QcSK/b/+D2eF2eBCJPXtl/D2BVCBERdDkfGAqOHlz1jxoycf4MoIMuvXnnlFTGcbEnkPKAtFiQQJaSQTAs4jhzRTLaDVgrYL37RRRdJRJ5PKDOzcxAFXSKIgw8+WArvLHyyWG+99UzakWqy4GZl4Q9AgRXvAw+eQli5HhzGYf78+UJElYJVloTpGD9ubHusaQYGnPORSQ4YaIw+hoUH8yVEivxfppH3Cxh/npcHr1MdLKlAXhwrESrXB6kOCCSTPIIgEIiLyGnTTTdd6f/5Hi2nXECGnL/bb7/9qoiRlGcQaahs4PVDUlz3EBXdRxBIOYAkSbUR/VtwLqZNmyZRFp9LdvTCPQyYOM8kC0XKySIbeKJcQOWCKAWvbZNNNqn4WMgtH3300ZJfxjMqZJSSCrxzSJNUniUGGx1gZCEGGylEEUQsPNZee+2Vrgs8/sxICFVgSyC8L6JRVtnyd2GD1Gv37t2lAwjjieHEQ7/hhhvMtddeG/jrUz+YMmWKRNQQBhEGNZZSQYSQrYBLmpiZJNJNudJc3MOACEOxMlJLFoTlSCrXqVNHCprUK7hJmHwGGCgeVtOGi458Jb9PjQJPnxwu9Qz+n+87duwoapsbbLBBRcfGzdG2bVuZxiZ3m6b6BJ4sxWR7/jGknM/atWtHnhhKAREE5JGPQCiuU/jFSYA0eHAeSq19YHgxirZYb8H3+faqQwiknKxUDOkZIiNSNrSAh3E9QrDMKPHaRBkQFWnfUt4/9yVF60xAvhAx/0+qydYp+T9qFtzDaFnlarFNO1JLFoSnrVq1kr5qPDkuDojikEMOkZ+zi5qlQBZcQGDQoEHmjDPOkBQHxTP0/IlG2E3MhZZZxygnsuFGpe+c1w86RxwVkBogcrAEgdHEiHJOSZdk1n+SjEwCIfVCyo3rlHPy0ksviaG0xAF5YlCLeU5SrBSrjz322KrrjO8pZOcCEU42IVgvPOx+GLY30kl4yimnmLfeeksK0n45C5ybiRMnSrEbMqToz5ArGwAVf0Wqu6GiBKKbli1birzzU089JeF3kgEh4N1iCDGIGD5rCK037Bq2wI3nGUTtoxRg4L/55psqQqV9F8KATDln1XXaEanSvEEtjusK40jnETUL/h6niaiNxgyAA0RHH4bZpqFICUE6PJcLEAUwzEdkQKOHponCR2ojiyiBbpOjjjpKUg4U2fOlB+IO/BKIgfw8Bo8edt4rOzeI7ly2l0YdePqQqJ0HwLngHC5YsEBSpPw/LaAY0eyooEWLFmbRokWmS5cu8jcUkceNG1dV9EZpIPNv8Kz5LPj62WefCSlRP6MF1RUoNpP2Pfnkk4W0kODYfffdnR1PGqGRhWNQJ6FVEO914MCBobRThg28YAwSJIGHTN0Hw+aieBvXyKJQEwDnlwfHTDqF85vEmQCuH7qyWAl8//33S3pKEQ40snAIBn8oiDMpS3dG0qII2i+Jmkg3kYenWIk3m6aCfRggh0+NgwiNcw4p44RQEN9mm20k2khK1Ma1g2oCNUYK7lxbmcKAiuCgZOEIbBGj24RCNjnjJBWrGYaCJCj84+FCErSEKoIFhEDKiAfnnkhj9uzZ8oA0+CyiHCGVAmZBcDyIyomsck2iK/yFkoUDDB48WNpi6awin5wEYJwoQjJwRrGVHDOqolEoVKcRdJARafA5UKfgs6GgTYqK4c6opwCLnaNgaI+NfBAGEXpSIqgoQskiZBBJdO7cWcTL6B+PO8iRY4h40KuOBhHFVr1po5O2QfeIB/MbfE6TJ0+WXSykruLelrz//vtLsR6hQAiDji699oKBkkWIoGWROQraFrMFC+NYaCSKeP/996WLa++9965IA0sRPBhopJOIiAOhQJQBiDKIPuKcnqK9l/fC/hmaKbjPlDD8h5JFSLj99ttlyI8ZijiLAVK4pl2TlAYpJqTZyR3rzRkf0LKMgWUQ8r///a+ZN2+eRBlEG3FNG3IdQhjcW2hZof2k16S/ULIIAVy4EAUL6yn0cjEXM30bxRkJjAupJ/R1yH/rDRlfEAkiFkhHEZ8rTQl8rtSa4va5Euky6IlTRpqXDjHut7i9jygjXhYrhqAXnE4NIgoKcgwWId1A2iYuhMHkMMaEQbC4e6CKlWElRIgO6WIjPcXENjL9tDvHwdhCFAhvoinWvHlzGVpEtodGi0oXjin+h3hYq5iCnQCoddIma1UzCf/jQhgUDBFXI6Igr82xxzm3rcgPSIFhSWQ/qEVhfBnqQ/U4ysN9mUSx7777SsGeYx47dqykpPg+DKXcNECnowLCE088IUNDtMnS2mcBOWB0uTkhjMw1rFFKOeFl0jVjF+WwzlWJIvkgYsQx4DNHgoVlYEQaUZSQy0UUFhTyaatF44p1x4rKoWQRANhqh3AbEssnnnjiX34eZcIgmmD5DPLYFA3R30mCJLiiNOAYMEzJ2mEiDdapskskDkRhwbEjOoi8uV0pqygfShY+Axll9Gpo30NFNh+iRhiZ0QTeZePGjVXZUyFFcPZW03aLhEgUooxiiMKiUaNGEuVfdtllkppSlA8VEvQR5PYJfymy9ezZs6i/gSSoYXADuqphEE1Acqz8RHOHAS5FfIQEwwKttkjoY5yJOl1sbyyFKDJBZMHiJu41Or4UpUPJwifQtsfWPG4gPJhSxPJcEQavhwQ1RWwr9Bf3iV4/oWSR+1qlYwqxQupYaE6F1TFVLlFYsEecZUesAah0m2UaoWThk9E9++yzzYsvvihGn6GnUhE2YdhOJ7xFukc0mvgrlCzyA3VbogzqWWFEGZUShRW5JL1KlIhESJQ7EaMIrVn4AEJcCmksZCmHKMKuYUAQU6ZMkeiHm0eJQlEq0P8ikra1DCLUKBMFoBbHWgAm1i+99FLfjzPpULKoEOwyZhcFwoBo7lSCMAiDzpYZM2ZICoFOJ007KSq5Xkldch29+eabkp7yu/jtF1FkFuxx7FB85qEoHkoWFQAFT4rZSHnYobtKERRhcNORduKGJs3FFLYivujbt698hqSBuF5od64OKM62a9dOOtwwuEziU7z3A0yAo/6KZhjH4ec16ydRWEBwbKXkfEyfPt2X50wDlCzKBBcwe7MZuPM7pPWbMCi+E02QfqKVkBSCIr547LHHTKdOnWR/A8aUmhPOCt14+T5/5C+IKp988klRCmYGiGltv0D6lWuLa/X55583P/30UySJwoKlSWQEjj32WGkZVxSGFrjLAIUySALNJCZcg9qb7UfRm5uN52Aad9ddd9WiXgIK3DgS7A2xg2YYVkQdO3TokHNjHDtUmGJGKTjo98GxsJmPGobdbRI1osh8HZaPMTtCc4puc6weGlmUgWuuucbMmjVLcp9BEYUfEQYb0vDyMCTcuNr9EX8QJcycOVPkOCysJAvRYy7QeME0M2kXBAMR2uvevbs4PX6DY2FWh5oY1yzF5CgShT3WBx98UO6vM844w/mwYdShvWMlAlFAPDo6QLjxgoYljFLEB7noP/jgAzNnzhyJJrTbKT8wmLQR82A1LMaK88dXIkdAmgKPHKOCgcFBoFbAI2wCpmWVY86+9vieyCEXkB5nMh9FASIlPGnW+hI5kcoKAtRTECCkhoHhp05QaPYoTKKw4DOETPfcc08hUAb3FLmhZFECKBCfddZZku9lUjsslEIYGBL63zF0FB1JP6UZGESKuxggSwqZ5MDPIQEMEw/aK/meB4YZfP755/LVkgh/Z4mF37fEkfnAUNJWGoVuM46Toct7771XjpdrlzQRqamgyMJ2HlHH4Lol6iG6zReJuyAKC/Z3sL2Sug/O1eGHHx7aa8cJShZFAqNy+umny+PUU081YaMYwrA1DgiDmzQKhsoFMfBYsmSJfKXQivGGNNlvwPAYefRMw44ByzWFbGsWuaTZIQ5+nouAIGqKybw2r8lrQxz2UcnnwrFj8FlYlAm+pyspF+iA4vgzd5CQJiJNSVoryFQqdQCcFlJniBHus88+fxGmdEkUFiyB6tatm2nTpo10DOqE91+hZFEkbrrpJvPzzz+LQKArVEcYGC7+j1CfGzIN9QkMHUaShyUGjDMGGQNNrSYo7x5ywcjyyDeImU1epLMseWGM8PZJH3HMxYLXIzJgvodOHmts+b59+/Y5/wYDPHToUPk9mwoiRQmJBEkUFlyLRBVEvBSSuT7te44CUVh07NhR6pAXXnih1DIUK0O7oYoAA0cUCJEIwGN3jewuKb4S5nNTkntNMlEgk41HzAMPHkONwSXlAUH4aWyC6IbiOSEOjh2SQ7yR4yYq4MH7KaS1ROssEvj33HOPfN44MKRRqFlwLlq1aiVtsTfffLP8PiS10047yd/QMUU9q23btmIUw8zRc51yL5HegxggzagQhQX1HFJRDNkeffTRrg8nUlCyKMJ7ZUKVMLVfv34mKshMOfEg3Oc4k7buFAODYbUEQXRHKsYa11K88ii2zpK2gjR4b8xJ4Olj8PH6IcB8nydNFtQc+LtddtnF3HXXXRJ1AiTFKTCzeMsCZwLPGWMNkZx55pkyZxD29cLnSe2P9wwx8nlGhSgsWJh06623ajoqC0oWBUABkBCeVtmoLQHiRrP7J9jvHUZKISyQrvnkk09E3RQDgwGFHGrXrh3azEPYcxaQPl63JUa+p/iK4S9XcyyK4H3RTchnTD0javUBUmNkEOrWrSurkRV/QMmiiPTT+PHjzQEHHGCiBAwZUgV4ZHb+Iuo7vYu5STGSFIcxmhAEhpLcflgy2FEZyrMRFWRJ5xKpKowX5BHn6NHWKEjFETktWrRIovYgI8RypXxQ09V01P+gZFFN+olCIiSBDk+UADlk1igwLK4XKFV6rjGKdoALgqhTp47zSC4qE9ycH3SXIFHSVpDGP/7xj8gZ2ELILmYTCZOSsoTh+vPOBgvMbrnlFklHbbjhhibtULLIgy5duphHH31ULuYoXcS2VgEgButlRmHjXqn45ZdfpCuHAixdSyzSIdVUyuKoNJCFBZ8tERdDdtQ3qGsgCBiHFFW+rifeE11SFPohjCjVLjhm6j9Ec0OHDjVph5JFDnDx0t43YcIEyalG6eK1Re3q5iyiThh4ypAEnjLkgLR7FIcHo0YW2V1hpEqo61CwZlVoVLWNCrXHcr0yh/HDDz8IYUTpXNt01IMPPmiaNWtm0gwlizzpJwpcVqgtKqDITsgOgeW7oaJMGBwbXjGtm4T1DIYRUUQVUSYLC4rEtMx+8cUXkr4j0ohSo0OxcxT8HnNCRMqkVl3UqPKB1uTu3btLOoo6S1qhZJGFa6+9VvrYo5Z+Iqf/zjvvCImtvfba1f5u1AgDQ8DxI41Nnn3HHXeUrqaoIw5kYUHB+L///a8Uxbfbbjuz7bbbRuJzL2WOAkdt2rRpEinhSEQFvI+DDjpINNbQhksrlCwywIXNRR219BN7KCho00dfrJGNAmHw2ugq4ZHhKWIAyLNHyWtMCllYUNOANGirrl+/vkQbLs53uZPZ/D5KycyO+Llvo1LMmzdPjmnIkCFVk/Npg5JFhmHDGDPYFqXhO256vC3SCxSAS4FLwqB4/dZbb4nUBSSB9EZUCtdJJgvA501aCtIgJUXOHWHDsFCphAft06+99prUL6KUpuzZs6cMQlLHiFsnmh+I190bIIYNGyb5dCuREAVg7JF4pghMq2QUd3rnMlQUXadMmSIGtnHjxtLqGTeiiDP4vEmZkDqhNsSCLupEYexr8EPrieudqAhHB3HGqODCCy+UzrPevXubNELv4D+NMhvGLrroosh05diWQgw+y2TKTSWESRhEE9zgeLR4szQKRKnYmjZQLGbREZ191IxI79BxFBT8FAWk7oKsC85SEEuayj2f3bp1k2I3EXPaoGRhjGjo4MFcdtllJiqgtZTec9Q6K/XKgyYMiI1ZicxogtqEIhogusiMMhDL8zvK8Fs9lmuVGgHHSTozKlvsmjdvLinhHj16mLQh9WSBN8wA3pVXXhmZgSDyzaQNMPB+HVNQhAHJ4v3RqaXRRPSjDORrmG8hymBWww8EJTNu22gZQCRFHAXUrFlTUtV33nln1VKstCD1ZIFaJ6mnc845x0QB3HDceMgk+50S85swaNNEEI4bSKOJeIA5AaaSEe8jyqCYXAmC3kdBIRnCoKMO0ogCDj74YHmv119/vUkTUk0WpHnwEshDRkGcjRuPSVaK2UHtzfaLMEg7IWRIbpkOMq1NxAdcA+zEJs1D1xEpz3LSPGEtLiJ9xvHyWsxiRAG33nqrtNFy7tKCVJMFImF0XZx44okmCmBoDSDdECQqIQyMCiknpsnx+CCLuMxNKFYGcwy0p5KWwkkppZAc9oY7hCWJhrjuooD//Oc/shzpqquuMmlBaskC2WdSUHQ2RAF0V9C/TfopjDbTcgjDrm4ldYEaL9LhiniDOQY+S2p31DH4WgguVqFynTZo0ECWJlHTiwJuvvlmmcMhOksDUksW5Bvxqsg/ugYeHTcfXnqYrbulEAbFUIYDAcZlnXXWCe04FcECWRvaa7n2qGNQi8oHlzuzOU7SUXRHRSEdtd1225lTTz01Ul2UQSKVZEG6h3wjeccogLwn0QQteWGjGMJAvBCiYFiKSfA4TTMrigM1O2oYKABTi6ImFSWisEAunHQU2m1RwE033SSRxbPPPmuSjlSSBXnGY445RvKOUSiyWxlkV1PO1REGKScG7XbaaSd5aH0iOLBkCy0nPGg+D1qSiwF7V/hcKtUs4jkQIKQWhTGmlhEloshMR9EZFYXW1U033dScd955ss+cc5RkpI4sXn31VTN27Fgpbkch/cSUdhT2OeQiDG5GvCbqKEh2KIIDSsedOnWSne8YZQxi06ZNC7aLYtA7d+7sq/AltSgiSBoZcGSiQhTZ6SgIjc2BrtGlSxepgT755JMmyUidkOAhhxwi3tt9993n+lBEFgNjQA0gKtpJVnyQYTuKnbTFkn5KI8IUEoSomda3O1Qw0IgvdujQQaRo8jkbXDtt27aV4jRNEsOHD/c16kXtmFkHzEQUiMKC4yHyIn3GNeoaPXr0MPfff7+kuKNyL/uNZL6rPMBT4qbCE3ANbkSmUsPqfiolwqBNkYI2m9fQ51EEC4q1tK42adKk6v+4JvgeY50PzAcRBZx55pmBHBfRLt1SRBTM/USFKKKYjrrooouErHEukoroWKkQwIj+YYcdJh5bVNJPUdufTFsi3SZ4axiHsNRq0wx2UHBNkP/OBN/nm7B+4YUXzIABAwKLkG3qiQgTiRDSUVGR3MhMRyGyyfXqOh1Vq1Yt07JlS5ExTypSQxa0A7JHl/yua5BnxjOCLKIEvDQ8XKIdBrbCljdXFAeUY08//XQhiiAiv+waBdELhIHkRmbROwrgOqU7yg60ukTnzp3Niy++KBmMJCI6C5oDxr333ivrPJmtcJ0Hp1U2auknQmhywHRlWakRW/SmhgFhRGFFq99GEY8U79k++J7PyC4QAtz85MZ570RbeJH2wfeVSsVg8HkOBs4ywfe56kV4+RhtJogz3wvgGDGcdDWVg3zFbCQ3+PxJi/F/UVEVxpnhvmY+hPdcaOVw0G29hx12mGQwsDdJQyoK3HjFFLUZxAsqv1ss8M5Yk8qNGJU2VIykvdkYNIriilY/6gIQIg/2VfOVLYQA45dJAhSz+Wz4nKgtsaGQ7zkP2cQC+Bty+zbHz9dSN6lByrSs2sU6GG1qR+3bt/9LgZvXRmY8E9dcc41EHBgq5nXK0eoqpuuJ+gApVLqvopRC5ZhI5bkudr/wwgvSREN3FASbJMTvri9zCx6GrnXr1k6Pg5scr5Bp2agQBTcYEQXebT5vNI4RBoadtBo5f2oCdHZRsLfGnFZgVo1iEPNFeLYbCq2uXN1QXFMQBs0AloAwEnzP86LwSmRA7aGQ8aZtlusTYwdp9OrVy/z000+mTZs28vNWrVpJygWJCcgJufFM2PWj2f9fLIptjyXq5He4Fho1ahQZAUk+o0mTJsln4HIV63777SeRDpFFvi62uCLad7xPwNsix+vawJF+Iv8bFY8jc7EM07vVEVgcCANCgBwsQUAOGGveGwbEb8PG+bLRSGbtAJLBoDL5jnOA18tnbokj1z7sFi1ayO/Tqcfxc8zjxo2rKnqzqjaotGWpcxSIb/K7zCxRy4hCOpVIjuwBkTvH5BIXXHCBzMtceumlkVCz9guJT0Nx8XDjkeN1mWfFS5w8ebLsEshlLFwAQ0Y6g179YtMmUUtJERlRW+DzpYnBGmUelepX+TVnYUmMGgSEwOdPZEOO27V0SrkDd1wHtKETPdGRFJVUI7IbODUuW76XLVsmny0bOLl2koLEkwXhPYTB1LZLMAmNlxEFiRFAiob0EwaCbpJSEAXCwADTysluaQwcxpeWaD9nAYIYyuM5SVVx3NQYOGZqIi4ciEons6n5UOvaYYcdxKuPAojecR5wgFymes877zw5jmeeecYkBYkmC/LJRBODBg0yzZo1c3Yc5FEpfKFwW2rhMwhYBVkkE8qdOXFFGBz7e++9JzciKRoMLd5tEIYh6AlurgsID/LAEybvXipxlwu/JDxI99m0ZBQGOLkuJ06cKNFOUAvEioFdM4xTEJXOsUrhPtkYcGEbjy2zxdAFiGzYfhcForAFbeuJR22nd3WRxJtvvmmmTJkir80aVwrBGKioNAuUCuootFAfeuihUnSnR586ABFHkPBT64nzT1GdyNn1YBzg2qCmwj3nUthvp512MrvttpsZOHCgSQoSTRb33HOPFA5dFuDIUZNLj8oAntWuIXVQKcIgDPK/eGl0uuDpH3TQQVKDctlP7zcw1nTQEHlShGevOcRYzCKiUhGEKCCOR5S22HE8RLy5ZNbDRJs2bWRwMilqtIklC4q3eGrt2rVzdgxcsHg4EEUUWgyD0KMKijA4d4TwpBRI12DYENpL8tIlIk/0jiBEiBGCJAfvl7EJSj02ajpN1hkiXVnKqli/0apVKznXNLYkAYklC8I/ilwupbWJKEgpkFd3jSD1qPwmDDxqngeihdjKKcLHGRAixMg8Dt4xXUcYnUoQtMx4lHSaAPUKrkvqQa5Qq1Yt2TGCGm0SkFiyePrpp03z5s2dHgNePGTlur0U4GXhcQWVDvODMGw0gSeGMaMukVZ5dEAbMK3W1AVoSCg3yghrHwVDgzQbRGGLHdchThr3oMsentNOO02aJKKwBrZSJJIsuECYH3BJFrQV0lsfhaiCCGfevHmB61FVQhh4o3RXEU1QGORYo5C6cw3arSmWZkYZdIQVizAXF/G5E13QIeXSo7eggYP7sLqd4kGjUaNGEmHY/fVxRiLJYuTIkWJwXLbyYZxp7WSKOArpJ/SCwtDyKYcwkMqgXx/DmPZoolCUwVcMT6ENesDFhjubjorCFjuuRSJ76peusMoqq8jnNmLECBN31ExqyywrKV0BA0k6JQpRBd1P3DS5BAKjQBgURPGWuanRRdJoonrDw2wMraq0P2ME86VYXK5CpV4QlXQULetMzlvRSBc45phjZDgv7iNtiSMLOmfogjr55JOdHQMhOJ0t3DAuwQ2CQaHVNOz24UKEwY1DHYWohyiQ3vi4zkuEDdRoSUt98MEH0mKb3fHjeme2TUcR/aDc6xJE9kT4LvdwHHvssXIuZs+ebeKMxJEF4mt4E37MEZQLLkzkD1wbP/L/FB0Z+HKBfISBcWOIixw8UtdJmXANE6SjyIeTwps+fXpVAdU1UWSmo4hm2TPv2qPmXkSI0dW8wzrrrCPihqTH44zEkQUL68l7uwI3L+2yCIm5BMdBigcJCZfIJgzy2KRQiHpobY7SToS4gegVSWxSdxAGEvhRIAoL0rAU4/Othg0LtWvXlsja5XEcfvjhkh6PMxJFFgwyEVm47IKiVkHO1rWaKFEFHpXrAnsmYQA7iU0axbUxSwI4t8xk8DnbfQ5RIArAPWClN1xGFzgq1MS4N13hpJNOkpSra+KsBIkiC8T6uECZgHUB0isLFixwrsBJnpgHHVBRATcsD4yG/bfC3/ML8KCjdG65F7gvXEtvUOdBesdVobtu3boi6TJ69GgTVySKLOg4ILXhauEIaR9ytS6njTHGaCmRL46CdwnIFSOQh9EgRYhBC0N8MA2wNQpSn5xb8uOkpIjeogA+a1KhrqU3SNmxeIzahSsccsghkiaPKxJDFhhJyMKlFDldUAwCufTsCHPxnvKtSHUBBOaQ8KDIx00bplptkpFdzObc0n6Mk0ADgevCsoVd8uSyIwlwb7ocFjzppJNE6ywIgcgwkBiyIC/KjgPa1FwAo0eY63KgzAoXkn6KgsSIHU4k4oIgbB0nbHlzV+jbt6+kYYg2eb8U9vMBdVI6w4hKeTRp0qTa38/X9YQnD2HgMNCJFAXwOZOCQa7EZcRDZMF5KWUC3k/sscce0k5PbSmOSAxZ0JbGDemquwaiwLNzqYpKVMHN6LpmYoHsAykx9k5kF9qTThiPPfaYbGlkFzNGHVVWBkXzTV4jS37KKafIvo4ZM2aIF8yei1yecKH2WEiZc0tB13WtINNQIyvvMg3EecFYM6TnAjVr1pR6alynuRNDFrSludx3i6EmqnCZgkITixkTl/s7MneOU6dg2jjfcGKSCeOOO+4wZ599tuw0wKvu37+/EGa+ZTgPP/ywueCCC2SAkhw/SqWQQrYXWuwcBU4LEQYqsC61kaIm7Mc96rIj6bjjjhOyiOOOC/dWxQeQAyRH6yoFxcWPt+IyBYXxwCi4lGTP3sbHQGChKCeJhMGA3MyZMyWVZAGB8z1RQzEgXUKUyPCdRakDd3jzDKfyWbjWaQK0lPMeXBpr7lE6BV2pwB555JHS3sz0fdyQCLLAeyL95GobHUuFuAkyb+ywgcdGITEKHVBWDp2oohgkjTBIv0GYyExkgu+LNZSXX365GFdLOOVOZtsd5dwjrgveXBNEvlyrrkB0x6rlYoQYg8Aaa6whdgpnIm5IBFlw4vGgXKVfMAAYAlevjwfKfEeU5NBZVl/K+UgaYVSCW265xTz66KOSWqU4XomEh9VpwpuOwhY7Il+7FCytqaiddtpJMiFxQyLIghOPGqfreoUrQBR4S640oLLl0JnaLafRICmEgTQ+sz7ZhdRiUpW33XabkMWECRPEyPuh9cTfWNlwJEFcgmNBC8zlNDWfAZ+Fq7rBbrvtJvW8uCERZMGJp5jnqpBLKx75YRew2+Wi0AFF+gmDX8mMRxIIA60mDEJmcdoWq5k1yYdbb73V3HDDDSJZw/Xspygg9SNIDMJwnY4iuqBLy9WQ3vrrry9k7koRd++99xa14LgVuWsmobiNkUJQzVVUQU7YlRYUxTLICmPgEtRt/NrGlwTCoG2W2YkhQ4bI7Mv5558vjgXdUaBVq1bmyiuvrPr9Hj16mGuvvVa6pSB+UkZEF3jAfmk9RSUdBWlxv7hKBXFduUxF7bnnnlJgZ5tnnBCNya0KgKdECsaVDpLrLig8NIjC5RCelRghouCz8AOWMFi1CmHgjQX1HvFw8d4hXh6kavg/63ny+niiGGy8Uh6k/Ko7nhYtWsjsTZcuXcQo0RJLxGCL3swbZJLq3XffLQYkWwTz6quvlg4aP8Dxky9nWI9UkKsaG8YarSZ77boA9yzKAjRhhN3uvkZGkTtK+m2JJwtOOH3pLi58PF46Xxi4cmWkMUSuXt+CzhIKllZZ1i8ERRgQAeeN44YcOHae15IAE9SQAxEjU8dWwoUoFgKg7ZFWVGYZ+Bs85VxKw+3bt5dHviG8TFgpjKD3UfBe8Gh5PZcNEZAVWxy5h1w4OsiW4xQQlfvl4JQCZm+otTKIGRfEnixcFrfZGUF+mslUF8Cg4I263DUOYeGp4iEFkYrzkzA4XxhJGgL43DBYFOMx+EzfZ3uYdJlBFni/2e8NQ2MjEdJveKk8H62h5bZQh7G4iPdI5yCttHj3riJSDDTnHMKGaMMGzgCfO+lTF2Sx2267xU6BtmYSittorrgAhoILzhXwjimsu1LZBRjeoCVGKq1hEP3xd88995z8Lc918MEHS0oGQ0XvfampCFpaSWUQ1R544IGi6wQBMXTHTnF0ykopJIe54Y7jxsFh5a5LQK6upDcAUSQOnws0bNgwdkXuWJMF3p3L4nYUyCJ78CtMcKFz/jGYQRNWOYRhJ6mJSjAMSERTgCe95HeemucnwkXPCWOM5w5xFLM/IexVqFbYj3SUy8luO6ToqjuLe5d72FWRe+nSpc4JOzVkQXEbD4lUggvglbiabeBC4/Vdz3dQKyIPHgZKIQyM0OTJkyXqYc8DqReigaBBuoriJZELaRaEAUl95TOIrnZmQ5iky1xOU/P6nBdSQa7IgnvIBVnVqlUrdpPcsSYLl5PbGCoKo64iC8J3CrGu5D24wTA0FEnD7CYpRBg2msAA4z3zuxjtsAFpMMXOvASF3FxRhiuisKB7DSJzNe/AfVuKBIrfsArRrqbJd/yzyB0XxJosONHF6g/5DTwSbu4wvNUopqBoK8X4hRVVFEMYfCZ48kQTSEFTwHW9YpTPiMjGRhlWk8g1UQA6gnhdlwuBXM47QFYoDbiqW+y6666xmuSOPVm4LG6TgnJhjKKwaAmP1GU3TTZhYIRffPFF6UZyFU0UijJocUYBlvSda6IAnDvOl8sNdjRo0L7KwGLa6hb77LOPFLldT9SngixoWaSjxQXwRlyloLi4MUAuWv5sqoduH9dy6JYwiCRI81C7ooXXdTSRD6gC0zIJURCZuSSKzGOCtFx511zH1C7oWEsbWTRo0KBqtUAcEFuywBMh1+jKYLnshLKv7cooMnnL67siq0xwDZAOI/8MgUVZGoTUEykfUpcQXBSMBMaa9mGXwn4uDbbLIvf6668vDTpct3FAbMmCE4xnSa922orbrlt2Ofd4pK5B+oIUFK27jRo1irSWVGaNgmMlX00h3pWYXSb4LEudC0nKvIMtcrvay73xxhs71+pKBVlYKeiwwQ3PAJar4rbLll1SUHjELuslAMOG8cXQ0dUTZfHBXMVsvHm6YSAMogyXoI2WY3BlsK1372JAzRa5XUU2G2+8sUYWYZGFC3DTuypuc1PjBbls2eXmcl1AZqCMc4HBtYgiYVTX9URxmTQEIowugcNFodnVNDXePZ+ZqxZW7mU+HxeoXbu2kkWSyQJBOVfGEg+MiMZly67rqIIbm9kFOoyyI8soEUah9liOkfdAHcPVmk8LPlNXuXPOg8u6Bfeyq6VQm2yyiaahggYXNqzsAlxYLlNQrqIKjB9GzSVZcAxs46tOsC8KhFHsHAW6VERHtFC6TEcxD8Kx4gilrW7BZ+OKLDbffHOncy6pqFlwgl0UtwF6Oq7Iws53uAC1Cjx5l+tb0dLB+FPUrg4uCaPUgTtEGElHod7rChwjigCuIpy0RhZbbLGFRhZhkIULaWPAheWqP95lJxQaPnjzrlp2MfjskmDjWzGNDS4Io5zJbI6PnnsWIhUjPBgU+Gxd6TTZyMJFkdtlZLHVVltpzSKMNJSrLVuu0lB0ADFfYtv90tayizElbVNKrSpMwqhEwoPPlPSeSxVSl94975/z50IFl3uZ68JFurJOnTrSWBCHKe7YpqEotLrQJbIXtAuyoG2ViyqN9RLeN4Z0u+22KzmyCYMw/NB64r0xHOeqdoF3T0eSqxZWVx4+bfBcGy6Iqm7dulUK0lFHLMmCDxUPyMX0tr2gXBhsXhvD50KPCQNGVOOqXoEcBEa+3NRjkIThlyggNQM8bFcFT+omGG1XbaTcUy7IgmvCFVFtuOGG8r7jMMVdM65RBRe1iyliDDaeiAtZdJddWJAzhUBXtRpSUESSlZz3IAjDb/VY0hLIqbhsYU1jV5IroqpZs2ZsZi1iSRaMxzN16sLDdmmwXb62HUR0AfYtcDP5kXb0kzCCkBnHAaLI7KrQ7bKF1ZXBdv3aG220kZJFUMBwcILT1gnl8rVdDiKSR7eyDH7AD8IIah8FUSvv01VXkss2Ugy2qzWvLsmidu3asWifjWVkgfFw1RGU1sgiCrMlfrbsVkIYQS8uctmVlFbv3uVrr7vuus6kThJPFtzYSCu7MpquvHuXBtt1vSSILqxyCCOMDXdpJQuXNQtem25DF1h11VUjoWPmK1ncfPPNspkOJkTT5NhjjxWNHgs2bnHj5Xo88cQTKxUrjzzySOmZ53kuvfTSv5ys66+/XvK3++23n5kzZ85KP+N3XajN2hZOF8XtNEc1Qc53lEIYYa1CtXUDF7331mC7eG2XRMU97aJluBSyIPq4+OKLpQuUdCGb9jLXsvKZdenSRZQt+HmTJk1kiDUTLAnbZZddRDVgwIABphSUZPWee+45065dO7mpnn32WWmnPPTQQ6tWItppxMwHRp+U0eGHH15VrIQoYPHp06ebIUOGmMGDB8ubtGA95ujRo80zzzxjTj31VNO+ffuVjoPXdUUWXFCuyIL37WqNqat6Cec76N0hxRBGmDuzqVlwDC6K3BhsjI4LL5tsgSsPm8/e1WDcKqusUtRszVlnnSV298EHHzSzZs0S2wsh2FbrW2+91dx1112mf//+5uWXX5ZW6KZNm65EwGeeeaa59tprzdChQ8X5L6XzriSrN27cOHPGGWfIKlPkCTDyRAlo8ts3zRRq5mPYsGHmpJNOqqoxTJgwQTRwHnroIWE4SOSGG24wffv2rbpAKe7RT4+sA2sos0Ny15GFK7kLV1ENBM85d0EWyLFzvolCg0R1hBEmUQCubaJ3F/MOnAde30WhmWvblcF2HVksL0AWNJg89dRTQggHHHCADHBed9118vXuu++W89arVy9zzTXXmGbNmontfOCBB6RwPnz48KrnwbFn8Rb2m7meUmolFVke22KXT/0TEkFNEzbLDIP+9a9/icqlBezHjWF1/S0bYiAOO+wwYcCo1Cxck4WL17Y3kQuCtp91GO87H2G89dZboRFFFLxsPmcXhpPz7spgu4wsVivis+bnOG3ZqWDSTS+88IKZN2+ezJ8RaWSmM7mesbkWZHB22GEH+dnee++90j6YQig7p8GHSv6MG2jnnXfO+TvkxDgwcmsWvKFMogD2e35mTx5RDAqYpB9oJ4xKZOEyDeWKLOxN5OK1uUHC/KwtYRDGv/LKK/J/eF/UzsKMrFx6uq4Mp72+XFznLsli1VVXLRjJEWk2bNhQsjDYVGzmI488IkRAdGFtZy7ban8GcNxPPvlkyeIQWZR0nKZMULuYPXu2sFq+sIm8GPmxckHxOxcgC24mFxo63MA8XL02xjPs17bpQc572DcU75UbOez3zFKiiRMnyr8J6cO+3njPnHdXOlG8btivzbUNeN9hO2Qu7+saRV7f1Cratm0rAqo4UKSTTjnllKoyQLGglsGjVJRFFhScR40aZaZNm5ZXcuPJJ5+UAl2rVq1W+n/qGNZjs7DrHItdqsOJwtsbM2aMcQGO19XuAdIjrjB+/Hhnr+3qswZEud27d5f62VFHHRXacCKRtavrLDN14eJ8p+k6W7x4cVHXFLvmaTKi7kBalK6nFi1amG222abKdmKbMvf88D21YT9QElngVXbo0EGK1lOnTpVtZflACuqYY475yzY7QqmbbrpJbgQbOVDhpwOk2PwZaSpSAkcccYQJG2xpI9/HBxQ2OOek/MJeJ4vXw2d0yCGHhF4rotmBc964ceNQXg/vkhoFzgjpgbu7dDH7zpxp5v/yi+z9xpBdcskl5vzzzy/LOyvFKaC70IUMPxEVLfJhy7uQjZgyZYqT+5pUDarGpNXDxujRo0uKpGxkwL2BA0fRG1sMYUyaNKmKHCAU0qlcq6GTBaknUku0tJJDs7kwLqpMZuSmIurIxdK0e0EKp59+urxJnoMKPs9dbE6Ym5ib2kWRm6iGsNHFa3NB8fphv7a9kF28NtcE6S8+86Dz2JYo6MCiRkG+t/aSJWaoMQb/fuCqq0onCkVCOk+uuOIKc9555wUSaZCSoVbn4jrjPLh4bZt+cnVvuXrt3/78rAsBYsBhr1+/vthY5tPYGNmmTRu5N6gh33jjjWb77bcX8qAEQFcp83B+oKTEIC1adEAdeOCBEurYx2OPPbbS7w0cOFDSUxBDNjA4pLD4SpRx2mmnSaqqW7dusZh4dFkIc/XafFau2ilpueZmCno3dHZ7LNEU1/qHxghZ3FSrllll2TIzduxYcZiOPvpouVlJDfTp08fXc2NnS3DI0tQmzft21WnosnFlxZ/OUCFwPeJUQxDYTBwaCMQS3GWXXSaZn3POOUciQ5weImG/hmlLOjsYqlwPZi8yQX6X+Yt8J58JRKIOahqLFi0yt912W0nDZmkli2L6sZM2XWtnDoKUv8g1R2EHnbgRr0fE8NdfTd/69cX75UZt2bKlee+99yQ1d9FFF0lHyj333OPLMBtEwXXmQv+Mz5jXLsbT9RtpnZ9aUeQoAPNqpMpwTBh4xknJTBVy/DjdZGv4HEkn1qtXL93aUBhN2zkRNiBAV6/tWpXT1WsHKZudb+DOkgUzRHONMYNWXdW0/uors1f9+vI3zP9w46JAwHzQ/vvvL7lhUgRE1pWQupU3cWG8rPaZi9d2KSnjMqpZUWRk4RqxJAtY2JXBdik4lsblMEEK61U3mW3JgiiY3+uyfLn5/eefzbiDD5b+dDxvUlEjRoyQtACpqbffftvsvvvu0stOLzytjuVcp1Zl1wXSqmzsUiD0t99+czZknHiyoBPA6lGFjbQabJfv25KFn+m/QhIekAWvi7QNWHvbbc2wrbYyfxs40IwdNEgiB35+wgknSJs4oFMNwUy6t/g36Sr+/tFHHy1pwM7lrvO0ilW6JKqffvop0M66VJMFRXV6k10grZr7dPwEXWTOB9qq7Q5wP1CM1hOaOnSSkFYCtHlfMH+++X211cx/Ro+W9BP1NtagMhGL1pkFrYvo8aAISgGcwSkG+9D2KUQatrDuiiz4jF2SRRoXiy1atGil2YioIrZk8fXXXztJRbmuG7hc0OJC2A6Qz6WH3I/d1MWKAhJZMONgh04pOn+HZtT++xtz772mxZ57ipDb3LlzReuMKOL+++9f6TlISdFDz4AbxNO8eXOZuqX1PF+UBElR2HbRCQUgKr82EpaKtEY1i5QsgiULikIuVhFasnCh2+OSqPB08exddWPhwdNhV0kqqhT1WMgCA4/hJkWAUBvDYldwzbHSt2tXmbdggpauKOYvzj77bOlQyQaCbagtM3tEvYO+d1ob6QjMfj8QIu/VBTgWyCKN9RKXr7148WKNLIJMieD9fPzxxyZsWAPjwmhzMWOsXURUvG/Ou6sNbqSBMGZWGqZUlCozbsnCFrkhSqQ+nn/9dfPl2Wcb89BDpsY775hBgwZJiokFXfycPndawXOBjikmlCdPniyfJXtdENlkOp73xrExlZtPQieMFBTXV9rIgnPvqmbx3XffyQiBvdaijFimoQDTtX6kJcppnaUTxkU6iNelvc9VKirIFtZizjsSK7SrBk0UkDF97FZqw8onILNChNWPbrittzbmmmuEQKlPMB+wYMECqV8wrMckbT4cdNBB5vnnn5eBKo6N4dVGjRrJcCtE4Sp3juEi/eVi1sGlwYYg+RxcnPf58+fLfV2qAqwLxJYsYGJuzjTVDuwSIFedYC53QwNWQeJ58ygW5SwuQrcMwrDeHgKCgO1kDEYNeeQR8/t11xnzzDMo7kkKYeTIkbLCkusCZVCkFpCxyZc247OEJNCAQtGAaVsmb5FsYFNk0tbXFgLXNA6BC7LgM3MhZQPIjuD4uprxSA1Z4P2lcUDNlcHG+8FQu5pgxwMjumCeoZiaUbkb7uyMhY0smJkAyPGjaUbt5HlSRexxueoq3GKJPuiIonhNyowBPQQzO3fuXO35wkiQjmIVJlppfLbIODD0l63OHDT4bF2RBRErUY0LyQ2X9YoFCxYUrbbtGkoWZSCJA2rFgGlm3ncpqxj9Bq2sNDcUSkdVsgrVkoWNLGz7LFsfeS5E2h4cOhRdG6SAkU2Wn1O4ZqvjLbfcIguUkAG54447RNK/OnLj9ejuo97BjMbjjz8uhMRzUAfhfYSRiuEY8u2QSXJU45IsPv/8cyfKwqkjC9IFaRtQc1k3oIUVY5K5eStskC5gMdH777+ft5W30p3ZGG/eq5XXt3UEWhy/+eYbEb9k+O6Xgw9Gc78qurBibq1bt5aU0vHHHy/1CwQ46ZTK1ZhAhEqkRJEcg4VnfeKJJ0rK6+GHH5bUFmmw4447Tn4vKHAv2c6vtJGFy4G8z/+c54kDYksWrgfzXA2ocUPRPeFKcoSQudyOJD8jHLx7vPBsj71SorBkwfVlUyKkihAKtNEFqSief+SoUcawH55NZU89VfW7CAoSFTBXAWlcddVVZvDgwfJ32QKYEMBGG230F4MBKZ566qmiO8Xf8nsNGjSQmkkQC5FwAFylQ2zLbhoHERcuXKhkETS4uVyRBW27rgbUyNtT5HaViqIYR27bVc3GAj0mDC+et59EkTmQlwlqEpAHz8++AGYnHnjgAWMaNTKmaVPpjDJ/EgGv+/TTT4unTkTQqVMn07VrV0kv2f3H9nW4hiGBfAVOIhwiFWY5GPqjjoGUCKq3tOv6Ac4bDoArssD54bN0NYjI9eLqtRfFZCAv9pEFJ9rFcBypINJQaaxb4IHx/l2mooDdQQxZUCT0iyjykQULuyALu++YKIFdAZIKpXbx/vvGDBlS9fu02dLlRO2B6e7LL79c2mkRHkRPitcgMoKEijlWOnUQKIQg+vXrJ+s1KbyzHqCcduJMkFqDrFy1b3It44C5atl1mQJbvHixRhZhkAVFORd1C25ccruuagcu6xb23LuYns8Gxo1JaFJD06dP94Uo8pGFjWTQewJMbkMeiASaXXc15sQTjaGdNsOBgGCYnWBhEqkoOqMogDPNjWItulGlepVElmznY1Ma2/qY1aAAT02k3CFV3i9Rhav2TZfGmpZlCEMjiwRHFny4pGNcTHG79u5dzzuwG5qojvSBa1CEhjzp5KGu4MdgVa4OFds+ixYU3WDUGZD/QIZccMMNxtDKfffdK/0dLbA9e/aUrihqD0QZzGBQd6C9FmNVboRH9xTHQ8stLbukxy644IKS5o8gQH6fKXVXcFmvsPImLlp2f/zxR3loGioEcIEHUeyLusHGo6Yo52o4j6llaheuiNrCpp6IMOmQoghM2qcScE4xINlkQRRg0yTs6QYY/tdee828++679Nca06bNHymprNZijDrRAORA3YG6BQRClMKmvUqiRD4LaiKQxg033CCRDMd64YUXFjWHBDHyHK5SUHSIkQajacEFXO4OmTVrlji8pCzjgNhGFoCWQpsWSNNwHGkwLjCXdQOmqSELFzUjkF2jQHyPDiRuQNJS5QoeZg/kZaZ/LGHYuQeG6TCyVdFF165/EMUdd6z0t6Q5IAp2W/To0UO+J21EGmn27Nnm4IMPFoNZCSimUxdB8JDIhWNigPGSSy7Jm6rlOPh9PktXKSgiVKJBV2kglymw6dOnS3ODq93fpSIeR5kHSEBjHFyAC4wCt6uuIHLMLsmCeQs6daxxDRP5itmkpNBdIjpAsK+celY+srCpKGpVlix4XVpZmYcQ0mSqu107YxASXLSoyhhRjCZNRqqIiIxBO1JZbdq0Mb1795b6w4EHHuhL/Y1CMTIjkAAzH/fdd5+0GV9xxRVyDJmgq43368qzzmzZdUFWrlt2Z86cKTYsLoh9ZEEKwIV3a4vcrqILbjBufleS4dzcVtgvTPmPQl1PhPUouZK/p82UlFEp5yh7ejubLOzrW1j5D+THBVdeyckxXvfu0u6KRAg5aYQCSZvSIYU3zeAd540BPwiD14Uw/GocwABef/31IlSH3hTS6UQQRB1WW4vPjuFC1HBdpDR5/y7nO3jPfJ6uopp33nlHySIs0HZI+I4Xlba6BUaRi9zlgBypH6KrsCKcYttjITK8aaIMCohEGVwj2QNxuWA97VyTzJAFz8dNbtumISZI06aift9wQ7PknHPM7337mm/eekt0nuiksqkGSIyNeUQbyIGQ1mKTHsYc8mcvRqV1l0xQC0CjivdPKuz222+Xc0N3FmQBeZBOpMYRNrh3qFnQLOCyZddFGmjFihXSBm1FKuOAWEcW5Gm5+VypdLpuYXU9TU0aql69ehLdBR1dlDNHgcHHmNPCiofN3giOtTovOlfbrAVG3x6LTX9CTEQH7OHm/yZOnGhmsk1v3XVNwwkTcqY4IDFmJZABgSQ4j0Qa/JsOMwij0tmJbJCio2uKQjjpL0jj3HPPldZb9m8MHDjQDEXvKkTgZJCWc5Wzd1mvmDlzplw79pqKA2JNFoCcX9jqnFFpYeVGgyxcFZkBqQ28Qz+94WxUMnDHDYm2EykerhWeY9KkSZIewnASmWZqNhVDFjwnXVA4CnjlTFTzvMOGDZN/H3TMMWaVa681NQYP/mNYLwcocHfs2FFSRAz3QRhMe/ft21eOB8JA/yoIB+Pqq6829957r8iJMFlOdEE3GeSROREfNFymoIDLesX06dNFD8zFIGJqyYKhrCAF1qoDFxotrK50oujEwSvLLlyGCV6f9AyGLYgNfn5NZmPg8a7pmGratKnUESDal19+WfZkk6ridSAQUjfUFWxun/PL70Isdq6DYjWEw4wCNz3Py3NR65Bi7XnnUSU35tpr8x7T//3f/8kcBgN+tIBDGAzrEWHQfUWdg24pP0EEyHPyWbFPgwgHEqW2Q4qtcePGoVzPRFAU+V2p3HJduY4s9thjDxMnxJ4sbJHbBShyY1hcpYIwSnhmrvZ6WOCJY9z8rh35KeGRCZ6HNtiGDRuKsW7SpIlMQTNvQIEZo43xRI4DkF6iTkHUwd+R3kKmgaE8jou/Rb+JlE7VtYAwHRPdTzzxh9BgDuBVPvLII1L7oUOK5+S1acml6E0+nYjIT4lyrhVSctQvUMUlwrEb+wDkR4QUNDgOahVcNy6AA8D55xy7wDsxK24LvJjjhx9+8GrUqOHNnTvXyevPmTPHmzFjhucKixYt8kaPHu2tWLHCc4mvvvrKGzVqlPfTTz/58ny//fab9+qrr3qTJk3yli5d6oUBzuEqq6zi9evXT75ftmyZN3z4cPlq0a5dO2+zzTbz1lhjjZX+f/Hixd5qq63m9erV639PuHy55/3zn5536KHVvu68efO82rVre/vvv3/Ve12+fLk3ZswYb4cddvDWW28976WXXqr4/XG848ePl9f78ccf5ZgXLlwon90XX3zhffbZZ/L4/fffvSDB80+ePNmbP3++5wpvv/2298Ybbzh57eXLl3u1atXyZs2a5cUJsY8sKHIj80BKwAXw7ElZFNNpEwSsd+Y6uiCdQAqGgbhKi91BRRSFwOdIeqa6ZTSk3IgAmK/JjGj5HIgIqgb0wKqrGsMu7gkT/liSVE3dB2+eNBaT3pw/IgymuxncI/Ig+mFvdyUg1UVURAsvXzlm0mp8dlzHfH5VabQAQfqHNJSrpT+uW3Zf/zNSjFNxG8SeLFwXuSEr0hcYGhfgxubmdy29ASjukoeu5FhcEUWhgbxMsrCOQXZ6CPkPctErSdAcfzwX6B/zF9WQKO91wIABoh9FLQNAGNQQ6Fyi64yUGd1W5YCBv08//VTazV3ve+b6oOmA9+cCXKOQvV1u5aq4vaqj959qsnBZ5LZ1A5fT1HieFF/LFaXzs4aDMSIfW47IoEuiKJYsrDeIB25rGhbUMFaS/wAYZvSiXnrJmJEj//i/AQOMGT/+L89NCy7zD0xbDx8+XP4Pg0KrLQTyr3/9S2obFORLAUOJRHzIjbjahJd5LK6FC7lXIQpXnUgzY1jcTgxZuCxyZ847hDnJnAmMKt09roYTs9t5y0lHuSYKSxYYkOo6dDjPFEUxNtmRBcdMZ1OV/IdFkyYMVxhz9dUo5/1BFo89lvP5EQOkhRbi4BxawqCVFnlzjAw/Z7lSsYC8IQnSXa5BdMMwqasupCi07M6ePTt+xe2kkAU94uSR6fJwATqiMA621dIFmCJm1sGV/Ed2OorBt2I3uUWBKHKtU80FO0iFAc+11hX5DwwiE9oCUlaQJutXaYN95BFUCY3JsxaX12YDHx1WxxxzTFXEyushy8ECJb6iSUUnVSHgxfO+opB+wnmgNZlr1RWYvKdmglPjAitiOLmdKLLAUyFEp/fdBbjB7YCcK0BY1E+CHI4rJR215557yoBXocJ7VIii0EBedt0CMuSRPcRGOy7ttVWpqCuugMn/iCiOPdaYLl3omSUfk/f5iQLYqIdhadasWdXcA4TBOWKQjuI3q1WpceQDzgvRCV6s6/QT4P7gPbkqbNtjIKpxtXObmhMNKXY/SpyQCLIAxx57rBkzZoyz13ddtwAYKVJRrtJhmWBwjbWnlgiiThSlkAWRha1vZNctMuU/pG6D5hLPiQQI4oSkCnEq8kQWFhwHhMGMR9u2bas+UwgDCRNqGwzwId3Rv3//nB40TR8cqysvOhtEFehSuZTkdp2Ceuqpp6RrLm7F7USRBSE7GlGu9mKT56bLwuX2OGoFGOBSNqUFfTy0NdMSmi3lHjWiKDWy4LPmd2lnRVcpOxXFzyXSrVPHGFJSTHJj1OnAQcajiClpIoIhQ4bI6tZu3bpV/T+Ghgjm0ksvNc2bN5cBO1psLWj/hSioq+BARAEMwdGE4bJuwnmha9ElWUyePFmixTgiMWSBF0s6aqTtOHGQeqFv3eW8Ax4bniTF/iCkN8oBLZ+E/SypsscURaIohizuuusuM3Xq1KoUAoYPyXHSQpnAQOP9V6Wi8CKZ5kbGnHoFdYwihQIRGIQorrvuOtmCl0kYe++9tyjXko5CZ4oCOBGILYyzWMd1nQJwTLQT+7X2Nq6LlmbNmiX1LORm4ojEkAU3BYxtWw5dAEPj2qtnPzaGxFWxP9fnQgMCBAFhkLOOIlHkW6ea3fJ4wgknyDHjHECCfN7MP2SD6GLChAkr17H23fePIjdtkyUUeVlmhOjfGWecsdI8kSUMBvlIVZGa4t948NSMoiJSxzmgrdt1lMNnFcbQYT5A9uh9uZIYqRSJIQubikIQzpUKK4aG9INL2XJuBCS56biIQmdUZtqEFCGKr5yfKBEFsEuHqiOLO+64QwYwMcx4yXzWXGu8l2zQrWS1n1YCLaMY/BxzFtV9pgzs0dGEQ4R3mk0Y1C44LtRkqd1F5dzaqIIIE4J1BdKgRP3MJLnC+PHjY5uCShxZMO1KWxw5chfgZsDYuJ6mpqBJZ5TfOxEqAYYTQ7ts2TJZ3BS1Al8xA3mkGWlrxSHh/djojfeTqzvtL/IfFYDuHaJmOmlwijIHMDkWPm+aPNq3by/1C9JTLqXrLSA20o+uZzw4DgYmXaWgvvrqK0kP0pQQVySKLLihaCl8/PHHnR0Dk6lcmK60ojKjC3Y7u9oRnglboyDVg4oqhEE6xeU5KocsrENCYRlvmb/Bg8+3Bx75D943Q3F+OQHU5GjXJc3FecVzRyGXfDwpjpNPPtl07txZVGvZT+GydsVrs1qWOprLlBjnCAfO5dT4E088IbMzLo+hUiSKLADeFRvRXAHvxUpdu4QViQtigU4pyC5m49lR/MWQIP7oahdIKetUc01Zc9PzHtjUmE9CHPkPIgy/oguAphCpLTqtkAV56aWXpNOI9a3kwtmrwT1A/YIuLeocrkiZyItoGx0ol6CGg9OUa696WBg1apR8LnFG4siC0B9vxlWB1wr7RaHATNcOHlV1a0SDRL6uJwwIhIFxZtKZmzkubbOAVBAGG4+ZzpbsWYvM38sp/1EhSGVAWOhFUZ9ACgQHBZDegzAgqi5dushxUhwPu37F61E34xp03ZHFvQhhuYpufv31V2nrj3O9IpFkwbwDo/SZbYZhgyIaBtLlylWAp0l3FGmKsAf1CrXH0uZLwZbCJyqcrifPSyELgEGmRRnSo3Car2WadBFdOLTc+gUUZDl3aET16NHjLzU6SxjImtN2S62DeYwwU5Kk3nAGXA8E0lRBlM8woCuMHj1a6lpxlPhINFkAbiKX09x4zhjpKBSYURqlGBpm0b3YOQo8TnSCaPNEXI3cf5g5dmonNuoqlSwsaAsG+aILOpXonPIjFQXhU4ei3kM6imE9yIrrnenoXIRBHaN79+7SxotnG8bQKGQWFT0qooqNN97YWWEbsKuEpgSXk+t+IN5HX02Yzg2VT2YiDGAE8WhcTZT7JRteKsoZuCMaJJVC7p20VFiCjJdddpncxIDPipw25+iWW26RtthiQJcP8xb56hYYS6KLKvmPMgGpkcpAzgWCwBkhzYV8BB4813x2y7YlDNqWeU9Mm5OmDVLKPlMOPVeXWJjA8YAsXAoX/v7779I9Z6+zOCORZEEnECP9Lgf08GTwaKJQu8AY4zXj/QaZjqpkMpvWTwiD48Qo0m0UdJSB14/8Ak0AkAWvzTQ209LFkjxkgHpAvsgCoBWFgS7nerRKrRgc0orstqBontnIQPEUT55OqOxitiUMpEOocTBYSJ0lqFkgnBI+yyh0/dh96tVJzgeNV199VZyggw8+2MQdiSQLbmA6D2hXcwk8GsgiCtIbeHp4p0GRlx8SHoTptBciwU0qI+gog7QMXjlCfBhZCILBO8iilC1qVjCxuuuAc1JqKspGE6QzIbZ829UotNMuThcgbbPZsISB/Mdtt90mREw9w+/GgiilnyBZzhvn3uWxPPTQQ9LO7zrK8gVeQsFCdpais5DeFVhMP2nSJG/u3LleFPDVV195o0aN8n766Sdfn/e3337zXn31VXmvS5cu9e0533vvPW/EiBHezJkzfT9mi3PPPdfbdNNNCbe8+vXrew0aNPCWLVsmP+Pr8OHDq77Ph6FDh8rff/3113l/p3///l7NmjW9L774ouAxcQ5nzZrljRw50nvrrbe85cuXF/Ve+vTpI8fBa+UCz/PCCy94AwYM8DbaaCN5r37dH5yjcePGefPmzfOicq2PHj266HMXBJYvXy7XFtdQEpDIyAKw34IlPP369XN2DHg0tA6S5ojCAFoQ6aigRAFtlMEQHMeKTAhFcL87ephDsPpNDLvdd999JctSFCpyW/kPPPzqFhZxjXCtsPOAtBURVim7mtu1a1f14HzlizA4rz179hS5bgrgfohf8tmQeo1C+ilTYsSlUsDjfw4HUydKAhJLFgBRtaFDhzqVPaB2Qggahc6ozHSUH8cThnosQ3K0HFLPwIBiSDGofs0NYDxte2eHDh3K2o3MYB7HWR1ZMKzJ/uxcqSjSlBSueW8QF8dE2okUWalA6oP8OK2yuQYyLWGQniHlxmfHuc3UmyqnNsAjCuknQCqMTjeX7bLg/vvvF72uqEnblItEkwUDUVw4FAddIWrSG3jNGEQGF8kxl4uwZcYxnBhQDB3HjSjb22+/XXFnj61v4RXfdNNNZT0Hw14YyurqFlb+A0LBCwdMrzOrQVsrZEFNgWiCxohygWFixggnhQ6pXHUJSxhEARAGEQ2EUc4OdwrlvG+iqyjk5bkuOadETy4lRubPny/dZ2eddZZJChJNFnRlML169913Oz0Obn66VrJXcLoCXi6G6bXXXivL2LrcR8G5xKDyukQXOAIUgRl8K7eRgAI3Rq+S1aOFitzg8MMPl+uA12OQjoI0r0vkRJcT+7/98Mxp5UVDii4cIoxcUZglDNKSFL3tju9i96YDnB/eB5GVSymNbCMNSbhUlwV9+vQRAnbZtus3Ek0W4JxzzjFjx451Pk1N7QLPzeUmvUzQp49nyc1eSkonKouLIDyMLJ0m1GKIlIg2aA0lmiw1TVWpkcazxtDmms+AxKgPkEdn5oFhOoiJdBHREsfvd/qGQcCnn35a9LdQos1Vo7KEQRRCWy3RGwbORj7Vwe4n4XOgNhAFECFFQWLkt99+k+gOIcckIfFkgUHB83FZ6AbciHhfGLWogPQYRosIo5iCd1SIIltpmM/XGl40ksjV4yAgI0JtBgMetNwJkYVVgOUrdSGm5iFjjoXpdDzeCy64QDx+ahOVRDLFgOI1UQw7Lu68886cv2MJg1ZhBveo36AMXF39BfB+IGRIMgp1CsBnTSrM5dpUAEmTYoy7FlQ2atASZRIO1DfJR5MGcjlyjwFhCCxK27K44adNmyY3GMXvOBFFoXONN8+DvD0GjfQMpG2/kqas7nrg3CAbgyhfvg4pbh+iRSTC8bDpRCLawcvldTivPKiJcAz8Pvl0prAHDx5swgCS6tQmSE3xXnKB44XYSIsxmEiNbdy4cUIk2SBCxunhOo5CncKmxGgQ4Hgrqfn4gf33318itHJrYFFFKsiCYStys3hZ7DR2CYqyeB25bkJXoG4BYdBqnCvXGzeiyHX8RBekIjGG9iv/z3shOuFh/w0xQCL8nIlkIjC+hzwwSlxP9mGbFiB/iIIUCO23fJ+vwIpi7K233ipEFnR0YdMixx9/vNR3iLb4nKsjDM4VAoSkoyBL5M8tIEV+h3Qa9ZeogEgHB4Ho0iXefPNN0TqjdhKVOo5fSAVZ2D3GTATToeASGBcKm1G72egwQk/LpiSSQhT5wPvKNvr23xhNfs6D80JqBsPPwxJLJrnw4GfUxzCkpKKqA545hU+me1u2bBnK+4UAMPp8jhxjPgkMSxgY3ptvvlmuiREjRkiaj7+lBgJ5ut58lwkiO+ZK8ObLaTf2Ey1btpTrprp5mrgiNWRBHzgXOBc/bY4uQQiPh8bNG5V8L0AmnMjHEllSiaJYFJOGygSRK8VkIjUIpFCqgqiCVE9YoIaC10uNB+Oa7/O0hAFxEgHhZLGTg+PlHkJeJEqgqQG4lgD/+uuvJTInguM8Jw2JL3BbEBKecMIJ0vXhGnSqkIqKgshgJrjQSVHY7WtpJopyi9ykfIrpJkKJlgjTj+npYkH3Gxv2aGg4++yz8xb9bdEbwrv88stlih6RQmp+1FuiBBoFSOeR/nONXr16yf2TRKJIFVmAjh07ivLn4sWLnR4HN6OVDXe1xS4frOfI7AIifkoUpUnMkI4qNG9RrPxHECCnT8MHk+R0P+WDJQy+QiwQBvdP5n57hDpJS7lClOTQV6xYIQ0LnKOkIlVkAeNzQ5OLdQ1yxsw6cLFHKRNI6gmSYFdC5nIgRWHQtouHWwxZ0CnFhLWf+7mLBYOq1157rezpps0zH0hDEQFjiNn3TXTB3w4ZMkR+zo6OTp06GVeIkh7VgAED5N4he5FYeCnDxIkTvXXWWaco9c+ggVLn+PHjI6NKm60ey3GhUrto0SIvjShWdTYTrVq18vbYY4+ifveZZ54RlVgUkl181ieeeKK31lpriapvNr7//ntv7Nix3uzZs+X9o1b73HPPeW3btpVjvueee7zHH39c/j1nzpzQj//LL78MREG5HCxdutSrU6eOd++993pJRqoiC0BXB+E1XpVrUDRlqCkK6ahcxWyE2GwNwyqzKgrXLWgSKGaC/LDDDpNGAhfRBa3ApE3obGKLGw0gFrQWk17CY+fnXKfcM6TYWrduLYOFTCdTc8OzR6zTRfqJa9N1+gncfvvtcr+0adPGJBmpIwtAhwe54ihoNdGm6jodVV3XEwaD+grSDkzIRillFlWyoA23mEl9Un2kdug0crEgC0NLwRvY/dyQBkRBE0ambAa1C9JS1DuQTSf9xFpaOqsgizCvC9JPzLG41n8C3DPIvZPaToq6bD7UTOsNTb6YPGwUgPdGZFGO6melKKY9dsstt5SJY8gVUovC5r+oAoFGUEzdwnZFYaBdKSPTJcgcBbpV5NtpQ7USOdmgQ2706NEi/f/AAw/I7/E+0WOy7atBgwg3SnLo3bp1E4eKocekI5VkAbp37y4XflgXeTHpKG7YMNNRpcxRsPcZeQd+lyngYndUpw14vBjaYsnCzj24SEVZECl06dJFZj6IKlC/zdfBRasvkjV0R2Wmrq6++upQ0080E7jGl19+ae655x7JVESBuIJGasmCMJscI6F0FGDTUX5usasO5QzccYMySEj6gkEt10q+UY5cCwnxWWBkiC6eeuopJ3UrUk+oGvC5WhmS6moQpFqQUyd1RhstaSlk0FnsFIakR1TST4C6J63IEGcq4KUYn3/+ubfmmmtKR1IUwM7eCRMmeB9++GGgr1Ppzmx2i9MBw47oBQsWeElFOd1QoEePHtJxx3kuBnSdcSs++OCDXpigy23MmDGy55tj5XOlm2uNNdbwZsyYUfDv7U7v559/PvBd13Qv0v30888/e1HAnDlzvFq1anmvv/66lxakNrIAhNsXX3yxeAguV69mem14pWz6Cmpw0A8JD7xhUie77767pAUoOGod438gpYjkB8qtxYCuM+Q/wkpFEblybHS5UcQmDUV3FJ8rcuZ8rmwPRP6lOtjBPf6O5wpqzzy6VqSLqQdFIf0EmGyni8zuX08DUk0W9kOny4dlJVEArZTkZOk+8jst4bfWE9LbiLdR+Jw6dWrOFZ5phDUgxdYtAKkoJLaDlv+AxKhL0PZK00K2ICDXBIN6GGWaQHItcwqTMKhToFPFcdJoEQW89tprohmWNAnyQkg9WaBSSXEODf+oeMfcGEiqI3ro180XlCggffZ4xdRbKHwzMxKV8+gK7FMgr15s3QIgnU+jQ1AzC0QTOEWQOtPjLDiiaSGfugC7L+jOQ0W10OcZFGFwzBhm9o7QMRgVXHbZZaZt27ZS90wTUk8WAKVQCn2ud3VnguiCPnwMfKUF76DVY0lhsPiHKIP0GQYJyZA0o5id3GHJf9hoAuOPojCSN4VmArj+WP9Kx2AxLeZBEAaOB/clLbpR6TaaMGGCRDp0j6UNShZ/ruakEwRhtai0hGKA99hjDzHwrAktF2HKjNOpYqMMhAjTHGWQiiqV6ElFsQuDCfCgoolSdqggzc508m233SZdT2ESBvUSHjxfMfLwYeD333+X+iZ1TterW11AyeJPtGrVSlIqN954o4kKiCzow+eG/+yzz0r+exf7KDKjDHZ2YKgYpErb5DeRBTWcQkXibPkPUlh+RBe8NtHE3Llzpb2zmGgiFy666CJZ6sQgHu3SYRAGxw5h4iyRgooKHn74YTmfUWm3DxtKFn8C3Zt+/frJ6D793FEB3jphOPnvUuYaXC8u4rghDKZb6WQh0khTARyyAKXULaz8B3WLciMyCtLUuqgfEUUwE1HJTmqMfp8+fSRiZEoZxyVIwkDlluOnRpG5sdE1Fi1aZC655BLZh+N6G58rKFlkgBsLoTQeUUqfEPLirXMTFZMmc00UmVEGRcBDDjlEDBcGjPdQqMMmKW3ZrGMtpW6RKf/BlHQpwMjSxkwkx+fdpEkTMbh+6BWRBmJ3BZ8hw3fFOC3lEIbd0Mf1TjtxlHDWWWdJapHCdlqhZJEFJljxgNF8iRKYa6B7hZba6ogsKkSRbWzo58eAcTwYNDxuDFxSgZG0dYtSQOoFx6DYVBQ7R6gNsSYVY4vDwzxCobWupYJrb9SoUSJx0aJFi6KMfymEQZoSsiPCZ+4jKgVtwK70qVOnys6KKB1X2FCyyAI5UqSbCTejlI6yxgcyIK2Ta4gwikSRCQwYhgyDBuFh4DB0SSWNUjuiMuU/mHWobs4GkkDAj9mMJUuWiFwHw3RB5vghMRYe8bkVuxGuGMKAKBjsxEmjRkdEGhVQb0Nht2fPnpGZ83CF6HwqEQJdI+hGRS0dhddF6yNGJLvTJupEkQkMGoYNA0dKCoMHASat3RayYMgOb7wUnHbaafIZDxs27C8/43zRMUULJ4aMSIThOrqdwtoH07dvX6ljUOOrlDC4hlEsIPUWxeuWlbJ8jm0SvquiGNRA88P1QUQR9KbTa06XVNRSUuxLoNNlgw02kGiDjzAuRJHvXNNlQucQhXHy1UhnQ44uwfQwk7q0kJbTvslcwzbbbCPPcfjhh5f0tyj88jlCCjgCEANT18yxMLDJ84ZFELlA+yiEMXbsWKlJFQNbk+B6pUMLEqEtnPPEdUs3YpRA+qldu3YS/W6Z8qgCKFlUA/KUGIoZM2ZU7SmICkjd0GFEpwtGDY8zjkSRCd4HhPHxxx9LIZ8blG4qV90nlZIFRpFcf+fOnUuW8L7//vtlGx0pH84FqRnOBQ+/6xHlAMOPNhJNC0QL//znP0smDLqdcBK4bnESogTIGWeRdPQZZ5zh+nAiASWLIqa7uSEoLLv2dLNBqoKlORgSZJKjYET8AIaElBSeNOmJtddeWzpk6C4imgqryFgpWQA+F44ZCfJi3jekT9qKRVPHHXeczDdcc801YlijVlylVkIKjEgXAih24A/CwBFjOhuiKGVQMCwwTU8Kmgn2qJ13V9CaRQH06NFDDNd1111nogRSE+R6IQjCedZ4JiWjyM2JR06uuGnTptIJhmHBgx0/frx0UlELCErlNMzdFnyOCxculGYKajfTpk2T6w2vFs+dQTi0mqJosIj46JCCNNiyR9G9GBBN8LtEE1zDUfsc2QLIjo/77rsvkufdFTSyKALcsOSciTBY5+ga2cVsviclZWsYUeom8RO8TxRuSRHgfZOKw+Mm6oBcKJz7+d79iCwYsEOMj04fPh8InYgQQuB98IDsbeTE+7ERLGJ+EAYFbdpJowrqZxS+6eKqzsDy3nFqrOItEWN2DSMq6SckTmhwUfwPShZFokOHDnJToILpMh2Vr+uJvDZkRpGQie+kEoYFBobCOKTBDW4HxfBWKfzaRyUE4kfNgi4vOpaoQZDX5zj5DDlOyIEHx5nLwPL6FPrJmZM7jzLwxjGuGFkmnXOdC9YGf/rppysVs3MVvV1C00/5oWRRJPAG0dc55ZRTnOnYF2qPJXdMMZ5dBBCG6xsvTNh8PykRDDIP/g0wzKRMOC+k7eyD84fERj5PuBBZ8Jr8DkTNueerffDaPPg518z5558vOkscB8dTLIFdeOGFMtuAkY1azSwbV155paRtn3nmGTG6mdctaTZInYgiexYkKoQB4XG+ITVIWrEylCxKAHlMcuj0v/M1TBQ7R0EumGI8X+ltZ192WmGjD4iD80baKtOoY6QgikzywIjbrXH8/YIFC6RVle/5DHhwbu1z8D1GPPM5+GojHLvvgx0lCNGVCj5LBtWo1Rx66KEmyuBcULug9kJalNQZ54ponHMFEeS7Hl0TBu2xzP307t1b5lwUf4WSRYno1auXKNNSbA1r+UmpA3f8PhOxKNViaKLYbRIFYKCyowKMFeePr/yc9aMU2DFelkQ4/5YUbINBdYVQUpgYUIq5pYLjQCqFVFZYa1crAeQMOVKjoe2X+gSESaG/UCrPFWHYyXEiyLvuuiuU14wlXC8BjxtYat+mTRtvhx128H744YfAX++3337zXn31VW/SpEne0qVLS/rbefPmeSNHjpSvitKxbNkyb/jw4fK1EgwYMMCrUaNG2dfLjTfe6K211lqhXG9+4NNPP/U22WQTr379+t4bb7wh90zv3r3lWiyE5cuXey+88IL3/PPPy7+DxooVK7wDDzzQa9y4cSivF2ckuwoaAPAg2ahH7vmkk07KqdHkFyqV8CD1gYeGR8t+gCCPVZEfeNV4y3Q1lQO6qWgdziX/ETXwPkn3sdueqMIW5oms0FcqhKB3eueK+hgCRVU3TTW+cqBkUQYw2sOHD5ebn5siCPil9cSEN9IRtJxS/C62F17hH5AKp5Beym6LbNLnM4x6GoohNq5Z5iiQ8qZgTOswDSHUA4q9/sIijP79+4ukB7Mi+faRK/4HJYsyQcsjffCIqfl9E/stCkhRkTwyOWOGvnheRXiAKOikK1WBNhPMMOCdl7MxMQwQTdBaTgQEsUEcFLuvv/56c+211wpJ8DvFnoOgCYP7gBZfyAwyVxSGkkWF6YVBgwaZCy64QJb6+IGg1GO5+SiSordEV1epSqiK8OXKM9G8eXO5FjBuUQMFYgZX6QCjNRZypChPYwCDd2zYY8c9zQBce8UiKMIg7UQKGRJjmZOiOChZVAguOvrn8aIqNcBBy4xz0zEYxhQ67Yx0TEVJgj3JYLKe9kw6r8oBNTKmuaOUiqI+gYYVw6AQA9cVbcR0jdHqC3Ewe8G/OX6M/bPPPlvSa/hNGEQ+nEd2qgSVQk4qlCx8ABLmGAMuwnJrAmHuo2BugFQBHiFChGnaje0yssDQQdCVpKIYbiu3UO4nGIAkSsBLhxS23XbbldqHuR+oB/Bzlgfx3nlwvZWqYeYXYXCP0SzA8w0cOFB1n0qEkoUPwJNi4Iop73KWpLhYXGSHxZC8xjPUKCNYMKCG111JKopBULSjXEYXNpog7URRGA+9uuIwu8hxphhuZD6Ja64ccT4/CKNr165yrY8YMUKm+RWlQcnCR+NLVwXLYG6++eai/87lhjtuPNIHNspANlqjjGCAcSKPXwlZ0KCAdAiOiQul1uxoAsG9YiVIqFew02Py5Mllv34lhPH444+b22+/XYiCyFpROpQsfAQb3tidTDEPfZxCiMoqVIiO1sY6deqI50VuXWsZ/oPUTCVkYVNR1MaYjg4zmmCSvdhoIkiUQxic87POOktaZflbRXlQsghgfzeSAejLsBIz6kSRmUojyjjggANkdadGGcHULRiOrCQqQCCSJoWwUlHId9ASy4Ad+99LiSaiQBikV1kvwBIzViQryoeSRQDAiyE/S7sj/dxRJ4pM0P5IXjkzyojacpo4kwX6U+x0KBcYSKILprkx5EGBa5RoAqeBPRw4QVHSGCuGMNjvjfiiS6XoJEHJIiDQTss6zGbNmsnFHAeiyBVlMPnNMBiepcqFVAa7OMumotg3Xg4RW/kPUp5BpJwY/KO2QG3CRhNRlMKojjA++ugj06RJE7n/kBnRjXeVQ8kiQFx22WWmY8eO5sgjjxQDEQeiyBVl0MnDzYcBwZAkZX1rWOBzZzMe5xOlYq4BUn316tUrq+BLB1sQ8h+LFi2SSJjUDcdJbSJK0USxhMHuD4iCR9++fZUofIKSRcBgSvScc84xhx12mHiCcSEKC25CFsFgOIg2MCQUOtkbrSgOjz32mBh40k92kpvhNAb08NrLAfl3itx+yH+w74OUI7sz+KxZkYoeVVy2LWYSBt2IXKsIaLKdMC7vIQ7QMxkwuIC7d+9uTj31VJEFofMoLkSRCW46DB7eGq2HTIBjYOw6U0V+sDUOmRVqWJDDm2++acaNGyd6UeVuZLPyH+UsVLKg5gFBUMBmwprP1u7uiBs4Zq7Liy++WM4rUZfrQnzSoGQREmGQN6UwyYIVv3SkXIAbEIOCYcHAYGgwOEEWW+MO1og+9dRTUvehYMy8Ah4w0Wa5IKVFPh6jWGpakCI7U+BMUzO7QSSx0047iaZTXMG5bdy4sURuzFTEkfCiDiWLEAmDZfbnnXeeGAnWTsYZGBYMDIYGg4PhwWPGECr+Cgby7rvvvqoaBfWBSlfz4nyQFixW/gPVV7rbaFggBUaHE0X3uE8zM1FODYdBwUceeaTgRj5FedC1qg5AWy3EwU4MbtgkAJKYM2eO+fzzz2WHxjbbbGM22WSTWBcXly9fbsaMGSPRoF8GiH5/iq48H+eskpQkx0fqBdJgOjkXiDoorrNj4osvvpDPhMI67bBJAIu9iHKZpbj33nu1RhEglCwcgZv7uuuuM08++WTFHmaUQIqDlAAPDCKksdVWW8UyLRAEWeDRU/shjQS5+tGiTdqFDqDMc8wEPsQNSZAiZG6GzwLJ8KSASJYonfoNg7BazA4WShYO0adPH3PFFVeYe+65R3rnkwSMFZ061lhR4MVIrr/++rGJNoIgC/u8wI/nnDlzptl9992lYI7TQbTCfATkkUnWSUvNkM5r0aKFad26taxujcs1FWfEz91LEEhJkLI588wzRQYCAcKkeEcUwvFmMVR0TGHAqNNQ7IU0II+kGbBi4ef7pqBLPQTdI6IGUk4ovUIgXFtJNKI4WcwwsYWvc+fOiXyPUYRGFhEAbajswuDGpyc/SamCTDAwRbQBcTBvgtz2ZpttJitqUSVNS2Th17F99dVXIirYu3dvuW5efvll0Y2KY2t2sdHq+eefL+/10UcflTqFIjwoWUQEFB+PPfZY2YmBYi3LZJIM0iW8Zwwe3jDpKUgDr5hZlCh4i1EjC64NyIEHMiycJ8gWEmbKfvDgwZKWSSJ4v6xnxdlgFQCkqAgXych5lAFSPuyk5oajQwRDjfCYBXsdOnToYOrXry+thaRULrzwQrNkyZKVngejlv3A68kE4TJpF2TA8xU1MZJMRhNdMH1Ke2OSwXmnKwc5EXLtpKY4t8hN8N5JyzElnmY9KjqZuA7/+9//So6eiW3IlWuFDiAmlUlBMYRGV12UVq76CbYDcq/Srs1MT3VEwfXDECTDjtyLdBxmgqYS/p7onY4wziMRWSaYXs++p2+55ZaVfoc2aK5ZZOez/z6x8FKKpk2beoMGDfJmz57tvfnmm94RRxzh1alTx/vxxx/l57NmzfKOP/54b8SIEd6HH37oTZo0ydt+++29E044YaXn4RTyPF988UXV45dffqn6+QsvvODtscce3muvveb17dvXO+SQQ6o9rt9//9277bbbvDXXXNPr1auXlzasWLHC+/LLL+UzGTdunDdq1CjvlVde8ebPn+9999133m+//RbasSxbtswbPny4fA0DfPbff/+998knn3gzZ870xowZ440ePVqunc8++6za4xgwYIBXo0YN79NPP/UWLlzoNW/efKXrMK548sknvfXWW8/r2LGjt3z58oK/zzm7+uqrvaefflruzWHDhq3084cffth79tlnvY8++kju/TPPPNP729/+JufMom7dul63bt1Wuqd//NMugI8//tjbbrvtvOnTp3tPPPGEt8MOO3hpQGrJIhtcLFxczz33XN7fefzxx73VV199pYs21wWZiZEjR3rNmjWTG/2ll14S4igGY8eOlYu4bdu2Rd0kSQTG89tvv/Xeffdd7/nnn5dzCXlPnTpVyAQC4edBEUiQZMF7W7JkiRDD22+/7U2bNq3q/XENYsgWL15c9HvjuWrVquX16NFDrkeuS0g3ruB9d+3aVZymgQMHlvUche5Ne974vYkTJ65EFj179sz7N7NmzfJ23313IZC5c+d6W2+9tZcGaDfUn7Dppeo2gPE79Mdnzwy0a9dOdljQpsiENnu4bc6dFAvdG2uttZZ0AjFXUQzoH0cW5KijjpIUA+E03S1pAueQWgYPwP1PGy6fAx1WtIcywUyqis+F30OChK+c66jMdlCYpd7AMdtj5yvvxx4vaU6+kp4rpSOOtAs7rocMGSKp1AceeECEK0nZ0EAQRzCrw/Iwm5JkMjsILFu2TAb5+AwaNGiw0s9IO7Hxks8FXbeOHTtWXU/oe1Ej4u84z6Sk0oBo3E2OgbFBgAw12HwqoEhKc/FwI2aCGxVNGsiAzXiIBWLQqG8ACqP0wJN/xxiUor9DvYQc7UknnSQ5Wxbe2J0IaQTkgTHlQQ0IYHCtIeZBAdQubOLmpsvKPugSyvU9v1dOQZ3XwLAxaMfXzEfm/1Eop5UY48LDzptAaJW2SrPKlzoYtR92XFMvo7uOluU4tmHjAFBz4PNghoT34TcokJ988smyE4T6DwrAmY4Y9y61QxxHxDKvvPJKaca44447qn5nwIAB5tZbb5X7Pu5yKcVCu6GMkXY8hN0QxbNGKBO0eR5yyCFy8bDwvbrOmC5duphBgwbJRe+nZ0pfOZLLeDGQhyI/IBC8xmIMOY4ChpzPFAOFgbVFTdu1hVG3z8vv8xWi4MHv5SKibELia1AdXixRQqML48d7wvBR4EWvK054/vnn5dpm6Rb3EIa4EnC+cbCIuDKBc4HxxwG0el0UqWl0yYWBAweac889V5zApLYlFwUv5WjXrp235ZZbSu4xFyg4NmzY0Dv44IOLKhhSkOW0Ll261PdjHTx4sLfWWmt5LVu2lGKvovK6wa+//ip566+//lpqBIsWLfK++uoryfdTLKZmsWDBAvk/6lr8Dr/L3/AZ8xxRAEXYnXfeWXL8NWvW9E477TQvLuAz6NSpkxz7jTfe6Ns5LaZmAShWd+/ePe/PqR8ZY7z33nvPSzNSm4biWqI1Fs8D2WjC+VwRBTUHvAkiimIGx9CroSUvCA+EHnryt3wlXXb33XdLTUNRvudJWjBfatDKcuBxRmHOojowb0HrNekoWm3jsjcdj54aHxEb9+Gee+4Z+jHw2kSb1d3TNWvWzBt5pAWpJQuK0kOHDpUBOHLgDDoBcsrkICEKlr0T2j/00EPyPQ9A4ZDUxciRI6XvnbkIiITcJ4uOkCAICuySIFzv1auXhOwnnHCCqJhS4FWkGzbHThonO/USNZAmpBbQr18/qREwi+THFD+pog8//LDq+3nz5omx59ywIvamm24StQRqFaShuHeoc5144ony+zNmzBACY4YFu8D3FLdPO+20xCj1lg0vpeCt53owMwGmTJmS93fmzZtX1d66yy67eOuss4639tprew0aNPD69+8f2iwAYfHee+/tbbXVVpL+UsR7ziItePnll70dd9zRq1evnrST+4l8923r1q0ljXzcccd5W2yxhbTAb7755t4xxxwjczwWzLfstddeMttBKzIzFKSolgaQVo4btMAdc1D8Jspg1zdSzbTpapSRTLmPuINogo4tvHkie7oLo6gJpsiN+PXWKVYC6bBLLrnEvPHGG9JCifQDBk6hiBKYGaIdlbQv3UfIiitRxAtKFgkBMxlIgFO0J8I444wzdC+2IhLRxKWXXiqDpajEsgKWGp8iflCySFiUQXGdKIN1k+zIZiBQoXABhup22203UR9ABJFoIi0DbEmEkkVCowy6YliuhKwzkcZHH33k+rAUKcGiRYtE6YA2XjoKURBu2LCh68NSVAgliwRHGYT/hP2AWsbZZ58tN7JCEQRoW2VN8HbbbWc++OAD0XZi17xGE8mAkkXCwVwG4oUMbNF/zo18+eWXaz1D4WtdAp0kri3Snk888YQUsVntqkgOlCxSAoQIuYEhDgQPubG5wbnRFYpyJ58R1GOZEDvAaeF+/fXXJfUUhU2HCn+hZJEicAMjiEjh8c4775QbnPoGAoVp3kinKB20wKKAzBQ2TRXvvfeeKLnGUelWURz0k00huKFbtGgha2RRs73qqqtEzx8DoFBUB5SZkfI//fTTRSJj7ty5IstfivS+Ip5QskgxmEpGnh39HMgDA4AhQHtKocgES6aOPPJI2VmN2B8kgWqAlW9XJB9KFgpZXn/NNdcIaey1116SqiLvPH78eD07KQeT17ReU6xGiI9otGfPnqnb2qhQslBkAGPANjBkQ3bYYQcxEkih9+7dW5bqKNKjN4bSMpPWzErgTLB9j5WtbPlTpBMaWSj+AvYOUwBHupnhKjxJ1luyenbBggV6xhKKb775xnTt2lV2yaM3hoAiGx/Z751v3bAiPVCyUOQF6rXsGmA+gzWXs2bNkpZb9gHQT68dVMkAOxtatmwpUcPo0aNlJwskwYrgtC/8UfwPShaKorqn2MiHvg/pCCIPCuIM/FHrYJ+xIl747rvvZM6Gyf7GjRvLZ8z8zauvvirEod1NimwoWShKAukIdmZAEKQspkyZYrbeemtRFGVFrUYb0QarS9mwuOWWW5oHH3zQnHfeefJZ8m/0m3SYTpEPShaKsrDWWmuZVq1aiSw6ayspiJ955plS22AF5VNPPVXtXmNFOGAXN11t1J623XZbaX8lvcg0PwJ/LCFaf/319eNQFIRuylP4BsiBPeQjRoyQx08//WT22WcfSWHhzW666aaxOttx3ZS3ZMkSIWt2xCPmR3cT74G93ESA7JZWKEqFkoUiEJCOQieIqXD2GSAHwZR406ZNhTj4d9QRJ7KgCeHxxx83Y8eOldkI0kyQA80IDFquuuqqrg9REXMoWShCwSeffCKeLsSBAi7GjMIq+zYYAIyiMYsyWUDGpABReJ04caLMxjBZfdxxxwlBoPmlUPgJJQtF6Pj++++l84aog1ZNz/Nk+IsCK2krpsijsJ85SmSBOjCRGm2uPJBk+eGHHyRSa9asmRyjTlUrgoSShcIpyKdj/EaNGmVeeuklWQn7888/yzwHa2F33XVXmSTmQVE9DWQBMaAMzLZDvr7zzjsSOdCpRPqOCIJjYq/1GmusEdpxKdINJQtFpECUgUgdRpKZDvr+IRCK5RDIjjvuaP7zn/9IFAKBIEURZ7KgKYD3CTEQOUAMbJlj7gFiYA8Jukzssia1xAZEhcIFlCwUsSAQRA4zCQTDCoEgTcHynS222EIef//736UewjQyj0rSWX6QBVEC09A8qNsgl8JcAw9E+SAG6jXZxFCvXj0lBkWkoGShiC2BzJ8/XwiEeQF0rKwh/vLLL83ixYvldzbYYAMRSKxdu7bk9DfbbDOz+eabV5EKX0lvQQY8mFy2X0n7IGtCId6SBw+iAfv1888/l9e1r/3VV1/JnnMeHAN6SxzHhhtuWPXakBqvTZrNEoMuDVJEHUoWisQOoy1cuFAMOAbdevP8mwfkYkkFw18OSAlBRJkExIN/Zz74ucpnKOIOJQtF6oHnT6EdgoE4+GoftKjaqIN0kX1AFBoNKNIEJQuFQqFQFIRqQykUCoWiIJQsFAqFQlEQShYKhUKhKAglC4VCoVAUhJKFQqFQKApCyUKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUCoWiIJQsFAqFQlEQShYKhUKhKAglC4VCoVAUhJKFIvGYNm2aOfroo2WPBDsqhg8fvtLPf/zxR9O+fXvZMbHmmmvKNr7+/fuv9DtLly417dq1E0nyddZZx5xwwgmyuyITI0aMkN0UbLRjTaxCkSQoWSgSDzbqsYmub9++OX/eqVMnWXL00EMPmXfffddcfPHFQh4Yf4uOHTuakSNHmieeeMI899xzshPj+OOPr/o5i5Agk379+pk+ffqY888/X7bkKRSJgadQpAhc8sOGDVvp/3baaSevW7duK/3frrvu6l199dXy7++++85bbbXVvCeeeKLq5++++64814wZM+T7JUuWeHXr1vUWLVokj6233tr7/vvvQ3lPCkUY0MhCkXrss88+EkWwPQ8+mTJlipkzZ4459NBD5dywupWlSE2aNKk6V+z9rlOnjpkxY4Z8/7e//c20adOmam0qkcW6666b+nOrSA5WdX0ACoVr9O7d25xzzjlSs2ALHhvw7rvvPnPAAQfIz1m/ylrU9ddff6W/23TTTeVnFl27dpUUFn+vRKFIGpQsFKkHZPHSSy9JdFG3bl0piFN/IELIjCaKwXrrrZf686lIJpQsFKnGL7/8Yq666iozbNgwc+SRR8r//fvf/zZvvvmmue2224QsNttsMylWf/fddytFF3RD8TOFIg3QmoUi1aAWwYPUUSZWWWUV8/vvv8u/d9ttN7PaaquZSZMmVf38/fffN5988olp2LBh6MesULiARhaKxIM5ig8//LDq+3nz5knksOGGG0qRulGjRubSSy+VGQvSULTGPvDAA+aOO+6oSi2deeaZ0mLL31DM7tChgxDF3nvv7fCdKRThoQYtUSG+nkIROqZOnWoOOuigv/x/69atzeDBg6VIfeWVV5oJEyaYb775RgiDgjezFQzx2aG8Sy65xDzyyCMyU9G0aVOZqdA0lCItULJQKBQKRUFozUKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUCoVCyUKhUCgUlUMjC4VCoVAUhJKFQqFQKApCyUKhUCgUBaFkoVAoFIqCULJQKBQKRUEoWSgUCoXCFML/A/mMsaC6PES2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -780,11 +780,11 @@ "\n", "from pycircstat2.hypothesis import one_sample_test\n", "\n", - "reject = one_sample_test(angle=np.deg2rad(90), alpha=c7.alpha)\n", - "if reject:\n", + "result = one_sample_test(angle=np.deg2rad(90), alpha=c7.alpha)\n", + "if result.reject:\n", " print(\"Reject H0\")\n", "else:\n", - " print(\"Do not reject H0\")" + " print(\"Do not reject H0\")\n" ] }, { @@ -807,7 +807,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAGmCAYAAACN0qhjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATzdJREFUeJztnQeYE1Xbhg+9916kSFGKgHRUQAWpgohgA+mgCCgW8KMIinwIooKFoghIExGkd1iRjhSlSq/SQYq0ZReY/3pe/8mX3U12drNJpj33dWWTTCazJ8nMec5bznuSaZqmKUIIISQeksf3IiGEEAIoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWJGx88MEHKlmyZGY3gxASABQLQgJg7969qkGDBipjxowqe/bs6pVXXlEXLlxI8Pvnz5+vKlasqNKmTasKFSqkBg4cqO7cuRNnvytXrqguXbqoXLlyqQwZMqgnnnhC/f777/Ee+/Dhw3JcCPPWrVtjvLZmzRrVtGlTdd9998k+efPmlc+xfv36eI+JduTOnVuOOWvWrAR/TuIcUprdAELsxsmTJ1WtWrVUlixZ1JAhQ9T169fVp59+qnbt2qU2b96sUqdOHe/7lyxZopo1a6Yef/xx9dVXX8n7Bg8erM6fP6/GjBnj2e/evXuqcePGaseOHapXr14qZ86cavTo0fK+bdu2qRIlSvg8/ltvvaVSpkypbt++Hee1AwcOqOTJk6vXXntNhOLy5ctq6tSp8nkWLVokwuGLAQMGqJs3byb6uyIOAoUECQkHAwcORNFKze507dpVS5cunXb8+HHPthUrVshn++abbwzfX7p0aa18+fJadHS0Z1u/fv20ZMmSaXv37vVsmzFjhhxz5syZnm3nz5/XsmbNqr300ks+j7106VItderUWv/+/eW9W7ZsMWzPjRs3tDx58mj169f3+fquXbu0lClTaoMGDYrTHuIe6IZyQYxg37596vnnn1eZM2dWOXLkUG+++aaKjIyM970YKeO9x48fj/Nanz59ZPSMUSlYu3atatmypbhT0qRJIy4OjG5v3boV7/84duyY/I/vv/8+zmvYjvZ7c+rUKdWhQweVJ08e+T9lypRREyZMUOHm559/Vk8//bR8Xp26deuqkiVLqp9++ine9/75559yg2sJo3+d119/HSoaw8WDx/iszZs392yDOwq/5bx58+JYDtHR0fLb4lasWLEEf5706dPLceFq8gWO9+yzz6qaNWsm+JjEeVAsXAA6F4jDxx9/rBo1aqS+/PJL6ayM3oMO21fnh2316tVT2bJlk+czZ84UF0XXrl3FrVK/fn25b9OmTdA+w7lz51T16tXVypUrVffu3dUXX3yhihcvrjp27KhGjhxp+P6rV6+qixcvGt7gUooPCBbcRZUrV47zWtWqVdUff/wR7/v112O/P3/+/KpgwYIx3o/HiGvAbRT7/+D7hkvJG3wPEPD+/fsrI/755x/5vBhI9O3bV+3evVvVqVMnzn74bTds2KA++eQTw2MSh2O2aUNC7/Zp2rRpjO2vv/66bN+xY0e8769Ro4ZWqVKlGNs2b94s7508ebJn282bN+O89+OPPxa3irerJrYb6ujRo/J84sSJcd6P7dhfp2PHjlq+fPm0ixcvxtjvxRdf1LJkyeKzDd7Url1bjml0a9u2bbzHgVsn9ufX6dWrl7wWGRnp9/3Dhw+XfU6cOBHntSpVqmjVq1f3PM+QIYPWoUOHOPstWrRIjgGXk86ZM2e0TJkyedxg+E7jc0PB5aR/ZritXn31Ve3WrVsx9sF3WqhQIa1Pnz7yfNWqVXRDuRgGuF1At27dYjzv0aOHBEoXL16sypUr5/d9L7zwgurZs6dk1+hujRkzZogL6JlnnvHsly5dOs/jGzduiPvpkUceEbcKRsfe7ppAwHHg+oG1g8cYEevAivnxxx8lQ+jRRx/1e4zPPvvM4zaLD4zw40N3reE7iA2yi/R9fL2ekPdjxO+9r9H/0XnvvffU/fffrzp16qQSwtChQ9U777yj/vrrLzVp0iQVFRUVJxsL+8C1BcuDEIqFC4idNYOOH64NxAzApUuXpLPw7vyR6YM4xNtvvy0CgQ4DHTXcEg0bNpT4h86JEyckWwbpoLE7ZLh/kgpSUuFP//bbb+XmC7iG4qNSpUoqGOjC6CvTSI8DeYtnYt/v/V48Tsj/2bRpk5oyZYqKiIiI47LyR4UKFTyPW7duLe6udu3aeWImODeGDx+uRo0aJenBhFAsXEjsiXEIoK5evdrzvG3bthJ0xigbQU3EKCAW6JQgDMOGDfPse/fuXfXUU0+J4GB0++CDD8p8APj20fkg/TOh7fA+pjf6MdCpoW2+iM9C8iWI/tCF0h/58uWT+zNnzsR5Ddsw58KfVRH7/UgEiP1+xCO89/X3f7ytoN69e8vvVLRoUc8AQLe+sC9+s/isOyQrYO4FLAlYK/gOIP4FChSQNF39mGfPnvWIN7bhmAkVJ2J/KBYu4ODBg9KR6Bw6dEg64CJFivh00Xi7YuCKQqbO/v37xcJA5kyTJk08r2OOAAKtcGV4B7RXrFhh2C49QB47Cyd2BhYydTJlyiQigqyjQIgtiP7QhdIf6EDRntiT3QDmWHiP2H2hv473ewvD6dOnZf6Gd+IB9kWmGX4r7075t99+k98B2VcAYoDvzPs31oEIQPz8ZTrpQCRgOV67dk3EAsfEeQLXVmxwPgCcM1mzZo33uMQ5UCxcAFwJyF7SQaYSgDvJyEXz3HPPSYxj+vTp4oJCyigsB50UKVLI/b8xaeV5jGwlI+DKwkQzzCpGbEQH8RRv8D/Qjh9++EGydsqWLRvjdYx00YHHR7BiFgBtgTjC369bB3ABQTSRMqwDfz/iPeisdYsC6b6wvuBOe/XVVz3fHybjwdJq0aKF5/14DLfQ7NmzPdthMeB3gGDrFgyOFXvC3C+//CK/M1Kg8f+83XWYie0NhAQxIXwW/TVMEvSODQF89++//75YMjVq1IhxHhDnQ7FwAUePHpURJmbnbty4UWbsvvzyy6p8+fKG70XngRITn3/+uYw6YWl4g44IMZB3331XXE8QAHQ8CemYAQKycH/gHumkEI7YKaEA+6xatUpVq1ZNde7cWZUuXVpcSwhsI50Wj8MRswBwyaHDxveCOQhIt4V//6GHHlLt27f37Ifvo1SpUnGsFeyL3wMC/uKLL0on/PXXX8t3gP11IBBIF8YxMTdDn8ENC+vDDz/07Oc9ENDRLYnatWvHSNPFAAEpuvge8dvCgpg4caJYNrAcdR577LE4x9StiCpVqsgMdOIyzE7HIqFDT1X9888/tRYtWkhqZbZs2bTu3bvHSZOMj3Hjxslx8H5f78Px69atq2XMmFHLmTOn1rlzZ0nLjZ0W62sGN9IzkRaL9Fcc//nnn5dZyrFTZ8G5c+e0bt26affdd5+WKlUqLW/evFqdOnW0b7/9Vgs3u3fv1urVq6elT59eZlS3atVKO3v2bIx99NRgX+m4c+bM0SpUqKClSZNGK1iwoMy4joqKirPfpUuX5PvJkSOH/C+kACdkVra/1Nmvv/5ae+yxx+R3wqzsXLlyaU2aNNHWrFljeEymzrqbZPhjtmCR0IAZ0BiBwk2DUSkhhAQKUxkIIYQYQrEghBBiCMWCEEKIIYxZEEIIMYSWBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEEIIMYRiQQghxBCKBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEEIIMYRiQQghxBCKBSH/z6hRo1SRIkVU2rRpVbVq1dTmzZs9r+3fv189+uijqmDBgmrw4MGmtpMQM6BYEKKUmjFjhnr77bfVwIED1e+//67Kly+v6tevr86fPy+vd+/eXbVu3VrNmzdPbhs2bDC7yYSEFYoFIUqpzz//XHXu3Fm1b99elS5dWo0dO1alT59eTZgwQV6/fPmyqlSpkipXrpzKnz+/unLlitlNJiSsUCyI64mKilLbtm1TdevW9WxLnjy5PN+4caM8HzRokDyHgOA1WB2EuImUZjeAELO5ePGiunv3rsqTJ0+M7Xi+b98+edyoUSN14cIF9c8//6hcuXKZ1FJCzIOWBSEJJE2aNBQK4looFsT15MyZU6VIkUKdO3cuxnY8z5s3r2ntIsRKUCyI60mdOrUEryMiIjzb7t27J89r1KhhatsIsQqMWRCilKTNtm3bVlWuXFlVrVpVjRw5Ut24cUOyowghFAtChBdeeEEC2AMGDFBnz55VFSpUUEuXLo0T9CbErSTTNE0zuxGEEEKsDWMWhBBCDKFYEEIIMYRiQQghxBCKBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEOIHFGTG2twszEwIxYIQv9y5c0ctXLhQ7glxOxQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAghhBhCsSCEEGIIxYIQQoghKY13IcR6/Pbbb+rAgQOqZMmSqlq1amY3hxDHQ8uC2I733ntPVa9eXbVp00bu8ZwQElooFsR2FsUnn3wSYxueYzshJHRQLIitgOspMdsJIcGBMQtiKxCjSMx2bxjnICRwaFkQW4FOvnfv3jG2IWZh1PkzzkFI0kimsVg/sSGwEpYsWSKPGzZsGK9YYF8IRGw2bdoU7/uio6PV4sWLVaNGjVSqVKmC1PKY7aKlQ+wCLQtiS2bPnq0+/PBDuRlZClaMc9DSIXaDYkEcnxGVlDhHKGBGF7EjFAtiOxJrKQQa5wgVgVo6EJMpU6ZQVIgpMBuK2I5ALIVhw4ap5s2bWyJGEEj7IW7e1gjED5+JkLCBADchdqN3795IzPDc3nvvvaD/j6ioKG3u3Llyb2b7N23aFGNf/YbtVgFtmTx5srZ582azm0JCBC0LYkuCZSncvXtX/f333+r27duS/XTnzh3P7c8//xSXT4ECBVS6dOkkIyplypRyS506tcqZM6c8DnX743NbWSGLilaPO2DqLHEk6OzPnTunTp8+rc6cOeO5xX6OfSAYgZAsWTKVK1culS9fPpU/f36512/ez/PmzavSpEkT8GcJNPU3HFi5bSS40LIgtiYqKkrt2bNHbdu2TW6///67OnbsmLpw4QJcrJ79kidPrvLkyePpwB9++GHVuHFjT2cOy0G3GnQL4sSJE2rz5s2qWbNmcgxvqyMyMlKExlt4du/erZYvX67Onj0r+3iTI0cOVahQIVWhQgVVqVIluZUvX17+rxF6gN579G5mgN5OVg8JHrQsiK2EYdeuXR5RwP3OnTtlO8SgVKlSqmLFiqpEiRIxRvm45c6dW6VIkSJR/y/QSXn37t0T11Zsa+bo0aPSbnwGHBvtKV26tEc80HaISfr06W0ziY+WhYvQXMro0aO1hx56SMuUKZPcqlevri1evNjz+jfffKPVrl1bXsPXdPny5TjHKFy4cJyg48cffxxjn2+//VYrVKiQVqFCBUsFJO3AgQMHtLFjx2qdO3fWKlasqKVKlUq+4+TJk2tly5bV2rZtq3355Zfa+vXrtevXrwf9/4cqwB0ZGalt3bpVzrEuXbpolSpV0lKnTu35bGXKlNHatGmjffHFF9r27du1e/fuaW5PNggGuDbRvjfffNOzDdd47Gv41VdfjfG+efPmaSVKlNBKliypLViwQHMrrrUsFixYICM7jELxFUyaNEkNHz5c/fHHH6pMmTJq5MiR4moAffr0UZcvX1ZZs2aNcYwiRYqojh07qs6dO3u2ZcqUSWXIkEEew41Rp04dNXnyZHXq1Ck1YMAACZoS3yB2sHHjRvlt5s+fr/bt2ye/EX4PfeStu2/8jb6DSajLfXgD6whuLG932o4dO2Q73FdNmjRRTZs2VbVr105S/COYFov3+4DVrB5vtmzZop5//nmVOXNm9cQTT8j1DR5//HFp86BBgzz74tzCfgCJD8WLF1cTJ06UfqJDhw7q8OHDkuDgOsxWKyuRLVs27bvvvouxbdWqVfFaFiNGjPB7vF27dmmVK1eWUe+RI0e0IkWKhKTdduaff/7RZs2aJSPpnDlzynedO3durWPHjjKqD4XFYIXU2YRw+/ZtbcWKFVqPHj3k3MF3kzFjRq1FixbapEmTtAsXLgTdKsDzUL7PDK5duyaWAb5LWBKxLQvv57G5evWqXOcXLlyQG34HnLNuhGKhadqdO3e06dOniytgz549iRKLPHnyaNmzZxc30yeffKJFR0fH2KdDhw5aihQptHTp0mlTp04N+WexAydOnNBGjRql1a9f3+N+gVupb9++4qq7e/euZgXMFgtv4IrauXOnNnjwYK1atWoel9Vjjz0m592+ffsSfcxA52/YYd6HNxiI9OzZUx77EgsMUnLkyCHuv//85z/ajRs3Yrz/gw8+0FKmTClu0GHDhmluxdVigYsvQ4YM0plnyZJFW7RoUZx94hOLzz77TF7fsWOHNmbMGC1r1qzaW2+9FWe/ixcvajdv3tTczF9//aV99NFHIqr4PnHx1alTR/zysLqsiJXEIjZnzpwRK7hp06YyEMF3itEzRvgJFQ5MovPV6WN7KN5nBhgEYiBy69Ytn2KBuNHSpUulL8BgrkCBAtqzzz4b5zhXrlxxrUWh42qxgJl/8OBBCTZiRIERRmIsi9iMHz9eOkEEMIkmVhaCg08//bSMgtOnT6+99NJL2o8//igXn9Wxslh4g5EwAq9IBICVi/O1Vq1a0vnpnaQbLQtYsHBpYjCXULdTRESEfJZDhw6FqZX2wdViERuMdJGdEqhY7N69W/YNxCVglXINwbjgjx07pvXv31/Lnz+/fB/I9kFWE/y/dsIuYuENxOGHH37QnnjiCfnuEYd744035NwMRiaTfp688sorls+AmjNnjrQNngP9hufJkiWTx3A/xwYxMuwDa4PEhGLhBS4wpGMGKhYYyWEEfenSJc1OBCNYCZ/6r7/+KiY8voPMmTNrXbt21X7//XfNrthRLGKnHqMTx+gav+uTTz4pll7sTjKhA4XY50nr1q2DNsAIBXAbIcnE+4aEE7Qbj32xbt06+Wze1ghxuVjA7bR69Wrt6NGj4q/Ec4w4li9f7vEJ//HHH9q4cePk5FmzZo08//vvv+X1DRs2SCYU8uAPHz4sQpErVy4JptmJpLoUMJKdOHGiJxZRqlQpsSLMzGIKFnYXC293K3z3mEuE3+j++++Xczcxlp5dXE9GeLuh4GoaNGiQuKHRD0BI8d3AhUfi4lqxQJYSspmQjYNOHi4oXSjAwIEDfV4c6BjBtm3bJCsFgfG0adNKJzlkyBDbxSsCDVYiHREBa3x32L9x48by/Vl9ApkbxcKb3377TXv55ZcltoY0XCRknD9/3vB9dgpqJ1QsENOAMCDOkyZNGq148eJar169bOcuDReuFQsS2IgRo9SvvvpKXBsQ2m7duom7w4k4USx0Tp06pfXr10/chRANpIfGl+3jFMuCBA7FgiQoyIm5D9OmTRMzHTGJdu3aacePH9ecjJPFwjut+5133pGRNaxElE/BgMDOZT1IaKBYkHiDnHAroWZW+fLlpYN45pln/GbWOA03iIUOhL99+/YyEChatKjE4HxNjgxm1hyxFxQL4peNGzd6Cq3VrFlTCva5CTeJhQ4GAhgQ4DcvV66cTFQNJA5FUXEeyc2uTUWsx969e9Wzzz6ratSooS5duqQWLlyoVq9erR555BGzm0ZCDIo2zp07V61fv15lyZJF1vxAsT2UHE8oWGsDZcvbtGkj93hO7A/FgniAMKCCbtmyZaX6Lqrl4h4dBlaFI+4BAwMMEBYtWqSuXLkiAwcMIFBJ2agSrfciTQDPsZ3YG4oFEVASHKPKmTNnqs8//1zt379fvfLKK4leMIg4BwwQUJ4dA4YpU6ZImW8MJMaNGxdjFcKErpxH7A3FwuXAmoAoPPPMM7JWBJYoffPNN4O+ZgKxL1iFsHXr1nJutGzZUnXp0kU1aNDAp5Whr22R0O3EPlAswojV1pnCIkMYKeL++++/l/sCBQqY3SxiURDDGD9+vCwIBeHAufPdd9/FOK/19cK9Ced64Va7xpwExSJM4CSGKX7nzh2zmyKr/rVt21ZWXnv44YflwsdzxiVIQmjYsKGs6teiRQuJceH5X3/95Xl92LBhEhBHzAv3Q4cODUu7sPY5rjHck+BDsQgTOIEvXrwoF0+wBANBQ/iSExM8RMASI8J58+bJUpHIdKI1QRILlhieMGGCnE+7du2ScwpWhz6yhyUB92a4LApcX1iKFssXW2FA5kQoFmECgWJcOBi9B0MwEpueiIyWdu3aqaefflrWsMbIEM9pTZCkgAA4LNPmzZurTp06yfOTJ0+GtQ26UPzzzz/q0Ucfdef62GGAYhFGUqZMGRTBSGx64vLlyyXTac6cOZ7RYMGCBQP634T4sjJ0K3Xnzp1iZcAFZYZQMDEjdFAsbCgYCU1PhEtg+PDhkrmCCxgjwPbt29OaICEB83FgsSKzDjGwN954I6QuIQpFeKFY2FAwEpKeGBkZKS4qZKb07dtXLVmyhNYECTnZsmVTkyZNUqNHj1ZjxoyRgQrSs4MNhSL8UCxsKBhG6YmnT59WtWvXVrNmzVLTp09XgwcPllx5QsJF165d1YoVK9T27dtV1apV1Z9//hm0Y1MozCEZCkSZ9L+JUiISiDXgZ0CgGiKSUPA+uJ5gUehCsXnzZtWsWTMRB2Q8YaIdCYzo6GiZU4CgbapUqcxuji05evSopGgfP35c/fDDD5JgkRQoFObB4abNLQzv9MSpU6eqWrVqqcKFC6utW7dSKIjpFC1aVG3YsEHVqVNHRANzMAIdn1IozIVi4YAYxt27d8UNBeF46aWX1K+//qry5s0bsvYSkhgyZcqkfv75Z9W/f3/1n//8R0qH3Lp1K1FziXBdUCjMhWJhc8G4evWqjNg+/fRTKQCI1FheSMRqwC06aNAgNWPGDEnhhgWMCXQJmUuE+UAocHnw4EEKhYlQLGwsGIcOHZKLCWsPYO7EW2+9xbRYYmmef/55tW7dOnX27FlVuXJlv+tk6HOJIDI9e/YU1yqC5giYE3OgWNhUMFBiAaMs+HFxYSFFkRA7ULFiRYmp3X///erJJ59UK1eujLMPEje8hWLAgAFiRbPUuXlQLGwoGPDdYvWy/Pnzi1XxwAMPmNZWQgIhT548IhJI8UaGFLLOvClRokQcoQAsdW4eFAubCQYeYzRWvHhx9csvv6icOXOa3VRCAiJdunSyhGv9+vUl3RuxDABrGec/3FTeQhHOUuckLpxnYaN5GHjcpEkTVaFCBYlRZM6c2ezmORrOswjf99yqVSs1e/ZsyXyCVaFnPSFGEXsuETEHWhY2sTCwtCXWDahSpYpaunQphYI4BggxJuy9+OKLklYL0dCznsJd6pz4h2JhAzAru0+fPlIMsF+/fkwdJI4DwewePXqop556SibuYU14Yi0oFhZny5YtYlFgNnZERIRKmzZtUBdQIsRs9JnZN27cEKvihRdeUC+//HKCBSOQRcBI4qFYWJgdO3ZI8A9rUWCtALiegrmAEiFmE7uER/r06WUtDJQ5b9mypVq2bFlQFwEjgUOxsCio0lm3bl1VrFgxKS+OkgnBXECJELPxV+sJ5zhiGPXq1ZMsqVWrVgVlETCSNCgWFgSzW2FRYB4FRlZZsmSJ8ToFg9gdo6KAWBoVJT5QFgTlbLCoUqCLgJHgQLGwGLdv31bPPvusFAeERZE9e3af+1EwiF1JaPVYxOdQgBAzvSEYf//9d6IXASPBg2JhITCX4rXXXpM0WUxWgmURHxQMYjcSW2Y8Y8aMsi7LtWvXJIaBORkJXQSMBBeKhYUYOXKk+v7779V3330nq4slBAoGsQuBrkdRpEgRsTDWrl0rxTK9QZotznsExXE/dOjQELWecAa3RUBsAjOF3333XbkAwrniHvENZ3AHj2AsXPTtt9+qV199VY0dO1buSXihZWEBEJBDbjkqxw4ZMiSgY9DCIFYlWCvcdenSRXXr1k11795drVmzJujtJPFDsTCZK1euSPAO8QmkC6ZIkSLgY1EwiNUI9lKoI0aMUDVr1lTPPfecOnbsWNDaSYyhWJgIMp6wDOr58+dltmrsFNlAoGAQqxCKNbPhDkRKLeYdYeLe9evXg9JWYgzFwkSwHvGKFSvUTz/9JCXHgwUFgzhRKHRy5Mghg6sjR47IzG38LxJ6KBYmgewNfd1szNQONhQM4kSh0EFRzWnTpkmKOdb2JqGHYmEC+/fvl2yODh06SKXNUEHBIE4UCh3E+gYPHqw+/PBDWQiMhBamzpoQp0CA7uLFi7KwCwqnhRqm1QYGU2etKxTe/7NOnTrq6NGjsi69XkONBB9aFmEG2RwY5U+cODEsQgFoYRAnCoW+DsaECRNk8BV7NjcJLhSLMLJ3717Vv39/mYWKCyqcUDCI04RCp2jRolJtFpP1sOYLCQ10Q4XR/YQL6fLly+J+wmL1ZkCXVMKhG8r6QuHdDiSKIEOK7qjQQMsiTHz22WeyPCrcT2YJBaCFQZwmFLo7avz48eKO6tWrl2ntcDIUizC5nwYMGKDefvtt9cgjj5jdHAoGcZRQeLujhg8frr755hu1cuVKs5vjOOiGSiJw6aC2E2ro+yqNjI4YF9PVq1el9LiZVkVs6JKKH7qh7CMU3m176qmn1KFDh8QdhaWIA7luSVxoWSSBhKz/C/fT1q1bTXc/+YIWBnGSUHi7oy5duuTXHcV1uwMElgVJPJs2bYJFFueG7Tp79uzRUqdOrfXq1UuzMtHR0dq6deu0tWvXymPyL1FRUdrcuXPlnmja3bt3tS1btmgRERFaZGSkZmXGjBkj1+OyZcsSfd0S39CyCBCj9X+R/dS+fXtZEtLq5QhoYRC7WxSxQYUETNbr1KmTtFmH63YHDsUiQIzW/506dapkP8EkxlrCVoeCQZwiFADnMVacvHDhgtRg0+G63YFDsQiQ+Nb/jYyMlOwn1Ny3QvZTQqFgECcIhfdyrKi9hmKd586dk21ctztwmA2VRHxlVaCkB4Jre/bsUQ888ICyG8yS+he3Z0PZWSh0EOguVqyYatWqlfr6668925kNlXgoFkEGKbI4OZs3by5rBtsVCoa7xcIJQqEzdOhQ9f7770u1Z8QQSWDQDRVk4B+9ceOGGjhwoLIzdEm5FycJBXjjjTdU7ty5RTBI4FAsggj8ovCP4uQsUKCAsjsUDPfhNKEAqO6MwRvWuEddNhIYFIsg8tFHH6nUqVPLcqlOgYLhHpwoFDpYaAzxiT59+pjdFNtCsQgShw8flpo0EIps2bIpJ0HBcD5OFgr9HP7vf/+rli5dqn799Vezm2NLGOAOEi+//LJavXq1OnjwYNgWNQo3bgt6uyXA7XSh0MF5W7VqVZUiRQq1ceNGGfyQhEPLIgigQOD06dPVBx984FihALQwnIdbhALgvEVmFAY8c+fONbs5toOWRRBo0KCBrAGMeRVOH227ycJwumXhJqHwpl69euqvv/6SqrROPXdDAS2LJIIR9rJly9TgwYNdc+LRwrA/bhUKAOti3759asaMGWY3xVZQLJLIyJEjZRIeSnu4CQqGfXGzUICKFSvKEqxffPGFWMckYVAsksDJkyfVrFmzZF4F6ui7DQqG/XC7UOj07NlTbdmyRc5bkjDc18MFkdGjR0tAu127dsqtUDDsA4XifzRs2FCVKFFCrAuSMCgWAXLr1i2p/YTJPv6WbnQLFAzrQ6GICTwBqEgLzwA8BMQYikWATJs2TSpa4oQjFAwrQ6HwDTwCGTJkEA8BMYZiEQAIio0aNUo1btxYgtvkXygY1oNC4Z9MmTLJapbjxo1Tt2/fNrs5lodiEQDbtm2TgmSvvfaa2U2xHBQM60ChSNjyqxcvXlTz5s0zuymWh2IRABiJFCxYUCbjkbhQMMyHQpEwSpUqpR577DFbrz0TLigWieT69etS6hiBbdSYIb6hYJgHhSJxdO7cWUVEREgxUOIfikUiwaxPLG4EsSDxQ8EIPxSKxNOiRQuVJUsWNX78eLObYmkoFgG4oOrXr68KFy5sdlNsAQUjfFAoAgNzpVq3bq0mTpwo9cCIbygWiQDlx1FAr2PHjmY3xVZQMEIPhSJpdOrUSZ09e1atXLnS7KZYFopFIpg/f75KmzatVCEliYOCETooFEmnfPnyqmjRomrBggVmN8WyUCwSKRYoQObkNStCCQUj+FAoggPOyaZNm4pYsLigbygWCeTvv/9W69evlxOKBA4FI3hQKIILrm2U/sAcKhIXikUCWbJkibp79656+umnzW6K7aFgJB0KRfCpWbOmZEXBg0DiQrFIIDiBqlSpovLly2d2UxwBBSNwKBShAashohot4xa+oVgkgKioKLV06VLVpEkTs5viKCgYiYdCEVpwjaOcj79KtL/99puaMmWK3LsNikUCWL16tbp27RrjFSGAgpFwKBShB5YFKjMsXLgwzmvvvfeerDnfpk0bucdzN0GxSKALqlChQqpcuXJmN8WRUDCMoVCEh2zZsqlatWrFcUX99ttv6pNPPomxDc/dZGFQLAxAGh1OHJin6MxIaKBg+IdCEV5wraNWFMr66Bw4cMDnvv62OxGKhQG7du1Sx48fpwsqDFAw4kKhCD+41rG+xYoVKzzbSpYs6XNff9udCMUiAS4oLJJSu3Zts5viCigY/4NCYQ5Y0Kx06dIxUmirVaumevfuHWM/xCyw3S1QLAxYvHixFA7khRo+KBgUCiu4ohYtWhRjNvewYcPkfJw8ebLcDx06VLkJikU8oAIlLlhM1iHhxc2CQaEwH1zz58+fFxe0N9WqVVOvvPKKqywKHYpFPOzZs0d8l5UqVTK7Ka7EjYJBobAG+jWPORfkXygW8YATJXny5KpChQpmN8W1uEkwKBTWIW/evCp//vwUCy8oFvGAE+XBBx9UGTJkMLsprsYNgkGhsKZ1QbFwmVgEOkUfJ0rFihVD1i6ScJwsGBQKa4JrH30AS5a7RCyMpuj7ExIEt3fs2MF4hYVwomBQKKwLrn0sTXDixAmfr7uuTpTmYDZt2oQhQZwbtoPevXvH2I7nOtu3b5dta9asMfETEF9ER0dr69at09auXSuPQ0VUVJQ2d+5cuQ8Fd+/e1bZs2aJFRERokZGRIfkfJHBOnTolfcDs2bPjvBZf3+FUHG1ZxDdF36jWC8xPjGAffvjhsLSVuMvCoEVhfRDgRqA7dtziN5fWiXK0WMQ3Rd+o1gtOkAceeEBlzJgxpG0k7hMMCoW9g9wHXFonytFiEd8UfaNaLzhBGK+wNnYUDAqFPcVC8wpyu7VOlKPFIr4p+vEJCTodBrftgZ0Eg0JhP9AHXLhwIcZiSG6tE5UMgQvlYuBnhPmIUYH+Y+/cuVOVL19eFj1CbXtifSAS+C1xOiPrDSKSVJARh9pgjRo1kiU3kwKFwp6cOnVKFSxYUM2ZM0c1a9bMsO9wMo63LIzwVevlzz//lHsudmQfrGxhUCjsHeTOnj27lP6JjdvqRLleLHxx+vRpmbWdJUsWs5tCbC4YFAp7g3MJlsXp06eV26FY+ODMmTMqX758XBnPhlhJMCgUzgB9wZkzZ5TboVjEIxbEnlhBMCgUzoFi8S8UCx/A5ISvktgXMwWDQuE8sThNNxTFwhe0LJyBGYJBoXAe6AvOnj3r+oKCFAsfUCycQzgFg0LhTOBliIqKUpcuXVJuJunJ6A7j5s2b6urVqxQLBwoG8uIhGMGah+ENhcKewFo4ePCgLKGK27lz52I8LlWqlGrYsKFnEJkjRw7lVigWsdADWYxZOItQCgaFwnoCgIm1/gSgbNmyUtlBB88xAdMXjz32mOrQoYM8RtwC+7oVioUfsaBl4TxCIRgUivAJAH43fwKACbQjR4707F+1alVxHfkCngMduCeLFSsmYpEnTx6VO3duzz1uxYsX9/QFZ1yeEUWxiAXFwtkEUzAoFEkD3x9K6vgTACwPMHr0aM/+tWvX9isAt2/fjiEAZcqU8SsA999/f4z37t2717CtWbNmpViY3QCrgRMibdq0cnIQZxIMwaBQ+P9eli5d6lcAUJhv/Pjxnk4d8QDvjt4b70mxeIz3IkHBlwAULVo0xnvx2wST/PnzUyzMboDVgF+Ss7edT1IEw21CARcQCunpHX9sAahSpYqaOnWq7Ivr5rnnnlORkZE+j5UuXTrPY+z7yCOPqLt378bo/PX7woULx3jvhg0blFnk41wLioUvf2a2bNnMbgaxqGDYWSjQ6euDIDz+4Ycf/AoAvpeZM2fKvngPCuYhU9AX3tcL9n3yySf9CsB9990X472//PKLsgPZsmVTV65cUW4mUWLx8ccfq9mzZ6t9+/bJCAGjAmQVYEU5cOzYsTjmoM5PP/2kWrZsKY+xAHrXrl3VqlWrZCW6tm3byrG9L9QPP/xQjRs3ThUpUkRNmDAhbAuLwM+Z1HLUxJmCYUWhgFtGby8EAC4efwKA63XevHmeTr1Lly5+BSB2NmCDBg3k8/sSABTa82bRokXKaaRKlcr0wpTXrl1T77//vlh5+E0R0/niiy/EstN//4EDB0q/CWHDOTpmzBhVokQJzzE2btwofS9ex7E6duwYGrFAMKpbt27SOHxxffv2VfXq1ZOS3qjSilFDbL/et99+q4YPH+7JVcaIo3HjxrK2LcxK7N+mTRv5MYYMGSL7rF+/Xk44nNi4iLt3766WL1+uwn3xEXeQEMEIl1Dg/8CFkz59ek8H8PXXX/sVgMcff1wtXLjQIwA9e/ZUN27c8HlszEL2Busz4Pi+BCC2WPz888/KzeB8MFssOnXqpHbv3q2mTJkivw9cf3Xr1pX+t0CBArIO+JdffqkmTZokg3aIQf369eV1xGEBxOGjjz4Stxr6XfTfsa09v2hJ4Pz585j/rq1evdrvPhUqVNA6dOjgeb548WItefLk2tmzZz3bxowZo2XOnFm7ffu2PF+wYIH2zDPPaFFRUdqmTZu0KlWqaOGiVatW2uOPPx62/0esQ3R0tLZu3Tpt7dq18hjn39y5c7XIyEhty5YtWkREhDxOLHjP5cuXPc/v3bunDRs2THv77be11q1ba0899ZRWvnx5LV++fFrKlCm1Ro0axXh/xowZ5TrzdYt9beBaw+0///mPNmLECG3atGnaypUrtZ07d8r1SgKjQ4cOWvXq1U37/zdv3tRSpEihLVy4MMb2ihUrav369ZNzKm/evNrw4cM9r125ckVLkyaNNn36dM+2QoUKaUeOHNGuX7+uVa5cWduzZ0+C25CkIbSer4zFQXyBtWu3b9+uRo0aFcMMeuihh2QEowP1g2mEBUZgWuE5RlMYXcFNNWvWLBVM4lvhipaFe4ltYejL6mKJ3evXr3ssCozGYWEgiwejcIBtgwYNijH61+9h8sOyxqp7ugUwePBgcSv4Au/zBm5aHB/XTGwLwPs6AnqmEXGWZXHnzh3xyugWgg7CAevWrVNHjx4VyxGWhg7W48H5jD73xRdflG0DBgyQWek4Hvrc0qVLJ7gNKZNiLsPkxQXkb1YjTlw0DL5SHXyg2Ce4/lw3k+GS0tPvkMKaOnVqFSywVi7MNR2spes9m5Ni4U7wu//999/SUUMY4CL98ccfJQMGfn108Dh3dAGAUMCPv2TJEnk/Xv/8889FRHxx8eLFGM87d+4s7/ElALly5YqxLwZOxN1ikSlTJlWjRg1xIaFPxbkyffp0EQJMHNT7Tl99q7f7EW4oCAfmqyQ2kSfgXhGxC/jPoGq+uHXrlmRbwG8WKPqozRf+pufHx9atW9VXX30VI30Pz+G7rVy5sjzHl5g8efKAjk+sBTp53b/vfUOnr2cFvfPOO3LRQSh8VRXFuYJz2RcQBu/z5PXXX/cIADp873kAuDC99x06dGi8bef5Zy2SJUsmv0mofheIkVG6PmIVKD2C+ESKFClUxYoV1UsvvSQenMSA+DJuiW5jot+hlAScEVRbs2ZNnEwIHbiOcLEiiOINAtubN2/2aXbjtYSycuVKv7M54wMdQ2zQgeguggsXLshx9efEOsCaxagf7k+4drzvcdFA5MHYsWPVr7/+6jfXHzN44d4EKCKnj/pxsWbOnFnMd9xg1aLTh2Dgsb5NfwyXlPd5gsC4N2grbkeOHAnht0LCwZEjRyRxIFT9QqNGjQyzMFGWBElGaAcGKghSv/DCC3I+630n+lLv6hN4XqFChaC0MVFigZFXjx49JHULF6O/NFndBdW0adM4JjVMqf/+97/SQeuWw4oVK+QiTYz/zNs3lxjLok6dOnG2R0REeCyLadOmSSli/Hgk9MCdA4HGzTvTB8+RTq0LwGuvvaYmT57s1xUAC1GPncE1pAsFOnTvET5umAeQM2dOef3BBx+Uiw/7oKIoBAMxCsQTED9bu3atiAO2IwuQLkp3snDhQjkvQ9UvJOa80i2Dy5cvq2XLlolbHX0xBAN9mS4OEBTE3xCbCEobE+t6gmsJKa3woem+MIyyvF07hw4dEqvDlwojVQuigEk++JA4Rv/+/eXYiUlHDGQuBIQKYucds4BLAtt1EB9BIIlzLQJDD/7GLveg36NT1wUAgVsIgD/69evnKQmNwJ4uFHDpxA7y4mLTfzO8791335XtsCDiM+/1OULe6bGwBlBtVG8nitJhO8z9UJQ3J9bn3r17cn6Z2S9AGHB94ZxFH9urVy8Z7LRv396TNo3ECcyr0FNnkWILN3swSNRZjwkeALnd3kycOFG1a9fO8xyT6OCegjDEBr42qDTUDp00FBKdBjJJwgGC2c2bN/ebDWV2IMuK4PuAq8afAHz33XeejrVVq1Y+XX3eky31UT0GHPp3ro/6va0A704eJz7m9cBSNUp4SHDeuME8Ct0/HY71MIi1uWOBxBe4W/v06aNOnjwpVjTKqsBLowsYknVgJWOyJdyzGPAgUSh2BlWgJEP+bFCO5BAw8QUpvMgycEPwN3bHr99jwg+EHSB7YsaMGX6Phf11dyMsN2TvYETva7LX22+/7cnCQFAZggA3jy42ZuBvwh3EAtax7k9GhwHBwCVDwXAXrVq1ksw4VJ1wKzzbY4EOwK6ZKBhNYEa8r9m+uKHWj97BIYUOqaH+QBkBPaakj/JhEfgSAG/THGYwrDd9BnJ8WGHVscTMzKaF4V6io6Nd/1u7+9P7AIF278VRzAadPMxOfwIAl55+EiN1Mz4XEEbyeh42Onnv4G/se+9OE2memEOQkIsF8Su7EEgJDwqGO7l69arHbepWeJb7KUXsXaEz2KDzP378uF8BQEaD3gEhaBWfACCWoKfNoZOHS8efAHgnIXz66aeyslhCPmNCrAS7kZRaTxQM93H69GlZfMnN8Az3IRbw5yN1ElZGYvKwcfMnACiOqLtrkIGFrLKECAAm4KBN/gTAe3LNiBEjYiwtGR9uzvYKRlFACoa7OHPmjOtXz+TZHQvv9XYxmsCkLV8BYNyQSqln5qDmCuZo+APzBvRKnii7jok0/gTA29xFxV7cEgIXbDImmNVjKRjuAJN0//77b4qF2Q2wGnqHDqFACrC+Apg/AcDIHyC3Gev++hMA72Vake6GGwkvoSgzTsFwPvp8svyxyra7DZ7V8VgWKNiFmd3+BMC72i4WHcGNWJNQrkdBwXA2+ho9+WhZEG8wPwA3nCCYBIYbsTfhWLiIguFc9LW387lcLMybCWVhcFLEXvGP2JNwLoWqCwZiRxAMVgJwBugLUqZM6ak84FYoFj6Ab1IfTRD7Ysaa2RQMZ4pF3rx5Ta0yYAXc/en9QMvC/pghFDoUDGfBtNl/oVj4gGJhb8wUCh0KhnOgWPwLxcIHFAv7YgWh0KFgOAO4pPNRLCgW/mIW6GywrgGxD1YSCh0Khv2hWPwLxSKeBXF27dpldlOIjYVCh4JhX/RqDaVKlVJuh2Lhg4ceekhqJ6HzIdbHykKhQ8GwJ3ofUKlSpTivYU7NlClT5N4NUCx8gM6mbNmyUvuJWBs7CIUOBcN+oA9AqZ77778/xnYUA8XEyzZt2sg9njsdioUfMJKgWFgbOwmFDgXDXqAPqFixYowinbAkPvnkkxj74bnTLQyKRTxigeVVb926ZXZTiEOEQoeCYS+xiO2COnDggM99/W13ChQLP+AEuXv3rtq5c6fZTSEOEgodCob1wboyJ06ciCMWJUuW9Lm/v+1OgWIRT5AbFzRdUdbCCUKhQ8GwNvq1H1ssqlWrpnr37h1jG2IW2O5kWBbTD2nTpmWQ22I4SSh0WK3WuuDax5ryxYoVi/PasGHDVPPmzcX1BIvC6UIBaFnEA4Pc1sGJQqFDC8M+wW1v8Ju98sorrhAKQLFIQJA7MjLS7Ka4GicLhQ4Fw7piQf6FYmEgFrhoGeQ2DzcIhQ4Fwzpgze3jx4/7nIznVigW8VCuXDkGuU3ETUKhQ8GwdnDbzVAsDILcEIz169eb3RTX4Uah0KFgmM+GDRtk5nbx4sXNboploFgY1Hlp2LChWrJkCS/YMOJmodChYJjLggUL5Np3++p43vCbMKjz0qRJE3Xp0iUZaZDQQ6H4HxQMczh58qScg7j2yf9wvVgY1XmpUqWKypMnj4w0SGihUMSFghF+Fi5cKN97gwYNzG6KpXC9WBjVeYEZihHG/Pnzw9wyd0Gh8A8FI7zgWq9Zs6bKli2b2U2xFK4Xi4TUeYFYQDz2798fxpa5BwqFMRSM8IDVMX/55RfVtGlTs5tiOVwvFgmp81K3bl3JjKIrKvhQKBIOBSP0rFixQt2+fZvxCh8k0zRN8/WC20CMIr46LxhpXLlyRa1Zs8aU9jkRqwtFdHS0Wrx4sWrUqJGsnGgVIBI4X3HpspZUcGnfvr3avHmzVG4gMXG9ZZHQOi8YaWC+BWZ2EucLhZWhhREasCTBokWL6ILyA8UigTz99NPSwWGkSZIGhSLpUDCCD6y1Cxcu0AXlB4pFAsmXL5+qWrUqs6KSCIUieFAwgguu7Vy5crmmimxioVgkAow4li1bJgEwkngoFMGHghE8kMDSuHFjlSJFCrObYkkoFokAvsxr166piIgIs5tiOygUoYOCkXSQ3PLnn3/SBRUPFItELrVapkwZNWHCBLObYisoFKGHgpE0xo8fL5PwUA8qITXj3AjFIhHgQuzSpYuaN2+eOnfunNnNsQUUivBBwQiMqKgo9f3330s2ZLp06RJUM86NUCwSSevWrcWnOWnSJLObYnkoFOGHghFYrOL8+fOqc+fOCa4Z50YoFokke/bsqkWLFuq7776TSVHENxQK86BgJI5x48aJ5VC2bNkE14xzIxSLAMAI5ODBg2r16tVmN8WSUCjMh4KRMI4dO6aWL18u7uXE1oxzGxSLAKhVq5acNN98843ZTbEcFArrQMEwBh6CjBkzqueffz7RNePcBmtDBcjIkSNVr169ZGRSoEABs5tjCZwmFFatDZVYWEvKN5GRkapQoULqxRdfVF9++WVANePcBC2LJBQcQyXaMWPGmN0US+A0oXAStDB8M336dHXx4kXVo0ePgGvGuQmKRYBkyZJFBAOuKIxQ3AyFwvpQMGICK+uLL74Qq7FEiRJmN8cWUCySAEYkqEL7ww8/KLdCobAPFIz/gaUGduzYod58802zm2IbKBZJACMSjEwwQnFj6IdCYT8oGP+Ca7Z06dKysBlJGBSLJIKRyc6dO2WFLTdBobAvbhcMBKxRheGNN96Q74AkDGZDJRF8fegsUTIAK2wlT+58/XWLUDglG8ofbs2SQposRBKigSQVkjCc37OFGIxMhg4dqrZt26ZmzZqlnI5bhMINuNHC2Lp1q5o5c6YaNGgQhSKR0LIIEqiDr5c5duIo1I1C4XTLwo0WBmIUZ86cEdcx161IHLQsgsTHH3+sDh8+LKWOnYjbhMJNuMXCQFwRa9EMGTKEQhEAtCyCXJEWJ+OhQ4dUhgwZlFNwq1C4xbJwg4WBc7hKlSrielq3bh0D2wFAyyKIfPTRRzLvwl/pADviVqFwI062MBCnwHmM+CKFIjAoFkGkaNGi6rXXXlPDhg1Tly5dUnaHQuE+nCgYsBD79+8vccWaNWua3RzbQrEIMjgp7969KzEMO0OhcC9OEwxUlkU8EbEKEjgUiyCTO3du9c4776ivvvpK/fXXX8qOUCiIUwTjxo0bkibbqlUrVa5cObObY2soFiEAYpE5c2b1wQcfKLtBoSBOEgwsJYA4IgSDJA2KRQjIlCmTuKOwCPzu3buVXaBQECcJBtbVxrrZXbt2lXgiSRoUixDx6quvyoIpHTp0sMUFRqEgThOMbt26ScozBm4k6VAsQgQ6W1gWKAPy6aefKitDoSBOE4yffvpJyu+MGjVK5cqVy+zmOAKKRQjBxfXuu++qgQMHqj179igrQqEgThMMuJ9gVTz33HNx1tYmgUOxCDEffvihKlasmGrXrp3lLi4KBXGaYGD2+euvvy6PR48ezQl4QYRiEWJQXgDuKHTKw4cPV1aBQkGcKBhwP/3888/ifkIaOwkeFIswULVqVdWrVy9JpbVCdhSFgjhRMM6dOyfupxYtWtD9FAIoFmECQlG8eHHVvn17Uy8sCgVxomDo7ie0BVYFCT4UizC6oyZOnCgdNXK/zYBCQZwqGDNmzFCzZ8+WOAXdT6GBYhFmd1Tv3r3Fyti1a1dY/zeFgjhVMOB+6t69u7ieWrZsGdb/7SYoFmEGQlGiRAnJjkI1zHBAoSBOFQy4nzBDO3ny5Orrr78Oy/90KxQLkybr7dixQw0YMCDk/49CQZwsGFiZcs6cOWrMmDGcfBdiKBYmgBW7sAgLbtOnTw/Z/6FQECcLBla8Q1AbpXUwAY+EFoqFiZVpX3nlFakdtXXr1qAfn0JBnCwYJ06cUM2bN1ePPPKIo1amtDIUC5PAhfTtt99Kjf1mzZqpM2fOBO3YFAriZMHAGhXPPPOMrHOP5VJTp04dtGMT/1AsTE6nhb8VQbpnn31WRUZGJvmYFAriZMHAtYLkkIMHD6p58+YxThFGKBYmkz9/fjV37ly1fft2Wb8bF0OgUCiI0wVj8ODBUk12ypQpXPkuzFAsLBLwRlbHpEmT1IgRIwI6BoWCOF0wYIUjgxCr3sESJ+GFYmERsEbwe++9JzWkli5dmqj3UiiI0wVj586dkhCCSXdczMgcKBYW4r///a9q2LChevHFF9X+/fsT9B4KBXG6YFy4cEE1bdpUJrOiZA7LjpsDxcJCpEiRQv3www8Sx8DFceXKlXj3p1AQpwtGVFSUVJG9efOmBLSRAUXMgWJhMTJnzqzmz58voyn4ZXGR+IJCQZwuGHfv3pV5SBs3bpQigYUKFQp7W8n/oFhYEJQyX7BggdqyZYvPlFoKBXG6YOAcx8xsVDiYOnWqeuyxx0xrK/kXioVFgQhAMNasWSPVNGGOAwoFcbpgIH28R48easKECVJHjQsZWQOKhYV54oknJF1w2bJlki0FwaBQECcLBioxv/vuu7IuxTfffCMZUMQaUCwsToMGDaSkASbuocTB5cuXKRTEkYIBOnXqpD7//HP11Vdfqc6dO5vdNOIFxcIGPP300zJzdfny5WrcuHFSu58Qp2UCIrFj8uTJUkkW1QyItWCvY3H0GAVmeSOtFhbGCy+84IlhEGJ3EKPo2bOnGj58uPr000/Vyy+/bPqa3iQuKX1sIxbBVzA7Y8aMUrsf5ZlRIwfFCAmx8zkOSwLxCSxgBIsCIvHbb7+JYFSvXl3cVMR8aFlYFH9ZT40bN5YsqV9++UU1adJEyjUTYkcwj6Jjx45Sqh+ZT7rryew1vYlvKBYWxCg99qmnnlJLliyRyUp4jAXrCbET169flzpPqB6LeRTt27eP8ToFw3pQLCxGQudR1K5dW6yLY8eOqcqVK8t7CLEDOGdxbq9YsUJSwxGj8AUFw1pQLCxEYifcVa1aVWZ5582bV2a4/vTTT2FrKyGBgEmmSNaAZQEBgCs1PigY1oFiYRECnZldoEABuQBRFgRZUijfjGMRYjUQxK5Tp4566KGH1ObNm1WZMmUS9D4KhjWgWFiApJbwSJcunfh9hw4dqoYMGSKZUteuXQtZewlJDJiV3a1bNwlg44aKBDly5EjUMSgY5kOxMJlg1XrCRYTFkzCxCbGMGjVqqCNHjgS9vYQkhosXL6p69epJxhMsC8zMTpUqVUDHomCYC8XCREJRFBCzvXEhoVItfMOrVq0KSlsJSSy7d++WuBruIyIiVJcuXZJ8TAqGeVAsTCKU1WNLly4tPuGKFStKai2KshESTrBQEazbTJkySRJGrVq1gnZsCoY5UCxMIBxlxrNnzy5zMbp37y7+YuSxX716Nej/hxBvbt++rfr27auaNWum6tevr9avX6+KFCkS9P9DwQg/FIswE871KHBBjRw5UtYtRmmQsmXLSjFCQkLBtm3bZM4P6jthPXmkcqM8TaigYIQXikUYMWvhonbt2onf+MEHH5TRHko/ow2EBAMUtXz//fel40YHvnXrVrEuwlEdmYIRPigWYaysaebCRYULFxarYuzYserHH38UKwMzaAlJCjinYU0gbXvAgAESKytXrlxY20DBCA8UizCf1GYuXISLCesaw8ooWbKkpDTiOa0MEog1AXFAthPWooA1geeBpsUGSzBC6fZyOxSLMHbU5cuXt8QKd7AyYFWgJDTWyMCM2pUrV5rdLGIT/vjjD0nL/vjjj8X9BGsC57bZQDDQDpY0Dw0UizALhpXagtm0u3btUsWLF5cUWzznzG8SnzUxcOBAsSZw/iAlFs/Nsiasfo05DYqFy0FaI6wMzMVAyRBYGT///LPEWAjR+fXXX0UkUE6mX79+Yk1UqFDB7GaRMEKxIJK10rVrV7EySpUqpVq0aCErlHH2N4HLqWHDhuqJJ55QqVOnFpH44IMP5DFxFxQL4qFo0aIykQ+1pcCTTz6pGjRoIB0GcReHDx+WdSZQBQA1xjBPB0udPvzww2Y3jZgExYLEAaNIpCCig8BCNegwXnrpJelAiLM5e/aszPrHnJzVq1dLAcA9e/bIuu+MB7gbigXxCToGdBBIsx03bpxau3atdCAoHYIOhTgLpE8jswnJDtOmTVODBw9WBw8elAmczC4igGJB4gUdRadOnaTjQAkHpNoWK1ZMOhbWmrI/qE48YsQIdf/990uZDgwG4HZCufv06dOb3TxiIVwrFsgRR644qmLmzp1bCp/t37/f8/qlS5dUjx491AMPPCCLCxUqVEi98cYbcTpIjMBj3zBD2psPP/xQFSxYUJY+PXDggLIj+A569+4tHQm+F3QsEA3M3MV3RezFjRs3ZDY/zu9evXrJglkYEAwbNkxly5ZN2RWsGomlWvPnzy/X4ty5c2O8juA8LOQMGTLI56xbt67EYmJnCMa+pocOHRpjH1jbmK+EGE7s9zsWzaXUr19fmzhxorZ7925t+/btWqNGjbRChQpp169fl9d37dqlNW/eXJs/f7526NAhLSIiQitRooT23HPPxTgOvkIc58yZM57brVu3PK+vW7dOq1KlirZ161Zt1KhR2lNPPaU5gZMnT2qvvvqqliZNGi1dunRaly5d5Lt0ElFRUdrcuXPl3ikcO3ZM69Wrl5Y1a1YtefLkWsuWLbW9e/dqTmHx4sVav379tNmzZ8u1OWfOnBivT5s2TVuxYoV2+PBhOV87duyoZc6cWTt//rxnn8KFC2uDBg2KcU1f//9+ARw/flwrXry4tmHDBm3mzJlaqVKlNDfgWrGIDU4WnFyrV6/2u89PP/2kpU6dWouOjvZs83VCerNgwQLtmWeekQ5n06ZNIhxO4ty5c9pHH32k5c2bV76LunXryme+e/euZnecIhb37t3T1qxZIwMdCESWLFm0d955Rzt69KjmZIyuTXD16lXZb+XKlTHEYsSIEX7fs2vXLq1y5coiIEeOHNGKFCmiuQHXuqFio7uXsA5EfPtkzpw5TsAPft6cOXPKpKUJEybEmNCGKq/wC8P/izRUuL+cBFx4/fv3V8ePH5dJffiO4AZAoBQxjtOnT5vdRNdy+fJlWcYUJTCw+BCSFfD85MmT4kYMxToTdpuRjmyvLFmyxClXArcT1gmHm2n48OExihOiCCeKJeJ9ZcqUkWQAV2C2WlkBjIIbN26sPfroo373uXDhgrip+vbtG2M7zFW4mn7//Xdt6NCh4pb54osvfI7Ab9++rTkdjGI3btyotWvXTtxTKVKk0Jo2bSrWxp07dzQ7YUfLAt8/rOPWrVtradOm1VKmTCnu1KVLlzrC2guGZYFzMUOGDFqyZMm0/Pnza5s3b47x+meffaatWrVK27FjhzZmzBhx2b311ltxjnPx4kXt5s2bmlugWGia9tprr4np+ddff/k1VatWrao1aNDAsON4//33tYIFC4aopfbiypUr2ujRo7UKFSrIhVugQAHxl69du9YWwmEXsYBAYLDywQcfaA888IB81/CpY/ACf7tb8ScWcB8dPHhQBjUdOnQQNxIGc/4YP368iG5kZKTmZlwvFt26dZPOHb5HX/zzzz9ajRo1tDp16sQIXPtj4cKFcpK6/cSK3Zlt2bJFAuK5c+eW7ydHjhxamzZttFmzZsl3bEWsLBY4FxHM7dq1q5y/+E4Ri3j55ZclGcNtVkSgMQsAYR0yZIjf1xEIV0pp+/bt09yMa2fb4FxCCuicOXOkSBpKXfiaqISYA8qKz58/X6VNm9bwuNu3b5eUPCuUIrcKSD3EAjm4oWAh6gstWLBAvtPJkydLnSHMGm/atKnEO+677z6zm2xJLly4oBYtWiTf3bJlyyT9FectJk/iu6tZs6alKsDaaQVLrB0e3zWdPHlyic+5GdeKBYLSmGA2b948mWuhz0pG0ApzCiAUWBzo5s2bErjFc32RoFy5csmCL7hoz507J0X3ICSo3oqqnO+++67Jn8664KLD94UbAuBHjx71CMebb74pvwuqmerCgVIj4Vie06oDmn379sl3g+9ow4YNsh2L/KDyK76j0qVLswyHF9evX1eHDh3yPMf5hc4eiSsIWOOcw/eWL18+dfHiRTVq1Ch16tQp1bJlS9l/48aNMm8Cgxf0C3j+1ltvqdatW9t6/klQ0FwKPrqvG+ZMAAS4/O2jpxwuWbJE/PEZM2aUgFn58uW1sWPH0gUQIJcvX9amT58urhQEFfFd58qVS2vYsKEndx457nBrOdENdfbsWW3RokWSitysWTOPewmJAki/hu8c+xD/+Ltu27ZtK667Z599VoLaSIHPly+fJF94B7i3bdumVatWTVx6SBDAHAq4qCLpVtaS4Y/ZgkVIbKKjo9W6deukTPq2bdvkBitOt+xgcVSqVMlzwwz7YI+w0YbFixerRo0aBd29A0tW/1z6DSNckDVrVs/ngmupTp06Yu0SYiYUC2ILcJpizkbsDlZ3H8LFoHewmOMBNwNuKPuAOTCBuLKSIhZoL8qgnDlzRm5oO1wiv//+u7Rbn38C14a36OGGOARdS8RqUCyIrYktIOiMY08ExCTKPHnyeMTDW0hwnzdvXhm5Yz/cIAy4x6URERGhateuLZ03JmbpN0y0hKWji4EuCN7PMenLG1hEiMd4C4Neh4gQq0OxII4DnbTekcfuwL2fnz9/XjJhkgosF18i5P0cgpSQbDpCrArFgrgWWAgQDAgLUifhdoptPWzZskUyt7wtD9yQ7otUSlgsXGKUuAHXps4Sgk4fo37cfAHxQKwDa1Bz/gJxO+5MYCeEEJIoKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEEIIMYRiQQghxBCKBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEEIIMYRiQQghxBCKBSF+SJ48uSpWrJjcE+J2kmmappndCEIIIdaGQyZCCCGGUCwIIYQYQrEghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAghhBhCsSCEEGIIxYIQQoghFAvieNasWaOaNGmi8ufPr5IlS6bmzp0b4/Xr16+r7t27q4IFC6p06dKp0qVLq7Fjx8bYJzIyUnXr1k3lyJFDZcyYUT333HPq3LlzMfaZP3++KlmypHrggQfUwoULw/LZCAkXFAvieG7cuKHKly+vRo0a5fP1t99+Wy1dulRNnTpV7d27V/Xs2VPEA52/zltvvaUWLFigZs6cqVavXq1Onz6tmjdv7nn99u3bIiajR49WX3/9teratauKiooKy+cjJCygRDkhbgGn/Jw5c2JsK1OmjDZo0KAY2ypWrKj169dPHl+5ckVLlSqVNnPmTM/re/fulWNt3LhRnl+9elUrXLiwduHCBbkVKVJE++eff8LymQgJB7QsiOt55JFHxIo4deoUBk9q1apV6sCBA6pevXry+rZt21R0dLSqW7eu5z0PPvigKlSokNq4caM8z5w5s2rfvr3Kly+fuLtgWWTKlMm0z0RIsEkZ9CMSYjO++uor1aVLF4lZpEyZUlbGGzdunKpVq5a8fvbsWZU6dWqVNWvWGO/LkyePvKYzcOBAcWHh/RQK4jQoFsT1QCw2bdok1kXhwoUlII74AywEb2siIWTJkiVk7STETCgWxNXcunVL9e3bV82ZM0c1btxYtpUrV05t375dffrppyIWefPmlWD1lStXYlgXyIbCa4S4AcYsiKtBLAI3uI68SZEihbp37548rlSpkkqVKpWKiIjwvL5//3514sQJVaNGjbC3mRAzoGVBHA/mURw6dMjz/OjRo2I5ZM+eXYLUtWvXVr169ZI5FnBDITV28uTJ6vPPP/e4ljp27CgptngPgtk9evQQoahevbqJn4yQ8JEMKVFh/H+EhJ1ff/1VPfHEE3G2t23bVn3//fcSpO7Tp49avny5unTpkggGAt6YW4FJfPqkvHfeeUdNnz5d5lTUr19f5lTQDUXcAsWCEEKIIYxZEEIIMYRiQQghxBCKBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBClBH/B9neVHK6fry1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAGmCAYAAACN0qhjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT2lJREFUeJztnQeYE9XXxi+9916kSFGKgHRUQAWpgohgA+mgCCgWUIqgiAiigoWiCEgTEaR3WJHekSq9Sl+kl2WXZb7nPX6Tfzab7GSzaTPz/p4nm2QyMzuZzNz3nnLPTaZpmqYIIYSQBEie0IeEEEIIxYIQQohX0LIghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLEjQ+Pjjj1WyZMl4xgkxIRQLQnxg//79qkGDBipjxowqe/bs6rXXXlORkZFebz9//nxVsWJFlTZtWlWoUCE1cOBAde/evXjrXb16VXXp0kXlypVLZciQQT311FNqx44dCe776NGjsl8I87Zt2+J8tmbNGtW0aVP1wAMPyDp58+aV77F+/foE94njyJ07t+xz1qxZXn9PYh1ShvoACDEbp0+fVrVq1VJZsmRRQ4YMUTdv3lRffvml2rNnj9qyZYtKnTp1gtsvWbJENWvWTD355JPqu+++k+0GDx6sLl68qMaMGeNY7/79+6px48Zq165dqlevXipnzpxq9OjRst327dtViRIl3O7/nXfeUSlTplR3796N99mhQ4dU8uTJ1RtvvCFCceXKFTV16lT5PosWLRLhcMeAAQPU7du3E32uiIVAIUFCgsHAgQNRtNL0J7tr165aunTptJMnTzqWrVixQr7bDz/8YLh96dKltfLly2sxMTGOZf369dOSJUum7d+/37FsxowZss+ZM2c6ll28eFHLmjWr9sorr7jd99KlS7XUqVNr/fv3l223bt1qeDy3bt3S8uTJo9WvX9/t53v27NFSpkypDRo0KN7xEPtAN5QNYgQHDhxQL774osqcObPKkSOHevvtt1VUVFSC26KnjG1PnjwZ77M+ffpI7xm9UrB27VrVsmVLcaekSZNGXBzo3d65cyfB/3HixAn5Hz///HO8z7Acx+/MmTNnVIcOHVSePHnk/5QpU0ZNmDBBBZvff/9dPfvss/J9derWratKliypfvvttwS3/fvvv+UB1xJ6/zpvvvkmVDSOiwev8V2bN2/uWAZ3FH7LefPmxbMcYmJi5LfFo1ixYl5/n/Tp08t+4WpyB/b3/PPPq5o1a3q9T2I9KBY2AI0LxOHzzz9XjRo1Ut9++600VkbboMF21/hhWb169VS2bNnk/cyZM8VF0bVrV3Gr1K9fX57btGnjt+9w4cIFVb16dbVy5UrVvXt39c0336jixYurjh07qpEjRxpuf+3aNXXp0iXDB1xKCQHBgruocuXK8T6rWrWq+uuvvxLcXv/cdfv8+fOrggULxtkerxHXgNvI9f/gfMOl5AzOAwS8f//+yojr16/L90VHom/fvmrv3r2qTp068dbDb7thwwb1xRdfGO6TWJxQmzYk8G6fpk2bxln+5ptvyvJdu3YluH2NGjW0SpUqxVm2ZcsW2Xby5MmOZbdv34637eeffy5uFWdXjasb6vjx4/J+4sSJ8bbHcqyv07FjRy1fvnzapUuX4qz38ssva1myZHF7DM7Url1b9mn0aNu2bYL7gVvH9fvr9OrVSz6LioryuP3w4cNlnVOnTsX7rEqVKlr16tUd7zNkyKB16NAh3nqLFi2SfcDlpHPu3DktU6ZMDjcYzmlCbii4nPTvDLfV66+/rt25cyfOOjinhQoV0vr06SPvV61aRTeUjWGA2wZ069YtzvsePXpIoHTx4sWqXLlyHrd76aWXVM+ePSW7RndrzJgxQ1xAzz33nGO9dOnSOV7funVL3E+PPfaYuFXQO3Z21/gC9gPXD6wdvEaPWAdWzK+//ioZQo8//rjHfXz11VcOt1lCoIefELprDefAFWQX6eu4+9yb7dHjd17X6P/ofPDBB+rBBx9UnTp1Ut4wdOhQ9d5776l//vlHTZo0SUVHR8fLxsI6cG3B8iCEYmEDXLNm0PDDtYGYAbh8+bI0Fs6NPzJ9EId49913RSDQYKChhluiYcOGEv/QOXXqlGTLIB3UtUGG+yepICUV/vQff/xRHu6AayghKlWqpPyBLozuMo30OJCzeCZ2e+dt8dqb/7Np0yY1ZcoUFREREc9l5YkKFSo4Xrdu3VrcXe3atXPETHBtDB8+XI0aNUrSgwmhWNgQ14FxCKCuXr3a8b5t27YSdEYvG0FNxCggFmiUIAzDhg1zrBsbG6ueeeYZERz0bh9++GEZDwDfPhofpH96exzO+3RG3wcaNRybOxKykNwJoid0ofREvnz55PncuXPxPsMyjLnwZFW4bo9EANftEY9wXtfT/3G2gnr37i2/U9GiRR0dAN36wrr4zRKy7pCsgLEXsCRgreAcQPwLFCggabr6Ps+fP+8QbyzDPr0VJ2J+KBY24PDhw9KQ6Bw5ckQa4CJFirh10Ti7YuCKQqbOwYMHxcJA5kyTJk0cn2OMAAKtcGU4B7RXrFhheFx6gNw1C8c1AwuZOpkyZRIRQdaRL7gKoid0ofQEGlAcj+tgN4AxFs49dnfon2N7Z2E4e/asjN9wTjzAusg0w2/l3Chv3rxZfgdkXwGIAc6Z82+sAxGA+HnKdNKBSMByvHHjhogF9onrBK4tV3A9AFwzWbNmTXC/xDpQLGwAXAnIXtJBphKAO8nIRfPCCy9IjGP69OnigkLKKCwHnRQpUsjzfzFp5XiNbCUj4MrCQDOMKkZsRAfxFGfwP3Acv/zyi2TtlC1bNs7n6OmiAU8If8UsAI4F4gh/v24dwAUE0UTKsA78/Yj3oLHWLQqk+8L6gjvt9ddfd5w/DMaDpdWiRQvH9ngNt9Ds2bMdy2Ex4HeAYOsWDPblOmDujz/+kN8ZKdD4f87uOozEdgZCgpgQvov+GQYJOseGAM79Rx99JJZMjRo14lwHxPpQLGzA8ePHpYeJ0bkbN26UEbuvvvqqKl++vOG2aDxQYuLrr7+WXicsDWfQECEG8v7774vrCQKAhsebhhkgIAv3B56RTgrhcE0JBVhn1apVqlq1aqpz586qdOnS4lpCYBvptHgdjJgFgEsODTbOC8YgIN0W/v1HHnlEtW/f3rEezkepUqXiWStYF78HBPzll1+WRvj777+Xc4D1dSAQSBfGPjE2Qx/BDQvrk08+cazn3BHQ0S2J2rVrx0nTRQcBKbo4j/htYUFMnDhRLBtYjjpPPPFEvH3qVkSVKlVkBDqxGaFOxyKBQ09V/fvvv7UWLVpIamW2bNm07t27x0uTTIhx48bJfrC9u+2w/7p162oZM2bUcubMqXXu3FnScl3TYt2N4EZ6JtJikf6K/b/44osyStk1dRZcuHBB69atm/bAAw9oqVKl0vLmzavVqVNH+/HHH7Vgs3fvXq1evXpa+vTpZUR1q1attPPnz8dZR08NdpeOO2fOHK1ChQpamjRptIIFC8qI6+jo6HjrXb58Wc5Pjhw55H8hBdibUdmeUme///577YknnpDfCaOyc+XKpTVp0kRbs2aN4T6ZOmtvkuFPqAWLBAaMgEYPFG4a9EoJIcRXmMpACCHEEIoFIYQQQygWhBBCDGHMghBCiCG0LAghhBhCsSCEEGIIxYIQQoghFAtCCCGGUCwIIYQYQrEghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAghhBhCsSCEEGIIxYIQQoghFAtCCCGGUCwIIYQYQrEghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAj5f0aNGqWKFCmi0qZNq6pVq6a2bNniODcHDx5Ujz/+uCpYsKAaPHgwzxmxHRQLQpRSM2bMUO+++64aOHCg2rFjhypfvryqX7++unjxopyf7t27q9atW6t58+bJY8OGDTxvxFZQLAhRSn399deqc+fOqn379qp06dJq7NixKn369GrChAlyfq5cuaIqVaqkypUrp/Lnz6+uXr3K80ZsBcWC2J7o6Gi1fft2Vbdu3f/dGMmTy/uNGzfK+0GDBsl7CAg+g9VBiJ1IGeoDICTUXLp0ScXGxqo8efLEWY73Bw4ckNeNGjVSkZGR6vr16ypXrlwhOlJCQgctC0K8JE2aNBQKYlsoFsT25MyZU6VIkUJduHAhzrnA+7x589r+/BBCsSBEKZU6dWoJXkdERDjOx/379+V9jRo1eI4IYcyCkP9A2mzbtm1V5cqVVdWqVdXIkSPVrVu3JDuKEMIANyHCSy+9JAHsAQMGqPPnz6sKFSqopUuXxgt6E2JXkmmapoX6IAghhIQ3DHATQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEEIIMYRiQQghxBCKBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBiAdQkBlzc7MwMyEUC0I8cu/ePbVw4UJ5JsTu0LIghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAghhBiS0ngVQsKPzZs3q0OHDqmSJUuqatWqhfpwCLE8tCyI6fjggw9U9erVVZs2beQZ7wkhgYViQUxnUXzxxRdxluE9lhNCAgfFgpgKuJ4Ss5wQ4h8YsyCmAjGKxCx3hnEOQnyHlgUxFQhm9+7dO84yxCyMgtyMcxCSNJJpLNZPTAishCVLlsjrhg0bJigWWBeBcFc2bdqU4HYxMTFq8eLFqlGjRipVqlR+OvK4x8WMLmIWaFkQUzJ79mz1ySefyMMoIyoc4xy0dIjZoFgQy2dEJSXOEQiY0UXMCMWCmI7EWgq+xjkCha+WDkRmypQpTBMmIYHZUMR0+GIpDBs2TDVv3jwsYgS+HD/EzdmagvjhOxESNBDgJsRs9O7dW8Plqz8++OADv/+P6Ohobe7cufIcyuPftGlTnHX1B5aHCziWyZMna1u2bAn1oZAAQcuCmBJ/WQqxsbHq33//VXfv3pXsp3v37jkef//9t7h8ChQooNKlSycZUSlTppRH6tSpVc6cOeV1oI8/IbdVONTFotVjD5g6SywJGvsLFy6os2fPqnPnzjkeru+xDgTDF5IlS6Zy5cql8uXLp/Lnzy/P+sP5fd68eVWaNGl8/i6+pv4Gg3A+NuJfaFkQUxMdHa327duntm/fLo8dO3aoEydOqMjISLhYHeslT55c5cmTx9GAP/roo6px48aOxhyWg2416BbEqVOn1JYtW1SzZs1kH85WR1RUlAiNs/Ds3btXLV++XJ0/f17WcSZHjhyqUKFCqkKFCqpSpUryKF++vPxfI/QAvXPMIpQBejNZPcR/0LIgphKGPXv2OEQBz7t375blEINSpUqpihUrqhIlSsTp5eORO3dulSJFikT9P18H5d2/f19cW67WzPHjx+W48R2wbxxP6dKlHeKBY4eYpE+f3jSD+GhZ2AjNpowePVp75JFHtEyZMsmjevXq2uLFix2f//DDD1rt2rXlM5ymK1euxNtH4cKF4wUdP//88zjr/Pjjj1qhQoW0ChUqhFVA0gwcOnRIGzt2rNa5c2etYsWKWqpUqeQcJ0+eXCtbtqzWtm1b7dtvv9XWr1+v3bx50+//P1AB7qioKG3btm1yjXXp0kWrVKmSljp1asd3K1OmjNamTRvtm2++0Xbu3Kndv39fs3uygT/AvYnje/vttx3LcI+73sOvv/56nO3mzZunlShRQitZsqS2YMECza7Y1rJYsGCB9OzQC8UpmDRpkho+fLj666+/VJkyZdTIkSPF1QD69Omjrly5orJmzRpnH0WKFFEdO3ZUnTt3dizLlCmTypAhg7yGG6NOnTpq8uTJ6syZM2rAgAESNCXuQexg48aN8tvMnz9fHThwQH4j/B56z1t333jqffuTQJf7cAbWEdxYzu60Xbt2yXK4r5o0aaKaNm2qateunaT4hz8tFuftQLhZPc5s3bpVvfjiiypz5szqqaeekvsbPPnkk3LMgwYNcqyLawvrASQ+FC9eXE2cOFHaiQ4dOqijR49KgoPtCLVahRPZsmXTfvrppzjLVq1alaBlMWLECI/727Nnj1a5cmXp9R47dkwrUqRIQI7bzFy/fl2bNWuW9KRz5swp5zp37txax44dpVcfCIshHFJnveHu3bvaihUrtB49esi1g3OTMWNGrUWLFtqkSZO0yMhIv1sFeB/I7ULBjRs3xDLAuYQl4WpZOL935dq1a3KfR0ZGygO/A65ZO0Kx0DTt3r172vTp08UVsG/fvkSJRZ48ebTs2bOLm+mLL77QYmJi4qzToUMHLUWKFFq6dOm0qVOnBvr3NAWnTp3SRo0apdWvX9/hfoFbqW/fvuKqi42N1cKBUIuFM3BF7d69Wxs8eLBWrVo1h8vqiSeekOvuwIEDid6nr+M3zDDuwxl0RHr27Cmv3YkFOik5cuQQ99+HH36o3bp1K872H3/8sZYyZUpxgw4bNkyzK7YWC9x8GTJkkMY8S5Ys2qJFi+Ktk5BYfPXVV/L5rl27tDFjxmhZs2bV3nnnnXjrXbp0Sbt9+7ZmZ/755x/t008/FVHF+cTNV6dOHfHLw+oKR8JJLFw5d+6cWMFNmzaVjgjOKXrP6OF7KxwYROeu0cfyQGwXCtAJREfkzp07bsUCcaOlS5dKW4DOXIECBbTnn38+3n6uXr1qW4tCx9ZiATP/8OHDEmxEjwI9jMRYFq6MHz9eGkEEMIkmVhaCg88++6z0gtOnT6+98sor2q+//io3X7gTzmLhDHrCCLwiEQBWLq7XWrVqSeOnN5J2tCxgwcKlic6ct26niIgI+S5HjhwJ0lGaB1uLhSvo6SI7xVex2Lt3r6zri0sgXMo1+OOGP3HihNa/f38tf/78cj6Q7YOsJvh/zYRZxMIZiMMvv/yiPfXUU3LuEYd766235Nr0RyaTfp289tprYZ8BNWfOHDk2eA70B94nS5ZMXsP97ApiZFgH1gaJC8XCCdxgSMf0VSzQk0MP+vLly5qZ8EewEj71P//8U0x4nIPMmTNrXbt21Xbs2KGZFTOKhWvqMRpx9K7xuz799NNi6bk2kt52FFyvk9atW/utgxEI4DZCkonzAwknOG68dse6devkuzlbI8TmYgG30+rVq7Xjx4+LvxLv0eNYvny5wyf8119/aePGjZOLZ82aNfL+33//lc83bNggmVDIgz969KgIRa5cuSSYZiaS6lJAT3bixImOWESpUqXEighlFpO/MLtYOLtb4bvHWCL8Rg8++KBcu4mx9MziejLC2Q0FV9OgQYPEDY12AEKKcwMXHomPbcUCWUrIZkI2Dhp5uKB0oQADBw50e3OgYQTbt2+XrBQExtOmTSuN5JAhQ0wXr/A1WIl0RASsce6wfuPGjeX8hfsAMjuKhTObN2/WXn31VYmtIQ0XCRkXL1403M5MQW1vxQIxDQgD4jxp0qTRihcvrvXq1ct07tJgYVuxIL71GNFL/e6778S1AaHt1q2buDusiBXFQufMmTNav379xF0I0UB6aELZPlaxLIjvUCyIV0FOjH2YNm2amOmISbRr1047efKkpc+elcXCOa37vffek541rESUT0GHwMxlPUhgoFiQBIOccCuhZlb58uWlgXjuuec8ZtZYDTuIhQ6Ev3379tIRKFq0qMTg3A2O9GfWHDEXFAvikY0bNzoKrdWsWVMK9tkJO4mFDjoC6BDgNy9XrpwMVPUlDkVRsR7JQ12bioQf+/fvV88//7yqUaOGunz5slq4cKFavXq1euyxx0J9aCTAoGjj3Llz1fr161WWLFlkzg8U28NkRt6CuTYwIVKbNm3kGe+J+aFYEAcQBlTQLVu2rFTfRbVcPKPBwKxwxD6gY4AOwqJFi9TVq1el44AOBCopG1WidZ6kCeA9lhNzQ7EgAkqCo1c5c+ZM9fXXX6uDBw+q1157LdETBhHrgA4CyrOjwzBlyhQp842OxLhx4+LMQujtzHnE3FAsbA6sCYjCc889J3NFYIrSt99+2+9zJhDzglkIW7duLddGy5YtVZcuXVSDBg3cWhn63BbeLifmgWIRRMJtnilMMoSeIp5//vlneS5QoECoD4uEKYhhjB8/XiaEgnDg2vnpp5/iXNf6fOHOBHO+8HC7x6wExSJI4CKGKX7v3j0VajDrX9u2bWXmtUcffVRufLxnXIJ4Q8OGDWVWvxYtWkiMC+//+ecfx+fDhg2TgDhiXngeOnRoUE4s5j7HPYZn4n8oFkECF/ClS5fk5vGXYCBoCF9yYoKHCFiiRzhv3jyZKhKZTrQmSGLBFMMTJkyQ62nPnj1yTcHq0Hv2sCTg3gyWRYH7C1PRYvricOiQWRGKRZBAoBg3Dnrv/hCMxKYnIqOlXbt26tlnn5U5rNEzxHtaEyQpIAAOy7R58+aqU6dO8v706dNBPam6UFy/fl09/vjj9pwfOwhQLIJIypQp/SIYiU1PXL58uWQ6zZkzx9EbLFiwoE//mxB3VoZupe7evVusDLigQiEUTMwIHBQLEwqGt+mJcAkMHz5cMldwA6MH2L59e1oTJCBgPA4sVmTWIQb21ltvBdQlRKEILhQLEwqGN+mJUVFR4qJCZkrfvn3VkiVLaE2QgJMtWzY1adIkNXr0aDVmzBjpqCA9299QKIIPxcKEgmGUnnj27FlVu3ZtNWvWLDV9+nQ1ePBgyZUnJFh07dpVrVixQu3cuVNVrVpV/f33337bN4UiNCRDgagQ/W+ilIgEYg34GRCohoh4C7aD6wkWhS4UW7ZsUc2aNRNxQMYTBtoR34iJiZExBQjapkqViqfRB44fPy4p2idPnlS//PKLJFgkBQpF6GB30+QWhnN64tSpU1WtWrVU4cKF1bZt2ygUJOQULVpUbdiwQdWpU0dEA2MwfO2fUihCC8XCAjGM2NhYcUNBOF555RX1559/qrx58wbseAlJDJkyZVK///676t+/v/rwww+ldMidO3cSNZYI9wWznkILxcLkgnHt2jXpsX355ZdSABCpsUwfJOEG3KKDBg1SM2bMkBRuWMAYQOfNWCKMB0KBy8OHDzM9NoRQLEwsGEeOHJGbCXMPYOzEO++8w7RYEta8+OKLat26der8+fOqcuXKHufJ0McSQWR69uwprlUEzREwJ6GBYmFSwUCJBQxCgh8XNxZSFAkxAxUrVpSY2oMPPqiefvpptXLlynjrIHHDWSgGDBggVjRLnYcOioUJBQO+W8xelj9/frEqHnrooZAdKyG+kCdPHhEJpHgjQwpZZ86UKFEinlAAljoPHRQLkwkGXqM3Vrx4cfXHH3+onDlzhvpQCfGJdOnSyRSu9evXl3RvxDIArGVc/3BTOQtFMEudk/hwnIWJxmHgdZMmTVSFChUkRpE5c+ZQH56l4TiL4J3nVq1aqdmzZ0vmE6wKvdYTYhSuY4lIaKBlYRILA1NbYt6AKlWqqKVLl1IoiGXAgEcM2Hv55ZclrRaioRcFDHapc+IZioUJwKjsPn36SDHAfv36MTWWWA4Es3v06KGeeeYZGbiHOeFJeEGxCHO2bt0qFgXKdkRERKi0adP6dQIlQkKNPjL71q1bYlW89NJL6tVXX/VaMHyZBIwkHopFGLNr1y4J/mEuCswVgBiFPydQIiTUuJbwSJ8+vcyFgTLnLVu2VMuWLfPrJGDEdygWYQqqdNatW1cVK1ZMyoujZII/J1AiJNR4qvWEaxwxjHr16kmW1KpVq/wyCRhJGhSLMASjW2FRYBwFelZZsmSJ8zkFg5gdo6KAmBoVJT5QFgTlbDCpkq+TgBH/QLEIM+7evauef/55KQ4IiyJ79uxu16NgELPibfVYxOdQgBAjvSEY//77b6InASP+g2IRRmAsxRtvvCFpshisBMsiISgYxGwktsx4xowZZV6WGzduSAwDYzK8nQSM+BeKRRgxcuRI9fPPP6uffvpJZhfzBgoGMQu+zkdRpEgRsTDWrl0rxTKdQZotYncIiuN56NChATp6whHcYQJiE5iR7f3335cbIJgz7hH3cAS3//DHxEU//vijev3119XYsWPlmQQXWhZhAAJyyC1H5dghQ4b4tA9aGCRc8dcMd126dFHdunVT3bt3V2vWrPH7cZKEoViEmKtXr0rwDvEJpAumSJHC531RMEi44e+pUEeMGKFq1qypXnjhBXXixAm/HScxhmIRQpDxhGlQL168KKNVXVNkfYGCQcKFQMyZjTpSSKnFuCMM3Lt586ZfjpUYQ7EIIZiPeMWKFeq3336TkuP+goJBrCgUOjly5JDO1bFjx2TkNv4XCTwUixCB7A193myM1PY3FAxiRaHQQVHNadOmSYo55vYmgYdiEQIOHjwo2RwdOnSQSpuBgoJBrCgUOoj1DR48WH3yyScyERgJLEydDUGcAgG6S5cuycQuKJwWaJhW6xtMnQ1foXD+n3Xq1FHHjx+Xeen1GmrE/9CyCDLI5sDgoYkTJwZFKAAtDGJFodDnwZgwYYJ0vlxHcxP/QrEIIvv371f9+/eXUai4oYIJBYNYTSh0ihYtKtVmMVgPc76QwEA3VBDdT7iRrly5Iu4nTFYfCuiS8h66ocJfKJyPA4kiyJCiOyow0LIIEl999ZVMjwr3U6iEAtDCIFYTCt0dNX78eHFH9erVK2THYWUoFkFyPw0YMEC9++676rHHHlOhhoJBrCQUzu6o4cOHqx9++EGtXLky1IdjOeiGSiIo3ofaTqih7640Mtw+uJmuXbsmpcdDaVW4QpdUwtANZR6hcD62Z555Rh05ckTcUZiK2Jf7lsSHlkUS8Gb+X7iftm3bFnL3kztoYRArCYWzO+ry5cse3VGct9tHNOITmzZt0nD6XB9YrrNv3z4tderUWq9evcL6LMfExGjr1q3T1q5dK6/Jf0RHR2tz586VZ6JpsbGx2tatW7WIiAgtKioqrE/JmDFj5H5ctmxZou9b4h5aFj5iNP8vsp/at28vU0KGezkCWhjE7BaFK6iQgMF6nTp1kmPW4bzdvkOx8BGj+X+nTp0q2U8wiTGXcLhDwSBWEQqQLFkymXEyMjJSarDpcN5u36FY+EhC8/9GRUVJ9hNq7odD9pO3UDCIFYTCeTpW1F5Dsc4LFy7IMs7b7TvMhkoi7rIqUNIDwbV9+/aphx56SJkNZkn9h92zocwsFDoIdBcrVky1atVKff/9947lzIZKPBQLP4MUWVyczZs3lzmDzQoFw95iYQWh0Bk6dKj66KOPpNozYojEN+iG8jPwj966dUsNHDhQmRm6pOyLlYQCvPXWWyp37twiGMR3KBZ+BH5R+EdxcRYoUECZHQqG/bCaUABUd0bnDXPcoy4b8Q2KhR/59NNPVerUqWW6VKtAwbAPVhQKHUw0hrhinz59Qn0opoVi4SeOHj0qNWkgFNmyZVNWgoJhfawsFPo1/Nlnn6mlS5eqP//8M9SHY0oY4PYTr776qlq9erU6fPhw0CY1CjZ2C3rbJcBtdaHQwXVbtWpVlSJFCrVx40YZi0G8h5aFH0CBwOnTp6uPP/7YskIBaGFYD7sIBYA4IDMKHZ65c+eG+nBMBy0LP9CgQQOZAxjjKqze27aThWF1y8JOQuFMvXr11D///CNVaa167QYCWhZJBPNpL1u2TA0ePNg2Fx4tDPNjV6EAsC4OHDigZsyYEepDMRUUiyQycuRIGYSH0h52goJhXuwsFKBixYoyBes333wj1jHxDopFEjh9+rSaNWuWjKtAHX27QcEwH3YXCp2ePXuqrVu3imeAeIf9Wjg/Mnr0aAlot2vXTtkVCoZ5oFD8j4YNG6oSJUqIdUG8g2LhI3fu3JHaTxjs42nqRrtAwQh/KBRxgScAFWnhGYCHgBhDsfCRadOmSUVLXHCEghHOUCjcA49AhgwZxENAjKFY+ACCYqNGjVKNGzeW4Db5D1oY4QeFwjOZMmWS2SzHjRun7t69G8RfxZxQLHxg+/btUpDsjTfe8P8vYnIoGOEDhcK76VcvXbqk5s2bF4RfxNxQLHwAPZGCBQvKYDwSHwpG6KFQeEepUqXUE088Yeq5Z4IFxSKR3Lx5U0odI7CNGjPEPRSM0EGhSBydO3dWERERUgyUeIZikUgw6hOTG0EsSMJQMIIPhSLxtGjRQmXJkkWNHz8+AL+IdaBY+OCCql+/vipcuHBgfhGLQcEIHhQK38BYqdatW6uJEydKPTDiHopFIkD5cRTQ69ixY2I2sz0UjMBDoUganTp1UufPn1crV6700y9iPSgWiWD+/Pkqbdq0UoWUJA4KRuCgUCSd8uXLq6JFi6oFCxb4YW/WhGKRSLFAATIrz1kRSCgY/odC4b+5Lpo2bSpiweKC7qFYeMm///6r1q9fLxcU8R0Khv+gUPgX3Nso/YExVCQ+FAsvWbJkiYqNjVXPPvust5sQD1Awkg6Fwv/UrFlTsqLgQSDxoVh4CS6gKlWqqHz58nm7CUkACobvUCgCA2ZDRDVaxi3cQ7HwgujoaLV06VLVpEkTb1YnXkLBSDwUisCCexzlfDxVot28ebOaMmWKPNsNioUXrF69Wt24cYPxigBAwfAeCkXggWWBygwLFy6M99kHH3wgc863adNGnvHeTlAsvHRBFSpUSJUrVy7wv4gNoWAYQ6EIDtmyZVO1atWK54ravHmz+uKLL+Isw3s7WRgUCwOQRocLB+Yp0utIYKBgeIZCEVxwr6NWFMr66Bw6dMjtup6WWxGKhQF79uxRJ0+epAsqCFAw4kOhCE0KLea3WLFihWNZyZIl3a7rabkVoVh44YLCJCm1a9cOzi9icygY/4NCERowoVnp0qXjpNBWq1ZN9e7dO856iFlguV2gWBiwePFiKRyYJk2a4PwihIJBoQgLV9SiRYvijOYeNmyY2rRpk5o8ebI8Dx06VNkJikUCoALljh07ZLAOCS52tjBoUYQe3PMXL14UF7Qz1apVU6+99pqtLAodikUC7Nu3T3yXlSpVCt4vQmwtGBSK8EC/5zHmgvwHxSIBcKEkT55cVahQIaHVSACxk2BQKMKHvHnzqvz581MsnKBYGIjFww8/rDJkyJDQaiTA2EEwKBThaV3QsrCZWPg6RB8XSsWKFQN2XMR7rCwYFIrwBPc+2gCWLLeJWBgN0fckJAhu79q1i/GKMMKKgkGhCG/LAlMTnDp1yu3ntqsTpVmYTZs2Ie8t3gPLQe/eveMsx3udnTt3yrI1a9aE8BsQd8TExGjr1q3T1q5dK68DRXR0tDZ37lx5DgSxsbHa1q1btYiICC0qKiog/4P4zpkzZ6QNmD17drzPEmo7rIqlLYuEhugb1XqB+Yke7KOPPhqUYyX2sjBoUYQ/CHAj0O0at9hs0zpRlhaLhIboG9V6wQXy0EMPqYwZMwb0GIn9BINCYe4g9yGb1omytFgkNETfqNYLLhCOrwhvzCgYFApzioXmNJLbrnWiLC0WCQ3RT0hI0OgwuG0OzCQYFApzikVkZGScyZDsWicqGQIXysbAzwjzEb0C/cfevXu3Kl++vEx6hNr2JPyBSOC3xOWMrDeISFJBRhxqgzVq1Eim3EwKFApzcubMGVWwYEE1Z84c1axZM8O2w8pY3rIwwl2tl7///lueOdmReQhnC4NCYe4gd/bs2aX0jyt2qxNle7Fwx9mzZ2XUdpYsWYL+gxBrCQaFwtzgWoJlcfbsWWV3KBZuOHfunMqXLx9nxjMh4SQYFAprgLbg3Llzyu5QLBIQC2JOwkEwKBTWgWLxHxQLN8DkhK+SmJdQCgaFwnpicZZuKIqFO2hZWINQCAaFwppicf78edsXFKRl4QaKhXUIpmBQKKwJvAzR0dHq8uXLys4kPRndYty+fVtdu3aNMQsLCgby4iEY/hqH4QyFwpxgXM7hw4dlClU8Lly4EOd1qVKlVMOGDR2dyBw5cii7QrFwQc96YMzCWgRSMCgU4ScAGFjrSQDKli0rlR108B4DMN3xxBNPqA4dOshrxC2wrl2hWHgQC2ZDWY9ACAaFIngCgN/NkwBgAO3IkSMd61etWlVcR+6A50AH7slixYqJWOTJk0flzp3b8YxH8eLFHW3BOZunz1IsXKBYWBt/CgaFImng/KGkjicBwPQAo0ePdqxfu3ZtjwJw9+7dOAJQpkwZjwLw4IMPxtl2//79hseaNWtWikWSfm2LikXatGnl4iDWxB+CQaHwfF6WLl3qUQBQmG/8+PGORh3xAOeG3hl87vwa2yJBwZ0AFC1aNM62O3bsUP4kf/78FAu/nlELAL8kR29bn6QIht2EAi4gFNLTG35XAahSpYqaOnWqo1F/4YUXVFRUlNt9pUuXzvEa6z722GMqNjY2TuOvPxcuXDjOths2bFChIh/HWtAN5c6fmS1btpBckCT8BcPMQoFGX++t4/Uvv/ziUQBwXmbOnCnrYhsUzEOmoDuc7xes+/TTT3sUgAceeCDOtn/88YcyA9myZVNXr15VdiZRlsXnn3+uZs+erQ4cOCA9BPQKkFWAGeXAiRMn4pmDOr/99ptq2bKlvMYE6F27dlWrVq2Smejatm0r+3a+UT/55BM1btw4VaRIETVhwoSgTSwCP2dSy1ETawpGOAoF3DL68UIA4OLxJAC4X+fNm+do1Lt06eJRAFyzARs0aCDf350AoNCeM4sWLVJWI1WqVCEvTHnjxg310UcfiZWH3xQxnW+++UYsO/33HzhwoLSbEDZco2PGjFElSpRw7GPjxo3S9uJz7Ktjx46BEQsEo7p16yYHhxPXt29fVa9ePSnpjSqt6DW4Zgz8+OOPavjw4Y5cZfQ4GjduLHPbwqzE+m3atJEfY8iQIbLO+vXr5YLDhY2buHv37mr58uUq2DcfsQfeCEawhAL/By6c9OnTOxqA77//3qMAPPnkk2rhwoUOAejZs6e6deuW231jFLIzmJ8B+3cnAK5i8fvvvys7g+sh1GLRqVMntXfvXjVlyhT5feD6q1u3rrS/BQoUkHnAv/32WzVp0iTptEMM6tevL58jDgsgDp9++qm41dDuov12tfY8oiWBixcvYuIkbfXq1R7XqVChgtahQwfH+8WLF2vJkyfXzp8/71g2ZswYLXPmzNrdu3fl/YIFC7TnnntOi46O1jZt2qRVqVJFCxatWrXSnnzyyaD9PxI+xMTEaOvWrdPWrl0rr3H9zZ07V4uKitK2bt2qRUREyOvEgm2uXLnieH///n1t2LBh2rvvvqu1bt1ae+aZZ7Ty5ctr+fLl01KmTKk1atQozvYZM2aU+8zdw/XewL2Gx4cffqiNGDFCmzZtmrZy5Upt9+7dcr8S3+jQoYNWvXr1kJ2+27dvaylSpNAWLlwYZ3nFihW1fv36yTWVN29ebfjw4Y7Prl69qqVJk0abPn26Y1mhQoW0Y8eOaTdv3tQqV66s7du3z+tjSFIXWs9XxuQg7sDctTt37lSjRo2KYwY98sgj0oPRgfrBNMIEIzCt8B69KfSu4KaaNWuW8icJzXBFy8K+uFoY+hzsmGL35s2bDosCvXFYGMjiQS8cYNmgQYPi9P71Z5j8sKwx655uAQwePFjcCu7Ads7ATYv9455xtQCc7yOgZxoRa1kW9+7dE6+MbiHoIBywbt06dfz4cbEcYWnoYD4eXM9oc19++WVZNmDAABmVjv2hzS1durTXx5AyKeYyTF7cQJ5GNeLCxYHBV6qDL+R6gevvdTMZLik9/Q4prKlTp1b+AnPlwlzTwVy6zqM5KRb2BL/7v//+Kw01hAEu0l9//VWy4+DXRwOPa0cXAAgF/PhLliyR7fH5119/LSLijkuXLsV537lzZ9nGnQDkypUrzrroOBF7i0WmTJlUjRo1xIWENhXXyvTp00UIMHBQbzvdta3O7ke4oSAcGK+S2EQen8UCsQv4z6Bq7rhz545kW8Bv5it6r80dnobnJ8S2bdvUd999Fyd9D+/hu61cubK8x0lMnjy5T/sn4QUaed2/7/xAo69nBb333nty00Eo3E1Hj2sF17I7IAzO18mbb77pEAA0+M7jAHBjOq87dOjQBI+d1194kSxZMvlNAvW7QIycx5W4A7EKlB5BfCJFihSqYsWK6pVXXhEPTmJAfBmPRB9jordQSgLOCKqtWbMmXiaEDlxHuFkRRHEGge0tW7a4NbvxmbesXLnS42jOhEDD4AoaEN1FEBkZKfvV35PwAdYsev1wf8K14/yMmwYiD8aOHav+/PNPj7n+GMEL9yZAETm914+bNXPmzGK+4wGrFo0+BAOv9WX6a7iknK8TBMadwbHicezYsQCeFRIMjh07JokDgWoXGjVqZJiFibIkSDLCcaCjgiD1Sy+9JNez3naiLXUuVYT3FSpU8MsxJkos0PPq0aOHpG7hZvSUJqu7oJo2bRrPpIYp9dlnn0kDrVsOK1askJs0Mf4zZ99cYiyLOnXqxFseERHhsCymTZsmpYjx45HAA3cOBBoP50wfvEc6tS4Ab7zxhpo8ebJHVwAsRD12BteQLhRo0J17+HhgHEDOnDnl84cfflhuPqyDiqIQDMQoEE9A/Gzt2rUiDliOLEBmytmThQsXynUZqHYhMdeVbhlcuXJFLVu2TNzqaIshGGjLdHGAoCD+htiEX44xsa4nuJaQ0gofmu4LQy/L2bVz5MgRsTrcqTBStSAKGOSDL4l99O/fX/admHREX8ZCQKggds4xC7gksFwH8REEkjjWwjf04K9ruQf9GY26LgAI3EIAPNGvXz9HSWgE9nShgEvHNciLm03/zbDd+++/L8thQSRk3utjhJzTY2ENoNqofpwoSoflMPcDUd6chD/379+X6yuU7QKEAfcXrlm0sb169ZLOTvv27R1p00icwLgKPXUWKbZws/uDRF31GOABkNvtzMSJE1W7du0c7zGIDu4pCIMr8LVBpaF2aKShkGg0kEkSDBDMbt68ucdsqFAHssIRnA+4ajwJwE8//eRoWFu1auXW1ec82FLv1aPDoZ9zvdfvbAU4N/K48DGuB5aqUcKD13njBuModP90MObDIOHNvTAYfwV3a58+fdTp06fFikZZFXhpdAFDsg6sZAy2hHsWHR4kCrlmUPlKMuTP+mVPFgEDX5DCiywDOwR/XRt+/RkDfiDsANkTM2bM8LgvrK+7G2G5IXsHPXp3g73effddRxYGgsoQBLh5dLEJBZ4G3EEsYB3r/mQ0GBAM3DIUDHvRqlUryYxD1Qm7wu6R6wlJmdK0mSjoTWBEvLvRvnig1o/eO0IKHVJDPYEyAnpMSe/lwyJwJwDOpjnMYFhv+gjkhAiHWccSMzKbFoZ9iYmJCbllEWrs/e3dgEC78+QooQaNPMxOTwIAl55+ESN1MyEXEHryeh42Gnnn4K/rs3OjiTRPjCHw5mZB/Mos+FLCg4JhT65du+Zwm9oVioWHUsTOFTr9DRr/kydPehQAZDToDTOCVgkJAGIJetocGnm4dDwJgHMSwpdffikzi3nzHb2xEsxGUmo9UTDsx9mzZ2XyJTtDsXAjFvDnI3USVkZi8rDx8CQAKI6ou2uQgYWsMm8EAANwcEyeBMB5cM2IESPiTC2ZEHbO9vJHUUAKhr04d+6c7adapli44DzfLnoTGLTlLgCMB1Ip9cwc1FzBGA1PYNyAXskTZdcxkMaTADibu6jYi4c3BMoSshL+rB5LwbAHGKT777//UixC/UOEG3qDDqFACrA+A5gnAUDPHyC3GfP+ehIA52lake6GBwkugSgzTsGwPvp4svwuZdvtBsUiAcsCBbswstuTADhX28WkI3iQ8CSQ81FQMKyNPkdPPqcyGnaEYuECxgfggQsEg8DwIOYmGBMXUTCsC7wMwO5iEbqRUGEMLgrXGf+IOQnmVKi6YCB2hJHerARgDdAWpEyZ0lF5wK5QLNwA36TemyDmJRRzZlMwrCkWefPmDWmVgXDA3t/eA7QszE8ohEKHgmEtmDb7HxQLN1AszE0ohUKHgmEdKBb/QbFwA8XCvISDUOhQMKwBXNL5bB7cBhQLDzELNDaY14CYh3ASCh0KhvmhWPwHxSKBCXH27Nnj7mMShoSjUOhQMMyLXq2hVKlSyu5QLNzwyCOPSO0kND4k/AlnodChYJgTvQ2oVKlSvM8wt8mUKVPk2Q5QLNyAxqZs2bJS+4mEN2YQCh0KhvlAG4BSPQ8++GCc5SgGigmw2rRpI894b3UoFh5AT4JiEd6YSSh0KBjmAm1AxYoV4xTphCXxxRdfxFkP761uYVAsEhALTK96586d4P4ixLJCoUPBMJdYuLqgDh065HZdT8utAsXCA7hAYmNj1e7du4P7ixBLC4UOBSP8wbwyp06diicWJUuWdLu+p+VWgWKRQJAbNzRdUeGFFYRCh4IR3uj3vqtYVKtWTfXu3TvOMsQssNzKsOqsB9KmTcsgd5hhJaHQYbXa8BYLzClfrFixeJ8NGzZMNW/eXFxPsCisLhSAlkUCMMgdPlhRKHRoYZgnuO0MBOK1116zhVAAioUXQe6oqKjg/SLEVkKhQ8EIX7Eg/0GxMBALzEnAIHfosINQ6FAwwgfMuX3y5Em3g/HsCsUiAcqVK8cgdwixk1DoUDDCO7htZygWBkFuCMb69euD94sQ2wqFDgUj9GzYsEFGbhcvXjzUhxI2UCwM6rw0bNhQLVmyhFNkBhE7C4UOBSO0LFiwQO59u8+O5wzPhEGdlyZNmqjLly9LT4MEHgrF/6BghIbTp09LZwX3PvkfthcLozovVapUUXny5JGeBgksFIr4UDCCz8KFC+W8N2jQIAT/PXyxvVgY1XmBGYoexvz584P809gLCoVnKBjBBfd6zZo1VbZs2YL8n8Mb24uFN3VeIBYQj4MHDwbxp7EPFApjKBjBAbNj/vHHH6pp06ZB+o/mwfZi4U2dl7p160pmFF1R/odC4T0UjMCzYsUKdffuXcYr3JBM0zTN3Qd2AzGKhOq8oKdx9epVtWbNmpAcnxUJd6GIiYlRixcvVo0aNZKZE8MFDBTF9YpbFwkZEBHiH9q3b6+2bNkilRtIXGxvWXhb5wWuKIy3wMhOYn2hCGdoYQQGTEmwaNEiuqA8QLHwkmeffVYaOPQ0SdKgUCQdCob/gbUWGRlJF5QHKBZeki9fPlW1alVmRSURCoX/oGD4PwsqV65ctqkim1goFokArqhly5ZJAIwkHgqF/6Fg+A8ksDRu3FilSJHCj3u1DhSLRIAg940bN1RERETgfhGLQqEIHBSMpIPklr///psuqASgWCRyqtUyZcqoCRMmJGYz20OhCDwUjKQxfvx4GYSHelDe1IyzIxSLRIAZs7p06aLmzZunLly4ELhfxUJQKIIHBcM3oqOj1c8//yzZkOnSpfOqZpwdoVgkktatW4tPc9KkSYH5RSwEhSL4UDB8i1VcvHhRde7c2euacXaEYpFIsmfPrlq0aKF++uknGRRF3EOhCB0UjMQxbtw4sRzKli3rdc04O0Kx8AH0QA4fPqxWr17t/1/EAlAoQg8FwztOnDihli9fLu7lxNaMsxsUCx+oVauWXDQ//PCD/38Rk0OhCB8oGMbAQ5AxY0b14osvJrpmnN1gbSgfGTlypOrVq5f0TAoUKODfX8WkWE0owrU2VGJhLSn3REVFqUKFCqmXX35Zffvttz7VjLMTtCySUHAMlWjHjBnj31/EpFhNKKwELQz3TJ8+XV26dEn16NHD55pxdoJi4SNZsmQRwYArCj0UO0OhCH8oGHFBcso333wjVmOJEiVC9KuYC4pFEkCPBFVof/nlF2VXKBTmgYLxPzDVwK5du9Tbb78dwl/EXFAskgB6JOiZoIdixzRaCoX5oGD8B+7Z0qVLy8RmxDsoFkkEPZPdu3fLDFt2gkJhXuwuGAhYowrDW2+9JeeAeAezoZIILAoEdFEyADNsJU9uff21i1BYJRvKE3bNkkKaLEQSooEkFeId1m/ZAgx6JkOHDlXbt29Xs2bNUlbHLkJhB+xoYWzbtk3NnDlTDRo0iEKRSGhZ+AnUwdfLHFuxF2pHobC6ZWFHCwMxinPnzonrmPNWJA5aFn7i888/V0ePHpVSx1bEbkJhJ+xiYSCuiLlohgwZQqHwAVoWfq5Ii4vxyJEjKkOGDMoq2FUo7GJZ2MHCwDVcpUoVcT2tW7eOgW0foGXhRz799FMZd+GpdIAZsatQ2BErWxiIU+A6RnyRGVC+QbHwI0WLFlVvvPGGGjZsmLp8+bIyOxQK+2FFwYCF2L9/f4kr1qxZM9SHY1ooFn4GF2VsbKzEMMwMhcK+WE0wUFkW8UTEKojvUCz8TO7cudV7772nvvvuO/XPP/8oM0KhIFYRjFu3bkmabKtWrVS5cuVCfTimhmIRACAWmTNnVh9//LEyGxQKYiXBwFQCiCNCMEjSoFgEgEyZMok7CpPA7927V5kFCgWxkmBgXm3Mm921a1eJJ5KkQbEIEK+//rpMmNKhQwdT3GAUCmI1wejWrZukPKPjRpIOxSJAIMUUlgXKgHz55ZcqnKFQEKsJxm+//Sbld0aNGqVy5coV6sOxBBSLAIKb6/3331cDBw5U+/btU+EIhYJYTTDgfoJV8cILL8SbW5v4DsUiwHzyySeqWLFiql27dmF3c1EoiNUEA6PP33zzTXk9evRoDsDzIxSLAIPyAnBHYfTo8OHDVbhAoSBWFAy4n37//XdxPyGNnfgPikUQqFq1qurVq5ek0oZDdhSFglhRMC5cuCDupxYtWtD9FAAoFkECQlG8eHHVvn37kN5YFApiRcHQ3U84FlgVxP9QLILojpo4caK4o5D7HQooFMSqgjFjxgw1e/ZsiVPQ/RQYKBZBdkf17t1brIw9e/YE819TKIhlBQPup+7du4vrqWXLlkH933aCYhFkIBQlSpSQ7ChUwwwGtCiIVQUD7ieM0E6ePLn6/vvvg/I/7QrFIkSD9Xbt2qUGDBgQ8P9HoSBWFgzMTDlnzhw1ZswYDr4LMBSLEIAZuzAJCx7Tp08P2P+hUBArCwZmvENQG6V1MACPBBaKRQgr07722mtSO2rbtm1+3z+FglhZME6dOqWaN2+uHnvsMUvNTBnOUCxCBG6kH3/8UWrsN2vWTJ07d85v+6ZQECsLBuaoeO6552See0yXmjp1ar/tm3iGYhHidFr4WxGke/7551VUVFSS90mhIFYWDNwrSA45fPiwmjdvHuMUQYRiEWLy58+v5s6dq3bu3Cnzd+Nm8BUKBbG6YAwePFiqyU6ZMoUz3wUZikWYBLyR1TFp0iQ1YsQIn/ZBoSBWFwxY4cggxKx3sMRJcKFYhAmYI/iDDz6QGlJLly5N1LYUCmJ1wdi9e7ckhGDQHSczCg0UizDis88+Uw0bNlQvv/yyOnjwoFfbUCiI1QUjMjJSNW3aVAazomQOtifBh2IRRqRIkUL98ssvEsfAzXH16tUE16dQEKsLRnR0tFSRvX37tgS0kQFFQgPFIszInDmzmj9/vvSm4JfFTeIOCgWxumDExsbKOKSNGzdKkcBChQoF/VjJ/6BYhCEoZb5gwQK1detWtym1FApidcHANY6R2ahwMHXqVPXEE0+E7FjJf1AswpTHH39cBGPNmjVSTRPmOKBQEKsLBtLHe/TooSZMmCB11DiPdnhAsQhjnnrqKUkXXLZsmWRLQTAwH8b169dFTFCUkBArCQYqMb///vsyL8UPP/wgGVAkPKBYhDkNGjSQkgYYuIcSB1euXKFQEEsKBujUqZP6+uuv1Xfffac6d+4c6kMjTlAsTMCzzz4rI1eXL1+uxo0bJ7X7CbFaJiASOyZPniyVZFHNgIQXbHXCHD1GgVHeSKuFhfHSSy85YhiEmB3EKHr27KmGDx+uvvzyS/Xqq6+GfE5vEp+UbpaRMMFdMDtjxoxSux/lmVEjB8UICTHzNQ5LAvEJTGAEiwIisXnzZhGM6tWri5uKhB5aFmGKp6ynxo0bS5bUH3/8oZo0aSLlmgkxIxhH0bFjRynVj8wn3fUU6jm9iXsoFmGIUXrsM888o5YsWSKDlfAaE9YTYiZu3rwpdZ5QPRbjKNq3bx/ncwpG+EGxCDO8HUdRu3ZtsS5OnDihKleuLNsQYgZwzeLaXrFihaSGI0bhDgpGeEGxCCMSO+CuatWqMso7b968MsL1t99+C9qxEuILGGSKZA1YFnAxwZWaEBSM8IFiESb4OjK7QIECcgOiLAiypFC+GfsiJNxAELtOnTrqkUceUVu2bFFlypTxajsKRnhAsQgDklrCI126dOL3HTp0qBoyZIhkSt24cSNgx0tIYsCo7G7dukkAGw9UJMiRI0ei9kHBCD0UixDjr1pPyBzB5EkY2IRYRo0aNdSxY8f8fryEJIZLly6pevXqScYTLAuMzE6VKpVPJ5GCEVooFiEkEEUBMdobvmBUqoVveNWqVX45VkISy969eyWuhueIiAjVpUuXJJ9ECkbooFiEiEBWjy1durT4hCtWrCiptSjKRkgwwURFsG4zZcokSRi1atXy274pGKGBYhECglFmPHv27DIWo3v37uIvRh77tWvX/P5/CHHm7t27qm/fvqpZs2aqfv36av369apIkSJ+P0kUjOBDsQgywZyPAjfUyJEjZd5ilAYpW7asFCMkJBBs375dxvygvhPmk0cqN8rTBAoKRnChWASRUE1c1K5dO/EbP/zww9LbQ+lnHAMh/gBFLT/66CMp0YEGfNu2bWJdBKM6MgUjeFAsglhZM5QTFxUuXFisirFjx6pff/1VrAyMoCUkKeCahjWBtO0BAwZIrKxcuXJBPakUjOBAsQjyRR3KGe6QXot5jWFllCxZUlIa8Z5WBvHFmoA4INsJc1HAmsB7X9Ni/SUYgXR72R2KRRAb6vLly4fFVKiwMmBVoCQ05sjAiNqVK1eG+rCISfjrr78kLfvzzz8X9xOsCVzboQaCgeNgSfPAQLEIsmCE07FgNO2ePXtU8eLFJcUW7znymyRkTQwcOFCsCVw/SInF+1BZE+F+j1kNioXNQVojrAyMxUDJEFgZv//+u8RYCNH5888/RSRQTqZfv35iTVSoUIEnyEZQLIhkrXTt2lWsjFKlSqkWLVrIDGUc/U3gcmrYsKF66qmnVOrUqUUkPv74Y3lN7AXFgjgoWrSoDORDbSnw9NNPqwYNGkiDQezF0aNHZZ4JVAFAjTGM08FUp48++mioD42ECIoFiQd6kagvhQYCE9WgwXjllVekASHW5vz58zLqH2NyVq9eLQUA9+3bJ/O+Mx5gbygWxC1oGNBAIM123Lhxau3atdKAoHQIGhRiLZA+jcwmJDtMmzZNDR48WB0+fFgGcDK7iACKBUkQNBSdOnWShgMlHJBqW6xYMWlYWGvK/KA68YgRI9SDDz4oZTrQGYDbCeXu06dPH+rDI2GEbcUCOeLIFUdVzNy5c0vhs4MHDzo+v3z5surRo4d66KGHZHKhQoUKqbfeeiteA4keuOsDI6Sd+eSTT1TBggVl6tNDhw4pM4Jz0Lt3b2lIcF7QsEA0MHIX54qYi1u3bsloflzfvXr1kgmz0CEYNmyYypYtmzIrmDUSU7Xmz59f7sW5c+fG+RzBeVjIGTJkkO9Zt25dicW4Zgi63tNDhw6Nsw6sbYxXQgzHdXvLotmU+vXraxMnTtT27t2r7dy5U2vUqJFWqFAh7ebNm/L5nj17tObNm2vz58/Xjhw5okVERGglSpTQXnjhhTj7wSnEfs6dO+d43Llzx/H5unXrtCpVqmjbtm3TRo0apT3zzDOaFTh9+rT2+uuva2nSpNHSpUundenSRc6llYiOjtbmzp0rz1bhxIkTWq9evbSsWbNqyZMn11q2bKnt379fswqLFy/W+vXrp82ePVvuzTlz5sT5fNq0adqKFSu0o0ePyvXasWNHLXPmzNrFixcd6xQuXFgbNGhQnHv65v+3C+DkyZNa8eLFtQ0bNmgzZ87USpUqpdkB24qFK7hYcHGtXr3a4zq//fabljp1ai0mJsaxzN0F6cyCBQu05557ThqcTZs2iXBYiQsXLmiffvqpljdvXjkXdevWle8cGxurmR2riMX9+/e1NWvWSEcHApElSxbtvffe044fP65ZGaN7E1y7dk3WW7lyZRyxGDFihMdt9uzZo1WuXFkE5NixY1qRIkU0O2BbN5QrunsJ80AktE7mzJnjBfzg582ZM6cMWpowYUKcAW2o8gq/MPy/SEOF+8tKwIXXv39/dfLkSRnUh3MENwACpYhxnD17NtSHaFuuXLki05iiBAYmH0KyAt6fPn1a3IiBmGfCbCPSke2VJUuWeOVK4HbCPOFwMw0fPlzdu3fP8RmKcKJYIrYrU6aMJAPYglCrVTiAXnDjxo21xx9/3OM6kZGR4qbq27dvnOUwV+Fq2rFjhzZ06FBxy3zzzTdue+B3797VrA56sRs3btTatWsn7qkUKVJoTZs2FWvj3r17mpkwo2WB8w/ruHXr1lratGm1lClTijt16dKllrD2/GFZ4FrMkCGDlixZMi1//vzali1b4nz+1VdfaatWrdJ27dqljRkzRlx277zzTrz9XLp0Sbt9+7ZmFygWmqa98cYbYnr+888/Hk3VqlWrag0aNDBsOD766COtYMGCgfm1TMbVq1e10aNHaxUqVJAbt0CBAuIvX7t2rSmEwyxiAYFAZ+Xjjz/WHnroITnX8Kmj8wJ/u13xJBZwHx0+fFg6NR06dBA3Ejpznhg/fryIblRUlGZnbC8W3bp1k8Ydvkd3XL9+XatRo4ZWp06dOIFrTyxcuFAuUrtfWK6N2datWyUgnjt3bjk/OXLk0Nq0aaPNmjVLznE4Es5igWsRwdyuXbvK9YtziljEq6++KskYdrMifI1ZAAjrkCFDPH6OQLhSSjtw4IBmZ+I6320EriWkgM6ZM0eKpKHUhbuBSog5oKz4/PnzVdq0aQ33u3PnTknJC4dS5OECUg8xQQ4eKFiI+kILFiyQczp58mSpM4RR402bNpV4xwMPPBDqQw5LIiMj1aJFi+TcLVu2TNJfcd1i8CTOXc2aNcOqAqyZZrDE3OEJ3dPJkyeX+Jydsa1YICiNAWbz5s2TsRb6qGQErTCmAEKByYFu374tgVu81ycJypUrl0z4gpv2woULUnQPQoLqrajK+f7774f424UvuOlwvvBAAPz48eMO4Xj77bfld0E1U104UGokGNNzhmuH5sCBA3JucI42bNggyzHJDyq/4hyVLl2aZTicuHnzpjpy5IjjPa4vNPZIXEHAGtcczlu+fPnUpUuX1KhRo9SZM2dUy5YtZf2NGzfKuAl0XtAu4P0777yjWrduberxJ35Bsyn46u4eGDMBEODytI6ecrhkyRLxx2fMmFECZuXLl9fGjh1LF4CPXLlyRZs+fbq4UhBUxLnOlSuX1rBhQ0fuPHLc4dayohvq/Pnz2qJFiyQVuVmzZg73EhIFkH4N3znWIZ7xdN+2bdtWXHfPP/+8BLWRAp8vXz5JvnAOcG/fvl2rVq2auPSQIIAxFHBRRdGtrCXDCQq1YBHiSkxMjFq3bp2USd++fbs8YMXplh0sjkqVKjkeGGHv70J3OIbFixerRo0a+d29A0tW/176Az1ckDVrVsf3gmupTp06Yu0SEkooFsQUoE+DMRuuDazuPoSLQW9gMcYDbgY8UPYBY2B8cWUlRSxwvCiDcu7cOXng2OES2bFjhxy3Pv4Erg1n0cMDcQhWeCXhBsWCmBpXAUFj7DoQEIMo8+TJ4xAPZyHBc968eaXnjvXwgDDgGQ1+RESEql27tjTeGJilPzDQEpaOLga6IDi/x6AvZ2ARIR7jLAx6HSJCwh2KBbEcaKT1hty1AXd+f/HiRcmESSqwXNyJkPN7CJI32XSEhCsUC2JbYCFAMCAsSJ2E28nVeti6datkbjlbHngg3ReplLBYOMUosQO2TZ0lBI0+ev14uAPigVgH5qDm+AVid+yZwE4IISRRUCwIIYQYQrEghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCCMWCEEJI0qFlQQghxBCKBSGEEEMoFoQQQgyhWBBCCDGEYkEIIcQQigUhhBBDKBaEEEIMoVgQQggxhGJBCCHEEIoFIYQQQygWhBBCDKFYEOLp5kieXBUrVkyeCbE7yTRN00J9EIQQQsIbdpkIIYQYQrEghBBiCMWCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAghhBhCsSCEEGIIxYIQQoghFAtCCCGGUCyI5VmzZo1q0qSJyp8/v0qWLJmaO3dunM9v3rypunfvrgoWLKjSpUunSpcurcaOHRtnnaioKNWtWzeVI0cOlTFjRvXCCy+oCxcuxFln/vz5qmTJkuqhhx5SCxcuDMp3IyRYUCyI5bl165YqX768GjVqlNvP3333XbV06VI1depUtX//ftWzZ08RDzT+Ou+8845asGCBmjlzplq9erU6e/asat68uePzu3fvipiMHj1aff/996pr164qOjo6KN+PkKCAEuWE2AVc8nPmzImzrEyZMtqgQYPiLKtYsaLWr18/eX316lUtVapU2syZMx2f79+/X/a1ceNGeX/t2jWtcOHCWmRkpDyKFCmiXb9+PSjfiZBgQMuC2J7HHntMrIgzZ86g86RWrVqlDh06pOrVqyfnZvv27SomJkbVrVvXca4efvhhVahQIbVx40Z5nzlzZtW+fXuVL18+cXfBssiUKZPtzy2xDilDfQCEhJrvvvtOdenSRWIWKVOmlJnxxo0bp2rVqiWfnz9/XqVOnVplzZo1znZ58uSRz3QGDhwoLixsT6EgVoNiQWwPxGLTpk1iXRQuXFgC4og/wEJwtia8IUuWLLY/n8SaUCyIrblz547q27evmjNnjmrcuLEsK1eunNq5c6f68ssvRSzy5s0rweqrV6/GsS6QDYXPCLEDjFkQW4NYBB5wHTmTIkUKdf/+fXldqVIllSpVKhUREeH4/ODBg+rUqVOqRo0aQT9mQkIBLQtieTCO4siRI473x48fF8she/bsEqSuXbu26tWrl4yxgBsKqbGTJ09WX3/9tcO11LFjR0mxxTYIZvfo0UOEonr16iH8ZoQEj2RIiQri/yMk6Pz555/qqaeeire8bdu26ueff5YgdZ8+fdTy5cvV5cuXRTAQ8MbYCgzi0wflvffee2r69OkypqJ+/foypoJuKGIXKBaEEEIMYcyCEEKIIRQLQgghhlAsCCGEGEKxIIQQYgjFghBCiCEUC0IIIYZQLAghhBhCsSCEEGIIxYIQQoghFAtCCCGGUCwIIYQYQrEghBCijPg/2d5UcpcyErYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -863,7 +863,7 @@ "\n", "from pycircstat2.hypothesis import omnibus_test\n", "\n", - "assert pval == omnibus_test(alpha)[1]" + "assert np.isclose(pval, omnibus_test(alpha).pval)" ] }, { @@ -898,7 +898,7 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, "execution_count": 18, @@ -907,7 +907,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF8CAYAAAA+d5cqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARp5JREFUeJztnQd0VNXahncCRHrvF0ORIkVAOhZQAWmKCqio9KYIqKiACAIiUkQB9VIUAaWKIL1DFJAmTarSi9KDEDoEYf/r/fxn7iRMMslkZk57n7WGMCWTnck5591fD9Naa0UIIYQkQnhiTxJCCCGAYkEIIcQnFAtCCCE+oVgQQgjxCcWCEEKITygWhBBCfEKxIIQQ4hOKBSGEEJ9QLAghhPiEYkEIIcQnFAtC/p9Ro0apQoUKqbRp06qqVauqTZs2uZ/bt2+fevjhh1WBAgXUwIEDDV0nIUZAsSBEKTVjxgz19ttvq379+qlt27apcuXKqbp166qzZ8/K8126dFHNmzdX8+bNk9v69euNXjIhIYViQYhSavjw4apDhw6qTZs2qlSpUmrs2LEqffr0asKECfL8hQsXVMWKFVXZsmVV/vz5VUxMjNFLJiSkUCyI44mNjVVbt25VtWvXdj8WHh4u9zds2CD3BwwYIPchIHgOVgchTiK10QsgxGjOnTunbt++rfLkyRPncdzfu3ev/L9BgwYqOjpaXbp0SeXKlcuglRJiHLQsCEki99xzD4WCOBaKBXE8OXPmVKlSpVJnzpyJ8zju582b17B1EWImKBbE8UREREjwOioqyv3YnTt35H716tUNXRshZoExC0KUkrTZVq1aqUqVKqkqVaqokSNHqqtXr0p2FCGEYkGI8OKLL0oAu2/fvur06dOqfPnyaunSpXcFvQlxKmFaa230IgghhJgbxiwIIYT4hGJBCCHEJxQLQgghPqFYEEII8QnFghBCiE8oFoQQQnxCsSCEEOITigUhhBCfUCwIIYT4hGJBCCHEJxQLQgghPqFYEEII8QnFghBCiE8oFoQkABoyYzY3GzMTQrEgJEH++ecftXDhQvlKiNOhWBBCCPEJxYIQQohPKBaEEEJ8QrEghBDiE4oFIYQQn1AsCCGE+IRiQQghxCcUC0IIIT5J7fslhJiPX3/9Ve3fv18VL15cVa1a1ejlEGJ7aFkQy9GzZ09VrVo11bJlS/mK+4SQ4EKxIJazKD755JM4j+E+HieEBA+KBbEUcD0l53FCSGBgzIJYCsQokvO4J4xzEOI/tCyIpcBFvkePHnEeQ8zC18WfcQ5CUkaYZrN+YkFgJSxZskT+X79+/UTFAq+FQMRn48aNiX7frVu31OLFi1WDBg1UmjRpArTyuOuipUOsAi0LYklmz56tPvzwQ7n5shTMGOegpUOsBsWC2D4jKiVxjmDAjC5iRSgWxHIk11LwN84RLPy1dCAmkydPpqgQQ2A2FLEc/lgKQ4cOVY0bNzZFjMCf9UPcPK0RiB9+J0JCBgLchFiNHj16IDHDfevZs2fAf0ZsbKyeO3eufDVy/Rs3bozzWtcNj5sFrGXSpEl606ZNRi+FBAlaFsSSBMpSuH37tvr777/VzZs3Jfvpn3/+cd9+//13cfn85z//UenSpZOMqNSpU8stIiJC5cyZU/4f7PUn5rYyQxYVrR5nwNRZYktwsT9z5ow6efKkOnXqlPsW/z5eA8Hwh7CwMJUrVy6VL18+lT9/fvnqunnez5s3r7rnnnv8/l38Tf0NBWZeGwkstCyIpYmNjVV79uxRW7duldu2bdvU0aNHVXR0NFys7teFh4erPHnyuC/gDz74oGrYsKH7Yg7LwWU1uCyIP//8U23atEk9++yz8h6eVseNGzdEaDyFZ/fu3Wr58uXq9OnT8hpPcuTIoSIjI1X58uVVxYoV5VauXDn5ub5wBeg9d+9GBuitZPWQwEHLglhKGHbt2uUWBXzduXOnPA4xKFmypKpQoYIqVqxYnF0+brlz51apUqVK1s/ztyjvzp074tqKb80cOXJE1o3fAe+N9ZQqVcotHlg7xCR9+vSWKeKjZeEcKBbEtBw4cED99NNPbqvBdZGFMHheZF279AwZMgT05werghvxEVghrt/L9bt5ip7r96pZs6YqW7asuLzMSvyYBe4PGTLE0DWRIBCsyLnZGT16tH7ggQd0pkyZ5FatWjW9ePFi9/NfffWVrlmzpjyHj+nChQt3vUfBggXvylAZPHhwnNd8/fXXOjIyUpcvX95U2Stm5J9//tG//PKLZArdf//98nmmSpVKly1bVrdp00Z/+eWXev369frq1ashWU8ws6Hic/PmTb1161Y5Xl599VVduXJlHRERIZ8Bjp/OnTvrZcuW6Rs3bgQtkym5x6fn9/n7HqEE5yY+zzfffNP9GM7x+OcwPn9P5s2bp4sVK6aLFy+uFyxYoJ2KY8Vi/vz5etGiRXr//v163759+v3339dp0qTRu3fvludHjBghB5frAEtILAYMGKBPnTrlvl25csX9/LFjx3TRokXlAjdz5kxdsmTJkP6OVuDSpUt61qxZumXLljpnzpzyWefOnVu3a9dOLtSen2eoCaVYJCQgK1as0F27dtWFChWSzyZjxoy6adOm+rvvvtPR0dEBT+HF/WB+n1EgpRefITYe8cWiQ4cOcc7hixcvup+HOBcoUED+DsuXL5f/4+/iRBwrFt7Ili2b/uabb+I89vPPPycqFhCVhNi1a5euVKmSXPAOHz4sByvR+s8//9SjRo3SdevWde+ey5QpI4KNnent27e1GTBaLDy5c+eO3rlzpx44cKCuWrWqfGbh4eH6kUce0Z988oneu3dvst/T3/oNK9R9eHL58mWxDHDBhzjEFwvP+/GBcOA8j46OlhvOYWxwnAjbffx/rv3333+vrl69qqpXr56s74VvFpkuyK4ZNmxYnCyYMmXKiL85S5YsqnTp0mrgwIHKqRw/flx+f3xOyAp688035bPCZ3b48GHx2X/88ccSFIXfnsQFMYsHHnhA9e7dW4LHCJh//fXXKnv27Kpfv37q/vvvl8A34gX79u0LatsRMzZmTIzOnTtL5lvt2rW9Pj916lSpmcH52qtXL3Xt2jX3c5kzZ1Zt2rRxp0N36tRJZcqUSTkS7WCwU8uQIYP4xbNkySJuqfgkZll89tln8vyOHTv0mDFjdNasWXW3bt3uet25c+f0tWvXtNO4deuW+Hufeuop2QWnT59ev/TSS/r777/XMTEx2uyYybJIDMRw4EuHOyV79uxyvNaoUUNPmTJFX79+3dGWxfTp08VqdX0O8S0JxCaXLl0q1wJ8Xv/5z3/0c889d9f7xMTEONaicOFosYDv8cCBA3rLli36vffeE5/5nj17kiwW8Rk/frxOnTp1UIKQwSaQAcqjR4/qPn366Pz588tnV7FiRT127Ng4vmArYBWx8AQXxWnTpunHH39cPnu4Vt944w13LC6lbVNcx0mLFi2C3m4lEO5OxL+wmUuq2ykqKkp+n4MHD4ZoldbB0WIRn1q1aumOHTv6LRY4IfFaf/zHRhKIYCV86qtWrZJdGayIzJkz606dOult27Zpq2JFsfAEyRu4iOOCib/rE088IZYess782SjEP06aN29u6gyoOXPmuDPqXDfcDwsLk//H/xwA4ot4DawNEheKhQfYjbVq1cpvsYAZiwvl+fPntVVIqUsBO9mJEydKajC+DxlfsCKMzGIKFFYXC08LGu4YpIfjb1SkSBFJzEiOpWcl15MLuI2QZOJ5Q8IJRA7/98batWvl9/K0Rsi/ODaSiEDWmjVrpDUEgqu4v2rVKvXKK6/I82jZsH37dnXw4EG5j9fg/vnz5+X+hg0b1MiRI9WOHTskQIsgWbdu3VTz5s1VtmzZlFXwN1h55coVCVgjWI0AIJrtodUFWm+8+uqrAS+QI/6DpofNmjWTY9ZVcd29e3f5m7399tvSGsUXVgtqAwSiEbT2vOG4REIK/n/o0CH10UcfSVEkrgPz58+XyYU1atSQxBQSD+1Q2rZtKylxSN3MlSuXuKCQR+2iX79+XndS2EUDFFAhhRGB8bRp08qOetCgQZaLVyR3x4hdKorj4NrAZ4diMbg77IhdLAtvnDhxQvfu3Vvchajd6N+/f6IBXCtaFt7wjFkgpoFEACQF3HPPPVIT1b17d8vF1kKFY8WCJC/IidqHqVOnigsDrrbWrVtL0aGdsbNYeGbqvfPOO3KxxKbpiy++SLDoLBQzRIh5oViQRIOcCFyjDUq5cuXkAvHMM88kmFljN5wgFi4g/Gipgo1A4cKFJf7mrTjSCm09SHCgWJAE2bBhg7t3zqOPPqrXrVunnYSTxMIFNgLYEOBvjtYYqD3ChiG5UFTsh2MD3CRh/vjjD/Xcc89JNTsC+gsXLlSrV69WDz30kNFLI0EGnQbmzp2r1q1bJ50HUPn82GOPSdV4UkEVOYLoCBbjK+4T60OxIG4gDB06dJBMkd9++01NmjRJvuKCYeYW2STwYGOADcKiRYtUTEyMbBywgcBAqMRAtpVnu3KA+3icWBuKBRGQNohd5cyZM9Xw4cOlv1CLFi2SPTCI2AdsEDDLAxuGyZMnq82bN8tGYty4cXGmEFo9xZYkDYqFw4E1AVF45plnZNgO6iTQ5C8lM6OJvUBjR9QP4dh4/vnnVceOHVW9evW8WhloZuiNhB4n1oFiEULMNpRwwYIFslPE12+//Va+olCLEG8ghjF+/HiZHgjhwLHzzTffxDmuXfPCPQnlvHCznWN2gmIRInAQwxT3bGFuFBcuXFCtWrVSjRo1kpbhOPFxn3EJkhTq168vY2GbNm0qMS7c/+uvv9zPDx06VALiiHnha6hGrGL2Oc4xfCWBh2IRInAAnzt3Tk6eQAkGgobwJScneIiAJXaE8+bNUxMnTpRMJ1oTJLlkzZpVTZgwQY4ntMLBMQWrw7WzhyUB92aoLAqcX9u2bVMnTpwwxYbMjlAsQgQCxThxsHsPhGAkNz0RGS2tW7dWTz31lCpXrpzsDHGf1gRJCQiAwzJt3Lixat++vdzHoKtQ4hKKS5cuqYcfflh6YZHAQ7EIIalTpw6IYCQ3PREN/pDpNGfOHPdusECBAn79bEK8WRkuK3Xnzp1iZcAFZYRQMDEjeFAsLCgYSU1PhEsAY0uRuYITGDtAdIilNUGCAepxYLEisw4xsDfeeCOoLiEKRWihWFhQMJKSnnjjxg1xUSEz5f3331dLliyhNUGCDtrzf/fdd2r06NFqzJgxslFxtfUPJBSK0EOxsKBg+EpPPHnypKpZs6aaNWuWmj59usydQK48IaGiU6dOasWKFTIDpkqVKur3338P2HtTKIwhDA2iDPrZRCkRCcQa8GdAoBoiklTwfXA9waJwCcWmTZvUs88+K+KAjCcU2hH/uHXrltQUIGibJk0ao5djSY4cOSIp2seOHVPTpk2TBIuUQKEwDm43LW5heKYnTpkyRaZ8FSxYUG3ZsoVCQQyncOHCav369apWrVoiGqjB8Hd/SqEwFoqFDWIYt2/fFjcUhOOll16S8bB58+YN2noJSe540x9//FH16dNHvffee9I65Pr168mqJcJ5QaEwFoqFxQXj4sWLsmP79NNPpQEgUmN5IhGzAbfogAED1IwZMySFGxYwCuiSUkuEeiA0uDxw4ACFwkAoFhYWjIMHD8rJhNkDqJ3o1q0b02KJqXnhhRfU2rVr1enTp1WlSpUSnJPhqiWCyLz11lviWkXQHAFzYgwUC4sKBlosYJcFPy5OLKQoEmIFKlSoIDG1IkWKqCeeeEKtXLnyrtcgccNTKPr27StWNFudGwfFwoKCAd8tppflz59frIoSJUoYtlZC/CFPnjwiEkjxRoYUss48KVas2F1CAdjq3DgoFhYTDPwfu7GiRYuqn376SeXMmdPopRLiF+nSpZMRrnXr1pV0b8QyAKxlHP9wU3kKRShbnZO7YZ2Fheow8P+nn35alS9fXmIUmTNnNnp5toZ1FqH7nF955RU1e/ZsyXyCVeHKekKMIn4tETEGWhYWsTAw2hJzAypXrqyWLl1KoSC2AUKMgr1mzZpJWi1Ew5X1FOpW5yRhKBYWAFXZvXr1kmaAvXv3ZuogsR0IZnft2lXVqVNHCvcwE56YC4qFydm8ebNYFKjGjoqKUmnTppU2HjipvM1AJsRKIB6B4xs9zK5evSpWxYsvvqhefvnlJAuGP0PAiB8gZkHMyfbt23W2bNl09erV9aVLl+Sxw4cP6/z58yPOpIsUKaKPHTtm9DJtS2xsrJ47d658JYEnJiZGV6lSRY7lTJky6Y0bN8rjt27d0k2aNNERERF66dKlib5Hjx495PtdN9wnwYGWhUlBl87atWur++67T9qLo2UCwBSwDBkyyP8PHz6sHn/8cVoYxJIWxZNPPikuVgDXavr06d1xOsQw8DyypH7++eeADAEjKYNiYUJQ3Yp0QtRRLFu2TGXJksX9HOZl4+RBxgigYBCrCwXSv5EG/sADD7hfg00RWnygLQja2WCokr9DwEhgoFiYjJs3b6rnnntOmgPCosiePftdr6FgEDsLhQvE59CAEJXeEIy///472UPASOCgWJgI1FK89tprkiaLYiVYFglBwSB2FgoXGTNmlISOy5cvq+eff15qMpI6BIwEmCDFQogfDB8+XIJ0kydPTvL3HD9+XBcrVswd4GPQO3AwwB2cYDZuOXPm1Dt37kzy969evVqnTp1ad+7c+a7nEBifNGmSO0BOggPFwiQg6yM8PNyvbI74gjFgwICgrNFpUCwCx9SpU/0WChdfffWVfP/YsWODskaSOHRDmQAE5JBbjs6xgwYNSvb3e7qkYKqjyWByBygREizQ6wlxhM6dO6tcuXL5dD0lRMeOHeU9unTpotasWROUtZKEYW8og4mJiZGZFKhg3bBhQ5zMp+Ry4cIF8fHCJ+zPTG8SF/aGSjnxR6Gi8M5b0kZy/ibIFESLfhSsFipUKKDrJQlDsTAQZDyhPTPywnGBRyfZQDcfTJUqlVgekZGRAXlvJ0GxSFkwG8cghCHQo1CRFYUeaag9Qot+bJBI8KEbykAwj3jFihXqhx9+CJhQeDYfRGEf2oIwS4oYkfUEkYXYBnoUao4cOaQVCDIAW7ZsKdYLCT4UC4OYNGmSe242KrUDDSyKcePGidnPtFpiRHosLOevvvpKvgYaNNWcOnWqpJhjtjcJAT4C4CQI7N27V6dNm1a3bdtW37lzJ2g/h2m1KYPZUKFNj/WHjz/+WH5WVFRUUH8O0ZoxixCDXdajjz6qzp07J4NdXP1wgsWJEyfEqjhw4IDcRzUsMqcYw/ANYxbBLbgLBHBB1apVSx05ckSC3q4eaiTw0A0VYkaMGCGjUSdOnBh0oQCs9CZ2FQqALMIJEybI5it+NTcJLBSLEPLHH3+oPn36qG7duknQL1RQMIgdhcJF4cKFpdvs2LFjZeYLCQ50Q4XQ/QSBQC0E3E8YVh9q4ruk0P4cprsRa7ECdEMlDi4dOJ5Wr15tmFB4uqOQKIKNEN1RwYGWRYj47LPPZPcF95NRF+f4FkaTJk14ESQpEovGjRvLMWSkULjcUePHjxd3VPfu3Q1Zg92hZREi99ODDz4obQqQLms0sDBWrVol1a+s9E4YWhZJq8y+du2aKliwoGFC4cmYMWPU66+/LvVLwUhJdzIUixSCKlX0dkLvG2+tkVFNDfcTfLtoPW4ml49npTcEA66yQBZPWR2Khfd5K/gsPFt4mOmYgYihEPXgwYPijsqcObNf5y3xgsGpu5YmKfN/hwwZIt1k169fr80I5h2vXbtW9+vXT2oyWIfxP1hn4b2O4vXXX5e6hhs3bmgzcuTIEZ0xY0bdsWNHr89zbrd/UCz8BL3zPQ84182zp/6ePXtk6Hz37t21mZk1a5YIGgv34kKxSLjgbtiwYdrMjBkzRta5bNmyZJ+3xDsMcPuJr/m/cOm0adNGiuDM3o4ALihkRgGm1ZKkpMei86uZefXVV6VYr3379uIuc8G53f5DsfATX/N/p0yZIicXMjQwS9jMsA6DmLmOwh/CwsLUN998o6Kjo+MklXBudwpIwOIgSSC+77Nnz57y+PXr13VkZKRu0qSJthLsJRUXp7uhjOj1FGjgAs6QIYM+ffq0z/OWJA7FIoV4m/+LWdqpUqWShoFWg4LxP5wsFnYQCvD333/rrFmz3jW7m3O7kw/FIggnWY4cOXSHDh20VaFgOFss7CIULgYPHqxTp06tDx06ZPRSLA1jFgEG/lHMkOjXr5+yKvFjGCdPnpQ4BnEGp06dkjoFK8UoEuONN95QuXPnVh988IHRS7E0FIsAcubMGRlmhIMTF1wr4xKMcuXKSZM2VHijiI/YGxS1XblyRQ0bNkyVLl3a8kIB0N0Zm7dp06ZJXzbiH6zgDiBo54HpXdiFZ8uWTdnl4oGbZ6W3U1qDOK2C27OFByqz8Tuj55IdwEYH4odU9iVLlhi9HEtijyPBBBw6dEhGSGKutl2EAuBi4ZrpjXTEDRs2iKuNabX2So9FLdDmzZvjtPCwi1AAHMMff/yxWrp0qfRFI8mHlkWAePnll6VVM9p/h2KokVE77Q4dOqjvvvvOERP3nGBZeNZRoIht/vz5tj1+camrUqWKzKfHpgebH5J07LN1MBA0CJw+fbrq37+/bU80cP36dbV+/Xr5Pwv37Fdwt2PHDom72RWIw5AhQ8SlOnfuXKOXYzloWQSAevXqyQzgPXv22N6f76SZ3na2LKxamR0I8Hv/9ddf0pXW7udrIKFlkUIwT3vZsmVq4MCBjjjw2BrE+jhZKACsi71796oZM2YYvRRLQbFIISNHjpQmfJg65xQoGNbF6UIBKlSoIIORPv/8c4ljkKRBsUgBx48fV7NmzZK6CjtljiQFCob1oFD8j7feekuyv+AZIEnDWVe4ADN69GgJaLdu3Vo5EW+C0aJFC6OXRRKgW7duFIr/p379+nLcwrogSYNikYLMoK+//lq1bds2wdGNThMMtFTo1KkTK71NWnCH9G64TJ0uFACegK5du4pnAB4C4huKhZ+gUvv8+fNywDkdl2CsWbNG3XvvvWLaUzDMV5mNCyRqgXBzslC4gEcgQ4YM4iEgvmHqrB/gI0OQrECBAmrBggVGL8dUQCRcrUEqVqyoYmJiVL58+ZQVsXrqLGIUEAp0F/CszCZxYxfY+MG64GeTOLQs/GDr1q3SkOy1114zeimmw9UaBGNl4Rd+5JFHGPQ2MJhds2ZN6RpMoUh4/Oq5c+fUvHnzjF6K6aFY+MG4cePEqkAxHvEuGHPmzBF3B7OkjM16QuEZYmsUCu+ULFlSNjT4jEjiUCySCdo3o9UxAtvoMUO80717d6bVmiQ9dvDgwUYvy9Sg31lUVJS460jCUCySCao+MdwIYkEShnUYoYd1FP7RtGlTlSVLFjV+/Hijl2JqKBZ+uKDq1q2rChYsaPRSTA8FI3RQKPwHtVLNmzdXEydOlKQG4h2KRTJA8zxk+rRr187opVgGCkbwoVCknPbt26vTp0+rlStXGr0U00KxSAbo9Z82bVpJpSQpFwwWQ6UcpMRSKFIOxgcXLlyYqfCJQLFIpligAZmdZ1aESjCQnQPhJSkjIiJCpUuXTv5PoUjZrItGjRqJWLD0zDsUiyTy999/q3Xr1skBRVImGM2aNVPDhw+XNtGs9PYfFNzt3r1b9erVS7Vq1YpCkUJwbsPaRQ0VuRuKRRLBkHcUmj311FNGL8XygoGpgrDQsJtja5CUtfCAG+qxxx5T3377LYUihTz66KOSFQUPArkbikUSwQFUuXJly7auMGulNwRj+fLlqnHjxgx6JzGYjdkpOB7ZwiOwoKULug4wbuEdikUSiI2NVUuXLlVPP/200UuxnWAghoHW2aj4ZpZU0rKeZs+eLW0qsHGhUAQWnONo55NQ8sWvv/6qJk+eLF+dBsUiCaBtxeXLlxmvCAJwQbkCikyrTXp6LNxQdN8FHlgW6MywcOHCu57r2bOnqlatmmrZsqV8xX0nQbFIAjD5IyMjVdmyZY1eiu3Inz8/6zB8wDqK0JEtWzZVo0aNu1xRv/76q/rkk0/iPIb7TrIwKBY+wK4XBw7MU/jXSeBh4V7CUChCD8519IpCWx8X+/fv9/rahB63IxQLH6Br57Fjx+iCCjIUjLuhUBgDzvWbN2+qFStWuB8rXry419cm9LgdoVgkwQWVKVMmmQtAggsF439QKIwDo2dLlSoVJ4W2atWqqkePHnFeh5gFHncKFAsfYFIaGgcy68Q4wRg5cqRyGlOmTKFQGOyKWrRoUZxq7qFDh0pd0KRJk+TrkCFDlJOgWCQCOlCi8AnFOsQYwahVq5a4BZyU+YNMpypVqqiXXnqJQmEQOOfPnj0rLmhPqlatqlq0aOEoi8IFxSIR9uzZI75LzJImoRcMtFdBCiOKpZxS6e2qzEaq9oQJE9TOnTspFAbgOudRc0H+hWKRCDhQwsPDVfny5Y1eiiPJlSuXNBt0VXpDMCDgdoxhIEaB38/VwgOV2fjd2THAGPLmzStp3RSL/0GxSAQcKPfff7/KkCGD0UtxNK7WIH/99ZfkwNst6O0KZj/xxBNq7dq1bOFhIuuCYuEwsfC3RB8HSoUKFYK2LpI8wRg7dqw6f/68rbKkPLOerl+/LsF81vOYA5z7uAawZblDxMJXiX5CQoLg9o4dOxivMBHTpk2zVVqtt/RYFIBiRgUxHpz7GE2Q0DH2q9P6RGkbs3HjRmwJ7rrhcdCjR484j+O+i+3bt8tja9asMfA3IPE5fvy4LlasmPtvVqRIEX3s2LGg/KzY2Fg9d+5c+RpoYmJidJUqVdy/R86cOfXOnTsD/nOI/5w4cUL+NrNnz77rucSuHXbF1pZFYiX6vnq9wPyEO+DBBx8MyVqJcwr3WHBnDRDgRqA7ftziV4f2ibK1WCRWou+r1wsOkBIlSqiMGTMGdY3EWYJBobB+kHu/Q/tE2VosEivR99XrBQcI4xXWEwyknZoVTFpEC2wKhfXEQnsEuZ3aJ8rWYpFYiX5iQoLiLwa3rScYEIv06dMrswK3Zr169eQrhcIa4BoQHR0dZxiSU/tEhSFwoRwM/IwwH7ErcP2xUTVbrlw5GXqEvH5ibk6cOCHT45DqiMMZWW9ItU0pyIhDb7AGDRpIFXmgZmZjvSj0pFCYH/ytChQoIJMcn332WZ/XDjvjeLHwxvfffy99eS5cuKCyZs1q9HJIEoFFiBPYJRjYwWPqmZFiAdcT1uFZmc2CO+uAYwlW4Ntvv6169+6tnIzt3VD+cPLkSanazpIli9FLIX5UeuPi/OWXX4p1aGTQG8HsRx55RPXv359CYVFwLMGyOHnypHI6FAsvnDp1SnrysJLWmoJx48YN9d5770kfKaOypFxZT4iTDRw4UB09epRCYVFwLTh16pRyOhSLRMSCWBP08ypYsKBhabXx02Nz5MihKleuHLKfTwILxeJfKBZegMmJghxiTYysw2AdhT3F4iTdUBQLb9CysD5GCAaFwp7gWnD69GnHNxSkWHiBYmEPQikYFAr7Ai9DbGysdDx2MhSLeFy7dk1OfIqFPQiFYFAo7I3rWnDK4XELikU8XAcEYxb2FQzMVf7tt98C9v4ozELmFaBQ2FcsTjo8bkGxSEAsaFnYUzBKlSqlPvzwQ8lQCsRMb1RmI8V68ODBqnDhwhQKG0LL4l8oFvGgWNhbMLZv3y59fFwzvVMiGJ4tPDp27Kj27dtHobAhmIWeNWtWioXRCzAbOCBcBwexH2jb4VnpDcGYMGFCsmIYiFF88cUX0o3UszI7pf2jiHnJnz8/xcLoBZgN+CVZvW1/XIKBBoTt2rVLctDbFcx+8803ZeDNQw89xMpsB5CPtRYUC28Xg2zZshm9DBIC0Chw0aJFSc6Sip/1tGrVKsenUzqFbNmyqZiYGOVkkiUWCOKhbUGmTJlU7ty5pWUv/LQu0P8GO3Jvt5kzZ7pfhxOyYcOGMnsA79O9e/e7fMcIQqKBFxqxhXICFS4gdCc4g3Tp0klAOilptQmlxzJrzhmkSZMmIAkRKeHy5cvqrbfeklY2OHZh1W7evNn9PIoG+/btK1YQnq9du7Y6cOBAnPfYsGGDtMcvVKiQGj9+fPIWkJyB3XXr1tUTJ07Uu3fv1tu3b9cNGjTQkZGR+sqVK/L8P//8o0+dOhXn9uGHH+qMGTPqy5cvu19TpkwZXbt2bf3bb7/pxYsXy7D6Xr16uX/O2rVrdeXKlfWWLVv0qFGjdJ06dXSoaNWqlX744YdD9vOI8Rw/flwXK1YM5blyK1KkiD527JiOjY3Vc+fO1dHR0bpKlSru53G87ty50+hlkxDSokUL/cgjjxi6hhdeeEGXKlVKr169Wh84cED369dPZ86cWY5fMGTIEJ0lSxY5Znfs2KEbNWqkCxcurK9fv+5+j5IlS+pZs2bpdevW6fvuu0//+eefSf75yRKL+Jw9e1ZOHiw+IcqXL6/btm3rvg9xCA8P16dPn3Y/NmbMGPmlb968KfcXLFign3nmGTlZN27cKMIRKl555RX92GOPheznEfMKxsGDB/XUqVPl+KNQOJu2bdvqatWqGfbzr127plOlSqUXLlwY5/EKFSro3r176zt37ui8efPqYcOGuZ+LiYnR99xzj54+fbr7MWzuDx8+LBv8SpUq6T179iR5DSmKWcA0B9mzZ/f6PLJFkKqIAKKnGYT0wjx58rgfq1u3rmSVuAqbcB9tpuGmwhhKuL8CCQbkTJ48Wb7GB6ZmIKasEetXeteqVUsG3rhMfRbcOZfUqVMb6obCz8YgLWRqegJ309q1a9WRI0ekfxVcTy4wjwdJHLjmuoCbqmTJkvIcBoSh7iippE5Jjjn8Z0gbLFOmjNfXwCeGhcG35gK/kKdQANd9POfyDy5dulSdPXtWUlgjIiJUoECOPbJYXGCWLuZ0u6BYOBeXYCBuAV8vKr1dUCicTWqDxQJx4urVq6uPPvpIrqm4Zk6fPl2EoGjRou5rp7drq+s5gI17s2bNpNdVchN5/L4qdu7cWe3evVtUzRvXr19X06ZNUx988IG/P0KC34kFopPLli1bZIIa1NgF7iNQX6lSJbmPDzE8PNyv9yfWB8fc8uXLVZ06dSRV8ubNmxI4/Pbbb2VOBo8LZxIWFiZ/+2D9/SFGvtL14Q1p27atbGowLhgz5zH+GR6c5IApoLgle43J/g6lVJcuXdTChQvVmjVrJGPJG7NmzZKmfC1btozzeN68ed0ZJS7OnDnjfi6prFy5Ui7syQVqHB9YMJi1DKKjo+V9XfeJM+nVq5f6/PPP1c6dO907Mky8y5Url9FLIwZw+PBhdfXq1aBdF5Iy5/2+++5Tq1evlnXAbY+spxdffFEVKVLEfe3EtdSz+wTuI/spECRLLLDD6tq1q5ozZ47kmKMXTkLABdWoUaO7Ti6YUh9//LFcoF2Ww4oVK1TmzJmT5T/z9M0lx7KAHzo+UVFRbsti6tSpkjuPPx5xHnCv7tixQ2XMmFGOBcTPYGHgpBs0aJAcq5GRkUYvk4SYhQsXyjUrWNeF5Li+XZbBhQsX1LJly8StjmsxBAPXMpc4QFAQl+3UqVNgFpmciHynTp0kNWvVqlVx0mMRqfcEaV1hYWF6yZIld72HK3X2ySeflPTbpUuX6ly5csVJnQ0mPXr0cGe24NazZ884zzMbyrncvn1bb968WUdFRekbN25INt748eN10aJF70qrJc6ircHZUADXSlxTkc20fPlyXa5cOV21alU5Tl2ps1mzZtXz5s2TjD1klMZPnU0JyRILz4us5w21F57gwn/vvffKyeeNo0eP6vr16+t06dJJKuI777yjb926pUMF0nEnTZokX73VWRidT02MFwrgqrM4cuSI1zoM4hxatmxp+HVhxowZcuxFRERImmznzp0lPdYF0mc/+OADnSdPHkmZrVWrlt63b1/Afn4Y/gmMjWIP2rdvLym8nulmxN54do91NQUECGbCRw3XA1wQriwpAD8xMqfoknIGr7zyirgj8Td3KuwN5cV3yIwX55CQUCSlDuOxxx5zJ2cQe3Pr1i3Hp9RTLOKBQLur2JDYm6QKRUKCgewUFDcR+3Px4kWpdXAyFIsEWhHTO2dvkisU8QXj3XffVX369JEMO6MbzJHgc/LkScc3jaRYeBEL1IegwyOxJ/4KhadgDBs2TL7Xc+IeNxj25dSpU46fnkmxiAfn7dqblAqFJ54T92bMmCHt9JMzcY9YAxTp/v333xQLoxdgNlymptOnYtmRQAqFp2Cgfxkm561fvz7JE/eIdXD1VspPNxTxhJaFPQmGULiAWLg6Lydl4h6xFq5rQT5aFsQTtHnAjWJhH4IpFAml1VIw7IPLy5CPYkHig4OCYmEPgi0ULigY9gXXgtSpU0ubeidDsfACfJOMWVifUAmFCwqGfcUib968MrrAyTj7t08AWhbWJ9RC4YKCYT+YNvsvFAsvUCysjVFCkZhgzJ07N6RrIIGDYvEvFAsvUCysi9FC4U0w0JwSU81Y6W1N4JLOR7GgWCQUs8DF5sqVK0YvhVhQKDwFA+sZM2ZMnEpvYi0oFv9CsfBCiRIl5OuuXbuMXgqxqFC4QBq2Z6U3BAMjgRnDsAZoTY9byZIlldOhWHjhgQcekHm4uPgQ82NWofDEJRibN29WDRs2ZNDbIriuARUrVrzrOYwsnTx5snx1AhQLL+BiU6ZMGbV161ajl0JsIBQuYFlMnDhReg0xS8oa4BqACv0iRYrEebxnz56qWrVqqmXLlvIV9+0OxSIBsJOgWJgbKwkFSJUqlVqyZAnTai0ErgFITggLC3M/Bkvik08+ifM63Le7hUGxSEQsMF71+vXrRi+F2EAoXLAOw3piEd8FtX//fq+vTehxu0CxSAAcILdv31Y7d+40einEJkLhgoJhDc6dOyd/k/hiUbx4ca+vT+hxu0CxSCTIjaAkXVHmwupC4YKCYX5c5358sahatarq0aNHnMcQs8DjdsbZE8gTIW3atAxymwy7CEV8wYBIHDhwQASjTp06krIdERFh9PIcD859zFjHrPX4DB06VDVu3FhcT7Ao7C4UgGKRCNhRYMYyMR67CYU3wYBYtGjRwvEN68wc3PYEAuEEkXDBozIJQe4bN24YvRRHY1ehiC8Ys2fPFtFgpbe5xIL8C8XCh1jgpGWQ2zjsLhSegtGoUaM4ld449q5du2b00hwJZm4fO3bMazGeU6FYJELZsmUZ5DYQpwiFJ56tQRBExTHIoLd5gttOhmLhI8iNk3XdunVGL8VxOFEoPAUDgdMRI0aoQ4cOMUvKANavXy+V20WLFjV6KaaBYuGjz0v9+vWl6pY+5NDhZKFw8eSTTzKt1kAWLFgg5z6TDf4HPwkffV6efvppdf78edlpkOBDofgX1mEYx/Hjx+UYxLlP/ofjxcJXn5fKlSurPHnyyE6DBBcKRVwoGMawcOFCcQXWq1fP6KWYCseLha8+LzBDscOYP39+iFfmLCgU3qFghB6c648++qjKli2b0UsxFY4Xi6T0eYFYQDz27dsXwpU5BwpF4lAwQgemY/7000+Sxkzi4nixSEqfl9q1a0tmFF1RgYdC4Z9gREdHqzNnzhi9LNuxYsUKdfPmTcYrvBCmtdbennAaiFEk1ucFO42YmBi1Zs0aQ9ZnR8wuFLdu3VKLFy9WDRo0kMmJZuDEiRPSk+jVV1+VYxUJGfCvk8DQpk0btWnTJuncQOLieMvCBQQCfXkS6vWCnQbqLVDZSewvFGa2MFDdjcw9z0pvknIwkmDRokV0QSUAxSKJPPXUU3KBw06TpAwKRcqASHhWeiOtu2/fvoxhBMC7APceXVDeoVgkkXz58qkqVaowKyqFUCgCBwQDqd2o9P7oo48Y9E4hOLdz5crlqE6yyYFikQyw41i2bJkEwEjyoVAEnsuXL7v968ySShlIYGnYsKHMSid3Q7FIBvBl4uSMiooyeimWg0IRHHLkyMG02gCA5Jbff/+dLqhEoFgkc9Rq6dKl1YQJE4xeiqWgUAQX1mGknPHjx0sRHvpBJaVnnBOhWCQDBBM7duyo5s2bxxz3JEKhCA0UDP+JjY1V3377rWRDpkuXLkk945wIxSKZNG/eXHya3333ndFLMT0UitBCwfA/VnH27FnVoUOHJPeMcyIUi2SSPXt21bRpU/XNN98o1jMmDIXCPIKBAj6SMOPGjRPLoUyZMknuGedEKBZ+gB3IgQMH1OrVq41eiimhUJhHMO69914RCxbueefo0aNq+fLl4l5Obs84p0Gx8IMaNWrIQfPVV18ZvRTTQaEwl2Cg6wBqB1jp7R14CDJmzKheeOGFZPeMcxrsDeUnI0eOVN27d5edCU5MYj+hMGNvKH+ASMDXjlMdY4KR/s1jVqkbN26oyMhI1axZM/XFF1/41TPOSdCySEHDMXSiHTNmjNFLMQV2Ewo74WoNgmJSBLxhGTPordT06dPVuXPnVNeuXf3uGeckKBZ+kiVLFhEMuKKwQ3EyFAprCMa0adPk78QsKSVW1ueffy5WoysZgCQOxSIFYEeCLrQ4CZ0KhcI6DBgwgGm1/w9GDezYsUO9+eabRi/FMlAsUgBOPOxMsENxYuiHQmEtWIfxP3DOlipVSgabkaRBsUgh2Jns3LlTJmw5CQqFNaFg/FsrgS4Mb7zxhnRlIEmD2VApBB8fLpZoGYAJW+Hh9tdfpwiFXbKhEpq4B5FAvRAoUqSIiAiyg+wO0mSRSgzRQJIKSRr2v7IFGexMhgwZorZu3apmzZql7I5ThMKJFsZjjz0mImJntmzZombOnCnxGwpF8qBYBACkImL32bt3b9mN2hUKhb2ILxhod545c2ZlZ9577z2JVSAdliQPikWAGDx4sDp06JC0OrYjFAp7C0b79u3V0KFDJUPIrpXeiCtiFs2gQYM44MgPGLMIcEdaHIwHDx5UGTJkUHbBqUJh55iFr0pvNNZDbYadjmGMoIXrae3atQxs+wEtiwCCOciou0iodYAVcapQOLnSGxdStO2uV6+ebbKkEKfAcYz4IoXCP2hZBBik402aNEkChmhnbmWcLhROsyxcHDt2TD3yyCPq+PHjtsiSwt8RcYoSJUqohQsXGr0cy0LLIsD06dNH3b59W2IYVsbpQuF0C8M1Mc4OdRjoLIt4ImIVxH8oFgEmd+7c6p133lFffvml+uuvv5QVoVA4GzsV7l29elXSZF955RXpuEv8h2IRBCAWSEHs37+/shoUCmInwcAoAcQRIRgkZVAsgkCmTJnEHYUh8Lt371ZWgUJB7CQYmKuNudmdOnVShQsXNno5lodiESQwyhIDU9q2bWuJvHUKBbGbYHTu3FkSE7BxIymHYhEkcLGFZYE2IJ9++qkyMxQKklzBmDBhgjIzP/zwg7TfGTVqlIyVJSmHYhFEkLP+7rvvqn79+qk9e/YoM0KhIMkVjOeee07VqlXLtBYz3E+wKpo0aXLXbG3iP6yzCDKYolehQgWp6N6wYYOpqmIpFInj1DqLxDh//rzE5NBh2YyV3ljT888/r1avXi0bNGQnksBAyyLIoL0A3FG4KA8bNkyZBQoF8QcUmkI4XZXeaPUN4TBLDAPupx9//FHcTxSKwEKxCAFVqlRR3bt3l1RaM2RHUShIoFqD7Nu3T1xSZgh6nzlzRtxPTZs2pfspCFAsQgSEomjRoqpNmzaG+nopFCRQoHPrV199pa5cuWJ4lhTcT6+//rpYO7AqSOChWITQHTVx4kS5UCP32wgoFCSQ4MI8Z84cU6TVzpgxQ82ePVuNHj2a7qcgQbEIsTuqR48eYmXs2rUrpD+bQkHsWocB91OXLl3E9YTgNgkOFIsQA6HAidW6deuQTdWjUBC7CgbcT6jQDg8PV//973+D/vOcDMXCoGI9TCTr27dv0H8ehYLYWTAwmRKusDFjxrD4LshQLAwAE7swhAW36dOnB+3nUCiI0YLxxBNPqGvXrgXl52HiHYLaaK2DAjwSXCgWBnamxdB49I7asmVLwN+fQkHMIBjPPPOMioiICPjPgcXSuHFj9dBDD9lqMqWZYQW3wdXdNWvWVCdOnFCbN29W+fLlC8j7UigCAyu4/QfH9MqVKyVdPNCV3phRgUl+MTExUhBI91NooGVhcDot/K04mdBvB+KRUigUxCwWRqtWreJUeqO+KDY2NkXvi3MFySEHDhxQ8+bNo1CEEIqFweTPn1/NnTtXbd++Xb322mtyMvgLhYKYtdIbgoFRww888ECKgt4DBw6UbrKTJ0/m5LsQQ7EwScAbWR3fffedGjFihF/vQaEgZhaM6Oho9eGHH6r9+/f7nSUFKxwZhJh6B0uchBaKhUnAjOCePXtKD6mlS5cm63spFMQKG6IiRYr4nVa7c+dOSQhB0R2HGRkDxcJEfPzxx6p+/fqqWbNm0qAtKVAoiN3rMGCVNGrUSL4XLXPg0iKhh2JhssZs06ZNkzgGTg5keyQGhYLYXTAQEEcXWdRqIKCNuTDEGCgWJiNz5sxq/vz5spuCXzahgiYKBbG7YNy+fVvqkDA0DE0CIyMjDVgxcUGxMCHITV+wYIHUXnhLqaVQELsLBo5xVGajw8GUKVOkroIYC8XCpEAEIBhr1qyRbpqu/HQKBbGjYBw/flxqJwDSx7t27aomTJggfdQ4yMgcUCxMDHZbSBdctmyZZEtBMCgUxG6CgXoJzHjB8Yyq+XfffVfmUmCwEjKgiDmgWJicevXqqZkzZ0rhHvrsXLhwgUJBbCUYv/32m4xDBe3bt1fDhw9XX375perQoYPRyyMeUCwswFNPPSWVq8uXL1fjxo2T3v2E2AUcz8gERGLHpEmTpJMsuhkQc8GrjslxxShQ1IS0WlgYL774Yop77BBiFhCjeOutt9SwYcPUp59+ql5++WV3LyliHgLTBpIEBW/B7IwZM0rvfrRnRo8cNCMkxMrHOCwJxCcwwAgWBUTi119/FcEIZLdakjJoWZiUhLKeGjZsKFlSP/30k3r66aelXTMhVgR1FO3atVNff/21ZD65XE+ezQdpYZgHioUJ8ZUeW6dOHbVkyRIpVsL/MbCeECtx5coV6fOE7rGoo2jTpk2c5ykY5oNiYTKSWkeBoUmwLo4ePaoqVaok30OIFcAxi2N7xYoVkhqOGIU3KBjmgmJhIpJbcFelShWp8s6bN69UuP7www8hWysh/oAiUyRrwLKAAMCVmhgUDPNAsTAJ/lZmI08dJyDagiBLCu2b8V6EmA0EsWvVqiUDkDAOtXTp0kn6PgqGOaBYmICUtvBIly6d+H2HDBmiBg0aJJlSly9fDtp6CUkOqMpG0R0C2LihI0GOHDmS9R4UDOOhWBhMoHo94STC8CQUNiGWUb16dWnQRoiRnDt3Tj355JOS8QTLApXZadKk8eu9KBjGQrEwkGA0BUS1N04kdKqFbxi9dwgxgt27d0tcDV+joqJUx44dU/yeFAzjoFgYRDC7x5YqVUp8whUqVJDUWjRlIySUYFARrNtMmTJJEkaNGjUC9t4UDGOgWBhAKNqMZ8+eXWoxunTpIv5i5LFfvHgx4D+HEE9u3ryp3n//ffXss8+qunXrqnXr1qlChQoF/OdQMEIPxSLEhHIeBU6okSNHytxitAYpU6aMNCMkJBhs3bpVan7Q3wnz5JHKjfY0wYKCEVooFiHEqMFFrVu3Fr/x/fffL7s9tH7GGggJBGhq+cEHH8iFGxfwLVu2iHURiu7IFIzQQbEIYWdNIwcXFSxYUKyKsWPHqu+//16sDFTQEpIScEzDmkDadt++fSVWhmFGoYSCERooFiE+qI0cXISTCXONYWUUL15cUhpxn1YG8ceagDgg2wmzKGBN4L6/abGBEoxgur2cDsUihBfqcuXKmWLCHawMWBVoCY0ZGaioXblypdHLIhYBk+2Qlj148GBxP8GawLFtNBAMrIMtzYMDxSLEgmGmtaCadteuXapo0aKSYov7rPwmiVkT/fr1E2sCxw9SYnHfKGvC7OeY3aBYOBykNcLKQC0GWobAyvjxxx8lxkKIi1WrVolIoJ1M7969xZooX7680csiIYRiQSRrpVOnTmJllCxZUjVt2lQmlLH6m8DlVL9+ffX444+riIgIEYn+/fvL/4mzoFgQN4ULF5ZCPvSWAk888YSqV6+eXDCIszh06JDMmUAXAPQYQ50ORp0++OCDRi+NGATFgtwFdpFIQcQFAoNqcMF46aWX5AJC7M3p06el6h81OatXr5YGgHv27JG574wHOBuKBfEKLgy4QCDNdty4ceqXX36RCwhah+CCQuwF0qeR2YRkh6lTp6qBAweqAwcOSAEns4sIoFiQRMGFon379nLhQAsHpNred999cmFhrynrg+7EI0aMUEWKFJE2HdgMwO2Edvfp06c3ennERDhWLJAjjlxxdMXMnTu3ND7bt2+f+/nz58+rrl27qhIlSshwocjISPXGG2/cdYHEDjz+DRXSnnz44YeqQIECMvp0//79yorgM+jRo4dcSPC54MIC0UDlLj4rYi2uXr0q1fw4vrt37y4Ds7AhGDp0qMqWLZuyKpgaiVGt+fPnl3Nx7ty5cZ5HcB4WcoYMGeT3rF27tsRi4mcIxj+nhwwZEuc1sLZRr4QYTvzvty3aodStW1dPnDhR7969W2/fvl03aNBAR0ZG6itXrsjzu3bt0o0bN9bz58/XBw8e1FFRUbpYsWK6SZMmcd4HHyHe59SpU+7b9evX3c+vXbtWV65cWW/ZskWPGjVK16lTR9uB48eP61dffVXfc889Ol26dLpjx47yWdqJ2NhYPXfuXPlqF44ePaq7d++us2bNqsPDw/Xzzz+v//jjD20XFi9erHv37q1nz54t5+acOXPiPD916lS9YsUKfejQITle27VrpzNnzqzPnj3rfk3BggX1gAED4pzTV/7/ugCOHTumixYtqtevX69nzpypS5YsqZ2AY8UiPjhYcHCtXr06wdf88MMPOiIiQt+6dcv9mLcD0pMFCxboZ555Ri44GzduFOGwE2fOnNEfffSRzps3r3wWtWvXlt/59u3b2urYRSzu3Lmj16xZIxsdCESWLFn0O++8o48cOaLtjK9zE1y8eFFet3LlyjhiMWLEiAS/Z9euXbpSpUoiIIcPH9aFChXSTsCxbqj4uNxLmAOR2GsyZ858V8APft6cOXNK0dKECRPiFLShyyv8wvD/Ig0V7i87ARdenz591LFjx6SoD58R3AAIlCLGcfLkSaOX6FguXLggY0zRAgPDh5CsgPvHjx8XN2Iw5kxYCVSkI9srS5Ysd7UrgdsJc8LhZho2bFic5oRowolmifi+0qVLSzKAIzBarcwAdsENGzbUDz/8cIKviY6OFjfV+++/H+dxmKtwNW3btk0PGTJE3DKff/651x34zZs3td3BLnbDhg26devW4p5KlSqVbtSokVgb//zzj7YSVrQs8PnDOm7evLlOmzatTp06tbhTly5dagtrLxCWBY7FDBky6LCwMJ0/f369adOmOM9/9tln+ueff9Y7duzQY8aMEZddt27d7nqfc+fO6WvXrmmnQLHQWr/22mtiev71118JmqpVqlTR9erV83nh+OCDD3SBAgWCtFJrERMTo0ePHq3Lly8vJ+5//vMf8Zf/8ssvlhAOq4gFBAKblf79++sSJUrIZw2fOjYv8Lc7lYTEAu6jAwcOyKambdu24kbCZi4hxo8fL6J748YN7WQcLxadO3eWizt8j964dOmSrl69uq5Vq1acwHVCLFy4UA5Spx9Y8S9mmzdvloB47ty55fPJkSOHbtmypZ41a5Z8xmbEzGKBYxHB3E6dOsnxi88UsYiXX35ZkjGcZkX4G7MAENZBgwYl+DwC4UopvXfvXu1kHFttg2MJKaBz5syRJmlodeGtUAkxB7QVnz9/vkqbNq3P992+fbuk5JmhFblZQOohBuTghoaF6C+0YMEC+UwnTZokfYZQNd6oUSOJd9x7771GL9mUREdHq0WLFslnt2zZMkl/xXGL4kl8do8++qipOsBaaYIlZocndk6Hh4dLfM7JOFYsEJRGgdm8efOk1sJVlYygFWoKIBQYDnTt2jUJ3OK+a0hQrly5ZOALTtozZ85I0z0ICbq3oivnu+++a/BvZ15w0uHzwg0B8CNHjriF480335S/C7qZuoQDrUZCMZ7TrBuavXv3ymeDz2j9+vXyOIb8oPMrPqNSpUqxDYcHV65cUQcPHnTfx/GFiz0SVxCwxjGHzy1fvnzq3LlzatSoUerEiRPq+eefl9dv2LBB6iawecF1Afe7deummjdvbun6k4CgHQp+dW831EwABLgSeo0r5XDJkiXij8+YMaMEzMqVK6fHjh1LF4CfXLhwQU+fPl1cKQgq4rPOlSuXrl+/vjt3HjnucGvZ0Q11+vRpvWjRIklFfvbZZ93uJSQKIP0avnO8hiRMQudtq1atxHX33HPPSVAbKfD58uWT5AvPAPfWrVt11apVxaWHBAHUUMBFdYNuZR2Gf4wWLELic+vWLbV27Vppk75161a5wYpzWXawOCpWrOi+ocI+0DtsrGHx4sWqQYMGAXfvwJJ1/V6uG3a4IGvWrO7fC66lWrVqibVLiJFQLIglwGGKmo34F1iX+xAuBtcFFjUecDPghrYPqIHxx5WVErHAetEG5dSpU3LD2uES2bZtm6zbVX8C14an6OGGOARdS8RsUCyIpYkvILgYxy8ERBFlnjx53OLhKST4mjdvXtm543W4QRjwFadGVFSUqlmzply8UZjluqHQEpaOSwxcguB5H0VfnsAiQjzGUxhcfYgIMTsUC2I7cJF2XcjjX8A97589e1YyYVIKLBdvIuR5H4KUlGw6QswKxYI4FlgIEAwIC1In4XaKbz1s3rxZMrc8LQ/ckO6LVEpYLBwxSpyAY1NnCcFFH7t+3LwB8UCsAzOoWb9AnI4zE9gJIYQkC4oFIYQQn1AsCCGE+IRiQQghxCcUC0IIIT6hWBBCCPEJxYIQQohPKBaEEEJ8QrEghBDiE4oFIYQQn1AsCCGE+IRiQQghxCcUC0IIIT6hWBBCCPEJxYIQQohPKBaEEEJ8QrEghBDiE4oFIYQQn1AsCCGE+IRiQQghxCcUC0ISIDw8XN13333ylRCnE6a11kYvghBCiLnhlokQQohPKBaEEEJ8QrEghBDiE4oFIYQQn1AsCCGE+IRiQQghxCcUC0IIIT6hWBBCCPEJxYIQQohPKBaEEEJ8QrEghBDiE4oFIYQQn1AsCCGE+IRiQWzPmjVr1NNPP63y58+vwsLC1Ny5c+M8f+XKFdWlSxdVoEABlS5dOlWqVCk1duzYOK+5ceOG6ty5s8qRI4fKmDGjatKkiTpz5kyc18yfP18VL15clShRQi1cuDAkvxshoYJiQWzP1atXVbly5dSoUaO8Pv/222+rpUuXqilTpqg//vhDvfXWWyIeuPi76Natm1qwYIGaOXOmWr16tTp58qRq3Lix+/mbN2+KmIwePVr997//VZ06dVKxsbEh+f0ICQmYZ0GIU8AhP2fOnDiPlS5dWg8YMCDOYxUqVNC9e/eW/8fExOg0adLomTNnup//448/5L02bNgg9y9evKgLFiyoo6Oj5VaoUCF96dKlkPxOhIQCWhbE8Tz00ENiRZw4cQKbJ/Xzzz+r/fv3qyeffFKe37p1q7p165aqXbu2+3vuv/9+FRkZqTZs2CD3M2fOrNq0aaPy5csn7i5YFpkyZTLsdyIk0KQO+DsSYjG+/PJL1bFjR4lZpE6dWsaojhs3TtWoUUOeP336tIqIiFBZs2aN83158uSR51z069dPXFj4fgoFsRsUC+J4IBYbN24U66JgwYISEEf8ARaCpzWRFLJkyRK0dRJiJBQL4miuX7+u3n//fTVnzhzVsGFDeaxs2bJq+/bt6tNPPxWxyJs3rwSrY2Ji4lgXyIbCc4Q4AcYsiKNBLAI3uI48SZUqlbpz5478v2LFiipNmjQqKirK/fy+ffvUn3/+qapXrx7yNRNiBLQsiO1BHcXBgwfd948cOSKWQ/bs2SVIXbNmTdW9e3epsYAbCqmxkyZNUsOHD3e7ltq1aycptvgeBLO7du0qQlGtWjUDfzNCQkcYUqJC+PMICTmrVq1Sjz/++F2Pt2rVSn377bcSpO7Vq5davny5On/+vAgGAt6orUARn6so75133lHTp0+Xmoq6detKTQXdUMQpUCwIIYT4hDELQgghPqFYEEII8QnFghBCiE8oFoQQQnxCsSCEEOITigUhhBCfUCwIIYT4hGJBCCHEJxQLQgghPqFYEEII8QnFghBCiPLF/wFyZ2u6Qdka5QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAF8CAYAAAA+d5cqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARv1JREFUeJztnQeUE9Xbxi9tpfcuLkWKdKRjARWQpqiAikpvioCKCoigICJFFFD/FEVAqSJI70UBadKkKr0ofRGWDku533lev4nZJbvZZJNMZub5nROWlM1OJjPz3Lcn01prRQghhCRA8oSeJIQQQigWhBBCEgUtC0IIIV6hWBBCCPEKxYIQQohXKBaEEEK8QrEghBDiFYoFIYQQr1AsCCGEeIViQQghxCsUC0L+nxEjRqgCBQqo1KlTqypVqqiNGze69s3evXvVww8/rPLly6f69+/PfUYcB8WCEKXUtGnT1Ntvv6369Omjtm7dqsqWLavq1Kmjzpw5I/unc+fOqlmzZmrOnDlyW7duHfcbcRQUC0KUUkOHDlXt27dXrVu3ViVKlFCjR49WadOmVePGjZP9c/78eVWhQgVVpkwZlTdvXhUdHc39RhwFxYI4npiYGLVlyxZVq1at/06M5Mnl/vr16+V+v3795D4EBM/B6iDESaQ0ewMIMZuzZ8+q27dvq1y5csV6HPf37Nkj/69fv76KiopSFy9eVDly5DBpSwkxD1oWhCSSe+65h0JBHAvFgjie7NmzqxQpUqjTp0/H2he4nzt3bsfvH0IoFoQopSIiIiR4vWLFCtf+uHPnjtyvVq0a9xEhjFkQ8i9Im23ZsqWqWLGiqly5sho+fLi6cuWKZEcRQhjgJkR48cUXJYD94YcfqlOnTqly5cqpxYsX3xX0JsSpJNNaa7M3ghBCSHjDADchhBCvUCwIIYR4hWJBCCHEKxQLQgghXqFYEEII8QrFghBCiFcoFoQQQrxCsSCEEOIVigUhhBCvUCwIIYR4hWJBCCHEKxQLQgghXqFYEEII8QrFgpB4QENmzOZmY2ZCKBaExMutW7fU/Pnz5SchToeWBSGEEK9QLAghhHiFYkEIIcQrFAtCCCFeoVgQQgjxCsWCEEKIVygWhBBCvEKxIIQQ4pWU3l9CSPjx22+/qX379qmiRYuqKlWqmL05hNgeWhbEcvTo0UNVrVpVtWjRQn7iPiEkuFAsiOUsik8//TTWY7iPxwkhwYNiQSwFXE++PE4ICQyMWRBLgRiFL4+7wzgHIf5Dy4JYCgSzu3fvHusxxCy8BbkZ5yAkaSTTbNZPLAishEWLFsn/69Wrl6BY4LUIhMdlw4YNCf7ezZs31cKFC1X9+vVVqlSpArTlsbeLGV3EKtCyIJZk5syZ6qOPPpKbt4yocIxz0NIhVoNiQWyfEZWUOEcwYEYXsSIUC2I5fLUU/I1zBAt/LR2IzMSJE5kmTEyB2VDEcvhjKQwePFg1atQoLGIE/mw/xM3dmoL44TMREjIQ4CbEanTv3l3j8DVuPXr0CPjfiImJ0bNnz5afZm7/hg0bYr3WuOHxcAHbMmHCBL1x40azN4UECVoWxJIEylK4ffu2+ueff9SNGzck++nWrVuu2x9//CEun3vvvVelSZNGMqJSpkwpt4iICJU9e3b5f7C3PyG3VTj0xaLV4wyYOktsCS72p0+fVidOnFAnT5503eLex2sgGP6QLFkylSNHDpUnTx6VN29e+Wnc3O/nzp1b3XPPPX5/Fn9Tf0NBOG8bCSy0LIiliYmJUbt371ZbtmyR29atW9WRI0dUVFQUXKyu1yVPnlzlypXLdQF/8MEHVYMGDVwXc1gOhtVgWBB//fWX2rhxo3r22WflPdytjuvXr4vQuAvPrl271NKlS9WpU6fkNe5ky5ZNRUZGqnLlyqkKFSrIrWzZsvJ3vWEE6N1jFmYG6K1k9ZDAQcuCWEoYdu7c6RIF/NyxY4c8DjEoXry4Kl++vCpSpEisVT5uOXPmVClSpPDp7/lblHfnzh1xbcW1Zg4fPizbjc+A98b2lChRwiUe2HaISdq0aS1TxEfLwjlQLEjYsn//fvXzzz+7rAbjIgthcL/IGqv0dOnSBfTvB6uCG/ERWCHG5zI+m7voGZ+rRo0aqkyZMuLyClfixixwf9CgQaZuEwkCwYqchzsjR47UpUuX1hkyZJBb1apV9cKFC13Pf/3117pGjRryHHbT+fPn73qP/Pnz35WhMnDgwFiv+eabb3RkZKQuV65cWGWvhCO3bt3Sv/76q2QKPfDAA7I/U6RIocuUKaNbt26tv/rqK71u3Tp95cqVkGxPMLOh4nLjxg29ZcsWOV5effVVXalSJR0RESH7AMdPp06d9JIlS/T169eDlsnk6/Hp/nv+vkcowbmJ/fnmm2+6HsM5Hvccxv53Z86cObpIkSK6aNGiet68edqpOFYs5s6dqxcsWKD37dun9+7dq99//32dKlUqvWvXLnl+2LBhcnAZB1h8YtGvXz998uRJ1+3y5cuu548ePaoLFy4sF7jp06fr4sWLh/QzWoGLFy/qGTNm6BYtWujs2bPLvs6ZM6du27atXKjd92eoCaVYxCcgy5Yt0126dNEFChSQfZM+fXrdpEkT/f333+uoqKiAp/DifjB/zyyQ0ot9iIVHXLFo3759rHP4woULruchzvny5ZPvYenSpfJ/fC9OxLFi4YksWbLob7/9NtZjv/zyS4JiAVGJj507d+qKFSvKBe/QoUNysBKt//rrLz1ixAhdp04d1+q5VKlSIthYmd6+fTssdpPZYuHOnTt39I4dO3T//v11lSpVZJ8lT55cP/LII/rTTz/Ve/bs8fk9/a3fsELdhzuXLl0SywAXfIhDXLFwvx8XCAfO86ioKLnhHMYCx4mw3cf/59r/8MMP6sqVK6patWo+ufHgm0WmC7JrhgwZEisLplSpUuJvzpQpkypZsqTq37+/cirHjh2Tz4/9hKygN998U/YV9tmhQ4fEZ//JJ59I4BZ+exIbxCxKly6tevXqJWmpCJh/8803KmvWrKpPnz7qgQcekMA34gV79+4NatuRcGzMmBCdOnWSzLdatWp5fH7y5MlSM4PztWfPnurq1auu5zJmzKhat27tSofu2LGjypAhg3Ik2sFgpZYuXTrxi2fKlEncUnFJyLL4/PPP5fnt27frUaNG6cyZM+uuXbve9bqzZ8/qq1evaqdx8+ZN8fc+9dRTsgpOmzatfumll/QPP/ygo6OjdbgTTpZFQiCGA1863ClZs2aV47V69ep60qRJ+tq1a462LKZOnSpWq7Ef4loSiE0uXrxYrgXYX/fee69+7rnn7nqf6Ohox1oUBo4WC/ge9+/frzdv3qzfe+898Znv3r070WIRl7Fjx+qUKVMGJQgZbAIZoDxy5Iju3bu3zps3r+y7ChUq6NGjR8fyBVsBq4iFO7goTpkyRT/++OOy7+FafeONN1yxuKS2TTGOk+bNmwe93Uog3J2If2Exl1i304oVK+TzHDhwIERbaR0cLRZxqVmzpu7QoYPfYoETEq/1x39sJoEIVsKnvnLlSlmVwYrImDGj7tixo966dau2KlYUC3eQvIGLOC6Y+F6feOIJsfSQdebPQiHucdKsWbOwzoCaNWuWK6POuOF+smTJ5P9x9wNAfBGvgbVBYkOxcAOrsZYtW/otFjBjcaE8d+6ctgpJdSlgJTt+/HhJDcbvIeMLVoSZWUyBwupi4W5Bwx2D9HB8R4UKFZLEDF8sPSu5ngzgNkKSifsNCScQOfzfE2vWrJHP5W6NkH9xbCQRgazVq1dLawgEV3F/5cqV6pVXXpHn0bJh27Zt6sCBA3Ifr8H9c+fOyf3169er4cOHq+3bt0uAFkGyrl27qmbNmqksWbIoq+BvsPLy5csSsEawGgFANNtDqwu03nj11VcDXiBH/AdND5s2bSrHrFFx3a1bN/nO3n77bWmN4g2rBbUBAtEIWrvfcFwiIQX/P3jwoPr444+lKBLXgblz56oWLVqo6tWrS2IKiYN2KG3atJGUOKRu5siRQ1xQyKM26NOnj8eVFFbRAAVUSGFEYDx16tSyoh4wYIDl4hW+rhixSkVxHFwb2HcoFoO7w47YxbLwxPHjx3WvXr3EXYjajb59+yYYwLWiZeEJ95gFYhpIBEBSwD333CM1Ud26dbNcbC1UOFYsiG9BTtQ+TJ48WVwYcLW1atVKig7tjJ3Fwj1T75133pGLJRZNX375ZbxFZ6GYIULCF4oFSTDIicA12qCULVtWLhDPPPNMvJk1dsMJYmEA4UdLFSwEChYsKPE3T8WRVmjrQYIDxYLEy/r16129cx599FG9du1aR+0tJ4mFARYCWBDgO0drDNQeYcHgKxQV++HYADeJnz///FM999xzUs2OgP78+fPVqlWr1EMPPcTdZnPQaWD27Nlq7dq10nkAlc+PPfaYVI0nFlSRI4iOYDF+4j6xPhQL4gLC0L59e8kU+f3339WECRPkJy4Y4dwimwQeLAywQFiwYIGKjo6WhQMWEBgIlRDItnJvVw5wH48Ta0OxIALSBrGqnD59uho6dKj0F2revLnPA4OIfcACAbM8sGCYOHGi2rRpkywkxowZE2sKodVTbEnioFg4HFgTEIVnnnlGhu2gTgJN/pIyM5rYCzR2RP0Qjo3nn39edejQQdWtW9ejlYFmhp6I73FiHSgWISS+1ZhZzJs3T1aK+Pndd9/JTxRqEeIJxDDGjh0r0wMhHDh2vv3221jHtTEv3J1QzgsPt3PMTlAsQgQOYpji7i3MzeL8+fOqZcuWqmHDhtIyHCc+7jMuQRJDvXr1ZCxskyZNJMaF+3///bfr+cGDB0tAHDEv/AzViFXMPsc5hp8k8FAsQgQO4LNnz8rJEyjBQNAQvmRfgocIWGJFOGfOHDV+/HjJdKI1QXwlc+bMaty4cXI8oRUOjilYHcbKHpYE3Juhsihwfm3dulUdP348LBZkdoRiESIQKMaJg9V7IATD1/REZLS0atVKPfXUU6ps2bKyMsR9WhMkKSAADsu0UaNGql27dnIfg65CiSEUFy9eVA8//LD0wiKBh2IRQlKmTBkQwfA1PREN/pDpNGvWLNdqMF++fH79bUI8WRmGlbpjxw6xMuCCMkMomJgRPCgWFhSMxKYnwiWAsaXIXMEJjBUgOsTSmiDBAPU4sFiRWYcY2BtvvBFUlxCFIrRQLCwoGIlJT7x+/bq4qJCZ8v7776tFixbRmiBBB+35v//+ezVy5Eg1atQoWagYbf0DCYUi9FAsLCgY3tITT5w4oWrUqKFmzJihpk6dKnMnkCtPSKjo2LGjWrZsmcyAqVy5svrjjz8C9t4UCnNIhgZRJv1topSIBGIN+BoQqIaIJBb8HlxPsCgModi4caN69tlnRRyQ8YRCO+IfN2/elJoCBG1TpUrF3egHhw8flhTto0ePqilTpkiCRVKgUJgHl5sWtzDc0xMnTZokU77y58+vNm/eTKEgplOwYEG1bt06VbNmTREN1GD4uz6lUJgLxcIGMYzbt2+LGwrC8dJLL8l42Ny5cwdtewnxdbzpTz/9pHr37q3ee+89aR1y7do1n2qJcF4w68lcKBYWF4wLFy7Iiu2zzz6TBoBIjWX6IAk34Bbt16+fmjZtmqRwwwJGAV1iaolQD4QGl/v372d6rIlQLCwsGAcOHJCTCbMHUDvRtWtXpsWSsOaFF15Qa9asUadOnVIVK1aMd06GUUsEkXnrrbfEtYqgOQLmxBwoFhYVDLRYQBES/Lg4sZCiSIgVKF++vMTUChUqpJ544gm1fPnyu16DxA13ofjwww/Fimarc/OgWFhQMOC7xfSyvHnzilVRrFgx07aVEH/IlSuXiARSvJEhhawzd4oUKXKXUAC2OjcPioXFBAP/x2qscOHC6ueff1bZs2c3e1MJ8Ys0adLICNc6depIujdiGQDWMo5/uKnchSKUrc7J3bDOwkJ1GPj/008/rcqVKycxiowZM5q9ebaGdRah28+vvPKKmjlzpmQ+waowej0hRhG3loiYAy0Li1gYGG2JuQGVKlVSixcvplAQ24CCRxTsNW3aVNJqIRpGU8BQtzon8UOxsACoyu7Zs6c0A+zVqxdTY4ntQDC7S5cuqnbt2lK4h5nwJLygWIQ5mzZtEosCbTtWrFihUqdOLW08cFJ5moFMiJVAPALHN3qYXblyRayKF198Ub388suJFgx/hoARP0BvKBKebNu2TWfJkkVXq1ZNX7x4UR47dOiQzps3L/ol6EKFCumjR4+avZm2JSYmRs+ePVt+ksATHR2tK1euLMdyhgwZ9IYNG+Txmzdv6saNG+uIiAi9ePHiBN+je/fu8vvGDfdJcKBlEaagS2etWrXU/fffL+3F0TIBYApYunTp5P+HDh1Sjz/+OC0MYkmL4sknnxQXK0B8Im3atK44HWIYeB5ZUr/88ktAhoCRpEGxCENQ3Yp0QtRRLFmyRGXKlMn1HOZl4+RBxgigYBCrCwXSv5EGXrp0addrsChCiw+0BUE7GwxV8ncIGAkMFIsw48aNG+q5556T5oCwKLJmzXrXaygYxM5CYYD4HBoQotIbgvHPP//4PASMBA6KRRiBWorXXntN0mRRrATLIj4oGMTOQmGQPn16Sei4dOmSev7556UmI7FDwEiACVIshPjB0KFDJUg3ceLERP/OsWPHdJEiRVwBPga9AwcD3MEJZuOWPXt2vWPHjkT//qpVq3TKlCl1p06d7noOgfEJEya4AuQkOFAswgRkfSRPntyvbI64gtGvX7+gbKPToFgEjsmTJ/stFAZff/21/P7o0aMDuGUksdANFQYgIIfccnSOHTBggM+/7+6SgqmOJoO+DlAiJFig1xPiCJ06dVI5cuTw6nqKjw4dOsh7dO7cWa1evToo20rih72hTCY6OlpmUqCCdf369bEyn3zl/Pnz4uOFT9ifmd4kNuwNlXTijkJF4Z2npA1fvhNkCqJFPwpWCxQoEICtJImBYmEiyHhCe2bkheMCj06ygW4+mCJFCrE8IiMjA/LeToJikbRgNo5BCIMhFIGa4IisKPRIQ+0RWvRjgUSCD91QJoJ5xMuWLVM//vhjwITCvfkgCvvQFoSFe8SMrKf69evLnIpACgXIli2btAJBjVGLFi3EeiHBh2JhEhMmTHDNzUaldqCBRTFmzBgx+1m4R8xIj4Xl/PXXX8vPQIOmmpMnT5YUc8z2JiEg0aFwEjD27NmjU6dOrdu0aaPv3LkTtD3LtNqkwWyo0KbH+sMnn3wif2vFihVB/TtEa8YsQgxWWY8++qg6e/asDHYx+uEEi+PHj4sbav/+/XIf1bDInGIMwzuMWQS34C4QwAVVs2ZNdfjwYQl6Gz3USOChGyrEDBs2TEajjh8/PuhCAVjpTewqFABZhOPGjZPFV9xqbhJYKBYh5M8//1S9e/dWXbt2laBfqKBgEDsKhUHBggWl2+zo0aNl5gsJDnRDhdD9BIFALQTcTxhWH2riuqTQ/hymuxnbYgXohkoYpGbjeFq1apVpQuHujkKiCJI56I4KDrQsQsTnn38uqy+4n8y6OMe1MBo3bizzjwnxVywaNWokx5CZQmG4o8aOHSvuqG7dupmyDXaHlkWI3E8PPvigtClAuqzZwMJYuXKlVL+y0jt+aFkkrjL76tWrKn/+/KYJhTujRo1Sr7/+utQvBSMl3clQLJIIqlTR2wm9bzy1RkY1NdxP8O2i9Xg4uXzcK73RGgSuskAWT1kdioXneSuwJNxbeITTMQMRQyHqgQMHxB2VMWNGv85b4gHmD/tPYub/Dho0SLrJrlu3Lix3NeYdr1mzRvfp00c613Km93+wzsJzHcXrr78udQ3Xr1/X4cjhw4d1+vTpdYcOHTw+z7nd/kGx8BP0zncXCuPm3lN/9+7dMnS+W7duOpyZMWOGCBrnYcSGYhF/wd2QIUN0ODNq1CjZziVLlvh83hLPMMDtJ97m/8Kl07p1aymCC/d2BHBBITMKsDUISUx6LDq/hjOvvvqqFOu1a9dO3GUGnNvtPxQLP/E2/3fSpElyciFDA7OEwxnWYZBwrqPwh2TJkqlvv/1WRUVFxUoq4dzuJBCPxUESQVzfZ48ePeTxa9eu6cjISN24cWNL7Uf2koqN091QZvR6CjRwAadLl06fOnXK63lLEoZikUQ8zf/FLO0UKVJIw0CrQcH4DyeLhR2EAvzzzz86c+bMd83u5txu36FYBOEky5Ytm27fvr22KhQMZ4uFXYTCYODAgTplypT64MGDZm+KpWHMIsDAP4oZEn369FFWJW4M48SJExL4Js7g5MmTUqdgpRhFQrzxxhsqZ86c6oMPPjB7UywNxSKAnD59WoYZ4eDEBdfKGIJRtmxZadKG6Xso4iP2BkVtly9fVkOGDFElS5a0vFAAdHfG4m3KlCnSl434Byu4AwjaeWB6F1bhWbJkUXa5eODmXukN4XACTqvgdm/hgcpsfGb0XLIDWOhA/JDKvmjRIrM3x5LY40gIAw4ePCgjJDFX2y5CAXCxMGZ6Ix1x/fr14mr766+/zN40EsD0WNQCbdq0KVYLD7sIBcAx/Mknn6jFixdLXzTiO7QsAsTLL78srZrR/jsUQ43MWmm3b99eff/9946YuOcEy8K9jgJFbHPnzrXt8QvLuHLlyjKfHoseLH5I4rHP0sFE0CBw6tSpqm/fvrY90cC1a9fUunXr5P+s9LZfwd327dsl7mZXIA6DBg0Sl+rs2bPN3hzLQcsiANStW1dmAO/evdv2/nwnzfS2s2Vh1crsQIDP/ffff0tXWrufr4GElkUSwTztJUuWqP79+zviwGNrEOvjZKEAsC727Nmjpk2bZvamWAqKRRIZPny4NOHD1DmnQMGwLk4XClC+fHkZjPTFF19IHIMkDopFEjh27JiaMWOG1FXYKXMkMVAwrAeF4j/eeustyf6CZ4AkDmdd4QLMyJEjJaDdqlUr5UQ8CUbz5s3N3iwSD127dnW0ReFOvXr15LiFdUESB8UiCZlB33zzjWrTpk28oxudJhhoqdCxY0dWeodpwR3Su+EydbpQAHgCunTpIp4BeAiIdygWfoJK7XPnzskB53QMwVi9erW67777xLRna5Dwq8zGBRK1QLg5WSgM4BFIly6deAiId5g66wcIiiFIli9fPjVv3jx/3sK2QCSM1iAVKlRQ0dHRKk+ePMqKWD11FjEKCAW6C7hXZpPYsQss/GBdcN8kDC0LP9iyZYs0JHvttdf8+XVbY7QGwVhZ+IUfeeQRtgYxMZhdo0YN6RpMoYh//OrZs2fVnDlzQvwNWQ+KhR+MGTNGrAoU4xHPgjFr1ixxd7DS29ysJxSeIbbGVbNnihcvLgsa7COSMBQLH0H7ZrQ6RmAbPWaIZ7p16xYrSwpV32w+aE567MCBA3mYJgD6na1YsULcdSR+KBY+gqpPDDeCWJD4YR1G6GEdhX80adJEZcqUSY0dOzbA34i9oFj44YKqU6eOyp8/f3C+ERtBwQgdFAr/Qa1Us2bN1Pjx4yWpgXiGYuEDaJ6HTJ+2bdvyeEokFIzgQ6FIOu3atVOnTp1Sy5cvD8C72ROKhQ+g13/q1KkllZIkXTBYDJV0kBLr9F5PgQDjgwsWLMhU+ASgWPgoFmhAZueZFaESDGTnQHhJ0oiIiFBp0qSR/1MokjbromHDhiIWbC7oGYpFIvnnn3/U2rVr5YAiSROMpk2bqqFDh0qbaFZ6+w8K7nbt2qV69uypWrZsSYsiieDchrWLGipyNxSLRIIh7yg0e+qppxL7KyQewcBUQVhoWM2xNUjSWnjADfXYY4+p7777jq6nJPLoo49KVhQ8CORuKBaJBAdQpUqVLNu6IlwrvSEYS5cuVY0aNWIdRiKD2ZidguORLTwCC1q6oOsAW/h4hmKRCGJiYtTixYvV008/nZiXEx8EAzEMtM5GxTcL9xKX9TRz5kxpU4GFCyuzAwvOcbTziS/54rffflMTJ06Un06DYpEI0Lbi0qVLjFcEAcQsjIAiK70Tnx4LNxTjPYEHlgU6M8yfP/+u53r06KGqVq2qWrRoIT9x30lQLBIBTP7IyEhVpkyZ4H8jDiNv3rwe02rZGuQ/WEcROrJkyaKqV69+lyvqt99+U59++mmsx3DfSRYGxcILWPXiwIF5Cv86CTws3IsfCkXowbmOXlFo62Owb98+j6+N73E7QrHwArp2Hj16lC6oIEPBuBsKhXkptDdu3FDLli1zPVa0aFGPr43vcTtCsUiECypDhgwyF4AEFwrGf1AozAOjZ0uUKBErhbZKlSqqe/fusV6HmAUedwoUCy9gUhoaBzLrxDzBGD58uHIakyZNYgsPk11RCxYsiFXNPXjwYKkLmjBhgvwcNGiQchIUiwRAB0oUPqFYh5gjGDVr1hS3gJMyf5DpVLlyZfXSSy+xhYdJ4Jw/c+aMuKDdqVKlimrevLmjLAoDikUC7N69W3yXmCVNQi8YaK+CFEYUSzml0tuozEaq9rhx49SOHTtYmW0CxjmPmgvyLxSLBMCBkjx5clWuXLmEXkaCRI4cOaTZoFHpDcGAgNsxrRYxCnw+o4UHZmbjs7NjgDnkzp1b0ropFv9BsUgAHCgPPPCASpcuXUIvIyFqDfL3339LDrzd6jCMYPYTTzyh1qxZI0LBGFl4WBcUC4eJhb8l+jhQypcvH7TtIr4JxujRo9W5c+dsVbjnnvV07do1Ceaznic8wLmPawBbljtELLyV6McnJAhub9++nfGKMGLKlCm2qvT2lB6LAlDMqCDhYVlgNEF8x9hvTusTpW3Mhg0bkPd21w2Pg+7du8d6HPcNtm3bJo+tXr3axE9A4nLs2DFdpEgR13dWqFAhffTo0aDsqJiYGD179mz5GWiio6N15cqVXZ8je/bseseOHQH/O8R/jh8/Lt/NzJkz73ouoWuHXbG1ZZFQib63Xi8wP+EOePDBB0OyrcQ5hXssuLMGCHAj0B03bvGbQ/tE2VosEirR99brBQdIsWLFVPr06YO6jcRZgkGhsH6Qe59D+0TZWiwSKtH31usFBwjrK6wnGEg7DVcwaREtsN1jFD///DPrKCwgFtqtktupfaJsLRYJlegnJCQo/mJw23qCAbFImzatClfg1qxbt678pFBYRyyioqJiDUNyap+oZAhcKAcDPyPMR6wKjC8bVbNly5aVoUfI6yfhzfHjx2V6HFIdcTgj6w2ptkkFGXHoDVa/fn2pIg/UzGxsLwo9S5cuneRtJMEF31W+fPlkkuOzzz7r9dphZxwvFp744YcfpC/P+fPnVebMmUP+pRD/gEWIE9gQDKzgMfXMTLGA6wnb4V6ZzYI764BjCVbg22+/rXr16qWcjO3dUP5w4sQJqdrOlCmT2ZtC/Kj0xsX5q6++EuvQzKA3gtmPPPKI6tu3L4XCouBYgmVx4sQJ5XQoFh44efKk9ORhJa01BeP69evqvffekz5SZmVJGVlPiJP1799fHTlyhBaFRcG14OTJk8rpUCwSEAtiTdDPK3/+/Kal1cZNj82WLZuqVKlSyP4+CSwUi3+hWHgAJicKcog1MbMOg3UU9hSLE3RDUSw8QcvC+pghGBQK+4rFqVOnHN9QkJaFBygW9iCUgkGhsC/wMsTExEjHYydDsYjD1atX5cRnzMIehEIwKBT2xrgWnHR4kJtiEQfjgGDMwr6CgbnKv//+e8DeH4VZyLwCrMy2r1iccHjcgmIRj1jQsrCnYJQoUUJ99NFHkqEUiJneqMxGivXAgQNVwYIF2evJhtCy+BeKRRwoFvYWjG3btkkfH2Omd1IEw72FR4cOHdTevXvZwsOGYBZ65syZ6YYy+4sIR7EwDg5iP9C2w73SG4Ixbtw4n2IYiFF8+eWX0o3UvYVHUvtHkfAlb968FAuzv4RwA35JVm/bH0Mw0ICwbdu2iQ56G8HsN998UwbePPTQQ6zMdgB5WGtBN5Sni0GWLFlMOSBJaEGjwAULFiQ6Sypu1tPKlSsdn07pFLJkyaKio6OVk/HJskAQD20LMmTIoHLmzCkte+GnNUD/G5j2nm7Tp093vQ4nZIMGDWT2AN6nW7dud/mOEYREAy80YgvlBCpcQOhOcAZp0qSRgHRi0mrjS49l1pwzSJUqVUASIpLCpUuX1FtvvSWtbHDswqrdtGlTrA65H374oVhBeL5WrVpq//79sd5j/fr10h6/QIECauzYsb5tgC8Du+vUqaPHjx+vd+3apbdt26br16+vIyMj9eXLl+X5W7du6ZMnT8a6ffTRRzp9+vT60qVLrteUKlVK16pVS//+++964cKFMqy+Z8+err+zZs0aXalSJb1582Y9YsQIXbt2bR0qWrZsqR9++OGQ/T1iPseOHdNFihTBXBe5FSpUSB89elTHxMTo2bNn66ioKF25cmXX8zhed+zYYfZmkxDSvHlz/cgjj5i6z1944QVdokQJvWrVKr1//37dp08fnTFjRjl+waBBg3SmTJnkmN2+fbtu2LChLliwoL527ZrrPYoXL65nzJih165dq++//379119/Jfrv+yQWcTlz5oycPNj4+ChXrpxu06aN6z7EIXny5PrUqVOux0aNGiUf+saNG3J/3rx5+plnnpGTdcOGDSIcoeKVV17Rjz32WMj+HglfwThw4ICePHmyHH8UCmfTpk0bXbVqVdP+/tWrV3WKFCn0/PnzYz1evnx53atXL33nzh2dO3duPWTIENdz0dHR+p577tFTp051PYbF/aFDh2SBX7FiRb179+5Eb0OSAtwwzUHWrFk9Po9sEaQqIoDobgZhQliuXLlcj9WpU0eySozCJtxHm2m4qTCGEu6vQIIBORMnTpSfcYGpGYgpa8T6ld41a9aUgTeGqc+CO+eSMmVKU91Q+NsYpIVMTXfgblqzZo06fPiw9K+C68kA83iQxIFrrgHcVMWLF5fnMCAMdUeJJWVScszhP0PaYKlSpTy+Bj4xbBh8awb4QO5CAYz7eM7wDy5evFidOXNGUlgjIiJUoECOPbJYDDBLF3O6DSgWzsUQDMQt4OtFpbcBhcLZpDRZLBAnrlatmvr444/lmopr5tSpU0UIChcu7Lp2erq2Gs8BLNybNm0qva58TeTxWyw6deqkdu3aJarmiWvXrqkpU6aoDz74wN8/IcHvhALRvrJ582aZoAY1NsB9BOorVqwo97ETkydP7tf7E+uDY27p0qWqdu3akkZ948YNCRx+9913MieDx4UzSZYsmXz3wfr+IUbehq3BG9KmTRtZ1GBcMGbOY/wzPDi+gCmguPm8jT7/hlKqc+fOav78+Wr16tWSseSJGTNmSFO+Fi1axHo8d+7crowSg9OnT7ueSyzLly+XC7uvQI3jAgsGs5ZBVFSUvK9xnziTnj17qi+++ELt2LHDtSLDxLscOXKYvWnEBA4dOqSuXLkStOtCYua833///WrVqlWyHXDbI+vpxRdfVIUKFXJdO3EtdW9VhPvIfgoEPokFVlhdunRRs2bNkhxz9MKJD7igGjZseNfJBVPqk08+kQu0YTksW7ZMZcyY0Sf/mbtvzhfLAn7ouKxYscJlWUyePFly5/HlEecB9+r27dtV+vTp5VhA/AwWBk66AQMGyLEaGRlp9maSEDN//ny5ZgXruuBLnNSwDM6fP6+WLFkibnVciyEYuJYZ4gBBQVy2Y8eOgdlIXyLyHTt2lNSslStXxkqPRaTeHaR1JUuWTC9atOiu9zBSZ5988klJv128eLHOkSNHrNTZYNK9e3dXZgtuPXr0iPU8s6Gcy+3bt/WmTZv0ihUr9PXr1yUbb+zYsbpw4cJ3pdUSZ9HG5GwogGslrqnIZlq6dKkuW7asrlKlihynRups5syZ9Zw5cyS1GxmlcVNnk4JPYuF+kXW/ofbCHVz477vvPjn5PHHkyBFdr149nSZNGslZf+edd/TNmzd1qEA67oQJE+SnpzoLs/OpiflCAYw6i8OHD3uswyDOoUWLFqZfF6ZNmybHXkREhKTJdurUSdJjDZA++8EHH+hcuXJJymzNmjX13r17A/b3k+GfwNgo9qBdu3aSwuuebkbsjXv3WKMpIEAwEz5quB7ggjCypAD8xMicokvKGbzyyivijsR37lTYSNCD75AZL84hPqFITB3GY4895krOIPbm5s2bjq+/oljEAYF2o9iQ2JvECkV8goHsFBQ3Eftz4cIFqXVwMhSLeFoR0ztnb3wViriC8e6776revXtLhp3ZDeZI8Dlx4oTjm0ZSLDyIBepD0OGR2BN/hcJdMIYMGSK/6z5xjwsMew9Fy+NWv+BEKBZx4Lxde5NUoXDHfeLetGnTpJ2+LxP3iDVAke4///xDsTD7iwg3jPkEMDuJvQikULgLBvqXYXLeunXrEj1xj1gHo7dS3v+/NjgVikUcaFnYk2AIhQHEwui8nJiJe8R6LihANxSJBdo84GYcIMT6BFMo4kurpWDYB8PLkIcxCxIXHBQUC3sQbKEwoGDYF1wLUqZMKW3qnQzdUB6Ab5IxC+sTKqEwoGDYVyxy584towucjLM/fTzQsrA+oRYKAwqG/WDa7L9QLDxAsbA2ZglFQoIxe/bskG4DCRwUi3+hWHiAYmFdzBYKT4KB5pSYasZKb2sCl3Qehwe3AcUinpgFLjaXL18O/TdCLC8U7oKB7Rk1alSsSm9iLSgW/0Kx8ECxYsXk586dOz09TcKQcBMKA6Rhu1d6QzAwEph1GNYArelxK168uHI6FAsPlC5dWubh4uJDwp9wFQp3DMHYtGmTatCgAeswLIJxDahQocJdz2Fk6cSJE+WnE6BYeAAXm1KlSqktW7aE/hshthMKA1gW48ePl15DLNyzBrgGoEK/UKFCsR7v0aOHqlq1qmrRooX8xH27Q7GIB6wkKBbhjZWEAqRIkUItWrSIld4WAtcAJCckS5bM9RgsiU8//TTW63Df7hYGxSIBscB41WvXroX2GyG2FAoD1mFYTyziuqD27dvn8bXxPW4XKBbxgAPk9u3baseOHaH9RohthcKAgmENzp49K4kIccWiaNGiHl8f3+N2gWKRQJAbQUm6osILqwuFAQUj/DHO/bhiUaVKFdW9e/dYjyFmgcftTEqzNyBcSZ06NYPcYYZdhCKuYKBD7f79+yXoXbt2bUnZjoiIMHvzHA/EAjPWMWs9LoMHD1aNGjUS1xMsCrsLBaBYJABWFJixTMzHbkLhSTAgFs2bN3d8w7pwDm67A4FwgkgY0A2ViCD39evXQ/eNEMcIRVzBmDlzpogGK73DSyzIv1AsvIgF2jMwyG0edhcKd8Fo2LBhrEpvHHtXr141e9McCWZuHz161GMxnlOhWCRAmTJlGOQ2EacIhTvurUEQRMUxyNYg4RPcdjIUCy9Bbpysa9euDd03QhwrFO6CgcDpsGHD1MGDB9kaxATWrVsnlduFCxc248+HJRQLL31e6tWrJ1W37BYaOpwsFAZPPvkkK71NZN68eXLuO306njvcE176vDz99NPq3LlzstIgwYdC8S+swzCPY8eOyWIF5z75D8eLhbc+L5UqVVK5cuWSlQYJLhSK2FAwzGH+/PniCqxbt65JWxCeOF4svPV5gRmKFcbcuXND/NU4CwqFZygYoQfn+qOPPqqyZMliwl8PXxwvFonp8wKxgHjs3bs3hF+Nc6BQJAwFI3RgOubPP/8sacwkNo4Xi8T0ealVq5ZkRtEVFXgoFP4JRlRUlDp9+nQQvhFns2zZMnXjxg3GKzyQTGutPT3hNBCjSKjPC1Ya0dHRavXq1aZsnx0Jd6G4efOmWrhwoapfv75MTgwHjh8/Lj2JXn31VTlWkZAB/zoJDK1bt1YbN26Uzg0kNo63LAwgEOjLE1+vF7iiUG+Byk5if6EIZwsD1d3I3HOv9CZJByMJFixYQBdUPFAsEslTTz0lFzisNEnSoFAkDYiEe6U30ro//PBDVnoHwLsA9x5TZj1DsUgkefLkUZUrV2ZWVBKhUAQOCAZSu1Hp/fHHH7PSOwBZUDly5HBUJ1lfoFj4AFYcS5YskQAY8R0KReC5dOmSy7+OFufoWsteUv6BBJYGDRrIrHRyNxQLH0CQGyfnihUrfPk1QqEIGtmyZYuVJUXB8A8kt/zxxx90QSUAxcLHUaslS5ZU48aN8+XXHA8tiuDCOoykM3bsWCnCQz+oxPSMcyIUCx9AMLFDhw5qzpw5zHFPJBSK0EDB8J+YmBj13XffSTZkmjRpEtUzzolQLHykWbNm4tP8/vvvg/ON2AgKRWihYPgfqzhz5oxq3759onvGORGKhY9kzZpVNWnSRH377beK9YzxQ6EIH8FAAR+JnzFjxojlUKpUqUT3jHMiFAs/wApk//79atWqVYH/RmwAhSJ8BOO+++4TsWDhnmeOHDmili5dKu5lX3vGOQ2KhR9Ur15dDpqvv/468N+IxaFQhJdgoOsAagdY6e0ZeAjSp0+vXnjhBZ97xjkN9obyk+HDh6tu3brJygQnJrGfUIRjbyh/gFUBXzvcphgTjPRvHrNKXb9+XUVGRqqmTZuqL7/80q+ecU6ClkUSGo6hE+2oUaMC+41YFLsJhZ0wWoOgmBRFe7CMWbin1NSpU9XZs2dVly5d/O4Z5yQoFn6SKVMmEQy4orBCcTIUCmsIxpQpU0TQWbinxMr64osvxGo0kgFIwlAskgBWJOhCi5PQqVAorEO/fv1Y6f3/YNTA9u3b1Ztvvmnul2IhKBZJACsSrEywQnFiGi2FwlqwDuM/cM6WKFFCBpuRxEGxSCJYmezYsUMmbDkJCoU1oWD8WyuBLgxvvPGGdGUgiYPZUEkEFgUCumgZgAlbyZPbX3+dIhR2yYaKb+Iegt2oFwKFChWSVFtkB9kdpMkilRiigSQVkjjsf2ULMliZDBo0SG3ZskXNmDFD2R2nCIUTLYzHHntMRMTObN68WU2fPl3iNxQK36BYBACkImL12atXL1mN2hUKhb2IKxhod54xY0ZlZ9577z2JVSAdlvgGxSJADBw4UB08eFBaHdsRCoW9BaNdu3Zq8ODBkiFk19YgiCtiFs2AAQM44MgPGLMIcEdaHIwHDhxQ6dKlU3bBqUJh55iFt0pvNNZDbYadjmGMoIXrac2aNQxs+wEtiwCCOciou4ivdYAVcapQOLnSG3E4tO2uW7eubSq9EafAcYz4IjOg/IOWRYBBOt6ECRMkYIh25lbG6ULhNMvC4OjRo+qRRx5Rx44ds0WWFL5HxCmKFSum5s+fb/bmWBZaFgGmd+/e6vbt2xLDsDJOFwqnWxjGxDg7tAZBZ1nEExGrIP5DsQgwOXPmVO+884766quv1N9//62sCIXC2dipcO/KlSuSJvvKK69Ix13iPxSLIACxQApi3759ldWgUBA7CQZGCSCOCMEgSYNiEQQyZMgg7igMgd+1a5eyChQKYifBwFxtzM3u2LGjKliwoNmbY3koFkECoywxMKVNmzaWyFunUBC7CUanTp0kMQELN5J0KBZBAgFhWBZoA/LZZ5+pcIZCQXwVjHHjxoX1Tvvxxx+l/c6IESNkrCxJOhSLIIKc9XfffVf16dNH7d69W4UjFAriq2A899xzqmbNmmFrMcP9BKuicePGd83WJv7DOosggyl65cuXl4ru9evXh1VVLIUiYZxaZ5EQ586dk5gcOiyHY6U3tun5559Xq1atkgUashNJYKBlEWTQXgDuKNQsDBkyRIULFAriDyg0hXAald5o9Q3hCJcYBtxPP/30k7ifKBSBhWIRAipXrqy6desmqbThkB1FoSCBag2yd+9ecUmFQ9D79OnT4n5q0qQJ3U9BgGIRIiAUhQsXVq1btzbV10uhIIEiRYoU6uuvv1aXL182PUsK7qfXX39drB1YFSTwUCxC6I4aP368uKOQ+20GFAoSSHBhnjVrVlik1U6bNk3NnDlTjRw5ku6nIEGxCLE7qnv37mJl7Ny5M5R/mkJBbFuHAfdT586dxfWE4DYJDhSLEAOhwInVqlWrkE3Vo0VB7CoYcD+hQjt58uTqf//7X9D/npOhWJhUrIeJZB9++GHQ/x6FgthZMDCZEq6wUaNGsfguyFAsTAATuzCEBbepU6cG7e9QKIjZgvHEE0+oq1evBuXvYeIdgtporYMCPBJcKBYmdqbF0Hj0jtq8eXPA359CQcJBMJ555hkVERER8L8Di6VRo0bqoYcestVkynCGFdwmV3fXqFFDHT9+XG3atEnlyZMnIO9LoQgMrOD2HxzTy5cvl3TxQFd6Y0YFJvlFR0dLQSB7P4UGWhYmp9PC34qTCf12IB5JhUJBwsXCaNmyZaxKb9QXxcTEJOl9ca4gOWT//v1qzpw5FIoQQrEwmbx586rZs2erbdu2qddee01OBn+hUJBwrfSGYGDUcOnSpZMU9O7fv790k504cSIn34UYikWYBLyR1fH999+rYcOG+fUeFAoSzoIRFRWlPvroI7Vv3z6/s6RghSODEFPvYImT0EKxCBMwI7hHjx7SQ2rx4sU+/S6FglhhQVSoUCG/02p37NghCSEouuMwI3OgWIQRn3zyiapXr55q2rSpNGhLDBQKYvc6DFglDRs2lN9Fyxy4tEjooViEWWO2KVOmSBwDJweyPRKCQkHsLhgIiKOLLGo1ENDGXBhiDhSLMCNjxoxq7ty5spqCXza+giYKBbG7YNy+fVvqkDA0DE0CIyMjTdhiYkCxCEOQmz5v3jypvfCUUkuhIHYXDBzjqMxGh4NJkyZJXQUxF4pFmPLwww+LYKxevVq6aRr56RQKYkfBOHbsmNROAKSPd+nSRY0bN076qHGOdnhAsQhjsNpCuuCSJUskWwqCgXkYFy9eFDFBU0JCrC4YZcqUkRkvOJ5RNf/uu+/KXAoMVkIGFAkPKBZhTt26ddX06dOlcA99ds6fP0+hILYSjN9//13GoYJ27dqpoUOHqq+++kq1b9/e7M0jblAsLMBTTz0llatLly5VY8aMkd79hNgFHM/IBERix4QJE6STLLoZkPCCV50wx4hRoKgJabWwMF588cUk99ghJFxAjOKtt95SQ4YMUZ999pl6+eWXXb2kSPgQmDaQJCh4CmanT59eevejPTN65KAZISFWPsZhSSA+gQFGsCggEr/99psIRiC71ZKkQcsiTIkv66lBgwaSJfXzzz+rp59+Wto1E2JFUEfRtm1b9c0330jmk+F6cm8+SAsjfKBYhCHe0mNr166tFi1aJMVK+D8G1hNiJS5fvix9ntA9FnUUrVu3jvU8BSP8oFiEGYmto8DQJFgXR44cURUrVpTfIcQK4JjFsb1s2TJJDUeMwhMUjPCCYhFG+FpwV7lyZanyzp07t1S4/vjjjyHbVkL8AUWmSNaAZQEXE1ypCUHBCB8oFmGCv5XZyFPHCYi2IMiSQvtmvBch4QaC2DVr1pQBSBiHWrJkyUT9HgUjPKBYhAFJbeGRJk0a8fsOGjRIDRgwQDKlLl26FLTtJcQXUJWNojsEsHFDR4Js2bL59B4UDPOhWJhMoHo9IXMEw5NQ2IRYRrVq1aRBGyFmcvbsWfXkk09KxhMsC1Rmp0qVyq/3omCYC8XCRILRFBDV3vAFo1MtfMPovUOIGezatUviavi5YsUK1aFDhyS/JwXDPCgWJhHM7rElSpQQn3D58uUltRZN2QgJJRhUBOs2Q4YMkoRRvXr1gL03BcMcKBYmEIo241mzZpVajM6dO4u/GHnsFy5cCPjfIcSdGzduqPfff189++yzqk6dOmrt2rWqQIECAd9JFIzQQ7EIMaGcR4ETavjw4TK3GK1BSpUqJc0ICQkGW7ZskZof9HfCPHmkcqM9TbCgYIQWikUIMWtwUatWrcRv/MADD8hqD62fsQ2EBAI0tfzggw+kRQcu4Js3bxbrIhTdkSkYoYNiEcLOmmYOLsqfP79YFaNHj1Y//PCDWBmooCUkKeCYhjWBtO0PP/xQYmUYZhRKKBihgWIR4oPazAl3SK/FXGNYGUWLFpWURtynlUH8sSYgDsh2wiwKWBO4729abKAEI5huL6dDsQjhhbps2bJhMQoVVgasCrSExowMVNQuX77c7M0iFgGT7ZCWPXDgQHE/wZrAsW02EAxsB1uaBweKRYgFI5y2BdW0O3fuVIULF5YUW9xn5TdJyJro06ePWBM4fpASi/tmWRPhfo7ZDYqFw0FaI6wM1GKgZQisjJ9++kliLIQYrFy5UkQC7WR69eol1kS5cuW4gxwExYJI1krHjh3FyihevLhq0qSJTChj9TeBy6levXrq8ccfVxERESISffv2lf8TZ0GxIC4KFiwohXzoLQWeeOIJVbduXblgEGdx8OBBmTOBLgDoMYY6HYw6ffDBB83eNGISFAtyF1hFor8ULhAYVIMLxksvvSQXEGJvTp06JVX/qMlZtWqVNADcvXu3zH1nPMDZUCyIR3BhwAUCabZjxoxRv/76q1xA0DoEFxRiL5A+jcwmJDtMnjxZ9e/fX+3fv18KOJldRADFgiQILhTt2rWTCwdaOCDV9v7775cLC3tNWR90Jx42bJgqVKiQtOnAYgBuJ7S7T5s2rdmbR8IIx4oFcsSRK46umDlz5pTGZ3v37nU9f+7cOdWlSxdVrFgxGS4UGRmp3njjjbsukFiBx72hQtqdjz76SOXLl09Gn+7bt09ZEeyD7t27y4UE+wUXFogGKnexr4i1uHLlilTz4/ju1q2bDMzCgmDw4MEqS5YsyqpgaiRGtebNm1fOxdmzZ8d6HsF5WMjp0qWTz1mrVi2JxcTNEIx7Tg8aNCjWa2Bto14JMZy4v29btEOpU6eOHj9+vN61a5fetm2brl+/vo6MjNSXL1+W53fu3KkbNWqk586dqw8cOKBXrFihixQpohs3bhzrfbAL8T4nT5503a5du+Z6fs2aNbpSpUp68+bNesSIEbp27draDhw7dky/+uqr+p577tFp0qTRHTp0kH1pJ2JiYvTs2bPlp104cuSI7tatm86cObNOnjy5fv755/Wff/6p7cLChQt1r1699MyZM+XcnDVrVqznJ0+erJctW6YPHjwox2vbtm11xowZ9ZkzZ1yvyZ8/v+7Xr1+sc/ry/18XwNGjR3XhwoX1unXr9PTp03Xx4sW1E3CsWMQFBwsOrlWrVsX7mh9//FFHRETomzdvuh7zdEC6M2/ePP3MM8/IBWfDhg0iHHbi9OnT+uOPP9a5c+eWfVGrVi35zLdv39ZWxy5icefOHb169WpZ6EAgMmXKpN955x19+PBhbWe8nZvgwoUL8rrly5fHEothw4bF+zs7d+7UFStWFAE5dOiQLlCggHYCjnVDxcVwL2EOREKvyZgx410BP/h5s2fPLkVL48aNi1XQhi6v8AvD/4s0VLi/7ARceL1791ZHjx6Voj7sI7gBEChFjOPEiRNmb6JjOX/+vIwxRQsMDB9CsgLuHzt2TNyIwZgzYSVQkY5sr0yZMt3VrgRuJ8wJh5tpyJAh6tatW67n0IQTzRLxeyVLlpRkAEdgtlqFA1gFN2jQQD/88MPxviYqKkrcVO+//36sx2GuwtW0detWPWjQIHHLfPHFFx5X4Ddu3NB2B6vY9evX61atWol7KkWKFLphw4Zibdy6dUtbCStaFtj/sI6bNWumU6dOrVOmTCnu1MWLF9vC2guEZYFjMV26dDpZsmQ6b968euPGjbGe//zzz/Uvv/yit2/frkeNGiUuu65du971PmfPntVXr17VToFiobV+7bXXxPT8+++/4zVVK1eurOvWrev1wvHBBx/ofPnyBefbshjR0dF65MiRuly5cnLi3nvvveIv//XXXy0hHFYRCwgEFit9+/bVxYoVk30NnzoWL/C3O5X4xALuo/3798uipk2bNuJGwmIuPsaOHSuie/36de1kHC8WnTp1kos7fI+euHjxoq5WrZquWbNmrMB1fMyfP18OUqcfWHEvZps2bZKAeM6cOWX/ZMuWTbdo0ULPmDFD9nE4Es5igWMRwdyOHTvK8Yt9iljEyy+/LMkYTrMi/I1ZAAjrgAED4n0egXCllN6zZ492MrGd7w4CxxJSQGfNmiVN0tDqwlOhEmIOaCs+d+5clTp1aq/vu23bNknJC4dW5OECUg8xIAc3NCxEf6F58+bJPp0wYYL0GULVeMOGDSXecd9995m9yWFJVFSUWrBggey7JUuWSPorjlsUT2LfPfroo2HVAdZKEywxOzyhczp58uQSn3MyjhULBKVRYDZnzhyptTCqkhG0Qk0BhALDga5evSqBW9w3hgTlyJFDBr7gpD19+rQ03YOQoHsrunK+++67Jn+68AUnHfYXbgiAHz582CUcb775pnwv6GZqCAdajYRiPGe4Lmj27Nkj+wb7aN26dfI4hvyg8yv2UYkSJdiGw43Lly+rAwcOuO7j+MLFHokrCFjjmMN+y5Mnjzp79qwaMWKEOn78uHr++efl9evXr5e6CSxecF3A/a5du6pmzZpZuv4kIGiHgo/u6YaaCYAAV3yvMVIOFy1aJP749OnTS8CsbNmyevTo0XQB+Mn58+f11KlTxZWCoCL2dY4cOXS9evVcufPIcYdby45uqFOnTukFCxZIKvKzzz7rci8hUQDp1/Cd4zUkfuI7b1u2bCmuu+eee06C2kiBz5MnjyRfuAe4t2zZoqtUqSIuPSQIoIYCLqrrdCvrZNhBZgsWIXG5efOmWrNmjbRJ37Jli9xgxRmWHSyOChUquG6osA90oztsw8KFC1X9+vUD7t6BJWt8LuOGFS7InDmz63PBtVSzZk2xdgkxE4oFsQRY06BmI+4F1nAfwsVgXGBR4wE3A25o+4AaGH9cWUkRC2wv2qCcPHlSbth2uES2bt0q223Un8C14S56uCEOwQ6vJNygWBBLE1dAcDGOWwiIIspcuXK5xMNdSPAzd+7csnLH63CDMOAnLvgrVqxQNWrUkIs3CrOMGwotYekYYmAIgvt9FH25A4sI8Rh3YTD6EBES7lAsiO3ARdq4kMe9gLvfP3PmjGTCJBVYLp5EyP0+BCkx2XSEhCsUC+JYYCFAMCAsSJ2E2ymu9bBp0ybJ3HK3PHBDui9SKWGxcMQocQKOTZ0lBBd9rPpx8wTEA7EOzKBm/QJxOs5MYCeEEOITFAtCCCFeoVgQQgjxCsWCEEKIVygWhBBCvEKxIIQQ4hWKBSGEEK9QLAghhHiFYkEIIcQrFAtCCCFeoVgQQgjxCsWCEEKIVygWhBBCvEKxIIQQ4hWKBSGEEK9QLAghhHiFYkEIIcQrFAtCCCFeoVgQQgjxCsWCEEKIVygWhMR3ciRPru6//375SYjTSaa11mZvBCGEkPCGSyZCCCFeoVgQQgjxCsWCEEKIVygWhBBCvEKxIIQQ4hWKBSGEEK9QLAghhHiFYkEIIcQrFAtCCCFeoVgQQgjxCsWCEEKIVygWhBBCvEKxIIQQ4hWKBbE9q1evVk8//bTKmzevSpYsmZo9e3as5y9fvqw6d+6s8uXLp9KkSaNKlCihRo8eHes1169fV506dVLZsmVT6dOnV40bN1anT5+O9Zq5c+eqokWLqmLFiqn58+eH5LMREiooFsT2XLlyRZUtW1aNGDHC4/Nvv/22Wrx4sZo0aZL6888/1VtvvSXigYu/QdeuXdW8efPU9OnT1apVq9SJEydUo0aNXM/fuHFDxGTkyJHqf//7n+rYsaOKiYkJyecjJCRgngUhTgGH/KxZs2I9VrJkSd2vX79Yj5UvX1736tVL/h8dHa1TpUqlp0+f7nr+zz//lPdav3693L9w4YLOnz+/joqKkluBAgX0xYsXQ/KZCAkFtCyI43nooYfEijh+/DgWT+qXX35R+/btU08++aTsmy1btqibN2+qWrVqufbVAw88oCIjI9X69evlfsaMGVXr1q1Vnjx5xN0FyyJDhgyO37fEPqQ0ewMIMZuvvvpKdejQQWIWKVOmlDGqY8aMUdWrV5fnT506pSIiIlTmzJlj/V6uXLnkOYM+ffqICwu/T6EgdoNiQRwPxGLDhg1iXeTPn18C4og/wEJwtyYSQ6ZMmRy/P4k9oVgQR3Pt2jX1/vvvq1mzZqkGDRrIY2XKlFHbtm1Tn332mYhF7ty5JVgdHR0dy7pANhSeI8QJMGZBHA1iEbjBdeROihQp1J07d+T/FSpUUKlSpVIrVqxwPb937171119/qWrVqoV8mwkxA1oWxPagjuLAgQOu+4cPHxbLIWvWrBKkrlGjhurWrZvUWMANhdTYCRMmqKFDh7pcS23btpUUW/wOgtldunQRoahataqJn4yQ0JEMKVEh/HuEhJyVK1eqxx9//K7HW7Zsqb777jsJUvfs2VMtXbpUnTt3TgQDAW/UVqCIzyjKe+edd9TUqVOlpqJOnTpSU0E3FHEKFAtCCCFeYcyCEEKIVygWhBBCvEKxIIQQ4hWKBSGEEIoFIYSQpEPLghBCiFcoFoQQQrxCsSCEEOIVigUhhBCvUCwIIYR4hWJBCCFEeeP/AHJna7psXYppAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -928,7 +928,7 @@ "\n", "assert (\n", " binomtest(C, n=n, p=0.5).pvalue\n", - " == batschelet_test(angle=np.deg2rad(45), alpha=alpha)[1]\n", + " == batschelet_test(angle=np.deg2rad(45), alpha=alpha).pval\n", ")\n", "\n", "fig = plt.figure(figsize=(4, 4))\n", @@ -981,7 +981,7 @@ "\n", "from pycircstat2.hypothesis import symmetry_test\n", "\n", - "assert symmetry_test(alpha=alpha, median=med)[1] > 0.5" + "assert symmetry_test(alpha=alpha, median=med).pval > 0.5" ] }, { @@ -1021,13 +1021,13 @@ "\n", "from pycircstat2.hypothesis import watson_williams_test\n", "\n", - "F, pval = watson_williams_test([c10_s1, c10_s2])\n", - "print(f\"F = {F:.3f}; p-value = {pval:.5f}\")\n", + "result = watson_williams_test([c10_s1, c10_s2])\n", + "print(f\"F = {result.F:.3f}; p-value = {result.pval:.5f}\")\n", "\n", - "assert np.isclose(np.round(F, 2), 1.61)\n", - "assert 0.1 < pval < 0.25\n", + "assert np.isclose(np.round(result.F, 2), 1.61)\n", + "assert 0.1 < result.pval < 0.25\n", "\n", - "print(\"Do not reject H0.\")" + "print(\"Do not reject H0.\")\n" ] }, { @@ -1068,13 +1068,13 @@ "c11_s3 = Circular(s3)\n", "\n", "\n", - "F, pval = watson_williams_test([c11_s1, c11_s2, c11_s3])\n", - "print(f\"F = {F:.3f}; p-value = {pval:.5f}\")\n", + "result = watson_williams_test([c11_s1, c11_s2, c11_s3])\n", + "print(f\"F = {result.F:.3f}; p-value = {result.pval:.5f}\")\n", "\n", - "assert np.isclose(F.round(2), 1.86, rtol=1e-2)\n", - "assert 0.1 < pval < 0.25\n", + "assert np.isclose(np.round(result.F, 2), 1.86, rtol=1e-2)\n", + "assert 0.1 < result.pval < 0.25\n", "\n", - "print(\"Do not reject H0.\")" + "print(\"Do not reject H0.\")\n" ] }, { @@ -1108,6 +1108,7 @@ "source": [ "# a case without ties\n", "\n", + "\n", "d12 = load_data(\"D12\", source=\"zar\")\n", "s1 = d12[d12[\"sample\"] == 1][\"θ\"].values[:]\n", "s2 = d12[d12[\"sample\"] == 2][\"θ\"].values[:]\n", @@ -1117,11 +1118,11 @@ "\n", "from pycircstat2.hypothesis import watson_u2_test\n", "\n", - "U2, pval = watson_u2_test([c12_s1, c12_s2])\n", - "print(f\"U2 = {U2:.3f}; p-value = {pval:.5f}\")\n", + "result = watson_u2_test([c12_s1, c12_s2])\n", + "print(f\"U2 = {result.U2:.3f}; p-value = {result.pval:.5f}\")\n", "\n", - "assert np.isclose(np.round(U2, 3), 0.146)\n", - "assert 0.1 < pval < 0.20" + "assert np.isclose(np.round(result.U2, 3), 0.146)\n", + "assert 0.1 < result.pval < 0.20\n" ] }, { @@ -1140,6 +1141,7 @@ "source": [ "# a case with ties\n", "\n", + "\n", "d13 = load_data(\"D13\", source=\"zar\")\n", "s1 = d13[d13[\"sample\"] == 1][\"θ\"].values[:]\n", "w1 = d13[d13[\"sample\"] == 1][\"w\"].values[:]\n", @@ -1151,11 +1153,11 @@ "\n", "from pycircstat2.hypothesis import watson_u2_test\n", "\n", - "U2, pval = watson_u2_test([c13_s1, c13_s2])\n", - "print(f\"U2 = {U2:.3f}; p-value = {pval:.5f}\")\n", + "result = watson_u2_test([c13_s1, c13_s2])\n", + "print(f\"U2 = {result.U2:.3f}; p-value = {result.pval:.5f}\")\n", "\n", - "assert np.isclose(np.round(U2, 4), 0.0612)\n", - "assert pval > 0.5" + "assert np.isclose(np.round(result.U2, 4), 0.0612)\n", + "assert result.pval > 0.5\n" ] }, { @@ -1191,10 +1193,10 @@ "\n", "from pycircstat2.hypothesis import wheeler_watson_test\n", "\n", - "W, pval = wheeler_watson_test([c12_s1, c12_s2])\n", - "print(f\"W = {W:.3f}; p-value = {pval:.5f}\")\n", - "assert np.isclose(np.round(W, 3), 3.678)\n", - "assert 0.1 < pval < 0.25" + "result = wheeler_watson_test([c12_s1, c12_s2])\n", + "print(f\"W = {result.W:.3f}; p-value = {result.pval:.5f}\")\n", + "assert np.isclose(np.round(result.W, 3), 3.678)\n", + "assert 0.1 < result.pval < 0.25\n" ] }, { @@ -1227,11 +1229,11 @@ "\n", "from pycircstat2.hypothesis import wallraff_test\n", "\n", - "U, pval = wallraff_test(angle=np.deg2rad(135), circs=[c14_s1, c14_s2])\n", - "print(f\"U = {U:.3f}; p-value = {pval:.5f}\")\n", + "result = wallraff_test(samples=[c14_s1, c14_s2], angle=np.deg2rad(135))\n", + "print(f\"U = {result.U:.3f}; p-value = {result.pval:.5f}\")\n", "\n", - "assert np.isclose(np.round(U, 1), 18.5)\n", - "assert pval > 0.2" + "assert np.isclose(np.round(result.U, 1), 18.5)\n", + "assert result.pval > 0.2\n" ] }, { @@ -1265,12 +1267,12 @@ "c15_s1 = Circular(data=s1)\n", "c15_s2 = Circular(data=s2)\n", "\n", - "U, pval = wallraff_test(\n", - " angle=np.deg2rad(time2float([\"7:55\", \"8:15\"])), circs=[c15_s1, c15_s2]\n", + "result = wallraff_test(\n", + " samples=[c15_s1, c15_s2], angle=np.deg2rad(time2float([\"7:55\", \"8:15\"]))\n", ")\n", - "print(f\"U = {U:.3f}; p-value = {pval:.5f}\")\n", - "assert np.isclose(U, 13.0)\n", - "assert pval > 0.05" + "print(f\"U = {result.U:.3f}; p-value = {result.pval:.5f}\")\n", + "assert np.isclose(result.U, 13.0)\n", + "assert result.pval > 0.05\n" ] }, { @@ -1329,7 +1331,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "r = 0.9854, pval=0.17524\n" + "r = 0.9854, pval=0.66406\n" ] } ], @@ -1345,7 +1347,7 @@ "\n", "print(f\"r = {res.r:.4f}, pval={pval:.5f}\")\n", "\n", - "assert np.isclose(res.r.round(4), 0.9854)\n", + "assert np.isclose(np.round(res.r, 4), 0.9854)\n", "assert 0.025 < res.p_value < 0.05" ] }, @@ -1435,7 +1437,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "U2 = 0.3009; p-value = 0.00410000000\n" + "U2 = 0.3009; p-value = 0.00330000000\n" ] } ], @@ -1445,8 +1447,8 @@ "\n", "from pycircstat2.hypothesis import watson_test\n", "\n", - "U2, pval = watson_test(c1.alpha)\n", - "print(f\"U2 = {U2:.4f}; p-value = {pval:.11f}\")" + "result = watson_test(c1.alpha)\n", + "print(f\"U2 = {result.U2:.4f}; p-value = {result.pval:.11f}\")\n" ] }, { @@ -1458,17 +1460,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 17:51:09CET\n", + "Last updated: 2025-11-03 14:17:36CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "matplotlib : 3.10.1\n", - "scipy : 1.15.2\n", - "polars : 1.21.0\n", - "numpy : 2.2.3\n", - "pycircstat2: 0.1.12\n", + "polars : 1.34.0\n", + "scipy : 1.16.2\n", + "matplotlib : 3.10.7\n", + "pycircstat2: 0.1.15\n", + "numpy : 2.3.4\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -1483,7 +1485,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -1497,7 +1499,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/B3-Pewsey-2014.ipynb b/examples/B3-Pewsey-2014.ipynb index cf5e953..9d125e4 100644 --- a/examples/B3-Pewsey-2014.ipynb +++ b/examples/B3-Pewsey-2014.ipynb @@ -39,12 +39,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAIUCAYAAABWynwtAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoGVJREFUeJzt3Qm8lGP7wPHrtCdtKi1atCkJbVqEiNJGi10LSorsQrxSCWXflRTJmiWRFhSVSkUkhVCpSIX20nqe/+e63/+cd840M2f2Z/t9P59pzsyZ5twz88zzPNd9X/d1Z1mWZQkAAAAAAHCNfHY3AAAAAAAAxIdgHgAAAAAAlyGYBwAAAADAZQjmAQAAAABwGYJ5AAAAAABchmAeAAAAAACXIZgHAAAAAMBlCOYBAAAAAHAZgnkAAAAAAFyGYB4AAAAAAJchmAcAAAA86sorr5SsrCwZOXJkrvsnT55s7gfgXgTzAAAAgIcVKVJEHnroIdm6davdTQGQQgTzAAAAgIedc845UqFCBRkxYoTdTQGQQgTzAAAAgIflz59fHnzwQXnmmWfk999/t7s5AFKEYB4AAADwuK5du0qDBg1kyJAhdjcFQIoUEBfLzs6WDRs2SPHixSngAQBwBMuyZOfOnVKpUiXJl48+cwDOofPmW7duLQMHDrS7KQD8HsxrIF+lShW7mwEAwGHWr18vlStXtrsZAJDjjDPOkHPPPVfuuusuU+UegLu5OpjXEfnACVOJEiXsbg4AALJjxw7T0Rw4RgGAk+gSdZpuX6dOHbubAsDPwXwgtV4DeYJ5AICTMP0LgBOdeOKJ0r17d3n66aftbgqAJDGZDwAAAPCR++67z9SeAuBuWZZW6nFxKmPJkiVl+/btjMwDAByBYxMAAMgERuYBAAAAAHAZgnkAAAAAAFyGYB4AAAAAAJchmAcAAAAAwGUI5gEAAAAAcBmCeQAAAAAAXIZgHgAAAAAAlyGYBwAAAADAZQjmAQAAAABwGYJ5AAAAAABchmAeAAAAAACXIZgHAAAAAMBlCOYBAAAAAHCZAnY3wA8WLVokP//8sxx33HHSrFkzu5sDuHKb53sEAAAA/A8j82l25513SvPmzaVXr17mWm8HByevvvqquQbcKNw2HG2bT1Q6ntPt2H8AAOJ16NAhWbJkibkG4H5ZlmVZ4lI7duyQkiVLyvbt26VEiRLiNHqSrYFHqIULF8qkSZPk4YcfzrnvjjvukIceeijDLfQGRmztoQF16DbcrVu3iNt8op9NtO+RXz/vcO89+w/ncPqxCYB/HThwQKZNmyYdOnSQggUL2t0cAEliZD4No1yB55o+fXrY37/44ou5TsSV3o72t708CpfMa/PLiK3TPn9tR7hteOTIkWEfr50tiYr0f5N5Tjd/LpHee6dsGwAAAMgQy8W2b9+uWQXmOhl33HGHeZ7ARW+n6rniuUyYMCHt7XOaZF7bwoULw76Per8babt1GwhtvxM/f21nPNt2Xp9JpNfuhM/Zzs8l3N+O9N5H2n/AvccmAEi1/fv3W5MnTzbXANzP98F8KgOFSM+VTMBjdyCTTsm+Ni8FNZECQ6d+/vFs63feeWfU54olKA59TF7PmWjAHBo8p/NzidaBke6/jfQimAfgVATzgLf4PphPZUAY6bm6dOmScMDjpYA11a/NK0FNtNfhxM8/0K6ePXtG3ab79esX04h8PB1b0YLfVGfS9OjRI22fS14dGHm9L+nq3EjHe5xOTm0vwTwApyKYB7zF90vTadG0eO5P5Lk6deokkydPPuz+sWPHSqFChaIWbktl+5wm2dem75kW/gqeP6xz5t1WFC3anPBo75Edhf9CC6/16NFDatasKcOGDTvssVdddVWe7Yr22kP/r95O5esMN/c82GuvvRaxbclsu5HmvGvxwMDry+t90WJ3+vhUfv5uK6rntvYCAACknOVi6Zozn8woV7jnCjf6F8/fSGeKsd1S8dqcOjoXq3hHYTt27HjYqHgm5tFHa2ein2Ok5xwyZEjaP8945/0HLvreq0Rfcyyj+pnOOon098aOHWs5kdOzchiZB+BUbhyZd/t5HpBOBPNp2FEEP5eeDEc6SY7l7wWeK9bHJ9PedP6NWP6+n3fSeQWG+t5oEB8tyLQr+A0EoYl+jtFS3dPZSRHLvP927dpFfa8Tec2xBqKZ7MSL1rHhhIKLoSJ9F5wy/YhgHoBTuS2Yd2IRYMBJCObTKNbK9pF2TLHMq002CI7URnaWmZdIRfdMBjLpHA3V59DR+Ex3UkT7jmrwnK6aBbEG6pnq6Mpr+3JSR1u0tjqlnU4/NgHwLzcF807PwgKcgGA+TeKtbB+6Y4o39TqR4NtNJ/BOlMmMglhSwjPRjliC0ETfF7uK/UWrZh8psybVGTxOEK1jwykj3tG2Ex2tdwonH5sA+JubgnknFgEGnMb3BfDSJVIBq2iPDy5iFa0AlsqrgFYq2hiuCBnsKb6VV2G1TBX+y6vwWjLvi13FHkML6wV+Dn0tqX6vU1XQL1WFEPVz0ue4+uqrHV1wM1JbBg8enPG2AIDd9Bgwffp0+f3336Vy5crSvn37uI4FwccQFe14kunCu14uAg2kjOViTh79iDTqfffddyc9Mp+qnkpG5t2V9hU6cqqF2Jw0spuK98UpxR7dUhAuHXMJnfIZuLmNTj42AfCORKZKBo/Mx1OzJvSxunxraCabLkmr16nMPHP6/h6wG8F8GkXaAcW6Y4r0uFQGk5F25KnYWTotjThVbbUzzdfJ72kqO5nsfo1uSO1Ldw0Duz8DN7fR6ccmAM4QqBeTyAouiQ7IBIL5BQsWRP3/wc+R19+qUKFCzJ0CiRaOder+HrAbwXyaRdoBxbpjivS4VPZUpqOavZuqj8bbVjcU4LKDlwrVuOG1uKHDwa/ccGwCYK9wgynxnCvlVUsn0rEgEMzHUosn8ByJLuUaeux007kh4BYE8y7m1J5KNwRCybbV6Utj2cUL6XCB75VOY3Dya3HT98xv/H5sAmClfVDASSPzsXQKxHLMcup5LeBk+cRmf/zxh/To0UPKlCkjRYsWlRNPPFG+/vpr8SotHvLqq6+a62Rp8ZGePXs6rkhdXsX7vNDWSMW2nF6UJdz2l8ptUouoLVy4UCZMmGCuR44cKemSynYHF7dr3ry59OrVyzy37psy8VoSod97LTBoRyFEAEDiop1jxHquFO4YEM+xoEmTJhH/f+hzRPtbsdBzo7zOt4KPv3qtt8eNGyf9+/c31wAisLMnYcuWLVa1atWsK6+80lq0aJG1evVq6+OPP7Z+/fVXT45++CW9yE0jhsm01W2j0OG2P7duk+lotx3bbSpGIRjJcB63HZsAZFYqp+sF5t336dMnprn3oUvTRVueNdbMtYoVK0Z8PbHUe4pl5L9p06ZxvS+AX9gazOsX/LTTTvPFCZObAtxUcFOgm0xb3RJIxZMi59bXkmy7Mz0HPVxl4EQLIcFZ3HRsAmDPsT7cnPlMnCulap350Pcklmr2kc63Yp2TH7qijFvOwQDPBvPHH3+8dfPNN1sXXnihVa5cOatBgwbWmDFjIj5+79695uQocFm/fr1rTpj8WKzKTTtZN7U1EfEUr3H6Npmu71ImO9xi6VxxS5YEDkcwD3hHOjPYkqlmb3cwn8rzrVgHHLSzIMCtmYVAqmXpP2KTIkWKmOtbb71VLrroIvnqq6/kpptuktGjR8sVV1xx2OOHDh0qw4YNO+z+7du3S4kSJcTJdF6vzgEKpXNx/TbHVd8LnSOlc6j89tqdtv2F4/RtMp3fJZ2j9/DDD+e6nY658jofX+cF2vFZ8P1Lvx07dkjJkiVdcWwC4K5zt8A+fP/+/bJ+/Xr55ptvzLU68sgjJV++fFK7dm1p0aKFFCpUyDzugw8+MDWqtC5VjRo15OSTT5YRI0bIhg0bJCsrS6pWrSp16tSRzZs3y08//ST79u3LdZ/uy3SfpvLnzy+dOnWSPn36pPR1hR5/wxk7dqz5u078XADbWDYqWLCg1aJFi1z33XDDDVbz5s09NzLvttTzdKEn1Vnbn1u3yXS2OxNZGrGOQqQ6S4LvX2YwMg94Q6azKjWNvEuXLmb+u/6s12eccYa5vvvuu61atWrFnGUX6VK0aFEzMq/XyTxPgQIFrCpVqpi2dejQwWTb6rXe1tcQmhIf7/FX58gH/71mzZr5OtsVcOTIfLVq1aRNmzampy1g1KhRcv/995seRC+Ofvh5VIyeVGduf27dJu1qd+jfTbQdsYxCpPK7wfcvc9x4bAKQmf1m8Mi6jpzrSPgPP/wg8+bNk7///lvSTVeOevPNN+Wyyy6Tf//9N61/SzMFSpcuLUcccYTUrFlTqlSpIqecckrMo/paxV6zdkP/D8czIIhlo8suu+ywAng6hz50tD4SRj/SJx2jk/Skwu1CR7ZDRw7iHemOVBk4HVkSfP8yh2MT4B2pKJKro9R63a5du6RH1p0yMp/MpWzZsmYEX2OARo0amayDTH4ugJfYOjKvvW2nnnqqmQd/8cUXy+LFi6Vv374yZswY6d69e57/n9GP9AgdMdS1RXX98GTRkwo/1B1IdHvW558+fbr5uX379mmZK8/3LzM4NgHeEk8GVmBf/umnn8qCBQvEaTI5Mh8PnYtfq1Ytc5xatWqVqQNw5plnyvjx4yP+H7dmFgIpZXdvwpQpU6z69etbhQsXturWrRu1mn0oRj9SL90VvelJhddXBEhFVf10zdnn+5cZHJsA7wu3rw633JzTLk4YmY/nkpWVZZ133nks2wo4cWQ+WYx+SMaqbE+YMEF69uyZkr9BTyrcKN0j8+nMignG9y/9ODYB3hRp1F331d26dYt51ZhU0ezWMmXKZLSa/dSpUyU7O1vs0q5du5xjVzqy2AC3IZhHLqTiwq9iCXJDg+1AAbxULGXHd887nRMcmwBvCC5W99JLL0VNmx8yZEjY5ZOTCVqPOeYY+eWXX0xwXr58eVMo79ChQ9KoUaOEA9kDBw7ItGnTpEOHDlKwYMGE2nbllVfKJ598IgUKFJC2bdvKn3/+KWvWrJHq1atLxYoV5b333pNt27ZJJqSj0xtwkwJ2NwDOogcG3TGGrrXtlJNkIB1iHRHX+3T0JRXV7EPpc0S6n++ffZkMAPxJsxQ1WzGdOnbsaEbJNUjXEfbAaLqTOifDiTaPXekqVVqJXrM6NcjXavbaibB69eqUt0WPAXpcDrxfkSrgA17FyDxcM9oFpINTRsSd0g63cPL7xbEJcPc5j04rfO211+J6Dt33TJo06bAlRzVg79q1a07KeyAl3q4U8VSMzCc7TeH33383t1euXClLlixJuhBfYCqovp9aTDugXr16smLFiqTbDTgZI/MIS3eIdp8Q+0m6Ok/olHHHiHjgc9KTkeCRID9mxcS6zTrhcwPg/v3N8OHDzTzwgB49esQdyAf21XrRUeJ0rkzixXNLHU1/9tlnTVCvnbQzZ840c/xjpccLfY7gQF5pxkP9+vXltNNOY6QensXIPODRVGFSkN0xwhv6OemJpM5B9GMHTDzbrN2fWzQcmwDndxhqEbtk0+h11H3w4MEZ2+fofPm//vrLzFHXy6ZNm8x+ZteuXbJz505zCf15z5495v9p0Tq9BDpC9Rijy8FpwTwdodfiecWLF8+5Dv25dOnSZj58pUqVzLXel+7P6cUXXzQ1AzSw1+XqwgnUqunfv7+88MILUZ9TR+ovuuiitHa0MIiCTCOYB2yUroDEyYGOG4LIZArZxYPPKbn3wq7PLS8cmwBnFrF7//33c43CJ6ply5by2GOPpXw/rQG4Bq/aXr1oOnogcNfK81pZXgPzYDofPVwAHrjW32uhOg3a9fLoo49KzZo15fzzzzf/XwN8fW/CdQgE33fw4MFcf7dYsWImqA9cNMjXAngaxOqlWrVqprMgHZ9juKkKOjJ/9dVX29oZwyAK7EAwD3hwKcBMLDHoNXb0pvM5Jf9eOHEUhGMT4AyhwVWsQqc8pXI5ND3t1kJwOpc7ELQHLhq0B5QrV84sDxccMAcHznqtFe7jnfeeyJx5bbMG9IGOhdCLdjTo5bfffjPL2imtEaCdBoHgPnDRgn+BZe5S7YQTTjCp9Yks8Xf88cdL5cqVE/586ZyHXZgzD9hID2zx3G/383qZHXUi+JySfy+o7wEgXOeeSiSQD2T4DBgwIOmOQh311vRwLfIWuHzzzTemoy8wuh0Ics844wyzrrv+rEvRlSpVSpxC16LXjkm9aBsj0awBzSbQwnbBnRTvvvuuCfQD44e1atWSxo0b51x0qb1UvF7tINFgfMaMGXH9P11yMLDsoC4vqNPd4p2CQR0X2IVgHvDgUoDhnldppV0OKs7BUpD/w3sBIJWj8JpCnUzKdSIdhVu3bpW5c+fKvHnz5OuvvzaBu2bqKB1l18D19ttvN8HrSSedZEbYNVD2Ck2r1/R6vWjtl2B79+41Uwi+/fbbnI6NKVOmmDn9Skfx9f1p2rSptGrVSho2bJhQmr4WHwx06miKeyLV7LUA4rJly3KmCnTq1CnP4nl0zsMupNkDDpCOVGFSvlIrnencTkwVt4sX3guOTUBmBM+jjne+dCCdvk2bNgnvbzR4/+KLL+Tzzz+X2bNny3fffWdGn6tUqWKqpwePPGvavBPYuTRduJF8HcXXTo9AgK+dIFrVXvedmq1w5plnmkuDBg0SCu4D686vXbs27hH7YLEsc+fUOi7wNoJ5wKOYj506FLVxLzs6Bzg2Aemnx7e8UqF1tD1cwbtEC59pkPnZZ5/JrFmzTPC+dOlSE7zrqPtZZ52VE3gee+yx4lROCubD0Y4ZDb71/dXL/Pnzzfuu+9TTTz/dvL9aw0CD63izGgLr3OtKBoG0+njo3w0sO+jlDmm4C8E84FGMzKcG76N72dUJw7EJSC/tkI5lLXjdT6vA6L0WZYs3yNq4caPpEPjwww9NEKiBpZuCd7cF87EG9zVq1JDzzjvPVOXXID/e16LH9uHDh8e9ukHwNkXADicgmAc8jJSv5JHh4E52dsJwbAIy/90OlejxTk+Lly9fboJ3ndOtf0+XdNOK5xo46iVaETinc1swH0rn3mtQH/h8tOCe7m+18J1+Njp6Xrp06ZifTz/fW2+9NeaR+tBsDy3mp3P8+/btS2APWxDMAzbJVCoWKV/JYWTenezshOHYBCQvkBKtgpcLi/TdVmPHjk1o9F19//338vrrr8vEiRNN5XVdp/3cc881AaIGvmXLlhUvcHswH0xDGJ3qoIG9XnTuvc6r12yJ7t27S7du3WJeBi/ZFHzFFDzYwnKx7du3a0eEuQZSbeHChdaECRPMdardcccdZtsNXPS2m6XzvXKC0M+rZ8+enn69XqCfTfBnFrhk4jPj2AQkp127dod9dwPHyUjfbd0vx2v9+vXWQw89ZJ100knmOY466iirX79+1owZM6y9e/daXrR//35r8uTJ5tpr9PN8/vnnrdatW1tZWVlW4cKFrYsuusi83n379sX8PLqNDRkyxKpZs2aubaxjx45ht73gi/4/zg2QSQTzQIaDbTuDjHTwWsdEXh0WesLoh9frBaHb5p133pmRv8uxCUhcvXr1IgZKgeNkuA7WWG3dutUaO3asddZZZ5mAr0iRItbFF19sffjhh3EFfG7l5WA+NLB/5JFHrJNPPjmno6Z///7WF198YR06dCihwYpI52/hLhr4u/W8Du5CMO8wXh/hdIN0B9v6+YZ7fr3fbbzWMZEXv71eL7Bjn+rFYxOQCRpkRwuQgo+T8Xy3s7Ozrc8++8y65JJLzGitBvHnnHOO9fLLL/vue+qXYD7Y999/bw0aNMiqWrWq2Y6OPfZYa/jw4daGDRvifq7QjiSCetgtnz3J/YhUrEXn5upcML3W28g8nV8ez/3x0rl88dzv5/fKafz2er1A583qHHnqGwDOp1XLowk+Tsby3d6yZYs88cQTcvzxx0vr1q3N/Or7779f1q9fb+ZGX3nlldS18IH69evLiBEjZM2aNTJnzhyzLejtKlWqyAUXXCCffPKJZGdnx/RcOidea+ZUqlQppsdrsTw9p2/RokWSrwIIj2DeIbTwRnDVcaW39X5kVrqCbf0sA2viapGUYNpx48Zgw0sdE7Hw2+sFgEw65ZRTIv4unuOkBu19+vSRY445xvy/Ro0amQroP/74owwcONDcD//RVQnOOOMMGTdunGzYsEGeeuop0xmvhQ7r1q1rbmvh0rzodvjHH3+Yyvmx0g6AYsWKmfNAzu2RSgTzDsGIn3PoTjrVwXZo1kVgx66VtfXarcvFpeO9cjK/vV4ASLVAx3a4gEYD8KZNm+a6TwPvWI6Thw4dknfeeUdOO+00adiwoRltHTx4sFm67I033jDLh2VlZaX89cCdtMr9gAEDZNmyZfLFF1+YDp9AR891110nv/zyS57PodXvA+dysaySsmfPnpzzQJa2RaqwNJ1DsPyV86RqSTc/fLZ+W/7Ortfrt/fZrbx0bAJSSTs/g7MQIy3lpSOnmnKvI/Ua4Eezb98+0zmgz6sBmAbtN9xwg3Tu3FkKFCiQltfhZl5ami7VdLT+hRdeMJfNmzfLhRdeKHfddZfpHIr1GD18+PBc69BHc+KJJ8qLL77I8RzJsVzMa0WG7Kq8jPSKVvCOgoeIlV9WDfACrx2bACcWEN25c6f12GOPWZUqVTLP07VrV2vx4sUpb7fX+LEAXrz+/fdfa9SoUVb16tXNtnXuuedac+bMMYUUY6HbdOiydtEuHM+RDNLsHSRQVMPtqdeIbT61Ft+h4CFiQU0NAG5PqU/VdMJ//vlHhg4dKtWqVTPHzTZt2sgPP/wgkyZNijrnHohVkSJFpH///mbbfP31182IvWZ86BSOjz76SAdCo/5/HWn/9ddfY87M4niOZBDMOwyVl/0xz1o/40AxvAB25oiEmhoA3CbQUR241jnsyRQQ1SD+9ttvN0G8Hi+7d+8uq1atkvHjx5tq9UCq6TSNyy+/XL777juZMmWKue+8886Tk08+2XQe5RXU61SrcNMsI82/pzgeEkEwD9iQdaEjCeEQnCEcqugDcJNwHdavvfbaYUW/Yikgunv3bnnggQekRo0aMnr0aLnppptk7dq18vTTT0vVqlXT0n4gmBZO7NSpk8ybN88sbVehQgWzpJ0G6p9//nnU//vll1/mnP9FC+yHDRtGcTwkhGAeSLPgJekCWRcEZ4gHVfQBuOmYp4F7ONqRHet0Qi3UNmrUKKlVq5YJdHRNeB2J18C+XLlyaXwFQOSgXpe20yyTWbNmmZF5XbNel6jT5RDzyrrVwD6WQF2/PxrYA7Ggmj1gU+Xe0N/pbeokIBo/V7N302vn2AQ/087rSIFILKu4ZGdnmyXm7rnnHhO89+jRwwTz1atXT1OL/YVq9qmjIdR7770n//nPf8zx6bLLLjPV7GvWrJnn8UzT6gN0+w5HOw5q164tffv2dfxxD/YhmAfSJJYl6dwUoABOX87KKTg2wc8iHft0RFJH5KOZPXu23HbbbfLNN99Ix44d5cEHH5STTjopja31H4L51Dt48KC8/PLLpjCjLmmnxfP05zJlyiT8fQmlo//BHQBAAGn2QJpEmv+uvbYBFDwEoqOSP+CNoq/RAvk//vjDjGqeddZZUqhQIZk7d66pGk4gD7cUytPR819++UXuv/9+k52igzRjxoyRQ4cO5fl90eyTvMyYMUPq16+fwlbDKwjmgTSJNP996tSpBCJAjKjkDziLHr901FEvkY5loUVfIwXyOkr86KOPSt26deWzzz6TV155RRYsWCCnn356ml8FkHpHHHGEySRbuXKlnH/++dKvXz8z6v7VV19F/X8a/Mcyl37FihUybty4FLYYXkAwD6SJ9rZqmmA4BCJAbCgWCThHoNq2zvHVi/6swUs4eWWeafCuS3zp/+/du7cJgPT5tcgY4Gbly5c3affz5883Kfj6Hbjmmmvk77//jvh/Ah1fffr0ifrcmrHCEnYIRjAPpNHgwYPD3k8gAsSGSv6Ac5ebS2Tai6bUX3rppXL22WebOcU6P/6pp56SUqVKpbjFgL1OPfVUMyqvyyi+/fbbUqdOHXnhhRcipt7rcW3s2LHStGnTiM85efLknE619u3bp7H1cAuCeQctXUYvm/cQiADJC03ZZdUHIPNp9ZGWm4s120yr1OtSc5pSr4Xu9Pusc+N1dB7w8nz666+/3nxHOnfubIrjtWzZUn788ceo3zkN6vPq4GIePRTV7G3mtirNiE+gWv3+/ftNUR+q1sMtWGnB38cmINw5SiR5LTn322+/mVT6zz//3Mwj1vMc/Y4g86hmby9NvddUev1O3HfffWb1hvz580d8vM6R19F9TdePNF9en4/l63zMcrHt27drR4S5dqOFCxea9ode9H643x133JHrc9XbgBuw7fr72AREO0cJvfTs2TPicxw6dMh6/vnnrWLFillVq1a1Zs6cmdHXgMPt37/fmjx5srmGPfbs2WMNHDjQysrKspo1a2b9+OOPKfk+cqz2J9LsbUSVZu9iOS24FdsugFjPRaItObd27Vpp27atXHfddWbpreXLl5t58oDfFS1aVB555BEzSr9161Zp0KCBuR1tGTsddde15qPRYzXV7v2HYN5GVGn2Z0cNNRLgZHQyAoh2LqIpvUOGDIm45JzO3tQiXzqXV/cbn3zyiYwePVqKFy+egVYD7tGiRQtZunSpmVOvU1p0SUZd1SGS6dOnywknnBD1Oa+++uqIK0zAmwjmHVYcLdJSZvDGSdCnn35qKpAGKpGyw4XT0MkI+FNoR3OkAq5amEsL4oWbn6tLb3Xq1MkU+brsssvMaHybNm0y9hoAN47SP/roo/LFF1+Y74+O0r/44oumUywc/U7pd7BLly5RR+j1O8qgkU9YLuaVeYk6D6Zjx47Me/H4vGOdV0iNBLhx273zzjvtbpKreOXYBP+IVidDj1ETJkzI81g1Z84cq1KlSlbZsmWtadOmZaDVSARz5p1r9+7dVv/+/c138NJLL83zGBL6vWUevT9Rzd4BtOdMR2njrQ4Ld1UE12sdkQ+l2RgfffSRLe0DIqGafeK8cmyCPyR7DqLzfEeMGGFS7zVN+I033pBKlSqlqbVIFtXsnU/XpNfq9OXKlZOJEydK48aNIz5W58hran00xBPeRpq9AzBH1bt056kFgvQ6Upry1KlTSYWCo7ddAN6kx56XX3454XOQjRs3yrnnniv33nuvDB48WGbNmkUgDyTp4osvlm+++casM6/z6p9++umIafdawyJ0Okwo/Y5znuldBPMOwBxVf9CgKFJNBDd33FDQDwDcRffXOrddR+S1WF0i5yBaA+bkk0+WFStWyMyZM80c3WjrZQOIXc2aNU21+wEDBshNN90k3bp1ky1btoR97EMPPWRG3zU7Jhz9jlOnybsI5h0gUpEZRsS8R0cuvNRxo9spBf0AwH37bc0Ki/aYSOcg2dnZJnDXEXkt1vXdd99J69at09hiwJ8KFy4sTzzxhHzwwQcyZ84cadiwoRmxD0e/r/q9jDZKz9J13sSceQdhjqo/6ElS8DreenvkyJHiNtR6APxxbIJ3RNpvB/Tr10+uuuqqiPvwXbt2mc7byZMny3333Sd333235MvHuJCbMGfendatWycXXHCByYTRtPlLLrkkz+kzkbJuNEtUB5c4V/OGAnY3AP+jXyq+WN6n6VCaLuX2jptotR7c+poAwMvymtIVLZD/7bff5Pzzz5c1a9aYYF5/BpAZVatWlblz55pid5deeql8//33pkMtXGda4DscKZjXrBy96Ci+npPGggFH56I7FbCBF4qLUesBANwl2v45Wmq9pviecsopsnv3bpN9RSAP2LMm/WuvvWayOR988EEzMLRz586Yp/CG0izRWOodMaXS2QjmASSEWg9IBoUTAWfstzXlVgP0SNO9Ro8eLeecc46ceOKJsnjxYjnhhBMy1FoAobKyssy51ocffiifffaZqXa/evXqsI/VUfexY8cmVelefxc8NTSeTgBkBsE8gIQFKqhOmDAh6skgEIxefsA5++2PPvoobCeszq2+7rrr5Nprr5X+/fvLxx9/LGXKlLGlzQBy09Uo9Pu7d+9ekzWjgX0iS9flVeme5bOdjwJ4AICM8UPhRI5NcDstdHfhhReadeOfe+45ueaaa+xuElKEAnjeosvV6br0OhVm/Pjx0r1794jH3uHDh0ddxUJH8TX499sx2+0YmQcAZAy9/ICz/f3333L22WebNa6nT59OIA842FFHHWW+pz169DCXxx9/POzjNPDWLBwNwnXVinC0uF7oCD1TKp2PavYAgIyhcCKQXslUnV67dq20bdtWtm7dKrNnz5bGjRunrZ0AUkMzLF566SUpX7683HbbbbJx40YznUbn18db6V7nw+u+I3iE3iurMHkVI/MAgIxJdy8/hfXgZ8nUo9Clrk499VSThq2j8gTygHto4K51i5544gl55JFH5MorrzTf5UQq3esIva645LVVmLyKOfMAgIxLx5q1GrgEV92NZw3dVOLYBDuMGzfOnIQnMrf1iy++kPPOO0+OPfZYmTFjhlSoUCGNLYWdmDPvfW+88YZcccUVJsvm7bfflmLFisW1zwho166dSeGHszEyDwDIuFT38rN8DvxMO7IinZTnVY9i8uTJ0qZNG2nYsKEpokUgD7jb5Zdfbgrd6fdZ61/8888/CVW61449zfKBsxHMAwDSIpMp7xTWg1+F68iKtR7Fm2++aarW66i8jsBpRgkA99NR+c8//1xWrVolZ511lmzevDmhteiZtuZ8BPMAANevJU9hPfhVtDTYaPUoXnvtNVP9Wkfx3nrrLSlSpEgaWwkg03T9eR2d10BeA/pNmzZFHKHXfUEkd911l0nJhzPZGswPHTrUFGwIvtStW9fOJgEAXJjyzvI58CPdxocNGxb2dzrapgWxwnnllVdMR5vOq3355Zclf/78aW4pADvUq1fPrEyhK1SceeaZ8ueff0Ycgdc58uHoCL9O4+F46ky2j8yfcMIJZsMKXObNm2d3kwAALkx513RBLfY1YcIEcx0pkAG8nl6vQX7w0lKhgfxVV11lTs414CeQB7xNB0p1hH7nzp1mhF6XrouU5RNaxT7Y4sWLGaF3INuD+QIFCphiK4FL2bJl7W4SAMClKe8snwO/iNQ5NmTIkIgdWZpaHwjkR48eLfny2X4aCCADateubUboNaBv3bp1xDn0gc7wRo0ahf39Rx99lOaWIl6278V/+eUXqVSpktSoUUO6d+8u69ati/jYffv2mSV/gi8AAGch5R1Iv0idY+3btw97v86L17R6XX+aQB7wn1q1apmUeU251yr3f/31V9jH6bFaV7cI59ChQxTFcxhb15nXdI5du3ZJnTp1TIq9zvv6448/ZPny5VK8ePGwc+zDzQ1jLV8A8Mda8m7AOvPIFO0kC06119vhRuU//PBD6datmyl2xxx5f2Odefz000/SqlUrM5iqo/XhVrHQ47cWr41GO+11eht8HMyH2rZtm1SrVk0ef/zxsHO9dGReL8EnTFWqVOGECfA5vwaNcCaCeThp/6e1iHQdeQ3e3n77bQJ5nyOYh/r+++/l9NNPNyPwOrgabjWL0M7CcDQln/Muezkqx6pUqVLmYPTrr7+G/X3hwoXNiVHwBYC/ZXoJNABwkmh1IjTTUdeQ133j66+/TiAPwDjxxBNlypQpJhjX/Yemz0crKqu1OOwobAuXBfOacr9q1SqpWLGi3U0B4AJ2LIEGAG6wdu1aOffcc03G4+TJk1lHHkAuOjKvtTQmTZokN954o4RL1g50FkaqxaH/lwr3Pg7mBw4caJZK+O2332TBggXStWtX02t82WWX2dksAC5h1xJoAOBkf//9twnkNaNRU2jDzYkFgM6dO8sLL7wgzz//vNx///1xFbZV2lHIGvQ+DuZ///13E7hrAbyLL75YypQpY9I5ypUrZ2ezALiEnUugAUC6aZZRvJWjd+/eLZ06dZItW7bIxx9/TLYjgKg0GNdA/t5775UxY8ZEfFwg7T5cXTPWoPdpMK+pHRs2bDBF7TSw19s1a9a0s0kAXIQl0AB4VaAOSDz1QLS42UUXXSQrVqwwI/K6tjQA5OXuu++W66+/Xq699lp5//33Iz5Oz68KFCgQ9ndfffVVGlsIV8yZB4B4BRdo0etwyzIBgJvo/FQdkY+3Hshtt90mn376qZnH2rhx4zS3EoBXZGVlyZNPPikXXHCBdO/eXb799tuIjz3llFPC3n/w4EFqFtmAYB6Ap6s5A4Cb6L5sxowZcdcDefHFF+WZZ54xF12KDgDioXXLxo8fL/Xq1TNz6Tdt2hT2cZpm37Rp08Pu1zR7VhXKPIJ5AAAAB9BRrddeey3i7yPVA/niiy9kwIABJkW2f//+aWwhAC874ogjTFG7/fv3m1F6vY60rxo7dqx06dLlsN+xqlBmEcwDAAA4QLSR90jZR7oEnZ50t2zZUp566qk0txCA11WuXNnMm9c58Nddd13YJesCI/TdunUL+ztWFcocgnkAAAAHiDTy3q5dO1MXJFzlek2HLVasmLzzzjtSsGDBDLQSgNe1aNHCVLbX1Plnn3024uNYVch+BPMAAAAOXaFDR+S1Mn2o7OxsueKKK+TXX3+VDz/8UMqWLZvBlgLwOt2/3HrrrXLLLbfIzJkzwz6GVYXsl2VFyp1wgR07dkjJkiVl+/btUqJECbubAwAAxyYkTeebapqqjm5FOinWdaEHDx5s0mHDzVsFIi1fOG3aNOnQoQOZHMiTVqjv1KmTWUf+66+/lho1asS8z4plP4bkEcwDAJBCHJuQbp999pmcc845cu+998rQoUPtbg5chGAe8dq2bZs0adJESpUqJfPnz5fChQvn+X90dF4L4QXo6L0uJYzUI80eAADAJjp6pWvKx1r9efPmzWYd6LPOOsuMzANAOmkQP3HiRFm2bJkMGjQoz8frviw4kFdUuE8fgnkAAAAb6OiVrsvcq1evmNZn1nnyOoder3UJO10XGgDSrXHjxvLoo4/Kk08+aWp0RBOpkj0V7tODYB4AACDDEhm90t9/+umnJpCvWLFiBloJAP91ww03mNUzrrzySlm3bl3Ex1HhPrMI5gEAADLstttui2v0Sueq3nPPPXLXXXdJmzZt0tw6AMgtKytLXnrpJSlevLhcdtllpv5COFS4zyyCeQAAgAzSVHkNzmMdvdqyZYs5edZU/GHDhmWghQBwuKOOOkrefPNNk0E0ZMiQiI/TYncLFy6UCRMmmOuRI0dmtJ1+UsDuBgAAAPiFngRrmnw4HTt2PGz0Shcd6t27t+zevducRBcowKkbAPuceuqp8sADD5hieGeeeaa0bds27ON0X8ZofPoxMg8AAJAh0YpAhatOP378ePnggw9MemuVKlXS3DoAyNvtt99upvtcddVVZuk62IdgHgB8usQVgMyLVARKU+9DR7F+//13ufnmm021ey08BQBOkC9fPhk3bpzs2rVLbrnlFrub42sE8wDgwyWuANgjXHEoDeR1bmloen3fvn3lyCOPNMtBAYCTaKbQE088YbKHpk6dGvP/Y+AhtbIsPVq41I4dO6RkyZKyfft2KVGihN3NAQBb6AFRA/hQWnSG+WqZx7EJsX5vNeVeR+rDfU81rb5Pnz7mJLlDhw62tBHeoxXIp02bZrapggUL2t0cuJyGkVrr47vvvpPly5dL6dKloz5eBxqCl+Rs166dTJ8+PQMt9S5G5gHAo3Nwo83NBZBZoaNRGsCHS61X69evN6mrup4zgTwAJy9XN2bMGFOgU6cERaP7vuBAXs2YMUPq16+f5lZ6G8E8AHh0Dm6k+wE4dxpMIL1e13LWFFYAcLLKlSubfZVOFZoyZUrEx0UaYFixYoWZf4/EEMwDQAKcNOcr3BxcDRZIsQfsF240Sm9H2nfoSe3HH38sL774opQqVSpDrQSAxAWyiPr16ydbt26Ne4CBdegTRzAPAB4oNvfQQw+ZOfLaM67XHBgB902D2bRpk9x2223mxLh9+/YZaB0ApC7dfs+ePYcNLgToAMOJJ54Y9ne//vqrIwZH3IhgHgDSOMqWSdHm4AJw/jQYPQnWomSPPvpoBloGAKlzzDHHyAMPPGCyixYvXhz2MZpxFMnw4cPT2DrvIpgHgDhQbA5AOqbBzJs3z2TWjBgxQsqUKZPhVgJA8vr37y8nn3yyDBgwQA4dOnTY73W/16NHj7D/V1fucMLAiNsQzANAHCg2ByDV02AOHjxoTn6bNm1qlqMDADfKnz+/PPfcc/L111/L2LFjwz5G6w21bNky7O8YGIkfwTwAxIFicwBSPQ1m1KhR8v3335uT4Hz5ODUD4F6nnnqqqftx9913y99//x32MY899ljY+9944400t857OGIAQJwoNgcgVbTo3T333CPXXHONNGnSxO7mAEBKzpM0zV4D+nAipdvruvNaXBixI5gHgARQbA5AKmhmT4ECBUzhKADwgqOPPlruv/9+k2r/1VdfhX1M27Ztw97vlGV/3YJgHgAAwAYLFiyQV155xWT3UPQOgBeL4V133XWSnZ0dV60h5s5nOJjXNIqlS5fK1q1bU/F0AAAAnmZZlgwcOFAaNWpE0TsAnqMZR88884wphjdx4sS4KttTVDjNwfzNN99s1hAMBPKtWrUyB6MqVarI7NmzE3lKAAAA3/jwww/lyy+/NKPyFL0D4EWnnXaanHfeeaYuyP79+8Om1OuUxWAUFY5PQkePd99916RNqClTpsiaNWvkp59+kltuuUX+85//JPKUAAAArqVzPGOd6xkoDHX22WdLmzZtMtI+ALDDgw8+aGLFF198MezvA8WEKSqcwWBelxmoUKGC+XnatGly0UUXmXSI3r17m6VVAAAA/EJHkpo3b26qMOu13o5GT1p/+OEHTloBeF79+vXNvvG+++6TXbt2hX0MRYUzHMyXL1/eHIS0Z1mXEAj0Ku/Zs0fy58+fRHMAAADcQ0fiH3744Vz36e1II/R79+6VIUOGmIEQlqID4AfDhg2Tbdu2yRNPPGF3UzwnoWD+qquukosvvtj0tGRlZck555xj7tcDV926dVPdRgAAAEeKVHU50v3PPfecbNiwwSzbBAB+UK1aNVPV/pFHHpG//vrL7uZ4SkLB/NChQ826gddcc43Mnz9fChcubO7XUflBgwaluo0AAACOFKnqcrj7t2/fbuaPavV6qjUD8JNAXbURI0bY3RRPSbh86oUXXmgK3lWuXDnnviuuuEI6d+6cqrYBAAA4ms7xvOOOO2KqxvzYY4/Jv//+a9LsAcBPypYtK7fffrvJTlq/fr3dzfGMLEsXOk3ArFmzzGXz5s2SnZ2d63cvvfSSZMKOHTukZMmSpqe7RIkSGfmbAABEw7HJn3SqoabW64h7uEBet4uqVauaUXkN6gE7HDhwwBSv7tChgxQsWNDu5sBntACe7ge12N1TTz1ld3P8OzKvRQzatm1rgnmtbL9169ZcFwAAAD/JqxrzqFGjTKHgW2+9NeNtAwAnOPLII+WGG24wy9TFMnc+niU//apAIv9p9OjRMn78eHPQAgAAQGSaWq9VnHU64jHHHGN3cwDANjfeeKM8+uij8vTTT8vw4cMjPk6nKwWvFKLTmR566KEMtdLjI/P79++XU089NfWtAQAA8BgdANFRqNC59QDgN2XKlDFF1J999lkz/SgVS376WULB/NVXXy1vvPFG6lsDAADgIQcPHjTLMWnh4Nq1a9vdHACw3W233Sa7d++WF154ISVLfvpZQmn2e/fulTFjxsjMmTPlpJNOOqyAxuOPP56q9gEAALjWxIkTZc2aNfLee+/Z3RQAcARdDU2na2vMqHPoixQpkvCSn36X0Mj8smXLpEGDBpIvXz5Zvny5fPvttzmXpUuXpr6VAAAALqOr/YwcOVLat28vDRs2tLs5AOAYOid+06ZN8sorryS15KffJbw0nROw/A8AwGk4NiFg6tSp0qlTJ5k7d66cfvrpdjcHYGk6OMrFF18sS5YsMenz+fPnj3vJTySYZg8AAOBH8Zxc6jrKp5xyCoE8AIQxcOBAsx/VDqbzzjvvsN/r7wji0xTMf/311/L222/LunXrTHX7YJMmTUr0aQEAABwpnqWSfvrpJ/n0009lwoQJGWwhALhH06ZNTYenVrYPF8wjTXPm33rrLbM03Y8//ijvv/++SdlZsWKFfPbZZya1EAAAwEviXSrpueeek6OPPtqkkQIAwtMCeJ988omsXLnS7qb4J5h/8MEH5YknnpApU6ZIoUKFTBqZ9kDrAatq1aqpbyUAAICN4lkqaefOnaaok66lXLhw4Qy0DgDcSePHcuXKmQ5QZCiYX7VqlXTs2NH8rMG8rhOYlZUlt9xyi1myDgAAwEviWSrpjTfeMOdG/fr1y0DLAMC9tMOzb9++ZkqS7jeRgWC+dOnSptdZHXPMMWZ5OrVt2zbZs2dPIk8JAADgWLEulaSLBI0ePdpUsde1lAEA0WkwryvBTJw40e6m+KMA3hlnnGGKupx44oly0UUXyU033WTmy+t9Z599dupbCQAAYDMtdtetW7eo1ey/+uorWbp0qZmSCADI27HHHivt2rWTF154QXr37m13c7wfzGvFwb1795qf//Of/5h1KhcsWCAXXHCB3HPPPaluIwAAgGOWpOvZs2fEx+nJaLVq1aRt27YZbR8AuJlOS+rSpYt8++230rBhQ7ub4+1g/qijjsr5OV++fDJo0KBUtgkAAMB1S9LpVENdtvf222+X/PnzZ7iVAOBeWo+tQoUKZu48wXwa5szrPIbgn6NdAAAA/LYk3Ycffii7du2S7t27Z7CFAOB+BQoUkEsvvVTefPNNOXjwoN3N8V4wr0XvNm/ebH4uVaqUuR16CdwPAADgtyXpXn/9dWnRooXUrFkzAy0DAG/p0aOHbNq0ydRiQ4rT7PVNDaTXf/7555JqI0eOlLvuussU03vyySdT/vwAAADpWpLur7/+khkzZnAOAwAJatSokdSpU0dee+016o6kOphv1apV2J9TQSu/asGYk046KaXPCwAAkIol6YJT7cMtSadz5dXFF1+c8TYCgBdkZWWZ0Xkd5B01apQUK1bM7iZ5J5hftmxZzE8aT1AemFv24osvyv333x/z/wMAAHDKknSaYn/uuedKuXLlbGkjAHjB5ZdfLoMHDzY1SC677DK7m+OdYL5Bgwamt8SyLHMdzaFDh2JuwIABA0z1wnPOOSfPYH7fvn3mEkCxPQAAkAkawIcL4tWqVavkyy+/NIWbAACJq1Gjhpx66qkm1Z5gPoUF8NasWSOrV6821++9955Ur15dnn/+ebMWoF70Zy34or+L1VtvvSXffPONjBgxIqbH6+NKliyZc6lSpUrMfwsAACAd3njjDTnyyCPl/PPPt7spAOB6mrX98ccfm1okSNHIfLVq1XJ+vuiii+Tpp5+WDh065Eqt1+Ba0yK6dOmS5/OtX7/eFLv79NNPpUiRIjG1QQvk3XrrrblG5gnoAQCAnXS+vJ77HHHEEXY3BQBcT2uP3HjjjTJp0iTp16+f3c3xxsh8sO+//96MzIfS+3744YeYnmPJkiVmqTutWqjrCuplzpw5ppNAfw6Xql+4cGEpUaJErgsAAIBdNGNx+fLlMQ1kAADyVrZsWTnttNNkypQpdjfFm8H88ccfb1Le9+/fn3Of/qz36e9icfbZZ5tOgaVLl+ZcmjRpYtIq9Of8+fMn0jQAAICM0ZPNQoUKsYwSAKTQeeedJ7NmzZLdu3dHfdyiRYvk1VdfNdd+FHOafbDRo0ebN7hy5co5leu12r0Wxou1B6V48eJSv379XPfp8gNlypQ57H4AAAAn0orLZ511ljmvAQCkhtYgGThwoMycOVM6d+4c9jF33nlnrmVDdRlRXX3ETxIamW/atKkphqfV5zWY18sDDzxg7tPfAQAAeN327dvNFEEK3wFAatWuXVvq1q1rOkzD0ZH4h4MCeaW3/TZCn9DIfGAU/ZprrklpY2bPnp3S5wMAAEiXGTNmyMGDB6VTp052NwUAPEczwV955RXJzs6WfPlyj0H//PPPYf+P3h9pGVEvSjiYV1rsbt26dbnmzit6qAEAgNfpiFGDBg2katWqdjcFADxHY8pHHnlEFi9eLM2bN8/1u+OOOy7s/4l0v1clFMxrOn3Xrl1NATudJ29Zlrlff1bhKtEDAAB4xYEDB2TatGlyww032N0UAPCkFi1amHpqWpMtNJjX0fc77rgjV6q9zqH306h8wnPmdX14XYZOl5bTNVVXrFghc+fONdXoSZUHAABet2DBAtm2bZtJAwUApJ6ubtaxY8eIBdYfeughWbhwoUyYMMFcjxw5UvwmoZH5L7/8Uj777DOzBqDOX9CLrgWoS9PdeOON8u2336a+pQAAAA6h50FHHXWUNG7c2O6mAIBn6bKfGqzrIPLRRx992O+bNWvmu9H4pEfmNY0+sASLBvQbNmwwP1erVk1WrlyZ2hYCAAA4jGYitmrV6rCiTACA1DnzzDPNtWaBR7PIp+vNJ3QE0nXgv/vuO/Oz9oToXIX58+fLfffdJzVq1Eh1GwEAADIilhPCf//916R06vryAID0OeaYY8wyddGmct95551mTn2vXr3Mtd72i4SC+XvuuccsEaA0gF+zZo2cfvrpphDM008/neo2AgAApF2sJ4Q63VBX8gmMGAEA0kf3tZ9//nnY3y3y+XrzCQXz5557rnTr1s38XKtWLfnpp5/k77//NnMZWrduneo2AgAApFU8J4Q6QqQVlk844YQMthAA/BvM65LoGmuG+jnKevN+kC+RpVgKFCggy5cvz3W/FoEJLE0HAADgJvGcEDJfHgAyR/e3as6cOYf97jifrzcf91GoYMGCUrVqVdaSBwAAnhHrCeGePXvMaD0p9gBg/7z5Zv+/3nwwP603n1CX8n/+8x+5++67ZcuWLalvEQAAQIbFekKohe+YLw8AmaX73EhF8B7y8XrzCa0z/+yzz8qvv/4qlSpVMsvRFStWLNfvv/nmm1S1DwAAICP0hFBrAmlqvY7IhxvZmTdvnpQuXZr58gCQ4VT7F1980Qwm6/TuUM18ut58QsF8ly5dUt8SAAAAm+V1QrhkyRJp0qQJ8+UBIIN0vxsYND7nnHPsbo67g/khQ4akviUAAAAOp8F8z5497W4GAPiKzpk/8sgjzT6YYP5/6FYGAACIwaZNm+SPP/6QRo0a2d0UAPAVzYZq2LChCebxPwTzAAAAMQicRDZu3NjupgCA7+i+l2A+N4J5F9IlcV599VVzDQAAMkNPIrX4XfXq1e1uCgD4MphfvXq1bN261e6mOAbBvMvoMjnNmzeXXr16mWu9DQAAMhPMa4p9VlaW3U0BAN8JZEWxctr/EMy7iI7EP/zww7nu09uM0APey2ZxY5sBPwTzpNgDgD10yVBdEp1U+ySr2R86dEjGjx8vs2bNks2bN0t2dnau33/22WeJPC3yoOveRrrfj+sqArHQ7JXgTrA77rjDrCXtZG5sM+B1er7z+++/E8wDgE3y589PEbxUjMzfdNNN5qJBff369eXkk0/OdUH6eqPiuR/wOzdms7ixzYAf/PDDD+b6xBNPtLspAOBbug8O7I+j8UuGY0Ij82+99Za8/fbb0qFDh9S3CBHp6LuO0AWf6OsIHqPygHeyWdzYZsAPfvnlF7M0Us2aNe1uCgD4Vp06deTll182meH58oUfl/ZThmNCwXyhQoWkVq1aqW8N8qQbYrdu3cyJvY7Ic3IPeCubxY1tBvxAj7vHHnusOQcCANijdu3asnfvXjPtqWrVqjFnOGr85MW4KaE0+9tuu02eeuopsSwr9S1CnnRD7Nmzpyc3SCAd2SzBnJ7N4sY2A34Q6EQHANgnsB+OlskYz/2+HJmfN2+efP755zJ9+nQ54YQTpGDBgrl+P2nSpFS1DwB8l83ixjYDXqffx7Zt29rdDADwNc2QKlCggNknn3POOeL3DMeEgvlSpUpJ165dU98aAJ6laU92Baf699wWELuxzYBXHTx4UFatWuXZk0EAcAsN5LV2SaSR9mbNmknTpk1l8eLFvjinSiiY16IDABCrTBYi0U4DzRpS7du39+zOG0DmrF27Vg4cOEAwDwAOoPviSMH8okWLcgXygfv04sVzwoTmzAOAE5da006D5s2by7Bhw8xFf9b7ACAZgZNGgnkAcHYw/zNz5sNr1KiRzJo1S0qXLi0NGzaUrKysiI/95ptvUtU+AC6XqaXWwnUaeL2CKYDMLUtXuHBhqVKlit1NAQDf02B+zZo1JmMqtHYbc+Yj6Ny5szmQqS5duqSzTQA8JFM71Wg9rqzRbm/NAsDtdAmkypUrR1zTGACQOdqxquvMb9y48bBO1sCqQMEDPF5eFSjmYH7IkCFhfwaAaDK1U43WOeDV3lgn1iwAvOjPP/+UihUr2t0MAIBIzv74zz//DJsx5adVgWIO5nVN+Wip9QAQSSZ2quE6DbzeG5tMzQKmHgCxI5gHAGcG85F4uYJ9QsG8rid/7733mhPAQoUKRZ1X9vjjj0u1atVk0KBBqWonAJfLxE410GlANfvM1ywAvGzDhg3mPAgAYL9y5cpJ/vz5zb7Z72IO5p955hkzwnXddddJmzZtpEmTJlKpUiUpUqSIbN26VX744QeZN2+erFixQq6//nq59tpr09tyAPBxT2ys/FYIBkgHHf3Rcx4AgP20fkmFChWijsyrcePGyVdffSWnnHKK9OnTR3wdzJ999tny9ddfm4B94sSJ8vrrr5t1V//9918pW7asqXDfq1cv6d69u6l4DwCwn98KwQCppuc527ZtI80eABxE98l/5pFmH1hv/oUXXpAxY8akZVlk1wTzAaeddpq5AADcwU+FYIBU02rJimAeANwRzI8bNy4nkA/Q23q/10boWWMFAHxAA/iePXsSyANxCszJJJgHAOfQffKGCHPmNbU+nvvdjGAeAAAggk2bNplrnZ8JAHAG3Sdv+v/9cyidIx/P/W5GMA8AABDBjh07zHWJEiXsbgoA4P+VLFkyZ/8cSlPpmzZtmus+zUz0Woq9IpgHAACIYNeuXWZJ3mjL8gIAMuvII4+U3bt3S3Z2dtjfn3nmmblut2rVSryIYB6Aa2lV0ldffdWT1UkBOMPOnTulePHidjcDABBE98uWZcmePXsO+52eFwav4qP0thfPF+OuZh+gvSC//vqrbN68+bAekTPOOCMVbQOAiHR5teAdtS6/plXbASDVI/M6AgQAcI7AfnlXmH309OnTw/4fvd9rhYATCuYXLlwol19+uVlnXntEgmVlZcmhQ4dS1T4AiLnHVZdf89pOGoC9GJkHAOcJ7Jd37tzp6wKlCaXZ9+/fX5o0aSLLly+XLVu2yNatW3MuehsA0knXS4/nfgBIFME8ADg7mA/Vvn37w+6Ldr/vRuZ/+eUXeffdd6VWrVqpbxEA5OG4446L634ASBRp9gDg7DT7UJqlqdMvg7M4dXqmF7M3ExqZ1zdC58sDgB0CO+lgXt1JA043evRoM0Jy8ODBnPv05KpgwYKHVROePXu2mY63atUqcQtG5gHAXSPzSuso6dRwXY6uS5cuUrt2bXGiK6+80hwXQy/t2rVL38j8DTfcILfddpts3LhRTjzxRHPADnbSSScl8rQAEDPdSesceU2t1xF5AnnAHmeddZYJ3r/++mtp3ry5ue+LL74wcxi1vsXevXulSJEi5v7PP/9cqlatKjVr1hS30ErJ5cqVs7sZAIAgRxxxhLkOV80+4MYbb5TFixebnydPnixjxoxxZEV7DdxffvnlXPcVLlw4fcH8BRdcYK579+6dc5/2IGgxPArgAcgUDeAJ4gF71alTRypWrGhG3QPBvP7cuXNn+eyzz8zISGCEXu/X4N9NdMWe/Pnz290MAECQwH45O8I68+PGjcsJ5AP0tt6vo/VOooF7okX8EkqzX7NmzWGX1atX51wDAAD/0ABdR90D9GcN4Fu1apVz/7///mtGRNwYzOfLl9DpEgAgTQL75ewIwfxXX30V1/1uldDIfLVq1VLfEgBIgAYHpNoD9tIA/eabbzbz5jVo//bbb00gf+DAATOnXn355Zeyb98+gnkAQNpH5suUKRPX/Xb66KOPDiu0evfdd5tLWoJ5pcVrnnzySfnxxx/N7Xr16slNN93kqnlwANxNi94FVyrVong6lx5AZuko/O7du82Ihy5Tq51rOs9cA/qrrrrKzJvXFPsaNWqYOfPx0ul7kU7Y0k3/tk4j1I4JwO32799vrrVjDXCzwLTuffv2hd0/161bV4oWLRr2/lTtzwsUKGCmmCdLO7lHjRqV676jjjoqtjYk8gc//vhjOf/886VBgwbSsmVLc9/8+fPlhBNOkClTpkibNm0SeVoAiGtEPjiQV3pbi+IxQg9kli5VW7lyZZNSr8G8BvGqUqVKUqVKFVmwYIH5XevWrRN6/hUrVpipfHbYvn27rF+/XqZNm2bL3wfSYdasWXY3AUhKICD//vvvw+6fS5QoIW+++WbY/5uq/fnZZ5+dkqVLixUrlvCS7wkF84MGDZJbbrlFRo4cedj9OlJGMA8g3TS1PtL9BPNA5unIgo6+azB/++2359x/xhlnyPTp003hoWuvvTah59bBguOPP17sMGLECDnmmGOkQ4cOtvx9INUj8zNnzjRBSKzVsgEnClSxb9iwYcT9s3YgL1myJOd2kyZNUtqRpSPzdkuoBZpa//bbbx92v1a319R7AEg3TeON534A6Q/mBwwYYEZLAiPzSn++/vrrTRCR6Hx5nRtpV0X5wN8NXYYXcDMN5Nmm4WaBfXOhQoXCbsuawTlv3rxc9+myqd98843jBn10qoAu+R7aUVC2bNk8/29CFV10HtzSpUsPu1/vO/rooxN5SgCIi+6IdY58MM0MctoOGvALDdS1+J2mCpYvXz5XML9z586cJezcRovf2TVfHwAQXmC/nC9CgdJoGZxOM2PGDHN8DL6cdtpp6RuZ79u3r1xzzTVmGbpTTz01Z868Fp669dZbE3lKAIib7nN0jjzV7AH7HXvssaZQXLgVcMLd7xY66kOxMABwZjHHghEyTNySwTl+/HhzSVRCwfzgwYOlePHi8thjj8ldd92VU+Rm6NChcuONN8b8PFq1Ty+//fZbzpy4e++9V9q3b59IswD4kAbwBPEA0kWLG+3atcvuZgAAgmjGl9KYNFoGZ3CxZC9mcCYUzGsJfi2Ap5e83shotPKtFtGrXbu26bV/5ZVXpHPnzmZ9Wg3sAQAA7KTnN1rNHgDgHLHEoA/5IIMz6RJ8iQTxAeedd16u2w888IAZqV+4cCHBPAAAsB0j8wDgPIH98pF5LA3n9QzOmIP5Ro0amVL+pUuXNksA6Oh8JFolMF6HDh2Sd955R3bv3i0tWrQI+xidsxY8b23Hjh1x/x0AAIB4Bi0CI0AAAGdIJjvcl8G8pr8H1qPUn6MF8/H4/vvvTfC+d+9e07Py/vvvS7169SKu9Tps2LCU/F0AAIC8EMwDgPMQzMcZzA8ZMiTnZy10lyq6VI0uabd9+3Z599135YorrpA5c+aEDei12F5wtXwdma9SpUrK2gIAABCMNHsAcGea/aJFizw9Xz7hdeZr1Kgh//zzz2H3b9u2zfwu3iVfdE3axo0bm5H3k08+WZ566qmwj9XMgBIlSuS6AAAApIuO+uhJI2vNA4CzRuYLFy4ccWk6rVzfvHlz6dWrl7nW216UUDCvS8npHPdQOp/9999/T6pBerBkPVcASD3toX711VfNtROeB7BbLNtyYNRHa/oAAJxBO1mPjDAqr/v04CXplN724nlLXNXsP/zww5yfP/74YylZsmTObQ3utUBe9erVY34+TZvXNeWrVq1qelfeeOMNmT17tnluAEDqaI908IFN117VJVvseh7AbrFuy2XKlDHXmpHo97mZAOAUf//9d87+OZSm1ke632vp9nEF8126dDHXWvxO57YH0xSHY489Vh577LGYn2/z5s0m9eHPP/80HQMnnXSSCeTbtGkTT7MQhR/migCILlIPta69Gs9+IVXPA9gtnm25YsWK5nrDhg3mPAcAYD/dJ1f8//1zKI174rnfN2n2mgKvFx1J10A8cDuQGr9y5Urp1KlTzM83btw4k7Kv/1efb+bMmQTyKeSXuSIAoovWQ23H8wB2i2dbrlSpkrnWgQcAgDPoPrnS/++fQ2mnrGZbBdM4yIsDDwnNmV+zZo2ULVs29a1ByvhprgiA6FLVQ+2nnm54Wzzb8lFHHWWK9RLMA4Bz6D65YoSR+XAsyxIvSiiYv/HGG+Xpp58+7P5nn31Wbr755lS0C0liBA1Aqnuo/dTTDW+LZ1vWqYUVKlQgmAcAlwTzi3w0qBnXnPmA9957L1cxvIBTTz1VRo4cKU8++WQq2oYkMIIGIJgW9tL5wMnW0EjV8wB2i2db1hNGnZ8JAHBGJXstnl4xQjBPAbw8aEXX4Er2Abruu1YWhHNGHYJ7pRhBA/xNv/+p2Aek6nkAu8W6Leu8TEbmAcAZAvvjShHmzPtpUDOhNPtatWrJjBkzDrt/+vTpUqNGjVS0CykadVi4cKFMmDDBXGvWBAAAiI+O/hDMA4AzBPbHFSOMzPtpWmBCI/O33nqrXH/99fLXX39J69atzX26xrwuS0eKvbMwggb4G8tTAsnT0R/S7AHAGQL744pRCuD5ZVpgQsF87969zXJyDzzwgAwfPtzcp2uvjho1yiyDBgCwn/ZCB0+10V5qPbgBiE/16tXNNMLt27eHnWYIAMicVatWmZVGSkbZH/tlMCOhNHt17bXXyu+//y6bNm2SHTt2yOrVqwnkAcAh/FTJFUi3wDzLX375xe6mAIDvBYL0aIMZzZs3N7GpXuttr0o4mD948KDMnDlTJk2alLNun6Y8aHVBAIC9WJ4SSJ3atWuba74/AODsYH6RzwYzEkqzX7t2rbRr107WrVtn0u3btGkjxYsXN+mbenv06NGpbyls55d0FcAL/FTJFUj38U1TOcuXL08wDwAOoPviTp06RfxdpPu9GL8kNDJ/0003SZMmTWTr1q1StGjRnPu7du1qCuHBe/yUrgJ4gZ8quQKZOL5poE8wDwD20iXSt2zZEnFwYv/+/XHd78uR+S+++EIWLFgghQoVynW/FsH7448/UtU2OESkdBWtEElgADiXXyq5Apk4vul3aOnSpRluIQAgWKBTNVIwXygkPs3rfl+OzGdnZ8uhQ4cOu18L4mm6PbyFubeAe2lA0rNnTwJ5IMnjW2BkPlAnCACQeYH9c61atcL+/tNPP/XVNMOEgvm2bdvmWk8+KyvLFL4bMmSIdOjQIZXtgwMw9xYA4Pfjm963c+dOs4oPAMC+YL5y5cpSrFixsNlWr7766mH3e3lQI6Fg/tFHH5X58+dLvXr1ZO/evXL55ZfnpNizhrH3MPcWbhTYoXu1eimAzB7fAgH+jz/+mLH2AQBy031wpI7Y6dOnh72/Ro0a4lUJzZmvUqWKfPfddzJx4kRzraPyffr0ke7du+cqiAfvYO4t3ERPxoPnwerJOh2NyWE1C/j9+Ka/03Ocb775Rs4666yMtxMAIGYffOGFF9rdDMfIsuKc/HXgwAGpW7eufPTRR3L88ceLnXbs2GGWi9m+fbuUKFHC1rYAcE7QqRWpQy1cuJAgNEF0jsSHY5N3nXrqqVK9enV5/fXX7W4KkBA9j582bZqZFluwYEG7mwPEXcm+bNmy8sYbb8hll1122O/9eA4Yd5q9fvE1tR4AnIiCjZmp9s30BfhRo0aNZMmSJXY3AwB8Oyof2BeH08yHU4MTmjM/YMAAMypz8ODB1LcIAFxYsNGrc/TpHAH+p3Hjxmbb10J4AIDM0s5UXTmtdu3aER/z0EMPmZH4CRMmmOuRI0eKlyU0Z/6rr76SWbNmySeffCInnnjiYdUEJ02alKr2AUBcAr2ywaPJ6e6V9XIaOqtZALmDeZ2d+O2338oZZ5xhd3MAwHfBfMOGDSVfvujj0c2aNfP0aHzSwXypUqXkggsuSH1rAPhCuoupZbJgY6Q0dP37XjiQ2NE5AjiVruJTpEgRc0JJMA8AmaX73i5dukR9zCKfFexNKJh/+eWXU98SAL6QqVHsTPXKRktD98pBhNUsgP8qUKCAnHzyycybB4AM27Jli6xZs8ZkSPkxUzKlc+YBIBFeLKbmlzR0DeB79uxJIA/f0xNJgnkAyCyd3qQiBfOLPHiOmdJgXqsGbt261fyscxX0dqQLAPilmJofK6cCfta0aVNZuXKlGSUCAGTGggULzLKvkQZLfvbgOWZK0+w7d+4shQsXNj/nNVcBAMLNX9q/f78nR7FJQwf848wzzzRF8ObOncv5EABkyOzZs02tkkjF747zSaZkwsH8kCFDwv4MANGEzl/SUa3Fixfn+r0Xgl8/VU4F/KxatWpSvXp1c2JJMA8A6bdv3z4zMv/ggw9GfEwznxbsTagAHgDEItz8JQ3kx44dK4UKFWIU2yf8VlkW/hid//zzz+1uBgD45jxi7969Zt8bzUM+zJSMOZgvXbq0ZGVlxfRY5pEBiDZPSQN5LaYG7/NjZVl4n55Q6so+//zzj5QpU8bu5gCAp2kmlC6NftJJJ+X52GY+y5SMOZh/8sknc37Wg9f9998v5557rrRo0cLc9+WXX8rHH38sgwcPTk9LAbiOX+cvIXplWe0199OBFt7TqlUrc63z5rt27Wp3cwDAF/Pl8+fPb3dT3FvN/oorrsi5zJ8/X+677z5588035cYbbzQX/VnvmzNnTnpbDCBs0PTqq686bvkNKr37m18ry8Jf8+YBAOmj6fU6aJxXir1fJTRnXkfgw6VJtmvXTgYNGpSKdgGulen5wU5PY/bj/CW/bIN5/R0yM+BlemJJMA8A6aW1lvKaL7/Ix7V5Yh6ZD6bzwz744IPD7tf7mDsGP9PAunnz5tKrVy9zrbftSGN24gi9zpH32w7Wy9tgLH+HzAx42VlnnSXLli2Tv/76y+6mAIBnffbZZ2a+/Mknn+yIc2+nybJ0sdQ4jR8/Xq6++mpp3759zkmZBg8zZsyQF198Ua688krJhB07dkjJkiVl+/btUqJEiYz8TSAS/Q7oTiTUwoUL0xa8aGq97rxCTZgwIWqBOT/3YHpZprbBeP+O37Y3jk3+sGnTJqlYsaIphKdTEAE3OHDggEybNk06dOggBQsWtLs5QJ6aNGkitWrVkrfeessR596eGJnXYF3nzetJyqRJk8xFf543b17GAnnAaeyYH5xIGrPfezC9LFPbYLx/h8wMeFH58uXNNv3hhx/a3RQA8KTff/9dlixZIueff37Y3/9MbZ7EgnmlB7DXX39dvvnmG3PRnzlRg5/ZMT843jRmt6Tlw9nbIHPhgf8677zzTB0hnc8JAEitjz76yFSw12zwcI7jfCTxYB6Z59SK5bB3frAWmNN0Ik2t1+uRI0dGfCw9mN6WqW2QufDAf+lo0e7duymEBwBpMGXKFDn99NOldOnSYX/fjPORxObMO4Wf5iU6vWI53DE/mLlF/uCUavZ+5adjk9/pKVSNGjXMqNHzzz9vd3OAPDFnHm6hHaVaWP3BBx+UW2+9NepjF/n4fIRg3gUIwJDOjiG9HW00H0B8/HJswn/ddNNNpnbQunXrJCsry+7mAFERzMMtJk+eLF27djVBeu3ate1ujmORZu8CpEbDrrR8AEDeqfZapGnp0qV2NwUAPEOLix5//PEE8nkokNcDYD+KOyDVNKODrA4ASJ7O59QMDD3xbNiwod3NAQDXO3TokCl+d9VVV9ndFO8E8926dYv5STXdDKkTKO4QmhpNMAYAgL0KFSoknTp1krffflvuvfdeUu0BIElz586Vv/76S7p06WJ3U7wTzOv8vwCdZv/++++b+5o0aWLu0zUAt23bFlfQj/hSo/W99WtxBwAAnOryyy+XN954Q7777jtp0KCB3c0BAFd77bXXTHHRcDXDkGAw//LLL+caFb744otl9OjRZu2/QDrEddddR7GfNCI1GgAA52nbtq2ULVtWXn/9dYJ5AEjC3r175d133zXFRSNlOvm5en1KCuC99NJLMnDgwJxAXunPumyA/g4AAMAvtCr4pZdeakbndXADAJAYnSuvq8J079497O91UFlH7Hv16mWu9bafJRTMHzx4UH766afD7tf7srOzxSu01+fVV1811wAAAJHoieeGDRtkzpw5djcFAFxLM5x0GnedOnUO+53GZME1xJTe9nOsllA1e60s2KdPH1m1apU0bdrU3Kdvoi5x5ZWqg6FrcWsBOp23DgAAEEpTPWvWrGnmerZu3dru5gCA62zZskWmTp0qjzzySNzLdTfzabp9QsH8o48+KhUqVJDHHntM/vzzT3NfxYoV5fbbb5fbbrtN3C5Sr48WoPPrhgIAACLTuZ06Ov/kk0/Kc889J0WLFrW7SQDgKjpXXqcqXXLJJWF/z3LdKUqzz5cvnxmp/uOPP0wFe73oz3pf8Dx6t4rW6+N3fpx64MfXDACInwbzOtdT53wCAOKjmU1t2rQxg8bh6KBqjx49ct13p8+X604omA+m1eu9VsGeXp/w/Fhwwk2vmU4HALCXnifo9MNXXnnF7qYAgKusXr1avvjii8OC9WB6Hq4Bf0DPnj3NNG8/SyiY37Rpk3nzKlWqJAUKFDCj8cEXt9PeHc0yCOb3Xh8/Fpxw02t2U6cDAHhZ3759Zdq0abJ27Vq7mwIArjFmzBgpVaqUXHDBBTGfl7/KIFZic+avvPJKWbdunQwePNjMlY+0BqCbabE7nSPPGob+LTjhltdMjQcAcA5dok6X6h07dqwMHz7c7uYAgOPt37/fLG9+xRVXRKw3Mn369JjOyxf5bA36hIL5efPmmTSIBg0aiJfpBuCHjSAWfpx64JbX7JZOBwDwgyOPPNJkL44bN07uvfdeswY9ACCy999/X/766y/p169fTKuMRTovv9OHq5EllGZfpUoVsSwr9a2BY/lx6oFbXrNbOh0AwC/0hFRX+/nggw/sbgoAON6oUaPkjDPOkOOPPz6mDNRw5+WLXDQ91vZgXpddGTRokPz222+pbxEcS3u2Fi5cKBMmTDDXfig44YbX7JZOBwDwi5NOOklOO+00efbZZ+1uCgA42rJly2TOnDkyYMCAuDJQhwwZkuu83K+rkSWUZq9r/+3Zs0dq1qwpRxxxxGEpZFu2bElV++Awfpx64IbX7KYaD36bywTAn2644QZzvqQnqhrcAwAO99xzz5mi6l27do0r07R9+/YxPc7rmaoFEh2ZB+Asbuh08ONcJgD+pCemeoKqJ6ovvPCC3c0BAMfZunWrWWpOM74j1RcJl+EULgO12f9nqgafZ/ohUzXLsnHy+4gRI2TSpEny008/mcqFp556qjmxr1OnTkz/f8eOHVKyZEnZvn2759a6B7xGR+R12bxQOn3B6zta+AvHJgRoNXs919EVgMqWLWt3cwA5cOCAWTqxQ4cOFGeE7R555BH5z3/+I+vXr5fy5csf9ntdclmXn4vn3HGRzzJA88VzchL8c7RLrALzI/QD+fTTT80Opm3btrJ79+74XwkAR/PrXCYA/tW/f39z/cwzz9jdFABwlL1798rjjz9uVv8IF8hrUB4ukM/r3LFZs2bmOf0QyMeVZl+6dGlTmfXoo4+WUqVKhV1bXgf59f5Dhw7F9JwzZszIdXv8+PHm+ZcsWWIqGgLwjk8++cSXc5kA+Fe5cuWkb9++JpgfOHCgFC9e3O4mAYAjvPLKK7Jp06bDijjHErBz7phAMP/ZZ5/JUUcdlfNzuGA+WZqSqAJ/J9S+ffvMJSCeLAAgE/yW2hPP+6JzokL5qefUydhugfS57bbb5Pnnn5cxY8aYnwHA7w4ePGjmtl9wwQURp1dHCtg5d0wwmG/VqpWsWbNGqlevLmeeeWbKG5KdnS0333yztGzZUurXrx/2MTrvbNiwYSn/20AqUNwtski9q23atMl4W5Ab2y2QXlWrVpUePXqYdNLrr79eChcubHeTAMBW77zzjqxevdpcRxKuoJ0G8rpcNBIsgJcvXz6pVq2anHXWWdK6dWsT1FeuXFlS4dprr5Xp06fLvHnzIj5nuJH5KlWq2FJkiJEsBKO4W3S8P87E55IeFMBDKC30W69ePVPVXtPuAbtQAA9209CzQYMGUqFCBfn444/zjLX2798vhQoVIuZKtgBeIL3+iiuuMD0pejDSwL527drSr18/eeutt8y8h0RoT/VHH30kn3/+edTOAe3N1hOj4ItdI1l6AqwVFvVab8PfKO4WXaB3NZidy4UEiqrotZ/+dii2WyAz6tata5aq0xGmWOsKAYAXaWfSsmXL5K677oop1rr66qtl+fLlBPKRWAn6999/rVmzZlmDBw+2Tj/9dKtw4cJWvnz5rHr16sX8HNnZ2daAAQOsSpUqWT///HPcbdi+fbtmFZjrTFm4cKH5m6EXvR/+xXYRG30/JkyYYOv7cscdd+T6jPS2H/52OGy36WHHsQnO99VXX5nt4q233rK7KfCx/fv3W5MnTzbXgB1atmxptWjRwsSB4XBuEp+4RuaDFSlSxKTa33PPPWYe+4033ihHHnmkSSWLlS5Lp0Wx3njjDVPhdePGjeby77//ilMxkgU3jDw7VbzLhaR6FFufJ3juldLbmRglt/NvR8J2C2ROkyZNTJ2QBx54wNQJAgC/0Szs+fPnm1H5SMXUibXiE3cwr/MW5s6dawJ4nTuvy9TpOqpbt26VZ5991hTJi9WoUaPMnEKde1+xYsWcy8SJE8WpIlVWZIkEaNEwnWushTn0euTIkXY3ydXSMZ3FzgOEUw9ObLdA5ui50/fff28GMQDAb3PlBw0aZDo2O3XqFPFxxFppqmavdCReR5G0or1Wt9e58npA0gA8EXHU3nOMcJUVGclCgG4HbAvpG8Xu1q1bUu+vnQcIJx+c2G6BzGjRooV07txZBg8eLBdddBGV7QH4xvvvvy+LFy+WmTNnRl3inFgrjSPzX3zxhZQpU8YE9WeffbZJF0s0kHczRrIAd45i25lWTko7APXggw/KunXrTGV7APDLuvJ33323iR01hsxreqUO3hBrpWFput27d5uAfvbs2WbOw9KlS82oko7Sa6q8XpcrV04yheV/AG9K95Jpdi4tybKW3n+POTYhL7179zar+KxatcrUDAIyhaXpYIdx48aZqvRLliyRRo0ahX2MDnAEj8brAIgOoCKFwXyonTt3mnXhNbDXAP+7774zS9Xp8gGZwAkT4F2hO3W9Tc8s8uKEkwGOTcjL+vXrzfmSFoEaMmSI3c2BjxDMI9O0sLnu70477TSzlLkdgzhelnA1e1WsWDE56qijzKV06dJSoEAB+fHHH1PXOgC+xXQWeGHFACCcKlWqyPXXXy+PPvqobN682e7mAEDaaIH0TZs2yf333++6IsGeC+Z1KRUtXKAnR+3btzeV7E899VR5/vnnpUKFCvLcc8/J6tWr09daAL4S71J28DdOBuAmOiqfL18+s1QdAHjRtm3bZMSIEdK3b1+pVauWK4sEe6qavQbvOm9eA3ddlu6JJ54wc+Vr1qyZvhYCgEvYPVfb7zgZgJtoQWFdpknT7K+77jqpU6eO3U0CgJS67777ZN++fXLvvfdGfRwV7DM0Z14rr2oQ75QTI+YlAnAKJ8zVhjNqLXBsQqz27t0rJ5xwghkU+fjjj6Mu1wSkAnPmkSlaQ61BgwYm+0iPxbFgUCTDBfDsxgkTACegcIuz2H0ywLEJ8Zg6dap06tRJ3nnnHbnwwgvtbg48jmAemaDhpWZv61z5ZcuWSaFChexukmfFlWYPwDvsDnj8MlfbLe+tl7YHbb/bXwP8o2PHjnL++efLLbfcYuoRaXFhAHCzN998U+bOnSuffPIJgbyTq9kDcCdNd9KR5F69epnrWNOf4L252hrE66gg2wNgnyeffFL+/vvvqNWeAcANNDvttttuM5lGbdq0sbs5nkcwD6QpQHr11VcduSQWy3elXqBwSzA3FG4JdOpomm8wtgcgs6pXr26K4T322GOycuVKu5sDAAkbNmyYCegff/xxu5viCwTzgM9GvVm+Kz202J3OkZ8wYYK5znTRtVR06gRjewAySzsEdf35G264wcw3BQA3Fr176qmnZPDgwWZ/hvQjmAd8Nurt5pRwp9OR+J49ezp+RD6WYD0T24OTM1iATCtatKg5Cf70009NMTwAcJPs7GwZMGCAWZ3j1ltvtbs5vkEwD/hs1NutKeFIrWjBeia2B6dnsAB20PoVXbp0MaPzOoceANxi9OjRpujd888/T9G7DCKYB3w46u22lHC3c+IIdLhOHa2qnYntwQ0ZLIBdRo0aJQcPHpTrr7/e7qYAQEzWrFljzin69esnZ599tt3N8RWCecCno95uSgl3MyePQId26nz00UcZ2R7ckMEC2KVChQryzDPPyMSJE+W9996zuzkAkGd6fe/evaVs2bLyyCOPuGpgwwuyLBdXWdFKiSVLlpTt27dLiRIl7G4O4Mk1u5HcdqABfCgNnP28XXj9feHYhGTpqVm3bt1k/vz5smLFCilXrpzdTYJHHDhwQKZNmyYdOnSQggUL2t0ceMBzzz1nMolmzpwZcVReBzKCM/J04EsHFJA8RuaBNGDUG4oRaPdnsAB2yMrKMun2hw4dIt0egGOtXr3aHM/79+8fMZBnal16EczDNUjPgdu4pYaCHajbAOSdbv/ss8/K22+/Le+++67dzQGAsOn1mjkUbanbSJXt/T6wkSoE83AFJ887thMdHM7GCHR0ZLAA0V166aUm3f7aa6+VzZs3290cAMihVevnzJkjL730khQvXjzsY/S8fcGCBWF/x8BGajBnHo6Xyfm1bprrzvwj93DqduXUdrkdxyak0qZNm6R+/frmO/rhhx9KvnyMwyBxzJlHKixfvlxOOeUUMzKvc+bjOX8PrJ6jRXeRPI4IcLxMzTt20+g/84/cxYkj0G7a3gE/K1++vLzyyisydepUeeKJJ+xuDgCf2717t1x88cVSq1YtefTRRyM+Ltp5+uDBg9PUOv8hmIfjZWLesduC40x0cHglhd8rryOV3La9A36no6i33367DBo0iO8pAFvdcMMNsnbtWlPPo2jRohEfF+k83WmDG25HMA/Hy8S8Y7dVHU93B4dXRm298jpSzW3bOwCRBx54QJo0aSKXXHKJbN261e7mAPAhHRx5+eWXzXz5448/Pu7zdw3ktfAtUoc583C04Dm9Kl3ze9247nXonHm9nYqK4G58LxJ5HX6eL+6Vz9ipODYhXX777Tdp2LChtG7d2lS41yXsgHgwZx6JWrlypTRu3FguuOACM/UnVn4+38oERubhmlHVSZMmpS01x41Vx9O1tJdXRm2jvQ6/j9i7cXsHIHLssceaytF6PNR16AEgE/bu3WuygipXrhyx4F2kqY1OrBvkJYzMw5HsGjmk99A7o7aRXsfYsWPl6quvdv3rSwW29/Tg2IRMzFkdM2aM2W/pSD0QK0bmkYgBAwbIuHHjZPHixXLSSSeFfQyrLNmDkfk4UEgrc+waHab30DujtpFeR6FChTyReZAKbO+AOz3yyCNmuTpNd/3777/tbg4AD9OUep0j/+STT0YM5Cmsa58CNv5tV6G3yXsV7BGZbtvdunVz/ahtuNcR6cDCtgXALYoUKWJS7XWd54suukg++eQTRlkBpJxm/1xzzTXSp08f6devX0KDcG49h3QLRuZjQG9T5nlldNjNvDJqG/o6wm1bSk+MAcAtqlWrJu+9957MmzdPbr75ZrubA8Bjfv/9d+natavpNNR58tEKbjIIZx+CeR8VBHObdBV4A3S0PhQddADc5vTTTzfpr3oZPXq03c0B4BH//vuvdOnSxWT8aKdh4cKFoz6eQTj7kGYfA3qb7KM7AXYESDXSwQB4Rd++fWXZsmWmKJ6u+9yqVSu7mwTAxbQ2uqbV//DDDzJ//nwpX768r6Zoug0j8zGgtwnwFjroAHjJ448/bkbptSDemjVr7G4OABfToPzNN9+U8ePHx71ahlemaLoJwXyMSPkGvIMOOgBeoqmw77zzjlkKsXPnzrJz5067mwTAhT788EO5++675Z577pGLL77Y7uYgBqwzD8C3WGcd6cCxCXZZsWKFtGjRwuzPpk6dGnEpTvgX68wjEh2sbN26tZx77rlmnny+fIz5ugFz5h2KIANIP2oyAPCSE044QT744ANp166dXHHFFfL6669zQg4gTz/++KN07NhRGjduLG+88Qb7DRfhk3IgTfdt3ry59OrVy1zrbQAAgLycddZZJoifOHGi3HLLLaaYFQBEW4JOR+MrVqxo0uyLFi1qd5MQB4J5h2FNewCpovuNV199lf0H4DMXXnihWRf66aefNjV/ACCcrVu3mkweXUP+448/ltKlS9vdJMSJNHuHYcksAKmgGT3BHYNa8I+TesA/rr32Wtm4caPcddddZmmpq666yu4mAXDYWvLnnXee/Pnnn2YJumOOOcbuJiEBjMw7DEtmAUgWGT4A1NChQ+Waa64xa9F/9NFHdjcHgEMcPHhQLr30Uvn2229NQcS6deva3SQkiGDeYVgyC0A6M3wA+Iemzj7//PNy/vnnm2Wm5syZY3eTANgsOztbrr76arPixbvvvkuM4XKk2TuQpsJ269aNavYAEkKGD4CA/Pnzm+rUmk6r1apnzJghp512mt3NAmBTIN+vXz9TT0cv7du3t7tJSBIj8w6lAXzPnj0J5AHEjQwfAMGKFClilqw75ZRTzMn7l19+aXeTAGSYrmwxYMAAGTdunLz88sty+eWX290kpAAj8wDgQWT4AAh2xBFHmHnzGsxr9WqtXK3L3wLwRyB/ww03yOjRo+Wll14yy1/DGwjmAcCjNIAniAcQUKxYMVPsSgP6tm3byvTp06Vly5Z2NwtAmlPrr7vuOhkzZoy8+OKLea5socVyGQhwD9LsAQAAfOLII480QXyjRo3k3HPPlblz59rdJABpDOR1RQsN5DW9XgvfRaNT8jRjR0fu9Vpvw9kI5gEAAHwW0Gsl66ZNm5pR+lmzZtndJABpWH6ud+/eJq1+/PjxMY3Is6yt+xDMAwA8T09GtHIvJyXA/1LudQ796aefbgL6t99+2+4mAUiRPXv2SNeuXeX111+X1157LaY58ixr604E8wAATyNtEIhcFO/DDz80a9Bfeuml8uyzz9rdJABJ2rJli7Rp00Y+++wzmTJlSsxV61nW1p0I5gEAnkXaIBBdoUKFZMKECXLzzTebatf33HOPqXwNwH3Wr19vsm1WrlxpgnlduSJWLGvrTlSzBwB4VrS0QU5QgP/Kly+fPPbYY1KxYkVzMr9x40azhFWBApwmAm7x448/mlUq9Ps8f/58qVOnTtxV61nW1n3YSwMAPIu0QSA2WVlZcvvtt0v58uVN0ay//vpL3nrrLSlatKjdTQOQhy+//FI6deoklSpVkhkzZsgxxxwT9fE64h6ctaadeBrIK5a1dRfS7BEVRaMAd+K7+1+kDQLx0doSOo9+5syZZt6tBvUAnGvy5Mly9tlnywknnCBffPFFnoE808+8hWAeEVE0CnCnVH53vdApoKMNCxcuNPOC9XrkyJF2NwlwtA4dOpjl6n755Rc55ZRTZNmyZXY3CUAIrW1x//33m6r1+p39+OOPpVSpUnkez6dPnx7291Std6csy8VVTnbs2CElS5aU7du3S4kSJexujqfoF16DgFB6IsyIlruFmyMF70jldzdaGh4i49gEr1i3bp107tzZBPXaGaZzaeFuBw4ckGnTppngr2DBgnY3B0ksPafrxuuSkkOHDpXBgwebufKR6PKTmn4fDef47sTIvAdHoVKBtSa9uV2QbeF9qfruxpqG54TvhhPaAHhR1apVZd68eSbwu+CCC+S+++6T7Oxsu5sFiN8r1p922mny0UcfybvvvitDhgyJGsjXqFEjz0Ce6WfuZWswP3fuXDnvvPNMsQYtvKJzPuxEoPM/FI3y3nbBHCl/SNV3N5ZOASd8N5zQBsDLihUrJhMnTpThw4eboOGSSy6R3bt3290swJcWLFggTZo0MWvJ68/ayRaNjsivWbMm7O/0+8z0M/ezNZjXg8HJJ58szz33nNiNQCc3ikZ5b7sg28IfUvXdzatTwAnfDSe0AfADHXDR9efff/99M9+2ZcuWsnbtWrubBfjKSy+9JGeeeabUrVtXvvrqKxNDRaPHwmgj8hro9+zZ03fn9l5jazCvG1GgcIPdCHQOR9Eob20XZFv4Ryq+u3l1Cjjhu+GENgB+0qVLF7MEltaDaNy4sUydOtXuJgG+mB9/zTXXSJ8+fcw8+U8//VTKlSuX5/+Ldixs164dQbxHuGqd+X379plLcJGhVCHQCc/va016absIBGfBI5l+zLbwi1R8d7VTQAtehSuY6ITvhhPaAPjNiSeeKF9//bVceeWVZl3rgQMHygMPPCCFChWyu2mA5/zwww9masuqVavkxRdfNAG9ZsrEItKxsHr16hEr2sN9XFUAb8SIEaZCcOBSpUqVlD03aeX+EU+xLK9tF2RbIF66rYdLw3PCd8MJbQD8qEyZMmYt+scee0yefPJJOeOMM+S3336zu1mAZ+hiY+PHjzdLQ2rRycWLF8vVV18dcyAf6RipWdGrV69OQ4shfl+aTjdOnYulKVzxjMxrQJ/K5X9YtsvbEl1qi+0CcO53wwltCMbSdPATDTJ05HDr1q0ybty4PAtywV4sTed8O3fulOuuu05ee+016d27tzz99NOmEGWix0GnHSPh42A+FCdMsGv9bQCp47UTDY5N8Jtt27ZJ3759zTJZAwYMkEcffVSKFClid7MQBsG8sy1dutR0jm3YsEFGjx4t3bt3T9tAFbzBVWn2QDIolgU4D0vLAe5XqlQpefvtt+X555+XsWPHmk657777zu5mAa5x6NAhefzxx81x8IgjjpAlS5bEFMizqgtsDeZ37dpleqD0onQdRP153bp1djbLN+KZO+4FFMtyL79tq37BSQjgHZphee2115rvryZ96lrYw4YNMyPBACLTQSWtO6HFJPv3729WjIj13JSBKtgazGs11IYNG5qLuvXWW83P9957r53N8gU/joZRLMud/Lit+gUnIYD36NrXugb2oEGDZPjw4eYYu2zZMrubBThyNP6JJ54w35lNmzbJnDlzTEHJvKaoBA9wMFAFx8yZTwTzEhObj+r3ueNem5/rZX7fVr3Oq58vxybgvzRVWJewW7lypQwePNgE+MzTthdz5p3hl19+MWvGL1iwQG688UZ58MEHTXp9IvPjVeiyw6xW5B/MmffhqKbfR8MiLbUF5/H7tup1ZMsA3ta4cWOThanfc0251/OQ77//3u5mAbbRZeZ09F1H4//880+ZPXu2uR1LIB9palq3bt1YdtjHCOY9LNKXfv/+/a5IyUn3PGnmYTsf6WPepxV37TwJYT8ApFfhwoXl/vvvN99vXV5YA/y7775bdu/ebXfTgIz65ptvpGXLlnLLLbeYNeN1+onOlU/FAAcDVf5FMO9hkb70hQoVcvxoWLrnSafj+QkKUo+RW3+w6ySEegxA5mhBPE2710Beq3Yff/zx8t5775lieYCXbd26Va6//no55ZRTzBryOjc+lrXjQzHAgbAsF9u+fbseAcw1Drdw4ULz/oRe9P7A7ydMmJBzO9rzhD4u1v+bjnY78fnvuOOOXM+lt5E66dze4M/POZ37GY5NQHSrVq2yzjvvPPM9adu2rbVy5Uq7m+Qb+/fvtyZPnmyukV6HDh2yXnrpJatcuXJW8eLFrccffzzp9z30fPPOO+9MWXvhTgTzHpfslz5ckJruwFVP5sOdZOv9Tnz+dHc+AH6Q6Q6xdO5nODYBsZkyZYpVvXp1q2DBgtZdd91l7dq1y+4meR7BfGYsWbLEat68uTkWdO/e3dqwYUPKOrYZ4EAwgnkfSPRLHylITXfgmkhwHM9rTHXwne7OB8Dr7OgQY2QecIY9e/ZYQ4cOtYoUKWJVqVLFmjhxopWdnW13szyLYD69/vrrL+u6666z8uXLZ9WvX9+aPXt2XP+fTE/EiznzDpTqudeJzkeNp2J4KquLxztPOt55r6meh80cJsB9qxZQjwFwhqJFi8qQIUNkxYoV0qBBA7nkkkukadOmMmvWLLubBsRs165dMnz4cKlRo4a89tpr8thjj5mCd61atUq6cDW1mBANwbzDOKkgUzzBaKoD11grXCe640t1Be2OHTvmuk1QADi/Q8zuSvoA/keDoA8//NAs1ZU/f34555xzpG3btqZoHuBUukLUs88+KzVr1jSrNmiV+lWrVsnNN98sBQsWjOu5WI4XCbFczGupjE6cex1uzr2Tim9kOsU9NJ0/9L3o2LEjc5iABDhpv5Isrx2bgEzTNPtJkyZZdevWNd+liy++2Pr555/tbpYnkGafuuJ2r7/+ulWjRg0rKyvLuuKKK6zffvstqXNKJ8YBcD6C+QjsKC7h1LnXma5mH2/bMrXjCw02evTowU4XSCGn7FeSRTAPpMaBAwessWPHWsccc4xVoEABq3///tYff/xhd7NcjWA++Y6madOmWQ0aNDD7+fPPP9/6/vvv436eSHPjvdSxjcwgmHdQ8Ql65BKTiR1fPMUA7e58gbN4JUBF7AjmgdQXyXv44Yet0qVLW4UKFbL69u1r/fLLL3Y3y5UI5hNz8OBB65133rEaNWpk9u+nnXaaNW/ePFuXjgYUc+YdVHyCgkzx08+lfv36Mnbs2LTOe41nvhKF7+DEGhgA4OYiebfffrusWbNGhg0bJh988IHUqVNHLr30Ulm6dKndzYPH58S/9NJLUq9ePbnoooukVKlS8umnn8rcuXOlZcuWCT1nXnPjEy1cDX8imHdY8Qk3FGRKdbX9VARKWnBk+fLladvxRQrQdWcb2iZ2vlBUpQWA1CpZsqQMGjRIfvvtN3nmmWfM/rRhw4bSoUMH+eKLL+xuHjxk9+7d8uSTT5rCdn369DHBvJ6X6yoLWpwxKysr4XNmVkFCSrk5QSEdqYykurtj/Us7PqdI6fykQ8FNNTCQfqTZA5mhqeKvvvqqdcIJJ5jvXMuWLU0KuaZEIzzS7KPbuHGjNXToUKtMmTJW/vz5rZ49e1rLly+P+3n0nFCLIkc6Z2ZuPFIlS/8Rl9qxY4fppd2+fbuUKFEiZc+ro6vBI2p6u2vXrmZ0XnvN/Dryqr2KOhIeSnsqM/2eaC+njsiH0oyG0NHyVL8Hft8O/CAVn7OTvi9+l+nvbbqOTQDCy87Olo8++shkM3755Zdy7LHHynXXXWdGVI866ii7m+coBw4ckGnTpplshniXTvP6cUKXmHv77bfN0oi9e/eWgQMHmm0p2Tgi0jkA55RICcvFMlXN3imj0XZz0kgjGRRIl1R+3+l5t58d+29G5oHkJZr1tnjxYqtXr16mUF6RIkWs3r17m/u0CjkYmQ+2e/du66WXXrJOOeUUs8+uXr269eijj1r//PNP2gomk52HVCOYzwNBo3Pfi3CBEinvcNo2zjaZOcms2ZvKz4lgHrC/E27Tpk3WAw88YFWrVs08R8OGDa3Ro0dbO3bssPyMYN4yafM33HCDVbJkSbNGfLt27awpU6akZHpGpIEvu8+Z4V0UwHN4QTwncVq1/dBigdo5Fa5yuFMK9sGf33eq0iYm3u9tuJUDYv08WXUAcH7x0HHjxsW1Tzj66KPl7rvvllWrVsnUqVOlSpUqJvW+QoUKcvnll5tUc005hz/8+eef8sQTT0jjxo3NKkiaTj9gwACzfUyfPl06depk0uuTFa2IHUWSkRaWizEybw8njjRG+py0cAlTJOzjxG0lGr7v7hyVi/S5jR07Ns/PMx2fOSPzQPpGNgPH9kSsW7fOGjFiRE7BvLJly1rXX3+99eWXX/omDd9PI/OahTF+/HirTZs2Vr58+czUi27dulnvvfeetW/fvowdw7QQHucRSBeC+Rgw79UbB38Cs8xya60Jp33f3dYhkqxEguto9Tzy+jzTUQuEYB6w0jbnOHDp0aNHwn9DA/elS5daAwcOtCpVqmSer2bNmta9995r/fTTT5aXeT2Y1yBdU+YvueQSq2jRouazbdWqlfXiiy9aW7Zsydhx2G/HbtiHYD5GfCm9cfBP9iTdCdywLbp9hNsp77FbO0SSkUhwndf2Fu3zZGQecJ7QfV86O+d1nvSsWbOsq666yipRooR53rp165o2zJs3z3PL3HkxmNeCdbpE4UUXXWQVL17cfIb169e3Ro4caa1duzap5/bjcRjuQjDvQU4JRDItdIcbmmLvtoDSzQcVJ6184Nbvpds7RBKV6OtOJqMi1dkYHJuA1O0zI02XSccxZc+ePdakSZNMYF+uXLmcVPwrrrjCevfddz1RPM8rwfzKlStN5fkzzjjDrAevn5VWpb/vvvusZcuWpeRv+PU4DHchmPcYtwR76ep4CH0+p6VM++Wg4qa2OvV7GW+HiJc68RL93ibzHlDNHnAuOzrndUR+wYIF1qBBg3Lm2Ouca618/sQTT1jffvutdejQIctt3BrMb9u2zfroo4+sW2+91apTp475PHTpwU6dOlkvvPCC9ccff6T8bzIwATcgmPcQtwVQmep4SNVJut3BktsOKl7qSLHjexmtqFvoduimTrxYv0fp/r6l8/k5NgGpp3Pk7TymrFq1ynryySet1q1bW4ULFzZtKF26tNW5c2dzv87Bd0Nw75ZgXvefU6dOtW6//XarSZMmpoCdvufHHHOM1adPH+uDDz4w68Snk9vOq+FPBPMuFe5E1E3Bntt2kE4Iltz2njmhA8QJkvlehm53zZo1O2w7dNN24YTvUSba4edjE+CHY8q///5rzZ492xo6dKh15pln5gT3Rx11lNWlSxczcv/FF19YO3futJzGicG8FiTUue06xUGDd02XDwTvWqCwe/fupoDdL7/8krJVB2LdlhiYgNMRzLtQpBNRN53U0/GQGA4q7pPs9pPXvNEhQ4Y46rsU6QTJKd+jTLTDr8cmwK8dAhrcf/7552Z/rJXTA8F9VlaWdfzxx5usAg3w586da/u8e7uDeQ3G16xZY2oQ3HXXXVbbtm1NXYLAvliD98svv9waM2ZMSoP3ZJc/dUInEhBOgfSsXu8tixYtkp9//lmOO+44adasme1tefjhh3Pdp7e7detmfu7YsaNMnTo153d33nmn7W0OR9/LeO6383PU/xPp/ky/tw899JD5rJ2yPSJv+hndcccdub638Xwv9XF6efXVV+P6u+n8LkWiryv4derr1m1WTZ8+3RHfIyd9nwE4Yx+V7HlekSJF5MwzzzQXdeDAAVmxYoUsWbIk5/LOO+/Ivn37JCsry/ydk08+2VwHX0qXLi1ecejQIVm3bp15XwOXn376Sb755hvZsmWLeUzFihWlcePGMmDAAHOtl0qVKtl2Hh3psw8chwEnIphP4uTUDpFORIcPH54riNegvmvXrlKoUCGz43LaTijeACfZA20yn6MdHQ/RcFBxn1R0wkTa3tq3by///vtvwp0FmThBmjRp0mG/s+t75LTvMwB791EbNmyQ1157LaXneQULFpQGDRqYS58+fXIC/B9//DEnuNdgf968eebvB5QtWzYnsK9du7ZUrVrVBLx60SC3ZMmSpjPACQ4ePCibNm2SP//801z0daxevToncP/1119l//795rF6LlqrVi3zum688cacwF1fV6bRoQuvydLheXGpHTt2mB3b9u3bpUSJEmnZ8Tdv3vyw+xcuXGjbFz5Sm/JidydEJLEE6cl2qKTicwxtg94eOXJkzG0AUiHadmh3BpFmDvTq1euw+4cMGSLDhg0L+3/s+h6l+/uc7mMTgNTto8IJnB9kYr+6c+dOE/gGj2D/8ssv5nrr1q2HZQAEB/cVKlQw+5ojjzxSihcvbi6BnwPXxYoVk/z580u+fPnMRUfMZ86cKWeddZa5Pzs72wTdu3btMm0JXIf+/M8//+QE7nrZvHmzTtXNaZs+d7Vq1XJ1RgR+1k4J/VtO4MRzeyAZBPMJ7PgnTJggPXv2FLuEnoiGptZH4sYdVSp2uqn6HO0IluwO0NLN66/PT+9ZpO9qpGBe7x86dKh48X0kmAecJ57BED0/WL58ue2ZmXv27MkZ9Q4OpAO3N27caPY3gaBbR/9T6YgjjsjpJNApANqBENyZEPhZL0cffXTGAvZUZ2syQAM3I5h3ae9d8I5MxXKAsrsTIhGpCMSd/Dm6aYpHqgMgO16fUwNhrwh3gqTTfaJ9/7z4mRDMA+7YR+l5RLh6JGPHjpWrr77adecNOic/dGR99+7dZvQ9cNHH6Lz1pk2bmvR3HVEvUKDAYSP7gRF9p0nVuYMXjz3wKcvFMlEx2C3Vw0Pb6YSq0akQba3tVHyOTq1Q6pTK3+lazsuO1+eUZdG8Ltx3KtL3L5bPxKnf0WioZg84V+g+Jdz+yU0r7ritmr0XVkUBnIRgPs6dipNPLIPb5pZOiGQ6KuINxvI6gDspuHPaiUSqD6CZfn2cANgv9PsXy2cS+h3V5Z2cuv8NRjAPeH//5FZOD+ajnZs57dwIcAKC+Tg4OfgLx8kdD/GKtMZ2oq/N6Qdqp7Uv0gFU19R1w+vjBMB58vpMIm0jbtj/EswD7uelQRG3BPN5nRs47dwIcIJ8dqf5u31JE73fqXQOkM4Hs3MukL4/Oh8t2fdJ53XFs8RIMkuTOGnpvmB2LDeW17JdWthM2+X01+e05chS9b1ws7w+k7y+i07f/wJwN52HrXPktUaPXttRIM1vx4q8zs2cdm4EOILlYpkc/Yg2iuSlEXC/zLF2S++uk7ataHUZkvkcMvX6MjnKEu11uS3Dx67PJK+ReSdnVjAyDzifk46v4aTrWOHmkXm3fHZAJhHMJ7mD6dmzJyfmGQqWUx2MeTWFLp00rd5NQVWoTJwARNsnuKUTKZPi6fhwy/tGMA84m9M7VdN5rAgO5p0YFHNuBsSHYD6JHUzoSbvTTzAzKV1zlFN94HHigczJCEaj0wJt0d4ft83dd8L3LfB/Qve3Tj7BI5gHnMsNx7F0HisCwfxdd93l2A4Nzs2A2BHMJ7GDcduJeSa54WCJxNBrHl60tPC8iro58XuR6pGrVDyfW07wCOYB53LDuVsmRuaLFi3qimMRgOgogJdEUTmnFdVykniLlPityItbhPtcnFAUyImiFWwL7BPcUrwnFQU/g7edVBUQdUJRTwDu5oZzN7uOFU4pAgwgDpaLOWH0g1HK5EfSnD53za/4XFJXV8OJ6evpHLkK3XY6duzo+JEwrx2bALj/3C0d2UhuGpl3SzYWYKcs/UdcaseOHVKyZEnZvn27lChRwrZ26OiS9mZqry4jRvG/d82bNz/sfh3xTfS95PNI/n1Ix+fiBzpyEjwCraPImsGQyb+pozmaPZGMSJ//2LFjZf369ebn9u3bh90WIv3fcLy6PTnl2AQgMr+eKxw4cECmTZtmXv+IESNyHUuclGmXjmMb4EmWi/ll9COenkm39WKmeu6al0aTk/ksk30fnDynMNr7kujv0tW+dP3NwPOOHTs2bfMqQ7ehZs2aHfZ3wm1Xkbad0NF5p46EpYJfjk0A3Mfp1ezdVl8GsBvBvMPFE5S5IZANPXAks8NO5XM5TV6fZV5Ba7zvQ6zvpS5NZ+f7Ge19SfR3drQ1lc+bzk6XvDoNwm1X0bY/p544ppofjk0A3MnJ68y7YUABcBqCeQeLJyhzQiCb14l6pOAmkblr4Z7LKzv/vD7LvILEeN+HWD+XdAfD4ToUYu2sSfR36ZKuvxmtYn46X1ukbSrSduX0+ajp7lTw+rEJgHu5IZh3wjkt4BYE8w4WT1BmdyAby0hytB1zvFMJwj1XOlOOM0Xb2q9fv4ifZSzvo46ex/o+JBIEp+N9Dd1+mjZtetj2FG0bT/R36ZKuvxktqE5n4BxtW4i0HSQTMKcz2M5ElobXj00A3MsNwbwbOoUBpyhg95x9pGb5FDuXWom07FS3bt1yispEWu5E79fHBC6xiPRchQoVMgVSgtsSWMrFDYVuQou9hNK2R3sfJ02aFPH/R1rSJtrz5SXw2SVr3Lhxh7V78eLFuW7r77X4WrzbeKK/S1a6vo+R/r++N7r9p2v7DiyTFPo5RVsqKZ7vdLxFjxL9PkfaV+nz9OnTJ+62AgDSQ/f7eh7p9HM3wHaWi6Vr9MNJBefi6ZmM9thY25nI64llFDKVKVPxjvLHOxJnx7zevEbBA59lvFkJec1xt3tkPpb538HbU7RtPNHfpUu6/qadoxWBzI/Q7SpV35lY9hPJjKxHy2xI5Qg9I/MAnMotI/MAYkMw74KCc8l2LsTaztDH9ejRI+YOgFiCvVQGIbE8V7wp53YWEYwUZGjKfSzvY14dKtG2oXiC4Hg+u7y221jnf4d+ZolWrLerkyad1eydMIUkld+ZWLbjZDqWMjV1hGAegFMRzAPeQjDv4oJzsYg2khvL42I9Qe/Zs2eux+vtcMFGKjME4glQIwUHTvlM4/3b8RSHiyXYiiUI1m0m1gAylr8ZbZQ0dBm04MwEpwSxSP13Jtr+Sj/3SJ1zkb7P4baVaPuGVNVRIJgH4FQE84C3EMy7tOBcrKIFTLruc+BEN9JJciwn6KEnx/Xq1YurIyCv54v3/8cy4hvutdj9mSabuRDu/zu5knu0wC1cOrcbll70m3R8Z2JZ3z6vbSuvbSXdxTIJ5gE4FcE84C0E8ykeme/Tp4/ta3HHG9iGVg6PZ9Qq1lTpWN+TVASfeVX8Du7ESPXfTlayI8+h/z+eYCtVo97x/M1wHRDhAjEnfDaIfyQ92e042vr2wduM3dN+QhHMA3AqgnnAWwjmQ8RzgheaWh56ccrIYTxFxlI1mp3oe5KKkb5IJ/Onnnpq2LYEB7FeWwol0cAmmW03mSkDkf5vPOnVXuTk6QV5jaSnYw69bg+R3g87OrBCEcwDcCqCecBbCObDiOUEL9YA2Skn37GMcEULfCMVmAt9XCyXQBp1pDn1qXgfQz+fSB0vofcHRoGdGjglIq8OinSMeifaKRIteHPy9yud3DC9IK+R9FTPoc+rlobd2wrBPACnIpgHvIVgPgHxVOHWIMQp4hmhD4ySJlJg7phjjokruA8NTlI1Oh7c/ngyCOwOENPRmRDtOeOppJ+qvxnt/0T6TLyWNRGLdAWm6drGdJtJ9xz6WD73SP8nUx11BPMAnIpgHvAWRwTzzz77rFWtWjWrcOHCZv72okWLHH3ClOrUcrsDgxNOOCGuk+VYOzPiGbUPPrkOV/wsXa89UuBh1+i8HaOweb03md5+owVvXsuacEKBuVR8vnl1FNrR+RD6fzL53SKYB+BUBPOAt9gezL/11ltWoUKFrJdeeslasWKF1bdvX6tUqVLWpk2bPDEyn9fJbKoLniUaGKTiecJd8qorENoGLU6X1wl3LG0N95hkUu+Ted8zXUwskbalOxiLl9+C9kyNzKdjpD+v/aETMigynXpPMA/AqQjmAW+xPZjXkfgBAwbk3D506JBVqVIla8SIEY4+YYq0DFiXLl1iHklLdqQo9P9HqtKe6hPaeEe5Y5mvHy3ojxaQh3vPoj0mr9G6SO2Itw2JiKWTJK+/lUzbon0Gfik050SpnF6QjpH+dE3TSKVMLztJMA/AqQjmAW+xNZjft2+flT9/fuv999/PdX+vXr2s888/3/EnTOFGD2MNmJMNrKMF1NECuFQFBqHPEymlPlLQHGsgH3zCHct7lmjBrLzm1sfThkTF2kkSLcsj0bbl9bedEpT5VaoyFTI5Mu+kbYaReQD4L4J5wFvyiY3+/vtvOXTokJQvXz7X/Xp748aNhz1+3759smPHjlwXOzVr1kx69uxproPvu+OOO3I97s4778z1GPXzzz+Hfc5I98fzuIcfflgWLVoU9ncPPfSQLFy4UCZMmGCuR44cGdPfy+t55s+fH/V1hz4++Oc2bdpE/VvHHXdczO9ZIu9r8OcY+FvJtCFR4badeP5WMm2L9phw2y/s39ck+jyx7J/sfs5Uc0MbAQAA4lVAXGTEiBEybNgwcToNXLt162YCJA0Cw50w5hU05iWvx+nfjnSiqven4iQ29Hnyet2hj4+lDcEn3LG8Z8m+r4GTfu0QSbQNyQh+D/fv3y9XX311zH8rmbZFeszYsWOlT58+ef5/uEcs+ycnPGequaGNAAAAcXFTmv3evXtN2mLgsn79elenMiab8h4tdd1JKa6pnP8fy3uWiqkE8SzLl84CX/H+rWTa5sel34B0IM0egFNlZ2eb82m9BuB+WfqP2EhHR5o2bSrPPPOMuZ2dnS1Vq1aV66+/XgYNGhT1/2qafcmSJWX79u1SokQJcSNNh09mpEj///Dhw2Xq1Km5RpITTZ93w3sRy+OSfV9T1VY7/lYybcvk6wK8ygvHJgAA4Hy2B/MTJ06UK664Ql544QUT1D/55JPy9ttvy08//XTYXPpQnDD9D0EYADgDxyYAAOCLOfOXXHKJ/PXXX3LvvfeaoncNGjSQGTNm5BnIIz3z4AEAAAAAzmf7yHwyGP0AADgNxyYAAJAJti5NBwAAAAAA4kcwDwAAAACAyxDMAwAAAADgMgTzAAAAAAC4DME8AAAAAAAuQzAPAAAAAIDLEMwDAAAAAOAyBPMAAAAAALgMwTwAAAAAAC5DMA8AAAB42F9//SXXXnutVK1aVQoXLiwVKlSQc889V+bPn2930wAkoUAy/xkAAACAs11wwQWyf/9+eeWVV6RGjRqyadMmmTVrlvzzzz92Nw1AErIsy7LEpXbs2CElS5aU7du3S4kSJexuDgAAHJsAOMq2bdukdOnSMnv2bGnVqpXdzQGQQqTZAwAAAB515JFHmsvkyZNl3759djcHQAoRzAMAAAAeVaBAARk/frxJsS9VqpS0bNlS7r77blm2bJndTQPg5zR7TWHUndL69etJZQQAOCbNvkqVKia1VdPtAcAJ9u7dK1988YUsXLhQpk+fLosXL5axY8fKlVdeaXfTAPgxmP/999/NCRMAAE6jHc2VK1e2uxkAENbVV18tn376qaxdu9bupgDwYzX7SpUqmZOl4sWLS1ZWVkpGUvw4yu/X187r5nX7Aa87869b+8h37txpjlEA4FT16tUz8+gBuJerg/l8+fKlfNRDT/r8dMIbzK+vndftL7xuf7HrdZNeD8ApdPm5iy66SHr37i0nnXSSGQT7+uuv5eGHH5bOnTvb3TwAfg3mAQAAAESmleybNWsmTzzxhKxatUoOHDhgMpf69u1rCuEBcC+CeQAAAMCjChcuLCNGjDAXAN7C0nRBO7ohQ4aYa7/x62vndfO6/YDX7a/XDQAA/MPV1ewBAAAAAPAjRuYBAAAAAHAZgnkAAAAAAFyGYB4AAAAAAJchmAcAAAAAwGUI5v/fc889J8cee6wUKVLErMW5ePFi8ZKhQ4dKVlZWrkvdunVzfr93714ZMGCAlClTxqxHesEFF8imTZvEbebOnSvnnXeeVKpUybzGyZMn5/q91nu89957pWLFilK0aFE555xz5Jdffsn1mC1btkj37t2lRIkSUqpUKenTp4/s2rVL3Py6r7zyysM+/3bt2rn+desyO6eccooUL15cjj76aOnSpYusXLky12Ni2bbXrVsnHTt2lCOOOMI8z+233y4HDx4UN7/uM88887DPvH///q5+3aNGjZKTTjrJbKN6adGihUyfPt3TnzUAAEAkBPMiMnHiRLn11lvNMkbffPONnHzyyXLuuefK5s2bxUtOOOEE+fPPP3Mu8+bNy/ndLbfcIlOmTJF33nlH5syZIxs2bJBu3bqJ2+zevdt8fto5E87DDz8sTz/9tIwePVoWLVokxYoVM5+1BgEBGtCuWLFCPv30U/noo49MoHzNNdeIm1+30uA9+PN/8803c/3eja9bt1UN3hYuXGjafeDAAWnbtq15P2Ldtg8dOmSCu/3798uCBQvklVdekfHjx5tOHze/btW3b99cn7lu/25+3ZUrV5aRI0fKkiVL5Ouvv5bWrVtL586dzXbr1c8aAAAgIl2azu+aNm1qDRgwIOf2oUOHrEqVKlkjRoywvGLIkCHWySefHPZ327ZtswoWLGi98847Off9+OOPumSh9eWXX1pupe1///33c25nZ2dbFSpUsB555JFcr71w4cLWm2++aW7/8MMP5v999dVXOY+ZPn26lZWVZf3xxx+WG1+3uuKKK6zOnTtH/D9eeN1q8+bN5nXMmTMn5m172rRpVr58+ayNGzfmPGbUqFFWiRIlrH379llufN2qVatW1k033RTx/3jhdavSpUtbY8eO9c1nDQAAEOD7kXkdodFRHk23DsiXL5+5/eWXX4qXaDq5pmHXqFHDjMJquqnS168je8HvgabgV61a1VPvwZo1a2Tjxo25XmfJkiXNtIrA69RrTTFv0qRJzmP08bpN6Ei+m82ePdukFdepU0euvfZa+eeff3J+55XXvX37dnN91FFHxbxt6/WJJ54o5cuXz3mMZmvs2LEjZ8TXba874PXXX5eyZctK/fr15a677pI9e/bk/M7tr1tH2d966y2TjaDp9n75rAEAAAIKiM/9/fff5qQw+ORO6e2ffvrJtnalmgasmk6qgZym2w4bNkxOP/10Wb58uQlwCxUqZIK50PdAf+cVgdcS7rMO/E6vNeANVqBAARMkufm90BR7TTeuXr26rFq1Su6++25p3769CW7y58/vidednZ0tN998s7Rs2dIEryqWbVuvw20Tgd+58XWryy+/XKpVq2Y68JYtWyZ33nmnmVc/adIkV7/u77//3gTvOjVG58W///77Uq9ePVm6dKnnP2sAAIBgvg/m/UIDtwAtIKXBvZ7ov/3226YQHLzt0ksvzflZRyZ1G6hZs6YZrT/77LPFC3QOuXZOBdeC8INIrzu43oF+5lr0UT9r7czRz96ttENSA3fNRnj33XfliiuuMPPjAQAA/Mb3afaagqojk6EVj/V2hQoVxKt09Oq4446TX3/91bxOnW6wbds2T78HgdcS7bPW69DCh1rpWiu9e+m90KkWuu3r5++F13399debon2ff/65KZIWEMu2rdfhtonA79z4usPRDjwV/Jm78XXr6HutWrWkcePGpqq/Fn586qmnPP9ZAwAAhPJ9MK8nhnpSOGvWrFxpq3pbUzm9Spcc0xE6Ha3T11+wYMFc74Gm4+qcei+9B5pirifswa9T58rqnPDA69RrDQZ0/m3AZ599ZraJQDDkBb///ruZM6+fv5tft9b704BWU621vfoZB4tl29ZrTd0O7szQCvG69Jmmb7vxdYejo9kq+DN32+sOR7fRffv2efazBgAAiCinFJ6PvfXWW6ai+fjx401V72uuucYqVapUrorHbnfbbbdZs2fPttasWWPNnz/fOuecc6yyZcuaKtiqf//+VtWqVa3PPvvM+vrrr60WLVqYi9vs3LnT+vbbb81FN+/HH3/c/Lx27Vrz+5EjR5rP9oMPPrCWLVtmKrxXr17d+vfff3Oeo127dlbDhg2tRYsWWfPmzbNq165tXXbZZZZbX7f+buDAgaait37+M2fOtBo1amRe1969e139uq+99lqrZMmSZtv+888/cy579uzJeUxe2/bBgwet+vXrW23btrWWLl1qzZgxwypXrpx11113WW593b/++qt13333mdern7lu7zVq1LDOOOMMV7/uQYMGmYr9+pr0+6u3dcWFTz75xLOfNQAAQCQE8//vmWeeMSeBhQoVMkvVLVy40PKSSy65xKpYsaJ5fcccc4y5rSf8ARrMXnfddWaZpyOOOMLq2rWrCQ7c5vPPPzfBbOhFl2YLLE83ePBgq3z58qYD5+yzz7ZWrlyZ6zn++ecfE8QeeeSRZsmqq666ygTEbn3dGuBp8KJBiy7dVa1aNatv376HdVa58XWHe816efnll+Patn/77Terffv2VtGiRU0nl3Z+HThwwHLr6163bp0J3I866iizndeqVcu6/fbbre3bt7v6dffu3dtsv7of0+1Zv7+BQN6rnzUAAEAkWfpP5HF7AAAAAADgNL6fMw8AAAAAgNsQzAMAAAAA4DIE8wAAAAAAuAzBPAAAAAAALkMwDwAAAACAyxDMAwAAAADgMgTzAAAAAAC4DME8EMWxxx4rTz75pHjF7NmzJSsrS7Zt2yZedeaZZ8rNN99sdzMAAACAtCKYhy+tX79eevfuLZUqVZJChQpJtWrV5KabbpJ//vlHvBzUnnrqqfLnn39KyZIlbWsXAAAAgOQRzMN3Vq9eLU2aNJFffvlF3nzzTfn1119l9OjRMmvWLGnRooVs2bLFtrYdOnRIsrOz0/b82nFRoUIFMzoP53wuAAAAQLwI5uE7AwYMMEHtJ598Iq1atZKqVatK+/btZebMmfLHH3/If/7zn1yP37lzp1x22WVSrFgxOeaYY+S5557L+Z1lWTJ06FDzHIULFzYj/TfeeGPO7/ft2ycDBw40/0//f7NmzUyqe8D48eOlVKlS8uGHH0q9evXMc4wdO1aKFClyWCq8Zg60bt3a/KwZBNomfd4jjjhCTjzxRNMxEXDllVfKnDlz5KmnnjKBu15+++23sGn27733npxwwgnmb+u0gsceeyzX39X7HnzwQZPJULx4cfNax4wZk2dWgL4Pd9xxhxx11FGmA0HfpwBti7Zj6dKlOfdpm/S+wPsTaOvHH38sDRs2lKJFi5rXv3nzZpk+fbocf/zxUqJECbn88stlz549uf7+wYMH5frrrzcZCGXLlpXBgwebzyqZz2XdunVRXzMAAACQSQTz8BUdddfg8LrrrjPBYTANOLt37y4TJ07MFfg98sgjcvLJJ8u3334rgwYNMkH1p59+mhMIP/HEE/LCCy+Ykf7JkyebwDpAA8ovv/xS3nrrLVm2bJlcdNFF0q5dO/PYAA1EH3roIRPEr1ixwrRBA0l97uCRYW2X/k7t3btXGjduLFOnTpXly5fLNddcIz179pTFixeb32sQr1kGffv2NWn1eqlSpcph78eSJUvk4osvlksvvVS+//57E3Br4KvBbDAN8DWbQd8Dfe+uvfZaWblyZdT3+pVXXjGB8qJFi+Thhx+W++67L+d9i4e26dlnn5UFCxaY6RHaXq1j8MYbb5jXr50yzzzzzGF/u0CBAub90Pfi8ccfN+9vMp/L0UcfHXfbAQAAgLSxAB9ZuHChRunW+++/H/b3jz/+uPn9pk2bzO1q1apZ7dq1y/WYSy65xGrfvr35+bHHHrOOO+44a//+/Yc919q1a638+fNbf/zxR677zz77bOuuu+4yP7/88svm7y1dujTXY2666SardevWObc//vhjq3DhwtbWrVsjvraOHTtat912W87tVq1amecJ9vnnn5u/F3ieyy+/3GrTpk2ux9x+++1WvXr1cm7re9CjR4+c29nZ2dbRRx9tjRo1KmJb9G+fdtppue475ZRTrDvvvNP8vGbNGtOOb7/9Nuf32ia9T9sY3NaZM2fmPGbEiBHmvlWrVuXc169fP+vcc8/N9bePP/54084A/bt6X7KfCwAAAOAUjMzDl4JH3vOiI9yht3/88Ufzs47o/vvvv1KjRg0zCv7++++bFG+lI906on7cccfJkUcemXPR9PdVq1blPJ+m/J900km5/oaOwGva94YNG8zt119/XTp27GhG7JU+7/Dhw00WgKax6/NqxkG8qeD6Olq2bJnrPr2tI9T6NwKC26ep75rFoOnu0YS+pooVK+b5f/J6nvLly5tpBfp+B98X+rzNmzfPVRdAP7PAa0rmcwEAAACcooDdDQAyqVatWibI0yC2a9euh/1e7y9durSUK1cupufT1HVNN9f59ppCrinompavgeGuXbskf/78JpVdr4Np8Big6f6hBelOOeUUqVmzpkkD15R27SQITn3Xv6Hp45purgG9prNr5fr9+/dLOhQsWDDXbW1vXgXhov2ffPnyHdapcuDAgTyfR58jkbYES+ZzAQAAAJyCYB6+UqZMGWnTpo08//zzcsstt+SaN79x40YzAt6rV69cQdzChQtzPYfe1uJrAfoc5513nrlocb26deua0V8t2qYjwDpqfPrpp8fdVh2d1/ZUrlzZBL86Mh8wf/586dy5s/To0cPc1mD2559/NsXagkeWg0fXw9HXoc8VTG/rqHVooJtKgc4Sncuv75MKLoaXLJ2nH/qZ1a5d27ymZD8XAAAAwAlIs4fvaDE1rWZ+7rnnyty5c01RtRkzZpggX6ubP/DAA4cFt1rATYNlrWT/zjvvmCJ4SkfLx40bZ4rQ6ZJ3r732mgnudd16DYg1INfOgUmTJsmaNWtMQbYRI0aYwm150f/7zTffmPZceOGFpqJ6gAammgmgReE0m6Bfv36yadOmw6rQa1CrleP//vvvsKPXt912m1mST1P29fVp4Th9f7TSezrpe6Sp8CNHjjTt10yGe+65J2XPr9MNbr31VpM1oVX+tUBe4DNL9nMBAAAAnIBgHr6jgfDXX39t5l1rZXRNZ9dq8GeddZapcK5z0EMDXn28jujef//9pjK6dgQoncP+4osvmnnmOr9a0+2nTJliMgDUyy+/bIJGfY46depIly5d5KuvvjLLu8UyJaBp06am2nqgin2ABr6NGjUy7dBl4HQOuz53MA3IdSRaR+t1JDzcfHp9jrffftuk89evX1/uvfdeU3Vel7ZLt5deesnUF9Cq/DpFQN/bVNH3XGsZ6Pun2RIayOtnHJDM5wIAAAA4QZZWwbO7EQAAAAAAIHaMzAMAAAAA4DIE8wAAAAAAuAzBPAAAAAAALkMwDwAAAACAyxDMAwAAAADgMgTzAAAAAAC4DME8AAAAAAAuQzAPAAAAAIDLEMwDAAAAAOAyBPMAAAAAALgMwTwAAAAAAC5DMA8AAAAAgLjL/wFeiyRs0HIs7wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAIUCAYAAABWynwtAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoLFJREFUeJzt3Qm8lGP7wPHrtCdtKi1atCkJbVqEiNJGi10LSorsa7yShLLvhCJly5K0o12lIpJCSBRRqE6b1vP8P9f9f+e8c6aZObM/2+/7+UxzZs40555nnnnmue77uq87y7IsSwAAAAAAgGsUsLsBAAAAAAAgPgTzAAAAAAC4DME8AAAAAAAuQzAPAAAAAIDLEMwDAAAAAOAyBPMAAAAAALgMwTwAAAAAAC5DMA8AAAAAgMsQzAMAAAAA4DIE8wAAAAAAuAzBPAAAAOBRl19+uWRlZcnIkSPz3D9p0iRzPwD3IpgHAAAAPKxYsWLy0EMPydatW+1uCoAUIpgHAAAAPOyss86SSpUqyYgRI+xuCoAUIpgHAAAAPKxgwYLy4IMPyjPPPCO//fab3c0BkCIE8wAAAIDHde/eXRo1aiRDhw61uykAUqSQuFhOTo5s3LhRSpYsSQEPAIAjWJYlO3bskCpVqkiBAvSZA3AOnTfftm1bufXWW+1uCgC/B/MayFerVs3uZgAAcIgNGzZI1apV2TIAHOO0006Ts88+W+68805T5R6Au7k6mNcR+cAJU6lSpexuDgAAsn37dtPRHPiOAgAn0SXqNN2+Xr16djcFgJ+D+cDamBrIE8wDAJyE9ZsBONHxxx8vPXv2lKefftrupgBIEpP5AAAAAB+57777TO0pAO6WZWmlHhenMpYuXVqys7MZmQcAOALfTQAAIBMYmQcAAAAAwGUI5gEAAAAAcBmCeQAAAAAAXIZgHgAAAAAAlyGYBwAAAADAZQjmAQAAAABwGYJ5AAAAAABchmAeAAAAAACXIZgHAAAAAMBlCOYBAAAAAHAZgnkAAAAAAFyGYB4AAAAAAJchmAcAAAAAwGUK2d0AP1i6dKn88MMPcswxx0iLFi3sbg7gyn2ezxEAAADwP4zMp9kdd9whLVu2lD59+phrvR0cnIwfP95cA24Ubh+Ots8nKh3P6XYcPwAA8Tp48KAsX77cXANwvyzLsixxqe3bt0vp0qUlOztbSpUqJU482dbAI9SSJUtk4sSJ8vDDD+fed/vtt8tDDz2U4RZ6AyO29tCAOnQf7tGjR8R9PtER+mifI79muoTb9hw/nMPp300A/Gv//v0yffp06dSpkxQuXNju5gBIEiPzaRjlCjzXjBkzwv7+5ZdfznMirvR2tL/t5VG4ZF6bX0Zsnfb+azvC7cMjR44M+3hNuU9UpP+bzHO6+X2JtO2dsm8AAAAgQywXy87O1qwCc52M22+/3TxP4KK3U/Vc8VzGjRuX9vY5TTKvbcmSJWG3o97vRtpu3QdC2+/E91/bGc++nd97Eum1O+F9tvN9Cfe3I237SMcPuPe7CQBSbd++fdakSZPMNQD3830wn8pAIdJzJRPw2B3IpFOyr81LQU2kwNCp7388+/odd9wR9bliCYpDH5PfcyYaMIcGz+l8X6J1YKT7byO9COYBOBXBPOAtvg/mUxkQRnqubt26JRzweClgTfVr80pQE+11OPH9D7Srd+/eUffpAQMGxDQiH0/HVrTgN9WZNL169Urb+5JfB0Z+2yVdnRvp2Mbp5NT2EswDcCqCecBbfL80nS6dFc/90UT6P126dJFJkyYdcv/o0aOlSJEiUZfvSmX7nCbZ16bbTAt/Bc8f1jnzbiuKFm1OeLRtZEfhv9DCa7169ZLatWvLsGHDDnnsFVdckW+7or320P+rt1P5OsPNPQ/2+uuvR2xbMvtupDnvWjww8Pry2y5a7E4fn8r3321F9dzWXgAAgJSzXCxdc+aTGeUK91zhRv/i+RvpTDG2Wypem1NH52IV7yhs586dDxkVz8Q8+mjtTPR9jPScQ4cOTfv7Ge+8/8BFt71K9DXHMqqf6ayTSH9v9OjRlhM5PSuHkXkATuXGkXm3n+cB6UQwn4YDRfBz6clwpJPkWP5e4LlifXwy7U3n34jl7/v5IJ1fYKjbRoP4aEGmXcFvIAhN9H2Mluqezk6KWOb9d+jQIeq2TuQ1xxqIZrITL1rHhhMKLoaK9FlwyvQjgnkATuW2YN6JRYABJyGYT6NYK9tHOjDFMq822SA4Uhs5WGZeIhXdMxnIpHM0VJ9DR+Mz3UkR7TOqwXO6ahbEGqhnqqMrv/3LSR1t0drqlHYSzANwKjcF807PwgKcgGA+TeKtbB96YIo39TqR4NtNJ/BOlMmMglhSwjPRjliC0ES3i13F/qJVs4+UWZPqDB4niNax4ZQR72j7iY7WOwXBPACnclMw78QiwIDT+L4AXrpEKmAV7fHBRayiFcBS+RXQSkUbwxUhgz3Ft/IrrJapwn/5FV5LZrvYVewxtLBe4OfQ15LqbZ2qgn6pKoSo75M+x5VXXunogpuR2jJkyJCMtwUA7KbfATNmzJDffvtNqlatKh07dozruyD4O0RF+z7JdOFdLxeBBlLGcjEnj35EGvW+6667kh6ZT1VPJSPzqX1v0z3CGjpyqoXYnDSym4rt4pRij24pCJeOuYROeQ/c3EYnfzcB8I5EpkoGj8zHU7Mm9LG6fGtoJpsuSavXqcw8c/rxHrAbwXwaRToAxXpgivS4VAaTkQ7kqThYOi2NOFVttTPN18nbNJWdTHa/Rjek9qW7hoHd74Gb20gwDyCeejGJrOCS6IBMIJhfvHhx1P8f/Bz5/a1KlSrF3CmQaOFYpx7vAbsRzKdZpANQrAemSI9LZU9lOqrZu6n6aLxtdUMBLjt4qVCNG16LGzoc/IpgHkAigynxnCvlV0sn0ndBIJiPpRZP4DkSXco19LvTTeeGgFsQzLuYU3sq3RAIJdtWpy+NZRcvpMMFPlc6jcHJr8VNnzO/IZgHkO5BASeNzMfSKRDLd5ZTz2sBJysgNvv999+lV69eUq5cOSlevLgcf/zx8sUXX4hXafGQ8ePHm+tkafGR3r17O65IXX7F+7zQ1kjFtpxelCXc/pfKfVKLqC1ZskTGjRtnrkeOHCnpksp2Bxe3a9mypfTp08c8tx6bMvFaEqGfey0waEchRABA4qKdY8R6rhTuOyCe74JmzZpF/P+hzxHtb8VCz43yO98K/v7Va709ZswYGThwoLkGEIGdPQlbtmyxatSoYV1++eXW0qVLrZ9//tn66KOPrJ9++smTox9+SS9y04hhMm112yh0uP3PrftkOtptx36bilEIRjKcx23fTQAyK5XT9QLz7vv16xfT3PvQpemiLc8aa+Za5cqVI76eWOo9xTLy37x587i2C+AXtgbz+gE/5ZRTfHHC5KYANxXcFOgm01a3BFLxpMi59bUk2+5Mz0EPVxk40UJIcBY3fTcBsOe7Ptyc+UycK6VqnfnQbRJLNftI51uxzskPXVHGLedggGeD+WOPPda68cYbrfPPP9+qUKGC1ahRI+ull16K+Pg9e/aYk6PAZcOGDa45YfJjsSo3HWTd1NZExFO8xun7ZLo+S5nscIulc8UtWRI4FME84B3pzGBLppq93cF8Ks+3Yh1w0M6CALdmFgKplqX/iE2KFStmrm+++Wa54IIL5PPPP5cbbrhBRo0aJZdddtkhj7/33ntl2LBhh9yfnZ0tpUqVEifTeb06ByiUzsX12xxX3RY6R0rnUPnttTtt/wvH6ftkOj9LOkfv4YcfznM7HXPldT6+zgu0473g85d+27dvl9KlS7viuwmAu87dAsfwffv2yYYNG+TLL7801+rwww+XAgUKSN26daVVq1ZSpEgR87gPP/zQ1KjSulS1atWSE088UUaMGCEbN26UrKwsqV69utSrV082b94s33//vezduzfPfXos02OaKliwoHTp0kX69euX0tcV+v0bzujRo83fdeL7AtjGslHhwoWtVq1a5bnvuuuus1q2bOm5kXm3pZ6nCz2pztr/3LpPprPdmcjSiHUUItVZEnz+MoORecAbMp1VqWnk3bp1M/Pf9We9Pu2008z1XXfdZdWpUyfmLLtIl+LFi5uReb1O5nkKFSpkVatWzbStU6dOJttWr/W2vobQlPh4v391jnzw32vRooWvs10BR47M16hRQ9q1a2d62gJeeOEFuf/++00PohdHP/w8KkZPqjP3P7fuk3a1O/TvJtqOWEYhUjnKwOcvc9z43QQgM8fN4JF1HTnXkfBvv/1WFi5cKH///Xfa3wZdOeqtt96SSy65RP7999+0/i3NFChbtqwcdthhUrt2balWrZqcdNJJMY/qaxV7zdoN/T98nwFBLBtdcsklhxTA0zn0oaP1kTD6kT7pGJ2kJxVuFzqyHTpyEO+cvUiVgdORJcHnL3P4bgK8IxVFcnWUWq87dOiQ9Mi6U0bmk7mUL1/ejOBrDNCkSROTdZDJ9wXwEltH5rW37eSTTzbz4C+88EJZtmyZ9O/fX1566SXp2bNnvv+f0Y/0CB0x1LVFdf3wZNGTCj/UHUh0xEaff8aMGebnjh07pmWuPHMMM4PvJsBb4snAChzLP/nkE1m8eLE4TSZH5uOhc/Hr1KljvqfWrl1r6gCcfvrpMnbs2Ij/x62ZhUBK2d2bMGXKFKthw4ZW0aJFrfr160etZh+K0Y/US3dFb3pS4fUVAVJRVT9dc/b5/GUG302A94U7Vodbbs5pFyeMzMdzycrKss455xyWbQWcODKfLEY/JGNVtseNGye9e/dOyd+gJxVulO6R+XRmxQTj85d+fDcB3hRp1F2P1T169Ih51ZhU0ezWcuXKZbSa/bRp0yQnJ0fs0qFDh9zv2HRksQFuQzCPPEjFhV/FEuSGBtuBAnipWMqOz553OicI5gFvCC5W98orr0RNmx86dGjY5ZOTCVqPOuoo+fHHH01wXrFiRVMo7+DBg9KkSZOEA9n9+/fL9OnTpVOnTlK4cOGE2nb55ZfLxx9/LIUKFZL27dvLH3/8IevWrZOaNWtK5cqV5f3335dt27ZJJqSj0xtwk0J2NwDOol8MemAMXWvbKSfJQDrEOiKu9+noSyqq2YfS54h0P5+/5N43AIiXZilqtmI6de7c2YySa5CuI+yB0XQndU6GE20eu9JVqrQSvWZ1apCv1ey1E+Hnn39OeVv0O0C/lwPbK1IFfMCrGJmHa0a7gHRwyoi4U9rhFk7eXozMA+4+59Fpha+//npcz6HHnokTJx6y5KgG7N27d89NeQ+kxNuVIp6Kkflkpyn89ttv5vaaNWtk+fLlSRfiC0wF1e2pxbQDGjRoIKtXr0663YCTMTKPsPSAaPcJsZ+kq/OEThl3jIgH3ic9GQkeCfJjVkys+6wT3jcA7j/eDB8+3MwDD+jVq1fcgXzgWK0XHSVO58okXjy31NH0Z5991gT12kk7a9YsM8c/Vvp9oc8RHMgrzXho2LChnHLKKYzUw7MYmQc8mipMCrI7RnhD3yc9kdQ5iH7Miolnn7X7fYuGkXnA+R2GWsQu2TR6HXUfMmRIxo45Ol/+r7/+MnPU9bJp0yZTnG7nzp2yY8cOcwn9effu3eb/adE6vQQ6QvU7RpeD04J5OkKvxfNKliyZex36c9myZc18+CpVqphrvS/d79PLL79sagZoYK/L1YUTqFUzcOBAefHFF6M+p47UX3DBBWntaGEQBZlGMA/YKF0BiZMDHTcEkckUsosH71Ny28Ku9y0/BPOAM4vYffDBB3lG4RPVunVreeyxx1L+faoBuAav2l69aDp6IHDXyvNaWV4D82A6Hz1cAB641t9roToN2vXy6KOPSu3ateXcc881/18DfN024ToEgu87cOBAnr9bokQJE9QHLhrkawE87STQS40aNUxnQTrex3BTFXRk/sorr7S1M4ZBFNiBYB7w4FKAmVhi0Gvs6E3nfUp+WzhxFIRgHnCG0OAqVqFTnlK5HJquCK2F4HQudyBoD1w0aA+oUKGCWR4uOGAODpz1WivcxzvvPZE589pmDegDHQuhF+1o0Msvv/xilrVTWiNAOw0CwX3gogX/Asvcpdpxxx1nUusTWeLv2GOPlapVqyb8/tI5D7swZx6wkX6xxXO/3c/rZXbUieB9Sn5bUN8DQLjOPZVIIB/I8Bk0aFDSHYU66q3p4VrkLXD58ssvTWp8YHQ7EOSedtppZl13/VmXoitTpoxj3lhdi75UqVLmom2MRLMGNJtAC9sFd1K89957JtDXTgFVp04dadq0ae5Fl9pLxevVDhINxmfOnBnX/9MlBwPLDurygjrdLd4pGNRxgV0I5gEPLgUY7nmVVtp1yuglWAoyGMtiAkjlKLymUCeTcp1IR+HWrVtlwYIFsnDhQvniiy9M4K6ZOkpH2TVwve2220zwesIJJ5gRdg2UvULT6jW9Xi9a+yXYnj17zBSCr776KrdjY8qUKWZOv9JRfN0+zZs3lzZt2kjjxo0TStPX4oOBTh2tuZJINXstgLhy5crcqQJdunTJd5k7OudhF9LsAQdIR6owKV+plc50biemitvFC9uCNHsgM4LnUcc7XzqQTt+uXbuEjzcavH/66acyd+5cmTdvnnz99ddm9LlatWqmenrwyLOmzTuBnUvThRvJ11F87fQIBPjaCaJV7TULQLMVTj/9dHNp1KhRQsF9YN35X3/9Ne4R+2CxLHPn1Dou8DaCecCjmI+dOhS1cS87OgcI5oH00xob+aVC62h7uIJ3iRY+0yBzzpw5Mnv2bBO8r1ixwgTvOup+xhln5AaeRx99tDiVk4L5cLRjRoNv3b56WbRokdnuOs/+1FNPNdtXaxhocB1vVkNgnXtdySCQVh8P/buBZQe93CENdyGYBzyKkXm2o9/Z1QlDMA+kl46ox7IWvK6GoQKj91qULd4g688//zQdApMnTzZBoAaWbgre3RbMxxrc16pVS8455xxTlV+D/Hhfi54jDR8+PO7VDYL3KQJ2OAHBPOBhpHwljwwHd7KzM4tgHsj8ZztUoinOOtK+atUqE7zrnG79e7qkm1Y818BRL9GKwDmd24L5UDr3XoP6wPujBfd01F4L3+l7o6PnZcuWjfn59P29+eabYx6pD8320GJ+Ose/f//+jMTDFgTzgE0ylYpFypd7g0K4sxOGYB5IXiAlWgUvFxbps61Gjx6d0Oi7+uabb+SNN96QCRMmmMrruk772WefbQJEDXzLly8vXuD2YD6040WnOmhgrxede6/z6jVbomfPntKjR4+Yl8FLNgU/k9lfQB6Wi2VnZ+saF+YaSLUlS5ZY48aNM9epdvvtt5t9N3DR226Wzm3lBKHvV+/evT39er1A35vg9yxwycR7xncTkJwOHToc8tkNfE9G+mzrcTleGzZssB566CHrhBNOMM9xxBFHWAMGDLBmzpxp7dmzx5Nv4759+6xJkyaZa6/R9/P555+32rZta2VlZVlFixa1LrjgAvN69+7dG/Pz6D42dOhQq3bt2nn2sc6dO4fd94Iv+v84N0AmEcwDGQ627Qwy0sFrHRP5dVjoCaMfXq8XhO6bd9xxR0b+LsE8kLgGDRpEDJQC35PhOlhjtXXrVmv06NHWGWecYQK+YsWKWRdeeKE1efLkuAI+t/JyMB8a2D/yyCPWiSeemNtRM3DgQOvTTz+1Dh48mNBgRaTzt3AXDfzdel4HdyGYdxivj3C6QbqDbX1/wz2/3u82XuuYyI/fXq8X2HFMJZgHEqNBdrQAKfh7Mp7Pdk5OjjVnzhzroosuMqO1GsSfddZZ1quvvuq77E6/BPPBvvnmG2vw4MFW9erVzX509NFHW8OHD7c2btwY93OFdiQR1MNuBfIm3cNOWqxF5+bqXDC91tvIPJ3HHs/98dK5fPHc7+dt5TR+e71eoPNmdY489Q0A59Oq5dEEf0/G8tnesmWLPPHEE3LsscdK27Ztzfzq+++/XzZs2GDmRl9++eVmPXN4W8OGDWXEiBGybt06mT9/vtkX9Ha1atXkvPPOk48//lhycnJiei6dE681c6pUqRLT47VYnp7Tt2rVKslXAYRHMO8QWngjeAklpbf1fmRWuoJtfS8Da+JqkZRg2nHjxmDDSx0TsfDb6wWATDrppJMi/i6e70kN2vv16ydHHXWU+X9NmjQxFdC/++47ufXWW8398B9dleC0006TMWPGyMaNG+Wpp54ynfFa6LB+/frmdnZ2dr7Po/vh77//birnx0o7AEqUKGHOAzm3RyoRzDsEI37OoQfpVAfboVkXgQO7VtbW60SWz/HqtnIyv71eAEi1QMd2uIBGA/DmzZvnuU8D71i+Jw8ePCjvvvuunHLKKdK4cWMz2jpkyBCzdNmbb75plg/LyspK+euBO2mV+0GDBsnKlSvl008/NR0+gY6ea665Rn788cd8n0Or3wfO5WJZJWX37t2554HpXlUF/sHSdA7B8lfOk6ol3fzw3vpt+Tu7Xq/ftrNbsTQdEJ52fgZnIUZayktHTjXlXkfqNcCPZu/evaZzQJ9XAzAN2q+77jrp2rWrFCpUiLfCw0vTpZqO1r/44ovmsnnzZjn//PPlzjvvNJ1DsX5HDx8+PM869NEcf/zx8vLLL/N9juRYLua1IkN2VV5GekUreEfBQ8TKL6sGeIHXvpsAJxYQ3bFjh/XYY49ZVapUMc/TvXt3a9myZbxZ+fBjAbx4/fvvv9YLL7xg1axZ0+xbZ599tjV//nxTSDEWuk+HLmsX7cL3OZJBmr2DBIpquD31GrHNp9biOxQ8RCyoqQHA7Sn1qZpO+M8//8i9994rNWrUMCP97dq1k2+//VYmTpwYdc49EKtixYrJwIEDzb75xhtvmBF7zfjQKRxTp07VgdCo/18z53766aeYiytSIwvJIJh3GCov+2Oetc6VChTDC+BgjkioqQHAbQJzgwPXOoc9mQKiGsTfdtttJojX78uePXvK2rVrZezYsaZaPZBqOk3j0ksvla+//lqmTJli7jvnnHPkxBNPNJ1H+QX1Wkwv3DTLSPPvKY6HRBDMAzZkXehIQjgscYZwqKIPwE3CdVi//vrrhxT9iqWA6K5du+SBBx6QWrVqyahRo+SGG26QX3/9VZ5++mmpXr16WtoPBNPCiV26dJGFCxeape0qVapklrTTQH3u3LlRN9Znn32We/4XLbAfNmwYxfGQEIJ5IM2Cl6QLrIlLcIZ4UEUfgJu+8zRwD0c7smOdTqiF2l544QWpU6eOCXR0TXgdidfAvkKFCml8BUDkoF6XttMsk9mzZ5uReV2zXpeo0+UQ88u61cA+lir2+vnRjBYgFlSzB2yq3Bv6O71NnQRE4+dq9m567VSzh59p53WkQCSWVVxycnLMEnN33323Cd579eplgvmaNWumqcX+QjX71NFg/v3335f//Oc/5vvpkksuMdXsa9eune/3mabVB+j+HY52HNStW1f69+/v+O892IdgHkiTWJakc1OAAjh9OSunIJiHn0X67tMRSR2Rj2bevHlyyy23yJdffimdO3eWBx98UE444YQ0ttZ/COZT78CBA/Lqq6+awoy6pJ0Wz9Ofy5Url/DnJZSO/gd3AAABpNkDaRJp/rv22gZQ8BCIjkr+gDeKvkYL5H///XczqnnGGWdIkSJFZMGCBaZqOIE83FIoT0fPf/zxR7n//vtNdooO0rz00kty8ODBfD8vmn2Sn5kzZ0rDhg1T2Gp4BcE8kCaR5sVPmzbNBCgA8kclf8BZ9PtLRx31Eum7LLToa6RAXkeJH330Ualfv77MmTNHXnvtNVm8eLGceuqpaX4VQOoddthhJpNszZo1cu6558qAAQPMqPvnn38e9f9p8B/LXPrVq1fLmDFjUthieAHBPJAm2tuqaYLhULUeiA3FIgHnCCwzp3N89aI/a/ASTn6ZZxq86xJf+v/79u1rAiB9fi0yBrhZxYoVTdr9okWLTAq+fgauuuoq+fvvvyP+n0DHV79+/aI+t2assIQdghHMA2k0ZMiQpNbVBfyOSv6Ac5ebU1rPIp5sM02pv/jii+XMM880c4p1fvxTTz0lZcqUSXGLAXudfPLJZlRel1F85513pF69evLiiy9GTL3X77vRo0dL8+bNIz7npEmTcjvVOnbsmMbWwy0I5h20dBmp195DIAIkLzRll1UfgMyn1Udabi7WbDOtUq9LzWlKvRa608+zzo3X0XnAy/Ppr732WvMZ6dq1qymO17p1a/nuu++ifuY0qM+vg4t59FBUs7eZ26o0Iz6BavX79u0zRX2oWg+3YKWFxFHNHl4Reo4SSX5Lzv3yyy8mlX7u3LlmHrGe55QuXTrFrUUsqGZvL02911R6/Uzcd999ZvWGggULRny8zpHX0X1N1480X16fj+XrfMxysezsbEtfgl670ZIlS0z7Qy96P9zv9ttvz/O+6m3ADdh3/f3dBEQ7Rwm99O7dO+IGO3jwoPX8889bJUqUsKpXr27NmjWLjWuzffv2WZMmTTLXsMfu3butW2+91crKyrJatGhhfffddyn5PHKe6U+k2duIKs3exXJacCv2XQCxps5HW3Lu119/lfbt28s111xjlt5atWqVmScP+F3x4sXlkUceMaP0W7dulUaNGpnb0Zax08wXXWs+Gs2iodq9/xDM24gqzf7sqKFGApyMTkYA0c5RNKV36NChEZecsyzLFPnSNbH1ePLxxx/LqFGjpGTJkmxYIEirVq1kxYoVZk69TmnRJRl1VYdIZsyYIccdd1zUbXjllVdGXGEC3kQw77DiaJGWMoM3ToI++eQTU4E0UImUAy6chk5GwJ9CO5ojFXDVwlxaEC/cHHldeqtLly6myNcll1xiRuPbtWuXsdcAuHGU/tFHH5VPP/3UfH50lP7ll182nWLh6GdKP4PdunWLOkKvn1EKa/uE5WJemZeo82A6d+7MvBePzzvWeYXUSIAb99077rjD7ia5ile+m+Af0epk6DnKuHHj8q3nM3/+fKtKlSpW+fLlrenTp2eg1UgEc+ada9euXdbAgQPNZ/Diiy/O9zsk9HPLPHp/opq9A2jPmY7SxlsdFu6qCK7XOiIfSrMxpk6dakv7gEioZp84qtnDT+cgOs93xIgRJvVe04TffPNNqVKlSppai2RRzd75dE16rU5foUIFmTBhgjRt2jTiY3WOvKbWR0M84W2k2TsAc1S9S0+EtECQXkdKX542bRqpUHD0vgvAu4H8q6++mnABvD///FPOPvtsueeee2TIkCEye/ZsAnkgSRdeeKF8+eWXZp15nVf/9NNPR0y71xoWodNhQulnnJR77yKYdwDmqPqDBkWRaiLEctLkVBT0AwD3Hbd1bruOyGuxunjOTYJrwJx44omyevVqmTVrlpmjG229bACxq127tql2P2jQILnhhhukR48esmXLlrCPfeihh8zou2bHhKOfceo0eRfBvANEKjLDiJj36MhFIidNTqX7KQX9AMB9x23NCov2mEjnIDk5OSZw1xF5Ldb19ddfS9u2bdPYYsCfihYtKk888YR8+OGHMn/+fGncuLEZsQ9HP6/6uYw2Ss/Sdd7EnHkHYY6qP+hJkh5Qg2+PHDlS3IZaD0B4zJmH247bAQMGDJArrrgiYiC/c+dOU/tl0qRJct9998ldd90lBQowLuQmzJl3p/Xr18t5551nMmE0bf6iiy7Kd/pMpKwbzRLVwSUGDb2hkN0NwP/oh4oPlvdpOpSmSwUK47n1PY9W68GtrwkAvCy/KV3RAvlffvlFzj33XFm3bp0J5vVnAJlRvXp1WbBggSl2d/HFF8s333xjOtTCdaYFPsORgnnNytGLjuLrOWksGHB0LrpTARt4obgYtR4AwF2iTemKllqvKb4nnXSS7Nq1y8zNJZAH7FmT/vXXXzfZnA8++KAZGNqxY0fMU3hDaZZoLIXxmFLpbATzABJCrQckg8KJgDOO25pyqwF6pOleo0aNkrPOOkuOP/54WbZsmRx33HEZai2AUFlZWSa4njx5ssyZM8dUu//555/DbigddR89enRSle71d8FTQ+PpBEBmEMwDSFigguq4ceOingwCwejlB5xz3J46dWrYEXmdW33NNdfI1VdfLQMHDpSPPvpIypUrZ0ubAeSlq1Ho53fPnj0ma0YD+0SWrsuv0j3LZzsfBfAAABnjh8KJFMCD22mhu/PPP9+sG//cc8/JVVddZXeTkCIUwPMWXa5O16XXqTBjx46Vnj17RvzuHT58eNRVLHQUX4N/v31nux0j8wCAjKGXH3C2v//+W84880yzxvWMGTMI5AEHO+KII8zntFevXuby+OOPh32cBt6ahaNBuK5aEY4W1wsdoWdKpfNRzR4AkDEUTgTSK5mq07/++qu0b99etm7dKvPmzZOmTZumrZ0AUqNw4cLyyiuvSMWKFeWWW26RP//800yn0fn18Va61/nweuwIHqH3yipMXsXIPAAgY9Ldy09hPfhZMvUodKmrk08+2aRh66g8gTzgHhq4a92iJ554Qh555BG5/PLLzWc5kUr3OkKvKy55bRUmr2LOPAAg49KxZq0GLsFVd+NZQzeVmDMPO4wZM8achCcyt/XTTz+Vc845R44++miZOXOmVKpUKY0thZ2YM+99b775plx22WUmy+add96REiVKxHXMCOjQoYNJ4YezMTIPAMi4VPfys3wO/Ew7siKdlEeqUxEwadIkadeunTRu3NgU0SKQB9zt0ksvNYXu9POs9S/++eefhCrda8eeZvnA2QjmAQBpkcmUdwrrwa/CdWTFUqdCvfXWW6ZqvY7K6whc6dKl09RKAJmko/Jz586VtWvXyhlnnCGbN29OaC36TH2HI3EE8wAA168lT2E9+FW0NNho9Shef/11U/1aR/HefvttKVasWBpbCSDTdP15HZ3XQF4D+k2bNkUcoddjQSR33nmnScmHM9kazN97772mYEPwpX79+nY2CQDgwpR3ls+BH2mwPmzYsLC/09E2LYgVzmuvvWY62nRe7auvvioFCxZMc0sB2KFBgwZmZQpdoeL000+XP/74I+IIvM6RD0dH+HUaD8XvnMn2kfnjjjvO7FiBy8KFC+1uEgDAhSnvmi6oxb7GjRtnriMFMoDX0+s1yA9eWio0kL/iiivMybkG/ATygLfpQKmO0O/YscOM0OvSdZGyfEKr2AdbtmwZI/QOZHswX6hQIVNsJXApX7683U0CALg05Z3lc+AXkTrHhg4dGrEjS1PrA4H8qFGjpEAB208DAWRA3bp1zQi9BvRt27aNOIc+0BnepEmTsL+fOnVqmluKeNl+FP/xxx+lSpUqUqtWLenZs6esX78+4mP37t1rlvwJvgAAnIWUdyD9InWOdezYMez9Oi9e0+p1/WkCecB/6tSpY1LmNeVeq9z/9ddfEb/DdXWLcA4ePEhRPIexdZ15TefYuXOn1KtXz6TY67yv33//XVatWiUlS5YMO8c+3Nyw7OxsKVWqVIZaDQCway15N2CdeWSKptMHp9rr7XCj8pMnT5YePXqYYnfMkfc31pnH999/L23atDGDqTpaH24VC/3+1uK10eiydjq9DT4O5kNt27ZNatSoIY8//njYuV46Mq+X4BOmatWqEcwDPufXoBHORDAPJx3/tBaRriPfqVMneeedd5gj73ME81DffPONnHrqqWYEXgdXw61mEdpZGI6m5HPe5fM0+2BlypQxX0Y//fRT2N8XLVrUjMAHXwD4W6aXQAMAJ4lWJ0IzHXUNeT02vvHGGwTyAIzjjz9epkyZYoJxPX5o+ny0orJai8OOwrZwWTCvKfdr166VypUr290UAC5gxxJoAOAGv/76q5x99tkm43HSpEmsIw8gDx2Z11oaEydOlOuvv17CJWsHOgsj1eLQ/8sa9D4O5m+99VazVMIvv/wiixcvlu7du5te40suucTOZgFwCbuWQAMAJ/v7779NIK8ZjZpCG25OLAB07dpVXnzxRXn++efl/vvvj6uwrdKOQtag93Ew/9tvv5nAXQvgXXjhhVKuXDmTzlGhQgU7mwXAJexcAg0A0k2zjMaPHx9XttGuXbukS5cusmXLFvnoo4/IdgQQlQbjGsjfc8898tJLL0V8XCDtPlxdM9ag92kwr6kdGzduNEXtNLDX27Vr17azSQBchCXQAHhVoA5IPPVAtLjZBRdcIKtXrzYj8rq2NADk56677pJrr71Wrr76avnggw+inncVKlQo7O8+//xzNrTf58wDQLyCC7TodbhlmQDATXR+qo7Ix1sP5JZbbpFPPvnEzGNt2rRpmlsJwCuysrLkySeflPPOO0969uwpX331VcTHnnTSSWHvP3DgADWLbEAwD8DT1ZwBwE30WDZz5sy464G8/PLL8swzz5iLLkUHAPHQumVjx46VBg0amLn0mzZtCvs4TbNv3rz5IfdrITxWFco8gnkAAAAH0JH3119/PeLvI9UD+fTTT2XQoEEmRXbgwIFpbCEALzvssMNMUbt9+/aZUXq9jnSsGj16tHTr1u2Q37GqUGYRzAMAADhAtJH3SNlHugSdnnS3bt1annrqqTS3EIDXVa1a1cyb1znw11xzTdgl6wIj9D169Aj7O1YVyhyCeQAAAAeINPLeoUMHUxckXOV6TYctUaKEvPvuu1K4cOEMtBKA17Vq1cpUttfU+WeffTbi41hVyH4E8wAAAA5doUNH5LUyfaicnBy57LLL5KeffpLJkydL+fLlM9hSAF6nx5ebb75ZbrrpJpk1a1bYx7CqkP2yrEi5Ey6wfft2KV26tGRnZ0upUqXsbg4AAHw3IWk6H1XTVHXUK1JhT10XesiQISYdNty8VSDS8oXTp0+XTp06kcmBfGmF+i5duph15L/44gupVatWzMesWI5jSB7BPAAAKURHM9Jtzpw5ctZZZ8k999wj9957LxscMSOYR7y2bdsmzZo1kzJlysiiRYukaNGi+f6fO+64wxTCC9CMI11KGKlHmj0AAIBNdPRK15TPbw35gM2bN5t1oM844wwzMg8A6aRB/IQJE2TlypUyePDgfB+vx7LgQF5R4T59COYBAABsoKNXui5znz59YlqfWefJ6xx6vdYl7HRdaABIt6ZNm8qjjz4qTz75pKnREU2kSvZUuE8PgnkAAIAMS2T0Sn//ySefmEC+cuXKGWglAPy/6667zqyecfnll8v69esjbhYq3GcWwTwAAECG3XLLLXGNXulc1bvvvlvuvPNOadeuXZpbBwB5ZWVlySuvvCIlS5aUSy65xNRfCIcK95lFMA8AAJBBmiqvwXmso1pbtmwxJ8+aij9s2LAMtBAADnXEEUfIW2+9ZTKIhg4dGnETabG7JUuWyLhx48z1yJEj2ZxpUihdTwwAAIC89CRY0+TD6dy58yFLOOkKwn379pVdu3aZk+hChTh1A2Cfk08+WR544AFTDO/000+X9u3bh32cHstYki79GJkHAADIkGhFoMJVpx87dqx8+OGHJr21WrVqaW4dAOTvtttuM9N9rrjiCrN0HexDMA8APl3iCkDmRSoOpan3oaNYv/32m9x4442m2r0WngIAJyhQoICMGTNGdu7cKTfddJPdzfE1gnkA8OESVwDsEa44lAbyOrc0NL2+f//+cvjhh5vloADASTRT6IknnjDZQ9OmTYv5/zHwkFpZln5buNT27duldOnSkp2dLaVKlbK7OQBgC/1i1AA+lBadYb5a5vHdhFg/t5pyryP14T6nmlbfr18/c5LcqVMnNipSQiuQT58+3exThQsXZqsiKRpGaq2Pr7/+WlatWiVly5aN+ngdaAhekrNDhw4yY8YM3oUkMDIPAB6dgxttbi6AzAodjdIAPlxqvdqwYYNJXdX1nAnkATh5ubqXXnrJFOjUKUHR6LEvOJBXM2fOlIYNG6a5ld5GMA8AHp2DG+l+AM6dBhNIr9e1nDWFFQCcrGrVquZYpVOFpkyZEvFxkQYYVq9ebebfIzEE8wCQACfN+Qo3B1eDBVLsAfuFG43S25GOHXpS+9FHH8nLL78sZcqUyVArASBxgSyiAQMGyNatW+MeYGAd+sQRzAOAB4rNPfTQQ2aOvPaM6zVfjID7psFs2rRJbrnlFnNi3LFjxwy0DgBSl26/e/fuQwYXAnSA4fjjjw/7u59++skRgyNuRDAPAGkcZcukaHNwATh/GoyeBGtRskcffTQDLQOA1DnqqKPkgQceMNlFy5YtC/sYzTiKZPjw4bwdCSCYB4A4UGwOQDqmwSxcuNBk1owYMULKlSvHRgbgOgMHDpQTTzxRBg0aJAcPHjzk93rc69WrV9j/qyt3OGFgxG0I5gEgDhSbA5DqaTAHDhwwJ7/Nmzc3y9EBgBsVLFhQnnvuOfniiy9k9OjRYR+j9YZat24d9neswhM/gnkAiAPF5gCkehrMCy+8IN988405CS5QgFMzAO518sknm7ofd911l/z9999hH/PYY4+Fvf/NN99Mc+u8h28MAIgTxeYApIoWvbv77rvlqquukmbNmrFhAXjiPEnT7DWgDydSur2uO6/FhRE7gnkASADF5gCkgs6fL1SokCkcBQBecOSRR8r9999vUu0///zzsI9p37592PudsuyvWxDMAwAA2GDx4sXy2muvmTn0FL0D4MVieNdcc43k5OTEte48c+czHMxrGsWKFStk69atqXg6AAAAT7MsS2699VZp0qQJRe8AeI5mHD3zzDOmGN6ECRPiqmwfLdBHCoL5G2+80awhGAjk27RpY76MqlWrJvPmzUvkKQEAAHxj8uTJ8tlnn5lReYreAfCiU045Rc455xxTF2Tfvn1hU+q1MGh+S3cixcH8e++9Z9Im1JQpU2TdunXy/fffy0033ST/+c9/EnlKAAAA19I5nrHO9QwUhjrzzDOlXbt2GWkfANjhwQcfNLHiyy+/HPb3gSU7Iy3diTQE87rMQKVKlczP06dPlwsuuMCkQ/Tt29csrQIAAOAXOpLUsmVLU4VZr/V2NHrS+u2333LSCsDzGjZsaI6N9913n+zcuTPsYygqnOFgvmLFiuZLSHuWdQmBQK/y7t27pWDBgkk0BwAAwD10JP7hhx/Oc5/ejjRCv2fPHhk6dKgZCGEpOgB+MGzYMNm2bZs88cQTdjfFcxIK5q+44gq58MILTU9LVlaWnHXWWeZ+/eKqX79+qtsIAADgSJGqLke6/7nnnpONGzeaZZsAwA9q1Khhqto/8sgj8tdff9ndHE9JKJi/9957zbqBV111lSxatEiKFi1q7tdR+cGDB6e6jQAAAI4UqepyuPuzs7PN/NF+/fpRrRmArwTqqo0YMcLupnhKwkvTnX/++abgXdWqVXPvu+yyy6Rr166pahsAAICj6VzP22+/PaZqzI899pj8+++/Js0eAPykfPnyctttt5nspA0bNtjdHM/IsnSh0wTMnj3bXDZv3iw5OTl5fvfKK69IJmzfvl1Kly5terpLlSqVkb8JAEA0fDf5k0411NR6HZEPF8jrflG9enUzKq9BPWCH/fv3m+LVnTp1ksKFC/MmIKO0AJ4eB3U5uqeeeoqtb9fIvBYxaN++vQnmtbL91q1b81wAAAD8JL9qzC+88IIpFHzzzTdnvG0A4ASHH364XHfddWaZuljmzsez5KdfFUrkP40aNUrGjh1rvrQAAAAQmabWaxVnnY541FFHsakA+Nb1118vjz76qDz99NMyfPjwiI/T6UrBK4XodKaHHnooQ630+Mj8vn375OSTT059awAAADxGB0B0FCp0bj0A+E25cuVMEfVnn33WTD9KxZKffpZQMH/llVfKm2++mfrWAAAAeMiBAwfMckxaOLhu3bp2NwcAbHfLLbfIrl275MUXX0zJkp9+llCa/Z49e+Sll16SWbNmyQknnHBIAY3HH388Ve0DAABwrQkTJsi6devk/ffft7spAOAIuhqaTtfWmFHn0BcrVizhJT/9LqGR+ZUrV0qjRo2kQIECsmrVKvnqq69yLytWrEh9KwEAAFxGV/sZOXKkdOzYURo3bmx3cwDAMXRO/KZNm+S1115LaslPv0t4aTonYPkfAIDT8N2EgGnTpkmXLl1kwYIFcuqpp7JhYDuWpoOTXHjhhbJ8+XKTPl+wYMG4l/xEgmn2AAAAfhTPyaWuo3zSSScRyANAGLfeeqs5jk6fPl3OOeecQ36vvyOIT1Mw/8UXX8g777wj69evN9Xtg02cODHRpwUAAHCkeJZK+v777+WTTz6RcePGZbCFAOAezZs3Nx2eWtk+XDCPNM2Zf/vtt83SdN9995188MEHJmVn9erVMmfOHCldunQiTwkAAOBY8S6V9Nxzz8mRRx5p0kgBAOFpAbyPP/5Y1qxZwybKVDD/4IMPyhNPPCFTpkyRIkWKmDQy7YHWL6zq1asn8pQAAACOFc9SSTt27DBFnXQt5aJFi2agdQDgTho/VqhQwXSAIkPB/Nq1a6Vz587mZw3mdZ3ArKwsuemmm8ySdQAAAF4Sz1JJb775pjk3GjBgQAZaBgDupR2e/fv3N1OS9LiJDATzZcuWNb3O6qijjjLL06lt27bJ7t27E3lKAAAAx4p1qSRdJGjUqFGmir2upQwAiE6DeV0JZsKECWyqTBTAO+2000xRl+OPP14uuOACueGGG8x8eb3vzDPPTOQpAQAAHE2L3fXo0SNqNfvPP/9cVqxYYaYkAgDyd/TRR0uHDh3kxRdflL59+7LJ0h3Ma8XBPXv2mJ//85//SOHChWXx4sVy3nnnyd13353IUwIAALhiSbrevXtHfJyejNaoUUPat2+f0fYBgJvptKRu3brJV199JY0bN7a7Od4O5o844ojcnwsUKCCDBw9OZZsAAABctySdTjXUZXtvu+02KViwYIZbCQDupfXYKlWqZObOE8ynYc68zmMI/jnaBQAAwG9L0k2ePFl27twpPXv2zGALAcD9ChUqJBdffLG89dZbcuDAAbub471gXovebd682fxcpkwZczv0ErgfAADAb0vSvfHGG9KqVSupXbt2BloGAN7Sq1cv2bRpk6nFhhSn2etGDaTXz507V1Jt5MiRcuedd5piek8++WTKnx8AACBdS9L99ddfMnPmTM5hACBBTZo0kXr16snrr79O3ZFUB/Nt2rQJ+3MqaOVXLRhzwgknpPR5AQAAUrEkXXCqfbgl6XSuvLrwwgvZ4ACQgKysLDM6r4O8L7zwgpQoUYLtmKpgfuXKlbE+NK6gPDC37OWXX5b7778/5v8HAADglCXpNMX+7LPPlgoVKvCmAECCLr30UhkyZIipQXLJJZewHVMVzDdq1Mj0lliWZa6jOXjwYKxPK4MGDTLVC88666x8g/m9e/eaSwDF9gAAQCZoAB8uiFdr166Vzz77zBRuAgAkrlatWnLyySebVHuC+RQWwFu3bp38/PPP5vr999+XmjVryvPPP2/WAtSL/qwFX/R3sXr77bflyy+/lBEjRsT0eH1c6dKlcy/VqlWL+W8BAACkw5tvvimHH364nHvuuWxgAEiSZm1/9NFHphYJUjQyX6NGjdyfL7jgAnn66aelU6dOeVLrNbjWtIhu3brl+3wbNmwwxe4++eQTKVasWExt0AJ5N998c56ReQJ6AABgJ50vr+c+hx12GG8EACRJa49cf/31MnHiRBkwYADbMxUj88G++eYbMzIfSu/79ttvY3qO5cuXm6XutGqhriuol/nz55tOAv05XKp+0aJFpVSpUnkuAAAAdtGMxVWrVsU0kAEAyF/58uXllFNOkSlTprC50hHMH3vssSblfd++fbn36c96n/4uFmeeeabpFFixYkXupVmzZiatQn8uWLBgIk0DAADIGD3ZLFKkCMsoAUAKnXPOOTJ79mzZtWtX1MctXbpUxo8fb679KOY0+2CjRo0yG7hq1aq5leu12r0Wxou1B6VkyZLSsGHDPPfp8gPlypU75H4AAAAn0orLZ5xxhjmvAQCkhtYgufXWW2XWrFnStWvXsI+544478iwbqsuI6uojfpLQyHzz5s1NMTytPq/BvF4eeOABc5/+DgAAwOuys7PNFEEK3wFAatWtW1fq169vOkzD0ZH4h4MCeaW3/TZCn9DIfGAU/aqrrkppY+bNm5fS5wMAAEiXmTNnyoEDB6RLly5sZABIMc0Ef+211yQnJ0cKFMg7Bv3DDz+E/T96f6RlRL0o4WBeabG79evX55k7r+ihBgAAXqcjRo0aNZLq1avb3RQA8ByNKR955BFZtmyZtGzZMs/vjjnmmLD/J9L9XpVQMK/p9N27dzcF7HSevGVZ5n79WYWrRA8AAOAV+/fvl+nTp8t1111nd1MAwJNatWpl6qlpTbbQYF5H32+//fY8qfY6h95Po/IJz5nX9eF1GTpdWk7XVF29erUsWLDAVKMnVR4AAHjd4sWLZdu2bSYNFACQerq6WefOnSMWWH/ooYdkyZIlMm7cOHM9cuRI370NCY3Mf/bZZzJnzhyzBqDOX9CLrgWoS9Ndf/318tVXX6W+pQAAAA6h50FHHHGENG3a1O6mAIBntW/f3gTrOoh85JFHHvL7Fi1a+G40PumReU2jDyzBogH9xo0bzc81atSQNWvWpLaFAAAADqOZiG3atDmkKBMAIHVOP/10c61Z4NEs9el68wl9A+k68F9//bX5WXtCdK7CokWL5L777pNatWqluo0AAAAZEcsJ4b///mtSOnV9eQBA+hx11FFmmbpoU7nvuOMOM6e+T58+5lpv+0VCwfzdd99tlghQGsCvW7dOTj31VFMI5umnn051GwEAANIu1hNCnW6oK/kERowAAOmjx9q5c+eG/d1Sn683n1Awf/bZZ0uPHj3Mz3Xq1JHvv/9e/v77bzOXoW3btqluIwAAQFrFc0KoI0RaYfm4447jXQGADATzuiS6xpqhfoiy3rwfFEhkKZZChQrJqlWr8tyvRWACS9MBAAC4STwnhMyXB4DM0fokav78+Yf87hifrzcfdzBfuHBhqV69OmvJAwAAz4j1hHD37t1mtJ4UewCwf958i/+uNx/MT+vNJ5Rm/5///Efuuusu2bJlS+pbBAAAkGGxnhBq4TvmywNAZmkHaqQieA/5eL35hNaZf/bZZ+Wnn36SKlWqmOXoSpQokef3X375ZaraBwAAkBF6Qqg1gTS1Xkfkw43sLFy4UMqWLct8eQDIcKr9yy+/bAaTdXp3qBY+XW8+oWC+W7duqW8JAACAzfI7IVy+fLk0a9aM9eUBIIP0uBsYND7rrLPY9skE80OHDk3kvwEAALiaBvO9e/e2uxkA4Cs6Z/7www83x2CC+STnzAMAAPjNpk2b5Pfff5cmTZrY3RQA8JUCBQpI48aNTTCP/yGYBwAAiEHgJLJp06ZsLwDIMD32EsznRTDvQrokzvjx4801AADIDD2J1OJ3NWvWZJMDgA3B/M8//yxbt25l2/8XwbzL6DI5LVu2lD59+phrvQ0AADITzGuKfVZWFpsbADIskBXFymn/QzDvIjoS//DDD+e5T28zQg94L5vFjW0G/BDMk2IPAPbQJUN1SXRS7ZOsZn/w4EEZO3aszJ49WzZv3iw5OTl5fj9nzpxEnhb50HVvI93vx3UVgVho9kpwJ9jtt99u1pJ2Mje2GfA6Pd/57bffCOYBwCYFCxakCF4qRuZvuOEGc9GgvmHDhnLiiSfmuSB9vVHx3A/4nRuzWdzYZsAPvv32W3N9/PHH290UAPAtPQYHjsfR+CXDMaGR+bffflveeecd6dSpU+pbhIh09F1H6IJP9HUEj1F5wDvZLG5sM+AHP/74o1kaqXbt2nY3BQB8q169evLqq6+azPACBcKPS/spwzGhYL5IkSJSp06d1LcG+dIdsUePHubEXkfkObkHvJXN4sY2A36g37tHH320OQcCANijbt26smfPHjPtqXr16jFnOGr85MW4KaE0+1tuuUWeeuopsSwr9S1CvnRH7N27tyd3SCAd2SzBnJ7N4sY2A34Q6EQHANgncByOlskYz/2+HJlfuHChzJ07V2bMmCHHHXecFC5cOM/vJ06cmKr2AYDvslnc2GbA6/Tz2L59e7ubAQC+phlShQoVMsfks846S/ye4ZhQMF+mTBnp3r176lsDwLM07cmu4FT/ntsCYje2GfCqAwcOyNq1az17MggAbqGBvNYuiTTS3qJFC2nevLksW7bMF+dUCQXzWnQAAGKVyUIk2mmgWUOqY8eOnj14A8icX3/9Vfbv308wDwAOoB2rkYL5pUuX5gnkA/fpxYvnhAnNmQcAJy61pp0GLVu2lGHDhpmL/qz3AUAyAieNjMwDgLOD+R+YMx9ekyZNZPbs2VK2bFlp3LixZGVlRdzAX375ZYreKgBul6ml1sJ1Gni9gimAzC1LV7RoUalWrRqbHAAcEMyvW7fOZEyF1m5jznwEXbt2NV9kqlu3bul/lwB4QqYOqtGqlLJGu701CwC30yWQqlatGnFNYwBA5mjHqq4z/+effx7SyRpYFSh4gMfLqwLFPGd+6NChYX8GgGgydVCN1jng99TYTNYsALzojz/+kMqVK9vdDACASO7x+I8//gibMeWnVYFiDuZ1TfloqfUAEEkmDqrhOg283hubTM0Cph4AsSOYBwBnBvOReLmCfULBvK4nf88995gTwCJFikSdV/b4449LjRo1ZPDgwalqJwCXy8RBNdBpQDX7zNcsALxs48aN5jwIAGC/ChUqSMGCBc2x2e9iDuafeeYZM8J1zTXXSLt27aRZs2ZSpUoVKVasmGzdulW+/fZbWbhwoaxevVquvfZaufrqq9PbcgDwcU9srPxWCAZIBx390XMeAID9tH5JpUqVoo7MqzFjxsjnn38uJ510kvTr1098HcyfeeaZ8sUXX5iAfcKECfLGG2+YdVf//fdfKV++vKlw36dPH+nZs6epeA8AsJ/fCsEAqabnOdu2bWPOPAA4LNX+j3zS7APrzb/44ovy0ksvpWVZZNcE8wGnnHKKuQAA3MFPhWCAVNNqyYoCeADgjmB+zJgxuYF8gN7W+702Qs8aKwDgAxrA9+7dm0AeiFNgTibBPAA4hx6TN0aYM6+p9fHc72YE8wAAABFs2rTJXOv8TACAM+gxedN/j8+hdI58PPe7GcE8AABABNu3bzfXpUqVYhsBgEOULl069/gcSlPpmzdvfkiGotdS7BXBPAAAQAQ7d+40S/JGW5YXAJBZhx9+uOzatUtycnLC/v7000/Pc7tNmzbiRQTzAFxLq5KOHz/ek9VJATjDjh07pGTJknY3AwAQRI/LlmXJ7t27D9kuel4YvIqP0ttePF+Mu5p9gPaC/PTTT7J58+ZDekROO+20VLQNACLS5dWCD9S6/JpWbQeAVI/M6wgQAMA5AsflnWGO0TNmzAj7f/R+r63ok1Awv2TJErn00kvNOvPaIxIsKytLDh48mKr2AUDMPa66/JrXDtIA7MXIPAA4TyBjaseOHb4uUJpQmv3AgQOlWbNmsmrVKtmyZYts3bo196K3ASCddL30eO4HgEQRzAOAs4P5UB07djzkvmj3+25k/scff5T33ntP6tSpk/oWAUA+jjnmmLjuB4BEkWYPAM5Osw+lWZo6/TI4i1OnZ3oxezOhkXndEDpfHgDsEDhIB/PqQRpwulGjRpkRkgMHDuTepydXhQsXPqSa8Lx588x0vLVr14pbMDIPAO4amVdaR0mnhutydN26dZO6deuKE11++eXmezH00qFDh/SNzF933XVyyy23yJ9//inHH3+8+cIOdsIJJyTytAAQMz1I6xx5Ta3XEXkCecAeZ5xxhgnev/jiC2nZsqW579NPPzVzGLW+xZ49e6RYsWLm/rlz50r16tWldu3arnm7tFJyhQoV7G4GACDIYYcdZq7DVbMPuP7662XZsmXm50mTJslLL73kyIr2Gri/+uqree4rWrRo+oL58847z1z37ds39z7tQdBieBTAA5ApGsATxAP2qlevnlSuXNmMugeCef25a9euMmfOHDMyEhih1/s1+HcTXbGnYMGCdjcDABAkcFzOibDO/JgxY3ID+QC9rffraL2TaOCeaBG/hNLs161bd8jl559/zr0GAAD+oQG6jroH6M8awLdp0yb3/n///deMiLgxmC9QIKHTJQBAmgSOyzkRgvnPP/88rvvdKqGR+Ro1aqS+JQCQAA0OSLUH7KUB+o033mjmzWvQ/tVXX5lAfv/+/WZOvfrss89k7969BPMAgLSPzJcrVy6u++00derU3IJ+AXfddZe5pCWYV1q85sknn5TvvvvO3G7QoIHccMMNrpoHB8DdtOhdcKVSLYqnc+kBZJaOwu/atcuMeOgytVrHQueZa0B/xRVXmHnzmmJfq1YtM2c+XgcPHox4wpZu+rd1GqF2TABut2/fPnOtHWuAm+mxObAvhzs+169fX4oXLx72/lQdzwsVKmSmmKeiQ/yFF17Ic98RRxwRWxsS+YMfffSRnHvuudKoUSNp3bq1uW/RokVy3HHHyZQpU6Rdu3aJPC0AxDUiHxzIK72tRfGYRw9kli5VW7VqVZNSr8G8BvGqSpUqUq1aNVm8eLH5Xdu2bRN6/tWrV5upfHbIzs6WDRs2yPTp0235+0A6zJ49mw0LVwsE5N98803Y43OpUqXkrbfeCvt/U3U8P/PMMw8ZUU9EiRIlEl7yPaFgfvDgwXLTTTfJyJEjD7lfR8oI5gGkm6bWR7qfYB7IPB1Z0NF3DeZvu+223PtPO+00mTFjhik8dPXVVyf03DpYcOyxx4odRowYIUcddZR06tTJlr8PpHpkftasWSYIibVaNuBEgSr2jRs3jnh81g7k5cuX595u1qxZSjuydGTebgm1QFPr33nnnUPu1+r2mnoPAOmmabzx3A8g/cH8oEGDzGhJYGRe6c/XXnutCSISLX6ncyPtqigf+Luhy/ACbqaBPPs03CxwbC5SpEjYfVkzOBcuXJjnPl029csvv3TcoI9OFdAl30M7CsqXL5/v/02oPKvOg1uxYsUh9+t9Rx55ZCJPCQBx0QOxzpEPpplBTjtAA36hgboWv9NUwYoVK+YJ5nfs2JG7hJ0bKybbNV8fABBe4LhcIMJqI9EyOJ1m5syZ5vsx+HLKKaekb2S+f//+ctVVV5ll6E4++eTcOfNaeOrmm29O5CkBIG56zNE58lSzB+x39NFHm0Jx4VbACXe/W+ioD8XCAMCZxRwLR8iacksG59ixY80lUQkF80OGDJGSJUvKY489JnfeeWdukZt7771Xrr/++pifR6v26eWXX37JnRN3zz33SMeOHRNpFgAf0pF4RuMBpIsWN9q5cycbGAAcRDO+lMak0TI4g4slezGDM6FgXkvwawE8veS3IaPRyrdaRK9u3bqm1/61116Trl27mvVpNbAHAACwk57faDV7AIBzxBKDPuSDDM6kS/AlEsQHnHPOOXluP/DAA2akfsmSJQTzAADAdozMA4DzBDKmDs9naTivZ3DGHMw3adLElPIvW7asWQJAR+cj0SqB8Tp48KC8++67smvXLmnVqlXYx+icteB5a9u3b4/77wAAAMQzaBEYAQIAOEMy2eG+DOY1/T2wHqX+HC2Yj8c333xjgvc9e/aYnpUPPvhAGjRoEHGt12HDhqXk7wIAAOSHYB4AnIdgPs5gfujQobk/a6G7VNGlanRJu+zsbHnvvffksssuk/nz54cN6LXYXnC1fB2Zr1atWsraAgAAEIw0ewBwZ5r90qVLPT1fPuF15mvVqiX//PPPIfdv27bN/C7eJV90TdqmTZuakfcTTzxRnnrqqbCP1cyAUqVK5bkAAACkc2ReTxpZax4AnDUyX7Ro0YhL02nl+pYtW0qfPn3Mtd72ooSCeV1KTue4h9L57L/99ltSDdIvS9ZzBYDU0x7q8ePHm2snPA9gt1j25cCoj9b0AQA4g3ayHh5hVF6P6cFL0im97cXzlriq2U+ePDn3548++khKly6de1uDey2QV7NmzZifT9PmdU356tWrm96VN998U+bNm2eeGwCQOtojHfzFpmuv6pItdj0PYLdY9+Vy5cqZa81I9HuhJQBwir///jv3+BxKU+sj3e+1dPu4gvlu3bqZay1+p3Pbg2mKw9FHHy2PPfZYzM+3efNmk/rwxx9/mI6BE044wQTy7dq1i6dZiMIPc0UARBeph1rXXo3nuJCq5wHsFs++XLlyZXO9ceNGc54DALCfHpMr//f4HErjnnju902avabA60VH0jUQD9wOpMavWbNGunTpEvPzjRkzxqTs6//V55s1axaBfAr5Za4IgOii9VDb8TyA3eLZl6tUqWKudeABAOAMekyu8t/jcyjtlNVsq2AaB3lx4CGhOfPr1q2T8uXLp741SBk/zRUBEF2qeqj91NMNb4tnXz7iiCNMsV6CeQBwDj0mV44wMh+OZVniRQkF89dff708/fTTh9z/7LPPyo033piKdiFJjKABSHUPtZ96uuFt8ezLOrWwUqVKBPMA4JJgfqmPBjXjmjMf8P777+cphhdw8skny8iRI+XJJ59MRduQBEbQAATTwl46HzjZGhqpeh7AbvHsy3rCqPMzAQDOqGSvxdMrRwjmKYCXD63oGlzJPkDXfdfKgnDOqENwrxQjaIC/6XEhFcF3qp4HsFus+7LOyyTNHgCcIXA8rhJhzryfBjUTSrOvU6eOzJw585D7Z8yYIbVq1UpFu5CiUYclS5bIuHHjzLVmTQAAgPjo6A/BPAA4Q+B4XDnCyLyfpgUmlGZ/8803y7XXXit//fWXtG3b1tyna8zrsnSk2DsLI2iAv7E8JZA8Hf0hzR4AnCFwPK4cpQCeX6YFJhTM9+3b1ywn98ADD8jw4cPNfbr26gsvvGCWQQMA2E97oYOn2mgvtX65AYhPzZo1zTTC7OzssNMMAQCZs3btWrPSSOkox2O/DGYklGavrr76avntt99k06ZNsn37dvn5558J5AHAIfxUyRVIt8A8yx9//JGNDQA2CwTp0QYzWrZsaWJTvdbbXpVwMH/gwAGZNWuWTJw4MXfdPk150OqCAAB7sTwlkDp169aN+rkCADgjmF/qs8GMhNLsf/31V+nQoYOsX7/epNu3a9dOSpYsadI39faoUaNS31LYzi/pKoAX+KmSK5Du7zdN5axYsSLBPAA4gB6vu3TpEvF3ke73YvyS0Mj8DTfcIM2aNZOtW7dK8eLFc+/v3r27KYQH7/FTugrgBX6q5Apk4vtNA31G5gHAXrpE+pYtWyIOTuzbty+u+305Mv/pp5/K4sWLpUiRInnu1yJ4v//+e6raBoeIlK6iFSIJDADn8kslVyAT32/6GVqxYgUbGwBsFOhUjRTMFwmJT/O735cj8zk5OXLw4MFD7teCeJpuD29h7i3gXhqQ9O7dm0AeSPL7LTAyH6gTBADIvMDxuU6dOmF//8knn/hqmmFCwXz79u3zrCeflZVlCt8NHTpUOnXqlMr2wQGYewsA8Pv3m963Y8cOs4oPAMC+YL5q1apSokSJsNlW48ePP+R+Lw9qJBTMP/roo7Jo0SJp0KCB7NmzRy699NLcFHvWMPYe5t7CjQIHdK9WLwWQ2e+3QID/3XffsekBwCZ6DI7UETtjxoyw99eqVUu8KqE589WqVZOvv/5aJkyYYK51VL5fv37Ss2fPPAXx4B3MvYWb6Ml48DxYPVmnozE5rGYBv3+/6e/0HOfLL7+UM844I+PtBACIOQaff/75bIr/yrLinPy1f/9+qV+/vkydOlWOPfZYsdP27dvNcjHZ2dlSqlQpW9sCwDlBp1akDrVkyRLPplilG50j8eG7ybtOPvlkqVmzprzxxht2NwVIiJ7HT58+3UyLLVy4MFsRrqtkX758eXnzzTflkksuOeT3fjwHjDvNXj/4mloPAE5EwcbMVPtm+gL8qEmTJrJ8+XK7mwEAvh2VDxyLw2nhw2V5E5ozP2jQIJOWduDAgdS3CABcWLDRq3P06RwB/qdp06bmM6GF8AAAmaWdqbpyWt26dSM+5qGHHjIj8ePGjTPXI0eOFC9LaM78559/LrNnz5aPP/5Yjj/++EOqCU6cODFV7QOAuAR6ZYNHk9PdK+vlNHRWswDyBvM6O/Grr76S0047jU0DABkO5hs3biwFCkQfj27RooWnR+OTDubLlCkj5513XupbA8AX0l1MLZMFGyOloevf98IXiR2dI4BT6So+xYoVMyeUBPMAkFl67O3WrVvUxyxN8zmmJ4L5V199NfUtAeALmRrFzlSvbLQ0dK98ibCaBfD/ChUqJCeeeCLz5gEgw7Zs2SLr1q0zGVJ+zJRM6Zx5AEiEF4up+SUNXTsmevfu7ZkOCiBReiJJETwAyCyd3hQ4BvvlHDOlwbxWDdy6dav5Wecq6O1IFwDwSzE1P1ZOBfysefPmsmbNGjNKBADIjMWLF5slySMNlvzgwXPMlKbZd+3aVYoWLWp+zm+uAgCEm7+0b98+T45ik4YO+Mfpp59uiuAtWLCA8yEAyJB58+aZWiWRit8d45NMyYSD+aFDh4b9GQCiCZ2/pKNay5Yt89wotp8qpwJ+VqNGDalZs6Y5sWRwAwDSb+/evWZk/sEHH4z4mBY+LdibUAE8AIhFuPlLGsiPHj1aihQp4ptKo37nt8qy8Mfo/Ny5c+1uBgD45jxiz5495tgbzUMZXM3IdcF82bJlJSsrK6bHMo8MQLR5ShrIazE1eJ8fK8vC+/SEUlf2+eeff6RcuXJ2NwcAPE0zoXRp9BNOOCHfx7bwWaZkzMH8k08+mfuzfnndf//9cvbZZ0urVq3MfZ999pl89NFHMmTIkPS0FIDr+HX+EqJXltVecz990cJ72rRpY6513nz37t3tbg4A+GK+fMGCBe1uinur2V922WW5l0WLFsl9990nb731llx//fXmoj/rffPnz09viwGEDZrGjx/vuOU3qPTub36tLAt/zZsHAKSPptfroHF+KfZ+ldCceR2BD5cm2aFDBxk8eHAq2gW4VqbnBzs9jdmP85f8sg/m93fIzICX6YklwTwApJfWWspvvvxSH9fmiXlkPpjOD/vwww8PuV/vY+4Y/EwD65YtW0qfPn3Mtd62I43ZiSP0OkfebwdYL++DsfwdMjPgZWeccYasXLlS/vrrL7ubAgCeNWfOHDNf/sQTT3TEubfTZFm6WGqcxo4dK1deeaV07Ngx9+Rcg4eZM2fKyy+/LJdffrlkwvbt26V06dKSnZ0tpUqVysjfBCLRz4AeREItWbIkbUGsptbrwSvUuHHjohaY83MPppdlah+M9+/4bX/ju8kfNm3aJJUrVzaF8HQKIuAG+/fvl+nTp0unTp2kcOHCdjcHyFezZs2kTp068vbbbzvi3NsTI/MarOu8eQ2gJ06caC7688KFCzMWyANOY8f84ETSmP3eg+llmdoH4/07ZGbAiypWrGj27cmTJ9vdFADwpN9++02WL18u5557btjf/0BtnsSCeaVfYG+88YZ8+eWX5qI/+6UHBAjHjvnB8aYxuyUtH87eB5kLD/y/c845x9QR0vmcAIDUmjp1qqlgr9ngnI+kOJhH5jm1YjnsnR+sBeY0nUhT6/V65MiRER9LD6a3ZWofZC488P90tGjXrl0UwgOANJgyZYqceuqpUrZsWc5HUjln3in8NC/R6RXL4Y75wcwt8genVLP3Kz99N/mdnkLVqlXLjBo9//zzdjcHyBdz5uEW2lGqhdUffPBBufnmm6M+dqmPz0cI5l2AAAzp7BjS29FG8wHEh2DeX2644QZTO2j9+vWSlZVld3OAqAjm4RaTJk2S7t27myC9bt26djfHsUizdwFSo2FXWj4AIP9Uey3StGLFCjYVAKSIFhc99thjCeTzUSi/B8B+FJtCqmkKkt/SkAAgHXQ+p06n0BPPxo0bs5EBIEkHDx40xe+uuOIKtmWqgvkePXrE+lCTbobUF5sKTY0mGAMAwF5FihSRLl26yDvvvCP33HMPqfYAkKQFCxbIX3/9Jd26dWNbpiqY12I+wQVfPvjgA3Nfs2bNzH26BuC2bdviCvoRX2q0blu/FncAAMCpLr30UnnzzTfl66+/lkaNGtndHABwtddff90UF23ZsqXdTfFOMP/qq6/mGRW+8MILZdSoUWbtv0A6xDXXXEPl3jQiNRoAAOdp3769lC9fXt544w2CeQBIwp49e+S9994zxUUjFRX1c/X6lBTAe+WVV+TWW2/NDeSV/qzLBujvAAAA/KJw4cJy8cUXm9F5HdwAACRG58rrqjA9e/YM+3sdVNYR+z59+phrve1nCQXzBw4ckO+///6Q+/W+nJwc8Qrt9Rk/fry5BgAAiERPPDdu3Cjz589nIwFAgjTDSadx16tXL2xsFlxDTOltP8dqCVWz18qC/fr1k7Vr10rz5s3NfboRdYkrr1QdDF2LWwvQ6bx1AACAUJrqWbt2bTPXs23btmwgAIjTli1bZNq0afLII4/EvVx3C5+m2ycUzD/66KNSqVIleeyxx+SPP/4w91WuXFluu+02ueWWW8TtIvX6aAE6v+4oAAAgMp3bqaPzTz75pDz33HNSvHhxNhcAxEHnyutUpYsuuijs71muO0Vp9gUKFDAj1b///rupYK8X/VnvC55H71bRen38zo9TD/z4mgEA8dNgXud66pxPAEB8NLOpXbt2ZtA4HB1U7dWrV5777vD5ct0JBfPBSpUq5bkK9vT6hOfHghNues10OgCA/ecPOv3wtdde460AgDj8/PPP8umnnx4SrAfT83AN+AN69+5tpnn7WULB/KZNm8zGq1KlihQqVMiMxgdf3E57dzTLIJjfe338WHDCTa/ZTZ0OAOBl/fv3l+nTp8uvv/5qd1MAwDVeeuklKVOmjJx33nkxn5ePJ3M2sTnzl19+uaxfv16GDBli5spHWgPQzbTYnc6RZw1D/xaccMtrpsYDADiHLlGnS/WOHj1ahg8fbndzAMDx9u3bZ5Y3v+yyyyLWG5kxY0ZM5+VLfbYGfULB/MKFC00aRKNGjcTLdAfww04QCz9OPXDLa3ZLpwMA+MHhhx9ushfHjBkj99xzj1mDHgAQ2QcffCB//fWXDBgwIKZVxiKdl9/hw9XIEkqzr1atmliWlfrWwLH8OPXALa/ZLZ0OAOAXekKqq/18+OGHdjcFABzvhRdekNNOO02OPfbYmDJQw52XL3XR9Fjbg3lddmXw4MHyyy+/pL5FcCzt2VqyZImMGzfOXPuh4IQbXrNbOh0AwC9OOOEEOeWUU+TZZ5+1uykA4GgrV66U+fPny6BBg+LKQB06dGie83K/rkaWUJq9rv23e/duqV27thx22GGHpJBt2bIlVe2Dw/hx6oEbXrObajz4bS4TAH+67rrrzPmSnqhqcA8AONRzzz1niqp37949rkzTjh07xvQ4r2eqFkp0ZB6As7ih08GPc5kA+JOemOoJqp6ovvjii3Y3BwAcZ+vWrWapOc34jlRfJFyGU7gM1Bb/zVQNPs/0Q6ZqlmXj5PcRI0bIxIkT5fvvvzeVC08++WRzYl+vXr2Y/v/27duldOnSkp2d7bm17gGv0RF5XTYvlE5f8PqBFv7CdxMCtJq9nuvoCkDly5dnw8B2+/fvN0sndurUieKMsN0jjzwi//nPf2TDhg1SsWLFQ36vSy7r8nPxnDsu9VkGaIF4Tk6Cf452iVVgfoS+IZ988ok5wLRv31527doV/ysB4Gh+ncsEwL8GDhxorp955hm7mwIAjrJnzx55/PHHzeof4QJ5DcrDBfL5nTu2aNHCPKcfAvm40uzLli1rKrMeeeSRUqZMmbBry+sgv95/8ODBmJ5z5syZeW6PHTvWPP/y5ctNRUMA3vHxxx/7ci4TAP+qUKGC9O/f3wTzt956q5QsWdLuJgGAI7z22muyadOmQ4o4xxKwc+6YQDA/Z84cOeKII3J/DhfMJ0vT5VXg74Tau3evuQTEkwUAZILfUnvi2S46JyqUn3pOnYz9FkifW265RZ5//nl56aWXzM8A4HcHDhwwc9vPO++8iNOrIwXsnDsmGMy3adNG1q1bJzVr1pTTTz9dUi0nJ0duvPFGad26tTRs2DDsY3Te2bBhw1L+t4FUoLhbZJF6V9u1a8fOZzP2WyC9qlevLr169TLppNdee60ULVqUTQ7A19599135+eefzXUk4QraaSCvy0UjwQJ4BQoUkBo1asgZZ5whbdu2NUF91apVJRWuvvpqmTFjhixcuDDic4Ybma9WrZotBfAYyULo/kBxt+ifF7aP8/C+pAcF8BBKC/02aNDAVLXXtHvALhTAg9009GzUqJFUqlRJPvroo3xjrX379kmRIkXIek22AF4gvf6yyy4zPSn6ZaSBfd26dWXAgAHy9ttvm3kPidCe6qlTp8rcuXOjdg5ob7YG7cEXu0ayNDDRCot6rbfhbxR3iy7QuxrMzuVCAkVV9NpPfzsU+y2QGfXr1zdL1ekIU6x1hQDAi3Q1hZUrV8qdd94ZU6x15ZVXyqpVq5iWGYmVoH///deaPXu2NWTIEOvUU0+1ihYtahUoUMBq0KBBzM+Rk5NjDRo0yKpSpYr1ww8/xN2G7OxszSow15myZMkS8zdDL3o//Iv9IvbtNG7cOFs/L7fffnuez67e9sPfDof9Nj3s+G6C833++edmv3j77bftbgp8bN++fdakSZPMNWCH1q1bW61atTJxYDicm8QnrpH5YMWKFTOp9nfffbeZx3799dfL4YcfblLJYqXL0mlRrDfffNNUeP3zzz/N5d9//xWnYiQLbhh5dqp4lwtJ9Si2Pk/w3CultzMxSm7n346E/RbInGbNmpk6IQ888ICpEwQAfqNZ2IsWLTKj8pGKqRNrxSfuYF7nLSxYsMAE8Dp3Xpep03VUt27dKs8++6wpkherF154wcx317n3lStXzr1MmDBBnCpSZUWWSMBDDz0kS5YsMYU59HrkyJFsFIdNZ7HzC8KpX07st0Dm6LnTN998YwYxAMBvc+UHDx5sOja7dOkS8XHEWmmqZq90JF5HkbSivVa317ny+oWkAXgi4qi95xjhKisyAovg/YPR+PSNYvfo0SOp7WvnF4STv5zYb4HMaNWqlXTt2lWGDBkiF1xwAZXtAfjGBx98IMuWLZNZs2ZFXeKcWCuNI/OffvqplCtXzgT1Z555pkkXSzSQdzNGsgB3jmLbmVZOSjsA9eCDD8r69etNZXsA8Mu68nfddZeJHTWGzG96pQ7ekO2ahqXpdu3aZQL6efPmmTkPK1asMKNKOkqvqfJ6XaFCBckUlv8BvCndS6bZubQky1p6fxvz3YT89O3b16zis3btWlMzCMgUlqaDHcaMGWOq0i9fvlyaNGkS9jE6uBKclamDLzqAihQG86F27Nhh1oXXwF4D/K+//tosVafLB2QCJ0yAd4Ue1PU2dQgQ735jx8kA303Iz4YNG8z5khaBGjp0KBsMGUMwj0zTwuZ6vDvllFPMUuZ2DOJ4WcLV7FWJEiXkiCOOMJeyZctKoUKF5Lvvvktd6wD4FtNZ4IUVA4BwqlWrJtdee608+uijsnnzZjYSAM/SAumbNm2S+++/33VFgj0XzOtSKlq4QE+OOnbsaCrZn3zyyfL8889LpUqV5LnnnpOff/45fa0F4CvxLmUHf+NkAG6io/IFChQwS9UBgBdt27ZNRowYIf3795c6deq4skiwp6rZa/Cu8+Y1cNdl6Z544gkzV7527drpayEAuITdc7X9jpMBuIkWFNZlmjTN/pprrpF69erZ3SQASKn77rtP9u7dK/fcc0/Ux1HBPkNz5rXyqgbxTuklYV4iAKdwwlxtOKPWAt9NiNWePXvkuOOOM4MiH330UdTlmoBUYM48MkVrqDVq1MhkH+l3cSwYFMlwATy7ccIEwAko3OIsdp8M8N2EeEybNk26dOki7777rpx//vlsPKQVwTwyQcNLzd7WufIrV66UIkWKsOGdkGYPwDvsDnj8MlfbLdvWS/uDtt/trwH+0blzZzn33HPlpptuMvWItLgwALjZW2+9JQsWLJCPP/6YQN7J1ewBuJOmO+kSIH369DHXsaY/wXtztTWI11FB9gfAPk8++aT8/fffUas9A4AbaHbaLbfcYjKN2rVrZ3dzPI9gHkhTgDR+/HhHLonF8l2pFyjcEkw7SJw+Ohzo1NE032As5wZkVs2aNU0xvMcee0zWrFnD5gfgWsOGDTMB/eOPP253U3yBYB7w2ag3y3elhxa7W7JkiYwbN85cZ7roWio6dYKxtiuQWdohqOvPX3fddWa+KQC4sejdU089JUOGDDHHM6QfwTzgs1FvN6eEO52OxPfu3dvxI/KxBOuZ2B+cnMECZFrx4sXNSfAnn3xiiuEBgJvk5OTIoEGDzOocN998s93N8Q2CecBno95uTQlHakUL1jOxPzg9gwWwg9av6Natmxmd1zn0AOAWo0aNMkXvnn/+eYreZRDBPODDUW+3pYS7nRNHoMN16mhV7UzsD27IYAHs8sILL8iBAwfk2muv5U0A4Arr1q0z5xQDBgyQM8880+7m+ArBPODTUW83pYS7mZNHoEM7daZOnZqR/cENGSyAXSpVqiTPPPOMTJgwQd5//33eCACOT6/v27evlC9fXh555BFXDWx4QZbl4iorWimxdOnSkp2dLaVKlbK7OYAn1+xGcvuBBvChNHD2837h9e3CdxOSpadmPXr0kEWLFsnq1aulQoUKbFSkxP79+2X69OnSqVMnKVy4MFsVSXvuuedMJtGsWbMijsrrQEZwRp4OfOmAApLHyDyQBox6QzEC7f4MFsAOWVlZJt3+4MGDpNsDcKyff/7ZfJ8PHDgwYiDP1Lr0IpiHa5CeA7dxSw0FO1C3Acg/3f7ZZ5+Vd955R9577z02FwBHptdr5lC0pW4jVbZnal1qEMzDFZw879hOdHA4GyPQ+W8f6jYAkV188cUm3f7qq6+WzZs3s6kAOIZWrZ8/f7688sorUrJkybCP0fP2xYsXh/0dAxupwZx5OF4m59e6aa4784/cw6n7lVPb5XbMmUcqbdq0SRo2bGg+o5MnT5YCBRiHQeKYM49UWLVqlZx00klmZF7nzMdz/h5YPUeL7iJ5fCPA8TI179hNo//MP3IXJ45Au2l/B/ysYsWK8tprr8m0adPkiSeesLs5AHxu165dcuGFF0qdOnXk0Ucfjfi4aOfpQ4YMSVPr/IdgHo6XiXnHbguOM9HB4ZUUfq+8jlRy2/4O+J1WHr/ttttk8ODBfE4B2Oq6666TX3/91dTzKF68eMTHRTpPd9rghtsRzMPxMjHv2G1Vx9PdweGVUVuvvI5Uc9v+DkDkgQcekGbNmslFF10kW7duZZMAyDgdHHn11VfNfPljjz027vN3DeTHjRuX5lb6C3Pm4WjBc3pVuub3unHd69A583p75MiRvtwWibwOP88X98p77FTMmUe6/PLLL9K4cWNp27atqXCvS9gB8WDOPBK1Zs0aadq0qZx33nlm6k+s/Hy+lQmMzMM1o6oTJ05MW2qOG6uOp2tpL6+M2kZ7HX4fsXfj/g5A5OijjzaVo/X7UNehB4BM2LNnj8kKqlq1asSCd5GmNjqxbpCXMDIPR7Jr5JDeQ++M2kZ6HaNHj5Yrr7zS9a8vFdjf04OReWRizupLL71kjls6Ug/EipF5JGLQoEEyZswYWbZsmZxwwglhH8MqS/ZgZD4OFNLKHLtGh+k99M6obaTXUaRIEU9kHqQC+zvgTo888ohZrk7TXf/++2+7mwPAwzSlXufIP/nkkxEDeQrr2qeQjX/bVeht8l4Fe0RP4e/Ro4fr5ziFex2RKrazbwFwi2LFiplUe13n+YILLpCPP/5YChcubHezAHiMZv9cddVV0q9fPxkwYEBCg3BuPYd0C0bmY0BvU+Z5ZXTYzbwyahv6OsLtW0pPjAHALWrUqCHvv/++LFy4UG688Ua7mwPAY3777Tfp3r276TTUefLRCm4yCGcfgnkfFQRzm3QVeAN0tD4U66wDcJtTTz3VpL/qZdSoUXY3B4BH/Pvvv9KtWzeT8aOdhkWLFo36eAbh7EOafQzobbKPHhzcPjIM5yEdDIBX9O/fX1auXGmK4um6z23atLG7SQBczLIsk1b/7bffyqJFi6RixYq+mqLpNozMx4DeJsBb6KAD4CWPP/64GaXXgnjr1q2zuzkAXEyD8rfeekvGjh0b92oZXpmi6SYE8zEi5RvwDjroAHiJpsK+++67UqpUKenatavs2LHD7iYBcKHJkyfLXXfdJXfffbdceOGFdjcHMWCdeQC+xTrrSAfWmYddVq9eLa1atTIdltOmTYu4FCf8i3XmEYnWp2rbtq2cffbZZp58gQKM+boBc+YdiiADSD9qMgDwkuOOO04+/PBD6dChg1x22WXyxhtvcEIOIF/fffeddO7cWZo2bSpvvvkmxw0XocvFgXQJtpYtW0qfPn3Mtd4GAADIzxlnnGGC+AkTJshNN91kilkBQLQl6HQ0vnLlyibNvnjx4mwsFyGYdxjWtAeQyuPJ+PHjzTUA/zj//PPNutBPP/20qfkDAOFs3brVZPLoGvIfffSRlC1blg3lMqTZOwxLZgFIBc3oefjhh3Nv33777ZzUAz5y9dVXy59//il33nmnWVrqiiuusLtJABy2lvw555wjf/zxh1mC7qijjrK7SUgAI/MOw5JZAJJFhg8Ade+998pVV11l1qKfOnUqGwWAceDAAbn44ovlq6++kunTp0v9+vXZMi5FMO8wLJkFIJ0ZPgD8Q1Nnn3/+eTn33HPNMlPz58+3u0kAbJaTkyNXXnmlWfHivffeY014lyPN3oF0fluPHj3MibeO1GuADwCxIsMHQEDBggVNdWpNp9Vq1TNnzpRTTjmFDQT4NJAfMGCAqaejl44dO9rdJCSJkXmH0gC+d+/eBPIAEjp+6Bz50Dn0dAwC/lSsWDGzZN1JJ51kTt4/++wzu5sEIMN0ZYtBgwbJmDFj5NVXX5VLL72U98ADGJkHAA8iwwdAsMMOO8zMm9dgXqtXa+VqXf4WgD8C+euuu05GjRolr7zyiln+Gt5AMA8AHqUj8YzGAwgoUaKEKXalAX379u1lxowZ0rp1azYQ4PHU+muuuUZeeuklefnll/Nd2UKL6DLV1z1IswcAAPCJww8/3ATxTZo0kbPPPlsWLFhgd5MApDGQ1xUtNJDX9HotfBeNTsnTjB0duddrvQ1nI5gHAADwWUCvlaybN29uRulnz55td5MApGH5ub59+5q0+rFjx8Y0Iv/www/nuU9v6/1wLoJ5AIDn6cmIVu7lpAT4X8q9zqE/9dRTTUD/zjvvsGkAj9i9e7d0795d3njjDXn99ddjmiPPsrbuRDAPAPA00gaByEXxJk+ebNagv/jii+XZZ59lUwEut2XLFmnXrp3MmTNHpkyZEnPVepa1dSeCeQCAZ5E2CERXpEgRGTdunNx4442m2vXdd99tKl8DcJ8NGzaYbJs1a9aYYF5XrogVy9q6E9XsAQCeFS1tkEr/wP8rUKCAPPbYY1K5cmW5/fbb5c8//zRLWBUqxGki4BbfffedWaVCP8+LFi2SevXqxV21nmVt3YejNADAs0gbBGKTlZUlt912m1SsWNEUzfrrr7/k7bffluLFi7MJAYf77LPPpEuXLlKlShWZOXOmHHXUUflOPwsudqedeBrIK5a1dRfS7BEVRaMAd+Kz+/9IGwTio4WydB79rFmzzLxbDeoBONekSZPkzDPPlOOOO04+/fTTfAN5pp95C8E8IqJoFOBOqfzseqFTQEcblixZYuYF6/XIkSPtbhLgaJ06dTLL1f34449y0kknycqVK+1uEoAQWtvi/vvvN1Xr9TP70UcfSZkyZfL9Pp8xY0Zc09LgbFmWi6ucbN++XUqXLi3Z2dlSqlQpu5vjKfqB1yAglJ4IM8/U3cLNkYJ3pPKzGy0ND5Hx3QSvWL9+vXTt2tUE9doZ1qNHD7ubhCTt379fpk+fboK/woULsz1dvPScrhuvS0ree++9MmTIEDNXPhJdflLT76PhHN+dGJn34ChUKrDWpDf3C7ItvC9Vn91Y0/Cc8NlwQhsAL6pevbosXLjQBH7nnXee3HfffZKTk2N3swDxe8X6U045RaZOnSrvvfeeDB06NGogX6tWrXwDeT0/ZIDHnWwN5hcsWCDnnHOOKdaghVd0zoedCHT+h6JR3tsvmCPlD6n67MbSKeCEz4YT2gB4WYkSJWTChAkyfPhwEzRcdNFFsmvXLrubBfjS4sWLpVmzZmYtef1ZO9mi0RH5devWhf2dfp6ZfuZ+tgbz+mVw4oknynPPPSd2I9DJi6JR3tsvyLbwh1R9dvPrFHDCZ8MJbQD8QAdcdP35Dz74wMy3bd26tfz66692NwvwlVdeeUVOP/10qV+/vnz++ecmhopGvwujjchroN+7d29G5F3O1mBed6JA4Qa7EegciqJR3tovyLbwj1R8dvPrFHDCZ8MJbQD8pFu3bmYJLK1V1LRpU5k2bZrdTQJ8MT/+qquukn79+pl58p988olUqFAh3/8X7buwQ4cOBPEe4ap15vfu3WsuwUWGUoVAJzy/rzXppf0iEJwFj2QyR8q7UvHZ1U4BLXgVrmCiEz4bTmgD4DfHH3+8fPHFF3L55Zebda1vvfVWeeCBB6RIkSJ2Nw3wnG+//dZMbVm7dq28/PLLJqDXTJlYRPourFmzZsSK9nAfVxXAGzFihKleH7hUq1YtZc9NWrl/xFMsy2v7BdkWiJfu6+HS8Jzw2XBCGwA/KleunFmL/rHHHpMnn3xSTjvtNPnll1/sbhbgGbrY2NixY83SkFp0ctmyZXLllVfGHMhH+o7UrOiff/45DS2G+H1pOt05dS6WpnDFMzKvAX0ql6Zj2S5vS3SpLfYLwLmfDSe0IRhL08FPNMjQkcOtW7fKmDFj8i3IBXuxNJ3z7dixQ6655hp5/fXXpW/fvvL000+bQpSJfg867TsSPg7mQ3HCBLvW3waQOl470eC7CX6zbds26d+/v1kma9CgQfLoo49KsWLF7G4WwiCYd7YVK1aYzrGNGzfKqFGjpGfPnmkbqII3uCrNHkgGxbIA52FpOcD9ypQpI++88448//zzMnr0aNMp9/XXX9vdLMA1Dh48KI8//rgZdDrssMNk+fLlMQXyrOoCW4P5nTt3mh4ovShdB1F/Xr9+Pe+Mw+aOewHFstzLb/uqX3ASAniHZlheffXV5nOtSZ+6FvawYcPMSDCA6INNWndCi0kOHDjQrBgRayFXBqpgazCv1VAbN25sLurmm282P99zzz28M2nmx9EwimW5kx/3Vb/gJATwHl37WtfAHjx4sAwfPtx8965cudLuZgGOHI1/4oknzGdm06ZNMn/+fFNQMr8pKsEDHAxUwTFz5hPBvMTE5qP6fe641+bnepnf91Wv8+r7y3cT8P80VViXsFuzZo0MGTLEBPiFCxdm89iIOfPO8OOPP5o14xcvXizXX3+9PPjggya9PpH58Sp02eGRI0emqeVwGubM+3BU0++jYZGW2oLz+H1f9TqyZQBva9q0qcnC1IBDU+71POSbb76xu1mAbXSZOR1919H4P/74Q+bNm2duxxLIR5qa1qNHD9MJPm7cOHNNIO8vBPMeFulDv2/fvrCPj3V+jlfmSTMP2/lIH/M+rbhr50kIxwEgvYoWLSr333+/+Xzr8sIa4N91112ya9cuNj185csvv5TWrVvLTTfdZNaM1+knOlc+FQMcDFT5F8G8h0X60BcpUiQ3LSdAR+ydNFKd7nnS6Xh+goLUY+TWH+w6CaEeA5A5WhBP0+41kNeq3ccee6y8//77plge4GVbt26Va6+9Vk466SSzhrzOjY9l7fhQDHAgLMvFsrOz9RvAXONQS5YsMdsn9KL3B34/bty43NuRhHtcrP83He124vPffvvteZ5LbyN10rm/wZ/vczqPM3w3AdGtXbvWOuecc8xnrn379taaNWvYZBmyb98+a9KkSeYa6XXw4EHrlVdesSpUqGCVLFnSevzxx5Pe7qHnm3fccUfK2gt3Ipj3uGQ/9OGC1HQHrnoyH+4kW+934vOnu/MB8INMd4il8zhDMA/EZsqUKVbNmjWtwoULW3feeae1c+dONl2aEcxnxvLly62WLVua75WePXtaGzduTFnHNgMcCEYw7wOJfugjBanpDlwTCY7jeY2pDr7T3fkAeJ0dHWKMzAPOsHv3buvee++1ihUrZlWrVs2aMGGClZOTY3ezPItgPr3++usv65prrrEKFChgNWzY0Jo3b15c/59MT8SLOfMOlOq514nOR42nYngqq4vHO0863nmvqZ6HzRwmwH2rFlCPAXCG4sWLy9ChQ2X16tXSqFEjueiii6R58+Yye/Zsu5sGxGznzp0yfPhwqVWrlrz++uvy2GOPmYJ3bdq0SbpwdboKQcMbCOYdxkkFmeKpbp/qSvixVrhO9MCX6granTt3dnRBQcDJ7OoQs7uSPoD/0SBo8uTJZqmuggULyllnnSXt27c3RfMAp9IVop599lmpXbu2WbVBq9SvXbtWbrzxRilcuHBcz8VyvEiI5WJem5foxLnX4ebcO6n4RqZT3EPT+UO3RefOnZkrDyTASceVZHntuwnINE2znzhxolW/fn3zWbrwwgutH374gTciBUizT11xuzfeeMOqVauWlZWVZV122WXWL7/8ktQ5pRPjADgfwXwEdhSXcOrc60xXs4+3bZk68IUGG7169eKgC6SQU44rySKYB1Jj//791ujRo62jjjrKKlSokDVw4EDr999/Z/MmgWA++Y6m6dOnW40aNTLngOeee671zTffxP08kebGe6ljG5lBMO+g4hP0yCUmEwe+eIoB2t35AmfxSoCK2BHMA6kvkvfwww9bZcuWtYoUKWL179/f+vHHH9nMCSCYT8yBAwesd99912rSpIk51zvllFOshQsX2rp0NKCYM++g4hMUZIqfvi8NGzaU0aNHp3XeazyFuNI9zxfu4aQaGADg5iJ5t912m6xbt06GDRsmH374odSrV08uvvhiWbFihd3Ng8fnxL/yyivSoEEDueCCC6RMmTLyySefyIIFC6R169YJPWd+c+MTLVwNfyKYd1jxCTcUZEp1tf1UBEpacGTVqlVpO/BFCtD1YBvaJg6+UFSlBYDUKl26tAwePFh++eUXeeaZZ8xxtnHjxtKpUyf59NNP2dxImV27dsmTTz5pCtv169fPBPN6Xq6rLGhxxqysrITPmVkFCSnl5gSFdKQykurujvUv7XifIqXzkw4FN9XAQPqRZg9kLmV8/Pjx1nHHHWeOr61bt7YmTZpkUqIReZvpNtJrHOrPP/+07r33XqtcuXJWwYIFrd69e1urVq2Ke1PpuaEWRY50zszceKRKlv4jLrV9+3bTS5udnS2lSpVK2fPq6Gpwqr3e7t69uxmd1940v468aq+ijoSH0p7KTG8T7eXUEflQmtEQOlqe6m3g9/3AD1LxPjvp8+J3mf7cpuu7CUB4OTk5MnXqVJPN+Nlnn8nRRx8t11xzjRlRPeKII9hsQfbv3y/Tp0832QzxLp3m9e8JXWLunXfeMUsj9u3bV2699VazLyUbR0Q6B+CcEilhuVg6Rz+CR1udMhptNyeNNJJBgXRJ5eednnf72XH8ZmQeSF6iWW/Lli2z+vTpYwrlFStWzOrbt6+5T6uQg5H5YLt27bJeeeUV66STTjLfDzVr1rQeffRR659//klqv6VIMjKJYD4fBI3O3RbhAiVS3uG0fZx9MnOSWbM3le8TwTxgfyfcpk2brAceeMCqUaOGeY7GjRtbo0aNsrZv3+7rt4c0e8ukzV933XVW6dKlzRrxHTp0sKZMmZKS6RmRBr7sPmeGd1EAz+EF8ZzEadX2Q4sFaudUuMrhTinYB39+3qlKm5h4P7fhVg6I9f1k1QHA+cVDx4wZE9cx4cgjj5S77rpL1q5dK9OmTZNq1aqZ1PtKlSrJpZdealLNNeUc/vDHH3/IE088IU2bNjWrIGk6/aBBg8z+MWPGDOnSpYtJr09WtBWNKJKMtLBcLBOjH04bjXYCJ440RnqftHAJUyTsfV+ctq9Ew+fdnaNykd630aNH53v8Tsd7zsg8kL6RzcB3eyLWr19vjRgxIrdgXvny5a1rr73W+uyzz3yThu+nkXnNwhg7dqzVrl07q0CBAmbqRY8ePaz333/f2rt3b8a+w7QQnlvOg+A+BPMxYN6rN7786YjJLLfWmnDa591tHSLJSiS4jlbPI7/3Mx21QAjmASttc44Dl169eiX8NzRwX7FihXXrrbdaVapUMc9Xu3Zt65577rG+//57T799Xg/mNUjXlPmLLrrIKl68uHlv27RpY7388svWli1bMvY97LfvbtiHYD5GfCi98eWf7Em6E7hhX3T7CLdTtrFbO0SSkUhwnd/+Fu39ZGQecJ7QY186O+d1nvTs2bOtK664wipVqpR53vr165s2LFy40HPL3HkxmNeCdbpE4QUXXGCVLFnSvIcNGza0Ro4caf36669JPbcfv4fhLgTzHuSUQCTTQg+4oSn2bgso3fyl4qSVD9z6uXR7h0iiEn3dyWRUpDobg5F5IHXHzEjTZdLxnbJ7925r4sSJJrCvUKFCbir+ZZddZr333nueKJ7nlWB+zZo1pvL8aaedZtaD1/dKq9Lfd9991sqVK1PyN/z6PQx3IZj3GLcEe+nqeAh9PqelTPvlS8VNbXXq5zLeDhEvdeIl+rlNZhtQzR5wLjs653VEfvHixdbgwYNz59jrnGutfP7EE09YX331lXXw4EHLbdwazG/bts2aOnWqdfPNN1v16tUz74cuPdilSxfrxRdftH7//feU/00GJuAGBPMe4rYAKlMdD6k6Sbc7WHLbl4qXOlLs+FxGK+oWuh+6qRMv1s9Ruj9v6Xx+RuaB1NM58nZ+p6xdu9Z68sknrbZt21pFixY1bShbtqzVtWtXc7/OwXdDcO+WYF6Po9OmTbNuu+02q1mzZqaAnW7zo446yurXr5/14YcfmnXi08lt59XwJ4J5lwp3IuqmYM9tB0gnBEtu22ZO6ABxgmQ+l6H7XYsWLQ7ZD920Xzjhc5SJdhDMA97+Tvn333+tefPmWffee691+umn5wb3RxxxhNWtWzczcv/pp59aO3bssJzGicG8FiTUue06xUGDd02XDwTvWqCwZ8+epoDdjz/+mLJVB2LdlxiYgNMRzLtQpBNRN53U0/GQGL5U3CfZz2V+80aHDh3qqE68SCdITjk+ZaIdBPOAvzoENLifO3euOR5r5fRAcJ+VlWUde+yxJqtAA/wFCxbYPu/e7mBeg/F169aZGgR33nmn1b59e1OXIHAs1uD90ksvtV566aWUBu/JLn/qhE4kIJxC6Vm93luWLl0qP/zwgxxzzDHSokUL29vy8MMP57lPb/fo0cP83LlzZ5k2bVru7+644w7b2xyObst47rfzfdT/E+n+TG/bhx56yLzXTtkfkT99j26//fY8n9t4Ppf6OL2MHz8+rs2dzs9SJPq6gl+nvm7dZ9WMGTMc8Tly0ucZgDOOUcme5xUrVkxOP/10c1H79++X1atXy/Lly3Mv7777ruzdu1eysrLM3znxxBPNdfClbNmy4hUHDx6U9evXm+0auHz//ffy5ZdfypYtW8xjKleuLE2bNpVBgwaZa71UqVLFtvPoSO994HsYcCKC+SROTu0Q6UR0+PDheYJ4Deq7d+8uRYoUMQcupx2E4g1wkv2iTeZ9tKPjIRq+VNwnFZ0wkfa3jh07yr///ptwZ0EmTpAmTpx4yO/s+hw57fMMwN5j1MaNG+X1119P6Xle4cKFpVGjRubSr1+/3AD/u+++yw3uNdhfuHCh+fsB5cuXzw3s69atK9WrVzcBr140yC1durTpDHCCAwcOyKZNm+SPP/4wF30dP//8c27g/tNPP8m+ffvMY/VctE6dOuZ1XX/99bmBu76uTKNDF16TpcPz4lLbt283B7bs7GwpVapUWg78LVu2POT+JUuW2BYcR2pTfuzuhIgkliA92Q6VVLyPoW3Q2yNHjoy5DUAqRNsP7c4g0syBPn36HHL/0KFDZdiwYWH/j12fo3R/ntP93QQgdceocALnB5k4ru7YscMEvsEj2D/++KO53rp16yEZAMHBfaVKlcyx5vDDD5eSJUuaS+DnwHWJEiWkYMGCUqBAAXPREfNZs2bJGWecYe7PyckxQffOnTtNWwLXoT//888/uYG7XjZv3qxTdXPbps9do0aNPJ0RgZ+1U0L/lhM48dweSAbBfAIH/nHjxknv3r3FLqEnoqGp9ZG48UCVioNuqt5HO4IluwO0dPP66/PTNov0WY0UzOv99957r3hxOxLMA84Tz2CInh+sWrXK9szM3bt35456BwfSgdt//vmnOd4Egm4d/U+lww47LLeTQKcAaAdCcGdC4Ge9HHnkkRkL2FOdrckADdyMYN6lvXfBBzIVyxeU3Z0QiUhFIO7k99FNUzxSHQDZ8fqcGgh7RbgTJJ3uE+3z58X3hGAecMcxSs8jwtUjGT16tFx55ZWuO2/QOfmhI+u7du0yo++Biz5G5603b97cpL/riHqhQoUOGdkPjOg7TarOHbz43QOfslwsExWD3VI9PLSdTqganQrR1tpOxfvo1AqlTqn8na7lvOx4fU5ZFs3rwn2mIn3+YnlPnPoZjYZq9oBzhR5Twh2f3LTijtuq2XthVRTASQjm4zyoOPnEMrhtbumESKajIt5gLL8vcCcFd047kUj1F2imXx8nAPYL/fzF8p6EfkZ1eSenHn+DEcwD3j8+uZXTg/lo52ZOOzcCnIBgPg5ODv7CcXLHQ7wirbGd6Gtz+he109oX6QtU19R1w+vjBMB58ntPIu0jbjj+EswD7uelQRG3BPP5nRs47dwIcIICdqf5u31JE73fqXQOkM4Hs3MukG4fnY+W7HbSeV3xLDGSzNIkTlq6L5gdy43lt2yXFjbTdjn99TltObJUfS7cLL/3JL/PotOPvwDcTedh6xx5rdGj13asvOG374r8zs2cdm4EOILlYpkc/Yg2iuSlEXC/zLF2S++uk/ataHUZknkfMvX6MjnKEu11uS3Dx673JL+ReSenVjIyDzifk75fw0nXd4WbR+bd8t4BmUQwn+QBpnfv3pyYx7G9kjnwpjoY82oKXTppWr2bgqpQmTgBiHZMcEsnUibF0/Hhlu1GMA84m9M7VdP5XREczDsxKObcDIgPwXwSB5jQk3ann2BmUrrmKKf6i8eJX2RORjAanRZoi3ZMcNvcfSd83gL/J/R46+TON4J5wLnc8D2Wzu+KQDB/5513OrZDg3MzIHYE80kcYNx2Yp5JbviyRGLoNQ8vWlp4fkXdnPi5SPXIVSqezy0neATzgHO54dwtEyPzxYsXd8V3EYDoKICXRFE5pxXVcpJ4i5T4rciLW4R7X5xQFMiJohVsCxwT3FK8JxUFP4P3nVQVEHVCUU8A7uaGcze7viucUgQYQBwsF3PC6AejlMmPpDl97ppf8b6krq6GE9PX0zlyFbrvdO7c2fEjYV77bgLg/nO3dGQjuWlk3i3ZWICdsvQfcant27dL6dKlJTs7W0qVKmVbO3R0SXsztVeXEaP4t13Lli0PuV9HfBPdlrwfyW+HdLwvfqAjJ8Ej0DqKrBkMmfybOpqj2RPJiPT+jx49WjZs2GB+7tixY9h9IdL/Dcer+5NTvpsARObXc4X9+/fL9OnTzesfMWJEnu8SJ2XapeO7DfAky8X8MvoRT8+k23oxUz13zUujycm8l8luByfPKYy2XRL9Xbral66/GXje0aNHp21eZeg+1KJFi0P+Trj9KtK+Ezo679SRsFTwy3cTAPdxejV7t9WXAexGMO9w8QRlbghkQ784kjlgp/K5nCa/9zK/oDXe7RDrttSl6ezcntG2S6K/s6OtqXzedHa65NdpEG6/irb/OfXEMdUI5gE4lZPXmXfDgALgNATzDhZPUOaEQDa/E/VIwU0ic9fCPZdXDv75vZf5BYnxbodY35d0B8PhOhRi7axJ9Hfpkq6/Ga1ifjpfW6R9KtJ+5fT5qOnuVCCYB+BUbgjmnXBOC7gFwbyDxROU2R3IxjKSHO3AHO9UgnDPlc6U40zRtg4YMCDiexnLdtTR81R0AuUXOKZyu4buP82bNz9kf4q2jyf6u3RJ19+MFlSnM3COti9E2g+SCZjTGWxnIkuDYB6AU7khmHdDpzDgFIXsnrOP1CyfYudSK5GWnerRo0duUZlIy53o/fqYwCUWkZ6rSJEipkBKcFsCS7m4odBNaLGXUNr2aNtx4sSJEf9/pCVtoj1ffgLvXbLGjBlzSLuXLVuW57b+XouvxbuPJ/q7ZKXr8xjp/+u20f0/Xft3YJmk0Pcp2lJJ8Xym4y16lOjnOdKxSp+nX79+cbcVAJAeetzX80inn7sBtrNcLF2jH04qOBdPz2S0x8bazkReTyyjkKlMmYp3lD/ekTg75vXmNwoeeC/jzUrIb4673SPzscz/Dt6fou3jif4uXdL1N+0crQhkfoTuV6n6zMRynEhmZD1aZkMqR+gZmQfgVG4ZmQcQG4J5FxScS7ZzIdZ2hj6uV69eMXcAxBLspTIIieW54k05t7OIYKQgQ1PuY9mO+XWoRNuH4gmC43nv8ttvY53/HfqeJVqx3q5OmnRWs3fCFJJUfmZi2Y+T6VjK1NQRgnkATkUwD3gLwbyLC87FItpIbiyPi/UEvXfv3nker7fDBRupzBCIJ0CNFBw45T2N92/HUxwulmArliBY95lYA8hY/ma0UdLQZdCCMxOcEsQi9Z+ZaMcrfd8jdc5F+jyH21eiHRtSVUeBYB6AUxHMA95CMO/SgnOxihYw6brPgRPdSCfJsZygh54cN2jQIK6OgPyeL97/H8uIb7jXYvd7mmzmQrj/7+RK7tECt3Dp3G5YetFv0vGZiWV9+/z2rfz2lXQXyySYB+BUBPOAtxDMp3hkvl+/fravxR1vYBtaOTyeUatYU6Vj3SapCD7zq/gd3ImR6r+drGRHnkP/fzzBVqpGveP5m+E6IMIFYk54bxD/SHqy+3G09e2D9xm7p/2EIpgH4FQE84C3EMyHiOcELzS1PPTilJHDeIqMpWo0O9FtkoqRvkgn8yeffHLYtgQHsV5bCiXRwCaZfTeZKQOR/m886dVe5OTpBfmNpKdjDr3uD5G2hx0dWKEI5gE4FcE84C0E82HEcoIXa4DslJPvWEa4ogW+kQrMhT4ulksgjTrSnPpUbMfQ9ydSx0vo/YFRYKcGTonIr4MiHaPeiXaKRAvenPz5Sic3TC/IbyQ91XPo86ulYfe+QjAPwKkI5gFvIZhPQDxVuDUIcYp4RugDo6SJFJg76qij4gruQ4OTVI2OB7c/ngwCuwPEdHQmRHvOeCrpp+pvRvs/kd4Tr2VNxCJdgWm69jHdZ9I9hz6W9z3S/8lURx3BPACnIpgHvMURwfyzzz5r1ahRwypatKiZv7106VJHnzClOrXc7sDguOOOi+tkOdbOjHhG7YNPrsMVP0vXa48UeNg1Om/HKGx+2ybT+2+04M1rWRNOKDCXivc3v45COzofQv9PJj9bBPMAnIpgHvAW24P5t99+2ypSpIj1yiuvWKtXr7b69+9vlSlTxtq0aZNjT5jiCQzzO5lNdcGzRAODVDxPuEt+dQVC26DF6fI74Y6lreEek0zqfTLbPdPFxBJpW7qDsXj5LWjP1Mh8Okb68zseOiGDItOp9wTzAJyKYB7wFtuDeR2JHzRoUO7tgwcPWlWqVLFGjBjh6BOmSMuAdevWLeaRtGRHikL/f6Qq7ak+oY13lDuW+frRgv5oAXm4bRbtMfmN1kVqR7xtSEQsnST5/a1k2hbtPfBLoTknSuX0gnSM9KdrmkYqZXrZSYJ5AE5FMA94i63B/N69e62CBQtaH3zwQZ77+/TpY5177rmOP2EKN3oYa8CcbGAdLaCOFsClKjAIfZ5IKfWRguZYA/ngE+5YtlmiBbPym1sfTxsSFWsnSbQsj0Tblt/fdkpQ5lepylTI5Mi8k/YZRuYB4P8RzAPeUkBs9Pfff8vBgwelYsWKee7X23/++echj9+7d69s3749z8VOLVq0kN69e5vr4Ptuv/32PI+744478jxG/fDDD2GfM9L98Tzu4YcflqVLl4b93UMPPSRLliyRcePGmeuRI0fG9Pfye55FixZFfd2hjw/+uV27dlH/1jHHHBPzNktkuwa/j4G/lUwbEhVu34nnbyXTtmiPCbf/wv5jTaLPE8vxye7nTDU3tBEAACBehcRFRowYIcOGDROn08C1R48eJkDSIDDcCWN+QWN+8nuc/u1IJ6p6fypOYkOfJ7/XHfr4WNoQfMIdyzZLdrsGTvq1QyTRNiQjeBvu27dPrrzyypj/VjJti/SY0aNHS79+/fL9/3CPWI5PTnjOVHNDGwEAAOLipjT7PXv2mJT6wGXDhg22ptknK9mU92ip605KcU3l/P9YtlkqphLEsyxfOgt8xfu3kmmbH5d+A9LB7ilgABBJTk6OOZ/WawDul6X/iI10dKR58+byzDPPmNs5OTlSvXp1ufbaa2Xw4MFR/6+m2ZcuXVqys7OlVKlS4kaaDp/MSJH+/+HDh8u0adPyjCQnmj7vhm0Ry+OS3a6paqsdfyuZtmXydQFe5YXvJgAA4Hy2B/MTJkyQyy67TF588UUT1D/55JPyzjvvyPfff3/IXPpQnDD9D0EYADgD300AAMAXc+Yvuugi+euvv+See+4xRe8aNWokM2fOzDeQR3rmwQMAAAAAnM/2kflkMPoBAHAavpsAAEAm2Lo0HQAAAAAAiB/BPAAAAAAALkMwDwAAAACAyxDMAwAAAADgMgTzAAAAAAC4DME8AAAAAAAuQzAPAAAAAIDLEMwDAAAAAOAyBPMAAAAAALgMwTwAAADgYX/99ZdcffXVUr16dSlatKhUqlRJzj77bFm0aJHdTQOQhELJ/GcAAAAAznbeeefJvn375LXXXpNatWrJpk2bZPbs2fLPP//Y3TQASciyLMsSl9q+fbuULl1asrOzpVSpUnY3BwAAvpsAOMq2bdukbNmyMm/ePGnTpo3dzQGQQqTZAwAAAB51+OGHm8ukSZNk7969djcHQAoRzAMAAAAeVahQIRk7dqxJsS9Tpoy0bt1a7rrrLlm5cqXdTQPg5zR7Ta/Xg9KGDRtIswcAOGYKWLVq1Uxqq04FAwAn2LNnj3z66aeyZMkSmTFjhixbtkxGjx4tl19+ud1NA+DHYP63334zJ0wAADiNdjRXrVrV7mYAQFhXXnmlfPLJJ/Lrr7+yhQCXcnU1+ypVqpiTpZIlS0pWVlZKRlL8OMrv19fO6+b99gP288zv59pHvmPHDvMdBQBO1aBBAzOPHoB7uTqYL1CgQMpHPfSkz08BbTC/vnZet7/wfvuLXe836fUAnEKXn7vgggukb9++csIJJ5hBsC+++EIefvhh6dq1q93NA+DXYB4AAABAZFrJvkWLFvLEE0/I2rVrZf/+/SYjs3///qYQHgD3IpgHAAAAPKpo0aIyYsQIcwHgLSxNF3SgGzp0qLn2G7++dl4377cfsJ/7az8HAAD+4epq9gAAAAAA+BEj8wAAAAAAuAzBPAAAAAAALkMwDwAAAACAyxDMAwAAAADgMgTz//Xcc8/J0UcfLcWKFTNrcS5btky85N5775WsrKw8l/r16+f+fs+ePTJo0CApV66cWY/0vPPOk02bNonbLFiwQM455xypUqWKeY2TJk3K83ut93jPPfdI5cqVpXjx4nLWWWfJjz/+mOcxW7ZskZ49e0qpUqWkTJky0q9fP9m5c6e4+XVffvnlh7z/HTp0cP3r1mV2TjrpJClZsqQceeSR0q1bN1mzZk2ex8Syb69fv146d+4shx12mHme2267TQ4cOCBuft2nn376Ie/5wIEDXf26X3jhBTnhhBPMPqqXVq1ayYwZMzz9XgMAAERCMC8iEyZMkJtvvtksz/bll1/KiSeeKGeffbZs3rxZvOS4446TP/74I/eycOHC3N/ddNNNMmXKFHn33Xdl/vz5snHjRunRo4e4za5du8z7p50z4Tz88MPy9NNPy6hRo2Tp0qVSokQJ815rEBCgAe3q1avlk08+kalTp5pA+aqrrhI3v26lwXvw+//WW2/l+b0bX7fuqxq8LVmyxLR7//790r59e7M9Yt23Dx48aIK7ffv2yeLFi+W1116TsWPHmk4fN79u1b9//zzvue7/bn7dVatWlZEjR8ry5cvliy++kLZt20rXrl3NfuvV9xoAACAiXZrO75o3b24NGjQo9/bBgwetKlWqWCNGjLC8YujQodaJJ54Y9nfbtm2zChcubL377ru593333Xe6ZKH12WefWW6l7f/ggw9yb+fk5FiVKlWyHnnkkTyvvWjRotZbb71lbn/77bfm/33++ee5j5kxY4aVlZVl/f7775YbX7e67LLLrK5du0b8P1543Wrz5s3mdcyfPz/mfXv69OlWgQIFrD///DP3MS+88IJVqlQpa+/evZYbX7dq06aNdcMNN0T8P1543aps2bLW6NGjffNeAwAABPh+ZF5HaHSUR9OtAwoUKGBuf/bZZ+Ilmk6uadi1atUyo7Cabqr09evIXvA20BT86tWre2obrFu3Tv788888r7N06dJmWkXgdeq1ppg3a9Ys9zH6eN0ndCTfzebNm2fSiuvVqydXX321/PPPP7m/88rrzs7ONtdHHHFEzPu2Xh9//PFSsWLF3Mdotsb27dtzR3zd9roD3njjDSlfvrw0bNhQ7rzzTtm9e3fu79z+unWU/e233zbZCJpu75f3GgAAIKCQ+Nzff/9tTgqDT+6U3v7+++9ta1eqacCq6aQayGm67bBhw+TUU0+VVatWmQC3SJEiJpgL3Qb6O68IvJZw73Xgd3qtAW+wQoUKmSDJzdtCU+w13bhmzZqydu1aueuuu6Rjx44muClYsKAnXndOTo7ceOON0rp1axO8qlj2bb0Ot08EfufG160uvfRSqVGjhunAW7lypdxxxx1mXv3EiRNd/bq/+eYbE7zr1BidF//BBx9IgwYNZMWKFZ5/rwEAAIL5Ppj3Cw3cArSAlAb3eqL/zjvvmEJw8LaLL74492cdmdR9oHbt2ma0/swzzxQv0Dnk2jkVXAvCDyK97uB6B/qea9FHfa+1M0ffe7fSDkkN3DUb4b333pPLLrvMzI8HAADwG9+n2WsKqo5MhlY81tuVKlUSr9LRq2OOOUZ++ukn8zp1usG2bds8vQ0CryXae63XoYUPtdK1Vnr30rbQqRa67+v774XXfe2115qifXPnzjVF0gJi2bf1Otw+EfidG193ONqBp4Lfcze+bh19r1OnjjRt2tRU9dfCj0899ZTn32sAAIBQvg/m9cRQTwpnz56dJ21Vb2sqp1fpkmM6Qqejdfr6CxcunGcbaDquzqn30jbQFHM9YQ9+nTpXVueEB16nXmswoPNvA+bMmWP2iUAw5AW//fabmTOv77+bX7fW+9OAVlOttb36HgeLZd/Wa03dDu7M0ArxuvSZpm+78XWHo6PZKvg9d9vrDkf30b1793r2vQYAAIgotxSej7399tumovnYsWNNVe+rrrrKKlOmTJ6Kx253yy23WPPmzbPWrVtnLVq0yDrrrLOs8uXLmyrYauDAgVb16tWtOXPmWF988YXVqlUrc3GbHTt2WF999ZW56O79+OOPm59//fVX8/uRI0ea9/bDDz+0Vq5caSq816xZ0/r3339zn6NDhw5W48aNraVLl1oLFy606tata11yySWWW1+3/u7WW281Fb31/Z81a5bVpEkT87r27Nnj6td99dVXW6VLlzb79h9//JF72b17d+5j8tu3Dxw4YDVs2NBq3769tWLFCmvmzJlWhQoVrDvvvNNy6+v+6aefrPvuu8+8Xn3PdX+vVauWddppp7n6dQ8ePNhU7NfXpJ9fva0rLnz88ceefa8BAAAiIZj/r2eeecacBBYpUsQsVbdkyRLLSy666CKrcuXK5vUdddRR5rae8AdoMHvNNdeYZZ4OO+wwq3v37iY4cJu5c+eaYDb0okuzBZanGzJkiFWxYkXTgXPmmWdaa9asyfMc//zzjwliDz/8cLNk1RVXXGECYre+bg3wNHjRoEWX7qpRo4bVv3//Qzqr3Pi6w71mvbz66qtx7du//PKL1bFjR6t48eKmk0s7v/bv32+59XWvX7/eBO5HHHGE2c/r1Klj3XbbbVZ2drarX3ffvn3N/qvHMd2f9fMbCOS9+l4DAABEkqX/RB63BwAAAAAATuP7OfMAAAAAALgNwTwAAAAAAC5DMA8AAAAAgMsQzAMAAAAA4DIE8wAAAAAAuAzBPAAAAAAALkMwDwAAAACAyxDMA1EcffTR8uSTT3pmG82bN0+ysrJk27Zt4lWnn3663HjjjXY3AwAAAEgrgnn40oYNG6Rv375SpUoVKVKkiNSoUUNuuOEG+eeff8TLQe3JJ58sf/zxh5QuXdq2dgEAAABIHsE8fOfnn3+WZs2ayY8//ihvvfWW/PTTTzJq1CiZPXu2tGrVSrZs2WJb2w4ePCg5OTlpe37tuKhUqZIZnYdz3hcAAAAgXgTz8J1BgwaZoPbjjz+WNm3aSPXq1aVjx44ya9Ys+f333+U///lPnsfv2LFDLrnkEilRooQcddRR8txzz+X+zrIsuffee81zFC1a1Iz0X3/99bm/37t3r9x6663m/+n/b9GihUl1Dxg7dqyUKVNGJk+eLA0aNDDPMXr0aClWrNghqfCaOdC2bVvzs2YQaJv0eQ877DA5/vjjTcdEwOWXXy7z58+Xp556ygTuevnll1/Cptm///77ctxxx5m/rdMKHnvssTx/V+978MEHTSZDyZIlzWt96aWX8s0K0O1w++23yxFHHGE6EHQ7BWhbtB0rVqzIvU/bpPcFtk+grR999JE0btxYihcvbl7/5s2bZcaMGXLsscdKqVKl5NJLL5Xdu3fn+fsHDhyQa6+91mQglC9fXoYMGWLeq2Tel/Xr10d9zQAAAEAmEczDV3TUXYPDa665xgSHwTTg7Nmzp0yYMCFP4PfII4/IiSeeKF999ZUMHjzYBNWffPJJbiD8xBNPyIsvvmhG+idNmmQC6wANKD/77DN5++23ZeXKlXLBBRdIhw4dzGMDNBB96KGHTBC/evVq0wYNJPW5g0eGtV36O7Vnzx5p2rSpTJs2TVatWiVXXXWV9O7dW5YtW2Z+r0G8Zhn079/fpNXrpVq1aodsj+XLl8uFF14oF198sXzzzTcm4NbAV4PZYBrgazaDbgPddldffbWsWbMm6rZ+7bXXTKC8dOlSefjhh+W+++7L3W7x0DY9++yzsnjxYjM9QturdQzefPNN8/q1U+aZZ5455G8XKlTIbA/dFo8//rjZvsm8L0ceeWTcbQcAAADSxgJ8ZMmSJRqlWx988EHY3z/++OPm95s2bTK3a9SoYXXo0CHPYy666CKrY8eO5ufHHnvMOuaYY6x9+/Yd8ly//vqrVbBgQev333/Pc/+ZZ55p3XnnnebnV1991fy9FStW5HnMDTfcYLVt2zb39kcffWQVLVrU2rp1a8TX1rlzZ+uWW27Jvd2mTRvzPMHmzp1r/l7geS699FKrXbt2eR5z2223WQ0aNMi9rdugV69eubdzcnKsI4880nrhhRcitkX/9imnnJLnvpNOOsm64447zM/r1q0z7fjqq69yf69t0vu0jcFtnTVrVu5jRowYYe5bu3Zt7n0DBgywzj777Dx/+9hjjzXtDNC/q/cl+74AAAAATsHIPHwpeOQ9PzrCHXr7u+++Mz/riO6///4rtWrVMqPgH3zwgUnxVjrSrSPqxxxzjBx++OG5F01/X7t2be7zacr/CSeckOdv6Ai8pn1v3LjR3H7jjTekc+fOZsRe6fMOHz7cZAFoGrs+r2YcxJsKrq+jdevWee7T2zpCrX8jILh9mvquWQya7h5N6GuqXLlyvv8nv+epWLGimVag2zv4vtDnbdmyZZ66APqeBV5TMu8LAAAA4BSF7G4AkEl16tQxQZ4Gsd27dz/k93p/2bJlpUKFCjE9n6aua7q5zrfXFHJNQde0fA0Md+7cKQULFjSp7HodTIPHAE33Dy1Id9JJJ0nt2rVNGrimtGsnQXDqu/4NTR/XdHMN6DWdXSvX79u3T9KhcOHCeW5re/MrCBft/xQoUOCQTpX9+/fn+zz6HIm0JVgy7wsAAADgFATz8JVy5cpJu3bt5Pnnn5ebbropz7z5P//804yA9+nTJ08Qt2TJkjzPobe1+FqAPsc555xjLlpcr379+mb0V4u26QiwjhqfeuqpcbdVR+e1PVWrVjXBr47MByxatEi6du0qvXr1Mrc1mP3hhx9MsbbgkeXg0fVw9HXocwXT2zpqHRroplKgs0Tn8ut2UsHF8JKl8/RD37O6deua15Ts+wIAAAA4AWn28B0tpqbVzM8++2xZsGCBKao2c+ZME+RrdfMHHnjgkOBWC7hpsKyV7N99911TBE/paPmYMWNMETpd8u711183wb2uW68BsQbk2jkwceJEWbdunSnINmLECFO4LT/6f7/88kvTnvPPP99UVA/QwFQzAbQonGYTDBgwQDZt2nRIFXoNarVy/N9//x129PqWW24xS/Jpyr6+Pi0cp9tHK72nk24jTYUfOXKkab9mMtx9990pe36dbnDzzTebrAmt8q8F8gLvWbLvCwAAAOAEBPPwHQ2Ev/jiCzPvWiujazq7VoM/44wzTIVznYMeGvDq43VE9/777zeV0bUjQOkc9pdfftnMM9f51ZpuP2XKFJMBoF599VUTNOpz1KtXT7p16yaff/65Wd4tlikBzZs3N9XWA1XsAzTwbdKkiWmHLgOnc9j1uYNpQK4j0TparyPh4ebT63O88847Jp2/YcOGcs8995iq87q0Xbq98sorpr6AVuXXKQK6bVNFt7nWMtDtp9kSGsjrexyQzPsCAAAAOEGWVsGzuxEAAAAAACB2jMwDAAAAAOAyBPMAAAAAALgMwTwAAAAAAC5DMA8AAAAAgMsQzAMAAAAA4DIE8wAAAAAAuAzBPAAAAAAALkMwDwAAAACAyxDMAwAAAADgMgTzAAAAAAC4DME8AAAAAAAuQzAPAAAAAIC4y/8BXoskbJG22zcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -98,7 +98,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAHJCAYAAAAmUyinAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUvhJREFUeJzt3Qd4U+XbBvCHFiqz7L3KHgplC+gne6lQQBRRZKMgOABZDlAEwQEOZCkIKogIsmUoU5YsobILsmSVjZRVLPmu+9X0n7ZJmqQ5Oefk3L/rijGj7duSc+7z7nQ2m80mRERE5Fch/v12REREBAxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJTGDChAkSEREhGTNmlAcffFC2bduW+NqhQ4fkoYcekiJFisjIkSN1LScR/Q8Dlsjg5syZI/3795fhw4fL77//LpGRkdKsWTM5f/68er1v377SsWNHWbRokbpt3rxZ7yITEQOWyPjGjRsnPXv2lK5du0rFihVl8uTJkjlzZvnqq6/U61euXJHq1atL5cqVpVChQnL16lW9i0xEDFgiY4uPj5edO3dK48aNE58LCQlRj7ds2aIejxgxQj1G6OI11G6JSH/p9S4AEbl28eJFSUhIkPz58yd5Ho8PHjyo/v/RRx+VCxcuyN9//y158+bVqaRElBxrsERB4L777mO4EhkMA5bIwPLkySOhoaESGxub5Hk8LlCggG7lIqLUMWCJDCwsLEwNYFq9enXic/fu3VOP69Spo2vZiMg99sESGRym6HTu3Flq1KghtWrVkk8++URu3LihRhUTkXExYIkMrn379moQ07Bhw+TcuXNSpUoVWbFiRYqBT0RkLOlsNptN70IQEREFG/bBEhERaYABS0REpAEGLBERkQYYsERERBpgwBIREWmAAUtERKQBBiwREZEGGLBEREQaYMASERFpgAFLRESkAQYsERGRBhiwREREGmDAEhERaYABS2RC2AQrISFB3RORMTFgiUzon3/+kaVLl6p7IjImbrhOZBG3oqMl/vhxCYuIkEyRkXoXhyjoMWCJLCD2o7FyeerUxMe5evSQ/K8N0LVMRMGOTcREFqi5OoYr4DGeJyLtMGCJghyahb15noj8gwFLFOTQ5+rN80TkHwxYoiCHAU3oc3WUq2cPDnQi0hgHORFZAAY0hTdpzFHERAHEgCWyCIQqg5UocBiwRAbFeatE5saAJbLAvFVXYc0QJ9IOA5bIJPNW0YfqSwi6CmsuPkGkLY4iJgrieauuwvrqvHlcfIJIYwxYoiCet+oqlG/t2ePV+4nIewxYoiCet+oqlDNVquTV+4nIe+yDJTLgYB9/zVu1h3WSvtaePSRHu3Zy5/iJFM8b4XcnChbpbNyxmSzOjIN97t69K8uWLZNHH31UMmTIkOr7OYqYKPAYsGRpCJjj7Z9O8XzEnO8NHTjeBiwRBR6biMnS3I3Y1Stgd528Iscu3pASebJI/NkYiYmJkbJly6rX7P9/79499XjHjh1Sp06dFN9j69atie998MEHk3zPqsVyBvx3IrIiBiwFDV+aOwOx00zysHNnzPIDMnn9UfX/V9ZNl7+3/uj0fZkyZZLZs2dLo0aN5KWXXpL3338/8bXBgwfLBx98kPj4kXbd5USpNomPe9UrKUNaVBAzYBM2mRmbiEms3o+a4mt79pD8A/zTB5s87AYNGqTCEIfd1atX5ezZs3LmzBm5cuWK7D1+Tsav3Cu2+Fty9/IpubFvrdvvnTlzZrl9+7aqzdauXVsKFCggd+7ckeXLl6d4b/b/6yj3FSgjoVlzqdvC/s2kekRuMTIz9o0TOWLAkukkr9X4ox/V3zWlW7duyfz586Vjx44pXitUqJBcvnxZhWNy6dLfJ+nCMqr/v3fzmtufERERIX/99ZckJCRIzZo1JW/evPLnn3/KoUOHUi1f+vQZpGDBAlKwYEFVHvt96dKlVU27TJkyki1bNo+arlOrlVupb5zIEZuIyVSc1Woylimd5n5UZzvNODbthhUsm6IPE9emqH3+8ccf6n2Ot5MnT7r8WVWrVpWmTZuqULPfcufOLYcv35Unv9im3nPnzCE5963r2hqaiD/55BPp0KGDCvPx48eroEOZUZtNLl/7UZIhZwFJiLsiCXGXpVu1HJL+zrXEGvTmzZvl1KlTcunSpcSvQbnwu+N2KiFcdlzNJBnyRsj1Xcvk+rb5KWrlevWNsxmZjIoBS6bhatm/giPf9Xs/avKm3Wy12kp49VYSH3tEKt13STJeOyE7d+6U2NhY9fp9992nan0Io2eeeUbdY6TvCy+8kOJ7v/XWW05rfTVz/Ns/ij7Y+wqVk/AHn3DZB5u8rPbvh3sEnmPZ6z3ZQ45H/Bs86bPnl971SspgF32waKo+fPhw4oUC/n/Dlm1yKCZGNV07g5/Vpk2bFMH+zaJfZMcf+6VG5YrSKaqJeMPTvnE2I5ORsYmYTOPaokVyZvCQFM8Xen+M3D58xG/9qK5qgXYhmbNL7Zo1pMHDtaV69epSpUoVKV68uISEhKQa1Hg8ZswYv4wiPn/+vOTLl0/zUcTzfz8l/ebsVjXfv7cvkOvbFzrtD8bfDD+rfv36MmLSLNm08JvE16s0aCn9uz7pVZNyan3jbEYmo2PAkmmkdkJNS1MhBgdt375d1q5dK99//73s378/xXuyVW8l4bXaSGi2PPJx+yrStloRv48iNuI8WIRzm4mb3TZdo6aOwN+0aZO6d8ebJmV3/6buLriyR0VxahLpjk3EZAiehKOrZf/s73fWj+oKrisRokuWLJFVq1apPkj0ZWbPnl0quVinN0vFepI+PK/6f5y0PYVQ1WIgUKAgnNw1XTvWyvF3fe6V12XWeNe1dNToW7du7bTmnZy7f1N3zciO053MNjWJggdrsKQ7b/vRfK2pota3YcMGWbx4sbodO3ZMsmTJopo0GzRooG6RkZESGhqaomk3/MF2krN+F/X/7vowPWGvWd1NuCcZQkMSw9pe23L8f1c1L29qsP6qyXk6ihh9r51bN3X7vXAh89RTT0nLli3VXF40MfvCWTPymSe7Jda4HS14sS5rshRQDFjSldb9aJhrinmhCFTcX7t2TQoXLqxO7K1atVKhmjHjv9NikkttFLE3YWZ/fsPhC7Jg1xmPy++q5uVpwHpbk/NXGGNg1a/zprl8HQPB0CSPQVQYEd24cWP17/H444+r+bzeSH7BhT7j/j+k3Nd23FORHjfrE/kDm4gp6JYqRH/qTz/9JDNnzlT38fHxUq1aNenXr58KVkyTSZcunddNu8kDJ3kYuQqz5M97A1/X7P4CPoUdypf857r7fu7C2NvgXT93qnyzqL0aRfznrs2ybMEPTpuUMWfX3qJgH3GNGi3mD2NkcvK5uJ40I7tqvvemWZ/IH1iDJdPVYJ0NGsKoWjT/IlTnzZunaq4IVZyo27VrJ0WLFvVLeV3VRNtULeS0Zvr+E5Vk8I/ONzf3lLOalyc1WG9qco4DmZI3q67cdy7N/ZmeDPS6ePGiLFiwQGbNmiXr169XNduoqCh59tlnpVmzZl4N5kp+sZDWZn0iX7AGS7pKbeBScsn7Rrt37y558uSR7777Tq1qhNWN+vTpo07KFSqkvZ/Uscbmribqqtk3+q+rkla+1ry8qcnhd3Vm3aHzXtWCXf3tPBnohX/Hnj17qhsW6sBay7hgQqsDXkOfbadOnaRWrVqptkDgAgBl5Chi0hNrsGQIngxccjU/NTw8XAUqbnXr1vWo+dcdZ02lOFk7q+GlJq01WFc1L1/7YF19P1c12FcalZZPVx/xuD9Ti9G7WCkLQYuLqNOnT6uBaGhOxr83/u2JjIoBS6Yxbtw4GeBk8YivvvpKunbt6pef4W3QOEreTGwPs+Sh07ZqIXm4TF7DjSJ2FsZNXVxYOBuR666Z2R81SKy5/Msvv8jkyZPV9Co0IaMLAC0WmFrFea9kNGwiJkPD9d/q1avVWrs4qTpTsWJFv/08V02lqbGHaac6ESlO8p42Vzo+78+AwPfy5Pu5Kqd9Dqzj7+rs+7n62+F5b5qTXcH0qebNm6sbarJTp06VL774QqZMmSIlK9eSv0s2ksxlaku6kFDOeyVDYMCSIf3zzz8yd+5cGT16tOzZs0fVUHAixeIQWOTe2Tq8/uCq37J+uXxy5597TmuijuHgKsw8DTm9OSunpxcI3o7eTV5jRgvA/yX7e7qCqVbDhw+X119/XcZ9+a0MHz1W7vwxWkKz55fstdrKxLuNfR59TeQvbCImQ8EWbl9//bUayHT06FFVW0GI1qtXL7FvVYulBz3ttzRKM2Qgl0r0Rlr7fO28qYHaR0vHx/4p17b+KDcPbpSQzOHyTLfeMmHkEPbTkm5Srk5OKUyaNEkqV66sDlTcsMSb46bWaKbCakB4DSGAKSLJYXQrXnO8JV/0/csvv1SLxmOeJkLESq5fvy4ffvihlChRQnr37i01atSQ33//Xf2d8bd1HLiEUH3uuec0W34QJ3b0G2IgD+4dAwKhisE9rBl5/7fzpikeIY0Qxg0BintX7DXksPylJG+rQVKo52TJXLq2zJkyVooVKyZvvPGGWh8Zx9S3336b5mMLA/KwDjLuzQjnHRxPr776auJz9mPM8darV68kX4e5yrioLVeunCxdulSHkpsPa7AeQN8f+n+wHRn+XKhhIQx27dol999/v2qytG+ePXToULXlV44cOVIELKaUYAqCHSbRY6k+wLQETLD/5ptvVP/SsGHDnC44H2xwMYLBS+hjvXHjhpqGgcXg7bvHkLlqsJ5KrQYLDcrllbWHLnhUq3VWc34uMrt8/PHHalAUjk90O6R1D1uzb4+H1bMw3QmVAaxiZu9uQcDimBsxYkTie7F8pb32j8VbSpcuLdOnT1fnwG7dusmff/4pYWFhuv0uZsA+WA9gHp6jUaNGqVrtb7/9pgLWfiW4bt06t98HgepqGbi///5bhTJqyngPFp4PZvj9JkyYIO+99546+eFquX///lKkCJeyswLHDQRccQzX1ObfuuonxoVwkyZN1EIVjtAF0bZtW69aQVztRxzepLEptseLi4tTU5vQUjZy5MgUryNQXZ2fELCoZGBrRkifPr16jgHrHpuIfZgqgO3MUNvyZDeQ5E0zuXPnVk3AOPAdr6gfeOABFa5YBB2h7ewACAb4nadNm6aulocMGSJPP/20uhJGLZbhat3mZAxwctSw/L+7FnnTtOyq+T42Ntbp+1G79eZC1t2ynmaA6UyPPfaYWvfZGayghQU9cC5CS9zNmzcTX0NNFlPhChYsKIUKFVLdOJ4sY2l1rMF6CCNZEaiobWXNmlUt6ebN9JCXX35ZLd2XK1cutTUaPsBnz55VwWKH4MGVNa4kMccvmKBZaeHChao/7MCBA9K+fXt59913VbM7WZd91DKC0XGKE6w5mLQG62xEsieDzlx1N2BJzY0bN8rbb78tXbp0UbUyd9xtj2d0qBRgTAOaiF1tvoDxHwhPLOyBgYVYJ3r+/PmJ78GobbTWhYSEMFw9hT5YSt2dO3dshw8ftu3YscM2ZMgQW548eWz79u1L8p61a9eiP9t25cqVVL/ftGnTbOnTp7fdvn3bFuw2bdpkq127tvrbNGnSRP0NKW3i4+NtCxcuVPfBavSy/bbig5cm3sYs2+/29a7Tt9p+P3HZ6fcaNGiQ+vzZb4MHD1bHc/v27dXj8uXL2xYtWmS7d++e2zKd+/Aj2/5y5RNv5z76yGZ0J0+etOXLl88WHR2d+Fy9evVsr7zyisuvWb16tfq7HDlyJEClDE4c5OQjNLOUKlVKzc20Qx8sBg44G+SU3L59+1RTzMGDB9WovGCEpjlcCWNQGGrvqJ1jIBelndkHOXnK3fZ/rgZJuRoM5Wp6186dO9XnFAua4O/52WefqWPb3/sR6wUtR9iZCH2ojl1dGCmM2qi9f9URusDQUrdixYoU/dfkOTYR+wi7t+CD6avdu3erD3e+fPkkGPtZMQjsrbfeUgcuLkIwgjr5QUyUGlcLdLjri3U1GMrVhgPVq1dXSzCi2wdbGmIMBEYZY4yAs43gk2+PZ3S4qEUXlyP0p5YvX15dWDg7LnF+AvS5ku8YsB5Af2mLFi3UnDrM18Si46itrly5Ur1+7tw5dTty5N+1avFhRh8F3o8+1y1btqirZ9Ru8Twe40DGOqo5cwbXfMpNmzapwRTox8GUJIwSxsAuIn9KbYchd8szOoPaHEYVY2ETfGYxhQdzZjGNBRvBp3UDCT3hnIPWMkeYHojjEs9jkCHOaai94zkcuzg/PfLII2rgJfmOo4g9gEnqmJ+JplxcDWKgAMIVw/8B8+wwMtg+xxUfTDzGxGy477771CADrEaEq2NM88EHGAtUBNPfCANFHn74YTV0HxcUqLkyXEnLaT7+3uIPNVaM4N+7d6+q4bVu3Voef/xxFULBCsfrqlWrpGnTpup3xoYaTzzxhMu1v8lz7IOlNMHHBxcPffv2TZyKhOZgNH+TdqzSB5sa9MV+tvpwkjmz/tpcHZ/tRYsWySuvvKIuIFGzxWwAdnWQpxiwlKZBTJgPh74rTLv5/PPP1Tw60h4DNilf1oj29Gsw4AfTyzD46aGHHlKrGWFVI6LUMGApTbVWXM1jQBOalChwGLBp48vG8L/++qsaHIT569jl6aWXXmJLDbnFTwd5XWtt166dmpiOqUqYbsRwJTNBzTX5Eo32zQXcwdgKDADq0aOHWnABYyrsAxuJnGHAksew8g0GaW3YsEHt1TpnzhzJm9f5knbgyU4oRIHmbmP41GD0LZqKMYvgzJkzapQtukbYEEjOMGApVVivFX2tTz75pNp1A7VW1GJTa4LDQgDYpxP3eExkBN5uDO8Maq+ozWJXGTQVYyGHy5cv+7GUFAwYsOQWVpqqXbu2zJgxQ027Qc3VXa01LU1wRHpN8cHIY2/3+EVtFrVXjDRG/yym5mGOO5EdA5ZcwkR7bHweHx+v5rU+//zzHk24T0sTHJGRNob3BBaiwMpH2A3q//7v/9QiFVjpjYgBa+BmWcft7AIJ0xIwWhKLa6ApGAtreLOiiz+a4Ii05mp7O19g1Tb0yw4cOFAtsYjR3Zg7qweEO1acI/0xYA0IAybQv4MN3QMdsvv371e1VjQFY5F+NA1j0W89muCIzATTpTB9BwvkY2s4bE6OAYGBDlf8bGxgwFq0/jgP1qAQrGiWxT8P+kBT26vSH5YuXZq4LyQCFsumBXryP3mG82CNDXNlO3TooNbmnjBhgupeCVS4/v3332pBDCzRSvpiDdagEKjY+QN9nlrXZBHi6DdCXxLWWsaG8GkNV383wRGZCXahwQ49L7zwgrphURZcFHkLW+NdW7RI3bvDcDUmBqzFQxZ9vdjVB/1Gb775pvz4449q9w0iShu0LGCUMTYDwQh87Kt66dIlj78+9qOxcrz903Jm8BB1j8fOMFyNiwFr4ZA9ffq0Wp0Gawlj0YgRI0Zw6TciP0MNFpu5YxvLmjVrqp16UoMa6+WpU5M8h8fJa7IMV2Pj2dSiIYv+XQxmwtKH6Cd66qmn/FJWIkoJF7IYjY/WoTp16iRuZelK/PHjqT7PcDU+BqwFQxYHN1ZkKlmypDroMUGeiLQVERGhLmax7yr2mcXgJ1fCIiLcPs9wNQcGrMVCdurUqWpZN2wijWar/Pnza1JWIkoJU94wQh97zGLg01tvveV0HeNMkZGSq0ePJM/l6tlDPc9wNQ/t536QJiGLJl6ErKdTeHAQY8NoDGR68cUX1YLl3DiaKPAwzmHcuHFqpPHgwYNVN83EiRNTHMf5Xxsg4U0aq2Zh1FwZrubDebAWmCebkJCgttfCiEYMZELIerLkIRkX58EGByzm0r17d9WiNHv2bMmUKZPL9zJczYdNxEHeXHznzh21eASukDFVAE1SDFciY+jcubPaLODnn39WfbNXrlzxOlw9nStLgceADeKQjYuLk8cee0wdwNjLNRCryRCRd3CMYjwElinFaGOsAuVpuHo6V5b0wYAN0pDFYt/NmzeXbdu2qatjDGwiImPC1J2NGzeqGixG+GOOuic1V0/mypJ+GLBBGLJYLQarxmBiO5Zrw1UxERlbhQoVZP369Wp1NWzofuLECbd9rp7MlSV9MWCDLGSx1Rz2pDxw4ICsWrVKPUdE5lCqVCkVsmiJqlu3rhw+fNjlgKbU5sqS/hiwBuXLwIWbN2/KsGHD5NSpU/LRRx9xAQkiE8JuVuPHj1fNw2+88YZcuHDB6fvczZUlY+A0HQPCQAXHvhUcRJgT5469z3Xfvn2ycuVKdQUcyK3uKLA4TSc4Ofa5Fi5cWI0sDgsLU7XaQoUKOf0aXIQ7zpUl42AN1mB8GbiAmitGImIRcQxoQrNwoLa6IyL/SD6gqVy5crJ27Vq5ffu2NGjQQC1I4QxCNXtUFMPVgBiwBuPtwAXUZLBQ/86dO2XFihVSq1atgO8nS0Rp42q0MNYLR8jiebRWoKWKzIMBazDeDFxAEzDmtqJJGPu4Yqi/I4YskfGltkJT6dKl1cXzkSNH1HQ7LB5D5sCANRhvBi68/vrrMmPGDJk+fbrqf3UGIZuxcDm5GBcvq9ZtYMgSGYinyx9GRkaqXbAwVxarP+HryPg4+sWAnC3yndwnn3wiY8aMkbFjx0rHjh1dfq8xyw/I5PVHJUOITZ4vf0+uLFsjTz7akAOfiHTm7drCmBv73XffSbt27SRfvnzy6aefctlTg2MN1qDcDVzAouD9+vWTgQMHSv/+/V1+j10nr6hwhbv30skXB0Pk1NXbrMkS6czXhfvbtm2r1hXHNB5cYJOxMWBNBiszoYmoU6dOqR5gxy7eSPLYHrK3/7GxT5ZIJ2ndFadXr17y9ttvqy6ir776SrNyUtoxYE3k4MGDqnmoUaNGauN07CvpTok8WVI8h5AtWr4yBz4R6cBfW85hQZkXXnhB3datW+f3cpJ/MGBNAouAt2rVSk0+nzNnjkeLC1QtllN61SuZ5Lne9UpK9Yg8HF1MFGD+3M8Vxy72d0a/LC66jx075teykn9wJScTQABiDtyOHTvU7jgYtu8N9MWiuRg1WoSuL5u2k7FwJSdrhKurY9cOG3vgYhkbtW/evFmyZcumQenJV6zBmsCgQYNkzZo1MnfuXK/DFXBgtq1WJMUBynmyRMYNV8wAaDNxs/T/IVrd43FyuXPnVvs9Y+cdjMvg9B1jYcAaHOa4fvzxx+qGvld/Y8gSGbPmap8BYIfHeD65+++/X2bNmqWCFoOfyDgYsAaGJh+MGOzRo4f07dtXs5/DkCUyVp9r8hkAqT3fsmVLee+99+Tdd9+VH374wecyk38xYA3q7Nmzas4b1haeMGGC5hPKGbJExhnQ5GwGgLvnYfDgwdKhQwfp0qWL7Nmzx+syk/8xYA0oISFBrc6EsJs3b57arioQGLJExhgt7GoGgLOBTnY4bqdNmyZlypRRG4DcuOG8tkuBw1HEBoRmnuHDh8uqVaukYcOGAf/5HF1sfBxFHPxTcTwZRexqvnz16tVVyGIMB+mHNViDwcbKGKjw1ltv6RKuwJoskf7h6m4GgDvly5eXSZMmqY1AvvnmmzSXgXzHGqyBXLhwQapUqaKaeFavXi2hoaG6loc1WeNiDTb4wzWt0BeLLibMn0foUuCxBmugAxRrDMfHx6sh93qHK7AmS2TOcAWs9FS0aFFp37693Lp1S+/iWBID1iDGjRsny5cvV006WA7RKBiyROYLV8iaNataVjUmJsbtrlukHQasAezevVuGDh2qtp9r0aKFGA1Dlshc4WpXuXJltXf05MmT1YbtFFjsg9UZmoRr1qyp/n/79u0Bm5LjC/bJGgf7YPVlhnC1w/GKhSh27twp+/btk1y5culdJMtgDVZno0aNkv3796sRf0YOV2BNlshc4Qo4Xr/44gu5ffu2vPzyy3oXx1IYsDrCQYqAfeONN6Rq1apiBgxZsjKzhatdoUKF5LPPPktcs5gCg03EOjYN16hRQ22aji3ojF57TY7NxfpiE3HgmTVc7XCsRkVFqfMNmoqxEw9pizVYHVdrOnDggCmahp1hTZasxOzhCjhWp0yZoi7u2VQcGAxYHWCwwejRo+XNN99UC0uYFUOWrCAYwtWuYMGCqqn4u+++k4ULF+pdnKDHJuIAQwjZRw2jqSYYmvfYXBx4bCIOjGAKVzscp23atFHH7KFDhyQ8PFzvIgUt1mADDPPRoqOjVVNNsJwYWZOlYBSM4Qo4TsePH69+L27Qri0GbACdP39eNQtjA3Xs8xpMGLIUTII1XO2whOKwYcNUc/HevXv1Lk7QYsAGEDZExhrD7733ngQjhiwFg2APV7t+/fpJ6dKlpU+fPqrZmPyPARsgW7ZsUSOGEa558uSRYMWQJTOzSrgCZi+gqfjXX3+V2bNn612coMRBTgGQkJCg5ryi9oqBBUbYKUdrHPikLQ5y8j8rhaujdu3ayaZNmzjgSQOswQZwYNPEiRMtEa7AmiyZiVXD1b6TFwc8aYMBq7HLly+rgU3du3cPuoFNqWHIkhlYOVyhWLFi6hyFAU9Y/Ib8hwGrMSwogWDBmsNWxJAlI7N6uNphv9giRYqooCX/YcBq6K+//lKDCAYMGCD58uUTq2LIkhExXP8Hv/uIESNk/vz5auwE+QcDVkPvvPOOZMuWTV0dWh1DloyE4ZrSs88+Kw888IAMGTKE03b8hAGrEfRlTJ8+XTW5cGTevxiyZAQMV+cwABNdWuvWrZOVK1fqXZygwGk6Gmnbtq3s2rVLDh48yAM4GU7hSTtO0/ENw9U9HJOPPPKIxMXFqU1JsJ0m+Y5/PQ2gdrZgwQLVp8EDOCXWZEkPDNfU4Zh8//33Zffu3TJnzhy9i2N6rMH6Gf6cDRs2lEuXLqkarFXmvfqCNVnfsQbrHYard7AxO9YoRleXGferNgrWYP1sw4YNqg9j5MiRDNdUsCZLgcBw9R6mFR49elTtG0u+Yw3Wz1q0aCGnTp1SKzex/8IzrMl6jzVYzzBc01aLjYmJkX379vFc5iP+1fwITcIrVqyQoUOH8gPpBdZkSQsM17TBeQyDNBcuXKh3UUyLNVg/at++vezYsUMtms1amPdYk/Uca7DuMVz9A+NJrl+/Ltu2bVMXwOQdVrNScSs6Wq4tWqTu3Tl8+LDMmzdPBg4cyGDwEWuy5A8MV//WYlFpWL16td5FMSXWYN2I/WisXJ46NfFxrh49JP9rA5y+t2fPnrJ06VI5duyYZMyYMYClDD6syaaONVjnGK7+hWOwZs2akj17doasD1iDdQE1VsdwBTx2VpM9ffq0fP3119KvXz+Gqx+wJku+YLj6H45B1GLXrFmjmonJOwxYF+KPH/f4+U8++UQyZ84svXr1CkDJrIEhS95guGqnTZs2Uq5cObUABXmHAetCWESER8/fuHFDpk6dKs8//zzXHPYzhix5guGqLcyIQOscRhOfOHFC7+KYCgPWhUyRkarP1VGunj3U844wEfvatWvSu3fvAJfQGhiy5A7DNXA77WBnsMmTJ+tdFFPhIKdUoM8VzcKouSYPV/zpIiMjpUSJErJo0SLdymgFHPiUFAc5MVwDDdtufvPNN2qf60yZMuldHFNgDTYVCNXsUVEpwhU2btwoe/bskb59++pSNithTZYcMVwD78UXX5TLly9zEwAvMGDTAM0lpUuXlkaNGuldFEtgyBIwXPWBc12TJk1kypQpehfFNBiwPrp48aJaWOKFF15wuSzirpNXZP7vp9Q9+QdD1toYrvrCTAkcd1hrnVLHgPXRjBkz1H2XLl2cvj5m+QFpM3Gz9P8hWt3jMfkHQ9aaGK76e/zxx6VgwYKsxXqIAesDDLTB1JwnnnhC8uTJk+J11Fgnrz+a5Dk8Zk3Wfxiy1sJwNQYMqOvevbvMnDlTbt26pXdxDI8B64OdO3eqBf07d+7s9PVjF2949Tz5hiFrDQxXY8F5DxsALFmyRO+iGB4D1gezZs2S/PnzuxzcVCJPFq+eJ98xZIMbw9WYg51wzKEWS+4xYL2EE/js2bOlQ4cOLudiVi2WU3rVK5nkud71Sqrnyf8YssGJ4WrshSeWL1+uBnuSawxYL2HR69jYWPUBc2dIiwqy4MW6Mu6pSHU/uEWFgJXRihiywYXhavy9rzEWZe7cuXoXxdAYsF5CswgWvq5evXqq70WNtW21Iqy5BghDNjgwXI0vX7580rRpUzYTp4IB6wUs7L9gwQLp2LGjOomT8TBkzY3hah44D27evFmOHk06Y4L+hwHrhcWLF0tcXJw888wzeheF3GDImhPD1VyioqIkS5YsasMTco4B6wWswYmF5kuWTDqAiYyHIWsuDFfzQbi2bt2aaxO7wYD1ECZV//zzz2rzYTIHhqw5MFzNCwG7d+9eOXbsmN5FMSQGrBejhxGyrVq10rso5AWGrLExXM2tWbNmEhYWxkUnXGDAetH/ignWGEFM5sKQNSaGq/lhE/b69eur8yOlxID18ESAKzTUXjl62JwYssbCcA0eOC+uX79erl27pndRDIcB6wGcCM6ePSstW7bUuyiUBgxZY2C4Bt8OOziWVqxYoXdRDIcB6wE0f+TMmVOdDMjcGLL6YrgGn+LFi0tkZCT7YZ1gwHoYsI8++qjaqonMjyGrD4ZrcDcTL1u2jMdSMgzYVJw5c0aio6NVMwgFD4ZsYDFcgxvOj1euXFHHEv0PAzYV69atU/cNGzbUuyjkZwzZwGC4Bj+szR4eHp54vqR/MWBTgQ9MxYoV1eLWFHwYstpiuFpDaGioPPLIIwzYZBiwqcAHBvO8KHgxZLXBcLUWnCex+P+dO3f0LophMGDdOH36tBw+fJgBawEMWf9iuFpPgwYN1Gp327dv17sohsGAdQOTp6FevXp6F4UCgCHrHwxXa8JUnezZs8vatWv1LophMGDdYP+r9TBk04bhal3sh02JAesG+1+tiSHrG4YrsR82KQasC+fOnVP9r2wetiaGrHcYrmQP2Nu3b8uOHTv0LoohMGBdsH9AcJIla2LIeobhSnaVKlVS//4M2H8xYF3YuXOn5M6dW4oVK6Z3UUhHDFn3GK7kCMvJYrATzp/EgHUJHxCsTsLt6Ygh6xzDlZzBeZMB+y8GbCoBSwQM2aQYruQKzpsHDx6UGzduiNUxYF0McMIi/wxYcsSQ/RfDldypVq2a+ozs3r1brI4B64S9eYMBS8lZPWQZrpSa+++/X8LCwthMzIB1Dh+MXLlyqY2EiZKzasgyXMkTCNfKlSszYBmwzuEkwgFO5I7VQpbhSt7gQKd/MWCdOHDggDzwwAN6F4MMziohy3Alb+H8GRMTIwkJCWJlDNhk7t69K0ePHpWyZcvqXRQygWAPWYYr+QLnz7t378qJEydcvudWdLRcW7RI3QcrBmwyx48fVydJBixZPWQZruQr+/kzJibG6euxH42V4+2fljODh6h7PA5GDNhk7B8IBixZOWQZrpQWRYsWVZ8ZZwGLGuvlqVOTPIfHwViTZcAmgw9E5syZpVChQnoXhUwmWEKW4Ur+2LqudOnSTgM2/vhxp1/j6nkzY8Amgw9EmTJlJCSEfxqyXsgyXMlfypYt6zRgwyIinL7f1fNmxhRJBh8INg+TFUOW4Ur+VLZsWbXlZ3KZIiMlV48eSZ7L1bOHej7YpNe7AEYM2M6dO+tdDAqSkN26dasK2dq1a6vnjIrhSloE7IkTJ9T+sBkzZkzyWv7XBkh4k8aqWRg112AMV2AN1gGGlZ86dUpKlCihd1EoCJilJstwJS2UKFFCbDabnDx50unrCNXsUVFBG67AgE22yD9wgBNZJWQZrqSVQv+dR8+ePStWxYB1YP8gFCxYUO+iUBAxasgyXElLBf87jzJgSWHAklVCluFKWsuWLZua8siAJQUfBMzfyps3r95FoSBklJBluFIgpEuXTlVWGLCk4IOQP39+zoGloA1ZhisFuh/2zJkzYlVMkmQBywFOFKwhy3ClQCvIGizZ4YPA/lcKxpBluJIeCjJgyS42NlY1ERMFU8gyXEkvBQoUSJz+aEUMWAc4AWXPnl3vYpCFaB2yDFfSU3h4uFy/fl0tOGFFDFgH+CBkzZpV72KQxWgVsgxXMsJUnX/++Ufi4+PFihiwDuLi4tQHgsjsIctwJSPI+l+FBZUXK2LA/gdNGAhY1mDJ7CHLcCWjyPZfhQXnVitiwP7n5s2b6sTEGiyZOWQZrmQk2f47n7IGa3H2KywGLJk1ZBmuZDRZ2URMjh8ANhGTGUOW4UpGlI1NxJ4bPXq01KxZU/3R8uXLJ61bt5ZDhw4lvn78+HF1QnB2mzt3buL7sD/gY489phaCxvcZOHBgihPIO++8I0WKFJGHH35YbYKuNfsHgAFLZgtZhisZVTadm4jxc1999VUpXry4ZMqUSerWrSvbt29PMvZm2LBhakEMvN64cWM5fPhwku+xZcsWqVKlikRERMi0adO0C9j169dLnz591MH+yy+/qA3KmzZtKjdu3FCvFy1aVK3a4XhDUCK0WrRood6TkJCgwhXDtjdv3ixff/21zJgxQ/2Sdps2bZKffvpJFi1aJM8884z07dtXtGYfRs6TE5kpZBmuZGRhYWHqHlmhhx49eqis+vbbb2XPnj0qrxCip0+fVq9/8MEH8tlnn8nkyZNl69atkiVLFmnWrJncvn078Xt0795d3nrrLfnuu+9UJfOvv/7yvAC2NDh//jxmD9vWr1/v8j1VqlSxdevWLfHxsmXLbCEhIbZz584lPjdp0iRbeHi47c6dO+rxkiVLbFFRUbb4+Hjbb7/9ZqtZs6ZNa1u2bFG/y549ezT/WUTeunv3rm3jxo22DRs2qP/HsbFw4ULb1q1bbatXr7bdvn1b7yISpXDz5k11Xp01a5YuPzs0NNS2dOnSJM9Xq1bN9sYbb9ju3btnK1CggO3DDz9MfO3q1au2++67zzZ79uzE54oVK2Y7evSoLS4uzlajRg3bvn37PC5Dmvpgr127pu5z5crl9PWdO3fK7t271RWAY3W7UqVKSZYkxBUDrsD37duX+BhXEGhCbt68ubpq0BpqAsCddMgMNVl7iwuawFhzJaNKly5dkvNrIKG1By2mGTNmTPI8moI3btwox44dU8s4okZrh5X8cJwhp+zQulqhQgX1Wu3ataVixYoelyG9r4XHHwxt2zi4H3jgAafvQXs1CoZ2bzv8QsnX+7U/tq9ZmSFDBlmxYoWcP39ecuTIkdjM4MjfTQ72Exb+QfRqziBKTfXq1WXbtm2yatUq9bhq1arqopCfWTKihISExPOrvz+juOi0B7ir/t86derIu+++q3IIOTN79mwVnqVLl07MG2d55Lh+MiqITz/9tPodcubM6V0ZxUfoi927d6+6EnDm1q1bqs0abde+wgAoV+x9wP6yf/9+df/rr7/K0aNH/fZ9ibS0YcMGvYtA5NI//40ZiI6Olty5c/v1e2Ncj7PKlyP0vXbr1k0KFy4soaGhUq1aNenQoYNqXfUG+mZx85ZPAYtBR0uXLlVhhJG+zsybN08t3tCpU6cUuyvgCjz5Ljb21zzVpEkT8Sf7lQlGLXvTBEAUKGg1wokKzcKVK1dWgwTtTVq4micymjt37iS2tDz66KN+/d6efOZLlSqlBudiIC66ITFauH379lKyZMnEvEH+OG5TiscYNeyXMnrzZgxpfumll2TBggWybt06KVGihMv3onm4VatWkjdv3iTPo8o+atQo1fxrr6GiNopdF7wJNjQj+5P9SghXOf7+3kT+CldMJ8NFoH2sAD6vuBpH3xBDloxagw0LC9P1vGqvgV65ckVWrlypRg8jvxCyq1evTgxUhDBGE/fu3dsvPzfE22bhmTNnqqZftG+jnRo3NAc7OnLkiKrdYoh0chgmjSB97rnn1AkDv+ybb76pvreeAzXsJyw9OuOJ3HE3FadGjRoB27SdyGyDR1euXKnG82BAEypyDRo0kPLly0vXrl3VcYNxRCNHjpTFixeraTxocS1UqJBa48EfvPqtJ02apEYO169fX1Wp7bc5c+Yked9XX32lmo4RpsnhihvNy7hHbbZjx47qlxoxYoToyX51ZdVtlciYUpvnGqhN24l8cfe/cTJ6ta4gr1B5Q6giZ9D6g9C1n+8HDRqkWmWff/55tYgSWogQyMlHHvsqHebq+OU7mRxW7yhbtqysXbtWXUAQGTlcceJatmyZ6tfCyQLBiqYtHM5sLiaj+Ouvv6RYsWKyfPlyNeXSajjp8z/2JRKtumYmGYu3KzSxJktGFGfxTVQYsAZZM5MorcsfMmTJaK7/dz5lwFocVo3CiYk1WNJTWtcWZsiSkVy3+C5lDNj/YJQbhnGzBkt68dfC/QxZMoo4NhGTHT4ErMGSHvy9Kw5DlozgOmuw5BiwrMFSoGm15RxDlvR2/fp1NSXTX9NezIYBmyxgcZIjChSt93NlyJLeAZstWza3i/IHMwasAyzdiCUciQIhUJulM2RJL7GxsW43bQl2DFgHWJXq7NmzeheDLCBQ4WrHkCU9nD17NslC+lbDgHWAD8KZM2f0LgYFuUCHqx1DlgLtzJkzam1fq2LAJgtYbF7A1SMp2MLVjiFLgXSWNViywwcBa7xeunRJ76JQENI7XO0YshQoZxmwZGdvymA/LAVruNoxZElrcXFxahQxA5YU+weB/bAUzOFqx5AlLZ39r6LCPlhSsLs9sAZLwR6udgxZ0srZ/86jrMGSgpMfQvb48eN6F4WCgNHD1Y4hS1o4/t95tGjRomJVDNhksOl6TEyM3sUgkzNLuNoxZMnfYmJipHDhwmoTFatiwCbDgCWrhasdQ5b8KSYmRp1PrYwB6yJgOReWrBSudgxZ8pcYBiwDNjl8IDC0HGtoElkpXO0YsuSPY+Hw4cMMWL0LYDT2DwSbicmK4WrHkKW0wFTHmzdvMmD1LoDRlCxZUkJCQhiwZNlwtWPIkq/s58+yDFhyhJNjREQEA5YsHa52DFnyBc6foaGhUqJECbEyBqwT5cuXl3379uldDDK4YA9XO4YseWv//v1SqlQpyZAhg1gZA9aJqlWrqhMnkdXD1Y4hS97YuXOnVKtWTayOAetE9erV1bZ1XJOYnLFauNoxZMkTCQkJsnv3bnUetToGrBP2DwauwogcWTVc7RiylJqDBw+qEcTVGbAMWGewdmaePHkYsJSE1cPVjiFL7tjPm9XYRMyAdQYnDlx9MWDJjuGaFEOWXMF5s3Tp0pI9e3axOgasCwjYHTt26F0MMgCGq3MMWXIVsGwe/hcD1gUOdCJguLrHkKXkA5x27drFgP0PA9aFGjVqqPvt27frXRTSCcPVMwxZsjtw4AAHODlgwLoZ6FSsWDFZv3693kUhHTBcvcOQJcD5EotL4LNADFiXcKKoX7++rFu3Tu+iUIAxXH3DkCWcL2vVqmXpTdYdMWDdQMBiwvSVK1f0LgoFCMM1bRiy1oU9tBGwOG/SvxiwbuCDgg/Nhg0b9C4KBQDD1T8YstZdf/jixYsMWAcMWDewqw76YdlMHPwYrv7FkLUenCfR/1q3bl29i2IYDFg32A9rDQxXbTBkrWXt2rXq3ztz5sx6F8UwGLCpYD9scGO4aosha53jCCOI2TycFAPWw35YTtcJPgzXwGDIBr+9e/eq/td69erpXRRDYcCmokSJElKuXDlZunSp3kUhP2K4BhZDNrjh/IipOQ8//LDeRTEUBqwHWrZsqT5AOCmT+TFc9cGQDV5LliyRZs2aScaMGfUuiqEwYD3QqlUriY2N5bKJQYDhqi+GbPDBuXHr1q3qPElJMWA9UKdOHcmdO7e6SiPzYrgaA0M2uPz000/q/tFHH9W7KIbDgPXwhIAPz+LFi/UuCvmI4WosDNnggfMi5r7mzZtX76IYDgPWQ2j+2LNnjxw/flzvopCXGK7GxJA1v1u3bsnPP/+sxqlQSgxYD6EDPywsjM3EJsNwNTaGrLmtWbNGhSz7X51jwHooW7Zs0qBBA1m4cKHeRSEPMVzNgSFrXjgflipVSsqXL+/09VvR0XJt0SJ1b0UMWC88+eSTajmwM2fO6F0USgXD1VwYsuZz584dmTdvnjz11FPq3y252I/GyvH2T8uZwUPUPR5bDQPWC0888YRqJv7+++/1Lgq5wXA1J4asuSxfvlyuXr0qHTt2TPEaaqyXp05N8hweW60my4D1Qo4cOeTxxx+XmTNn6l0UcoHham4MWfPAebBKlSpSsWLFFK/FuxgMGm+xQaIMWC/ham3Xrl1q70MyFoZrcGDIGh9qrljdzlntFcIiIrx6PlgxYL3UokULVZOdNWuW3kUhBwzX4MKQNbYff/xR4uPjpUOHDk5fzxQZKbl69EjyXK6ePdTzVpLOhq1iyCsvvPCCrFy5Uo4ePSohIbxG0ZsVw/Xu3buybNkytQAKNrkOVghWLMOH01Tt2rVV8JL+GjZsqM59q1atcvu+W9HRqlkYNVerhSswHXzw7LPPyokTJ2Tz5s16F8XyrBiuVsKarPGcOnVK1q1b57J52FGmyEjJHhVlyXAFBqwPsCVTsWLF5Ouvv9a7KJbGcLUGhqyxoHsMx1rbtm31LorhMWB9gKaRbt26yezZs9XJnQKP4WotDFnjHHdffPGFmvsaHh6ud3EMjwHro+7du6slwjjYKfAYrtbEkNUf+lwx9gTjUCh1DFgfFSlSRC1wPWXKFDUAgwKD4WptDFl94XxXqVIltYUnpY4Bmwa4iouOjpYtW7boXRRLYLgSMGT1cfr0aVm0aJE67zlbGpFSYsCmcYcdLHQ9YcIEvYsS9Biu5Ighq0/tNVOmTPLcc8/pXRTTYMCmcbBTnz59ZO7cuXLu3Dm9ixO0GK7kDEM2sAv7I2C7dOnCwU1eYMCmUdeuXdVEf3z4yP8YruQOQzYwUIk4f/68qlCQ5xiwaYRlE9FkMmnSJDWqmPyH4UqeYMhqC4M4P/74Y2nSpInLfV/JOQasHwwYMEAuXLggM2bM0LsoQYPhSt5gyGrnl19+UcfioEGD9C6K6XAtYj9p3769bN++XWJiYrheahoxXFNnlbWIvcW1i/2vQYMGEhcXJ9u2bePoYS+xBusnQ4YMkWPHjsmcOXP0LoqpMVwpLViT9S/8DbHu8NChQxmuPmAN1s9b2WEhbMyN5S473mO4eo41WPdYk/WPqKgo1Sq3b98+ntN8wL+YH73++uuyd+9e+emnn/QuiukwXMmfWJNNO5zLFi9erFrnGK6+YQ1Wg512EBabNm1ik4qHGK7eYw3WM6zJ+g6zI3799Vc5cuQIP2M+4mWJn6GvAksnrl+/Xu+imALDlbTEmqxvMJ4Eu4W99tprDNc0YA3Wz/DnrFGjhmTMmFE2btzIWqwbDFffsQbrHdZkvdOpUyc1PefPP/+UzJkz610c02IN1s8QqKNHj5bNmzfLkiVL9C6OYTFcKZBYk/XcH3/8ITNnzpRhw4YxXNOINVgN4E/aqFEjtbQYRhSHhobqXSRDYbimHWuwvmFNNnWPP/64HDp0SPbv38/PVhqxBqsBXCWPGTNGDW3HlSD9D8OV9MSarHsbNmxQsyBGjhzJcPUD1mA11K5dO7W6E64G0SdrdQxX/2ENNm1Yk00Jfwscl9g5B+ctTs1JO/4FNTRq1Ci1STE2ArA6hisZCWuyKWHOK2ZAoPWN4eof/CtqqFy5ctKtWzcVtNeuXROrYriSETFk/ychIUEtlNOwYUNp3Lix3sUJGgxYjQ0fPlxu3rypQtaKGK5kZAzZf3355ZdqUBNqr5xa6D8MWI0VLlxYXRliP8UDBw6IlTBcyQysHrIXL15U56iuXbtKzZo19S5OUGHABgBWQ4mIiJC+ffuqgQRWwHAlM7FyyCJccV5C7ZX8iwEbABhB/Nlnn8maNWtk7ty5EuwYrmRGVgxZ7PE6depUNS0nX758ehcn6HCaTgC1adNGDX8/ePCgZM2aVYIRwzUwOE1HO1aZwoOBTfj98Pvu2LGDC+JogDXYAEI/7KVLl+Tdd9+VYMRwpWBglZosaq4I1gkTJjBcNcKADSD0w6K/Y9y4cUE34InhSsEk2EMWF/o4F3Xp0kXq1q2rd3GCFgM2wAYOHCjFixeXXr16qVAKBgxXCkbBHLI4D6GJ+P3339e7KEGNAavDgKcvvvhCbWQ8ceJEMTuGKwWzYAxZ9N1Pnz5dxo4dy4FNGmPA6gCrpfTu3VsGDx6s9ls0K4YrWUEwhezVq1elZ8+e0rx5c7XKHGmLAauTDz74QF094kNuxqZihitZSbCEbL9+/SQuLk6t3MQVm7THgNUJpul89dVXqqkYo/jMhOFKVmT2kMU2dDNmzFCzGYoUKaJ3cSyBAaujBg0ayIsvvihDhgwxTVMxw5WszKwhe+XKFXn++eelRYsWaklECgwGrM4wii9//vxeNRXvOnlF5v9+St0HEsOVyJwhi6bhGzduqAGWbBoOHAasgZqKMaovNWOWH5A2EzdL/x+i1T0eBwLDlcicITt//nz5+uuv2TSsAwasAdSvX18GDRqkJn7jYHUFNdbJ648meQ6Pta7JMlyJzBmyx44dU61jTzzxhFpUggKLAWsQWGy7Ro0a8vTTT6v+EmeOXbzh1fP+wHAlMmfIYr3qDh06SM6cOdWyiGwaDjwGrEFgwfbZs2fLtWvXpEePHk63tSuRJ4vTr3X1fFoxXInMG7JvvPGG7Ny5U+bMmSM5cuTQuziWxIA12FrF6I9Fn4mzVZ6qFsspveqVTPJc73ol1fP+xnAlMm/IYrWmDz/8UO3xWqtWLV3LYmXcrs6AXn75ZZkyZYo6UKtWrZridfS5olkYNVeGqzVxuzpjMsJWd6dOnZIqVaqon7948WIJCWE9Si8MWAO6c+eO1KlTR65fv66aeMLDwwP2sxmu5sCANS49QxY/u1GjRmpe/e7duyVPnjwB+9mUEi9tDAihhn6T2NhY6dSpU8CWUmS4Epm7uRizETZt2qTGczBc9ceANagyZcrIrFmzVBPP8OHDNf95DFcic4csdsjBXNdPPvlE/u///k/zn0epY8AaWMuWLeW9995TU3hQo9UKw5XI3CG7efNmtcc0dsrp06ePZj+HvMOANThsaffMM8+o9UMRgv7GcCUyd8j+9ddf0rZtW/VzPv/8c853NRAGrMHhYMEk8fvvv1+ioqJUv6y/MFyJzB2yN2/elNatW0vGjBnlxx9/lLCwML99b0o7BqwJZMqUSRYuXKgOTFypYpRxWjFcicwdshiljGUQDx48KIsWLZK8efP6pazkPwxYkyhcuLAKWUzbQT9LWmZXMVyJzB+yI0aMUGMzvvnmG4mMjPRbOcl/GLAmgoMTIwW//fZbGTp0qE/fg+FKZP6QxbZzb7/9towaNUot5E/GxIA1GSzejaH42EcW995guBKZP2QXLFggvXv3lpdeesnnC20KDAasCb366qtqdHH//v3VXFlPMFyJzB+y2DcaF9nt2rVT8105YtjYGLAmNXr0aOncubPa4/Hnn392+16GK5H5Q/aPP/6QVq1aycMPP6z6XbnGsPHxX8ikcFB++eWX0qxZMzWyePv27U7fx3AlMn/IHj9+XJo3by4lS5ZUu23xODYHBqyJYZH3H374QSpVqqQWfcdwfUcMVyLzhyzmvuNCOnPmzLJ8+fKAbv5BacOANTkcdEuXLpX8+fNLw4YN5fDhw+p5hiuR+UP2woULancc7Ky1cuVKdZyTeTBgg0Du3Lll9erVkiNHDmnQoIEKWYYrkblD9ty5cypcL168KGvWrJFSpUrpXUTyEgM2SODKFgdh1qxZ1U4aaC5muBKZM2RxcfzII4+okMVxXb58eb2LRj5gwAaRfPnyqbmxOEiHDBmiFgEnInO5evWqmt+K5uEPP/xQypYtq3eRyEcM2CBh73NFjXXDhg2qJluvXj2JiYnRu2hE5KHz58+rsRSoua5du1ZKly4d8E3byX8YsEEg+YCmEiVKyLp16yR79uwqZPfu3at3EYkoFWfOnFFjKFBzxfFbpUqVgG/aTv7FgDU5V6OFCxQooA5S9M2iT3bjxo16F5WIXDh06JDUrVtXHcc4bitUqBDwTdvJ/xiwJpbaVBz0ya5fv17ttNGkSRNZvHixbmUlIue2bdumjt8sWbLI5s2bpVy5ckleZ8iaFwPWpDyd54pm4hUrVqiFKNq0aSPTpk0LeFmJyDkcm2gWRqhi7ETRokWdvo8ha04MWBPydhGJjBkzqhWfnn/+eenRo4e89957adpPlojSDttOtmzZUg1q+uWXXyRXrlxu38+QNR8GrMn4ukJTaGioTJw4Ue0h+cYbb8grr7yivhcRBd7YsWOlU6dO8txzz6nt57AimycYsubCgDWRtC5/iINy+PDhMmnSJJkwYYLa8iouLk6z8hJRUnfv3lX7uL722mtqriu6bBCa3mDImgcD1iT8ubZwr169ZOHChapZCiMXsVMHEWnr0qVLakecyZMnq9YkdNX4up8rQ9YcGLAmoMXC/ej7wYF548YNqVmzphptTETa2Ldvn9SqVUuio6PVhW3v3r3T/D0ZssbHgDU4LXfFuf/++9UUAWx317hxY5kyZYrfvjcR/WvJkiVSu3Zt1c+KfZvr16/vt+/NkDU2BqyBBWLLOezEg22wXnjhBdV03KdPH9VPRERpg5H6o0ePlqioKHUBizmuWGXN3xiyxsWANahA7ueKjds///xz1Tf0xRdfSNOmTdVaqETkG+zf2qFDB3n99dflzTfflB9//FGyZcum2c9jyBoTA9agV767d+8O+H6uqMViX1lsdYfVn9BXRETe2bVrl1SrVk1++uknNf98xIgREhLi+lR7Kzpari1apO79GbKchqc/BqwB4QDB5sp67OeKPSgR7gjYZs2aqTmzvBom8uzCGNPf0N+K2ipaoJ588km3XxP70Vg53v5pOTN4iLrHY3+ELPaPdRfqFBj8FzAoLHGo12bp2CAAS7iNGjVK3n//fbWUG/eWJXK/hyvmlfft21e1BG3ZskXKlCnj9mtQY708dWqS5/DYHzXZPHnypOl7kH8wYMkpXP1iIjym72CeLLbOwmhIIkoKzbE4PtasWSPz58+Xzz77zKOL43gX889dPU/mw4Alt9BMjSZj3Ldq1UotsXjz5k29i0WkO3SdYJQwtoPE9pDoe8WGGp4Ki4jw6nkyHwYseTSVZ9GiRfLJJ5+oUca4Wt+0aZPexSLSzf79+9VFJ0YIDxgwQO2EE+FlMGaKjJRcPXokeS5Xzx7qeQoODFjyeOAVaq+ozSJwcdXev39/1mbJcrVWjEvAKOFr166pC80xY8aoqW6+yP/aAImY870Uen+Mus8/YIDfy0z6YcCSV7Bv5caNG+WDDz5Q66miNosJ9ETBDtPXHn74YTU2AQv2o0kYI4bTCjXW7FFRrLkGIQYseQ1b32E3EHttFicdNJPdunVL76IR+V1CQoJ8+OGH6mLyypUrqtaKx5kyZdK7aGRwDFjyGebaoTaLJjPM/8OaxsuWLdO7WER+s3XrVjWvdPDgwWoKDi4q69Spo3exyCQYsB7ASEHsOIPJ4/ny5ZPWrVvLoUOHEl+/fPmyajJC8ymuaosVKyYvv/yy6qNJ3o+Z/Pb9998nec8777wjRYoUUbXCmJgYMUNtduDAgerEg0Eejz32mPr7cAs8MrOLFy9Kz549VRMwarCotX700UemqLX++uuvaresQoUKqXMMtqZ09Pbbb6uL4yxZskjOnDnVOsm4kHCEYzn5uQp9zY6+/PJLKV68uFStWjXF19O/GLAewFxQLIKP+W5YPhCL4WO9Xmz1BmfOnFE3HIB79+6VGTNmqIUaunfvnuJ7TZ8+Xc6ePZt4QxjZ4SDG8moYsfvMM8+oK2azwAGLvw2WhtuxY4dUqFBB3n33Xbl9+7beRSPyGMIUa3KXLVtW5s2bp1pm8Hk2U60V5yWsxIayO4PfDWuP79mzR7VAIUxxPrtw4UKS92GJR8dzFSoRdidPnlTjMFBBwGpvXbt21fz3MiUbee38+fM2/OnWr1/v8j0//PCDLSwszHb37t3E5/A1CxYscPk1S5YssUVFRdni4+Ntv/32m61mzZo2M7p+/bpt8ODBtgwZMthKlSpl++mnn/QuUtDBZ2ThwoXqnvwDx1y1atXUcdqtWzdbbGyszexSO+fAtWvX1PtWrVqV+Fzx4sVtH3/8scuv2bNnj61GjRq2uLg429GjR20RERF+LXewYA3WB/am31y5crl9T3h4uFq2zBFqwljGDJsvf/XVV2r9Ujus/YsaH/aNbN68uWqaNqOsWbOq5qQ//vhDbc+FZmMsUoG5g0RGg2VAUQNDczCOR4yKnzZtmuoOCnbx8fFqbjuWZkWt1xGOYQxiRBMwBnU5rkn+wAMPSOXKldXXYV/pkSNH6lB6E9A74c0mISHB9thjj9keeughl++5cOGCrVixYrbXX389yfMjRoywbdy40fb777/bxowZY7vvvvtsn376aYqvx5XznTt3bMHg3r17trlz59pKlChhCwkJsXXp0sV24sQJvYtleqzBpt3FixdtAwYMUMdh3rx5bRMnTrT9888/tmDiqgaL1rIsWbLY0qVLZytUqJBt27ZtSV4fO3asbe3atbbo6GjbpEmTbDly5LD169fP6d/w5s2bmv4OZsaA9VKvXr1U88lff/3lsrmlVq1atubNm6d68nvrrbdsRYoUsVkBLhjGjx9vy5cvnzqh9e/fXx2c5BsGrO/QrDlq1ChbeHi4LWvWrLa3337b9vfff9uCkauAxd/g8OHDti1btqjmcDTxumsSnzZtmi19+vS227dva1zi4MKA9UKfPn1UIKLPwRkcpHXq1LE1atTIduvWrVS/39KlS9UBYKUPLf5G77zzjjqx4QQ3cuRIdbCTdxiw3sPfCrXUAgUKqPEBL7/8clD0s6a1DxZKly5te++991y+vnfvXvW9Dh486OcSBjf2wXoAn1OM6F2wYIHaMQP9islhc3SMxAsLC5PFixdLxowZU/2+mNqCYfJ6bUunB0x1GjZsmBw9elT1e2FaEva+HTt2rMTFxeldPArSfkaMd6hYsaIaA9GkSRM1ze7TTz+1RD+rJ7A5+507d9yeq7DDFv9eXtI74c2gd+/etuzZs9vWrVtnO3v2bOLN3veAZuEHH3zQVqlSJduRI0eSvMfep7N48WLbl19+qUbfoWkGV9KZM2e2DRs2zGZlx44ds3Xt2lU1P+XMmVP9Pdh0nDrWYFOHlhGMhEWrE051rVu3Vn2KwQ6j+Hft2qVu+L3HjRun/h9jH/A3GTp0qGoaPn78uG3Hjh3q+EO3DWqpsHnzZvV32717t+3PP/+0zZw5U/VRd+rUSe9fzXQYsB7Ah9TZbfr06ep1DAZw9R4ECCxfvtxWpUoV1TSKwQWRkZG2yZMnq0FTZFMHP5rsMmXKpC48MKDCVT83MWDduXTpkuqGyJ07ty00NFQFw759+2xW4ep81LlzZ9V11aZNGzWwCdMICxYsaGvVqlWSQU47d+5UFQZUKjJmzGirUKGCaj62UleWv6TDf7yt9RJpBZPdsWE1JsJjwnynTp1k0KBBanI8/Q8WO8GylI8++qjPO7kEGyz2Mm7cOJkyZYqaUtKjRw+1ZjZWGyLSA/tgyVDy5s2rVoA6ceKEjBo1Sq1shSUoW7RooQIFfUVEdqgfYAW0p59+WgUplu/DMqX4/IwfP57hSrpiwJIhYZEOrHF87Ngxtbzk+fPn1YIVqMmilnLp0iW9i0g6QusGFoPAvqxYt/v3339XS5ViCT9cmHEwDhkBA5YMDaOxu3TpotaDxQo7WAFryJAhUrhwYXnuuedU7cWovRy7Tl6R+b+fUvfkH1gdDCOBsZA9FuPH/fLly9Vera+88opaWYjIKNgHS6aD2iw2VEBfG6b7YKOBjh07qg0SnE2h0sOY5Qdk8vqjiY971SspQ1pU8Nv3t1IfbGxsrFpUftasWbJ9+3bJnz+/6l/FDQvVExkVA5ZMC/2xq1evlq+//lrNUb5586Y89NBDKmyffPJJtY6qHlBjbTNxc4rnF7xYV6oWy+mXnxHsAYs50dhmDaGKXZowBxP98Gi1iIqKCsrfmYIPm4jJtHDSxaIBM2fOVLUc3KPvFouCFCxYUJ2I586dK7du3QpouY5dvOHV8/S/iwZs84gLJNRSEaYIWmy7hu3SsI1ju3btGK5kGkm3eiEyKezg8+yzz6obwnbOnDmq9vPUU0+pTbIRxNiE+vHHH5cCBQpoWpYSebJ49byVXb16VfWhYvUz3GMXKuwljD1G0eTPJmAyMzYRU1A7fPiwqvngBI4BUWhWfvDBB1XYYgs9bLuVLl06zftge9crKYPZB6v8+eefsmTJEvVvsmHDBjVnFaOB8e+BVgdsm6bFvwlRoDFgyTIuXryoQgkn9pUrV6rmR9SQsPdu/fr1pV69en6t3aIvFs3CqLn6q+/VjAF75coVFaTr1q1Tf3fsC4w1uxs1aqRCFa0KRYoU0buYRH7HgCVLwsLmOOEjbDFQCou/A5onEbb2wEVfoBEZOWAdAxU3LBSP00zRokUTQxVN9mjWJwpmDFgiETWIZv369Ymh4Bi4WMigevXq6lapUiVD7H5klIBF8+6BAwdk586d6oZmeMdAbdCgQeIFC1oL2PRLVsKAJXITuGvXrpXffvtN9u3bJwkJCSrM0G9rD1x76HqyPaHZAxZhiuZde5jiFh0drUZpIzixyhb6txmoRP9iwBJ5ACGCVYQcwwWhi9DBdCGECQIm+Q21OLxuloDF6eDcuXMSExOT4obBSfi5CE2sD+14kVG1alW11y8R/Q8DlshHt2/fVqGLWpyzIALUbLGhPIIWc3PtNyzx5/jY22ZnXwIWX4MpTNh1BjV0+83++PTp03LkyJHEje9xYYCVsewXC2XKlJHKlStLlSpVGKZEHmDAEvkZarXYzcUeuJgqhPByDDV7ANtlyZJFhRYG/uDe8f9xj9dDQ0NV6OGGwxZhaF8aEtOPsJLV9evXVUA6u8fNEb4fRk07hn7p0qUTA7VkyZJqtC8R+YYBSxRgOOQuX76cpAaJkbf2EHQMRPv/Y/cYhKjjDc3WCF8EJZptM2fO7DKkccuRI0eSWnOePHnU1xKRNhiwRCZklFHEROQa1yImIiLSAAOWiIhIAwxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJiIg0wIAlIiLSAAOWiIhIAwxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYIlMKCQkREqXLq3uiciY0tlsNpvehSAiIgo2vPwlIiLSAAOWiIhIAwxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJiIg0wIAlIiLSAAOWSCe//vqrtGzZUgoVKiTp0qWThQsXJnk9Li5O+vbtK0WKFJFMmTJJxYoVZfLkyUnec/v2benTp4/kzp1bsmbNKk888YTExsYmec/ixYulbNmyUq5cOVm6dGlAfjciYsAS6ebGjRsSGRkpEyZMcPp6//79ZcWKFTJz5kw5cOCAvPrqqypwEZh2/fr1kyVLlsjcuXNl/fr1cubMGWnbtm3i63fu3FEBPHHiRPn888+ld+/eEh8fH5Dfj8jq0utdACKratGihbq5snnzZuncubPUr19fPX7++edlypQpsm3bNmnVqpVcu3ZNpk2bJt999500bNhQvWf69OlSoUIF+e2336R27doqYENDQ6VKlSrq9fTp06vnwsLCAvRbElkXa7BEBlW3bl1VWz19+rTYbDZZu3atxMTESNOmTdXrO3fulLt370rjxo0Tv6Z8+fJSrFgx2bJli3ocHh4uXbt2lYIFC6qmaNRgs2XLptvvRGQlrMESGdT48eNVrRV9sKh5hoSEyJdffimPPPKIev3cuXOqJpojR44kX5c/f371mt3w4cNV8zK+nuFKFDgMWCIDByyaelGLLV68uBoUhf5U1EQda62eyJ49u2blJCLnGLBEBnTr1i15/fXXZcGCBfLYY4+p5ypXriy7d++Wjz76SAVsgQIF1IClq1evJqnFYhQxXiMifbEPlsiA0LeKG5p1HWHA0r1799T/V69eXTJkyCCrV69OfP3QoUNy8uRJqVOnTsDLTERJsQZLpBPMcz1y5Eji42PHjqkaaq5cudRApXr16snAgQPVHFg0EWMazjfffCPjxo1LbPbt3r27ms6Dr8GAppdeekmFK0YQE5G+0tkwPJGIAm7dunXSoEGDFM9jas6MGTPUQKWhQ4fKzz//LJcvX1Yhi0FPmPuKhSnsC00MGDBAZs+erabfNGvWTM15ZRMxkf4YsERERBpgHywREZEGGLBEREQaYMASERFpgAFLRESkAQYsERGRBhiwREREGmDAEhERaYABS0REpAEGLBERkQYYsERERBpgwBIREYn//T9Pj7iHjasuSQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAHJCAYAAAAmUyinAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU2lJREFUeJzt3Qd4U+XbBvCHFsoue6+yh0LZ00+2DGWKIopsFAQHIMsBiiA4wMlSEFQQEWTLUKbsTWUPGcoqe5RVLPmu+9X0n7ZJmqQ5Oefk3L/rqrVJaE/T5NzneWcqm81mEyIiIvKrEP9+OyIiImLAEhERaYQVLBERkQYYsERERBpgwBIREWmAAUtERKQBBiwREZEGGLBEREQaYMASERFpgAFLRESkAQYskQmMHz9eIiIiJF26dFKjRg3Ztm1b/H2HDx+WOnXqSMGCBWXkyJG6HicR/Q8DlsjgZs+eLf3795fhw4fLrl27JDIyUpo0aSIXLlxQ9/ft21c6duwoCxcuVB+bNm3S+5CJiAFLZHzjxo2Tnj17SteuXaVcuXIyadIkyZAhg3zzzTfq/qtXr0qVKlWkQoUKkj9/frl27Zreh0xEDFgiY4uNjZWdO3dKo0aN4m8LCQlRX2/evFl9PWLECPU1Qhf3obolIv2l1vsAiMi1S5cuSVxcnOTJkyfB7fj60KFD6v+bN28uFy9elBs3bkiuXLn4dBIZBPtgiYJA2rRpGa5EBsOAJTKwnDlzSmhoqERHRye4HV/nzZtXt+MiouQxYIkMLCwsTA1gWrVqVfxtDx48UF/XqlVL12MjIvfYB0tkcJii07lzZ6latapUr15dPv30U7l165YaVUxExsWAJTK49u3bq0FMw4YNk/Pnz0vFihVl+fLlSQY+EZGxpLLZbDa9D4KIiCjYsA+WiIhIAwxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJiIg0wIAlIiLSAAOWiIhIAwxYIhPCJlhxcXHqMxEZEwOWyIT++ecfWbJkifpMRMbEDdeJLOJOVJTEnjwpYRERkj4yUu/DIQp6DFgiC4j+eKxcmTIl/uvsPXpIntcH6HpMRMGOTcREFqhcHcMV8DVuJyLtMGCJghyahb25nYj8gwFLFOTQ5+rN7UTkHwxYoiCHAU3oc3WUvWcPDnQi0hgHORFZAAY0hTduxFHERAHEgCWyUCXL6TlEgcOAJTIozlslMjcGLJEF5q26CmuGOJF2GLBEJpm3ij5UX5p4XYU1F58g0hZHERMF8bxVV2F9be5cLj5BpDEGLFEQz1t1Fcp39u716vFE5D0GLFEQz1t1Fcrpy5f36vFE5D32wRIZcLCPv+at2sM6QR9szx6StV07uXfyVJLbjfC7EwWLVDbu2EwWZ8bBPvfv35elS5dK8+bNJU2aNMk+nqOIiQKPAUuWhuA52f6ZJLdHzP7R0NWctwFLRIHHJmKyNHcjdvUK2N1/XZUTl25J0ZwZJfbcETly5IiUKlVK3Wf//wcPHqivd+zYIbVq1UryPbZu3Rr/2Bo1aiT4npUKZwv470RkRQxYsnQ/aiB2mkkcdu6MWXZQJq07rv7/6tppcmPrz04flz59epk1a5Y0bNhQXn75Zfnggw/i7xs8eLB8+OGH8V8/2q67nCreJv7rXnWLyZBmZcUMjNY3TuQNNhGTWL0fNcm/7dlD8gzwTx9s4rAbNGiQCkMMfbh27ZqcO3dOzp49K1evXpV9J8/LFyv2iS32jty/clpu7V/j9ntnyJBB7t69q6rZmjVrSt68eeXevXuybNmyJI/N8n8dJW3ekhKaKbv6WNC/iVSJyCFGZsa+cSJHDFgyncRVjT/6Uf1dKd25c0fmzZsnHTt2THJf/vz55cqVKyocE0uVOq2kCkun/v/B7etuf0ZERIT8/fffEhcXJ9WqVZNcuXLJn3/+KYcPH072+FKnTiP58uWVfPnyqeOxfy5RooSqtEuWLCmZM2f2qOk6uarcSn3jRI7YREym4qyqSVeyRIr7UZ3tNOPYtBuWr1SSPkxUoag+//jjD/U4x4+//vrL5c+qVKmSPPbYYyrU7B85cuSQo1fuy1NfbVOPuXf2sJz/3nW1hibiTz/9VDp06KDC/IsvvlBBh2NGNZtY7vajJE22vBIXc1XiYq5It8pZJfW96/EV9KZNm+T06dNy+fLl+H+D48Lvjo/TceGy41p6SZMrQm7uXio3t81LUpXr1TfOZmQyKgYsmYarZf/yjXzP7/2oiZt2M1dvK+FVWkps9DEpn/aypLt+Snbu3CnR0dHq/rRp06qqD2H07LPPqs8Y6fviiy8m+d5vv/2206qvWtZ/+0fRB5s2f2kJr/Gkyz7YxMdq/374jMBzPPa6T/WQkxH/hlLqLHmkd91iMthFHyyaqo8ePRp/oYD/X795mxw+ckQ1XTuDn9WmTZskwf7dwt9kxx8HpGqFctKpVWPxhqd942xGJiNjEzGZxvWFC+Xs4CFJbs//wRi5e/SY3/pRXVWBdiEZskjNalWl/iM1pUqVKlKxYkUpUqSIhISEJBvU+HrMmDF+GUV84cIFyZ07t+ajiOftOi39Zu9Rle+N7fPl5vYFTvuD8ZzhZ9WrV09GTJwpGxd8F39/xfotpH/Xp7xqUk6ub5zNyGR0DFgyjeROqClpKsTgoO3bt8uaNWvkxx9/lAMHDiR5TOYqLSW8ehsJzZxTPmlfUdpWLuj3UcRGnAeLcG4zYZPbpmtU6gj8jRs3qs/ueNOk7O5v6u6CK0urVpyaRLpjEzEZgifh6GrZP/vjnfWjuoL+U4To4sWLZeXKlaoPEn2ZWbJkkfIu1unNWK6upA7Ppf4flaCnEKpaDAQKFFS87pquHatyPK/Pv/qGzPzCdZWOir5169ZOK+/E3P1N3TUjO053MtvUJAoerGBJd972o/laqaLqW79+vSxatEh9nDhxQjJmzKiaNOvXr68+IiMjJTQ0NEnTbniNdpKtXhf1/+76MD1hb669H/dA0oSGxIe1vQnX8f9dNed6U8H6a5EJT0cRo++1c+vH3H4vXMg8/fTT0qJFCzWXF03MvnDWjHz2qW7xFbej+S/V5iIbFFAMWNKV1v1omGuKeaEIVHy+fv26FChQQJ3YW7ZsqUI1Xbp/p8UkltwoYm/CzH77+qMXZf7usx4fv6vKy9OA9baS81cYY2DV73OnurwfA8HQJI9BVBgR3ahRI/X3eOKJJ9R8Xm8kvuBCn3H/n6KSPG7c05EeN+sT+QObiCnolipEf+ovv/wiM2bMUJ9jY2OlcuXK0q9fPxWsmCaTKlUqr5t2EwdO4jByFWaJb/cG/l2Th/L6FHY4vsQ/1933cxfG3gbvujlT5LuF7dUo4j93b5Kl839y2qSMObv2FgX7iGtUtJg/jJHJiefietKM7Kr53ptmfSJ/YAVLpqtgnQ0awqhaNP8iVOfOnasqV4QqTtTt2rWTQoUK+eV4XVWibSrld1qZfvBkeRn8s/PNzT3lrPLypIL1ppJzHMiUuFl1xf7zKe7P9GSg16VLl2T+/Pkyc+ZMWbdunapsW7VqJc8995w0adLEq8FciS8WUtqsT+QLVrCkq+QGLiWWuG+0e/fukjNnTvnhhx/UqkZY3ahPnz7qpFy2bMr7SR0rNneVqKtm36i/r0lK+Vp5eVPJ4Xd1Zu3hC15Vwa6eO08GeuHv2LNnT/WBhTqw1jIumNDqgPvQZ9upUyepXr16si0QuADAMXKDA9ITK1gyBE8GLrmanxoeHq4CFR+1a9f2qPnXHWdNpThZO6vwkpPSCtZV5eVrH6yr7+eqgn21YQn5bNUxj/sztRi9i5WyELS4iDpz5owaiIbmZPy98bcnMioGLJnGuHHjZICTxSO++eYb6dq1q19+hrdB4yhxM7E9zBKHTttK+eWRkrkMN4rYWRg/5uLCwtmIXHfNzP7YIg9rLv/2228yadIkNb0KTcjoAkCLBaZWcUs+Mho2EZOhYV7lqlWr1Fq7OKk6U65cOb/9PFdNpcmxh2mnWhFJwszT5krH2/25Zyu+lyffz9Vx2ufAOv6uzr6fq+cOt3vTnOwKpk81bdpUfaCSnTJlinz11VcyefJkKVahutwo1lAylKwpqUJCOe+VDIEBS4b0zz//yJw5c2T06NGyd+9eVaHgRIrFIbDIvbN1eP3BVb9lvdK55d4/D5xWoo7h4CrMPA05vTk7Tk8vELwdvZu4YkYLwP8lej5dwVSr4cOHyxtvvCHjvv5eho8eK/f+GC2hWfJIluptZcL9Rj6PvibyFzYRk6FgC7dvv/1WDWQ6fvy4qlYQonXr1o3vW9Vi6UFP+y2N0gwZyKUSvZHSPl9f+m7to6Vjo/+U61t/ltuHNkhIhnB5tltvGT9yCPtpSTdJVyenJCZOnCgVKlRQb1R8YIk3x02t0UyF1YBwH0IAU0QSw+hW3Of4kXjR96+//lotGo95mggRK7l586Z89NFHUrRoUendu7dUrVpVdu3apZ5nPLeOA5cQqs8//7xmyw/ixI5+QwzkwWfHgECoYnAPKyPvnztvmuIR0ghhfCBA8dkVe4Uclqe45Go5SPL3nCQZStSU2ZPHSuHCheXNN99U6yPjPfX999+n+L2FAXlYBxmfzQjnHbyfXnvttfjb7O8xx49evXol+HeYq4yL2tKlS8uSJUt0OHLzYQXrAfT9of8H25GhTxAVFsJg9+7d8tBDD6kmS/vm2UOHDlVbfmXNmjVJwGJKCaYg2GESPZbqA0xLwAT77777TvUvDRs2zOmC88EGFyMYvIQ+1lu3bqlpGFgM3r57DJmrgvVUchUs1C+dS9YcvuhRVeuscn4+Mot88sknalAU3p/odkjpHrZm3x4Pq2dhuhOKAaxiZu9uQcDiPTdixIj4x2L5SvsobSzeUqJECZk2bZo6B3br1k3+/PNPCQsL0+13MQP2wXoA8/AcjRo1SlW1W7ZsUQFrvxJcu3at2++DQHW1DNyNGzdUKKNSxmOw8Hwww+83fvx4ef/999XJD1fL/fv3l4IFuZSdFThuIOCKY7gmN//WVT8xLoQbN26sFqpwhC6Itm3betUK4mo/4vDGjfyyrKfWYmJi1NQmtJSNHDkyyf0IVFfnJwQsigxszQipU6dWtzFg3WMTsQ9TBbCdGaotT3YDSdw0kyNHDtUEjDe+4xX1ww8/rMIVi6AjtJ29AYIBfuepU6eqq+UhQ4bIM888o66EUcUyXK3bnIwBTo4alPl31yJvmpZdNd9HR0c7fTyqW28uZN0t62kGmM70+OOPq3WfncEKWljQA+citMTdvn07/j5UspgKly9fPsmfP7/qxvFkGUurYwXrIYxkRaCi2sqUKZNa0s2b6SGvvPKKWrove/bsams0vIDPnTungsUOwYMra1xJYo5fMEGz0oIFC1R/2MGDB6V9+/by3nvvqWZ3si77qGUEo+MUJ1h9KGEF62xEsieDzlx1N2BJzQ0bNsg777wjXbp0UVWZO+62xzM6FAUY04AmYlebL2D8B8ITC3tgYCHWiZ43b178YzBqG611ISEhDFdP2cgj9+7dsx09etS2Y8cO25AhQ2w5c+a07d+/P8Fj1qxZY8NTevXq1WS/39SpU22pU6e23b17N+j/Ahs3brTVrFlTPTeNGzdWzyGlTGxsrG3BggXqc7AavfSArcjgJfEfY5YecHt/12lbbbtOXXH6vQYNGqRef/aPwYMHq/dz+/bt1ddlypSxLVy40PbgwQO3x3T+o49tB0qXif84//HHNqP766+/bLlz57ZFRUXF31a3bl3bq6++6vLfrFq1Sj0vx44dC9BRBicOcvIRmlmKFy+u5mbaoQ8WAwecDXJKbP/+/aop5tChQ2pUXjBC0xyuhDEoDNU7qnMM5KKUM/sgJ0+52/7P1SApV4OhXE3v2rlzp3qdYkETPJ+ff/65em/7ez9ivaDlCDsToQ/VsasLI4VRjdr7Vx2hCwwtdcuXL0/Sf02eYxOxj7B7C16YvtqzZ496cefOnVuCsZ8Vg8Defvtt9cbFRQhGUCd+ExMlx9UCHe76Yl0NhnK14UCVKlXUEozo9sGWhhgDgVHGGCPgbCP4xNvjGR0uatHF5Qj9qWXKlFEXFs7elzg/AfpcyXcMWA+gv7RZs2ZqTh3ma2LRcVSrK1asUPefP39efRw79u9atXgxYwAAHo8+182bN6urZ1S3uB1f442MdVSzZQuulWY2btyoBlOgHwdTkjBKGAO7iPwpuR2G3C3P6AyqOYwqxsImeM1iCg/mzGIaCzaCT+kGEnrCOQetZY4wPRDvS9yOQYY4p6F6x2147+L89Oijj6qBl+Q7jiL2ACapY34mmnJxNYiBAghXDP8HzLPDyGD7HFe8MPE1JmZD2rRp1SADrEaEq2NM88ELGAtUBNNzhIEijzzyiBq6jwsKVK4MV9Jymo+/t/hDxYoR/Pv27VMVXuvWreWJJ55QIRSs8H5duXKlPPbYY+p3xoYaTz75pMu1v8lz7IOlFI8OxsVD375946cioTkYzd+kHav0wSYHfbGfrzqaYM6svzZXx2t74cKF8uqrr6oLSFS2mA3Arg7yFAOWUjSICfPh0HeFaTdffvmlmkdH2mPAJuTLGtGe/hsM+MH0Mgx+qlOnjlrNCKsaESWHAUspqlpxNY8BTWhSosBhwKaMLxvD//7772pwEOavY5enl19+mS015Bbb8cjrqrVdu3ZqYjqmKmG6EcOVzASVa+IlGu2bC7iDsRUYANSjRw+14ALGVNgHNhI5w4Alj2HlGwzSWr9+vdqrdfbs2ZIrl/Ml7cCTnVCIAs3dxvDJwehbNBVjFsHZs2fVKFt0jaBVhygxBiwlC+u1oq/1qaeeUrtuoGpFFZtcExwWAsA+nfiMr4mMwNuN4Z1B9YpqFrvKoKkYCzlcuXLFj0dJwYABS25hpamaNWvK9OnT1bQbVK7uqtaUNMER6TXFByOPvd3jF9UsqleMNEb/LKbmYY47kR0DllzCRHtsfB4bG6vmtb7wwgseTbhPSRMckZE2hvcEFqLAykfYDer//u//1CIVWOmNiAFr4GZZx+3sAgnTEjBaEotroCkYC2t4s6KLP5rgiLTmans7X2DVNvTLDhw4UC2xiPnJmDurB4Q7Vpwj/TFgDQgDJtC/gw3dAx2yBw4cUFUrmoKxSD+ahrHotx5NcERmggU/MH0HC+RjazhsTo4BgYEOV/xsbGDAKlp/nAdrUAhWNMsibNEHmtxelf6wZMmS+H0hEbBYNi3Qk//JM5wHa2yYK9uhQwe1Nvf48eNV90qgwvXGjRtqQQws0Ur6YgVrUAhU7PyBPk+tK1mEOPqN0JeEtZaxIXxKw9XfTXBEZoJdaLBDz4svvqg+sCgLLoq8ha3xri9cqD67w3A1JgasxUMWfb3Y1Qf9Rm+99Zb8/PPPavcNIkp5kzFGGWMzEIzAx76qly9f9vjfR388Vk62f0bODh6iPuNrZxiuxsWAtXDInjlzRq1Og7WEsWjEiBEjuPQbkZ+hgsVm7tjGslq1amqnnuSgYr0yZUqC2/B14kqW4WpsDFiLhiz6dzGYCUsfop/o6aef9suxElFSuJDFaHy0DtWqVSt+K0tXYk+eTPZ2hqvxMWAtGLJ4c2NFpmLFiqk3PSbIE5G2IiIi1MUs9l3FPrMY/ORKWESE29sZrubAgLVYyE6ZMkUt64ZNpNFslSdPHk2OlYiSwpQ3jNDHHrMY+PT22287Xcc4fWSkZO/RI8Ft2Xv2ULczXM1D+7kfpEnIookXIevpFB68ibFhNAYyvfTSS2rBcm4cTRR4ISEhMm7cODXSePDgwaqbZsKECUnex3leHyDhjRupZmFUrgxX8+E8WAvMk42Li1Pba2FEIwYyIWQ9WfKQjIvzYIMDFnPp3r27alGaNWuWpE+f3uVjWbmaD5uIg7y5+N69e2rxCFwhY6oAmqQYrkTG0LlzZ7VZwK+//qr6Zq9evep1uHo6V5YCjwEbxCEbExMjjz/+uHoDYy/XQKwmQ0TewXsU4yGwTClGG2MVKE/D1dO5sqQPBmyQhiwW+27atKls27ZNXR1jYBMRGROm7mzYsEFVsBjhjznqnlSunsyVJf0wYIMwZLFaDFaNwcR2LNeGq2IiMrayZcvKunXr1Opq2ND91KlTbtcW9mSuLOmLARtkIYut5rAn5cGDB2XlypXqNiIyh+LFi6uQRUtU7dq15ejRoy4X7k9urizpjwFrUL4MXLh9+7YMGzZMTp8+LR9//DEXkCAyIexm9cUXX6jm4TfffFMuXrzo9HHu5sqSMXCajgFhoIJj3wreRJgT5469z3X//v2yYsUKdQUcyK3uKLA4TSc4Ofa5FihQQI0sDgsLU1Vt/vz5nf4bXIQ7zpUl42AFazC+DFxA5YqRiFhEHAOa0CwcqK3uiMg/Eg9oKl26tKxZs0bu3r0r9evXVwtSOINQzdKqFcPVgBiwBuPtwAVUMliof+fOnbJ8+XKpXr16wPeTJaKUcTVaGOuFI2Rxe/PmzVVLFZkHA9ZgvBm4gCZgzG1FkzD2ccVQf0cMWSLjS26FphIlSqiL52PHjqnpdlg8hsyBAWsw3gxceOONN2T69Okybdo01f/qDEI2XYHScikmVlauXc9KlshAPF3+MDIyUu2ChbmyWP0J/46Mj6NfDMjZIt+JffrppzJmzBgZO3asdOzY0eX3GrPsoExad1zShNjkhTIP5OrS1fJU8wYc+ESkM2/XFsbc2B9++EHatWsnuXPnls8++4zLnhocK1iDcjdwAYuC9+vXTwYOHCj9+/d3+T12/3VVhSvcf5BKvjoUIqev3WUlS6QzXxfub9u2rVpXHNN4cIFNxsaANRmszIQmok6dOiX7Bjtx6VaCr+0he/cfGwc+Eekkpbvi9OrVS9555x3VRfTNN99odpyUcgxYEzl06JBqHmrYsKHaOB37SrpTNGfGJLchZAuVqcDRxUQ68NeWc1hQ5sUXX1Qfa9eu9ftxkn8wYE0Ci4C3bNlSTT6fPXu2pEmTJtl/U6lwNulVt1iC23rXLSZVInJyCg9RgPlzP1dMv8P+zuiXxUX3iRMn/Hqs5B9cyckEMIcVc+B27NihdsfBsH1voC8WzcWoaBG6vmzaTsbClZysEa6u3rt22NgD892xUfumTZskc+bMGhw9+YoVrAkMGjRIVq9eLXPmzPE6XAFvzLaVCyZ5g3KeLJFxwxUzANpM2CT9f4pSn/F1Yjly5FD7PWPnHYzL4PQdY2HAGhzmuH7yySfqA32v/saQJTJm5WqfAWCHr3F7Yg899JDMnDlTBS0GP5FxMGANDE0+GDHYo0cP6du3r2Y/hyFLZKw+18QzAJK7vUWLFvL+++/Le++9Jz/99JPPx0z+xYA1qHPnzqk5b1hbePz48ZpPKGfIEhlnQJOzGQDubofBgwdLhw4dpEuXLrJ3716vj5n8jwFrQHFxcWp1JoTq3Llz1XZVgcCQJTLGaGFXMwCcDXSyw/li6tSpUrJkSbUByK1bzqtdChyOIjYgNPMMHz5cVq5cKQ0aNAj4z+foYuPjKOLgn4rjyShiV/Plq1SpokIWYzhIP6xgDQYbK2Ogwttvv61LuAIrWSL9w9XdDAB3ypQpIxMnTlQbgXz33XcpPgbyHStYA7l48aJUrFhRNfGsWrVKQkNDdT0eVrLGxQo2+MM1pdAXiy4mzJ9H6FLgsYI10BsUawzHxsaqIfd6hyuwkiUyZ7gCVnoqVKiQtG/fXu7cuaP34VgSA9Ygxo0bJ8uWLVNNOlgO0SgYskTmC1fIlCmTWlb1yJEjbnfdIu0wYA1gz549MnToULX9XLNmzcRoGLJE5gpXuwoVKqi9oydNmqQ2bKfAYh+sztAkXK1aNfX/27dvD9iUHF+wT9Y42AerLzOEqx3WGsdCFDt37pT9+/dL9uzZ9T4ky2AFq7NRo0bJgQMH1Ig/I4crsJIlMle42ufHfvXVV3L37l155ZVX9D4cS2HA6ghvUgTsm2++KZUqVRIzYMiSlZktXO3y588vn3/+efyaxRQYbCLWsWm4atWqatN0bEFn9Oo1MTYX64tNxIFn1nB1bCpu1aqVOt+gqRg78ZC2WMHquFrTwYMHTdE07AwrWbISs4erval48uTJ6uKeTcWBwYDVAQYbjB49Wt566y21sIRZMWTJCoIhXO3y5cunmop/+OEHWbBggd6HE/TYRKxD06p91DCaatKkSSNmx+biwGMTcWAEU7g6NhW3adNGtm7dKocPH5bw8HC9DylosYINMMxHi4qKUk01wRCuwEqWglEwhqu9qfiLL75Qvxc3aNcWAzaALly4oJqFsYE69nkNJgxZCibBGq52WEJx2LBhqrl43759eh9O0GLABhA2RMYaw++//74EI4YsBYNgD1e7fv36SYkSJaRPnz6q2Zj8jwEbIJs3b1YjhhGuOXPmlGDFkCUzs0q4AmYvoKn4999/l1mzZul9OEGJg5wCIC4uTs15RfWKgQVG2ClHaxz4pC0OcvI/K4Wro3bt2snGjRs54EkDrGADOLBpwoQJlghXYCVLZmLVcLXv5MUBT9pgwGrsypUramBT9+7dg25gU3IYsmQGVg5XKFy4sDpHYcATFr8h/2HAagwLSqC5FGsOWxFDlozM6uFqh/1iCxYsqIKW/IcBq6G///5bDSIYMGCA5M6dW6yKIUtGxHD9H1xYjBgxQubNm6fGiZB/MGA19O6770rmzJnV1aHVMWTJSBiuST333HPy8MMPy5AhQzhtx08YsBpBX8a0adNUkwuXIvsXQ5aMgOHqHAZgoktr7dq1smLFigD/VYITp+lopG3btrJ79245dOiQZft1XOEUnpTjNB3fMFzdw4ITjz76qMTExKhNSbCdJvmOz54GtmzZIvPnz1d9GgzXpFjJkh4Yrp6tU/zBBx/Inj17ZPbs2QH4qwQ3VrAaXAE2aNBALl++rCpYq8x79QUrWd+xgvUOw9U72JgdaxSjq8uM+1UbBStYP1u/fr3qwxg5ciTDNRmsZCkQGK7ew7TC48ePq31jyXesYP2sWbNmcvr0abVyE/svPMNK1nusYD3DcE1ZFXvkyBHZv38/z2U+YgXrR2gSXr58uQwdOpQvSC+wkiUtMFxTBucxDNJcsGCBn/4i1sMK1o/at28vO3bsUItmIzTIO6xkPccK1j2Gq39gPMnNmzdl27ZtagAUeYcVbDLuREXJ9YUL1Wd3jh49KnPnzpWBAwcyXH3ESpb8geHq3yoWRcOqVav8+F2tgxWsG9Efj5UrU6bEf529Rw/J8/oAp4/t2bOnLFmyRE6cOCHp0qXz/1/KQljJJo8VrHMMV//PiqhWrZpkyZKFIesDVrAuoGJ1DFfA184q2TNnzsi3334r/fr1Y7j6AStZ8gXD1f/QLIwqdvXq1aqZmLzDgHUh9uRJj2//9NNPJUOGDNKrVy8vn35yhSFL3mC4aqdNmzZSunRptQAFeYcB60JYRIRHt9+6dUumTJkiL7zwAtcc9jOGLHmC4aotTDdE6xxGE586dYovSi8wYF1IHxmp+lwdZe/ZQ93uCBOxr1+/Lr179/bmeScPMWTJHYZr4Hbawc5gkyZN4gvSCxzklAz0uaJZGJVr4nDFAIDIyEgpWrSoLFy40JvnnbzEgU8JcZATwzXQsO3md999p/a5Tp8+fcB/vhmxgk0GQjVLq1ZJwhU2bNgge/fulb59+2r196H/sJIlR6xcA++ll16SK1eucBMALzBgUwDNJSVKlJCGDRum5NuQhxiyBAxXfeBc17hxY5k8eTJfiB5iwPro0qVLamGJF1980eWyiLv/uirzdp1Wn8k/GLLWxnDVF2ZKYDtOrLVOyWPA+mj69Onqc5cuXZzeP2bZQWkzYZP0/ylKfcbX5B8MWWtiuOrviSeekHz58rGK9RAD1gcY3ISpOU8++aTkzJkzyf2oWCetO57gNnzNStZ/GLLWwnA1hjRp0kj37t1lxowZcufOHb0Px/AYsD7YuXOnWtC/c+fOTu8/cemWV7eTbxiy1sBwNRac97ABwOLFi/U+FMNjwPpg5syZkidPHpeDm4rmzOjV7eQ7hmxwY7gac7BTjRo1VBVL7jFgfZiPOWvWLOnQoYPLXXMqFc4mveoWS3Bb77rF1O3kfwzZ4MRwNfbCE8uWLVODPck1BqyXsOh1dHS0eoG5M6RZWZn/Um0Z93Sk+jy4WVlvfxR5gSEbXBiuxt/7GmNR5syZo/ehGBoD1ktoFsHC11WqVEn2sahY21YuyMo1QBiywYHhany5c+eWxx57jM3EyWDAegEL+8+fP186duyotnEi42HImhvD1TxwHty0aZMcP55wxgT9DwPWC4sWLZKYmBh59tlnvflnFGAMWXNiuJpLq1atJGPGjGrDE3KOAeuF2bNnS82aNaVYsYQDmMh4GLLmwnA1H4Rr69atuTaxGwxYD2FS9a+//qo2HyZzYMiaA8PVvBCw+/btkxMnTuh9KIbEgPVi9DBCtmXLltr+RcivGLLGxnA1tyZNmkhYWBgXnXCBAetF/ysmWGMEMZkLQ9aYGK7mh03Y69Wrp86PlBQD1sMTAZYFQ/XK0cPmxJA1FoZr8MB5cd26dXL9+nW9D8VwGLAe2LVrl5w7d05atGih/V+ENMOQNQaGa/DtsIMV7pYvX673oRgOA9YDaP7Ili2b1KlTR/u/CGmKIasvhmvwKVKkiERGRrIf1gkGrIcB27x5c7VVE5kfQ1YfDNfgbiZeunSpqmTpfxiwyTh79qxERUWpZhAKHgzZwGK4BjecH69evSpbtmzR+1AMhQGbjLVr16rPDRo0CMTfgwKIIRsYDNfgh7XZw8PD48+X9C8GbDLwgilXrpxa3JqCD0NWWwxXawgNDZVHH32UAZsIA9aDgMU8LwpeDFltMFytBedJLP5/7949vQ/FMBiwbpw5c0aOHj3KgLUAhqx/MVytp379+mq1u+3bt+t9KIbBgHUDk6ehbt26gfp7kI4Ysv7BcLUmTNXJkiWLrFmzRu9DMQwGrBvsf7UehmzKMFyti/2wSTFg3WD/qzUxZH3DcCX2wybEgHXh/Pnzqv+VzcPWxJD1DsOV7AF79+5d2bFjB58QBqxr9hdIjRo1+EKxKIasZxiuZFe+fHlJmzYtA/Y/rGBd2Llzp+TIkUMKFy7s6iFkAQxZ9xiu5AjLyWKwE86fxIB1CS8QrE7C7emIIescw5WcwXmTAfsvVrDJBCwRMGQTYriSKzhvHjp0SG7dumX5J4kB62KAExb5Z8CSI4Ysw5WSV7lyZXUBtmfPHss/XQxYF9Wr/UqMiCHLypU899BDD0lYWBibidlE7Dpgs2fPrjYSJkrMqpUsm4XJEwjXChUqMGAZsM7t2rWLA5zILauFLMOVvMGBTv9iE7ETBw8elIcfftjZXUSWC1mGK3kL588jR45IXFycpZ88Bmwi9+/fl+PHj0upUqX0+YuQqQR7yDJcyRc4f96/f19OnTrl8jF3oqLk+sKF6nOwYsAmcvLkSXWSZMCS1UOW4Uq+sp8/jxw54vT+6I/Hysn2z8jZwUPUZ3wdjBiwidhfEAxYsnLIMlwpJQoVKqSWTHQWsKhYr0yZkuA2fB2MlSwDNhG8IDJkyCD58+fX5y9CphUsIctwJX9sXVeiRAmnARt78qTTf+PqdjNjwCaCF0TJkiUlJIRPDVkvZBmu5C+lSpVyGrBhERFOH+/qdjNjiiSCFwSbh8mKIctwJX8qVaqU2vIzsfSRkZK9R48Et2Xv2UPdHmxS630ARgzYzp07630YFCQhu3XrVhWyNWvWVLcZFcOVtAjYU6dOqf1h06VLl+C+PK8PkPDGjVSzMCrXYAxXYAXrAMPKT58+LUWLFtXvL0JBwyyVLMOVtFC0aFGx2Wzy119/Ob0foZqlVaugDVdgwCZa5B84wImsErIMV9JK/v8Gip47d86yTzID1oH9hZAvXz69/h4UhIwasgxX0lK+/86jDFhK8EJgwFKwhyzDlbSWOXNmNeWRAUsKXgiYv5UrVy4+IxS0IctwpUBIlSqVKlYYsKTghZAnTx7OgaWgDVmGKwW6H/bs2bOWfdLZB5soYDnAiYI1ZBmuFGj5WMGSY8Cy/5WCMWQZrqSHfAxYsouOjlZNxETBFLIMV9JL3rx546c/WhGbiB3cuHFDsmTJot9fgyxH65BluJKewsPD5ebNm2rBCStiwDrACyFTpkz6/TXIkrQKWYYrGWGqzj///COxsbFiRQxYBzExMeoFQWT2kGW4khFk+q9gQfFiRQzY/6AJAwHLCpbMHrIMVzKKzP8VLDi3WhED9j+3b99WJyZWsGTmkGW4kpFk/i9gWcFanP0KiwFLZg1ZhisZTSY2EZPjFRabiMmMIctwJSPKzCZiz40ePVqqVaumnrTcuXNL69at5fDhw/H3nzx5Up0QnH3MmTMn/nHYH/Dxxx9XC0Hj+wwcODDJCeTdd9+VggULyiOPPKI2QQ9UBcuAJbOFLMOVjCqzzk3E+LmvvfaaFClSRNKnTy+1a9eW7du3Jxh7M2zYMLUgBu5v1KiRHD16NMH32Lx5s1SsWFEiIiJk6tSp2vXBrlu3Tvr06aPe7L/99pvaoPyxxx6TW7duqfsLFSqkVkNy/EBQIrSaNWumHhMXF6fCFcO2N23aJN9++61Mnz5d/ZJ2GzdulF9++UUWLlwozz77rPTt21e0Zh9GnjZtWs1/FpG/QpbhSkYWFhamPiMr9NCjRw+VVd9//73s3btX5RVC9MyZM+r+Dz/8UD7//HOZNGmSbN26VTJmzChNmjSRu3fvxn+P7t27y9tvvy0//PCDKjL//vtvzw/AlgIXLlzA7GHbunXrXD6mYsWKtm7dusV/vXTpUltISIjt/Pnz8bdNnDjRFh4ebrt37576evHixbZWrVrZYmNjbVu2bLFVq1bNprXNmzer32Xv3r2a/ywib92/f9+2YcMG2/r169X/472xYMEC29atW22rVq2y3b17l08qGc7t27fVeXXmzJm6/OzQ0FDbkiVLEtxeuXJl25tvvml78OCBLW/evLaPPvoo/r5r167Z0qZNa5s1a1b8bYULF7YdP37cFhMTY6tatapt//79Hh9DikYRX79+XX3Onj270/t37twpe/bsUVcAjuV2+fLlEyxJiCsGrKK0f//++K9xBYEm5KZNm6qrBq2hEoCQEA6sJuNXsvYWFzSB1alThy0vZEipUqVKcH4NJLT2oMU0Xbp0CW5HU/CGDRvkxIkTahlHVLR2WMkP7zPklB1aV8uWLavuq1mzppQrV87jY0jt68HjCUPbNt7cDz/8sNPHoL0aB4Z2bzv8QonX+7V/bV+zMk2aNLJ8+XK5cOGCZM2aNb6ZwZG/mxzsJyz8QfRqziBKTpUqVWTbtm2ycuVK9XWlSpXURSFfs2REcXFx8edXf79GcdFpD3BX/b+1atWS9957T+UQcmbWrFkqPEuUKBGfN87yyHH9ZBSIzzzzjPodsmXL5t0xio/QF7tv3z51JeDMnTt3VJs12q59hQFQrtj7gP3lwIED6vPvv/8ux48f99v3JdLS+vXr+QSTYf3z35iBqKgoyZEjh1+/N8b1OCu+HKHvtVu3blKgQAEJDQ2VypUrS4cOHVTrqjfQN4sPb/kUsBh0tGTJEhVGGOnrzNy5c9XiDZ06dUqyuwKuwBPvYmO/z1ONGzcWf7JfmWDUsjdNAESBglYjnKjQLFyhQgU1SNDepIWreSKjuXfvXnxLS/Pmzf36vT15zRcvXlwNzsVAXHRDYrRw+/btpVixYvF5g/xx3KYUX2PUsF+O0ZsHY0jzyy+/LPPnz5e1a9dK0aJFXT4WzcMtW7aUXLlyJbgdJfuoUaNU86+9QkU1il0XvAk2NCP7k/1KCFc5/v7eRP4KV0wnw0WgfawAXq+4GkffEEOWjFrBhoWF6XpetVegV69elRUrVqjRw8gvhOyqVaviAxUhjNHEvXv39svPDfG2WXjGjBmq6Rft22inxgeagx0dO3ZMVbcYIp0YhkkjSJ9//nl1wsAv+9Zbb6nvrecUGfsJS4/OeCJ33E3FqVq1asA2bScy2+DRFStWqPE8GNCEQq5+/fpSpkwZ6dq1q3rfYBzRyJEjZdGiRWoaD1pc8+fPr9Z48AevfuuJEyeqkcP16tVTJbX9Y/bs2Qke980336imY4RpYrjiRvMyPqOa7dixo/qlRowYIXqyX11ZdVslMqbk5rkGatN2Il/c/2+cjF6tK8grFG8IVeQMWn8Quvbz/aBBg1Sr7AsvvKAWUUILEQI58chjX6XCXB2/fCeTw+odpUqVkjVr1qgLCCIjhytOXEuXLlX9WjhZIFjRtIW3M5uLySj+/vtvKVy4sCxbtkxNubQaTvr8j32JRKtuq0TG4u0KTaxkyYhiLL6JCgPWIGtmEqV0+UOGLBnNzf/OpwxYi8OqUejHYgVLekrp2sIMWTKSmxbfpYwVrP2JCAlRw7hZwZJe/LVwP0OWjCKGTcRkh2YMVrCkB3/visOQJSO4yQqWHAOWFSwFmlZbzjFkSW83b95UUzL9Ne3FbNhEnChgcZIjChSt93NlyJLeAZs5c2a3i/IHMwasAyzdiCUciQIhUJulM2RJL9HR0W43bQl2DFgHWJXq3Llz+v01yDICFa52DFnSw7lz5xIspG81DFgHeCGcPXtWv78GWUKgw9WOIUuBdvbsWbW2r1UxYBMFLDYv4OqRFGzhaseQpUA6xwqWHAMWa7xevnyZTwoFXbjaMWQpUM4xYMnO3pTBflgK1nC1Y8iS1mJiYtQoYvbBkmJ/IbAfloI5XO0YsqSlc/8NGGUfLCnY3d7xhUEUrOFqx5AlrZz77zzKCpYUnPwQsidPnuQzQkEfrnYMWdLCyf/Oo4UKFbLsE8xRxIlg0/UjR47o89egoGGWcLVjyJK/HTlyRAoUKKA2UbEqBmwiDFiyWrjaMWTJ3wFbqlQpSz+pDFgXAcu5sGSlcLVjyJK/HGHAMmCdBSyGlmMNTSIrhasdQ5b88V44evQoK1i+lBKyN2mwH5asGK52DFlKCUx1vH37NgOWL6OEihUrJiEhIQxYsmy42jFkyVf2AqUU+2DJEU6OERERDFiydLjaMWTJ14ANDQ2VokWLWvoJZAXrRJkyZWT//v2B/2uQqQR7uNoxZMlbBw4ckOLFi0uaNGks/eQxYJ2oVKmSOnESWT1c7Riy5I2dO3dK5cqVLf+kMWCdqFKlitq2jmsSkzNWC1c7hix5Ii4uTvbs2aPOo1bHgHXC/sLAVRiRI6uGqx1DlpJz6NAhNYK4CgOWAesM1s7MmTMnA5YSsHq42jFkyR17YVKZTcQMWGdSpUqlrr5YwZIdw5UhS57BebNEiRKSJUsWyz9lbCJ2AQG7Y8cOy79AiOHqCitZchWwbB7+FwPWBQ50ImDl6h5DlhIPcNq9ezcD9j8MWBeqVq2qPm/fvt3VQyjIMVw9w5Alu4MHD3KAkwMGrJuBToULF5Z169a5eggFMYardxiyBDhfYnGJGjVq8AlhwLof6FSvXj1Zu3YtXygWw3D1DUOWcL6sXr26pTdZd8QK1g0ELCZMX7161d3DKIgwXFOGIWtd2EMbAYvzJv2LAesGXih40axfv97dwyhIMFz9gyFr3fWHL126xIB1wIB1A7vqoB+WzcTBj+HqXwxZ68F5Ev2vtWvX1vtQDIMB6wb7Ya2B4aoNhqy1rFmzRg1uypAhg96HYhgM2GSwHza4MVy1xZC1zvsII4jZ/5oQA9bDflhO1wk+DNfAYMgGv3379qn+17p16+p9KIbCgE1G0aJFpXTp0rJkyZLA/EUoIBiugcWQDW44P2JqziOPPKL3oRgKA9YDLVq0UC8gnJTJ/Biu+mDIBq/FixdLkyZNJF26dHofiqEwYD3QsmVLiY6O5rKJQYDhqi+GbPDBuXHr1q3qPEkJMWA9UKtWLcmRI4e6SiPzYrgaA0M2uPzyyy/qc/PmzfU+FMNhwHp4QsCLZ9GiRdr/RUgTDFdjYcgGD5wXMfc1V65ceh+K4TBgPYTmj71798rJkye1/YuQ3zFcjYkha3537tyRX3/9VY1ToaQYsB5CB35YWBibiU2G4WpsDFlzW716tQpZ9r86x4D1UObMmaV+/fqyYMECT/8J6Yzhag4MWfPC+bB48eJSpkwZp/ffiYqS6wsXqs9WxID1wlNPPaWWAzt79qx2fxHyC4aruTBkzefevXsyd+5cefrpp9WysolFfzxWTrZ/Rs4OHqI+42urYcB64cknn1TNxD/++KN2fxFKMYarOTFkzWXZsmVy7do16dixY5L7ULFemTIlwW342mqVLAPWC1mzZpUnnnhCZsyYod1fhFKE4WpuDFnzwHmwYsWKUq5cuST3xboYDBprsUGiDFgv4Wpt9+7dau9DMhaGa3BgyBofKlesbueseoWwiAivbg9WDFgvNWvWTFWyM2fO1OYvQj5huAYXhqyx/fzzzxIbGysdOnRwen/6yEjJ3qNHgtuy9+yhbreSVDZsFUNeefHFF2XFihVy/PhxCQnhNYrerBiu9+/fl6VLl6oFULDJdbD6559/1DJ8OE3VrFlTBS/pr0GDBurct3LlSrePuxMVpZqFUblaLVyB6eCD5557Tk6dOiWbNm3y/1+EvGLFcLUSVrLGc/r0aVm7dq3L5mFH6SMjJUurVpYMV2DA+gBbMhUuXFi+/fZb//9FyGMMV2tgyBoLusdwIdu2bVu9D8XwGLC+PGkhIdKtWzeZNWuWqpwo8Biu1sKQNc777quvvlJzX8PDw/U+HMNjwPqoe/fuaokwDnYKPIarNTFk9Yc+V4w9wTgUSh4D1kcFCxZUC1xPnjxZDcCgwGC4WhtDVl8435UvX15t4UnJY8CmAK7ioqKiZPPmzSn5NuQhhisBQ1YfZ86ckYULF6rznrOlESkpBmwKd9jBQtfjx49PybchDzBcyRFDVp/qNX369PL888/zxeghBmwKBzv16dNH5syZI+fPn0/JtyI3GK7kDEM2sAv7I2C7dOnCwU1eYMCmUNeuXdVEf7z4yP8YruQOQzYwUERcuHBBFRTkOQZsCmHZRDSZTJw4UY0qJv9huJInGLLawiDOTz75RBo3buxy31dyjgHrBwMGDJCLFy/K9OnT/fHtiOFKXmLIaue3335Tq6UNGjRIw58SnLgWsZ+0b99etm/fLkeOHOF6qSnEyjV5VlmL2Ftcu9j/6tevLzExMbJt2zaOHvYSK1g/GTJkiJw4cUJmz57tr29pSQxXSglWsv61ZcsWte7w0KFDGa4+YAXr563ssBA25sZylx3vMVw9xwrWPVay/tGqVSvVKrd//36e03zACtaP3njjDdm3b5/88ssv/vy2lsBwJX9iJZtyOJctWrRItc6xYPANK1gNdtpBWGzcuJFNKh5iuHqPFaxnWMn6DrMjfv/9dzl27Bj7+X3ECtbP0FeBpRPXrVvn728dlBiupCVWsr7BeBLsFvb6668zXFOAFawGc8aqVq0q6dKlkw0bNrCKdYPh6jtWsN5hJeudTp06qek5f/75p2TIkMHLf012rGD9DItgjx49WjZt2iSLFy/297cPGgxXCiRWsp77448/ZMaMGTJs2DCGawqxgtWoim3YsKFaWgwjikNDQ7X4MabFcE05VrC+YSWbvCeeeEIOHz4sBw4cYPNwCrGC1aiKHTNmjBrajitB+h+GK+mJlax769evV7MgRo4cyXD1A1awGmrXrp1a3QlXg+iTtTqGq/+wgk0ZVrLOW97q1Kmjds7BeYtTc1KOFayGRo0apTYpxkYAVsdwJSNhJZsU5rxiBgRa3xiu/sGA1VDp0qWlW7duKmivX78uVsVwJSNiyP5PXFycWiinQYMG0qhRIx3/KsGFAaux4cOHy+3bt1XIWhHDlYyMIfuvr7/+Wg1qQvWKMSTkHwxYjRUoUEBdGWI/xYMHD4qVMFzJDKwespcuXVLnqK5du0q1atX0PpygwoANAKyGEhERIX379lUDCayA4UpmYuWQRbjivITqlfyLARsAGEH8+eefy+rVq2XOnDkS7BiuZEZWDFns8TplyhQ1LSd37tx6H07Q4TSdAGrTpo0a/n7o0CHJlCmTBCOGa2Bwmo52rDKFBwOb8Pvh992xYwcXxNEAK9gAQj/s5cuX5b333pNgxHClYGCVShaVK4J1/PjxDFeNMGADCP2w6O8YN25c0A14YrhSMAn2kMWFPs5FXbp0kdq1a+t9OEGLARtgAwcOlCJFikivXr1UKAUDhisFo2AOWZyH0ET8wQcf6H0oQY0Bq8OAp6+++kptZDxhwgQxO4YrBbNgDNmlS5fKtGnTZOzYsRzYpDEGrA6wWkrv3r1l8ODBar9Fs2K4khUEU8heu3ZNevbsKU2bNlWrzJG2GLA6+fDDD9XVI17kZmwqZriSlQRLyPbr109iYmLUyk1csUl7DFidYJrON998o5qKMYrPTBiuZEVmD1lsQzd9+nQ1m6FgwYJ6H44lMGB1VL9+fXnppZdkyJAhpmkqZriSlZk1ZK9evSovvPCCNGvWTC2JSIHBgNUZRvHlyZPHq6bi3X9dlXm7TqvPgcRwJTJnyKJp+NatW2qAJZuGA4cBa6CmYozqS86YZQelzYRN0v+nKPUZXwcCw5XInCE7b948+fbbb9k0rAMGrAHUq1dPBg0apCZ+483qCirWSeuOJ7gNX2tdyTJcicwZsidOnFCtY08++aRaVIICiwFrEFhsu2rVqvLMM8+o/hJnTly65dXt/sBwJTJnyGK96g4dOki2bNnUsohsGg48BqxBpEmTRmbNmiXXr1+XHj16ON3WrmjOjE7/ravbU4rhSmTekH3zzTdl586dMnv2bMmaNaveh2NJDFiDrVWM/lj0mThb5alS4WzSq26xBLf1rltM3e5vDFci84YsVmv66KOP1B6v1atX1/VYrIzb1RnQK6+8IpMnT1Zv1EqVKiW5H32uaBZG5cpwtSZuV2dMRtjq7vTp01KxYkX18xctWiQhIayj9MKANaB79+5JrVq15ObNm6qJJzw8PGA/m5WrOTBgjUvPkMXPbtiwoZpXv2fPHsmZM2fAfjYlxUsbA0qbNq3qN4mOjpZOnToFbClFhiuRuZuLMRth48aNajwHw1V/DFiDKlmypMycOVM18QwfPlzzn8dwJTJ3yGKHHCyD+Omnn8r//d//af7zKHkMWANr0aKFvP/++2oKDyparTBcicwdsps2bVJ7TGOnnD59+mj2c8g7DFiDw5Z2zz77rFo/dNeuXX7//gxXInOH7N9//y1t27ZVP+fLL7/kfFcDYcAaHN6YmCT+0EMPSatWrVS/rL8wXInMHbK3b9+W1q1bS7p06eTnn3+WsLAwv31vSjkGrAmkT59eFixYoN6YuFLFKOOUYrgSmTtkMUoZyyAeOnRIFi5cKLly5fLLsZL/MGBNokCBAipkMW0H/SzOVnryFMOVyPwhO2LECDU247vvvpPIyEi/HSf5DwPWRPDmxEjB77//XoYOHerT92C4Epk/ZLHt3DvvvCOjRo1SC/mTMTFgTQaLd2MoPvaRxWdvMFyJzB+y8+fPl969e8vLL7/s84U2BQYD1oRee+01Nbq4f//+aq6sJxiuROYPWewbjYvsdu3aqfmu3CHH2BiwJjV69Gjp3Lmz2uPx119/dftYhiuR+UP2jz/+kJYtW8ojjzyi+l25xrDxMWBNCm/Kr7/+Wpo0aaJGFm/fvt3p4xiuROYP2ZMnT0rTpk2lWLFiarctLKdKxseANfkesj/99JOUL19emjdvrobrO2K4Epk/ZDH3HRfSGTJkkGXLlgV08w9KGQasyeFNt2TJEsmTJ480aNBAjh49qm5nuBKZP2QvXryodsfBzlorVqxQ73MyDwZsEMiRI4esWrVKsmbNKvXr11chi2UVb9y4IXXq1GFzEpEJQ/b8+fMqXC9duiSrV6+W4sWL632I5CUGbJDAlS3ehJkyZVI7aaC5mOFKZM6QxcXxo48+qkIW7+syZcrofWjkAwZsEMmdO7eaG4s36ZAhQ9Qi4ERkLteuXVPzW9E8/NFHH0mpUqX0PiTyEQM2SNj7XDG6cP369aqSrVu3rhw5ckTvQyMiD124cEGNpUDlumbNGilRokTAN20n/2HABoHEA5qKFi0qa9eulSxZsqiQ3bdvn96HSETJOHv2rBpDgcoV79+KFSsGfNN28i8GrMm5Gi2cN29e9SZF3yz6ZDds2KD3oRKRC4cPH5batWur9zHet2XLlg34pu3kfwxYE0tuKg76ZNetW6d22mjcuLEsWrRIt2MlIue2bdum3r8ZM2aUTZs2SenSpRPcz5A1LwasSXk6zxXNxMuXL1cLUbRp00amTp0a8GMlIufw3kSzMEIVYycKFSrk9HEMWXNiwJqQt4tIpEuXTq349MILL0iPHj3k/fffT9F+skSUcth2skWLFmpQ02+//SbZs2d3+3iGrPkwYE3G1xWaQkNDZcKECWoPyTfffFNeffVV9b2IKPDGjh0rnTp1kueff15tP4cV2TzBkDUXBqyJpHT5QwyUGD58uEycOFHGjx+vtryKiYnR7HiJKKH79++rfVxff/11NdcVXTYITW8wZM2DAWsS/lxbuFevXrJgwQLVLIWRi9ipg4i0dfnyZbUjzqRJk1RrErpqfN3PlSFrDgxYE9Bi4X70/WDY/61bt6RatWpqtDERaWP//v1SvXp1iYqKUhe2vXv3TvH3ZMgaHwPW4LTcFeehhx5SUwSw3V2jRo1k8uTJfvveRPSvxYsXS82aNVU/K/Ztrlevnt+eGoassTFgDSwQW85hJx5sg/Xiiy+qpuM+ffqofiIiShmM1B89erS0atVKXcBijitWWfM3hqxxMWANKpD7uWLj9i+//FL1DX311Vfy2GOPqbVQicg32L+1Q4cO8sYbb8hbb70lP//8s2TOnFmzp5Mha0wMWINe+e7Zsyfg+7miisW+stjqDqs/oa+IiLyze/duqVy5svzyyy9q/vmIESMkJMT1qfZOVJRcX7hQffZnyHIanv4YsAaENwg2V9ZjP1fsQYlwR8A2adJEzZnl+qdEnl0YY/ob+ltRraIF6qmnnnL7b6I/Hisn2z8jZwcPUZ/xtT9CFvvHugt1Cgz+BQwKSxwGOlztsEEAlnAbNWqUfPDBB2opN+4tS+R+D1fMK+/bt69qCdq8ebOULFnS7VOGivXKlCkJbsPX/qhkc+bMyT+XATBgyfkLIyRETYTH9B3Mk8XWWRgNSUQJoTkW74/Vq1fLvHnz5PPPP/fo4jjWxfxzV7eT+TBgyS00U6PJGJ9btmyplli8ffs2nzWyPHSdYJQwtoPE9pDoe8WGGp4Ki4jw6nYyHwYseTSVZ+HChfLpp5+qUca4Wt+4cSOfObKsAwcOqItOjBAeMGCA2gknwstgTB8ZKdl79EhwW/aePdTtFBwYsOTxwCtUr6hmEbi4au/fvz+rWbJc1YpxCRglfP36dXWhOWbMGDXVzRd5Xh8gEbN/lPwfjFGf8wwY4PdjJv0wYMkr2Ldyw4YN8uGHH6r1VFHNYgI9UbDD9LVHHnlEjU3Agv1oEsaI4ZRCxZqlVStWrkGIAUtew9Z32A3EXs3ipINmsjt37vDZpKATFxcnH330kbqYvHr1qqpa8XX69On1PjQyOAYs+Qxz7VDNoskM8/+wpvHSpUv5jFLQ2Lp1q5pXOnjwYDUFBxeVtWrV0vuwyCQYsB7ASEHsOIPJ47lz55bWrVvL4cOH4++/cuWKajJC8ymuagsXLiyvvPKK6qNJ3I+Z+OPHH39M8Jh3331XChYsqKrCI0eOiBmq2YEDB6oTDwZ5PP744+r54RZ4ZGaXLl2Snj17qiZgVLCoWj/++GNTVK2///672i0rf/786hyDrSkdvfPOO+riOGPGjJItWza1TjIuJBzhvZz4XIW+Zkdff/21FClSRCpVqpTk39O/GLAewFxQLIKP+W5YPhCL4WO9Xmz1BmfPnlUfeAPu27dPpk+frhZq6N69e5LvNW3aNDl37lz8B8LIDm9iLK+GEbvPPvusumI2C7xh8dxgabgdO3ZI2bJl5b333pO7d+/qfWhEHkOYYk3uUqVKydy5c1XLDF7PZqpacV7CSmw4dmfwu2Ht8b1796oWKIQpzmcXL15M8Dgs8eh4rkIRYffXX3+pcRgoELDaW9euXTX/vUzJRl67cOGCDU/dunXrXD7mp59+soWFhdnu378ffxv+zfz5813+m8WLF9tatWpli42NtW3ZssVWrVo1U/51bt68aRs8eLAtTZo0tuLFi9t++eUXvQ8p6OA1smDBAvWZ/APvucqVK6v3abdu3WzR0dGmf2qTO+fA9evX1eNWrlwZf1uRIkVsn3zyict/s3fvXlvVqlVtMTExtuPHj9siIiL8etzBghWsD+xNv9mzZ3f7mPDwcLVsmSNUwljGDJsvf/PNN2r9Ujus/YuKD/tGNm3aVDVNm1GmTJlUc9Iff/yhtudCszEWqcDcQSKjwTKgqMDQHIz3I0bFT506VXUHBbvY2Fg1tx1Ls6LqdYT3MAYxogkYg7oc1yR/+OGHpUKFCurfYV/pkSNH6nD0JqB3wptNXFyc7fHHH7fVqVPH5WMuXrxoK1y4sO2NN95IcPuIESNsGzZssO3atcs2ZswYW9q0aW2fffZZkn+PK+d79+7ZgsGDBw9sc+bMsRUtWtQWEhJi69Kli+3UqVN6H5bpsYJNuUuXLtkGDBig3oe5cuWyTZgwwfbPP//YgomrChatZRkzZrSlSpXKlj9/ftu2bdsS3D927FjbmjVrbFFRUbaJEyfasmbNauvXr5/T5/D27dua/g5mxoD1Uq9evVTzyd9//+2yuaV69eq2pk2bJtt89/bbb9sKFixoswJcMHzxxRe23LlzqxNa//791ZuTfMOA9R2aNUeNGmULDw+3ZcqUyfbOO+/Ybty4EZQvRVcBi+fg6NGjts2bN6vmcDTxumsSnzp1qi116tS2u3fvanzEwYUB64U+ffqoQESfgzN4k9aqVcvWsGFD2507d5L9fkuWLFFvACu9aPEcvfvuu+rEhhPcyJEj1ZudvMOA9e05Q5WaN29eNT7glVdeCYp+1pT2wUKJEiVs77//vsv79+3bp77XoUOH/HyEwY19sJ41o6sRvfPnz1c7ZqBfMTFsjo6ReGFhYbJo0SJJly5dst8XU1swTF6vben0gKlOw4YNk+PHj6t+L0xLwt63Y8eOlZiYGL0Pj4K0nxHjHcqVK6fGQDRu3FhNs/vss88s0c/qCWzOfu/ePbfnKuywxefLS3onvBn07t3bliVLFtvatWtt586di/+w9z2gWbhGjRq28uXL244dO5bgMfY+nUWLFtm+/vprNfoOTTO4ks6QIYNt2LBhNis7ceKErWvXrqr5KVu2bOr5YNNx8ljBJg8tIxgJi1YnnOpat26t+hSDHUbx7969W33g9x43bpz6f4x9wHMydOhQ1TR88uRJ244dO9T7D902qFJh06ZN6nnbs2eP7c8//7TNmDFD9VF36tRJ71/NdBiwnjxJIk4/pk2bpu7HYABXj0GAwLJly2wVK1ZUTaMYXBAZGWmbNGmSGjRFNvXmR5Nd+vTp1YUHBlS46ucmBqw7ly9fVt0QOXLksIWGhqpg2L9/v2VeNq7OR507d1ZdV23atFEDmzCNMF++fLaWLVsmGOS0c+dOVTCgqEiXLp2tbNmyqvnYSl1Z/pIK//G26iXSCia7Y8NqTITHhPlOnTrJoEGD1OR4+h8sdoJlKZs3b+7zTi7BBou9jBs3TiZPnqymlPTo0UOtmY3Vhoj0wD5YMpRcuXKpFaBOnTolo0aNUitbYQnKZs2aqUBBXxGRHeoDrID2zDPPqCDF8n1YphSvny+++ILhSrpiwJIhYZEOrHF84sQJtbzkhQsX1IIVqGRRpVy+fFnvQyQdoXUDi0FgX1as271r1y61VCmW8MOFGQfjkBEwYMnQMBq7S5cuaj1YrLCDFbCGDBkiBQoUkOeff15VL0bt5dj911WZt+u0+kz+gdXBMBIYC9ljMX58XrZsmdqr9dVXX1UrCxEZBftgyXRQzWJDBfS1YboPNhro2LGj2iDB2RQqPYxZdlAmrTse/3WvusVkSLOyfvv+VuqDjY6OVovKz5w5U7Zv3y558uRR/av4wEL1REbFgCXTQn/sqlWr5Ntvv1VzlG/fvi116tRRYfvUU0+pdVT1gIq1zYRNSW6f/1JtqVQ4m19+RrAHLOZEY5s1hCp2acIcTPTDo9WiVatWQfk7U/BhEzGZFk66WDRgxowZqsrBZ/TdYlGQfPnyqRPxnDlz5M6dOwE9rhOXbnl1O/3vogHbPOICCVUqwhRBi23XsF0atnFs164dw5VMI+FWL0QmhR18nnvuOfWBsJ09e7aqfp5++mm1STaCGJtQP/HEE5I3b15Nj6Vozoxe3W5l165dU32oWP0Mn7ELFfYSxh6jaPJnEzCZGZuIKagdPXpUVT44gWNAFJqVa9SoocIWW+hh261UqVJp3gfbu24xGcw+WOXPP/+UxYsXq7/J+vXr1ZxVjAbG3wOtDtg2TYu/CVGgMWDJMi5duqT6LXFiX7FihWp+RIWEvXfr1asndevW9Wt1i75YNAujcvVX36sZ+2CvXr2qgnTt2rXqece+wFizu2HDhipU0apQsGBBvQ+TyO8YsGRJWNgcJ3yELQZKYfF3QPMkwtYeuOgLNCIjB6xjoOIDC8VjKlWhQoXiQxVN9mjWJwpmDFgiETWIZt26dfGh4Bi4WMigSpUq6qN8+fKG2P3IKAGL5t2DBw/Kzp071Qea4R0DtX79+vEXLGgtYNMvWQkDlshN4K5Zs0a2bNki+/fvl7i4OBVm6Le1B649dD3ZntDsAYswRfOuPUzxERUVpUZpIzixyhb6txmoRP9iwBJ5ACGCVYQcwwWhi9DBdCFUZwiYxB+o4nC/WQIWlef58+flyJEjST4wOAk/F2GK9aEdLzIqVaqk9volov9hwBL56O7duyp0UcU5CyJAZYsN5RG0mJtr/8ASf45fe9vs7EvA4t9gChN2nUGFbv+wf33mzBk5duxY/Mb3uDDAylj2i4WSJUtKhQoVpGLFigxTIg8wYIn8DFUtdnOxBy6mCiG8HEPNHsB2GTNmVKGFgT/47Pj/+Iz7Q0NDVejhA5UmwtC+NCSmH2Elq5s3b6qAdPYZH47w/TBq2jH0S5QoER+oxYoVU6N9icg3DFiiAEM4XrlyJUEFiZG39hB0DET7/2P3GISo4wearRG+CEo022bIkMFlSOMja9asCarmnDlzqn9LRNpgwBKZkFFGERORa1yLmIiISAMMWCIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJiIg0wIAlIiLSAAOWiIhIAwxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJiIg0wIAlMqGQkBApUaKE+kxExpTKZrPZ9D4IIiKiYMPLXyIiIg0wYImIiDTAgCUiItIAA5aIiEgDDFgiIiINMGCJiIg0wIAlIiLSAAOWiIhIAwxYIiIiDTBgiYiINMCAJSIi0gADloiISAMMWCIiIg0wYIl08vvvv0uLFi0kf/78kipVKlmwYEGC+2NiYqRv375SsGBBSZ8+vZQrV04mTZqU4DF3796VPn36SI4cOSRTpkzy5JNPSnR0dILHLFq0SEqVKiWlS5eWJUuWBOR3IyIGLJFubt26JZGRkTJ+/Hin9/fv31+WL18uM2bMkIMHD8prr72mAheBadevXz9ZvHixzJkzR9atWydnz56Vtm3bxt9/7949FcATJkyQL7/8Unr37i2xsbEB+f2IrC613gdAZFXNmjVTH65s2rRJOnfuLPXq1VNfv/DCCzJ58mTZtm2btGzZUq5fvy5Tp06VH374QRo0aKAeM23aNClbtqxs2bJFatasqQI2NDRUKlasqO5PnTq1ui0sLCxAvyWRdbGJmMigateurarVM2fOiM1mkzVr1siRI0fkscceU/fv3LlT7t+/L40aNYr/N2XKlJHChQvL5s2b1dfh4eHStWtXyZcvn2qKRgWbOXNm3X4nIithBUtkUF988YWqWtEHi8ozJCREvv76a3n00UfV/efPn1eVaNasWRP8uzx58qj77IYPH66al/HvGa5EgcOAJTJwwKKpF1VskSJF1KAo9KeiEnWsWj2RJUsWzY6TiJxjwBIZ0J07d+SNN96Q+fPny+OPP65uq1ChguzZs0c+/vhjFbB58+ZVA5auXbuWoIrFKGLcR0T6Yh8skQGhbxUfaNZ1hAFLDx48UP9fpUoVSZMmjaxatSr+/sOHD8tff/0ltWrVCvgxE1FCrGCJdIJ5rseOHYv/+sSJE6pCzZ49uxqoVLduXRk4cKCaA4smYkzD+e6772TcuHHxzb7du3dX03nwbzCg6eWXX1bhihHERKSvVDYMTySigFu7dq3Ur18/ye2YmjN9+nQ1UGno0KHy66+/ypUrV1TIYtAT5r5iYQr7QhMDBgyQWbNmqek3TZo0UXNe2URMpD8GLBERkQbYB0tERKQBBiwREZEGGLBEREQaYMASERFpgAFLRETEgCUiIjIHVrBEREQaYMASERFpgAFLRESkAQYsERGRBhiwRERE4n//D0+PuIc15+mWAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -176,7 +176,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAHJCAYAAADw9vLCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc0hJREFUeJztnQm4VeP+x19juIXM3aLMMs8uIVOmMlQyVVRSoq6UKXOmdENlKlEJIZKuecoQZQohlSGJSEhIpuj8n897W+e/W2etvdce1/T9PM9ud/beZ591zl7r/b6/eYWqqqoqI4QQQohqVvz//wohhBACJI5CCCGEC4mjEEII4ULiKIQQQriQOAohhBAuJI5CCCGEC4mjEEII4ULiKIQQQriQOAohhBAuJI5CCCGEC4mjECHToUMHs8IKK5jrrrtuucfHjx9vHxdCVB6JoxARYLXVVjP9+/c3CxcuDPtQhBASRyGiwSGHHGI22mgj069fv7APRQghcRQiGqy00krm2muvNTfffLOZO3du2IcjROqROAoREVq2bGl23nlnc/nll4d9KEKkHomjEBGCuOOoUaPMjBkzwj4UIVKNxFGICLH//vubww47zPTp0yfsQxEi1awc9gEIIZaHkg7cq1tvvXXYhyJEapHlKETE2GGHHUzbtm3NTTfdFPahCJFaJI5CRJArr7zSLF26NOzDECK1rFBVVVUV9kEIIYQQUUKWoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4ihEhGBIzt9//23vhRDhIXEUIkL89ddf5vHHH7f3QojwkDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4WNn9gBBCZOONN94wH3/8sdlqq63MXnvtFfbhCFEWZDkKIQJzwQUXmH/961/mlFNOsfd8LUQSkTgKIQJbjP/5z3+We4yveVyIpCFxFEIEAldqPo8LEWcUcxSiAgwfPtwW96+77rrm9NNPDxSry4ztQbY4XyXigM5xBH1ciFhTJYQoK3vuuSe94Ja7nX/++Z6v/fPPP6vGjx9f1adPnxrf4/e9fJ35fPPmzatef/11+9ydd95Z1bVrV3vPY3fffXf1c4Xg/lkXXHBBwe8lRJRZgX/CFmgh4mD5vfXWW2aPPfYwp512Wl7f17lzZ8/nXn/99RpW3pIlS8yTTz5pTjrpJPPbb7/5vq/zvViMJMZ4sdFGG5lvvvnG87nzzz/f9O/fvyCrU9mqIg3IrSpEDhCAN9980/7/9ttvN8OGDQuchIKg+oHAFCouzvdmi/f5CaOTSNOqVSszbty45ZJsMkXTTwi5lyiKpKOEHCFyWH6OMDrwNY8HAUvTj2Jidc73FvMeTz31VNbsU3fZxhFHHGHOOOOMwL+7EHFG4ihEAZZfNoswE1ywe+65Z43HEZ5s1lfPnj19n8v8Xu6x9koJlqJX2cbTTz9tLWfcxLIcRdKROIrEwcJ+zz33lKT+zs/yy2YReh3PnXfeaY499lgrlsQLr7vuuqzf07dvX/u6u+++295n/t/9vbhBebx58+bLPV6vXr2sAosl6AXWaK7yDLf1XMq/uRCRIOyMICFKiTub0i8rtJhs07322quqXDjZqtwXgjsjNVe2ql/2Ka/xy5Z1brxvuf7mQoSNslVFYvDL3PTKCq1EtirHQ1zvnXfeMV9++aV9rHbt2mbFFVc0W265pdl7773t4zz/008/mbXWWsv885//tBbdJZdcYr7++muzyiqr2NduvfXW5qOPPjJffPGFqVWrltlmm23s+/F9PB+0djKf7FOsS7drNROs4e23375sf3MhwkTiKBIDbj2SR9zgjmzfvn3Jf16m+DniBvz/q6++MrNmzcr7PVdffXVz//335yzl8KJ+/fpmjTXWMH/88YfZZJNN7GPfffedWX/99a24NmjQwApvPqLlCCeu2w8//LD6cd4DAaz031yISqFSDpEYSt3BxbEW6WqDpTZz5kwzffp0M3v2bDNv3jzz7bffmiiBIDtgYTpgcb766qvVscy6detaC3bTTTe1N8Tcr3OPU7aB0HlZz+qaI5KKLEeRKNyuQL7OlfySaSH9+eefZtVVVzWXX365FcFKU4zlWAqwPjfccEPbQGDjjTcO5EYu9G8uRJSROIrEkU8HF6yhm2++2bz33nsmCoQtjl784x//sLFQYqWtW7c211xzTY3XqGuOSBoSR5Ea3At4ZuebqBBFcXSz8sor29jlrrvumncMU4i4IHEUiZ6C8ffff9tF/LPPPrPJIw6HH364LWqvBFtssYWN8ZUjW/XFF180v/zyiwmTffbZxzRr1kxCKRKFxFEkBid79I477rDCUimX40EHHVQjW5X/F2JZOY3HjzzySCuM+WwEvv/+ezN//vwa2aqIZ2ayTjlx92YVIq5IHEUiyFWTVwzU8Z155pnLZauutNJK1vr0ir8VQyHimI9LecKECbYE49dff7WZqgsWLFiuRKMUODWOhcywFCIqSBxFrHBnlTolA35jm7Kx3XbbLScMm222mbnooovs+2a+fyUX9XKJYxCLe+7cudZ1y9+3mDIVahxvueWWGvFcuV9FnJA4itgI4nPPPbdc3NCBnqJPPPFEXu/plBsUOqcxKIgsblZcm4sWLfK8RxCXLl1qb4MHD7ZxyQMOOMCKIxbqaqutZt20a665pr1fe+21ba0i91hlFPnzulL/zXFPf/LJJ/a4pk2bZn788cdA38sG49prr836GgmliDoSRxFpQbzvvvtKljhDITsLcqmsQVySHCMWF00BiHNy79z4+ocffsj6HiTXYKGSpMMNsVxvvfWqrUaECfEksYhLla+97slyRTwRzQ022MDWKVKzSK0iyTvEP+vUqVMywUSk+f0nT55cY9OBiDK9Iyhsbi699NKSfCYqKRGlQuIoEhE/9LIeyRJt3LhxUSUHxOZYbL1uCxcuXE7kyDRlEob7hmAhTFiE7nu36xSLC5fmUUcdVW0NIoAk2XAs3BYvXmzLPLjx9c8//2wFCQuV/ztfI7R//fVX9Y3kIYSzUaNGVjzoi7rLLruYHXfcsWDL03HJgvM3xhpnrFW+YE1iCXMsLVq0yNuSd583Sg4SxSBxFJGLJRaysJIEAu6FOh8Qk6lTp5q33367+kYSDuIELNyISuaNMgsyQ3FxrrDCCqZYvMSxUBBEMlixYrFuv/nmG/ve3Hj8999/t1YpIOJsJHbffXez//772xguFm2hlKKGlDmYQUdglbPpvEgn6q0qYp9p6h7+GwQEj8zTl156yS6sjhCyV8QKxJpCJBg6jIWFECKOcYJifdyr3LAQ3cJJ2cecOXPM559/busnP/30U+smHTBggP078H3bbrutadq0qZ1FSXZrUPibOtmqNGD/4IMP8j5+xJW/O8JNc/NslqTf/EkelziKQpDlKCpOpiuOmFg+liLlEyeffHLe2aSZYsjt5ZdfttYTbk2EY7fddqu+kcVaqUzRclqOhYBLFkFBKBFORBMRxcrEOt55553NwQcfXJBY8pmTVOWOUwaFbGJi0F6ftyxHUWokjiI2ViIJNZQJBIWEGCyXZ599djkxZLEkG5QbXWoY8xQVwhZHL3DH0nt2xowZVjT5OlMsEcoTTzyxugtQuYXSL5aoBuiilEgcRcXw2937DdLNt96QU/n99983jz76qL1NmTLFZoAigAceeGAkxTAO4phNLLEy+Ro3LVmxJEbhAg1qVXJOXHXVVXmX4jA1Ba+D+9xQtqooFRJHUTH8BuO6yWfHT0IJ/UURw8cee8y6AckExf169NFH28ScOMUK4yCObnc1fWsRJeKK/J8MWuKEuF9PPfVUuyHJBd/fq1evgl2uO+ywgy0zkSCKUiFxFCWHRAzH/ZmZSJHNcnQsxaAWIska9957rxkzZoztH9qwYUMrKAgiCSTFZFqGSdzE0Y1T+4hlSYITMcx11lnHHHPMMaZ79+42uzcbjuWH27SQtnalrJkU6UbiKEqKVwp/Zkq+V8wxqKVI8fno0aOtKJIBSV0ho51I0CGpphSlFGkQRy5557LH7ey2BHGROs+R8Voo1GG+9tpr9obQ0RGIGsvjjz/edOvWzTY7CLLJwhqlFCUfJJKiWCSOomRkK/7GMsy0IIPWI1LYjhiySCK6uEyPO+4407ZtWxtDjKN1FZY4UsfJ54BY8XdlDBYN1bkHslKHDh1q47a4RilnOeuss6onfBQDTQkmTpxoP3v6t9LUgPenITmJVrl+V+ec6du3b14/VyIpCkXiKErGGWec4ds2rGvXrnbhDQKnJMk0vP6BBx6wCymNuFlE6ZxCq7SkUi5xxCK84oorbAZv7969bdcexGbcuHE2FkymKdYcjyOI1HoydJlSCJ4vpZuaYyBOTE9bykV471atWtks1FyJPIVmOxODdjZkQgRheZ+KEEVA8+5CnnOgPGDUqFH2tbhin3/+edvEmoHAJNy0adMm0cJYTnBxTpo0yVqKdMKhwL9Dhw42cWb8+PHWbYmrmqQY4rc8TwMEEp74HEoJ7nAs/xtvvNFmnfJ5//e//7X1pbjJEWS/PTuxSJ7Hk5BPnSX9eWnQHrTjjhASR5E3LDBYE+6FBrcpouYGl1a27ia0N0MESc1nwWYRI/OUWNPFF19sF3BRHE7j8swYItYk1inxQJ53gzASx6V5Qjkgpkmd5Lnnnms9C5TbcE6R3cp5xDnmtLdzn094ETg/cBNTZ0m2ai6ocyUhjO8VIhcSR5EXuLVYYMhC5Z6vM2FxY8Gi9Ro3/u/0PXWDpcKiSJLGrbfeaq0JMhVxf+E+TVo8MUxwm2IxYpkzKQTRwZoi/sfXfAYbbrihdWXTUJ34JMlPxApzTRYpFo4F4cLdS5MBZ0Ay5xjN42+++WYbA/WCTdcjjzxi46ScZ8QYc0EMm3inrEiRDcUcRWBK1aKLNH+yUx988EFrJZ5zzjk2XskYpLRTzoScr776ysbrqEfkvUnEwcWJII0YMcLe01eVe57HesO6xHq85pprTLlAoPmZl1xyyXLnAMeJG5W4M+UgZ599to2H0pknG/lMBdHkDuGHxFH44s4qxarzKuIn/hPEVfXqq6+afv362Un3WCosTLhRFUesbCkHXYeIQSJExPwQQLrUODjzIxmy3KVLF+v6JFZZDlh+6I7DWDFKcryYPXu2FW0EnOQdjoV4KHHRUiTuqP+q8EJuVZHVfUrqPDf+T49SLyjczwZZiXRL2W+//Wx2IrEkahbJjpQwVh4EBmHEfco0kiZNmtjHnX0y/WcRRqw5XN/77rtv2Y6FBg6IcTZxIvHmtttus9NDEEb+z2PnnXeebTqQLXEnSCySDSCZvNzkahUOshxFDbJ1ssFCRNyCFPDjLsNVNnbsWJuJePXVV9sONu7Cc1EZy9FpztCgQQObATxs2DAbixw0aJB1nb7wwgtmzTXXtMX5JLtQlkNzhQsvvNCUC2ofGcJMlmzQJg7EQTnmG264wf6N8EDgcuV9/M5n6imDjs2Sq1WA5jmKwLPxoFmzZjbuk625M7EtrE3cYPXr1zd33XWXadeunRJsQoakFhKksNYQQZookNDiiBKNAehPikWJQNLyzc/VWQpw7bIRIBErn+5GxByx8rAi2XDxf5J2cBHz+7jHjXGOkrBDSCBzY+cH7ljOb5LCsmVZi2Qjy1HkZTlmi8+wqLLjHjx4sN3FU4aB6xQXnUhHb9V8QLCY6EEHm2Lc61i5CCPZtZtvvrkVTFrUeQluZhwdcnXcYZNA9qxikulD/i1RAxYCXEtucKF6LRIkdGAlYkmyg6dujVgVWagSRpFtmgcZscXGnRmCjEX47rvv2sbmzJakjIisaDecv058kSSzoLWR7pIlkXxkOaaUIP1Ng7zmnXfese4tXot7DJcU5QGiMNJiOTJaDDEjqabU5wsdfXr06GFdo0wCwTr0K/9QVqvwQ+KYQrxiL/kmIVAYTrINReMk21DEz25dFEdaxBEBIzGI+tZylavg3kcYcfFTCkIyWTZXKxs9OjP5QSeenXbaKWezfJEMJI4pgwWCDiGF7oxxh40cOdJmMLIAsfiQoONOghCFkQZxZMYjZUEU6lNDWU7oGYubn7mflKTccsstVuD8oESEkpFcKKM1+SjmmCLoHOInjLmyVIG6NzIcWdTYPVOqQTG2hFHkA+cNnZHwOJQbrFM67EyYMMHWRNJsoE+fPnbSi1/DgSANzXHFqiYy2UgcUwKxlVwttfyK+bEWcVHRj5IyDcYN0RUnW4cSIbxgkDLxRpqLV3JTddBBB5mpU6eaK6+80tZHIpI0p/Ais6F5tlAB9b0SyOQicUwBXMC5kg5wt3q5VMk6ZVoCFiLiSvo91qMQhYDLkg49u+++e8V/Nj+X8iK6ApFFjUDztZcV6TQ0z3bdMOqLTFbqISWSyUPimAJyuUsRRixBt7VIWQbWIt1UsBZvuukm3y4kQgQ9F4n50Ug8LGgpR3ydcg4SdRBqBNMLNow0sMgGvWFV7pE8JI4pmLfo5y5ld+wMjs0EtxduqH//+9+mU6dOshZFSaBmkIHWUcj0xKVLtvWUKVPs/zmmyy67zLp93XAtBWmsj5VJXF8kA4ljCuYtehX18zhxFfdCxUR2MghJTMBaxHqk/6YQxTJz5kybIEOhflRw5joijGQKE0LAU+KGDSQbSTrxZIPQgyzIZKBSjhTNW+R5v56oxF24qEm8admypd0B161bt4JHL5JcysH5RQ3hCSecYKezRJFJkyaZk046ySxevNgOhSaWWGjjADUMiD+yHBMCwkf9YbaYIxerV+INJRr77LOPGTJkiLUUH374YQmjKCmcY3Xq1LFTPqIKo7vo2sM9m5PevXvbWl6/cVjNmzf3fS+uRSXpxBuJYwJwXKiMGMp33iI1YKS1U5j92muv2XZb+UxIECIXOKfIet5tt90i76Jfd911bWhh4MCBdqNI4wBKO9ywwaQhOaEJL7gWlckabySOMcc9XzFos3B2xPRExY3EDphsPURSiFLz9ddf2+xnmozHATaHlC5NnjzZNg7A2vVrK0dSm1eTfgdlssYXiWOMYUfq1/Gma9eu1vXjNYiYeX6HHnqo3fXSG/W+++6z8/2EKFdHHEZJbbzxxiZOUOJBv1Uyt5ltybXklaLhuFm55vxQJmv8kDgmtH6xY8eOnhYjZRns4KdPn24nv3NBy40qysUvv/xim9RTcB/H82yttdayMXhmTtJ2jskzDGl2w7XGNVeKTFZ3KZYIB4ljjPGLJfp1u6HjB4k3XPDUdxFPEdEAiwTX499//22StoGj4J+Sibiy4oor2gb7Dz74oO2KQ7YtDc2DzkHNx4L0KsUS4aBSjpjjTiv36nbDR8x0dGq5WrdubdPU1emmfCxZssQsWrTIWk3cZ/6fxKeFCxfae16HGCKK3PiccOPVr1/fnHrqqbEv5eB3e/TRR81hhx1mjjzySJMEyGbFxcpnx2bTq3QKi++qq66y8cZ8pnrkKsUSlWXlCv88UWK4wFq1auVbv0hHEhZadr3sfukKwk5YFAcJTdQjzp8/v/qG6P3444/W7YYw0G2Fe9yJ9PXkVqtWLbPGGmvY4bsrr7yyfY7Pw7lnej11dkmATksI/B577GGSAsk5NCznmmvatKkt2Tj55JM9M1mxEP2a/bOh5XoloSdXmITHJY6VR+KYALhwvC6en376yU4WYOc5duxYazWKwoSQjEsmkuBO44YYUtiOAK6++uq2RAHRYxQT99x4nHvakwWNt8XdWnQv6ttvv739mySJDTfcsDpeTwySc+Gcc86p8TqEj7+BX8MAhJPnHQvSL0ySrRRLlA+JY8TJ1tUmG/PmzbMzF+fMmWOee+45xRfzAJcndXmIIH8/LCAscNyeiCBWHy3QaJTgWIBiebCicSUn1eLBA4DVWK9ePdOrVy/zzTff2GxW9yYI4ePaDWJBOjHLTDH1K8US5UdXdYziiUGnj3/yySc2zoNl88orr9jdu/AH0WNxo+Tgww8/tEXfiCGWHwJIGQLWD0Iol3TwPqoIxzbbbGOSCkLYr18/a0liOWJB3nHHHTXmVAaxIF966SWboZorTCIqhxJyIkqhwXmK+bEYyRB85plnTMOGDct8pPEEdyjN1RHEadOm2YWNx9Zbbz2zySab2KQYYoSVhsURVywNGuLqYsUNTSIObnwaeaeB+++/38b2mzVrZuP7Xglv2WKQcPjhh5unnnqqzEcqgiLLMaKQ7ZZvcP7555+3TcO32247mxDAQi/+HxJdsKqxarAQicniEt1oo41s7ecGG2wQW0GKEljeiAPt4tICnaZoPYfVd8ghh9jrj6/zsSCffvppW8LhzjYX4SBxjCDsMP3SwP2C87yeC/Pggw82Dz30kEo1MqwYLEMsahYmMkmJG2IZsnhT8xnH4vSogiOKJuP8bdPWdYmuU7hHKVvBYp4wYUKNZKRcMUhcq2eddZbcqRFA4hgxso3DoQeq10WDC+u4446zTY5pJB6GOzBqCzTZpdQMvvnmmzY5hHghixLzBIklivKAe5oawLQu7rScQyBpOecIJDFJtwXJa/xaP+JS55ZZ5iEqj2KOMYgzZos3Uoh8/PHH25INeqS6kwHS6NJ78sknbbYphfWbbrqp2WKLLUo2DYLLJdPSJCOTXrVA79BiM1fjHnN8+eWXrTV+9tlnp9oix3WPQPK3oOyD5CQ35AbgSvUDV79ayIWHLMeY9Er1SulmtA7CSOIDu1CVFPxvYC3xRGby/fOf/ywqu5SJDJTEcKOsA4Ft06aNfQ5BHDRokP1ZiADxXRazTp06xVLUSgEuaxojkCmdZmEEsnTZKBxwwAE21PHiiy/WsCBJviHG6DdVB68HIRZZkOGgvPQI4RdPZHqGe7oGAX8WahJwJIz/D2UriBM79kKFEevwpptusn9fWu6xeBG3xF0I3DPrj3rI2267zVrsJGSQsciClubNHe7rnXfeOexDiQTUwiKKdE1CIB0PQyYk31x++eW+7zF69GhZjyEhcYwQXo2LsRjdO0dKNLAWiTFy8UgYlxdHrLhsVngusHpIJmGzMm7cOLuA3XDDDdVtwnBd02OT1HusU2KYuNAoDE9K67d8wYWNSxvrebXVVgv7cCID5xBu1e+//95msTKhxMu96gfiqgbk4SBxjBjObDgWZK95jOwiyUolM47km7THGN3w92A8Ep1tiplwQRo+8cSpU6daa5B+mpnvh9vs2WeftZmZJP9gXe60006ptZpwO2Opx2WgcSXhXEEgaT949NFHm19//bWgaR6yICuLTI4Y9UolyE/GKs2Px4wZk/qs1GwZgwjX559/brvbFCqOiCGbFVy0dMzBCjj99NNtev4111xju6GQOONY7hSA05UojdBMARHwSjwRxmy77bY2UYwM1hNPPNF6JDI9Pk5nHM4pvBJkWrtRA/LKIssxJrDrJNGBgnVKN8hoFP7CxvxACv4Lhc5CPXr0sLHHgQMH2ro0LEi6nzhiwASNbt262WG4t99+u128hg0bZl1oaYJmCtyyZVqL/2Wfcq6QiEPTcnehAMJHfgFxbC8Q1GyzIEVpkTjGAOr0iG9xMZH6TWs4kR0WGtxXZJwWAk0CGAyNlUgskcbt7OynT59u3ajEfamZJCEKC54yjg4dOtg6P4QT0lIlxe9LJiadmUR2uI5pWD5ixAhz8cUXe77Gz83KoGU2abIeK4PEscIQNyA+FTR+QHo8cYrMBVnkBhcoyTKOUBWDI3JY7STckKVKRiz34JRufPnll1aQ09S2j360/N5YjUoMC0a7du1sghdNywcPHpw198CrjMMp8RDlReJYQcg4YxGhtilIBhoxLzIkiT/QHq5x48YVO9a4Q3IIlh+bClrIFYKTgIP4IXqvvvqqfV9ia7vuuqv54IMPzI033mjvcXWTWYg7lxR+SEOtH83byU4lziuCw5ir8847z/Ts2dPmD3iBhei34SBBTJQXiWOFwFJ0t4XLlYF2ySWX2EWXOJfiOfmDgNFjlozSfCGx5tZbb7WF3GxMiD0y1grXKSC8V1xxhc3SJDmHhgz0EyVhJy1jrbCoibOyIWC0l8gPMtEZlsw5NWXKFM/X7LHHHr4Wu7JXy0s6ruKI7BS98BtRQ2E5F8+AAQNshqrIHzraYNHQSi7f+B87duKHxIeI9fA1SRT777//ciUjWI6U1ODmojsOma1pgcQjNhGKgRUGmygScNhc0P6RTkxucKt6lcdwvqn+sbwoSFAB2OFNnjw58OtxmXBRMB+OIaqicFhYaCmH1ZdPmQGuVCxC4Q/xXBKR6F0rCgOXNP2RsRBJ7qIhubuJAusHYkhXLDZqbu8TiWLaoJQeWY4VIFu3Fnd3DHaP7CIpJh86dGgq4lblhMHFm222ma0RFaWDuk82HFjPaXEjlwsSxxA9Gk6cccYZnl4ONsuIoBfFdIMS/uisDrFnavv27Zfb8bHgsHtEEKlpUhuu4uFvyQJOSUdaW7uVA+K4tNgjriuKB8sR63DUqFG2rjafdcTvcVEcEscK4FW3hDBmTvxmt0hMi8JydpHqNFI6nIQR7bBLA+cqcVziuWpGUTpIziGGSBar1ygrv97LkE95mAiGYo5lghOVxZhdHSe10x4q87FMaBuFWNJIXGnxpYUifpIXaCmHUKZ1pFSpoDwG1Ee19BDnpjQIocTNSkw3E/c6gocpM5Md8eQ1ong07LgMsJvLLNvIdcK+//77Viw7duzo2zpKFAeZp3wGO+ywgx2AHFXiMOyYJtp0xOEYFRMvPUzuIOeAeDkJOn61jn7D0b2Goov8kVs15HpGJj+ccMIJdhdIWYAoDyzmNH8upt+q+N/5yuJNHFfCWB5oD8lsUESOWlo//MIECh+UBoljifGrW/Q7Ybt3727bb9ElQwk45YVd9qJFi+zwWVF4+Qbt8ZibKcpHkyZNzNVXX22uvfZa89xzz3m+Rgk65UXiWGJ3at++fQOfsMQYyU4bMmSIbUkmygvt9+iPqrKOwqANHy3yaICgzN/yQziGMWj0YqVsJmiCjlyqpUHiWEZ3ql/JBrBAE7OhdRTPi/JDDA93IOO/lixZEvbhxA7cfEyI+eKLL6xFQxcneqsqbaE8UD9KFir3CKTX8O5cw9FF4UgcS0Q2Pz+7P/cOnIGnZKLdcsstFTg64UD/U9zXn332WdiHEjtYfBs1amTatGlju+LQEJ+pEvSgxd0qkSw9G2ywgc1gJwnq+uuv93wNG2+vDbgoDoljicjm53c/R7r2hx9+aHfeNMYWlYPep7vssostYtdiHhzqGknEocyI7Mmtt97a9vylnIPSDrKs6ROKVSlKy0EHHWRrHy+77DK7bojKIHEsEX4DSt0xAHbbiONFF11kF2lRefg8sN6//fbbsA8lNkycONE2UqBO1IFsVVqf4RlBJPGe0N3l3nvvtaUzonSQy7D55pvbMAwTOcoxO1Ysj5oAlBCnQNfJWKVvaqYwsiBzcpPp5zcFXJQfeq02bNiweoK9yF2+QQkME0m8ai8Ryfr161uh/Pzzz83bb79tOz0R38XqWXvttUM57iRBKOCuu+6yf1NyG9hcl7LWWtRE4ljiTjjOzYurrrrKzJgxw07dWHXVVSt+rGL5fqvEcn777Tez+uqrh31IkbcacaXmimnxd6XBAsXriCmzMDnXmzZtavbbbz+FEIoE6xyRo/bx6KOP9i2n8au11vSO/JBbtQjYnVE7d8opp+ScrcZuul+/fnaAMd0vRLjwGRB/VFOA7CxdutQO4t1yyy0DDzTGuqQ0qUWLFrZ0hmHRLM4IpeK8xYEw8lnggfLLuKYVpRcM4hbBkThWoBMOA2E5mWldlssdIioD1iKTEMhaRQCEN/T5ZFpMIRYH9ZA77bSTTdzBU0K5wYgRI+yQZFF4n2Dcq/Rd9SsdYwKN32ep+GNwJI4Fkk/rJlKwqWvkpGbBENFxU+EKnDt3btiHElleffVVW05QzEBj4mV0fNlnn33MtGnTbJvEV155xbNuT+SGTR3Zq1deeaWn5wOLPd8OXqImEscCCdq6ac6cOTY7tWfPnnYXLaIDCSSUJKgXpTdYeLQ2ZGZjKQYaM4YNK5LeobRLHDZsmKzIArn00kvt+dujR48armoGI/OcF36t6ERNJI4FErR10znnnGNjNdQoiehBrJheqz///HPYhxI5mAjBhJBSjlAjsYf3I0kHqwcrElefYpH5wecyaNAg88wzz9j5r24YZeXF5MmT7VBlkRuJYxHkat3EwNJHHnnE3HDDDaZOnTqhHafwZ7vttjPrr7++LesQZrmyI0apMcmkHAON+ZsfeeSRZs0117R1kfQY1gYlP8hY5W+IV+rXX39d7jk26VjpXnTu3Dlr8qD4HxLHIvFr3UQSDi6PAw880I6kEtGEGDBlHXR2CVpcnQbILCUmWM7Uf6xILHdu7777rm2liBtXBIN4Oe37aEpOr1sv16sf2cboif8hcSwTWIsURHPBa+5dtMHNRzYln5f4H6+99ppp0KBBjUn05YAGAocffri1HGlDRyamCAaJUoR3BgwYUCM5x69rl4Ni7dmROJYBknCYxYa7A7eUiDYkiJAspcXi/89fEmUKiTVSFkPph9sKp9kC7/ndd995jruitIY2dLVr17YuVmJpKrEJRp8+fWyy07///e8asVtCP37lY7jOhT8SxzJAazgKzJWEEx/YZbOoK3vS2M42xALzbVZBUTqeEuJgdB9yQBDpDtWxY0ebSUkzDK/5hDQPoNyDIvfHHnvMxiL5TER2iAnT05Ych2effbbG836zYtWlKzsSxxJDT0mmbdDJQkk48YEFGTdi2gchk9jB34AG4/nW5NJUf9KkSXaotGPBYDGSkcqmg84tiCfuU2r0vCAEgbcFkSTuySBwbVhyc+yxx9pa0gsvvLCGxR207Ewsj8QxIEE73OPiIA7QqVOnih2bKB7q+EjMwaIhmSrNRf/8LUiSyQf+bsx1JAkEgXMWaITtzTffNL1797at5Oi72qtXL5sdnM2NTZ3eIYccYhN0EFRGjAl/+JuTLU+89sEHHyyo7Ewsj8SxhD1UcUfRgYKif3XCiR8Uu2Ptp3UhRtCw1tjcrbfeeoG/j80EiTSHHnqotRozLReSRLgWaLbgPM4kFLru0IQ/G4QmSNQha/b222+3PV6FP/vuu6/tjkP/Znc8MVfZmaiJxLFEPVRxIyGaTJpv3bp1hY9SlAKmRvD5Mdg3jUXpuFMZT0V7sqDwd6LrCv0827VrZ4UMy9PJ0F60aJEt2QDnMe7ZhNB8IRfExSiHQqwJV5BFK/yhpIN+wQyeDlp2JryROJaohypdKhBMdmSlaLUlwuu3ioXDdPu0gecDEcL6CwpuT5qJE+siQxUrEsEkkYZ4I8Lo3mhwffA3Dnqd8Do+F0o+aDtHX1bhDcMNEEBiumx0ROFoFc9BkGA2iwIZqsRIuIn4Ql0fE9fT1jFn4cKFthHCLrvsktfmDhc0FiAxdlygLVu2tBboQw89ZNq0aWNjhwgloplZ7/vDDz/YLjlB4Xtxezdq1MiMHTvWtrYT3iCMfJ40CBCFI3HMQZBgNrtZ4iekqIt4wyJMpiSLd5p23liNjEPKx6UKJDExbQbrkXjWyJEj7cbxqKOOsl+z0SDmyMBkhw8//ND89NNPvsN6s3021KPyfhJHfxo2bGi6detmGwOoJV/h/C8YILJCMJsp2rhSufAzhRH3EKJ4xBFHlLRBswjXNbXuuuvazxtrJeng+aB9G+7UfMuPKN4nA9WBmCOuVMZU0VwBlyplBsTAEDWsUgT0gAMOsKUz+cB70TgbsFCFP2zoKYPhlquPKuEgr7Ut7UgcA8JJ43XiPP7443YnzEkokgFJIGQlk3mMpUJxepKhPpEC/lIsjIgfwuhka2Ptde3a1X49dOhQK8T777+/tWwKEUbchcTUNP4tO7izTz31VNscgM45bGK8QDgzEw4RVYwBYcwKVWlMyysR/OlwwbF4Uh8mkgNdXUiuwvW36aabVuznsjDR8eTMM8+smCgz+ghrr3v37iaKSBgLg3gwJTTUiXptRrAYvepZKfXYSxakYo7Fxmk4kSj8F8mCZBGEMen9VufNm2cL+ClhiSISxsKhXpWkKGKPXhNngmbipxWJYxEQa6TNFr0kRfJg90xSDsk5SeXFF1+0ccYoxlYljMVDic3s2bNt0qAbtZXLjsSxQN5++23b5JeTTyOpkgkuKWI3SS3roIvK9OnT7cBnMlWjhISxNNA8nmRBQgTunqtqK5cdiWOB4KrYbLPNrNtCJBNifpQq0BAgieN9aBKOCOXbR7XcSBhLCyOrpk2bZhPM3KitnD8SxwIajH/11Ve2EJl5jU5rLJFMcDeSfUlLuaTBOU6yEQ3Bo4KEsTw9V6lfvfnmmz2fV1s5bySOBTQYpwkyqdGkSovkwgLNQk3M5vnnn0/U8F0aglOIn2/RfzmRMJYPMpEZIJ3UEEE5kDjm2WCcNliII8LIQFiRPBiz9MADD9gmzk888YRtKUdWZ5KmddBhpm7dunl3qSkXEsbycvzxx9u+uUxPEcGQOOaZ1jxu3Djz7bffmrPOOqtCRyYqBa22/vvf/9o4DNMfSIU/5phjbCs0XKvMJUzK78nkBpI1otDgQMJYfjh/Tz/9dNvqb/HixWEfTiyQOOaZ1ozVSOurfCYXiGjD9AjGLpGMMGHCBBuHO/roo222KjFlur5QB8hGCVdk3GGqBV2AohBjkjBWji5dutgRYnhFRG4kjnmkNdNcnMJ/2mGJ+EMfUDI2sRQfffRRW/jPsNhtt922hkXVtGlT22ItW6JWHCBuytDgLbfc0g4TDhMJY2VhogllHbTxE7lRquUyWPSIv9AgmV21VxPeYcOG2QVUTY/jDzHERx55xNb50QCbRg5+/Sehdu3a1s06depUc/DBB0fCHVkI77//vo2bMx8xTCSM4cDGnlABddpR7YoUFWQ5urJUO3fubGuC3MKI1XDvvffa10StYFrkZy3iOqWfKHE3LEI++2zC6IA7ncWc8yOu0AN4ww03tEIfFhLG8GATSGOLUaNGhX0okSf14hg0S5VuOGQxcjGLeEIiFS4lkqrq1atnXUz5DNxlNuHaa68d28Qcmql/+eWXeQ80LiUSxnAhhn7SSSfZuCMbfuFP6sUxaJbq6NGjrduVXqoiXrAgv/XWW3Z8D9biQQcdVHCmJh6Fzz//3Lpl49hH9R//+Edoc0cljNGgbdu2dqNE7a7wJ/XiGCRLlQyv8ePH25NKfVTj50Zl5iYucRJQcCsxyLhQGFHGORC3xBza333wwQe2jyojsSqNhDE6sDEk6YxrQviTenEMkqWKMJLuf/LJJ4dwhKJQqOeirovOIIgCscViE2lI1uK9iDv+/vvvJi7gCiZTNYw+qhLGaMHmjo0+6xpTZ4Q3qRfHIM132WGRuLHJJpuEdowiP+bPn2+7gbz33ntmv/32K3gMDws6jcczhZDEHBaVd955x8QFzmvO3/r161f05yLIbFBIBGrVqpWEMSKw0f/111+tQApvVMqxDCxFr6JoBsHim1dtUHyYOXOmjREjaIceeqgtw3CDuJGgQ1E/9V+0UnNgMCyfNzE6PAYbbLCBbUDeqVMn+14k83AjHR5LLKzklqDQG5ZkMkS90sI4YsQIG6Nlgg1xX8SRuKcIF855GpKz8W/Xrl3YhxNJon1VR4AHH3zQZngdd9xxYR+KCACW4vDhw6371E8Ysfguu+wy6z7v3bu3jcVlct9991k3IK/h8+/Ro4d58sknlxv506RJE5uUw8IfdWhcQby1klZbpjDSfq9169Y2GQorkg2HCB9Ekc5QbBJFTSSOOaDXJkXfmZaFiCaIHuPGKLfYf//9zSqrrOL5Oiw9plFQskPNKkXx7vgc4kfSAuJKsTQt5X744QdrVTpJDcQfo56Yg4VM5jXC6Pf3KLcw4pFBnLFcmQpBGQGJUiJcjj32WBsPZuMnaiJxzBFvYtfNBS6iDQLHoksxPxml2VydCBu1Xgger8flmDmOivgkLkDGOhGXIV4GuKGc+Z3cUy/IYk82c1TBAsaKrlQijpcwOrDB5LOhfd3TTz9dkeMR/tAMgvOC1onFzrhNIhLHLHABs8OVOEYfrCKsIyeBJheOBYiViUWYKY5MXKHk48ILL7QNyHGvksjidtGSpIUoR3XR4HdC5OmGs84664QqjA4MVqZWGHceIinChc+JbG6/zOsLAs64TSISxyw89thjNhGD3psi2mApnnDCCWbvvfe246a++uqrrK936lWZcbdgwYLl3HxYkmR3ErPEGiVp4ccffzSDBw82X3zxRfXrEFYSG+i3GsVByDTKx61aiT6qQYTRgWkniORDDz0Ui5htkmHzh3eE5LNCu4clFYmjD7RWwhcvqzE+4OrMRyCBTFQsx8xWWgw4Riw7dOhgxZNelGeccYYtpCdDFRwxxHpEXGlgHjUmTpxo2+MhRlERRgdivrh7cddh7YtwIK5OJrGXa/XjgN3DkorEMcvMO9L82VmJ5AokFgxWoeNmdXAXR9Nui8fq1KmznOVJfJLHcF9GCQQfKxfPRzlLTQoRRkAYSZpiY4Flrj6f4cB5zOeGl4zknEJm3CYViaMPnCzEmUi6EMkTSEfcsArppJO5OJOdimuVXqwk5fAe7KyxIrF4Mr8f4cFtOWvWLPs9UYFEMqa/l7OPaqHC6MDxYXmT1ERjfxEOGABcI++++27e3cOSjJoA+IBLtXnz5uqlGnOBBMQNoczsDoPFQrMA5hvy/379+lmho9yAgceXXnqpGTNmjE3K4XEsMLqKeA0IpuyDmA1xSr43bLCCiYPS5s6rzjMKwpiZwcpxMkYM92+Yo7TSCh2k1lxzTbvmcZ67u4e1atXKulK9ZtwmGYmjB2Q7cjJcddVVYR+KKJNAUvhPm8CNN97YHHjggdaKwcW65ZZb2uexuPAauHux4npyb5goB9lmm22s0B522GEVqyf0g7golnC5FrJSCaMDf7u5c+faBJ2ePXsGmq0pSgfnKy7ul156yVxyySW+3cPeWFbSkRaRTJ048gHn2gXhkgJcPiKZAsnYKm7Z8GpS7udJwOK89dZbrWuqEtmhuWobybBu2LBh5IXR+ZtS/0jpFLeWLVuW5FhFcDh/8ZZQmuQ1zP2CCy5YLnMVdytWZZJJVcwxaM0OO6jGjRvbIlmRzizWfMECJTPUyWYNC343mq4TN620MJLhy+JKezivBBtiu/QqJj7L0OVM6Le6ww472EQ42syJyosjn5tXYtkbKS3pSI045vMBI46VbtIsKiuQmfWKpQLrB/ege+GvJMQ+yZ51x47KKYyIIlbzaaedZq0+Np8DBgxYbhNCLR09a3HbnX766aZbt2728cwMSVzauLfHjRtny2ZE5aBrFHFH1j43H6e0pCM14hj0A3bijcShRPIEkn6SdANhof/www9L+v5ksvIzSMwJA34vCv+xwEoZ9wziSuU5akEZ+3b11VdbC5HOQpmuUzwxzHPs2LGjFUE3vAaPDu8V1t8wrTilNV7iuFVKSzpSI45BP2Dn5FC8MXng6qPjDQ3DyTolAaSUAokwIkw0BMBSCiPW6AhMJYWRhRVLkZ9LuQtZp2effba1zh0rmiQbSga4rmi84G727oD1wtxJslfD+BumGbxlnEPuz2avlJZ0pEYcg37AiCNdI7iARXLAfffwww/bhBkWAfqn0m+01ALpxG6Y7FFpCBHQ7aRU524xyTc0TWCzQIs9r2xfd8F5JvRepYkB8UcRjbhj/xwD4ZNIasQx6AfMzonpCyJZ0Ept0qRJ1vWJeGA94gYstUBiOWH5IMKV7LdKIf3PP/9c3aQgTGGk49DIkSNt/Rzxz0whRBgRTaeXrVf2Ly7XzTff3G5UeS9RubgjdbGsgV5wDuAWT7rFmEpxzPUBk01HzKacXUVE5eEzZS4nC25meUO5BBJRYIBsJRMWKD/i98DrEaYwYnlcf/311tXqeGrcAshzjmD6WZA0BvBriC3KA58LAhl2xnVUSJ04ZoMibhaGcqTBi3AgMWT06NE2xshIKzflEEgW9jXWWKNi/VaxrmbPnu3ZtKCSwkiGKbHHefPmmRtuuKF69qUbRxy9Gio4kFBEcwCsGE2qrxysfRLH/yFxzICTgsVy++23D/tQRAlgsUYYSTCgzMJvIS61QNJuDu8DfVmJnVXCZczvUGzzgWKEkWQnBJEaRkZ7ZetyEzSTlmQ5WuE9//zzgY9DFC+OfIY/yp0tcXSLI9mGLDQi/jDEFYuKGHKuBbnUAolrlYW93Ik5CBrxTTJEyfQMq/PNjTfeaOP45557rl1Y58yZY//2mdNNKO5nyDEWNWJKPeMjjzziW3OKhUkzDn6/SmwyxP/EEd555x2TdiSOLnGUSzUZfPrppzZehRfAq1l4uQWSxAaK2t97772yjmNCOLCMi7EaS9ESjo0I8cZzzjnH1jF27tzZnHnmmdWbA1youEiHDBliE6PIqkUcx48fn7VjEa/j9wsj+zeNsMmiW9Hbcq2mr7eqH1zY1Kd179497EMRRcJiysJL1mO+g34RSDq4DBs2zAqkE0MsBGr6eJ9p06aVbfQZQkPDdEQkzF6pL7zwQtbncWm3a9fO3vKBuCVjxehqRC9ceXXKi5Jy/h9Zjstgh096uSzH+IPFiKuOVnGZcUY2QDxO4pXbTceIJ6awtG7d2o4qY7pGsRYkgsV7lCsxh2QjOjpxzhYy0LgcTcRLBceGa5Y5j7Tkw5opNtlIBENJOf9D4rgMFkAW0kKtBBENED3EkWQOauwyP98rrrjCnHfeeXYskttNh9Dwesp8OA9I5imFi5WuMSzyiFipoQ4Q0ShkQxdVYaR8g40Kw6XZsDZq1Mh06dLF9OrVS+JYIWjCMGvWLLuZ9MMZX5Xk5uMSx2VQk0YNnFfPRxEfcO/RY9Rd74dlRSkHjR8QQVyvmTV2DCzGnXrEEUfYTMuFCxeWJAaJOCK2pe4VinhzPGzm8j1noyaMfA5sTqjVfOKJJ8z3339vDj74YFsniTCyWPuVhYjSQyiiqqrKCmQx043ijs64ZTgzHkV8ob6O2BTC6F5MyXrkBogjCzAi4VgjmVYmyTQLFiyw/3cEcujQoQXFIJ3SIITsyCOPLNnmC7Hl+HEdx1UYEXgWYJKnyOzddNNNzeGHH243MdqkhoezDn788cc1ytr8phu1atUq9E1WqZE4LoMTIdfwWxFtKBMAskS9YAF2+n1iGWaKIzhF6ZREOOJYCoFkwguuQuI4WKilEkc8HfXq1YudMOL6pt0drmaaJZBpyw0Xql8tqqgczCVda621PDs8ZZtuJHFMICTisINlARTxhEQbyhqwOvySU5yFl/6niCNimVn/6DyPGzVTHIsVSEY1kXE5ZcoUa+kVkjyTCfWCCEyzZs1iI4xcY8ReWURp08jfg+Qn5k4WU58pSg/XwVZbbWWbWKR5fJVijsbYsTrEoJL4AacFShq4qDN7p2bbGVOojjh6se6669YQRygmBkkjgvnz55dkyj2xubp16wbu5BSmMNIEAIuZ3rb8vYhnMeiYeCJTICSM0WSrrbbytBK9phsBpVNJQ+KY4SqQOMaTn376yXb0COqWw5Lje/yK8x3x9GqKXahAUjvG9xZbzI7YsKPHQg7Shi0MYeRnIohjx441Tz/9tJ0WQqLThRdeaBsEEBNW5mk8xRGIL7oh7pi0zFW5VZeJIwsXo4ZE/KhVq5a1QBAN5ghyYdevX7+G+9IRTormKRlwxNGJNZLlyuN8TbNrFnZeg/uUiR7FuFg5FkoucK0iFoVaTMw4JG4apCNOpYWR34vyEqdrD78jpTO00lPxfrzYaqut7DXAJtE9kzMtcUeJozE2FoIwajcbT8hsxCrBiiNRBSuSG0X4W2yxRXUTbFylJIJQP8dFTz9QhIam5BT+jxkzxowaNcoKJYkiiB8JL8x/zBTHQgVy//33ty3UsB4POeSQvH9PxA5xJeEIyzUqwsjfFFcvvVT5u+A6pfE6nYFwXUsY40ejRo2qY/lucUxL3FHiuKwEIJ+sPxE9cDHiuuRGr0660iBCLNyIG+OPEM9+/frZz5qsUSxOXKiOx+Doo482LVq0sPG8IEkz+QokGYCUK2BZkcGa72aM48eyzTXQuBLCiJVNnJe/MRYjYk1tIhatYxWzAeF5EoeKTUISlaXesvWQtZE6U6+4Y2ZJB7WOSbIaQeJojE0plzgmB1yq3GgBRwkF1hoLOWJ28803W4vSK16HKOZLvgJJv9W77rrL9vFlAky+LlWEPtsOvdzCyMaDRgszZ860FjZij9XN7+wWe5579dVXbcJbkEQpER022mgje+/X2al///429ujUhydNGEHiuGx35DUIV8Qb3KmUTtDFgyxREgaw2nD3NWjQwLr/3C6jQshHIJ3RUli2+YgjTQtwcVEk72eFlUsYcY2SYMMmg4xbGibw3vxdEWs/KJkBrHeJY7yoVauWzdpmbUwrEke5VRMPFg4xQ25YOc5CP2HCBLvQs/PdeOONi4o55yOQCAvWFwkP2cQlExJdEHu/RJxyCCO1lPxcZ+wWG4qWLVta1zWLZ5C/O78fm5FDDz206OMRlaVevXq+4ogbNdOtipsVazJJpF4cieGQ1i9xTAfE/eiERHLMjBkzbAIPUzqwKHEDkuxCM+9yCiQJQAgzP5s4ZxDL7YMPPrB1jSQKlVMYeS9cvrhwsVQRQUoveE8nSSMf2HTg2sbydSxJEW9xfCMlLeRSL47Ohy9xTBdkqeLW5IarEDcnFz19PlnEcX8Sd8m3nVkQgSS7FsFB8IiL5rLCODYEEjdmuYSR+kmsaX4W/ydRCWuPOZTO8fGzMl26ixYtsqLHPVYtsVy39U0nHJJyiE1JHONFvXr1PLvkPPXUU56v53GJYwLFkYtYpBOaApClSlYlLkSalyOULPS4YikHyaccIYhA0h2G5CAsVi/RywTRwqWJFVZqYaT8gjIMxIvfl98V1y0WNKO/Lr74YrtA0ox9wIAB1SUttIAbP368mThxom29iHv63nvvXa6Bu7MJIcaKFYrFLOIDayKfb1pJvTg6Q28JPot0g4WEMFAqQe0rFg/xSUoocGeS0u4WqEIFkmxaRJn3zyaOZHrS2MDdlaQYYWQaBr8bbl0sP1zNtLfjPZzrgPenGQL1mGwahg8fvpzViEXN79CpUyc7buq+++7zTRTiPUmIcpotiHiw7rrr1hgKDnQ76tu3r+fjSSL14ohLCNw7XpFeWMCJr3HjgmfhxypyLDg63eBuzNW+LZdAYknRcxSB84vnkRCD5cXPK1YYEVmsQdy5vAf1nViwXq3oEDoniQZXs3v+JZsFZ4oNZTLUPXq12wPcqcR1udbUSzU+1KlTx7rY3ZsarzpHp79qktyqqa/M5cNnIXC6qAiRibNpIoEH1ysJXCwCuBgff/xxKzjZyNaLFZFFlPx6UvKzqCfEYnXEK19h5PUkxNxyyy3mhhtusO9HtumZZ55punbtajvZ+Im8I3a4W3kfbl7Pc/3wHJM3vOB3x1oltiviQ+3ate3n+ttvv6Wyv6osx0WL7Ekgd4/wwmk5h0Bh3VE3iasTi47YJK5J4nBkkpLE4syJJKGH8yqbBUk8DqEizskmzXm9A5Yq56Xjds1HGDmviRfRbg6rDxcuw5YRQ6+MVy+ca4LjRwjd4pf5vJd4Oji/F+LoN2tTRHdj+Msvv9Q4Z9KQlCNxXLRILlWRNWEFcSG+5kDcsX379tayQ8Aee+wx8/DDD9uMUhYRXIcIJoKIYGYTSDrmEP/jljlsG6FhF8774JYMKoy4QHGdEuPjZyJGxFFJtCm0hRsi7iWOmc9nE0enVy0bBxEf6ixbF1kjg9bjJonUi6PXjl0IB6xE6h69XI8s+CSsIJxYl2Rk0m4LEaFOEJHEfel8r59AEvvD9Un8z4HsUc5NkoNyCSMuS+J+iCk1u7TBo3crryPZplic4/cTx1yWo/Me9GAV8aH2snWR8zCNSTmpF0dZjiIblCnkymRu3LixvQHWEe5Mp8EAVhOuTOKLZMN6CSTxTBJ+iAc6IK78XBqm+wkjZUhYiRTtY9nRxIDFCRdvKSfMOGUsfuLH87nCEmwkaEQu4mk5uklD8/HAfhYuZv5YmdPT2VGwI8zc8QLxGC4WFpaoI8tR+EHLNFq8BW1ITnIO1iOLCWLZpk0bK1qPPvqoTeChLpCyB3eSDq/hHHQGIZP5iRiSRUqT8kxh5PrjdYMGDTKDBw+27lPEt0ePHqZz5872e0oljNQyIvLcgCxX4qy4boHflWzb5557zh7X/fffb48XK9hLHLFqRTIsRy/8spXDoEOHDlaD3Dd6E5fccsRNwx+JAL+TIMDuli4iuHO4oOn8AexmcRW5Z+BFEeJJznELkQk1gLgsgzQnx+XILEh6pmIhkpBDvI+sPiw8NoxcO3SgIbEHd2mXLl3MsGHDzNixY23BNaKDcPJz+ZkU3+OmRRjp/4q40jQA0eb1xxxzjNl1110D9TktBEQR64CYIhvjBx54wC4wWKfEMHElI4hcP4gyr0eYM+OzDmSD83dwd9kR0WW1Zesia3scW8ghhCNHjlzusXyulcDiyMVOOyEuckcc+T8XKAsCLiTHguRxxDQOcLFqyLHwAksHiyiI251z6OyzzzY9e/a034enhQ44tIdDGLhmWrdubRN4WFgQGixH2siRKo8Vxj3Ch+WJSDIeivZ2DG5GGLmwsUhZfHChlhssUq5tP2gOwC3oQsvfkoU2aLasCJcVl21ivNzpcchW5XpxRm+VPeaI4GEVMnUd+D87S3bN/B9x5ALn4qdzRhzQTlb4gVDhKsJyCgIhBq4FLkq8LLhDR48eba08xA2Li6kWZKgScqBtG4k0CCsuTK4dzkeyYEkC4mdT5kHsERHC2oxrfNy5xvySekS8xDEN5C2O7IzZAXIh4+LhQmcRYacMxCRwVRZqOfLelfRd8/NYnPgdhMiEc5zFnIG9mQknxBZxt/ptsngOlyNfYzFSisG1gguVukmn4QTWFO5J4oZ8DxYjN4TSyZDFgsTS4v24xRV+P64xSl4yLUc8UljPInr8vWwj43x2mRA282qcwuPFrqWsx6UwWGjS4c4nueiii+yt5OKIZciFS9yErDziINRxIZAdO3a0LhNcqnTn549UCLiQKjlgk4QLPognn3yyYj9TxEccWcgz+0tyjiN0CJfjjkcY6cVK2YTTUYRNF3FDMjQpYWAh4XuJy2UuKmwEsRR5PyxU/o8QsyDxel4bNCEi6vA74mFyNhqOhXzssceGfWjCg9+WdcbhfHePccObQbzZi2LXUjwkpRgEgYE2ZMiQ5R4jlBGUvMSRXS69JTnBEUdEEfhFKIwmnsJzmcXM+UKCQSUtxzvuuMPe0z1ECDfECTMhnnj11Vfb0gznAkYQ+/XrZ12liCIJKcxpxI3qlDmwiyXhhtowBA9hoJYR1yubM3bbfM3/EUXcp9RJOrt34jgU8+czHSTq0HSda13XXjT5aVl2Mee6+zMiuezggw+u8T3MKSVWXQylygFB0NGsitU5osZYh4jjeeedV/04tVoEY0kz79atW+EHFDC+Uyr4eSxouZpICwG4aZxzxrmIub/ssst8v4fsU3bZbdu2tW5TFhYeo0SE5t5YpsTpEUIE0XGlIqq0rcNyfPbZZ23JBAk6eHBoB5cEuO507UWTlZad35yPXo3pvXqu8nhSPs+CxPGss86yO13HcgT+3717d+sOikumambTZCGCQJwQUcunoJ16RLLmsJIQQTJN2YkjdAgeYokQstjgmuWcRIB5HbWFxx13nG16TkY4jctxc2G1MmaK3qxRTShD7LNZAawVcU0wSgNLl62LXucXXg4veDwq2arkvlBXnAnXVdCh2wWJIxcxnTsyd6+II7tip+QjLrArUucOkQ8IEz1Xs4EQ4l0hUQ1Bo+QJ7wouJ6cMg56siCM1gtzTv5JNJ4JBnJIQBpmv1EEikNSQIaqIKS5JHqfBAG4vrr9KjIPC5UtSEdcM13/mQkPZxzPPPFPtXibUcsIJJ9hm7V4iyToSpIZUhCcu4OXKJ9/EC7/Hw+Dpp5+uoUXoU2YnqpKKIwXMXjHBhg0bRqpDQlBYiMgWFCIoTi9Ur+G9WEsk51DAT1s3SjEIP+BVcawkvi9TGHFDzZ071xb7U96BdUqiGxYipVLMk0QIASHEYmQWJOctYQzEkng/oovLtVwLFKJHUTX3TNjgd6I0xfkbsDkmZ4DOQCQ+8Lvgbh44cKD9Pd2wEdB8x+iSbdZt1NvH0amJWzGkvrcqMaSkZAOKyokjLiesO6exN+eQ03wc1w3dceiXSlYf5xjt4rAgScYhyQcBRTBIGKCFHJYVViWC4mTsOeUbxCqpl8wUSFxdfC83jgN3LYKNeCE4LFIIaKm7P9GE4LTTTrMLIVZkZhMNvEr8PKcROVnrWJJsErzEEctErRujyy/L1kW/z6h///7Wm4ErlQ1ZVISxVKReHNkVeTXWFcIPvCS4A7HccIUiYCTVIIS0rELYyJRjIgcxQbrhMH3jlFNOsYLA92FhIWxkrSIevC4zGQ33D+9Ni0Zik14C6YAY0iSALPFp06ZZSxIXJ5mD1BBiTXq1dMsX2kE6LSH5/UkqyvQWZVqBiDclX46Iu8HCDtp9SETPcnRAEJMmig4SR4mjyBMsI8SJmAaWIoJBTBERy4zPYD0hHrhMEVDig5RuEDd0BAO3KLE3d/N+XJW77LKLtbwQXtyU2QQSsOCw0LhRv0sCDwk9tLEjPoglyfcUkxGOoPH9iCOp/oicM++RY0Ywb7rppurGCWwIyLh1w++McMpyjC6Llq2Laf2MUi+OjlvVK34khB9YaQgEwkjijNe5g5DQjQO3KS5IzjHcjsTacLvyPcQVcdN6FSdT14ibldIp3FfEJnMJpANWJ7WW9HblZ5DAwwQNCrSxUhHjoNNGMnF+T6xkBNjdDg7rkUHQJ510knUdEy8leYe+s5kgrPw+QTMHRXhu1To+liOu/KS6VCH14sgHzwXudCMRIgiIgNvac4MlR6Ym2a0k6GDRYQVeeumlNnMVcUJgTj75ZM/vp9aRGB9JPQgdFlo+Aglku9LCjhtWKwsa74fFiihzHPyMfMtBSBjid3JahTmiieWM8LMR4H35+SRGIM4cp7MJ5e+A67kQgRaVsxxXWGEFz0bxxJwzk3FIziEGmSQSL465djeZAz0ljqLUIJBkd+IixZXq9GtFRBAoBIJ4pB+csyTaZI6Ky1cgMzPNuWER8LOxKEka4hiwUps0aVKjTVg2ceR9HHF0e16cRB1EN3MsnPMaxNHP4hbRYNGiRdaz5v6M4jCuqhREs3q4RLC7YUEh7sE9X7tx6qwy+2cKUSyZ5RrEIil4f+KJJ2ybueOPP97WX9FOjgzVbFYbyT+ICKUamTgCSeIOAollFhQWPNzC55xzjnWB8v4TJ04011xzTfVwZT+cYyWG6fSQBRZQrGCSgBBNnkPQ6QxEvaN7A4BbtdD+y6Iy/PDDD551qNkaACSJxFqOQXc3TpEozc5pbCBEsbjrGBES6v0onnc64dBqEWGhZjEXWIWPPPKI+fLLL63QOBRqQWYKHdms3Dg2x+VK4wJigWwo3f1cWTBZBMmKxbK45ZZb7HHgPsY6RgyZPkJ5CQsr1ihT2TMhhIE1iSiL6DJv3jzPhi5xaABQChIrjkHbG2WKoxClFkYnK/X666+3bkYspgEDBthMV4QjSCYgZR9YZCTmYOllUqxAOpBgQxYtJSEIJJYoAk5P1+23397WMOJKRRRpvI7gI5yIPfFXvp/bxRdfbI+JcIVTA+oGC5NYpMQx2sybN89zOkbUGwCUisSKY9DdDRcxC5TEUZRLGAFhJNaIYOBiJN4XVBwQGwQKyw6ry13YX6xAItjERb/66isbd6cVHe5eSlD4mTQvYJQcx4ulS3mJnyvYaY2XDSxg3kvJONFm3rx5tvwnCHHsjpbamKOzu8nEb3eD9ShxFOUSRicu5wgkBfq8HldkUHBxYqVNmjTJ8/lCY5AII3WJt956q7UUx48fby1D5rYiYHTzOffcc61Vye/x4IMP2ueJnxbSWYrfG8sRsRfxdKu+4ROy4vEkkVjLMZ/2RrgOvv7664ofn0i+MBJfHDFihC1rIF6HW5K+pIyqyuxak6vOlrpF2rFR2E8yjddrC7EgGQZLAg7lJWSyYtX16tXLNiyg2TnvSSo/JR9YjSQRkenKQkihP8eEyzXo3DyaBAAiLqLLkiVL7CbGy60ah4kcpSDR4hi0vZEsR1EOYQSSWUh2oYUc/8cdyfgq3FUMQKbDDvE7LDS3a4rv47zkhosTS40bUwUQWy/yFUjcuyeeeKIVRjJqSfhB7Gg+gHs1c3Hk2NlkcqOw30ngGT58uE3gOfbYY+37ZBtThfjS8CAzsUhEj/nz59t7JeSkHE4AFgkh8gVXpJ8wugch46rs3LmznTFHUg6JLAijIxSONYhI0vIN642MT2LiJMOQDUqWJ/1W/cQxX4Ek7ke8EWF0slIRYqwAxNnLcgCOi+47hxxySLXIYxUjlpSfsFB6dVZB6HEnR3UGpfgf85YZC17iqIScFMHixMVN4bIuWpEPTk0g1mAu2IAhgLgUKZfww8kARWDcr3v++edt5iqWW7ZZiEEFEvcuz/Nz+HmIIiLOeyPi1Ghmg2uGWGTXrl3t+1Pb+Nprr9mkHYSX3xWB5brCrYy4Uzoios2cOXPsvZ+FT7jKaZpyxBFHJE4YQeK4zB1AbIhsPbl7RD7QQxS3ItYjbkivHqmOiJAkw/PUANIQnGQYrDWmeLhjiJRF4EKlOw5WHc9T0kH5BJYjRfu0lMtGEIFkkUMIqaMkIxULmPgiAsw1kQtcvE6HHceadKaDIJL8ztyITSLobCJoLyeizccff2w3N5yHuVrHcZ5IHBPaRs7xlfO8xFHkAwsIVtOoUaNsFipWES5Pt9gxpoo4Dq5RhPS6666zZR2MrMIde9ZZZy1X2sCiRGYrSWW8jhIOzlN+FtYYQtaiRYucno4gAomYcXNAuHltrmsBK5BrBssh04rlZ/J70uCcRDcSeBhfhdgzvSRbTFJEg4+XrZVpbR2XGnHM1SSXJAKaOnNCHHzwwSEdpYgrxNYYZozoccMDwUKROd+QRYXCd84vBBSBwy2FyHFuIkannnpq9euJ2/Xo0cNaWcQcsb5oJICA0vAcyww3bZB6xlwCiWWKYHH77rvv7Ouw8BC4bFm0iCiiiKXpBd9HRm7Lli2tRUkyjjMPUkQbRxy9Hvd7vcQxZgTZ6bB44PZJWm9AUTnYXGFBIWa4KOksg0WIEGL1cW5RWO80/3ZcrXTJOeqoo6zYZZYTEadzLDdeRxkF1idWGEkwiBc1j0GL/f0EEsuVkgzigQghx8FjWLLgJ4zEJYm3kmUbpMsP5SAq34gPH3/8sa1tdcNGygu/x+NM4rNPgjbJdZIRhCgGBJHZhZQ14EalzIM5iiwexCQzcUo3EDrikH4LjPM6MgedSRgIG2JK0kxQvBoFYM06zQWooUSUsVhzCRmJN84AZZEsyFJesGCBp+WY2Wc3yONxJvGWY9CaHL5mIROiWFgosO7wTJCUMmjQINvU3nGzEkt03JiIHQk2iJT7nMx8nWPh8X+EC4Ekxkm/VeoUg+JlQdJPlVtQcI9iaZ522mn2uEWyYE6n39qZJssx8eIYtCaHEwG3VWa9lxDFxiKJHRJnc6xGMvuYWkGJBNmquDGxGjt27Fgj2eXOO++02aMIKPE9as+YcOEIptOjNd9ztpherBwXViOvz1XmIeKJ40HbwqNul5CBF0lcMxMvjkHbyBEbYqdOavqOO+4YynGKZMa8Sbyhg4yziOBupUSDBuJYlGRwus85Ypi8buTIkVbMsBadWkIHiulxjeIO9UuKKbVA8vuQFITbWIOKk8n7779vN3XuWDKfPT1109AdJzXiGKSNHGnnXOwsNhJHUQpwPdIxJrObDRbftddem/N7eR3Dh7NBDJJFrBBxLEQgP/roo2p3amYmrkgWrIG7eZwHfjkZzZs3T1ymaioScvJxgbH7IbVeiFKA+xGXp5OdWg5oIIBg0QKuEIJO8yDxB4uCWKrcqcmFzGjWwN08xNHPOqRpfRKROGbACRF01I8Q2SBhhmScTTbZxLpIywWjn3Bz0jGnUEj2oduOn0AS83TKRihXEcmFvAti4Lt5iGM+YwCTQGrcqkHghCDgTK/Ici5oIvkwIJiCenqXlhMsP5J2EEdELDNOxNeMHSLxB+vV6cCDNfvwww+bF1980Wae4iIl+YK4PGS6WBF5MmJx35IVq+42ycbZGO26666p7anqIAXIgMWAbEKScjSMVRQDxfoIF0k35YaYJpYdJSGOZYdr7N5777XiR83aFVdcUR2XRPAoC6H5AF1wcKWRGcsQYxKAGHiMQJKgRj9UeqeecsoptpBfJF8caT6x/vrrp7anqoPcqhmwUIBcq6JYsLTwPjB2CtFiDFSpasFoCrBo0SKbIPP000/bvqUU7ztdboCeq8QjWcyoRaQEwwGRY4wWHVAaNGhgXb/nnnuudadRLuLEIMeNG2etThJwGLYs0puM84ZPpzEeTyqyHDNwxgRxgmT2uRQiX+gl+q9//ctmqyJeWHIIFMLEZA5u9CXllq2QHrHDPYoFxw0rkHusOtxbeDhwgVEictttt9nyDzrukH3NDXjd999/Xz2SjaxsuttkgnhzbDzvJOlgQfJ1Egu8hX8yTu/evVPdU9VB4uiCBQ2XkxDFwjQNXJn77befteqYGcqNzFISHxBLXJxOUb8jRPQtxeJExIh/c49g4d7EyqPPKve4v5z4DyJKXBFr0pkt6cTOEWB+vte8Uuex++67z3pOaBQO/DziSy+//LIZMWKE6dSpk2dRuEgO06dPtxsv1sBCO40lCYmjCyYe3HPPPWbhwoXLjRASolAQN0ZQcXNc9wgXViBJO7gu+ZobluCnn35qO+oQr8QipIEAMSA8G36F9zxOUwDOXbJPsQKd1/L9iCPWZmaimdOe7oEHHrBNxEnJJ6HHmcTBcxyHBDIdkHjFpsirX+5eATuNJYkVqpwghbDMnj3bTuigWXSuYbJClBosySeffNLGA1mo8oHpHyTVIIa4VB3xY9QVblOec7JZnedI5Bk8eLDtvsM4La9MbV6LQPKcBDK5HHfccdYtT4y8kLm4SUMJOS5wTeGyYhclRJzA0mTBYoOHoDngZsVdhrhlCiPuXeKUdDhx5ph6lTA5FiTPYUEW2nBARBfc62yA8JxlY6+99jLt27dPvDCCxNEF7qQDDzzQ1oAJETfIUEXMsBQdtyqZrMQxsUrBGWqMxchmkPIPGpiT+UrvTBKA3PA9zKPEFUxfWJG8eCNJW7nEMU0o5ugBJ8jdd99t4zRkFQoRF7ASaWaO64u4IzW7tH1D1Pr162cFEyuRxBsmggC9WXG3ktxDCQexSzeUjjAiC5fqQQcdFMJvJioRb/T67NOKxNFHHAnF4ntnYoIQcYJsQwSR+NBNN91ks1rxhuB2RTwROOow77//fpt0lmvcEH1VJ0+ebK1Mah7JwhXJE0dcpX6NHt5IUazRQeLoAYsAiwc7ZYmjiBuMX6OOEdF79tlnfV/nrnX0gtIQZklSGH7CCSeoS04CIQaNOJ5xxhmez1/g6oxD1ipjAJOOYo4+HH744Tb+omReETdInME9Rus4J85YyIKJu3XGjBk2Jqn2ccludYjb3aup/Bsp7IzjIHH0gTIOsvJYHISIGyTPEEOk2UC+kJAzYcIEW+tLZiLZrGo4nlxoOEH5j1fx/8dZOuMkHYmjDyQdsFN+7LHHwj4UIfKGrjhM66ChQFDvB6/j9WStElc888wzsw4/FsmANc5vA7RVCjvjOEgcfSB5gXFD7KqEiCMkTtCOjrKNINYiMXYyWEneOfvss23cXSQbvGOMV/NreLJXymY4ZqKEnCxwwpCdx+LiNcJFiChDViqZqpRz+E3VILbI89yoh6ThOKUgIj1WI4lb2eaO9u/f3/bZVbaqqAZXA5CY06FDh7APR4i8cPqtUrLB7D2nSbnTEYV4JJYiU0FYHJs1a1aR+ZMiWuJICClzSLYXe+21V2pE0UFu1Syw2yZIrbijiCs0OqdhObFEJ67IZBD6t9IVhfP7vPPOs4OPJYzpgoQrWsaph7Q3shxzQJ3jlVdeadtvMTJIiDhBUhmZqxMnTrTih2uM8g6SdbAWnRFVIn08/vjj1q3OxkjURJZjDih8ZgQQUzqEiCN77rmnrX0krogokmxDmEDCmG5Gjx5tZ402aNAg7EOJJBpZFQBOoDp16lhXlBBRHVnlB5f4V199ZWOOzJQUgpaAbI6GDBliunTpUuP5N1LYLs6NLMcAkMFHG65vv/027EMRoqDEHKwDCaNwGDNmjK1rZIajG0o1/vWvf9muSNzzdRqROAagTZs2ZsUVV7QnlBBCxJ17773XZuO7pw6luV2cG4ljANhx03eQE0oIIeIMzeSnTJliPWJu0twuzo3EMSDt2rWzDXo/+eSTsA9FCCGKSsShvKdFixY1nktzuzg3EseAcCJxQsl6FELEFZKzEEdCRV51rSTfYAiksV2cG4ljQMj0O/74483IkSNtbZAQQsSNF1980XZGItnGC4Qw0wBo3769ue6660wakTjmAcNAmZH31FNPhX0oQgiRN0OHDjWNGze25WluvJJx7rnnnhrJOHzt9XjSkDjmAeN7uHGCCSFEnJg/f7555JFHTNeuXW15j5urrroqZzLOBSkq85A4FmA9UqQ9Z86csA9FCCECM3z4cNspyculihXIgIVsyThvpKzMQ+KYJyeddJJNzKGzhBBCxIG//vrLerxYv+rWrRu4VKN58+bVyThpK/OQOOYJzcc7depk7rzzTjsGSAghog5D28mX6NGjh+fzzz33nOfjl156aWrLPCSOBXDmmWeaH374wTzwwANhH4oQQuTklltuMU2aNLEjzNw4CTZu2rdvv1wJB/8///zzU1PmoZFVBU5Yp2POwIED7XQDr+C2EEJEgffee8+WcDD02gu/RJxmzZrVeKx///6mVatWqWhKLsuxQBgQ+8EHH2hShxAi0vTr189suummnk3GgyTiuEEQ3VZlEpE4FkjTpk1tKjMnnhBCRJFPP/3UPPTQQ3YzT6ZqIYk4aUXiWCC4Ui+66CIzadIk88orr4R9OEIIUQNKLdZff33TsWPHvKzDSzMScdKKxLEI2F1tv/32sh6FEJHj66+/NqNGjTK9evXy7KOauY6lJckmHySORcCMxwsvvNC2k5s6dWrYhyOEENXceOONZo011rCNS7xwut04MUdE8vXXX09tL1U3EsciOeGEE2ywWyeUECIqUGpG0f9ZZ51lm5a48ep245eYk1YkjkVCkJtgN0HvmTNnhn04QghhBg8ebJYuXWrOPvtsz+fT1u2mECSOJYBgd4MGDRTEFkKEzrfffmtdqliNJON4kbZuN4UgcSwBBLv79u1rxo4da956662wD0cIkWKuvvpqs9JKK5k+ffp4Po9LFQtRQ42zs0IVo6FF0TAAeaeddjIbbrihef7559U1RxTEkiVLbGOJI4880qyyyiphH46IGQwy3mabbexm3UscEcDMWCPF/HTCSXq3m0KQ5Vgi2Klde+215oUXXvBt4iuEEOXksssuM+utt55nrNFvmLGE0RuJYwk56qijbHNfyjsIhgshRCV7qN53331WICnhcKMknPyQOJYQXKmUdLz77rvmwQcfDPtwhBApAjcqQxFOO+00z+eVhJMfEscSs++++5oWLVqYSy65xPzxxx9hH44QIgUwdYNmJCTj+MWq0zZyqliUkFMGZsyYYXbccUcbFKf/qhBBUUKOKOScYU4jxf6vvvqq7dyVDSdbVbHG7GieYxlo3Lix6dmzp93FtW3b1jRs2DDsQxJCJHiQMRvyKVOm5BRGQBAlirmRW7VMEBSvW7eubforhBDlYN68eebyyy833bp1s9ajKB0SxzJRp04dc8MNN5hx48aZZ555JuzDEUIkEFpX0oTkqquuCvtQEofEscxNyQ888EDTo0cPJecIIUrKxIkTzejRo03//v2tl0qUFoljmUs7br75ZjN79mxrRQohRKmScOidysipU089NezDSSQSxzKz3Xbb2W4VJOfQ2kkIIUoxdWP69Onm1ltvDZSEI/JHf9UKQMCcnqudOnVS5xwhRFF89NFHdgIQm+5dd9017MNJLBLHCiXnDB8+3Lz88svmtttuC/twhBAxHnDAiLyNN97YeqP86hjpmcq9KByJY4U46KCDbLo1HSlmzZoV9uEIIWLIwIEDzeuvv25Gjhzp2T+V9YU45CmnnGLv+VoUhjrkVJBffvnF7LDDDmaTTTax7Z4UKxBu1CFH+DFz5kyz8847m+7du5vrr7++xvNYigiiG8RURf/5o9W5gtSuXdvu+EjBJpAuhBD5uFMbNWrkW9Po13BEUzcKQ+JYYQ444ACbgs1Yq08//TTswxFCxIAbb7zRvPnmm3Zzvfrqq9d4Hjfq5MmTPb9XUzcKQ+IYAoy12mijjUy7du2sG00IIfxgBB5TfrAM9957b98EHC+aN28ul2qBSBxDcq/ef//95u233zYXX3xx2IcjhIgoixYtMscff7zZfvvtfbNTs7lNKfkQhSFxDIk999zTWpADBgywCRhCCJEJuZJdu3Y18+fPN2PGjDG1atXKy23avn17WY1FIHEMkXPOOce6PYgXzJ07N+zDEUJEiBEjRlgP07Bhw8wWW2zh+zqvIcYI4913312Bo0wuKuUIme+//96mZ2+++eZmwoQJZuWVNWIzzaiUQ8C0adOsd4m8BMQxyNBiDTEuLRLHCPDKK6/YLFaC7n379g37cESISBzF4sWLrTBSB43g+RX7/+c//6n+GsuR6RyidMitGgH2228/c+WVV9r6pWeffTbswxFChAS2yplnnmk+//xzG2f0EkYEM1MYga/VLq60SBwjAnWPhx9+uJ0B+cknn4R9OEKIEBg0aJCNFd5+++1m2223zSs7VcX+pUXiGBFWWmklc99999npHUcffbT56aefwj4kIUQFeeaZZ8y5555rzjvvPBtr9MMvO1XF/qVF4hgh1l57bfPoo4+aefPmmZNPPtm2jBJCJB+sPrxGhx12mOnXr1/W13plpxKDVBJOaVFCTkR3kCRksItUkD1dKCEnffz444/VDcOJG6611lqBvk/ZqeVFdQMRhN0jXfdpF8UUj2wuFiFEfME7dNJJJ9lC/3yEERBEiWL5kDhGlJ49e5r333/fdO7c2RYAe42iEULEG9yjZKg/9dRTihlGDMUcI8oKK6xghg4danbffXfTokULO8tNCJGsSRvcGGB86KGHhn04woXEMcLQS5EEHSZ44Gr96quvwj4kIUQJGD16tOndu7dNpPn3v/8d9uEIDySOEWedddYxTz/9tC0Opg5y4cKFYR+SEKLIhLsOHTqYU089NWdmqggPiWMMaNCggb2gvv76a1sD+dtvv4V9SEKIAnjrrbdM69atrSfojjvusOETEU0kjjGhcePG5oknnrAzIE888UTz119/hX1IQog8oOyCEh0y0B988EGV6kQciWOMIGN17NixViSZ87Z06dKwD0kIEQDyBbAW119/ffP444979kwV0ULiGDPYeY4cOdLeunfvbmORQojoQjjkwAMPtJtZwiPrrrtu2IckAqA6xxjCINM///zT1kDimqFZsWIXQkSPb775xhx00EE2T+Dll182G2+8cdiHJAIicYwpp512mu2ugXuVuW/US0kghYieMC5atMgK42abbRb2IYk8kDjGmC5duliBZP4b94MHD5ZAChERV6ojjC+++KLtcuWF+qNGF4ljzOnWrZsdd4UFSQbrLbfcYi1JIUQ4zJ07dzlXqp8w0gAgc2gxreQ0aCA6SBwTYkGuvPLKNgb5+++/m2HDhtmvhRCVZdasWbYVHBvVbK5ULMZMYQS+btWqlSzIiCATIyF06tTJ3HPPPfbWsmVL8+uvv4Z9SEKkinfffdfss88+dmOaK8aIKzWfx0XlkTgmiLZt25rHHnvMvPDCC6ZZs2bmhx9+CPuQhEgFXHNNmzY1DRs2NK+++qpp1KhR1tf7TeDQZI7oIHFMGPRf5UL96KOPzH777We+/PLLsA9JiERDt5sjjjjCWo1cexT6+7lS8exwj+uUGKM7BimXanRQYCqBcIFNmjTJxj64YJkXR/s5IURpufXWW02PHj3MySefbEaMGGFWXXXVvJJviDEqWzWarFClFiuJblmFJck9o6/23XffsA9J5GDJkiXmySeftJ2Q1HszutDt5rLLLjPXXHON6dWrlxkwYIBvljiWotew8tdff12CGGHkVk0w9evXN6+88orZcccdbWo5O1shRHH88ssvpk2bNubaa6+1onjDDTdkFUZaPXqh5JtoI7dqwll77bWtWxXXD111PvjgA3tBq9RDiPz5/PPPzTHHHGM+++wzM378eDtCzg/ikMxi9UPJN9FGK2QKIA4ydOhQs9NOO9mp4x9++KEZM2aMqVu3btiHJkRswAtDjHDNNde0LtHtttvO97WUccyePdv3eSXfRB+5VVMCbeVoM4cVyUzIPffc08yYMSPswxIiFjCYmNAEsxjffPPNrMKIxegnjHSyQlivu+66Mh6tKAUSx5TBBc408lq1atkkAWbLCSG8YfoNo+HoQnXGGWfkHDlFjDGbK7Vjx46yGGOCxDGF4PJ57bXX7Iy5o446yqaVkyUphPh/iCuS4U07RsISN998c84M4mxJNmSOSxjjg8QxpdSpU8eMGzfOXH/99WbgwIG2YQDJBkIIY8aOHWt22WUXs2DBAjN58mTrDg2CX5LNpptuap566qkSH6UoJxLHFEP6ee/evW27q/nz59vFAMEUIq3QuJ/YPKUaWHrvvPOO2X333XN2vHHw6nxDDBIrVMQMmgAIsXDhwqrWrVvTEKKqe/fuVb/99lvYh5RK/vzzz6rx48fbe1FZZs6cWbXjjjtW1apVq2ro0KFVS5cu9X3t+eefb68V58bXmbz++utVd999t70X8UQdckQ1nApDhgwx55xzjs3GY1ecLStPlB51yAnnvKdQnzKnBg0a2F6pNM7wQx1v0oHcqqJGuQcXP+6lXXfd1fTr18/OphMiqYOJ2YjQIOP44483U6ZMySqMoHFT6UDiKGqw884721hLz549zSWXXGKbl0+fPj3swxKi5Nbi9ttvb9577z1b0kR7xdq1a/t+jxNjpLzDC3W8SRYSR+HJaqutZqcGMN1j0aJFNlmHr2VFirhDI/4WLVrYAeG0gqNjVPPmzbN+Dx1tcKWecsoppnPnzraJhvt5uVSThWKOIie//fabufzyy22DZTL32HFvu+22YR9WIlHMsXyw1I0aNcp6RNZYYw1z++232zrfXPjFGO+8807bmlHjppKJLEeRk9VXX93OoqPk48cff7Ru1z59+pjFixeHfWhCBALrkO5QdKihWfi0adMCCWO2WCLC2L59ewljQpE4isDsvffeZurUqebiiy82gwYNMttss40tlpbzQUQVQgLnnnuu3dCRfEMh/t13323WWWedwO/hF0tUjDHZSBxF3lYkLlZ24sQhKZY+9NBDzcyZM8M+NCGqYcN2//33m6233trcdtttpm/fvtZapLDfD6+ifr/CfsUYU0DYhZYi3jz++ONVm222WdUqq6xSdcEFF1QtWrQo7EOKNWoCUDzTpk2ratq0qS3Op7HFnDlzcn5PrqJ+UGF/upA4iqKhm07fvn2rVltttap69epVDRkyRIt7gUgcC2fu3LlVXbp0qVpppZWqttpqq6pnnnkm0PchdpnC6NwkgulGblVRkrKPyy67zM6HPPjgg20jATrr0GlE8UhRbhYuXGguvPBCs8UWW9gYOMlj77//vnX3B0FF/cILiaMoGY0aNbIxm3fffdcuVCeccILZY489zPPPPx/2oYmElhghhJtvvrkdJ0XiDQ2+e/XqZeeVZiMzvqiEG+GFxFGUnJ122snW6r300ku2Vq9Zs2b2xpBlIUpRC0qN4ZZbbmkzp0866SQza9Ysc9VVV5m11lor5/dnFvRzzyQaJdwIN2oCIMoKp9d///tfc9FFF1m3KyJJjeQBBxxge7mK5VETAH9+/fVXM3z4cDuD9IsvvjAnnniiFUS8FEHJ1jTccaWqqF+ALEdRVhDAY4891nzwwQfmgQceMN9++60txqZmEtFcunRp2IcoIg6NJ6655hrrtmdiDIO5iSlSqpFNGL1KM7LFFxFEFfULB4mjqAgrrbSSjUESj3ziiSesVYRoMgHh3nvvVc9WUYNvvvnGujc32WQTayEed9xxVsQ4X3bYYYes34vIZbpOeR9QfFEEJux0WZFeXnnllaojjzzSps03bNiwasCAAVULFiyoSjMq5aiqmjp1atVpp51mhw7XqVPH1hzOmzcv8Pe3b98+a2mGu6aR+lwh3CjmKMoCrqyg8RtGBtHUfMyYMdbCbNu2rTnrrLNsy6+0kdaYI2Ogxo8fb7NO6eFbv359WxLEbe211y46pgi0jcOidF6n+KLISg25FKJIgnQb8WL+/PlVV199dVX9+vXt9+21115VI0eOrFq8eHFVWkib5fjZZ59V9enTp2rDDTe0nzmdbcaOHVu1ZMmSgt6PDjZeVqOK+kW+yHIUJaUU432IPzJ8dujQoeaZZ56xlgPp+u3atbOJPEnOck2D5fjLL79YK5Fkmeeee86sueaaNjbYpUsXO3y4HOcfFiOWoxCByVtOhShw5+7ciAkFZdasWVUXXnhhVYMGDez30sf1kksuqZoxY0ZVEkmq5Ygl+OSTT1a1bdu2ao011rCf5b777ls1fPjwknsG3J6LfM43IRxkOYqSki3mkwlWIJZDUCj5mDhxohk9erR56KGHzE8//WQHLxOfpN5to402MkkgSZYjSwuNH/jMnDKexo0b28/+5JNPtqUZQck3RqiYoiiaapkUokw791LHgGh0/vDDD1e1bNmyatVVV61aYYUVqpo0aVJ13XXXVU2fPr1q6dKlVXEl7pbj77//bht+d+/evWqTTTaxnzPN6Hv37l31zjvvFPTZFBrDFqIYZDmKsuDs3MlC7Ny5c87swWKaThO/evTRR82zzz5ru6jQa5Np70x633fffWNlgcXRclywYIE9Zj4DYsQMGG7YsKH9+1PLSjckspALIVtHG1mEopysXNZ3F6mFhctZvF5++WVPF2opCq/r1q1rOnbsaG+///67eeGFF+wiTVnIwIEDbTIP0xkOPPBAu0gz/DbJCT2VgL8zokXvXJrKT5482bq999xzT1tsjyhSpF+Kv3OujjZClAuJoyg7WIg4KOhsUs7GzozOwuLiNmTIEPPOO+9UW5Tdu3c3f//9t41NIpLODYGWWGbnjz/+qBbDF1980bz22mv2MTYm+++/v7n99ttN8+bNTb169fJ+71yxQXW0EWEht6qoGMUkSRSbYIGrDwvHWeCnTJlixZIFfZ999jG77rqr2W233extvfXWM2l1q2IBfvrpp+btt9+2N/5O/O2xFrHCmzZtWr2xoPXfiisW3oGSDRIjpxyYjNG/f/+cr+Pr6667ruCfK0QQJI4i8ngtoq1atSpaLCdNmmTFksUfK/Pnn3+2z9HL0xFKbgxupmNLMUIQRXHE+kMIp06dWi2G9L7lbwNkk/L7N2nSpFoMC40dFhtLVPapqDQSRxH70hA/iyNfi4mZgIikIxT8n4kQsPrqq9v5gSzO7ts666xTMtdsqcUR65jxTghL5u2TTz4xn3/+uXV3w2abbbac9cz/1113XVMuiEFT+F+OJC0hSoFijiLS+CVkZIJViSWJRVGohYFViPhxY3oIIByzZ8+2cygzhYUFfO7cudXfi3DinuX2z3/+s/r/zo3YXJ06dUzt2rWr7wu1wLD2sOzoMsM9t++++87MmzdvudvXX39t7+fPn189FowORYx44m/Tpk0be8/vS/IMx1hJFEsUUUeWo0hEUwEEa9q0aYFiWKVg8eLF1iWJBYZQZgqSc6PMxA8E1RFKRAtxdm64d//xj39YUeP222+/VQsilqUXiO2GG27oKdK4RxEd3MWlcouWwt2pWKKIMhJHEXnci6gX9G71qqcMsx4OUWMmId183NZe5v/pJesIIeKHGxQ358orr2zdtZlCyr3bCiWBaP311y+58JUqoSYbiiWKqCJxFLEgcxEdN25cDYuDpJkkxLDCzlYNKmIqzhdJRzFHEbumAty7s1VZrL1QDKs8FqLf9AwV54ukUP7cdCHKAAswFmGmYLJoZ1KORgNpg02H26XN17QF9EKbEZEUZDmKWJEtRkW8q9j6x1IfU1KzhUkiYjPidm8n7fcX6UXiKGJDkASQTPdrVI4pzqKbreQCyz2MzYgQFaGomR5CVAjGW5Vy7FVUj8kZWdWnT5/IjGlyj4y64IILQjsWISqFYo4iFmSbzpDEYxo0aNByX2Od+iUdlRssYbJQyfzlXrWIIg3IrSpiQRQ7qlT6mMLMBK20u1qIsJHlKGJBFLNRK31MYWeCYrnSEzUsC1aISqImACJWRCFJpZzH5DQB4D379esXmdZq5Uw8EiKKSByFiGiHHKaCRGEjoG44Io0o5ihERIlKnC9b4lEUjk+IcqCYoxAidslQQpQbiaMQInbJUEKUG7lVhRA5Cas1nxBhIXEUQsQqBipEJZBbVQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHISLEiiuuaDbffHN7L4QIjxWqqqqqQvz5QgghROTQ9lQIIYRwIXEUQgghXEgchRBCCBcSRyGEEMKFxFEIIYRwIXEUQgghXEgchRBCCBcSRyGEEMKFxFEIIYRwIXEUQgghXEgchRBCCBcSRyGEEMKFxFEIIYRwIXEUIgJ89913plu3bmaTTTYxtWrVMhtttJE57LDDzKRJk8I+NCFSycphH4AQwpjWrVubP//804waNcpsttlmZv78+WbChAlmwYIFYR+aEKlE8xyFCJkff/zR1K1b17z00kumadOmYR+OEEJuVSHCp3bt2vY2fvx488cff4R9OEIIiaMQ4bPyyiubu+66y7pU1157bdOkSRNz0UUXmffffz/sQxMitcitKkRE+P33380rr7xiXn/9dfPUU0+ZN99809x5552mQ4cOYR+aEKlD4ihEROncubN57rnnzJw5c8I+FCFSh9yqQkSUbbfd1ixevDjswxAilaiUQ4iQoVyjTZs2plOnTmbHHXc0derUMVOmTDH/+c9/zDHHHBP24QmRSiSOQoQMmap77bWXGThwoJk1a5ZZsmSJ2Xjjjc3pp59uE3OEEJVHMUchhBDChWKOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEKY5fk/s+tTs+6hP8MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAHJCAYAAADw9vLCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc3dJREFUeJztnQm8VeP+xt+IcIsyd0tllnnuEjJlKkMlU0UlJepKmTJnSjepTCUqIUTSNWTMEGUKIZUhiUhISEJ0/p/ve1vnv1tnrb3XntfwfD+f7eiM++yz93re3/T8qlVUVFQYIYQQQlSyxv//rxBCCCEkjkIIIYQHihyFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFKDMdO3Y01apVMzfeeONq7584caJ9vxCi9EgchQgB66yzjhkwYIBZsmRJue+KEELiKEQ4OPzww83mm29u+vfvX+67IoSQOAoRDtZcc01zww03mFtvvdUsWLCg3HdHiMSjtKoQIaFVq1Zm9913N1dddVW574oQiUfiKESIoO44ZswYM3v27HLfFSESjcRRiBBx0EEHmSOPPNL07du33HdFiERTvdx3QAixOox0kF7dfvvt9dAIUSYUOQoRMnbZZRfTrl07c8stt5T7rgiRWCSOQoSQa665xqxcubLcd0OIxFKtoqKiotx3QgghhAgTihyFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIUIES3L+/vtv+1YIUT4kjkKEiL/++ss8+eST9q0QonxIHIUQQggXEkchhBDChcRRCCGEcCFxFEIIIVxUd79DCCHS8eabb5pPPvnEbLfddqZJkyZ6sEQsUeQohAjMxRdfbP71r3+Z008/3b7l30LEEYmjECJwxPif//xntffxb94vRNyQOAohAkEqNZv3CxFlVHMUogSMHDnSDvdvtNFG5qyzzgpUq0ut7UG6Ol8p6oDO/Qj6fiEiTYUQoqjsu+++eMGtdrvooos8P/fPP/+smDhxYkXfvn2rfI3f1/Lv1I+3aNGi4o033rAfu/vuuyu6detm3/K+e++9t/JjueD+WRdffHHO30uIMFON/5RboIWIQuT39ttvm3322ceceeaZWX1dly5dPD/2xhtvVInyVqxYYSZNmmROPfVUs3z5ct/v63wtESONMV5svvnm5ttvv/X82EUXXWQGDBiQU9SpblWRBJRWFSIDCMZbb71l///OO+80I0aMCNyEgqD6gSDlmgJ1vjZdvc9PGJ1GmtatW5sJEyas1mSTKpp+QshbjXCIuKOGHCEyRH6OMDrwb94fBCJNP/Kp1Tlfm8/3ePrpp9N2n7rHNo4++mhz9tlnB/7dhYgyEkchcoj80kWEqZCC3Xfffau8H+FJF3316tXL92OpX8tbor1CQqToNbbxzDPP2MiZNLEiRxF3JI4idnBhv++++woyf+cX+aWLCL3uz913321OOOEEK5bUC2+88ca0X9OvXz/7effee699m/r/7q8lDcr7W7Rosdr769atm1ZgiQS9IBrNNJ7hjp4L+ZgLEQrK3REkRCFxd1P6dYXm023apEmTimLhdKvyNhfcHamZulX9uk/5HL9uWefG9y3WYy5EuVG3qogNfp2bXl2hpehW5f5Q13v33XfNV199Zd9Xs2ZNs8Yaa5htt93W7Lfffvb9fPznn382G2ywgfnnP/9pI7rLL7/cfPPNN2attdayn7v99tubjz/+2Hz55ZemRo0aZocddrDfj6/j40FnJ/3up1e3KtGlO7WaCtHwzjvvXLTHXIhyInEUsYG0Hs0jbkhHdujQoeA/L1X8HHED/v/rr782c+fOzfp7rrvuuubBBx/MOMrhRb169cx6661n/vjjD9OgQQP7vu+//95ssskmVlzr169vhTcb0XKEk9TtRx99VPl+vgcCWOrHXIhSoVEOERsK7eDiRIu42hCpzZkzx8yaNcvMmzfPLFy40Hz33XcmTCDIDkSYDkScr732WmUts06dOjaC3XLLLe0NMfdz7nHGNhA6r+hZrjkirihyFLHCnQrk35maX1IjpD///NOsvfba5qqrrrIiWGryiRwLAdHnZpttZg0Etthii0Bp5FwfcyHCjMRRxI5sHFyIhm699Vbz/vvvmzBQbnH04h//+IethVIrbdOmjbn++uurfI5cc0TckDiKxOC+gKc634SFMIqjm+rVq9va5Z577pl1DVOIqCBxFLHegvH333/bi/jnn39um0ccjjrqKDvUXgq22WYbW+MrRrfqSy+9ZH799VdTTvbff3/TvHlzCaWIFRJHERuc7tG77rrLCkupUo6HHnpolW5V/j+XyMoxHj/mmGOsMGZzEPjhhx/MokWLqnSrIp6pzTrFxO3NKkRUkTiKWJBpJi8fmOM755xzVutWXXPNNW306VV/y4dcxDGblPLkyZPtCMZvv/1mO1UXL1682ohGIXBmHHPZYSlEWJA4ikjh7ip1Rgn81jalY6eddlpNGLbaaitz6aWX2u+b+v1LeVEvljgGibgXLFhgU7c8vvmMqTDjeNttt1Wp5yr9KqKExFFERhCff/751eqGDniKPvXUU1l9T2fcINc9jUFBZEmzktpcunSp51sEceXKlfY2dOhQW5c8+OCDrTgSoa6zzjo2Tbv++uvbt7Vr17azirwlKmPIn88r9GNOevrTTz+192vmzJnmp59+CvS1HDBuuOGGtJ8joRRhR+IoQi2IDzzwQMEaZxhkp3GkUNEgKUnuIxEXpgDUOXnr3Pj3jz/+mPZ70FxDhEqTDjfEcuONN66MGhEmxJPGIvaS82+vt3S5Ip6I5qabbmrnFJlZZFaR5h3qn7Vq1SqYYCLS/P7Tpk2rcuhARNneERQON1dccUVB/iYaKRGFQuIoYlE/9Ioe6RJt3LhxXiMH1OYQQK/bkiVLVhM5Ok3ZhOG+IVgIExGh+607dUrERUrz2GOPrYwGEUCabLgv3JYtW2bHPLjx719++cUKEhEq/+/8G6H966+/Km80DyGcjRo1sgcEfFH32GMPs+uuu+YceTopWXAeY6Jx1lplC9EkkTD3pWXLlllH8u7njZqDRD5IHEXoaom5XFhpAgH3hTobEJMZM2aYd955p/JGEw7iBFy4EZXUG2MWdIaS4qxWrZrJFy9xzBUEkQ5Wolii22+//dZ+b268//fff7dRKSDiHCT23ntvc9BBB9kaLhFtrhRihpQ9mEFXYBXTdF4kE3mrish3mrqX/wYBwaPz9OWXX7YXVkcISVESBRJNIRIsHSbCQggRxyjBsD7pVW5EiG7hZOxj/vz55osvvrDzk5999plNkw4cONA+DnzdjjvuaJo1a2Z3UdLdGhQeU6dbFQP2Dz/8MOv7j7jyuCPcmJuniyT99k/yfomjyAVFjqLkpKbiqIllEykyPnHaaadl3U2aKobcXnnlFRs9kdZEOPbaa6/KG12speoULWbkmAukZBEUhBLhRDQRUaJMouPdd9/dHHbYYTmJJX9zmqrcdcqg0E1MDdrr763IURQaiaOITJRIQw1jAkGhIYbI5bnnnltNDLm40g3KDZca1jyFhXKLoxekY/GenT17thVN/p0qlgjlKaecUukCVGyh9KslygBdFBKJoygZfqd7v0W62c4bkgr84IMPzOOPP25v06dPtx2gCOAhhxwSSjGMgjimE0uiTP5NmpauWBqjSIEGjSp5Tlx77bVZj+KwNYWsg/u5oW5VUSgkjqJk+C3GdZPNyiMaSvAXRQyfeOIJmwakE5T063HHHWcbc6JUK4yCOLrT1fjWIkrUFfl/OmipE5J+PeOMM+yBJBN8fe/evXNOue6yyy52zET1RVEoJI6i4NCI4aQ/Uxsp0kWOTqQYNEKkWeP+++8348aNs/6hDRs2tIKCINJAkk+nZTmJmji6cWYfiSxpcKKGueGGG5rjjz/e9OjRw3b3psOJ/Eib5mJrV8iZSZFsJI6ioHi18Ke25HvVHINGigyfjx071ooiHZDMFbLaiQYdmmoKMUqRBHHkcMENSDu7I0FSpM7H6HjNFeYwX3/9dXtD6HAEYsbypJNOMt27d7dmB0EOWUSjjKJkg0RS5IvEURSMdMPfRIapEWTQeUQG2xFDLpKILinTE0880bRr187WEKMYXZVLHJnj5O+AWPG4sgYLQ3XeAl2pw4cPt3VbUqOMs5x77rmVGz7yAVOCKVOm2L89/q2YGvD9MSSn0SrT7+o8Z/r165fVz5VIilyROIqCcfbZZ/vahnXr1s1eeINAVEMzDZ//0EMP2QspRtxcRHFOwSotrhRLHIkIr776atvB26dPH+vag9hMmDDB1oLpNCWa4/0IIrOeLF1miJ6PFzJNzX2gToynLeMifO/WrVvbLtRMjTy5djtTg3YOZEIEYfWcihB5gHl3Lh9zYDxgzJgx9nNJxb7wwgvWxJqFwDTctG3bNtbCWExIcU6dOtVGijjhMODfsWNH2zgzceJEm7YkVU1TDPVbPo4BAg1P/B0KCelwIv+bb77Zdp3y9/7vf/9r50tJkyPITtrXDbVIPk4mIZs5S/x5MWgP6rgjhMRRZA0XGKIJ94WGtCmi5oa0aTp3E+zNEEFa87lgcxGj85Ra02WXXWYv4CI/HOPy1Boi0STRKfVAPu4GYaSOi3lCMaCmyZzkBRdcYDMLjNvwnKK7lecRzzHH3s79fCKLwPODNDFzlnSrZoI5VxrC+FohMiFxFFlBWosLDF2ovOXfqXBx44KF9Ro3/t/xPXVDpMJFkSaN22+/3UYTdCqS/iJ9Grd6YjkhbUrESGTOphBEh2iK+h//5m+w2Wab2VQ2hurUJ2l+olaYabNIvnBfEC7SvZgMOAuSeY5hHn/rrbfaGqgXHLoee+wxWyfleUaNMRPUsKl3KooU6VDNUQSmUBZdtPnTnfrwww/bKPH888+39UrWICWdYjbkfP3117Zexzwi35tGHFKcCNKoUaPsW3xVecvHid6ILoker7/+elMsEGh+5uWXX77ac4D7SRqVujPjIOedd56th+LMk45stoJoc4fwQ+IofHF3lRLVeQ3xU/8Jkqp67bXXTP/+/e2meyIVLkykUVVHLO0oB65D1CARImp+CCAuNQ7O/kiWLHft2tWmPqlVFgNSvbjjsFaMkRwv5s2bZ0UbAad5h/tCPZS6aCEad7S5Q3ihtKpImz6ldZ4b/49HqRcM7qeDrkTcUg488EDbnUgtiZlFuiMljKUHgUEYSZ+yjaRp06b2/U4TDP6zCCPRHKnvAw44oGj3BQMHxDhd5oHGmzvuuMNuD0EY+X/ed+GFF1rTgXSNO0FqkRwA6eTlplSrcFDkKKqQzsmGCBFxCzLAT7qMVNn48eNtJ+J1111nHWzcg+eiNJGjY85Qv3592wE8YsQIW4scMmSITZ2++OKLZv3117fD+TS7MJaDucIll1xStD8Rs48sYaZLNqiJA3VQ7vOgQYPsY0QGgpQr38fv+cw8ZdC1WUq1CtA+RxF4Nx40b97c1n34HD+rN2pbRJukwerVq2fuuece0759ezXYlBmaWmiQIlpDBDFRoKHFESWMAfAnJaJEILF880t1FgJSuxwEaMTKxt2ImiNRHlEkBy7+n6YdUsT8Pu51YzxHadihJJB6sPODdCzPb5rC0nVZi3ijyFFkFTmmq89wUSWdNXToUHuKZwyD1CkpOpEMb9VsQLDY6IEXaj7pdaJchJHu2q233toKJhZ1XoKbWkeHTI47HBLonpVXa/JQfktUgQsBqSU3pFC9LhI0dBAlEklygmdujVoVXagSRpFumwcdsfnWnVmCTET43nvvWWNzdksyRkRXtNdz26kv0mQWdDbSPbIk4o8ix4QSxN80yOe8++67Nr3F55IeIyXFeIDIjaREjqwWQ8xoqin08wVHn549e9rUKJtAiA79xj/U1Sr8kDgmEK/aS7ZNCAyG02zD0DjNNgzxc1oX+ZEUcUTAaAxivrVY4yqk9xFGUvyMgtBMli7VykEPZyY/cOLZbbfdMprli3ggcUwYXCBwCMl13ot02OjRo20HIxcgLj406LibIERuJEEc2fHIWBCD+sxQFhM8Y0nzs/eTkZTbbrvNCpwfjIgwMpIJdbTGH9UcEwTOIX7CmKlLFZh7o8ORixqnZ0Y1GMaWMIps4HmDMxIZh2JDdIrDzuTJk+1MJGYDffv2tZte/AwHghiaUz7QTGS8kTgmBGormSy1/Ib5iRZJUeFHyZgG64ZwxUnnUCKEFyxSpt6IuXgpD1WHHnqomTFjhrnmmmvsfCQiiTmFF6mG5ulKBcz3SiDji8QxAfACzmSlRbrVK6VK1ynbEogQEVfa74kehcgFUpY49Oy9994lfwD5uYwX4QpEFzUCzb+9okjH0Dzd64ZVX3SyMg8pkYwfEscEkCldijASCbqjRcYyiBZxUyFavOWWW3xdSIQI+lyk5oeReLnAUo76OuMcNOog1AimFxwYMbBIB96wGveIHxLHBOxb9EuXcjp2FsemQtqLNNS///1v07lzZ0WLoiAwM8hC6zB0epLSpdt6+vTp9v+5T1deeaVN+7rhtRTEWJ8ok7q+iAcSxwTsW/Qa6uf91FXcFyo2stNBSGMC0SLRI/6bQuTLnDlzbIMMg/phwdnriDDSKUwJgUyJGw6QHCRx4kkHpQcZBsQDjXIkaN8iH/fzRKXuwouaxptWrVrZE3CdOnVKeO9FnEc5eH4xQ3jyySfb7SxhZOrUqebUU081y5Yts0uhqSXmahygNVjRR5FjTED4mD9MV3NEEL0abxjR2H///c2wYcNspPjoo49KGEVB4TlWq1Ytu+UjrLC6C9ce3nI46dOnj53l9VuH1aJFC9/vxWtRTTrRRuIYA5wUKiuGst23yAwYbe0MZr/++uvWbiubDQlCZII9kXQ977XXXqFP0W+00Ua2tDB48GB7UMQ4gNEONxwwMSSnNOEFr0V1skYbiWPEce9XDGoWzokYT1TSSJyA6dZDJIUoNN98843tfsZkPApwOGR0adq0adY4gGjXz1aOpjYvk34HdbJGF4ljhCFt4+d4061bN5v68VpEzD6/I444wp568UZ94IEH7H4/IYrliMMqqS222CJSDzAjHvit0rnNbkteS0TBfmlWXnN+qJM1ekgcYzq/2KlTJ8+IkSF+TvCzZs2ym995QSuNKorFr7/+ak3qGbiP4vNsgw02sDV4dk5iO8fmGZY0u+G1xmuuEJ2s7lEsUR4kjhHGr5bo53aD4weNN7zgme+iniLCAREJqce///7bxO0Ax8A/IxNRZY011rAG+w8//LB1xaHbFkPzoHtQs4kgvUaxRHnQKEfEcbeVe7ndcOFlOzqzXG3atLFt6nK6KR4rVqwwS5cutVETb1P/n8anJUuW2Ld8HmKIKHLj70Qar169euaMM86I/CgHv9vjjz9ujjzySHPMMceYOEA3KylW/nYcNr1Gp4j4rr32WltvzGarR6ZRLFFaqpf454kCwwusdevWvvOLOJJwoeXUy+kXVxBOwiI/aGhiHnHRokWVN0Tvp59+smk3hAG3Fd6STsTXk1uNGjXMeuutZ5fvVq9e3X6Mv4fzlu31zNnFAZyWEPh99tnHxAWaczAs5zXXrFkzO7Jx2mmneXayEiH6mf1zoOX1SkNPpjIJ75c4lh6JYwzgheP14vn555/tZgFOnuPHj7dRo8hNCOm4ZCMJ6TRuiCGD7Qjguuuua0cUED1WMfGWG+/nLfZkQettUY8W3Rf1nXfe2T4mcWKzzTarrNdTg+S5cP7551f5PISPx8DPMADh5ONOBOlXJkk3iiWKh8Qx5KRztUnHwoUL7c7F+fPnm+eff171xSwg5clcHiLI40cERARO2hMRJOrDAg0HIScCFKtDFE0qOa4RDxkAosa6deua3r17m2+//dZ2s7oPQQgfr90gEaRTs0wVU79RLFF89KqOUD0x6PbxTz/91NZ5iGxeffVVe3oX/iB6XNwYOfjoo4/s0DdiSOSHADKGQPSDEColHdxHFeHYYYcdYvvUQwj79+9vI0kiRyLIu+66q8qeyiAR5Msvv2w7VDOVSUTpUENOSMm1OM8wPxEjHYLPPvusadiwYZHvaTQhHYq5OoI4c+ZMe2HjfRtvvLFp0KCBbYqhRlhquDiSisWgIaopVtLQNOKQxsfIOwk8+OCDtrbfvHlzW9/3anhLV4OEo446yjz99NNFvqciKIocQwrdbtkW51944QVrGr7TTjvZhgAu9OL/odGFqJqohgiRmiwp0c0339zOfm666aaRFaQwQeSNOGAXlxRwmsJ6jqjv8MMPt68//p1NBPnMM8/YEQ53t7koDxLHEMIJ068N3K84z+fzwjzssMPMI488olGNlCiGyJCImgsTnaTUDYkMuXgz8xnF4fQwp6gxGeexTZrrEq5TpEcZWyFinjx5cpVmpEw1SFKr5557rtKpIUDiGDLSrcPBA9UraiSFdeKJJ9oVOxiJlyMdGLYLNN2lzAy+9dZbtjmEeiEXJfYJUksUxYH0NDOASa2VYTmHQGI55wgkNUl3BMnn+Fk/klLnljrmIUqPao4RqDOmqzcyiHzSSSfZkQ08Ut3NAElM6U2aNMl2mzJYv+WWW5ptttmmYNsgEN7USJOOTLxqAe/QfDtXo15zfOWVV2w0ft555yU6Iid1j0DyWDD2QXOSG3oDSKX6QapfFnLlQ5FjRLxSvVq6Wa2DMNL4wClUIwX/W1hLPZGdfP/85z/z6i5lIwMjMdwY60Bg27Ztaz+GIA4ZMsT+LESA+i4Xs86dO0dS1AoBKWuMEeiUTrIwAl26HBQOPvhgW+p46aWXqkSQNN9QY/TbqkPWgxKLIsjyIKuUEOFXT2R7hnu7BgV/LtQ04EgY/x/GVhAnTuy5CiPR4S233GIfXyz3uHhRtyRdCLxl1x/zkHfccYeN2GnIoGORC1qSD3ekr3ffffdy35VQwCwsoohrEgLpZBhSofnmqquu8v0eY8eOVfRYJiSOIcLLuJiI0X1yZESDaJEaIy8eRYyriyNRXLooPBNEPTSTcFiZMGGCvYANGjSo0iaM1DUem7TeE51SwySFxmB4XKzfsoUUNiltoud11lmn3HcnNPAcIq36ww8/2C5WNpR4pVf9QFxlQF4eJI4hw9kNxwXZax8jNQi6UumMo/km6TVGNzwerEfC2SafDRe04VNPnDFjho0G8dNM/X6kzZ577jnbmUnzD9HlbrvtltioibQzkXpUFhqXEp4rCCT2g8cdd5z57bffctrmofpjaVHNMUJeqRT56VjF/HjcuHGJ70pN1zGIcH3xxRfW3SZXcUQMOayQosUxhyjgrLPOsu35119/vXVDoXHGidwZAMeVKIlgpoAIeDWeCGN23HFH2yhGB+spp5xiMxKpGR/HGYfnFFkJOq3dyIC8tChyjAicOml0YGCd0Q06GoW/sLE/kIH/XMFZqGfPnrb2OHjwYDuXRgSJ+4kjBmzQ6N69u12Ge+edd9qL14gRI2wKLUlgpsAtXae1+F/3Kc8VGnEwLae2nQoHYvoLqGN7gaCm2wUpCovEMQIwp0d9ixcTrd9Yw4n0cKEhfUXHaS5gEsBiaKJEaokshuZkP2vWLJtGpe7LzCQNUcyVMsbRsWNHO+eHcIL74hdX+H3pxMSZSaSH1zGG5aNGjTKXXXaZ5+f4pVlZtMwhLakzpKVG4lhiqBtQnwpaP6A9njpF6gVZZIYUKM0yjlDlgyNyRO003NClSkcsb8EZ3fjqq6+sICfJtg8/Wn5vokY1hgWjffv2tsEL0/KhQ4em7T3wGuNwRjxEcZE4lhA6T7mIMNsUpAONmhcdktQfsIdr3Lhxye5r1KE5hMiPQwUWcrngNOAgfojea6+9Zr8vtbU999zTfPjhh+bmm2+2b0l101lIOpcWfkjCrB/m7XSnUucVwWHN1YUXXmh69epl+we8IEL0O3DQICaKi8SxRBApum3hMnWgXX755faiS51L9ZzsQcAwwKajNFtorLn99tvtIDcHE2qPrLUidQoI79VXX227NGnOwZABP1EadpKy1oqImjorBwJWe4nsoBOdZck8p6ZPn+75Ofvss49vxK7u1eKSjFdxSE6KXvitqGGwnBfPwIEDbYeqyB4cbYhosJLLtv7HiZ36IfUhaj38myaKgw46aLWRESJHRmpIc+GOQ2drUqDxiEOEamC5wSGKBhwOF9g/4sTkhrSq13gMzzfNPxYXjXKUAE5406ZNC/z5pEx4UbAfjiWqIne4sGApR9SXzZgBqVQiQuEP9VwakfCuFblBShp/ZCJEmrswJHebKHD9QAxxxeKg5s4+0SimA0rhUeRYAtK5tbjdMTg9copkmHz48OGJqFsVExYXb7XVVnZGVBQO5j45cBA9JyWNXCxoHEP0MJw4++yzPbMcHJYRQS/ycYMS/uhZXUbP1A4dOqx24uOCw+kRQWSmSTZc+cNjyQWckY6kWrsVA+q4WOxR1xX5Q+RIdDhmzBg7V5vNdcTv/SI/JI4lwGtuCWFM3fjNaZGaFoPlnCLlNFI4nIYRnbALA89V6rjUc2VGUThozqGDnS5Wr1VWft7LkM14mAiGao5FgicqF2NOdTypHXuo1Pelgm0UYomRuNriCwtD/DQvYCmHUCZ1pVShYDwG5KNaeKhzMxqEUJJmpaabivs6QoYptZMd8eRzRP5o2XER4DSXOraR6Qn7wQcfWLHs1KmTr3WUyA86T/kb7LLLLnYBcliJwrJjTLRxxOE+qiZeeNjcQc8B9XIadPxmHf2Wo3stRRfZo7RqmecZ2fxw8skn21MgYwGiOHAxx/w5H79V8b/nKxdv6rgSxuKAPSS7QRE5Zmn98CsTqHxQGCSOBcZvbtHvCdujRw9rv4VLhhpwigun7KVLl9rlsyL38Q3s8dibKYpH06ZNzXXXXWduuOEG8/zzz3t+jhp0iovEscDp1H79+gV+IlNjpDtt2LBh1pJMFBfs9/BH1VhHbmDDh0UeBgjq/C0+lGNYg4YXK2MzQRt0lFItDBLHIqZT/UY2gAs0NRuso/i4KD7U8EgHsv5rxYoVesizhDQfG2K+/PJLG9Hg4oS3alK2j5Qa5kfpQuUtAum1vDvTcnSROxLHApEuz8/pz30CZ+EpnWi33XZboe6CCAD+p6SvP//8cz1eWcLFt1GjRqZt27bWFQdDfLZK4EFLulUiWXg23XRT28FOE9RNN93k+TkcvL0O4CI/JI4FIt0grvtjtGt/9NFH9uSNMbYoHXif7rHHHnaIXRfz4DDXSCMOY0Z0T26//fbW85dxDkY76LLGJ5SoUhSWQw891M4+Xnnllfa6IUqDxLFA+C0oddcAOG0jjpdeeqm9SIvSw9+D6P27777Twx+QKVOmWCMF5kQd6FbF+ozMCCJJ9gR3l/vvv9+OzojCQS/D1ltvbcswbOQoxu5YsToyASggzoCu07GKb2qqMHJB5slNp5/fFnBRfPBabdiwYeUGe5F5fIMRGDaSeM1eIpL16tWzQvnFF1+Yd955xzo9Ud8l6qldu7Ye4jyhFHDPPffYx5TeBg7XhZy1FlWROBbYCce5eXHttdea2bNn260ba6+9dr4/WuTpt0otZ/ny5WbdddfVY5khaiSVmqmmxeOKwQLD64gpuzB5rjdr1swceOCBKiHkCdE5Isfs43HHHec7TuM3a63tHdmhtGoecDpjdu7000/PuFuN03T//v3tAmPcL0R54W9A/VGmAOlZuXKlXcS77bbbBl5oTHTJaFLLli3t6AzLork4I5Sq8+YHwsjfggyUX8c1VpResIhbBEfiWAInHBbC8mTGuixTOkSUBqJFNiHQtYoACG/w+WRbTC6dkMxD7rbbbrZxh0wJ4wajRo2yS5JF7j7BpFfxXfUbHWMDjd/fUvXH4EgccyQb6yZasJlr5EnNBUOEJ01FKnDBggXlviuh5bXXXrPjBPksNKZehuPL/vvvb2bOnGltEl999VXPuT2RGQ51dK9ec801npkPIvZsHbxEVSSOORLUumn+/Pm2O7VXr172FC3CAw0kjCTIi9IbIjysDdnZWIiFxqxhI4rEOxS7xBEjRiiKzJErrrjCPn979uxZJVXNYmQ+5oWfFZ2oisQxR4JaN51//vm2VsOMkggf1IrxWv3ll1/KfVdCBxsh2BBSyBVqNPbw/WjSIeohiiTVp1pkdvB3GTJkiHn22Wft/lc3rLLyYtq0aXapssiMxDEPMlk3sbD0scceM4MGDTK1atXK50eJIrHTTjuZTTbZxI51CLPa2BGr1NhkUoyFxjzmxxxzjFl//fXtXCQewzqgZAcdqzyGZKV+++231T7GIZ0o3YsuXbqkbR4U/0PimCd+1k004ZDyOOSQQ+xKKhFOqAEz1oGzS9Dh6iRAZyk1wWJakhFFErlze++996yVImlcEQzq5dj3YUqO161X6tWPdGv0xP+QOBYJokUGonnBa+9duCHNRzclfy/xP15//XVTv379KpvoiwEGAkcddZSNHLGhoxNTBINGKco7AwcOrNKc4+fa5aBae3okjkWAJhx2sZHuIC0lwg0NIjRL6WLx/89fmnFyqTUyFsPohzsKx2yB7/n99997rrtitAYbupo1a9oUK7U0jdgEo2/fvrbZ6d///neV2i2lH7/xMVLnwh+JYxHAGo4BczXhRAdO2VzUNYNnrLMNtcBszSoYSidTQh0M9yEHBBF3qE6dOtlOSswwvPYTYh7AuAdD7k888YStRfI3EemhJoynLT0Ozz33XJWP++2KlUtXeiSOBQZPSbZt4GShJpzowAWZNGLSFyHT2MFjgMF4tjO5mOpPnTrVLpV2IhgiRjpSOXTg3IJ4kj5lRs8LShBkWxBJ6p4sAteBJTMnnHCCnSW95JJLqkTcQcfOxOpIHAMS1OGeFAd1gM6dOwf91iIEMMdHYw4RDc1USR7657GgSSYbeNzY60gTCALnXKARtrfeesv06dPHWsnhu9q7d2/bHZwujc2c3uGHH24bdBBUVowJf3jM6ZanXvvwww/nNHYmVkfiWEAPVdJROFAw9C8nnOjBsDvRflIvxAga0RqHu4033jjw13GYoJHmiCOOsFFjauRCkwivBcwWnPezCQXXHUz400FpgkYdumbvvPNO6/Eq/DnggAOsOw7+ze56YqaxM1EViWOBPFRJIyGabJpv06ZNpm8rQgiLp/n7sdg3iUPppFNZT4U9WVB4nHBdwc+zffv2VsiIPJ0O7aVLl9qRDXDex1sOIZgvZIK6GONQiDXlCrpohT+MdOAXzOLpoGNnwhuJY4E8VHGpQDA5kRXCakuUz2+VCIft9kmDzAciRPQXFNKemIlT66JDlSgSwaSRhnojwug+aPD64DEO+jrh8/i7MPKB7Ry+rMIblhsggNR0OeiI3NFVPANBitlcFOhQpUbCTUQX5vrYuJ40x5wlS5ZYI4Q99tgjq8MdKWgiQGrspEBbtWplI9BHHnnEtG3b1tYOEUpEM3Xe98cff7QuOUHha0l7N2rUyIwfP95a2wlvEEb+nhgEiNyROGYgSDGb0yz1E1rURbThIkynJBfvJJ28iRpZh5RNShVoYmLbDNEj9azRo0fbg+Oxxx5r/81Bg5ojC5MdPvroI/Pzzz/7LutN97dhHpXvJ3H0p2HDhqZ79+7WGECWfLnzv2KASAvFbLZok0rlhZ8qjKSHEMWjjz66oAbNorypqY022sj+vYlW4g6ZD+zbSKdmO37E8D4dqA7UHEmlsqYKcwVSqowZUAND1IhKEdCDDz7Yjs5kA98L42wgQhX+cKBnDIZbJh9VykFe17akI3EMCE8aryfOk08+aU/CPAlFPKAJhK5kOo+JVBhOjzPMJzLAX4gLI+KHMDrd2kR73bp1s/8ePny4FeKDDjrIRja5CCPpQmpqWv+WHtLZZ5xxhjUHwDmHQ4wXCGdqwyGiSjAgjKlWkcS2vALBQ0cKjosn82EiPuDqQnMVqb8tt9yyZD+XCxOOJ+ecc07JRJnVR0R7PXr0MGFEwpgb1IMZoWFO1OswQsToNc/KqEcTRZCqOeZbp+GJxOC/iBc0iyCMcfdbXbhwoR3gZ4QljEgYc4d5VZqiqD16bZwJ2omfVNSQkwfUGrHZwktSxA9OzzTl0JwTV1566SVbZwxjbVXCmD+M2MybN882DbqRrVx6JI458s4771iTX558WkkVT0hJUbuJ61gHLiqzZs2yC5/pVA0TEsbCgHk8zYKUCNyeq7KVS4/EMUdIVWy11VY2bSHiCTU/RhUwBIjjeh9MwhGhbH1Ui42EsbCwsmrmzJm2wcyNbOX8kTjmYDD+9ddf20Fk9jU61lginpBupPsSS7m4wXOcZiMMwcOChLE4nqvMr956662eH5etnDcSxxwMxjFBpjWaVmkRXxgbYHyAms0LL7wQq+W7GIIziJ/t0H8xkTAWDzqRWSAd1xJBMZA4Zmkwjg0W4ogwshBWxA/WLD300EPWxPmpp56ylnJ0dcZpWwcOM3Xq1MnapaZYSBiLy0knnWR9c9meIoIhccyyrXnChAnmu+++M+eee27Ah1hEBay2/vvf/9o6DNsfaIU//vjjrRUaqVX2Esbl92RzA80aYTA4kDAWH56/Z511lrX6W7ZsWQl+YvSROGbZ1kzUiPVVNpsLRLhhewRrl+jomzx5sq3DHXfccbZblZoyri/MAXJQIhUZddhqgQtQGAa9JYylo2vXrnaFGFkRkRmJYxZtzZiLM/iPHZaIPviA0rFJpPj444/bwX+Wxe64445VIqpmzZpZi7V0jVpRgLopS4O33XZbu0y4nEgYSwsbTRjrwMZPZEatlqvgokf9BYNkTtVeJrwjRoywF1CZHkcfaoiPPfaYnfPDABsjBz//SahZs6ZNs86YMcMcdthhoUhH5sIHH3xg6+bsRywnEsbywMGeUgFz2mF1RQoLihxdXapdunSxM0FuYSRquP/+++3nhG1gWmQXLZI6xU+UuhsRIX/7dMLoQDqdDlaeH1EFD+DNNtvMCn25kDCWDw6BGFuMGTOmjPciGiReHIN2qeKGQxcjGwFENKGRipQSTVV169a1KaZsFu6ym7B27dqRbczBTP2rr77KeqFxIZEwlhdq6KeeeqqtO3LgF/4kXhyDdqmOHTvWpl3xUhXRggvy22+/bdf3EC0eeuihOXdqklH44osvbFo2ij6q//jHP8q2d1TCGA7atWtnD0rM7gp/Ei+OQbpU6fCaOHGifVLJRzV6aVR2bpISpwGFtBKLjHOFFWU8B6LWmIP93Ycffmh9VFmJVWokjOGBgyFNZ7wmhD+JF8cgXaoII+3+p512WpqHUoQN5rmY68IZBFGgtphvIw3NWnwv6o6///67iQqkgulULYePqoQxXHC446DPdY2tM8KbxItjEPNdTlg0bjRo0MDnYRRhY9GiRdYN5P333zcHHnigb4YgEzTgYDyeKoQ05nBReffdd01U4HnN87devXol/bkIMgcUGoFat25tdtttt5L+fOENB/3ffvvNCqTwRqMcqyBS9BqKZhEsuXnNBkWHOXPm2BoxgnbEEUfYMQw3iBsNOgz1M/+FlZoDi2H5e1OjI2Ow6aabWgPyzp072+9FMw832uGJxMrV3BIUvGFpJkPUSy2Mo0aNsjVaNthQ90UcqXuK8sJzHkNyDv7t27fXn8ODcL+qQ8DDDz9sO7xOPPHEct8VEQAixZEjR9r0qZ8wEvFdeeWVNn3ep08fW4tL5YEHHrCG43wOf/+ePXuaSZMmrbbyp2nTprYphwt/2MG4gnprKaO2VGHEfq9Nmza2GYookgOHKD+IIs5QHBJFVSSOGcBrk6Hv1MhChBNEj3VjjFscdNBBZq211vL8PCI9tlEwssPMKkPx7voc4kfTAuLKsDSWcj/++KONKp2mBuqPYW/MIUKm8xph9Hs8ii2MZGQQZyJXtkIwRkCjlCgvJ5xwgq0Hc/ATVZE4Zqg3cermBS7CDQLHRZdhfjpK06U6ETZmvRA8Pp+UY+o6KuqTpABZ60RdhnoZkIZy9nfylnlBLvZ0M4cVImCi6FI14ngJowMHTP422Nc988wzJbk/wh/MIHheYJ2Y747bOCJxTAMvYE64EsfwQ1REdOQ00GTCiQCJMokIU8WRjSuMfFxyySXWgJz0Ko0s7hQtTVqIclgvGvxOiDxuOBtuuGFZhdGBxcrMCpPOQyRFeeHvRDe3X+f1xQF33MYRiWMannjiCduIgfemCDdEiieffLLZb7/97Lqpr7/+Ou3nO/Oq7LhbvHjxamk+Ikm6O6lZEo3StPDTTz+ZoUOHmi+//LLy8xBWGhvwWw3jImSM8kmrlsJHNYgwOrDtBJF85JFHIlGzjTMc/siO0HyWq3tYXJE4+oC1Erl4RY3RgVRnNgIJdKISOaZaabHgGLHs2LGjFU+8KM8++2w7SE+HKjhiSPSIuGJgHjamTJli7fEQo7AIowM1X9K9pOuI9kV5oK5OJ7FXavWTgO5hcUXimGbnHW3+nKxEfAWSCIao0EmzOriHo7Hb4n21atVaLfKkPsn7SF+GCQSfKJfMRzFHTXIRRkAYaZriYEFkLp/P8sDzmL8bWTKac3LZcRtXJI4+8GShzkTThYifQDriRlSIk07qxZnuVFKreLHSlMP34GRNFEnEk/r1CA9py7lz59qvCQs0krH9vZg+qrkKowP3j8ibpiaM/UV5IADgNfLee+9l7R4WZ2QC4AMp1RYtWshLNeICCYgbQpnqDkPEglkA+w35//79+1uhY9yAhcdXXHGFGTdunG3K4f1EYLiKeC0IZuyDmg11Sr623BAFUwfF5s5rzjMMwpjawcr9ZI0Y6d9yrtJKKjhIrb/++vaax/Pc7R7WunVrm0r12nEbZySOHtDtyJPh2muvLf1fRJREIBn8xyZwiy22MIcccoiNYkixbrvttvbjRFxkDdxerKSe3ObzjIPssMMOVmiPPPLIks0T+kFdlEi4WBeyQgmjA4/dggULbINOr169Au3WFIWD5ysp7pdfftlcfvnlvu5hb64a6UiKSCZOHPkDZzoFkZICUj4ingLJ2ipu6fAyKffbykLEefvtt9vUVCm6QzPNNtJh3bBhw9ALo/OYMv/I6BS3Vq1aFeS+iuDw/CVbwmiS1zL3iy++eLXOVdKtRJVxJlE1x6AzO5ygGjdubIdkRTK7WLOFCJTOUKebtVzwu2G6Tt201MJIhy8XV+zhvBpsqO3iVUx9lqXLqeC3ussuu9hGOGzmROnFkb+bV2PZmwkd6UiMOGbzB0YcS23SLEorkKnzioWC6If0oPvCX0qofdI9664dFVMYEUWi5jPPPNNGfRw+Bw4cuNohhFk6PGtJ25111lmme/fu9v2pHZKktElvT5gwwY7NiNKBaxR1R659bj5J6EhHYsQx6B/YqTdShxLxE0j8JHED4UL/0UcfFfT708nKz6AxpxzwezH4TwRWyLpnkFQqH2MWlLVv1113nY0QcRZKTZ2SienQoYPp1KmTFUE3fA4ZHb5XuR7DpOKM1niJ43YJHelIjDgG/QM7Tw7VG+MHqT4cbzAMp+uUBpBCCiTCiDBhCECkVI5aoyMwpRRGLqxEivxcxl3oOj3vvPNsdO5E0TTZMDLA6wrjBbfZuwPRC3sn6V4tx2OYZMiW8Rxy/22aJHSkIzHiGPQPjDjiGsELWMQH0nePPvqobZjhIoB/Kn6jhRZIp3bDZo9SQ4kAt5NCPXfzab7BNIHDAhZ7Xt2+7oHzVPBexcSA+qMIR91xQIaF8HEkMeIY9A/MyYntCyJeYKU2depUm/pEPIgeSQMWWiCJnIh8EOFS+q0ySP/LL79UmhSUUxhxHBo9erSdn6P+mSqECCOi6XjZenX/knLdeuut7UGV7yVKV3dkLpZroBc8B0iLxz1iTKQ4ZvoD001HzaaYriKi9PA3ZS8nF9zU8YZiCSSiwALZUjYsMH7E70HWo5zCSORx00032VSrk6lxCyAfcwTTL4LEGMDPEFsUB/4uCGS5O67DQuLEMR0McXNhKEYbvCgPNIaMHTvW1hhZaeWmGALJhX299dYrmd8q0dW8efM8TQtKKYx0mFJ7XLhwoRk0aFDl7ks3jjh6GSo40FCEOQBRjDbVlw6ufRLH/yFxTIEnBRfLnXfeOfXdIqJwsUYYaTBgzMLvQlxogcRujuwDvqzUzkqRMuZ3yNd8IB9hpNkJQWSGkdVe6VxugnbS0iyHFd4LL7wQ+H6I/MWRv+FPSmdLHN3iSLchFxoRfVjiSkRFDTnTBbnQAklqlQt7sRtzEDTqm3SI0ulZLuebm2++2dbxL7jgAnthnT9/vn3sU7ebMNzPkmMiasSUecbHHnvMd+aUCBMzDn6/UhwyxP/EEd59993EPxyKHF3iqJRqPPjss89svYosgJdZeLEFksYGhtrff//9oq5jQjiIjPOJGgthCcdBhHrj+eefb+cYu3TpYs4555zKwwEpVFKkw4YNs41RdNUijhMnTkzrWMTn8fuVo/s3iXDIwq3oHdUdk+et6gcvbObTevToUe67IvKEiykXXroes130i0Di4DJixAgrkE4NMReY6eP7zJw5s2irzxAaDNMRkXJ6pb744otpP05Ku3379vaWDdQtWSuGqxFeuMrqFBc15fw/ihxXwQmf9nJFjtGHiJFUHVZxqXVGDkC8n8Yrd5qOFU9sYWnTpo1dVcZ2jXwjSASL71GsxhyajXB04jmby0LjYpiIFwruG6lZ9jxiyUc0k2+zkQiGmnL+h8RxFVwAuZDmGiWIcIDoIY40czBjl/r3vfrqq82FF15o1yK503QIDZ/PmA/PA5p5CpFixTWGizwiVmiYA0Q0cjnQhVUYGd/goMJyaQ6sjRo1Ml27djW9e/eWOJYITBjmzp1rD5N+OOur4mw+LnFcBTNpzMB5eT6K6EB6D49R97wfkRWjHBg/IIKkXlNn7FhYTDr16KOPtp2WS5YsKUgNEnFEbAvtFYp4c384zGX7nA2bMPJ34HDCrOZTTz1lfvjhB3PYYYfZOUmEkYu131iIKDyUIioqKqxA5rPdKOroGbcKZ8ejiC7M11GbQhjdF1O6HrkB4sgFGJFwUnWpUSbNNIsXL7b/7wjk8OHDc6pBOqNBCNkxxxxTsMMXYsv9J3UcVWFE4LkA0zxFZ++WW25pjjrqKHuI0SG1fDjXwU8++aTKWJvfdqPWrVuX/ZBVaCSOq+CJkGn5rQg3jAkAXaJecAF2/D6JDFPFEZyhdEYiHHEshECy4YVUIR2ARKiFEkcyHXXr1o2cMJL6xu6OVDNmCXTaciOF6jeLKkoHe0k32GADT4endNuNJI4xhEYcTrBcAEU0odGGsQaiDr/mFOfCi/8p4ohYps4/Oh8njZoqjvkKJKua6LicPn26jfRyaZ5JhXlBBKZ58+aREUZeY9ReuYhi08jjQfMTeyfzmc8UhYfXwXbbbWdNLJK8vko1R2PsWh1qUHH8AycFRhp4Uad6p6Y7GTOojjh6sdFGG1URR8inBokRwaJFiwqy5Z7aXJ06dQI7OZVTGDEBIGLG25bHi3oWi46pJ7IFQsIYTrbbbjvPKNFruxEwOhU3JI4pqQKJYzT5+eefraNH0LQckRxf4zec74inlyl2rgKJoTNfm+8wO2LDiZ4IOYgNWzmEkZ+JII4fP94888wzdlsIjU6XXHKJNQigJqyxjGiKI1BfdEPdMW6dq6o5rhJHLlysGhLRo0aNGjYCQTTYI8gLu169elXSl45wMjTPyIAjjk6tkS5X3s+/Mbvmws7nkD5lo0c+KVbuCyMXpFYRi1wjJnYcUjcN4ohTamHk92K8xHHt4XdkdAYrPQ3vR4vtttvOvgY4JLp3cial7ihxNMbWQhBGnWajCZ2NRCVEcTSqEEVyYwh/m222qTTBJlVKIwjzc7zo8QNFaDAlZ/B/3LhxZsyYMVYoaRRB/Gh4Yf9jqjjmKpAHHXSQtVAjejz88MOz/j0RO8SVhiMi17AII48pqV68VHlcSJ1ivI4zEKlrCWP0aNSoUWUt3y2OSak7ShxXjQBk0/UnwgcpRlKX3PDqxJUGEeLCjbix/gjx7N+/v/1b0zVKxEkK1ckYHHfccaZly5a2nhekaSZbgaQDkHEFIis6WLM9jHH/iWwzLTQuhTASZVPn5TEmYkSsmU0konWiYg4gfJzGoXybkERpqbvqesi1kTlTr7pj6kgHs45xihpB4miMbSmXOMYHUqrcsIBjhIJojQs5YnbrrbfaiNKrXocoZku2Aonf6j333GN9fNkAk21KFaFPd0IvtjBy8MBoYc6cOTbCRuyJuvmd3WLPx1577TXb8BakUUqEh80339y+9XN2GjBggK09OvPhcRNGkDiuOh15LcIV0YZ0KqMTuHjQJUrDAFEb6b769evb9J87ZZQL2Qiks1qKyDYbccS0gBQXQ/J+UVixhJHUKA02HDLouMUwge/N44pY+8HIDBC9SxyjRY0aNWzXNtfGpCJxVFo19hDhUDPkRpTjXOgnT55sL/ScfLfYYou8as7ZCCTCQvRFw0M6cUmFRhfE3q8RpxjCyCwlP9dZu8WBolWrVjZ1zcUzyOPO78dh5Igjjsj7/ojSUrduXV9xJI2amlYlzUo0GScSL47UcGjrV1o1GVD3wwmJ5pjZs2fbBh62dBBRkgak2QUz72IKJA1ACDM/mzpnkMjtww8/tHONNAoVUxj5XqR8SeESqSKCjF7wPZ0mjWzg0EFqm8jXiSRFtMXxzYRYyCVeHJ0/vsQxWdClSlqTG6lC0py86PH55CJO+pO6S7Z2ZkEEku5aBAfBoy6aKQrjviGQpDGLJYzMTxJN87P4fxqViPbYQ+ncP35Wakp36dKlVvR4S1RLLdcdfeOEQ1MOtSmJY7SoW7eup0vO008/7fn5vF/iGENx5EUskgmmAHSp0lVJChHzcoSSCz2pWMZBshlHCCKQuMPQHETE6iV6qSBapDSJwgotjIxfMIaBePH78ruSuiWCZvXXZZddZi+QmLEPHDiwcqQFC7iJEyeaKVOmWOtF0tP333//agbuziGEGitRKBGziA5cE/n7JpXER47O0luKzyLZECEhDIxKMPtKxEN9khEK0pm0tLsFKleBpJsWUeb7pxNHOj0xNnC7kuQjjGzD4HcjrUvkR6oZezu+h/M64PtjhsA8JoeGkSNHrhY1ElHzO3Tu3Nmum3rggQd8G4X4njREOWYLIhpstNFGVZaCA25H/fr183x/nEi8OJISAveJVyQXLuDU17jxgufCT1TkRHA43ZBuzGTflkkgiaTwHEXg/Op5NMQQefHz8hVGRJZokHQu34P5TiJYLys6hM5poiHV7N5/yWHB2WLDmAxzj152e0A6lbourzV5qUaHWrVq2RS7+1DjNefo+KvGKa2a+Mlc/vhcCBwXFSFScQ5NNPCQeqWBi4sAKcYnn3zSCk460nmxIrKIkp8nJT+LeUIiVke8shVGPp+GmNtuu80MGjTIfj+6Tc855xzTrVs362TjJ/KO2JFu5ftw8/o4rx8+xuYNL/jdiVap7YroULNmTft3Xb58eSL9VRU5Ll1qnwRK9wgvHMs5BIrojrlJUp1EdNQmSU1Sh6OTlCYWZ08kDT08r9JFkNTjECrqnBzSnM93IFLleemkXbMRRp7X1IuwmyPqI4XLsmXE0Kvj1QvnNcH9Rwjd4pf6cS/xdHB+L8TRb9emCO/B8Ndff63ynElCU47EcelSpVRF2oYVxIX6mgN1xw4dOtjIDgF74oknzKOPPmo7SrmIkDpEMBFEBDOdQOKYQ/2PW+qybYSGUzjfh7RkUGEkBUrqlBofPxMxoo5Ko02uFm6IuJc4pn48nTg6XrUcHET0xHHp0qWB53HjROLF0evELoQDUSJzj16pRy74NKwgnESXdGRit4WIMCeISJK+dL7WTyCp/ZH6pP7nQPcoz02agzIJIylL6n6IKTO72ODh3crn0WyTL8799xPHTJGj8z3wYBXRoeaq6yLPwyQ25SReHBU5inQwppCpk7lx48b2BkRHpDMdgwGiJlKZ1BfphvUSSOqZNPxQD3RAXPm5GKb7CSNjSESJDO0T2WFiwMWJFG8hN8w4Yyx+4sfHM5UlOEhgRC6iGTm6SYL5eOA8Cy9mHqzU7emcKDgRpp54gXoMLxYuLGFHkaPwA8s0LN6CGpLTnEP0yMUEsWzbtq0Vrccff9w28DAXyNiDu0mHz+GU7ixCpvMTMaSLFJPyVGHk9cfnDRkyxAwdOtSmTxHfnj17mi5dutivKZQwMsuIyHMDulyps5K6BX5Xum2ff/55e78efPBBe3+Jgr3EkahWxCNy9MKvW7kcdOzY0WqQ+4Y3ccEjR9I0PEgU+J0GAU63uIiQzuEFjfMHcJolVeTegRdGqCc591uIVJgBJGUZxJyclCO7IPFMJUKkIYd6H119RHgcGHnt4EBDYw/p0q5du5oRI0aY8ePH24FrRAfh5OfyMxm+J02LMOL/irhiGoBo8/nHH3+82XPPPQP5nOYCokh0QE2Rg/FDDz1kLzBEp9QwSSUjiLx+EGU+H2FOrc860A3O4+B22RHhZZ1V10Wu7VG0kEMIR48evdr7snmtBBZHXuzYCfEid8SR/+cFygWBFJITQfJ+xDQK8GLVkmPhBZEOEVGQGVieQ+edd57p1auX/ToyLTjgYA+HMPCaadOmjW3g4cKC0BA5YiNHqzxRGG8RPiJPRJL1UNjbsbgZYeSFTUTKxYcUarEhIuW17QfmANyCXmh5LLnQBu2WFeVljVWHGK90ehS6VXm9OKu3il5zRPCICtm6Dvw/J0tOzfw/4sgLnBc/zhlRQCdZ4QdCRaqIyCkIlBh4LfCiJMtCOnTs2LE2ykPciLjYakGHKiUHbNtopEFYSWHy2uH5SBcsTUD8bMY8qD0iQkSbUTWrcC60fk09IlrimASyFkdOxpwAeSGT4uGFzkWEkzJQkyBVmWvkyPcuZe6an8fFid9BiFR4jnMxZ2FvasMJtUXSrX6HLD5GypF/EzEyisFrhRQqc5OO4QTRFOlJ6oZ8DREjN4TS6ZAlgiTS4vtxiyr8frzGGHlJjRzJSBE9i/Dx96qDjPO3S4WymZdxCu/P91rK9bgQqXdMOtyTCJdeeqm9FVwciQx54VI3oSuPOghzXAhkp06dbMqElCru/DxIuUAKqZQLNmm44A8xadKkkv1MER1x5EKe6i/JcxyhQ7icdDzCiBcrYxOOowiHLuqGdGgywsCFhK+lLpd6UeEgSKTI9yNC5f8RYi5IfD6fG7QhIuzwO5Jhcg4aToR8wgknlPuuCQ+Wr3LG4fnuXuNGNoN6sxf5XkvJkBRiEQQB2rBhw1Z7H6WMoGQljpxy8ZbkCY44IorAL8JgNPUUPpY6zJwtNBiUMnK866677FvcQ4RwQ50wFeqJ1113nR3NcF7ACGL//v1tqhRRpCGFPY2kUZ0xB06xNNwwG4bgIQzMMpJ65XDGaZt/8/+IIulT5iSd0zt1HIb5s9kOEnYwXee1rtdeOPl5VXcxz3X334jmssMOO6zK17CnlFp1PhSqBwRBR7NKNueIGhMdIo4XXnhh5fuZ1aIYS5t59+7dc79DAes7hYKfxwUtk4m0EECaxnnOOC9i3l555ZW+DxDdp5yy27VrZ9OmXFh4HyMimHsTmVKnRwgRRCeViqhiW0fk+Nxzz9mRCRp0yOBgBxcHeN3ptRdO1lz1/Ob56GVM7+W5yvvj8vfMSRzPPfdce9J1Ikfg/3v06GHTQVHpVE01TRYiCNQJEbVsBtqZR6RrjigJEaTTlJM4QofgIZYIIRcbUrM8JxFgPo/ZwhNPPNGantMRjnE5aS6iVtZM4c0a1tEIxD5dFMC1IqoNRklg5arrotfziyyHF7w/LN2q9L4wV5wKr6ugS7dzEkdexDh3pJ5eEUdOxc7IR1TgVCTnDpENCBOeq+lACMmu0KiGoDHyRHaFlJMzhoEnK+LIjCBv8a/k0IlgUKekhEHnK3OQCCQzZIgqYkpKkvdjMEDai9dfKdZBkfKlqYjXDK//1AsNYx/PPvtsZXqZUsvJJ59szdq9RJLrSJAZUlE+cQGvVD79Jl74vb8cPPPMM1W0CH1KdaIqqDgywOxVE2zYsGGoHBKCwoWIbkEhguJ4oXot7yVaojmHAX5s3RjFoPxAVsWJkvi6VGEkDbVgwQI77M94B9EpjW5EiIxKsU8SIQSEkIiRXZA8byljIJbU+xFdUq7FukAhegxV85YNG/xOjKY4jwGHY3oGcAai8YHfhXTz4MGD7e/phoOA9juGl3S7bsNuH4dTE7d8SLy3KjWkuHQDitKJIyknojvH2JvnkGM+TuoGdxz8Uunq4zmGXRwRJM04NPkgoAgGDQNYyBFZEVUiKE7HnjO+Qa2SeclUgSTVxddy436QrkWwES8Eh4sUAlpo9ydMCM4880x7ISSKTDXRIKvEz3OMyOlaJ5LkkOAljkQmMv0PL7+uui76/Y0GDBhgsxmkUjmQhUUYC0XixZFTkZexrhB+kCUhHUjkRioUAaOpBiHEsgpho1OOjRzUBHHDYfvG6aefbgWBryPCQtjoWkU8+LzUZjTSP3xvLBqpTXoJpANiiEkAXeIzZ860kSQpTjoHmSEkmvSydMsW7CAdS0h+f5qKUrNFqVEg4s3IlyPiboiwg7oPifBFjg4IYtxE0UHiKHEUWUJkhDhR0yBSRDCoKSJiqfUZoifEg5QpAkp9kNEN6oaOYJAWpfbmNu8nVbnHHnvYyAvhJU2ZTiCBCI4IjRvzuzTw0NCDjR31QSJJviafjnAEja9HHGn1R+ScfY/cZwTzlltuqTRO4EBAx60bfmeEU5Fj+MWxZkJX+iVeHJ20qlf9SAg/iNIQCISRxhmv5w5CghsHaVNSkDzHSDtSayPtytdQVyRN6zWczFwjaVZGp0hfUZvMJJAORJ3MWuLtys+ggYcNGgxoE6UixkG3jaTi/J5EyQiw2w6O6JFF0KeeeqpNHVMvpXkH39lUEFZ+n6Cdg6J8adVaPpEjqfy4plQh8eLIH54XuONGIkQQEAF3tOeGSI5OTbpbadAhoiMKvOKKK2znKuKEwJx22mmeX8+sIzU+mnoQOiK0bAQS6HbFwo4bUSsXNL4fESuizP3gZ2Q7DkLDEL+TYxXmiCaRM8LPQYDvy8+nMQJx5n46h1AeB1LPuQi0KF3kWK1aNU+jeGrOqc04NOdQg4wTsRfHTKeb1IWeEkdRaBBIujtJkZJKdfxaEREECoGgHukHz1kabVJXxWUrkKmd5tyICPjZRJQ0DXEfiFKbNm1axSYsnTjyfRxxdGdenEYdRDd1LZzzOYijX8QtwsHSpUttZs39N4rCuqpCEM7p4QLB6YYLCnUP3vJvN86cVap/phD5kjquQS2SgfennnrK2syddNJJdv4KOzk6VNNFbTT/ICKMaqTiCCSNOwgkkVlQuOCRFj7//PNtCpTvP2XKFHP99ddXLlf2w7mv1DAdD1ngAkoUTBMQosnHEHScgZh3dB8ASKvm6r8sSsOPP/7oOYeazgAgTsQ2cgx6unGGRDE7x9hAiHxxzzEiJMz7MTzvOOFgtYiwMLOYCaLCxx57zHz11VdWaBxyjSBThY5uVm7cNyflinEBtUAOlG4/Vy6YXATpiiWyuO222+z9IH1MdIwYsn2E8RIurESjbGVPhRIG0SSiLMLLwoULPQ1domAAUAhiK45B7Y1SxVGIQguj05V600032TQjEdPAgQNtpyvCEaQTkLEPIjIac4j0UslXIB1osKGLlpEQBJJIFAHH03XnnXe2M4ykUhFFjNcRfIQTsaf+ytdzu+yyy+x9olzhzIC6IcKkFilxDDcLFy703I4RdgOAQhFbcQx6uuFFzAVK4iiKJYyAMFJrRDBIMVLvCyoOiA0CRWRH1OUe7M9XIBFs6qJff/21rbtjRUe6lxEUfibmBayS4/4S6TJe4pcKdqzx0kEEzPdSM064WbhwoR3/CUIU3dESW3N0Tjep+J1uiB4ljqJYwujU5RyBZECfzycVGRRSnERpU6dO9fx4rjVIhJG5xNtvv91GihMnTrSRIXtbETDcfC644AIbVfJ7PPzww/bj1E9zcZbi9yZyROxFNNOqb/qUrHh/nIht5JiNvRGpg2+++abk90/EXxipL44aNcqONVCvIy2JLymrqlJdazLN2TK3iB0bg/0003h9bi4RJMtgacBhvIROVqK63r17W8MCzM75nrTyM/JB1EgTEZ2uXAgZ9Oc+kXINujcPkwBAxEV4WbFihT3EeKVVo7CRoxDEWhyD2hspchTFEEagmYVmFyzk+H/SkayvIl3FAmQcdqjfEaG5U1N8Had3bqQ4idS4sVUAsfUiW4EkvXvKKadYYaSjloYfxA7zAdKrqRdH7juHTG4M9jsNPCNHjrQNPCeccIL9PunWVCG+GB6kNhaJ8LFo0SL7Vg05CYcnABcJIbKFVKSfMLoXIZOq7NKli90xR1MOjSwIoyMUTjSISGL5RvRGxyc1cZph6AalyxO/VT9xzFYgqftRb0QYna5UhJgoAHH2ihyA+4X7zuGHH14p8kTFiCXjJwiol7MKQk86Oaw7KMX/WLiqQdFLHNWQkyC4OPHiZnBZL1qRDc5MINFgJjiAIYCkFBmX8MPpAEVg3J/3wgsv2M5VIrd0uxCDCiTpXT7Oz+HnIYqION8bEWdGMx28ZqhFduvWzX5/Zhtff/1127SD8PK7IrC8rkgrI+6MjohwM3/+fPvWL8KnXOWYphx99NGxSqcmJq0aBC4K1Ibo1lO6R2QDHqKkFYkeSUN6eaQ6IkKTDB9nBhBDcJphiNbY4uGuITIWQQoVdxyiOj7OSAfjE0SODO1jKZeOIALJRQ4hZI6SjlQiYOqLCDCviUyQ4nUcdpxo0tkOgkjyO3OjNomgc4jAXk6Em08++cQebngeZrKO43kicYypjZwz3sHHJY4iG7iAEDWNGTPGdqESFZHydIsda6qo45AaRUhvvPFGO9bByirSseeee+5qow1clOhspamMz2OEg+cpP4toDCFr2bJlxkxHEIFEzLg5INx8bqbXAlEgrxkih9Qolp/J74nBOY1uNPCwvgqxZ3tJupqkCAefrLpWJtU6LjGRYyaTXJoIMHXmCXHYYYeV6V6KqEJtjWXGiB43MhBcKFL3G3JRYfCd5xcCisCRlkLkeG4iRmeccUbl51O369mzp42yqDkSfWEkgIBieE5kRpo2yDxjJoEkMkWwuH3//ff284jwELh0XbSIKKJIpOkFX0dHbqtWrWxESTOOsw9ShBtHHL3e7/f5EseIEeSkw8WDtE/cvAFF6eBwRQSFmJGixFmGiBAhJOrjucVgvWP+7aRacck59thjrdiljhNRp3MiNz6PMQqiT6IwmmAQL2Yegw77+wkkkSsjGdQDEULuB+8jkgU/YaQuSb2VLtsgLj+Mg2h8Izp88skndrbVDQcpL/zeH2Vi3zIW1CTXaUYQIh8QRHYXMtZAGpUxD/YocvGgJpmKM7qB0FGH9LvAOJ9H56CzCQNhQ0xpmgmKl1EA0axjLsAMJaJMxJpJyGi8cRYoi3hBl/LixYs9I8dUn90g748ysU+rBrWR499cyITIFy4URHdkJmhKGTJkiDW1d9Ks1BKdNCZiR4MNIuV+TqZ+nhPh8f8IFwJJjRO/VeYUg+IVQeKnyi0opEeJNM8880x7v0W8YE+n37UzSZFj7MUx6EwOTwTSVqnzXkLkW4ukdkidzYka6exjawUjEnSrksYkauzUqVOVZpe7777bdo8ioNT3mD1jw4UjmI5Ha7bP2Xy8WLlfRI18fqYxDxFNnAzaNh5zu5QMvIjjNTP24hjURo7aECd1WtN33XXXstxPEc+aN403OMg4FxHSrYxoYCBOREkHp/s5Rw2Tzxs9erQVM6JFZ5bQgWF6UqOkQ/2aYgotkPw+NAWRNtai4njywQcf2EOdu5bM3x5P3SSsq0qMOAaxkaPtnBc7FxuJoygEpB5xjEl1syHiu+GGGzJ+LZ/H8uF0UIPkIpaLOOYikB9//HFlOjW1E1fEC66Be3k8D/x6Mlq0aBG7TtVENORkkwLj9ENrvRCFgPQjKU+nO7UYYCCAYGEBlwtBt3nQ+ENEQS1V6dT4Qmc018C9PMTRLzrEtD6OSBxT4AkRdNWPEOmgYYZmnAYNGtgUabFg9RNpThxzcoVmH9x2/ASSmqczNsK4iogv9F1QA9/LQxyzWQMYBxKTVg0CTwgKznhFFvOCJuIPC4IZqMe7tJgQ+dG0gzgiYql1Iv7N2iEaf4heHQceotlHH33UvPTSS7bzlBQpzRfU5SE1xYrI0xFL+pauWLnbxBvnYLTnnnsm1lPVQQqQAhcDuglpytEyVpEPDOsjXDTdFBtqmkR2jIQ4kR2psfvvv9+KHzNrV199dWVdEsFjLATzAVxwSKXRGcsSYxqAWHiMQNKghh8q3qmnn366HeQX8RdHzCc22WSTxHqqOiitmgIXClBqVeQLkRbZB9ZOIVqsgSrULBimAEuXLrUNMs8884z1LWV433G5ATxXqUdyMWMWkREMB0SONVo4oNSvX9+mfi+44AKbTmNcxKlBTpgwwUadNOCwbFkktxnnTR+nMd4fVxQ5puCsCeIJkupzKUS24CX6r3/9y3arIl5EcggUwsRmDm74knJLN0iP2JEeJYLjRhTIW6I60ltkOEiBMSJyxx132PEPHHfovuYGfN4PP/xQuZKNrmzcbVJBvLlvfNxp0iGC5N9xHPAW/s04ffr0SbSnqoPE0QUXNFJOQuQL2zRIZR544IE2qmNnKDc6S2l8QCxJcTpD/Y4Q4VtKxImIUf/mLYJFepMoD59V3pL+cuo/iCh1RaJJZ7ekUztHgPn5XvtKnfc98MADNnOCUTjw86gvvfLKK2bUqFGmc+fOnkPhIj7MmjXLHry4BubqNBYnJI4u2Hhw3333mSVLlqy2QkiIXEHcWEHFzUndI1xEgTTtkLrk39yIBD/77DPrqEO9kogQAwFqQGQ2/AbveT+mADx36T4lCnQ+l69HHIk2UxvNHHu6hx56yJqI05JPQ4+ziYOPcT8kkMmAxisORV5+uU0COo3FiWoVTpFCWObNm2c3dGAWnWmZrBCFhkhy0qRJth7IhSob2P5BUw1iSErVET9WXZE25WNON6vzMRp5hg4dat13WKfl1anN5yKQfEwRZHw58cQTbVqeGnkue3HjhhpyXJCaImXFKUqIKEGkyQWLAx6C5kCalXQZ4pYqjKR3qVPicOLsMfUaYXIiSD5GijVXwwERXkivcwAic5aOJk2amA4dOsReGEHi6IJ00iGHHGJnwISIGnSoImZEik5alU5W6phEpeAsNSZi5DDI+AcG5nS+4p1JA5AbvoZ9lKSC8YUV8as30rSVSRyThGqOHvAEuffee22dhq5CIaICUSJm5qS+qDsys4vtG6LWv39/K5hEiTTesBEE8GYl3UpzDyMc1C7dMDrCiiyacg499NAy/GaiFPVGr799UpE4+ogjpVhy72xMECJK0G2IIFIfuuWWW2xXK9kQ0q6IJwLHHOaDDz5om84yrRvCV3XatGk2ymTmkS5cET9xJFXqZ/TwZoJqjQ4SRw+4CHDx4KQscRRRg/VrzDEies8995zv57lnHb1gNIRdkgyGn3zyyXLJiSHUoBHHs88+2/PjF7uccehaZQ1g3FHN0YejjjrK1l/UzCuiBo0zpMewjnPqjLlcMEm3zp4929YkZR8Xb6tD0u5epvJvJtAZx0Hi6ANjHHTlcXEQImrQPEMNEbOBbKEhZ/LkyXbWl85EulllOB5fMJxg/Mdr+P+TNM44cUfi6ANNB+Tfn3jiidL+RYQoALjisK0DQ4Gg2Q8+j8+na5W64jnnnJN2+bGIB1zj/A5A2yXQGcdB4ugDzQusG+JUJUQUoXECOzrGNoJEi9TY6WCleee8886zdXcRb8iOsV7Nz/CkScJ2OKaihpw08IShO4+Li9cKFyHCDF2pdKoyzuG3VYPaIh/nxjwkhuOMgojkRI00bqXbOzpgwADrs6tuVVEJqQagMadjx456ZESkcPxWGdlg955jUu44olCPJFJkKwgXx+bNm5dk/6QIlzhSQkpdku1FkyZNEhEtpqK0aho4bVOkVt1RRBWMzjEsp5bo1BXZDIJ/K64oPL8vvPBCu/hYwpgsaLjCMk4e0t4orZoB5hyvueYaa7/FyiAhogRNZXSuTpkyxYofqTHGO2jWIVp0VlSJ5PHkk0/atDoHI1EVRY4ZYPCZFUBs6RAiiuy777529pG6IqJIsw1lAgljshk7dqzdNVq/fv1y35VQopVVAeAJVKtWLZuKEiKsK6v8IJX69ddf25ojOyWFwBKQw9GwYcNM165dqzwgbybQLs6NIscA0MGHDdd3331X/L+IEEVozCE6kDAKh3Hjxtm5RnY4umFU41//+pd1ReIt/04iEscAtG3b1qyxxhr2CSWEEFHn/vvvt9347q1DSbaLcyNxDAAnbnwHeUIJIUSUwUx++vTpNiPmJsl2cW4kjgFp3769Nej99NNPg36JEEKEshGH8Z6WLVtW+ViS7eLcSBwDwhOJJ5SiRyFEVKE5C3GkVOQ110rzDYFAEu3i3EgcA0Kn30knnWRGjx5tZ4OEECJqvPTSS9YZiWYbLxDC1ACgQ4cO5sYbbzRJROKYBSwDZUfe008/Xby/iBBCFInhw4ebxo0b2/E0N17NOPfdd1+VZhz+7fX+uCFxzALW93DjCSaEEFFi0aJF5rHHHjPdunWz4z1urr322ozNOBcnaMxD4phD9MiQ9vz584vzFxFCiCIwcuRI65TklVIlCmTBQrpmnDcTNuYhccySU0891Tbm4CwhhBBR4K+//rIZL65fderUCTyq0aJFi8pmnKSNeUgcswTz8c6dO5u7777brgESQoiww9J2+iV69uzp+fHnn3/e8/1XXHFFYsc8JI45cM4555gff/zRPPTQQ4X/iwghRIG57bbbTNOmTe0KMzdOg42bDh06rDbCwf9fdNFFiRnz0MqqHDes45gzePBgu93Aq7gthBBh4P3337cjHCy99sKvEad58+ZV3jdgwADTunXrRJiSK3LMERbEfvjhh9rUIYQINf379zdbbrmlp8l4kEYcNwiiO6qMIxLHHGnWrJltZeaJJ4QQYeSzzz4zjzzyiD3M06maSyNOUpE45gip1EsvvdRMnTrVvPrqq4X9qwghRAFg1GKTTTYxnTp1yio6vCKlESepSBzzgNPVzjvvrOhRCBE6vvnmGzNmzBjTu3dvTx/V1OtYUppsskHimAfseLzkkkusndyMGTPy+VZCCFFQbr75ZrPeeutZ4xIvHLcbp+aISL7xxhuJ9VJ1I3HMk5NPPtkWu/WEEkKEBUbNGPo/99xzrWmJGy+3G7/GnKQiccwTitwUuyl6z5kzpzB/FSGEyIOhQ4ealStXmvPOO8/z40lzu8kFiWMBoNhdv359FbGFEGXnu+++sylVokaacbxImttNLkgcCwDF7n79+pnx48ebt99+uxDfUgghcuK6664za665punbt6/nx0mpEiFqqXF6qlWwGlrkDQuQd9ttN7PZZpuZF154Qa45IidWrFhhjSWOOeYYs9Zaa+lRFFnBIuMddtjBHta9xJEmnNRaI8P8OOHE3e0mFxQ5FghOajfccIN58cUXfU18hRCimFx55ZVm44039qw1+i0zljB6I3EsIMcee6w192W8g2K4EEKU0kP1gQcesALJCIcbNeFkh8SxwK45jHS899575uGHHy7ktxZCiLSQRmUpwplnnun5cTXhZIfEscAccMABpmXLlubyyy83f/zxR6G/vRBCVIGtG5iR0IzjV6tO2sqpfFFDThGYPXu22XXXXW1RHP9VIYKihhyRy3OGPY0M+7/22mvWuSsdTreqao3p0T7HItC4cWPTq1cve4pr166dadiwYTF+jBBC2EXGHMinT5+eURiBSFHRYmaUVi0SFMXr1KljTX+FEKIYLFy40Fx11VWme/fuNnoUhUPiWCRq1aplBg0aZCZMmGCeffbZYv0YIUSCwboSE5Jrr7223Hcldkgci2xKfsghh5iePXuqOUcIUVCmTJlixo4dawYMGGCzVKKwSByLPNpx6623mnnz5tkoUgghCtWEg3cqK6fOOOMMPahFQOJYZHbaaSfrVkFzDtZOQghRiK0bs2bNMrfffnugJhyRPXpUSwAFczxXO3fuLOccIURefPzxx3YDEIfuPffcU49mkZA4lqg5Z+TIkeaVV14xd9xxRyl+pBAipgsOWJG3xRZb2GyU3xwjnqm8FbkjcSwRhx56qG23xpFi7ty5pfqxQogYMXjwYPPGG2+Y0aNHe/qncn2hDnn66afbt/xb5IYcckrIr7/+anbZZRfToEEDa/ekWoFwI4cc4cecOXPM7rvvbnr06GFuuummKh8nUkQQ3SCmGvrPHkWOJaRmzZr2xEcLNoV0IYTIJp3aqFEj35lGP8MRv20cIj0SxxJz8MEH2xZs1lp99tlnpf7xQogIcvPNN5u33nrLHq7XXXfdKh8njTpt2rSstnGI9EgcywBrrTbffHPTvn17m0YTQgg/WIHHlh8iw/3228+3AceLFi1aKKWaIxLHMqVXH3zwQfPOO++Yyy67rBx3QQgRAZYuXWpOOukks/POO/t2p6ZLmzLyIXJD4lgm9t13XxtBDhw40EyaNKlcd0MIEVIqKipMt27dzKJFi8y4ceNMjRo1skqbdujQQVFjHkgcy8j5559v0x7UCxYsWFDOuyKECBmjRo2yGaYRI0aYbbbZxvfzvJYYI4z33ntvCe5lfNEoR5n54YcfbHv21ltvbSZPnmyqV9eKzSSjUQ4BM2fOtNkl+hIQxyBLi7XEuLBIHEPAq6++artYKbr369ev3HdHlBGJo1i2bJkVRuagETy/Yf///Oc/lf8mcmQ7hygcSquGgAMPPNBcc801dn7pueeeK/fdEUKUsc54zjnnmC+++MLWGb2EEcFMFUbg37KLKywSx5DA3ONRRx1ld0B++umn5b47QogyMGTIEFsrvPPOO82OO+6YVXeqhv0Li8QxJKy55prmgQcesNs7jjvuOPPzzz+X+y4JIUrIs88+ay644AJz4YUX2lqjH37dqRr2LywSxxBRu3Zt8/jjj5uFCxea0047zVpGCSHiD1EfWaMjjzzS9O/fP+3nenWnUoOUf2phUUNOSE+QxxxzjD1FqsieLNSQkzx++umnSsNw6oYbbLBBoK9Td2px0dxACOH0iOs+dlFs8UiXYhFCRBeyQ6eeeqod9M9GGIFIUdFi8ZA4hpRevXqZDz74wHTp0sUOAHutohFCRBvSo3SoP/3006oZhgzVHENKtWrVzPDhw83ee+9tWrZsaXe5CSHitWmDGwuMjzjiiHLfHeFC4hhi8FKkQYcNHqRav/7663LfJSFEARg7dqzp06ePbaT597//rcc0hEgcQ86GG25onnnmGTsczBzkkiVLyn2XhBB5Ntx17NjRnHHGGRk7U0X5kDhGgPr169sX1DfffGNnIJcvX17uuySEyIG3337btGnTxmaC7rrrLls+EeFE4hgRGjdubJ566im7A/KUU04xf/31V7nvkhAiy1lGRrToQH/44YfNWmutpccvxEgcIwQdq+PHj7ciyZ63lStXlvsuCSECQL8A0eImm2xinnzySU/PVBEuJI4Rg5Pn6NGj7a1Hjx62FimECC+UQw455BB7mKU8stFGG5X7LokAaM4xgrDI9M8//7QzkKRmMCtW7UKI8PHtt9+aQw891PYJvPLKK2aLLbYo910SAZE4RpQzzzzTumuQXmXvG/NSEkghwieMS5cutcK41VZblfsuiSyQOEaYrl27WoFk/xtvhw4dKoEUIiSpVEcYX3rpJety5YX8UcOLxDHidO/e3a67IoKkg/W2226zkaQQojwsWLBgtVSqnzBiAJC6tBgrOS0aCA8Sx5hEkNWrV7c1yN9//92MGDHC/lsIUVrmzp1rreA4qKZLpRIxpgoj8O/WrVvLTDwkKMSICZ07dzb33XefvbVq1cr89ttv5b5LQiSK9957z+y///72YJqpxsjMYzbvF6VH4hgj2rVrZ5544gnz4osvmubNm5sff/yx3HdJiETAa65Zs2amYcOG5rXXXjONGjVK+/nbbbddVu8XpUfiGDPwX+WF+vHHH5sDDzzQfPXVV+W+S0LEGtxujj76aBs18tpj0N8vlUpmh7fsYaTG6K5Baj9jeFBhKobwAps6daqtffCCZV8c9nNCiMJy++23m549e5rTTjvNjBo1yqy99tpZNd9QYySVSsQoYQwX1SpksRJryyoiSd6y+uqAAw4o910SGVixYoWZNGmSdUKS92Z4we3myiuvNNdff73p3bu3GThwoG+XOJGi17LyN954Q4IYYpRWjTH16tUzr776qtl1111tazknWyFEfvz666+mbdu25oYbbrCiOGjQoLTCiNWjF2q+CTdKq8ac2rVr27QqqR9cdT788EP7gtaohxDZ88UXX5jjjz/efP7552bixIl2hZwf1CHZxeqHmm/CjcQxAVAHGT58uNltt93s1vGPPvrIjBs3ztSpU6fcd02IyEAWhhrh+uuvb1OiO+20k+/nMsYxb94834+r+Sb8KK2aEPBdxWaOKJKdkPvuu6+ZPXt2ue+WEJGAxcSUJtjF+NZbb6UVRiJGP2HEyQphvfHGG4t4b0UhkDgmDF7gbCOvUaOGbRJgt5wQwhu237AaDheqs88+O+PKKWqM6VKpnTp1UhNORJA4JhBSPq+//rrdMXfsscfatnK6JIUQ/w91RTq8sWOkLHHrrbdm7CBO12RD57jGNaKDxDGh1KpVy0yYMMHcdNNNZvDgwdYwgGYDIYQx48ePN3vssYdZvHixmTZtmk2HBsGvyWbLLbc0Tz/9tB7aCCFxTDC0n/fp08faXS1atMheDBBMIZIKxv3U5hnVINJ79913zd57753R8cbBy/mGGiRRqIgYmAAIsWTJkoo2bdpU8JTo0aNHxfLly/WglIE///yzYuLEifatKC1z5syp2HXXXStq1KhRMXz48IqVK1f6fu5FF11kXyvOjX+n8sYbb1Tce++99q2IJnLIEakHJTNs2DBz/vnn2248TsXpuvJE4ZFDTnme9wzqM+ZUv35965WKcYYfcrxJBkqriirjHrz4SS/tueeepn///nY3nRBxXUyMVR8GGSeddJKZPn16WmEErZtKBhJHUYXdd9/d1lp69eplLr/8cmtePmvWLD1SInbR4s4772zef/99O9KEvWLNmjV9v8apMTLe4YUcb+KFxFF4ss4669itAWz3WLp0qW3W4d+KIkXUwYi/ZcuWdkE4VnA4RrVo0SLt1+Bow1zw6aefbrp06WJNNNwf15hGvFDNUWRk+fLl5qqrrrIGy3TuceLecccd9cgVAdUcixstjhkzxmZE1ltvPXPnnXfaOd9M+NUY7777bmvNqHVT8USRo8jIuuuua3fRMfLx008/2bRr3759zbJly/ToiUhAdIg7FA41mIXPnDkzkDCmqzEijB06dFDEGFMkjiIw++23n5kxY4a57LLLzJAhQ8wOO+xgh6W1ElSEFUoCF1xwgT3Q0XzDIP69995rNtxww8Dfw6+WqBpjvJE4iqyjSFKsnMSpQzIsfcQRR5g5c+bokRShgQPbgw8+aLbffntzxx13mH79+tlokcF+P7yG+v0G+1VjTADlHrQU0ebJJ5+s2GqrrSrWWmutiosvvrhi6dKl5b5LkUYmAPkzc+bMimbNmtnhfIwt5s+fn/FrMg31gwb7k4XEUeQNbjr9+vWrWGeddSrq1q1bMWzYMDm85IjEMXcWLFhQ0bVr14o111yzYrvttqt49tlnA30dopcqjM5N7jbJRmlVUZCxjyuvvNLuhzzssMOskQDOOjiNqB4pis2SJUvMJZdcYrbZZhtbA6d57IMPPrDp/iBoqF94IXEUBaNRo0a2ZvPee+/ZC9XJJ59s9tlnH/PCCy/oURZFGTFCCLfeemu7TorGGwy+e/fubfeVpiO1vqiGG+GFxFEUnN12281MmjTJvPzyy3b/XfPmze2NJctCFGIWlBnDbbfd1nZOn3rqqWbu3Lnm2muvNRtssEHGr08d6Octm2jUcCPcyARAFBXSqv/973/NpZdeatOuiCQzkgcffLD1chWrIxMAf3777TczcuRIu4P0yy+/NKeccooVRLIUQUlnGu6kWDXUL0CRoygqCOAJJ5xgPvzwQ/PQQw+Z7777zg5jMzOJaK5cuVJ/AZEWjCeuv/56m7ZnYwyLuakpMqqRThi9RjPS1RcZ2dBQv3CQOIqSsOaaa9oaJPXIp556yqZbEU02INx///3ybBVV+Pbbb20KtEGDBjZCPPHEE62I8XzZZZdd0j5iiFxq6pTvA6ovisCUu11WJJdXX3214phjjrFt8w0bNqwYOHBgxeLFiyuSjEY5KipmzJhRceaZZ9qlw7Vq1bIzhwsXLgz8GHbo0CHtaIZ7ppH5XCHcqOYoigKprKD1G1YGYWo+btw4G2G2a9fOnHvuudbyK2kktebIGqiJEyfarlM8fOvVq2dHgrjVrl0775oiYBtHROl8nuqLIi1V5FKIPAniNuLFokWLKq677rqKevXq2a9r0qRJxejRoyuWLVuWmL9J0iLHzz//vKJv374Vm222mf2b42wzfvz4ihUrVuT0/e69917PqFFD/SJbFDmKglKI9T7sjGT57PDhw82zzz5rIwfa9du3b28beeLc5ZqEyPHXX3+1USLNMs8//7xZf/31bW2wa9eudvlwMZ5/RIxEjkIEJms5FSLHk7tzoyYUlLlz51ZccsklFfXr17dfi4/r5ZdfXjF79uxY/h3iGjkSCU6aNKmiXbt2Feutt579Wx5wwAEVI0eOLHhmwJ25yOb5JoSDIkdRUNLVfFIhCiRyCAojH1OmTDFjx441jzzyiPn555/t4mXqk8y7bb755iYOxClyZMYV4wf+Zs4YT+PGje3f/rTTTrOjGUHJtkaomqLIm0qZFKJIJ/dC14AwOn/00UcrWrVqVbH22mtXVKtWraJp06YVN954Y8WsWbMqVq5cGdm/ZdQjx99//90afvfo0aOiQYMG9u+MGX2fPn0q3n333Zz+NrnWsIXIB0WOoig4J3e6ELt06ZKxezAf02nqV48//rh57rnnrIsKXptse2fT+wEHHBCpCCyKkePixYvtfeZvQI2YBcMNGza0jz+zrLgh0YWcC+kcbYJEkELkSvWcv1KINHDhci5er7zyimcKtRCb1OvUqWM6depkb7///rt58cUX7UWasZDBgwfbZh62MxxyyCH2Is3y2zg39JQCHmdEC+9cTOWnTZtm09777ruvHbZHFBnSL8TjnMnRRohiIXEURYcIkfoTzibF3KTO6iwiLm7Dhg0z7777bmVE2aNHD/P333/b2iQi6dwQaIllev74449KMXzppZfM66+/bt/HweSggw4yd955p2nRooWpW7du1n+zTLVBOdqIcqG0qigZ+TRJ5NtgQaqPCMe5wE+fPt2KJRf0/fff3+y5555mr732sreNN97YJDWtSgT42WefmXfeecfeeJx47IkWicKbNWtWebDA+m+NNXJ3oOSAxMopBzZjDBgwIOPn8e8bb7wx558rRBAkjiL0eF1EW7dunbdYTp061YolF3+izF9++cV+DC9PRyi5sbgZx5Z8hCCM4kj0hxDOmDGjUgzxvuWxAbpJ+f2bNm1aKYa51g7zrSWq+1SUGomjiPxoiF/EkW3ExE5ARNIRCv6fjRCw7rrr2v2BiLH7tuGGGxYsNVtocSQ6Zr0TB4nU26effmq++OILm+6GrbbaarXomf/faKONTLGgBs3gfzGatIQoBKo5ilDj15CRClElkSQRR64RBlEh4seN7SGAcMybN8/uoUwVFi7gCxYsqPxahJP0LLd//vOflf/v3KjN1apVy9SsWbPyba4RGNEekR0uM7zl9v3335uFCxeudvvmm2/s20WLFlWuBcOhiBVPPDZt27a1b/l9aZ7hPpYS1RJF2FHkKGJhKoBgzZw5M1ANqxAsW7bMpiSJwBDKVEFyboyZ+IGgOkKJaCHOzo307j/+8Q8ratyWL19eKYhEll4gtptttpmnSJMeRYxIFxcqLVqIdKdqiSLMSBxF6HFfRL3Au9VrnrKc83CIGjsJcfNxR3up/4+XrCOEiB9pUNKc1atXt+naVCHlrTsKpYFok002KbjwFaqhJh2qJYqwInEUkSD1IjphwoQq3Ys0zcShhlXubtWgIqbhfBF3VHMUkTMV4K27W5WLtReFMBpIOl4Rot/2DA3ni7hQ/N50IYoAgkhEmCqYXLRTKYbRQNLg0OFOafNvbAG90GFExAVFjiJSpKtRUe/Kd/6x0Pcprt3CNBFxGHGnt+P2+4vkInEUkSFIA0hq+jUs9ynKoptu5ILIvRyHESFKQl47PYQoEay3KuTaq7DeJ2dlVd++fUOzpsm9Muriiy8u230RolSo5igiQbrtDHG8T0OGDFnt30Snfk1HxYZImJEYOn95K19TkQSUVhWRIIyOKqW+T+XsBC11ulqIcqPIUUSCMHajlvo+lbsTlMgVT9RyRbBClBKZAIhIEYYmlWLeJ8cEgO/Zv3//0KxpKmbjkRBhROIoREgdctgKEoaDgNxwRBJRzVGIkBKWOl+6xqMw3D8hioFqjkKIyDVDCVFsJI5CiMg1QwlRbJRWFUJkpFzWfEKUC4mjECJSNVAhSoHSqkIIIYQLiaMQQgjhQuIohBBCuJA4CiGEEC4kjkIIIYQLiaMQQgjhQuIohBBCuJA4CiGEEC4kjkIIIYQLiaMQQgjhQuIohBBCuJA4ChEi1lhjDbP11lvbt0KI8lGtoqKioow/XwghhAgdOp4KIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQgghhAuJoxBCCOFC4iiEEEK4kDgKIYQQLiSOQoSA77//3nTv3t00aNDA1KhRw2y++ebmyCOPNFOnTi33XRMikVQv9x0QQhjTpk0b8+eff5oxY8aYrbbayixatMhMnjzZLF68WA+PEGVA+xyFKDM//fSTqVOnjnn55ZdNs2bNyn13hBBKqwpRfmrWrGlvEydONH/88Ue5744QQuIoRPmpXr26ueeee2xKtXbt2qZp06bm0ksvNR988EG575oQiUVpVSFCwu+//25effVV88Ybb5inn37avPXWW+buu+82HTt2LPddEyJxSByFCCldunQxzz//vJk/f36574oQiUOjHEKElB133NEsW7as3HdDiESiUQ4hygzjGm3btjWdO3c2u+66q6lVq5aZPn26+c9//mOOP/74ct89IRKJxFGIMkOnapMmTczgwYPN3LlzzYoVK8wWW2xhzjrrLNuYI4QoPao5CiGEEC5UcxRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwoXEUQghhHAhcRRCCCFcSByFEEIIFxJHIYQQwqzO/wGz61OztsPAqAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -218,12 +218,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAHvCAYAAADHOfV1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1XNJREFUeJzsnQnYjGX7/6/eettEKkmLpdKifVFvKVpIJW3KEloQokWUwitK2kXRYgulogVJC6JS2qhUtKiU0orQvjf/43P+/te89zNmfWbmme37OY4x89yzuGfmnvu8zu17bhAKhUJOCCGEEEIIIYQQOeVfuf3vhRBCCCGEEEIIAXLQhRBCCCGEEEKIPEAOuhBCCCGEEEIIkQfIQRdCCCGEEEIIIfIAOehCCCGEEEIIIUQeIAddCCGEEEIIIYTIA+SgCyGEEEIIIYQQeYAcdCGEEEIIIYQQIg+Qgy6EEEIIIYQQQuQBctCFEEIIIYQQQog8QA66EEXEeeed5zbYYAN34403ltn+2GOP2XYhhBBCFDay9UIUN3LQhSgyNt10U3fTTTe5tWvX5npXhBBCCJEFZOuFKF7koAtRZDRp0sTVqFHD3XDDDbneFSGEEEJkAdl6IYoXOehCFBkbbrihu/76692IESPcF198kevdEUIIIUSGka0XoniRgy5EEXL66ae7Aw44wA0cODDXuyKEEEKILCBbL0RxIgddiCKF3rR7773Xvf/++7neFSGEEEJkAdl6IYoPOehCFCmNGjVyxx9/vOvbt2+ud0UIIYQQWUC2XojiY6Nc74AQInswgoXytz322CPXuyKEEEKILCBbL0RxoQy6EEXMvvvu69q1a+eGDx+e610RQgghRBaQrReiuJCDLkSRM2jQIPfPP//kejeEEEIIkSVk64UoHjYIhUKhXO+EEEIIIYQQQghR6iiDLoQQQgghhBBC5AFy0IUQQgghhBBCiDxADroQQgghhBBCCJEHyEEXQgghhBBCCCHyADnoQgghhBBCCCFEHiAHXQghhBBCCCGEyAPkoAshhBBCCCGEEHmAHHQhhBBCCCGEECIPkIMuhBBCCCGEEELkAXLQhRBCCCGEEEKIPEAOuhBCCCGEEEIIkQfIQRdCCCGEEEIIIfIAOehCCCGEEEIIIUQesFGud0AIkR1CoVD49gYbbJDTfRFCCCFE5pGtF6L4UAZdiCLlr7/+co8//rhdJ8sXX3zhlixZ4lasWOG+//579/fff2d1H4UQQghRsbZeCJHfKIMuRInz22+/uUcffdSNGjXKzZ8/f73777rrLtetWze7jfN+ww03uNq1a7tatWq5HXbYwW233Xb2d40aNXKw90IIIYQQQhQPctCFKHHmzZvnzj77bLu94YYbup133tmtWbPGrV271krnttxyy/Bjly1b5h588MGor3Pddde5fv36Vdh+CyGEEEIIUWzIQReihPj999/dtGnT3M8//+w6depk24477jjXqFEj17hxY9u244472nbK29etW+c222yz8PP33ntvN3ToUPfdd9+FL99884178cUX3X//+193xBFHuKOOOipn708IIYQQQohCRg66ECUAme/Ro0e78ePHu1WrVrnq1atb1nzjjTd2//rXvyyLHgnZ9G222abMtrp167qePXuu99iBAweaQ4+jL4QQQgghhCgfctCFKFL+/PNP9/LLL7sRI0a4uXPnhrfTN37++edbNh0HPRNcffXVUo8VQgghhBAiTeSgC1GEPPvssybmNmfOHPsb5/n44493F1xwgTvppJPcRhtl9qcfdM5/+eUX165dO9e9e3crnxdCCCGEEEIkhxx0IYqMcePGua5du4ZHrlx55ZXmmNepU6dC/v8hQ4a4xx57zM2ePds988wzrkGDBhXy/wohhBBCCFHoaA66EEXCP//84/r06WNCbzjnrVq1cpMnT3bXXntthTnnPiDQtGlTy6Q3a9bMvfXWWxX2fwshhBBCCFHIyEEXokj49ddf3axZs+z2VVdd5SZOnOg23XTTCt+PTTbZxE2dOtUU3b///ntz1pcuXVrh+yGEEEIIIUShIQddiCKhUqVKbsaMGTanfNCgQTkVbWNfnnzySXfggQeaanyTJk3cZ599lrP9EUIIIYQQohCQgy5EAbNkyRI3cuTI8N877bSTO+uss1w+sOWWW1pGf88993RffPGFa9GihQuFQrneLSGEEEIIIfIWicQJUaDg/NJn/sMPP9jotFNOOcXlG9tuu60JxZ122mkWSNAoNiGEEEIIIWIjB12IAgRn96KLLnJ///23a9SokfV7l7dvnf7w9957z73//vvu559/dvvuu6+Vpu+1114ZmZNOVn/hwoVyzoUQQogcwFrhk08+MTuPvf/yyy/dbrvtZrZ+//33d1WqVMn1LgohAshBF6LAjOwVV1zhhg4dan+fc845bvTo0SbMFg/E2jDM3jj7259++mnMsnOc87333tsMOJeDDjrI7bfffm6LLbZIeb+Dzvnrr7/uFi9e7Dp06JDy6wghhBAiOr///rv76KOPwnbeXxOI/+OPP2I+r27dumFb7y/bbbddhe67EOJ/bBBSU6gQBQHZ7Xbt2rnp06fb34MHD3b9+vWLmpl++OGHXevWre025e9fffVVzNfdeuutLVter149t/nmm7u3337bLVq0yJz6SPi/dt9997ABP/jgg91RRx3lNtoouVjfG2+84erXr+8222wz9/nnn7tq1aql8AkIIYQQwkNWfNddd7XbZMT5m0B+NLC7aMJg63fccUf3wQcfmK1HIyYa22+/fRmHvXHjxq5q1apZfT9CiP9DDroQBcIjjzxiPedkyydMmODatGmz3mNWr17trr/+ejds2LD17sNR9444F3+bPvFIJ5/TwvLly814+8ubb77pvv766/Vel9fg/zz11FMTlrHzujj1vB4Bhv/+97/l+iyEEEKIUuXPP/9099xzj+vWrVtUgdagjfe3a9eu7f71r39FXTcEbT2XDz/8cL3qOpxzkgK01+HsCyGyhxx0IQoInNpjjz3WNWjQYL3s+m233eZuvvlmE43znHDCCeYE01eO0U6Xb7/9towRnzt3rluzZo3dd/jhh7ubbrrJNWzYMO5r3H///e7ss892NWrUsCBAovJ8IYQQQvxfkPvRRx81u04pu4fMOK1v9JOT+U5X8+Wnn35y77zzTtjWz5s3z3388cdhXZlrrrnGWuySrZ4TQqSGHHQhCjyKPm7cOHf11Ve7b775xrYdcMAB5igfffTR7umnn3bNmjVz//73v7Py/1MGf8stt9jCAME5aN68ubvhhhvcPvvsE/U59MHtvPPOVnZ/7733mpEXQgghRGyeffZZ16dPHxNdBarfBgwYYHouc+bMyaqtp2ye4PpVV13lVqxYYdvIylM9xwQZicAKkVk0B12IPOall15yJ5100nql5T6KjojbBRdcYM45Tu+DDz5ofd5NmzatEINJVp6s/rJly2w/NtxwQ/fEE0+YmByLBvrMo4nPXXzxxXYbx14xQiGEECI6b731llXD0QOOc45QK0F57C7l5pmYtpIIbPu5555rpe+33nqradcgQMcI1SOPPNLNnz8/6/sgRCkhB12IPIVS9fbt27unnnrKnGDPc8895w477DDXsmVLK3Ejij58+HATfDnrrLOi9phlG0rq7r77bvfuu++6M88805xu+uQRlLv88svdd999V+bxXbp0CQvS8X6EEEII8T8QfEMYFoG2WbNmWXac4DaO+cCBA13lypUrfJ823XRT16tXL9uHvn37Wi/6yy+/bK1tZNJZAwgh0kcOuhB5yiWXXGI92nXq1LGScZzZE0880XrQFyxY4CpVqmRGGkOJ0a6IKHoi9thjDxOze/XVV63EnpEvRNtRmeU9/PLLL/Y4ou/nnXee9bKtW7cu17sthBBC5AWrVq1yPXr0sL5yquKA4Dvj0gjGV69ePde7aIJxlLfTl07AnQz7jBkzrHquY8eO4TJ4IUT5UA+6EHms2E42HHEWDDMl5P/884+JsnC7f//+ceeU0p9O9j2bfWnx4NRC1P/KK680sRnYZZddrC+ezDr962TRc7FvQgghRL7BtJTjjz/elNWBdrUbb7zRsuj5auuBOesI102ZMsX+JrNOz3qLFi1ysj9CFDrKoAuRZzCTtGvXrnabEjKy5USocc7POOMMK2UfMWJEXOc8H6AHnr45FGAnTpzoatasaSV7RxxxhL0n+tflnAshhBD/pzlzzDHHmHOOyCrCbwS54znn+QLVc+jiUD1HTzqisbS73XXXXbneNSEKEjnoQuQROOEIsaxdu9bmhZNBv+yyy+w+MtFk1ikXLyR4D/TSI25Tv359W3ywCHnyySft/r/++ss99NBD4YyBEEIIUUrgjJMtR3umUaNG5qwjCldo/Oc//zFdGZIKVNFdeOGFlllXsa4QqSEHXYg8gjnjZNApD2Oe6bXXXmvbr7vuOitzK+RRJmT8MdyU79GLfuqpp7p77rnHqgLatGnjRo0aletdFEIIISqUxx9/3Ka1YBepOqMNrEqVKq5QoQ1v5MiRbtCgQfY3vepMdaEUXwiRHHLQhcgjUEN//fXX3XHHHWfzzeG2225z/fr1c8UA42EQkqFKgLmq559/frjM/Y477jBROSGEEKIUmDRpkvVp//HHH3b92GOPmTZLoUMygZnpY8eONQG5e++911Tef/rpp1zvmhAFgRx0IfIIyr27detmEXUMHBlm1FyLCRzy8ePHh4MOiMqwIGGWO6XuQgghRLGD88oYNYLVZ599ttm/TTbZxBUTnTp1ctOnT7eqwJkzZ1p728qVK3O9W0LkPXLQhcgD6C+/+eabTVTlgQcesBIxIuuMKylGCD5Qtk/WnNt+/NqQIUPUqyaEEKKoGTZsmOvcubPZO6ayTJgwwex+MUL5Pu1t1apVswrBBg0a2Hg2IURs5KALkWNmz55tzjlOOpFmIuhTp051rVu3dsUOAjIov/qsweLFi63ETwghhCg2cMjRlunVq5f93bt3b1M6R0y1mEE8DuG7nXfe2S1btsycdIRjhRDRKe4zghB5DsrllLZ5KlWqZOrmJ598sisV6LtDwdY76Xwey5cvz/VuCSGEEBl1zgnEDxgwwP7GUb/pppsKWvw1FXbffXf38ssvu4MOOsitWrXKHX300SaIJ4RYHznoQuTQWCOW5vuxmAtONr0iRqvwfzPSzfPRRx+5Bx980L3wwgvr9cRXBMxNnTZtmt3++eefLbouJ10IIUQxgL3t3r27u+WWW8Il7v379y8Z59xTo0YN9/zzz5sQLq1tJCNUNSfE+shBFyJHUMb+1FNP2e2qVatajxaOaSb4/PPPrXwMw3f//fevV2q28cYbWy+Y58033zSxGqL7kY4z4i7BKPc777zjzjvvPBujkklOPPFEN2/ePLf33nu7r7/+2saw4awLIYQQhQzir9hMHPIxY8a4Sy+91JUqlStXdk888URYIK99+/bW3iaE+B9y0IXIUTQdgRhf1k7Z14EHHpiR127ZsqWrXbu2zSBFeAYl+Mj/m8w4M9c9e+yxhzv22GPdoYceWuax69atc7/99luZsS+ffPKJjUyJfF3+L4IO33//fbn3vVGjRhYMqF69ejgQINE4IYQQhQpTS0aPHm195ojAMl601CFJwJqBikEC8Yxgo+VPCPF/yEEXIgf897//dWvXrrXbjFapV69eyq+xZs0ai0Dvu+++FoX27LbbbjZ3dNNNN3VHHXWUZaaDoA6/YsUKd8IJJ4S3HXDAAW7u3Lnu9ttvL/PYBQsWWKl50HEnw3311VeXWWT43rozzjjDvffee+tl8oPl9ImoWbOmu++++2wcGwJygwcPTuFTEUIIIfIDMsOUtgNB87POOivXu5Q3oFrP+meXXXaxdQbJhT///DPXuyVEXrBBSOkpISoUyskPP/xw98cff1hp18SJExM+Bwd81qxZls1GVA3Igm+99dbuxx9/dIsWLTInG7777juLTuOgU0LfrFkzc3azya+//mole5TNo9TK/w2MUqPPrlWrVknPOB83bpyVA/J+CBAAmfnTTz89q+9BCCGEyBTY5kMOOcQtXbrUHX/88WaPs6HWjlNbUbY+G7z77rvusMMOcz/99JNNdmH8qhCljjLoQlQglIwTJcY5p8eaTHEyDB8+3GaJjhgxokz0GUOGAvqee+4Z3r7NNttYj1dFQp/6qFGj3BtvvBF2zn1ggX0JZut5748//njMSPk+++xjj8FoMx/WK7urR00IIUQhQO6rS5cu5pzvuOOOpgVT7KPUygtVeV4r584777R2ACFKHZ0thKhAg92hQwfr4a5Tp471pUVTcKUcnHLz999/P7ytTZs2brvttrPMe5BzzjnHeriCTnE+wTgZBN+CZX2IwxCcQKwuWgEPGQd66OlLO+aYY6w3nts8Rz1qQggh8h0C1pMnT7Z2M6rHqlWrlutdymuw776djSz6iy++mOtdEiKnyEEXooIgC+7HieCcbrXVVlEfd8UVV7gmTZq4m2++Obxt++23d1988YW7/vrrXaGBCF4wgICI3Lbbbmslf8EABfPfKeFnG1UGwOi1hx9+2HrUPv30UyuVV4+aEEKIfG5j69Gjh92+8cYb3RFHHJHrXSoI+vXrZzae9j30bD777LNc75IQOUMOuhAVwKuvvuouv/zy8N++Xxxee+218Cx0wDBRFk6pehBK2osBqggINvTt2ze8DcX25s2bW+Yc8TyMNMyYMcPK56dPn+622GILG0XXq1evHO69EEIIER0C0L6NjRnfl112Wa53qWAgOI8GDeujVatWudNOO02jVkXJIgddiCyD2nrr1q0tKgxkjy+++GK7jbOJOMrYsWPDj+dvysKHDBniihVE7KpUqRL++6uvvnK1atVyTZs2tcqC+vXrWxsAxpmxa/Sl+x41+u6Dn5cQQgiRa2jZ6tixY7iNjXGk0drYRPyKOwLyrJPeeustC+hLy1qUInLQhcgi9JOfe+65Nm7MZ8DJHGOEgPFlGPAffvgh/Bz+9veXCojIffzxx2ERPD4D5qICEXXfo8aYGmBszfz583O4x0IIIcT/wH4xcQQldVqzYrWxifgQrJ8yZYp9jo888khBtvYJkS5y0IXIImTBEUXDOSeDXrVqVcsGe8isMzecPrVSB2PM5xMsFQSCGz6Czsi2M8880/rQuWaknBBCCJFLaFXzbWy33nqriZ2K8tOwYcPwuDXs/rPPPpvrXRKiQpGDLkSWQIUU0RPwGXHGrPXs2TNc7k6mODgiTfwPFjuI5d1yyy1lygTJqNerV899++236u8TQgiR8zY2L2BK4Piiiy7K9S4VBYypO//88+12586d3S+//JLrXRKiwpCDLkQWYBwYo9GYA075Ng7mTjvt5GrWrBneLuJDpcHs2bPLzFB/9NFHbawcQQ4+U3r8eIwQQghR0VDddd5551mlV926dU0fRX3nmYNqBNZO9PVfffXVud4dISoMOehCZIHevXub8Bk9aPRQLV++3Eas0WdNudYmm2yS610sCAhk3HPPPabw/uOPP7prr73WLVy40C1evDicpejatauUXoUQQlQ4zDhn2gg2HVu/5ZZb5nqXigrEZO++++6ws/7GG2/kepeEqBDkoAuRYRAvmzBhgt1mZNiyZcvMaB988MGmXi6SZ8MNNzSBGGako+b+zDPPWBSd3v7rrrvOKhIIflx11VW53lUhhBAlBDopVHMBgffg+FSROQjQo9eD6C4l77QSCFHsyEEXIoNgOLp162a39913X3fhhReWEYUTqUGpoJ+Jjirudttt5wYOHGiBDmbFjxw50u677bbb3IIFC3K8t0IIIUqFAQMGuG+++cbttttuVjUnssfw4cPd1ltvbaPXyKQLUezIQRciQ31olGLffPPNbsmSJW6bbbaxqO+dd95p/Wmi/HgHnSz6Tz/9VOa+lStXlukD/OOPP3Kyj0IIIUqHRYsWhVXGsfNqW8su1atXd8OGDbPbVNF99NFHud4lIbKKHHQhMsAll1xipVdkd+GGG24wATMIipyJ1KFsEPGd3377zUbWBTn55JPdMccc4zbffHP3/vvvW4BECCGEyBaUWlMpxzWl18cdd1yud6kkOPvss13Tpk3d77//bqrufP5CFCty0IXIAG3btrV+aUTNDj/8cMugIxK37bbb2tgVkV6Ze8uWLe02IjxB+JzpSx81apT9jYjcyy+/7FasWJGTfRVCCFHcUC3H3HParIYOHZrr3SmptQC2noD8vHnz7HsQoliRgy5EOaCk+uuvvy4jFoNzjpNOX/To0aNte8eOHVX6lsEy96eeesrmnwfhM2/Xrp078cQTrcS9WbNm7qCDDrI59EIIIUSmWLVqlbvyyivt9qBBg9wOO+yQ610qKerUqWMCscFpOUIUI3LQhUgRSq07dOjgDjzwQHPS+duP/OrRo4fbYost3KxZs+zvLl265Hhvi4P999/fHXrooa5Ro0bul19+iRpZZxQLkXWCJT/88IMJygghhBCZok+fPjadBZvk7b6oWC6++GJbD2Dr9R2IYkUOuhApglAZiuGrV6+2MqubbrrJRqkRSUe8ZMyYMfa4448/3u2yyy653t2iAAd89uzZbubMmW7nnXeO+pjatWu7G2+80W5vtNFGNj9VCCGEyAQvvfSSGzdunN0mIIydERUPVXNjx461z3/atGluypQpud4lITKOHHQhUqRatWpuzpw5dqlfv74JwvlRX/SkYcSha9euOd7T4oJZ8jjq8ejevbtpAJBlv+KKK2zb559/bgrwQgghRHn466+/wiNUEYTFzojcwRhbqhng0ksvjVpZJ0QhIwddiCRYt26diY95yJYfddRRVl6FoijKol4Mjqz6c889Z2PWRHZ6APncn3766aiR9bvuussc+cmTJ5vqO9/TaaedFvXxQgghRCJGjBjhFi9ebMKkvlJL5Jb//ve/Vjn3xRdfaDa6KDrkoAuRAPrNGjdu7Jo0aeJeeOGF8HbKqug133jjjW0eqs/ucn300Ue7f//73znc6+KFWajMne3Vq5f7888/o45lQyPAq7ofdthhJixDxF0IIYRIBRzAAQMG2G1a2nDSRe7ZdNNN7fsAgiYSjBPFhBx0IRKA8Nh2223nKlWqZGXW8PPPP1tZFVBmtdtuu7k1a9a4X3/9Ncd7W/xQuk6bwQcffBDu949k8ODB9n2hFYCqO20HO+20U4XvqxBCiMLm8ssvN+0Zytp98Ffkz4SXBg0aWIk7GXUhigU56EIkgDFpZMtfeeUVU24FZp9++eWXlpn1fVBka3fccUc3fvz4HO9xcVO1alV3zTXX2G2yGrQfRLL99tu7vn372m2MNsr6Hpx19aQLIYRIxKuvvuoeeughq4yjfepf/9KyOZ/ge6GqDu6991735ptv5nqXhMgIOtMIEYXPPvvMTvaezTbbzNWtW9duM4f75ptvttsIxHEfmfMJEyZYOXyNGjVytt+lAuPr6tWr57777rvwTNRIKIGvVauWW7FihQVUYMmSJe6EE05wLVq0CIv5CSGEEJGEQiHLnsN5551n7VMi/2DkWrt27ez76tmzp10LUejIQRciAvqYmLeNQX7ggQfWu5/sLeVuhxxyiGvdurVte+SRRyyTS0YdwTiRXRivMmTIELs9fPhwG3MXCYETL+bj+9P22GMPG3/XsGFDm2MvhBBCRGP69OkWyMWWUCEn8heSJfSkoxPE6DUhCh056EJEQAa8TZs25swh9haEvufRo0fb7VtuuSUsDDdy5Ei77ty5symJi+xz4oknWjDkjz/+CJe8R8L3iEgcmgH9+/c34b5Jkya5GTNmmLaAEEIIEQkCpFdeeWW4Gov2NZG/1KxZM1zt0Lt3b5uuI0QhIwddiAjoMUMZdNGiResZZfqa//77b3fyySfb+C54++23rT+drG7Hjh1ztNelB8ERsujMPo81YiXYn0YLAt8pTjoZEc/8+fOjqsELIYQoTcaOHes+/PBDt+2225owqch/CKigP/PJJ5/YWDwhChk56EL8f5566qkyvUtBJw5efPFF99hjj1mG3I/2gFGjRtn16aefrv7zCobRaYxcYxHlx+HQfhCEDPpZZ51l3y2ZkOB3jJYA7Qxe6E8IIURp8+OPP7qrr77abg8cONBVqVIl17skkgAxWK9JQ0vCqlWrcr1LQpQbOehCOGdO3kknneTat28fVWCEbZRNwfnnn28CZfDbb7+F+9QvuOCCCt5rEUmnTp1MzI+gyV9//RXeTg86/WnPP/+89RV6eCzfLd+jhGWEEELQvrZy5Uobn4ogqSgczj33XNOX+eGHHyy4IkShIgddCOfMeaNEfb/99gv3lQd59NFH3WuvvWaztX1k3T9v4cKFFq095phjKnivRZDVq1ebWBwq+wRLyK4//vjj5nij5n7ZZZfZ4+hTwyEH1NzfeOMNC9BE+96FEEKUDoiJ+pYpAru0RInCalH0bW0E6hcvXpzrXRKiXMhBF+L/Z17pJY/Wa4YImZ+pTRY9sox99913NwEyOXi5pVq1au69995zt99+u9tmm21M0O/UU081oT+CKJSx77DDDubE+7FrcNBBB4Vv48zzfQshhCg9BgwY4H755Rd3xBFHWNuaKDzQBzrjjDPcP//84y6++GJVx4mCRA66KFmYWe4zqbDXXntFdbJRaMepwzH3WVhg9rnILzbeeGN3ySWXuI8//tgccj92hTmpXPv59fSpMR89CN8nIn+tWrUywy6EEKJ0WLJkiRs/fvx6U1pE4YGALPZ/3rx57uGHH8717giRMnLQRUlClvS0005zxx57rJVEx4LZ5oMGDbLbjPJChATob95///3Nmfv6668rbL9FclStWtXmoqLCS08avYRNmjRxbdu2dUceeaRlSLymgGfp0qXuwQcftBFstDMIIYQoLRVwgrNkXw8//PBc745Igzp16oQrH2lrY9SqEIWEHHRRkuC4vfPOO+7dd9913333XczHodbO/YjCBUeoPfLII+6jjz5yzz77rBRe83w2KuPV3nrrLcuu+7FrXD/00EMmGuc54IAD3D333ONmz56txZkQQpQQ2HImuaBFQ3BXFD4E4XHUme5y/fXX53p3hEgJOeiiJNlnn30sS8rYNErbo/HZZ5+FxUZw1DHcQITdn+wvvfRSE44T+c3mm28evu2F4wCF3qDaOyr+jRs3zsk+CiGEqHj+/vvvcPsaAqNUXInCh1G5fg1HyTutb0IUCnLQRcmCuFs85XXKo37//Xcrg2/evHl4+5NPPmm9apUrV3YXXnhhBe2tyBRkx7feemu7TRXEeeedF1VEZs2aNVbuLoQQoniZOHGiVVltueWWGs1VZCAU27RpU2trJKEiRKEgB12UDDhhvXr1stL2RJBdnzRpkpVCM3LFi8XwGgiMQffu3d1WW22V9f0WmeXEE0+00St77LGH/c0ce7QEfvzxx/BjKImjreHMM880NXghhBDFB73J/fr1s9tMY2EaiCgeWLsNHz7cxuWRXHniiSdyvUtCJIUcdFEy0F9MuVPDhg3d999/n9CRB7Kr9CZ76FnGeUcdtGfPnhWy3yLzMG6NQA3Xfs4949Z88GbHHXd09evXd3Xr1pVavxBCFCmUPiP0uvPOO9tILlF8EIz32XOug9N7hMhX5KCLkuGUU06xy9VXX22lbLHAWXv55Zetb3nw4MFl7rvjjjvs+vzzz3fbbbdd1vdZZA9E4xD787BII7Puo+733nuvW7RokTvwwANzuJdCCCGywVdffRUevYnOzCabbJLrXRJZ4qqrrnLbb7+9jcwdOnRorndHiITIQRclQ/Xq1U0UrkePHjEfQ885o1bgiiuuCGdYPThtnNwZ2yEKnwYNGrhzzjnHbpMtb926dfg+Sh1x4oUQQhQflLQzchM7QDuTKF7QDGK2PdCmiAiwEPmMHHRR9ATnlJMZ/de/Yh/2I0aMcJ9++qk55tGccOagU9peu3btrO2vqFjInFBR8fbbb4cVXyNbHiZPnhw3sCOEEKJwQBSOEZxA0N3rzIjipW3btq5Ro0YWlKEKMpo4rBD5ghx0UdQsWLDAessob2I8WjxWr14dLmknwhocn8a8dPUiFyc1atQIO+YcJ6NGjXLdunULG+8PP/zQtWvXzoRmmJUrhBCicOHczlg1rs866yz3n//8J9e7JCoAgjBjx441DaE5c+bYbSHyFTnooqiZPn26la0z/zJe5hyuueYaE49DFM6XPfsMPLOxGc+FurcoPhADPOGEE+xYwTkfOXKktUN4gRnaHQYNGuSOOOKIXO+qEEKINEDJm2ArPec33HBDrndHVCDMuL/++uvtNkGazz//PNe7JERUNgipxkMUOVOnTnVHH310ePZ1NBiltc8++7i///7bzZ0712afw19//eWaNGni5s2b5/bdd1/36quvmnhcIfDnn3+6p556yjVr1sxGjIj4rFixwo6BH374wf6uVauWe++998pUUgghhChcsIvY8qVLl7o+ffoUhYMuW58arPModUcMmBnpM2fOVIuDyDuUQRdFT4sWLeI658SoGL3BSfvkk08OO+cwcOBAc87pPUfxu1Ccc5E6NWvWDKu7YqyJrPtIeySJ2iWEEELkH+jM4Jxvu+22rm/fvrneHZEDNtxwQzdu3DgrdZ89e7bdFiLfkIMuig4cbsRfEAJJhoceesjNmjXLyt1uvfXW8HYi0t5Bo1eJUmdR3HTs2NEi6r6wiBE8LOaCWgSM6vvvf/+bw70UQgiRKgRd0RkBMudVqlTJ9S6JHMF6zmsO9erVyyrohMgn5KCLomPatGmuQ4cO7uCDD7bSr3isW7fOsueA00V/kjfkZ599tt2+8MILy4zfEsULmfMxY8bYSBbf4nDxxReHHfZPPvnEzZgxw915553up59+yvHeCiGESAbO4RdddJEF7hs2bGhrBFHasPZDW4i2ti5dukjVXeQVctBF0UHZ0k477WRzTRP1Y1Hi9u2337o999zThMA8CIWtWbPGHXLIIWWy6qL4offcl7rDM88845588km73bx5c5udu3DhQmt7EEIIkf8g+klwlTUBIqCJRGNFaZS6jx8/3qon6UP3Y/eEyAckEieKErKbnHw322yzmI955ZVXXIMGDew2feaIhnjIoF9wwQXurrvucnXq1HGFiIRjyg+nxeOPP96c83r16rlFixaZERdCCFFYkCHda6+93JdffmkB1muvvdYVE7L16TFkyBDXu3dva3lYvHixBemFyDUKIYqihOxmPOccg0ZJk+87DjrnwAkag1eozrnIzLxUDPb7779fJqMe5Oeff67wfRNCCJE89J3jnNetW9f169cv17sj8oyePXu6ww47zAI5jFyVCKzIB+Sgi6LJeOJwk/FMBhyuJUuWuGrVqpkQGCxfvtycciF8kGb48OFhNX+y6B4MOIu+HXbYwRx4IYQQ+QftSCi3w9133x03cC9KE6otJ06caFN6nnvuubDdFyKXyEEXRQEj0BD3QmF75cqVcR+L0Nc111xjt+kv32abbSyjftZZZ7mTTjrJytqFgHPOOcf6zjk+jjzySPfrr7/advoXKYUj4n7vvffmejeFEEJEgMhn165dLYDfrl0716RJk1zvkshTqK7wlXJ9+vSxiS1C5BI56KIoOO6446xMiUxn9erVYz4OQ929e3dztI455piwUvuAAQPcq6++6rbcckvr4xLCl7qTfeEa9d+g8i8j+KZOnWrjeoQQQuQXnLupfNpqq61itikJ4aEKk/Xf77//7tq3b+/++OOPXO+SKGEkEidKilGjRpn428Ybb2wZ0N13393Nnj3bBMF8Jh7192JAwjGZDQDNmTPHbnPduHHjXO+SEEKIGNDCduihh1ownuq6888/3xUrsvWZ45tvvnH77LOP++6772zKD4F4IXKBMuiioElFzOPNN990l1xyid2+7rrrzDnnZOyz6DjuxeKci8xCv7nn3HPPdevWrVvvOCTDLoQQIrf8+OOPZstxzps2bWpCsEIkQ40aNdzo0aPt9k033eTmz5+f610SJYocdFHQdO7c2RwmFFrjgUPVsmVLK1k6+eST3WWXXWZOFT3G9KwTMVUJnIhFw4YN3c4772y3OdYuuuii8H1PP/20HT9BJ14IIUTuBGOXLl3qdtxxR3f//fdr5rlIiRYtWoTV3FkjEvARoqLRWUsULJ999pmbMGGCu++++9yKFSviGmx6hxGHY2waol70FM+cOdNU31F1feihh6TuKmLC8RLMwjzwwAPWDuFByf3hhx82USIhhBC5YeTIkW7y5MmmzI1d33bbbXO9S6IAuf32213t2rXdp59+6nr16pXr3REliBx0UbBw8nzllVesXJ0ZlrEYNmyYe+yxx6zvHKcKwRigX+vBBx80g77XXntV4J6LQoRIOo66p0ePHhZZP+GEE6zHEdXXjTbaKKf7KIQQpcrrr7/uLr300nB58hFHHJHrXRIFSpUqVcITWsaOHetefvnlXO+SKDEkEieKGk6qRx11lGU277jjDhu58u2331rpW7Ej4ZjM07p1a1e1alU3a9Ysq+Do3bu3u/nmm3O9W0IIUdKsXbvWHXTQQW758uXu1FNPddOmTSsTUC1mZOuzR6dOndy4cePs2FqwYIFVZghRESiDLgoO+sgjRbqisXr1anOocM65Zs45BozxahhzkT7//e9/3bHHHmvXpQAlk0wCuPPOO8PVGR988EGZx2g0ixBCVBy+jQ3nHK0QWt9KxTmvKF577TU3ceJEuy4lGKPK+F1EhsmkC1FRyEEXBQeZ8Lp165qxiBdRxiH/4osvTK39iiuucIcffrj1nCPy9c4771ToPhcj22+/vY0gee655+yav0uFk046yTVv3tyCP0wGYIG4bNkyd9ppp1kASAghRMU5UdOnTw+3sVHlJDLHlVdeaW2EtHlxzd+lQvXq1d21115rt/v162fj14SoCOSgi4ICR2jKlCl2koyVqeQxzDxlXvXmm29uAh/Mrf7www9drVq13EsvvWRl76XCoEGDMp7l5rUYUReEv0slk75w4UILArEgJOiDxsEWW2xhiu60Vbz33nu53kUhhCh6CNR7uzN8+HB38MEHu1Luwc90lpvXimzj4u9SyqR369bN7bvvvm7NmjWuf//+ud4dUSKoB10UHGQtKTVu06ZN1H4gTqAIx3Ffu3btbMwK4zIQjJk6dapFRIsF3tMbb7xhjuLFF19s7zuyL41KAubBAv1p9E3zOBY1iOz9/vvvbpNNNrEAxs8//+wqVapkVQdUHARfLwgOP5nzSMgeP/vss66Y4ZR5yCGH2OfeoEEDc8gRLMQpJ3jEfXvuuWeud1MIIYoagvAnnniirQkYnTpkyBBXzHibHWmbo9l6qrwY/fmf//zH/sahJoAMNWvWtMk3VBjutNNO9hn6x0WCw0/mPBKm55x99tmuVHjhhRcssUPrBIEQetKFyCo46EIUCyNHjiTgZJfmzZuHb3fo0CH022+/hQqJBg0ahKpWrWrX0dhggw3C789fatSoEb6/f//+occeeyy02Wabrfe4aM+NduH1+vXrFzrmmGPs2sPtaI8PPqaYefzxx+39br755qGddtrJbg8YMCDXuyWEECXBokWLQpUrV7Zzb5s2bUJ///13qFAZO3ZsqGvXrnYdC2xxLFv/8ssvx7T1V1xxhV0S2Xoe8+qrr4buu+8+u/ZwO9rjg48pFdq2bWvv/fDDDy/o400UBnLQRcGAQfjnn39i3j99+vTQv/71LzuBDhw4MLRq1arQHnvsEZowYULc5+UjkQ40fwfBaY9laL2TfPzxx8c02uW9BB32yPu23377UKnA8XTQQQfZ+z711FPtepNNNgktW7Ys17smhBBFzfLly83ecN7FFhVa8D3IoYceWsaO8nckiQLiONWZtvVBh/2www4rc9+VV14ZKkW++OKLUKVKlewzuPfee3O9O6LIUQ+6KAgoKUKc5Mgjj7SS7EheffVVU2qnlL1jx45u4MCBrlq1ajab+txzz825omsqaueUrUd2nvB3cKZrvB5nSuCAUutMQ5+5F4aLBBXdUlF053i6+uqr7TY96A0bNrTjsk+fPqaPcPnll9uxqg4iIYTIHPQBn3DCCe7rr792++yzj7Wt0aJViGrn99xzj43uCsLfbI9m0yPx2xHNzTT0mXthONZXnr322sudfvrpJanoznjeAQMG2G1svW8nECIr5DpCIEQyEMWlnLh9+/br3ffBBx+Eo5pcJk6cGMon4pWmRYOy9mgRbbankkH/448/Mh5VTyXTXkpZ9I4dO4bf+yuvvBLaYost7Pa8efNyvZtCCFEU/PLLL6EjjzzSzq20Fq1YsSKUT0SWkvN3PChrj2Y/2Z5KBj2Xtj7Reyw2fv/991Dt2rXtvQ8dOjTXuyOKGDnoomD48ssvQ1999VWZbZQUB53zhg0bhj799NNQvlCeXu14zncqF4x1rox2ovdYbL3om266aeikk06y26effnrorrvuCs2YMSP0559/5noXhRCi4OFcesopp9g5dssttwwtXrw4lE+Up1ebnvNoz9l2222tPW///fcP7bbbbqFatWqF2/f8ZaONNrJgBY+jLB5bX6VKlfXa4wgWk9zIpq0vtX50/71Vr1499NNPP+V6d0SRohJ3UTDssMMOZWZtL1++3O23336mPA7Mqnz++eddnTp1XL6QqDQtCKXhqIEzwqsYiPXeiwlmobdo0cLddttt7qabbrLS92nTppkiLvdttNFGud5FIYQoaGhdY3Tq448/7jbddFO7prw9n2AKSrLbKQ2nRYrZ7YznjGTVqlVu6dKl7u2333YfffSR+/zzz+0zCIJy/fz58+1xixcvDqu5R7ZV/fTTT+6XX35xuXjvxQpl/7vssotbuXKlu+uuu3K9O6JIkYMu8n6MCgYqkmXLlrm9997bnHOcovHjx9t4tX/9K78OacahJNpObznvgd5uDDFGthiI9d6LCb63Rx991HXt2tWOR8bcgO9PF0IIUX5wONH0uPfee2106sMPP+waNWrk8g1GkybaTm/5brvtZr3d11xzjZsxY4Y50IVOrPderDCu1veiE5j/8ccfc71LogjJL29GiAAYLiKViJIERckQ42rZsqVFhXGQJk2a5M477zyXjzCrtEaNGuttZzY7GXMCCszRLjaodIg1Q73YCAoQ9ujRw75TFl7MTR01apQdwxKLE0KI1LnhhhvcsGHD7DaB+JNPPtnlI1RNXXHFFWW2MW+cbD+CamT8qQL4+OOPXTFx5ZVXxpyhXsy0a9fOgi2Iwt5xxx253h1RhMhBF3nLDz/84A488EBXq1Yt16BBA9v2999/u7PPPtstWrTIlFsfeeQRU2/PZ1avXr3eNjLlZMyL1XHbeeed3VZbbVVGeb7YQVU4eCwOGjTIHHYWZ2+++WZO900IIQqNkSNHhqeC0EaE7c/3THLVqlXDf69YscLsPEFaJsoUI5ThX3DBBespzxc7tK8xLQhuueUWW68KkUlsuHJGX1GIDEOEcptttnHPPvusGzt2rGXMN954Y/fkk0+6Jk2auHyDBQUZcu+I54rNNtvMPivKrnM9DoQgS/v27Ys6q86plH70xx57LLyNEX/oJFDhsfXWW+d0/4QQolCglL1NmzZ2XqV9DY2ZfINe8qefftpu0+qUKyc8X2w9o20vvPBCd+KJJ5ZEVp2E0b777uvef/99C8hfddVVud4lUUTIQRcFAYaQWdP0Z1NCjPE+44wzXL455UTMc/mTIqqLeAzQr4exRMTEb8uHcvCjjz7a+tOTcdb5XBGbS/bxuWbdunXuoIMOcp9++qn9fdxxx7nZs2fnereEEKJgwOk99dRTzd53797dSoiDrUT54JQ/88wzWWtPY41D+TSCeLTy0dZHUuKPP/4wB5zbzORmrUGFHj3RrIdGjBhhj2EdwOeF486FbTyHtkFu83he+5tvvnHZAseVgHWyzjqfK2JzVCEUknPPWpTKuS233NKEi4MVFEKkgxx0kXe89957pm566aWXmnEhOnnwwQeHI8M4nN26dXP5AiqsXkk+U3ixO36efAYsVjB0X331lZVS+4v/O5pKK89j3/xPHBVYIr7+b/4PDDmtAmR3UcmvW7eu++STT8JZgWzDIuOLL76I2cceXEDQy897zXfeeOMNCyh4sT/+xmkXQggRH7Q7jj/+ePfbb79ZBp3AN8HmfIBSdVqWMgX2FruLM47jjIPKbfrsY9n6tWvXRn2tKlWqhG0719h7rrHvlStXtvux89WrV3c77bSTVbWhRE5f/4svvmhrA5xMINGQSWh3O/LIIy3gHs35po/95ptvDv9NLz/ia4UAn/P+++/vlixZYvscqUMgRHmRgy7yDsZTUb7euXNnKxmiRJjMJNDP1bdv31zvYjizi2FLJzuNE0q/Nk4cUe3TTjvNnDn+5sIIleBPlOgsz/EXP3oO57VSpUr2Gj6L3rFjRwtsIFTDa+AwsgggGs+F2/5vIusokXLbPw7Dw+vxf7BPp5xyijvzzDOzUiFAsABl25deein8+fJdR9KvX7+CyKTfeuutpjwMrVq1cl26dLFA00UXXZTrXRNCiLzk9ddfd8cee6zZItYBU6dONRuUS3xm98EHH3QzZ85M67VOOOEEy1zjsB5zzDFmZ72tf+eddywoEQywR9p5f8GR5nPx9p7+7zVr1oTV7bH/QbvuL/z9/fffm5PP/4Wt57HY3+22287tsccern79+uZM01eNdgr387xMVeERHGDKSadOncKfL7Y/kldffbVgMulMGKCNjYQD1XO5PmZFcSAHXeQVHI4YQsQ3HnjgAXf66aeHs6Y4PBiNQi9jp9SMKPZRRx1lIngYZwwhiwBeFwN+wAEHmHONY0zJlzfQGO1kwPDvueeeJtLGayRTHkgEHaETjDdGnKAI12gAcI1B9+Vz7AtZYoz23Llz7Tvi/8C4p1v2x2fAIi2o3O9hUYMWQb7D4ojAi/9ceE8YbSoC1IsuhBDrV87hYGJvOM8TpE/W3uVjGTvVa9hebPDmm29uVXbYVmw9zjg2AscYO42t58KoTpw874QnW9aPNs+CBQus1DqZagPsEbYee8Qsb6rYvvzyS1vbsI19I0DPOgWn/ZBDDrH94n4y+d7Rvu+++8LtXKnCdB569qlIoDIhEl4730UBPXxederUsc+ONSIK70Kkixx0kZdgPDBYfiQJ2WCMUK760CLLrVMBhxZjTTkbaqeMXcHwU7LPAsQ74/5Sr149e046lMdBjwWnCCLoGGaMOZF6+t5YbFBaj2NPqRyZYjLElNPhjKYTcWfhwgKhUDPoMHnyZNerVy9z0iknpEWB2akEW4QQQvwftFWRteVceeihh7o5c+aYHckFkeXWqWbIa9eubVV/OLCM2+Ty7bffmk3DtgdtPbafyrd0SdVBjweBBJIFrL0QufVOOesVkgc467Tc8X9R0YddK29lwa677mprq/nz5xd0Bh1YlyBmyHqLSpB80UwQhYscdJGXoEhKFJLDkyw6Cqm+L7siwLHFQAAGhOhyKrCvRJzppSOTilOOAeWkTeaZcnGMOVHkdJ3xbDvosVi1apX77LPPwv1xZNzJsrOwOumkk8xJR0sgU0r2fA8+el8o8L2zmCEbQpaCQI0QQoj/A/uBnSITy6zwefPmVWiVEdlynCtsPMJmlCunAiNgEQPFccU+4ZATgMcWUv2Grccecn8mnPFsO+jRoDyerP9bb71llQ4EHAjA0y/frFkzCzQwbo2WhMWLF2ckSHLjjTe6QoKkBYF4AhnPP/+8VUgKkQ5y0EVeQCaW/uaePXtahhGjRxa9cePGFp3NhhMbz7lO52dBYIGxcDhnqHpilHHGEX7BmG277bYu21SEgx6ELDoOKO/Xl8mRdadCoGnTplbKtmzZsrCWQHkopOy5hyoASgTJRjDHl7noQggh/s/uU9ZOmxfZVDRdCMQWQrYc23rJJZdYthmnHAeZtQPbccqx95z7K4JsO+hBWBth5wls4LRj1/keWbeRkCABgXZOOs46I1kzKcZXUSBePHLkSPvuWf8JkQ5y0EVeQLQU8TcikDiTZGYx3IyoQoW0osC4ptpzhgOOiie95TinGCzK27yRZqwYpWEVSUU76EE4pRBhx0iTPcdZJwJPVuTiiy+2sSQsJsoLwRsvJlcIIIhzzTXXWGUBGQgyNYwMFEKIUoXgJW1RU6ZMsYA2Dh9OekURS5wsHvREkxnFzqOFQkCB83owAM97qWgq0kGPljlmzbRo0SL3wQcfmK2n5Y22RNYeQ4YMsXUcfdqpwOfKeqGQgvKseVh3+dtUUAhRXuSgi7yAvmaE4R555BFz7jjBY0CrVauW9f87OGubEW7JZnnJ6rds2dIMD9FS/zfq8/TT5bIHKZcOeiQ46BhuAhd8t5T+EXwh0syCorwiPIVy6mJsULDcjUXoRx99pB41IUTJ4id1ENhGaBSbWZGq7NgjAqfJQIk6zjmBYTK7rBEQMsXWM3mlogPw+eSgB6HqkfJubDo2jiAMPepUv/G5E6yONVY1XgKE46NQ+tFJzFBRQTad9aQQ5UUOusgLOAwxLjjoUFHzJCPF3/yIsmjQU47xw+jQK0d2mH4sbnft2tVK2xmfkg/kk4Pu4XNlYcS4MSokWOTwmRIhp8QRhX4/O7zYyt7RGuB98z1QUYGmgtTchRClCArd5557rt2m5zuaincuS9rZN1S5WZcghDZr1iy7oGreoUMHd/7555voa76QLw56EDLI9OIvXLjQlPlRqEc0lSpJbDYq/cVY9k6AgikEtPehScDxI0R5kIMucu604RQPHjzYZp4DompEX7NpaHBccQqTLbvCsULBnPnWo0aNMucS8S96ismO5oMDnO8OeqTAHKIy9GZzm2OAbAalgzfccENK2XHE6Hr37p3XjjolfvTnAe8blV8hhCg1KAtHW4ZgbEUEWJkRjpNI6TkZ+2SC9gSQx48f74YOHWqOJjYUW48DXJEtd4XsoHvQoiG4gfgfSQ0EUyldp1UNu51KBR3rGdZg+ZxNZ+1C0obkzZgxYyyYI0R5kIMuckrz5s1trAdRRw8nc4TFciUCR/QTx92ruKO+yn6S4SV73qVLFxsnRiAhX8l3B93D50xf9pIlS0zNF2eb6gkWRcwTTUUBvkaNGvYa+QoK7hzrTCVAQEcIIUoJyspxrsionnHGGaZHks3pLPxfifROaK1jNjnaIARRUSRnXBbB4xYtWrhLL73U7Gi+2tB8d9A9rJ38fHnE4+gx53NGOZ/PGruPmGwxZNN5L3369LG2DQJSQpSHiptbJUQEOGWUOQWdc/qVsumcY2gTxaToRafXjF7pESNGmGLptddea6VtzGslgpvPznkhQTaCRRQljiyO0BygDI4SSIxcKvFDWhV4PXob8xGEhHwAilEsVGQIIUQpQNAYBxLnnBngnOOz6ZyTOU9GjJQ1BxoyCNVS6cQ+Mj6MwDGtSLnWkykW+K5ZW1EpR7UkQrq0HNBOQAUdTjtl8MlA8L5mzZr2HecjBBA4ZpjvTlBKiPIgB13kDEaQBE/InNDIUmcTyo4SlbfhjE+ePNnVq1fPMuUEDMjoMiarIkaklSJkzqlUwFHn86aXn88eFVSi7vSqJ7sIpIyxIkf1JAvZAmAkDccREXYhhCgFEAijrYxz+2OPPeY233zzrP5/lLUnAgeRjHOTJk3M7mCHKMUmcaA2pOzAOo+qPlob0Bmi5L179+62bfjw4VYNkEzfNmJzlI8n69RXJKxXOKZ8MEGI8iAHXeQMHGFKmnx0mjFrmT7ZEqXl9X1mFbGuaFBuxf8/YcIEV79+fXfWWWeZg04UnUg/gjEi+7BAOvTQQy0CjUouUXcWTkTeKQ8n0p5sNp1qiXyC0kkyM8B7IbujDiMhRLGD00uGGujLxS5nGuw7mXlUtAnqEvCNBn3v2HTK66mI43GIeU2bNs36oZkwIrIP6zLsOpVy9KSjR4QiPkLBzFdHNT/ZpAvBFL7zfMILH3Ksyc6L8qAedFHhUDpOWTujS+hLomScE/Lo0aNt5EqmiFaWRp8yo76Chz2Po4yd3nLKjxEvYTFRyLOqC6UHPRF+4USZGFlxxpbg2N5xxx020iUROPSpKsNnE8bFEFmnH53jMNtZJCGEyCVr1651+++/vwmAdurUyTKk2Z7GAmRnWWcEy9xpp3ruueesxJqKOJ5HyTXOVLLB33ykEHrQk9Gjwa7Ts80akYALQXqU4NFsoQQ+EXznOPz5AEF41puI5PGeKmqMoCgelEEXFQ5l7N45p/+InmMy15l0zsmIRwMjTqYcJ5wyKiK4qLKjukk2H2eQvqFCds6LCQI3ZNWJjhNoIMKOcNynn35qxi8RROUJTuRLXzoj1sgeYbSfeuqpXO+OEEJkDQLhF1xwgTnnjCXDKc4055133nrOOTBOzZdMMwaVa1TZqWTCEaSCj7GfHTt2LGjnvFjgGKHCjCqGnj17WuDkkksuMaE+1gFewyUefOf50pfO/PYzzzwznEUXIlXkoIsKN9gYTZxzHGRuZxqi4jhAsXjllVdMBI5xV2QyyZy3atXKROtwAAs121xsMOqGEkRK3ShDRMiHmblPPPGEtUIQWKFcMRnoS8dg5hqyG6gXgy/5VBGTEKIYQWmbUnIc4AcffNDsbSahhxybEAsccLL2w4YNs1Jospj0wC9atMgC9cyqFvlR8YcTTsKENkRGrTJFh6w6LYcEU7D/yTjp9KUnWx5fUWXu/AYQhhUiFeSgiwoFVdTVq1fbbWaJ02+UKciS1q5dO2o0Pchhhx1mfXBkzd9//30b+0F0HbESkR8QwKFkj8UUZWtA4ASDRyCFXkPm0JNNRxU4GRBnw0HOdTbdV3cgmETv3AMPPJDT/RFCiGxkRBH6BLKhsXrCywMVVYjOkTGNByKjBOTJmt95550WFKVCDn0ZkT9Qvk7wJjjBB8ccG3n55Zfbd826je87GecbYTaCMbnuSz/qqKNMbf7777+3Un0hUkEOuqgwfvzxR5sp6qH/lhNYprLmZEkTzc2uXr26zTwla96yZUtz9pKJyoqKN9j0aKN0HtlTh0LqjBkzrC2CawItRNdpW0jG8c+1ynuPHj3KvM9MBqmEECIfoEwZm895mUx3puC1cNZw+uNB65wfk0a1Hllzgr0qZ88v0JKhZQ3nPDJJgrgv9ppsOn3pBOaZ/kOQ5eSTT477ulRJcpxk8thLFURuES0EtbSJVJGDLioMetEQ/fLQB0ZfWroghJYoaw70vXOSxynnZEmvkrLm+QffEer5ZDlOP/30qI8hm45+AboBBx54oBlBjiWqMpKB4yVXmXRmve+yyy7hYMP48eNzsh9CCJENEFudMmWKBVdHjhyZMeEybHairDkOOY9jVBotdDh4OGvKmucnr7/+uumyxJu6QvUFiRWy6QMGDLAgN9UQTHzJ9770Zs2a2TVrTrWziVSQgy4qhEmTJlkPmo8qUtbboUOHtF+XsihEReKBmBgiMRhsBEdw0E888cS0/2+RHShtR0OAPrRE4ODSk46Ty2xdIub0HSaTTWfhlisn3Zfpff311zEFDYUQotCgb9iXtiPyte+++2bkdWlvor84HmRL6Tnv1q2bq1KlimXN2aaseX5CwoagevPmzU0MNh7BbDrtaijyY79pT0yU6MllX/oxxxzjNt10U2v5YO0pRLLIQRcVMm7CO+NkPmfPnu3atm2b9usi+sVrx6JWrVoWaaUPDQdu3Lhxdk25m8hP6Cf/4IMP3PHHH2+l68nAMYWS78KFCy1CTVSdnjVuJxKGi1Xu7ke8ZMuBv+yyy8Il94jdCSFEsUxp+fjjj+28ynk4E+BcITgXi4EDB1rZM2JjrDVw5vkbwTGRn2D7yIoTwEH0NVnIphPEpyQeUV9a4QjKJ3LA6UuPlpihT51jK1v96ggRspYAlbmLVJCDLrIOo8uIqgOlRo0bN077NXGciKLGgsUBfclkVXH4mH2aiYy9yC5Ex6mwuO6661J+LoEYnk8WHV2B22+/3XogEym9U+4eLK/zegYcM9nqVydrvvPOO4dL8Nq0aZO02J0QQuQjy5cvD5+7b731VstipwuOE85VLMiQE4gfNGiQlbRzGT16dEbHtorMg1PtWw9TnZxD5STaLZS7sxY866yzrJUC+8/rxWLmzJllnHSvZ0BAJ5v96n6fqOIUIlnkoIusQvkSfUPAiTRTTjLKrLGgvHnEiBF2vfXWW1tmNZmSZ5Fbli1bZqPVKEcrrzYA1RGUvCMQhCAhr4URT+Sk0yZBtp1jNFLPIFv96r6KhDK/hx56yAJZQghRqOAooyFCWS9Bx0w6ctGgvJk1Bc4Vdh4H7OKLL9ao1DyHhA36MegF7LDDDuV6DQL5VGjgqCMW27BhQ3st7D/HRSInncBPpJ4Bf2cjk+770FlnrF27NuOvL4oTOegiK/z5558m4oGSKyVIKG/iKGUK5mVGA2V4Sp/OPPNM62uizI1Sd5Hf/PXXX7bAQkCNBVY6IEhEmSXzccm8UF5GLyRaBPGgIsPPJk8lIFRe0EWAv//+21144YUKIgkhCpZnn33Wqtbo90YANlNOMpVR0aCkGYeMXmTO+ZQ9N2nSJCP/p8guiMCSPMnE98VaDxFAxvdS/o6tRoegffv2cZ1032aWSkCovNSpU8faLbD1tHgKkQxSzhBZgTK34BgUeorTLTkji8nJF+ec16enPJjtxDknMkpUdfDgwZY1LeZIOv12lO8zy/2TTz6xcSUERnB2yWIwexODUAi88847ZmDvvvvujCn+UrbG4g4leGaqUl6G8x9PVJC+uFQCQunAfFTmoPPeeX31SwohCpVrr702PK0l3XMZWUwcJc7fOOCMRwtmO3G+9t9/fwvCY/MRoM1EOX2+gp4KejtUJJKBJZiMbfcX1gCsBwoB9h/BNMrSKVXPBMy5J8B/xhlnuKOPPtp0XegrZ02BMx4NnPpUAkKZyKK/99571ofeunXrrPwforiQgy4yDsYVBzlIullRTuReEI7eYJxzFLC9084JmhMuJ2NKhREPKQbWrFljhofFCrNCv/zySwtKYKhROicAQakXTi0XbnNhO6qnVC/kO7yPt99+28alHXfccRl9bUofGePC8UAJHKVw7dq1S2osn4ce9PL0xCcDGQQc9GeeecYWmmQVhBCikMD2Pv/886bEjTOdbmA1KAjH69100002gQU7iGI3Djmtc3369LG1RqaCurmE4DA6JDiw/oL9X7VqlV1+/fVXC75zwb57289l6dKlFpwvhEAD9hj9FQIvmaR69epu7ty5Vo1G28MXX3zhnn76abOrsZz0SOhBz/R+BW39kCFDslKNJ4oTOegio+BEU3pGVJeMOVHddOedY/QxStH6gnGciJLi2H3++edu3rx57uCDD3aFCu8LY/Liiy9ajxbvzRtiHG4CFVx23XVXExoja0C/NtfBCgX/ucfKCOcTBCDI+McqL08XRrFxXLDAQ6yFAA6fL2Pc4s0l5TNnAZgt5xwoyQPK8SnvR4G+VatWWfv/hBAi0/hz5LnnnmuVQeUlmjNF5pxzN44T50tag+gxRhTMtwkVIqyR0B9Bd4Xg+0cffWSipqx1sEuM5uKCvSdIjL339j+yGhFRPJz4fIfMOWtEgjDZGH3H58JnUbt2bXfVVVfZuoKMNdnreE46a4QpU6ZkzTkHqviA75ngy1ZbbZW1/0sUB3LQRUYhqs0JCIeRkus999zTSt7KC8Jdkc65h0gkGWJU4TFORPAzNXO1Io00vXsIm+Corly50hxDjDARYXr3ueZkjrHmvmLCj0g59dRTLeiQLWh/mD59umvZsqX9Xw8//LAFL4KVGZFwP058RTjoXvWY/Tz55JNtNIsQQuQ7b7zxhmUqfUCzvBDYj+VEYSMIvHfs2NE98MADbsKECRYMKDRoO2N9RMabsnQccuwMQXbsPK0BOOLYgWJrz2Otw1x6KuWyVUYOfG79+/c3G8p6lMoDnHSOl1ij+qhMpOSeVsFssc0227hddtnF/g+qCDJdLSiKDznoImNgpIlqg+99pg+8vOVniUap4YwfddRRZuTIkBIMKAT4bPisMBZLliyxbDfON1FyHPKddtrJHPJic8YjYWHCWBQqA4J6BdmC/+fRRx+1EneEZSZNmmTl9WyP1b9HJoMRbLH61dIFg8137ZVdKcmnaiKdLJQQQlQUjKL0UynKG2RNNEqN8yR955y/KW8vpB5enHLmfWPrGUNHVpcEBgJ39NHjuBW7rQf6r6mGpEqiIoIPiMCxrrroootMNZ4qNeyqP14joYqBfWNtls2APA46yRg56CIRctBFxiDbCJTpoqiKY56OSme8Xh0izPTtkv3EOU+nhL4iDTXj31C6xSEjak4kGZV5DEc2Sr7yGTIJ9ImRdamojDElcDjmRNOJmPM3UfZYRhsIImQLFioYba/syu9FzrkQohCgDWvq1Kl2Huvbt2+5XyeecjYBVcRDKUFmpBain/kOgV0cMQIPZI1xysmQ77PPPuaYExQuJchi8x1Tas7nUFHQj46N79KliwUHhg4d6h577DELFkSDCg6+s2yVumPrGamKgy5EIkrLIxBZhRJdHI1hw4bZ3zifZIXLC8rWCMJFguNPpJ6y9kJwznHwWGBwzUKGfidO1AillJpT7iFjTZkXzuh5551Xof83nznRdKLqlLxT+s4ItljCcWT6OY4RJcwGBLS8g47xTmehK4QQFQWiV4B6djrK7bFKnpn+QhZ0/PjxFljNd+ccR5QRYkwKQRMHp3C33XazCgBulypUEGy77bamsF7RdO7c2dYbZNI5lqhkoPqS4FKsaQS0HGbL1oMcdJEMpekdiKyA00lPMUqkqFHT95MOsUap1atXz4RVcM6z2cuUDhiEe+65x02ePNn6m+h1Jnq+9957S6n7/89BpYrgtttuy4kCL046pZKUurPoYwQbojKxRrBxDNJ6QMY/m33oqNnT00ngoiIzDUIIkQpMEiGgCL169UrrtWKNUqMUnOD2fffdl9fimdh4qgZxvNDe4dzdoEEDuy62XvJUoWUL+4nGQK60VcikE5Cn7J19wEknaEJZeySsBbwAcaY56KCDrJ2B44WAfzoJLFH8yEEXGWXMmDF2TVa0Tp06ac05h+AoNaKPlB/hxJBZz8e50TjmjIRh4cLt7bbbzqLGBBLSnQNfLLCAWbx4sX3P9HfnCr4PxOIQjTvllFPMOSdjEyuTjlHFuGZaGT/ooPs+9J49e5ZZrAohRD6BWBsZYwLPnLPSnXUeHKXGtlmzZrmBAwfamgJnPR+hp5z9/OCDD6ysHaePcZ4S+Sw7Vo0qAq9inisIItFqwHqSdRktCPvtt5+tRSKh5W3OnDl2jGYSRI9ZtxIgIJjDukOIWMhBFxmBExrRbl8aRFlRKhBJ9I5RcM45eGe9e/fuJtaF6jniKvkm/MY+E+2nL57ydU7+9JuJsmD0mNmarbFqqUDJGz2URx55pBlLZpIzMz1WJp0FR6Yz6Rz7HCeM3CGjjxBStEWDEELkA5wHGWcF9PemmiWOHKfmZ53jqHPhnIxzPmjQIHf++ee7fINpK7QlUe1E6TrK5NiFUhB7SzWAQea6efPmefHZIFqMnaXcHVFhgj+xgktURGQjk06gAgcdbQI56CIeuf/FiIIHFfUBAwa4iy++2LKLOOqokScLJ8HIrKWfc+7B8eVy1113mTOVTyxbtszU5Ml48t456Z5wwglyzmNkofm8UOGlFz8fIKqNcAwTA3CQCRDRkx7vPWS6NI0MAzRt2tSyMem2hwghRLYg+0cwkwBnqtlt2ryizTr32Uoq5CiHRh+EcVn5BkmIW265xZxzgvAEGxB6zQcHNJ9gPC6tbFSIUVmQL6CRRJUDugm0IBAcipd4uvLKK7Ni66OV1wsRRGcUkTYvvviiZZC9gWJeaSoRdZTN421nvvkll1xiAYB8jKbjTCFYRyQW5zxfHM98HauGQxwMvuQDtWvXtqwNrRQ9evSw6o1432NkACldqLgANBwIbpV636IQIv9b2QhoMiYyWdBliaWgTWk7dpSWI86BCMPl23mQkn60b9DCISvMeTvf9jFfIEvM50SyIp+g4oFpAEzR4VhDe4bMeiyCwaNM2no56CIRctBF2nildZ89Hzt2bErPjzWDmu2cxFgEkKFmREY+0qFDBxubQumUouixef/9982xJWKdj/34VGZQpTFy5Ei7pow93uIr3hjA8hrtF154wY5z5rMLIUQ+VsyhqF6eVrZ46tWcA7H1OMFUNBHIzTfoLUf8DYFTMsQiOtivjz/+2DVu3DgvRXGZPc+4W9aX55xzjim3e4X1VMcApoocdJEs8iZE2tBL4+Fkl0o5E1nIWDNBDzjgAMtIV61a1UTX8nUkGQrt3bp1s7EqzPYW64M4C6NWGI9HeXu+0qlTJ6vW4ELlBkGnWJl0eusybbT5P1Gapa+TMrxMC9IJIUQ6YIvRWSHLzTkqWchCxnJqybJOnDjRgp5UMlEynq80adLEsq+U4ovoUP5Pi18qx0dFQ6sFk1wIBqF1wPEZK5NOW16msuje1pMAiJWcEgLkoIu0oSc3mE1OFvp46fFB1TvW/YxTY041Ec98BoeK/UWxVJH16Ab7+++/zwthuETceuutprxPNocoN4Y0Wk86QnKZ6kX3Ew98Bca0adPc/PnzrYdPCCHyBUaH+kktyZZ308dLCxgl7tEcpZNPPtlE56heyuVkj2SoXLmyTfsgIM+oOVEWquQYrdasWbOYyZd8geMOEbhrrrnGxFm5Ha0nnfs5fjPRj07fO5UYCC2uWLEi7dcTxYscdJE2ONHASQc102TACEcbZ0XpMyVk9AXhmDPKBQOe7zDLmygsM+CDFQXi/+bl0nd47LHHWlVEvkOlBlkiKjeo4KBcj550jsts9aL7qLqPqJOloU/OC8oIIUSuoUecKh9AxC0ZyDxGGxnJtAza4dCaoWIJ7Y+OHTu6QgBnjaAqAXkcLfF/UPFFMJ5RYvk2aScWffr0cW3atHHnnnuuBcSZJoBWDlMEstGPTlDLB+RV5i7iIQddpAXZYnrGvNBWMhF1so6xxljhuHOCHDx4sDm8RDgLBbKuKJYyIks9xP8DYweZHleSTeibo0eNWak+oh4rG5CJXnTKAQlO+cXetttuaxl8sjVCCJEPUA6MICyBeNqVkqFt27ZRtzPzHCVtFNsbNWrkhgwZ4goFgriIxNGPn8mRm4UOfeccH3w2hSKex35S2bH77ru7du3aWTseo/5iHd+Z6EdXH7pIBjnoIi1wzsmcA0Ib5RmpFjkjkjJ5ItR9+/Z1hQbBBXqTvVNa6lBdgZOLNgFOZyFBFoDvE8G4Z5991h1++OFRHxdreypQ2k6AyxOr7UMIIXIFVT2pZM9xfDj/RwOHqFevXubk3nvvvXmrMRMLevAJVFAxh1Na6lD9hXI7lWY1a9Z0hQRq8/fdd59pCFHO7o/PaMTangpy0EUyyEEXaTFr1ixz0jnhEA1PRLxsI+Mv/vzzT4tIT5gwwcrGCw3Ebch8EkmmLLrUqysoByMbffnll7tCpHv37lYZQeklpXCRvei+B53y/XRL3Xfaaafw7YMOOsgtX77cRg0tXbo0rdcVQoh0oa+YQGUqDnos1XZanWgH4/zG1IpCc+h85pU+a9YpH3zwgSt13nnnHZvi07RpU1eI7LvvvlbWThn7ggULLIse2Y9OtQcZ9HTL3L2tZ/KPELGQgy7S4uGHHw4b7GRKmuIpX6Puffvtt1spdCailLmif//+FpHlJF7KKtzvvvuuW7lypSmjFmKwxWe2yQKxOMVYE3Th/RxzzDF2TUk6QoeMGuQ6HdE4xGM8jHxBzZ3AAKrGQgiRS9CEIVOMc123bt20VNs5rzGiDfX2Quk7j3XOJoDLCFHf6leKIABLQPm4444zJ71QQQSOqggEECl19/3oZNdxzpk0QDUgFZ7pVM55W4+mgxCxkIMuys23335rypfA2JF0es/JTHIipDwKsZhChpL/Sy+91NTtSzX7yWIFwRUE/hBaK2QYG4ihRmF47ty5FkDymaTIdo10RON8CwC9mUTvWeywCMiUUrwQQpQXb+upEEtHtZ1zGyM30WkZM2ZMwfQqx4JgLQ5XKYvDIgxH9WA0IdVCgjYLqjcZq3b11VeHj1cSRjjnQVivVqtWLS1bLwddxEMOuig3d955Z1jUimxpeXrPEcEiE0n2nNL2cePGFWy2NQhRVnqKMVylOOuSEjEWYIUwVi0ZmHNPpoQ56fRMwi233BL1sWTS04mqM1KQ38UFF1xgAS2i+UIIkSuwYV69HfX1dFTbmdCCEzRs2LAybT2FCtVyjF2juoqy/VKDRAQZ9JNOOsnaFAudffbZx0rdse++lD2WMBzfd3kC8t5Bp8JQiFjIQRflJiiM4kUvUu09RxSOMrfhw4ebY1PIpe2R8H4wXGQLSgnKwakcoD+vXr16rhig1J3gEe+td+/eti3evPstttgi5f9DRlsIkY8QaKbkl4wh4pnxiOXMUBnEpUuXLu7EE080MdhigXUMZf+lNnaNNSDrm/322y/hcVFI0M6GDowvdY+3LkVENlVU4i6SQQ66SCtLmqyDHqtf5+CDDzZDTWkUs1CLCfqIGzZsaMqmzAIvFQjG+LnwxQTHOFH1UaNGuTlz5thotFj8/PPPKUfW6WOHyLE96BiUYmZGCJEfzJ8/366PPPLIhCXp8dSve/bsaefG0aNHF3xpexDsHaPFcOboxS4VCMQTvCYYX0zfJ6XuTBZgAgHZ9Hhj19auXWsVk+UJxv/yyy/2exAiGnLQRbkgexjMitepUyfu4+nbjaaATb82JVKouRZDaXu0LDpR5nRVPwsFerc+//xz17Vr16R0CQoN3hc9h5S8JxqRcsMNNyT9umRdnn766fUy6AgzkbVSmbsQIh8c9EREU7+mJ50yeZweVNuLobQ9Ehw4Mulvv/123OqqYoFgBOJ4JCGKUSeFigD60IcMGWLv84EHHoj5WPrTU1njUWG3ySab2G1l0UUs5KCLcjuewchfogw6RCpgUxp16623mijcbrvt5ooRghLt2rWzSOyKFStcsRvsJ5980o4LFE+LEbIFt912mwUi6KeMV87Ifclm0Tk+fG97cAb6dtttZxF6Fn2lVDophMgPqOBJxUGHoPo11wQrcdJ92XCxQrseSQeq5oqdJ554wlq+qBQsVnr16mXid9hxAk/t27eP+VgfYE8Gqg1U5i4SIQddlAsUrYNOS6w5ppzYgjOivQI214MHD3Ybb7yxGe5ihmwC2eRiH7v21FNP2Rz7SpUquaOOOsrdf//9rhih346gCyX8BCMINqWqvRAJi1gPugXeWWdBS18jAYFiKiEUQhQGzPhes2aNOZ6cj2KBfQtmEnFoCNRyPWPGDDsXIhrKeqFYQeCT9c7HH39sIqnFCgFl7BLrGXqwsV/FuLYhy42dnzZtmr1Hjm/mpWcCX1Ea2dImhKd4z5Qia3Ai3nrrrcN/U64WTb2TsqdYM6JxOOjl7du3r9tqq61cMeODEKjYJ1K7L1SIAiMORCVFy5YtXdWqVd0111xjyr0s7ooNjDZ94bfffrsFm1DyjUays1LJRoB/HRZ4/thBp6EY1HGFEIWHz54zNi3WeciPVfMzooNBd1q8CGI2btzYRkcWO40aNbK1TrGKw7L+mzp1qmWA+b433XRTK/8maVOMWilt27Y1p7xPnz5WxcZowGggfJgKvmr0o48+ysh+iuJDDrpIGSLgZPn8bFSi48mMVQvOiGbUCif4iy66yJUCZ5xxhttzzz1tViql4MXG448/bs4lmXO+V2afs1AhENOkSRP30ksvuWKCQAR96JRysighk07lQBAWaTjvifj999+tNQBQAo6nhCyEEBWJz4gfccQRSY9V42//PLKOBKaLZeRmMllXRNMIWhfjRA7EgQm6N23a1GweQWhsPUFlpvHQr11MoI1Ei8a8efPczJkzY2ossD0VvJiibL2IhRx0kTIoT/qyHPrJKflNtrSX7TipkyZNMgGOWJnHYoQFCqXLlIYVEyy+WIwgqkKJnw/iEHU++eSTLQuMUj+928UEwSayCV4MjpLGoMbCV199ldTrUGHCcYFD70tIg0abwBZKsgQEhBCiIvHnor333jvu/dG2E4weMGCAVVUhoFYqHHDAAWYPi23sGkJ/OKkI4gWPB1TJ6b+nDQuF/lmzZpUZw1voEHBBDI+KT2x+pMZCeYJPctBFIuSgi5Tx2T7K3IOl7smU9rKdk9wee+xRVHNQk2GfffaxEr/33nuvaMq+Uatl5BiOOVH0SMimU+a+yy67uDvvvNN6t4ulN4/3dtlll7k77rjDlOsjNRYi9RdiwRSDKlWquFNPPdV+F5FGm4UOJfUsfIrlsxNCFAa+BDeWkGu8sWp33XWXBSrRmyklcFRPOukks49UkRWTzgwOKuXckZooBOKpoOM4oapy3LhxZQRPCxneK044Yq2TJ09eT2MhmgZDIuSgi0TIQRcpQTavVatW4WgqIyhSGatGuTPRVe5n1mSpwUKF7HJQFKyQoeyLEm36pDHQ0aBHjXI4Zt1TPcExUCwqtzjoONdUgySrvxBJp06drAKBYyOa0d5xxx3dxRdfbIGAYsrGCCHyG1rZvv3227gOeqySX1q6sPOc32I58cUM6t8kJBYvXmxrpUIHxXacT6q8dthhh5iOLJUDBOux8ZS8IyhXDLB+oXWP9szI7zOeBkMs/O+J35dvGRUiiBx0kRJEg1FzBbJ5PpuezFg1MoUIbRxyyCGuRYsWrhSh4qBjx45u+fLlCedo5zv0XSOEgwMZT90XCEoceOCBVipGVqF169ZF0ZdeuXJl179/f5vvS2VEMvoL0SC4QRVC0EEPOuMsdChx5/8TQoiKzJ4z7pFAZCyilfwSvP/111+tPadUITDNzGuc9EIHYTjsDwH2ZKrLKHnn+0cMuBjePxBsZ+1GNVuyGgyx4Pfkk1gSihPRkIMuUgKhGJ9BT0a5Mljy+/zzz5vACJnCUh4Zxdz3atWq2WeBs1qooDyOgEqys3G94j9RaIwTmZVnnnnGFTpdu3a1jIKvJomnvxAJmfOgI05vH6xbt84yFkIIkSu845BMBjxY8kvwfsSIEe7CCy+MmW0tBRivSlsbwfhCLvdeunSpZcLJjBNwSAYSOSj349QTwC4GVXv67lF1v+WWW8Jrt3gaDInwvys+XyEikYMuUiZ4Mol00OP13TKSihNcKYxaiQdOLVkFnLNCjSxTDYHBRnW8du3aKT0X5xzxODLGqPjT11boqr0sRB988EH7TuPpLwTBMadsjlK3d955J7yo8X3oL7/8cpnH89oEu4QQoiLwTkas8vZYfbdk0nHSac0pdUhqUO5eqOKw9JwzB5w2rWTHhgYr53j/2Pr777/fkhKFTs+ePU1zZvr06Qk1GBKx//77R7X1QoAcdJEyfowGyp0InyXTd4szxygusselnD33HH/88XZyRnQEVfxCzJ4TGT/66KPL9XzU+5s3b26lcBi8Qnc8O3fubIsRyvli6S9Ejlz74IMPbDQNExEY2+bxJYSI73nIvlBmSkaiGGfNCiEKSyAuVt8tDh0tOaeffro5pqUOs+Np7aIqKtnJHvnECy+8YPaHNQvJhVRhvcfxgU1EYO2NN95whQztfFQNknCCdMauRbP1QnjkoIukIcuHSqcXtMBZ8M52or5bBK622morU/EW/+tTwjlPVvUzX0Dobe3atTZGLV5fYiLIFrNwody/e/fuBd2TToagffv2plqMgEyk/kK0hRmfoQ90BXvLoxltPmci8mTXC3GRJ4QozEopiHS04/Xdzp4926rsCMaL/4PKQewlZd4EMAoF1idz5841wT8u5YV1ItpDBOQZsesrxgoVju0XX3zR1kJQ3rFrrKcJelCp4ifBCOGRgy6SBuNCNNWD8+GJ13eLmNg999zjunTpUlJzzxNBvzH92JycV65c6QoB+q7QEsCpTLXcLZaTTpsEwRuOD1+dUahGG8ccMZ1I/YVo+AUPGXTmoHuoSiAbT4ad+zxUW7CNhZ4QQmQbr+BO9U6QeH239J6TZaS0WZQdu1Zo/cZeZwbBt0x8BmSVq1atauXuhSyMxuhYglYc657IsWvJahQQuAACIUIEkYMukoaMuR8nxck2KA4Wr+/24YcfNgcEMS1RFv95Evhg3nW+g6gbTvqhhx4ac6xaqiA6g5POODaE41B+LdQsCSI6QYXXRIr+vhQex9vDAqZ+/frrGW163YUQItcOeqyxYVT6PP3001YRpVa2siCWR9CCXvRCsHFUQJIh9pnvTMAxge4KtoxMOmX/hQgjgkkoULKf7og0lbmLWMhBF0lTs2bNcLTvgAMOcPXq1QvfN27cuPUe7/tux4wZY+NG6tSpU6H7m++wyKE0CiPF+DpfLpWvYIgoTeM4yHQWl4Udzi1l3wiuFXIvOhoMyWYHmBkLfkSbR0ZbCJFL/vzzT7dmzRq7HdTUoL/2/PPPX+/xbMeGVapUycZoirKg5E6FAcFYghj5DpVgBItJzGQSqsNI7nBs4aQX6iSbDh062BoOcdh0CNr64EQXIeSgi3JH1OP1n/sT2JIlS6zMHcdF/A8+F0qZH3nkESsHJHuMeEqszEQ+MGPGDIt80zeVDVCD57OgmuDuu+92hcgZZ5xhi5qxY8dmzEH3RpsKizZt2lhgzC+chRAiG/i2K0qcqfaJ1XsOnO8IxtPKxhiqZEdxlQI4oNhOyqG9dguBDN/fn48wXWbFihW2RmFtkmlYR+Ckv/vuu27mzJmuUCsiaFugYi4dxxoBPVo/+b0V6lQfkR3koIuks6dEVH2WN1jyFq//nOw55VGM1RL/B0IiZ555pjnjnOAZO8cF4z1v3jyXjyxfvtz6oVHzDarzZ5qDDz7Y7bLLLu62224rSLVXeupRNZ4wYUJSwZaGDRuaU7/ffvuV2U4ZIEbblxn6hTILZDIwhS6yI4QojGA89pusZ7zec9qdcLSwEQrG/w+q41gDzZo1ywQ+UUJv0aKFlUiTRc9HwTgCCkzcCVZMZgPEYQlWEIQuVHvGsf7WW2+ltVYJJj0KfeSsyCxy0EVS0DeFI4EaOwTHbcTqP0csgx4dhDMy1a9cyOCwMfd70KBBbscddzShEYygz6SyEEIkbfXq1S7fwHAgaJKt7LmHheCxxx5r/9cFF1yQdn9XLujYsaNFw5MRfWnVqpV79NFH15tugNH2wjyPPfZYePuQIUNsYXfggQdmYc+FECJ2/3m8mc+U+uJwEWQV/xfMYBQX1wjq4qBTdchaiHM7o2fzMWOKsCnq7eyjD8xkC44bHHV0igpFKDcInxHtHw888EBar3PqqaeuZ+uFkIMukoISHsqPfSkPDqYn1txnFMo56TIPtdQhE8rJnGgxAmBkziPLAPm8MIz5lkVnbAgif8xtr4jSRUrqcNIR0ilEYUGy4cw1p6wxHQjgwLRp08LbCJJxHBHAEEKIbOEdpqBAWKyZz6wNCOJi60tdHI41EjokI0eOtLYkBFAZwxmEzDSOKesBev3zhZ9++snGh+2zzz5WyZZtvLL7b7/9ZgGeQutHpxKCdRu2Pp0yd16Dz4IKuXxufRAVixx0kRT0xOKoeSLLnKPNfaZMCiNEj00pw3xLIqRkxill5/OIFpnmsyLKTjl5vowg+f33320+OYu0VMaHpAsBHzIxVG5wHBUSGNpYRhu9BoIPXAchm0KlSVDVtnnz5rYAQK/g448/rrD9F0IIX8nFSM0g0WY+z58/385dnPdKGc73Tz75pLUDEqRlPRStehD7T7B11apVeRWQJxj873//OyNj1ZKF/49+dGwca41Cg2Mekd/gJBYPDvfEiRPtOh6sp/06efr06VnbV1FYyEEXSUOU0xOtDzly7jMOCpniYDl8KSq3klXA0SWSzuzzeDRr1syM/Msvv5wXY9fonWN/6Imu6O+RcknKK2kJyGfxvGiguUA/Jv1pwd/M9ddfb9kVrv1viM+XxRqzYfv37x9+PLPhEekJlr5xTHBs+OyMEEJk00EncBxJ5MxnbD2iWWTSSxXO45ynsZlUUWG/4lUTIIpKaxtaPfnQyoUoHKJtOIrYnooEYVUCGnx2hSaASsAdvZjIRAKVJXyWaNJwzd/JVMypzF145KCLpAnO7sQYx4OIIif7Uo6oU6pEjzGGG8c7GXE1eo/p6ackfsGCBS6XYChRF2c8Hpn9iobsMZ8F5fU+6FMoMDKOMnRvtKNNOuBvtrOIu/XWW23bXXfdZVUD8crcqcLo1q2bsupCiKxBdjdaBj0S7BvnOYKSpVrezmdAkALdEfRBEFNNBs7vJD7yQcl8ypQpVopP1j8XENSgxD4fPotUhWGxycGWtmjTDvg7Xibdt4ISwEcwWAg56CIpEAdDfdSTyGhzsqK0i/nnpQgRcbKi9Jeh3Brs40vEEUccYb3eb7/9dpmgSEXDd4jxwdnMVUSf7AKZYiLUhQRle1RMeAc93qQDH4Vv3769LfTou/fZce+g8zgceqoYKD/kEqxoEUKIisqgB0HYlIB8KQfjn3nmGbsccMABKfVuV6lSxSZ5IBZHa1uuICiMKCCtjNiuiubnn3+2dgnsXy7+/3Th2KeyzQe1Yk07iLUdCOpQUUEfPm0SQshBFwnByaTHLNgflMho49zhdJTqPFSUvIkGE1kNquAmCw4YUdTnn3/e5QIMCboCe+65Z0rBhUxALyOlbk888YQde7fcckvC8rB8hIzSm2++aaXusSYdBLej0E6pH8/x0xIQYzz00ENt4YLau890oOSOaJ8QQuTSQcfWE0DF3pciONecj+vVq+fq1q2b8vNxiqmcy9XYNdrHEPijxLyibQrOKIkI3jvVFx06dLDERqFBKyd4xzretIN4+Cw6qvZCyEEXCeHESdmNF7ZC4MQ73tFEr/w871KNqA8ePNjmetKfF1S7TwV61Xnu0qVL1yuNrghwkOlDy/ZYtciFAlFoHFGyCeedd54Fhgp1CgAZdDLeBBqiTTqoVKlSmdJ9AjkILsHll18eLplr27atXdOjLoQQuShxjyV4RZUQlXJM3yjFzwhnauuttzYHvbytXARzEZMlOFvRkPnH9mKvsj1WzUPAGRuPbSQRwFoRm4eGQUXtQybBdtNn7m12tGkHQc2GWHhbT8AiH8ftioql8H4JosLBgFDm7Gc10n+O0x5L9IoeIkp0UaEuNRDJu/fee61nG5GYdMBoIS5X0SqvL7zwgo17o5euIhZdZA0ok2Shs2jRIjNi7EPfvn2jKuAWCgQ4KF/0Ze4sRHDKg2V9kboEnTt3NiNNZuGee+6xhUybNm3M0WdhHFT3T2esixBCJDNmDQc9luAVj6H9Bgez1MCpZTQYbWh8Jun031MaT0Ce9QM2v6IgmUJQnP+/Zs2aFaZtM3v2bBNQZdxc7969iyLAw2+AxIZvPWPaAU65h+BWokpAStxZd2H/lUUXctBF0uBgAE5FPNErynwq8oSfL/D+L730UlvQZKJvm3Jn5pESWUdwryLAuOAI8h0z5izbMI6PsSIsTMhCPPDAA+aYJtI4KBQIsvDeWMTx28Apj/ab8ZA9IMBDuftDDz1kiz6i87RKAJ/PZ599Zr8vxPuEECLTcL7yIx8RO40leOUFvXyJb6nghfEImBKEzUTfNKXdOMwkPCoKxEfRmakIrSCOKYIBvD+qyS666CLXrl279WbEF7Ktx777hIqvOElFKA68U6+KOSEHXSSEGc043W+88Yb9jfMWT/SKE1CuhMVySffu3cM9ZZnK/CIwh9OGgEpFjNWi5Iz/j7mk2RyrRn/+nDlzbJGDSvvAgQMtqk6/dTHB4o2MCH12iYTighUrl112mfUl+sWgX0BhtFnQ8HoEbr777rsKeBdCiFIMxpPVJIgaS6cEW0+1WHl0VgqZJUuWuBdffNGC2EzryASsq1Ayx9ZXxHkdYT++Q2w9YnXZgnULCQb63Kk6QAwV57w8/fr5DNlvqua8A14eoTigYo41GOsCviNRushBFwmhr4ZydS9SxYk2Vr8V5TmMf6qI7Gs+QSSavnN6qMgEZwqcNWZh0+tG9DmbkM3lu0OFNhUl2lSgdGvhwoVWvkX2gawB4oMY7WKENgeyKwS3khGKiwTnvGfPnu6qq66yTAcGG1EiMlfoE1BlIYQQ2XDQaWeLNWITwSvOa6Vm66kyY02EM4awWqbLpHFo6UHOdlsZaxYCK0yNyRYIpJLcod+cZAN92bSwZTP4nyuoduO34BNZ5RWKI1BDksdXzInSRQ66SAhOAI6nz+jhZKG2GSl6xYnF952XmtEeNmyYRdJRPc80fJZ8BzhmZJuzmT2nR5qAQDbAIccxJ8JM6T7iNIik4XgWK/xmeK8Y7WhCcfxm4s14J+PA907pHL87n0VnsYOhL8aFjhAit/isOeenaIJX9NJil6jkKTVbz7mc6qXyisLFA/Fd5pCjyZIo05oOZGfpBacyKxtjzRgzy0x4gvEEqRGAY21YaONSUyXooMf63SQSiossc5fWTOkiB10k5Nxzz7WTDtF0DyVYRNn79etnBoVrjDqP4yScDUc1n+Ez+OGHH9wjjzxi5VyZHpdCjx+vn62xaziBqIb6Mq1MgpAQpeyUsFMyOXbsWBPXqVWrlisFMNpenTfabyaRg89nRxkiI+d8VF0z0IUQFZFB94JXlF7fd999ds20iffee8/OQ6XmoKP9ge2ixB1RU39ezhQEyHHUERzLRlsb3xm2mLnbe++9d0Zfm4DyggULLPhOwuKCCy6waSyl0gLBbwHNBmbKx/rdJMNpp51m62iSGrFa40Txs1Gud0AUntEG3yMVmf3DQUfAqtQye9dcc42JhCD4hRNN+XE6Y9YiQXCvdu3aVoJO9D6Tzi2ZWaLd9DbTM50pUILHWPNZEKUnin7++eeX3LGB0Z4wYYItjAhQxMuYR4OqBsoEGWfI74vsBK9BeSUz6ktxWoIQomIEYT3Ys2D2j3MRZb20tZUS2HQ0QhgBio4KlWfMD+d8nI6Su4f+Yybm4NRRbdagQQOXSWhRJCvLWLVMQUICZ5LkBI45fdQo29OiV0r4YBUBef/5Rv5ukoEATevWrd348ePdmDFjMn4MiMJAGXSRNEHVdtRGo1GKPWke3je9wTjriKDRp0Ykmcx3pvrTiNazMMgkBBSIfNevXz8j4naIotFDR6aXLAuGiv75rl27lpxz7o8LgiBoFJQXRHw4tqpVqxaOzHfq1MndddddGdxTIYT4n62PbMmJtPW02VSuXNmVGlQ2NW7c2EqYcUS9LkimZldTyUamHttMoDtToGVD2Tk2Kd53m6pgHhNHKMmnMozPhIqvUnPOgSANFYi+zD0dunTpYtd8tn6igigt5KCLhDA6jBOuL9uBaEaDzB5R1FJ10D3MsaaciQgoGW/E9cgk4wSnA1FVshUIrzBDNBMQSCDau9NOO2UkE0I51h133GFGm0UeJf9Dhw61fS9V6MFjsRJptKm2ICseHLMWD5xzMulAoIYeSBaHQgiRSXDkgAqdWJRyMN6DM3bWWWe5Sy65xGwoI7YIoDNSLF0QUEVzhix9ppg6daoFVPzYznSrLO68804LxFPWTSn76aefXpIBGw8VFOg1RXPQ/di1RGPWPGTd0a/hWJJYXGkiB10khMwfStvBfqhoBoh+LCh1ow1kosmkMwOb8jccdJxVoszp9KcToea1iYKn6/AD5XmUnxOASYdPP/3UjPULL7xgpfJHHXWUzTJnQVDqUNbuheI8lI5ef/31NhOW62ApaTwYQ+dF/NAlGDBgQNb2WwhR2g465/BoUBFUigJx8TKnF154oTvnnHOsfJxAKln1dHrI+ewPOeQQsxvB6sXy8sEHH5idxjanI9ZGcoas7vDhwy3AT780I9N4v6KsUFxQHI5gOscH1/ydjLPvs+ijR4+WWFwJIgddJOTaa6+1rCjgHBLZi+ZQcFJCkbvUBOIS9asRNb333nsti0zJO6XvwWqEVCATS2kdCqzplrqvWLHCxp9gXMvb007VBO8Pg03vHD3sKJDiSFKiN2XKlIwEEorJaJMxj1xw8XeymXTGrgF97bQTcCx4hXchhMiUg+5baiJBZZwgvRz0/4H9w6FGa4XgKZVuBMDRjCmvc9WsWTO7pnw+E2PVWI+Ut+qK16DkHqEzvn9sfY8ePcKZXuybP25KGX4TrK38Z0HG/Oabby7zGP5OJpPO+FkC/CTJSMqI0kIOukgIczIp2/GqrpRvd+7ceb3HUdbMiboUe4+S+QwpVaM/C4fqscces+xpefrLKJkmS01/dywtgGTFYihHI6KeKjiE9JmPHDnSBAP3228/c8wRM/F95uwnzjnBiVIH4USv7h9LlfWWW25JetHG75B+x3vuucfmqNPfrwi7EKIiMujYen9eE2UhSYHuCo46nw8tZATmy2Orcc4YhUblHfajvFB6T7ab8Zzl0YEh+45T6dXfL7roIrND7J+vIKDtSk7k/34TvqIg1ri8ZMbo0ULRsmVLu41YnCgt5KCLjBhsYGQUauMiOhhGAhu0CyD4htEj84wBTzUDinI3BhfDWx6IdrNgwIlGgCwV2N8RI0bYIo0sOb32GOvIPnOi9fQwTpo0yZU69CeygMGpxqGOBvcnk0UnANaxY0e7Te8jug/jxo2zgIsQQqQD0yawLfHsPbae4C6K3SI6fHaUNHfv3t0qEZiUQnKDqqdUwF7gqOHkl2ek288//2zJACobEfVLBezVqFGjrFqLsnj6zAnER1ZWsLZhLUBWuNQr5rD14Eeoxvo8kv2cfDKMdVQmBQNF/iMHXSSEjB9OZSIHHdGQZHtpSxkcWaLROFQYTBTOKQWnPyxZUGDddddd3bJly9wnn3yS0v9PMADHnu8ylXI3hGAw1kTRcepxynHO433ne+yxh5X4ZULVtJDxnxG/EUak0fcfjWRnnlL6BvQ4+nEutKIoiy6EyEQwnnNULAdctj456CPGxlMKjngsbQGUvVMinqwWDaXzLVq0sDYovw5LBVrqeI1UxqrhPFISj8ArFXIkFOixj+fgcx+PTWdaSTFAIIP1kR9VGGsyTrITc9AHogWRQAstBqJ0kIMuEsLsat9DwwmYLHm3bt3WexwRQ0pvRXLgYCMcd/fdd5shp2QccRk/Yz4RGE2MPL3oqYjR4GDzeJzzZIwEhoFMP3NZce6J6BNF33vvvRM+FwedOd449qWM/134qHrv3r2jPi5Wdj3aYshH6qmmoNSQ7AWihEIIUV78SKeqVavGnOvNeUwOevKQYab9i/N+kyZNLLBOgN7bg2TWCpSWY+tRdk8WnETE/NCEiaUnEMS3YCFciugvz2OKDy16iUrjSTxsvfXWKnP//wF5/93GCmokW83Ab9BrEfgpLqI0kIMuEoJh8ONWiKwifhJpuNmOYymjnTqMPHnxxRetFA6DSjadvyk1jAdOGQaUyDpl58kuvuiNIiKbyMHGGadvHnV2suc8HsecnvVko788jlL3ZPevWNluu+3s2kfVyaJHzqHlt8P2ZOD3x0gbYCHly+AGDx6c4T0XQpQSfkJLPKVvzmMKxqcOTuypp57qLrvsMgteU/JOUPWHH35I+Fyy6Hw3BNiThbUE5fGM80wElXhkzMm4sz4gCYNCeyqK77Vr17bgQypBhGKE34a39YjooT0UBBV3ticLooPeQVeVXOkgB10kBEEzsujgy7I46QfxqtRy0MsH0Wki1ZSwYUxxuuj7wlGPlx0nso0oDQ5wIoceML6bbLJJQmE4nHiU+/2MdGaynnLKKSn3qwMOOv3ulPWVKgQqyGB4ow2RSv6pjtLxUXUyMQgSUZJKCVy66v5CiNLFO+jYlVioxD09+OxYUyHuSYUZc66xzfF6jFlzUfXG2gCV8ESQOSewzmhWL+YWK2iPhgmjvFiHUIqPxkl5vl9sPeuQjz/+2JUyfHZBWx9Zmo4mQCrwHbJu++yzz0p6HVVqyEEXSeENhxczo/wtiD8ZKaqeHvT84RgzOx2nFocdFXQU22MJhpGB57HMII8HPe5UP1BaFZm9DTqJKIMTqWXhQDkeBpvIeHnhuTiPLEBKmWBUncBKZCScv9meSlaez5VFGN8/Aj5A24QQQqRj6+WgZxeqoKhKI0tNEB4tmttvv91KzGP1p6PCzjmfdrh4Peys03wmPNYoPKoesfNMD6Ecm9dGnZ1JPOWFQAAZ91T0dIrdQWc9tWDBgjL38zfbk4W1GE46qMy9dJCDLlKKqnsV0cgMuu+3kdFOH0rEUEhnzigzz3G+OCnTBx5tfjrqrDjcqMKvXLky5uuSaSWw0qhRo/XuI+pNORxZe3rOmed67rnnhsfrpVvWx/9b6r1pwb60WAGXWNujgdCf/z3y3fbr188WbrfddluG9lgIUWokKnHHPlCSLVufGciu0mNOBR12cvr06e6uu+6KmoWmEotyZxxgMuSxQDGe7/GEE04wgbhIEG1lnjnBgAMPPNCmgeAAxhIvTQUqxZgsUsql2EFbH2vdk+p6KFgxJ0oDOegiIfS1YjTAjwiJlkEnm8t8bpEeY8eONUOJc4yjjAJsvXr1zChPnjzZnDC/iPIgFEbmI1YWneg8o3PIzEeOQ6OMnqz98uXLLbverl07Cwwk22eerNGmPKuUCUbV99prr6iPibU9GgRmGJMHBHAYc8OCLJawkxBCpJtB9+cwOeiZUcxfunSpZdKpiKLvG50XerjHjx9vpe+RorH169e3x+KERxu7RvAEm77ffvvZfPIglMaTpX/00UctqE+J/Zlnnlmu1rVYMB2G9xW5Rikl+G0QyOJ7ZA0XjVS0BIJ96LSwff/99xnZT5HfyEEXCaEf2ffHegc9MoOO0eaEHy1aK1KDEzAneJ/BIPCBA37BBRfY507knLJ3BGZ8fzoOMM4dTjYGPwjfGQ46309QmIQoN/PMuQ+jingNQjTZCLIQFEhGCKeU+tLSBWfcB844FsozI1cIIVLpQZeDnjmoeuO8Te+2B2cdETG0aLif4PnMmTPLzE9HE4YZ5dHGbmETCK5Tsu4hOI+zj+Arpe2tWrWyHngm8mSaypUrW4m9nwZQ6mNVO3XqZMHzSEi4pFLmvssuu7i6devaZ8vEFlH8JO1NjRw5MvzDC/7oyfQdffTRZR7LSYMsDqW6ovAhykrUFojI4szR2xSEKG8yYzxEfNasWWOlUX6EVhCqFs455xwzzn6W+f3332+ONmCQ+d1RthYsL8O4s50RXojA8H/g4FPSzu+X0jbmanPyzxacO1iI0C9dqvD78NmQTJS4+/5+xGMI1JAdoVWB8zEKwaWcwchH0Ajgdxh5IdCSb8jely7+OycwHA1/DpO9Tx8ccEaTRY4wI9FBFRuOOlVt2Prhw4e7119/3XrPcaxx5LH1tMB5qFJ79913baQb6wW+y2eeecbK2SmZx+mnnJ2y9mwlU7ytD+5XqeF/G/63EgyWpFPmTtWcV9wXxW/vk/6FsojHQHOC8FBGQ1aOaE5QQRqFQhw4+mpE4cNJ3UcAKX8mmx7pzGEIMlkSXapgTDHW8cT2GHuHmAuCYpSSPf744+Zs8/vEMNOn7n+nRN3JqOPIceGxY8aMseg2Rpo+c0a1JZpxmgnxOxYEqTqgxQTOjV/8ZqLEHfhMfRkjEXmcdQRoPvzww4xm60VmwDjzvQQvkyZNcvmG7H3p4h3zWNND/DlM9j49+Hw5Z/sRtrEqz8466yyz95zbsfOjRo0yR5wxm2TDZ82aZY8lKM/EHRIoTGmh8vGmm26yABrO/MUXX+yaNm1qr5NNeH3WE6XsoPvfhv+txCpzj7U9XhYdSl2Er1TsfdIOOhkZyjaCJTXcpiyWBSIllsHtXnFQFAfegcOo4BRE9rlyIooVcRfJw+IXA4eRTcSRRx5pRpeTNll0SthYVKP4SRk8BptIK8qqROkplcNZ5/EYfaK68ZR6MwnRfI6byPL7UnXQUeePRqztsY4VAmdeGJDvmt9lsLxO5Bf8tnFyg5fIdqF8QPa+dAna+vJk2EVycN6m3z8ZW08JPJnvli1bWmk7QXbEwlBoxxHHGWY7r0ngnftZD2B3KbHG3rMGqChYc5Syg+5/G/63wncQKbrIOo3t5XHQlUEvDXufUo0LRjg4v4/blLsRrfPbKatk4SiDXTwgdOH7iYIlj0HkoGcGys85kSdbfsYJgEg6J3qi7aizUgLH98UCi0wXF0qpMNAnn3yyGfl4UftsGWycR46lUoXfB7+TeOPUUhmzxmuRSfELaW+0/Qg9OegiHWTvSxM56BUDImJ8xrHU8qOBcGzfvn3NThCEf+edd8zJp5QaB53XowoPvRfWBYjOeaeuIuHYCPbMl7qDTq955Ix7vv9UetBBDnppkdIZFiPMKAgOOgzzokWLzFjTb0LPGtATww+zvAbbL2BF/vDss8+Gy6iuueaaqNFAvnMMu4Sq0oOTOJ9hZCaVk3ms4IgHx4wsLbPOeQ3K3/id+tmklF3hwHPJBSiPTp061YTsKK1Ptbyr0PFVJwRMKPWPVr3A9mR/Qyj7c5zwmd56663WY8hzUfgFfxyIzC260lXIf+KJJ9abosB4PC75RrbtPXY+0TlNVDx+/cV3E+384dsbeJzOL+nZehxqesaDwQ6v/p0IJrLwm+S3SdshGWv6v+l/RsMGO8slFxAc5lxJaxvZf9rySvE3xHfDb4T1czR7z3Z0hZLFi/rhoOu3lz3wZTKh0ZCuvU/JQSd6zsmDbBwnA8QrfL9Lhw4d7MRNuRtRnkgRsWR58803lfnJM1j44/hxQuDAjaYcirAZUVvNaEwPfk/8voJONJ87pes42skaB7LoGAeMJLch16M5WDywT/SysrC/9tprXSlBtsOPRGPefCxS/Q352bVvvfWWPddnLpgGEDlmR5QfxtykmzXEkb377rvLbKvI0tN8svecp2Qv8g9KpgEtk2jfj5+/zbhPTW0pP9h0bHukLgttYPy2kvlsCaJg432FI8/D8Ud8LtdwnLAfrBnbtm1bUuM/qYQE9GA4z6HdxCUaqZwDfXCM7/vhhx9ez/kTmYHkUTwdqIqy9ymtNhAGIzJHeRsGG0MNvBEiO4xr4j5ExcoLJTzKoOcfCJPQ54yIVbNmzda7/6GHHjInPdp9Inn4/G677bb1FkyMRUFwIp4QEwrplJvyPeCkMS6Naxw4HGMUQOk7z7ZITCJY2LEwKbVjhQUv0GbAdxltVApj8FKdj8o5GZVezsl8pgQCMPr0uJXaZ5xNMiGkyHeSzWkJmSTb9p4Fu47P/IOgDNArGe37CSpT++CgKB/Y9UiGDRtmQfV4FWa+ooVkFraURT/2n55zgoj8dtGLyOR88/JAsAFBMz/Du1RgogowOQdhvokTJ5rQXyToAjH3PhWokGMtQVUCegMi82RKNDlde79ReSICRM0x2L179w5vb9SokS28iRjR91LuHVJfU17iI7QIB0UzypRPE82Vwc48lDKzmOU3Fy0KTeUCok2MOSKiShCFYAoLLX5PlNGRSWUb1RAovWM4cgX7w/FSascKgUeyIgRI+B6jjUFje7KfCwr+lFD5x7Nw5vvm++f7TuW1hKhoe6/jMz/xTh3np2jfT7CSS99f5qFVDcc2mpOA7STjzv04agR758yZY9Vp2H7sKsJxZK5pe0JItkmTJjldV5eirQ/+VnjvPkkSib8v1eMDB51zcql+rqVCuRz0Cy+80KJ2PqIO3CZCRN+rBGOKC4yCL9mJVWbtBbBE5qF3idJSHLIg/NaIoi9ZssR+j5SREZE/7bTTrByVEjP60TiZ871hzCktf+GFF6yVhOxILkqgKcFj5FupERRSJEASFODypBI4YZRax44dy3yHBAHOOOMMu5SySE++wndCv2gQjol8nSkte1960DccDMonEsASmQXbSFsJWXRf5s55naws9h6Ht3nz5hYke/DBB8PVDvwWcdhYJ6D4Tn8z7WSMSsT207OeC1vvj6dSIlJIkfVYNGJtj0fwmBDFbe9TbiDCGBMJIm3vxYi8wUbYwo9nEcUDJUpe0ZUyqkQjpETmYVY5pesYYQw3EfRHHnnEDDltIXPnznUDBw50AwYMMGfcl8dhHBnF9f7775uTTzlVw4YN7SRPWwKlVxXZm86+03tH6WypEawwue6668Jq6x7Om2xPFjImJ554olVEeIJGO9etDGJ9Zs6cad9z8EKWK1+RvS89KJOGWHbBn8Nk77MDpctkz31LFJlSlNkJqlPSfPnll1uLFOsy2t+w/1Sj8Bx0IxAHxZlv3bq169y5s7W6TZ482cqpK1rfiXNERU+MyQf8b8P/Vmhdu+KKK8o85sorr7TtqeKrKOWgF7+9TzmDzmI/2oFB1E8HTHGCyqiHaNB///tfy8SS7fMOBb0WpTxCK9uQHaecmVJ2DDZGmD5Q+tX9aC6MOBF2HLZgpQORdpz7GTNmmHo69++3336WSScLiyIzfx933HFZL4Ujok6QgfNIqcHvIzj9gMUS3x0li5SlpzIDHciI0GvO8cDMW6Ctgd9ipnqoROZAGDCeOGA+IntfekRm0NHKwE6Q7cOh4Pziz2f5KnBYyLCIx7az7mKMJrYe7Rn6uHHecdCoaEFs1KukewjMswZ4/PHHrTWO32/Xrl1NdJaKreHDh5vdIANfEQJjBPcIEJQafi0ctPctWrQIK7kTWC+Pcx7MoHvxX1G89l4SnCIhqPR6J5A+5uuvv95O9lz77AnZQKnvZzeDvvfee1s5Ow5Znz59zCH33wsVDmTQyZLjbAchgk2mi++HhRZgnClxJ8qOEed1Md5E6bMJiz4MC/tTavD5B7ON3EZoi8+E6/JmIoNqv3yHLIhuuOGGjOyzEKI0M+gEUi+77DJ32GGH2Sgorsn6+cof2fvsgANO3zjBVhxcgvOUrBMg8dlT7MXnn39u/eaRzyW7TiCc8bjePuC48xpUz9GffvPNN9saLttOHqrjlN+XGv634W06vxt+P4wp5sJo1PKiDHrpIAddJGTfffc15y9aWZvPqKPsS9SQ8mWRHcaOHev69+9v1QvMog9mSUeMGOFWr15tjny0LDglqSy8/Dx7DwYEJx1nnWg8CuIo9nsV0kxD2SSLAjLGpWi0/egOfjORvUn+t5QqQeFAeg75jH2WSwghUoHgrT+nDB06tMx9OHbe+ZCDnt01V48ePUyYkYq3oK3n/E5wnsB6tP5uEir77LOPVcgF12NU1WHn0Y7A2Udc7qabbsraSDaccxIHpeqg852RMKEChd9NEP6ONsUlGZRBLx3koIuUourRwGH0kUIZ7ezByZ5Mhi+TChpsnHfKTmOJvvEc+teIrGO4IyE7T386bQsEYSiZpm/Nj9zJFCtXrrQFYLAsr1SgzcD/TvjNRCPW9mjQmsBCi0oWD5kVIFMihBDlcQDiCXvRG01vrWx9dr8DHPBoZeg450xuiayUC8IIPMTkpk2btt59CFS1b9/e2t14fcpwsSWRIrSZsPXooJSiree3QaUJ36OvWowk1vZEKINeOshBFwlhfBNl1bHAqZODnjvIuhJNpYQqHvXr1zejwWgkotuRYNDJtOOok+HGobzzzjst0p4pQSAWd+VRLi22EvdYCuupKK/z/dByEvxtkjFhTFK8xZsQQsQjnlNFexJ2hPOPqFgoaycIS4Ydex0LtAFYD9DHHqsaDjvcvXt3U3hnSg/VEpReR1sblAcqwhCWjJfcKYVgPK0i0Yi1PdkMuhduFsWLHHSRkPPOO88istHwytNy0HMDveOUrSMIk0iMhZIretaJwCIwEwscvFNOOcVGdaG2Tl86CrAoxqYDUX+cyUSBhGKEaHfQQY+lsJ6K8jqlilRDMFovGFmnf1EicUKI8oIoGSAcGk15mvOYbH3F2xDsNi1sTFVIZgID2fIpU6YkXBNceumllmh56623TL8EwdJ0S6jJyCsY/3+Jj2jEC7DEw4s3Vq5cOY09FIWAHHSREN83608oGG1O/v369QtH0XHqUKxUVL1i6du3r5Wp+bFqicCwUwZP5jWyBzoSSuYRqOH7pqeZxcE999yT8HmJxvW1bNnSlWIVCsq7/rcUa955KnPQEf+jlN33m/uSN8bwCCFEeaGPGajEYXLIfffdZ9c33nijbec8Jge9Ynn77bdt4gfCcEHdkVjQhtC4cWOrWmMWejxYuxGU79atm5XWY+vJqC9btqxc+0olFwJ3peyge1ufyRno2HiqKPz6TBQ3ctBF0uVuXr319NNPN4XQ4MxmDIai6hUL/WXMNz/ggAPKjFVLBGXsGOR4WfQg9K7Tr0YQgJ50etaIyqdaCodhwamsVauWK3VV13Hjxq33mFTnoHu8wQbm4Kbi5AshRKwMOg4aGXPanoJjoWTrKxZanxipSUacsvFkYaQaAXmem0xJNd9rhw4dXLt27Sy7PmbMGAvKx2txjGWTSBz446iUM+j8bhDvDcK28oxZI3vuhf+obhTFjRx0kRAfCfS9Lxht+p6PPfbYMqrTMtoVB5loStEw1vSjpQKl8IjCUYJGiXwyUD1BNB7DTeR3+fLlVvaOangyYOC//PJLU5EtRYIOejQFd2BhlAqo7U+fPj2c5QhOWxBCiEw46KhNT5w4sYzqtGx9xYKdpToxcqxaIlizMXMb55wJLcnC+oAWKka28T0PGTLEzZgxIyknnywvx81BBx2UUuKgWECvB4E876Dzu0H3JwjbyqPi7vUECNQEZ6yL4kQOukjaQadEF3DMos1C51ol7hUDYzqIptLPHZyDnSyURuOopyoAx3NatGjhTj31VFOVR7CGEW+JFEkJBGC4EaUpRfxiliqU+++/P+pjYm2PBiMNL7jgAnfaaaeFM+gEP8igCyFEJkrcGcEVOQfd23qcEL8mENkDAbe5c+dae1o0VfdE1KxZ06rsmBCSSiacEnnsCfPTqaLDoaTFIVG5PMFnEgiRWeNSgd8F/ft+Xfz0009HfVys7fHwtr4UqxBLETnoIukSdy9OEak07ec3Y0AouRbZhcw3PYEsojC+5YGMOKruRMTnzZuX8vP5rhnVggHHkKP+eu+999piIhL+DyLqLPBQly1F6B3ku8pURoH+PlpNGjVqFM7Gy2gLITIBfcgEfiMdcD+/mfM/AdfyjooSyTNz5kw73zPbvLw0bdrURq1GG7uWCPSFzjzzTNe1a1cLMNPedtttt8VUh1+6dKmV1Zdqj7RfA++2227hsXiZwn/msvWlgRx0kZA999zTbbXVVnFnYhOdpfyKTKFK37JLnz59rD8sXTV0ouIEX954441yzTtnH+ijoj+dCD0BHHrWHn/88TJBHBZx9E0hQFOq8Bn78sRYvWOp9JTRy09QhOkKfgFQ3mCNEEIEiTe/mvM5tsOf10T2+OSTT9zChQutlxz19vKCk33kkUfad1de4Tfsy/nnn29TQ6i6YwQrrQ++JxpYR6xevdp0UJIRsitG+E1Q6UArIMEsqgyjQetBeTPosvWlgRx0kZSxHjBggLv77rstChsNTsjeAZHRzh70MjFaiznlmZgvitHG8D/xxBPlfg2OCXrV2rRpY5FzssUYbvrUMeSMZyPiW4rj1YBME6Pq/O/jiy++iPq4WNtjgUjfsGHDwsEVGW0hRKYg6BoNHI8tt9zSMoSy9dmDMmnsMusvKhrShXFqaNaQRS/vCDWqKgjO9OjRwzSIcPbRQiFrzmu+88471h9NQKFU4TfBZ8RnFauMvUGDBuUSiWMSDsjWlwZy0EVSMCeTnteTTjoppvo0JU2UMMtoZ4/+/fvb4ojy9EzAd0a5Iid+RNzSAePPseDH8aEcy2KAEWPsd6nCZ0vvH6I5mYIevwcffNCyFUDpPJUuQgiRCZo3b77eNj8HHQg4ytZnD3q9GYeKrc9ENppWNErdaUOj4jHd10KUtF69etbmRmYee88agv+DoEKpwm8ika1ndG15Av3Mp48XPBPFhRx0kRJe+GOPPfZYbxY6RgSjTbZQZB5ExHD2+Iy9E5wJMLCVK1dOK4vu+6Pov2KeKjNbKYej/I0+aaLtpYr/PfgMOr370Yi1PRqUtgdbBojIl6JirhAiO3hHvFKlSjZaMzgH3Z/PFi1aZMFCkVl++eUX6z2n55uMdKZAnZ3KBxTdUx2TGqkrQzUfjmivXr1cz549rbKCzHmpisMBbX5UFXhbH6uMvTzl7bwuVXas/aiGEMWPHHSRNAiVeEEqnHJK3iPnNiuqnr3PfujQoaaoT3Akk9CfhgANWd7yBldwxBGb47VuueUW60+/4oorzFGPNvO7lOD3QD+nn1+biRnovCaLJK/gX8oBECFE5sGZY5QTLTQ4XZEludh6HEnKm0Vmef75500MNpNVV0HnkGwsGe/ywHPnz59vlXxnnHGGJWbQT+nSpYvr3LlzWr3yhQ4BK/AOOjox8apQUuHZZ5+1a1oFNWKtNJCDLpKGHqPRo0eHxzw9+uij6z2GExNlTt9++20O9rB4GTx4sC2GOLGXZ6xaItAQYGwaTnYqY9f8cYHxwEkfO3ZsTJ2CUiUoEJepGeiHHHKIXfvFkBx0IUQm4dziz1uRc5zBO48KyGd+TBcOOhnpbNhSsvKUzVNCTxAgVd59912z9WjOlOpUlljwW6DihCQKAnFMPYiE6SvlwTvosvWlgxx0kTSceIJluGR1I5FQXObhc2a0CVlYP5M+01A2td9++5lz7g1BslD6iLoofebpjIIpRsg2BB30WL1/qfQE0pfoldvJovO7zJQmgRBCBAO3wBzuSMigol8iW59ZsL8kQLKpKUJ7Ii1R06dPT+l5BJc/+OADy8JL82R9+C3QH04FYawRhOUZTcg64rnnnrPbctBLBznoIiUoW/YZXNTEI0FtlJFsMtqZgyg6jjlOMKJr9HmnmuWOB2PxWIC99dZbFgz47LPPku5Po6SL5yEemEoPdanAZ4koj3fQ/YI3kljbo8FvbNKkSWFDTY8/oj1CCJFJvCjsk08+GdXmqKUt86DQzZguStDJVgdHlqYL9p22szlz5tjEFb7TZLPoCJJS2s533rhx44ztUzERDMZTARGNWNvjwWQcKitYC5anPF4UJnLQRUpwUm/durXdRlGSsusgXiiO8h6ROciYXn755WZQcaZR8MZYIsxWHmcdMROca3qkcPqZt4rDx99kZSl/SwSGnuw5ziX98WJ9fGmoN9r0mVNimE7/+eTJk81YE1X32RAhhMg0iE9SxkyQMdo8Zy8Uh80QmQEBMGw914iCzZgxw2w9Afo///wz5dfju2HkKe1rBFpwyLH1N910k2vYsKHNWfe2JBZMYiEhg3J727Zts9JmV+jwG6G6zdt6HGkSWpnsP2csbiYFgkV+U7pqDqLcDB8+3JwEeo8RBXnggQfWGyFx9dVXW7RW/ciZgZKprl272oX+tJEjR1rmGieZz5j+cQTaUGPn4secEH0ni0vJ3A8//GC9Y0TCuY36LmXzl1xyievUqVP4uyI6/uKLL9qs9Vg9ZjjwOJ/0QiN6xv6J9WFBRNl/0Cnv2LGjKfIDVQepOOdAX9uSJUvC37GyGUKIbPWhM27tvvvus3JoqnUibT1OCM5bkyZNcrafxQaComeeeaY74YQTLACCrcXek/jAvtNeQJad2wiGEaTnQuCW6jfsPDafQDwif5SzM1KV6R8orXtbz3d7++23m0I47QrR4DVZDyAaeM4555T0CLV4+Jnnwd9BixYtwp81bQHlzX77CTuy9aXFBqFEoTMhokD/EeqtZMxxAoMltpRg49xxUok2N11kBiLjjGIho47DRpQbw+xBlZ1oKz3K/Mwx0hj2XXfd1QwFC4DIbK6PBLMQo6y+WbNm6/2fLMb47nkMooFyzqNDAISFFuq2119/fThbHhSJ4/OnxSBZEGYcM2aMjdsjWs93yXUm5uQKIUQk6J9gK6Kda7ArOH4IX+HoiezA54x957xPNhwRXhxnKhhxzNlG4J3sLWsxnHfGs2HD+X747qpWrRr1tR9++GGrhsRZD67j+D/pl2ZtgVN/9tlnyzmPA5WlVCJSkeCz5UGROAJZVC2kCusFEikkxD7++GP7LkVpIAddlAuy5mT/iLBjOMjeejik6LOhjGrUqFE53c9SAwcao4qxxoDjSDPnHAE4nPNkufXWW+27w0Gn5xn4ngkGUCJHFrhv375ZfCeFD2WJlBAiAMdoFBTcvaMepF+/fkln0U877TTLZBEgQ6znqquucoMGDcrC3gshxP9NbMHZw7bQE03wPciFF15o/dI4JwoUVhyss6hS5PshS46IGBl3qt5SqVwky44juc0224TLs3H6aV9jHUHWluxvKY9PSwS/DaoYaU3AJlPpgM2PhM801Sw6ga9LL73UnsfzRemgRhJRLph/6UurcBSCYKRPOeUU650i6icqDjLmlFTjlJPVwDHHUKTinAMGgUUZhobvmKoIHEMWAjjucs4T8/jjj7vq1avbDOFMKLizIPPaDmSyoF27dhnbXyGEiIQyal9aG22uM7aeDC6ZVlFxsM5iDUaVFsJy2GvsTapthWTWaVXgO8TZp4KOcm1K5QnEn3zyyXLOE0BVIW2DfFaQSQV330IqW196yEEX5YJyabJ5cM8991g5bxBOVJTuvvnmmznaQ5EOlK0zNo1sOWXViJRQZjVr1iyN+UgSAlSUDXpBnXQV3BEE9OXx/N7IdjBvVQghskmrVq3sGr2RyKA7wWBKqjnficIEQTrsO2K02PpatWqZNg0BfpFcMJ4gCa0AmVRwJxBPyTzrMS/OLEoHOeii3NBb6402J57gOBBO+Ixb48QlChPK24866ihTjqV/iqh6tJ51Ed2wUllCdsmTroI7KrxBFFEXQlSUg04VFj3QkTPR6UtGfEy2vrAr70i40M7Wpk0bd9FFF1k2XiRX2UZwiqSUb/HIlIK7z55T4aDvo/SQgy7KDSJh9N1QAk3/mVemBsRG6FtSVL2woTqC2Z6o9Yvk4bhn4RqpbExVCT3njEbj+quvvkr6NZld6yErz0JKCCGyDaXUaM4AwqCR4JygNB4UwBSFBbomvXr1slFeEn5NHlo7aA8IBuMBQTh6xpmAwPWNN96YsuOv8vbSRg66KDdEC4PlzrfcckuZUndOWIwGYX6nEKUE2SSccxT0PYjE+d8LZYSpjldjJq6H1yH7LoQQFYEP0j722GOmIh5ZbcV6gLGSQpSarafFg1YPD1oxEydOtNuo35dnvBpOPartBMd8O6koLeSgi7S44YYbwgIiKIYjJOZBUZT7lEUXpQQiOyi4ByPqONMouKO0y3V5nGuMtadDhw4Z218hhEgE/bU4GlTM3XvvvWXuo5KuQYMGKnMXJQfHPC0efgQdpewI8zIznmv+Lg933HGHXbds2dICAKL0kIMu0mLnnXc2RXfPkCFDwrfpWaN3Jlj6LkSxM3nyZLv2DjqZ88jST/5me7JQmTJ48GC7jWovc4mFECIXujOUuUeKxbEOmDlzpo3mEqIUQJWd1o4WLVqEM+fB2efA3376SrKwPnjkkUfs9sUXX5zBPRaFhBx0kTYXXHBBmZFRzEr1dOrUyUp1NIJFlAL0jbF4Rb3dC8LR+pHOeDUYOHCg69atW/j3hqiPEEJUJChJM5Zr2bJlVuoexPeo03MrRCkwduxYE0P2Dvq1116bkfFqjLJFnJcJL342vSg95KCLtEHpu27dumVOWh6yiGT8xowZk6O9E6LieP31193bb78dzjSRJcfQRoNFbrJZdLLyzKBHHK5r164Z3WchhEgGNDVQ+AZadQhIepjDjaOCrQ9uF6IY+eOPP9yECROslJ2xw2TJY2kw8Fh60pPJpPPYkSNH2m1lz0sbOegibRCH8SIY3OaEFVRzP++88yyq/uuvv+ZwL4XIPixOmYdKT1q87DkgnphsP7p/DL8zicMJIXJFjx49TLiK6R6zZ89eT0iO8ZJocAhRzKC3tGrVqrB4Yqzs+S677OLOP//8pHvSp0yZYiXuVOAF20dF6SEHXWQEes85oRA5f+qpp8rcx8lp3bp14Z4aIYqRH374wU2aNMl17NjRxtTEy56n0o9OT6cvh99tt90yus9CCJEKZMp9FQ8BxiAoWVNNR4muEMUMrWyUoO+9995xs+eMIE6lJ33EiBF2rVY2IQddZASc81tvvdVu33bbbVaO68Fgk1EcPny4St9E0TJ+/Hj322+/hSPq8bLnqfSjsxDw4wtpJxFCiFxy2WWXWXXcCy+8UCZbTgsOWhkPP/ywZqKLouW9995zc+bMcRdeeGHc7DmTD1LpSUdwjrUAvy21sgk56CJjtGrVysp5yPhRikuPreeSSy6xkriXX345p/soRDbAgSbyjbr6jjvumHT23EMkPhpUo1x99dXhv4nWCyFELuEcR+tatCw6FURk/nwfrRDFBskmWs0YgRYvex6rh3z33XePut3b+jZt2oRFZkXpIgddZAxmnnslV5TcgxlEZqJzUrr99ttzuIdCZAccaQJS9GdCrNGCZJgiDS+G/rrrrov6+N69e4cd/erVq7v69etnfN+FECJVrrjiCmvlefrpp91LL70U3o7K+7nnnuvuvvtu9/vvv+d0H4XINGvWrDFNJSpFCERx/EejQYMGNsWI30kQetC9ZlMQMue8Fr+pAQMGZG3/ReEgB11kFDLonnvuucd99913YceEaOLUqVNNHEuIYoLA06GHHmoiMIDmQjR22mkn9/XXX7t+/fq5Y445xq6/+uqrmAuBzz77LPz3qaeeasZbCCFyDa1rHTp0sNt9+vQp075GxdzKlSvdQw89lMM9FCLzMKWIirlEJejHHXecXd900002ahinnusbb7wx6uOvuuoqu6YyJTgVSZQuctBFRmnXrp1ly+Gvv/4y8TgPUfUqVarEPEEJUYjQtjF37lzXs2fPcEYcwbho+AoTMubPPvtszMw5oOmAlgOVKXD66adnZf+FEKI8DBw40EZM0YceFIfdY4893EknnWTl76wDhCgGfvrpJzd06FCz41S0RROB85x44onh22TMzz777KiZc5g3b56tIeg99466EHLQRUbBmaAfp3bt2uHMIsJZULlyZYu0M4rq448/zvGeCpE+ZI04pvfbbz/TYKD3PJY4UrxS9kgY3+LbQahKIbB17LHHZnTfhRAiHagI8n22ffv2DYtZeuGspUuX2qxoIYoBBJDXrl0bLkGn/5z55pHEc8ajrSG8U87EI792FkIOusg4lLPfeeeddpvZ55zUPBjz7bbbzvXv3z+HeyhEZiBr9OKLL7obbrjBjvtYauy1atWKWcoejS5dulj2fJ999rG5witWrHCbbLJJBvdcCCHShwAlfeeLFy+2MZOeAw880MSuEL5iHSBEIYP4MSPSunfvHnaiY/Wf+/L2ZHjmmWdsDYF9jzduVZQectBFVjjyyCPdVlttZbcpc/OR9c0228wMNr1pqLoLUahwTJM1atSoUbicjTEp8Urbk+HTTz9106dPt9tk5jfYYAPLoAshRL6x9dZbm/AVkAkMCsORRf/222/Ds52FKFT8tALvRHPMX3PNNSmptMdaQ/i550xHEMIjB11kBbKJXn36xx9/dIsWLQrfhwjGnnvuaQJZQhQqDz74oGWNEIHBicZwk/WOpFKlSkmXtlPudtFFF9n1FltsYUZbCCHyGUThdthhB7d8+XIbQeVB7IpqICqMKA0WohBBrJWqUKaqVKtWzUrbyaZHI5ZKezR4zTfffNNtueWWYUddCI8cdJEV6Denh5ZMOlx22WVhlVf61HFYZs+ebUJZQhQaZInIFp122mlh5fZY5e2ouyfLlClTrGwesRiy5k2bNjXxGCGEyFc233zzcIbRZ809nCf/+OMPC2QKUahiiFSEeiHYDz/8MObjkhVB/uKLL8LZeH4btH4KEUQOusgaHTt2tCwjZe0vvPCCOR8eFKmJMkaOZxGiEBg5cqT1hftFKRx++OFRHxtreyTff/+9ZaJg//33t551ZqYnG40XQohcgTDWwQcfbBVzwTnOnMN69eplAfsvv/wyp/soRKosWbLERqQRaKKqLV4Je1C5PRHYelThWR907tw5Y/srigc56CKr1KxZ07Ln0LZt23BknZJgIo0LFy4s47gLke8wQm3w4MHWqlGvXr3wdqpCWIyWV7mdEjdmpCO49Prrr9s2Jh74RYEQQuRzW5sXhGVW9DvvvBO+j9JgWn1i9ewKka/QirnzzjuXcaIJml9xxRXlLm1HY2batGlWTTpq1Cj77QgRiY4KkXXq169v1/Skn3XWWeHtRx99tM1Mp8wnKCwjRD5zyy23WJYIscNIcLAx6Mccc4xdJ6vc/uqrr7q77747nEn3I1eaNGmS4b0XQojsQEsb4yb/+ecfy5r76jjadbDz48aNc++9916ud1OIpKDyc8aMGda2sfHGG5e5j7J07DbZda6TLW1n7YDODFx++eVu3333zcq+i8Jng5Dqi0WWeeSRR8xoe8gOUgrny4cOOuggi0aSlRSZg4AI/czNmjWznmaRPmSFCDgRLcdoZ+p74jV5bfrQqDJBcImFLOIxQghRKCAUhwgsQfepU6daOxvwN1MpUH2fP3++23DDDXO9q0WDbH3mYTTgAQccYL3nL7/8csay3PSxU2lCVp71L/oNQkRDGXSRdc4880w7IVHiBghreZjzTG8P0Udf1itEvi6CKGvfY489XP/+/TP2uqjB4pxT2r5y5UrbRtmbnHMhRKFRp04dywz6PlsyhsCc5/Hjx5sC9tChQ3O8l0LEBxuPevuECRMy5pyTaUeLAaiYk3Mu4iEHXWQd+s179Ojh7rnnnrB6ZbA8GKE4RLFwflTqLvIVRgXhSGOwWWwCZZvHHntsWI01Vd59991wX+Ydd9xhmfl27dq55s2bZ3TfhRCiovt2sfUoW3saNGhgpe8E5d9///2c7qMQsXjppZfcsGHDrEqOahAgsDRx4kS7Lg+//fabCSdTtHzOOee4448/PsN7LYoNlbiLCuWQQw6xTDkRyW+++cZtu+22tp150pS9IyaTrKiWiI/K3jLH22+/HS5t960YfKZ//fVX+DEIxNGDnix///23LVgXLFhgZZ/0u+211142ksgHAIQQohCZOXOmqVpj6xGDpZXNlw4feOCBVjGEI6RS9/SRrc8cv/zyi5W2b7PNNuFWDI5jjmcPLZmpjg0kaEWQn3UCgXlsvhDxUAZdVCh77723XSMi06VLl/B2hDIYzcJJT6XuIh9L24mkk/nxVSFB5xwIOKWSSafME+cc1qxZ41avXm2vK+dcCFHoIADbpk0bs/Vdu3a1gCQwdpVSd5z2W2+9Nde7KcR6pe2ff/65HaM457RhBp1z35aWSib9jTfesOf40nY55yIZ5KCLCnfQcULgiSeesMy5h+ykSt1FvsGsc45TX9p+xBFHxHzsK6+8ktRrIg7DWDVPp06d3FFHHZWR/RVCiHyAMmG0NAi633XXXeHtzH6m1J2gvErdRb5Axhy9JKrkCMjTlkm2OxoffvhhUq9JRVyHDh0sQNW6desyGkxCxEMOuqhQ6EXHWKPsSgaSnhwylEBpFk4QJz7NSxX5wFtvvWXGGmfaTx6INyaIhWciGKPWsGHDcEaJSD1zg4UQopignNePn6LEd9myZeH7Bg0aZIJyBOQjq5GEyEVpO470YYcdZkrrQJVHLHbfffekXpeydgL81apVcyNGjMjY/oriRw66qFCYJUkvGicqxlfgrJ9yyillSt0RlaHUvbxiHEJkAqo4MNj16tULl7ZTwu4d60g22mijhPoJH330kanAr1u3Luycs0AVQohihFa2Ro0auZ9++skEMH1AnlJ3AvKsAW655ZZc76YocQggIWroS9tZf8YKHNG+8Z///Ccp7RqvWYMIrNdcEiIZ5KCLnLDjjjvaCRHo7xk+fHiZUnfE5BjPxkxoISoatDO7d+9u5Zf33nuvBZa23357K3f3Y4Mi8QvPWDz//PMWnPLHNOJJlL8JIUSxwnkO9WtK3XF6vMMCZCux9wRA58yZk9P9FKXLQw89ZOPPqPYggM4xybHpJw9Ftmk+/fTTCV8T245aO04+FaOtWrXK0t6LYkUOusgJCMfg+HjoR/v000/DmcgpU6bYia1FixbqRxcVDhUe48aNc6NHjzbFYTLniMBFQk86SuzJDMPYYYcdTMEYUIilpYPnCiFEMVOrVi03atQou42DTq9vsNS9SZMm5sB8/PHHOdxLUYog4EalXPv27d0ll1xiQSQv6BaE3nFa0dCPSQZGtDGWldL2kSNHhrWXhEgWOegiZ1F1nB76eCgnomwYkSwcd59hf+yxx+zk2a1bt6QcICEywTPPPGM9aJdffrlFwOOJv+FgMyooFsFy+OnTp9vfVapUcW+++aYd2yjECiFEsYNAFudTbDzOEFocPiA/efJkK/+l3e2HH37I9a6KEoGgO443rZVjxowxJzqW+BvJIsRck4G2DXrPAXHE6tWrZ3S/RWkgB13k1GAjnuHLiFasWOHOP//88P30+HDSpCcoWAIvRLagR5xMTtOmTcPiRvHE3+KJwlERgrAc5XAIyzG+xSsbk1HyIweFEKJUKpN23nln99lnn7kLLrggHHhnJvrjjz/uvvrqK9e2bduYOh9CZAoqMyk951ibNm2a23TTTeOKvyUrCvfbb7+5c889N6za3rJly4zutyghQkLkAccddxyW2i4TJkwoc1/v3r1D//rXv0KzZs3K2f4VIn/88Ufoscces2uRmHXr1oX23HPP0B577BFau3btevfXqFEjfIxy2X777WO+1rvvvmv38zher379+nZ71113Df3+++9ZfidCCJGfvPzyy6ENN9zQzoe33nprmftmzpxptr5Pnz45279CRLY+Nf7555/QeeedF9pkk01Cr7322nr3X3HFFWVs/ZVXXpn0a/vnbrfddqHVq1dneM9FKaEMusgLyJxT9g6IcwX7fSkVOv744y0aSYZTiExDtJvMzddff22ZHDI6kXAfwobHHHOMXZPtiQbl67Rr8HhK2Js1a2Ylb8CYoRdffDHr70cIIfIRqo6oIoLevXu72bNnh+/DzqPoTvXSgw8+mMO9FMUMs86ZIEBP+aGHHrre/UwRevXVV919991n18Fqunhg24cMGWK30VxAa0aIcpPrCIEQcMYZZ1jUkYgm1w0aNAj99ttvZbKbZCLJcHJbJEZR9VBKUW8yN2Rw0mH+/PmhKlWq2DF8yCGHhKZMmRLaYIMN7O9LLrkkpUi8EEIUawazQ4cOdl7caqutQh999FGZ+84999zQpptuGlqwYEFO97NQkK1PHl+lgc3PJN9++224ao7jV4h0kYMu8oLvvvsuNHjw4NCSJUtCVatWtZPc+eefb8bas3TpUruPcvig8y6iI6OdHGPGjLHjbejQoWm9zuzZs0Obb765vVajRo1C77//fmjbbbe1vzt37pyx/RVCiEIHG37YYYfZ+XGvvfYK/fDDD+H7fv31V7tvhx12CH3yySc53c9CQLY+Od56663QlltuGWrWrFnor7/+ytjr8lqNGzcOH8s//fRTxl5blC4qcRd5wdZbb22q7ghnoehKuTvlR0GBDUQ6pk6damVECHklmjstRCLuv/9+16VLF2uruPTSS9OepfrLL7+4E044wc2YMcPaNlatWmVl7sxYFUII8b8RlYxT3X777U1E0yu8A4JdCHdtvvnm7thjjzUBWSHSgWPsuOOOc7vuuqu1TzA9KFMwUm3u3Ll2vD7yyCOuUqVKGXttUbrIQRd5BwraqF8DBpx+Xw/9vxhulLHbtWtns9KFKA8YUtRWmYGKunC6c0qZdTp06FAbp3bdddeFx6+x6GTmuRBCiP+xww47mD3feOONbaxq0NbXqFHDPfvss3YbJx1NDyHKA9pFjRs3tmMKzYMtt9wyY6/N6w0aNCjcd77XXntl7LVFaSMHXeQdnOwWLlxoEXYvEseJz0OGEucKw37eeedpJItIGYTgEIVr06aNGz16tFVsUMHBQpDr8sA8X+anz5o1y9188822jYVAt27d7D4hhBBlYZyqH7WKOJe/DTVr1jQnndFVOFgrV67M4Z6KQoRxp9h1hF+feeYZE2577bXX3MSJE+06Hb788ktLFNEu3LlzZ9e+ffuM7bcQ6kEXecfnn39uvWc333xzqFq1atbXg9DWk08+WeZxDz/8sIl9tGvXLvTnn3/mbH/zFfWlRWfq1Kmhf//736EzzzwzfNxEjlDj72RYtGiRib+tXLnS/v7www/DGgpsR1shqKMghBBifQYMGGDnzY022ig0d+7cMvehP8M5mf7er776Kmf7mK/I1kcH8cGaNWuG6tatG/ryyy+jjlArr1gcOgmHH364vcYBBxxgfwuRSeSgi7zkxx9/tGuMsRfeYnbq66+/vp6TjkHH2dJ86bLIaK/PpEmT7Dhq3bp1+HPp169fGYPtL2xPxAknnBBWbWV2OnPO+fs///mPjkchhEgSAplnnXWWnT8JciKyGemk77jjjqHddtvNgvjif8jWrw/HD6rqTP/54osvbNurr74a1dazPdVj9eyzz7bnIjoXnEIgRKZQibvIS7bYYgu7RkDm+eeftxJkStmZL/3HH3+EH4eIHH3qlCyfeeaZ7vfff8/hXot85t5777VyNC4PPPCA9YVTzn7XXXdFffwrr7wS9/UovZw5c6aVr/ft29e1aNHC5pxzrF5//fXWVymEECIxaICMGzfO5qSvW7fOnXTSSW716tVlRGJfeOEFs/+NGjWy0mUhorF48WJbK1LOPm/ePLfjjjtaOfv48eOjPv7DDz9M6fVpYaNEHqE52i3r1q2boT0X4n/IQRd5zdq1a90VV1zhNttsM/v7559/DgtyeE455RQT5qK/CKPOc4TwUCmEeBticJ06dTIjjWEl+IMjzWIwGiwU473mlVdeabcvuOACd8cdd7jnnnvOFpn0utWqVStr70cIIYoR1Nux5TvvvLP75JNP3GmnnVYm6L7LLruYk05QFCf9rbfeyun+ivyDKT9HH320OeXY5O22285s9WGHHVZGyygIwZ9kQcyQgDwwnQVleCGygRx0kdcwtgKBGByf3r172zYUsidMmFBGHA7hOLKZixYtcoceeqh7//33c7jXIl9gcdexY0d32WWXWaAHA02G+4gjjnDffPNNzOfhvHOcxYKqjddff90qPRAywkGH++67zyL2iqgLIUTqbLvttu7JJ580gU0mYXD+JiDqIfjJORbHi/P4o48+mtP9FfkDgq8Iwu2///429qxatWomOuhFW6OB845QYTK8/fbbJgTH8cho1gsvvDCDey9EBBkrlhciSyDu8eabb5bpF0bkC/GPl19+ucxjly1bFtp7771DVapUWU9UrtQo9b409AsOO+yw0CabbBKaOHFieDuaBdH60HzvYzK950cddZQ9vm3btiZUyO3rr78+y+9ICCFKg2eeeSZ8rr766qvXu//nn38OtWnTxu5HYO7vv/8OlSqlbut53xdeeKEdCxdddFH4c2jfvn1MW9+1a9eUes+//vprW3Py3CZNmpTsZy0qDjnooqDACJ922mnhk+xmm20WevbZZ8s85ocffgidcsoppvx+0003layKdikb7YULF5qgECIxr732Wnh7LGOdijAcAkUcWzx+4403tmsc9lI9zoQQIhuMGTMmfG6+//7717ufcy6BUc7Hp59+elhcttQoZVu/evXq0DHHHGPBnFGjRoW3exG3WJdUnHOCQYceeqg9b/fddw+tWbMmS+9GiP+hEndRUCxfvtwEQCiDg19//dXK2x9++OHwYypXrmwz0vv162flS2effbY9TpQGkydPdg0bNnQ77LCDlaHT8gCUQ8YjUVm7h3aL888/33QRvGAhOghsF0IIkRk4z9KaBJS6018chHMu/cD0BaNB06BBA1sjiNJgyZIl7pBDDrE1ISXtXbp0se1+znkmytpppaSsfcGCBW7rrbd2M2bMcFtttVXG3oMQsZCDLgruhIx6K2IyO+20k23DSWrdurW79tprw71q9BkPHjzYTZo0yfqFUfT88ssvc7z3Ipv8888/FpQ566yzTNGfPkWcdM97770X87kEdb766quk/h+MNOJEBH123XVXWwj06tUrI+9BCCHE/7jhhhtsQgZ2/vTTT3cff/zxeo8hQPrqq6+aiCwOG+d+UdwgJoiQK7Z74cKFJhqYjCo7j7vxxhuT/n8IEJHwYSoL/2cqgnJCpIMcdFFQYIjJkBIhnTVrlgnJeAYMGGAjtBCV87Rp08bNnz/fnC8Z7uJl1apV7tRTTzXDiyAMYm1e+Z9RagjHVKpUKebzL7744qT+nz///NM1adLEFgSMcHn66actui6EECLzEGwnCIr9/u6772xSy5o1a9Z73N57721Zzn333dfO0ShsE7QVxcVff/3lrr76alP4R0EdIcE6deqUyZwHR/FGcs455yT9f9155502AQYQJj7yyCMz8A6ESJJAubsQBSkks+GGG1pvEH1oDRo0CP36669RBT4aNWpkj7v44otDP/30U6jYKZW+tEceeSS07bbbhrbZZpv1hAFr1KiRsO+cPvVkoN/Ri8RwzL344otZekdCCCEibXitWrXs/Ist/+2336I+DnvXo0cPe9zRRx9twrHFTqnY+sWLF4cOPvhgE2ZFODAoDHjFFVeUseu+Zzx4+c9//pP0/zVjxoywAOx1112XpXckRGyUQRcFDVlSZqIC5e1t27a18vdIatSoYTMxhw0b5saOHWtjOJinKgqX1atXW2tDy5YtLbL97rvvumbNmoWz5rVr1446So35qJSrValSxUriky1tHzFihFuxYoXdJkOjaLoQQlQM2HDGr3HexnZ37ty5zPg1z7///W932223uTlz5lg73H777WeZUGXTCztrfv3117uDDz7Y/fLLL+6VV15xAwcOtOoKsuZk1CNHqVFNwVqvU6dOlm3nNm0QyfDGG2/Y2oJjhuf7uedCVChxnHch8h4UXDmMa9euHR6/Nm/ePLtv/PjxNmorkg8//DB0xBFHWMb9kksuKdpsejFH1R999FHLmm+99dahBx98sIyCeqKsOYqvqTJu3Ljw81GLRdVVCCFExTJr1qxw1dygQYPiPpaJLhdccEH4vP/JJ5+EipFitvVLliwJ1a9f37LZffr0KVMhGZk1j7zcd999Kf9/77zzjq0reP5xxx1XlJ+pKAzkoIuCh5Mw41VatmxpJ1VOrn5e+v777x9at27des/566+/QsOGDbMxbbvuumvohRdeCBUbxWi0V61aFZ59y1idb775psz9/ntPd5Sa57333gsde+yxZZ7fuXPnLLwzIYQQycA4LX8+fuCBBxI+fs6cOVYeX6lSpdBdd91VdDPTi9HW//nnn5aAYZRpvXr1yoxLBcakJbL1qYxSg/fffz9UvXr1cIn8999/n+F3JUTyyEEXRcMvv/xiPUY+o16tWrVwH1qsfrVgNv3SSy8tqsxosRntqVOnmvEkAMOizGfNcbjJjvjrTPSb++Npq622KvN8ovjFmoURQohC4fLLL7dzMg7c/PnzEz6ebHrXrl3tOQRdP/3001CxUGy2/t133w0dcsghZm+vvPLKMllznG6SMgMHDoxr63leKnz00Ue2PuC5BxxwgGadi5wjB10UFXfffXf4BH3ggQdaxJzbZNfJmkeD7bfeemto0003De20006hsWPHWvS20CkWo/36669bqRnf46mnnmpiQbHK2f33HXkhe5JK5jxSJMb/Px06dMjCOxRCCJEKZMGpouK8TDD+448/Tup5s2fPNrFP7D0l0sXgiBWLrce2d+/e3drI9txzz/Uy4IlK2rnguKeaOV++fHlYgHDvvfe2Sj0hco0cdFFU0I9MHzpRdd9DxMme2/SbxwMD78unMQ5Tpkwp09tcaBS60aa6oVWrVvZ9UOI2bdq0Mllzb1AjL5tvvnlaWXMyK/Q5Bo8hr9xOlF0IIUTuoeKN/mRvs5N1tsmmX3XVVRbQrVq1aujGG28s6Oq5Qrf1tCH279/fbDffx0033RTOmvuMOYmTRM55qllz+OKLL0K77LKLPX/33Xdfr21OiFwhB10UHW+//XboqaeeCgvJ+N50LjheiXjjjTdCTZs2DY/leO6550KFSKEabYT9EPYhsEJFwz333FOmoiEZEbhg2XuyEKDZd999QzvssEPYOSdDQ/8iAYJzzjknS+9YCCFEee0FdsKXrv/+++9JPxdn7MILLzRbw3l/9OjRBVk9V6i2Hiec6kVGpFLRgAhcMMiSbMYcBz7VrLlfK9apU8deBycdZ12IfEEOuihaRo4cGT6JE2WnzzyVeZZz5861Piief8IJJ4TefPPNUCFRaEZ77dq1ob59+5pwH73ft9xyi2W0sykCF7lY22KLLcKvc9ppp4UXe5RTSjBGCCHyDxwtf+6mDSnVyjeCs2eddVY4i/rII48UVPVcodl62gqZskMVHImULl26rOccJyMCVx4hOA+fl2+JQyiYMnch8gk56KKo8eXJXCihShWMNMYao81rYMQXL14cKgQKxWjjmFPShlOOc46TzjaPL2f3l0yJwIHPllDyePLJJ4dfh31g/F4scUEhhBD5w5NPPhnWDKGdrTwONkH4448/3l6D4DyvWQiK74Vi67G3Dz/8cGivvfayz/jMM88MffDBB+H7cbbJiPtLNkraOS5I1PjXaNy4cei7777L8DsVIn3koIuiBierbt26diKmN53S92QJlklj+BjtsuOOO4ZL6aZPnx5TeC4fyHejjWGmvJAoNt8NCrtffvllmcckKmdPRwTulVdescDLpEmTTBiG19lkk01C999/f2jZsmUmMkhkXwghRP4zYcKEMs5bsk6673P22dhnn302dNhhh4Uz6iNGjLBRrvlKvtt6HGCC8D7AjlO8YMGCMo9JppydC73o5S1ppyLPV0pwYf2Rr5+ZEHLQRdFD1JZILSdk+pzoeTrllFPi9ppFOob8DZQ8I0Tnx7nRtzR06NDQ6tWrQ/lGPhptAhpPPPFE6MQTT7TPj7FpAwYMsD7CSJIpZy9P1tyDceb5XkSQ12HWKvuHUI1XBw6qxgshhCiMSS5XX311wsdHOob8DTj3jG9Dw4Yy7CpVqoR69uxZJuObL+SjrYdFixZZ4J3KOHRdzjvvvKitgsmWs5cnY+75/PPPw4KC2HxaIIXIZ+Sgi5IAw4VTHjzZ47RHI5ZjiIEOZmkxKm3btrXsL5lXIrNE3vOldy2fjDb9XTjiXsznoIMOsmxHvBLyeDPNicSnKgIHvqecfvKOHTuW0Sj47LPPTNnXbyMIg1EXQghROAwbNix8HidzG4tYjmGnTp3KZGixAwiYIWbG/Y0aNQpNnDhxPY2UXJFPtp52MaoNvTNM4HvQoEGhb7/9NuZzyIhnQwQOaFG48847Q5UrV7bX4zssVOFfUVrIQRclA85gkyZNwid+IrqM8krFMQxm0z0rV640QTPfp77bbruZo7dw4cKc9q/l2mhTro6hpqcPgT5EfCgZZ655JNFU1+Nl0FN1zFesWGEz1Ing05rgWxW4dO7c2RZgQb0CsuupqAELIYTIH66//vrw+RyHPVXHMJhND64haInyawQqrcgQ0zrnx4KVoq2n/H/q1Kmhc88911rW0AI46aSTbJ8iKxUj2wn8tljfQXkdc3jvvfdCRxxxRPi1aFugfU2IQkAOuigpmHV69NFHh0/YqHdi1J5++umwSnd5lcLJnM+bNy909tlnh0ukiR7jlFI2XdHR9oo22rz/t956y6LlPnqOoSbbQN9YrB6+WO0E0e4rb0n7yy+/bEECLyLEBW0CKh6gefPmto1SPHrQhRBCFDbBiqgePXpEdRYT2fpYDiLBfUqu/QxtHFPGco4bNy5utrhYHHRU12knaNasmVUQ8hkwjpS2gliVZ7HaCaLdl05JO8F11iF+XCrJAXQE8lkzSIhI5KCLkgNHEZE3bwRQa+VETlbVi5QlM2s7HhhKyqh69eplQQCes/nmm1sWF2eVkV7FYLTJKDBbnoxzzZo17X1SStaqVSsrAYzszY/MlMcKhkRm0r2Ce7KZcwzxu+++a7epYmCWOs63DxogCheMpNOPtueee4beeeedDH0yQgghcglB48GDB4ftCuNS161bl5I4GdneRP8HtuaGG24IHX744RYI5tKgQQPbxn3ZbnurCFvPe6B/HAecFjU+G3rzSXigw/PRRx/FzZTHCoZEZtK9gnt5M+cE4/fZZ5/w6xNAoH1NiEJDDrooSXDgKMHyJ3Gct6ZNm5YxpBjYVDLo0cq0gdek1IpeOMqtvAHHyFEeN3r06NAbb7yR8ZLqTBtt3ge95FOmTLH3SOm6nz1bu3bt0MUXXxyaPXt2zPcRLVMeq50gUQAkUWR/3333tSqGyZMnhxXavXPubxNR97DPhTBORwghRGowKtUHaMnyMvc8CEHzVDLo0cq0PWTPyaKfdtppFpTnNXbeeWfTqBkyZIgF7n21Xj476CivP/PMM6Ebb7zRhPJ8WxhaPK1btw498MADoTVr1iSdKY/VTpAoAJIsrLFatGgRfl0EXhH0zRdNICFSRQ66KGm8GjuX/fffP5xBpxwdJxSV8WRKrCOdT8rdYomY0bOOQNo555xjzqN3GsniH3zwwVYST+82vdrpzOFOx2hj1D755BNb2CCOQ3+2F8jxzjUBDrITb7/9dkIjGCtTHisIkmqPeWTwhbJDovvRXpvvj2ACCrNCCCGKH+zpDjvsYDYAW/b888+XuT/ZEuvIx9HSFstZpy+dWerYG7LrPkjgtWratGlj+jW0WkVm9ivSQafSjUo4+vbPOOOMUJ06dcL7SRCeNjWqAefMmZMwkRArUx4rCJJOjzlQTo/gq19Hcc3fq1atSut1hcg1G/CPE6JEWbdunbvyyivdo48+6tasWeO23357N2bMGLd48WLXt29ft88++7iTTz7ZPfDAA/b49u3bu+uuu67Ma/z3v/91119/fcz/o1KlSu7QQw91hx9++HrPhZ9//tm9/fbb7o033ghf3nvvPffPP/+4f//7365OnTq2X1x22GGHqLe33HJLt8EGG5R53T///NM99dRTrlmzZvY6nt9//919/fXXdvnqq6/Ct4N/f/755/bZAP/PwQcfXObC/xn5Gbzyyisx3+Oxxx7rnnvuufW2H3PMMe79999333zzTXgbr81+JAOnr5kzZ7oHH3zQnXLKKbbvc+fOdY8//niZx9WtW9c1b97cnXHGGa5BgwbuX//6V1KvL4QQojjArpx66qnu9ddfdxtttJG79tpr3WWXXRa2j6+99pp7+umn7faJJ57o/vOf/5R5PvcfdthhMV//7LPPdscdd5zbfffd13su/PXXX+6DDz4oY+vfeust98svv9j9NWvWDNv1WLZ+2223Xc9+xbL1f//9t1u5cuV6tj54+8svvwzb28qVK7uDDjqojK3fbbfdyvx/fAYffvhhzPc4ceJEd84556y3/b777nNLlixxN998c3gba68bb7zRlYfvvvvO3XDDDe6OO+6wNQ3w3bL+2Hvvvcv1mkLkE3LQhXDOLVu2zBxxnEVo3LixGbbLL788bGxwmDGwG2+8cVLOZzRq1KhhRjERGOx33nnHDPinn366nmH94Ycfyjx+0003dZtvvrkZZxYe/vLTTz/Z/mLA2fc//vhjvefynMhFwI477uj2339/M9DscyRBh3zcuHFlHOxo7zFWEKNfv35mUBM5+NHg1PXMM8/Y98b7CsKComPHjhYYadKkidt5552Tek0hhBDFC7a1Q4cO7uGHH7a/DzzwQHfPPffYdSJiOZ/RuOKKK9xNN92U8HE40d5pX7p06Xq2ftWqVWUev+GGG7oqVaqsZ+sJ9G+yySZhW8/l+++/t3WLhyB+9erVy9h6LnvttZfZegLZkc5/0CGfOnVqGQc72nuMFcR49dVXzaFP5OAnAiefNQffmV/LNGrUyBx91g9CFAty0IX4/2DMcMwXLVpkRm2bbbZxt912m2vXrp0ZtieeeMJ17drVnMnu3bsnnUGP5ZSmu8gIGnEc5F9//TVsmDHSRJWXL1/u9thjDzPcGHGMOhH4oEO+9dZbr5d9jwfPCTrkyb7HyOelkin3sFghEo9hxkh/8cUX6z2GLPngwYPdnnvumdJrCyGEKH5Y9mJHevbs6dauXWtOb+/evd2AAQPcZpttFvN5iTLosZzSdMCWf/vtt2Wy3tg/b+u5/Pbbb+6TTz4pY+u5VK1atYytxzlne7KQ4Q465Mm+x8jnpZMp92uzyZMnm81fsGBBeDtJBLLoJ5xwQkprGCEKglzX2AuRL9Bvxk+CPrW99tor3CNFrzV9TvRm8Xfv3r3Xe24i1fdMCKDFEqGrSOGYZEbQxXuPqb4H+t1QjqUX/4cffrDe/mj/H8rxKMkz5k0IIYRIBNNUEEAL9oUzKjUeiVTfMyGAFk+ErqJsfTIj6OK9x1TfQySItvJdoNUT7N3faKONTAyO0bUSdhXFjBx0IQJCKX6mKaIojPrwczRxDBF6QYUVlXDP0qVLQ+3atQu99tprYcXWRJfyCKDFmxWeyGj3798/Jac4HrFU1zMl8sboszvvvDPUqVMnU9v1wi/du3cPNW7cuIwKO0r4jMubNGmSifEIIYQQqTJt2jQTD/W2hXnmjOuKRfv27ZOyg+VxTuPNCk9k69nndJziILFU1zMt8hZp/xHIJWgSFKXlQtLk1ltvrfAZ80LkCjnoQgRYsmSJZWMxCN26dbMZpkGlcaK3GGeUy4ExaWzHmYxmvHh8IgX4RCQzKzye0Q5Gn5Nx7MuzL+m+R8a5+NmqiS6MdGMWKyPfhBBCiHRZu3ZtqHPnzmVszZFHHhmaPn16mUxtrMwyM9YTKcAnIplZ4cna+mQc+/LsS7rvMcjXX38deuihh+xzZxRd5Osz0o37XnnlFY1LEyWHHHQhInj88cctO4uBuOuuu8wwPP300+tlj5kDfvfdd1sJFiPaohmwo48+OuWy7kjKOyuczHmk0U4nux1vpFyq7/Gjjz6yMW7MWmVm7IEHHhhzEUDAhJmyd9xxR+iDDz6QoRZCCJEVCMp36NAh9O9//ztsg/bcc08bE0arVbx53umWdZd3VjiZ82i2Pt3sdrSRcuV9j1S5sZ9Dhw4NtWrVygLt0RIaDRs2DF1zzTX22EyW7AtRaMhBFyIKN9xwgxkMZmnPnz8/vH3hwoVmXIKl1nXr1g0deuihCbPc5Z1zWt4MOgGEaEa7vD3wQSJ7wZPJzH/22WfWv1+rVi17TtWqVaO+r0033TR01FFHmZFmEfDnn3+mvb9CCCFEsnz55ZeWISaL623T1ltvvV6mPFPOcDoZdBzmaLa+vD3wQXDKg6+ZTGb+l19+CS1YsCA0ZswY04ZhfRQMePgLiZD99tsv1LNnT5sX/+OPP6a9v0IUC1JxFyIK/CyYacooFtRRd9pppzL3s23YsGE26gP19GgwCgX1UT9KZbvttjM1VdTga9WqVeaxP/74o41ZWbhwoV0Y+7bVVluZ4nr//v1tVFhQAZ3tKJhHjnwLctVVV9nolLPOOstUXj2dOnWy8SjsA+PZUiXeyDTU01HFRT2e98CM1xdeeMGU8RkDE41dd93VxqQxKqVHjx7ugAMOKDPLVQghhMgFKKaPGTPG7D0zw6PBdJeRI0dm5P8rjwI6I0oZC4utD65H0lWRTzQyjWkyn332mY2CZfwZ9p4L4+KC4908qMjzejyX6/r169s6SQixPnLQhYgBTi3O9Jlnnhne1qtXL5ut3bJlSxvNgmM9e/ZsN2PGDPfkk0+61atXhx/L/Yw94YKzPX78eFepUiU3d+5cV69ePVe5cmU3duxYN2nSJPfss8/GNZL8nzjGDz30kDm+wFgRnH6CB/5yySWXuN12283uHzhwoI0gYUxLNBhXcsghh9htRs6wKGA0md9nf2FUC8Z23bp1bs2aNa5169buzTffXO/1eG/MUOUziQX7zCmHmbOMYeN9Mc5OCCGEyFcYZ/byyy+breeCExqEgDf209tQf01QPtURYKnOCsfGP/XUU2Uc9PKONsM+//TTT2brWRcwei6SXXbZxR5DUCAWJBEItnM56KCDzCGvXbu2xqEJkSRy0IVIEiLDOJaAE8wMVRxksr9cjjjiCJtXivF+9NFH3ccffxzztbbccktXs2ZNyzRj6IBsNjPJcYiZYU4WmQz5jjvuaI4vCwQeT8Sa+6P9dJkLusUWW5hDTbT/888/t+0YRV6DoAHP4/799tvPHst9VAREmynunwupnCr4XAhWUDnA/3nssceGs+P837x3IYQQohD56KOPws76iy++aLYuGthY7B32nQtzyoPX2Hme62ea42wHZ5zD/29HDd8ObvP2HIeaGeckFnhd/l9svrf9/hr4P7j4tYu/zbqCCrhYQf1okAGvU6eOJR2w76xBuK5Ro4accSHSQA66EElCBnnEiBHutttuM2MYCdntVq1a2W0cdLLsxQbONouBeKeN559/3h111FFW8rf55pvbbSLnQgghRDGuDRYvXmxZdX/54IMPLPAdy3HPdwggUN2G4x6sDCTYftFFF5lTvvPOO1tCQQiReeSgC5EilHDjfE6fPt3+9pnuPn36uGOOOca2UQJO3xrlbWTAgxecXLLrGHWi3UStufYXDD2ldGShTznlFHt9IuO9e/e2wMC1115rGXyi0/SeETDYa6+93KBBg+z/ZvuQIUPssUceeaRr1qyZvQY9YtOmTTNnuW3btuHo+0033WTZc/rSKcvjsfSN83pUDFx99dV2zf5QpkY/eefOnW0RQkaf7AB95PSQE5RQT5kQQohSB+cWJ/3rr782Ox9p6/mbx2Dfgxdv81krYM99JjrabS4EAVhz0NPNc30rmQ+m+2t/8WsWfwn+TTselXwE18tbci+ESB856EIUAPxMR40aZVF5AgGUj8Ho0aNNoOaMM86wrL2HyDbOM843pfgYYDL8bdq0sSBCsOedkrR33nnHethOPPFE2/bcc8+5Dh06mEM+efLk8GNfeuklM+KUs1FCJ4QQQojc4XvQfTBeCFH4yEEXogiMM8Iwwcw1QnTfffedRecRdcNoE8nHMUdM7oQTTiijyMrj9t13X4ueCyGEEKIwkIMuRPGxUa53QAiRHhjkSKPcuHHjsNEOKq9yiSTaGBUhhBBCCCFExfN/ko5CCCGEEEIIIYTIKXLQhRBCCCGEEEKIPEAOuhBCCCGEEEIIkQfIQRdCCCGEEEIIIfIAOehCCCGEEEIIIUQeIAddCCGEEEIIIYTIA+SgCyGEEEIIIYQQeYAcdCGEEEIIIYQQIg+Qgy6EEEIIIYQQQuQBctCFEEIIIYQQQog8QA66EEIIIYQQQgiRB8hBF0IIIYQQQggh8gA56EIIIYQQQgghRB4gB10IIYQQQgghhMgD5KALIYQQQgghhBB5gBx0IYQQQgghhBAiD5CDLoQQQgghhBBC5AFy0IUQQgghhBBCiDxADroQQgghhBBCCJEHyEEXQgghhBBCCCHyADnoQgghhBBCCCFEHiAHXQghhBBCCCGEyAPkoAshhBBCCCGEEHmAHHQhhBBCCCGEECIPkIMuhBBCCCGEEELkAXLQhRBCCCGEEEKIPEAOuhBCCCGEEEIIkQfIQRdCCCGEEEIIIfIAOehCCCGEEEIIIUQeIAddCCGEEEIIIYTIA+SgCyGEEEIIIYQQeYAcdCGEEEIIIYQQIg+Qgy6EEEIIIYQQQuQBctCFEEIIIYQQQog8QA66EEIIIYQQQgiRB8hBF0IIIYQQQggh8gA56EIIIYQQQgghRB4gB10IIYQQQgghhMgD5KALIYQQQgghhBB5gBx0IYQQQgghhBAiD5CDLoQQQgghhBBC5AFy0IUQQgghhBBCiDxADroQQgghhBBCCJEHyEEXQgghhBBCCCHyADnoQgghhBBCCCFEHiAHXQghhBBCCCGEyAPkoAshhBBCCCGEEHmAHHQhhBBCCCGEECIP+H/t3a9KLWEUxuGlbLAoaLNo0GawGgxGo0HsIhq8BS/B4g0Y9A5sBhEEEURMdoNRRLAI/glzcN/C2Yd5z+fzwDB1tcVv+GZGoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoEOjxsfHa3FxcXgHANpj10N7xrqu6/oeAgAAAH47j9sAAAAggEAHAACAAAIdAAAAAgh0AAAACCDQAQAAIIBABwAAgAACHQAAAAIIdAAAAAgg0AEAACCAQAcAAIAAAh0AAAACCHQAAAAIINABAAAggECHxry8vNT+/n7Nz8/XxMREzc7O1vr6et3c3PQ9GgAwAnY9tGvQ9wDAaG1ubtbX11ednp7WwsJCPT8/1+XlZb2+vvY9GgAwAnY9tGus67qu7yGA0Xh7e6uZmZm6urqqtbW1vscBAEbMroe2OeIODZmcnBxeZ2dn9fn52fc4AMCI2fXQNoEODRkMBnVycjI88jY9PV2rq6t1cHBQDw8PfY8GAIyAXQ9tc8QdGvTx8VHX19d1e3tb5+fndXd3V8fHx7W9vd33aADACNj10CaBDr/A7u5uXVxc1NPTU9+jAAD/gF0PbXDEHX6BpaWlen9/73sMAOAfseuhDX6zBg35+b3K1tZW7ezs1PLyck1NTdX9/X0dHh7WxsZG3+MBAH/Jroe2CXRoyM9XXVdWVuro6KgeHx/r+/u75ubmam9vb/gBGQDg/2bXQ9u8gw4AAAABvIMOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAABQ/fsDZ4iiU4FeK5kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAHvCAYAAADHOfV1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1WtJREFUeJzsnQnYjGX7h+/2RaSStFgqLdoX9ZWihVTSpiyhBSFaRCkkStotRYstlIoWJC2ISmmjUtGiKKUVoX3v/R/n9f3v+eYds74z884zM7/zOMbMO5tnnnnmue5r+10blJSUlDghhBBCCCGEEELklA1z+98LIYQQQgghhBAC5KALIYQQQgghhBABQA66EEIIIYQQQggRAOSgCyGEEEIIIYQQAUAOuhBCCCGEEEIIEQDkoAshhBBCCCGEEAFADroQQgghhBBCCBEA5KALIYQQQgghhBABQA66EEIIIYQQQggRAOSgCyGEEEIIIYQQAUAOuhAFxAUXXOA22GADd8stt5S6/4knnrD7hRBCCJHfyNYLUdjIQReiwNh8883drbfe6tauXZvrTRFCCCFEFpCtF6JwkYMuRIHRqFEjV61aNXfzzTfnelOEEEIIkQVk64UoXOSgC1FgbLTRRu6mm25yw4cPd19++WWuN0cIIYQQGUa2XojCRQ66EAXImWee6Q466CDXv3//XG+KEEIIIbKAbL0QhYkcdCEKFPrQ77//fvfhhx/melOEEEIIkQVk64UoPOSgC1GgNGjQwJ144omud+/eud4UIYQQQmQB2XohCo+Nc70BQojswbg1St332msv7WYhhBCiAJGtF6KwUAZdiAJm//33d23atHHDhg3L9aYIIYQQIgvI1gtRWMhBF6LAGTBggPv3339zvRlCCCGEyBKy9UIUDhuUlJSU5HojhBBCCCGEEEKIYkcZdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgBsnOsNEEJkh5KSktDtDTbYQLtZCCGEKDBk64UoPJRBF6JA+fvvv92TTz5p18ny5ZdfusWLF7sVK1a4H374wf3zzz9Z3UYhhBBClK+tF0IEG2XQhShyfv/9d/f444+7kSNHunnz5q33+D333OO6dOlit3Heb775ZlezZk1Xo0YNt9NOO7kddtjB/q5WrVoOtl4IIYQQQojCQQ66EEXO3Llz3bnnnmu3N9poI7frrru6NWvWuLVr11rp3NZbbx167rJly9zDDz8c9X1uvPFG16dPn3LbbiGEEEIIIQoNOehCFBF//PGHmzp1qvvll19chw4d7L4TTjjBNWjQwDVs2NDu23nnne1+ytvXrVvntthii9Dr9913XzdkyBD3/fffhy7ffvute/nll90111zjjjrqKHfMMcfk7PMJIYQQQgiRz8hBF6IIIPM9atQoN27cOLdq1SpXtWpVy5pvuummbsMNN7QseiRk07fbbrtS99WuXdt17959vef279/fHHocfSGEEEIIIUTZkIMuRIHy119/uVdffdUNHz7czZkzJ3Q/feMXXnihZdNx0DPBddddJ6V4IYQQQggh0kQOuhAFyPPPP29ibrNnzw6NWTvxxBPdRRdd5E455RS38caZ/emHj3H79ddfXZs2bVzXrl2tfF4IIYQQQgiRHHLQhSgwxo4d6zp37hwauXL11VebY16rVq1y+f8HDRrknnjiCTdr1iz33HPPuXr16pXL/yuEEEIIIUS+oznoQhQI//77r+vVq5cJveGct2jRwk2aNMndcMMN5eac+4BA48aNLZPepEkT984775Tb/y2EEEIIIUQ+IwddiALht99+czNnzrTb1157rZswYYLbfPPNy307NttsMzdlyhRTdP/hhx/MWV+yZEm5b4cQQgghhBD5hhx0IQqEChUquOnTp9uc8gEDBuRUtI1tefrpp93BBx9sqvGNGjVyn3/+ec62RwghhBBCiHxADroQeczixYvdiBEjQn/vsssu7pxzznFBYOutt7aM/t577+2+/PJL16xZM1dSUpLrzRJCCCGEECKwSCROiDwF55c+8x9//NFGp5122mkuaGy//fYmFHfGGWdYICGXWX0hhBBCCCGCjhx0IfIQnN1LLrnE/fPPP65BgwbW713WvnX6wz/44AP34Ycful9++cXtv//+Vpq+zz77ZGROOln9BQsWyDkXQgghcgBrhU8//dTsPPb+q6++cnvssYfZ+gMPPNBVqlRJ34sQAUIOuhB5ZmSvuuoqN2TIEPv7vPPOc6NGjTJhtngg1oZh9sbZ3/7ss89ilp3jnO+7775mwLkccsgh7oADDnBbbbVVytsdnjl/88033aJFi1y7du1Sfh8hhBBCROePP/5wn3zyScjO+2sC8X/++WfM3Va7du2QrfeXHXbYQbtZiByxQYmaQoXIC8hut2nTxk2bNs3+HjhwoOvTp0/UzPSjjz7qWrZsabcpf//6669jvu+2225r2fI6deq4Lbfc0r377rtu4cKF5tRHwv+15557hgz4oYce6o455hi38cbJxfreeustV7duXbfFFlu4L774wlWpUiWFPSCEEEIID1nx3Xff3W6TEedvAvnRwO6iCYOt33nnnd1HH31kth6NmGjsuOOOpRz2hg0busqVK2vnC1EOyEEXIk947LHHrOecbPn48eNdq1at1nvO6tWr3U033eSGDh263mM46t4R5+Jv0yce6eQTt1u+fLkZb395++233TfffLPe+/Ie/J+nn356wjJ23hennvcjwHDNNdeUaV8IIYQQxcpff/3l7rvvPtelS5eoAq3hNt7frlmzpttwww2jrhvCbT2Xjz/+eL3qOpxzkgK01+HsCyGyhxx0IfIInNrjjz/e1atXb73s+h133OFuu+02E43znHTSSeYE01eO0U6X7777rpQRnzNnjluzZo09duSRR7pbb73V1a9fP+57PPjgg+7cc8911apVsyBAovJ8IYQQQvw3yP3444+bXaeU3UNmnNY3+snJfKcryPrzzz+79957L2Tr586d65YuXRrSlbn++uutxS7Z6jkhRGrIQRciz6PoY8eOddddd5379ttv7b6DDjrIHOVjjz3WPfvss65JkyZuk002ycr/Txn87bffbgsDBOegadOm7uabb3b77bdf1NfQB7frrrta2f39999vRl4IIYQQsXn++eddr169THQVqH7r16+f6bnMnj07q7aesnmC69dee61bsWKF3UdWnuo5JshoQosQmUVz0IUIMK+88oo75ZRT1ist91F0RNwuuugic85xeh9++GHr827cuHG5GEyy8mT1ly1bZtux0UYbuaeeesrE5Fg00GceTXzu0ksvtds49pLBEEIIIaLzzjvvWDUcPeA45wi1EpTH7lJunolpK4nAtp9//vlW+j548GDTrkGAjhGqRx99tJs3b56+PiEyiBx0IQIKpept27Z1zzzzjDnBnhdeeMEdccQRrnnz5lbiRhR92LBhJvhyzjnnRO0xyzaU1N17773u/fffd2effbY53fTJIyh35ZVXuu+//77U8zt16hQSpOPzCCGEEOJ/IPiGMCwCbTNnzrTsOMFtHPP+/fu7ihUrlvvu2nzzzV2PHj1sG3r37m296K+++qq1tpFJZw0ghEgfOehCBJTLLrvMerRr1aplJeM4syeffLL1oM+fP99VqFDBjDSGEqNdHlH0ROy1114mZvf6669biT0jX4i2ozLLZ/j111/teUTfL7jgAutlW7duXa43WwghhAgEq1atct26dbO+cqrigOA749IIxletWjXXm2iCcZS305dOwJ0M+/Tp0616rn379qEyeCFE2VAPuhABVmwnG444C4aZEvJ///3XRFm43bdv37hzSulPJ/uezb60eJBFJ+p/9dVXm9gM7LbbbtYXT2ad/nWy6LnYNiGEECJoMC3lxBNPNGV1oF3tlltusSx6UG09MGcd4brJkyfb32TW6Vlv1qxZTrZHiHxHGXQhAgYzSTt37my3KSEjW06EGuf8rLPOslL24cOHx3XOgwA98PTNoQA7YcIEV716dSvZO+qoo+wz0b8u51wIIYT4r+bMcccdZ845IqsIvxHkjuecBwWq59DFoXqOnnREY2l3u+eee3K9aULkJXLQhQgQOOEIsaxdu9bmhZNBv+KKK+wxMtFk1ikXzyf4DPTSI25Tt25dW3ywCHn66aft8b///ts98sgjoYyBEEIIUUzgjJMtR3umQYMG5qwjCpdv/Oc//zFdGZIKVNFdfPHFllmXGKwQqSEHXYgAwZxxMuiUhzHP9IYbbrD7b7zxRitzy+dRJmT8MdyU79GLfvrpp7v77rvPqgJatWrlRo4cmetNFEIIIcqVJ5980qa1YBepOqMNrFKlSnn7LdCGN2LECDdgwAD7m151prpQii+ESA456EIECNTQ33zzTXfCCSfYfHO44447XJ8+fVwhwHgYhGSoEmCu6oUXXhgqc7/rrrtMVE4IIYQoBiZOnGh92n/++addP/HEE6bNku+QTGBm+pgxY0xA7v777zeV959//jnXmyZEXiAHXYgAQbl3ly5dLKKOgSPDjJprIYFDPm7cuFDQAVEZFiTMcqfUXQghhCh0cF4Zo0aw+txzzzX7t9lmm7lCokOHDm7atGlWFThjxgxrb1u5cmWuN0uIwCMHXYgAQH/5bbfdZqIqDz30kJWIEVlnXEkhQvCBsn2y5tz249cGDRqkXjUhhBAFzdChQ13Hjh3N3jGVZfz48Wb3CxHK92lvq1KlilUI1qtXz8azCSFiIwddiBwza9Ysc85x0ok0E0GfMmWKa9mypSt0EJBB+dVnDRYtWmQlfkIIIUShgUOOtkyPHj3s7549e5rSOWKqhQzicQjf7brrrm7ZsmXmpCMcK4SITmGfEYQIOCiXU9rmqVChgqmbn3rqqa5YoO8OBVvvpLM/li9fnuvNEkIIITLqnBOI79evn/2No37rrbfmtfhrKuy5557u1VdfdYcccohbtWqVO/bYY00QTwixPnLQhcihsUYszfdjMRecbHp5jFbh/2akm+eTTz5xDz/8sHvppZfW64kvD5ibOnXqVLv9yy+/WHRdTroQQohCAHvbtWtXd/vtt4dK3Pv27Vs0zrmnWrVq7sUXXzQhXFrbSEaoak6I9ZGDLkSOoIz9mWeesduVK1e2Hi0c00zwxRdfWPkYhu/BBx9cr9Rs0003tV4wz9tvv21iNUT3Ix1nxF3Co9zvvfeeu+CCC2yMSiY5+eST3dy5c92+++7rvvnmGxvDhrMuhBBC5DOIv2IzcchHjx7tLr/8clesVKxY0T311FMhgby2bdtae5sQ4n/IQRciR9F0BGJ8WTtlXwcffHBG3rt58+auZs2aNoMU4RmU4CP/bzLjzFz37LXXXu744493hx9+eKnnrlu3zv3++++lxr58+umnNjIl8n35vwg6/PDDD2Xe9gYNGlgwoGrVqqFAANl+IYQQIh9hasmoUaOszxwRWMaLFjskCVgzUDFIIJ4RbLT8CSH+ixx0IXLANddc49auXWu3Ga1Sp06dlN9jzZo1FoHef//9LQrt2WOPPWzu6Oabb+6OOeYYy0yHgzr8ihUr3EknnRS676CDDnJz5sxxd955Z6nnzp8/30rNwx13MtzXXXddqUWG760766yz3AcffLBeJj+8nD4R1atXdw888ICNY0NAbuDAgSnsFSGEECIYkBmmtB0Imp9zzjm53qTAgGo965/ddtvN1hkkF/76669cb5YQgWCDEqWnhChXKCc/8sgj3Z9//mmlXRMmTEj4GhzwmTNnWjYbUTUgC77tttu6n376yS1cuNCcbPj+++8tOo2DTgl9kyZNzNnNJr/99puV7FE2j1Ir/zcwSo0+uxYtWiQ943zs2LFWDsjnIUAAZObPPPPMrH4GIYQQIlNgmw877DC3ZMkSd+KJJ5o9zoZaO05tedn6bPD++++7I444wv3888822YXxq0IUO8qgC1GOUDJOlBjnnB5rMsXJMGzYMJslOnz48FLRZwwZCuh777136P7tttvOerzKE/rUR44c6d56662Qc+4DC2xLeLaez/7kk0/GjJTvt99+9hyMNvNhvbK7etSEEELkA+S+OnXqZM75zjvvbFowhT5KraxQlee1cu6++25rBxCi2NHZQohyNNjt2rWzHu5atWpZX1o0BVfKwSk3//DDD0P3tWrVyu2www6WeQ/nvPPOsx6ucKc4SDBOBsG38LI+xGEITiBWF62Ah4wDPfT0pR133HHWG89tXqMeNSGEEEGHgPWkSZOs3YzqsSpVquR6kwIN9t23s5FFf/nll3O9SULkFDnoQpQTZMH9OBGc02222Sbq86666irXqFEjd9ttt4Xu23HHHd2XX37pbrrpprz7vhDBCw8gICK3/fbbW8lfeICC+e+U8HMfVQbA6LVHH33UetQ+++wzK5VXj5oQQoggt7F169bNbt9yyy3uqKOOyvUm5QV9+vQxG0/7Hno2n3/+ea43SYicIQddiHLg9ddfd1deeWXob98vDm+88UZoFjpgmCgLp1Q9HEraCwGqCAg29O7dO3Qfiu1Nmza1zDnieRhpmD59upXPT5s2zW211VY2iq5Hjx453HohhBAiOgSgfRsbM76vuOIK7aokITiPBg3ro1WrVrkzzjhDo1ZF0SIHXYgsg9p6y5YtLSoMZI8vvfRSu42ziTjKmDFjQs/nb8rCBw0aVLDfDSJ2lSpVCv399ddfuxo1arjGjRtbZUHdunWtDYDSdsau0Zfue9Touw/fX0IIIUSuoWWrffv2oTY2xpFGa2MT8SvuCMizTnrnnXcsoC8ta1GMyEEXIovQT37++efbuDGfASdzjBECxpdhwH/88cfQa/jbP14sICK3dOnSkAge+4C5qEBE3feoMaYGGFszb968HG6xEEII8T+wX0wcQUmd1qxYbWwiPgTrJ0+ebPvxsccey8vWPiHSRQ66EFmELDiiaDjnZNArV65s2WAPmXXmhtOnVuxgjNk/4aWCQHDDR9AZ2Xb22WdbHzrXjJQTQgghcgmtar6NbfDgwSZ2KspO/fr1Q+PWsPvPP/+8dqcoKuSgC5ElUCFF9AR8Rpwxa927dw+Vu5MpDh+RJv4Hix3E8m6//fZSZYJk1OvUqeO+++479fcJIYTIeRubFzAlcHzJJZfoG8kAjKm78MIL7XbHjh3dr7/+qv0qigY56EJkAcaBMRqNOeCUb+Ng7rLLLq569eqh+0V8qDSYNWtWqRnqjz/+uI2VI8jBPqXHj+cIIYQQ5Q3VXRdccIFVetWuXdv0UdR3njmoRmDtRF//ddddl8F3FiLYyEEXIgv07NnThM/oQaOHavny5TZijT5ryrU222wz7fckIJBx3333mcL7Tz/95G644Qa3YMECt2jRolCWonPnzlJ6FUIIUe4w45xpI9h0bP3WW2+tbyGDICZ77733hpz1t956S/tXFAVy0IXIMIiXjR8/3m4zMmzZsmVmtA899FBTLxfJs9FGG5lADDPSUXN/7rnnLIpOb/+NN95oFQkEP6699lrtViGEEOUGOilUcwGB9/DxqSJzEKBHrwfRXUreaSUQotCRgy5EBsFwdOnSxW7vv//+7uKLLy4lCidSg1JBPxMdVdwddtjB9e/f3wIdzIofMWKEPXbHHXe4+fPna/cKIYQoF/r16+e+/fZbt8cee1jVnMgew4YNc9tuu62NXiOTLkShIwddiAz1oVGKfdttt7nFixe77bbbzqK+d999t/WnibLjHXSy6D///HOpx1auXBna/+znP//8U7taCCFEVlm4cGFIZRw7r7a17FK1alU3dOhQu00V3SeffJLl/1GI3CIHXYgMcNlll1npFdlduPnmm03ADMJFzkTqUDaI+M7vv/9uI+vCOfXUU91xxx3nttxyS/fhhx9agEQIIYTIFpRaUynHNaXXJ5xwgnZ2OXDuuee6xo0buz/++MNU3dn/QhQqctCFyACtW7e2fmlEzY488kjLoCMSt/3229vYFZFemXvz5s3tNiI84bCf6UsfOXKk/Y2I3KuvvupWrFihXS6EECLjUC3H3HParIYMGaI9XI5rAWw9Afm5c+fa9yBEoSIHXYgyQEn1N998U0osBuccJ52+6FGjRtn97du3V+lbBsvcn3nmGZt/Hg77vE2bNu7kk0+2EvcmTZq4Qw45xObQCyGEEJli1apV7uqrr7bbAwYMcDvttJN2bjlSq1YtE4gNn5YjRCEiB12IFKHUul27du7ggw82J52//civbt26ua222srNnDnT/u7UqZP2bwY48MAD3eGHH+4aNGjgfv3116iRdUaxEFknWPLjjz+aoIwQQgiRKXr16mXTWbBJ3u6L8uXSSy+19QC2Xt+BKFTkoAuRIgiVoRi+evVqK7O69dZbbZQakXTES0aPHm3PO/HEE91uu+2m/ZsBcMBnzZrlZsyY4Xbdddeoz6lZs6a75ZZb7PbGG29s81OFEEKITPDKK6+4sWPH2m0CwtgZUf5QNTdmzBjb/1OnTnWTJ0/W1yAKDjnoQqRIlSpV3OzZs+1St25dE4Tzo77oScOIQ+fOnbVvMwiz5HHU49G1a1fTACDLftVVV9l9X3zxhSnACyGEEGXh77//Do1QRRAWOyNyB2NsqWaAyy+/PGplnRD5jBx0IZJg3bp1Jj7mIVt+zDHHWHkViqIoi3oxOLLqL7zwgo1ZE9npAWS/P/vss1Ej6/fcc4858pMmTTLVd76nM844I+rzhRBCiEQMHz7cLVq0yIRJfaWWyC3XXHONVc59+eWXmo0uCg456EIkgH6zhg0bukaNGrmXXnopdD9lVfSab7rppjYP1Wd3uT722GPdJptson2bBZiFytzZHj16uL/++ivqWDY0Aryq+xFHHGHCMkTchRBCiFTAAezXr5/dpqUNJ13kns0339y+DyBoIsE4UUjIQRciAQiP7bDDDq5ChQpWZg2//PKLlVUBZVZ77LGHW7Nmjfvtt9+0P7MMpeu0GXz00Uehfv9IBg4caN8XWgGoutN2sMsuu+i7EUIIkRJXXnmlac9Q1u6DvyI4E17q1atnJe5k1IUoFOSgC5GAzTbbzLLlr732mim3ArNPv/rqK8vM+j4osrU777yzGzdunPZpFqlcubK7/vrr7TZZDdoPItlxxx1d79697TZGG2V9D866etKFEEIk4vXXX3ePPPKIVcbRPrXhhlo2Bwm+F6rq4P7773dvv/12rjdJiIygM40QUfj888/tZO/ZYostXO3ate02c7hvu+02u41AHI+ROR8/fryVw1erVk37NMswvq5OnTru+++/D81EjYQS+Bo1argVK1ZYQAUWL17sTjrpJNesWbOQmJ8QQggRSUlJiWXP4YILLrD2KRE8GLnWpk0b+766d+9u10LkO3LQhYiAPibmbWOQH3roofX2D9lbyt0OO+ww17JlS7vvscces0wuGXUE40R2YbzKoEGD7PawYcNszF0kBE68mI/vT9trr71s/F39+vVtjr0QQggRjWnTplkgF1tChZwILiRL6ElHJ4jRa0LkO3LQhYiADHirVq3MmUPsLRz6nkeNGmW3b7/99pAw3IgRI+y6Y8eOpiQuss/JJ59swZA///wzVPIeCd8jInFoBvTt29eE+yZOnOimT59u2gJCCCFEJAiQXn311aFqLNrXRHCpXr16qNqhZ8+eNl1HiHxGDroQkT+KDTc0ZdCFCxeuZ5Tpa/7nn3/cqaeeauO74N1337X+dLK67du31/4sJwiOkEVn9vngwYMT9qfRgsB3ipNORsQzb968qGrwQgghipMxY8a4jz/+2G2//fYmTCqCDwEV9Gc+/fRTG4snRD4jB12I/+eZZ54p1bsU7sTByy+/7J544gnLkPvRHjBy5Ei7PvPMM9V/Xs4wOo2Rayyi/Dgc2g/CIYN+zjnn2HdLJiT8O0ZLgHYGL/QnhBCiuPnpp5/cddddZ7f79+/vKlWqlOtNEkmAGKzXpKElYdWqVdpvIm+Rgy6Ec+bknXLKKa5t27ZRBUa4j7IpuPDCC02gDH7//fdQn/pFF12kfZljOnToYGJ+BE3+/vvv0P30oNOf9uKLL1pfoYfn8t3yPUpYRgghBO1rK1eutPGpCJKK/OH88883fZkff/zRgitC5Cty0IVwzpw3StQPOOCAUF95OI8//rh74403bLa2j6z71y1YsMCitccdd5z2ZQ5ZvXq1icWhsk+whOz6k08+aY43au5XXHGFPY8+NRxyQM39rbfesgBNtO9dCCFE8YCYqG+ZIrBLS5TIrxZF39ZGoH7RokW53iQhyoQcdCH+P/NKL3m0XjNEyPxMbbLokWPU9txzTxMgk4OXW6pUqeI++OADd+edd7rtttvOBP1OP/10E/ojiEIZ+0477WROvB+7BoccckjoNs4837cQQojio1+/fu7XX391Rx11lLWtifwDfaCzzjrL/fvvv+7SSy9VdZzIS+Sgi6KFmeU+kwr77LNPVCcbhXacOhxzn4UFZp+LYLHpppu6yy67zC1dutQccj92hTmpXPv59fSpMR89HL5PRP5atGhhhl0IIUTxsHjxYjdu3Lj1prSI/AMBWez/3Llz3aOPPprrzREiZeSgi6KELOkZZ5zhjj/+eCuJjgWzzQcMGGC3GeWFCAnQ33zggQeaM/fNN9+U23aL5KhcubLNRUWFl540egkbNWrkWrdu7Y4++mjLkHhNAc+SJUvcww8/bCPYaGcQQghRXCrgBGfJvh555JG53hyRBrVq1QpVPtLWxqhVIfIJOeiiKMFxe++999z777/vvv/++5jPQ62dxxGFCx+h9thjj7lPPvnEPf/881J4DfhsVMarvfPOO5Zd92PXuH7kkUdMNM5z0EEHufvuu8/NmjVLizMhhCgisOVMckGLhuCuyH8IwuOoM93lpptuyvXmCJESctBFUbLffvtZlpSxaZS2R+Pzzz8PiY3gqGO4gQi7P9lffvnlJhwngs2WW24Zuu2F4wCF3nC1d1T8GzZsmJNtFEIIUf78888/ofY1BEapuBL5D6Ny/RqOknda34TIF+Sgi6IFcbd4yuuUR/3xxx9WBt+0adPQ/U8//bT1qlWsWNFdfPHF5bS1IlNQurjtttvabaogLrjggqgiMmvWrLFydyGEEIXLhAkTrMpq66231miuAgOh2MaNG1tbIwkVIfIFOeiiaMAJ69Gjh5W2J4Ls+sSJE60UmpErXiyG90BgDLp27eq22WabrG+3yCwnn3yyjV7Za6+97G/m2KMl8NNPP4WeQ0kcbQ1nn322qcELIYQoPOhN7tOnj91mGgvTQEThwNpt2LBhNi6P5MpTTz2V600SIinkoIuigf5iyp3q16/vfvjhh4SOPJBdpTfZQ88yzjvqoN27dy+X7RaZh3FrBGq49nPuGbfmgzc777yzq1u3rqtdu7bU+oUQokCh9Bmh11133dVGconCg2C8z55zHT69R4igIgddFA2nnXaaXa677jorZYsFztqrr75qfcsDBw4s9dhdd91l1xdeeKHbYYcdsr7NInsgGofYn4dFGpl1H3W///773cKFC93BBx+sr0EIIQqMr7/+OjR6E52ZzTbbLNebJLLEtdde63bccUcbmTtkyBDtZxF45KCLoqFq1aomCtetW7eYz6HnnFErcNVVV4UyrB6cNk7ujO0Q+U+9evXceeedZ7fJlrds2TL0GKWOOPFCCCEKD0raGbmJHaCdSRQuaAYx2x5oU0QEWIggIwddFDzhc8rJjG64YezDfvjw4e6zzz4zxzyaE84cdErba9asmbXtFeULmRMqKt59992Q4mtky8OkSZPiBnaEEELkD4jCMYITCLp7nRlRuLRu3do1aNDAgjJUQUYThxUiKMhBFwXN/PnzrbeM8ibGo8Vj9erVoZJ2Iqzh49OYl/7bb79lfXtF+VOtWrWQY85xMnLkSNelS5eQ8f74449dmzZtTGiGWblCCCHyF87tjFXj+pxzznH/+c9/cr1JohwgCDNmzBjTEJo9e7bdFiKoyEEXBc20adOsbJ35l/Ey53D99debeByicL7s2WfgmY3NeC7UvUXhgRjgSSedZMcKzvmIESOsHcILzNDuMGDAAHfUUUflelOFEEKkAUreBFvpOb/55pu1L4sIZtzfdNNNdpsgzRdffJHrTRIiKhuUqMZDFDhTpkxxxx57bGj2dTQYpbXffvu5f/75x82ZM8dmn8Pff//tGjVq5ObOnev2339/9/rrr5t4XD7w119/uWeeecY1adLERoyI+KxYscKOgR9//NH+rlGjhvvggw9KVVIIIYTIX7CL2PIlS5a4Xr16FYSDLlufGqzzKHVHDJgZ6TNmzFCLgwgcyqCLgqdZs2ZxnXNiVIze4KR96qmnhpxz6N+/vznn9J6j+J0vzrlInerVq4fUXSmFI7LuI+2RJGqXEEIIETzQmcE533777V3v3r1zvTkiB2y00UZu7NixVuo+a9Ysuy1E0JCDLgoOHG7EXxACSYZHHnnEzZw508rdBg8eHLqf7LN30OhVotRZFDbt27e3iLovLGIED4u5cC0CRvVdc801OdxKIYQQqULQFZ0RIHNeqVIl7cQihfWc1xzq0aOHVdAJESTkoIuCY+rUqa5du3bu0EMPtdKveKxbt86y54DTRX+SN+Tnnnuu3b744otLjd8ShQuZ89GjR9tIFt/icOmll4Yc9k8//dRNnz7d3X333e7nn3/O8dYKIYRIBs7hl1xyiQXu69evb2sEUdyw9kNbiLa2Tp06SdVdBAo56KLgoGxpl112sbmmiXqvKXH77rvv3N57721CYB6EwtasWeMOO+ywUll1UfjQe+5L3eG5555zTz/9tN1u2rSpzc5dsGCBtT0IIYQIPoh+ElxlTYAIaCLRWFEcpe7jxo2z6kn60P3YPSGCgETiREFCdpOT7xZbbBHzOa+99pqrV6+e3abPHNEQDxn0iy66yN1zzz2uVq1aLh+RcEx62ZYTTzzRnPM6deq4hQsXmhEXQgiRX5Ah3WeffdxXX31lAdYbbrjBFRKy9ekxaNAg17NnT2t5WLRokQXphcg1CiGKgoTsZjznHINGSZPvOw53zoETND3o+eqci8zMS8Vgf/jhh6Uy6uH88ssv2tVCCBFg6DvHOa9du7br06dPrjdHBIzu3bu7I444wgI5jFyVCKwIAnLQRcFkPHG4yXgmAw7X4sWLXZUqVUwIDJYvX25OuRA+SDNs2LCQmj9ZdA8GnEXfTjvtZA68EEKI4EE7EsrtcO+998YN3IvihGrLCRMm2JSeF154IWT3hcglctBFQcAINMS9UNheuXJl3Oci9HX99dfbbfrLt9tuO8uon3POOe6UU06xsnYh4LzzzrO+c46Po48+2v322292P/2LlMIRcb///vu1s4QQImAg8tm5c2cL4Ldp08Y1atQo15skAgrVFb5SrlevXjaxRYhcIgddFAQnnHCClSmR6axatWrM52Gou3btao7WcccdF1Jq79evn3v99dfd1ltv7Zo0aVKOWy6CXupO9oVr1H/DlX8ZwTdlyhQb1yOEECJYcO6m8mmbbbaJ2aYkhIcqTNZ/f/zxh2vbtq37888/tXNEzpBInCgqRo4caeJvm266qWVA99xzTzdr1iwTBPOZeNTfCwEJx2Q2ADR79my7zXXDhg0z+O5CCCEyCS1shx9+uAXjqa678MILC3YHy9Znjm+//dbtt99+7vvvv7cpPwTihcgFyqCLvCYVMY+3337bXXbZZXb7xhtvNOeck7HPouO4F4pzLjIL/eae888/361bt26945AMuxBCiNzy008/mS3HOW/cuLEJwQqRDNWqVXOjRo2y27feequbN2+edpzICXLQRV7TsWNHc5hQaI0HDlXz5s2tZOnUU091V1xxhTlV9BjTs07EVCVwIhb169d3u+66q93mWLvkkktCjz377LN2/IQ78UIIIXInGLtkyRK38847uwcffFAzz0VKNGvWLKTmzhqRgI8Q5Y0cdJG3fP755278+PHugQcecCtWrIhrsOkdRhyOsWmIetFTPGPGDFN9R9X1kUcekbqriAnHS3gW5qGHHrJ2CA9K7o8++qiJEgkhhMgNI0aMcJMmTTJlbuz69ttvr69CpMydd97patas6T777DPXo0cP7UFR7shBF3kLJ8/XXnvNytWZYRmLoUOHuieeeML6znGqEIwBxEAefvhhM+j77LNPOW65yEeIpOOoe7p162aR9ZNOOsl6HFF93XjjjXO6jUIIUay8+eab7vLLLw+VJx911FG53iSRp1SqVCk0oWXMmDHu1VdfzfUmiSJDInGioOGkeswxx1hm86677rKRK999952VvhU6Eo7JPC1btnSVK1d2M2fOtAqOnj17uttuuy0L/5MQQohkWbt2rTvkkEPc8uXL3emnn+6mTp1aKqBayMjWZ48OHTq4sWPH2rE1f/58q8wQojxQBl3kHfSRR4p0RWP16tXmUOGcc82cc7LmjFfDmIv0ueaaa9zxxx9v18UAJZNMArj77rtD1RkfffRRqedoNIsQQpQfvo0N5xytEFrfisU5Ly/eeOMNN2HCBLsuJhijyvhdRIbJpAtRXshBF3kHmfDatWubsYgXUcYh//LLL02t/aqrrnJHHnmk9Zwj8vXee++V6zYXIjvuuKONIHnhhRfsmr+LhVNOOcU1bdrUgj9MBmCBuGzZMnfGGWdYAEgIIUT5OVHTpk0LtbFR5SQyx9VXX21thLR5cc3fxULVqlXdDTfcYLf79Olj49eEKA/koIu8Akdo8uTJdpKMlankOcw8ZV71lltuaQIfzK3++OOPXY0aNdwrr7xiZe/FwoABAzKe5ea9GFEXDn8XSyZ9wYIFFgRiQUjQB42DrbbayhTdaav44IMPcr2JQghR8BCo93Zn2LBh7tBDD3XF3IOf6Sw37xXZxsXfxZRJ79Kli9t///3dmjVrXN++fXO9OaJIUA+6yDvIWlJq3KpVq6j9QJxAEY7jsTZt2tiYFcZlIBgzZcoUi4gWCnymt956yxzFSy+91D53ZF8alQTMg4VNNtnE+qZ5HosaRPb++OMPt9lmm1kA45dffnEVKlSwqgMqDsLfLxwcfjLnkZA9fv75510hQwDosMMOs/1er149c8gRLMQpJ3jEY3vvvXeuN1MIIQoagvAnn3yyrQkYnTpo0CBXyHibHWmbo9l6qrwY/fmf//zH/sahJoAM1atXt8k3VBjusssutg/98yLB4SdzHgnTc84991xXLLz00kuW2KF1gkAIPelCZJUSIQqIESNGlHBYc2natGnodrt27Up+//33knyiXr16JZUrV7braGywwQahz+cv1apVCz3et2/fkieeeKJkiy22WO950V4b7cL79enTp+S4446zaw+3oz0//DmFzJNPPmmfd8sttyzZZZdd7Ha/fv1yvVlCCFEULFy4sKRixYp27m3VqlXJP//8U5KvjBkzpqRz5852HQtscSxb/+qrr8a09VdddZVdEtl6nvP666+XPPDAA3bt4Xa054c/p1ho3bq1ffYjjzwyr483kR/IQRd5Awbh33//jfn4tGnTSjbccEM7gfbv379k1apVJXvttVfJ+PHj474uiEQ60PwdDk57LEPrneQTTzwxptEu6yXcYY98bMcddywpFjieDjnkEPvcp59+ul1vttlmJcuWLcv1pgkhREGzfPlyszecd7FF+RZ8D+fwww8vZUf5O5JEAXGc6kzb+nCH/Ygjjij12NVXX11SjHz55ZclFSpUsH1w//3353pzRIGjHnSRF1BShDjJ0UcfbSXZkbz++uum1E4pe/v27V3//v1dlSpVbDb1+eefn3NF11TUzilbJ3gWDn+Hz3SN1+NMCRxQap1p6DP3wnCRoKJbLIruHE/XXXed3aYHvX79+nZc9urVy/QRrrzySjtWI79HIYQQZYc+4JNOOsl98803br/99rO2NVq08lHt/L777rPRXeHwN/dHs+mR+PsRzc009Jl7YTjWV5599tnHnXnmmUWp6M543n79+tltbL1vJxAiK+Q6QiBEMhDFpZy4bdu26z320UcfhaKaXCZMmBConRqvNC0alLVHi2hzfyoZ9D///DPjUfVUMu3FlEVv37596LO/9tprJVtttZXdnjt3bq43UwghCoJff/215Oijj7ZzK61FK1asKAkSkaXk/B0Pytqj2U/uTyWDnktbn+gzFhp//PFHSc2aNe2zDxkyJNebIwoYOegib/jqq69Kvv7661L3UVIc7pzXr1+/5LPPPisJCmXp1Y7nfKdywVjnymgn+oyF1ou++eabl5xyyil2+8wzzyy55557SqZPn17y119/5XoThRAi7+Fcetppp9k5duutty5ZtGhRSZAoS682PefRXrP99ttbe96BBx5Ysscee5TUqFEj1L7nLxtvvLEFK3geZfHY+kqVKq3XHkewmORGNm19sfWj+++tatWqJT///HOuN0cUKCpxF3nDTjvtVGrW9vLly90BBxxgyuPArMoXX3zR1apVywWFRKVp4VAajho4I7wKgVifvZBgFnqzZs3cHXfc4W699VYrfZ86daop4vLYxhtvnOtNFEKIvIbWNUanPvnkk27zzTe3a8rbgwRTUJK9n9JwWqSY3c54zkhWrVrllixZ4t599133ySefuC+++ML2QTgo18+bN8+et2jRopCae2Rb1c8//+x+/fVXl4vPXqhQ9r/bbru5lStXunvuuSfXmyMKFDnoIvBjVDBQkSxbtsztu+++5pzjFI0bN87Gq224YbAOacahJLqf3nI+A73dGGKMbCEQ67MXEnxvjz/+uOvcubMdj4y5Ad+fLoQQouzgcKLpcf/999vo1EcffdQ1aNAgcLuU0aSJ7qe3fI899rDe7uuvv95Nnz7dHOh8J9ZnL1QYV+t70QnM//TTT7neJFGABMubESIMDBeRSkRJwkXJEONq3ry5RYVxkCZOnOguuOCCQO47ZpVWq1ZtvfuZzU7GnIACc7QLDSodYs1QLzTCBQi7detm3ykLL+amjhw50o5hicUJIUTq3HzzzW7o0KF2m0D8qaeeGsjdSNXUVVddVeo+5o2T7UdQjYw/VQBLly51hcTVV18dc4Z6IdOmTRsLtiAKe9ddd+V6c0QBIgddBJYff/zRHXzwwa5GjRquXr16dt8///zjzj33XLdw4UJTbn3sscdMvT3IrF69er37yJSTMS9Ux23XXXd122yzTSnl+UIHVeHwY3HAgAHmsLM4e/vtt3O6bUIIkW+MGDEiNBWENiJsf9AzyZUrVw79vWLFCrPzBGmZKFOIUIZ/0UUXrac8X+jQvsa0ILj99tttvSpEJrHhyhl9RyEyDBHK7bbbzj3//PNuzJgxljHfdNNN3dNPP+0aNWoUuP3NgoIMuXfEc8UWW2xh+4qy61yPAyHI0rZt24LOqnMqpR/9iSeeCN3HiD90Eqjw2HbbbXO6fUIIkS9Qyt6qVSs7r9K+hsZM0KCX/Nlnn7XbtDrlygkPiq1ntO3FF1/sTj755KLIqpMw2n///d2HH35oAflrr70215skCgg56CIvwBAya5r+bEqIMd5nnXWWC5pTTsQ8lzEvorqIxwD9ehhLREz8fUEoBz/22GOtPz0ZZ539ithcss/PNevWrXOHHHKI++yzz+zvE044wc2aNSvXmyWEEHkDTu/pp59u9r5r165WQhzeShQEp/y5557LWnsaaxzKpxHEo5WPtj6SEn/++ac54NxmJjdrDSr06IlmPTR8+HB7DusA9heOOxfu4zW0DXKb5/Pe3377rcsWOK4ErJN11tmviM1RhZBPzj1rUSrntt56axMuDq+gECId5KCLwPHBBx+Yuunll19uxoXo5KGHHhqKDONwdunSxQUFVFi9knym8GJ3GGD2AYsVDN3XX39tpdT+4v+OptLK69g2HzBABZaIr/+b/wNDTqsA2V1U8mvXru0+/fTTUFYg27DI+PLLL2P2sYcvIOjl57MGnbfeessCCl7sj79x2oUQQsQH7Y4TTzzR/f7775ZBJ/BNsDkIUKpOy1KmwN5id3HGcZxxULlNn30sW7927dqo71WpUqWQbecae8819r1ixYr2OHa+atWqbpdddrGqNpTI6et/+eWXbW2AkwkkGjIJ7W5HH320BdyjOd/0sd92222hv+nlR3wtH2A/H3jggW7x4sW2zZE6BEKUFTnoInAwnory9Y4dO1rJECXCZCaBfq7evXvnehNDmV0MWzrZaZxQ+rVx4ohqn3HGGebM8TcXRqiEZ+SJzvIaf/Gj53BeK1SoYO/hs+jt27e3wAZCNbwHDiOLAKLxXLjt/yayjhIpt/3zMDy8H/8H23Taaae5s88+OysVAgQLULZ95ZVXQvuX7zqSPn365EUmffDgwaY8DC1atHCdOnWyQNMll1yS600TQohA8uabb7rjjz/ebBHrgClTppgNyiU+s/vwww+7GTNmpPVeJ510kmWucViPO+44s7Pe1r/33nsWlAgPsEfaeX/BkWa/eHtP//eaNWtC6vbY/3C77i/8/cMPP5iTz/+Free52N8ddtjB7bXXXq5u3brmTNNXjXYKj/O6TFXhERxgykmHDh1C+xfbH8nrr7+eN5l0JgzQxkbCgeq5XB+zojCQgy4CBc4fhhDxjYceesideeaZoawpDg9GI9/L2Ck1I4p9zDHHmAgexhlDyCKA98WAH3TQQeZc4xhT8uUNNEY7GTD8e++9t4m08R7JlAcSQUfoBOONEScowjUaAFxj0H35HNtClhijPWfOHPuO+D8w7umW/bEPWKSFK/d7WNSgRRB0WBwRePH7hc+E0aYiQL3oQgixfuUcDib2hvM8Qfpk7V0Qy9ipXsP2YoO33HJLq7LDtmLrccaxETjG2GlsPRdGdeLkeSc82bJ+tHnmz59vpdbJVBtgj7D12CNmeVPF9tVXX9nahvvYNgL0rFNw2g877DDbLh4nk+8d7QceeCDUzpUqTOehZ5+KBCoTIuG9gy4K6GF/1apVy/Yda0QU3oVIFznoIpBgPDBYfiQJ2WCMUK760CLLrVMBhxZjTTkbaqeMXcHwU7LPAsQ74/5Sp04de006lMVBj2fMiaBjmDHmROrpe2OxQWk9jj2lcmSKyRBTToczmk7EnYULC4R8zaDDpEmTXI8ePcxJp5yQFgVmpxJsEUII8V9oqyJry7ny8MMPd7NnzzY7kgsiy61TzZDXrFnTqv5wYBm3yeW7774zm4ZtD7f12H4q39IlVQc9HgQSSBaw9kLk1jvlrFdIHuCs03LH/0VFH3atrJUFu+++u62t5s2bl9cZdGBdgpgh6y0qQYKimSDyFznoIpCgSEoUEueQLDoKqb4vuzzAscVAAAaE6HIqsK1EnOmlI5OKU44B5aRN5plycYw5UeR0nfFsO+ixWLVqlfv8889D/XFk3Mmys7A65ZRTzElHSyBTSvZ8Dz56ny/wvbOYIRtCloJAjRBCiP+C/cBOkYllVvjcuXPLtcqIbDnOFTYeYTPKlVOBEbCIgeK4Yp9wyAnAYwupfsPWYw95PBPOeLYd9GhQHk/W/5133rFKBwIOBODpl2/SpIkFGhi3RkvCokWLMhIkueWWW1w+QdKCQDyBjBdffNEqJIVIBznoIhCQiaW/uXv37pZhxOiRRW/YsKFFZ7PhxMZzrtMpYSewwFg4nDNUPTHKOOMIv2DMtt9+e5dtysNBD4csOg4on9eXyZF1p0KgcePGVsq2bNmykJZAWcin7LmHKgBKBMlGMMeXuehCCCH+a/cpa6fNi2wqmi4EYvMhW45tveyyyyzbjFOOg8zagftxyrH3nPvLg2w76OGwNsLOE9jAaceu8z2ybiMhQQIC7Zx0nHVGsmZSjK+8QLx4xIgR9t2z/hMiHeSgi0BAtBTxNyKQOJNkZjHcjKhChbS8wLim2nOGA46KJ73lOKcYLMrbvJFmrBilYeVJeTvokQacCDtGmuw5zjoReLIil156qY0lYTFRVgjeeDG5fABBnOuvv94qC8hAkKlhZKAQQhQrBC9pi5o8ebIFtHH4cNLLi1jiZPGgJ5rMKHYeLRQCCpzXwwPwfJbypjwd9GiZY9ZMCxcudB999JHZelreaEtk7TFo0CBbx9GnnQrsV9YL+RSUZ83DusvfpoJCiLIiB10EAvqaEYZ77LHHzLnjBI8BrVKlStb/7/BZ24xwSzbLS1a/efPmZniIlvq/UZ+nny6XPUi5dNAjwUHHcBO44Lul9I/gC5FmFhRlFeHJ5bz5VMcGhZe7sQj95JNP1KMmhCha/KQOAtsIjWIzy1OVHXtE4DQZKFHHOScwTGaXNQJCpth6Jq+UdwA+SA56OFQ9Ut6NTcfGEYShR53qN/Y7wepYY1XjJUA4PvKlH53EDBUVZNNZTwpRVuSgi0CAs4VxwUGH8ponGSn+5keURYOecowfRodeObLD9GNxu3PnzlbazviUIBAkB93DfmVhxLgxKiRY5LBPiZBT4ohCv58dXmhl72gN8Ln5HqioQFNBau5CiGIEhe7zzz/fbtPzHU3FO5cl7WwbqtysSxBCmzlzpl1QNW/Xrp278MILTfQ1KATFQQ+HDDK9+AsWLDBlfhTqEU2lShKbjUp/IZa9E6BgCgHtfWgScPwIURbkoIucO204xQMHDrSZ54CoGtHXbBoaHFecwmTLrnCsUDBnvvXIkSPNuUT8i55isqNBcICD7qBHCswhKkNvNrc5BshmUDp48803p5QdR4yuZ8+egXbUKfGjPw/43Kj8CiFEsUFZONoyBGPLI8DKjHCcRErPydgnE7QngDxu3Dg3ZMgQczSxodh6HODybLnLZwfdgxYNwQ3E/0hqIJhK6TqtatjtVCroWM+wBgtyNp21C0kbkjejR4+2YI4QZUEOusgpTZs2tbEeRB09nMwRFsuVCBzRTxx3r+KO+irbSYaX7HmnTp1snBiBhKASdAfdw36mL3vx4sWm5ouzTfUEiyLmiaaiAF+tWjV7j6CCgjvHOlMJENARQohigrJynCsyqmeddZbpkWRzOgv/VyK9E1rrmE2ONghBVBTJGZdF8LhZs2bu8ssvNzsaVBsadAfdw9rJz5dHPI4ec/Yzyvnsa+w+YrKFkE3ns/Tq1cvaNghICVEWym9ulRAR4JRR5hTunNOvlE3nHEObKDtLLzq9ZvRKDx8+3BRLb7jhBittY14rEdwgO+f5BNkIFlGUOLI4QnOAMjhKIDFyqWTSaVXg/ehtDCIICfkAFKNYqMgQQohigKAxDiTOOTPAOcdn0zknc56MGClrDjRkEKql0oltZHwYgWNakXKtJ1Mo8F2ztqJSjmpJhHRpOaCdgAo6nHbK4JOB4H316tXtOw4iBBA4ZpjvTlBKiLIgB13kDEaQhJ+QOaGRpc4mlB0lKm/DGZ80aZKrU6eOZcoJGJDRZUxWeYxIK0bInFOpgKPO/qaXn32PCipRd3rVk10EUsZYnqN6koVsATCShuOICLsQQhQDCITRVsa5/YknnnBbbrllVv8/ytoTgYNIxrlRo0Zmd7BDlGKTOFAbUnZgnUdVH60N6AxR8t61a1e7b9iwYVYNkEzfNmJzlI8n69SXJ6xXOKZ8MEGIsiAHXeQMHGFKmnx0mjFrmT7ZEqXl/X1mFbGuaFBuxf8/fvx4V7duXXfOOeeYg04UnUg/gjEi+7BAOvzwwy0CjUouUXcWTkTeKQ8n0p5sNp1qiSBB6SSZGeCzkN3JFyV6IYQoKzi9ZKiBvlzscqbBvpOZR0WboC4B32jQ945Np7yeijieh5jX1KlTrR+aCSMi+7Auw65TKUdPOnpEKOIjFMx8dVTzk026EEzhOw8SXviQY012XpQF9aCLcofSccraGV1CXxIl45yQR40aZSNXMkW0sjT6lBn1FX7C5HmUsdNbTvkx4iUsJvJ5VnW+9KAnwi+cKBMjK87YEhzbu+66y0a6JAKHPlVl+GzCuBgi6/SjcxxmO4skhBC5ZO3ate7AAw80AdAOHTpYhjTb01iA7CzrjPAyd9qpXnjhBSuxpiKO11FyjTOVbPA3iORDD3oyejTYdXq2WSMScCFIjxI8mi2UwCeC7xyHPwgQhGe9iUgen6m8xgiKwkEZdFHuUMbunXP6j+g5JnOdSeecjHg0MOJkynHCKaMigosqO6qbZPNxBukbymfnvJAgcENWneg4gQYi7AjHffbZZ2b8EkFUnuBEUPrSGbFG9gij/cwzz+R6c4QQImsQCL/ooovMOWcsGU5xprngggvWc86BcWq+ZJoxqFyjyk4lE44gFXyM/Wzfvn1eO+eFAscIFWZUMXTv3t0CJ5dddpkJ9bEO8Bou8eA7D0pfOvPbzz777FAWXYhUkYMuyt1gYzRxznGQuZ1piIrjAMXitddeMxE4xl2RySRz3qJFCxOtwwHM12xzocGoG0oQKXWjDBEhH2bmPvXUU9YKQWCFcsVkoC8dg5lryG6gXgy+5FPlb0KIQgSlbUrJcYAffvhhs7eZhB5ybEIscMDJ2g8dOtRKocli0gO/cOFCC9Qzq1oEo+IPJ5yECW2IjFplig5ZdVoOCaZg/5Nx0ulLT7Y8vrzK3PkNIAwrRCrIQRflCqqoq1evttvMEqffKFOQJa1Zs2bUaHo4RxxxhPXBkTX/8MMPbewH0XXESkQwIIBDyR6LKcrWgMAJBo9ACr2GzKEnm44qcDIgzoaDnOtsuq/uQDCJ3rmHHnoop9sjhBDZyIgi9AlkQ2P1hJcFKqoQnSNjGg9ERgnIkzW/++67LShKhRz6MiI4UL5O8CZ8gg+OOTbyyiuvtO+adRvfdzLON8JsBGNy3Zd+zDHHmNr8Dz/8YKX6QqSCHHRRbvz00082U9RD/y0nsExlzcmSJpqbXbVqVZt5Sta8efPm5uwlE5UV5W+w6dFG6Tyypw6F1OnTp1tbBNcEWoiu07aQjOOfa5X3bt26lfqcmQxSCSFEEKBMGZvPeZlMd6bgvXDWcPrjQeucH5NGtR5Zc4K9KmcPFmjJ0LKGcx6ZJEHcF3tNNp2+dALzTP8hyHLqqafGfV+qJDlOMnnspQoit4gWglraRKrIQRflBr1oiH556AOjLy1dEEJLlDUH+t45yeOUc7KkV0lZ8+DBd4R6PlmOM888M+pzyKajX4BuwMEHH2xGkGOJqoxk4HjJVSadWe+77bZbKNgwbty4nGyHEEJkA8RWJ0+ebMHVESNGZEy4DJudKGuOQ87zGJVGCx0OHs6asubB5M033zRdlnhTV6i+ILFCNr1fv34W5KYagokvQe9Lb9KkiV2z5lQ7m0gFOeiiXJg4caL1oNlBt+GGVtbbrl27tN+XsihEReKBmBgiMRhsBEdw0E8++eS0/2+RHShtR0OAPrRE4ODSk46Ty2xdIub0HSaTTWfhlisn3ZfpffPNNzEFDYUQIt+gb9iXtiPytf/++2fkfWlvor84HmRL6Tnv0qWLq1SpkmXNuU9Z82BCwoagetOmTU0MNh7h2XTa1VDkx37Tnpgo0ZPLvvTjjjvObb755tbywdpTiGSRgy7KZdyEd8bJfM6aNcu1bt067fdF9Iv3jkWNGjUs0kofGg7c2LFj7ZpyNxFM6Cf/6KOP3Iknnmil68nAMYWS74IFCyxCTVSdnjVuJxKGi1Xu7ke8ZMuBv+KKK0Il94jdCSFEoUxpWbp0qZ1XOQ9nApwrBOdi0b9/fyt7RmyMtQbOPH8jOCaCCbaPrDgBHERfk4VsOkF8SuIR9aUVjqB8IgecvvRoiRn61Dm2stWvjhAhawlQmbtIBTnoIuswuoyoOlBq1LBhw7TfE8eJKGosWBzQl0xWFYeP2aeZyNiL7EJ0nAqLG2+8MeXXEojh9WTR0RW48847rQcykdI75e7h5XVez4BjJlv96mTNd91111AJXqtWrZIWuxNCiCCyfPny0Ll78ODBlsVOFxwnnKtYkCEnED9gwAAraecyatSojI5tFZkHp9q3HqY6OYfKSbRbKHdnLXjOOedYKwX2n/eLxYwZM0o56V7PgIBONvvV/TZRxSlEsshBF1mF8iX6hoATaaacZJRZY0F58/Dhw+162223tcxqMiXPIrcsW7bMRqtRjlZWbQCqIyh5RyAIQULeCyOeyEmnTYJsO8dopJ5BtvrVfRUJZX6PPPKIBbKEECJfwVFGQ4SyXoKOmXTkokF5M2sKnCvsPA7YpZdeqlGpAYeEDfox6AXstNNOZXoPAvlUaOCoIxZbv359ey/sP8dFIiedwE+kngF/ZyOT7vvQWWesXbs24+8vChM56CIr/PXXXybigZIrJUgob+IoZQrmZUYDZXhKn84++2zra6LMjVJ3EWz+/vtvW2AhoMYCKx0QJKLMkvm4ZF4oL6MXEi2CeFCR4WeTpxIQKivoIsA///zjLr74YgWRhBB5y/PPP29Va/R7IwCbalY0XmVUNChpxiGjF5lzPmXPjRo1ysj/KbILIrAkTzLxfbHWQwSQ8b2Uv2Or0SFo27ZtXCfdt5mlEhAqK7Vq1bJ2C2w9LZ5CJMPGST1LiBShzC18DAo9xemWnJHF5OSLc87701Menu3EOScySlR14MCBljXN1CIhiNBvR/k+s9w//fRTG1dCYARnlywGszcxCPnAe++9Zwb23nvvzZjiL2VrLO5QgmemKuVlOP/xRAXpi0slIJQOzEdlDjqfnfdXv6QQIl+54YYbQtNa0j2XkcXEUeL8jQPOeLTwbCfO14EHHmhBeGw+ArSZKKcPKuipoLdDRSIZWILJ2HZ/YQ3AeiAfYPsRTKMsnVL1TMCcewL8Z511ljv22GNN14W+ctYUOOPRwKlPJSCUiSz6Bx98YH3oLVu2zMr/IQoLOegi42BccZDDSTcryoncC8LRG4xzjgK2d9o5QXPC5WRMqTDiIYXAmjVrzPCwWGFW6FdffWVBCQw1SucEICj1wqnlwm0u3I/qKdULQYfP8e6779q4tBNOOCGj703pI2NcOB4ogaMUrk2bNkmN5fPQg16WnvhkIIOAg/7cc8/ZQpOsghBC5BPY3hdffNGUuHGm0w2shgvC8X633nqrTWDBDqLYjUNO61yvXr1srZGpoG4uITiMDgkOrL9g/1etWmWX3377zYLvXLDv3vZzWbJkiQXn8yHQgD1Gf4XASyapWrWqmzNnjlWj0fbw5ZdfumeffdbsaiwnPRJ60DO9XeG2ftCgQVmpxhOFiRx0kVFwoik9I6pLxpyobrrzzjH6GKVofcE4TkRJcey++OILN3fuXHfooYe6fIXPhTF5+eWXrUeLz+YNMQ43gQouu+++uwmNkTWgX5vr8AoFv99jZYSDBAEIMv6xysvThVFsHBcs8BBrIYDD/mWMW7y5pOxzFoDZcs6BkjygHJ/yfhToW7RokbX/TwghMo0/R55//vlWGVRWojlTZM45d+M4cb6kNYgeY0TBfJtQPsIaCf0RdFcIvn/yyScmaspaB7vEaC4u2HuCxNh7b/8jqxERxcOJDzpkzlkjEoTJxug79gv7ombNmu7aa6+1dQUZa7LX8Zx01giTJ0/OmnMOVPEB3zPBl2222SZr/5coDOSgi4xCVJsTEA4jJdd77723lbyVFYS7Ip1zD5FIMsSowmOciOBnauZqeRppevcQNsFRXblypTmGGGEiwvTuc83JHGPNY4WEH5Fy+umnW9AhW9D+MG3aNNe8eXP7vx599FELXoRXZkTC4zjx5eGge9VjtvPUU0+10SxCCBF03nrrLctU+oBmWSGwH8uJwkYQeG/fvr176KGH3Pjx4y0YkG/Qdsb6iIw3Zek45NgZguzYeVoDcMSxA4XWnsdah7n0VMplq4wc2G99+/Y1G8p6lMoDnHSOl1ij+qhMpOSeVsFssd1227nddtvN/g+qCDJdLSgKDznoImNgpIlqg+99pg+8rOVniUap4Ywfc8wxZuTIkBIMyAfYN+wrjMXixYst243zTZQch3yXXXYxh7zQnPFIWJgwFoXKgHC9gmzB//P4449biTvCMhMnTrTyeu6P1b9HJoMRbLH61dIFg8137ZVdKcmnaiKdLJQQQpQXjKL0UynKGmRNNEqN8yR955y/KW/Ppx5enHLmfWPrGUNHVpcEBgJ39NHjuBW6rQf6r6mGpEqiPIIPiMCxrrrkkktMNZ4qNeyqP14joYqBbWNtls2APA46yRg56CIRctBFxiDbCJTpoqiKY56OSme8Xh0izPTtkv3EOU+nhL48DTXj31C6xSEjak4kGZV5DEc2Sr6CDJkE+sTIupRXxpgSOBxzoulEzPmbKHssow0EEbIFCxWMtld25fci51wIkQ/QhjVlyhQ7j/Xu3bvM7xNPOZuAKuKhlCAzUgvRz6BDYBdHjMADWWOccjLk++23nznmBIWLCbLYfMeUmrMfygv60bHxnTp1suDAkCFD3BNPPGHBgmhQwcF3lq1Sd2w9I1Vx0IVIRHF5BCKrUKKLozF06FD7G+eTrHBZQdkaQbhIcPyJ1FPWng/OOQ4eCwyuWcjQ78SJGqGUYnPKPWSsKfPCGb3gggvK9f9mnxNNJ6pOyTul74xgiyUcR6af4xhRwmxAQMs76BjvdBa6QghRXiB6Bahnp6PcHqvkmekvZEHHjRtngdWgO+c4oowQY1IImjg4hXvssYdVAHC7WKGCYPvttzeF9fKmY8eOtt4gk86xRCUD1ZcEl2JNI6DlMFu2HuSgi2QoTu9AZAWcTnqKUSJFjZq+n3SINUqtTp06JqyCc57NXqZ0wCDcd999btKkSdbfRK8z0fN9991XSt3/PweVKoI77rgjJwq8OOmUSlLqzqKPEWyIysQawcYxSOsBGf9s9qGjZk9PJ4GL8sw0CCFEKjBJhIAi9OjRI62dF2uUGqXgBLcfeOCBQItnYuOpGsTxQnuHc3e9evXsutB6yVOFli3sJxoDudJWIZNOQJ6yd7YBJ52gCWXtkbAW8ALEmeaQQw6xdgaOFwL+6SSwROEjB11klNGjR9s1WdFatWqlNeccwkepEX2k/Agnhsx6EOdG45gzEoaFC7d32GEHixoTSEh3DnyhwAJm0aJF9j3T350r+D4Qi0M07rTTTjPnnIxNrEw6RhXjmmll/HAH3fehd+/evdRiVQghggRibWSMCTxzzkp31nn4KDXumzlzpuvfv7+tKXDWgwg95WznRx99ZGXtOH2M85TIZ+mxalQReBXzXEEQiVYD1pOsy2hBOOCAA2wtEgktb7Nnz7ZjNJMgesy6lQABwRzWHULEQg66yAic0Ih2+9IgyopSgUiid4zC55yDd9a7du1qYl2oniOuEjThN7aZaD998ZSvc/Kn30yUBqPHzNZsjVVLBUre6KE8+uijzVgyk5yZ6bEy6Sw4Mp1J59jnOGHkDhl9hJCiLRqEECIIcB5knBXQ35tqljhynJqfdY6jzoVzMs75gAED3IUXXuiCBtNWaEui2onSdZTJsQvFIPaWagCDzHXTpk0DsW8QLcbOUu6OqDDBn1jBJSoispFJJ1CBg442gRx0EY/c/2JE3oOKer9+/dyll15q2UUcddTIk4WTYGTW0s859+D4crnnnnvMmQoSy5YtMzV5Mp58dk66J510kpzzGFlo9hcqvPTiBwGi2gjHMDEAB5kAET3p8T5DpkvTyDBA48aNLRuTbnuIEEJkC7J/BDMJcKaa3abNK9qsc5+tpEKOcmj0QRiXFTRIQtx+++3mnBOEJ9iA0GsQHNAgwXhcWtmoEKOyICigkUSVA7oJtCAQHIqXeLr66quzYuujldcLEY7OKCJtXn75ZcsgewPFvNJUIuoom8e7n/nml112mQUAghhNx5lCsI5ILM55UBzPoI5VwyEOD74EgZo1a1rWhlaKbt26WfVGvO8xMoCULlRcABoOBLeKvW9RCBH8VjYCmoyJTBZ0WWIpaFPajh2l5YhzIMJwQTsPUtKP9g1aOGSFOW8HbRuDAlli9hPJiiBBxQPTAJiiw7GG9gyZ9ViEB48yaevloItEyEEXaeOV1n32fMyYMSm9PtYMau7nJMYigAw1IzKCSLt27WxsCqVTiqLH5sMPPzTHloh1EPvxqcygSmPEiBF2TRl7vMVXvDGAZTXaL730kh3nzGcXQoggVsyhqF6WVrZ46tWcA7H1OMFUNBHIDRr0liP+hsApGWIRHezX0qVLXcOGDQMpisvsecbdsr4877zzTLndK6ynOgYwVeSgi2SRgy7Shl4aDye7VMqZyELGmgl60EEHWUa6cuXKJroW1JFkKLR36dLFxqow21usD+IsjFphPB7l7UGlQ4cOVq3BhcoNgk6xMun01mXaaPN/ojRLXydleJkWpBNCiHTAFqOzQpabc1SykIWM5dSSZZ0wYYIFPalkomQ8qDRq1Miyr5Tii+hQ/o+uSirHR3lDqwWTXAgGoXXA8Rkrk05bXqay6N7WkwCIlZwSAuSgi7ShJzc8m5ws9PHS44Oqd6zHGafGnGoinkEGh4rtRbFUkfXoBvuHH34IhDBcIgYPHmzK+2RziLBjSKP1pCMkl6ledD/xwFdgTJ061c2bN896+IQQIigwOtRPakm2vJs+XlrAKHGP5iideuqpJjpH9VIuJ3skQ8WKFW3aBwF5Rs2J0lAlx2i1Jk2axEy+BAWOO0Tgrr/+ehNn5Xa0nnQe5/jNRD86fe9UYiC0uGLFirTfTxQuctBF2uBEAycd1EyTASMcbZwVpc+UkNEXhGPOKBcMeNBhljdRWGbAh1cUiP/Oy6Xv8Pjjj7eqiKBDpQZZIio3qOCgXI+edI7LbPWi+6i6j6iTpaFPzgvKCCFErqFHnCofQMQtGcg8RhsZybQM2uHQmqFiCe2P9u3bu3wAZ42gKgF5HC3xX6j4IhjPKLGgTdqJRa9evVyrVq3c+eefbwFxpgmglcMUgWz0oxPU8gF59aGLeMhBF2lBtpieMS+0lUxEnaxjrDFWOO6cIAcOHGgOLxHOfIGsK4qljMhSD/H/wNhBpseVZBP65uhRY1aqj6jHygZkohedckCCU36xt/3221sGn2yNEEIEAcqBEYQlEE+7UjK0bt066v3MPEdJG8X2Bg0auEGDBrl8gSAuInH042dy5Ga+Q985xwf7Jl/E89hOKjv23HNP16ZNG2vHY9RfrOM7E/3o6kMXySAHXaQFzjmZc0Booywj1SJnRFImT4S6d+/eefftEFygN9k7pcUO1RU4uWgT4HTmE2QB+D4RjHv++efdkUceGfV5se5PBUrbCXB5YrV9CCFErqCqJ5XsOY4P5/9o4BD16NHDnNz7778/sBozsaAHn0AFFXM4pcUO1V8ot1NpVr16dZdPoDb/wAMPmIYQ5ez++IxGrPtTQQ66SAY56CItZs6caU46Jxyi4YmIl21k/MVff/1lEenx48db2Xi+gbgNmU8iyZRFF3t1BeVgZKOvvPJKl4907drVKiMovaQULrIX3fegU76fbqn7LrvsErp9yCGHuOXLl9uooSVLlqT1vkIIkS70FROoTMVBj6XaTqsT7WCc35hakW8Onc+80mfNOuWjjz5yxc57771nU3waN27s8pH999/fytopY58/f75l0SP70an2IIOebpm7t/VM/hEiFnLQRVo8+uijIYOdTElTPOVr1L3vvPNOK4XORJQyV/Tt29cispzEi1mF+/3333crV640ZdR8DLb4zDZZIBanGGuCLnye4447zq4pSUfokFGDXKcjGod4jIeRL6i5ExhA1VgIIXIJmjBkinGua9eunZZqO+c1RrSh3p4vfeexztkEcBkh6lv9ihEEYAkon3DCCeak5yuIwFEVgQAipe6+H53sOs45kwaoBqTCM53KOW/r0XQQIhZy0EWZ+e6770z5Ehg7kk7vOZlJToSURyEWk89Q8n/55Zebun2xZj9ZrCC4gsAfQmv5DGMDMdQoDM+ZM8cCSD6TFNmukY5onG8BoDeT6D2LHRYBmVKKF0KIsuJtPRVi6ai2c25j5CY6LaNHj86bXuVYEKzF4SpmcViE4agejCakmk/QZkH1JmPVrrvuutDxSsII5zwc1qtVqlRJy9bLQRfxkIMuyszdd98dErUiW1qW3nNEsMhEkj2ntH3s2LF5m20NhygrPcUYrmKcdUmJGAuwfBirlgzMuSdTwpx0eibh9ttvj/pcMunpRNUZKcjv4qKLLrKAFtF8IYTIFdgwr96O+no6qu1MaMEJGjp0aKm2nnyFajnGrlFdRdl+sUEiggz6KaecYm2K+c5+++1npe7Yd1/KHksYju+7LAF576BTYShELOSgizITLoziRS9S7T1HFI4yt2HDhpljk8+l7ZHweTBcZAuKCcrBqRygP69OnTquEKDUneARn61nz552X7x591tttVXK/4eMthAiiBBopuSXjCHimfGI5cxQGcSlU6dO7uSTTzYx2EKBdQxl/8U2do01IOubAw44IOFxkU/QzoYOjC91j7cuRUQ2VVTiLpJBDrpIK0uarIMeq1/n0EMPNUNNaRSzUAsJ+ojr169vyqbMAi8WCMb4ufCFBMc4UfWRI0e62bNn22i0WPzyyy8pR9bpY4fIsT3oGBRjZkYIEQzmzZtn10cffXTCkvR46tfdu3e3c+OoUaPyvrQ9HOwdo8Vw5ujFLhYIxBO8JhhfSN8npe5MFmACAdn0eGPX1q5daxWTZQnG//rrr/Z7ECIactBFmSB7GJ4Vr1WrVtzn07cbTQGbfm1KpFBzLYTS9mhZdKLM6ap+5gv0bn3xxReuc+fOSekS5Bt8LnoOKXn/7LPP4j735ptvTvp9ybo8++yz65W9IcxE1kpl7kKIIDjoiYimfk1POmXyOD2othdCaXskOHBk0t9999241VWFAsEIxPFIQhSiTgoVAfShDxo0yD7nQw89FPO59Kenssajwm6zzTaz2+pDF7GQgy7K7HiGR/4SZdAhUgGb0qjBgwebKNwee+xRkN8EQYk2bdpYJHbFihWu0A32008/bccFiqeFCNmCO+64wwIR9FPGK2fksWSz6Bwfvrc9fAb6DjvsYBF6Fn3FVDophAgGVPCk4qBDuPo11wQrcdJ92XChQrseSQeq5gqdp556ylq+qBQsVHr06GHid9hxAk9t27aN+VwfYE8Gqg1U5i4SIQddlAkUrUMH0YYbxpxjyoktfEa0V8DmeuDAgW7TTTc1w13IkE0gm1zoY9eeeeYZm2NfoUIFd8wxx7gHH3zQFSL02xF0oYSfYATBplS1FyJhEetBt8A76yxo6WskIFBIJYRCiPyAGd9r1qwxx5PzUSywb+GZRBwaArVcT58+3c6FiIayXihUEPhkvbN06VITSS1UCChjl1jP0ION/SrEtQ1Zbuz81KlT7TNyfDMvPRP4itLIljYhPIV7phRZgxPxtttuG/qbcrVo6p2UPcWaEY3DQS9v79693TbbbFPQ35YPQqBin0jtPl+hTAtxICopmjdv7ipXruyuv/56U+5lcVdoYLTpC7/zzjst2ISSbzSSnZVKNgL8+7DA88cOOg2FoI4rhMg/fPacsWmxzkN+rJqfER0edKfFiyBmw4YNbXRkodOgQQNb6xSqOCzrvylTplgGmO978803t/JvkjaFqJXSunVrc8p79eplVWyMBowGwoep4KtGP/nkk4xspyg85KCL1A+aDTe0LJ+fjUp0PJmxauEzohm1wgn+kksuKYpv4KyzznJ77723zUqlFLzQePLJJ825JHPO98rscxYqBGIaNWrkXnnlFVdIEIigD51SThYlZNKpHAiHRRrOeyL++OMPaw0AlIDjKSELIUR54jPiRx11VNJj1fjbv46sI4HpQhm5mUzWFdE0gtaFOEYLcWCC7o0bNzabRxAaW09QmWk89GsXEmgj0aIxd+5cN2PGjJgaC9yfCl5MUbZexEIOukgZlCd9WQ795JT8Jlvay/04qRMnTjQBjliZx0KEBQqly5SGFRIsvliMIKpCiZ8P4hB1PvXUUy0LjFI/vduFBMEmsgleDI6SxnCNha+//jqp96HChOMCh96XkIYbbQJbKMkSEBBCiPLEn4v23XffuI9Hu59gdL9+/ayqCgG1YuGggw4ye1hoY9cQ+sNJRRAv/HhAlZz+e9qwUOifOXNmqTG8+Q4BF8TwqPjE5kdqLJQl+CQHXSRCDrpIGZ/to8w9vNQ9mdJe7uckt9deexXUHNRk2G+//azE74MPPiiYsm/Uahk5hmNOFD0SsumUue+2227u7rvvtt7tQunN47NdccUV7q677jLl+kiNhUj9hVgwxaBSpUru9NNPt99F5KKXhQ4l9Sx8CmXfCSHyA1+CG0vINd5YtXvuuccClejNFBM4qqeccorZR6rICklnBgeVcu5ITRQC8VTQcZxQVTl27NhSgqf5DJ8VJxyx1kmTJq2nsRBNgyERctBFIuSgi5Qgm9eiRYtQNJURFKmMVaPcmegqjzNrsthgoUJ2OVwULJ+h7IsSbfqkMdDRoEeNcjhm3VM9wTFQKCq3OOg411SDJKu/EEmHDh2sAoFjI5rR3nnnnd2ll15qgYBCysYIIYINrWzfffddXAc9VskvLV3Yec5vsZz4Qgb1bxISixYtsrVSvoNiO84nVV477bRTTEeWygGC9dh4St4RlCsEWL/Qukd7ZuT3GU+DIRb+98Tvy7eMChGOHHSREkSDUXMFsnk+m57MWDUyhQhtHHbYYa5Zs2ZFueepOGjfvr1bvnx5wjnaQYe+a4RwcCDjqfsCQYmDDz7YSsXIKrRs2bIg+tIrVqzo+vbta/N9qYxIRn8hGgQ3qEIId9DDnXEWOpS48/8JIUR5Zs8Z90ggMhbRSn4J3v/222/WnlOsEJhm5jVOer6DMBz2hwB7MtVllLzz/SMGXAifHwi2s3ajmi1ZDYZY8HvySSwJxYloyEEXKYFQjM+gJ6NcGV7y++KLL5rACJnCYh4Zxdz3KlWq2L7AWc1XUB5HQCXZ2bhe8Z8oNMaJzMpzzz3n8p3OnTtbRsFXk8TTX4iEzHm4I05vH6xbt84yFkIIkSu845BMBjy85Jfg/fDhw93FF18cM9taDDBelbY2gvH5XO69ZMkSy4STGSfgkAwkclDux6kngF0Iqvb03aPqfvvtt4fWbvE0GBLhf1fsXyEikYMuUib8ZBLpoMfru2UkFSe4Yhi1Eg+cWrIKOGf5GlmmGgKDjep4zZo1U3otzjnicWSMUfGnry3fVXtZiD788MP2ncbTXwgHx5yyOUrd3nvvvdCixvehv/rqq6Wez3sT7BJCiPLAOxmxyttj9d2SScdJpzWn2CGpQbl7vorD0nPOHHDatJIdGxpeOcfnx9Y/+OCDlpTId7p3726aM9OmTUuowZCIAw88MKqtFwLkoIuU8WM0UO5E+CyZvlucOUZxkT0u5uy558QTT7STM6IjqOLnY/acyPixxx5bptej3t+0aVMrhcPg5bvj2bFjR1uMUM4XS38hcuTaRx99ZKNpmIjA2DaPLyFEfM9D9oUyUzIShThrVgiRXwJxsfpucehoyTnzzDPNMS12mB1PaxdVUclO9ggSL730ktkf1iwkF1KF9R7HBzYRgbW33nrL5TO081E1SMIJ0hm7Fs3WC+GRgy6ShiwfKp1e0AJnwTvbifpuEbjaZpttTMVb/K9PCec8WdXPoIDQ29q1a22MWry+xESQLWbhQrl/165d87onnQxB27ZtTbUYAZlI/YVoCzP2oQ90hfeWRzPa7Gci8mTX83GRJ4TIz0opiHS04/Xdzpo1y6rsCMaL/0LlIPaSMm8CGPkC65M5c+aY4B+XssI6Ee0hAvKM2PUVY/kKx/bLL79sayEo69g11tMEPahU8ZNghPDIQRdJg3EhmurB+fDE67tFTOy+++5znTp1Kqq554mg35h+bE7OK1eudPkAfVdoCeBUplruFstJp02C4A3Hh6/OyFejjWOOmE6k/kI0/IKHDDpz0D1UJZCNJ8POYx6qLbiPhZ4QQmQbr+BO9U448fpu6T0ny0hpsyg9di3f+o29zgyCb5nYB2SVK1eubOXu+SyMxuhYglYc657IsWvJahQQuAACIUKEIwddJA0Zcz9OipNtuDhYvL7bRx991BwQxLREafz+JPDBvOugg6gbTvrhhx8ec6xaqiA6g5POODaE41B+zdcsCSI64QqviRT9fSk8jreHBUzdunXXM9r0ugshRK4d9Fhjw6j0efbZZ60iSq1spUEsj6AFvej5YOOogCRD7DPfmYBjAt0VbBmZdMr+8xFGBJNQoGQ/3RFpKnMXsZCDLpKmevXqoWjfQQcd5OrUqRN6bOzYses93/fdjh492saN1KpVS3s7YpFDaRRGivF1vlwqqGCIKE3jOMh0FpeFHc4tZd8IruVzLzoaDMlmB5gZC35Em0dGWwiRS/766y+3Zs0aux2uqUF/7YUXXrje87kfG1ahQgUboylKg5I7FQYEYwliBB0qwQgWk5jJJFSHkdzh2MJJz9dJNu3atbM1HOKw6RBu68MnugghB12UOaIer//cn8AWL15sZe44LuJ/sF8oZX7sscesHJDsMeIpsTITQWD69OkW+aZvKhugBs++oJrg3nvvdfnIWWedZYuaMWPGZMxB90abCotWrVpZYMwvnIUQIhv4titKnKn2idV7DpzvCMbTysYYqmRHcRUDOKDYTsqhvXYLgQzf3x9EmC6zYsUKW6OwNsk0rCNw0t9//303Y8YMl68VEbQtUDGXjmONgB6tn/ze8nWqj8gOctBF0tlTIqo+yxte8hav/5zsOeVRjNUS/wUhkbPPPtuccU7wjJ3jgvGeO3duIHfT8uXLrR8aNd9wdf5Mc+ihh7rddtvN3XHHHXmp9kpPParG48ePTyrYUr9+fXPqDzjggFL3UwaI0fZlhn6hzAKZDEy+i+wIIfIjGI/9JusZr/ecdiccLWyEgvH/g+o41kAzZ840gU+U0Js1a2Yl0mTRgygYR0CBiTvhFZPZAHFYghUEofPVnnGsv/POO2mtVcKTHvk+clZkFjnoIinom8KRQI0dwsdtxOo/RyyDHh2EMzLVr5zP4LAx93vAgAFu5513NqERjKDPpLIQQiRt9erVLmhgOBA0yVb23MNC8Pjjj7f/66KLLkq7vysXtG/f3qLhyYi+tGjRwj3++OPrTTfAaHthnieeeCJ0/6BBg2xhd/DBB2dhy4UQInb/ebyZz5T64nARZBX/DWYwiotrBHVx0Kk6ZC3EuZ3Rs0HMmCJsino72+gDM9mC4wZHHZ2ifBHKDYd9RPvHQw89lNb7nH766evZeiHkoIukoISH8mNfyoOD6Yk19xmFck66zEMtdsiEcjInWowAGJnzyDJA9heGMWhZdMaGIPLH3PbyKF2kpA4nHSGdfBQWJBvOXHPKGtOBAA5MnTo1dB9BMo4jAhhCCJEtvMMULhAWa+YzawOCuNj6YheHY42EDsmIESOsLQkBVMZwhkNmGseU9QC9/kHh559/tvFh++23n1WyZRuv7P77779bgCff+tGphGDdhq1Pp8yd92BfUCEX5NYHUb7IQRdJQU8sjponssw52txnyqQwQvTYFDPMtyRCSmacUnb2R7TINPuKKDvl5EEZQfLHH3/YfHIWaamMD0kXAj5kYqjc4DjKJzC0sYw2eg0EH7gOh2wKlSbhqrZNmza1BQB6BUuXLi237RdCCF/JxUjNcKLNfJ43b56duzjvFTOc759++mlrByRIy3ooWvUg9p9g66pVqwIVkCcYvMkmm2RkrFqy8P/Rj46NY62Rb3DMI/IbPonFg8M9YcIEu44H62m/Tp42bVrWtlXkF3LQRdIQ5fRE60OOnPuMg0KmOLwcvhiVW8kq4OgSSWf2eTyaNGliRv7VV18NxNg1eufYHnqiy/t7pFyS8kpaAoIsnhcNNBfox6Q/Lfw3c9NNN1l2hWv/G2L/slhjNmzfvn1Dz2c2PCI94aVvHBMcGz47I4QQ2XTQCRxHEjnzGVuPaBaZ9GKF8zjnaWwmVVTYr3jVBIii0tqGVk8QWrkQhUO0DUcR21OeIKxKQIN9l28CqATc0YuJTCRQWcK+RJOGa/5OpmJOZe7CIwddJE347E6McTyIKHKyL+aIOqVK9BhjuHG8kxFXo/eYnn5K4ufPn+9yCYYSdXHG45HZL2/IHrMvKK/3QZ98gZFxlKF7ox1t0gF/cz+LuMGDB9t999xzj1UNxCtzpwqjS5cuyqoLIbIG2d1oGfRIsG+c5whKFmt5O/uAIAW6I+iDIKaaDJzfSXwEQcl88uTJVopP1j8XENSgxD4I+yJVYVhscnhLW7RpB/wdL5PuW0EJ4CMYLIQcdJEUiIOhPupJZLQ5WVHaxfzzYoSIOFlR+stQbg3v40vEUUcdZb3e7777bqmgSHnDd4jxwdnMVUSf7AKZYiLU+QRle1RMeAc93qQDH4Vv27atLfTou/fZce+g8zwceqoYKD/kEl7RIoQQ5ZVBDwdhUwLyxRyMf+655+xy0EEHpdS7XalSJZvkgVgcrW25gqAwooC0MmK7yptffvnF2iWwf7n4/9OFY5/KNh/UijXtINb9QFCHigr68GmTEEIOukgITiY9ZuH9QYmMNs4dTkexzkNFyZtoMJHVcBXcZMEBI4r64osvulyAIUFXYO+9904puJAJ6GWk1O2pp56yY+/2229PWB4WRMgovf3221bqHmvSQfj9KLRT6sdr/LQExBgPP/xwW7ig9u4zHSi5I9onhBC5dNCx9QRQsffFCM415+M6deq42rVrp/x6nGIq53I1do32MQT+KDEvb5uCM0oigs9O9UW7du0ssZFv0MoJ3rGON+0gHj6Ljqq9EHLQRUI4cVJ244WtEDjxjnc00Ss/z7tYI+oDBw60uZ7054Wr3acCveq8dsmSJeuVRpcHOMj0oWV7rFrkQoEoNI4o2YQLLrjAAkP5OgWADDoZbwIN0SYdVKhQoVTpPoEcBJfgyiuvDJXMtW7d2q7pURdCiFyUuMcSvKJKiEo5pm8U4z7Cmdp2223NQS9rKxfBXMRkCc6WN2T+sb3Yq2yPVfMQcMbGYxtJBLBWxOahYVBe25BJsN30mXubHW3aQbhmQyy8rSdgEcRxu6J8yb9fgih3MCCUOftZjfSf47THEr2ih4gSXVSoiw1E8u6//37r2UYkJh0wWojLlbfK60svvWTj3uilK49FF1kDyiRZ6CxcuNCMGNvQu3fvqAq4+QIBDsoXfZk7CxGc8vCyvkhdgo4dO5qRJrNw33332UKmVatW5uizMA5X909nrIsQQiQzZg0HPZbgFc+h/QYHs9jAqWU0GG1o7JN0+u8pjScgz/oBm19ekEwhKM7/X7169XLTtpk1a5YJqDJurmfPngUR4OE3QGLDt54x7QCn3ENwK1ElICXurLuw/8qiCznoImlwMACnIp7oFWU+5XnCDwp8/ssvv9wWNJno26bcmXmkRNYR3CsPMC44gnzHjDnLNozjY6wICxOyEA899JA5pok0DvIFgix8NhZx/DZwyqP9ZjxkDwjwUO7+yCOP2KKP6DytEsD++fzzz+33hXifEEJkGs5XfuQjYqexBK+8oJcv8S0WvDAeAVOCsJnom6a0G4eZhEd5gfgoOjPloRXEMUUwgM9HNdkll1zi2rRps96M+Hy29dh3n1DxFSepCMWBd+pVMSfkoIuEMKMZp/utt96yv3He4olecQLKlbBYLunatWuopyxTmV8E5nDaEFApj7FalJzx/zGXNJtj1ejPnz17ti1yUGnv37+/RdXpty4kWLyREaHPLpFQXHjFyhVXXGF9iX4x6BdQGG0WNLwfgZvvv/++HD6FEKIYg/FkNQmixtIpwdZTLVYWnZV8ZvHixe7ll1+2IDbTOjIB6yqUzLH15XFeR9iP7xBbj1hdtmDdQoKBPneqDhBDxTkvS79+kCH7TdWcd8DLIhQHVMyxBmNdwHckihc56CIh9NVQru5FqjjRxuq3ojxn6dKl5ZJ9DRJEouk7p4eKTHCmwFljFja9bkSfswnZXL47VGhTUaJNBUq3FixYYOVbZB/IGiA+iNEuRGhzILtCcCsZobhIcM67d+/urr32Wst0YLARJSJzhT4BVRZCCJENB512tlgjNhG84rxWbLaeKjPWRDhjCKtlukwah5Ye5Gy3lbFmIbDC1JhsgUAqyR36zUk20JdNC1s2g/+5gmo3fgs+kVVWoTgCNSR5fMWcKF7koIuE4ATgePqMHk4WapuRolecWHzfebEZ7aFDh1okHdXzTMO+5DvAMSPbnM3sOT3SBASyAQ45jjkRZkr3EadBJA3Hs1DhN8NnxWhHE4rjNxNvxjsZB753Suf43fksOosdDH0hLnSEELnFZ805P0UTvKKXFrtEJU+x2XrO5VQvlVUULh6I7zKHHE2WRJnWdCA7Sy84lVnZGGvGmFlmwhOMJ0iNABxrw3wbl5oq4Q56rN9NIqG4yDJ3ac0UL3LQRULOP/98O+kQTfdQgkWUvU+fPmZQuMao8zxOwtlwVIMM++DHH390jz32mJVzZXpcCj1+vH+2xq7hBKIa6su0MglCQpSyU8JOyeSYMWNMXKdGjRquGMBoe3XeaL+ZRA4++44yREbO+ai6ZqALIcojg+4Fryi9fuCBB+yaaRMffPCBnYeKzUFH+wPbRYk7oqb+vJwpCJDjqCM4lo22Nr4zbDFzt/fdd9+MvjcB5fnz51vwnYTFRRddZNNYiqUFgt8Cmg3MlI/1u0mGM844w9bRJDVitcaJwmfjXG+AyD+jDb5HKjL7h4OOgFWxZfauv/56EwlB8AsnmvLjdMasRYLgXs2aNa0Eneh9Jp1bMrNEu+ltpmc6U6AEj7FmXxClJ4p+4YUXFt2xgdEeP368LYwIUMTLmEeDqgbKBBlnyO+L7ATvQXklM+qLcVqCEKJ8BGE92LPw7B/nIsp6aWsrJrDpaIQwAhQdFSrPmB/O+TgdJXcP/cdMzMGpo9qsXr16LpPQokhWlrFqmYKEBM4kyQkcc/qoUbanRa+Y8MEqAvJ+/0b+bpKBAE3Lli3duHHj3OjRozN+DIj8QBl0kTThqu2ojUajGHvSPHxueoNx1hFBo0+NSDKZ70z1pxGtZ2GQSQgoEPmuW7duRsTtEEWjh45ML1kWDBX98507dy4659wfFwRB0CgoK4j4cGxVqVIlFJnv0KGDu+eeezK4pUII8T9bH9mSE2nrabOpWLFi0e0yKpsaNmxoJcw4ol4XJFOzq6lkI1OPbSbQnSnQsqHsHJsU77tNVTCPiSOU5FMZxj6h4qvYnHMgSEMFoi9zT4dOnTrZNfvWT1QQxYUcdJEQRodxwvVlOxDNaJDZI4parA66hznWlDMRASXjjbgemWSc4HQgqkq2AuEVZohmAgIJRHt32WWXjGRCKMe66667zGizyKPkf8iQIbbtxQo9eCxWIo021RZkxcPHrMUD55xMOhCooQeSxaEQQmQSHDmgQicWxRyM9+CMnXPOOe6yyy4zG8qILQLojBRLFwRU0ZwhS58ppkyZYgEVP7Yz3SqLu+++2wLxlHVTyn7mmWcWZcDGQwUFek3RHHQ/di3RmDUPWXf0aziWJBZXnMhBFwkh84fSdng/VDQDRD8WFLvRBjLRZNKZgU35Gw46zipR5nT604lQ895EwdN1+IHyPMrPCcCkw2effWbG+qWXXrJS+WOOOcZmmbMgKHYoa/dCcR5KR2+66SabCct1eClpPBhD50X80CXo169f1rZbCFHcDjrn8GhQEVSMAnHxMqcXX3yxO++886x8nEAqWfV0esjZ94cddpjZjfDqxbLy0UcfmZ3GNqcj1kZyhqzusGHDLMBPvzQj0/i8orRQXLg4HMF0jg+u+TsZZ99n0UeNGiWxuCJEDrpIyA033GBZUcA5JLIXzaHgpIQid7EJxCXqVyNqev/991sWmZJ3St/DqxFSgUwspXUosKZb6r5ixQobf4JxLWtPO1UTfD4MNr1z9LCjQIojSYne5MmTMxJIKCSjTcY8csHF38lm0hm7BvS1007AseAV3oUQIlMOum+piQSVcYL0ctD/B/YPhxqtFYKnVLoRAEczpqxK3E2aNLFryuczMVaN9UhZq654D0ruETrj+8fWd+vWLZTpxb7546aY4TfB2srvCzLmt912W6nn8HcymXTGzxLgJ0lGUkYUF3LQRUKYk0nZjld1pXy7Y8eO6z2PsmZO1MXYe5TMPqRUjf4sHKonnnjCsqdl6S+jZJosNf3dsbQAkhWLoRyNiHqq4BDSZz5ixAgTDDzggAPMMUfMxPeZs5045wQnih2EE726fyxV1ttvvz3pRRu/Q/od77vvPpujTn+/xrEIIcojg46t9+c1URqSFOiu4Kizf2ghIzBfFluNc8YoNCrvsB9lhdJ7st2M5yyLDgzZd5xKr/5+ySWXmB1i+3wFAW1XciL/95vwFQWxxuUlM0aPFormzZvbbcTiRHEhB11kxGADI6NQGxfRwTAS2KBdAME3jB6ZZwx4qhlQlLsxuBjeskC0mwUDTjQCZKnA9g4fPtwWaWTJ6bXHWEf2mROtp4dx4sSJrtihP5EFDE41DnU0eDyZLDoBsPbt29tteh/RfRg7dqwFXIQQIh2YNoFtiWfvsfUEd1HsFtFh31HS3LVrV6tEYFIKyQ2qnlIBe4GjhpNflpFuv/zyiyUDqGxE1C8VsFcjR460ai3K4ukzJxAfWVnB2oa1AFnhYq+Yw9aDH6Eaa38ku598Mox1VCYFA0XwkYMuEkLGD6cykYOOaEiyvbTFDI4s0WgcKgwmCueUgtMfliwosO6+++5u2bJl7tNPP03p/ycYgGPPd5lKuRtCMBhroug49TjlOOfxvvO99trLSvwyoWqaz/h9xG+EEWn0/Ucj2ZmnlL4BPY5+nAutKMqiCyEyEYznHBXLAZetTw76iLHxlIIjHktbAGXvlIgnq0VD6XyzZs2sDcqvw1KBljreI5WxajiPlMQj8EqFHAkFeuzjOfg8xnPTmVZSCBDIYH3kRxXGmoyT7MQc9IFoQSTQQouBKB7koIuEMLva99BwAiZL3qVLl/WeR8SQ0luRHDjYCMfde++9ZsgpGUdcxs+YTwRGEyNPL3oqYjQ42Dwf5zwZI4FhINPPXFaceyL6RNH33XffhK/FQWeON459MeN/Fz6q3rNnz6jPi5Vdj7YY8pF6qikoNSR7gSihEEKUFT/SqXLlyjHnenMeUzA+ecgw0/7Feb9Ro0YWWCdA7+1BMmsFSsux9Si7JwtOImJ+aMLE0hMIx7dgIVyK6C+vY4oPLXqJSuNJPGy77bYqc///gLz/bmMFNZKtZuA36LUI/BQXURzIQRcJwTD4cStEVhE/iTTc3I9jKaOdOow8efnll60UDoNKNp2/KTWMB04ZBpTIOmXnyS6+6I0iIpvIwcYZp28edXay5zwfx5ye9WSjvzyPUvdkt69Q2WGHHezaR9XJokfOoeW3w/3JwO+PkTbAQsqXwQ0cODDDWy6EKCb8hJZ4St+cxxSMTx2c2NNPP91dccUVFrym5J2g6o8//pjwtWTR+W4IsCcLawnK4xnnmQgq8ciYk3FnfUASBoX2VBTfa9asacGHVIIIhQi/DW/rEdFDeygcVNy5P1kQHfQOuqrkigc56CIhCJqRRQdflsVJPxyvSi0HvWwQnSZSTQkbxhSni74vHPV42XEi24jS4AAncugB47vZZpslFIbDiUe5389IZybraaedlnK/OuCg0+9OWV+xQqCCDIY32hCp5J/qKB0fVScTgyARJamUwKWr7i+EKF68g45diYVK3NODdRJrKsQ9qTBjzjW2OV6PMWsuqt5YG6ASnggy5wTWGc3qxdxiBe3RMGGUF+sQSvHROCnLWg5bzzpk6dKlrphh34Xb+sjSdDQBUoHvkHXb559/XtTrqGJDDrpICm84vJgZ5W/h+JORourpQc8fjjGz03FqcdhRQUexPZZgGBl4nssM8njQ4071A6VVkdnbcCcRZXAitSwcKMfDYBMZLyu8FueRBUgxEx5VJ7ASGQnnb+5PJSvPfmURxvePgA/QNiGEEOnYejno2YUqKKrSyFIThEeL5s4777QS81j96aiwc86nHS5eDzvrNJ8JjzUKj6pH7DzTQyjH5r1RZ2cST1khEEDGPRU9nUJ30FlPzZ8/v9Tj/M39ycJaDCcdVOZePMhBFylF1b2KaGQG3ffbKIOePpSIoZDOnFFmnuN8cVKmDzza/HTUWXG4UYVfuXJlzPcl00pgpUGDBus9RtSbcjiy9vScM8/1/PPPD43XS7esj/+32EewhPelxQq4xLo/Ggj9+d8j322fPn1s4XbHHXdkaIuFEMVGohJ37AMl2bL1mYHsKj3mVNBhJ6dNm+buueeeqFloKrEod8YBJkMeCxTj+R5POukkE4iLBNFW5pkTDDj44INtGggOYCzx0lSgUozJIsVcih1u62Ote1JdD4VXzIniQA66SAh9rRgN8CNComXQyeYyn1ukx5gxY8xQ4hzjKKMAW6dOHTPKkyZNMifML6I8CIWR+YiVRSc6z+gcMvOR49Aooydrv3z5csuut2nTxgIDyfaZJ2u0Kc8qZsKj6vvss0/U58S6PxoEZhiTBwRwGHPDgiyWsJMQQqSbQffnMDnomVHMX7JkiWXSqYii7xudF3q4x40bZ6XvkaKxdevWtefihEcbu0bwBJt+wAEH2HzycCiNJ0v/+OOPW1CfEvuzzz67TK1rsWA6DJ8rco1STPDbIJDF98gaLhqpaAmE96HTwvbDDz9kZDtFsJGDLhJCP7Lvj/UOemQGHaPNCT9atFakBidgTvA+g0HgAwf8oosusv1O5JyydwRmfH86DjDOHU42Bj8cvjMcdL6fcGESotzMM+cxjCriNQjRZCPIQlAgGSGcYupLSxeccR8441goy4xcIYRIpQddDnrmoOqN8za92x6cdUTE0KLhcYLnM2bMKDU/HU0YZpRHG7uFTSC4Tsm6h+A8zj6Cr5S2t2jRwnrgmciTaSpWrGgl9n4aQLGPVe3QoYMFzyMh4ZJKmftuu+3mateubfuWiS2i8EnamxoxYkTohxf+oyfTd+yxx5Z6LicNsjiU6or8hygrUVsgIoszR29TOER5kxnjIeKzZs0aK43yI7TCoWrhvPPOM+PsZ5k/+OCD5mgDBpnfHWVr4eVlGHfuZ4QXIjD8Hzj4lLTz+6W0jbnanPyzBecOFiL0Sxcr/D58NiQTJe6+vx/xGAI1ZEdoVeB8jEJwMWcwgggaAfwOIy8EWoKG7H3x4td4BIaj4c9hsvfpgwPOaLLIEWYkOqhiw1Gnqg1bP2zYMPfmm29a7zmONY48tp4WOA9Vau+//76NdGO9wHf53HPPWTk7JfM4/ZSzU9aerWSKt/Xh21Vs+N+G/62EB0vSKXOnas4r7ovCt/dJ/0JZxOOQc4LwUEZDVo5oTriCNAqFOHD01Yj8h5O6jwBS/kw2PdKZwxBksiS6WMGYYqzjie0x9g4xFwTFKCV78sknzdnm94lhpk/d/06JupNRx5HjwnNHjx5t0W2MNH3mjGpLNOM0E+J3LAhSdUALCYIhfvGbiRJ3YJ/6MkYi8jjrCNB8/PHHGc3Wi8yAceZ7Cb9MnDgxcLtX9r548Y55rOkh/hwme58e7F/O2X6EbazKs3POOcfsPed27PzIkSPNEWfMJtnwmTNn2nMJyjNxhwQKU1qofLz11lstYYYzf+mll7rGjRvb+2QT3p/1RDE76P634X8rscrcY90fL4sOxS7CVyz2PmkHnYwMZRvhJTXcpiyWBSIlluH3e8VBURh4Bw6jglMQ2efKiShWxF0kD8EuDBxGNhFHH320GV1O2mTRKWHDSUfxkzJ4DDaRVpRVidJTKoezzvMx+kR14yn1ZhKi+Rw3keX3xeqgo84fjVj3xzpWCJx5YUC+a36X4eV1Iljw2yaoHX6JbBcKArL3xUu4rS9Lhl0kB+dt+v2TsfWUwJP5bt68uZW2E2RHLAyFdhxxnGHu5z0JvPM46wHsLiXW2HvWAOUFa45idtD9b8P/VvgOIkUXWadxf1kcdGXQi8Pep1TjgtMdPr+P25RTEq3z91NWycJRDnrhgNCF7ycKb3EIRw56ZqD8nBN5suVnnACIpHOiJ9qOOislcHxfLLCobOFCKRUG+tRTTzUjHy9qny2DjfPIsVTMRpvfSbxxaqmMWeO9yKT4hbQ32n6Enhx0kQ6y98WJHPTyARExzt2x1PKjgXBs7969zU4QhH/vvffMyaeUGged96MKD70X1gWIznmnrrxtXXjPfLE76PSaR8645/tPpQcd5KAXFxunarAZBcFBhyO+cOFCc87pN6FnDeiJ4YdZVgfdL2BFcHj++edDZVTXX3991Ggg3zmGXUJV6cFJnH0YmUnlZB4rOOLBMSNLy6xz3oPyN36nfjYpZVc48FxyAcqjU6ZMMSE7SutTLe/Kd3zVCQETSv2jVS9wf7K/IZT9OU7Yp4MHD7YeQ16Lwi/440BkbtGVrkL+U089td4UBcbjcQka2bb32PlE5zRR/vj1F99NtPOHb2fkeTq/pGfrcajpGQ+vRvDq34lgIgu/SX6btB2Ssab/m/5nNGyws1xyAcFhzpW0tpH9py2vGH9DfDf8Rlg/R7P33I+uULJ4UT+C8frtZQ98mUxoNKRr71Ny0MmWc/IgG8fJAPEK3+/Srl07O3FT3k6UJ1JELFnefvttZX4CBgt/HD9OCBy40ZRDETYjaqsZjenB74nfV7gTzX6ndB1HO1njQBYd44CR5DbkejQHiwe2Ce0KFvY33HCDKybIdviRaMybj0WqvyE/u/add96x1/rMBdMAIsfsiLLDmJt0y3pxZO+9995S95Vn6WmQ7D3nKdmL4EHJNKBlEu378fO3GfepqS1lB5uObY/UZaENjN9WMvuWIAo23lc48jocf8Tncg3HCdvBmrF169ZFNf6TSkhAD4bzHNpNXKKRyjnQB8f4vh999NH1nD+RGUgexdOBKi97n9JqA2EwInOUs2OwMdTAByGyw7gmHkNUrKxQwqMMevBAmIQ+Z0SsmjRpst7jjzzyiDnp0R4TycP+u+OOO9ZbMDEWBcGJeMKLKKTTXsL3gJPGuDSuceBwjFEApe882yIxiWBhx8Kk2I4VFrxAmwHfZbRRKYzBS3U+KudkVHo5J7NPCQRg9OlxK7Z9nE0yIaTId5LNaQmZJNv2ngW7js/gQVAG6JWM9v2EK1P74KAoG9j1SIYOHWpB9XgVZr6ihUw1tpRFP/afnnOCiPx20YfK5HzzskCwAUEzP8O7WGCiCjA5B2G+CRMmmNBfJOgCMfc+FaiQYy1BVQJ6AyLzZEo0OV17v3FZIgJEzTHYPXv2DN3foEEDW3gTMaLvpcwbJOGRQOIjtAhQRTPKlE8TzZXBzjyUMrOY5TcXLQpN5QIijYw1JKJKEIVgCgstfk+U0ZFJ5T6qIVB6x3DkCraH46XYjhUCj2RFCJDwPUYbg8b9ye4XFPwpofLPZ+HM9833z/edynsJUd72XsdnMPFOHeenaOeP8EounV8yD61qOLbRnARsJxl3HsdRI9g7e/Zsq07D9mNXEY4jc03bE0KyjRo1yum6uhhtffhvhc/ukySR+MdSPT5w0DknF+t+LRbK5KBffPHFFrXzEXXgNhEi+l4lEFdYYBR8yU6sMmsvgCUyD71LlJbikIXDb40o+uLFi+33SBkZEfkzzjjDylEpMaMfjZM53xvGnNLyl156yVpJyI7kogSaEjxGvhUb4UKKBEjCBTc9qQROGKXWvn37Ut8hQYCzzjrLLsUs0hNU+E7oFw2HYyKoM6Vl74sP+obDg/KJBLBEZsE20lZCFt2XuXNeJyuLvcfhbdq0qQXJHn744VC1A+sBHDbWCSi+099MOxkjV7H99Kznwtb746mYiJx0wHosGrHuj0f4MSEK295vWBaDTSSItL0XI/IOOsIWfjyLKBwoUfJK0ZRRJRohJTIPs8opXccIY7iJoD/22GNmyGkLmTNnjuvfv7/r16+fOeO+PA7jyCiuDz/80Jx8yqnq169vJ3naEii9Ks/edLad3jtKZ4uN8AqTG2+8MaS27uG8yf3JQsbk5JNPtooIT7jRznUrg1ifGTNm2PccfiHLFVRk74sPyqQhll3w5zDZ++xA6TLZc98SRaYUZXaC6pQ0X3nlldYixbqM9jfsP9UovAbdCMRBceZbtmzpOnbsaK1ukyZNsnLq8p7sgU9Q3hNjgoD/bfjfCq1rV111VannXH311XZ/qvgqSjnohW/vU86gs9iPdmAQ9dMBU5igMuohGnTNNddYJpZsn3co6LUo5hFa2YbsOOXMlLJjsDHC9IHSr+5Hc2HEibDjsIVXOhBpx7mfPn26qafz+AEHHGCZdLKwKDLz9wknnJD1Ujgi6gQZOI8UG/w+wqcfsFjiu6NkkbL0VGagAxkRes05Hph5C7Q18FvMVA+VyBwIA8YTBwwisvfFR2QGHa0M7ATZPhwKzi/+fBZUgcN8hkU8tp11F2M0sfVoz9DHjfOOg0bFHGKjXiXdQ2CeNcCTTz5prXH8fjt37myis1RsDRs2zOwGGfjyEBgjmUeAoNjwa+Fwe9+sWbOQkjuB9bI45+EZdC/+KwrX3qevIy8KHlR6vRNIH/NNN91kJ3uufbUE2UDNXc5uBn3fffe1cnYcsl69eplD7r8XKhzIoJMlx9kOhwg2lS18Pyy0AONMiTtRdow474vxJkqfTVj0YVjYnmKD/R9eXcRthLbYJ1yXtfIoXO2X75AF0c0335yRbRZCFGcGnUDqFVdc4Y444ggbBcU1WT9f+SN7nx1wwOkbJ9iKg0twnpJ1AiQ+e4q9+OKLL6zfPPK1ZNcJhDMe19sHHHfeg+o5+tNvu+02W8Nl28lDdZzy+2LD/za8Ted3w++HMcVcGI1aVpRBLx7koIuE7L///ub8RStr8xl1lH2JGlK+LLLDmDFjXN++fa16gVn04VnS4cOHu9WrV5sjHy0LTgsKCy8/z96DAcFJx1knGo+COIr9XoU001A2yaKAjHExGm0/uoPfTGRvkv8tpUq4cCA9h+xjn+USQohUIHjrzylDhgwp9RiOnXc+5KBnd83VrVs3E2ak4i3c1nN+JzhPYD1afzcJlf32288q5MLXY1TVYefRisLZR1zu1ltvzdpINpxzEgfF6qDznZEwoQKF3004/B1tiksyKINePMhBFylF1aOBw+gjhTLa2YOTPZkMXyYVbrBx3mkziSX6xmvoXyOyjuGOhOw8/em0LRCEoWSavjU/cidTrFy50haA4WV5xQJtBv53wm8mGrHujwatCSy0qGTxkFkBMiVCCFEWByCesBe90fTWytZn9zvAAY9Who5zzuSWyEq5cBiBh5jc1KlT13sMgaq2bdtauxvvTxkutiRShDYTth4dlGK09fw2qDThe/RVi5HEuj8RyqAXD3LQRUIY30RZdSxw6uSg5w6yrmSlKaGKR926dc1oMBqJ6HYkGHQy7TjqZLhxKO+++26LtGdKEIjFXVmUSwutxD2Wwnoqyut8P7SchP82yZgwJine4k0IIeIRz6miPQk7wvlHlC+UtROEJcOOvY4F2gCsB+hjj1UNhx3u2rWrKbwzpYdqCUqvo60NygIVYQhJx0vuFEMwnlaRaMS6P9kMuhduFoWLHHSRkAsuuMAistHwytNy0HMDveOUrSMIk0iMhZIretaJwCIwEwscvNNOO81GdaG2Tl86CrAoxqYDUX+cyUSBhEIEAc1wBz2WwnoqyuuUKlINwWi98Mg6/YsSiRNClBVEyQDh0GjK05zHlEEvfxuC3aaFjSlKyUxgIFs+efLkhGuCyy+/3BIt77zzjumXIFiabn86GXkF4/+b+IhGvABLPLx4Y8WKFdP6fkTwkYMuEuL7Zv0JBaPNyb9Pnz6hKDpOHYqViqqXL71797YyNT9WLREYdsrgybxG9kBHQsk8AjV83/Q0szi47777Er4u0bi+5s2bu2KsQkF51/+WYs07T2UOOuJ/lLL7fnM/RYMxPEIIUVboYwYqcZgc8sADD9j1LbfcYvdzHpODXr68++67NvEDYbhw3ZFY0IbQsGFDq1pjFno8WLsRlO/SpYuV1mPryagvW7asTNtKJRcCd8XsoHtbn8kZ6Nh4qij8+kwUNnLQRdLlbl699cwzzzSF0PCZzRgMRdXLF/rLmG9+0EEHlRqrlgjK2DHI8bLo4dC7Tr8aQQB60ulZIyqfaikchgWnskaNGq7YVV3Hjh273nNSnYPu8QYbmIObipMvhBCxMug4aGTMaXsKHwslW1++0PrESE0y4pSNJwsj1QjI89pkSqr5Xtu1a+fatGlj2fXRo0dbUD5ei2Msm0TiwB9HxUZ4tRy/G8R7w+G+soxZI3vuhf+obhSFjRx0kRAfCfS9Lxht+p6PP/74UqrTMtrlB5loStEw1vSjpQKl8IjCUYJGiXwyUD1BNB7DTeR3+fLlVvaOangyYOC/+uorU5EtRsId9GgK7sDCKBVQ2582bVooyxE+bUEIITLhoKM2PWHChFKq07L15Qt2lurEyLFqiWDNxsxtnHMmtCQL6wNaqBjZhu0aNGiQmz59elJOPllejptDDjkkpcRBoYBeDwJ53kHnd4PuTzjcVxYVd68nQKAmfMa6KEzkoIukHXRKdAHHLNosdK5V4l4+MKaDaCr93OFzsJOF0mgc9VQF4HhNs2bN3Omnn26q8gjWMOItkSIpgQAMN6I0xeygU4Xy4IMPRn1OrPujwUjDiy66yJ1xxhmhDDrBDzLoQgiRiRJ3RnBFzkH3th4nxK8JRPZAwG3OnDnWnhZN1T0R1atXtyo7JoSkkgmnRB57wvx0quhwKGlxSFQuT/CZBEJk1rhY4HdB/75fFz/77LNRnxfr/nh4W1+MVYjFiBx0kXSJuxeniFSa9vObMSCUXIvsQuabnkAWURjfskBGHFV3IuJz585N+fV814xqwYBjyFF/vf/++20xEQn/BxF1FnioyxYj9A7yXWUqo0B/H60mDRo0CGXjZbSFEJmAPmQCv5EOuJ/fzPmfgGtZR0WJ5JkxY4ad75ltXlYaN25so1ajjV1LBPpCZ599tuvcubMFmGlvu+OOO2Kqwy9ZssTK6ou1R9qvgffYY4/QWLxM4fe5bH1xIAddJGTvvfd222yzTdyZ2ERnKb8iUyjxmOzSq1cv6w9LVw2dqDjBl7feeqtM887ZBvqo6E8nQk8Ah561J598slQQh0UcfVMI0BQr7GNfnhirdyyVnjJ6+QmKMF3BLwDKGqwRQohw4s2v5nyO7fDnNZE9Pv30U7dgwQLrJUe9vazgZB999NH23ZVV+A37cuGFF9rUEKruGMFK64PviQbWEatXrzYdlGSE7AoRfhNUOtAKSDCLKsNo0HpQ1gy6bH1xIAddJGWs+/Xr5+69916LwkaDE7J3QGS0swe9TIzWYk55JuaLYrQx/E899VSZ34Njgl61Vq1aWeScbDGGmz51DDnj2Yj4FuN4NSDTxKg6//v48ssvoz4v1v2xQKRv6NChoeCKjLYQIlMQdI0GjsfWW29tGULZ+uxBmTR2mfUXFQ3pwjg1NGvIopd1hBpVFQRnunXrZhpEOPtooZA15z3fe+89648moFCs8JtgH7GvYpWx16tXr0wicUzCAdn64kAOukgK5mTS83rKKafEVJ+mpIkSZhnt7NG3b19bHFGengn4zihX5MSPiFs6YPw5Fvw4PpRjWQwwYoztLlbYt/T+IZqTKejxe/jhhy1bAZTOU+kihBCZoGnTpuvd5+egAwFH2frsQa8341Cx9ZnIRtOKRqk7bWhUPKb7XoiS1qlTx9rcyMxj71lD8H8QVChW+E0ksvWMri1LoJ/59PGCZ6KwkIMuUsILf+y1117rzULHiGC0yRaKzIOIGM4e+9g7wZkAA1uxYsW0sui+P4r+K+apMrOVcjjK3+iTJtperPjfg8+g07sfjVj3R4PS9vCWASLyxaiYK4TIDt4Rr1Chgo3WDJ+D7s9nCxcutGChyCy//vqr9Z7T801GOlOgzk7lA4ruqY5JjdSVoZoPR7RHjx6ue/fuVllB5rxYxeGANj+qCrytj1XGXpbydt6XKjvWflRDiMJHDrpIGoRKvCAVTjkl75FzmxVVz96+HzJkiCnqExzJJPSnIUBDlreswRUcccTmeK/bb7/d+tOvuuoqc9Sjzfwutog6/Zx+fm0mZqDzniySvIJ/MQdAhBCZB2eOUU600OB0RZbkYutxJClvFpnlxRdfNDHYTFZdhTuHZGPJeJcFXjtv3jyr5DvrrLMsMYN+SqdOnVzHjh3T6pXPdwhYgXfQ0YmJV4WSCs8//7xd0yqoEWvFgRx0kTT0GI0aNSo05unxxx9f7zmcmChz+u6777RnM8jAgQNtMcSJvSxj1RKBhgBj03CyUxm75o8LjAdO+pgxY2LqFBQr4QJxmZqBfthhh9m1XwzJQRdCZBLOLf68FTnHGbzzqDL3zI/pwkEnI50NW0pWnrJ5SugJAqTK+++/b7YezZlincoSC34LVJyQREEgjqkHkTB9pSx4B122vniQgy6ShhNPeBkuWd1IJBSXedjPjDYhC+tn0mcayqYOOOAAc869IUgWSh9RF6XPPJ1RMIUI2YZwBz1W718qPYH0JXrldrLo/C4zpUkghBDhgVtgDnckZFDRL5GDnlmwvyRAsqkpQnsiLVHTpk1L6XUElz/66CPLwkvzZH34LdAfTgVhrBGEZRlNyDrihRdesNty0IsHOegiJShb9hlc1MQjQW2UkWwy2pmDKDqOOU4womv0eaea5Y4HY/FYgL3zzjsWDPj888+T7k+jpIvXIR6YSg91scC+RJTHO+h+wRtJrPujwW9s4sSJIUNNjz+iPUIIkUm8KOzTTz8d1eaopS3zoNDNmC5K0MlWh48sTRfsO21ns2fPtokrfKfJZtERJKW0ne+8YcOGGdumQiI8GE8FRDRi3R8PJuNQWcFasCzl8SI/kYMuUoKTesuWLe02ipKUXYfjheIo7xGZg4zplVdeaQYVZxoFb4wlwmxlcdYRM8G5pkcKp595qzh8/E1WlvK3RGDoyZ7jXNIfL9bHl4Z6o02fOSWG6fSfT5o0yYw1UXWfDRFCiEyD+CRlzAQZo81z9kJx2AyRGRAAw9ZzjSjY9OnTzdYToP/rr79Sfj++G0ae0r5GoAWHHFt/6623uvr169ucdW9LYsEkFhIyKLe3bt06K212+Q6/EarbvK3HkSahlcn+c8biZlIgWASb4lVzEGVm2LBh5iTQe4woyEMPPbTeCInrrrvOorXqR84MlEx17tzZLvSnjRgxwjLXOMnsY/rHEWhDjZ2LH3NC9J0sLiVzP/74o/WOEQnnNuq7lM1fdtllrkOHDqHviuj4yy+/bLPWY/WY4cDjfNILjegZ2yfWhwURZf/hTnn79u1NkR+oOkjFOQf62hYvXhz6jpXNEEJkqw+dcWsPPPCAlUNTrRNp63FCcN4aNWqkLyFDICh69tlnu5NOOskCINha7D2JD+w77QVk2bmNYBhBei4Ebql+w85j8wnEI/JHOTsjVZn+gdK6t/V8t3feeacphNOuEA3ek/UAooHnnXdeUY9Qi4efeR7+O2jWrFloX9MWUNbst5+wI1tfXGxQkih0JkQU6D9CvZWMOU5geIktJdg4d5xUos1NF5mByDijWMio47AR5cYwe1BlJ9pKjzI/c4w0hn333Xc3Q8ECIDKb6yPBLMQoq2/SpMl6/yeLMb57noNooJzz6BAAYaGFuu1NN90UypaHi8Sx/2kxSBaEGUePHm3j9ojW811ynYk5uUIIEQn6J9iKaOca7AqOH8JXOHoiO7Cfse+c98mGI8KL40wFI4459xF4J3vLWgznnfFs2HC+H767ypUrR33vRx991KohcdbD13H8n/RLs7bAqT/33HPlnMeBylIqEalI8NnycJE4AllULaQK6wUSKSTEli5dat+lKA7koIsyQdac7B8RdgwH2dvwEzt9NpRRjRw5Unu4HMGBxqhirDHgONLMOUcADuc8WQYPHmzfHQ46Pc/A90wwgBI5ssC9e/fO4ifJfyhLpIQQAThGo6Dg7h31cPr06ZN0Fv2MM86wTBYBMsR6rr32WjdgwIAsbL0QQvx3YgvOHraFnmiC7+FcfPHF1i+Nc6JAYfnBOosqRb4fsuSIiJFxp+otlcpFsuw4ktttt12oPBunn/Y11hFkbcn+FvP4tETw26CKkdYEbDKVDtj8SNinqWbRCXxdfvnl9jpeL4oHNZKIMsH8S19ahaMQDkb6tNNOs94pon6i/CBjTkk1TjlZDRxzDEUqzjlgEFiUYWj4jqmKwDFkIYDjLuc8MU8++aSrWrWqzRDOhII7CzKv7UAmC9q0aZP0dyqEEKlCGbUvrY021xlbTwaXTKsoP1hnsQajSgthOew19ibVtkIy67Qq8B3i7FNBR7k2pfIE4k899VQ55wmgqpC2QfYVZFLB3beQytYXH3LQRZmgXJpsHtx3331WzhsOJypKd99++23t4TyEsnXGppEtp6wakRLKrGbOnKkxH0lCgIqyQS+ok66CO4KAvjye3xvZDuatCiFENmnRooVdozcSGXQnGExJNec7kZ8gSId9R4wWW1+jRg3TpiHAL5ILxhMkoRUgkwruBOIpmWc95sWZRfEgB12UGXprvdHmxBM+DoQTPuPWOHGJ/ITy9mOOOcaUY+mfIqoerWddRDesVJaQXfKkq+COCm84iqgLIcrLQacKix7oyJnoiIYhPiZbn9+VdyRcaGdr1aqVu+SSSywbL5KrbCM4RVLKt3hkSsHdZ8+pcND3UXzIQRdlBpEw+m4ogab/zCtTA2Ij9C0pqp7fUB3BbE/U+kXycNyzcI1UNqaqhJ5zRqNx/fXXXyf9nsyu9ZCVZyElhBDZhlJqNGcAYdBIcE5QGg8XwBT5BbomPXr0sFFeEn5NHlo7aA8ID8YDgnD0jDMBgetbbrklZcdf5e3FjRx0UWaIFiIE57n99ttLlbpzwmI0CPM7hSgmyCbhnKOg70Ekzv9eKCNMdbwaM3E9vA/ZdyGEKA98kPaJJ54wFfHIaivWA4yVFKLYbD0tHrR6eNCKmTBhgt1G/b4s49Vw6lFtJzjm20lFcSEHXaTFzTffHBIQQTEcITEPiqI8piy6KCYQ2UHBPTyijjONgjtKu1yXxbnGWHvatWuXse0VQohE0F+Lo0HF3P3331/qMSrp6tWrpzJ3UZQOOi0efj48pewI8zIznmv+Lgt33XWXXTdv3twCAKL4kIMu0mLXXXc1RXfPoEGDQrfpWaN3Jrz0XYhCZ9KkSXbtHXQy55Gln/zN/clCZcrAgQPtNqq9zCUWQohc6M5Q5h4pFsc6YMaMGTaaS4hiAFV2WjuaNWsWypyHzz4H/vbTV5KF9cFjjz1mty+99NIMbrHIJ+Sgi7S56KKLSo2MYlaqp0OHDlaqoxEsohigb4zFK+rtXhCO1o90xqtB//79XZcuXUK/N0R9hBCiPEFJmrFcy5Yts1L3cHyPOj23QhQDY8aMMTFk76DfcMMNGRmvxihbxHmZ8OJn04viQw66SBuUvmvXrl3qpOUhi0jGb/To0drTouB588033bvvvhvKNJElx9BGg0Vusll0svLMoEccrnPnzhndZiGESAY0NVD4Blp1CEh6mMONo4KtD79fiELkzz//dOPHj7dSdsYOkyWPpcHAc+lJTyaTznNHjBhht5U9L27koIu0QRzGi2BwmxNWuJr7BRdcYFH13377TXtbFDQsTpmHSk9avOw5IJ6YbD+6fw6/M4nDCSFyRbdu3Uy4iukes2bNWk9IjvGSaHAIUcigt7Rq1aqQeGKs7Pluu+3mLrzwwqR70idPnmwl7lTghbePiuJDDrrICPSec0Ihcv7MM8+UeoyT07p160I9NUIUIj/++KObOHGia9++vY2piZc9T6UfnZ5OXw6/xx57ZHSbhRAiFciU+yoeAozhoGRNNR0lukIUMrSyUYK+7777xs2eM4I4lZ704cOH27Va2YQcdJERcM4HDx5st++44w4rx/VgsMkoDhs2TKVvomAZN26c+/3330MR9XjZ81T60VkI+PGFtJMIIUQuueKKK6w67qWXXiqVLacFB62MRx99VDPRRcHywQcfuNmzZ7uLL744bvacyQep9KQjOMdagN+WWtmEHHSRMVq0aGHlPGT8KMWlx9Zz2WWXWUncq6++qj0uCg4caCLfqKvvvPPOSWfPPUTio0E1ynXXXRf6m2i9EELkEs5xtK5Fy6JTQYSIpe+jFaLQINlEqxkj0OJlz2P1kO+5555R7/e2vlWrViGRWVG8yEEXGYOZ517JFSX38AwiM9E5Kd15553a46LgwJEmIEV/JsQaLUiGKdLwYuhvvPHGqM/v2bNnyNGvWrWqq1u3bsa3XQghUuWqq66yVp5nn33WvfLKK6H7UXk///zz3b333uv++OMP7VhRUKxZs8Y0lagUIRDF8R+NevXq2RQjfifh0IPuNZvCIXPOe/Gb6tevX9a2X+QPctBFRiGD7rnvvvvc999//98DbcMNLZo4ZcoUE8cSopAg8HT44YebCAyguRCNXXbZxX3zzTeuT58+7rjjjrPrr7/+OuZC4PPPPw/9ffrpp5vxFkKIXEPrWrt27ex2r169SrWvUTG3cuVK98gjj+RwC4XIPEwpomIuUQn6CSecYNe33nqrjRrGqef6lltuifr8a6+91q6pTAmfiiSKFznoIqO0adPGsuXw999/m3ich6h6pUqVYp6ghMhHaNuYM2eO6969eygjjmBcNHyFCRnz559/PmbmHNB0QMuByhQ488wzs7L9QghRFvr3728jpuhDDxeH3Wuvvdwpp5xi5e+sA4QoBH7++Wc3ZMgQs+NUtEUTgfOcfPLJodtkzM8999yomXOYO3eurSHoPfeOuhBy0EVGwZmgH6dmzZqhzCLCWVCxYkWLtDOKaunSpdrzIu8ha8QxfcABB5gGA73nqLJHI14peySMb/HtIFSlENg6/vjjM7rtQgiRDlQE+T7b3r17h8QsvXDWkiVLbFa0EIUAAshr164NlaDTf85880jiOePR1hDeKWfikV87CyEHXWQcytnvvvtuu83sc05qHoz5Djvs4Pr27as9L/IeskYvv/yyu/nmm+24j6XGXqNGjZil7NHo1KmTZc/3228/myu8YsUKt9lmm2Vwy4UQIn0IUNJ3vmjRIhsz6Tn44INN7ArhK9YBQuQziB8zIq1r164hJzpW/7kvb0+G5557ztYQ2Pd441ZF8SEHXWSFo48+2m2zzTZ2mzI3H1nfYostzGDTm4aquxD5Csc0WaMGDRqEytkYkxKvtD0ZPvvsMzdt2jS7TWZ+gw02sAy6EEIEjW233daEr4BMYLgwHFn07777LjTbWYh8xU8r8E40x/z111+fkkp7rDWEn3vOdAQhPHLQRVYgm+jVp3/66Se3cOHC0GOIYOy9994mkCVEvvLwww9b1ggRGJxoDDdZ70gqVKiQdGk75W6XXHKJXW+11VZmtIUQIsggCrfTTju55cuX2wgqD2JXVANRYURpsBD5CGKtVIUyVaVKlSpW2k42PRqxVNqjwXu+/fbbbuuttw456kJ45KCLrEC/OT20ZNLhiiuuCKm80qeOwzJr1iwTyhIi3yBLRLbojDPOCCm3xypvR909WSZPnmxl84jFkDVv3LixiccIIURQ2XLLLUMZRp8193Ce/PPPPy2QKUS+iiFSEeqFYD/++OOYz0tWBPnLL78MZeP5bdD6KUQ4ctBF1mjfvr1lGSlrf+mll8z58KBITZQxcjyLEPnAiBEjrC/cL0rhyCOPjPrcWPdH8sMPP1gmCg488EDrWWdmerLReCGEyBUIYx166KFWMRc+x5lzWI8ePSxg/9VXX+kLEnnF4sWLbUQagSaq2uKVsIcrtycCW48qPOuDjh07Zmx7ReEgB11klerVq1v2HFq3bh2KrFMSTKRxwYIFpRx3IYIOI9QGDhxorRp16tQJ3U9VCIvRsiq3U+LGjHQEl9588027j4kHflEghBBBbmvzgrDMin7vvfdCj1EaTKtPrJ5dIYIKrZi77rprKSeaoPlVV11V5tJ2NGamTp1q1aQjR460344QkeioEFmnbt26dk1P+jnnnBO6/9hjj7WZ6ZT5hAvLCBFkbr/9dssSIXYYCQ42Bv24446z62SV219//XV37733hjLpfuRKo0aNMrz1QgiRHWhpY9zkv//+a1lzXx1Huw52fuzYse6DDz7Q7hd5AZWf06dPt7aNTTfdtNRjlKVjt8muc51saTtrB3Rm4Morr3T7779/VrZd5D8blKi+WGSZxx57zIy2h+wgpXC+fOiQQw6xaCRZSZE5CIjQz9ykSRPraRbpQ1aIgBPRcox2pr4n3pP3pg+NKhMEl1jIIh4jhBD5AkJxiMASdJ8yZYq1swF/M5UC1fd58+a5jTbaKNebWjDI1mceRgMedNBB1nv+6quvZizLTR87lSZk5Vn/ot8gRDSUQRdZ5+yzz7YTEiVugLCWhznP9PYQffRlvUIEdRFEWftee+3l+vbtm7H3RQ0W55zS9pUrV9p9lL3JORdC5Bu1atWyzKDvsyVjCMx5HjdunClgDxkyJMdbKUR8sPGot48fPz5jzjmZdrQYgIo5OeciHnLQRdah37xbt27uvvvuC6lXhpcHIxSHKBbOj0rdRVBhVBCONAabxSZQtnn88ceH1FhT5f333w/1Zd51112WmW/Tpo1r2rRpRrddCCHKu28XW4+ytadevXpW+k5Q/sMPP9QXIgLJK6+84oYOHWpVclSDAIGlCRMm2HVZ+P333004maLl8847z5144okZ3mpRaKjEXZQrhx12mGXKiUh+++23bvvtt7f7mSdN2TtiMsmKaon4qOwtc7z77ruh0nbfikHbwN9//x16DgJx9KAnyz///GML1vnz51vZJ/1u++yzj40k8gEAIYTIR2bMmGGq1th6xGBpZfOlwwcffLBVDOEIqdQ9fWTrM8evv/5qpe3bbbddqBWD45jj2UNLZqpjAwlaEeRnnUBgHpsvRDyUQRflyr777mvXiMh06tQpdD9CGYxm4aSnUncRxNJ2IulkfnxVSLhzDgScUsmkU+aJcw5r1qxxq1evtveVcy6EyHcQgG3VqpXZ+s6dO1tAEhi7Sqk7TvvgwYNzvZlCrFfa/sUXX9gxinNOG2a4c+7b0lLJpL/11lv2Gl/aLudcJIMcdFHuDjpOCDz11FOWOfeQnVSpuwgazDrnOPWl7UcddVTM57722mtJvSfiMIxV83To0MEdc8wxGdleIYQIApQJo6VB0P2ee+4J3c/sZ0rdCcqr1F0EBTLm6CVRJUdAnrZMst3R+Pjjj5N6Tyri2rVrZwGqli1bltJgEiIectBFuUIvOsYaZVcykPTkkKH0JcM4QZz4NC9VBIF33nnHjDXOtJ88EG9MEAvPRDBGrX79+qGMEpF65gYLIUQhQTmvHz9Fie+yZctCjw0YMMAE5ahOiqxGEiIXpe040kcccYQprQNVHrHYc889k3pfytoJ8FepUsUNHz48Y9srCh856KJcYZYkvWicqBhfgbN+2mmnlSp1R1SGUveyinEIkQkQLMRg16lTJ1TaTgm7d6wj2XjjjRPqJ3zyySemAr9u3bqQc84CVQghChFa2Ro0aOB+/vlnE8D0AXlK3QnIswa4/fbbc72ZosghgISooS9tZ/0ZK3BE+8Z//vOfpLRrvGYNIrBec0mIZJCDLnLCzjvvbCdEoL9n2LBhpUrdEZNjPBszoYUob1Ba7dq1q5Vf3n///RZY2nHHHa3c3Y8NisQvPGPx4osvWnDKH9OIJ1H+JoQQhQrnOdSvKXXH6fEOC5CtxN4TAJ09e3ZOt1MUL4888oiNP6PagwA6xyTHpp88FNmm+eyzzyZ8T2w7au04+VSMtmjRIktbLwoVOegiJyAcg+PjoR/ts88+C2UiJ0+ebCe2Zs2aafSaKHeo8Bg7dqwbNWqUKQ6TOUcELhJ60lFix6FPxE477WQKxoBCLC0dvFYIIQqZGjVquJEjR9ptHHR6fcNL3Rs1amQOzNKlS3O4laIYQcCNSrm2bdu6yy67zIJIXtAtHHrHaUVDPyYZGNHGWFZK20eMGBHSXhIiWeSgi5xF1XF66OOhnIiyYUSycNx9hv2JJ56wk2eXLl2ScoCEyATPPfec9aBdeeWVFgGPJ/6Gg82ooFiEl8NPmzbN/q5UqZJ7++237dhGIVYIIQodBLI4n2LjcYbQ4vAB+UmTJln5L+1uP/74Y643VRQJBN1xvGmtHD16tDnRscTfSBYh5poMtG3Qew6II1atWjWj2y2KAznoIqcGG/EMX0a0YsUKd+GFF4Yep8eHkyY9QeEl8EJkC3rEyeQ0btw4JG4UT/wtnigcFSEIy1EOh7Ac41u8sjEZJT9yUAghiqUyadddd3Wff/65u+iii0KBd2aiP/nkk+7rr792rVu3jqnzIUQmNWYoPedYmzp1qtt8883jir8lKwr3+++/u/PPPz+k2t68eXN9aaJslAgRAE444QQstV3Gjx9f6rGePXuWbLjhhiUzZ87M2fblI3/++WfJE088YdciMevWrSvZe++9S/baa6+StWvXrvd4tWrVQscolx133DHme73//vv2OM/j/erWrWu3d99995I//vhDX4cQoih59dVXSzbaaCM7Hw4ePLjUYzNmzDBb36tXr5xtXz4iW58a//77b8kFF1xQstlmm5W88cYb6z1+1VVXlbL1V199ddLv7V+7ww47lKxevTrFLRPifyiDLgIBmXPK3gFxrvB+X0qFTjzxRItGkuEUItMQ7SZz880331gmh4xOJDyGsOFxxx1n12R7okH5Ou0aPJ8S9iZNmljJGzBm6OWXX9YXKIQoSqg6oooIevbs6WbNmhV6DDuPojvVSw8//HAOt1IUMsw6Z4IAPeWHH374eo8zRej11193DzzwgF2HV9PFA9s+aNAgu43mAlozQpSZMGddiJxx1llnWdSRiCbX9erVK/n9999LZTfJRJLh5LZIjKLqJSlFvcnckMFJh3nz5pVUqlTJjuHDDjusZPLkySUbbLCB/X3ZZZelFIkXQohCzWC2a9fOzovbbLNNySeffFLqsfPPP79k8803L5k/f35OtzNfkK1PHl+lgc3PJN99912oao7jV4h0kYMuAsH3339fMnDgwJLFixeXVK5c2U5yF154oRlrz5IlS+wxyuHDnXcRHRnt5Bg9erQdb0OGDEnrUJo1a1bJlltuae/VoEGDkg8//LBk++23t787duyow1QIIf4fbPgRRxxh58d99tmn5Mcffwztm99++80e22mnnUo+/fRT7bMEyNYnxzvvvFOy9dZblzRp0qTk77//zthxxXs1bNgwdCz//PPPGXtvUbyoxF0Egm233dZU3RHOQtGVcnfKj8IFNhDpmDJlipURIeSVaO60EIl48MEHXadOnayt4vLLL097luqvv/7qTjrpJDd9+nRr21i1apWVuTNjVQghxP9GVDJOdccddzQRTa/wDgh2Idy15ZZbuuOPP94EZIVIB46xE044we2+++7WPsH0oEzBSLU5c+bY8frYY4+5ChUqZOy9RfEiB10EDhS0Ub8GDDj9vh76fzHcKGO3adPGZqULURYwpKitMgMVdeF055Qy63TIkCE2Tu3GG28MjV9j0cnMcyGEEP9jp512Mnu+6aab2ljVcFtfrVo19/zzz9ttnHQ0PYQoC2gXNWzY0I4pNA+23nrrjO1I3m/AgAGhvvN99tlHX5LICHLQReDgZLdgwQKLsHuROE58HjKUOFcY9gsuuEAjWUTKIASHKFyrVq3cqFGjrGKDCg4WglyXBeb5Mj995syZ7rbbbrP7WAh06dLFHhNCCFEaxqn6UauIc/nbUL16dXPSGV2Fg7Vy5UrtPpESjDvFriP8+txzz5lw2xtvvOEmTJhg1+nw1VdfWaKIduGOHTu6tm3b6tsRmSPXNfZCRPLFF19Y79ltt91WUqVKFevrQWjr6aefLvW8Rx991MQ+2rRpU/LXX39pR0agvrToTJkypWSTTTYpOfvss0PHTeQINf5OhoULF5r428qVK+3vjz/+OKShwP1oK4TrKAghhFiffv362Xlz4403LpkzZ06px9Cf4ZxMf+/XX3+t3SdbnxSID1avXr2kdu3aJV999VXUEWplFYtDJ+HII4+09zjooIPsbyEyiRx0EUh++uknu8YYe+EtZqe++eab6znpGHScLc2XLo0c9PWZOHGiHUctW7YMzYfv06dPKYPtL9yfiJNOOimk2srsdOac8/d//vMfHY9CCJEkBDLPOeccO38S5ERkM9JJ33nnnUv22GMPC+IL2fp4cPygqs70ny+//NLue/3116Paeu5P9Vg999xz7bWIzoVPIRAiU6jEXQSSrbbayq4RkHnxxRetBJlZ1cyX/vPPP0PPQ0SOPnVKls8++2z3xx9/5HCrRZC5//77rRyNy0MPPWR94ZSz33PPPVGf/9prr8V9P0ovZ8yYYeXrvXv3ds2aNbM55xyrN910k/VVCiGESAwaIGPHjrU56evWrXOnnHKKW716dSmR2Jdeesnsf4MGDax0WYhoLFq0yNaKlLPPnTvX7bzzzlbOPm7cuKjP//jjj1PakbSwUSKP0BztlrVr19YXITKOHHQRaNauXeuuuuoqt8UWW9jfv/zyS0iQw3PaaaeZMBf9RRh1XiOEh0ohxNsQg+vQoYMZaQwrwR8caRaD0WChGO89r776art90UUXubvuusu98MILtsik161GjRr6AoQQIgVQb8eW77rrru7TTz91Z5xxRqmg+2677WZOOkFRnPR33nlH+1eUgik/xx57rDnl2OQddtjBbPURRxxRSssoHII/yYKYIQF5YDoLyvBCZAM56CLQMLYCgRgcn549e9p9KGSPHz++lDgcwnFkMxcuXOgOP/xw9+GHH+Zwq0VQYHHXvn17d8UVV1igBwNNhvuoo45y3377bczX4bxznMWCqo0333zTKj0QMsJBhwceeMAi9oqoCyFE6my//fbu6aefNoFNJmFw/iYg6iH4yTkWx4vz+OOPP67dLAwEXxGEO/DAA23sWZUqVUx00Iu2RgPnHaHCZHj33XdNCI7jkdGsF198sfa8yB4ZK5YXIksg7vH222+X6hdG5Avxj1dffbXUc5ctW1ay7777llSqVGk9Ublio9h70NEvOOKII0o222yzkgkTJoTuR7MgWh+a731Mpvf8mGOOsee3bt3ahAq5fdNNN2X5EwkhRHHw3HPPhc7V11133XqP//LLLyWtWrWyxxGY++eff0qKlWK39Xzuiy++2I6FSy65JLQf2rZtG9PWd+7cOaXe82+++cbWnLy2UaNGRbuvRfkhB13kFRjhM844I3SS3WKLLUqef/75Us/58ccfS0477TRTfr/11luLVkW7mI32ggULTFAIkZg33ngjdH8sY52KMBwCRRxbPH/TTTe1axz2Yj3OhBAiG4wePTp0bn7wwQfXe5xzLoFRzsdnnnlmSFy22ChmW7969eqS4447zoI5I0eODN3vRdxiXVJxzgkGHX744fa6Pffcs2TNmjVZ+jRC/A+VuIu8Yvny5SYAQhkc/Pbbb1be/uijj4aeU7FiRZuR3qdPHytfOvfcc+15ojiYNGmSq1+/vttpp52sDJ2WB6AcMh6Jyto9tFtceOGFpovgBQvRQeB+IYQQmYHzLK1JQKk7/cWR52L6gekLRoOmXr16tkYQxcHixYvdYYcdZmtCSto7depk9/s555koa6eVkrL2+fPnu2233dZNnz7dbbPNNhn7DELEQg66yLsTMuqtiMnssssudh9OUsuWLd0NN9wQ6lWjz3jgwIFu4sSJ1i+MoudXX32V460X2eTff/+1oMw555xjiv70KeKkez744IOYryWo8/XXXyf1/2CkESci6LP77rvbQqBHjx4Z+QxCCCH+x80332wTMrDzZ555plu6dOl6u4cA6euvv24isjhsnPtFYYOYIEKu2O4FCxaYaGAyquw875Zbbkn6/yFARMKHqSz8n6kIygmRDnLQRV6BISZDSoR05syZJiTj6devn43QQlTO06pVKzdv3jxzvmS4C5dVq1a5008/3QwvgjCItXnlf0apIRxToUKFmK+/9NJLk/p//vrrL9eoUSNbEDDC5dlnn7XouhBCiMxDsJ0gKPb7+++/t0kta9asWe95++67r2U5999/fztHo7BN0FYUFn///be77rrrTOEfBXWEBGvVqlUqcx4+ijeS8847L+n/6+6777YJMIAw8dFHH52BTyBEkoSVuwuRl0IyG220kfUG0YdWr169kt9++y2qwEeDBg3seZdeemnJzz//XFLoFEtf2mOPPVay/fbbl2y33XbrCQNWq1YtYd85ferJQL+jF4nhmHv55Zez9ImEEEJE2vAaNWrY+Rdb/vvvv0fdQdi7bt262fOOPfZYE44tdIrF1i9atKjk0EMPNWFWhAPDhQGvuuqqUnbd94yHX/7zn/8k/X9Nnz49JAB74403ZukTCREbZdBFXkOWlJmoQHl769atrfw9kmrVqtlMzKFDh7oxY8bYGA7mqYr8ZfXq1dba0Lx5c4tsv//++65JkyahrHnNmjWjjlJjPirlapUqVbKS+GRL24cPH+5WrFhht8nQKJouhBDlAzac8Wuct7HdHTt2LDV+zbPJJpu4O+64w82ePdva4Q444ADLhCqbnt9Z85tuuskdeuih7tdff3Wvvfaa69+/v1VXkDUnox45So1qCtZ6HTp0sGw7t2mDSIa33nrL1hYcM7zezz0XolyJ47wLEXhQcOUwrlmzZmj82ty5c+2xcePG2aitSD7++OOSo446yjLul112WcFm0ws5qv74449b1nzbbbctefjhh0spqCfKmqP4mipjx44NvR61WFRdhRBClC8zZ84MVc0NGDAg7nOZ6HLRRReFzvuffvppSSFSyLZ+8eLFJXXr1rVsdq9evUpVSEZmzSMvDzzwQMr/33vvvWfrCl5/wgknFOQ+FfmBHHSR93ASZrxK8+bN7aTKydXPSz/wwANL1q1bt95r/v7775KhQ4famLbdd9+95KWXXiopNArRaK9atSo0+5axOt9++22px/33nu4oNc8HH3xQcvzxx5d6fceOHbPwyYQQQiQD47T8+fihhx5K+PzZs2dbeXyFChVK7rnnnoKbmV6Itv6vv/6yBAyjTOvUqVNqXCowJi2RrU9llBp8+OGHJVWrVg2VyP/www8Z/lRCJI8cdFEw/Prrr9Zj5DPqVapUCfWhxepXC8+mX3755QWVGS00oz1lyhQzngRgWJT5rDkON9kRf52JfnN/PG2zzTalXk8Uv1CzMEIIkS9ceeWVdk7GgZs3b17C55NN79y5s72GoOtnn31WUigUmq1///33Sw477DCzt1dffXWprDlON0mZ/v37x7X1vC4VPvnkE1sf8NqDDjpIs85FzpGDLgqKe++9N3SCPvjggy1izm2y62TNo8H9gwcPLtl8881Ldtlll5IxY8ZY9DbfKRSj/eabb1qpGd/j6aefbmJBscrZ/fcdeSF7kkrmPFIkxv8/7dq1y8InFEIIkQpkwami4rxMMH7p0qVJvW7WrFkm9om9p0R6zZo1eb/jC8XWY9u7du1qbWR77733ehnwRCXtXHDcU82cL1++PCRAuO+++1qlnhC5Rg66KCjoR6YPnai67yHiZM9t+s3jgYH35dMYh8mTJ5fqbc438t1oU93QokUL+z4ocZs6dWqprLk3qJGXLbfcMq2sOZkV+hzDjyGv3E6UXQghRO6h4o3+ZG+zk3W2yaZfe+21FtCtXLlyyS233JLX1XP5butpQ+zbt6/Zbr6PW2+9NZQ19xlzEieJnPNUs+bw5Zdfluy22272+j333HO9tjkhcoUcdFFwvPvuuyXPPPNMSEjG96ZzwfFKxFtvvVXSuHHj0FiOF154oSQfyVejjbAfwj4EVqhouO+++0pVNCQjAhde9p4sBGj233//kp122inknJOhoX+RAMF5552XpU8shBCirPYCO+FL1//444+kX4szdvHFF5ut4bw/atSovKyey1dbjxNO9SIjUqloQAQuPMiSbMYcBz7VrLlfK9aqVcveBycdZ12IoCAHXRQsI0aMCJ3EibLTZ57KPMs5c+ZYHxSvP+mkk0refvvtknwi34z22rVrS3r37m3CffR+33777ZbRzqYIXORibauttgq9zxlnnBFa7FFOKcEYIYQIHjha/txNG1KqlW8EZ88555xQFvWxxx7Lq+q5fLP1tBUyZYcqOBIpnTp1Ws85TkYErixCcB72l2+JQyiYMnchgoQcdFHQ+PJkLpRQpQpGGmON0eY9MOKLFi0qyQfyxWjjmFPShlOOc46Tzn0eX87uL5kSgQOfLaHk8dRTTw29D9vA+L1Y4oJCCCGCw9NPPx3SDKGdrSwONkH4E0880d6D4DzvmQ+K7/li67G3jz76aMk+++xj+/jss88u+eijj0KP42yTEfeXbJS0c1yQqPHv0bBhw5Lvv/8+w59UiPSRgy4KGpys2rVr24mY3nRK35MlvEwaw8dol5133jlUSjdt2rSYwnNBIOhGG8NMeSFRbL4bFHa/+uqrUs9JVM6ejgjca6+9ZoGXiRMnmjAM77PZZpuVPPjggyXLli0zkUEi+0IIIYLP+PHjSzlvyTrpvs/ZZ2Off/75kiOOOCKUUR8+fLiNcg0qQbf1OMAE4X2AHad4/vz5pZ6TTDk7F3rRy1rSTkWer5TgwvojqPtMCDnoouAhakuklhMyfU70PJ122mlxe80iHUP+BkqeEaLz49zoWxoyZEjJ6tWrS4JGEI02AY2nnnqq5OSTT7b9x9i0fv36WR9hJMmUs5cla+7BOPN6LyLI+zBrle1DqMarA4erxgshhMiPSS7XXXddwudHOob8DTj3jG9Dw4Yy7EqVKpV07969VMY3KATR1sPChQst8E5lHLouF1xwQdRWwWTL2cuSMfd88cUXIUFBbD4tkEIEGTnooijAcOGUh5/scdqjEcsxxECHZ2kxKq1bt7bsL5lXIrNE3oPSuxYko01/F464F/M55JBDLNsRr4Q83kxzIvGpisCB7ymnn7x9+/alNAo+//xzU/b19xGEwagLIYTIH4YOHRo6j5O5jUUsx7BDhw6lMrTYAQTMEDPj8QYNGpRMmDBhPY2UXBEkW0+7GNWG3hkm8D1gwICS7777LuZryIhnQwQOaFG4++67SypWrGjvx3eYr8K/oriQgy6KBpzBRo0ahU78RHQZ5ZWKYxieTfesXLnSBM18n/oee+xhjt6CBQty2r+Wa6NNuTqGmp4+BPoQ8aFknLnmkURTXY+XQU/VMV+xYoXNUCeCT2uCb1Xg0rFjR1uAhesVkF1PRQ1YCCFEcLjppptC53Mc9lQdw/BsevgagpYov0ag0ooMMa1zfixYMdp6yv+nTJlScv7551vLGloAp5xyim1TZKViZDuBvy/Wd1BWxxw++OCDkqOOOir0XrQt0L4mRD4gB10UFcw6PfbYY0MnbNQ7MWrPPvtsSKW7rErhZM7nzp1bcu6554ZKpIke45RSNl3e0fbyNtp8/nfeecei5T56jqEm20DfWKwevljtBNEeK2tJ+6uvvmpBAi8ixAVtAioeoGnTpnYfpXj0oAshhMhvwiuiunXrFtVZTGTrYzmIBPcpufYztHFMGcs5duzYuNniQnHQUV2nnaBJkyZWQcg+YBwpbQWxKs9itRNEeyydknaC66xD/LhUkgPoCARZM0iISOSgi6IDRxGRN28EUGvlRE5W1YuUJTNrOx4YSsqoevToYUEAXrPllltaFhdnlZFehWC0ySgwW56Mc/Xq1e1zUkrWokULKwGM7M2PzJTHCoZEZtK9gnuymXMM8fvvv2+3qWJgljrOtw8aIAoXHkmnH23vvfcuee+99zK0Z4QQQuQSgsYDBw4M2RXGpa5bty4lcTKyvYn+D2zNzTffXHLkkUdaIJhLvXr17D4ey3bbW3nYej4D/eM44LSosW/ozSfhgQ7PJ598EjdTHisYEplJ9wruZc2cE4zfb7/9Qu9PAIH2NSHyDTnooijBgaMEy5/Ecd4aN25cypBiYFPJoEcr0wbek1IreuEot/IGHCNHedyoUaNK3nrrrYyXVGfaaPM56CWfPHmyfUZK1/3s2Zo1a5ZceumlJbNmzYr5OaJlymO1EyQKgCSK7O+///5WxTBp0qSQQrt3zv1tIuoetjkfxukIIYRIDUal+gAtWV7mnodD0DyVDHq0Mm0P2XOy6GeccYYF5XmPXXfd1TRqBg0aZIF7X60XZAcd5fXnnnuu5JZbbjGhPN8WhhZPy5YtSx566KGSNWvWJJ0pj9VOkCgAkiyssZo1axZ6XwReEfQNiiaQEKkiB10UNV6NncuBBx4YyqBTjo4Tisp4MiXWkc4n5W6xRMzoWUcg7bzzzjPn0TuNZPEPPfRQK4mnd5te7XTmcKdjtDFqn376qS1sEMehP9sL5HjnmgAH2Yl33303oRGMlSmPFQRJtcc8MvhC2SHR/WjvzfdHMAGFWSGEEIUP9nSnnXYyG4Ate/HFF0s9nmyJdeTzaGmL5azTl84sdewN2XUfJPBaNa1atTL9GlqtIjP75emgU+lGJRx9+2eddVZJrVq1QttJEJ42NaoBZ8+enTCRECtTHisIkk6POVBOj+CrX0dxzd+rVq1K632FyDUb8I8TokhZt26du/rqq93jjz/u1qxZ43bccUc3evRot2jRIte7d2+33377uVNPPdU99NBD9vy2bdu6G2+8sdR7XHPNNe6mm26K+X9UqFDBHX744e7II49c77Xwyy+/uHfffde99dZbocsHH3zg/v33X7fJJpu4WrVq2XZx2WmnnaLe3nrrrd0GG2xQ6n3/+usv98wzz7gmTZrY+3j++OMP980339jl66+/Dt0O//uLL76wfQP8P4ceemipC/9n5D547bXXYn7G448/3r3wwgvr3X/ccce5Dz/80H377beh+3hvtiMZOH3NmDHDPfzww+60006zbZ8zZ4578sknSz2vdu3armnTpu6ss85y9erVcxtuuGFS7y+EEKIwwK6cfvrp7s0333Qbb7yxu+GGG9wVV1wRso9vvPGGe/bZZ+32ySef7P7zn/+Uej2PH3HEETHf/9xzz3UnnHCC23PPPdd7Lfz999/uo48+KmXr33nnHffrr7/a49WrVw/Z9Vi2fvvtt1/PfsWy9f/8849buXLlerY+/PZXX30VsrcVK1Z0hxxySClbv8cee5T6/9gHH3/8cczPOGHCBHfeeeetd/8DDzzgFi9e7G677bbQfay9brnlFlcWvv/+e3fzzTe7u+66y9Y0wHfL+mPfffct03sKESTkoAvhnFu2bJk54jiL0LBhQzNsV155ZcjY4DBjYDfddNOknM9oVKtWzYxiIjDY7733nhnwzz77bD3D+uOPP5Z6/uabb+623HJLM84sPPzl559/tu3FgLPtf/7553qv5TWRi4Cdd97ZHXjggWag2eZIwh3ysWPHlnKwo33GWEGMPn36mEFN5ODHcs6fe+45+974XOGwoGjfvr0FRho1auR23XXXpN5TCCFE4YJtbdeunXv00Uft74MPPtjdd999dp2IWM5nNK666ip36623JnweTrR32pcsWbKerV+1alWp52+00UauUqVK69l6Av2bbbZZyNZz+eGHH2zd4iGIX7Vq1VK2nss+++xjtp5AdqTzH+6QT5kypZSDHe0zxgpivP766+bQJ3LwE4GTz5qD78yvZRo0aGCOPusHIQoFOehC/D8YMxzzhQsXmlHbbrvt3B133OHatGljhu2pp55ynTt3Nmeya9euSWfQYzml6S4ywo04DvJvv/0WMswYaaLKy5cvd3vttZcZbow4Rp0IfLhDvu22266XfY8Hrwl3yJP9jJGvSyVT7mGxQiQew4yR/vLLL9d7DlnygQMHur333jul9xZCCFH4ENzFjnTv3t2tXbvWnN6ePXu6fv36uS222CLm6xJl0GM5pemALf/uu+9KZb2xf97Wc/n999/dp59+WsrWc6lcuXIpW49zzv3JQoY73CFP9jNGvi6dTLlfm02aNMls/vz580P3k0Qgi37SSSeltIYRIi/IdY29EEGBfjN+EvSp7bPPPqEeKXqt6XOiN4u/e/bsud5rE6m+Z0IALZYIXXkKxyQzgi7eZ0z1M9DvhnIsvfg//vij9fZH+/9QjkdJnjFvQgghRCKYpoIAWnhfOKNS45FI9T0TAmjxROjKy9YnM4Iu3mdM9TNEgmgr3wVaPeG9+xtvvLGJwTG6VsKuopCRgy5EmFCKn2mKKAqjPvwcTRxDhF5QYUUl3LNkyZKSNm3alLzxxhshxdZEl7IIoMWbFZ7IaPft2zclpzgesVTXMyXyxuizu+++u6RDhw6mtuuFX7p27VrSsGHDUirsKOEzLm/ixIkmxiOEEEKkytSpU0081NsW5pkzrisWbdu2TcoOlsU5jTcrPJGtZ5vTcYrDiaW6nmmRt0j7j0AuQZNwUVouJE0GDx5c7jPmhcgVctCFCGPx4sWWjcUgdOnSxWaYhiuNE73FOKNcDoxJ436cyWjGi+cnUoBPRDKzwuMZ7fDoczKOfVm2Jd3PyDgXP1s10YWRbsxiZeSbEEIIkS5r164t6dixYylbc/TRR5dMmzatVKY2VmaZGeuJFOATkcys8GRtfTKOfVm2Jd3PGM4333xT8sgjj9h+ZxRd5Psz0o3HXnvtNY1LE0WHHHQhInjyySctO4uBuOeee8wwPPvss+tlj5kDfu+991oJFiPaohmwY489NuWy7kjKOiuczHmk0U4nux1vpFyqn/GTTz6xMW7MWmVm7MEHHxxzEUDAhJmyd911V8lHH30kQy2EECIrEJRv165dySabbBKyQXvvvbeNCaPVKt4873TLuss6K5zMeTRbn252O9pIubJ+Rqrc2M4hQ4aUtGjRwgLt0RIa9evXL7n++uvtuZks2Rci35CDLkQUbr75ZjMYzNKeN29e6P4FCxaYcQkvta5du3bJ4YcfnjDLXdY5p2XNoBNAiGa0y9oDH05kL3gymfnPP//c+vdr1Khhr6lcuXLUz7X55puXHHPMMWakWQT89ddfaW+vEEIIkSxfffWVZYjJ4nrbtO22266XKc+UM5xOBh2HOZqtL2sPfDg45eHvmUxm/tdffy2ZP39+yejRo00bhvVReMDDX0iEHHDAASXdu3e3efE//fRT2tsrRKEgFXchoosn2kxTRrGgjrrLLruUepz7hg4daqM+UE+PBqNQUB/1o1R22GEHU1NFDb5GjRqlnvvTTz/ZmJUFCxbYhbFv22yzjSmu9+3b10aFhSugcz8K5pEj38K59tprbXTKOeecYyqvng4dOth4FLaB8WypEm9kGurpqOKiHs9nYMbrSy+9ZMr4jIGJxu67725j0hiV0q1bN3fQQQeVmuUqhBBC5AIU00ePHm32npnh0WC6y4gRIzLy/5VFAZ0RpYyFxdaHr0fSVZFPNDKNaTKff/65jYJl/Bn2ngvj4sLHu3lQkef9eC3XdevWtXWSEGJ95KALEQOcWpzps88+O3Rfjx49bLZ28+bNbTQLjvWsWbPc9OnT3dNPP+1Wr14dei6PM/aEC872uHHjXIUKFdycOXNcnTp1XMWKFd2YMWPcxIkT3fPPPx/XSPJ/4hg/8sgj5vjaj3eDDczpJ3jgL5dddpnbY4897PH+/fvbCBLGtESDcSWHHXaY3WbkDIsCRpP5bfYXRrVgbNetW+fWrFnjWrZs6d5+++313o/PxgxV9kks2GaCH8ycZQwbn4txdkIIIURQYZzZq6++araeC05oOAS8sZ/ehvprgvKpjgBLdVY4Nv6ZZ54p5aCXdbQZ9vnnn382W8+6gNFzkey22272HIICsSCJQLCdyyGHHGIOec2aNTUOTYgkkYMuRJIQGcaxBJxgZqjiIJP95XLUUUfZvFKM9+OPP+6WLl0a87223nprV716dcs0Y+iAbDYzyXGImWFOFpkM+c4772yOLwsEnk/EmscxpJEwF3SrrbYyh5po/xdffPHfH/oGG9h7EDTgdTx+wAEH2HN5jIqAaDPF/Wsh2v8XC/YLwQoqB/g/jz/++FB2nP+bzy6EEELkI5988knIWX/55ZfN1kUDG4u9w75zYU55+DV2ntf6meY42+EzzuH/21FDt8Pv8/Ych5oZ5yQWeF/+X2y+t/3+Gvg/uPi1i7/NuoIKuFhB/WiQAa9Vq5YlHbDvrEG4rlatmpxxIdJADroQSUIGefjw4e6OO+4wYxgJ2e0WLVrYbRx0suyFBs42i4F4zvqLL77ojjnmGCv523LLLe02kXMhhBCiENcGixYtsqy6v3z00UcW+I7luAcdAghUt+G4h1cGEmy/5JJLzCnfddddLaEghMg8ctCFSBFKuHE+p02bZn/7THevXr3ccccdZ/dRAk7fGuVtZMDDLzi5ZNcx6kS7iVpz7S8YekrpyEKfdtpp9v5Exnv27GmBgRtuuMEy+ETE6T0jYLDPPvu4AQMG/PdHvcEGbtCgQfbco48+2jVp0sTegx6xqVOnmrPcunXrUPT91ltvtew5femU5fFc+sZ5PyoGrrvuOrtmeyhTo5+8Y8eOtggho092gD5yesgJSqinTAghRLGDc4uT/s0335idj7T1/M1zsO/hF2/zWStgz30VW7TbXAgCsOagp5vX+lYyH0z31/7i1yz+Ev437XhU8hFcL2vJvRAifeSgC5EHYFRHjhxpUXkCAZSPwahRo0yg5qyzzrKsvYfINs4zzjel+BhgMvytWrWyIEJ4zzslae+99571sJ188sl23wsvvODatWtnDvmkSZNCz33llVfMiFPORgmdEEIIIXKH70H3wXghRP4jB12IAjDOCMOEZ64Rovv+++8tOo+oG0abSD6OOWJyJ510UilFVp63//77W/RcCCGEEPmBHHQhCo+Nc70BQoj0wPmOjJo3bNgwZLTDlVe5RBJtjIoQQgghhBCi/PmvpKMQQgghhBBCCCFyihx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBx0IYQQQgghhBAiAMhBF0IIIYQQQgghAoAcdCGEEEIIIYQQIgDIQRdCCCGEEEIIIQKAHHQhhBBCCCGEECIAyEEXQgghhBBCCCECgBz0/2vvflVqCaMwDi9lg0VBm0WDNoPVYDAaDWIX0eAteAkWb8Cgd2AziCCIIGKyG4wigkXwT5jD2bdwtsx7Pp8HNrsupix+zDczAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6NGp8fLwWFxeH/wBAe+x6aM9Y13Vd30MAAADAb+fWGgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQACBDgAAAAEEOgAAAAQQ6NCYl5eX2t/fr/n5+ZqYmKjZ2dlaX1+vm5ubvkcDAEbArod2DfoeABitzc3N+vr6qtPT01pYWKjn5+e6vLys19dXlxoAGmDXQ7vGuq7r+h4CGI23t7eamZmpq6urWltbc1kBoDF2PbTNEXdoyOTk5PB3dnZWn5+ffY8DAIyYXQ9tE+jQkMFgUCcnJ8Pj7dPT07W6uloHBwf18PDQ92gAwAjY9dA2R9yhQR8fH3V9fV23t7d1fn5ed3d3dXx8XNvb232PBgCMgF0PbRLo8Avs7u7WxcVFPT099T0KAPAD7HpogyPu8AssLS3V+/t732MAAD/Eroc2+MwaNOTvp9S2trZqZ2enlpeXa2pqqu7v7+vw8LA2Njb6Hg8A+Ed2PbRNoENjb3ZdWVmpo6Ojenx8rO/v75qbm6u9vb3hy+IAgP+bXQ9t8ww6AAAABPAMOgAAAAQQ6AAAABBAoAMAAEAAgQ4AAAABBDoAAAAEEOgAAAAQQKADAABAAIEOAAAAAQQ6AAAABBDoAAAAEECgAwAAQPXvD2eIolOV3aeGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -301,12 +301,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAHjCAYAAAAT5iygAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQncjOX6x++IrIksx06Wgywh4hxriGzJEgplyRIiQkopKltJFJIQsoXsu7KdI1tZw5GdY19OlmPJmf/nd/V/pnnnnZl3lueZZ/t9P58xZr/fmee5r/v63ddyn8fj8ShCCCGEEEIIIYQQQgghxKUkM3sAhBBCCCGEEEIIIYQQQoiZUCgnhBBCCCGEEEIIIYQQ4moolBNCCCGEEEIIIYQQQghxNRTKCSGEEEIIIYQQQgghhLgaCuWEEEIIIYQQQgghhBBCXA2FckIIIYQQQgghhBBCCCGuhkI5IYQQQgghhBBCCCGEEFdDoZwQQgghhBBCCCGEEEKIq6FQTgghhBBCCCGEEEIIIcTVUCgnhBBCCCGEEEIIIYQQ4moolBPiQD7//HOVL18+lSpVKvXEE0+orVu3eh87ePCg+vvf/65y5cql3n//fVPHSQghhLgd2mxCCCHE+tBeE+IOKJQT4jBmz56tevXqpQYOHKh++uknVapUKVW7dm11/vx5ebxbt26qVatWauHChXL55z//afaQCSGEEFdCm00IIYRYH9prQtwDhXJCHMbIkSPVyy+/rNq2bauKFSumxo8fr9KkSaMmTZokj1+5ckWVLVtWlSxZUuXIkUNdvXrV7CETQgghroQ2mxBCCLE+tNeEuAcK5YQ4iDt37qgdO3aomjVreu9LliyZ3N68ebPcHjRokNyGYcdj2AknhBBCSHyhzSaEEEKsD+01Ie7ifrMHQAjRj4sXL6p79+6pbNmyJbgftw8cOCD/r1u3rrpw4YL67bffVJYsWUwaKSGEEOJuaLMJIYQQ60N7TYi7YEQ5IS7kgQceoAEnhBBCbABtNiGEEGJ9aK8JcQYUyglxEJkzZ1bJkydX586dS3A/bv/lL38xbVyEEEIISQhtNiGEEGJ9aK8JcRcUyglxEClTppQmImvXrvXe97///U9uV6xY0dSxEUIIIeRPaLMJIYQQ60N7TYi7YI1yQhxGr1691Isvvqgef/xxVb58eTVq1Ch148YN6dBNCCGEEOtAm00IIYRYH9prQtwDhXJCHEbz5s2lkcg777yjzp49qx577DG1YsWKRM1HCCGEEGIutNmEEEKI9aG9JsQ93OfxeDxmD4IQQgghhBBCCCGEEEIIMQvWKCeEEEIIIYQQQgghhBDiaiiUE0IIIYQQQgghhBBCCHE1FMoJIYQQQgghhBBCCCGEuBoK5YQQQgghhBBCCCGEEEJcDYVyQgghhBBCCCGEEEIIIa6GQjkhhBBCCCGEEEIIIYQQV0OhnBBCCCGEEEIIIYQQQoiroVBOCCGEEEIIIYQQQgghxNVQKCeEEEIIIYQQQgghhBDiaiiUE0IIIYQQQgghhBBCCHE1FMoJIYQQQgghhBBCCCGEuBoK5YQQQgghhBBCCCGEEEJcDYVyQgghhBBCCCGEEEIIIa6GQjkhhBBCCCGEEEIIIYQQV0OhnBAX8Pvvv6t//OMfck0IIYQQ6wJb/c9//pM2mxBCCLEw9LEJcSYUyglxAR6PR128eFGuCSGEEGJdYKsvXLhAm00IIYRYGPrYhDiT+80eACHEWmzZskX961//UoULF1ZPPPGE2cMhhBBCCCGEEEIIIcRwGFFOCPHSr18/VaFCBdWmTRu5xm1CCCGE2H8TfNq0aXJNCCGEEEIICQyFckKIAOd5+PDhCe7DbTrVhBBCiH3hJjghhBDiLLgBTohxUCgnhAgotxLJ/YQQQgixNtwEJ4QQQpwFN8AJMRYK5YQQATXJI7mfEEIIIdaGm+CEEEKIc+AGOCHGQ6GcECKgcWffvn0T3IfdaTb0JIQQQuwJN8EJIYQQ58ANcEKMh0I5IcTLsGHD1I8//qimTp0q10OHDjV7SIQQQgiJEm6CE0IIIc6BG+CEGM/9cfgMQoiNgPNMB5oQQghxziZ448aNJdoMjjRtPCGEEGLvDXDf8ivcACdEXyiUE0IIIYQQ4mC4CU4IIYQ4A26AE2Is93k8Ho/Bn0EI0RE06tCMIgjHQG7evFmdP39eZc2aVSVLlizoa3zfmwaXEEIIiT++NrtixYre+2mjCSGEEOvba39ovwmxF6xRTogFgTGdNm1aou7VSKuqUKGCatOmjVz7/h+PBQL316hRQ/6P62Cv8X/vYO9HCCGEkKRtdjT422zNFsdio/UcHyGEEEKC2+tAz6OPTYi9YEQ5IRYDxtO35hhqkCG9Cg4ujGso0IDTd5dae03q1KnVzJkzVcuWLdV///vfRK8Bgd7b//3CgTvmhBBCnEYw2xbMZkf7GYFs9sSJE1WHDh2istF6jo8QQgixIvH2P4PZ62C+uB4+tv/n098mxDgYUU6IwUQSyYXn+Dq0ALc1Y5gU/s8J9zXBnhfO633hjjkhhBCnEcy2hbLZ0RDM5m7bti2i52voPT5CCCHEapjhf4brO+vlY/tCf5sQ46FQToiBRGrIQhlTrSZ5KPyfE+5rgj0vnNdr0CEnhBBiB4zewI7WAQ5mc8uVKxfR84100AkhhBCr2Guz/M9wfWc9fGxf6G8TEh8olBNiENEYslDGFGlVSJkOBkR4/9SrcF8T6HmB3i8eDjlrqRJCrE61atVU9+7dVc+ePVXGjBlVtmzZ1Jdffqlu3Lih2rZtq9KnT68KFiyoli9f7n3N3r171dNPP63SpUsnz2/durW6ePGi9/EVK1aoSpUqqYceekg9/PDDqn79+urw4cPex48dO6buu+8+NX/+fFW9enWVJk0aVapUKWkkRay1gR2tAxzMFrdv3z4qG633+AghhBAr2WuzNoTD9Z318LF94Qa4c6AvYW1Yo5wQg4DYC8Puz9SpU2VSC7eeKG4PHTo0YE0yEE59Mt+O3MmSJQv6mljqnelRg421VAlxN1iS3Lx505TPxmIRi8dwF7c//fSTzFHNmzdXs2fPVu+++6566qmn1LPPPiuPf/LJJ2rOnDnqxIkT6s6dOzKvos407ALqWGK++/3339X3338v7zlv3jz5/JIlS6rr16+rd955Rxa0O3fulHkb/8+fP78qUqSI+uijj1ShQoXUW2+9JWU5fv31V3X//fcb/A3Zn2jsVFKvScpmR4Ovza5YsWJMNtqI8RFCCCFWsNdG1QCP1V4bVVPc7L/XDpjlS0TiRwD6EhYHQjkhRH9+/PFHbEIluuD+cF47derUsJ4bDnfu3PEsWLBAro2kb9++Cf7Wfv36GfZ96f0dEULM5/r16wHngXhc8NnhUrVqVU+lSpW8t3///XdP2rRpPa1bt/bed+bMGXnfzZs3ewYPHux56qmnErzHyZMn5fGDBw8G/IwLFy7I43v27JHbR48eldsTJ070Pmffvn1y3/79+yP6nt0KbEag3x73x2LbrG6zzbaXZn8+IYQQ59rrWPxPu/jYVvl77YBZvkQkfgSgL2FtuGVAiEFoqVb+kVzh7PZq5VDsBqK/GzduHNWOeahUMv/3YeQ5IcRsEK2hkTx5cklxLFGihPc+pEQCRBrt2rVL/fDDD5Iq6Q9SIjFfHjp0SCI/EC2ENMr//e9/8jiiSIoXLx7wc7Nnz+79DESHEGVIKZKkbJvVbbaZ46O9JoQQYqS9jsX/tCNu+3udDH0J60KhnBADcaMhi9YhD3dBFKz2O75nfK5eqW2EEGVK2iJSBc367EhIkSJFgttIdfS9T0u/xCIVf1ODBg0CCoTaAhWP582bV+oT5siRQ16HRS1SLYN9ru9nkKRx4wa2mSRlrwkhhDgPPXyxSO2122y02/5eO/gSkfoRgL6EdaFQTojB0JDpuyAKFXmOxhSMXCPEvmCxljZtWuU0ypQpI3UD8+XLF7D+36VLl9TBgwdlYVu5cmW5b9OmTSaM1Pm4cQPbLCLJFCOEEGJ/9Mwior0m0UBfgr6EHlAoJ47HSRHG6IJ85swZdfXqVdlVvHbtWqJr7f9o7ICdQVy+++479dtvv6lWrVrJxIpmDrhg5xMdlZHCE+gaFzQnyZw5szzfaMJZEAWLPMdOKSPXCCFWpGvXrrJwbdmypTiNmTJlkqY5s2bNUhMnTpRu90i3nDBhgkSFIEXyjTfeMHvYjiUeG9iwwefOnZPU11C2Gte3b99W9+7dE3uN16xYsUI98sgj4hBpNvuBBx4IaavxfxxXf/nLX+S5di51QwghxH4YkUUUD3uN5o9XrlxRZ8+eTWSf/e03fHHNXuMydepUeQ9fHxvXsMnBbDWuH3zwQVnv4f+RNIAk7oW+RHyhUE4cjV1qY8JAoy4UBOKTJ0+KGI7Lv//97wT/h5EOBAysrzHGJWXKlF5BHCI5QKdjfBYMO4w8OkL7LgL803I0YPDhfGPSxQWpPL7/L1iwoHRQxmfGSlILomCR58E+m5FrhBCzwTz5j3/8Q+YqdLOHMIrUyDp16sgcjTkcC91XX31VUiT/+te/qtGjR0vHezdhl41tOMpwTo4cOZLIVmu3L1y4IPY2EKlTp07gOEPYRm1KHAsQysHp06el5iTeA5dbt24lcNxhv4MBRymYvUYkUqFChVSGDBmUlUvdEEIIsRdWzCKCv3v8+HGx2bCrgew1BHKsy4L5wL4CNyKVNXvtG0R29OhRr4+NjXL/zfFgZS0QtOZvq7XbuXLlEnudM2dOiumEvkScuQ8dPeP9oYTEy+GuUKFCovt//PFH04w1BGs0WcCCwf+iidkAxjiY0YRgjR1EXycbTneoiO+7d++qZcuWqbp16yaqheULhHJfo44xQcD3F+y1/+MxbQrBogFiOQQO/wsMvN4R6f6CihV/b0IIIfbc2IbdxOZyIHt96tSpRBvJgew1rrNkyZIgkgyXQCmzkdpsOP8Q7H1tNqLX/QUA39u+QgAaRGk2Go649v8CBQqoVKlSuXIDhBBCSPSY5YvBF8UmcyB7jQ1n30AwZEkHstW4wC5iE9nXZmMjO5RIHY69xvj++9//JtjsRnY4BPpg9hqP+4rpvnba9wJNgBCiPxTKiWOZNm2aatOmTaL7kSLVunVrwz8fIvKOHTsSXBAtrgFj7G/0cBvRXoG6GcdCuEJ5pGDHHMYci5BACxM8rhn4xx57TJUtW9Z7QVflpMSCWIUW3B46dKiun0EIIURfzN7ohAO7e/fuBPZ63759XhuGzehADirKoxhRmswIm62lliPqLdRmPQQBRCH52uvSpUuLaEAIIYSY6YshMhs+pq+9/vnnn73CMuwxfGn/TWAtMluP7Od4+NhYl6B0hhZg5xto57tZDz0Btat9bTYi0RmBTkhsUCgnjiWejvfly5flfbdv3+412kjvAg899JDXcJUsWVIc0HilPRttxEMBgUGLxvvll1/UTz/9JN+LlpYH4QHiuWbcy5cvr4oVKxazYWfkGiGE2It4bmzDHsIebdu2zWuvYaMQoQ37iHRVTRzGhi5sCSLO4tGnwyyb7Vv+DY2gdu7cKd8LrlHyBXYZ3wO+F9jsxx9/XGw27DghhBBihC8G24TNXfjYsEmw3bhoG7soO6H52I8++qh3AzuefTrM8LG18m+w13v37vWuZbTSbchk074X2Oy//e1vkvlGCAkfCuXE0Ri1q42orA0bNqh169bJZdeuXWLM0UTBd0cXF5QjiUb8xXui/inqnHbs2NF2RjwYWNxg5983EgCLKXx/MOxVq1aVWlrVq1dXRYsW5Y44IYQ4HCM3tmH/YGd++OEHsdeo7wgnE7awRIkSCew1bluhEaZVbDY2vPfv35/AXkM8R6QbovLwm8Fe44L/UzgnhBASqzCu+de4aNnYiBL3tdcQgJHRZTZWsdf47lC+xT+bHeVdAAL1NHsNXxulZgghwaFQThyPHrvaEMY3btzodbQ1YRw72RB0YXQqV64ctSgeiIoVK4pIABDRFYvzbhUjHgzUasPvpC2Ktm7dKmOGcK4ZdVwonBNCiDPRa2NbE8Y1e7Jp0yYRxlHSDHZacxKR0WQFUdxuNhviOcrS+AYLIKuOwjkhhJBI0YRxzceGMA5fD1ldmj1BRDSaVFsRK9trAPEc6yDt+z1w4IDcj4w5X+E83hHnzAAnVodCObE8Zk2kSGdatGiRWrx4sUSgoSZanjx5vMI4LtjdNoqmTZuqefPmeRcRsXyW1Y24PxA1Nm/e7F04QTiHc46aaw0aNJALfge9G44RQgixn73HZvaKFSvEZi9fvlz95z//EWG8UqVKXpuN6DO9+2IYhZ1sNtZGSP3WRPP169eLcA6RvGbNmqphw4aqfv36TPsmhBAi/tw///lPr48Nm+8vjGNTG6VL7YCd7DVAhDnstGazNeEcayTYa/jY+C2MDEyzWvN2QgJBoZxYmnhOpL6GGxc0zdAcPRiNWrVqGSqM+9OjRw81evRo+T92gv/+97+HdFRh0HyNGsRmGD/UXUVJGNRg9TXiKOuC0x9iM5qbWBn8LdisWLp0qfw2qH2eNm1aVbt2bflt6tWrJ9HnhBBC3AGaeWmONqKbYevg6MEm1KlTR1Kzreq0wvb6O6FoznXx4kX5P2qsYpNYs9m3b98W5xb2Gk010SDb6sI5Ni7w22BdhftQ01xzwlHiJp7ZYYxcI4QQc8turly5Umw2RGVspqIJpebDIaIZvqqVgR07c+aMun79umy6FyhQIIFQjj5kN2/e9Npwu2RU4W/6/vvv1ZIlS+TvwG9lZGCa2c3bCQkbCOWEWJEff/wRmziJLrhfL27duuWZP3++p1WrVp5MmTLJ+//lL3/xdOjQwbNo0SLPjRs3PGYxbNgw79/crl07z8SJExM957XXXvOkT59enrN79+4Ej/3zn//0vr5r166eBQsWeO7cueN9/NFHH5XHHnjggUTvO336dE/58uU9Tz/9tGf9+vUJHvvf//7nOXjwoGnfDT5/z549ng8++MBToUIFz3333SeXv/3tb/KdHTt2zJRxEUIIMXbu/+mnnzxvvPGGp1ixYmK/UqZMKXZq7NixnhMnTpg9RLE/X3/9tefDDz9MtFa5e/eu5+GHHxabW7Zs2USv7dSpk9dmb926NYHNxm3tsW7duiV6bZs2bTy1a9f2tG7dOtFj//nPfzxXrlyR788MLly4IN9JkyZNPOnSpZO/IW/evJ7u3bt7NmzY4Ll3756hn9+3b98Ea0jcJoQQYiznz5/3fP75555atWp5UqRIIfNvyZIlPW+99ZZny5Yths/9wbh9+7bYaozBn4ULF3r+/ve/e4oWLeqZNWtWIs1AsyPlypXz3g87DXsNLUF7fOfOnQleu3nzZk+WLFk8+fPn9wwfPjzR5+L1S5culTWOmeC7WbNmjadHjx4yVvwtadOm9Tz77LOeqVOnen777beYPwPvE0jfwf2EWIlk4UvqhMQXRP9Ecn8kO8KIPkODTKQCN27cWGqOd+nSRXY5T58+rb788kvZRTUzass3ynvSpEnqo48+ChiVhvreADvcvqBeqO/f7M+dO3fkGlFdzZo1kwabGog2R7kTLYXdF0S8oSEIIrpRHiZQlN+lS5eUUWC8xYsXV2+++aaUZ8FO+MSJEyWi/N1335Wof0QmTJgwQdLxCSGE2Jfjx4+rIUOGyLyPiHHYZ0Qnz58/X2wNIqBgv3Pnzh2X8SAi7o033hD7h0gyXxA9/eKLL4p9QmqzL4hAg91FdLgWdeaLb4S1f7In+pRoBIrswpoG0XqI4vZn7NixEqmHSHSM3T+TDhlagdYIeoFma23atFFz586V9QPGiFIs3333napSpYr0dsH3haw3vcGazjcrEeA27ieEEKIvsG0zZ86UKHE0i0R2NPj444+ljCj87ffff19seLJkyQzNRN69e7c0n/YHZV3gKyJ6Gc/zBdHUyGBGE2utCaavXx1u+TaUfvMFvvSFCxfkO/D310HXrl3lO8PFH2SXjRo1SiK+jfZr8TfWqFFDPg/+PLLD3nrrLfG1YceRBfD888/Lust//RMuyOyK5H5CzMIexRqJYwmVDqv3RIrmU9OnT1czZsxQJ06ckEacr7zyinrhhRdUsWLFlNXwL4dy/vz5RM9BzXQ043jwwQcTCOMAxgziAYw6mqD406hRI0n1htMKB7Zz587ex/773/+K0w5n3b+kidZ9HGTKlCnR+0IkwCIja9asIrhDUI8VpNR36NBB6tYhpR5/m+/f2a5dO7lg02DBggXyO+Nv7969uyw68BvjmjXNCSHE+iAtG3YJczkaaSOF+dlnn5UNY5RDM7KkCuwNNorh0CdPnly9/PLLCR7/5ptv1Jw5c+T/cHq1NcmYMWNEANAItGEMoR8OM9KyAznvWhk1NC2DY+pra5s3by6COcqW+HP16lXv8/zB5j+AIOBvz+EIYw0BO401QKANeT1B81SUTMMFpeWwVsBvPH78eNkMQYPVVq1aqZYtW6ocOXIYGnDBFG9CCIkdbLiidAfmcmyAQgiG34k5/rnnnpPNUqOAzcTn+/rAmo8PnnrqKdlE9gX2FzYenDt3LoE91vxL2ET/DWvY5hYtWojAH0iLgA3XGoT7Nx7FWgKfg+/Gv8QM/gaMw/fzfcFaCBveADbT16eHsI81EmwnbKaeJc3wXo8++qhc+vfvL0EL2ASZNm2aXON3xfcBm42Nj3A/G7YXpXT9m7fTJhPLYXZIO3Ev4aTD+j+nX79+Ead9ffTRR57HHntMXp8xY0ZP586dPRs3bjQt5Stc/vWvf3n/7ieeeMKzfPnyqN9LSwvzLb2iMXfuXEmNO3XqVIL7f//9d0mZRhqWL/v27fO0bNlSUtPwOn+QWoYxZ8+ePdFjY8aM8ZQoUcLTtm3bRKViQuFbRqZp06ZhvebMmTOeTz75RFLc8boMGTJISZ1NmzaZloJOCCGRULVqVUmB1UDJCsxrTgT2CaXQGjVqJGnayZIlk3Ii06ZN81y7ds2Qz4R9u3r1aqISKSiPArtRuHDhRK8ZMGCA1x4tXrzYe//HH38s95UpU8Yzb948KVFmhM0OBOz1pUuXPCdPnkz02KeffuqpUaOG/C1YE/myZMkS79/y5ptvJnptw4YNxeZiHWWk3URK+3fffSefhe8e5dQwZpRsuXnzpqVL+BFCiBuBH9ezZ08pWYp59a9//atn0KBBnl9//dXwz/7hhx/ED0U5ry+++CLBY//+97+9pV4KFCiQ6LXjxo0TW4MyZv6+L2zuf//7X0PttT9Yc2BMAwcOFHvtD9ZBmu06d+5cgsdWrVoVtUYSLVgL/Pzzz57XX3/dkyNHDu/3jPFHUv4UdhjlVmiPjcdNvoSeUCgnphCJ8xLpRIoJHAa0RYsWYijhdDVr1kzqjvmLvlYGNcC176VKlSoxvVesRjwSY9+lSxdPtWrVREwPVEdV+5v8a8Ohjurq1as9169fDylMTJo0KeJx7d+/X95Dq7dWvHhxEe1Rt5UQQuyyuIXQaWbvDCM4fvy4zM/YXMX8jM3NUaNGyWankQ4++lpgfdC/f/9Ej2sbrBBs/W0S7Ak2rg8fPiw2TwMiNeqQ6jHueNlsBA1ADH/kkUc8s2fPTvAYxIL7779fvgfUa/UHYoi/064HsMtfffWVrCPw2Q899JDn1VdflU36aIg14IIQQsgfYOMSG5iwn5hPs2bNKmL5tm3bdN9MhX3dsWOHiMf+tbHRP0ub01955ZUEj+G52mNvv/22x2iMttfbt2/3TJkyRYRo/+94xIgR3r8Vz/EFz0Ut9RdffNEzY8YMQ8aGTfq1a9dKABx6pmHNVLduXdFcfNdHxFzc4EsYAYVyYgpGNHKA0Dp69GhPkSJFvJFgI0eO9Fy8eNFjV+AgBtsRt6LTnRTYsEiePLk0YEMEmS8wqvhb4ZgjMi+QaIELIgWiBVkE2H1HUzGMI3Xq1J727dvLzjghhFh9cesUMBevWLHCU79+fYkch4OFTVb/BlixApEbn+NvN06fPu21KRBk/YHDic1UNJs0w25awWbv3btXmnjhO3rppZcSPd64cWN5DI3B8X0aAcR4CNtaphqCBiDoR/q9MHKNEEJim4t79eolmdmYi2vWrCkZyUbaKGyQanYavpv/hqrWGBoNvv2BuI4spXiIgWbaa2Rcw0Yi6hw2239TX/v+GjRokOi1ejTm9AWZf19++aXn8ccfl8/MlSuXZBicPXtW188hkeNUX8JoKJQTU9AzHfaXX37xdO3aVdKvIH5CjEVEuRPKa8ABxfeSKlWqmP6eYEYc7wlhAmVesCscD7BoCSSG9O7d23scYHGjAQOr3Y8SOnoB4WTw4MFiyPHelSpVisoBDwc66YQ4b9GJtF0sPLGhiaiqCRMmiDALURH2CBucy5Yt875mz549njp16oj4iOe3atVKyltp4LWtW7eWx5HKjHIXSaVLYlMRGTJp0qSRuQxis2+ZksmTJ0vZKYjF2ETGe8OhimXDMRawoQ0HFhvZmHdLlSoladNGlFZB9pGWfj127NhEj+fJk8dTsGBBKcdmNawglAOsCxB9j3WW/0ZHpkyZvCXt/EvZYU2BSEC91mHYWJ81a5YI5fhMpHvTASeEEON8DMzryJ6qV6+eRApjzke5jUOHDun2GRC8v/32W1nn+NsLREFr/t8777yT6LX+ZdPcbq/9QQCaVkZu2LBhiR4vXbq0rMWQEaB3OVpEwaPcKQLSEByH9a5/JjmhL2F1KJQT04x3rOmwSBlGeo+W+oX0Kv9aY3bn3XfflZSyDz74ICYDHMyIw/nUvn+zFxwrV670dOzYUSbgy5cvJ4jsC1VDNVaQGoaoCBgRbQccxiNQCZho8D/OYdAomhMSGpx/uPg6Tiidhfv8s1G05/ou9DHX4T7/WpPBnhspmC8QBY3NNoiCuMZG7dNPPy2LXNyHhebDDz8sm4NwBhEVizIfiPL56aefPLVq1fJUr17d+554PsTbNWvWiDiJaGt8RqjFLf7//fffe44ePSrpr6gRivfxXdxCLEb0F1KjIV6ijMbzzz/viSdYTPfp00f+HmQNNW/eXGy4HkIqjgt8Z/5iO/5ebd5FFpE/es3xvsCWoGxMrJFaVnW8fb87rNnQPyXQdwvHT+tVgmNOT3bt2uV5+eWXvQ44/q+ncEMIIU7q9xUpsDvwvbBW0IKUUA4rln4RwdD8eFz8e1ehnBnWCsgWP3DggMeqWNleY738j3/8w3PixIkE96NEnPa9o6+KP3oFz6F3CoRarfQpSvagt0u8ghnj6UtEA30Ja0OhnJhqvKOpP7506VKJ/tVSfvF6/8mOhGfEIY5jtxETqBUNPMAiSTuGIKwYCQwK6qjDSMEovffee2Lk9c6c0HNBS4gT0c4R3+aD77//vtyHKBVfEAGB+7HA81304T7/RVzmzJnlft8UVSxGo1ncwg75OhWIsEAUh78jgrrVWPw+9dRTiZxAPI6mjxB5IfrNmTPH+zjmHoiBkTTgQWQW5i7fxS0+w7e5FpowZ8uWzRMPUMe7U6dOEtX04IMPSoq0nmU6Jk6c6E0FRyNQX+DAoNkXIsZ9m24aiXZ8Qcx1quPtj7+jiHWa5hTDsUIWgS+4rUc6PDbUhw4dKscyyvdgrcAyaoQQt6B3s2LMyxClIbLhfdC/Qq8NbQh+qG3uDzLMtHEHinqOFoj6W7duFdHPaOxkr32jkitXriz+bqAgNJRWQwYXStDpobFgjYwId622fYkSJTzffPON4XXM4+lLRAN9CWuTTBFiAFu2bFHDhw9PcB9u435fnnjiCdW6dWu5DsW9e/fUrFmzVOnSpVW9evXU3bt31cKFC9Xu3bvl9Q888IAhf4fTyZAhgzpz5oz67bffVIoUKZTV+P3339WqVavk/w899JCqUKGCoZ9XokQJ9fXXX6tff/1VtWjRQg0ZMkTlzZtXvf766+rf//53xO/3r3/9K+Tjgc4JQog9KFmypPf/yZMnVw8//LDMIRrZsmWT6/Pnz6tdu3apH374QaVLl857KVKkiDx++PBhudy5cyeBLcyUKZP661//GnIMa9asUTVq1FA5c+ZU6dOnF3t46dIldfPmTe9z0qRJowoUKOC9nT17dhmTkcA2P//886pQoUJq/vz5auDAgerEiRMyp+bIkSOq98Q6wJ+//OUv6sqVK/L/pUuXJngsWbJkatOmTWrcuHGqfv36Kh5gfdKsWTNL2lOjwPfsy//+9z/Vt29f+c5r166tHnzwwQSPjx07VmXJkkW+p71790b9uRkzZlT9+vVTR48eVZ999pnYUqwR69atqzZu3Kj0Bu8/bdo02mxCiCUI5mMk5Xv4c/XqVfXBBx+ofPnyqddee01VrlxZ7dmzR/zsSpUqqfvuuy+mcWKuL1y4sHrppZfU2bNnEzwGO9GjRw+1fPly1b17d6UXmzdvVuXLl1cdO3bU7T2dRPHixdWGDRtkvdizZ88Ej127dk3WU3j8/fffV/fff3/Mn4c1csOGDWVNtn79elmzvvDCC7LGHT9+vLp165ZyK/QlrAuF8iiA04WDGot/XCpWrCgTvMaECRNUtWrV5DEYFxggf2CM8JjvZejQoQme8+WXX4pIh4W/3Rbmehnv27dvy/eASaBly5Yqa9as6vvvvxcDiAnX30EjzgLHvSaCPPXUU7oY63DA+QnH+9ixY7JwwzGYP39+WXDBCIULFoZJEek5YUUwd2EO811sYQ70n+M6d+6c4HWLFi2S7wgGfMmSJSaMnFiV69evyyVz5sze+/r06SP34dz0BQs13J8nTx7vfV27dpX7sFj0tdc4jyHcFi1a1GuvIX5Faq8h+vqKoZgjTp8+rUaNGuW115pzCeEQY2nQoIHauXNngsuhQ4dUlSpVovqOMD/BycTfN2/ePLVjxw71+eefy2NYKGv4i7YY1x+BNvrzz3/+U/7OUqVKyf9Hjx6tjh8/rvr37y8bs9GA7wjCa65cucRJ8KVWrVpyP9YHzz77rDKbKVOmqDlz5niPLzcCRw9z/eLFi2WO92fu3LnifOE6ZcqUMX9e6tSpVZcuXeQ4mT59ujp58qScUxB44OzrcaxDkMdGfZs2beQat+0MbTaxIvSvIyOYjxGO7wEgWmMuw9pp8ODBqmnTpt55FEJqtAFO/mgiHeZirL98eeSRR2TdVKdOHZnL9QI2GBvpOB6wBiOBwboMG9e+YM2GtTLAMQGb7svkyZMleDEacRvnI+wzzuuffvpJPf744+qVV16Rz0PwGER6K/oSX331VaL1N+7XY60XaI3ue9+wYcO885bmSzz66KPqxo0b3gvAmiqYvUZApJ18Cctgdki7HVm0aJGU/0AaEdIckLKC9FIt/QKpDEOGDJELvmLUE/IHKQ9oRIR0Cu3iWy/z+PHj0mQK3YyR/oA6QG5KB0PqCUqq5MuXTxqIoAYmaiIR96SFgbfeest77CDtxyxQogbnM2rhI00NpQTCLR/gX4JIrxRJq4DURpynJUuWTJDWhXQy1I71neN8U/CRyod68KtXr5Zu9vg/6sYRYgd7jVRJ7XjX7DXKWKH5jq+91poT43NR8y9YminSJTEu33RJlJZAKmiwdEnUw8ZrfEtfIC3T9+/QGvD4gvHovfxDg2bUVMT74u9HirVe9gbpndp8+dprryV6PF6NqOOJXW12UuD4Ry8SpC1XqFAh0eNoHIeeLLGU58H5gBRvvD+OGVyvW7fOMuUNzIY2m1gV+teRE02/L3xv+G6xvkDpTbwG31MsbNiwQcpFYF7wr+eMUmTly5f3jBgxIlGtbCfgRHuNcjsoz+JbakOz4Vjr4lhD2Q3/3zoacK63b99eznWsDXCeu6Wkrn+TTf91vmav8X2j1rjmS6AsTiB7rfkSKGuj2et58+aJlobeMVb3JayGs/+6OIIamaiV6csPP/wQ0pCHqg2Eyenxxx8X437kyBE5SdxgvDExo5YoalfhNc8++6xn3759cRmvkwlmxPHdPvfcc1I31oo0aNDAe/zEuojTq+YdmpKg8zvqfeF7C3R+B6vFj0VkLA1srQYMcqFChcQQ+xv7QMbfFxh0zIPo1I0L5rhYG+AREi977Xt8a/YadT0HDBiQwF5rQjmEPzTgadq0qSx84XygezyEdU3oRS1tfBZqauI9UR8UHe+DCeUQp/H+aB6JWuCYY3LmzBnXxS3WJy+88IIswiE+zJo1K6bmRlu2bEnUWBr1FVFzEQt5iKxuwImOt7+zHaj5urbZgg3pWIMjsJ6EbcK5ifesU6dOVDXMcV4FEspxv92gzSZ2g/510oTb7wuiJsRqzYdBQ0BsyOtBq1atvHMj1gFuwun22pdly5Z5f2fUMfcnlvUfNlEgmKPnCM5jBFw4MRAiXKHc115rQrnmS2BDAX1ZgvkS8EcQ3IcNLKx9sEb3bc5pNV/Cqjj7r4sDOChnzpwpTpy/oJuUIcdOHIwVukkPHz48UaRZu3btxFmAMZs+fbrHjkTSrBNdmbUmnZg40LSAGGvEV65cKd93qVKlPFYEji66OgdqAGMmWjQGzk0s4nH+htsNPtIGtlYGjU979uwp/w/kdMOQoxkImu5iU8G/gdu7777ruf/++0UA07OJDyFG22tEc/ge77DXWvNCX3utCeUAUXLY/H3ooYdk7ihSpIicP1qjLCyK4Wwiygufh8/xP6/8RYCRI0d6smfPLu9Xu3Ztr6hn9OL23Llznu7du8vfi+iicePGxeQkIrpPEzTR3MufJUuWiDhndWBnc+fO7WnUqFFM7+Mmx9t3QwT2AMcAjnO9HGScX8jUgMOpNeWCM+jGiHLabGIX6F/rB/7+r776SiJMI82KDbbZ4I/2m2B9M3bsWI+bcJO9hhCO3xprVWgI/qBBKIRa+O7R8ssvv8haGcdT8eLFJYBSj4aydhPKfe21JpRrvgRsNcRv3I85Utv88/UlYKfxODYeHnnkEUv6ElbH2X+dgezevVu60sLg4MBBqpg/oQz5xx9/LI8jHQkOJgxLoJTiixcvhi3A2RWk1CFyThNssVvp1AnRakb82LFj0uHcakK0Xfj3v/8tCwLMA1iAIurF6A7eVgEODBYwWtqdv7H/4osvZJcbcyUcEexOY+HjD6JHGZVGjIT2Wj8QVfrOO+/I94nv8sMPP0yQ1h7LOkATIJFWatc1AI4t/A0QaGLBTY63L0ePHpWsjEBCC4472FukaUcDvsvx48eLMwgHEmnIZ8+eNSxD0mrQZhM7QHutH7Cj8+fPl/Iy+L6aNWsW9fwJMD9oJa38M34goKLEgx6lOPQCegLGi40BI3GrvfYHGVuajcRma6zrOGxGV6tWTd4PgZSbNm3yuAXaa2tAoTxKUJfv0KFDnu3bt0vUBXZ2Itnx9gc7vYjScEtNJi16CE4Pdrry588vJ3osKTskODTixoLdXZSw0RYHOPedDNLjkNIFRyTctG2Uk8D341/vjhCjob2OHdjmSZMmScrnAw884Hn99ddFaIg2Gi1QSTXMIWXKlJHv164bjjh+4NwFKisSCbTZiTdoHnzwQTlHEfHkX54nEhAljQ0eiHAQ5BAZHU6tbTtng9FmE7tAe60PKKegZWnXqFFDlz5fX375pVcIRck1O9S812PjOilor/8AmVuwqfjOJ0yYkOjxaDQeiO3oXYJASrwvetahz4CTob22DhTKdQJGyL92ZiSGXIumOnDggMfpYKKEsUV6JxwfpH6wIZCx0IjHByxE//a3v8m53LJly5hSG62Mlm6FiB/tgttIA8P/A6XMI+oUz8EOOCFmQnsdGT/99JOnYsWK3rIV0TbjQp+JunXryvsgi8wfiJ92jSTXG9psT6LzU3PAUcNUr2CNV199VYI1UAZpzZo1Hr2wmqhOm03sCu11ZOA78Z3XApXHCAf/JqgAEfjw3dEI2A49Gs6fPy/irdYM1ihorxMef9B1/LM1UDoPZenQrNu3SXQk2tG0adMkIwzlCbHZ7dTNL9pr65BMEV343//+p27fvh3163fu3KmSJUumsmbNqpzMjh07VMWKFdXLL7+s6tatqw4ePKh69uypUqZMafbQXMmlS5fU4cOH1ZUrV8weiiN4/PHH1caNG9XkyZPVmjVr1F//+lf18ccfq7t37yonUaNGDbVnzx6Zt7QL/vYXXnhB/p88efJEr8H9IHv27CaMmJA/ob0OD9iFbt26ybn922+/qXXr1qlvvvlG5c6dO6r3y5Qpk9q9e7f8f9GiRWr//v0JHs+QIYO67777dBk7cRbVqlVTp06dUsOGDVO9e/dO8BiCftq1a6fmzp0r53Ykx+Onn36qfv75Z5U5c2ZVs2ZN1bx5c/mcWOjXr5+qUKGCatOmjVzjttnQZhO7QnsdHpgHp06dKn7HV199pYYOHap27dqlnnrqqYje59y5c+KX58+fX33++ecJHkudOrX48fhOW7duraxOlixZVLNmzdSjjz5q9lBcw0MPPSTHD44VX7744gt18uRJ9dZbb8klUnAOt2rVSh04cEB17txZvf3226pkyZJq1apVymnQXlsIs5V6O4JUsPXr10stRdQGwm3s8qxatcq7C4s6TVqKEjrO4jaiV7SmVdhtQ1oUGgqh5AjSmVG03+llVvA9lShRQr4TEj+C7XZjZxfHKBrbEP131VEDFVEdxYoVc3w5Ft+0MKR+DRo0SFJnMU8uXLhQGomgASIh8YT2OrYyK+nTp5cmP5FGSiEyPFD5EdSPzZMnj2fUqFHScMiJIE0Yf9+RI0eifg9GqIWP1pQcF5RAiwYcr4iQRBPASMqx2LnxJ202sRq017GXWWnevLnn5MmTMTVS1JoE4rvToweJ06G9Tho0pYQ/jIjoWNZGviX8YMPcUo6F9tocKJRHAURFdItFl1kYEaSFaUYcDBw4MOBCGR1jwY4dOzxPPPGE1EdMlSqVNNlwagoJnA/fMiuffvqpbWuPOlUoh1MYqu4ViQ0s4rVyLC1atJAGoE434ijNAIOdKVMmqWdcsGBBT58+faJKtyMkFmivI3e4tTIrqEEazXz1/fffi9MeyMlGYyKnO5N///vf5fubPXt21O9Bxzt8unTp4j1vkWYfCyj/A4cezjzKFqDuZyRAbA80n1ixTAFtNrEatNeRgfNTK7OCvzXS+QoEKncGXwW9IHr16hVWeRsrgw2TGTNmyCaKUdBehwcayaJnQKA1I5p1R9p7BMcuflvfcixOLeVLe20OFMqJYRw7dkwWOVjEtG7dWiIBiDnQiJsfoTllyhRpzpExY0aps8ZavIQQqwDnAo4Kmp6hIfG6deuifq9GjRp5BQxE5roNfI/NmjWL6TukzQ4f2FJElSNq1L9Z2OXLl6PKYEQ0a+XKleUY7tSpk+e3335zXEQ5IcS+YAMBNZ8R7DRixIiIbQXmtLffflv6KfmDiPRz5855nMCAAQNkDvavc68ntNex2W8tmAxBldHUk4dA3Lt3b9ngRuNWBHwQogf34R+zy78QZ4FDasKECer1119XGTNmlFpptWrVUm77DuJVaxWf9d///lf95z//UdevX1c3btxQt27dkpp+qI39+++/qzt37qht27ap8uXLqwceeEDdf//9cp0qVSqVJk0alTZtWpU+fXq54DFiXE34V199Vc2YMUM1bNhQarb95S9/MXtYhBAXg9qGL730ktq3b5/UjnzzzTdj6huC3iOoCVqoUCE1ZMgQ1ahRI13H6wZgu5ctWya9XFKkSGH2cGwL6oMPHz5c1a9fX40ePVrq7kZSGxk2uk+fPlLDHGtZ1A4N9zN9b6NeMCGExAr6hWBOgp+NvgoTJ05UefPmjdhvLFeunNQbB+g/UrVqVeVEvvvuO+kV9cwzz8j3ZgS019GDmuMlSpQQraJo0aLSxyZaHeKnn36StSz636CGef/+/fl7kJigUE505fjx46pDhw7SyBANOz/66CP14IMPKjcAoRqNprDgwGQPpyoWIG6fOHFCvlM0wECDqTNnzqizZ8+q8+fPq4sXL4rwioZrMDB6AbEcTa7gGKL5TbZs2aQ5RI4cOaSJW548eWRRhk0QNl6LjgULFqhOnTrJ4mrMmDHq+eef53dJCIkrsDEffvih+uCDD1SxYsXU119/rR577LGIHHbYvCZNmqgyZcokeGzLli3SfChQ0yGSNHS8YwdrpoIFC0rQAAIDDh06FFUj2mPHjqn27dur77//XpqIQQTHOikUOP7/9a9/qcKFC6snnngihr+CEEL+YPXq1eJjX758Wfzrjh07Ru07TJ48WZogw75ASO7evbvu43ULtNexcfToUTVgwADxhevVq5fgsQsXLkhT1kjWte+//76sbdHsc8qUKXJNSDRQKCe6gMPoyy+/lChydDzGDneknbbtDiZn/O2I7oYzBoE7qQUMvrfTp09LJB92QLGzCmfu119/FScPEU1WBRsgcEIRNQhnEJsDEFvQcR2R6iQ02OTAwnTmzJkScTlu3DhGlxNC4sKuXbvUiy++KLYHEeSIJI8kihyvr1OnjmzcPvnkk7I5zs0+/TLL6HjHzr1799TUqVPVO++8o1q0aKFGjBgR9XthLTZ+/HjVt29fcdoRCIHjnhBCjObatWviXyOKHFkt8LHz5csX9uv37t0rfpqvjcf8iGwXbP7BlyPRQ3ttDBDJoTFgrYkNagTqhQuyJRBdjgxHRJe/8cYbUf823Ph2LxTKScwg2hnRNtpON3a5M2TIoNwISsxAMACHDx9WjzzySIJFCYTw7du3S3oQ0t2RYnT16tWoPitdunQS9Y3Ibgj0EK5xH8qopE6dWiKoYBSQwoTTHAI8FkNw3GHUIezPmTNHfj/8XoiIL1CggLwGIi4u0Qj1iCCEMUFkIi6IKixbtqxrj4mkmD9/vurSpYtkBXz++efi0BNCiBFgnkGkzeDBg2VzE1HkpUuXjvh9sCGM8iqIBILN2LNnj2ySkj9K2TRo0EDsMTbAo4GOt37gWMVx7xsFjjURojFhb8Mpp6KB4x1RmMgcfOWVV8R5x5qLEEKMAJksmHOQRQz/Gtmo4W7AQmB/99131aeffqoGDRokm+JuBj5tsmTJdH9f2mtjQDDZZ599Jv9v06aNrFcjAdlkWOui9FmpUqXk9cWLF4/oPfxLqWGzHJmUxB1QKCcxsXjxYtmxQ51r7HDXrl1buRmksCN9CKCkBuph/uMf/1CbN28WgRw1xMMBpU8gWiNiABdEqOfKlUvKn6AMCkqiRBK1HcyIz507V3ZJcf3zzz/LNdLotQUF0vsQMYiSL4h8h6iOSHmkIh85ckT+H66YXqRIEVWhQgX197//XS64zQjEP8ACuFu3bmr27NmyIEYtVTrfhBA9I1owfyO1FfYIDjNsVbhR5IGioxctWiTp20jb9t0UdjuwjbDfsNE3b96Mys7R8TaWWbNmqZYtW3qdcdjccMGaBxlgcJhRhg4BB5E634QQEgps7kHkxsZ2tWrV1KRJkyKKItcyv1AWDXMW7NEvv/wSUZ8Gp4Da5BBJ8V0ioE9vaK+NARkUyHZEYB+CDqCBRAP0F2hVCGCErccxEM66DOtu6Bb+/Pjjj4wsdwu6tAQlruP27due1157TboUN2zY0HPp0iWzh2QJli9fLt9JuJdcuXJ5nn76aU+fPn08kyZN8mzevNmQ7zKpjtwlS5aU8aCLeqTHwf79++W9hwwZ4mnVqpV0nE6ZMmWSf3uWLFk8TZo08Xz22WeeAwcOSOfrSLl+/brHSUyZMsWTJk0aT7FixTx79uwxeziEEAvQt2/fBHMnbkfKokWLPJkyZfLkzp3bs2nTprBfh3l5zpw5nlKlSnmuXr0a8ee6EdjZLVu2eE6ePBmVXQvHZpPYePbZZ73n08KFC6N6D6x9sHZKlSqVZ8KECVH/1oQQ4gtsR6VKlTzJkycX3+revXtRv1fPnj1ljho8eLDn1q1bHjfSo0cPmet79eplyPvTXhsH1p3r1q1LdP/Bgwc9Fy9eDPt9bt686encubMcB82bN/f85z//SfI1U6dODahf4H7iDiiUk4j59ddfPY8//rgnRYoUnk8//ZTOgQ/Xrl0LKgznyZPH07RpU8/QoUM9q1evjmiCN9qI58uXT8b4448/6vZ5u3btEvG/a9eu3uMllHAOAadDhw6euXPnhmXAzp07J6IyHN5IBX4r88svv3hKlCghC9svv/yS5xchLgZzcqD5Mty5OtZNbTjX2mfifUh8oONtLBCesD6B4xwLvs53ixYtwlq7EEJIMBYvXhzVpjZsBTa1/fntt9/Eb3cz//rXvzw7duwQH90IaK/jy927dz2lS5f2PPzww2LHI/GTcY48+OCDngIFCni2b99u6Pqb2B8K5TYhlt1kPZk9e7ZMMI888ohn27ZtZg/HkmCBo02mL774oufbb7/1nD592tQxBTPiiFo4f/68J2PGjDJeiLRG8d///lcWfcOGDfPUr1/fkyFDhqCiOUT1mjVresaMGSNjDMQnn3zifX7//v09TgLOd6dOneRva9mypSWcbwr2hMT/XIklouXw4cOecuXKyXw6atSoqMaF98CGJD4TG72cB+IDHW/zGDBggGfgwIGyyRTp2jgc5zte8FwlxD4+NuYbRDzD1jZo0CCiYKrdu3eLcIjXLlmyxNBxksTQXscXaAPaWrhw4cLiM0e6rg034NM/o7Nfv34ep85BJDEUym2yc/bDDz+YmvbsK9whZYUp2MHRovdw+eqrrzxWNuKaqH///ffL9alTp+I2pt9//10cyuHDh3tq1arleeCBB4IK5+XLl/eMGDHCc/ToUe/rtUUhLkiBdiKzZs3ypE+f3lOwYEGJhjALGHBsjMXz+CDEjmDBvXPnTs+hQ4d0eb9oI1q0qBk9NrWR2YINXwpv4bNx40bZzEUJlmig420OP/30k5Q7wDmGTSasv8MFUZtly5a1RLYlgjNQyo/nLCGhuXz5sgTxRHKu643vpjbsRqTnLUo/aWsD+Avwr0j8oL2Ov32DFpUsWbKoo7t9sy2feeaZkNmW+AwEpxgVSQ6NDeVlEFBIrIX+rX+J7tx///3SwPGf//yn+s9//hP3z0cDMDRfRCMMNFaYOXOmypAhQ9zHYRe0Zphg3bp1yspovXzRNAY8+OCDcfvs5MmTq7Jly0qTlVWrVknjUDRDQVNLNMjyZevWrfI8NKH529/+Jo3o0HwUlC9fXhqDOpHmzZvL34nzrWLFihF3/NYDNAH66aef1G+//aYyZ84c988nxE6gQRDmLzTe/PXXX2N+PzQMQtNAX/r16xe0kRDm8t69e6vnnntO1alTR87dxx9/PCxbMG3aNGlw6N/jHY2PmjZtyubLEYC5+rXXXlMrVqwweygkArZt2+Y9zuvVqyfr73BBA1c0b+/atavq0aOHatGihTRzjTf//ve/5bxH4z+es4SEJn369N4GfZovFE9WrlwpvtClS5fEz+/Zs2fE5y1sNOz9o48+Ko2K4V+RhCxdulS9//776ujRo2YPhcQImnriOD9w4ECitTB81QsXLiT5HmhkP3LkSLVw4UK1YcMGaXq7e/fugM/FZ7Ru3dqQBp7//e9/Zd0A/eWBBx7Q/f1JjJit1JPwQcPDZcuWxTWa+x//+Icna9asnrx580qUHAlvlzJ16tTeuttWiOgJtdt95swZGet9991nmdQffGeocf7ee+9JE7lQtc2RIu100IDn5Zdf9jajiSXyJZKdcS2SfO3ata5tAkRINFy5csWzdOlSXSPLkzpv8Zm1a9eWiNhII1rRS0KbU8eOHavLmN0Mssmee+65gDVjw4ERauZGlbdu3Tqm7x69VlCyCJlvJ06c8MQz0g41jrGuI4SEB9bUiCpHJlC8Isthn0eOHClRsXXr1hX7HQ5Yl8M/8gelWhiRGpy//e1vsr5Bpq7e0F5bh7Zt23qyZMnimT9/ftivOX78uOexxx7zpE2bNqLX6RFJjp51WHNYQSsiiaFQbjPiKZbD0UMaWJUqVaSONQkf1NfGd1e5cmVL1JcOZcQh5GDxgBIfVgVj/OCDD6TJpb9QjiYtbgBGFHXZIIJBDEO6aKT411rD7WBQJCfEWmJ5UmsD1GpEvwksvCMF6wptXujSpYshYyThQ8fbeuD3mDJlStjPR3AJgkwQbIKgE6OhSE6IPcRyrKlfeukl7zo83FIpOLdr1KghwVhu8X30Aj5kmzZtPBs2bND9vWmvrQHsn7aOhaZx4cKFsF97/fp1T7NmzeS1CNIzOnCQIrk9oFBuQ4wWy7FA6Nmzp0wWHTt2jKihEflzd/LGjRseqxDKiKP2NX7rnDlzeuwAoh01Q5g9e3aP21izZo2IYRDFMBcYUeuYIjkh9hHLsR5Ac+SiRYvG9DlvvvmmRMIS86HjbS3Onj3refjhh8VmQmwJ1y4iyATBJgicMLJnDUVyQuwhluMcrVixovRlmjZtWkSv7datm3ftjghpCmzWgPbaOnYa9caj7RGH82nw4MHe5vUQz42AIrl9YI1yG/LXv/5VPfLII4bULL9y5YqqW7euGjNmjPrss8/U+PHjpY4TiYw8efKoNGnSKCtz/vx51alTJ/XRRx/FvT55LKCWmMawYcOU26hRo4bUUUUNQtRLW758eVivQ83kcO73rUmO3gSsmUZI9Dz00EPSV0GvmuW+INjh448/VvXr11eVKlVSmzdvVgULFgyr7wjqkfvzwQcfJOixQWIH8ymxP/PmzZMawgD9VMJdF2fJkkWtXr1atW3bVrVv317q1utdB1mrSY5eBH/5y190fW9C3AR6EmBdjRrhRtQs37FjhypXrpw6duyY+DKtWrWK6PVDhgwRDQA1mt977z32ICDEh2zZsqnvvvtO+p7B5vry/8HBIV+P82nAgAFq/vz54lvDBz5+/LghNckffvhh9dhjj/EctjgUym2KEWI5miKgMSIMOSYZNCTiCexc0OwCzVnR4MQuQjmO9QULFsj/YWTQ7NKNoGkYFvEQxyCSQSxLagFQuHDhJO+nSE6IPcTy27dvq5deekm9/vrr0ugYDYnCabKN+R6Lc7x2/fr1uoyFBLZVuXPnVqlSpVJ37twxezgkRl555RX1zTffqKJFi6opU6ZEtDaGqI6gEwSfIAgFwSgIStEDiuSE2EMsnz17tqzZs2fPLsEu8LeTwn9dny5dOrVo0SL1888/q5o1a+oyLrcB/4Yb2M4F522tWrUS2WjoHS+++KK6fv16ku/x7LPPir529epV2djatGmTLmOjSG4/KJTbGD3FckSiQRjDgn7r1q3qySef1G2cxJpgoh40aJB0SreLUP7tt9+qW7duyf+ff/55V2c74PeCOAaRDGJZjx49Qi7+sPDv27dvgvv69esn92/ZskUiTBH5RpGcEGuL5ThHn376aXG8p0+froYOHSoZJgDvH2oe2L59u0TE4jlvvvlmkhtsJPr5GVlbd+/eFTGT2B+sOfbs2SNrJ1/wO8MBDgUcYgSfIAgF52CVKlXU6dOnYxoPRXJC7CGWjxw5UrVo0UI1btxYNqhz5syZ5GvWrFmjqlevnkjYQ3BL1qxZYxqPG8FaBxl3CChARD9xDzt37hQfGX4uNqjCEctLliwpG1rYHMemFCLVY4EiuT2hUG5z9BDLEWGGcg6PPvqo7JohWpU4HzhWb7/9tqpWrZpthHIcp0iLyps3r2rTpo1yOxDHIJKNGzdOff755+LII9I0GChVg0X/1KlT5RqvhVgOAQ8LiYMHD6rvv/+eIjkhFhXLz549q6pWrSoCGUS3F154IcFGYqlSpSQlOxiYP7Hof+aZZ9SSJUu4WDcIfK/YgDx16pSUYiPOQNuQ0oC9xbkUboo2glDgLGO9jrkAmZzRQJGcEOuL5RBnEaDSu3dv1b9/f9nYTp06dZKvmzhxonrqqadEVO/SpQs3tHUAv6NWEvXQoUNmD4fEEZQbTJEihVdHQGZGuKXTsM5u2LChatq0qUSlRwNFchtjdpF0Ym6DzylTpniSJ08uzQ/QXIC4r9HI0KFDpXFF27ZtPXYBzSbZACMh8+bN86RMmdJTs2ZNz2+//RbWa9DIM1myZJ5evXp5Pv30U2kIGKzBJyHE3AafeP4jjzwiTYx37dqV4LFff/1VbLnW6GvGjBlyf6A5/9q1a5w/LQ6bg9mD7t27e8+5xx9/POzz6uTJk55ixYpJg9BI7S0bdxJi/QafmLvR+Bdzw6hRoyL6zH379nnSp08vr61duzb9c53AGgrrL72hvbY+Bw8e9Lz44othN+L25ffff/d07dpVzsf33nsvovUzG3faG0aUuzSyHLvTw4cPlzql7dq1U3Pnzg1rl5s4B+xwojkV0vBB+vTplV1IliwZd2T9QEondr5ROglZAkgHTwpEtvbs2VMi9N955x3v3BGs8SchxJzIckSPImoVUW6w80gL9QWZYL7NjdHICI2/ihUrlqjEA6JpOH8SEjsdO3aUcw+16BFtFu55lStXLrVx40ZVpEgRiTJfsWJFWK9jJDkh1o8sv3HjhmrUqJGaOXOmmjFjhpR9iATYbbz23XffVcuWLaN/rhMovYL1F3EfKFmE/iL+GdOHDx9OshQLMsnQX2Tw4MFq4MCBqlu3burevXtJfiYjye0PhXIXiuWoTYo0MJRcQOmNL774QhYCxF3MmTNHZc6cWc2aNcs2pVdIaFCSYcOGDeJMQ1Q7cuRIyHkAdQ79RfJQjT8JIfEXy9euXSvnNs5VlEfLly9fwOf16tVLtW/f3lsSAjXI8d5oTKT1diDxA+WsPvnkEylxQ5xJ8eLFpY4pfuPSpUtH9NpMmTLJ5jZSwRs0aCD1U0NBkZwQ64vlCEDCOY2yKSht2rJlyyTf/+jRo4nKq9SrV09EOQQGEUL05+LFi9L4E/5yUnXrce6jdCE2xNGcGz0HQq2rKZI7A86+LhPL0VgKtZ1HjRqlPvvsM2nmyJPXnfg3n6JQ7gxQoxjnP85rrfZ4IJEcDjdqtiHy3Heu0Bp8EkLMF8uxoYnGnVjIo38AaiYGA+f82LFjRVT3BWsC1jiNP2jGhs0LRBQS55IxY0YRxvyZPHmyunr1asjXombu/PnzZV2Oy8cffxzweRTJCbG+WH7ixAlVqVIlCVJZt26diHBJAfuACHL45MRYrl27Jtn0r7zyCtdERHXo0EE2qXbv3i29AMLh5ZdfVvPmzZPNcazNf/vtt0TPoUjuHCiUu0gsv3PnjnruuefE8UYUcdeuXU0dJzGXzp07y8YJhFVAodw55M+fX4x07ty5VfXq1SXizV8kh3GH+Pb+++8navBJCDFfLMc5iWi0Zs2aqUWLFoXVgChlypSyiPdtyn3z5k25n8QXRBg3b95chBPiLtCMD2UNYWPhiCclwOH5aPb3+uuvSwCLLxTJCbG+WI7zvEqVKhJlivU3ztekQKlENOTGa1577TXx24lxoITGG2+8ocaNGyfRxMTdoFxhoUKFxK5++eWXYb8OZZWQDfbzzz9L013fDXGK5M6CQrlLxHKkYTdp0kRqnX333XcimBOCRR9q6QEK5c4CkaeIaEQN1Jo1a8qi3l8k12q1YeHfunVrRpITYhGxHNGo6CGCWuMoyRCJ0I0FOqJdMmTIILcXL14sIhyJL4gyRlACoteIe8CaCuXMwC+//KJWr16d5GvgTH/44YfeGqh4PSIeKZITYn2xHHWOkcmFLE2UP4T4Fg7ly5cX4RbA3ocjrpPoQQYPggSZTU80rWzLli1q5cqV0jckEipXrixlEbFuR+bIlStXIhbJ8dlY3+OaWBMK5S4Qy5H+hfqHWKwvXLhQ6p4R4puKBiiUOw8IZVgAlChRQna9Ib75i+SEEGuJ5R988IFEo6JRIOohRlOjFBtk3377rURQgREjRsj5TwgxlrRp00qjTqzB0cQP53G4oAYqsrogmL/66qtqx44dFMkJsbBYDjsLkRwNN+FvI5MzErBBhiA2RLQy88t40JQR/dnQo4sQlE4rWbJkgvuwST179mwJLgtF2bJlpSQiskmQvb18+fKwRXKUOa1QoYKUXMM1bhPrQaHc4aDpF2oeoqkITvo6deqYPSRiEXA8IM33zJkzcptCuTPB74pFOCJcunfvLsIZRXJCrCmWI6IcYlmrVq0kPTiWRl6Ichk9erT3vSN14Ik+3Lt3L0mHizgLlD5CtGmwmuOhgMMMIQc1ixHgki1bNkPGSAiJTSyHKIYNLfwfGZw5c+YM+RqUaDh48GCC+yCoodYxI5wJsQbIwESzzhdffFFK1IYCojh87OPHj6s333xT5cmTJ6xIctTK9wW3GVluPSiUOxit3ArqE6NDL3aqAzX4JO4EkcZw4rRjgkK5M4FAgyhVpBqWKVNGsktojAmxHoj47tmzp2rfvr0s0pHOHSso+4EIdYh2KMFE4gt6gGBjEiU4iLvA5pSW0aFx4MAByRIJBcqtoCQDSrAg+vHdd981eKSEkEhBw05sRkMsx4Y0hLJADT59z2vUMEdJLjT9JOaBvi34/QjxZ+/evZKBCb755psk+wag3Aoytb/44gupe1+7du0km3jDJ4/kfmIeFModCnbA0EQK0SgLFiyQOqeBGnwS91K3bl3Vp08f725p+vTpzR4S0RnfmuQQyZAWhjIsMOTbt283e3iEkP8HdQohkGvlVlAeKVCDz2hAlAvKQJD4gxReRJSfPn3a7KEQkzl58qSUQOvUqZOI3zg2/PGtSY7noNkYNrlRioUQYg2OHTsmpRZQbgWlF+BPBWrw6QvKMO3Zs0dsAXoCBTr/ifEgUAjlsZ588kmzh0IsSPHixdW8efNUqlSp1NixY6WsUjB8a5I3a9ZMapajDAt87FBaW+HChSO6n5gHhXKHimMwwlrjTpywgRp8EnfTtGlTNWTIEOm2DhhR7iwCNe7EZgjEctQvhsO+b98+s4dJiGOItjEPFuVo5IW65FiYo9xKoAafxH7MnTtXhBFG8xMErUAsB6hrrPWH0QjUuLNv376SEYLmniNHjjRl3ISQPzl79qxEhaNx5w8//KBy5MgRsMGnP7DtKIGYP39+NXHiRJZaMbEslhZVjsx7Qvxp1KiRlEjq3Llz0OcEatyJDEIEqGLdjn6AOMYCgbkCtt2/5BruJ9biPg+3NB0Ffk7US4NBxkK8cePGiZ6Dkx8pR3DC0eyPOB9EjWPjBFEPWNxpID0IjSwABHPWrnauSO4Lfnfskl++fFk2zli7mJDYwCLXt+YgFsGIBk0KNP/CZjZsNdI8/WuS41zFOYpIk4IFCxoydmIfm03szahRo0QkQ+SZb+3xQCK5f1YIAhuwEYf+BYSQ+IMgM6ydUWIBIlnevHkTPA6BHBvl8MXRoA8Cun8kOtbj2bNnj/PIiS/4/fRs5kl77Q5+/vlnlStXLpUuXbpEIrkvmAOQsYANtfnz5yeaB3yfB1Ed63uK5NaEQrnDQPfst956S2qSI70zGBTL3UUgI379+nWJjECEAxZuWmQ5cbZI7uuY43Gkjm7cuFEMPiEkcrDYhVPsDyLLQi1+d+7cKU436hEvXbpU+ogEgmK5s8EyHPYX0W2w1RBb7ty5Iyn9yPxJkyaNzONIBY6luSuxBvidfe1yUiK5dox06NBBTZ06VS1evFjVqVMnjiMmhGCORtNN2G2smVGiIRCaWH7u3DlVv379oHadOAcK5c4H5UqRGQihHP1DsBYPJJJrrFixQnqCtWnThhkkNibwFgexJTgRIZK/9957IUVyoNUrhfNNsdyd4HdHvTzAsivuEskB0kXR0BXPw2J+zZo1UrePEBIZoRrzBBPKUccQTjc2KhFxEsqZ1sqwaE2FKJZbH8zBaO6GzRLMsxBZEEV4/vx5iWZDNg+iE/E8pOeGG7OCjU2U0MIxgWwwRMVlyZJF3hsXZAflyZNH5cuXTx6nc2Y9/EVyOOCnTp0SkSUY+B3RLOzChQuqSZMmsonCCDRC4gP6TKCkKeZzlFYIJpIDRI9ijoZIhuadc+bMoVhOiM19a/T6w5oNl1mzZklZvVDrK2xmT5o0SYRybICjhBqxHxTKHcKiRYtEHO/SpYt6++23w3oNxXJ341s7i0K5u0RyDUSoIgoCTYnQ/Bc9DRgNQUhkRNqYB2IpIoWRvonzL5xGyhTLrQfEbdSc3rt3r1wOHDggF9SUh6BpBKiLiQuOoaTAmg4bMTgOixUrJpeSJUtKjVxGppuPJpKjTOL06dMlcAFlE4M53xDg4KBj7kD9U6R+s0kvIfEpaYoNbayRK1WqFPL5N27ckE3wK1euqIULF0oTzzFjxgQtv0DiD3wlbDxicxlNkwkJBdZLM2fOlHIqCEb4+uuvwwpCwOYa1mqvv/66iOXdu3ePy3iJfrD0igPYtGmTqlWrliycZ8+erZInTx7R61mGxZ1pYUjtRgovmnqWLl1aFg7EPSK5L6tWrZL544UXXlCTJ09mFCIhMdYox+2hQ4cmeh4a+GGxjQhSiN4QLSOBZVjM48yZM2rz5s1q69atInCiXiUiw6MBmyTY/MAmNTZKECmO0iqwz1jDYSMb8zIcNAijKNcBgRwl03AMQYTBfB/tZyNluGzZshKVjLJBiEDnvB8/tHIr+H0ReQobju8fx1dSkeI45hCpiuMAc0HOnDnjNm5C3MbgwYOlmS6yttu3bx/Wa7ChhfU0fCu8HnN8oJrlxByWL18u/jAyA7TM6lhg6RVnozXuxDoMtjec4BZf+vTpoz7++GMR2xGURuwDZ2ybgygmLLJhgBGREqlIDhhZ7k6QCgjnDEQ66RPniOQAQgx2yLGwx653IIGPEBIcNO5EQ85QjXmwOYmyCXjO+vXrIxbJASPL4wfK46DEBX4r1KRFI7ZwgHBZoEAB9cgjj0izN0QgodQVotfQwBH9IJJKxccxgrUZxHM49cFq4V66dEkiliDiQ3xFhPuJEydk7IcPH5byL/7xMBDbEWCBiwbmfURKVqtWTS6IPqdwbgz+NcnRoBNp3ag/Hk45lUyZMkn9U8wDSO/GsYl5gRCiLxMmTBCRHGUTwhXJQYsWLcSvwpocG5OoWY6yLRTLrQE2MAYMGCAZVoSEI5IHa9yp9ZRBL5lQ/gF6FiDCHOXy0OST2ANGlNsYpPaWK1dOhO0NGzbELHAzsty5BNvt/uqrr6RBFGpUI7qcuE8k9+WTTz5RvXr1iihyhhCSNFhqoTzalClTJFIYYmQsMLJcfyAgo1cDREj8RhCbQwHRGw53qVKlJDLt0Ucfld9Dj14P+/fvF7EaYku0keMAtdFRCuaXX35R+/btU7t27ZJmdBDQQwEBF5mKEGJr167NZs86EaxxJzJM0CQs0mMEdh/vhfUdBThC9AO2APMfSpqOHj06po1DrcEn1gEUy50HI8rdKZJjfdWyZUsptwQNJZQPjmOkYcOGkjWGuYBl0+wBhXKbgt0rODGoh7lt2zZp3qQHFMvdYcRxG41f4TRDEHj++efVN998Y/YwiYkiOYA56Ny5s5Rf+eGHH+R9CSGx8/nnn6tu3brJ5mS7du10eU+K5YEdG5SgQ3kKbPolBSKxUUd2wYIFMudhbRUIRHYj2rdixYpyjSCFSEpeoBkc5uxwnWhkC5YoUUIihVFmRW/QUBTlY+CwwXHDcYRSHoFAeRDYAjh5yJpApDzRTyQPBpqGJbUOX7t2rWxkoIbyyJEjdRwtIe4Fm4vly5eXy5IlS0IK29hgbdasmfQHg+8cDIrlzoVCuftEcoD1EPoWgFatWkl2WCjgr+Pcx3oQcwEzwWwAhHJiPzp16uRJkSKFZ9OmTbq/94EDBzzLli3zXL16Vff3JuZw584dz4IFC+QaXL58GRtk3kvnzp3NHiKJgHv37nm2bdvmWbt2refWrVu6vvft27c9VapU8WTNmtVz/PhxXd+bEDeC8zR58uSenj176v7eV65c8SxdutRz6NAhj9u5e/euJ2/evGLT0qVL5/nPf/4T8Hlnz571jBkzxlO5cmXPfffdl8AWapeUKVN6qlWr5nn//fdlnYV5MVqeeeYZ+f3nzJkT9mt27twp43j44Yc98eD333/37Nixw/Pxxx976tat60mTJk3A7wWX0qVLe4YMGeI5cuRIWO89fPhwz8GDBz1u5vTp057Fixd7zpw5E9bz169f78mYMaOc20mBYxm/y+TJk3UYKSHuBnajaNGinsKFC4t9DQXW37Vq1ZLzL3Xq1J6VK1cmaaNgTzZu3Cj/J+aB327v3r262CZ/H5vYm5s3b3pWr17t+emnnzz/+9//gj4P5zLO+7Rp03pWrVoV1ntjrQ7bXrt2bVl3EWvDtvc2ZNy4cdKtefz48YZEfCIdBBFDiDBCRAtxHohk6N27t6SMAzQUI+6NJPcFtXPnzp0rzeUaNWokTeUIIdGBOtGINkMDzxEjRuj+/lrNctS0RhSc2+0aomu1KD/f6B5EB6GR0tNPPy2R4N27d5fazr5JlagljjR7pNCi9jcizJF5hXk2qZriocBrEUF0+vTpsF+D54No+s5EAz6nTJkyEoW/dOlSichHtDLWCf4pwmhi2r9/f1knoq451qPB1oqImurbt68qUqSIvJcbiTSSHNkEOI6RSfDcc89J5l8ounbtql5++WUp7YTsAEJIdGDeRYYtztlFixYlGfGJSGLNhmAtntT5DRuFjCREp6JmOaLMiTmgFxNKprEnE4k0klwDa8P58+dLLxtUeQgHZH/OmTNHSjv169dPx5ETI6BQbjPguCHFskePHrqlbweCYrmzQd3Tjz76SNIKAYVye2C0SK6RJUsWcRIgvqHJGCt0ERI5OE9RrgLN91AOxKhUa4rlCUVD33I3mC9feeUVETAggKD+uCZCAwi4aOqF56Fu99ixY6VnBxqw6cXHH38sIjnEeasK5f7AtmBzB+sElPjDBYICxF5f4FCiXBe+XzSqQr8cX3uBvhcA96GGu9uIVCQHqE2PYxBgIyKpUjdw5D/77DNZzz377LNS75wQEjmwBWiejE3VcGoIw06gNEubNm3kOpzmkBTLrUHRokXFF0ZpMUIiFck10MdA01LCpWbNmlIqDWvDr7/+OqLXIvgAQSC4JsbDGuU2ArXDcTKieRQMeTzqm7FmubPrp6EzOwQcNKqJxIknzhXJfcFOeZMmTdT7778vkZWEkPDPV2RkrF+/XpxhOGVGw5rlf4D5Ed9DMPLlyyeiOewfIspiadJmFHCCUMsSDR5PnjyprATWhFg3TJ8+XZqE+oNjHZsT1atXl6w1iP5Zs2aVjQjUencL0Yjkvk3CsC577bXXwq55e/78eamdj41ubFikSZMmypET4j5mzJihXnjhBdkcjEf2C2uWmwvsEkRyPew/a5S7UyQPxurVqyXIAcEGwcB5j0wwiN7wEzAHJAUi0IcPH+69jWy9YcOGRT1OkjTcRrMJSCN+5plnVMaMGQ2NTPOHkeXOXSDgAtEVMKLc2pghkmuNSt577z2JskHDO0JIeKCxFyLMEJkWD5EcMLL8DwI5HBANX3rpJbVu3Toph/PBBx9Is0wriuTanA+sGO2GNSFKr6BEyI4dO2STHWtTjf3798t9KOWiRcYj0p8iefjgu4ITHInogs0I2Gl8/+3bt2cmGCFhgsbGOGcQGZ5UE+h9+/aJMBorjCw3FwiZVrX/xL4iOTIZUeIPQWZYiwcDn4HnYnM7nEwwbKr5iuQAtxlZbizWW4GTRGCxi9TWY8eOSTkEpHHHE4rlzizhg0Uaoo4A0s+INTFLJNeASA6DDwcCkYSEkNCgxvOHH36ohgwZIhFG8YRiuVKDBw9OIDAjI+bMmTNq8uTJqmrVqnEXny9cuCApthDn7VJ6JRzg6EEMR+QzhOFvvvlGVa5c2fv4nTt3vP9HWRa3EKtIHozbt2+rqVOnhhTA4eQjlXvWrFlSRogQEhr0AmjatKmUTUG/hVAiGewq5jj0EEAfh1ihWE6Ic0Ry+OtaeT9keEIIDwX8+Xnz5sk80LJly5DnfzDRPZQYT2KHQrkNmDJlijggEyZMiFtkmj8Uy53FjRs3EkStMaLcmpgtkgOISl999ZXKnDmzlCrwFT8IIQlBVMiLL74oNYYREWoGbhfLET0O4UMDDYnNtHFYM73++usilIcb5WsHodw/AhrlbLD5vnv37gRR/agDnz9/fuUGjBLJz549K6VsMLckJYDj2EcvI0TGovEqISQwmI87dOggczSytUNlvWA9jsbcENa1Rs96QLHcPLAxUqNGDSkjRtyHniK55i9Dr0O2Itb/qEOeFNmyZZPMUzTifvfdd4M+DyUVI7mf6AOFcouD+o9IWYUhx26TmVAsdw716tVTFy9eFOMAKJRbDyuI5BroTwAnYufOnZJyT4gbiLRpDhxciIWpU6eWDW4z03rdLpaPGjXKW6Luyy+/lGhcs8iZM6dsMqJud7giiCaUW7H0SlIgoAOCscaIESOUGzBKJAfYgIAjDWCDk4pmRUo26u8/99xz6tq1a7qOhRCngE0n9OKZNGmS9K4IBebi8ePHS4kjnFt61gamWG4OWBt9//33auvWrWYPhdhcJNeAnoJzGPNDuIEOaNqNTEhkoqK+eSAwP/gH36BmOe4nxmG/FbiLQBQUFrkQpz/99FNlBSiWOwMsymActMhyCuXWwkoiuQacfwge2CFH7WVCnAwWoIiKRckhXON2UgwaNEhsI6JDtE1IM3GzWJ49e3bpsaCVPpk7d65pY8HGCY4JNIkLt+a03SLKfYHwdOLECfk/Sg8hu8LpGCmSA/gCffr0keauqLOfVAlGrBmwuX3u3DnVqVMn1isnxA8EfiDrAv0UUCM4HCpWrCii6uLFi3X3myiWxx/MqyjJhvK2xD0YJZJrBGqknZQNho9Rs2ZN1apVK8kgCwTEd8wNKMGG66FDh+o2ZhIYCuUWpkePHlITeM6cOZbqXk+x3Blg0mYzT+thRZFcA+ncDRs2lPTvpBqPEGJXommas3btWqmFjea3iA6xCm4Wy7t16ybXqD1rNxtnV6Ec6wrUY9fo3bu3cjpGi+Qa6HmAUiqoCx8OBQsWlJKN2KRBxCwh5A+QZQGR9NFHH4044yVv3rxJRp9HC8Xy+IJGimjyXaxYMbOHQhwikgfi9OnTIoKHylxAxgoyWHENsVxbA/qD+QE9XxhJHh8olFuUGTNmqIkTJ6rPPvvMkhM4xXJ7g4ikgQMHeidiu4kITsXKIjnAggLRF2nTpk2y8QghdiXSpjmI2nzhhRek1uUbb7yhrIZbxXJsWGBzA5GDDRo0MHs4Ml/eunXL0UI5StygLEHKlClVqVKlpK62k4mXSK4dC+gVEgko+fPyyy9L1OzevXsNGxshdtrMQwQxGjwj6yLUOvvgwYNq4cKFcR0fxXJCnCOS79+/X5UuXVpK/GBzLlTZNNQrR718PJfR4taAQrkFOXTokKRKwvFu27atsioUy+3LmjVrpB4WgKGA8EnMxeoiuQZSvsNpPEKIXYmkaQ7OW0R/AESDWFXYdKNYDttWvnx5U2vFayDFH3M6yq84WShHMzw0f0bpFWyqWuG7d4JIHiqoJqlGdKjXX6BAAdW8eXNvuT1C3ArmJZw3yLYoVKhQ0OfhXGnSpIlq1KiR1Aa+e/du3MZIsTx+IHMfmyG+fTWI8zBDJNcyu7R5Bv4Cost9uX79ujQGRrllgICbAQMGqHfeeUdt3LgxLmMkwaFQbjFgDOF0Y9E9btw4yzsZFMvtCRw7OE0gffr0lj/OnI5dRHINjFFrPLJp0yazh0OIrkTSNAf9Q7DxCLHKLLEsXNwolluFdOnSBXSSgoHn2rWZpxYZhSgqp2K2SI7jo0uXLhJQ07FjR7Vnz56gz0XpRkTOHj16NKxeC4Q4lcOHD0t2Rfv27SUrMhRff/212rdvn/x/2bJl6s6dOyqeUCyPD+3atZPNEETxEmdilkgO0JcG9he2GqXTSpQo4X1sx44dUkoNvjSCKTQgksPPhh6olcgl5mDPFbiDQW3H7du3S6F+CJh2gGK5/cCiAI2hAMuumIvdRHINCIlobISsF20nnBCnEE7THAjOb775ptTuR/1BO0Cx3BxwjEBcRTk9J0eUuwGzRXJtA0VrDgYRIKlmtSjhiDns888/Vz/88EOcRkmItdbaEEWzZs0qWRZJgY0obIRnzJhRzi8zMm8plhsPhEps6obbaJvYCzNFcg004UYwDcagzUUjR44UHxpVJACyXLRACpz32Ki7dOmSV6sh5nCfh63QLcMvv/wikzUcqkibi1gB1HJDChOc8AwZMpg9HOIDUgYREVG3bl3vYgDO0pNPPikOlBY1QeKLXUVyDYhtqEOLeo+ffPKJ2cMhJG5AyKxSpYrUJ9+1a5ftylddvXpVNrdRTgapocRaoIk7sr6wnoKTR6yBFURyDdS7xwYdomPDKdOI9QZqxqMsDiLQkeVAiFsYM2aM+NeIHI6kdwICwMz2aSGQo98GJJsKFSqIkEas7WMT87GCSO4PfAY0kF2xYkWCprIQyv3X4qgs8corr6hVq1apWrVqmTBawohyiwAjiBMnf/78atCgQcqOMLLcPmCxpaXzMKLcHOwukgOIbB988IFE3bCWGnETOOZRp19rbms3GFlubRhRbj2sJJJr9eA3bNgQdi8jRKFPmjRJnT9/niVYiOtKrqDRNkSnSBsMmy2SA0aWE2J/kRyCN4LLfEVyZGejhGmggBX0K0RAIzbDWYLFHCiUWwQ0eEKtoilTpqjUqVMru0Kx3B5g1xvdlwGF8vjjBJFco0ePHiK4IaWVJViIG0D2FJrv4NivXLmysisUy+MH6tuitF7v3r3DagpHodxaWE0k14i0hj2aeqIEy9ixY1mTl7iq5Ar6JqCkWijGjx8vmdFWhGI5IfYUybH+gyBeu3ZtiSgHmI9Wrlwpc1LKlCmD2nc0R79y5Yp6/fXX4zxqIr8BvwbzQdmLgQMHigOFlCq7Q7Hc+qCbu9aYhkJ5fHGSSK4JOYhSO3XqlNRrJsTJQMBEBGfu3Lklm8LuUCyPn8jRv39/qUt55syZJJ9Podw6WFUkDwRKqqAUmnb8BKJr166qatWqEqV27dq1uI6PkHiDvhDIvMA6NVS5IZSjRMQ5Ij4RtGZFKJYbQ7NmzVS+fPlkHUTsjdVEcpRIq1SpUoKSynXq1FG7d+9WTz31VJKvx3GJYNovv/xSItJJfKFQbpGSKxCW7VpyJRAUy63NggULZHcTUCiPH04TyX1LsKBrN8pRwCEhxKmgFj8cVJRcSZMmjXICFMuNB5FBSKNFVFCw6CFfKJRbAzuJ5JiTMM4vvvhCshfCKcGirQMJcSJolIeSK9gcqlatWsjnwgdHWcrr16+ry5cvK6tCsVx/kEVw/Phx6RVH7IvVRHKtRJoWBIv69QiWWLp0qTQVDpeOHTt6+5FQU4svFMpNBotZLMKxe42TyUlQLLcumTJl8jrgFMrjg1NFcg00ScLfhRRXLFYIcaLTPWDAANWzZ0851p0ExfL4NJNDVFE4givsBaBQbh52EskB1ttaWR80gw0loOG5SPlGqQlE0oYDmglOmzZNrgkxg0iOQYjeHTp0kHMX5YaSYtGiRfJ81DCHjbcyFMv1BRG76LNUo0YNs4dCHCSSawwfPlw1adJEztXXXnst4pJp+FsmTpwoWho3t+MLhXITQed57GBDYILBcyIUy62L1hgiffr0Zg/F8ThdJNcEHdRSw7yGRQEhTgJOd/fu3VX27NnV+++/r5wIxXLroAnlVnL23ITdRHKAcipo0tmrVy9pDgYxLRQoM4HzHdG2SdXNx/siKq5NmzZyzWagJN5EegxOnz5dMhwnTJgQsuSKBnwhlDdYvnx5xEKWGVAs1w9sjqA8Bv1he2JlkRwgEHbu3LmqTJkyUb9H3rx51ZAhQ2SO4mZ1/LC+JXAwWMwimve9995TToZiufVA6o820TKi3FjcIJL7nusoLQBjbtWGSIREW64KjXdQXsgpJVcCQbHcWCBmhFMXmqVXzMOOIrkGSqAhUzWcDFWIgZ9//rk0J8a8FgysFf03v3GbzjqJF5Eeg/A1+/Tpo5577jkpWRAJdlqjUywnbsfqIrmeoP8I/kZsbofqQ0L0g0K5SaxevVrNmzdP0n3cIFRSLLcWKB+wfft2+b8bjj+zcJNIrvHWW29J7TWrp64SEi43b96U47lu3bqqQYMGyulQLDcGiJKwAXB2koJCuTnYWSQHkYoEcLoRWY6AHfztgQjW4I6N70i8iPQYHDhwoNQaD1WrH3z77be2LxVIsTx2kFGDTAJsGCJ7kNgDN4nk2noQ68gdO3ZIKRZiPBTKTeD27duqW7duqkqVKur5559XboFiuTXAIuCFF17wNpKgUG4MbhTJQdq0aaXh4eLFi9WSJUvMHg4hMYMMiXPnzqnRo0c7fiGuQbFcfzJmzCh24cyZM0k+l0J5/LG7SB6Iq1evSn1mrZRPIAYPHqxSp04t2WDBmnVHcj8hehPJMbh792712WefqXfeeUflypUr6HuuXbtWIs5LlCihvv/+e2VnKJbHBuZHBEEgICIc+0zMx20iuUbFihVV27Zt1ZtvvqkuXrxo9nAcD4VyE4CIdPjwYdkVcsuJrUGx3HxwzKHGVe7cueU2hXL9catIrtG4cWNVq1Yt6b9g92gd4m7QwBMp3migU6BAAeUmKJbrS8OGDcUJR0ZhUlAojy9OFMlXrVqlihUrpvr376/Gjh0b8jzHHDdz5syAjT0hwPk3EEN9aKf2ViLWI9xjEIFAKEtQqFChkFmNeF6PHj3k//DHnWDfKJZHD3y0OnXqqKZNm0owI7E2bhXJNbTNb4jlxFju8zDHJGZQIw2OJHa2k1o4njx5UhUpUkR16tRJ6kS7FdRERA1jOOEZMmQweziuSCtbtmyZlA5IkSKFd9MCxy06faOJCdEHt4vkvuc4InVQigVpsITYzV5jeVSvXj21f/9+tW/fPkfXJk8qKhWb2/jOChYsaPZwXMGIESNEGGrZsqWaMWOG2cNxNE4UycG6deukSR3A33Xs2LGg6xGsWypXrizn+s6dO73rxFBzZyRzKSF6kNQxhwaerVu3VmvWrFE1atQI+V6w6/DFceyj6acdGniGAwRyfE9Yv6DpaVJNfYkxPjYxBreL5BoItu3evbtsipUvX97s4TgWZ1gFG3Xh1hp4vvvuu8rNMLLcfCDkAkaU6wdF8oTneO/evWXnm409iR3t9cKFC6Vu5ahRo1wrkgNGlscfRpTHB6eK5KBatWqqffv2qlGjRuJMB1qPaNGTWmPPAwcOSImpQECYhAiJ60jnUkL0wPcY9Ae+JMoHoZxKUiI5KFq0qGwmLVq0yDEiOWBkOXEqFMn/BL1uSpUqxcaeBuMcy2CDLtzYsZ47d65EClGcpFhuFoiiSJcundTcBenTpzd7SI6AInngprGZM2dOlDJLiNXt9Z07d2Sj5+mnn5aSGW6HYrk+jBs3TgImkF0YCgrlxuNkkdz3ePvuu+9U3rx5EzUoHjRokKzBL1y4IPdBeOjSpYs09tTu02MuJSQefPjhh+ratWtJNvD0BQJ5pkyZlNOgWB49FB2tCUXywI09t2/frqZNm2b2cBwLhfI4deFGChQiLsqWLeuqBp5JQbE8/ty4cUMuWtUlbtrEDkXy4I0933//fTVv3jy1detWs4dDXEwk9hpMmDBBShV89NFHrl+Qa1Asjx04NuhTg8jdUGjNF50U6Wgl3CCSA/8yAFj3zZ49W0pAoiQavgc0PdRAtivmO4iOes2lhBjNqVOnJBMCEeWhGniG2gByGhTLIwPzF2rb58+f3+yhED8okgcG6/FmzZqJDb9165bZw3EkXIHHqQs3UrhhqFCGgI5PQiiWxxfUjYaDqMGI8tigSB6aVq1aqeLFi6s33njDuzlDiJXt9fXr19XgwYPViy++KM3wyJ9QLI99PoSYkzNnzpDPY0S5cbhFJPcHfzPqkLdo0cKb0QAxDWWlNNuMDLA+ffpI88/jx4/HPJcSEg+QBYFMWWSBBQMBQqVLl1YNGjRIcqPSKVAsD5+sWbPKmgZzI7UI60CRPDQIRsOaJlTDbhI9VGzj0IUbhgmdaWvWrCkXkhiK5fEDQq6WapgqVSqVMmVKs4dkWyiSJw2EHkSn/fDDD2rVqlVmD4e4lHDtNUCjbdghON8kMRTLowcbhii/l9QGDIVyY3CjSH7+/Hn18ssvS0YrBAeN2rVrq927d0upCl/x4bXXXlMZM2ZMEGke7VxKiNFA9J40aZI0jg+VIYvj/PTp02rJkiWuqqlPsTz8dc369evFRjDT2hpQJE8abFB36NBBffDBB9TPDIBCeYwMGzZMDM/UqVO9EeP+4DHUhQ70GPkTiuXxg408Y4ciefjUr19fviOIRFpJAUKsaK+Rmg0hs1u3bip37tymjNMOUCw3Fgrl+uM2kRx9FiAOopzAxIkTvffjNsRCNCpGQ8NAJdMgkqPu6Z49e6KeSwmJBxDIYatRXz8UKDeEsiwQjnH8ugmK5eFRpUoVlT17dgqyFoAiefjAXuP7gu9C9IVCucFduHHgog4gunAjmoOEhmK58ezdu1d99dVX8n8K5dFBkTwysMCBI71z506pj0qIFe01QFQGyqP1798/7mOzGxTLowMixaVLl0I+h0K5vrhNJAedO3eWMj++gRHouYA1YL169UIKD4hAx1oc2bDRzqWEGA0ayM6fP18a0ya1DocffvDgQbV48WIRzd0GxXJiFyiSR0aOHDlUz549pf/NmTNnzB6Oo6BQHofGTThoUe+UhAfFcmPZuHGj+vTTT+X/FMojhyJ5dFSqVEkiywcMGCCRboRYDTTvHDdunJQVwAKdJA3F8shYuXKllDtD2YtQUCjXDzeK5FoJFWz6QWSA8H3o0CGp4RxOuT00AYXfgsjzTZs2xWW8hEQC6uojSxE9cF544YWwXoN6/HXq1FFuhWJ5aE6cOKE+++wz9cUXX5g9FNdCkTw64LdAj6DeqC8Uyg3k6tWrUpsXtYPY5CYyKJYbBzp6V6xYUf5PoTwyKJLHBubDo0ePqi+//NLsoRASMH0R/RsQmUHCh2J5+GTJkkUEnnPnzoV8nlaiis3fY8OtIrnWuH3UqFFqx44dasKECdKsLhKaN28uzQ9Rz5mNuIkVNx3XrVunhgwZwg3FCKBYHhysYbp37y6RuST+UCSPbR2OTFj411yH6wdX4AaCqF2c9MEa4pDQUCw3BkRTtGvXTv6fPn16s4djGyiS6+O4I1Ub5S1u3bpl9nAI8YKU7OnTp6u3335bavSSyKBYHh6IfkSW4fHjx0M+jxHlseNmkVwDog/E7mjAJg1ESKzB2YibWAls3MC3hs1BGaFgrFmzRo7h69evx3V8VodieWAeffRR9cwzz6imTZuaPRTXQZE8dtBbKVu2bIwq15H79Xwz8icwyqNHj5Z0R9QOItGL5QALdSyIMmTIYPaQHAGbeUYGRXL9QM1TNAlDE7COHTuaPRxChOHDh4uY1r59e7OHYnuxHPYaFCxY0OwhWQ6UvQhHtGVEeWxQJNeHp556SpUrV07ExqTKBRESL77//nu1bds2tWLFiqCCmlaaBRkVI0eOVJs3b6ZNCiCWo847xPIKFSrIfW4GjTwXLFjgtcHY1EY5lpMnT8r/z58/L/1F4AvigoAfXLCxfeXKFWmmmDp1arnAv4ZmAeEX4iXeO0+ePHJBZhmF4D+hSK4POO7Ql6RPnz7StyFv3rxmD8n2uHtGNBCkPmASxQFLYoNiuf5QKA8fiuT6n89NmjQRYRKZDW5fmBPjgAOICGeUPgvVcA5OEDZvUBqI53dsUCzXB0aURw9Fcv2AYIF07saNG3vX4ISYDTZukCmBjZxg/Pzzz3IBuXLlkgxlkhCK5X9w9uxZtX37drVr1y61Z88e9csvv0hmHATcSDMTwwG+N9alxYoVk0zbUqVKib3KmDGjchsUyfUFAbrvv/++NO4eM2aM2cOxPe6bDePA7du31ccffyzNRbBzSGKHYrm+qbiTJk2S/1MoDw1FcmOA4122bFk1d+5c1aJFC7OHQxwI6upiM8a30c2wYcMCPhf2Ol26dKpTp05xHKFzoVgemlmzZokwgbkv2AYOhfLooEiuPyhFULRoUREnFy9ebPZwiMvZunWrWrt2rZozZ05IUa1MmTIieKIMAertMzsnMG4Ty5FpcODAAclKQKNiXE6dOhXXMcCnhDCPiy+FChVSlSpVUlWqVFHVq1d3fEQwRXL9QenIV199Vez1gAEDJJuBRI9zZ0ITQZ1TLNbhqBP9oFiuDxcvXlQ3b96U/1MoDw5FcuOAA4NIoKFDh4oDw8UR0RM4fL4iOcBtREX6C5OYD5EB1rt3b/Zs0BGK5cGZN2+ebBKisTaFcv2gSG4MEBjhz7z00ksSbYkISELMAgIQonFhz8PxG+GTE3eL5deuXZN69UuWLJFyPbAVSQH/GIJ1vnz5VO7cuaWMLhoiZ86cWdY3WC+i1AV8Q/iLy5Ytk/JUsN0QgOE7ohwL1pho3o3PRBmXo0ePqkOHDqljx44lapKM+3GZPHmy3EZz+WbNmsmxXq1aNSnd5hQokhtbqxxlgNArEZmyJHqcMwtaBEyQiFpr1KiRRGAQfaFYHjuInrx8+bI0Z6JQHhiK5PGJKkfExPLly1XdunXNHg5xECi3Eux+f2ESvUQAIjCIvlAsD0zDhg1FJMeGYTAolEcGRXJjef7556V5Ija3v/nmG7OHQ1wKIsRRQ3rixImcG10qlmN8H3zwgeratWvIvgnoFYdj5dtvv1UrV66UbP9gEbjow4ALbDLqkPfo0UMab4ebQXP37l3ZUEyRIoVKkyaNiOgQ1UOB2ub79++Xci8oEYRMCdiwO3fueJ8DX/2LL76QC94T2T3PPfec/N12Fs0pkhsLNliQIfv555/LJje1suix3gxoc+bPny+7gVxIGgfF8tjArriWgkihPDEUyeND1apVZSGO6CAK5URPEG0Wzv2IMkINP9T0Q5QQ0R+K5Ylp3bp1ks+hUB4+FMmNBwIQei717NlTSlmw3jMxAwSi5cyZM+QciiheN9Z6doNYvn79eoms1kRkZKb6iqyI0F63bp2UF4Ueo2VP+4IocPgfNWrUkPeCUOv7N2JdiGBH1LU3klSpUkmdfVyQraOJ5xDM0YgR5YXwt2lR5xgXsiNwgcCM0m3o8xRqw92KUCSPD7169RL/Zty4cdLUmEQHC3bpCCYziD6YfLEzSYwVy7FQh/P9n//8x+zh2LaZJ0sNJIQiefybhGk1AgnRCzh6qEnuC6Iq/KPJEaVz48YNKbtCjBfLEdGPBlkkaSiUhwdF8vjRvn17ETeQ0k1IvDl+/LiaMWOG2Otg0bTww5Gp+OSTT6qNGzfGfYxOEsuxRodY/vvvvyurULlyZWmACSC2btiwwbs5gmxpBEPgt4eY7CuSwzZ06dJFyqNAYEcmKzb+YDf8NwLgF6O/nBk17SGeo9wLItTByJEjJSK+VatWCYICL126JNHC6PUEvemrr76KuPGoGVAkj29Q5Isvvqg++eQTWxwbVoVCuY6gMQTSZyD+EOOhWB4ds2fPlgUnYET5n1Akjz/169eX9Eb/etKE6BF5Bidv6tSpco2SAb7AEcECEg4I6k8SY6FYrhIdf2fPng36OIXypKFIHl9QUgAlCVA/98KFC2YPh7iMUaNGic+CDLBQfjhKWfzwww8iqPvXgCb2FsshXr/55pve22+99ZbUY0b0N4Rv37UF1hwoPwExHc06x44dq55++mkRo60MIse1DDyUaWvatKmaNm2a1DlftGiRatmyZYK/AQ1BO3ToIOL+wIEDLTs3UySPPwgYQo18+EEkOiiU6whSHNDkBruZJD5QLI8cLCxOnz4t/6dQ/gcUyc1b9MLxRoMdNLghRE/g6CFFO1DDxO+++06ENpQSIPGBYvkfHDlyRGwMytAEE3Jgk4AZUW12gCK5OXTu3FkEDtSIJiReoN40yml07NhRpUuXLqQYp5UFgnBKMc55Ynnz5s29ZVEgvCKy2jd6HBrMzJkz1ZkzZ9T48eMlCj3SDWf08HrttddEmI43KB2D77pAgQIJSlxhzdCgQQPJqsAmO/42lG3RgCCKki158+YVvyqchqXxgiK5OWCNiWPms88+46ZhlHAFrhPoXoymD9jZ5AQQXyiWRwYWEVqqGYVyiuRWaBIGAQ3RHoTECywckeJasmRJs4fiKiiW/5EGDqcFzcUgAAWCEeXBoUhuHhA6ENGIuqdWEc6I80EpDcyV2KhJKksRtgVNHBs3bhy38TkVK4rlGFPNmjUTZbuguSeaY6K2N+p3xxI5DrEaGQwrVqxQ8Wb16tVyjfrrwUAZFkTL79ixQ34XzMmaXw9RGk3qIbSjTjUEdDOhSG4u0CX37t3rLVNEIoNCuU5g0QjR8YUXXjB7KK6EYnn4oC6vFq3mdqGcIrn5YIGL2qeosReo8Q4heoPUbNQv7d69u9lDcSVuF8sx5yEiDEJ5sD4hFMoDQ5HcGo73yZMnTYm2JO4Dm4rY2H7mmWckWjYpMGfiuVZqQmlnrCiWI4Pf1zai9jiOkSJFiujy/hDiITLXq1dPxRtEsycllGvgN8FvgyhzZKohkhzNSrXGoCgvCMEc/fNwO95QJDcf9E0sWrSonDMkciiU6zQRIA2xbdu2Km3atGYPx7VQLA8PiJEUyimSWwk02bl69aqkSxJiNEjVzZkzp2rUqJHZQ3EtbhfLs2XLFrKsCoXyxFAktwZlypSRcxfCFCFGs379erVv3z6JGCbmYDWxHOV3UFrHd02nd+Y1moPGWyhH/7CDBw+K3UdT2khArx1EwaPCAerzaxH18HFR1x1iKUoOxqsEB0Vya4DvHZvbyLJBrX4SGRTKdWDu3LnSRRliDzEXiuXhNQoBcNIR2eZGKJJbC5yzderUkZp7hBgJznlE36DWKSPOzMXtYnkotM1sCuV/QJHcWsDfQcNEnLuEGAnWhfDtQvX/giBHn89dYjkaV2LDWdNhUHbF7mhlV/A9o7xKNGTNmlV99NFH6vDhw7LO1TbkIaCjHBHKE+H/RkKR3Fq0atVKNk6QuU0ig0K5TqUskNpQqFAhs4dCKJaHBN8HjBZAyrcbjRdFcmuC2pPo3o7fhhCj+OabbyQFFeV+iPm4VSxH7VM0kkWEV6iIcjbzpEhuRZo2baoyZcqkJkyYYPZQiIM5f/68mj9/vreJbCBgz1FqBRG1b7zxBpvWuUQsR4kRLaocv/mIESN09xWPHj2qrly5oqxUnzxccuTIIfrU7t27RaPyLVNTrFgxiT7XNuT1hCK59dBKQ6P6hdkbXHaDK/AY2bNnj0wISTUYIfGFYnlg0Azn3Llz8v9gtVGdDEVy61K3bl3pZI+FHSFGAGcK/UQaNmwopVeINXCjWL5p0yb16aefqjVr1gR8nKVX/oAiuTVBdBrKTU6ePNmU2rfEHeD4wmZhmzZtgj5n3rx56tKlS5Iti9r5FObcI5ZDe8mXL5/q37+/Gjp0qK7vjbIr0BFQsiIewOZr6wE9hHKNRx99VAR4RN1r616I2a+99pqqWrWq1DbXC4rk1gXnCkqvYKOEhA+F8hhBNAVSf7CbTawFxfLEZMmSRYQiEG1al12hSG79xXeHDh0k4lcrD0SInmzZskU2tzt16mT2UIjLxXLUH+3bt696+umnAz5OoZwiudVBWj/KTkKoJMSIjW342M2bN5fshWBAkHv55ZelbjWD1twlluM3P3TokPrwww+l5IieFCxYUKVMmVI2YeIBbB3mU/jm5cqV0/W98Ts1adJEytOgXrXvhn2pUqXU119/HXMmBkVya1O6dGk5rhiMFhkUymPg7t27atasWap169YqRYoUZg+HBIBieUJg9DWH002NPCmS24OXXnpJ3bhxI24RHMRdTJs2TbIWatWqZfZQiMvFcqRCDxs2TOqFBkJLiXZr6RWK5NancOHCqlKlSjKvEqI38NsQ7dquXbskI2YhqGPOwPFI3CWWG9VrBuL7zZs3EzQNjUfZFdTiN+pvQib5mDFj1Lp160Qb0TLN4Xu9+OKL4n9FA0Vye4C5dOXKlVLSioSHO1fgOrFq1Sp18eJFKZJPrAvF8oRALHaTUE6R3D7kzZtXValSRaLKCdF7Y3v27Nnq+eefd634aAfcJJaHws0R5RTJ7QP8Hwg8Wkk/QvQC60DUHa9cuXJYz3dr3yUzsYpYbgQ4nuJpf6Ep6V12JRgoubJz504pn6WBDU9EHB88eDCi96JIbh+aNWsm/g98IRIe9BZjYPr06bKTXbJkSbOHQpKAYvkfoD6VtmvtBqGcIrn9QMMRHKNnz541eyjEQSCKAim0OL6ItXGLWI7NG9TUDdRQy61COUVy+zneOEaRXUuIXty5c4cb2zbByWJ5vEC5SegT8RLKtY2ASZMmqZkzZ0oJG4DSLOXLl1dLliwJ6z0oktsL/E4o9wf9koQHrU8Mk9rChQslmoITgz2gWK7Uzz//7J0gnS6UUyS3r+ONhTcdb6InmPdKlCjBjW2b4HSxHPYJjmqePHlEHPbHjUI5RXL7gdrRaMTNLDCi98Y26jWH2tiGL7d27dqAG40kvjhVLB80aJA0f8c6xEjWr18vG+fQKLSSKPGiRYsWaseOHRL4CeAz42/+5JNPQtYtp0huT6Bbbt26VWr7k6ShUB4l3333nUwSLVu2NHsoJALcLpbDqcmfP7/jhXKK5PYlY8aMdLyJrmAewMY2o8nthZPFckRJovkY+tsEqhfpNqGcIrl9wby6bds2w8Uk4q6NbWxqY3M7GAMHDlQ1a9ZUhQoVkswcYi5OFMuXLVumFi9erHbv3m3o52iZ3vGKJg/UbwK/WdOmTeU2BPJevXpJ409tLeILRXL7gr44CNKgjx0eFMqjBAcYaumipi6xF24WyyEaI+0GYKJ0IhTJnbHjvX37dnXgwAGzh0IcsrF969YtSeMm9sLJYvmuXbvkuCxTpoyrhXKK5PZ3vBF4Qceb6AHW7osWLQq5sX369GmJJtfImTNnnEZH3CSWQyj+/PPPA9pou9YnDwbKr8yZM0e988473vvGjh2rmjdvLusUDYrk9iZ16tSyIQJ7HSpjgPwBhfIoOHPmjFqzZg2beNoYN4vlTm7mSZHcGdSrV09lyJCBjjfRLTqtWrVq0hiM2A+niuXInglWf9ctQjlFcuc43phn6XiTWJk/f766fft2yIxtzJ1oPohNmnbt2rGOuYVwklgOneeVV14xtBzKiRMnJCgIx3D16tWVmeA3e++999TUqVPldwTz5s2T8+zGjRsUyR0CjmuspVGChYSGliUKUDsXE4iWokLsiVvFcqcK5RTJnUOqVKm44010E+K+//57ll2xOU4Vy4PhBqGcIrlzwPx65MgREcYIiQVsuFStWjXkxnaaNGnkmENZjLfeeiuu4yPuEsuNRiu7gu8L6xwr0Lp1a2nomTZtWrmN7I1atWpJ5DtFcvuD+TVHjhxs6hkGFMqjYO7cuapOnTqyo03sjdvE8lGjRkk2hNOEcorkzgPRREePHpUmM4TEUnYFkTpNmjQxeygkRpwmlm/ZskX16NFDjRkzJtFjWoM6p0ZKUiR3nuOdPXt29e2335o9FGJjLl68qH744Qf2/3IAThDLEahz6tQp8ZuNahprdn3yYNSuXVv+bmT3gs2bN6t3331XFSxYkCK5zUEABkrqQM9kM+TQOHMFbiBouoTJ4plnnjF7KEQn3CSWwzm9efOmo4RyiuTOBD0gsEBDxBAh0YJapxBxuLHtDJwklh86dEiNHj1aNnPcFFFOkdx54DhFej7sNbPASCzNE7Gmb9iwodlDITpgd7Ecdhj6AKKpjWgYi/e3qlAOKlSooJYvX+7tabZz507VoEEDKcFC7A10zLNnzzIYLQkolEdhxLUausQ5uEUsR601remNE4RyiuTOJUWKFKpu3boUyknUYF5AdBqdbmfhFLEcDcL69u0rNXb90aJ8nCaUUyR3LphncT4ePHjQ7KEQm4L1Xvny5UPODePHj5dNRmIP7CyWY+zFihUTjeDSpUu6v//PP/+sLl++LP44jnurAUEctcm/+OILb7DJ+vXrJRr57t27Zg+PxAA0E/ymCCYiwaFQHiE4oLDDli1bNrOHQnTGDWJ5vnz5vIsUuwvlFMnd4XhjIWlEJAdxPqiniMU8ImCIs3CCWA4HfNiwYQEbwzsxopwiubOpUaOGNPak402iAQ08V6xYEXJjG00Pu3TpogoXLqzatm0b1/ERd4rlsFk47rCxbcQaFTz55JPe5plWwbdxZ4sWLWSs6dKl825oderUidlDNgbHG4J+GYwWGgrlEXDr1i21cuVKOt0Oxg1iuROaeVIkdwfoBQFjTkNOogGCTfHixVX+/PnNHgoxACeI5cFwmlBOkdz5QCRHiQIK5SQa1q1bp65fvx5SKJ8zZ473/yVLlozTyIibxXIj+4RYteyKr0iuNe6E7cbcrvnbkydPVoMHDzZ7qCQGoGfu2rVLHT9+3OyhWBYK5RGAFG7Ud2Yat7NxsliOxhxabTGt5pjdoEjuLiEMtcoplJNIgROGUmm0187G7mI5Mh5OnDjh7R3iL5Q7oZknRXL3gPkWfZwuXLhg9lCIhZoWT5s2Ta5DgXVe3rx5ZXM7GGjyiSwcrAubNm1qwGiJkdhVLDcCbApBjLaaUB5IJNeoXr26nMsaAwcOVLNnzzZppESPhq0oc0ofOzj2X4HHEeykITIN6bLE2ThVLB80aJD3/3YUyimSu3PH+/vvv1fXrl0zeyjERkCsQU1JZoA5HzuL5aVLlxZxCGsNJ0aUUyR3F0jlxjpN6+dE3E2/fv2kXGmbNm3kGrcDgRIO8LGx0eIrzPlTqFAh6euAOsm5c+c2cOTEKOwmlp85c0Y1adJEVa5cWdf3xTGMjXLoSgUKFFBWF8k1mjVrpkaMGOG9/dJLL4mNJ/YjQ4YMqmrVqhTKQ0ChPExgxHEgJWXEiXNwoliOvwekTJlSdhHtBEVydwKh886dO94URULCAfY6a9aslmyQRPTHrmJ5jhw5xBZfuXLFcUI5RXL3gd8ZIhgdb4II8uHDhye4D7cDRZbv3r1betEwA8wd2EksR1DZ/Pnz1aZNm3Rt6Gm1sivhiOQavXv3FoFcK0uMjQQjmp0S48Gci4oZWllekhAK5WGyc+dOdfr0aUanuQynieW9evWSa617tV2gSO5eEGnx6KOP0vEmEYHjpX79+o4oXUGcK5bDAYejiSgtf5sH7Hr8UiR3t+ONpozY4CbuBfNwuPfDXqNvEkqqEHdgF7EcDSy/+OILmdPSpk2reyNPKwjlkYjkAI+PHz9eskTAsWPHVOvWrb3rFt8gU//7iLWAronMBu14JAmx5wrcBJD6j0Y1lSpVMnsoJM44SSzXylfYqZEnRXKChSTmYHZYJ+GKdAcOHJD6e8Rd2E0shxMeSAy3c0Q5RXJ3A3t948YNtW3bNrOHQkykcOHCYd+P9R3qHyPbFWC9D/FGA/+fOXOmunz5soEjJvHGLmJ5x44dZT2ZKlUqXd4P2RP79+8X2//kk08qO4nkGvDFv/32W5UlSxa5vXz5cjVy5Ejv4wguRbDKRx99ZNjYSezky5dP5mTMwSQxFMoj6MYN54sinTtxilhuN6GcIjkB1apVk4Z3iFogJJzajwC194j7sJtYHgi7CuUUyQnEFqwx4TcR9wIBFPXEfUGNctzvCzJq0FME6zyNoUOHqkyZMkm04+jRo9X06dPV888/L6Lce++9F7e/gRiPXcRyPdHKrqA0INYrdhPJNXLlyqVmzJjhfV3//v1lg3TKlCmSCYxeFe+8845sChDrgrmX9jowFMrDdFg2bNggu93EvThBLO/Ro4dc20FwpkhONJCOi4UYDTkJBxwnaLqdLVs2s4dCTMIuYjnGBrv8xhtv2F4op0hONOELNpv2mgwbNkzEz6lTp8o1BHB/tm7dKmK5r1C+Zs0adf36dbVkyRKZH9u1a+f1C86dO6fOnj0b17+DuFssx7GIAAy9mhRboT55rCK5Rs2aNb3rF/xu0Mratm3r1Umw4XX+/Hldx070Bb8ZNjMwt5KEUCgPg59//lnEOl8jTtyJncVyLDCPHj3qbU5iZSiSE3/Rq3Tp0tJwhJCkwHFCe03sIJZfvXpVIianTZtma6GcIjnxBfMvRJjbt2+bPRRiMhBAUb/YP5Lc116jb1LJkiW96/8iRYpIM+5AjBs3TmXPnl2VKFFC+i6xiaAzsLJYvmPHDpnTunfvHvN74fg2WyjXSyTXePfdd6WEB0DZLQ2c9/v27WN2p8XRfh9ubieGQnkY4MBBffJy5cqZPRRiAewslqPOGoBxtCoUyUmo1DDWKSehQF3EQ4cOUSgnthDLsZZAOYK33nrLtkI5RXLiD+ZfiDGsU06SAus6ZCBovRpwjQj0M2fOqF27dkmN4zp16ogf7svevXvV2LFjVZo0aUwaOXGLWI6Nm/z580s5kVibUyL4Eps7CFhD6RW7i+RYczdu3DhBaUycw7NmzZLzGJtgxNpg4xHaFoXyxFAoDwMcOBDstCYjhNhRLIfh0ppumFkTLRQUyUkoxxsNcLSsCEICwfrkxE5iOdKSUY7glVdesaVQTpGcBIJ1ykk4BKpP7uuzIMq8d+/e0ijwypUr0nDuzTfflMA1CHzwE/wFdGJvrCiWo4zfkSNH1KJFiwI2346EVatWyTWaeKZIkULZVSRH0NLXX3+tihcvrpYuXeq9H5HlCFZp3ry5TqMm8YB1ygNDoTwJMEFv3LiR0WnEEWK5lZt5UiQnoahcuTLrlJOw65MHS9sm7sTKYrk/vhFrVhbKKZKTYOC4ZZ1ykhRbtmyR8jzh+NjwCVBL94MPPpC65hcvXpQyLMR5WFEs1wuzyq7oHUkO5s+fL+XjANYACxYskGAmaCPEXmAOPnDgAPs/+EGhPAl27tzJ+uTEEWI56oYhVdGKQjlFchJunXI63iQUOD5or4mdxPI7d+6o48ePq8uXLycSymONXjMKiuQkKTAPY23MOuUklL32rU8eaTZO4cKFDRkXMR8niuXwwzdt2hR3odwIkRzvMX78eDl/W7VqJbXIn3nmGV3GS+KPloWrZeWSP7DmCtxCIJo8VapUrE9ObC+Wo94f0hatJpRTJCeRGPINGzaYPQxiUdCxHSmfLLtC7CSWP//885KuPGPGjARlV6waUU6RnIQD5mEINGiER0gwHxvZglbdECTmYiWxfPHixSIyt23bNur3gAh59+5dsfcFChRQdhXJfWtbQyBHM3JsXBH7gt8SG4/0sRNCy5QE27dvl4mF9cmJ3cVyLDgyZMhgKaGcIjmJBGxYIvISjXAICWSvATe2iZ3E8hw5csga8/r165YXyimSk3BBlDCOawrlJFiNYxwbtNfEDmI5Ph/NZdGMU4+yK3oK1maI5L4CK3EGmItprxNCoTwJcMCULVvW7GEQG2B1sRw72EWLFrWMUE6RnESKNhfTkJNA4LhAGijmOkLsIpYPHz5cmtq98cYblhbKKZKTSIBIXqJECdprEhA0R0R9Y/rYxA5iecWKFSWqHHW5Y23kGY+yK/EQyYmzwFyMzSAnlDnSCwrlSTQ+hBNFI06cIpZDlAbp06c3dRwUyUk0FCxYUI5dOt4k1MY2HQJiJ7Ec5f18j1krCuUUyUk0YD6mvSaB0I4L+tjEDmI5BOf69etH3ajy1KlT6pdffpEyQ08++aQyEorkJBowFyNoA8cp+QMK5SFAeg1Sw2jEiVPEcmz+mB1RTpGcRAsWmGXKlKHjTQLCDDBiV7HcF6sJ5RTJSbRgPobTffPmTbOHQixor3PlyqWyZs1q9lCITTBbLI8FrewKylsg89EoKJKTaCldurQcL/Sx/4RCeQjgGCDSp1ixYmYPhdgMK4rlMJxweM0UyimSEz0cbxxDhPg38jx9+jSFcmI7sfzKlSvq1Vdflaae/kK52U3uKJKTWMB8jHXf7t27zR4KsRiYV2iviZ3E8gMHDqhJkyZJU85Y6pMbBUVyEgvI2EZDT/rYf0KhPATYUSlVqpRMyoTYXSy/cOGC1wE3QyinSE70AI7V0aNH1eXLl80eCrEQ2sKOjjexm1ieIkUKNWbMGDVz5kyxj5qdhkhupqNLkZzESvHixeX4ZoQaCdTIk/aa2Eksh41u3769mj59esT+r9FCOUVyogcsl5YQCuUhoBEnThLLYTg14i2UUyQneqHNydzxJv72GmJn/vz5zR4KsSlmieXp0qVTb7/9tojlEMdhLwFFcmJ3sNZjQ0/iz7FjxySThj42sZNYDntYs2ZN2QCMhJ07d6qLFy9KxC7GrDcUyYleYE7G8ZrU+bRlyxY1bdo0uXYyFMqDcP36dUmxoREnThHLNXEcNU9Tp04dt8+lSE70pFChQmzoSRKB4wH16+kgEDuK5YMGDVLdunUT0dw3otwMKJITPWGEGvGHjTyJHcXyBg0aSGR4jx49InrdqlWr5Lp69eqSYaMnFMmJnsCPwjEFDTQY/fr1UxUqVFBt2rSRa9x2KhTKg4DmM0gN843CJcTOYjkmPk0wj5chpUhO9AbiEUpiseYp8WXPnj2018QRNcvNFMopkhMjGoTBp7p7967ZQyEWAes3zC/ZsmUzeyjE5tihwadRZVcokhO90fyoYD72li1b1PDhwxPch9tOjSynUB4EOEgARe0JcYJYrjn88Yomp0hOjALz8qFDh8weBrEId+7ckbr1RYoUMXsoxCHEWyzHMYxyBGhIa5ZQTpGcGLX2hXiF45sQgHmV9prYVSxHIGW4G383btxQmzZt0l0op0hOjFr7YgMzmI/9r//XR8O93+5QKA8CfvAcOXJIGiwhThDLtR1trf6pkVAkJ0YL5ZijsVgl5MiRIzLncGOb2FUsf++996S+/pAhQ0wRyimSE6PQ5mWnOtIkcnAs0F4TO4rlKLuCzOzJkyeH9fwNGzbIRnjevHlVwYIFdRkDRXISDx87EMHmbafO5xTKg0AjTpwmlmuR5EY38qRITowGczPOnQsXLpg9FGIBmAFG7C6W58yZU6VMmVIc6ngL5RTJiZEg6ChNmjQUyomAAAf62MSuYjn6fKGP3f79+yOqT45ocj0EbYrkxEyh/IknnlB9+/ZNcB9qlBvRpNYKUCgPAo04cZpYXrFiRbnG5xoFRXISDxihRnzBcYDsL4p8xK5ieceOHdWtW7fUhAkT4iqUUyQnRoPjGE24aa8JOHPmjJSjoI9N7CiWv/rqq9JzYdiwYXGvT06RnFgha3vYsGFybk2dOlWuhw4dqpwKhfIAcLebOFEsv3nzpqER5RTJSbwoUKCALBDpeBOg2Ws6DcSuYjmce+34jZdQTpGcWCFCjbgLZoARO4vl+fLlU0WLFpUMsKRAz5F9+/aJLX/yySdj+lyK5CReYG6GlnP+/Pmgz8H51bp1a8dGkmtQKA8Ad7uJE8VyGFmjhHKK5CSepEqVSur90fEmgBvbxEllWLQ+IkYK5RTJSTyhUE40cBygfAV6MhDilAafoaLJYWczZcoU9ftQJCfxhFnbf0KhPADc7SZOFMvXrVsn1+F26g4XiuTEDOh4Ew0K5cQJYnmvXr1UkyZNvL0XjBLKKZKTeIP5+dSpUxKERNwN5k6I5OFE5BJiRbF83rx56q233lKHDx82vOwKRXISb5i1/ScUygPA3W7iRLH84sWL3mhcvaBITsx0vA8ePGj2MIjJXLt2TbLAKJQTu4vlc+bMUfPnz5d0baOEcorkxAy0+fnQoUNmD4UYxJYtW9S0adPkOhTc2CZ2F8s/+eQT9eGHH6qtW7eG9I9jFcopkhMzgJaDEkMH6WNTKA/EsWPHVM6cObnbTRwllqOZEsiVK5cu70eRnJgJNjKPHz9u9jCIyWjHABZ1hNhZLO/fv78aM2aMOMVGCOUUyYlZaIFHtNnOpF+/fqpChQqqTZs2co3boXxs2mtiZ7G8UaNGqlOnTiGP4127dkl2GBrN45yIFIrkxEzoY/8BhfIAIDotR44cZg+DuBAjxfLUqVPLtR4OMkVyYjbZs2eXNG5EFBN322tAm03sLpZ37dpVdevWTWXMmFF3oZwiOTGTLFmySKauNl8T54AI8uHDhye4D7eDRZbTxyZ2F8tff/11NX78eFWxYsWgz1m1apVcV69eXaVIkSKi96dITqzgY5+hvaZQHsyhwAFCiJPE8ps3b+rSzJMiObEC2hyN+Zq4F+33p80mToksv3fvnq5COUVyYjY4lrNly0bH24EEq2Mb6P47d+5IGUjaa+L0Bp/Rll2hSE6sAObof9O/plAeCO52E6eJ5WjgefnyZfl/+vTpo34fiuTEKmhzNB1vd4PfHxG4evZeIMQMsRwiEsoSnDhxQjehnCI5sZLNpuPtPILVGw90/9mzZ+WaPjaxu1ju8XjUuXPnvBvb/oFpGzdujFgop0hOrALm6DNnzshx7mYolAcABwZ3u4mTxHJEcGiCYrQR5RTJiZXQ5mgK5e6G9po4RSyfPXu21IUcNWqULkI5RXJiJZjK7UwgOvbt2zfBfahRjvv90X5/2mxiZ7Ec4mHu3LnFrh49ejTR4xs2bJCN7zx58nj7gyUFRXJiJTBH37x50/XlTSmU+8G0MOJEsRw73prTnSFDhohfT5GcWA1kRqRNm5aOt8uhUE6cIpb7N5GPxVGmSE6sBoVy5zJs2DARHKdOnSrXQ4cODfg8CuXECWI5XpM5c2a5DiSUa/XJEU0ejh2nSE6sBoPR/oBCeZC0MBpx4iSxPFeuXLIoiCainCI5sSqsoUbYU4Q4RSyvVq2aunXrlho8eLDcRvPDaKBITuwslKMJ5LRp04I2gyTWBKJj69atA0aSa+D3hy8CkZEQO4vlixcvlojbWrVqxVSfnCI5sSLsA/YHFMr90BZxrJ9GnCSWI1MCl0iFcorkxA411Ih7YU8R4hSxHFlfcJJjaeZJkZxYFczTwWr6+pbsqFChgmrTpo1c4zZxlr3GvKRXo2JCzBLLUXolUG8c2OC9e/fK+9WoUSPke1AkJ1aFEeV/QEvlB9PCiBPFct8aU+nSpQvrNRTJidVhRLm7QZ1Ill4hTossj1Yop0hOrAzmaawrz58/H/BxRJAPHz48wX24zchy50B7TZzc4NM3mhx2OFOmTEGfR5GcWL28abp06VzvY1Mo9+Py5ctyHWpyI8RuYvm6deu8iwGtBEsoKJITO4AF5pUrV8weBjGJ27dvi7OB44AQJ4jlQ4YMkXq/kQrlFMmJ1dHm6WA2G+dJJPcTe/rYtNfECWI5/ON3331XvfTSSxK0EUnZFYrkxA48TB+bQnmgyNvUqVOHJSYSYhex/MiRI2E73hTJiZ12vN3ekdvNaL89jgNCnCCWr127Vm3dujUioZwiObED2jwdzGYXLlw4ovuJ/cBvT3tNnCCWp0iRQg0aNEh9/fXX3iwZ+M9JCeUUyYldSE8fm0K5P9evX6cRJ44Ty/Pnzy/XSTXQoUhO7ATmaszZxJ1ov3245aQIsbpY3rlzZ/Xiiy+GLZRTJCd2QZung9lsCFR9+/ZNcB9qlIdqDknsBUQX2mviBLEcQZV9+vRRI0aMENEc7N69W0RzHOPoseAPRXJiJ9KlS+d6H5th037QiBM7ieUAYjmc8AwZMgR9bpo0aeQ6VG1AiuTEbmCudvtut5thRDmxm1gOew0KFiwY8HlNmzYVZxpRakkJ5RTJiZMiygHKDjVu3Fg2lRBJTpHcWTAYjdhJLEd/BIjlEL0DVRrQyqTdvXtXrtesWSPX1apVUylTpkzwXIrkxG6kZ0Q5I8r9oREnTows1ya6Bx98MODjFMmJHcFcjcWn1vyOuAtGlBMnRpZr81koR5oiOXFaRLkGBKrWrVtTJHcgDEYjTm7widJpgcquUCQndiQdI8oplPvD+mnEiWL58ePH5VpLD/OFIjmxK9pc7XZD7lYYUU6cJpYjMu3s2bPy/2AR5RTJiR3B2hLik9sj1NwMfWziNLEczQ5/+eUXaS6/adOmREI5RXJiV9IzopxCuT/c7SZOFMtXrlwp1ydPnkxwP0VyYme0udrthtytUCgnThPLd+7cqfr37x9UKKdITuwKBCI63u6GWdvESWI5bmfKlEk1aNDAK5bnzp3b24CYIjmxM+lprymU+0MjTpwolns8Hrn2rWNOkZzYHUaUuxuWXiFOE8tz5szprYXq71RTJCd2h6nc7uXOnTtyob0mThHLNUEc92/fvt0bTY7bFMmJ3UlHex2ZUD5kyBBVrlw5ESeyZs2qGjVqpA4ePOh9/NixYzIRBLp8++233uedOHFC1atXTxoM4n3QNdg/neW9995TuXLlUpUqVRJHIl4wopw4USwvXbq0XFepUkWuKZITtzQHMxp8ds+ePVXevHlV6tSpRfzatm1bgk2qd955Rxrp4vGaNWuqQ4cOJXiPzZs3y0I6X7586quvvtJlXG6x12iYFKikFCF2FMsxT4wcOVL+nzx5cu9zKZITJ2CFCDXabHNstva708cmThHLEU2O4xr2e+/evV6hnCI5cQLpaa8jE8rXr1+vunbtKhPE6tWrpZYiJoQbN27I40g3OXPmTIILjDGM4tNPP+1tUgQDjl1liHlff/21mjJlivyRGphcli5dqhYuXKief/551a1bNxUvMK5UqVLF7fMIiYdYDkFca+ZJkZw4Be3YxbxtFh06dBB7OG3aNLVnzx6xiTDUp0+flseHDx+uRo8ercaPH6+2bNmi0qZNq2rXrq1u3brlfY/27durt99+W82YMUOcZf8SSdFAe02I/cRyONSw0b5COUVy4hRgs82014A22xybrf3utNnESWI5zj+ci+gFhvthzymSEyfwAO21KPFRc/78edRz8Kxfvz7ocx577DFPu3btvLeXLVvmSZYsmefs2bPe+8aNG+d58MEHPbdv35bbixcv9jzzzDOeO3fueH788UdPuXLlPPEC4+3atWvcPo8Qozhw4ICcb1evXvU8++yzcq5++umnnm3btnnWrl3ruXXrltlDJCQmDh48KMf1hg0bTPn8mzdvepInT+5ZsmRJgvvLlCnjeeuttzz/+9//PH/5y188I0aM8D6G8/GBBx7wzJw503tfnjx5PEeOHPFcv37d8/jjj3v27dun+1idaK+HDx/ueeihh+L2eYQYxZUrVzxLly71HDp0yPPxxx/LuVq1alXP8ePH5Rw7c+aM2UMkJGbKli3r6dy5c8jnwI5MnTpVrvWGNts8m33q1Cn5ezBGQuzM3bt3PZs2bfJs3LhR/v/VV1/JsV26dGnP6tWrPT/99JPMJYTYmY8//tiTPn16V9vrmGqUa9GqSD0JxI4dO6QxEZR83/D3EiVKqGzZsnnvg/KP6NZ9+/Z5b2MnAGljderUEfU/XiCSJ1ADJULsHFmOcxFgN46R5MQpaHO1FoEZbxBNgggu/wgppH9t2rRJHT16VJ09e1Z2vzXQJwARKbCFGoj2Klq0qDxWoUIFVaxYMd3HSntNiD0iyxE9Ay5evKh2797NSHLiGDBfh7LX/fr1ExvYpk0bucZtPaHNNs9ma787bTZxUmT5pEmT1KBBg+T+IkWKMJKcOIZktNfqj45BUYAvDjVjILgVL1484HNQBwYDw+JfA3+QrwEH2m08BlBvdMWKFer8+fPiPKAGqT9ISTMCrY6bUe9PSDyBUI5zFecSQAonJhBMfjzGid2BAQXoNG/E8YzSB6GcOtRvq1ixoho8eLDYOtiymTNnioEuWLCg16YFsnnaYwCObosWLSTFLWPGjLr/HWbba/xORmxm4DfnXEacAlJGy5cvL7WIAZoo4XyF481jnDgBiEc4lgMdz2iGN2bMGHGCNXAbtbqxWRTOe2uNcINBm520zUbNV/+a5nqAdZr2t3E+I06gbNmyEoyGsiugcuXK6tFHHzXk/CEk3ng8nqDzdaz2GsBeh9pQsoK9jlooRx01NC6Aoh8INDJALRjUhIkWNCEJhla/zYii8dihWLZsme7vTYiZDjgiSHLkyKHWrFlj9nAI0YVz587JNWoFwuboTZkyZaQuaChQN61du3YqZ86cIqzjNS1btvRmcURyjuJiBGbba0Sywa7qzYEDB2QdQHtNnASa7OHYxmJ/165dciHECSBKGs0mg83ZcIL9gaAbzhwPGwSnOilos0PbbIgjRthUbb22detW0+veEqIXWi1kbEBlyZJFLV++3OwhEaIL+/fvl00fI+w1QG+NQMFVVrLXUQnlaPyxZMkStWHDBlnQB2Lu3Lnq5s2bEo7vC9JHYSQDGc9IUktr1aqljOCtt96Srqh169Y15P0JiSfYCYSTjd007K4hJRNd7tHUkxC7c/jwYbmGc1ytWjXd319rpheKAgUKSBMuZGsgvRmdt5s3by7ZHJpNg43D/Rq4jdTMeGAFe40IG0QD6A2EhJUrV9JeE8cAO43SCCVLlpRoGkTNFC5c2OxhEaILH3zwgcqbN2/AORsRajVq1Eh0/9q1a8OOKA8H2uykv0cjbCo2SEC5cuUM8+EJibdIjozJAQMGqFOnTqnMmTNL1nZSmS2E2IEjR47IBpAR9hqEc56Yba8jOpOxy9y9e3f13XffqXXr1qn8+fMHfS5Swho2bCi7a75A0MBCCTsO2m42osMh3EVSMwY/nBFowohR709IvEVypG8j6gSTV6FChWQRjVRN1GoixM5o8zV2pM2es7Xd6itXroh4i07csJEw5Dj3NKMNQ4/O3F26dDF0PFay1/idwtl0iBT85pjnzP7tCdGDf//732KzW7VqJeVWEJWDMizoJwLBnBC7A7sE5zjQnA17A5sF26mBmqfhRIlHA212cKHcCJuq9UVCuTTabGJ3kNWBeQHnaf369SWSHOtcRLqiDjLFcmJ37rvvvqDztVvs9f2RpoIh1WvhwoUS6aLVf4Hg5luj5tdff5Wd8ECh90899ZQY69atW8sfiffAThze2wrNBZMqXE+IHcAx/NNPP3kbd2p1liGUw5CjphrFcmJ3rNAcCgYbDi6a58L29enTRxr6tG3bVhYZqDP6/vvvy7kHo45NK5RAQh03I3GLvdbq1BNid5EcNltr3KmVFkR0mhYhSrGc2J2kGjAPGzZMNW7cWJraIpMCx7/e0Ga7s/k6IXqK5P/4xz+8jTu1muSw37DjKAdJsZzYnXv37rneXkd0Bo8bN06u/VPcJ0+erF566SXvbXQARroYDLY/EOmQUgalH7sO2B148cUXvR2DzYaON3GaSI7FsW89f0w2gGI5sTtWEMpRc7V///6SdpkpUybVpEkTiejSduD79u0rKWMdO3ZUV69eldJHaKTl38Vbb2ivCbGnSO4L7DPsNOw1oFhOnCyUAzjbRjjcGrTZ5qD97rTZxEkiuW/JJwjjmLsQ0UqxnDjBXt+XREkzp9vr+zyQ6YkXfMFwRKZMmWL2UAjRRSQHWsM71JnSJpeDBw9K/SmK5cSu4FhH13mkOqLBB3EXY8eOVT169JDGYOHWpyXEDiK5v82GAwCxHFE7FMuJXUEkGMoUfPTRR2YPhcQZzGEZM2ZUc+bMUc2aNTN7OIToJpL722tEmEMsh8RGsZzYlUGDBskG7pkzZ5RbMS8Mz6KkS5dOajoT4hSRPBiILEczBDjf2LEjxG5oczXmbeI+8LvDIYFQToiTIsn9eeihh2RTGymuSD8lxK42m/banWi/O31s4rRIcn+0yHI8B5HlWmkWQuzEddprCuX+oC7ctWvXzB4GIYaK5BoUy4md0eZqzNvEfWi/O202cbJIrkGxnNgdzNW01+4E4iHS4WmviZNFcg2K5cQN9nrLli1q2rRpcu1EKJT7gZ0TGnHiBpFcg2I5sSvaXO32HW+3wgg14haRXINiObErKEPACDXnEo5gAtGF9po4XSTXoFhO7Mz1JOx1v379pLRQmzZt5Bq3nQaFcj9oxImbRHINiuXEjmhzNRpWEffBiHLiJpFcg2I5savghDUrI8qdR7iCCYPRiFtEcg2K5cSJEeVbtmxRw4cPT3AfbjstspxCuR804sRtIrkGxXJiNzBXQyRPloymzI0wopy4TSTXoFhO7AZ7ijiTSAQTBqMRN4nkGhTLidMiyv/1r39FdL9dobrgB2uUEzeK5BoUy4mdYL1Td8OIcuJGkVyDYjmxE+wp4kwiEUzoYxO3ieQaFMuJk3zswoULR3S/XaFQ7gd3u4lbRXINiuXELmCuptPtXrTfnjabuE0k16BYTuyCNk/TZjuLSAQTRCfSXhO3ieQaFMuJU3zsJ554QvXt2zfBfSi5hfudBIXyAEb89u3b6s6dO2YPhZC4i+QaFMuJXXa7mcbtXrTfHvMhIW4TyTUolhM7wObbziQSwQSiC+01caNIrkGxnDjFxx42bJgcw1OnTpXroUOHKqdxv9kDsBqZM2eW6wsXLqicOXOaPRxC4i6S+4rlAGI5nPAMGTIY+nmERMr58+e9czZxHylTphTHG/aaEDeK5P5iOew1KFiwoKGfR0g09hrQZjsPCCaNGzeWzTpEkgeLKsRvz8084laR3F8sRx1/CIxogIv7CLEKHo8nLB8bx7HTosh9YUS5Hzly5JDrM2fOmD0UQkwTyTUYWU6sDOZpbc4m7gS/P+01cbNIrsHIcmJlME+nSJFChCjiPCCWtG7dOqRokj17dtpr4mqRXIOR5cTKXL16VSpsuN3HplAewIgDGnLidpFcg2I5sSqYp7U5m7gTOt7EapghkmtQLCdWt9fxEKGINYHogihFioLEzSK5BsVyYlU0vyq7y31sCuV+ZM2aVSVLloyON7EEZovkGhTLiRXTwiiUEwrlxEqYKZJrUCwnVoT2muD311L6CXGzSK5BsZxYEQrlf0Ch3I/kyZOrbNmyibNDiJlYRSTXoFhOrMSVK1eYFkbk96e9JlbACiK5BsVyYsXzw+1Ot9vRfn/abGI2VhDJNSiWE6uhzdHZXW6zKZQHgBFqxGysJpJrUCwnVoG73QTQXhMrYCWRXINiObESjCgnLG9KrICVRHINiuXESmCOzpAhg0qTJo1yMxTKA0DHm5iJVUVyDYrlxApQKCfa73/9+nW5EGIGVhTJNSiWE6tAoZywvCkxGyuK5BoUy4lVoL3+AwrlAaBQTszC6iK5BsVyYjYUyglghBoxEyuL5BoUy4nZ3L17V124cIH22uWgvCnEctprYgZWFsk1KJYTK0Ch/A8olAepeXr69Gmzh0Fchl1Ecg2K5cRsgQppYalTpzZ7KMREtBr1tNkk3thBJNegWE7M5Ny5c9LEkY43oY9NzMAOIrkGxXJiNuwp8gcUygMA8Q87KTdv3jR7KMQl2E0k16BYTszi8OHDqkCBAmYPg5hM3rx5xZk4cuSI2UMhLsJOIrkGxXJipr0GtNkEPgPtNYkndhLJNSiWEzOhj/0HFMoDULhwYbmmI0HigV1Fcg2K5cQMIPZoczVxL6lSpRKxHMcDIfHAjiK5BsVyYgY43lCbGmtF4m6wbqO9JvHCjiK5BsVyYgbo+YR1bmH62BTKA6EdGDTkxGjsLpJrUCwn8YZCOdGg403ihZ1Fcg2K5STe4FjLnz+/SpkypdlDIRaw1ydPnmTWNjEcO4vkGhTLSbw5dOiQXBemj02hPBCYUDNlykTHmxiKU0RyDYrlJF5cu3ZNymPRiBNAoZzEAyeI5BoUy0k84cY20WDWNokHThDJNSiWk3ii+VOFChVSbodCeRDoeBMjcZpIrkGxnMQD7nYTX3AcwOm+d++e2UMhDsVJIrkGxXISLyiUEw1mbROjcZJIrkGxnMQLzM1ZsmRRGTNmVG6HQnkQKJQTo3CqSK5BsZwYDXe7ib+9vn37tqRzE6I3ThTJNSiWE6OBoIPGYBTKCWDWNjESJ4rkGhTLSTzgxvafUCgPAoVyYgROF8k1KJYTI8HcnDVrVhF5CGGEGjEKJ4vkGhTLiZEcP35c3b17l4438UIfmxiBk0VyDYrlxGgolP8JhfIg4AC5dOmSunz5stlDIQ7BLSK5BsVyYhQ04sSXPHnySJM4Ot5ET9wgkmtQLCdGoc3LtNlEg0I50Rs3iOQaFMuJUXg8HvrYPlAoD4J2gBw4cMDsoRAH4DaRXINiOTGCgwcPsuwK8ZI8eXJVsGBBtX//frOHQhyCm0RyDYrlxAjgR6VOnVrlypXL7KEQC/kGOC4gyhASK24SyTUolhMjOH/+vLp69Sp97P+HQnkQihQpolKkSKF+/vlns4dCbI5bRXINiuVET5DCvWfPHlkME6JRqlQp2muiC24UyTUolhO9wblUsmRJlSwZXU7yp72+cuWKlOUhJBbcKJJrUCwnRthrQB/7D7hqCQLEzBIlSqgdO3aYPRRiY9wukmtQLCd6sW/fPmncWLZsWbOHQiwEjoedO3fSUSAx4WaRXINiOdET+FG018QX7Xigj01iwc0iuQbFcqInmJOxBoRmQyiUJ2nIacRJtFAkTwjFcqIHmJMRmcbdbuJvr+E0sVwaiRaK5H9CsZzowfXr12VOplBOfMH8miNHDvrYJGookv8JxXKiF5iTy5Qp4+rzyRcK5SHAwg7Ri5iMCYkEiuSBoVhO9DDiKI2VNm1as4dCLETp0qXlmo43iQaK5ImhWE5iBVk+qENNoZz4w2A0Ei0UyRNDsZzoATPAEkKhPAQ4UO7du6d2795t9lCIjaBIHhqK5SQWaMRJIDJkyCDNZ7T6eoSEC0Xy4FAsJ7Haa6yBixUrZvZQiEWFcjb0JJFAkTw4FMtJLFy4cEGdPHmSPrYPFMpDgBrlaOjJHW8SLhTJw4NiOYm2keeuXbtoxElAGKFGIoUiedJQLCfRgvkYjRvhSxHib68vXbqkTpw4YfZQiE2gSJ40FMtJtGiBRvSx/4RCeQggchYvXpyONwkLiuSRQbGcRMovv/zCRp4kKDgufv75Z8kEIyQpKJKHD8VyEg3MACPBYENPEgkUycOHYjmJBszFyM4tUKCA2UOxDBTKk4ARaiQcKJJHB8VyEgmYi7HwYyNPEsxe37x5Ux08eNDsoRCLQ5E8ciiWk0i4ceMGG3mSoGTPnl0u9LFJUlAkjxyK5SRS2MgzMRTKkwBO1N69e6VzOyGBoEgeGxTLSbhs2bJFFS1aVKVLl87soRALoi3wcJwQEgyK5NFDsZyEy/bt22V9jPOMkEDg2KC9JqGgSB49FMtJuKBXBOZi2uuEUChPgqpVq0oaN0Q8QvyhSK4PFMtJOKxfv17mZEICgZRBOFI4TggJBEXy2KFYTsIB83DGjBml3xMhgcB6Duv+O3fumD0UYkEokscOxXISDkeOHFGnT5+mj+0HhfIwBLxs2bKpH374weyhEItBkVxfKJaTpAQulNSoVq2a2UMhFgbHB+w1oiMI8YUiuX5QLCdJgXm4SpUqKlkyupokuL2GGLpt2zazh0IsBkVy/aBYTsKx17DVlSpVMnsoloKrlyTApAJDvm7dOrOHQiwERXJjoFhOgqFFCXO3m4QC9vrEiRPq2LFjZg+FWAiK5PpDsZwE49atW2rz5s3c2CYhgQD64IMP0scmCaBIrj8Uy0koMAejfCUyc8mfUCgPAyz0sNvNOuUEUCQ3ForlJJgRR31yZPgQEozKlSuLI0DHm2hQJDcOiuUkEKh1evv2bQrlJCTJkyeXrAPaa6JBkdw4KJaTQCADF3Mw7XViKJSHAQ4c1CnHxE3cDUXy+ECxnPhDI07CATVx4VzR8SaAIrnxUCwn/mD+xVxcsmRJs4dCLA7WdfCvWaecUCQ3HorlxJ/Dhw9LfXL62ImhUB5BnXI63u6GInl8oVhOfMUuiDA04iQctHJprFPubiiSxw+K5cQXzL+sT07CgXXKCaBIHj8olhN/e8365IHhCiYMWKecUCQ3B4rlBLA+OYkE1iknFMnjD8VyAlifnEQCRFHUxaWP7V4okscfiuVEg/XJg0OhPEyqV68uu93Xrl0zeygkzlAkNxeK5QTduIsVK8b65CQsEMmIxT+OG+I+KJKbB8VyAtEF9cnhNxESbp1y2mt3QpHcPCiWE60+Oe11YCiUh0nNmjWlTvnatWvNHgqJIxTJrQHFcncb8RUrVqgaNWqYPRRiI7GuXLlyctwQd0GR3HwolrsbzLtZsmRRJUqUMHsoxEY+9saNG9X169fNHgqJIxTJzYdiubvZu3ev1Cenjx0YCuVhUqBAAVW0aFG1aNEis4dC4gRFcmtBsdyd7Nq1S508eVI1bNjQ7KEQG9GgQQMRbBDZSNwBRXLrQLHcvcBPql+/PuuTk7DB8YJmnqtWrTJ7KCROUCS3DhTL3W2v06VLx1JpQeAqJgIg1CxZskQiy4mzoUhuTSiWu9OIP/jgg5KaS0gk9hql0rT69sTZUCS3HhTL3Qd+5/3793Njm0QE1vXFixdnMJpLoEhuPSiWuxPMuXXq1KHOFQQK5RFGqF24cEFt3brV7KEQA6FIbm0olruLxYsXixFPmTKl2UMhNgJp/3ny5JHjhzgbiuTWhWK5u8B8izVzrVq1zB4KsaGPvXTpUgajORyK5NaFYrm7OHv2rGia3NgODoXyCKhQoYLKnDkzd7wdDEVye0Cx3D0C2Pbt22nEScRgoY/jBvYade6JM6FIbn0olrsHzLeodZo2bVqzh0JsBuz1xYsXRaAjzoQiufWhWO4eUCUDJdLq1q1r9lAsC4XyCDtz16tXjxFqDoUiub2gWO4OI4559+mnnzZ7KMSmEWonTpxQe/bsMXsoxAAoktsHiuXO58qVK9KQEfMuIZFSvnx5lTVrVgajORSK5PaBYrk7gJ4JvQvnJAkMhfIodrz37dunDh8+bPZQiI5QJLcnFMudDRymSpUqqUyZMpk9FGJDqlatqtKnT0/H24FQJLcfFMudzfLly6VsBhozEhIpiGzEsUN77TwoktsPiuXO5ubNm2r16tXM2E4CCuUR8tRTT0mtXEaVOweK5PaGYrkzuXHjhlqzZg2j00jUYC6vXbs2HW+HQZHcvlAsdy6YZ8uUKaNy5cpl9lCITcF678CBA+rQoUNmD4XoBEVy+0Kx3LmsXbtWzk362KGhUB4h6dKlU08++aT67rvvzB4K0QGK5M6AYrnzWLlypbp9+zaNOIkJREts27ZNnTp1yuyhEB2gSG5/KJY7j1u3bklEOaPTSCygCWyqVKnoYzsEiuT2h2K5M1mwYIEqXLiw6CckOBTKo6B58+Zqw4YN6uTJk2YPhcQARXJnQbHcWXzzzTeqdOnSYsgJiRYIN5jbZ86cafZQSIxQJHcOFMudxdKlS2UtDf+IkGhBE1iUX5kxY4bZQyExQpHcOVAsd97G9ty5c2mvw4BCeRQ0btxYdrzpeNsXiuTOhGK5M7h69ao08mzVqpXZQyE2J0OGDCKWY+OF2BeK5M6DYrlzwPxatmxZVaRIEbOHQmwO1n27du1Se/fuNXsoJEookjsPiuXO29h+4YUXzB6K5aFQHgUPPvigON7Tp083eygkCiiSOxuK5fYHO91YhLVo0cLsoRAHQMfb3lAkdy4Uy+3PlStXxPGm00304Omnn1YZM2bk5rZNoUjuXCiWOwPol1hPs+xK0lAoj8Hx3rNnj9q9e7fZQyERQJHcHVAstzdwkNALIkeOHGYPhTiAOnXqqEyZMtHxtiEUyZ0PxXJ7w41toicpU6ZUzz33nJRfgc9G7ANFcudDsdzeXL58WS1btowZ22FCoTxKateuTcfbZlAkdxcUy+3JiRMn1Lp162jEie6ON+w1HW/7QJHcPVAst3d0Wo0aNVT27NnNHgpxCMhOwFoQoiuxBxTJ3QPFcvuibWyzPnl4UCiPwfHGQcYdb3tAkdydUCy3H+j9kDp1avXss8+aPRTiILDxggbcGzduNHsoJAwokrsPiuX24/jx42rDhg3c2Ca6Aj8tb968LHFqEyiSuw+K5fYEc2qtWrW4rg4TCuUxgIXhqVOnZJFIrAtFcndDsdxeIOoXPSDQC4IQvYAAly9fPmaB2QCK5O6FYrm94MY2MYJkyZJJVPm3336rbt++bfZwSAgokrsXiuX229hGsBA3tsOHQnkMVKxYUeXPn19NmzbN7KGQIFAkJ4BiuT1Azwf0fqARJ3qDhbzmeN+6dcvs4ZAgUCQnFMvtgcfjkei0Z555RqVPn97s4RCHAXuNRrGop0usCUVyQrHcPqAKRpo0aVSjRo3MHoptoFAeA5gU2rRpo+bMmaOuXbtm9nCIHxTJiS8Uy63PxIkTVdasWaUHBCF6A3t99epVNX/+fLOHQgJAkZxoUCy3Plu2bFH79u2TeZUQvSlWrJjYgq+++srsoZAAUCQnGhTL7aGJYS5t3LixSpcundnDsQ0UymOkffv26ubNm7JLQ6wDRXISCIrl1gXz6NSpU2VOTZEihdnDIQ6kcOHCqnr16uqLL74weyjED4rkxB+K5dYG8yjKWT311FNmD4U4lE6dOklEOUoGEOtAkZz4Q7Hc2nz//ffq8OHDqnPnzmYPxVZQKI+R3Llzq/r166tx48ZJGiIxH4rkJBQUy63J7Nmz5Zx9+eWXzR4KcTBYJKKvyC+//GL2UMj/Q5GcBINiuTVBSYxZs2apjh07quTJk5s9HOJQWrRoIWV9vvzyS7OHQv4fiuQkGBTLrcv48eNV8eLFZT1FwodCuU473rt27VJbt241eyiuhyI5CQeK5dY04ohMQ98HQowCtflQ3odR5daAIjlJCorl1gPZXxBB2rZta/ZQiINBiQD0rEHJgLt375o9HNdDkZwkBcVy63HmzBm1YMEC0St5zkYGhXIdQD1dpB+OHTvW7KG4GorkJBIolluH7du3y0YjU8KI0aRMmVK1a9dOff311+r69etmD8fVUCQn4UKx3Fprbfg7zz77LM9bYjhYF549e1Z99913Zg/F1VAkJ+FCsdxaICMHmhg2HUlkUCjXAaQddunSRdIQL1y4YPZwXAlFchINFMutweeff67y5MkjZawIiYfjjQbc06dPN3soroUiOYkUiuXWYO3atfIbdOvWzeyhEBdQokQJVaVKFfXZZ5+ZPRTXQpGcRArFcmtw584dydhu3bq1rKFIZFAo1wk0oEuWLBnrqJkARXISCxTLzQWbizNnzlSvvPKKLKwIMZq8efOqZ555Rhxv9haJPxTJSbRQLDefMWPGqJIlS6rKlSubPRTiErp37642btwoZU5JfKFITqKFYrn5zJ8/X0qvcGM7OiiU6wQMyAsvvCBNPTkRxA+K5EQPKJabB2pPYhHVoUMHs4dCXAQWjfv27VPr1q0zeyiugiI5iRWK5eZx9OhRtWTJEpk/KZiReIGN7Zw5czKqPM5QJCexQrHcXDBnVqtWTRp5ksihUK7zjvepU6fUt99+a/ZQXAFFcqInFMvjz+3bt8WIP//887IQJyReVK9eXT366KPq448/NnsoroEiOdELiuXmMGrUKPnuYbMJiRcpUqSQEqcol3bu3Dmzh+MKKJITvaBYbg5btmyRcxj6JIkOCuU6UqpUKWnsOXToUKZzGwxFcmIEFMvjy7Rp00Q869Onj9lDIS4DC/a+ffuqpUuXqt27d5s9HMdDkZzoDcXy+JdJQ3lJON1p06Y1ezjEZWjl+bBZQ4yFIjnRG4rl8WfIkCGqcOHCkpFDooNCuc70799fnO5ly5aZPRTHQpGcGAnF8vhw7949NXz4cPXss8+qIkWKmD0c4kJatmwp9cqxuU2MgyI5MQqK5fFj9OjRInK8+uqrZg+FuJCMGTNKI+6xY8dybW4gFMmJUVAsjx8oLblw4ULVr18/lTx5crOHY1solOsMOnNXrFhRdnGI/lAkJ/GAYrnxzJs3Tx06dEg2FwkxK5379ddfV7Nnz1aHDx82eziOhCI5MRqK5caDNTfKpHXs2JFl0ohpvPbaa+rWrVsilhP9oUhOjIZieXwYNmyYypUrl2rVqpXZQ7E1FMp1Bic+hB8YGnToJvpBkZzEE4rlxoHSVNhMrFmzpghohJhF+/btVebMmdWIESPMHorjoEhO4gXFcmP54osv1I0bN1Tv3r3NHgpxMTly5FBt27aV8isQdYl+UCQn8YJiubEcO3ZMzZgxQwKBUqZMafZwbA2FcgOoV6+edJdlVLl+UCQnZkCx3BhWrlypdu7cyWhyYjqpU6dWPXv2VJMnT1ZnzpwxeziOgSI5iTcUy40BEbwjR45Ubdq0kQg1QswEPW0uXryoJk2aZPZQHANFchJvKJYbx0cffSTroQ4dOpg9FNtDodwAkiVLpt544w21fPly9fPPP5s9HNtDkZyYCcVy/fnwww9V+fLlVfXq1c0eCiHSJCxVqlTqk08+MXsojoAiOTELiuX6M2XKFHXu3DlpfkyI2RQoUEA1b95cetzcvXvX7OHYHorkxCwolusPbPVXX32levTowabbOkCh3CBgxPPnz88mYTFCkZxYAYrl+qGVpUI0ORfkxApkyJBBxPJx48apK1eumD0cW0ORnJgNxXL9gHABQbJp06aqcOHCZg+HEAHBaCdOnFAzZ840eyi2hiI5MRuK5fry6aefynfarVs3s4fiCCiUGwQOUkRffPvtt9J5lkQORXJiJSiW68N7772nihUrpho2bGj2UAjxgvIrWKAzqjx6KJITq0CxXB+mT5+ujh49KsIkIVahZMmSqn79+uqDDz6gsBYlFMmJVaBYrg8oSYWm2507d1YZM2Y0eziOgEK5gbRr107ly5dPvfnmm2YPxXZQJCdWhGJ5bKxdu1atXr1aDR48WEpUEWIVsmXLpl599VWpxYvURRIZFMmJ1aBYHntt8nfeeUc1adJElSlTxuzhEJKAQYMGybnNWuWRQ5GcWA2K5fqUNQX9+vUzeyiOgUqFgaDTLAShRYsWiUEi4UGRnFgZiuXR4fF4JCoNC6Fnn33W7OEQkggcnylSpBC7TcKHIjmxKhTLo2fs2LFybiNqlxCrUbp0adWyZUvJUrx586bZw7ENFMmJVaFYHj3Hjx9Xn3/+uTQ7zpw5s9nDcQwUyg0GRrxUqVLigEMoIqGhSE7sAMXyyJk7d67avn279G3gwpxYEaQqwlZ/8cUX6vDhw2YPxxZQJCdWh2J55GBdA4EcmbFY7xBiRbCpff78eTVmzBizh2ILKJITq0OxPDoGDhwoPsxrr71m9lAcBYVyg0F5gSFDhqhNmzappUuXmj0cS0ORnNgJiuXhc/fuXfXWW2+pOnXqqGrVqpk9HEKC0r17d5U1a1b19ttvmz0Uy0ORnNgFiuWRMWLECInShfNNiFUpUKCA6tSpkwRgsBF3aCiSE7tAsTwy9u7dq6ZOnSp+S7p06cwejqOgUB4HIA5VrVpV9e/fX927d8/s4VgSiuTEjlAsD4/JkyerQ4cOyaYhIVYmTZo06t1331UzZ85UO3fuNHs4loUiObEbFMvD4+zZs9LUuEePHipnzpxmD4eQkEAcQjAGxHISGIrkxG5QLA8fBKLlz59fvfzyy2YPxXFQKI8DOMlhwLHjM2PGDLOHYzkokhM7Q7E8NIhKg/D4/PPPywKdEKvTtm1bOa+xuU0SQ5Gc2BWK5eGVs0CPJTYEI3ZpxN2rVy81evRodfr0abOHYzkokhO7QrE8aXBuoxfi+++/L3ab6AuF8jhRoUIFaWCHne/bt2+bPRzLQJGcOAGK5cGB83Lx4kU2SCS2WpyjPu+KFSvUDz/8YPZwLAVFcmJ3KJYHB70ZJkyYIJuEqHdKiB14/fXXpeQAGnuSP6FITuwOxfLgoPch+iqhsXHz5s3NHo4joVAeR+B4nzp1SlIaCUVy4iwolifmzJkz6sMPP5QakvhuCLELjRs3lsU5ItVYMu0PKJITp0CxPDC9e/eWCF30aiDELjz44INqwIAB6quvvmLJtP+HIjlxChTLAzN37lzpgYiypuiJSPSH32ocKVq0qHr11VclsvLkyZPKzVAkJ06EYnlC+vbtK+c2o3yI3cCCfMyYMWrXrl1q/Pjxyu1QJCdOg2J5QpYtW6YWLlyoRo4cqVKnTm32cAiJiFdeeUUVKVJEdevWTXxMN0ORnDgNiuUJuX79ugTyPPPMM6p27dpmD8exUCiPM6jVi51vHNxuhSI5cTIUy/9gw4YNavr06dKfIVOmTGYPh5CIKVeunOrQoYM0yjl//rxyKxTJiVOhWP4Ht27dkkCeJ598UjVr1szs4RASMSlSpFCff/65CMTTpk1TboUiOXEqFMv/BDXJUdZ01KhRZg/F0VAojzMQyUeMGCHpEqtXr1ZugyI5cQNuF8vv3r2runbtKgsaNEYkxK6gdFDy5MmlDqAboUhOnA7FcqU++ugjdfz4cfXZZ59RWCO2pVq1aqpFixaqT58+6urVq8ptUCQnTodiuVIHDhyQzC/0EsmXL5/Zw3E0FMpN4IUXXlCVK1eWGoB37txRboEiOXETbhbLEdWzb98+uWbdNGJnMmfOLGL55MmT1ebNm5WboEhO3IKbxfJjx45JD6XXXntNSkQSYvdNHwjG77zzjnITFMmJW3CzWI4GntAPc+fOLeVNibFQwTABnNgQkLAYd0tjT4rkxI24USxHA8+BAweqzp07q7Jly5o9HEJiBuVXcCyjBqpbGntSJCduw61iOQRylEd7++23zR4KITGTM2dOWYPCz3ZLY0+K5MRtuFUsnzdvnlqzZo0aPXq0SpUqldnDcTwUyk2iRIkSsiM0aNAgxzf2pEhO3IzbxHLscKNWJOqnEeIEUHpl7NixrmnsSZGcuBW3ieXLly9XCxYskDTu9OnTmz0cQnShR48ermnsSZGcuBW3ieVo4ImN7YYNG6p69eqZPRxXQKHc5MaeWJjioHcqFMkJcY9YrjXwHDZsGBt4EkdRvnx51b59ezVgwAB17tw55VQokhO34xaxHAKb1sDzueeeM3s4hOgGgjVQbx8C8tdff62cCkVy4nbcJJazgWf8oVBuIhkyZJDSK0ijwMVpUCQnxD1i+c2bN0VIhMDABp7EiQwZMkQc8C5dukidQKdBkZwQ94jlqOF84sQJNvAkjqR69erSE6xXr15i25wGRXJC3COWb9u2TfovIFgnf/78Zg/HNVAoNxl0527UqJE43hcuXFBOgSI5Ie4Sy99880116tQpaXrIBp7EqY09UYLlu+++U7NmzVJOgiI5Ie4Ry9GY+OOPP5byj2zgSZzKp59+Kv5np06dHLW5TZGcEPeI5bdu3VIvvfSSKlWqFBt4xhmqGSaDE3rcuHHSIAy11JwARXJC3CWWb9y4URqLfPjhh6pw4cJmD4cQw2jatKmUKYC9Pnv2rHICFMkJcY9YDpENTne5cuVU7969zR4OIYYBIfmLL75QS5YsUdOmTVNOgCI5Ie4Sy9977z116NAhNWXKFMlqJfGDQrkFgGOK1Mc5c+aouXPnKjtDkZwQd4nlN27ckFIrEBNQ75QQpwN7jQafTijBQpGcEHeJ5W+//bY6fvy4ON0QFghxMs8884yUYEGDT7uXYKFIToi7xPKtW7eq4cOHq4EDB6oSJUqYPRzXQaHcQiVYnn32WfXKK6/YtgQLRXJC3CeWo+QKnA+UXIF4SIjTyZIli2SCLViwQM2cOVPZFYrkhLhLLMd6Y+TIkSy5QlwFMh5TpUqlOnbsaNvNbYrkhLhLLNdKrpQuXVr169fP7OG4EgrlFivBArG5a9euym5QJCfEfWL5hg0bvCVXChUqZPZwCIkbTZo0Uc2bN1fdu3e3ZQkWiuSEuEssh9CG7K/y5cuz5ApxFZkyZZISLEuXLlVTp05VdoMiOSHuE8vfffdddfjwYWZ/mQiFcguRLVs2Sen+9ttv5WIXKJIT4j6xXCu5UqlSJZZcIa4E9hqL186dO9sqSo0iOSHuE8sHDBjgLbnC7C/iNho2bKhatWolJVhOnz6t7AJFckLcJ5Zv2bJFjRgxQkquFC9e3OzhuBYK5RYDEWqIVIPjffLkSWV1KJIT4k6xvGfPnurMmTNSciVZMpoS4jywUEUDMFwHInPmzGr8+PFq4cKFauLEicoOUCQnxH1i+Zo1a9Qnn3yiBg8erIoUKWL2cP6vvTuBt7Fc/z9+h2SWiiahQ6bEiQZ1DJkzZopyDAmh0ZCxuUgiiciJkJnInDEypciJzCokkpIGQ2hY/9f3Or9n/5dt22zWXtPzeb9e67Xttdde69nbXs/13Nd939cFRMQbb7zhMmXK5Jo3b+7++usvF+1IkgP+S5YfPnzYJvVKlizpunbtGunD8TWyG1FGb+S3337bZc6c2d1///1R/YYmSQ74M1k+YcIESwwOGTLEFShQINKHA4Sc6gGWLl3aBtT6eKb6gOotorqn2lWxadMmF81IkgP+S5arNJQG3ZUrV6bkCpzfS7CMGzfOLV261PXp08dFM5LkgP+S5dqd2rZtW3fgwAHrgUTJlcgiUR6lgVxvDr2ZteUiGpEkB/yZLP/yyy8tiP/73/+2JiNAvNEKcnWZD6bPz7SyfODAgTZh1KhRIytJFI1IkgP+S5Zr1ayS5KLdMez+gt9VrFjRyhBpfK0+O9GIJDngz2T5yJEjLQeongosRIs8rpiilJLPvXr1shnvRYsWuWhCkhzwZ7L8xIkTVh7q6quvtubDXLwjHinxlZL7M2bM6CZPnmz1f9XcM9qQJAf8mSx/5ZVX3JIlS9z48eOtDxIA55599lnrr6Od2wcPHnTRhCQ54M9k+ebNm20M0bp1azs3IfJIlEcx1SWqUqWKrQbR1sloQJIc8G+yvEuXLm7Lli1uypQpLmvWrJE+HCBVFCxYMEX3S9GiRa0UkWr2a2t3tCBJDvgzWb5ixQpLCD711FOuUqVKkT4cIKoSZiohqMUf2hmpsW00IEkO+DNZfuzYMduVqrG/eikgOpAoj2LaIjlmzBj7qDIHkW48QpIc8G+yfPr06W7w4MFuwIABdgEPxCtdRCduoKMa5bo/OS1atHDNmjWzZtxnWn0eTiTJAX8my7VKVivSdK0erSUcgUi69tprbYw9d+5ca3QbaSTJAf8my9XnaNeuXbYQTQ2HER1IlEc5bZXUlslINx4hSQ74N1m+e/du9+CDD7oGDRq49u3bR+w4gHDp27evXUBrIK2PKmFwNrroHjp0qA3AtTLk+PHjLlJIkgP+TJarGZhWyer8o1WzNAMDklajRg335JNPuu7du5+xB0k4kCQH/JssV57vnXfecW+++abtTkX0IFEeI41HnnnmGVsVEol65STJAf8my3UBr6SfkgAjRozgAh6+oYtorRA/20ryYFmyZLF65du2bXOPPvqoJa3CjSQ54N9kuSb1tEr23Xffdblz547IMQCxonfv3q5UqVJ2nfvDDz+E/fVJkgP+TZZv2rTJdqGqckTLli3D/vpIHonyGKE6g1WrVrVGel9++WXYXpckOeDfZLmSfG3atLFAPm3aNEsCAEieBrvqWO+tEAknkuSAf5Pls2fPtprkWlxTs2bNsL42EIvSp0/v3nvvPduB0bBhQ3fy5MmwvTZJcsC/yfKffvrJ1alTx8b3w4YN4/0fhUiUx4i0adO6iRMnuly5ctmbKhzJMpLkgL+T5a+++qptCRs9erQrWbJkWF4TiAeqV96pUyfXsWNHt3jx4rC8JklywL/J8s2bN7smTZq4unXruueffz4srwnEg+uuu8768ChRFq6dYCTJAf8my//44w937733usOHD7uZM2fablREHxLlMXbhPWvWLLd//367GE7N5p4kyQF/J8vnzJnjevTo4Z5++mnbkgog5XXOK1eubO+f1E6WkSQH/Jss91amXX/99dZXIU0ahndASui9qlWdw4cPt14jqYkkOeDvZLkW0axYscJ2a+fLly9VXwvnjyupGFOwYEGrfzp//nzXs2fPVHkNkuSAv5PlW7Zssck4DbxfeOGFVHkNwA8X3pMmTXI5c+a095JiamogSQ74N1mulWmajNP5RYtpWJkGnB81re/QoYN74okn3JIlS1LlNUiSA/5Olqs045AhQ+xWrly5VHkNhAaJ8hhUrVo1179/fyuLMG7cuJA+N0lywN/J8kOHDllSL2/evG7s2LGsTANCsBNMyezU2AlGkhzwd7K8c+fObvny5W7q1KmsTAMuUL9+/VzFihWtLMLXX38d0ucmSQ74O1muWK3yTo888oh76KGHQvrcCD0yIDFKM94PPPCAa926tVuzZk1InpMkOeDvZLkuCLQy7ZdffrHkXtasWUPyvIDf36vaCTZv3jwrZRQqJMkBfyfLVSZi8ODB1jS4fPnyIXtewM+JMsVrJbNDuROMJDng72T57t27XYMGDWwV+euvv57sYz/99FNbrKaPiBwS5TFKb17VUlODPQXynTt3XtDzkSQH/J0sV/Oi9u3bu48++si99957VusUQOh2gmml2iuvvOJGjBhxwc9Hkhzwd7J84cKF7uGHH7a43bZt25AcIwDncuTIYYtF9u7dayvLT548eUHPR5Ic8HeyXLu1a9as6bJly+amTJniLr744jM+tlu3bq506dKuefPm9lGfIzJIlMcwJbNnzJhhb7qqVau6AwcOnNfzkCQHYleokuXPPvusJfBGjhzpKlSoENJjBPC/5j3abqmklrrcny+S5IC/k+Vr16519evXd3fffbcbNGhQSI8RgHOFCxd206dPt8Ujql2usfL5IEkO+DtZfuzYMVe7dm3L033wwQd2LjgTrSBXaeVg+pyV5ZFBojzG5cqVyy1YsMAdPXrU1ahRwx0+fDhF30+SHIh9F5os17btXr16WTDWDDaA0NPF9htvvGEJrvvuu8863qcUSXLA38lyfZ+u94sXL24lIjSYBxB6qlWuXmATJkxwTz75pO28TAmS5IC/k+V6fOPGjd369estSa7x+tnie0ruR+oiUR4HVCJh/vz5dsFdr149d+LEiXP6PpLkQPw432S5toA9/vjjrlOnTjYQAJB60qZNawPvO+64w8qmbdy48Zy/lyQ54O9kuc4B2kGaM2dON2fOHJcpU6ZUPU7A71R6RYtJVFO4f//+5/x9JMkBfyfLNbGmhp3K0U2bNs3ddtttZ/2eggULpuh+pC4S5XGiRIkSVk9t5cqVrkWLFmfdIkaSHIg/KU2Wf/jhh65p06auSZMmVj+ZC3kg9Sneakt3vnz5rHTCN998c9bvIUkO+DtZribb1atXd3/99ZftJL3sssvCcpyA36kXwDPPPOO6du3q3n333bM+niQ5EF/OJ1n+1FNPuVGjRtlN1/rnQq+h80ww1SjX/Qg/EuVxRB3vtT1MK0Q7dOhwxi1iJMmB+HWuyXKdA7QDRVtLVZc8TRrCARAu2bNnd/PmzbP4q0afBw8ePONjSZID/k6WHz9+3N1zzz3u22+/tST5ddddF9bjBPzuhRdecG3atHGtWrVyc+fOPePjSJID8SklyXKVWezTp4977bXXbEFaSvTt29eef8yYMfbxlVdeCcHR43yQGYkzqn06dOhQN3jwYPfyyy+f9nWS5ED8O1uyXANyrUxTs6KpU6e69OnTR+Q4AT9T0nvhwoXu0KFDrmbNmu7IkSOnPYYkOeDvZLkG49r1pQaeStAVLVo0IscJ+JmSYxpfqymfyrGsXr36tMeQJAfi27kkyydOnGgLVrt06WJlTc+HXqNZs2asJI8wEuVxqF27djbz/fTTT7sBAwYk3E+SHPCPMyXLd+7c6SpUqOBy5Mhhg+4sWbJE9DgBPytQoICtLN+6dasly9WY20OSHPB3slyDcDXYnj17tu0WVW8DAJFLkmnn9q233mqlFDR55SFJDvhDcsly1SJXgltxm5XgsY9EeZxSLbUePXq4zp07u0GDBpEkB3wocbJ89+7dliTPmDGjW7JkiTUEAxBZpUqVsmY/itFarXbs2DGS5IDPk+WqRd6yZUtLkE+aNMnVqlUr0ocI+J6un9VIt1ixYtZYd926dSTJAZ9JKlk+Y8YMd99997lGjRpR0jRO8D8Yp/TG7d27t3vyySfdE0884bp3706SHPBxsnzmzJnurrvusuCuJPk111wT6UMD8H+UINPK8jVr1thKNW3rJkkO+DNZvm3bNhtsa/Xq+PHjXYMGDSJ9aAD+T9asWS1e6/q6SpUq1uCTJDng32S5apErZqv3l2qLp02bNtKHhxAgUR7H9MbVto/777/f9evXz33xxRckyQEfypAhg3Xf1qoXzXjnzp070ocEIJEyZcrYgFvJcu0Ey5YtW6QPCUAEknBKkCtWv/rqq65x48aRPiQAiSg+T58+3XZmajGadm6TJAf8lyw/cOCAlTvWJLeu4XUf4gOJ8jimoP35559bh26tKu/YsaMbOHBgpA8LQBjt2rXLlS9f3hp2qsHI3r17k2zwCSCyVG5Fk9lKkmk7d+Ka5QDim7Zvt2jRwk2ePNkNGzbMFSlSJMkGnwAiSwtPNm/e7IYPH24ryytXrnxKzXIA8e/999+3yew6depYf0BduyfV4BOxiSmPOBVck1yr1CpWrGgDcCXL9QZWSRYA8e3rr7+2muR676vcynXXXee2b99uNcs18509e/ZIHyKAJBp3apVajRo1XPXq1a3prlaZAohfujZXE7D33nvPJrW1jfuXX36xeO01/gUQeYlrki9cuNBitZLlCxYscKVLl470IQJIZYrVqtrQsGFDN3bsWNtR8umnn1rNcp0DWFke+1hRHoeSatzplWHp2bOn69KlizX7DAQCkT5UAKlkw4YNNkmmxkMfffSRJcmTavAJILKSatxZtmxZG3CvX7/eVapUyf3444+RPkwAqUQNfOvXr++mTp1qq8mVJE+qwSeAyEqqcacWnSheFy9e3GqWL1q0KNKHCSAVjRgxwhp3ajX5uHHj3MUXX5xkg0/ENhLlPkiSe/TG7dWrl+vbt699bNu2LW9iIA4tW7bMlStXzhp2Ll++3F177bWnfJ1kORC9SXKPEmSa5Prmm29s0mv37t0RO04AqePQoUOuatWq7sMPP3SzZs06rXEnyXIgepPkHu36mj9/vk1yq2zapEmTInqsAEJPi0yVQ2vTpo3l0dS4M3jleOJk+erVq221uVaaI/aQKPdJktyjN27Xrl3dqFGj3MiRI929995rgR9A/NRLq1atmrv11lvd0qVL3ZVXXpnk40iWA9GbJPeULFnSBuaa1FayTE25AcQH9QzRpPa2bdusPJrKNySFZDkQvUlyT+bMmd3MmTNtpalKMrzxxhsROVYAoffXX3+5xx57zKoyqB75kCFDXNq0aU97nJcsV/lTjcMfeughK8XSrVu3iBw3zh+Jch8lyYM98MADFsy1VUxJNdVBBBDb1PxLk1/33HOP1TXOli1bso8nWQ5Eb5Lco9rEGqBr0ktJNe0SARDbtm7dasnvw4cPu5UrV9rAOjkky4HoTZJ7VIJh9OjRVua0Q4cOrkePHpQ6BWLciRMnbPLrrbfesrH2s88+m+x5QE09lSBXcl2J9QwZMrhXX32VleUxhkS5D5PkHm0N01bPTZs22VYxDdwBxB5dhGt2u3379u6RRx6xRmDneh4gWQ5Eb5Lco8eppJJWmKtMw4wZM1L9OAGkDm3JVjkl1TZW7C1cuPA5fR/JciB6k+SeNGnSWFKsf//+1h+sVatWlDoFYpTyazVq1LDSaGrgqZIrZ6MYffLkSSvTEpws1/2IHSTKfZok99xxxx22kkUryvVvbf8EEDsUgJUcf/75513v3r1tq6cu0lOCZDkQvUlyj3aIzJs3z9WuXdvqGL/99tupdpwAUscHH3zgKlas6IoWLZpkD5GzIVkORG+SPFjnzp2tPrFu9erVs6a9AGLHgQMH3F133eU+++wzq8KgptvnomDBgvYxcbJcO0QRO0iU+zhJ7tHFuhJkWbJksYtvrTIHEP2U1K5Tp477z3/+Yx24e/bsmeILeQ/JciB6k+QexXk1CWvXrp2talHPEV2AA4j+nV+DBw+2mF2lShW3cOFClyNHjvN6LpLlQHQnyT1NmzZ1s2fPth4E5cuXd/v27Qv5sQIIvQ0bNlhJtP3797sVK1bY+/dc6ft0fR6cLM+dO7ddr7O7JHaQKPd5ktxz3XXX2cpyNQBUzXJdzFNTDYheX375pTUH0YW86pFra+eFIlkORG+S3KPmQW+++aZ77bXX7KbEG+9XIHppoKx6pY8//rjdpk2b5jJmzHhBz0myHIjuJLnn7rvvtkTb999/b9cA1CkGoptitOKrJrP1fi1evHiKn6Nv375WZm3MmDG2e6xJkyZ2LtF9JMtjA4nyGBTqJLlHJwMl3J544gm7kNdFvS7uAUSXRYsWudtuu83OBQrguggPFZLlQPQmyT262O7UqZPFbA3oNWmmyTMA0eWHH35wlSpVssHyyJEj3YABA1y6dOlC8twky4HoTpJ71F9E5Rt0fa2VqTofAIguGler51fDhg2tl58WkebJk+e8n08ry5s1a2YfFff1kWR57CBRHmNSK0nu0ZtYK9R0Ma8grot7XeQDiDzt8hg0aJCrXr26JcaUJFdiO9RIlgPRmyQPpkkynQd0btDkmSbRAESH9evX205NTWItXbrUtWzZMuSvQbIciO4kuefKK6+0EixaWdqiRQvXpUsXSqcBUeLo0aOuUaNG1vPrpZdecpMnT3aZM2cO6WuQLI8tJMpjSGonyYPpYl4X9bq410W+LvYBRM6JEydcmzZtbMdHx44d3Zw5c2yAnFpIlgPRnSQPfq/qgluTZ0qcq6EvpdOAyG/d1rX6FVdc4dauXWvJ7NRCshyI7iS5R2P3d955xw0cONB2l9SqVYtrbCDCvvnmG4vX8+fPd9OnT3dPP/10qp0DSJbHDhLlMSKcSXKPLrp1ca+LfL3mlClTUv01AZxOjUS0u2Ps2LHu3Xffdf369bM6xamNZDkQ3Uny4ESZJs9UjqVDhw6udevWNvAHEF5aIfrcc8/Z1u3atWtbbWL1AUptJMuB6E6Se/T8WvQyb948S5QpabZt27ZUfU0ASVP9cC0K1Th39erVrm7duqn+miTLYwOJ8hgQiSS5Rxf3ushXs7DGjRu7hx9+2B0/fjxsrw/43cKFC+3CfefOnW7ZsmWuefPmYX394GS5zkEAoitJ7tHkmSbRNJk2YcIEW2G+ffv2sL0+4Hdq1letWjXbtt27d283ceJElylTprC9PslyIGU0pg1nkjxY1apV3Zo1a1yaNGnsekGLYQCEb1K7V69erkKFCu7GG2+0xaE33XRT2F6fZHn0I1EeIxREw50k9+giX4PuYcOGWe1yBt9A6lPA7Nmzpw261QRI5Y/03osEJcvz589PEAfOceAd7iR5ME2mqW65mnGXKlWKwTcQBuoPUKJECbd582a3ePFii9/hTLolTparXBslmICzL0ZT7fBwJ8k9N9xwgyXo7r33XovdDzzwgDty5EjYjwPw46T2s88+a2VWFL9VQSHcvGS5cm3E6+hDojxGkuQ333xzRJLkHl08tG3b1gbfSgJo8D1u3LiIHQ8Qz7799lt31113uVdffdX17dvXzZ071+XKlSuix1SwYEF32WWXRfQYgFigHRiRSpJ7ihcvboNvlX/Q4Ft9R9SoCEBoaQL5qaeeskG3km0bNmxwFStWjOgxKVmuFXKRSPwBsUQJqmLFikX0vaKGgaNGjbLdYFOnTrUyEF988UXEjgfw06T2Cy+8YAnrSNFrK8938cUXR+wYkDQS5TEiWi52dWL57LPPXP369V2zZs3cgw8+yOAbCKFZs2bZYFvJctVN69q1q02WAUBKZMmSxY0ePdpu6jGiVe4bN26M9GEBcTeprQntl19+2WoOR3pSG0BsjrE1qa0xdvr06W2V6dtvv80qUyAVJrWVz9JO7UhPakfbOQinIvuC8xp8jxkzxgbfkydPtplvBt/AhVGZhI4dO7p77rnHlS1b1n3++ee2fRoALkSLFi3cunXrbLXKbbfdxuAbCAE1z9Wk9p49e6x/SPfu3ZnUBnBBChcubPWKVYJFO7nvu+8+azII4Pzt3bvXapF7k9rz58+3kktAcriiwwUNvjXzrS0jSparTIQaIwBIGa/x35AhQ9wbb7zhpk+fTpkTACEdfKt0muK2Bt+akNu/f3+kDwuIOWpq3aZNG1e7dm1XpkwZW5WmHkIAEAoZM2Z0b731li1GU0JPpdRUIgJAymhRiEoaqUnn7t27mdRGivBXggtSpEgRG3w/+uijduLRYGHbtm2RPiwgZlaRP/fcc7bFUkF7zZo17vHHH2cLFoBUGXyrKbcm4nSuUQ1j9RphdTlw7rVNVc940qRJ9l6aMWMGk9oAUkWjRo2s50GBAgVclSpVXLt27dzhw4cjfVhATPjuu+9cnTp1bHdGrVq17L3EpDZSgkQ5QjL47t+/v1u5cqX7+eefbStqv379WF0OJEOr0FQGQVvAVDNNiSu9dwAgNdWtW9eaGN19993Wa0Sfs7ocSH4VuXZiVK1a1Rpbb9q0yT5nUhtAasqXL59N0GnHqSa2tTL2ww8/jPRhAVFLiz/Gjh1ri0FU+WDmzJn2OZPaSCkS5QgZ1VNW8u+RRx5x3bp1sy2prC4Hkl5FrnJFCuZKkD///PPWvAcAwuHyyy93EyZMcO+//77VQ9WAYvz48awuBxJRkkrJKb1fVA5Bn+fNmzfShwXAJ7Tj9OGHH7Z+YNdff72rXLmya9++PavLgTOsIldj3Jo1a9qiEH0OnA8S5eehT58+luTKmjWrdbfXaqzt27cnfP3QoUPusccec4UKFbLV1nny5LFyCombcWglSuKbtnMGe+GFF1zu3Lkt6bxjxw4X7fTzvvbaa27FihXup59+shWyWm3O6nLg/68i7927t+vRo4dbu3atu/nmm10sWL58udVkveaaa+xcpS3nwZTsVx3kzJkzuxw5ctiFvMoyJV4Zk/ic98orr5zymOHDh1sSQr+XxN8PpBTxOnn16tWzgUS1atVc06ZN7fPvv/8+0ocFRJySUCp1oFXkKn2gJJU+j4VV5MRrxCLidfKUJNdq8jfffNONGTPGJvCWLFkS6cMCIk6LPLTjQqXRNLZWiUF9HiuryInZ0YlE+XlQIwCtmtYqLK0s+eOPP+xC+ujRowmzWbopQaztmaNHj7ZmHK1atTrtuUaNGmVbnr2bLgo8q1atcnPnzrUtI02aNLE64LFCNaCUFNQMeNeuXe3CZ/Xq1ZE+LCAidBHfsWNHa9j5999/2yryF198MaZWkev8VqJECdv+mRRtR9fFu5IJKsOkgK3z4o8//njK4/RzB5/zNOjx7Nmzx5oCa0CjcjQtW7ZM9Z8L8Y14fXZXXHGFmzhxops2bZrFaSUhBg0a5P78889IHxoQkQG33g8alGqgPXToUDt3KKbFCuI1YhHx+txWl+t3pPeu3reVKlWySW7Kp8Gvtm7dajX8VUqwevXqtvgj+P0eC4jZUSqAC/bDDz9or3Jg2bJlZ3zMlClTAunTpw/88ccfCffpe6ZPn37G75k9e3bgnnvuCZw8eTLwySefBG699dZALFq9enWgZMmS9vO2bNkycODAgUgfku/ob2jGjBn2EeHz999/B8aOHRu48sorA5kyZQr06dMncOLEiUCsO9u5S3799Vd73OLFixPuy5s3b+D1118/4/ds3LgxcMsttwSOHDkS2LlzZyBfvnwhPW6AeJ28gwcPBtq2bRu46KKLAsWLFw+sWLEi0ofkS8TsyNi0aVPgrrvusvd7/fr1A7t37w7EOuI1YhXxOnl//fVX4J133glcccUVgaxZswYGDBhAzIgA4nVkHD58ONC1a9dAunTpAvnz5w/MnTs3EA+I2dGDFeUh4G35Sm57hx6TLVs2ly5dulPu16ywVnOpHMPIkSNPqQ+qrdDHjx93mTJlsqZb2pIWi0qXLm0raFXbUVtJtFpNM2aUY0E8++KLL1z58uVthrtcuXJWr7979+4xtYr8Quqwv/322y579uw2Qx5M28BUH1nbvtT0N3jVqrbMFS9e3L5PNZN79eoVgaNHPCNeJ0/vzWHDhlnMvuSSS1zZsmVdixYt3IEDByJ9aECqlll58sknrVzgvn37bJWqdlj4oRY58RrRinh99tXlDz74oJWn0Vijc+fOrmTJklbGAYhXei9PmTLFdn1p96P6fmmHSY0aNZwfELPDKNKZ+lin2dyaNWsG/vWvf53xMT/++GMgT548gZ49e55y/4svvhhYuXJl4L///W/glVdeCVxyySWBN95447Tv1wrseFiF6v0uWrdubbNg//znPwOrVq2K9CH5ArPd4fPLL78EnnjiiUDatGkDhQoVCixatCgQb840261VOpkzZ7bVqNdcc01gzZo1p3z9tddeCyxdujSwYcOGwFtvvRW49NJLAx07dkxyVeuxY8dS9WeA/xCvU/77Gj58eODyyy8PZMuWzX7e4FV7SD3E7PDt+ho/fnzg6quvDmTMmDHw8ssvB44fPx6IJ8RrxCLidcqtW7cuULp0aXvPN2nSJLBv375IH5IvEK/DZ8uWLYGKFSva33jdunUDu3btCsQbYnb0IFF+gdq1a2dbHb799tszbo247bbbAnffffdZT6DPPPNMIHfu3AE/0Fa3UqVK2cmgRYsWgT179kT6kOIaQTz1KYGkLZAqs6JA1rdv33O+ANf7YcyYMfYxloO4tnN9+eWXVm7pwQcftG1dyZVa0u9LW+biLTGB6ES8Pj+6qNbvzivHErzVE6mDmJ36Pvvss0D58uUtnjVo0CDwzTffBOIR8RqxiHh9/hMMI0eOtHIsWbJksbEISbHURbxOfT/99FOgc+fOCWVWPvjgg0C8ImZHD0qvXAA1/5gzZ45bunSpdc5OaiuntnSpe7e671588cXJPt/tt9/u9u7d606cOOHinX5WddvVFm81VLnhhhtcly5drKM5EEsU01RSSNuZ1FDorrvusjIramJ7LmVWunXrZuWJmjdvbh/1eaxSN+4CBQrYz/HOO+/YVlh9TO48oG1hu3fvDutxwn+I1+dP2zhVOk3lWLRVvXLlytY4ad26dZE+NCDFvvzyS9e4cWNrrq2SQiqzMnXqVJcnTx7nJ8RrRCvi9YWVY1GTvh07dljZtJ49e1ojQL23adCNWHPs2DErJ5I/f37LGXllVtS002+I2eFHovw8E2MK4grOS5Yscddff/1pj/ntt9+sG60SZbNmzXIZMmQ46/OuX7/e5ciRw+qC+kHatGld27Zt3ddff23JQQ3E//GPf1itOJ0YgWinOoD/+te/XL169dw111zj1q5da92kk7qwT4omi9SBOpg+1/3x4O+//052YKJzni7qc+XKFdbjgn8Qr0NHicWPP/7Yvf/++5Z00OdKOCrxCES7/fv3u/bt27uiRYu6VatWuREjRriNGzdavWIQrxF5xOvQ0c/75ptvui1btrg777zTtW7d2hb06HcbXK8diEZ//PGH1eHWQspnn33WNW3a1PJFTz/99Dm95/2AmJ36SJSfBzUIGTdunJswYYLNZn///fd2+/33308J4kePHrWZHn3uPcZrYDl79my7SNes2FdffWVJYp0INFPUoUMHC3BXXnmlGz58uD2PZof1Wvr6vHnzEo7Fm1XLkiWLPV7NPA4ePJjwda2UKVOmjLv00kttVVitWrXsROPRLNNFF11kA98KFSrYajE1Bli9enXYfp9qwvLCCy/Ycen4NVuon/M///mPnSiBaGzUWbNmTWvWqSC1cOFCt3jxYkscpYRWfKTk/kg6cuSIBV3dZNeuXfbvPXv22DlKq1Y++eQT980339hKUzUYUlO0e++91x6vc8rAgQPdhg0b3M6dO9348eNdx44d7eJH5zsgluL1yy+/7B577DHnN7pe0MSgEoz6fSlxXqRIEdeuXTtLRALRRs3+nnrqKbuunDx5sr13NbmjHWCJGwDGC+I1YhHxOvS0mlznPS3kufbaa139+vUtcb5s2bJIHxpwGk3ivPfee9Z4UospvV3agwcPtjxXvCJmR6mAT5r1qK5PqG76tSV1GzZsmH1ddZPO9Biv6cC8efOsmaXqh6mecYkSJQI33HBDIGvWrIGXXnopsGPHDvuohoDVq1cPvP3223Zf+/btrbHW0aNHAz///HMgZ86cgR49egS2bt1qTUuqVKkSqFChQsLPPnXq1MC0adOsptHnn38eqF27duCmm26yGmai49FxFS5cODBnzpzA9u3bAw0bNrS6cJFq2vX1119bExIdl34nkyZNCvz5558ROZZ4Qf200ND7qGnTplart0CBAoHJkycnvJfOh2qSJ3WeiMZa5WoQktSxqsfA77//HqhXr541F0mfPr01RqtTp84pjUbUZOj2228PZM+ePZAhQ4ZAkSJF4rJxGqLLmWLxqFGjkv27Plu8Vry/kPd+vFDt0379+gVy5MhhzRB1PaKa5rgwxOwLp+vx/v37By677DL72+zevbtdN/sB8RqxiHid+hYtWpTQI0z5Bb3XcWGI16HJ1S1YsCBwyy232N+meg8ob+UXxOzo5ItEeXLJ7dS86XVTQk2FypQpk/C5ksMK8s2aNUu4b//+/fbcKuSvRHrVqlVPeQ41PdHXlfA+U4dwfX3jxo2nJMpHjBiR8JjNmzfbfUq+R5JOkAriOpaCBQvaMcZTd/JwIohf+N9i48aNA2nSpAlcddVV1k06VL/Lrl27nnLe6NatW0ieFwDCRQnInj17BjJlymTXLR07dgzs3bs30ocVs4jZ5+/QoUOBF1980RaVaLHJQw89FNi3b1+kDwsAooImDaZMmWKL0TTuUC7ho48+smQlUo54fWF/i1rU6U3eKNmrpDEQDSi9EmVUPyy4hrfKpdx0000J93nbTn744QfbXqFGJyq74t0KFy5sX/fKq2h76f3332+1v1XiJF++fHa/tnKc6XWvvvrqhNeIpH/+85/ugw8+sHrNqimp+mr6OV5//XXbhgKkthUrVrgaNWq4m2++2f4OVe9PW5pUZuBszYPOVd++fW071ZgxY+yjmpYAQCxRebfevXtbOTdt9xw5cqTVl23Tpg01zBEWKv2jpvBqyqlSC/fdd5+VXlAZP/UQAQD8r+GnSjaofrnK3Kh0jUpcqOeSStdQwxypTaV1R48e7W688UbXsGFDK7WkMqYqIaK/RSAa+CJRrrrbqv0T7pteN6USJ99UDzT4Pn3uFfDXa9SuXTuhppF306C0XLly9jh9/dChQ1brXIk+r0ngyZMnz/i6wa8RDW677TZrPrJ582ZXqVIl17VrV5c3b1734osv2s8GhJIuEDVBU7ZsWXsfaVJp7Nix9r5SI7CMGTOG/DXVmVr1+fURAGJVzpw53UsvvWTnzV69erk5c+bYBL6afnq1F4FQ0sIQ1TLVQhA1/1ItYk3YaGLbWxwCADiVejRoMZ1is2K1Euh16tSxxXNKoP/555+RPkTEmWPHjrlBgwa5/PnzW/891dBXclwLP6tUqZKQgwKigS8S5XrTZc6cOey31H6zlyxZ0pLHGgioSVHwTa//008/ue3bt1uHYCWY1XDr559/drFKq8rfffddWyGkwN6nTx9LmHfu3NmaHgAXQk051URIq8fVqFMXiDNnzrTGnWqGEa9NvwAg1LSDTZPais1DhgyxRmI6t6r5+KJFi1ixhgu2Zs0auxbUQHvGjBnWFF4TNFpNHs9NvwAglJSv0Lhn5cqVbvny5e66665z//73v12hQoUsfh8+fDjSh4gYpyoFWkShvE2nTp1c+fLlrSm8xtmlS5eO9OEB/k2Ux3N3cK2o1kBBg1CtqlmwYIHN0Kn7t7rcqnSLVtgoubxkyRI7OcU6nWTV/Vidfx9//HE3atQom5nULDgDcKTU3r173TPPPGPbtbWq+6qrrrKZ7Y8//tj+prTCAgCQchkyZLBSVTt27HDjx4+38hhVq1a1iW+t+GUAjpROaGuHl3YaageWdknqelAryLt37+6yZ88e6UMEgJil3bTaVfv555+7W2+91T3xxBPu2muvtfG2Ft8BKaEYrbG1Jl+0wLFRo0a2Q1txvFixYpE+PCBZZIBimGourlq1ypLiGniqlnmHDh2sVqiSe7pNmjTJrVu3zk5Gqhvar18/Fy9y5cplNVGV6NRkgBLn+j1o5fzAgQMpy4IzUlmhxYsXW40+7cjQ34uC99atW938+fOtPhrbvwAgNLQjp0mTJjb4XrZsmV2T6HpFA3BN+mvnDnAm6g3So0cPG2w3b97cFoKolq4G3A8//HCqlEQDAL9SnzDlEDQJqSS5/q0yahpnv//++1ZjGkiK+si98847NtGi1eLKVWmn1759+2yHgvrXALHgInX0jPRBAKGgP2VtG9MqNdU0VzNUJT9Vu/KOO+7wdeJTFzRaIaDGlKFqQhmLfvzxR2se4u2y0KpGrXZs0aKFlQoAAISHJrnVaHHEiBHWTExxWvFacdvviU9i9v9+B3PnznXDhg2zJl+K0UqSa2JFJQEAAOFx/PhxN2XKFDsfq6b01Vdf7Vq1auVat25tO739jHj9P5s2bbJrujFjxthuwWrVqtlEtn4vyskAsYZEOeK2FpZKsuiErRqpN9xwg9Vb00013P3Gz0FcjUO08kz1x7Va3Ov2rgS5Orz7eQIFAKIhPs2aNcsG4NrpkzVrVtegQQPrDaHdPX4cYPk1ZmtIotrjiteTJ0+2yW2VWVG8VkPYTJkyRfoQAcDXNmzYYONrnaePHDli9aYVrxW3tavdb/war+W7776z3Qb6W9COQfUHefDBB12bNm1YOY6YR6IccV9iQ7XZdQKfNm2aBXTVtVRA16ArZ86czg/8FsRVjkj/76qJm/j//b777nNXXHFFpA8RAJCIdvooXuumvisqMac+LJrk1lZwv0xs+i1mq4SK4rVu+hvQakX9v6u2qf7fAQDRRWOrqVOn2nn7ww8/dOnTp3e1atWyeK3Ydckllzg/8Fu8/u2332znvq7TNNZWaT3v/10f9XcAxAMS5fDtymL96WtbkJKnatqYOXNmF6/8EMT1/6nZbF2wTZw40ZrG+X0nAQDEy8pilcrSuVy1ztVbIp75IWZr55/+b/V/rP9rbyeB/o8rVKjgy50EABCLVH9aK4s1BtNYTCvLtXtXY+wyZcrYbt545Yd4ffLkSbdgwQL7/505c6aV4tGOP8VrxW31DQHiDYly+NLBgwet1poGaKq1liFDBle5cmVXu3Ztmw3VKrZ4Eq9BXIFbjeE0AaKt+2roql0CWjWuizM1EvHLCkQAiEeKX4sWLbIBmlYx/f7777bKWBPcitklS5aMu0F4PMZsDTe2bdtmsVox++OPP7ZkePXq1S1e6//S77XpASDWbdmyJWGHkMZlKsehsbXO8Rprx9vCtHiM13Lo0CE3b948i9laYKiV5DfddJPFa+34UnNtIJ6RKIfvaXv3jBkzLBCoGajKtdxyyy02CNetePHiMZ9sjacgrsCtn0UDbS9wK1jrAkz/XxUrVoz5nxEAkPRW7zlz5tj5X3Hgl19+sYltDcK98388JFvjJWbr51i1apVdX+mm6y39/1StWtVi9j333EMpNACIQxpPazGaViDr/L99+3ZbmFapUiWL1/GyMC1e4rVXBs2bzFZORKVMlRNRvK5bt67lRAC/IFEOBPnpp59OmT1V12YvCVulShVXrlw5d9lll7lYE8tB/M8//7RtfEuXLnVz5861QbcXuL0VhSVKlIj5yQwAQMrimgZy3o4iJWHV7FGxWquUtS24YMGCMRkbYjlm79mzx3300Ue2TdubzFDN8eDJ7HiYzAAAnLsdO3ZYvNZtxYoVCQvTlDBXXFDj5lisax7L8VqLDzSuVo15/b9o15f+D7TyP54mM4DzQaIcOIeyHlrBtmvXLhtwazZVA3DdYiVxHktBXInx9evX20BbN11MadW4EiCqW0rgBgAkV9bjk08+sQlVJWi9eK2b+lbEQuI8lmK2lxj3brpWEpXH8ZLj8VgeBwBwYQvTFK81qfrrr7/aavM777wzIV7HSuI8luK1lxj34vXatWvtWumqq66y41e8jsfyOMD5IFEOnKPdu3db4twLLvpcA26tZlZAL1u2rM2MawV6tA3EozmIHz161BLj2p4XnBjXijM1gPEumPS7pZM2AOBstBsseDD42WefnZY41yD8xhtvjLqYGM0xW79DrQrU4Nq7Htq5c6d9LfEigssvvzzShwsAiHKKKxs2bEiI18uXLz8tcf6vf/3LJlzVJDTaRGu8lgMHDrh169bZ7jvtzNa1kBakqW68Fp95MTtWd98BqYlEORDCxLmomaSCealSpRJuefLkiWgAipYgrplsJcUVtL2bVgFq+50S47oQ8oK2GnGSGAcAXChNvgYnzhV7NDjXajUleIPjtZLnkY490RCz9ftRTdngeK0yaJrcFhLjAIBwJc4lf/78p8Rrjbdz5Mjh/B6v5fvvvz8lXuu2b98++5oS48G76woVKkRiHDgLEuU+pBOktsQOHDjQPs+XL5/r0KGD3XD+FIwUlP773/8mBKj9+/fb19SsSsFcq881a+vdFLjCEajCHcSPHTvmvvrqK1t5ptvWrVsTkuI65Sg5od+Fd5ETLckJAED8C5609WK24pQmbRWHlAS++eabXeHChRPi9fXXXx+2QXA4Y7aSEiqfolitRl5Kjishrt+PlxQvUKDAKfE6GpITAID4l3jSVjFbMUpxXP7xj38kjCO9eK0ya9myZQvL8YV7jK2yNd74WreNGzfa7+W7776zr6skbPBEgj7q+oXEOJAyJMp9KHGi/Mcff7RaVKoBjdBSojx4Znfz5s228lyDccmaNasF8+Dked68eW17uG6h+j8JdRDXRYv+bvTzaYIgOCmu27fffpvwWA2mlWxQ0sEL3EWLFo267WkAAP9SUlir2Lx4rUSxEsea+JW0adPagDw4Xutz9ctQvNbgNFQD0VDGbF3ma0W94rUG0qohHhyvFb/Vk0U0SaCkePAqe8XuaNzuDgDwJ41DFZ+Dk+dajKVSIx7V3faS5t7H3LlzW7zWQrVQjUNDPcY+ceKExWvdNJ72YrV+Xn08dOhQwmNV7rVIkSKnrLJXHoGkOHDhSJT7UOJEOcJLAVA1PYMHqt5N26aCZc+ePSFprps3IFfyOUuWLJZo1y3xv1XXLThInimIq06ZZuRVz9X7mPjfuujQ4NoL2vr3Dz/8YBcpHpVNSZzw925sxwYAxCJdIivmJRWvFccVQz1KMicVr1WO7UyxWh+1UCFxo8ukYraORUn7pOK09++DBw8mxGovXuvj77//nvDcujbQTsLgOO3Fb5WJ04QAAACxRiVavIRy4ptiZHAcVGxOHK+VXNdK9ORiduJk+JnG2BrvJze+1rEmFa+DE+GicXRS42tNarPIEUg9JMqjLIF900032SDl3XfftUFXr169XJMmTdyjjz7qpk6dajOggwcPdtWrV7fv2bRpk+vSpYs1QNRgq2rVqu7111+3Uh/eCqn27du7999/307uTz75pHWYTq70yoABA9yoUaNsEKgVUrVr13avvvqqBQgZPXq0PXby5Mn2UbOdarqo71GQwfnTqq+9e/eeFjQT/9vbDn0m+htSsNbg27tpQK/7tZpdNyW6vVVkyT1Prly5TrmIONO/Ew/0AQCIVxoce/E6OD4n/lzJ67NRObLgeK2bnl8fvZitQffZLtm18js4PieO17ppBZom0wEA8APFTi3yUmxOLl5rwZpib3I0vk6XLl2y8Vpj7uCJ9KQoDicXq/X5tddea7kYAOGXzvmIl1zU7Ju32laJQp3cdMLTQCXxY7VS1ksA6nF6vJKHwYOMpB57vpQg79q1q1uzZo0lopXknj59uqtXr57r2bOnJcGbNWtm9SR1LBUrVnStW7e2+7ViqFu3bq5Ro0ZuyZIl9nxKoqvh5MyZMy3hqefQ9iQlys9EP8OgQYOsnpWS5Q8//I9G13IAAAj9SURBVLAd09ChQxMeo1VN/fv3d2PHjrXHN23a1JLw48ePv6Cf3+80i62yJLolJ6mV4IlnrPUYJcMVsPW3u2XLFqvfpgCvv2H9v+m9EDxLnvhj4pXpAADgf4NlXSfplhzFYF0zJbd76/jx4wkDbN10faearMWKFUuY9NbiicQr24JXuymesxocAIBTaSyrxYa6qZxYcgl1xd8zxWp91C1xvFbZF2+MrXitvJLic1Kx2rufvlxAdPPVinIv4acZRW23kd69e7unn37aks3Dhw9PeKxWZ2tgo1qOWnEtWoHdsWNHW+EdnBDWc2nFkFZ36yR5ISvKldjU6nDRv1V6o379+m7MmDF2n2Y6Ncu4evVqt3jxYnvsggULEp5Dq5u0WkgDLM1EarvOuHHj3L333mtf13Ye1ed66KGHzrmZp1ayt2vXLmFVlFaUt2zZ0upaqvu0KIn+4osvnlY6BNEhWjpyAwCA5BGzAQCIfsRrID75akV5LFADJY9WBinRrXIsHs2Eesl+NZ1aunRpQkmUYF9//bWtMNcs5+23355wv7bvFCpUKNljUAK+T58+NjuqUiBamazVTpo48Gph6aOXJBcl73VMAAAAAAAAABBrfJUo11YZCW58oNIkWkmtLTLBvKSvyql4HnnkEdemTZvTtrbu3r37tMeer8QzkVoFH3yftypeW33086h+eN++fU97HiWuteI7pfSz1KpVy0q+aLW9EusrV650rVq1sqS797tL6jh9tDkBAAAAAAAAQBzxVaJc5VQSU32opGpEJfVYJYeT2lKT1GPDoWTJkm7atGlWOiVxol+04lvH++mnn7o8efLYfT///LN1fi5fvnySz7lu3TpLwr/22msJ9danTJmSyj8JAAAAAAAAAETOhXWeRERphbtqjt9///1u7dq1Vm5F9cpVP1z1zVWSRSvBtWpezT1VQ/2BBx5ItuFogQIFrNbW4MGDrZGnmnUOGzYsrD8XAAAAAACAX2iBo/Iv+gggckiUxzA161y1apUlxatWrWq1zFVG5tJLL01Ihvfr18+VLVvWSrRUrlzZlSlTxpUqVeqMz1miRAk3YMAAK+dSrFgxa1qqeuUAAAAAAAAIrW7durnSpUu75s2b20d9DiAyLgpQWBqIe3TkBgAgNhCzAQDwT7zWCnIlxxP75JNP3O23336BRwkgpVhRDgAAAAAAAISZesil5H4AqYtEOQAAAAAAABBmBQsWTNH9AFIXiXIAAAAAAAAgzFRepWvXrqfcpxrllF0BIiNdhF4XAAAAAAAA8LW+ffu6+vXrW7kVrSQnSQ5EDolyAAAAAAAAIEKUHCdBDkQepVcAAAAAAAAAAL5GohwAAAAAAAAA4GskygEAAAAAAAAAvkaiHAAAAAAAAADgayTKAQAAAAAAAAC+RqIcAAAAAAAAAOBrJMoBAAAAAAAAAL5GohwAAAAAAAAA4GskygEAAAAAAAAAvkaiHPCBNGnSuPz589tHAAAQvYjZAABEP+I1EJ8uCgQCgUgfBAAAAAAAAAAAkcLUFwAAAAAAAADA10iUAwAAAAAAAAB8jUQ5AAAAAAAAAMDXSJQDAAAAAAAAAHyNRDkAAAAAAAAAwNdIlAMAAAAAAAAAfI1EOQAAAAAAAADA10iUAwAAAAAAAAB8jUQ5AAAAAAAAAMDXSJQDAAAAAAAAAHyNRDkAAAAAAAAAwNdIlAMAAAAAAAAAfI1EORBDli9f7mrXru2uueYad9FFF7kZM2ac8vUjR464Rx991OXOndtlzJjRFS1a1A0bNuyUxxw/ftw98sgj7vLLL3dZsmRxDRo0cAcOHDjlMbNmzXIFCxZ0hQoVcnPmzAnLzwYAQLwgXgMAEBuI2QCCkSgHYsjRo0ddiRIl3JAhQ5L8eqdOndz8+fPduHHj3NatW12HDh0sqCsoezp27Ohmz57t3nvvPbds2TL33Xffufr16yd8/cSJExbkhw4d6t58803Xvn17d/LkybD8fAAAxAPiNQAAsYGYDSDYRYFAIHDKPQBigma7p0+f7urWrZtwX7FixVzjxo3dM888k3BfqVKlXPXq1V2vXr3cr7/+6nLmzOkmTJjgGjZsaF/ftm2bK1KkiFu9erUrXbq0++2331zx4sXdZ599Zl+/9dZb3RdffOGyZs0agZ8SAIDYRrwGACA2ELMBsKIciCN33nmnzWzv27fPaQ5s6dKlbseOHa5q1ar29XXr1rk//vjDVa5cOeF7Chcu7PLkyWNBXLJly+Zatmzprr76att+ptluAjgAAKFDvAYAIDYQswF/SRfpAwAQOoMHD3YPPfSQ1U9Lly6dS5MmjRs+fLgrV66cff3777936dOnd5deeukp33fllVfa1zzPPfecbSnT9xPAAQAILeI1AACxgZgN+AuJciDOgvgnn3xiM9558+a1xiSqhaZZ6+AZ7nORPXv2VDtOAAD8jHgNAEBsIGYD/kKiHIgTv//+u+vZs6fVVKtZs6bdpzpo69evd/3797cgftVVV1nTkF9++eWUGW915NbXAABA6iJeAwAQG4jZgP9QoxyIE6qLppu2cgVLmzat+/vvvxOajlx88cXuww8/TPj69u3b3Z49e9wdd9wR9mMGAMBviNcAAMQGYjbgP6woB2LIkSNH3FdffZXw+a5du2w2+7LLLrNmIeXLl3ddunRxGTNmtG1hy5Ytc2PGjHEDBgxI2OrVqlUr16lTJ/seNRV57LHHLICrGzcAALhwxGsAAGIDMRtAsIsCatsLICZ89NFHrkKFCqfd36JFCzd69GhrFtKjRw+3cOFCd+jQIQvkajzSsWNHd9FFF9ljjx8/7jp37uwmTpzoTpw44apVq+aGDh3KtjAAAEKEeA0AQGwgZgMIRqIcAAAAAAAAAOBr1CgHAAAAAAAAAPgaiXIAAAAAAAAAgK+RKAcAAAAAAAAA+BqJcgAAAAAAAACAr5EoBwAAAAAAAAD4GolyAAAAAAAAAICvkSgHAAAAAAAAAPgaiXIAAAAAAAAAgK+RKAcAAAAAAAAA+BqJcgAAAAAAAACAr5EoBwAAAAAAAAD4GolyAAAAAAAAAIDzs/8HkLqkqfHizCcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAHjCAYAAAAT5iygAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQm8jOX7xp/ITrLvW+SHLFmjrCESkiUUypIlRIS0R2VrUQptCNlCZc9StpI1a0h2fvYlW9bf/D/X3f+d5syZmTPL+867Xd/PZxxnzpyZ97zzznM/z/Xc93Xf5vF4PIoQQgghhBBCCCGEEEIIcSnJzD4AQgghhBBCCCGEEEIIIcRMKJQTQgghhBBCCCGEEEIIcTUUygkhhBBCCCGEEEIIIYS4GgrlhBBCCCGEEEIIIYQQQlwNhXJCCCGEEEIIIYQQQgghroZCOSGEEEIIIYQQQgghhBBXQ6GcEEIIIYQQQgghhBBCiKuhUE4IIYQQQgghhBBCCCHE1VAoJ4QQQgghhBBCCCGEEOJqKJQTQgghhBBCCCGEEEIIcTUUyglxIJ988okqWLCgSp06tbrvvvvUunXrvD/bvXu3euCBB1TevHnVW2+9ZepxEkIIIW6HMZsQQgixPozXhLgDCuWEOIzp06erPn36qNdff11t2rRJlSlTRtWrV0+dPHlSft6jRw/Vpk0b9f3338vtl19+MfuQCSGEEFfCmE0IIYRYH8ZrQtwDhXJCHMb777+vnnnmGdW+fXtVokQJNXbsWJU2bVo1btw4+fm5c+dU+fLlVenSpVXu3LnV+fPnzT5kQgghxJUwZhNCCCHWh/GaEPdAoZwQB3H9+nW1ceNGVadOHe99yZIlk+/XrFkj3w8aNEi+h3iOnyHbnBBCCCHxhTGbEEIIsT6M14S4i9vNPgBCiH6cPn1a3bp1S+XIkSPB/fh+165d8v8GDRqoU6dOqQsXLqhs2bLx9BNCCCEmwJhNCCGEWB/Ga0LcBTPKCXEhqVKlokhOCCGE2ADGbEIIIcT6MF4T4gwolBPiILJmzaqSJ0+uTpw4keB+fJ8zZ07TjosQQgghCWHMJoQQQqwP4zUh7oJCOSEOImXKlNKoc9myZd77/ve//8n3VapUMfXYCCGEEPIvjNmEEEKI9WG8JsRd0KOcEIfRp08f9dRTT6kKFSqoSpUqqZEjR6rLly+r9u3bm31ohBBCCPGBMZsQQgixPozXhLgHCuWEOIyWLVtKs87XXntNHT9+XN17771q0aJFiRp8EkIIIcRcGLMJIYQQ68N4TYh7uM3j8XjMPghCCCGEEEIIIYQQQgghxCzoUU4IIYQQQgghhBBCCCHE1VAoJ4QQQgghhBBCCCGEEOJqKJQTQgghhBBCCCGEEEIIcTUUygkhhBBCCCGEEEIIIYS4GgrlhBBCCCGEEEIIIYQQQlwNhXJCCCGEEEIIIYQQQgghroZCOSGEEEIIIYQQQgghhBBXQ6GcEEIIIYQQQgghhBBCiKuhUE4IIYQQQgghhBBCCCHE1VAoJ4QQQgghhBBCCCGEEOJqKJQTQgghhBBCCCGEEEIIcTUUygkhhBBCCCGEEEIIIYS4GgrlhBBCCCGEEEIIIYQQQlwNhXJCCCGEEEIIIYQQQgghroZCOSEu4ObNm+rnn3+Wr4QQQgixLojVv/zyC2M2IYQQYmG4xibEmVAoJ8QFeDwedfr0aflKCCGEEOuCWH3q1CnGbEIIIcTCcI1NiDO53ewDIIRYi7Vr16o//vhDFS1aVN13331mHw4hhBBCCCGEEEIIIYbDjHJCiJcBAwaoypUrq3bt2slXfE8IIYQQ+2+CT5o0Sb4SQgghhBBCAkOhnBAiYPE8fPjwBGcD33NRTQghhNgXboITQgghzoIb4IQYB4VyQogAu5VI7ieEEEKIteEmOCGEEOIsuAFOiLFQKCeECPAkj+R+QgghhFgbboITQgghzoEb4IQYD4VyQoiAxp39+/dPtFvNhp6EEEKIPeEmOCGEEOIcuAFOiPFQKCeEeBk2bJj69ddf1cSJE+Xr0KFDeXYIIYQQm8JNcEIIIcQ5cAOcEOO5PQ6vQQix2aKaWeSEEEKIczbBmzZtKlloWGAzxhNCCCH23gAfPny49z5WgROiLxTKCSGEEEIIcTDcBCeEEEKcATfACTGW2zwej8fg1yCE6NzAQ8sKA+FkiK1Zs0adPHlSZc+eXSVLlizo7/g+NzPOCCGEkPjjG7OrVKnivZ8xmhBCCLF+vPaH8ZsQe0GPckIsCILppEmT5KsvKKuqXLmyateunXz1/T9+FgjcX7t2bfk/vgb7Hf/nDvZ8hBBCCEk6ZkeDf8zWYnEsMVrP4yOEEEJI8HjtD9fYhNgPZpQTYjEQTH09x+BBhvIqLHCxOA4FGnD6ZoJrv5MmTRo1depU1bp1a/X3338n+h0Q6Ln9ny8cuGNOCCHEaQSLbcFidrSvEShmf/HFF6pTp05RxWg9j48QQgixIvFefwaL18HW4nqssf1fn1XghBgHM8oJMZhIMrnwGN8FLcD3WjBMCv/HhPs7wR4Xzu/7wh1zQgghTiNYbAsVs6MhWMxdv359RI/X0Pv4CCGEEKthxvoz3LWzXmtsX7jeJsR4KJQTYiCRBrJQwVTzJA+F/2PC/Z1gjwvn9zW4ICeEEGIHjN7AjnYBHCzmVqxYMaLHG7lAJ4QQQqwSr81af4a7dtZjje0L19uExAcK5YQYRDSBLFQwRXkWSqaDARHev4Qr3N8J9LhAzxePBTm9VAkhVqdmzZqqZ8+eqnfv3ipTpkwqR44c6vPPP1eXL19W7du3VxkyZFBFihRRCxcu9P7O9u3b1cMPP6zSp08vj2/btq06ffq09+eLFi1SVatWVXfeeafKkiWLatiwodq7d6/35wcOHFC33Xabmj17tqpVq5ZKmzatKlOmjDSSItbawI52ARwsFnfs2DGqGK338RFCCCFWitdmbQiHu3bWY43tCzfAnQPXEtaGHuWEGAR2vxHY/Zk4caIIJOH6ieL7oUOHBvQkA+H4k/l25E6WLFnQ34nF70wPDzZ6qRLibjwej7py5Yoprw3hGUJ0uJPbTZs2yeKnZcuWavr06eqNN95QDz30kHrsscfk5x988IGaMWOGOnTokLp+/bqMq/CZRlyAjyXGu5s3b6off/xRnnPWrFny+qVLl1aXLl1Sr732mojjmzdvlnEb/y9UqJAqVqyYevfdd9Xdd9+tXn75ZbHl+PPPP9Xtt99u8BmyP9HEqaR+J6mYHQ2+MbtKlSoxxWgjjo8QQgixQrw2ygM81nhtlKe42X+vHTBrLRHJOgJwLWFxPIQQQ/j11189+Ij533B/OL87ceLEsB4bDtevX/d899138tVI+vfvn+BvHTBggGHnS+9zRAgxn0uXLgUcB+Jxw2uHS40aNTxVq1b1fn/z5k1PunTpPG3btvXed+zYMXneNWvWeAYPHux56KGHEjzH4cOH5ee7d+8O+BqnTp2Sn2/btk2+379/v3z/xRdfeB+zY8cOuW/nzp0RnWe3gpgR6L3H/bHENqvHbLPjpdmvTwghxLnxOpb1p13W2Fb5e+2AWWuJSNYRgGsJa8P0I0IMQiu18s/kCme3V7NDsRvDhg1TTZs2jWrHPFQpmf/zMPOcEGI2yPzWSJ48udillCpVynsf7FUAMo22bNmifvrpJ7Fd8Qf2Khgv9+zZI1nkyBaCJcv//vc/+Tky0kuWLBnwdXPlyuV9DWSaE2WIFUlSsc3qMdvM42O8JoQQYmS8jmX9aUfc9vc6Ga4lrAuFckIMxI2BLNoFebgTomDe7zjPeF29StsIIcqUskXYjpj12pGQIkWKBN+j3NL3Pq38EoI3/qZGjRpJTPBHE7vx8wIFCojXee7cueX3IJDDtiXY6/q+BkkaN25gm0lS8ZoQQojz0GMtFmm8dluMdtvfa4e1RKTrCMC1hHWhUE6IwTCQ6TshCpV5jiZ3vr+P5wskTBFCrAmE33Tp0imnUa5cOfEgL1iwYEAv8TNnzqjdu3eLSF6tWjW5b/Xq1SYcqfNx4wa2WURSKUYIIcT+6FlFxHhNooFrCa4l9IBCOXE8Tsowvnz5sjp27Jg6f/687JRevHgx0Vft/2gShyxD3L799lt14cIF1aZNGxFp0BgON+x8ZsiQQewAAn3FDc1JsmbNKo83mnAmRMEyz5F1ycw1QogV6d69u4jgrVu3lkVj5syZpQHntGnT1BdffKEyZcok1i2fffaZZJjDbuXFF180+7AdSzw2sBGDT5w4ITY6oWI1vl67dk3dunVL4jV+Z9GiRequu+6SzRUtZqdKlSpkrMb/cV3lzJlTHmtnqxtCCCH2w4gqonjEazR/PHfunDp+/Hii+Owfv7EW1+I1bhMnTpTn8F1j4yticrBYja933HGHzPfw/0gaQBL3wrVEfKFQThyNXbwxEaDhMQuB+PDhwyKG4/bf//43wf8RpAOBAOsbjHFLmTKlVxCHSA4OHDggr4XAjiCPjtC+kwD/En8NBHwsvhHQcYMtgO//ixQpogoVKiSvGStJTYiCZZ4He21mrhFCzAbj5M8//yxj1UMPPSTCKGxW6tevL2M0xnCI5s8995zYrfznP/9RH330kapZs6ZyE3bZ2MZCGRsd+/btSxSrte9PnTol8TYQadKkSbBwhrANn3tcCxDKwdGjR8W/Hs+B29WrVxMs3BG/g4FNl2DxGlUNd999t8qYMaOystUNIYQQe2HFKiKsdw8ePCgxG3E1ULyGQI55WbA1sK/AjapHLV77JpHt37/fu8bGRrn/5ngwizwkrfnHau37vHnzSrzOkycPxXTCtUScuQ0dPeP9ooTEa8FduXLlRPf/+uuvpgVrCNZo2IYJg/9NE7MBgnGwoAnBGlljvotsLLpDZXzfuHFDLViwQDVo0CCRF5YvEMp9gzqOCQK+v2Cv/R8/04YQTBoglkPg8L8hwOudke4vqFjx/SaEEGLPjW3ETWwuB4rXR44cSbSRHChe42u2bNkSZJLhFsh+J9KYjcU/BHvfmI3sdX8BwPd7XyEAzWa1GI2FuPb/woULq9SpU7tyA4QQQkj0mLUWw1oUm8yB4jU2nH0TwVAlHShW44a4iE1k35iNjexQGd/hxGsc399//51gsxvV4RDog8Vr/NxXTPeN0743aAKEEP2hUE4cy6RJk1S7du0S3Y8SqbZt2xr++hCRN27cmOCGbHENBGP/oIfvke2FwKwn4QrlkYIdcwRzTEICTUzwcy3A33vvvap8+fLeW7FixZIUC2IVWvD90KFDdX0NQggh+mL2RicWsFu3bk0Qr3fs2OGNYdiMDrRAhT2KEdZkRsRsrbQcWW+hNushCKCiwTdely1bVkQDQgghxMy1GDKzscb0jde//fabV1hGPMZa2n8TWMvM1qP6OR5rbMxLYMOnJdj5Jtr5btZDT0AfHN+YjUx02rkQEhsUyoljiefC++zZs/K8GzZs8AZtlHeBO++80xu4SpcuLQvQeJU9Gx3EQwGBQcvG+/3339WmTZvkvGhleRAeIJ5rwb1SpUqqRIkSMQd2Zq4RQoi9iOfGNuIh4tH69eu98RoxChnaiI+wvtHEYWzoYoGNjLN49OkwK2b72r+hqezmzZvlvOArLF8Ql3EecF4QsytUqCAxG3GcEEIIMWIthtiEzV2ssRGTELtx0zZ2YWGnrbHvuece7wZ2PPt0mLHG1uzfEK+3b9/uncto1m2oZNPOC2L2/fffL5VvhJDwoVBOHI1Ru9rIylq5cqVavny53LZs2SLBHA3ZfHd0cYMdSTTiL54T/qfwOe3cubPtgngwMLnBzr9vJgAmUzh/COw1atQQX95atWqp4sWLc0ecEEIcjpEb24h/iDM//fSTxGt4xWORiVhYqlSpBPEa31uhEaZVYjY2vHfu3JkgXkM8R6YbsvLwniFe44b/UzgnhBASqzCura9x06qxkSXuG68hAKOiy2ysEq9x7mDf4l/NDnsXgEQ9LV5jrQ2rGUJIcCiUE8ejx642hPFVq1Z5F9qaMI6dbAi6CDrVqlWLWhQPRJUqVUQkAMjoimXxbpUgHgx4teF90iZF69atk2OGcK4FddwonBNCiDPRa2NbE8a1eLJ69WoRxmFphjitLRJR0WQFUdxuMRviOWxpfJMFUFVH4ZwQQkikaMK4tsaGMI61NKq6tPUfMqLRpNqKWDleA4jnmAdp53fXrl1yPyrmfIXzeGecswKcWB0K5cTymDWQopxpzpw5au7cuZKBBk+0/Pnze4Vx3LC7bRTNmzdXs2bN8k4iYnktqwdxfyBqrFmzxjtxgnCOxTk81xo1aiQ3vA96NxwjhBBiv3iPzexFixZJzF64cKH666+/RBivWrWqN2Yj+0zvvhhGYaeYjbkRSr810XzFihUinCO7vE6dOqpx48aqYcOGLPsmhBAi67lffvnFu8ZGzPcXxrGpDetSO2CneA2QYY44rcVsTTjHHAnxGmtsvBdGepxbrXk7IYGgUE4sTTwHUt/AjRuaZmgLPQSNunXrGiqM+9OrVy/10Ucfyf+xE/zAAw+EXKgioPkGNYjNCH7wXYUlDDxYfYM4bF2QFQ+xGc1NrAz+FmxWzJ8/X94beJ+nS5dO1atXT96bRx55RLLPCSGEuAM089IW2shuRqzDQg8xoX79+lKabdVFK2Kv/yIUzblOnz4t/4fHKjaJtZh97do1WdwiXqOpJhpkW104x8YF3hvMq3AfPM21RTgsbuLZaIyZa4QQYq7t5g8//CAxG6IyNlPRhFJbwyGjGWtVK4M4duzYMXXp0iXZdC9cuHACoRx9yK5cueKN4XaxIsPf9OOPP6p58+bJ34H3ysjENLObtxMSNh5CLMqvv/7qwSXqf8P9enH16lXP7NmzPW3atPFkzpxZnj9nzpyeTp06eebMmeO5fPmyxyyGDRvm/Zs7dOjg+eKLLxI95vnnn/dkyJBBHrN169YEP/vll1+8v9+9e3fPd99957l+/br35/fcc4/8LFWqVImed/LkyZ5KlSp5Hn74Yc+KFSsS/Ox///ufZ/fu3aadG7z+tm3bPG+//bancuXKnttuu01u999/v5yzAwcOmHJchBBCjB37N23a5HnxxRc9JUqUkPiVMmVKiVOjR4/2HDp0yPTTj/jz1Vdfed55551Ec5UbN254smTJIjG3fPnyiX63S5cu3pi9bt26BDEb32s/69GjR6LfbdeunadevXqetm3bJvrZX3/95Tl37pycPzM4deqUnJNmzZp50qdPL39DgQIFPD179vSsXLnSc+vWLUNfv3///gnmkPieEEKIsZw8edLzySefeOrWretJkSKFjL+lS5f2vPzyy561a9caPvYH49q1axKrcQz+fP/9954HHnjAU7x4cc+0adMSaQZaHKlYsaL3fsRpxGtoCdrPN2/enOB316xZ48mWLZunUKFCnuHDhyd6Xfz+/PnzZY5jJjg3S5cu9fTq1UuOFX9LunTpPI899phn4sSJngsXLsT8GnieQPoO7ifESiQLX1InJL6gFCuS+yPZEUb2GRpkwo+radOm4jnerVs32eU8evSo+vzzz2UX1cysLd8s73Hjxql33303YFYa/L0Bdrh9gV+o79/sz/Xr1+UrsrpatGghDTY1kG0OuxOthN0XZLyhIQgyumEPEyjL78yZM8oocLwlS5ZUL730ktizYCf8iy++kIzyN954Q7L+kZnw2WefSTk+IYQQ+3Lw4EE1ZMgQGfeRMY74jOzk2bNnS6xBBhTid758+eJyPMiIe/HFFyX+IZPMF2RPP/XUUxKfUNrsCzLQEHeRHa5lnfnim2GN2O4L+pRoBMrswpwG2XrI4vZn9OjRkqmHTHQcu38lHSq0As0R9ALN1tq1a6dmzpwp8wccI6xYvv32W1W9enXp7YLzhao3vcGczrcqEeB73E8IIURfENumTp0qWeJoFonqaPDee++JjSjW22+99ZbE8GTJkhlaibx161ZpPu0PbF2wVkT2Mh7nC7KpUcGMJtZaE0zfdXW49m2wfvMFa+lTp07JOfBfr4Pu3bvLOcPNH1SXjRw5UjK+jV7X4m+sXbu2vB7W86gOe/nll2WtjTiOKoAnnnhC5l3+859wgbVeJPcTYhb2MGskjiVUOazeAymaT02ePFlNmTJFHTp0SBpxPvvss+rJJ59UJUqUUFbD3w7l5MmTiR4Dz3Q047jjjjsSCOMAwQziAYI6mqD406RJEyn1xqIVC9iuXbt6f/b333/Loh2LdX9LE637OMicOXOi54VIgElG9uzZRXCHoB4rKKnv1KmT+NahpB5/m+/f2aFDB7lh0+C7776T9xl/e8+ePWXSgfcYX+lpTggh1gdl2YhLGMvRSBslzI899phsGMMOzUhLFcQbbBRjQZ88eXL1zDPPJPj5119/rWbMmCH/x6JXm5OMGjVKBACNQBvGEPqxYEZZdqDFu2ajhqZlWJj6xtqWLVuKYA7bEn/Onz/vfZw/2PwHEAT84zkWwphDIE5jDhBoQ15P0DwVlmm4wVoOcwW8x2PHjpXNEDRYbdOmjWrdurXKnTu3oQkXLPEmhJDYwYYrrDswlmMDFEIw1p0Y4x9//HHZLDUKxEy8vu8aWFvjg4ceekg2kX1B/EWMBydOnEgQj7X1JWKi/4Y1YnOrVq1E4A+kRSCGaw3C/RuPYi6B18G58beYwd+A4/B9fV8wF8KGN0DM9F3TQ9jHHAmxEzFTT0szPNc999wjt4EDB0rSAjZBJk2aJF/xvuJ8IGZj4yPc10bshZWuf/N2xmRiOcxOaSfuJZxyWP/HDBgwIOKyr3fffddz7733yu9nypTJ07VrV8+qVatMK/kKlz/++MP7d993332ehQsXRv1cWlmYr/WKxsyZM6U07siRIwnuv3nzppRMowzLlx07dnhat24tpWn4PX9QWoZjzpUrV6KfjRo1ylOqVClP+/btE1nFhMLXRqZ58+Zh/c6xY8c8H3zwgZS44/cyZswoljqrV682rQSdEEIioUaNGlICqwHLCoxrTgTxCVZoTZo0kTLtZMmSiZ3IpEmTPBcvXjTkNRHfzp8/n8giBfYoiBtFixZN9DuvvPKKNx7NnTvXe/97770n95UrV84za9YssSgzImYHAvH6zJkznsOHDyf62YcffuipXbu2/C2YE/kyb94879/y0ksvJfrdxo0bS8zFPMrIuImS9m+//VZeC+cedmo4Zli2XLlyxdIWfoQQ4kawjuvdu7dYlmJc/c9//uMZNGiQ588//zT8tX/66SdZh8LO69NPP03ws//+979eq5fChQsn+t0xY8ZIrIGNmf/aFzH377//NjRe+4M5B47p9ddfl3jtD+ZBWuw6ceJEgp8tXrw4ao0kWjAX+O233zwvvPCCJ3fu3N7zjOOPxP4UcRh2K4zHxuOmtYSeUCgnphDJ4iXSgRQDOAJoq1atJFBi0dWiRQvxHfMXfa0MPMC181K9evWYnivWIB5JsO/WrZunZs2aIqYH8lHV/iZ/bzj4qC5ZssRz6dKlkMLEuHHjIj6unTt3ynNofmslS5YU0R6+rYQQYpfJLYROM3tnGMHBgwdlfMbmKsZnbG6OHDlSNjuNXOCjrwXmBwMHDkz0c22DFYKtf0xCPMHG9d69eyXmaUCkhg+pHscdr5iNpAGI4XfddZdn+vTpCX4GseD222+X8wC/Vn8ghvgv2vUAcfnLL7+UeQRe+8477/Q899xzskkfDbEmXBBCCPkHbFxiAxPxE+Np9uzZRSxfv3697pupiK8bN24U8djfGxv9s7Qx/dlnn03wMzxW+9mrr75q+FtndLzesGGDZ8KECSJE+5/jESNGeP9WPMYXPBZe6k899ZRnypQphhwbNumXLVsmCXDomYY5U4MGDURz8Z0fEXNxw1rCCCiUE1MwopEDhNaPPvrIU6xYMW8m2Pvvv+85ffq0x65ggRhsR9yKi+6kwIZF8uTJpQEbMsh8QVDF34qFOTLzAokWuCFTIFpQRYDddzQVw3GkSZPG07FjR9kZJ4QQq09unQLG4kWLFnkaNmwomeNYYGGT1b8BVqxA5Mbr+MeNo0ePemMKBFl/sODEZiqaTZoRN60Qs7dv3y5NvHCOnn766UQ/b9q0qfwMjcFxPo0AYjyEba1SDUkDEPQjPS/MXCOEkNjG4j59+khlNsbiOnXqSEWykTEKG6RanMbazX9DVWsMjQbf/kBcR5VSPMRAM+M1Kq4RI5F1jpjtv6mvnb9GjRol+l09GnP6gsq/zz//3FOhQgV5zbx580qFwfHjx3V9HRI5Tl1LGA2FcmIKepbD/v77757u3btL+RXET4ixyCh3gr0GFqA4L6lTp47p7wkWxPGcECZg84Jd4XiASUsgMaRv377e6wCTGw0EWO1+WOjoBYSTwYMHSyDHc1etWjWqBXg4cJFOiPMmnSjbxcQTG5rIqvrss89EmIWoiHiEDc4FCxZ4f2fbtm2e+vXri/iIx7dp00bsrTTwu23btpWfo5QZdhdJlUtiUxEVMmnTppWxDGKzr03J+PHjxXYKYjE2kfHcWFDFsuEYC9jQxgIWG9kYd8uUKSNl00ZYq6D6SCu/Hj16dKKf58+f31OkSBGxY7MaVhDKAeYFyL7HPMt/oyNz5sxeSzt/KzvMKZAJqNc8DBvr06ZNE6Ecr4lyby7ACSHEuDUGxnVUTz3yyCOSKYwxH3Ybe/bs0e01IHh/8803Ms/xjxfIgtbWf6+99lqi3/W3TXN7vPYHCWiajdywYcMS/bxs2bIyF0NFgN52tMiCh90pEtKQHIf5rn8lOeFawupQKCemBe9Yy2FRMozyHq30C+VV/l5jdueNN96QkrK33347pgAcLIhj8amdf7MnHD/88IOnc+fOIuacPXs2QWZfKA/VWEFpGLIiIEhpO+AQogJZwESD/3WOyQI92QgJDT5/uPkunGCdhfv8q1G0x/pO9DHW4T5/r8lgj40UjBfIgsZmG0RBfMVG7cMPPyyCOe6DaJ0lSxbZHMRiEFmxsPlAls+mTZs8devW9dSqVcv7nHg8xNulS5eKOIlsa7xGKKEc///xxx89+/fvl/JXeITieXyFcojFyP5CaTTES9hoPPHEE554AmG+X79+8vegaqhly5YSw/UQUnFd4Jz5i+34e7VxF1VE/ug1xvuCWALbmFgztay68PY9d5izoX9KoHOLTSStVwmuOT3ZsmWL55lnnvEuwPF/PYUbQghxUr+vSEHcwdoLcwUtSQl2WLH0iwiGto7Hzb93FezMMFdAtfiuXbs8VsXK8Rrz5Z9//tlz6NChBPfDIk477+ir4o9eyXPonYKkD836FJY96O0Sr2TGeK4looFrCWtDoZyYGryj8R+fP3++ZP9qJb/4ff/BjoQXxCGOI3MR4oUVAzzAJEm7hiCsGAkmafBRh+AFgevNN9+UIK935YSeE1pCnIj2GfFtPvjWW2/JfchS8QXZ1LgfYrGvgIz7/AXhrFmzyv2+JaoQtqOZ3CIO+S4qkK2NjHD/hQh8qyGkP/TQQ4kWgfg5mj5C5IXoN2PGDO/PMfZADIykAQ8yszB2+QrleA3f5lpowpwjRw5PPICPd5cuXSSr6Y477pASaT1tOr744gtvKTgagfqCBQyafSFj3LfpppFo1xfEXKcuvP3xXyhinqYtirFJgyoCX/C9HuXw2FAfOnSoXMuw78FcgTZqhBC3oHezYozLEKWxYY/nQf8KvTa0kTwAb3N/UGGmHXegrOdogai/bt06SSAwGjvFa98Kx2rVqsl6N1ASGqzVUMEFCzo9NBbMkZHhrnnblypVyvP1118b7mMez7VENHAtYW2SKUIMYO3atWr48OEJ7sP3uN+X++67T7Vt21a+huLWrVtq2rRpqmzZsuqRRx5RN27cUN9//73aunWr/H6qVKn4PkZBxowZ1bFjx9SFCxdUihQpLHcOb968qRYvXiz/v/POO1XlypUNfb1SpUqpr776Sv3555+qVatWasiQIapAgQLqhRdeUP/9738jfr4//vgj5M8DfSYIIfagdOnS3v8nT55cZcmSRcYQjRw5csjXkydPqi1btqiffvpJpU+f3nsrVqyY/Hzv3r1yu379eoJYmDlzZvWf//wn5DEsXbpU1a5dW+XJk0dlyJBB4uGZM2fUlStXvI9JmzatKly4sPf7XLlyyTEZCWLzE088oe6++241e/Zs9frrr6tDhw7JmJo7d+6onhPzAH9y5sypzp07J/+fP39+gp8lS5ZMrV69Wo0ZM0Y1bNhQxQPMT1q0aGHJeGoUOM++/O9//1P9+/eXc16vXj11xx13JPj56NGjVbZs2eQ8bd++PerXzZQpkxowYIDav3+/+vjjjyWWYo7YoEEDtWrVKqU3eP5JkyYxZhNCLEGwNUZSaw9/zp8/r95++21VsGBB9fzzz6tq1aqpbdu2yTq7atWq6rbbbovpODHWFy1aVD399NPq+PHjCX6GONGrVy+1cOFC1bNnT6UXa9asUZUqVVKdO3fW7TmdRMmSJdXKlStlvti7d+8EP7t48aLMp/Dzt956S91+++0xvx7myI0bN5Y52YoVK2TO+uSTT8ocd+zYserq1avKrXAtYV0olEcBFl24qDH5x61KlSoywGt89tlnqmbNmvIzBBcEIH8QjPAz39vQoUMTPObzzz8XkQ4Tf7uJaXoF72vXrsl5gKDQunVrlT17dvXjjz9KAMSA679AI84C170mgjz00EO6BOtwwOcTC+8DBw7IxA3XYKFChWTCBUErXDAxTIpIPxNWBGMXxjDfyRbGQP8xrmvXrgl+b86cOXKOMFGaN2+eCUdOrMqlS5fkljVrVu99/fr1k/vw2fQFoi/uz58/v/e+7t27y30Qnn3jNT7HEG6LFy/ujdcQvyKN1xB9fcVQjBFHjx5VI0eO9MZrbXEJ4RDH0qhRI7V58+YEtz179qjq1atHdY4wPmGRib9v1qxZauPGjeqTTz6Rn0F01/AXbXFc/yTa6M8vv/wif2eZMmXk/x999JE6ePCgGjhwoGzMRgPOEYTXvHnzyoaDL3Xr1pX7MT947LHHlNlMmDBBzZgxw3t9uREsiDHWz507V8Z4f2bOnCkbOfiaMmXKmF8vTZo0qlu3bnKdTJ48WR0+fFg+UxB4sNjX41qHII+N+nbt2slXfG9nGLOJFeH6OjKCrTHCWXsAiNYYyzB3Gjx4sGrevLl3HIWQGm2Ckz/ahj/GYsy/fLnrrrtk3lS/fn0Zy/UCMRgb6Zi/YQ5GAoN5GTaufcGcDXNlgGsCMd2X8ePHS/JiNOI25p+Iz9DNNm3apCpUqKCeffZZeT0kj0Gkt+Ja4ssvv0w0/8b9esz1As3Rfe8bNmyYd52hrSXuuecedfnyZe8NYE4VbI2NhEg7rSUsg9kp7XZkzpw5Yv+BMiKUTKNkBeWlWvkFyjSGDBkiN5xieJP6g/JpNCJCabZ28/XLPHjwoDSZQjdjlFLDJ8xN5WAo0YGlSsGCBaWBCDww4TdK3FMWBl5++WXvtQMLAbOARQ0+z/DCR5karATCtQ/wtyDSq0TSKqC0EZ/T0qVLJ7CIQDkZvGN9xzjfEnyU8sEPfsmSJdLNHv+HbxwhdojXsF3RrnctXsPGCo08feO11pwYrwv/8GBlprBewXH5Wq/AWgKloMGsV+CHjd/xtb6AxYvv36E18/QFx6P39A8NmuHPjufF348Sa73iDaxitPHy+eefT/TzeDWijid2jdlJgesfvUhQtly5cuVEP0fjOPRkicWeB58HlHjj+XHN4Ovy5cstY29gNozZxKpwfR050fT7wvwAcxLML2C9id/BvCYWVq5cKdZzmMv7+znDiqxSpUqeESNGJPLKdgJOjNew24E9i69tnxbDMdfFtQbbM//3OhowN+/YsaPMZzE3wBzXLZa6WCv7zvH95/lavMb5Rt8ibS0BW5xAa2xtLQFbG22NPWvWLNHS0DvG6msJq+Hsvy6OwCMTXpm+/PTTTyEX3qF8RjE4VahQQcTzffv2yYfEDcEbAzO8ROFdhd957LHHPDt27IjL8TqZYEEc5/bxxx8X31gr0qhRI+/1E+skTi/POzQlQed3eAfjvAX6fAfz4sckMpYGtlYDAfnuu++WQOwf7AMFf18Q0DEOnjp1Sm4Y42JtgEdIvOK17/WtxWv4er7yyisJ4rUmlEP4QzPP5s2by8QXi49FixaJsK4JvfDSxmvBUxPPCX/Q9OnTBxXKIU7j+dE8El7gGGPy5MkT18kt5idPPvmkTMKxWTBt2rSYmhutXbs2UWNpeLXDvx0TeYisbsCJC2//xXag5uvaZgs2pGNNjsB8ErEJn008Z/369aPyMMfnKpBQjvvtBmM2sRtcXydNuP2+IGpCrNbWMGgujg15PWjTpo13bMQ8wE04PV77smDBAu/7DB9zf2KZ/2ETBYI5eo5grouECycmQoQrlPvGa00o19YS2FBAX5ZgawmsR5Dchw0szH0wR+/WrVui17DKWsKqOPuviwO4KKdOnSqLOH9BN6mFN3biEKzQTXr48OGJMs06dOggiwUEs8mTJ3vsSCTNOtGVWWvSiYEDDdCIsUH8hx9+kPNdpkwZS55qLHR37twZsAGMmWjZGPhsYhKPz2+43eAjbWBrZdD4tHfv3vL/QEI5AjkaC6LpLjYV/Bu4vfHGG57bb79dBDA9m/gQYnS8RjaH7/WOeK01L/SN15pQDpDVjs3fO++8U8aOYsWKyedHa5SFSTEWm8jywuvhdfw/V/6i/fvvv+/JlSuXPF+9evW8op7Rk9sTJ054evbsKX8vsovGjBkT0yIR1XOaoInmXv7MmzdPNtSsDuJsvnz5PE2aNInpedy08PbdEEE8wDWA61yvBTI+X6jUwIJTa8qFxaAbM8oZs4ld4PpaP6AvfPnll5JhGmlVbCCwke+PNofC/Gb06NEeN+GmeA0hHO815qrQEPxBg1AItVi7R8vvv/8uc2VcTyVLlpQESj0aytpNKPeN15pQrq0lsL6G+I37sabRkmt91xKYn+Pn2Hi46667LLmWsDrO/usMZOvWrZ506dJJwMGFg9Juf0ItvN977z35OcqRsMBEYAlUUnz69OmwBTi7ghJ4ZM5pgi12K506IFotiB84cEA6nFtNiLYL//3vf2VCgHEAE1BkqRrdwdsqQHDEBEYru/MP9p9++qnscmOshHCI3WlMfPxB9igzyYmRMF7rBypBXnvtNZn/YO7zzjvvJLCNi2UeoAmQKCu16xwAc0H8DdhQiQU3Lbx92b9/v1RlBBJacN0h3qJMOxpwLseOHSuLQSwgUYZ8/PhxwyokrQZjNrEDjNf6gTg6e/ZssUPDuNWiRYuox0+AOb1maeVf8QMBFRYPelhx6AX0BBwvNgaMxK3x2h9UbGkxEglSsc7jsBlds2ZNeT4kUq5evdrjFhivrQGF8iiBl+6ePXs8GzZskExJ7OxEkqHmD3Z6kUnjFk8mLXsIix7sdBUqVEjEtFhKdkhwGMSNBbu7sLDRJgf47DsZlMehpAsbfeFarcBOAufH3++OEKNhvI4dxOZx48ZJyWeqVKk8L7zwgmzkR5uNFshSDWNIuXLlZD5k1w1HzPewuAtkKxIJjNmJN2juuOMOiSHIePK354kEVDZhgwcbPdjwQTVTOP0x7FwNxphN7ALjtT7ATkGr0q5du7Yufb4+//xzrxAKyzU7eN7rsXGdFIzX/4DKLcRUnPPPPvss0XmKRuOB2I7eJUikxPOiZx36AjkZxmvrQKFcJxCE/L0zIxHKtWyqXbt2eZwOBkoEW1gyYOGD0g828TMWBvH4gIno/fffL5/l1q1bx1TaaGW0citk0ms3fI8yMPw/UMk8sk7xGGSkEGImjNeRsWnTJk+VKlW8thXRNuNCn4kGDRrI86CKzB+In3bNJNcbxmxPovm0tgCHh6leyRrPPfecJGvABmnp0qUevbCaqM6YTewK43VkQHPwHdcC2WOEG6/9q8VQ4Y61e+nSpW3Ro+HkyZMi3mrN242C8Trh9Qddx98NAdZ5sKVDs25sfEejHU2aNEkqwmBPiM1upyaXMl5bh2SK6ML//vc/de3atah/f/PmzSpZsmQqe/bsjn5HNm7cqKpUqaKeeeYZ1aBBA7V7927Vu3dvlTJlSrMPzZWcOXNG7d27V507d87sQ3EEFSpUUKtWrVLjx49XS5cuVf/5z3/Ue++9p27cuKGcRO3atdW2bdtk3NJu+NuffPJJ+X/y5MkT/Q7uB7ly5TLhiAn5F8br8EBc6NGjh3y2L1y4oJYvX66+/vprlS9fvqgup8yZM6utW7fK/+fMmaN27tyZ4OcZM2ZUt912Gy9VkoiaNWuqI0eOqGHDhqm+ffsm+BmSfjp06KBmzpwpn+1IrscPP/xQ/fbbbypr1qyqTp06qmXLlvI6sTBgwABVuXJl1a5dO/mK782GMZvYFcbr8MA4OHHiRFl3fPnll2ro0KFqy5Yt6qGHHorofJ84cULW5YUKFVKffPJJgp+lSZNG1vGYz7dt21ZZnWzZsqkWLVqoe+65x+xDcQ133nmnXD+4Vnz59NNP1eHDh9XLL78st0iBRtamTRu1a9cu1bVrV/Xqq6+q0qVLq8WLFyunwXhtIcxW6u0IrFZWrFghXorwUsP3yKRcvHixdxcWPk1aiRI6zuJ7ZK9oTauw24ayKDQUguUIyplh2u90mxWcp1KlSsk5IfEj2G43dnZxjaIRHdF/Vx0eqMjqKFGihOPtWHytV2CvMmjQILGmwjj5/fffSyMRNEAkJJ4wXsdms5IhQwZp8hOp9yYywwPZj6A/S/78+T0jR46UhkNOBGXC+Pv27dsX9XMwQy18tKbkuMECLRpwvSJDEk10I7FjsXPjT8ZsYjUYr2O3WWnZsqXn8OHDMTVS1JoEYg6gRw8Sp8N4nTRoSon1MKqOY5kb+Vr4IYa5xY6F8docKJRHAURFdItFl1kEEZSFaSI5eP311wNOlNExFmzcuNFz3333iT9i6tSppcmGU0tIsPjwtVn58MMPbes96lShHIvCUN7SJDawSabZsbRq1UoagDo9iMOaAaJ45syZxc+4SJEinn79+kVVbkdILDBeR77g1mxW4EEazXj1448/yqI90CIbjb6c3vDqgQcekPM3ffr0qJ+DC+/w6datm3eejTL7WID9Dxb0WMzDtgC9NSIBYnug+b8VbQoYs4nVYLyODMypNZsVaAmRjlcgkN0Z1iroBdGnT5+w7GOtDBISp0yZIkmKRsF4HR5oJIseNIHmjGjWHWnvEVy7eG997VicauXLeG0OFMqJYRw4cEA2EbBIaNu2rWTaE3NgEDc/Q3PChAnSADNTpkzis0YvXkKIVcDiAgsVNBVHQ+Lly5dH/VxNmjTxCoTIzHUbOI8tWrSI6RwyZocPYimyylGV6d8s7OzZs1FVMKJatFq1anINd+nSxXPhwgXHZZQTQuwLEvTg+YxkpxEjRkS8AY0x7dVXX5V+Sv4gI/3EiRMeJ/DKK6/IGOzfR05PGK9ji99aMhmSKqPxk8eGUd++fWWDG41bkfBBiB7chn/Mtn8hzgKX1GeffaZeeOEFlSlTJvFKq1u3rnLbOYiX1ype6++//1Z//fWXunTpkrp8+bK6evWqeObDG/vmzZvq+vXrav369apSpUoqVapU6vbbb5evqVOnVmnTplXp0qVTGTJkkBt+RozzhH/uuefUlClTVOPGjcWzLWfOnDzdhBDTgN/o008/rXbs2CHekS+99FJMfUPQewSeoHfffbcaMmSIatKkia7H6wYQuxcsWCC9XFKkSGH24dgW+IMPHz5cNWzYUH300UfiuxuJNzJidL9+/cTDHHNZeIeG+5q+38MvmBBCYgX9QjAmYZ2NvgpffPGFKlCgQMTrxooVK4rfOED/kRo1ajjyzfn222+lV9Sjjz4q580IGK+jB57jpUqVEq2iePHi0scmWh1i06ZNMpdF/xt4mA8cOJDzJxITFMqJrhw8eFB16tRJGhmiYee7776r7rjjDlecZQjVaDSFCQcGeyyqYgHi9qFDh+ScogEGGkwdO3ZMHT9+XJ08eVKdPn1ahFc0XEOA0QuI5WhyhYUhmsvmyJFDGjDmzp1bmrjlz59fJmXYBGHjtej47rvvVJcuXWRyNWrUKPXEE0/wXBJC4gpizDvvvKPefvttVaJECfXVV1+pe++9N6IFO2Jes2bNVLly5RL8bO3atdIENFBjX5I0XHjHDuZMRYoUkaQBJAbs2bMnqka0Bw4cUB07dlQ//vijNBGDCI55Uihw/f/xxx+qaNGi6r777ovhryCEkH9YsmSJrLHPnj0r6+vOnTtHvXYYP368NEHGRiyE5J49e/I0RwnjdWzs379fvfLKK7IWfuSRRxL87NSpU9KUNZJ57VtvvSVzWzT7nDBhgnwlJBoolBNdwO70559/Llnk6HiMHe5IO23bHQzO+NuR3Y3FGATupCYwOG9Hjx6VTD7sgGJnFYu5P//8UxZ5yGiyKtgAwSIUWYNYDGJzAGILOq4jU52EBpscmJhOnTpVMi7HjBnD7HJCSFzYsmWLeuqppyT2IIMcmeSRZJHj9+vXry8btw8++KBsjnPjVL/KMi68Y+fWrVtq4sSJ6rXXXlOtWrVSI0aMiPq5MBcbO3as6t+/vyzakQiB654QQozm4sWLsr5GFjmqWrDGLliwYNi/v337dlmn+cZ4jI+odsHmH9ZyJHoYr40BIjk0Bsw1sUGNRL1wQbUEsstR4Yjs8hdffDHq7HJufLsXCuUkZpDtjGwbbacbu9wZM2Z05ZmFxQwEA7B371511113JZiUQAjfsGGDlAeh3B0lRufPn4/qtdKnTy9Z38jshkAP4Rr3wUYlTZo0kkGFoIASJizYIcBjMoSFO4I6hP0ZM2bI+4f3CxnxhQsXlt+BiItbNEI9MggxIUNmIm7IKixfvrxrr4mkmD17turWrZtUBXzyySeyoCeEECPAOINMm8GDB8vmJrLIy5YtG/HzYEMY9irIBELM2LZtm2ySkn+sbBo1aiTxGBvg0cCFt37gWsV175sFjjkRsjERb8OxU9HA9Y4sTFQOPvvss7J4x5yLEEKMAJUsGHNQRYz1NapRw92AhcD+xhtvqA8//FANGjRINsXdDNa0yZIl0/15Ga+NAclkH3/8sfy/Xbt2Ml+NBFSTYa4L67MyZcrI75csWTKi5/C3UsNmOSopiTugUE5iYu7cubJjB59r7HDXq1fP1WcUJewoHwKw1IAf5s8//6zWrFkjAjk8xMMB1icQrZExgBsy1PPmzSv2J7BBgSVKJFnbwYL4zJkzpTwYX3/77Tf5ijJ6bUKB8j5kDMLyBZnvENWRKY9S5H379sn/wxXTixUrpipXrqweeOABueF7ZiD+AybAPXr0UNOnT5cJMbxUufgmhOiZ0YLxG6WtiEdYMCNWhZtFHig7es6cOVK+jbJt301ht4PYiPiNGH3lypWo4hwX3sYybdo01bp1a+9iHDE3XDDnQQUYFsywoUPCQaSLb0IICQU29yByY2O7Zs2aaty4cRFlkWuVX7BFw5iFePT7779H1KfBKcCbHCIpziUS+vSG8doYUEGBakck9iHpABpINEB/gVaFBEbEelwD4czLMO+GbuHPr7/+Sks1t6BLS1DiOq5du+Z5/vnnpUtx48aNPWfOnDH7kCzBwoUL5ZyEe8ubN6/n4Ycf9vTr188zbtw4z5o1aww5l0l15C5durQcD7qoR3od7Ny5U557yJAhnjZt2kjH6ZQpUyb5t2fLls3TrFkzz8cff+zZtWuXdL6OlEuXLnmcxIQJEzxp06b1lChRwrNt2zazD4cQYgH69++fYOzE95EyZ84cT+bMmT358uXzrF69Ouzfw7g8Y8YMT5kyZTznz5+P+HXdCOLs2rVrPYcPH44qroUTs0lsPPbYY97P0/fffx/Vc2Dug7lT6tSpPZ999lnU7zUhhPiC2FG1alVP8uTJZW1169atqE9Q7969ZYwaPHiw5+rVq6480b169ZKxvk+fPoY8P+O1cWDeuXz58kT3796923P69Omwn+fKlSuerl27ynXQsmVLz19//ZXk70ycODGgfoH7iTugUE4i5s8///RUqFDBkyJFCs+HH37IxYEPFy9eDCoM58+f39O8eXPP0KFDPUuWLIlogDc6iBcsWFCO8ddff9Xt9bZs2SLif/fu3b3XSyjhHAJOp06dPDNnzgwrgJ04cUJEZSx4IxX4rczvv//uKVWqlExsP//8c36+CHExGJMDjZfhjtWxbmpjca29Jp6HxAcuvI0FwhPmJ1g4x4Lv4rtVq1ZhzV0IISQYc+fOjWpTGzEDm9r+XLhwQdbtbuaPP/7wbNy4UdboRsB4HV9u3LjhKVu2rCdLliwSxyPZpMZn5I477vAULlzYs2HDBkPn38T+UCi3CbHsJuvJ9OnTZYC56667POvXrzf7cCwJJjjaYPrUU095vvnmG8/Ro0dNPaZgQRxZCydPnvRkypRJjhcirVH8/fffMukbNmyYp2HDhp6MGTMGFc0hqtepU8czatQoOcZAfPDBB97HDxw40OMksPju0qWL/G2tW7e2xOKb2XKExP+zEktGy969ez0VK1aU8XTkyJFRHReeAxuSeE1s9HIciA9ceJvHK6+84nn99ddlkynSuXE4i+94wc8qIfZZY2O8QcYzYm2jRo0iSqbaunWrCIf43Xnz5hl6nCQxjNfxBdqANhcuWrSorJkjndeGm/DpX9E5YMAAj1PHIJIYCuU22Tn76aefTC179hXuULLCEuzgaNl7uH355ZceKwdxTdS//fbb5euRI0fidkw3b96UBeXw4cM9devW9aRKlSqocF6pUiXPiBEjPPv37/f+vjYpxA0l0E5k2rRpngwZMniKFCki2RBmgQCOjbF4Xh+E2BFMuDdv3uzZs2ePLs8XbUaLljWjx6Y2Kluw4UvhLXxWrVolm7mwYIkGLrzNYdOmTWJ3gM8YNpkw/w4XZG2WL1/eEtWWSM6AlR8/s4SE5uzZs5LEE8lnXW98N7URNyL93ML6SZsbYL2A9RWJH4zX8Y9v0KKSJUsWdXa3b7Xlo48+GrLaEq+B5BSjMsmhscFeBgmFxFro3/qX6M7tt98uDRx/+eUX9ddff8X9DKMBGJovohEGGitMnTpVZcyYMe7HYRe0Zphg+fLlyspgs0xrGgPuuOOOuL128uTJVfny5aXJyuLFi6VxKBqOoqklGmT5sm7dOnkcmtDcf//90ogOzUdBpUqVpDGoE2nZsqX8nfi8ValSJeKO33qAJkCbNm1SFy5cUFmzZo376xNiJ9AgCOMXGm/++eefMT8fGneiaaAvAwYMCNpICGN537591eOPP67q168vn90KFSqEFQsmTZokDQ61uKCBxkfNmzdn8+UIwFj9/PPPq0WLFkXya8Rk1q9f773OH3nkEZl/hwsauKJ5e/fu3VWvXr1Uq1atpJlrvPnvf/8rn3s0/mPDdEJCkyFDBm+DPm0tFE9++OEHWQudOXNG1vm9e/eO+HOLGI14f88990ijYqyvSELmz5+v3nrrLbV//36eGpuDpp64znft2pVoLoy16qlTp5J8DjSyf//999X333+vVq5cKU1vt27dGvCxeI22bdsa0sDz77//lnkD9JdUqVLp/vwkRsxW6kn4oOHhggUL4prN/fPPP3uyZ8/uKVCggGTJkfB2KdOkSeP13bZCRk+o3e5jx47Jsd52222WKf3BOYPH+ZtvvilN5EJ5m6NE2umgAc8zzzzjbUYTS+ZLJDvjWib5smXLXNsEiJBoOHfunGf+/Pm6ZpYn9bnFa9arV08yYiPNaEUvCW1MHT16tC7H7GZQTfb4448H9IwNB2aomZtV3rZt25gaqaLXCiyLUPl26NAhTzwz7eBxjHkdISQ8MKdGVjkqgeKVWY74/P7770tWbIMGDSR+hwPm5Vgf+QOrFmakBuf++++X+Q0qdfWG8do6tG/f3pMtWzbP7Nmzw/6dgwcPeu69915PunTpIvo9PTLJ0bMOcw4raEUkMRTKbUY8xXIs9FAGVr16dfGxJuEDf22cu2rVqlnCXzpUEIeQg8kDLD6sCo7x7bffliaX/kI5mrS4AQRR+LJBBIMYhnLRSPH3WsP3waBIToi1xPKk5gbwakS/CUy8IwXzCm1c6NatmyHHSMKHC2/rgTnUhAkTwn48kkuQZIJkEySdGA1FckLsIZYj8eTpp5/2zsPDtUrBBljt2rUlGcstax+9wBqyXbt2npUrV+r+3IzX1gCbxNo8FprGqVOnwv7dS5cueVq0aCG/iyQ9oxMHKZLbAwrlNsRosRwThN69e8tg0blz54gaGpF/dycvX75smdMRKojD+xrvdZ48eTx2ANmOWiDMlSuXx20sXbpUxDCIYhgLjPA6pkhOiH3EcswH0By5ePHiMb3OSy+9JJmwxHy48LYWx48f92TJkkViJsSWcCuskGSCZBMkThjZs4YiOSH2EMshdlepUkX6Mk2aNCmi3+3Ro4d37o4MaWahWgPGa+vEafiNR9sjDp+nwYMHe5vXQzw3Aork9oEe5TbkP//5j7rrrrsM8Sw/d+6catCggRo1apT6+OOP1dixY8XHiURG/vz5Vdq0aS192k6ePKm6dOmi3n333bj7k8cCvMQ0hg0bptxG7dq1xUcVHoTwS1u4cGFYvwfP5HDu9/UkR28CeqYREj133nmn9FXQy7PcFyQ7vPfee6phw4aqatWqas2aNapIkSJh9R2BH7k/b7/9doIeGyR2MJ4S+zNr1izxEAbopxLuvDhbtmxqyZIlqn379qpjx47iW6+3D7LmSY5eBDlz5tT1uQlxE+hJgHk1PMKN8CzfuHGjqlixojpw4ICsZdq0aRPR7w8ZMkQ0AHg0v/nmm+xBQIgPOXLkUN9++630PUPM9eX/k4NDni987l955RU1e/ZsWVtjDXzw4EFDPMmzZMmi7r33Xn6GLQ6FcptihFiOpghojIhAjkEGDYnYCMi5oNkFmrOiwYldhHJc69999538H0EGzS7dCJqGYRIPcQwiGcSypCYARYsWTfJ+iuSE2EMsv3btmnr66afVCy+8II2O0ZAonCbbGO8xOcfvrlixQpdjIYFjVb58+VTq1KnV9evXeYpszrPPPqu+/vprVbx4cTVhwoSI5sYQ1ZF0guQTJKEgGQVJKXpAkZwQe4jl06dPlzl7rly5JNkF6+2k8J/Xp0+fXs2ZM0f99ttvqk6dOrocl9tAEhA3sJ0LPrd169ZNFKOhdzz11FPq0qVLST7HY489Jvra+fPnZWNr9erVuhwbRXL7QaHcxugpliMTDTtnmNCvW7dOPfjgg7odJ7EmEJoHDRokndLtIpR/88036urVq/L/J554wtXVDni/II5BJINY1qtXr5CTP0z8+/fvn+C+AQMGyP1r166VDFNkvjGTnBBri+X4jD788MOy8J48ebIaOnSoVJgAPH+ocWDDhg2SEYvHvPTSS0lusJHox2dUbd24cUPETGJ/MOfYtm2bzJ18wfuMBXAosGhH8gmSUPAZrF69ujp69GhMx0ORnBB7iOXvv/++atWqlWratKlsUOfJkyfJ31m6dKmqVatWImEPyS3Zs2eP6XjcCOY6qLhDQgEy+ol72Lx5s6yRsc7FBlU4Ynnp0qVlQwub49iUQqZ6LFAktycUym2OHmI5Msxg53DPPffIrhmyVYnzQYnuq6++qmrWrGkboRzXKcqiChQooNq1a6fcDsQxiGRjxoxRn3zyiSzkkWkaDFjVYNI/ceJE+YrfhVgOAQ8Tid27d6sff/yRdiuEWFQsP378uKpRo4ZYLUB0e/LJJxNsJJYpU0ZKsoOB8ROT/kcffVTNmzePVWMGAYEFG5BHjhwRKzbiDLQNKQ3EW3yWwi3RRhIKyq4xX8dYgErOaKBIToj1xXKIs0hQ6du3rxo4cKBsbKdJkybJ3/viiy/UQw89JKJ6t27duKGtA3gfNUvUPXv26PGUxCbAbjBFihReHQGVGeFap2Ge3bhxY9W8eXPJSo8GiuQ2xmyTdGJug88JEyZ4kidPLs0P0FyAuK/RyNChQ6VxRfv27T12Ac0m2cQmIbNmzfKkTJnSU6dOHc+FCxfCOo9o5JksWTJPnz59PB9++KE0BAzW4JMQYm6DTzz+rrvukibGW7ZsSfCzP//8U2K51uhrypQpcn+gMf/ixYscPy0Om4PZg549e3o/cxUqVAj7c3X48GFPiRIlpEFopPGWjTsJsX6DT4zhaPyLsWHkyJERveaOHTs8GTJkkN+tV68e1+c6gTkU5l96w3htfXbv3u156qmnwm7E7cvNmzc93bt3l8/jm2++GdH8mY077Q0zyl2aWY5d7uHDh4tPaYcOHdTMmTPD2uUmzgE7nGhOhTJ8kCFDBmUXkiVLxkxIP1DSiZ1vWCehSgDl4EmBzNbevXtLhv5rr73mHTuCNf4khJiTWY4McmStIssNcR5lob6gEsy3uTEaGaHxV4kSJRJZPCCbhv1HCImdzp07y2cPXvTINgv3c5U3b161atUqVaxYMckyX7RoUVi/x0xyQqyfWX758mXVpEkTNXXqVDVlyhSxfYgExG387htvvKEWLFjA9blOwHoF8y/iPmBZhP4iqVKlSnD/3r17k7RiQSUZ+osMHjxYvf7666pHjx7q1q1bSb4mM8ntD4VyF4rl8CZFGRgsF2C98emnn8pEgLiLGTNmqKxZs6pp06bZxnqFhAaWDCtXrpTFNES1ffv2hRwH4HPoL5KHavxJCIm/WL5s2TL5bOOzCnu0ggULBnxcnz59VMeOHb2WEPAgx3OjMZHW24HED9hZffDBB2JxQ5xJyZIlxccU73HZsmUj+t3MmTPL5jZKwRs1aiT+qaGgSE6I9cVyJCDhMw3bFFibtm7dOsnn379/fyJ7lUceeUREOSQGEUL05/Tp09L4E+vlpHzr8dmHdSE2xNGcGz0HQs2rKZI7A46+LhPL0VgK3s4jR45UH3/8sTRzZGaZO/FvPkWh3BnAoxiff3yuNe/xQCI5MlTh2YbMc9+xQmvwSQgxXyzHhiYad2Iij/4B8EwMBj7zo0ePFlHdF8wJ2LQz/qAZGzYvkFFInEumTJlEGPNn/Pjx6vz58yF/F565s2fPlnk5bu+9917Ax1EkJ8T6YvmhQ4dU1apVJUll+fLlIsIlBeIDMsixJifGcvHiRammf/bZZzknIqpTp06ySbV161bpBRAOzzzzjJo1a5ZsjmNufuHChUSPoUjuHCiUu0gsv379unr88cdl4Y0s4u7du5t6nMRcunbtKhsnEFYBhXLnUKhQIWkYli9fPlWrVi3JePMXyRHcIb699dZbiRp8EkLMF8vxmUQ2WosWLdScOXPCakCUMmVKmcT7NuW+cuWK3E/iCzKMW7ZsKcIJcRdoxgdbQ8RYLMSTEuDweDT7e+GFFySBxReK5IRYXyzH57x69eqSZYr5d4UKFZJ8PlgloiE3fuf555+XdTsxDlhovPjii2rMmDGSTUzcDewK7777bpUzZ071+eefh/17sFVCNdhvv/0mTXd9N8QpkjsLCuUuEctRht2sWTPxOvv2229FMCcEkz546QEK5c4CmafIaIQHap06dWRS7y+Sa15tmPi3bduWmeSEWEQsRzYqeojAaxyWDJEI3VmyZJFsl4wZM8r3c+fOFRGOxBdkGSMpAdlrxD1gTgU7M/D777+rJUuWJPk7EN7eeecdrwcqfh9VIBTJCbG+WA6fY1RyoUoT9ocQ38KhUqVKItwCxPtwxHUSPajgQZIgq+mJppWtXbtW/fDDD9I3JBKqVasmtoiYt6Ny5Ny5cxGL5HhtzO/xlVgTCuUuEMtR/gX/Q0zWv//+e/E9I8S3FA1QKHceEMowAShVqpTsekN88xfJCSHWEsvffvttyUZFo0D4IUbjUYoNsm+++UYyqMCIESPk808IMZZ06dJJo07MwdHED5/jcIEHKqq6IJg/99xzauPGjSKeIeONEGI9sRxxFiJ5mjRpZL2NSs5IwAYZktiQ0crKL+NBU0b0Z0OPLkJgnVa6dOkEJwKb1NOnT5fkslCUL19eLBFRTYLq7YULF4YtksPmtHLlymK5hq/4nlgPCuUOB02/4HmIpiL40NevX9/sQyIWAdcDynyPHTsm31ModyZ4XzEJR4ZLz549RTijSE6INcVyZJRDLGvTpo2UB8fSyAtZLh999JH3uSNdwBN9uHXrVpILLuIsYH2EbNNgnuOhwIIZQg48i5HgkiNHDkOOkRASm1gOUQwbWvg/Kjjz5MkT8ndg0bB79+4E90FQg9cx+4URYg1QgYlmnU899ZRY1IYCojjW2AcPHlQvvfSSyp8/f1iZ5PDK9wXfM7PcelAodzCa3Qr8idGhFzvVgRp8EneCTGMs4rRrgkK5M4FAgyxVlBqWK1dOqksYjAmxHsj47t27t+rYsaNM0lHOHSuw/UCGOkQ7WDCR+IIeINiYhAUHcRfYnNIqOjR27dolVSKhgN0KLBlgwYLsxzfeeMPgIyWERAoadmIzGmI5NqQhlAVq8On7uYaHOSy50PSTmAf6tuD9I8Sf7du3SwUm+Prrr5PsGwC7FVRqf/rpp+J7X69evSSbeGNNHsn9xDwolDsU7IChiRSyUb777jvxOQ3U4JO4lwYNGqh+/fp5d0szZMhg9iERnfH1JIdIhrIw2LAgkG/YsIHnmxCLAJ9CCOSa3QrskQI1+IwGZLnABoLEH5TwIqP86NGjPP0u5/Dhw2KB1qVLFxG/cW344+tJjseg2Rg2uWHFQgixBgcOHBCrBditwHoB66lADT59gQ3Ttm3bJBagJ1Cgzz8xHiQKwR7rwQcf5OkmiShZsqSaNWuWSp06tRo9erTYKgXD15O8RYsW4lkOGxassUNpbUWLFo3ofmIeFModKo4hCGuNO/GBDdTgk7ib5s2bqyFDhki3dcCMcmcRqHEnNkMglsO/GAv2HTt2mH2YhDiGaBvzYFKORl7wJcfEHHYrgRp8Evsxc+ZMEUaYzU+QtAKxHMDXWOsPoxGocWf//v2lIgTNPd9//32eREJM5vjx45IVjsadP/30k8qdO3fABp/+ILbDArFQoULqiy++oNWKibZYWlY5Ku8J8adJkyZikdS1a9egJydQ405UECJBFfN29APENRYIjBWI7f6Wa7ifWIvbPNzSdBR4O+GXhoCMiXjTpk0TPQYffpQcYRGOZn/E+SBrHBsnyHrA5E4D5UFoZAEgmNO72rkiuS9437FLfvbsWdk4o3cxIbGBSa6v5yAmwcgGTQo0/8JmNmI1yjz9PcnxWcVnFJkmRYoU4dvk8phN7M3IkSNFJEPmma/3eCCR3L8qBIkN2IhD/wJCSPxBkhnmzrBYgEhWoECBBD+HQI6NcqzF0aAPArp/Jjrm47ly5YrzkRNf8P7p2cyT8dod/Pbbbypv3rwqffr0iURyXzAGoGIBG2qzZ89ONA74Pg6iOub3FMmtCYVyh4Hu2S+//LJ4kqO8MxgUy91FoCB+6dIlyYxAhgMmblpmOXG2SO67MMfPUTq6atUqCfiEkMjBZBeLYn+QWRZq8rt582ZZdMOPeP78+dJHJBAUy50NRBXEX2S3IVZDbLl+/bqU9KPyJ23atDKOoxQ4luauxBrgffaNy0mJ5No10qlTJzVx4kQ1d+5cVb9+/TgeMSEEYzSabiJuY84Mi4ZAaGL5iRMnVMOGDYPGdeIcKJQ7H9iVojIQQjn6hyBxJZBIrrFo0SLpCdauXTtWkNiYwFscxJYgSwUi+ZtvvhlSJAeaXyky1ZhZ7k7wvsMvD9B2xV0iOUC5KBq64nGYzC9dulR8+wghkRGqMU8woRw+hlh0Y6MSGSehFtOaDYvWVIiZ5dYHYzCau2GzBOMsRBZkEZ48eVKy2VDNg+xEPA7lueEWd2JjExZauCZQDYasuGzZsslz44bqoPz586uCBQvKz4Mt4oh5+IvkWIAfOXJEEhmCgfcRzcJOnTqlmjVrJpsozEAjJD6gzwQsTTGew1ohmEgOkD2KMRoiGZp3zpgxg2I5ITZfW6PXH+ZsuE2bNk1s9ULNr7CZPW7cOBHKsQEOCzViPyiUO4Q5c+aION6tWzf16quvhvU7FMvdja93FoVyd4nkGij3QqUBmhKh+S96GrDMn5DIiLQxD8RSZAqjfBOfv3AaKVMstx4Qt+E5vX37drnt2rVLbvCUh6BpBPDFxA3XUFLAWg8bMbgOS5QoIbfSpUuLRy4z081HE8lhkzh58mRJXIBtYrDFNwQ4LNAxdsD/FKXfbNJLSHwsTbGhjTly1apVQz7+8uXLsgl+7tw59f3330sTz1GjRgW1XyDxB2slbDxicxlNkwkJBeZLU6dOFTsVJCN89dVXYSUhYHMNc7UXXnhBxPKePXvyRNsMWq84gNWrV6u6devKxHn69OkqefLkEf0+bVjcWRaG0m6U8KKpZ9myZWXiQNwjkvuyePFiGT+efPJJNX78eGYhEhKjRzm+Hzp0aKLHoYEfJtvIIEWGOETLSKANi3kcO3ZMrVmzRq1bt04ETvhVIjM8GrBJgs0PbFJjowSZ4rBWQXzGHA4b2RiXsUCDMAq7DgjksEzDNQQRBuN9tK+NkuHy5ctLVjJsg5CBzuzz+KHZreD9ReYpYjjOP66vpDLFcc0hUxXXAcaQPHnyxO24CXEbgwcPlma6qNru2LFjWL+DDS3Mp7G2wu9jjA/kWU7MYeHChbIeRmWAVlkdC7RecTZa407MwxB7w0lu8aVfv37qvffeE7EdSWnEPnDEtjnIYsIkGwEYGSmRiuSAmeXuBKX+WJyBSAd94hyRHECIwQ45JvbY9Q4k8BFCgoPGnWjIGaoxDzYnYZuAx6xYsSJikRwwszx+wB4HFhd4r+BJi0Zs4QDhsnDhwuquu+6SZm/IQILVFbLX0MAR/SCS8q3FNYK5GcRzLOqDeeGeOXNGMpYg4kN8RYb7oUOH5Nj37t0r9i/+ti4Q25FggZsGxn1kStasWVNuyD6ncG4M/p7kaNCJsm74j4djp5I5c2bxP4UdE8q7cW1iXCCE6Mtnn30mIjlsE8IVyUGrVq1kXYU5OTYm4VkO2xaK5dYAGxivvPKKVFgREo5IHqxxp9ZTBr1kQq0P0LMAGeawy0OTT2IPmFFuY1DaW7FiRSmvXblypXyNBWaWO5dgu91ffvmlNIiCRzWyy4n7RHJfPvjgA9WnT5+IMmcIIUkDsRL2aBMmTJBMYYiRscDMcv2BgIxeDRAh8R5BbA4FRG8suMuUKSOZaffcc49skujR62Hnzp0iVkNsiTZzHMAbHVYwv//+u9qxY4fasmWLNKODgB4KCLioVIQQW69ePTZ71olgjTtRYYImYZFeI4j7eC7M75itSoh+IBZg/IOl6UcffRTTxqHW4BPzAIrlzoMZ5e4UyTG/at26tdgtQUMJtQbHNdK4cWOpGsNYQNs0e0Ch3KZg9wqLGPhhrl+/Xpo36QHFcncEcXyPxq9YNEMQeOKJJ9TXX39t9mESE0VygEl8165dxX7lp59+kuclhMTOJ598onr06CGbkx06dNDllFIsD7ywgQUd7Cmw6ZcUyMSGj+x3330nYx7mVoFAZjeyfatUqSJfkaQQieUFmsFhzA63BwSqBUuVKiWZwrBZ0Rs0FIV9DBZsWLjBwgNWHoGAPQhiARZ5qJpApjzRTyQPBpqGJZUAs2zZMtnIgIfy+++/z7eFEB3A5mKlSpXkNm/evJCbUNhgbdGihfQHQ5VHMCiWOxcK5e4TyQHmQ+hbANq0aSPVYaHAeh0bZZgPYu7FSjAb4CG2pEuXLp4UKVJ4Vq9erftz79q1y7NgwQLP+fPndX9uYg7Xr1/3fPfdd/IVnD17FrXY3lvXrl351tiIW7duedavX+9ZtmyZ5+rVq7o+97Vr1zzVq1f3ZM+e3XPw4EFdn5sQN4LPafLkyT29e/fW/bnPnTvnmT9/vmfPnj0et3Pjxg1PgQIFJKalT5/e89dffwV83PHjxz2jRo3yVKtWzXPbbbcliIXaLWXKlJ6aNWt63nrrLZlnYVyMlkcffVTe/xkzZoT9O5s3b5bjyJIliyce3Lx507Nx40bPe++952nQoIEnbdq0Ac8LbmXLlvUMGTLEs2/fvrCee/jw4Z7du3d73MzRo0c9c+fO9Rw7diysx69YscKTKVMm+WwnBa5lvC/jx4/X4UgJcTeIG8WLF/cULVpU4msoMP+uW7eufP7SpEnj+eGHH5KMUYgnq1atkv8T88B7t337dl1ik/8am9ibK1eueJYsWeLZtGmT53//+1/Qx+GzjM99unTpPIsXLw7ruTFXR2yvV6+ezLuItUlmtlBPImfMmDHSrXns2LGGZHyiHAQZQ8gwQkYLcR7Ijujbt6+UjAM0FCPuzST3Bd65M2fOlOZyTZo0kaZyhJDogE80ss3QwHPEiBG6n0bNsxye1siCc3tcQ3atluXnm92D7CA0Unr44YclE7xnz57i7ezr3w0vcZTZo4QW3t/IMEflFcbZpDzFQ4HfRQbR0aNHw/4dPB5E03cmGvA65cqVkyz8+fPnS0Y+spUxT/AvEUYT04EDB8o8Eb7mmI8Gmysia6p///6qWLFi8lxuJNJMclQT4DpGJcHjjz8ulX+h6N69u3rmmWfE2gnVAYSQ6MC4iwpbfGbnzJmTZMYnMom1GIK5eFKfb8QoVCQhOxWe5cgyJ+aAXkywTGNPJhJpJrkG5oazZ8+WXjZweQiHIkWKqBkzZoi104ABA3jyLQ6FcpuBhRtKLHv16qVb+XYgKJY7G/ievvvuu1JWCCiU2wOjRXKNbNmyySIB4huajPk3gyOEJA0+p7CrQPM92IEY5SFMsTyhaOhrd4Px8tlnnxUBAwII/Mc1ERpAwEVTLzwOvt2jR4+Wnh1owKYX7733nojkEOetKpT7g9iCzR3ME2DxhxsEBYi9vmBBCbsunF80qkK/HN94gb4XAPfBw91tRCqSA3jT4xoE2IhIyuoGC/mPP/5Y5nOPPfaY+J0TQiIHsQDNk7GpGo6HMOIErFnatWsnX8NpDkmx3BoUL15c1sKwFiMkUpFcA30MNC0lXOrUqSNWaZgbfvXVVxH9LpIPkASCr8R46FFuI/bt2ycfRjSPQiCPR+MeepY72z8Nndkh4KBRTSSLeOJckdwX7JQ3a9ZMvfXWW5JZSQgJ//OKiowVK1ZI5hgWZUZDz/J/wPiIirhgFCxYUERzxD9klMXSpM0osAiClyUaPB4+fFhZbS6KecPkyZOlSag/uNaxOVGrVi2pWoPonz17dtmIgNe7W4hGJPdtEoZ52fPPPx+2r/3JkyfFOx8b3diwSJs2bZRHToj7mDJlinryySdlczAe1S/0LDcXxCWI5HrEf3qUu1MkD8aSJUskyQHJBsFA8gAqwSB6Y52A+V5SIAN9+PDh3u9RrTds2LCoj5MkDbfRbALKiB999FGVKVMmQzPT/GFmuXMnCLhBdAXMKLc2ZojkWqOSN998U7Js0PCOEBIeaOyFDDNkpsVDJAfMLP+HQAsOiIZPP/20Wr58udjhvP3229Is04oiuTbmAytmuyHDGdYrsAjZuHGjbLJjbqqxc+dOuQ9WLlpmPDL9KZKHD84VFsHhiuQAmxGI0zj/HTt2ZCUYIWGCxsb4zCAzPKkm0Dt27BBhNFaYWW4uEDKtGv+JfUVyVDLC4g9JZqjKDgZeA4/F5nY4lWBInvAVyQG+Z2a5sVhvBk4C7jqhtPXAgQNih4Ay7nhCsdyZFj6YpCHrCKD8jFgTs0RyDYjkCPhYQCCTkBASGng8v/POO2rIkCFSxRNPKJYrNXjw4AQCMypijh07psaPH69q1KgRd/H51KlTUmILcd4u1ivhgIUexHBkPiN7+uuvv1bVqlXz/vz69eve/8OWxS3EkkkeimvXrqmJEyeGFMCxyEcp97Rp08RGiBASGvQCaN68udimoN9CKJEMwhfGOPQQQB+HWKFYTohzRHKs1zV7P1R4QggPBdbzs2bNknGgdevWIXsWBBPdQ4nxJHYolNuACRMmyALks88+i1tmmj8Uy53F5cuXE2StMaPcmpgtkgOISl9++aXKmjWrWBX4ih+EkIQgK+Spp54Sj2FkhJqB28VyZI9D+NBAQ2IzYxwaXb7wwgsilIfb78EOQrl/BjTsbLD5vnXr1gRZ/fCBL1SokHIDRonkx48fFysbjC1JCeC49tHLCJmxaLxKCAkMxuNOnTrJGI1q7VBVL5iPozE3hHWt0bMeUCw3D2yM1K5dW2zEiPvQUyTX1svQ61CtiPk/fMiTIkeOHFJ5ikbcb7zxRtDHFS1aNKL7iT5QKLc48H9EySoCOXabzIRiuXN45JFH1OnTpyU4AArl1sMKIrlGxowZZRGxefNmKbknxA1E2jQH2SAQC9OkSSMb3GaW9bpdLB85cqTXou7zzz+XbFyzyJMnj2wywrc7VMZQIKHcitYrSYGEDgjGGiNGjFBuwCiRHGADAgtpgBicVDYrSrLhv//444+rixcv6noshDgFbDqhF8+4ceOkd0UoMBaPHTtWLI7w2dLTG5hiuTlgbvTjjz+qdevWmXQExCkiuQb0FPQlwvgQbqIDmnajEhKVqPA3D8R9992XKPkGnuW4nxiH/WbgLgJZUJjkwg/yww8/VFaAYrkzwKQMwUHLLKdQbi2sJJJrYPEPwQM75PBeJsTJYAKKrFhYDuErvk+KQYMGSRNJZIdom5Bm4maxPFeuXNJjQbM+mTlzpmnHgo0TXBNoEheu57TdMsp9gfB06NAh+T+sh1Bd4XSMFMkB1gL9+vWT5q7w2U/KghFzBmxunzhxQnXp0oV+5YT4gcQPVF2gnwI8gsOhSpUqIqrOnTtX93UTxfL4g3EVlmywtyXuwSiRXCNQI+2kqgmxxqhTp45q06aNVJAFAuI7RHhYsOHr0KFDdTtmEhgK5RamV69e4gk8Y8YMS3Wvp1juDDBos5mn9bCiSK6Bcu7GjRtL+XdSjUcIsSvRNM1ZtmyZeGGj+S2yQ6yCm8XyHj16yFd4z9ptM9iuQjnmFfBj1+jbt69yOkaL5BroeQArFfjCh0ORIkXEshGbNMiYJYT8A6osIJLec889EVe8FChQIMns82ihWB5f0EgRTb5LlCgR51cmThXJA3H06FERwUNVLqBiBRWs+AqxXJsD+oMMcvR8YSZ5fKBQblGmTJmivvjiC/Xxxx9bcgCnWG5vkJH0+uuvewdiu4kITsXKIjnAhALZF+nSpUuy8QghdiXSpjnI2nzyySfF6/LFF19UVsOtYjk2LLC5gczBRo0amX04Ml5evXrV0UI5LG5gS5AyZUpVpkwZ8dV2MvESybVrAb1CIgGWP88884xkzW7fvt2wYyPETpt5yCBGg2dUXYSaZ+/evVt9//33cT0+iuWEOEck37lzpypbtqxY/GBzLpRtGvzK4ZePxzJb3BpQKLcge/bskVJJLLzbt2+vrArFcvuydOlS8cMCCBQQPom5WF0k10DJdziNRwixK5E0zcHnFtkfANkgVhU23SiWI7ZVqlTJVK94DZT4Y0yH/YqThXI0w0PzZ1ivYFPVCufeCSJ5qKSapBrRwa+/cOHCqmXLll67PULcCsYlfG5QbXH33XcHfRw+K82aNVNNmjQRb+AbN27E7RgplscPVO5jM8S3rwZxHmaI5FpllzbOYL2A7HJfLl26JI2BYbcMkHDzyiuvqNdee02tWrUqLsdIgkOh3GIg4wiLbky6x4wZY/lFBsVye4KFHRZNIEOGDJa/zpyOXURyDRyj1nhk9erVZh8OIboSSdMc9A/BxiPEKrPEsnBxo1huFdKnTx9wkRQMPNauzTy1zChkUTkVs0VyXB/dunWThJrOnTurbdu2BX0srBuRObt///6wei0Q4lT27t0r1RUdO3aUqshQfPXVV2rHjh3y/wULFqjr16+reEKxPD506NBBNkOQxUuciVkiOUBfGsRfxGpYp5UqVcr7s40bN4qVGtbSSKbQgEiOdTb0QM0il5iDPWfgDgbejhs2bBCjfgiYdoBiuf3ApACNoQBtV8zFbiK5BoRENDZC1Yu2E06IUwinaQ4E55deekm8++E/aAcolpsDrhGIq7DTc3JGuRswWyTXNlC05mAQAZJqVgsLR4xhn3zyifrpp5/idJSEWGuuDVE0e/bsUmWRFNiIwkZ4pkyZ5PNlRuUtxXLjgVCJTd1wG20Te2GmSK6BJtxIpsExaGPR+++/L2touEgAVLloiRT43GOj7syZM16thpjDbZ6k2rCSuPH777/LYI0FVaTNRawAvNxQwoSMtYwZM5p9OMQHlAwiI6JBgwbeyQAWSw8++KAsoLSsCRJf7CqS+wqF8KGF3+MHH3xg9uEQEjcgZFavXl38ybds2WI7+6rz58+rX375RexkUBpKrAWauKPqC/MpLPKINbCCSK4Bv3ts0CE7NhybRsw34BkPWxxkoKPKgRC3MGrUKFlfI3M4kt4Jf/31l+lrWlSbo98GJJvKlSuLkEasvcYm5mMFkdwfrBnQQHbRokUJmspCKPefi8NZ4tlnn1WLFy9WdevWNeFoCTPKLQKCID44hQoVUoMGDVJ2hJnl9gGTLa2chxnl5mB3kRxAZHv77bcl64ZeasRN4JqHT7/W3NZuMLPc2jCj3HpYSSTX/OBXrlwZdi8jZKGPGzdOnTx5khYsxHWWK2i0DdEp0gbDZovkgJnlhNhfJIfgjeQyX5Ec1dmwMA2UsIJ+hUhoxGY4LVjMgUK5RUCDJ3gVTZgwQaVJk0bZFYrl9gC73ui+DCiUxx8niOQavXr1kqxHlLTSgoW4AVRPofkOrv1q1aopu0KxPH7A3xbWen379g2rKRyFcmthNZFcI1IPezT1hAXL6NGj6clLXGW5gr4JsFQLxdixY6Uy2opQLCfEniI55n8QxOvVqycZ5QDj0Q8//CBjUsqUKYPGdzRHP3funHrhhRfifNRE3gOeBvOB7cXrr78uCyiUVNkdiuXWB93ctcY0FMrji5NEcs1DF1lqR44cEb9mQpwMBExkcObLl0+qKewOxfL4iRwDBw4UX8pjx44l+XgK5dbBqiJ5IGCpAis07foJRPfu3VWNGjUkS+3ixYtxPT5C4g36QqDyAvPUUHZDsKNExjkyPpG0ZkUolhtDixYtVMGCBcVOktgbq4nksEirWrVqAkvl+vXrq61bt6qHHnooyd/HdYlk2s8//1wy0kl8oVBuEcuVu+66y7aWK4GgWG5tvvvuO9ndBBTK44fTRHJfCxZ07YYdBRYkhDgVePGjuScsV9KmTaucAMVy40FmEMpokRUULHvIFwrl1sBOIjnGJBznp59+KtUL4ViwaPNAQpwIGuXBcgWbQzVr1gz5WKzBYUt56dIldfbsWWVVKJbrD6oIDh48KL3iiH2xmkiuWaRpSbDwr0eyxPz586WpcLh07tzZ248EPRNI/KBQbjKYzGISjt1rfJicBMVy65I5c2bJBAYUyuODU0VyDTRJwt+FEldMVghx4qL7lVdeUb1795Zr3UlQLI9PMzlkFYUjuCJeAC1Ok/hjJ5EcIOFGs/VBM1gk4oR6LEq+YTWBTNpwQDPBSZMmyVdCzCCSaxCid6dOneSzC7uhpJgzZ448Hh7miPFWhmK5viBjF32WateurfMzEzeL5BrDhw9XzZo1kySb559/PmLLNPwtX3zxhYjk3NyOLxTKTQSd57GDDYHpvvvuU06EYrl10RpDZMiQwexDcTxOF8k1QQdeahjXMCkgxElg0d2zZ0+VK1cu9dZbbyknQrHcOmhCuZUWe27CbiI5gJ3KgAEDVJ8+faQ5GMS0UMBmAv1FkG2blG8+nhdZce3atZOv+J6QeBLpNTh58mSpcPzss89CWq5oYC0Ee4OFCxdGLGSZAcVy/cDmCOwxuB62J1YWyQESYWfOnKnKlSsX9XMUKFBADRkyRMYoblbHD+tHAgeDySyyed98803lZCiWWw+U/mgDLTPKjcUNIrnvZx3WAgjmVm2IREi0dlVovAN7IadYrgSCYrmxIMs3HF9oWq+Yhx1Fcg1YoKFSNZwKVYiBn3zyiTQnxrgWDMwV/Te/8T0X6yReRHoNIvOyX79+6vHHHxfLgkiw0xydYjlxO1YXyfUE/UfwN2JzO1QfEqIfFMpNYsmSJWrWrFlS7uMGoZJiubWAfcCGDRvk/264/szCTSK5xssvvyzea1YvXSUkXK5cuSLXc4MGDVSjRo0cf+IolhsDREnEACx2koJCuTnYWSQHkYoEWHQjsxwJO/jbAxGswR0b35F4Eek1+Prrr4vXeCivfvDNN9/Y3iqQYnnsoKIGlQTYMET1ILEHbhLJtcptzCM3btwoVizEeCiUm8C1a9dUjx49VPXq1dUTTzyh3ALFcmuAScCTTz7pbSRBodwY3CiSg3Tp0knDw7lz56p58+aZfTiExAwqJE6cOKE++ugjx0/ENSiW60+mTJkkLhw7dizJx1Iojz92F8kDcf78efFn1qx8AjF48GCVJk0aqQYL1qw7kvsJ0ZtIrsGtW7eqjz/+WL322msqb968QZ9z2bJlknFeqlQp9eOPPyo7Q7E8NjA+IgkCCRHhxGdiPm4TyTWqVKmi2rdvr1566SV1+vRpsw/H8VAoNwGISHv37pVdIbd8sDUolpsPrjl4XOXLl0++p1CuP24VyTWaNm2q6tatK/0X7J6tQ9wNGniixBsNdAoXLqzcBMVyfWncuLEswlFRmBQUyuOLE0XyxYsXqxIlSqiBAweq0aNHh/ycY4ybOnVqwMae6KHk30AM/tBO7a1ErEe41yASgWBLcPfdd4esasTjevXqJf/HevzPP/9UdodiefRgjVa/fn3VvHlzSWYk1satIrmGtvkNsZwYy20e1pjEDDzSUP6Fne2kJo6HDx9WxYoVU126dBGfaLcCT0R4GKORUMaMGc0+HFeUlS1YsECsA1KkSOHdtMB1i07faGJC9MHtIrnvZxyZOrBiQRksIXaL15gePfLII2rnzp1qx44djvYmTyor9ZdffpFzVqRIEbMPxxWMGDFChKHWrVurKVOmmH04jsaJIjlYvny5NKkD+LsOHDgQdD6CeUu1atXks75582bvPDHU2BnJWEqIHiR1zaGBZ9u2bdXSpUtV7dq1Qz4X4jrW4rj20fTTDg08w+2DgfOE+QuanibV1JcYs8YmxuB2kVwDybY9e/ZUv/76q6pUqZLZh+NYnBEVbNSFW2vg+cYbbyg3w8xy84GQC5hRrh8UyRN+xvv27Ss732zsSewYr7///nvxrRw5cqRrRXLAzPL4w4zy+OBUkRzUrFlTdezYUTVp0kQW04FEci17UmvsuWvXLrGYCgSESYiQ+BrpWEqIHvheg4EaeMI+CHYqSYnkoHjx4rKZNGfOHMeI5ICZ5cSpUCT/F/S6KVOmDBt7GoxzIoMNunBjx3rmzJmSKURxkmK5WSCLIn369OK5CzJkyGDasTgJiuSBm8ZmzZo1UcksIVaP19evX5eNnocfflgsM9wOxXJ9GDNmjCRMoLowFBTKjcfJIrnv9fbtt9+qAgUKJGpQPGjQIHXXXXepU6dOyX3IzuvWrZs09tTu02MsJSQevPPOO+rixYtJNvD0BQJ55syZldOgWB49Wuwl1oIieeDGnhs2bFCTJk0y6V1xPhTK49SFGyVQyLgoX768qxp4JgUzy+PP5cuX5aa5LnHTJnYokgdv7PnWW2+pWbNmqXXr1ulwpgkxPl6Dzz77TKwK3n33XdeWdvpDsTx2sLBBnxpk7oZCa77opExHK+EGkRz42wBg3jd9+nSxgIQlGs4Dmh5qoNoV4x1ER73GUkKM5siRI1IJgYzyUA08Q20AOQ2K5ZGB8Qve9oUKFTLoHSHRQpE8MLAvbtGihcTwq1ev8gIzAM7A49SFGyXcKH2EDQEXPgmhWB5f4BuNBaIGM8pjgyJ5aNq0aaNKliypXnzxRe/mDCFWjteXLl1SgwcPVk899ZQ0wyP/QrE89vEQYk6ePHlCPo4Z5cbhFpHcH/zN8CFv1aqVt6IBYhpspbTYjAqwfv36SfPPgwcPxjyWEhIPUAWBSllUgQUDCUJly5ZVjRo1SnKj0ilQLA+f7NmzS1NXjI2w8SHWgCJ5aJCMhjlNqIbdJHoolMehCzcaa6AzbZ06deRGEkOxPH7Ap1IrNUydOrVKmTIlL8kooUgeXnkYstN++ukntXjxYl5rxNLxGqDRNhZKWHyTxFAsjx5sGMJ+L6kNGArlxuBGkfzkyZPqmWeekYpWNEHTqFevntq6datYVfhWzTz//PMqU6ZMCTLNox1LCTEaiN7jxo2TxvGhKmRxnR89elTNmzfPVZ76FMvDn9esWLFCYgQrra0BRfKkwQZ1p06d1Ntvv80NHgOgUB4jw4YNk0zxiRMnejPG/cHP4Asd6GfkXyiWxw828owdiuTh07BhQ/XAAw+ISKRZChBixXiN0mwImT169FD58uXjmxQEiuXGQqFcf9wmkqPPAsRB2Al88cUX3vvxPcRCNCpGQ8NAlmkQyeF7um3btqjHUkLiAQRyxGr464cCdkOwZYFwjOvXTVAsD4/q1aurXLly0W7PAlAkDx/Ea5wvrF2IvlAoN7gLNy5c+ACiCzeyOUhoKJYbz/bt29WXX34p/+eueXRQJI8MZKthIb1582bxRyXEivEaICsD9mgDBw6M+7HZDYrl0YEqwzNnzoR8DIVyfXGbSA66du0qNj++iRHouYA54COPPBJSDEIGOhp9oho22rGUEKNBA9nZs2dLY1pUy4YC6/Ddu3eruXPnimjuNiiWE7tAkTwycufOrXr37i39b44dO2bQu+JOKJTHoXETLlr4nZLwoFhuLKtWrVIffvih/J9CeeRQJI+OqlWrSmb5K6+8IpluhFgNNO8cM2aM2ApkyZLF7MOxBRTLI+OHH34QuzPYXoSCQrl+uFEk1yxUsOkHQRzC9549e8TDORy7PTQBxboFmeerV6+Oy/ESEgnw1UeVInrgPPnkk2H9Dvz469ev79oTTbE8NIcOHVIff/yx+vTTT+P0jhB/KJJHB9Yt2Cyk3qgvFMoN5Pz58+LNC+8gNrmJDIrlxoGO3lWqVJH/UyiPDIrksYHxcP/+/erzzz+P8ZkIMaZ8Ef0bkJlBwodiefhky5ZNBJ4TJ06EfJxmUcXm77HhVpFca9w+cuRItXHjRvXZZ59Js7pIaNmypTQ/hJ8zG3ETK246Ll++XA0ZMkR64ZDwoFgenD/++EP17NlTMnNJ/KFIHts8HJWwWF+jKS3RBwrlBoKsXXzogzXEIaGhWG4MyKbo0KGD/D9Dhgy8DMOEIrk+C3eUasPe4urVq7z2iGVASfbkyZPVq6++Kh69JDIolocHsh9RZXjw4MGQj2NGeey4WSTXgOgDsTsasEkDEfKXX35hI25iKbBxg7X1/fffLzZCwVi6dKlcw5cuXYrr8VkdiuWBueeee9Sjjz6qmjdvHud3hFAkjx30VsqRIwezynXkdj2fjPwLgvJHH30k5Y7wDiLRi+UAE3VMiDJmzMhTqQNs5hkZFMn1A56naBKGJmCdO3fW8ZkJiZ7hw4eLmNaxY0eexhjFcsRrUKRIEZ5LP2B7EY5oy4zy2KBIrg8PPfSQqlixooiNSdkFERIvfvzxR7V+/Xq1aNGioF77mjULKiref/99tWbNGsakAGI5fN7RkLdy5cpyn5tBI8/vvvvOG4OxqQ07lsOHD8v/T548Kf1FsIbGDQk/uGFj+9y5c9JMMU2aNHJDxTY0C9j4QbzEc+fPn19uqCwL1SPCbVAk1wdcd+hL0q9fP+nbUKBAAZ2e2b24e0Q0EJQ+YBDFBUtig2K5/lAoDx+K5Pp/nps1aybCJCob3D4xJ8aBBSBKaWF9FqrhHBZB2LyBNVBSDcFIaCiW6wMzyqOHIrl+QMxBOXfTpk29CSuEmA02blApgY2cYPz2229yA3nz5pXmtCQhFMv/4fjx42rDhg1qy5Ytatu2ber3338X+woIuJFWJoYDRHTMS0uUKCGVtmXKlJHKp0yZMrnuEqVIri9I0H3rrbekcfeoUaN0fnb3QYXCAK5du6bee+89aS6CnUMSOxTL9S3FHTdunPyfHuWhoUhuDFh4ly9fXs2cOVO1atXKoFchbga+utiM8W10M2zYsICPRbxOnz696tKlSxyP0LlQLA/NtGnTZBMHY1+wDRwK5dFBkVx/YEVQvHhxESfnzp1rwCsQEj7r1q1Ty5YtUzNmzAiZlVuuXDkRPNHcDn777PcQGLeJ5ag02LVrl1QloFExbkeOHIl7shqEedx8ufvuu1XVqlVV9erVVa1atRyfEUyRXH9gHfncc89JvH7llVekmoFEj3NHQhOBzykm61ioE/2gWK4Pp0+fVleuXJH/UygPDkVy48ACBplAQ4cOlQUMSxCJnmDB5yuSA3yPrEh/YRLjISrA+vbty54NOkKxPDizZs2STUI01qZQrh8UyY0BAiPWM08//bRkWyIDkhCzgACEbFzE83DWjViTE3eL5RcvXhS/+nnz5oldD2JFUmB9DMG6YMGCKl++fGKji4bIWbNmlfkNenzB6gJViFgvLliwQOypsMkNARhiOOxYMMdE8268Jmxc9u/fr/bs2aMOHDiQqEky7sdt/Pjx8j2ay7do0UKu9Zo1a4p1m1OgSG6sVzlsgNArEZWyJHqcMwpaBAyQyFpr0qSJZGAQfaFYHjvInjx79qw0Z6JQHhiK5PHJKkfGxMKFC1WDBg3i8IrELcBuJdj9/sIkeokAZGAQfaFYHpjGjRuLSI4Nw2AwozwyKJIbyxNPPCHNE7G5/fXXXxv8aoQEBhni8JD+4osvVPLkyXmaXCiW4/jefvtt1b1795B9E9ArDtfKN998o3744Qep9g+WgYs+DLghJsOHvFevXtJ4O9wKmhs3bsiGYooUKVTatGlFRIeoHgp4m+/cuVPsXmARhEoJNJ++fv269zFYq3/66adyw3Oiuufxxx+Xv9vOojlFcmPBBgsqZD/55BPZ5GZ/v+ix3ghoc2bPni27gZxIGgfF8tjArrhWgkihPDEUyeNDjRo1ZCKO7CAK5URPkG0Wzv3IMoKHHzz9kCVE9IdieWLatm2b5HmjUB4+FMmNBwIQei717t1brCzo90zMAIloefLkCTmGIovXjV7PbhDLV6xYIZnVmoiMylTfilRkaC9fvlzsRaHHaNXTviALHOuP2rVry3Pde++9Cf5GzAuR7AhfeyNJnTq1+OzjhmodTTyHYI5GjLAXwt+mZZ3juFAdgRsahMK6DX2eQm24WxGK5PGhT58+sr4ZM2aMNDUm0fGPWkZ0AYMZRB8MvtiZJMaK5Zioo7nQX3/9xVMdZTNP7FCTf6FIHv8mYZpHICF6gYUePMl9QVaFfzY5snQuX74stivEeLEcGf1okEWShkJ5eFAkjx8dO3YUgQYl3YTEm4MHD6opU6ZIvA6WTYt1OCoVH3zwQbVq1aq4H6OTxHLM0SGW37x5U1mFatWqSQNM8PPPP6uVK1d6N0dQLY1kCLz3EJN9RfKcOXOqbt26iT0KBHZUsmLjDw00/TcCsC5GfzkzPO0hnsPuBRnq4P3335eM+DZt2iTICj5z5oxkC6PXE/SmL7/8MuLGo2ZAkTy+SZFPPfWU+uCDD2xxbVgVCuU6gsYQKJ+B+EOMh2J5dEyfPl0mnIAZ5f9CkTz+NGzYUMob/f2kCdEj8wyLvIkTJ8pXWAb4goUIJpBYgMB/khgLxXKV6Po7fvx40PNFoTxpKJLHF1gKwJIA/rmnTp2K86sTtzNy5EhZs6ACLNQ6HFYWP/30kwjq/h7QxN5iOcTrl156yfv9yy+/LH7MyP6G8O27EY85B+wnIKajWefo0aPVww8/LGK0lUHmOJIANZu25s2bq0mTJonP+Zw5c1Tr1q0T/A1oCNqpUycR919//XXLjs0UyeMPEobgkY91EIkOCuU6ghIHNLnBbiaJDxTLIwcTi6NHj8r/KZT/A0Vy8ya9WHijwQ4a3BCiJ1jooUQ7UMPEb7/9VoQ2WAmQ+ECx/B/27dsnDcCKFCkSVMhBTAJmZLXZAYrk5tC1a1cRz+ARTUi8gN807DQ6d+6s0qdPH1KM02yBIJyyUbzzxPKWLVt6bVGQVY7Mat/scWgwU6dOVceOHVNjx46VLPRI/ezRw+v5558XYTrewDoG57pw4cIJLK4wZ2jUqJFUVWCTHX8bbFs0IIjCsqVAgQKyrgqnYWm8oEhuDphj4pr5+OOPuWkYJZyB6wS6F6PpA3Y2GZjjC8XyyMAkQis1o1BOkdwKTcIgoCHbg5B4gYkjSlxLly7Nkx5HKJb/UwYOgRzNxSAABYIZ5cGhSG4esF5BRiN8T60inBHnAysNjJXYqEmqShEWX2ji2LRp07gdn1OxoliOY6pTp06iahc090RzTHh7w787lsxxiNWoYFi0aJGKN0uWLJGv8F8PBmxYkC2/ceNGeV8wJmvreojSaFIPoR0+1RDQzYQiublAl9y+fbvXpohEBoVyncCkEaLjk08+qddTkgigWB4+8OXVstXcLpQzk9x8MMGF9yk89gI13iFEb1CaDf/Snj178uSagNvFcox5yAiDUB6sTwiF8sBQJLfGwvvw4cOmZFsS94FNRWxsP/roo5ItmxTIHsZjrdSE0s5YUSxHBb9vlji8x3GNFCtWTJfnhxAPkfmRRx5R8QbZ7EkJ5Rp4T/DeIMsclWrIJEezUq0xKOwFIZijfx6+jzcUyc0HfROLFy8unxkSORTKdRoIUIbYvn17lS5dOj2ekkQBxfLwgBhJoZwiuZVAk53z589LuSQhRoNS3Tx58qgmTZrwZJuE28XyHDlyhLRVoVCeGIrk1qBcuXLy2YUwRYjRrFixQu3YsUMyhok5WE0sh/0OrHV853R6V16jOWi8hXL0D9u9e7dsAqApbSSg1w6y4OFwAH9+LaP+woUL4usOsRSWg/Hy7adIbg3wmcXmNqps4NVPIoNCuQ7MnDlTuihD7CHmQrE8vEYhAIt0ZLa5EWaSWwv48NWvX1889wgxEiwakH0Dr1NmnJmL28XyUGib2ZF6qzoViuTWAusdNEzEZ5cQI8G8EGu7UP2/4FX9119/8Y1wkViOxpXYcNZ0GNiu2B3NdgXnGfYq0ZA9e3b17rvvqr1798o8V9uQh4AOOyLYE+H/RkKR3Fq0adNGNk5QuU0ig0K5TlYWKG24++679Xg6EiMUy4ODieS9994r/0fJtxv99CmSWxN4T6J7+6ZNm8w+FOJgvv76aylBhd0PMR+3iuXwPkUjWWR4hcooZzNPiuRWpHnz5ipz5szqs88+M/tQiIM5efKkmj17treJbCAQz2G1gozaF198kU3rXCKWw2JEyypHlvSIESN0Xyvu379fnTt3TlnJnzxccufOLfrU1q1bRaPytakpUaKEZJ9rG/J6QpHcemjW0HC/MHuDy25QKI+Rbdu2yU52Ug1GSHyhWB4YNMM5ceKE/D+YN6qToUhuXRo0aCCd7DGxI8QIsJhCP5HGjRuL9QqxBm4Uy1evXq0+/PBDtXTp0oA/p/XKPzCT3JogOw12k+PHjzfF+5a4A1xf2Cxs165d0MfMmjVLnTlzRqpl4Z3vxgQgt4rl0F4KFiyoBg4cqIYOHarrc8N2BdWusKyIB4j52nxAD6Fc45577hEBHln32rwXYvbzzz+vatSoId7mekGR3LrgswLrFWyUkPChUB4jyKZA6Q92s4m1oFiemGzZsolQBKIt67IrFMmtP/nu1KmTZPxq9kCE6MnatWtlc7tLly48sRbDbWI5/Ef79++vHn744YA/p1BOkdzqoKwftpMQKgkxYmMba+yWLVtK9UIwUCX7zDPPiG81k9bcJZbjPd+zZ4965513xHJET4oUKaJSpkwpmzDxANW0GE+xNq9YsaKuz433qVmzZmJPA79q3w37MmXKqK+++irmSgyK5NambNmycl0xGS0yKJTHwI0bN9S0adNU27ZtVYoUKWJ5KmIQFMsTgqCfM2dObymOW6BIbg+efvppdfny5bhlcBB3MWnSJKlaqFu3rtmHQlwulqMUetiwYeIXGgitJNqt1ivMJLc+RYsWVVWrVpVxlRC9+eWXXyTbtUOHDklmzEJQx5iB65G4Syw3qtcMxPcrV64kaBoaD9sVePEb9TehknzUqFFq+fLlki2vVZpj7fXUU0/J+isaKJLbA4ylP/zwg1hakfBw5wxcJxYvXqxOnz4tJvnEulAsT9zMzk1COUVy+1CgQAFVvXp1ySonRO+N7enTp6snnnjCteKjHXCTWB4KN2eUUyS3D1j/QODRLP0I0QvMA+E7Xq1atbAe79a+S2ZiFbHcCHA9xTP+QlPS23YlGLBc2bx5s9hnaWDDExnHu3fvjui5KJLbhxYtWsj6B2shEh5cLcbA5MmTZSe7dOnSsTwNiQMUy/8B/lTarrUbhHKK5PYDDUdwjR4/ftzsQyEOAlkUKKHF9UWsjVvEcmzewFM3UEMttwrlFMntt/DGNYrqWkL04vr169zYtglOFsvjBewmUUERL6Fc2wgYN26cmjp1qljYAFizVKpUSc2bNy+s56BIbi+yZMkidn/QL0l4UCiPYVD7/vvvJZuCO9j2gGK5Ur/99pt3gHS6UE6R3L4Lb0y8ufAmeoJxr1SpUtzYtglOF8sRn7BQzZ8/v4jD/rhRKKdIbj/gHY1G3KwCI3pvbMOvOdTGNoTFZcuWBdxoJPHFqWL5oEGDpPk75iFGsmLFCtk4hx2KZokSL1q1aqU2btwoiZ9a1Tn+5g8++CCkbzlFcnsC3XLdunXi7U+ShkJ5lHz77bcySLRu3TrapyAm4HaxHIuaQoUKOV4op0huXzJlysSFN9EVTPyxsc1scnvhZLEc5a9oPob+NoH8It0mlFMkty8YV9evX2+4mETctbGNam1sbgfj9ddfV3Xq1FF33323VOYQc3GiWL5gwQI1d+5ctXXrVkNfR6v0jlc2eaB+E3jPmjdvLt9DIO/Tp480/tTmIr5QJLcv6IuDJA1ubocHhfIowQUGL1146hJ74Wax/IEHHpCyG4CB0olQJHfGjveGDRvUrl27zD4U4pCN7atXr4o/ObEXThbLt2zZItdluXLlXC2UUyS3/8IbiRdceBO9NrbnzJkTcmP76NGjkk2ukSdPHp58C+A0sRxC8SeffBIwRtvVnzwYsF+ZMWOGeu2117z3jR49WrVs2VLmKRoUye1NmjRpZEME8TpUxQD5BwrlUXDs2DG1dOlSNvG0MW4Wy53czJMiuTN45JFHVMaMGbnwJrplp9WsWVMagxH74VSxHNUzwRrLukUop0junIU3xlkuvEmszJ49W127di1kxTbGTjQfxCZNhw4d2KDbQjhJLEfSzrPPPmuoHcqhQ4ckKQhzgVq1aikzwXv25ptvqokTJ8r7CGbNmiWfs8uXL1Mkdwi4rjGXhgULCQ2F8iiAdy4GEK1EhdgTt4rlThXKKZI7h9SpU3PHm+gmxP3444+0XbE5ThXLg+EGoZwiuXNA9u++fftEGCMkFrDhUqNGjZAb22nTppVrDrYYL7/8Mk+4xXCSWG40mu0KzhfmOVagbdu20tAzXbp08j2qN+rWrSuZ72gIee+997I/n43B+Jo7d2429QwDCuVRMHPmTFW/fn3Z0Sb2xm1i+ciRI6UawmlCOUVy54Fsov3790uTGUJisV1Bpk6zZs14Em2O08TytWvXql69eqlRo0Yl+pnWoC5YxrndoUjuvIV3rly51DfffGP2oRAbc/r0afXTTz+x/5cDcIJYjgqZI0eOyLrZqKaxZvuTB6NevXryd6O6F6xZs0a98cYbqkiRIhTJbQ4SMGCpAz2TzZBD48wZuIGg6RIGi0cffdTsQyE64SaxHIvTK1euOEoop0juTNADAhM0ZAwREi3wOoWIw41tZ+AksXzPnj3qo48+ks0cN2WUUyR3HrhOUZ6PeE37FRJL80TM6Rs3bsyT6ADsLpYjDkMfQDa1EQ1j8fxWFcpB5cqV1cKFC709zTZv3qwaNWokFizE3kDHPH78OJPRkoBCeRRBXPPQJc7BLWI5vNa0pjdOEMopkjuXFClSqAYNGlAoJzHZTCE7jYtuZ+EUsRwNwvr37y8eu/5oWT5OE8opkjsXjLP4PO7evdvsQyE2BRstlSpVUjlz5gz6mLFjx8omI7EHdhbLcewlSpQQjeDMmTO6P/9vv/2mzp49K+txXPdWA4I4vMk//fRTb7LJihUrJBv5xo0bZh8eiYEHHnhA3lMkE5HgUCiPEFxQ2GHLkSNHpL9KLI4bxPKCBQt6Jyl2F8opkrtj4Y2JpBGZHMT5wE8Rk3lkwBBn4QSxHAvwYcOGBWwM78SMcorkzqZ27drS2JMLbxINaOC5aNGikBvbaHrYrVs3VbRoUdW+fXueaJtgZ7F806ZNct1hY9uIOSp48MEHvc0zrQJE8p9//lk8yVu1aiXHmj59eu+GVpcuXVg9ZGNwvSHpl1XboaFQHgFXr15VP/zwAxfdDsYNYrkTmnlSJHcH6AWBYM5ATqIBgk3JkiVVoUKFeAIdiBPE8mA4TSinSO58IJLDooBCOYmG5cuXq0uXLoUUymfMmOH9f+nSpXmibYRdxXIj+4RY1XbFVyTXGndWqFBBxvZUqVLJY8aPH68GDx5s9qGSGEAS0ZYtW9TBgwd5HoNAoTwCUMINf2eWcTsbJ4vlaMyheYtpnmN2gyK5u4QweJVTKCeRgkUYrNIYr52N3cVyVDwcOnTI2zvEXyh3QjNPiuTuAeMt+jidOnXK7EMhFmpaPGnSJPkaCszzChQoIJvboZq8owoH88LmzZsbcLTESOwqlhsBNoUgRltNKA8kkmvUqlVLPssar7/+upo+fbpJR0r0aNgKm1OusYNj/xl4HMFOGjLTUC5LnI1TxfJBgwZ5/29HoZwiuTt3vH/88Ud18eJFsw+F2AiINfCUpO2K87GzWF62bFkRhzDXcGJGOUVyd4FSbszTtH5OxN0MGDBA7ErbtWsnX/F9INAAFmtsbLT4CnP+3H333dLXAT7J+fLlM/DIiVHYTSw/duyYatasmapWrZquz4trGBvl0JUKFy6srC6Sa7Ro0UKNGDHC+/3TTz8t9jTEfmTMmFHVqFGDQnkIKJSHCYI4dlySCuLEOThRLMffA1KmTCm7iHaCIrk7gdB5/fp1b4kiIeGAeJ09e3ZLNkgi+mNXsTx37twSi8+dO+c4oZwiuftAE0aIYMxQI8ggHz58eIITge8DZZZv3bpVetGwAswd2EksR1LZ7Nmz1erVq3Vt6Gk125VwRHKNvn37ikCu2RJjI8GIZqfEeDDmwjFDs+UlCaFQHiabN29WR48eZXaay3CaWN6nTx/5qnWvtgsUyd0LMi3uueceLrxJRECoadiwoSOsK4hzxXIswLHQRJaWf8wDdr1+KZK7e+GNpozY4CbuBeNwuPcjXqNvEixViDuwi1iOBpaffvqpjGnp0qXTvZGnFYTySERygJ+PHTtWqkTAgQMHVNu2bb3zFt8kU//7iPWS0VDZoF2PJCH2nIGbAEr/0aimatWqZh8KiTNOEss1+wo7NfKkSE4wkcQYjEkXIeGIdLt27RL/PeIu7CaWYxEeSAy3c0Y5RXJ3g3h9+fJltX79erMPhZhI0aJFw74f8zv4H6PaFSC7EeKNBv4/depUdfbsWQOPmMQbu4jlnTt3lvlk6tSpdXk+VE/s3LlTYv+DDz6o7CSSa6Cp5zfffKOyZcsm3y9cuFC9//773p8juRTJKu+++65hx05ip2DBgjImYwwmiaFQHkE3biy+tG6/xF04RSy3m1BOkZyAmjVrSsM7ZC0QEo73I4D3HnEfdhPLA2FXoZwiOYHYgjkm1k3EvUAAhZ+4L/Aox/2+oKIGPUUwz9MYOnSoypw5s2Q7fvTRR2ry5MnqiSeeEFHuzTffjNvfQIzHLmK5nmi2K7AGxHzFbiK5Rt68edWUKVO8vzdw4EDZIJ0wYYJUAqNXxWuvvSabAsS6YOxlvA4MhfIwFywrV66U3W7iXpwglvfq1Uu+2mHDhyI50UA5LiZiDOQkHHCdoOl2jhw5eMJcil3Echwb4vKLL75oe6GcIjnRhC/EbMZrMmzYMBE/J06cKF8hgPuzbt06Ect9hfKlS5eqS5cuqXnz5sn42KFDB++64MSJE+r48eM8uQ7C6mI5rkUkYOjVpNgK/uSxiuQaderU8c5f8L5BK2vfvr1XJ8GG18mTJ3U9dqIveM+wmYGxlSSEQnkY/Pbbb1IG5hvEiTuxs1iOCeb+/fu9zUmsDEVy4i96lS1bVhqOEJIUuE4Yr4kdxPLz589LxuSkSZNsLZRTJCe+YPyFCHPt2jWeGJcDART+xf6Z5L7xGn2TSpcu7Z3/FytWTJpxB2LMmDEqV65cqlSpUtJ3iU0EnYGVxfKNGzfKmNazZ8+YnwvXt9lCuV4iucYbb7whFh4Atlsa+Nzv2LGD1Z0WR6u+5eZ2YiiUhwEuHPiTV6xYMZyHE4djZ7EcPmsAwdGqUCQnoUrD6FNOQgFfxD179lAoJ7YQyzGXgB3Byy+/bFuhnCI5CRSvIcbQp5wkBeZ1qEDQejXgKzLQjx07prZs2SIex/Xr15d1uC/bt29Xo0ePVmnTpuVJdghWFcuxcVOoUCGxE4m1OSWSL7G5g4Q1WK/YXSTHnLtp06YJrDHxGZ42bZp8jrEJRqwNNh6hbVEoTwyF8jDAhfPAAw94m4wQYkexHIFLa7phpidaKCiSk1ALbzTA0aoiCAkE/cmJncRylCXDjuDZZ5+1pVBOkZwEgj7lJBwC+ZP7rlmQZd63b19pFHju3DlpOPfSSy9J4hoEPqzN/QV0Ym+sKJbDxm/fvn1qzpw5AZtvR8LixYvlK5p4pkiRQtlVJEfS0ldffaVKliyp5s+f770fmeVIVmnZsqVOR03iAX3KA0OhPAkwQK9atYrZacQRYrmVm3lSJCehqFatGn3KSdj+5MHKtok7sbJY7o9vxpqVhXKK5CQYuG7pU06SYu3atWLPE45VGnorwUv37bffFl/z06dPiw0LcR5WFMv1wizbFb0zycHs2bPFPg7kzJlTfffdd5LMBG2E2AuMwbt27WL/Bz8olCfB5s2b6U9OHCGWwzcMpYpWFMopkpNwfcpZGkZCgeuD/uTETmL59evX1cGDB9XZs2cTCeWxZq8ZBUVykhQYhzE3pk85CRWvff3JI63GKVq0KE+uQ3GiWI51+OrVq+MulBshkuM5xo4dK5/fNm3aiBf5o48+qsvxEvN8yrWqXPIP1pyBWwhkk6dOnZr+5MT2Yjn8/lC2aDWhnCI5iSSQr1y5kieMBAQd21HyqU34CLGDWP7EE09IufKUKVMS2K5YNaOcIjkJB4zDEGjQCI+QYGtsVAtadUOQmIuVxPK5c+eKyNy+ffuonwMi5I0bNyTeFy5cWNlVJPf1toZAjmbk2Lgi9gXvJTYeucZOCCNTEmzYsEEGFvqTE7uL5ZhwZMyY0VJCOUVyEgnwpUTmJRrhEBIoXmvXCSF2Ectz584tc8xLly5ZXiinSE7CBVnCuK4plJNgHse4NhiviR3Ecrw+msuiGacetit6CtZmiOS+AitxBhiLGa8TQqE8CXDBlC9fPqmHEWJ5sRw72MWLF7eMUE6RnESKNhYzkJNA4LpAGSjGOkLsIpYPHz5cmtq9+OKLlhbKKZKTSIBIXqpUKcZrEhA0R4S/MdfYxA5ieZUqVSSrHL7csTbyjIftSjxEcuIsMBZjM8gJNkd6QaE8icaHWEQxiBOniOUXLlyQrxkyZDD1OCiSk2goUqSIXLsUykmojW0uCIidxHLY+/les1YUyimSk2jAeMx4TQKhXRdcYxM7iOUQnBs2bBh1o8ojR46o33//XWyGHnzwQWUkFMlJNGAsRtIGrlPyDxTKQ4DyGpSGMYgTp4jl2PwxO6OcIjmJFkwwy5Urx4U3CQgrwIhdxXJfrCaUUyQn0YL1ExbdV65c4UkkieJ13rx5Vfbs2XlmiC3E8ljQbFdgb4HKR6OgSE6ipWzZsvLZ4ub2v1AoD8GmTZsk06dEiRKhHkaILcRylGBhwWumUE6RnOix8MbYTIh/I8+jR49yY5vYTiw/d+6ceu6556Spp79QbnaTO4rkJNZ4jXnf1q1beSJJAjCPYyIasZNYvmvXLjVu3DhpyhmLP7lRUCQnsYCKbTT05Br7XyiUhwA7KmXKlJFBmRC7i+WnTp3yLsDNEMopkhM9wMJq//796uzZszyhxIs2sePCm9hNLE+RIoUaNWqUmjp1qtijaXEaIrmZNkIUyUmslCxZUq5vZqiRQI08Ga+JncRyxOiOHTuqyZMnR7z+NVoop0hO9IB2aQmhUB4CBnHiJLEczTw04i2UUyQneqEtrLjjTfzjNcTOQoUK8cQQW4nl6dOnV6+++qqI5RDHES8BRXJid1KlSsWGniQRBw4ckEoaCuXETmJ5hQoVVJ06dWQDMBI2b96sTp8+LRm7OGa9oUhO9AJjMq7XpD5Pa9euVZMmTZKvToZCeRAuXbokJTYM4sQpYrkmjsPzNE2aNHF7XYrkRE/uvvtuNvQkAYVy+NezkSexo1g+aNAg1aNHDxHNfTPKzYCZ5ERPmKFG/GEjT2JHsbxRo0aSGd6rV6+Ifm/x4sXytVatWlJhoycUyYmeYB2FawoaaDAGDBigKleurNq1aydf8b1ToVAeBDSfQWmYbxYuIXYWyzHwaYJ5vMQkiuREbyAewRKLnqfEl23btjFeE0d4lpsplFMkJ0Y0CMOa6saNGzy5RMD8LWfOnCpHjhw8I8TxDT6Nsl2hSE70RtM9g62x165dq4YPH57gPnzv1MxyCuVBwAIJwNSeECeI5dqCP17Z5BTJiVFgXN6zZw9PMBGuX78uvvXFihXjGSG2FMtxDcOOAA1pzRLKKZITo+a+EK9wfRMCMK4yXhO7iuVIpAx34+/y5ctq9erVugvlFMmJUXNfbGAGW2P/8f/6aLj32x0K5UHAG547d24pgyXECWK5tqOt+Z8aCUVyYrRQjjEak1VC9u3bJ2MON7aJXcXyN998U/z1hwwZYopQTpGcGIU2Ljt1IU0iB9cC4zWxo1gO2xVUZo8fPz6sx69cuVI2wgsUKKCKFCmiyzFQJCfxWGMHIti47dTxnEJ5EBjEidPEci2T3OhGnhTJidEgIOOzc+rUKZ5swgowYnuxPE+ePCplypSyoI63UE6RnBgJko7Spk1LoZwISHDgGpvYVSxHny/0sdu5c2dE/uTIJtfD9pQiOTFTKL/vvvtU//79E9wHj3IjmtRaAQrlQWAQJ04Ty6tUqSJf8bpGQZGcxANmqBH/eI3qL3ieEmJHsbxz587q6tWr6rPPPourUE6RnBgNrmM04WZGOQHHjh0TOwqnZiASZ4vlzz33nPRcGDZsWNz9ySmSEytUbQ8bNkw+WxMnTpSvQ4cOdewbQ6E8ANztJk4Uy69cuWJoRjlFchIvChcuLJNgLryJ78Z2vJoUE/dhtFiOxb12/cZLKKdITqyQoUbcBXuAETuL5QULFlTFixeXCrCkQM+RHTt2SCx/8MEHY3pdiuQknvH6woUL6uTJk0Efg89X27ZtHZtJrkGhPADc7SZOFMsRZI0SyimSk3iSOnVq8fvjwpsAVoARJ9mwaH1EjBTKKZKTeEKhnGhg/IR9BXoyEOKUBp+hsskrVKigMmfOHPXzUCQn8YRV2/9CoTwA3O0mThTLly9fLl/D7dQdLhTJiRlw4U00KJQTJ4jlffr0Uc2aNfP2XjBKKKdITsyI10eOHBHLDeJuMHZCJA8nI5cQK4rls2bNUi+//LLau3ev4bYrFMlJvGHV9r9QKA8Ad7uJE8Xy06dPe7Nx9YIiOTFz4b17926+AS7n4sWLUgVGv1Nid7F8xowZavbs2VKubZRQTpGcmIE2Pu/Zs4dvgENZu3atmjRpknwNBTe2id3F8g8++EC98847at26dSHXx7EK5RTJiRmkSpVKLIZ2c41NoTwQBw4cUHny5OFuN3GUWI5mSiBv3ry6PB9FcmImyEg6ePAg3wSXo10DmNQRYmexfODAgWrUqFEqS5YshgjlFMmJWWg2G4zZzmTAgAGqcuXKql27dvIV34daYzNeEzuL5U2aNFFdunQJeR1v2bJFqsPQaB6fiUihSE7MhGvsf2BGeQCQnZY7d+5APyLEtmJ5mjRp5GvOnDljfi6K5MRscuXKJWXcyCgm7o7XgDGb2F0s7969u+rRo4fKlCmT7kI5RXJiJtmyZRNfam28Js4BGeTDhw9PcB++D5ZZzjU2sbtY/sILL6ixY8eqKlWqBH3M4sWL5WutWrVUihQpInp+iuTECmvsY4zXFMqDLShwgRDiJLH8ypUrujTzpEhOrIA2RmO8Ju5Fe/8Zs4lTMstv3bqlq1BOkZyYDa7lHDlycOHtQII1VQ90//Xr18UGkvGaOL3BZ7S2KxTJiRXAGP1frq8plAeCu93EaWI5GniePXtW/p8hQ4aon4ciObEKWgYxd7zdDd5/ZODq2XuBEDPEcohIsCU4dOiQbkI5RXJipZjNhbfzCNYfJND9x48fl6+sACN2F8s9Ho86ceKEd2PbPzFt1apVEQvlFMmJVcAYfezYMbnO3QytVwKAC4O73cRJYjkyODRBMdqMcorkxEpoYzSFcnfDeE2cIpZPnz5dfCFHjhypi1BOkZxYCZZyOxOIjv37909wHzzKcb8/2nyNa2xiZ7Ec4mG+fPnEynT//v2Jfr5y5UrZ+M6fP7+3P1hSUCQnVgJj9JUrV1xvb0qh3A+WhREniuXY8dYW3RkzZoz49ymSE6uByoh06dJRKHc5FMqJU8Ry/ybyWMRHC0VyYjUolDuXYcOGieA4ceJE+Tp06NCAj6NQTpwgluN3smbNKl8DCeWaPzmyycOJ4xTJidVgMto/UCgPUhbG3W7iJLE8b968MimIJqOcIjmxKvRQI+wpQpwiltesWVNdvXpVDR48WL5H88NooEhO7CyUownkpEmTgjaDJNYEomPbtm0DZpJr4P3HWgQiIyF2Fsvnzp0rGbd169aNyZ+cIjmxIuwD9g8Uyv3QJnH0TyNOEstRKYFbpEI5RXJiBw814l7YU4Q4RSxH1RcW7LE086RITqwcr4N5+vpadlSuXFm1a9dOvuJ74qx4DbsKvRoVE2KWWA7rlUC9cRCDt2/fLs9Xu3btkM9BkZxYFWaU/wMjlR8sCyNOFMsvXrzo/X/69OnD+h2K5MTqMKPc3cAnktYrxGmZ5dEK5RTJidXjNeaVJ0+eDPhzZJAPHz48wX34npnlzoHxmji5wadvNnmFChVU5syZgz6OIjmxur1p+vTpXd+Am0K5H2fPnpWvoQY3Quwmli9fvtw7GdAsWEJBkZzYgSxZsqhz586ZfRjEJK5duyaLDVwHhDhBLB8yZIj4/UYqlFMkJ1ZHG6eDxWx8TiK5n9hzjc14TZwgll+4cEG98cYb6umnn5akjUhsVyiSEzuQhWtsCuWBMm/TpEkTlphIiF3E8n379oW98KZITuy04+1bLUHchfbe4zogxAli+bJly9S6desiEsopkhM7oI3TwWJ20aJFI7qf2A+894zXxAlieYoUKdSgQYPUV1995a2Swfo5KaGcIjmxCxm4xqZQ7s+lS5cYxInjxPJChQrJ16Qa6FAkJ3YL4hiziTvR3vtw7aQIsbpY3rVrV/XUU0+FLZRTJCd2QRung8VsCFT9+/dPcB88ykM1hyT2E8oZr4kTxHIkVfbr10+NGDFCRHOwdetWEc1xjaPHgj8UyYmdSJ8+vevX2Eyb9oNBnNhJLAcQy7EIz5gxY9DHpk2bNkFzhkBQJCd2DOLMKHcvzCgndhPLEa9BkSJFAj6uefPmsphGllpSQjlFcuKkjHIA26GmTZvKphIyySmSOwsmoxE7ieXojwCxHKJ3IKcBzSbtxo0b8nXp0qXytWbNmiplypQJHkuRnNiNDMwoZ0a5PwzixImZ5drC5I477gj4c4rkxK5BHJNPrfkdcRfMKCdOzCzXxjNktAWDIjlxWka5BgSqtm3bUiR3IExGI05u8AnrtEC2KxTJiR1Jz4xyCuX+0D+NOFEsP3jwoHzVysN8oUhO7J6hRvsVd8KMcuI0sRyZacePH5f/B8sop0hO7EiqVKlEfGIVmHvhGps4TSxHc+Lff/9dmsuvXr06kVBOkZzYlQzMKKdQ7g93u4kTxfIffvhBvh4+fDjB/RTJiRMy1LjwdicUyonTxPLNmzergQMHBhXKKZITuwKxiQtvd8OqbeIksRzfZ86cWTVq1MgrlufLl8/bgJgiObEzGSiUUyj3h0GcOFEs93g88tXXx5wiObE7zCh3N7ReIU4Ty/PkyeP1QvW3XqFITuwOS7ndy/Xr1+XGZp7EKWK5Jojj/g0bNnizyfE9RXJid9LTeiUyoXzIkCGqYsWKIk5kz55dNWnSRO3evdv78wMHDsjgEOj2zTffeB936NAh9cgjj0iDQTwPugb7l7O8+eabKm/evKpq1aqykIgXzCgnThTLy5YtK1+rV68uXymSE7c0BzMavHbv3r1VgQIFVJo0aUT8Wr9+fYJNqtdee00a6eLnderUUXv27EnwHGvWrFH33nuvKliwoPryyy91OS63xGs0TApkKUWIHcVyjBPvv/++/D958uTex1IkJ07AChlqjNnmxGztfadQTpwiliObHNc14vf27du9QjlFcuIEMjBeRyaUr1ixQnXv3l0GiCVLloiXIgaEy5cvy89RbnLs2LEENwRjBMWHH37Y26QIi27sKkPM++qrr9SECRNESND4+eef1fz589X333+vnnjiCdWjRw8VL3BcqVOnjtvrERIPsfzChQveZp4UyYmTPE+1cdssOnXqJPFw0qRJatu2bRITIYYfPXpUfj58+HD10UcfqbFjx6q1a9eqdOnSqXr16qmrV696n6Njx47q1VdfVVOmTBGB298iKRoYrwmxn1iORThitK9QTpGcOAXEbDPjNWDMNmeNrb3vXGMTJ4nl0Ligd6EXGO5HPIeOlSVLFkmACdWUmxArk4rxWrLdoubkyZPwc/CsWLEi6GPuvfdeT4cOHbzfL1iwwJMsWTLP8ePHvfeNGTPGc8cdd3iuXbsm38+dO9fz6KOPeq5fv+759ddfPRUrVvTECxxv9+7d4/Z6hBjFrl275PN2/vx5z2OPPSaf1Q8//NCzfv16z7JlyzxXr17lySe2Zvfu3XJdr1y50pTXv3Lliid58uSeefPmJbi/XLlynpdfftnzv//9z5MzZ07PiBEjvD/D5zFVqlSeqVOneu/Lnz+/Z9++fZ5Lly55KlSo4NmxY4fux+rEeD18+HDPnXfeGbfXI8Qozp0755k/f75nz549nvfee08+qzVq1PAcPHhQPmPHjh3jySe2p3z58p6uXbuGfAziyMSJE+Wr3jBmmxezjxw5IuMa5hWE2JkbN254Vq9e7Vm1apX8/8svv5Rru2zZsp4lS5Z4Nm3aJPN/QuzMe++958mQIYOr43VEGeX+aNmqKD0JxMaNG6UxEbLlfEvMS5UqpXLkyOG9D9l1yHjdsWOH93tk26HUu379+pJhFy+QyROogRIhds4sx2cRIOMVn7UHHnjAm41LiF3RxmotAzPeIJsEVVL+GVKwWFm9erXav3+/On78uGSYa6BPADJSEAs1UFFVvHhx+VnlypVViRIldD9WxmtC7JFZjgoVcPr0abV161ZVoUIFlTNnTrMPkRBdYnaoeD1gwACJge3atZOv+F5PGLPNW2Nr7zvX2MRJmeXjxo1TgwYNkvuLFSvGTHLiGJIxXqt/OgZFGfDgywrBrWTJkgEfA69VLP4x+deAaOArkgPte/wMwG900aJF6uTJk7J4gAepP7B9MQLNe9Wo5ycknkAox2cVnyUAmyQEdwx+vMaJ3YFIDdBp3ojrGdYHoRZ18G+rUqWKGjx4sMQ6xLKpU6eKCF6kSBFvTAsU87SfAWwmt2rVSkqTM2XKpPvfYXa8xvtkxGYG3nOOZcQpwJapUqVK0j9Aa1aLzytKuBmviROAsIRrOdD1jGZ4o0aNko1mDXyP/hrYLArnubVGuMFgzE46ZqOvin8fEj3APA1gLsDxjDiB8uXLSzIabFdAtWrV1D333GPI54eQeOPxeIKO17HGa4B4HcqayArxOmqhHF7laFyArLlAoJEB/FbhuxotaBwWDM0jXW/QlAFZgAsWLND9uQkxcwGODJLcuXOrpUuX8o0gjuDEiRPyFV6BiDl6U65cOem9EQp4k3fo0EHlyZNHhHX8TuvWrb1VHJF8RnEzArPjNarFEFf1ZteuXTIPYLwmTgJN9nBtY7K/ZcsWuRHiBFDZhAbRwcZsLIL9gaAbzhiPGIRFdVIwZv97voKJI0bEVG2+tm7dOtN96gnRC63fEDagsmXLphYuXMiTSxzBzp07ZdPHiHgN0L8yUHKVleJ1VEI5Gn/MmzdPrVy5Uib0gZg5c6a6cuWKlM/5gvJRBMlAwTOS0tK6desqI3j55ZdVwYIFVYMGDQx5fkLiCXYCscjGbhp212B7hC73aOpJiN3Zu3evfMXiuGbNmro/v9ZMLxSFCxeWxpmo1oCtUa5cuVTLli2lmkOLaYhxuF8D36PJTzywQrxGhg2yAfQG4v8PP/zAeE0cA+I0rBFKly4t2TTImilatKjZh0WILrz99tuqQIECAcdsZKjVrl070f3Lli0LO6M8HBizkz6PRqyBsUECKlasaNganpB4i+SomHzllVfUkSNHVNasWaVqO6nKFkLswL59+2QDyIh4DcL5nJgdryP6JGOXuWfPnurbb79Vy5cvV4UKFQr6WJRxN27cWHbXfIGggYkSdhy03Wxkh0O4i8SXFW+cEWjCiFHPT0i8RXKUbyNTFIPX3XffLcIX7BXgh0yIndHGa+xImz1ma7vV586dE/F2+PDhEiMRyPHZ04I2Av3atWtVt27dDD0eK8VrvE/hbDpECt5zjHNmv/eE6MF///tfidlt2rQRuxVk5cCGBf1EIJgTYncQl7A4DjRmI94gZiF2asCjPJws8WhgzA4ulBsRU7W+SLBLY8wmdgeVmJjLY27dsGFDySTHPBeZruivQLGc2J3bbrst6Hjtlnh9e6Tl2yjP/v777yXTRfN/geDm61Hz559/SvZaoNT7hx56SBbYbdu2lT8Sz4GdODy3FZoLJmVcT4gdwDW8adMmb+NOzWcZQjkCOTzVKJYTu2OF5lAI2Fj8o3kuYl+/fv2koU/79u1lkgFv8Lfeeks+ewjq2LSCBRJ83IzELfFa86knxO4iOWK21rhTsxZEdppW1UGxnDghZoeK18OGDVNNmzaVpraopMD1rzeM2e5svk6IniL5zz//7G3cqXmSI34jjsMOkmI5sTu3bt1yfbyOSCgfM2aMfPUvcR8/frx6+umnvd+jAzBKvLHI9gciHcrAofRj1wG7A0899ZS3Y7DZcOFNnCaSQ9Dy9fOHoAcolhO7YwWhHJ6rAwcOlLLLzJkzq2bNmkkWtrYD379/fykZ69y5szp//rxYH6GRVurUqQ09LsZrQuwpkvuCjS1saiNeA4rlxMlCOYA4boRArsGYbQ7a+87NbeIkkdzX8glZ5Bi7kNFKsZw4IV7floSlmdPj9W0epMIRLzjBWIhMmDCBZ4U4QiQHWsM7+Expg8vu3bvFf4qZ5cSu4FpH13mUOqLBB3EXo0ePVr169ZLGYOH60xJiB5HcP2ZjAQCxHFm2FMuJXUG1FWwK3n33XbMPhcQZjGGZMmVSM2bMUC1atOD5J44Ryf3jNTLMIZZDYmNmObErgwYNkqSrY8eOKbdiXhqeRUmfPr14OhPiFJE8GMgsRzMELL6xY0eI3dDGaozbxH3gfceCBEI5IU7KJPfnzjvvlE1tWFLALokQu8Zsxmt3or3vXGMTp2WS+6NlluMxyCzXrFkIsROXGK8plPsDL9eLFy+ackESEi+RXINiObEz2liNcZu4D+19Z8wmThbJNSiWE7uDsZrx2p1APEQ5POM1cbJIrkGxnLghXq9du1ZNmjRJvjoRZpQH2PFmECduEMk1KJYTu6KN1cxQcyfMUCNuEck1KJYTuwIbAmaoOZdwBBOILswoJ04XyTUolhM7cymJjPIBAwaItVC7du3kK753GhTK/WAQJ24SyTUolhM7oi240BSauA9mlBM3ieQaFMuJXQUnzFmZUe48whVMmIxG3CKSa1AsJ07MKF+7dq0aPnx4gvvwvdMyyymU+8EgTtwmkmtQLCd2DOIQyZMlYyhzI8woJ24TyTUolhO7wZ4iziQSwYTJaMRNIrkGxXLitIzyP/74I6L77QrVBT/oUU7cKJJrUCwndoJ+p+6GGeXEjSK5BsVyYifYU8SZRCKYcI1N3CaSa1AsJ05aYxctWjSi++0KhXI/uNtN3CqSa1AsJ3ba7WYZt3vR3nt6nhK3ieQaFMuJXdDGacZsZxGJYILsRMZr4jaRXINiOXHKGvu+++5T/fv3T3AfLLdwv5OgUB4giF+7dk1dv37dnHeEEBNFcg2K5cQuu91s5OletPce4yEhbhPJNSiWEzvA5tvOJBLBBKIL4zVxo0iuQbGcOGWNPWzYMPXrr7+qiRMnytehQ4cqp3G72QdgNbJmzSpfT506pfLkyWP24RASd5HcVywHv/zyi7r//vtVxowZ+W4QS3Hy5EnvmE3cR8qUKWXhjXhNiBtFcn+xHPEaFClSxNDXIySaeA0Ys50HBJOmTZuK3QoyyYNlFeK9//PPP+N+fIRYQST3F8vh4w+BEQ1wcR8hVsHj8YS1xsZ17LQscl+YUe5H7ty55euxY8fMeD8IsYRIrsHMcmJlME5rYzZxJ3j/Ga+Jm0VyDWaWEyuDcTpFihQiRBHnAbGkbdu2IUWTXLlyMV4TV4vkGswsJ1bm/Pnz4rDh9jU2hfIAQRxw4U3cLpJrUCwnVgXjtDZmE3fChTexGmaI5BoUy4nV43U8RChiTSC6IEvx5s2bZh8KIaaJ5BoUy4lV0XTQXC5fY1Mo9yN79uwqWbJkFMqJJTBbJNegWE6sWBZGoZxQKCdWwkyRXINiObEijNcE8Vor6SfEzSK5BsVyYkUolP8DhXI/kidPrnLkyCGLHULMxCoiuQbFcmIlzp07x7IwIhlqjNfEClhBJNegWE6s+Plwe3aa29Hef8ZsYjZWEMk1KJYTq6GN0blcHrMplAeAGWrEbKwmkmtQLCdWgbvdBDBeEytgJZFcg2I5sRLMKCe0NyVWwEoiuQbFcmK1eJ0xY0aVNm1a5WYolAeAC29iJlYVyTUolhMrQKGcaPH60qVLciPEDKwokmtQLCdWgUI5ob0pMRsriuQaFMuJVWC8/gcK5QGgUE7MwuoiuQbFcmI2FMoJYIYaMRMri+QaFMuJ2dy4cUOdOnXK9WXcbgf2phDLtfkbIfHEyiK5BsVyYgUolP8DhfIgnqdHjx4N9CNClNtFcg2K5cRsgQplYWnSpOEb4fJ4DRizSbyxg0iuQbGcmMmJEyekiaPb/U4J19jEHOwgkmtQLCdmw54i/0ChPAB33XWX7KRcuXIl0I8JUW4XyTUolhOz2Lt3rypcuDDfAJdToEABWfDs27fP7EMhLsJOIrkGxXJiZrwGjNkEa2zGaxJP7CSSa1AsJ2bCNfY/UCgPQNGiReXrn3/+GejHhOiKXUVyDYrlxAz++OMP71hN3Evq1KlFLMf1QEg8sKNIrkGxnJgBxudkyZKJSErcDeZtjNckXthRJNegWE7MAD2fMM8tyjU2hfJAaBcGAzkxGruL5BoUy0m8oVBONLjwJvHCziK5BsVyYka8LlSokEqZMiVPvstBvD58+DCrtonh2Fkk16BYTuLNnj175GtRCuUUygOBATVz5swUyomhOEUk16BYTuLFxYsXxR6LQZwACuUkHjhBJNegWE7iCTe2iQartkk8cIJIrkGxnMQTLVH47rvvdv2Jp/VKELjwJkbiNJFcg2I5iQfc7Sb+8RpWabdu3eKJIYbgJJFcg2I5iRcUyokGq7aJ0ThJJNegWE7iGa+zZcumMmXK5PqTTqE8CBTKiVE4VSTXoFhOjIa73cQ/Xl+7dk3KuQnRGyeK5BoUy4nR3Lx5UxqDsQKMAFZtEyNxokiuQbGcxANubP8LhfIgUCgnRuB0kVyDYjkxOohnz55dRB5CmKFGjMLJIrkGxXJiJAcPHlQ3btygUE68cI1NjMDJIrkGxXJiNBTK/4VCeYggfubMGXX27NlgDyEkItwikmtQLCdGwSBOfMmfP780iWMDbqInbhDJNSiWE6PQxmVmlBMNCuVEb9wgkmtQLCdG4fF4uMb2gUJ5ELQJ3a5du4I9hJCwcZtIrkGxnBjB7t272WSEeEmePLkqUqSI2rlzJ88K0QU3ieQaFMuJEWAdlSZNGpU3b16eYOJdG+C6gChDSKy4SSTXoFhOjODkyZPq/PnzXGP/PxTKg1CsWDGVIkUK9dtvvwV7CCFh4VaRXINiOdETlHBv27ZNJsOEaJQpU4bxmuiCG0VyDYrlRG/wWSpdurRKloxLTvJvvD537pzY8hASC24UyTUolhMj4jXgGvsfOGsJAsTMUqVKqY0bNwZ7CCFJ4naRXINiOdGLHTt2SOPG8uXL86QSL7geNm/eLI3jCIkWN4vkGhTLiZ5gHcV4TXzRrgeusUksuFkk16BYTvQEYzLmgHfddRdPLIXypAM5gziJForkCaFYTvQAYzIy07jbTfzjNRZNtEsj0UKR/F8olhM9uHTpkozJFMqJL9iEzJ07N9fYJGookv8LxXKi5xq7XLlyrtx0CgQzykOAiR2yFzEYExIJFMkDQ7Gc6BHEYY2VLl06nkzipWzZst7rg5BIoUieGIrlJFZQ5QMfagrlxB8mo5FooUieGIrlRA9YAZYQCuVJBPFbt26prVu3hnoYIQmgSB4aiuUkFhjESSAyZswozWc0fz1CwoUieXAolpNY4zUsB0uUKMETSQIK5WzoSSKBInlwKJaTWDh16pQ6fPgwN7Z9oFAeAniUo6EnM9RIuFAkDw+K5STaRp5btmxhECcBYYYaiRSK5ElDsZxEC9ZPaNyItRQh/vH6zJkz6tChQzwxJCwokicNxXISLVqiESvA/oVCeQiQBVGyZEkK5SQsKJJHBsVyEim///47G3mSoGBy99tvv0klGCFJQZE8fCiWk2hgBRgJBht6kkigSB4+FMtJtPEa1bmFCxfmCfx/KJQnATPUSDhQJI8OiuUk0iCOBiNs5EmCxesrV66o3bt38wSRkFAkjxyK5SQSLl++zEaeJCi5cuWSG6u2SVJQJI8ciuUkUtjIMzEUypOgQoUKavv27dK5nZBAUCSPDYrlJFzWrl2rihcvrtKnT8+TRhKhdWrHdUJIMCiSRw/FchIuGzZskPkx1lGEBALXBuM1CQVF8uihWE7CBb0iMBYzXieEQnkS1KhRQ8q4f/nll6QeSlwIRXJ9oFhOwmHFihUyJhMSCJQMotoA1wkhgaBIHjsUy0k4YBzOlCmT9HsiJBCYz2F9ff36dZ4gkgiK5LFDsZyEw759+9TRo0e5xvaDQnkYAl6OHDnUTz/9lNRDicugSK4vFMtJUgIXLDVq1qzJE0WCgusD8RrZEYT4jyFoVoSMmZw5c/LkxADFcpIUGIerV6+ukiXjUpMEj9cQQ9evX89TRBJAkVw/KJaTcOI1YnXVqlV5snzg7CUJUMaNQL58+fKkHkpcBEVyY6BYToKhZQkzo5yEAvH60KFD6sCBAzxRxAtFcv2hWE6CcfXqVbVmzRpubJOQoALsjjvu4BqbJIAiuf5QLCehgM4J+0pU5pJ/oVAe5sIbu930KSeAIrmxUCwnwYI4/MlR4UNIMKpVqyYb3NzcJhoUyY2DYjkJBLxOr127RqGchCR58uRSdcB4TTQokhsHxXISCFTgYgxmxXZiKJSHAS4c+JT//PPP4TycOBiK5PGBYjnxh0GchAM8cZGlxoU3ARTJjYdiOfEH4y/G4tKlS/PkkCTX2Fhf06ecUCQ3HorlxJ+9e/eKPzmF8sRQKI/Ap5wLb3dDkTy+UCwnvmLXH3/8wSBOwkKzS6NPubuhSB4/KJYTXzD+0p+chAN9ygmgSB4/KJYT/3hNf/LAUCgPA/qUE4rk5kCxnAD6k5NIoE85oUgefyiWE0B/chIJqACDLy6T0dwLRfL4Q7GcaNCfPDgUysOkVq1a4lN+8eLFcH+FOASK5OZCsZygG3eJEiXoT07CApmM2ODGdUPcB0Vy86BYTn799VfxJ8e6iZBwfcoZr90JRXLzoFhONH9yxuvAUCgPkzp16ohP+bJly8L9FeIAKJJbA4rl7g7iixYtUrVr1zb7UIiNxLqKFSvKdUPcBUVy86FY7m4w7mbLlk2VKlXK7EMhNlpjr1q1Sl26dMnsQyFxhCK5+VAsdzfbt28Xf3KusQNDoTxMChcurIoXL67mzJkT7q8Qm0OR3FpQLHcnW7ZsUYcPH1aNGzc2+1CIjWjUqJEINshsJO6AIrl1oFjuXrBOatiwoXieEhIOuF7QzHPx4sU8YS6BIrl1oFju7nidPn169gALAmcxEQChZt68eZJZTpwNRXJrQrHcnUH8jjvukNJcQiKJ17BK0/ztibOhSG49KJa7jz///FPt3LmTG9skIu666y5VsmRJJqO5BIrk1oNiuXvX2PXr11epUqUy+1AsCYXyCDPUTp06pdatW2fcO0JMhyK5taFY7i7mzp0rQTxlypRmHwqxESj7z58/v1w/xNlQJLcuFMvdBcZbLLjr1q1r9qEQG66x58+fz2Q0h0OR3LpQLHcXx48fF02TFdvBoVAeAZUrV1ZZs2bljreDoUhuDyiWu0cA27BhA4M4iRg088TkD9kS8LknzoQiufWhWO4eMN7C6zRdunRmHwqxGYjXp0+flmawxJlQJLc+FMvdA1wyYJHWoEEDsw/FslAoj7Az9yOPPMIMNYdCkdxeUCx3RxDHuPvwww+bfSjEphlqhw4dUtu2bTP7UIgBUCS3DxTLnc+5c+ekISPGXUIipVKlSip79uxMRnMoFMntA8Vy91SAPfDAAypLlixmH4ploVAexY73jh071N69e415R4gpUCS3JxTLnZ+dVrVqVZU5c2azD4XYkBo1aqgMGTJw4e1AKJLbD4rlzmbhwoVim4HGjIRECjIbce1g3kecBUVy+0Gx3NlcuXJFLVmyhBXbSUChPEIeeugh8cql76lzoEhubyiWO5PLly+rpUuXMjuNRA28cuvVq8eFt8OgSG5fKJY7Fwic5cqVU3nz5jX7UIhNQTXCrl271J49e8w+FKITFMntC8Vy57Js2TL5bLICLDQUyiMkffr06sEHH1TffvttpL9KLAhFcmdAsdx5/PDDD+ratWsM4iTmKrD169erI0eO8Ew6AIrk9odiufO4evWqZJSzKRiJBTSBTZ06NdfYDoEiuf2hWO5MvvvuO1W0aFHRT0hwKJRHQcuWLdXKlSvV4cOHo/l1YhEokjsLiuXO4uuvv1Zly5aVQE5ItEC4QWb51KlTeRJtDkVy50Cx3FnMnz9fXbhwQdZHhEQLmsDCfmXKlCk8iTaHIrlzoFjuvI3tmTNnMl6HAYXyKGjatKnseHPhbV8okjsTiuXO4Pz589LIs02bNmYfCrE5GTNmFLEcGy/EvlAkdx4Uy50Dxtfy5curYsWKmX0oxOZg3rdlyxa1fft2sw+FRAlFcudBsdx5G9tPPvmk2YdieSiUR8Edd9whC+/Jkyfr/44Qw6FI7mwoltsf7HTfvHlTtWrVyuxDIQ6AC297Q5HcuVAstz/nzp2ThTcX3UQPHn74YZUpUyZubtsUiuTOhWK5M4B+WaFCBdquhAGF8hgW3tu2bVNbt26N9imICVAkdwcUy+2fnYZeELlz5zb7UIgDqF+/vsqcOTMX3jaEIrnzoVhub7ixTfQkZcqU6vHHHxf7FazZiH2gSO58KJbbm7Nnz6oFCxawYjtMKJRHSb169bjwthkUyd0FxXJ7cujQIbV8+XIGcaL7whsbMFx42weK5O6BYrm9s9Nq166tcuXKZfahEIeA6gTMBX/++WezD4WECUVy90Cx3L5oG9vsJxIeFMpjWHjjIuOOtz2gSO5OKJbbD/R+SJMmjXrsscfMPhTisCowNOBetWqV2YdCwoAiufugWG4/Dh48qFauXMmNbaIrDzzwgCpQoAAtTm0CRXL3QbHcvhvbdevWVTlz5jT7UGwBhfIYF95HjhyRSSKxLhTJ3Q3FcnuBrF/0gEAvCEL04v7771cFCxak/YoNoEjuXiiW2wtubBMjSJYsmWSVf/PNN+ratWs8yRaGIrl7oVhuv41tJAtBvyThQaE8BqpUqaIKFSqkJk2aFMvTEAOhSE4AxXJ7gJ4P6P3AIE705rbbbvMuvK9evcoTbFEokhOK5fbA4/FIdtqjjz6qMmTIYPbhEIeBeI1GsfDTJdaEIjmhWG4f4IKRNm1a1aRJE7MPxTZQKI9x4d2uXTs1Y8YMdfHiRf3eFaILFMmJLxTLrc8XX3yhsmfPLj0gCNEbxOvz58+r2bNn8+RaEIrkRINiufVZu3at2rFjh4yrhOhNiRIlVIUKFdSXX37Jk2tBKJITDYrl9tDEMJY2bdpUpU+f3uzDsQ0UymOkY8eO6sqVK7JLQ6wDRXISCIrl1gXj6MSJE2VMTZEihdmHQxxI0aJFVa1atdSnn35q9qEQPyiSE38ollsbjKOws3rooYfMPhTiULp06SIZ5bAMINaBIjnxh2K5tfnxxx/V3r17VdeuXc0+FFtBoTxG8uXLpxo2bKjGjBkjZYjEfCiSk1BQLLcm06dPVxcuXFDPPPOM2YdCHAwmiegr8vvvv5t9KOT/oUhOgkGx3JrAEmPatGmqc+fOKnny5GYfDnEorVq1Elufzz//3OxDIf8PRXISDIrl1mXs2LGqZMmS0q+JhA+Fcp12vLds2aLWrVunx9ORGKBITsKBYrk1gzgy09D3gRCjgDcf7H2YVW4NKJKTpKBYbj1Q/XXz5k3Vvn17sw+FOBhYBKBnDSwDbty4YfbhuB6K5CQpKJZbj2PHjqnvvvtO9ErYRpPwoVCuA/DTRfnh6NGj9Xg6EiUUyUkkUCy3Dhs2bJCNRpaEEaNJmTKl6tChg/rqq6/UpUuXeMJNhCI5CReK5daaa2O989hjj6mcOXOafTjE4WBeePz4cfXtt9+afSiuhiI5CReK5dYCFTmpUqWSTUcSGRTKdQBlh926dZMyxFOnTunxlCRCKJKTaKBYbg0++eQTlT9/frGxIiQeC2804J48eTJPtklQJCeRQrHcGixbtkz98ccfqkePHmYfCnEBpUqVUtWrV1cff/yx2YfiWiiSk0ihWG4Nrl+/LhXbbdu2lTkUiQwK5TqBBnTJkiWjj5oJUCQnsUCx3FywuTh16lT17LPPysSKEKMpUKCAevTRR2Xhzd4i8YciOYkWiuXmM2rUKFW6dGlVrVo1sw+FuISePXuqVatWic0piS8UyUm0UCw3n9mzZ4v1Cje2o4NCuU5kyZJFPfnkk9LUE759JD5QJCd6QLHcPOA9Cc+0Tp06mXgUxG1g0rhjxw61fPlysw/FVVAkJ7FCsdw89u/fr+bNmyfjJ71OSbzAxnaePHmYVR5nKJKTWKFYbi5ICKpZs6Y08iSRQ6Fc5x3vI0eOqG+++YbXYhygSE70hGJ5/Ll27ZoE8SeeeEI2GwmJF7Vq1VL33HOPeu+993jS4wRFcqIXFMvNYeTIkXLuEbMJiRcpUqQQi1PYpZ04cYInPg5QJCd6QbHcHNauXat+/vln0SdJdFAo15EyZcpIY8+hQ4eynNtgKJITI6BYHl8mTZok4lm/fv3i/MrE7SAbsn///mr+/Plq69atZh+O46FITvSGYnn8bdLQFAyL7nTp0sX51Ynb0ez5sFlDjIUiOdEbiuXxZ8iQIapo0aJSkUOig0K5zgwcOFAW3QsWLND7qcn/Q5GcGAnF8vhw69YtNXz4cPXYY4+pYsWKxelVCfmX1q1bi185NreJcVAkJ0ZBsTx+fPTRR7LB+Nxzz8XxVQn5h0yZMkkj7tGjR6u//vqLp8UgKJITo6BYHj9gLfn999+rAQMGqOTJk8fxlZ0FhXKdQWfuKlWqyC4O0R+K5CQeUCw3nlmzZqk9e/bI5iIhZpVzv/DCC2r69Olq7969fBMMgCI5MRqK5cZz4cIFsUnr3LkzbdKIaTz//PPq6tWrIpYT/aFIToyGYnl8GDZsmMqbN69q06ZNnF7RmVAo1xlkW0D4gScQOnQT/aBITuIJxXLj8Hg8splYp04dVaFCBQNfiZDQdOzYUWXNmlWNGDGCp0pnKJKTeEGx3Fg+/fRTdfnyZdW3b1+DX4mQ4OTOnVu1b99e7Fcg6hL9oEhO4gXFcmM5cOCAmjJliiQCpUyZ0uBXczYUyg3gkUceke6yzCrXD4rkxAwolhvDDz/8oDZv3sxscmI6adKkUb1791bjx49Xx44dM/twHANFchJvKJYbAzJ433//fdWuXTvJUCPETNDT5vTp02rcuHF8I3SCIjmJNxTLjePdd9+V+VCnTp0MfBV3QKHciJOaLJl68cUX1cKFC9Vvv/1mxEu4CorkxEwoluvPO++8oypVqqRq1aplwLMTEnmTsNSpU6sPPviAp04HKJITs6BYrj8TJkxQJ06ckObHhJhN4cKFVcuWLaXHzY0bN8w+HNtDkZyYBcVy/UGs/vLLL1WvXr3YdFsHKJQbBIJ4oUKF2CQsRiiSEytAsVw/NFsqWFTBqooQs8mYMaOI5WPGjFHnzp0z+3BsDUVyYjYUy/Xj5s2bIkg2b95cFS1aVMdnJiR6kIx26NAhNXXqVJ7GGKBITsyGYrm+fPjhh3JOe/ToofMzuxMK5QaBixTZF9988410niWRQ5GcWAmK5frw5ptvqhIlSqjGjRvr9IyExA7sVyAKMas8eiiSE6tAsVwfJk+erPbv3y/CJCFWoXTp0qphw4bq7bfflrhNIociObEKFMv1AZZUaLrdtWtXlSlTJp2e1d1QKDeQDh06qIIFC6qXXnrJyJdxJBTJiRWhWB4by5YtU0uWLFGDBw8WiypCrEKOHDnUc889J168KF0kkUGRnFgNiuWxe5O/9tprqlmzZqpcuXI6vSuE6MOgQYPUH3/8Qa/yKKBITqwGxXJ9bE3BgAEDdHg2AqhUGAg6zUIQmjNnjtgNkPCgSE6sDMXy6PB4PJKVdt9996nHHntM53eFkNjB9ZkiRQqJ2yR8KJITq0KxPHpGjx4tn21k7RJiNcqWLatat24tVYpXrlwx+3BsA0VyYlUolkfPwYMH1SeffCLNjrNmzarju+JuKJQbDIJ4mTJlZAEOoYiEhiI5sQMUyyNn5syZasOGDdK3gd7kxIqgVBGx+tNPP1V79+41+3BsAUVyYnUolkfOX3/9JQI5KmMx3yHEimBT++TJk2rUqFFmH4otoEhOrA7F8uh4/fXXZQ3z/PPP6/yOuBsK5Uaf4GTJ1JAhQ9Tq1avV/PnzjX45W0ORnNgJiuXhc+PGDfXyyy+r+vXrq5o1axr4rhASGz179lTZs2dXr776Kk9lElAkJ3aBYnlkjBgxQrJ0sfgmxKoULlxYdenSRRIw2Ig7NBTJiV2gWB4Z27dvVxMnTpR1S/r06Q16V9wJhfI4AHGoRo0aauDAgerWrVvxeEnbQZGc2BGK5eExfvx4tWfPHtk0JMTKpE2bVr3xxhtq6tSpavPmzWYfjmWhSE7sBsXy8Dh+/Lg0Ne7Vq5fKkyePwe8KIbEBcQjJGBDLSWAokhO7QbE8fJCIVqhQIfXMM88Y+I64EwrlcQA2Awjg2PGZMmVKPF7SVlAkJ3aGYnlokJUG4fGJJ55Q9957b5zeFUKip3379vK5xuY2SQxFcmJXKJaHZ2eBHktsCEbs0oi7T58+6qOPPlJHjx41+3AsB0VyYlcolicNeiCiF+Jbb70lcZvoC4XyOFG5cmVpYIed72vXrsXrZS0PRXLiBCiWBweLl9OnT7NBIrHV5Bz+vIsWLVI//fST2YdjKSiSE7tDsTw46M3w2WefySYh/E4JsQMvvPCCWA6gsSf5F4rkxO5QLA8Oeh+irxIaG7ds2TKO74p7oFAeR7DwPnLkiJQ0EorkxFlQLE/MsWPH1DvvvCMeknfddZcJ7woh0dG0aVN13333SaYaLdP+gSI5cQoUywPTt29fydBFrwZC7MIdd9yhXnnlFfXll1/SMu3/oUhOnALF8sDMnDlTeiDC1hQ9EYn+8KzGkeLFi6vnnntOMisPHz6s3AwzyYkToViekP79+6tUqVIxy4fY0jJt1KhRasuWLWrs2LHK7VAkJ06DYnlCFixYoL7//nv1/vvvqzRp0pj0rhASHc8++6wqVqyY6tGjh6wx3QxFcuI0KJYn5NKlS5LI8+ijj6p69eqZ9K44HwrlcQZevdj5xsXtViiSEydDsfwfVq5cqSZPniz9GTJnzmzyu0JI5FSsWFF16tRJGuWcPHnStaeQIjlxKhTL/+Hq1auSyPPggw+qFi1amPyuEBI5KVKkUJ988ol49k6aNMm1p5AiOXEqFMv/BZ7ksDUdOXKkie+I86FQHmcgko8YMULKJZYsWaLcBkVy4gbcLpbfuHFDde/eXawr0BiRELsC66DkyZOLD6AboUhOnA7FcqXeffdddfDgQfXxxx9LNQ0hdqRmzZqqVatWql+/fur8+fPKbVAkJ06HYrlSu3btksov9BIpWLCg2W+Jo6FQbgJPPvmkqlatmngAXr9+XbkFiuTETbhZLEdWz44dO+QrfdOIncmaNauI5ePHj1dr1qxRboIiOXELbhbLDxw4ID2Unn/+ebGIJMTumz4QjF977TXlJiiSE7fgZrEcDTyhH+bLl0/sTYmxUCg3AXywISBhMu6Wxp4UyYkbcaNYjgaer7/+uuratasqX7682YdDSMzAfgXXMjxQ3dLYkyI5cRtuFcshkMMe7dVXXzX7UAiJmTx58sgcFOvszZs3u+KMUiQnbsOtYvmsWbPU0qVL1UcffaRSp05t9uE4HgrlJlGqVCnZERo0aJDjG3tSJCduxm1iOXa44RUJ/zRCnACsV0aPHu2axp4UyYlbcZtYvnDhQvXdd99JGXeGDBnMPhxCdKFXr16uaexJkZy4FbeJ5WjgiY3txo0bq0ceecTsw3EFFMpNbuyJiSkueqdCkZwQ94jlWgPPYcOGsYEncRSVKlVSHTt2VK+88oo6ceKEcioUyYnbcYtYDoFNa+D5+OOPm304hOgGkjXgt4/Gnl999ZVjzyxFcuJ23CSWs4Fn/KFQbiIZM2YU6xWUUeDmNCiSE+IesfzKlSsiJEJgYANP4kSGDBkiC/Bu3bqJT6DToEhOiHvEcng4Hzp0iA08iSOpVauW9ATr06ePxDanQZGcEPeI5evXr5f+C0jWKVSokNmH4xoolJsMunM3adJEFt6nTp1SToEiOSHuEstfeukldeTIEWl6yAaexKmNPWHB8u2336pp06YpJ0GRnBD3iOVoTPzee++J/SMbeBKn8uGHH6pUqVKpLl26OGpzmyI5Ie4Ry69evaqefvppVaZMGTbwjDMUyk0GH+gxY8ZIgzB4qTkBiuSEuEssX7VqlTQWeeedd1TRokXNPhxCDKN58+ZiU4B4ffz4cUecaYrkhLhHLIfIhkV3xYoVVd++fc0+HEIMI0uWLOrTTz9V8+bNU5MmTXLEmaZIToi7xPI33/y/9u4EzOby///4HZJddpVQZMtStKhI9uxrlK8l2WmxZI1WkiWJyDdC9jV71siWkCI7ZYukRYsltJz/9Xp/f2f+YxrDMHO2z/NxXecaM3PMnNnO/blf9/t+36+4/fv3u/Hjx9uuVgQOQXkIyJ49u219nDFjhps1a5YLZ4TkgLfC8jNnzlirFYUJ6ncKRDqN1zrgMxJasBCSA94Ky/v06eMOHz5sk24FC0Akq1WrlrVg0QGf4d6ChZAc8FZYvmnTJjdw4ED30ksvuSJFigT74XgOQXkItWCpU6eOa9++fdi2YCEkB7wXlqvliiYfarmi8BCIdFmyZLGdYHPnznVTp0514YqQHPBWWK7rjSFDhtByBZ6iHY8pUqRwrVu3DtvFbUJywFthub/lyt133+26d+8e7IfjSQTlIdaCRWFzhw4dXLghJAe8F5avWbMmquXKHXfcEeyHAwRMvXr1XMOGDd0zzzwTli1YCMkBb4XlCtq0++u+++6j5Qo8JWPGjNaCZdGiRW7ChAku3BCSA94Ly19++WX3zTffsPsriAjKQ0i2bNlsS/fMmTPtFi4IyQHvheX+liulSpWi5Qo8SeO1Lsbbtm0bVlVqhOSA98Ly3r17R7VcYfcXvKZmzZqucePG1oLl2LFjLlwQkgPeC8s3btzoBg0aZC1XChcuHOyH41kE5SFGFWqqVNPE+9tvv3WhjpAc8GZY3rFjR3f8+HFruZIkCUMJIo8uVHUAmF7GJnPmzG7UqFFu3rx5bsyYMS4cEJID3gvLV6xY4d566y332muvuQIFCgT74QBB8fbbb7tUqVK5pk2bur///jvkfwqE5ID3wvJTp07Zol7x4sVdt27dgv1wPI10I8ToD/m9995zqVOndk888URI/0ETkgPeDMunTJliweCIESNc3rx5g/1wgASnfoAlS5a0CbVeXqo/oM4WUd9THWS7Y8eOkP5JEJID3gvL1RpKk+4KFSrQcgXO6y1YJk2a5FatWuX69+/vQhkhOeC9sFy7U9u0aeNOnDhhZyBx4HZwEZSH6ECuPw79MWvLRSgiJAe8GZbv37/fBvH//Oc/dsgIEGlUQa5T5qPT65eqLB86dKgtGDVo0MBaEoUiQnLAe2G5qmYVkot2x7D7C15Xrlw5a0Ok+bXO2QlFhOSAN8PysWPHWgaoMxUoRAs+gvIQ9dBDD7m+ffvaivfy5ctdKCEkB7wZlp8/f97aQ9100012+LAuOIBIo+ArPm9PmTKlmz59uvX/1eGeoYaQHPBmWP7GG2+4lStXusmTJ9s5SACce/HFF+18He3c/umnn0LqW0JIDngzLN+5c6fNIVq2bGnPTQg+gvIQpr5EFStWtGoQbZ0MBYTkgHfD8q5du7pdu3a5GTNmuLRp0wb74QCJIl++fPF6uxQqVMhaEalnv7Z2hwpCcsCbYfnatWstEHzhhRdc+fLlg/1wgJAKzNRCUMUf2hmpuW0oICQHvBmWnz171nalau6vsxQQGgjKQ5i2SE6YMMFeqs1BsA8eISQHvBuWz5kzxw0fPtwNGTLE3XXXXcF+OECi0UV0zAN01KNcb49Ls2bNXJMmTeww7ktVnwcSITngzbBcVbKqSNPu1FBt4QgE0y233GJz7EWLFtlBt8FGSA54NyzXOUcHDx60QjQdOIzQQFAe4rRVUlsmg33wCCE54N2w/NChQ+6pp55y9erVc+3atQva4wACZcCAAXYBrYm0XqqFweXoonvkyJE2AVdlyLlz51ywEJID3gzLdRiYqmT1/KOqWQ4DA2JXtWpV9/zzz7sePXpc8gySQCAkB7wblivne//9990777xju1MROgjKw+TgkT59+lhVSDD6lROSA94Ny3UBr9BPIcCYMWPoSw7P0EW0KsQvV0keXZo0aaxf+Z49e9zTTz9toVWgEZID3g3LtainKtkPPvjA5ciRIyiPAQgX/fr1cyVKlLDr3B9++CHgn5+QHPBuWL5jxw7bharOEc2bNw/450fcCMrDhPoMVqpUyQ7S279/f8A+LyE54N2wXCFfq1atbCCfPXu2hQAA4qbWRDqx3l8hEkiE5IB3w/IFCxZYT3IV11SrVi2gnxsIR8mTJ3czZ860HRj169d3Fy5cCNjnJiQHvBuW//zzz65mzZo2vx81ahSFaCGIoDxMJE2a1E2dOtVlzZrV/qgCEZYRkgPeDssHDhxoW8LGjx/vihcvHpDPCUQC9Svv3Lmz69Spk1uxYkVAPichOeDdsHznzp2uUaNGrnbt2u7ll18OyOcEIsGtt95q5/AoKAvUTjBCcsC7Yfmff/7pHnvsMXfq1Ck3b948242K0ENQHmYX3vPnz3fHjx+3i+HEPNyTkBzwdli+cOFC17NnT9e7d2/bkgog/n3OK1SoYH8/iR2WEZID3g3L/ZVpt912m52rkCQJ0zsgPvS3qqrO0aNH21kjiYmQHPB2WK4imrVr19pu7dy5cyfq58LV40oqzOTLl8/6ny5ZssT16tUrUT4HITng7bB8165dthinifcrr7ySKJ8D8MKF97Rp01yWLFnsb+n3339PlM9DSA54NyxXZZoW4/T8omIaKtOAq6ND6zt27Oiee+45t3LlykT5NhKSA94Oy9WaccSIEXZ7+OGHE+VzIGEQlIehypUru8GDB1tbhEmTJiXoxyYkB7wdlp88edJCvVy5crmJEydSmQYkwE4whdmJsROMkBzwdljepUsXt2bNGjdr1iwq04BrNGjQIFeuXDlri/DNN98k6PeTkBzwdliusVrtnTp06OBat26doB8bCY+gPExpxfvJJ590LVu2dJs2bUqQj0lIDng7LNcFgSrTfv31Vwv30qZNmyAfF/D636p2gi1evNhaGSUUQnLA22G52kQMHz7cDg0uU6ZMgn1cwMtBmcbrTJkyJehOMEJywNth+aFDh1y9evWsivytt96K874bN260YjW9RPAQlIcp/fGql5oO2NNAfuDAgWv6eITkgLfDch1e1K5dO/fJJ5+4mTNnWq9TAAm3E0yVam+88YYbM2bMNX88QnLA22H5smXLXPv27W3cbtOmTYI8RgDOZciQwYpFjh49apXlFy5cuKZvCyE54O2wXLu1q1Wr5tKlS+dmzJjhrr/++kvet3v37q5kyZKuadOm9lKvIzgIysPYDTfc4ObOnWt/dJUqVXInTpy4qo9DSA6Er4QKy1988UUL8MaOHevKli2boI8RwP8O79F2S4VaOuX+ahGSA94Oyzdv3uzq1q3rHn30UTds2LAEfYwAnCtQoICbM2eOFY+od7nmyleDkBzwdlh+9uxZV6NGDcvpPvroI9utcimqIFdr5ej0OpXlwUFQHuayZs3qli5d6s6cOeOqVq3qTp06Fa//T0gOhL9rDcu1bbtv3742GGsFG0DC08X222+/bQHX448/bifexxchOeDtsFz/T9f7RYsWtRYRmswDSHjqVa6zwKZMmeKef/5523kZH4TkgLfDct2/YcOGbuvWrRaSa75+ufE9Pm9H4iIojwBqkbBkyRK74K5Tp447f/78Ff0/QnIgclxtWK4tYM8++6zr3LmzTQQAJJ6kSZPaxPuBBx6wtmnbt2+/4v9LSA54OyzXc4B2kGbJksUtXLjQpUqVKlEfJ+B1ar2iYhL1FB48ePAV/z9CcsDbYbkW1nRgpzK62bNnu/vuu++y/ydfvnzxejsSF0F5hChWrJj1U1u3bp1r1qzZZbeIEZIDkSe+YfnHH3/sGjdu7Bo1amT9k3URACDx26ZpS3fu3LmtdcLhw4cv+38IyQFvh+U6ZLtKlSru77//tp2kGTNmDMjjBLxOZwH06dPHdevWzX3wwQeXvT8hORBZriYsf+GFF9y4cePspmv9K6HPoeeZ6NSjXG9H4BGURxCdeK/tYaoQ7dix4yW3iBGSA5HrSsPyL774wnagaGup+pInScJwAARK+vTp3eLFiy0010GfP/300yXvS0gOeDssP3funKtVq5b79ttvLSS/9dZbA/o4Aa975ZVXXKtWrVyLFi3cokWLLnk/QnIgMsUnLFebxf79+7s333zTCtLiY8CAAfbxJ0yYYC/feOONBHj0uBokIxFGvU9Hjhzphg8f7l5//fV/vZ+QHIh8lwvLNSFXZZoOK5o1a5ZLnjx5UB4n4GXZs2d3y5YtcydPnnTVqlVzp0+f/td9CMkBb4flmoxr15cO8FRAV6hQoaA8TsDLFI5pfq1D+dSOZcOGDf+6DyE5ENmuJCyfOnWqFax27drV2ppeDX2OJk2aUEkeZATlEaht27a28t27d283ZMiQqLcTkgPecamw/MCBA65s2bIuQ4YMNulOkyZNUB8n4GV58+a1yvLdu3dbWK6Duf0IyQFvh+WahOuA7QULFthuUZ1tACB4IZl2bt97773WSkGLV36E5IA3xBWWqxe5Am6N21SChz+C8gilXmo9e/Z0Xbp0ccOGDSMkBzwoZlh+6NAhC8lTpkzpVq5caQeCAQiuEiVK2GE/aoekarWzZ88SkgMeD8vVi7x58+YWkE+bNs1Vr1492A8R8DxdP+sg3cKFC9vBulu2bCEkBzwmtrB87ty57vHHH3cNGjSgpWmEICiPUPrD7devn3v++efdc88953r06OF+//1399BDD1lPVADeCsvnzZvnHnnkERvcFZLffPPNwX5oAP6PAjJVlm/atMkq1bSt+5577rH2LAC8FZbv2bPHJtuqXp08ebKrV69esB8agP+TNm1aG691fV2xYkU74DNTpkzurrvusvk3AG+F5epFrjFbZ3+pt3jSpEmD/fCQAAjKI5j+cLXt44knnnCDBg1yX331FSE54EEpUqSw07e1NVQr3jly5Aj2QwIQQ6lSpWzCrbBcO8HSpUvH9wjwYAingFxj9cCBA13Dhg2D/ZAAxKDxec6cObYzU8Voam9KSA54Lyw/ceKEtTvWIreu4fU2RAaC8gimQfvLL7+0E7pVVd6pUyc3dOjQYD8sAAF08OBBV6ZMGTuwUweMHD16NNYDPgEEl3qSa8eXQjJt547ZsxxAZNP27WbNmrnp06e7UaNGuYIFC8Z6wCeA4FLhyc6dO93o0aOtsrxChQoX9SwHEPk+/PBDW8yuWbOmnQ+oa/fYDvhEeGLJI0JFP7hTVWrlypWzCbjCcv0BqyULgMj2zTffWE9y/e2r3cqtt97q9u7daz3LtfKdPn36YD9EALEc3KkqtapVq7oqVarYobuqMgUQuXRtrkPAZs6caYva2sb966+/2njtP/gXQPDFPLhz2bJlNlYrLF+6dKkrWbJksB8igESmsVpdG+rXr+8mTpxoO0o2btxoPcv1HEBlefijojzCQ3J/T3J/G5ZevXq5rl272mGfPp8v2A8VQCLZtm2bLZLp4KFPPvnEQvLYDvgEEFohuZQuXdom3Fu3bnXly5d3P/74Iz8mIELpAN+6deu6WbNmWTW5QvLYDvgEEFohuebXKjrReF20aFHrWb58+XJ+TEAEGzNmjB3cqWrySZMmueuvvz7WAz4R3gjKPRCS++kPt2/fvm7AgAH2sk2bNvwRAxFo9erV7uGHH7YDO9esWeNuueWWi95PWA6Ebkjup4BMi1yHDx+2Ra9Dhw4F7XECSBwnT550lSpVch9//LGbP3/+vw7uJCwHQjck99OuryVLltgit9qmTZs2LaiPFUDCU5GpMrRWrVpZjqaDO6NXjscMyzds2GDV5qo0R/ghKPdISO6nP9xu3bq5cePGubFjx7rHHnvMBn4AkdMvrXLlyu7ee+91q1atctmyZYv1foTlQOiG5H7Fixe3ibkqUxSc61BuAJFBZ4ZoUXvPnj3WHk3tG2JDWA6Ebkjulzp1ajdv3jyrNFVLhrfffjsojxVAwvv777/dM888Y10Z1I98xIgRLmnSpP+6nz8sV/tTzcNbt25trVi6d+/OjyXMEJR7KCSP7sknn7TBXFvFFKqpDyKA8KbDv7T4VatWLetrnC5dujjvT1gOhG5I7qfexJqga9FLoZp2iQAIb7t377bFr1OnTrl169bZxDouhOVA6IbkfmrBMH78eGtz2rFjR9ezZ09anQJh7vz587b49e6779pc+8UXX4zzeUCHeiogV7iuYD1FihRu4MCBVJaHGYJyD4bkftoapq2eO3bssK1imrgDCM+tYFrdbteunevQoYMdBHalzwOE5UDohuR+up9aKqnCXG0a5s6dm+iPE0Di0JZstVNSb2OdF1KgQIEr+n+E5UDohuR+SZIksVBs8ODBdj5YixYtaHUKhCnla1WrVrXWaDrAUy1XLkfnily4cMHatEQPy/V2hA+Cco+G5H4PPPCAVbKoolz/1vZPAOFDA7DC8Zdfftn169fPtnrqIj0+CMuB0A3J/bRDZPHixa5GjRrWx/i9995LtMcJIHF89NFHrly5cq5QoUKxniFyOYTlQOiG5NF16dLF+hPrVqdOHTu0F0D4OHHihHvkkUfc559/bl0YdOj2lciXL5+9jBmWa4cowgdBuYdDcj9drKuiJU2aNLYNVFXmAELfb7/95mrWrOn++9//2gncvXr1iveFvB9hORC6IbmfxnkdEta2bVuratGZI7oABxD6O7+GDx9uY3bFihXdsmXLXIYMGa7qYxGWA6Edkvs1btzYLViwwM4gKFOmjDt27FiCP1YACW/btm3WEu348eNu7dq19vd7pfT/dH0ePSzPkSOHXa/rzCGEB4Jyj4fkfrfeeqtVlusAQPUs18W8LuoBhKb9+/fb4SC6kFc/cm3tvFaE5UDohuR+OjzonXfecW+++abdFLxp0QxAaNJEWf1Kn332WbvNnj3bpUyZ8po+JmE5ENohud+jjz5qQdv3339v1wAbN25MsMcKIOFpjFbxqBaz9fdatGjReH+MAQMGWJu1CRMm2O6xRo0a2XOJ3kZYHh4IysNQQofkfnoyUOD23HPP2YW8Lup1cQ8gtCxfvtzdd9999lygAVwX4QmFsBwI3ZDcTxfbnTt3tjFbE3otmmnxDEBo+eGHH1z58uVtsjx27Fg3ZMgQlyxZsgT52ITlQGiH5H46X0TtG26//XarTNXzAYDQonm1zvyqX7++neWnItKcOXNe9cdTZXmTJk3spcZ9vSQsDx8E5WEmsUJyP/0Rq0JNF/MaxHVxr4t8AMGnXR7Dhg1zVapUsWBMIbmC7YRGWA6EbkgenRbJ9Dyg5wYtnmkRDUBo2Lp1q+3U1CLWqlWrXPPmzRP8cxCWA6Edkvtly5bNWrCosrRZs2aua9eutE4DQsSZM2dcgwYN7Myv1157zU2fPt2lTp06QT8HYXl4ISgPI4kdkkeni3ld1OviXhf5utgHEDznz593rVq1sh0fnTp1cgsXLrQJcmIhLAdCOySP/reqrZxaPFNwrgN9aZ0GBH/rtq7VM2fO7DZv3mzbuBMLYTkQ2iG5n+bu77//vhs6dKjtLqlevTqt04AgO3z4sI3XS5YscXPmzHG9e/dOtOcAwvLwQVAeJgIZkvvpol4X97rI1+ecMWNGon9OAP+mg0S0u2PixInugw8+cIMGDbI+xYmNsBwI7ZA8elCmxTO1Y+nYsaNr2bKlTfwBBJYO63rppZds63aNGjWsN7HOAUpshOVAaIfkfvr4KnpZvHixLXKrHcOePXsS9XMCiJ36h6soVGf9bNiwwdWuXTvRv1WE5eGBoDwMBCMk99PFvS7ydVhYw4YNXfv27d25c+cC9vkBr1u2bJlduB84cMCtXr3aNW3aNKCfP3pYrucgAKEVkvtp8UyLaFpMmzJlilWY7927N2CfH/A6HdZXuXJl27bdr18/N3XqVJcqVaqAfX7CciB+NKcNZEgeXaVKldymTZtckiRJ7HpBxTAAAreo3bdvX1e2bFl35513WnFokSJFAvbtJywPfQTlYUKDaKBDcj9d5GvSPWrUKOtdzuQbSHw6EbtXr1426dYhQGp/pL+9YFBYnidPHk7pBq5w4h3okDw6Laapb7kO4y5RogSTbyAAdD5AsWLF3M6dO92KFSts/A5k6BYzLFe7NlowAZcvRlPv8ECH5H533HGHBXSPPfaYjd1PPvmkO336dMAfB+DFRe0XX3zR2qxo/FYHhUDzh+XK2hivQw9BeZiE5HfffXdQQnI/XTy0adPGJt8KATT5njRpUtAeDxDJvv32W/fII4+4gQMHugEDBrhFixa5rFmzBvUx5cuXz2XMmDGojwEIB9qBEayQ3K9o0aI2+Vb7B02+de6IDioCkPCL2i+88IJNuhW2bdu2zZUrVy6o32aF5aqQC0bwB4QTBVSFCxcO6t+KDgwcN26c7QabNWuWtYH46quvgvZ4AC8tar/yyisWWAeLPrdyvuuvvz5ojwGxIygPE6Fysasnls8//9zVrVvXNWnSxD311FNMvoEENH/+fJtsKyxX37Ru3brZYhkAxEeaNGnc+PHj7aYzRlTlvn37dr6JQAIvamtB+/XXX7eew8Fe1AYQnnNsLWprjp08eXKrMn3vvfeoMgUSYVFbeZZ2agd7UTvUnoNwMdIXXNXke8KECTb5nj59uq18M/kGro3aJHTq1MnVqlXLlS5d2n355Ze2fRoArkWzZs3cli1brFrlvvvuY/INJAAdnqtF7SNHjtj5IT169GBRG8A1KVCggB3wqRYs2sn9+OOP2yGDAK7e0aNHrRe5f1F7yZIl1nIJiAtBOa5p8q2Vb20ZUViuNhE6GAFA/PgP/hsxYoR7++233Zw5c2hzAiBBJ99qnaZxW5NvLcgdP36c7zAQTzrUulWrVq5GjRquVKlSVpWmM4QAICGkTJnSvfvuu1aMpkBPrdTUIgJA/Kjvt1oa6ZDOQ4cOsaiNeCEoxzUpWLCgTb6ffvppq6bRZGHPnj18V4ErrCJ/6aWXbIul2qts2rTJPfvss2zBApAok28dyq2FOD3XqIexzhrhACHgynubqp/xtGnT7G9p7ty5LGoDSBQNGjSwMw/y5s3rKlas6Nq2betOnTrFdxu4At99952rWbOm7c6oXr26/S2xqI34IChHgky+Bw8e7NatW+d++eUX24o6aNAgqsuBOKgKTW0QtAVMPdMUXOlvBwASU+3ate0Qo0cffdTOGtHrVJcDcVeRaydGpUqV7GDrHTt22Ov0FQWQmHLnzm0LdNpxqoVtVcZ+/PHHfNOBS1Dxx8SJE60YRJ0P5s2bZ69nzJiR7xnihaAcCUb9lBX+dejQwXXv3t22pFJdDsReRa52RRrMFZC//PLLdngPAARCpkyZ3JQpU9yHH35o/VA1oZg8eTLV5UAMCqkUTunvRe0Q9HquXLn4PgEICO04bd++vZ0Hdtttt7kKFSq4du3aUV0OXKKKXAfjVqtWzYpC9DpwNQjKr0L//v0t5EqbNq2dbq9qrL1790a9/+TJk+6ZZ55x+fPnt2rrnDlzWjuFmIdxqBIl5k3bOaN75ZVXXI4cOSx03rdvnwt1+nrffPNNt3btWvfzzz9bhayqzeldDvz/KvJ+/fq5nj17us2bN7u77747LL41a9assZ6sN998sz1Xact5dAr71Qc5derULkOGDHYhr7ZMMStjYj7nvfHGGxfdZ/To0RZC6PsS8/8D8cV4Hbc6derYRKJy5cqucePG9vr333/PLxo8Ty0O1OpAVeRqfaCQSq+HQxU54zXCEeN13BSSq5r8nXfecRMmTLAFvJUrVwbopwOELhWeaceFWqNpbq0Wg3o9XKrIGbNDE0H5VdDp9qqaVhWWKkv+/PNPu5A+c+ZM1GqWbgqItT1z/PjxdhhHixYt/vWxxo0bZ1ue/TeF7n7r1693ixYtsi0jjRo1sj7g4UI9oBQKagW8W7dutrCwYcOGYD8sICi0SNapUyc7sPOff/6xKvJXX301rKrI9fxWrFgx2/4ZG21H18W7wgS1YVIorufFH3/88aL76euO/pynRUW/I0eO2KHAWjBUO5rmzZsn+teFyMZ4fXmZM2d2U6dOdbNnz7ZxWov8w4YNc3/99VcAfkJA6E249feghV9NtEeOHGnX+hrTwgXjNcIR4/WVVZcrg9C1tp6Typcvb4vctE+DV+3evdt6+KuVYJUqVaz4I3qeFg4Ys0OUD9fshx9+8OlbuXr16kveZ8aMGb7kyZP7/vzzz6i36f/MmTPnkv9nwYIFvlq1avkuXLjg++yzz3z33ntvWP60NmzY4CtevLh9vc2bN/edOHEi2A/Jc/Q7NHfuXHuJwPnnn398EydO9GXLls2XKlUqX//+/X3nz58P+x/B5Z675LfffrP7rVixIuptuXLl8r311luX/D/bt2/33XPPPb7Tp0/7Dhw44MudO3eCPm6A8TpuP/30k69Nmza+6667zle0aFHf2rVr+aUJAsbs4NixY4fvkUcesbGrbt26vkOHDvnCHeM1whXjddz+/vtv3/vvv+/LnDmzL23atL4hQ4YwzwsCxuvgOHXqlK9bt26+ZMmS+fLkyeNbtGiRLxIwZocOKsoTgL+lSlzbO3SfdOnSuWTJkl30dq0Kq5pL7RjGjh17UX9QbYU+d+6cS5UqlR26pS1p4ahkyZJWQavejmrXoGo1VaXSjgWR7KuvvnJlypSxFe6HH37Y+vX36NEjrKrIr6UP+3vvvefSp09vVejRqdWK+iOrtYoO/Y1etaotc0WLFrX/p57Jffv2DcKjRyRjvI6b/jZHjRplY/YNN9zgSpcu7Zo1a+ZOnDgRoJ8QEJw2K88//7y1Czx27JjtAtUOCy/0Ime8RqhivL58dflTTz1l7V811+jSpYsrXry4tXEAIpWyshkzZtiuL+1+1Llf6uBQtWpV5wWM2QEU7KQ+3Gk1t1q1ar6HHnrokvf58ccffTlz5vT16tXrore/+uqrvnXr1vm++OIL3xtvvOG74YYbfG+//fa//r8qsCOhCtX/vWjZsqWtlt11112+9evXB/sheQKr3YHz66+/+p577jlf0qRJffnz5/ctX77cF2kutdqtXTCpU6e2atSbb77Zt2nTpove/+abb/pWrVrl27Ztm+/dd9/13Xjjjb5OnTrFWtV69uzZRP0a4D2M1/H/fo0ePdqXKVMmX7p06ez6JPquOCQexuzA7fqaPHmy76abbvKlTJnS9/rrr/vOnTvniySM1whHjNfxt2XLFl/JkiXtb75Ro0a+Y8eOJcJPBjExXgfOrl27fOXKlbPf8dq1a/sOHjwYcb+QjNmhg6D8GrVt29baCXz77beXbD9w3333+R599NHLbofq06ePL0eOHD4vUCuZEiVK2JNBs2bNfEeOHAn2Q4poDOKJTwGStkCqzYrC4gEDBlzxApf+HiZMmGAvw3kQV8uU/fv3W7ulp556ylqnxNVqSd8vbZmLtGACoYnx+upo4UrfO387lujtlJA4GLMT3+eff+4rU6aMjWf16tXzHT582BeJGK8Rjhivr36BYezYsdaOJU2aNDYXofAkcTFeJ76ff/7Z16VLl6g2Kx999JEvUjFmhw5ar1wDHa65cOFCt2rVKpcjR45Yt3KqZUratGnt9N3rr78+zo93//33u6NHj7rz58+7SKevdePGjbbFWweW3nHHHa5r167u5MmTwX5oQLxoTFNLIbUM0YG9jzzyiLVZ0SG2V9JmpXv37taeqGnTpvZSr4er1KlTu7x589rX8f7771urKb2M63lArVcOHToU0McJ72G8vrZ2LGqdpnYsagVXoUIFOzhpy5YtCfgTAgJj//79rmHDhna4tloKqc3KrFmzXM6cOT31I2C8RqhivL62dizNmzd3+/bts7ZpvXr1cvny5bNrcQ7oRrg5e/astezMkyePZUb+Nis6tNNrGLMDj6D8KoMxDeIKv1euXOluu+22f93n999/d5UqVbKgbP78+S5FihSX/bhbt251GTJksL6gXpA0aVLXpk0b980331g4qIn47bffbr3Y9cQIhDr1AXzooYdcnTp13M033+w2b97spk2bFuvCWWy0WDRw4MCL3qbX9fZI8M8//8S58KfnPF3UZ82aNaCPC97BeJ1wFCx++umn7sMPP7RFfb2uwFHBIxDqjh8/7tq1a+cKFSrk1q9f78aMGeO2b99u5wGB8RrBx3idcJQnvPPOO27Xrl3uwQcfdC1btrSCHmUX0c9DA0LRn3/+aWddqZDyxRdfdI0bN7a8qHfv3leUqXkBc+zER1B+FXQA56RJk9yUKVOsWvz777+32x9//HFRSH7mzBlbwdXr/vv4D7BcsGCBXaRrVezrr7+2kFhPBKrG7Nixow1w2bJlc6NHj7aPo9VhfS69f/HixVGPxb+qliZNGru/DvP46aefot6vSplSpUq5G2+80arCqlevbk80fqrkvO6662ziW7ZsWasW0+F7GzZscIGiQ05feeUVe1x6/Fot1Nf53//+154ogVA8qLNatWp2WKeC4GXLlrkVK1ZYcBQfqviIz9uD6fTp0xZs6yYHDx60fx85csSeo1S18tlnn7nDhw9bpakOGNKhaI899pjdX88pQ4cOddu2bXMHDhxwkydPdp06dbKLHz3fAeE0Xr/++uvumWee8dwPTdcLWhhUwKjvl4LzggULurZt21oQCYTigYAvvPCCXVdOnz7d/na1uKMdYNr1FIkYrxGOGK8TnqrJ9bynQp5bbrnF1a1b14Lz1atXJ8JnA66NFnFmzpzpChcubMWU/l3aw4cPt5wrUjFmhyifRw7rUe/chLrp2xbbbdSoUfZ+9U261H38hw4sXrzYDrNU/zD1My5WrJjvjjvu8KVNm9b32muv+fbt22cvdSBglSpVfO+99569rV27dnaw1pkzZ3y//PKLL0uWLL6ePXv6du/ebYeCVqxY0Ve2bNmor33WrFm+2bNnW9/gL7/80lejRg1fkSJFrIeZ6PHocRUoUMC3cOFC3969e33169e3vuvBOrTrm2++sUNI9Lj0PZk2bZrvr7/+CspjiRT0T0sY+jtq3Lix9erNmzevb/r06VF/S1dDPclje54IxV7lOoQztseqMwb++OMPX506dewAz+TJk9vBaDVr1rzoME8dMnT//ff70qdP70uRIoWvYMGCEXlwGkLLpcbicePGxfl7fbnxWuP9tfztRwr1Ph00aJAvQ4YMdhiirkfU0xzXhjH72ul6fPDgwb6MGTPa72aPHj3sutkLGK8RjhivE9/y5cujzghTvqBrc1wbxuuEyeqWLl3qu+eee+x3U2f7KbfyCsbs0OSJoDyucDsxb/q88aFDhUqVKhX1usJhTcqbNGkS9bbjx4/bx9ZheQrSK1WqdNHH0KGier8C79j8+OOP9v7t27dfFJSPGTMm6j47d+60tyl8DyY9QWoQ12PJly+fPcYrPRwRF2MQv/bfxYYNG/qSJEniy549u+/dd9+97OG8V6pbt24XPW907949QT4uAASKAshevXr5UqVKZdctnTp18h09epQfwFVizL56J0+e9L366qtWVKJik9atW/uOHTvG7yIA/N+BnzNmzLBiNM07lCV88sknFlaC8TrQv4sq6vQv3qigSqExEApovRJi1D8seg9vtUspUqRI1Nv8205++OEHa2Ggg0TVdsV/K1CggL3f315F20ufeOIJ6/2tFie5c+e2t6tdwqU+70033RT1OYLprrvuch999JH1a1ZPSfVX09fx1ltv2TZ5ILGtXbvWVa1a1d199932e6h+f2obojYDlzuc90oNGDDAWpZMmDDBXurQEgAIJ2rv1q9fP2vnppZKY8eOtfNbWrVqRQ9zBIRa/+hQeB3KqfYqjz/+uLVKUhs/nSECAPjfgZ9qi6j+5WpLp1ZzanGhM5fUao4e5khsaq07fvx4d+edd7r69etba0S1MVWbTv0uAqHAE0G5+m6r90+gb/q88RUzfFM/0Ohv0+v+Bv76HDVq1IjqG+y/KRx/+OGH7X56/8mTJ63XuYI+/yGBFy5cuOTnjf45QsF9991nh4/s3LnTlS9f3nXr1s3lypXLvfrqq/a1AQlJF4haoCldurT9HWlRaeLEifZ3pYPAUqZMmeDf8Pvvv9/68+slAISrLFmyuNdee82eN/v27esWLlxoC/g69NN/vgGQkFQYol6mKgTR4V86O0ALNlrY9heHAAAupjMaVEynsVljtQL0mjVrWvGcAvS//vqLbxkS1NmzZ92wYcNcnjx57Pw99dBXOK7Cz4oVK0ZlUEAo8ERQrj+61KlTB/yW2H/sxYsXt/BYEwEdUhT9ps//888/u71799oJwQqYdeDWL7/84sKVqso/+OADqxDSwN6/f38LzLt06WIHCwLXQody6tA/VY/roE5dIM6bN88O7tSBk5F66BcAJDTtYNOitsbmESNG2EFiem7V4ePLly+nYg3XbNOmTXYtqIn23Llz7VB4LdComjySD/0CgISkvELznnXr1rk1a9a4W2+91f3nP/9x+fPnt/H71KlTfMNxTdSlQEUUym06d+7sypQpY4fCa55dsmRJvrsISZ4IyiP5dHBVVGuioEmoqmqWLl1qK3R///23y5Ahg7VuUYWNwuWVK1fak1O405OsTj8+fPiwe/bZZ924ceNsZVKr4EzAEV9Hjx51ffr0se3aqurOnj27rWx/+umn9julCgsAQPylSJHCWlXt27fPTZ482dpjVKpUyRa+VfHLBBzxXdDWDi/tNNQOLO2S1PWgKsh79Ojh0qdPzzcUAK6SdtNqV+2XX37p7r33Xvfcc8+5W265xebbKr4D4kNjtObWWnxRgWODBg1sh7bG8cKFC/PNREgjAQpj6rm4fv16C8U18VQv844dO1qvUIV7uk2bNs1t2bLFnozUN3TQoEEuUmTNmtV6oiro1GKAgnN9H1Q5P3ToUNqy4JLUVmjFihXWo087MvT7osF79+7dbsmSJdYfje1fAJAwtCOnUaNGNvlevXq1XZPoekUTcC36a+cOcCk6G6Rnz5422W7atKkVgqiXribc7du3T5SWaADgVTonTBmCFiEVkuvfaqOmefaHH35oPaaB2Ogcuffff98WWlQtrqxKO72OHTtmOxR0fg0QDq7TiZ7BfhBAQtCvsraNqUpNPc11GKrCT/WufOCBBzwdfOqCRhUCOpgyoQ6hDEc//vijHR7i32WhqkZVOzZr1sxaBQAAAkOL3DpoccyYMXaYmMZpjdcat70efDJm/+97sGjRIjdq1Cg75EtjtEJyLayoJQAAIDDOnTvnZsyYYc/H6il90003uRYtWriWLVvaTm8vY7z+nx07dtg13YQJE2y3YOXKlW0hW9mDMhkg3BCUI2J7Yakli56w1SP1jjvusH5ruqmHu9d4eRDXwSGqPFP/cVWL+097V0CuE969vIACAKEwPs2fP98m4NrpkzZtWlevXj07G0K7e7w4wfLqmK2CB/Ue13g9ffp0W9xWmxWN1zoQNlWqVMF+iADgadu2bbP5tZ6nT58+bf2mNV5r3Naudq/x6ngt3333ne020O+CdgzqfJCnnnrKtWrVispxhD2CckR8iw31ZtcT+OzZs21AV19LDeiadGXJksV5gdcGcbUj0s9dPXFj/twff/xxlzlz5mA/RABADNrpo/FaN527ohZzOodFi9zaCu6VhU2vjdlqoaLxWjf9DqhaUT939TbVzx0AEFo0t5o1a5Y9b3/88ccuefLkrnr16jZea+y64YYbnBd4bbz+/fffbee+rtM011ZrPf/PXS/1ewBEAoJyeLayWJVL2hak8FSHNqZOndpFKi8M4vp5ajVbF2xTp061Q+O8vpMAACKlslitsvRcrl7nOlsiknlhzNbOP/1s9TPWz9q/k0A/47Jly3pyJwEAhCP1n1ZlseZgmoupsly7dzXHLlWqlO3mjVReGK8vXLjgli5daj/fefPmWSse7fjTeK1xW+eGAJGGoBye9NNPP1mvNU3Q1GstRYoUrkKFCq5GjRq2GqoqtkgSqYO4Bm4dDKcFEG3d14Gu2iWgqnFdnOkgEa9UIAJAJNL4tXz5cpugqYrpjz/+sCpjLXBrzC5evHjETcIjcczW4seePXtsrNaY/emnn1oYXqVKFRuv9bP0em96AAh3u3btitohpHmZ2nFobq3neM21I60wLRLHazl58qRbvHixjdkqMFQleZEiRWy81o4vHa4NRDKCcnietnfPnTvXBgIdBqp2Lffcc49NwnUrWrRo2IetkTSIa+DW16KJtn/g1mCtCzD9vMqVKxf2XyMAIPat3gsXLrTnf40Dv/76qy1saxLuf/6PhLA1UsZsfR3r16+36yvddL2ln0+lSpVszK5Vqxat0AAgAmk+rWI0VSDr+X/v3r1WmFa+fHkbryOlMC1Sxmt/GzT/YrYyEbUyVSai8bp27dqWiQBeQVAORPPzzz9ftHqqU5v9IWzFihXdww8/7DJmzBh237NwHsT/+usv28a3atUqt2jRIpt0+wduf0VhsWLFwn4xAwAQv3FNEzn/jiKFsDrsUWO1qpS1LThfvnxhOTaE85h95MgR98knn9g2bf9ihnqOR1/MjoTFDADAldu3b5+N17qtXbs2qjBNgbnGBR3cHI59zcN5vFbxgebV6jGvn4t2felnoMr/SFrMAK4GQTlwBW09VMF28OBBm3BrNVUTcN3CJTgPp0FcwfjWrVttoq2bLqZUNa4ARH1LGbgBAHG19fjss89sQVUBrX+81k3nVoRDcB5OY7Y/GPffdK0kao/jD8cjsT0OAODaCtM0XmtR9bfffrNq8wcffDBqvA6X4Dycxmt/MO4frzdv3mzXStmzZ7fHr/E6EtvjAFeDoBy4QocOHbLg3D+46HVNuFXNrAG9dOnStjKuCvRQm4iH8iB+5swZC8a1PS96MK6KMx0A479g0veWk7QBAJej3WDRJ4Off/75v4JzTcLvvPPOkBsTQ3nM1vdQVYGaXPuvhw4cOGDvi1lEkClTpmA/XABAiNO4sm3btqjxes2aNf8Kzh966CFbcNUhoaEmVMdrOXHihNuyZYvtvtPObF0LqSBNfeNVfOYfs8N19x2QmAjKgQQMzkWHSWowL1GiRNQtZ86cQR2AQmUQ10q2QnEN2v6bqgC1/U7BuC6E/IO2DuIkGAcAXCstvkYPzjX2aHKuajUFvNHHa4XnwR57QmHM1vdHPWWjj9dqg6bFbSEYBwAEKjiXPHnyXDRea76dIUMG5/XxWr7//vuLxmvdjh07Zu9TMB59d13+/PkJxoHLICj3ID1Bakvs0KFD7fXcuXO7jh072g1XT4ORBqUvvvgiaoA6fvy4vS9z5sw2mKv6XKu2/psGrkAE6IEexM+ePeu+/vprqzzTbffu3VGhuLbIK5zQ98J/kRMq4QQAIPJFX7T1j9kap7Roq3FIIfDdd9/tChQoEDVe33bbbQGbBAdyzFYoofYpGqt1kJfCcQXi+v74Q/G8efNeNF6HQjgBAIh8MRdtNWZrjNI4LrfffnvUPNI/XqvNWrp06QLy+AI9x1bbGv/8Wrft27fb9+W7776z96slbPSFBL3U9QsV40D8EJR7UMyg/Mcff7ReVOoBjYSloDz6yu7OnTut8lyTcUmbNq0N5tHD81y5ctn2cN0S6meS0IO4Llr0e6OvTwsE0UNx3b799tuo+2oyrbBBoYN/4C5UqFDIbU8DAHiXQmFVsfnHawXFCo618CtJkya1CXn08Vqv66ArjdeanCbURDQhx2wtTquiXuO1JtLqIR59vNb4rTNZRIsECsWjV9lr7A7F7e4AAG/SPFTjc/TwXMVYajXip77b/tDc/zJHjhw2XqtQLaHmoQk9xz5//ryN17ppPu0fq/X16uXJkyej7qt2rwULFryoyl45AqE4cO0Iyj0oZlCOwNIAqJ6e0Seq/pu2TUWXPn36qNBcN/+EXOFzmjRpLGjXLea/1dct+iB5qUFcfcq0Iq9+rv6XMf+tiw5Nrv2Dtv79ww8/2EWKn9qmxAz8/Tf6lAIAwpFCZo15sY3XGsc1hvopZI5tvFY7tkuN1XqpQoWYB13GNmbrsSi0j22c9v/7p59+ihqr/eO1XsjPnKIAAAr0SURBVP7xxx9RH1vXBtpJGH2c9o/fahOnBQEAAMKNWrT4A+WYN42R0cdBjc0xx2uF66pEj2vMjhmGX2qOrfl+XPNrPdbYxuvoQbhoHh3b/FqL2hQ5AomHoDzEAuwiRYrYJOWDDz6wSVffvn1do0aN3NNPP+1mzZplK6DDhw93VapUsf+zY8cO17VrVzsAUZOtSpUqubfeestaffgrpNq1a+c+/PBDe3J//vnn7YTpuFqvDBkyxI0bN84mgaqQqlGjhhs4cKANEDJ+/Hi77/Tp0+2lVjt16KL+jwYZXD1VfR09evRfg2bMf/u3Q1+Kfoc0WGvy7b9pQq+3q5pdNwXd/iqyuD5O1qxZL7qIuNS/Y070AQCIVJoc+8fr6ONzzNcVXl+O2pFFH69108fXS/+YrUm3wvK4qPI7+vgcc7zWTRVoWkwHAMALNHaqyEtjc1zjtQrWNPbGRfPrZMmSxTlea84dfSE9NhqH4xqr9fott9xiWQyAwEvmPMQfLmr1zV9tq6BQT256wtNEJeZ9VSnrDwB1P91f4WH0SUZs971aCsi7devmNm3aZEG0Qu45c+a4OnXquF69elkI3qRJE+snqcdSrlw517JlS3u7Koa6d+/uGjRo4FauXGkfTyG6DpycN2+eBZ76GNqepKD8UvQ1DBs2zPpZKSxv3769PaaRI0dG3UdVTYMHD3YTJ060+zdu3NhC+MmTJ1/T1+91WsVWWxLd4hJbJXjMFWvdR2G4Bmz97u7atcv6t2mA1++wfm76W4i+Sh7zZczKdAAA8L/Jsq6TdIuLxmBdM8W1e+vcuXNRE2zddH2nnqyFCxeOWvRW8UTMyrbo1W4az6kGBwDgYprLqthQN7UTiytQ1/h7qbFaL3WLOV6r7Yt/jq3xWrmSxufYxmr/2zmXCwhtnqoo9wd+WlHUdhvp16+f6927t4XNo0ePjrqvqrM1sVEvR1VciyqwO3XqZBXe0QNhfSxVDKm6W0+S11JRrmBT1eGif6v1Rt26dd2ECRPsbVrp1Crjhg0b3IoVK+y+S5cujfoYqm5StZAmWFqJ1HadSZMmuccee8zer+086s/VunXrKz7MU5Xsbdu2jaqKUkV58+bNra+lTp8Wheivvvrqv1qHIDSEyoncAAAgbozZAACEPsZrIDJ5qqI8HOgAJT9VBinoVjsWP62E+sN+HTq1atWqqJYo0X3zzTdWYa5Vzvvvvz/q7dq+kz9//jgfgwL4/v372+qoWoGoMlnVTlo48PfC0kt/SC4K7/WYAAAAAAAAACDceCoo11YZiX7wgVqTqJJaW2Si84e+aqfi16FDB9eqVat/bW09dOjQv+57tWJW+6oKPvrb/FXx2uqjr0f9wwcMGPCvj6PgWhXf8aWvpXr16tbyRdX2CtbXrVvnWrRoYaG7/3sX2+P00OYEAAAAAAAAABHEU0G52qnEpP5QsfWIiu2+Codja1sR230DoXjx4m727NnWOiVm0C+q+Nbj3bhxo8uZM6e97ZdffrGTn8uUKRPrx9yyZYuF8G+++WZUv/UZM2Yk8lcCAAAAAAAAAMFzbSdPIqhU4a6e40888YTbvHmztVtRv3L1D1d/c7VkUSW4quZ1uKd6qD/55JNxHjiaN29e67U1fPhwO8hTh3WOGjUqoF8XAAAAAACAV6jAUfmLXgIIHoLyMKbDOtevX2+heKVKlayXudrI3HjjjVFh+KBBg1zp0qWtRUuFChVcqVKlXIkSJS75MYsVK+aGDBli7VwKFy5sh5aqXzkAAAAAAAASVvfu3V3JkiVd06ZN7aVeBxAc1/loLA1EPE7kBgAgPDBmAwDgnfFaFeQKx2P67LPP3P3333+NjxJAfFFRDgAAAAAAAASYzpCLz9sBJC6CcgAAAAAAACDA8uXLF6+3A0hcBOUAAAAAAABAgKm9Srdu3S56m3qU03YFCI5kQfq8AAAAAAAAgKcNGDDA1a1b19qtqJKckBwIHoJyAAAAAAAAIEgUjhOQA8FH6xUAAAAAAAAAgKcRlAMAAAAAAAAAPI2gHAAAAAAAAADgaQTlAAAAAAAAAABPIygHAAAAAAAAAHgaQTkAAAAAAAAAwNMIygEAAAAAAAAAnkZQDgAAAAAAAADwNIJyAAAAAAAAAICnEZQDHpAkSRKXJ08eewkAAEIXYzYAAKGP8RqITNf5fD5fsB8EAAAAAAAAAADBQnkpAAAAAAAAAMDTCMoBAAAAAAAAAJ5GUA4AAAAAAAAA8DSCcgAAAAAAAACApxGUAwAAAAAAAAA8jaAcAAAAAAAAAOBpBOUAAAAAAAAAAE8jKAcAAAAAAAAAeBpBOQAAAAAAAADA0wjKAQAAAAAAAACeRlAOAAAAAAAAAPA0gnIAAAAAAAAAgKcRlANhZM2aNa5GjRru5ptvdtddd52bO3fuRe8/ffq0e/rpp12OHDlcypQpXaFChdyoUaMuus+5c+dchw4dXKZMmVyaNGlcvXr13IkTJy66z/z5812+fPlc/vz53cKFCwPytQEAECkYrwEACA+M2QCiIygHwsiZM2dcsWLF3IgRI2J9f+fOnd2SJUvcpEmT3O7du13Hjh0tOFfw7depUye3YMECN3PmTLd69Wr33Xffubp160a9//z58xakjxw50r3zzjuuXbt27sKFCwH5+gAAiASM1wAAhAfGbADRXefz+XwXvQVAWFBF+Zw5c1zt2rWj3la4cGHXsGFD16dPn6i3lShRwlWpUsX17dvX/fbbby5LlixuypQprn79+vb+PXv2uIIFC7oNGza4kiVLut9//90VLVrUff755/b+e++913311Vcubdq0QfgqAQAIb4zXAACEB8ZsAFSUAxHkwQcftOrxY8eOOa2BrVq1yu3bt89VqlTJ3r9lyxb3559/ugoVKkT9nwIFCricOXNaUC7p0qVzzZs3dzfddJO1eFFFOSE5AACM1wAAeA1zbMBbkgX7AQBIOMOHD3etW7e2HuXJkiVzSZIkcaNHj3YPP/ywvf/77793yZMndzfeeONF/y9btmz2Pr+XXnrJ2rbo/xOSAwCQsBivAQAID4zZgLcQlAMRNoh/9tlnVlWeK1cuO5hE/cZVGR69ivxKpE+fPtEeJwAAXsZ4DQBAeGDMBryFoByIEH/88Yfr1auX9S2vVq2avU29xrdu3eoGDx5sQXn27NntYM5ff/31oqryEydO2PsAAADjNQAAYI4NeBE9yoEIod7juqldSnRJkyZ1//zzT9TBntdff737+OOPo96/d+9ed+TIEffAAw8E/DEDAOA1jNcAAIQHxmzAe6goB8LI6dOn3ddffx31+sGDB61iPGPGjHYgZ5kyZVzXrl1dypQprfXK6tWr3YQJE9yQIUOi2qm0aNHCde7c2f6PDu585plnLCQvWbJkEL8yAAAiB+M1AADhgTEbQHTX+Xw+30VvARCyPvnkE1e2bNl/vb1Zs2Zu/PjxdiBnz5493bJly9zJkyctLNfhnp06dXLXXXed3ffcuXOuS5cuburUqe78+fOucuXKbuTIkbReAQCA8RoAAE9hjg0gOoJyAAAAAAAAAICn0aMcAAAAAAAAAOBpBOUAAAAAAAAAAE8jKAcAAAAAAAAAeBpBOQAAAAAAAADA0wjKAQAAAAAAAACeRlAOAAAAAAAAAPA0gnIAAAAAAAAAgKcRlAMAAAAAAAAAPI2gHAAAAAAAAADgaQTlAAAAAAAAAABPIygHAAAAAAAAAHgaQTkAAAAAAAAAwHnZ/wOQuqSpYeQygQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -491,61 +491,6 @@ "from pycircstat2.distributions import cardioid, cartwright, jonespewsey, vonmises, vonmises_flattopped, wrapnorm, wrapcauchy" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Figure 4.1" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAGACAYAAABfiv/UAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgBVJREFUeJztnQWYE+f3/V/c3Rd3dyvuxbW4S3Eobi3e4lDc3d1pobhrcXd3t+Lk/5z7+0++2bC7ZHeTzExyPs8zRMhm3kkmM2fue+69ISwWi0URQgghhBBCrIT8311CCCGEEEIIoEgmhBBCCCHEDopkQgghhBBC7KBIJoQQQgghxA6KZEIIIYQQQuygSCaEEEIIIcQOimRCCCGEEELsoEgmhBBCCCHEDopkQgghhBBC7KBIJoQQQgghxA6KZEIIIYS4jF27dqnEiRPL/SFDhqjcuXOrKFGiqLhx46oqVaqoixcv6j1EQvyEIpkQQgghLmPt2rWqYsWKVsHctm1bdfDgQbVlyxb16dMn9eOPP6q3b9/qPUxCviGExWKxfPs0IYQQQoj/9O/fXw0YMMDP/ytSpIjauXOn3E+VKpWaMGGCKlOmzDeve/z4sUSUIZ4LFy7s8jETEhhCB+rVhBBCCCFKqa5du6p79+6pM2fOqFWrVslzI0eOVJs2bbI+Pnv2rHr06JEqXry4n+/x8uVLuY0ZM6YbR06IY1AkE0IIISTQRI4cWUWMGFGFDRtWxY8f3/pc6NChraIXVovSpUvLa+z5+vWr6tixoypQoIDKlCmT28dPyPegJ5kQQgghLgEiuVKlSn7+H7zJiEIvWbLE7eMixBEYSSaEEEKI07l//746fvy4Kl++/Df/165dO7Vhwwa1e/dulShRIl3GR8j3oEgmhBBCiFMIESKE9f769etV/vz5ffmNUSugffv2avXq1ZLYlzx5cp1GSsj3oUgmhBBCiFNA/eMHDx6oS5cuqXXr1n1jtYDFYtGiRWLD0F4LokWLpiJEiKDTqAnxG3qSCSGEEOIUkKQH0qZNq7Zt2/aNSJ48ebJUtChatKhKkCCBdVm6dKlOIybEf1gnmRBCCCFOBSXgevfurc6dO6f3UAgJMl5lt0C5GdR0xBSPrW+KEEKcBeIOr1+/Vj4+PipkSE7WEe8EpeCGDRum9zAICRZeFUm+c+eOtX88IYS4ktu3bzNrnxBCTIxXRZIRQdZOXlGjRtV7OIQQD+TVq1dyMa4dbwghhJgTrxLJmsUCApkimRDiSmjpIoQQc0PDHCGEEEIIIXZQJBNCCCGEEGIHRTIhhBBCCCF2UCQTQgghhBBiB0UyIYQQQgghdlAkE0IIIYQQYgdFMiGEEEIIIZ4ikocOHSp1SDt27Kj3UAghhBBCiIdhSpF85MgRNXXqVJUlSxa9h0IIIYQQQjwQ04nkN2/eqHr16qnp06erGDFi6D0cQogHYbFY1LNnz9SlS5fU/v371eHDh/UeEiEe8bvSFkLMhOlEctu2bVX58uVVyZIlv/vaDx8+qFevXvlavIGiRYu61YbSv39/lS1bNpe897Rp01TixIlVyJAh1ZgxY5SeJEuWzC1jWLNmjUqVKpUKFSqUr++xQYMGavDgwdbHOOHgs48XL560Wf/555/V27dvrf+/adMm+V6+fv3q8jGbmT179qimTZuq7Nmzy+cYK1YslTZtWlWgQAHVqVMnvYdHiOn5/PmzWrdundwSYiZMJZKXLFmijh07poYMGeLQ6/G6aNGiWReILeJ8unbtqrZt22Z93LhxY1WlSpVgvy8uatq1a6d69Oih7t69q1q0aKHcwZw5c1T06NH9tPm4YwwtW7ZU1atXV7dv31a///67PHfy5En1999/q19++cX6utGjR4vtaOnSpWr37t3q33//VW3atLH+f5kyZVSYMGHUwoULXT5mM3Pq1Ck1e/ZsdeLECZmpAhDLKVKkUAkTJtR7eIQQQnQitDIJEAwdOnRQW7ZsUeHDh3fob3r16qU6d+7sS3RRKDufyJEjy+Jsbt26pT59+iQzBwkSJFB6EydOHJevAyLt0aNHqnTp0srHx8f6/Pjx41WNGjWsn/OXL18keXXgwIEycwAgmPPlyyfCOkmSJNYLlnHjxkkUmvwfiGb9999/IoQB9q8bN26oQoUKSQQZMwbhwoXTe5iEEEL0xmISVq9eDTOTJVSoUNYFj0OECCH3P3/+/N33ePnypfwNbr/H169fLW/evNFlwbodBa9v0KCBJVKkSJb48eNbRo4caSlSpIilQ4cO1te8f//e0qVLF4uPj48lYsSIljx58lh27Nhh/f/Zs2dbokWLZtm0aZMlXbp08l6lS5e23Lt3z/oavD537tzy93ht/vz5LTdu3JD/69evnyVr1qzW+/iMbRf8bbFixSxt27b1NfZHjx5ZwoQJY9m6des324Ux2b/P9evXLY0aNbJUrlzZ12uxrdhmDdxv3769pVu3bpYYMWJY4sWLJ+Oy5fnz55YWLVpY4saNawkXLpwlY8aMlvXr18tY7der/W3SpEkto0ePtr7HzZs3LZUqVZLPK0qUKJYaNWpYHjx4YP1/7XOZN2+e/G3UqFEttWrVsrx69crP79KvdeM57Nv4zDds2GB97bFjx+T/b926ZX0O+w1eh8/Odox43ZUrV/xcpzfSqlUr+V5svytnEpjjDCHewMePHy1r1qyRW0LMhGkiySVKlFCnT5/29VyTJk1UunTpZDoe/k1ngkiTK6KjjkYTI0WK5NBru3Xrpnbt2qXWrl2r4saNq3799VexpNh6hGFZOHfunNhVEJ1cvXq1TMXj80ydOrV1e0eOHKnmz58v/t/69euLjQJT9Yi8wT7RvHlztXjxYvXx40dJaEIJPnvwN+fPn5eoPaawQcyYMcUvi3GMGjXKGqVbsGCBTGcXL178m/epVauWRP3hPce6cD8wkdy5c+fKLMKhQ4fUgQMHJKIKj2mpUqXEo1u2bFn1+vVrGUPKlCnl88E+lD9/fvEd9+3bV128eFHey6/9AO9RuXJl+T98/viM4JfHuHfu3Gl93dWrV8VjvGHDBvX8+XNVs2ZNiQAPGjTom/fEurFORDNXrlwpj/HZwQ7w8uVLlStXLutrr127JjMqiRIlsj6H7wNeZvyfBiLK8CzDd4vt9HbwPUyZMkU+K/xOsB8QQgghfmEakRwlShSVKVMmX89BSCLJxv55bwFieubMmSL0cBGhiUNb4QTLAsQqbrXpewhZJHXheS0RDLYGiAdNSEHQYiofQPBCpFWoUMH6/+nTp/dzTBCNESJEkKTJ+PHjW5+vVq2avCfEPISi5v2FePVLbOM98N0CiGPb93IElAfs16+f3MeFwIQJE8Q3DZG8detWEd4Q82nSpJHXwH+qAf86xhTQOvFeuMi4fv261cIzb948lTFjRvEu586d2yqmsZ3YfwFsD/hbv0Ry2LBh5UIHQBxr679586YIeO3/tIsafMba+2q8f//ear/QwPeO9/B2cHHXvn17uY8LKApkQgghHiGS3U3EiBGtSTx6rNsREKXEiT9v3rzW5yCuEInUgJCDf1UTgxoQWJoI1dZpG2mEBxjeWO09IWbhk4XIRHQXQjcwPmFEPSEQZ82aJX+LKN6ZM2ck49kV2NfQtt0eJGjhQsL+MwkMENgQx7Ye9wwZMkjCH/5PE8nwt9oKWdtxOMq7d+8k+m57MYHvCwu2xRYk/NnvP7jggKj2dnABCe8xIuvaBSAhhBDikSLZdlrb2UCQOGp5MDIQ+ohCHj169BtLiq2NAFUQ7LfftqYlos6orIAINKop9O7dW5Iof/jhB4fHAssFbCB37tyR94PNImnSpIHaHlhB7GttIgpuj1/bo5VCg2h0FwGNw1Fix44tIhcXRIg2a5FvPAeRbptkBguJbVQcoO6vO5IOjQz2GVh9QM+ePR2+ECWEEOK9mKoEHPENIr8QYfDdasD3ikYIGqj9ikgyopfwq9ougbUw4L1QMQRNFmBxWbRokZ+vg5DDOu3JnDmz+GrRCAZ/i9q0gQVi7/79+76es4+mOhJlhlC3/ZwcGb8tsJug4goWDfiaX7x4IRFlZ6L5y/H+ttuAz2Lv3r2+ZhYQKdWsN5r9As/ju/NmsM/C740L32bNmuk9HEIIISaAItnEIBKMEz6S97Zv3y72BdgiEG3VgKUAHQobNmyoVq1aJR5a+HFRQ/qvv/5yaD34G4hjJMDB27p582Z1+fJlf33JsBgg2Qyi5MmTJ74ivYgmI3ENkb2qVasGepsRfUY9YPh/MQb4jrHdgaFIkSKqcOHC6qeffpJoOLZv48aNEiXXxo8IPLzDGL9fVgVYTiD68dnCOoLPFJ8x3ts2wc4ZQAznyJHDlyDGrAC+E9RFxvdy9uxZ+WwxBlsLyMGDByXSjNJw3syyZcvkFlYfex83IYQQ4hcUySZnxIgRUt+1YsWKItwKFiyocubM6es1sDZAPHXp0kX8yqhUgeQyrZbu98DU9IULF0RUQnSjoQYqOaDphV+gCgbWA7EIgbdv3z7r/9WpU0eFDh1abh2td20LfNF9+vRR3bt3F98v7AXYtsCC6hH4e4wDkV+8nxY9RlWJVq1aSaUKjH/48OHf/D1sE0hCRGt0CG589rA5wIriCiCA7ZuCoG543bp1pcoGRDBmFiZOnOjrNahGAiHv7fYCWC1Q2cK2bjohhBASECFQB055CajSgMoFqNSgNRIg7gV2AIg5iHRER4njyXu48IAIdzQqjCg4/gaR9+TJk7t8jOT/4HGGEN9gNhEdQ8uVK/dNngYhRsbUiXvEXAfJp0+fSsIfkv0okAMHkg1hMYHwDcwFyaRJkyiQCSGEkCBAkUzcAiwXxYoVE7vGihUr9B6OKbGvf/w9YHdxtj/abGCiDD52JC7+9ttvvsoeEkIIIQFBkUzcJvC8yNlDDALqhKNUJCrA+NXAhRBCCPEPJu4RQjwWJOsBlMVzZ31sQggh5ocimRDi8SIZLdUJIYSQwECRTAjxSJDkiDrRoHz58noPhxBCiMmgSCaEeCRoEAMfPDoWJkqUSO/hEEIIMRkUyYQQj0TrKMkoMiGEkKBAkUwI8UjQntvHx4d+ZEIIIUGCItlDy6117NjR+jhZsmRqzJgxTl9P48aNpcW1f+t15bpcBdpvo9kJWmZjml5P+vfvr/sYNLZt26bSp09vbd0Ndu/eLeND1Yg8efKoo0ePWv/v48ePst+h25+eLdvv3Lmj8ubNq9sYCCGEmBeKZC8ALaBbtGjh0GsDI6jHjh2r5syZo5wJusSFCBFCnThxwuXr8ot+/fqpSJEiqYsXL4owdBfY5jVr1vh6rmvXrm4ZA75zrN92sffwdu/eXbolhgoVSh7fvHlTbAw1a9ZU586dU4ULF1alS5dWjx8/lv8PGzasjL9Hjx5KT7TtIYQQQgILRbIXECdOHBUxYkSnvR+iiV+/flXRokVT0aNHV+7AXeu6evWqKliwoEqaNKnu3dkiR47stjEMHDhQ3b9/37ocP37c+n979+6Vz+Wnn36yPjdu3DiVMWNG9euvv0rba0Rt48WLp6ZOnWp9Tb169eRvz549q9wJkvUOHDjgK+pNCCGEBBaK5O/w9u1bf5f37987/Np379459NqgjK9hw4YiqBIkSKBGjRoVYHQYAgLT+EmSJFHhwoUTz+Yvv/xitUsgQtipUydfEThEcCFQ161bpzJkyCB/d+vWLT8tEJ8/f1bt2rUTURs7dmzVp08fX532/IqY4r21KDEEF0AbYbxWa8Vsv64PHz7IuOPGjSvWCAhbRMw10GUNf49ILFoz4yIhf/78EiH2D7welgEIRtzH56S9z4sXL6yvQ5QbzyHqbfv5/PPPP2JJwHdRpkwZEZu2zJo1S4QlPj98V/ictO8HVK1aVd5Xe2xvt8CFCcaGKC/eA/+3adOmb6Lwq1atkhbg2OasWbOKYPweUaJEUfHjx7cuuLDSWLJkiSpVqpR8zhpbt271lRCH9ZYsWVKe14gRI4YqUKCA/L07gcDHd506dWr5zAghhJCgQJH8HSB4/FtsI2sAgs2/15YtW9bXayGE/HpdYOnWrZvatWuXWrt2rdq8ebOIumPHjvn7+pUrV6rRo0dLxO/y5csiWDNnziz/B3EFAWYbVdT477//1LBhw9SMGTMkMoht9Yu5c+eq0KFDq8OHD4tF4s8//5S/cRT8HYDYwvoxJr/A9D+2BevD9qZKlUqm+589e+brdb/99ptcOMAbi3E1bdrU33VjfRCxXbp0kfuwCzgKPp+RI0eq+fPni1cXFxG2fz958mTVtm1bsb2gVTIuODBmoIn72bNny3ptxb4t+DyxLVjPqVOnZHsrVaok36P9NmPdEPNp0qRRderUkYuXoLJnzx650LDl2rVr1vFrQJTieVvgVcbfuxNtn8FFRMiQPMQRQggJGqGD+HfEALx580bNnDlTLViwQNruAojGgGrCQrwhUoioX5gwYSSiDCEDYsaMKZ5TLapoy6dPn9SkSZMkMvm9igIQ4Ygspk2bVgQhHjdv3tyhbdIimLAZ2I/BNnoO0YkIrnbxMX36dLVlyxb5PHDhoDFo0CBVpEgRud+zZ0+JfmIGwDYqqoH1QUjjYsW/dfsHPp8pU6aolClTymNEiXGxofHHH3+I+O7QoYP1udy5c/vaZkSjA1ovxDE8vrVr15bHuGjZsWOHzBJMnDjR+joIZC3KO2DAABH+V65cUenSpfP3vfG+8BxrDB482DrDgNkFzDjYXxTggsP2e4UQt7/Qw9/h790FIsfz5s2T+/BLE0IIIUGFItkBIeofWhKTxqNHj/x9rX1ES5uqDw7wiaKKgG32PoQuxKl/1KhRQ0RVihQpxBJQrlw5VbFiRRGHAYFErCxZsnx3TKgMYZsolS9fPol+wh9q/3kFZ7shSjGVrwHBD7F//vx5X6+1HTMsDtr3hIsDZwJrgyaQtXVp+wNu7927Z72QCQqvXr2S97DdZoDHJ0+edGibAxLJuLCApUUDVhkNWIXsLyqwvUOHDpVotsaiRYu+mTVA5QsIaneBi4bbt2+L3ccd1VAIIYR4LhTJ3wGVDvR+rTNBpBe+XNgZEHlt06aNJF3BsgGh6R8QO86oEoD3sPUoAwheV2G7Tdr4A+NT1S5ubMfs13jtPzvb7cRn506Css0Qxfb2Cdv/e/78ua/ncJGF9dj+DdaF522B/cXW3+xqkFAIYDHxa7aAEEIIcRQa9kwMIpcQKocOHbI+BzFz6dKlAP8Oog3RYwgKeJiR2AVbhBYxDk5VANuxgIMHD4pXVYsiQzDZep3hp7WNNGL9IKAxYLvxun379vkSrvDyIrHQmWgCz3bM9uXpvgfsK/CgB1TODd9jQNscNWpUsS7YbjPAY2dvsz1IokSZN1uQyGfvNcZFF5635cyZM/L37gBeeXi9IdZdVa+bEEKI98BIsomB/7NZs2YyVQ4PL5LpkLQVULISfLwQY7BoYMocfmaIZpQ8AxBzSDyD7xUVFGyn3R0BnufOnTurli1bSkLd+PHjfVXcKF68uJowYYLYMDAOeGFtI5/YBowHVRvgrUY0EFPn9lH41q1by3bDXgLrxPDhw0Vs4/NwJoiUIvqOShPwN+MCxK8KIt8Df9+qVSvZPvioX79+LQK3ffv28v+aiIZ9Ap87KkPYg+1FHWdcJCApDYl+EOwLFy5UrgSWCnjdbYFfGf50eMNh2Vm8eLFYXewTLSGkf//9d+UO/v77b7mtVq1agJYjQgghxBEYSTY5sEoUKlRIIsNIxkMptJw5c/r7eiSHIckNYgzeVdgu1q9fb63Hi2Qz+KUhxIIyTY5ydPCwwh+Mag5IVLNtZAKBCdGJMdetW1eSzGxrOMMbjQg3qm8gclq5cmU/1wM/LKqLNGjQQOXIkUMS01CCzS9xGRwg4CEA0YkPnxeS5ZCEF1gaNWokXnAkPyKRDq2SbatS4HNBJBafjX+RVwhTXIAgARAVSXAhgcgpIvWuBPWOEaW1LZ+HCxOsG98TBCkqjWA8thdVmKF4+fKlql69unIHuIjAPjBkyBC3rI8QQohnE8JibxA1KIhYYdES3iA0+vbt+01pte8lPyEqiRM3pq8JIY4LUPx+bJuFfI9atWpJtBkNR1ydXBuU8omugscZQnwDOxxmejDrFFDuCyFGwzSRZEy9I3qIZg+oeYtpe0QZ3d3NixBvBDYeWHIcTXpE1RVEu9GYxhXAqgO7CmxBiPBr7bAJIYQQr4sk+wX8qLAbOOpDZYSHEGODwxEqYjx9+lT821orcpS5gwf74cOH4nuHF1tL+ESiHmaZ4IM3AjzOEOIbRpKJWTFl4h6iSMuXL5emEkgA8w+0LsZie/IihBgHWCXgiYeXGEIYPm2tPTu6F9avX1/uQxij46B91RD40uHVdlcFDUIIId6DqUQyypRBFKNjGjyIq1evDrD8FRJ40HGMEGI8VqxYIRU/EDW2BxFY2wtc5CCgEgo6EmKBxQIJg85qUEMIIYSY2m4BnyMiSpjGxAkW3b3QBMM/oexXJBnVAzgNSoj+IAkXEWDYplABA5VZIHxRDk+rl21GaLcgxDe0WxCzYqpIMk6cWocvlDlD8whMwfqXcY96s1gIIcYDYhhJuEgI/F5bdEIIIcTdmKa6hV8g0942UkwIMTbwHu/fv9/6GPW4KZAJIYQYEdOcnXr16iU1kdHEAN3KFi1aJC2VcdIlhBgf5BKgEs29e/fUhg0bZOqVEEIIMSqmEcmPHj2Sbm73798Xvx8SdyCQS5UqpffQCCEOMHPmTHX37l2peY4654QQ14NSiThv4uJUW548eSLeeSzwzmv3EYCCfxgVpOwXzPhEiBBBlvDhw1vvI4kenTbRoVW7xYISjghqBaVzKyFGwVSJe8GFCTWE6GeNSpEihbp586aaOHGiatOmjfJUeJwh7gSncAjfS5cuSQlF3GK5evWqPP/ixQtfr48YMaIIV+yj2D+1Wywoq4jEOlSNCRkypNxqy+fPn2U26N27d74WlHGE6EZDHywQ2rZEihRJ8g6w3rx584rFKn369BLoSpAggdQ5J8SoUCQTQlwOZn3KlCkjzUFw4kYEylPhcYa4MiqMeuLHjh2T5fjx4yKItdriELbJkydXadKkETGKWZuECRMqHx8f6wIh7EphCiEN0YzGP7govn79ugj2w4cPyzjxHMQ1QGUbiGUs6NCZO3dulSlTJpZ2JIbBNHYLQoi5rRYAzUE8WSAT4szZF/QG2L17twhMiOILFy7I84j2QkyihGK9evVEFGOBQNa7fCKsGBDnWFCFyr4EHAQwyj+eOnVKFmzjpk2b1Pjx4yUqjgtL9EMoUKCALIg+IxpNiB4wkkwIcSmILMWKFUuiYCj5pp04PRUeZ0hQgJ0BkWHU/ocw3rNnj1glIHohhvG7wW2OHDmkuY6Zyps6UicZUWaUdd23b59UwMGC7Yeo/uGHHyRxH7NR+AwQMSfEHVAkE0JcypkzZ1TJkiUl8ef27dse70HkcYY4yp07d9Rff/0l1V5QrQn+Xsy0IJJapEgRWRBJRXTW25qJIGJ+/vx5uVjYvHmz2rp1q/id48WLp0qXLi2iGe/H3xhxJRTJhBCXgxMeBAGy3T0dHmdIQL8DzKZAFGNB5BiRUtgKIPyKFi2qcuXKpbtlwogd9/AeiC5v3LhRFlg1EE3He9auXVuVL1+etgzidCiSCSHEifA4Q+yFMcTdwoUL1erVqyWhLUaMGBIJrVChgohjJLCZGciIZ8+eSVIuys0hcQ+iFgtsJGj6de7cOZU1a1YRthDKuI0fP75UuMCChMLAcOvWLbV8+XK1dOlSsWmgekbFihVVnTp12P6aOA2KZEKIy0AWO06G3uQh5HGGaDYjCOPFixdLRYfEiROrmjVrqkqVKqn8+fObrtMkBPDRo0cl0U6rt6zVX37w4IH6+PGjn3+nlZDDxQLqLfsnOVBvGWIZFTg04YyZp2zZsokPO6DfEqpnLFu2TAQzqn/gb9G46Oeff5byc4QEFYpkQojLGDRokJowYYLq3bu3atu2rfIGeJzxXiAY58+fL+IYYhIR4ho1akgFClgqzHCxqNVdhiC2XSCEAco4QvDbill7cYs6zLg41uot21e3QHQZibyIqmtiW1tsH+PiAom/IHXq1JK8qC0Qzvid2QORPHXqVLVgwQLxeCPZr2XLlmLHMNuFCdEf7jGEEJexfv16Obly6pN4KhCVqEiBJjmwU2Bfr1y5svrjjz9EoJnBX4x8AXikIWRRbg7iFUDsQpA2bdrUKk4R3Q1O8i1EMz4TLBDcadOm9fe1ENMoe2cr1tetWycCG6RKlUqi8rBZwLYCywYsHZMmTVLDhw9XS5YsUdOmTVNVqlSR8nhdunRRTZo0EWsGIY7ASDIhxCXgRIuoEg4xOAmjqYE3wOOMd4BKC4gaQ5CdPXtWpUuXTjpJNmzY0M8Ip5HAbxJJg7iIhehEDWZEeAsVKqQKFixoFcSodeyMajTOSNzTgGXDVjhv375drC0Q3cWKFRPBjMU2SRjJkiNHjhQPM8pR/vLLLzKzBW84IQFBkUwIcQmzZ8+WCBSmRXEy8xZ4nPFs0Pp5zJgxat68eeK5R9QYggsCzcjlDZE8B0EJUYyoMS5csZ8igRA+aUS9XSUanSmS/QJd/TTBj6g+ItCIKGO7sEDw47uBd3nUqFFybMJFQevWrVWPHj1U7NixnT4m4hkY3yBFCDElOBEDRHUIMTuIFsNbjIjxypUrVadOnaRzHO4XL17csAIZVSUwVniGIVLRIv6nn35S27ZtU48fP5bEQlSEMHNUFVYKRIdRSxmVNWCzQEdC5EOg1XX69OklkoyLVkT+8b117NhRvMto3w1rjNbamxBfWLyIly9fImout4QQ1/H+/XtL5MiR5ff277//WrwJHmc8i2PHjlmqVasm32mSJEkskyZNsrx7985i9N/fvHnzLAUKFJBxx44d29K1a1fL6dOnLV+/fnX7eD5+/GhZs2aN3LqTT58+WbZu3WqpU6eOJWzYsJYwYcJYatSoYdm+fbt8Do8ePbJ07NhR/i9evHiWiRMnun2MxNgwkkwIcTpa9zB4ktFGlhCzcejQIZkFgV0IFRNmzJghVgtM0Ru1Ax6SZPv16yd+XHijMU6URYO1YsSIERJdNWrE2xWgmkWJEiXUokWL1N27d9WwYcPEv4zIP0rLwZ4xePBgdenSJUn8a9eunUSd0QWREECRTAhxOilSpFDdunVTrVq1MkXZK0I0IJjgM/7hhx/UlStXJDkPiWKou2vUShXw5DZu3FjEMWwF1atXl5bOsB+gNjPKsXk78B3DdgLbzJYtW+Szat68uZSzmzNnjlgz0MUPxy40ealatao0LCHeDc9ehBCng5qmKMHUt29fvYdCiEOgYxx8qhkzZlQnTpyQWseIOtavX9+w9XUfPXokXlyUUdu8ebMaMmSIRExRjg7eafItiKSXLFlSEv1wQVS3bl353OBN1hIb0ZgEpfAQVUb02b9GKcTzoUgmhBDitaDywrhx46Tm7syZM9XAgQMlcgzxhAoIRq2gAlsFop6osjFgwACJeqMOMGoPE8fAd47vHmIZ0WNEmiGMtTbamAn77bffxJoB+w3xPiiSCSFOBdn+mzZtYvSFGBpUP0U0ET5diCNYFCA0e/XqpSJEiKCMCMTb2LFjJeqJCCf80ShrhjGzQUbQgfVi1qxZYrdA6bgGDRqowoULi3cZ5SvRpAQdEzEzhosq4j1QJBNCnAbqk7Zv315qrzL5hRgVtDxGGTTU0IVAQmMNdGaLFy+eMqqgR6k2WCg6d+4s40YSIZLx0ByDOAdYbdasWaP27dsnNaQRXcbxDBcmiNzDlgGvOqLMxDugSCaEOA34IiFAkCRTvnx5vYdDyDdiE0laGTJkECGEDmzYZ7NkyaKMyr1790QUw/6BKCd80rCFIOGMuAa0ukZTElzov3jxQroQonEMnkNLbFQ8gXD2ol5sXgtFMiHEaYwfP15u0XTBqJUAiHeCSgWY4WjSpImUdkM0EBYLo5ZEgwBDZQ1EN48cOSIRTizwzBLXg/0CzVdgt0AUGVVDWrRooaZPny5eZSR5YjYCnTWJ50KRTAhxCpiyhhcZJd+QcU+IEfj69auaPHmyiE2U/0J0EMluRrYpYDYGZehQ6xhCDePGY+J+0Ea7T58+6t9//5UL/6JFi6pIkSKpFStWSNdCdPRDdJ94JhTJhBCnRL2QWQ9q164tWfeEGMGqgHJfbdq0kdkNiE2ITiP/jhYsWCCCHiXIVq9eLaXojCzovQVYclDhAsl7KG/Zv39/NXfuXGnYkjdvXmlYQjwPimRCSLBB0tOOHTukKsAff/yh93AIkSgfuj1evHhR7k+ZMkVFjRpVGZXHjx+rKlWqSGWFMmXKiKDHY2KsqDJEMqLKqJ0Nuw5yL/A94SIMSZVfvnzRe5jEG0UyskoxrYFSLHHjxpWdEgc/Qoj+FClSRCVPnlz9/vvvckuIXkCkoNZxqVKlJPoHGxBKeRkZlB7D+W3//v1q1apVEpVk9Ni4IIESkX4IZlQYwQXO0KFDJZmvRo0akuRHPAPTiGRklbZt21YdPHhQWkqiVuGPP/6o3r59q/fQCPHKUm+7d++WzG+A0lTHjh2TSAohegGxAjsFpsKxwCOPoIqRgShGNYUYMWJIkhjaIRPzRJWxjyGyjDrLaG2Nx7gow75IzE8Ii0lrmGAHxMEP4hlFvx3tUoTah8hGNfK0GyF6gcMBBDBOAFrbWzQHwe8N93F7+/ZtdfLkSSmFhCnsli1b6j1sQ8HjjD7s3btX/PAIoCASW6JECWX0hEJYk1A5AdP2KE2HhDBPBN/J33//LRcw2rHFk0ATGpTpgwce3Q8HDx4sv/2NGzdKVz9iXozZkN4BtLIrMWPGDLA7ERbbkxch5H+8fv1arV27Vv3zzz8y5QsLEyJwPXv2tGbZI+nJLzQhSIjeoHoFmj4gIrtkyRLl4+OjjAxmQBs3biwVEmAN6d27t2FL0ZHvAyGMWW7UssZsWo8ePSS4kC9fPpn5RltrYk5MKZJxBY4ahWgTiZaiAfmYcVVHCPn2NzR69GiJeDx79szX/z18+NB6H2ID/v84ceLIzA0WdCWDJy9NmjRS7o0QPffjX3/9VVo0o+zgqFGjJKHKyNy8eVPKuSH6CKsF7RWeASLHCDjgggfao2bNmvIdY0YDQhkNSIj5MKXdAv3qMY2B6bVEiRIFKpKMLkWcBiXeDH4TSC5Zv369NQqCAzraraITWcKECaWsEQkatFu4h48fP6qmTZtKibQ///xTderUSRkdeI7R0AS2CggqI3f6cyaebrewB3afZs2aSRAPF3LXrl0ToZwrVy69h0YCibEvuf2gXbt2asOGDZI0FJBABuHChZOFEPI/cF0cKlQoEcLIxsbBHI8JMQu4AKlWrZoESpYuXSoXeUbnwIEDUtoNHfNwgYrZGeKZwHaROnVquSiIHz++SpkypdTrRgv0PHny6D08EghCmunEDoGM4urbt29nmSlCggjE8fLly6WEEdqsUiATM3Hnzh1VqFAhqaaC6JwZBDISzFGSDjYljJkC2fNBSb+dO3dKsvObN29ENGMfQCUMYh5MI5JR/g2diDCNgVrJDx48kIX1CAkJPPBtZs6cWe9hEBIo0GADyVCIJO/bt8/hykZ6gkYmsFjAzgSbIM5fxDtA50TMekMkP3/+XCLKiC7Dq0zMQUgzZS/jwIi+6QkSJLAumGojhHwf1PBs3ry5+OMIMRvnzp1TxYoVk4pGsC7AP290IJAqVqwoYh4WC08t8Ub8BwnO2A/godfyFUqXLu0rQZoYF9N4kk2YX0iIYUDtY2Rco45n3rx5VYoUKfQeEiEOg8gbPJ2orAK7nRm60aEkGFoWI/INmyBathPvBMdb7Le4WMJMAkpvIqIMOwZnFoyNaSLJhJCgg2leCOTYsWOrBg0a6D0cQhzmxo0b0sEMlUK2bt1qCoEMvzSS9FAfd926dRTIRKoIwXoD2wW6K16+fFmSTxFhJsaFIpkQL2DmzJly26hRI1Z8IaZK0kOdWZQNg8BAJNno3L17V1WoUEGm2f/66y9aLIgVVDbBhR6sFtg/kNCJ5iPEuFAkE+LhIGkEkWSALl+EmAEkZkMgwyqEqWrU7zY6SCRHcxBUjEEEmXWyiT2ojY3qQidOnBD7xcSJE9Xs2bP1HhbxB4pkQjwcRC4wpQdfHLKtCTE6T58+FQ8yvJuIICdNmlSZIW8GibFnzpyRRiGoj0uIX+Dib8yYMbJvQyijQdqRI0f0HhbxA4pkQjwcrbMesuxDhAih93AI+W53tp9++kmmpCEi4OU0AyNGjJDuf4gKsgUxcaSsLS6qUKkFpeHgT2bFC+NBkUyIh4PGOzgIwydJiNHp0KGD2r9/v1SEgIfTDMB73LNnT9W7d29Vq1YtvYdDTAACFijLiWpDjx49Uh8+fFC1a9dWX7580XtoxAaKZEI8HJy4kUmNKT5CjMzUqVOlJj58mgULFlRm4Pz586pOnTqqUqVKasCAAXoPh5iIsGHDqpUrV6qIESOq6NGjSyLfqFGj9B4WsYEimRAviVrQakGMDBoutGvXTrVp00amoc0AynlBHMMzPX/+fBUyJE+pJHDEjRtXkjxRFSVt2rQS1Dh+/LjewyL/H/6iCfFg4HdjHU5idG7evKmqV68u0WMkNJmF9u3bqydPnkiiHptCkKCSNWtWNXfuXHXhwgXpJFyvXj2plEL0hyKZEA+uMZs/f36pLfv27Vu9h0OIn2DfrFKlitQTRmks1EQ2AxDGSNQbN24cO1iSYIOLxIYNG6pnz56pa9euqR49eug9JEKRTIjngmQigOQnNjQgRqVFixbq0qVLIjrREdIsJepatmwpFWPq16+v93CIh4BZFNTWRqL1+PHj1Y4dO/QektdDkUyIh7Jhwwa5xYmcECOydOlStWjRIjVt2jRpsmAWfvnlF7ExIdGQXn/iLNCuGr+Fc+fOqdSpU0v9ZFS9IPpBkUyIB/Lff/9JExHA0m/EqB31kKSHaea6desqs7BmzRoR9rBZwD9KiDMpX768atSokbp37566evWqGjlypN5D8mookgnxQNCE4f3795J1nylTJr2HQ8g33elgVwgdOrSaNGmSaaKxsFm0atVKKloguYoQV9kuokWLphInTqz++OMPEctEHyiSCfFAEO0C7LJHjAjKpaHsFewKceLEUWaqZgGbxZQpU/i7Ii4DNZOnT5+url+/LjWUURoRF5bE/VAkE+JhoGMTBAioWrWq3sMh5JuqK/D0NmjQQKpamIWNGzeqxYsXS0IVbRbE1ZQrV041btxYSsFt2rTJekwn7iWExYsuT169eiVTGC9fvpQMUkI8Efykz5w5o9avX6+6d+8uU9rEffA4E/C+WaZMGXX27Fl1+vRpSVQyy4Vn9uzZVcyYMaXiAKPIgePTp0/q77//FuFnlhJ/RrH3JE+eXI4nOJacOnVKhQoVSu9heRWMJBPiYeAEnjlzZvXrr79SIBNDMXPmTLV582Y1Y8YM0whkgEQ9iPqhQ4dSIBO3EStWLKmXjCRXVLyYN2+e3kPyOhhJJoQQJ8LjjP+fS6pUqSSSbKaTPUpwoV1wjhw51KpVq/QejilhJDl4zXZQNzlcuHAyE4Oa4uHDh9d7WF4DI8mEeBCwWNSoUYNF6InhGD58uHr9+rUaPHiwMhNI0rt9+7YaNGiQ3kMhXggaQfXt21fdunVLysJNnDhR7yF5FRTJhHgQY8eOVStWrJBED0KMwt27d9Wff/6pOnXqpBIlSqTMAkQ9SnA1adJEOlcSogfNmzeXaHLChAnlIvPNmzd6D8lroEgmxEM4dOiQ1EeGD7lt27Z6D4cQK3369JGIGPyVZmLUqFEiSPr376/3UIgXA4sKLtYQTYaNC95+4h6ClNWD2n179uxRN2/elM5eqHOJzN98+fLRK0OIDnz9+lV17dpV7tevX18lSZJE7yERIiAjf86cOdKhDl5ts/Do0SMRyaiNbKboN/FMatasKZYlWH8wK4NulfR3G0wkL1y4UKZz//33XxUvXjzl4+OjIkSIoJ49eyYdYSCQ0YUI0QJ0+iKEuAcIkL1790q0bsCAAXoPhxArKEOIhD102DMTECQot9WzZ0+9h0KIChkypFRXKV26tDxevny5qdq5e7zdApFinIhR3BoR5Pv376ujR4/KiRmlSZC5vHbtWolo5cqVS75AZ7N7927pIAZxjjI8WlcxQryZuXPnqi5dush9HEQZRSZGYcuWLeqff/5RQ4YMMVXUCxYLlKlDC2rURibECJQqVUqqrKA0HC7ivKg4mfFFMk6+8DwixI9+4vagPEnRokUlE/jChQsqRYoULimFkjVrVmZ3EmLD4cOH5eIUyR30IhMjgax82PCqVaumzHbhCaHM3xMxEggOdujQQZqMnDx5Um3dulXvIXk8pq2TjJ1l9erVgWpryvqlxEy1WQ8ePKgeP34s3kjcavfhSatUqZLq1auXvPbjx49yUm/WrJlMyRF94XHmfxdvefPmlRlG7K9mARecqGSBgMyyZcv0Ho5HwDrJzj03YLbw8+fPqlixYlLNiBgoce/OnTtq+/bt6tq1a5K0FzFiRIkalyhRQsqTGG1nwmJ78iLESEBIQUSgC9kPP/yg2rVrJ88jioWZGf+wnQIOGzasRJEJMRKw56Glbvny5ZWZwG8RDRtYQYAYEczat27dWkrBrVu3ToInKJ5AdBbJEMSYekKnJERHkIiBcH/GjBmlliSiWI0aNVITJkwwTIUL+OCYxESMyJcvX9TIkSPFxvTixQurYNZEMlr2pkuXTrxnOABiiRs3rtzGjx9f5cyZU+ctIMR/kLOCKCz2byS/mYlp06apLFmyqAIFCug9FEL8pEWLFur333+XmcP58+erzp076z0kj8VhkQwfzIkTJ9SBAwdUnjx55LkoUaKolStXSiQZ1S0QzcLrpk6dqowApqNtdx5Ekv3yUxPiTt6/f6+qVq1qbfiBlrco74OpMw0c/M6fP6/jKAkJOjgHYIajadOmykw8ePBAulaOHj1aLH2EGBEUL6hQoYIUM0CCKZr0cH/VWSSjWgW+EFxh+wW6wYwfP16uvo0ikjEtgYUQo4AUAMy4QCDDqoTfDB6bLdpGiH/A4oYEbuzX0aNHV2YC9ZzRjAelTAkxMghKwm6BmUjkryBBljgfh7N8YKHAdHBAwHZBUUqI/+zbt0+moZG8smHDBom0USATTwL798OHD63WITNdwMKHXKNGDbE7EWJkypQpIxHlyJEji+WC6CySUS+ydu3aavr06erevXvyHML7WJC5umPHDqmh7MoDI5KZYPnAonX+w320aiTEDBQsWFDqxsK7b2uvIMQTgNBEw6kff/xRKkSYrTPglStXpGMlIUZHm/FAfgt6RqAqC9HRboHe9UjY6927twhmRJbhrUSZHK01NToTwZPsKtDpz1ZYaH5jTOthmowQMwABQYgnAqGJJlPw9ZoNTF0jzyagqjKEGAmUVhwxYoR69+6dlFxEhSSiYwk4iNKOHTvKgdC+BBy8yq6u0YqDl0nLOhMvB7MtWPB7IcRTWbVqldSINuOFIIQ9prCRcEiIGYAPGeVAEbDEb48i2fkEWtVCCGfLlk06KGFaCrd4zCYGhAQcpUqQIIF0ICPEU0GDJ2Tdm01owkJ45MgRUzU9IQT5LPi9IRcMvz0GEXVuS43IsSOgffVff/0VnHER4lGgTA9KEKJLEiGeCMqAnj59Wsobmg2cryA40BGOEDOBC7vnz5+Ln/7s2bN6D8d7RfK5c+dU0qRJVZs2bdTGjRuly4sGTvywYEyaNEnlz59f1apVS7xdhBAlB7AtW7bIfSS3EuKJIJKFXBVYFsw404PypbadLAkxA7A2oVoSFu08Q3QQyei0t3XrVvFV1q1bV7p+YUoNYhih/uzZs6tZs2aphg0bqgsXLqjChQs7cZiEmBdUs0AGcoYMGVSaNGn0Hg4hLhPJOGFHihRJmQnMkOLcRqsFMSPQYMWLF5dScDt37tR7ON6duIdKFigBh2YhiBzfvHlTsipjx44tvmTcEkJ8g3rIoGLFinoPhRCXdapDN1YESswGBDISnyiSiVnBvosoMkQyAjKsva9DJBmVLd6+fSv39+7dqzJlyqQqV64stZNLlixJgUyIH8CK9Pfff8t9JFgQ4omsXbtWkrfNeCGI7pepU6eWhRAzgnML6iQj7+XkyZN6D8c7RTLa56KZB0Ct4mfPnrlyXIR4BIiuwZMMryPL8xBPBZ5eWOxixYqlzAaqWrClLzEzSZIkEQssGoygsRvRwW6RLFkyNW7cOPGcocwITv7+te6kH5mQ/yNx4sSqX79+ch8HMEI8DZwPDh486NJGUq7i48ePYh1s0KCB3kMhJFjkypVL7d+/X+3evVt16dJF7+F4DA6ftdHVBZ32hgwZIq2o/Svzg/+DJ4Yo9fTpU7V9+3aVO3duuchwN4hgwm+XM2dOafjibl68eCHrh5ddj6lMJORgKjVjxowqbdq0bl8//Ppom45qL3q06P3w4YMkDeK7hz1Kr88/VapU0mxIj+1HJR789pAzQVwDGkthZhHHObOBqk0QyjhGEmJmsA/jfItzDnEilkDy+vVrS4gQISyXLl2yvHjxws/FqLx8+RKVtuXW1dy+fdvi4+Mj64sUKZJl165dFndy7949S5IkSWT9ESJEsGzbts2t63/48KElZcqUsv6wYcNaNm3a5Nb1P3782JI2bVpZf+jQoS0bNmxw6/qfP39uyZAhg6w/VKhQltWrV7t1/a9evbJkzpxZ1h8yZEjLsmXL3Lr+N2/eWLJmzSrrx/FiwYIFbl//Dz/8IOvHMmvWLI88zhiBJUuWyPbiN2c2ZsyYIb8P7C/EdXz8+NGyZs0auSWuYd26ddbj3dOnT/UejscQaJEMdu7cafn06ZPFbLjz5FW2bFnrDoslWbJklv/++8/iLqpUqeJr/YkSJXLriaBWrVq+1h8/fnwRbu6iYcOGvtYfO3Zst17ANW/e3Nf6o0eP7tYDV7t27XytP3LkyJZHjx65bf0dO3b0tX5cqOHCzV307NnT1/rDhQtnuXnzplvW7W0iuUuXLnJ8MyOtW7eWi1niWiiSXc/du3etx7vt27frPRyPIUi9pIsUKUJ/5Xc6DmKaF2VYjh49qhIlSqRu3LihFixY4Jb1Hz9+XK1Zs0ayzZGUgunmO3fuuK08E7r+LF26VKw38CqmTJlSSkRNmTLFLet/+PChWrRokbUSS7p06dSTJ08k+dRdNhfUFddAQgWsJ2PGjHHL+pFgO2fOHLmPyhqYhsNzI0eOdMv679+/ryZPnmztZIaERVhPhg8f7pb1v379WvIntNq9yJGA9QJdQ4nzwTEGfkgzguMzrRbEE/Dx8VHx4sUTbUbLhROxeBHuivA0a9ZM1tOgQQN5PGrUKHmcJUsWy9evXy3uiI5gfYjmggkTJsjjdOnSuWX97du3l/VVrVpVHk+fPl0ew37x5csXl69/5MiRsr68efPK43nz5snjxIkTWz5//uzy9U+cONFqM8DtmDFjrNF0d0RSYC3A+lKnTi3fNyI4WjT9/fv3Ll//0KFDZX2wO2D9GzdutEbT3TGbMnPmTFkf7DZYP6IqWjQddjFX402RZPyeYCcbNmyYxWzgt4gZBvw+iWthJNk9lC9f3hItWjSZSSXOgSLZybx9+9YSJUoUWQ9sKeDZs2cy3Yzn9u3bZ3ElECH4kWBdW7duleewvRAIeG7Hjh0uXz/EENb1zz//yHOweWhj0p5zFRBFmhd46tSp8ty7d+8sMWPGlOfWr19vcTU5c+a0TntBqH748MESN25cebxy5UqXr79AgQKyriFDhshjWKMSJkwoz8E/6q7PH35PgAsjTMfjOVywuJpChQr52n6MCd8DnoOAdjXeJJLPnDlj2undEydOyNj37Nmj91A8Hopk99C3b1+58MM5iOhotyABF9XHdC8sDoUKFZLnUCoPFQ6ANg3uKlatWqVevnwp60c9axA1alRVp04duT979myXbz+sBUmTJpUmMwBtarUSS65e/+HDhyVjPUKECNbPPHz48KpRo0Zu+fxRyB1TuLCaaEXe0b69SZMmbtn+ixcvqn379onVBi3iAabfmjZt6pb1Hzt2TD5/fOY1atSQ5zCWZs2aueXzv3LlitqzZ4+sU9vn8F1o6585c6ZL1+9t/Pvvv3JrRssC9lOQOXNmvYdCiFNAJSlYy2DvJM6BItnJzJ07V24hUHCi1mjcuLHcwquL0liuXj/WZ7t+TaStWLFCRLyr0HzXECh+rR8eUXh2XYXmu/7pp59UtGjRvvn8169f79JGONr6Nc9+tWrVfK0fXnV4pl29/nLlyolHTUO7SEDr0rt377p8/0OJSFycaWiCFYXub9265fL1o557woQJfa0f+yPqiF69etVl6/c2kH+QPHlyX9+1Wbh3756KHDmyr+MEIWZGO+ah/KzW/I24SSTjZO/o4q3goAsRArQongaiyjiZoG0kkupctf5t27bJffvi+EieSpMmjQh0CGVX8PjxY6mLC+rVq+fr/7Jnzy4RG1zlLlmyxCXrx7Zp761FTjVQpxe1clET1VXrx7ZpFwmfPn1ScePGtXbyQvJgnjx5pIa4llTobLBOTSRqkVMNJE9iH0TrUlclkOKzXbx4sZ/7P2YWihYtKo0nFi5c6JL147O1vUi0BRcMpUqVkvvz5893yfq9ERxzkJhsRpBgmiBBAr2HQYjTsN2fb968qetYvE4k42pbWxA1gBjTptoAppjxnDdflaOiAURIwYIFRZTYgiiWq6f8IVCw/gIFCnzTPARTzppwcNWUO6LkECrIdIcotF+/Fk121fbDaoKLEFyMoAKLPZpw04SUK1rzIkodJUoUeVylShWpcKKhff+uWj8qWSBKDXFevnz5b/7fdv+DWHXF+lFFBNU8NKuNX58/fieuWD+i1Ldv31bRo0dXlStXDnD9+J0Q7xaaEPi2sy2EmB0cezUokp1EUIzM3bt3t/z888++KgXgfosWLSxdu3a1GBVXJtQgOShNmjQBJgddu3bNWvXg1q1bTh+D1rxh8uTJfv7/nTt3pHA+XnP58mWnrz9Pnjzy3mPHjvW3wQgae+A1Z8+edfr6ixUrJu89cOBAP///wYMH0tgDrzl//rzT11+6dGl5799++81y9epVWWxBnWQ0VsFrjh8/7vT1V6xYUd7bv98g9nstgfTQoUNOX3+FChXkvXF8+N76Dx8+7PT1161bV94b1V38S6rVElh3795tcRXelLiXPn16qYltRooWLWqpXbu23sPwCpi45z5ixYol5zlUtSLBJ2RQfY9du3b1FSXD/c6dO7utFq/ROHDggLp06ZKKGDGiNWHJHkQ4tSlnZ0/5ojYyksbChAmjatas6a9fSZtytq3j6wzOnDkjSXPYD7SEOXtsI5zOjiYjYQ2RRESstYipPaghWbZsWZdEc9Gad/PmzXIfEXNE8u2j+TFjxlSVKlVyyfrh80VNYr+sJhqYAdLsUM7+/BGVQyQZaDMGfq1fa2fv7P0PVh/NRuTf9tv+Np29fm8F37tZI8lmjoIT4h+YHUHi+qNHj/QeikcQJJH8+fNndeHChW+ex3PeOo05adIkucVJWJtu9wvN8uDsKe+xY8daE9Ygxr63fog0Z35XWqMOWAwgRr+3flwkYD9yFhMnTrRWk0iSJIm/r9MENNYPD6+zQPMMfJ+4CLK32vi1fvhy4WF2FlOnTpXvExVN0qdP/931w5qDBh/OAlUjNKuPvdXGL8sDPn9YY5wFLs7hiYbVJ6DGFtr64Ut3ZQKpN4D9B5V0zGpZoEgmngj2adg7UWWKOIGghJ87deokIX00yUCNSSxo4IBmBfg/o+KqaVDYKLRp/KNHjwb4WjQz0KZ8165d65T137592zqNf/DgQYfrGC9btswp679//751Gn3Xrl0BvhbTbXHixJHXLliwwCnrR7tl7TPdvHlzgK9FMw009XBmzVzYKLQ60LCzwIrkX9MWbD9ahOO1kyZNcsr60W5bqwO9YsWKAF8LW5RWs9hZTRSwT+N4gPdcuHBhgK9FzWQ0+cBrR4wY4ZT1w0ahfadopBIQ+F4yZcokr/3jjz8srsBb7BawE9nWYzcTqN3uzGMQCRjaLdxH48aNpVcDG4o4hyCJZJzo0GHJx8dH/LVYcB/PuaOjmdFOXvXq1ZP3/fHHHx16fa9eveT1mTNnlkYPzvhR4P3QRMER+vfvb+1I5oyDVsuWLa0d7hzp6Ddo0CB5fYoUKaTRRnD55Zdf5P1y5Mjh0Pq1DogQixBYwaVbt27yftqFQqtWrQJ8/fjx4+V1EMvO6ADXu3dveT/4Qx3Zn6ZNm2btAAiBHVzgAdc6Kjqyfq0jHi6qnzx54rQOf/g+HdmfIIzw+hgxYohP3tl4i0hGcATbee7cOYvZQE4Gxr5t2za9h+IVUCS7D+gLnIsqVaqk91AMA/zZSZMmlUYryJ0KTE5OsDvu4URglpOBK05ef/31lzUZ78iRIw79DTrwadFc/5LMHAUd7LT2x9+LImtg+7XIHwRWcECnLW39jiZDIYoTL168AJO8AnOi1qL4jka0sH4tmhvcpCN85loyIpaoUaNKgmRAoAMgfrB4fZs2bYK1/mPHjlnChAkTqG5+EJIQtPgbtFAPbsc1HHjwXosWLXLob3CizJgxo7V1e3BapSMBM3z48PJec+bMcehvIOSzZctmbd3u7Fbt3iKSMROF7Xz+/LnFbOAkibGj6x5xPRTJ7gNBIJyTihQpovdQDAG6zGKmHbOMKBjQvHlz0V+OBkiUN10ROPvkdeDAARFFeM/27dsH6m/nz59vFddz584N0vohyrVpdkRzA8PSpUut658+fXqQ1o8KDZp1okmTJoH629WrV1uFpX/VOL7HqVOnrGK7fv36Qbq40WwHQRFKiKBhBkV7H9tW2N9jy5Yt1r8ZPnx4kNZ/6dIlS+LEieU9qlatGqj3QMt0bf2wHQRl/Zhu18R+mTJlAvUeuLjRKq2glWpQ1n/jxg2ZjcB7lCpVSma4HAXHDW39PXv2DNTfmkUk9+vXz9e+abs44wSK4xbeyxmzQe5m3759po2CmxGKZPcxbtw4CRyh2hWxiE5s27at9TGO9ThvDxkyxHUiGaW0IEoSJEggXwZONraLUa8InHHywskc0bMuXbpYfcCFCxcWr2tg3wfT8tpJCxGtvXv3fvcggr/DgR1T/Nr6YXNAdDKwdOjQwbr+6tWrSyT4eyc8rP/ChQsiLLQIImwOiM4G1aagiTwIN0fWD3GIMmuavQEHg1evXgV6/X369LGuH1NTO3bscOjzv3LlilhWtPVrC36IgRF7v//+u/Vvy5UrJ5FwRwQHPPD4W82HnS5duiDZFmCP0tYPkQk/tyP7McTp4MGDrT7s1KlTWx4/fhzo9ePiRFt/yZIlLRs3bnR4+zF2bf0Qynfv3g30+uEJ19aP8oG4cArs79jIIhlWHhwj8+XLJ3kDWHDcQhQfPvrgol3oO+MzczfIncDYcSwhroci2X3guAZdBrHs7Xz48EE+CwTlbIFf21E7yv/1zg0kqFCAklN9+vSRTEqU3XIHf/75p2revLm1xNSUKVOk7BUy23v27On09aGFMbqjvX37Vrq5IRseZd5s2z2ipBUqRYQLFy5Q743PDBUZ0Phg2LBh0ogDC0q3oHQYKkSgSgayVPFarBONGlBqzDZrFdUcMMbw4cMHevtGjx4t6xg8eLCUz8KC90F1BpRrQ2MY7bvFZ4D1X79+3VdVgDJlykilgEiRIgV6/dhutIUdOHCgtKvGgs8R68f2264fnz/KfKEnvW1baTStwOcWUEUR/xgwYICUBevdu7c0AsGCEnr4/PF+aC2N5ij47LH9aOf9/v17X1UhMD58R/369VO//fZboH4LeD2+b+y7KJ+GJWzYsCpVqlTy+WMM+D5QBQMLthufP74HDTSuwfcWK1asQG9/9+7d5f1RzhGdIrHg80d3PHRRw2eD/8dngO3HfnflyhVfnz86Ci5fvlzFjh070Ovv0KGDrA+3W7dulQWfeerUqWX78dtASUGsH5Ur0Cjlzp07vkoboYshtj8oFRZat24tn3fbtm2lfCAWrB+fP/Y/rB/bj2opw4cPV2YDvy18h9hGrckAnsM2BlQBx1G0fd2MFY20yjpa+3hCPAXtvNWuXTvl7Tx58kQ+C/uKW3jsV4U2PwmKOkcEyxXNEJx9RYAIh+aZxoIqEIGJ8CD73q+pSkRwy5cvb9mwYYNT/IyoiAFvJhKJ/JsetV9/2bJlpTqGM9aP7xLJf4FZP5IUV61a5ZT1wzYBb6xmHfneAg9uiRIlpJJDcNePfQHeyqZNm1p92o6sH9PVixcvlqouwY1GwVeLihiadeV7C/xmSNJEApozbAIYPxpwaNaV7y2YLcLsCabbnZF4CtsGvNmOrh/bX6BAAZlRcsb6r1+/bmnXrp3MjPm1PkRezRhJ1maLbK0VsGAEdxoWvzlEBOfNm2f1JOOxmRbNboVZIb3H4g0LZjUQScat3mPx9AW/d+zbmF3Veywfg7E449iOGUZ8Fvv37/9mFhs2DEcI0mV04sSJXdJW1tlXBEOGDJFoYVBBzVlEWxElRUQGkT1EmbAgOuMscuTIYW2Ve/nyZWmti6gZIpj/3xIjY0C0DhGzDBkyOHX92bJlk1bVWA8ihWhniWgdIqfa94yIWpw4cWT9GTNmdOr6M2fOrGbMmKGmT5+url69al2/bR1dRByxfsxcYP2BjdzbgxrJiA5iH8mUKZM6ePCgrB/rRnQWnz2aXyDyFiNGDIm8YV/DZ4VmFUGJnPsH6gpj3ah1jPVjH0C0FmNA5BrbigXjQUMa7H/OXD8it6jzjZkNRKoRrUeTCKwbC6K5WB/2f6wfr3fm+hG5x7onTJggkWL8nrH9mLHAbwLrR3QE0WU0xEmTJo18L84iWbJkUud73Lhx6u7du7L+p0+fSuQcEXx8/8Q3mPU4deqU3N+0aZPMiJgJNF4C27dvl/2KuIdt27bpPQSPBzNgADODtg3fzEbMmDFVoUKFgvUe0Ez4DKCnbMFj2xbeAREkkTxmzBiZIsZJHScYo9KrVy/pAqgB0QWB7yg5c+aUxV1g2j5t2rSy6AGmTyGAsOi1fu0ixJVAfKLzHA4impUDYgyfP0QghKoe07Da+rHo9fn71SnQnevH7zMwv1Fnrx82EyyeirOsceXKlRMLDkAXT1zAmQntIg8n4YCa/xDnALsU7FSwxzkzwEK+BYEGWAdhA9W6kHrrsSps2LCi4XBxhkZnAOd6PHbUjhIkJYC2wxAWOLggwgofpy22nkVnEZQrAi0CR4gGIuPoOgeBjH0XF3r16tXz9YOkT5F4KpgNePDggeRWICIfFPBbwTFfEzs4LtufA4yOlsOhbQtxD9hn+Hm7/hyHgAtmBflZKwmU4pyPTqzIYUGQFxf4Wm6byyLJ7sYZVwSEQBSvWrVK9qfNmzdLG2VCvIXSpUuLzQgWL9sEZG9L3NMuhJ3Zmp4QoySl4rdpttkdV4GgLpL++/btKwECWCZhEbO37jpVJEOVm/GKgHg38LiikoVWWYMCmXg69gEN+PlxonCm0NQqRZgJzCKB4F4oEGI0oIkQSQ5KxSdPpV27dkEOpgZ7XhmJPfAb2eKqK5jgXhEQ7wbl85D8B3sOZx8ICR7acRfHYrMlv2kWPWddMBBiFO7fvy82C0aSnUPooF6p9OjRQy1btkyywO1BFQojXhEQ7wZ2nbNnz8qFFn3HhAQPLcES1XiyZMmizARyXHAMgKAgxJPAPo08AYpk5xAyKH+EJgQonTN58mRJjEP5LpRaQ3kwlDIjxKhgGoozD4Q4JxqLkzFEshmPAxg/Sh0S4klo+zRFso4iGZ3oUFf1p59+kqtxlNGB1xOd2xYuXOikoRHiPI4ePeqrUx4hJHhAICMwYkaRDFBznZFk4mloNe6xfxOdRDJKvGm1VHG1opV8QxOG3bt3O2FYhDgPeObRGAatm9GogxDiPMsF6rKaEYpk4onl37BP45yXJEkSvYfjvSIZAhk1+LRuYfAmaxFmrdsLIUZh586d0j0Q+yYbBxDiXJHMSDIhxqngpJU1pEjWUSSj5JrW1hOd99BSFsXZO3XqpLp16+akoRHiHNauXSu3FStWFC8iIcQ5mFkkwypCTzLxJGz3Z4pk5xCkFH+IYQ20mbxw4YJ4PtFO2GxZzsTzp5/QohNUqlRJ7+EQ4lGghTfsFvidOavltTsjyY8ePZI6z6x2QzwBbWYEJeD860RMAodTjgxJkyaVhRCjcfz4cTmJo3lAiRIl9B4OIR4FrHdIEkI02WyRq+TJk4u4R/30oLboJsRIIOcGs6UJEybkrKmT4KdIPBotiox2vLAEEUKcBzqfgoMHDyqzkT17drnFLCghngD25UiRIqnMmTPrPRSPgSKZeIUfmVYLQpwPao4jImtGkYxqN5gBpUgmngL2ZTRzo+3VedCIRTyapUuXilCuUKGC3kMhxCP54YcfTCmStS6cx44d03sYhAQb2J7OnDlDkexkGEkmHg28hqi4gja0hBDnky9fPolgffjwQZlVJMObTIiZOXXqlAhkQJFsAJGMWnxI1rh48aK1mQghhBDviySjecGJEyeUGUXyy5cv1dWrV/UeCiHBAheqSNYLFy6cVBojOohkNGSYPHmyKlKkiHTaS5YsmUqfPr2KEyeOeLuaN2+ujhw54qShERJ0cOKrUaOGmjdvnvr69avewyHEY8maNaskxZrRcgGRDOhLJmYH+zB0GaLILGmog0j+888/RRTPnj1baiOvWbNGIgeXLl1SBw4cUP369ZN6kz/++KMqU6YM2/8SXdm0aZNasWKFGjJkCEvhEOJCwoYNK2IT5wGzARsWStdRJBOz8++//8oMf+HChfUeikfh8OUGIsS7d+9WGTNm9LcUUNOmTdWUKVNESO/Zs0elTp3amWMlxGFY1YIQ91oukCRrxqYiOXLkEIFBiCck7WGmnzgPh0Nsixcv9lcg2wI/TKtWrUQwE6LXAeOvv/6S+5UrV9Z7OIR4PKhDjqY9aN5jNiAq9u/fr96+fav3UAgJEjt37hSBjAvUggUL6j0cjyJI89D4Mm7cuKHOnTsnt1pGJSFGYPPmzerVq1fSdQgRLkKIaylatKiKGTOmWr58uTIbFStWlMocW7Zs0XsohASJ9evXq8iRI4sfOUaMGHoPx3tF8o4dO8RzjI4uKVOmlK4uuMVjRBJgxyBEb7QTdfXq1elHJsQNhAkTRlWtWlXyAMxWTg3nsAwZMli7cxJiJvB7g70Q5zr6kZ2PwwpiwYIFqly5clJaZMmSJerkyZMqQoQIauPGjWrr1q0qb968qkqVKmLLIEQv3r17Z/Uj16xZU+/hEOI1oJrMlStX5Nxgxmjyhg0bOCtKTAcKKNy9e1dmTxHEJDol7g0YMEDNnDlT1a1b1/oc/C8QzSlSpBAfTK5cuVTnzp1VnTp1nDxMQhzj4cOHUpIKNbxptSDEfRQvXlymehFNzpYtmzITSPAdNmyYOnz4sDRHIcRMVgvkgqHsGyqPEZ0iyffu3fuu6MiUKZO6f/++M8ZFSJBAmUJUVkECEa0WhLjXcoHZRNidzGa5wEwoysHRckHMBvZZWF5Rehf1yolzCRmYDOBevXqpN2/e+Pn/OCjiShwJHIToDZMXCHE/yANA7XyUozIToUKFUhUqVKBIJqYCNgvU+EbXY1Zy0lkkT58+XQ5+cePGVaVKlVKtW7eWVqQDBw5U9evXl+QHfFl4HSHuBo1sRowYoZ48eaL3UAjxWjDdGy1aNLVs2TJlRl8yKjaxRTUxC/DRw/aKi7zy5cvrPRzvFskop3Xs2DEpGI96ybiCKVSokFzBYJpq/Pjx0nDEx8fHtSMmxA8GDx6sunfvrrJnzy4Xb4QQfbrv1a5dW82YMUPKqpkJJD3B27ly5Uq9h0KIQ8D/j4tSzPSjBCNxPiEsJjGPDRo0SBpEIJMTB+IXL14E+j2Q/Ykd6uXLl9LjnJgf7L6TJ09Wbdu2lcfz58+XmQ1C9MLbjzPnz5+Xkmpz585VDRs2VGaiXr160n3vwoULpuscaGTQLvnvv/+WClnwrpPgc/36dSmagP0UXY4bNWqk95C8O5J869atQL0xIs3OBNFBlBiCzYMQrfg/ppg0gdypUycKZEJ0Jn369Kps2bLqzz//NF0CX/PmzcVWyJr/xOig2hhmPpC0h1wAorNIzp07t2rZsqVYKvwDkRN4klHlwtlTVihBBxGEBibEc8FJFb5i1FpF5zxEhkeOHKnGjh3r63U5cuSQ6VHU6UbpG9gtRo0apdu4CSH/A6VA8RtGAyozgWnr1KlTM7eGGD4HZ9asWTKrjn4AEMpE5zrJSGiA5QFJeygzkjNnTvEf4/7z58/l/8+ePSviZfjw4TKtYoRoo60vDtOgxNhlmE6dOqXev3//zf8lTpxYdejQwfoY09lIIq1WrZpcPKVJk8bNoyWE+EeJEiUkoIFoMuonmwVMXf/888+qb9++asyYMZJvQ4jRgPVUK7fbuHFjvYfj0TgcSY4VK5Yc8PDFTJgwQa62EfG7fPmy1cuF6hYHDhwwhEAGQ4YMETGlLRBaxDgeNRRBtwW95zWBjJMTZiSQLY99C4stmKl48OCB+JEpkAkxnthENBknc/h7zUSTJk3kltFkYlTGjRsn50g0c0MjN+KhiXs9e/aU2srfSwJJly6d9fGcOXNUx44dHUrc8yuSDKHsrQk1RgG1tlFuCb4/JGJqFhpccKGUDSqpwGtFiBnx9sQ9DRx7kyZNKg1GpkyZosxEs2bN1D///CPJUUw0Cz5M3HMep0+fVlmyZJFzJfRTly5d9B6SRxOolmTXrl1zaiIGvlyI4IAWZG8GFQgtnKRsF6IvX79+VbVq1VI7d+4UH9WjR4+s/4fZCXzfFMiEmB/8jpFUiyoXaBdvJmDtQvL5qlWr9B4KIb5Afg5mXSNGjCjWIGIgkQwR8/jxY+tjiJ3gHPzixIkjUeKAFhjTieeAiBIiCvCyozoFvIuEEM+kTZs28lvv37+/MhOI1BUrVsyUFTqI54Kg0oIFC9SXL1+kEgtmrIiBRLL9wQJi5+3bt8odoAQdpuZxix0E97H41yabGA9cYMFiA9AdD4l6hBDPBbksffr0UdOmTTNdq2ocqw4fPixdzQgxAn/88Yf4/VES1zaRnRhEJOsJso3RTa1fv34ijHEfCwq/E/MkG7x+/Vq+N9a7JsQ7aNeundioYK8zU1QWlZxQmaNXr14SmCFET2B3RaI6bBYo+5YkSRK9h+QVBEok4wrGvguRu7oSIWEPB1j7pWjRom5ZPwkeuLBB63LQu3dvSToghHg+sMxh5gh1z1HX3Czg3DZ06FApbYopbkL0DhQij+fZs2eqW7dueg/HawhUdYuQIUNKJyUtsQolvHClbV/I2qjJDsw61w9EkOFH3rVrl1q3bp3sS4R4IjzOfAtOMzhXoGwjaqGbqcIBupmhidbFixfFX00CD6tbBA805smWLZuKGTOm/I6WL1+u95C8hkCJZK1+5PdAH3EjwpMXIcTV8DjjN8ghQbMp2K5gwTALEMcZM2aUaDgaF5HAQ5EcPMqXLy8Xak+fPpWZDduyuMSD6yS7G568CCGuhseZgOsPr127Vmqix4gRQ5mFFi1ayAzp1atXWVEgCFAkBx30E0C7dBxLfvrpJ2lHTdwH57yJy9m0aZNatGiRQw1gCCGenZ2PJiNdu3ZVZgIJ46jkNHLkSL2HQrwIxDB79OihfHx8pBst9kPiXiiSicvBiQVtpWfMmKH3UAghOpIgQQI1ZswYiYYhomwW0AUUJbdQNxllSAlxB/AeHzx4UD1//lwqQqGDJXEvtFsQl4IfN5rGoITSpUuXpCENIZ4MjzMBg1MOWlUfOHBAaifHjRtXmQF8n5kyZVLp06eXltXuquzkCdBuEbS+AvDCozoMPj9446NHj673sLwORpKJS8GBEQIZP3YKZEIIxOX06dPlPrqGmSVOgwsfzIahUyhnxYirQXIrLBZoj47ZWApkfaBIJi4F5d5A5cqV9R4KIcQgIHoMoYzjg5kSkUqXLi3Jh2iMQtsFcRUrVqxQy5YtU5EjR1aFCxdW9evX13tIXgtFMnEZnz9/lmlJULFiRb2HQwgxELhwhuDs2LGjdBMzC6NGjZKo8s8//2yaKDgxl82iTZs2KkOGDHJ/4sSJtPboCEUycRnwHMLHFytWLJU7d269h0MIMRijR4+WnIWGDRuapvWzre1Cs40Q4izatm2rPn78KOUGUZcbPniiHxTJxGUcPXpUbsuUKcM21ISQb4gSJYqaP3++XFD36tVL7+EEynaBSDJsFzdv3tR7OMRDgMUCFS1QQzxlypRq4MCBeg/J62F1C+JS7t27p969eyc/eEK8AR5nAs/YsWPFdoFurY0bN1Zm+Z4R5UuTJo3avHmzChmSMSf/YHWL7/Pw4UPZn2LHjq2uXLmiDh8+rLJnz673sLwe/qqJS0ERdApkQkhA/PLLL9LVDsvevXuVGcAFEJIOt2/frvr376/3cIiJgb2iRo0a1lKp2J8okI0BRTJxCV40QUEICSZITJowYYIqUKCAqlq1qrp+/boyAyVLllRDhgxRv//+u0yVExKUcyXKvcFyFDFiRJUnTx7pskeMAUUycQl169YV396hQ4f0HgohxARgGh6lr2BVqVSpktgZzED37t3leAebyPHjx/UeDjEZkyZNkgTQrFmzyj4Pj37o0KH1Hhb5/1AkE6fz33//qfXr14tPjz92QoijoBIOjh2oQQzhaYaKF4iCo9oFGiahrB28pYQ4Aqw6aHdesGBBSXSfN2+eSpUqld7DIjZQJBOngwSNt2/fqmTJkqkcOXLoPRxCiIlA22dYFzZu3CglsMxg3YoQIYJas2aNJKhVq1ZNffjwQe8hEYODEm/wISOCvH//fqnugnbtxFhQJBOno3nzatasySLohJBAA6sWpqHHjx8v/kwzCOWECROKUEZEEM0gzDBmog+wVcBShBKIKCFYokQJ8bUT48G5cOJUEEHesGGDVSQTQkhQaNmypWT9o/IF6qwPHjzY8BfdefPmVdOmTVONGjWScl6IhBNi34kWbaZv376tEiVKJM8tXryYvQQMCkUycSqLFi2SusjwVdFqQQgJDu3btxdR0blzZ0nsM0NzBXQPPHv2rIwZSYhNmzbVe0jEIHz9+lX2h7/++ktly5ZNXb58We3Zs0e8+MSYUCQTp4HpRfSZB61atTJ81IcQYnwQjUUCX7du3STa1q9fP2V0hg4dKlPq6MoXPnx4SUIk3g0EMmZHFixYoAoXLiw+ZPju4UkmxoUimTgVnMDgrWrSpIneQyGEeAhdu3aViDKSmyCUe/furYwMAgQIGLx//14iy2HDhlXVq1fXe1hExwASqljMnDlTvMhr165VCxcuFC8yMTYUycSpJwY0AkCGLqPIhBBn0rNnT4koQyBDMOOC3MjHGbSpRmk4VLqoU6eORBKZp+F94HuHrx4XTZhRgCVx2LBhnF0wCRTJxCk8e/ZMxYwZU+4b+cRFCDEvv/32m0SSEVG+ceOGJMkhSmtUMFbUvsUthDIEc4MGDfQeFnETuKiD9RARZHzvaBSCiDKsQ8QcmKIEHA6GzZo1U8mTJ5d6lClTppQoAjKfif7TSGPGjFFJkiSRAwEhhLg6ooypalQEKFu2rHrx4oUyMmioNGfOHEnYQtULdFcjng9mO2A7nDVrlnRjhEBG++nRo0czkGQiTBFJvnDhgkxZTJ06VaomnDlzRjVv3lzKjY0cOVLv4XkliIjs3LlTjRo1Sm3ZskWeQ6YuIYS4GkxVo3wWrF0FChSQagFoXmRUEEnG+StcuHCqRYsWUv6rf//+Yskgngcu3DBzsHXrVknexIwHBPK4ceMokE1GCItJK56PGDFCTZ48WV27ds3hv0G2MUryvHz5UkWNGtWl4zMr2B2ePHmi7t27J+1V8WO39dFhmgjtpi9duiRJKQClmVDDtEuXLjwAEK+Hxxn3cfHiRYkm//fff1KfPVeuXMrox9fhw4eLXQQtrBFdjBw5svJ00IkQnVjLlSsn5wtP3yeRnPf48WOZOcBMKwWyeTHtZSxOQJoHNqBoJ05Ytgv5FkwFIjKTLl06FTFiRBU3blyp4YiuV7gahq9K49atW+rUqVMikOPFi6fatm2rzp07J9nnPAAQQtxJ2rRp1cGDByWKXKRIEel4Z2RwjEQHwXXr1qlt27ap/Pnzq+vXr+s9LOIk/vnnH2kogxkCeJAhkFHrmwLZvJhSJF+5ckXalaLmYEAMGTJEIjrakjhxYreN0UysXr1a/H24Ataiw3HixFGZM2dWxYsXlyiNBqLFqO14/vx5df/+fTVhwgSxwBBCiB7gon7Hjh0SUUZ1HVywGz1fpUKFCiLucWzNnTu3WNeIecEMwZ9//imRclz4QChDGA8aNEiNHTuWAtnE6Gq3QAIGSqEEBMQYIpwad+/elYhB0aJFpbzO9yLJWDQQSYZQ9vZpUHwmyAjXfriIaOzbt0/98MMPKnXq1MrHx0e8c4SQwEO7hT7gVIakKERqc+bMqZYsWWJon7JWFQh2tl27dkngB5UQPBFPtlsgsITvbe7cudL4BlZERJShT2C3IOZGV5EMz87Tp08DfE2KFCmsJX7gk4U4hpiDRSCwSQ88ef1fxm358uXlc8VBGZnXhBDnweOMvhw6dEjVqlVLPv/Zs2dLcp/RBSRm6DSRjIgkqjh5Ep4qkpGAiYuc48ePSxEBeMxhP1y5cqX68ccf9R4ecQYWk3Dnzh1L6tSpLbVr17Z8/vw5SO/x8uVLXBDIrbfy559/ymcQMWJEy7lz5/QeDiEeB48z+vPs2TNL1apV5Xv45ZdfLO/fv7cYnWnTplnChg1rSZs2reXAgQMWT+Ljx4+WNWvWyK0n8PXrV8uMGTMsUaNGtSRMmNAyffp0S/z48S0+Pj6Wo0eP6j084kRM4UmGxQIRZNTixdUaItAPHjyQhTgOPMR9+vSR+0goSJ8+vd5DIoQQpxMjRgyJ5sEXOmXKFCkTh1KiRgZlTRGRxOwDxtu9e3drjggxDnfu3JGIOEq7YZYCzUFat24tVsWjR4+qHDly6D1E4kRMIZJRhxfJevDOojZmggQJrAtxHPj1UFs6T5480pyFEEI8FeRcoLLA/v37xQKTNWtW9ccffxg6qS9DhgwyXi3hK3v27GIfIfoDZyrsO5kyZZIKT7gIwz6GixlUeYI+iR8/vt7DJN4oktGtBjuoXwtxDPjzUFcaIJrMIvaEEG8ASXwnT55UnTt3lgYeqKV8+PBhZVSQJ4Kk9mPHjkkNZVRLQDIio8r6Ro+Ry4OuiYgeL1u2TA0YMEBu4UPGzKwnea3J/6BS8hKQ6f3mzRuxWODHTggh3gIS4VAS9MiRIyJmkPyNSgSYWTMqGTNmVAcOHJDoN0QYpvF3796t97C8LtEdbcQRPT5x4oRau3at9BAoUaKE9A/A91O/fn29h0lcCEWylzBv3jy5hc2CNRsJId6IZl9A1zu0iYb4QbkuI0eV0Z0PXtcoUaJI+VPUWMZ0P3EdmKVG/4AsWbJIG3F0R0SnWXjccXEFD/K///4rFh7i2VAkewnwT6GVN696CSHeDIQnGo6cPn1aSmGWKVNGhCdKdxkViHlELTEjiKZPiGaio9uNGzf0HprHgZrVsLhUq1ZNegbAmoNyboULF5a+DciRQn5P+PDh9R4qcQMUyV4CEgpwYkAraUII8XZSpkyptm7dqpYuXSoCGR1GUaf44cOHyoggjwT1nzHWSZMmydjTpEkj1RVQ8YkED/jWUbUClbRQ1xliGJ8zIvkILpUuXVourEqWLKn3UIkboUgmhBDilcB6hmYQiBBipg2COVWqVOIDRstoIwJPNcQ8Kj4hERGNtRARRyIZErRJ4Lh69aqIYFhx8JkiGQ/e771798qF0/Xr19XGjRvV4sWLVcyYMfUeLnEzFMkezuvXr1WlSpWkVigSDQghhPgmXLhwUv0Cggke1IEDB0qUdubMmRJVNCKRIkVSv/76q7p27ZqIZiQmokQqyt6hNTIJ2HO8fft28RqjvjHuo/rTmTNnxPsNO8vgwYNVt27d5DlYcoh3QpHs4SDZYP369dLqNFSoUHoPhxBCDAsihaNGjZLIMhp6oGEEIssTJkxQ7969U0YkVqxYEgVHxBNJZYiGp02bVqoYoRU0gyO+g0aoVoGEO1SowEXRtGnT5BalAcuWLSsLvMiwX2BGwdNahJPAQZHs4WzYsEFukZhCCCHEMb8yxCY8qIUKFRLfb7JkydSwYcOkMYkRQXMtRMBv3bolTS/u3bsnQjl58uRixbh9+7by1qgxSv9hhgDit2XLlvJdwtON7xdiGVWfIJLRlRZl3nbs2MGOtESgSPZgvn79qv766y+5T5FMCCGBryqxYMECsS9UrVpV9e3bVyVJkkQaMhk1WQ5VF9CAC81IUO4OCWeINEMYlipVSqLiN2/eVJ4ujFE2r1+/fhI1RpdZ+Iq7dOkiFUHWrVtnTXpE1H3nzp0SYUZpPdgTWSaVaISweFHbOkQAokWLJskNUaNGVZ4ODpAomo9txQE9bNiweg+JEI/H244z3sTdu3fFuqbleNSoUUNq5ubLl8/Qwgo2A5SPW758uQhC+KxRAxiCsGLFihJFdWUXVqwP1g9Uj3BVZzp0JIS3GAIYFkNE0qNHjy72Ca06BSyHFy5ckBkBXPzAfwzh3LFjR/F4E2IPI8leYLXAwYECmRBCgkfChAnFswxLw++//672798v3mUkeiHxC2LUiEAMNm/eXHJUnjx5IhUcIJInTpyo8ubNK9uF/4fAfPbsmTIDiO8hKjxr1iyJ8sObDXsJbBQolQfB/OjRI7Vo0SIR5+iYV716dZUhQwZpIDN06FCJqP/2228UyMRfGEn2YFDSBgeGuXPnqoYNG+o9HEK8Am87zni7pQ31dBFZhsCMGDGiRC2R8Ic20kaOLmttlyH0MXYsly9fludhzciZM6cs2A7cxo4dW7dIsiaIYaHQFthJnj59Kp8xIvlaVBxeYu1zR3R5xYoVcgGD7YTXvHv37qpRo0ZS0YSQ70GR7KHg4IAD0r59+9SdO3dUnDhx9B4SIV6BNx1nyP/AcRa+VixIAIPntU6dOrLA92oGUCcYSW62QlRLVIQXG2IZUfPEiRNLEhySBbEgihuQXcMRkYzXoJELPjttQcUObRxahBvr1QQ8FkTC7c9v2A60HUcCI4Q0kvNQJq9KlSrScZEQR6FI9nDevn3LqSRC3Ig3HmeI7+jstm3bpPnE6tWrZX+AsIRYrl27tohNM0XKUR7NNoKLihCwbNgC4Yuurppojhs3rlj8IEjxf4js4n2w7XhPfEYoqffgwQPxDkMQI2/GVo5AdMMGghlRW1GM9fjF8+fP1cqVK+Vzh9UiRowYksCIahZmuUghxoMimRBCnAiPM8R2Rg8RVAg35IjgMSotwDuLBQLQlQlzruLDhw8icG2jvprY1QQvhDCiw9otRDF+DxDNWGB3sBXWWGyj04gOf6+2P4JASNLD54vqFVhXsWLFxF6IToqscUyCC0WyB4J2qthW/664CSGuw1uOMyTw+wV8v6jDiwQ67RiN6guwIaA8G/YbT8SZ1S0gwvFeWJCAB6GMC4+6deuKMIbAJsRZUCR7ICiCj6m9evXqqfnz5+s9HEK8Cm85zpDgiUYkkqGOPcTe2bNnxZoAsYfmJYULF1b58+eXEmbeLpLxt/BJI1KMz+v48eNi30B5U9T/RyULJOQR4groYPdAkM2Lax9MXRFCCDEWEIpFihSRZfjw4VKKDCISNYznzZsndXwhBFGmDaIZS+7cuaXqhNErZgSXN2/eqIMHD6o9e/aovXv3yn3MjqJleJkyZaSuMcqaBqfaBiGOwkiyh4HkBUzhffz4Ucq/odsQIcR9eMNxhrgOnJKvXbsmIlFbtNJs2K+QBIgFfmbcouSZ0evg+xdJRl1pdLnDuerkyZNSxQL30agForhgwYJygYBbXCR8z6NMiLOhSPYwUA+yTZs2EoHAQYcQ4l684ThD3AtKo2kCEnYD3GrCGaIzefLkKlWqVCp16tRyq91HNQlXdbhzFCTTQfSj4x+S8VDvGGOHOEbFC20b0OQDQR3YTCCM06VLZ8qkRuJZUCR7ECitkzFjRmm7idapnTp10ntIhHgdnn6cIcZAi8IiGIK6wBCeuIUgxUwigDUDwlSrImF7ixJp6MRnv6BkKMQp/la71Ra8LxLlYH+wvcW+ju52EPO41RZUvEB3QghlgEgwhDs8xJkzZ5ZIOISxGaLhxDuhSPYgkDWNYunYttu3b3vkNhJidDz9OEOMDawKOP5DMCNqa1uqTbuPW5SjcyaIBqM+su0CMZ4iRQoRxhDLKM2GroSEmAUm7nkQM2bMkFvYLXhyJoQQ7wPRWiT4YfEPxMYQFUY02n5BZBj/j5lJ3GoLHocPH15ELhZEnLX7ON8gMu1fUqHmSdbb+kFIYKFI9rCqFhMmTFA///yz3kMhhBBiUCBm0cwDC6tEEOI/pnHFV6pUSaZscCULT1WDBg3E7+Tt4AofV+kABzyUx/HUgvSEEEIIIe7CNCIZrSaXLVumLl68KP3ZkRVbvXp15a2gLSiKq6NLE5qGYCqMEEIIIYR4md3CtlJD0qRJVc+ePSVJDVFUT/I5Qew+efJEPX36VEr4oAsTQDvTLVu2SMIFkjGQ0WwbQUbBdZTOIYQQQgghXiSSbXn27JlauHChiMKABDKirVhss86NBgTxmjVrRACfPn1ayvdoY0Y2cOLEieX+7t27xW9sC7KHa9eurTp06CAZxIQQQgghxAtFco8ePUQoojYj+rZv2LAhwNcPGTJEDRgwQBmVwYMHq0GDBsn22INMYWQaa5QsWVLqSMKPjXbT6LaEAvKe3qKUEEIIIcTr6iTDMoEe9QFx/vx56byjRV0RRUafe4hfJKhBKPsnFP2KJCMya5T6pahGUaNGDSmmXq1aNRH+sFhgjJrNghBiLlgnmRDH2lITYnR0FcmPHz8W721AwEbgVyeeO3fuiJjcv3+/ypcvn2lPXmg1iqgwI8KEeAZGPM4QoicUycSs6BquRLtMLEFBq+ZgGyk2A/Afw0sNPzHIkSOH3kMihBBCCCF2mGJO/9ChQ+rIkSOqYMGC4tVF+bc+ffpI/3dHo8hGAHWd69Spo6JEiaKOHj1qTcojhBBCCCHGwhR1ktH2ctWqVapEiRIqbdq0qlmzZipLlixq165dUv7MLCCR8P379+I7TpQokd7DIYQQQgghZo4kZ86cWW3fvl2ZmRcvXqiZM2fK/YEDB9KDTAghhBBiYEwRSfYE5s+fr969e6cyZcqkihcvrvdwCCGEEEJIAFAku4lZs2bJbcuWLRlFJoQQQggxOBTJbgB1nU+cOKFChgwpiXuEEEIIIcTYUCS7gcOHD4tALlCggIoVK5bewyGEEEIIIZ6QuGd20FUPPuSHDx/qPRRCCCGEEOIAFMluAhFkRpEJIYQQQswB7RYuRusMSAghhBBCzANFsotp0aKFKlSokOnrPBNCCCGEeBO0W7iQL1++qHXr1qnHjx/rPRRCCCGEEBIIGEl2cVULCOSoUaNKNJkQQgghhJgDimQXsmHDBrktU6aMChMmjN7DIYQQQgghDkKR7ELWr18vtxUrVtR7KIQQQgghJBBQJLuwy97p06eliUjZsmX1Hg4hhBBCCAkEFMkujiKzyx4hhBBCiPlgdQsXkTZtWrFZlCxZUu+hEEIIIYSQQEKR7CJKlSolCyGEEEIIMR+0WxBCCCGEEGIHRbILWLlypbp+/brewyCEEEIIIUGEItnJPHnyRNWtW1elSJFCXblyRe/hEEIIIYSQIECR7GTmzp2rPn78qHLmzKlSpUql93AIIYQQQkgQoEh2Il++fFFTp06V+y1atNB7OIQQQgghJIhQJDuRZcuWqcuXL6vo0aOrOnXq6D0cQgghhBASRCiSncS7d+9Uv3795H7nzp1VlChR9B4SIYQQQggJIhTJTuLXX3+VKHKCBAlUhw4d9B4OIYQQQgjxJpH84cMHlS1bNhUiRAh14sQJZRTQfjps2LBq2rRpKmrUqHoPhxBCCCGEeJNI7t69u/Lx8dF7GFLBYseOHdbH1atXVxcuXFAVKlTQdVyEEEIIIcTL2lJv3LhRbd68WZp14L47OHv2rNq7d6969OiRdUH94zNnzohQPn/+vEqXLp28Nnny5G4ZEyGEEEIIcS2mEckPHz5UzZs3V2vWrFERI0Z02JqBRePVq1eBXu/WrVtVx44d/fw/+I9v3LhhFcmEEEIIIcQzMIVItlgsqnHjxqpVq1YqV65cIkwdYciQIWrAgAHBWneGDBlUpUqVVNy4ca1LkiRJxBedLFky8UYTQgghxG9ChgypEidOLLeEmIkQFihQnejZs6caNmxYgK+BnQEWC9Qg3rVrlwoVKpSIZFgbjh8/LmI1MJFk/FBfvnzJ5DpCiEvAcSZatGg8zhBCiMnRVSQ/fvxYPX36NMDXpEiRQtWsWVOtX7/eV9QW3e0gmOvVqyetoB2BJy9CiKvhcYYQQjwDXUWyo9y6dcuXn/jevXuqdOnSasWKFSpv3rwqUaJEDr0PT16EEFfD4wwhhHgGpvAkwwNsS+TIkeU2ZcqUDgtkQgghhBBCHIUuekIIIYQQQswYSbYHVSVM4BIhhBBCCCEmhZFkQgghhBBC7KBIJoQQQgghxA6KZEIIIYQQQuygSCaEEEIIIcQOimRCCCGEEELsoEgmhBBCCCHEE0rABRWtbJxt9z5CCHEm2vGFZSoJIcTceJVIfv36tdwmTpxY76EQQrzgeIP21IQQQsxJCIsXhTu+fv2q7t27p6JEiaJChAihjBZ9gni/ffu2iho1qjIz3BZjwm1xDzikQiD7+PiokCHpaCOexeTJk2W5ceOGPM6YMaPq27evKlu2bKDeZ8CAAery5ctq3Lhxql+/fmrz5s3q1q1bKk6cOKpKlSrq999/50Um0R2viiTjhJUoUSJlZHDCN9pJP6hwW4wJt8X18OROPBWcQ4cOHapSp04tF4Rz585VlStXVsePHxfB7Chr165VPXv2lMAVlpEjR6oMGTKomzdvqlatWslzK1ascOm2EPI9vCqSbPTIGE6sL1++NORJPzBwW4wJt4UQ4gpixoypRowYoebPn6927drl52sQLe7fv7/cxwxQqlSp1OPHj/38/S5fvlzVr19fvX37VoUO7VWxPGIwOBdICCGEkEDz5csXtWTJEhGz+fLlU6tWrZJocpcuXdT9+/dlwfPNmzdXXbt2tf7dunXrVNGiRf29wNUufimQid5wDzQI4cKFkytt3Jodbosx4bYQQpzB6dOnRfy+f/9eRY4cWa1evVqsEgDCFs/Fjx9fHocNG1ZFjBhRnrO1WsCi4RdPnjwRP3KLFi3ctDWE+A/tFoQQQghxmI8fP0qSHSK+8A3PmDFDbBYQytmyZZPEO81agYgxnhszZozVKoXkvCtXrnxTaQr/V6pUKbFvINocJkwYXbaPEA1GkgkhhBDiMIgOw1MMcubMqY4cOaLGjh2rpk6d+t2/3bhxo4hpe4GMijBlypSR6lOITFMgEyNATzIhhBBCglVe9cOHD37+n325Vb+sFogg//jjjyK+EUEOHz68S8dLiKMwkkwIIYQQh+jVq5fURE6SJIlEfxctWqR27typ/vnnHz9fj8jwhQsX1KNHj8RGgUiybRKfJpD/++8/tWDBAnmsda2ELSNUqFBu2zZC7KFIJoQQQohDQOw2bNhQKlegDGOWLFlEIMNL7Bc1atSQusdNmzZVnTp1kgS+HDlyWP//2LFj6tChQ3Jfs3BoXL9+XSVLlszFW0SI/9BuoTPoWtSsWTOVPHlyFSFCBJUyZUrJ2kdihC2nTp1ShQoVkmkoeLmGDx+ujMigQYNU/vz5JZs5evTofr4GCR/ly5eX18SNG1d169ZNff78WRmNiRMnygEan3nevHnV4cOHldHZvXu3qlixonR7wzTnmjVrfP0/8nTRHStBggSyv5UsWVK6XhmRIUOGqNy5c0skCvsJkoEuXrzo6zXIrm/btq2KFSuWnHx/+ukn9fDhQ93GTIinM3PmTDlvwV4Bwbx161ZfAvnEiRPWpD3QoEEDKRG3YcMGsVrg+GQLEvtwXPJroUAmekORrDOYhoKfCwkPZ8+eVaNHj1ZTpkxRv/766zfTUUmTJlVHjx6Vou04CE2bNk0ZDYh7RA5at27tb11NCGS8bv/+/dKtac6cOSLcjMTSpUtV586d5YIFkY6sWbOq0qVLy0nByOBkhLFC4PsFLq7QBhb7GKI3kSJFku2C2DQayJaHAD548KDasmWL+vTpk/wOsI0aiEytX79emg/g9ejSVa1aNV3HTQjxm0yZMvl7biDEkKAEHDEWw4cPtyRPntz6eNKkSZYYMWJYPnz4YH2uR48elrRp01qMyuzZsy3RokX75vm///7bEjJkSMuDBw+sz02ePNkSNWpUX9unN3ny5LG0bdvW+vjLly8WHx8fy5AhQyxmAT/v1atXWx9//frVEj9+fMuIESOsz7148cISLlw4y+LFiy1G59GjR7JNu3btso49TJgwluXLl1tfc/78eXnNgQMHdBwpIYQQT4CRZAOC2pNIcNA4cOCAKly4sGT+aiD6h6nn58+fKzOBbcmcObOKFy+er21BtByRdCOAKDci9rAiaIQMGVIeY/xmBf6+Bw8e+NoueAphJTHDduF3AbTfBr4jRJdttyddunSSUGSG7SGEEGJsKJINBgqsjx8/XrVs2dL6HISNragE2mP8n5kww7ag4xNsIX6N0yhjDAra2M24XbAkdezYURUoUECmbAHGjAtHe++7GbaHEEKI8aFIdhE9e/aUxKmAFviRbbl7964UU4enF73uzbwthDgTeJPPnDmjlixZovdQCCGEeAksAeciunTpoho3bhzga1KkSGG9j4SjYsWKSWUI+4S8+PHjf5Oxrz3G/xltWwIC47WvEuHObXGE2LFjS21Ovz5zo4wxKGhjx3aguoUGHqNtrFFp166dZMajckeiRIl8bQ+sMS9evPAVTTb790QIIcQYUCS7CBRBx+IIiCBDIKO95+zZs8X/aku+fPnUb7/9Jv5LrVUnsv3Tpk2rYsSIoYy0Ld8D24IycagSgbJe2rZEjRpVWpUaAUzh47vYtm2blB3TpvvxGILNrKDMIMQjtkMTxfCCo8qFETPOkXvYvn17aVGLZgUYvy34jvB7wPag9BuATx8lBrGfEUIIIcGBIllnIJBRJxLl3UaOHKkeP35s/T8tGla3bl01YMAAqafco0cPmXYeO3aslIszGhAoz549k1v4elEzUysSjzq2KOEFMYzamShHBu9o7969ZTo9XLhwyiig/FujRo1Urly5VJ48edSYMWOk9FiTJk2UkXnz5o342m2T9fAdINkNCW3w9f7xxx8qderUIjr79OkjNZW1iwEjgX0C3bxQWxW1kjWfMZINUeMZt/hN4LvC9uFCC6IaAvmHH37Qe/iEEELMjt7lNbwdlErD1+DXYsvJkyctBQsWlHJdCRMmtAwdOtRiRBo1auTntuzYscP6mhs3bljKli1riRAhgiV27NiWLl26WD59+mQxGuPHj7ckSZLEEjZsWCkJd/DgQYvRwefs1+eP70UrA9enTx9LvHjxZF8qUaKE5eLFixYj4t/vAr8ZjXfv3lnatGkjJRIjRoxoqVq1quX+/fu6jpsQQohnEAL/6C3UCSGEEEIIMRKsbkEIIYQQQogdFMmEEEIIIYTYQZFMCCGEEEKIHRTJhBBCCCGE2EGRTAghhBBCiB0UyYQQQgghhNhBkUwIIYQQQogdFMmEEEIIIYTYQZFMDMfkyZOlhXKkSJFUtWrVfLXq9o+LFy9KG+/Xr1+7ZEwhQoRQa9askfs3btyQx1rLbXdQu3ZtNWrUKLetjxBCCPF2KJKJoVi1apXq1q2bGj9+vPr3339F9FavXv27f9erVy/Vvn17FSVKFJePMXHixOr+/fsqU6ZMyl307t1bDRo0SL18+dJt6ySEEEK8GbalJoYiZ86cqlSpUmro0KHy+N69eyJKd+3apQoWLOjn39y6dUulSpVKXb9+XSVMmNDP13z58kWivyFDBu26EH+7evVqVaVKFaUXuXPnVo0bN1Zt27bVbQyEEEKIt8BIMjEMz58/V8eOHVPly5e3Pufj4yMR261bt/r7d8uWLVNZs2b1JZDnzJmjokePrtatW6cyZMigwoULJ2L6yJEjIsJjx46tokWLpooUKSLrtOXy5cuqcOHCKnz48PK3W7Zs8fX/9nYLCPBmzZqp5MmTqwgRIqi0adOqsWPH+vobiFsI7JEjR6oECRKoWLFiidj99OmT9TWTJk1SqVOnlvXGixfvmwh6xYoV1ZIlSwL9uRJCCCEk8IQOwt8Q4hKuXbsmt4gK2wLhqP2fX+zZs0flypXrm+f/++8/NWzYMDVjxgwRpXHjxpX3adSokdg5MIkCn2+5cuVEGMOq8fXrV/FBQ6QeOnRI7A0dO3YMcNz4m0SJEqnly5fLevbv369atGghYrhmzZrW1+3YsUOew+2VK1dUrVq1VLZs2VTz5s3FWvLLL7+o+fPnq/z586tnz57JdtmSJ08esVx8+PBBRD8hhBBCXAdFMjEMELWaKLYForBy5cr+/t3Nmzf9FMmI0iI6iyizRvHixX29Ztq0aRJxhp2jQoUKErG+cOGC+ueffySKDQYPHqzKli3r7/rDhAmjBgwYYH2MiPKBAwckwm0rkmPEiKEmTJigQoUKpdKlSycR823btolIRpQbiYoYA8R60qRJVfbs2X2tB+P5+PGjevDggfw/IYQQQlwHRTIxDBEjRpTbnTt3inDV6NChg/X//OLdu3diUbAnbNiwKkuWLL6ee/jwoSTBYR2PHj0SqwTEOUQqOH/+vHigNYEM8uXL992xT5w4Uc2aNUveB+OBmEWU2JaMGTOKQNZAVPn06dNyHxYQCN8UKVKoMmXKyFK1alVf2w0rh+3FBCGEEEJcBz3JxDBAIIKoUaOK5UJb3r9/b/0/v4C/GH5meyAq4R22BVYLeInhGYYtAvdhkYCoDSrwCXft2lV8yZs3b5b3bNKkyTfviYizLRgbrBoA0WN4oxcvXiziuW/fvhIBf/HihfX1sGCAOHHiBHmshBBCCHEMimRiGGBHQHULWy/umzdvxLqASKt/wJZw7tw5h9axb98+8f7Ch4zILry9T548sf5/+vTp1e3bt6XEm8bBgwe/+57wEbdp00bGAmF/9epVFVhChw6tSpYsqYYPH65OnTolCYLbt2+3/v+ZM2fE+4yLAkIIIYS4FtotiKH47bffVOvWrcXyAG8vrBF58+ZVBQoU8PdvSpcurX7++WexTtjaGfwCfmckx8HD/OrVK6nJrNkYAERqmjRpJOI8YsQIeQ3G9L33nDdvnviYMWa8P6po4L6jbNiwQZIKUVUDFwt///23RJlRKUMDFw8//vijw+9JCCGEkKDDSDIxFPDh9u/fX6wLsBsg+Q4JcAGBpDpEYQMqE6cxc+ZMsWbkyJFDNWjQQKLKqHqhgTrKqIcMXzGqSUB8o6JEQLRs2VIqYqBaBQT906dPJaocGODBRiMVJBYimj1lyhSxXiDaDWA5Qcc/JPkRQgghxPWwmQjxCJA4h5rIiOZ6aqtuiHd4ngkhhBDiemi3IB4BorlIckMba3e0pnY3SPpDbWdCCCGEuAdGkgkhhBBCCLGDnmRCCCGEEELsoEgmhBBCCCHEDopkQgghhBBC7KBIJoQQQgghxA6KZEIIIYQQQuygSCaEEEIIIcQOimRCCCGEEELsoEgmhBBCCCHEDopkQgghhBBClG/+HwBGmIylTFNuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "mu = np.deg2rad(180)\n", - "kappa = 2\n", - "x = np.linspace(-8 * np.pi, 8 * np.pi, 800)\n", - "vm = vonmises(mu=mu, kappa=2)\n", - "f = vm.pdf(x)\n", - "F = vm.cdf(x)\n", - "\n", - "fig, ax = plt.subplot_mosaic(mosaic='ab', figsize=(8,4), per_subplot_kw={'b': {'projection': 'polar'}})\n", - "ax['a'].plot(x, f, color='black', label=\"density function f(θ)\")\n", - "ax['a'].plot(x, F, color='black', linestyle='--', label=\"distribution function F(θ)\")\n", - "ax['a'].set_xlabel('θ (radians)')\n", - "ax['a'].set_ylabel('F(θ) and f(θ)')\n", - "ax['a'].legend(frameon=False)\n", - "\n", - "ax['b'].plot(x[400:500], f[400:500] + 1, color='black',\n", - " linestyle='-', lw=1, label='vonmises pdf')\n", - "rtick = [0, 1]\n", - "ax['b'].spines[\"polar\"].set_visible(False)\n", - "ax['b'].set_rgrids(rtick, [\"\" for _ in range(len(rtick))], fontsize=16)\n", - "gridlines = ax['b'].yaxis.get_gridlines()\n", - "gridlines[-1].set_color(\"k\")\n", - "gridlines[-1].set_linewidth(1)\n", - "\n", - "position_major = np.arange(0, 2 * np.pi, 2 * np.pi / 4)\n", - "ax['b'].xaxis.set_major_locator(ticker.FixedLocator(position_major))\n", - "\n", - "labels = ['0', 'π/2', 'π', '3π/2']\n", - "ax['b'].xaxis.set_major_formatter(ticker.FixedFormatter(labels))\n" - ] - }, { "attachments": {}, "cell_type": "markdown", @@ -556,7 +501,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -565,13 +510,13 @@ "Text(0.5, 1.0, 'μ = π/2')" ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAGrCAYAAAAIKwrmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYPtJREFUeJztnQeYE9XXxi8dpPcOAtJBeu9dehFREWmCgCgoIgKiICCIIr03aSoIgkpRpPfee5MmRel1peZ73uN355/sZneT7Ezq+3ue2WSTyeQmuTPnnh7LZrPZFCGEEGICsc04CCGEEAIoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiFe5NmzZypt2rTqq6++kvszZ85UjRo1UlmzZlWJEydWhQoVUoMHD1b//vuvr4dKiEfEYu0vQrzHtm3bVLly5dShQ4dU9uzZVdKkSVXZsmVVgwYNVLp06dTWrVvVrFmzVOXKldWaNWtUrFixfD1kQtwirnu7E0JiwvLly0WYFCxYUD169Eht3rxZlS9f3ni+Y8eO6vnnn1f9+/dXq1evVjVr1vTpeAlxF5q/SMDRtm1bufCGZ8CAAV5d2ev3i2pbt26dw2uWLVum6tevL/fjx4/vIFA0TZs2ldujR4966ZMQYh7UVEjI8eDBA9miI06cOCplypSRPt+sWTN1+fJlNWXKFDVw4ECVI0cOeXzRokVq8eLFauLEiSp//vzG/leuXFF79+6VfaMC+4E0adK48akI8Q8oVEjIASf5559/Hu1+MFOdPXs20udffPFF8Y9AqNStW1eVLFlSHj916pQIlebNmzsIBpi+EiZMqKpXrx7t+JIlSybHJCTQoFAhIUfr1q1VxYoVo90vUaJEpr4vhEq1atWiPO6QIUPUqlWr1IQJE1SKFClMfX9CvAGFCgk5cubMKZs3efz4sVq5cqUaOnRopPvMnz9f9evXT7311luqS5cuXh0fIWZBoUKCBlej4+/duyebKz4V5JSYwaZNm9SdO3dUvXr1nD4PgQMNCk78SZMmmfKehPgCChUSkNy9ezfCY3///bdLrx0+fLgpPhV3QNRXgQIFnEatbd++XSK+4JP58ccfVdy4PC1J4MLZSwKSGzduqP3796siRYrI/w8fPhSfhdZYogotttqnEi9ePLl9+vSp8RjGhgTH8CBsGNoJhM3SpUtN9+MQ4m0oVEhAkiBBAtWwYUP17rvvSkTV3LlzxbwEBg0aJD6JyExXVvtU0qdPbzjd4R9B1jyEB0KMw2tbderUUTdv3lQfffSRaDP25MqVS6LLCAkkKFRIQJIhQwbVu3dvyfm4deuWrPanT58utzNmzFCdOnXy2dhQy2vcuHFq7NixItiQ65I8eXJVoUIFh/2uX7+uLly4IPfxWcLTpk0bChUScLD2FwnIjHpkqpvl77AaOOeTJEki/hJCgh1qKoRYTNWqVVWlSpV8PQxCvAKFCiEW06tXL18PgRCvwYKShBBCTIM+FUIIIaZBTYUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDTYPIjIeEqG+P+zJkz1dWrV9W1a9ekAjIKWIbf0CpYF6dEja+oKiMTEiowT4WEtABBufk+ffqookWLqjlz5hj7oFbX/fv3XT5m4sSJ1fjx46UIJIAgevLkiTxOSChBTYUEPbi4b9myRQQINjToeuWVV4zeJ4cOHZJ97GnevLl69uyZaCMorQ8h8ejRI7nVG5qCnT59Wv31118igOx7yv/xxx+qWbNm8j7ff/+91z8zIb6CQoUEJbjI//LLLyJEfvvtNymPr0FzLy1UypQpo5YsWSKaij0wf7kKBMy5c+ekHL9mz549Iqig8WggpND/BeX5a9eubTTzIiSYoPmLBBXQOtDjHaYs3bQLpEqVSkrQo/siLujocWI1KM0PQaIbgq1fv14qFoPUqVOrFi1aqDfeeEOVL1+e/hgSNFCokIAHmsJPP/0knRU3bdrk0DkRGgkESdmyZVWcOHF8Os6TJ09K86758+eL6UxTokQJ9fHHH4u5zNdjJCSmUKiQgGblypXqzTffNC7SuCg3btxY2glXr15dxY7tf1HzMIutXbtWfffdd9K4KywsTB5/4YUXpK1w69atxY9DSCBCoUICmjNnzqi8efOqdOnSqbffflt16NBBZcqUSQUKCFuG9oLtxo0bRo979GCB/yV+/Pi+HiIhbkGhQgIG+CcWLVqkdu/erYYOHWo8vnHjRjFvBbLj+969e2ratGlqxIgRRt96CMu5c+eqkiVL+np4hLgMhQoJGCBM9AV27969ESK2goHHjx+rWbNmqU8++UQCDY4dO6ayZ8/u62ER4jIUKiSg6NGjh0qWLJlxG6zcvn1bbd++XSLVNHDww19Ef0tgEMtJRB8WCIgKDGb8z4tJyP+zb98+VblyZfGbaGAeGjBgQFALFJA8eXIHgbJ582b12muvqdKlS7uV6U98x+XLl2Xbtm2byp07twiUMWPGuH2cw4cPq5dfflk9//zzIqhGjRql/BkKFeJ3PH36VAQHTF3wl8BpHeogbBrBCOXKlWPplwAhQ4YM6vz586pu3bpiqj1w4IBq1KiR28d58OCB5Dp9+eWXDgm2/grNX8SvQAHHli1bSqgwQJ7J2LFjJSIq1EHYNDL0tVDBKhhkzJjRxyMjzrhw4YIqVaqU5ElNnTrVlARXaCvvv/++bP4Ky7QQvwE+BAgRnIyJEiVSU6ZMUa1atfL1sPwGe8GKSDjk56DkzIIFC4xM/WAHa2Cs3H3Bc88955ZgGDBggGiXSMoN/zr78j3OwLxHZYhAhEKF+MWFAiceVl+IfoL9GRnyhQsX9vXQ/Jbr16/LBs2uVq1acgF66623VLADgRLdBdnKsG9XTY9hYWESDv7tt986DXWHvzAqAtlnSKFCfJ5d3rlzZzV9+nT5H6VKcCIG8knlDdC/BZWX27dvr+bNmydJnwg/ht2dpV58z6lTp6SqNQJNnIHqCcEKhQrx6aoTEU2oEoxyKl999ZWECrO4omvARIiy+vny5RNTy/Dhw9Xx48el/EvSpElVMAITFDQGX723qzz4fxNd+JYKGpq/CDGZmzdvqoYNG0qoLPIukIPhSWRMqAMB3L9/f8m+b9eunQjoSpUqST8X2POD8fMGQvRb3rx5RWNEjTf8LuGh+YsQk/niiy9EoCAfQ18IiedA48uRI4ckR8J5X61aNbV69eqACEENRlKkSCEmyZ49e0qIfJUqVSQsWJsm3TF/wYx25MgR4/7FixdFKEHb8UczGkOKiU/4999/ZQXXt29fOuRNLq8PgYILD1bLa9asCagCm8HEkydP1LBhw9Ts2bMlgRfmMwSg1KhRw63jIAMfC4bwQFCtW7dO+RsUKsRroJYVbP30mVgLWhyj7D8S7xBJB8GSJUsWXw8r5Onbt68EV/ijIDATZtQTr/DPP/9IiZHevXtLCDGxDjQnQ5dJJMpBc0F3SX7nvuXBgweyqAqFum0UKsQrrFixQiKTEP6K/ApiLRAoECzwVZmVzU08Z9OmTaIxwpcY7ND8RbwGSrqjHztMMsQ74PSmQCHehEKFWOqoRIY88imIf2iL0BTRDIwJksQqaP4iloFwSmQUIxKJ+L5tMaoVzJw5U02ePNnXwyFBDPNUiCWg7Mro0aPl/q5du1TmzJl9PSQV6mVd8JssX75c8icIsQqav4jpoAcKYvFh+vr888/VZ5995ushEUK8BM1fxFSQqAUzCwRKixYt1KeffurrIREnIMt7yJAh6tKlS74eCgkyKFSIqd0J0fYU5diLFy8u1YYZeeSfoM3AJ598ol599VVZABBiFhQqxNSM4T179qjUqVOrn3/+2a2qrsS7dOvWTYoWIn8CCanEfGLFihVhQ/5QsEOhQkzh999/VyNGjJD70FCyZs3q6yGRKECuECLBAH431KQi5nL58mXZtm3bJt939uzZ1ZgxY9w+zuHDh8UCAIEEwTRq1Cin+40fP172QdZ+mTJl1I4dO5QvoFAhpvROb9Omjdx/9913paQ98X+aNm2qPvroI7nfsWNHo+c9MYcMGTJI/bW6deuqokWLqgMHDnjU3gElXlDhGA3YIqs6jdYR6EWENgiwFhQpUkTVqVNHyiN5HUR/EeIpT58+tdWpUwcRhLbChQvbwsLCfD0k4gaPHj2yFStWTH6/+vXr2549e+brIQUN58+ft6VPn9721ltvmfa9Zs+e3TZy5MgIj5cuXdrWtWtXh/MyU6ZMtqFDh9q8DTUVEiOgciNTG1nzyNYOhYJ5wQT6p6M0e/z48dWyZcvEdBkI3L9/P9INbRVc3Re95F3Z1xMGDBggjdImTpwYIWAFvVCi2tBi21XQY2X37t2qZs2axmPopIr/t27dqrwNkx+Jxzx79sy4CKGVbYECBXw9JOIBhQoVUoMGDVIff/yxRIUhxwj2f38mqna89erVEwGpwYVdt/eNricJfBKIXgyPu+l8YWFhau7cuXJ+QHBb2fkR40WIePr06R0ex//Hjh1T3oZChXgMVkPo3giHb6dOnXw9HBIDPvzwQ4nYw8q2ffv2auXKlfL7Es84deqUaBAoU+QMf+zYaBYUKiRGwOzVpUsXXw+DxBAUmEQVaTh4UaIdCwUIF3/l3r17kT4XvlhmVM7q8IITybtm8OD/NSMUVXVX0wKtWrVSkyZNcum90qRJI58ZATP24H9ftJOmUCFuA3Ub/hMIE1a7DR4Q9jpw4ECJCIMpDNFhKVOmVP5I4sSJfb5vVOTNm1fOjbVr10rbbCvNX/CHlShRQq1evVo1adLEME3jf0RjehsKFeJR9WGsanfu3Cm3JHjo3r27+AFgurlw4YLfChV/J0WKFFK4E+cK/B3w3SAsWC/C3DF/4bc4cuSIcR9VvyGUoO3o4yCcGGH9JUuWlA6ryGVBgIEzgWY5Xo83IwENQiPHjh1rS5MmjW3r1q2+Hg6xgNOnTzM03AQeP35sGzx4sC1Pnjy2ePHi2ZInT25btWqV28c5c+aMhHyH36pUqeKwH87LbNmy2eLHjy8hxtu2bbP5AlYpJh6B6BY23yLEvTJGW7ZscYg2C0YY3kE8ggIl+IGTGT1xfvjhB18PJeB58OCBunPnTkjkcVGoEJdAQhmSqRYvXux2zD4JTOBbQd5Kr169IiQJEvfYtGmTRNV98cUXKtih+Yu4xNChQ0V9z5Ilizpx4gQ1lRBZSMDB3LZtW3E6O0viIyQ8FCokWq5fv65y5Mih7t69K1nCb7zxhq+HRLwELg/siUPcgeYvEi0owQKBUqxYMfX666/7ejjEi9gLFK4/iStQqJBoEx3Hjh1rFMhj6Y7QA8IEznqUb2d5fBIdvEKQaLUUJFEhY5d9UkIXNJdCP5CvvvrK10Mhfg59KiRSrl69Kr4UCJUlS5aoBg0a+HpIxEegvcFLL70kLaLPnTsn9aYIcQY1FRIpX3/9tQgUlH6oX7++r4dDfEjt2rVV8eLFJd/Ck5a4JHSgpkKccuvWLekzj2qw1FIIQB/75s2bS10raCvuFD0MRWI5iZpDnxqzKiH7K9RUiFOmTp0qAgUNnKilEICqxai+iwXH5MmTfT0cv+fy5cuybdu2TSpAQ6B4quUtWLBA5cuXTzLyCxcurJYvXx7te7ds2VLlyZNHgmuQxOotKFRIBB4/fmxMflQ/ZZ4CAbg49e7dW+5/8803Edr2EkfQy+T8+fOqbt26EjmHQIdGjRq5fRzUC0Mo/1tvvaX27t0r5e2xHTp0KNLXPHz4UKVNm1b169dPeuR4E5q/SAS+++47aRKEkwKqeoIECXw9JOJHCw6UcP/rr7+k7UHr1q19PSS/5cKFC6pUqVJiOobm7+ni7NVXXxXf5tKlS43HypYtK4LKlUZeVatWlX1RDt8bUFMhEahYsaL01UDNJwoUYg9KtehOn8hf8tWaFBdZdzf7Loy4j8fC1zSL7LWeMGDAAJUuXTo1ceLECAIFvVCi2jp37mzsixbPqLtnT506deRxf4RNukgEYPv11qqGBB4dO3aUDpG7du1SO3bsUGXKlPH6GKJrx+uMH3/8Ub3yyityH4VRW7RoIbXN7EvRP//885LwGx53hWdYWJiUNEJRTmc109zp/HjlyhWVPn16h+fxPx73RyhUSEiBi8PNmzcNJyo29DCH81lvKEkDfwHs0ui0hw3+BGzo3IcNBTVxYUP7WdyiQyJs2MjfwJYpUyaVLVs2lTx5chVs4HO+9tprYv6CtuILoeLvnDp1SuZN5cqVnT7vTufHQINChTgkO8LshYq01apVC2gHPQTH4cOHZUNV5T///FOdPn1abj01Z3gCVpwIzYYfApFT2BCRU7BgQZU6dWoVqKD3OYQKVv+ougD/mzdBZKK72JtyEcmGY4QvO2RWuO+DBw/k1t7k5o6mBZ+m9pfgu/37778dnsf/3v7OXYVChRjMnDlTajydPHlS+s8HCjADYLzYYJLZv3+/unTpUpSvgWaRMWNG2WBKwP/Iv8CWNGlSCd3ERQgbzBfQcJ49eyYbLhS4aGh7Oy5OqOQMswk2aD7oI37jxg1pzKSFG/J97IGwgQMVGxILy5UrF8HM4a8gIbZevXqqQIECPqkHBw0xJsSNG1c2s4+rweIBGu3atWud9ol3x/yFebF69WqHsOCVK1fK4/4IhQoxQOjjmTNnVIUKFZS/gos7TAvr169XGzZskA2JeM7ARRt5Nojvz5Url2gLuIVZyhsd+CBwEAGE8WHM0JiOHz8uG1bEeA6bvbDBGMuXLy/BEjVq1JDx+qvGuGzZMl8PwW9JkSKFaPw9e/ZUT58+Fd8NflsIGnfNX7Ae4PUI40bO2Lx582TxNGXKFGOfPn36yEJm9uzZEQQXFj2wQuD/+PHjy0LAShhSTALClIWV2u+//y4bTh57cNHNnz+/hG9iw6of5iV/zviGBoO8BZzoyD2AwxvaTPjTEQIQkT8ok4KIH1ysSGDw5MkTNWzYMLnQY7GGummoSoDFgifJj8g5wWIEiZQo7AlNUYNGanjOPujAVxn9FCrEL8HqHhE6ixYtUps3bxazkwarLTiH4QTFCg4x+zBZBTq3b99W27dvl8+LiwNCRpEXooG5plKlSlItunHjxrLy9TX4XSDw4avq1KmTr4fj1/Tt21cSGe0v/MEIhQqRaKePPvpIyjrgouUrcwtMQfDpwPm7e/duh+egiaBKLjaMMRTaGcN8ht7mq1atElPT0aNHHZ6HVoawWGzQaHwBSpDAto9VOHxbwSDcreDBgweS9wUzKLTtoAZChYQ2M2fOxMLClidPHtuzZ8+8+t63b9+2TZ8+3VatWjVbrFixZBzYYseObatSpYpt1KhRtjNnznh1TP7KqVOn5PuoXr26fD/6u8JWqVIl24wZM2x379716pgwX8qWLWt75513bH///bdX3zuQWLFihS1//vy2Xbt2+XoolkNNhahatWrJanjQoEFit7UaTDlEasHRCM1Eh18CmLOgMaG2EbKRiXMQUgr7/Pz589XGjRsNXwyil5DgB1MUTITe0DrZx57YQ6ES4sDpjSgpTAPYxdGUyyqQUIi6YkiYQ9ivBtFZbdq0EWHiKzNOIIM6XHPmzJHsbYSDa9Cts2vXrpKoGArmQuIn+FpVIr7l66+/FvNJxYoVLXuPy5cv2z799FNb2rRpDXNNggQJbK1atbJt3LjR6ya3YAXf46ZNm2xt2rSR71d/16lSpZLv30rz1NOnT+W9161bZ9l7kMCAQiXEKVWqlFx4xo8fb/qx4Qvp0qWLLX78+MYFLlu2bCLIrl+/bvr7kf9x9epV27Bhw2zZs2c3vvuECRPK7wHfjNlMmjRJ3qN8+fKmH5sEFhQqIczZs2flQgAHObQJszhx4oStXbt2trhx4xoXtDJlytjmz59ve/z4sWnvQ6LnyZMntgULFthKlixp/BZx4sSR3+f06dOmvc+lS5eMQAvMKxK6UKiEMCNGjJCLQOXKlU053oULF2wdO3aUi5a+gNWsWVNMIoFi4sI4YcrRIJrq+PHjIihxEYb2hc8JTSssLCygPtfatWttderUMX4bCP0OHTrYzp07Z8p7VK1aVY4LTZSELhQqIQxMFbgIjB49OkbHwQX2ww8/dLDj16tXz7Z161abv2B/8d+zZ4/t448/trVt29ZWt25dW4kSJcRMlDJlShGIWNlrFi5c6BC6G34bN26cse/+/ftttWvXtrVu3drWp08fee7nn3+2HThwwHbv3j2bv4DfBeO092/16tXLdvPmzRgdF58Xx6tQoYJpYyWBB4VKiPLXX38ZFxWsvD0BpqyxY8eKI9g+XwLOd19x69Yt24YNG2RcnTp1ktVzxowZbcuXLzf2mTdvXpSCYtq0aca+eF2yZMlkS5Ikie25556zxYsXz9j322+/NfZdsmRJlMe1F943btwQDQ7j9RWbN2+WXCA9vtSpU0sezKNHjzw63vnz5w1z6pUrV0wfLwkMKFRClAkTJsgFAIlrnvDHH3/YChQoYFyQChUqJBdgX5mDMJ6cOXNGekEfOXKkse/Ro0dt3bp1sw0dOlQSL5cuXSqrdzx+8eJF27///hvt++HCi8RNmMDsL6oQMkOGDLG9++67tqZNm4oWBA0IY7DXgH755RdjbLlz57a9/vrrYo7csWOHxxd1T8DvBWGIxDw9noIFC4qpzBO072bq1Kmmj5UEBhQqIQrMUzj5cWF11yH76quvOqxuIaC84YDHxRZhq4MGDbLVqFHD9v333xvP7d692xhT1qxZbQ0aNBAT1KxZs2zbtm2z3blzx+ZLoJncv3/f+B9BC/aRWfYbtCFc6L0Jfr8pU6bY0qRJY4zjtddeE43WHQYPHiyvrV+/vmVjJf4NhUoI8uDBAwkvxcl/8OBBl14D5zXCjmEG0mVUsNrHxdJKIMSgTTRv3tyWPHlyh4sv8jHsBQ60lWvXrtkCLfQXJTxwMW7YsKGh1Rw7dszYZ/bs2aL14Huw2qyE37Nr165GGRj83pMnT3YIXoiKQ4cOGX4ab5eMIf4BhUqIgogmaBiumKtOnjwpvhJ9MYeJA5qB1eACal8PTGtGEDAQcPgMwQYu3ocPH3b4XV5++WXj8+P7KFeunO2rr76ytCYaghkQBq7fF74XRMBFB8atzZAw8ZHQg0KFRHmBGzNmjC1RokRykYCjGg5w5D5YIUDgJEZUlj2lS5eWBM3+/fuLGcuK9/Z3cIEfMGCA+GfCm8ogYFzxAXkCvmv4omCO08mTmA/RaS3QdLB/586dLRkX8W8oVIhTYEtHNVx98cJ9s1fGDx8+lJDdl156yTC3ILLKPtveqgtmIP8uEydONCoVQ4O0Bz4ns7+zP//8U/KN9FyoVatWlL4WBD5gP/iMAiWPh5gHhUqIARNGixYtpNx9ZCC3QocJY5UKU5OrNnVXQBJhz549HWqB6ax7rIR97VQPFFAFATkwGtT2QkIjvldofBAGZgHhgDwU7YuD7+enn35yui9ycnTO0pEjR0wbAwkMKFRCDJ2ghpVueLDC1aYLbMWLF7fEb6GLWGLLkCGDRGm5Yq8nUQMtJVOmTA7+F0T5rVy50jSNAWHX9mY4BGs404w++OAD2+eff+529BgJfChUQgxE58A+P3fuXIfHUapDF5fEhgx5mKdiCqKy5syZIxc2+wijRo0aiUbEWmDmgu9z8eLFDhnz2IoUKWLbt2+fKe+B3xSapn3ghplaEQlsKFSIhLQiqgoXCJi97LPPPQVJgdCKdC4GBBbt694F2h+SMGHChNnqn3/+MfX4yKXRZlLc2i8cSOhCoRLC4CIPU5QO24VZI6bOeJhC4IPJnDmzsZJNly6d7YsvvvBqpjj5Hwh8CL9QQC8b+K9i6tSHhosIPZ279M033xiLB+QMwe9iRal94r9QqISYRoJoK5ifcDFB+XN94Ue1WvuSI54Aswuy2e0z25ELg2RL4j9s2bLF+I2gSSJoIyah2pg3KM6pj4mCmphfSNjE/yhbQ0IHCpUQQoeF4iTXyYxYXWLFaoZpCrWtcExoKdBWGA7sn+B3QViyvVMf9b5+//13j4+J+YN5pNseIFnyyy+/lPpwVjSAI/4LhUqIgNWkDgfVfg6UPYnJhQSRQPavx4UFq96YajzEO0CDRGa+Lg2DDa0AYtKwDdpw0qRJ5Vh58uQxtREYCQwoVEKENWvWGJqJbuuLciCegDwSRP/onIiY9uEgvgW/X48ePSTxNEeOHDFeFCB3RptB4U/bu3evaWMl/k9sRUKCb7/9Vm6fPXumChcurLZu3aoKFCjg9nF+/vlnlT9/fjV8+HD15MkTVaZMGfXgwQMLRky8RYoUKdQ333yjDh8+rGbPnq0SJkwojz99+lT98ccfWHi6dTzMr23btqmiRYuqf/75R1WpUkUtWrTIotETfyMWJIuvB0GsZcWKFapevXoiUPLkyaO2b98uFxJ3uHjxonrvvffU4sWL5f9cuXKpMWPGyHEDiYcPH6rLly87bJcuXXL4/++//1ZhYWEiNPWGC2ycOHFU3LhxjS1RokQqffr0KmPGjMaWKVMmh/+xJUiQQAUiEyZMUF27dlVNmjSR+/gs7nD79m1Vvnx5deTIERU7dmy1dOlSVbduXcvGS/wDCpUg59dff1XNmzdXjx8/lv/37dunihQp4tYxcJHNmzevXCRwMe3Vq5fq16+fXFT9mStXrqjdu3erPXv2yC22v/76y2GfePHiRRACGTJkUM8995yDAIFAgWCxFzTQ0PAe4YWU/q41WbJkUSVKlDC24sWLy3v4O8OGDZPfGZ8Vi5BRo0ap1q1bq1ixYrl8DHz3+MwA3yM0loYNG1o4auJrKFSCGGgVLVq0kIsCSJ06tbp69apbFwVNp06dRCBNmzZNzBv+Bi7uu3btMoQHNmggIGXKlMYFPV++fA7aRKpUqWQVbRbQBm/cuOGgBR07dswY082bN2U/jMFe0JQsWdIvBc2BAwdU+/btZewAAgFzIF26dC69HpcXfC6YwbQQX7hwoWrUqJGl4yY+xNdOHWINqBSre6mjhhduURrFVZYtWyatde0jhfyppAoKXKL17qeffiolSOz7raBECeqJIcQZ5UP8JZMf48B4MK7evXtLtV+dkY6taNGi8nl27txpagHPmILfHR1C48ePbzjfV61a5fLrmzRpYpSK0ZWo2WsleKFQCUIQ1qmrxKL1rz6phw0b5lIOQ/fu3Y2ik/7UvwSCDaVB3n77bVvGjBmNarlvvPGG7YcffrCdPXvWbwSIq2C8GDfGj8+hw3vx+fA5sTjwl+TR/fv32woVKiRRfxB8roJ8FXwmNBtDi2Lch4ByRzCRwIFCJQizpXVTLWQ0oygkVpb4H1VsowI5BcWKFTNWzhAuZhSVjGmJkWnTptkaN25sfK4XXnhBQmDXrVvnV9qTGeDz4HPh8+Fz6vYD+Pz4Hux7zfgChBujbXP4x6ICnwefI0uWLPL5mjVrJv8nTpzYtnXrVotHTLwNhUoQgbwTvdJFEhsEAloB65VhVCc/NIAUKVLIvmnSpJH/fbl6X7t2ra1ly5aicSG3pmLFiqJpIeEy0LQRT8HnxOfF565QoYJ8D/g+8L3g+/GH7wGVj9G+4Ndff410H/RX0flRFy5cEG0Ypj/8jzl38OBBr46ZWAuFSpBw/vx5WQnqZlc4kQEy3PEYLkrOgO3+s88+M7STsmXLyonvC7AKR4Z37ty5ZSy4xf9oNUz+a7ns7Pvxpfby5ptvGnNn4MCBkfqC4C/CPqg9BzA/y5cvb2gw7LsSPFCoBAG3b98WWzdO0Hz58kl1WA3KkcOWDbt2ZK9FOQ28FmXSfWHuQo8X+A9g3oJGBd8CTCb+sBL3R+w1OXxf+N46derkcYWEmIDK0/aN3eC/u3v3boT90K9e9+nRQBjmzZvXcOKz42dwQKES4MBGDVOX7qIIp6+7HDt2zDZ79mybt8GFURe5xNix0kVLXOKe9oIOi/j+dP94fK/eZvr06UZ0GLSS8JrHrFmznGrMiIbTPr86deoEnY8sFKFQCXB0pBZWq65G5KAWU/jOj95kz549cgHR4c4Yi68DAgIdfH/4HnWgBb5fb9fcgtNdCwhUqrbvBom21HgcRU3D/9aYtwhGwPPvv/++V8dMzIdCJYBBNJA2OyD3ITzIM4Gj3t6MhMidJEmSSIlyb4d0olnT66+/blSwxZhp4jIXfJ/4XrVJE9+3N5tkockbyt0jV8i+KRvGpYNInC1+4GvRc/nbb7/12niJ+VCoBChI/NPmhkGDBjndB2YRPN+xY0f5/7vvvpMcAzxWrVo1r1UXRil12N3x3ujhMWXKFJo5LAYX9MmTJ0u+C753fP/eCni4deuWbOGBmRaJj8jJcYYOGMG83rZtmxdGSqyAQiUAQa9xXVoc+QuRRdwg1wEn6NixY6Upk24bjNWrNxpoIQigX79+ko+A0FEEC9y/f9/y9yX/A983suHROwe/AzL28bt4C2go7733njTqguYcVVg75rHuFomIsKtXr3ptnMQ8KFQCDJx4OsYfJg5nK0J7IDygyWjTAlas3igBAhMMeq3Aht6rVy+fJ+2FOvj+P/roI/k98Ls4M5dawfLly425h/710YEIMG26g2bjT+VqiGtQqAQYWHXqLGuE4rpSskWf1H379rXchwEtqkWLFkZGv69yXohz8HtobQC/k9XaAOYb5p2eg1988YVL5WB0l9LBgwdbOj5iPhQqAVaCRfcARwhnVGjhoc0PrpzMMQXOVqyCUSQRdnM64f0T/C7ff/+9/E74vXRCopUgXFwLFvjVoMFExYwZM4xOpZj3JHCgUAkQYObSveXhE4nugv3OO+9IQhkuGFZf3LHaReFKrZ0wAz4wQACFLjaKQo9Way1ay8aG/KToQBIs9s2ZMycTIwMICpUAoW3btnKCoYd4dI5WOOXhmMX+P/30k6XjwvGRm4BVL1a/1E4CC/xeiArE74ffcdGiRZa+HyIRMS8RNIK6Zq4upDD/SWBAoRIAoPeEPhE3btwY5b64sOvVIDb7nihmgpWjzjnBaherXhK44PdDJCF+T5R/sUozgBBDRKCrybcbNmwwohYXL15syZiIuVCo+DkwSaRPn15Oqp49e0brlNd5KNiyZctmyZhQIr9gwYK2pEmTyio3FLQT1CJDmCsYMmSIrWTJkpJECp8ELsYodRPo4HfExR6/K35f/M7eet+o+Pjjj41SPjdu3PDKmIjnUKj4Oa1bt5YTClnKUcX4oyQHLnLY98UXXzSie8xmzZo1YipBr48jR47YQoUPPvjA1qVLF7mPEijI+kb0HUq/16tXTwS4rgwd6OB3zZUrl/zO+L3NZvfu3RI4gkUQaoShWjFK90QG5r0uPEkzmP9DoeLHoMKwNntFlWGMsveIqNGZ8g0aNJD7I0aMMHU1iQQ2RJ/ByRoseSf9+/d3MBfab1WqVDH2w0X2t99+izSMGvuvX7/eFizg961Ro4b83vjdzUSHGLdv395YNGH+RlX+fvPmzYYZ7Pfffzd1PMRcKFT8FLSQxYVMl6SP6mJfunRp2Q8mC5gHdFE/s0IxUQAQpdV1N8hgKrGCMu1wHpcrV078CthQnh3fpRac0EhgEoqs6KVuhBZszabwO3fr1k0+G0rX29fyiglo6KW1bzjjcYv/UQzTWdn88MVTcV5E122S+A4KFT8F5TR0tdfoor3QJhgmr3PnzokdXNdPMqMUC1bhWLGjZhMKWAYjuFjZayXQXhCOrYGppnnz5k5fi4zv+vXrR9oELRiYOnWq/P74jswIO0Z7A60Nov4cqhnDN6WDPiLLosd5oDXyAQMGxHgcxBooVPwQnGRoG2vfKS869IkIx7nu/hhTsPJ+/vnnRfOJrr99MAsVaIKR9ZvBCh5hr8FeOQBRh7jwYz6YoZEh9wTzVPe7h3krugKpYN68ebIPzg9vVl8mrhNbEb/jww8/VA8fPlQ1atRQzZo1c7rPmjVr1JEjR4z/Y8f+76fcunWr3JYtWzZGY9i1a5eqXLmySp48udq5c6eqUKGCCkUuX76s9u7dq+rXrx/huXfffVctXbpUrV27VmXJkkUFMxUrVpQ5gflQpUoVtXv37hgdT8/Pbdu2yW358uXVxIkT5f5nn32mfvvtN6eva9GihapZs6acHx999FGMxkCsgULFz1i9erVavHixihMnjho9erSKFStWhH3Onj2rmjdvrkqXLq127Njh8Jw+ScuVK+fxGCCYINDy5s2r1q1bp7Jly6ZCCfvvfMmSJXLBS5UqlfEYNHwIFPxOEO45cuRQoQDmAeZD7ty5ZX7oBYwZQgW0b99ede7cWRUpUkTly5cv0t8G5wXOD3z/GA/xM9zQaojFwISlO/ehXpcz4CcpUaKEYeKydx7Dua/zVDxpK6zzMVAivXLlyiFTGiO8+QvVdJEbhG6F8JeEr66L0GJULMB3pZ372PD9hwKYF5UqVZIQdk8j3tAPCPMUjbvsfSiYz660R8BvoJ37rGTsX1Co+BE6Gx6RRpE5RNFuFfukTp1aHPPh7d46ScyThERcINCWGCHDodT3JLxQQbSXTjhFtVxEd9kTWQhyKHUsRE4OQo4xXzwRLIgkw2vxvUWV7xT+u7d39idLlkxeH5m/i/gGChU/ARoI6npFVe7bvjfF0qVLIzz/5MkTKRvuSRw/wo+x8oRACZUVtyt1zfLnz+/rYfgtmCcQLJg36E/vLhDkmMuILgsPFkXoBIkqxc7muq5soAtOmhXuTGIOhYqfMGHCBDlB0P7VWWY2Kv/q/JPITGOegp7hWPXB5BUsWeFmgIxv5FSQyMF8gSkM5sBdu3Z5lATZpk2bKPNSoDUitN3Ze+tzAq2TiX9AoeInWgrqSuHkGDdunNN90LUPzxcqVMjUxC+Eh8KuXbZs2ZDxoRBzwbyBfw9lXdwJN162bJnMaZT8cQbmuU6MRP6KM5PuqFGjjHwuJkT6BxQqfgBK1etSFZGdGFDv0egItaacgRIXWPE5MyVEBlZ/yLFATgaS0AjxFMwfzCPksbiaIInqD9qcG1kPHtQEQ+Il9pk1a1aE53G+6AUZziPieyhUfAyEBYoR4qQYM2aMx8f58ccfjWgYV0CUDcxdMB+Ed/gT4gmYR0iQhK/EVR9Hu3btbJ988kmUjd1Q0UBHijnbD+eN7jUUTCWEAhUKFR8zZ84cw27szEEOYRFZzSl7Dh8+LI7NyMxn9sCMgFpeWAEGc6Y88T6IQMS8QqUBs4CA0qH2r7zySoTnEamoy7y42qeFWAeFig/BxR0mA5wMznrI6+Zc2McVweIqqDrrSp97QjwBNeIwvxB8YhZo7QCfDUxcznwrOhIMPsdQ6O/jz1Co+BDUPcKJgGTD8KXkUa01a9as8nyvXr1Me8/Vq1dLOXNE1hBiFahujERcV/qxXLt2TaLsonO0RxWZCJ8OziOcL6tWrfJozMQcKFR8SN26deUkwAkYWbc72ImjS0Q8ceKE7eeff462xwkqGGO1h1wU2p6JlWB+YZ4hSTeqDpLQKhBGj7mO1sGu4iyLHi0icJyGDRt6PG4ScyhUfAQqrOqmQ+GzhiEkdMTLkiVLoj3W559/Lvu++uqrUYZ9okcIwjeDpcEW8W8wz9D7BCapqMLV0VYAnR2R3OsKSIbMly9fhBbOKKujm9pFlolPrIdCxUfovJOXXnopwnOoN4XnoMm4Yh+uXr16tCGVr7/+upR/CaUWwMT3IIAE865ly5aR7uOuv1CfH840ErR2xnNotEZ8A4WKD4DtGGYoTP7wGdvI4sbjsEeHX4lFljiJ+lRR1VBCuRE8j14rhHgbRGRh/i1atMiU4+G80IVTw/tPdFfJNGnSmNKkjrgPhYoP+OGHH2TiwxGPel32ICO5Tp06UjjSFXQRSeSbONNqkIiG5yLLSCbEajDvGjduLPMwqsRIaCyuVnVAqSLMe3Q8tT+H4MvR3SHnz59vyviJe7Cfig+YOXOm3LZt21b6QthTqFAh9fvvv6uvv/7apWPpfhJonOSs9wr6fjx58kQaIDl7nhCrwbybNGmSzMP33nvP6T5Dhw5VKVOmVCNGjHDpmP3795eGYQcOHFDz5s0zHo8bN670ZQFTp0416RMQd6BQ8TIXL15UK1eulPtt2rSJdD+cHK6wfv16ua1atWqE53766Sc1f/58NW7cOJUhQwaPx0xITMH8Gzt2rAiARYsWRXgeTdAePHggTc9cIXXq1KpXr15Gp8jHjx8bz2mhgoZ3ON+Il3FTsyEx5MsvvxTVHJVd7Zk5c6aEFl+8eNHlY8FcoHtSoAdI+LpeyDJu2rQpzV7EL8A8hBnWmRkMEY+Yx+hT72rrBeRy6SrF8BvaU6FCBXl8+PDhpn4GEj0UKl6maNGiMtmnTJniIBx0/a+RI0e6fKzNmzcbTsnwgqNFixaSIxBVTSVCvA06ZCJIJXz4O+YvKg27m7wIv8lvv/0WYf7rVhKu1sIj5kGh4kV0HD0y2pFFrEEvCN2x0Z0GWbrQ3ssvv+zw+IIFC+RxBAQQ4q8dThcuXOjweKtWreRxFJiMKTi/dITY0aNHY3w84jr0qXiRBQsWyG3NmjXFJgyePn2qhg0bJvc//vhjlShRIpePt3bt2gj+lDt37qh33nlHNWvWTL366qsmfwJCYs5rr72mmjZtKvMU81VTrVo1uXXVrxIeHAvBAADnV40aNeT+4sWLTRk3cQ0KFS8Cxzlo0aKF8Ricln/++aecBB07dnT5WA8fPlSbN292OBnB8OHD1d27d9Xo0aMZ7UX8EszLMWPGiBD45ptvjMerV68utzt37lT37t1z65iIGsuePbtauHCh8RgWVsBZYACxEDe0GhIDLly4YJSQ0K1RYQcuUaKEPN6/f3+3joc6SeHzU+A/QVE9MwtQEmJlVQnMV3u/H5p8YV7DT+IOAwYMkNeVKlXK4XzQpZDYM8h7UFPxEkuXLpXbcuXKqbRp08r9TZs2qd27d4vJq2vXrm4dL378+Kpx48aqSZMmhkYyaNAgFS9ePDGjEeLv9O7dW0LnBw8ebDymtW5t2nWVLl26qAQJEoiWs2XLFnksffr0qkKFCnJ/2bJlpo6dRA6FipeFSoMGDYzHnn/+edWzZ09JCNOCxlXKlCmjfv75ZzV58mT5//Tp03IfAgUx/4T4O5inmK+YtzABx8Svki5dOtWqVSu5P3LkSOPxevXqyS0Siol3iAV1xUvvFbLA/6GTu/bv369efPFF09+jZcuWkgh58uRJ9dxzz5l+fEKsAOfECy+8IMLku+++U3/99ZfKmjWrih07trpx44ZkzbvKoUOHVOHChaVKxblz51TmzJnV3r17VfHixVXixInleNDwibVQU/EC27Ztk5MH6jgmfUy5dOmSrOz0egAnzg8//CClKyhQSCCB+Yp5+/3336t9+/apLFmyqNy5c6tnz56pDRs2uHUslDiqVKmSRFROnz5dHitSpIicd/fv3zcCW4i1UKh4gVWrVsktQhzh/8Ck79y5s/rjjz/k5HEXmAty5coldb1Anz59VJ48eYzyFIQEEpi3ECSYxwBaC3wt2iTmDjivwLRp0+TcgsZTq1Ytj/w0xDMoVLwAahDp/BQAYQLB8PrrrzvULHKV69evy0mHVRhOlBUrVqgvvvjC5XphhPgTCC7B/IXfAwVSBw4cqG7evKm6d+/u9rFefvllCQBAfT0IFIBiq/Z18oi10KdiMWFhYWIXhvCAMz1nzpyqefPmkrOCk2bUqFEeHRfqPH46JJHBVrxr1y7mpZCABXO5RIkSKk2aNLLoMpMTJ06ovHnzSnTYrVu3VMKECU09PnGEmorFIGQYAgVVWnPkyCErsF9//VWei4m5Co5HOCNhWuvRowcFCgloMH8xj6FhHDlyxHjcjDUvTGsZM2aUgJkdO3bE+HgkaihULEY7B8uXLy8nDrJ7IWQQAeZJFJguQwGQlYyT5ZVXXjF1zIT4AlSawOIL8xqlVUqVKqU+/PBDj461ceNGKVM0a9YsOe9w/gEKFeuhUPFC5BfQkxpRLgD+FE9AKYuSJUuKhjJnzhxJ+mKYJAkGMI8xn2fPni0aPUy6njrXt27dqn788Uc5FihdurTcUqhYD30qFoN6ROfPnxcHJCK0EDuPr/zMmTOS/OgOqIeE7njQVuCMRL2jCxcuSOIXIcHA33//rbJly6b69u0rZiuECCNvxV1wfsF/CWf95cuXxaSGqDKcj2fPnrVk7OQ/qKlYCKK0IFBA0aJFRQDky5dPsuHdFSjalAaBghMDjn44/ClQSDCBnBJEcEGjhzbviUAB8F9Co0dYMUzOCAKAGQx+yKtXr5o+bvI/KFQsBEmJADkliACDCo4Vk6fRLbofff78+SVz/u233zZ1vIT4A5jXiNhyN/kxPNrXCKGSNGlS0VzAwYMHTRkncQ6FioUcOHDA0FLsSZYsmUfH0/ZlhEXClFa5cmUTRkmIf4G8Epi+0NP+q6++8thZj4KrejGGdhC6mgWFirVQqFjI0aNH5bZAgQKiciOk0VNwUsBxCfbs2aM6dOjAMGISlGBeY34vWbJECk4iGgx5We6ChRfqiiHaEqHKFCregULFC0IF5iqUoEBRyalTp3p0LJTJR3kXVDOGX6V169Ymj5YQ/6FNmzYiDHDOYL4jmssT4YSq4MWKFROHfcGCBeXxY8eOWTBioqFQsRA9eeGcRwkKFJWEk90T9EmFbGCEJ8OhSUiwgvmNea4LpHrqX0EnVGj26DsEkxqAP5JYB4WKRcDvgegvgJXWxYsXpRmXp34Qne9y5coV1bBhQ1PHSog/gnn+zz//GJq6J6AMvgamMIBjopUxsQYKFYvQsfAwV+mEK3Sh86TuEMIit2/fLvdhEmjUqJHJoyXE/8A8f/TokdyHP9GTit4a+GRu375thOCfOnXKtHESRyhULBYqyEfR1VF1tVR3OX78uKysUIUYqy0UxyMk2IHZGOH4mPcIVMF54Ako1YKk4Q8++EDyV4DOHyPmQ6FisVBBdnBMhYo2fcHZiNUbo75IKIB5jvmuS9ij/7wnID8FGj6ShzNlyiSPocMksQYKFYtAd0aApCvYcFHXCAXyPEGbvmAKoOmLhKoJzNO6XcisR88W+CN1jhiFinWwq5OFNYwAan0NGTIkRn0cRo8eLfbk+fPni1+GkFAB8x1tHuAT8VRTQYAM+tRjcaZzxRA4Q6yBQsVioYIwRsTcxwQ0F8IJhWgYdnckoQQ0DFTmRiIketjDjIXH3KVcuXIiVK5duyb/61tiPjR/WYQOhTSj4CPUdpxQSOQiJNRAXxQAM5inOSYoKGlvlqZQsQ4KFYuAuQvs379f2gh72mEAfVN09jxWW4SEGvYm30OHDnl0DJi/dEl8oHPIiPlQqFgEYuIByrMUKlTI4xh7FJFE3SKYwBBJRkiogSoUyKxHbxVPw+nxOizOunXrJv/fuHHD5FESDZt0WQC+Uth9UatLR5946mREGGS7du1UkiRJpNwEIaFI7dq1xeH+yy+/xOg4iPpCjxb4JuGfIeZDTcUC/v33X0OgAF0d1VPVH5EvL730kkmjIyTwgE9k9+7dMT6OriWG0kk6VJmYC4WKBYSfrMgMjomTHs5FbRMmJBRBpWGEAS9evNhjYYDX2WfSe1JOn0QPhYoFhO+boqujusvNmzeNUvk6eoWQUETP/2bNmhnOdndZvny5CCdNTPobkchh0oMFhJ+saBbkCcgg/uyzz6RMhSc97QkJFlBqBRWH0Zbb0wrDqCNmT0wKVJLIoVCxgPCTVffGdhddSTV16tSs90VCGsx/1M5DmRVPyx3pYpIae78nMQ+avyxAF8BDhMk333wjUSuegPwWQC2FkP+iKGPirEcEJVpRaChUrIFCxQK0VoHbHj16eHycP//8U25Z6p6Q/wJeLly4ECNfCMKJNSx5ZA0UKhZqKjFdCeEEcqa2ExKKoKcKqFu3rsfHyJgxo3EflcOJ+VCoWIA2d8G3cuLEiRgXpQzvYCQkFIFvERw9etTjY6RPn964T6FiDRQqFqATrIAOCfYEXZ8oJnkuhAQLOjRf19XzBHsth0LFGihULMB+suqmQO7y4MEDycwH9KkQoqSVNsB5oc8NdylfvrzcIjzZ0wAaEjUUKhYABz0mLfC0MZcunQ8Qm09IqIM+8xpPqwzrHBcs9himbw0UKhahhYqnaKECrYeTn5D/Fms6YstToYKyRwBVv4k1UKhYHAGGwnWeoOsScfIT8j+05u+pUNF97lECiVgDhYpF6I4Cnha/CwsLk1sKFUL+B/rVx8RZrxdr1P6tg0LFYu7du+fR67Qj0j6SjBB/Zvz48VL9AdpEmTJlDK3ACk3F014oOteFWAeFikVUq1YtRuW1mzRpIs7Ejh07mjwy4glVq1ZVM2fO9PUw/Jb58+dL9Yj+/ftLM7kiRYqoOnXqOAScmAGa38VEqOiOrCwmaR0UKhaBEyomtl/4ZJCRj3pFZjNgwABR/51tuHgS4i4jRoyQBRC6lBYoUEBNmjRJtOwZM2aY+j7aUe+pUNGOemIdFCoWkTlzZqN9qafAyW9FfaKePXvKBaBcuXLq8uXLsn344YeqYMGCatGiRaa/Hwlu4DdEoceaNWs6LIrw/9atW/1KqKDRF6BPxTooVCzixo0bDkUh3WXt2rVysm7atMnkkf1XrRWrSIQrZ8iQQTY8hhM2VapUpr8fCW6uXbsmWrV9CRSA/83WDLTZytMAmP3795s6HhIRChWLwMof4KRCdry7oGYYIsiOHz9uwehIdAwZMkQErd42btyoOnfu7PCYfWta4h10KLC2BLiDfcSY9s0Q82HtZ4uwn7TQVgoVKuTW6xE9AxUdt8T7QIC0aNHC+P+NN95QL7/8srSz1WTKlMlHo/Mv0qRJI8m+ugCqBv9DCzYTVJeAudaTAIAjR44Y91n3yzqoqXhBqHiibRQtWlQmvrvCyFNoY3YEZkDUmtIb6kSlS5fO4TH24/gPzFP0kF+9erWDmQr/w29nJvgNMFfDm9pcwd6/yfwv66BQsQj7qK3Dhw97dAxctDzNyHeXpEmTiqkuJqX6SeiCcGJU5J41a5aUpu/SpYuE0yMazEwQao8EyMaNG7v9WvvFnac1+Uj0cKnlp0IFhe+wItONurwRAv3VV1+p4sWLe5ywSUKXV199VV29elV99tlnsjiBpv377797pFFYFRF56NAhuYUZs379+qaOi/yPWDZdT4SYCkps63DK/PnzO9hzXWHlypWqdu3aou6Ht1UTEqoMHDhQTZw4Ufwq7oIWEtDEV6xYIecWsQaavywiRYoUDmq3u5n1adOmlVuWlSDEsRQMIsDcXaRB+z558qTcR7Y/sQ4KFYto3769GjVqlAgHOC337dvnkVBBDTCWlCDkvyKtyIl5+PChUVjSVQ4cOCCvR6Qa7p8+fdqycYY6FCoW0bx5c9W9e3cj+mXnzp0eCRWcCCzTTch/OSp6geVuqPL27dsNCwJMX9B4iDVQqFhMyZIlHSa1O2GaOuzR7KJ8hAQi2o+C8G53Q4K3bdtmRDkCs/NnyP+gULEI2HAhSPQkRrkVd2MidH97ChVC/pdnYu+vdFeo6OZ5FCrWQaFiERAoZcuWlWqtCIHECeFuWY/UqVPLLXNHCFGGo12bhl3l3Llzcu4h61+XTKJQsQ4KFYvIkiWL3F66dElyPwDqR7lDzpw55RaORUJCnVOnTnlUHmfdunWGKRoCBqCZGLEGChWLyJo1qxESXLp0ablvX8bCFZDfAo4dO2bBCAkJLHRGfJ48edyu+A1gOYCmgqTi7NmzWzJGQqFiGSgtryup5s6dW27/+OMPt/wqxYoVk9szZ85YNEpCAk9T0cEvroDzbc2aNXI/V65chqbD2l/WwTItFoKig2gKhJItqDUEUxjqIqEzniugaRbA6wgJZSActKP+xRdfdPl1SJJEqSOcf6gbljJlSo9bfBPXoKZiIVpDOXv2rKpcubLcX758uVtCCYSFhTFXhYQ0iIBEIrC75i99vlWrVk1M0q1atVKdOnWybJyEQsVStE8EBSV1AbslS5a4/HpoODokmQ2hSCiji7KiJQHyVNwVKvXq1bNsbMQRChULQebuN998I10gGzZsKI9t3rxZXb9+3eVjjBw50iFnhZBQRLfV1tq7K+A80xGXECrTp08Xpz3KvBDroE/FQtBgy77JVuHChdXBgwfV0qVLVZs2bVw6htZwdu/erXLkyGHZWAnxZ3QJ/Xfeecfl18Aq8PTpUykgiWrfHTt2FN8MSvObXZKf/A9qKl4EfRzADz/84PJrkKSFaJU9e/ZYODJC/Bv4JRFN6epiDPz000/GeacLSmbMmJECxWIoVCwGvpDvvvtO1HD0Ode9UlztkaKbEo0dO1bdunXL4tES4p9AU0fLYldBYAtC+EGzZs3U3r175b5ORCbWQaFiMTNmzJCIE7RahT0YiZCotDp//nyXXg+Bgi6QqCW2a9cuy8dLiL+BeQ+fijuZ9PPmzVOPHj0S0xdC83fs2CGPU6hYD4WKxehsej2ptbYyd+5cl48BWzCAXZiQUGPmzJkSVq+TH119DWjbtq3cbtmyxejISqyFQsViypQpY5SYQA9v9PJGYTv0V9EF8qKjR48ecututztCggFdWbhp06Yu7Y/zBIs4aPktW7aUHBctkFCqhVgLhYrFoNKwjgCDXwVOwlq1asn/8LW46qwvWrSoRI0REmogNBgli1yN/Jo1a5YROQntfuvWrfI/Kll4UjafuAeFihfQ2fQbNmxwMIFBRUfIoyvAFoxoFl0cj5BQ4PHjx5LAqPO8XAlsmTNnjtzXkWINGjQQy4DO+SLWQqHiBapUqSK3urAdQhyRGYwy3K5m2N++fVvKVIwZM8bSsRLiT0yYMEGiHhs1auTS/oj4QodIWAh0jhfMzShCiWRkYj0UKl6gevXqUm770KFD4ldBmYm3335bnnNVSGjtRveGICTYQV7Jp59+aiyqXAGh9wARl2jJTbxPLJu7PW6JRyxbtkyVKlXKiOBC/gqacMH8hSx7+8x7ZyCsGPZg/Fzor5I3b14vjZwQ34CERYQEQ9PA/Ec7iejqg+E8wgIOjnmcXzAZwxrw5ptvqho1anht7KEMNRUvoZ2GmmzZskkpbvvVVVSg9hec9dokQEiwo8OC4aSPTqAA7TNBlJjumop8MDju169fb/FoiYZCxYd069ZNbuFYvHHjRrT765LdriZOEhLI6HneunXraPdFhQqd+4UCrtrJv2LFCrmv/SvEeihUvJxdD6e9bitcqVIlUe+R2IWM++hAjgti9nECwT9DSLACUxaa08GUhVyT6Jg4caJUH0ZeWLly5YxoS5jN0qZNK6Zn4h0oVLzItm3bZKIvXrxY/scJ88EHH8h9lMiPriMdfCq66x3KeBMSrEyePFlusehCJFdUYFE2fvx4Q0vBeQUWLlwot4gc0wmUxHr4TXsR7UNZtGiRkZ+CqC70zkZUmD4xoqJr166GyYwxFiQYQW282bNny/3u3btHu/+0adPUtWvXVPbs2Y2se5xfOM/AK6+8YvGIiQOI/iLe4eHDh7aUKVNCEtjWrFljPD5z5kx5LE2aNLa7d+9GeYx79+7Z4sSJI/tv3LjRC6MmxLusXr1a5ne8ePFsYWFh0Z4P6dKlk/0nTZpkPL527Vp5DOfbo0ePvDBqoqGm4kUQN697qnz//ffG49BW0M8eq61x48ZFeYzEiRMbZV4+//xzi0dMiPf5+uuv5bZOnToqYcKEUe6LPC/U9kK0V/v27Y3HkSiMsizQXOLFi2f5mMn/YJ6Kl0FWPeLl4R9B5q8+aWDOQpQLMu3RkEj3po+sFDgcj7AT4xisXkyCBSysUOsO5ivUyqtYsWKUPVMgTJBxj8gvnSCswaUN/hZXwpGJeVBT8TKI/sqSJYucCL/++qvx+Ouvv67y5MkjocXRZdmj5ETWrFnF9uxOF0lC/B3kmkCgoMtjhQoVotx3+PDhch4h4fG1116L8Dwc9hQo3odCxcsgO/itt96SuHn7pkMo0/3ZZ5/J/S+//FI0kKiYMmWKSpAggYRMEhIMoBikNv9+8sknRhSXMxBWP2rUKLk/ePBgOa80v//+e7SRlMQ6aP7yAfjKnZ0w0DwQY49eEKiwqjOKo0qGhLaDwpSsc0QCHeSZYKEFc+6+fftk0RQZnTt3lrBjNMFDqL4+n2A6hkksefLk6syZMyx17wOoqfiAyFZg8JFo0xdKS2zfvj3ajPwrV65I4iTXBiTQWbBggZh/Ua8rKoECnyI0de3Utz+f9LkAnyMFio8w4sCI1zl//rxtwIABtn///dfh8TZt2kg4ZKlSpWxPnz6N8hhZs2a1xYoVy7Zy5UqLR0uIdTx58sRWrFgxW61ataLdD+cFzo9WrVo5PIfzKH369PLcwoULLR4xiQwKFR8BYZE9e3Y5AebMmePw3KVLl2xJkyaV57799tsoj9O0aVPZr379+haPmBDrKFq0qMzjRYsWRbnf5MmTZb9kyZLZLl++7PDcrFmz5LmMGTMyN8WH0PzlI2Dq6tixo9yHw9HefJUxY0ajj0Tv3r0lwiUy4NiEqo9+93B0EhJowMwLHwrMWCVKlIgy3LhPnz5yf+DAgRJ6rMH5o6sUv/fee8xN8SW+lGihzj///GNLlChRhAx7nX2fJ08eea59+/ZRHmfPnj2yH1ZxhAQayITH/O3Vq1eU+3Xo0EH2e/HFF22PHz92eE5n0ON8un79usUjJlFBoeJjunbtKidD3bp1IzyHMizwl+D55cuXR3mc119/XcpV7Ny508LREmIu9+/fF3NVy5Yto9wPiy6cB9g2bdoU4fkvv/xSzpXOnTtbOFriChQqPub06dO22LFjy8myb9++CM+///778lzmzJltN2/ejPQ4M2bMkP0yZcokzkxC/J1nz57Z+vXrJzW+cB5Exq1bt2zZsmWT+d2pU6dI9zt69KjtwoULFo2WuAqFih8ALQMnTLNmzZyu5F544YVozWAwpcWPH1/2Gz16tMUjJiTmTJw4UeZr2bJlo9xPR0PmzJkz2oKrxPfQUe8H9OvXTyVJkkSStpAAaQ/KTHz77bfixESTr99++83pMdCIqG/fvnIft8y0J/4M5mfPnj3lfvXq1SPdD72HkLOFwBaUw8d5Yg960Z84ccLy8RI38LVUI/9x586dKJ/XZjCYt6CVOAPO/VSpUsl+77zzjkUjJSTmdOzYUeYp5mv4PC3NlStXpB0E9uvdu7fTfRo2bCitIKZMmWLxiImrUKgECDCD5c2bV06w2rVrR5oUOW/ePNkHfpqTJ096fZyERMfBgweNAJSffvopUn8LBIaO9nImeLZu3WrM9WPHjnlh5MQVKFT8jM2bN9u6d+8uJ1V4Dhw4YIQgDxo0yOnr8boiRYrIPoUKFXJ6HEJ8BeZjgQIFjIoRkTFs2DDZB37C/fv3Oz1OlSpVZJ927dpZPGriDhQqfgTi67XQ+PXXX53ugwx7vToLn9uigYaiu0N+/fXXFo+aENdBEAnmJebnn3/+GWnnRx0Rad/N0Z6ff/5Znk+YMKHt3LlzFo+auAOFip/x8ccfy8mCxEf4SJyBlRn2QZ2j8KUqNNBksE/cuHFtZ8+etXjUhEQP5iHmI+blJ5984nQfhASnTZtW9kHUlzNNG+dF7ty5ZZ++fft6YeTEHShU/Izbt28bRfEi0zLgX4FpC/tUrVrVaZ0j5KpoH0zhwoVpBiM+BT7AggULGgum8BnxAH6TMmXKyD6oBfbgwQOnxxoxYoSxqIouwIV4H4YU+xnJkiVTQ4cONeobobR9eBBmvHDhQgmvXLduneratWuE0vdoWvTLL7/I7cGDB42GRoT4AjSeO3z4sMzHpUuXSlO68PTo0UPqgKFkPcrfJ0qUyOmxMO9xnnzxxRdRtt0mPsIHgoy4sKrT5b2RGBkZv/zyixFFE5lWg9L62gx27do1C0dNiHMQmaV9fEOHDnW6z5gxY4wyLMuWLYv2mH///Xe0bSGIb6BQ8VN27dplOCsRERYZI0eOlH0gXJyVDYcZrFy5crLPd999Z/GoCXEEZlft/0BosDNBgHmrF0dffPGFT8ZJzINCxY+BloFor6j8IXgOiY66QuuOHTuc7geNBz1ajhw5YuGICXHk8OHDMi+TJ08uTenCs2XLFongwvx9++23I53rKM8C/+GKFSu8MGoSEyhUggA4PVHlGCdmhgwZnEZ7waEJRykag/3www8+GScJvRD5XLlySVAJikKG5/jx47bUqVMbTeacOe81yN3Cfpi/kWXgE/+AQiVAQIViZCJHFTWGKC+ceDiRL168GGEfrPJgZoBZzVlFZELMAi0YEMkFoeEsHwU+ERSIxHwtWbKk7d69e5EeC6XutXmMmor/Q6ESAOzdu1dK30dXpfWvv/4yTtR8+fLJiRvev1KiRAl5Hg2PCLECBISg3S/mGcJ/w3P16lXxr+D5HDlySI2vqBZL2IeZ84EDhUoAgBNL95N46623otz3zJkztixZshiO0fBd8HDCa+f+tGnTLB45CUX0/EISY/geQJh/uowQTLUwgUVF27ZtDbMXzgPi/1CoBAjr1q0zTAA//vhjlPueOHFCTlhtWghvz4YzFM2O0BwJoZwMzSRmgW6lmFdwuodvmIUFTrFixYzExeiCRhYsWGBENm7YsMHikROzoFAJIFDaAicZImmgkUTFoUOHDCdo+fLlIwgWlLp4/vnn5Xm0NCYkpiAABKXqnVV5uHHjhq148eIy39D2GlFh0fHuu+9GWfae+CcUKgEETlR0ydMaSHRRMHv27LGlSJFC9scKMbyPxT7hDCYLQjwFSY2YRwhbD9/vBxoK5qs2iUUVcBJeo0bhSGdliIj/QqESYCBcWDfi+vTTT6PdH4IFK0PsjyS08OHGMINpwTJ58mQLR06ClZkzZxpzCKG/9qCCcP78+eU5aDFo3xAdNMcGNhQqAchvv/1me/nll53G/kfmY4GjEyc2osjsTQ9YDTZv3ty4KCDZkhBXmTNnjjF3XnnlFYfkRWgkmG94DsEjMMlGx/Tp02116tSJEGBCAgcKlRAB4ca6ORI0ne3btzusDHWXPThFv//+e1uwMmHCBMnngZkGG8yJy5cv96jawRtvvCEXP9j+UXkXmeFZs2a1vffeey4L/EBm7ty5RvDISy+9JCHrmvXr14vvD89h3jnLpg8P5iSacuE1o0aNsnj0xCooVAIcrAzHjh0bIdLGGQjnLF26tJy0zz33nETX2AsWXBi0YJk/f74tGEHzMxQshPaGcFb040C0kiuraHvgo8J3hNV4s2bN5LinTp2SBlMwM0KTDHaTlxYoaG9tL1DQIjhBggTyXMWKFV3SOiB0MmbMKK9p0qQJTWABDIVKgPP5558bjvioEiM12EcLD2yfffaZcQLjwlCzZk1DsIRKHkvKlCnls+r2tM62/v37O1wAsaKOLG8CId94PqqyI4EMTFT6e7HXULDAQUFILWwgHCLriRK+hJBOhkQpIeajBDYUKgEOSmDoTnk4wV2JlMFFoEePHsaFASttLZBwIaxVq5bx3ODBg23BCr4HhMFCAMDPhBU1LmoffvihdNTEhgrPHTt2dBDY48aNk9V5ZEydOlWc0sHIV199ZcwN1OvSAgWCAfNIP4cip/baS2RgvtWrV8/IXWGX0sCHQiUI2LZtm9Hbvn379i53eYRTXtuwsVLUJzQ0F1Q1tr9ABBOIQEqcOLH0+IDd375/B7K97bUSaC/hI5ogdCFYnIESJKh+EGxtbjEnkNCo50TTpk0NDRemRO2vgylxypQpLh+3W7duRoVtez8fCVwoVIIENOzS/Vf69Onj8uvQq0WHHCNZcunSpfI4BNMHH3xg5B4gUzpYQOLnyZMnpWcNEuugVeiIuOiECkwzEMTOHM94Dj4rVzXGQEJrE9gQmKAXLghy0A55+ERQyt4d4MuCEEY+CgkOKFSCCOSZ6BP/yy+/dPl1yCXQ2c7Y3n//fSOxEuUxcGHFChR+h2DsdV+jRg1ZhbsiVObNmyf908MD8w9MZThWWFiYLZiAOQ9aHRYt48ePNwQzBLL2n+CzX7p0yaPjB9v3FeqwR30Q8fbbb6thw4ap2LFjq3Tp0rn8umzZsqktW7ao7t27y//oZ1++fHl18uRJValSJfXHH3+o9u3bqw4dOqhMmTJJH/Fg4tmzZ+rhw4dOn4sVK5bD/7/88otq3Lixw2N37txRtWvXVvHjx1e//vqrSpgwoQoG7t27p7p166Y6duwo25kzZ9Q777yjjh8/rsqVKyd957Ew7dSpk1q7dq3KmDGjS8edMGGCWrVqlfF/sHxf5P/xtVQj5uNqGQxnIDRW1wxLkiSJbfbs2YZ2okvEwBwWqP3usbpGDgVqp8G3olfbf/zxh1NNBfk7SMZDiRs4lVH2Zvfu3Q4mL/QNQe4LQoq1gx+bK45qfwUlfBAWDA0FuT0A8wD+EoSjYx4gam7hwoVuHXfSpEnyWhw7ugrFJDChUAlyYJKAYHAH5LxUrlzZwSmL46CMOcw7sKG/8MILAdmaGIEMqC4Avwii5vB5tEBxJlTw3eEiikinVatWSWa4PWvXro00DDm6op/+yv79+408kxYtWshjqOeFEGH92fC9IaHWHZBPpV/fq1evoDSlEgqVoAZZ3Xnz5pWT+Ouvv3brtVhlDxw40BY3blyjMjLyE3AhOH36tLSIhcaC/i6uVJwNBpAp36VLF1uwgt8WWfL4XVEhABd+zANECWrtFb614cOHu52caB+KjJBtCpTghUIliMGJC/OOPpkR5uruyYxVq64wq1eoECpwTOt8Fjhwkc8S7FnQCIRwpSBioIE5gcAOaJ/4PVu2bCm/L8xT1apVM357mPhQoNTdY/fr1884Bu5ToAQ3FCohVJYcW+fOnd229cOXAE0Hta10iZdhw4ZJ4iUiofSxob24Ui6G+A8w0eF3078hNApEdg0aNMgwgSGHBL+3J2HS0Hz0sZFtT4IfCpUQAQ5SHf4J5/O9e/fcPgZyO+xLmeTKlcu2aNEiEVpw6GrzyOjRo7ka9XPw+8CMpc2b+P1w0UegRr58+YzfGEEK0Ew9BQsYVMFmW4XQgUIlhEChP61ttGvXzqNjwMSFYoK6+B82mEiQfKnNJ9hwYQpGU1EwcPToUQftBH63xYsXO5i6kBCLatWeLA4Q1GHfQI4LjNCCQiXEQMYzEh0vXrwYo+OgFhbaG2sTCfwqHTp0kERBrbVAM0JSIezzxD8CN/B7aI0VvxlqwKGEvxYm+D3hoEeknycg3DpTpky2Nm3aUJiEKBQqIUj4kx3O+JjY5BF2qi9KCNXFBcXe14J8F2RlB7sj31/B9468E51fomu9Ibxaa67YIFxiUtAR/hNdgw61wNCXnoQeFCohDsqO6NIscNB6Csq5VKpUyUG4oAaWrguFrXz58rb79++bOn4SNajlhtwa/RsgeRO/i9YwscFPtnPnTo/fAw58XRhSV8sOhSZlxDkUKiEOOhjqiwHqN7nSoS8qDWjNmjUOwgWOe2gtuIVTGKYROG0pXKwFF3oEZ2jhge8fPXe0aVILeRSEjImZCnXjcBz7kOFAriRAYg6FCpEKsVqjQJJbTCvGOhMuekVctWpVI5kS2esxMb2RiOB7hzBB90l8z8gxQotj7UfRuUaoBBBTnwfMavnz55djJkuWjJWGiUChQgSEjdpXKu7UqZNHYcf24KKFixdCmO0vaih1rv9H5vacOXNiZHoj/1UNbtCggUP0HcrR2At1lJpxtzR9dKxYsUJqn8Uk7JgEF7HwRxeXJKENKvX269dPDR8+XP5HdeJatWqZcuxTp06pcePGqRkzZqi7d+/KY3HjxpVqypcuXVLp06dXBQsWlOrIPXr0UClTpjTlfYOZf/75R129elUtXLhQTZw4Uf3999/yeJw4cdTTp0/lftKkSVWbNm2kunD+/Plj/J5bt25VV65cUU2bNnWo8ozK2IQIvpZqxP9A4UT4WuwxKzwUVX2RHGmf04INnRj1fdj9a9asKatg2ucjmpxQZRklchASDI0PvipE2Nl/n2iLjOrCZoVzwwf20UcfyXvC1AVfCiHOoFAh0YIwU5jGVq5cadoxIaQ2bdok/d9xkYqs0i98L4gsOnbsmC2UQSIpOi4ieiuy7wqCpXXr1rZ169aZmiOC3z1nzpzG+7z55pse57GQ4IdChURLq1atjAsKetejV4iZPHjwwPbDDz/Y6tat6+B7Cb9lzpxZKgWjqGGwJ9bh86H6M1o6p0+fPtLvBFFdjRo1ktBwsyPqkCBrnxiJ0OQlS5aY+h4k+KBQIdGCnANczGH60JE+KDxoX4rDLK5cuSKJknA6I9clsospEvmaNWsWVL3gIRTQ9Aqf3d4c6EyQwPyFKC+rmqXhN9daEQQ9fn9WRiCuQEc9cZndu3erzp07q127dsn/OXPmVKNHj1YNGjSwrJ0tggXQwhdtem/duhVhn3jx4omDv27durI/AguwBUKL2uvXr6ubN2+qBw8eqAULFsiGVr3OQEBDw4YNVf369VXNmjXFAW8177//vrSORoBFiRIlLH8/EhxQqBC3QKTP7NmzVd++fdXly5fV4MGD1SeffGL5+yKaaf/+/WrdunVq9erVcouLsTNSp06tChQooMqWLStRZLiPi2LmzJkj9Jz3BjjFEDGFqKyDBw+q5cuXi6A8ffp0pK9JlCiRqlixoqpWrZqqXbu2KlasmKURVvg+8Zuif3zRokXlsX///VfFjx+fkV3ELShUiEdAKxg1apSsZpMkSSKPYVX75MkTVaFCBa8ImX379snFcOfOnWrz5s3qr7/+ivI1EChY4WPVnylTJpUrVy4Js82XL58Inueff14u/O4SFhYmAgLbn3/+qU6cOCEb7iPkF8IvutMM44EQqVSpkmyFChXyaCzusnHjRtW/f3+1du1a+b9Ro0Yi8AjxFAoVYpoGU7JkSbV3715VpUoVyXepUaOGVzWD27dvi6DZs2ePmOqgFRw+fNjI2XAVmM4gKGFaw/hv3LghOTVp06YVoYkNpivc4nO7Q4IECUSQQfPImzevaFMvvviiV/NycMqvXLlSDRs2TK1Zs0Yew2ft0KGD+vTTT1XGjBm9NhYSfFCoENM0FyQtzpw5Uz1+/Fgew4Xzgw8+UK+++qqYUXwBpjcEwJEjR0SbgVYDLeLatWuShImET3eFTlRAu8AFGkIJ5jYIkOLFi6vSpUurPHnySJKnr81JTZo0MbQRjLV9+/Zi+sqWLZtPx0WCAwoVYioXLlyQjPypU6eKWQhkyJBBjRw5Ur322mvKH8EpAIc5hA1uIQCxwaeArHUEJkB7gVaBizC28+fPy+vSpEmjXnjhBQlaeO6555Q/gooFqVKlMoIXxowZI0KkY8eOIvQpTIiZUKgQS4B2MGXKFIkcwkUNK2PY6wE0BFzgcHEm1gBtEQEBKIuD22nTpkm5FgAfDwQmBA0hZsOwDmIJiMDq06ePOnPmjJo/f76qV6+e8dyXX34ppqFu3bqJc5/rGnOAf2fLli2qe/fuKkuWLGLmQig2fD/btm0z9oNGRYFCrIKaCvE6ZcqUUTt27DD+h/kFBQpffvllKSjpjainYAOaByLYIMQ18N+8+eabql27dvIcId6AQoV4HaycV61apebOnat+/vlndf/+feO5woULqwMHDih/ASv9IUOGqCJFiqj33ntPQn39wW+FXB2ELA8cONB4HEmRENaNGzeW4Ig6derQxEi8DoUK8Slw5iNrftGiRXIBb9asmZo+fbo8h6gsRE0hGQ+5G9BwEEHlLU0GTvscOXJIqLKmatWqUkYe2e3eyNqHSevYsWNivkLZ+fXr16uTJ0/Kcwh3RgIqNBJw7tw5ycFB4iQhvoJChfiVBnPnzh3D3o+cE4Ql25M4cWIJ0YWgwYocuTBmBhds2rRJorz0hRqObuS7QDuAVqXDj5MlS6aGDh0qAsYMcBpCQKDvDLL/8TkBorOQZGoPQpJLlSoln/3dd99lXgnxK+L6egCEaJBgaO9Azp07t1q2bJnasGGDXOyRWAlTGbLAsWFVroXK0aNHxTEN/wxCmHEcBAukSJFCEg7LlSsnSYYAmfcIHoAGgvsID8YqHxd0gFwbHSmFHA4NBMukSZPUnDlz5L4WPADmvK+//lplz55d3le/N7QqCAHUI0PWPIAz/aeffpLSLdggTM6ePWuEYON5jBcgzwWOdQgRCDv4nJBcmjx5ci/8IoR4gEtlJwnxA9Cw69ChQ7ZZs2bZevbsKf1YNMuWLYu0qi+2b775xtgXr4tsP7ThxfFdaZQVFhZmPDZkyJAo3x+NzzTjx493ug+ak+XKlcuhbw3aAjx+/NjEb5EQa6GmQgIGrPpRkRhbeLCCRx0waBxIWERpFZizUNn40aNHovVoYC5q1aqVZL0j9DZr1qyy4bjQfqIDmkflypUdHoMvCGVckJOD98X7473hE9FJkhqY73r27Ckald5QdwxaVnjHOv0jJNCgT4UQQohpMPmREEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCFEmcX/AdRAbEe0mTMEAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAGrCAYAAAAIKwrmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYNdJREFUeJztnQW4FOXbxl+QEOnulgbpbinpFASRUgREQREREAXpTpVGSgFJJaS7G6RDuqRbcr/rfvze+e857Dlnd8/M5v27rjm7Z3d2dnbmnXnep6PYbDabIoQQQkwgqhkbIYQQQihUCCGEmAo1FUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQjzIy5cvVdKkSdXgwYPl+dSpU1WtWrVU2rRpVezYsVXu3LlV37591b///svzQvySKKz9RYjn2L59uypevLg6dOiQSp8+vYobN64qVqyYqlGjhkqWLJnatm2bmjZtmipTpoxau3atihIlCk8P8SuieXsHCAkmli1bJsIkV65c6unTp2rLli2qRIkSxvutW7dWGTJkUD179lRr1qxRFStW9Or+EuIqNH8Rv6NFixZy4w1Nr169PDqz198X3rJ+/foQn1m6dKmqXr26PI8RI0YIgaKpW7euPB49etRDv4QQ86CmQoKOR48eyRIRr732mkqYMGGY79erV09duXJFTZgwQfXu3VtlzJhRXl+wYIFauHChGjt2rMqRI4ex/tWrV9W+fftk3fDAeiBJkiQu/CpCfAMKFRJ0wEn+/fffR7gezFRnz54N8/233npL/CMQKlWrVlWFChWS10+dOiVCpUGDBiEEA0xfr7/+unr77bcj3L948eLJNgnxNyhUSNDRrFkzVapUqQjXixUrlqnfC6FSvnz5cLfbv39/tXr1avXTTz+pBAkSmPr9hHgCChUSdGTKlEkWT/Ls2TO1atUqNWDAgDDXmTNnjurRo4f68MMPVbt27Ty6f4SYBYUKCRic7Yz94MEDWZzxqSCnxAw2b96s7t27p6pVq+bwfQgcaFBw4o8bN86U7yTEG1CoEL/k/v37r7x27do1pz47dOhQU3wqroCor5w5czqMWtuxY4dEfMEn89tvv6lo0XhZEv+Fo5f4Jbdu3VIHDhxQefPmlf+fPHkiPgutsYQXWmy1TyV69Ojy+OLFC+M17BsSHEODsGFoJxA2S5YsMd2PQ4inoVAhfknMmDFVzZo11aeffioRVTNnzhTzEujTp4/4JMIyXVntU0mePLnhdId/BFnzEB4IMQ6tbVWpUkXdvn1bffXVV6LN2JM5c2aJLiPEn6BQIX5JihQpVNeuXSXn486dOzLbnzx5sjxOmTJFtWnTxmv7hlpeP/zwgxozZowINuS6xI8fX5UsWTLEejdv3lQXLlyQ5/gtoWnevDmFCvE7WPuL+GVGPTLVzfJ3WA2c83HixBF/CSGBDjUVQiymXLlyqnTp0jzOJCigUCHEYrp06cJjTIIGFpQkhBBiGvSpEEIIMQ1qKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGkx8JCVXZGM+nTp2qrl+/rm7cuCEVkFHAMvSCVsG6OCVqfIVXGZmQYIF5KiSoBQjKzXfr1k3ly5dPzZgxw1gHtboePnzo9DZjx46tfvzxRykCCSCInj9/Lq8TEkxQUyEBD27uW7duFQGCBQ263n33XaP3yaFDh2Qdexo0aKBevnwp2ghK60NIPH36VB71gqZgp0+fVhcvXhQBZN9TfuXKlapevXryPb/++qvHfzMh3oJChQQkuMn//vvvIkT+/PNPKY+vQXMvLVSKFi2qFi9eLJqKPTB/OQsEzLlz56Qcv2bv3r0iqKDxaCCk0P8F5fkrV65sNPMiJJCg+YsEFNA60OMdpizdtAskSpRIStCj+yJu6OhxYjUozQ9BohuCbdiwQSoWg8SJE6uGDRuq999/X5UoUYL+GBIwUKgQvweawvz586Wz4ubNm0N0ToRGAkFSrFgx9dprr3l1P0+ePCnNu+bMmSOmM03BggXV119/LeYyb+8jIZGFQoX4NatWrVIffPCBcZPGTbl27drSTvjtt99WUaP6XtQ8zGLr1q1Tv/zyizTuevz4sbz+5ptvSlvhZs2aiR+HEH+EQoX4NWfOnFHZsmVTyZIlUx9//LH66KOPVKpUqZS/gLBlaC9Ybt26ZfS4Rw8W+F9ixIjh7V0kxCUoVIjfAP/EggUL1J49e9SAAQOM1zdt2iTmLX92fD948EBNmjRJDR8+3OhbD2E5c+ZMVahQIW/vHiFOQ6FC/AYIE32D3bdv3ysRW4HAs2fP1LRp09Q333wjgQbHjh1T6dOn9/ZuEeI0FCrEr+jUqZOKFy+e8Rio3L17V+3YsUMi1TRw8MNfRH+LfxDFQYUFTBAQFRjI+J4Xk5D/Z//+/apMmTLiN9HAPNSrV6+AFiggfvz4IQTKli1b1HvvvaeKFCniUqY/8R5XrlyRZfv27SpLliwiUEaPHu3ydg4fPqzq16+vMmTIIIJq5MiRypehUCE+x4sXL0RwwNQFfwmc1sEOwqYRjFC8eHGWfvETUqRIoc6fP6+qVq0qptqDBw+qWrVqubydR48eSa7TwIEDQyTY+io0fxGfAgUcmzRpIqHCAHkmY8aMkYioYAdh08jQ1/XEMAsGKVOm9PKeEUdcuHBBFS5cWPKkJk6caEqCK7SVzz//XBZfhWVaiM8AHwKECC7GWLFiqQkTJqimTZt6e7d8BnvBikg45Oeg5MzcuXONTP1gKAaKmbs3eOONN1wSDL169RLtEkm5oT9nX77HERj3qAzhj1CoEJ+4UeDCw+wL0U+wPyNDPk+ePN7eNZ/l5s2bskCzq1SpktyAPvzwQxXoQKBEdEO2Muzb2arTjx8/lnDwn3/+2WGoO/yF4eHPPkMKFeL17PK2bduqyZMny/8oVYIL0Z8vKk+A/i2ovNyqVSs1e/ZsSfpE+DHs7iz14n1OnTolVa0RaOIIVE8IVChUiFdnnYhoQpVglFMZPHiwhAqz2ZVzwESIsvrZs2cXU8vQoUPV8ePHpfxL3LhxVSACExQ0Bm99t7M8+n8TXeiWChqavwgxmdu3b6uaNWtKqCzyLpCD4U5kTLADAdyzZ0/Jvm/ZsqUI6NKlS0s/F9jzA/H3+kPjs2zZsonGiBpvOC+hofmLEJPp16+fCBTkY+gbIXEfaHwZM2aU5Eg478uXL6/WrFnjFyGogUiCBAnEJNm5c2cJkS9btqyEBWvTpCvmL5jRjhw5Yjy/dOmSCCVoO75oRmNIMfEK//77r8zgunfvToe8yeX1IVBw48Fsee3atX5VYDOQeP78uRo0aJCaPn26JPDCfIYAlAoVKri0HWTgY8IQGgiq9evXK1+DQoV4DNSygq2fPhNrQYtjlP1H4h0i6SBY0qRJY/G3kojo3r27BFf4oiAwE2bUE4/wzz//SImRrl27SggxsQ40J0OXSSTKQXNBd0kec+/y6NEjmVQFQ902ChXiEVasWCGRSQh/RX4FsRYIFAgW+KrMyuYm7rN582bRGOFLDHRo/iIeAyXd0Y8dJhniGaChUKAQT0KhQix1VCJDHvkUxDe0RWiKaAbGBEliFTR/EctAOCUyihGJRLzfthjVCqZOnarGjx/P00Esgxn1xBJQdmXUqFHyfPfu3Sp16tQ80l4u64JzsmzZMsmfIMQqaP4ipoMeKIjFh+nr+++/V9999x2PMiFBAs1fxFSQqAUzCwRKw4YN1bfffssj7IMgy7t///7q8uXL3t4VEmBQqBBTuxOi7SnKsRcoUECqDTPyyDdBm4FvvvlGNWrUSCYAhJgFhQoxNWN47969KnHixGrRokUuVXUlnqVDhw7SXgD5E0hIJeYTJUqUVxbkDwU6FCrEFJYvX66GDx8uz6GhpE2blkfWh0GuECLBAM4balIRc7ly5Yos27dvl+OdPn16NXr0aJe3c/jwYbEAQCBBMI0cOdLhej/++KOsg6z9okWLqp07dypvQKFCTOmd3rx5c3n+6aefSkl74vvUrVtXffXVV/K8devWRs97Yg4pUqSQ+mtVq1ZV+fLlUwcPHnSrvQNKvKDCMRqwhVV1Gq0j0IsIbRBgLcibN6+qUqWKlEfyODZCIsGLFy9sVapUQTEvW548eWyPHz/m8fQjnj59asufP7+cv+rVq9tevnzp7V0KGM6fP29Lnjy57cMPPzTtuKZPn942YsSIV14vUqSIrX379iGuy1SpUtkGDBhg8zTUVEikgMqNTG1kzSNbOxgK5gUS6J+O0uwxYsRQS5cuFdOlP/Dw4cMwF7RVcHZd9JJ3Zl136NWrlzRKGzt27CsBK+iFEt6CFtvOgh4re/bsURUrVjReQydV/L9t2zblaZj8SNzm5cuXxk0IrWxz5szJo+mH5M6dW/Xp00d9/fXXEhWGHCPY/32Z8NrxVqtWTQSkBjd23d43op4k8EkgejE0rlZ5fvz4sZo5c6ZcHxDcVnZ+xP4iRDx58uQhXsf/x44dU56GQoW4DWZD6N4Ih2+bNm14JP2YL7/8UiL2MLNt1aqVWrVqlZxf4h6nTp0SDQJlihzhix0bzYJChUQKmL3atWvHo+jnoMAkqkjDwYsS7ZgoQLj4Kg8ePAjzvdDFMsNzVocWnEjeNYNH/68Zoaiqq5oWaNq0qRo3bpxT35UkSRL5zQiYsQf/e6OdNIUKcRmo2/CfQJiw2m3ggLDX3r17S0QYTGGIDkuYMKHyRWLHju31dcMjW7Zscm2sW7dO2mZbaf6CP6xgwYJqzZo1qk6dOoZpGv8jGtPTUKgQt6oPY1a7a9cueSSBQ8eOHcUPANPNhQsXfFao+DoJEiSQwp24VuDvgO8GYcF6EuaK+Qvn4siRI8ZzVP2GUIK2o7eDcGKE9RcqVEg6rCKXBQEGjgSa5Xg83oz4NQiNHDNmjC1JkiS2bdu2eXt3iAWcPn2aoeEm8OzZM1vfvn1tWbNmtUWPHt0WP3582+rVq13ezpkzZyTkO/RStmzZEOvhukyXLp0tRowYEmK8fft2mzdglWLiFohuYfMtQlwrY7R169YQ0WaBCMM7iFtQoAQ+cDKjJ86sWbO8vSt+z6NHj9S9e/eCIo+LQoU4BRLKkEy1cOFCl2P2iX8C3wryVrp06fJKkiBxjc2bN0tUXb9+/QL+0NH8RZxiwIABor6nSZNGnThxgppKkEwk4GBu0aKFOJ0dJfEREhoKFRIhN2/eVBkzZlT379+XLOH333+fRy1IgFbKnjjEFWj+IhGCEiwQKPnz51eNGzfmEQsi7AUKzZ7EGShUSISJjmPGjDEK5LF0R/ABYQJnPcq3szw+iQgKFRKhloIkKmTssk9K8ILmUugHMnjwYG/vCvFx6FMhYXL9+nXxpUCoLF68WNWoUYNHK0hBe4N33nlHWkSfO3dO6k0R4ghqKiRMhgwZIgIFpR+qV6/OIxXEVK5cWRUoUEDyLdxpiUuCB2oqxCF37tyRPvOoBksthQD0sW/QoIHUtYK24krRw2AkSqjGXAB9asyqhOyrUFMhDpk4caIIFDRwopZCAKoWo/ouJhzjx4/nQYmAK1euyLJ9+3apAA2B4q6WN3fuXJU9e3bJyM+TJ49atmxZhN/dpEkTlTVrVgmuQRKrp6BQIa/w7NkzY/Cj+inzFIjcLKJGVV27dpXnw4YNe6VtLwkJepmcP39eVa1aVSLnEOhQq1Ytlw8T6oUhlP/DDz9U+/btk/L2WA4dOhTmZ548eaKSJk2qevToIT1yPAnNX+QVfvnlF2kShIsCqnrMmDF5lIgx4UAJ94sXL0rbg2bNmvHIhMGFCxdU4cKFJcAFmr+7k7NGjRqJb3PJkiXGa8WKFRNB5Uwjr3Llysm6KIfvCaipkFcoVaqU9NVAzScKFGIPSrXoTp/IX/JWQiRusq4u9l0Y8Ryvha5pFtZn3aFXr14qWbJkauzYsa8IFPRCCW9p27atsS5aPKPunj1VqlSR130RNukirwDbr6dmNcT/aN26tXSI3L17t9q5c6cqWrSox/chona8jvjtt9/Uu+++K89RGLVhw4ZS28y+FH2GDBkk4Tc0rgrPx48fS0kjFOV0VDPNlc6PV69eVcmTJw/xPv7H674IhQoJKnBzuH37tuFExYIe5nA+6wUlaeAvgF0anfawwJ+ABZ37sKD0P25saD+LR3RIhA0b+RtYUqVKpdKlS6fix4+vAg38zvfee0/MX9BWvCFUfJ1Tp07JuClTpozD913p/OhvUKiQEMmOMHuhIm358uX92kEPwXH48GFZUFX577//VqdPn5ZHd80Z7oAZJ0Kz4YdA5BQWROTkypVLJU6cWPkr6H0OoYLZP6ouwP/mSRCZ6Cr2plxEsmEbocsOmRXu++jRI3m0N7m5omnBp6n9JTi2165dC/E+/vf0MXcWChViMHXqVKnxdPLkSek/7y/ADID9xQKTzIEDB9Tly5fD/Qw0i5QpU8oCUwL+R/4Flrhx40roJm5CWGC+gIbz8uVLWXCjwE1D29txc0IlZ5hNsEDzQR/xW7duSWMmLdyQ72MPhA0cqFiQWFi8ePFXzBy+ChJiq1WrpnLmzOmVenDQECNDtGjRZDF7uxpMHqDRrlu3zmGfeFfMXxgXa9asCREWvGrVKnndF6FQIQYIfTxz5owqWbKkzx4V3NxhWtiwYYPauHGjLEjEcwRu2sizQXx/5syZRVvAI8xSnujAB4GDCCDsH/YZGtPx48dlwYwY72GxFzbYxxIlSkiwRIUKFWR/fVVjXLp0qbd3wWdJkCCBaPydO3dWL168EN8Nzi0EjavmL1gP8HmEcSNnbPbs2TJ5mjBhgrFOt27dZCIzffr0VwQXJj2wQuD/GDFiyETAShhSTPzClIWZ2vLly2XBxWMPbro5cuSQ8E0smPXDvOTLGd/QYJC3gAsduQdweEObCe0QhgBE5A/KpCDiBzcr4h88f/5cDRo0SG70mKyhbhqqEmCy4E7yI3JOMBlBIiUKe0JT1KCRGt6zDzrwVkY/hQrxSTC7R4TOggUL1JYtW8TspMFsC85hOEExg0PMPkxW/s7du3fVjh075Pfi5oCQUeSFaGCuKV26tFSLrl27tsx8vQ3OCwQ+fFVt2rTx9u74NN27d5dERvsbfyBCoUIk2umrr76Ssg64aXnL3AJTEHw6cP7u2bMnxHvQRFAlFwv2EdFXgQ7MZ+htvnr1ajE1HT16NMT70MoQFosFGo03QAkS2PYxC4dvKxCEuxU8evRI8r5gBoW2HdDYSNAzdepU2FxsWbNmtb18+dKjx+Pu3bu2yZMn28qXL2+LEiWK7AeWqFGj2sqWLWsbOXKk7cyZM0F/jsCpU6fkeLz99ttyfPSxwlK6dGnblClTbPfv3/foscJ4KVasmO2TTz6xXbt2jecpDFasWGHLkSOHbffu3bZAh5oKUZUqVZLZcJ8+fcRu64GJjERqwdEIzUSHXwKYs6AxobYRspGJYxBSCvv8nDlz1KZNmwxfDKKXkOAHUxRMhJ7QOtnHnthDoRLkwOmNKCncGGAXR1Muq0BCIeqKIWEOYb8aRGc1b95chIm3zDj+DOpwzZgxQ7K3EQ6uQbfO9u3bS6JiMJgLiY/gbVWJeJchQ4aI+aRUqVKWfceVK1ds3377rS1p0qSGuSZmzJi2pk2b2jZt2uRxk1ugguO4efNmW/PmzeX46mOdKFEiOf5WmqdevHgh371+/XrLvoP4BxQqQU7hwoXlxvPjjz+avm34Qtq1a2eLESOGcYNLly6dCLKbN2+a/n3kf1y/ft02aNAgW/r06Y1j//rrr8v5gG/GbMaNGyffUaJECZ6GIIdCJYg5e/as3AjgIIc2YRYnTpywtWzZ0hYtWjTjhla0aFHbnDlzbM+ePTPte0jEPH/+3DZ37lxboUKFjHPx2muvyfk5ffq0aYfw8uXLRqAFxhUJXihUgpjhw4fLTaBMmTKmbO/ChQu21q1by01L38AqVqwoJhF/MXFhP2HK0SCa6vjx4yIocROG9oXfCU3r8ePHfvW71q1bZ6tSpYpxbiD0P/roI9u5c+dM+Y5y5crJdqGJkuCFQiWIgakCN4FRo0ZFaju4wX755Zch7PjVqlWzbdu2zeYr2N/89+7da/v6669tLVq0sFWtWtVWsGBBMRMlTJhQBCJm9pp58+aFCN0Nvfzwww/GugcOHLBVrlzZ1qxZM1u3bt3kvUWLFtkOHjxoe/Dggc1XwHnBftr7t7p06WK7fft2pLaL34vtlSxZ0rR9Jf4HhUqQcvHiReOmgpm3O8CUNWbMGHEE2+dLwPnuLe7cuWPbuHGj7FebNm1k9pwyZUrbsmXLjHVmz54drqCYNGmSsS4+Fy9ePFnixIlje+ONN2zRo0c31v3555+NdRcvXhzudu2F961bt0SDw/56iy1btkgukN6/xIkTSx7M06dP3dre+fPnDXPq1atXTd9f4h9QqAQpP/30k9wAkLjmDitXrrTlzJnTuCHlzp1bbsDeMgdhfzJlyhTmDX3EiBHGukePHrV16NDBNmDAAEm8XLJkicze8fqlS5ds//77b4TfhxsvEjdhArO/qULI9O/f3/bpp5/a6tatK1oQNCDsg70G9Pvvvxv7liVLFlvjxo3FHLlz5063b+rugPMFYYjEPL0/uXLlElOZO2jfzcSJE03fV+IfUKgEKTBP4eLHjdVVh2yjRo1CzG4hoDzhgMfNFmGrffr0sVWoUMH266+/Gu/t2bPH2Ke0adPaatSoISaoadOm2bZv3267d++ezZtAM3n48KHxP4IW7COz7BdoQ7jRexKcvwkTJtiSJEli7Md7770nGq0r9O3bVz5bvXp1y/aV+DYUKkHIo0ePJLwUF/9ff/3l1GfgvEbYMcxAuowKZvu4WVoJhBi0iQYNGtjix48f4uaLfAx7gQNt5caNGzZ/C/1FCQ/cjGvWrGloNceOHTPWmT59umg9OA5Wm5VwPtu3b2+UgcH5Hj9+fIjghfA4dOiQ4afxdMkY4htQqAQpiGiChuGMuerkyZPiK9E3c5g4oBlYDW6g9vXAtGYEAQMBh98QaODmffjw4RDnpX79+sbvx/EoXry4bfDgwZbWREMwA8LA9ffC94IIuIjAfmszJEx8JPigUCHh3uBGjx5tixUrltwk4KiGAxy5D1YIEDiJEZVlT5EiRSRBs2fPnmLGsuK7fR3c4Hv16iX+mdCmMggYZ3xA7oBjDV8UzHE6eRLjISKtBZoO1m/btq0l+0V8GwoV4hDY0lENV9+88NzsmfGTJ08kZPedd94xzC2IrLLPtrfqhunP52Xs2LFGpWJokPbA52T2Mfv7778l30iPhUqVKoXra0HgA9aDz8hf8niIeVCoBBkwYTRs2FDK3YcFcit0mDBmqTA1OWtTdwYkEXbu3DlELTCddY+ZsLed6v4CqiAgB0aD2l5IaMRxhcYHYWAWEA7IQ9G+OPh+5s+f73Bd5OTonKUjR46Ytg/EP6BQCTJ0ghpmuqHBDFebLrAUKFDAEr+FLmKJJUWKFBKl5Yy9noQPtJRUqVKF8L8gym/VqlWmaQwIu7Y3wyFYw5Fm9MUXX9i+//57l6PHiP9DoRJkIDoH9vmZM2eGeB2lOnRxSSzIkId5KrIgKmvGjBlyY7OPMKpVq5ZoRKwFZi44ngsXLgyRMY8lb968tv3795vyHTin0DTtAzfM1IqIf0OhQiSkFVFVuEHA7GWffe4uSAqEVqRzMSCwaF/3LND+kIQJEybMVv/884+p20cujTaT4tF+4kCCFwqVIAY3eZiidNguzBqRdcbDFAIfTOrUqY2ZbLJkyWz9+vXzaKY4+R8IfAg9UUAvG/ivIuvUh4aLCD2duzRs2DBj8oCcIfhdrCi1T3wXCpUg00gQbQXzE24mKH+ub/yoVmtfcsQdYHZBNrt9ZjtyYZBsSXyHrVu3GucImiSCNiITqo1xg+KcepsoqInxhYRN/I+yNSR4oFAJInRYKC5yncyI2SVmrGaYplDbCtuElgJtheHAvgnOC8KS7Z36qPe1fPlyt7eJ8YNxpNseIFly4MCBUh/OigZwxHehUAkSMJvU4aDaz4GyJ5G5kSASyP7zuLFg1htZjYd4BmiQyMzXpWGwoBVAZBq2QRuOGzeubCtr1qymNgIj/gGFSpCwdu1aQzPRbX1RDsQdkEeC6B+dExHZPhzEu+D8derUSRJPM2bMGOlJAXJntBkU/rR9+/aZtq/E94mqSFDw888/y+PLly9Vnjx51LZt21TOnDld3s6iRYtUjhw51NChQ9Xz589V0aJF1aNHjyzYY+IpEiRIoIYNG6YOHz6spk+frl5//XV5/cWLF2rlypWYeLq0PYyv7du3q3z58ql//vlHlS1bVi1YsMCivSe+RhRIFm/vBLGWFStWqGrVqolAyZo1q9qxY4fcSFzh0qVL6rPPPlMLFy6U/zNnzqxGjx4t2/Unnjx5oq5cuRJiuXz5coj/r127ph4/fixCUy+4wb722msqWrRoxhIrViyVPHlylTJlSmNJlSpViP+xxIwZU/kjP/30k2rfvr2qU6eOPMdvcYW7d++qEiVKqCNHjqioUaOqJUuWqKpVq1q2v8Q3oFAJcP744w/VoEED9ezZM/l///79Km/evC5tAzfZbNmyyU0CN9MuXbqoHj16yE3Vl7l69aras2eP2rt3rzxiuXjxYoh1okeP/ooQSJEihXrjjTdCCBAIFAgWe0EDDQ3fEVpI6WOtSZMmjSpYsKCxFChQQL7D1xk0aJCcZ/xWTEJGjhypmjVrpqJEieL0NnDs8ZsBjiM0lpo1a1q418TbUKgEMNAqGjZsKDcFkDhxYnX9+nWXbgqaNm3aiECaNGmSmDd8Ddzcd+/ebQgPLNBAQMKECY0bevbs2UNoE4kSJZJZtFlAG7x161YILejYsWPGPt2+fVvWwz7YC5pChQr5pKA5ePCgatWqlew7gEDAGEiWLJlTn4chBL8LZjAtxOfNm6dq1apl6X4TL+Jtpw6xBlSK1b3UUcMLjyiN4ixLly6V1rr2kUK+VFIFBS7Revfbb7+VEiT2/VZQogT1xBDijPIhvpLJj/3A/mC/unbtKtV+dUY6lnz58snv2bVrl6kFPCMLzjs6hMaIEcNwvq9evdrpz9epU8coFaMrUbPXSuBCoRKAIKxTV4lF6199UQ8aNMipHIaOHTsaRSd9qX8JBBtKg3z88ce2lClTGtVy33//fdusWbNsZ8+e9RkB4izYX+w39h+/Q4f34vfhd2Jy4CvJowcOHLDlzp1bov4g+JwF+Sr4TWg2hhbFeA4B5YpgIv4DhUoAZkvrplrIaEZRSMws8T+q2IYHcgry589vzJwhXMwoKhnZEiOTJk2y1a5d2/hdb775poTArl+/3qe0JzPA78Hvwu/D79TtB/D7cRzse814A4Qbo21z6NfCA78HvyNNmjTy++rVqyf/x44d27Zt2zaL95h4GgqVAAJ5J3qmiyQ2CAS0AtYzw/AufmgACRIkkHWTJEki/3tz9r5u3TpbkyZNRONCbk2pUqVE00LCpb9pI+6C34nfi99dsmRJOQ44HjguOD6+cBxQ+RjtC/74448w10F/FZ0fdeHCBdGGYfrD/xhzf/31l0f3mVgLhUqAcP78eZkJ6mZXuJABMtzxGm5KjoDt/rvvvjO0k2LFismF7w0wC0eGd5YsWWRf8Ij/0WqY/Ndy2dHx8ab28sEHHxhjp3fv3mH6guAvwjqoPQcwPkuUKGFoMOy7EjhQqAQAd+/eFVs3LtDs2bNLdVgNypHDlg27dlifRTkNfBZl0r1h7kKPF/gPYN6CRgXfAkwmvjAT90XsNTkcLxy3Nm3auF0hITKg8rR9Yzf47+7fv//KeuhXr/v0aCAMs2XLZjjx2fEzMKBQ8XNgo4apS3dRhNPXVY4dO2abPn26zdPgxqiLXGLfMdNFS1zimvaCDos4frp/PI6rp5k8ebIRHQatJLTmMW3aNIcaM6LhtM+vSpUqAecjC0YoVPwcHamF2aqzETmoxRS686Mn2bt3r9xAdLgz9sXbAQH+Do4fjqMOtMDx9XTNLTjdtYBApWr7bpBoS43XUdQ09LnGuEUwAt7//PPPPbrPxHwoVPwYRANpswNyH0KDPBM46u3NSIjciRMnjpQo93RIJ5o1NW7c2Khgi32mictccDxxXLVJE8fbk02y0OQN5e6RK2TflA37pYNIHE1+4GvRY/nnn3/22P4S86FQ8VOQ+KfNDX369HG4DswieL9169by/y+//CI5BnitfPnyHqsujFLqsLvju9HDY8KECTRzWAxu6OPHj5d8Fxx3HH9PBTzcuXNHltDATIvER+TkOEIHjGBcb9++3QN7SqyAQsUPQa9xXVoc+QthRdwg1wEX6JgxY6Qpk24bjNmrJxpoIQigR48eko+A0FEECzx8+NDy7yX/A8cb2fDonYPzgIx9nBdPAQ3ls88+k0Zd0JzDC2vHONbdIhERdv36dY/tJzEPChU/AxeejvGHicPRjNAeCA9oMtq0gBmrJ0qAwASDXiuwoXfp0sXrSXvBDo7/V199JecD58WRudQKli1bZow99K+PCESAadMdNBtfKldDnINCxc/ArFNnWSMU15mSLfqi7t69u+U+DGhRDRs2NDL6vZXzQhyD86G1AZwnq7UBjDeMOz0G+/Xr51Q5GN2ltG/fvpbuHzEfChU/K8Gie4AjhDM8tPDQ5gdnLubIAmcrZsEokgi7OZ3wvgnOy6+//irnCedLJyRaCcLFtWCBXw0aTHhMmTLF6FSKcU/8BwoVPwFmLt1bHj6RiG7Yn3zyiSSU4YZh9c0ds10UrtTaCTPg/QMEUOhioyj0aLXWorVsLMhPiggkwWLdTJkyMTHSj6BQ8RNatGghFxh6iEfkaIVTHo5ZrD9//nxL9wvbR24CZr2Y/VI78S9wvhAViPOH87hgwQJLvw+RiBiXCBpBXTNnJ1IY/8Q/oFDxA9B7Ql+ImzZtCndd3Nj1bBCLfU8UM4FDVeecYLaLWS/xX3D+EEmI84nyL1aVTIEQQ0Sgs8m3GzduNKIWFy5caMk+EXOhUPFxYJJInjy5XFSdO3eO0Cmv81CwpEuXzpJ9Qon8XLly2eLGjSuz3GDQTlCLDGGuoH///rZChQpJEil8ErgZo9SNv4PziJs9zivOL86zp743PL7++mujlM+tW7c8sk/EfShUfJxmzZrJBYUs5fBi/FGSAzc5rPvWW28Z0T1ms3btWjGVoNfHkSNHbMHCF198YWvXrp08RwkUZH0j+g6l36tVqyYCXFeG9ndwXjNnziznGefbbPbs2SOBI5gEoUYYqhWjdE9YYNzrwpM0g/k+FCo+DCoMa7NXeBnGKHuPiBqdKV+jRg15Pnz4cFNnk0hgQ/QZnKyBknfSs2fPEOZC+6Vs2bLGerjJ/vnnn2GGUWP9DRs22AIFnN8KFSrI+cZ5NxMdYtyqVStj0oTxG175+y1bthhmsOXLl5u6P8RcKFR8FLSQxY1Ml6QP72ZfpEgRWQ8mC5gHdFE/s0IxUQAQpdV1N8hAqiSLMu1wHhcvXlz8ClhQnh3HUgtOaCQwCYVV9FI3Qgu0ZlM4zx06dJDfhtL19rW8IgMaemntG854POJ/FMN0VDY/dPFUXBcRdZsk3oNCxUdBOQ1d7TWiaC+0CYbJ69y5c2IH1/WTzCjFglk4Zuyo2YQCloEIblb2Wgm0F4Rja2CqadCggcPPIuO7evXqYTZBCwQmTpwo5x/HyIywY7Q30Nog6s+hmjF8UzroI6wselwHWiPv1atXpPeDWAOFig+CiwxtY+075UWEvhDhONfdHyMLZt4ZMmQQzSei/vaBLFSgCYbVbwYzeIS9BnrlAEQd4saP8WCGRobcE4xT3e8e5q2ICqSC2bNnyzq4PjxZfZk4T1RFfI4vv/xSPXnyRFWoUEHVq1fP4Tpr165VR44cMf6PGvW/U7lt2zZ5LFasWKT2Yffu3apMmTIqfvz4ateuXapkyZIqGLly5Yrat2+fql69+ivvffrpp2rJkiVq3bp1Kk2aNCqQKVWqlIwJjIeyZcuqPXv2RGp7enxu375dHkuUKKHGjh0rz7/77jv1559/Ovxcw4YNVcWKFeX6+OqrryK1D8QaKFR8jDVr1qiFCxeq1157TY0aNUpFiRLllXXOnj2rGjRooIoUKaJ27twZ4j19kRYvXtztfYBggkDLli2bWr9+vUqXLp0KJuyP+eLFi+WGlyhRIuM1aPgQKDhPEO4ZM2ZUwQDGAcZDlixZZHzoCYwZQgW0atVKtW3bVuXNm1dlz549zHOD6wLXB44/9of4GC5oNcRiYMLSnftQr8sR8JMULFjQMHHZO4/h3Nd5Ku60Fdb5GCiRXqZMmaApjRHa/IVqusgNQrdC+EtCV9dFaDEqFuBYaec+Fhz/YADjonTp0hLC7m7EG/oBYZyicZe9DwXj2Zn2CDgH2rnPSsa+BYWKD6Gz4RFpFJZDFO1WsU7ixInFMR/a7q2TxNxJSMQNAm2JETIcTH1PQgsVRHvphFNUy0V0lz1hhSAHU8dC5OQg5BjjxR3BgkgyfBbHLbx8p9DH3t7ZHy9ePPl8WP4u4h0oVHwEaCCo6xVeuW/73hRLlix55f3nz59L2XB34vgRfoyZJwRKsMy4nalrliNHDm/vhs+CcQLBgnGD/vSuAkGOsYzostBgUoROkKhS7Gis68oGuuCkWeHOJPJQqPgIP/30k1wgaP/qKDMblX91/klYpjF3Qc9wzPpg8gqUrHAzQMY3cipI2GC8wBQGc+Du3bvdSoJs3rx5uHkp0BoR2u7ou/U1gdbJxDegUPERLQV1pXBx/PDDDw7XQdc+vJ87d25TE78QHgq7drFixYLGh0LMBeMG/j2UdXEl3Hjp0qUyplHyxxEY5zoxEvkrjky6I0eONPK5mBDpG1Co+AAoVa9LVYR1YUC9R6Mj1JpyBEpcYMbnyJQQFpj9IccCORlIQiPEXTB+MI6Qx+JsgiSqP2hzblg9eFATDImXWGfatGmvvI/rRU/IcB0R70Oh4mUgLFCMEBfF6NGj3d7Ob7/9ZkTDOAOibGDugvkgtMOfEHfAOEKCJHwlzvo4WrZsafvmm2/CbeyGigY6UszRerhudK+hQCoh5K9QqHiZGTNmGHZjRw5yCIuwak7Zc/jwYXFshmU+swdmBNTywgwwkDPliedBBCLGFSoNmAUElA61f/fdd195H5GKusyLs31aiHVQqHgR3NxhMsDF4KiHvG7OhXWcESzOgqqzzvS5J8QdUCMO4wvBJ2aB1g7w2cDE5ci3oiPB4HMMhv4+vgyFihdB3SNcCEg2DF1KHtVa06ZNK+936dLFtO9cs2aNlDNHZA0hVoHqxkjEdaYfy40bNyTKLiJHe3iRifDp4DrC9bJ69Wq39pmYA4WKF6latapcBLgAw+p2BztxRImIJ06csC1atCjCHieoYIzZHnJRaHsmVoLxhXGGJN3wOkhCq0AYPcY6Wgc7i6MserSIwHZq1qzp9n6TyEOh4iVQYVU3HQqdNQwhoSNeFi9eHOG2vv/+e1m3UaNG4YZ9okcIwjcDpcEW8W0wztD7BCap8MLV0VYAnR2R3OsMSIbMnj37Ky2cUVZHN7ULKxOfWA+FipfQeSfvvPPOK++h3hTegybjjH347bffjjCksnHjxlL+JZhaABPvgwASjLsmTZqEuY6r/kJ9fTjSSNDaGe+h0RrxDhQqXgC2Y5ihMPhDZ2wjixuvwx4deiYWVuIk6lOFV0MJ5UbwPnqtEOJpEJGF8bdgwQJTtofrQhdODe0/0V0lkyRJYkqTOuI6FCpeYNasWTLw4YhHvS57kJFcpUoVKRzpDLqIJPJNHGk1SETDe2FlJBNiNRh3tWvXlnEYXmIkNBZnqzqgVBHGPTqe2l9D8OXo7pBz5swxZf+Ja7CfiheYOnWqPLZo0UL6QtiTO3dutXz5cjVkyBCntqX7SaBxkqPeK+j78fz5c2mA5Oh9QqwG427cuHEyDj/77DOH6wwYMEAlTJhQDR8+3Klt9uzZUxqGHTx4UM2ePdt4PVq0aNKXBUycONGkX0BcgULFw1y6dEmtWrVKnjdv3jzM9XBxOMOGDRvksVy5cq+8N3/+fDVnzhz1ww8/qBQpUri9z4REFoy/MWPGiABYsGDBK++jCdqjR4+k6ZkzJE6cWHXp0sXoFPns2TPjPS1U0PAO1xvxMC5qNiSSDBw4UFRzVHa1Z+rUqRJafOnSJae3BXOB7kmBHiCh63ohy7hu3bo0exGfMYPBDOvIDIaIR4xj9Kl3tvUCcrl0lWL4De0pWbKkvD506FBTfwOJGAoVD5MvXz4Z7BMmTAghHHT9rxEjRji9rS1bthhOydD+koYNG0qOQHg1lQjxNOiQiSCV0OHvGL+oNOxq8iL8Jn/++ecr41+3knC2Fh4xDwoVD6Lj6JHRjixiDXpB6I6NrjTI0oX26tevH+L1uXPnyusICCDEVzuczps3L8TrTZs2lddRYDKy4PrSEWJHjx6N9PaI89Cn4kHmzp0rjxUrVhSbMHjx4oUaNGiQPP/6669VrFixnN7eunXrXvGn3Lt3T33yySeqXr16qlGjRib/AkIiz3vvvafq1q0r4xTjVVO+fHl5dNavEhpsC8EAANdXhQoV5PnChQt52jwIhYoHgeMcNGzY0HgNTsu///5bLoLWrVs7va0nT56oLVu2hLgYwdChQ9X9+/fVqFGjGO1FfDYabPTo0SIEhg0bZrz+9ttvy+OuXbvUgwcPXNomosbSp0+v5s2bZ7yGiRVwFBhALMQFrYZEggsXLhglJHRrVNiBCxYsKK/37NnTpe2hTlLo/BT4T1BUz8wClIRYWVUC49Xe74cmXxjX8JO4Qq9eveRzhQsXDnE96FJI7BnkOaipeIglS5bIY/HixVXSpEnl+ebNm9WePXvE5NW+fXuXthcjRgxVu3ZtVadOHUMj6dOnj4oePbqY0Qjxdbp27Sqh83379jVe01q3Nu06S7t27VTMmDFFy9m6dau8ljx5clWyZEl5vnTpUlP3nYQNhYqHhUqNGjWM1zJkyKA6d+4sCWFa0DhL0aJF1aJFi9T48ePl/9OnT8tzCBTE/BPi62CcYrxi3MIEHBm/SrJkyVTTpk3l+YgRI4zXq1WrJo9IKCaeIQrUFQ99V9AC/4dO7jpw4IB66623TP+OJk2aSCLkyZMn1RtvvGH69gmxAlwTb775pgiTX375RV28eFGlTZtWRY0aVd26dUuy5p3l0KFDKk+ePFKl4ty5cyp16tRq3759qkCBAip27NiyPWj4xFqoqXiA7du3y8UDdRyDPrJcvnxZZnZ6PoALZ9asWVK6ggKF+BMYrxi3v/76q9q/f79KkyaNypIli3r58qXauHGjS9tCiaPSpUtLROXkyZPltbx588p19/DhQyOwhVgLhYoHWL16tTwixBH+Dwz6tm3bqpUrV8rF4yowF2TOnFnqeoFu3bqprFmzGuUpCPEnMG4hSDCOAbQW+Fq0ScwVcF2BSZMmybUFjadSpUpu+WmIe1CoeADUINL5KQDCBIKhcePGIWoWOcvNmzflosMsDBfKihUrVL9+/ZyuF0aIL4HgEoxf+D1QILV3797q9u3bqmPHji5vq379+hIAgPp6ECgAxVbt6+QRa6FPxWIeP34sdmEIDzjTM2XKpBo0aCA5K7hoRo4c6dZ2oc7D/IUkMtiKd+/ezbwU4rdgLBcsWFAlSZJEJl1mcuLECZUtWzaJDrtz5456/fXXTd0+CQk1FYtByDAECqq0ZsyYUWZgf/zxh7wXGXMVHI9wRsK01qlTJwoU4tfALIxxDA3jyJEjxutmxBHBtJYyZUoJmNm5c2ekt0fCh0LFYrRzsESJEnLhILsXQgYRYO5EgekyFABZybhY3n33XVP3mRBvgEoTmHxhXKO0SuHChdWXX37p1rY2bdokZYqmTZsm1x2uP0ChYj0UKh6I/AJ6UCPKBcCf4g4oZVGoUCHRUGbMmCFJXwyTJIEAxjHG8/Tp00Wjh0nXXef6tm3b1G+//SbbAkWKFJFHChXroU/FYlCP6Pz58+KARIQWYueh0p85c0aSH10B9ZDQHQ/aCpyRqHd04cIFSfwiJBC4du2aSpcunerevbuYrRAijLwVV8H1Bf8lnPVXrlwRkxqiynA9nj171pJ9J/9BTcVCEKUFgQLy5csnAiB79uySDe+qQNGmNAgUXBhw9MPhT4FCAgnklCCCCxo9tHl3BAqA/xIaPcKKYXJGEADMYPBDXr9+3fT9Jv+DQsVCkJQIkFOCCDCo4JgxuRvdovvR58iRQzLnP/74Y1P3lxBfAOMaEVuuJj+GRvsaIVTixo0rmgv466+/TNlP4hgKFQs5ePCgoaXYEy9ePLe2p+3LCIuEKa1MmTIm7CUhvgXySmD6Qk/7wYMHu+2sR8FVPRlDOwhdzYJCxVooVCzk6NGj8pgzZ05RuRHS6C64KOC4BHv37lUfffQRw4hJQAIzFcb34sWLpeAkosGQl+UqmHihrhiiLRGqTKHiGShUPCBUYK5CCQoUlZw4caJb20KZfJR3QTVj+FWaNWtm8t4S4js0b95chAGuGYx3RHO5I5xQFTx//vzisM+VK5e8fuzYMQv2mGgoVCxED14451GCAkUl4WR3B31RIRsY4clwaBISqGB8Y5zrAqnu+lfQCRWaPfoOwaQG4I8k1kGhYhHweyD6C2CmdenSJWnG5a4fROe7XL16VdWsWdPUfSXEF8E4/+effwxN3R1QBl8DUxjANtHKmFgDhYpF6Fh4mKt0whW60LlTdwhhkTt27JDnMAnUqlXL5L0lxPfAOH/69Kk8hz/RnYreGvhk7t69a4Tgnzp1yrT9JCGhULFYqCAfRVdH1dVSXeX48eMys0IVYsy2UByPkEAHZmOE42PcI1AF14E7oFQLkoa/+OILyV8BOn+MmA+FisVCBdnBkRUq2vQFZyNmb7onPSGBDMY5xrsuYY/+8+6A/BRo+EgeTpUqlbyGDpPEGihULALdGQGSrmDDRV0jFMhzB236gimApi8SrCYwd+t2IbMePVvgj9Q5YhQq1sGuThbWMAKo9dW/f/9I9XEYNWqU2JPnzJkjfhlCggWMd7R5gE/EXU0FATLoU4/Jmc4VQ+AMsQYKFYuFCsIYEXMfGdBcCBcUomHY3ZEEE9AwUJkbiZDoYQ8zFl5zleLFi4tQuXHjhvyvH4n50PxlEToU0oyCj1DbcUEhkYuQYAN9UQDMYO7mmKCgpL1ZmkLFOihULALmLnDgwAFpI+xuBzv0TdHZ85htERJs2Jt8Dx065NY2YP7SJfGBziEj5kOhYhGIiQcoz5I7d263Y+xRRBJ1i2ACQyQZIcEGqlAgsx69VdwNp8fnMDnr0KGD/H/r1i2T95Jo2KTLAqCVwO6LWl06+sRdJyPCIFu2bKnixIkj5SYICUYqV64sDvfff/89UttB1Bd6tMA3Cf8MMR9qKhbw77//GgIF6Oqo7qr+iHx55513TNo7QvwP+ET27NkT6e3oWmIonaRDlYm5UKhYQOjBiszgyDjp4VzUNmFCghFUGkYY8MKFC90WBvicfSa9O+X0ScRQqFhA6L4pujqqq9y+fdsola+jVwgJRvT4r1evnuFsd5Vly5aJcNJEpr8RCRvmqVhA6MGKZkHugAzi7777TspUuNPTnpBAAaVWUHEYbbndrTCMOmL2RKZAJQkbChULCD1YdW9sV9GVVBMnTsx6X0QFex0w1M5DmRV3yx3pYpIae78nMQ+avyxAF8BDhMmwYcMkasUdkN8CqKUQ8l8UZWSc9YigRCsKDYWKNVCoWICuIozHTp06ub2dv//+Wx5Z6p6Q/wJeLly4EClfCMKJNSx5ZA0UKhZqKpGdCeECcqS2ExKMoKcKqFq1qtvbSJkypfEclcOJ+VCoWIA2d8G3cuLEiUgXpQztYCQkGIFvERw9etTtbSRPntx4TqFiDRQqFqATrIAOCXYHXZ8oMnkuhAQKOjRf19VzB3sth0LFGihULMB+sOqmQK7y6NEjycwH9KkQoqSVNsB1oa8NVylRooQ8IjzZ3QAaEj4UKhYABz0GLXC3MZcunQ8Qm09IsIM+8xp3qwzrHBdM9tiW2xooVCxCCxV30UIFWg8HPyH/TdZ0xJa7QgVljwCqfhNroFCxOAIMhevcQdcl4uAn5H9ozd9doaL73KMEErEGChWL0E253C1+9/jxY3mkUCHkf6BffWSc9XqyRu3fOihULObBgwdufU47Iu0jyQjxZX788Uep/gBtomjRooZWYIWm4m4vFJ3rQqyDQsUiypcvH6ny2nXq1BFnYuvWrU3eM+IO5cqVU1OnTuXBC4M5c+ZI9YiePXtKM7m8efOqKlWqhAg4MQM0v4uMUNEdWVlM0jooVCwCF1RkbL/wySAjH/WKzKZXr16i/jtacPMkxFWGDx8uEyB0Kc2ZM6caN26caNlTpkwx9WBqR727QkU76ol1UKhYROrUqY32pe4CJ78V9Yk6d+4sN4DixYurK1euyPLll1+qXLlyqQULFpj+fSSwgd8QhR4rVqwYYlKE/7dt2+ZTQgWNvgB9KtZBoWIRt27dClEU0lXWrVsnF+vmzZtN3rP/qrViFolw5RQpUsiC13DBJkqUyPTvI4HNjRs3RKu2L4EC8L/ZmoE2W7kbAHPgwAFT94e8CoWKRWDmD3BRITveVVAzDBFkx48ft2DvSET0799fBK1eNm3apNq2bRviNfvWtMQz6FBgbQlwBfuIMe2bIebDJl0WYT9ooa3kzp3bpc8jegYqOh6J54EAadiwofH/+++/r+rXry/tbDWpUqXiqVFKJUmSRJJ9dQFUDf6HFmwmqC4Bc607AQBHjhwxnrPul3VQU/GAUHFH28iXL58MfFeFkbvQxhwSmAFRa0ovqBOVLFmyEK+xH8d/YJyih/yaNWtCmKnwP/x2ZoJzgLEa2tTmDPb+TeZ/WQeFikXYR20dPnzYrW3gpuVuRr6rxI0bV0x1kSnVT4IXhBOjIve0adOkNH27du0knB7RYGaCUHskQNauXdvlz9pP7tytyUcihuYvHxUqKHyHGZlu1OWJEOjBgwerAgUKuJ2wSYKXRo0aqevXr6vvvvtOJifQtJcvX+6WRmFVROShQ4fkEWbM6tWrm7pf5H9Esel6IsRUUGJbh1PmyJEjhD3XGVatWqUqV64s6n5oWzUhwUrv3r3V2LFjxa/iKmghAU18xYoVcm0Ra6D5yyISJEgQQu12NbM+adKk8siyEoSELAWDCDBXJ2nQvk+ePCnPke1PrINCxSJatWqlRo4cKcIBTsv9+/e7JVRQA4wlJQj5r0grcmKePHliFJZ0loMHD8rnEamG56dPn+YhtQgKFYto0KCB6tixoxH9smvXLreECi4Elukm5L8cFT3BcjVUeceOHYYFAaYvaDzEGihULKZQoUIhBrUrYZo67NHsonyE+CPaj4LwbldDgrdv325EOQKz82fI/6BQsQjYcCFI9CBGuRVXYyJ0f3sKFUL+l2di7690Vajo5nkUKtZBoWIRECjFihWTaq0IgcQF4WpZj8SJE8sjc0cIUYajXZuGneXcuXNy7SHrX5dMolCxDgoVi0iTJo08Xr58WXI/AOpHuUKmTJnkEY5FQoKdU6dOuVUeZ/369YYpGgIGoJkYsQYKFYtImzatERJcpEgReW5fxsIZkN8Cjh07ZsEeEuJf6Iz4rFmzulzxG8ByAE0FScXp06e3ZB8JhYploLS8rqSaJUsWeVy5cqVLfpX8+fPL45kzZyzaS0L8T1PRwS/OgOtt7dq18jxz5syGpsPaX9bBMi0WgqKDaAqEki2oNQRTGOoioTOeM6BpFsDnCAlmIBy0o/6tt95y+nNIkkSpI1x/qBuWMGFCt1t8E+eg+ctCtIZy9uxZVaZMGXm+bNkyl4QSePz4MXNVSFCDCEgkArtq/tLXW/ny5cUk3bRpU9WmTRvL9pNQqFiK9omgoKQuYLd48WKnPw8NR4cksyEUCWZ0UVa0JECeiqtCpVq1apbtGwkJNRULQebusGHDpAtkzZo15bUtW7aomzdvOr2NESNGhMhZISQY0W21tfbuDLjOdMQlhMrkyZPFaY8yL8Q66FOxEDTYsm+ylSdPHvXXX3+pJUuWqObNmzu1Da3h7NmzR2XMmNGyfSXEl9El9D/55BOnPwOrwIsXL6SAJKp9t27dWnwzKM1vdkl+8j+oqXgQ9HEAs2bNcvozSNJCtMrevXst3DNCfBv4JRFN6exkDMyfP9+47nRByZQpU1KgWAyFisXAF/LLL7+IGo4+57pXirM9UnRTojFjxqg7d+5YvLeE+CbQ1NGy2JXikwjhB/Xq1VP79u2T5zoRmVgHhYrFTJkyRSJO0GoV9mAkQqLS6pw5c5z6PAQKukCiltju3but3l1CfA6Me/hUXMmknz17tnr69KmYvhCav3PnTnmdQsV6KFQsRmfT60GttZWZM2c6vQ3YggHswoQEG1OnTpWwep386OxnQIsWLeRx69atRkdWYi0UKhZTtGhRo8QEenijlzcK26G/ii6QFxGdOnWSR1e73RESCOjKwnXr1nVqfVwnmMRBy2/SpInkuGiBhFItxFooVCwGlYZ1BBj8Kog6qVSpkvwPX4uzzvp8+fJJ1BghwQZCg1GyyNnIr2nTphmRk9Dut23bJv+jkoU7ZfOJa1CoeACdTb9x48YQJjCo6Ah5dAbYghHNoovjERIMPHv2TBIYdZ6XM4EtM2bMkOc6UqxGjRpiGdA5X8RaKFQ8QNmyZeVRF7ZDiCMyg1GG29kM+7t370qZitGjR1u6r4T4Ej/99JNEPdaqVcup9RHxhQ6RsBDoHC+Ym1GEEsnIxHooVDzA22+/LeW2Dx06JH4VlJn4+OOP5T1nhYTWbnRvCEICHeSVfPvtt8akyhkQeg8QcYmW3MTzRLG52uOWuMXSpUtV4cKFjQgu5K+gCRfMX8iyt8+8dwTCimEPxulCf5Vs2bLxTJCABgmLCAmGpoHxj3YSEdUHw3WECRwc87i+YDKGNeCDDz5QFSpU8Ni+BzPUVDyEdhpq0qVLJ6W47WdX4YHaX3DWa5MAIYGODguGkz4igQK0zwRRYrprKvLB4LjfsGGDxXtLNBQqXqRDhw7yCMfirVu3Ilxfl+x2NnGSEH9Gj/NmzZpFuC4qVOjcLxRw1U7+FStWyHPtXyHWQ6Hi4ex6OO11W+HSpUuLeo/ELmTcRwRyXBCzjwsI/hlCAhWYstCcDqYs5JpExNixY6X6MPLCihcvbkRbwmyWNGlSMT0Tz0Ch4kG2b98uA33hwoXyPy6YL774Qp6jRH5EHengU9Fd71DGm5BAZfz48fKISRciucIDk7Iff/zR0FJwXYF58+bJIyLHdAIlsR4eaQ+ifSgLFiww8lMQ1YXe2YgK0xdGeLRv394wmTHGggQiqI03ffp0ed6xY8cI1580aZK6ceOGSp8+vZF1j+sL1xl49913Ld5jEgJEfxHP8OTJE1vChAkRbWdbu3at8frUqVPltSRJktju378f7jYePHhge+2112T9TZs2eWCvCfEsa9askfEdPXp02+PHjyO8HpIlSybrjxs3znh93bp18hqut6dPn3pgr4mGmooHQdy87qny66+/Gq9DW0E/e8y2fvjhh3C3ETt2bKPMy/fff2/xHhPieYYMGSKPVapUUa+//nq46yLPC7W9EO3VqlUr43UkCqMsCzSX6NGjW77P5H8wT8XDIKse8fLwjyDzV180MGchygWZ9mhIpHvTh1UKHI5H2ImxDVYvJoECJlaodQfzFWrllSpVKtyeKRAmyLhH5JdOENbAPAx/izPhyMQ8qKl4GER/pUmTRi6EP/74w3i9cePGKmvWrBJaHFGWPUpOpE2bVmzPrnSRJMTXQa4JBAq6PJYsWTLcdYcOHSrXERIe33vvvVfeh8OeAsXzUKh4GGQHf/jhhxI3b990CGW6v/vuO3k+cOBA0UDCY8KECSpmzJgSMklIIIBikNr8+8033xhRXI5AWP3IkSPled++feW60ixfvjzCSEpiHTR/eQGo5Y4uGGgeiLFHLwhUWNUZxeElQ0LbQWFK1jki/g7yTDDRgjl3//79MmkKi7Zt20rYMZrgIVRfX08wHcMkFj9+fHXmzBmWuvcC1FS8QFgzMPhItOkLpSV27NgRYUb+1atXJXGS4cXE35k7d66Yf1GvKzyBAp8iNHXt1Le/nvS1AJ8je6d4CSMOjHic8+fP23r16mX7999/Q7zevHlzCYcsXLiw7cWLF+FuI23atLYoUaLYVq1aZfHeEmIdz58/t+XPn99WqVKlCNfDdYHro2nTpiHew3WUPHlyeW/evHk8XV6CQsVLQFikT59eLoAZM2aEeO/y5cu2uHHjyns///xzuNupW7eurFe9enWL95gQ68iXL5+M4wULFoS73vjx42W9ePHi2a5cuRLivWnTpsl7KVOmZG6KF6H5y0vA1NW6dWt5DoejvfkqZcqURh+Jrl27SoRLWMCxCVUf/e7h6CTE34CZFz4UmLEKFiwYbrhxt27d5Hnv3r0l9FiD60dXKf7ss8+Ym+JNvCnRgp1//vnHFitWrFcy7HX2fdasWeW9Vq1ahbudvXv3ynqYxRHibyATHuO3S5cu4a730UcfyXpvvfWW7dmzZyHe0xn0uJ5u3rxp8R6T8KBQ8TLt27eXi6Fq1aqvvIcyLPCX4P1ly5aFu53GjRtLuYpdu3ZZuLeEmMvDhw/FXNWkSZNw18OkC9cBls2bN7/y/sCBA+Vaadu2LU+Rl6FQ8TKnT5+2RY0aVS6W/fv3v/L+559/Lu+lTp3advv27TC3M2XKFFkvVapU4swkxNd5+fKlrUePHlLjC9dBWNy5c8eWLl06Gd9t2rQJc72jR4/aLly4YNHeEmehUPEBoGXggqlXr57Dmdybb74ZoRkMprQYMWLIeqNGjbJ4jwmJPGPHjpXxWqxYsXDX09GQmTJlirDgKvE+dNT7AD169FBx4sSRpC0kQNqDMhM///yzODHR5OvPP/90uA00Iurevbs8xyMz7Ykvg/HZuXNnef7222+HuR56DyFnC4EtKIeP68Qe9KI/ceKE5ftLXMDbUo38x71798I9FNoMBvMWtBJHwLmfKFEiWe+TTz7hoSU+S+vWrWWcYryGztPSXL16VdpBYL2uXbs6XKdmzZrSCmLChAkW7zFxFgoVPwFmsGzZsskFVrly5TCTImfPni3rwE9z8uRJj+8nIRHx119/GQEo8+fPD9PfAoGho70cCZ5t27YZY/3YsWM88D4ChYqPsWXLFlvHjh3logrNwYMHjRDkPn36OPw8Ppc3b15ZJ3fu3A63Q4i3wHjMmTOnUTEiLAYNGiTrwE944MABh9spW7asrNOyZUuL95q4AoWKD4H4ei00/vjjD4frIMNez85C57ZooKHo7pBDhgyxeK8JcR4EkWBcYnz+/fffYXZ+1BGR9t0c7Vm0aJG8//rrr9vOnTvHU+BDUKj4GF9//bVcLEh8hI/EEZiZYR3UOQpdqkIDTQbrRIsWzXb27FmL95qQiME4xHjEuPzmm28croOQ4KRJk8o6iPpypGnjusiSJYus0717dx56H4NCxce4e/euURQvLC0D/hWYtrBOuXLlHNY5Qq6K9sHkyZOHZjDiVeADzJUrlzFhCp0RD+A3KVq0qKyDWmCPHj1yuK3hw4cbk6qIAlyI52FIsY8RL148NWDAAKO+EUrbhwZhxvPmzZPwyvXr16v27du/UvoeTYt+//13efzrr7+MhkaEeAM0njt8+LCMxyVLlkhTutB06tRJ6oChZD3K38eKFcvhtjDucZ3069cv3LbbxEt4QZARJ2Z1urw3EiPD4vfffzeiaMLSalBaX5vBbty4wWNPPA4is7SPb8CAAQ7XGT16tFGGZenSpRFu89q1axG2hSDegULFR9m9e7fhrEREWFiMGDFC1oFwcVQ2HGaw4sWLyzq//PKLxXtNSEjgE9H+D4QGOxIEGLd6ctSvXz8eQj+HQsWHgZaBaK/wwoLxHhIddYXWnTt3OlwPGg96tBw5csTCPSYkJIcPH5ZxGT9+fGlKF5qtW7dKBBfG78cffxzmWEd5FvgPV6xYwUPs41CoBABweqLKMS7MFClSOIz2gkMTjlI0Bps1a5ZX9pMEX4h85syZJagERSFDc/z4cVvixImNJnOOnPca5G5hPYzfsDLwiW9AoeInoEIxMpHDixpDlBcuPFzIly5demUdzPJgZoBZzVFFZELMAi0YEMkFoeEoHwU+ERSIxHgtVKiQ7cGDB2FuC6XutXmMmorvQ6HiB+zbt09K30dUpfXixYvGhZo9e3a5cEP7VwoWLCjvo+ERIVaAgBC0+8U4Q/hvaK5fvy7+FbyfMWNGqfEV3mQJ6zBz3n+gUPEDcGHpfhIffvhhuOueOXPGliZNGsMxGroLHi547dyfNGmSxXtOghE9vpDEGLoHEMafLiMEUy1MYOHRokULw+yF64D4PhQqfsL69esNE8Bvv/0W7ronTpyQC1abFkLbs+EMRbMjNEdCKCdDM4lZoFspxhWc7qEbZmGCkz9/fiNxMaKgkblz5xqRjRs3buRJ8hMoVPwIlLbARYZIGmgk4XHo0CHDCVqiRIlXBAtKXWTIkEHeR0tjQiILAkBQqt5RlYdbt27ZChQoIOMNba8RFRYRn376abhl74lvQqHiR+BCRZc8rYFEFAWzd+9eW4IECWR9zBBD+1jsE85gsiDEXZDUiHGEsPXQ/X6goWC8apNYeAEnoTVqFI50VIaI+C4UKn4GwoV1I65vv/02wvUhWDAzxPpIQgsdbgwzmBYs48ePt3DPSaAydepUYwwh9NceVBDOkSOHvActBu0bIoLmWP+GQsUP+fPPP23169d3GPsflo8Fjk5c2Igiszc9YDbYoEED46aAZEtCnGXGjBnG2Hn33XdDJC9CI8F4w3sIHoFJNiImT55sq1KlyisBJsR/oFAJEhBurJsjQdPZsWNHiJmh7rIHp+ivv/5qC1R++uknyeeBmQYLzInLli1zq9rB+++/Lzc/2P5ReReZ4WnTprV99tlnTgt8f2bmzJlG8Mg777wjIeuaDRs2iO8P72HcOcqmDw3GJJpy4TMjR460eO+JVVCo+DmYGY4ZM+aVSBtHIJyzSJEictG+8cYbEl1jL1hwY9CCZc6cObZABM3PULAQ2hvCWdGPA9FKzsyi7YGPCscIs/F69erJdk+dOiUNpmBmhCYZ6CYvLVDQ3tpeoKBFcMyYMeW9UqVKOaV1QOikTJlSPlOnTh2awPwYChU/5/vvvzcc8eElRmqwjhYeWL777jvjAsaNoWLFioZgCZY8loQJE8pv1e1pHS09e/YMcQPEjDqsvAmEfOP98MqO+DMwUenjYq+hYIKDgpBa2EA4hNUTJXQJIZ0MiVJCzEfxbyhU/ByUwNCd8nCBOxMpg5tAp06djBsDZtpaIOFGWKlSJeO9vn372gIVHAeEwUIAwM+EGTVual9++aV01MSCCs+tW7cOIbB/+OEHmZ2HxcSJE8UpHYgMHjzYGBuo16UFCgQDxpF+D0VO7bWXsMB4q1atmpG7wi6l/g+FSgCwfft2o7d9q1atnO7yCKe8tmFjpqgvaGguqGpsf4MIJBCBFDt2bOnxAbu/ff8OZHvbayXQXkJHNEHoQrA4AiVIUP0g0NrcYkwgoVGPibp16xoaLkyJ2l8HU+KECROc3m6HDh2MCtv2fj7iv1CoBAho2KX7r3Tr1s3pz6FXiw45RrLkkiVL5HUIpi+++MLIPUCmdKCAxM+TJ09Kzxok1kGr0BFxEQkVmGYgiB05nvEefFbOaoz+hNYmsCAwQU9cEOSgHfLwiaCUvSvAlwUhjHwUEhhQqAQQyDPRF/7AgQOd/hxyCXS2M5bPP//cSKxEeQzcWDEDhd/BWS3In6hQoYLMwp0RKrNnz5b+6aGB+QemMmzr8ePHtkAC5jxodZi0/Pjjj4ZghkDW/hP89suXL7u1/UA7XsEOe9QHEB9//LEaNGiQiho1qkqWLJnTn0uXLp3aunWr6tixo/yPfvYlSpRQJ0+eVKVLl1YrV65UrVq1Uh999JFKlSqV9BEPJF6+fKmePHni8L0oUaKE+P/3339XtWvXDvHavXv3VOXKlVWMGDHUH3/8oV5//XUVCDx48EB16NBBtW7dWpYzZ86oTz75RB0/flwVL15c+s5jYtqmTRu1bt06lTJlSqe2+9NPP6nVq1cb/wfK8SL/j7elGjEfZ8tgOAKhsbpmWJw4cWzTp083tBNdIgbmMH/td4/ZNXIoUDsNvhU92165cqVDTQX5O0jGQ4kbOJVR9mbPnj0hTF7oG4LcF4QUawc/Fmcc1b4KSvggLBgaCnJ7AMYB/CUIR8c4QNTcvHnzXNruuHHj5LPYdkQViol/QqES4MAkAcHgCsh5KVOmTAinLLaDMuYw78CG/uabb/pla2IEMqC6APwiiJrD79ECxZFQwbHDTRSRTqtXr5bMcHvWrVsXZhhyREU/fZUDBw4YeSYNGzaU11DPCyHC+rfhuCGh1hWQT6U/36VLl4A0pRIKlYAGWd3ZsmWTi3jIkCEufRaz7N69e9uiRYtmVEZGfgJuBKdPn5YWsdBY0N/FmYqzgQAy5du1a2cLVHBukSWP84oKAbjxYxwgSlBrr/CtDR061OXkRPtQZIRsU6AELtRUAhhcuDDv6IsZYa6uXsyYteoKs3qGCqECx7TOZ4EDF/ksgV4IEIEQzhRE9DcwJhDYAe0T57NJkyZyfmGeKl++vHHuYeJDgVJXt92jRw9jG3hOgRLYUKgEUVlyLG3btnXZ1g9fAjQd1LbSJV4GDRokiZeIhNLbhvbiTLkY4jvARIfzps8hNApEdvXp08cwgSGHBOfbnTBpaD5628i2J4EPhUqQAAepDv+E8/nBgwcubwO5HfalTDJnzmxbsGCBCC04dLV5ZNSoUZyN+jjQFmDG0uZNnD/c9BGokT17duMcI0gBmqm7YAKDKthsqxA8UKgEESj0p7WNli1burUNmLhQTFAX/8MCEwmSL7X5BAtuTIFoKgoEjh49GkI7gd9t4cKFIUxdSIhFtWp3TFUI6rBvIEdzV3BBoRJkIOMZiY6XLl2K1HZQCwvtjbWJBH6Vjz76SBIFtdYCzQhJhbDPE98I3MD50BorzhlqwKGEvxYmOJ9w0CPSzx0Qbp0qVSpb8+bNKUyCFAqVICT0zBHO+MjY5BF2qm9KCNXFDcXe14J8F2RlB7oj31fBcUfeic4v0bXeEF6tNVcsEC6RKegI/4muQYdaYOhLT4IPCpUgB2VHdGkWOGjdBeVcSpcuHUK4oAaWrguFpUSJEraHDx+auv8kfFDLDbk1+hwgeRPnRWuYWOAn27Vrl9uHEg58XRhSV8sOhiZlxDEUKkEOOhjqmwHqNznToS88DWjt2rUhhAsc99Ba8AinMEwjcNpSuFgLbvQIztDCA8cfPXe0aVILeRSEjIzPA3XjsB37kGF/riRAIg+FCpEKsVqjQJJbZCvGOhIuekZcrlw5I5kS2euRMb2RV8FxhzBB90kcZ+QYocWx9qPoXCNUAoisAx1mtRw5csg248WLx0rDRKBQIQLCRu0rFbdp08atsGN7cNPCzQshzPY3NZQ61/8jc3vGjBmRMr2R/6oG16hRI0T0HcrR2At1lJpxtTR9RKxYsUJqn0Um7JgEFlHwRxeXJMENKvX26NFDDR06VP5HdeJKlSqZsu1Tp06pH374QU2ZMkXdv39fXosWLZpUU758+bJKnjy5ypUrl1RH7tSpk0qYMKEp3xvI/PPPP+r69etq3rx5auzYseratWvy+muvvaZevHghz+PGjauaN28u1YVz5MgR6e/ctm2bunr1qqpbt26IKs+ojE2I4G2pRnwPFE6Er8Ues3INUNUXyZH2OS1Y0IlRP4fdv2LFijILpn3+VZMTqiyjRA5CgqHxwVeFCDv744m2yKgubFY4N3xgX331lXwnTF3wpRDiCAoVEiEIM4VpbNWqVaYdLQipzZs3S/933KTCqvQL3wsii44dOxbUZwqJpOi4iOitsI4VBEuzZs1s69evNzVHBOc9U6ZMxvd88MEHbuexkMCHQoVESNOmTY0bCnrXo1eImTx69Mg2a9YsW9WqVUP4XkIvqVOnlkrBKGoY6Fna+H2o/oyWzsmTJw/zmCCqq1atWhIabnZEHRJk7RMjEZq8ePFiU7+DBB4UKiRCkHOAmzlMHzrSB4UH7UtxmMXVq1clURJOZ+S6hHUzRSJfvXr1AqoXPIQCml7ht9ubAx0JEpi/EOVlVbM0nHOtFUHQ4/yzMgJxBjrqidPs2bNHtW3bVu3evVv+z5Qpkxo1apSqUaOGZe1sESyAFr5o03vnzp1X1okePbo4+KtWrSrrI7AAiz+0qL1586a6ffu2evTokZo7d64saNXrCAQ01KxZU1WvXl1VrFhRHPBW8/nnn0vraARYFCxY0PLvI4EBhQpxCUT6TJ8+XXXv3l1duXJF9e3bV33zzTeWH0VEMx04cECtX79erVmzRh5xM3ZE4sSJVc6cOVWxYsUkigzPcVNMnTr1Kz3nPQEsAoiYQlTWX3/9pZYtWyaC8vTp02F+JlasWKpUqVKqfPnyqnLlyip//vyWRljheOKcon98vnz55LV///1XxYgRg5FdxCUoVIhbQCsYOXKkzGbjxIkjr2FW+/z5c1WyZEmPCJn9+/fLzXDXrl1qy5Yt6uLFi+F+BgIFM3zM+lOlSqUyZ84sYbbZs2cXwZMhQwa58bvK48ePRUBg+fvvv9WJEydkwXOE/EL4RRS5j/2BECldurQsuXPndmtfXGXTpk2qZ8+eat26dfJ/rVq1ROAR4i4UKsQ0DaZQoUJq3759qmzZspLvUqFCBY9qBnfv3hVBs3fvXjHVQSs4fPiwkbPhLDCdQVDCtIb9v3XrluTUJE2aVIQmFpiu8Ijf7QoxY8YUQQbNI1u2bKJNvfXWWx7Ny4GAW7VqlRo0aJBau3atvIbf+tFHH6lvv/1WpUyZ0mP7QgIPChVimuaCpMWpU6eqZ8+eyWu4cX7xxReqUaNGYkbxBriBQgAcOXJEtBloNdAibty4IUmYSPh0VeiEB7QL3KAhlGBugwApUKCAKlKkiMqaNaskeXo7UbBOnTqGNoJ9bdWqlZi+0qVL59X9IoEBhQoxlQsXLkhG/sSJE8UsBFKkSKFGjBih3nvvPZ882hA8cJhD2OARAhALfArIWkdgArQXaBW4CWM5f/68fC5JkiTqzTfflKCFN954Q/kiqFiQKFEiI3hh9OjRIkRat24tQp/ChJgJhQqxBGgHEyZMkMgh3NQwM4a9HkBDwA0ON2diDdAWERCAsjh4nDRpkpRrAfDxQGBC0BBiNizYQywBEVjdunVTZ86cUXPmzFHVqlUz3hs4cKCYhjp06CDOfZafMwf4d7Zu3ao6duyo0qRJI2YuhGLD97N9+3ZjPWhUFCjEKqipEI9TtGhRtXPnTuN/mF9QoLB+/fpSUNITUU+BBjQPRLBBiGvgv/nggw9Uy5Yt5T1CPAGFCvE4mDmvXr1azZw5Uy1atEg9fPjQeC9Pnjzq4MGDPnNWMNPv37+/yps3r/rss88k1NcX/FbI1UHIcu/evY3XkRQJYV27dm0JjqhSpQpNjMTjUKgQrwJnPrLmFyxYIDfwevXqqcmTJ8t7iMpC1BSS8ZC7AQ0HEVSe0mTgtM+YMaOEKmvKlSsnZeSR3e6JrH2YtI4dOybmK5Sd37Bhgzp58qS8h3BnJKBCIwHnzp2THBwkThLiLShUiE9pMPfu3TPs/cg5QViyPbFjx5YQXQgazMiRC2NmcMHmzZslykvfqOHoRr4LtANoVTr8OF68eGrAgAEiYMwAfiUICPSdQfY/fidAdBaSTO1BSHLhwoXlt3/66afMKyE+RTRv7wAhGiQY2juQs2TJopYuXao2btwoN3skVsJUhixwLJiVa6Fy9OhRcUzDP4MQZmwHwQIJEiSQhMPixYtLkiFA5j2CB6CB4DnCgzHLxw0dINdGR0ohh0MDwTJu3Dg1Y8YMea4FD4A5b8iQISp9+vTyvfq7oVVBCKAeGbLmAZzp8+fPl9ItWCBMzp49a4Rg433sL0CeCxzrECIQdvA5Ibk0fvz4HDjEN3Gq7CQhPgAadh06dMg2bdo0W+fOnaUfi2bp0qVhVvXFMmzYMGNdfC6s9dCGF9t3plHW48ePjdf69+8f7vej8Znmxx9/dLgOmpNlzpw5RN8atAV49uyZiUeREGuhpkL8Bsz6UZEYS2gwg0cdMGgcSFhEaRWYs1DZ+OnTp6L1aFCGpGnTppL1jtDbtGnTyoLtQvuJCGgeZcqUCfEafEEo44KcHHwvvh/fDZ+ITpLUwHzXuXNn0aj0grpj0LJC5+7QP0L8DfpUCCGEmAaTHwkhhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhFCoEEII8T2oqRBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghpkGhQgghxDQoVAghhJgGhQohhBDToFAhhBBiGhQqhBBCTINChRBCiGlQqBBCCDENChVCCCGmQaFCCCHENChUCCGEmAaFCiGEENOgUCGEEGIaFCqEEEJMg0KFEEKIaVCoEEIIMQ0KFUIIIaZBoUIIIcQ0KFQIIYSYBoUKIYQQ06BQIYQQYhoUKoQQQkyDQoUQQohpUKgQQggxDQoVQgghyiz+D9RAbEcVylANAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -622,12 +567,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIHCAYAAABg7OZHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzelJREFUeJzsnQm8TPX//z9tStKC7NlDqFBIVFpl3ytKCoUUpaRFq9JKSqgsJbJUsqRoQWkRlVAkRSIJ2ZUWNf/H8/P9f87vzNyZu5ntzryej8cx7plzZ87MPefz+by31/uQQCAQMEIIIYQQQgghYsqhsX15IYQQQgghhBAg40sIIYQQQggh4oCMLyGEEEIIIYSIAzK+hBBCCCGEECIOyPgSQgghhBBCiDgg40sIIYQQQggh4oCMLyGEEEIIIYSIAzK+hBBCCCGEECIOyPgSQgghhBBCiDgg40uIFOeQQw4xjRo1MulCun1eIUTqovEsZ7z00kv2O+NRiGRFxpdIOj777DM7eF566aVhn7/55pvt81WrVg37/LBhw+zz99xzT4zPNHUJBALmjTfeMG3btjWlS5c2Rx55pClYsKA5/fTTzS233GJWrVqV6FMUQiQhGr8Tb3iwPfLII2GPefTRR2WcCJFgZHyJpOPMM880xxxzjPnkk0/MgQMHMjy/YMECO3l899135tdffw37PFxwwQVxOd9UY8eOHeaiiy4y7dq1s9/l2WefbQ2u6667zhQvXtyMHDnSnHrqqeaDDz5I9KkKIZIMjd/JwWOPPWbHciFE8iHjSyQdhx9+uDnnnHPMvn37zOeffx703Pbt283XX39t2rRpEzRRO/777z/z0Ucf2UhN/fr143reqQCLJb7b+fPnm6uuusr89NNP5tVXX7Xe0qFDh5p33nnHrF+/3nTp0sXs3r070acrhEgyNH4nnooVK9rx+eGHH070qQghwiDjSyQl559/vn0Mja58+OGHNiWuT58+plChQhkm7+XLl5udO3faifuoo46y+8qVK2e3Xbt2mRtvvNGcdNJJdoHg0i6+/PJLu79GjRrmuOOOM/nz57eRHQyOf/75J8O5+V+vR48eNhrEe9WqVctMnjw5w/H333+/9fTyWcaOHWtfm+NLlSplI0p79+4N+x2sWLHCXHHFFaZEiRImX758pmzZsuamm26yC5hwjBkzxn4GXpvPePvtt5s///zT5IQJEyaYhQsXmnPPPdeMHz/eHHvssRmO4XzGjRsXlFbE36Fr166mSpUq1uvNhgf8hRdeyPD7GG98H9dcc02Oahz4nh544AFz2mmnmaOPPtr+rfjOSU8K93fasmWLNRKLFCli/6ZnnXVWhuupYcOG9lrYvHlz2HO5+uqr7fksWrQowjcmhAhF43dixm8HY2ulSpXMiBEjzIYNG7L9e0QrmzVrZv82nAepoffdd5/5448/Io7TmzZtsuMk3+Ohhx5qvyc2nue7+/TTT+31QNr6iSeeaG644Qazf/9++xpvvfWW/VsXKFDAFCtWzH7m0GgpRiRRvPPOO8+ULFnSfpc88p5r167N1fcjRKI5PNEnIERmkzeT85133unt52e3kMa7Gjp5u5/d7zv++usvm8aCN7Zly5Z28mawh9GjR5s333zTGhxNmza1Ew2TB++L53batGkZzu/vv/+2qXm8XufOnc3vv/9uI0SdOnUyv/32m51kQyFyNG/ePHP55ZfbCe7999+39Q3USGDwHHHEEd6xs2bNMpdddpmdzFq1amUnY+qsnn32WRt9Wrx4sTnhhBO84wcNGmTuvfde+5lID+S1pk6dar799tscfe8sLmDgwIH2vTMD77SDyfGHH36wfxe82ixs5s6daxc3pBcNGTLEHAxbt261k+/q1atNzZo1Ta9evayXnJ9571tvvdUcf/zx3vG8P4YVizH+Pvw+30fjxo3tYo1FDnB+LDhefPFFc9dddwW9J6/x+uuvm+rVq8sLL0QO0PidmPHbwfdD1ItzxTmFIy0rXnvtNdOxY0c7rvN7RYsWNe+++6558MEH7TnznTqD2IEhydiIsYahibGIw27Pnj32eT4n4zPjLmMtf99Ro0bZ51u0aGGNRL4fXgND7IknnrCOO74LB98BP3NNMLdgqDHuT5o0yf7O0qVLrWErRJ4iIEQScuDAgcBxxx0XKFCgQODvv//29teoUSNw/vnn2/8PHTo0wCW8ceNG7/kWLVrYfQsXLvT2lS1b1u5r3Lhx4I8//sjwXj/99JN9Pz///fdfoGvXrvb3Pv7446Dn3Oude+65gb/++svbz3kUKVIkcOSRRwZ+/vlnb/99991nj8+XL19g+fLlQe/RqVMn+9yTTz7p7f/tt98Cxx57bKBUqVKB9evXB7335MmT7fE33nijt+/7778PHH744fb4LVu2ePt3794dqFKlij3+vPPOy+IbDwT++eefwBFHHGFfa//+/YGcsG7durCvd/HFFwcOO+ww+x07fvzxR3tOXbp0Cfta4c63Xbt2dv9dd92V4fhff/3Vvpf/99luuOGGwL///uvtHzNmjN3fo0cPbx+fs1ChQoEKFSrYv4efZ5991h4/bNiwbH8PQgiN34kYv+HFF1+0xz/yyCP2/OrUqRM49NBDg86b5ziGY/3vxd+Lz+4/lvHz8ssvt8c/+OCDQe/lxtlrr702w/e/YMEC7/kZM2Z4+7kWTjvttMAhhxxiv+slS5Z4z+3ZsydQtGhROx77r5ldu3YFtm/fnuGzzp8/33627t27h/0O/J9PiGRDxpdIWtxE7CbPrVu32kH7gQcesD9/+eWX9vmXX37ZmyiOP/74QP78+YMmVTfZ+ieV7OBe//777w/a714vdFKHQYMGZZiM3eQdOkkAkzPGCYsSh1uUuM8VSu3ate3E5eD74PghQ4ZkOHbChAnZnrwxYji2ePHigWgxbdo0+5ovvfRSro2vzZs32797xYoVgyblSPD7LPr27t0btB8DjUUO35+fW265xf7O+++/H7S/Vq1adjESbuIXQmSOxu/4jt+hxpczUPi5SZMmmRpfnCv7evXqFda4ZdzEQeXHGaTbtm3L8DvO+HKGth+MOGe0heIM5nDOvHCceuqpgXLlyoX9DmR8iWRGaYciaSGfnHQSUhUaNGhg0x4Y8109EOlnpJXxPKkjy5Yts6lipJOQF+6HdAly9cNBCgrpIFOmTLHpDKSi/G9u+R+//PJL2LSOcKlopNLAV199FfE5P6RLkJKycuVKex6cN2ksLmUjXE47qR2kxrBRz0SdRKTXD7cvFlD38OSTT5oZM2bYcyaNx0+47zC7fPHFF/bvQdqJP7UnMypXrmzTV/y4VCWuET/XX3+9eeqpp2z60oUXXmj3kZrI35A0JFJqhBA5Q+N34sdvxkxqc+fMmWPr7UjdDof7vOFqbcuUKWMqVKhg1qxZY8d5arcc5cuXt58hEvyNQ6EGLqvn+Jvx2g6uHVI8+U753vx1YaHXihB5ARlfIk8UbVOD5HLO69WrZ/eTT09dj6sTyEyimPx1CoDD0b59e7tIYMHuct1Z5LMQePrpp229QShMOOFqolwdQjglQPdcuP2IUDCxFS5c2JMHplg6MzBwOA/3Xpx3dt8zHLw3n5s8fj6zv6YrM1h0MGmTe0/ROgspXosFDp+LeoNw32F2cZ+PAvfsEk4oBDinf//9N2gfReUsSjAc+eycO8XvQP2FECLnaPyO7/gdCYRHqN1CzALjJRyuRivS+2EUYXxxnN/4yur8wo3DjMFZPecXSqEWjb8rzjRqxxBLQXDJ9SpDkVeIvIaML5G00NCXomTUkljgMzlTqO03Clj0U3TL5OeUtUKLtSHSxE1BNhM3gzqvc9hhh3nP4cFk8g4H3jcEH0IncBT2AI9uKO65cPs5PzepuUkJSWYnDJEZ7r0QlQgtPI70nuFg4qtbt64VoKCA/OKLL87W782cOdMaXt26dfOMFgfe6NBib/edhesBFG7R44Q0UNWKFT179rSe4ZdfftkWhqN6dvLJJ4f1BAshskbjd3zH78z+DldeeaVVssWQCYc750jv5/qxhRpMkf4u0QTFRIx2shEYk0PnFyHyIpKaF0kLEyMRCWRpUY9C9Sh0MezSKFCeoj+MkzjPLi4tBPUq/8QNvF4kMBzCyY+73yECFOk5P3jtNm7caBX1XPqE8wxnV96cyTXS62f2GcKBAQWDBw8OSt0Jh/Mou+8Q1arsvH9mxlS4dB/+nlwLLN7CSUdHg7Zt21oZZIxHFigYgd27d4/JewmRDmj8jv/4HQnUFDF677777rBOL/d5Q1sDAJ+P75nUQ3/UK17w3qecckoGw4v2IOvWrYv7+QgRDWR8iaTGeUHp7wShk3ft2rXthICHkwUzOfIudSE7OE/jxx9/HLSfHP5HHnkk099FmhyPruPnn3+258Ekh+xuKERV6P3iwLjhNUiD8/e8uvbaa+1nYqLkPEJBStnVFQB1SSw8kELGe+ogReShhx4yOYGUQb5DJmHOI1wPG7yjpOMhJZ/Zd0gkiTqqUPCe0g+M45Gnd/Befllqf2pLu3bt7CTsrgM/fOZwC4qcwMKJvwFy0PxNSFuK1IdMCJE9NH7Hd/zO7Huiv9b333/v9Ufzg+OMCBwtN/znzGccMGCAHV8TNR5y7swT/qgcdXO0G4mVM06IWKO0Q5EnJu9vvvnGph6QtuKHSYtibmcIhEtZyQzS7Njo8YInjdenKSWeWryp9HmKlANPzj4Nf+lX4vrEUDP0zDPPhK1PIjWGIm8mdqIs9IxBTIL39PeV4TnS3jp06GC9ohRMU5dEpIn0HIyas88+2/vMNNOkDwrNMDkf+suwgKG/DT/TZyu78HvUPvHepAvyPVxyySW2+JmFCsYJhhmT3lVXXWV/h89PHv7jjz9u/06k2vCes2fPtn1Zwn2H9OVC6ILvg/ciBYii8Dp16oQ9r5EjR9rXpnfN22+/betCWBhQh0A9AxOzv89XbiDdENEQir0x9sLVYAghso/G7/iO35mBMThu3LiwIiA4xHCU0eeLyB01VnwOIpKk+/Ed9+/f3yQCvls2onPU92EIvvfee3b85/t1giVC5CkSLbcoRGbQqwRZXi7VRo0ahT3GSeeyff755xmeR1qYLRJIICNxW7JkycBRRx1l5WtHjBhh5W7DSaK719uxY0fg+uuvDxQrVsxKkp9++umBSZMmZXh9J1WM/O7o0aMD1atXt8eXKFEi0LdvX9vfJByrV68OdOvWzb4Xkr4nnHCCPbc+ffoE9Udx8NrVqlWzx5YuXTpw22232b44OZEq9n/vr7/+eqB169b2e+E1jz76aCupzPuvWrUq6Hi+K3pxnXjiifY4+stMmTLFkxzmOwiF7/jkk0+2vcXKlCkTuPfee62UfKTzpRfNPffcE6hatar9/uhLU7NmTe/3HJl93qyuhYYNG9rfnzt3bo6+LyFERjR+x3f8DpWaD2Xw4MHedx1Oip3+asjSI/nPeVSuXNmOufv27ctwbGbnldm4n5kUvP+79l9Dzz33nP3e+fvSCoXvlb877x+6jJXUvMgLHMI/iTYAhchLEOUBvJjZLRgm7YaaJQk4JC+kspQuXdrWnVBLEE4NTQiRt9H4LYRINFpdCCGEMbbegbQj0g9leAkhhBAiFqjmSwiR1tAHZ9u2beb555+3dV4UpgshhBBCxAIZX0KItAaFRdQNKd4ePnx42B4/QgghhBDRQDVfQgghhBBCCBEHVNgghBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBAiKdmwYYNp1qyZOfroo03RokVN//79zYEDByIev379etOtWzdTvnx5kz9/flOxYkVz3333mb///jvomEMOOSTD9tlnn8X88xwe83cQQgghhBBCiBzy77//WsOrePHi5tNPPzWbN282V199tTniiCPM4MGDw/7O6tWrzX///Weef/55U6lSJfPNN9+Y6667zvz+++/mySefDDr2/fffN9WrV/d+Lly4sIk1hwQCgUDM30UIIYQQQghx0GBEROKwww4zRx11VLaOPfTQQ21kKLNjCxQokKtzXLFihTV4li9fbgoWLGh69+5t7r///hy/zpw5c0zz5s3NL7/8YooVK2b3Pffcc2bAgAFm27ZtJl++fNl6nSeeeMKMGjXKrFu3zot8ERn76quvTM2aNU08UdqhECnGjh07zMyZM828efOs92fv3r2JPiUhhBBCRIljjjkm4tauXbugY0nTi3RskyZNgo4tV65chmNyw6ZNm8z5559v6tevb42vYcOGWeNn3Lhx9vmePXtm+hn877to0SJz6qmneoYXNG7c2OzZs8esXLky2+e0e/duU6hQoQz7W7Zsab+jhg0bmlmzZpl4oLRDIVKEt99+2zz11FNmwYIFNkzv59hjjzWlSpUypUuXNmXLljVdu3a1g6IQQgghRDQZM2aMNZZYk1BHVaVKFfP111+boUOH2vXHgw8+aG677bZsvdavv/4aZHiB+5nnssMPP/xghg8fHpRyiIE3ZMgQ06BBAxsBnDZtmmndurWZMWOGNchiiYwvIfJwASqDh/Pk/PzzzzZ3GU455RQ74LEP75Dbvv32W29gbNWqlc2XrlatWkI/hxBCCCGyz759+zJNO/SzdevWiMdidPghFS8aEO0666yz7DrEgcMX4+vff/+1kSa2eEAU7tJLLzUdOnSwaZCOIkWKmH79+nk/16lTx6Y2EqGT8SWEyADemzvuuMN6lW666Sa7D4/Nrl27TNu2bW2BqYO0QwYfNoyxDz/80IwfP96mJh555JFm6tSpCfwkQgghhMgJOanDitWxmbFz505z/PHHZ9jvZCZ69uxpJk6cmC0DE6GNJUuWBD23ZcsW77nMwJgi/fHss882L7zwQpbnXa9ePfPee++ZWCPjS4g8CN4qvEdr1qzx9uFFuv322zMcS6Fr1apV7QZdunSxMq333nuvGTRoUNBghscMb5AQQgghRG7AyFq8eHHQPiTcTz75ZLvOyEnaIRGzhx9+2EbwXLQMA4lyiswyd1zd2RlnnGFefPHFDFG+cCxbtsyUKFHCxBqpHQqRR/jzzz89BSNu23feeccWnfrD+gcDRhnFpkTEzj333Ki8phBCCCHSi0aNGpkvv/zSpvn16NHDLF261P6fGqsePXrk6LVwNKNGWLJkSfP444/bOq/OnTub7t27e1LzRMaQn0dojPp2DC/OgRp3Mn38qZguWsZ+lBJr1aplf37jjTfMPffcY8syrr32WhNLFPkSIslh4MFL9Nprr9kBhjovDC5ymKPFX3/9ZYthCfNLHVEIIYQQBwPG0P79+03dunWt8dO3b19z/fXX5/h1+N3Zs2ebXr162SgYqZE4i1kXOf744w/z3XffmX/++ceLjCGywYbQmB9/zInsn59++skcfvjhNjuIMoz27dubWKPIlxBJDPnKnTp1snVagExrrDwyRNZIC8BbJIQQQgiRG1hHEK1CYl5kRH2+hEhSaB5I+h+GF9GuV155JaahcFIa/YbX2rVrzaRJk2L2fkIIIYQQ6YbSDoVIQgiht2jRwhpAdGCnvotC1Xjx22+/mQsvvNCG42nafOONN8btvYUQQgghUhWlHQqRhDVe9KOYPn267eH16aef2gaF8YRh4dZbb7VS9kBR65133hnXcxBCCCGESDWUdihEkoHRg+GFCg+d1uNteAGCHqgSIUcPd911l22OKIQQQgghco8iX0IkERSn3nLLLfb/U6ZMMZdffnmiT8k8+uijNuqF4tDChQtts0IhhBBCCJFzZHwJkSRMmzbNphtyS9LLgkbIyQDnc+WVV5rJkyebk046yXz11VemcOHCiT4tIYQQQog8h4wvIZKARYsWmQsuuMDKvdPLYsSIEVFrnhwN6P1Fl/jvv//eNGvWzDZjzk63eCGEEEII8X9o9SREgsH/0bNnT2t4NW/e3DzzzDNJZXhBwYIFbZPnI4880rz11luq/xJCCCGEyAUyvoRIMBhaSMkj505qH53Wk5HTTz/dGoZwxx13WBVGIYQQQgiRfZR2KITIVf1X6dKlzbJly1T/JYQQQgiRTRT5EiJB7Nmzx7z55psmr0Xpnn/+edvw+eeffzYPPvhgok9JCCGEECnMhg0bbL350UcfbYoWLWoFyQ4cOJDp75QrV86uWfwb6s3JgIwvIRLE7bffblq2bGkf8xKu/os6tUceeSTRpyOEEEKIFOXff/+1htfff/9tyx3Gjx9vXnrpJa8PaWbgIN68ebO33XTTTSYZSM7iEiHSIH2PdD3qu5o2bWryGtR/jRo1KtGnIYQQQqTV2uGPP/6I+/sSccqpENiKFSvMddddZ5YvX26dtr179zb3339/jt/73XffNatWrTLvv/++KVasmKlZs6YZNGiQGTBggH29fPnyRfxd3rd48eIm2VDNlxAJZOPGjbZ3Vl7mv//+M4sXLzb169dP9KkIIYQQKcvvv/9ujjnmmLi/7759+0yBAgWyffymTZvMaaedZjp37mzb53zxxRfm+uuvN8OHDzddu3a1mTMTJ07M8j2BCBftbagxd/z444+mQoUKZunSpaZWrVoR0w5Rkf7nn39MmTJlTKdOncwtt9ySFKJmiT8DIdIM/B3Og5TXDS88cPQn+/zzz82XX35pPVJCCCGESF/GjBljo1RPPfWUXe9UqVLFfP3117ZNTdeuXW064G233Zat1/r111/ta/lxP/NcJPr06WNq165tChUqZNMV77zzTpt6mAytcmR8CRHnZsp4XsaOHWuqV69u8jqkIpQtW9asXLnSrFmzRsaXEEIIEcM510WE4v2+OYFUw7POOisoVZHsGAyff//914pmsMWSfv36ef8nCkd6Yo8ePWytOj1LE4mMLyHiGPHC00OKHt4gPEOpwNNPP22GDRtmSpQokehTEUIIIVIWjJmcpP8lip07d5rjjz8+w35X6dQzB2mH1GwtWbIk6LktW7Z4z2WXevXqWYXE9evX20hcIpHxJUScmDlzpg1958+f3zzwwAMmVUjGYlYhhBBCJAaMLBzNfj777DPbpuawww7LUdohEbOHH37YbN261YuWvffee+bYY4811apVy/Y5UTN26KGHxjzilh1kfAkRByj4RJkHSDssVaqUSUVQI0LhyB/uF0IIIUT69eZiLUCqH8IYiG0MGTLEPpeTtMNLLrnEGlmIdzz++OO2zmvgwIFWPdGlDxIZu/rqq828efPs+ooSD4y/888/3yoeupKPq666ypxwwgkm0cj4EiIOUONFTVSRIkXyXF+v7PLVV1+Ziy++2Hq1GjdunBI1bUIIIYTIORhD+/fvN3Xr1rXrgr59+1rFw5zC786ePduqJhIFI+2yS5cuNnrmF//67rvvrKMbMMqmTJlipej/+usvU758eWt8JYtjWFLzQsQY8pYrVapkc5SfeeaZpGnyFwvatGljZsyYYR/feOONRJ+OEEIIIeJMo0aNrAAX9eAiI4eG2SeEiCKE2TG8KlasaMPvqczgwYNtQfD06dNtmoEQQgghhPg/ZHwJEUPITX7iiSc8wySzTuypwCmnnGIbGUJuOtkLIYQQQqQySjsUIobccMMNZtSoUaZOnTq2+NPf8yJVobYNI+y///6zRbB8diGEEEIIociXEDFj7dq15oUXXrD/J/qVDoYXVK5c2aoSwX333Zfo0xFCCCGESBpkfAkRI5BEpZM7yn/nnXeeSSfuueceq1A0Z84cK/EqhBBCCCFkfAkRE3bs2GHGjx9v/08/inQDcZFrrrnG/l/RLyGEEEKI/6GaLyFiBN3UkV1PV+GJ9evX2272Bw4cMAsXLjTnnHNOok9JCCGEECKhyPgSQsSMnj17mueff972/FiwYEGiT0cIIYQQIqHI+BIiytDRPX/+/Ik+jaRgw4YNtsE0Xeep/TrrrLMSfUpCCCGEEAlDNV9CRJHdu3ebsmXLmuuuu87s3bvXpDtlypQx1157rVU/LFy4cKJPRwghhBAiocj4EiKKzJw502zbts188sknpkCBAok+naTgueeeMy+//LKt/xJCCCGEyGkWTbNmzczRRx9tihYtavr372/rySPxwQcf2PY+4bbPP//cq0sP9/xnn31mYs3hMX8HIdKIq6++2ir9/fnnn+bQQ+XbgHTpbyaEEEKI6PLvv/9aw6t48eLm008/NZs3b7ZrrSOOOMIMHjw47O+cffbZ9rjQFjjz5s0zZ555ZtD+999/31SvXt37OR5ZOqr5EkLEhVWrVpmnnnrKPPzww9ZzJYQQQoic8/vvv+f4d4488khz+OH/i7kQNfrrr7+sk9hfox7udXObxbNixQpbgrF8+XJTsGBB07t371ypP8+ZM8c0b97c/PLLL6ZYsWJeRs2AAQNsplG+fPmyfA3qzkuVKmVuuukma4S5yFf58uXNV199ZWrWrGniiVzzQkSB//77z+zatSvRp5HUdO3a1YwZM8aMGDEi0acihBBC5FmOOeaYHG/Tp0/3fp//s69JkyZBr1uuXLkMv5cbNm3aZM4//3xTv359a3wNGzbMPPHEE2bcuHGeEnJW5+tArOvUU0/1DC9o3Lix2bNnj1m5cmW2zmfWrFlm+/bttgY9lJYtW1qHcMOGDe1x8UBph0JEgdmzZ5tOnTqZm2++2Tz00EOJPp2khBztSZMmWQ+WEEIIIVITHK0YS2S7UHpQpUoV8/XXX5uhQ4daR+yDDz5obrvttmy91q+//hpkeIH7meeyw9ixY63BVrp0aW8fBt6QIUNMgwYNbARw2rRppnXr1rY/KwZZLJHxJUQUYIAhXE9oW4SnXbt2dhNCCCFE7tm3b1+u0g4dbdq0sa8RWptOKl40INpFaxl/zTdRMIyvf//910aa4lV+8PPPP5t33nnHvPrqq0H7ixQpYvr16+f9XKdOHZvaSIROxpcQSc6yZcusss5hhx1mbrzxxkSfjhBCCCFSmINVU6b2y9V/RfN1HTt37jTHH398hv1OZqJnz55m4sSJ2TIwEdpYsmRJ0HNbtmzxnsuKF1980YpoZMegqlevnnnvvfdMrJHxJcRBQi4zdOjQwZx00kmJPp2kZ82aNbbu69JLL82Qby6EEEKIvA1G1uLFi4P2IeFOy5nDDjssR2mHRMwQ6tq6dasXLcNAOvbYY021atWyPA+ML6eOmB1neokSJUyskfElxEFAvvHkyZPt/2+55ZZEn06egNzrZ555xnz77bcyvoQQQogU7c1FWl+PHj3M0qVLzfDhw22NFeQk7fCSSy6xRlbnzp3N448/btddAwcOtOqJLpWSyBgGFlLyqBo65s+fb3788UfTvXv3DK87fvx4q5RYq1Yt+/Mbb7xhBUGoV4s1Mr6EOAhGjhxp/v77b+uZqVu3bqJPJ0/Qq1cvm1ON52r16tWmatWqiT4lIYQQQkQRjKH9+/fbtRHRrr59+5rrr78+x6/D7yJqxtqBtRapkV26dLHRM8cff/xhvvvuuwx19zh76fkVaZ0xaNAg89NPP9kUTI6ZOnWqad++vYk16vMlRC6hkTJphr/99pst5CTtUGQPcq/ffPNN23ODKJgQQgghUoNGjRrZ3lmuLEMEoz5fQuQS0g0xvMqWLWuVg0T2ccIkL730ktm7d2+iT0cIIYQQIi7I+BIiFxAwJn8ZbrjhhrCqQSIyF110kalcubI1vCZMmJDo0xFCCCGEiAtKOxQiF9BxnTzio446yvaQQMZU5AzSDckBP+WUU2yXen8/ECGEEEKIVESRLyFywbPPPmsfO3XqJMMrl1AwS+Esqof0SRNCCCGESHVkfAmRQ5A5fe211+z/kToVueO4446zakh+Y1YIIYQQIpVR2qEQOQRp+ddff918/PHHVmpe5B7SDWvUqGEOPfRQ24ujTJkyiT4lIYQQQoiYIeNLCJFQzj//fJt2eNddd9ku9kIIIYQQqYrSDoUQSSE7P3r0aPPXX38l+nSEEEIIIWKGjC8hcgA1Sk8++aTZvXt3ok8lZWjVqpUpXbq0bVi9adOmRJ+OEEIIIUTMUNqhENlk+fLltmM7Pb1++uknU7JkyUSfUkqJmBQrVkxy80IIIYRIadQZVohscvLJJ5sxY8ZYYQgZXtGlePHiiT4FIYQQQoiYo8iXECJpIJ1zyZIl5uKLL070qQghRNT5888/zZYtW+y2bds2s2/fPrN//37zxx9/mCJFipjLLrvMO/aFF16wz9NP0jmoNm/ebH/3hBNOsPuOPPLIBH4aIURukPElhEgKSOWsXr26OXDggPn555/tQkQIIfIiX375pW1H8sMPP5i1a9faDcNp7969EX/nrLPOMosWLfJ+phaWOtgvvvjCnHHGGXbf448/bgYMGOAdQ7o29bJstOqoWrWqqVatmt00hgqRnCjtUIgs+O+//0yLFi1M06ZNTdeuXU3+/PkTfUopiVs44AXesGGDFg5CiKQH//W4cePM0qVLzaBBg0yhQoXsfnpBPvroo2F/J1++fKZo0aJ2K1iwoDn66KPtxvjnp127dua3334zhQsX9vZRc0zEa8eOHbbnpIuiYaCFcuKJJ1qHFu087r333qh/diFE7lDkS4gsePvtt02zZs3M8ccfbyMyBQoUSPQppSyk4WB0SXhDCJFs/PPPPzaixTzQvn17b3/FihXNunXrzPvvv28uvPBCu2/GjBnmlVdesc9VqlTJPpYqVcoaXMcdd9xBj3Es3TDMNm7caDccVmQPfPvtt2bVqlVm/fr13rEYX/Pnz/d+vummm6xR1rFjR3suQoj4IuNLiCwg4jVnzhzTr18/M2TIkESfjhBCiDixdetW64B76623zDvvvGPTBnHEbd++3Rx66P+69Tz44IN2P5kRp5xyikkGfv/9d7N69WqzYsUKWx/WunVru5/zdlkFRMwwBgEhKf4v56IQsUfGlxCZQL4+Kod4KdesWWM9mMnEv//+a3755RdbF7Bnzx67AOCRjYbFRxxxhE1T4ZGNFBdqBEhb4TEaHthYQPE5ntrmzZsn+lSEEGkGEaQpU6aY6dOnWwEg/zKJFMBzzz3XKt+6FMO8BOmKI0eOtMbW2LFjvf2IHH3yySfm0ksvtemOjL2KigkRG2R8CZEJRLueeuopG/3C85lIY4Q+Y9QV8EiKC2klpJqQCpNbUMoqX7689dZSoO0ea9SoYY21RIAByTnhoSWFJrQOQgghYpHy/Nprr5lJkyZZI8RP7dq1rTHChvCFi3ilCswhjPk4GB2M/02aNDHXXHONTbunTk0IER1kfAmRSdoGOfrIn5N2wkQUz6bD1A8Q/cHzihGC8Ec4iGzRd4xUmGOPPdZuRLgwrFAOZGJ1j7t27fIKtImORYLib5S3GjZsaDf+z2vGC1JkZs6caWsTnnnmmbi9rxAi/aTfr7zySjvekEkAZAOcd9555vLLL7diS8wDqQ5LwWXLlplp06bZjZRFB2mKfEfXXnutOf300xN6nkKkAjK+hIgAPVZ69OhhC6XxCMbS24lxtHDhQhtde++998zXX3+d4RjSBPG61qpVy6ZCEh0qV66cNbwwwHKz6MDI+/77722Bttu++eYba6T54fVZjLRs2dIuRnjvWILhSRoMBh8plfE0/IQQqQ2ZBDiYHGeffbaVeGd8RYQCowuZ93Rm5cqVZvz48WbChAl2nnDUr1/f9O3b17Rt2zZh2RFC5HVkfAkRBm4LPHwYQUOHDjW33HJL1N+DSBZ9YKZOnWpliSnsDk11ueiii2zkiUVBiRIl4lKfxXkRaePc3OZXzoJTTz3V1gVcffXVMTHE+P5Jf8T7Onz4cHPjjTdG/T2EEOlndN166622nou+W65ma/HixVZogtQ7kdExiNDIiy++aGbNmuWlueOUxFmndEQhco6MLyHC8OGHH5pGjRpZ7yiywqhFRbOYm6jaSy+9ZMUyHCwEWrVqZRo3bmzlipOpzxXCI2+++aZNzcEYc+k5QESMugCkl4855piovSdF4b1797ZRPoywVKuzEELEF5Y7NWvWtAqAjL9dunRJ9CnlKWgS/dxzz9mNNHy+Qwdp7KS8CyGyRsaXEGHo0KGDjUZdf/315vnnnz/o18NYmTt3rhk1apStH3O3HWpSbdq0sWkuGFx5IY0DtazZs2ebiRMn2vRA91nwHLOYISWlcuXKB/0++/bts6k/1NyRjonoiRBCZBcEishcwNnl0gwXLFhgHTkoFiaj0mteACVdhJGcg5BU9Xr16tk0fdqx6HsVInPkShYiBCJdSAwDkZeDnaSY+DFGUMrCiMBYwdBCWQvhC9I5kPfNC4aXi9CRbvjuu+/aKN7DDz9so1MIlBCtQp2Q2jAWOQfj2yGK1q1bN/v/p59+OoqfQAiRypA2jQONdG0aHT/77LNBDYeJ1stAyD2IOfkzM0jjJKWTZs/6XoXIGkW+hAjhnnvuMQ899JD1jJJ+mNuoDREzvICkagCpi6Tn9ezZMyqRoWSCYQRjC1l+omKOM8880zYgxbjMzaRMLxp6q1GHRn1BsjQwFUIkHwhD3H333TYdjjGDMadTp07m/vvvT7oejak2/pMFQaaCG6NxYpI90qtXL2usCSH+D0W+hAiBvHW8erkReUBB8MknnzRly5Y1t912mzW8kCkeNmyY9QqSApNqhhewyLngggtsXRj1WUy4+fPnN1988YVNF2zQoIGZN29ejiNhiHkQRQNJzgshwvH333/bcZexddy4cdbwol0FPRFJj5bhFfvxH3Vav3MMJyZCVexDul5+fiH+D0W+hIhgRCGvnl0JdyZ70lsGDhxoGx8DE/4dd9xhOnfunJaKUKg3Pv7442bEiBH2+wRETIgGouSYXYioYdjFQvxECJG3mTNnjrn55pu9BsFE23HUIIkuEgdGMPOhy/xAoIP0zwoVKiT61IRIOIp8CRGGo446KtuG1wcffGCNCeqgMLyIdI0dO9ZGgKhZSkfDC4oWLWq90evWrbPNkvke+K5YHHXv3t3Wu2UHDLbTTjvN1hTwvQohBM6dK664wkbWMbzog8iCH9l4GV6Jp2vXrraHJBEwxn6M5OrVq9uUfmqhhUhnZHwJ8f/BWEKRkChWdusLrrrqKlvATXoL6YqPPPKIXQgw8Rx22GExP+e8AP3J8EQzEVN/QbAdIwqRjieeeMKmDGWV0tKnTx/7/8mTJ8fprIUQyQrjAOls9EhEubBfv3523L322mvVkiKJQAGXml/6ZSIyRQYExlitWrXMkiVLEn16QiQMjVJC/H8ee+wxmxpBE86sZONJn6hSpYpNNcQ4oMaJpp2kGTpJYxFMmTJl7Pf1ySef2OgXUsW33367/X9WEzFG2+jRo81HH30Ut/MVQiQnmzZtsi0vTj/9dDt2kMqsHlPJC7V47733npk0aZKNUKJGefbZZ9u0xKycb0KkIqr5EuL/w0RAhAYJ9bPOOivsMUwaKBY6YwHDgd5dPIrsQ3Rx/Pjxpn///mb79u3WW01/sEGDBllvqRBC+MFZU7BgQfv/AwcO2BYdjMV5pUVHZvB5SMUjMuRS8sicYFzkkc/IuJgKUT3Ge9LQXRYDBjRzAY9CpAsyvoSIMMGHRruQUcdAY3KkOTIphjRhVnph7tm2bZtNGUKRDMqVK2dlounDEwmGLKT8w/2dhBCpBfc6qnmffvqpVU9FRTXZYYyippVsCESCfvnlFxut45Exb+fOnd62Z88eO79kB7Iq6H/I2Ici74knnmhra9lKlixpVXbddvzxx5tkxsnQ//bbb7YmjL/tqaeemujTEiIuyPgSIguoVerSpYtZtGiR/ZmeVaTA0dNERAdq7Xr06GEFS0jjJB2RWoFQsRJ6yVD/Va9ePev5FkKkNhgrLMoR2JgxY4bXeiIZwGjCwFqxYoXd6EX4ww8/2I2m87mB8Y8IV3YNskhgfNHwnto4tmrVqpmaNWtaIy1ZGiFjoOLARNwKYyxZzkuIWCPjS6Q906dPt/LlRFtCB38iMnjnXKSF6BdiGpokYhN1xMPtFA1ZKFAjxqLB8dlnn1klMzy+P/30U57wggshDo758+dbgwTl00TBUokxhzGIDVVFhJb2798f9njOlzpXNgweVHB5JErFfMOGgUQWBeMYjYjZ/Cq7vCcp2mRbYMwxD7ERLSNihEGKccojEbb169fbc+S5SFBzhTrvGWecYZ1Y9GBMZPsOPiPplm4s57Ph8OT8hEhVZHyJtIZiX/qOkBJCI8i2bdva/Ux0NFkmBQ7OPfdc8/LLL9t0DhF7Y/i6666ztQFI/iNugmS/Y8KECaZVq1YqsBciRcdkUpEZcy+77LKEnQdLI9pk0GcQ449HFG5DwWhAQp12GDVq1LDiEii5kkKdqDYjzF9E5KhRRsWXx2+++cY+hlPz5bzPOecc64C86KKLTOHChRP2ndM+gAgndWD8X4hURMaXSGsY4CnaxiPJRIvnkUmqQ4cOdtLCe3nvvffaWi/VdsUPGnMiG/3OO+/Yn/k/RpiUJIVIXUhDa9OmjU3xJtOASE6hQoXi9v5EsTC0Zs+ebftSEUXyQ1SKiDyCTESN6tSpYypVqpRn5gZ6JZIe+eWXX9oaK+roXHNqB1kdCEg1btzYptjzWeP1+YjwXX755ebtt9+2xi5ROSFSERlfIm3BA4i3cuXKlebxxx+3ynuvvfaaXejjOcQgQxo3M/EHEdu/z6OPPmr7wri/FXUBeJWBoYsCdtJ5hBB5G8bhZs2aWYOHdDxSvvk51iB6QaTljTfeMPPmzQtKI0RlEOODXo4XXHCBqVu3bsqlOmPw0v6DNh58fnpy+SFNkjo7skL4DnBQxhLG+qVLlwYpCDPWK9VfpBIyvkTa8tZbb5nmzZt7Hlb6fGGEAQ0hp0yZYhWlRGLBE92xY0db10CqIY1V6bHWvn17mwb0448/Jiy9Rwhx8NDeg2wD6n2IJDE2k74XK3gfDK5XX33Vvvc///zjPXfSSSeZFi1aWMMPx1u6tb4gBZ/vhKwDtl27dnnPMf5ihF111VW2/i4eETGMQcSYkKZX2r9IFWR8ibSFiXXhwoW25wgphjSBBCJggwcPDip8TkYwOvySxQhWkLbBRs4+E6QDEQueZyGBVLHbMC7xbFKEncwQ4aL+Aw8tqaBExBA/IT1x3LhxNlophMh7jBkzxvTs2dOq+1F3RM1nLGqOiKh8+OGHdrygvtcf4UJNEeOvdevWtv5JUZb/gVH6wQcf2L8JxirjrYPMEJxiCFD5RZGiCctTUg9JQy1RooRNBVU/MJEKyPgSaYlTzSOtBDUqipOpJ2JiJuc80TjFJydbzMZk9/DDD3vHsEDZsWNH2N+vVauWTd1wVKxY0da0hQNvIpE/x913320VtdhPih8yxeXLl094XQOF+ChP8jcC0lKoW+AcKSRP9PkJIXIGTpQ777zT/v/qq682L7zwQtTT2kirozUIDij/OEf0HOMBpw5jnMjaeMX5hQItEUMcfo6GDRtayXiyEaKdlomKY5MmTWwtNlkqGIGkPwqRl5HxJdKSdu3a2Rx/1PSQuaVuiCJriqkTBbciCwEMCv8iwYHHb9myZUHeWhQBnWwxKSEsXPhMKDj6DbVbb73Vei2dXDGPTq6YYzFGHah0hRaak9ZHGhAGKwukRH5HTz/9tP08LAaITh44cMCmpEgZS4i8AffxgAEDzBNPPGF/xgBjvIpWxInXRwoekR4MBZdWyBjJOEGkHMEMRbhyB9kV9GZEDfjNN9/0epIxD3Xv3t1mk5C+GS1IfSQqSeQShyklAU6ZWIi8iIwvkXbQCJPUEnfp0/OECYTIUqzBUPjqq6+skhMGD+dASoffwEKNCkgFpP6BjegODTMxGqNNaDEzxhWRQAzA7777zm4YqEAKyMcff+wdy/kQgSNdCO8nhls8FjRM/BiqpFI6LzZ/V1IShRDJCwt10gxJN4Qnn3zSOlOi9dozZ8609btLlizx9iOaccMNN9jxKp6KqYz3RG6KFy9unWJAejuOPgyK3bt3240USCL7GDUYNKgoAvWtDzzwgHWqkTLuNnqDMe526dLFOuEApxqvQyp5PI1KUsLJRiC6uGHDBruPLATSOGkZ4D7LwcJ307lzZyuKxesjyCKHm8izYHwJkU7Url0bq8tuLVu2DOzbty+m7/f9998Hhg0bFmjRokXg2GOP9d6b7cgjjwz8+eef3rHvvPNO4IMPPghs3749pueUEw4cOBBYu3Zt4M0337Tn59i5c2fgkEMOCfo8ZcqUCXTv3j3w2muvBXbs2BHT81q2bFmgePHi3nvzHQshkpd///03cPXVV9v79dBDDw2MHTs2Kq/LGDp69OhA5cqVg8bWLl26BD7//PNArNm8ebMdHx9//PFA165dA40aNQqULVs2cNhhh9lzWbJkiXfskCFDgsbM0O29997zjh0xYkSmx86ePds79pVXXvE+d6VKlQJNmjQJ9OnTJzB8+HD7mrt27Yr5PDFr1qzA+eefH3SO/LxgwYLAf//9F5X34G/qrp+XXnopKucuRLxR5EukDVzqvXv3NqNGjbI/EzlBSj7atUKkw/kjMKhm0bfEgdcSsQ+iRXhk2ZJd3CMcRMNQxUKimI3eMXh6HXglSQeMJXhaiVySfsl3TnE436sQIjnH4FtuucWmAzI2EB05GEgnfPHFF81DDz1kNm7caPchU884T+pbtIWEiKxRe8RYx7juXh+VXNIow0HKNpGuiy++2P5MRI66JeYBzpVH6qSIbnEsqe+utxnKg/ThIupDqrjbiJaRMk4EkcwIeOaZZ0zfvn0jnjtp9vRQA16TDAtSL0uXLh31SBnp8Qgi8Td2KZ9kRtAv85JLLjmo92N+5XMTaQMeSXUUIk8Rd3NPiAR5XHv37u1546pXrx4VT5zfI4d3r1evXjYa8/PPP3vP4ZG98MILrVf0iy++sMemIkQQ33777UDfvn0DVatWDbz44ovec6tXrw6cfvrpgQcffNBG0aLJmjVrrBeUv2u+fPmConNCiOSCcXfp0qUH9Rr//POPHV/Kly/vjeklS5a0UaU9e/ZE7Vz3798fmDdvXuCBBx4IXHzxxYGCBQt67/f66697x82ZMydw2mmnBS6//PLA/fffH5g4cWLg448/DmzatMnOPfHir7/+Cqxbt86e83PPPRe49dZbbXYHkbAffvjBO+7hhx/2PkeJEiUCbdu2DTzzzDOBFStWRPV8f/rpJzvvEo1z73fOOecEPvnkk4O+hm666Sb7emRf8H0LkZeQ8SVSHn+qgktXWLlyZVRee9WqVYHbb7/dTmD+VAtSPdIdv3H76KOPBn0/9evXDzz77LOB3377LSrvdcstt3ivfcQRRwTeeOONqLyuEOLgxwHSwzAMovFab731VqBatWre/V6sWDGbcoyhFE0wqI466qgMqX4YYKTS4WjKq4waNSpQs2ZNLy3SvxUuXDhq86MDI/Tmm28O+j4xCr/55puDuhZuuOEG+1p8junTp0f1nIWIJTK+REqDh7RTp07eAE1ePBPBwbJ8+fJA3bp1gyatE044web7z507N/D3339H5fxTBYyscePGWe+xi1K5SFXHjh0P+m+ybdu2wDHHHBNkYPO3FkIkFqLd3JOXXnrpQUVVqPG86KKLvHu8UKFCNpvg999/P+h6McZsIjT+MYOojYsMMUbhLOIcUilzge9u4cKFgcGDBwcuueSSwNFHH22NS//89cQTTwQGDhxoo5UHmy2yceNGWxPs5gAeyRbJrRPOX0PI9RXNbBYhYomML5Gy4Glt3769HZgPP/zwoDSR3OD3rCKIgRcPgw4PHpGWaHh204FffvklMHToUOt5dZ7kvXv3es/ndgK96667vEWZDDAhkgMMmwIFCljxiNyAcA8RDifug8Pmtttus4I/uQXjgsgVC3e/CFLjxo2Djvvuu+/SakHP90KKuJ+KFSt63w9pnqQyIiByMN/Lt99+a1Md/Y5LskVwluYUfuexxx4L/PHHH7k+HyHijYwvkZIwILdr186brIlIoTqYU5hg5s+fb71qpMqFpqX8+uuvUTzr9IMaOH++Pt83SmGkEf744485ei0MYgw50g7dxC4DTIjEk5vItktXPPHEE71FeocOHQ6qZpRICZEW56BxG3W6119/vR3TRfD39fLLLwfatGkTyJ8/f9B3VqVKlcDTTz99UK9PnTS1cu41Tz311MCiRYsO+rz9zjwhkhEZXyLlIC3EpRpieD311FOeBC/padl9jVdffTVw5plnehMDnld/0bKIPhRi+1MHr7zyyhzVBRDd5G/EooH0Fvc6kyZNiul5CyH+D+TdD8ZIIuKEMIMbC0455RTrBIvGQvyCCy7wasVINSTtLp6iGHlZUGnatGlWVMTVbvXs2TPIWM5N9geO0pEjR3oGMfPsjTfeGNi9e3eOX4u/IzXYCD7FutWJEAeDjC+RUjD4XnvttV6qIX1HWLw3bdo0cM0112Tr9ydPnmwHbzfxM9GQ9iLDK/bw/ZMORG2Y38tKJCunCml+A4z00BkzZsTsvIUQ/1crhWGDcAM1UjkBpxd1XG5xTw0SKWU5XdRjCHz66afWeUMtKH24HB999JHte5VKtVvxBsOIqCS1z47PPvssUKRIEZsSmtOsBcAx6uq32EqVKhXUxyy7r1G6dGn7+0TshEhWZHyJlIEJF4+ZW2yH1nhlRwSD5sD+PPR77703sHXr1hietYjEl19+6aWOuo0G1NkFYw3Z6c6dO3tRUH8DUyFEdOF+c2lktJbISfoXyrF+ESMEINavX5+j92eMnzBhQqBWrVpB48bzzz+fi08jcgItRvxZC4zdGLo5rQ1jjPbXmXXr1i1HUTDk8rkGhEhmZHyJlIH+Ki5tISd1PtQK+VMgWACg0LVr164YnanICcgek0bKYs7vrc6sOHvAgAH2Whg0aJA9jpoF50nHIy6EiC5EmhEfcil9RMCyA4tzxDhctOu4444LjB07NkeLdlLiEPE56aSTgjIWyIKgrlTEHsbZmTNnWqPZb/iSuo8gVU5SOxHP6NevnyeyUrZsWVsflhvSSTBF5B1kfImUAKUkN9g7VS3SBymu3rJlS9jfQdWpRYsWdmD3KxlqsE5O/H8jJmdSQzG4w0lN87f31yQgJ+0WBUQ0o93HRoh056GHHvJqa0lByw6Mzc2aNQtSG/Q3qM8uZCc44w3DjybC0eohKHIOqf7XXXed9zchhZAxOKeQ6VCuXDnPqXr33XfnSBERoRdqB6nrEyKZkPEl8jxTp071PGQPPPCAt1AvU6aM3ffII49kSI3p37+/rQlzKYrvvvtugs5e5IYxY8Z4CzZy/Il0+o1mvKxff/11Bu/4WWedZX8HD3luFnlCiIwwfroxmKhVdkBAA0PJGWwo52U3OkIaWmhqGb2qRo8eHfVmyyL3YBRjML3wwgvePv7GRMiy+7dmvib10I33DRs2DGzYsCFbv+uaMBctWjQq/T2FiBYyvkSehhQyJm4GWOq93AKcIm23MHeREZ5D9a5kyZLeQN68eXPbc0TkLfhbokZJ1NL9Lc8///wMPWrCFWRXrlzZkzU+mF5BQoiAXQgjtODqc7KCRTeRKddot3r16rZOJzsgvIGR5t4vGrLkIr7gKHM1gW+++Wa2M02mTJni9WRDGfGtt97K8ndwuLkaRFqYSGRFJAsyvkSeBSlj1wOmVatW3sBKugl1A+xHkckNwqS0uIU6Bb05VVISyQfph6Q7ufQWRDXuueeeoEmW6+TZZ5/1fkaJi74+HI/sdHaEWIQQGSEFjP6H3Eu1a9fOMupEfa0/zRAF2nBpw6GwQCeVmCa/7ndxouS2DkgkDsRP/I2tcZplV8mWsdy1fyHSSm12VhE0HHI0+eZ3ENASIhmQ8SXyJEQs6P3CgIqyFcZVqOqSX6CByZsoF1EyBmylpqQWTMpNmjTxDHEHEtMuMrpkyRJv/1dffWUlqNlPXaAQIufg6HAiGevWrctSzbBSpUqeGEZ20xNRPW3QoEFQQ2QW8Dmp/RHJBUY4/bjc2IwhhTjKL7/8kq3op0sndON9VmqIEydO9N7n/fffj+InESJ3yPgSeQ4iFRdddJFXyOuv3fn+++8DRxxxhNfnw69YuHHjxizT0kTeBQObVgF+lTUmZXr9cD3gofenuFB34OpU/JExIUTWIGLgUgeJSmUGKWIu2kGqcHYjHYz1rm8TSqU4zvyONpG3oZVAx44dPUMKcYzsMm7cOM94Q3wpq6berm4M411iLCLRyPgSeQoWz6goMYiSShA6ibu+UNQR8DxNG0X6wt8fb3v+/PntdRFapP/oo49KdEWIXGQeOEGjLl26ZDpeDxkyxHNysLjOqm8iv+N3knDP0moC55lITVDHRAzpk08+ydHvkc3gjHPqADP7fdJbMdI4tkOHDlI1FglFxpfIUzz55JNe+sCsWbOCnps3b15QfxG2c88919YFifQDcQ1X24VxxSNiK/7Gr0zAGGg8d/zxxwe+++67hJ6zEHnF+OK+oXYWNbpwkPLdp08fbyzGaUbKWGaQuXDhhRfmqE+jSA1CjSFEs7h+sop0kqp4xhlneKqZiGpF4vPPP/fmAl1jIpHI+BJ5BgQynAf1qaeeypCe4i/GRngBQy0njR1FahpgrvGr26gJ9EP9nxMNoIh/x44dCTtfIfISkWptuKdcFgIbY3FmkQbGaVQMXYSa1ETVdKUv/lpd5vWs6rQw0Fq3bh10vUWC3pDO2aZoqkgUMr5EnoBibgZLBs0ePXpk6OnkV9DCG7ts2bKEnq9IHrhWRo0a5dUCsiFT7+fXX3/10qioJ9TCT4iM0Cg3q3Qt6mxJL3ROsKzqwVAfRQbc3ZtEvn744Ycon7nIa7zzzjvemMzWu3fvTJUxWQfccsst3vF33HFH2GsVR22dOnXsMawblH4oEoGML5H04EVFxpjBsl69enYB4Idmui4ixvP+tDIh/NcJRftObS1U8RKD3T2PEpcQIhgU6ViwRmpQTqTZpYChgJiVFDyiSE51lHtv5MiRWgwLD1Ja/cqGKByjfhkJrh1Xx8vWvXv3sL29Vq5c6TnjEGkSIt7I+BJJjxPYKFy4cNjO9q6hMl4yRSxEVoXdzlAPl8rCROwmbhqACiH+L0LFgpX75+OPPw5be4PQEfcO/Rdp55AZX3zxhXevNWzYUNEukWkUrESJEp7QVlZqhaNHj/aUOFFTDLcuIP0Q40xp5iIRHMI/Rogk5cUXXzRdu3Y1hxxyiHnnnXfMxRdfbPfPnj3b/Pvvv6ZVq1Y4EMyrr75qypYta84666xEn7JIcm666Sbz7LPPmurVq5uvvvrKLFq0yFSqVMmULFnSPt+nTx8zfPhwU6hQIft8mTJlEn3KQiQFq1atMvPnzzc33nhj0P5NmzaZRo0amR9++MHeR++//7455ZRTsny9W265xRQuXNjceeed5rDDDovhmYu8zvbt2831119v5/j+/ftnefy0adPMFVdcYQ4cOGAuu+wyM3HiRHPEEUd4z7NuYF0hRCKQ8SWSlmXLlpn69eubP//80wwaNMgMHDjQDpjPPPOM6devnzn66KPt4piFczrBZLJlyxbzyy+/mM2bN3sbkxPP/fPPP/aRDQP18MMPt5MOj2xHHnmkKVasmClRooRdKPHIhrGRDpPRjh07TJUqVcxvv/1mJ/Hnn3/eFChQwMyaNcuceeaZ5q+//jLnnHOO+fzzz+1E/+GHH5p8+fIl+rSFSEoYezC81qxZY8qVK2fmzZtnKlSoEPbYCRMmmAsvvNBzdKQTzF179+71xms3fv/666/mjz/+yDB2MxaHjt3HHXecN177t6OOOsqkA/8/W8sceuih9uevv/7afnf16tULe/zMmTNNhw4d7Pfarl07M3ny5CADzP+6u3fvNscff3zMP4MQIONLJCW7du2yC+G1a9eapk2bmjfffNP8999/5uabbzYjRoywx7Rs2dKMGTPGnHjiiSYVDYSlS5fa7bvvvgsytLZt22YnCwcTUfHixa0HGSPBTdRsPIcB5p/U9+/fb423nTt3Br0nv8vrOIOsVKlS5tRTTzVnnHGGfUwlA2TcuHGmW7du1ug66aSTzOrVq60xP3XqVNO8eXPz448/mtq1a9vrEEN/yJAhiT5lIRLChg0brGOnVq1aGZ7bunWrNby+/fZbGyFeuHChzUAIBQcaEeXRo0ebBg0amAULFoRdBOd1GGu///578+WXX1rnId+d39DCUPBzzDHH2LGWcchvaLkooN8g4xEDgdf5+++/g17nhBNO8Awxxm+MX8Yvxm5+TkWnGoYsa4T169ebkSNH2vE8HGTJYHjxnXXs2NE6APxRVv5GPXr0sPPqkiVLPMNOiFgi40skHVySpAm8/vrr1pPKRJY/f36bQkB0gonkgQcesKlh/B9Pa40aNUxehYUNRhaf020s/t3kTPoOhpDf0+mPWGF85iZlhwURXtfQCJr7mUkJww+jl0WBM8Tcxs9E0fIifCYm66uvvtp+Fq430lqZeJnImYxnzJhh2rRpY4/n/6S4CpFucG+QwkWqbq9evYIcRBheRB8YnzC8wkW8GEu4jxYvXmzHa7IYSDPM64tcDC3GR/+4jcG1b98++3z58uXtFjpe+39mfM/N/Mh3Hzpe+38mCokxAWQ5+MdtNv5eed0gw/i69tpr7bUJN9xwgxk2bFhYo/6tt94yrVu3tkbsddddZ7Md3OfHEVm5cmU7H37yySfWoBMi5iSk0kyITHjppZdsoezhhx9umyJSEEtBtlOpmzZtWuCbb74JVKlSxaofZdW4MxkL15955plA27ZtbT8bV3ResGDBwHnnnRfo16+fbQC5evXqhPcpQ9r3008/DTz77LNW6ey0007zmlRSfF+rVi0riPL6669HbLaaF0B+mM/n/hb33nuvVc5y0sW0OaDdgRDpBMIaXP+IFyxfvjxoXDj77LPtcwghrFmzJuzvL126NFC6dGl73AknnGCFE/IqzDOI9DAmNGjQwAo/uPGiUqVKgcsvvzzw+OOPB+bNm5dwEQfGLsSppk+fHhg4cGCgSZMmgaJFi3rny/8vvfTSwKBBg+zfNa8qTHLeDz30kCeidO6550YU46C9iBPhYI71f+aZM2dGvIaFiAUyvkRSsXbtWk96ePDgwUFNEZEuXrhwYdBkmBcWxBhQixcvDtx9993WeHGGC4bWrbfeGpg0aVLgu+++S7ihlV3++OMPqxo4YsSIQNeuXa0B7Hr6MKEjF53XmleyUEF6/r777vMWKDgBuMZoX+AU2cLJFguRijAe1a1b1177OFj8jgrXVxGnBC0cwsHC37VuqFq1auD7778P5DUwonCEYVgde+yx9rOUKlUqcMUVVwSeeOKJwPz58wM7d+4M5AUwNhiXZ8yYEbjnnnsCTZs2tQ4/pxR84403Bt59990858yEWbNmeZ/l5JNPjqicOXbsWG98x1AWIlHI+BJJA3KweBRDF7rsRxLW73lNdvAMMyFw3sWLF7efqVChQoGrrrrKeuB2794dSDWjediwYYELLrjARiz5vETFMGaQlE5mz+pzzz1nF4l4gYEoH55i108OA985BDRhi3Rh4sSJ9prn2t+8ebPdx318zTXXeFkI4STngQU8mQkcd8kll+QZAwUwEocOHWobP7soP73LHnjgARvJS+axLKcwxhGNxPByDY0xYjp06BCYMGFClpLuyQTZMO4ztGjRIuJxQ4YM8QwwHJ+h8DeO1MdOiGgh40skDaQPuMF/yZIlYaMMeCHxOOJ9TTZYcNAnqmXLloH8+fN7XjiiWx9++GHa9CBjoTV58mTbX4VopfMW9+7dO9MGmYmCCdgtEt3Cyh+FZN8LL7zgRfdWrFiRwLMVIj5jWbly5ew1//DDD2cYozFKsuqDh0OGZuV5YdwjFZxokIviH3nkkTYyhGMmXRbijHM0mscJVadOHS/dlFS+UaNG5QmHIb3mMBy3bt2a6XE333yzN55/8MEH3n7XoJmMDiFiiYwvkRRgbLmIyZNPPhk46aSTAt26dQtaBJMCUqRIEXvM888/H0gWSBns37+/bSzKuZGmhoFIzVa6g5FMag6TXcmSJe33U7t27aSazFl0zJ49O6xH29V9kWbkUq1q1qyZJ1NzhMgupA5zrRO1J4oPU6ZM8SIGGCWh4Cz75JNPAnkF5yzD6ULNEE4/onqkS+7duzeQ7mzatMk6ncgCwAgjO4C6WGqA81L0j4hYKKwr2rVr56XOMofDokWLPKMz3O8JES1kfImEs2/fvkDlypXtoNe8eXMvdYC0le3bt3vH3XDDDXZ/tWrVEh75YqGB8AepKa6YvG/fvhHrH8T/0kdJxeRv7CZz0jKTOZLEuVGfx9+4TZs2gcKFC9v/U78nRCpCTadzlAwfPtzuo8aTaJATKwiF8fiyyy6zEbE33ngjkMwQybrrrrs8AYr69esHxo0bZ+chEfk7IyLmBKJq1KhhHWjJ/p3hJMCwfvrpp8Ne5/zt3Vpj165ddj9CWOxr3759As5YpAsyvkTCwWhxqlnly5f30vVIIXCQruaUioikJDKljsicS8mhRo3aCMQaRPah8PvBBx/0FnnUiqE4lWhBC6Jx1Kn5FxV4wl1U9vzzz/c8o3hJhUg1GN+cCAM1QYzDjM3sI6U69B5l7KPGxgkJoXyajHC/EsHmXibKddNNN8lZlkOIGFEjhiOKMRCnI6mlP/30UyAZcWq1kep1qWV0apxE+Li2uSbc7ySzY1DkbWR8iYSCR9XJxLqIF4YN6nP+Af+ss86yz1FHlAjIIWcgR16YBUbnzp2tkIQ4OPCYUx/mFAUrVqxoFakSVSfiPKF33nln0H6inM74R7nNOQhcSpYQqQDRABcRGjNmjE3NcyJI1atXz5COh+HVuHFjT4DjrbfeCiQTpMfNnTs3aHwhCpIsKc95GerkqGemrpeIJ4qQyZZqz9+ftiHOmHrkkUcyHINj19VoDxgwwO4j6sXP1I8JEQtkfImELrxPPfVUO8i5Wi6EGULl4508LKpb5KHHE3pXIXXPeyM1zEDulL9E9A1xN+lR+E76UrxrC4hyOQ/+t99+G7b/HJuTnXaTtRCpAEqfXNeklzE+o4LnrvfQPkgYZq4OkhTiRGYkRBpPXFo4BiQCIXmlnUdeAoOctiM4TzHCaEuQbCIlKFW6sdsvIOPw1zOSgUHEy/2s6KiIBTK+RMJgEHT9uxi0SWFYuXJl0DHUfDnDDInYeMHCgkbIiGhQ64CHLy/J7uZliChefPHF9m9OxNOvRhVrMPbcgvLCCy/MYPwhp+8mZTZSmJSaIlIBjC2XfcBi2qmAsoUqG3Js69atvYhXMhleOE1c3Q7ROupM85JARF6FKCgS/dTFck3gmEp0s2k/TqmTjXE8kgIiAhwodTpBDtrDCBFtZHyJhIC6kCvgpp/InDlzwvaM6dWrlzeJxkNkA88oNVzUnpFmhrpTsuazpzrvvfee7a/j8vGRQY4HTLwsHnhfUiLDeVHp1UbdgzMQ5VEXeR2iFeecc06gWLFi1tvvmtYOHDgww7Fc7z169LBjOI15k6WOFAEfxm2MSCLVia4hTUcQruCaIRqKIfPYY4/ZdNZkgCwWrmnaCoRzuLryBhR5WY+4tgpaA4hoI+NLxB0m7vPOO88ObNQLRPJKEgFx9WCxjn5wDtQrnHbaafb9WrVqJanZJLlWMHSor+JauPLKK61xFK80FQRBIslOs9hzzZfDSW8LkRdZv3695/TAGItUf8mYmQwpWWRH0OoDhwlRl6eeesprkC4SB+n5KBSTHcA4imx9onu+cc0uWLAg4vPUmjtFW2q8ncAS/xcimsj4EnHHNaxlMf3+++9HXHTXrVvXHseCO5bg1aLXi1ts5KVeNekCUU8MHFTXqMei9i6WvbZIoalQoYK9JlDzigTKiK4mRrWAIhVASp5rulChQtbB4IcUvkS3+fAvpF988UUbXUEIiWiGhDSSj++//96qTLoMFnp6JgtE5JYvXx60jxRbl57oUhVxsiVTCqXI+8j4EnFl27ZtnlhBZgvb0aNH2+dJffFLzkd78sYQ5D2Qm6XQVrUByQ3qgiyy8Kaefvrpga+++ipm7+UmYd4rVHzD4SK4bPQ5EiIvQnotNa1EBfzCA+EEZ5CVT3QEgxRJV5tJTc6vv/6a0PMRWYOqIBFV0kLvuOOOhEcnMaYQYsF4D81ycT1FScFF/In/04JBiGgh40vEFWqo3OSOqEK4SRwDyEW9SCGJdbSra9euXoNFkTdYunSpTRHFMCL6FKsoGA2huUYuuuiisIY5tYsu9ZCN2kUh8hLIg3PtEj1yPY9QrPODUeaajYe2YYgn3IMYgSyYixcvnsFAFMkNUVOiSVxL1apVS2gUzN9k+aSTTgpy8uLkc0ZXrVq1EtrmRqQmMr5EXD1fbpFKDnhmYXwGRtQGo+1hZfImqka0C1n7t99+O6qvL+IHBhdRMAqiiYLFQpDjhx9+8IRhIjWPpemou67xlCZLWpYQ2YE0awQGWIByDSM2RIsNv3GGEi3P0cspUeIytBlxzhBS0an1EnkTFGK55hi777rrroRFwYj2VqlSxV5T9IIj3dzv4MO5F6k/mBAHg4wvERcwepyMMQNuIgq1KaZ1DUGJwO3cuTPu5yBiY9TTL46JEjWraBs/GHjOO7pv376wxwwaNMgzwG677baovr8QscY5EKjD/fDDD739jJGVKlWyzxEl8C9O4zl3vPzyyzbahXNjxowZcT8HEX0Ypxk3iYLVqFHDCmwlqibNORdIYfVnOLixn3Y3W7duTcj5idRExpeIC3fffbe3OB0+fHjYY5AFprdMtOWBGUxp1EytGRE3VA1F6kXBkDfGsK9Zs2aGIuqDgRQUms5y7T799NMRrzGibxxDTQMRMyHyAjgUiHZx7fbp08fbzzhMiwf24zjbsmVL3M8NERtqzBTtSl0Yq0ntY+xmnRBLIaVIzJs3z74/19mjjz7q7edcMAxd1BdnhIQ3RDSQ8SViDt5Sl9JSp06diMc9//zz9phGjRpFTfiCdAZqunjda665RtGuFAfvKZNl/vz5A1OmTIna62Kwo7aYmWOAFJZ8+fLZa41+Q0IkO7RxuOmmm7zIrj/dkDRe7iM2UrDizeLFi626KdGu6dOnx/39RXyjYA8++KDNXjj33HMTEmUaOXKkp/LpXyd8/vnnnmHG+E4bEiEOFhlfIuY4uVZqrDLzGjnZ4HDd53MDClhnn322HTDHjx8fSEfoj0YRPQwePDhw5plnWoGIE0880fYyo54j1aBesFOnTvaaw5MazxqVcePG2fcllYZ0FiGSFRQ8XTYC2+zZszMcgwH2xhtvxP3cJkyYYGstaXobK7XbZCYdx22gsXHRokVtpkE0sxdyslYJN27T58vdJ5deemncz0ukHjK+RMy9l6hoMWi98sorWR6PxysaIhvUATF5oYi1aNGiQLrCpNGrVy/7f+rdMHCR1WVR1bRpU5tOFKmOKS9D5JT0EWpYWKz4PfrRSENcuXJlxOddXWHbtm0TkkIjRHZAtdAtKDt06BBIBogs036Ec+rSpUtCasySgXQdt50SManjrBumTZsWSAaYP4jCcl3SY1KIg0XGl4gZhOtZ/DJgoWwUrx5aU6dOtakyeAvpB5OKuOa+4TZ6TzkqVqwYUf4cQ5fj/QX2qQa9ulC2pLnn2rVro6LShVf25JNPjmhYsUii7ovvlu8/XReQInkhGly4cGEvlco1U+aaxhD79NNP435OtPvAsODeGTJkSEr2XNS4nT0wLLkO+Zyk+SVCYfO9994Lqv8iRdfdL6rpFQeLjC8RE4gOMIFk1f+IQZXmtLNmzTro9+S1EF3g/Ug7I/0sVdm7d6/txYMCGUXpbLfeeqs1MlxROkYAhkckI4H0Cr6rRChPxhOiVCi2kcs/f/78g/aAUoNCVDVS42WgvjCrRuJCJApqGN31iUKoo3///nYf6W3xjKysWbMmULVq1cBxxx2X0r3yNG5nH4xvpyLbvn37uF6PzBnOcYwR5s6H3qTsa926tbIaxEEh40vEBH+ONBNNJC/m5MmT7THksx+MkhWLYtLLGDDxVqWi1zSUvn37BnlL8aqiuOd4+OGH7aQVyVBt1qxZoEGDBoF0gGuLRskUTo8YMeKgU1pxLmTVk8iJb3BNpnPqq0g+SOvi2mSR73os0UjZLTjjWef17rvv2lrfypUrp2wtkx+N2zmDa5EURL6j9evXx+19e/ToYe8FShecAAgGbzinhRA55VAjRJT57LPPzFNPPeX9/Pjjj5tDDjkkw3F//vmnueOOO+z/BwwYYAoVKpSr9/v1119Nw4YNzfz5882sWbPsa4V7v3Rj5syZpmXLlmGf6927t/nmm2/MlClTTDrAtTVnzhxz44032s/et29f899//+XqtWrXrm2OPvroTI8pWbKkfR/AyXX11Veb/fv35+r9hIgmP/30k1m2bJn9/2233WaOPPJIs3v3bnuNcq12797dtGnTJi7nMmbMGNOkSRNTr149s3jxYlOlShWT7mjcDoZrcdGiRfYarVOnjlm6dGlc3nfo0KGmWrVqdn3Ro0cPe2/UqFHD1KxZ0z4/bNiwXM8hQijyJaIKXtRq1ap53iH6xETiiSeesMfQeyurSEIkqFXAY8prkK6RTmTmQUUhDMW9cNHE3r1727S5devWBdKRUaNGWQ8/cvAH01OO3x0zZoxNmYqktkntobsX7rrrroM4ayGiA2ptXI/IeruG5J07d7b7KlSoEFVxmsyg3yPvibBEtHs7JjMat3PHtm3bbKsaUlM/++yzuLwnAifcJ37BMFLX3ZiOEIoQuUHGl4gqhOL9RcSkaEXqicQgejAD2I8//mibg6L8lI4FsKGTON+9m8TpmeZ/DkjFZALHUI1kMKQLtB6gsP+qq67Ktbqm649EumskbrvtNu9eIOUx1es0RHKzatUq73qkbgWQmHfNweMltOEcb/369UuLFHE/Grdzz+7du23KJWUKCxcujMt70n+Ma/WEE06wxjF/DydWQ0piNNSZRfqhtEMRVapWrWrTWKBdu3Y2RSscgwYNsmkEp512muncuXOO32ft2rXmvPPOs+mFCxcuNBUrVjTpTsGCBW2KxJo1a2z6ZWjqCikrEydONJMmTfKOZUvHdDhSrPgeJk+ebDp16mT++eefHL9Gz549zWGHHWbThLgGw9G/f38vRZFjSRkSIlHce++93v9vuukm+zht2jT72K9fP1O/fv2Yn8NDDz1k74u7777bPPnkk2mfIq5xO/sce+yxZu7cuTb98NJLLzXz5s2L+XtSGsE6ZufOnebFF1+016tbs/B3GD9+fMzPQaQgibb+RGqBEpOT2UaWOxxEqUit4BiKrXMKaRekX5BumKpS8rnxoJJ2iRIf3+tRRx2VoVlkJInjdE6dmD59ur0WkTXOjQfTFWU3bNgwogd/wIAB9hgUzdLNyy+SB79YwLHHHutd71yTCB/lNvU7JyAmwfsTTUhXNG4fPCgZ0/+M7wuhmHjcO0jNu/EbASX3d2At4kRrhMguMr5EVOnZs6cdkOjXEokrr7zSHsPgmVM2bNhgUw2RsUdRTmSExpSnnHJKok8jTxlgpASSgpjT2hOMfxYAXM9vv/12xFoF0mQya7kgRKxxfZNcK454Q++udDe8MkPjds6gfyIKtighfvLJJ3F9b1QnXdNlthdeeCGu7y/yPjK+RFQGwXPOOccWUB955JGZNoDEy+fkjCPVg0WCfGua29Lk9qefforS2ace77zzTlT6pqUTU6ZMsRFbRDhy2tDT1XXVqlUr4u+61gsXXnihrVUYNmxYlM5ciKxh3PVHTSZOnGijUDt37ozL+z/77LOe6Iyiv+HRuJ1ziNaee+65NpK7ZMmSuLwn9eqTJk2y/drc/YRQjWq/RE6Q8SUOGvpquV5dPNarVy/iBEv/Eo5p27Ztjt4D9SdUFEuVKhVYu3ZtlM5ciP/j5Zdfto6BPn365Oj3iGzRL4nreurUqWGPoT8N0TW/+AbiB0LEA9f0+4wzzrARsEceecT+TKQlp86GnPLSSy+lrbiGiD2oc9JLFEGMWAsa0e+rSJEi1lE3dOhQT6jGOTSEyC4yvsRBgZy2W3geffTRmTbo/Oqrr7ymszkZJPEoETFAYSgdmnCKxMrQc42OHDkyVyqf1CFG8oBeccUVXo1AViqJQkQL2nG4Glskurds2WIjBfz83HPPxfS9ifLy3kQJZHiJWLFr1y6rGFmuXDnrDIsl7dq18+p8nQw9W40aNXSNi2wj40scFPRo8S8oq1SpEtGTSrSLYzp27Jij9yASwSAXj8JaIdz1Rj+XnEggO/nhsWPHhj3m888/9/orOW9pvOSSRfri0mJJz/LX5dauXTum/bWI9p544omBRo0aef3EhIj19YaYSSyvN1rcuDpfRJR4zJcvX64FxER6IuNL5BpUC53nh0GPR5rOZuaBZeLPSfRq9OjR9nWJSAgRD4hcUciNMZWTFNcnn3wyy/x/FsAcg5c2qxRdIaKRkuWiXChzzpgxw6u5jVSXGw327dtnr3HEkWIdiRDC8dFHH9lIK07hWHLPPffYe+j444+3jwiAZSU0JoQfGV8i16AOx4BTs2ZN+0gudDQlV+M1kAoRrsaQCZVUEhaw2V1wcg9wL7zyyithj6Gg3kl9uzTdmTNnRvnshfgfpM9yjdGI3kVdeWzTpk3M3pPMB1KzqAFWU3ERb5zDNqep4zmBsd6pHeLMINrmnBrffvttzN5XpA5qsixyBU2OX3nlFfv/o446yj5269bNa7Ds599//83x62/YsMG0bdvWNGjQwDz99NNROGMhsk+hQoVsw9OffvrJNtT877//svydAgUKmJtvvtn+f/DgwWF/p1mzZqZKlSpmz549pmHDhl7j2+y8vhA5AefqiBEjvIb3NKY9cOCAOfzww81jjz0W0ybKNG6mMXCNGjVi9j5ChKN79+62gXifPn3MBx98EJP3YKx/4IEH7P+PP/54M3PmTNOiRQv7s7vnhMiURFt/Iu9CvQoKVs77EylFixovxAVWrlyZba8S0bR4FM8KkRlvvvmmvbYHDhyYreOR7i5ZsqS9LyI1rUVm3hVok5pFs9RY1t6I9IQaWa4z+iAhSECPRFop5FTNM6e9qnjPhx56KGbvIURORLrWrVsXs/dgDCedF/n5uXPn2mv/uOOOi0vDcpG3kfElDor+/fvbAefSSy+NqIboUl2WLVuWrZQV5OhZMKxYsSIGZyxE7lop0AssO/z1119ZpjS6fniLFy+O0lkKkdHp5Wq9/MSqxpDxnVTayy+/XHWMIuFgEOU0dTyn+MssEPmgxpF7DoeaEJmhtEORY/744w/7+Oeff5px48bZ//fq1SvsscWKFTNff/21GTp0qDn99NOzfG3SYV5//XWbsnLqqadG+cyFyDm333676dSpk7n22mvNihUrsjw+X758WaY0tm/f3v5/zJgxUTtPIRw7d+40b7zxhv3/lVdeabZs2eI9d8ghh8Tk/Vq1amVTapkTYvEeQuSEwoUL23RAUsevueYam4YbbSiz+PHHH029evXMySefbFMe4fnnn4/6e4nUQsaXyBHr1683JUuWNP379zevvfaa2b59uznppJNsLUskqlatam655ZYsX3v58uW2/uWuu+4yrVu3jvKZC5E7WEhiJFWsWNFO4v/880+2fu+jjz6y13I4rrvuOvs4efJk89tvv9nJ+uqrr47qeYv0hevqr7/+MqeddpqZM2eOKV68uLnwwgtj9n6M77t27TIzZswwRx99dMzeR4icUL16dfPiiy9aR4SrUY82OJiXLl1qjTyMsMMOO8x89tln5rvvvovJ+4nUQMaXyBHDhg0zu3fvtobSCy+8YPddf/31dsAJZd++fdl+XRa0LGxPOeUUc99990X1nIU4WPLnz29eeuklG/l65JFHsjyeSMP5559vjw0XLTv33HNN5cqV7T3C61IcPmHCBPPxxx/H6BOIdMJlJBCtHT9+vP3/jh07YvJeb731ln2Pp556ypQpUyYm7yFEbkFspmPHjnaM3bx5c0zmBnfd43C79NJL7f8Zz4WIhIwvkW3wbI4dO9b+/6qrrrILRaICTPDhUhMrVKhgU14w1rICdTjSE1mIZpW2JUQiOOOMM8wdd9xhBg0aZJ0PWXlDuUd69Ohhjj322AzPc9+4FJVXX33Vi3oNGTIkRmcv0oXVq1ebL7/80qoakgr1yy+/2P1ci7FINySK27RpU+s8EyIZGT58uF1XcA9EO/2Qsfzhhx/2lA4vu+wy+39KJ6RiKyIh40tkGyJdeOqpxdq4caPdd8EFF5hSpUqFTXvZtm2bWbRokTnmmGMyfd1ly5ZZeWJStGrXrh2z8xfiYLnnnntsGm120g9Jd3nuuedMuXLlwj7fpUsXc8QRR5jPP//cNG/e3O5D3p4aAiFyy9SpU+3jxRdfbK8/h7vGogmtFXC0MTeozkskc/0X98Kbb75pjaJoQw0v4zwp5DgkcLiRhqhMBhEJGV8iW9Cra+TIkd6EO2nSJPt/IluZ9ZdBiCNcSqLj77//tgvZatWqmYEDB8bs/IWIVoE1KVZEaYnWZkZWi9GiRYuaJk2a2P9jgLFYxlOqPjEitzD2Tpkyxf6fGq/Zs2d7i8/SpUtH9b1YyL788su2D2M4B5wQyQR15KxXSD900eBogQPC9bR75plnTJs2bez/qYsXIhwyvkS2ePvtt60nB6U2BplVq1bZhSiNkEOh2PSrr76yzZe7du2a6esSrl+5cqXSDUWegegsUVqitURts2LJkiXmxhtvtA1uQ7niiiu8aAWLAkDc4/fff4/BmYtUh/pC0g4Zm9euXevtz47SbE6gfoxaX4SWJBQj8goYRqxLuHajmX5Iii9rJFi3bp2X7UCzcaUeinDI+BLZYtSoUfYRYwopeJfGctxxx2U41nnuKXLF4xoJDDSiByxka9WqFbNzFyLaEKUlWkvqINHbSPBcixYt7D0xffr0DM/zHAXbP/zwg1Wko06SGknqwITIKe4au+iii4LSq5xXPlr07dvXthpRuqHIS+A8RlkWkRiittEChU/aLDgotyD1EIEP/i9EKDK+RLYg5XDAgAHWY0Q9F9D7KJStW7d6ofbevXtnmW6IFOzdd98dwzMXIvoQpSVaSwTYFVtHOo57JlLvF+ohXZsG7hvSdOmXhBKiEDmFvkbOMUZ9YpEiRezP0eyZSF0ihh3phrQdESIv0bJlSyuGhANh06ZNUXtdF10+/vjjbS087wPOWS1EEJm2YBYihA8//NB2cD/uuOMC+/fvz/D84MGD7fP16tXL9HWGDh0aOPTQQwNLly6N4dkKEVvuueeewBFHHBFYu3ZtxGPWrVtn74lDDjkksH79+gzPv/baa/b5smXLBv77778Yn7FIVbi2uI4YV7dt22b3lShRwu5btGhRVN6DMb9MmTKBZs2a6VoVeZbt27cHihUrFrjqqqui9pqPPvqovdcuu+wy+/Prr79ufz755JOj9h4idVDkS+QqrYXiVXKn/ZBDTTQAevbsGfE1SKsiWkAKo9INRV6GaDCptTQHj0T58uWtJ5T7w/Vc8oNMNxEwaioXL14c4zMWqQoCGNCwYUMb8dq+fbvX14gMg2ilnxMtoCWC0g1FXk4/vP/++23j5XB9GA8m8uVeDwEl1Gy///57uwnhR8aXyJQPPvjAimq8++67dvHoJnhSo8IJC6xZs8bmPyO9Goknn3zSCgow+AmRlylQoIBtCo76Z2a9v1wvPJwToQXY3C8uRcXVelEDRj1kOJEOIcLxzjvv2McTTjjBLipR0ASK/wsWLHjQr+93mvnrW4TIi3Tr1s1UqlTJ3HnnnVF5PXdPILiB+iFrptNOO83uc2IcQngkOvQmkpsuXbrY0HmPHj0Cq1atsv/Ply9fYO/evRmOveGGG+zzmYXyN2/eHDj66KMDt99+e4zPXIj48Pfff9vUkqZNm0Y85vfffw8ce+yx9v5YsGBBhuenTZtmn6tcuXLgn3/+CRQpUsT+PGfOnBifvUgF/vrrr0CBAgXsNVOwYEH7eNNNN9nH5s2bR+U9Bg4cGDjqqKMCP//8c1ReT4hEM3XqVHuPUE5xsDBuH3744UH3XrVq1exj48aNo3K+InVQ5EtEBDUrl2ZIfwwX9Tr//PMzNE5GQMP1l8lMenjQoEFWhOCOO+6I6bkLES9ILUF2Hu/mwoULwx5DdOvyyy/3mi+HgjodcsVEjkk/dMdOmDAhxmcvUgEU1cgmQH127969VgjDte7Au3+w/Prrr2bo0KFWpEA9vUSqQIbOGWecYdPHD1Z6nvHbSczzmkDbB/joo48yVcUV6YeMLxGRuXPnmj179tjmnA0aNPCML+SxQ2HhSe8XJn3qW8JBKhXSxBhepMYIkU6TuEs9RP2KBbIfZIm5x2DOnDlWjcspy+3fvz/m5y/yNu+//753HTln2WOPPWY2btxobr/99oN+fec04/oWIlU49NBDzaOPPmp7kzql0IOhYsWK9pF0cfpBkmKOo5o0RMoyhHDI+BIRcZEsvPA7d+40n376qSdjHMqJJ55ojTLk4w877LCwr4coQdGiRc1NN90U4zMXIvkm8bPOOsucfPLJdiIOVwOA8IYzvurVq2dOOukks2/fPls7IERmuIirE9jA+GIcxnFWokSJg3ptmjXLaSZSFbIO2Og3+u+//0bF+OKeueKKK+z/6eMICxYsiMLZilRBxpeImHJII0K47LLL7IIQLw4FpGXLls1wPF57vPSkX0VqqEx/MEQ2SMESIt0mcdTh2rVrF7H3S5MmTbxJ+q+//vJEa9QnRmQG14pTycTjTo84V+gfDegXJqeZSGUeeeQR8+233x504+UKFSp4ohusm2Dbtm32UcaX8CPjS4Rl/vz51utOfv+ZZ57pKWm5hrCRiCQ/jKIQiwKXeiVEOk7izvgi8kUEzE+NGjXs/Uaa4Ycffugdi1ND9QIiEqgaYoAdeeSR9meMdpxneN6JVh2MYqacZiIdYI3ToUMHq1zLvRONyBdO6vr163vPkXYo9VrhkPElMh2Q6OeFQcViEMLVc82ePdsONpktDjDeqBugKFWIVL5nWPwiyR0u+kVdGJMyhtfHH38c9Bz3mYt+EWlm4i5WrJidsDHohAjHJ598ElTvxfWHaMvUqVPNyJEjI6aBZweuYwQ75DQTqQ5ZO/SwC9eLMbvgQMNpRgaEvyUPokwI4nzzzTdRO1+RtzkEycNEn4RIXlhAUrRNo1gMp127dtneRg48rtR7ISCwdOnSsE2TEQ+gXoxGgwezEBAiL0AKGPVdRKzCidOQflKmTBnPS+qHFEM8sKSN0Tds5cqV9rjQhuZCODC2pk2bZgU2qPVC9Gjr1q221xfjc277GGHAkUY1fPhwc8MNN0T9vIVINuhp+t1331kjKRpNxLkPySDq0aOHFcXBGdKrV6+onKvI2yjyJTIFY8lFvfDq+w0vN7jUqVPHigO4Du9+KACnceyNN94ow0ukBYhlsD399NNhn6dVQzjDCxo2bGgfv/76a9vUtnr16jK8RKa4ZsqMw6StsmgkYtqvX7+DaiA7YsQI25w5s9YhQqQStFJYtWqVpx56sFAriQPDpR+62kwhZHyJsJLwfilsZ3ydd955GY7F6Jo3b56NaqH4FsqoUaOsRHHXrl1jfNZCJNckzn2R0zST4sWLW8OMhAR6N/lRkoIIBefXhg0brMHlegtFA1KkRo8ebbp3756hp6MQqcq5555rnciRHGfZgXF6+/btQbVjyM7DsmXLonKeIu8j40tk4LrrrjOFChXyVNYyM74crtjbDykvzz33nK0XOP7442N4xkIkXyoY6V+RJvEPPvjAtGnTxhZ4h+L6fblanmeffdZGwFgMCxEqiOEWfJ06dfIMdFKnvvjiC7sIzA0TJ060PR7JWBAiXcCJgeMMpWca3ucGDK0iRYp47R9+/vlnm7oLRNUkniRAxpcIAqU16rMo8qfuhIED2VSiWm5R6KCp8m+//RbxtaZPn25lVnv37h2HMxcieaDAumfPnmbSpEl2ERsK98WMGTNsrU6k1EMnyMF9Fs1UGJE6+COrOLtcnQqqm6Qh5sZgx4DDaUa9Yrly5aJ6vkIkOx07drTO59w6uwoXLmwfneOD13Jj+T///GPHciFkfIkgaBKLZ4baARrCukEDIQ2npuUYN26cFduI5B1l8CKMX7Vq1bicuxDJBBFfUk+Q6g7lwgsvtOpaL774YobnnJOD+gAma4517R/otSdEOOPLr0TrFn544HPKl19+adOjrr/++iidpRB5B2psqXNE9TA3UarXXnvNjvsYcUCLBtZBjhUrVkT1fEXeRMaXyJAO5VIM8aKiYAh169bNcKxrGugaC4bWjbFYJIVRiHSkdOnSpmnTpmE9qHhD7777bhudCAVnxQknnGCj0KSVce8hdMOCWl5TkR3jy2UkOC98TnjhhRdsLW/jxo2jdJZC5C1Yt5CdMHPmzBz/LmN3aBlGo0aNvP+TEiyEjC8RhMtTdvVdrqYgVEIej7w7NlzvrzFjxtg6L9coVoh0ncSJJLj7KDuQ4nv22Wd70S9SGFFP9NeBCUF6IK0InHfdL7jhIl85Nb6QxSZSi0CS1GlFulKtWjU7Bkerzvacc87x/r969eqovKbI28j4Eh7UeTkpVAYLJvdIxhfF3EzUePCpDQvtDfbSSy+Zzp07m/z588fxEwiRXBD5Qnhj7NixGZ6jRodGuH369MmgZFizZk1Pcj6cCIcQW7ZssdFRoK+cv4F9btMOSZlC6VDqtCLdwXH23nvv2X53OYHaXHqbDhs2zNtH9oK7P5V2KEDGl/Bgocdkftxxx5kqVapYsQ0mcTygdG4Pl3JIOD1UYp66MRYGLudZiHSFCZemyYhrhJOKZ5GLEta3334btP/UU08NmqidCIeML+FP7Xa4SKnDibyE1ulmBSJJXGs0ARci3Rsuk3Uwa9asHP3e2rVrbYNzpxLt6shcH9T169erdlfI+BL/Bx56FoI05sSgclEvQvChjV6p54JwKYcMVjQXDFcnJkS60bJlS7Np06YMqYfUBdC4PFzzTRdNpqaHiZp7iVowFtlEqIVwxhdjrX8c5vpw10hOMg/++OMP6+nnehUi3cFxcf755+fY+CIFGIgg+2nSpImto+fe/PXXX6N6riLvIeNLeBQrVswqFw4YMMD+HCnlkLRCt1j0q/g43nzzTdOsWTPVDAjx/1N4iSaHm8RdLVeo8YXSKMYZE/iPP/5o6yeJjk2YMCEovUykL3jQoXXr1naR6E9nzaz/YiRoCo5KGxLzQoj/Oc4QIdu9e3e2fwdxJOfM8DNo0CAvouzuXZG+yPgSEXHd2EONL5oPUu+Fh4eoWKg3lkWivKdC/A9SV/B64pTIrvGFgeXuLdUIiHCQFu5UNf34ja/QjIXMwDlQuXJlm3IuhDCmefPmNlL1zjvvHHTkC8qWLWsfZXwJGV/CUy+krwUGl8tHdh3eq1evHnQs6m3OKAuNbrHAxNt68cUXx+3chUh2cEbQtsEtmEONL+otQz2lru7LiW64qPPWrVvjcs4iuXHjMz0Z/RC9AlLHsxslZcyfPXu2ol5ChBhL1GrlJPXQRb7CGV8u8kU2g0hvZHwJT/70mmuu8STmmYwpHIWKFStmUDoEv7Sxg0GKprBuABJCGHPppZfahXBo9IuoBbWWGFXOqRFa9+WML8Q2ChYsGNQzRqQv7rrwF/b7I185iXoxplOHoowFIYLhnnj77bezXWvrIl+hzjQnRgaffvpplM9S5DVkfImgiRxvOx7TX375xU7iLBhDla/cItGJBTh27txpPvroI03gQoRpvEntV05SDytVqhTkJeU+RI30+++/N3///XdczlskL6R+Q2irDxf5ymnKIW1DQlUThUh3iAaztsmu0qxTfw6naOhaP2zYsCHKZynyGjK+RFDjP1dn4qJehN39qSt46EmfChf5mjNnjn2ePGkhRDA4JRA1cItmR506dexjqBpiuXLl7KPrM0OUDAUuPLAu5UykJ4yzzhMf6gRzka98+fJl+/VwCtCTTmIuQgTDOqdEiRI5Vj1E2TAUhJRAaodCxpewfPfdd/bRFVtHSjnEY4Nnh7TC0MJsBicGqtAaBCHE/zyoRKzefffdoP3O4RHa68sVZ//222+2foDJPNKxIj2dZVC7du2g57hGMNhDjflIcCyiLspYECIjrHcYu1nfhOvVGIo7Jpzxdcopp9jHvXv3xuBMRV5CxpfIkfFVvnx528CTCdsvtsGAw6ISiXkhREa4l5h8586dG3ZC5h70p6ogL8/mj365VER3f4r0xNXdssCjDtAPES9SVIsXL56t10LJjbG8cePGMTlXIfI6ZPOg5Lxu3bqDMr7c+oroNNFrkb7I+BJ2sHANO11YPJLx5QaVwoULB+3jePKi69evH5dzFiIvctZZZ2UQ1qhQoYKVo6dAe+PGjZlKEzvjy92vIj1xf/+c9PGKxOeff24VbUlpFUKEH7chdOzOqfFFKwfHpk2bonqOIm8h40uY7du3e7KobrHnFoGhYhuRcINSOAVEIYTx7g/Ebfy9mKizcU6P0HRCV/fljC/nDFHkK71xkdBwoho7duwwt956q7n99tuzPXZr3BYiMieeeKI56aSTDtr48jutEU4S6Yuqa4Wt3yKfecuWLd5kvm3bNvtYrFixoGORo6fb+3333Wdq1qzp7WdQYnBikBJChIdFLj31vvnmm6AFb6tWraxwQmhEOdT4oufM5Zdfbh9F+uJSVZ16mh/qSYYOHWrH8scffzzT18EJwLXYrVu3mJ2rEKkA43V2jC9SxRnPw62F/C14QtOFRXoh40uY/PnzZ2iu6Yyv0AGEehWMtLvvvjtov7ynQmQNRhP1NaH3y+DBg8Mej8oWuMbKtIKYMmVKnM5WJCukqkI4cSMWfwMGDMiW2iFRWJwBGruFyBzuEZwaRLbCRbUcZDHMmDEj7HP+SLU/BVGkHzK+RAZQZNu1a1cG44tBZ/z48TZc7lc6ZD/y86S6CCEyd3SgRpcdDyrQe8mlkgnhcH3ewtV8HXfccebRRx/N1utwHeIMUCRViKyNL+ra6bvonB85hdre0H58Ij1RzZcwixYtst501zsIaWsnseoWf4C3B0WsG2+8MShkjgIQxpq8p0LkPn2FBTXNzf24+49J30GkgugzDZdFekvN+xVncwPXIc4AnAJCiMi49U1WjjNUDCNJ0rOGcg4TCW6kNzK+hBk7dqzp2LGjefXVV4NSDqkncN3aM0NiG0LkXHTDRS/cYppJGdU5PyeccEKGyBdNmZER/+ijj+J41iJZwGPu0lQjLfJ+/vlnW8vlv8bCoXRxIbJH0aJFbaP7rIyviRMnWqdImzZtMj2uV69eUT5DkZeQ8SW8butOXCNSvdfKlSvNpEmTzLJly4L2MxgxKDE4CSEyh8Uui2IWxw7Xkwm5eX86Sri0QyfK4SLUIr1w43MktUPAiKc+0Am1RBLbwAkg40uI6Ilu7Nu3zzpFULENh6sX82cziPRDxpfwBgG3qHMLvVDlNRQRr7zySvP0008H7Zf3VIjsQ30NEWX/JE6dDqIaGF7+BbXf+HJRDqdwJ+MrPXH1uOBvyu2H6wlQpo0Exr/ENoTIufEVKeIM3bt3N5s3bzYjRozI9n0s0g8ZX8IbBFDJAud5D60DcIproREuJnEVbAuRPY4++mgrWLNixYogbyiR5lAVLWd8ESlzNV6KfKU3foPqwIEDB2V8wWmnnRb1cxQiFaG9Ds7qzOq1SB8nkyGrTCAZX+mNjC+RwfhyDWBDlbQo8g/t/eWK/7PbjFkIYWxPvFBxjXDQF8YZZHv27AlaWJPeItKPaBlfLCAx5P29h4QQmY/bkJ2xOxxEzFwdJvcu6yeRnsj4Et4E7SZsF/kKrScIZ3y5fa4fkRAia7hfSE3x8+yzz5oOHTqYt956y9uH4eVqB1DRgmOOOcZrpivSD//fPZKgRnaMLxaQGreFyD7ufgkdu/1QltGnTx+zZMmSDM9hcPlThX///fcYnalIdmR8pTl4Ylw6E+lQmUW+wglxOA9QyZIl43bOQuR1uF9CvadM1q+//rpZtWpV0H4nJ+6iHM74UuQrPfEbXJEWb04lc/v27RFfhwWkxm0hsg9rH8bjzCJfNFgePny4Wbt2bYbnQnt7yfhKX2R8CTN58mTbPNlN2JGMLzdQ+Ht8OQ+QPKhC5Dzy5S/cdkZV6ITsIl/O+ELFrnPnzqZ+/fpxPWeRHPD3v+qqqzJdvDmjKjMPPc9p3BYi+yCURD1XZvdVqHq0H9RsHVdffXVQ02WRXoTXwhRpA2lNl112WdC+SMZXuHREBiE8QaGy9EKIyLDoJYJB8bYT1YgU0QpNO7zgggvsJtKTWrVqmb59+9p+QpGin874ykwYAO/9eeedF7PzFCJdUsb9uFIM1z4kUn09Dm+RvijyJTLgjK98+fJly/jCw5OdZsxCiMi1A074IHRBHZp2KITLPohU0+WMr0jpUURcFfkSIrrGF2sn17onXOTLGV+uJlOkL1oxpzkMFtOnT7ebS4EKTXPyHxtqfDG5q25AiJwRbnGcVdqhi3xRsE2dpj+FRaQPLODcAg/jK5xiWlbGF79P5FVjtxAHX68b2o6HdEJXxhFJ3Ixx3o3pIv2Q8ZXmIF/dtm1buzlcuqEztrKKfMl7KkTsIl9Oat6pZE2bNs2K4zRp0iSOZyyShQkTJgTV+9GAO5RSpUp5aYfhGsKqVleI6Ee+3H56fIXLBnK9Gb/99lvrbFu9enWMz1YkKzK+RIZFXjjjiyiY89LI+BLi4OAeIu/fP4m7ydovRQxOjdQ1PXf3oUtHFOmFu05cWrhTofXjxmR/GpQf57nX2C1EzuCeIcIVLmq1bt06+1iuXLlM68GcQyS0tEOkDzK+0hy/d8YNJuGML////QMGg0m43GYhROZQkO0m48yMKpde6CJjMr7SG6eQ5sZh/zXkN+5poAwbNmzI8Hy4no1CiOyN2zjIXBQrnPFVoUKFTJUQnfEltcP0RcZXmuNXNAxVOfQbXAwSRMaY1P21YBzjPPJCpAIjRoywnkuu9Xr16oVtlhkNeH3/PRbOqKKex9X0uD587v6T8ZWeuPHWGV8///xz2OPee+89G1k9/fTTMzznrjuN3SJViOe4Ha4sA1xvr4oVK2Yr8iXjK32R8ZXm+I0vV9MVyfhyhf5+pR4Wgk4QQCQfjRo1Mi+99FKiTyPPMHXqVNOvXz9z3333maVLl9qFa+PGjb1C6mjCfeN3ZIQzvvziGy7yFa72UqQPzgh3424kOXkk6fHSu3RyP1x3ZD1IpTZ50didvON2JPXZrIyvjRs3BqWWu3tZpB8aedMcBhI3AWdmfIWbwGNtfN1///32fcNtTExCRJuhQ4ea6667zlx77bWmWrVq5rnnnrMT5Lhx4xJifLmUQ451kQ5nkDljTKQXLlrlxmS3oMsJGrdFKhHvcTuS8eXSDiMZX+vXrw/bMkKkHzK+0hwmxNDmrggB+HtSZAYpUbEKnd922212QEXZi/QZtltvvdVUr17dvPHGGzF5T5G+IL395Zdfmosuusjbh2OCnxctWhT193OR5MyML1cj4J/oZXylNy7zwF0vP/74Y9jjWAjefvvt5o477oir8aVxW6TyuO3G59AWDzirXQpwOOOLe84ZZ4BxqKyh9EXGlzDDhg2z3daRR4UTTzzRPoaG7PEqNW/e3Pz0009BA0qsak8wChmg8PiTPsPGPgasQoUKxeQ9RfpCATUL2lARAn52RlA0oSZh8uTJ3s9VqlQxHTp0MHXr1vX2rVy5Mmx7CDj22GOjfk4i+Slbtqy58cYbTZs2bYJSncL1FHriiSfM2LFj42p8adwWqTxur1ixwj6S3ugH5/Xll19uzjnnHG8N5QcD0U+4PmAifZDZLaxR5cdvfFEY6tJb3n33XStRPGjQILsAAAyvUGlskTgGDx5sNweRlc8++8wu1hyrVq0yZcqUSdAZCj/uPoKWLVvazU+46LNr1CnjKz0pXbq0GT58uE03HD16tE1lCmdMnXzyyeamm24ylStXtmO0v75L43byobE7b+C+/1A5edRF/c60UEIdaS7DSKQnMr5EBlwEjDA63hyXl/zggw/aejD/oBNatyISS8+ePc1ll13m/XzllVeadu3aBTXRLlmyZILOLrkpUqSIXZSGSnfzM977aHP22WfbhbFfne6HH36w+51CnUsJpng8tKmukxIX6QmNlBFdoVaX1EOMLT9cO88880zY32XcDk2bEolFY3feGLdd2q9bJ2UXV1Nfu3ZtGzXL6e+L1EJph8KsWbPGzJ4923Zdd7Ukrqjbn3rYrVs3c9VVVwWFy+NtfEUS/hD/g7SeSpUqeRt/RwZ5/z7lmYeHNKkzzjjDzJs3z9tHdICfqV+JNqHRiokTJ5obbrjBRpgdrgmzvxnu9u3b7aOMr/SFiOjq1atN1apVg1KhsovG7eRDY3feGbch9G/BWJ3ZPcX96o94yfhKb2R8CasU1KJFCyvX6nADw7Zt2zL9XcQ24jmJE4UjjxuDUYhog1wxqVzUQOKM6NWrlxW4CE3NjQbcN36xmrPOOsu0bt3aW1BHMr5cc08ZX+lLw4YNrYCFq3NZvnx5RG/7559/bj788MOg/SwcqZNx/YZijcZtkUrjdjjj67zzzrOO608//TTTtEPXIkTGV3ojN4rwBgF/lIu6L4Q1/KF8UlvIOafmwKVFMQChNhQvSL96/PHHbejeqTMKES0omMbhcO+999rFYs2aNc3cuXMzFHNHA9K+/BM4CwY2P8748qcbde7c2S5iQ9PMRPrA9cBijpSrzIyvt956y7Rv396Ol/6Cf3fdcQ26FgaxROO2SKVxG/xjN5Ho77//3hNOCgUnhxPo6Nq1q+nYsWNEOXqRHsj4El5eNGIaDgysL774IqiHzJgxY2xBMEXcrpYA77tLg4qVEqMfvL2xUDBKVT744INEn0KegwJ3f5F7rCCClVX0KlzkC/lwkd5Q7+X3okcyvjB24Ouvv7ZOMmdoueuOsdt/bUULjdsHj8bu5B23wa/c6RwbFSpUCDumIzGPgcb9R5ZRPBweIrlR2qHw1Hs2bNjg7SO/HBAAcISToGfi9httQoisIeWLqLJb+FKjgJBGaBqYu7disUAWeZfy5ct7okhAlkI4ZUzEkagxwVtP1oLDXU8au4XIGdwz3FOuLh5wVMOZZ54Z9neccXbaaafJ8BIWGV8iU+PLhdIj1YExiTvvvBAie+DAwODyL4LxmCIf7yTAqddx9yQeVRep+O6777xFt0hP3PWwadMmb/wOJ7qB0EWtWrXs/7/66itvv7vuNHYLkTO4Z0KdYdRVZsf44l4cMWKEVbZ1TdJFeiLjS3i9hljYuXz8cJEvV3fiT0WU8SVEzglNJ3Q/41F1/Zi49zDEkDZ2tQszZsywghwIc4j0xRlfNFh29bd+48oPSnBAzygH1xOGmcZuIQ7e+HKRrzp16mRqfOEoITWS8dvfd0+kH/rrC7u4c/Lx5CaDK+ZHZMOp+ziDjH2u6BSDjMEoXqpZQqQCoUIa4dILnTQxxpaT6nb3p1t8i/TEjcU4wlxk65NPPomojAgfffSRtw+xADIZZHwJkTO4Z/wCSGQCkfbrr7GMJLbh+jbS31HtF9IbCW4Iy5NPPmnlgE866SRPcIOGyqQ3McFTY8CAQ57z/v37zfr1662BxmLxjz/+MHv27PGaDwohMgdji8nXpfK69F5XyxNqfDmIdICMr/SG+lt6wlHTRR0JICfPQi90UeeMLyS4WSi62l3V6wqRc7hnaAviWLhwoScqQ9p4KIzZO3futLVeLl0c40ukN4p8CU/+tEOHDl4EjJC4W+C5hSH7QmvBVDsgRM7hfsHwcnLFrsH5Kaeckqnx5faFkzMW6QMGFrUj/fv3N40aNbKqh9QRUg8YCrWELAzh448/9va7rAUhRPbAuRGadrhgwQL7eP7554f9nfnz59vHunXrevenf5wX6YmMLxERN0AgU+xw6YgyvoTIPaETeHaMLwq03b5q1arF+YxFskKGgvPEhzZTdpx77rlBXnpQva4QOWPv3r0208c/druWAJGMr3nz5tnHiy66yBPFcXWaIn2R8SUsdIN/++23zdixY719Ln/Z35xTxpcQ0TW+8KaGGl8IbYQaX9RakrZC6q8TyRHpC8Y48vEs7s4777xMja9zzjknQ92XjC8hDk4oiWgzzc79Dg4/jOMu8sU9+s0339j/u1Rhkb7I+BIWeg41a9bM1hE4gQ0nmxrO+FqzZo1XQEqtGJLHQojs1w24CZx7jx5NpPW6WgDSU3CIYGhVrFgxKAKNMXbYYYcl8OxFMoDCGumEHTt29BZ+ru4rkvGFIuLu3bu9tEMaH0vyWojsESqM5KJeGFNFihTJcDxjNk2ZCxQoYJVscZ7xf39tr0hPZHwJC4XbGFJ///23Z1g5iWJ+dhN2jRo17OOyZcu8SZ4Fo7+BpxAiMnhDiXS5ui0X9WJCpnbHLwuOA+SII47wUg0HDRpkunXrlrBzF8kDCz6McEQ0EEqioJ/FoRNl8YOAEo4zrj2XBsW4jaPN38tRCBEZolzcZ6yXAJVD6nazSjnEOcL4vWTJEjN+/HjJzAsZX+J/MBi4PGTXMBBPjktvcj1kOIbBhgnfNYAlPdEfHRNCRAZnBv30nHPDpaL4670WL15sH+vVq+ftw1gbOHCg6d27d9zPWSQfREVd7R/XUP369e3/SR8PR/PmzW0fIify4iTqNXYLkT24V0499VRrgAGCN2Qt3H333ZkaXxdeeKH9He6/du3axfWcRXIi40t4uMl70aJF3j63QHRNBPHM43HFS+/ynzmGyBcS9EKIzHGLXVdT6Qwtf4NOt88vaSxEKO76+PTTT03Lli3t/2fOnBmxnQied3dcoUKF7Dgu40uI7MG94tZEDtIIXfsGP6QYOoEbjC8h/Mj4Eh5nn322N5E7XN2XM75cM0+avbqJn8GIuoHly5fH/ZyFyIsTOG0cXFsH5+xwzg9qvVx9l4t8EWmeNm2a+jKJIBo0aOCN2a1atfLqvnbs2JHh2HCpTozdMr6EyBqcyziZnfHlenZFgqgXGQ7UhzHeky5OyiGpv0LI+BIebvFHCour8XKLP1SyXI2Xq0txEIanLkWTuBA5855u377dqhjSt4k+MO55nBkIIlCrAyhmtW/f3ltgC+E3vnCOlSpVytbkcu1ESj2EPXv2eP2GuA5JKdeCUIjMwbnMveXG7osvvthmK7gyjVBef/11+9i2bVvrYBs3bpy57777VO8lLLoKhEfx4sWthwYjy6U9YZDRRwaPe2gDT45j43kmfRlfQmQOi1wWu24CpwEuUQqiFccdd1yQ2IY/5dBFo110WghACZNxG6EkrhtnnEdKPZw1a5at5b322mvtz1yH9C6S6IYQmcP6Biczax0cGBhUOD2KFi2a4dh//vnHuwdxmrkWEK4lhBAyvkQQo0ePtilPLkeZom7nXXXFo8AkT82AUzlU+ooQWcMil8Wuv24ACWInBQ7vvfdehr4xH3/8cVB0WgggYvrEE0+Yt956y3rhnfE1d+7csGlRiGywMCQdiufD9XIUQkQW28DZfOyxx5qff/7ZvPbaa2F7LrrUX2rBGNud8dWoUaMEnLlIRmR8iSAuuOAC69nx9xFyhtj777/v7aPLOyo/rs8Fi0lkWCW6IUT2xTZCod7LFWk3btzYPu7cudNTGw3XyFOkN1dddZVp2rSpLfxnHCZdFePK7yxzIEmPA2DFihV2EUnkFdlsGV9C5Exso1ixYjaqlVnKYZs2bey96DKJIknSi/RDxpfIEmd8YWi5hpwPP/ywWbp0qenVq1eQ6AaTuhAi8gSOwhxRYwwt0gjvuecemzYGeEj5f5kyZbw+YK5xLs2VWVgLEQnqSVjwwSuvvBL2mEqVKgX9rKwFITIHpzLO5VClw3CwDpo+fbr9P7LyOEHYx3ju+oMJIeNLZOCNN94wl112mRXZAAYcwuxEujC4AHEAUlhc8SjhePrH+FURhRDBcH+4qNeCBQts3cCECRO8RsrvvPOOF/UipcyJbYDkikVm19WAAQPMu+++a7p06eKN4044KRxkL7gUWMZ151gTQoQX22Dsnjhxos1AcNGtUMhc2Lp1q1WzJdJFCrA/k0EIkPElMjB79mybyzxjxgz7s7+Duz/10A8KiNSjuMWjECIYFsIYWy7vH0GNF1980Ua+nKHlN74cbh8pwUKEY+rUqebxxx+30S7ag9B8+c8//zSvvvpq2OPJXEAo4IUXXrDXI0aYE3oRQgTDGIwgUs2aNa2zDMe0q3cPBVVDICURpxptQkDGl/Aj40tkgPoBoIjbcemll9pHZ5A5EQC8rMOGDbM/07wTsQA8qkKIjBM4YgctWrSwP6M6d80119j+L/DTTz9ZRVHqLf1RLtIOx4wZY6WNhQhHs2bN7CMS8yhqcl3BSy+9FPZ4l/Y6ZcoUm8WAIYYSohAiI9wbTZo0sa1BnAP6yiuvzHAc9bkuInbdddfZR1IQN27cqMwFEYSML5EBFnlEu1gIrl271u5r3bq19c4vWbLEDiRA4fbLL79sJ3BnfOFtDVfoLUS6wwR++umnh1XH8js76K2HAqIDKXEMtIIFC8btXEXeAkVarpnffvvNtiVAhIOUcP6/Zs2aDMdTi4KRT7riunXrTPPmzc2bb76ZkHMXIplB1ZC0XNY3RJhxbpC1QJuHUIg8swY67bTTbATaQb9GBG6EcMj4EhkgvN6wYUP7f9eskwWg20ctAVxyySX2EYNs06ZNpnLlynaTB1WIYA4cOGDvJRf1whs6ZMgQu/B1uBQxJ5ggRHYhvYnFIeB5L1GihJetMH78+AzHE+ly4/fYsWPtdfntt9+q35cQYcowcFRwP1HvFSnqhSgSrXqge/fu1llNnbwQ4ZDxJbKdeoi3FFxYvVSpUlatjUFn2rRpdh8LADyoeIeEEP/jk08+sSkpboE8YsQIc9ttt3lpvDQxdxLziN3Ar7/+alNVnnnmGXuPCZEZHTp08MZnf+ohxhfGfyjXX3+9faTukOaveOYV/RIiGJzJCGzgYCZSjCHmxmg/KIa6Fg4YZ9SE0eerbdu2Wg+JDMj4EpnWEKDI5hSzGETcQpKFIbhByHnt8aBu2bJFqodChEzgRCNQltu8ebO9r1w6LyBwg4GFMwOZeedxRekQb6sT5BAis3RxVGkx5Ek3xNBn8cei0WUrhI7xXJMos5EqjqEv40uI/8P1y+NeGjVqlDdmEzkOhbpc56SmpnLy5MnW6UGdr1OFFsKhK0KE5ZRTTrGKWUirMpm7Bp3Uo7BIdH0sXJNBDDJyo1k8MvAo9VCI/8H9wv1AXQ2TMI4KPKGog1aoUMEe4+omr7jiCu/3Zs6caR9dtEyIzMDjTsoqKeI4wPj5hhtusM899dRTYVMVu3btav+P6iHXGSpuRGiFEMYKiNF3EbVn6tvB3VN+SC90ffWoz2XMx/iCjh07xvmsRV5AxpcIC552urIjjY0h5nDGllssknroasFId0Gog5RFeVCF+B8I1/zwww+eEeUm6U6dOtnH9evXW5lv7jl3f+3YscP2bIJWrVol7NxF3mLo0KFWEMmliPfq1cvky5fPXl+M5aGwUOS6Y5FJr0Z6Gc2ZMycBZy5E8oHTDCc0kWSiYDRKdm13/Dz33HP2+Ro1atjnqYNHrOzoo4+W80yERcaXiMgxxxyTYR+eebz31Kc4Fa3Q1EMGG3Kfkc4WIt1hAs+fP79N60LQ4PPPP7d1A65Gx9039FsiDcw5N/C4oo7IoliI7EDWAQ4wR7FixTxxgHDRr/Lly3vCGzjMSItV1oIQxjoiSP2mlGLkyJFe1Cs0Bfyvv/4yTz/9tP1///797fOu1xelGuHWUULI+BJZghceY8pJptLvwqlkAV5WBhw8q3j4aSZISosT4RAinaHehnocDDCXinLRRRfZhTHpKa4Xkz/l0O1zoglC5HThiPcdbrnlFvvIeBzOIdajRw8v9RBFNyJf6tUo0h36mNK6gRrcb775xkaxrr766gzHUZNLDTxrI8Zw7h2XGeTSeoUIRcaXyJS5c+faGgL/oIOMqlsg4p0vWbKk172dCZyib4pSMc6k0ibSGSZt0ne5f7gXXMqhi0bQQBmJ7wIFCnjGFypZRMeIYLjURCGyy969e20PImoKN2zYYCOnGPvUGQ4fPjzD8WQqVKpUyTrZiMju2bPHU7QVIl1BQIP7wokjMRb7+y8C99QTTzzhOTlI8cXZxj1EVBkVUSHCIeNLZErdunXt4/Lly83KlSs9lSwMMlSyCMtDz549PdliwvDIGLOIDFdnIES6QN8XlLFIXcHQIlUXD6pTOXQKWjTFxWkBKGQhzkGtVzhVLSEyg2bcCLmwMHTZCS769fzzz1tvvh8MrltvvdX+H1GBCy64wOtXJEQ6giMCBVpqIsuVK2dTB/v06ZPhOFJ1qemlN+p1113nOTNwctx9991SORSRCQiRBS1btiR8Fbjlllu8fXfccYfd16RJE/vzP//8EyhVqpTdN2nSpMC///4bKF++fKBLly4JPHMhEscff/wROP744wO33367/bldu3b2/ujZs6f9+ddffw0cfvjhdt+yZcsy/D73kBC5YcqUKfa6KlmyZODvv/8O/Pfff4FatWrZfe56DL1WGctff/31wOTJk+1xK1euTMi5C5Fonn76aTs2M0bDnj17MhzDPXX22Wfbe4X1kBA5QcaXyJK33nrLDjDHHXdcYO/evXbf999/b/cdcsghgfXr19t99913X+DQQw8NDBw40P788MMPB/Lnzx/YuXNnQs9fiEQwYcIEe4+sWbMmsGHDhsBhhx1mf/7666+9+4Of69evn+hTFSnGn3/+GShWrJi9vjCmYPbs2fZnxuTNmzdn+rtFihQJcrYJkS5gVNWoUSPQtm3bbK2LjjzyyMAvv/wSt/MTqYFioiJLKMIm95lmyxSXAj+TnoIB7+oIbrzxRiubPWjQIPvztddeaxsMjh8/PqHnL0QiIKUQ2eGTTz7ZShEjgsDPyBHzf1LA/Cm7rmZSKqHiYPH3+Bo2bJh9pAUIfRr3799vHn300Ux/F6EXanp///33uJ2zEMkAPUup1UVoA9GNcJDSe+edd9r/33TTTVallnTeBg0a2FRfxnchMiXR1p/IGwwbNsx6eapXr249Q37PzzHHHBMxunXFFVcEKlasGDhw4ECcz1iIxPH555/be2P69On2fqlbt679edq0afb5GTNm2J8LFSoU2L9/v91Hmhf7jjjiiMDWrVsT/AlEXmfLli2BfPny2Wvq008/tfvee+89z1u/cePGDL/z+++/Bx577LHABRdcYLMannvuuQScuRCJo3379nbNQoSYe2XRokUZjnnllVe8bKDt27fbfffff7/dd8YZZ3hrJCEiIeNLZItdu3YFChQoYCfzVatWBYXnGXAeeeSRoOO//fbbwLZt2+zAxfOzZs1K0JkLEX+uuuoqW/PonA484qygNtJvjPlrBa677jq7r02bNgk8c5FKXHvttfaacqngXHvnnntuUO2hH9Kn3KKTepZq1appISnShp9++smmhw8ePNiOxw0aNMhw/f/111+BChUq2HuE1HHntCBVl33UWwqRFTK+RLZ5++23rTfVz/jx4+2AQ32B8+Dfe++91mvqFpYsNC+88MKEnLMQ8YYFLNGrIUOGhH3eRR9Y5Lr7iUjXUUcdZfd/9NFHcT5jkar88MMPgY8//jho34cffmivMwQFqEcMhev2pZdeCrz//vv2uHfffTeOZyxE4kCMxl/bHi5jZ8SIEd6aZ9++fXbfyJEj7b5y5cpZB5sQWSHjSxwUKGmddNJJduB54YUXglKqrr766qAQ/YoVKxJ8tkLEnnvuucdGiUnFZXGLkpyfRo0a2fuhT58+3r4HH3zQ7jvzzDMVaRAxB2VDrrfmzZtHPIbr8LTTTgs0bdo0rucmRCLA4DrhhBMCt956a8RjMLackA1GmIuElSlTxu4bPnx4HM9Y5GVkfIlcsW7dOu//Q4cOtQNP5cqVracIiWyXmugGJzxCrVu3TtDZChEfSLUtWLCgVYrjPjj11FMDxYsX92puPvnkE6+uCwVEIGJctGhRr02DELGAKKtTZVu9erXX5oB02EiMGzcuYt2LEKnEoEGD7Lh88cUXe4q0odx55532fiDtkHUN4HRmX4kSJbzsHyGyQsaXyBF4fi666CI7SDmJeXpg0M8os8Xjyy+/HFT4LUQqgtGF8YURxv1RtmzZwLHHHhvYsWOHfZ4oAvdBt27dvN8ZPXq03Ve6dGkbSRYi2jD+Hn300V42Atx22232ujv55JOtvHwoZCxwTdK/8bzzzlNEVqS808zVcoWTmaeOnXUPz5PdA6QY4lhm31NPPZWAMxd5FUnNixxRoEABK7OKhPwjjzxi9xUsWNDceuut9v8DBw40f//9t3f8jz/+aN5++23TqVMnc+qpp5o77rjDytMLkWps2LDBjBgxwvTv398UKVLElC1b1qxZs8bMnz/fnHDCCWbp0qX2Xjj00EPtfeD4448/zDHHHGNuueUWc8QRRyT0M4jUpGrVqvY6o1XI6tWr7b577rnHFC9e3Hz//feeHL2fLVu2mJ9//tnKzX/44Ydm7ty5CThzIWIPa5kDBw6YdevWmcMOO8wMHjw46HnWLL1797brnmbNmpmWLVva/YcffrgZN26cad68ubn++usTdPYiT5Jo60/kPVzBtj/65c+FdnnPixcvtuqI5FEjx+qafCLcIUSqcc0119j0QVes7YeoAaIzXP+dOnXK8DyCG6G1YUJEk5YtW9rrr0OHDhkEk6hR3LRpU9DxpFVVrVrVPl+yZMnA6aefblNphUg1hUPWMlzjXOvXX399hmPI6OE5RJHWrl2bkPMUqYWML5Er6APDYNSjRw9vn1P8YQFKKiL1X06Kvl+/fnYBes4552gSFynHN998Ezj00EOt44HUwbFjxwalELqeeDgj/PWSQsSL5cuXWxVarsPPPvvM7mMcrl+/vt1HT8ZQUDrkOeS3eZw4cWICzlyI2DrNSDl0fbs2b94c9Pzu3bttPRfPI4zkUIq4OBhkfIlcsXDhwgzRLwajSpUq2f00HIS5c+d6x+ExcoIDmsRFqkUVXBG2a0ju6mSoC6BfEvuos/F7U+fNm5fQ8xbpt9DkOmzYsKFXw/XFF19Yx4FrCh5Ku3bt7HOFCxe29S1OaECIVHCa4ZBwbT6effbZDMfcfPPNXm2kE9QgU4FaSJRtJbIhcoOML5FrXBpV165dvX1Tp061+4455hivh9Ell1xi91122WXeQpUGtJrERSpAHyWubwQKKNx24jPPP/+8fZ5Hfi5UqJAnvEHTctJxlYYr4snGjRu9JsrTpk3z9g8YMMDrXfTbb78F/Q7ONfc7LFQlpy1SBdYirFVcm4/Qvl44i51j4p133vH2k/HDvtq1ayuLR+QKGV8i1yA/zAB0yimn2A7vwEDEIOZPSfSnu6B26FK0nnnmmQR/AiEODqIHRBFcKu0NN9xgr3N+ZiIn/dbJyD/99NPe79GI3N074Rp5ChErBg4caNNfidA68N676GzHjh3DynC7xuBFihQJW9coRF50mjmnwueffx70PNd4xYoV7fOdO3f29rOecQYZGUBC5AYZX+KgQEQjNILlBDkY0Fx/GKJj7KtTp45dbJL+cuKJJ9oIgBB5lZkzZ3rRK5qIu0l5wYIF9vm7777b/kw6rrtPKPBG9pv9r732WoI/gUg3EEei+XcoS5Ys8Wq73njjjaDnMM7o48hzXOM4D4TIq7haxyOPPNJe0717985wTM+ePe1zJ510krdOwdlGOnmocI0QOUXGl4gJXbp08SIA1LzQ3JN+Ry4CQPoLRa7+lEUh8hI7d+60ef+NGze2k7lLw6VGBmg0ToQhdDHbvn37DHU3QiQDroks0VpSaP2QteCcCxhpkRrRCpHsjBgxwot6kWrLWO4HZ5p73l+X69RBiQD/+OOPCThzkSrI+BJRAa8+A5pLP6Qg1dW0uOaDo0aN8mSNqSNwneFV8yLyItdee611IBDJGjdunL2W8aSiZogx1qBBA7uvWbNmnpHlV48jfUWIREK0i8bg7vqk2XL16tW9RrOhzoH+/fvb5w4//HDrWJPim8hrMD47gQ22WbNmBT1PzaNTN+zbt6+3n3Y5ZOuw/5FHHknAmYtUQsaXiAqXXnqpHZTuu+8+b9/o0aM98Q0iXSxI8fazr2nTpvZnxDiIHoR6noRIZpx0PNf4zz//bCWK+fmxxx4LcjRw7WOcAQvVKlWqZJjUhUgELDJd+ivKmw7UD1GnZX9oXS7ph673F2nlDz30UALOXIjcwZqjUaNGnihSt27dgp7H2YAwGM9xnft7LyK4gdFGbaTEwsTBIuNLRAVqV1wTQtfHiIHu7LPPjpiKxYTPwpToAVEEIfICOApoyOnSDZs3b+7VM5JiizHmT7H1T+wozHGcah1FMkDfIq5TPPp+lUPXLgEjjOiYH3qEITtPRJfnqXUUIi+AlDzX9fvvv2/rcunhFe55MhNCBTjgu+++s84JIQ4WGV8iKrCwxKPEwEXti0tXIbXKFXG//vrrdt8DDzzg1RWQpugiZEQThEh2EIvBuNqwYUNgwoQJXvNkVDyhdevWdl+9evXCKhmqzkskC3jwXZphp06dgq5R0g7ZT28v1yLBL9rhUhSR21b6oUh26DNKpBchjXAgDuYivkOGDIn7+Yn0QsaXiBooaLl+MK7HEdx1111en6NNmzbZCb9NmzZWFdFN9EQRiCYo/VAku7on1/KYMWMCmzdv9uoaXfqViwBTE+MiAlzf1EAKkYwsXrzYE9JwDjJgLKYfI/tbtWoV1mlAdIDf9aebC5FskKGAM4z1SbhaW3qSUv7AtY4gkv9ap76Lfl9CRBMZXyKqDB061Kt1QVQDMLbwjrL/4osvDtuUkCgC0QSiCkIkI3j/cRBQ38jkfNttt9lrulatWtbzzzXsjDEk5h2IcVBjMHny5ISevxCRcC0R6OH166+/evtJsXJp4uGiAfPnz7cCShhgEpARyQqNwZ3ABlLxfuOK7IQLLrjAPkdNLr0ZQ1UPub6///77BJ29SEVkfImowkDm6rzoHu/49ttvvaiYvw7G1YGxEU3geaILQiRj+wQcBIjHAGlXKMWx6OS6P+ecc+z1S5NxV5CNHDE1jX4xDiGSDa7X0047zV6nNFQOJ8tN+vjcuXPD9rmj1lfqhyIZ+eGHH2y64VVXXWUdZ6ES8a69Ak6ElStXevtptVC8eHH7XJ8+fRJw5iKVkfElos7q1atthCu0kaebxJHjdvUxc+bMsUYZtQPUETRp0sQWf7uomRDJwEsvvWSvXaJY4XB1jER8nYfUKWuxH9n5cPVfQiQLjMm0BQlNL+Rn17cR54Mbux2vvvpq4OOPP7aptlqkimSCmnKybkif3bt3b4bnp0yZ4kXE+L+DsbtFixZ2P+qGftVDIaKBjC8RN5jEMa5c82UiB+Ra0+QQYw1PExsF3jyPMSZEoqG5LKlXyBJzfQ4ePNiqGjpYeLqaGQQ4QhXj8LoqZUXkZRirXWSX8ZlxO5SRI0dmqPcVIpHrDVrZMHZ/9dVXGZ5fuHChl1Lbr1+/oOceffRRT0hp6dKlcTxrkS7I+BIxh0HOpWEhUkBdgeuxwQCJCpG/DgyhAlIAkKcPVx8mRLwgxRDnAJErehwhr82161ojUAdWpkwZu69z585BabaukSeLUiHyEtS9EMXC2eDg/xUrVrTXdP369e394IexnJRb+n8h4y1EInHphKFOMZed4+pzEf/yZyVQx+icaS+88EICzlykAzK+REwhShDqWaJZoRvcaEYbOoFT8D19+nT7POlcQiQqZeWMM84InHTSSZ4IAakptEhwdV4uNaVSpUpeoTYpKkRu2Y+Kp6TlRV6Del2uXzIV/A4wFq2uQS3S9P5rm+iuq+vl0TUXFyLeTJ061TO8KlSoENi+fbv3HFFbp+KJAiLjvJ/evXvb50i11dgtYoWMLxFTnBHFNmPGjAxhffpqkLYFRMe6d+8eKFGihG1US+E3x9CYVoh4wqR7xRVX2EVkaNqJm6ydZ5UaRn9DTkQHbr75ZmukcR0Lkdcg+8BFbpHa9jNv3jxb38Vz/fv3D1qgMla78R7pbqWOi3izbNkyr7co7W1ojOwfu+vWresZZeHSZ7mex48fn8EoEyKayPgSMQdFOAY7PKbr1q3zBrgOHTrY/SgK0f+LyIFr+En6CoMfx1Azw4AqRLwjtogJYHyFCsBMmjTJW2ROnDgx7Gv4U7aEyGuQcsX1TRqh33EGCM+46z9UHdE51pzQjKIHIl4w5iIK45xizrHrnGIuUyHUKANdpyKeyPgSMYeIFuF9Br06dep49V+oD9WoUcOrIaCom/qvwoUL231EHjiGPkrU1YTzUgkRbZDPZsF5zz332NQpnAPUfTmVtyVLlnhRgQEDBni/h2NBUtsiVWAx2rNnT080JjQC7Ho6sqGS6P+9rl27es+RzSBErGHsdTWJjN80vHcgkEQNuTPKPvroowxqtjy/e/fuBJy5SEdkfIm4QOTAFbgyoTsvE3UCrobg6quvtvs/+OADL63l3nvvtQtgUrhQ28JAEyJWfP3111YuvnXr1oGdO3d6zoFTTz3VTsy//PKLbbTMvubNm3uF2nhcqQ3jGvU3qRUiry9oUaJ1aYShabQPPvigZ2SNHj3a24+DDaU599wTTzyRgLMX6QLrBtcome3JJ58MMrxw5Dr1Qtrb+Hnvvfe89Ua4RuJCxAIZXyJuvPnmm9YjxSDnTwegcafL0XaRBJfywoZkN8fjsWJRrOiCiAU4Aqg3pNksBdo05HRpsTgAqF9x9QL0fnFeUiZ3t0A9+eSTA7t27Ur0RxEiauCEOOWUU+y9EZr+zaKXui8XbSAd10HauJOnDzXOhIgmKBa66wyVTufcxTmGCq2rL2cNElrb6NIUO3bsKHVlETdkfIm4gmdp7NixGfb7awgwtkK9qi+++KIdOBlAL7/8cjWsFVHlxx9/tJGrKlWqWO9++/btPdU2xDSIuDpPPvUCP/zwg/09JvkePXp4qVlEzoRINUippe1COLgHevXqZe8BnGj+GkgcFNTvunH8lVdeieNZi3QAo8ldX4zFzvDCkHLpr1yXb7zxRtDvMc6XLl3aPn/uuecqq0bEFRlfIulEDtgmT55sB1Ek6vkZaXqUtNgYSElRlJdKRAMWlShfsRHhuvLKK70Ulbffftsa+k4cBgNr0aJFGa5ZvP6hk7sQqQp97PwCBYzF9L5z94K/tx1RZNJ23XNSrxXRAjl4t2agb6hbE5CN4Awv1g5Iz/tB3Mu1A6latWqQFL0Q8UDGl0gYW7dutREGV0fAZH7TTTd5KQLkYrOPQdXto0cYhhkDKoXcMsDEwYDKZuXKla2gC959d61RA4DCG9ffdddd511/7777rve7NO50E//TTz+d0M8hRLyYNWuWTQG/4447MhhgN954o3dP+CXqqYMkJdcZYAsXLkzQ2YtU4dlnn/WutWuuucZbC9BnsVWrVp7hFS7aSvYMz1NL7hSYhYgnMr5EwmjWrJkdAFEzRNUQ/FEGhA8++eSTDJGH999/3/bhYGDF85UOKYh4kvEeFyxY0G5nnXWWjcrklPvvv99GdvD0sVDC8EC5j5Q7DN90qldCBAZ1LD479V6uuabfU0oNotvnV8+i/gsFRJ679dZbE/gphIgvo0aN8ha9Dz30UNBzGGMDBw70nuf+cQYajg5aiWCEMYb5635TGY3dsSlf4Pqijc1bb73lrQGoT3R1hjgI6DMajq+++so63FCuFSIRyPgSCQOP04knnmgHykaNGlmPFZB77ZSLMMDwkqKe1aRJE6/mhloCImCkIOLFSnURDrzNTDJr1qyx/UnuuusuG4lx8ufZBUMXw4LapLZt29rXpX6JxqksipDbTQf4zEy+5cuXt+0N+vbt63nlX375ZXvMww8/7C0ix4wZEzb1islf0VeRbqAmF05m3oG6oXsedVu3OGacxtHGeF+gQAGb3ZDqaOyOHhjyLVu2tNcVTe79kVeUaBFL4jlENFBNzgzVeIlEIuNLJJTFixdbbyADZuPGjb0BkciCM8CIdi1YsMA+h2SsP/WLOhsmMlQQ020wRbofo+C8887zFjqh23333ecdv2HDBlvHFKmXCQ2FeZ58+VRm9erVVjYbzzEOAKeGxYbKZqj3PlS2WAjxv0iMu0eef/75DM9zLzl126ZNmwaNOyghInLA87QTSTc0duccxmUX1cJx5vqFApkLONJ4joyEUFVOjH6yZMikESIZkPElEg6RLQwsBk5ytV0Ui0iYU5hDdY50w1BIwZg9e7ZNMWBgpo4s1cGLTNSPyXblypX2OyCdh/S3zZs3242m1dQquXROlyPP9xkJpKCLFCkSSGXmz59vI6dIxfM9uSgrEVRSWZngb775Zm8B9OijjwZN8HiYw12HQqQboTLz4aLDpOoydnMMY5S/vsZ/nz333HOBdEBjd+5gnHaCLlxPThEZGI8Z03mONHIyGfxgkLqyBb4jxDaESDQyvkRSwACKAcUASf66Y//+/V66Ifnt9ATzp32RtsgCmfoBimfLli2bweuVKtCThFQdDIXjjjvOprI4UG7ye0rxqJJK54deVEzi4aBJMN5EUmJSlREjRtjv7qKLLgpSt8KbjFHGwggRF7cg9H9XpPc4WWKks5VqKMT/DDBXK4lYTTho1UCPMLf4/eijj7xFMT2ZnLoodUypmj6usTv3oECLQcr6gJRwN3Zz7SF05HqE1qlTxxqvfrieXINlMmT837sQiUTGl0gaKEJG9pWeS6FerxYtWnjy31OmTLH7H3/8cbuvXr16NgWBQZq8eKJor7/+eiDV4DMSffniiy+s0hgLGbyn2ZnAMTD47khfCYXnaB5MU+FUXPzwvVF3wrXCd8L1RSqhv16Az+36xSCuQV+5cIYXzWZRbhNC/A/uIxbFmaW8oWhbu3Ztbwwnyhwq4oHCaI0aNWxacKqhsTt3cJ1gXBHZ+uyzz8JGwthIHcdR64fIIaUMzvCiRk6IZEHGl0gqQidwt0Bm8qKg2J8OxnNM2n5vF7UEl112mT2GmoRUjlBceOGFgeuvvz5bEzgGa82aNTO8BikYeBV5rdDJKxUgDZXvgsmXtChqCZ0h9cwzz3jfgVPeZAFI/YSDFBbUxFw/mFDPqhAi4xhODVioCi33nn8MJ8PBX6f72GOPefdgqvcC09idNc5h5hysbi2AsAaKkc5RNnTo0CBHGmzZssVr7o0zNjfqkkLEkkONEEnE4Ycf7v3/9ddfNy1atDC///67yZcvn5k6darp27evfe6OO+4wvXr1Mt27dzfFixf3fmf06NHmvvvuMw899JC5//77zWWXXWZ/PxX577//zF9//RX2uUMOOSTo55kzZ5pWrVoF7duzZ4+55JJL7Hc7a9Ysc9RRR5lUYsWKFaZu3brm22+/NQsWLDDdunUzBQoUMH369DHVqlUzLVu2NBs2bDANGzY0b731ljnyyCPN9OnTTYcOHezvr1q1yjRq1Mhs3LjRVK1a1b6G/1oTQmSEcblHjx7myiuvNH///be3n3vv1VdfNQMHDrQ/Dx8+3DRo0MCsXbvW/ty8eXNTtmxZc+DAAdOuXTvTr18/k6po7I4M38uZZ55pnnvuOftzs2bNzLvvvmu/l/nz55szzjjDfPbZZ+aEE04wc+fONbfcckuG7+yJJ54wX3zxhSlSpIgdt5s0aZKgTyNEBGJq2gmRS0inQBGKSxTvnr9Gh2Jbp6JFPZgroKW428nM4umixwd59ngW6emUlyFV5cMPP7Qpc9QP8DPfgVN+DPWekqZJygUeQDzRxx9/fODLL78M+n7xJtJ/hrQ6V+zNlgp901DB5G+Px5jPh7fUgZeUCClpLK5XF4+LFi0Keg3X8JuIl//3hRCRIXJMpJl7h6iMf+x2IJJUuHBhewxqt66v3m+//WZl6F3EgzTySAp/eQWN3dmH78eJZ/izV0ipdN+bE28hjTMSLi0RaX8hkhEZXyJp+fTTTz0DDHW6jRs3es/NmDHDU9FigU0+PClmToqWdAQmtKVLlwbKlStnhTnycrFt165drZgIuf98FhY1fsn90AmcGgzSLUinQ8yEVDs/SPdHkjgOrbnLSzDp0v+Fz4HCFepqXBNM1n6VK1J5nMALvWGoFwyFCZ8msSwIhRDZ55133rHOD6dA5+qb/DCeN2zYMKgfGAq3GBAsut1Cm16PeVlhVGN31uAQe/DBB+287VIFXY0WBiZiGu4zkq6J8ywURLdSWWpfpBYyvkRSQyNKejK53h4oHDroTo/CIc/hRUUJkdowZHrdQM3CG/VDp5h4zTXXBHbu3BlIJ4jg9OrVK5DqUMxOwT5e90ceecQucEqWLOlFQ4ls4UX19ydq3rx5kFHGhJ/XvcdCJEsUA8eXi24R7QqFxTIqfc7Q4v5FHdG1IEGYwt2rjN2pXMObrmM3AkY4x9zfGWEWZ0RiiGJ8sx9HbLhaQK6JQYMG2WuI1gdC5AVkfImkh5RBGuIyAJOCMWfOHO85BmmnosXgiweRxfPEiRO9QZs0BlIQx44daxfhGHN5OQqWUyh+ZyGUqmBw0xQZVSzSlFi89evXz5vMSRvEaCeNx/WNY6O3jjO0mMBvv/12u5/FTmgBtxAi55CNQDNlN3ZHcnwRKXOONO5jUswQkSBl0TnO2Dhm8eLFgXQh1cduGnG7FFWiXkS/GJNJ827fvr33d+caiqT22Lp1a+84jd0iryDjS+QJWDifffbZdoC9++67g55jkvYrI7HAZtInJ9wpHrk+MmvWrPHkZ9MxCpZqUAtB7QMKaQ888EDgq6++smmE/lQmVNbo41W8eHGvSee4ceMiTuAPP/ywJnAhotzq4c0338z0OMZs15PJOU1IPedeHDlypE3b80uLp6K0errA387N5y6rBacZf2saRtMLzRniziALBYca14hrXxCuybcQyYqML5Gn6nloNBkp9YQUBVcHRp78J598Yid+Ihz+CZ0mnwzULgomGdq8B3/Xe+65x07O1PxR20fDTVfHRW2FSyEkGurSmqgdJJXVQS2Ki6oygb/00ksJ/VxCpAPUMi1fvjzsc2QpOCEc7lui2NT40PbBRdHYWrZsGVbMQyQ3RPLIVnFjMmUCOMhwjPrFVs444wzrTAsHNd+ksnIcc3g6RUNFaiDjS+RZiHgxcPvTEb7++mtvMU0aA+krGG0YWG5Cd+kJLLxdGhrKSIqC5Q0wtIhuEe2ifosJ2l+4T5oSyl80dvVP5t26dQsq1EaVzYkCYKxrAhci9nBfUqOLowRnWrgoM0YV0S1379JrD5EcHG84SHiONEbGdBbiLN5FckPtdffu3W2aITVeqM1Sp8v8PHjwYM9xhtjGkCFDIopncG04w4uabjW9F3kRGV8iz9KnTx+vDoCaAQcCCldddZU3cTPQM8jv2LHDLsCdAAOLAJfmwGBOtIToib/xp0geUEfj74dRjUIYKUkY1xhh/E0xpIYPH24XaP7UFWr/qAH0s23bNm8CP//8821aqxAi9pBe2LRp06AIViRFUUQ6SEnzCyjhfIFNmzZ5zdFZ0DMWiOSDOZbsA/c3vO222+wcy/7XX3/dqmH6SwZQqM2K8ePHB2655Ralnoo8i4wvkWdBbINFuBu4SU/xG070esKgcrnjpKmRrjZv3rzA5MmTveOYBJjQiX6xsEeha8KECWmnrJWs4OlExeqoo46y6mdPPfWU/TuOGjXK+9u3atXKysUzcSPl7PYjURyp1wvXB68reWIh4gtjLv0aXR0XqWPUZYaDaDX1nC6lnHQ15MYx4ngdf9S7U6dONj1RJAf8TevWrWv/NkS2SBvF0YVSsf/vRj0uZQPhoqCkjqNe+9577yXkMwgRC2R8iTwNE/MNN9zgDeLU/6xatcp7ngmafk/ueYw1omB+UD5kYc8ETz0QC3nX/4nnJL6QuL8tky4RLKJaGM/+CBVGE15z0o6YoFnMkbLC346/55NPPukVavM3fOWVV1TfJ0QSgdOrSpUq3vjcu3fviOMtzhW/IAfjAuI4ZDSMGDEi8PjjjwdKlChho2BXXnlllgIfIjYwLiOK5doE4ADD4UmmCSUC/qwUDOp77703sHfv3ogOVte7k7Yheb3hthAOGV8iJUBcwQ32LLxnzpwZ9PzUqVNtnYHfc0rqGbi+YP4eIYh1uEEfbx09okR8IJUEiWUmWxZSqFSuXr060KNHj0ClSpUypIVSS1C/fn1vQj/vvPOs0qWDlCZngJOi6v7uQojEQ72WG4Oz09OK/l+0lHD3O+M6ThoW8DhsqB9yqcg0N0bAQw60+IzbTzzxhJfOzUZqIN89RhfjuKvrYrv66qttKnmk18J55mpySR1/8cUX9XcUKYOML5Ey0BuEnHGaMYbrCUJhbseOHb3Bn4JtaoQY6DHW/IIbeGSZtKk5cNLlyJGncs+VREOUCiPZCab4U4hYVLmGya7RJqIaFHA71SwmfVIR/emi9ITDG87zLMiQLVaaoRDJmaK2a9euoEgX93iksYJIthsr2HC+Ef0iEkZ0hRRyv5S5E+wQ0YUaa6JXrq+mM5YQzUAOHken6+XlnGOh2Sd+qOX1twshPVGppCLVkPElUgom19AaH1LN/H1C8Jz6a8XoE/XBBx94z+Ndc1EvjqM+jAJfasHYR00RkTZN5NEBoxcvp/t+L730UtsO4Lnnngv6u5FGxN8OlUu82/7J/rLLLgsyuFmAESnztxigj4wQIvlhDL7gggusg4xGvJHGWhwp1Ar5RRuIbg8aNMiqoHbt2tXW+/qjZBhoUkeMjrMT1Um/YcWYjAItzkv6aPq/e5RnMbAzi16hQOycaYUKFQqMHTtW86xISWR8iZSGmi0Gcop+/T1DWNTTuJMB3i/awDFEwu68804v5YHt5JNPtosAJvp69erZfUz41BlJoj534BWlxoPvmQkcbzV/L9I/UaPkO+b7djBpExlzRpqrJ/j4448zCHSwAHPHoIr5xx9/JOATCiFyA6nC9Hny1/JSNxQJjDDS0sqXL+/9DiluGF8s+KkL9jdpJgretm1bZTLkEAwhskFI83ZGEptTCiaDBAVK/3Nko+BMyy6XX365Fb9SerhIZWR8iZSG1BS3kMcLh8yt3+vJJE+dgT9FpV27drZfGM/hxSON0d9vBoOLJqGkMDKJUzTcpUsXawQoJz1zMIIwqJzSFUYSKSsskPgO/V5UolUoEjLhI0nMAsw9hzpaZoqU1BPw+wsWLIj7ZxRCHDwYVKSuufGbrXnz5kGCSqHgOKOtxJlnnun9DhtRtEmTJtm0Y1cb7DacOdSYiswhA8T/t2A75ZRT7HhOrRf1uP7n+FvRyysSzJVkpeDM9GctKC1cpAMyvkTKQz8Yv+IhRdhMxP6FO1EYjCnnseMRDxwTPTntpMW52iE2VPXwqhKpQXGrQoUKdn+1atXsggGVJvF/UUYETCi4Jo3IpW6ySKIOgzRD/6RNyicphiykmPDp0xaa1uJvlowCFka1/zundgQ5eiFE3oYICGOHS2Hj0Z8mHmlhz5jDuO9PfaOZ+oABA2wfQMYZN97jfENJkfEcB5Ei5f/73knzJqLo0vBdRJHvasyYMbbvomsB4BQob7755ojtPRw0tCcN0f1edoRWhEglZHyJtIEFvb9hJxNIKEjN+w01Jmd+JqrFhEwdkt8YcCkx5KbTh4TaI5feQi3ZXXfdZb1/6Za3jvIYUSvy/l2vNXq50AgVbycqWH4PNN8zEUe+Kzyf1Nj5JaiZ1JGa9zdjxbgidZTX5Rhk54UQqQmKp9zjRLT9zXX9daHhQLjj9ttvD8pgcCnLDz30kDUWMO54XaeWi8FGdD7dmq9jtOKIpJYrNHKIIwyD69Zbb7UOTP/zCGQQPcyqlg6jrH379t7vMVfyepGabAuRqsj4EmkFkwMTLsp4GAeRWL58uVU39E8w1CCQYoHgAzns1Cg56Vxy1B3UgBHVYQJzNWXFihWzXkJy4v1Rm1QC2WCMoSZNmnjfC5FAPM14oTFsXcNNtxFNxCBDGp4CbnqtkVLonmfBRKqQv66OxRZ/B399B/V3KBsKIVIbvyIibSdw0vTr18+OH5nBsaQvt2jRwpOiZyPVmToljAfSlBs3bhzkFDr77LOtwA/jFM6hrIy9vARz0TvvvGPnKr4XapudAcojzsoPP/ww8Oijj1pnon/sZg4lvZu5MDvp9j179vTS+/leSTNfv359XD6nEMmGjC+RluBp808YzzzzjJ1IQiVtMcIwmvz9STCk7rvvPiuDzOs89dRTQWIeSOUiIkHvGqI4pG4gIuEiOUxs5MMjc0//sLya4oJXmCgWNVu1a9f2UoLOP/98+51Qx8V34U8PJEXFFbtTuI0HmwUP0UX/gohaMCZ8Uj79kBbkjzzyt3j22Wcz9P4SQqQ+CPD40+FIX8tOyjdjF7W7/n5hbsNBxOsgsERGA044Z4y49+EY0p8xxnDG5aWMBMZsWnRQo+WvdSYKxZyFU5IsEY7xS/k7QxVhqldffTXLeYv51T/HYrzyGhi6EjoR6Y6ML5H2MIm4FDgmI2q/aNwbmv9ObZc/KoOhwURCOoY/moVh5vpUOZiEiAphPFCcTONmJy7B6+BVJEUPgwyDJdmiY/RI49yJQjH5Ujvhj06RwkkdHRLvQC8uJ9Xvh4mfhQ+GK4sfCrb9kzupPrxOJGMKDzTHUTtGY1VJRguRvjjRhgYNGnhjCE6cK6+80o6j2YnIEJEnG4I0xFBDDDEOshowtDDU/IqJ/ugYziKcThzH++JoSiR8btItMaRQlEWAxNXbhm5EsBh3iUQxtvtVft33SdohdXJufM8MIoOvvfaafc93333X28+4jwS9ECIQOIR/jBBpzpIlS8y9995r3nnnHW/fpZdeau644w5z7rnnmkMOOcTu++eff8wbb7xhnnnmGfPpp596xxYsWNC0a9fOdO7c2R7/1VdfmaOOOsqceuqp9vmvv/7anHbaafb/JUqUMBdeeKE9rnjx4mbTpk1m6dKl5ssvv7TH8R6HHnqoqVatmjnjjDNM9erVTcmSJe3vue24447zzika/Pvvv2bbtm1m8+bN5pdffrGPGzdutJ+D82IfnHDCCfac2Pg8hx9+uFmzZo1ZuHChueSSS8xtt91mj9u+fbspVaqUadCggZk9e7bJnz+/2bFjh5k2bZqZMmWK+eCDD8x///1njy1QoIC56qqrTK9evczpp5/undMff/xhXn75ZVOmTBnTtGlTu+/33383Q4cONTfddJM5/vjjo/b5hRB5F5YxjEEPPfSQef/9973933//valUqVK2X4dxjvFq1qxZ9nX++uuvoOcZ0xiPGZ9/+uknuzFOhYNx7bHHHrO/w/jNscwTZ555pilSpMhBfVb/2D99+nTzxRdfmJo1a9rn+AxTp041n332WdjfZ9zkO2Hu2bNnj1m2bJl99MMcw5jLdtFFF5ljjz02y/Nivhg3bpzdNmzYYPfx+2+99VauP6sQqYqMLyF8YGw8/vjj5tVXX/WMg/vuu8/cf//9GY797rvvzMSJE+22fv16bz+TbevWrU2zZs3M+eefb42wzz//3Nx1113m448/Nn/++WfQ65x44onWmKldu7Y1aJi0/QYZxs3evXuDfgdjxm+MMbkzoR9xxBHWIHIbiwQMKwy6AwcO2I33//XXX62B5YytrVu32uMcTO5Fixa1xqMztI455hjz22+/mRUrVtgJe/HixUGf5YILLjDz5s3zfuaced+3337bGlwYtry/46yzzjJXXnmlNVgxJh1btmwxI0aMMCNHjrRGHO/P9xdNY1MIkZpgiDB2MI74F/4YBXXr1jU1atTI1uvg6Pnwww/NRx99ZB8Zg/zjFxx22GGeIcN8wXsydvO7PAf+cRUwwMqXL2/HbcZPzvfoo4+24zW/wzjHuM0jG7+PEcixbDxXr149b/wONZyYGwoXLmzPgzmBc+Nnzp1xf926dd7c5mDO4TWZr5i3MOSyM96yfJw5c6YZPXq0mTt3rve6OOluvPFG6yRjfhNCBCPjS4gwrF271gwZMsS89NJL1shwESz2MylVqFDBO5Zb6JNPPrFGGB7HXbt2ec8xqRLlYkJjYzIkYoaRwsbEGzo5A5MlCwUMF2Ay5z3279/vGU8uQuU2DBUmWL+hxWszqfuNsiOPPNIUK1YsyHALNeSYoPH8YvgtX77cPoY7TybW8847z25M3FWqVLHf17vvvmuNLRYs/omeyNYVV1xhLr/8crsACf0Ox44dayZNmmT+/vtvu59jbr75ZtO7d29vMSOEEDmJEGEUnXTSSXZsrFWrljcGlS1bNtuvR4SLaBIRNjYcdf6xPtQAYhw9+eSTrfFD5IjxnvNgnGReIBMARxYRsZyA8dWmTRtTqFAh6xBbtGiRfa1TTjnFGnY40njNH374IeyYDXzus88+225kJzC/MTfkBpyGfBfAPHDdddeZtm3b2u9ACBEeGV9CZMLu3buDojJdunSxqXAYVEwyRLgwZhx4KDE8SF3B64r30Q9e14YNG9oJj4mPiZlUQyJcLtL1zTffWMOJCZHJ2W+48POcOXNsSiS8+eab9nyYiNmYfJmcQzcWIRhteElZCAwYMMB73VatWlmD8L333rMeT3jiiSfM7bffHnTuvD7nwEYkDE8pXt9Vq1bZRQm/zwKD78wP6ZPt27e3Cx4WCOG4/vrrrffUHxW79dZb7SJDRpcQ4mDAacZ4RpTGb5DUr1/fjkuXXXaZHYtzAksnUu1wTrExNvNIqmN2l1UYPIzZRJ5c1Ct047Vc5AvnG4647MJrkybJGMwjG/MKhmFOPyvz0+uvv26/QzI4mA8ApyOfvXv37qZy5co5el0h0hUZX0JkE24V6rpmzJjhTa5EsvCgYlycc845QYYCxzApYYRhjGGghN5uTPjOA0ktAJMkEyYGGJ5W6sIcTJzffvut3YgwwcMPP2wGDhyYo8+BwcQCwYEnmDRCJtWWLVvafXh2iUARecLQYiMqhkeVyBY1cmxMyCwI/JBycvHFF9saMDY8zn74XHyHfF/uOWrBrrnmGrsIYhJnUSSEENGEtGlqdl3dqRuPR40aZXr27Gn/j6GTL1++XKc58/sYZaSiM17y6DYiXzt37rRbpKhUduH8yJAoXbp0ho3Ud+YI/p/bz0GUkDGesRqjy59a/+KLL9rxWgiRO2R8CZFDmIRcYbE/skU6yfz58zOd+DFqiDKRYkeUiwkuFCZUjDA2IkU8litXzho/pA+yEc0CjB+XdkLa4b59++yCglQ/Jnce3UbtGVE8vJ7+yBdGISkipMiQDkPkCuOMVEO3uZ9D6wuASBopkhhTjRs3tkZkaLSKVBgMUAw8ImQYbA888IAVOQG+BxYtpNEIIUSsIW0bo4L6XkQrXG3SU089ZYUyGMvYcCRFu26JMZoIFkYYqYs8ku3gxmo3hruUbcZFnHL+jbE6VnWwCxYssBkR/lpj3o/UeRyQCGlwDkKI3CHjS4hcwmSJIfHaa69Zo4LapHvuucc+hxHUt29fG/nBKEO8IhTSSDDAMMbYiJL9+OOPmaasMOFhPLnN1RMwMYZupENyjtRPhW5En1A3ZMMwchs/h4p7+MHwIzURY4uN1EOMNmcM+mFxQeE73w2fz/+5iKihjHjDDTfk4psXQojY0KJFC+socmDgEPknFZrxrmPHjtaRldfB2eVS3hEUadSokU3/doYp0TNSC5nDOnToYFPdmVeEEAePjC8hokBo5AaDjBQ6B3n2qAGykUoYSSYdowgVReqo3EaaIWkskSSNYwFGHfn7bBhX7v8VK1YMqnFzMIwQHWPSZhIHjDw8xi5aRmE23lQ2FjNSLxRCJBuM42QmIBjERh2XA6OL8QwnFJCSR3SqatWqEcfGZPpc1Acj8sTm2po4MLL8rVZIfSfrIpxjTQhxcMj4EiIGrFy50ir3kYbon7yByQzjDEUoFyFiMqfOIBLcpkSknDS821A95PcxzNxGSh+PRNZcmiKv7d9YRGAYEZFj8/8fwyurlBIie0zOTOJO/Yt6BtIjid45Hn30Ufta1JKF1n4JIUSywxhL5J5aV8bV4cOHBwkoMda7cR0VXAwxNhxMtNGIB8wPpC/+/PPPVuXQbajaPvjgg/YY0tBJO/cLdhDZopUHET1SLBGDEkLEHhlfQsQYar3IoccQY6N2CvUtJ1ePsiCiGUTHiA4hgEGUiecxWHIrARwNiF4xoful9UlBoVYiFLy+TOLI46PeJYQQqQoRL9L0SBdfvXp1hnRtjC+/4w2VWAwkandxcCFMRK0tqXw4reiL5XjllVfssUSmXKq4+z+/S0q7/3XJkAjtQQZErpxxCP369bPON+pyMbp4X2UgCBF/ZHwJEWcQ6SCf3nHttdfafmLhQLiCiR2FQiAdhp+ZuJ28vNuYyLMzkTKBkzrD77iUEjy79OTasGGDTXHkkQ2vr4t0uXz/Xr16meeee84uIpj48ZaSSlmnTp2UqIUQQoicwDKKsZKx2W1Ene666y7vGGpzI9XTYgwx/jrKlCljx+FwhBpU/ugb8wJp4qRAMmcg2ESNmhAiuZDxJUSC4RYkVY9GlagX4i0lMsY+8vRJI3RGTbdu3azKYjjwaJKW6Pqv9O/f30yYMMHr9cVrMfnzCIhrIJUPPXr0MC+88ELY18WoI72QSR9Id+S93O8KIYTIHGTnMdAYo9lwgLkUccSTEGxyMB6jYOtPGXf/J/LlV6slvZD5gfFYzi8h8gaJy2cSQliIVpHWx4aMrz+tBQVC/4RK7xbkfpEmZnJ2m1M19BdHIxlPHVYkmPydAUWfMV4Tjyupjjy6/1MP5o+o5bRBpxBCpDtly5a1W3Z4/vnns/26LitCCJF3UORLiDyO6xmDEUY6o+uxRXoj+1zfGGrHSH1hQ5UxkbVkQgghhBDpiIwvIYQQQgghhIgDauAghBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQggRB2R8CSGEEEIIIUQckPElhBBCCCGEEHFAxpcQQgghhBBCxAEZX0IIIYQQQoj/134dEwAAwDAMmn/VVbFc4AIC8gUAABCQLwAAgIB8AQAABOQLAAAgIF8AAAAB+QIAAAjIFwAAQEC+AAAAAvIFAAAQkC8AAICAfAEAAATkCwAAICBfAAAAAfkCAAAIyBcAAEBAvgAAAALyBQAAEJAvAACAgHwBAAAE5AsAACAgXwAAAAH5AgAACMgXAABAQL4AAAAC8gUAABCQLwAAgIB8AQAABOQLAAAgIF8AAAAB+QIAAAjIFwAAQEC+AAAAAvIFAAAQkC8AAICAfAEAAATkCwAAICBfAAAAAfkCAAAIyBcAAEBAvgAAAALyBQAAEJAvAACAgHwBAAAE5AsAACAgXwAAAAH5AgAACMgXAABAQL4AAAAC8gUAABCQLwAAgIB8AQAABOQLAAAgIF8AAAAB+QIAAAjIFwAAQEC+AAAAAvIFAAAQkC8AAICAfAEAAATkCwAAICBfAAAAAfkCAAAIyBcAAEBAvgAAAALyBQAAEJAvAACAgHwBAAAE5AsAACAgXwAAAAH5AgAACMgXAABAQL4AAAAC8gUAABCQLwAAgIB8AQAABOQLAAAgIF8AAAAB+QIAAAjIFwAAQEC+AAAAAvIFAABw/wbsmmr8rU2yygAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIHCAYAAABg7OZHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAza9JREFUeJzsnQm8TPX//z+pSLKEslT2ECoUslRaJftW0aJQSKmUtGhVWkkkylIiSyVLhAqlRVRCkRSJZN9FpOb/eH6+/8/5nZk7czdz586deT0fj2PcM+fOnHvmzOfzeW+v9zGBQCBghBBCCCGEEEJkKbmy9uWFEEIIIYQQQsj4EkIIIYQQQogYociXEEIIIYQQQsQAGV9CCCGEEEIIEQNkfAkhhBBCCCFEDJDxJYQQQgghhBAxQMaXEEIIIYQQQsQAGV9CCCGEEEIIEQNkfAkhhBBCCCFEDJDxJUSCc8wxx5iGDRuaZCHZ/l4hROKi8SxjvPnmm/aa8ShEvCLjS8QdX3/9tR08r7rqqrDP33333fb5ypUrh31+0KBB9vlHHnkki880cQkEAub99983rVu3NqeffrrJkyePyZ8/vzn33HPNPffcY1auXJndpyiEiEM0fme/4cH2zDPPhD3m2WeflXEiRDYj40vEHeeff7456aSTzJdffmmOHDmS4vn58+fbyePnn382mzdvDvs8XHrppTE530Rj586d5vLLLzdt2rSx17JevXrW4Lr11ltN8eLFzauvvmrOPvts8+mnn2b3qQoh4gyN3/HBc889Z8dyIUT8IeNLxB3HHXecufDCC83+/fvNN998E/Tcjh07zA8//GBatWoVZGg5/vvvP/P555/bSE3dunVjet6JAMYu13bevHnmhhtuML///rt55513rLd04MCBZs6cOWbdunWmY8eOZs+ePdl9ukKIOEPjd/ZTvnx5Oz4//fTT2X0qQogwyPgScckll1xiH0OjK5999plNievZs6cpXLhwCuNr2bJlZteuXdbwOuGEE+y+MmXK2G337t3mjjvuMGeccYZdILic8O+++87ur1atmilYsKDJmzevjexgcPzzzz8pzs3/el27drXRIN6rRo0aZsKECSmOf/zxx22kjr9l1KhR9rU5/rTTTrMRpX379oW9BsuXLzfXXXedKVGihMmdO7cpXbq0ufPOO60BGo6RI0fav4HX5m+8//77zd9//20ywtixY82CBQvMRRddZMaMGWMKFCiQ4hjOZ/To0UFpoXwOnTp1MpUqVbJRSzY84K+//nqK38d443rcfPPNGapx4Do98cQT5pxzzjEnnnii/ay45qSXhvuctmzZYo3EokWL2s/0ggsuSHE/NWjQwN4LmzZtCnsuN910kz2fhQsXRrhiQohQNH5nz/jtYGytUKGCGTp0qFm/fn26f49skyZNmti5lfMgtf+xxx4zBw4ciDhOb9y40Y6TzIO5cuWyYywbzzP3ffXVV/Z+IG39lFNOMbfffrs5ePCgfY2ZM2fauTpfvnymWLFi9m8OzXbBiCSKd/HFF5uSJUvaa8kj77lmzZpMXR8hspvjsvsEhEht8mZR/+CDD3r7+dktpImOhRpf7mf3+45Dhw7ZNESiac2bN7cLbgZ7GDFihPnggw+swXH11VfbiYbJg/cl8jZ58uQU53f48GGbmsfr3Xjjjeavv/6yEaIOHTqY7du320k2FCJHc+fONddee62d4D755BNbn0aNBAbP8ccf7x07ffp0c80119jJrEWLFnYyps7qlVdesdGnRYsWmZNPPtk7vl+/fubRRx+1fxPpgbzWpEmTzE8//ZShGwzjEPr27WvfOzWILjqYHH/99Vf7uRA5wzCdPXu2NU5JDx0wYIA5GrZu3Won31WrVpnq1aub7t272ygnP/Pe9957rylUqJB3PO+PYYWBxufD73M9GjVqZI1tFjnA+bHgeOONN8xDDz0U9J68xnvvvWeqVq2qKKoQGUDjd/aM3w7mN6JezDU4p3CkpcW7775r2rdvb8d1fu/UU081H330kXnyySftOTMnOoemA0MS4wljDUMTYxGH3d69e+3z/J2Mz4y7jLXMz8OGDbPPN2vWzBqJXB9eA0PshRdesI47roWDa8DP3FPMLRhqjPvjx4+3v7NkyRJr2AqRowgIEYccOXIkULBgwUC+fPkChw8f9vZXq1YtcMkll9j/Dxw4MMAtvGHDBu/5Zs2a2X0LFizw9pUuXdrua9SoUeDAgQMp3uv333+37+fnv//+C3Tq1Mn+3hdffBH0nHu9iy66KHDo0CFvP+dRtGjRQJ48eQJ//PGHt/+xxx6zx+fOnTuwbNmyoPfo0KGDfe7FF1/09m/fvj1QoECBwGmnnRZYt25d0HtPmDDBHn/HHXd4+3755ZfAcccdZ4/fsmWLt3/Pnj2BSpUq2eMvvvjiNK54IPDPP/8Ejj/+ePtaBw8eDGSEtWvXhn29K664InDsscfaa+z47bff7Dl17Ngx7GuFO982bdrY/Q899FCK4zdv3mzfy//7bLfffnvg33//9faPHDnS7u/atau3j7+zcOHCgXLlytnPw88rr7xijx80aFC6r4MQQuN3dozf8MYbb9jjn3nmGTue1apVK5ArV66geYfnOIZj/e/FfMvc5T+W8fPaa6+1xz/55JNB7+XG2VtuuSXF/Dl//nzv+alTp3r7mcvPOeecwDHHHGPnysWLF3vP7d27N3Dqqafa8dg/5+/evTuwY8eOFH/rvHnz7N/WpUuXsNfA//cJEW/I+BJxizOknPGzdetWO2g/8cQT9ufvvvvOPv/WW295E0WhQoUCefPmDTKKnLHkn1TSg3v9xx9/PGi/e71Qowz69euXwphyxlfoJAFMzhgnGJUOZ1S6vyuUmjVr2onLwfXg+AEDBqQ4duzYsemevDFiOLZ48eKBaDF58mT7mm+++Wamja9NmzbZz718+fJBk3Ik+H2M9n379gXtx0BjkcP183PPPffY3/nkk0+C9teoUcMuRsJN/EKI1NH4HdvxO9T4cgYKPzdu3DhV44u5hn3du3dP8Zo4zhg3cVD5cQ7Fbdu2pfgdZ3w5R6kfjDhntIXiHJ7hnHnhOPvsswNlypQJew1kfIl4RmmHIm4hn5x0QFIV6tevb9MeGPNdPRDpZ6SV8TypZUuXLrWpYqQDkhfuh3QJaq3CQQoh6SATJ0606QykEv5vbvkff/75Z9i0jnCCHqRCwvfffx/xOT+kS5CSsmLFCnsenDdpiC5lI1xOO6kdpDayUc9EnVuk1w+3LyugHuvFF180U6dOtedMGqafcNcwvXz77bf28yDtxJ+amRoVK1a06St+XKop94if2267zbz00ks2/fSyyy6z+0hN5DMkjZSUGiFExtD4nf3jN2MmtbmzZs2y9dKkbofDzVfham1LlSplypUrZ1avXm3HeWq3HGXLlrV/QySYo0OhBi6t55gveG0Hcz8p+syJXDd/XVjoXC9ETkDGl8gRRdvUILmc8zp16tj95NNT1+PqvFKTmCd/nQLgcLRt29YaeSzYXa47i3wW6S+//LKtFwuFCSdcTZSrIwunBOieC7cfEQomtiJFinjywBRLpwYGDufh3ovzTu97hoP35u8mj5+/2V/TlRoYjUza5N4jgIEhzGth7PB3UW8Q7hqmF/f3IVCSXsIJhQDn9O+//wbto6icRQmGI387507xO1B/IYTIOBq/Yzt+RwLhKGq3ELPAeAmHq9GK9H4YRRhfHOc3vtI6v3DjMGNwWs/5BZSoRWNexplG7RhiVwguuUbKKPIKkdOQ8SXiFhr6UpSMWhILfIwrBB38RgGLfopuWeQ7JbtQsQ2IZHghqIHhxaDO6xx77LHec0SgML7CgfcNwYdQAwyFPSAiF4p7Ltx+zs9Nam5SQlLfCUOkhnsvRCVCC48jvWc4mPhq165tBSgQALniiivS9XvTpk2zhlfnzp09o8VBNDG02Ntds3A93MIZrU5IA1WtrKJbt27WM/zWW2/ZwnBUK88888ywnmAhRNpo/I7t+J3a53D99ddbJVsMmXC4OSfS+7l+mqEGU6R5NZqgmIjTlWwExuTQ+UWInIik5kXcwiKdiASytKj/oXoUuhh2aRQoB9Lfy0mcpxeXFoL6oN/wAl4vEhgO4eTH3e8QAYr0nB+8dhs2bLCKei59wkX20itvzuQa6fVT+xvCgQEF/fv3D0q9DIeLZrlriGpVet4/NWMqXLomnyf3AsZ3OEn5aNC6dWsrg4zxyAIFI7BLly5Z8l5CJAMav2M/fkcCNUWclg8//HBYp5ebr0JbcQDzE2M8qYf+qFes4L3POuusFIYX7UHWrl0b8/MRIhrI+BJxjYti0d8JQo2vmjVr2gmBCBULZnLkXepCenCexi+++CJoPzVYzzzzTKq/izQ5ETnHH3/8Yc+DSQ7Z3VCIqtD7xYFxw2uQBufveXXLLbfYv4mJkvMIBSl8VxcG1CVhOCJlj/fUQYrIU089ZTICKYNcQyZhziNcDzK8o6TjISWf2jUkkkQdVSh4T+kHxvHI0zt4L39bAX9qS5s2bewk7O4DP/zN4RYUGQHDl88AOWg+E9IvI/UhE0KkD43fsR2/I8EYTX+tX375xetv6QfHGRE4Wm745xzmqD59+tjxNbvGQ86decIflaNujnYjWeWMEyKrUdqhyBGT948//mhTD0g79MOkhRiHMwTCpRymBml2bPTowpPG69OUkkgb0TD6PEXKgSdnn4a/9Ctxfb6oGRo8eHDY+iRSGxHpwDAjykLPL8QkeE9/XzCeI+2tXbt21itKwTR1SUSaSK/EqKlXr573N9NMkz4oNMPkfOgvgwFKfzJ+ps9WeuH3qH3ivUkX5DpceeWVtvgZQxPjBMOMSe+GG26wv8PfTx7+888/bz8nUm14zxkzZti+LOGuIX25ELrgevBepHBSFF6rVq2w5/Xqq6/a16Z3zYcffmjr+lgYUIdAPQMTs7/PV2Yg3RDREIq9MfbC1WAIIdKPxu/Yjt+pgTNv9OjRYUVAcIjhKKPPF5kX1FgxD5FRQrofc2Tv3r2z5dZnbmQjOkd9Nobgxx9/bMd/5kcnWCJEjiK75RaFSA16lSDLy63asGHDsMc46Vy2b775JsXzSMOzRQIJeyRuS5YsGTjhhBOsfO3QoUOt3G04SXT3ejt37gzcdtttgWLFillJ8nPPPTcwfvz4FK/vpOaR3x0xYkSgatWq9vgSJUoE7rrrLtvfJByrVq0KdO7c2b4Xkr4nn3yyPbeePXsG9Udx8NpVqlSxx55++umB++67z/Y1y4hUsf+6v/fee4GWLVva68JrnnjiiVYSn/dfuXJl0PFcK3pxnXLKKfY4+stMnDjRkxzmGoTCNT7zzDNtb7FSpUoFHn30USslH+l86UXzyCOPBCpXrmyvH31pqlev7v2eI7W/N617oUGDBvb3Z8+enaHrJYRIicbv2I7foVLzofTv39+bK8NJsdMfE1l6WrZwHhUrVrRj7v79+1Mcm9p5pTbupyYF758r/ffQ8OHD7bzJ/EwrFOZF5m3eP3QZK6l5kRM4hn+y2wAUIidBlAfwYqa3YJh0OWqWJOAQv5DKcvrpp9u6QWoJwqlZCiFyNhq/hRDZjVYXQghhjK13IG2U9EMZXkIIIYTIClTzJYRIauiDs23bNvPaa6/ZOi8K04UQQgghsgIZX0KIpAaFRdQNKd4eMmRI2B5tQgghhBDRQDVfQgghhBBCCBEDVPMlhBBCCCGEEDFAxpcQQgghhBBCxAAZX0IIIYQQQggRA2R8CSGEEEIIIUQMkPElhBBCCCGEEDFAxpcQQgghhBBCxAAZX0IIIYQQQggRA2R8CSGEEEIIIUQMkPElhBBCCCGEEDFAxpcQQgghhBBCxAAZX0IIIYQQQggRA2R8CSGEEEIIIUQMkPElhBBCCCGEEDFAxpcQQgghhBBCxAAZX0IIIYQQQggRA2R8CSGEEEIIIUQMkPElhBBCCCGEEDFAxpcQQgghhBAiLlm/fr1p0qSJOfHEE82pp55qevfubY4cORLx+HXr1pnOnTubsmXLmrx585ry5cubxx57zBw+fDjomGOOOSbF9vXXX2f533Nclr+DEEIIIYQQQmSQf//91xpexYsXN1999ZXZtGmTuemmm8zxxx9v+vfvH/Z3Vq1aZf777z/z2muvmQoVKpgff/zR3Hrrreavv/4yL774YtCxn3zyialatar3c5EiRUxWc0wgEAhk+bsIIYQQQgghjhqMiEgce+yx5oQTTkjXsbly5bKRodSOzZcvX6bOcfny5dbgWbZsmcmfP7/p0aOHefzxxzP8OrNmzTJNmzY1f/75pylWrJjdN3z4cNOnTx+zbds2kzt37nS9zgsvvGCGDRtm1q5d60W+iIx9//33pnr16iaWKO1QiARj586dZtq0aWbu3LnW+7Nv377sPiUhhBBCRImTTjop4tamTZugY0nTi3Rs48aNg44tU6ZMimMyw8aNG80ll1xi6tata42vQYMGWeNn9OjR9vlu3bql+jf433fhwoXm7LPP9gwvaNSokdm7d69ZsWJFus9pz549pnDhwin2N2/e3F6jBg0amOnTp5tYoLRDIRKEDz/80Lz00ktm/vz5Nkzvp0CBAua0004zp59+uildurTp1KmTHRSFEEIIIaLJyJEjrbHEmoQ6qkqVKpkffvjBDBw40K4/nnzySXPfffel67U2b94cZHiB+5nn0sOvv/5qhgwZEpRyiIE3YMAAU79+fRsBnDx5smnZsqWZOnWqNciyEhlfQuTgAlQGD+fJ+eOPP2zuMpx11ll2wGMf3iG3/fTTT97A2KJFC5svXaVKlWz9O4QQQgiRfvbv359q2qGfrVu3RjwWo8MPqXjRgGjXBRdcYNchDhy+GF///vuvjTSxxQKicFdddZVp166dTYN0FC1a1PTq1cv7uVatWja1kQidjC8hRArw3jzwwAPWq3TnnXfafXhsdu/ebVq3bm0LTB2kHTL4sGGMffbZZ2bMmDE2NTFPnjxm0qRJusJCCCFEDiEjdVhZdWxq7Nq1yxQqVCjFficz0a1bNzNu3Lh0GZgIbSxevDjouS1btnjPpQbGFOmP9erVM6+//nqa512nTh3z8ccfm6xGkS8hciB4q/AerV692tuHF+n+++9PcSyFrpUrV7YbdOzY0cq0Pvroo6Zfv35BgxkeM7xBQgghhBCZASNr0aJFQfuQcD/zzDPtOiMjaYdEzJ5++mkbwXPRMgwkyilSy9xxdWfnnXeeeeONN1JE+cKxdOlSU6JECZPVSO1QiBzC33//7SkYMbDNmTPHFp36w/pHA0YZxaZExC666KKovKYQQgghkouGDRua7777zqb5de3a1SxZssT+nxqrrl27Zui1cDSjRliyZEnz/PPP2zqvG2+80XTp0sWTmicyhvw8QmPUt2N4cQ7UuJPp40/FdNEy9qOUWKNGDfvz+++/bx555BFblnHLLbeYrESRLyHiHAYevETvvvuuHWCo88LgIoc5Whw6dMgWwxLmlzqiEEIIIY4GjKGDBw+a2rVrW+PnrrvuMrfddluGX4ffnTFjhunevbuNgpEaibOYdZHjwIED5ueffzb//POPFxlDZIMNoTE//g5bZP/8/vvv5rjjjrPZQZRhtG3b1mQ1inwJEceQr9yhQwdbpwXItGaVR4bIGmkBeIuEEEIIITID6wiiVUjMi5Soz5cQcQrNA0n/w/Ai2vX2229naSiclEa/4bVmzRozfvz4LHs/IYQQQohkQ2mHQsQhhNCbNWtmDSA6sFPfRaFqrNi+fbu57LLLbDieps133HFHzN5bCCGEECJRUdqhEHFY40U/iilTptgeXl999ZVtUBhLyIm+9957rZQ9UNT64IMPxvQchBBCCCESDaUdChFnYPRgeKHCQ6f1WBtegKAHqkTI0cNDDz1kmyMKIYQQQojMo8iXEHEExan33HOP/f/EiRPNtddem92nZJ599lkb9UJxaMGCBbZZoRBCCCGEyDgyvoSIEyZPnmzTDUn5o5cFjZDjAc7n+uuvNxMmTDBnnHGG+f77702RIkWy+7SEEEIIIXIcMr6EiAMWLlxoLr30Uiv3Ti+LoUOHRq15cjSg9xdd4n/55RfTpEkT24w5Pd3ihRBCCCHE/6HVkxBxEFnq1q2bNbyaNm1qBg8eHFeGF+TPn982ec6TJ4+ZOXOm6r+EEEIIITKBjC8hshkMLaTkkXMntY9O6/HIueeeaw1DeOCBB6wKoxBCCCGESD9KOxRCZKr+6/TTTzdLly5V/ZcQQgghRDpR5EuIbGLv3r3mgw8+yHFRutdee802fP7jjz/Mk08+md2nJIQQQogEZv369bbe/MQTTzSnnnqqFSQ7cuRIqr9TpkwZu2bxb6g3xwMyvoTIJu6//37TvHlz+5iTcPVf1Kk988wz2X06QgghhEhQ/v33X2t4HT582JY7jBkzxrz55pteH9LUwEG8adMmb7vzzjtNPBCfxSVCJEH6HnLt1HddffXVJqdB/dewYcOy+zSEEEKIpFo7HDhwIObvS8Qpo0Jgy5cvN7feeqtZtmyZddr26NHDPP744xl+748++sisXLnSfPLJJ6ZYsWKmevXqpl+/fqZPnz729XLnzh3xd3nf4sWLm3hDNV9CZCMbNmywvbNyMv/9959ZtGiRqVu3bnafihBCCJGw/PXXX+akk06K+fvu37/f5MuXL93Hb9y40ZxzzjnmxhtvtO1zvv32W3PbbbeZIUOGmE6dOtnMmXHjxqX5nkCEi/Y21Jg7fvvtN1OuXDmzZMkSU6NGjYhph6hI//PPP6ZUqVKmQ4cO5p577okLUbPsPwMhktBz5TxIOd3wwgNHf7JvvvnGfPfdd9YjJYQQQojkZeTIkTZK9dJLL9n1TqVKlcwPP/xg29R06tTJpgPed9996XqtzZs329fy437muUj07NnT1KxZ0xQuXNimKz744IM29ZBzyG5kfAkR42bKeF5GjRplqlatmuOvPakIpUuXNitWrDCrV6+W8SWEEEJk4ZzrIkKxft+MQKrhBRdcEJSqSHYMhs+///5rRTPYspJevXp5/ycKR3pi165dba06PUuzExlfQsQw4oWnhxQ9vEF4hhKBl19+2QwaNMiUKFEiu09FCCGESFgwZjKS/pdd7Nq1yxQqVCjsOggyknZIzdbixYuDntuyZYv3XHqpU6eOVUhct26djcRlJzK+hIgR06ZNs6HvvHnzmieeeCJhrns8FrMKIYQQInvAyMLR7Ofrr7+2bWqOPfbYDKUdEjF7+umnzdatW71o2ccff2wKFChgqlSpku5zomYsV65cWR5xSw8yvoSIARR8oswDpB2edtppCXndUSNC4cgf7hdCCCFE8vXmYi1Aqh/CGIhtDBgwwD6XkbTDK6+80hpZiHc8//zzts6rb9++Vj3RpQ8SGbvpppvM3Llz7fqKEg+Mv0suucQqHrqSjxtuuMGcfPLJJruR8SVEDKDGi5qookWL5ri+Xunl+++/N1dccYX1ajVq1CghatqEEEIIkXEwhg4ePGhq165t1wV33XWXVTzMKPzujBkzrGoiUTDSLjt27GijZ37xr59//tk6ugGjbOLEiVaK/tChQ6Zs2bLW+IoXx7Ck5oXIYshbrlChgs1RHjx4cNw0+csKWrVqZaZOnWof33///ew+HSGEEELEmIYNG1oBLurBRUpyhdknhIgihNkxvMqXL2/D74lM//79bUHwlClTbJqBEEIIIYT4P2R8CZGFkJv8wgsveIZJap3YE4GzzjrLNjKEzHSyF0IIIYRIZJR2KEQWcvvtt5thw4aZWrVq2eJPf8+LRIXaNoyw//77zxbB8rcLIYQQQghFvoTIMtasWWNef/11+3+iX8lgeEHFihWtKhE89thj2X06QgghhBBxg9IOhcgikESlkzvKfxdffHFSXedHHnnEKhTNmjXLSrwKIYQQQggZX0JkCTt37jRjxoyx/6cfRbKBuMjNN99s/6/olxBCCCHE/1DNlxBZBN3UkV1PVuGJdevW2W72R44cMQsWLDAXXnhhdp+SEEIIIUS2IuNLCJFldOvWzbz22mu258f8+fN1pYUQQgiR1Mj4EiLK0NE9b968uq7GmPXr19sG03Sdp/brggsu0HURQgghRNIiwQ0hosiePXtM6dKlza233mr27duX9Ne2VKlS5pZbbrHqh0WKFEn66yGEEEKI5EbGlxBRZNq0aWbbtm3myy+/NPny5dO1NcYMHz7cvPXWW7b+SwghhBAio1k0TZo0MSeeeKI59dRTTe/evW09eSQ+/fRT294n3PbNN994denhnv/6669NVnNclr+DEEnETTfdZJX+/v77b5Mrl3wbkCz9zYQQQggRXf79919reBUvXtx89dVXZtOmTXatdfzxx5v+/fuH/Z169erZ40Jb4MydO9ecf/75Qfs/+eQTU7VqVe/nWGTpqOZLCBETVq5caV566SXz9NNPW8+VEEIIITLOX3/9leHfyZMnjznuuP/FXIgaHTp0yDqJ/TXq4V43s1k8y5cvtyUYy5YtM/nz5zc9evTIlPrzrFmzTNOmTc2ff/5pihUr5mXU9OnTx2Ya5c6dO83XoO78tNNOM3feeac1wlzkq2zZsub777831atXN7FErnkhosB///1ndu/erWuZCp06dTIjR440Q4cO1XUSQgghMslJJ52U4W3KlCne7/N/9jVu3DjodcuUKZPi9zLDxo0bzSWXXGLq1q1rja9BgwaZF154wYwePdpTQk7rfB2IdZ199tme4QWNGjUye/fuNStWrEjX+UyfPt3s2LHD1qCH0rx5c+sQbtCggT0uFijtUIgoMGPGDNOhQwdz9913m6eeekrXNAzkaI8fP956sIQQQgiRmOBoxVgi24XSg0qVKpkffvjBDBw40Dpin3zySXPfffel67U2b94cZHiB+5nn0sOoUaOswXb66ad7+zDwBgwYYOrXr28jgJMnTzYtW7a0/VkxyLISGV9CRAEGGML1hLZFeNq0aWM3IYQQQmSe/fv3Zyrt0NGqVSv7GqG16aTiRQOiXbSW8dd8EwXD+Pr3339tpClW5Qd//PGHmTNnjnnnnXeC9hctWtT06tXL+7lWrVo2tZEInYwvIeKcpUuXWmWdY4891txxxx3ZfTpCCCGESGCOVk2Z2i9X/xXN13Xs2rXLFCpUKMX+QCDgpR2OGzcuXQYmQhuLFy8Oem7Lli3ec2nxxhtvWBGN9BhUderUMR9//LHJahT5EuIoIZcZ2rVrZ8444wxdzzRYvXq1rfu66qqrUuSbCyGEECJng5G1aNGioH1IuNNy5thjj81Q2iERM4S6tm7d6kXLMJAKFChgqlSpkuZ5YHw5dcT0ONNLlChhshoZX0IcBeQbT5gwwf7/nnvu0bVMZ+714MGDzU8//STjSwghhEjQ3lyk9XXt2tUsWbLEDBkyxNZYQUbSDq+88kprZN14443m+eeft+uuvn37WvVEl0pJZAwDCyl5VA0d8+bNM7/99pvp0qVLitcdM2aMVUqsUaOG/fn999+3giDUq2U1Mr6EOApeffVVc/jwYeuZqV27tq5lOujevbvNqcZztWrVKlO5cmVdNyGEECKBwBg6ePCgXRsR7brrrrvMbbfdluHX4XcRNWPtwFqL1MiOHTva6JnjwIED5ueff05Rd4+zl55fkdYZ/fr1M7///rtNweSYSZMmmbZt25qsRn2+hMgkNFImzXD79u22kJO0Q5E+yL3+4IMPbM8NomBCCCGESAwaNmxoe2e5sgwRjPp8CZFJSDfE8CpdurRVDhLpxwmTvPnmm2bfvn26dEIIIYRICmR8CZEJKOIkfxluv/32sKpBIjKXX365qVixojW8xo4dq0slhBBCiKRAaYdCZAI6rpNHfMIJJ9geEsiYioxBuiE54GeddZbtUu/vByKEEEIIkYgo8iVEJnjllVfsY4cOHWR4ZRIKZimcRfWQPmlCCCGEEImOjC8hMggyp++++679P1KnInMULFjQqiH5jVkhhBBCiERGaYdCZBCk5d977z3zxRdfWKl5kXlIN6xWrZrJlSuX7cVRqlQpXU4hhBBCJCwyvoQQ2coll1xi0w4feugh28VeCCGEECJRUdqhECIuZOdHjBhhDh06pE9DCCGEEAmLjC8hMgA1Si+++KLZs2ePrluUaNGihTn99NNtw+qNGzfqugohhBAiYVHaoRDpZNmyZbZjOz29fv/9d1OyZElduyiKmBQrVkxy80IIIYRIaNQZVoh0cuaZZ5qRI0daYQgZXtGlePHiug+FEEIIkfAo8iWEiBtI51y8eLG54oorsvtUhBAi6vz9999my5Ytdtu2bZvZv3+/OXjwoDlw4IApWrSoueaaa7xjX3/9dfs8/SSdg2rTpk32d08++WS7L0+ePPqUhMhhyPgSQsQFpHJWrVrVHDlyxPzxxx92ISKEEDmR7777zrYj+fXXX82aNWvshuG0b9++iL9zwQUXmIULF3o/UwtLHey3335rzjvvPLvv+eefN3369PGOIV2belk2WnVUrlzZVKlSxW4aQ4WIT5R2KEQa/Pfff6ZZs2bm6quvNp06dTJ58+bVNcsC3MIBL/D69eu1cBBCxD2BQMCMHj3aLFmyxPTr188ULlzY7qcX5LPPPhv2d3Lnzm1OPfVUu+XPn9+ceOKJdmP889OmTRuzfft2U6RIEW8fNcdEvHbu3Gl7TrooGgZaKKeccop1aNHO49FHH4363y6EyByKfAmRBh9++KFp0qSJKVSokI3I5MuXT9csiyANB2/tMccco2sshIgr/vnnHxvRYh5o27att798+fJm7dq15pNPPjGXXXaZ3Td16lTz9ttv2+cqVKhgH0877TRrcBUsWPCoxziMPgyzDRs22A2HFdkDP/30k1m5cqVZt26ddyzG17x587yf77zzTmuUtW/f3p6LECK2yPgSIg2IeM2aNcv06tXLDBgwQNdLCCGShK1bt1oH3MyZM82cOXNs2iCOuB07dphcuf7XrefJJ5+0+8mMOOuss0w88Ndff5lVq1aZ5cuX2/qwli1b2v2ct0tHJGKGMQgISfF/OReFyHpkfAmRCuTro3KIl3L16tXWgxlP/Pvvv+bPP/+0dQF79+61CwAe2WhYfPzxx9s0FR7ZSHGhRoC0FR6j4YHNCig+x1PbtGnT7D4VIUSSQQRp4sSJZsqUKVYAiCiTgxTAiy66yCrfuhTDnATpiq+++qo1tkaNGuXtR+Toyy+/NFdddZVNd2TsVVRMiKxBxpcQqUC066WXXrLRLzyf2WmM0GeMugIeSXEhrYRUE1JhMgtKWWXLlrXeWgq03WO1atWssZYdYEByTnhoSaEJrYMQQoisSHl+9913zfjx460R4qdmzZrWGGFD+MJFvBIF5hDGfByMDsb/xo0bm5tvvtmm3VOnJoSIDjK+hEglbYMcfeTPSTthIopl02HqB4j+4HnFCEH4IxxEtug7RipMgQIF7EaEC8MK5UAmVve4e/dur0Cb6FgkKP5GeatBgwZ24/+8ZqwgRWbatGm2NmHw4MExe18hRPJJv19//fV2vCGTAMgGuPjii821115rxZaYBxIdontLly41kydPthspiw7SFLlGt9xyizn33HOz9TyFSARkfAkRAXqsdO3a1RZK4xHMSm8nxtGCBQtsdO3jjz82P/zwQ4pjSBPE61qjRg2bCkl0qEyZMtbwwgDLzKIDI++XX36xBdpu+/HHH62R5ofXZzHSvHlzuxjhvbMSDE/SYDD4SKmMpeEnhEhsyCTAweSoV6+elXhnfEWEAqMLmfdkZsWKFWbMmDFm7Nixdp5w1K1b19x1112mdevW2ZYdIUROR8aXEBG8gHj4MIIGDhxo7rnnnqhfJyJZ9IGZNGmSlSWmsDs01eXyyy+3kScWBSVKlIhJfRbnRaSNc3ObXzkLzj77bFsXcNNNN2WJIcb1J/0R7+uQIUPMHXfcEfX3EEIkn9F177332nou+m65mq1FixZZoQlS70RKxyBCI2+88YaZPn26l+aOUxJnndIRhcg4Mr6ECMNnn31mGjZsaL2jyAqjFhXNYm6iam+++aYVy3CwEGjRooVp1KiRlSuOpwaZCI988MEHNjUHY8yl5wARMeoCkF4+6aSTovaeFIX36NHDRvkwwhKtzkIIEVtw6lSvXt0qADL+duzYUR9BBqBJ9PDhw+1GGj7X0EEaOynvQoi0kfElRBjatWtno1G33Xabee211476GmGszJ492wwbNszWjzn1LNSkWrVqZdNcMLhyQhoHalkzZsww48aNs+mB7m/Bc8xihpSUihUrHvX77N+/36b+UHNHOiaiJ0IIkV4QKCJzAWeXSzOcP3++deSgWBiPSq85AZR0EUZyDkJS1evUqWPT9GnHousqROrIlSxECES6kBgGIi9HO0kx8WOMoJSFEYGxgqGFshbCF6RzIO+bEwwvF6Ej3fCjjz6yUbynn37aRqcQKCFahTohtWEscvwSzRmFKFrnzp3t/19++eUo/gVCiESGtGkcaKRr0+j4lVdeCWo4TLReBkLmQczJn5lBGicpnTR71nUVIm0U+RIihEceecQ89dRT1jNK+mFmozZEzPACkqoBpC6SntetW7eoRIbiCYwsjC1k+YmKOc4//3zbgBTjMjOTMr1o6K1GHRr1BfHSwFQIEX8gDPHwww/bdDjGDMacDh06mMcffzzuejQm2vhPFgSZCm6MxolJ9kj37t2tsSaE+D8U+RIiBPLW8eplRuQBBcEXX3zRlC5d2tx3333W8EKmeNCgQdYrSApMohlewCLn0ksvtXVh1Gcx4ebNm9d8++23Nl2wfv36Zu7cuRmOhCHmQRQNJDkvhAjH4cOH7bjL2Dp69GhreNGugp6IpEfL8Mr68R91Wr9zDCcmQlXsQ7r+aLIghEg0FPkSIoIRhbx6eiXcmexJb+nbt69tfAxM+A888IC58cYbk1IRCvXG559/3gwdOtReT0DEhGggSo7phYgahl1WiJ8IIXI2s2bNMnfffbfXIJhoO44aJNFF9oERzHzoMj8Q6CD9s1y5cvpYRNKjyJcQYTjhhBPSbXh9+umn1pigDgrDi0jXqFGjbASImqVkNLzg1FNPtd7otWvX2mbJXAeuFYujLl262Hq39IDBds4559iaAq6rEELg3LnuuutsZB3Diz6ILPiRjZfhlf106tTJ9pAkAsbYj5FctWpVm9JPLbQQyYyMLyH+PxhLKBISxUpvfcENN9xgC7hJbyFd8ZlnnrELASaeY489VtfWGNufDE80EzH1F6SfYEQh0vHCCy/YlKG0Ulp69uxp/z9hwgRdUyGSHMYB0tnokYhyYa9evey4e8stt6glRRyBAi41v/TLRGSKDAiMsRo1apjFixdn9+kJkW3I+BLi//Pcc8/Z1AiacKYlG0/6RKVKlWyqIcYBNU407STN0Ekai2BKlSplr9eXX35po19IFd9///32/2lNxBhtI0aMMJ9//rkuqxBJzsaNG23Li3PPPdeOHaQyq8dU/EIt3scff2zGjx9vI5SoUdarV8+mJablfBMiEVHNlxD/HyYCIjRIqF9wwQVhrwuTBoqFzljAcKB3F48i/RBdHDNmjOndu7fZsWOH9VbTH6xfv37WWyqEEH5w1uTPn9/+/8iRI7ZFB2NxTmnRkRr8PaTiERlyKXlkTjAu8sjfyLiYCI3mGe9JQ3dZDBjQzAU8CpEsyPgSIsIEHxrtQkYdA43JkebIpBjShFnphZln27ZtNmUIRTIoU6aMlYmmD08kSFtEyj/c5ySESCz4rqOa99VXX1n1VFRU4x3GKGpayYZAJOjPP/+00ToeGfN27drlbXv37rXzS3ogq4L+h4x9KPKecsoptraWrWTJklZl122FChUy8YyTod++fbutCeOzPfvss7P7tISICTK+hEgDapU6duxoFi5caH+mZxUpcPQ0EdGBWruuXbtawRLSOElHpFYgVKyEXjLUf9WpU8d6voUQiQ3GCotyBDamTp3qtZ6IBzCaMLCWL19uN3oR/vrrr3aj6XxmYPwjwpVegywSGF80vKc2jq1KlSqmevXq1kiLl0bIGKg4MBG3whiLl/MSIquR8SWSnilTplj5cqItoYM/ERm8cy7SQvQLMQ1NElkTdcTD7RQNWShQI8aiwfH1119bJTM8vr///nuO8IILIY6OefPmWYME5dPsjGYx5jAGsaGqiNDSwYMHwx7P+VLnyobBgwouj0SpmG/YMJDIomAcoxExm19ll/ckRZtsC4w55iE2omVEjDBIMU55JMK2bt06e448FwlqrlDnPe+886wTix6M2dm+g7+RdEs3lvO34fDk/IRIVGR8iaSGYl/6jpASQiPI1q1b2/1MdDRZJgUOLrroIvPWW2/ZdA6R9cbwrbfeamsDkPxH3ATJfsfYsWNNixYtVGAvRIKOyaQiM+Zec8012WoU0CaDPoMYfzyicBsKRgMS6rTDqFatmhWXQMmVFOrsajPC/EVEjhplVHx5/PHHH+1jODVfzvvCCy+0DsjLL7/cFClSJNuuOe0DiHBSB8b/hUhEZHyJpIYBnqJtPJJMtHgemaTatWtnJy28l48++qit9VJtV+ygMSey0XPmzLE/83+MMClJCpG4kIbWqlUrm+JNpgGRnMKFC8fs/YliYWjNmDHD9qUiiuSHqBQReQSZiBrVqlXLVKhQIcfMDfRKJD3yu+++szVW1NG55tQOsjoQkGrUqJFNsedvjdXfR4Tv2muvNR9++KE1donKCZGIyPgSSQseQLyVK1asMM8//7xV3nv33XftQh/PIQYZ0ripiT+IrP18nn32WdsXxn1W1AXgVXZeUgrYSecRQuRsGIebNGliDR7S8Uj55uesBtELIi3vv/++mTt3blAaISqDGB/0crz00ktN7dq1Ey7VGYOX9h+08eDvpyeXH9IkqbMjK4RrgIMyK2GsX7JkSZCCMGO9Uv1FIiHjSyQtM2fONE2bNvU8rPT5wggDGkJOnDjRKkqJ7AVPdPv27W1dA718aKxKj7W2bdvaNKDffvst29J7hBBHD+09yDag3odIEmMz6XtZBe+DwfXOO+/Y9/7nn3+858444wzTrFkza/jheEu21hek4HNNyDpg2717t/cc4y9G2A033GDr72IREcMYRIwJaXql/YtEQcaXSFqYWBcsWGB7jpBiSBNIIALWv3//oMLneASjwy9ZjGAFaRts5OwzQToQseB5FhJIFbsN4xLPJkXY8QwRLuo/8NCSCkpEDPET0hNHjx5to5VCiJzHyJEjTbdu3ay6H3VH1HxmRc0REZXPPvvMjhfU9/ojXKgpYvy1bNnS1j8pyvI/MEo//fRT+5lgrDLeOsgMwSmGAJVfFCmaEPEi9ZA01BIlSthUUPUDE4mAjC+RlDjVPNJKUKOiOJl6IiZmcs6zG6f45GSL2Zjsnn76ae8YFig7d+4M+/s1atSwqRuO8uXL25q2cOBNJPLnePjhh62iFvtJ8UOmuGzZstle10AhPsqTfEZAWgp1C5wjheTZfX5CiIyBE+XBBx+0/7/pppvM66+/HvW0NtLqaA2CA8o/zhE9x3jAqcMYJ9I2XnF+oUBLxBCHn6NBgwZWMp5shGinZaLi2LhxY1uLTZYKRiDpj0LkZGR8iaSkTZs2NscfNT1kbqkbosiaYursAi8fCwEMCv8iwYHHb+nSpUHeWhQBnWwxKSEsXPibUHD0G2r33nuv9Vo6uWIenVwxx2KMOlDpCi00J62PNCAMVhZI2XmNXn75Zfv3sBggOnnkyBGbkiJlLCFyBnyP+/TpY1544QX7MwYY41W0Ik68PlLwiPRgKLi0QsZIxgki5QhmKMKVOciuoDcjasAffPCB15OMeahLly42m4T0zWhB6iNRSSKXOEwpCXDKxELkRGR8iaSDRpikljBBAz1PmECILGU1GArff/+9VXLC4OEcSOnwG1ioUQGpgNQ/sBHdoWEmRmO0CS1mxrgiEogB+PPPP9sNAxVIAfniiy+8YzkfInCkC+H9xHCLxYKGiR9DlVRK58XmcyUlUQgRv7BQJ82QdEN48cUXrTMlWq89bdo0W7+7ePFibz+iGbfffrsdr2KpmMp4T+SmePHi1ikGpLfj6MOg2LNnj91IgSSyj1GDQYOKIlDf+sQTT1inGinjbqM3GONux44drRMOcKrxOqSSx9KoJCWcbASii+vXr7f7yEIgjZOWAe5vOVq4NjfeeKMVxeL1EWSRw03kWAJCJBk1a9bE6rJb8+bNA/v378/S9/vll18CgwYNCjRr1ixQoEAB773Z8uTJE/j777+9Y+fMmRP49NNPAzt27MjSc8oIR44cCaxZsybwwQcf2PNz7Nq1K3DMMccE/T2lSpUKdOnSJfDuu+8Gdu7cmaXntXTp0kDx4sW99+YaCyHil3///Tdw00032e9rrly5AqNGjYrK6zKGjhgxIlCxYsWgsbVjx46Bb775JpDVbNq0yY6Pzz//fKBTp06Bhg0bBkqXLh049thj7bksXrzYO3bAgAFBY2bo9vHHH3vHDh06NNVjZ8yY4R379ttve393hQoVAo0bNw707NkzMGTIEPuau3fvzvJ5Yvr06YFLLrkk6Bz5ef78+YH//vsvKu/BZ+runzfffDMq5y5ErFHkSyQNRHh69Ohhhg0bZn8mcoKUfLRrhUiH80dgUM2ib4kDryViH0SL8Miyxbu4RziIhqGKhUQxG71j8PQ68EqSDpiV4Gklckn6Jdec4nCuqxAiPsfge+65x6YDMjYQHTkaSCd84403zFNPPWU2bNhg9yFTzzhP6lu0hYSIrFF7xFjHuO5eH5Vc0ijDQco2ka4rrrjC/kxEjrol5gHOlUfqpIhucSyp7663GcqD9OEi6kOquNuIlpEyTgSRzAgYPHiwueuuuyKeO2n29FADXpMMC1IvTz/99KhHykiPRxCJz9ilfJIZQb/MK6+88qjej/mVv5tIG/BIqqMQOYqYm3tCZJPHtUePHp43rmrVqlHxxPk9cnj3unfvbqMxf/zxh/ccHtnLLrvMekW//fZbe2wiQgTxww8/DNx1112BypUrB9544w3vuVWrVgXOPffcwJNPPmmjaNFk9erV1gvK55o7d+6g6JwQIr5g3F2yZMlRvcY///xjx5eyZct6Y3rJkiVtVGnv3r1RO9eDBw8G5s6dG3jiiScCV1xxRSB//vze+7333nvecbNmzQqcc845gWuvvTbw+OOPB8aNGxf44osvAhs3brRzT6w4dOhQYO3atfachw8fHrj33nttdgeRsF9//dU77umnn/b+jhIlSgRat24dGDx4cGD58uVRPd/ff//dzrtE49z7XXjhhYEvv/zyqO+hO++8074e2RdcbyFyEjK+RMLjT1Vw6QorVqyIymuvXLkycP/999sJzJ9qQapHsuM3bp999tmg61O3bt3AK6+8Eti+fXtU3uuee+7xXvv4448PvP/++1F5XSHE0Y8DpIdhGETjtWbOnBmoUqWK930vVqyYTTnGUIomGFQnnHBCilQ/DDBS6XA05VSGDRsWqF69upcW6d+KFCkStfnRgRF69913B11PjMIff/zxqO6F22+/3b4Wf8eUKVOies5CZCUyvkRCg4e0Q4cO3gBNXjwTwdGybNmyQO3atYMmrZNPPtnm+8+ePTtw+PDhqJx/ooCRNXr0aOs9dlEqF6lq3779UX8m27ZtC5x00klBBjaftRAieyHazXfyqquuOqqoCjWel19+ufcdL1y4sM0m+Ouvv466XowxmwiNf8wgauMiQ4xROIs4h0TKXODaLViwINC/f//AlVdeGTjxxBOtcemfv1544YVA3759bbTyaLNFNmzYYGuC3RzAI9kimXXC+WsIub+imc0iRFYi40skLHha27Ztawfm4447LihNJDP4PasIYuDFw6DDg0ekJRqe3WTgzz//DAwcONB6Xp0ned++fd7zmZ1AH3roIW9RJgNMiPgAwyZfvnxWPCIzINxDhMOJ++Cwue+++6zgT2bBuCByxcLdL4LUqFGjoON+/vnnpFrQc11IEfdTvnx57/qQ5kkqIwIiR3NdfvrpJ5vq6Hdcki2CszSj8DvPPfdc4MCBA5k+HyFijYwvkZAwILdp08abrIlIoTqYUZhg5s2bZ71qpMqFpqVs3rw5imedfFAD58/X53qjFEYa4W+//Zah18IgxpAj7dBN7IqACZH9ZCay7dIVTznlFG+R3q5du6OqGSVSQqTFOWjcRp3ubbfdZsd0EXy93nrrrUCrVq0CefPmDbpmlSpVCrz88stHdbmok6ZWzr3m2WefHVi4cOFRfwR+Z54Q8YiML5FwkBbiUg0xvF566SVPgpf0tPS+xjvvvBM4//zzvYkBz6u/aFlEHwqx/amD119/fYbqAohu8hmxaCC9xb3O+PHj9XEJESOQdz8aI4mIE8IMbiw466yzrBMsGgvxSy+91KsVI9WQtLtYimLkZEGlyZMnW1ERV7vVrVu3IGM5M9kfOEpfffVVzyBmnr3jjjsCe/bsyfBr8TlSg43gU1a3OhHiaJDxJRIKBt9bbrnFSzWk7wiL96uvvjpw8803p+v3J0yYYAdvN/Ez0ZD2IsMrNp8f6UDUhvm9rESyMqqQ5jfASA+dOnVqlp23EOL/aqUwbBBuoEYqI+D0oo7LLe6pQSKlLKOLegyBr776yjpvqAWlD5fj888/t32vEql2K9ZgGBGVpPbZ8fXXXweKFi1qU0IzmrUAOEZd/RbbaaedFtTHLL2vcfrpp9vfJ2InRLwi40skDEy4eMzcYju0xis9Ihg0B/bnoT/66KOBrVu3ZuFZi0h89913Xuqo22hAnV4w1pCdvvHGG70oqL+BqRAiuvB9c2lktJbISPoXyrF+ESMEINatW5eh92eMHzt2bKBGjRpB48Zrr72Wib9GZARajPizFhi7MXQzWhvGGO2vM+vcuXOGomDI5XMPCBHPyPgSCQP9VVzaQkaU7qgV8qdAsABAoWv37t1ZdKYiIyB7TBopizm/tzq14uw+ffrYe6Ffv372OGoWnCcdj7gQIroQaUZ8yKX0EQFLDyzOEeNw0a6CBQsGRo0alaFFOylxiPicccYZQRkLZEFQVyqyHsbZadOmWaPZb/iSuo8gVUZSOxHP6NWrlyeyUrp0aVsflhmSSTBF5BxkfImEAKUkN9g7VS3SBymu3rJlS9jfQdWpWbNmdmD3KxlqsI5P/J8RkzOpoRjc4aSm+ez9NQnISbtFARHNaPexESLZeeqpp7zaWlLQ0gNjc5MmTYLUBv0N6tML2QnOeMPwo4lwtHoIioxDqv+tt97qfSakEDIGZxQyHcqUKeM5VR9++OEMKSIi9ELtIHV9QsQTMr5EjmfSpEmeh+yJJ57wFuqlSpWy+5555pkUqTG9e/e2NWEuRfGjjz7KprMXmWHkyJHego0cfyKdfqMZL+sPP/yQwjt+wQUX2N/BQ56ZRZ4QIiWMn24MJmqVHhDQwFByBhvKeemNjpCGFppaRq+qESNGRL3Zssg8GMUYTK+//rq3j8+YCFl6P2vma1IP3XjfoEGDwPr169P1u64J86mnnhqV/p5CRAsZXyJHQwoZEzcDLPVebgFOkbZbmLvICM+heleyZElvIG/atKntOSJyFnyWqFEStXSf5SWXXJKiR024guyKFSt6ssZH0ytICBGwC2GEFlx9Tlqw6CYy5RrtVq1a1dbppAeENzDS3PtFQ5ZcxBYcZa4m8IMPPkh3psnEiRO9nmwoI86cOTPN38Hh5moQaWEikRURL8j4EjkWpIxdD5gWLVp4AyvpJtQNsB9FJjcIk9LiFuoU9GZUSUnEH6Qfku7k0lsQ1XjkkUeCJlnuk1deecX7GSUu+vpwPLLT6RFiEUKkhBQw+h/yXapZs2aaUSfqa/1phijQhksbDoUFOqnENPl1v4sTJbN1QCL7QPzE39gap1l6lWwZy137FyKt1GanFUHDIUeTb34HAS0h4gEZXyJHQsSC3i8MqChbYVyFqi75BRqYvIlyESVjwFZqSmLBpNy4cWPPEHcgMe0io4sXL/b2f//991aCmv3UBQohMg6ODieSsXbt2jTVDCtUqOCJYaQ3PRHV0/r16wc1RGYBn5HaHxFfYITTj8uNzRhSiKP8+eef6Yp+unRCN96npYY4btw4730++eSTKP4lQmQOGV8ix0Gk4vLLL/cKef21O7/88kvg+OOP9/p8+BULN2zYkGZamsi5YGDTKsCvssakTK8f7gc89P4UF+oOXJ2KPzImhEgbRAxc6iBRqdQgRcxFO0gVTm+kg7He9W1CqRTHmd/RJnI2tBJo3769Z0ghjpFeRo8e7RlviC+l1dTb1Y1hvEuMRWQ3Mr5EjoLFMypKDKKkEoRO4q4vFHUEPE/TRpG88Pnjbc+bN6+9L0KL9J999lmJrgiRicwDJ2jUsWPHVMfrAQMGeE4OFtdp9U3kd/xOEr6ztJrAeSYSE9QxEUP68ssvM/R7ZDM445w6wNR+n/RWjDSObdeunVSNRbYi40vkKF588UUvfWD69OlBz82dOzeovwjbRRddZOuCRPKBuIar7ULRkkfEVvyNX1nkYaDxXKFChQI///xztp6zEDnF+OJ7Q+0sanThIOW7Z8+e3liM04yUsdQgc+Gyyy7LUJ9GkRiECm8gmsX9k1akk1TF8847z1PNRFQrEt988403F+geE9mJjC+RY0Agw3lQX3rppRTpKf5ibIQXMNQy0thRJKYB5hq/uo2aQD/U/znRAIr4d+7cmW3nK0ROIlKtDd8pl4XAxlicmqod4zQqhi5CTWqiarqSF3+tLvN6WnVaGGgtW7YMut8iQW9I52xTNFVkFzK+RI6AYm4GSwbNrl27pujp5FfQwhu7dOnSbD1fET9wrwwbNsyrBWRDpt7P5s2bvTQq6gm18BMiJTTKTUsanDpb0gudEyytejDUR5EBd99NIl+//vqrLn+SM2fOHG9MZuvRo0eqypisA+655x7v+AceeCDsvYqjtlatWvYY1g3plboXIprI+BJxD15UZIwZLOvUqWMXAH5opusiYjzvTysTwn+fULTv1NZCFS8x2N3zKHEJIYJBkY4Fa6QG5USaXQoYCohpScEjiuRUR/nuvfrqq1oMCw9SWv3Khigco34ZCQwpV8fL1qVLl7C9vVasWOE54xBpEiLWyPgScY8T2ChSpEjYzvauoTJeMkUsRFqF3c5QD5fKwkTsJm4agAoh/i9CxYKV788XX3wRtvYGoSO+O/RfpJ1Danz77bfed61BgwaKdolUo2AlSpTwhLbSUiscMWKEp8SJmmK4dQHphxhnSjMX2cEx/GOEiFPeeOMN06lTJ3PMMceYOXPmmCuuuMLunzFjhvn3339NixYtcCCYd955x5QuXdpccMEF2X3KIs658847zSuvvGKqVq1qvv/+e7Nw4UJToUIFU7JkSft8z549zZAhQ0zhwoXt86VKlcruUxYiLli5cqWZN2+eueOOO4L2b9y40TRs2ND8+uuv9nv0ySefmLPOOivN17vnnntMkSJFzIMPPmiOPfbYLDxzkdPZsWOHue222+wc37t37zSPnzx5srnuuuvMkSNHzDXXXGPGjRtnjj/+eO951g2sK4TIDmR8ibhl6dKlpm7duubvv/82/fr1M3379rUD5uDBg02vXr3MiSeeaBfHLJyTCSaTLVu2mD///NNs2rTJ25iceO6ff/6xj2wYqMcdd5yddHhky5MnjylWrJgpUaKEXSjxyIaxkQyT0c6dO02lSpXM9u3b7ST+2muvmXz58pnp06eb888/3xw6dMhceOGF5ptvvrET/WeffWZy586d3actRFzC2IPhtXr1alOmTBkzd+5cU65cubDHjh071lx22WWeoyOZYO7at2+fN1678Xvz5s3mwIEDKcZuxuLQsbtgwYLeeO3fTjjhBJMM/P9sLZMrVy778w8//GCvXZ06dcIeP23aNNOuXTt7Xdu0aWMmTJgQZID5X3fPnj2mUKFCWf43CAEyvkRcsnv3brsQXrNmjbn66qvNBx98YP777z9z9913m6FDh9pjmjdvbkaOHGlOOeUUk4gGwpIlS+z2888/Bxla27Zts5OFg4moePHi1oOMkeAmajaewwDzT+oHDx60xtuuXbuC3pPf5XWcQXbaaaeZs88+25x33nn2MZEMkNGjR5vOnTtbo+uMM84wq1atssb8pEmTTNOmTc1vv/1matasae9DDP0BAwZk9ykLkS2sX7/eOnZq1KiR4rmtW7daw+unn36yEeIFCxbYDIRQcKARUR4xYoSpX7++mT9/fthFcE6HsfaXX34x3333nXUecu38hhaGgp+TTjrJjrWMQ35Dy0UB/QYZjxgIvM7hw4eDXufkk0/2DDHGb4xfxi/Gbn5ORKcahixrhHXr1plXX33VjufhIEsGw4tr1r59e+sA8EdZ+Yy6du1q59XFixd7hp0QWYmMLxF3YFiQJvDee+9ZTyoTWd68eW0KAdEJJpInnnjCpobxfzyt1apVMzkVFjYYWfydbmPx7yZn0ncwhPyeTn/ECuMzMyk7LIjwuoZG0NzPTEoYfhi9LAqcIeY2fiaKlhPhb2Kyvummm+zfwv1GWisTLxM5k/HUqVNNq1at7PH8nxRXIZINvhukcJGq27179yAHEYYX0QfGJwyvcBEvxhK+R4sWLbLjNVkMpBnm9EUuhhbjo3/cxuDav3+/fb5s2bJ2Cx2v/T8zvmdmfuTah47X/p+JQmJMAFkO/nGbjc8rpxtkGF+33HKLvTfh9ttvN4MGDQpr1M+cOdO0bNnSGrG33nqrzXZwfz+OyIoVK9r58Msvv7QGnRBZTrZUmgmRCm+++aYtlD3uuONsU0QKYinIdip1kydPDvz444+BSpUqWfWjtBp3xmPh+uDBgwOtW7e2/Wxc0Xn+/PkDF198caBXr162AeSqVauyvU8Z0r5fffVV4JVXXrFKZ+ecc47XpJLi+xo1alhBlPfeey9is9WcAPLD/H3us3j00UetcpaTLqbNAe0OhEgmENbg/ke8YNmyZUHjQr169exzCCGsXr067O8vWbIkcPrpp9vjTj75ZCuckFNhnkGkhzGhfv36VvjBjRcVKlQIXHvttYHnn38+MHfu3GwXcWDsQpxqypQpgb59+wYaN24cOPXUU73z5f9XXXVVoF+/fvZzzaly65z3U0895YkoXXTRRRHFOGgv4kQ4mGP9f/O0adMi3sNCZAUyvkRcsWbNGk96uH///kFNEZEuXrBgQdBkmBMWxBhQixYtCjz88MPWeHGGC4bWvffeGxg/fnzg559/znZDK70cOHDAqgYOHTo00KlTJ2sAu54+TOjIRee05pUsVJCef+yxx7wFCk4A7jHaFzhFtnCyxUIkIoxHtWvXtvc+Dha/o8L1VcQpQQuHcLDwd60bKleuHPjll18COQ2MKBxhGFYFChSwf8tpp50WuO666wIvvPBCYN68eYFdu3YFcgIYG4zLU6dODTzyyCOBq6++2jr8nFLwHXfcEfjoo49ynDMTpk+f7v0tZ555ZkTlzFGjRnnjO4ayENmFjC8RNyAHi0cxdKHLfiRh/Z7XeAfPMBMC5128eHH7NxUuXDhwww03WA/cnj17AolmNA8aNChw6aWX2oglfy9RMYwZJKXj2bM6fPhwu0jECwxE+fAUu35yGPjOIaAJWyQL48aNs/c89/6mTZvsPr7HN998s5eFEE5yHljAk5nAcVdeeWWOMVAAI3HgwIG28bOL8tO77IknnrCRvHgeyzIKYxzRSAwv19AYI6Zdu3aBsWPHpinpHk+QDeP+hmbNmkU8bsCAAZ4BhuMzFD7jSH3shIgWMr5E3ED6gBv8Fy9eHDbKgBcSjyPe13iDBQd9opo3bx7Imzev54UjuvXZZ58lTQ8yFloTJkyw/VWIVjpvcY8ePVJtkJldMAG7RaJbWPmjkOx7/fXXveje8uXLs/FshYjNWFamTBl7zz/99NMpxmiMkrT64OGQoVl5Thj3SAUnGuSi+Hny5LGRIRwzybIQZ5yj0TxOqFq1annppqTyDRs2LEc4DOk1h+G4devWVI+7++67vfH8008/9fa7Bs1kdAiRlcj4EnEBxpaLmLz44ouBM844I9C5c+egRTApIEWLFrXHvPbaa4F4gZTB3r1728ainBtpahiI1GwlOxjJpOYw2ZUsWdJen5o1a8bVZM6iY8aMGWE92q7uizQjl2pVvXr1HJmaI0R6IXWYe52oPVF8mDhxohcxwCgJBWfZl19+mWMusnOW4XShZginH1E90iX37dsXSHY2btxonU5kAWCEkR1AXSw1wDkp+kdELBTWFW3atPFSZ5nDYeHChZ7RGe73hIgWMr5EtrN///5AxYoV7aDXtGlTL3WAtJUdO3Z4x91+++12f5UqVbI98sVCA+EPUlNcMfldd90Vsf5B/C99lFRMPmM3mZOWGc+RJM6N+jw+41atWgWKFCli/0/9nhCJCDWdzlEyZMgQu48aT6JBTqwgFMbja665xkbE3n///UA8QyTroYce8gQo6tatGxg9erSdh0Tka0ZEzAlEVatWzTrQ4v2a4STAsH755ZfD3ud89m6tsXv3brsfISz2tW3bNhvOWCQLMr5EtoPR4lSzypYt66XrkULgIF3NKRURScnOlDoicy4lhxo1aiMQaxDph8LvJ5980lvkUSuG4lR2C1oQjaNOzb+owBPuorKXXHKJ5xnFSypEosH45kQYqAliHGZsZh8p1aHfUcY+amyckBDKp/EI31ci2HyXiXLdeeedcpZlECJG1IjhiGIMxOlIaunvv/8eiEecWm2kel1qGZ0aJxE+7m0cqO534tkxKHI2Mr5EtoJH1cnEuogXhg3qc/4B/4ILLrDPUUeUHZBDzkCOvDALjBtvvNEKSYijA4859WFOUbB8+fJWkSq76kScJ/TBBx8M2k+U0xn/KLc5B4FLyRIiESAa4CJCI0eOtKl5TgSpatWqKdLxMLwaNWrkCXDMnDkzEE+QHjd79uyg8YUoSLykPOdkqJOjnpm6XiKeKELGW6o9nz9tQ5wx9cwzz6Q4Bseuq9Hu06eP3UfUi5+pHxMiK5DxJbJ14X322WfbQc7VciHMECof7+RhUd0iDz2W0LsKqXveG6lhBnKn/CWib4i7SY/Cd9KXYl1bQJTLefB/+umnsP3n2JzstJushUgEUPrkvia9jPEZFTx3v4f2QcIwc3WQpBBnZ0ZCpPHEpYVjQCIQklPaeeQkMMhpO4LzFCOMtgTxJlKCUqUbu/0CMg5/PSMZGES83M8qJRBZgYwvkW0wCLr+XQzapDCsWLEi6BhqvpxhhkRsrGBhQSNkRDSodcDDl5Nkd3MyRBSvuOIK+5kT8fSrUWU1GHtuQXnZZZelMP6Q03eTMhspTEpNEYkAxpbLPmAx7VRA2UKVDTm2ZcuWXsQrngwvnCaubodoHXWmOUkgIqdCFBSJfupiuSdwTGV3s2k/TqmTjXE8kgIiAhwodTpBDtrDCBFtZHyJbAF1IVfATT+RWbNmhe0Z0717d28SjYXIBp5RarioPSPNDHWneM1nT3Q+/vhj21/H5eMjgxwLmHhZPPC+pESG86LSq426B2cgyqMucjpEKy688MJAsWLFrLffNa3t27dvimO537t27WrHcBrzxksdKQI+jNsYkUSqs7uGNBlBuIJ7hmgohsxzzz1n01njAbJYuKdpKxDO4erKG1DkZT3i2ipoDSCijYwvEXOYuC+++GI7sFEvEMkrSQTE1YNldfSDc6Be4ZxzzrHv16JFC0nNxsm9gqFDfRX3wvXXX2+No1ilqSAIEkl2msWea74cTnpbiJzIunXrPKcHxlik+kvGzHhIySI7glYfOEyIurz00kteg3SRfZCej0Ix2QGMo8jWZ3fPN+7Z+fPnR3yeWnOnaEuNtxNY4v9CRBMZXyLmuIa1LKY/+eSTiIvu2rVr2+NYcGcleLXo9eIWGzmpV02yQNQTAwfVNeqxqL3Lyl5bpNCUK1fO3hOoeUUCZURXE6NaQJEIICXPPV24cGHrYPBDCl92t/nwL6TfeOMNG11BCIlohoQ04o9ffvnFqky6DBZ6esYLROSWLVsWtI8UW5ee6FIVcbLFUwqlyPnI+BIxZdu2bZ5YQWoL2xEjRtjnSX3xS85He/LGEOQ9kJul0Fa1AfEN6oIssvCmnnvuuYHvv/8+y97LTcK8V6j4hsNFcNnocyREToT0WmpaiQr4hQfCCc4gK5/dEQxSJF1tJjU5mzdvztbzEWmDqiARVdJCH3jggWyPTmJMIcSC8R7aUNn1FCUFF/En/k8LBiGihYwvEVOooXKTO6IK4SZxDCAX9SKFJKujXZ06dfIaLIqcwZIlS2yKKIYR0aesioLREJp75PLLLw9rmFO76FIP2ahdFCIngTw49y7RI9fzCMU6Pxhlrtl4aBuGWMJ3ECOQBXPx4sVTGIgiviFqSjSJe6lKlSrZGgXzN1k+44wzgpy8OPmc0VWjRo1sbXMjEhMZXyKmni+3SCUHPLUwPgMjaoPR9rAyeRNVI9qFrP2HH34Y1dcXsQODiygYBdFEwbJCkOPXX3/1hGEiNY+l6ai7r/GUxktalhDpgTRrBAZYgHIPIzZEiw2/cYYSLc/Ryym7xGVoM+KcIaSiU+slciYoxHLPMXY/9NBD2RYFI9pbqVIle0/RC450c7+DD+depP5gQhwNMr5ETMDocTLGDLjZUahNMa1rCEoEbteuXTE/B5E1Rj394pgoUbOKtvGDgee8o/v37w97TL9+/TwD7L777ovq+wuR1TgHAnW4n332mbefMbJChQr2OaIE/sVpLOeOt956y0a7cG5MnTo15ucgog/jNOMmUbBq1apZga3sqklzzgVSWP0ZDm7sp93N1q1bs+X8RGIi40vEhIcffthbnA4ZMiTsMcgC01sm2vLADKY0aqbWjIgbqoYi8aJgyBtj2FevXj1FEfXRQAoKTWe5d19++eWI9xjRN46hpoGImRA5ARwKRLu4d3v27OntZxymxQP7cZxt2bIl5ueGiA01Zop2JS6M1aT2MXazTshKIaVIzJ07174/99mzzz7r7edcMAxd1BdnhIQ3RDSQ8SWyHLylLqWlVq1aEY977bXX7DENGzaMmvAF6QzUdPG6N998s6JdCQ7eUybLvHnzBiZOnBi118VgR20xNccAKSy5c+e29xr9hoSId2jjcOedd3qRXX+6IWm8fI/YSMGKNYsWLbLqpkS7pkyZEvP3F7GNgj355JM2e+Giiy7KlijTq6++6ql8+rNivvnmG88wY3ynDYkQR4uML5HlOLlWaqxS8xo52eBw3eczAwpY9erVswPmmDFjAskI/dEooof+/fsHzj//fCsQccopp9heZtRzJBrUC3bo0MHec3hSY1mjMnr0aPu+pNKQziJEvIKCp8tGYJsxY0aKYzDA3n///Zif29ixY22tJU1vs0rtNp5JxnEbaGx86qmn2kyDaGYvZGStEm7cps+X+55cddVVMT8vkXjI+BJZ7r1ERYtB6+23307zeDxe0RDZoA6IyQtFrIULFwaSFSaN7t272/9T74aBi6wui6qrr77aphNFqmPKyRA5JX2EGhYWK36PfjTSEFesWBHxeVdX2Lp162xJoREiPaBa6BaU7dq1i4uLRmSZ9iOcU8eOHbOlxiweSNZx2ykRkzrOumHy5MmBeID5gygs9yU9JoU4WmR8iSyDcD2LXwYslI1i1UNr0qRJNlUGbyH9YBIR19w33EbvKUf58uUjyp9j6HK8v8A+0aBXF8qWNPdcs2ZNVFS68MqeeeaZEQ0rFknUfXFtuf7JuoAU8QvR4CJFinipVK6ZMvc0hthXX30V83Oi3QeGBd+dAQMGJGTPRY3b6QPDkvuQ+5M0v+xQ2Pz444+D6r9I0XXfF9X0iqNFxpfIEogOsPBMq/8RgyrNaadPn37U78lrIbrA+5F2RvpZorJv3z7biwcFMorS2e69915rZDgJZowADI9IRgLpFVyr7FCejCVEqVBsI5d/3rx5R+0BpQaFqGqkxstAfWFajcSFyC6oYXT3Jwqhjt69e9t9pLfFMrKyevXqQOXKlQMFCxZM6F55GrfTD8a3U5Ft27ZtTO9H5gznOMYIc+dDb1L2tWzZUlkN4qiQ8SWyBH+ONAZCJC/mhAkT7DHksx9N3xYWxaSXMWDirUpEr2kod911V1CUC68qinuOp59+2k5akQzVJk2aBOrXrx9IBri3aJRM4fTQoUOPOqUV50JaPYmc+Ab3ZDKnvor4g7Qu7k2cM67HEo2U3YIzlnVeH330ka31rVixYsLWMvnRuJ0xuBdJQWRuW7duXSBWdO3a1X4XKF1wAiA4KsM5LYTIKLmMEFHm66+/Ni+99JL38/PPP2+OOeaYFMf9/fff5oEHHrD/79OnjylcuHCm3m/z5s2mQYMGZt68eWb69On2tcK9X7Ixbdo007x587DP9ejRw/z4449m4sSJJhng3po1a5a544477N9+1113mf/++y9Tr1WzZk1z4oknpnpMyZIl7fsATq6bbrrJHDx4MFPvJ0Q0+f33383SpUvt/++77z6TJ08es2fPHnuPcq926dLFtGrVKiYXfeTIkaZx48amTp06ZtGiRaZSpUom2dG4HQz34sKFC+09WqtWLbNkyZKYfA4DBw40VapUseuLrl272u9GtWrVTPXq1e3zgwYNyvQcIoQiXyKq4EWtUqWK5x2iT0wkXnjhBXsMvbfSiiREgloFPKa8Bml2yURqHlQUwlDcCxdN7NGjh02bW7t2bSAZGTZsmPXwIwd/ND3l+N2RI0falKlIapvUHrrvwkMPPXQUZy1EdECtjfsRWW/XkPzGG2+0+8qVKxdVcZrUoN8j74mwRLR7O8YzGrczx7Zt22yrGlJTv/7660AsQOCE74lfMIzUdTemI4QiRGaQ8SWiCqF4v/gDKVqReiIxiB7NAPbbb7/Z5qAoPyVjAWzoJM61d8YXPdP8zwGpmBheGKqRDIZkgdYDFPbfcMMNmVbXdP2RSHeNxH333ed9F0h5TPT6OhHfrFy50rsfqVsBJOZdc/BYCW04x1uvXr2SIkXcj8btzLNnzx6bKk+ZwoIFCwKxgP5j3Ksnn3yydWpyvzqxGlISo6HOLJIPpR2KqFK5cmWbxgJt2rSxKVrh6Nevn00jOOecc8yNN96Y4fdZs2aNufjii2164YIFC0z58uVNspM/f36bIrF69Wqbfhmackga3Lhx48z48eO9Y9mSMR2OFCuuw4QJE0yHDh3MP//8k+HX6Natmzn22GNtmhD3YDh69+7tpShyLKmeQmQXjz76qPf/O++80z5OnjzZPvbq1cvUrVs3y8/hqaeest+Lhx9+2Lz44otJnyKucTv9FChQwMyePdumH1511VVm7ty5JquhNIJ1zK5du8wbb7xh71e3ZmH+HDNmTJafg0hAstv6E4kFCnpOZhtZ7nAQpSIljmMots4opMuRNke6YaJKyWfGg0raJUp8XNcTTjghRbPISNL0yZw6MWXKFHsvImucGQ+mK8pu0KBBRA9+nz597DEoUSabl1/ED36xgAIFCnj3O/ckwkeZTf3OCIgA8f5EE5IVjdtHD0rG9D9jnkMoJhbfHaTm3fiNgJL7LrEWcaI1QqQXGV8iqnTr1s0OSPRricT1119vj2HwzCjr16+3qYbI2KMoJ1JCY8qzzjpLlyYDBhgpgaQgZrT2BOOfBQD384cffhixVoE0mdRaLgiR1bi+Sa4VR6yhd1eyG16poXE7Y9A/EQVblBC//PLLQCxBLdg1XWZ7/fXXY/r+Iucj40tEZRC88MILbQF1njx5Um3cS3TGyRlHqgeLBPnWNLelye3vv/+uTy4Cc+bMiUrftGRi4sSJNmKLCEdGG3q6uq4aNWpE/F3XeuGyyy6ztQqDBg2K0pkLkTaMu/5o97hx42wUateuXTG5fK+88oonOqPob3g0bmccorUXXXSRjeQuXrw4EAuoVx8/frzts+m+TwjVqPZLZAQZX+Kooa+W69XFY506dSJOsPSd4pjWrVtn6D1Q7UNF8bTTTgusWbNGn5qIOm+99ZZ1DPTs2TNDv0dki35J3NeTJk0Kewz9aYiu+cU3ED8QIha4pt/nnXeejYA988wz9mci5Bl1NmSUN998M2nFNUTWgzonvUQRxMhqQSP6fRUtWtQ66gYOHOgJ1TiHhhDpRcaXOCqQ03YLzxNPPDHVBp3ff/+913Q2I4MkHiUiBigMJUMTTpG9MvTco6+++mqmVD6pQ4zkAb3uuuu8GoG0VBKFiBa043A1tkh0b9myxUYK+Hn48OFZeqGJ8vLeRAlkeImsYvfu3Vbpt0yZMtYZlpW0adPGq/N1MvRs1apV0z0u0o2ML3FU0KPFv6CsVKlSRE8q0S6Oad++fYbeg0gEg1wsCmuFcPcb/VwyIoHs5IdHjRoV9phvvvnG66/kvKWxkksWyYtLiyU9y1+XW7NmzSztr0W095RTTgk0bNjQ6ycmRFbfb4hQZeX9RosbV+eLiBKPuXPnzrSAmEhOZHyJTINqofP8MOjxSNPZ1DywTPwZiV6NGDHCvi4RCSFiAZErCrkxpjKS4vriiy+mmf/PAphj8NKmlaIrRDRSslyUC2XOqVOnejW3kepyo8H+/fvtPY44UlZHIoRwfP755zbSilM4K3nkkUfsd6hQoUL2EQGwtITGhPAj40tkGtThGHCqV69uH8mFjqbkaqwGUiHC1RgyoZJKwgI2vQtOvgN8F95+++2wxyCE4qS+XZrutGnT9AGILIH0We4xGtG7qCuPrVq1yrIrTuYDqVnUAKupuIg1zmGb0dTxjMBY79QOcWYQbXNOjZ9++inL3lckDmqyLDIFTY7ffvtt+/8TTjjBPnbu3NlrsOzn33//zfDrr1+/3rRu3drUr1/fvPzyy/qUREwpXLiwbVT9+++/24aa//33X5q/ky9fPnP33Xfb//fv3z/s7zRp0sRUqlTJ7N271zRo0MBrfJue1xciI+BcHTp0qNfwnsa0R44cMccdd5x57rnnsrSJMo2baeherVq1LHsfIcLRpUsX20C8Z8+e5tNPP82Si8RY/8QTT9j/FypUyEybNs00a9bM/uy+c0KkSnZbfyLnQr0KClbO+xMpRYsaL8QFVqxYkW6vEtG0WBTPCpEaH3zwgb23+/btm64LhXR3yZIl7fciUtNaZOZdgTapWTS5zsraG5GcUCPLfUYfJAQJ6JFIK4WMqnlmtFcV7/nUU09l2XsIkRGRrrVr12bZezCGk86L/Pzs2bPtvV+wYMGYNCwXORsZX+Ko6N27tx1wrrrqqohqiC7VZenSpelKWUGOngXD8uXL9emIuGmlQC+w9HDo0KE0UxpdP7xFixZF6SyFSOn0crVefrKqxpDxnVTaa6+9VnWMItvBIMpo6nhG8ZdZIPJBjSPfORxqQqSG0g5Fhjlw4IB9/Pvvv83o0aPt/7t37x722GLFipkffvjBDBw40Jx77rlpvjbpMO+9955NWTn77LP16Yhs5/777zcdOnQwt9xyi1m+fHmax+fOnTvNlMa2bdva/48cOTJq5ymEY9euXeb999+3/7/++uvNli1bvOeOOeaYLHm/Fi1a2JRa5oSseA8hMkKRIkVsOiCp4zfffLNNw402lFn89ttvpk6dOubMM8+0KY/w2muv6cMSqSLjS2SIdevWmZIlS5revXubd9991+zYscOcccYZtpYlEpUrVzb33HNPmq+9bNkyW//y0EMPmZYtW+qTEXEBC0mMpPLly9tJ/J9//knX733++ef2Xg7Hrbfeah8nTJhgtm/fbifrm266KarnLZIX7qtDhw6Zc845x8yaNcsUL17cXHbZZVn2fozvu3fvNlOnTjUnnnhilr2PEBmhatWq5o033rCOCFejHm1wMC9ZssQaeRhhxx57rPn666/Nzz//rA9LRETGl8gQgwYNMnv27LGG0uuvv2733XbbbXbACWX//v3pfl0WtCxszzrrLPPYY4/pUxFxRd68ec2bb75pI1/PPPNMmscTabjkkkvsseGiZRdddJGpWLGi/Y7wuhSHjx071nzxxRdZ9BeIZMJlJBCtHTNmjP3/zp07s+S9Zs6cad/jpZdeMqVKlcqS9xAisyA20759ezvGbtq0KUvmBnff43C76qqr7P8Zz4WIhIwvkW7wbI4aNcr+/4YbbrALRaICTPDhUhPLlStnU14w1tICdTjSE1mIppW2JUR2cN5555kHHnjA9OvXzzof0vKG8h3p2rWrKVCgQIrn+d64FJV33nnHi3oNGDAgi85eJAurVq0y3333nVU1JBXqzz//tPu5F7Mi3ZAo7tVXX22dZ0LEI0OGDLHrCr4D0U4/ZCx/+umnPaXDa665xv6f0gmp2IpIyPgS6YZIF556arE2bNhg91166aXmtNNOC5v2sm3bNrNw4UJz0kknpfq6S5cutfLEpGjVrFlTn4iIWx555BGbRpue9EPSXYYPH27KlCkT9vmOHTua448/3nzzzTemadOmdh/y9tQQCJFZJk2aZB+vuOIKe/853D0WTWitgKONuUF1XiKe67/4LnzwwQfWKIo21PAyzpNCjkMChxtpiMpkEJGQ8SXSBb26Xn31VW/CHT9+vP0/ka3U+ssgxBEuJdFx+PBhu5CtUqWK6du3rz4NEddQYE2KFVFaorWpkdZi9NRTTzWNGze2/8cAY7GMp1R9YkRmYeydOHGi/T81XjNmzPAWn6effnpULywL2bfeesv2YQzngBMinqCOnPUK6YcuGhwtcEC4nnaDBw82rVq1sv+nLl6IcMj4Euniww8/tJ4clNoYZFauXGkXojRCDoVi0++//942X+7UqVOqr0u4fsWKFUo3FDkGorNEaYnWErVNi8WLF5s77rjDNrgN5brrrvOiFSwKAHGPv/76KwvOXCQ61BeSdsjYvGbNGm9/epRmMwL1Y9T6IrQkoRiRU8AwYl3CvRvN9ENSfFkjwdq1a71sB5qNK/VQhEPGl0gXw4YNs48YU0jBuzSWggULpjjWee4pcsXjGgkMNKIHLGRr1KihT0LkGIjSEq0ldZDobSR4rlmzZvY7MWXKlBTP8xwF27/++qtVpKNOkhpJ6sCEyCjuHrv88suD0qucVz5a3HXXXbbViNINRU4C5zHKsojEELWNFih80mbBQbkFqYcIfPB/IUKR8SXSBSmHffr0sR4j6rmA3kehbN261Qu19+jRI810Q6RgH374YX0KIkdB8TbiMESAXbF1pOP4zkTq/UI9pGvTwPeGNF36JaGEKERGoa+Rc4xRn1i0aFH7czR7JlKXiGFHuiFtR4TISTRv3tyKIeFA2LhxY9Re10WXCxUqZGvheR9wzmohgki1BbMQIXz22We2g3vBggUDBw8eTHF9+vfvb5+vU6dOqtdu4MCBgVy5cgWWLFmiayxyLI888kjg+OOPD6xZsybiMWvXrrXfiWOOOSawbt26FM+/++679vnSpUsH/vvvvyw+Y5GocG9xHzGubtu2ze4rUaKE3bdw4cKovAdjfqlSpQJNmjTRvSpyLDt27AgUK1YscMMNN0TtNZ999ln7Xbvmmmvsz++99579+cwzz4zae4jEQZEvkam0FopXyZ0OMeRtNAC6desW8TVIqyJaQAqj0g1FToZoMKm1NAePRNmyZa0nlO+H67nkB5luImDUVC5atCiLz1gkKghgQIMGDWzEa8eOHV5fIzIMopV+TrSAlghSNxQ5Of3w8ccft42Xw/VhPJrIl3s9BJRQs/3ll1/sJoQfGV8iVT799FMrqvHRRx/ZxaOb4EmNCicssHr1apv/jPRqJF588UUrKMDgJ0ROJl++fLYpOOqfqfX+cr3wcE6EFmDzfXEpKq7Wixow6iHDiXQIEY45c+bYx5NPPtkuKlHQBIr/8+fPf9QXze8089e3CJET6dy5s6lQoYJ58MEHo/J67juB4Abqh6yZzjnnHLvPiXEI4ZHdoTcR33Ts2NGGzrt27RpYuXKl/X/u3LkD+/btS3Hs7bffbp9PLZS/adOmwIknnhi4//77s/jMhYgNhw8ftqklV199dcRj/vrrr0CBAgXs92P+/Pkpnp88ebJ9rmLFioF//vknULRoUfvzrFmzsvjsRSJw6NChQL58+ew9kz9/fvt455132semTZtG5T369u0bOOGEEwJ//PFHVF5PiOxm0qRJ9jtCOcXRwrh93HHHBX33qlSpYh8bNWoUlfMViYMiXyIiqFm5NEP6Y7io1yWXXJKicTICGq6/TGrSw/369bMiBA888ICuvEgISC1Bdh7v5oIFC8IeQ3Tr2muv9Zovh4I6HXLFRI5JP3THjh07NovPXiQCKKqRTYD67L59+6wQBuMs4N0/WjZv3mwGDhxoRQrU00skCmTonHfeeTZ9/Gil5xm/ncQ8rwm0fYDPP/88VVVckXzI+BIRmT17ttm7d69tzlm/fn3P+EIeOxQWnvR+YdKnviUcpFIhTYzhRWqMEMk0ibvUQ9SvWCD7QZaY7xjMmjXLqnE5ZbmDBw9m+fmLnM0nn3zi3UfOWfbcc8+ZDRs2mPvvv/+oX985zbi/hUgUcuXKZZ599lnbm9QphR4N5cuXt4+ki9MPkhRzHNWkIVKWIYRDxpeIiItk4YXftWuX+eqrrzwZ41BOOeUUa5QhH3/ssceGfT1ECU499VRz55136qqLpJvEL7jgAnPmmWfaiThcDQDCG874qlOnjjnjjDPM/v37be2AEKnhIq5OYAPji3EYx1mJEiWO6uLRrFlOM5GokHXARr/Rf//9NyrGF9+Z6667zv6fPo4wf/78KJytSBRkfImIKYc0IoRrrrnGLgjx4lBAWrp06RTH47XHS0/6VaSGyvQHQ2SDFCwhkm0SRx2uTZs2EXu/NG7c2JukDx065InWqE+MSA3uFaeSicedHnGu0D8a0C9MTjORyDzzzDPmp59+OurGy+XKlfNEN1g3wbZt2+yjjC/hR8aXCMu8efOs1538/vPPP99T0nINYSMRSX4YRSEWBS71SohknMSd8UXkiwiYn2rVqtnvG2mGn332mXcsTg3VC4hIoGqIAZYnTx77M0Y7zjM876R4H41ippxmIhlgjdOuXTurXMt3JxqRL5zUdevW9Z4j7VDqtcIh40ukOiDRzwuDisUghKvnmjFjhh1sUlscYLxRN0BRqhCJ/J1h8Yskd7joF3VhTMoYXl988UXQc3zPXPSLSDMTd7FixeyEjUEnRDi+/PLLoHov7j9EWyZNmmReffXViGng6YH7GMEOOc1EokPWDj3swvViTC840HCakQHhb8mDKBOCOD/++GPUzlfkbI5B8jC7T0LELywgKdqmUSyG0+7du21vIwceV+q9EBBYsmRJ2KbJiAdQL0ajwaNZCAiREyAFjPouIlbhxGlIPylVqpTnJfVDiiEeWNLG6Bu2YsUKe1xoQ3MhHBhbkydPtgIb1HoherR161bb64vxObN9jDDgSKMaMmSIuf3223XBRcJDT9Off/7ZGknRaCLO95AMoq5du1pRHJwh3bt3j8q5ipyNIl8iVTCWXNQLr77f8HKDS61ataw4gOvw7ocCcBrH3nHHHTK8RFKAWAbbyy+/HPZ5WjWEM7ygQYMG9vGHH36wTW2rVq0qw0ukimumzDhM2iqLRiKmvXr1OqoGskOHDrXNmVNrHSJEIkErhZUrV3rqoUcLtZI4MFz6oavNFELGlwgrCe+XwnbG18UXX5ziWIyuuXPn2qgWim+hDBs2zEoUd+rUSVdaJNUkzvcio2kmxYsXt4YZCQn0bvKjJAURCs6v9evXW4PL9RaKBqRIjRgxwnTp0iVFT0chEpWLLrrIOpEjOc7SA+P0jh07gmrHkJ2HpUuXRuU8Rc5HxpdIwa233moKFy7sqaylZnw5XLG3H1Jehg8fbusFChUqpCstkioVjPSvSJP4p59+alq1amULvENx/b5cLc8rr7xiI2AshoUIFcRwC74OHTp4BjqpU99++61dBGaGcePG2R6PZCwIkSzgxMBxhtIzDe8zA4ZW0aJFvfYPf/zxh03dBaJqEk8SIONLBIHSGvVZFPlTd8LAgWwqUS23KHTQVHn79u0Rr+CUKVOszGqPHj10lUVSQYF1t27dzPjx4+0iNhS+F1OnTrW1OpFSD50gB9+zaKbCiMTBH1nF2eXqVFDdJA0xMwY7BhxOM+oVy5QpE9XzFSLead++vXU+Z9bZVaRIEfvoHB+8lhvL//nnHzuWCyHjSwRBk1g8M9QO0BDWDRoIaTg1Lcfo0aOt2EYk7yiDF2H8ypUr6yqLpIOIL6kn9LcL5bLLLrPqWm+88UaK55yTg/oAJmuOde0f6LUnRDjjy69E6xZ+eOAzynfffWfTo2677TZdaJF0IG5EnSOqh5mJUr377rt23MeIA/qasg5yLF++PKrnK3ImMr5EinQol2KIFxUFQ6hdu3aKK+WaBrrGgqF1YywWSWEUIhk5/fTTzdVXXx3Wg4o39OGHH7bRiVBwVpx88sk2Ck1aGd89hG5YUMtrKtJjfLmMBOeFzwivv/66reVt1KiRLrZISli3kJ0wbdq0DP8uY3doGUbDhg29/5MSLISMLxGEy1N29V2upiBUQh6PvDs2XO+vkSNH2jov1yhWiGSdxIkkuO9ReiDFt169el70ixRG1BP9dWBCkB5IKwLnXfcLbrjIV0aNL2SxidQikKS2ICJZqVKlih2Do1Vne+GFF3r/X7VqVVReU+RsZHwJD+q8nBQqgwWTeyTji2JuJmo8+NSGhfYGe/PNN82NN95o8ubNqysskhYiXwhvjBo1KsVz1OjQCLdnz54plAyrV6/uSc6HE+EQYsuWLTY6CvSV8zewz2zaISlTKB1KnVYkOzjOPv74Y9vvLiNQm0tv00GDBnn7yF5w30+lHQqQ8SU8WOgxmRcsWNBUqlTJim0wieMBpXN7uJRDwumhEvPUjbEwcDnPQiQrTLg0TUZcI5xUPItclLB++umnoP1nn3120ETtRDhkfAl/arfDRUodTuQltE43LRBJ4l6jCbgQyd5wmayD6dOnZ+j31qxZYxucO5VoV0fm+qCuW7dOtbtCxpf4P/DQsxCkMScGlYt6EYJn8PBDPReESzlksKK5YLg6MSGSjebNm5uNGzemSD2kLoDG5eGab7poMjU9iGzwXaIWjEU2EWohnPHFWOsfh7k/3D2SkcyDAwcOWE8/96sQyQ6Oi0suuSTDxhcpwEAE2U/jxo1tHT3fzc2bN0f1XEXOQ5Ev4VGsWDGrXNinTx/7c6SUQ9IK3WLRr+Lj+OCDD0yTJk1UMyDE/0/hJZocbhJ3tVyhxhdKoxhnTOC//fabrZ8kOjZ27Nig9DKRvOBBh5YtW9pFoj+dNbX+i5GgKTgqbUjMCyH+5zhDhGzPnj3pvhyIIzlnhp9+/fp5EWX33RXJi4wvERHXjT3U+KL5IPVeeHiIioV6Y1kkynsqxP8gdQWvJ06J9BpfGFjuu6UaAREO0sKdqqYfv/EVmrGQGjgHKlasaFPOhRDGNG3a1Eaq5syZc9SRLyhdurR9lPElZHwJT72QvhYYXK6XkOvwXrVq1aCrhHqbM8pCFbFYYOJtveKKK3Rlhfj/4IygbYNbMIcaX9RbhnpKXd2XE91wUeetW7fqugpvfKYnox+iV0DqeHqjpIz5M2bMUNRLiBBjiVqtjKQeushXOOPLRb7IZhDJjYwv4cmf3nzzzZ7EPJMxhaNQvnz5FEqH4Jc2djBI0RTWDUBCCGOuuuoquxAOjX4RtaDWEqPKOTVC676c8YXYRv78+YN6xojkxd0X/sJ+f+QrI1EvxnTqUJSxIEQwfCc+/PDDdNfaushXqDPNiZHBV199pcuc5Mj4EkETOd52PKZ//vmnncRZMIYqX7lFohMLcOzatct8/vnnmsCFCNN4k9qvjKQeVqhQIchLyvcQNdJffvnFHD58WNc4ySH1G0JbfbjIV0ZTDmkbEqqaKESyQw0ka5v0Ks069WeXQeTHtX5Yv359lM9S5DRkfImgxn+uzsRFvQi7+1NX8NCTPhUu8jVr1iz7PHnSQoiUHlREDdyi2VGrVi37GKqGWKZMGfvo+swQJUOBCw+sSzkTyQnjrPPEhzrBXOQrd+7c6X49nAL0pJOYixDBsM4pUaJEhlUPUTYMBSElkNqhkPElLD///LN9dMXWkVIO8djg2SGtMLQwm8GJgSq0BkEI8T8PKhGrjz76KOhyOIdHaK8vV5y9fft2Wz/AZB7pWJGczjKoWbNm0HPcIxjsocZ8JDgWURelHAqREtY7jN2sb8L1agzFHRPO+DrrrLPs4759+3SpkxwZXyJDxlfZsmVtA08mbL/YBgMOi0ok5oUQKeG7xOQ7e/bssBMy30F/qgry8mz+6JdLRXTfT5GcuLpbFnjUAfoh4kWKavHixdP1Wii5MZY3atQoS85ViJwO2TwoOa9du/aojC+3viI6TfRaJC8yvoQdLFzDThcWj2R8uUGlSJEiQfs4nrzounXr6ooKEYELLrgghbBGuXLlrBw9BdobNmxIVZrYGV/u+yqSE/f5Z6SPVyS++eYbq2hLSqsQIvy4DaFjd0aNL1o5ODZu3KhLncTI+BJmx44dniyqW+y5RWCo2EYk3KAUTgFRCGG87wfiNv5eTNTZOKdHaDqhq/tyxpdzhijyldy4SGg4UY2dO3eae++919x///3pHrs1bgsRmVNOOcWcccYZR218+Z3WCCeJ5CV9TUBEQkP9FvnMW7Zs8Sbzbdu22cdixYoFHYscPd3eH3vsMVO9enVvP4MSgxODlBAiPCxy6an3448/Bi14W7RoYYUTQiPKocYXPWeuvfZa+yiSF5eq6tTT/FBPMnDgQDuWP//886m+Dk4A7sXOnTtn2bkKkQgwXqfH+CJVnPE83FrI34InNF1YJBcyvoTJmzdviuaazvgKHUCoV8FIe/jhh4P2y3sqRNpgNFFfE/p96d+/f9jjUdkC11iZVhATJ07UpU5ySFWFcOJGLP769OmTLrVDorA4AxT5EiJ1+I7g1CCyFS6q5SCLYerUqWGf80eq/SmIIvmQ8SVSgCLb7t27UxhfDDpjxoyx4XK/0iH7kZ8n1UUIkbqjAzW69HhQgd5LLpVMCP8YHanmq2DBgubZZ59N18XiPsQZoEiqEGkbX9S103fROT8yCrW9of34RHKimi9hFi5caL3prncQ0tb25siVy1v8Ad4eFLHuuOOOoJA5CkAYa/KeCpH59BUW1DQ39+O+f0z6DiIVRJ9puCySW2rerzibGbgPcQbgFBBCRMatb9JynKFiGEmSnjWUc5hIcCO5kfElzKhRo0z79u3NO++8E5RySD2B69aeGhLbECLjohsueuEW00zKqM75Ofnkk1NEvmjKjIz4559/rsuehOAxd2mqkRZ5f/zxh63l8t9j4VC6uBDp49RTT7WN7tMyvsaNG2edIq1atUr1uO7du+vSJzEyvoTXbd2Ja0Sq91qxYoUZP368Wbp0adB+BiMGJQYnIUTaxheLYhbHDteTCbl5fzpKuLRDJ8rhItQiuXDjcyS1Q8CIpz7QCbVEEtvACaCMBSGiJ7qxf/9+6xRBxTYcrl7Mn80gkg8ZX8IbBNyizi30QpXXUES8/vrrzcsvvxy0X95TIdIP9TVElP2TOHU6iGpgePkX1H7jy0U5nMKdjK/kxNXjgr8ptx/uJ0CZNhIY/xLbECLjxlekiDN06dLFbNq0yQwdOjTd32ORfMj4Et4ggEoWOM97aB2AU1wLjXAxiatgW4j0ceKJJ1rBmuXLlwd5Q4k0h6poOeOLSJmr8VLkK7nxG1RHjhw5KuMLzjnnnKifoxCJCO11cFanVq9F+jiZDGllAsn4Sm5kfIkUxpdrABuqpEWRf2jvL1f8n95mzEIIY3vihYprhIO+MM4g27t3b9DCmvQWkXxEy/hiAYkh7+89JIRIfdyG9Izd4SBi5uow+e6yfhLJiYwv4U3QbsJ2ka/QeoJwxpfb5/oRCSHShu8LqSl+XnnlFdOuXTszc+ZMbx+Gl6sdQEULTjrpJK+Zrkg+/J97JEGN9BhfLCA1bguRftz3JXTs9kNZRs+ePc3ixYtTPIfB5U8V/uuvv3T5kxQZX0kOnhiXzkQ6VGqRr3BCHM4DVLJkyZidsxA5Hb4vod5TJuv33nvPrFy5Mmi/kxN3UQ5nfCnylZz4Da5Iizenkrljx46Ir8MCUuO2EOmHtQ/jcWqRLxosDxkyxKxZsybFc6G9vWR8JS8yvoSZMGGCbZ7sJuxIxpcbKPw9vpwHSB5UITIe+fIXbjujKnRCdpEvZ3yhYnfjjTeaunXr6pInIXz+N9xwQ6qLN2dUpeah5zmN20KkH4SSqOdK7XsVqh7tBzVbx0033RTUdFkkF+G1MEXSQFrTNddcE7QvkvEVLh2RQQhPUKgsvRAiMix6iWBQvO1ENSJFtELTDi+99FK7ieSkRo0a5q677rL9hCJFP53xlZowAN77iy++OMvOU4hkSRn340oxXPuQSPX1OLxF8qLIl0iBM75y586dLuMLD096mjELISLXDjjhg9AFdWjaoRAu+yBSTZczviKlRxFxVeRLiOgaX6ydXOuecJEvZ3y5mkyRvGjFnOQwWEyZMsVuLgUqNM3Jf2yo8cXkrroBITJGuMVxWmmHLvJFwTZ1mv4UFpE8sIBzCzyMr3CKaWkZX/w+kVeN3UIcfb1uaDse0gldGUckcTPGeTemi+RDxleSg3x169at7eZw6YbO2Eor8qW6ASGyLvLlpOadStbkyZOtOE7jxo112ZOQsWPHBtX70YA7lNNOO81LOwzXEFa1ukJEP/Ll9tPjK1w20Pbt2+3jTz/9ZJ1tq1at0seQpMj4EikWeeGML6Jgzksj40uIo4PvEHn//kncTdZ+KWJwaqSu6bn7Hrp0RJFcuPvEpYU7Fdpwxr0/DcqP89zLcSZExuA7Q4QrXNRq7dq19rFMmTKp1oM5h0hoaYdIHmR8JTl+74wbTMIZX/7/+wcMBpNwuc1CiNShINtNxqkZVS690EXGZHwlN04hzY3D/nvIb9zTQBnWr1+f4vlwPRuFEOkbt3GQuShWOOOrXLlyqSohOuNLaofJi4yvJMevaBiqcug3uBgkiIwxqftrwTjGeeSFSASGDh1qPZfc63Xq1AnbLDMa8Pr+71g4o4p6HlfT4/rwue+fIl/JiRtvnfH1xx9/hD3u448/tpHVc889N8Vz7r7T2C0ShViO2+HKMsD19ipfvny6Il8yvpIXGV9Jjt/4cjVdkYwvV+jvV+phIegEAUT80bBhQ/Pmm29m92nkGCZNmmR69eplHnvsMbNkyRK7cG3UqJFXSB1N+N74HRnhjC+/+IaLfIWrvRTJgzPC3bgbSU4eSXq89C6d3A/3HVkPUqmNXzR2x++4HUl9Ni3ja8OGDUGp5e67LJIPGV9JDgOJm4BTM77CTeBZbXw9/vjj9n3DbUxMQkSbgQMHmltvvdXccsstpkqVKmb48OF2ghw9enS2GF8u5ZBjXaTDGWTOGBPJhYtWuTHZLegygsZtkUjEetyOZHy5tMNIxte6devCtowQyYeMrySHCTy0uStCAP6eFKlBSlRWhc7vu+8+O6Ci7EX6DNu9995rqlatat5///0seU+RvCC9/d1335nLL7/c24djgp8XLlwY9fdzkeTUjC9XI+Cf6GV8JTcu88DdL7/99lvY41gI3n///eaBBx6IqfGlcVsk8rjtxufQFg84q10KcDjji++cM84A41BZQ8mLjC9hBg0aZLutI48Kp5xyin0MDdnjVWratKn5/fffgwaUrKo9wShkgMLjT/oMG/sYsAoXLqxPTkQVCqhZ0IaKEPCzM4KiCTUJEyZM8H6uVKmSadeunaldu7a3b8WKFWHbQ0CBAgWifk4i/ildurS54447TKtWrYJSncL1FHrhhRfMqFGjYmp8adwWiTxuL1++3D6S3ugH5/W1115rLrzwQm8N5QcD0U+4PmAieVCxjrBGlR+/8UVhqEtv+eijj6xEcb9+/ewCADC8QqWxRfbRv39/uzmIrHz99dd2seZYuXKlKVWqVDadofDjvkfQvHlzu/kJF312jTplfCUnp59+uhkyZIhNNxwxYoRNZQpnTJ155pnmzjvvNBUrVrRjtL++S+N2/KGxO2fg5s5QOXnURf3OtFBCHWkuw0gkJzK+RApcBIwwOt4cl5f85JNP2now/6ATWrcispdu3bqZa665xvv5+uuvN23atAlqol2yZMlsOrv4pmjRonZRGirdzc9EXaNNvXr17MLYr07366+/2v1Ooc6lBFM8HtpU10mJi+SERsqIrlCrS+ohxpYf7p3BgweH/V3G7dC0KZG9aOzOGeO2S/t166T04mrqa9asaaNmGf19kVgo7VCY1atXmxkzZtiu666Q3xV1+1MPO3fubG644YagcHmsja9Iwh/if5COWaFCBW/jc2SQ9+9Tnnl4SG8977zzzNy5c719RAz4mbrDaBMarRg3bpy5/fbbbYTZ4Zow+5vh7tixwz7K+EpeiIiuWrXKVK5cOSgVKr1o3I4/NHbnnHEbQudRxurU1kJ8X/0RLxlfyY2ML2GVgpo1a2blWh1uYNi2bVuqVwixjVgaX0ThyOPGYBQi2iBXTCoXNZA4I7p3724FLkJTc6MB3xu/WM0FF1xgWrZs6S2oIxlfrrmnjK/kpUGDBlZ4yNW5LFu2LKK3/ZtvvjGfffZZ0H4WjtTJuH5DWY3GbZFI43Y44+viiy+2juuvvvoq1bRD1yJExldyo7RD4Q0C/igXdV8Ia/hD+aS2UC9EzYFLi2IAQm0oVpB+9fzzz9vQvVNnFCJaUDCNw+HRRx+1Rn716tXN7NmzUxRzRwPSvvwTOAsGNj/O+PKnit54443W+RCaZiaSB+4HFnOkXKVmfM2cOdO0bdvWjpf+gn9333EPuhYGWYnGbZFI4zb4x24i0b/88osnnBQKTg4n0NGpUyfTvn37iHL0IjmQ8SW8vGjENBwYWN9++21QD5mRI0faomCKuF0tAd53lwaVVUqMfvD2ZoWCUaLy6aefZvcp5DgQJ/ELlGQVRLDSil6Fi3whHy6SG+q9/F70SMYXRhf88MMP1knmDC133zF2+++taKFx++jR2B2/4zb4FZedY6NcuXJhx3Qk5jHQ+P6RZRQLh4eIb5R2KDz1nvXr13tXg9ogQADAEU6Cnonbb7QJIdKGlC+iym7hS40CQhqhaWDuu5UVC2SRcylbtqwnigRkKYRTxkQciRoTvPVkLTjc/aSxW4iMwXeG75Sriwcc1XD++eeH/R1nnJ1zzjkyvIRFxpdI1fhyofRIdWBM4s47L4RIHzgwMLj8i2A8psjHu9YN1Ou47yQeVRep+Pnnn71Ft0hO3P2wceNGb/wOJ7qBQFGNGjXs/7///ntvv7vvNHYLkTH4zoQ6w6irTI/xxXdx6NChVtnWNUkXyYmML+H1GmJh5+qowkW+XN2JPxVRxpcQGSc0ndD9jEfV9WPiu4chhrSxq12YOnWqFeRAmEMkL874osGyq7/1G1d+UIID+v05uJ8wzGR8CXH0xpeLfNWqVStV4wtHCamRjN/+vnsi+dCnL+zizsnHk5sMrpgfkQ2n7uMMMva5olMMMgajWKlmCZEIhApphEsvdNLEGFuuxYL7frrFt0hO3FiMI8xFtr788suIyojw+eefe/sQCyCTQcaXEBmD74xfAIlMINJ+/TWWkcQ2XN9G+juqbU5yI8ENYXnxxRetHPAZZ5zhCW7QUJn0JiZ4agwYcMhzPnjwoFm3bp010FgsHjhwwOzdu9drPiiESB2MLSZfl8rr0ntdLU+o8eUg0gEyvpIb6m/pCUdNF3UkgJw8C73QRZ0zvpDgZqHoandVrytE5sZu2oI4FixY4ImBkTYeCmP2rl27bK2XSxfH+BLJjSJfwpM/bdeunRcBIyTuFnhuYci+0Fow1Q4IkTnvKYaXkyt2Dc7POuusVI0vty+cnLFIHjCwqB3p3bu3adiwoVU9pI6QesBQqCVkYQhffPGFt99lLQgh0gfOjdC0w/nz59vHSy65JOzvzJs3zz7Wrl3b+376x3mRnMj4EhFxAwQyxQ6XjijjS4jMEzqBp8f4okDb7atSpYouv7CQoeA88aHNlB0XXXRRkJceVK8rRMbYt2+fzfTxj92uJUAk42vu3Ln28fLLL/dEcVydpkheZHwJC93gP/zwQzNq1Cjvirj8ZX9zThlfQkTX+MKbGmp8IbQRanxRa0naCqm/TiRHJC8Y48jHs7i7+OKLUzW+LrzwwhR1XzK+hDg6oSSizTQ79zs4/DCOu8gX39Eff/zR/t+lCovkRcaXsNBzqEmTJraOwAlsONnUcMbX6tWrvQJSasWQPBZCpL9uwE3gfPfo0URar6sFID0FhwiGVvny5YMi0Bhjxx57rC51koPCGumE7du39xZ+ru4rkvGFIuKePXu8tEMa1kvyWoj0ESqM5KJeGFNFixZNcTxjNk2Z8+XLZ5VscZ7xf39tr0hOZHwJC4XbGFKHDx/2DCsnUczPbsKuVq2afVy6dKk3ybNg9DfwFEJEBm8okS5Xt+WiXkzI1O74ZcFxgBx//PFeqmG/fv1M586ddXmFXfBhhCOigVASBf0sDp0oix8ElHCcce+5NCjGbRxt/l6OQojIEOXie8Z6CVA5pG43rZRDnCOM34sXLzZjxoyRzLyQ8SX+B153l4fsGgbiyXHpTa6HDMcw2DDhuwawpCf6o2NCiMjgzKCfnnNuuFQUf73XokWL7GOdOnW8fRhrffv2NT169NDlFTYq6mr/uIfq1q1r/0/6eDiaNm1q+xA5kRcnUa+xW4j0wXfl7LPPtgYYIHhD1sLDDz+cqvF12WWX2d/h+9emTRtdbiHjS/wfbvJeuHCht88tEF0TQTzzeFzx0rv8Z44h8oUEvRAiddxi19VUOkPL36DT7fNLGgsRirs/vvrqK9O8eXP7/2nTpkVsJ4Ln3R1XuHBhO47L+BIiffBdcWsiB2mErn2DH1IMncANxpcQfpR2KDzq1avnTeQOV/fljC/XzJNmr27iZzCibmDZsmW6mkKkYwKnjYNr6+CcHc75Qa2Xq+9ykS8izZMnT/ZqDoSA+vXre2N2ixYtvLqvnTt3hs1uCIWxW8aXEGmDcxknszO+XM+uSBD1IsOB+jDGe9LFSTkk9VcIGV/Cwy3+SGFxNV5u8YdKlqvxcnUpDsLw1KVoEhciY97THTt2WBVD+jbRB8Y9jzMDQQRqdQDFrLZt23oLbCH8xhfOsdNOO83W5HLvREo9hL1793r9hrgPSSnXglCI1MG5zHfLjd1XXHGFzVZwZRqhvPfee/axdevW1sE2evRo89hjj6neS1hkfAmP4sWLWw8NRpZLe8Igo48MHvfQBp4cx8bzTPoyvoRIHRa5LHbdBE4DXKIURCsKFiwYJLbhTzl00WgXnRYCUMJk3EYoifvGGeeRUg+nT59ua3lvueUW+zP3Ib2LJLohROqwvsHJzFoHBwYGFU6PU089NcWx//zzj/cdxGnmWkC4lhBCyPgSQYwYMcKmPLkcZYq6nXfVFY8Ckzw1A07lUOkrQqQNi1wWu/66ASSInRQ4fPzxxyn6xnzxxRdB0WkhgIjpCy+8YGbOnGm98M74mj17dti0KEQ2WBiSDsXz4Xo5CiEii23gbC5QoID5448/zLvvvhu256JL/aUWjLHdGV8NGzbUpRUWGV8iiEsvvdR6dvx9hJwh9sknn3j76PKOyo/rc8FiEhlWiW4IkX6xjVCo93JF2o0aNbKPu3bt8tRGwzXyFMnNDTfcYK6++mpb+M84TLoqxpXfWeZAkh4HwPLly+0iksgrstkyvoTImNhGsWLFbFQrtZTDVq1a2e+iyySKJEkvkg8ZXyJNnPGFoeUacj799NNmyZIlpnv37kGiG0zqQojIEzgKc0SNMbRII3zkkUds2hjgIeX/pUqV8vqAuca5NFdmYS1ExAk9Vy674IO333477DEVKlQI+llZC0KkDk5lnMuhSofhYB00ZcoU+39k5XGCsI/x3PUHE0LGl0jB+++/b6655horsgEMOITZiXRhcAHiAKSwOAUtwvH0j/GrIgohguH74aJe8+fPt3UDY8eO9Ropz5kzx4t6kVLmxDZAcsUitfuqT58+5qOPPjIdO3b0xnEnnBQOshdcCizjunOsCSHCi20wdo8bN85mILjoVihkLmzdutWq2RLpIgXYjelCOGR8iRTMmDHD5jJPnTrV/uzv4O5PPfSDAiL1KG7xKIQIhoUwxpbL+0dQ44033rCRL2do+Y0vh9tHSrAQ4Zg0aZJ5/vnnbbSL9iA0X/7777/NO++8E/Z4MhcQCnj99dft/YgR5oRehBDBMAYjiFS9enXrLMMx7erdQ0HVEEhJxKlGm5DQMV0IGV8iBdQPAEXcjquuuso+OoPMiQDgZR00aJD9meadiAXgURVCpJzAETto1qyZ/RnVuZtvvtn2f4Hff//dKopSb+mPcpF2OHLkSCttLEQ4mjRpYh+RmEdRk/sK3nzzzbDHu7TXiRMn2iwGDDGUEIUQKeG70bhxY9saxDmgr7/++hTHUZ/rImK33nqrfSQFccOGDcpcEEHI+BIpYJFHtIuF4Jo1a+y+li1bWu/84sWL7UACFG6/9dZbdgJ3xhfe1nCF3kIkO0zg5557blh1LL+zg956KCA6kBLHQMufP3/MzlXkLFCk5Z7Zvn27bUuACAcp4fx/9erVKY6nFgUjn3TFtWvXmqZNm5oPPvggW85diHgGVUPSclnfEGHGuUHWAm0eQiHyzBronHPOsRFoB/0aEbgRwiHjS6SA8HqDBg3s/12zThaAbh+1BHDllVfaRwyyjRs3mooVK9pNHlQhgjly5Ij9LrmoF97QAQMG2IWvw6WIOcEEIdIL6U0sDgHPe4kSJbxshTFjxqQ4nkiXG79HjRpl78uffvpJ/b6ECFOGgaOC7xP1XpGiXogi0aoHunTpYp3V1MkLEQ4ZXyLdqYd4S8GF1U877TSr1sagM3nyZLuPBQAeVLxDQoj/8eWXX9qUFLdAHjp0qLnvvvu8NF6amDuJecRuYPPmzTZVZfDgwfY7JkRqtGvXzhuf/amHGF8Y/6Hcdttt9pG6Q5q/4plX9EuIYHAmI7CBg5lIMYaYG6NDlWxdCweMM2rC6PPVunVrrYdECmR8iVRrCFBkc4pZDCJuIcnCENwg5Lz2eFC3bNki1UMhQiZwohEoy23atMl+r1w6LyBwg4GFMwOZeedxRekQb6sT5BAitXRxVGkx5Ek3xNBn8cei0WUrhI7x3JMos5EqjqEv40uI/8P1y+O7NGzYMG/MJnIcCnW5zklNTeWECROs04M6X6cKLYRDd4QIy1lnnWUVs5BWZTJ3DTqpR2GR6PpYuCaDGGTkRrN4ZOBR6qEQ/4PvC98H6mqYhHFUEJlAHbRcuXL2GFc3ed1113mXbdq0afbRRcuESA087qSskiKOA4yfb7/9dvvcSy+9FDZVsVOnTvb/qB5yn6HiRoRWCGGsgBh9F1F7pr4d3HfKD+mFrq8e9bmM+Rhf0L59e11KkQIZXyIseNrpyo40NoaYwxlbbrFI6qGrBSPdBaEOUhblQRXifyBc8+uvv3pGlJukO3ToYB/XrVtnZb75zrnv186dO23PJmjRooUupUgXAwcOtIJILkW8e/fuJnfu3Pb+YiwPhYUi9x2LTHo10sto1qxZutpC/P+MBZzQRJKJgtEo2bXd8TN8+HD7fLVq1ezz1MEjVnbiiSfKeSbCIuNLROSkk05KsQ/PPN576lOcilZo6iGLTHKfkc4WItlhAs+bN69N60Ih9JtvvrF1A65Gx31v6LdEGphzbuBxRR2RRbEQ6YGsAxxgjmLFinniAOGiX2XLlvWEN3CYkRarrAUhjHVEkPpNKcWrr77qRb1CU8APHTpkXn75Zfv/3r172+ddry9KNcKto4SQ8SXSBC88xpSTTKXfhVPJArysDDh4VvHw00yQlBYnwiFEMkO9DfU4GGAuFeXyyy+3C2PSU1wvJn/KodvnRBOEyOjCEe873HPPPfaR8TicQ6xr165e6iGKbkS+1KtRJDv0MaV1AzW4P/74o41i3XTTTSmOoyaXGnjWRozhfHdcZpBL6xUiFBlfIlVmz55tawj8gw4yqm6BiHe+ZMmSXvd2JnCKvilKxTiTSptIZpi0Sd/l+8N3waUcumgEDZSR+M6XL59nfKGSRXSMCIZLTRQivezbt8/2IKKmcP369TZyirFPneGQIUNSHE+mQoUKFayTjYjs3r17PUVbIZIVBDT4XjhxJMZif/9F4Dv1wgsveE4OUnxxtvEdIqqMiqgQ4ZDxJVKldu3a9nHZsmVmxYoVnkoWBhkqWYTloVu3bp5sMWF4ZIxZRIarMxAiWaDvC8pYpK5gaJGqiwfVqRw6BS2a4uK0ABSyEOeg1iucqpYQqUEzboRcWBi67AQX/XrttdesN98PBte9995r/4+owKWXXur1KxIiGcERgQItNZFlypSxqYM9e/ZMcRyputT00hv11ltv9ZwZODkefvhhqRyKyASESIPmzZvTZChwzz33ePseeOABu69x48b253/++Sdw2mmn2X3jx48P/Pvvv4GyZcsGOnbsqOsrkpIDBw4EChUqFLj//vvtz23atLHfj27dutmfN2/eHDjuuOPsvqVLl6b4fb5DQmSGiRMn2vuqZMmSgcOHDwf++++/QI0aNew+dz+G3quM5e+9915gwoQJ9rgVK1bo4ouk5OWXX7ZjM2M07N27N8UxfKfq1atnvyush4TICDK+RJrMnDnTDjAFCxYM7Nu3z+775Zdf7L5jjjkmsG7dOrvvscceC+TKlSvQt29f+/PTTz8dyJs3b2DXrl26yiLpGDt2rP2OrF69OrB+/frAsccea3/+4YcfvO8HP9etWze7T1UkGH///XegWLFi9v7CmIIZM2bYnxmTN23alOrvFi1aNMjZJkSygFFVrVq1QOvWrdO1LsqTJ0/gzz//jNn5icRAaYciTSjCJveZZssUlwI/k56CAe/qCO644w4rm92vXz/78y233GIbDI4ZM0ZXWSQdpBQiO3zmmWdaKWJEEPgZOWL+TwqYP2XX1UxKJVQcLf4eX4MGDbKPtAChT+PBgwfNs88+m+rvIvRCTe9ff/2lD0MkFfQspVYXoQ1EN8JBSu+DDz5o/3/nnXdalVrSeevXr29TfRnfhUiV7Lb+RM5g0KBB1stTtWpV6xnye35OOumkiNGt6667LlC+fPnAkSNHYnzGQmQf33zzjf1uTJkyxX5fateubX+ePHmyfX7q1Kn258KFCwcOHjxo95Hmxb7jjz8+sHXrVn184qjYsmVLIHfu3Pae+uqrr+y+jz/+2PPWb9iwIcXv/PXXX4HnnnsucOmll9qshuHDh+tTEElF27Zt7ZqFCDHflYULF6Y45u233/aygXbs2GH3Pf7443bfeeed562RhIiEjC+RLnbv3h3Ily+fncxXrlwZFJ5nwHnmmWeCjv/pp58C27ZtswMXz0+fPl1XWiQNN9xwg615dE4HHnFWUBvpN8b8tQK33nqr3deqVatsPHORSNxyyy32nnKp4Nx7F110UVDtoR/Sp9yik3qWKlWqaCEpkobff//dpof379/fjsf169dPcf8fOnQoUK5cOfsdIXXcOS1I1WUf9ZZCpIWML5FuPvzwQ+tN9TNmzBg74FBf4Dz4jz76qPWauoUlC83LLrtMV1okBSxgiV4NGDAg7PMu+sAi132fiHSdcMIJdv/nn38e4zMWicqvv/4a+OKLL4L2ffbZZ/Y+Q1CAesRQuG/ffPPNwCeffGKP++ijj2J4xkJkH4jR+Gvbw2XsDB061Fvz7N+/3+579dVX7b4yZcpYB5sQaSHjSxwVKGmdccYZduB5/fXXg1KqbrrppqAQ/fLly3W1RcLzyCOP2CgxqbgsblGS89OwYUP7fejZs6e378knn7T7zj//fEUaRJaDsiH3W9OmTSMeg8f/nHPOCVx99dX6RETCg8F18sknB+69996Ix2BsOSEbjDAXCStVqpTdN2TIkBiescjJyPgSmWLt2rXe/wcOHGgHnooVK1pPERLZLjXRDU54hFq2bKmrLRIaUm3z589vleL4Hpx99tmB4sWLezU3X375pVfXhQIiEDE+9dRTvTYNQmQFRFmdKtuqVau8Ngekw0Zi9OjREetehEgk+vXrZ8flK664wlOkDeXBBx+03wfSDlnXAE5n9pUoUcLL/hEiLWR8iQyB5+fyyy+3g5STmKcHBv2MUls8vvXWW0GF30IkIhhdGF8YYXw/SpcuHShQoEBg586d9nmiCHwPOnfu7P3OiBEj7L7TTz/dRpKFiDaMvyeeeKKXjQD33Xefve/OPPNMKy8fChkL3JP0b7z44osVkRUJ7zRztVzhZOapY2fdw/Nk9wAphjiW2ffSSy9lw5mLnIqk5kWGyJcvn5VZRUL+mWeesfvy589v7r33Xvv/vn37msOHD3vH//bbb+bDDz80HTp0MGeffbZ54IEHrDy9EInG+vXrzdChQ03v3r1N0aJFTenSpc3q1avNvHnzzMknn2yWLFlivwu5cuWy3wPHgQMHzEknnWTuuecec/zxx2fr3yASk8qVK9v7jFYhq1atsvseeeQRU7x4cfPLL794cvR+tmzZYv744w8rN//ZZ5+Z2bNnZ8OZC5H1sJY5cuSIWbt2rTn22GNN//79g55nzdKjRw+77mnSpIlp3ry53X/ccceZ0aNHm6ZNm5rbbrtNH5VIP9lt/YmchyvY9ke//LnQLu950aJFVh2RPGrkWF2TT4Q7hEg0br75Zps+6Iq1Q+tnEJ3h/u/QoUOK5xHcCK0NEyKaNG/e3N5/7dq1SyGYRI3ixo0bg44nrapy5cr2+ZIlSwbOPfdcm0orRKIpHLKW4R7nXr/ttttSHENGD88hirRmzZpsOU+RWMj4EpmCPjAMRl27dvX2OcUfFqCkIlL/5aToe/XqZRegF154oSZxkXD8+OOPgVy5clnHA6mDo0aNCkohdD3xcEb46yWFiBXLli2zKrTch19//bXdhzFVt25du4+ejKGgdMhzyG/zOG7cOH1gIuGcZqQcur5dmzZtCnp+z549tp6L5xFGcihFXBwNMr5EpliwYEGK6BeDUYUKFex+Gg7C7NmzvePwGDnBAU3iItGiCq4I2zUkd3Uy1AXQL4l91Nn4valz587N1vMWybfQ5D5s0KCBV8P17bffWseBawoeSps2bexzRYoUsfUtTmhAiERwmuGQcG0+XnnllRTH3H333V5tpBPUIFOBWkiUbSWyITKDjC+RaVwaVadOnbx9kyZNsvtOOukkr4fRlVdeafddc8013kKVBrSaxEUiQB8l7m8ECijcduIzr732mn2eR34uXLiwJ7xB03LScZWGK2LJhg0bvCbKkydP9vb36dPH6120ffv2oN/BueZ+h4Wq5LRFosBahLWKa/MR2tcLZ7FzTMyZM8fbT8YP+2rWrKlUXJEpZHyJTIP8MAPQWWedZTu8uzQWBjF/SqI/3QW1Q5eiNXjwYF19kaMhekAUwdXD3H777fY+52cmctJvnYz8yy+/7P0ejcjddydcI08hsoq+ffva9FcitA689y462759+7Ay3K4xeNGiRcPWNQqRE51mzqnwzTffBD3PPV6+fHn7/I033ujtZz3jDDIygITIDDK+xFGBiEZoBMsJcjCguf4wRMfYV6tWLbvYJP3llFNOsREAIXIq06ZN86JXNBF3k/L8+fPt8w8//LD9mXRc9z2hwBvZb/a/++672fwXiGQDcSSaf4eyePFir7br/fffD3oO44w+jjzHPY7zQIiciqt1zJMnj72ne/TokeKYbt262efOOOMMb52Cs4108lDhGiEyiowvkSV07NjRiwBQ80JzT/oduQgA6S8UufpTFoXISezatcvm/Tdq1MhO5i4NlxoZoNE4EYbQxWzbtm1T1N0IEQ+4JrJEa0mh9UPWgnMuYKRFakQrRLwzdOhQL+pFqi1juR+cae55f12uUwclAvzbb79lw5mLREHGl4gKePUZ0Fz6IQWprqbFNR8cNmyYJ2tMHYHrDC/peZETueWWW6wDgUjW6NGj7b2MJxU1Q4yx+vXr231NmjTxjCy/ehzpK0JkJ0S7aAzu7k+aLVetWtVrNBvqHOjdu7d97rjjjrOONSm+iZwG47MT2GCbPn160PPUPDp1w7vuusvbT7scsnXY/8wzz2TDmYtEQsaXiApXXXWVHZQee+wxb9+IESM88Q0iXSxI8faz7+qrr7Y/I8ZB9CDU8yREPOOk47nH//jjDytRzM/PPfdckKOBex/jDFioVqpUKcWkLkR2wCLTpb+ivOlA/RB1WvaH1uWSfuh6f5FW/tRTT2XDmQuROVhzNGzY0BNF6ty5c9DzOBsQBuM57nN/70UENzDaqI2UWJg4WmR8iahA7YprQuj6GDHQ1atXL2IqFhM+C1OiB0QRhMgJ4CigIadLN2zatKlXz0iKLcaYP8XWP7GjMMdxqnUU8QB9i7hP8ej7VQ5duwSMMKJjfugRhuw8EV2ep9ZRiJwAUvLc15988omty6WHV7jnyUwIFeCAn3/+2TonhDhaZHyJqMDCEo8SAxe1Ly5dhdQqV8T93nvv2X1PPPGEV1dAmqKLkBFNECLeQSwG42r9+vWBsWPHes2TUfGEli1b2n116tQJq2SoOi8RL+DBd2mGHTp0CLpHSTtkP729XIsEv2iHS1FEblvphyLeoc8okV6ENMKBOJiL+A4YMCDm5yeSCxlfImqgoOX6wbgeR/DQQw95fY42btxoJ/xWrVpZVUQ30RNFIJqg9EMR7+qe3MsjR44MbNq0yatrdOlXLgJMTYyLCHB/UwMpRDyyaNEiT0jDOciAsZh+jOxv0aJFWKcB0QF+159uLkS8QYYCzjDWJ+FqbelJSvkD9zqCSP57nfou+n0JEU1kfImoMnDgQK/WBVENwNjCO8r+K664ImxTQqIIRBOIKggRj+D9x0FAfSOT83333Wfv6Ro1aljPP/ewM8aQmHcgxkGNwYQJE7L1/IWIhGuJQA+vzZs3e/tJsXJp4uGiAfPmzbMCShhgEpAR8QqNwZ3ABlLxfuOK7IRLL73UPkdNLr0ZQ1UPub9/+eWXbDp7kYjI+BJRhYHM1XnRPd7x008/eVExfx2MqwNjI5rA80QXhIjH9gk4CBCPAdKuUIpj0cl9f+GFF9r7lybjriAbOWJqGv1iHELEG9yv55xzjr1PaagcTpab9PHZs2eH7XNHra/UD0U88uuvv9p0wxtuuME6zkIl4l17BZwIK1as8PbTaqF48eL2uZ49e2bDmYtERsaXiDqrVq2yEa7QRp5uEkeO29XHzJo1yxpl1A5QR9C4cWNb/O2iZkLEA2+++aa9d4lihcPVMRLxdR5Sp6zFfmTnw9V/CREvMCbTFiQ0vZCfXd9GnA9u7Ha88847gS+++MKm2mqRKuIJasrJuiF9dt++fSmenzhxohcR4/8Oxu5mzZrZ/agb+lUPhYgGMr5EzGASx7hyzZeJHJBrTZNDjDU8TWwUePM8xpgQ2Q3NZUm9QpaY+7N///5W1dDBwtPVzCDAEaoYh9dVKSsiJ8NY7SK7jM+M26G8+uqrKep9hcjO9QatbBi7v//++xTPL1iwwEup7dWrV9Bzzz77rCektGTJkhietUgWZHyJLIdBzqVhIVJAXYHrscEAiQqRvw4MoQJSAJCnD1cfJkSsIMUQ5wCRK3ocIa/NvetaI1AHVqpUKbvvxhtvDEqzdY08WZQKkZOg7oUoFs4GB/8vX768vafr1q1rvw9+GMtJuaX/FzLeQmQnLp0w1CnmsnNcfS7iX/6sBOoYnTPt9ddfz4YzF8mAjC+RpRAlCPUs0azQDW40ow2dwCn4njJlin2edC4hsitl5bzzzgucccYZnggBqSm0SHB1Xi41pUKFCl6hNikqRG7Zj4qnpOVFToN6Xe5fMhX8DjAWra5BLdL0/nub6K6r6+XRNRcXItZMmjTJM7zKlSsX2LFjh/ccUVun4okCIuO8nx49etjnSLXV2C2yChlfIktxRhTb1KlTU4T16atB2hYQHevSpUugRIkStlEthd8cQ2NaIWIJk+51111nF5GhaSdusnaeVWoY/Q05UT68++67rZHGfSxEToPsAxe5RWrbz9y5c219F8/17t07aIHKWO3Ge6S7lTouYs3SpUu93qK0t6Exsn/srl27tmeUhUuf5X4eM2ZMCqNMiGgi40tkOSjCMdjhMV27dq03wLVr187uR1GI/l9EDlzDT9JXGPw4hpoZBlQhYh2xRUwA4ytUAGb8+PHeInPcuHFhX8OfsiVEToOUK+5v0gj9jjNAeMbd/6HqiM6x5oRmFD0QsYIxF1EY5xRzjl3nFHOZCqFGGeg+FbFExpfIcohoEd5n0KtVq5ZX/4X6ULVq1bwaAoq6qf8qUqSI3UfkgWPoo0RdTTgvlRDRBvlsFpyPPPKITZ3COUDdl1N5W7x4sRcV6NOnj/d7OBaY4IVIBFiMduvWzRONCY0Au56ObKgk+n+vU6dO3nNkMwiR1TD2uppExm8a3jsQSKKG3Blln3/+eQo1W57fs2ePPigRE2R8iZhA5MAVuDKhOy8TdQKuhuCmm26y+z/99FMvreXRRx+1C2BSuFDbwkATIqv44YcfrFx8y5YtA7t27fKcA2effbadmP/880/baJl9TZs29Qq18bhSG8Y96m9SK0ROX9CiROvSCEPTaJ988knPyBoxYoS3HwcbSnPuuRdeeCEbzl4kC6wbXKNkthdffDHI8MKR69QLaW/j5+OPP/bWG+EaiQuRFcj4EjHjgw8+sB4pBjl/OgCNO12OtoskuJQXNiS7OR6PFYtiRRdEVoAjgHpDms1SoE1DTpcWiwOA+hVXL0DvF+clZXJ3C9QzzzwzsHv3bn1AImHACXHWWWfZ70Zo+jeLXuq+XLSBdFwHaeNOnj7UOBMimqBY6O4zVDqdcxfnGCq0rr6cNUhobaNLU2zfvr3UlUXMkPElYgqepVGjRqXY768hwNgK9aq+8cYbduBkAL322mvVsFZEld9++81GripVqmS9+23btvVU2xDTIOLqPPnUC/z666/295jku3bt6qVmETkTItEgpZa2C+HgO9C9e3f7HcCJ5q+BxEFB/a4bx99+++0YnrVIBjCa3P3FWOwML1Q6Xfor9+X7778f9HuM86effrp9/qKLLlJWjYgpMr5E3IkcsE2YMMEOokjU8zPS9ChpsTGQkqKoHmAiGrCoRPmKjQjX9ddf76WofPjhh9bQd+IwGFgLFy5Mcc/i9Q+d3IVIVOhj5xcoYCym9537Lvh72xFFJm3XPSf1WhEtkIN3awb6hro1AdkIzvBi7YD0vB/EvVw7kMqVKwdJ0QsRC2R8iWxj69atNsLg6giYzO+8804vRYBcbPYxqLp99AjDMGNApZBbBpg4GlDZrFixohV0wbvv7jVqAFB44/679dZbvfvvo48+8n6Xxp1u4n/55Zf1QYikYPr06TYF/IEHHkhhgN1xxx3ed8IvUU8dJCm5zgBbsGBBNp29SBReeeUV7167+eabvbUAfRZbtGjhGV7hoq1kz/A8teROgVmIWCLjS2QbTZo0sQMgaoaoGoI/yoDwwZdffpki8vDJJ5/YPhwMrHi+/N3pExU8yXiP8+fPb7cLLrjARmUyyuOPP24jO3j6WChheKDcR8odhm8y1SshAoM6Fn879V6uuabfU0oNotvnV8+i/gsFRJ679957s/GvECK2DBs2zFv0PvXUU0HPYYz17dvXe57vjzPQcHTQSgQjjDHMX/ebyGjszpryBe4v2tjMnDnTWwNQn+jqDHEQ0Gc0HN9//711uKFcK0R2IONLZBt4nE455RQ7UDZs2NB6rID6GqdchAGGlxT1rMaNG3s1N9QSEAEjBREvVqKLcOBtZpJZvXq17U/y0EMP2UiMkz9PLxi6GBbUJrVu3dq+LvVLNE5lUYTcbjLA38zkW7ZsWdve4K677vK88m+99ZY95umnn/YWkSNHjgybesXkr+irSDZQkwsnM+9A3dA9j7qtWxwzTuNoY7zPly+fzW5IdDR2Rw8M+ebNm9v7iib3/sgrSrSIJfEcIhqoJqeGlJNFdiLjS2QrixYtsl5QBsxGjRp5AyKRBWeAEe2aP3++fQ7JWH/qF3U2GCGoICbbYIp0P0bBxRdf7C10QrfHHnvMO379+vW2jilSLxMaCvM8+fKJzKpVq6xsNlE/HABODYsNlc1Q732obLEQ4n9RdPcdee2111JcEr5LTt326quvDhp3UEJE5IDnaSeSbGjszjiMyy6qhePM9QsFMhdwpPEcGQmhqpwY/WTJkEkjRDwg40tkO0S2MLAYOMnVdlEsImFOYQ7VOdINQyF9bsaMGTbFgIGZOrJEBy8yUT8MpRUrVthrQDoP6W+bNm2yG02rqVVy6ZwuR57rGQmkoIsWLRpIZObNm2cjp0jFc51clJUIKqmsTPB33323t6h89tlngyZ4ooPh7kMhko1Qmflw0WFSdRm7OYYxyl9f4/+eDR8+PJAMaOzOHIzTTtCF+8kpIgPjMWM6z5FGTiaDHxxmrmyB+Q2xDSGyGxlfIi5gAMWAYoCk9shx8OBBL92Q2iR6gvnTvkhbZIFM/QDFs6VLl07h9UoU6ElCqg6GQsGCBW0aogPlJn+Ui2gYqXR+6EWFARYOmgTjTSSdMVEZOnSovXaXX355kLoVHnmMMhZGiLi4BaH/WpGm6GSJkc5WqqEQ/zPAXK0kYjXhoFUDPcLc4vfzzz/3FsX0ZHLqotSgJmr6uMbuzIMCLc5E1gekhLuxm3sPoSPXI7RWrVrWoeaH+8k1WCZDxj9nCpGdyPgScQMCEsi+0nMp1OvVrFkzT/574sSJdv/zzz9v99WpU8emIDBIU9NEFO29994LJBr8jURfvv32W6s0xkKGyFd6jC8MDK4dqYeh8BzNg2kqnIiLH64bdSfcK1wT7i9SCf31Avzdrl8M4hr0lQtneNFsFuU2IcT/4HvEoji1lFwUbWvWrOmN4USZQ0U8UBitVq2aTQtONDR2Zw7uE4wrIltff/112EgYG6njOGr9kPVBKYMzvKi9EyJekPEl4orQCdwtkJm8EIPwp4PxHJO239tFLcE111xjj6EmIZEjFJdddlngtttuS5fxhcFavXr1FK9BCgZeRV4rdPJKBEhD5Vow+ZIWRS2hM6QGDx7sXQOnvMkCkNo3ByksqCG6fjChnlUhRMoxnBqwUBVavnv+MZwMB3+d7nPPPed9BxO9F5jG7rRxDjPnYHVrAYQ1UPt1jrKBAwcGOdJgy5YtXnNvnLGZUQYWIivJZYSII4477jjv/++9955p1qyZ+euvv0zu3LnNpEmTzF133WWfe+CBB0z37t1Nly5dTPHixb3fGTFihHnsscfMU089ZR5//HFzzTXX2N9PRP777z9z6NChsM8dc8wxQT9PmzbNtGjRImjf3r17zZVXXmmv7fTp080JJ5xgEonly5eb2rVrm59++snMnz/fdO7c2eTLl8/07NnTVKlSxTRv3tysX7/eNGjQwMycOdPkyZPHTJkyxbRr187+/sqVK03Dhg3Nhg0bTOXKle1r+O81IURKGJe7du1qrr/+enP48GFvP9+9d955x/Tt29f+PGTIEFO/fn2zZs0a+3PTpk1N6dKlzZEjR0ybNm1Mr169EvbyauyODHPa+eefb4YPH25/btKkifnoo4/snDZv3jxz3nnnma+//tqcfPLJZvbs2eaee+5JMd+98MIL5ttvvzVFixa143bjxo2z+BMVIoNkqWknRCYhFQ5FKG5RIjP+Gh2KbZ2KFvVgroCW4m4nM4unix4f1EgRFaKnU06GNMPPPvvMpsxRP8DPXAOn/Bga+SJNk5QLPIB4ogsVKhT47rvvgq4v3kR6h5FW54Q62BKhbxoqmHz2RPv4+/CWOvCSEiEljcX16uJx4cKFQa/hGn4T8fL/vhAiMkSOiTTz3SHC4x+7HYgkFSlSxB6D2q3rq7d9+3YrQ+8iHqSRR1JnzSlo7E4/zG1OPMOfvUJauJvznHgLKfiRcGmJtGURIh6R8SXilq+++sozwFCn27Bhg/fc1KlTPRUtFtjUMpFi5qRoSUfAGFmyZEmgTJkyVpgjJxfbdurUyYqJUC/B38Kixi+5H2p8UYNBugXpdIiZkGrnB+n+SPL0oTV3OQkmXfq/8HegcIW6GvcEk7Vf5Yo0TCfwQm8Y6gVDYcKnSSwLQiFE+pkzZ451fjgFOleb6ofxvEGDBkH9wFC4xfnDotsttOn1mJMVRjV2pw0OsSeffNLO2y5V0NVo4TxDTMPdJ6Ta4zwLBdEttQIROQUZXyKuoYkwPZlcbw8UDh10p0fhkOfwoqKESG0YEutuoGbhjfqhU0y8+eabA7t27QokE0RwunfvHkh0ECKhYB+v+zPPPGON05IlS3rRUCJbeFH9/YmaNm0aZJQx4SdC5E+IeIhi4Phy0S2iXaGwWEZh1RlafH9RR3QtSBAVct9Vxu5EruFN1rEbASOcY+5zRpjFOQBxImJ8sx9HbLhaQO6Jfv362XuI1gdC5ARkfIm4h5RBGuIyAJM+N2vWLO85BmmnosXgS/SHxfO4ceO8QZs0BlIQR40aZRfhGHM5OQqWUSh+ZyGUqGBw0xQZVSzSlFi89erVy5vMSRvEaCcF0/WNY6MvmjO0mMDvv/9+u5/FTmgBtxAi45CNQDNlN3ZHcnwRKXOONL7HpJghAETKonOcsXHMokWLkuajSPSxm0bcLkWVqBfRL8Zk0rzbtm3rfe7cQ5GUelu2bOkdp7Fb5BRkfIkcAQvnevXq2QH24YcfDnqOSdqvjMQCm0mfnHCneOT6yKxevdqTn03GKFiiQR0bdWsopD3xxBOB77//3qYR+lOZUFmjj1fx4sW9Jp2jR4+OOIE//fTTMr6EiHKrhw8++CDV4xizXU8m5zQh9RxHyKuvvmpTrv3S4onYFiNZ4LNz87nLasFpxmc9YsQI28fSGeLOIAsFhxr3iGtfEK7JtxDxiowvkaPqeWh8Gyn1hBQFVwdGjdOXX35pJ34iHP4JnSafDNQuCiYZ2pwHn+sjjzxiJ2dq/qjto+Gmq+OiLs6lEBINdWlN1A6SyuqgFsVFVZnA33zzzWz9u4RIBqjhWrZsWdjnyFJwQjh8b4liU+ND2wcXRWNr3rx5WDEPEd8QySNbxY3JlAngIMMx6hdbOe+886wzLRzUfJPKynHM4ckUDRWJgYwvkWMh4sXA7U9H+OGHH7zFNGkMpK9gtGFguQndpSew8HZpaCgjKQqWM8DQIrpFtIv6LSZof+E+aUqoNtLY1T+Zd+7cOahQG1U2JwqAsa4JXIish+8lNbo4SnCmhUvxxagiuuW+u/TaQyQHxxsOEp4jjZExnYU4i3cR31B73aVLF5tmSI0XarPU6TI/9+/f33OcIbYxYMCAiOIZ3BvO8KKmW03vRU5ExpfIsfTs2dOrA6BmwIGAwg033OBN3Az0DPI7d+60C3AnwMAiwKU5MJgTLSF64m/8KeIH1NH4/DCqUXckJQnjGiOMzxRDasiQIXaB5k9dofaPGkA/27Zt8ybwSy65xKa1CiGyHtILr7766qAIViRFUUQ6SEnzCyjhfIGNGzd6zdFZ0DMWiPiDOZbsA/cZ3nfffXaOZf97771n1TD9JQMo1KbFmDFjAvfcc49ST0WORcaXyLEgtsEi3A3cpKf4DSd6PWFQudxx0tRIV5s7d25gwoQJ3nFMAkzoRL9Y2KPQNXbs2KRT1opX8HSiYnXCCSdY9bOXXnrJfo7Dhg3zPvsWLVpYuXgmbmT43X4kiiP1euH+4HUlTyxEbGHMpV+jq+MidYy6zHAQraae06WUk66G3DhGHK/jj3p36NDBpieK+IDPtHbt2vazIbJF2iiOLpSK/Z8b9biUDYSLgpI6jnrtxx9/nC1/gxBZgYwvkaNhYr799tu9QZz6n5UrV3rPM0HT78k9j7FGFMwPyocs7JngqQdiIe/6P/GclO+y77Nl0iWCRVQL49kfocJowmtO2hETNIs5Ulb47Pg8X3zxRa9Qm8/w7bffVn2fEHEETq9KlSp543OPHj0ijrc4V/yCHIwLiOOQ0TB06NDA888/HyhRooSNgl1//fVpCnyIrIFxGVEs1yYABxgOTzJNKBHwZ6VgUD/66KOBffv2RXSwut6dtA3J6Q23hXDI+BIJAeIKbrBn4T1t2rSg5ydNmmTrDPyeU1LPwPUF8/cIQazDDfp46+gRJWKnhIXEMpMtCylUKletWhXo2rVroEKFCinSQqklqFu3rjehX3zxxVbp0kFKkzPASVF1n7sQIvuhXsuNwenpaUX/L1pKuO874zpOGhbwOGyoH3KpyDSmR8BDDrTYjNsvvPCCl87NRmog1x6ji3Hc1XWx3XTTTTaVPNJr4TxzNbmkjr/xxhv6HEXCIONLJAz0BiFnnGaM4XqCUJjbvn17b/CnYJsaIQZ6jDW/4AYeWSZtag6cdDly5InccyW7IUqFkewEU/wpRCyqXMNk12gTUQ0KuJ1qFpM+qYj+dFF6wuEN53kWZMgWK81QiPhMUdu9e3dQpIvveKSxgki2GyvYcL4R/SISRnSFFHK/lLkT7BDRhRproleur6YzlhDNQA4eR6fr5eWcY6HZJ36o5fW3CyE9UamkItGQ8SUSCibX0BoflA79fULwnPprxegT9emnn3rP46lzUS+Ooz6MAl9qwdhHTRGRNk3k0QGjFy+nu75XXXWVbQcwfPjwoM+NNCI+O1Qu8W77J/trrrkmyOBmAUakzN9igD4yQoj4hzH40ksvtQ4yGvFGGmtxpFAr5BdtILrdr18/q4LaqVMnW+/rj5JhoEkdMTrOTlQn/YYVYzIKtDgv6aPpv/Yoz2JgpxaFRIHYOdMKFy4cGDVqlOZZkZDI+BIJDTVbDOQU/fp7hrCop3EnA7xftIFjiIQ9+OCDXsoD25lnnmkXAUz0derUsfuY8KkzkkR95sArSo0H15kJHG81nxfpn6hRco253g4mbSJjzkhz9QRffPFFCoEOFmDuGFQxDxw4kOl7SAgRW0gVps+Tv5aXuqFIYISRlla2bFnvd0hxw/hiwU9dsL9JM1Hw1q1bK5Mhg2AEkw1CmrczkticUjAZJChQ+p8jGwVnWnq59tprrfiV0sNFIiPjSyQ0pKa4hTxeOGRu/V5PJnnqDPwpKm3atLH9wngOLx5pjP5+MxhcNAklhZFJnKLhjh07WiNAtQWpgxGEQeWUrjCSSFlhgcQ19HtRiVahSMiEjyQxCzD3HOpoqSlSUk/A78+fPz/Kd5QQIhZgUJG65sZvtqZNmwYJKoWC44y2Eueff773O2xE0caPH2/Tjl1tsNtw5lBjKlKHDBD/Z8F21lln2fGcWi/qcf3P8VnRyysSzJVkpeDM9GctKC1cJAMyvkTCQz8Yv+IhRdhMxP6FO1EYjCnnseMRDxwTPTntpMW52iE2VPXwqhKpQXGrXLlydn+VKlXsggGVJvF/UUYETCi4Jo3IpW6ySKIOgzRD/6RNyicphiykmPDp0xaa1uJvlowCFka1/5pTO4IcvRAiZ0MEhLHDpbDx6E8Tj7SwZ8xh3PenvtFMvU+fPrYPIOOMG+9xvqGkyHiOg0iR8v9dd9K8iSi6NHwXUeRajRw50vZddC0AnALl3XffHbG9h4OG9qQhut9Lj9CKEImEjC+RNLCg9zfsZAIJBal5v6HG5MzPRLWYkKlD8hsDLiWG3HT6kFB75NJbqCV76KGHrPcv2erDUB4jakXev+u1Ri8XGqHi7UQFy++B5joTceRa4fmkxs4vQc2kjtS8vxkrxhWpo7wuxyA7L4RITFA85TtORBvHjMNfFxoOhDvuv//+oAwGl7L81FNPWWMB447XdWq5GGxE55Ot+TpGK45IarlCI4c4wjC47r33XuvA9D+PQAbRw7Rq6TDK2rZt6/0ecyWvF6nJthCJiowvkVQwOTDhooyHcRCJZcuWWXVD/wRDDQIpFgg+kMNOjZKTziVH3UENGFEdJjBXU1asWDHrJSQn3h+1SSSQDcYYaty4sXddiATiacYLjWHrGm66jWgiBhnS8BRw02uNlEL3PAsmUoX8dXUstvgc/PUd1N+hbCiESGz8ioi0ncBJ06tXLzt+pAbHkr7crFkzT4qejVRn6pQwHkhTbtSoUZBTqF69elbgh3EK51Baxl5Ogrlozpw5dq7iulDb7AxQHnFWfvbZZ4Fnn33WOhP9YzdzKOndzIXpSbfv1q2bl97PdSXNfN26dTH5O4WIN2R8iaQET5t/whg8eLCdSEIlbTHCMJr8/UkwpB577DErg8zrvPTSS0FiHkjlIiJB7xqiOKRuICLhIjlMbOTDI3NP/7CcmuKCV5goFjVbNWvW9FKCLrnkEntNqOPiWvjTA0lRccXuFG7jwWbBQ3TRvyCiFowJn5RPP6QF+SOPfBavvPJKit5fQojEBwEefzoc6WvpSflm7KJ2198vzG04iHgdBJbIaMAJ54wR9z4cQ/ozxhjOuJyUkcCYTYsOarT8tc5EoZizcEqSJcIxfil/Z6giTPXOO++kOW8xv/rnWIxXXgNDVy1bRLIj40skPUwiLgWOyYjaLxr3hua/U9vlj8pgaDCRkI7hj2ZhmLk+VQ4mIaJCGA8UJ9O42YlL8Dp4FUnRwyDDYIm36Bg90jh3olBMvtRO+KNTpHBSR4fEO9CLy0n1+2HiZ+GD4crih4Jt/+ROqg+vE8mYwgPNcdSO0VhVktFCJC9OtKF+/freGIIT5/rrr7fjaHoiMkTkyYYgDTHUEEOMg6wGDC0MNb9ioj86hrMIpxPH8b44mrIT/m7SLTGkUJRFgMTV24ZuRLAYd4lEMbb7VX7d9STtkDo5N76nBpHBd999177nRx995O1n3EeCXggRCBzDRTBCJDmLFy82jz76qJkzZ46376qrrjIPPPCAueiii8wxxxxj9/3zzz/m/fffN4MHDzZfffWVd2z+/PlNmzZtzI033miP//77780JJ5xgzj77bPv8Dz/8YM455xz7/xIlSpjLLrvMHle8eHGzceNGs2TJEvPdd9/Z43iPXLlymSpVqpjzzjvPVK1a1ZQsWdL+ntsKFizonVM0+Pfff822bdvMpk2bzJ9//mkfN2zYYP8Ozot9cPLJJ9tzYuPvOe6448zq1avNggULzJVXXmnuu+8+e9yOHTvMaaedZurXr29mzJhh8ubNa3bu3GkmT55sJk6caD799FPz33//2WPz5ctnbrjhBtO9e3dz7rnneud04MAB89Zbb5lSpUqZq6++2u7766+/zMCBA82dd95pChUqFLW/XwiRc2EZwxj01FNPmU8++cTb/8svv5gKFSqk+3UY5xivpk+fbl/n0KFDQc8zpjEeMz7//vvvdmOcCgfj2nPPPWd/h/GbY5knzj//fFO0aNGj+lv9Y/+UKVPMt99+a6pXr26f42+YNGmS+frrr8P+PuMm14S5Z+/evWbp0qX20Q9zDGMu2+WXX24KFCiQ5nkxX4wePdpu69evt/v4/ZkzZ2b6bxUiUZHxJYQPjI3nn3/evPPOO55x8Nhjj5nHH388xXX6+eefzbhx4+y2bt06bz+TbcuWLU2TJk3MJZdcYo2wb775xjz00EPmiy++MH///XfQ65xyyinWmKlZs6Y1aJi0/QYZxs2+ffuCfgdjxm+MMbkzoR9//PHWIHIbiwQMKwy6I0eO2I3337x5szWwnLG1detWe5w3MBxzjDn11FOt8egMrZNOOsls377dLF++3E7YixYtCvpbLr30UjN37lzvZ86Z9/3www+twYVhy/s7LrjgAnP99ddbgxVj0rFlyxYzdOhQ8+qrr1ojjvfn+kXT2BRCJCYYIowdjCP+hT9GQe3atU21atXS9To4ej777DPz+eef20fGIP/4Bccee6xnyDBf8J6M3fwuz4F/XAUMsLJly9pxm/GT8z3xxBPteM3vMM4xbvPIxu9jBHIsG8/VqVPHG79DDSfmhiJFitjzYE7g3PiZc2fcX7t2rTe3OZhzeE3mK+YtDLn0jLcYe9OmTTMjRowws2fP9l4XJ90dd9xhnWTMb0KIYGR8CRGGNWvWmAEDBpg333zTGhkugsV+JqVy5coFTUBffvmlNcLwOO7evdt7jkmVKBcTGhuTIREzjBQ2Jt7QyRmYLFkoYLgAkznvcfDgQc94chEqt2GoMMH6DS1em0ndb5TlyZPHFCtWLMhwCzXkmKDx/GL4LVu2zD6GO08m1osvvthuTNyVKlWy1+ujjz6yxhYLFv9ET2TruuuuM9dee61dgIRew1GjRpnx48ebw4cP2/0cc/fdd5sePXp4ixkhhMhIhAij6IwzzrBjY40aNbwxqHTp0um+kES4iCYRYWPDUecf60MNIMbRM8880xo/RI4Y7zkPxknmBTIBcGQREcsIGF+tWrUyhQsXtg6xhQsX2tc666yzrGGHI43X/PXXX8OO2cDfXa9ePbuRncD8xtyQGXAaci2AeeDWW281rVu3ttdACBEeGV9CpMKePXuCojIdO3a0qXAYVEwyRLgwZhx4KDE8SF3B64r30Q9e1wYNGtgJj4mPiZlUQyJcLtL1448/WsOJCZHJ2W+48POsWbNsSiR88MEH9nyYiNmYfJmcQzcWIRhteElZCPTp08d73RYtWliD8OOPP7YeT3jhhRfM/fffH3TuvD7nwEYkDE8pXt+VK1faRQm/zwKDa+aH9Mm2bdvaBQ8LhHDcdttt1nvqj4rde++9dpEho0sIcTTgNGM8I0rjN0jq1q1rx6VrrrnGjsUZNe5ItcM5xcbYzCOpjumt5sDgYcwm8uSiXqEbr+UiXzjfcMSlF16bNEnGYB7ZmFcwDDP6tzI/vffee/YaksHBfAA4Hfnbu3TpYipWrJih1xUiWZHxJUQGJiDquqZOnepNrkSy8KBiXFx44YVBhgLHMClhhGGMYaCETspM+M4DSS0AkyQTJgYYnlbqwhxMnD/99JPdiDDB008/bfr27ZuhzxCDiQWCA08waYRMqs2bN7f78OwSgSLyhKHFRlQMjyqRLWrk2JiQWRD4IeXkiiuusDVgbHic/fB3cQ25Xu45asFuvvlmuwhiEmdRJIQQ0YS0aWp2Xd2pG4+HDRtmunXrZv+PoZM7d+5Mpznz+xhlpKIzXvLoNiJfu3btslukqFR64fzIkDj99NNTbKS+M0fw/8z+HUQJGeMZqzG6/Kn1b7zxhh2vhRCZQ8aXEBmEScgVFvsjW6STzJs3L9WJH6OGKBMpdkS5mOBCYULFCGMjUsRjmTJlrPFD+iAb0SzA+HFpJ6Qd7t+/3y4oSPVjcufRbdSeEcXD6+mPfGEUkiJCigzpMESuMM5INXSb+zm0vgCIpJEiiTHVqFEja0SGRqtIhcEAxcAjQobB9sQTT1iRE+A6sGghjUYIIbIa0rYxKqjvRbTC1Sa99NJLViiDsYwNR1K065YYo4lgYYSRusgj2Q5urHZjuEvZZlzEKeffGKuzqg52/vz5NiPCX2vM+5E6jwMSIQ3OQQiROWR8CZFJmCwxJN59911rVFCb9Mgjj9jnMILuuusuG/nBKEO8IhTSSDDAMMbYiJL99ttvqaasMOFhPLnN1RMwMYZupENyjtRPhW5En1A3ZMMwchs/h4p7+MHwIzURY4uN1EOMNmcM+mFxQeE714a/z/93EVFDGfH222/PxJUXQoisoVmzZtZR5MDAIfJPKjTjXfv27a0jK6eDs8ulvCMo0rBhQ5v+7QxTomekFjKHtWvXzqa6M68IIY4eGV9CRIHQyA0GGSl0DvLsUQNkI5Uwkkw6RhEqitRRuY00Q9JYIkkaZwUYdeTvs2Fcuf+XL18+qMbNgWFFdIxJm0kcMPLwGLtoGYXZeFPZWMxIvVAIEW8wjpOZgGAQG3VcDowuxjOcUEBKHtGpypUrRxwb4+nvoj4YkSc219bEgZHlb7VC6jtZF+Eca0KIo0PGlxBZwIoVK6xyH2mI/skbmMwwzlCEchEiJnPqDCKBcUNEyknDuw3VQ34fw8xtpPTxSGTNpSny2v6NRQSGERE5Nv//MbzSSikhssfkzCTu1L+oZyA9kuid49lnn7WvRS1ZaO2XEELEO4yxRO6pdWVcHTJkSJCAEmO9G9dRwcUQY8PBRBuNWMD8QPriH3/8YVUO3Yaq7ZNPPmmPIQ2dtHO/YAeRLVp5ENEjxRIxKCFE1iPjS4gshlovcugxxNionUJ9y8nVoyyIaAbRMaJDCGAQZeJ5DJbMSgBHA6JXTOh+aX1SUKiVCAWvL5M48viodwkhRKJCxIs0PdLFV61alSJdG+PL73hDJRYDidpdHFwIE1FrSyofTiv6YjnefvtteyyRKZcq7v7P75LS7n9dMiRCe5ABkStnHEKvXr2s8426XIwu3lcZCELEHhlfQsQYRDrIp3fccssttp9YOBCuYGJHoRBIh+FnJm4nL+82JvL0TKRM4KTO8DsupQTPLj251q9fb1MceWTD6+siXS7fv3v37mb48OF2EcHEj7eUVMpatWolRC2EEEJkNPLEWMnY7DaiTg899JB3DLW5keppMYYYfx2lSpWy43A4Qg0qf/SNeYE0cVIgmTMQbKJGTQgRX8j4EiIOJm5S9WhUiXoh3lIiY+wjT580QmfUdO7c2aoshgOPJmmJrv9K7969zdixY71eX7wWkz+PgLgGUvnQtWtX8/rrr4d9XYw60guZ9IF0R97L/a4QQojUQXYeA40xmg0HmEsRRzwJwSYH4zEKtv6Ucfd/Il9+tVrSC5kfGI/l/BIiZ5B9+UxCCAvRKtL62JDx9ae1oEDon1Dp3YLcL9LETM5uc6qG/uJoJOOpw4oEk78zoOgzxmvicSXVkUf3f+rB/BG1jDboFEKIZKd06dJ2Sw+vvfZaul/XZUUIIXIOinwJkcNxPWMwwkhndD22SG9kn+sbQ+0YqS9sqDJmZy2ZEEIIIUQyIuNLCCGEEEIIIWKAGjgIIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCBEDZHwJIYQQQgghRAyQ8SWEEEIIIYQQMUDGlxBCCCGEEELEABlfQgghhBBCCCHjSwghhBBCCCESA0W+hBBCCCGEECIGyPgSQgghhBBCiBgg40sIIYQQQgghYoCMLyGEEEIIIYSIATK+hBBCCCGEECIGyPgSQgghhBBCiBgg40sIIYQQQgghYoCMLyGEEEIIIYSIATK+hBBCCCGEECIGyPgSQgghhBBCiBgg40sIIYQQQgghYoCMLyGEEEIIIYSIATK+hBBCCCGEECIGyPgSQgghhBBCiBgg40sIIYQQQoj/154d1AAAAzEMG3/Uh2J5VDaLKBAQXwAAAAHxBQAAEBBfAAAA4gsAAGCD8wUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAADiCwAAYIPzBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAOILAABgg/MFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAAHxBQAAEBBfAAAAAfEFAAAQEF8AAAAB8QUAABAQXwAAAO+/A+yaavxobafDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -686,12 +631,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABT4AAAH0CAYAAAAUkjJgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QWYVOX7N/BH6e7u7pLubmmQEJCSBkFKQEpARKQlpbtLJKRTQLq7Q0BSQhCd9/re//c5v9lldndmdurMfD/Xte7usDt7wD3znHM/d3xgsVgsioiIiIiIiIiIiMiPfOjtAyAiIiIiIiIiIiJyNQY+iYiIiIiIiIiIyO8w8ElERERERERERER+h4FPIiIiIiIiIiIi8jsMfBIREREREREREZHfYeCTiIiIiIiIiIiI/A4Dn0REREREREREROR3GPgkIiIiIiIiIiIiv8PAJxEREREREREREfkdBj6JiIiIiIiIiIjI7zDwSeQh7969U/HixVP169eXzy9duqS+/fZbVapUKZU8eXIVOXJklSpVKtW8eXN1/vx5ZSb//fefmjhxosqVK5eKFi2aSpQokWrcuLG6evWq3c/x6NEjNX36dFWzZk2VPn16FSVKFJUwYUJVtWpVtXnzZpvfM2fOHPXBBx+E+LZz504X/i2JiCg4rm1hK1OmTIjrVNq0ad12/EREFDquYaHDvVRo91p4y5Ahg1v/HkSuENElz0JEYdq1a5d6+vSpql27tnw+YMAAtXTpUpUzZ05Vq1YtFTt2bHXq1Ck1f/58tWLFCrVp0yZZdM2gXbt2asaMGSpHjhyqa9eu6u7du2rZsmXq119/VQcOHFCZMmUK8zmWL1+uOnToIBcZ5cuXVylSpFC3b99WK1eulH+L77//XvXq1cvm9+LfL2/evO89zhtKIiL34tpmv0GDBr33WNy4cV14xERE5AiuYaHDvZSttQu2bt2q9u3bpypXruyGoydyMQsReUSXLl0sESNGtDx+/Fg+nz17tuXo0aPvfd3ixYstODWzZ89uMYPt27fL8ZYqVcry5s0b4/ENGzbI45UqVbLrebZt22ZZt26d5d9//w3y+Pnz5y1x4sSxRIoUyXLnzp0gf4Z/Q/wMvCciIs/j2ha20qVLy/cQEZFv4RrmvJw5c8pzHTlyJNzPReRuvAojnxFaEGvHjh3yZ4MGDbJ4U5o0aeQ4wnqz9XfA95YtW9aun5M5c2Z5nocPHwZ5HJ+fO3fuvcdDYv3vtm/fPkvFihUliOjKG7DGjRvL8+3ateu9PytTpoz82Y0bN8L1M9q2bSvPs3z58iCPM/BJRL6Oa9v/BOraxsAnEZkV17D/CdQ1zJaDBw/Kc+TNmzecR0rkGezxSeSAbt26qdKlS8vH9erVk9R//ZYgQQJ5HB8HL7s+duyYunHjhpRM2CNSpEjyPmLEoN0ofvzxR5UtWzZ574j9+/cbPcbatm2rGjZsqFwFvV9ixIihihcv/t6f6dIHlJGER0j/Htb/vqNHj1YjR46U8hT0CyUiIvtwbfPM2rZo0SLpHTdu3Dh5fvRfIyKi8OEa5vn7M5TQQ5s2bcJxlESewx6f5JeuX78ug28cMXjwYLsWVvSBwUKBJtiNGjUy/mzJkiUScLP1PGvXrpX39iyshw4dUmfOnFEFCxZ0We+vLVu2qFmzZqmWLVu+92f4d8K/l72wQOMNXr58qe7duyd9cCJEiPDe1+reMWgU7qznz59LT52oUaOqkiVL2vyaCRMmBPkcDbxxgdOnTx+nfy4Rka/h2mbute3TTz8N8nnmzJnVwoULVYECBRx6HiIiM+IaZu41TMPz498V91vB1zUiX8XAJ/klLBRDhgxx+cLqLCysefLkCXPYzrNnz9Rnn32mPvzwQxnmY+sYnTnOjz76yOaiqhdWR3f89MKK44U4ceLY/Do0BLf+Ome0b99e3b9/X33zzTfGrq2WLl06mVaIncuUKVOqx48fq+3bt6u+ffuqr776SkWPHl116dLF6Z9NRORLuLaZc23DTTWG8+XLl0+mB+P/47Rp0yQ7qGLFiurEiRMqderUDh0rEZHZcA0z5xpmayDtX3/9pZo2bcoBfWQaDHySX8ILP3rY+oKbN2+q48ePq4EDB4b6da9fv1Z16tRR58+fV8OHDzcWL1fA7mRopRC+CgHMxYsXqypVqqh+/fq99+coa9GlLYBJ8M2aNZMLCWTQ4CIEk+JDKpEnIjITrm3mXNu6d+8e5HOURKLcHTefQ4cOVT/88MN7lQtERP6Ga5g517DgZs6cKe9bt27t7UMhsht7fBK52Zo1a8Iso/j777/lz3fs2CHBPltBvvBIkiSJcge9kxjSjiHK1K2/zhEDBgxQ3333nSpXrpxatWqVzVKNkOTIkUOVKFFCMkDPnTvn8M8mIqLQcW1zbm2z1q5dO3m/b9++cD0PERE5hmuYc2vYhQsX1N69e1XGjBldGgQmcjemQZHPsbUTiIXHF3rIOFtGgRI2ZCGGtJOIRRV9Xnr37i2DD1wNTbNDEp4eMmianSxZMnXt2jX177//vhec1L1jdC8ZR4Kew4YNk5/z888/Sw8ZRyVMmNDoQ0NE5G1c27i2BYf2Lfg7cJ0iIl/HNYxrGDDbk8yKgU/yOXfv3n3vMUebL/tKD5knT56o3bt3S5/KsBbVnj17ylRyTwtPDxlAqTkaXCNjpVSpUkG+bvPmzfI++OP2BD3xvL/88ov06XQUFvnDhw/Lx2nSpHH4+4mIXI1rW2CvbSENy0AwIaz+ckRE3sY1zLN8cQ179+6dmjdvnrQQa9GihUPfS+RtLHUnn4MJp9Y7iEjHnzRpkvGC60gPGUfewitSpEjGYqlt2LBBjtlWGYUun8Ci+uWXX6pRo0bZtfhjd9CVFwHoIePIv1Pwn922bVsjYPn27Vvj8Y0bN8pzV6pU6b3gI/rk4C049NlB0BPT2+0Jeh45csRm0BODjS5fvqzKli0rO55ERN7GtS0w1zZk3KDtSnB37txRHTt2lI+bNGnisr83EZE7cA0LzDXM2vr162XgbLVq1VTSpEld9ncl8gRmfJLPefDggcqZM6e8qP7zzz8SANPDaRYtWiSBrREjRihfg3KJ06dPyw1Mo0aNVMOGDaV/DKbdWQ/g0bDLiEUVC0esWLFsLpbYTbPOBPnvv//kvS8N60FwsU2bNmrGjBlSLlK9enV17949tXTpUhU/fnyZuh4cBjuA9QUNdjYx5AF/t0KFCtm80LAu4wAMMMqdO7e8YbARbi6xO3rx4kWZ8o5jIiLyBVzbAnNtw5qEIXvY0EuXLp1MdUcwFP//UeL+6aefylA+IiJfxjUsMNcwW2XueF4is/Gds5Po/8MCg0y++fPny8JauXJl9eOPP0qpAYbcIJPPF6H/y9mzZ2UxjRIliqpdu7batGmTqlmzprHbaE33bfnjjz9CLPtAkM96YcXC/eGHH6pPPvlE+ZJp06apXLlyqenTp6vx48ermDFjygRETD/MkCGDXc+h/z2wAzt69OgQv8468NmjRw914MABuUBB0DNy5MjSbPvrr7+WXVrcYBIR+QKubYG5tuGGs0GDBvL//vfff1cvXryQG+7ixYurVq1ayU04EZGv4xoWmGuYdasDZIsmT55cgt9EZvOBxRU55EQugIy/li1bqtmzZ/tF3xAsDlgYsLPmqoUwceLEstguW7bMJc9HRETuxbUtbFzbiIh8E9ewsHENI/J97PFJ5CaYFogMxCpVqrjk+c6dO6cePnyo+vbt65LnIyIichTXNiIiMiuuYUSBiYFPIjeZOnWqevPmjYodO7ZLng99V5CgnS9fPpc8HxERkaO4thERkVlxDSMKTAx8EhERERERERERkd9hj08iIiIiIiIiIiLyO8z4JCIiIiIiIiIiIr/DwCcRERERERERERH5HQY+iYiIiIiIiIiIyO8w8ElERERERERERER+h4FPIiIiIiIiIiIi8jsMfBIREREREREREZHfYeCTiIiIiIiIiIiI/A4Dn0REREREREREROR3GPgkIiIiIiIiIiIiv8PAJxEREREREREREfkdBj6JiIiIiIiIiIjI7zDwSURERERERERERH6HgU8iIiIiIiIiIiLyOxG9fQBERERERERERL7GYrGoRYsWqdOnT6tIkSKpePHiGW9x48ZViRIlUtmzZ/f2YRJRKD6w4EwmIiIiIiIiIgpQly9fVvv27VMvX75UHTt2NB5PnTq1unXrls3vSZcunbp69arx+cOHD1XChAnVBx984JFjJqKwMfBJRERERERERAEH4ZCdO3eq77//Xm3atEkeS5AggQQwdfCyf//+6unTp/LxkydPgrwhKLplyxbjudKnT6+iRImi6tevL2958uRhEJTIyxj4JCIiIiIiIqKA8e7dO7Vy5Uo1atQodeTIEXnsww8/VEWLFlUFChRQ3333nYoaNapDz3nlyhUpe3/79q3xWJYsWdSIESNU7dq1GQAl8hIGPomIiIiIiIgoYAwePFgNGTJEPo4WLZpq2bKl+vLLL1WGDBnC9bzPnz9Xv/zyi1qxYoXasGGD+vvvv+XxChUqqIkTJ6qsWbO65PiJyH4MfBIRERERERGRX0PoQ2dd3rhxQ7I727Vrpzp16iR9OV3tr7/+UiNHjlQ//PCDevPmjdq6dasqX768y38OEYWOgU8iIiIiIiIi8kv//POPGjp0qLp27ZqaN2+eEfxEuXvEiBHd/vMx/GjVqlWqZ8+exmMnT55UOXLkUBEiRHD7zycKdAx8EhEREREREZFfTmpv2rSpOnjwoHy+Z88eVaJECa8e0927d1XmzJlVoUKF1PLly2WYEhG5z4dufG4iIiIiIiIiIo9CftfMmTNV3rx5JegZN25ctWTJEq8HPeHUqVOSdbpjxw5VuHBhde7cOW8fEpFfY8YnEREREREREfmFV69eqc8++0wGDEGZMmWkxD1VqlTKV5w+fVrVqFFDXb9+XcWOHVuCslWrVvX2YRH5JWZ8EhEREREREZFfaNCggQQ9I0WKJMOFMFTIl4KekDNnTnXo0CFVqlQpmQT/8ccfqzFjxkimKhG5FjM+iYiIiIiIiMgvbN++XTVp0kSCn75Q2h6at2/fylT5GTNmyOcoz2/VqpW3D4vIrzDwSURERERERESmhbCGntauy92jR4+uzHLsEyZMkEDtli1bVNSoUb19SER+hYFPIiIiIiIiIjKla9euqUaNGqnZs2er7NmzK7P6999/VYQIEUL8nIicwx6fRERERERERGQ6mIiOcnb0y+zQoYOpe2TqICf+Dv369ZNg7rt377x9WESmF9HbB0BERERERERE5IirV6/KxPYHDx6oHDlyyGR063J3szp//rwaPXq09P+MGTOm9P388EPmrBE5i2cPEREREREREZnG48ePVbVq1STomTdvXrVr1y6VLFky5Q+yZcsmQVxkgM6ZM0d98cUXps5kJfI2Bj6JiIiIiIiIyBTevHmj6tatqy5cuKBSpUqlNmzYoBIkSKD8SZ06dSToiQzWH3/8UfXv39/bh0RkWgx8EhEREREREZEpDB06VDI8Y8WKpX755Re/yfQMrmnTpmrKlCny8YgRI9S4ceO8fUhEpsSp7kRERERERERkCs+ePVONGzdW3bp1U5UqVVL+7vvvv1d9+vSR0nf0/8yYMaO3D4nIVBj4JCIiIiIiIiLTQBjDHwYZ2ft37dixoypZsqRq0qSJtw+HyHQY+CQiIiIiIiIin7Vnzx515MgRGfQTKAFPInIN9vgkIiIiIiIiIp/08OFD1bBhQ9W9e3c1d+5cFej++OMPKX9nDhuRfSLa+XVERERERERERB7z33//qebNm6t79+6pbNmyqQYNGqhA9urVK1W4cGF18+ZNFSNGDNWpUydvHxKRz2PGJxERERERERH5nB9++EFt2rRJRY0aVS1btkyCfYEsevToUu4PGO60e/dubx8Skc9jj08iIiIiIiIi8in79+9XpUqVUv/++6/66aefVJs2bbx9SD4BIZxPP/1ULV68WCVPnlydOnVKxY8f39uHReSzGPgkIiIiIiIiIp/x+PFjlS9fPinpbty4sVq4cCGHGgUrec+fP786f/68lP8vXbqU/z5EIWCpOxERERERERH5jO3bt6vbt2+rjBkzqqlTpzKoZ6PkfcGCBSpixIhq+fLl8jER2caMTyIiIiIiIiLyKbt27VKxY8eWzE+ybfjw4errr7+Wf6PDhw+rDz9kbhtRcAx8EhERERERERGZzLt372QAVOfOnVXMmDG9fThEPomBTyIiIiIiIiLyqv/++099+eWXqn379ipr1qzePhwi8hPMgyYiIiIiIiIir5oyZYoaP368KlGihHr58qW3D8eUgeOJEyeq48ePe/tQiHwKA59ERERERERE5DVXr15Vffr0kY+HDBmiYsSI4e1DMmW/z65du6qWLVuqf/75x9uHQ+QzGPgkIiIiIiIiIq9lKrZu3VqyPEuXLq06dOjg7UMypXbt2ql48eJJxufYsWO9fThEPoOBTyIiIiIiIiLyimnTpqmdO3eq6NGjq5kzZ3IyuZMSJ06sRo8eLR8PHjxYXblyxduHROQT+IpCRERERERERB5348YN1atXL/n4u+++UxkyZPD2IZlaixYtVLly5dTr169lSBRnWRMx8ElEREREREREXoCSbJS4Y6BRp06dvH04pvfBBx9IBm3UqFHV1q1b1fz58719SERe94GFWwBERERERERE5GEYwoNJ7lWrVlU5cuTw9uH4DWTP9u3bV8rfr1+/rqJFi+btQyLyGgY+iYiIiIiIiIj8KKCM6e7dunVTBQoU8PbhEHkVA59ERERERERE5DE7duxQxYsXV5EjR/b2oRCRn2OPTyIiIiIiIiLyiDNnzqhKlSqpPHnyqMePH3v7cALC5cuXJQuUKBAx8ElEREREREREboeC044dO6p3796pzJkzq/jx43v7kPzeqFGjpH/qhAkTvH0oRF7BwCcRERERERERuR2mjO/evVtFjx6dgTgPSZAggXr79q0aPHiwunfvnrcPh8jjGPgkIiIiIiIiIrd68eKF+uqrr+TjAQMGqDRp0nj7kAJCixYtVOHCheXfv1evXt4+HCKP43AjIiIiIiIiInKrr7/+Wg0fPlylT59enT17VkWJEsUnSu//+usv9ccffxhvDx48UC9fvlSvXr2SN/3xv//+qyJEiKAiRoxovI8UKZKKEyeOihcvXpC3pEmTqtSpU/vE3xEOHz6sChUqJH/fXbt2qVKlSnn7kIg8hoFPIiIiIiIiInKb69evq6xZs6o3b96oVatWqTp16njsZyPkgRLv8+fPq0uXLqmLFy8a72/evKlev37ttp+tA6DIbk2XLp3Knj27ypUrl8qWLZuKFi2a8qT27duradOmyc8/evSoBG6JAgEDn0RERERERETkNleuXJGhRpgsvm3bNvXBBx+47WfduXNHMhyPHDkib/gYWZyhiRUrlgQpkyRJohInTqxix44tfUit35DliaxP/YYBTeid+fTpU/XkyZMgb3fv3pUs0ZB8+OGHKmPGjBKELFCggCpevLi8d2cw9NGjRzJQ6vHjx2rKlCkSCCUKBAx8EhEREREREZFbIfSAPpMIMrrS7du31Y4dO+Rt+/bt6saNG+99DYKWGTJkUJkyZZLgn36fNm1aCXjGiBHD5X9XBBqRUYrjwdvly5fVmTNn1KlTp+TPgkPZ/EcffaSKFSsmpejlypWTAKwrTZw4Ufqsfvvtt+qLL75w6XMT+SoGPomIiIjIbZAVgxtdZMvgpg503zR8HjVqVJ/pgUZERL4PWZboU7l27Vr166+/Stl68CAnSsqRQZk/f355nzt3bo+XlocEIZj79+9LAPTkyZPqwIEDat++fe9NXEcpOjJBq1atqqpUqSJ/h/BmyiLj9uHDhyp58uTh/FsQmQcDn0REREQUbsiyQd829HFDZgtK6Z4/fy5BT9i/f78qWrSofDxp0iTVuXNn43uR/YPyQv2GbJSCBQsaN2m4+XNnWSQREbnHvHnz1MGDB9WQIUNUwoQJnX4erCebNm1Sa9asUb/88ot8bl02jgBn2bJlJUsSwcKYMWPa/dwYXvTnn39KQBDv8Ya1q1mzZkYmKH7u7t275WfUqFFDHkOJOzIokZWJAUf6fdy4cY31TG/4hQVhGaydWCsRBN26dav0ILWWIkUKVa9ePdWwYUNVpEgR+XsTUdjYzZaIiIiIwvT333/LMAT0S9Pvly1bJsMq4MSJExLQDIn1TSr6olnDRF28oQwQ0AdOW7RokerUqZMMgsibN68qUaKEvGEqMIOhRES+C6/rffr0kUnp6GfZvXt3h74fawUyOufOnSvZnRiMpCGoWLNmTfXxxx+r0qVLS8AxtAxRTJFHIPHatWuyQaffhzbcCJmWOvC5d+9eNXbsWNmI04FPbPANHDgwxJ+LNQrHiexKvKGsPkuWLKpBgwbyePCvxZ/jrUmTJvLY1atXJdi7ceNG2VxE79IJEybIW6pUqdQnn3wiQVBktDqzHiJrFsHcAQMGOPy9RGbCjE8iIiIisgk3hcuXL1dbtmxRe/bskeCntfnz56umTZvKx7///rtavXq1TK3F9NpEiRJJ9gvekNGJcnbrG7P//vtPsjlxw4mhEyj7wxtukOvXry891wDZnyNHjnzv2PDnyOpBnzL0aSMiIt/Sr18/NWLECAl6ordl5MiR7fo+bKQh2ImNL6wLGvpyYhp87dq1VeHChW1mPOLrf/vtN5UyZUoJCAIyTpEhGRocG9YtvCVIkEDWLWzm6ZJwBCB37twpvTerVasmjyFDtH///hLgffbsmbxhkw/DjXAcwTf5NJS3Y6gRYAMRgU1kciKIGxKsv8gCXbp0qQSB8TO1HDlyqLZt28p6HD9+fGXvsCn8eyIchPVb/1sR+SMGPomIiIjIyIrBmy4RROk6bsY0TLpFCTpKCjGAAYHH8JQu2gPBUdygIVsHN6/IusFNGh6HW7duyQ0uHDp0SIKrOD6WABIReQ8yKpGpjyxNBOqQnRkavKavXLlSSsdR7q1hjUEG5Geffaby5csXZAMNPaSPHTsmgT/dv7Nbt25q/Pjx0k4FzwUIEmJTDhUKeI+sSv0+derUkn2Jdc+VVQTY3ENgFNPdkamJN2RwXrhwQS1evNg43latWqnZs2dL1uU333wjjyFw2rdvXwmyIpsVJe7Bg6AIliIIum7dOiNjFRuMyCb9/PPPVcmSJcP8+zRv3lw2MPG1yP5kFQX5KwY+iYiIiAIYbjZRQoesE2Rsfvnll+rrr782+pchg6RixYqqQoUKMizCF26McJN3+PBhKbm3nkqLLBzcDCJDB8eNG2UcMxEReRYCcCtWrFDly5eXqoGQ1g5k+U+fPl1NnTrVGO6DcvJatWrJaziG+ug+mQhdYCMMmY94TqxdWKcwzb1MmTLyNahSQAAR/Tl79+5t/Bx8ry+sX8EhixTHj7+n7oP9888/BwkUo7ULgqD4msqVK0sPUQ1/f2TG4t8QmbIaWsP07NlTyuFD6jOKjUNUTCCQio1OZNMS+SMGPomIiIgCEPqa4UZpxowZQUoJMRhi27ZtymxwSYvsleAlgIUKFZKb50aNGtldAkhERM5D9iACkci8P378uFHWHTwjFG1MkO2ISgPdwqRdu3bylixZMiOrE8N+EJhDdiO+zxp6e06bNk16XfqL06dPy78L+m9igw/Zo9YT61FtgY2+6tWrS7YrArpYA7Eh+NNPP6mFCxeqV69eydcjoxVZsG3atJHy/eCw0Tl8+HCH2xEQmQkDn0REREQBBJd+uEFESaG+mUIpIfpq4nGUvOHGyqxQVrlhwwY1Z84cea97rKG/G/q+ERGRe2EDDVmMHTp0UJMnTw7yZxgwhN7MCxYskKCmfn3u2rWrtFZB4A2VCMjo1MFOlIxryF4sVqyYVCGgGgGtTZAh6q/QMxSl/9iQxJqGti/WkLGJtRube7rCAUOXpkyZIqX+emMTAWIMl8Ibem9r2ChEr0983bhx44JUURD5CwY+iYiIiPwcbi6tg5m6rxdKENu3by8lhSGVwpkZhiahBBCZMz169JC/t77RQxAUN82+WPpIRGRmf/75p2QRYrgRhgUBStTRxxJ9KfWmW6VKlWQ4EMq4te+//16NGjVKnkNDtj4mqWOoEQKeug91oA4d/OWXXyQIimConnSPEngMYLKGEnYEmH/44QfpLar/LdECAD1Q9cR6VH8gyzZevHjSh9S6lJ7IHzDwSUREROSnXr58KTc0Y8aMUZs3bzayQS5fvizB0CxZsqhAgMtdvOmBRxMmTJCsFpRfDho0SPqacRgSEZHrIVtz2LBhkoGoh9IhiIkSa7QiQaYhgnF68w0BU/wZBg6hEqFu3bpSieCPm3PhhU08ZMQimIxenuhtrfumYmgS3pBFi/UPVR4DBw5U58+fN4YVIjCNrFysf9gAxfcje5TrIfkbBj6JiIiI/AyG/yC4h6yZR48eyWOdOnVSP/74o7cPzScgo2jo0KHqxYsXxhCIIUOGyM04M0CJiJyD/puYlg7oMYnp6t99952UawOG84wYMUJecwG9J1EKj8x8BDkBU9BPnjwpmZ3+XMLuTvg3x1R4tARAf1QNG574tx48eLBkdgLK3MeOHSs9Q7n+kb9iKJ+IiIjIT+CmZtasWXIj89VXX0nQM0OGDDLsYPTo0d4+PJ+BMj8Md0LZJYY9YPgGsl0KFy4sfeWIiMgxmMiOLHqUXGO4TrZs2SSjEEHPfPnyyWvrmjVrVJ48eYzvQck6skAxDElLnjy5BEgZ9HQesj/xb49+ntbT3zHpHhPiz507J9UgyKq9dOmS+vjjjyXwicdBl88T+QtmfBIRERH5AVzSlS5dWu3Zs8eY5IqsxiZNmvAGMhQIDqP/GTJkkaFkq08aERGFDlPDZ86cKf0hEWTT6xAGGWH6OAJtyCzE4Dm8zuqS7Dt37siAInIvrHO9evWSjwsWLKi+/PJL+f8wcuRI+f/y9u1buVbAYKoTJ05IaTymxxP5AwY+iYiIiPyohBslbhgWgdL2qFGjuu1nPXv2TLImb926JaWJmCKLIKJ+jywfDFawfkNmD4YsoX8Y3uMNE3wxYRaZl/otQYIEKmnSpEHeUqZM6daBFhiEhBt0DHhAphI8efJEjhXTcImIyLbDhw9Lv04dWkA/TgTZPv/8c6k4mDRpkqwZOhsRPSnJs5DNiX7fGGyoMzoxER6VDwUKFJAqkbVr1xpfnzVrVpkgz/J38gcMfBIRERGZEAKJyNTA0AdkaOjH0N8Tk1ldAVk7GISg3zAVFmVxCHhiqIKnYRgDyvRQvo/3uDHLnTu3DGlyx+ALTLxfvXq13Cwic5Y3gEREQR09elSqDXTPZKxH6OOJINq4ceMkkx7wet2nTx95LcWGF3kHNvkwaApVDtioBLTHwUApbDpi3bt9+7Y8XqJECVkDEyZM6OWjJgofBj6JiIiITObXX39VHTt2VFeuXJGgHwZBhPdG8s8//1RHjhwJ8nbjxo1QvweTeFHKiJ5suDHCTRMewxuyJKNFiyZZp/oNZXT//fef9CLFGz5GsBZBVOs3ZIyiBFK/oXeczhayBUFPZGkiCIrMlSJFikhPufD8m+C4UH6JjBdAz7mpU6eqNGnSOP2cRET+AqXRyJJHSxW8lgMqDvAxqg90uTtek9FvEn2UOS3cd2CtxcBD9P/WQxCRAYrBRwiKHjhwQB7Duo42BXXr1vXyERM5j4FPIiIiIpNA+XiPHj3UjBkz5HMEHNGbq0GDBg5nIyJrE/1Ad+/eLW/I6LQlRYoUkqmj33BjhOAfSs9jxIhh83tww4ugKYKHKKnTb+/evQtS6o73UaJEkRJ2vOG5Q/p7IPCJQC8m0eL95cuXJSh56tQpm9mneN6PPvpIgqBly5aVjCSU1Dt6Yz9q1Cj1zTffyMf4+w4fPlx17txZjp+IKBDhdbd58+YyGE7DayzWkfv378vnOXLkUMOGDZOAJ7PlfRfWz8mTJ0sPUGyAQtGiReX/Jdq9aK1atVLjx493a8sZIndh4JOIiIjIBLZt2yY3HghY4iayS5cukmljbzDv5cuXavv27Wrjxo0yvOfatWvvfQ3K3ZDlqN+QNYlBFYAbIAQbkRmC7EetadOm6rfffpNgLAKMgMnyrVu3dujvhyAoAqP6Bhk9ShGYHThwoKpfv748hpsyZKEg8Jo2bVrpB4pLWQRZcSOOm/BDhw7J1+gbOA2BSgx0qFChgrxhaIO9Q59wA9i2bVtjcBRuChcvXszsTyIKKHi9ReY7poVjMwuZ/XhtxcYUsvghXbp0slnUuHFjbhCZbGMVmbrIAMWmJf7f4v8rNhF1T1C0mVm4cKEqXLiwtw+XyCEMfBIRERH5OAQWixUrJh+jt+Xs2bNVqVKlwvw+TMtdtWqVWrdunWR1ImtRww0pMiLxPHhDIBAl6sjWQem8fkNfTwQ8dS8w9NnUGT1Qvnx5CagiENioUSN57Oeff5ahFihvx02TftOl7voNN8q4oUJvOAQ8EdTVEJxEsHfBggXq008/lcfWr1+vatSoYXwNMl5R4o43ZKPmzJlT5c2bV4LByAzFv9vevXvl+NCb1Br6oGLScM2aNSWQiyBqaHC8GNLRu3dvKa1HoDVZsmRh/j8gIvIHyOTH6/qKFSvkc7x+YsMLGfCYAI5AGcqk0YaFPTzNC/09MfAI1RLTpk1Tx44dk3Vv0aJF8me4dkBgG8OQ2LqAzIKBTyIiIiIfh8s1BOjQTxMDjUIrNUPwEDehuDndv39/kD9DlmTVqlXlrUyZMvK8+BpkSOINQyoePnwY4nMj0IisUAQSccODG2Hc6OI9BgAhcAq4KUJWCG6IkZkKCJzi+/F9yBpF/09AKTlurpAh2rdvX+NntWjRQgKjuAFDCTysWbNGnhsZnjoQa0vGjBmNrFVkpmBAA27YEEjdunWr2rx5s9HTDHCTXrFiRRm6gX/n0P598bORLYt/P+ts2pDK/omIzO73339XDRs2lNc+bGCh2gCDirBhhddE9PbEa3OiRIm8fajk4v/vuqqif//+0uJmx44d8mcff/yxmjdvnsuGKRK5EwOfRERERD4Gl2fz589XtWvXNkrZUQYeUmk2enQh0DlnzhzJ7LSGTE4MJahWrZqUreNGNUmSJEZmJgJ91hCYROAQmaX43uzZs0uwE8eDN2R5fPHFF/K1GDqEYCaeE8ensz9QBolpvrhRQo83QFanzqpElqfOCPryyy+lTykyShDUBZTZ6cAoSux1uT0GaQwaNEh17dpVAqJ62jzK9xGwRZZn8IFMuBFHhqouoUf2CgLAp0+flqnDeENGqxY9enTpSYcgaOXKlcOcFo+JtwjwIuPVnixcIiIzQaY7Wo/8888/0vMZmZ0YqofWJpgAHtZrJJn/egQDqrAxitYz2IDF7wPWcVwnYKMVlRZEPg2BTyIiIiLyDU+ePLHUr18fG9OWxo0bW/777z+bX4fHt2/fbmnWrJklevTo8vV4++CDDyylSpWyTJw40XL79m3j63v06CF/PmjQIOOx+/fvWzJkyGBp0KCBZdKkSZZDhw5ZLl68aIkQIYIlcuTIln/++cf42t69e8v3d+3a1Xjs3bt3loYNG1q6detmefPmjfH4hQsXLLt27bLcuHEjyPHi8+vXrwf5O928edOyb98+y5UrV4zHXrx4Yfn6668t7du3D/K1+BzHMGDAAOOxly9fGn/3e/fuWR4+fGjZvHmz5YsvvrCUKVPG0qpVqyDHkCxZMkvEiBEtBw4cMB47c+aMZeDAgfJvoZ8Lb0mTJrX07ds3yLEF/39QsmRJ+Vr8m33//fch/v8iIjKTt2/fWjp27Gi8HtatW9eydetWWWMiRYokj2H9ocC4LunUqZOxbh45csSSOnVq+R2IGjWqZc6cOd4+RKJQMfBJRERE5CNOnz5tyZgxo9xM4MZy9OjR7wXSnj9/LkHKbNmyBQnSZcmSxTJixAjL8ePHLbNmzZKb1EuXLhnfN336dLlhtQ4EItiH70VQVPv3338lkBonThwJUmoI/h0+fNjy9OlTi7cg0Hrr1i0J2GoIpubNm9eSPn36IF/btm1b+bv17NnTeAxB0TRp0siN2qtXr4zHR40aZWnTpo1l/fr1lr1790ogN3HixEH+fStUqGBZvnx5kGCwDtI2bdrU+LpatWrJTSIRkVk9ePBANtD069q3335rrEVDhgwxHsdmGfm/1atXy2Zovnz55BoBQfE8efJYkidPbvwuYHMUf0bki+wbZUlEREREboVSdfS1RL9IlJLhc0wh11COPWHCBClnR2k7oK8kBv/UqVNHensuX75cyssxiAdKliypunXrJmXomOSeMGFC6cOmYfouoP+lhnL169evy9fq8nBASZu3YagCeoxZw78VyteDd29CWT1K+jGBXUM5PErhUb6PYUsaptCfO3dOBnXg+zC0Y+LEifKcGCT166+/Sm9QvGGSO0rt0ZMUJZ/4f4A+Z/i3Rj9TlM6jtyhK4HPnzu2BfxUiItdBGxC8BmJN0UPp0HYF6wFeE3WPR7QDsV6jyH+h7Q2GFWKtRcubVKlSyYA/XGugJzZa2WAiPIYI4s/Z85p8DXt8EhEREXkRBvh8/fXXMhxCT0lfsmSJBB7hyJEj0vsSfbR0QBP91TBdF70vESDdsmWLPI+GHp0IuqG/JiaeA4Jx6NFlPX0dAVT06dI/y9/8/+omo/coJtw3aNBAenHqm3f8edOmTdWVK1ckKPrHH38Y349/3/r168v/E9zkTZ8+Xf3555/yZwiQtmnTRvqZ4iZQ/7/C1yNwjBu/s2fPSmCWiMgM8LqIjbRnz55Jn+XXr1/L4xhkhDVK94VGQPTChQuyEUSBAYFN/B6gz+vFixfVyZMnVcuWLaXPNoLieMM1Cq411q1bJ/2/iXwFA59EXoKFQd+I6WwTTErEEAf9him5uOBIkCCBZJloGLpw+PBhyXzBc+DCBLttuAnDZD3cHGuYvPv8+XNZfDDMAUMerDN4iIjIu+7evavy5cunHjx4oHr27KlGjBghGTY7d+6UYT4IamqYxo5MHAThEBzFzamG5/jkk09U0qRJ5WYE2Y54br3WYD3AEApk6CBzI1BhbcW/tZ4Uj8Av1llk2h46dEjWZwSTFy1aJP9+GgKYzZo1k2FTyLpFhijg37RVq1Yy9AnrLKbN4/9Djhw51Pjx47329yQicgQ2xT777DMZYoQ1CJUC2MDBoDpkuOPzXLlyScBTB0IpcGDoYNasWWWDcOjQobJh++rVKxlQOG3aNPka/XuDyozNmzdLdQWRL2Dgk8iNcHqhfBA7YtgNQ5mifkOgEjeuGqbhnThxwubzIFiJ0gLcnGExadiwoTp+/LjNr40fP7569OiR8XmFChXUtm3bjM8RJMXNG8obkTH0ww8/hDglmIiIPAMBN2QcNm7cWO3fv18mliNQCdjkwuMopZ48eXKQtQLBTQTtEGjDtHN4+/atypMnj5SmjRkzxpgKT7ZhgxGl6nv27JH3OlCMf0/8e+NGD+s4NhEBf47gM7JEp0yZIgFqwFqKoEG/fv0kAxSbjHp9xWYm1t9ADjgTke/er4wePVr16tUryOOY5I1gKCoIYNKkSapz585SIYB7GbT6oMCCDVdcjyAgjt8BbLQCNgtRhYKNRayR2EDEtcmGDRtUoUKFvH3YRAx8ErkKTiWUxyVLlsx4DFk1yMy0JXr06HJDiu+5d++e2rVrl9wYIbCJm1YEOfHeUSg9QfATFyV4u3Xrltys4cYO/VesT3kEVJH1oqFkD9ktKFH46KOP5IJHl+8REZHroOQcr//VqlUL8hgCnrhRgMiRI0uWTe/evSWTEH0mK1euLMGzunXrSpYhNsGQJYqg6O7du43nwms9s/vDp3DhwhKQRjAU5fEok0egc+/evfL/A4Fq3OAhYDpkyBBjkxEZoO3bt5f/l1hnkT1VqVIlWd/R/xNrNBGRL8Ba0bdvX2mnYq1jx45yn2LdCxkbQFhv0O8Tf06B+fuCvtkHDx6UQCfav2jIBEXfV2zeWt/vouwd7WKIvIlpXkROwg0MgprIyMFNEBYALAbo/YWbTTQEx80pboqQbYOMHZQIoJQOUBqAGyN7IWsEN8F4r7NOdKk7bqo0BEwRSMVbWNAPDjdjKPfDG27IcPwbN240vgaBT9xQly1bVgKjREQUPghsIkMTa8a+ffskKwJl0iit1q/taGmC13MEzhBkA7RDweYaSspq1Kghj6GM7M6dOzLgyBqDnuGHQDJK9cqUKSPrOW7osOZizceaqTNDESDFpiGyYBDMRo88DEZCOTwyqKpUqSJVG2hLUKJECVlj2RePiLwNaxCG32FonoZMPgx5032graFvNF4TmTcVuHBtgYB4xYoV5R7RepMV6xoqILDu6TYvuN9Fix5kDterV8/LR08BzctT5YlMZ+HChZZq1apZYsaMiVU/yFuECBEsRYsWtcSOHfu9PwvPW9SoUYMcQ5QoUeTx7777Tj5/9+6d5bPPPnPZz4sePbolVqxYlg8++MB4rHDhwkGOYcOGDZZ79+559N+eiMjs5s2bJ2sFXlfLlStn6dWrl7zG43O85n766aeWS5cuWVauXCmPxYsXz/L69Wv53nbt2sljTZs29fZfI2D16dNH/h8MGDDAeGzZsmXyWLJkySxv3ryxbN261ZI/f35j/UyaNKll+PDhlpQpUxqfHzt2zKt/DyIKbP/++6/l888/D3L9nzVrVsvZs2ff+9r//vvPK8dIvuvx48eh/vn8+fONaxu8ffjhh5alS5d67PiIgmOpO1EokEmJEnT0SUNvLkAzb0y1A2RgYpcLWTnB6ebOgJ0uDJrIkCGDmjp1qvrpp58kowc92JC9g/4oKJnTGZhoHI6+OeiPggbi+BqUlWi//fabZH2iLyj6u+nyk9WrV8vxYEcWfT6RvYmeKyh3xy4cSt3Rc1RnjKJ8BWV7+BnoQYpShJBeEhInTixZK8h8QQk/hmjg74djQGYSJkDi5zLLiIjItrFjx8oQAMC6gtd9PUEcr/vI2sQag9fhZcuWqR49eqjZs2dLZgWcPn1ashDxdeyt5j1Xr16VrCi9/qL6A1mfeEPZO9Z3XD9gXUQ/Vqy7gPYx6H+GvmgYRojpyKVLl/by34aIAg3uN1q0aKEWLFhgPKaz8mytLehdjOo19D1GGy0ie6B9D9ryoNoBax/WRvyOoXUMkacx8EkUDG5WUKaGm04EEjGdFeVqCPKhv9qmTZuMwGFwCPohqImbG5Qfpk+fXj18+FANHjxYyhgBPTWvX7+usmXLJjc+3rppW7Nmjfyd0DtOXwQhkItg6zfffCM9yH7//Xf5N7D198XXBu9BioFJuNHDxRRu4omI6P/KCTHwRk/AxYA5tEMBbHzFixdPJoRjg0kH1RAQQ5ATawemvJPvQm88/H9CaShu6qwHQOC6ABuE2FxEr218js1MlMajfB5rLDYViYg8Adf56M04a9YseT3C+tS9e3c1atQoCUwFhz7H2NTB1x45ckQSH4g0XKegrB2teqz7wWpIwkHiDYLm6JfN4Cd5CwOfRP//phQLOwKcy5cvDzIVHS/QCAqGRmc5ok8bGjujkTPg+2xdRPgqBGm3bt0qveMwdR5wgRPSBHlreoKfzmpCzyDggA0iCnS42EfGjPWags0jBECR/aerBND3eejQoSpu3LiyyYYBARggoaemku86deqUVIbo6cfI/KxZs6ZkuQD+f6NX68WLF+Vz3CDi/zl6vKL6g4jI3XBN3rVrV/Xjjz/KdfvChQslCaN69eohfj36/ON1CmsY7pOINFQ8IukFcyVQDYneniHBdQ+qH+fPny/3hbjfZs9P8iQGPon+/w0LyrRtBfFCkiJFCslsRLkiptshUIibGH/z119/SSNzXZKJ0n8EQkN76cDQh6ZNm8puHsry0SS9bdu28rkOChMRBYoDBw7INHadPY/1AzcKWGcwARwZngiQzZw5Uya1k/l9++23qn///hIIRasZPfEdwVH8/0YWDODGD0EIBreJyJ1w3d65c2c1efJkY0OuWbNmoX7PqlWr5DUKr1uXLl2StYvIGoLhCGgigI7fEd0Cxha0ZdMbfbhnxgYvp72TpzDwSQEHv/II3iHLpnXr1vIijB1PpOlbl25jkUdZmg6Eoq8l+qwhAxJBUp3VEYiQ1Tp8+HDJksWkevQIDQlu8PQke/QNQkC0Xbt2LIUnIr+G7AZkQyAAhhJ3fI7XQ7QY0X2h69evL3+G1iMIeiJj4uOPP/b2oZMLoKcZenpjratWrZrasmWLlMOj5xkgqxeBcAS/8TGqJBAgxYYqEZGroZpg4MCB8nHZsmXV9u3bQ/163BPlyJFD7pcGDBggbbCIgsMahlYI6HWNFgrTp08P9euxLo4ePVp+r5A0hPZyaBFH5G4MfFLAQPANu5uTJk1SZ86ckbKzTJkyycfWcNOBzMRy5cqpChUqqJQpU8qFAnp2km3Xrl1TGzdulP4tyGJp2LChZIriRg89U23Bvy9u9HCTz1J4IvInCHLite3gwYPqyZMn8hgu8NHnCpDliSw/ZMLrG0xkP2CTjfyX7vtp3SMbWTJYL7UJEyaoLl26ePEoicjfYEieriZAL2mUroeVwDFu3Djp/YkMPmTyeWsuAfk+/D6VKFFC7uewuYe+1qHB5i/aK6ASAm3i0GYtrO8hCi8GPsnvoW8lbjAR8LTu3anhBqRQoUJq79698vn9+/flooCcgwUPQWIMbcANP3bxMKzDFmTRImuUiMifgp5of4LhcICAJrI8AUNtMmTIIOsNJrNbT9Ql/4fhh19++aX02MPlN7JeEAAN3l6nZ8+eMmiEiCi8kJiA3v1Ym5B1jsxNbL6FBmsW2lYhsQEZfMjkIwoNhvstXbpUBjMiizOspBZs+JUpU0buG9HzGm3nkJBE5C4MfJJfQ28a3FyiHNtWwBM3HfhzTNTF1FyUvjPo6Vq4gcPNXu3atWWwA3rB6GnGgKxa3AQiUIA/Qxk8d5WJyIwePHggGzr6NQ4ZDPgYZc/I4hsyZIhc7GNtQranrQmo5N+wuYrsX7Q9QO9sXHeg/U6dOnWk9BS/K4CMYUx898fe4UTkuSxz3OdgYwWtplD5Zm+VFRJH0A/066+/NtWgVvIOXOtkyZJF7rkxG6JSpUp2TYRH2wX8fmJdxJrI+3ByFwY+ye/oKeK4AUUfSpSN2YJgJ8qyWVroGVjU8G8dPBtKix8/vnr8+LH8f0EJPN5ix47tteMlInIEglco3dI9jTEBF4HPHj16yI0nbjiJgqtataoMeECLnVmzZqkiRYoYLXhQPYESQGQKExE54tdff1VVqlSR+6JEiRKp27dvS9IHkbvgnjthwoTS0sXeADs2+DBAC7+n+F5UCTIBhtyBER/yG5g4jmmFKOdAZk3q1KnfC3omT55cSjx++eUXKXtn0NNz9L81do3x/wdDHKxLbRD0BJTHo1dounTpJCNXD5giIvJFuFjHcDxkLeigJ4JYyGDPmjWrbPogy5P7zGTLF198oXLmzKmGDRsmGS/Hjx+XQYBw9uxZGS4S1hASIiJrJ06ckI04rDsY1opkA3uCnvj6PXv2eOQYyf+ggq9JkyYOzW5AtQMGHgESkjAQkPd+5A7M+CTTw7CIH374QfphvXr1yubXoHEyyq0RFGXZmG/9v1u4cKEaO3ZsiJPhdbAa5YBERL4EgU6UrC9atCjI45jWvnz5cvkYfYzRR5oorEoVuHHjhmQKo+Q9evTo8juGjcPvv/9e+oNyGCARheb69euyYYJ7ItzzHDlyROXOnduu7128eLEErrCGLVu2jK835DRs+GLALSr67DF48GBpBwT4fcWU+LB60RI5guluZFpovD1t2jSVPn16eaEMHvTEYt+sWTP5GvSpwY4Sg56+Bdkt6Ol57tw5ye7E58HdvXtXMnetp94SEXkbhj4UK1ZMgp5YW2rVqiWZNdhoQ8myxqAnhcU6uIDfJfRIQzB04sSJqkWLFpI1jH7ZLVu2tNmznIhIV79hqKi+J1q5cqXdQU9ssvTq1Us+zpMnD4Oe5DRUVmI4lv59sjfwiTUOTp48KbMhrIf+EYUXMz7JlND8GDeZug+WNZRS4wYB6fbIFiTzwMsRynHGjRsnDdmtX57Q+xMB7mrVqslCyMl/ROQtv/32m6pZs6aUZSFQhR6NhQsXlhKtuHHjSs8qDHMjchTWPQTT161bJ+sgoD3MpEmT5GP8nuH3i30/icgaEgSQLY4eifDdd9+pPn362P39GGKE2QhoNYU2G1GjRnXj0ZK/XyNhYxjBc2RufvTRR3Z9H+7v8H0HDx6Uzzt27GisfUThxcAnmc6bN2+ktB0LtFayZEkJiK1YsULNnDlTdirJ/MHtzz//XO3YsUMWTv1ShdK/t2/fqr59+6p+/frxwoyIPArBKAwuwuuQhiAVWqngdQv9pVmeRa6EgPrp06eNzxH0xNRcPE5EhJLiChUqyJRswEC9BQsW2P39WLswTA3r2qpVq6RKjig88DuITTwEMvfu3Wt3BjHavGA6/P379+XzkSNHqt69e7v5aCkQMPBJpoAdIJRr4Nf1q6++khJDiBIlivr5559lsWdJhn/C/19kVeFiDEOP9EIIqVKlkkB3xYoVvXqMROT/sP5gAM3AgQODPI7gE8qyiNwFN33oY24NrWHWrl2rypUr57XjIiLfWJtQIjx37lz5HAHMY8eOOTTBHWXFeD3B/RSmwfOeisLr9u3bEsBE24V58+ZJ+zl7IeMY2csI6AN6pqPvLFF4MPBJPu/8+fOya3T06NEgF/wYjIMbTkwu5AIdGNB/COUSFy9eDPI4FkNMBERvPSIiV/v3339V586djcmj1vr37y8BUSJ33kBincPEd1S9WLf2QbAD10hEFJiGDh1qbMjFiBFD2oClSZPG7u9HoLNy5cryeoJNPAROiVwB7RZQoZckSRK5d4sdO7bd34sqzgYNGhjtzrAOouqPyFkcbkQ+PbwIPR1z5sxpBD3RSw2L+71796R/CBZoBj0DBy7ounXrJuXtyPa0Xhwx5AqTK4mIXAmBJlx8Bw96pkiRQqbeMuhJ7pYyZUq55lm/fn2QIY0IyDdt2lSGAxJRYFZFWVchLF261KGgJ6A1S8aMGaWXMIOe5Erdu3eXIUeo1tMT2+2Fzb727dsHKYEnCg9mfJJPwq4Qyi4w7dva9u3bVdmyZb12XOQbUPaO9gcYhNSqVSt1+fJleRwZwAiCYpElInLFsAj0j0Z/KmuxYsVS+/btY49F8riffvpJtW3b1mbmMTK/uBlMFDhOnTollVBIFsEgI2TYObvBh7JiVNQRuRL6UVepUkXaMaA9mSNr1N9//y0D/ZDohDYMeK4PP2TeHjmHgU/yObNmzZKLemQyaHiRa9SokfwZ+noSWZe/x4kTx/h9QakOeoFWrVpVFShQwNuHR0QmhewCDM7DjaU1rEfIvMNrDJE3dO3aVf34449S/YAbQ30p36FDB5mAy+Ankf9DAgB63CMpJH/+/JIVzsF65IvQs9PZbGIkQeF+Dr1CER9AHGD8+PFc58hhDHyST9m0aZNMEsSFvIa+asOHD3eoLwgFll9++UXK/Z4+fRrkcUyFx82hIw3eiYjwWoIsA91PGGWA9erVk+EPuPBG+RaRNwMe6G+eKFEiuSmsWbOmcd3UsGFDmaTLrBgi/4TsTmy+Xb16VfXo0UP6HmKYkaPVTj179pSyeGyYWLfQIPI1SHxq3bq18fns2bNVixYtvHpMZD4MfJJPQMNi9KjBC5mWLFky6V2DXUwie6xZs0ZKKawDoOjDt2vXLpUhQwavHhsRmcPjx48li0b3li5SpIgMf0B5O9psIKOGmQbkS/bv3y+lhGjNAO3atVNTpkzh7ymRH+rXr58aMWKEbG5gE2TatGk221+E5tChQ7K5BwcPHlSFChVy09ES/c+NGzckmWnMmDEOtVVAuAqJUdh8jhs3rrp27Zq8J3IEt4PJq7Bgd+rUSaVOndoIeuJCvXTp0urChQsMepJD0BcWi2GNGjWMx+7cuaOyZMmi5s+f79VjIyJzlLdbBz2RUYesGAQ9AdnjDCaRLzl9+rRq1qyZihYtmvEYAiEYVMLcBiL/gxYX+h4K2d6obnIEvg/VdNC8eXMGPckjsB5Vr15d+lQj+OkIXHdhXYsfP74kt3CgHzmDgU/yGrxwZcuWTU2ePNm4OM+aNauUbe3cudO40SRyBHYAsSPYt29fo9cR+n/i4u6TTz6REiEiouBevHihSpUqJUHPePHiqRgxYqgkSZLIZNFvvvnG24dHZNMff/yhrl+/rh48eKDKlSsnN4e4SUSvT7RnYPCTyL/o9k1Yp/T57ggkmmA4KO6zRo4c6aajJAoKv6fffvutfIzApW4lZC9cj+H3HZDxjKzl5cuXSyCfyB4MfJJXoKwiVapUQV70MJEUQySQnUfkisX14cOHsruoYYFENqj14CwiIjTNx0YcJoeiX9qOHTtkSBqy6VBOiIAokS/CpFsdvNizZ4/KmzevlLnD6tWrJfhJROaGTXu0WkFyyODBg+WxcePGqaRJkzr0PE+ePFFfffWVfIzncfT7icID92DVqlVT//zzjwzpc3RjDhvRjRs3lvu4SpUqSUILsz/JXuzxSR6HF6hevXoZL3a4qZw6darDpRpE9po3b540wda/c2XLllVLly6VMlYiCmy4ocQGCfp4ArLF69atq4oXLy43mt99953q06ePtw+TKERY23BDuGrVKtlURjYXfn+vXLkif44JuLjJJCJzGjZsmFq5cqWc6xhsVrVqVRns6Wi2J1pgYOgnNvrwPJwCT5526dIllTNnTrm+wuYc2pQ54s8//5QK0UePHsnnGMz122+/yeR3otAw8Ekehebb6O2he9RgGA2CUJy6HRROS7QCQAkbMpFwY4437JDhPXa68EKPN1y06I8x+R5DoVCiSUGhfQKGP6AkAv+O2OXu3bs3pzMTBTC81mIQjF6XMOH2yJEj0l8aTfhr1aolF+bs6+ncGnbv3j31+vVrrmEe8Pz5c7nxw00lMmEw3b1NmzbGht/ixYtVo0aNvH2YROSgw4cPq6JFixqtmlCifubMGdnkcATuKbDGIeC0detWVb58eTcdsfnhdRPZsfg302uYXr+4hoUfqjxRmYffR2QxW/eotsfcuXMloUUP+MqYMaO0KWKbPAoNA5/kEVgk0Hx/yZIl8jky7bBoB2LGHSYGY4o9bgjxdvfuXeNj67e///7b6Z+BF34svHhLnjy58bH157hgCrSFGRctaK+AYIbOhEHJBXbNiSiw4GIZWXI6sImg0aJFiyQzbuPGjSpDhgxyw8nJobbXMFtrl/Vjb968CdcaFtLapd8wFBFtCeh/0JoBk5qxYTp27FhVsmRJNWvWLOmljpvyHj16SAYzEZkDzuWPPvpIBr4iwIbr2AkTJkjmpjPQzmXdunXq66+/VoEKmYLW92Eh3YuFZw3TAVBba5d+DPdhgbqGvXz5UrKOb926Ja1akIjiCISv0OZl+/btkkiFe+YOHTrIWkcUEgY+ye3wota6dWu1ZcsW+Rw3mAiAoi+Hv8OwAWQPWb/h38NaggQJQr25Q3DSejcRH2OHC7uN1ruP+BgTiYMv3taf//XXX8bPxf8H9FPFzT6ym/CWL18+FTNmTOXvUCaRO3du+TeBTJkyqbNnz8q/LxH5P1z6oNpg165d8vnEiRNlyi2yYDDVHRfSKJ1Cv8RAdv/+/ffWMNww2lrDbN3chbaG6bXLeg3TWaK2bkTxOQZQWa9hKHezXsPw/ysQ1rDQINC5YsUKGWCCYRAI8KOU8OeffzaGQugef0Tk23RpOjLikHmI63QMdeH1qn2QsRl8Dbtz506Qr0mYMKHNwCTeozrMnjUM65c992HWaxieA2uYXr8CbQ3DpvOxY8dkPXImAIzqhly5cgUJUDOTmULDwCe51f79+2XKKF6UsGgPHz5cLsDTpUunAukGERlD2LHFoob3adOmNRbUKFGieOwYseDqxRcLBsoCcJzo84PdMh0MtV6EcZHlj6UD2CXEbqF+CUyRIoX8O+Amnoj8GzK9kdUJ6O+5fv1648/QRw03mE2bNlWBJLQbRKxh1msC1jDcGCKw5q01DNn71msYrjN0MDT4GhYoN5Kg1zTr9gxY37G2IXsMFixYoD799FOvHSMRhW337t2qdOnSxuc4p7Ehh6xuRyDp4ebNmypHjhzKn2FdCL6GIegI8eLFe28N0/dhnmy3hv8XIa1haEHANcwxQ4YMkSFd+PfB9QEqQTAoGRm3RMEx8EluM2PGDGNgEXa1cJOJvlP+AjcSmPyLkpENGzbIRYVeXHWQU7+lT5/ep3vEYZcSPVasLxaOHz9uBEPRhPrjjz9WNWvWVIUKFZL/n/4AN/UdO3aU/4eAAC/+7sgAJSL/7i0FuFhGlmGECBFUoEFwFxtAeP3D+qyrEaxvEPUbNit9fQ1D1r71Gma9oYesEEyTxVvBggX9Zg2zx4EDB1SRIkXUpk2bZCAK4N8Ew7yw+UdEvgevXXny5JHgWPz48aXFCO6ppk+f7vBzYTgfBssi2xvDZf1pDdu2bZuxhulkE/x7BV/DEOj09TUMLeCCr2F6Qw+/C/o+DH8ff1vDUMWIezIELh39HUDJPHqyY4MW13OYJzJt2jS3HSuZFwOf5BbYfcEujIbBEWiy7w+l6+gHiZIx3DSgRwluCHEzVaJECVPcINoLpRs6GIoAL/7e6IuDDB9kSGHxxU2TP/QJRZnrF198IZky+H+HG0UEeInIv+CmEcOM9EbH+fPnJXMRPdPQ7xMf+zNUJuC1HDeKaD+DDED0MsUahingZrhBdGZDT69hCB5gDdM3kFjD/LXHGtYzBEpmzpwpvWsbN24sVTjIIMP6jnJNZBthY5OIfEu/fv0kUBknThwpn0ZQ5/Llyw5XJWGNQ2snvB6isgHX72avTMDfA/dhWMMQ+MJgG+s1DANz/GUN0xt62KREkg0GLiFLFX9frGEo63Z0MJCvwcwFDOPD7zn6VDtaRbJq1SpVr149owcuoI1RqVKl3HTEZFoIfBK5Uvv27RFMN95GjhxpMav//vvPcvr0acuIESMsRYsWtXzwwQfyho/xGP4MXxMI3r17Z9mzZ4+lV69elqxZs8r/26hRo1qqV69umTp1quXOnTsWMxs7dqzxO4v/xxs2bPD2IRGRC61evVrObZzjMWLEsNy6dUseX7VqlTyWMGFCy5MnTyz+BOvTqVOnLMOHD7cUKVLEWMOKFy9u+e677yxnz54NmDXsn3/+sezatcvSs2dPS+bMmY017OOPP7ZMnz7dcvfuXW8fossNHDhQ/p6xY8e2XL16VR7D2qbXOvz9r1+/7u3DJCIrx44ds0SIEEHO0Thx4sj7MWPGOPw8eG2vWLGifD+u1c0If4cTJ05Yhg0bZilUqJD8XT788ENLiRIlLN9//73l3LlzAbWG7dy509KjRw9LpkyZ5N8iWrRolpo1a1p++ukny7179yxm9OzZM0vSpEnl7/Ptt986/P34/1++fHn5/nTp0sn7bNmyWd68eeOW4yXzYuCTXKps2bLGBTUW7ZMnT1rM6Pz58xLgS58+vfxdokePbqlTp45l1qxZlvv373v78HzCxYsXLaNHj7aULl3auEArUKCAZdSoUZYHDx5YzGjo0KFGYATv58yZ4+1DIiIX2L17t3Fu46bpt99+k8cR7EqQIIE83rt3b4u/wM0gAnz6JgCB3rp168prmllfn92xzmO9KlWqlPxO4N+pYMGClh9++MHy8OFDi7/cKGOjFn83vMfnMGTIEONaDUHR58+fe/tQichisfz777+WwoULy7mpkwwyZszoVBBHb+pFjhzZcunSJYuZnDlzxvLll19a0qRJI3+HmDFjWurXr2+ZO3eu37w+u2INQ/AXQWC9hiE4jCD5n3/+aTGT+fPnG/fbelPaEdjg1f8GcePGdTqISv6NgU9yGWST6AvpKFGiWG7evGkxk9evX1sWLFggN0H4O8SPH9/Srl07yY7An1HIHj16JP92DRo0kAusSJEiyce//vqrXMSZbacdO6j6dxkZM0RkXsiCwE2TPqfHjx9vZAlUrlxZHsubN6/l77//tpjZq1evLPPmzZObIPydENDt0KGDZePGjVzDwoCbRNx41atXT9YwvDVs2NCydetW061hwV27dk2Cm/idGDx4sPG7r7On8FamTBmp6iAi75o5c6axWYXXIXyMagVHvXz50gga9u/f32IGOGZszqEiQVdhdOzY0bJ582bTr8/uhmAwgsJI0sE9GH53GjdubNm+fbspMmJxjPr/e6NGjZx6jlatWsn364oObPwy65OsMfBJLnmxQgmFvoDGbo2Z0u2RufjFF19Y4sWLJ8ePrNVFixbxRjEcN5AoG8+ePbux8KAtgJl2H5EtpbPD8Na8eXNvHxIRORkMzJcvn3Eu16hRw/iziRMnGuW+yC4xqwsXLli6dOliZDmg5GvJkiW8UQzHDSSqGXS2VYYMGaRlDzb4zGrhwoXyd4kYMaJRiYMgg65qwRuyq4jIex4/fizBPp25h/dIxnAmcDVo0CD5/lSpUllevHhh8fVr7k6dOhll/SjPX7ZsGYNWTkJVB6oZdAAQZfH4HL9fvuzo0aPGvdeOHTsc/n5kiuJ6Dt/funVrv2tdROHHwCeFCxZjXZKBt1y5clnevn1rMcNxIxsRAVu8yOJCA2WOCIKS6/6N9+3bZ/nss88kAxiLUZs2baQcwQwOHjwYpFctWh8QkXkgUw8ZD/ocRs8nvaGFYKG+QJ4wYYLFjK+vmzZtslStWlX+DokSJbJ89dVXlsuXL3v70PwG/o3R17pZs2ayhqESoG3bttLb24x/l1q1ahktaXQWK8pf9XnA4CeRd/31119yrZklSxajbBfX0c7Axl6sWLEsy5cvt/givAahok5XXSRJksTSr18/y5UrV7x9aH4Dr/voa/3pp59KBigSkzCHA729fRWqVHQ8QbdmcUTfvn2N6z1WMVBwDHxSuF5Qdf8w3T/K19PpkQEzbdo0IxsxT5480reT2Z3uz6DBcI3kyZPLv3u5cuUs69ev9/nfl/379wfJ/MSCSkTmgM0sffOIskHrG6qmTZvK4xUqVDBVKTPWsClTphjZiMhmRWkg1zD3Qm9v9IBOliyZ8XuDm3ZfX8OsYQBhzpw5LT///HOQxxcvXhxksB9ulInIe9AqCucjBq+F99rb116jsFZNmjTJyEbMnz+/tGhhhYJ7/fHHH9LbWQ8RqlSpkmye+trvB6oD0WoOSVXODBx8+vSpfD/+jmhfg78f1jxngqjkfxj4JKeh2bZ1c3xfTinHjS1eANOmTSs3wuiBgsl4vvaC7++QDYybLN0PtlixYjJ0xJcdOXLECJ7gDeU4ROTbMMFaD13D29KlS4P8OUr/kFljluwSZC4gwJk6dWp5PUIvSrx2cg3zLJReomxcl6Gin+revXstZhHS74vujWY9+IuIPH9uos+8XreOHz9u8RcIPKF/acqUKWVtRnAXr51cwzy/huF+GJn/upUCkjx8CSpywrMhjaFGusS/du3a8jE2jIkY+KRwvajoaYG+2vsKCyoyC3Pnzi3HihdAM/dy8ydoNfDRRx/J/xe0HDhx4oTFV6Hc0TrzE83WicgcvdJatGhhMSusYevWrZNMPfxdEPBEPzTyjVYDGIqle8eapY2LdQaQvrlEv0+UBuLvgo1h/P0YkCDyDAygKV26tOXQoUNy/uE8xHA1RyFrElmieG3yFXgdwXAm/fryySefSGCLvP//5ZdffjHuj9EKxV/uj58/f25c/6G6ByX+6NNNxMAnOQy7JtaDjG7cuGHxRdjBKlmypBwnLiiYxeB7cNOFTCxkDyOwiAUKmVq+CAF0nUGGARFowk1EvpcZiX5WGPCDcxWvLeibpqE82Syl7ciG0VNOMXQPfYfJt+B3CcMQMSQIaxh6Wl+/ft3i65C1imFY1v1tkWmGacC6lL9bt24MfhJ5ADLHdbBT3185E4T67rvvjH6Z2MzwNrTNQBs0/Zry+++/e/uQyMYatmDBAmldh4z/li1bWm7evGnxBbh2Q+9yZ659EOjUwwkx9IgIGPgkp/rO4A3N/n0xwwEXC7qJP3ayzNaHK1BL4BFQR+8Z3Hh17dpVeqr5YoaMnoKLYSIchkXkW0HPKlWqGGsULuKtL5jXrFljbIT5ctN7rKvIIMSxIqPQF/tw0fvlgz/++KMlceLEUgWDoCH66/mqyZMnG71vr127ZrOaB2/4exCReyHQ9PnnnxvZnsjsdxSCOzif8f3omelNqOCqVq2a0cNzy5YtXj0esm8Nw0YY7m1wf9+jRw/pt+lNuBfE71DBggUd3rBGOyP8XXSvTyJg4JMcnrSmbyh9rTcjLhywU4Vjw84VdrDMktlD/1uoMAQJPWNjxoxpGTRokJQs+JJnz54ZpSFooI1MUCLyPrxe6AEteI8JsdYN7/VwtT59+lh8ETIFmzdvLsePDRZkEnINMxdkqHzzzTcyTRlv+Ng649hX4PcKvd1wPlStWtUIrGNDAL239bUeMo19eZOAyF+g/Fv3k0f2taMaNWpk9M731kYZKrZQuYU1DNUWqOjiGmYuuOcaPHiw3IPhXgz3ZLg384Z79+7JOorf6xkzZjj8/XojD62CcE4gbsFen4GNgU+yy6VLl+QFUGd6Bp8K6k24KB8zZowlatSosruDHSvsXJF5YZcRu434XUOwwteCi7gosM6KYfkOkW8MIkP7FZyTOXLkCDIlVm/coezp1atXFl+CNWzUqFHyeoeMQWQOcg0ztwcPHki2JLI/U6RIYdm4caPFFwMturQdfWStr/eiRYsmj0+fPt2rx0jkz6w3RVq3bm30C3bUjh07jE0/b7RhwuCiESNGyOsdKrcQXEIlF5kXqu6QcYk1IlWqVDKXwRtGjx4tv9u4NkLiiSMwdFkHThEn0DEMlr4HLgY+ya4hEbhZxAtG9uzZZQfGV6DUWPdAwwu0r2UHUvgzoHTpKgaUYBHzlUCFnoioWypwV5vIe3BRrkvZ0YvXejMCH+ss0G3btll8yfnz56UHGo6ve/fuPpkdSOHLgKpYsaL87mFyOjKPfQn6p+HYUCXz+vVr43EE4vE4+oDi/PG1zUcis0OwMHPmzJa6detKhieChjjn9u3b5/Dz6OF32ODzRnuxQoUKSbZqr169vJYdSO5x5coVo2d627ZtHQ4+hhcC6DhPnK3W6d27t3wvYgW6ygHxAgpMDHxSqDA9Vvc0jBcvnuXu3bsWX4Ag09ixYyUrAceHBtrkn1CeMHPmTMk4RuYMphD6Aiz+2IHUwU9kqBKR5zchpk6dKucgsv7xHhe61q8fergChh750nH/8MMPcsyZMmWSQUbkn/A7OG3aNCkdTJkypU9NXEagHesqzg+U5VsHU9CbD48j4wdBGQTmicg15s6dK+cXpk8jYIiPixQp4vDzrFixwmi95MmejHiNwDAlZNBlyZKFA2T9fA1DFi96yKZOndrjPVtRkYDfcaxDjg7ARdxCbyqMHz/euFbEzAYKPAx8UqiBHV0GhbesWbMGKR30FpRh6QmIXbp04e5igEAP18qVK/tU9id+F3Uzebx9//333j4kooCCDACdzYm3tGnTBplmi+nVeBwl8Ldv37b4YpanL0zfJc9UMGCyMX4f27Rp4/HMmZAsXrxYsrWCb94hC033HNRvGFpCROFP3sA9Fc6poUOHStASHy9fvtypoBSqHdAT2pNJMYULF5Y1rGfPnj7XPobcA4PwypUrZ2R/eqrKEr/jOuu0SZMmDn8/qi3wvRjQjM2F4BvkFDgY+KQQX2RQuqAvdpFZaT3501sXCuPGjTOyPHfu3OnV4yHv/F7+9NNP0rMFWSobNmzw9iHJzqd14MWZ/kxE5Dj0wdS9p/Vb8IzwAwcOSFuKYcOGWXwpyxODH/bs2ePtQyIvrGHIUEb2J/qmbd682SeOCYGM0MoE9Rv6zxJR+KxevVrOpzhx4hg9DNFuwtcHieH4sMGPLE+UH+/fv9/bh0ReuBefNGmSx7M/semGqp0bN2449b26DdLs2bPlYxy/t6fWk+cx8Ek2YQfP+mLX02nttjLrSpYsKcfSuXNnZnkGOCx8lSpV8pm+aSgRtA5+rly50qvHQxQIli1bFmSdwm5+SBfq3h60gEEymLaL1wkMvWGWZ2DDRrLOYPn88899JvsztFJ4fbPo7U1wIjPDRoPOOkOPXcxOwMdI7HAE5i1gBoOnYHMEx401DNnhzPIMbCg5L1OmjPzutm/f3udnbOhjRZVQvnz5jGxrCiwMfNJ7lixZEuRm0tuZMvPmzZMsT+yGYnIhUfDsT/RNO3jwoNeOBYEV6wm56CfjzK4kEdkHN3xJkiQx1qngpex4ffAVs2bNMrI8d+/e7e3DIR/rm4bsT2TOWA/k8hYENxCIRTZ18GtCvbmHTUdsRhOR4zCTQE+XXrVqlbF+ObqB37BhQymRR5m7u+FaW2d5Ojp8iQIj+xNtho4ePeqxn+1o0F9nWeOcwTUZPsY1pC+08CPPYeCTgkDpnXXQE708vDWtGiUVOvMUPR057ZZsQYARu9C4KJs/f75Xj+XQoUPGzSHKGL2dZUbkr+uU3r2PGDGizQ265s2bWwYMGODV6gAMf0B2J46vdevWrFQgm5BBWbBgQQmOo9+mt2C9wiZi8JJ2BGh1Xzfd8xPDLn2hzzaR2dSsWdPokYgqBf2xI1Birjcjjh8/7tbXBFTZ4We1a9eOWZ4U4uR3DMNDkhIqcdwJ5emffPKJJXny5A5dUyGmgOAsfpdnzJhhVDKg9J0CBwOfFGSBixs3rhH0xE7I/fv3vXIsuKCuUqWKXGSj/MOXsnd8Afqb4gYFvv32W+lhh6yRRIkSWWrVqiXDMwIJduwQHMfvLaZjerNPEhZkfQ6hhImIXOf169eyqWC9QZcmTZogN2R4fdRBGm8NY0E2QsWKFaWnFIJIXMOC4hoWFH5/mzZtKr+3/fr189qGM35XcQyJEycOstl86tSpIIOOEHDxhR7bRGYrD9ab48j81Bt3jqxTWEswWEi3enJngAkbHjhGZKZTUFzD3l/DGjduLL+X2HR21xqG+z1UgOLnDB8+3KHvxdfj+9B2aOTIkfJxrly5eH0WQD5URP9f69at1dOnT+XjPn36qGvXrqnEiRN7/DguXryoihQpog4cOKA2btyovvjiC/XBBx94/Dh82dq1a1WNGjXk4127dqlOnTrJv9eWLVvUP//8oypVqqRevnypAkWUKFHUrFmz1JgxY9To0aNVzZo11bNnz7xyLLly5TI+Pnv2rGrfvr1XjoPIH2HD9t27d/JxhAgR5P2oUaNUtGjRjD/H+gVt27ZVuXPn9vgxnjt3ThUqVEgdOXJE/frrr/L6zDUsKK5hQeH3d968eer7779XI0aMULVr11bPnz/3+HF8/vnnKn369OrBgwdq7NixxuM5c+aUa0SIHDmynGf4f0VE9ps8ebKcOxUrVlR79+6Vtax48eIOrVPLli1TBw8eVDFixFBDhw51y3GeOXNGFS5cWJ04cUJt3bqV17E2cA17fw1buHChrF/Dhg1T9erVUy9evHDL/R6eH0aOHKn+/PNPu7+3ZcuWKmLEiGr//v1y3uEcOnXqlNqxY4fLj5N8lLcjr+R7QyKKFy/utd0PTDjFlMOsWbNaLl68aAk0gwYNCpLJZP1WunRp4+syZMhg2bhxo83nePDggbGbHIg2bdrk1d8hZJuWKFHC+P+GjC8OgyByjWnTphl9dPG+aNGiQdartWvXyuMoucLwB0/DVHlMmke29+XLly2BhmuY636HcuTI4ZXfoUWLFsm/P/pn4/+FdvfuXenlZr22nT592uPHR2RGGGiHFhE4d9CXE6+B+HjOnDkOVeahVzS+b/DgwW45znXr1sm5j0w4ZKgGGq5hrvkdQvaru36HkE2aN29e+Tfu3r27Q99bt25d+b4uXbpYOnToEOpgTPI/DHySDIXRJUx4j/5pnoYb17Fjx8rPr1atmtendHsLSsswWAA387hpxxumJ+IG6NGjR/I1uNHARYn18AFrGDqA/5coTQtUGDSUJUsWad3w66+/evzn37x5UxZ9fbGECyT0+yMi59cIvAYmSJAgyKAV62FBuBjOnTu3MbnT08c3atQoOa4aNWr47JRud+Ma5hpnz56VAAcGMWzbts2jPxvnkZ56ix611oYMGWIMY9Eb5d7urU1kBugriHMGZbo4p/XmgiN9CvXGH8qpXT1FG2vYiBEjZA2rU6dOwM5V4BrmGvg3Sp8+vSVhwoTSFsAdiVJ6E/z69esOJcfg+3B/qOMfCIZ6q70MeRZL3QPcf//9p8qVKyfvdelgnDhxPHoMb968kRKq7t27q549e6p169Z5/Bh8RcyYMVX06NGllCxp0qTyhseQmh8/fnyjvKJy5cryNcHh/2O3bt0khR+laYEqc+bMUgpUtGhRVaVKFTV+/HgpL/KUVKlSqYkTJxqfX7lyRUosiMg5CxYskPLxR48eqdixY8v5XL16dVWyZMkgJYAnT56UP+/du7fHju3vv/9Wn332merVq5fq27evWrNmjRxDIOIa5hrZsmVThw4dUvnz55eSyUmTJnlsDfvwww+lXFGX5l6/ft34sx49ekgLpFevXsnX7du3T67frl696pFjIzKrn376Sd6jbHzOnDnycaNGjaTc1l44z3Deff311ypWrFguO7bXr1+rTz/9VNavAQMGqBUrVsjrdiDiGuYaOXLkkDUMbRwqVKigpk2b5tLnR7uI8uXLq7dv36qBAwfa/X04lpQpU0prv5s3b6o7d+6olStXynlF/o//lwMc+jihF4mGfjHWPQrd7cmTJ/LCtWjRIjV//nzp16H7tpFtWHDRw9IW9Jg5ffq0WrJkiQp0CJ7//PPPcqOGi5B27dqpf//912M/H4EQBGasAzcTJkzw2M8n8hfog4YbPWwg4CIavQ/RM1MHZwBBId33CRto+gbF3RCILVOmjFq+fLmsY8OHD+cFdBi4htknXrx4asOGDapr166qc+fO8m+jN6ndDcHW+vXryzmVJEkS43EEab766iv5GIEXXC9Wq1bNZgCAiP4H51Ljxo2l9yECi6D75trru+++k56EuJ51lYcPH6pSpUrJhh02D4cMGcI1LAxcw+yTIEECtWnTJtWhQwcJ+GNmh6vWMFwD4nyAbdu2qb/++suu70OMoVmzZvLx3LlzJbBNAcTDGabkQ1DWoHtd4O2jjz7yaDnuw4cPpUcHShcPHDjgsZ/r67744osgfWTQbyZPnjxGj61IkSIZ5RbWOnXqJBMGA7EnT1hmz54t/ciaNGni0d9x/P9CmYc+x1B+T0SOO3funEywxbRUnEuNGjV672vQS7djx44uLwEMyf3796WHFcoOf//9d4/8TDPgGuZ6P/30k5TkNW/e3OttUzC9N3ny5HIejhkzxqvHQmQ2c+fOlXMnc+bMXp8mjTJu9KNOkiSJ5ejRo149Fl/CNcz1pkyZIm0UcB2HWQiusmLFCofaRehWMrpPNa7j4MaNGwHZlz3QcEsnQKE0b/bs2WrVqlXyOVL4MRUb7z3hjz/+kCyZu3fvqp07d8r0QLLNehowMhiLFSsWJJsJmU7IBlm9erXavn27SpcunZeO1He1aNFCdl+xm92wYUMpjfCEZMmSqWvXrhmZabdu3WJJIJGDUFabNWtWyRZApgVeE1GOF1zatGmlJNiVJYAhwdpVunRpyZbBGlagQAG3/0yz4hoWfm3atJGJuXhDSap1pY43pvciAxt++OEHaVf07Nkzua4kotChMgBwHlu/NoZm6dKl6vz58y49jtu3b8sahpJfTCXPly+fS5/fn3ANCz9kfM6bN0/aPDRv3lwqeVwBGdSOtIvQrWQKFiwoVYCLFy9WY8eOletHZDuTf2PgM0DVqFEjSIkFSpfy5MnjkZ+tF1uUuWOxDeQeKPbATTwCxRcvXpT+p8HLK1BWgTJqXEzpr8UbevbQ/6BsD4H+9evXq7p163rsJg29gfr06aPKli0rARzcwHqy3yiRmaF8Cedr1apVjRLbBg0aqOzZsxtfg/PKk9AXCqWBL168ULt37w5yLPQ+rmGugX6AaKmAm2ucAwg4egL6n+Em8fLly8ZjuH5MkSKFbAB8/vnncqNfq1YtKR0kov/ZsmWL9H9G+fP9+/flc2jSpIld34/XwlatWknPxGPHjrnkmNC3F2sYroOxhmXJksUlz+uvuIa5RtOmTY0kFKxnrkxCQQn9jh07HDoWwPEUKVJE7sseP37M+zN/5+2UU/K8ly9fGlPckeaNqWuvX7/22LRr/LzUqVMzpdzOEgtMxkMZCv5/RY0aVaYFWtNl1MHfUN5Ntif64d+xUqVKHvu9h19++cWYRJ0qVSqbZTJE9D+HDh2yxIwZU9YrrFX6te3kyZPG17x9+9aSNm1aS7169aRsz90wPRQ/D28sZ7ONa5h7rV+/3hIlShRLtWrVLH///bfbfx5+Dv5/YNKxtbFjxxoTpvX/M3wcqNOgiWxp0KCBnBuYDD5hwgT5uHDhwnZ/f/fu3Y3vcUVpPNYtXINmyJDBoWnYgYRrmHutXbtWprHXrFnT8ubNm3A/H9q/5M+fX/7N9+zZY9f33Llzx7gnQ5sklLqT/2PgMwDt27fPeFHesmWLR24WdV+UTJkySdCTi63jVq5cacmWLZu3D8MvbNu2TS5ePv74Y5csuvYYMmRIkAsiRy58iQIR+nXiXKlTp46lVKlS8jEulK3NmzdPHk+cOLH0HnSn27dvy81iunTpZBOPHMM1zHU2b94swc/atWtL8N+d9u7dK+cY+trdunXLeBx91dCjHX/WuXNnS/Xq1S3Lli2z/Pvvv249HiIz+fnnny3169eXHpolSpSQ8wWbBvZA/8Fo0aLJ92DTPrywbmHTLmPGjLKekWO4hrnOhg0bJPiJc8MVfavbtm0r50mFChXs/h4Et/E9o0aNCvfPJ3Ng4DPAoKEwGjTjRG/RooXHfi4WbywWKVKkYKZnOG501q1b5+3D8BsbN26URRcDvjwxLALZpQiY6MBnuXLl3P4zicwMAZQlS5ZI5ifO1eC7+ch+yZkzpzw+fPhwtx7LH3/8IcPJkCmD7AByHNcw1wdUEIz85JNP3L6G6RvEbt26BXn8m2++kccxqNLbg1qIfBmSTHSGmb0bZ71795avL1SoULjPLySfIOCJwCc37pzDNcy11qxZY4kYMaIMng3vwCMkVOG5HMn6nDx5snx9gQIFggxe9tSATPI8Bj4DCMobdMkSbiIxJdcTUNKbO3duKRM4f/68R34mkb3lFlgoGzdu7NIpgyFZvXp1kKxPToImCr0UCfr37y/nS5EiRYLc/KF9BB5HOfzjx4/ddhy4EEaANVmyZO+VuBF5OwMJbSCaNWvm1kxL3PDjXIsePbrlwYMHQa7vdEbazp07ZYPv1KlTbjsOIrPSQRYEMe1dd2LEiCHfg00OVySfcOI4+RpUCaCdEaa9h3cN01mf5cuXt/u80K3/EDjt0qWLrKfTpk0L13GQ7+JwowBSrVo1tWHDBvkYDYXRJN/dMHSiSpUq6s6dO2rr1q1soE0+BQ3KMdEPEzM7dOjg9qbWGP5QqVIl4/Nu3brJNFwi+h8MgDh58qRKlSqVDCWbPHmyPI4BEdbTVUeOHCnv27Vrp+LFi+eWY8EAo8qVK8sxbdu2TWXMmNEtP4fIGRj8haEamPbepUsXt61hFStWVAUKFJBruvHjxxuPY7LxZ599Jh9jIm769OlVmTJlVOHChdWDBw/ccixEZoBru6FDh6ozZ84YQ8L0FGp7jBs3Tr18+VKmrVevXt3p43j+/Llcd2KgLNYwThwnX4JBfRiKN3v2bNW9e/dwPVe/fv1UpEiR5Pd8z549YX594sSJVYkSJeRjDK3CwD5MesfwJfJT3o68kmdgB9460yx58uTSn8mdkJmDEixkCBw5csStP4soPNCAHOfFuHHj3P6zzpw5Y+ww4g0ZpyhBIqL/WzeQ2Rk3blyjBAnvUZ5nnZX922+/GX0H3dWrDNkH6C+KjNLjx4+75WcQucL06dPlfJg0aZLbfsaqVavkZ8SJEydIKeDZs2eN9Qy9dvXHX3/9tduOhcjXLVy4UM4DZFqiIkEP6LO33deYMWMs8eLFk0qh8KxhNWrUsMSKFYuZ2OTTsHbh/Jg6dWq4nqddu3YOZX2OHj3aaD925coV+Rj3aNaVDeQ/GPgMEHowhH6bM2eO23/msGHD5GetWLHC7T+LKLx69uwpix1K+txNl2Pot5IlS7r9ZxKZAfpn4iZNnxuZM2eW9yNHjgzydZ9++qk83rJlS7cdy6BBg+RnoA8VkRkmESO4guF97oAgCnrDIwAavKdolSpV5FzRw1sQAEWpLlGgwtAWnAv9+vWzLF68WD7Onj27Q8+BDYbwlP/iZ6Ov6Pr1651+DiJPDrREMsiuXbucfg6UrGMd/Oijj+zq1YmNCJyb+B5sUKBftafiJOR5DHwGAN2bSb9huJG7p27iRhE/CzeORGaAbDLcvCHT7OLFi279Wcjw/PHHHyUbWmet6X6GRIGua9eucl7gwhXvMb06eBDlr7/+ksm47upVjQ07/Gxs4BGZAYKRmGgbP358yVzxJARWcL5g/dTr2tatWz16DES+Ar1udX/Ow4cPGxt1ffr08dgx6GBr8E1DIl/19u1bS5kyZSwJEyYM1xDJ06dPOzQMTA/JRJb2gAED5ON69eo5/fPJd32A/3i73J7cB/1hUqZMqZ4+fWo89ssvv0i/T3c5ffq0Klq0qPSUQR/RDz9kK1kyB5wnRYoUkT6CBw4cUHHixHHrz5s1a5Zq3bq1fNyiRQvpcUMUyF6/fi1r1uPHj6VX4M6dO6WH4Jw5czx2DCdOnFDFihVTNWrUkB7A1n1FiXwZzhv014wSJYr67bffVKxYsTzyc9EXDf09b968Kf1At2zZoj7++GP1888/e+TnE/mSzZs3y3wD9Ay8du2aSpo0qZyb6DuoewqGZM2aNdKnsGrVqk7fPx05ckSVLFlSegDPnz+faxiZxp9//qkKFSoka9e+fftUzJgx3f4ze/furUaNGiX3YZ06dVIFCxaUn4tjwVpK/oMRKT/XqlWrIEFPLLhYTN3l0aNHMjAGF8BoVsygJ5lJ3LhxpcH1vXv3VJMmTeRmzp0Q0MEAF8D5goALUaDCMJQlS5bIDWLq1KklcAMYPKb9999/bh1ChmPAGoZBfNiY4A0jmQmGDWENQwCyadOmcr64Gm4GMbTF+ryMECGCatOmjXyMISo4b9avX69q164taxtRINm4caO8x/3WoUOHZE3DuYmN9dDgmvPLL7+UTQMMLXPGH3/8Ieddzpw51U8//cQ1jEwlYcKEsoZdvXpVApHhWcMw2Gv79u1hfp0eOosNOwwTS5YsmQy23LFjh9M/m3wTo1J+7M2bN3ISa3gBGTFihNsWwX/++Uems/31119q7dq1HtmlIXK1zJkzy5T3TZs2yYRAd8LkakzJBQRzypUr5/bJ8kS+CIEaZHrqqZ758+eXNSxHjhyy+68hewV/hmoCV3v79q1Mkf/7779lDYsePbrLfwaRu2XLlk0ylZFtOXDgQJc//8OHD+V5p0+frm7cuBFkox0B0MOHDxtZbTiPfvjhB65rFFA2bNhgBD514KV8+fIqYsSIYWZ7IkM0QYIEshY5CmsmsjwRQF29erWKFi2ak38DIu9B0B6B/5UrV8ommzMQOMUGOip3kJQVGqxXUaNGVXfu3FEXLlxQ1atXl8dxH0j+hYFPPzZz5kzZeQfsxKOMNqwSi/DADSvKOPBClTZtWrf9HCJ3q1y5stysff/9907vutsjU6ZMQTYikBWAG1aiQIMLTGyePXv2TC5Ar1+/bgRTrM+RqVOnqmPHjqlLly659OcjMNO5c2d18OBBuWHUmdhEZoQbt++++04NHz5cNvJcHVitUKGCZOLgfNRQ1qvbKCVOnFje41xGgJRZZxQorly5IusTgpw4T3TgExvbYRk9erS8Rza1oxtvWMPat2+vjh49KmsYzkcis6pVq5YaNmyYGjx4sMQVHJUuXTqpPkVyyeTJk0P9WqxTaA0BSBjTGaBbt2518ujJZ3m7ySi5x8uXLy0JEiQwJpXdunXLrT9v6tSp8rOmT5/u1p9D5ClojI0JthiscvDgQbf9nFGjRgUZPla5cmW3/SwiX9agQQM5B2rUqCHvMd3z/v37xp8fO3bMGAb2xx9/uPRnY9gYnnvWrFkufV4ib65hGKoSLVo0GbDijgGWuM7EIBdt+fLl8niKFCksyZMnl4+XLFni0p9N5MsmT54sv/elS5e2vHr1yhI5cmT5/MKFC6F+3/79++Xr8PX37t1z+Odi2B++f968eeE4eiLfWsMaNmwoA/OOHz/u8PcvWrRIzolEiRLJuRia77//Xr62evXqlj///NPywQcfyOccPOtfmPHpp1DWrlO7kydPLj2Z3AXZN8iUQUPgzz//3G0/h8iTkKGCbJaPPvpI1atXTzLR3AE79Oj9ZN0UH43piQJtEJ8uK9JtUpC1pjPHYMqUKfIepXxJkiRx2c/+/fff1RdffKG6deumWrZs6bLnJfL2GoYefygbxBqGNkSugh6EKCPEdeayZcuCPI5e2SgZ1BluyPgkChS6LyBK2/fv3y8tVJB9iQqf0IwZM0beo788hiE5AsM4e/TooXr27KmaNWsWjqMn8q01DL3Ws2bNKtd9uE50BNrvpUmTRtqzoH98aDCUDzBQE4OV0FIJmPXpXxj49EM4wVesWGF8fuvWLXnMHbCgI8iKPmx60SbyF5jmh8USQU80nHcHBHm6dOkS5LG+ffuyJxoFDPQlQykTAjMoTcLNor4BtG5Sv3DhQmOzwFXQzxNrWJ48eaS1BZE/QY8/lLpj87tXr14ue1708tQb3fPmzQtSMtiwYUP5+PXr10YgCD87rHJDIrPDdRsCJ1C2bNkgZe6htXtAX89Vq1bJx45ea+I8wxpWoEABmeNA5E/Q8gFrGIbOfvXVVw59L9pN6CF8euM8JLlz51aJEiWS4Co2EnQgdNu2beE4evI1DHz66U0kdtw1TChDnxl3QP+Ns2fPqjlz5qjIkSO75WcQeROyWtB3CbuOelKnqyFj2rqfE3rM4OcR+bvTp09LVcKAAQOMLBkMTMGGALLHNPS+xQUp+guWLl3aZT9/yJAh0o8Na1ikSJFc9rxEvgK9zhDUnzZtmkuzVzA1HhDcwQZ78MexjqGvPIJB6JmNnqMYukLkr86cOSOJJriew1A+nf0ZVn/P+/fvq1y5csm9Gt47AoPGEDjFHIewhicRmVHGjBll/fjxxx+NjQV7oU884hOo7MHgvZB8+OGHRqzk119/VWXKlFFx4sSRBBjyHwx8+iHs/umhRoDyB3c0lkcD7W+//Vb1799f5c2b1+XPT+QrMBwMza6R4fL06VOXP3/ChAnlZ1jDAk/k77CTj6FeKAVEiR6qCKB27dpBNgP0kLHWrVu7bD07dOiQBIQGDRrk8M0mkZkgSxoZaDh/kD3tChhiWbNmTWkP8e7dO+PxYsWKyWYGfg5+5tixYyV7BoOWMBCJyF/poEzx4sUlCQVrDOA8CE2RIkWkbZjO+rTXb7/9Jhvz33zzjcqePXs4jpzItyFBpFSpUhLIfPHihd3fhyxOlLwjsInzJTQ68IlBzdiERysXtmrxLx+g0ae3D4Jcq2PHjkZKd8qUKdXVq1ddnsmCm1OUVeCFBAs7sz3J3928eVN6pdWvX98t2Zi3b9+WvmhVqlSR4Or8+fONzBkif4WACXbXEyRIoAoWLCjT1O/evavWr18vPT41TKlF8HPChAkumVaLEnf070VwFWVNzJQhf4esMAT4P/30U8n+dAXcQtjaiOjatauaOHGiat68uZo7d65LfhaRr0NGGVqNof0X1jSsYWjfgknv7khyQdIJKvz27dvHNYz8Hs4jlKRjs82R5BDEQXB+oIIvNOfOnZMNBLSIwcYdzyn/w4xPP4KddJRWoJm99cWnO8r3hg4dKi8QLHGnQIEFE31sUU60YcMGlz8/NikKFy5s9HcaP348+3yS38OFZbVq1eR3H6VICHqisXzw9ix16tSRPqCuCHrC4MGD5SIaaxgvbilQSt5Rco4MFpShu0JI2dfIsIG1a9dK5htRIEBCCEpyUb2ArDFAyWxofv75Z6cGj6E9DNrCcA2jQJEhQwY5vyZNmmS0kbAHNh/CCnpClixZpLwdmwqnTp0yHtf9qsn8GPj0I9hdx42jLjlCk3mUNbkaJk6jgfbXX3/NEncKKDifKleu7LaSd12SiM0EZA6gH5uryhKJfDULDQ3rT5w4IVmdgECoO/sqHTx4UI0aNUpK3JHFTRQo2rVrJyV8rix5xwYd1qvly5cbj6HUF5OpMRhw8+bNUoWETFNMgOewCAoEuB/TZeyhZaKhXQQ2vh25psQAQGzEIwkFfa+JAkWnTp2kz7ujJe8aNgtCSipBFSs24QGVQCiNR0sX9Kom/8DApx/JlCmTseuHC0z03owfP75LfwZ27jE9EOVS/fr1c+lzE/k6ZLcgoxqLbffu3d3yM6ZOnWoMgEBfUZa7kz969eqVZHXiPBo5cqT0otaBT/T31FBZoAcQuXKKO8rce/fu7ZLnJDLTGjZz5kzpA9+zZ0+XPOeuXbukTQU27XSPXtxA6uFkv/zyi1QyLFq0SCa+c/I0+SMMet20aZMEMFGBpwep4NwIyYwZM+R90aJFgwylDQ2yz1Dqa10hRBQosLag3diDBw9Unz59HPrexo0bS+UD1qyQ6I0KBD7RqxqBUgzhZOWCf2Dg049EiBBBsj1jx44twRNkZLoadhfPnz/PCbgUsNCDEDvtOAdwQ+dqKLOwnnyLibkseSd/g3MHmV/IvkRZLLLQLl68KOsKMj419AdEWbqjF7ghQZYnsmxYHkiBKk2aNFLyjk089NcNr5IlS6pkyZLJkDIEfrQaNWrIe2R8YoMDmd342fnz5+eaRn4HfdmrVq0qG2qXL1+WbGdU3qHfpy3//POP0S++bdu2dv8c3NshGIO2S7jvIwo0KF3HhvnkyZPlHsleaKOEtWfevHl2BT5RHo+SegRZOd3dPzDw6Uewiw9oJh8zZkyXP//x48eltwb6yuTJk8flz09kFiixwBAiXKw605spNMjwxMWyhptFV02xJvIVCJaMGzdOgpoof40RI4bxODbvAFkzyBKDJk2auKRNCwI++Jkh3YwSBQKsXci4btOmjXr58mW4ngvBF93Tc82aNcbjeH6sZQjS4PxFpidaW+CGlWsa+RtsWqPyDn0+dZk72oGFlCSCXvH3799XSZIkMTYJwoKNwrFjx6phw4aprFmzuvT4icw2yBn9c9G2xd4enOi9CxhAhqojWzArBbARj808/Ayc2+QfGPj0AyjdK1WqlAx+AAQ9nel7ERZk3GTMmFH17dvX5c9NZCa4aUNW9aNHjyT705XQngKT4zUEfpgdQ/4G/f+++OIL6TkIGzdulPfYUNDQX+nWrVsSCNVls87COYRMHNws9urVK5xHT2T+NQxDjv744w8ZpBdeuj3FunXrjD7z0aNHV+XKlZOP9UBABjzJX2GTGsES9IDXgc/Qytz1ph42u+2poMMahrULrcbc1WqJyEwl71jDbt++bfeEd/SeRtUBElYwVMyWBAkSqMyZMxsbDeRfGPj0A9j5w/RAZMcAsmj0haerIJUcJVHDhw9niTvR/y8XRJNtZJChDMKVcOFs3eMQASD2lyF/s379evn9xs77zp075TGUCmr6whRBT+ssaGdgijXWMWSdscSd6P+mvHfo0EEyMLGJFx7I1I4XL548DwavaBgGCBjU9+eff0o5MM5F9ExzdbUEkS9AcD+swCd+97FJoPsO2gObB7jXQ+UdS9yJ/m+2Ce6XcF1nz3AwBEv13ASsRWGVuyPwefPmTemli7WSzI+BTz+APhTW6tSpY3eTbHtglxE7mUj/rlu3rsuel8jsMOALCyk2BFwJEwQxSdD6ptLei2MiX4dMFwQ9cQGaPXt26XOGyoUUKVIEKUHXgU97ywBDgk1BrGHY7Q/vcxH5EwzBxPkR3oFD2EzQ55YeUqbL3QEBG/RjQysmlBsia23t2rXhPHoi34ChXroyB4knx44dCzXwuW/fPlnzELjBoL2woO87qu0wzdq6KoIo0A0cOFASQ7CBZw8d+EQ/6ocPH9r8mnz58sn7U6dOybmN9hLoC+/qpDLyPAY+TQ69max31wETa11p1apVsnuJXUaWKREFLYlA+eyUKVPU9evXXfa81ruSgBtTDIPRWd1EZoXfYUxwR5AEwx/Q2gGlSoABR3qNwQAiTMlFZovOGnMWeojiRpRrGFFQiRMnlunuKBVEW4nwwKY77N2713gsW7ZsMhkXQR70MgT0TUPlUHh/HpGvQLsIJJxgIwHrFnoOokWLLpkNDsFL/P4jmGLPmrR48WIJwnANI3q/bRJaP+AcvHv3bphfj3ZH6MOLzYQlS5bY/JqcOXPKe1QmYJAS2rZgDcPQMjI3Bj5NDo3krZv64iJW91RyBexuYCGvVKmSKlu2rMuel8hfdOvWTQKg2HV0JWxgYAcTgSHAruOVK1dc+jOIvLFZV6tWLTlndEbYrl275GPrNQYl8JjAqUtonYXzBlNwq1evLpnURBQUyvgQpMHQr/DAdSLOZbRm0RCkqVixonyMwUaJEiWSadbYyGO/ePIXCHY+f/5cJj8jWAK5c+eWTeyQpEyZUhUrVizM50Y2G4bKoo+uLsElov9B79to0aKpb775xu5qPQyERgVCaIFP3HPh/EOFAmDzgcyNgU8TQ1lF8MEqmKzpyv5ls2fPVhcuXJBdRiJ6H6ZRI+i5YMECdfLkSZc9b4YMGSSb1HphXrp0qcuen8gbEMzEYLAsWbLI5whs6n5omJ6pIVCJnoDz5s0L18+bMWOGZI+Gt5SXyJ/PSWwOIPsMARxnISsGgzaDX4OiPFeX9+rNjeAtmojMTJ83aN1y/vx5I9vZFmSaOWLatGnSZ/Dbb791wZES+R9MXUcwE9d7GDBmT3VCq1atQpzWjuoEJJ2gQgnnsz6XEQ8hc2Pg08TQM+no0aNBHmvUqJHLnh8DJ5ABgOfU/S6I6H1t2rSRQCUWXlfDZoZ1uROR2aFKQQc7Y8aMKTeCGBZm3dcWIkeOrFKlSuX0z3nx4oVkAKBthN6xJ6L3tWvXTqVOnVoqfFwNmxtw6NAhI+sag8aI/CUJBRUKOvCpP0ZJrS1o3YJSd50ZGhoMQcIAW1QAhRRIJSIlw2bRVgWbeOGFSgXrcnfdsoKBT/Nj4NPEVq5caXyMkz1jxox2lU3Ya+LEiTKteujQoS57TiJ/hH5luDhF+R42JFx5QY1MApRPAT6eO3euy56fyJNQMoR+npiUiXLXZMmSSfmrdXAErNu3hMe4cePUkydP7C5/IgpUWGNwrYf2Sdal6s60R8KUXQxt0ZPisSmIDBq0ndAtLtCbHsEftL0gMjPcJyFAibJ23IfpwKetQCWqGBD037x5s7SXCMvo0aOlhD68bSiI/F3UqFHVkCFD1PLly9Xhw4fD/Hqci6iaRc95W3Tg88yZM0aFkj3ZpOTbGPg0MesTECcv0rFD6yfjCNwsory9bdu2spATUdiZmZjOienRerqnK3YdMTgJASPrYA6RGaH/HzI4W7duLZ+jLBZBUChatKjxdR07dpQd9nXr1jn9s3BRO2rUKNWhQ4f3MkmJ6H1NmjSRvoThWcNQ5o6gJoZA6N69WMd0pieGAOogKII/eMPQCCKz0r3XsbbhHuzSpUshZnxu3LhRzq28efNKhnVYAVUEPrt06RKuygeiQIHWYMi6tqd/NIZrIuiJoUgYuBdcjhw5jIxPHfhExqer7u/IOxj4NCkEJrdu3Wpkm1WtWlWm37oKFltcmKKhNhGFDRe82CzATd+GDRtc9rx169Z979wnMiNkLCMIojM6EQzRvf6shzbs3LlTbh5R6u4sBD3Rn8kdpbtE/rqGoRfu7t271ZYtW5x+Hj1g07qcXW9soMWFPtfRZw3rZXjOcyJfCXwisxkVDLh3QvYZ2rcEt379enn/8ccfh/m8GG6J+zoOASOyD84X9MJFfGTHjh2hfi3OV2R1otWSrXs264xPTHbXwVLeg5kbA58mhXIklBRB8eLF7SqZcKS3J7LMkO2ZNGlSlz0vkb/DhOrChQursWPHuuw5a9SoEeTzGzduSNYMkdl069ZNyl8x2R1Q6o4LSQxFQaYZYIgDfr9xAYu1zdnenhgIgWxPTJEmIvtgEx2VC+FZw3Tgc9u2bcZjBQsWNAKfOgiKQCt+lqsqlYi8HfjUg42QIRb89xrtXTZt2mRX4BPl7T/99JP0LcSQFSKyT82aNeV60p41TLdaWbt27Xt/pltV4HoUG/aoVNCfk3nxasOk+vTpEyQ7BqVJrrJw4ULZ0UB5BRHZD4vjF198ITd89jSutweGsqRMmTLIY+EpASbypocPH8pNHTJi0BcNEPzQk6CRbaYfw7RpZ2ASPJ4bN41E5PgahgCNDuI4ClPc8Tz4/rt378pjOsB5584dY1BEeHqJEvkKHQhBS5XQ+nvu3btX1j5sxumNgJDMmTNHKiPQ9oWI7Ie1p2vXrpJdjZYroaldu7bRgiJ4y5WECROqGDFiyMe3bt0yMriRfELmxcCnCSEoiZtHW70owgu9K9DvAjsmOrWbiOxXv359GTY2YcIEly3iwbMDcFFMZEa66Tx6nJ08eVI+zpcvn/Hnui8ggifOQHk7zj2U0doqNSSi0DVs2FCyW5xdw5ChhkAn6HLDmDFjGsEglBYiCIqg6KJFi6Q0EectkRkhmA/ow6kDLTq4b6vMvXr16qFmOeP8wLmHa8kUKVK47biJ/LlfNdYhDGkOTf78+eUcQxVS8NJ43Hvpa0hsblh/TObFwKcJxYkTRw0cODDIY5UqVXLJc6MnE/pZYMefiByHnrvYpZ8/f74x1Ta8cKFs7dixY5wuSKayYMEC1ahRI7V06VL5HBkv+D12deDz119/lQb0XMOInJ/w3r59ezV37lyn+5nZKnfXwVBkxenAUIsWLaQPb1iZOUS+6vbt2/IelTnIDANbm24FChSQezWdZRYS9BtE+TzXMCLnRIsWTbVr107Nnj1bsqxDguBmtWrV3lurND0YE8FOPYxMn+NkTgx8mhB2Cu/du2d8jptG3XsivLDLiN4YZcqUccnzEQUi9MdF9jR6NLkCgkBYyHXZBYKrx48fd8lzE3kCLioR9ET/TaxZGHCif4d14BPrGoYaWU+BdmYNw/M5+/1EpCTwiZ6EM2fOdLrfNYZDWPeJR9sWOHXqlGRkN2vWTK41mzZtykm5ZEr4vdWBEOvAZ/D2RNC4cWO1efNmo69gaGtYoUKFggz8IyLHIAEF7SIQ/AxN2bJl5f4qeKm7deAT5e3oOd+6dWujRzWZ0/811SLTsU7JdlW2J3YtUYoxefJkufEkIueghxOy2xD47N27d7iHN6DXIbJHhwwZIpM+UcbxySefuOx4idzt888/lyyv8uXLy00d1punT5/KEKPs2bPL1yDQgk0D/K7HjRvX4Z+BXXn0JsR5xzWMyHkIWDZo0EDOpR49ejh8PuG6FAFOa9aBz2XLlrn0eIm8Ab2k9bA+tDjS2Z8oe3cGMj0xkRrZ1kTkPJSwY4Nt+vTp0vMzpDUMX1O3bl2pdAjOurx92LBh8rVkbsz4NJkTJ05I703rsiBXZWfOmjVLdj0QVCGi8Ad6rl69Ku0jXAHnJrJodPYcM2TITIoVK6b69u0rQU84e/asvM+UKZOKHDmyfIxSIkxjX7FihdNrGHoJYtOBiMK/hqGlih44Fl468ImsblvZNURmgyF9W7ZsUUuWLJE+tc+ePbMZ+MQgLx0UDc2MGTNk0w+bDkQU/jUM15qhDdLDOWwr6Bm81J38AwOfJoNF8dq1a8bnyJZB+nV4oZk2Sppww+jsJF0iChrowTAHV5W7A851TL/GBTT6GPLmkcwEZUfv3r2Tj0ObfusMPC8Cn9i40y0hiCh8LVawMRGeNQxZ3HoYJzLiENTB9SYCqvgzvMe5i8w5buaR2WDTDhvSGAimy9zxO44NOGtYlxAMDT5AxRrOB5TlovUDNrqJKHxQYZQuXTq71zBco4ZU6o71Cf1Cb9686ZZjJc9g4NNk0IsCZbR64AlSr10RqMSOJU5m7I4QUfihrALn0+rVq40bv/BANgHOfx04QsCoW7duLjhSIvdChcKBAwdkwiaCkvi9DR74RDAEw47evn3r1M/YuHGjTNflGkbkujWsTZs2koH9+PFjh79/8eLFKnbs2MY5iefTQ40Q8ERv+ixZsqiMGTPK11n3ricy85Aja7i3QsYYElUw4CgkP//8s7p//z7XMCIXQZsx9OVEf3m0VgqtmhY9qTF001apO64tsT5huDQew/UqmRMDnyaDPhR6kBFO5q+++solz4vdEJQh6TJEIgo/DG/Azd68efNcsoAH71Gzd+/ecD8vkScqFdAQHpPdEdhEWREyliFr1qxG+SumPmN9Q5DfmZ+BoUb58+d3+fETBarPPvtMbvLmz5/v8Pciww1VCb///rvxmA584nxHJk706NGN8/306dMuPHIi9zt58qSsPSil1Rmfwcvc9+zZI++xNoWWqILnwT0YBswSkWu0bNlSrjsXLVoU4tdgswIl8WfOnJHNBy1BggRy34VsT12RgOtX3dKCzIeBT5NBORBOTHDVxD9M2cVQI7w4cCAEkeskTJhQ1axZU3YbXcG6rQUad+/bt88lz0vk7nJAlLkiewytWtBoHv1vIUOGDPIe2Z46A9TRYWC4CEXGJ9YwInIdbESgusiZYUTYiMC5fPfuXXkDlM7rwCcqjXBNi2EuqIqoWLGiy4+fyJ1Quo4MTUxiR1aYrYzPXbt2yftSpUqF+DzIqP7111+5hhG5GK49K1euHOoahgCn3nDQGxWA1mLx4sUzrjNfvXolm3nx48f3wJGTOzDwaSIIcmCqM3YdkG6NjBlX9ETCYovdkFq1arnkOInof3BeIeNF3/i5KvCJsgssykS+7ptvvpGbwi5dukjPJLRr0WWBGNZnHfhEsMRRmzdvlv5o2GQgItevYchoe/DggUPfh7YW2bNnl48PHz4cJPCJ9he4eURgFFmg2CTkxjuZDQbyYWMA1QqPHj2Sx/C7bE0PBwst8ImNO2RWcw0jcs8ahgo5fY7aUrhwYXl/5MiRII/r8/nPP/9k710/wMCniQwYMECNHj3a2HlAA2xXXCiuW7dO5ciRw7gBJSLXqVatmvR2QlZ1eFn3h0J54PHjx8P9nESeotcr9DzD7y/KXHXrlvAEPrGG5cmTx+jHRESug8AO/PLLLw5/r+6Zpm8m9bAIDoggf1CnTh25tuvVq5fRB1dniAEe021dQhtEizUM13fITiMi1/r4449lYwEbDGHdX+lNOluBTzI/Bj5NxLrvhPXuRHjghQAXszVq1Aj3cxHR+5DVggteNK4PL5RQ6eFmgEmiPXr0CPfzErkbssXQ8xYbeCh3B/T40/2TnA18YtjXhg0bmClD5CaJEyeWHr0IzjgKm+pw/vx5I0MOkPGNx+rVqyfnLjb1+/fv7+IjJ/KcJ0+evBf41JvTWOtCKo9FxR0CMlzDiNwDGwrYhAttDbMOfFpX01oHPgcNGqRq164tFRBkTgx8mkikSJGCfO5MZkxwmLSLk5kLLpH74PxCHzP0hwkPBImsh7egfNhV/UOJ3OHgwYOqWLFiMskdw43mzp37Xi80tIFACRIyozFZ09EWMLjh5OYdkfvg/EJbJPQ3c4QeZqSz3pImTSotWrDpjr6eq1atkl6fPXv2VCNHjpSNDCKzsA6Q2Ap8Ymjs4sWLpU1ZSFAKj163XMOI3Afn16ZNm2SjIaRNOgwuwvR33YM+eOAT/T/Xrl2rrl+/7rHjJtdi4NMkcKJi4pg1lPaFF7LQkEHGae5E7l1wccOI4KcrgqilS5c2PkewiMhXIasLu+N6YjOCnTrwqcv6MOhEZ8XgwtMR2MFPliwZp7kTuRHWHWzcbd++3aHvQ+AHlQl40+uV3vBAX17A2og/R7lwSDelRL7o008/VVGjRlVTpkyxGfjE/VWjRo2k2iG0NQyT4F1xT0dEIa9h2GDQw8ZsDeGsX7++DBiz3tDA4CMd+ETfanj58qWHjppcjZMxTAJBT32RqLlikcSCi94XDJ4QuQ+yXrJkySLnW3izqzt06KAqVaqkMmbMaPSQwiLNwRDkiypUqKBWrFghQf9Tp05J0EMP+kqRIoVR/vrtt9/KDaQj8Huv1zBHJ8ETkf2yZcsmfeBxvqFvtb3Q03PJkiVBHsNGBTJmkFkTN25ceT948GCVNWtWNxw5kfu8ePFCvXnzRrKYbQU+7V3DsDnOazgi98HUdmww4HyrWLGiza9BVVJw1hmfemMe5zyZE+8UTGLMmDFBPsfFIk7g8MBUzXPnzrG8gsgDcJ6hCT6GuoQXbib1AowLbw6KIF+F4Cb6+OmbQZS66sAnAiCAgErfvn1V9+7dHXpulM9iHWOrFiL3QlAG5xmqhKyzYZyhB5qhbz1eD+CPP/5wyXESeZLO/MKgvuCBT2Qyo3fttm3bQrzuQyXEjRs3uIYR+egaFitWLONc1xvs4V0DyXsY+DQJPfjBevc9vLuDOPkRPAlp54OIXAcLLm70fv/993A/FxZdBIuse/US+TL08NS75+jtZx0AcRZ27qNFi6bKly/vkmMkotDXMGxaHD161KHvQ9AHGZ63bt0yhiUB1kPrICiqml6/fu2GIydyD92aAfdjOgtMBz7PnDkjvWvRxiGk+zWsYTFjxlRlypTx4FETBSasYdhoQPVRaOf0xYsXjc91JRI2MvR5zMCneTHwaRK6JBAwxfmHH34I93NiwcUNIxZdInIvTMVFrxhnJuPamj6IbG1t/Pjx4X5OInfA4AYE5nVGF84BHQTVvZPQc8lWO5ew6JIlBD+JyL1KlCih4sSJ4/Aahmxu9O9F9htYBzt1EHTatGnSY23EiBFuOHIi99AZYNalr7oPoJ7onjdv3lADn5UrV3a4tzUROQ7zERDzCGkNQ1YnsrfRmkxncOvrS2zKMfBpfgx8moQuDQTc6GFKbnigpxKmk7HMncgz0AMKvdFQ7u6KUndrelgMka9p1aqVBP2xy64zPq0Dn7iAxC48Jmpa77KHBc+BoUksESTyjEiRIjm1hul+1Pr81hseuLFE2ybrG0n92kBkpsCn9VAuPTMBrVgAa5stCPwfOnSIaxiRh2CDoUqVKiGuYdi00JtxeugmMz79CwOfJoATDH3MtEyZMoX7OQ8fPqz+/fdfVbZs2XA/FxHZB+cbSiwwWTA89I2kK18TiNwhTZo0KkOGDEYJK8oAMZDLOvvz+fPn8rl1+4aw4IYRJbRcw4g8B+cbMtkw4d1euh+93sDXwc5nz55JBinkzJlThkdMmDDBLcdN5A46yKmrFZC1rIMjV65ckfdY/2w5ePCgvOcaRuQ5ON/QriWkAUUYRmu9UcfAp39h4NMETp48GaTv0Zo1a8IdODly5Ig07GXAhMhz8ufPLwumLoFyVvALaX2BTeRrMNgBG3f6xhCZz9h00wGQa9euycfJkyd3qGQdaxiCqCihJSLPrWHYcDhx4oTd36OHmN27d0/e62CnnuqubyqxEaIDSURmyvjU6xuyorWrV6+GuqGHNSxRokQqZcqUHjlWIvq/NQzna0h9PoMHPm2VurtiSC15BwOfJoAhRNbQ4zO8Jx0W3Hz58hmLNhG5X/bs2WX3EOefKwOfmOr+7t27cB4dkfu8ePFC3us1BxeQuKDUvT8R+HQEzqGPPvoo3EP+iMh+yMxEVpsja5gOfGKoGdYpHexE4DN27NhG9ieRvwQ+scEdVsYnziEEYbiGEXlO7ty5ZYMtpDVMBz5Z6u6fGPUyAaRjWy+MuGjUO+bO0gsuEXkOst3y5MkjrSbCWz5sDRshe/fuDefREbk/8KkvGNFgHuuanvCOzBdHcA0j8jwEPXPlyuVQ4BN9fXGjiXMffQ31QE0MktDZNOj3OXToUDVmzBi3HTuRu3t84vwAtHDRlXnBe7JrXMOIPA9rDvruhhX4tJXxqa9fuVlhXgx8mgAuBkeNGhVi0MNRuMBECQYXXCLPw3kX3ozPFClSvPcYhpUR+RIMNEI/pfr16xvtWqwDn6ADn7qhvD3wPbdu3eIaRuQFyLR2ZA1DcEhPckeGt/WNpM6mQZBo4MCBavz48W46aiLPZXwik/nAgQNqxYoVNlu4oN8tzgWcS0TkO/dhugWgDnxaZ3nq3tYYgkTmFNHbB0D2wS65Ft5+MGjqC7xpJPI8nHdTpkyRGz302XUGgkbt2rWTNhi4gMawI2ThEPkSlK/u3LlTgprVq1eX3p66TYu+GXQm41NfsHINI/I8nHezZs2SwKW9fXnbtGkjWXHx48c3XgNQOpglSxbVvn17aXWBEkQdICUyA92TVmd86sAnMj8LFy4sb7ZwDSPyHpx3CxYskIpaTHq3ljp1atW6dWtZi3DNqnvS41wvUaKEnNs6K5TMh4FPk3jw4IHxcXgvDLHgInDCE5fIuwOOSpYs6fTzTJ06VTZEMOysW7duqnbt2i49TqLwwjTnxYsXS4sHZH3C7t27g9wg1qhRQ4aahHSDGNIahpYvjkyBJyLXrWG4GcSAoyJFitj1PUOGDDE+1tPdEfgsWLCgvBGZkd68RtsGR2ANw7qHIAsReWfA0enTp9/bfEA254wZM4zPrQOfmLFC5sbApwlgYdQDICBp0qThej4ONiLy7oAj7DDiPAxP4NM6Sw79pIh8DaauN2rUKMhjwUsCS5cuLW+O4GAjIu9BdQHOX5yH9gY+rek+iBh0hOxPXouSWbVt21ZVqVJFgiUTJ040Mj83bdqkLl++LNd46OseHAcbEXkPzkk94CisrGsd+MQGPpkfrzZM4M6dO8bNoqsyPlleQeQduGHEohvePp/IMNBlVujZe+7cORcdIZH7BA98OoNrGJH3YOMO090dWcPQ2uXatWtSpWAd7EHWJ9pdoPc8kdmUKlVKNW3aVFo2gA58Lly4UHXp0kVt2bLF5vdxDSPyHrRoQRJKSGsY7q+uXLkiSSXYoAPcb6HHp27VQubEwKcJDBs2TBplw8yZM9Unn3zi9HM9ffpUTmYuuETmHnDUq1cvKXeHuXPnSu8ZIl/y/PlzdfDgQbVv3z5pr4JBJuipBDrL6/fff5c33TQ+LH/++ae6efMm1zAiE61hGNCJ1hTffPNNkMDn1q1bpQdwuXLlJBM0eL81IjPQWcx6fcM6FVLv6nv37skb1zAi31zDmjdvLrMTlixZEqTUPW3atPL+zJkzHj5achUGPk2gb9++RnYM+qCFp9T92LFj8p6TBIm8u+CeP3/e4b5Q1hImTBjkc33BTeQr0McWpbCtWrWS33X8juqp7nrXHEOPChUqJFnLjgzn4xpG5N01DDd/yNi0h56Ci9eB4OW9+nNkg1tXNxH5OvSrXbdunRFA0Rmfemhf8Os04H0YkW+sYadOnbK55ug4CyoUrAOfL168kI+jR4/u4aMlV2Hg0wRwo4jMGYgTJ064nuv69evyHjsZROQdOP9wXt++fdvp58B0XA3BJZ1hQORL5UTYIU+ZMqVUGty4cUOyPq0Dnzpgb2+mF9YwZItysBGRd9cw3BDqQUX2Bj6DZ3ajPyKe58CBA9LLXl+jEpnBrl27VK1ataS/pw584tpOX4/ZCnzidxz9AtOkSePx4yWi/61hOF+RfR1S4BNrknWpO85rDJvmUDLzYuDTx+GExBQxvSMxa9YsKVcPz/NhkqAuyyAiz0uWLJm8t7Xg2gulwxoWbx1QIvIVmNaMvn7btm2TQCUuFnX1gt5F1xlj9gY+cc6gNFb3tyUi761h9gY+dYYMMj51Vhzg9QAZnzj/0b+eN5RkJilSpJCKBd3jE0FPrG2hBT5xziCwwqFeRL55H6ZbVCBzW2/WYQ3DG/6M15/mxVddH3f48GE1duxY4/NBgwZJk3hnYcFNnjy5i46OiDxx0xhW4NPe/ohE3qYvGLGLjptEHQSxN/DJNYzI+/Q5aO/mnXWpuz7nsQHPqdZk9uFG6GM9YcIE4zEkp+g2RrYCnzhnuIYReZc+B23dh+mNutevX6tnz565pOKWfENEbx8Ahc7WjiDKB52FBVcHXYjIO2LFiiWBy/BkfOobSbh8+bJkHJw4cYKZn+SThg8fLrvnFStWNC4orTO/7P295RpG5H1x48aVzQp71zB9I4lNOl3BhMDnhg0bpJIpb968sikSL1481b59e7ceO5Gr4b4MQXxs5ulACj7Xg2mtcQ0j8j5Uv6LlhK01zHq90oFPbNZ/+umnUsnUrVs3jx8vuQYDnz4uc+bM7z0WnsAGTnBbz0lEnoUL3/AEPq2ba2NBvnjxogSTGPgkX4Fyv7Zt20qgA4OO0NMW/WgBv6vWA7kcKXVHkISIvAdBHUfWMOsbSd3eAoHPs2fPqpUrV0qG3KZNm1S6dOkY+CRTng/YDHjy5In0r96+fbuse7YymnHO6HWQiLyXWIaWE7bWMJ1gZp3xifN50aJFco4z8GleDHz6OFuTmsMb+CxdunQ4j4qIvB34RC+0Jk2ayEKsbyLZu5d8CbJfVq9eLR9nzZo1yFCj4IFPe393cc5UrVrVLcdLRI6tYfa2a8F61aVLF+mPpifjovJB96xH9k2bNm0keERkJkWLFpVqG5S1IyiC3++yZcuG+PU4Z5jxSeS792HoSd+xY0fZiMNkd309q7+HzIuBTx+nB0BY71AgNdsZugSDvWWIvA/nYXh6fGbKlEkNGDAgSODTuvydyNvQEwnTbuPHj2/0qtbl7cjwwiYeSuCxk27PoAesh5iyyTWMyPtwHtq7eYf1SvdBxLAzHfjU2TRp06ZVw4YNc+PRErkHNvHwprOaHz9+HOLXojoHLV+4hhH57n1YtmzZ1KRJk+RjVC2BbtGiJ76TOTHw6eOOHj0a5PPwNILHTiRuOrlbQeR9OA+PHTsWruewDhYF3yQh8jYE4zt37iwfL1iwQN7rMled+dmvXz+HSufxe841jMj7cB5euHDB4e/TAzrR51pnfDLTk8wqZcqUkvEZKVIk+fzatWtq8uTJ8juNqhxryB5DEgrXMCLvw3l44MCBUL9Gb87pCiWeu+bGwKeP0yecK+ideZ60ROYvdccmBjIHiMxAT7d9/vy53CBi9xxBD2R92YtrGJE5S92REYfzHVneeA0AnPs6O87WEBgiswQ+rRNTrl69KtnNadKkeS/wqc8XrmFEvnsfhg32R48eSbBTx2FQpQTM+DS3sGvLyKvy5MljfIwy1j179jj9XLxpJPIdOA9xA4hhD87AsJgSJUoEubFERhyRL8FAo8OHDwcpA8TkZv3xmTNnpLIBJYBh4RpG5DtwHuIcttWLPrjNmzdLWWH16tXlhlJvhuj+aRhshGtclruT2aRIkSJI1Q2q60BngFrjGkbkO3AePnjw4L3rT2RtJ0mSRGXPnl3aK4G+v0LfTzIvBj59nPXiiN1ENNF2FhdcIt+hezw52+fTVmm7rQttIm9q0aKFKliwoJHZhUCHDnziQjJnzpwqf/78dlU36DWMO+5EvrOG2VO5oNcr9KjXlQoYdKRvKhE8xSYgB/SRWTM+dRsX3b4hpMAnWhQlTpzYw0dJRLbWMLSe0Btwmu7niXP4zp07Qc5r9Ksm82Lg08dFixbN+Fgvqs7SJYbWz0lE/weNrDFgAaV4hQsXVocOHXL74BfrfmeOCr5Did1JR8qGiTwB5X6pUqUyft8R6Nc3fQh8RogQQT62J2sMaxgyRxngJzLXGqbXK5zvOnMGQ8/0Defo0aPV5cuXVcuWLd16zESuljFjRnmvN+/077fuYx18DcN1ml73iMg761doa5h14NO6kg7XrmzLYm4MfPo47ERYXziOGDHCmIrrKHw/bxj9Q5kyZdScOXO8fRh+Y+nSperLL79UgwYNkrJbtJioXLmylEC4iz4X7SnxtSX49+FiwZ7J2ESeNHPmTHXz5k3VsGFDo/RdZ2wi6BElShS7A59cw/wH17DAWsP011hnfGITXj+O8sEMGTJIFiiRmWTNmlXe66oG/fuN9kPBcQ3zH1zDzL1+hbaG6cCnvqfCugXM9jQ/3iX7OJ1irWECrm6w6yhPLbiDBw+Wsnxbb1goiHzNmDFj1Oeffy7ZJujpMnXqVMksmzVrltt+pl5InQ18Bu8NymxPMkMfNKxpOvCJMldfDHxyDSOz8fU17MWLF8Ykd31dq7Pe0H5Jvw4QmQ2C9QkSJDASVXT7hpACn/q8cSeuYWQm3li/QlvDdOAz+P1V5syZ3Xo85H4MfJpkEq41Z0vecSJ7YsHt2bOnvIChHyn62eCtR48eKkeOHGrVqlVu//lEjkAG9ZEjR1SFChWMx7DLh89/++03t/1cfS4GX2DtFXwDxNZFNpGv9UFDOWDcuHHlY6wNyFS29/eXaxiR761h9gQ+9SR3lAnqwKf+Prw29O/fX02fPj1IlROR2bI+rYP8tu7VuIYR+cb6Fdp9WPDP9YY7Mz7Nj4FPH5clSxaZEKj7UFhfQDrKUzuN2NHHTg2a1COzB294DD8bPZ2IfAn6t2DwAnpkWsPneufeHbDzDs5OdQ8e+LRnwASRp6GcvXHjxqpevXqSFQN6gAlK4PXaZs9wI65hRL6zhukyQHvWMH1+I3NGD/TTfdXwuvDtt99KRZNeF4nMJFu2bPJeb+SNGzdOrVixwmtVC1zDyCy8tX5ZC77xrgOf+j5Lx10Y+DQ/Bj5NANkx1guVPTeItmDBZUNtc8JNAS5a9NuePXtU+/btgzyGIAKZh+5ds2XLFqe+P/gGCHb2iXwNbr6WLFkiv+elS5dW1atXN6ZB37hxw1jbdH+00HANMy+uYf5HBzB37twZ5tfq89s6C073QsT/e0CPTyIzZ3zqwCcCJJUqVXrv67iGmRfXMP+j/3/h/6WtQKjenMO6hY0+lrqbn/tTJ8gl4sWLp65duxauwCcWW1tTBsn3YXH95JNPjM8//fRTyaCqW7eu8ZgOJpDj7SRwbujpsho+170I3XVOQ4ECBZz6/uCvA1u3bnXJcRG5EjK8JkyYIOWsVapUkYEmCHjCrVu3pKF9+fLl7bqg5BpmXlzD/G8N062Y8ubNa3fg03o4p76m1VmeGHBEZOaMT2SugV7jguMaZl5cw/xr/QKdZZo7d+4gj9uqrMU6xcCn+THwaQLFihVTp06dMj5/+vSpU8+DEgdnB6mEF8uXwgdZUdZZvwgeJE6cWGXMmNGrx+UPUAqUP39+tW3bNlW7dm15DBem+Lxz585u+7m63MnZC6VHjx4ZH3fs2FF2JjngiHxRly5d3ht0hAtdBEFq1aplDD4KC9cw8+Ia5r9rGIYThUVnd+qMuIoVK6omTZpIlmfx4sXlhjL4zSeRWRQqVEgtWLBA/fzzzzKh+tdff5XHmzZtGuS6DGuYs33dw4trWPhwDfOv9ct6PQpeZo/ye4gRI4ZR7o6sbv31ZF4MfJrAhQsXgiyU+oR05iLVWzeNWPjRq+PixYvcMSGfg6yzzz77TLIvcQGL/kxY7DBh0F30uehsvyfrwOfkyZPV9evX1S+//OKy4yNyBwwvwW562rRp1ZUrV9Tly5ftDnxyDSPyvTXMnr67P/74o5QVbty4UT5Pnz69atGihbwR+UPWGjIAkZiCwOeGDRvUmjVrVIkSJVSuXLmMr+MaRuQb61do92E6zqKDns2bN5c1i8yPPT5Nki2TM2dO+bhBgwaSWu8Mb+40Vq5cWd5/9NFHXvn5RKFp2LCh+uGHH9TAgQOlbO/48eNq06ZN7+0CupI+F50d1mId+NTTcol8EYafHDx4UDJicIOIC0jdJP706dPq0qVL6vz582E+D9cwIt9ZwxwJfKIUGOeQLmdkP0/yR5iarjf4IPhwFm9WLXANI1/ljfUrtPsw6wQzzFmZM2eOGjRokFuPhTyDGZ8mMHjwYNmp69mzp5ycSK13hicXXOzWBL8Y8NR0tkBgzzABcgxKKtxdVuHsTaMtX3/9tTp06JDROw3ZBkS+CI3j0d8zS5Ys0psWN4Xo+QnIAMN5V6pUKbVr165Qn4drmP/gGmb+NcyZzbtz584ZG3VHjx5VqVOnlvMKrw2emHZN5C6outm3b1+Qc8NW4NNTm3dcw9yLa5i516/Q7sNQ1p4nTx514sQJ+ZhtIvwHMz5NQvcB1FM0nZ2u++bNG69lzBDR/+gSCvQJckaRIkWCDDiyZ8AEkTegYgFN6jG8BBeSL168UPny5QuSuXznzh271jBM29QDJIjI99ewBw8eyETkxYsXS+smwKYd+rq1bt1aSoGdHfJH5CuQpYYNaeup7cEHtmANw3mjM0KJyPfWMFTa1q9fXz5GX1fETsg/MPBpAugZc/LkSfkYQ44mTZrk1PPo6WjBF2Ii8rx79+7ZPRjCFpzHOgCEC21nn4fI3dDDE7/vyO5E1gkuMvUgEz3ZGf3/wgpoYg3D1zjb55qIPL+GIcuzf//+qm/fvurvv/9WUaJEkew4SJQokVQ06RJhIrNCb8KPP/5Yspi14BmWWMOQfKIrdYjI+2uYrenxuv0S+vWWLFnS48dG7sHApwns2LFDfffdd/IxFsuhQ4c69Tz64lSf6ETkPTgPMSEwTpw4Dn/vkydP1PTp043P8RwffsiXczIPlBGhfAgBfF3+F9baxDWMyHfgPETQMmbMmKF+HTY1rPtQY7AKMr+hQ4cOsrk/bdo0DxwxkXsr8zDVvVq1aiEGPnX1HtcwIu/DeRgvXrz3prX/9ddfkmim1y1WJPgP3imbQMGCBYN8jhtF7Jo7igsuke/AeYhz0pneMbhpHDJkiPE5SofZg4bMAO1a2rdvr5o2baoyZswoj2HgEegssJBwDSPyHTgP7ak0uHz5sryPHDmyMdgILS7wOdpgYNMOAVQif2CdvRw88MnNOyLfuw+z9vz5cwl26krbM2fOyOAl8g8MfJoAhkBkz57d5g66I1BShJLY8PQJJSLXwHnobHn61atXg3we/PWByNfgIrJo0aKqZs2akt21bt064/dWZ4xduXIl1OfAhE8E+LmGEZlnDdOBT71hHyNGDKMvNcreifyJDqSgEmfs2LFB/kyfL1zDiHxzDbO+DkUJPFo1oTcv+QcGPk0iU6ZMQT4P6wbRFuyq48aRO41E5smWsSfwiew5Il+GjbcDBw7IJGeUukLwNg+6p1JIMPUZ2aFcw4h8M1smtMAnhhwBBpQBrkdLly6tJkyY4OYjJfKMI0eOqNq1a8vHGD4ZfI1DSS1Ka7mGEfnmfZh1fAUl7qym8y8MfJpE8IyuixcvOvU8OMG54BKZO/AZfONDB5KIfBV+15cuXaouXbqkSpQoESQDDIGQgQMHBumNFtrzcA0jMscahunV+nr14cOH8v7GjRvy/r///lO7d+82eqkRmR2G9ln3vMVmX3Bcw4jMEfjcuXOnGjdunBeOjNyFgU+TCN7Tk4FPosANfAbPjMuSJYuLjorIfT755BPp76cDnzoAgnKjXr162TU5k2sYkXnWMJzbGF6kh+9lzZpVHT9+XD7GlPcZM2aoZs2aeeR4idwNVQnIYtYmT55s/L5rXMOIvA+bcmEFPjE/AS0CyX8w8GkS6DNh7cKFC049D8qS2FuGyPsbGY8fP7arTDC4f//9V507dy7IY85MhifyluLFi8t73BDiHMAFKEoE7cE1jMj7cEOIybdhrWG4dsVGfZ06deTz9OnTyxqWOnVqeR1o3bq1KlWqlIeOmsj9ypUrZ3y8a9cu9euvvwb5c65hRN6HVhSoNgq+hgWPr1SqVMnDR0buxMCnSdSvX9/YMde7iM7gTiOR9+lJn85kfGLy9Zs3b4zPI0aMqBInTuzS4yNyB5S2rlq1SgY+ICCC32PdpmH9+vVqw4YNYd4Qcg0j8j59Doa1hiFbBj3qb9++bXwO1llxRP4a+ISzZ88G+ZxrGJHvrmHWFXWpUqViKzE/w8CnSWCX3LrP561bt5x6Hpzg9+/flx13IvLtm0Zb8D2tWrUySofRI43Nt8kM8Hv65ZdfqqlTp0rJqx72ACh5rV69+nvZMbZ+/7FxgCxRIvL9NezVq1dGRrfe2IgdO7ZauXKlevLkiZuPlMjzfT4TJEhgfH7s2DGbgU+uYUS+tYZhcz5NmjRBsj15f+VfGPg0kY8++ijEhdRe2L3Aia1334nI85C1CSlTpnT4e6NHjy490/TEwaJFi7r8+IjcAReQCNp36dLFyIrRF58om7VnbcMa9vbtW2bMEPnAGpYiRYpQv65bt27y9u7dO7nB1P0Ot23bJpVMGzdu9MjxEnkKqvPKli1rfH758uUgQU6sYSix1cO+iMg7axiuSa1L3XHuoopOY5m7/2Hg00QyZsxofDxr1iwpGXRU3rx55f3Ro0ddemxEZD+cf+hxFi9ePKe+//fff5f3BQsWdPGREbkXprdPmDBBffbZZ/L56dOnVaJEiYwqhLB6fXINI/I+nH8YVBYrVqwQvwabGTjXf/rpJ+PcxZqVLVs2VaVKFcn65o0l+aOqVasGyXi+efOm8XmePHnkPdcwIu/B+YfBsEgmsV6zDh48KB8jKFq+fHkvHiG5AwOfJoIsFw3DTVasWOHwc2BnA73V7B0kQUSuh/Mvf/78Tn0vpl/rVhc9e/YM0u+TyCwQ+EfgAwFP6009nBv//PNPqN+HMkKuYUS+vYYhuxOZblGiRJHPq1Wrpn777Td5HH1+cR2bMGFCDx0xkefUqFEjyFwGHUwBbBhgICXXMCLfWsMWL14sVbG6yta6ZQX5BwY+TaRx48ZBFlJcQDoDJzoXXCLvwI0gdhqdCXz++eef6ocffjA+P3HihIocObKLj5DI/S5dumRkLOsLTZQY/f333+rkyZMhfh924bmGEXkPNivQkiKsNezAgQPyHmXuULJkSXnPNYv8HaoYihcvbny+bt26IGsYgipcw4i8A2sS7p+Cr2H9+/c3Pq5Vq5YXjozcjYFPE8FwI/SFQWq27k/x6NEjh59H3zSysTaR5125ckU9e/bMqcCnddYAJuU2adKEjbfJdGbOnCmTMs+cOWMEQa0DoDpgEhIGPom85+LFi+rly5dhrmF79+41AqWoNNK9DXHe8/qT/F3t2rWNj/H7b41rGJH3oNoAa5H1GvbixQtJLtHq1avnpaMjd2Lg02SwU16iRAnj80OHDjn8HDjR0VSbA46IPE9f7DoT+Ny/f7/x8VdffaXmzp3r0mMj8oTSpUtLdieyYsaPHy+BTgw+0YHPPXv2hPr9OHcwHRrT3YnIs3RvQuuBm8EhsGm9XqHNUuLEiaW3b86cOVXlypU9cqxE3mKdMbZly5b31jD0/bQOtBCR5+7DkDSSL18+47Ht27cHSSxBshn5HwY+TahYsWLv7ag7QgdcuNtI5Hk475D5gqCPo6zPd102SGQ26OmJaoVNmzaprl27ykXmxx9/LH9WpkwZNWLEiFC/n2sYkffgvEufPn2ow/mQFYqgjq5IwAAJZH6iXRM28HPlyuXBIybyPPTy1OXuaN9iPcVdr2EccETknTUMVUfWw/kWLFhgfNywYUMvHRm5GwOfJoPy9nbt2hmf79ixw+HnwM57kiRJeNNIZKLBRhj4ojO8I0WKxIxtMrXYsWPbLAtE2XvatGlD/d40adKo+PHjcw0j8tE17MKFCzLUSA832rhxo7R5mT59ugSA+vTp47HjJfIWbFZjkwCGDRsWJCiKNZBrGJFvrGG7du0yPmaZu/9i4NNkMNHW2tWrV2UX3RFsrE1kvsFGv//+uwx+0UHQli1buuEIiTwLvQLnzZunJk+erKJGjaru3LkT5trENYzIO9COAoONQitzh5o1a6qBAwcaWdwxY8aUABCCPXhD2TtRIECyCaxatcp4DJnPKLPlGkbk+cFGx48fD7KG/fXXX+rBgwfy8YQJE1SePHm8eITkTgx8mgwWyyVLlqg6derI502bNlURIkRw+Hk44IjI87BR8fTpU6cCn4cPHw7yOXukkdkNGDBAAiDo8/nLL79ICwg9WdOecnfeNBJ5FjKycZNozxr266+/yvuKFSvKe71xRxRI0NcWUKWDc0fjGkbkeefPn39vsNG0adOMTfWOHTtyaKwfY+DThJCCXb9+fZsNs+2FEx67G8iuISLfH2zUvHlz42P0SBs1apRLj43I05D59erVKxU3blwJgrZt29YImIwcOVJ25kOCcwjr1/379z14xESBTa9hoWV8ogrpyZMnRk9qbGTUrVtXNjnwHlneRIHCOuCPVg/Waxjal6HfNRF5dg2zHmyEAZtQtGhRp5LJyDwY+DSpSpUqyY4EGmZjMqCjChUq5PRwJCJyzr59+6Q/oTNlftYTBzHYKHiPRCKzadGihfrtt9/U1q1b1TfffKNatWolVQ3w7Nkzo6etLVzDiLyzhqE/YYIECUL8muHDh6scOXJIABRr3Zs3byTAg2w3DD3CoCOiQIFgv84gmz9//ntrGM4pIvIMnG9Zs2ZVceLEkc+xwY5Bm5AuXTovHx25GwOfJjVmzBjjBhEXmJie6WjPGfSwWL9+vZuOkIisoa3Ezz//rKpVq+bU91ufq1WqVHHhkRF5R6JEiVSRIkWMm0IMLCpdurTx5xiIEhJsIGTPnp1rGJGPrWFoW3Hv3j35GEFPwDCjEydOSFsLlhFSIMH9VufOneXj06dPS5ktYAMhU6ZMXMOIPNijGueb9RqGzXNdhRBW72oyPwY+TercuXPGUKMXL144VfKO5vMbNmwItZyQiFzjzJkz6tq1a3LeOap79+5qwYIFxudsvE3+BgO71qxZI5me2tq1a0P9HpxLuIh1dMAfETkOgctbt26FuoahhRIG8Wk4n5FZU6tWLZU7d25Vvnx5Dx0tke/QgU+sVVjnABsAOJewmYCADBG5v8wdm3LWa9i4cePkfYUKFTg0NgAw8GlSPXr0CLJrbj0t0F41atSQPkwssyByP1zcxogRQybcOpplg4FmCAwBMr2ts+KIzG7KlCmS+dKpUyd19OhRo5rh1KlTMhAsJLh4RbWD7s9ERO6zbt06abFSqlSpEL8GGxF6aKZu6dKoUSMVNWpUjx0nka/JnDmz9LIO3ucTa9gff/zx3vBKInLPGhYvXjxVvHhxo/8uEsAAG3T4M/JvDHyaVIkSJYIEUHDivn371qHnQGPtZMmSyQsBEbkXzjNMYnf0BhCZorgwth5yhOFGRP4C/f9u3Lghpe6gbxDDyvpEjzSUy2NTgYjcC+cZ2qyEtv6sXLnS+Pjx48fGsLK+fftyqBEFtI8//lje79mzRz1//lw+LlasmARbuIYRuZ9u1RIxYkT5fNmyZUZSCTbeyf8x8GliDRo0MD7GZNzdu3c79P3IqsFCjICM3qEnItfD5OmDBw9KlrWjrG8koUuXLi48MiLv69Chg5o1a5YEOXFBqgMmENrUdkzf1GsYEbnPnTt3JCsttDL3p0+fSpBTX1+ijVLq1KmlxQtuMJn1SYFMX7uh3F1nfWK9q169OtcwIjfD5jratVivYUOHDjXOQwyNJf/HwKeJ1a5dO0i5+4oVKxx+DrwAXL58WV24cMHFR0dE1sMeABe4jlq4cKHxccaMGVW+fPlcemxE3pY2bVrprZQ+fXrpBQg6SIKMmLDWMPS8xjpGRO6BEnZsNFStWjXUr9E946NFiybvv/rqK7k2HTlypHw/UaBChQI2AmD06NFB1rCTJ09KYIaI3JftGSlSJKm8g7t37xrXjRg0prNAyb8x8GliSZMmVVGiRDE+X7p0qcNDHtBoHheo3G0kch+cXwjgoCzXEViUL126ZHyOHUlOxKVAGAKhAyhz5swJ9esrVqwo6yBLBYncB+cXWizpdhS2oE+v3rBAWXusWLFUs2bNVL169VT9+vU9eLREvgnnEKB9EQatAAIxCMhwDSNyH5xfmI+AXp7w7bffGn/29ddfe/HIyJMY+DQxBECsS2eTJ0+u3rx549BzIOiJG0cuuETu8fr1a7VlyxanytxRHmitaNGiLjwyIt+Cdi1DhgyRTT0d+EQWGQYehQQDw7CBx807IvdAEHPr1q2hlrkDStoxLEJvyH/22WcqZsyYHjpKIt+Hc0JD31vAwDDMbOAaRuQe6Km7Y8cOYw1De7/Zs2fLx8j0bNiwoZePkDyFgU+TmzFjhnGRicwwfbPoCLwQ7N+/X6bjEpFrbd++XXrwhnXTaIvO4MbCjJ3KFi1auOEIiXwDMpx37txp/N4jCwaN5zGI7+zZsyF+H84tDIx48uSJB4+WKDAg6IlN9bA273788Ud5j6/FxjzWPlQiEdH/qVChgooePbp8vG3bNtko0GsY1j499IiIXAe9p3Etqdew1atXy32ZdcY1BQYGPk0OO4V169aVj3FSL1++3OHnQN/B//77z+hDSESug2xq9I/JmjWrw9975coVeY+AJy6KuTiTP2vSpInq06eP2rdvn0qYMKExbRNmzpwZ4vdhwBGCpRs2bPDQkRIFDmSiYf1CKXtIvvzySzlvtVSpUslmxapVqzx0lES+D0O/mjdvLh/jvmvs2LHyMQIyWO82bdrk5SMk8s81LFeuXNJPHvr16yfvEydOrKZOnerloyNP+sDCcd5+sZOhm/UiwIKeaLqPjL3QOxC9mVCSS0Sugd38FClSqDZt2shwB0e8ePFCSn5RZrh3715VvHhxtx0nka/55ptv1KBBg+RGETeIcePGVQ8fPgyxAT3aQOBrNm7c6PFjJfJXyIpBGyX03h02bJjNr8Gk3Lx588rHWKdQhdS9e3d1/Phx2VjnQD6i/zl16pTKnTu3fIw16/Hjx5IhXaBAATnXWPJO5Dq4l0qWLJnq2bOnXFNiGGb27Nnlz7Dx0K1bN28fInkQMz79gPXAE2SIOdOkF4EZlDNdvXrVDUdIFJiQ7YKL2tatWzv0fWhZ0a5dOwl6IssTz0EUSDp27Cg9qBH0hKdPn4Ya1MQatnnzZk7GJXIhVBE9e/ZMtWrVKsSvmTRpkvHxd999JyW8yMLGtSiDnkRBIfMsS5Ysxrq2aNEiYw1D5d2dO3e8fIRE/mPJkiVyL9WyZUv5vEuXLvIe15f6YwocDHz6AZy82Cm0HhCBiYGOaNCggUw6C62ckIgc89NPP0nT+syZMzv0fbj41RfDKH/atWuXm46QyPeg3zR25oMPRkFQJSRoTo9BR7NmzfLAERIFzhqGvoTp06cPcXjfggUL5ON06dJxAB+RHdAaIviQI7R6QeWdHrpCRK5Zw6pUqaJSp06tHj16JBtzgJiH7idPgYOBTz+B3mbY1QB0L8CJ7gg0227atKncNFr3VSMi51y8eFH6cn7++ecOf+/o0aONjzNmzCiTrokCBcrZEfhHaTvKZtEvEDCED5OjbUGQFDeO2LxzZsgfEQV15swZ6dsZ2hqG8xTBT8AGH6ZWYxMCg8qIyLZGjRpJwgncunVLKu4wswHnDobW6koHInIe2rAcOnTIWMM6depk/FmePHlU5MiRvXh05A3s8elHsHORJEkS2dHAYAhkfUaIEMHu79d9mjDtrHbt2m49ViJ/17t3bwnCoGwJu/j2un37tuxM4qW5WrVqHDpGAQkBFfQ7Qy+0mzdvGiWzyJSx3hiwdvjwYVWwYEEZKIZSWyJyHvp0IpsTaxI2IILDGoVhETg/NVxz4lr0wIEDqnDhwh4+YiJzwXAVbPChNy56uf/222+qWLFiMuRIz24gIuegN/WKFStkcwEb4rFixTKyPHmdGJiY8elHcMGJk1yXCqLfmSOw+1GoUCE1ZcoUNx0hUeAMNUK5EqZ3OhL0hHHjxskNJfTq1ctNR0jk25C9iTYR8ePHlw05PTxFZ5fZkj9/fgmQcg0jCh/0RJs7d65q0aKFzaCnbqukg56NGzeWtyNHjsgQJAY9icL2/fffG5t2CIAWKVJE5cyZk2sYUTj99ddfav78+dKfGrMSMNxIBz1Tpkypqlat6u1DJC9g4NPPWDeZHz58uMPfj0a/mBJ/9uxZFx8ZUWBlqyHz2rqswh5v3rxR06ZNk49RgoGJ8ESBDkEYDPsClAFi994WDPnDGobWL2g1QUTOQaYnhhphyFhow/sAgVG0V8K6hw30/v37e/BIicwL7SFQ4o5rvx9//FHWsK5du8pkdw6bJXIeNu5w7dihQwcJeG7fvt34M5xjjlTEkv9g4NPPoAm9hh5Ljvbr/OSTT1TSpEnVhAkT3HB0RP4P2Zrjx49X1atXl/6cjsCN44sXL+Tjt2/fSvsJokC2du1alSlTJvXFF1/I51jTsKkXUg80ZJ0lSpRITZw40cNHSuQ/axiuAWvVqiUDi2zBjaSuKkImTWiZ2ERkG1qSPX/+XD7+4Ycf1LFjx9Snn36q4sWLJ4FQInIcrg+xhtWrV096xC9fvlydP39e/gxDMJ2ZvUD+gYFPPzN16lS1ceNG+RhlEyENgggJssywOzJv3jz1+PFjNx0lkf/CBPaTJ08agRpHINtaw2Jdv359Fx8dkfmCMPfu3ZPeTOiDBsiKRv9cW9BaAtmhc+bMkYw1InIMBq2g6ie0NQx90y5cuCAZasiuxtR364ojIgobNhf0BvmrV68k+QTDZtu2bStrHMp1icgx6JF76dIlWcNwHThw4EDjz1q3bq3ixo3r1eMj72Hg08/EiRNHValSRdWoUUNuGEMaAhEa3DRiNx8lhUTkGGR75siRQ5UvX97hHcqjR4++V0ZIFOg3htiIQy9BDH9IkyaNPI5y2pBmM2LzDn12Z82a5eGjJfKPNQwl66VKlbL55/fv3zf6T+McxGYfAjRPnjzx8JESmRvKbZExrV25ckVK3NFiQvfZJSLH17ACBQqookWLyqwFBEGxoYBN827dunn78MiLGPj044nSgL5Ly5Ytc+h7MRkegyXwwoEdSCKyD7Jk0JsJ/WOQCeMITG/XfQkRNMWiTRTocB41a9ZMLlpBt2FBRcPChQttfg+mwTds2FCNHTtWAqBEZB9UK2AtQqZMSGsYstF0n118DUreMUSiR48eHj5aIvP77LPPZLq73kgYM2aMUfGD5BW0PSIi+yCBBNVzWMNw7uiWLHXq1JG1K6T2LRQYPrCElDJBptayZUsp9dOlf5jyjr4W9kJ/0GzZssl0zj59+rjxSIn8R+3ateXGEb1k0DbCXtiNxIRB7PbD/v37ZaeSiP4HlyuLFy+W/kzYlEM/apTB24IyXGReY2rul19+6fFjJTIj9KbGenTmzBmZhBvc7du3VerUqY1sa0zMDantBBHZB+uUvteKGDGinINY43LlyqXGjRsnQ/uIKGyVKlWSjblTp07J3ARsLGDj/O7du1IVS4GNGZ9+ql+/fsbHyHhB02xHoOcMdka+++47li8R2QHBSgxiGTp0qENBT0AgRwc9sUAXLlzYTUdJZF7ozYTBD7oSAYMhUNVgS5YsWSQog0FI7PVJFLbdu3erDRs2yIa3raAnIPtaBz2xqY71jojCB6XtCRMmlI/fvXsnLV7QNxdBG5xj7PVJFLZt27apLVu2qG+//VZiH3379pXHsZ4dOHDA24dHPoCBTz+FKbi4eNVGjRrlcMnfgAEDJE185MiRbjhCIv+BG8GvvvpK+qJhqrQjTp8+LT3SNDzPhx/ypZkouDJlykg2TObMmY3H0B8tpAnvgwYNkiCpoxt/RIG6huXPnz/EoXpo5bJz507jc1xToi1SSOcfEdknZsyYkvWpk1ZQOdS9e3c1ZMgQmfqOti1EFPYaVqRIEVWzZk1Zm5DlCTiHUqZM6e1DJB/Au2s/hvK+ePHiycdoko3gpyNQRojnQK/PO3fuuOkoicwPWTJ79uxRI0aMcDhoiZ1+rUKFCrLhQES2s83OnTsnPQh1VjUuaHHDaEuKFCmkzxN6piE7lIhsQ2/q3377Tap8QlrDGjVqFOT6MFasWKpy5crcqCNyUYsyVCgUK1ZMPscgFmzcde7cWe7f0NeaiGxbuXKlOnz4sKxh6I37888/G3+GIChaHxGxx6efmzx5surUqZPTvT5RIpghQwZVt25dNX36dDceKZE5/fvvvypfvnwqfvz4aseOHQ4NNUIPmty5cxufnzhxIsjnRGTb4MGDJRsGsJOPnp56AJI1tGpBySAufCdNmuSFIyXy/TUM6w6GgqFM0BYMi0CQU0PmJzKvEyRI4HBrFyIKGfoTpk2bVjKps2fPLhVBuA9DYBT9PokoKLSHQGAT58ns2bNlONg///wjfxYhQgSZu4AWfkTcpg2Anmg46XVZ0sCBAx36fjQCRunFrFmz5MaSiIJC82wEMLHL6Ogk9xYtWhgf16hRg0FPIgeyP/UmHgauhFTOjqoH9HnCxh2G9hFRUPPmzZMydlQs2IL8CGw0aAjAlC5dWiVLloxBTyIXO378uJS+A87L1atXq969e6spU6ao69eve/vwiHwOYhQXL16U3p7Y5NZBT8C8EgY9SWPGZwBAKS0WTMBuiKM3fwiYYme/UKFCasWKFW46SiLzefPmjQxRQcYnLk4dsX37dlW+fPkgpYYIfhKRfdOn0WJCQ/N69EXLmjXre1/7+vVr6XtdsmRJmQpPREGv79AXbdmyZTa/Bo83bNhQPkaPXWR7Fi9e3MNHShQYrM83iBYtmiSe4B6sYsWKslFBRP8H7SAQ2Cxbtqxq0KCBqlOnjvFnaMeCmEfixIm9eozkO5jxGQAmTJggDesBk6NRjusIlMh/88030j/j0KFDbjpKIvOZOnWqlCVhl9FRc+bMMQI2VapUYdCTyAHoPY1hR82bN5fPscNfu3Ztm1+LG0dkrC1ZskQdPXrUw0dK5LvQ/gEDIKyHYVp7/Pixat++fZCSQvTNZc4EkXsgeKP7fOqNOww6QsXeggULZIOPiP4X40AbP2RF6yo63XcaFasMepI1ZnwGUOnERx99JBer6HeGlHBdAm9vDyhMrMYLyLZt2xwu6SXyN3/99ZecS5geOHPmTIe+9969e5IpiudAA3uUYhCRc7v9qVOnVo8ePZLPUd1gHaixDtjkypVLvnbz5s1eOFIi34Ie7ljDEGjBJp4t5cqVk81yZHpWq1ZNrv2GDh0q5xIRuceRI0dUwYIFg2wwYKgfNh1w7bh+/XqvHh+RL8DGHNYwtD5CP/eFCxfK4xMnTlQ5c+aUSgYkbxFpzPgMEHnz5jV2Qq5evapq1arl0PcjSIoehrgAXrp0qZuOksg8+vfvr16+fBmk95m9EJhB0BMXtm3atHHL8REFAgw0WrNmjfF5ly5djCCoNQRukJmNIS2oXiAKdOh9G1rvdwRXdIUQrh/nzp0r5xqDnkTuhSq9Vq1aBXkMvQuRwYYAKFojEQW6Pn36yBAwtA3TQU/EOzDUGRVBDHpScMz4DCDBJ0ivXbtWstUc8cknn0hvwjNnzqgkSZK44SiJfB+mbGJRHTt2rOrWrZtD39uzZ081evRo+RiZnsj4JKLw9UTDTSEqE6BEiRJqz549730dLnfq1q2r9u3bJ2tYokSJvHC0RN6ne0z/+OOPcpMYHMprMbwIWaEYIvbw4UNpGUFEnoFzDtmdyGTTqlatKmW8yAjFGhY/fnyvHiORt6ByB23CcB+GKgRkf6IiYe/evUFaRRBZY8ZnAMEuff369Y3eF9jBt558Zm8/KHx/hw4d2OOJAhKyPLETj+BK165dHfreGzduqDFjxhifFy1a1A1HSBRYEiZMKEFP3b4FF762BvHhohil8Pjazp07e+FIibwP1QZYw7B5h2s5W1CJgKCnbicxe/b/a+9O4GWs3/+Pf8i+b9ki+559LWslylKiRQtaJSVKRJtKolBatNpalEjKkiWSJFt2spfQgkTZUrj/j/f1/d/zmxnncIZzzDlzXs/HY+LMzJlzzzjdn/tzfa7r+ow+x0cJpG5amHvhhRcCY5xMnz7dNjhSpnak159ArNDYpDGqadOmtoinoKcoLqGKVs3TgLgQ+EyFmTF+iYRWEXv27BnxQPz666/bDtbaKAJIbfr06WM9OjUR9BcREkoZ1hqYFaDR6/jtJwCcOfUh1E7Tq1atsl08Rf9vBWfK+AoWLGhZbhoL4wqOArFOm0BoM4hRo0bFOYYtXLjQffjhh/Z3fzGhYsWK5/w4gdROCxTffPON+/77712GDBnsPu3qrg1dVNqryj0gtVHsQsHP5s2buylTpoSMVQ899JBVKQBxodQ9lVK2msr9lAGjnd5LlCgR0fffeOONbvbs2VZqoYkkkBoouHLppZe6YcOGWZP5SGgDJL+fp/qC9uvXL4mOEki9Pv30U6ts0KVN+/bt3UcffXTSc/RYu3btLDOUknekJrpuU8aYqne6du160uN///23XQ8qg0ZBUf3/VKxYMeubBiB61BZJ/eEVANWGtepvuGTJEhvD8ubNG+3DA86JGTNmWMsH/f+gjGjFMBTL0HWdNmFeunSpS58+fbQPE8kUgc9USv1hatWqZX/XRa5/4oik90ylSpVc/fr17cKYXd4R6w4ePGg9cosUKWIB0EiyPVV2kTt3bmstoe/fvn07/88ASUCXNLfeemsgY23EiBHuzjvvPOl5u3btsjFM2aLK/gRinYKaanlUqlQpC4DGNYapV66/WPDyyy9TTgskE7/++qttiOn/OWHCBFe9enXrc+iPd0AsU5andmtXBYI2XNau7f/++689pvFs8eLFgdgGEBdK3VOpkiVLBtLCf/rpJ/fOO+9E9P3KkFGvNO3wGVdGDRBrVJr++++/x1seeLoSd7+fbtGiRQl6Aklk06ZNISXs2rhly5YtJz1Pm/Op5F2TR92AWNerVy+3d+9eqz6IawxTFqh/PVe+fHnLLgOQPNx+++0W9EyXLp1ltSlzW6Xw+n9W7ceAWKcydgU/VXWnih4FPf3szr59+xL0xGmR8ZmKffzxx3YS0UCqMiaVTESaHq4Tz5dffknJO2La3LlzLTPsTDJg1C8teIdBBWbKlCmTBEcJQD744AO3evVqN3HiRPfjjz/azrjq/5kxY8aQ5+nyR2Xx6qGmMSx//vxRO2YgKek6rVmzZtajPa4NjTZu3GgZ0Nr4S3LkyOGWL19u2aEAom/t2rUW2Dl69Gjgvpw5c1rlnXqAagzzN0ECYo029mrRooXr3LmzterT77t6eaqiTjEMZXv6fXCB+BD4TOWUwaaLXfVzeuKJJ9wzzzwT0ferQb6+X7tTa8WRTDbEYom7ygMvvPBCC4BGku154sQJK0VSEEamTp3qWrZsmYRHC8CnPp5qxSK6WFZPqPhK3tW7l8xPxGqJu8oDteCmAGj4GKZqhMKFC9v1nB578cUX7bmaZAJIPrT43qNHD8v6PHbsmMuSJYubNWuWa926tW30QgUeYtH+/fsDY9h3331nmZ6KN8ycOdMCosp81uPA6VDqnsopS1Ml69K/f3/LBoiEVhf1/dpZ8O23306iowSiQ+tC999/v9u9e/cZlbg//fTTgaDn3XffTdATOIfU39Pf9EHjk3bCjavkXSW+Ko/X/+NArI1hyvDct29fvCXubdq0saCnX8WjjfsIegLJT7du3SzAqaCnst0OHz5sm5QNHTrUjRs3znZ8B2JtDLvnnnvcgQMH3JNPPhlIsNIGsWr3oIU6gp5IKDI+YdkAKpfwbd682ZUuXTqi11AfNU0s58yZ4xo1apQERwmcey+99JK1g9DFZIcOHSL63jFjxlhPJilUqJDbtm0bZRjAOXb99deH9PxUSWDNmjXjvLB+9913Las7uDUFkJJp11vt/qxMMAU141qce+qpp+zvagWxc+dOymWBZOy3336z3au1yWymTJncP//846655hqr3FPLsnnz5rm6detG+zCBRPHcc8+5xx57zI0ePdoNHDgw0C5MrR+YUyFSBD5hOnXqFFgpzJMnj2W4+ZsfJYRKpdQ/SiciTSyLFSuWhEcLJD2VUCjrpWfPnjZ5jMQvv/ximxj5p1cFXlR2C+DcUim7sgH8jDZNFHfs2HFScEelU5dffrkt/GnjCP3/C6Rk06ZNsxJYbfowYMCAkx7X5pTXXnttyCLB+PHjz/FRAojU7Nmzbc51wQUX2GKFKJu7bNmytvmL5mFqXwGkZKomVUWCspyV3Tx//nyXOXNmd+TIEUtGIcMZkSLwCaNfA036lO0iKslVP8JIaGJZp04dlz17dms8nC1btiQ6WiBpaUVRK+bqXTtlypSIFgH0/5IuRrUqLwzOQHQpqFm7du1A2wllYG/fvt36pAXTgp+ep6CoLrDVPw1IidavX+/q1avnGjdubAHO8BJ3bQxRpUoV60MtCpisXLnSJpUAkj/1r1apr/p+ao8GP2tbFXxKPlHmJ/8/I6VSIpXmYKpA1dgk2oBZiVa6dvv6669tYy8gEgQ+EaByCU0I1UTYL9VVJuiZnKi0OqPMgUh7IgLRptVyBT3VR2bRokUhbSAiLa3VoPztt98m0ZECSCgtRGh3d/WJEpWza4EunC6w9f+tMuVUHsyGfUhp1M9Ti9AKgixcuNAWo8PHuCJFitjGfaIAqcapSBb4ACQPmsbfcsstgY2NdM2qjLgbbrjBFt0Zw5DS7N271xahtTCnRWo/VKWYgu5Tv3b1uwUiRVQKASoBVHmE77bbbnM///xzRK+hksIPPvjATZw40TZLAlKS48ePu5tuusnKYydPnhxx0FM9aPygpyab2kEXQPRpUU9BTbVyEe0M2rFjx5OeV61aNZssfvzxx9ZPCkhJtOnJjTfeaP3+NIaFBz01xinT0w96avMvZYQS9ARSrurVq7tcuXIFFjY0zmkuNmTIkGgfGhARZXQqgURj2K+//hoIeqoCR0HPm2++2TadBc4EgU+EKFWqlO0+7atRo0agFCqh1GT72WeftYb5CoACKYV6oam3p7KV1Tw7ElqVvOOOOwJfq08gZUZA8lGyZEnbwEiZcPL++++7Rx999KTnqR+vdgxVQ331mAJSil69ermvvvrKFuD0+x5ME0iVvmusErV0+OKLL1yBAgWidLQAzpZ6VmuTMlXr5ciRw+77/fffLau7d+/e9v84kFI8+OCD7ptvvrEWRQqCipJQ1ONTG1O+8847ZDHjjFHqjjhdeuml1j/Dz/xUJlsk9GulzDn1R1RmjXYgBJIzBUGUATZs2DDXvXv3iL5XWTQVKlSwjVFE36/XAZD8KJOgePHigbL3V1999aQMAi34Ketg1qxZVi6sagYgORs1apS788473fDhw13Xrl1Pevy1114LlAcq2KnydvVPA5Dy+336G2j6O71LwYIF3aFDh9zixYvtGhVIzt566y3XpUsX2yPEr0ooX768VZ8qo1kJJdpDAThTBD4RJ/1aqFenBkt56aWXXI8ePSJ6Da3ONGjQwHp16GSVP3/+JDpa4Ozo91yZMOqTNGLEiIhXE7WqPnjwYCsX1MCtySeA5EmTwoYNG4a0dhk5cmRIxrbowlv9PhUgXbJkyUk7wQPJhfrVasFav8NvvPHGSWOYyt61g7sC+pdddpntCk3WDBA7XnjhBffII48E9lbwq/WUBXr++efbGOa3egGSG23GpU2Ws2bN6v7++2+7T33ZNbZt27bNfp/V9xM4GwQ+ccrApbJi9uzZY1/Hl0VwuhIMNdnXqqPKr3Lnzp1ERwucmTVr1tiEUauKc+bMCZTBJtQDDzxgGWMybtw4668GIPlvdqSyKf3pmzp1qmvZsmXI83TBrTHswgsvtPNDpH1/gaSm3rUKZqp3pzKUM2TIEPK4qg9UPujTwpwW+ADEDk3n77nnHisF1jlApcI+fa3+1eo775fDA8nFsmXLbB6mHtXamEvUqkFJKYULF4724SGGEPjEaU9GtWrVsr8rO0BBokqVKkW803uTJk2s35SyDBh0kVxs2LDBMj1VOqHAvN8cPqGefPLJwCZeyiBTXxoAKYPGs7p16wYutFXOPn/+/JPOA6tWrQosjqgHcPiGMUC0rFu3zq6vtEit66vwwLxK21Xi7lNwVCXu/A4DsUc9EbXPwvTp0y1zTmXuvvTp09sinsYwPQYkB6tXr7Z5mCpx/BYNGp/UskG/x1qgBhILmxvhlHTCUTabgp6KkderV89K1yOhyaSyEDZt2uRatGgR6NsBRNOWLVssS0YtGPT7GWnQUz1wtYmXjwwaIGWpXLmylQCnS5cusEinMUo9QIOpR7UmiwoytWrVyqohgGjTNZVKA7Vwp9/P8KDn1q1bLfvLV6hQITdt2jSCnkCMUnBzwoQJ7pJLLnEDBw4MuS7VeULZ4VdffXVgsQ+IpvXr19uisn4f/aCndm9XwF7VpmwuicRG4BOnpU0fVAIoCloqkBnpoKnd4XVhrsyZ1q1bM3FEVKl8VRNGZR8rSybS3n2aUDZv3twWA7QqqUzPsmXLJtnxAkgaTZs2tU1hfNrISBu/DBkyJOR56i2l7ANVQSijxr9IB6Lhxx9/tIW7vHnzWvlqeO8+XW9pjDt69Kh9rTZDatWg8kEAsUvZnOqXqGxvtbXwM7513du+fXu3aNEi17Zt28C5AYhW8onGKPWf9Ref1WpMv5fq59m5c2f39NNPR/swEWMIfCJBlAXj71L9+++/W6DIb5ydUCop/OKLL6zBtrJmyPx0tgmBSs8UgNNNG0ppch0pDQ633nqrZSrpYkcNoTNnzmx96dSD8q+//kqS40+JFLRUWYUGWk0EFeSIdMKp3THVP0mbGalsUGXuAFKmDh062ORQm/iJ+kz16tXLLV++POR5yqJRxpya7bOA9z+MYdHJ9NQYpswYLdxp4hhc6nrllVfaTTvhihbn9HvLrs5A6uAHkuSmm25y1atXD2zip4U7LZZoDCPzkzEsmm3GFKT3MzwV9FQyyfHjxy1A//rrr7MBHxKfenwCCVW3bl31hLVblSpVvBMnTkT8Gt98842XPXt2r379+t7+/fu91Gzy5MnetGnTvE2bNnkbN270Hn30US99+vTe2rVrI3qd6tWrex9//LG3Zs0ar23btva6W7Zs8ebMmeOVKVPGa9euXZK9h5Rk/fr1XuHChe0z2bFjR8Tfv2fPHi9NmjSB/wcmTJiQJMcJIDrGjRsX+H+8WbNm3uHDh096zty5c72sWbN6jRo18v7++28vNWMMO7fWrVvnFSxY0Ctfvrz3yy+/hDx26NAh79JLLw2MTzly5PDKlSvnzZw5M2rHCyC6rrnmGjsf5M+fP3Bu0C1t2rR2vjh48KCXmjGGnVurV6/2cufO7Z1//vk2jul3UTGBDBky2N+vvvpq799//432YSJGEfhExIIHz8cee+yMXmPRokVerly5vNq1a3t//vlnoh9jSqYBYcSIEV7jxo1DLlKCb/369Qs8f/v27TZg/PXXX3G+3vjx4+3x//77z0vNdDGi392KFSt6v/76a8TfrwCIgh3+v4EGZwCxZ8yYMYHgZ5MmTbwXX3zR++eff0Kes2DBAgss1atXz9u3b1/UjjU5YgxLGitXrvTy5cvnVa5c2du1a1fIY7qOqlatWuDzzZMnjy3uHTt2LGrHCyD6tm7d6hUpUuSk4GelSpXsmlZJKPGde1MrxrCksWzZMpv7K+juf44FChSw30H9XUH6o0ePRvswEcModUfEVOquMkAZMGCA7WwdKZW9axdtv0/V7t27XWqn9P5x48ZZyr9KLT799FNXqVIl17NnT/fbb7/ZTffffffd7uGHHw58nzbn0K6uKtGIi8or9Fhw6Utqo758+owKFy5smxJpk4dIqBxIPTz9HTKvuuoqmm4DMUrjkhaGReeLhx56yBUtWtQdOHAgpOxdrTI2btxofarUiD+1YwxLOmoRpE0gihUr5ubOnWub8vmmTJliu7pr4xJR6bs26lI/T7VjAZB6lSxZ0np+6tyhuZbOHTovaLO+ihUrujVr1tgYFunGtbGIMSzpqH+65vu6llKJu+jvahc2Y8YMiyWMHz/eZciQIdqHihhG4BMRU8+NF154wW7Sv39/G1gjpZ4zmlQqkKqNI/yL9tRGFx3ZsmWz/iZdunRxkyZNsosRbVagQVKPFSxY0G4aENQPRff5FIDTLo1x+eOPP+zfR02iUyvtcNmoUSNXqlQpC1QE90NLiL///tsCpjt37rSvdQGkXrUAYtNTTz3lunbtGnKfApsKdvrnAalVq5YFoXRfnTp13OrVq11qxBiWtDQRVz+08uXLW09PbWjkmzVrlvXs0zjlCw7QA4DmaNqEU9fBCn7mypXL+k8uXbrUzssrVqywPpcKhqZGjGFJ6/3337fAsAKdO3bssDHKD3qWLl3aPkv1SCXoiaRG4BNnTFmfGkTlp59+sp3b/SyZhNIO8cpk0GZJ9evXdxMnTnSpjRpgK+i7ePFid++997pOnTq5H374IUHfq8mOVnLjGnD1WMuWLW3w1kQ+tdHmW/369XM33HCDfT4KUITvfHs6WvVVoHT//v32tVYkw3d7BhB7i3uvvvqqbUgQTFl0Gue0YOePdVWrVrUxLGfOnBYY/eyzz1xqwxiWdGPYY489ZpuTXHfddbZwp4CFb8SIEbbxZPB1lybpY8eOjbiqAUBs0yY7Cn4qg1HZnQo86ZpYm6Up0/HXX391NWvWtAzy1IYxLGno9+rBBx90HTt2tKDy+vXrbT7lB0A/+OCDaB8iUhkCnzgrynDRypdoxVCTwEiDnzoBzp8/33YY1MW9BodId4xPybTCpRUvXXAMHDjQPsOXX345Qd+rnQc1oOozDKbVNO3qmj17dlu5TJ8+vUtNDh48aL9LWmV97rnn3Icffhj4PU0oXRhqx3ft3i6tWrWyFUkAsS9t2rRu2LBhFngKz/xUuZYW6vxdWlVCqJ3edc699tpr3bPPPhvxOJiSMYYlPk2Y27RpY5+nqmvee+89y9ASTchvueUWK7fUxNKniaVKM9u2bRvFIweQXKl6SfMtnVsU4FTGncYv39GjRy2AxxjGGHa2dH3UtGlTu47yPw+NV/qcFfQUBUFT0+8Zoo/AJ86KgkkKEClj0y8X0MlfPREjfZ2PPvrIeoYquHT99ddb8Co1UtBXFx/xZSIFU3mFytzCJ0zNmjWzgVx9ZzJlyuRSk23btlnm1ZdffmnZV3379j3pczsdla6qP5rf01M9afVZAkg9dN7QBFATIfFL23Shrn5Vjz76qDt27Jjdp55V6k+l8euJJ55w7du3d4cPH3apEWPY2dm6dauNYcoimjp1qlXX+J+byt4rV65si3nB1D9u5syZtoAMAPHJnTu3BeLUt75ChQru+++/t7YtwTSGaQEl0rlcrGAMOzubN2+2ik6NYeGZtVu2bLHPUAFRLepFOj8DzgaBT5w1ndC1eqPsOPnll1+sHCvSDYt08tNEUsEq9a1SRo2CWLFMQTmVnuh9Kmisr1VGqWyOuGjlcMOGDfbZasKtlcbg8gp/sFXAbuTIkfa1eqjqFpwZEqs0yKpfrN7/okWL4u25cyr63VNJ0D///BPYyEhBDgZnIHXq06ePBZxUpqWApu/111+3vlV+309liaodhlq2KGDVoEGDQGZDrGIMS1za9FH9YjXp1himUnafSjG1oUZ4RYzasegzVx9QAIiEziuq2FPWYjDNxbQXg+Z0sYwxLHFpAU79YnVd5GdzKgCseZU2g1TMQHsvdO/ePdqHitQo2tvKI3b8888/XoECBXSWs1u2bNm8HTt2nNFrrVmzxitRooSXL18+75tvvvFi1R133OEVK1bMy5Ahg3f++ed7l19+uTdr1qzA41WrVvX69esX+Pq9997zsmTJ4rVs2dKbPXu2V6RIkZDXmzt3buDzD7/99NNPXix78803vXTp0nmXXnqp98cff5zRa2zdujXkM7vuuusS/TgBpFwnTpywc3LweSJnzpxezZo1vS1btgSet3LlSju358+f31uwYIEXqxjDEu/36rXXXvPOO+8874orrvD+/PPPwGM///yz/Tlp0iQvTZo09lnoM5w2bZrXp08fb/PmzVE8cgAp/do5bdq0dl4pU6aMnYOCz7uay3377bderGIMS7wxbODAgSe9Z10D6XPV3xUj+O6776J9qEjFCHwiUf333382cPonvEyZMnkLFy48o9dS8EpBLAWzNDDrpIr/061bN+/ee+/1UrujR496Xbt2td+3+++/3/v333/P6HXWrVvn5cqVK/C727Fjx0Q/VgAp39ixY+Oc1FSsWDHk/LN7926vUaNGXvr06b0RI0YwhoVhDPu/RePOnTvb71CPHj3sOkqOHz/u3XPPPfb78+STT9r1lJ5TtGhRb+3atdE+bAAxQosoWsDT+UVBqty5c4eMbVpwGTx4cLQPM9lhDPufI0eOeFdeeeVJ10RNmjTxfvnlF+/111/3qlWr5m3fvj3ah4pUjsAnEp0u1l988cVAZoL+fPjhh8/otTSJ9INaV199tffbb78l+vGmVG+99Za3evVqLzVbtmyZV7lyZQuO6/M409/XYcOGBS76MmfO7L300kuJfqwAYoMy8JQFEn6Rf8EFF9gEIHxhxg9qtW3b1vv999+jdtzJDWOY5y1dutSrVKmSBTdHjhwZ8tjkyZO9jBkznvR7ds011xBEB5CoNm7c6FWoUMHOMcp+LFu27Ennnjp16tiCHv6HMczz5s2bd1KgXLfu3bt7x44dC1ngA6KNwCeSjErUFZDyT4JdunQ549eaOHGipcvr5PrBBx9w0Z/KKZigDBj9fikAsWLFijN6nf3793t58+YN/I7Wr1+fizoAp3XgwAFbjAu/2O/QoYP3999/e71797ZzlM5VMn78eGvdovPNuHHjGMNSOU0CH330USsrrV69urdq1Sq7X+2B9LslCpSH/35pIXnQoEH8/gBIdH/99ZfXpk2bwPnm9ttvDyl91wKNMkInTJgQ7UNFMhjDNK8PH6N0jaPWAaVKlfL27dsX7cMEQhD4RJJSL4/gE+KQIUPO+LX27NnjtW/f3l5HAzPZn6mTgpwKdiroqb47fmAhUionbNeuXeB3Uy0aWJEEEEm2+NNPPx2obvBvF154YeDvo0ePDjxfiyrXX3+93a9zz65du6J6/IiO77//3rvooossiPDMM88E2iO8//771k9P5e76e9asWQPBTv2ZI0cOb+rUqdE+fAAxTIsqQ4cO9Tp16mR/X7JkiQWx/HNRuXLlAhUMmpch9dHvhFr7KCiu7ODgdj9+S5aCBQtar3MgOSHwiSQ3ffp0u8AP3jDmbBplK/tTK4558uTxPvzwQzIfUgkFOBXoVMCzSpUq3vLly8/4tRSA8Et6/Obthw4dStTjBZA6KBjlt8pQVmdwEPTTTz8NPM9fWPn444/tebrp70gd9O//+OOP22RR/c78LE/Zu3ev16xZs0DGTHgWjVq6bNq0KarHDyD1CJ5baVOeWrVqBc5H2tDHD3qdaZsppMwxTFUtCoCr17Rag/mtEbSY5/9+tGjRguo5JEsEPnFOaNdRf1c3/3Y2DaG1ynjjjTcGsj/pm5Y6sjx1ofXEE0+ccZanMmt08RZcuqPdmFXyDgBnSju6v/LKK7Ybtxb3/PPLxRdfbL3TVL6sTNCePXt6Bw8etGxPP+Nczyf7M/b7UWtiqIU7ZQlrLFq/fr03Z84ca32gVj7B10cao7Jnz25/V+YVC3MAohUA9dtuqDIqeBNQPxtd8zGyP2M/y9NflPMXenVTEokSkfxWCNrjQ9UwQHJE4BPnjIJLynIIvrD/6quvzuo11WeG7M/YpcnhU089ZZNFZbxo8nimfv31V69AgQIhk0ttOhLcfBsAzpbGoRdeeCGwwKKsiGuvvTYwYfAX6vQ8Bb00mVD2p/qAIrZokU6LdX6Wp1/6N3PmTC9t2rSBssDgm0pJtenR7NmzbcMjrmsARIvOP2q9oVYbOj/pnBWc/alAqKqmNBcj+zN2+1FrvAoOeuvffPjw4V7r1q0DVQlnut8CcK4Q+MQ5pSCTv8OtbjqRKvtBm0GcKaXT33DDDfZ6l156qbd48eJEPWZE50JLQW3tKqkJo8oDzzTLU/RawX1otEodvoMuACQWP5tTY1x4YEsTxLffftv6DH/22Wfezp07Axk1TZs2taAXUjZlvCioXbp06ZP6UWsDkYcffvik3rC6XX755WR3Akh2tm3b5l1xxRUhmX7B/az9rL9ChQrRizhGxjAlnqhXp+ZhwS1Y9Hvw888/2/O0kKvnsUcCUgICn4gKlXepfCv8gl8TwTM1ZcoUr1KlSoGNI1RGhpRHWS7+anLz5s3Pqjn2L7/8Ys22g3/PdHG2Zs2aRD1mAAimzfdatmwZUuEQHuTyN4zQrt5aFFQQ1O89rE2QVCKPlGfWrFlejRo1Ar3OtMnjgAED7LpEGVHhZe26KTiqP3Pnzn1WC8EAkJRJCe+8804g+1PjmhJPgvdxCM9cR8r7N37zzTcD5ezBi7eaPymzUxsNAykRgU9Elcongk+qmvRpVfFMafI4ZswYW4XUgHzXXXdZNg2SP5Wx+6vJderUOes2CHPnzg353VK/tHnz5nlHjhxJtGMGgNNNIFQSFj6BCM72K1++vPXBFi3+jRgxIrB5xD333GMLOEj+NMnXAq7+TevVq2fjjWzfvv2kwLf/7x/8e6D+eQsWLIj22wCAU9qxY4ct5BQuXNgy2NeuXRs494Xf1OdamyMh+dPmweEtwfxrF83L/Mq5jBkzej/++GO0DxeIGIFPRN2rr756UlN/9UdTf8czpeCWGiwrNV/9aHr37m2bTiD50YTf36hKK8QaeM+mp5k2Drn99ttDfqe0C/y+ffsS9bgBICG0mKfs9eCeaOETC417Om9pwUcLgMOGDfOGDBliGRbqEdqnTx/OYcmUMnOVoesv3o4aNcr79NNP7TGNZddcc03IBDI8y1PBz+7du1PiDiBFCd65W4knynDXbt/h45vOcc2aNbNe+0h+tEhXokSJOAPX6k2tcnf/a13LUI2ClIrAJ5KFSZMm2eQu+GSrFSX1ZjzbDZXUHzJLliw22Rw4cCCTi2RCF0BdunSxyd8FF1xg5TNn0+pAE8y+ffsGdsL1b8qc2rp1a6IeOwBEen569913vbp163p79+61cUljXFyZFX7rF1GwUxsLaHxUGbQWBQ8fPhztt4P/30pFPcsVtNZkXwHPLVu2WFaM/m39Sb4yo4IzO7WRlf911apV6UsOICYq+PwgZ+3atUN6QgYHQK+66ioCoMnE119/bRUncQU8VdKuKgT/6+LFi1s7HjbbQ0pG4BPJauWwcePGJ518e/TocdYTPfVbu++++yzIpsbbgwYNssknzj1NDJXdomB0Yk7kL7vsspN+d1QmSsNtAMlF8KRhw4YNIZPD4HJobYrjP1elhMoa1O6pCoxqoUjnTaoYomPTpk1et27dAsHoBx98MNBCRf3LtfimKoNp06Z5N910U8hiroLY6uGpzY3OtrIFAJJT+fstt9wSON9pAeiSSy4JtHoJD4A2adKEMSwKdF3xwQcfWCAzroCn9spQ0tGBAwfsWkPjmZKGWHBFLCDwiWR3QtZut+GNsrUL7ocffmilFGcbdLvttttsQNakRdka69atS7TjR/z/rpoQauKuCx5N9h977LFEuejR4KyJZ/jvy/z58xPl2AEgKYwdOzYkKBZcAq2Amdp2yPPPPx9oBaISs44dO9oYpsUjZc3/8MMP0X4rqWIM06ZF2rBKY5iyNu+++26rJFGfOz+A6Qc6S5YsGShl9/999f0AEMuWLFkS0u9T41T9+vUDm+UE3/SYklK0CEgmYdLS5ztjxgxblIsr4FmsWDFrRxC8GLdw4cKQdgZASkfgE8mSNiTSRjfapCj4xJw1a1Yriz9bu3bt8p555plA3xL9LL0u2ReJS5lK2tzjoosuss9Zf6qk/WxXDjWAK3NGpRgqZQ/+HdGGVrQzAJDcaSFPGxkFbyYQ3PJFCzjKtPAXdrRhTnCZtc5//u66mrCoDO1s2oUg7nY5r7/+umXB6HNW6d/IkSMtw1PXKbom0RikLFBt4KGy9uA+nuox7v9dE3wASA2+/PJLr1atWnbuU+m7zqUaz/Lnzx+SFeqPecoM1UIeY1jib7qnawi/pD28HZjur1GjRuBrtSwAYhWBTyT7iaEGyuAMUAXPEmsF6ujRo5byr75rem0FQtUnkp6QZxeU1CrhHXfcYau5mgReffXVlvGZWCu62rgqeOBWU279Oy5atChRXh8AzhWVPvt9POMKgCpbUGXwgwcPDnzP1KlT7TFlHCp4qomlvlYrF2XTs+PqmdM4pd3VVR2iMUyfvXa01Vim0k1lNHXq1CmQpas2BCrxDG5VoO/z/67+n++99553/PjxaL81ADin51KNVcEVWGo91qBBA8uKjyvzUBn06oGthSSyQM+MPjd95sHt44LHJN0UlNbiaXB/cVUsKPsWiFUEPpEiaKIRvDmAJhz9+/e3XW8TK0i5atUq7/777w+UY6hUY8yYMaT5R9BGYOjQoYHsTpVN6N9IWTGJ1T9ImbqajAYP3vo3I8MTQEqnDR+6du1qJdKNGjWyYJl2CQ/OjtGC0urVq61PtcbEsmXLeuPHj7cMxBUrVliVhL9QqEoGbai0Z8+eaL+1FGHz5s12TaHP1F8IffbZZy27Vi1x9HmH96sLz55Rz0//73ny5LE+nn7/TwBI7Z577rmQHcO1qBR8DtX8zh/DlDGvzZCmT5/OwtFpaJxRqzi1cFNbnPAFVH+80uPBlXL6rNW2ReMfEOsIfCJFpesHTwKDb5988kmi/RwF0TRZbNiwoU10tAqm/jTqs6ZeaqxA/l82rrJiHnnkEa9ixYqBCxaV+qmPzNn2Y/Vp9VEbffi974L/3Vu1amVZuwAQS4tICm6KJnujR48+qT+a36bFvynzs0OHDoGvlRWvcSt4l10F4cjm+D8ao5QV06tXr8BEUWOYP97o81RQWRmdwVUnyuwMDnjq873xxhu977//3gLSCn4OGDDAMnkBAP9n2bJldr4MbgmiLE9lJ6piIa45nr/wp0xRVXcl1vwipVNijrJjtVgXnBykzyr4s1OAedSoUYG+4bo20MKcKhwTKzkFSAnS6D8OSCFOnDjh3n33XdezZ0+3b9++wP3Fixd3L7zwgmvXrp09J126dIny83bt2uWmTZvmJk+e7GbNmuWOHDniSpcu7Vq3bu2uvvpq16BBg0T7WSnBwYMH7XOYMmWKmzp1qvvjjz/c+eef71q1amWfyRVXXOGyZcuWKD/r119/dYMGDXJvvvmm+++//0IeK1WqlBs1apRr1KhRovwsAEiuHnvsMffcc8/Z37Nnz27nYf/SLWvWrC5t2rTuwIEDgefrnNy5c2cboy644AJ34403ugULFthYdezYMVemTBl7TOfs+vXrp6oxTJ+TxjCN6V988YWNYWnSpHFt27Z1t956q7v00kvdW2+95QYPHmyf8z///BP43ty5c9v36zOUDBkyuPPOO8+ee99999l9+p7jx4+7nDlzRu09AkByt337djvXvv3223YelsyZM7tx48a5jz76yE2aNMkdPXo0zu/Vebd8+fI257v33ntdwYIFXWqgcX/58uXu9ddft/Hr999/j/e5+kz0Gf3yyy/2WevPvHnz2mM//vijPZ4lS5ZzePRA9BH4RIp06NAhmwhqwhEcFKtSpYrbsGGDq1q1qg2cCpAlFgU9v/rqK5swKfD322+/uVy5crkWLVoEJpBFihSxSVSsUBB506ZNbu7cufae58yZ4/79919XsWLFwMS5bt26dhGSWHSx8+STT7r169fbBDKYBm39m3fs2DFRfyYAJFc7d+50r776qi0C/f3333ZfpkyZLOB5+PDhkIDnX3/9ZedonyY3CtDpNTSh1PfpXP7pp5+6vXv3uowZM7rrrrsuMIYpUBpLY5jGEI1hn332mRszZozbsmWLjWsXXXSRvWeNaUuWLHEvvviie/DBB23BTZ+BT2O8Puc///wzcF+OHDkswKnXkWuuucZeHwAQGS0uTZgwwY0cOdIVLlzYffjhh3a/Fpk6dOhg5+Rly5YFzrdxyZMnj6tXr5674447bBErVsYwhWg0p9V4rbnnqlWr4g0G+4tzlStXtjnyihUrAp+Zxn29xlVXXXUOjx5Ifgh8IkVT8HHp0qW2AqaJS3DWiyZ099xzj+vevbsrWbJkov5cDSb6mZpAajBauXJlYOJZs2bNkFvRokVTxCDsTxB1geHfNHBqgqcgo7Ir/WBnYgaUfQsXLnTPPvusrWIGy5cvn/38Bx54wCamWhEGgNRGQU9NDhUE/emnnwLjnAKWWpzyL+eUwZk/f34L1gVnLH7++ed2Dhdl0/ft29fO5coaXb16dWCCpHHMz+DXGJZSFvQ0hm3cuNF9/PHHbvbs2XY9oMwWTQI1hujx9OnT23tVJsx3331nE2Vl0SojVgFiZcU0bdrUKkpU8eHTYxp7FFj2aUzU9YU+09SUNQsASUHZ9P65VAG/ChUqBAJ6WqzSOVzzreAFv3Aav2rXrm0JGvv377exTLeUMIZpgVJJH5rbag729ddfB8bm+Fx44YVWdaeg8VNPPRWoSJBLLrnEEkVuuOEG+wyB1I7AJ2KGslcU6Jw4cWKcA0P79u3d008/bRO7xKYVSQVgg4OG/qRJgbvgQGiNGjUsGBrNjEWtGG7duvWkIKcmiKLJcPAx16pVK0lK9zTJ1ARcE1AFksOzOwcOHOg6depkF0LKugGA1E6Tv5kzZ1q5W6FChdw777xj59IPPvjADRkyJFA2KAr0KYNRAVAtLqktjHTt2tWNHTvW3XXXXW7o0KH2/Xpc46ReXxk0fpajAoM6B2scUFmhxjAFQ7UopuzHaEwoNYatWbPGFssU7NTxKhvGH8NEwU0FNvWnJoP9+vWz96DAsYK9/sRaQU1VGWghc/HixYHv15hz+eWXu5tvvtmNGDHCgqP6vptuusk+v+rVq5/z9w0AqYEW9zQ2jR8/3u3ZsydwvxaglNWosUxBQo0D4fQcnfP9ikDNwxQM1XxG8zWNCXXq1HFly5Z1BQoUOKfzC1Vk/PzzzzZuaV6lxTnNwbQwqZJ0n8rQdfzhrb40puv9K5DZrFkz16tXLxuDd+/ebdcDChCrikPjlFqzAfg/BD4RUzSAaHKjUom4yiKKFStmmYNaAdNAmJT88ozgm1bxRIOsMnI0SGmVTn/6t+CvVaaoQS6htAqqnxF803GEfx1ctqeBMTwwq/K+pLZu3ToboOOiixYFQ6tVq5bkxwEAKZXGOX/SpsUrnb/9YKUW15TxEkyTv+bNm1tLEZ2DVf6uHqCiwJ4Cm5pwdenSxcYiZU1q8qmgqO73M2000fIvHxUcLFGihD1fY4smb+qVqcmXJpUawzR5VXaqfra/+KgKAwUfNS6rPY2f1aoFL2W+6Lla0NS4pTYzynzR+9J7Dh7DRFmXDRs2tCwfla5Pnz7dJpVagNTE2D9WvVf1lfvmm2+suuCTTz4JCRT7GUMKoOo9q32OzJgxw96XJpM6BgBA0lMAU2OT2olo3FLQUFRtp0xOjQ9a9NM5X+PG5s2b43wdjTta1AsPJGos05xD44UW0DQ301imBBUtGmqRT2X0fh9RjYkaV/Q9wW1RtGimcUNj1rZt29yOHTtsvqU+nHq+qgi0WBhXqbqOTccV3t5LNG5qXNOx6fU1bvvVjRpnNTb69P51vADiRuATMUkDoyZPo0ePDul35lP2ilb8NGFTpocGlHNBA7TKNDQgxhWY1AAZPvApG0XHq8mj/vSzH/U8XRD4q5rBq5vBA2Z8gVWtliqweC6CnKKVWV2oaEKt/qsvv/yyTXqD6d/hkUcesecokwgAkPBzrDLoNUH0e4GKAnWaWAVnzYgmbiqF0ziooKHK5TUeBtN4o1YxmgwqCKjFKvW7VkC1f//+9pyWLVvaxM4fz8IvKzV2+WOTslQ0pmkMU9m4Aqn+2BbXGKbj1nil19RkUgt1yuLUfXodbXaobFb9XRNef1IcTgFYVRHouXqd4IVR/WwthGpiGjwpVU9VVZEAAKJP44AWsrQQpax7fzPV4A0ANVb5LVwUKFQwUHOus6Hxyt/MTmOHxkCNW/r5/lzsVOX3kfwczU21d4IWMZWVqh7S4ZsYaSxT0FOPaVM+AAlD4BMxTVkhb7zxhvX/VABUq23hlP2pyVNyoAFV2SfBwVANsOEBTg20fhA0OCCqCW5woFNBzeTQ10a76Cp7xw/Ghq94apfh3r17WyNzPQ4AODMK7mliqGzOadOmBcY9lbbr3Pvll1/a4wr0BdNYomwRTeY0XmocCu6bHU5BSWWQKnvS161bN5uYNmnSxCZvGsMUcNU4rLFLpfT+5PGHH36whUBlsyijRo/rMY0XWvhSKb/GBo1h119/vZUGqsepfqYoSOsHX8MnhbppTFSAVu8jnAKo5cqVsyyh4CCo3r8yVbVbsILCtFgBgORN44ISXZTtH754JhpnNA6uXbvWzZ8/36oDFUxUQDS4J+a5ormZskW1EOiX5StTVOX9Grv8Ht6iudP3339v45H6SqsHtSokGJuAyBH4RKqgyZ4GOE2E1A9t+PDhIZsUVKpUyXqdKeNF5XePPvqoBeEQOZUDaud1TZw1CVYJii5I1H8m+PNW1o4msiodbNy4cbII0AJArAVBNa4pAKqSdX9hSRvFDRs2zAKMuilAGNfCoN8j1O/lqbFUz9X5XAHD8FI7lQMq+1MTTb98fcCAAe7xxx+P6Lj1vf6mgaIgpcZmbfagyZ9+hkrWtZGRP3HUQqeye+KiyaQCtQ0aNLDxSWWMer6yg5TFqqxVlcsrqMqEEgBSHiWKaNxQ2bluChhq4U3nev+8ro1+tIu8P74pWUQZ/1rw09faLFBBSL/Niqon9Lqa0wQnoIhfgafvU0ao/tRNY5LGWj2ucVMLetoIzy+hv/baa20si4vGKY1vftWbFihVhs+4BJw9Ap9IlTRRU2+Y+EoTVGKgsmxN+LQqqAFQwTqcTJNffUaaXOszU5llXO0FRBcGyubRxJVAJwBEh0q4x4wZc9K5WpM1TQK1IaCyY06V8anJmAKdysrUWKkg4pw5c+w1H374Yevd6WduanMgjRX+LfzSU2WJ6iGqmyZ+et0777zTxl6NL4sWLbIJoCagCm7qz1Mdl36uJqh+gNansWfevHmBrzUpVk9PAEDs0WJdcCWZ9nlQxYOyPuNqLabFQn9+osUwbXoXFz0neGxp06aNbVAUH72ufxwa29T3WiX5Gj81v1Tlg25a5ItkbwcACUfgE6mWgp5qlK0MUJXqxfW/gnaA1f3amEg9wpQlo35o2s01mruyR5sGcE1En3jiCfvzdKUiuphQLxpleV5xxRWp+rMDgORyHldpoMY/BQOVIaNAp7JStMu7xj71zNSGQMrk9zdgULVEXNmh55rKBJWloyCpWtZoh3Zlb+rP4DJ+BWWVxaNSwcsuu8x2xAUApF6at2ic09immxbUFCQN7nOtyj8t5inrU4+Fz3WC54233XabBUmDN0ryb2o9pkpCvyepXkvzIhJAgHOLwCfgnJXBq/Thvffec6tWrbLApsol4vvfQ4OaBqyyZcu6Z555xkq1/Z1qY5EmuX369LGd1jVwK9gZVx8dUTmGv9Owsmtuv/12K+tgJ1wASL6U/aL2Iyrv0wKfT4FQ3RcXZXmqz6YmkMqeVP80TRI1Puim4KqyM+ParTacJoK6aSxVBqjGVwU3FdicOXOmZX7qtcPHZW2+tHXr1sDXffv2tfFHlRsqXVf2KgAAZ0NzG39s0xxQFQoEL4GUg8AnEEarftrgQD1W1BdNq3T6+6moLEFZJH65nnYlV9lDSrRu3TorgdSqpYK6GuAXLlxowd34KKipzSBatGhhk9DVq1dbiYj6qgEAUi5ttKCyd/XY1E27p2/ZssU2DdKus1oQ85UoUcJ2TY+LSvjUc82fNGpDIwVa4xIezFQAU98rCozq5+g5uqlMkN3XAQAAEJ908T4CpFIKeopK21WaraDmJ5984mbPnh1vT1BN5JYvXx74Wtkv6tWi/i2a2CkoqPK7iRMnBlYHteYQrZVC9WBTaYfK/DWZ7NmzpwUt9T6UvaMNI/S+1QtVZf7K2omP+sFp0wyVGvpq1qx5jt4JACApKcioWziV/SkDM5gCkKqg0AZIekw3lc+rtE9BSr/Uzx9rNbZoAwgtGGqxTX/qOeoPGky7wiuLU9mnyjJlowcAAAAkFBmfQAIpKKgeaCq5UxBUAUMFR1VGp+BgXBv6qGxPWY8qE9RETTucq5F18eLFrReZ+pCp91i1atUCGyxs2LDBHm/VqpVlUuqmjBuVWCiYqkCjqM+asm/0M/zdc0UbSaxfv96yazShVPmhgrIKYqq3prJS/f5twT3QlEXj/5xw2ijCn+BqYtqkSRPXtGlT29G3SpUqTEIBAAAAAECyQ+ATOEPqW6YSeAUpFfTUJhHqaZmU/0upV6YCm/oZI0eOtM2FlJmpvqTKRtWtWbNmp8zQTCj1V3vssceslFHB2rfeesv+riCtAqoAAAAAAADJGYFPIJHofyX1NlMAVIFI9blcsWKF9UETlfmpTE/90U7XMzSpKfOzaNGitmOvfwpQ1qbKGZU9qlL1hg0b2g0AAAAAACAlIvAJJDG/JF2l5NoASdRf8+KLL7ZdauMqLVcPM5Wf+z3SVK4eHwUsc+XKZSXo+hnadCI+Cmiqz6heW1mbw4cPt5+lEvrSpUu7jBkzJtK7BgAAAAAAiC4Cn0AUHT9+3IKfu3fvtpsCnLqptFw9PkVl6zfffLOV0+umXqMKdvq3unXr2u7rvj59+tjmEHny5LGbeowWKlTIsk1z584dtQ2VAAAAAAAAziUCnwAAAAAAAABiDlsxAwAAAAAAAIg5BD4BAAAAAAAAxBwCnwAAAAAAAABiDoFPAAAAAAAAADGHwCcAAAAAAACAmEPgEwAAAAAAAEDMIfAJAAAAAAAAIOYQ+AQAAAAAAAAQcwh8AgAAAAAAAIg5BD4BAAAAAAAAxBwCnwAAAAAAAABiDoFPAAAAAAAAADGHwCcAAEgSxYsXd8OGDYv2YQAAAABIpQh8AgCABGnSpIlLkyaNGzRo0EmPtWzZ0h576qmnAvctXbrUde7c+RwfJQAAAAD8D4FPAACQYEWLFnVjxowJue+XX35xc+bMcYUKFQq5//zzz3dZsmQ5x0cIAAAAAP9D4BMAgBTk7bffdoULF3YnTpwIuf+aa65xd9xxR+DrN954w5UqVcplyJDBlStXzr3//vshz1d25ogRI9y1115rwckyZcq4yZMnn/bnt2rVyv3xxx9uwYIFgfveffdd16xZM5c/f/54S909z7Ns0AsvvNBlzJjR3sMDDzwQeO7Ro0fdww8/7C644AKXNWtWV7duXff1118HHv/5559d69atXe7cue3xSpUquS+++CKizw4AAABA6kLgEwCA/0/BuUOHDkXlpp+dENdff73bu3evmzt3buC+P//8082YMcPdcsst9vWkSZNc9+7dXc+ePd3atWvdPffc426//faQ75Gnn37a3XDDDW716tWuRYsW9v16rVNRIFXPGz16dOA+ZYAGB13jMnHiRPfSSy+5t956y23evNl99tlnrnLlyoHH77//frdw4UI3btHmejMAABm5SURBVNw4Ox69zyuvvNKeK/fdd58FR7/55hu3Zs0a9/zzz7ts2bIl6DMDAAAAkDql8RI60wIAIMYpABmtYNrBgwctkzEh2rRp4/LmzetGjhwZyAJVEHPHjh0ubdq0rn79+pYRqft9CnDq/U2bNi2Q8fn444+7/v37h7z36dOnW8Axvh6f1apVsyBqw4YN3W+//eaWLVtmQUqVu9eqVcuOze/zqYzPHj162O3FF1+0oKcCsenTpw953e3bt7uSJUvan8oE9TVt2tTVqVPHPffcc65KlSquXbt2rl+/fhF/tgAAAABSJzI+AQBIYZRxqQxKZUDK2LFjXfv27S3oKevXr7fgZzB9rfuDKZjoU9A1R44cbvfu3af9+VWrVrXS+E8++cSNGjXKdejQwaVLl+6U36Pg6JEjRyzAeffdd1tW6rFjx+wxZXAeP37clS1b1oKv/m3evHlu69at9hyVxT/77LP2PhT8VFYoAAAAAJzKqWcpAACkIup1qczLaP3shFKvSxVsKHuzdu3abv78+VZGHqnwzEtlgYb3Do2PStuHDx/ufvjhB7dkyZIEbYq0ceNGN3v2bPfll1+6rl27usGDB1twU5/5eeedZ9mj+jOYn4F71113uebNm9t7njVrlhs4cKAbOnSo69atW0TvGQAAAEDqQeATAICgwF9Cy82jKVOmTK5t27aW6bllyxbbvKhGjRqBxytUqGCbD3Xq1Clwn76uWLFioh3DzTffbJsRKfszoa+bOXNmC9rqpp6d5cuXt2zP6tWrW8ansk1VQn+q4GmXLl3s1rdvX/fOO+8Q+AQAAAAQLwKfAACk0HJ37bC+bt06d+utt4Y81qtXL+vpqYCi+mROmTLFffrpp5ZtmVi0u7p6fIZnjcZHGyApuKnd2pXd+sEHH1ggtFixYtavVO+nY8eOlsWp496zZ4+bM2eOleO3bNnS+oReddVVVg6/b98+26hJAV4AAAAAiA+BTwAAUqDLLrvM5cmTx8rHlX0ZTBsMvfzyy27IkCG2u3uJEiVsF3ZtTpSYcuXKFdFzBw0a5B566CELgGpHdwVkFfQUHZ96eGonem2UlC9fPlevXj0L7oq+R1miO3futF6k2oDpTMr7AQAAAKQe7OoOAAAAAAAAIOawqzsAAAAAAACAmEPgEwAAAAAAAEDMIfAJAAAAAAAAIOYQ+AQAAAAAAAAQcwh8AgAAAAAAAIg5BD4BAAAAAAAAxBwCnwAAAAAAAABiDoFPAAAAAAAAADGHwCcAAAAAAACAmEPgEwAAnFbx4sXdsGHDAl+nSZPGffbZZwn+/ttuu821adPmlM9p0qSJ69Gjx1kdJwAAAAD4CHwCAJBC/f77765bt26uZMmSLmPGjK5o0aKudevWbs6cOUn+s3/77Td31VVXJfj5L7/8shszZkySHhMAAAAABEsX8hUAAEgRtm3b5urXr+9y5crlBg8e7CpXruz+++8/N3PmTHffffe5DRs2RPyax48ft0zOtGlPvy5asGDBiF47Z86cER8PAAAAAJwNMj4BAEiBunbtakHKJUuWuHbt2rmyZcu6SpUquYceesgtWrTInvPiiy9aQDRr1qyWDarvOXjwYOA1lIGpwOnkyZNdxYoVLWt0+/btbvfu3ZY5mjlzZleiRAk3duzYk35+eKn7mjVr3GWXXWbfkzdvXte5c+eQnxVe6n7o0CHXsWNHly1bNleoUCE3dOjQJPy0AAAAAKRGBD4BAAijoJxunucF7vv333/tvqNHj8b53BMnTgTuU+al7vvnn38S9NxI/fnnn27GjBmW2amgZjgFM0WZm6+88opbt26de/fdd91XX33levfuHfLcw4cPu+eff96NGDHCnpc/f34LUu7YscPNnTvXffLJJ+7111+3YGh89J6aN2/ucufO7ZYuXeomTJjgZs+e7e6///54v6dXr15u3rx57vPPP3ezZs1yX3/9tVu+fHnEnwUAAAAAxIfAJwAAYZSFqNsff/wRuE/l5LovPJinQKHuV6akb/jw4XbfnXfeedIGQbp//fr1gfvOpO/lli1bLChbvnz5Uz5PGwVdeuml9nOVjfnss8+68ePHhzxHgVcFNi+55BJXrlw5t3PnTjd9+nT3zjvvuHr16rmaNWu6kSNHuiNHjsT7cz788EML8r733nvuoosusp/12muvuffff9/t2rXrpOcrE1SvOWTIEHf55ZdbVqoCs8eOHYv4swAAAACA+BD4BAAghQnORD0VZV0qsHjBBRe47Nmzuw4dOri9e/dalqcvQ4YMrkqVKoGvFZRNly6dBTx9CrD6WaRx0fdUrVo1JPtU/UeV2bpx48aTnr9161bLoK1bt27gvjx58ljgFQAAAAASC4FPAADiyEjULV++fCGl2bpPmYzBVAKu+y+88MLAfSpB97Mawzck0v0VKlQI3Key8kiVKVPGemyeagMj/axWrVpZUHPixIlu2bJllokqCjr61JNTrwUAAAAAsYbAJwAAYZS5qFtwQFCZkbpPGwDF9dzgndDTp09v92XKlClBz42UsiPVU1OBTPXXDLd//34LdCrjUpsGqWRdmx/9+uuvp31tZXeq5Fzf71PWpl4zPgrkrlq1KuRYFixYYO8zrizOUqVK2ftevHhx4L59+/a5TZs2nfb4AAAAACChCHwCAJACKeh5/PhxV6dOHcvo3Lx5s5WcazOjiy++2JUuXdr6d7766qvuxx9/tH6bb7755mlfV4HKK6+80t1zzz0WmFQA9K677rLM0PjccsstFuTt1KmTW7t2rW2K1K1bNyutL1CgwEnP9/ufKotWGy7pe5T5GhwQBgAAAICzxQwDAIAUqGTJkrYLujYv6tmzp20qdMUVV7g5c+a4N954w3puvvjii7Zjux4bO3asGzhwYIJee/To0a5w4cKucePGrm3btq5z5862iVN8smTJ4mbOnGm7zdeuXdtdd9111ls0vC1AMG0W1bBhQ9e6dWvXtGlT16BBg5C+ogAAAABwttJ4Cd0hAQAAAAAAAABSCDI+AQAAAAAAAMQcAp8AAAAAAAAAYg6BTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AACDZadKkievRo4eLRWnSpHGfffZZtA8DAAAAiHkEPgEAQIozZswYCyBeeeWVIffv37/f7v/666+jdmwAAAAAkgcCnwAApCLHjx93J06ccLEgXbp0bvbs2W7u3LmJ+rr//vtvor4eAAAAgOgg8AkAQAoydepUlytXLgtgysqVKy3DsU+fPoHn3HXXXe7WW28NZEbq+ZMnT3YVK1Z0GTNmdNu3b3dLly51V1xxhcuXL5/LmTOna9y4sVu+fHnIz9LrvvHGG+6qq65ymTNndiVLlnSffPJJ4PFt27bZc8aNG+cuueQSlylTJnfRRRe5efPmhbzO2rVr7TWyZcvmChQo4Dp06OD++OOPwOOHDh1yHTt2tMcLFSrkhg4dmqDPImvWrO6OO+4Iee9xWbNmjbvsssvsPeTNm9d17tzZHTx4MPD4bbfd5tq0aeMGDBjgChcu7MqVKxd4b+PHj3cNGza0761du7bbtGmTfXa1atWy49X72rNnT+C1EvK5AgAAADg3CHwCABBGgbhIb8eOHQt8v/6u+44cOZKg142EgnAHDhxwK1assK8VZFSQLbi0W/epR6bv8OHD7vnnn3cjRoxw69atc/nz57fX6NSpk/v222/dokWLXJkyZVyLFi3s/mBPPPGEa9eunVu1apW75ZZbXPv27d369etDntOrVy/Xs2dPO6aLL77YtW7d2u3duzdQeq6gY/Xq1d3333/vZsyY4Xbt2uVuuOGGkO/XMX/++edu1qxZ9l4SGix86qmnLLAZHJANps+3efPmLnfu3BaUnDBhgmWJ3n///SHPmzNnjtu4caP78ssvLbjs69evn3v88cfteJRhevPNN7vevXu7l19+2c2fP99t2bLFPfnkk4HnJ/RzBQAAAHAOeAAAIISGx0hv48ePD3y//q77GjduHPK6+fLli/N7I1WjRg1v8ODB9vc2bdp4AwYM8DJkyOAdOHDA27lzp73mpk2b7PHRo0fb1ytXrjzlax4/ftzLnj27N2XKlJDPoUuXLiHPq1u3rnfvvffa33/66Sd7zqBBgwKP//fff16RIkW8559/3r7u37+/16xZs5DX2LFjh33fxo0b7Zh17MGf3969e73MmTN73bt3j/d49b5y5sxpf+/Tp49XtmxZ+9n79u2z1547d6499vbbb3u5c+f2Dh48GPjeadOmeWnTpvV+//13+7pTp05egQIFvKNHjwae47+3ESNGBO776KOP7L45c+YE7hs4cKBXrly5iD/XSZMmxfs9AAAAABIHGZ8AAKQwKp9WVqRiaMo6bNu2ratQoYJlGSpzUuXayjT0ZciQwVWpUiXkNZR1effdd9vzVJKdI0cOK/9WGXwwZXCGfx2e8Rn8HGVFqgzcf44yRdWDU2Xh/q18+fL22NatW+2mnpp169YNvEaePHms3DyhHnnkESs3HzVq1EmP6TiqVq1qZfG++vXrW59TZXj6KleubJ9TuODPTWX6/nOD79u9e3fEnysAAACApJfuHPwMAABSlOD+jwml3pm+a6+91l4jbdrQ9UX1jUwMKmNXkE9BxfTp01sgUfcpGLpv3z4LjAZTf0r1qwymcmyVo6tku1ixYnb8CmAm9sY++hxU+q5S+3Dq56lS8bOlHqZ9+/Z1Tz/9tGvVqtUZvUZwYDSYPl+f/xmG3xe8WdS5+lwBAAAAnB4ZnwAAxBEEi/SmTEef/q77FHBMyOtGyu/z+dJLLwWCnH7gU7fg/p7xWbBggXvggQes/2SlSpUsQBe84ZBPfSrDv1Z2aXzPUX/TZcuWBZ5To0YN6ytavHhxV7p06ZCb3nupUqUskLh48eLAayh4q02EItGtWzcLNCvgGEzHoQBxcC9VvXc9N5Ks0oRK6OcKAAAAIOkR+AQAIIXRRj0qwR47dmwgyNmoUSPbgEcBw/CMz7ioFPv999+3UnAFHbVxUXigVrQZkLJL9bra6GfJkiUnbQw0fPhwN2nSJLdhwwZ33333WeBSu62Lvv7zzz/dTTfdZJsLqbR95syZ7vbbb7ed6VX6fuedd9oGR1999ZXtAK9d1sOzZU9HO8or4/OVV14JuV/vS48pE1OvrbJ7BUm1s7xfup6YEvq5AgAAAEh6BD4BAEiBFNxU4NAPfKovZsWKFV3BggUTlMk4cuRIC1AqI1NBQGUparf3cAomjhs3zgKt7733nvvoo4/s5wQbNGiQ3dRLU31GJ0+ebDvNi/qNKgtSx9qsWTPrj9mjRw8rT/eDm4MHD7YsVpXEN23a1DVo0MDVrFkz4s9Ewc2SJUuG3JclSxYLtCr4Wrt2bXfddde5yy+/3L322msuKST0cwUAAACQ9NJoh6Nz8HMAAEAKo/6VyuRs06ZNnI+rZ2mJEiXcihUrXLVq1c758QEAAADAqZDxCQAAAAAAACDmEPgEAAAAAAAAEHModQcAAAAAAAAQc8j4BAAAAAAAABBzCHwCAAAAAAAAiDkEPgEAAAAAAADEHAKfAAAAAAAAAGIOgU8AAAAAAAAAMYfAJwAAAAAAAICYQ+ATAAAkO02aNHE9evRwKUFKOlYAAAAgNSHwCQAAUqR///3XvfDCC65q1aouS5YsLl++fK5+/fpu9OjR7r///ov24QEAAACIsnTRPgAAAHDuHD9+3KVJk8alTZs2xQc9mzdv7latWuX69+9vAc8cOXK4RYsWuSFDhrjq1au7atWqRfswAQAAAERRyp71AACQykydOtXlypXLApiycuVKC2T26dMn8Jy77rrL3Xrrrfb3MWPG2PMnT57sKlas6DJmzOi2b9/uli5d6q644grLksyZM6dr3LixW758ecjP0uu+8cYb7qqrrnKZM2d2JUuWdJ988kng8W3bttlzxo0b5y655BKXKVMmd9FFF7l58+aFvM7atWvtNbJly+YKFCjgOnTo4P7444/A44cOHXIdO3a0xwsVKuSGDh162s9h2LBh7ptvvnFz5sxx9913nwU5dXw333yzW7x4sStTpow9b8aMGa5Bgwb2GeTNm9e1atXKbd26NfA6X3/9tb2H/fv3B+7zP1O9P9+CBQuspF2Zpblz57ag6759+wKPnzhxwvXu3dvlyZPHFSxY0D311FOBx+644w77ucGUkZo/f343cuTI075XAAAAAGeGwCcAAGEUiIvv9s8//yT4uUeOHEnQcyPRsGFDd+DAAbdixQr7WkFGBS8VwPPpPgXpfIcPH3bPP/+8GzFihFu3bp0F3PQanTp1ct9++61lSSpQ2KJFC7s/2BNPPOHatWtnmZW33HKLa9++vVu/fn3Ic3r16uV69uxpx3TxxRe71q1bu71799pjCihedtllloH5/fffWyBy165d7oYbbgj5fh3z559/7mbNmmXvJTwIG27s2LGuadOm9rrh0qdP77JmzRr4zB966CH72QqSKtP12muvtUBlQikQevnll1vgeOHChfaZ6T36wWd599137Wcq6Kry+2eeecZ9+eWXgUC03vdvv/0WEsDWv8uNN96Y4OMAAAAAECEPAACE0PAY361FixYhz82SJUu8z23cuHHIc/Plyxfn8yJVo0YNb/Dgwfb3Nm3aeAMGDPAyZMjgHThwwNu5c6e95qZNm+zx0aNH29crV6485WseP37cy549uzdlypSQz6FLly4hz6tbt65377332t9/+ukne86gQYMCj//3339ekSJFvOeff96+7t+/v9esWbOQ19ixY4d938aNG+2Ydezjx48PPL53714vc+bMXvfu3eM9Xj3+wAMPeJHas2eP/ew1a9bY13PnzrWv9+3bF3jOihUr7D69P7npppu8+vXrx/ua+ndu0KBByH21a9f2HnnkkcDXFStWDHwm0rp1a++2226L+PgBAAAAJBwZnwAApDAqS1dWpGKT8+fPd23btnUVKlSwTERlThYuXDhQ6i0ZMmRwVapUCXkNZV3efffd9jyVuqs/5sGDB60MPpgyOMO/Ds/4DH5OunTpXK1atQLPUabo3LlzrYzdv5UvX94eU8m5burXWbdu3cBrqFy8XLlyp/wM/heXPb3Nmze7m266ycrg9R6LFy9u94e/z4RkfJ5K+Oerkv3du3cHvlbWpzZd8j/76dOnWwk8AAAAgKTD5kYAAIRRADA+5513XsjXwcGtcOEbCAX3jDwbKmMfNWqUBRVV1q1Aou5TMFR9JxUYDab+nOpZGUxl7ipHf/nll12xYsWs96cCmApCJvZnqbJwldqHU3Bwy5YtZ/S6ZcuWdRs2bDjt8/Sz9f7eeecdCwirxF19SP336f8bBQdSw3eE1+d3Ovp3CKbPO7icXj1M1YdVpfLfffedK1GihLUtAAAAAJB0yPgEACCMejXGd9MGPgl9bnjALL7nRcrv8/nSSy8Fgpx+4FO34P6e8dFmPQ888ID19axUqZIFPoM3HPKp/2f418ouje85x44dc8uWLQs8p0aNGtZXVJmWpUuXDrnpvZcqVcqChuqN6VPwdtOmTac8fm1iNHv27ECv02AKXKq3pwK7GzdudI8//rhlbOqYgjckkvPPP9/+DO6/qQzP8GxO9Qc9G9pYqU2bNpb1qQ2nbr/99rN6PQAAAACnR+ATAIAURruKKxinDX78IGejRo1sQyAFDMMzPuOiEvf333/fStIVdNTGRXFlNk6YMMGyS/W6/fr1c0uWLHH3339/yHOGDx/uJk2aZBmY2mFdwUW/jFtf//nnn1Zurp3kVdo+c+ZMC/xpcyCVvt955522wdFXX31lO8DfdtttJ2XLhuvRo4erX7++BTT185X9+uOPP7rx48e7evXqWYm7PicFHN9++23LLNXra6OjYArAFi1a1HZh1/dMmzbtpF3l+/bta8fetWtXt3r1anuf2u0+rkDxqajcXZsg6TNXxi0AAACApEXgEwCAFEjBTQUO/cCn+mJq1/GCBQuetj+mjBw50gKUysjs0KGDZX9qt/dwTz/9tBs3bpwFWt977z330Ucf2c8JNmjQILtVrVrV+oxOnjzZdpoXlZcru1TH2qxZM1e5cmULWubKlSsQ3Bw8eLBlsaosXTu1N2jQwNWsWfOUx68MVe2a3rt3b/fWW29ZsLN27drulVdesfeicna9vo5dGaj6+sEHH7SfFUzZpnpPCmbqPaok/9lnnz2prF67zSu4WqdOHWsJoB3o1c80EnpvKu9v3ry5fS4AAAAAklYa7XCUxD8DAACkQOpTqUxOlWjHRT1L1atS5ebVqlU758eX0qjf6QUXXGDl7tqQCgAAAEDSYnMjAACAJKRNjlQWrxJ6ZbpeffXV0T4kAAAAIFUg8AkAAJCEtm/fbpmxRYoUsY2NIi2RBwAAAHBmKHUHAAAAAAAAEHPY3AgAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AAAAAAAAAYg6BTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AAAAAAAAAYg6BTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAALhY8/8AHvO+oloTUiwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABT4AAAH0CAYAAAAUkjJgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQW4VOX3/V+lu7u7S7q7pUFCQEoaBCkBaRARaUmlOwUkpVNAurtDQFJCEJ3/s/bv/57v3Mvce2fmTp2Z9XmeYeJOHGbmzD7v2nuv/YHFYrEoQgghhBBCCCGEEEII8SM+9PYGEEIIIYQQQgghhBBCiKuh8EkIIYQQQgghhBBCCPE7KHwSQgghhBBCCCGEEEL8DgqfhBBCCCGEEEIIIYQQv4PCJyGEEEIIIYQQQgghxO+g8EkIIYQQQgghhBBCCPE7KHwSQgghhBBCCCGEEEL8DgqfhBBCCCGEEEIIIYQQv4PCJyGEEEIIIYQQQgghxO+g8EkIIYQQQgghhBBCCPE7KHwS4iHevXun4sWLp+rXry/XL126pL755htVqlQplTx5chU5cmSVKlUq1bx5c3X+/HlTfS7//fefmjRpksqVK5eKFi2aSpQokWrcuLG6evWq3c/x6NEjNWPGDFWzZk2VPn16FSVKFJUwYUJVtWpVtXnzZpuPmTNnjvrggw9CPO3cudOF/0tCCCHBYWwLmzJlyoQYp9KmTcsvFSGEeAnGsNDBWiq0tRZOGTJk8NCnRYjzRAzHYwkhDrBr1y719OlTVbt2bbk+YMAAtXTpUpUzZ05Vq1YtFTt2bHXq1Ck1f/58tWLFCrVp0yYRRc1Au3bt1E8//aRy5Mihunbtqu7evauWLVumfv31V3XgwAGVKVOmMJ9j+fLlqkOHDiICly9fXqVIkULdvn1brVy5Ut6L7777TvXq1cvmY/H+5c2b973buaAkhBD3wthmP4MGDXrvtrhx47r08yCEEGI/jGGhg7WUrdgFtm7dqvbt26cqV67MrxzxfSyEEI/QpUsXS8SIES2PHz+W67Nnz7YcPXr0vfstXrzYgl0ze/bspvhktm/fLttbqlQpy5s3b4zbN2zYILdXqlTJrufZtm2bZe3atZZ///03yO3nz5+3xIkTxxIpUiTLnTt3gvwN7yFeA+eEEEI8D2Nb2JQuXVpiFSGEEN+CMcx5cubMKbHtyJEjLvxECHEPPAojPkNoItaOHTvkb4MGDbJ4kzRp0sh2hHWy9X/AY8uWLWvX62TOnFme5+HDh0Fux/Vz5869d3tIWL9v+/bts1SsWFFERFcuwBo3bizPt2vXrvf+VqZMGfnbjRs3wvUabdu2ledZvnx5kNspfBJCfB3Gtv8RqLGNwichxKwwhv2PQI1htjh48KA8R968ecO5pYR4Bnp8EuIA3bp1U6VLl5bL9erVk9J/fUqQIIHcjsvB266PHTumbty4IS3Z9hApUiQ5jxgxqBvFDz/8oLJlyybnjrB//37DY6xt27aqYcOGylXA+yVGjBiqePHi7/1Ntz6gjSQ8hPR+WL+/Y8aMUaNGjRL7APiFEkIIsQ/GNs/EtkWLFom39/jx4+X54Y9NCCEkfDCGeX59Bosz0KZNG6efgxBPQo9P4pdcv35dBt84wuDBg+0KrPDpRKDAkKJGjRoZf1uyZIkIbraeZ82aNXJuj/B56NAhdebMGVWwYEGXeX9t2bJFzZo1S7Vs2fK9v+F9wvtlLxBQcQIvX75U9+7dE5/SCBEivHdf7e2JQU7O8vz5c/E8jRo1qipZsqTN+0ycODHIdQxYggDdp08fp1+XEEJ8DcY2c8e2Tz/9NMj1zJkzq4ULF6oCBQo49DyEEGJGGMPMHcM0eH6se7HeCh7XCPFVKHwSvwSBYsiQIS4XPp0FwmeePHnCHLbz7Nkz9dlnn6kPP/xQhvnY2kZntvOjjz6yGVR1YHU046cDK7YXxIkTx+b9MLDJ+n7O0L59e3X//n01dOhQo6pWky5dOpkmj8xlypQp1ePHj9X27dtV37591VdffaWiR4+uunTp4vRrE0KIL8HYZs7YhqQnhvPly5dPxYsXTz7H6dOnS/dGxYoV1YkTJ1Tq1Kkd2lZCCDEbjGHmjGG2BtL+9ddfqmnTphzQR0wDhU/il+CHHx62vsDNmzfV8ePH1cCBA0O93+vXr1WdOnXU+fPn1YgRI4zg5QpQPRpaK4SvAgFz8eLFqkqVKqpfv37v/R22A9p6AGASfLNmzeRAAhU0EIkxKT6kFnlCCDETjG3mjG3du3cPch2WNWh3x+Jz2LBh6vvvv3+vc4EQQvwNxjBzxrDgzJw5U85bt27t7U0hxG7o8UmIm1m9enWYbe5///23/H3Hjh0i9tkS+cJDkiRJlDvQmcSQMoZoU7e+nyMMGDBAffvtt6pcuXJq1apVNls1QiJHjhyqRIkSUgF67tw5h1+bEEJI6DC2ORfbrGnXrp2c79u3j183QgjxIIxhzsWwCxcuqL1796qMGTO6tEiHEHfDMijic9iq1IQw6AseMs62uaOFDVWIIVV6QvSEz0vv3r1l8IGrwVCjkAiPhwxMs5MlS6auXbum/v333/fESe0do71kHBE9hw8fLq/zyy+/iIeMoyRMmNDwoSGEEG/D2MbYFhzYtyA+M04RQnwdxjDGMMBqT2JWKHwSn+Pu3bvv3eao+bKveMg8efJE7d69W3wqwxI9e/bsKVPJPU14PGQAWs1hcI2KlVKlSgW53+bNm+U8+O32iJ543vXr14tPp6NAhD18+LBcTpMmjcOPJ4QQV8PYFtixLaRhhhATwvL/JoQQb8MY5ll8MYa9e/dOzZs3TyzEWrRo4dBjCfE2bHUnPgcmnFpXeKJdevLkycYPriMeMo6cwkukSJEMMVOzYcMG2WZbbe66vR2i55dffqlGjx5tlziL6hBXirTwkHHkfQr+2m3btjUEy7dv3xq3b9y4UZ67UqVK74mP8DHFKTjwQYXoient9oieR44csSl6YrDR5cuXVdmyZaUilRBCvA1jW2DGNnREwHYlOHfu3FEdO3aUy02aNHHZ/5sQQtwBY1hgxjBr1q1bJwNnq1WrppImTeqy/yshnoAVn8TnePDggcqZM6f8qP7zzz8igOnhNIsWLRJha+TIkcrXQDv76dOnZQHTqFEj1bBhQ/GPiRs3bpABPBpUgUL0ROCIFSuWzWCJbJp1Jch///0n5740rAfiYps2bdRPP/0k7fzVq1dX9+7dU0uXLlXx48eXqevBwWAHYC04I7OJIQ/4vxUqVMimEGzdZg8wwCh37txywmAjLC6RHb148aJMecc2EUKIL8DYFpixDTEJQ/aQ0EuXLp1MdYcYimMbtLh/+umnMpSPEEJ8GcawwIxhttrc8byEmA3f2TsJ+f9AAEQl3/z580X4rFy5svrhhx+kFRxDblDJ54vAn/Ps2bMidkaJEkXVrl1bbdq0SdWsWdOoBrVG+2r+8ccfIbblQ+SzDqwQVj/88EP1ySefKF9i+vTpKleuXGrGjBlqwoQJKmbMmDKhHtPpM2TIYNdz6PcDFbJjxowJ8X7WwmePHj3UgQMHRECG6Bk5cmQx2/7666+lihYLTEII8QUY2wIztmHB2aBBAzmu+f3339WLFy8kIVq8eHHVqlUrSZISQoivwxgWmDHM2uoA1aLJkyeX4iRCzMYHFlf0+BLiAlDx17JlSzV79my/8A1BcEBgQGbNVYEwceLEEmyXLVvmkucjhBDiXhjbwoaxjRBCfBPGsLBhDCPE96HHJyFuAtPcUYFYpUoVlzzfuXPn1MOHD1Xfvn1d8nyEEEKIozC2EUIIMSuMYYQEJhQ+CXET06ZNU2/evFGxY8d2yfPBdwUF2vny5XPJ8xFCCCGOwthGCCHErDCGERKYUPgkhBBCCCGEEEIIIYT4HfT4JIQQQgghhBBCCCGE+B2s+CSEEEIIIYQQQgghhPgdFD4JIYQQQgghhBBCCCF+B4VPQgghhBBCCCGEEEKI30HhkxBCCCGEEEIIIYQQ4ndQ+CSEEEIIIYQQQgghhPgdFD4JIYQQQgghhBBCCCF+B4VPQgghhBBCCCGEEEKI30HhkxBCCCGEEEIIIYQQ4ndQ+CSEEEIIIYQQQgghhPgdFD4JIYQQQgghhBBCCCF+B4VPQgghhBBCCCGEEEKI30HhkxBCCCGEEEIIIYQQ4ndQ+CSEEEIIIYQQQgghhPgdEb29AYQQQgghhBBCCCG+hsViUYsWLVKnT59WkSJFUvHixTNOcePGVYkSJVLZs2f39mYSQkLhAwv2ZEIIIYQQQgghhJAA5fLly2rfvn3q5cuXqmPHjsbtqVOnVrdu3bL5mHTp0qmrV68a1x8+fKgSJkyoPvjgA49sMyEkbCh8EkIIIYQQQgghJOBAHdjOnTvVd999pzZt2iS3JUiQQARMLV72799fPX36VC4/efIkyAmi6JYtW4znSp8+vYoSJYqqX7++nPLkyUMRlBAvQ+GTEEIIIYQQQgghAcO7d+/UypUr1ejRo9WRI0fktg8//FAVLVpUFShQQH377bcqatSoDj3nlStXpO397du3xm1ZsmRRI0eOVLVr16YASoiXoPBJCCGEEEIIIYSQgGHw4MFqyJAhcjlatGiqZcuW6ssvv1QZMmQI1/M+f/5crV+/Xq1YsUJt2LBB/f3333J7hQoV1KRJk1TWrFldsv2EEPuh8EkIIYQQQgghhBC/Bq3oun39xo0bUt3Zrl071alTJ/HldDV//fWXGjVqlPr+++/Vmzdv1NatW1X58uVd/jqEkNCh8EkIIYQQQgghhBC/5J9//lHDhg1T165dU/PmzTPET7S7R4wY0e2vj+FHq1atUj179jRuO3nypMqRI4eKECGC21+fkECHwichhBBCCCGEEEL8clJ706ZN1cGDB+X6nj17VIkSJby6TXfv3lWZM2dWhQoVUsuXL5dhSoQQ9/GhG5+bEEIIIYQQQgghxONt7TNnzlR58+YV0TNu3LhqyZIlXhc9walTp6TqdMeOHapw4cLq3Llz3t4kQvwaVnwSQgghhBBCCCHEL3j16pX67LPPZMAQKFOmjLS4p0qVSvkKp0+fVjVq1FDXr19XsWPHFlG2atWq3t4sQvwSVnwSQgghhBBCCCHEL2jQoIGInpEiRZLhQhgq5EuiJ8iZM6c6dOiQKlWqlEyC//jjj9XYsWOlUpUQ4lpY8UkIIYQQQgghhBC/YPv27apJkyYifvpCa3tovH37VqbK//TTT3Id7fmtWrXy9mYR4ldQ+CSEEEIIIYQQQohpQaWkntau292jR4+uzLLtEydOFKF2y5YtKmrUqN7eJEL8CgqfhBBCCCGEEEIIMSXXrl1TjRo1UrNnz1bZs2dXZuXff/9VESJECPE6IcQ56PFJCCGEEEIIIYQQ04GJ6Ghnh19mhw4dTO2RqUVO/B/69esnYu67d++8vVmEmJ6I3t4AQgghhBBCCCGEEEe4evWqTGx/8OCBypEjh0xGt253Nyvnz59XY8aMEf/PmDFjiu/nhx+yZo0QZ+HeQwghhBBCCCGEENPw+PFjVa1aNRE98+bNq3bt2qWSJUum/IFs2bKJiIsK0Dlz5qgvvvjC1JWshHgbCp+EEEIIIYQQQggxBW/evFF169ZVFy5cUKlSpVIbNmxQCRIkUP5EnTp1RPREBesPP/yg+vfv7+1NIsS0UPgkhBBCCCGEEEKIKRg2bJhUeMaKFUutX7/ebyo9g9O0aVM1depUuTxy5Eg1fvx4b28SIaaEU90JIYQQQgghhBBiCp49e6YaN26sunXrpipVqqT8ne+++0716dNHWt/h/5kxY0ZvbxIhpoLCJyGEEEIIIYQQQkwDPC/9YZCRvf/Xjh07qpIlS6omTZp4e3MIMR0UPgkhhBBCCCGEEOKz7NmzRx05ckQG/QSK4EkIcQ30+CSEEEIIIYQQQohP8vDhQ9WwYUPVvXt3NXfuXBXo/PHHH9L+zknvhNhHRDvvRwghhBBCCCGEEOIx/vvvP9W8eXN17949lS1bNtWgQYOAfvdfvXqlChcurG7evKlixIihOnXq5O1NIsTnYcUnIYQQQgghhBBCfI7vv/9ebdq0SUWNGlUtW7ZMxL5AJnr06NLuDzDcaffu3d7eJEJ8Hnp8EkIIIYQQQgghxKfYv3+/KlWqlPr333/Vjz/+qNq0aePtTfIJ0OL+6aefqsWLF6vkyZOrU6dOqfjx43t7swjxWSh8EkIIIYQQQgghxGd4/Pixypcvn7R0N27cWC1cuJBDjYK1vOfPn1+dP39e2v+XLl3K94eQEGCrOyGEEEIIIYQQQnyG7du3q9u3b6uMGTOqadOmUdSz0fK+YMECFTFiRLV8+XK5TAixDSs+CSGEEEIIIYQQ4lPs2rVLxY4dWyo/iW1GjBihvv76a3mPDh8+rD78kLVthASHwichhBBCCCGEEEKIyXj37p0MgOrcubOKGTOmtzeHEJ+EwichhBBCCCGEEEK8yn///ae+/PJL1b59e5U1a1Z+GoQQl8A6aEIIIYQQQgghhHiVqVOnqgkTJqgSJUqoly9f8tNwQjieNGmSOn78ON87Qqyg8EkIIYQQQgghhBCvcfXqVdWnTx+5PGTIEBUjRgx+Gk74fXbt2lW1bNlS/fPPP3z/CPn/UPgkhBBCCCGEEEKI1yoVW7duLVWepUuXVh06dOAn4QTt2rVT8eLFk4rPcePG8T0k5P9D4ZMQQgghhBBCCCFeYfr06Wrnzp0qevToaubMmZxM7iSJEydWY8aMkcuDBw9WV65cceXHRIhpofBJCCGEEEIIIYQQj3Pjxg3Vq1cvufztt9+qDBky8FMIBy1atFDlypVTr1+/liFRFouF7ycJeCh8EkIIIYQQQgghxOOgJRst7hho1KlTJ34C4eSDDz6QCtqoUaOqrVu3qvnz5/M9JQHPBxamAAghhBBCCCGEEOJhMIQHk9yrVq2qcuTIwfffRaB6tm/fvtL+fv36dRUtWjS+tyRgofBJCCGEEEIIIYQQ4keCMqa7d+vWTRUoUMDbm0OIV6HwSQghhBBCCCGEEI+xY8cOVbx4cRU5cmS+64QQt0KPT0IIIYQQQgghhHiEM2fOqEqVKqk8efKox48f8133AJcvX5YqUEICEQqfhBBCCCGEEEIIcTsYMdKxY0f17t07lTlzZhU/fny+625m9OjR4p86ceJEvtckIKHwSQghhBBCCCGEELeDKeO7d+9W0aNHpxDnIRIkSKDevn2rBg8erO7du+eplyXEZ6DwSQghhBBCCCGEELfy4sUL9dVXX8nlAQMGqDRp0vAd9wAtWrRQhQsXlve/V69efM9JwMHhRoQQQgghhBBCCHErX3/9tRoxYoRKnz69Onv2rIoSJYpPtN7/9ddf6o8//jBODx48UC9fvlSvXr2Sk77877//qggRIqiIESMa55EiRVJx4sRR8eLFC3JKmjSpSp06tU/8H8Hhw4dVoUKF5P+7a9cuVapUKW9vEiEeg8InIYQQQgghhBBC3Mb169dV1qxZ1Zs3b9SqVatUnTp1PPZuQ+xDi/f58+fVpUuX1MWLF43zmzdvqtevX7vttbUAiurWdOnSqezZs6tcuXKpbNmyqWjRoilP0r59ezV9+nR5/aNHj4pwS0ggQOGTEEIIIYQQQgghbuPKlSsy1AiTxbdt26Y++OADt73WnTt3pMLxyJEjcsJlVHGGRqxYsUSkTJIkiUqcOLGKHTu2+JBan1DliapPfcKAJnhnPn36VD158iTI6e7du1IlGhIffvihypgxo4iQBQoUUMWLF5dzd4qhjx49koFSjx8/VlOnThUhlJBAgMInIYQQQgghhBBC3F55CZ9JiIyu5Pbt22rHjh1y2r59u7px48Z794FomSFDBpUpUyYR//R52rRpRfCMESOGy/+vEBpRUYrtweny5cvqzJkz6tSpU/K34KBt/qOPPlLFihWTVvRy5cqJAOtKJk2aJD6r33zzjfriiy9c+tyE+CoUPgkhhBBCiNtAVQwWuqiWwaIOaN80XI8aNarPeKARQgjxfVBlCZ/KNWvWqF9//VXa1oOLnGgpRwVl/vz55Tx37tweby0PTRS9f/++CKAnT55UBw4cUPv27Xtv4jpa0VEJWrVqVVWlShX5P4S3UhYVtw8fPlTJkycP5/+CEPNA4ZMQQgghhIQbVNnAtw0+bqhsQSvd8+fPRfQE+/fvV0WLFpXLkydPVp07dzYei+oftBfqE6pRChYsaCzSsPhzZ1skIYQQ9zBv3jx18OBBNWTIEJUwYUKnnwfxZNOmTWr16tVq/fr1ct26bRwCZ9myZaVKEmJhzJgx7X5uDC/6888/RRDEOU6IXc2aNTMqQfG6u3fvlteoUaOG3IYWd1RQoioTA470edy4cY14phN+9oihiJ2IlRBBt27dKh6k1qRIkULVq1dPNWzYUBUpUkT+34SQsKGbLSGEEEIICZO///5bhiHAL02fL1u2TIZVgBMnToigGRLWi1T4olmDibo4oQ0QwAdOs2jRItWpUycZBJE3b15VokQJOWEqMMVQQgjxXfC73qdPH5mUDj/L7t27O/R4xApUdM6dO1eqOzEYSQNRsWbNmurjjz9WpUuXFsExtApRTJGHkHjt2jVJ0Onz0IYbodJSC5979+5V48aNk0ScFj6R4Bs4cGCIr4sYhe1EdSVOaKvPkiWLatCggdwe/L74O05NmjSR265evSpi78aNGyW5CO/SiRMnyilVqlTqk08+EREUFa3OxENUzULMHTBggMOPJcRMsOKTEEIIIYTYBIvC5cuXqy1btqg9e/aI+GnN/PnzVdOmTeXy77//rn7++WeZWovptYkSJZLqF5xQ0Yl2duuF2X///SfVnFhwYugE2v5wwgK5fv364rkGUP05atSo97YNf0dVD3zK4NNGCCHEt+jXr58aOXKkiJ7wtowcObJdj0MiDWInEl+ICxr4cmIafO3atVXhwoVtVjzi/r/99ptKmTKlCIIAFaeokAwNbBviFk4JEiSQuIVknm4JhwC5c+dO8d6sVq2a3IYK0f79+4vA++zZMzkhyYfhRtiO4Ek+DdrbMdQIIIEIYROVnBBxQwLxF1WgS5cuFREYr6nJkSOHatu2rcTj+PHjK3uHTeH9RKUp4rd+rwjxRyh8EkIIIYQQoyoGJ90iiNZ1LMY0mHSLFnS0FGIAA4TH8LQu2gPEUSzQUK2DxSuqbrBIw+3g1q1bssAFhw4dEnEV28cWQEII8R6oqESlPqo0IdShOjM08Ju+cuVKaR1Hu7cGMQYVkJ999pnKly9fkAQaPKSPHTsmwp/27+zWrZuaMGGC2KnguQBEQiTl0KGAc1RV6vPUqVNL9SXiniu7CJDcgzCK6e6o1MQJFZwXLlxQixcvNra3VatWavbs2VJ1OXToULkNwmnfvn1FZEU1K1rcg4ugEEshgq5du9aoWEWCEdWkn3/+uSpZsmSY/5/mzZtLAhP3RfUnuyiIv0LhkxBCCCEkgMFiEy10qDpBxeaXX36pvv76a8O/DBUkFStWVBUqVJBhEb6wMMIi7/Dhw9Jybz2VFlU4WAyiQgfbjYUytpkQQohngQC3YsUKVb58eekaCCl2oMp/xowZatq0acZwH7ST16pVS37DMdRH+2SiOhGJMFQ+4jkRuxCnMM29TJkych90KUBAhD9n7969jdfBY30hfgUHVaTYfvw/tQ/2L7/8EkQohrULRFDcp3LlyuIhqsH/H5WxeA9RKauBNUzPnj2lHT4kn1EkDtExASEViU5U0xLij1D4JIQQQggJQOBrhoXSTz/9FKSVEIMhtm3bpswGFrWoXgneAlioUCFZPDdq1MjuFkBCCCHOg+pBCJGovD9+/LjR1h28IhQ2Jqh2RKeBtjBp166dnJIlS2ZUdWLYD4Q5VDficdbA23P69OnidekvnD59Wt4X+G8iwYfqUeuJ9ei2QKKvevXqUu0KQRcxEAnBH3/8US1cuFC9evVK7o+KVlTBtmnTRtr3g4NE54gRIxy2IyDETFD4JIQQQggJILA4wgIRLYV6MYVWQvhq4na0vGFhZVbQVrlhwwY1Z84cOdcea/B3g+8bIYQQ94IEGqoYO3TooKZMmRLkbxgwBG/mBQsWiKipf5+7du0q1ioQ3tCJgIpOLXaiZVyD6sVixYpJFwK6EWBtggpRfwWeoWj9R0ISMQ22L9agYhOxG8k93eGAoUtTp06VVn+d2IRAjOFSOMF7W4NEIbw+cb/x48cH6aIgxF+g8EkIIYQQ4udgcWktZmpfL7Qgtm/fXloKQ2qFMzMYmoQWQFTO9OjRQ/7feqEHERSLZl9sfSSEEDPz559/ShUhhhthWBBAizp8LOFLqZNulSpVkuFAaOPWfPfdd2r06NHyHBpU62OSOoYaQfDUPtSBOnRw/fr1IoJCDNWT7tECjwFM1qCFHQLz999/L96i+r2EBQA8UPXEenR/oMo2Xrx44kNq3UpPiD9A4ZMQQgghxE95+fKlLGjGjh2rNm/ebFSDXL58WcTQLFmyqECpcsVJDzyaOHGiVLWg/XLQoEHia8ZhSIQQ4npQrTl8+HCpQNRD6SBiosUaViSoNIQYp5NvEEzxNwwcQidC3bp1pRPBH5Nz4QVJPFTEQkyGlye8rbVvKoYm4YQqWsQ/dHkMHDhQnT9/3hhWCGEaVbmIf0iA4vGoHmU8JP4GhU9CCCGEED8Dw38g7qFq5tGjR3Jbp06d1A8//ODtTfMJUFE0bNgw9eLFC2MIxJAhQ2QxzgpQQghxDvhvYlo6gMckpqt/++230q4NMJxn5MiR8psL4D2JVnhU5kPkBJiCfvLkSans9OcWdneC9xxT4WEJAH9UDRKeeK8HDx4slZ0Abe7jxo0Tz1DGP+Kv/F/amxBCCCGEmB4sambNmiULma+++kpEzwwZMsiwgzFjxnh783wGtPlhuBPaLjHsAcM3UO1SuHBh8ZUjhBDiGJjIjip6tFxjuE62bNmkohCiZ758+eS3dfXq1SpPnjzGY9CyjipQDEPSJE+eXARSip7Og+pPvPfw87Se/o5J95gQf+7cOekGQVXtpUuX1McffyzCJ24Hun2eEH+BFZ+EEEIIIX4AWtlKly6t9uzZY0xyRVVjkyZNuIAMBYjD8D9DhSwqlGz5pBFCCAkdTA2fOXOm+ENCZNNxCIOMMH0cQhsqCzF4Dr+zuiX7zp07MqCIuBfEuV69esnlggULqi+//FI+h1GjRsnn8vbtWzlWwGCqEydOSGs8pscT4g9Q+CSEEEII8aMWbrS4YVgEWtujRo3qttd69uyZVE3eunVLWhMxRRYioj5HlQ8GK1ifUNmDIUvwD8M5TpjgiwmzqLzUpwQJEqikSZMGOaVMmdKtAy0wCAkLdAx4QKUSePLkiWwrpuESQgixzeHDh8WvEwk4AD9OiGyff/65dBxMnjxZYoauRoQnJfEsqOaE3zcGG+qKTkyER+dDgQIFpEtkzZo1xv2zZs0qE+TZ/k78AQqfhBBCCCEmBEIiKjUw9AEVGvo2+HtiMqsrQNUOBiHoE6bCoi0OgieGKngaDGNAmx7a93GOhVnu3LllSJM7Bl9g4v3PP/8si0VUznIBSAghQTl69Kh0G2jPZMQj+HhCRBs/frxU0gP8Xvfp00d+S5HwIt4BST4MmkKXAxKVAPY4GCiFpCPi3u3bt+X2EiVKSAxMmDAhPy5iaih8EkIIIYSYjF9//VV17NhRXblyRUQ/DIII70Lyzz//VEeOHAlyunHjRqiPwSRetDLCkw0LIyyacBtOqJKMFi2aVJ3qE9ro/vvvP/EixQmXIdZCRLU+oWIULZD6BO84XS1kC4ieqNKECIrKlSJFioinXHjeE2wX2i9R8QLgOTdt2jSVJk0ap5+TEEL8BbRGo0oelir4LQfoOMBldB/odnf8JsNvEj7KnBbuOyDWYuAh/L/1EERUgGLwEUTRAwcOyG2I67ApqFu3rpe3mBDnofBJCCGEEGIS0D7eo0cP9dNPP8l1CI7w5mrQoIHD1Yio2oQf6O7du+WEik5bpEiRQip19AkLI4h/aD2PESOGzcdgwQvRFOIhWur06d27d0Fa3XEeJUoUaWHHCc8d0v8DwieEXkyixfnly5dFlDx16pTN6lM870cffSQiaNmyZaUiCS31ji7sR48erYYOHSqX8f8dMWKE6ty5s2w/IYQEIvjdbd68uQyG0+A3FnHk/v37cj1Hjhxq+PDhIniyWt53QfycMmWKeIAiAQqKFi0qnyXsXjStWrVSEyZMcKvlDCHugsInIYQQQogJ2LZtmyw8IFhiEdmlSxeptLFXzHv58qXavn272rhxowzvuXbt2nv3Qbsbqhz1CVWTGFQBsACC2IjKEFQ/apo2bap+++03EWMhMAJMlm/durVD/z+IoBBG9QIZHqUQZgcOHKjq168vt2FRhioUCK9p06YVP1B4ykFkxUIci/BDhw7JffQCTgOhEgMdKlSoICcMbbB3ajAWgG3btjUGR2FRuHjxYlZ/EkICCvzeovId08KRzEJlP35bkZhCFT9Ily6dJIsaN27MBJHJEquo1EUFKJKW+GzxuSKJqD1BYTOzcOFCVbhwYW9vLiEOQeGTEEIIIcTHgbBYrFgxuQxvy9mzZ6tSpUqF+ThMy121apVau3atVHWialGDxSoqIvE8OEEIRIs6qnXQOq9P8PWE4Km9wOCzqSt6QPny5UVQhRDYqFEjue2XX36RoRZob8eiSZ90q7s+YaGMBRW84SB4QtTVQJyE2LtgwQL16aefym3r1q1TNWrUMO6Dile0uOOEatScOXOqvHnzihiMylC8b3v37pXtgzepNfBBxaThmjVripALETU0sL0Y0tG7d29prYfQmixZsjA/A0II8QdQyY/f9RUrVsh1/H4i4YUKeEwAh1CGNmnYsNDD07zA3xMDj9AtMX36dHXs2DGJe4sWLZK/4dgBwjaGIdG6gJgFCp+EEEIIISaosoFABz9NDDQKrdUM4iEWoVic7t+/P8jfUCVZtWpVOZUpU0aeF/dBhSROGFLx8OHDEJ8bQiOqQiEkYsGDhTAWujjHACAIpwCLIlSFYEGMylQA4RSPx+NQNQr/T4BWciyuUCHat29f47VatGghwigWYGiBB6tXr5bnRoWnFmJtkTFjRqNqFZUpGNCABRuE1K1bt6rNmzcbnmYAi/SKFSvK0A28z6G9v3htVMvi/bOupg2p7Z8QQszO77//rho2bCi/fUhgodsAg4qQsMJvIrw98ducKFEib28qcfHnrrsq+vfvLxY3O3bskL99/PHHat68eS4bpkiIO6HwSQghhBDiY2ChMX/+fFW7dm2jlR1t4CG1ZsOjC0LnnDlzpLLTGlRyYihBtWrVpG0dC9UkSZIYlZkQ+qyBMAnhEJWleGz27NlF7MT24IQqjy+++ELui6FDEDPxnNg+Xf2BNkhM88VCCR5vAFWduqoSVZ66IujLL78Un1JUlEDUBWiz08IoWux1uz0GaQwaNEh17dpVBFE9bR7t+xBsUeUZfCATFuKoUNUt9KhegQB8+vRpmTqMEypaNdGjRxdPOoiglStXDnNaPCbeQuBFxas9VbiEEGImUOkO65F//vlHPJ9R2YmherA2wQTwsH4jifmPRzCgColRWM8gAYvvA+I4jhOQaEWnBSE+jYUQQgghhPgMT548sdSvX9+Cw7TGjRtb/vvvP5v3w+3bt2+3NGvWzBI9enS5P04ffPCBpVSpUpZJkyZZbt++bdy/R48e8vdBgwYZt92/f9+SIUMGS4MGDSyTJ0+2HDp0yHLx4kVLhAgRLJEjR7b8888/xn179+4tj+/atatx27t37ywNGza0dOvWzfLmzRvj9gsXLlh27dpluXHjRpDtxfXr168H+T/dvHnTsm/fPsuVK1eM2168eGH5+uuvLe3btw9yX1zHNgwYMMC47eXLl8b//d69e5aHDx9aNm/ebPniiy8sZcqUsbRq1SrINiRLlswSMWJEy4EDB4zbzpw5Yxk4cKC8F/q5cEqaNKmlb9++QbYt+GdQsmRJuS/es++++y7Ez4sQQszE27dvLR07djR+D+vWrWvZunWrxJhIkSLJbYg/JDCOSzp16mTEzSNHjlhSp04t34GoUaNa5syZ4+1NJCRUKHwSQgghhPgIp0+ftmTMmFEWE1hYjhkz5j0h7fnz5yJSZsuWLYhIlyVLFsvIkSMtx48ft8yaNUsWqZcuXTIeN2PGDFmwWguBEPvwWIiimn///VeE1Dhx4ohIqYH4d/jwYcvTp08t3gJC661bt0Sw1UBMzZs3ryV9+vRB7tu2bVv5v/Xs2dO4DaJomjRpZKH26tUr4/bRo0db2rRpY1m3bp1l7969IuQmTpw4yPtboUIFy/Lly4OIwVqkbdq0qXG/WrVqySKREELMyoMHDySBpn/XvvnmGyMWDRkyxLgdyTLi//z888+SDM2XL58cI0AUz5MnjyV58uTGdwHJUfyNEF/EvlGWhBBCCCHEraBVHb6W8ItEKxmuYwq5Bu3YEydOlHZ2tLYD+Epi8E+dOnXE23P58uXSXo5BPKBkyZKqW7du0oaOSe4JEyYUHzYNpu8C+F9q0K5+/fp1ua9uDwdoafM2GKoAjzFr8F6hfR0JfWvQVo+Wfkxg16AdHq3waN/HsCUNptCfO3dOBnXgcRjaMWnSJHlODJL69ddfxRsUJ0yUR6s9PEnR8onPAD5neK/hZ4rWeXiLogU+d+7cHnhXCCHEdcAGBL+BiCl6KB1sVxAP8JuoPR5hB2Ido4j/AtsbDCtErIXlTapUqWTAH4414IkNKxtMhMcQQfydntfE16DHJyGEEEKIF8EAn6+//lqGQ+gp6UuWLBHhERw5ckS8L+GjpQVN+Kthui68LyGQbtmyRZ5HA49OiG7w18TEcwAxDh5d1tPXIaDCp0u/lr/x/7ubDO9RTLhv0KCBeHHqxTv+3rRpU3XlyhURRf/44w/j8Xh/69evL58JFnkzZsxQf/75p/wNAmmbNm3EzxSLQP1Z4f4QjrHwO3v2rAizhBBiBvC7iETas2fPxGf59evXcjsGGSFGaV9oCKIXLlyQRBAJDCBs4nsAn9eLFy+qkydPqpYtW4rPNkRxnHCMgmONtWvXiv83Ib4ChU9CvAQCg16I6WoTTErEEAd9wpRcHHAkSJBAqkw0GLpw+PBhqXzBc+DABNk2LMIwWQ+LYw0m7z5//lyCD4Y5YMiDdQUPIYQQ73L37l2VL18+9eDBA9WzZ081cuRIqbDZuXOnDPOBqKnBNHZU4kCEgziKxakGz/HJJ5+opEmTymIE1Y54bh1rEA8whAIVOqjcCFQQW/Fe60nxEH4RZ1Fpe+jQIYnPEJMXLVok758GAmazZs1k2BSqblEhCvCetmrVSoY+Ic5i2jw+hxw5cqgJEyZ47f9JCCGOgKTYZ599JkOMEIPQKYAEDgbVocId13PlyiWCpxZCSeCAoYNZs2aVBOGwYcMkYfvq1SsZUDh9+nS5j/7eoDNj8+bN0l1BiC9A4ZMQN4IqErQPIiOGbBjaFPUJQiUWrhpMwztx4oTN54FYidYCLM4QTBo2bKiOHz9u877x48dXjx49Mq5XqFBBbdu2zbgOkRSLN7Q3omLo+++/D3FKMCGEEM8AwQ0Vh40bN1b79++XieUQKgGSXLgdrdRTpkwJEisgbkK0g9CGaefg7du3Kk+ePNKaNnbsWGMqPLENEoxoVd+zZ4+ca6EY7yfebyz0EMeRRAT4O8RnVIlOnTpVBGqAWArRoF+/flIBiiSjjq9IZiL+BrLgTAjx3fXKmDFjVK9evYLcjkneEEPRQQAmT56sOnfuLB0CWMvA6oMEFki44ngEgji+A0i0AiQL0YWCxCJiJBKIODbZsGGDKlSokLc3mxAKn4S48qAB7XHJkiUzbkNVDSozbRE9enRZkOIx9+7dU7t27ZKFEYRNLFohcuLcUdB6AvETByU43bp1SxZrWNjBf8XaAw2CKqpeNGjZQ3ULWhQ++ugjOeDR7XuEEEJcB1rO8ftfrVq1ILdB8MRCAUSOHFmqbHr37i2VhPCZrFy5sohndevWlSpDJMFQJQpRdPfu3cZz4bee1f3ho3DhwiJIQwxFezza5CF07t27Vz4PCNVY4EEwHTJkiJFkRAVo+/bt5bNEnEX1VKVKlSS+w/8TMZoQQnwBxIq+ffuKnYo1HTt2lHWKtRcyEkCIN/D7xN9JYH5f4Jt98OBBETph/6JBJSh8X5G8tV7vou0ddjGEeBOWeRHiJFjAQNRERQ4WQQgACAbw/sJiE4bgWJxiUYRqG1TsoEUArXQArQFYGNm9s0aMKItgnOuqE93qjkWVBoIphFScwgJ+cFiMod0PJyzIsP0bN2407gPhEwvqsmXLijBKCCEkfEDYRIUmYsa+ffukKgJt0mit1r/tsDTB7zmEM4hsAHYoSK6hpaxGjRpyG9rI7ty5IwOOrKHoGX4gJKNVr0yZMhLPsaBDzEXMR8zUlaEQSJE0RBUMxGx45GEwEtrhUUFVpUoV6dqALUGJEiUkxtIXjxDibRCDMPwOQ/M0qOTDkDftA20NfKPxmxh8kBwJHHBsAUG8YsWKska0TrIirqEDAnFP27xgvQuLHlQO16tXz8tbTwIab4+VJ8RsLFy40FKtWjVLzJgxEfWDnCJEiGApWrSoJXbs2O/9LTynqFGjBtmGKFGiyO3ffvutXH/37p3ls88+c9nrRY8e3RIrVizLBx98YNxWuHDhINuwYcMGy7179zz63hNCiNmZN2+exAr8rpYrV87Sq1cv+Y3Hdfzmfvrpp5ZLly5ZVq5cKbfFixfP8vr1a3lsu3bt5LamTZt6+78RsPTp00c+gwEDBhi3LVu2TG5LliyZ5c2bN5atW7da8ufPb8TPpEmTWkaMGGFJmTKlcf3YsWNe/X8QQgKbf//91/L5558HOf7PmjWr5ezZs+/d97///vPKNhLf5fHjx6H+ff78+caxDU4ffvihZenSpR7bPkKCQ49PQkIBlZRoQYdPGry5AMy8MdUOoAITWS5U5QRHmzsDZLowaCJDhgxq2rRp6scff5SKHniwoXoH/ihomdMVmDAOh28O/FFgII77oK1E89tvv0nVJ3xB4e+m209+/vln2R5kZOHziepNeK6g3R1ZOLS6w3NUV4yifQVte3gNeJCiFSGkLG7ixImlagWVL2jhxxAN/P+wDahMwgRIvC6rjAghxDbjxo2TIQAAcQW/+3qCOH73UbWJGIPf4WXLlqkePXqo2bNnS2UFOH36tFQh4n70VvMeV69elaooHX/R/YGqT5zQ9o74juMHxEX4sSLuAtjHwP8MvmgYRojpyKVLl/bi/4QQEohgvdGiRQu1YMEC4zZdlWcrtsC7GN1r8D2GjRYh9gD7HtjyoNsBsQ+xEd8xWMcQ4mkofBISDCxW0KaGRSeERExnRbsaRD74q23atMkQDt/boT74QERNLG7Qfpg+fXr18OFDNXjwYGljBPDUvH79usqWLZssfLy1aFu9erX8n+Adpw+CIORCbB06dKh4kP3+++/yHtj6/+K+wT1IMTAJCz0cTGERTwgh5P/aCTHwRk/AxYA52KEAJL7ixYsnE8KRYNKiGgQxiJyIHZjyTnwXeOPhc0JrKBZ11gMgcFyABCGSi/DaxnUkM9Eaj/Z5xFgkFQkhxBPgOB/ejLNmzZLfI8Sn7t27q9GjR4swFRz4HCOpg/seOXJECh8I0eA4BW3tsOqx9oPVoAgHhTcQzeGXTfGTeAsKn4T8/0UpAjsEzuXLlweZio4faIiCoe5I/9/bBD5tMHaGkTPA42wdRPgqEGm3bt0q3nGYOg9wgBPSBHlr9AQ/XdUEzyDAARuEkEAHB/uomLGOKUgeQQBF9Z/uEoDv87Bhw1TcuHElyYYBARggoaemEt/l1KlT0hmipx+j8rNmzZpS5QLwecOr9eLFi3IdC0R85vB4RfcHIYS4GxyTd+3aVf3www9y3L5w4UIpwqhevXqI94fPP36nEMOwTiJEg45HFL1grgS6IeHtGRI47kH34/z582XdjPU2PT+JJ6HwScj/X7CgTduWiBcSKVKkkMpGtCtiuh2EQixi/I2//vpLjMx1SyZa/yGEhmZsjqEPTZs2lVYGtOXDJL1t27ZyXYvChBASKBw4cECmsevqecQPLBQQZzABHBWeEMhmzpwpk9qJ+fnmm29U//79RQiF1Yye+A5xFJ83qmAAFn4QIShuE0LcCY7bO3furKZMmWIk5Jo1axbqY1atWiW/UfjdunTpksQuQqyBGA5BEwI6viPaAsYWsGXTiT6smZHg5bR34ikofJKADPwQ71Bl07p1a/kRRsYTZfrWrdsI8mhL00IofC3hs4YKSIikuqojEEFV64gRI6RKFpPq4REaEljg6Un28A2CINquXTu2whNC/BpUN6AaAgIYWtxxHb+HsBjRvtD169eXv8F6BKInKiY+/vhjb286cQHwNIOnN2xfqlWrprZs2SLt8PA8A6jqhRAO8RuX0SUBgRQJVUIIcTXoJhg4cKBcLlu2rNq+fXuo98eaKEeOHLJeGjBggNhgERIcxDBYIcDrGhYKM2bMCPVNQlwcM2aMfK9QNAR7OVjEEeJuKHySgAHiG7KbkydPVmfOnJG2s0yZMslla7DoQGViuXLlVIUKFVTKlCnlQAGencQ2165dUxs3bhT/FlSxNGzYUCpFsdCDZ6ot8P5ioYdFPgciEUL8CYic+G07ePCgevLkidyGA3z4XAFUeaLKD5XweoGJ6gck2Yj/on0/rT2yUSWDeKmZOHGi6tKlixe3khDib2BInu4mgJc0WtfDKuAYP368eH+igg+VfN6aS0B8H3yfSpQoIes5JPfgax0aSP7CXgGdELCJg81aWI8hJLxQ+CR+D3wrscCE4Gnt3anBAqRQoUJq7969cv3+/ftyUECcAwEPIjGGNmDBjywehnXYAlW0qBolhBB/Ej1hf4LhcACCJqo8AYbaZMiQQeINJrNbT9Ql/g+GH3755ZfisYfuE1S9QAANbq/Ts2dPGTRCCCHhBYUJ8O5HbELVOSo3kXwLDcQs2FahsAEVfKjkIyQ0MNxv6dKlMpgRVZxhFbUg4VemTBlZN8LzGrZzKEgixF1Q+CR+DbxpsLhEO7YtwROLDvwdE3UxNRet7xQ9XQsWcFjs1a5dWwY7wAtGTzMGqKrFIhBCAf6GNnhmlQkhZuTBgweS0NG/cahgwGW0PaOKb8iQIXKwj9iEak9bE1CJf4PkKqp/YXsA72wcd8B+p06dOtJ6iu8KQMUwJr77o3c4IcRzVeZY5yCxAqspdL7Z22WFwhH4gX799demGtRKvAOOdbJkySJrbsyGqFSpkl0T4WG7gO8n4iJiItfhxF1Q+CR+h54ijgUofCjRNmYLiJ1oy2ZroWdAUMN7HbwaShM/fnz1+PFj+VzQAo9T7NixPbR1hBASPiBeoXVLexpjAi6Ezx49esjCEwtOQoJTtWpVGfAAi51Zs2apIkWKGBY86J5ACyAqhQkhxBF+/fVXVaVKFVkXJUqUSN2+fVuKPghxF1hzJ0yYUCxd7BXYkeDDAC18T/FYdAmyAIa4A5pJEb8BE8cxrRDtHKisSZ069XuiZ/LkyaXFY/369dL2TtHTc+j3GlljfD4Y4mDdagPRE6A9Hl6h6dKlk4pcPWCKEEJ8ERysYzgeqha06AkRCxXsWbNmlaQPqjxxP0KC88UXX6icOXOq4cOHS8XL8ePHZRAgOHv2rAwXCWsICSGEWHPixAlJxCHuYFgrig3sET1x/z179vDNJE6BDr4mTZo4NLsB3Q4YeARQkISBgFz7EXfAik9iejAs4vvvvxc/rFevXtm8D4yT0W4NUZRtY7712S1cuFCNGzcuxMnwWqxGOyAhhPgSEDrRsr5o0aIgt2Na+/Lly+UyfIzhI01IWJ0q4MaNG1IpjJb36NGjy3cMicPvvvtO/EE5DJAQEhrXr1+XhAnWRFjzHDlyROXOnduuN23x4sUiXCGGLVu2jL83xGmQ8MWAW3T02cPgwYPFDgjg+4op8WF50RLiCKz4JKYFxtvTp09X6dOnlx/K4KIngn2zZs3kPvCpQUaJoqdvgeoWeHqeO3dOqjtxPTh3796Vyl3rqbeEEOJtMPShWLFiInoittSqVUsqa5BoQ8uyhqInCQtrMRPfJXikQQydNGmSatGihVQNwy+7ZcuWNj3LCSFEd79hqKheE61cudJu0RNJll69esnlPHnyUPQkToPOSgzH0t8ne4VPxDhw8uRJmQ1hPfSPkPDCik9iSmB+jEWm9sGyBq3UWCCg3B7VgsQ8YKGHdpzx48eLIbt1ayi8PyFwV6tWTQIhJ/8RQrzFb7/9pmrWrCltWRCq4NFYuHBhadGKGzeueFZhmBshjoK4BzF97dq1EgcB7GEmT54sl/E9w/eLvp+EEGtQIIBqcXgkgm+//Vb16dPH7jcJQ4wwGwFWU7DZiBo1Kt9g4vQxEhLDSOqhcvOjjz6y63FY3+FxBw8elOsdO3Y0Yh8h4YXCJzEdb968kdZ2BGhNyZIlRRBbsWKFmjlzpmQqifnF7c8//1zt2LFDAqcWQdH69/btW9W3b1/Vr18/HpgRQjwKxCgMLsLvkAYiFaxU8LsFf2m2ZxFXAkH99OnTxnWInpiai9sJIQQtxRUqVJAp2QAD9RYsWGD3G4PYhWFqiGurVq2SLjlCwgO+g0jiQcjcu3ev3RXEsHnBdPj79+/L9VGjRqnevXvzwyDhhsInMQXIAKFdA+LXV199JS2GIEqUKOqXX36RYE/fK/8Eny+qqnAwhqFHOhCCVKlSidBdsWJFr24jIcT/QfzBAJqBAwcGuR3iE9qyCHEXWPTBx9waWMOsWbNGlStXjm88IQEem9AiPHfuXLkOAfPYsWMOTXBHWzF+T7CewjR4rqlIeLl9+7YImLBdmDdvntjP2QsqjlG9DEEfwDMdvrOEhAcKn8TnOX/+vGSNjh49GuSAH4NxsODE5EIG6MAA/kNol7h48WKQ2xEMMREQ3nqEEOJq/v33X9W5c2dj8qg1/fv3F0GUEHcuIBHnMPEdXS/W1j4QO3CMRAgJTIYNG2Yk5GLEiCE2YGnSpLH78RA6K1euLL8nSOJBOCXEFcBuAR16SZIkkbVb7Nix7X4sujgbNGhg2J0hDqLrjxBn4XAj4tPDi+DpmDNnTkP0hJcagvu9e/fEPwQBmqJn4IADum7dukl7O6o9rYMjhlxhciUhhLgSCE04+A4ueqZIkUKm3lL0JO4mZcqUcsyzbt26IEMaIcg3bdpUhgMSQgKzK8q6C2Hp0qUOiZ4A1iwZM2YUL2GKnsSVdO/eXYYcoVtPT2y3FyT72rdvH6QFnpDwwIpP4pMgK4S2C0z7tmb79u2qbNmyXtsu4hug7R32BxiE1KpVK3X58mW5HRXAEEERZAkhxBXDIuAfDX8qa2LFiqX27dtHj0XicX788UfVtm1bm5XHqPxiMpiQwOHUqVPSCYViEQwyQoWdswk+tBWjo44QVwI/6ipVqogdA+zJHIlRf//9twz0Q6ETbBjwXB9+yLo94hwUPonPMWvWLDmoRyWDBj9yjRo1kr/B15MQ6/b3OHHiGN8XtOrAC7Rq1aqqQIECfKMIIU6B6gIMzsPC0hrEI1Te4TeGEG/QtWtX9cMPP0j3AxaGevhfhw4dZAIuxU9C/B8UAMDjHkUh+fPnl6pwDtYjvgg8O52tJkYRFNZz8AqFPgAdYMKECYxzxGEofBKfYtOmTTJJEAfyGviqjRgxwiFfEBJYrF+/Xtr9nj59GuR2TIXH4tARg3dCCMFvCaoMtJ8w2gDr1asnwx9w4I32LUK8KXjA3zxRokSyKKxZs6Zx3NSwYUOZpMuqGEL8E1R3Ivl29epV1aNHD/E9xDAjR7udevbsKW3xSJhYW2gQ4mug8Kl169bG9dmzZ6sWLVp4dZuI+aDwSXwCGBbDowY/ZJpkyZKJdw2ymITYw+rVq6WVwloAhQ/frl27VIYMGfgmEkLC5PHjx1JFo72lixQpIsMf0N4Omw1U1LCijvgS+/fvl1ZCWDOAdu3aqalTp/J7Sogf0q9fPzVy5EhJbiAJMn36dJv2F6Fx6NAhSe6BgwcPqkKFCrlpawn5Hzdu3JBiprFjxzpkq4CuBhRGIfkcN25cde3aNTknxBFokkC8CgJ2p06dVOrUqQ3REwvK0qVLqwsXLlD0JA4BX1gEwxo1ahi33blzR2XJkkXNnz+f7yYhJMz2dmvRExV1qIqB6AlQPU7Rk/gSp0+fVs2aNVPRokUzboMQgkElugWeEOI/wOJCr6FQ7Y3uJkfA49BNB5o3b07Rk3gExKPq1auLTzXET0fAcRfiWvz48aW4hQP9iDNQ+CReAz9c2bJlU1OmTDEOzrNmzSptWzt37jQWmoQ4AjKAyAj27dvX8DqC/ycO7j755BNpESKEkOC8ePFClSpVSkTPePHiqRgxYqgkSZLIZNGhQ4fyDSM+yR9//KGuX7+uHjx4oMqVKyeLQywS4fUJewaKn4T4F9q+CXFK7++OgEITDAfFOmvUqFFu2kpCgoLv6TfffCOXIVxqKyF7wfEYvu8AFc+oWl6+fLkI+YTYA4VP4hXQVpEqVaogP3qYSIohEqjOI8QVwfXhw4eSXdQgQKIa1HpwFiGEwDQfiThMDoVf2o4dO2RIGqrp0E4IQZQQXwSTbrV4sWfPHpU3b15pcwc///yziJ+EEHODpD2sVlAcMnjwYLlt/PjxKmnSpA49z5MnT9RXX30ll/E8jj6ekPCANVi1atXUP//8I0P6HE3MIRHduHFjWcdVqlRJClpY/UnshR6fxOPgB6pXr17Gjx0WldOmTXO4VYMQe5k3b56YYOvvXNmyZdXSpUuljZUQEthgQYkECXw8AarF69atq4oXLy4LzW+//Vb16dPH25tJSIggtmFBuGrVKkkqo5oL398rV67I3zEBF4tMQog5GT58uFq5cqXs6xhsVrVqVRns6Wi1JywwMPQTiT48D6fAE09z6dIllTNnTjm+QnIONmWO8Oeff0qH6KNHj+Q6BnP99ttvMvmdkNCg8Ek8Csy34e2hPWowjAYiFKduBwUHNrACQAsbKpGwMMcJGTKcI9OFH3qccNCiL2PyPYZCoUWTBAX2CRj+gJYIvI/Icvfu3ZvTmQkJYPBbi0EwOi5hwu2RI0fEXxom/LVq1ZIDc/p6OhfD7t27p16/fs0Y5gGeP38uCz8sKlEJg+nubdq0MRJ+ixcvVo0aNfLEphBCXMjhw4dV0aJFDasmtKifOXNGkhyOgDUFYhwEp61bt6ry5cvzcwoB/G6iOhbvmY5heg3GdVj4QZcnOvPwfUQVs7VHtT3MnTtXClr0gK+MGTOKTRFt8khoUPgkHgFBAub7S5YskeuotEPQDsSKO0wMxhR7LAhxunv3rnHZ+vT33387/Rr44YcAilPy5MmNy9bXccAUaAIpDlpgrwAxQ1fCoOUCWXNCSGCBg2VUyWlhE6LRokWLpDJu48aNKkOGDLLg5ORQ2zHMVuyyvu3NmzfhimEhxS59wlBE2BKQ/wFrBkxqRsJ03LhxqmTJkmrWrFnipY7kaI8ePaSCmRBiDrAvf/TRRzLwFYUOOI6dOHGiVG46A+xc1q5dq77++msVqKBS0HodFtJaLDwxTBei2Ipd+jaswwI1hr18+VKqjm/duiVWLShEcVSYhs3L9u3bpZAKa+YOHTpIrCMkJCh8EreDH7XWrVurLVu2/N+X7oMPRACFL4e/g2EDqB6yPuH9sCZBggShLu4gTlpXdeIyMlyo+rTOPuIyJhIHD97W1//66y/jdfE5wE8Vi31UN+GUL18+FTNmTOXvoE0id+7c8p6ATJkyqbNnz8r7Swjxf3DQjG6DXbt2yfVJkybJlFtUwWCqOw6k0ToFv8RA5v79++/FMCwYbcUwW4u70GKYjl3WMUxXidpaiOI6BlBZxzC0u1nHMHxegRDDQgNC54oVK2SACYZBQOBHK+Evv/xiDIXQHn+EEN9Gt6ajIg6VhzhOx1AXHq/aByo2g8ewO3fuBLlPwoQJbQqTOEd3mD0xDPHLnnWYdQzDcyCG6fgVaDEMSedjx45JPHJGAEZ3Q65cuYII1KxkJqFB4ZO4lf3798uUUfwoIWiPGDFCDsDTpUsXUAtEVAwhY4ughvO0adMaATVKlCge20YEXB18ETDQFoDthM8PsmVaDLUOwjjI8sfWAWQJkS3UbYApUqSQ9wGLeEKIf4NKb1R1Avh7rlu3zvgbfNSwwGzatKkKJEJbICKGWccExDAsDCGseSuGoXrfOobhOEOLocFjWKAsJIGOadb2DIjviG2oHgMLFixQn376qde2kRASNrt371alS5c2rmOfRkIOVd2OgKKHmzdvqhw5cvj12464EDyGQXQE8eLFey+G6XWYJ+3W8FmEFMNgQcAY5hhDhgyRIV2I8Tg+QCcIBiWj4paQ4FD4JG7jp59+MgYWIauFRSZ8p/wFLCQw+RctIxs2bJCDCh1ctcipT+nTp/dpjzhkKeGxYn2wcPz4cUMMhQn1xx9/rGrWrKkKFSokn6c/gEV9x44d5TMEEHjxf0cFKCHEv72lAA6WUWUYIUIEFWhA3EUCCL9/iM+6G8F6gahPSFb6egxD1b51DLNO6KEqBNNkcSpYsKDfxDB7OHDggCpSpIjatGmTDEQBeE8wzAvJP0KI74Hfrjx58og4Fj9+fLEYwZpqxowZDj8XhvNhsCyqvTFc1p9i2LZt24wYpotN8H4Fj2EQOn09hsECLngM0wk9fBf0Ogz/H3+LYehixJoMwqWj3wG0zMOTHQlaHM9hnsj06dPdtq3EvFD4JG4B2RdkYTQYHAGTfX9oXYcfJFrGsGiARwkWhFhMlShRwhQLRHtB64YWQyHw4v8NXxxU+KBCCsEXiyZ/8AlFm+sXX3whlTL47LBQhMBLCPEvsGjEMCOd6Dh//rxULsIzDX6fuOzPoDMBv+VYKMJ+BhWA8DJFDMMUcDMsEJ1J6OkYBvEAMUwvIBHD/NVjDfEMQsnMmTPFu7Zx48bShYMKMsR3tGui2giJTUKIb9GvXz8RKuPEiSPt0xB1Ll++7HBXEmIcrJ3we4jOBhy/m70zAf8PrMMQwyB8YbCNdQzDwBx/iWE6oYckJYpsMHAJVar4/yKGYUCVo4OBfA3MXMAwPnzP4VPtaBfJqlWrVL169QwPXAAbo1KlSrlpi4lpsRDiYtq3b48+K+M0atQo077H//33n+X06dOWkSNHWooWLWr54IMP5ITLuA1/w30CgXfv3ln27Nlj6dWrlyVr1qzy2UaNGtVSvXp1y7Rp0yx37tyxmJlx48YZ31l8xhs2bPD2JhFCXMjPP/8s+zb28RgxYlhu3bolt69atUpuS5gwoeXJkyd+9Z4jPp06dcoyYsQIS5EiRYwYVrx4ccu3335rOXv2bMDEsH/++ceya9cuS8+ePS2ZM2c2YtjHH39smTFjhuXu3bve3kSXM3DgQPl/xo4d23L16lW5DbFNxzr8/69fv+7tzSSEWHHs2DFLhAgRZB+NEyeOnI8dO9bh9wi/7RUrVpTH41jdjOD/cOLECcvw4cMthQoVkv/Lhx9+aClRooTlu+++s5w7dy6gYtjOnTstPXr0sGTKlEnei2jRollq1qxp+fHHHy337t2zmJFnz55ZkiZNKv+fb775xuHH4/MvX768PD5dunRyni1bNsubN2/csr3EvFD4JC6lbNmyxgE1gvbJkydN+Q6fP39eBL706dPL/yV69OiWOnXqWGbNmmW5f/++tzfPJ7h48aJlzJgxltKlSxsHaAUKFLCMHj3a8uDBA4sZGTZsmCGM4HzOnDne3iRCiAvYvXu3sW9j0fTbb7/J7RC7EiRIILf37t3bb95rLAYh8OlFAITeunXrym+aWX+f3RHnEa9KlSol3wm8TwULFrR8//33locPH1r8ZaGMRC3+bzjHdTBkyBDjWA2i6PPnz729qYQQi8Xy77//WgoXLiz7pi4yyJgxo1Mijk7qRY4c2XLp0iVTvb9nzpyxfPnll5Y0adLI/yFmzJiW+vXrW+bOnes3v8+uiGEQfyEC6xgGcRgi+Z9//mkxE/PnzzfW2zop7QhI8Or3IG7cuE6LqMS/ofBJXAaqSfSBdJQoUSw3b9401bv7+vVry4IFC2QRhP9D/PjxLe3atZPqCPyNhMyjR4/kvWvQoIEcYEWKFEku//rrr3IQZ7ZMOzKo+ruMihlCiHlBFQQWTXqfnjBhglElULlyZbktb968lr///ttiZl69emWZN2+eLILwf4Kg26FDB8vGjRsZw8IAi0QsvOrVqycxDKeGDRtatm7daroYFpxr166JuInvxODBg43vvq6ewqlMmTLS1UEI8S4zZ840klX4HcJldCs4ysuXLw3RsH///hYzgG1Gcg4dCboLo2PHjpbNmzebPj67G4jBEIVRpIM1GL47jRs3tmzfvt0UFbHYRv25N2rUyKnnaNWqlTxed3Qg8cuqT2INhU/ikh8rtFDoA2hka8xUbo/KxS+++MISL1482X5UrS5atIgLxXAsINE2nj17diPwwBbATNlHVEvp6jCcmjdv7u1NIoQ4KQbmy5fP2Jdr1Khh/G3SpElGuy+qS8zKhQsXLF26dDGqHNDytWTJEi4Uw7GARDeDrrbKkCGDWPYgwWdWFi5cKP+XiBEjGp04EBl0VwtOqK4ihHiPx48fi9inK/dwjmIMZ4SrQYMGyeNTpUplefHihcXXj7k7depktPWjPX/ZsmUUrZwEXR3oZtACINricR3fL1/m6NGjxtprx44dDj8elaI4nsPjW7du7XfWRST8UPgk4QLBWLdk4JQrVy7L27dvTbHdqEaEYIsfWRxooM0RIihx3Xu8b98+y2effSYVwAhGbdq0kXYEM3Dw4MEgXrWwPiCEmAdU6qHiQe/D8HzS1fsQC/UB8sSJEy1m/H3dtGmTpWrVqvJ/SJQokeWrr76yXL582dub5jfgPYavdbNmzSSGoROgbdu24u1txv9LrVq1DEsaXcWK9le9H1D8JMS7/PXXX3KsmSVLFqNtF8fRzoDEXqxYsSzLly+3+CL4DUJHne66SJIkiaVfv36WK1eueHvT/Ab87sPX+tNPP5UKUBQmYQ4HvL19FXSpaD1BW7M4Qt++fY3jPXYxkOBQ+CTh+kHV/mHaP8rXy+nRKjF9+nSjGjFPnjzi28lWdvdX0GC4RvLkyeV9L1eunGXdunU+/33Zv39/kMpPBFRCiDlAMksvHtE2aL2gatq0qdxeoUIFU7UyI4ZNnTrVqEZENStaAxnD3Au8veEBnSxZMuN7g0W7r8cwazCAMGfOnJZffvklyO2LFy8OMtgPC2VCiPeAVRT2RwxeC++xt6/9RiFWTZ482ahGzJ8/v1i0sJXdvfzxxx/i7ayHCFWqVEmSp772/UB3IKzmUFTlzMDBp0+fyuPxf4R9Df5/iHnOiKjE/6DwSZwGZtvW5vi+XFKOhS1+ANOmTSsLYXigYDKer/3g+zuoBsYiS/vBFitWTIaO+DJHjhwxxBOc0I5DCPFtMMFaD13DaenSpUH+jtY/VNaYpboElQsQOFOnTi2/R/CixG8nY5hngV8Y2sZ1Gyr8VPfu3WsxCyF9X7Q3mvXgL0KI5/dN+MzruHX8+HG/+QggPMG/NGXKlBKbIe7it5MxzPMxDOthVP5rKwUUefgS6MgJT0IaQ410i3/t2rXlMhLGhFD4JOH6UdHTAn3V+woBFZWFuXPnlm3FD6CZvdz8CVgNfPTRR/K5wHLgxIkTFl8F7Y7WlZ8wWyeEmMMrrUWLFhazghi2du1aqdTD/wWCJ/zQiPc/F1TLYCiW9o41i42LdQWQXlzC7xOtgfi/IDGM/x8FCUI8AwbQlC5d2nLo0CHZ/7AfYriao6BqElWi+G3yFfA7guFM+vflk08+EWGLeP9zWb9+vbE+hhWKv6yPnz9/bhz/obsHLf7w6SaEwidxGGRNrAcZ3bhxwyffRWSwSpYsKduJAwpWMfgeWHShEgvVwxAWEaBQqeWLQEDXFWQYEAETbkKI71VGws8KA36wr+K3Bb5pGrQnm6W1HdUwesophu7Bd5j4FvguYRgihgQhhsHT+vr16xZfB1WrGIZl7W+LSjNMA9at/N26daP4SYgHQOW4Fjv1+soZEerbb781/DKRzPA2sM2ADZr+Tfn999+9vUnERgxbsGCBWNeh4r9ly5aWmzdv+sT7hGM3eJc7c+wDoVMPJ8TQI0IAhU/ilO8MTjD798UKBxwsaBN/ZLLM5sMVqC3wENThPYOFV9euXcVTzRcrZPQUXAwT4TAsQnxL9KxSpYoRo3AQb33AvHr1aiMR5sum94irqCDEtqKi0Bd9uMj77YM//PCDJXHixNIFA9EQ/nq+ypQpUwzv22vXrtns5sEJ/w9CiHuB0PT5558b1Z6o7HcUiDvYn/F4eGZ6E3RwVatWzfDw3LJli1e3h9gXw5AIw9oG6/sePXqI36Y3wVoQ36GCBQs6nLCGnRH+L9rrkxBA4ZM4PGlNLyh9zZsRBw7IVGHbkLlCBssslT3kf4EKQ5DgGRszZkzLoEGDpGXBl3j27JnRGgIDbVSCEkK8D34v9IAWnGNCrLXhvR6u1qdPH4svgkrB5s2by/YjwYJKQsYwc4EKlaFDh8o0ZZxw2bri2FfA9wrebtgfqlatagjrSAjAe1sf66HS2JeTBIT4C2j/1n7yqL52lEaNGhne+d5KlKFjC51biGHotkBHF2OYucCaa/DgwbIGw1oMazKszbzBvXv3JI7ie/3TTz85/HidyINVEPYJ6Bb0+gxsKHwSu7h06ZL8AOpKz+BTQb0JDsrHjh1riRo1qmR3kLFC5oqYF2QZkW3Edw1iha+JizgosK6KYfsOIb4xiAz2K9gnc+TIEWRKrE7coe3p1atXFl8CMWz06NHye4eKQVQOMoaZmwcPHki1JKo/U6RIYdm4caPFF4UW3doOH1nr471o0aLJ7TNmzPDqNhLiz1gnRVq3bm34BTvKjh07jKSfN2yYMLho5MiR8nuHzi2IS+jkIuYFXXeouESMSJUqlcxl8AZjxoyR7zaOjVB44ggYuqyFU+gEWsNg63vgQuGT2DUkAotF/GBkz55dMjC+AlqNtQcafqB9rTqQhL8CSreuYkAJgpivCBV6IqK2VGBWmxDvgYNy3coOL17rZAQu6yrQbdu2+dTHdP78efFAw/Z1797dJ6sDSfgqoCpWrCjfPUxOR+WxLwH/NGwbumRev35t3A4hHrfDBxT7j68lHwkxOxALM2fObKlbt65UeEI0xD63b98+h59HD79Dgs8b9mKFChWSatVevXp5rTqQuIcrV64Ynult27Z1WHwMLxDQsZ84263Tu3dveSy0At3lAL2ABCYUPkmoYHqs9jSMFy+e5e7duz7xjkFkGjdunFQlYPtgoE38E7QnzJw5UyqOUTmDKYS+AII/MpBa/ESFKiHE80mIadOmyT6Iqn+c40DX+vdDD1fA0CNf2u7vv/9etjlTpkwyyIj4J/gOTp8+XVoHU6ZM6VMTlyG0I65i/0BbvrWYAm8+3I6KH4gyEOYJIa5h7ty5sn9h+jQEQ1wuUqSIw8+zYsUKw3rJk56M+I3AMCVU0GXJkoUDZP08hqGKFx6yqVOn9rhnKzoS8B1HHHJ0AC50C51UmDBhgnGsiJkNJPCg8ElCFXZ0GxROWbNmDdI66C3QhqUnIHbp0oXZxQABHq6VK1f2qepPfBe1mTxO3333nbc3iZCAAhUAupoTp7Rp0waZZovp1bgdLfC3b9+2+GKVpy9M3yWe6WDAZGN8H9u0aePxypmQWLx4sVRrBU/eoQpNew7qE4aWEELCX7yBNRX2qWHDholoicvLly93SpRCtwM8oT1ZFFO4cGGJYT179vQ5+xjiHjAIr1y5ckb1p6e6LPEd11WnTZo0cfjx6LbAYzGgGcmF4AlyEjhQ+CQh/sigdUEf7KKy0nryp7cOFMaPH29Uee7cudOr20O887388ccfxbMFVSobNmzw+seAzKe18OKMPxMhxHHgg6m9p/UpeEX4gQMHxJZi+PDhPlXlicEPe/bs8fYmES/EMFQoo/oTvmmbN2/2iW2CkBFam6A+wX+WEBI+fv75Z9mf4sSJY3gYwm7C1weJYfuQ4EeVJ9qP9+/f7+1NIl5Yi0+ePNnj1Z9IuqFr58aNG049VtsgzZ49Wy5j+709tZ54HgqfxCbI4Fkf7Hq6rN1WZV3JkiVlWzp37swqzwAHga9SpUo+45uGFkFr8XPlypVe3R5CAoFly5YFiVPI5od0oO7tQQsYJINpu/idwNAbVnkGNkgk6wqWzz//3GeqP0NrhdeLRW8nwQkxM0g06KozeOxidgIuo7DDETBvATMYPAWSI9huxDBUh7PKM7BBy3mZMmXku9u+fXufn7GhtxVdQvny5TOqrUlgQeGTvMeSJUuCLCa9XSkzb948qfJENhSTCwkJXv0J37SDBw967Y2BsGI9IRd+Ms5kJQkh9oEFX5IkSYw4FbyVHb8PvsKsWbOMKs/du3d7e3OIj/mmofoTlTPWA7m8BcQNCLGopg5+TKiTe0g6IhlNCHEczCTQ06VXrVplxC9HE/gNGzaUFnm0ubsbHGvrKk9Hhy+RwKj+hM3Q0aNHPfbajor+usoa+wyOyXAZx5C+YOFHPAeFTxIEtN5Zi57w8vDWtGq0VOjKU3g6ctotsQUERmShcVA2f/58r75Jhw4dMhaHaGP0dpUZIf4ap3T2PmLEiDYTdM2bN7cMGDDAq90BGP6A6k5sX+vWrdmpQGyCCsqCBQuKOA6/TW+BeIUkYvCWdgi02tdNe35i2KUv+GwTYjZq1qxpeCSiS0FfdgS0mOtkxPHjx936m4AuO7xWu3btWOVJQpz8jmF4KFJCJ447QXv6J598YkmePLlDx1TQFCDO4rv8008/GZ0MaH0ngQOFTxIkwMWNG9cQPZEJuX//vlfeIRxQV6lSRQ6y0f7hS9U7vgD8TbFAAd9884142KFqJFGiRJZatWrJ8IxAAhk7iOP43mI6pjd9khCQ9T6EFiZCiOt4/fq1JBWsE3Rp0qQJsiDD76MWabw1jAXVCBUrVhRPKYhIjGFBYQwLCr6/TZs2le9tv379vJZwxncV25A4ceIgyeZTp04FGXQEwcUXPLYJMVt7sE6Oo/JTJ+4ciVOIJRgspK2e3CkwIeGBbURlOgkKY9j7Maxx48byvUTS2V0xDOs9dIDidUaMGOHQY3F/PA62Q6NGjZLLuXLl4vFZAPGhIuT/07p1a/X06VO53KdPH3Xt2jWVOHFij78/Fy9eVEWKFFEHDhxQGzduVF988YX64IMP+DlZsWbNGlWjRg25vGvXLtWpUyd5v7Zs2aL++ecfValSJfXy5cuAec+iRImiZs2apcaOHavGjBmjatasqZ49e+aVbcmVK5dx+ezZs6p9+/Ze2Q5C/BEkbN+9eyeXI0SIIOejR49W0aJFM/6O+AXatm2rcufO7fFtPHfunCpUqJA6cuSI+vXXX+X3mTEsKIxhQcH3d968eeq7775TI0eOVLVr11bPnz9Xnubzzz9X6dOnVw8ePFDjxo0zbs+ZM6ccI4LIkSPLfobjDUKI/UyZMkX2nYoVK6q9e/dKLCtevLhDcWrZsmXq4MGDKkaMGGrYsGFuefvPnDmjChcurE6cOKG2bt3K41gbMIa9H8MWLlwo8Wv48OGqXr166sWLF25Z7+H5wahRo9Sff/5p92NbtmypIkaMqPbv3y/7HfahU6dOqR07drh8O4mP4m3llfjekIjixYt7LfuBCaeYcpg1a1bLxYsXLYHGoEGDglQyWZ9Kly5t3C9DhgyWjRs32nyOBw8eGNnkQGTTpk1e/Q6h2rREiRLG54aKLw6DIMQ1TJ8+3fDRxXnRokWDxKs1a9bI7Wi5wvAHT4Op8pg0j2rvy5cvWwINxjDXfYdy5Mjhle/QokWLZB+CfzaOJzR3794VLzfr2Hb69GmPbx8hZgQD7WARgX0Hvpw4jsflOXPmONSZB69oPG7w4MFu2c61a9fKvo9KOFSoBhqMYa75DqEL0V3fIVST5s2bV/aD7t27O/TYunXryuO6dOli6dChQ6iDMYn/QeGTyFAY3cKEc/ineRosXMeNGyevX61aNa9P6fYWaC3DYAEs5rFoxwnTE7EAevTokdwHCw0clFgPH7AGQwfwWaI1LVDBoKEsWbKIdcOvv/7q8de/efOmBH29QMQBLvz+CCHOxwj8BiZIkCDIoBXrYUE4GM6dO7cxudPT2zd69GjZrho1avjslG53wxjmGs6ePSsCBwYxbNu2zeJJsB/pqbfwqLVmyJAhxjAWnSj3trc2IWYAvoLYZ9Cmi31aJxcc8SnUiT/YWrl6ijZi2MiRIyWG1alTJ2DnKjCGuQasVdOnT29JmDCh2AK4o1BKJ8GvX7/uUHEMHof1odY/IIZ6y16GeBa2ugc4//33nypXrpyc69bBOHHieHQb3rx5Iy1U3bt3Vz179lRr1671+Db4CjFjxlTRo0eXVrKkSZPKCbehND9+/PhGe0XlypXlPsHB59itWzcp4UdrWqCSOXNmaQUqWrSoqlKlipowYYK0F3mKVKlSqUmTJhnXr1y5Ii0WhBDnWLBggbSPP3r0SMWOHVv25+rVq6uSJUsGaQE8efKk/L13794ee6v//vtv9dlnn6levXqpvn37qtWrV8s2BCKMYa4hW7Zs6tChQyp//vxiXTN58mSPxbAPP/xQ2hV1a+7169eNv/Xo0UMskF69eiX327dvnxy/Xb161SPbRohZ+fHHH+Uc9kdz5syRy40aNZJ2W3vBfob97uuvv1axYsVy2ba9fv1affrppxK/BgwYoFasWCG/5YEIY5hryJEjh8Qw2DhUqFBBTZ8+XbkS2EWUL19evX37Vg0cONDux2FbUqZMKdZ+N2/eVHfu3FErV66U/Yr4P/yUAxz4OMETUgO/GGuPQnfz5MkT+eFatGiRmj9/vvh1aN82YhsIn/CwtAW85E6fPq2WLFkS8G8fxPNffvlFFmoQg9u1a6f+/fdfj70vEEIgzFgLNxMnTgz4z4UQR4EPGhZ6SCDgIBreh/DM1OIMgCikfZ+QQNOJIncDIbZMmTJq+fLlEsdGjBjBA+gwYAyzj3jx4qkNGzaorl27qs6dO0t810lqdwOxtX79+rJPJUmSxLgdIs1XX30llyG84HixWrVqNhOxhJD/gX2pcePG4n0IYRFo31x7+fbbb8WTEMezruLhw4eqVKlSkrBD8nDIkCGMYWHAGGYfCRIkUJs2bVIdOnQQwR8zO1wVw3AMiP0BbNu2Tf311192PQ4aQ7NmzeTy3LlzpcCIBBAerjAlPgTaGrTXBU4fffSRR9txHz58KB4daF08cOCAx17X1/niiy+C+HnCbyZPnjyGx1akSJGMtndrOnXqJJPeA9GTJyxmz54tfmRNmjTx6HccnxfaPPQ+hvZ7QojjnDt3TibY1qpVS/alRo0avXcfeOl27NjR5S2AIXH//n3xsELb4e+//+6R1zQDjGGu58cff5SWvObNm3vdNgXTe5MnTy774dixY726LYSYjblz58q+kzlzZq9Pk4adFvyokyRJYjl69KhXt8WXYAxzPVOnThUbBRzHYRaCq1ixYoVDdhHaSkb7VOM4Dty4cSMgfdkDDVZ8BihozZs9e7ZatWqVXEcrNaZi49wT/PHHH1Ilc/fuXbVz506ZHkhsYz0NGBWMxYoVC1LNhEonVIP8/PPPavv27SpdunR8K4PRokULqYJFNrthw4bSGuEJkiVLpq5du2ZUpt26dYstgYQ4CNpqs2bNKtUCqLTAbyLa8YKTNm1aaQl2ZQtgSCB2lS5dWqplEMMKFCjg9tc0K4xh4adNmzYyMRcntKRad+p4Y3ovKrDB999/L3ZFz549k+NKQkjooDMAYD+2/m0MjaVLl6rz58+79K29ffu2xDC0/O7atUvly5fPpc/vTzCGhR9UfM6bN09sHpo3by6dPK4AFdSO2EVoK5mCBQtKF+DixYvVuHHj5PgR1c7Ev6HwGaDUqFEjSIsFWpfy5MnjkdfWwRZt7gi2gexFaQ9YxEMovnjxovifBm9zR/sb2qhxMKXvixM8e8j/QNsehP5169apunXremyRBr+gPn36qLJly4qAgwWsJ/1GCTEzaF/C/lq1alWjxbZBgwYqe/bsxn2wX3kS+EKhNfDFixdq9+7dQbaFvA9jmGuAHyAsFZDkxD4AwdETwP8Mi8TLly8bt+H4MUWKFJIA+PzzzyXhWqtWLWkdJIT8jy1btoj/M2yo7t+/L9dBkyZN7HqbcDzfqlUr8Uw8duyYS95a+PYihuE4GDEsS5Ys/MhCgTHMNTRt2tQoQkE8c2URClrod+zY4dC2AGxPkSJFZF32+PFjrs/8HW+XnBLP8/LlS2OKO8q8MXXt9evXHpt2jddLnTo1S8rtbLHAZDy0oeDziho1qkxtt0a3UQc/ob2b2J7oh/exUqVKHvveg/Xr1xuTqFOlSmXTroAQ8j8OHTpkiRkzpsQrxCr923by5EnjPm/fvrWkTZvWUq9ePWnbczeYHorXw4m2IrZhDHMv69ats0SJEsVSrVo1y99//+3mV7PI62C/+/zzz4PcPm7cOGPCtN43cTlQp0ETYosGDRrIvtGjRw/LxIkT5XLhwoXtfrO6d+9uPMYVrfGIWzgGzZAhg0PTsAMJxjD3smbNGpnGXrNmTcubN2/C/Xywf8mfP7/sJ3v27LHrMXfu3DHWZLBJQqs78X8ofAYg+/btMw5St2zZ4pHFovY7zJQpk4ieDLaOs3LlSku2bNnc8MkEHtu2bRPx8+OPP3ZJ0LWHIUOGBBGmHTnwJSQQgV8n9pU6depYSpUqJZdxoGzNvHnz5PbEiROL96A7uX37tiwW06VLJ0k84hiMYa5j8+bNIn7Wrl1bxH93snfvXtnH4C9+69Yt43b4qsGjHX/r3LmzpXr16pZly5ZZ/v33X7duDyFm4pdffrHUr19fPDRLlCgh+wuSBvYA/8Fo0aLJY5C0Dy+IW0jaZcyYUeIZcQzGMNexYcMGET+xb7jCt7pt27ayn1SoUMHux6DICI8ZPXp0uF+fmAMKnwEGDIUxKAc7eosWLTz2ugjeEO1SpEjBSs9wLHTWrl3r2g8mgNm4caMEXQz48sSwCFSXQjDRwme5cuXc/pqEmBkIKEuWLJHKT+yrwbP5qH7JmTOn3D5ixAi3bssff/whw8lQKYPqAOI4jGGuF1QgRn7yySduj2F6gditW7cgtw8dOlRux6BKbw9qIcSXQZGJrjCzN3HWu3dvuX+hQoXCvX+h+ASCJ4RPJu6cgzHMtaxevdoSMWJEGTwb3oFHKKjCczlS9TllyhS5f4ECBYIMXvbUgEzieSh8BhBob9AtS1hEYkquJ0BLb+7cuaVd+/z58x55TULsbbdAoGzcuLFLpwyGxM8//xyk6pOToAkJvRUJ9O/fX/aXIkWKBFn8wT4Ct6Md/vHjx257K3EgDIE1WbJk71mNEOLtCiTYQDRr1sytlZZY8GNfix49uuXBgwdBju90RdrOnTslwXfq1Cm3bQchZkWLLBAx7Y07MWLEkMcgyeGK4pOUKVPSooX4FOgSgJ0Rpr2HN4bpqs/y5cvbvV9o6z8Ip126dJF4On369HBtB/FdONwogKhWrZrasGGDXIahMEzy3Q2GTlSpUkXduXNHbd26lQbaxKfAoChM9MPEzA4dOrjd1BrDHypVqmRc79atm0zDJYT8DwyAOHnypEqVKpUMJZsyZYrcjgER1tNVR40aJeft2rVT8eLFc8tbiAFGlStXlm3atm2bypgxIz8q4jNg8BeGG2Lae5cuXdwWwypWrKgKFCggx3QTJkwwbo8fP7767LPP5DIm4qZPn16VKVNGFS5cWD148MAt20KIGcCx3bBhw9SZM2eMIWF6CrU9jB8/Xr18+VKmrVevXt3p7Xj+/Lkcd2KgLGIYBpER4itgUB+G4s2ePVt17949XM/Vr18/FSlSJPme79mzJ8z7J06cWJUoUUIuY3gwBvZh0juGLxE/xdvKK/EMyMBbV5olT55c/JncCSpz0IKFCoEjR4649bUICQ8YBIX9Yvz48W5/I8+cOWNkGHFCxSlakAgh/xc3UNkZN25cowUJ52jPs67K/u233wzfQXd5laH6AP6iqCg9fvw4Px7is8yYMUP2h8mTJ7vtNVatWiWvESdOnCCtgGfPnjXiGbx29eWvv/7abdtCiK+zcOFC2Q9QaYmOBD2g7/Lly3Y9fuzYsZZ48eJJp1B4YliNGjUssWLFYiU28WkQu7B/TJs2LVzP065dO4eqPseMGWPYj125ckUuY41m3dlA/AcKnwGCHgyhT3PmzHH7aw4fPlxea8WKFW5/LULCS8+ePSXYoaXP3eh2DH0qWbKk21+TEDMA/0ws0vS+kTlzZjkfNWpUkPt9+umncnvLli3dti2DBg2S14APFSFmmEQMcQXD+9wBRBR4w0MADe4pWqVKFdlX9PAWCKBo1SUkUMHQFuwL/fr1syxevFguZ8+e3aHnQIIhPO2/eG34iq5bt87p5yDEkwMtUQyya9cup58DLeuIgx999JFdXp1IRGDfxGOQoIBftad0EuJ5KHwGANqbSZ8w3MjdUzexUMRrYeFIiBlANRkWb6g0u3jxoltfCxWeP/zwg1RD66o17WdISKDTtWtX2S9w4IpzTK8OLqL89ddfMhnXXV7VSNjhtZHAI8QMQIzERNv48eNL5YongbCC/QXxU8e1rVu3enQbCPEV4HWr/TkPHz5sJOr69OnjsW3QYmvwpCEhvsrbt28tZcqUsSRMmDBcQyRPnz7t0DAwPSQTVdoDBgyQy/Xq1XP69Ynv8gH+8Xa7PXEf8IdJmTKlevr0qXHb+vXrxe/TXZw+fVoVLVpUPGXgI/rhh7SSJeYA+0mRIkXER/DAgQMqTpw4bn29WbNmqdatW8vlFi1aiMcNIYHM69evJWY9fvxYvAJ37twpHoJz5szx2DacOHFCFStWTNWoUUM8gK19RQnxZbDfwF8zSpQo6rffflOxYsXyyOvCFw3+njdv3hQ/0C1btqiPP/5Y/fLLLx55fUJ8ic2bN8t8A3gGXrt2TSVNmlT2TfgOak/BkFi9erX4FFatWtXp9dORI0dUyZIlxQN4/vz5jGHENPz555+qUKFCErv27dunYsaM6fbX7N27txo9erSswzp16qQKFiwor4ttQSwl/gMVKT+nVatWQURPBFwEU3fx6NEjGRiDA2CYFVP0JGYibty4YnB979491aRJE1nMuRMIOhjgArC/QHAhJFDBMJQlS5bIAjF16tQi3AAMHtP8999/bh1Chm1ADMuSJYskJih6EjOBYUOIYRAgmzZtKvuLq8FiEENbrPfLCBEiqDZt2shlDFHBfrNu3TpVu3ZtiW2EBBIbN26Uc6y3Dh06JDEN+yYS66GBY84vv/xSkgYYWuYMf/zxh+x3OXPmVD/++CNjGDEVCRMmlBh29epVESLDE8Mw2Gv79u1h3k8PnUXCDsPEkiVLJoMtd+zY4fRrE9+Ewqcf8+bNG9mJNfgBGTlypNuC4D///CPT2f766y+1Zs0aj2RpCHE1mTNnlinvmzZtkgmB7gSTqzElF0DMKVeunNsnyxPii0CoQaWnnuqZP39+iWE5cuSQ7L8G1Sv4G7oJXM3bt29livzff/8tMSx69Ogufw1C3E22bNmkUhnVlgMHDnT58z98+FCed8aMGerGjRtBEu0QQA8fPmxUtWE/+v777xnXSECxYcMGQ/jUwkv58uVVxIgRw6z2RIVoggQJJBY5CmImqjwhoP78888qWrRoTv4PCPEeEO0h/K9cuVKSbM4A4RQJdHTuoCgrNBCvokaNqu7cuaMuXLigqlevLrdjHUj8CwqffszMmTMl8w6QiUcbbVgtFuEBC1a0ceCHKm3atG57HULcTeXKlWWx9t133zmddbeHTJkyBUlEoCoAC1ZCAg0cYCJ59uzZMzkAvX79uiGmWO8j06ZNU8eOHVOXLl1y6esj4dC5c2d18OBBWTDqSmxCzAgWbt9++60aMWKEJPJcLaxWqFBBKnGwP2rQ1qttlBInTizn2JchkLJymgQKV65ckfgEkRP7iRY+kdgOizFjxsg5qqkdTbwhhrVv314dPXpUYhj2R0LMSq1atdTw4cPV4MGDRVdwlHTp0kn3KYpLpkyZEup9EadgDQFQMKYrQLdu3erk1hOfxdsmo8Q9vHz50pIgQQJjUtmtW7fc+lZPmzZNXmvGjBlufR1CPAWMsTHBFoNVDh486LbXGT16dJDhY5UrV3bbaxHiyzRo0ED2gRo1asg5pnvev3/f+PuxY8eMYWB//PGHS18bw8bw3LNmzXLp8xLizRiGoSrRokWTASvuGGCJ40wMctEsX75cbk+RIoUlefLkcnnJkiUufW1CfJkpU6bI97506dKWV69eWSJHjizXL1y4EOrj9u/fL/fD/e/du+fw62LYHx4/b968cGw9Ib4Vwxo2bCgD844fP+7w4xctWiT7RKJEiWRfDI3vvvtO7lu9enXLn3/+afnggw/kOgfP+hes+PRT0NauS7uTJ08unkzuAtU3qJSBIfDnn3/uttchxJOgQgXVLB999JGqV6+eVKK5A2To4f1kbYoPY3pCAm0Qn24r0jYpqFrTlWNg6tSpco5WviRJkrjstX///Xf1xRdfqG7duqmWLVu67HkJ8XYMg8cf2gYRw2BD5CrgQYg2QhxnLlu2LMjt8MpGy6CucEPFJyGBgvYFRGv7/v37xUIF1Zfo8AmNsWPHyjn85TEMyREwjLNHjx6qZ8+eqlmzZuHYekJ8K4bBaz1r1qxy3IfjREeA/V6aNGnEngX+8aGBoXwAAzUxWAmWSoBVn/4FhU8/BDv4ihUrjOu3bt2S29wBAjpEVviw6aBNiL+AaX4IlhA9YTjvDiDydOnSJchtffv2pScaCRjgS4ZWJggzaE3CYlEvAK1N6hcuXGgkC1wF/DwRw/LkySPWFoT4E/D4Q6s7kt+9evVy2fPCy1MnuufNmxekZbBhw4Zy+fXr14YQhNcOq92QELODdnMIJ6Bs2bJB2txDs3uAr+eqVavksqPHmtjPEMMKFCggcxwI8Sdg+YAYhqGzX331lUOPhd2EHsKnE+chkTt3bpUoUSIRV5FI0ELotm3bwrH1xNeg8Omni0hk3DWYUAafGXcA/42zZ8+qOXPmqMiRI7vlNQjxJqhqge8Sso56UqerQcW0tZ8TPGbweoT4O6dPn5auhAEDBhhVMhiYgoQAqsc08L7FASn8BUuXLu2y1x8yZIj4sSGGRYoUyWXPS4ivAK8ziPrTp093afUKpsYDiDtIsAe/HXEMvvIQg+CZDc9RDF0hxF85c+aMFJrgeA5D+XT1Z1j+nvfv31e5cuWStRrOHQGDxiCcYo5DWMOTCDEjGTNmlPjxww8/GIkFe4FPPPQJdPZg8F5IfPjhh4ZW8uuvv6oyZcqoOHHiSAEM8R8ofPohyP7poUYA7Q/uMJaHgfY333yj+vfvr/Lmzevy5yfEV8BwMJhdo8Ll6dOnLn/+hAkTymtYgwBPiL+DTD6GeqEVEC166CIAtWvXDpIM0EPGWrdu7bJ4dujQIRGEBg0a5PBikxAzgSppVKBh/0H1tCvAEMuaNWuKPcS7d++M24sVKybJDLwOXnPcuHFSPYNBSxiIRIi/okWZ4sWLSxEKYgzAfhAaRYoUEdswXfVpL7/99psk5ocOHaqyZ88eji0nxLdBgUipUqVEyHzx4oXdj0MVJ1reIWxifwkNLXxiUDOS8LByoVWLf/EBjD69vRHEtXTs2NEo6U6ZMqW6evWqyytZsDhFWwV+SBDYWe1J/J2bN2+KV1r9+vXdUo15+/Zt8UWrUqWKiKvz5883KmcI8VcgmCC7niBBAlWwYEGZpn737l21bt068fjUYEotxM+JEye6ZFotWtzh3wtxFW1NrJQh/g6qwiDwf/rpp1L96QqwhLCViOjatauaNGmSat68uZo7d65LXosQXwcVZbAag/0XYhpiGOxbMOndHUUuKDpBh9++ffsYw4jfg/0ILelItjlSHAIdBMd46OALjXPnzkkCARYxSNzxuND/YMWnH4FMOlorYGZvffDpjva9YcOGyQ8EW9xJoICACR9btBNt2LDB5c+PJEXhwoUNf6cJEybQ55P4PTiwrFatmnz30YoE0RPG8sHtWerUqSM+oK4QPcHgwYPlIBoxjAe3JFBa3tFyjgoWtKG7gpCqr1FhA9asWSOVb4QEAigIQUsuuhdQNQbQMhsav/zyi1ODx2APA1sYxjASKGTIkEH2r8mTJxs2EvaA5ENYoifIkiWLtLcjqXDq1Cnjdu1XTcwPhU8/Atl1LBx1yxFM5tHW5GowcRoG2l9//TVb3ElAgf2pcuXKbmt51y2JqKBG5QD82FzVlkiIr1ahwbD+xIkTUtUJIIS601fp4MGDavTo0dLijipuQgKFdu3aSQufK1veUfWJeLV8+XLjNrT6YjI1BgNu3rxZupBQaYoJ8BwWQQIBrMd0G3tolWiwi0Di25FjSgwARCIeRSjwvSYkUOjUqZP4vDva8q5BsiCkZmd0sSIJD9AJhNZ4WLrAq5r4BxQ+/YhMmTIZlSs4wIT3Zvz48V36GsjcY3og2qX69evn0ucmxNdBdQsqqhFsu3fv7pbXmDZtmjEAAr6ibHcn/sirV6+kqhP70ahRo8SLWguf8PfUoLNADyBy5RR3tLn37t3bJc9JiJli2MyZM8UHvmfPni55zl27dolNBZJ22qMXC0g9nGz9+vXSybBo0SKZ+M7J08QfwaDXTZs2iYCJDjw9SAX7Rkj89NNPcl60aNEgQ2lDA9VnaPW17hAiJFBAbIHd2IMHD1SfPn0cemzjxo2l8wExKyR0ogLCJ7yqIZRiCCc7F/wDCp9+RIQIEaTaM3bs2CKeoCLT1SC7eP78eU7AJQELPAiRaUd7ERZ0rgZtFtaTbzExl1bMxN/AvoPKL1Rfoi0WVWgXL14UaxZUfGrgD4i2dEcPcEMCVZ6osmF7IAlU0qRJIy3vSOLBXze8lCxZUiVLlkyGlEH40dSoUUPOUfGJBAcqu/Ha+fPnZ0wjfgd82atWrSoJtcuXL0u1Mzrv4Pdpi3/++cfwi2/btq3dr4O1HcQY2C5h3UdIoIHWdSTMp0yZImske4GNEtZT8+bNs0v4RHs8WuohsnK6u39A4dOPQBYfwEw+ZsyYLn/+48ePi7cGfGXy5Mnj8ucnxCygxQJDiHCw6ow3U2igwhMHyxosFl01xZoQXwFiyfjx40XURPtrjBgxjNuRvAOomkGVGGjSpIlLbFog+OA1Q1qMEhIIIHah4rpNmzbq5cuX4XouiC/a03P16tXG7Xh+xDKINNh/UekJawssWBnTiL+BpDU67+DzqdvcMXwopDkL8Iq/f/++SpIkiZEkCAskCseNG6eGDx+usmbN6tLtJ8Rsg5zhnwvbFns9OOG9CzCADF1HtsCsFIBEPJJ5eA3s28Q/oPDpB6B1r1SpUjL4AUD0dMb3IixQcZMxY0bVt29flz83IWYCizZUVT969EiqP10J7CkwOV4D4YcVn8TfgP/fF198IZ6DYOPGjXKOhIIG/kq3bt0SIVS3zToL9iFU4mCx2KtXr3BuPSHmj2EYcvTHH3/IIL3wou0p1q5da/jMR48eXZUrV04u64GAFDyJv4IkNcQSeMBr4TO0Nned1EOy254htIhhiF2wGnOX1RIhZmp5Rwy7ffu23RPe4T2NrgMUrGComC0SJEigMmfObCQaiH9B4dMPQOYP0wNRHQNQRaMPPF0FSsnREjVixAi3TIknxGwgeMJkGxVkaINwJThwtvY4hABEfxnib6xbt06+38i879y5U25Dq6BGH5hC9LSugnYGTLFGHEPVGae4E/J/U947dOggFZhI4oUHVGrHixdPngeDVzQYBggwqO/PP/+UdmDsi/BMc3W3BCG+AMT9sIRPfPeRJNC+g/aA5AHWeui8Y4s7If832wTrJRzX2TMcDGKpnpuAWBRWuzuEz5s3b4qXLmIlMT8UPv0A+FBYU6dOHbtNsu0BWUZkMlH+XbduXZc9LyFmBwO+EEiREHAlmCCISYLWi0p7D44J8XVQ6QLREweg2bNnF58zdC6kSJEiSAu6Fj7tbQMMCSQFEcOQ7Q/vcxHiT2AIJvaP8A4cQjJB71t6SJludwcQbODHBismtBuiam3NmjXh3HpCfAMM9dKdOSg8OXbsWKjC5759+yTmQbjBoL2wgO87uu0wzdq6K4KQQGfgwIFSGIIEnj1o4RN+1A8fPrR5n3z58sn5qVOnZN+GvQR84V1dVEY8D4VPkwNvJuvsOsDEWleyatUqyV4iy8g2JUKCtkSgfXbq1Knq+vXrLntrrLOSAAtTDIPRVd2EmBV8hzHBHSIJhj/A2gGtSgADjnSMwQAiTMlFZYuuGnMWeIhiIcoYRkhQEidOLNPd0SoIW4nwgKQ72Lt3r3FbtmzZZDIuRB54GQL4pqFzKLyvR4ivALsIFJwgkYC4Bc9BWLToltngQLzE9x9iij3rqsWLF4sIwxhGyPu2SbB+wD549+7dMN8e2B3BhxfJhCVLlti8T86cOeUcnQkYpATbFsQwDC0j5obCp8mBkby1qS8OYrWnkitAdgOBvFKlSqps2bIue15C/IVu3bqJAIqsoytBAgMZTAhDAFnHK1euuPQ1CPFGsq5WrVqyz+iKsF27dsll6xiDFnhM4NQttM6C/QZTcKtXry6V1ISQoKCNDyINhn6FBxwnYl+GNYsGok7FihXlMgYbJUqUSKZZI5FHv3jiL0DsfP78uUx+hlgCcufOLUnskEiZMqUqVqxYmM+NajYMlYWPrm7BJYT8D3jfRosWTQ0dOtTubj0MhEYHQmjCJ9Zc2P/QoQCQfCDmhsKniUFbRfDBKpis6Ur/stmzZ6sLFy5IlpEQ8j6YRg3Rc8GCBerkyZMue4syZMgg1aTWgXnp0qX8CIipgZiJwWBZsmSR6xA2tR8apmdqIFTCE3DevHnher2ffvpJqkfD28pLiD/vk0gOoPoMAo6zoCoGgzaDH4OiPVe39+rkRnCLJkLMjN5vYN1y/vx5o9rZFqg0c4Tp06eLz+A333zjgi0lxP/A1HWImTjew4Axe7oTWrVqFeK0dnQnoOgEHUrYn/W+DD2EmBsKnyYGnklHjx4NclujRo1c9vwYOIEKADyn9rsghLxPmzZtRKhE4HU1SGZYtzsRYnbQpaDFzpgxY8pCEMPCrH1tQeTIkVWqVKmcfp0XL15IBQBsI3TGnhDyPu3atVOpU6eWDh9Xg+QGOHTokFF1jUFjhPhLEQo6FLTwqS+jpdYWsG5Bq7uuDA0NDEHCAFt0AIUkpBJClAybha0KknjhBZ0K1u3u2rKCwqf5ofBpYlauXGlcxs6eMWNGu9om7GXSpEkyrXrYsGEue05C/BH4leHgFO17SEi48oAalQRonwK4PHfuXJc9PyGeBC1D8PPEpEy0uyZLlkzaX63FEWBt3xIexo8fr548eWJ3+xMhgQpiDI71YJ9k3arujD0SpuxiaIueFI+kICpoYDuhLS7gTQ/xB7YXhJgZrJMgUKKtHeswLXzaEirRxQDRf/PmzWIvERZjxoyRFvrw2lAQ4u9EjRpVDRkyRC1fvlwdPnw4zPtjX0TXLDznbaGFzzNnzhgdSvZUkxLfhsKnibHeAbHzohw7ND8ZR8BiEe3tbdu2lUBOCAm7MhPTOTE9Wk/3dEXWEYOTIBhZizmEmBH4/6GCs3Xr1nIdbbEQQUHRokWN+3Xs2FEy7GvXrnX6tXBQO3r0aNWhQ4f3KkkJIe/TpEkT8SUMTwxDmztETQyB0N69iGO60hNDALUICvEHJwyNIMSsaO91xDaswS5duhRixefGjRtl38qbN69UWIclqEL47NKlS7g6HwgJFGANhqpre/yjMVwToieGImHgXnBy5MhhVHxq4RMVn65a3xHvQOHTpECY3Lp1q1FtVrVqVZl+6yoQbHFgCkNtQkjY4IAXyQIs+jZs2OCyt6xu3brv7fuEmBFULEME0RWdEEO015/10IadO3fK4hGt7s4C0RP+TO5o3SXEX2MYvHB3796ttmzZ4vTz6AGb1u3sOrEBiwu9r8NnDfEyPPs5Ib4ifKKyGR0MWDuh+gz2LcFZt26dnH/88cdhPi+GW2JdxyFghNgH9hd44UIf2bFjR6j3xf6Kqk5YLdlas1lXfGKyuxZLuQYzNxQ+TQrakdBSBIoXL25Xy4Qj3p6oMkO1Z9KkSV32vIT4O5hQXbhwYTVu3DiXPWeNGjWCXL9x44ZUzRBiNrp16ybtr5jsDtDqjgNJDEVBpRnAEAd8v3EAi9jmrLcnBkKg2hNTpAkh9oEkOjoXwhPDtPC5bds247aCBQsawqcWQSG04rVc1alEiLeFTz3YCBViwb/XsHfZtGmTXcIn2tt//PFH8S3EkBVCiH3UrFlTjiftiWHaamXNmjXv/U1bVeB4FAl7dCro68S88GjDpPTp0ydIdQxak1zFwoULJaOB9gpCiP0gOH7xxRey4LPHuN4eMJQlZcqUQW4LTwswId7k4cOHsqhDRQx80QDEDz0JGtVm+jZMm3YGTILHc2PRSAhxPIZBoNEijqNgijueB4+/e/eu3KYFzjt37hiDIsLjJUqIr6CFEFiqhObvuXfvXol9SMbpREBIzJkzRzojYPtCCLEfxJ6uXbtKdTUsV0Kjdu3ahgVFcMuVhAkTqhgxYsjlW7duGRXcKD4h5oXCpwmBKInFoy0vivAC7wr4XSBjoku7CSH2U79+fRk2NnHiRJcF8eDVATgoJsSMaNN5eJydPHlSLufLl8/4u/YFhHjiDGhvx76HNlpbrYaEkNBp2LChVLc4G8NQoQahE+h2w5gxYxpiEFoLIYJCFF20aJG0JmK/JcSMQMwH8OHUQosW9221uVevXj3UKmfsH9j3cCyZIkUKt203If7sV404hCHNoZE/f37Zx9CFFLw1HmsvfQyJ5Ib1ZWJeKHyakDhx4qiBAwcGua1SpUoueW54MsHPAhl/QojjwHMXWfr58+cbU23DCw6UrTl27BinCxJTsWDBAtWoUSO1dOlSuY6KF3yPXS18/vrrr2JAzxhGiPMT3tu3b6/mzp3rtJ+ZrXZ3LYaiKk4LQy1atBAf3rAqcwjxVW7fvi3n6MxBZRiwlXQrUKCArNV0lVlIwG8Q7fOMYYQ4R7Ro0VS7du3U7Nmzpco6JCBuVqtW7b1YpdGDMSF26mFkeh8n5oTCpwlBpvDevXvGdSwatfdEeEGWEd4YZcqUccnzERKIwB8X1dPwaHIFEIEQyHXbBcTV48ePu+S5CfEEOKiE6An/TcQsDDjR32EtfCKuYaiR9RRoZ2IYns/ZxxNClAif8CScOXOm037XGA5h7RMP2xZw6tQpqchu1qyZHGs2bdqUk3KJKcFxnhZCrIXP4PZEoHHjxmrz5s2Gr2BoMaxQoUJBBv4RQhwDBSiwi4D4GRply5aV9VXwVndr4RPt7fCcb926teFRTczJ/5lqEdNhXZLtqmpPZC3RijFlyhRZeBJCnAMeTqhug/DZu3fvcA9vgNchqkeHDBkikz7RxvHJJ5/w4yGm4fPPP5cqr/Lly8uiDvHm6dOnMsQoe/bsch8ILUga4LseN25ch18DWXl4E2K/YwwjxHkgWDZo0ED2pR49eji8P+G4FAKnNdbC57Jly/jxENMDL2k9rA8WR7r6E23vzoBKT0ykRrU1IcR50MKOBNuMGTPE8zOkGIb71K1bVzodgmPd3j58+HC5LzE3rPg0GSdOnBDvTeu2IFdVZ86aNUuyHhBVCCHhF3quXr0q9hGuAPsmqmh09RwqDQgxC8WKFVN9+/YV0ROcPXtWzjNlyqQiR44sl9FKhGnsK1ascDqGwUsQSQdCSPhj2MWLF42BY+FFC5+o6rZVXUOI2cCQvi1btqglS5aIT+2zZ89sCp8Y5KVF0dD46aefJOmHpAMhJPwxDMeaoQ3Swz5sS/QM3upO/AMKnyYDQfHatWvGdVTLoPw6vMBMGy1NWDA6O0mXEBJU6MEwB1e1uwPs65h+jQNo+Bhy8UjMBNqO3r17J5dDm37rDHheCJ9I3GlLCEJI+CxWkJgITwxDFbcexomKOIg6ON6EoIq/4Rz7LirnmMwjZgNJOySkMRBMt7njO44EnDWISxBDgw9QsQb7A9pyYf2ARDchJHygwyhdunR2xzAco4bU6o74BL/Qmzdv8mMxMRQ+TQa8KNBGqweeoPTaFUIlMpbYmZEdIYSEH7RVYH/6+eefjYVfeEA1AfZ/LRxBMOrWrZsLtpQQ94IOhQMHDsiETYiS+N4GFz4hhmDY0du3b516jY0bN8p0XcYwQlwXw9q0aSMV2I8fP3b48YsXL1axY8c29kk8nx5qBMET3vRZsmRRGTNmlPtZe9cTYuYhR9ZgbYWKMRSqYMBRSPzyyy/q/v37jGGEuAjYjMGXE/7ysFYKrZsWntQYummr1R3HlohPGC6N23C8SswJhU+TAR8KPcgIO/NXX33lkudFNgRtSLoNkRASfjC8AYu9efPmuSSAB/eo2bt3b7iflxBPdCrAEB6T3SFsoq0IFcsga9asRvsrpj4jvkHkd+Y1MNQof/78Lt9+QgKVzz77TBZ58+fPd/ixqHBDV8Lvv/9u3KaFT+zvqMSJHj26sb+fPn3ahVtOiPs5efKkxB600uqKz+Bt7nv27JFzxKbQClXwPFiDYcAsIcQ1tGzZUo47Fy1aFOJ9kKxAS/yZM2ck+aBJkCCBrLtQ7ak7EnD8qi0tiPmg8Gky0A6EHRO4auIfpuxiqBF+HDgQghDXkTBhQlWzZk3JNroCa1sLGHfv27fPJc9LiLvbAdHmiuoxWLXAaB7+tyBDhgxyjmpPXQHq6DAwHISi4hMxjBDiOpCIQHeRM8OIkIjAvnz37l05AbTOa+ETnUY4psUwF3RFVKxYkR8dMRVoXUdFMyaxoyrMVsXnrl275LxUqVIhPg8qqn/99VfGMEJcDI49K1euHGoMg8CpEw46UQFgLRYvXjzjOPPVq1eSzIsfPz4/J5NC4dNEQOTAVGdkHVBujYoZV3giIdgiG1KrVi2XbCch5H9gv0LFi174uUr4RNsFgjIhvs7QoUNlUdilSxfxTIJdi24LxLA+a+ETYomjbN68WfzRkGQghLg+hqGi7cGDBw49DrYW2bNnl8uHDx8OInzC/gKLRwijqAJFkpCJd2I2MJAPiQF0Kzx69Ehuw3fZGj0cLDThE4k7VFYzhhHinhiGDjm9j9qicOHCcn7kyJEgt+v9+c8//6T3rh9A4dNEDBgwQI0ZM8bIPMAA2xUHimvXrlU5cuQwFqCEENdRrVo18XZCVXV4sfaHQnvg8ePHw/2chHgKHa/geYbvL9pctXVLeIRPxLA8efIYfkyEENcBYQesX7/e4cdqzzS9mNTDIjgggvgDderUkWO7Xr16GT64ukIM4DZt6xLaIFrEMBzfoTqNEOJaPv74Y0ksIMEQ1vpKJ+lsCZ/E/FD4NBHWvhPW2YnwgB8CHMzWqFEj3M9FCHkfVLXggBfG9eEFLVR6uBnAJNEePXrwbSc+D6rF4HmLBB7a3QE8/rR/krPCJ4Z9bdiwgZUyhLiJxIkTi0cvxBlHQVIdnD9/3qiQA6j4xm316tWTfRdJ/f79+7t4ywnxHE+ePHlP+NTJacS6kNpj0XEHQYbVnoS4ByQUkIQLLYZZC5/W3bTWwuegQYNU7dq1pQOCmBMKnyYiUqRIQa47UxkTHEzaxc7MgEuI+8D+BR8z+MOEB4hE1sNb0D7sKv9QQtzBwYMHVbFixWSSO4YbzZ079z0vNNhAoAUJldGYrOmoBQwWnEzeEeI+sH/BFgn+Zo6ghxnpqrekSZOKRQuS7vD1XLVqlXh99uzZU40aNUoSGYSYBWuBxJbwiaGxixcvFpuykEArPLxuGcMIcR/YvzZt2iSJhpCSdBhchOnv2oM+uPAJ/881a9ao69ev86MyKRQ+TQJ2VEwcswatfeEFVWioIOM0d0LcG3CxYIT46QoRtXTp0sZ1iEWE+Cqo6kJ2XE9shtiphU/d1odBJ7oqBgeejoAMfrJkyTjNnRA3griDxN327dsdehyEH3Qm4KTjlU54wJcXIDbi72gXDmlRSogv8umnn6qoUaOqqVOn2hQ+sb5q1KiRdDuEFsMwCd4VazpCSMgxDAkGPWzM1hDO+vXry4Ax64QGBh9p4RO+1eDly5d8m00KJ2OYBIie+iBR44ogiYAL7wuKJ4S4D1S9ZMmSRfa38FZXd+jQQVWqVEllzJjR8JBCkOZgCOKLVKhQQa1YsUJE/1OnTonooQd9pUiRwmh//eabb2QB6Qj43usY5ugkeEKI/WTLlk184LG/wbfaXuDpuWTJkiC3IVGBihlU1sSNG1fOBw8erLJmzcqPhJiKFy9eqDdv3kgVsy3h094YhuQ4j+EIcR+Y2o4EA/a3ihUr2rwPupKCY13xqRPz2OeJOeFKwSSMHTs2yHUcLGIHDg+Yqnnu3Dm2VxDiAXBgCxN8DHUJL1hM6gCMA28OiiC+CsRN+PjpxSBaXbXwCQEEQFDp27ev6t69u0PPjfZZxDFatRDiXiDKYD9Dl5B1NYwz6IFm8K3H7wH4448/XLKdhHgSXfmFQX3BhU9UMsO7dtu2bSEe96ET4saNG4xhhPhoDIsVK5axr+sEe3hjIPEeFD5Ngh78YJ19D292EDs/xJOQMh+EENeBgIuF3u+//x7u50LQhVhk7dVLiC8DD0+dPYe3n7UA4izI3EeLFk2VL1/eJdtICAk9hiFpcfToUYfeJog+qPC8deuWMSwJIB5ai6Doanr9+jU/AmIatDUD1mO6CkwLn2fOnBHvWtg4hLReQwyLGTOmKlOmjAe3mpDABDEMiQZ0H4W2T1+8eNG4rjuRkMjQ+zGFT/NC4dMk6JZAgCnO33//fbifEwEXC0YEXUKIe8FUXHjFODMZ19b0QVRrayZMmBDu5yTEHWBwA4R5XdGFfUCLoNo7CZ5LtuxcwkK3LEH8JIS4lxIlSqg4ceI4HMNQzQ3/XlS/AWuxU4ug06dPF4+1kSNHumHLCXEPugLMuvVV+wDqie558+YNVfisXLmyw97WhBDHwXwEaB4hxTBUdaJ6G9ZkuoJbH18iKUfh0/xQ+DQJujUQYKGHKbnhAZ5KmE7GKYKEeAZ4QMEbDe3urmh1t0YPiyHE12jVqpWI/siy64pPa+ETmXNk4TFR0zrLHhZ4DgxNYps7IZ4hUqRITsUw7Uet92+d8MDCErZN1hU0+reBEDMJn9ZDufTMBFixAMQ2W0D4P3ToEGMYIR4CCYYqVaqEGMOQtNDJOD10kxWf/gWFTxOAA0L4mGkyZcoU7uc8fPiw+vfff1XZsmXD/VyEEPvA/oYWC0wWDA96IenK3wRC3EGaNGlUhgwZjBZWtAFiIJd19efz58/lurV9Q1hgwYgWWsYwQjwH9jdUsmHCu71oP3qdwNdi57Nnz6SCFOTMmVOGR0ycONEt202IO9Aip+5WQNWyrgq7cuWKnCP+2eLgwYNyzhhGiOfA/ga7lpAGFGEYrXWijsKnf0Hh0wScPHkyiO/R6tWrwy2cHDlyRAx7KZgQ4jny588viQzdAuUswQ+k9QE2Ib4GBjsgcacXhqh8RtJNCyDXrl2Ty8mTJ3eoZR0xDCIqWmgJIZ6LYUg4nDhxwu7H6CFm9+7dk3Mtduqp7to/DYkQLSQRYqaKTx3fUBWtuXr1aqgJPcSwRIkSqZQpU3pkWwkh/xfDsL+G5PMZXPi01eruiiG1xDtQ+DQBGEJkDTw+w7vTIeDmy5fPCNqEEPeTPXt2yR5i/3Ol8Imp7u/evQvn1hHiPl68eCHnOubgABIHlNr7E8KnI2Af+uijj8I95I8QYj+ozERVmyMxTAufGGqGOKXFTgifsWPHNqo/CfEX4RMJ7rAqPrEPQYRhDCPEc+TOnVsSbCHFMC18stXdP6HqZQJQjm0dGHHQqDPmzqIDLiHEc6DaLU+ePGI1Ed72YWuQCNm7d284t44Q9wuf2ssPBvOIa3rCOypfHIExjBDPA9EzV65cDgmf8PXFQhP7PnwN9UBNDJLQ1TTw+xw2bJgaO3as27adEHd7fGL/ALBw0Z15wT3ZNYxhhHgexBz47oYlfNqq+NTHr0xWmBcKnyYAB4OjR48OUfRwFBxgogWDwichngf7XXgrPlOkSPHebRhWRogvgYFG8FOqX7++YddiLXwCLXxqQ3l7wGNu3brFGEaIF0CltSMxDOKQnuSOCm/rhaT2T4NINHDgQDVhwgQ3bTUhnqv4RCXzgQMH1IoVK2xauMDvFvsC9iVCiO+sw7QFoBY+rSe5a29rDEEi5iSitzeA2Aey5Jrw+sHA1BdQ+CTE82C/mzp1qiz04LPrDBCN2rVrJzYYOIDGsCNU4RDiS6B9defOnSJqVq9eXbw9tU2LXgw6U/GpD1gZwwjxPNjvZs2aJcKlvb68bdq0kaq4+PHjG78B8PXMkiWLat++vVhdoAVRC6SEmAHtSasrPrXwicrPwoULy8kWjGGEeDeGLViwQDpqMendmtSpU6vWrVtLLMIxq/akx75eokQJ2bd1VSgxHxQ+TcKDBw+My+E9METAhXDCHZcQ7w44KlmypNPPM23aNEmIYNhZt27dVO3atV26nYSEF0xzXrx4sVg8oOoT7N69O8gCsUaNGjLUJKQFYkgxDJYvjkyBJ4S4LoZhMYgBR0WKFLHrMUOGDDEu6+nuED4LFiwoJ0LMiE5ew7bBERDDEPcgshBCvDPg6PTp0+8l0FHN+dNPPxnXrYVPzFgh5obCpwlAYNQDIEDSpEnD9XwcbESIdwccIcOI/TA8wqd1lRz8pAjxNTB1vVGjRkFuC94SWLp0aTk5AgcbEeI90F2A/Rf7ob3CpzXaBxGDjlD9ySGbxKy0bdtWValSRcSSSZMmGZWfmzZtUpcvX5ZjPPi6B4eDjQjxHtgn9YCjsDqHtPCJBD4xP/T4NAF37twxFouuqvhkiyAh3gELRgTd8Pp8osJAt1nBs/fcuXMu2kJC3Edw4dMZGMMI8R5I3GG6uyMxDNYu165dky4F68EQqPqE3QW85wkxG6VKlVJNmzYVywaghc+FCxeqLl26qC1btth8HGMYId4DFi0oQgkphmF9deXKFSkqQYIOYL0Fj09t1ULMCYVPEzB8+HAxygYzZ85Un3zyidPP9fTpU9mZKXwSYu4BR7169ZJ2dzB37lzxniHEl3j+/Lk6ePCg2rdvn9irYJAJPJWArvL6/fff5aRN48Pizz//VDdv3mQMI8REMQwDOmFNMXTo0CDC59atW8UDuFy5clIJGtxvjRAzoKuYdXxDnArJu/revXty4jqMEN+MYc2bN5fZCUuWLAnS6p42bVo5P3PmjIe3lrgKCp8moG/fvkZ1DHzQwtPqfuzYMTnnJEFCvBtwz58/77AvlDUJEyYMcl0fcBPiK8DHFq2wrVq1ku86vqN6qrvOmmPoUaFChaRq2ZHhfIxhhHg3hmHxh4pNe9BTcPE7YC18An0d1eDW3U2E+Drwq127dq0hoOiKTz20L/hxGuA6jBDfiGGnTp2yGXO0zoIOBWvh88WLF3I5evToHt5a4ioofJoALBRROQPixIkTrue6fv26nCOTQQjxDtj/sF/fvn3b6efAdFwNxCVdYUCIL7UTIUOeMmVK6TS4ceOGVH1aC59asLe30gsxDNWiHGxEiHdjGBaEelCRvcJn8Mpu+CPieQ4cOCBe9voYlRAzsGvXLlWrVi3x99TCJ47t9PGYLeET33H4BaZJk8bj20sI+V8Mw/6K6uuQhE/EJOtWd+zXGDbNoWTmhcKnj4MdElPEdEZi1qxZ0q4enufDJEHdlkEI8TzJkiUz9kdnQeuwBsFbC0qE+AqY1gxfv23btolQiYNF3b2gs+i6Ysxe4RP7DFpjtb8tIcR7Mcxe4VNXyKDiU1fFAfweoOIT+z/867mgJGYiRYoU0rGgPT4heiK2hSZ8Yp+BsMKhXoT45jpMW1Sgclsn6xDDcMLfePxpXih8+jiHDx9W48aNM64PGjRITOKdBQE3efLkLto6QognFo1hCZ/2+iMS4m30ASOy6FgkahHEXuGTMYwQ76OPI+1N3lm3uut9Hgn44G3vhJhtuBF8rCdOnGjchuIUbWNkS/jEPsN1GCHeRe+DttZhOlH3+vVr9ezZM5d03BLfIKK3N4CEjq2MINoHnQUBV4suhBDvECtWLBEuw1PxqReS4PLly1JxcOLECVZ+Ep9kxIgRkj2vWLGicUBpXfllb8UyYxgh3idu3LiSrLA3humFJJJ0uoMJwueGDRukkylv3rySFIkXL55q3769W7edEFeDdRlEfCTztJCC63owrTWMYYR4H3S/wnLCVgyzjlda+ESy/tNPP5VOpm7dunl8e4lroPDp42TOnPm928LT0ood3NZzEkI8CxIQ4RE+rc21EZAvXrwoYhJb3omvgHa/tm3bitCBQUfwtIUfLcB31XoglyOt7hBJCCHeA6KOIzHMeiGp7S0gfJ49e1atXLlSKuQ2bdqk0qVLR+GTmHJ/QDLgyZMn4l+9fft2iXu2Kpqxz+g4SAjxXmEZLCdsxTBdYGZd8Yn9edGiRbKPU/g0LxQ+fRxbk5rDK3yWLl06nFtFCPG28AkvtCZNmkgg1otIevcSXwLVLz///LNczpo1a5ChRsGFT3u/u9hnqlat6pbtJYQ4FsPstWtBvOrSpYv4o+nJuOh80J71qL5p06aNiEeEmImiRYtKtw3a2iGK4PtdtmzZEO+PfYadd4T47joMnvQdO3aURBwmu+vjWf0YYl4ofPo4egCEdYYCpdnOoFsw6C1DiPfBfhgej89MmTKpAQMGBBE+rdvfCfE28ETCtNv48eMbXtW6vR0VXkjioQUemXR7Bj0gHmLKJmMYId4H+6G9yTvEK+2DiGFnWvjU1TRp06ZVw4cPd+PWEuIekMTDSVc1P378OMT7ojsHli+MYYT47josW7ZsavLkyXIZXUtAW7Toie/EnFD49HGOHj0a5Hp4jOCRicSik9kKQrwP9sNjx46F6zmsxaLgSRJCvA3E+M6dO8vlBQsWyLluc9WVn/369XOodR7fc8YwQrwP9sMLFy44/Dg9oBM+17rik5WexKykTJlSKj4jRYok169du6amTJki32l05ViD6jEUoTCGEeJ9sB8eOHAg1Pvo5JzuUOK+a24ofPo4eodzBTozz52WEPO3uiOJgcoBQsyAnm77/PlzWSAiew7RA1Vf9sIYRog5W91REYf9HVXe+A0A2Pd1dZytITCEmEX4tC5MuXr1qlQ3p0mT5j3hU+8vXIcR4rvrMCTYHz16JGKn1mHQpQRY8Wluwu4tI14lT548xmW0se7Zs8fp5+KikRDfCrhYAGLYgzNgWEyJEiWCLCxREUeIL4GBRocPHw7SBojJzfrymTNnpLMBLYBhwRhGiG/FMOzDtrzog7N582ZpK6xevbosKHUyRPunYbARjnHZ7k7MRooUKYJ03aC7DugKUGsYwwjxrRj24MGD944/UbWdJEkSlT17drFXAnp9Bd9PYl4ofPo41llBZBNhou0sDLiE+A7a48lZn09bre22DrQJ8SYtWrRQBQsWNCq7IHRo4RMHkjlz5lT58+e3q7tBxzBm3AnxnRhmT+eCjlfwqNedChh0pBeVEE+RBOSAPmLWik9t46LtG0ISPmFRlDhxYg9vJSHEVgyD9YROwGm0nyf24Tt37gTZr+FXTcwLhU8fJ1q0aMZlHVSdRbcYWj8nIeT/gJE1BiygFa9w4cLq0KFDbh/8Yu135ijBM5TITjrSNkyIJ0C7X6pUqYzvO4R+veiD8BkhQgS5bE/VGGIYKkcp8BNirhim4xX2d105g6FnesE5ZswYdfnyZdWyZUu3bjMhriZjxoxyrpN3+vutfayDxzAcp+m4RwjxTvwKLYZZC5/WnXQ4dqUti7mh8OnjIBNhfeA4cuRIYyquo+DxXDD6B2XKlFFz5szx9mb4DUuXLlVffvmlGjRokLTdwmKicuXK0gLhLvS+aE+Lry2CPw4HC/ZMxibEk8ycOVPdvHlTNWzY0Gh91xWbED2iRIlit/DJGOY/MIYFVgzT97Gu+EQSXt+O9sEMGTJIFSghZiJr1qxyrrsa9Pcb9kPBYQzzHxjDzB2/QothWvjUayrELcBqT/PDVbKPo0usNZiAqw12HcVTAXfw4MHSlm/rhEBBiK8xduxY9fnnn0u1CTxdpk2bJpVls2bNcttr6kDqrPAZ3BuU1Z7EDD5oiGla+ESbqy8Kn4xhxGz4egx78eKFMcldH9fqqjdYOunfAULMBsT6BAkSGIUq2r4hJOFT7zfuhDGMmAlvxK/QYpgWPoOvrzJnzuzW7SHuh8KnSSbhWuNsyzt2ZE8E3J49e8oPGPxI4WeDU48ePVSOHDnUqlWr3P76hDgCKqiPHDmiKlSoYNyGLB+u//bbb257M/W+GDzA2kvwBIitg2xCfM0HDe2AcePGlcuIDahUtvf7yxhGiO/FMHuETz3JHW2CWvjUj8NvQ//+/dWMGTOCdDkRYraqT2uR39ZajTGMEN+IX6Gtw4Jf1wl3VnyaHwqfPk6WLFlkQqD2obA+gHQUT2UakdFHpgYm9ajswQm34bXh6USILwH/FgxegEemNbiuM/fuABXQwNmp7sGFT3sGTBDiadDO3rhxY1WvXj2pigF6gAla4HVss2e4EWMYIb4Tw3QboD0xTO/fqJzRA/20rxp+F7755hvpaNJxkRAzkS1bNjnXibzx48erFStWeK1rgeswYha8Fb+sCZ5418KnXmdp3YXCp/mh8GkCUB1jLRjas0C0BQIuDbXNCRYFOJDRpz179qj27dsHuQ0iAjEP2rtmy5YtTj0+eAIEFdaE+BpIgi1ZskS+56VLl1bVq1c3pkHfuHHDiG3aHy00GMPMC2OY/6EFzJ07d4Z5X71/W1fBaS9EHL8AeHwSYuaKTy18QiCpVKnSe/djDDMvjGH+h143Y01tSwjVyTnELST62Opuftxf/kdcQrx48dS1a9fCJXxC9LQ1ZZD4PhA5P/nkE+P6p59+KhVUdevWNW7TYgJx3E4C+4aeLqvBde1F6K59GhQoUMCpxwf/Hdi6datLtosQV4IKr4kTJ0o7a5UqVWSgCQRPcOvWLTG0L1++vF0HlIxh5oUxzP9imLZiyps3r93Cp/VwTn1Mq6s8MeCIEDNXfKJyDegYFxzGMPPCGOZf8QvoKtPcuXMHud1WZy3iFIVP80Ph0wQUK1ZMnTp1yrj+9OlTp54HrebODlIJL2xfCh+oirKu+oV4kDhxYpUxY8ZwfzaBDtpu8+fPr7Zt26Zq164ttyFBgOudO3d22+vqdidnBetHjx4Zlzt27CiZSQ44Ir5Ily5d3ht0hANdiCC1atUyBh+FBWOYeWEM898YhuFEYaGrO3VFXMWKFVWTJk2kyrN48eKyoAy++CTELBQqVEgtWLBA/fLLLzKh+tdff5XbmzZtGuS4DDHMWV/38MJ1WPhgDPOv+GUdj4K32aP9HsSIEcNod0dVt74/MS8UPk3AhQsXggRKvUM6c5DqLeETgR9eHRcvXmTGhPgcqDr77LPPpPoSB7DwZ0Kww4RBd6H3RWf9nqyFzylTpqjr16+r9evXu2z7CHEHGF6CbHratGnVlStX1OXLl+0WPhnDCPG9GGaPd/wPP/wgbYUbN26U6+nTp1ctWrSQEyH+ULWGTiwUpkD43LBhg1q9erUqUaKEypUrl3E/xjBCfCN+hbYO0zqLFj2bN28uMYuYH3p8mqRaJmfOnHK5QYMG0uLsDN7MNFauXFnOP/roI6+8PiGh0bBhQ/X999+rgQMHStve8ePH1aZNm97LAroSvS86O3DMWvjU03IJ8UUw/OTgwYNSEYMFIg4gtUn86dOn1aVLl9T58+fDfB7GMEJ8J4Y5InyiFRjHgbqdkX6exB/JkSOHkeADwYezeLNrgesw4qt4I36Ftg6zLjDDnJU5c+aoQYMGuXVbiGdgxacJGDx4sFRM9uzZU3ZOtDg7gycDLrI1wQ8GPDWdLRCwZ5gAcQy0VLi7rcLZRaMtvv76a3Xo0CHDOw3VBoT4IjCOh79nlixZxJsWi0J4fgJUgGG/K1WqlNq1a1eoz8MY5j8whpk/hjmTvDt37pyRqDt69KhKnTq1HBvit8ET064JcRfoutm3b1+QfcOW8OmpAhSuw9wLY5i541do6zC0tefJk0edOHFCLtMmwn9gxadJ0D6Aeoqms9N137x547WqT0LI/9AtFPBrdYYiRYoEGXBkz4AJQrwBOhZgUo/hJTiQfPHihcqXL1+QyuU7d+7YFcMwbVMPkCCE+H4Me/DggUxEXrx4sVg3ASTt4OvWunVraQV2dsgfIb4CqtSQkIZ/tSb4wBbEMOw3uiKUEOJ7MQydtvXr1ze8XaGdEP+AwqcJgGfMyZMn5TKGHE2ePNmp59HT0YIHYkKI57l3757dgyFsgf1YC0A40Hb2eQhxN/DwxPcd1Z2o/sdBph5koic7w/8vLEETMQz3cdbnmhDi+RiGKs/+/furvn37qr///ltFiRJFquNAokSJpKNJtwgTYlbgTfjxxx9LFbMmeMUnYhiKT3SnDiHE+zHM1vR4bb8Ev96SJUt6fNuIe6DwaQJ27Nihvv32W7mMYDls2DCnnkcfnOodnRDiPbAfYkJgnDhxHH7skydP1IwZM4zreI4PP+TPOTEPaCNC+xAEfN3+F1ZsYgwjxHfA/grRMmbMmKHeD0kNax9qTHBH5Tfo0KGDJPenT5/ugS0mxL2deZjqXq1atRCFT929x3UYId4H+2G8ePHem9b+119/SaGZjlvsSPAfuFI2AQULFgxyHQtFZM0dhQGXEN8KuNgnnfGOwaJxyJAhxnW0DtODhpgB2LW0b99eNW3aVGXMmFFuw8AjoKvAQoIxjBDfimH2dBpcvnxZziNHjmwMNoLFBa7DBgNJOwiohPgD1tXLwYVPJu8I8b11mDXPnz8XsVN32p45c0YGLxH/gMKnCcAQiOzZs9vMoDsCWorQEhsen1BCiGvAfuhse/rVq1eDXA/++0CIr4GDyKJFi6qaNWtKddfatWuN762uGLty5Uqoz4EJnxD4GcMIMU8M08KnTtjHiBHD8KVG2zsh/oQWUtCJM27cuCB/0/sLYxghvhnDrI9D0QIPqyZ48xL/gMKnSciUKVOQ62EtEG2BrDoWjmyxIMQ81TL2CJ+oniPEl0Hi7cCBAzLJGa2uILjNg/ZUCglMfUZ1KGMYIb5ZLROa8IkhRwADygCOR0uXLq0mTpzo5i0lxDMcOXJE1a5dWy5j+GTwGIeWWrTWMoYR4pvrMGt9BS3u7KbzLyh8moTgFV0XL1506nmwgzPgEmJu4TN44kMLSYT4KviuL126VF26dEmVKFEiSAUYhJCBAwcG8UYL7XkYwwgxRwzD9Gp9vPrw4UM5v3Hjhpz/999/avfu3YaXGiFmB0P7rD1vkewLDmMYIeYQPnfu3KnGjx/vhS0j7oLCp0kI7ulJ4ZOQwBU+g1fGZcmSxUVbRYj7+OSTT8TfTwufWgBBu1GvXr3smpzJRSMh5olh2LcxvEgP38uaNas6fvy4XMaU959++kk1a9bMI9tLiLtBVwKqmDVTpkwxvu8axjBCvA+ScmEJn5ifAItA4j9Q+DQJ8Jmw5sKFC049D9qS6C1DiPcTGY8fP7arTTA4//77rzp37lyQ25yZDE+ItyhevLicY0GIfQAHoGgRtAfGMEK8DxaEmHwbVgzDsSsS9XXq1JHr6dOnlxiWOnVq+R1o3bq1KlWqlIe2mhD3U65cOePyrl271K+//hrk74xhhHgfWFGg2yh4DAuur1SqVMnDW0bcCYVPk1C/fn0jY66ziM7ATCMh3kdP+nSm4hOTr9+8eWNcjxgxokqcOLFLt48Qd4DW1lWrVsnABwgi+B5rm4Z169apDRs2hJmYYwwjxPtou4mwYhiqZeBRf/v2beM6sK6KI8RfhU9w9uzZINcZwwjx3Rhm3VGXKlUqWon5GRQ+TQKy5NY+n7du3XLqebCD379/XzLuhBDfXjTaAo9p1aqV0ToMjzSabxMzgO/pl19+qaZNmyYtr3rYA0DLa/Xq1d+rjrH1/UfiAFWihBDfj2GvXr0yKrp1YiN27Nhq5cqV6smTJ27eUkI87/OZIEEC4/qxY8dsCp+MYYT4VgxDcj5NmjRBqj25vvIvKHyaiI8++ijEQGovyF5gx9bZd0KI50HVJkiZMqXDj40ePbp4pumJg0WLFnX59hHiDnAACdG+S5cuRlWMPvhE26w9sQ0x7O3btxxwRIgPxLAUKVKEer9u3brJ6d27d7LA1H6H27Ztk06mjRs3emR7CfEU6M4rW7ascf3y5ctBRE7EMLTY6mFfhBDvxDAck1q3umPfRRedhm3u/geFTxORMWNG4/KsWbOkZdBR8ubNK+dHjx516bYRQuwH+x88zuLFi+fU2/b777/LecGCBfm2E1OB6e0TJ05Un332mVw/ffq0SpQokdGFEJbXJ2MYIb4RwzCoLFasWCHeB8kM7Os//vijse8iZmXLlk1VqVJFqr65sCT+SNWqVYNUPN+8edO4nidPHjnnOowQ74H9D4NhUUxiHbMOHjwolyGKli9f3otbSNwBhU8TgSoXDYabrFixwuHnQGYD3mr2DpIghLge7H/58+d36rGYfq2tLnr27BnE75MQswDhH8IHBE/rpB72jX/++SfUx6GNkDGMEN+OYajuRKVblChR5Hq1atXUb7/9JrfD5xfHsQkTJvTQFhPiOWrUqBFkLoMWUwASBhhIyRhGiG/FsMWLF0tXrO6ytbasIP4BhU8T0bhx4yCBFAeQzoAdnQGXEO+AhSAyjc4In3/++af6/vvvjesnTpxQkSNHdvEWEuJ+Ll26ZFQs6wNNtBj9/fff6uTJkyE+Dll4xjBCvAeSFbCkCCuGHThwQM7R5g5Kliwp54xZxN9BF0Px4sWN62vXrg0SwyCqcB1GiHdATML6KXgM69+/v3G5Vq1aXtgy4m4ofJoIDDeCLwxKs7U/xaNHjxx+Hr1opLE2IZ7nypUr6tmzZ04Jn9ZVA5iU26RJExpvE9Mxc+ZMmZR55swZQwS1FkC1YBISFD4J8R4XL15UL1++DDOG7d271xBK0WmkvQ2x3/P4k/g7tWvXNi7j+28NYxgh3gPdBohF1jHsxYsXUlyiqVevnpe2jrgTCp8mA5nyEiVKGNcPHTrk8HNgR4epNgccEeJ5dJbfGeFz//79xuWvvvpKzZ0716XbRognKF26tFR3oipmwoQJInRi8IkWPvfs2RPq47HvYDo0prsTQjyL9ia0HrgZHAib1vEKNkuJEycWb9+cOXOqypUre2RbCfEW1hVjW7ZseS+GwffTWmghhHhuHYbK63z58hm3bd++PUhhCYrNiP9B4dOEFCtW7L2MuiNowYVtFoR4Hux3qHyB6OMo1vu7bhskxGzA0xPdCps2bVJdu3aVg8yPP/5Y/lamTBk1cuTIUB/PGEaId2NY+vTpQx3Oh6pQiDpYXAIMkEDlJ+yakMDPlSuXB7eYEM8DL0/d7g77Fusp7jqGccARId6JYeg6sh7Ot2DBAuNyw4YN+bH4KRQ+TQba29u1a2dc37Fjh8PPgcx7kiRJKHwSYqLBRhj4oiu8I0WKxIptYmpix45tsy0Qbe9p06YN9bFp0qRR8ePHZwwjxEdj2IULF2SokR5utHHjRrF5mTFjhghAffr08dj2EuItkKxGkgAMHz48iCiKGMgCFEJ8I4bt2rXLuMw2d/+FwqfJwERba65evSpZdEegsTYh5hts9Pvvv8vgFy2CtmzZ0g1bSIhngVfgvHnz1JQpU1TUqFHVnTt3wlwMMoYR4h1gR4HBRqG1uYOaNWuqgQMHGlXcMWPGFAEIYg9OaHsnJBBAsQlYtWqVcRsqn9FmS+GTEM8PNjp+/HiQGPbXX3+pBw8eyOWJEyeqPHny8GPxUyh8mgwEyyVLlqg6derI9aZNm6oIESI4/DwccESI50Gi4unTp04Jn4cPHw5ynR5pxOwMGDBABBD4fK5fv14sIPRkTXva3bloJMSzoCIbi0R7Ytivv/4q5xUrVpRznbgjJJCAry3AXAXsOxrGMEI8z/nz598bbDR9+nQjqd6xY0cOjfVjKHyaEJRg169f36Zhtr1gh0d2A9U1hBDfH2zUvHlz4zI80kaPHu3SbSPE06Dy69WrVypu3LgigrZt29YQTEaNGiWZ+ZDAPoT4df/+fQ9uMSGBjY5hoVV8ogvpyZMnhic1Ehl169aVJAfOUeVNSKBgLfjD6sE6hsG+DH7XhBDPxjDrwUYYsAmKFi3qVDEZMQ8UPk1KpUqVJCMBw2xMBnSUQoUKOT0ciRDiHPv27RN/Qmfa/KwnDmKwUXCPRELMRosWLdRvv/2mtm7dqoYOHapatWolXQ3g2bNnhqetLRjDCPFODIM/YYIECUK8z4gRI1SOHDlEAEWse/PmjQg8qHbD0CMMOiIkUIDYr4d8zZ8//70Yhn2KEOIZsL9lzZpVxYkTR64jwY5BmyBdunT8GPwcCp8mZezYscYCEQeYmJ7pqOcMPCzWrVvnpi0khAT39/zll19UtWrVnHpjrPfVKlWq8M0lpidRokSqSJEixqIQA4tKly5t/B0DUUICCYTs2bMzhhHiYzEMthX37t2TyxA9AYYZnThxQmwt9P5OSCCA9Vbnzp3l8unTp6XNFiCBkClTJsYwQjzoUY21lHUMQwGY7kIIy7uamB8Knybl3LlzxlCjFy9eONXyDvP5DRs2hNpOSAhxDWfOnFHXrl2T/c5RunfvrhYsWGBcp/E28TcwsGv16tVS6alZs2ZNqI/BvoSDWEcH/BFCHAfC5a1bt0KNYbBQwiA+DfZnVNbUqlVL5c6dW5UvX55vPQk4tPCJWIU4B5AAwL6EZAIEGUKI+9vckZSzjmHjx4+X8woVKnBobABA4dOk9OjRI0jW3HpaoL3UqFFDfJjYZkGI+8HBbYwYMWTCraNVNhhoBmEIoNLbuiqOELMzdepUqXzp1KmTOnr0qNHNcOrUKRkIFhI4eEW3g/ZnIoS4j7Vr14rFSqlSpUK8DxIRiFlAW7o0atRIRY0alR8NCVgyZ84sXtbBfT4Rw/7444/3hlcSQtwTw+LFi6eKFy9u+O+iAAwgQYe/Ef+GwqdJKVGiRBABBTvu27dvHXoOGGsnS5ZMfggIIe4F+xkmsTu6AESlKA6MrYccYbgRIf4C/P9u3Lghre5ALxDDqvqERxra5ZFUIIS4F+xnsFkJLf6sXLnSuPz48WNjWFnfvn051IgENB9//LGc79mzRz1//lwuFytWTMQWxjBC3I+2aokYMaJcX7ZsmVFUgsQ78X8ofJqYBg0aGJcxGXf37t0OPR5VNQjEEGR0hp4Q4nowefrgwYNSZe0o1gtJ0KVLFxduGSHep0OHDmrWrFkicuKAVAsmILSp7Zi+qWMYIcR93LlzR6rSQmtzf/r0qYic+vgSNkqpU6cWixcsMFn1SQIZfeyGdndd9Yl4V716dcYwQtwMkuuwa7GOYcOGDTP2QwyNJf4PhU8TU7t27SDt7itWrHD4OfADcPnyZXXhwgUXbx0hxHrYA8ABrqMsXLjQuJwxY0aVL18+vrHEr0ibNq14K6VPn168AIEWSVARE1YMg+c14hghxD2ghR2JhqpVq4Z6H+0ZHy1aNDn/6quv5Nh01KhR8nhCAhV0KCARAMaMGRMkhp08eVKEGUKI+6o9I0WKJJ134O7du8ZxIwaN6SpQ4t9Q+DQxSZMmVVGiRDGuL1261OEhDzCaxwEqK2YIcR/YvyDgoC3XERCUL126ZFxHRpITcUkgDIHQAsqcOXNCvX/FihUlDrJVkBD3gf0LFkvajsIW8OnVCQtMyY0VK5Zq1qyZqlevnqpfvz4/HhLwYB8CsC/CoBUAIQaCDGMYIe6NYZiPAC9P8M033xh/+/rrr/nWBwgUPk0MBBDr1tnkyZOrN2/eOPQcED2xcGTAJcQ9vH79Wm3ZssWpNne0B1pTtGhRF24ZIb4F7FqGDBkiST0tfKKKDAOPQgIDw5DAY/KOEPcAEXPr1q2htrkDtLRjWIROyH/22WcqZsyY/FgI+f9gn9DA9xZgYBhmNjCGEeIe4Km7Y8cOI4bB3m/27NlyGZWeDRs25FsfIFD4NDk//fSTcZCJyjC9WHQE/BDs379fpuMSQlzL9u3bxYM3rEWjLXQFNwIzMpUtWrTgx0P8FlQ479y50/jeowoGxvMYxHf27NkQH4d9CwMjnjx54sGtJSQwgOiJpHpYybsffvhBznFfJOYR+9CJRAj5PypUqKCiR48ul7dt2yaJAh3DEPv00CNCiOuA9zSOJXUM+/nnn2VdZl1xTQIDCp8mB5nCunXrymXs1MuXL3f4OeA7+N9//xk+hIQQ14FqavjHZM2a1eHHXrlyRc4heOKgmMGZ+DNNmjRRffr0Ufv27VMJEyY0pm2CmTNnhvg4DDiCWLphwwYPbSkhgQMq0RC/0MoeEl9++aXst5pUqVJJsmLVqlUe2kpCfB8M/WrevLlcxrpr3LhxchmCDOLdpk2bvLyFhPhnDMuVK5f4yYN+/frJeeLEidW0adO8vHXEk3xg4Thvv8hkaLNeCCzwRNM+MvYC70B4M6EllxDiGpDNT5EihWrTpo0Md3CEFy9eSMsv2gz37t2rihcvzo+FBAxDhw5VgwYNkoUiFohx48ZVDx8+DNGAHjYQuM/GjRs9vq2E+CuoioGNErx3hw8fbvM+mJSbN29euYw4hS6k7t27q+PHj0tinQP5CPkfp06dUrlz55bLiFmPHz+WCukCBQrIvsaWd0JcB9ZSyZIlUz179pRjSgzDzJ49u/wNiYdu3brx7Q4gWPHpB1gPPEGFmDMmvRBm0M509epVN2whIYEJql1wUNu6dWuHHgfLinbt2onoiSpPPAchgUTHjh3FgxqiJ3j69GmooiZi2ObNmzkZlxAXgi6iZ8+eqVatWoV4n8mTJxuXv/32W2nhRRU2jkUpehISFFSeZcmSxYhrixYtMmIYOu/u3LnDt4wQF7FkyRJZS7Vs2VKud+nSRc5xfKkvk8CBwqcfgJ0XmULrARGYGOgIDRo0kElnobUTEkIc48cffxTT+syZMzv0OBz86oNhtD/t2rWLbz0JGOA3jcx88MEoEFVCAub0GHQ0a9YsD2whIYETw+BLmD59+hCH9y1YsEAup0uXjgP4CLEDWEMEH3IEqxd03umhK4QQ18SwKlWqqNSpU6tHjx5JYg5A89B+8iRwoPDpJ8DbDFkNAPcC7OiOALPtpk2byqLR2leNEOIcFy9eFF/Ozz//3OHHjhkzxricMWNGmXRNSKCAdnYI/2htR9ss/AIBhvBhcrQtIJJi4YjknTND/gghQTlz5oz4doYWw7CfQvwESPBhajWSEBhURgixTaNGjaTgBNy6dUs67jCzAfsOhtbqTgdCiPPAhuXQoUNGDOvUqZPxtzx58qjIkSPz7Q0w6PHpRyBzkSRJEsloYDAEqj4jRIhg9+O1TxOmndWuXdut20qIv9O7d28RYdC2hCy+vdy+fVsyk0hgVKtWjUPHSEACQQV+Z/BCu3nzptEyi0oZ68SANYcPH1YFCxaUgWJotSWEOA98OlHNiZiEBERwEKMwLAL7pwbHnDgWPXDggCpcuDDffkJCAcNVkOCDNy683H/77TdVrFgxGXKkZzcQQpwD3tQrVqyQ5AIS4rFixTKqPHmcGJiw4tOPwAEndnLdKgi/M0dA9qNQoUJq6tSpbtpCQgJnqBHalTC90xHRE4wfP14WlKBXr15u2kJCfBtUb8ImIn78+JKQ08NTdHWZLfLnzy8CKWMYIeEDnmhz585VLVq0sCl6alslLXo2btxYTkeOHJEhSBQ9CQmb7777zkjaQQAtUqSIypkzJ2MYIeHkr7/+UvPnzxd/asxKwHAjLXqmTJlSVa1ale9xAELh08+wNpkfMWKEw4+H0S+mxJ89e9bFW0ZIYFWrofLauq3CHt68eaOmT58ul9GCgYnwhAQ6EGEw7AugDRDZe1tgyB9iGKxfYDVBCHEOVHpiqBGGjIU2vA9AGIW9EuIeEuj9+/fn206IHcAeAi3uOPb74YcfJIZ17dpVJrtz2CwhzoPEHY4dO3ToIILn9u3bjb9hH3OkI5b4DxQ+/QyY0GvgseSoX+cnn3yikiZNqiZOnOiGrSPE/0G15oQJE1T16tXFn9MRsHB88eKFXH779q3YTxASyKxZs0ZlypRJffHFF3IdMQ1JvZA80FB1lihRIjVp0iQPbykh/hPDcAxYq1YtGVhkCywkdVcRKmlCq8QmhNgGlmTPnz+Xy99//706duyY+vTTT1W8ePFECCWEOA6ODxHD6tWrJx7xy5cvV+fPn5e/YQimM7MXiH9A4dPPmDZtmtq4caNcRttESIMgQgJVZsiOzJs3Tz1+/NhNW0mI/4IJ7CdPnjSEGkdAtbUGwbp+/fou3jpCzCfC3Lt3T7yZ4IMGUBUN/1xbwFoC1aFz5syRijVCiGNg0Aq6fkKLYfBNu3DhglSooboaU9+tO44IIWGD5IJOkL969UqKTzBstm3bthLj0K5LCHEMeOReunRJYhiOAwcOHGj8rXXr1ipu3Lh8SwMUCp9+Rpw4cVSVKlVUjRo1ZMEY0hCI0MCiEdl8tBQSQhwD1Z45cuRQ5cuXdzhDefTo0ffaCAkJ9IUhEnHwEsTwhzRp0sjtaKfVXrjBQfIOPruzZs3y8NYS4h8xDC3rpUqVsvn3+/fvG/7T2AeR7INA8+TJEw9vKSHmBu22qJjWXLlyRVrcYTGhfXYJIY7HsAIFCqiiRYvKrAWIoEgoIGnerVs3vp0BDIVPP54oDeC7tGzZMocei8nwGCyBHw5kIAkh9oEqGXgzwT8GlTCOsH79esOXEKIpgjYhgQ72o2bNmslBK9A2LOhoWLhwoc3HYBp8w4YN1bhx40QAJYTYB7oVEItQKRNSDEM1mvbZxX3Q8o4hEj169ODbTIiDfPbZZzLdXScSxo4da3T8oHgFtkeEEPtAAQm65xDDsO9oS5Y6depI7ArJvoUEBh9YQiqZIKamZcuW0uqnW/8w5R2+FvYCf9Bs2bLJdM4+ffq4cUsJ8R9q164tC0d4ycA2wl6QjcSEQWT7wf79+yVTSQj5HzhcWbx4sfgzISkHP2q0wdsCbbiovMbU3C+//JJvIyF2AG9qxKMzZ87IJNzg3L59W6VOndqotsbE3JBsJwgh9oE4pddaESNGlH0QMS5Xrlxq/PjxMrSPEBI2lSpVksTcqVOnZG4CEgtInN+9e1e6Yklgw4pPP6Vfv37GZVS8wDTbEeA5g8zIt99+y/YlQuwAYiUGsQwbNswh0RNAyNGiJwJ04cKF+Z4TEgx4M2Hwg+5EwGAIdDXYIkuWLCLKYBASvT4JCZvdu3erDRs2SMLblugJUH2tRU8k1RHvCCHhA63tCRMmlMvv3r0Tixf45kK0wT5Gr09Cwmbbtm1qy5Yt6ptvvhHto2/fvnI74tmBAwf4FhIKn/4KpuDi4FUzevRoh1v+BgwYIGXio0aNcsMWEuI/YCH41VdfiS8apko7wunTp8UjTYPn+fBD5qQICU6ZMmWkGiZz5szGbfBHC2nC+6BBg0QkdTTxR0igxrD8+fOHOFQPVi47d+40ruOYErZIIe1/hBD7iBkzplR96qIVdA51795dDRkyRKa+w7aFEBJ2DCtSpIiqWbOmxCZUeQLsQylTpuTbRyh8+jNo74sXL55chkk2xE9HQBshngNen3fu3HHTVhJiflAls2fPHjVy5EiHRUtk+jUVKlSQhAMhxHa12blz58SDUFdV44AWC0ZbpEiRQnye4JmG6lBCiG3gTf3bb79Jl09IMaxRo0ZBjg9jxYqlKleuzEQdIS6yKEOHQrFixeQ6BrEgcde5c2dZv8HXmhBim5UrV6rDhw9LDIM37i+//GL8DSIorI8IocennzNlyhTVqVMnp70+0SKYIUMGVbduXTVjxgw3bikh5uTff/9V+fLlU/Hjx1c7duxwaKgRPGhy585tXD9x4kSQ64QQ2wwePFiqYQAy+fD01AOQrMGkabQM4sB38uTJfDsJsRHDEHcwFAxtgrbAsAiInBpUfqLyOkGCBA5buxBCQgb+hGnTppVK6uzZs0tHENZhEEbh90kICQrsISBsYj+ZPXu2DAf7559/5G8RIkSQuQuw8COE/ZQB4ImGnV63JQ0cONChx8MIGK0Xs2bNkoUlISQoMM+GgIkso6OT3Fu0aGFcrlGjBkVPQhyo/tRJPAxcCamdHV0P8HlC4g5D+wghQZk3b560saNjIaQWQiQaNBBgSpcurZIlS0bRkxAXc/z4cWl9B9gvf/75Z9W7d281depUdf36db7fhAQDGsXFixfF2xNJbi16AswroehJNKz4DADQSouACZANcXTxB8EUmf1ChQqpFStWuGkrCTEfb968kSEqqPjEwakjbN++XZUvXz5IqyHET0KIfdOnYTGhgXk9fNGyZs363n1fv34tvtclS5aUqfCEkKDHd/BFW7Zsmc23Bbc3bNhQLsNjF9WexYsX51tIiBuw3t9AtGjRpPAEa7CKFStKooIQ8n/ADgLCZtmyZVWDBg1UnTp1jLcGdizQPBInTsy3iwis+AwAJk6cKIb1AJOj0Y7rCGiRHzp0qPhnHDp0yE1bSYj5mDZtmrQlIcvoKHPmzDEEmypVqlD0JMQB4D2NYUfNmzeX68jw165d2+Z9sXBExdqSJUvU0aNH+T4T8v+B/QMGQFgPw7Tm8ePHqn379kFaCuGbqye7E0JcC8Qb7fOpE3cYdISOvQULFkiCjxDyP40DNn6oitZddNqnGh2rFD2JNaz4DKDWiY8++kgOVuF3hpJw3QJvrwcUJlbjB2Tbtm0Ot/QS4m/89ddfsi9heuDMmTMdeuy9e/ekUhTPAQN7tGIQQpzL9qdOnVo9evRIrqO7wVqosRZscuXKJffdvHkz32oS8MDDHTEMQguSeLYoV66cJMtR6VmtWjU59hs2bJjsS4QQ93DkyBFVsGDBIAkGDPVD0gHHjuvWreNbTwIeJOYQw2B9BD/3hQsXynsyadIklTNnTulkQPEWIRpWfAYIefPmNTIhV69eVbVq1XLo8RBJ4WGIA+ClS5e6aSsJMQ/9+/dXL1++DOJ9Zi8QZiB64sC2TZs2btk+QgIBDDRavXq1cb1Lly6GCGoNhBtUZmNIC7oXCAl04H0bmvc7xBXdIYTjx7lz58q+RtGTEPeCLr1WrVoFuQ3ehahggwAKayRCAp0+ffrIEDDYhmnRE3oHhjqjI4iiJwkOKz4DiOATpNesWSPVao7wySefiDfhmTNnVJIkSdywlYT4PpiyiaA6btw41a1bN4ce27NnTzVmzBi5jEpPVHwSQsLniYZFIToTQIkSJdSePXveux+qZ+rWrav27dsnMSxRokR820lAoj2mf/jhB1kkBgfttRhehKpQDBF7+PChWEYQQjwD9jlUd6KSTVO1alVp40VFKGJY/Pjx+XGQgASdO7AJwzoMXQio/kRHwt69e4NYRRBiDSs+Awhk6evXr294XyCDbz35zF4/KDy+Q4cO9HgiAQmqPJGJh7jStWtXhx5748YNNXbsWON60aJF3bCFhAQWCRMmFNFT27fgwNfWID4cFKMVHvft3LmzF7aUEO+DbgPEMCTvcCxnC3QiQPTUdhKzZ8/28FYSEtggMffdd98ZMQ5s3LhRBhyhUtvR409C/AXEJsSoChUqSBIPoqdObqOjFeu0/9fencDZWP///3+Tfd+yRfY9+1ZZK1GWEi1a0CopUSLaVBKF0qLV1qJEUpZCJEm27GQv0YbEJ1sK1//2fP3+1/U955hhDjNm5szjfrudzJxz5izXTOd9vV/v1+v1BuJC4DMNZsb4JRJaRezVq1fUA/Frr71mO1hrowggrenbt6/16NRE0F9ESChlWGtgVoBGj+O3nwBw+tSHUDtNr1q1ynbxFP2/FZop4ytcuLBluWksjCs4CsQ6bQKhzSBGjx4d5xi2cOFC98EHH9jX/mJC5cqVz/rrBNI6LVB888037vvvv3eZMmWy67SruzZ0UWmvKveAtEaxCwU/W7Ro4aZOnRo2Vj344INWpQDEhVL3NErZair3UwaMdnovVapUVD9/ww03uNmzZ1uphSaSQFqg4Moll1zihg8fbk3mo6ENkPx+nuoL2r9//yR6lUDa9cknn1hlgxYYOnTo4D788MMT7qPb2rdvb5mhlLwjLdF5mzLGVL3TrVu3E27/+++/7XxQGTQKiur/pxIlSljfNADJR22R1B9eAVBtWKv+hkuWLLExLH/+/PxqkCbMmDHDWj7o/wdlRCuGoViGzuu0CfPSpUtdxowZk/tlIoUi8JlGqT9MnTp17Gud5PofHNH0nqlSpYpr0KCBnRizyzti3YEDB6xHbrFixSwAGk22p8ou8ubNa60l9PPbt2/n/xkgCejk95Zbbgky1kaOHOnuuOOOE+63c+dOG8OULarsTyDWKaiplkdlypSxAGhcY5h65fqLBS+99BLltEAK8dtvv9mGmP6/EydOdDVr1rQ+h/54B8QyZXlqt3ZVIGjDZe3a/u+//9ptGs8WL14cxDaAuFDqnkaVLl06SAv/6aef3Ntvvx11ybt6pWmHz7gyaoBYo9L0P/74I97ywFOVuPv9dIsXL07QE0gimzZtCith18YtW7ZsOeF+2pxPJe+aPOoCxLrevXu7PXv2WPVBXGOYskD987mKFStadhmAlOG2226zoGeGDBksq02Z2yqF1/+zaj8GxDqVsSv4qao7VfQo6Olnd/br14+gJ06JjM807KOPPrIPEQ2kKmNSyUS06eH64Pnyyy8peUdMmzt3rmWGnU4GjPqlhe4wqMBMuXLlkuBVApD333/frV692k2aNMn9+OOPtjOu+n9mzpz5hOxQlcWrh5rKBQsWLMgBREzSeVrz5s2tR3tcGxpt3LjRMqC18ZfkypXLLV++3LJDASS/tWvXWmDnyJEjwXW5c+e2yjv1ANUY5m+CBMQabezVsmVL16VLF2vVp7939fJURZ1iGMr29PvgAvEh8JnGKYNNJ7vq5/T444+7p59+OqqfV4N8/bx2p9aKIyXviMUSd5UHnn/++RYAjSbb8/jx41aKpCCMTJs2zbVq1SoJXy0An/p4qhWL6GRZPaHiK3lX714yPxGrJe4qD9SCmwKgkWOYqhGKFi1q53O67YUXXrD7apIJIOXQ4nvPnj0t6/Po0aMuW7ZsbtasWa5Nmza20QsVeIhF+/btC8aw7777zjI9FW+YOXOmBUSV+azbgVOh1D2N08ZEKlmXAQMGWDZANLS6qJ/XzoJvvfVWEr1KIHkoI+y+++5zu3btOq0S96eeeioIet51110EPYGzSP09/U0fND5pJ9y4St5V4qvyeP0/DsTaGKYMz71798Zb4t62bVsLevpVPNq4j6AnkPJ0797dApwKeirb7dChQ7ZJ2bBhw9z48eNtx3cg1sawu+++2+3fv9898cQTQYKVNohVuwct1BH0REKR8QnLBlC5hG/z5s2ubNmyUR0Z9VHTxHLOnDmucePGHFXEhBdffNHaQehksmPHjlH97NixY60nkxQpUsRt27aNMgzgLLvuuuvCen6qJLB27dpxnli/8847ltUd2poCSM206612f1YmmIKacS3OPfnkk/a1WkH88ssvlMsCKdjvv/9uu1drk9ksWbK4f/75x1199dVWuaeWZfPmzXP169dP7pcJJIpnn33WPfroo27MmDFu0KBBQbswtX6gtB3RIvAJ07lz52ClMF++fJbh5m9+lBAqlVL/KH0QaWJZokQJjixSNZVQKOulV69eNnmMxq+//mqbGCmgIgq8qOwWwNmlUnZlA/gZbZoo7tix44TgjkqnLrvsMlv408YR+v8XSM2mT59uJbDa9GHgwIEn3K7NKa+55pqwRYIJEyac5VcJIFqzZ8+2Odd5551nixWibO7y5cvb5i+ah6l9BZCaqZpUFQnKclZ28/z5813WrFnd4cOHLRmFDGdEi8AnjAI0mvQp20XUh1D9CKOhiWW9evVczpw5rfFwjhw5OLpIlbSiqBVz9a6dOnVqVIsA+n9JJ6NalRcGZyB5KahZt27doO2EMrC3b99ufdJCacFP91NQVCfY6p8GpEbr1693F154oWvSpIkFOCNL3LUxRLVq1awPtShgsnLlSptUAkj51L9apb7q+6k9GvysbVXwKflEmZ/8/4zUSolUmoOpAlVjk2gDZiVa6dzt66+/to29gGgQ+ERA5RKaEKqJsF+qq0zQ0/mg0uqMMgei7YkIJDetlivoqT4yixYtCmsDEW1prQblb7/9NoleKYCE0kKEdndXnyhRObsW6CLpBFv/3ypTTuXBbNiH1Eb9PLUIrSDIwoULbTE6cowrVqyYbdwnCpBqnIpmgQ9AyqDF9ptvvjnY2EjnrMqIu/766y0jjjEMqc2ePXtsEVoLc1qk9qvnFFPQderXrn63QLSISiGgEkCVR/huvfVW9/PPP0d1hFRS+P7777tJkybZZklAanLs2DF34403WnnslClTog56qgeNH/TUZFM76AJIflrUU1BTrVxEO4N26tTphPvVqFHDJosfffSR9ZMCUhNtenLDDTdYvz+NYZFBT41xyvT0g57a/EsZoQQ9gdSrZs2aLk+ePMHChsY5zcWGDh2a3C8NiIoyOpVAojHst99+C4KeqsBR0POmm26yTWeB00HgE2HKlClju0/7atWqFZRCJZSabD/zzDPWMF8BUCC1UC809fZUtrKaZ0dDq5K333578L36BFJmBKQcpUuXtg2MlAkn7733nnvkkUdOuJ/68WrHUDXUV48pILXo3bu3++qrr2wBTn/voTSBVOm7xipRS4fPP//cFSpUKJleLYAzpZ7V2qRM1Xq5cuWy6/744w/L6u7Tp4/9Pw6kFg888ID75ptvrEWRgqCiJBT1+NTGlG+//TZZzDhtlLojTpdccon1z/AzP5XJFg2dYCtzTv0RlVmjHQiBlExBEGWADR8+3PXo0SOqn1UWTaVKlWxjFNHP63EApDzKJChZsmRQ9v7KK6+ckEGgBT9lHcyaNcvKhVXNAKRko0ePdnfccYcbMWKE69at2wm3v/rqq0F5oIKdKm9X/zQAqb/fp7+Bpr/TuxQuXNgdPHjQLV682M5RgZTszTffdF27drU9QvyqhIoVK1r1qTKalVCiPRSA00XgE/EGLtWrU4OlvPjii65nz55RHS2tzjRs2NB6dejDqmDBghxtpEj6O1cmjPokjRw5MurVRK2qDxkyxMoFNXBr8gkgZdKksFGjRmGtXUaNGhWWsS068Va/TwVIlyxZcsJO8EBKoX61WrDW3/Drr79+whimsnft4K6A/qWXXmq7QtP7D4gdzz//vHv44YeDvRX8aj1lgZ577rk2hvmtXoCURptxaZPl7Nmzu7///tuuU192jW3btm2zv2f1/QTOBIFPnDRwqayY3bt32/fxZRGcqgRDTfa16qjyq7x583LEkaKsWbPGJoxaVZwzZ05QBptQ999/v2WMyfjx462/GoCUv9mRyqb0r2/atGmuVatWYffTCbfGsPPPP98+H6Lt+wskNfWuVTBTvTuVoZwpU6aw21V9oPJBnxbmtMAHILYSVu6++24rBdZngEqFffpe/avVd94vhwdSimXLltk8TD2qtTGXqFWDklKKFi2a3C8PMYTAJ075YVSnTp3/98eSLp0FiapUqRL1Tu9Nmza1flPKMmDQRUqxYcMGy/RU6YQC835z+IR64okngk28lEGmvjQAUgeNZ/Xr1w9OtFXOPn/+/BM+B1atWhUsjqgHcOSGMUByWbdunZ1faZFa51eRgXmVtqvE3afgqErc+RsGYo96ImqfhS+++MIy51Tm7suYMaMt4mkM021ASrB69Wqbh6kSx2/RoPFJLRv0d6wFaiCxsLkRTkofOMpmU9BTq4kXXnihla5HQ5NJZSFs2rTJtWzZMujbASSnLVu2WJaMWjDo7zPaoKd64GoTLx8ZNEDqUrVqVSsBzpAhQ7BIpzFKPUBDqUe1JosKMrVu3dqqIYDkpnMqlQZq4U5/n5FBz61bt1r2l69IkSJu+vTpBD2BGKXg5sSJE93FF1/sBg0aFHZeqs8JZYdfddVVwWIfkJzWr19vi8r6e/SDntq9XQF7VZuyuSQSG4FPnJI2fVAJoChoqUBmtIOmdofXibkyZ9q0acPEEclK5auaMCr7WFky0fbu04SyRYsWthigVUllepYvXz7JXi+ApNGsWTPbFManjYy08cvQoUPD7qfeUso+UBWEMmr8k3QgOfz444+2cJc/f34rX43s3afzLY1xR44cse/VZkitGlQ+CCB2KZtT/RKV7a22Fn7Gt857O3To4BYtWuTatWsXfDYAyZV8ojFK/Wf9xWe1GtPfpfp5dunSxT311FP8cpCoCHwiQZQF4+9S/ccff1igyG+cnVAqKfz888+twbayZsj8dLYJgUrPFIDTRRtKaXIdLQ0Ot9xyi2Uq6WRHDaGzZs1qfenUg/J///sff+khQUuVVWig1URQQY5oJ5zaHVP9k7SZkcoGVeYOIHXq2LGjTQ61iZ+oz1Tv3r3d8uXLw+6nLBplzKnZPgt4/w9jWPJkemoMU2aMFu40cQwtdb3iiivsop1wRYtz+rtlV2cgbfADSXLjjTe6mjVrBpv4aeFOiyUaw8j8ZAxLzjZjCtL7GZ4KeiqZ5NixYxagf+2119iAD4nPA6JQv359T382ulSrVs07fvx41Mfvm2++8XLmzOk1aNDA27dvX5o+/lOmTPGmT5/ubdq0ydu4caP3yCOPeBkzZvTWrl0b1ePUrFnT++ijj7w1a9Z47dq1s8fdsmWLN2fOHK9cuXJe+/btk+w9pCbr16/3ihYtasdkx44dUf/87t27vXTp0gX/D0ycODFJXieA5DF+/Pjg//HmzZt7hw4dOuE+c+fO9bJnz+41btzY+/vvv720jDHs7Fq3bp1XuHBhr2LFit6vv/4adtvBgwe9Sy65JBifcuXK5VWoUMGbOXPmWX6VAFKKq6++2j4PChYsGHw26JI+fXr7vDhw4ICXljGGnV2rV6/28ubN65177rk2julvUTGBTJky2ddXXXWV9++//57lV4W0gsAnohY6eD766KOndQQXLVrk5cmTx6tbt673119/8VsIoQFh5MiRXpMmTcJOUkIv/fv3D+6/fft2GzD+97//xXkcJ0yYYLf/999/afo4Kyisv93KlSt7v/32W9Q/rwCIgh3+70CDM4DYM3bs2CD42bRpU++FF17w/vnnn7D7LFiwwAJLF154obd3795ke60pEWNY0li5cqVXoEABr2rVqt7OnTvDbtN5VI0aNYLxKV++fLa4d/To0SR6NQBSg61bt3rFihU7IfhZpUoVO6dVEkp884e0ijEsaSxbtszm/gq6+3+HhQoVsr9Bfa0g/ZEjR5Lo2QHPo9QdUVOpu8oAZeDAgbazdbRU9q5dtP0+Vbt27Urzvwml948fP95S/lXy/sknn7gqVaq4Xr16ud9//90uuv6uu+5yDz30UHC8tDmHdnVVqXxcVOau20JLX9Ia9eXTMSpatKhtSqRNHqKhciD18PR3yLzyyitpug3EKI1LWhgWfV48+OCDrnjx4m7//v1hZe9qlbFx40brU6VG/GkdY1jSUYsgbQJRokQJN3fuXNuUzzd16lTb1V0bl4hK37VRl/p5qh0LgLSrdOnS1vNTnx2aa+mzQ58L2qyvcuXKbs2aNTaGRbtxbSxiDEs66p+u+b7OpVTiLvpa7cJmzJhhsYQJEya4TJkyJeGrQFpH4BNR0w7vzz//vF1kwIABNrBGSz1nNKlUIFUbR/gn7WmNTjpy5Mhh/U26du3qJk+ebCcj2qxAwUrdVrhwYbtoQFA/FF3n06532qUxLn/++af9ftQkOq3SDpeNGzd2ZcqUsUBFaD+0hPj7778tYPrLL7/Y9wpEq1ctgNj05JNPum7duoVdp8Cmgp3+54DUqVPHglC6rl69em716tUuLWIMS1paEFU/tIoVK1pPT21o5Js1a5b17NM45QsN0AOA5mjahFPnwQp+5smTx/YBWLp0qc0tVqxYYfsNKBiaFjGGJa333nvPkk8U6NyxY4eNUX7Qs2zZsjan1V4VBD2R1Ah84rQp61ODqPz000+2c7ufJZNQ2iFemQzaLKlBgwZu0qRJae43oo2IFPRdvHixu+eee1znzp3dDz/8kKCf1WRHK7lxBT51W6tWrSyIqol8WqPNt/r37++uv/56Oz4KUETufHsqyvBUoHTfvn32vVYkI3d7BhB7i3uvvPKKbQwXSll0Gue0YOePddWrV7cxLHfu3BYY/fTTT11awxiWdGPYo48+apuTXHvttbZwp4CFb+TIkbbxZOh5lxZLx40bF3VVA4DYps1OFfxUJZmyOxV40jmxNktTpuNvv/3mateubRnkaQ1jWNLQ39UDDzzgOnXqZMk969evt/mUHwB9//33k+iZgbgR+MQZUYaLMhBFK4aaBEYb/NQH4Pz5822HQZ3cK0gX7Y7xqZlWuLTipROOQYMG2TF86aWXEvSz2gFegU0dw1BaTdOurjlz5rQM0owZM7q05MCBA/a3pGzXZ5991n3wwQfB32lC6cRQO75r93Zp3bq1rUgCiH3p06d3w4cPt8BTZOanyrW0UKc2IqISQu30rs/ca665xj3zzDNRj4OpGWNY4tPCZdu2be2cQNU17777rmVoiRZGb775Zmt7o4mlTxNLtchp165dErwiAKmdqpc039JniwKcyrjT+OU7cuSIJQowhjEPO1M6P2rWrJmdR/nzUo1Xmu8q6CkKgqalcyUkPwKfOCMKJilApIxNv1xAQTj1RIz2cT788EPrGarg0nXXXWfBq7RIQV+dfMSXiRRKZe4qc4ucMDVv3twmo+r/mSVLFpeWbNu2zTKvvvzyS8u+6tev3wnH7VRUuqr+aH5PT/Wk1bEEkHboc0MTQAWfxG8xohN19at65JFH3NGjR+069axSfyqNX48//rjr0KGDO3TokEuLGMPOzNatW20MUzXHtGnTrLrGH8NU9l61alVbzAulPt4zZ860BWQAiE/evHktIUJ96ytVquS+//57a9sSSmOYFlCincvFCsawM7N582ar6NQYFplZu2XLFhvPFBDVol608zPgTBD4xBlTYE2rN8qOk19//dXKsaLdsEgffppIKlilvlXKqFEQK5YpKKfSE71PBY31vcoolc0RF2VwbtiwwY6tJtzK+Awtc/eDngrYjRo1yr5XD1VdQjNDYpUGWfWL1ftftGhRvL1PT0Z/eyoJ+ueff4KNjBTkYHAG0qa+fftawEllWgpo+l577TXrW+X3/VSWqNphqGWLAlYNGzYMMhtiFWNY4tKmj+oXq8VPjWEqZfepJY42NoysiFE7Fp03qA8oAERDnyuq2FP1WCjNxbQXg+Z0sYwxLHFpAU79YnVe5GdzKhFH8yptBqmYgfZe6NGjRyI/M5AAbG2PxPLPP/94hQoV0qecXXLkyOHt2LHjtB5rzZo1XqlSpbwCBQp433zzTcz+km6//XavRIkSXqZMmbxzzz3Xu+yyy7xZs2YFt1evXt3r379/8P27777rZcuWzWvVqpU3e/Zsr1ixYmGPN3fu3OD4R15++uknL5a98cYbXoYMGbxLLrnE+/PPP0/rMbZu3Rp2zK699tpEf50AUq/jx4/bZ3Lo50Tu3Lm92rVre1u2bAnut3LlSvtsL1iwoLdgwQIvVjGGJd7f1auvvuqdc8453uWXX+799ddfwW0///yz/Tt58mQvXbp09jen84Dp06d7ffv29TZv3pxIrwJAWqNz5/Tp09vnSrly5ewzKHR801zu22+/9WIVY1jijWGDBg06Ye6pcyDNb/W1YgTfffddIj0jED0Cn0hU//33nw2c/gdelixZvIULF57WYyl4pSCWglkamPWhiv/TvXt375577knzh+TIkSNet27d7O/tvvvu8/7999/TOibr1q3z8uTJE/ztdurUKc0fWwAnGjduXJyLS5UrVw77/Nm1a5fXuHFjL2PGjN7IkSMZwyIwhv3fonGXLl3sb6hnz552HiXHjh3z7r77bvv7eeKJJ+x8SvcpXry4t3btWv7XBJAotIiiBTx9vihIlTdv3rCxTQsuQ4YM4WgzhsXp8OHD3hVXXHHCOVHTpk29X3/91Xvttde8GjVqeNu3b+dvCMmKwCcSnU7WX3jhhSAzQf8+9NBDp/VYmkT6Qa2rrrrK+/333xP99aZWb775prd69WovLVu2bJlXtWpVC47reJzu3+vw4cODk76sWbN6L774YqK/VgCxQRl4ysaPPMk/77zzbAIQuTDjB7XatWvn/fHHH8n2ulMaxjDPW7p0qVelShULbo4aNSrs+EyZMsXLnDnzCX9nV199NUF0AIlq48aNXqVKlewzRlVo5cuXP+Gzp169eragB8Yw37x5804IlOvSo0cP7+jRo2ELfEByI/CJJKMSdQWk/A/Brl27nvZjTZo0ydLl9eH6/vvvc9KfximYoAwY/X0pALFixYrTepx9+/Z5+fPnD/5GGzRowEkdgFPav3+/LcZFnux37NjR+/vvv70+ffrYZ5Q+q2TChAnWukWfN+PHj2cMS+M0CXzkkUesrLRmzZreqlWr7Hq1B9LflihQHvn3pYXkwYMH8/cDINH973//89q2bRt83tx2221hpe9aoFFG6MSJEzn6aZzGMM3rI8coneOozU+ZMmW8vXv3JvfLBMIQ+ESSUi+P0A/EoUOHnvZj7d692+vQoYM9jgZmsj/TJgU5FexU0FO99vzAQrRUTti+ffvgb1MtGliRBBBNtvhTTz0VVDf4l/PPPz/4esyYMcH9lSlz3XXX2fX67Nm5cycHOw36/vvvvQsuuMCCCE8//XTQHuG9996zfnoqd9fX2bNnD4Kd+jdXrlzetGnTkvvlA4hhais2bNgwr3Pnzvb1kiVLLIjlfxZVqFAhqGDQvAxpj/4m1NpHQXFlB4e2+/FbshQuXNh6nQMpCYFPJLkvvvjCTvBDN4w5k0bZyv7UimO+fPm8Dz74gMyHNEIBTgU6FfCsVq2at3z58tN+LAUg/JIev3n7wYMHE/X1AkgbFIzyW2UoqzM0CPrJJ58E9/MXVj766CO7ny76GmmDfv+PPfaYTRbV78zP8pQ9e/Z4zZs3DzJmIrNo1NJl06ZNyfr6AaQdofsqaHPUOnXqBJ9H2ljVD3qdbpsppM4xTFUtCoCr17Rag/mtEbSY5/99tGzZkuo5pEgEPnFWaNdRf1c3/3ImG/NolfGGG24Isj/pm5Y2sjx1ovX444+fdpanMmt08hZauqPdmFXyDgCnSzu6v/zyy7Ybtxb3/M+Xiy66yHqnqXxZmaC9evXyDhw4YNmefsa57k/2Z+z3o9bEUAt3yhLWWLR+/Xpvzpw51vpArXxCz480RuXMmdO+VuYVC3MAkisA6rfdUGVU6Cagfja65mNkf8Z+lqe/KOcv9OqiJBIlIvmtELTHh6phgJSIwCfOGgWXlOUQemL/1VdfndFjqs8M2Z+xS5PDJ5980iaLynjR5PF0/fbbb16hQoXCJpfadCS0+TYAJMZE8fnnnw8WWJQVcc011wQTBn+hTvdT0EuTCWV/qg8oYosW6bRY52d5+qV/M2fO9NKnTx+UBYZeVEqqTY9mz55tGx6FZl4BwNmkzx+13lCrDX0+6TMrNPtTgVBVTWkuRvZn7Paj1ngVGvTW73zEiBFemzZtgqqE091vAThbCHzirFKQyd/hVhd9kCr7QZtBnEnZ8vXXX2+Pd8kll3iLFy9O1NeM5DnRUlBbu0pqwqjywNPN8hQ9VmgfGq1SR+6gCwCJxc/m1BgXGdjSBPGtt96yPsOffvqp98svvwQZNc2aNbOgF1I3ZbwoqF22bNkT+lFrA5GHHnrohN6wulx22WVkdwJIcbZt2+ZdfvnlYZl+of2s/ay/IkWK0Is4RsYwJZ6oV6fmYaEtWPR38PPPP9v9tJCr+7FHAlIDAp9IFirvUvlW5Am/JoKna+rUqV6VKlWCjSNURobUR1ku/mpyixYtzqg59q+//mrNtkP/znRytmbNmkR9zQAQSpvvtWrVKqzCITLI5W8YoV29tSioIKjfe1ibIKlEHqnPrFmzvFq1agW9zrTJ48CBA+28RBlRkWXtuig4qn/z5s17RgvBAJCUSQlvv/12kP2pcU2JJ6H7OERmriP1/Y7feOONoJw9dPFW8ydldmqjYSA1IvCJZKXyidAPVU36tKp4ujR5HDt2rK1CakC+8847LZsGKZ/K2P3V5Hr16p1xG4S5c+eG/W2pX9q8efO8w4cPJ9prBoBTTSBUEhY5gQjN9qtYsaL1wRYt/o0cOTLYPOLuu++2BRykfJrkawFXv9MLL7zQxhvZvn37CYFv//cf+neg/nkLFixI7rcBACe1Y8cOW8gpWrSoZbCvXbs2+OyLvKjPtTZHQsqnzYMjW4L55y6al/mVc5kzZ/Z+/PHH5H65QNQIfCLZvfLKKyc09Vd/NPV3PF0KbqnBslLz1Y+mT58+tukEUh5N+P2NqrRCrIH3THqaaeOQ2267LexvSrvA7927N1FfNwAkhBbzlL0e2hMtcmKhcU+fW1rw0QLg8OHDvaFDh1qGhXqE9u3bl8+wFEqZucrQ9RdvR48e7X3yySd2m8ayq6++OmwCGZnlqeBnjx49KHEHkKqo1Vho4oky3LXbd+T4ps+45s2bW699pDxapCtVqlScgWv1pla5u/+9zmWoRkFqReATKcLkyZNtchf6YasVJfVmPNMNldQfMlu2bDbZHDRoEJOLFEInQF27drXJ33nnnWflM2fS6kATzH79+gU74foXZU5t3bo1UV87AET7+fTOO+949evX9/bs2WPjksa4uDIr/NYvogUbbSyg8VFl0FoUPHToEAc/BVAmrnqWK2ityb4Cnlu2bLGsGP1u/Um+MqNCMzu1kZX/ffXq1elLDiAmKvj8IGfdunXDekKGBkCvvPJKAqApxNdff20VJ3EFPFXSrioE//uSJUtaOx4220NqRuATKWrlsEmTJid8+Pbs2fOMJ3rqt3bvvfdakE2NtwcPHmyTT5x9mhgqu0XB6MScyF966aUn/O2oTJSG2wBSitBJw4YNG8Imh6Hl0NoUx7+vSgmVNajdUxUY1UKRPjepYkgemzZt8rp37x4Eox944IGghYr6l2vxTVUG06dP92688cawxVwFsdXDU5sbnWllCwCkpPL3m2++Ofi80wLQxRdfHLR6iQyANm3alDEsGei84v3337dAZlwBT+2VoaSj/fv327mGxjMlDbHgilhA4BMp7gNZu91GNsrWLrgffPCBlVKcadDt1ltvtQFZkxZla6xbty7RXj/i/71qQqiJu054NNl/9NFHE+WkR4OzJp6Rfy/z58/n1wEgxRo3blxYUCy0BFoBM7XtkOeeey5oBaISs06dOtkYpsUjZc3/8MMPyf1W0sQYpk2LtGGVxjBlbd51111WSaI+d34A0w90li5dOihl93+/+nkAiGVLliwJ6/epcapBgwbBZjmhF92mpBQtApJJmLR0fGfMmGGLcnEFPEuUKGHtCEIX4xYuXBjWzgBI7Qh8IkXShkTa6EabFIV+MGfPnt3K4s/Uzp07vaeffjroW6Ln0uOSfZG4lKmkzT0uuOACO876VyXtZ7pyqAFcmTMqxVApe+jfiDa0OnjwYKK9BwBIClrI00ZGoZsJhLZ80QKOMi38hR1tmBNaZq3PP393XU1YVIZ2Ju1CEHe7nNdee82yYHScVfo3atQoy/DUeYrOSTQGKQtUG3iorD20j6d6jPtfa4IPAGnBl19+6dWpU8c++1T6rs9SjWcFCxYMywr1xzxlhmohjzEs8Tfd0zmEX9Ie2Q5M19eqVSv4Xi0LgFhF4BMpfmKogTI0A1TBs8RagTpy5Iil/Kvvmh5bgVD1iaQn5JkFJbVKePvtt9tqriaBV111lWV8JtaKrjauCh241ZRbv8dFixYlyuMDwNmi0me/j2dcAVBlC6oMfsiQIcHPTJs2zW5TxqGCp5pY6nu1clE2PTuunj6NU9pdXdUhGsN07LWjrcYylW4qo6lz585Blq7aEKjEM7RVgX7O/1r9P999913v2LFjifL3AgCp5bNUY1VoBZZajzVs2NCy4uPKPFQGvXpgayGJLNDTP+465qHt40LHJF0UlNbiaWh/cVUsKPsWiFUEPpEqaKIRujmAJhwDBgywXW8TK0i5atUq77777gvKMVSqMXbsWNL8o2gjMGzYsCC7U2UT+h0pKyax+gcpU1eT0dDBW78zMjwBpHbaDKdbt25WIt24cWMLlmmX8NDsGC0orV692vpUa0wsX768N2HCBMtAXLFihVVJ+AuFqmTQhkq7d+9O7reWKmzevNnOKXRM/YXQZ555xrJr1RJHxzuyX11k9ox6fvpf58uXz/p4+v0/ASCte/bZZ8N2DNeiUuhnqOZ3/himjHlthvTFF1+wcHQKGmfUKk4t3NQWJ3IB1R+vdHtopZyOtdq2aPwDYh2BT6SqdP3QSWDo5eOPP06051EQTZPFRo0a2URHq2DqT6M+a+qlxgrk/2XjKivm4Ycf9ipXrhycsKjUT31kzrQfq0+rj9row+99F/p7b926tWXtAkAsLSIpuCnKEhwzZswJ/dH8Ni3+RZmfHTt2DL5XVrzGrdBddhWEI5vj/2iMUlZM7969g4mixjB/vNHxVFBZGZ2hVSfK7AwNeOr43nDDDd73339vAWkFPwcOHGiZvACA/7Ns2TL7vAxtCaIsT2UnqmIhrjmev/CnTFFVdyXW/CK1U/WjsmO1WBeaHKRjFXrsFGAePXp00Ddc5wZamFOFY2IlpwCpQTr9xwGpxPHjx90777zjevXq5fbu3RtcX7JkSff888+79u3b230yZMiQKM+3c+dON336dDdlyhQ3a9Ysd/jwYVe2bFnXpk0bd9VVV7mGDRsm2nOlBgcOHLDjMHXqVDdt2jT3559/unPPPde1bt3ajsnll1/ucuTIkSjP9dtvv7nBgwe7N954w/33339ht5UpU8aNHj3aNW7cOFGeCwBSqkcffdQ9++yz9nXOnDntc9g/dcuePbtLnz69279/f3B/fSZ36dLFxqjzzjvP3XDDDW7BggU2Vh09etSVK1fObtNndoMGDdLUGKbjpDFMY/rnn39uY1i6dOlcu3bt3C233OIuueQS9+abb7ohQ4bYcf7nn3+Cn82bN6/9vI6hZMqUyZ1zzjl233vvvdeu088cO3bM5c6dO9neIwCkdNu3b7fP2rfeess+hyVr1qxu/Pjx7sMPP3STJ092R44cifNn9blbsWJFm/Pdc889rnDhwi4t0Li/fPly99prr9n49ccff8R7Xx0THaNff/3VjrX+zZ8/v932448/2u3ZsmU7i68eSH4EPpEqHTx40CaCmnCEBsWqVavmNmzY4KpXr24DpwJkiUVBz6+++somTAr8/f777y5PnjyuZcuWwQSyWLFiNomKFQoib9q0yc2dO9fe85w5c9y///7rKleuHEyc69evbychiUUnO0888YRbv369TSBDadDW77xTp06J+pwAkFL98ssv7pVXXrFFoL///tuuy5IliwU8Dx06FBbw/N///mef0T5NbhSg02NoQqmf02f5J5984vbs2eMyZ87srr322mAMU6A0lsYwjSEawz799FM3duxYt2XLFhvXLrjgAnvPGtOWLFniXnjhBffAAw/YgpuOgU9jvI7zX3/9FVyXK1cuC3DqceTqq6+2xwcAREeLSxMnTnSjRo1yRYsWdR988IFdr0Wmjh072mfysmXLgs/buOTLl89deOGF7vbbb7dFrFgZwxTo1JxW47XmnqtWrYo3GOwvzlWtWtXmyCtWrAiOmcZ9PcaVV155Fl89kPIQ+ESqpuDj0qVLbQVME5fQrBdN6O6++27Xo0cPV7p06UR9Xg0mek5NIDUYrVy5Mph41q5dO+xSvHjxVDEI+xNEnWD4Fw2cmuApyKjsSj/YmZgBZd/ChQvdM888Y6uYoQoUKGDPf//999vEVCvCAJDWKOipyaGCoD/99FMwzilgqcUpPwtUGZwFCxa0YF1oxuJnn31mn+GibPp+/frZZ7myRlevXh1MkDSO+Rn8GsNSy4KexrCNGze6jz76yM2ePdvOB5TZokmgxhDdnjFjRnuvyoT57rvvbKKsLFplxCpArKyYZs2aWUWJKj58uk1jjwLLPo2JOr/QMU1LWbMAkBSUTe9/lirgV6lSpSCgp8UqfYZrvhW64BdJ41fdunUtQWPfvn02lumSGsYwLVAq6UNzW83Bvv7662Bsjs/5559vVXcKGj/55JNBRYJcfPHFlihy/fXX2zEE0joCn4gZyl5RoHPSpElxDgwdOnRwTz31lE3sEptWJBWADQ0a+pMmBe5CA6G1atWyYGhyZixqxXDr1q0nBDk1QRRNhkNfc506dZKkdE+TTE3ANQFVIDkyu3PQoEGuc+fOdiKkrBsASOs0+Zs5c6aVuxUpUsS9/fbb9ln6/vvvu6FDhwZlg6JAnzIYFQDV4pLawki3bt3cuHHj3J133umGDRtmP6/bNU7q8ZVB42c5KjCoz2CNAyor1BimYKgWxZT9mBwTSo1ha9asscUyBTv1epUN449houCmApv6V5PB/v3723tQ4FjBXn9iraCmqgy0kLl48eLg5zXmXHbZZe6mm25yI0eOtOCofu7GG2+041ezZs2z/r4BIC3Q4p7GpgkTJrjdu3cH12sBSlmNGssUJNQ4EEn30We+XxGoeZiCoZrPaL6mMaFevXqufPnyrlChQmd1fqGKjJ9//tnGLc2rtDinOZgWJlWS7lMZul5/ZKsvjel6/wpkNm/e3PXu3dvG4F27dtn5gALEquLQOKXWbAD+D4FPxBQNIJrcqFQirrKIEiVKWOagVsA0ECYlvzwj9KJVPNEgq4wcDVJapdO//iX0e5UpapBLKK2C6jlCL3odkd+Hlu1pYIwMzKq8L6mtW7fOBui46KRFwdAaNWok+esAgNRK45w/adPilT6//WClFteU8RJKk78WLVpYSxF9Bqv8XT1ARYE9BTY14eratauNRcqa1ORTQVFd72faaKLlZ5gqOFiqVCm7v8YWTd7UK1OTL00qNYZp8qrsVD23v/ioCgMFHzUuqz2Nn9WqBS9lvui+WtDUuKU2M8p80fvSew4dw0RZl40aNbIsH5Wuf/HFFzap1AKkJsb+a9V7VV+5b775xqoLPv7447BAsZ8xpACq3rPa58iMGTPsfWkyqdcAAEh6CmBqbFI7EY1bChqKqu2UyanxQYt++szXuLF58+Y4H0fjjhb1IgOJGss059B4oQU0zc00lilBRYuGWuRTGb3fR1RjosYV/UxoWxQtmmnc0Ji1bds2t2PHDptvqQ+n7q8qAi0WxlWqrtem1xXZ3ks0bmpc02vT42vc9qsbNc5qbPTp/ev1AogbgU/EJA2MmjyNGTMmrN+ZT9krWvHThE2ZHhpQzgYN0CrT0IAYV2BSA2TkwKdsFL1eTR71r5/9qPvphMBf1Qxd3QwdMOMLrGq1VIHFsxHkFK3M6kRFE2r1X33ppZds0htKv4eHH37Y7qNMIgBAwj9jlUGvCaLfC1QUqNPEKjRrRjRxUymcxkEFDVUur/EwlMYbtYrRZFBBQC1Wqd+1AqoDBgyw+7Rq1comdv54FrlnpsYuf2xSlorGNI1hKhtXINUf2+Iaw/S6NV7pMTWZ1EKdsjh1nR5Hmx0qm1Vfa8LrT4ojKQCrKgLdV48TujCq59ZCqCamoZNS9VRVFQkAIPlpHNBClhailHXvb6YaugGgxiq/hYsChQoGas51JjRe+ZvZaezQGKhxS8/vz8VOVn4fzfNobqq9E7SIqaxU9ZCO3MRIY5mCnrpNm/IBSBgCn4hpygp5/fXXrf+nAqBabYuk7E9NnlICDajKPgkNhmqAjQxwaqD1g6ChAVFNcEMDnQpqpoS+NtpFV9k7fjA2csVTuwz36dPHGpnrdgDA6VFwTxNDZXNOnz49GPdU2q7P3i+//NJuV6AvlMYSZYtoMqfxUuNQaN/sSApKKoNU2ZO+7t2728S0adOmNnnTGKaAq8ZhjV0qpfcnjz/88IMtBCqbRRk1ul23abzQwpdK+TU2aAy77rrrrDRQPU71nKIgrR98jZwU6qIxUQFavY9ICqBWqFDBsoRCg6B6/8pU1W7BCgrTYgUAUjaNC0p0UbZ/5OKZaJzROLh27Vo3f/58qw5UMFEB0dCemGeL5mbKFtVCoF+Wr0xRlfdr7PJ7eIvmTt9//72NR+orrR7UqpBgbAKiR+ATaYImexrgNBFSP7QRI0aEbVJQpUoV63WmjBeV3z3yyCMWhEP0VA6ondc1cdYkWCUoOiFR/5nQ462sHU1kVTrYpEmTFBGgBYBYC4JqXFMAVCXr/sKSNoobPny4BRh1UYAwroVBv0eo38tTY6nuq89zBQwjS+1UDqjsT000/fL1gQMHusceeyyq162f9TcNFAUpNTZrswdN/vQcKlnXRkb+xFELncruiYsmkwrUNmzY0MYnlTHq/soOUharslZVLq+gKhNKAEh9lCiicUNl57ooYKiFN33W+5/r2uhHu8j745uSRZTxrwU/fa/NAhWE9NusqHpCj6s5TWgCivgVePo5ZYTqX100Jmms1e0aN7Wgp43w/BL6a665xsayuGic0vjmV71pgVJl+IxLwJkj8Ik0SRM19YaJrzRBJQYqy9aET6uCGgAVrMOJNPnVMdLkWsdMZZZxtRcQnRgom0cTVwKdAJA8VMI9duzYEz6rNVnTJFAbAio75mQZn5qMKdCprEyNlQoizpkzxx7zoYcest6dfuamNgfSWOFfIsvhVZaoHqK6aOKnx73jjjts7NX4smjRIpsAagKq4Kb+Pdnr0vNqguoHaH0ae+bNmxd8r0mxenoCAGKPFutCK8m0z4MqHpT1GVdrMS0W+vMTLYZp07u46D6hY0vbtm1tg6L46HH916GxTX2vVZKv8VPzS1U+6KJFvmj2dgCQcAQ+kWYp6KlG2coAVale5ERMtAOsrtfGROoRpiwZ9UPTbq7JuSt7ctMArono448/bv+eqlREJxPqRaMsz8svvzxNHzsASCmf4yoN1PinYKAyZBToVFaKdnnX2KeemdoQSJn8/gYMqpaIKzv0bFOZoLJ0FCRVyxrt0K7sTf0bWsavoKyyeFQqeOmll9qOuACAtEvzFo1zGtt00YKagqShfa5V+afFPGV96rbIuU7ovPHWW2+1IGnoRkn+Ra3HVEno9yTVY2leRAIIcHYR+AScszJ4lT68++67btWqVRbYVLlEXMFQ0aCmAat8+fLu6aeftlJtf6faWKRJbt++fW2ndQ3cCnbG1UdHVI7h7zSs7JrbbrvNyjrYCRcAUi5lv6j9iMr7tMDnUyBU18VFWZ7qs6kJpLIn1T9Nk0SND7oouKrszLh2q42kiaAuGkuVAarxVcFNBTZnzpxpmZ967MhxWZsvbd26Nfi+X79+Nv6ockOl68peBQDgTGhu449tmgOqQoHgJZB6EPgEImjVTxscqMeK+qJplU5fn4zKEpRF4pfraVdylT2kRuvWrbMSSK1aKqirAX7hwoUW3I2PgpraDKJly5Y2CV29erWViKivGgAg9dJGCyp7V49NXbR7+pYtW2zTIO06qwUxX6lSpWzX9LiohE891/xJozY0UqA1LpHBTAUw9bOiwKieR/fRRWWC7L4OAACA+GSI9xYgjVLQU1TartJsBTU//vhjN3v27Hh7gmoit3z58uB7Zb+oV4v6t2hip6Cgyu8mTZoUrA4qayW5VgrVg02lHSrz12SyV69eFrTU+1D2jjaM0PtWL1SV+StrJz7qB6dNM1Rq6Ktdu/ZZeicAgKSkIKMukVT2pwzMUApAqoJCGyDpNl1UPq/SPgUp/VI/f6zV2KINILRgqMU2/av7qD9oKO0KryxOZZ8qy5SNHgAAAJBQZHwCCaSgoHqgqeROQVAFDBUcVRmdgoNxbeijsj1lPapMUBM17XCuRtYlS5a0XmTqQ6beYzVq1Ag2WNiwYYPd3rp1a8uk1EUZNyqxUDBVgUZRnzVl3+g5/N1zRRtJrF+/3rJrNKFU+aGCsgpiqremslL9/m2hPdCUReM/TyRtFOFPcDUxbdq0qWvWrJnt6FutWjUmoQAAAAAAIMUh8AmcJvUtUwm8gpQKemqTCPW0jK8vaGJQr0wFNvUco0aNss2FlJmpvqTKRtWlefPmJ83QTCj1V3v00UetlFHB2jfffNO+VpBWAVUAAAAAAICUjMAnkEgUjFRvMwVAFYhUn8sVK1ZYHzRRmZ/K9NQf7VQ9Q5OaMj+LFy9uO/b6gVplpKqcUdmjKlVv1KiRXQAAAAAAAFIjAp9AEvNL0lVKrg2QRP01L7roItulNq7ScvUwU/m53yNN5erxUcAyT548VoKu59CmE/FRQFN9RvXYytocMWKEPZdK6MuWLesyZ86cSO8aAAAAAAAgeRH4BJLRsWPHLPi5a9cuuyjAqYtKy9XjU1S2ftNNN1k5vS7qNapgp3+pX7++7b7u69u3r20OkS9fPruox2iRIkUs2zRv3rzJtqESAAAAAADA2UTgEwAAAAAAAEDMSZ/cLwAAAAAAAAAAEhuBTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AAAAAAAAAYg6BTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAkkTJkiXd8OHDOboAAAAAkgWBTwAAkCBNmzZ16dKlc4MHDz7htlatWtltTz75ZHDd0qVLXZcuXTi6AAAAAJIFgU8AAJBgxYsXd2PHjg277tdff3Vz5sxxRYoUCbv+3HPPddmyZePoAgAAAEgWBD4BAEhF3nrrLVe0aFF3/PjxsOuvvvpqd/vttwffv/76665MmTIuU6ZMrkKFCu69994Lu7+yM0eOHOmuueYaC06WK1fOTZky5ZTP37p1a/fnn3+6BQsWBNe98847rnnz5q5gwYLxlrp7nmfZoOeff77LnDmzvYf7778/uO+RI0fcQw895M477zyXPXt2V79+fff1118Ht//888+uTZs2Lm/evHZ7lSpV3Oeffx7VsQMAAACQthD4BADg/6fg3MGDB5PloudOiOuuu87t2bPHzZ07N7jur7/+cjNmzHA333yzfT958mTXo0cP16tXL7d27Vp39913u9tuuy3sZ+Spp55y119/vVu9erVr2bKl/bwe62QUSNX9xowZE1ynDNDQoGtcJk2a5F588UX35ptvus2bN7tPP/3UVa1aNbj9vvvucwsXLnTjx4+316P3ecUVV9h95d5777Xg6DfffOPWrLyvBmMAABmaSURBVFnjnnvuOZcjRw7+dgEAAADEK52X0JkWAAAxTgHI5AqmHThwwDIZE6Jt27Yuf/78btSoUUEWqIKYO3bscOnTp3cNGjSwjEhd71OAU+9v+vTpQcbnY4895gYMGBD23r/44gsLOMbX47NGjRoWRG3UqJH7/fff3bJlyyxIqXL3OnXq2Gvz+3wq47Nnz552eeGFFyzoqUBsxowZwx53+/btrnTp0vavMkF9zZo1c/Xq1XPPPvusq1atmmvfvr3r379/1McWAAAAQNpExicAAKmMMi6VQakMSBk3bpzr0KGDBT1l/fr1FvwMpe91fSgFE30KuubKlcvt2rXrlM9fvXp1K43/+OOP3ejRo13Hjh1dhgwZTvozCo4ePnzYApx33XWXZaUePXrUblMG57Fjx1z58uUt+Opf5s2b57Zu3Wr3UVn8M888Y+9DwU9lhQIAAADAyZx8lgIAQBqiXpfKvEyu504o9bpUwYayN+vWrevmz59vZeTRisy8VBZoZO/Q+Ki0fcSIEe6HH35wS5YsSdCmSBs3bnSzZ892X375pevWrZsbMmSIBTd1zM855xzLHtW/ofwM3DvvvNO1aNHC3vOsWbPcoEGD3LBhw1z37t2jes8AAAAA0g4CnwAAhAT+ElpunpyyZMni2rVrZ5meW7Zssc2LatWqFdxeqVIl23yoc+fOwXX6vnLlyon2Gm666SbbjEjZnwl93KxZs1rQVhf17KxYsaJle9asWdMyPpVtqhL6kwVPu3btapd+/fq5t99+m8AnAAAAgHgR+AQAIJWWu2uH9XXr1rlbbrkl7LbevXtbT08FFNUnc+rUqe6TTz6xbMvEot3V1eMzMms0PtoAScFN7dau7Nb333/fAqElSpSwfqV6P506dbIsTr3u3bt3uzlz5lg5fqtWraxP6JVXXmnl8Hv37rWNmhTgBQAAAID4EPgEACAVuvTSS12+fPmsfFzZl6G0wdBLL73khg4daru7lypVynZh1+ZEiSlPnjxR3Xfw4MHuwQcftACodnRXQFZBT9HrUw9P7USvjZIKFCjgLrzwQgvuin5GWaK//PKL9SLVBkynU94PAAAAIO1gV3cAAAAAAAAAMYdd3QEAAAAAAADEHAKfAAAAAAAAAGIOgU8AAAAAAAAAMYfAJwAAAAAAAICYQ+ATAAAAAAAAQMwh8AkAAAAAAAAg5hD4BAAAAAAAABBzCHwCAAAAAAAAiDkEPgEAAAAAAADEHAKfAADglEqWLOmGDx8efJ8uXTr36aefJvjI3Xrrra5t27YnvU/Tpk1dz549+W0AAAAASBQEPgEASKX++OMP1717d1e6dGmXOXNmV7x4cdemTRs3Z86cJH/u33//3V155ZUJvv9LL73kxo4dm6SvCQAAAABCZQj7DgAApArbtm1zDRo0cHny5HFDhgxxVatWdf/995+bOXOmu/fee92GDRuifsxjx45ZJmf69KdeFy1cuHBUj507d+6oXw8AAAAAnAkyPgEASIW6detmQcolS5a49u3bu/Lly7sqVaq4Bx980C1atMju88ILL1hANHv27JYNqp85cOBA8BjKwFTgdMqUKa5y5cqWNbp9+3a3a9cuyxzNmjWrK1WqlBs3btwJzx9Z6r5mzRp36aWX2s/kz5/fdenSJey5IkvdDx486Dp16uRy5MjhihQp4oYNG5aERwsAAABAWkTgEwCACArK6eJ5XnDdv//+a9cdOXIkzvseP348uE6Zl7run3/+SdB9o/XXX3+5GTNmWGangpqRFMy0QT59evfyyy+7devWuXfeecd99dVXrk+fPmH3PXTokHvuuefcyJEj7X4FCxa0IOWOHTvc3Llz3ccff+xee+01C4bGR++pRYsWLm/evG7p0qVu4sSJbvbs2e6+++6L92d69+7t5s2b5z777DM3a9Ys9/XXX7vly5dHfSwAAAAAID4EPgEAiKAsRF3+/PPP4DqVk+u6yGCeAoW6XpmSvhEjRth1d9xxxwkbBOn69evXB9edTt/LLVu2WFC2YsWKJ72fNgq65JJL7HmVjfnMM8+4CRMmhN1HgVcFNi+++GJXoUIF98svv7gvvvjCvf322+7CCy90tWvXdqNGjXKHDx+O93k++OADC/K+++677oILLrDnevXVV917773ndu7cecL9lQmqxxw6dKi77LLLLCtVgdmjR49GfSwAAAAAID4EPgEASGVCM1FPRlmXCiyed955LmfOnK5jx45uz549luXpy5Qpk6tWrVrwvYKyGTJksICnTwFWP4s0LvqZ6tWrh2Wfqv+oMls3btx4wv23bt1qGbT169cPrsuXL58FXgEAAAAgsRD4BAAgjoxEXQoUKBBWmq3rlMkYSiXguv78888PrlMJup/VGLkhka6vVKlScJ3KyqNVrlw567F5sg2M9FytW7e2oOakSZPcsmXLLBNVFHT0qSenHgsAAAAAYg2BTwAAIihzUZfQgKAyI3WdNgCK676hO6FnzJjRrsuSJUuC7hstZUeqp6YCmeqvGWnfvn0W6FTGpTYNUsm6Nj/67bffTvnYyu5Uybl+3qesTT1mfBTIXbVqVdhrWbBggb3PuLI4y5QpY+978eLFwXV79+51mzZtOuXrAwAAAICEIvAJAEAqpKDnsWPHXL169Syjc/PmzVZyrs2MLrroIle2bFnr3/nKK6+4H3/80fptvvHGG6d8XAUqr7jiCnf33XdbYFIB0DvvvNMyQ+Nz8803W5C3c+fObu3atbYpUvfu3a20vlChQifc3+9/qixabbikn1Hma2hAGAAAAADOFDMMAABSodKlS9su6Nq8qFevXrap0OWXX+7mzJnjXn/9deu5+cILL9iO7bpt3LhxbtCgQQl67DFjxriiRYu6Jk2auHbt2rkuXbrYJk7xyZYtm5s5c6btNl+3bl137bXXWm/RyLYAobRZVKNGjVybNm1cs2bNXMOGDcP6igIAAADAmUrnJXSHBAAAAAAAAABIJcj4BAAAAAAAABBzCHwCAAAAAAAAiDkEPgEAAAAAAADEHAKfAAAAAAAAAGIOgU8AAAAAAAAAMYfAJwAAAAAAAICYQ+ATAAAAAAAAQMwh8AkAAAAAAAAg5hD4BAAAAAAAABBzCHwCAIAUp2nTpq5nz54uFqVLl859+umnyf0yAAAAgJhH4BMAAKQ6Y8eOtQDiFVdcEXb9vn377Pqvv/462V4bAAAAgJSBwCcAAGnIsWPH3PHjx10syJAhg5s9e7abO3duoj7uv//+m6iPBwAAACB5EPgEACAVmTZtmsuTJ48FMGXlypWW4di3b9/gPnfeeae75ZZbgsxI3X/KlCmucuXKLnPmzG779u1u6dKl7vLLL3cFChRwuXPndk2aNHHLly8Pey497uuvv+6uvPJKlzVrVle6dGn38ccfB7dv27bN7jN+/Hh38cUXuyxZsrgLLrjAzZs3L+xx1q5da4+RI0cOV6hQIdexY0f3559/BrcfPHjQderUyW4vUqSIGzZsWIKORfbs2d3tt98e9t7jsmbNGnfppZfae8ifP7/r0qWLO3DgQHD7rbfe6tq2besGDhzoihYt6ipUqBC8twkTJrhGjRrZz9atW9dt2rTJjl2dOnXs9ep97d69O3ishBxXAAAAAGcHgU8AACIoEBft5ejRo8HP62tdd/jw4QQ9bjQUhNu/f79bsWKFfa8go4JsoaXduk49Mn2HDh1yzz33nBs5cqRbt26dK1iwoD1G586d3bfffusWLVrkypUr51q2bGnXh3r88cdd+/bt3apVq9zNN9/sOnTo4NavXx92n969e7tevXrZa7roootcmzZt3J49e4LScwUda9as6b7//ns3Y8YMt3PnTnf99deH/bxe82effeZmzZpl7yWhwcInn3zSApuhAdlQOr4tWrRwefPmtaDkxIkTLUv0vvvuC7vfnDlz3MaNG92XX35pwWVf//793WOPPWavRxmmN910k+vTp4976aWX3Pz5892WLVvcE088Edw/occVAAAAwFngAQCAMBoeo71MmDAh+Hl9reuaNGkS9rgFChSI82ejVatWLW/IkCH2ddu2bb2BAwd6mTJl8vbv3+/98ssv9pibNm2y28eMGWPfr1y58qSPeezYMS9nzpze1KlTw45D165dw+5Xv35975577rGvf/rpJ7vP4MGDg9v/++8/r1ixYt5zzz1n3w8YMMBr3rx52GPs2LHDfm7jxo32mvXaQ4/fnj17vKxZs3o9evSI9/XqfeXOndu+7tu3r1e+fHl77r1799pjz50712576623vLx583oHDhwIfnb69Ole+vTpvT/++MO+79y5s1eoUCHvyJEjwX389zZy5Mjgug8//NCumzNnTnDdoEGDvAoVKkR9XCdPnhzvzwAAAABIHGR8AgCQyqh8WlmRiqEp67Bdu3auUqVKlmWozEmVayvT0JcpUyZXrVq1sMdQ1uVdd91l91NJdq5cuaz8W2XwoZTBGfl9ZMZn6H2UFakycP8+yhRVD06VhfuXihUr2m1bt261i3pq1q9fP3iMfPnyWbl5Qj388MNWbj569OgTbtPrqF69upXF+xo0aGB9TpXh6atataodp0ihx01l+v59Q6/btWtX1McVAAAAQNLLcBaeAwCAVCW0/2NCqXem75prrrHHSJ8+fH1RfSMTg8rYFeRTUDFjxowWSNR1Cobu3bvXAqOh1J9S/SpDqRxb5egq2S5RooS9fgUwE3tjHx0Hlb6r1D6S+nmqVPxMqYdpv3793FNPPeVat259Wo8RGhgNpePr849h5HWhm0WdreMKAAAA4NTI+AQAII4gWLQXZTr69LWuU8AxIY8bLb/P54svvhgEOf3Apy6h/T3js2DBAnf//fdb/8kqVapYgC50wyGf+lRGfq/s0vjuo/6my5YtC+5Tq1Yt6ytasmRJV7Zs2bCL3nuZMmUskLh48eLgMRS81SZC0ejevbsFmhVwDKXXoQBxaC9VvXfdN5qs0oRK6HEFAAAAkPQIfAIAkMpoox6VYI8bNy4IcjZu3Ng24FHAMDLjMy4qxX7vvfesFFxBR21cFBmoFW0GpOxSPa42+lmyZMkJGwONGDHCTZ482W3YsMHde++9FrjUbuui7//66y9344032uZCKm2fOXOmu+2222xnepW+33HHHbbB0VdffWU7wGuX9chs2VPRjvLK+Hz55ZfDrtf70m3KxNRjq+xeQVLtLO+XriemhB5XAAAAAEmPwCcAAKmQgpsKHPqBT/XFrFy5sitcuHCCMhlHjRplAUplZCoIqCxF7fYeScHE8ePHW6D13XffdR9++KE9T6jBgwfbRb001Wd0ypQpttO8qN+osiD1Wps3b279MXv27Gnl6X5wc8iQIZbFqpL4Zs2auYYNG7ratWtHfUwU3CxdunTYddmyZbNAq4KvdevWdddee6277LLL3KuvvuqSQkKPKwAAAICkl047HJ2F5wEAAKmM+lcqk7Nt27Zx3q6epaVKlXIrVqxwNWrUOOuvDwAAAABOhoxPAAAAAAAAADGHwCcAAAAAAACAmEOpOwAAAAAAAICYQ8YnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AACDFadq0qevZs6dLDVLTawUAAADSEgKfAAAgVfr333/d888/76pXr+6yZcvmChQo4Bo0aODGjBnj/vvvv+R+eQAAAACSWYbkfgEAAODsOXbsmEuXLp1Lnz59qg96tmjRwq1atcoNGDDAAp65cuVyixYtckOHDnU1a9Z0NWrUSO6XCQAAACAZpe5ZDwAAacy0adNcnjx5LIApK1eutEBm3759g/vceeed7pZbbrGvx44da/efMmWKq1y5ssucObPbvn27W7p0qbv88sstSzJ37tyuSZMmbvny5WHPpcd9/fXX3ZVXXumyZs3qSpcu7T7++OPg9m3bttl9xo8f7y6++GKXJUsWd8EFF7h58+aFPc7atWvtMXLkyOEKFSrkOnbs6P7888/g9oMHD7pOnTrZ7UWKFHHDhg075XEYPny4++abb9ycOXPcvffea0FOvb6bbrrJLV682JUrV87uN2PGDNewYUM7Bvnz53etW7d2W7duDR7n66+/tvewb9++4Dr/mOr9+RYsWGAl7coszZs3rwVd9+7dG9x+/Phx16dPH5cvXz5XuHBh9+STTwa33X777fa8oZSRWrBgQTdq1KhTvlcAAAAAp4fAJwAAERSIi+/yzz//JPi+hw8fTtB9o9GoUSO3f/9+t2LFCvteQUYFLxXA8+k6Bel8hw4dcs8995wbOXKkW7dunQXc9BidO3d23377rWVJKlDYsmVLuz7U448/7tq3b2+ZlTfffLPr0KGDW79+fdh9evfu7Xr16mWv6aKLLnJt2rRxe/bssdsUULz00kstA/P777+3QOTOnTvd9ddfH/bzes2fffaZmzVrlr2XyCBspHHjxrlmzZrZ40bKmDGjy549e3DMH3zwQXtuBUmV6XrNNddYoDKhFAi97LLLLHC8cOFCO2Z6j37wWd555x17TgVdVX7/9NNPuy+//DIIROt9//7772EBbP1ebrjhhgS/DgAAAABR8gAAQBgNj/FdWrZsGXbfbNmyxXvfJk2ahN23QIECcd4vWrVq1fKGDBliX7dt29YbOHCglylTJm///v3eL7/8Yo+5adMmu33MmDH2/cqVK0/6mMeOHfNy5szpTZ06New4dO3aNex+9evX9+655x77+qeffrL7DB48OLj9v//+84oVK+Y999xz9v2AAQO85s2bhz3Gjh077Oc2btxor1mvfcKECcHte/bs8bJmzer16NEj3ter2++//34vWrt377bnXrNmjX0/d+5c+37v3r3BfVasWGHX6f3JjTfe6DVo0CDex9TvuWHDhmHX1a1b13v44YeD7ytXrhwcE2nTpo136623Rv36AQAAACQcGZ8AAKQyKktXVqRik/Pnz3ft2rVzlSpVskxEZU4WLVo0KPWWTJkyuWrVqoU9hrIu77rrLrufSt3VH/PAgQNWBh9KGZyR30dmfIbeJ0OGDK5OnTrBfZQpOnfuXCtj9y8VK1a021Ryrov6ddavXz94DJWLV6hQ4aTH4P/FZU9t8+bN7sYbb7QyeL3HkiVL2vWR7zMhGZ8nE3l8VbK/a9eu4HtlfWrTJf/Yf/HFF1YCDwAAACDpsLkRAAARFACMzznnnBP2fWhwK1LkBkKhPSPPhMrYR48ebUFFlXUrkKjrFAxV30kFRkOpP6d6VoZSmbvK0V966SVXokQJ6/2pAKaCkIl9LFUWrlL7SAoObtmy5bQet3z58m7Dhg2nvJ+eW+/v7bfftoCwStzVh9R/n/7vKDSQGrkjvI7fqej3EErHO7ScXj1M1YdVpfLfffedK1WqlLUtAAAAAJB0yPgEACCCejXGd9EGPgm9b2TALL77Rcvv8/niiy8GQU4/8KlLaH/P+Giznvvvv9/6elapUsUCn6EbDvnU/zPye2WXxnefo0ePumXLlgX3qVWrlvUVVaZl2bJlwy5672XKlLGgoXpj+hS83bRp00lfvzYxmj17dtDrNJQCl+rtqcDuxo0b3WOPPWYZm3pNoRsSybnnnmv/hvbfVIZnZDan+oOeCW2s1LZtW8v61IZTt9122xk9HgAAAIBTI/AJAEAqo13FFYzTBj9+kLNx48a2IZAChpEZn3FRift7771nJekKOmrjorgyGydOnGjZpXrc/v37uyVLlrj77rsv7D4jRoxwkydPtgxM7bCu4KJfxq3v//rrLys3107yKm2fOXOmBf60OZBK3++44w7b4Oirr76yHeBvvfXWE7JlI/Xs2dM1aNDAApp6fmW//vjjj27ChAnuwgsvtBJ3HScFHN966y3LLNXja6OjUArAFi9e3HZh189Mnz79hF3l+/XrZ6+9W7dubvXq1fY+tdt9XIHik1G5uzZB0jFXxi0AAACApEXgEwCAVEjBTQUO/cCn+mJq1/HChQufsj+mjBo1ygKUysjs2LGjZX9qt/dITz31lBs/frwFWt9991334Ycf2vOEGjx4sF2qV69ufUanTJliO82LysuVXarX2rx5c1e1alULWubJkycIbg4ZMsSyWFWWrp3aGzZs6GrXrn3S168MVe2a3qdPH/fmm29asLNu3bru5ZdftveicnY9vl67MlD1/QMPPGDPFUrZpnpPCmbqPaok/5lnnjmhrF67zSu4Wq9ePWsJoB3o1c80GnpvKu9v0aKFHRcAAAAASSuddjhK4ucAAACpkPpUKpNTJdpxUc9S9apUuXmNGjXO+utLbdTv9LzzzrNyd21IBQAAACBpsbkRAABAEtImRyqLVwm9Ml2vuuoqjjcAAABwFhD4BAAASELbt2+3zNhixYrZxkbRlsgDAAAAOD2UugMAAAAAAACIOWxuBAAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AAAAAAAAAYg6BTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AAAAAAAAAYg6BTwAAAAAAAAAxh8AnAAAAAAAAgJhD4BMAAAAAAABAzCHwCQAAAAAAACDmEPgEAAAAAAAAEHMIfAIAAAAAAACIOQQ+AQAAAAAAAMQcAp8AAAAAAAAAXKz5/wAe876iXDdk/QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -765,12 +710,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAH/CAYAAABKNb6SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwF5JREFUeJzs3Qm81OP7//HbmhZtUmnRQps2RatKqxJSKVshWwpZki27EilkiayFhFJaUCrtJEJaRbQolUpFssX8H6/r973n/zlzls4yc87MOe/n4zHOaWbOnJk5H3N/rvu+7us6JBQKhZyIiIiIiIiIRN2h0X9IEREREREREYGCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLZIHTZs2zfXr18+ddtpprmDBgu6QQw5x999/f04/LREREcmAXbt2uRdeeMF16tTJVa5c2eXLl8+VKFHCnXnmme7DDz/M6acnIv9zuP9GRPKOxx57zM2fP98VLlzYlSlTxq1bty6nn5KIiIhk0IQJE1zfvn1tLG/Tpo0rW7as27x5s5s4caKbMWOGe/TRR92tt96a009TJM87JBQKhXL6SYhI9lq4cKErXbq0O/HEE93bb7/tLrroInffffdptVtERCSBzJkzx/3+++/urLPOcoce+v8TWNeuXesaNWrk9u/f7zZs2GBBuYjkHKWXi8QBBkRSvDt06JDk+k8++cRWo6tXr+5++umnqP2+5s2buypVqtjvFBERkcQc01u3bu3OOeecJAE3qlWr5i644AL3zz//2O8VkZyloFskTi1atMi1b9/elStXzs2bN0+z1CIiIgkqJ8b0I444wr4efrh2k4rkNP1fKBKHFixY4Dp27OgqVarkPvroI1eyZMkkM+hjxozJ0OMpbVxERCTvjOm//vqre+edd9xRRx1l2W0ikrMUdIvEGWbAzz77bHfCCSfY4EwV0iAG6AceeCBDj6mgW0REJO+M6X369HHbt293Dz74oDvmmGMy/LxFJLoUdIvEkTVr1lgxFAqfMEhHDs5o2bKlU/1DERGR+JZTY/qdd97p3nzzTdtTPnDgwKg+tohkjvZ0i8SRTZs2uVq1arnatWu7oUOHusWLF+f0UxIREZEEGdPvuece98gjj1iBtUmTJrnDDjss5r9TRA5OK90icaRq1apu9uzZbv369a5BgwauZ8+ebtmyZe7oo48O30d7ukVEROJfdo/pBNyDBw+21fNp06a5/PnzZ/k1iEh0KOgWiSMUWWEwrlOnjhs0aJC7/fbbXb9+/ZIMyNrTLSIiEv+yc0z3Affpp5/u3n//fVegQIGovAYRiQ6ll4vEqQEDBljF0VdffdVNmDAh2f6vjFxEREQkd47p9957rwXcPL4CbpH4pJVukTh16KGHutdee81myK+55hrXpEkT6+8ZDZMnT7YLSHvz1zHjjurVq7s77rgjKr9LREQkr4vVmM6qOavo9OJu2LChGzZsWLL7ENhzEZGco6BbJI5VrFjRPfnkk+6KK65wl156qe0NY+DOKvaUMdse9PXXX9sFpKcp6BYREYnvMd1Plh84cMA99thjqd5PQbdIzjokpNxTERERERERkZjQnm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoj7dIiIiIiI5bNOmTW7VqlWuXLlybuvWre7XX3+1Pt7ly5d39erVc4cfrtN2kUSlPt0iIiIiInFg//797sgjj3T//vuvGzRokHvkkUdco0aN3IIFC9xhhx2W009PRDJJQbeIiIiISBz64osvXOHChV2VKlXCQTkB+dFHH53TT01EMkBBt4iIiIhIDnnxxRctsO7evbulk6eGU/YBAwZYmvnQoUOz9TmKSNYo6BYRERERyQG7d+92lSpVcnv37nVTp05155xzTqr3/fjjj13z5s3t/uvWrXOHHHJItj5XEck8VS8XEREREckBjz/+uAXctWvXdmeddVaa9z355JNdvnz53A8//OCWL1+ebc9RRLJOQbeIiIiISDbbuXOnGzFihH3/wAMPpJlajoIFC7r27dvb9++++262PEcRiQ4F3SIiIiIi2WzYsGFu37591g6sc+fO6fqZLl262FcF3SKJRXu6RURERESy0fbt213lypWtGvm0adPc2Wefna6f++WXX1zJkiWtgjn7uk844YSYP1cRyTqtdIuIiIiIZCOqjxNwN2zY8KB7uYOKFy/uWrZsad9rtVskcSjoFhERERHJRh07dnQNGjRwDz74YIarkHft2tUVLVrU/f333zF7fiISXUovFxERERHJZv4UPKNB9x9//GG9uo844ogYPTMRiTYF3SIiIiIiIiIxovRyEREREZFssGHDBmsTtmzZsiw/Futm33//fVSel4jEloJuEREREZFsMGPGDHfzzTe7/v37Z+lxdu/ebdXPq1evbt+LSHxT0C0iIiIikg0WLlxoX1u0aJGlxylWrJgrWLCgO3DggHvvvfei9Owkr3jooYdc06ZNXYECBawoX3r06tXL6g8ELx06dMjw7161apU777zzXMWKFe0xyPzIrBtuuMGdcsopLl++fO7kk09O189Q/T/ydfTp08fFmoJuEREREZEYIx18wYIFUQm60aVLF/uq1mGSUVS+7969u+vbt2+Gfo4ge+vWreHLm2++meHfvX//fsvSeOSRR1zp0qVdVl1xxRXuggsuyNDPXH311Ulex6OPPupi7fCY/wYRERERkTxu48aNbvPmzVZ5vHHjxll+PFqHDR482FLWCWRYtZS0/f7776nedthhh7mjjjoqXfc99NBDXf78+Q96X7IRMmLevHmuVatWtmVgz549rlKlSu6rr76yVVxWpFkVZsU5qx544AH7OmbMmAz9HCvKWQ2UGzRoYBfccccdWXqsp556yr7u2LHDLV++PN0/x/8r0Qj4M0Ir3SIiIiIiMeZXuU899dSoBMgEYhUqVLAWYjNnzozCM8z9ChUqlOqFlOegkiVLpnrfM888M8l9SZVO6X6x8MYbb6T5Orj4bQzRxqQA70u1atVslXzXrl3JUrejMSkwZsyYDLfSy+h7WKJECVerVi1355132qRVrGmlW0REREQkQfZzewQlpJiz+jlp0iTXuXPnqDyuxLdOnTq5Ro0apXmfsmXLRv33klpOdgWr71TNHzhwoE0+LF682LIEcPzxx7vjjjsuy7+rSJEiFtjHwsUXX2yTVWXKlLHV8dtvv92tXbvW/h+KJQXdIiIiIiIxRnCC5s2bR+0xCYIIuqdNm+b++ecfd8QRR0TtsXOjffv2pXqbDxy9n3/+Oc308shWcNnl6KOPtkt6UCBs7Nix6Xr9B3PhhReGv69du7arU6eOO+GEE2z1u02bNnb9a6+9Fr7Ppk2b3EknnRT+98CBA+2SHkwm+ZoFILj3k1YEzBRjy6zevXsneR1MEvD8mUjg9cSKgm4RERERkRj7/PPP3ZIlS6zacrRQgfqWW26xVcjIQFCytsc6VvdNiw/8//vvv2S3/fvvv/Y3JjX6mmuuSfNxpk+fbpM7Dz74oBswYICLBYqhkaK9bt26cNAdxEpysB998eLFM/27XnrpJdtGgWhPLPmsAV6Hgm4RERERkQRG4S32vEYTQdrw4cOj+piSc0jP9ivnwSB1+/bttkp97LHHumbNmqU7vZz911xigaKA7OlOLZ2cgoEnnnhiVH5X2Riky3t+YiAaafFpUdAtIiIiIiISB0E3lb1vvfVWd++994aD20GDBtmqMqvXFEpLb3p5akj9/uWXX+wrK+g+8CRI9gXgqlev7h5++GFL8ybgp+I5xeao+k0q9m233Wb3b9++fYbbla1evTr8/ZYtW+z383szGqSzOs1z27Ztm62E+9dBWvuRRx5pj80qPGnvDRs2tOc9btw417FjR3fMMcfYnu6bb77Z6iyQLh9Lh4RoGigiIiIiIjEr3sSKI8FUtFftOJVnT/fSpUstEIpV1WzJHqxyX3fddVaR/sCBA5bNcPrpp9veffYgRwMVxl999dVk18+dOzecjUGhvtGjR9t9CWgp1Ef7MlqZkTp+xhln2GRAqVKlwj/Pz1LJPa1WZBs2bLBibJF4jewPBz9/+eWX27GdFn7f/Pnzk12/fv16ex7+d/nX9eOPP7qePXu6lStXWpu38uXL26TC3Xff7QoXLuxiSUG3iIiIiEiMEKSQKswp99atW2PSH5gVUgIK2pJFs1Cb5Jw1a9bYiu0nn3zimjRpktNPJ10ocsaKeFbbht13330WTPsgPDdQxQURERERkRj5+OOPLeCuUqVKTAJu3/vbF2uT3FMDIPg13lFRnFZfl156aZYfa/r06e7RRx91uYmCbhERERGRBOnPnVbQTYq5SE6oWbOm7ZGORhX9zz77zPZg5yYqpCYiIiIiEiOkfCOWad8KunMf9iRrF3DuoT3dIiIiIiIxsH//fku5pSDWDz/8kGIBqWigdRPVrbF7925XtGjRmPweEckcpZeLiIiIiMTAkiVLLOCmYjkrl7FC+yMf0H/55Zcx+z0ikjkKukVEREREYoBeyOXKlbP93LRgiiWfYv7FF1/E9PeISMYpvVxEREREJEY41f7zzz9jXoV69erVVsSqatWqUSlmJSLRo6BbREREREREJEY0DSYiIiIiEmX//vuvqk+LiFHQLSIiIiISZS+88IIrWbKku+uuu7Ltd7722muuR48ebtGiRdn2O0Xk4BR0i4iIiIhE2ddff+127tzp/vvvv2z7nTNmzHDjxo1z8+fPz7bfKfGNegLXXXedVbgvVKiQO++889z27dtz+mnlOQq6RURERERiEHSjbt262fY7fQXzpUuXZtvvlPh28803u2nTprkJEybYZMxPP/3kunbtmtNPK89RITURERERkShidbtw4cLu999/t6riNWrUyJbfu2DBAnf66adbm7Iff/wxW35nIiDc2b9/f4787gIFCqS7Xdy8efNcq1at3O7du92ePXus9/pXX33lTj75ZFe0aFE3YsQI16tXr3T/7r1797pjjz3Wsh+6detm133zzTd2PC5evNg1btw4069LMubwDN5fRERERETS8P3331vAnS9fPlelSpVs+7316tWzAG/z5s1u27ZtrnTp0tn2u+MZATep1Tlh3759rmDBglF7vDfeeMNdc801ad5n+vTprnnz5taz/Z9//nFt27YN31a9enV3/PHHK+jOZgq6RURERERikFpeq1Ytd/jh2Xe6ffTRR1tQtWbNGgu4zjrrrGz73ZI9OnXq5Bo1apTmfcqWLWtfmXg58sgjbZU8qFSpUnabZB8F3SIiIiIiCb6fO7ivm6Cbfd0Kuv9/ijcrzjn1u6M9scJFEouCbhERERGRKGIvbuvWrd1pp52WI0E3e3ipnC7/h5T7aKZ4x8phhx1mX1OqeE/f90MPPTRD6eVsL/j7779tf3hwtZvq5dp6kL1USE1EREREJJdgRZfgLX/+/Dn9VCSDNm7c6CpWrGhbA4oXLx4upHbcccdZkPzBBx+4Zs2aHbTlF+nl/P19IbU333zTWoVh7dq1tgVBe7qzl4JuERERERGRHEZYxn5t0sfvvfde17JlS2v3NXr0aKtMv379+gwXhOvbt68F62PGjLGK+v369bPrP/nkkxi9CkmJ+nSLiIiIiEQJq4uk84pkJg1+/Pjx7qijjgpXHO/cubMdT3PmzMlUBfYnnnjCnX322bbS3aJFC1sxnzRpUgyevaRFK90iIiIiIlHy9NNPuxtuuMFdccUV7uWXX86R5zB27Fh7HgRsd955Z448B8kaiuGddNJJtiLdpEmTnH46kkUqpCYiIiIiEuXK5WXKlMmx50ARtc8++yzcOkoSj9+Tr735uYOCbhERERGROGgXtnnzZksjptJ0hQoVrOBVvnz5Mvw4derUsa/Lly/P8M+KSPQpvVxEREREJAoOHDhgRbD+/PNP9+2337oqVaoc9Gd+++0322P7+uuvW8AdPDWncvXJJ59s32/bts2CclqCHcyOHTtcyZIlw4+fmb3AIhI9KqQmIiIiIhIF3333nQXc9IQ+4YQTDnr/1157zZUqVcr16tXLffTRRxZwN2zY0NWvX98dc8wxttrtDRgwwG6jGvUvv/yS5uPSJoo2U1i5cmUUXpmIZIWCbhERERGRKKaW165d2x166MFPs2vUqOH++OMPV7VqVTdo0CD3ww8/uCVLllifZvZlFytWLLyCTmVrgvJRo0a5atWquVdeecX9999/qT62UsxF4oeCbhERERGRbNjP/euvv7qpU6eG/02qOAH2N9984+6++25XqVKlFH/u8MMPt/TzuXPnWkVrAvIrr7zSNW/ePPw7IxH4Y8WKFVF4ZSKSFQq6RURERESioFmzZq53796uffv2yW5bv369a9q0qevSpYubMWOGXcfqNankfE2Pli1bumXLlrlhw4ZZCjvtpBo3buwWLVqU7L4E/gTxhQsXjsIrE5GsUCE1EREREZEY+vjjj61nNivU7LVmtTs9BdHSQlE1eoFv2rTJzZo1y5UvXz7J7ZzipzeYF5HYUtAtIiIiIhIj77zzjuvRo4f7+++/Xb169SzgLleuXFQem/3gv//+uytRokRUHk9EYkPp5SIiIiIiWfTTTz/Z/myql3ukgl9yySUWcLPSvXDhwqgF3MifP3+SgHvy5Mm28h3E+to///wTtd8pIhmnoFtEREREJIvefvttSxnv2bOn/Xvv3r2uW7duFoSfeeaZbuLEibYPO1bGjx/vzjvvPNeuXTv3888/23WDBw+2oHz48OEx+70S3zj+rrvuOmtBR792jpHt27en+TO0sGNrQvDSoUOHNH9m69at7uKLL7ZK/FTuv+mmm9L1/F544QWrVUDtAX7Pnj17Dvoz999/f7LnV716dRfPFHSLiIiIiGSRryLuW3UVKFDAiqZVrFjRjR07Nl0txLKiSZMmtor+7bffWiG33377zR1xxBHW01ttw/Kum2++2U2bNs1NmDDBzZ8/3zIyunbtetCfI8gmkPaXN998M837//XXX9Yfnir8qVXvT8n+/fvtdw0cONBlRM2aNZM8v5SKCcYTBd0iIiIiIlEOugl4qTLO9cWLF4/576eQGgXVSpYsaWntt956q3p1R2D/O5dgSStS/7mOoDGl+wZ7oZOmz3XBLQRp3Tej5s2bF17t3bBhg33P3xJFixZ1Y8aMydDjkW3x8ssvu8cff9y1bt3anXLKKW706NFW9f7TTz9N82fz5cvnSpcuHb74nvGpYXLpySefdJdeeqkrUqRIup/jTTfd5O644w6rwp8RtNELPr94r2ugoFtEREREJAsIsFavXm3fk8JLIOdlZ8suUnvfeust+/7555+3vuBYu3ZtskAxL+Jvw4Uq8h4TI1x3/fXXJ7kvkxdcH9wjP3LkSLuOHumRASfXr1mzJnxdRgPk9HrjjTfCryO1C7UDQI0Bjs22bduGf5407OOPP94tXrz4oBMAvAfVqlVzffv2dbt27UpyOynhpKFnZlJhw4YNLqu+++47V6ZMGVe5cmUrVBhZyyDeHJ7TT0BEREREJJF98803FmgT8BAAnHDCCe7dd991pUqVyvbn0qpVK3fttde6Z5991t1+++22Qrl7924LCKmeLomtU6dOrlGjRmnep2zZsvZ127Zt7sgjj7RV8iCOS25LDenepKDT5/3777+31G/qEhCoH3bYYXYfAnfa32VEgQIFLIgnCyQreP1MavBYpJY/8MADrnnz5m7lypXu6KOPdvFIQbeIiIiISBRSy0l5pYgZ6a45efI/dOhQ98EHH9iKIqvfBN0rVqzI80H3vn37wsGfRxo+Kc787YJ8MToqxHsUJLv66qvDgafnV26D983oKnB6cVzF+ti68MILw9/Xrl3btikwkcRKdZs2bez61157LcOP27BhQ5ugyiomADyeG0F4hQoVrJhgZBZCvFB6uYiIiIhIFIJu9uKyF5aiVcHALrux4s7eXSqqU1QN2tftrHo8F1KcPVaCuY6/W0r3DRbAY4WW64466qh03TejfDAf3Bvu/fvvv/b4GUkvZ/KHDIzIiuBUL+e29CKFmz3T69atc/GoaNGiNrkUr88PWukWEREREcmCc8891wpWsaLMyikBQE5jz60P4FhdJBVX4hsp237lPFh8jyCZVXqqgzdr1izd6eUUTiP4/+ijj6xVmN/fz/5nqt2n1+bNm21Pd0bTybPLvn37LA3+kksucfFKQbeIiIiISBbMnTvXAm5adlGJOZ6QKkwhLdLNJf6D7gYNGtjEzb333hsOeAcNGmQrzexbZiU7venlVBEn3bp///4WxFPUr1+/fhZwB6uFU1zt4YcfthZ3BLDskSZIZzWcYPa2225zJ554YjhrIjW+0jqPsWPHDvs3mQQnnXRSqj/D3nIufpWabRC8Pt4LP/FASjvPzRe7GzBggDvnnHMspZwWaPfdd59lCVx00UUuXim9XEREREQkk3788UcLWHwlbNKM4wkrlPQ0Zo8xAY3EL9Le2ZdM+rqvON65c2dLD58zZ44F3Bn1xBNPuLPPPtuC6BYtWlggPWnSpCT3YfWb9mIgeGUrAgXbyNggaGfFnJT1YAp+StXLqRnAharp48aNs+87duyYZvXyUaNG2f3YKw+eI/+eOnVq+D4E/sGK80xEEGCTvXH++ee7Y445xlqgkQkQrw4JBRvViYiIiIhIuk2fPt3dcMMNViV8yZIlSfYLx4sLLrjAgjmqUvN8Jf5RbZ4VYnpqZyQVPLuwysyKeEYKxo0ePdoNGTLE2utltYJ5otFKt4iIiIhIJrF6TGos+13jMeAOFuiaMWOGBXES/3wl9GBF9HixatUqS12/9NJLM/RzH3zwgQXdeS3ghoJuEREREZEsVi6nHVK8oq2SR89lJbpKVrBdgRT0YLX29JgwYYLr3r27y4tUSE1EREREJIMmTpxoq9zsX0XdunVdvDr55JPtKyvx8+fPdzNnzjxoUSzJWRUrVtTkSC6iPd0iIiIiIhlAGy5W+2jFRSDL6TRtmMqXL+/iEdWhg+2e6tev7z7//PMMr1SKSObo/zQRERERkQyg+jMBN62NCLgpoka7sHhFxepSpUrZ97SNoi3Vn3/+mdNPSyTPUNAtIiIiIpJOBNmDBw+271u3bh1OLY/XImoebZhAxWnaNBUoUCCnn5JInqGgW0REREQknd577z0rnkbPZJ+yHc/7uSP3dbNCLyLZS4XUREREREQyuMp93XXXWX/udu3aWc/ieNe2bVu3Z8+ecAG1r776ynp308Ip3lfpRRKdCqmJiIiIiKTDrFmz3BlnnGG9kzds2OBKlizpEtFvv/1m+7z379/vZs+e7dq0aZPTT0kkV1N6uYiIiIhIOpxwwgnuiiuusFXuRA24QQE4XgeGDx+e009HJNfTSreIiIiISAZw+rxgwQK3cOFCS9tu3LixSwR//PGHW7lypVVbJ6W8atWq1v6MfuO1atXK6acnkmtppVtEREREJAMIWCdPnuzuuece9+abb7pEccstt7iGDRu6F154wVbtu3btatc//vjjOf3URHI1Bd0iIiIiImn46aef3OWXX+6WLl0avs5/f+qpp7pE4SuYL1u2LByEY+zYsW7r1q05+txEcjMF3SIiIiIiaXj++efdmDFj3E033WT//vfff636N0455RSXiEE3KfKkxZ922mnun3/+cU8//XROPz2RXEtBt4iIiIhIKv766y83atQo+54WYVi7dq37/fffXcGCBV21atVcoqhdu7Y77LDD3I4dO9zmzZvtugEDBrhy5coldGE4kXinoFtEREREJBUTJkxwP//8sytbtqzr0qWLXffFF1/Y13r16lkQGw2071q/fr1bsmSJ27t3b/j6X3/91W3bts0KnmUVrc7q1Klj3/N70KlTJ/u9fhVfRKJPQbeIiIiISCqeeuop+3rttde6I444Iir7uT///HN37733ug4dOrgTTzzRWnixal65cmVL+V6zZk34vi+99JI77rjj7HYC5m7durmBAwfaPuwtW7Zk+Hc3atTIvn766af29dBDD3WHH354pl6HiKSP/g8TEREREUkBq8EEyPny5XNXX311+Prly5enez83+6Xnzp1re6cJnDFz5kw3aNCgZPfl95DmXbhw4fB1Bw4csGrpf/75p7X24hLEY7Vr1y7dr4mgnnR5v9Id/D1Tp051NWrUsIuIRI/6dIuIiIiIpOCSSy6xFeVevXq50aNHJwmkWY1mL3Tx4sWT/Ryp4LNmzXJvv/22tRbbvXu3e+edd9x5551nty9evNjadjVo0MD2WZcuXdqVKlXKVrwJsCMREG/cuNF9++234QuTAV9//bWlvhcpUsTu9+yzz1rq+1VXXWXBdUqPtWnTJnteTAI0bdo0fH3fvn0tGOdnX3zxxai9hyKioFtEREREJEVDhw61QJZ93fS3Ts++7Ndee8098cQTFhh7rF4PGTLEXXnllVF9fvv27XOFChWy7zmlr1mzZjg1ndVqfh9BtA/K07Jw4ULXokULV6BAAWuRlp6fEZH0UdAtIiIiIpIK2oOx7zmlVeOg7du3W9C7a9cu+zdBa8+ePV337t1ds2bNolZwLTWc0i9atMi9/PLLNknABACKFStmFcr79etnK+lp/Tyr7qtWrbJ97NxfRKJDQbeIiIiISDrdf//9bsOGDVZYLXL1u3nz5lbcjErgl19+eZpBbixR8fytt96yFfdvvvnGrjv//PMtrRy0DCP9nQkFUui9kSNHuuuvv95WyQm+DzbRICLpo6BbRERERCSAFO3Vq1dbOy1fsdw76aST7PY77rjDffTRR2769OnumGOOsdu2bt1qqeSxXtVOL4Jqgu8HH3zQvf766+FJgg8++MCdddZZVjn9u+++SxKslylTxnqQz58/39LNRSTr1DJMRERERCTgySeftNZcrPoGsULs90w/8sgjVsxs2LBh4dtp7RUvATd4Lj169LDnHFyV//DDD+3runXr3M6dO8PXUzX9wgsvtO9JUxeR6FDQLSIiIiLyP6zyjhs3zr6/6KKLwteTHBps83XUUUe5u+66yy7xjj3pwYkDKqd79AsPJr5SeA1US1dCrEh0KL1cREREROR/xowZY/uxSb2mAjn7mmnLdc0111j7L9Dei2rfVapUcYmIPuNt27a1ABxdunSxlW2KrhEasDJOGr2IRIdWukVERERE/uell16yr7Tb8oXEbrvtNgu4/b9JKU/UgBt16tSxgnDgNb377ruufv36bsmSJfZvBdwi0aWVbhERERER56x4Gm2/2Av9448/2h5t7Nmzx6p8U4Dsv//+c5s2bXLly5d3iYzq5LVq1XJHHnmkK1u2rFu/fr21OSOt3Pfo5nX//fffVhxORDJPK90iIiIiIoHiYR07dnSzZ88O72kuWrSorW7TSqtSpUoJH3CD1ezSpUtbUP38889bP/ERI0aEA+5nnnnGJh2GDBmS009VJOEdntNPQEREREQkHqxdu9a+sup76aWXur1794YrmFevXt2tXLnS/fnnny43II38nXfesUkE2oSxxzvYlztfvnz2Wmk1NnToUPu3iGSOVrpFRERERP630u2D66OPPtoC0khULc8tTjvtNAu4EQy4f/rpJ+vtTY/yX375xU2ZMiUHn6VI4lPQLSIiIiJ53oYNG1yzZs3cN998Y3uYFyxY4M466yy77Z9//rFWYnnF9u3bLe2c142RI0fm9FMSSWgKukVEREQkT1u8eLFr2rSpW7dunatQoYJbtGiRO/nkk8O3z5s3zx1zzDGuV69eLrcZPXq0a9++vZsxY0b4unr16lkl84oVK9q/mYDgPRGRzFHQLSIiIiJ51q+//urOOOMMt3XrVlvh/vjjj5O1A3v//ffdX3/95Q4/PPeVQ/rss8/czJkz3fTp05NcT8DNe1GgQAH7N6v+TEqISMYp6BYRERGRPKtgwYK2dxmDBg2y9lmRaBXmq5rnNm3atLGvH330UbLb2O/96KOPhicnTj/9dPf9999n+3MUSXTq0y0iIiIieRZp1Weeeaa1BWO1O7JQ2nfffeeqVq1qgfnOnTtd4cKFXW6ya9cud+yxx1p7NAqo+d7k3h9//OEefvhhN2HCBKtgzop45H1EJG25L0dGRERERCQNu3fvdv369XNPPvlkuDc3LcJSqkzu066bN28e9YD733//tUCeVeT9+/dbsTa+cv1hhx1m6ex8zZ8/vytWrJhd6KPNddHCXvX69eu7L774wl7rFVdckeR2fjeVzK+77jp7f3wfbxFJPwXdIiIiIpJnUJX7vPPOc3PnzrWVXV8g7Morr0zx/llJLferx2vWrLEV82+//da+btmyxW3bts39/PPP7r///stUoEzBt+OPP96+Vq5c2dWqVcsu7EvPqE6dOlnQ/e677yYLur1SpUqFXxPtxQjQW7durf7dIumg9HIRERERyRM47aUC+WuvvWZ9uHv37u0ee+wx16BBAysoFomVZwJciqitXr3a1ahRI83H37t3r1u4cKE9FkHs0qVLLbBOCwEsK+gULPMXVrJZ7eZy4MABW/1mdT49bcsIuuvUqWPV2Lk0btz4oKvT9CWvXbu2BdA7duyw9ybSrFmzbH93586d7XndeOON7sILL3Tjxo1L0uNbRJLTSrdIAiEFbd++feEWHsyOM1vP9X/++ac78sgjwxcGzFNPPdXdcccd4Z/3s9MiIiJ5EYXSCLgJatmjfNttt6W5ys04+8gjj1jwXL169RRXzWknNnv2bFs5//LLL5OtXPO7TjjhBNsXzoXK6KxOly5d2i7sp05vVXR+3549e2yVfNOmTW7jxo12YQV91apVVuSMIJ/nwwWM+wThtAVj7zqBOOcJQTVr1rQLK+ecU6QUdK9du9Yek6B8+PDh9pzfeustC9YHDhyYrucvkldppVskTvG/JrPqVBPlQr/M7du3u3POOcdNnTo1fD9mx3/77bcUH6NVq1Zuzpw54X+zZ4tCMcx6N2vWzNLCUtq/JiIiktu88847rnv37vb9888/b6vcFE4jCO/Tp0+69yqz/5qU88mTJ1uKNf8OIqg+7bTTbOL7lFNOcXXr1rV90dmBlXDOHVhl/+STT+wSWW28UKFC1iLt/PPPd2effbZVb4ffR54aVtopoMaqP5MQXHjfwHtx7rnnxvjViSQuBd0icYZBj2IlU6ZMsZnsSLTrYFbdGzt2rKWDMWgyA+4vDI6kmF1wwQV2P2aumU0P4mcYeBkoCeaLFy+eDa9QREQkexGINmzY0ILSW265xVZqM4IUb3pZE6AzPpNdFtzrzAoyE9lMdpcrV87FE84lWIVnguDDDz9Mku7OZACBd48ePawP98FW3C+++GL35ptvur59+7pnn33WXX/99W7kyJEWyC9evNj2lItIcgq6ReLAL7/8kiTgJfWLwYvBkBXptm3bWrBN6hcDW2aDeVLPWDH/9NNPbeClkIvH7P/48eOj8npERETiCXuW2YtMWjfjHyu6B9tuRYE19mcTtL799tuWbeaRJt6lSxd7TIL5Qw891CUCUt+/+uorN3HiRHtNP/zwQ/g2VrEpotahQwfrVV6pUqVkP096ebt27SwrgAJxtFEjbZ2gnhR6VthV3VwkOQXdIjmE//VI/aZdCV/Zk0WxFpBOzsDYokWLNKuCktJG0Rb2eZPuxQy1v1CIhb1iqZ0I8PvZe8aMPdVKhw0bZgMtSEUjde6qq67KtpQ4ERGRWGIvNCvWJUqUcK+88op744033IABA2yVOnJ8JIikhVhwcpqfY6WX69muleg1UnidBMnsy2YFn73aXvny5S2TjjZpwdfJuQnB9YYNG9yYMWPcZZddZn2+SaPnPObFF1+0cwcRSUpBt0g243859j7df//9bvny5eHrGfR8Kri/H7PrzM6zQk27EYJs0ro82pf4/qEpISD3PUVJ/2L/FYPliSeeaIVPKArDbL//GPADK8XXhg4daunpN998s6WRaeZaREQSDVut6G0dqUmTJpb1RTXuW2+9NRxQMhE9ePBgm5T2WMm+8847Lf2ald3ciG1pvHbeD84VPKq6MzFB0Va/33vIkCHurrvuco0aNbL3EGTRrVu3ztLURSQFBN0iEnv//fdf6IMPPgidcsopRLh2KViwYOi6664LrV27Nny/l19+OXTOOeeESpQoEb5f8PLnn3+G79u9e/fQkUceGSpevHiodOnSoWOPPTZUrFix0NFHHx3Knz+//U6Px4x8LH5/s2bNQjfddFNoz5494fu+/vrroYoVK4bvV6RIkdAjjzwS+uOPP7LxHRMREcm8L774wsbDESNGJBkPV6xYYWPb4YcfHtq2bVvo33//Db355puhmjVrhsc9xla+VqhQIcnP5na8F+XKlbPXfsQRR4TfD96biRMn2nvBe9a8efPQq6++mqfeG5GsSIwNKCK5APumKFZGKhf7su+++27bt02KGpVOPfaPTZs2zQqfkRperVo117VrV7v/Sy+9FF6VBqvepJWT2kUFVoqjsD+cFXGKxQRTwq699lqbvac/KXvGKaLGfdizRpqdr14Knh99N0k3O+mkk2zFnNVvngsr8iIiIvGMbVcXXXSRdfcIFh/1lcvBmLxixQqrMs59ySojO4xVXNKqwZiZ6GnkGcF5B1Xd/Qr/vffea11PeG9Y7SaNnCyABQsWWJp9Su8N5yKcc/A3EJH/o/RykRgiIA7uySY9jQCWAiWkcX3++ed2PYE4wbffz/31119buxHajKSnpRf/G7NPjcGSS3pOECisRl9P0sgIvn3bD1SuXNmtX7/e+nVSKIYBl4CfvW1UVn/mmWcy+Y6IiIjEHgXBRo8ebeMtY6qvmUIQznV8Jdj2qdQE26RR9+vXz26rWLGipZvTm5qiaXkJ/b95/ZxbUOOFQq9PPPGEXXyLUvbBP/7448l6l/MzBOu8rwTvfoJDJM/L0jq5iKSIdKtx48ZZyvfXX38d+vvvv0MTJkwInXHGGaFDDz00nK7F902bNg0tXLgw2WPs378/tHz58tCUKVMsNY4U8E8//TR8+8yZMy2V/KijjkqWNs7jPvbYY+H7fv/996Fzzz03dO2114Yeeuih0GuvvRZavHhx6Jdffkn2e0khJ22d1PPgY9aoUSPUsWPH0MqVK8P3/emnn0K//fZbTN5DERGRzJg0aZKNW4ccckho3rx5SW5jbAyObaRQ33jjjaEdO3aE73P33Xfbba1atYrq82JMHzNmTGjJkiXh63799dfQqaeeGqpSpUro999/D1/PWE1q/C233JLkMVq0aBFq3bp16Mcffwxf98MPP4Q++uij0ObNm6P2XNu1a2fvwb333hu+bufOnfZ8fNo56fk8n5deeinJz86ZM8fee+4zderUqD0nkUSmoFskyrZs2RLq1KlTeEC/4oorQu+9916SQb5x48ahp59+2vZFBS1dujTUtWtXG3z9gBW8PPfcc+H7zpo1K8U93/4yatSoJAF6avdjH/gzzzwTvu+BAwds0oCgf/LkyaEePXrY/vDg6wH3YRLh+OOPt+ciIiKS037++Wcb1xiv7rjjjvD1jFnjx4+3QNGPZ4y3TEpH6tOnT+iwww6zyfLM2Lt3b+jOO+8MdenSxfZIewSs/N5gIM2Y65/Prl27wtffc889dt31118fvo7H8vfldXrUXOG6nj17Jnkejz76aOiNN96w55NR7HHnMWvVqpXstm+//TZJnRje03fffTfJffxrLVmyZGj79u0Z/v0iuY2CbpEoogBZ0aJFbaBhwH7wwQdDf/31lw2qDRs2DN11112hdevW2Yz6W2+9FbryyistIPcWLVqUJCBmJZvCa926dQsNGDAgyUo3K8xr1qwJbdiwwQa03bt32yw030euQG/cuDE0cuRI+/29evWy2fuyZcuGf8/YsWPD9507d64VceNk5Mknn7SZeR77+eefDzVq1MieI/gdZcqUCT9Gv379kszSi4iIZLfzzz8/XPjLFx4lQGUc9eMVE8kHC6g3bdpkWWoH8+WXX9rKONltHuO+Xw3mcTyyzFhBDk6ggyKrZLwFfx8B+HfffZckYOVcYtq0aTZmB4P5p556KlS1atXQoEGDwtcxHvvJe8Zr76uvvgp9+OGHB81SI+uN57tv3740MwqCCwS8x1u3bg3/fO3atcPXi+R12tMtEgXs02avMz0/g/08f/zxR9uTzf9my5Yts1Zh7733nvvqq6/CBdEoNkI7L7BXir3TtPPiUqpUqfDjse/aF0rjQhuU/fv3277xP//80/3zzz+2n5uWHnylv/bRRx9tF/aqHXvssfZ4tP7ye74pcsK+bvZusWcL7NG65ZZbkry+cuXKWXuys88+27Vp08Z6gAf3zHnse6MAG4VWREREshN7sB955BH30EMPWaEvxqKJEyda20t6UB9++OFWW2XgwIHpqpcSidoptMbicf3Pjxgxwlpr0k6M8d0bNGiQjasUaPPja3aiGCsFWCmySg0Z75prrnEvvPCC69+/v3vssceSvHecO2TUlVdeacVYOa/gvIa985zHdO7c2c57aDnG+8bfgaKwInmVgm6RKHjwwQfdfffdl+Q6glQGNgZmBh0KkwURVLdr184GJqqk8r8ihcpWr15tgTAXel4SuG/evNnt2bMnKs/1yCOPdGXKlHGVKlUKXyiEUrNmTauizsBLYTeqvc6fP99OXP7444/wz8+ePdsCb9BrfPjw4TYh4BH0E7hTjCYvVXwVEZH4QEcPxl7GIT8xzJj76quvunr16qXZZYR+1ZHFwcAYzTi5Zs0aN2vWLNe2bVu7fvny5Ra8Mp737NnTxTsCcRYInnrqKaveju+++866mjCx/vLLLycLvjkvoCsKRVUjEVjznjKhwfu2cuVKu/6qq66ywmt+EoTiavT01nmB5FUKukWygJXiIUOG2MDCajPOOOMM16lTJ1v59hiIqAbaoUMHC7K5D//rffzxxzZrzso3AxcnCmnhJIJZZGbNixUrZivOXEeF9COOOMIGRi5UJidQZuWc58hKPKvkDJoHC8hr1Khhg6O/UMmcNmbM4FNtnTZnBNY+6GZCgN85fvz4cPBN+zF+Jq2TGxERkWgJrtTSBuyCCy6wAJnrWN1m3OQ+ZGiltvLMqvTbb79tk8mMhVTgvueee5Ks6r777rvu6aefdj169HCJjHMQHwDzem644QbXunVr66DiEUBv377dXX/99a5OnTr23qSkSZMmFlBzTkAG3rBhw+zxmcgn++3999+3lXUy70TyKgXdIplAIMvsLTPdrVq1susYkEjfZoWYIJiByqdhs3pNcEzAOnPmTAtII1e+QTDLIEU/bC58T9suVqb5Spo4s/AEuKx8kyZGsA0GSi6NGjVy5557bvgxx44da7+7ffv2NhNN8E2gzO/nQjsQnh+X4Iq1Rzp6ixYtXMuWLW1Apo0ZAzWBffny5S11DbQ8YxZ87ty5NtjedtttbujQoTH7G4iIiIBx96abbrLsMsYy0smZCD/uuOMs6GvcuLGNV6Rcp5bmTGswAm3GL8Zpxky+37Bhg6tQoYLdh61djMOMpRnBeOknqwlKWfll7Bw1apRNduPhhx+2VHX6ggfHTiba2T7GijpbwTB16lRL6eYchIDYY5KhdOnSNimfETy+n1CnXSl4/3gsXisLAkxecL7gn0PQ66+/bj27acXGecWiRYvs35xrsNWNv0siZAGIxFQO7ykXSTi0zDrppJOsOEjv3r2tFVflypWTFECjaBrVPalGToGVk08+OVnVcIqP1K1b16qkvvDCC6EZM2ZYlfEgCp/RMoQqph7FSfxjUODMu+++++y6vn37JnmMI4880q6n4Jr34osvhipVqmSP71GUZf78+VbdlYqvtCThd0c+b4qnXXXVVaGJEydaOzMKpPiCMVwowkbxFArGgVYiFGMRERGJNsZEiogx/vjCXVw6dOgQrvDNGMR15cqVC/3zzz9Jfp7iZVTqplAo96Eqty/IRuVwCpGmV3BM9m2/ihcvbpXMg7/PFx8LViDnvv68IshXWw92O/H39d1EPIqvcv2yZcvC1zEW004sWBk9PSi4RhV4OpS0bdvWHveaa64JrV+/PlmBOQrWUZz1wgsvDLde4ysdTvzfg5alFJijiCxfRfIaBd0i6cRAfd1114UHy2OOOSZJ9W76ZVMZnMGdntrly5dPFrDWr1/fAlpaeFAVPDhQ+/sEW3v4gZUq58HguH379hbs+vuuWLHCeo8SwBM0g5ZfVD5lsDzttNOSVBbnOfiK48HHLVCgQChfvnz2c/41U1F16NCh1qOb24Ovh39fcMEFoZdffjn0wAMPJKmIznNm4PcnDJwUBSuoioiIZBUVuxlj/AQzl/vvvz9c3ZtWYfTB5nrG1EjTp09PMq4Fu4RkJPA/4YQTkrX9evzxx+06xsmg2267LTR48OAk4z1B9ddff21tR4Powc0kPpXLPcZWKqDPnj07yXMoVaqUnaMEK5P79yeynRjnDZETEJEIjr/55pvQggULwl1Zqlevbuc+vpOJxzlHJJ4zfb79e0v7sNT+DiK5nYJukXRg0AmuZjOwffzxx6FDDz3Ugu/+/fvbTHa1atWSBaXnnXeetRLzM9p+AIycoWY2mcB07dq14RViZpUZVP0A+s4779iAevrppyf5WdqK8Zi0EvHmzJlj19WoUSPJfW+++WYL2mkxsnr1aruOWWtmwwsVKmRBd3AWm1X2IkWKWL9PBnVW5AnWK1SokOS1sipOoM3Jjl/pZ0C/9NJLw/fhpIj3QkREJKt+/PFHm/D2YwxjWGS/aMZQPzHOOEwLri+++CJ8O8H5cccdZ/ehnebB0FaTSegbb7wxyfU+6J43b174OtpnEUj7MZwxMRg8M8FNa85guzGQhXbxxRfbanPwvrfeemvomWeeSXJf+owzoe0nGSJbdw4bNswy25iY9/bs2WPnEoULF7ZWo+nBeYN/HwsWLJihlXPOTfjbBM8FmEwQyUsUdIukgRlyZpP9ai2XevXq2QDKwEmAyeBL8B3s/0mK1eTJk0O333679Qr1gTTef/99my32fSsXL14c6t69u6VeBdWpU8cej/6dfjV81KhRdh3p6uB5PPvss5amzoDPyQBIE+eEgAC6QYMG4cdkBp1/8xg8P++TTz4JP26wpyiDMSl63BbsK8pz6dGjh81W33LLLTZhEAzAmQnnRIKBPfha/IWUfH+biIhIZgTTlytWrGjbvyL51GhSxdnCxRjNZLQPUvkZP4ZHrt4SJDOBHUwDf++99+y+J554YrKV419++cUel0A4mM2Gxo0b29jPmO8xkc5jkY2W0kS6H/+DK/KcgwS1bNnSrn/11VfD1xGEM1HOcw2ez3hMOhQtWjTZaxgyZEjohhtuSPF9/Oyzz8Jb495+++0kt7FAwOID79OaNWvsvCQSkw/BDMDIxQOR3E5Bt0gqmMXt1KlTshRxAlRWiSP3cbdo0cLSxX799dfwY7Rp08ZuGzFihP2btPKLLrrIUrYjV6R5PJ9iRvo3AzSr0n7w4+e4H6la7J/yAyvXccIQxMkF1w8cODA80Ab3gjPzzQoBCNQvueQSu75du3ZJHocTAfaIMYCyOuCxksD9CfR5fE4yeBzS14Ip6Mxsk/Ke0p52UtGXLFkS9b+biIjkfgSVwYleVpUjff755+G0aOqaMNlLsEk2lt/uxCosGWtdunRJ9vNnnnmm/XxwdXnfvn32uwlcGf8IsIPp3H7/eLNmzZI8VtOmTe364Er8l19+aXvHmcAP4lyB1HT2T3urVq2ywJbfHcR5BucAnEtETgzUqlUryX3HjBljj81+axYOgpPsvBZWxPk56rV4nG/41fnOnTvb7QTnHq/fT1rwe/33KQXuvOc8J/93i3wtIrmZgm6RVAwYMCBJkMhqN0EoA7a/joCUQZDZc/YqkWLtA2JWiRmYKNDi07B8EO8HmldeecUGTPZ7kbbtV6P9SUJwvxW/h983fPjw8HXsB+vatautrPtZe5+aTjEYBtfgYMdjsvodnPFmnzq/j5VxPwAzwDJz7QNoUsU9BlXeB1b4g8+Fx2RFm+vZ3+2LzfmZcSYRSpcuneQ9ZZY9+LxFREQOhtolvr4KxdGCQa/H+Mn2qCpVqli9FY+05uAYCIJxMsQoSBpM/2aCmkJowbEuiIKjPIdJkyYlWfFmnGUFOoiMt82bNyd5/GjhtQbPF1gc4LyAifcgH1TPmjUrfB2r0zw3nhcTAhRKZWLBo9Ark+RPP/20Bf7B1XPwXrIK74vFsaWO33HWWWeluGecv5Vf8eZvyDmSSF6goFskAgPIyJEjkwTXpKIFV3BZ4aUquR+YCBxJsabSJyllDOoEuFT15j7ssWKmnHQqfo7ZbV9Mxae9eTwWe6YZ5IOFSSJPEjKDx46srkoRNGb4g7PvDMB+7xZFZfzvJvWO+6ZUJZ1q5v5n+B38DBVTCcIjA22frs+A6wu/iYiIHAx1QfxqKpO5BLIpYZz1405wD3dqBcN85e9gFxHGbgJHJq3J2ooMpJmcZpx/4oknkoyzBytQlhMIqjm3YJU/uL2LrWC8brLpUsJ2MG5/+OGHw9cxvkdWME/pfWfCg5XwSPzNfNcTzgNU60XyAgXdIv/DCjUDJ1VB/YBO4B0s0sI+K1ZxSZumNQkDD7PEzACTWu4HIVagCcK5D0XYeGwftAdTrtgjxT5tZo/jCannpLiztyul/XOs2Pt9abwHpMD5lPHI9mCkzpFWx6w3ExH+vWR1gpVvUgIpdMNsd3Dvu4iISNDo0aPDK9yXX355slXjyMwpao4wiR4ZBLNdynf78JPKbOc6++yzbVwm2PZbsECQ6ieLg0Ek439KVbsTCdkAFDYLpnpzLnPZZZfZ3m22zE2YMCFJ9xFW0llkCHZWSSmVniKsPvsvEr+PtH6/RU6Bt+R2CrpF/reP2g8SvsKmH9h9sE0BNAZnCqVQiIU9ZAzcBIt+Tza3M4gzgJF2FkTq1YMPPpjqrHwiYIClcruveg72clPAhtccuQrA6rc/USEDgJMVqpn7SQ2+BtPMeF+DFdhFRETAWOvH5auvvjpJgM3YS0DOtia2c7FVivukNJHLRG9wMt0XFfXBN5XEqc7N1q0garNwHkB9lNyGlO/g6jfp57w3BMUp9dRmMt1XIQ/We/GYlPfb5IL70nlc/z77lHj+Tv58YOzYsTF7jSI5TUG35Hm0/iLYiyz0xYW2WAziDDBgppc9X1TyZuBgNpz90wTlrJL7npb8LD8XjylmWcXrDqa6k67G66UYW3Bw3bhxo7UjYVBm1TyIFPvIiubBS+Q+NBERybvY/uQzpQjOyJJistxjNZWJcG5njL7pppvsez/5Hbmtiqwsv3WMdpnBImy06fK3xWL/dSLgPaH7Chl8QbQxY2Wc8d23DfVp6RRnY+8850DBqvF+Kxqr5j5TLjhhwvc+8OZvPHXq1Gx9rSLZRUG35GlUIQ+uaPsLs7sE1kuXLrV/kxrOCjer1fybwQS+B3VkGjaFx6KxBzsRsKpARdRgJXImJ1jhJmuAgTk4wLJKTmEaX4ndtzCLvLD/Pa+e8IiIyP+hKjeTtz6jLDgGB1FzZOjQoZYW7ifSKXDGhDBjuu8sQhsuH7wT7HEOEJzoZez2lckllKzWC+8bmQRUhg9WLWdyne99m1L6lTPWP/LII/ZvuqBQYI5xP4jFC66j3ouvC0NRO5HcRkG35EkMpszYphTssW+ZAJv7MNhTgZyUcAYG9iA1adIk3KOSiuOcBBC8y//31ltv2YkMKfvB1DPeQ9qFcAJEARyCagJy+osGC9X5C6nnKaWuiYhI7se2JDKmGA98C04ubGuiOjd9riP5jhyMMexNrlatmv2b+7Kifdxxx9m/WQ33fbKZQJe0kU3AuQ8r3ZFdXihCR20WVrGDK9VMdPjuLT5wD6ar0+WFyRK/+MFkO1/5m5NxIJKbKOiWPIe9SxRLiQzwmBnng5+ZWVLRfHoaM+Eg2A723AYBo1pepYyeqL5KOxhoy5QpYysWBNjBgZj3sH79+raPLvLvQrEWDb4iInkLq6k+Dbx58+ahDh062Pfdu3cPDRo0yL6nxkiwkBmpzT4NncDcr7iyKkvrK78CTlVtX5ncp0NLxrEg4QPm9u3bJ7udtqUUUwv2OfdY2KDAKgsX/m/LY7Ro0SJcmDWRa+CIRDrUieQhe/fudY0aNXLvvfde+LqCBQu64cOHu02bNrlatWq5Nm3auD/++MOdfvrpLl++fK5QoUJ2v169erlKlSq5YsWKhX/20EMPtYskV6FCBVevXr3wv+fOnet++ukne/9mzJjhihcvHr6td+/ebuXKlfb9RRddlOQ93blzp/vxxx+z+dmLiEhO2bdvnzv77LPdli1b3EknneTuuOMOGzcOO+wwN3jwYHfbbbe57t27u8mTJ7v8+fPbzxw4cMA1adLE/fvvv65u3bquZcuWdj1j+amnnupWrVplYztGjx7tChQo4A4//HBXrVq1HH2tiaxIkSKub9++9v2HH37opk+fbt9/88039l6PHz/ezrsWL17shgwZkuRnOR9YsWKFfe3Tp4/9bXkM/tY1atSwv/0555xjx4JIrpAsDBfJxdhrTSsvv4rKyis9tSka0q1bN+tXCfpmsyeZNhkeaWraY5w1X3/9dbLq5D169Aj/PXwWAX8nirj4GfRKlSqFFixYEO6LLiIiuROZT126dAmvZJM1Rap4MPMsJbTj9GPJQw89FHrxxReTdNqglWf//v2t7adE12233Ra69tprw9kDZBKwUk2GAX8Lvxecv8eWLVus1RrYykdFc/Tu3Tuc1UCnE7Lc+Dd9wpVRKLmBgm7JEwiWr7rqqnDRj+CFNiP02eZ7KqKSBk2/Tv7NfiWJHXp9+sGYPfZBFGYjTdAX0CEAZxC/5pprwv3QRUQkd6H6uG9HxRhBsOwDMAK4YHoyLaZ8CjL3u+uuu2ws8V012GMssRcsOse+beqx8Dfzxev8JAoBdMeOHa2uCzVxgiiA58d76sLwt6fwGv/WRInkBgq6Jdejmikf8D7I9oE3M+jnnXeetblikKcoCyuxoBUJrcQktiiSduONN9oliOrn/M3INvD784IX9nz5wVxERHKHKVOmhD/n6YrhDRs2zIpr0Sfbo+I49yOIi6w0vmbNmlDJkiWtlScr3mSzSfYtcrB6Hazpwgq3z1yjSjnBdTALAfwN/R5+CrOBRRE/6U6FdJFEpqBbci0+wP2Ktb/4WVQKeVEYjfsQeHPd5ZdfntNPWf4XcPuCamwF8H+fyCwFKtL6FDUREUlsbPUqWrRouA1nMJDm+8iiWqtWrQodffTRVk2bdp4E5pHVtulAQsBGwE5hNomtP/74w6rMM15TwC4yq43LqaeeatvFgvzflkrmTJYEbydtnZ+jIJsmTySRqQKU5EoUUrnwwgvdE088keT6v//+25UsWdL9999/7ssvv7TiXbfffrurWLGiO/PMM3Ps+cr/9+abb7rff//dVa1a1b366qvurbfecp07d7a/WbDA2tq1a61QG0VYREQkcf35559WGG3Pnj2ucePGrmnTpq5Lly5u4MCB7ocffnCHHHKIFd/89NNPwz9DgbWNGze6/fv3u4cfftjdc8897ueffw7fTgGvHj16sLjkunXr5sqXL59Dry7vOOqoo1y5cuVsvOYcbPv27XY9510UtKNY2tKlS+3v7G3YsMEKp1177bVW8G7btm2uefPm4dvvvvtuOx74e/KYnMeJJKScjvpFYpHadOaZZyZZFWXm1LcFo4cnl2CbEAp/SHxgRYNia8E2YbSEqVq1avjv6dPUuNDijS0CIiKSmFjZ9p/nfPYH20ey1YjP+Nq1a9vKdnC1k9VsWk5xP/YN+9VxzgN8G6oaNWqoCGc24r2uWbNmuLe6L0DL38b39a5evbplqlEw9amnnrLrmjZtmqxey/z58+1v/uijj1rKOfe75ZZbcuiViWSNgm7JVQiefY9Hf+GDnJQ1Am4ql/r9QsE+0RLfRo0alWRvN/vxg4E31c1VWV5EJPFQUMt/lvt9u0y8EoBz3b333mvBGFWt+ewfOXJk6IILLrDxnpRyXwQ1WOeDgmpcf9RRR4WWL1+eg68ub2K/tp844e/n7d69287J+Pv26tUrHJhzDATT/6lwftFFF4UL6LVr1y40adKk8HES3NsvkigUdEuucvfddydZDeVD3Qfhl1xyiQ3SZ599dmjcuHHJCq9IfOLv1L59e/sbnnHGGRZgM0i/9NJLocsuuyz89+7atavtJxMRkcTAaicBM5/hffr0CV//zjvv2HXsxaatlK/3QYaaX/GkojW38/0rr7yS7Ge5UN1ccsbrr7+eZhG02bNnh0444QTb7x2JAni+Bg8dS2hFBl+VnmNm586d2fI6RKLlEP6T0ynuItHw6KOP2v5slChRwv32229uyJAhbv369e64445zt956qzviiCNy+mlKJvfos7eb/Vzs4S5durQ7cOCAa9Kkifv666/D92PP2LvvvuuKFSuWo89XREQOjr3WEydOdKVKlbJ9vx999JE75phjXJ06ddyqVatchw4d3PTp05P8zNtvv+0+/PBD26s9ZswYd8opp7jPPvvMan5wHT8zc+ZM179/f/fYY4/l2GsT5/r27etGjRrlypQp477//nvb8x3066+/usKFC4f/zZ599oO3bNnS/fPPP3YdtVu++OIL29fP3v9atWrZY3E+QA0YkYQRtfBdJAdXQn3aOJc6derY/jDaTfmK188880xOP02JIlLJ/Z4xLldeeWU43ZyUNlWpFRGJbxMmTLDPbLYOlShRwr4fMWJEkjRiOo28+eab1gIsaNmyZeHxfeHChUluY583K6Wq1ZLz/vrrr1CPHj3C7ViD523s5Wa//hdffBFOKaf+Dtc9+OCD9nP8/fkbk44O2r9xvPjx/u23386R1yWSGQq6JaHxwd22bdtkfZyDAXizZs1CGzduzOmnKlFEcRUGXX/Sxd84+HcvVKiQDeAiIhJ/duzYES5wSssvgupBgwaF/v3331CDBg3s+oYNG9p+YD7rKYYW3LPt24GytxvaLpZ42LPN3/C0006zv9+GDRtC9evXD9WtW9eKp4JCa77NGOdx/u/Ov/nKnm/V55FEofRySVgcuuedd56lE3ukl+XLl8/98ccf7uSTT3YLFy60dKbDDz/c5Xb/m0RL0lYrNyN98IUXXrDURNqQnHDCCe7bb78N306KOa1mihYtmqPPU0REkrr00kvd66+/7mrWrGmpw4zbtPDkc5xtYa+88or76quvbEyrX7++O+ecc9yTTz5p9wPX8/NsKapQoYK1FmPLEa3DGA9yA9KskZvG9MWLF7slS5a4m266yW3evNlVq1bNWr698cYb7uKLL7b08V27drmyZcva/WkBR0tXzukKFSpk4/6WLVvseGBbAVsQrrjiCvfyyy/n9EsTOSgF3ZKwevfu7V588cUk1zHYsv+XPb+ff/659YtMRPxvSa/KTZs2ua1btya5sKfZf8++dU402PvkB2j2PTHJwP51JhzYK8eedn9hb1Xw+0qVKiXspATv00UXXWR7/IoUKWL7w4Ifafz916xZY4O1iIjkvHnz5rlWrVrZ9wTOPXv2dLNmzXLnnnuuu/LKK93w4cNtLPfj0o4dO9yxxx6b6uNNmDDBnX/++fY9j9O2bVsXbxiXGM8JNFMbzxnzf//9dxvTuQSDbt4LLgULFrTzm5TGcy6Meccff7ydB8SbdevWWW91zldYLOncubMbPHiw9VfnuTNWM44HjRs3zt14441u586d9m/28F922WX2/SeffOJOO+00+37OnDnhY0okXinoloTkP6iDmA3/8ssvbbB5//333ZlnnukSAf8LMhAz2x+8MMPrcQLCQBs5wDJAEVz7AZnXzqQDgxqDNjPIDOSRgzzXe/nz53d169a1WWN/YWBMlECck5TGjRvbKklKatSoYSsmfoVERERyxt9//21ZaARY6NSpk5syZYoFVwTfFMdkJZNgvHnz5sl+nsymM844wx199NH27xUrVtjnP2PagAED3LBhw1xOI1gmwOR8xI/nfL93797wfY488shk4zkXJoj9pLkfg/3EOl/37duXYtDO++pxXsD5UHBMJ4MgHlbMCaCfeuope50UTeN5UTTvu+++c/369bPbPF4TK+EbNmxwrVu3tmCbDAmPcx2OJZ8hsXr1antfReKVgm5JOMx0Xn755UmuK1CggFU8/fHHHy3l+Oqrr3bxioGCFCuqry5dutQGZGbywaq0HyQZNFmFZiCmGnu0Bkz+l2eFnIGaYH/58uX2HHgupGdzOyvkPhCnimj79u2TVBiNN6SR165d2068CLL9CZ3HygfvdzycdIiI5PUuI4zXHTt2dE888YR9D8Z1AixWwhl3WL0MrtgyRjVs2NDGRIJtnHrqqdahhM94qpznxGQxKdFz5861yus8RyZ5yboCqe9+TKcKN6vQPH+2P0VrNZoxe/fu3Tams5rO7/fB/saNG+0+jN/8ft6vNm3a2KpwZCXx7MDkAecTvF8EylSdZ0KiXbt2Nj6Toci5j8fzf+aZZ9zQoUOTjN+85xwfBPFMcIBK9VSsF4lXCrolofAhy+DqD1tmQUk7+vjjjy0wHT9+vLWoiDcEuexFmjp1qvvggw/sOfN8GzVqlGQ2mpnvnEwL43kyYPsZegbAtWvX2qw7J0GsSrCXihOJeMP7S6sYjg3SFBmgeS2cxOGaa65xzz33XFym3YmI5Hbbt293VapUsXGGyXOCLgIsJs0JnBjPWSXu1auXGzFiRJJUYyarWdEmqO3Ro4f9PEE76eRMTjNW+eA9OzBRTkYdYzpjDxlX5cuXt0mB4MQ543xO4lwjuOJOkMviBGnqBL+M52eddVaa6fuxeE4E/wTUZC3wPl5yySV2/sa+/euvvz7Vn+X4WLRoke3dnz17tnv66adtpXvkyJGW/cDCAVmBInEpZ+u4iaTfqlWrQkWKFLGKlUWLFg2dfPLJ9n3FihWtRUi8oW3VyJEjQx06dAgdeeSR9lxr1aoVuvPOO0OLFy+2Kq2JYP369aGnn3461K5du9ARRxwRrgp/9913h5YsWRJXr+PJJ58Mvffee9Yq5sMPP7TWIsGq5twuIiLZr0WLFuHK09OnT7dxsWXLltYy6pprrrHbOnbsmOLPPvfcc3Z74cKFQ1u3bg3dcsst4ZZike2oYmX16tWhRx55JNS0aVOrqM6lSZMmoSFDhoRWrlyZEBXUeY4rVqyw59y4cePw66CCOK+N15gdaPnm24ENGDAg9NNPP4W++uqrNH9m3rx5odKlS9vzbdSokf38rFmz7BzEVzOnfahIvFLQLQnTXqRChQr2oUqbqFatWoV+/PFHaxdx3XXXheIFwT89RVu3bm3PlV7hbdq0sd6j33//fSjR7d27NzR+/PhQz549Q8WKFbPXWLlyZRvAGTTj6cSCkwjft/uKK64IHzsffPBBTj89EZE8Zdy4ceHJz2effdbaPhJA16tXzz6XGSu5jesjbd++3SbauZ3eznjrrbcs6GI8iqU9e/bY8+V5+iC/c+fOoZdffjm0bdu2UKLjNfBazj333HAQzGvlNfPaY4ke2/y+8847L3TgwIGD3v+jjz4KH0O0l2Oiw/v444/Dt3EOJhKPFHRL3Pv7779D1atXtw9T+noyy8ngMHjw4HAglV2zs6lZt25dqH///qFjjjnGnlPz5s1Dr776amj37t2h3IrV5Llz54Yuu+yyUP78+W1VmZMRVpjjYcaf1RNmvzmZ4Bgh+OZvw+pKcLAWEZHYOuuss+zzt1y5cuHx4Ztvvgn3XebCqnFKYwdjjA8GGXe8WAa9S5cuDV1++eV2rsHY1qlTp9DkyZPD/aNzI14br5HXymvmtfMe8F7Eypw5c5L9zRmfhw4dmuy+3M+vaNPbPWjnzp2h448/PjzRnp4gXiS7KeiWuNenT5/woOxnw0uVKhUOou6///4ceV4MAMy8nnPOOTYRQMBNytuaNWtCeQ2TC6TSk3bO3+Skk04KjRo1KvT777/nyPP57bffLAvCpzLytVChQuHjiFUTVu1FRCS2Pv/8c/vcZZxcuHBhkttYTWXSltunTJmS7GcXLFgQ/llS0rds2RKz50lAz8q5z5Iiu47J/Vj+znjFa+a1+wxD3pMJEyYkmfSIxTnVd999F8qXL5/9TgLySDwHbiPTjnH+r7/+Co0dOzZUtWrVUJkyZcJjPMeNSLxR0C0Jk5IWvFSrVs2+NmvWLKaDQGoDw7Rp00J169a151C7du3QSy+9lKtnwDPy3pAe2KVLF1tdZmAk9Twngu9hw4bZ34cBPDgY+0vXrl3jYkVeRCS32rBhg+3T5jOXielKlSqF3n333fBn7xNPPGG3kc2WUn0Qti1dfPHFoauuuip0+umn255eaolEE+cQjOF+pZTfM2nSJK2WhkL2HvBe8J7w3vAekY4e7fOuffv2hS644AI7p/P7+zkmCKojn8+JJ55otz/22GN2bHGuwUIMz+3888+326gVIBJvFHRL3GLF2M+A+5QhvtaoUcO+UlRt48aN2fqcFi1aZIOC/1BnpVuBW+oF2K6//norvnbcccdZIRy2CmQXTuDOPPPM8IpFSpM3DNoiIhKbbVdHHXVUeKW6fPnyoaOPPtrGhN69e1sANXHiRJu4JjMqLdRu4XH4+WhtJ2Ps5vf77WsEfQcr5pWX8d7wHvnzMILxaJ3/fPvtt7bHn8cmpZ0gmu8feuihZPflWPETABRO4zyRiQBW5ylg6wvXkrXwww8/ROX5iUSDgm6JS6QN+f3Rft82X4MrlhThyC5U+ySNnN9L1fQZM2Yo2E4nBj0Kr3HSVaVKFfu7ZVfFcwrwEPD7iuv+pC24XSGlwj0iIpI1rB77z9pevXpZQVS6XjCeE7z5cYCxNHLlNNiR5JVXXgk/DnuOo4F6JFTA5jHPOOOMmO5bzm14r+hmwntHBXSqikcDnUc4T/BVyPnKpE1kEVqyCkuUKGG3kzURWaPFT9AwvpMWH08dViRvU9AtcYkPcj/I+rZPfBiTdsSATTXq7EqNo4gLv5sq3aS76wM8c2jr4tMMTznlFGv1kR0o7OaPpbJly4ZrAvjrmBUnOBcRkejxFaUZw4OBEwHvwdp8skWJqtYEYn7lMhr1W1itpY0nj9egQQPLVpPMmT17drhmCllltAHLKla2/bjM34fvKcIXucgxevRoqwEQuQXgl19+sfoyfnxnop8WcyLxQEG3xB1aOgVTgAl4qQZOlVOwn4uV8FgiDfrBBx+0D34CND7EI/cWSeawskyVWv62Z599dmjz5s0x/52kMvpZefq6k4pWvHjx8DFGCzoREYl+X27aZkaOn6xO0paKvbyRCLT9SqXPVKILRVYmvCmc6ccBim5RkEvZalnHe8h7yXvqF0Z+/fXXTD8ef2POC3yle7Yi8D3ZhelZJCHtPTi201FFJF4o6Ja4smvXrnA/TtKCGjZsaIVW+GDPrv3Ay5cvD9WvX99m5++8886YB/h5kd9LxwkVe/PHjBkT0xMgTgKYQWd1heOIlPdgmjkXiuOJiEjm8TlOEUvqn/jPVvbqMrHJ+O6RrcZtZJIFUXSTiVHfIoyvZJllpWf0zJkzbf8vHSyefvrpbC++mhcwrvLeUnuH9zormWysVvtjgE4o1F5J6/zPT8awn5stiFzY0uYXbagtIBIPFHRL3CBNiIrSfqCmCBcIetn/FetWXHyoDxo0yGZWa9asaW1OJLYYXC+55JJwCll2tmahHcmLL75obd74/VTFpdeniIhkDsWr+DylxzNfKZ7G9+zN9fumf/7553BbqE8++STJz991113hn2M8YHz44osvMj3Z6le3W7dubcU9JbZ4j3mvec9p95rZVW+OFQLvtGqucM7GlgMq4lMvAKS4U/EevpAqe7xfffXV0Pvvv5/JVyUSHQq6JW74whlc+vbtG2ratKkVX/HXp9ZSJNqr2wMHDjzofjOJrqlTp1rQS5YDg2MsV71Z5WDm/NFHHw2VLFkyvL/PH2PZWWFdRCQ3YfsXxUZJDfe9lkklDxZAY3Lb76kOftZ/88034XRiKmNnBSutrLiy8koau2qxZB/ea7bk8d7TOSSz++Yjx2LOy7Zt2xb+N8cO520cLw8//HCKe86DdYGYyElpO4NIdlHQLXGBlLJgezCKX/A1eF0sCm8RgA0ePFir23GA1EOfEsaeLj9bHW2+j6dPX/Nf/YWsChERyVz2En21fceIyAlU9nYzwcrtY8eODV/P/fwKaa1atTIdJJMZxwqrr9WhllE5h/ee1qp+1TsrW/XYjkZ/birNB48ptqb5/d+R2wYo2OcnfyjAS+X8P/74I0uvSSQrFHRLXAimlXNh7xVfWYnk61VXXRWTkwM+wPkwZu92bljdpnUHgw+GDBlilUV5L4899lgrRMNKQryjIiknZVw+/fTTqD8+KWZ+EPYDsl9d4UIRFlqSiIhIxlx44YXhz9KUeizTAYTbqOcRLK5GKjkr0749qC+cmtEgj4CdFVZWWnPD6naij+nBVW/6sWdmEuSdd96xBRh/bFC4zSOI5r2IvJ7AnAK8wXNKFndEctKhTiSHzZ49202aNCn878qVK7t9+/a5UqVKuZ9//tmVKFHCPfroo1H9nd98841r1KiR+/zzz93MmTPdkCFDXL58+VyimzJlijvnnHPs+/nz57vrrrvOffrpp27WrFnun3/+cWeccYb7/fffXTzr1KmTW7ZsmR0Hp59+unv99dej+vgdO3Z0Xbt2df/9958rWbKkXVekSJHw7b/88ot74oknovo7RURys4EDB7qXXnrJ/fvvv+Hrnn/+eRt3grgO11xzjTvyyCPD15cpU8Yeg8/lww8/3PXo0SNDv3/evHmuQYMG7o8//nCfffaZu/baa92hhyb+KW6ij+n8DfhbLFmyxO3fv9/+RryOjChXrpz7+++/7djATTfdZOeIOOqoo+xYwpNPPhn+mUMOOcS98cYbrk+fPu6YY46x+8+ZMyeqr00kw3I05Jc8j97NzG772cjg6iOFV/j60ksvRb0lGRWzqYqZKFUt77vvviSZAMHL6aefHr7fCSecEJo+fXqKj0HxGu6fVmGSeELmweWXX27P+dZbb03WjzMrqHLKzLuvrMtX9p4FZ8U3btwYtd8nIpJbsWfbr0LSlpGvjOvU6oj8TGfrEK04f/zxxyS3MRb7DLeU9uemhT3bnDfQmixYIT2e5cUxnb8NfyP+VqNGjcpU/26qkfP19ttvT5Il4c8bORYj9e/fP9w+jPo9nTp1SvF+IrGmoFtyNO2oWrVqSQYbv5fb77Nt1KhR1FLESDcaPny4nRww8NO3M1GwF+rqq6+2/tZbt261C1W32YfuTzIYRGiDlVo/8e+++87e0xUrVoQSBX+zESNG2N+MSqRZaRsTiWOB98MH3/6rv1B8JdYV80VEEh0pvhSn7NGjRzj4/vbbb1O9f7BLxPfffx96/vnnw8E6vb3TO8FKoS2/f/uGG25IqFZgeXVM52/Wr18/e97XXnttuguXckz4/eFcmLjh2PG6dOli1994443Jfpb30S/qlChRwr7v1q1bVF+XSHokfu6NJKzdu3dbKq+XP3/+8L/Hjx/vhg8f7kaOHBmVFLE///zT9erVyw0YMMDdfvvtbvLkya5w4cIuURQqVMgVKFDA0vFKly5tF64jDa948eLhNLT27dsnSdnzSMsiJeu0005ztWrVcomCFLEbb7zRTZ8+3S1evNi2BHz77bdReewbbrjB1a5d21LzSD8jLbF+/frh44I0yQsvvDAqv0tEJLdasWKFfT6zTYexhnGmSpUqqd6fz1uPMZn0YFKm+Xm2Ex122GEH/Z07d+507dq1cy+//LJ78cUXLbWY8TBR5NUx/YgjjnBPPfWUe+GFF+zvRno8f8uD4Zjg2PDjM+nmt912W/h20u45ji677LJkP1uzZk1XtmxZe8/4XTwW479IdlPQLTmCLIsWLVq4HTt22F5qBhqC4e+//969/fbbtu/nlltucaecckqWf9evv/5qgzOB/Lhx42z/dnoG9UTDAM1+6JQwIK1cudK99dZbLhExMLNPjyCcwJv9YdEa/Nu0aWN7uDlxfP/9992HH36Y7FgVEZGU3Xzzze6dd95xzz77rP07pcCHOh0bN25Mct1HH33k3n333fC/mWQ//vjjD/r7eJzGjRu71atX2z7dq666yuVGuXlMv/rqq+3vv2rVKvtbRh4bqe3tDu7b3rp1qy2ogHF81KhRrl69ein+bM+ePcOLOxyLzZs3j9prEUm3dK2Hi0TZZ599Fk4Toi82e2xJt6ISZzT7JFOhvGHDhtb/efHixaFERtpUcK8Xe8Lq1q1r39NeiwrcKe1nu+6666z6aW5onUJ6+WmnnWYpdwsXLozZ76GVDelrHJ/B/rIiIvJ/2B/Ltp/XX3893AaMbTkpbQNq1qyZ7cf1bcJIF6aaNT/TvXt3q1Ye2V4stZRq+i2z13n9+vWhRKYxPWR/w8qVK1sNgPTU2OEYOeecc6yjTUbaf7Gd0NcJWrRoURaftUjmaKVbst2PP/4YrsZ57LHHunvuucdmOVl9ZkWaVCCqi2cVaUStW7e21XNmw5lNzU1Y9fWmTZvmmjZtGk5L8yu0119/va0k8PorVarkEh3phzNmzHCnnnqqpd1FuxopKeVr1651zZo1s2MR9913n9u0aVNUf4+ISKIbNmyYbf1h/OnWrZtd17lz5yTdIMCK9KJFi2yrWKtWrey61157zbKLihUrZiuUjz/+eJIxLSWcF5AhR1o2FbArVqzocpO8OKbzN1ywYIFVIedve7BzP94jtgeSms7PRGKbwhVXXJFsGxpp6eeff759Tzblrl27XP/+/a2yukh2UdAt2Y59ONu3b7fvCWw++eQTS/U56aSTLCCnrUSFChWy9Dv4QCXgJv2IViKppRwlsqOPPtpt27bNBpepU6cmS0Mj/Wzs2LGWUu/vy4W9y4mMfW+kgTNAn3XWWVEJvKkvwN5x9iEy6cN7ye/A119/bSc36dl3JiKSl8by3r17W/Di05yvvPLKZPdj/y6YbKc1GGPQXXfdZdfxNRhYpoZgjBaS7Acn4GaPbm6TV8d0/pb8TZmAadmypU18pyVY54fXT10A/x4MHjzYjR492trXRerevbt9nTBhgv0etpUx4bN58+aovyaRFGVyhVwkU6jQScXOYJXoGjVq2Nd8+fJFpUXY7t27Q/Xr1w8de+yxodWrV4dyi8hUNCpylipVKtxejbS7oNTakYwePTqUG9B+pkOHDqECBQpkOdV827Zt4XY1XHz7keDlmmuuidpzFxFJZNu3b7c0byqW09KKz8jixYsnqyBOCnCxYsXsdt/6ipZg/nP1tddeO+jvIu24TJkyVtmbNlm5hcb0pPjb0sqVv3V6Us2p2p4/f357D4YOHWrXsR2Mf3P+F1n1nXMGtqYF3zuOqdSqw4tEm4JuyVYM0MEPPP+B6duMEIBnpe3Hr7/+am3GGPzpAZ4XTJw40d63vGj//v2hVq1a2UD66aefZumxHnjgATsGCeL5yp7B4LEa2XNWRCSvGjRoUPizkfGWr5dddlmy+40fP95uI0D3rcAGDx5s17Fn+WDB1YYNG2y/b9WqVW3SPi/Iy2M6f2P+1vzN+dunhRpA1BDgWGLSnAUXzh+PO+44u27ChAnJfubiiy8OH4+PP/54uuoIiESL0ssl2/z111/hqtNUjgapZsG9TFQWz2zbj3/++cd17drV0tBmzpzp6tSp4/IC0q2HDh3q8iIqkbL3jb91hw4dstROjPTyokWL2vYG/PTTT0lS2dhzKCKS11Gp/LfffnOXX365pYYfOHDArj/33HOT3Ze927jkkkusbgstGp9//nm77s4773QnnHBCmtt+2ILGz1HpmrZaeUFeHtP5G/O35m9O1xKOgdRUq1bN3Xrrrfb9vn373EMPPWTnjxyXIM080nnnnWdfeXxarh2sjoBIVEUtfBc5CKqXMrOdWgovKeFZmXXs16+fPebcuXOj+rwl/lEtt3r16qFq1aqlWDk3ve6///4kWx2YDQ9mYkyZMsVS0UVE8io6gvB5SJr4J598Ek6H3rdvX5L78e8iRYrY7axK4u6777Z/V6hQwTKVUsOKZbt27Sw1PTLNWnI//ub87du3b59m9uPvv/9uqeT+nJKq7xxrvpI+2yAi7++z2ZYuXWrbH0jPv+CCC7LhVUlep6BbsoX/EAwGMLSJ4KtPBXrnnXcy/fgvvPCCPcZzzz0X1ectiWPt2rXWGo4WNj6NMaNITytcuHD4WPUnjD4I58KeMxGRvIj9r2+//ba1bSKg8dtyOnXqlOL9aQXKZCWuv/76cDowKdRpuemmm+y+s2fPjsnrkPjH355joH///mne79133w2Pz5dccold16BBA/v3k08+mez+3bp1s9vuvPPO0B133BH+WbUSk1hTerlkC9p2lS9fPkm6rk/rmThxolUw79KlS6Yee+HChVbVs2/fvq5Pnz5RfNaSSKpWrWqtQD788ENLW8wM0stJM8eRRx5pLcTYAkFFc2/NmjWWIikiktc8/PDDbuDAgdYdpGTJkta+ybcKSy1VmircVJl+9tln7TOVbiJpjfevvPKKGzFihF3atGkTs9ci8Y2/PRXG2do1ZsyYVO/HtoYGDRrY91R251hjOwPtyNiCFomuJ5g1a5Z788037XvS0v2WMpGYiXlYL3meTz/zq9xUpmS1kNXIBQsWZCmlnEIbpBa1bNky9Pfff0f1eUtieuKJJ9JdFTclu3btCt12222hjz76yFZp9u7da9fXqVPHHrdXr15RfsYiIvGPMbts2bLh8Xzs2LHh7yPTeCOzjVi59im/VOlODauNbEOjy4mKXAnHwFVXXRU68sgj7VwyNcuWLQtXLV+/fr1lZKR2/GzevDl8Pkq3HLaV7dy5M4avQuT/HMJ/YhfSi/zfSjazjvRRpNAZq5Fbtmyx2cgTTzzR+m5mBquNp512mtu7d6/7/PPPXYkSJaL+3CXx8JF21VVXuTfeeMN6fzZq1Cgqj/v666+7Sy+91B1//PHuhx9+sEIsIiJ5xZdffmmrg/Q5Zvy9++67Xc+ePd3JJ5/svvrqqyT3vffee63X9D333GPjdOXKle0cgJXxlAquYdOmTbZiSYGs2bNnW7aRyN9//22r3t99951bunSpK1euXIr3I2OycePGSfp4p4bstdWrV9ux3K1btxg8a5HklF4uMUXlSSpJUlkcBEME2wTIBOIVKlRwixYtylRgxeOuW7fOBnYF3OKxbYE0xlNOOcVSGLdu3Zqlx6My7/r1613Lli1dkSJF7MSQY45jT0Qkr6Dq+B133OFOPfVUt3z5cpvUBKnmkePz+PHj3ddff+3+/PNPSxEm4GYClFTzlHA/UtRJB2aiXgG3eBwLHBP58uWzCRuOlZQ0bdo0WcBNwM4ETuT6IlXxwSQSuJ2gnVR2rUVKrCjolpi6/fbbrbUIgQv7vxicr7nmGnfcccfZrCWrhcySZxRtSJihZJ9P7dq1Y/LcJXExOE+aNMkGz969e2dqEGVGnUC7VKlSrkaNGtbaxk8e0XaEPeS+vZiISG7GZ2j16tVthZCMNdp+zpkzJ8Wge8WKFW7t2rX2OXz66afb3mywFzy1Fk2sjK9atcpWwo899thseEWSSDh/nDJlilu5cqW77777Dlrnh4mhn3/+2RZ2CLA5JoNoRwbay3JsP/3005aRccstt9jPi8SCgm6JGVa0mbn2Ayhp4GXLlnUffPCBBeLo1auXFVrJCFLTKXZFWpvSgiQ1BMuszLz33nuWGp5RBNSs5JCtQY/5o446Khxk/6/zg3vsscdi8MxFROILWWqvvvqqGzVqlAUxZPxQIJWJ8+bNmye5L6vc6Nixo6Wgs9pIsB15P+/TTz+1z9IHHnggU5PwkjdwbNx///1u+PDhdsykhEJ9bdu2dV988YVlZfjtZfSWD2IyiImjDRs22HHse81j7ty5MX4lkmf9b2+3SNQ9+OCD4SIrhxxyiH0NtmMK9u5MLwpjdOzYMVS6dGkreCVyMD179rRWYlu2bMnwsVa3bt3wsep7gRYvXty+0j/0zz//jNnzFhGJBxSTpJAVn3slSpSwImljxoyxfzdu3DjZ52aVKlXstnHjxoW/P/fcc1N8bHp1V6tWzXp/p9WPWQQcI7QDq169uvXYTgnniBxzHLP+OK1Ro0ay+zVr1sxuo0/3nj17Qr1797biviKxopVuiZkdO3aE99f41e7gPi1mIymYkhHMtLNS/sILL7jixYtH+RlLbvTkk0/aKnVG08xZmfHtw/zxjH379tlX9iiSPikikpuRjUbaLUUke/ToYavb8+bNs9tatWqV5L7s9WbrGJ+5rCTy/dFHH51qyyfSyqmZMXr0aGvbJJIWjhGOJYqZcuyk5LnnnrOvZFiwZYHjkFafFE4LatKkiX1l1Zx6LWTGpZaNIRINCrolJqhk+u6779rebezZs8e+7ty5M3yf66+/PsNp5TfddJMVYDvnnHOi/Iwlt2Jyhkma999/32oBZMQFF1zgChcuHP433zOQg31f9PUknU1EJLdiPyz9uSlyNmzYMLtuyZIl9pV9sEEUmfR7Zp966in7njouRYsWTfa4ixcvtrTyBx980J100knZ8EokN+BYYSsCx05KaeZMDvm+3Yz9fv82dYCCqHSOyMdggt1PsotEk4JuiQn23WzevNkCZRCoMJPolSlTxp199tnpfjxWKK+++mpXoEABW7kUyQgmaZisYeXaH5PpwfFG4O35IkBkbnBMUkyN+/zyyy8xed4iIjnt22+/tYCbtl+sGlKT5ZtvvrHbfHATXD1kNZz6LUxMsirOZHkkMoWo6cLPs4oukhEDBgywYmkcQxxLkehg4msJ+UzLadOmpRh0M6nkM9guu+wyK9rG8ct+b5FoUtAtUUf/zvPPPz/cS9H34fYrgi+//LJ78803M9TnmBXK6dOn26xlsWLFYvTMJTdjsoYAuU+fPhn6OQZ1jwHcH+P+KxNKd911V5SfrYhIzqMoGu2aaKfE2A2KVDHpyIoiAUoQ28bGjh3rZsyYYf8uX768BTCRqEC9ceNGSxVWWrlkFMcMWxLYmsAiTyQCcjqOgJZh/rilwG9w8Yfj87///nOff/65XefPS+lUQramSDQp6JaoY981q9J+IPUBCvtlqGTKLHiLFi3S/XhUjL7zzjvdhRdemKHVcZEgJmueeeYZq2buB+H0YOXmoosuchdffLGdfL700ktJ0tGogtq3b98YPWsRkZzz0EMPubfffttSdEuXLm3X+QCFwCa1MdsHN4z5kQiUaCPGbbRjFMlsmjnHEH3gU1qV9pPhLPywYEPfeLqapJVizjYKJo6GDBmicV2iTtOLEnUUWCHdh1lsjBs3zgpY0NuT4ioZxb4w9oLzISiSFV26dLEgmkmcNm3apNozNoj7cAxHqlevntUuYIKpTp06MXrGIiI5h89L0svPOuus8OelD7ojU8sJzunl/eWXX9o5QKVKldzll1+e7DEpgFWiRAnXv3//bHoVkltxDJFKzjEVWbOFLDXa1kUG2kG0FGOvtz+mue+sWbNi/rwlb9JKt0QVxSeo6MxAS/pZzZo1LdBhxvHMM890rVu3tuqm6cVe2UceecRSghnARbKCk0aOp6VLlybr25lRvjjLzJkzo/TsRETiS/369V2zZs1s7PZSCrr/+usvd8UVV1gvZV93hQlJ38HEY/x/4403LL2c7T4iWVGwYEELuNnSEHluyXifVsCNunXr2leqnIvE2iH0DYv5b5E8g5Sxm2++Ofzvfv36WfGqW2+91fbH8CG4adOm8H7vg7nttttsFpP2EJF7x0Qyi1UbWtn4diLpQaXyp59+2n6OrROs/rDSTYFACqox+M+dOzfmz11EJLswaT558mSbrLz99tutiJrv6LBr165w68758+e7li1b2m2//vqr7Y398ccfwx1MsvLZK5IW9l+zTYEsC7aPRWJCiPTyn3/+2c4lr7322nDV/a1bt9rebiaH2ApJNibjOtXROUbZPsaWMpFoUHq5RBUpY1wYjJnPIa188ODB4YIUTZs2TXfATfVzghwCbwXcEk1sVSA9/JVXXrF2Nunx+uuv24kn6DvLySd95ymu5ld+ON7V+kZEckMgQxE1JtE7dOgQXuleu3atfWVM9gE3PvrooyQFUytWrJgs4F6wYIH74IMPLA1dAbdEC8cS55nUXqFifmSvbWoIffbZZ5ZZQb0BsiZ90E2dAo5jsiqpyE+mBt9PmTLFbmevOAs/jPUiWaX0cokaZgkff/xxK3hGwM2qNgNxMI23U6dO6X48KlIWKlRI7UQk6kgpozAas9kMwuld8fEIuOFPOln5ZiD3bUdERBIZfbh79uxpwTZBd5UqVez6NWvW2NfIAmg+6PaFU1lNDOKcgJXyU045xXXr1i2bXoXkFXTMYSKdYywygZd2ofBjfTAjjfPUWrVq2fcrV64M7/Pm2Of8k2P1wIED2fhKJDdT0C1Rw95W0nKYHQcr3sFB2PdLTg8GdtpBUJnSp7KJRNOgQYOsQF96+76TQk6NgiDSKEFRNtLWGjZsGJPnKiKSnWiv5CcUg9lpKQXdTEKykugRpLOtLIiVQypEky0Uuc9bJKs4pji2Fi9e7KZOnZos6A4WTeVYDZ6XRgbdBNtktnFc095WtQckWvTJJ1FtycS+GfbVBPlZR3omRt6WVvovA31GeyqLpBcr06SWDxs2LFOr3ZyM+p8jvVzlMUQktyBoprXigw8+aNvFIoPu4FhO2jirgT5lnCwi3+8YfDbyOKya045JJBbatWvnWrVqZcdacDym7orvMEJwzrH68ccfh2/3k+kqpiaxpqBbooJCFRRI6d27d3h/K5XMg1jlTk+LJgpbsOeLQZ9K6CKxbDfCnmwqn6bHueeeG/7e96HnK3vASK+kZcmKFSti9nxFRLILn2ek644aNSp8HfteI1e6Cbr9PnD2vgY/J7Fo0SLLgqM+i0iscH5J0V5a1gWDavgFnP/++y9ZirnfOkH/eO/PP/+0Y/bDDz+049/XKhDJCgXdEhUUm8ifP799T39OzwfNzDIGVwnTwgccAzftR0RivdpNnQFSzNOzUs2esaJFi4YH5eC+bmbZL7vsMqvYLyKSqHxgQrYZq4C0DfPXf//99/Z9tWrVwve/55573Nlnnx3+tz8X8Ph8ZWXct1kUiZX27dvbVrDIbWPUGgou+sybNy/8PUX//HmsPw+gCjrHPVsl+vbtG55YEskKBd0SFex9oYjaQw89FN4TA78XhurlVJBMz4r5c889Z32+fXAjEks33XSTVR0nlfJgSJkkfQ20FuHk8thjj01yn23btsXsuYqIxBrbbujQQIsl9rn6gHr79u22mk2KbtmyZcP3Z7ynPoYPxoOVyTdu3Gjj/w033JCuTDeRrODYJEty0qRJdux5nE9SmTx4rukD7PLly9tX9nn7rRR0ITnmmGNszOcxly1blu2vRXIfBd0SFa+++qqt8pGKAwZsX6yKgZsVxfSYOHGipaVff/31MX2+Ih6TQWRiMNmT3l70pKGRls5kE+mXOPXUU20VyKdfiogkItou0YkhcqsMbTxBKzC/vcbzYz5Vn4Oo80JQfumll8b8eYuAY41j7sUXX0xyPWM8bWjpH08Kup8EYgLdt7djtdtvn2AiiRZ5TDTROk8kqxR0S1SceOKJVrnZD8RXXXWVzYpXqFAhXOE5PRigW7ZsmSR1TSSWGHipRUDFU+oJHMzxxx9v6WhsgWAW3FcsZ0WI20REEtlTTz1lFZ9ZnQ4iWEGwmjkrikyS+z2ywbagBCuvvPKKBeIFCxbMtucveRsBd48ePawDTrDdF63AOFaDx29kirlfHfcBOQWAVW1fokVHkmQZRVKeffZZC0BomwT2wpB2SzBDQM7M+cF8++23bv78+e7qq6/Ohmct8v8xQBNEjxkzJsM/SxEWZsrZ4x1MZxMRSUTsvSZ4fuCBB6wwVWTQ7dNxfdA9cuRIC27IaAtOmL///vu23UZjumQ3jrmffvrJffDBB6neJ1jHxQfdwWJqItGmoFuiEnQTMNMf0Qcd7J1hTwwrh+zvatCgwUEf56WXXrKiVF27ds2GZy3ikuz36t69ux2DvohQWgjOS5Ysaas3DNZ+FYeWONQxqF27djY8axGR2Fi3bp2N62wPSyvo9v28/edfcN826b2M/cG9tCLZgaKnp5xySrIUc7qMVK5c2Yr8+iw1lClTxr6SoemxmMT2M8Z4Vs/feuutbHwFkhsp6JaorBIOHjzYZseZOSTFnFlGv7eVVe/IaqaR+DnahFFhklVDkezWq1cvy9QInkSmhr1e1B6gTzcnoj79bNOmTVa9n36fvrq5iEiieOONN6y1V926dS1lPLiXlZVD+CJqFKMiMPeC1cl3795tNV74XBXJCRx7M2bMcHv27AlfR6E0VrP//vtv29ftu+2UKFHCvvqCgGBsJ0uTxSOKrPmaRSKZlbQShkgmPProo+7NN9+0fVszZ860GcFgJegmTZoc9DGWL19uAUvnzp1j/GxFUta8eXNXrFgx29t9sMwMiqYF+YGbn2PSiFVz7QMTkUTz8MMP26QhLZU+++yzJLf5ys4+QGFi3WcG8flJPRZv+vTp1ts4uMdbJDvRL54WngTeLOjg9NNPD9/OsUuhNDIxUgq6L7jgAlsxJ/BmMUnFACWrFHRLljFAMxj7gmmRwUZ6UsumTZtm1U+DH4gi2YlBtWPHjnYsUnU/LQzEQVT6ReHChdPVekxEJB6VKlXKUsubNWuW7DZWr8HkJILVzVkRZ8uNx+coWW4pFa0SyQ5sg2Cs5lj0QTfHN8ep3zZBu9DUgm6u53L++efn0CuQ3EZLMZIl3333nX2YsW/GtwwhbSejQTerix06dLBiViI5hVWZr7/++qAF0YoUKWKV+RHcw8isuYhIomLPK1tjCLonT56cJDU3MuheunRpihltVC1npVur3JLTzjnnHCumxjHpNW7cOPz9V199ZV9TCrpFok1Bt2QJe1yuueYa28M9atQou469Lx4Vzel3mBb2y3z++ef24SiSk9q3b28r3u+9995B70v7kcgKqPSxff75590tt9xiX0VEEtG1117runTpYtu+DhZ0U0gy2LebdNy9e/dqTJccx8QPE0cff/xxkoJ/HgWAUwu6mXziWGYC6fXXX3d33XWXgnLJEgXdkiW0BSOFLJhWHgxCSDk72Oo1AQ4/S2qvSE5iBZt9iWReHIw/7j2/4t2nTx/3+OOPu/79+8fseYqIRBtjtx+/WQ1k9fqYY44J3+ZXvX3Q7QunMdEeDM75/KTYWuQ2HJHsxjhNZfLgmB5c6fYFf+lgAiaL/P8DpKBTvZxaQ+znHjJkiPvkk0+y/TVI7qGgW7KEHtzMhk+ZMiU8UwiKSZF+e+eddx70MfgwJJXND+4iOT0zTtVeX6MgNdWrV7cVHgoH0puWr+D/AyaRjjvuuGRbLURE4tXw4cNtxZrPLvpvE2D4SuXUraAwWjBACW6x8RltBCyM6XyOBrfeiOQEjkEyLjgmfTDNlkffUYdxm+t91xy+96no3FalShU7ttk+yb+DaeoiGaWgW7JkwYIF7p577nHjxo0Lz4ITiFDFecOGDdZ3Oy20XKLwlNLQJF5wLDKwHqw9CJVRORH97bffbLbcn4DScoeTU4oRqUaBiCQK2iVS0ZnPtciCqLQH83yAQnCOqlWrhoMYClPRkkljusQLJoC+//57t2bNGvs3PbqZVCfA5jyVwDzY1tZ3I+H8lZZ4y5Yts/sz1p933nk59jok8Snoliw56aST3BVXXGEpOL6CM70N2efNzKLfA5YaWpKwb4a9tCLxoGLFirZyPX/+/Az9HFVRsX379hg9MxGR2Ln33nvdyJEjU6xH4Vf4CMap1ULBSWpXoHbt2uH70WrsiCOOcK1atcrGZy6SOo5FMjg4Nr1gDQIEJ8g5JxWJBbUMk0xjhpB9LqTc+JlvBmP2xZJWTvBNkYrg/pmUZtYLFChgwbtIvKAPN8dmerE6VLp0afteQbeIJCLGYS5btmxxdevWtXF9yZIldpvfKuODE1LPV65cmSzo5nOzVq1a4XMCkZzGKjbHZEpjuq9jwGQSxywBt1/pFok2rXRLpm3bts0KTVB9/Nlnnw2n4zBbTsCNSpUqpfkYfAiyv4ZgXSRenHLKKbaSc+DAgTTv17NnTxusORFlDySeeOIJG7yZTLr99tuz6RmLiEQHq9rLly9P0ofbB92sYmPGjBnh2whogmM6n58i8YRjMhh0L1q0yLZCMn53797drvMp5sGVbrZJUDCQjE72dR+sG49IWhR0S6YxE06PQyqUd+vWLbzi9/LLL4cH55IlS6b5GBqgJR5xTDLb7feApYZ9jsySs4fbz44zCcX1/HvVqlXZ9IxFRDKPz7DHHnvMxnPqUcycOTNJ60SfXu5XuoPVyk844QT76j/zNKZLvOGY5Nj0ATUBNDWF8N133yVJOQ8WS6Oo6qxZsyz7gy2U3DfYoUckI5ReLpnGrCCzgOzbHjp0qHvnnXfsw2rXrl12O9XI06peSmEKilQMHDgwG5+1yMHR6oZjl0mhYOpkJF/ZN4hZcfaEFy5c2Aq4iIjEO1olDRgwwL6nYNRLL72U5HYfiPjAxG+jYb8sn3dgdZzgXUG3xBuOSTLXyN6g0K+fKAIZm/DV+YP7vceMGWOBOtvHOC8gq4OgW5X5JTMUdEuWMDjTo9N/APkPLRyscjmr5NAALfGGWXAq8hJ09+rVK9X7HX/88SkWVHvyySdj/AxFRKKHgIT2SAQg1LSI5AMRP8b7biWNGjUK79/m85L7pTVRKZIT6tSpY8cmxyhBN7WIyNpg2wTnscFjO7jd0Wdxom3btjnwzCU3UdAtmcaemEGDBtm+bT8Ak17uHazvNh9+rJbT71gk3veApcQXTwtS5VMRSTRsBSPzzH+GkVrOZPpZZ52VJK2cIIWVPv85d+KJJ4YfQ0XUJF5xTNasWTPJmM7CELWJ2BbBMe1ruKjGkMSKgm7JNPZuk3pD4Oz3swaD7vTs56aIWmTrBpF4CbrfffddG4hTO0Z9m7AgBnEKC/KVPrZ9+/bNhmcrIhIdjOe+zzb1KQi4g0E3qeh+X6tPzfVjekqr5CLxOJHO+Mw4zbHMMR2ZXs6/qd5PfaISJUq4Dz/80K6jV3dKE+4iB6NoRzKNGW36a9M6JCUXXHBBmj9PUYu02omJ5HShQE4+169fb2mXKUlpYoltEwsWLAj/u3fv3po5F5GEQT0K0nGLFi1qn4EE3Pny5QsH4RSV8ii6BgIXCk9S5VkkXsf0sWPHhvdkly9fPrzNkY47kenlpJ2fdtpp9j1tcB9++GH7vnLlyu7MM8/MsdchiUvVyyXTrr76ateyZUt39913u5EjRya5jSClWbNmaf78Tz/95MqVKxfjZymSOb5IGtXIU8PsNylqDNI+AGevGNdxkkqxlmD2h4hIPJo9e7bVqKCexeDBg61l4vz5812RIkXsdr/STcDCZ5yfMOczEBRQZRVcY7rE85jOMfrLL7+EV759y09qE/ligX6Cierm9K2vUKGCrWzz/0KZMmXs/xGRzFDQLZnGBxKzf3fccUe4vyGzh3yIjR8/3lJ3UsOH244dO9K8j0hO8sdmWkE39+FkkxT0+++/365r0qSJXceeR1aBfF9bEZF4RTcRVvtoi7Rz585kt/tAxNdrIRgBq+F+Eh0EJSLxPKb7Y/Xee++11W2yN3wFfviJJo5lMjI3bNjgbrjhBqtdRJbHwRaURFKj9HLJtIIFC7qLL77YZgl90E0l0/vuu88KsrDal1J152C7EQXdEs8plhzXaQXdQQzcwRUhEZFEwcr1iy++aJk5HTp0SHZ7gQIFLKOHIIWgnD7e8GO//5zUmC6JMJEeWWGfPd2+4JrGcIkVrXRLpl111VVWlIIZ8MmTJ4dXvx966CHbz/3xxx+n+rOaFZd4R9YGx6c/Vg+GtLXIFSERkUTAZx1jOjUomCynZzfpt++//37489C3AV29erXbvHmzfV+sWLEkQbcKTEkiZq/5oNuvcovEgla6JdNYrV67dq19WFEB0qeosRcMvnd3SjQrLomA4/NgK90M0hz3rARhzpw5VqCF/y/4unjxYls1FxFJFJs2bXJffvlluFCaTytnWxhdS4LXgc9Jvteko8QrVrGZJPJj+owZM6wlHnUKLr300iTbJUDRNS7nnnuubb149dVX7efJCGEbmUhGKeiWTHviiSessunUqVPdxo0b3VtvvWWrgn7FLy186JGqduyxx2bLcxWJVdDNHkif5QEmoHxBFlaE/PciIvGK/apMGLKHlf3aN910k7v88sutrafnV7qZZPR8zQrGfk2iS7zjGPXZawTbvtCpvy640r1ixQprE1a9enWrzM99uOzevTuHnr0kOgXdkmn16tWzlDSCjokTJ1rQ7ft1HwyBDD2OKbomEg1U0B82bJgFvbQGefrpp13Dhg2zPEBzEpoR9PCkajnVUCtWrKhVbhGJe2So8dkFgu6UPvd80O0nGkEKuh/TFXRLPI/nkRPpwawMP5HkMzdw2WWXuRo1alg3HhaJ6EFPlxLOfUUyQ0G3ZAkVmull6Pk+h0hrxZvUdO39ij5auPXq1csuecnbb7/t+vfv70aNGmXF/EaMGGE95Nn+kFIv7YwM0H7rREqCM+Ve06ZNXb9+/TL9O0VEshuTg+zlZrLQ9yaO5AOSYNDti04xpleqVCmbnm3ekRfH9FiN535Mpxq5P3+NLIQabHnH5JOv0g/fJk8ks7TMKJm2fPlyaxn2wQcf2AejD0K8YDAeiQ87vwc2q2jVxP7xlC4MWJL7Pf7449Y3nnRIBkkGa46vV155JUuPS2VePxinhFZhkbRlQkQSDat3bBOjMvkLL7xgk+Zz5851b7zxRvg+PiAJZrT57TPRGtM1nkusxvPIMT14HPvv6eUtEita6ZZM4wPwySeftIFw/vz5NuMdXN1OK+hmoD788OgcflRZZZ/NypUr3aRJk+y64cOHW5EM/2/JvTjmqKLPBJDHtoW2bdtaEbOs4BhNa092StkcnLhS74C9jqx6169fP0vPQUQkuxFEt27d2r6nkFShQoXCLUCDwcoPP/xgK+DRGtM1nudtsRzPwTHqJ8t9HZbg9z7oJuNj3rx57sQTT7RtlExA0aOb8Zw097QKBYukRkG3ZFrlypVdixYt7EOKFW72xwSDEPbCpIYPvWgF3ZwMMAtK0O9T1rmOx/d70CT3YmWGbQ3UCAji3998802WHpvAOaXVbC+lVfA77rgj/D170ZYtW5al5yAikt2OPvpoV6dOHVvdJp08GHQHgxW/FzZaY7rG87wtluN55JgeTC+nOrn/PWDS5+yzz7bzWyZ7mHjyP59W9ptIWpReLpl2ww03WBpQzZo13bhx46zIhMfgmFaaDh96FKaQrBkyZIidkPjLwoULXZ8+fZJcR+sXyZwpU6bYnu3UVruD2yk8TkypgMokVLVq1bLhWYqIZB19ugl0WbmeMGGCFVejT7cPfoMr3T448QG4xvTo0JgeW0899ZRVJQ9OGAVXrX1lcqqV+8UjJgGoYM5EVO3atbXKLZmmlW7JEvZz33vvvTZYk4LjtWnTJkkQHkkfWtHBYHz++eeH/92jRw+rQNu1a9fwdcG/S25UokQJO9mjkE+0i/X5k8zUquwzCEf69ttvbWWIlZlg+xERkXhGX27/OcrnWKTgSjcpttzXbyPTmB4deX1Mj+V4DibCKcgWXOkms4J0cpx++un2lSwPirlVqFDBenL7IFwkKxR0S5bUqlXLBoTmzZuHW4xccsklrlu3brb/hg+rg+2riYW8cgJARkEw5Y4iIVT3ZB9SXkEaIm1rPvroI9e5c2e7jtVp/n399ddn6bFJD+cEILUVnMjK5hRRo78t1VeZMWdfGisXIiLxbvDgwe67776zVT3qUXh8njLxyCorQREpwL6v8dKlS93FF18c0zE9r4znyOtjeizHc7Rr1y7cKsxPIpUvX95S13mfCbLB3u1gPRb2dH/22Wd2rhv8f0MkIxR0S6bt2bPHPfzwwxZ4dOzY0WbJsWTJEvf666+7Cy+8MNWg+2B7ZbOKFUieF7P1VatWjdnvkfjAjDQ9NcmuYAWGFiPMXFP9NCs4RjlWUzN58uQk/yZdjUqrnvrWikiiYByPLArZpUsXt2PHDktpJvilmvSCBQss8AZBeqzHdI3neUusxvPI2gN+Nd3vFacfd0poV8YebyaabrnlFgXdkmkKuiVLAyGBNvtdnnvuOZvxxtatW+0rA3Nmq0JnFR+Sjz76qM1UBnuKSu50wQUX2IkhWx04OTv55JOt2m1kMZaMOlhF3tWrVyf5N6sRxYoVs3oH/G5VLheRRMXKH/u6WWlkXCet2Qfdv/zyS5I9sLEc0zWe5y2xGs8jx/TIFHbqE/nJc2474YQT7N+LFi2yLRWdOnVKtYe9SHoo6JZMI+X2vffes3QzPhAbNGhgwbff47Vr1640A/a9e/dG7bkwExr54RmZ+psX0OIiryL1LBrpZ0Ecoynt2/Y2bNiQ5N99+/Z11113XVSfg4hIdmCP61dffeWmT59u/+bzlLotTCb6/bQ+MPEIjqI9pms8///y6pgei/E8ckyfOXNmktvYx41Zs2bZFslmzZpZO9xPPvnEtk+y1z5aXXckb9LRI1nSoUMH+3AizXb8+PF28cF2Wm0VSLv1K+Ii8YpjNK0Ucb+vkQkoMj6ocSAikqifd6TOkkZOZwb21vpWSV5k0E2lc/A5qarakgjHeKVKlex7+m6nFHSTxcFeemobUMuA2i5cRLJKLcMky/hwIuDwBViC/L6vSAzQfLCp36EkctDtV184/kFq+X333WfpkGR9iIgkCgpLkVJbsWJFS/FNKZ03Muj2/Y1JPfeTkCLxym+T8OeuQbQDw9VXX23bJh566KFwi7xoZmZK3qWVbskSVrUbN25sM+KkAvl93R5pOeyDieQ/9AhafLVIkXgcoOvVq5fq7aSp+fRKqq6ySuRbj1CwhXRzEZFEQMbOunXrklzHfm66MbCPe9iwYbbPO5ipxmohaen+OlbI81K1cUkcHJt+Ip3vfV0CP+FUtGjR8L+pcM6xzuT5+vXr7djnXHbKlCk59OwlN9BKt2QJ1UQJtocPH27ByTvvvJPk9o8//jjFn/Orh5oZl3jG8ZnaSjer236VxyPgpugLvT6pvioikshIr6X1IV0ZaAOKYFcSgheqP/M5SbEpX9NFJN6wWs2qNccqC0Ycr15K6eNMnN96660WcPuWoCJZoZVuyRJSzVjpZi8rH2LMkjPr7fl+iJF8IKN93RKvCKqpYJpa0E36WZEiRcJbKCig1qNHD9sXllabMRGReMcKNyuBZPDQqomKzmXLlrXbGPMnTZoUvi8r2z57jYnKwoUL59jzFkmNP9/kWCULE76/vG8Ddv/999ttN910k1Uqv/TSS62CP3WLtB1Sskor3ZIlDK7Mfp999tkWgLz//vuuQIECBw26Kb5CYKKgW+IVwTSBd2pB99q1a5O0yGnRooVts1DALSKJiuwdVrLZOsPK3ltvvWV1Kh577DFrF+aDbr8K7lsnaiJd4p0/NjlW33zzzfDkEnwrMDryUL3cT6o/++yzlrHJ/wvlypXLwWcvuYGCbomKd999140ZM8baWxB4gP0xjRo1SvH+zIzTgkQDtCTCAJ2S2bNnJymuQnoaNQqWLFmSJG1NRCRRsI/1yy+/DH+GUSA1EmM8+799wLJixQoF3ZJQYzr7tMExTDYHLW/x6quvuqeeesq1bds2R5+r5E4KuiUqunTp4q699lp3xhlnhANt0nWWL18eHpgjUbjCf/CJxBt/bJYvXz7F2z/88MPw96wK9evXz2bCWQViT7eISKIhO41J9E8//dS21/j9rOzdZkWbMZ1stuAe2FdeecUVKlTIJto1pku84tikw0jBggXdzz//HL6eekRHHXVUeMskYznZmNQqmDZtmuvZs6d9Fckq7emWLNuwYYMF3BSRIkVnxowZdv306dPdBx984Jo3bx6eRQyi4NRHH32UA89Y5OBY7aFlDhkZkTgB5aTUo3gQWyvAgK6gW0QSVceOHZNdN2LECNe/f3/r283+1tatW9tnJAjO9+zZY2O6v04k3nBsEmCzdSw4OeRbhQWxbZItY6SV06GEc4Fzzjknm5+x5DZa6ZYsY3WPIiuko3311Vdu5cqV4cAE7AVLCSlq7ItVtVOJR1988YUdoym1v2EG3B/foIDagAEDLBWTiv4PPvhgNj9bEZHYadmypaXhUniKz7527doluZ3iU3xe8rkpEs9jemRrW1qBsWh0ww032EKQr8jP8V6/fn131113uW7duuXY85bcQyvdkmUMwosWLXInnnii7ekmnZwPLio+Yv78+Sn+HB9+fLgtW7bMVsNF4gXHJQP0Nddck+Ltr7/+epJ/E2RXrlw5m56diEhskbnzxhtvWIslLmSu0aGENHIwZlNIzW8fmzp1qmX4MMnO/UjPFYkXrG5v2rTJzjvpO+9xDLdp08aO76efftoKqX3//ffu6quvdhdeeKHVbVEBNYkWrXRLVLC/i1RyqpgTcJOC5pF6FlwV9KiEyj4azYxLvNmyZYvt+fJFASPNmTMn/H316tUt4E7pGBcRSUTs5abCM6nk1K/YvHlzOOBG/vz5k9S7IFDxn5ca0yXe+GOSY9S3C0OFChWsRkGlSpXclVde6a644opwdhu1WhRwSzQp6JaoadWqlX14URmSVDSPYCQyncevkBOsa4CWeB6gU7Jx48bw91WrVrXUM/aF0aObyScRkUR2ySWXuOuvv976FZPJ5nt0g/3brH43a9YsfB1tlSiOSqCiMV3iDcckLW6ZIA9mYVCbAKSRv/TSS+7uu++2VqGgoCD7wFMrBiySUUovl6ihgBoVyxmk9+3bZ/2KfR9j0nZee+21ZD9DUDN37twceLYiaQ/QtM4Jnmh6HNPBVmGkVQapT7eIJDpW/VJy66232nj+wgsvuF69elkKOgjC+dwkeFHQLfHGH5sE1Gxp9C6//PJk96WAGoE5GW3s9f7ss89SLAYsklEKuiVqFixYYL2LmUlkz6sPuCPbK0UG3c8995wF6cHUNZF4LaLG9glOMEGhFaqbs9LNfWvUqKHK5SKSa7Fa+Ndff7mFCxda4O0n1+nbzaogn5usEIrEE47N8847z33++efh8ZtsSxaKxo4da5maTLKzTYL0c47n9u3b279PPfXUnH76kkso6JaoYda7SpUq1rP7wIED1krM732lsAozjHyQBfFhRvo5M4k+zUckJ3Gccjz27ds3xduDqzi01pk0aZKln0Ue2yIiie6HH36wcZzaLMWLF7cCU7ROYmsYE41sqeEzkc9NghnG9Mcff9xt27YtxXaLItmNY5HzUY7Ne+65J3x9586dbasYWykIwH/66Sd3wgknWAcegnPOaTmuU5p8F8mMQ0Kq/iNRduedd7onnnjCCrHcdttt7s8//7TZcD74GLSDCFYoVEGVSAZqkZzGLDf95tnHyNfI45W6Baz0gEJDHLsiIrnN8uXLLbjOly+ffeaRxbZu3bokQQirhAQtaNKkiZsyZYr1NH7xxRdTTVEXyU7s1aYTCe086bLj0WGHoJpWYRzjZGqKxJIKqUnUFStWzAZoiqfR/xCNGjWymcRItGtg1px9sZr/kXgwbdo0V6JECde4ceNkty1ZsiQccDNIE4QzyUR6OS12RERyC4pDkr3G5CNpuIMGDUpSVIq0ciYdqfyMxYsX24o49+VzVCQecCxyDLMlwmNFm+O7Xr16dj2twjxWxSkWKBJtCrolqgic2dfao0cP9/LLL4f3t3711VfulltuSfFnCMzZN/PNN99k87MVSY4JIFrfpZQuPnDgwPD3BN+kWj7yyCNu4sSJtuIjIpJbsKLNajd1LKhOfvHFF4c/F5955hkLtmkpdtFFF4V/5tJLL7UxfebMmeG9syI5Zf/+/W7WrFl2TL7zzjtJiqUFMzZoX3vjjTdadiZby8jWePXVV3PoWUtupaBboopA5LLLLrOKps8//7y77rrr7HoqQI4ePTrF1mHs5abnp2bGJacx+bN69WrLvkhpQoligR5bJmrVqmWTTATfPsVSRCS3IBhJCdvFtmzZYmM9dVw8KkMzphNw+5ouIjnFFz5lAShY0Ldo0aK2uu0z1+hDP3LkSNsWyXH9999/u5NPPjkHn7nkRiqkJlEfoAlAduzY4Zo3b257wPjA27p1a3jvDHtmgwi4zzjjDFthZJZRJKcw8UNFco7HSKSP+9RKetF+9913VjAwpbZiIiK5CR1G1q5da3u6+Z7VQCYc2Vrz448/JpmcJGuNvbOM6WeddVaOPm/J2zgGq1atavu3Ga896g8wuV6+fHnb612mTBmrus/E+qOPPupWrFhhRQJFokmF1CRmRowYYR9e9PXs37+/XUc6T0rVIF955RV31VVX2X6wY489NoeeseR1rNAwcfTBBx8ku410NL8n7Prrr7detSIiud2nn37qOnToYJ+NjNHUvCDQDq6CH3/88eHgm/ZL7JWl0CQriNRuEcluTJIzKd6zZ083d+7ccOcRivfSqrZPnz6uZcuW2hom2UafhBIzmzZtshVu2i9VrFjRrmOOZ8yYMcnu62fDUwp2RLLD7t27bZY7pdRyJoooouZxQslAffvtt9vKj4hIbkXBKQJnenSTcsu2MYqoeYzr7OX25s2bZ4UoGf/pjyySE9jOyDYIWnsGx2kqmVO3Zf369e7JJ58MX//zzz/bWC8SKwq6JWYuuOACK7zCXm4KVHh33313svtStIJBOljoQiS709AYcBmMI/k9Xh7ZG+zhJpOD2XIRkdyqYMGCVpmctHGKot5///22xcavglMZmgAmGISz/YZOJhrTJadw7NGmlvTyX3/9NXy9r79CXRb2dlOTgMK/XE9xQPaBi8SC0sslJihOQVrPrl27bEWQdNxgCwZS1EqWLJnkZ0aNGmUz6KyQa5+sZDdqEKTWq5PigK+99lqSlR9SKU899VTXu3dv171792x+tiIiOW/+/PmWolukSBHbF7tmzRq7nu8JZgh8+KwkwBHJLkySs1+blnZMGj388MN2fc2aNa1gmu+s8/bbb9t9OH65H9kZTBjRUkwk2rTSLTFB8MKsIf062etFwRU+0Lw77rgj2c+wKs4eMVbGRbITJ4qLFi2yIoCR9u7d615//XX7nvRKVnyoesrEEa1IFHCLSF7hC6VRmIpJcla5n3rqKfsMHTBgQJJWTXye8jkZ7IEskl1FUUkXpxbBs88+a9cx8XPMMcfYJBHZamA7GRlrgwcPtu4lZLwp4JZY0Uq3xHSmkUrQBDOklxOA09sTxx13nPvpp5+S/cwVV1xhBS/48FPxFcku9JCnJydp5EwYBZ133nlu0qRJ4T7dDz30UA49SxGRnLNz504LWFgJLFSokPvll1/sc9Pv56Y1KFvF+AqC7QcffNBSfKdPn57Dz17yEoJtJszpK0+PeTCOc35JViUT5n61WyS7KKqRmCHgBsE1xVQmTpzo2rZta9cx1+P7IwaRqrthwwY3Y8aMbH++kjexIkNxv169eiULuP/88083efJk+/7www+3k0cyMZg5pxWeiEheQdVyuovwOdmpUyer29KgQYPw7WSzseeb1UTQApSuJPRH/uGHH3LwmUtewqLNzJkzXefOncMBN+nj/JusDLYw0o3E07Ep2UVBt8QcgzMpuFOmTHFDhgyx60g5Y4Y8UqNGjWyfbLCipEgsvfHGG1a5/Nprr012G+mSvjc3M+b8m2wM0iqfeOKJHHi2IiI558UXX7SiabT5fOutt2zrGChCyedirVq1rEUTVq9ebSuKFFTzWW4isUY7TybI6b/tPfDAA+FWtaVLl7aJc7rm0DGnWrVqrk2bNjYBLxJLh8f00UWcc1deeaWbMGGCzYL71W1Wuglg+KAL7p/hQ5FUdPaDs0fMD+giscBxyAQPE0OVK1dOchsnkfTy9Dh2GzZsaNsmuNB2REQkLznxxBNTvJ5JSdLP+WykIjSZbnxPhlu/fv2sOjSBj696LhILVClnQujyyy8P7+X2k0XdunWzIr0HDhywfdyseJO5AbYzFihQIAefueQFWumWmCOI5oOtfv361o7Jp53/9ttv7swzz0x2//PPP99mIkkDEomlOXPmuFWrViVpaefddddd4VVu9n6RqUGvblrkrFy5MpxCKSKSFzExzmo2n5Wkkg8dOtT2zFK13LdY5DOUPd5cUspuE4kmtoqxYk23HIJrj3G+Tp06dhyyVYyxn+y2F154wXp463xTsoMKqUm2YG8sh9rNN9/sxo0bZ1UkKcICCq1RATWISpJcKNhC2weRaON4bNWqlQ3O7EP0qWf+NiqV79u3z/69ceNGq8IvIiLOjRgxwgpQMnYvXLjQVrpJ5yVjiM9PAhwmJ8F4T5Xozz//3O5DlxKRaKPOCj25Gzdu7N59913LVgO9tyney+S53+IokhO00i3ZgkGWy4oVK2yFm76IHik/kVh5JOghHU0kFijuQ49ZqpEHA26wqu0DbvZ7MXvO6g0TRCIieV3r1q3tc5N+3Ozlph83wQ24vn///uH7/vPPP1btnKKqwS07ItFEOjl9tk855ZRwwA16dDN233fffW7z5s12HcV9SS8XyU5a6ZZsNXbsWOuD+Pbbb1t6LgWsQDGLyFRz0n1YGWe2XHu7JZpIeWS7AxM7BN6RQTftRgjKkT9//nClcrIuSEXzWyRERPIqPgtT2uNN68UmTZpYgONPMUnpZbKd1mFUl6aatEi00B6MLAuK9rIFjD7yYOWbLRBkYlA0lRpD9957r3v99dctg40V8fbt2+f005c8Qivdkm0IsGkJRlG1559/PkmlyODKt0ehKlJ62S8mEk1U3WVQfuSRR5IF3EwM0W4EFFc544wzrCIvhVmYMVfALSKSclE1xnWy2qpXr56k7gX7a/3e7uHDh2fzM5XcjsJoTI6zZcwH3GjatGl4jGcfNwVRybYsWbKkFfelY45IdtFKt2QrUnkpvvLYY4+5u+++27322mvhgiu0FCFNLYjZyEsvvdQtXrzY9umIZBXHG5kTBNKkkQdxQkjRPwZvZsYZvJn4ITUyMjgXEZH/K4rKhCQBzk033eROPvlkG8+pBs2KNyuNoEAq4zm3sdrNv0WyipRyuuDQqo5FHeq0MH6TYk6m2jfffGPjOOHO+PHjrV83k+esdFesWDGnn77kIQq6JVtxuBG8UEmyXbt2VmCND0iup6/ijh07bHXR40OzXr16dhtVURX4SFZxwkfNgOXLl7uaNWsmua1ly5aWbg4mhe688061ERERSUPXrl0tTZesIFYTCaa/+OILW01k6xi3+3ahZK6NHDnSXXzxxfZVJKv69u1rWxZLlChhxXdBcO23MXC7SDxQ0C05gsIq9DymWBX7ZwmE2PNFMM4enKD333/fWo2ltO9bJCM43pgR79ixoxs9enSS21jVZoUG7PVm/zY9P6m6Sxq6+suKiCRHUSoKotILmfRyqkTzGQpOMd98801rz8S+WyqZX3311daqiay31Pp+i6QHQTaZaxx/BN5gbzcBNyjeR99uWtpR7I86AxT543xTJLsp6JYcS0cjDY3B+uOPP7YK0XwY8uHpU9E8DlEG8V27dtn98+XLl2PPWxLbwIEDbWsDA3VkCzDSynfu3Gnf+9Q0lC1b1iaDVPhHRCT1iXQC6kjbt2+3qua+GCUYw8leY+KdFXJlsElmcG5Iqjit6JjQYcKHtHFa2HFscbtfsLnooousiB+ZlS+99JIVVBPJbiqkJjmCtHIG22XLltksOAMzmPmm+mQQAzIr4QRKgwYNyqFnLIlu6dKlVmzlnnvuSRZwc1z5gJv92/fff7+7/fbbbZBmRVwBt4hI6oIBNxlCBDwzZsywPbaPP/64rS62bdvWbifVnEwiampQ1FIkM8aNG2fdcDiWfGFearbQ3pMgnHNHsipKlSpl2xqYcG/Tpo277LLLcvqpSx6llW7JMRMnTrQZb2YiST1j9pHZcgwbNswNGDAgWWBE327aQZx66qk59KwlEXGSR+9OjjeOn+AJIoNzsWLFwq1tSEujuEqwtoCIiBzc7NmzrdPDJZdcYsXVyBr65JNPrHBlhQoVwpObIINtxYoVlkmkomqS0eJp1GRhSxj1foLYssjqts+gICD3tVl8XSGRnKCgW3Lc+vXrXZUqVcLpvOBDkTQgvy8MBORUMCeAokiL0swlI2nltKnhuKldu3aS2yjoQ7YFWInp0aOHpawVLVo0h56tiEhiYlX7lltusVZM7Nfmc5TPXtqI0SeZCtMedTK4nqrnSjOXjKaVM5nDtgW6jnhks3Xq1Mkdd9xxdv74ww8/uDJlythxJpLTFHRLXHjwwQftA5TZSAZfUPBq3bp1Se7HrDgrlqyCDxkyJIeerSQS9nsxWcMxFtnznQkfiq6AEz7/cchKN9XNVTxNRCT9/vvvPwt8+vXrZ4EOK93B29jas2XLlvB1jOdMho4dO9YmPEUOhmOFTIo+ffq4UaNGha+nQOrkyZNt8nzbtm3WkpZjinGc68m0EMlJyp+UHMdMJR+iH374oWvfvn14tps0XwKlIFYp7733Xjd06FALpkQOVjugV69e1naOPdpBtKcjDc1jZrxgwYJ2Unjeeecp4BYRySC25dxxxx32WRoMuJnQnDdvngVLQQTcrIoTpJMyLJIWjpEbbrjBtiW+/PLL4es53p5//nkryMvqNlXL+Z7tY7/88ovGc4kLWumWuEBP5FdffdVWuQmqKWDlffvtt5Z+HplmTkDFgK20IUkNfbZJd+Q4YU+hx8de9erV7djy/bknTZpkaWqkpHFMUQVVREQyjzZOBEBr1661oOipp56yVchgphrpv4zrTZo0sRVJpZlLShi3zz33XLd48WKryxKcpDnttNPcokWLwhPq1AlgXCergjoCdevWzcFnLvJ/tNItceG+++6zdmCkmkVWima/V3C/Nx+2BOhUM2fvmEhqBX1Ic+TYCgbcoH2ID7jLlStnaWgUU+N7gm4F3CIiWUNwdOGFF9p2MPoiE0yTYj548GALnjyCcvZ/U4n6ueeey9HnLPHr2WefddOmTbPzQR9wM5ZTWJdK+B5jOQG3b/mpgFvihYJuiQsE0vRJZlDmA5QUtWbNmtltzFJS2TyIIOrpp5+2D2Fmz0WCqAVw/vnnu3bt2rnbbrstyW3vvPOOrb6AE0HajbBtYdasWTn0bEVEch8y0qhkfuutt7onnnjCJtZvvPFGG+dJDX7yySdd/vz5wwE6k+7cHlmNWmTOnDl2bFBvZffu3XYdW8HGjBljEzVUMZ8/f777+uuv3UknnWQtQkXijdLLJe6w76tr167uqquuct98843NbLI3jBThyBnL6667zr3wwgvuo48+ci1atMix5yzxgx6xnOwxG75kyZIkVchJaySVMfixRxV8KuKz+hJZaE1ERDKPle2U2i+yPYw6LkyO0lvZo7Al+3A/++yzcJFLydvYo92gQQNbwabWDxjHOVdk6yHni2xNZJ834z7bE8855xzLnBCJJ1rplrjz888/20wmgTSr3+CDlEDKf+B6I0aMcM2bN7fCVxs2bMihZyzxguOEFmCkKzLgBgNu9gxWq1YtHHCTzsg+7gULFli2BG3FREQkeoIBN5+9rG5T4Oqss86yglisUlIYNRhgsb2H9PPffvsth561xAuOAVqAMTkePP9jjP/444/te1rRkdHG17feestde+21tmVMJN5opVvi0oQJE2xQprAV6UT79++361nxZi+PD8axa9cumwWlOiUfwoUKFcrBZy45iaq5w4YNcx988IFVwg+i0Apt6cAAToGVY445JoeeqYhI3sLe7scee8zqtFDsirF8xowZFig988wz4fsxzvMZzfYgJkZTWimXvJEl0aVLF6vPQjZasLZPjRo13MqVK+3YIIxR8T1JBPokk7jUvXt369lNmhmDr8eHLiuUBw4cCF9H4MSqJjPkl156qX1QS97DLDcrJgTdkQE3+/99wA0mctjbLSIi2aNnz56WInzllVdaJhv7dJkMfeihhyyICo7zjOMUx6KbieRN99xzj53bUXslGHCfcMIJ9u/Ro0dbME5WxPjx43P0uYqkh1a6Je5RfZo0cla7fbDNhy7Vy4Ozm3w4d+7c2dKE2Z8reQdFeFq1amWVchmIg8cF+75at26dZB83yJaggnkwBV1ERGJnz549KX7mss3njDPOsCAq2HuZbLexY8e6Hj16ZPMzlZyeRGeShnO9YFp58eLFrTgfGRMVKlSwuj6klpPpuH79emWvSVw7PKefgEhamO2mIiXFsQio6eEJPoRPP/10G6g99v2w0skHMG2fIqtWS+5ERdwzzzzTthiMGjUqScBNlfJLLrkkHHBTHZfgnC0IHC8KuEVEsk/wM5eAmraOBFFXXHGFBVQUu/Sf19xeokQJy2Aj841UY8n9KIrGuE0Lz2DAzbYDFlfYnsA5HhMxZK0RbHfr1k0Bt8Q9rXRLQsyM0zKsf//+Vnhl5MiRSdLQI9OKSEcbNGiQFWzh/pJ7rVixwvpxsuWAll8MxB4VTKkL4D/i2rZta9eRqiYiIjmHz2WqTVN/g0rTq1atsusZs2+66aYk96VSNQVWSTfv2LFjDj1jyQ4cD0yIH3XUUTbp4oNt0slfffVVm4AhG4Jie9rHLYlGe7olIWbGKcBCwQzSz4IftBRcY6Y86IEHHrC+oPR0ZOUzEVHRtU6dOhZEcmnSpIkFjBnFe0GK1i+//OL69etn1bvpi0p/S05u2DOfqNasWWOBNClmFOMJBtwLFy60kzMfcJcqVcr6cTN4i4hIzmIcv/nmm+2zmS1hixYtsolTxm0mzFnh9hOkVKpmFZNsN+6TiDSmHxx/W/7GwYD7iCOOcM8++6xlp9E2ls42nAeqvackJFa6RRLFf//9F+rSpUuocOHCoUqVKhFR2WXkyJHJ7nfjjTfabU899VQo0UydOjX0/vvvh7799tvQ2rVrQwMHDgwdccQRoZUrV2bocerVqxd6++23QytWrAh17drVHnfdunWhjz76KFSlSpXQeeedF0pEy5YtCx177LGh2rVrh3bs2JHktkWLFoWPi+DlqKOOCq1evTrHnrOIiCT1+++/Jxu7MWnSpNDpp5+e5DM8f/78Ng6+9957oUSjMT1t06ZNs/eDv7H/excpUiQ0a9as0Lhx4+zfzZo1C73xxhv2PeeAmzdvzumnLZIhCrolofzxxx+hxo0b24fu4MGDQ4ccckj4A/rpp59ONnjfeuutdtvQoUNDia5YsWKhl156KdmJSPBy3333he+/adOm0JFHHhnau3dvio83fvx4u/2ff/4JJZLPP//c3otTTjkltHPnziS3zZ8/P3TooYeG3w/eqzvuuMPetwULFuTYcxYRkbRt2LAh1LBhw9D06dMt4OIzvHv37knG+Xz58oUOO+wwC8oTncb0/zNx4kT7m/K3Db72E088MfTbb7/ZfaZMmRLav3+/ff/kk0/axLtIolHQLQnn119/tZleAvDq1asn+ZC+5JJLkgXe99xzj93GzPK///4bSjQHDhwIvfnmmzaYrlq1KrRr165QzZo1Q7fcckto69atdmnSpEno6quvDg9QeOaZZ0JnnHFGqo/74osvhkqUKBFKJHPmzLEZbiZedu/enSwYDx4LzJpHroKLiEh8YuWWz+7TTjst1L9/f/vKii6f5cHP9sMPP9wC8TFjxoQSkcb0/4+/IX/LyL8xlz59+tg53Lx58+y8TyTRaU+3JBxaQ5x//vm27+fll1+2vd7e66+/bn0//V5e9o09+OCDtu/74YcftsJr+/btc4lSJIx9TPQp79Onj1X0POmkk6zCK3vduK106dJ2oagI1V25zqPoDAVJUrJz504rNte7d2+XKNjX1a5dO9ewYUM3c+bMJFVw2RtH9fIg9s/RckZEROLfiy++aG0f33zzTWsJRS/vmjVrWk2XIFqHMrb36tXL6rcEezjHM43p/x9/M/6u/A3Zt/3PP/+k+Jqef/55a/nJ/VT3WRKdgm5JaBQj4QM56JNPPrHejsF+nwzMtBsjWCMo37Bhg4t3FEhZtmyZW7Jkievbt6+77LLL3OrVq9P1s7RYo9VaSgM0t1HVm8H+/vvvd/Hu77//ttdPP87rr7/eAmwmXrxx48ZZFdwgTmo4MaPyvYiIxD+CTwJuil76z3EC7zvuuMMKbEW2EyXwHj58uH3+J8Jnvcb0/8Pfir/ZE088YZMNjPFBjPWVK1d2t9xyizv55JOtACqT7IzpIolMQbckNAZdVr1Z0axevXr4evo2Us2TSpceg9Wnn35qK92sigZ7fMcjZrpphUVvaVbp69ata1Vd04PAlAHYn7x4v/32m+vQoYMFrcyyM8Mcz3bs2GGVSslooG3ciBEjwhVtmfVm9ptenZyA+ZM0Vks4Ofn444/dcccdl8OvQEREMuPLL7+04IzxmmrdkWO/X/mcO3euZUCtXbvWxTON6c7+Rvyt5syZY+N2ZCDNOE+WwzfffOMaN25sl6+//tquj/fXJnIwCrol4V199dUWZDODzAe0R19PBqivvvoqfB2pap999pmrXbu2a9OmjXvhhRdcomCACq7eB0X2qyQN7dxzz002G04Ay8A/depUS8+PZ8uXL7fBmZUABugrr7wyfNuff/7pqlSpYn07PVLy+FtfddVVrlGjRkotFxFJYKQglyxZ0ibUaSfF5/348eNt7AqmGjMubtmyxYLzDz/80CWKvDam09qTvxGZhsHVbd9zm8Ca65mY4PzNq1GjhnpyS66goFtyhWOPPdZWOen1SWqS/4Cm1yOBWzC4pt8nA/M111xjF+5PEBdP7rzzTluJZ3BiHxj/njdvnq3qpoRZbmaGGaiYOWZWPJiG5gdn3g9Wjfn3tm3b7BKP++Heeecd17RpU0spW7p0qWvWrFn4tu+//96u52sQfV2D2Q4iIpK4CNBY7R4zZowFZpdeeqkFngSgpGbzme/t37/fxjdWfYcNGxbOfooXeXlM52/B3+TMM8+0TMPg/m1eP0E1k+as5PNaNm/ebDVcRHKdnK7kJhJt9OXm0K5YsWKoYMGC4UqYd955p1UNDRo1apRVzTzppJNCn332WSheXHHFFaEKFSpYdVP6Ubdp0yY0c+bM8O1169ZN0krktddeCxUoUCB01llnhWbPnh0qV65cksebO3duqi1J1q9fH4oXtAC7+OKLw61i9u3bl+R2qtbTWsQ/d76/7rrrQq1bt7YqtyIiknvdddddoeLFi4duu+22cAuxYEuxYLvI77//PhQv8uqYzt+gRYsWKT5PzsmoTs59fPvPNWvWhEaMGJGQnWZEDuYQ/pPTgb9ItFGMpVatWjYTzMyvV6FCBbd48eIke31Xrlxpe4NJTb7tttusEAmr5onqhhtusJnxRJspJj2OzAOyDp566inXs2fPcMYCr4e08WA6OSsfmzZtcqVKlcrBZy0iItmBFVKyntgiNmHCBPs3q7qTJk2y/cxBjB2MEewPpmhZsMtJoknEMZ3V7eeee86KofF3SinzgDGdomrt27e370VyvYOG5SIJbOnSpaFChQolmV099NBDQ3fffXeS+/3999+hwYMH26o3/TLp+Zyonn/++dDy5ctDiYIepT179rS/zdlnnx3asmVLktu//PJLW9mInCVnhZtZchERyRsYqydMmJDkuoceeshWvFNb+W3ZsmVcrf7m9jH9hx9+sPec9z6lLASfifDss8/a90WKFAnt2bMnp5+2SMxppVtyPYqsUXQrcp8TfZzZAx5sP8VeK1a9qZZ5++23u3vvvTehV73j3bRp02x1+48//rAqrpdcckl4dZuPJlYpHnjggSS91VmxqFevnq1sRFZyFRGRvINCZBRIZbxg/3NwrPDoeEHbKVpUMd4k8qp3PGM1m77a/fv3t+8jW4GB/dv0577iiivsnIw2oGQicD4mktvpk0dyvUqVKlk6GgNzZHVsKqNSoMSjqjltxUgxp/AHrT24XXNT0fXDDz+4iy66yArD1K9f31L8KZLjA+7vvvvOeq3TXz14EkWhtDVr1rjPP/9cAbeISB7HeLB3716buGUcoXCqF9yeRHB+7bXXuhYtWlhxToku3tPmzZvbe8wWsZQCbqqSs8jBwgaYCCEFXQG35BUKuiVP8IHd+++/7woUKBC+nsGhY8eOdrvv8UkvyLvvvtsGkeLFi9vtrVq1smBcsmb79u2uX79+FjxTyZU92qx2ly1b1m5n5pu+rFWrVrUMhSACcNrCcZvah4iIyMknn+y+/fZbN3nyZKvZsmTJEpsop8MFY3nkWPHJJ59YVfRu3brZz0nW8B7yXvKe8t4Gsaeev0G1atXc2LFjrb4O51WR9xPJKxR0S55CAM0q6yuvvJLkeoqokfY0ePDgcMEPZl/nz59vgfru3btdkyZNXJcuXWxmXTKGdiak6rN6zeA7aNAgW80Orm5T4K5ixYr2fntMkJQpU8YNHTrUPfroo0r1FxGRJIoVK5ZkhZvVVAp0Mbaw+hrks9YmTpxowSDp5j/99FO2P+dEx3vWu3dvm0CnkF0QgTZ/jyFDhlixU1qf0RqM8y628AVbgIrkJdrTLXkWATWr208//bStgnsEefSJJsj2CMTHjRvn7rnnHhtESI8iBV0pzmkjpY/0sYceesjSxKnCescdd9hJkseKN/u6GIyDWPGmPysnUMyYi4iIHAxbx8iMYuX7hRdesNXv9957zybVU0KQyD5kxiZWyCV1TGY88sgjVm+FtP3U+H3zq1atssBcRBR0Sx73+++/W2rUjBkzkt1WuHBhC8hZjQ0GkQzirNSyekvwTSB50kknZfMzj/+B+eWXX7bWX1u2bLGiKax0lytXLl3vfenSpW1yg5MhERGRjKJVlR9DmPxlv3FqWBU/6qijbDxnC5Tf8iT/h3Gc8yEu+/fvT/V+ZKc9/PDDNq6zfe/xxx+3LQAioqBbxNLN6OtNn0iKsUQiJXrOnDnu+OOPD1/322+/WUD5zDPP2D4l+oEzWJ955pl5ujKqzxxghZpCKhdeeKEbOHBgkpluit6wqvDWW2+lOHhTwXzkyJFJqsqLiIhkFn29Kd5ZqlQpqy3iu5lQ2TylFduuXbvaanmjRo3ybA0Rzo3IEiBNnNorB8M5EJPrxxxzjAXcTGKIyP+noFvkf3755Rd344032p7jlFBpm4E4uA+ZwHL8+PHW7ooCIaSzXXnllbaym1dmyhlc2R/34osvWso+FeFpAdKnTx9bsfZIM+O9+/LLL1N8HGbDCdbr1q2bjc9eRETygs2bN7tdu3a5IkWK2GQwk+0HQ52Rm2++2cauvJJ6Tg0bzoNGjBhhNXBSw/jOooOfIP/ggw+0X1skDQq6RSKwt5gZW6qVE1BGKliwoPWOZiD2q9p+RpjAkxVcfo5Vb9KnzzrrLHfssce63IQ0ewJsKsbyehmkqfB+9dVX28REsOAZwfbw4cNtEE9pRYGUc9L1OanJy1kCIiKSfRiTyKxiKxkF10iJ9ivgkZhoP/fcc13Pnj0tsy23ZWKRvffhhx9aGv68efPCBWWDaPHF+0NNFs6TGK8Z+zn/oTVrsDOMiCSnoFskFcyIs4+JvckUWlu4cKHtEfNIoaKqNgXXgnu62evNDDrtsHybMe7DSvk555xjVdITMV1t586dNpNNmhknJxRGY2X/ggsusNT8KlWqJNnTfd9999l7QDp5JIrVzZw50/3888/23igNTUREstuGDRvcunXrXNu2bS3wvOyyy9y7776b5s8wfteuXdsmmQnEE7Wg6o8//mjjOecrtPFKKdCORKDNuP/xxx+74447Lluep0huoaBbJB1oiXHeeeelejuz3qyOk7IWnO1l7xgtsBjYCDLZw8wecQJwqnPTVqNQoUIuHrEqvXr1apv95vkzyDIo85x5/lxq1aoVnkBg9ZsUe1LEec1bt25N8XGpenrTTTdpVVtEROLKs88+a+NTcILdr/CmpnLlyjb5zJhYr169uG1tSQbesmXLLEONxQQm0tOLAPu6665zHTp0cPXr10/IhQORnKagWyQdCDZpOULLMNqRpIbB1lczZ1Wb1XCPIm0UZCOA5UKfSwYueoWecsop4QuDdnanrhFg03/8iy++sMCZr19//bU95/z589sqACcUpMpHzm4vWrTI3XnnndZnO60TE/bRDRgwwAbuYMswERGReME4xuovxdcY99OzAhzESjB7m0877TQb0+vUqZPt2VwE2JyrfP7557YFjHTwlLLOUsJz9VvrqLFCy8/27dtb0TkRyTwF3SIZwP8u9JVmT/fcuXPTvC8BNUE3M+Ds/2aF22MQZ6+zD3C5MAPNQMfPVa1a1WaT2SdFkOsvpGVTvCSjAzgnETt27LDVZ4J9vnIhfZ7g2gfY/ncHJwEaNGiQZPWe4Jw+5qxmk5bHnq60TkooRHP33Xe7Hj16KI1cREQSqvjauHHjwh05mID2k9MZUaJECRvTSUsvXry4paQz4c6YTkX1jLbHZCWeTLrgeE5WGs+NNHm2eKUHv5fHYuynHgtb5qjXwrjOfncKo4pIdCjoFsmkb7/91j3//PNWdITVYP5N72lS0Rj0gqh6ysDKAEaVblbCCcaDK77B1WYuX331le25ojoog30QP0cQzuoxgyYz0FwYOHkcfyGQZjBm73RwFZr7UdyNxyBFPLVVdgbjWbNmuY0bN9pzoJUXgXZqHxu89jfeeMNWs5s2bequueaaPN9GTUREEh9j4JFHHmnfE3QzIR10sDT0tPhVZB6DAJ2aKT4Q53smvhm3OcfgdwTT36OBOi2sZotI7CjoFokSH+QSWKdU9TwSAyppWwygtCujxRiDODPhwcCX/0W53c9mB2e2Ce75vQzAfGXF2QfhfCXdnZXxyNVynmPkzDoz4+xdZ0X81FNPda+88ort/Uqpl3ZKaBFGERr6mvI+qJKpiIjkRhRMpeDa7Nmz7cLkeDwj647isB6LAC1btrSVe7bC8W8RiS0F3SJRRBD80ksv2R6qzz77LFOPwSoxM9sUJmNWnTSvFi1a2H5ogmsCcAJv/tclZZ3Vbj8Lz23MhgcHUFLHOSFghZ3rWZknDY1+2RSAOf744+35sv+LFWkCdx4jpY8GAunIIJxZ+e7du7thw4ZZOzUREZG8grGSLLWPPvrIOpYwtjIJzfhMMVKup5Cqx/jKhDhjLZPumV0dPxiKtfbu3duKnzJJcP/991ugffrpp1u3ERVDE8leCrpFYoT90syEsx+MHt4MsD79jOCUAJdAmeD6YAisCY5J82bw9I/DXum1a9dakRQqkXKpXr26O//8821fFm1A+F+cVfDOnTtbChm/M6OFYRigCa4plgZOJi688ELXpUsXVTIVERFJBe1GGau///57Oy+IxFYsstDIEGMPeVrFWhl7KW5GBhv3Hz16dJLbmVinFgzF2y6++GILsEUkPijoFsmmFXAKsBEQk8ZNijc9r+lvHQ9S24tWs2ZNSz2joAor7hR/a9OmTZKicCIiInJwbD1j8pwAnAw0stNow0VtFTBBTzcQJsaDF8ZoJt9ZuaaTCPjZKVOm2IQ8F4qzqVipSPxS0C2SQ0j7piUJq8cUTkutnQf7r1kZ98XQDrZfnBV09nQfLG2NQZp95H712mOvNxXMSUmj6jp7zEVEREREJHMUdIvEAf43pDAawTerycyCs7pMKjipZFRJp0d4avxebAqZsQ/8xRdfTPW+tAUh5YwVawqrPPXUU7YCTzoalxNPPFH9OEVEREREokRBt0gCoB/nhg0bLJ2MNG+++u/Zr3399dfbvmuCbwqlsY+8cOHCyS5UMCWIp0+oiIiIiIjEnoJuERERERERkRg5NFYPLCIiIiIiIpLXKegWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIj/6/9OiYAAABAGGT/1KbYBy2QbgAAAIhINwAAAESkGwAAACLSDQAAABHpBgAAgIh0AwAAQES6AQAAICLdAAAAEJFuAAAAiEg3AAAARKQbAAAAItINAAAAEekGAACAiHQDAABARLoBAAAgIt0AAAAQkW4AAACISDcAAABEpBsAAAAi0g0AAAAR6QYAAICIdAMAAEBEugEAACAi3QAAABCRbgAAAIhINwAAAESkGwAAACLSDQAAABHpBgAAgIh0AwAAQES6AQAAICLdAAAAEJFuAAAAiEg3AAAARKQbAAAAItINAAAAEekGAACAiHQDAABARLoBAAAgIt0AAAAQkW4AAACISDcAAABEpBsAAAAi0g0AAAAR6QYAAICIdAMAAEBEugEAACAi3QAAABCRbgAAAIhINwAAAESkGwAAACLSDQAAABHpBgAAgIh0AwAAQES6AQAAICLdAAAAsMYB7fGAZmWW6o4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAH/CAYAAABKNb6SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwElJREFUeJzs3Qm81OP7//HbmhZtUmnRQps2RatKqxJSKVshWwqRypZdiRSyRNZCQikSSqWdREiriBalUqlItpj/43V9f/f8P2fO0llmzpk55/18PMY5zcyZM2fmY+7Pdd/XfV2HhEKhkBMRERERERGRqDs0+g8pIiIiIiIiIgq6RURERERERGJIK90iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdInnQtGnTXL9+/dxpp53mChYs6A455BB377335vTTEhERkQzYtWuXe+6551ynTp1c5cqVXb58+VyJEiXcmWee6T788EO9liJx4vCcfgIikv0eeeQRN3/+fFe4cGFXpkwZt27dOr0NIiIiCWbSpEmub9++Npa3adPGlS1b1m3evNlNnjzZzZgxwz388MPu5ptvzumnKZLnHRIKhUJ5/lUQyWMWLlzoSpcu7U488UT35ptvuosuusjdc889Wu0WERFJIHPmzHG///67O+uss9yhh/7/BNa1a9e6Ro0auf3797sNGzZYUC4iOUfp5SJxgAGRFO8OHTokuf6TTz6x1ejq1au7n376KWq/r3nz5q5KlSr2O0VERCQxx/TWrVu7c845J0nAjWrVqrkLLrjA/fPPP/Z7RSRnKegWiVOLFi1y7du3d+XKlXPz5s3TLLWIiEiCyokx/YgjjrCvhx+u3aQiOU3/F4rEoQULFriOHTu6SpUquY8++siVLFkyyQz6uHHjMvR4KpImIiKSd8b0X3/91b311lvuqKOOsuw2EclZCrpF4gwz4GeffbY74YQTbHCmCmkQA/R9992XocdU0C0iIpJ3xvQ+ffq47du3u/vvv98dc8wxGX7eIhJdCrpF4siaNWusGAqFTxikIwdntGzZ0qn+oYiISHzLqTH99ttvd6+//rrtKR88eHBUH1tEMkd7ukXiyKZNm1ytWrVc7dq13fDhw93ixYtz+imJiIhIgozpd911l3vooYeswNqUKVPcYYcdFvPfKSIHp5VukThStWpVN3v2bLd+/XrXoEED17NnT7ds2TJ39NFHh++jPd0iIiLxL7vHdALuoUOH2ur5tGnTXP78+bP8N4hIdCjoFokjFFlhMK5Tp44bMmSIu/XWW12/fv2SDMja0y0iIhL/snNM9wH36aef7t5//31XoECBqPwNIhIdSi8XiVODBg2yiqMvv/yymzRpUrL9Xxm5iIiISO4c0++++24LuHl8Bdwi8Ukr3SJx6tBDD3WvvPKKzZBfc801rkmTJtbfMxreeecdu4C0N38dM+6oXr26u+2226Lyu0RERPK6WI3prJqzik4v7oYNG7oRI0Ykuw+BPRcRyTkKukXiWMWKFd3jjz/urrjiCnfppZfa3jAG7qxiTxmz7UFff/21XUB6moJuERGR+B7T/WT5gQMH3COPPJLq/RR0i+SsQ0LKPRURERERERGJCe3pFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiPq0y0iIiIiksM2bdrkVq1a5cqVK+e2bt3qfv31V+vjXb58eVevXj13+OE6bRdJVOrTLSIiIiISB/bv3++OPPJI9++//7ohQ4a4hx56yDVq1MgtWLDAHXbYYTn99EQkkxR0i4iIiIjEoS+++MIVLlzYValSJRyUE5AfffTROf3URCQDFHSLiIiIiOSQ559/3gLr7t27Wzp5akKhkBs0aJClmQ8fPjxbn6OIZI2CbhERERGRHLB7925XqVIlt3fvXvfuu++6c845J9X7fvzxx6558+Z2/3Xr1rlDDjkkW5+riGSeqpeLiIiIiOSARx991ALu2rVru7POOivN+5588skuX7587ocffnDLly/PtucoIlmnoFtEREREJJvt3LnTjRo1yr6/77770kwtR8GCBV379u3t+7fffjtbnqOIRIeCbhERERGRbDZixAi3b98+awfWuXPndP1Mly5d7KuCbpHEoj3dIiIiIiLZaPv27a5y5cpWjXzatGnu7LPPTtfP/fLLL65kyZJWwZx93SeccELMn6uIZJ1WukVEREREshHVxwm4GzZseNC93EHFixd3LVu2tO+12i2SOBR0i4iIiIhko44dO7oGDRq4+++/P8NVyLt27eqKFi3q/v7775g9PxGJLqWXi4iIiIhkM/puI6NB9x9//GG9uo844ogYPTMRiTYF3SIiIiIiIiIxovRyEREREZFssGHDBmsTtmzZsqislH///fdReV4iElsKukVEREREssGMGTPcTTfd5AYMGJClx9m9e7dVP69evbp9LyLxTUG3iIiIiEg2WLhwoX1t0aJFlh6nWLFirmDBgu7AgQPuvffei9Kzk7zigQcecE2bNnUFChSwonzp0atXL6s/ELx06NAhw7971apV7rzzznMVK1a0xyDzI7NuuOEGd8opp7h8+fK5k08+OV0/Q/X/yL+jT58+LtYUdIuIiIiIxBjp4AsWLIhK0I0uXbrYV7UOk4yi8n337t1d3759M/RzBNlbt24NX15//fUM/+79+/dblsZDDz3kSpcu7bLqiiuucBdccEGGfubqq69O8nc8/PDDLtYOj/lvEBERERHJ4zZu3Og2b95slccbN26c5cejddjQoUMtZZ1AhlVLSdvvv/+e6m2HHXaYO+qoo9J130MPPdTlz5//oPclGyEj5s2b51q1amVbBvbs2eMqVarkvvrqK1vFZUWaVWFWnLPqvvvus6/jxo3L0M+xopzVQLlBgwZ2wW233Zalx3riiSfs644dO9zy5cvT/XP8vxKNgD8jtNItIiIiIhJjfpX71FNPjUqATCBWoUIFayE2c+bMKDzD3K9QoUKpXkh5DipZsmSq9z3zzDOT3JdU6ZTuFwuvvfZamn8HF7+NIdqYFOB1qVatmq2S79q1K1nqdjQmBcaNG5fhVnoZfQ1LlCjhatWq5W6//XabtIo1rXSLiIiIiCTIfm6PoIQUc1Y/p0yZ4jp37hyVx5X41qlTJ9eoUaM071O2bNmo/15Sy8muYPWdqvmDBw+2yYfFixdblgCOP/54d9xxx2X5dxUpUsQC+1i4+OKLbbKqTJkytjp+6623urVr19r/Q7GkoFtEREREJMYITtC8efOoPSZBEEH3tGnT3D///OOOOOKIqD12brRv375Ub/OBo/fzzz+nmV4e2Qouuxx99NF2SQ8KhI0fPz5df//BXHjhheHva9eu7erUqeNOOOEEW/1u06aNXf/KK6+E77Np0yZ30kknhf89ePBgu6QHk0m+ZgEI7v2kFQEzxdgyq3fv3kn+DiYJeP5MJPD3xIqCbhERERGRGPv888/dkiVLrNpytFCBeuDAgbYKGRkIStb2WMfqvmnxgf9///2X7LZ///3X3mNSo6+55po0H2f69Ok2uXP//fe7QYMGuVigGBop2uvWrQsH3UGsJAf70RcvXjzTv+uFF16wbRSI9sSSzxrg71DQLSIiIiKSwCi8xZ7XaCJIGzlyZFQfU3IO6dl+5TwYpG7fvt1WqY899ljXrFmzdKeXs/+aSyxQFJA93amlk1Mw8MQTT4zK7yobg3R5z08MRCMtPi1a6RYREREREYmDoJvK3jfffLO7++67w8HtkCFDbFWZ1WsKpaU3vTw1pH7/8ssv9pUVdB94EiT7AnDVq1d3Dz74oKV5E/BT8Zxic1T9JhX7lltusfu3b98+w+3KVq9eHf5+y5Yt9vv5vRkN0lmd5rlt27bNVsL930Fa+5FHHmmPzSo8ae8NGza05z1hwgTXsWNHd8wxx9ie7ptuusnqLJAuH0uHhGgaKCIiIiIiMSvexIojwVS0V+04lWdP99KlSy0QilXVbMkerHJfd911VpH+wIEDls1w+umn29599iBHAxXGX3755WTXz507N5yNQaG+sWPH2n0JaCnUR/syWpmROn7GGWfYZECpUqXCP8/PUsk9rVZkGzZssGJskfgb2R8Ofv7yyy+3Yzst/L758+cnu379+vX2PPzv8n/Xjz/+6Hr27OlWrlxpbd7Kly9vkwp33nmnK1y4sIslBd0iIiIiIjFCkEKqMAHE1q1bY9IfmBVSAgrakkWzUJvknDVr1tiK7SeffOKaNGmSEG8FRc5YEc9q27B77rnHgmkfhOcGqrggIiIiIhIjH3/8sQXcVapUiUnA7Xt/+2JtkntqAAS/xjsqitPq69JLL83yY02fPt09/PDDLjdR0C0iIiIikiD9udMKukkxF8kJNWvWtD3S0aii/9lnn9ke7NxEhdRERERERGKElG/EMu1bQXfuw55kld7KPbSnW0REREQkBvbv328ptxTE+uGHH1IsIBUNtG6iujV2797tihYtGpPfIyKZo/RyEREREZEYWLJkiQXcVCxn5TJWaH/kA/ovv/wyZr9HRDJHQbeIiIiISAzQC7lcuXK2n5sWTLHkU8y/+OKLmP4eEck4pZeLiIiIiMQI+3L//PPPmFehXr16tRWxqlq1alSKWYlI9CjoFhEREREREYkRTYOJiIiIiETZv//+q+rTImIUdIuIiIiIRNlzzz3nSpYs6e64445se21feeUV16NHD7do0aJs+50icnAKukVEREREouzrr792O3fudP/991+2vbYzZsxwEyZMcPPnz8+23ynxjXoC1113nVW4L1SokDvvvPPc9u3bc/pp5TkKukVEREREYhB0o27dutn22voK5kuXLs223ynx7aabbnLTpk1zkyZNssmYn376yXXt2jWnn1aeo0JqIiIiIiJRxOp24cKF3e+//25VxWvUqJEtr++CBQvc6aefbm3Kfvzxx2z5nYlSQX7//v058rsLFCiQ7nZx8+bNc61atXK7d+92e/bssd7rX331lTv55JNd0aJF3ahRo1yvXr3S/bv37t3rjj32WMt+6Natm133zTff2PG4ePFi17hx40z/XZIxh2fw/iIiIiIikobvv//eAu58+fK5KlWqZNtrVa9ePQvwNm/e7LZt2+ZKly6t98k5C7hJrc4J+/btcwULFoza47322mvummuuSfM+06dPd82bN7ee7f/8849r27Zt+Lbq1au7448/XkF3NlPQLSIiIiISg9TyWrVqucMPz77T7aOPPtqCqjVr1ljAddZZZ2Xb75bs0alTJ9eoUaM071O2bFn7ysTLkUceaavkQaVKlbLbJPso6BYRERERSfD93MF93QTd7OtW0P3/U7xZcc6p3x3tiRUuklgUdIuIiIiIRBF7cVu3bu1OO+20HAm62cNL5XT5H1Luo5niHSuHHXaYfU2p4j193w899NAMpZezveDvv/+2/eHB1W6ql2vrQfZSITURERERkVyCFV2Ct/z58+f0U5EM2rhxo6tYsaJtDShevHi4kNpxxx1nQfIHH3zgmjVrdtCWX6SX8/77Qmqvv/66tQrD2rVrbQuCCqllLwXdIiIiIiIicVBlnf3apI/ffffdrmXLltbua+zYsVaZfv369RkuCNe3b18L1seNG2cV9fv162fXf/LJJzH6KyQl6tMtIiIiIhIlrC6SziuSmTT4iRMnuqOOOipccbxz5852PM2ZMydTFdgfe+wxd/bZZ9tKd4sWLWzFfMqUKXpzsplWukVEREREouTJJ590N9xwg7viiivciy++mCOv6/jx4+15ELDdfvvtOfIcJGsohnfSSSfZinSTJk30ciY4FVITEREREYly5fIyZcrk2GtKEbXPPvss3DpKEo/fk6+9+bmDgm4RERERkThoF7Z582ZLI6bSdIUKFazgVb58+TL8OHXq1LGvy5cvz/DPikj0Kb1cRERERCQKDhw4YEWw/vzzT/ftt9+6KlWqHPRnfvvtN9tj++qrr1rATTEtj8rVJ598sn2/bds2C8ppCXYwO3bscCVLlgw/fmb2AotI9KiQmoiIiIhIFHz33XcWcNMT+oQTTjjo/V955RVXqlQp16tXL/fRRx9ZwN2wYUNXv359d8wxx9hqtzdo0CC7jWrUv/zyS5qPS5so2kxh5cqVUfjLRCQrFHSLiIiIiEQxtbx27dru0EMPfppdo0YN98cff7iqVau6IUOGuB9++MEtWbLE+jSzL7tYsWLhFXQqWxOUjxkzxlWrVs299NJL7r///kv1sZViLhI/FHSLiIiIiGTDfu5ff/3Vvfvuu+F/kypOgP3NN9+4O++801WqVCnFnzv88MMt/Xzu3LlW0ZqA/Morr3TNmzcP/85IBP5YsWJFFP4yEckKBd0iIiIiIlHQrFkz17t3b9e+fftkt61fv941bdrUdenSxc2YMcOuY/WaVHK+pkfLli3dsmXL3IgRIyyFnXZSjRs3dosWLUp2XwJ/gvjChQtH4S8TkaxQITURERERkRj6+OOPrWc2K9TstWa1Oz0F0dJCUTV6gW/atMnNmjXLlS9fPsntpKKnN5gXkdhS0C0iIiIiEiNvvfWW69Gjh/v7779dvXr1LOAuV65cVB6b/eC///67K1GiRFQeT0RiQ+nlIiIiIiJZ9NNPP9n+bKqXe6SCX3LJJRZws9K9cOHCqAXcyJ8/f5KA+5133rGV78gV73/++Sdqv1NEMk5Bt4iIiIhIFr355puWMt6zZ0/79969e123bt0sCD/zzDPd5MmTbR92rEycONGdd955rl27du7nn3+264YOHWpB+ciRI2P2eyW+cfxdd9111oKOfu0cI9u3b0/zZ2hhx9aE4KVDhw5p/szWrVvdxRdfbJX4qdzfv3//dD2/5557zmoVUHuA37Nnz56D/sy9996b7PlVr17dxTMF3SIiIiIiWeSriPtWXQUKFLCiaRUrVnTjx49PVwuxrGjSpImton/77bdWyO23335zRxxxhPX0Xr58eUx/t8Svm266yU2bNs1NmjTJzZ8/3zIyunbtetCfI8gmkPaX119/Pc37//XXX9Yfnir8qVXvT8n+/fvtdw0ePNhlRM2aNZM8v5SKCcYTBd0iIiIiIlEOugl4qTLO9cWLF4/560shNQqqlSxZ0tLab775ZvXqjsD+dy6k3Huk/nMdQWNK9w32QidNn+uCWwjSum9GzZs3L7zau2HDBvue9xJFixZ148aNy9DjkW3x4osvukcffdS1bt3anXLKKW7s2LFW9f7TTz9N82fz5cvnSpcuHb74nvGpYXLp8ccfd5deeqkrUqRIup9j//793W233WZV+DOCNnrB5xfvdQ0UdIuIiIiIZAEB1urVq+17UngJ5LzsbNlFau8bb7xh3z/77LPWFxxr165NFijmRbw3XKgi7zExwnXXX399kvsyecH1wT3yo0ePtuvokR4ZcHL9mjVrwtdlNEBOr9deey38d6R2oXYAqDHAsdm2bdvwz5OGffzxx7vFixcfdAKA16BatWqub9++bteuXUluJyWcNPTMTCps2LDBZdV3333nypQp4ypXrmyFCiNrGcSbw3P6CYiIiIiIJLJvvvnGAm0CHgKAE044wb399tuuVKlS2f5cWrVq5a699lr39NNPu1tvvdVWKHfv3m0BIdXTJbF16tTJNWrUKM37lC1b1r5u27bNHXnkkbZKHsRxyW2pId2bFHT6vH///feW+k1dAgL1ww47zO5D4E77u4woUKCABfFkgWQFfz+TGjwWqeX33Xefa968uVu5cqU7+uijXTxS0C0iIiIiEoXUclJeKWJGumtOnvwPHz7cffDBB7aiyOo3QfeKFSvyfNC9b9++cPDnkYZPijPvXZAvRkeFeI+CZFdffXU48PT8ym3wvhldBU4vjqtYH1sXXnhh+PvatWvbNgUmklipbtOmjV3/yiuvZPhxGzZsaBNUWcUEgMdzIwivUKGCFROMzEKIF0ovFxERERGJQtDNXlz2wlK0KhjYZTdW3Nm7S0V1iqpBxdScVY/nQoqzx0ow1/G+pXTfYAE8Vmi57qijjkrXfTPKB/PBveHev//+a4+fkfRyJn/IwIisCE71cm5LL1K42TO9bt06F4+KFi1qk0vx+vyglW4RERERkSw499xzrWAVK8qsnBIA5DT23PoAjtVFUnElvpGy7VfOg8X3CJJZpac6eLNmzdKdXk7hNIL/jz76yFqF+f397H+m2n16bd682fZ0ZzSdPLvs27fP0uAvueQSF68UdIuIiIiIZMHcuXMt4KZlF5WY4wmpwhTSIt1c4j/obtCggU3c3H333eGAd8iQIbbSzL5lVrLTm15OFXHSrQcMGGBBPEX9+vXrZwF3sFo4xdUefPBBa3FHAMseaYJ0VsMJZm+55RZ34oknhrMmUuMrrfMYO3bssH+TSXDSSSel+jPsLefiV6nZBsHfx2vhJx5Iaee5+WJ3gwYNcuecc46llNMC7Z577rEsgYsuusjFK6WXi4iIiIhk0o8//mgBi6+ETZpxPGGFkp7G7DEmoJH4Rdo7+5JJX/cVxzt37mzp4XPmzLGAO6Mee+wxd/bZZ1sQ3aJFCwukp0yZkuQ+rH7TXgwEr2xFoGAbGRsE7ayYk7IeTMFPqXo5hfq4UDV9woQJ9n3Hjh3TrF4+ZswYux975cFz5N/vvvtu+D4E/sGK80xEEGCTvXH++ee7Y445xlqgkQkQrw4JBRvViYiIiIhIuk2fPt3dcMMNViV8yZIlSfYLx4sLLrjAgjmqUvN8Jf5RbZ4VYnpqZyQVPLuwysyKeEYKxo0dO9YNGzbM2utltYJ5otFKt4iIiIhIJrF6TGos+13jMeAOFuiaMWOGBXES/3wl9GBF9HixatUqS12/9NJLM/RzH3zwgQXdeS3ghoJuEREREZEsVi6nHVK8oq2SR89lJbpKVrBdgRT0YLX29Jg0aZLr3r17nnzxVUhNRERERCSDJk+ebKvc7F9F3bp14/Y1PPnkk+0rK/Hz5893M2fOPGhRLMlZFStW1ORILqI93SIiIiIiGUAbLlb7aMVFIMvKMW2YypcvH5evI9Whg+2e6tev7z7//PMMr1SKSObo/zQRERERkQyg+jMBN62NCLgpoka7sHhFxepSpUrZ97SNoi3Vn3/+mdNPSyTPUNAtIiIiIpJOBNlDhw6171u3bh1OLY/XImoebZhAxWnaNBUoUCCnn5JInqGgW0REREQknd577z0rnkbPZJ+yHc/7uSP3dbNCLyLZS4XUREREREQyuMp93XXXWX/udu3aWc/ieNe2bVu3Z8+ecAG1r776ynp308Ip3lfpRRKdCqmJiIiIiKTDrFmz3BlnnGG9kzds2OBKliyZkK/bb7/9Zvu89+/f72bPnu3atGmT009JJFdTermIiIiISDqccMIJ7oorrrBV7kQNuEEBOP4OjBw5Mqefjkiup5VuEREREZEMppkvWLDALVy40NK2GzdunBCv3x9//OFWrlxp1dZJKa9ataq1P6PfeK1atXL66YnkWlrpFhERERHJAALWd955x911113u9ddfT5jXbuDAga5hw4buueees1X7rl272vWPPvpoTj81kVxNQbeIiIiISBp++uknd/nll7ulS5eGr/Pfn3rqqQnz2vkK5suWLQsH4Rg/frzbunVrjj43kdxMQbeIiIiISBqeffZZN27cONe/f3/797///mvVv3HKKackZNBNijxp8aeddpr7559/3JNPPpnTT08k11LQLSIiIiKSir/++suNGTPGvqdFGNauXet+//13V7BgQVetWrWEee1q167tDjvsMLdjxw63efNmu27QoEGuXLlyCV0YTiTeKegWEREREUnFpEmT3M8//+zKli3runTpYtd98cUX9rVevXoWxEYD7bvWr1/vlixZ4vbu3Ru+/tdff3Xbtm2zgmdZRauzOnXq2Pf8HnTq1Ml+r1/FF5HoU9AtIiIiIpKKJ554wr5ee+217ogjjojKfu7PP//c3X333a5Dhw7uxBNPtBZerJpXrlzZUr7XrFkTvu8LL7zgjjvuOLudgLlbt25u8ODBtg97y5YtGf7djRo1sq+ffvqpfT300EPd4Ycfnqm/Q0TSR/+HiYiIiIikgNVgAuR8+fK5q6++Onz98uXL072fm/3Sc+fOtb3TBM6YOXOmGzJkSLL78ntI8y5cuHD4ugMHDli19D///NNae3EJ4rHatWuX7vePoJ50eb/SHfw97777rqtRo4ZdRCR61KdbRERERCQFl1xyia0o9+rVy40dOzZJIM1qNHuhixcvnuznSAWfNWuWe/PNN6212O7du91bb73lzjvvPLt98eLF1rarQYMGts+6dOnSrlSpUrbiTYAdiYB448aN7ttvvw1fmAz4+uuvLfW9SJEidr+nn37aUt+vuuoqC65TeqxNmzbZ82ISoGnTpuHr+/bta8E4P/v888/reBCJIgXdIiIiIiIpGD58uAWy7Oumv3V69mW/8sor7rHHHrPA2GP1etiwYe7KK6+M6uu8b98+V6hQIfueauQ1a9YMp6azWs3vI4j2QXlaFi5c6Fq0aOEKFChgLdLS8zMikj4KukVEREREUkF7MPY9p7RqHLR9+3YLenft2mX/Jmjt2bOn6969u2vWrFnUCq6lhqB70aJF7sUXX7RJAiYAUKxYMatQ3q9fP1tJT+vnWXVftWqV7WPn/iISHQq6RURERETS6d5773UbNmywwmqRq9/Nmze34mZUAr/88svTDHJjiYrnb7zxhq24f/PNN3bd+eefb2nloGUY6e9MKJBC740ePdpdf/31tkpO8H2wiQYRSR8F3SIiIiIiAaRor1692tpp+Yrl3kknnWS333bbbe6jjz5y06dPd8ccc4zdtnXrVkslj/WqdnoRVBN833///e7VV18NTxJ88MEH7qyzzrLK6d99912SYL1MmTLWg3z+/PmWbi4iWaeWYSIiIiIiAY8//ri15mLVN4gVYr9n+qGHHrJiZiNGjAjfTmuveAm4wXPp0aOHPefgqvyHH35oX9etW+d27twZvp6q6RdeeKF9T5q6iESHgm4RERERkf/DKu+ECRPs+4suuijJnudgm6+jjjrK3XHHHXaJd+xJD04cUDndo184f5tH4TVQLT14vYhkntLLRURERET+z7hx42w/NqnXVCBnXzNtua655hpr/wXae1Htu0qVKgn5utFnvG3bthaAo0uXLrayTdE1Am1WxkmjF5Ho0Eq3iIiIiMj/eeGFF+wr7bZ8IbFbbrnFAm7/b1LKEzXgRp06dawgHPib3n77bVe/fn23ZMkS+7cCbpHo0kq3iIiIiIhzVjyNtl/shf7xxx9tjzb27NljVb4pQPbff/+5TZs2ufLlyyf0a0Z18lq1arkjjzzSlS1b1q1fv97anJFW7nt083f//fffVhxORDJPK90iIiIiIoHiYR07dnSzZ88O72kuWrSorW7TSqtSpUoJH3CD1ezSpUtbUP3ss89aP/FRo0aFA+6nnnrKJh2GDRuW009VJOEdntNPQEREREQkHqxdu9a+sup76aWXur1794YrmFevXt2tXLnS/fnnny43II38rbfeskkE2oSxxzvYlztfvnz2t9JqbPjw4fZvEckcrXSLiIiIiPzfSrcPro8++mgLSCNRtTy3OO200yzgRjDg/umnn6y3Nz3Kf/nlFzd16tQcfJYiiU9Bt4iIiIjkeRs2bHDNmjVz33zzje1hXrBggTvrrLPsdfnnn3+slVhesX37dks75+/G6NGjc/opiSQ0Bd0iIiIikqctXrzYNW3a1K1bt85VqFDBLVq0yJ188snh2+fNm+eOOeYY16tXL5fbjB071rVv397NmDEjfF29evWsknnFihXt30xA8JqISOYo6BYRERGRPOvXX391Z5xxhtu6dautcH/88cfJ2oG9//777q+//nKHH577yiF99tlnbubMmW769OlJrifg5rUoUKCA/ZtVfyYlRCTjFHSLiIiISJ5VsGBB27uMIUOGWPusSLQK81XNc5s2bdrY148++ijZbez3fvjhh8OTE6effrr7/vvvs/05iiQ69ekWERERkTyLtOozzzzT2oKx2h1ZKO27775zVatWtcB8586drnDhwi432bVrlzv22GOtPRoF1Hxvcu+PP/5wDz74oJs0aZJVMGdFPPI+IpK23JcjIyIiIiKSht27d7t+/fq5xx9/PNybmxZhKVUm92nXzZs3j3rA/e+//1ogzyry/v37rVgbX7n+sMMOs3R2vubPn98VK1bMLvTR5rpoYa96/fr13RdffGF/6xVXXJHkdn43lcyvu+46e318H28RST8F3SIiIiKSZ1CV+7zzznNz5861lV1fIOzKK69M8f5ZSS33q8dr1qyxFfNvv/3Wvm7ZssVt27bN/fzzz+6///7LVKBMwbfjjz/evlauXNnVqlXLLuxLz6hOnTpZ0P32228nC7q9UqVKhf8m2osRoLdu3Vr9u0XSQenlIiIiIpInEDBSgfyVV16xPty9e/d2jzzyiGvQoIEVFIvEyjMBLkXUVq9e7WrUqJHm4+/du9ctXLjQHosgdunSpRZYp4UAlhV0Cpb5CyvZrHZzOXDggK1+szqfnrZlBN116tSxauxcGjdufNDVafqS165d2wLoHTt22GsTadasWba/u3Pnzva8brzxRnfhhRe6CRMmJOnxLSLJaaVbJIGQgrZv375wCw9mx5mt5/o///zTHXnkkeELA+app57qbrvttvDP+9lpERGRvIhCaQTcBLXsUb7lllvSXOVmnH3ooYcseK5evXqKq+a0E5s9e7atnH/55ZfJVq75XSeccILtC+dCZXRWp0uXLm0X9lOntyo6v2/Pnj22Sr5p0ya3ceNGu7CCvmrVKityRpDP8+ECxn2CcNqCsXedQJzzhKCaNWvahZVzzilSCrrXrl1rj0lQPnLkSHvOb7zxhgXrgwcPTtfzF8mrtNItEqcIkJlVp5ooF/plbt++3Z1zzjnu3XffDd+P2fHffvstxcdo1aqVmzNnTvjf7NmiUAyz3s2aNbO0sJT2r4mIiOQ2b731luvevbt9/+yzz9oqN4XTCML79OmT7r3K7L8m5fydd96xFGv+HURQfdppp9nE9ymnnOLq1q1r+6KzAyvhnDuwyv7JJ5/YJbLaeKFChaxF2vnnn+/OPvtsq94Ov488Nay0U0CNVX8mIbjwuoHX4txzz43xXyeSuBR0i8QZBj2KlUydOtVmsiPRroNZdW/8+PGWDsagyQy4vzA4kmJ2wQUX2P2YuWY2PYifYeBloCSYL168eDb8hSIiItmLQLRhw4YWlA4cONBWajOCFG96WROgMz6TXRbc68wKMhPZTHaXK1fOxRPOJViFZ4Lgww8/TJLuzmQAgXePHj2sD/fBVtwvvvhi9/rrr7u+ffu6p59+2l1//fVu9OjRFsgvXrzY9pSLSHIKukXiwC+//JIk4CX1i8GLwZAV6bZt21qwTeoXA1tmg3lSz1gx//TTT23gpZCLx+z/xIkTo/L3iIiIxBP2LLMXmbRuxj9WdA+23YoCa+zPJmh98803LdvMI028S5cu9pgE84ceeqhLBKS+f/XVV27y5Mn2N/3www/h21jFpohahw4drFd5pUqVkv086eXt2rWzrAAKxNFGjbR1gnpS6FlhV3VzkeQUdIvkYPo4qd+0K+Ere7Io1gLSyRkYW7RokWZVUFLaKNrCPm/SvZih9hcKsbBXLLUTAX4/e8+Ysada6YgRI2ygBalopM5dddVV2ZYSJyIiEkvshWbFukSJEu6ll15yr732mhs0aJCtUkeOjwSRtBALTk7zc6z0cj3btRK9Rgp/J0Ey+7JZwWevtle+fHnLpKNNWvDv5NyE4HrDhg1u3Lhx7rLLLrM+36TRcx7z/PPP27mDiCSloFskBwY59j7de++9bvny5eHrGfR8Kri/H7PrzM6zQk27EYJs0ro82pf4/qEpISD3PUVJ/2L/FYPliSeeaIVPKArDbD+/C35gpfja8OHDLT39pptusjQyzVyLiEiiYasVva0jNWnSxLK+qMZ98803hwNKJqKHDh1qk9IeK9m33367pV+zspsbsS2Nv53Xg3MFj6ruTExQtNXv9x42bJi74447XKNGjew1BFl069atszR1EUlBSESyxX///Rf64IMPQqeccgoRrl0KFiwYuu6660Jr164N3+/FF18MnXPOOaESJUqE7xe8/Pnnn+H7du/ePXTkkUeGihcvHipdunTo2GOPDRUrVix09NFHh/Lnz2+/0+MxIx+L39+sWbNQ//79Q3v27Anf99VXXw1VrFgxfL8iRYqEHnroodAff/yho0VERBLCF198YePhqFGjkoyHK1assLHt8MMPD23bti3077//hl5//fVQzZo1w+MeYytfK1SokORncztei3LlytnffsQRR4RfD16byZMn22vBa9a8efPQyy+/nKdeG5GsSIwNKCK5APumKFZGKhf7su+8807bt02KGpVOPfaPTZs2zQqfkRperVo117VrV7v/Cy+8EF6VBqvepJWT2kUFVoqjsD+cFXGKxQRTwq699lqbvac/KXvGKaLGfdizRpqdr14Knh99N0k3O+mkk2zFnNVvngsr8iIiIvGMbVcXXXSRdfcIFh/1lcvBmLxixQqrMs59ySojO4xVXNKqwZiZ6GnkGcF5B1Xd/Qr/3XffbV1PeG1Y7SaNnCyABQsWWJp9Sq8N5yKcc/AeiMj/KL1cJIYIiIN7sklPI4ClQAlpXJ9//rldTyBO8O33c3/99dfWboQ2I+lp6UUgzj41Bksu6TlBoLAafT1JIyP49m0/ULlyZbd+/Xrr10mhGAZcAn72tlFZ/amnnsrkKyIiIhJ7FAQbO3asjbeMqb5mCkE41/GVYNunUhNsk0bdr18/u61ixYqWbk5vaoqm5SX0/+bv59yCGi8Uen3sscfs4luUsg/+0UcfTda7nJ8hWOd1JXj3ExwieV6W1slFJEWkW02YMMFSvr/++uvQ33//HZo0aVLojDPOCB166KHhdC2+b9q0aWjhwoXJHmP//v2h5cuXh6ZOnWqpcaSAf/rpp+HbZ86caankRx11VLK0cR73kUceCd/3+++/D5177rmha6+9NvTAAw+EXnnlldDixYtDv/zyS7LfSwo5aeukngcfs0aNGqGOHTuGVq5cGb7vTz/9FPrtt990FIiISNyYMmWKjVuHHHJIaN68eUluY2wMjm2kUN94442hHTt2hO9z55132m2tWrWK6vNiTB83blxoyZIl4et+/fXX0KmnnhqqUqVK6Pfffw9fz1hNavzAgQOTPEaLFi1CrVu3Dv3444/h63744YfQRx99FNq8eXPUnmu7du3sNbj77rvD1+3cudOej087Jz2f5/PCCy8k+dk5c+bYa8993n333ag9J5FEpqBbJMq2bNkS6tSpU3hAv+KKK0LvvfdekkG+cePGoSeffNL2RQUtXbo01LVrVxt8/YAVvDzzzDPh+86aNSvFPd/+MmbMmCQBemr3Yx/4U089Fb7vgQMHbNKAoP+dd94J9ejRw/aHB/8ecB8mEY4//nh7LiIiIjnt559/tnGN8eq2224LX8+YNXHiRAsU/XjGeMukdKQ+ffqEDjvsMJssz4y9e/eGbr/99lCXLl1sj7RHwMrvDQbSjLn++ezatSt8/V133WXXXX/99eHreCx/X/5Oj5orXNezZ88kz+Phhx8Ovfbaa/Z8Moo97jxmrVq1kt327bffJqkTw2v69ttvJ7mP/1tLliwZ2r59e4Z/v0huo6BbJIooQFa0aFEbaBiw77///tBff/1lg2rDhg1Dd9xxR2jdunU2o/7GG2+ErrzySgvIvUWLFiUJiFnJpvBat27dQoMGDUqy0s0K85o1a0IbNmywAW337t02C833kSvQGzduDI0ePdp+f69evWz2vmzZsuHfM378+PB9586da0XcOBl5/PHHbWaex3722WdDjRo1sucIfkeZMmXCj9GvX78ks/QiIiLZ7fzzzw8X/vKFRwlQGUf9eMVE8sEC6k2bNlmW2sF8+eWXtjJOdpvHuO9Xg3kcjywzVpCDE+igyCoZb8HfRwD+3XffJQlYOZeYNm2ajdnBYP6JJ54IVa1aNTRkyJDwdYzHfvKe8dr76quvQh9++OFBs9TIeuP57tu3L82MguACAa/x1q1bwz9fu3bt8PUieZ32dItEAfu02etMz89gP88ff/zR9mQzwbVs2TJrFfbee++5r776KlwQjWIjtPMCe6XYO007Ly6lSpUKPx77rn2hNC60Qdm/f7/tG//zzz/dP//8Y/u5aenBV/prH3300XZhr9qxxx5rj0frL7/nmyIn7Otm7xZ7tsAerYEDByb5+8qVK2ftyc4++2zXpk0b6wEe3DPnse+NAmwUWhEREclO7MF+6KGH3AMPPGCFvhiLJk+ebG0v6UF9+OGHW22VwYMHp6teSiRqp9Aai8f1Pz9q1ChrrUk7McZ3b8iQITauUqDNj6/ZiWKsFGClyCo1ZLxrrrnGPffcc27AgAHukUceSfLace6QUVdeeaUVY+W8gvMa9s5zHtO5c2c776HlGK8b7wNFYUXyKgXdIlFw//33u3vuuSfJdQSpDGwMzAw6FCYLIqhu166dDUxUSWWwolDZ6tWrLRDmQs9LAvfNmze7PXv2ROW9OvLII12ZMmVcpUqVwhcKodSsWdOqqDPwUtiNaq/z58+3E5c//vgj/POzZ8+2wBv0Gh85cqRNCHgE/QTuFKPJSxVfRUQkPtDRg7GXcchPDDPmvvzyy65evXppdhmhX3VkcTAwRjNOrlmzxs2aNcu1bdvWrl++fLkFr4znPXv2dPGOQJwFgieeeMKqt+O7776zriZMrL/44ovJgm/OC+iKQlHVSATWvKZMaPC6rVy50q6/6qqrrPCanwShuBo9vXVeIHmVgm6RLGCleNiwYTawsNqMM844w3Xq1MlWvj0GIqqBdujQwYJs7sMA/vHHH9usOSvfDFycKKSFkwhmkZk1L1asmK04cx0V0o844ggbGLlQmZxAmZVzniMr8aySM2geLCCvUaOGDY7+QiVz2pgxg0+1ddqcEVj7oJsJAX7nxIkTw8E37cf4mbRObkRERKIluFJLG7ALLrjAAmSuY3WbcZP7kKGV2sozq9JvvvmmTSYzFlKB+6677kqyqvv222+7J5980vXo0SOh3zzOQXwAzN9zww03uNatW1sHFY8Aevv27e766693derUsdcmJU2aNLGAmnMCMvBGjBhhj89EPtlv77//vq2sk3knklcp6BbJBAJZZm+Z6W7VqpVdx4BE+jYrxATBDFQ+DZvVa4JjAtaZM2daQBq58g2CWQYp+mFz4XvadrEyzVfSxJmFJ8Bl5Zs0MYJtMFByadSokTv33HPDjzl+/Hj73e3bt7eZaIJvAmV+PxfagfD8uARXrD3S0Vu0aOFatmxpAzJtzBioCezLly9vqWug5Rmz4HPnzrXB9pZbbnHDhw/X8SUiIjHFuNu/f3/LLmMsI52cifDjjjvOgr7GjRvbeEXKdWppzrQGI9Bm/GKcZszk+w0bNrgKFSrYfdjaxTjMWJoRjJd+spqglJVfxs4xY8bYZDcefPBBS1WnL3hw7GSine1jrKizFQzvvvuupXRzDkJA7DHJULp0aZuUzwge30+o064UvH48Fn8rCwJMXnC+4J9D0Kuvvmo9u2nFxnnFokWL7N+ca7DVjfclEbIARGIqpzeViyQaWmaddNJJVhykd+/e1oqrcuXKSQqgUTSN6p5UI6fAysknn5ysajjFR+rWrWtVUp977rnQjBkzrMp4EIXPaBlCFVOP4iT+MShw5t1zzz12Xd++fZM8xpFHHmnXU3DNe/7550OVKlWyx/coyjJ//nyr7krFV1qS8LsjnzfF06666qrQ5MmTrZ0ZBVJ8wRguFGGjeAoF40ArEYqxiIiIRBtjIkXEGH984S4uHTp0CFf4ZgziunLlyoX++eefJD9P8TIqdVMolPtQldsXZKNyOIVI0ys4Jvu2X8WLF7dK5sHf54uPBSuQc19/XhHkq60Hu534+/puIh7FV7l+2bJl4esYi2knFqyMnh4UXKMKPB1K2rZta497zTXXhNavX5+swBwF6yjOeuGFF4Zbr/GVDif+/aBlKQXmKCLLV5G8RkG3SDoxUF933XXhwfKYY45JUr2bftlUBmdwp6d2+fLlkwWs9evXt4CWFh5UBQ8O1P4+wdYefmClynkwOG7fvr0Fu/6+K1assN6jBPAEzaDlF5VPGSxPO+20JJXFeQ6+4njwcQsUKBDKly+f/Zz/m6moOnz4cOvRze3Bv4d/X3DBBaEXX3wxdN999yWpiM5zZuD3JwycFAUrqIqIiGQVFbsZY/wEM5d77703XN2bVmH0weZ6xtRI06dPTzKuBbuEZCTwP+GEE5K1/Xr00UftOsbJoFtuuSU0dOjQJOM9QfXXX39tbUeD6MHNJD6Vyz3GViqgz549O8lzKFWqlJ2jBCuT+9cnsp0Y5w2RExCRCI6/+eab0IIFC8JdWapXr27nPr6Ticc5RySeM32+/WtL+7DU3geR3E5Bt0g6MOgEV7MZ2D7++OPQoYceasH3gAEDbCa7WrVqyYLS8847z1qJ+RltPwBGzlAzm0xgunbt2vAKMbPKDKp+AH3rrbdsQD399NOT/CxtxXhMWol4c+bMsetq1KiR5L433XSTBe20GFm9erVdx6w1s+GFChWyoDs4i80qe5EiRazfJ4M6K/IE6xUqVEjyt7IqTqDNyY5f6WdAv/TSS8P34aSI10JERCSrfvzxR5vw9mMMY1hkv2jGUD8xzjhMC64vvvgifDvB+XHHHWf3oZ3mwdBWk0noG2+8Mcn1PuieN29e+DraZxFI+zGcMTEYPDPBTWvOYLsxkIV28cUX22pz8L4333xz6KmnnkpyX/qMM6HtJxkiW3eOGDHCMtuYmPf27Nlj5xKFCxe2VqPpwXmDfx0LFiyYoZVzzk14b4LnAkwmiOQlCrpF0sAMObPJfrWWS7169WwAZeAkwGTwJfgO9v8kxeqdd94J3XrrrdYr1AfSeP/992222PetXLx4cah79+6WehVUp04dezz6d/rV8DFjxth1pKuD5/H0009bmjoDPicDIE2cEwIC6AYNGoQfkxl0/s1j8Py8Tz75JPy4wZ6iDMak6HFbsK8oz6VHjx42Wz1w4ECbMAgG4MyEcyLBwB78W/yFlHx/m4iISGYE05crVqxo278i+dRoUsXZwsUYzWS0D1L5GT+GR67eEiQzgR1MA3/vvffsvieeeGKyleNffvnFHpdAOJjNhsaNG9vYz5jvMZHOY5GNltJEuh//gyvynIMEtWzZ0q5/+eWXw9cRhDNRznMNns94TDoULVo02d8wbNiw0A033JDi6/jZZ5+Ft8a9+eabSW5jgYDFB16nNWvW2HlJJCYfghmAkYsHIrmdgm6RVDCL26lTp2Qp4gSorBJH7uNu0aKFpYv9+uuv4cdo06aN3TZq1Cj7N2nlF110kaVsR65I83g+xYz0bwZoVqX94MfPcT9Stdg/5QdWruOEIYiTC64fPHhweKAN7gVn5psVAhCoX3LJJXZ9u3btkjwOJwLsEWMAZXXAYyWB+xPo8/icZPA4pK8FU9CZ2SblPaU97aSiL1myRMefiIhkGEFlcKKXVeVIn3/+eTgtmromTPYSbJKN5bc7sQpLxlqXLl2S/fyZZ55pPx9cXd63b5/9bgJXxj8C7GA6t98/3qxZsySP1bRpU7s+uBL/5Zdf2t5xJvCDOFcgNZ39096qVasssOV3B3GewTkA5xKREwO1atVKct9x48bZY7PfmoWD4CQ7fwsr4vwc9Vo8zjf86nznzp3tdoJzj7/fT1rwe/33KQXuvOY8J/++Rf4tIrmZgm6RVAwaNChJkMhqN0EoA7a/joCUQZDZc/YqkWLtA2JWiRmYKNDi07B8EO8HmpdeeskGTPZ7kbbtV6P9SUJwvxW/h983cuTI8HXsB+vatautrPtZe5+aTjEYBtfgYMdjsvodnPFmnzq/j5VxPwAzwDJz7QNoUsU9BlVeB1b4g8+Fx2RFm+vZ3+2LzfmZcSYRSpcuneQ1ZZY9+LxFREQOhtolvr4KxdGCQa/H+Mn2qCpVqli9FY+05uAYCIJxMsQoSBpM/2aCmkJowbEuiIKjPIcpU6YkWfFmnGUFOoiMt82bNyd5/Gjhbw2eL7A4wHkBE+9BPqieNWtW+DpWp3luPC8mBCiUysSCR6FXJsmffPJJC/yDq+fgtWQV3heLY0sdv+Oss85Kcc8475Vf8eY95BxJJC9Q0C0SgQFk9OjRSYJrUtGCK7is8FKV3A9MBI6kWFPpk5QyBnUCXKp6cx/2WDFTTjoVP8fsti+m4tPePB6LPdMM8sHCJJEnCZnBY0dWV6UIGjP8wdl3BmC/d4uiMv53k3rHfVOqkk41c/8z/A5+hoqpBOGRgbZP12fA9YXfREREDoa6IH41lclcAtmUMM76cSe4hzu1gmG+8newiwhjN4Ejk9ZkbUUG0kxOM84/9thjScbZgxUoywkE1ZxbsMof3N7FVjD+brLpUsJ2MG5/8MEHw9cxvkdWME/pdWfCg5XwSLxnvusJ5wGq9SJ5gYJukf/DCjUDJ1VB/YBO4B0s0sI+K1ZxSZumNQkDD7PEzACTWu4HIVagCcK5D0XYeGwftAdTrtgjxT5tZo/jCannpLiztyul/XOs2Pt9abwGpMD5lPHI9mCkzpFWx6w3ExH+tWR1gpVvUgIpdMNsd3Dvu4iISNDYsWPDK9yXX355slXjyMwpao4wiR4ZBLNdynf78JPKbOc6++yzbVwm2PZbsECQ6ieLg0Ek439KVbsTCdkAFDYLpnpzLnPZZZfZ3m22zE2aNClJ9xFW0llkCHZWSSmVniKsPvsvEr+PtH6/RU6Bt+R2CrpF/m8ftR8kfIVNP7D7YJsCaAzOFEqhEAt7yBi4CRb9nmxuZxBnACPtLIjUq/vvvz/VWflEwABL5XZf9Rzs5aaADX9z5CoAq9/+RIUMAE5WqGbuJzX4Gkwz43UNVmAXEREBY60fl6+++uokATZjLwE525rYzsVWKe6T0kQuE73ByXRfVNQH31QSpzo3W7eCqM3CeQD1UXIbUr6Dq9+kn/PaEBSn1FObyXRfhTxY78VjUt5vkwvuS+dx/evsU+J5n/z5wPjx42P2N4rkNAXdkufR+otgL7LQFxfaYjGIM8CAmV72fFHJm4GD2XD2TxOUs0rue1rys/xcPKaYZRV/dzDVnXQ1/l6KsQUH140bN1o7EgZlVs2DSLGPrGgevETuQxMRkbyL7U8+U4rgjCwpJss9VlOZCOd2xuj+/fvb937yO3JbFVlZfusY7TKDRdho0+Vvi8X+60TAa0L3FTL4gmhjxso447tvG+rT0inOxt55zoGCVeP9VjRWzX2mXHDChO994M17/O6772br3yqSXRR0S55GFfLgira/MLtLYL106VL7N6nhrHCzWs2/GUzge1BHpmFTeCwae7ATAasKVEQNViJncoIVbrIGGJiDAyyr5BSm8ZXYfQuzyAv73/PqCY+IiPwPVbmZvPUZZcExOIiaI8OHD7e0cD+RToEzJoQZ031nEdpw+eCdYI9zgOBEL2O3r0wuoWS1XnjdyCSgMnywajmT63zv25TSr5yx/qGHHrJ/0wWFAnOM+0EsXnAd9V58XRiK2onkNgq6JU9iMGXGNqVgj33LBNjch8GeCuSkhDMwsAepSZMm4R6VVBznJIDgXf6/N954w05kSNkPpp7xGtIuhBMgCuAQVBOQ0180WKjOX0g9Tyl1TUREcj+2JZExxXjgW3ByYVsT1bnpcx3Jd+RgjGFvcrVq1ezf3JcV7eOOO87+zWq475PNBLqkjWwCzn1Y6Y7s8kIROmqzsIodXKlmosN3b/GBezBdnS4vTJb4xQ8m2/nKe07GgUhuoqBb8hz2LlEsJTLAY2acD35mZklF8+lpzISDYDvYcxsEjGp5lTJ6ovoq7WCgLVOmjK1YEGAHB2Jew/r169s+usj3hWItGnxFRPIWVlN9Gnjz5s1DHTp0sO+7d+8eGjJkiH1PjZFgITNSm30aOoG5X3FlVZbWV34FnKravjK5T4eWjGNBwgfM7du3T3Y7bUspphbsc+6xsEGBVRYu/HvLY7Ro0SJcmDWRa+CIRDrUieQhe/fudY0aNXLvvfde+LqCBQu6kSNHuk2bNrlatWq5Nm3auD/++MOdfvrpLl++fK5QoUJ2v169erlKlSq5YsWKhX/20EMPtYskV6FCBVevXr3wv+fOnet++ukne/1mzJjhihcvHr6td+/ebuXKlfb9RRddlOQ13blzp/vxxx/1EouI5BH79u1zZ599ttuyZYs76aST3G233WbjxmGHHeaGDh3qbrnlFte9e3f3zjvvuPz589vPHDhwwDVp0sT9+++/rm7duq5ly5Z2PWP5qaee6latWmVjO8aOHesKFCjgDj/8cFetWrUc/VsTWZEiRVzfvn3t+w8//NBNnz7dvv/mm2/stZ44caKddy1evNgNGzYsyc9yPrBixQr72qdPH3tveQze6xo1ath7f84559ixIJIrJAvDRXIx9lrTysuvorLySk9tioZ069bN+lWCvtnsSaZNhkeamvYYZ83XX3+drDp5jx49wu+HzyLgfaKIi59Br1SpUmjBggXhvugiIpI7kfnUpUuX8Eo2WVOkigczz1JCO04/ljzwwAOh559/PkmnDVp5DhgwwNp+SnTdcsstoWuvvTacPUAmASvVZBjwXvi94LwfW7ZssVZrYCsfFc3Ru3fvcFYDnU7IcuPf9AlXRqHkBgq6JU8gWL7qqqvCRT+CF9qM0Geb76mISho0/Tr5N/uVJHbo9ekHY/bYB1GYjTRBX0CHAJxB/Jprrgn3QxcRkdyF6uO+HRVjBMGyD8AI4ILpybSY8inI3O+OO+6wscR31WCPscResOgc+7apx8J75ovX+UkUAuiOHTtaXRdq4gRRAM+P99SF4b2n8Br/1kSJ5AYKuiXXo5opH/A+yPaBNzPo5513nrW5YpCnKAsrsaAVCa3EJLYoknbjjTfaJYjq57xnZBv4/XnBC3u+/GAuIiK5w9SpU8Of83TF8EaMGGHFteiT7VFxnPsRxEVWGl+zZk2oZMmS1sqTFW+y2ST7FjlYvQ7WdGGF22euUaWc4DqYhQDeQ7+Hn8JsYFHET7pTIV0kkSnollyLD3C/Yu0vfhaVQl4URuM+BN5cd/nll+f0U5b/C7h9QTW2Avj3JzJLgYq0PkVNREQSG1u9ihYtGm7DGQyk+T6yqNaqVatCRx99tFXTpp0ngXlktW06kBCwEbBTmE1i648//rAq84zXFLCLzGrjcuqpp9p2sSD/3lLJnMmS4O2krfNzFGTT5IkkMlWAklyJQioXXnihe+yxx5Jc//fff7uSJUu6//77z3355ZdWvOvWW291FStWdGeeeWaOPV/5/15//XX3+++/u6pVq7qXX37ZvfHGG65z5872ngULrK1du9YKtVGERUREEteff/5phdH27NnjGjdu7Jo2beq6dOniBg8e7H744Qd3yCGHWPHNTz/9NPwzFFjbuHGj279/v3vwwQfdXXfd5X7++efw7RTw6tGjB4tLrlu3bq58+fI59NflHUcddZQrV66cjdecg23fvt2u57yLgnYUS1u6dKm9z96GDRuscNq1115rBe+2bdvmmjdvHr79zjvvtOOB95PH5DxOJCHldNQvEovUpjPPPDPJqigzp74tGD08uQTbhFD4Q+IDKxoUWwu2CaMlTNWqVcPvp09T40KLN7YIiIhIYmJl23+e89kfbB/JViM+42vXrm0r28HVTlazaTnF/dg37FfHOQ/wbahq1KihIpzZiIKnNWvWDPdW9wVoeW98X+/q1atbphoFU5944gm7rmnTpsnqtcyfP9/e84cffthSzrnfwIEDs/PPEYkaBd2SqxA8+x6P/sIHOSlrBNxULvX7hYJ9oiW+jRkzJsnebvbjBwNvqpursryISOKhoJb/LPf7dpl4JQDnurvvvtuCMapa89k/evTo0AUXXGDjPSnlvghqsM4HBdW4/qijjgotX748B/+6vIn92n7ihPfP2717t52T8f726tUrHJhzDATT/6lwftFFF4UL6LVr1y40ZcqU8HES3NsvkigUdEuucueddyZZDeVD3Qfhl1xyiQ3SZ599dmjChAnJCq9IfOJ9at++vb2HZ5xxhgXYDNIvvPBC6LLLLgu/3127drX9ZCIikhhY7SRg5jO8T58+4evfeustu4692LSV8vU+yFDzK55UtOZ2vn/ppZeS/SwXqptLznj11VfTLII2e/bs0AknnGD7vSNRAM/X4KFjCa3I4KvSc8zs3LkzW/4OkWg5hP/kdIq7SDQ8/PDDtj8bJUqUcL/99psbNmyYW79+vTvuuOPczTff7I444gi92Am6R5+93eznYg936dKl3YEDB1yTJk3c119/Hb4fe8befvttV6xYsRx9viIicnDstZ48ebIrVaqU7fv96KOP3DHHHOPq1KnjVq1a5Tp06OCmT5+e5GfefPNN9+GHH9pe7XHjxrlTTjnFffbZZ1bzg+v4mZkzZ7oBAwa4Rx55RG9DDurbt68bM2aMK1OmjPv+++9tz3fQr7/+6goXLhz+N3v22Q/esmVL988//9h11G754osvbF8/e/9r1aplj8X5ADVgRBJG1MJ3kRxcCfVp41zq1Klj+8NoN+UrXj/11FN6f3IRUsn9njEuV155ZTjdnJQ2VakVEYlvkyZNss9stg6VKFHCvh81alSSNGI6jbz++uvWAixo2bJl4fF94cKFSW5jnzcrparVkvP++uuvUI8ePcLtWIPnbezlZr/+F198EU4pp/4O191///32c7z/vMeko4P2bxwvfrx/8803c+TvEskMBd2S0Pjgbtu2bbI+zsEAvFmzZqGNGzfm9FOVKKK4CoOuP+niPQ6+74UKFbIBXERE4s+OHTvCBU5p+UVQPWTIkNC///4batCggV3fsGFD2w/MZz3F0IJ7tn07UPZ2Q9vFEg97tnkPTzvtNHv/NmzYEKpfv36obt26VjwVFFrzbcY4j/PvO//mK3u+VZ9HEoXSyyVhMWl03nnnWTqxR3pZvnz53B9//OFOPvlkt3DhQktnOvzww11u93+TaEnaauVmpA8+99xzlppIG5ITTjjBffvtt+HbSTGn1UzRokVz9HmKiEhSl156qXv11VddzZo1LXWYcZsWnnyOsy3spZdecl999ZWNafXr13fnnHOOe/zxx+1+4Hp+ni1FFSpUsNZibDmidRjjQW5AmjVy05i+ePFit2TJEte/f3+3efNmV61aNWv59tprr7mLL77Y0sd37drlypYta/enBRwtXTmnK1SokI37W7ZsseOBbQVsQbjiiivciy++mNN/mshBKeiWhNW7d2/3/PPPJ7mOwZb9v+z5/fzzz61fZCLihIJelZs2bXJbt25NcmFPs/+efeucaLD3yQ/Q7HtikoH960w4sFeOPe3+wt6q4PeVKlVK2EkJXqeLLrrI9vgVKVLE9ocFy1Tw/q9Zs8YGaxERyXnz5s1zrVq1su8JnHv27OlmzZrlzj33XHfllVe6kSNH2ljux6UdO3a4Y489NtXHmzRpkjv//PPtex6nbdu2Lt4wLjGeE2imNp4z5v/+++82pnMJBt28FlwKFixo5zcpjedcGPOOP/54Ow+IN+vWrbPe6pyvsFjSuXNnN3ToUOuvznNnrGYcD5owYYK78cYb3c6dO+3f7OG/7LLL7PtPPvnEnXbaafb9nDlzwseUSLxS0C0JyX9QBzEb/uWXX9pg8/7777szzzzTJQIGYwZiZvuDF2Z4PU5AGGgjB1gGKIJrPyDztzPpwKDGoM0MMgN55CDP9V7+/Pld3bp1bdbYXxgYEyUQ5ySlcePGtkqSkho1atiKiV8hERGRnPH3339bFhoBFjp16uSmTp1qwRXBN8UxWckkGG/evHmynyez6YwzznBHH320/XvFihX2+c+YNmjQIDdixAiX0wiWCTA5H/HjOd/v3bs3fJ8jjzwy2XjOhQliP2nux2A/sc7Xffv2pRi087p6nBdwPhQc08kgiIcVcwLoJ554wv5OiqbxvCia991337l+/frZbR5/EyvhGzZscK1bt7ZgmwwJj3MdjiWfIbF69Wp7XUXilYJuSTjMdF5++eVJritQoIBVPP3xxx8t5fjqq6928YqBghQrqq8uXbrUBmRm8sGqtB8kGTRZhWYgphp7tAZMgnxWyBmoCfaXL19uz4HnQno2t7NC7gNxqoi2b98+SYXReEMaee3ate3EiyDbn9B5rHzwesfDSYeISF7vMsJ43bFjR/fYY4/Z92BcJ8BiJZxxh9XL4IotY1TDhg1tTCTYxqmnnmodSviMp8p5TkwWkxI9d+5cq7zOc2SSl6wrkPrux3SqcLMKzfNn+1O0VqMZs3fv3m1jOqvp/H4f7G/cuNHuw/jN7+f1atOmja0KR1YSzw5MHnA+wetFoEzVeSYk2rVrZ+MzGYqc+3g8/6eeesoNHz48yfjNa87xQRDPBAeoVE/FepF4paBbEgofsgyuPoWYWVDSjj7++GMLTCdOnGgtKuINQS57kd599133wQcf2HPm+TZq1CjJbDQz3zmZFsbzZMD2M/QMgGvXrrVZd06CWJVgLxUnEvGG15dWMRwbpCkyQPO3cBKHa665xj3zzDNxmXYnIpLbbd++3VWpUsXGGSbPCboIsJg0J3BiPGeVuFevXm7UqFFJUo2ZrGZFm6C2R48e9vME7aSTMznNWOWD9+zARDkZdYzpjD1kXJUvX94mBYIT54zzOYlzjeCKO0EuixOkqRP8Mp6fddZZaabvx+I5EfwTUJO1wOt4ySWX2Pkb+/avv/76VH+W42PRokW2d3/27NnuySeftJXu0aNHW/YDCwdkBYrEpZyu5CaSXqtWrQoVKVLEKlYWLVo0dPLJJ9v3FStWtBYh8Ya2VaNHjw516NAhdOSRR9pzrVWrVuj2228PLV682Kq0JoL169eHnnzyyVC7du1CRxxxRLgq/J133hlasmRJXP0djz/+eOi9996zVjEffvihtRYJVjXndhERyX4tWrQIV56ePn26jYstW7a0llHXXHON3daxY8cUf/aZZ56x2wsXLhzaunVraODAgeGWYpHtqGJl9erVoYceeijUtGlTq6jOpUmTJqFhw4aFVq5cmRAV1HmOK1assOfcuHHj8N9BBXH+Nv7G7EDLN98ObNCgQaGffvop9NVXX6X5M/PmzQuVLl3anm+jRo3s52fNmmXnIL6aOe1DReKVgm5JmPYiFSpUsA9V2kS1atUq9OOPP1q7iOuuuy4ULwj+6SnaunVre670Cm/Tpo31Hv3+++9DiW7v3r2hiRMnhnr27BkqVqyY/Y2VK1e2AZxBM55OLDiJ8H27r7jiivCx88EHH+T00xMRyVMmTJgQnvx8+umnre0jAXS9evXsc5mxktu4PtL27dttop3b6e2MN954w4IuxqNY2rNnjz1fnqcP8jt37hx68cUXQ9u2bQslOv4G/pZzzz03HATzt/I387fHEj22+X3nnXde6MCBAwe9/0cffRQ+hmgvx0SH9/HHH4dv4xxMJB4p6Ja49/fff4eqV69uH6b09WSWk8Fh6NCh4UAqu2ZnU7Nu3brQgAEDQsccc4w9p+bNm4defvnl0O7du0O5FavJc+fODV122WWh/Pnz26oyJyOsMMfDjD+rJ8x+czLBMULwzXvD6kpwsBYRkdg666yz7PO3XLly4fHhm2++Cfdd5sKqcUpjB2OMDwYZd7xYBr1Lly4NXX755XauwdjWqVOn0DvvvBPuH50b8bfxN/K38jfzt/Ma8FrEypw5c5K954zPw4cPT3Zf7udXtOntHrRz587Q8ccfH55oT08QL5LdFHRL3OvTp094UPaz4aVKlQoHUffee2+OPC8GAGZezznnHJsIIOAm5W3NmjWhvIbJBVLpSTvnPTnppJNCY8aMCf3+++858nx+++03y4LwqYx8LVSoUPg4YtWEVXsREYmtzz//3D53GScXLlyY5DZWU5m05fapU6cm+9kFCxaEf5aU9C1btsTseRLQs3Lus6TIrmNyP5a/M17xN/O3+wxDXpNJkyYlmfSIxTnVd999F8qXL5/9TgLySDwHbiPTjnH+r7/+Co0fPz5UtWrVUJkyZcJjPMeNSLxR0C0Jk5IWvFSrVs2+NmvWLKaDQGoDw7Rp00J169a151C7du3QCy+8kKtnwDPy2pAe2KVLF1tdZmAk9Twngu8RI0bY+8MAHhyM/aVr165xsSIvIpJbbdiwwfZp85nLxHSlSpVCb7/9dviz97HHHrPbyGZLqT4I25Yuvvji0FVXXRU6/fTTbU8vtUSiiXMIxnC/UsrvmTJlilZLQyF7DXgteE14bXiNSEeP9nnXvn37QhdccIGd0/n9/RwTBNWRz+fEE0+02x955BE7tjjXYCGG53b++efbbdQKEIk3CrolbrFi7GfAfcoQX2vUqGFfKaq2cePGbH1OixYtskHBf6iz0q3ALfUCbNdff70VXzvuuOOsEA5bBbILJ3BnnnlmeMUipckbBm0REYnNtqujjjoqvFJdvnz50NFHH21jQu/evS2Amjx5sk1ckxmVFmq38Dj8fLS2kzF28/v99jWCvoMV88rLeG14jfx5GMF4tM5/vv32W9vjz2OT0k4QzfcPPPBAsvtyrPgJAAqncZ7IRACr8xSw9YVryVr44YcfovL8RKJBQbfEJdKG/P5ov2+br8EVS4pwZBeqfZJGzu+lavqMGTMUbKcTgx6F1zjpqlKlir1v2VXxnAI8BPy+4ro/aQtuV0ipcI+IiGQNq8f+s7ZXr15WEJWuF4znBG9+HCBwi1w5DXYkeemll8KPw57jaKAeCRWwecwzzjgjpvuWcxteK7qZ8NpRAZ2q4tFA5xHOE3wVcr4yaRNZhJaswhIlStjtZE1E1mjxEzSM76TFx1OHFcnbFHRLXOKD3A+yvu0TH8akHTFgU406u1LjKOLC76ZKN+nu+gDPHNq6+DTDU045xVp9ZAcKu/ljqWzZsuGaAP46ZsUJzkVEJHp8RWnG8GDgRMB7sDafbFGiqjWBmF+5jEb9FlZraePJ4zVo0MCy1SRzZs+eHa6ZQlYZbcCyipVtPy7z/vA9RfgiV9THjh1rNQAiC6b98ssvVl/Gj+9M9NNiTiQeKOiWuENLp2AKMAEv1cCpcgr2c7ESHkukQd9///32wU+Axod45N4iyRxWlqlSy3t79tlnhzZv3hzzl5JURj8rT193UtGKFy8ePsZoQSciItHvy03bzMjxk9VJ2lKxlzcSgbZfqfSZSnShyMqEN4Uz/ThA0S0KcmlrWNbxGvJa8pr6hZFff/0104/He8x5ga90z1YEvie7MD2LJKS9B8d2OqqIxAsF3RJXdu3aFe7HSVpQw4YNrdAKH+zZtR94+fLlofr169vs/O233x7zAD8v8nvpOKFib/64ceNiegLESQAz6KyucByR8h5MM+dCcTwREck8PscpYkn9E//Zyl5dJjYZ3z2y1biNTLIgim4yMepbhPGVLLOs9IyeOXOm7f+lg8WTTz6Z7cVX8wLGVV5bau/wWmclk43Van8M0AmF2itpnf/5yRj2c7MFkQtb2vyiDbUFROKBgm6JG6QJUVHaD9QU4QJBL/u/Yt2Kiw/1IUOG2MxqzZo1rc2JxBaD6yWXXBJOIcvO1iy0I3n++eetzRu/n6q49PoUEZHMoXgVn6f0eOYrxdP4nr25ft/0zz//HG4L9cknnyT5+TvuuCP8c4wHjA9ffPFFpidb/ep269atrbinxBavMa81rzntXjO76s2xQuCdVs0VztnYckBFfOoFgBR3Kt7DF1Jlj/fLL78cev/99zP5V4lEh4JuiRu+cAaXvn37hpo2bWrFV/z1qbUUifbq9uDBgw+630yi691337WglywHBsdYrnqzysHM+cMPPxwqWbJkeH+fP8ays8K6iEhuwvYvio2SGu57LZNKHiyAxuS231Md/Kz/5ptvwunEVMbOClZaWXFl5ZU0dtViyT681mzJ47Wnc0hm981HjsWcl23bti38b44dzts4Xh588MEU95wH6wIxkZPSdgaR7KKgW+ICKWXB9mAUv+Br8LpYFN4iABs6dKhWt+MAqYc+JYw9XX62Otp8H0+fvua/+gtZFSIikrnsJfpq+44RkROo7O1mgpXbx48fH76e+/kV0lq1amU6SCYzjhVWX6tDLaNyDq89rVX9qndWtuqxHY3+3FSaDx5TbE3z+78jtw1QsM9P/lCAl8r5f/zxR5b+JpGsUNAtcSGYVs6FvVd8ZSWSr1dddVVMTg74AOfDmL3buWF1m9YdDD4YNmyYVRbltTz22GOtEA0rCfGOiqSclHH59NNPo/74pJj5QdgPyH51hQtFWGhJIiIiGXPhhReGP0tT6rFMBxBuo55HsLgaqeSsTPv2oL5wakaDPAJ2VlhZac0Nq9uJPqYHV73px56ZSZC33nrLFmD8sUHhNo8gmtci8noCcwrwBs8pWdwRyUmHOpEcNnv2bDdlypTwvytXruz27dvnSpUq5X7++WdXokQJ9/DDD0f1d37zzTeuUaNG7vPPP3czZ850w4YNc/ny5XOJburUqe6cc86x7+fPn++uu+469+mnn7pZs2a5f/75x51xxhnu999/d/GsU6dObtmyZXYcnH766e7VV1+N6uN37NjRde3a1f3333+uZMmSdl2RIkXCt//yyy/usccei+rvFBHJzQYPHuxeeOEF9++//4ave/bZZ23cCeI6XHPNNe7II48MX1+mTBl7DD6XDz/8cNejR48M/f558+a5Bg0auD/++MN99tln7tprr3WHHpr4p7iJPqbzHvBeLFmyxO3fv9/eI/6OjChXrpz7+++/7dhA//797RwRRx11lB1LePzxx8M/c8ghh7jXXnvN9enTxx1zzDF2/zlz5kT1bxPJsBwN+SXPo3czs9t+NjK4+kjhFb6+8MILUW9JRsVsqmImSlXLe+65J0kmQPBy+umnh+93wgknhKZPn57iY1C8hvunVZgknpB5cPnll9tzvvnmm5P148wKqpwy8+4r6/KVvWfBWfGNGzdG7feJiORW7Nn2q5C0ZeQr4zq1OiI/09k6RCvOH3/8McltjMU+wy2l/blpYc825w20JgtWSI9neXFM573hPeK9GjNmTKb6d1ONnK+33nprkiwJf97IsRhpwIAB4fZh1O/p1KlTivcTiTUF3ZKjaUfVqlVLMtj4vdx+n22jRo2iliJGutHIkSPt5ICBn76diYK9UFdffbX1t966datdqLpNlXV/ksEgQhus1PqJf/fdd/aarlixIpQoeM9GjRpl7xmVSLPSNiYSxwKvhw++/Vd/ofhKrCvmi4gkOlJ8KU7Zo0ePcPD97bffpnr/YJeI77//PvTss8+Gg3V6e6d3gpVCW37/9g033JBQrcDy6pjOe9avXz973tdee226C5dyTPj94VyYuOHY8bp06WLX33jjjcl+ltfRL+qUKFHCvu/WrVtU/y6R9Ej83BtJWLt377ZUXi9//vzhf0+cONGNHDnSjR49OiopYn/++afr1auXGzRokLv11lvdO++84woXLuwSRaFChVyBAgUsHa906dJ24TrS8IoXLx5OQ2vfvn2SlD2PtCxSsk477TRXq1YtlyhIEbvxxhvd9OnT3eLFi21LwLfffhuVx77hhhtc7dq1LTWP9DPSEuvXrx8+LkiTvPDCC6Pyu0REcqsVK1bY5zPbdBhrGGeqVKmS6v35vPUYk0kPJmWan2c70WGHHXbQ37lz507Xrl079+KLL7rnn3/eUosZDxNFXh3TjzjiCPfEE0+45557zt430uN5Lw+GY4Jjw4/PpJvfcsst4dtJu+c4uuyyy5L9bM2aNV3ZsmXtNeN38ViM/yLZTUG35AiyLFq0aOF27Nhhe6kZaAiGv//+e/fmm2/avp+BAwe6U045Jcu/69dff7XBmUB+woQJtn87PYN6omGAZj90ShiQVq5c6d544w2XiBiY2adHEE7gzf6waA3+bdq0sT3cnDi+//777sMPP0x2rIqISMpuuukm99Zbb7mnn37a/p1S4EOdjo0bNya57qOPPnJvv/12+N9Msh9//PEHfZl5nMaNG7vVq1fbPt2rrroqV741uXlMv/rqq+39X7Vqlb2XkcdGanu7g/u2t27dagsqYBwfM2aMq1evXoo/27Nnz/DiDsdi8+bNo/a3iKRbutbDRaLss88+C6cJ0RebPbakW1GJM5p9kqlQ3rBhQ+v/vHjx4lAiI20quNeLPWF169a172mvRQXulPazXXfddVb9NDe0TiG9/LTTTrOUu4ULF8bs99DKhvQ1js9gf1kREfkf9sey7efVV18NtwFjW05K24CaNWtm+3F9mzDShalmzc90797dqpVHthdLLaWafsvsdV6/fn1CvxUa00P2HlauXNlqAKSnxg7HyDnnnGMdbTLS/ovthL5O0KJFi7L4zolkjla6Jdv9+OOP4Wqcxx57rLvrrrtslpPVZ1akSQWiunhWkUbUunVrWz1nNpzZ1NyEVV9v2rRprmnTpuG0NL9Ce/3119tKAn9/pUqVXKIj/XDGjBnu1FNPtbS7aFcjJaV87dq1rlmzZnYs4p577nGbNm2K6u8REUl0I0aMsK0/jD/dunWz6zp37pykGwRYkV60aJFtFWvVqpVd98orr1h2UbFixWyF8tFHH00ypqWE8wIy5EjLpgJ2xYoVXW6SF8d03sMFCxZYFXLe24Od+/EasT2Q1HR+JhLbFK644opk29BISz///PPte7Ipd+3a5QYMGGCV1UWyi4JuyXbsw9m+fbt9T2DzySefWKrPSSedZAE5bSUqVKiQpd/BByoBN+lHtBJJLeUokR199NFu27ZtNri8++67ydLQSD8bP368pdT7+3Jh73IiY98baeAM0GeddVZUAm/qC7B3nH2ITPrwWvI78PXXX9vJTXr2nYmI5KWxvHfv3ha8+DTnK6+8Mtn92L8LJttpDcYYdMcdd9h1fA0GlqkhGKOFJPvBCbjZo5vb5NUxnfeS95QJmJYtW9rEd1qCdX74+6kL4F+DoUOHurFjx1r7ukjdu3e3r5MmTbLfw7YyJnw2b94c9b9JJEWZXCEXyRQqdFKxM1glukaNGvY1X758UWkRtnv37lD9+vVDxx57bGj16tW55p2KTEWjImepUqXC7dVIuwtKrR3J2LFjQ7kB7Wc6dOgQKlCgQJZTzbdt2xZuV8PFtx8JXq655pqoPXcRkUS2fft2S/OmYjktrfiMLF68eLIK4qQAFytWzG73ra9oCeY/V1955ZWD/i7SjsuUKWOVvWmTlVtoTE+K95ZWrrzX6Uk1p2p7/vz57TgaPny4Xcd2MP7N+V9k1XfOGdiaFhzXOaZSqw4vEm0KuiVbMUAHP/D8B6ZvM0IAnpW2H7/++qu1GWPwpwd4XjB58mR73fKi/fv3h1q1amUD6aeffpqlx7rvvvvsGCSI5yt7BoPHamTPWRGRvGrIkCHhz0bGW75edtllye43ceJEu40A3bcCGzp0qF1HHZKDBVcbNmyw/b5Vq1a1Sfu8IC+P6bzHvNe857z3aaEGEDUEOJaYNGfBhfPH4447zq6bNGlSsp+5+OKLw8fjo48+mq46AiLRovRyyTZ//fVXuOo0laNBqllwLxOVxTPb9uOff/5xXbt2tTS0mTNnujp16ri8gHTr4cOHu7yISqTsfeO97tChQ5baiZFeXrRoUdvegJ9++ilJKht7DkVE8joqlf/222/u8ssvt9TwAwcO2PXnnntusvuydxuXXHKJ1W2hReOzzz5r191+++3uhBNOSHPbD1vQ+DkqXdNWKy/Iy2M67zHvNe85XUs4BlJTrVo1d/PNN9v3+/btcw888ICdP3JcgjTzSOedd5595fFpuXawOgIiURW18F3kIKheysx2aim8pIRnZdaxX79+9phz587Ve5HHUC23evXqoWrVqqVYOTe97r333iRbHZgND2ZiTJ061VLRRUTyKjqC8HlImvgnn3wS3uK0b9++JPfj30WKFLHbWZXEnXfeaf+uUKGCZSqlhhXLdu3aWWp65NYpyf14z3nv27dvn2b24++//26p5P6ckk4uHGu+kj7bICLv77PZli5datsf2HJ3wQUXZMNfJXmdgm7JFv5DMBjA0CaCrz4V6K233sr04z/33HP2GM8880xUn7ckjrVr11prOFrY+DTGjCI9rXDhwuFj1Z8w+iCcC3vORETyIva/vvnmm9a2iYDGb8vp1KlTivenFSiTlbj++uvD6cCkUKelf//+dt/Zs2fH5O+Q+Md7zzEwYMCANO/39ttvh8fnSy65xK5r0KCB/fvxxx9Pdv9u3brZbbfffnvotttuC/+sWolJrCm9XLIFbbvKly+fJF3Xp/VMnjzZKph36dIlU4+9cOFCq+rZt29f16dPnyg+a0kkVatWtVYgH374oaUtZgbp5aSZ48gjj7QWYmyBoKK5t2bNGkuRFBHJax588EE3ePBg6w5SsmRJa9/kW4WllipNFW6qTD/99NP2mUo3kbTG+5deesmNGjXKLm3atInZ3yLxjfeeCuNs7Ro3blyq92NbQ4MGDex7KrtzrLGdgXZkbEGLRNcTzJo1y73++uv2PWnpfkuZSMzEPKyXPM+nn/lVbipTslrIauSCBQuylFJOoQ1Si1q2bBn6+++/8/xrLaHQY489lu6quCnZtWtX6JZbbgl99NFHtkqzd+9eu75OnTr2uL169dLLLCJ5DmN22bJlw+P5+PHjw99HpvFGZhuxcu1Tfum8kRpWG9mGRpcTFbkSjoGrrroqdOSRR9q5ZGqWLVsWrlq+fv16y8hI7fjZvHlz+HyUbjlsK9u5c6debIm5Q/hP7EJ6kf+tZDPrSB9FCp2xGrllyxabjTzxxBOt72ZmsNp42mmnub1797rPP//clShRQi+3MJHorrrqKvfaa69Z789GjRpF5VV59dVX3aWXXuqOP/5498MPP1ghFhGRvOLLL7+01UH6HDP+3nnnna5nz57u5JNPdl999VWS+959993Wa/quu+6ycbpy5cp2DsDKeEoF17Bp0yZbsaRA1uzZsy3bSOTvv/+2Ve/vvvvOLV261JUrVy7FF4WMycaNGyfp450astdWr15tx3K3bt30Iku2UHq5xBSVJ6kkSWVxEAwRbBMgE4hXqFDBLVq0KFOBFY+7bt06G9gVcIvHtgXSGE855RRLYdy6dWuWXhwq865fv961bNnSFSlSxE4MOeY49kRE8gqqjt92223u1FNPdcuXL7dJTZBqHjk+T5w40X399dfuzz//tBRhAm4mQEk1Twn3I0WddGAm6hVwi8exwDGRL18+m7DhWElJ06ZNkwXcBOxM4ESuL1IVH0wi+WOWoJ1Udq1FSqwo6JaYuvXWW621CIEL+78YnK+55hp33HHH2awlq4XMkmcUbUiYoWSfT+3atWPy3CVxMThPmTLFBs/evXtnahBlRp1Au1SpUq5GjRrW2sZPHtF2hD3kvr2YiEhuxmdo9erVbYWQjDXafs6ZMyfFoHvFihVu7dq19jl8+umn295ssBc8tRZNrIyvWrXKVsKPPfbYbPiLJJFw/jh16lS3cuVKd8899xy0zg8TQz///LMt7BBgc0wG0Y4MtJfl2H7yySctI2PgwIH28yKxoKBbYoYVbWau/QBKGnjZsmXdBx98YIE4evXqZYVWMoLUdIpdkdamtCBJDcEyKzPvvfeepYZnFAE1Kzlka9Bj/qijjgoH2f/X+cE98sgjegNEJNcjS+3ll192Y8aMsSCGjB8KpDJx3rx58yT3ZZUbHTt2tBR0VhsJtiPv53366af2WXrfffdlahJe8gaOjXvvvdeNHDnSjpmUUKivbdu27osvvrCsDL+9jN7yQUwGMXG0YcMGO459r3nMnTs3xn+J5Fmx3zYuedX9998fLrJyyCGH2NdgO6Zg7870ojBGx44dQ6VLl7aCVyIH07NnT2sltmXLlgwfa3Xr1g0fq74XaPHixe0r/UP//PNPvQEikqtRTJJCVnzulShRwoqkjRs3zv7duHHjZJ+bVapUsdsmTJgQ/v7cc89N8bHp1V2tWjXr/Z1WP2YRcIzQDqx69erWYzslnCNyzHHM+uO0Ro0aye7XrFkzu40+3Xv27An17t3bivuKxIpWuiVmduzYEd5f41e7g/u0mI2kYEpGMNPOSvlzzz3nihcvHuVnLLnR448/bqvUGU0zZ2XGtw/zxzP27dtnX9mjSPqkiEhuRjYaabcUkezRo4etbs+bN89ua9WqVZL7stebrWN85rKSyPdHH310qi2fSCunZsbYsWOtbZNIWjhGOJYoZsqxk5JnnnnGvpJhwZYFjkNafVI4LahJkyb2lVVz6rWQGZdaNoZINCjolpigkunbb79te7exZ88e+7pz587wfa6//voMp5X379/fCrCdc845UX7GklsxOcMkzfvvv2+1ADLiggsucIULFw7/m+8ZyMG+L/p6ks4mIpJbsR+W/twUORsxYoRdt2TJEvvKPtggikz6PbNPPPGEfU8dl6JFiyZ73MWLF1ta+f333+9OOumkbPhLJDfgWGErAsdOSmnmTA75vt2M/X7/NnWAgqh0jsjHYILdT7KLRJOCbokJ9t1s3rzZAmUQqDCT6JUpU8adffbZ6X48ViivvvpqV6BAAVu5FMkIJmmYrGHl2h+T6cHxRuDt+SJAZG5wTFJMjfv88ssvekNEJFf69ttvLeCm7RerhtRk+eabb+w2H9wEVw9ZDad+CxOTrIozWR6JTCFquvDzrKKLZMSgQYOsWBrHEMdSJDqY+FpCPtNy2rRpKQbdTCr5DLbLLrvMirZx/LLfWySaFHRL1NG/8/zzzw/3UvR9uP2K4Isvvuhef/31DPU5ZoVy+vTpNmtZrFgxvWuSYUzWECD36dMnQz/HoO4xgPtj3H9lQumOO+7QOyIiuQ5F0WjXRDslxm5QpIpJR1YUCVCC2DY2fvx4N2PGDPt3+fLlLYCJRAXqjRs3Wqqw0solozhm2JLA1gQWeSIRkNNxBLQM88ctBX6Diz8cn//995/7/PPP7Tp/XkqnErI1RaJJQbdEHfuuWZX2A6kPUNgvQyVTZsFbtGiR7sejYvTtt9/uLrzwwgytjosEMVnz1FNPWTVzPwinBys3F110kbv44ovt5POFF15Iko5GFdS+ffvqxRaRXOeBBx5wb775pqXoli5d2q7zAQqBTWpjtg9uGPMjESjRRozbaMcoktk0c44h+sCntCrtJ8NZ+GHBhr7xdDVJK8WcbRRMHA0bNkzjukSdqlZI1FFghXQfZrExYcIEK2BBb0+Kq2QU+8LYC86HoEhWdOnSxYJoJnHatGmTas/YIO7DMRypXr16VruACaY6derojRGRXIfPS9LLzzrrrPDnpQ+6I1PLCc7p5f3ll1/aOUClSpXc5ZdfnuwxKYBVokQJN2DAgGz6KyS34hgilZxjKrJmC1lqtK2LDLSDaCnGXm9/THPfWbNmxfx5S96klW6JKopPUNGZgZb0s5o1a1qgw4zjmWee6Vq3bm3VTdOLvbIPPfSQpQQzgItkBSeNHE9Lly5N1rczo3xxlpkzZ+pNEZFcqX79+q5Zs2Y2dnspBd1//fWXu+KKK6yXsq+7woSk72DiMf6/9tprll7Odh+RrChYsKAF3GxpiDy3ZLxPK+BG3bp17StVzkVi7RD6hsX8t0ieQcrYTTfdFP53v379rHjVzTffbPtj+BDctGlTeL/3wdxyyy02i0l7iMi9YyKZxaoNrWx8O5H0oFL5k08+aT/H1glWf1jppkAgBdUY/OfOnas3RURyDSbN33nnHZusvPXWW62Imu/osGvXrnDrzvnz57uWLVvabb/++qvtjf3xxx/DHUyy8tkrkhb2X7NNgSwLto9FYkKI9PKff/7ZziWvvfbacNX9rVu32t5uJofYCkk2JuM61dE5Rtk+xpYykWhQerlEFSljXBiMmc8hrXzo0KHhghRNmzZNd8BN9XOCHAJvBdwSTWxVID38pZdesnY26fHqq6/aiSfoO8vJJ33nKa7mV3443tX6RkRyQyBDETUm0Tt06BBe6V67dq19ZUz2ATc++uijJAVTK1asmCzgXrBggfvggw8sDV0Bt0QLxxLnmdReoWJ+ZK9tagh99tlnlllBvQGyJn3QTZ0CjmOyKqnIT6YG30+dOtVuZ684Cz+M9SJZpfRyiRpmCR999FEreEbAzao2A3EwjbdTp07pfjwqUhYqVEjtRCTqSCmjMBqz2QzC6V3x8Qi44U86WflmIPdtR0REEhl9uHv27GnBNkF3lSpV7Po1a9bY18gCaD7o9oVTWU0M4pyAlfJTTjnFdevWLZv+Cskr6JjDRDrHWGQCL+1C4cf6YEYa56m1atWy71euXBne582xz/knx+qBAwey8S+R3ExBt0QNe1tJy2F2HKx4Bwdh3y85PRjYaQdBZUqfyiYSTUOGDLECfent+04KOTUKgkijBEXZSFtr2LCh3iQRSXi0V/ITisHstJSCbiYhWUn0CNLZVhbEyiEVoskWitznLZJVHFMcW4sXL3bvvvtusqA7WDSVYzV4XhoZdBNsk9nGcU17W9UekGjRJ59EtSUT+2bYVxPkZx3pmRh5W1rpvwz0Ge2pLJJerEyTWj5ixIhMrXZzMup/jvRylccQkdyCoJnWivfff79tF4sMuoNjOWnjrAb6lHGyiHy/Y/DZyOOwak47JpFYaNeunWvVqpUda8HxmLorvsMIwTnH6scffxy+3U+mq5iaxJqCbokKClVQIKV3797h/a1UMg9ilTs9LZoobMGeLwZ9KqGLxLLdCHuyqXyaHueee274e9+Hnq/sASO9kpYlK1asiNnzFRHJLnyeka47ZsyY8HXse41c6Sbo9vvA2fsa/JzEokWLLAuO+iwiscL5JUV7aVkXDKrhF3D++++/ZCnmfusE/eO9P//8047ZDz/80I5/X6tAJCsUdEtUUGwif/789j39OT0fNDPLGFwlTAsfcAzctB8RifVqN3UGSDFPz0o1e8aKFi0aHpSD+7qZZb/sssusYr+ISKLygQnZZqwC0jbMX//999/b99WqVQvf/6677nJnn312+N/+XMDj85WVcd9mUSRW2rdvb1vBIreNUWsouOgzb9688PcU/fPnsf48gCroHPdslejbt294YkkkKxR0S1Sw94Uiag888EB4Twz8Xhiql1NBMj0r5s8884z1+fbBjUgs9e/f36qOk0p5MKRMkr4GWotwcnnssccmuc+2bdti9lxFRGKNbTd0aKDFEvtcfUC9fft2W80mRbds2bLh+zPeUx/DB+PByuQbN2608f+GG25IV6abSFZwbJIlOWXKFDv2PM4nqUwePNf0AXb58uXtK/u8/VYKupAcc8wxNubzmMuWLdMbI1mmoFui4uWXX7ZVPlJxwIDti1UxcLOimB6TJ0+2tPTrr79e74xkCyaDyMRgsie9vehJQyMtnckm0i9x6qmn2iqQT78UEUlEtF2iE0PkVhnaeIJWYH57jefHfKo+B1HnhaD80ksvjfnzFgHHGsfc888/n+QFYYynDS3940lB95NATKD79nasdvvtE0wk0SKPiSZa54lklYJuiYoTTzzRKjf7gfiqq66yWfEKFSqEKzynBwN0y5Ytk6SuicQSAy+1CKh4Sj2Bgzn++OMtHY0tEMyC+4rlrAhxm4hIInviiSes4jOr00EEKwhWM2dFkUlyv0c22BaUYOWll16yQLxgwYLZ9vwlbyPg7tGjh3XACbb7ohUYx2rw+I1MMfer4z4gpwCwqu1LtCjoliyjSMrTTz9tAQhtk8BeGNJuCWYIyJk5P5hvv/3WzZ8/31199dV6VyRbMUATRI8bNy7DP0sRFmbK2eMdTGcTEUlE7L0meL7vvvusMFVk0O3TcX3QPXr0aAtuyGgLTpi///77tt1GY7pkN465n376yX3wwQep3idYx8UH3cFiaiLRpqBbohJ0EzDTH9EHHeydYU8MK4fs72rQoMFBH+eFF16wolRdu3bVuyLZiv1e3bt3t2PQFxFKC8F5yZIlbfWGwdqv4tAShzoGtWvXzoZnLSISG+vWrbNxne1haQXdvp+3//wL7tsmvZexP7iXViQ7UPT0lFNOSZZiTpeRypUrW5Ffn6WGMmXK2FcyND0Wk9h+xhjP6vkbb7yhN0+yREG3RGWVcOjQoTY7zswhKebMMvq9rax6R1YzjcTP0SaMCpOsGopkt169elmmRvAkMjXs9aL2AH26ORH16WebNm2y6v30+/TVzUVEEsVrr71mrb3q1q1rKePBvaysHMIXUaMYFYG5F6xOvnv3bqvxwueqSE7g2JsxY4bbs2dP+DoKpbGa/ffff9u+bt9tp0SJEvbVFwQEYztZmiweUWTN1ywSyayklTBEMuHhhx92r7/+uu3bmjlzps0IBitBN2nS5KCPsXz5cgtYOnfurPdAckTz5s1dsWLFbG/3wTIzKJoW5Adufo5JI1bNtQ9MRBLNgw8+aJOGtFT67LPPktzmKzv7AIWJdZ8ZxOcn9Vi86dOnW2/j4B5vkexEv3haeBJ4s6CD008/PXw7xy6F0sjESCnovuCCC2zFnMCbxSQVA5SsUtAtWcYAzWDsC6ZFBhvpSS2bNm2aVT8NfiCKZCcG1Y4dO9qxSNX9tDAQB1HpF4ULF05X6zERkXhUqlQpSy1v1qxZsttYvQaTkwhWN2dFnC03Hp+jZLmlVLRKJDuwDYKxmmPRB90c3xynftsE7UJTC7q5nsv555+vN0yiQunlkiXfffedfZixb8a3DCFtJ6NBN6uLHTp0sGJWIjmFVZmvv/76oAXRihQpYpX5EdzDyKy5iEiiYs8rW2MIut95550kqbmRQffSpUtTzGijajkr3Vrllpx2zjnnWDE1jkmvcePG4e+/+uor+5pS0C0SbQq6JUvY43LNNdfYHu4xY8bYdex98ahoTr/DtLBf5vPPP7cPR5Gc1L59e1vxfu+99w56X9qPRFZApY/ts88+6wYOHGhfRUQS0bXXXuu6dOli274OFnRTSDLYt5t03L1792pMlxzHxA8TRx9//HGSgn8eBYBTC7qZfOJYZgLp1VdfdXfccYeCcskSBd2SJbQFI4UsmFYeDEJIOTvY6jUBDj9Laq9ITmIFm32JZF4cjD/uPb/i3adPH/foo4+6AQMGxOx5iohEG2O3H79ZDWT1+phjjgnf5le9fdDtC6cx0R4Mzvn8pNha5DYckezGOE1l8uCYHlzp9gV/6WACJov8/wOkoFO9nFpD7OceNmyY++STT7L9b5DcQ0G3ZAk9uJkNnzp1animEBSTIv329ttvP+hj8GFIKpsf3EVyemacqr2+RkFqqlevbis8FA6kNy1fwf8HTCIdd9xxybZaiIjEq5EjR9qKNZ9d9N8mwPCVyqlbQWG0YIAS3GLjM9oIWBjT+RwNbr0RyQkcg2RRckz6YJotj76jDuM21/uuOXzvU9G5rUqVKnZss32SfwfT1EUySkG3ZMmCBQvcXXfd5SZMmBCeBScQoYrzhg0brO92Wmi5ROEppZZLvOBYZGA9WHsQKqNyIvrbb7/ZbLk/AaXlDienFCNSjQIRSRS0S6SiM59rkQVRaQ/m+QCF4BxVq1YNBzEUpqIlk8Z0iRdMAH3//fduzZo19m96dDOpToDNeSqBebCtre9GwvkrLfGWLVtm92esP++883Ls75DEp6BbsuSkk05yV1xxhaXg+ArO9DZknzczi34PWGpoScK+GfbSisSDihUr2sr1/PnzM/RzVEXF9u3bY/TMRERi5+6773ajR49OsR6FX+EjGKdWCwUnqV2B2rVrh+9Hq7EjjjjCtWrVSm+VxAWORTI4ODa9YA0CBCfIOScViQW1DJNMY4aQfS6k3PiZbwZj9sWSVk7wTZGK4P6ZlGbWCxQoYMG7SLygDzfHZnqxOlS6dGn7XkG3iCQixmEuW7ZscXXr1rVxfcmSJXab3yrjgxNSz1euXJks6OZzs1atWuFzApGcxio2x2RKY7qvY8BkEscsAbdf6RaJNq10S6Zt27bNCk1Qffzpp58Op+MwW07AjUqVKqX5GHwIsr+GYF0kXpxyyim2knPgwIE079ezZ08brDkRZQ8kHnvsMRu8mUy69dZbs+kZi4hEB6vay5cvT9KH2wfdrGJjxowZ4dsIaIJjOp+fIvGEYzIYdC9atMi2QjJ+d+/e3a7zKebBlW62SVAwkIxO9nUfrBuPSFoUdEumMRNOj0MqlHfr1i284vfiiy+GB+eSJUum+RgaoCVeB2hmu/0esNSwz5FZcvZw+9lxJqG4nn+vWrUqm56xiEjm8Rn2yCOP2HhOPYqZM2cmaZ3o08v9SnewWvkJJ5xgX/1nnoJuiTcckxybPqAmgKamEL777rskKefBYmkUVZ01a5Zlf7CFkvsGO/SIZITSyyXTmBVkFpB928OHD3dvvfWWfVjt2rXLbqcaeVrVSylMQZGKwYMH612QuEKrG45dJoWCqZORfGXfIGbF2RNeuHBhK+AiIhLvaJU0aNAg+56CUS+88EKS230g4gMTv42G/bJ83oHVcYJ3Bd0SbzgmyVwje4NCv36iCGRswlfnD+73HjdunAXqbB/jvICsDoJuVeaXzFDQLVnC4EyPTv8B5D+0cLDK5aySQwO0xBtmwanIS9Ddq1evVO93/PHHp1hQ7fHHH4/xMxQRiR4CEtojEYBQ0yKSD0T8GO+7lTRq1Ci8f5vPS+6X1kSlSE6oU6eOHZscowTd1CIia4NtE5zHBo/t4HZHn8WJtm3b5sAzl9xEQbdkGntihgwZYvu2/QBMerl3sL7bfPixWk6/Y5F43wOWEl88LUiVT0Uk0bAVjMwz/xlGajmT6WeddVaStHKCFFb6/OfciSeeGH4MFVGTeMXEUM2aNZOM6SwMUZuIbREc076Gi2oMSawo6JZMY+82qTcEzn4/azDoTs9+boqoRbZuEImXoPvtt9+2gTi1Y9S3CQtiEKewIF/pY9u3b99seLYiItHBeO77bFOfgoA7GHSTiu73tfrUXD+mp7RKLhKPE+mMz4zTHMsc05Hp5fyb6v3UJypRooT78MMP7Tp6dac04S5yMIp2JNPY20J/bVqHpOSCCy5I8+cpapFWOzGRnC4UyMnn+vXrLe0yJSlNLLFtYsGCBeF/9+7dWzPnIpIwqEdBOm7RokXtM5CAO1++fOEgnKJSHkXXQOBC4UmqPIvE65g+fvz48J7s8uXLh7c50nEnMr2ctPPTTjvNvqcN7oMPPmjfV65c2Z155pk59ndI4lL1csm0q6++2rVs2dLdeeedbvTo0UluI0hp1qxZmj//008/uXLlyukdkLjki6RRjTw1zH6TosYg7QNw9opxHSepFGsJZn+IiMSj2bNnW40K6lkMHTrUWibOnz/fFSlSxG73K90ELHzG+QlzPgNBAVVWwTWmSzyP6Ryjv/zyS3jl27f8pDaRLxboJ5iobk7f+goVKtjKNv8vlClTxv4fEckMBd2SaXwgMft32223hfsbMnvIh9jEiRMtdSc1fLjt2LEjzfuI5CR/bKYVdHMfTjZJQb/33nvtuiZNmth17HlkFcj3tRURiVd0E2G1j7ZIO3fuTHa7D0R8vRaCEbAa7ifRQVAiEs9juj9W7777blvdJnvDV+CHn2jiWCYjc8OGDe6GG26w2kVkeRxsQUkkNUovl0wrWLCgu/jii22W0AfdVDK95557rCALq30pVXcOthtR0C3xnGLJcZ1W0B3EwB1cERIRSRSsXD///POWmdOhQ4dktxcoUMAyeghSCMrp4w0/9vvPSY3pkggT6ZEV9tnT7QuuaQyXWNFKt2TaVVddZUUpmAF/5513wqvfDzzwgO3n/vjjj1P9Wc2KS7wja4OZbn+sHgxpa5ErQiIiiYDPOsZ0alAwWU7PbtJv33///fDnoW8Dunr1ard582b7vlixYkmCbhWYkkTMXvNBt1/lFokFrXRLprFavXbtWvuwogKkT1FjLxh87+6UaFZcEmWQPthKN4M0xz0rQZgzZ44VaOH/C74uXrzYVs1FRBLFpk2b3JdffhkulObTytkWRteS4HXgc5LvNeko8YpVbCaJ/Jg+Y8YMa4lHnYJLL700yXYJUHSNy7nnnmtbL15++WX7eTJC2EYmklEKuiXTHnvsMats+u6777qNGze6N954w1YF/YpfWvjQI1Xt2GOP1TsgCR10swfSZ3mACShfkIUVIf+9iEi8Yr8qE4bsYWW/dv/+/d3ll19ubT09v9LNJKPna1Yw9iu1XOIdx6jPXiPY9oVO/XXBle4VK1ZYm7Dq1atbZX7uw2X37t059Owl0SnolkyrV6+epaQRdEyePNmCbt+v+2AIZOhxTNE1kWiggv6IESMs6KU1yJNPPukaNmyY5QGak9CMoIcnVcuphlqxYkWtcotI3CNDjc8uEHSn9Lnng24/0QhS0P2YrqBb4nk8j5xID2Zl+Ikkn7mByy67zNWoUcO68bBIRA96upRw7iuSGQq6JUuo0EwvQ8/3OURaK96kpmvvV/TRwq1Xr152yUvefPNNN2DAADdmzBgr5jdq1CjrIc/2h5R6aWdkgPZbJ1ISnCn3mjZt6vr165fp3ykikt3YAsNebiYLfW/iSD4gCQbdvugUY3qlSpWy6dnmHXlxTI/VeO7HdKqR+/PXyEKowZZ3TD75Kv3wbfJEMkvLjJJpy5cvt5ZhH3zwgX0w+iDECwbjkfiw83tgs4pWTewfT+nCgCW536OPPmp940mHZJBksOb4eumll7L0uFTm9YNxSmgVFklbJkQk0bB6xzYxKpM/99xzNmk+d+5c99prr4Xv4wOSYEab3z4TrTFd47nEajyPHNODx7H/nl7eIrGilW7JND4AH3/8cQts58+fbzPewdXttIJuBurDD4/O4UeVVfbZrFy50k2ZMsWuGzlypBXJ8P+W3Itjjir6TAB5bFto27atFTHLCo7RtPZkp5TNwYkr9Q7Y68iqd/369bP0HEREshtBdOvWre17CkkVKlQo3AI0GKz88MMPtgIerTFd43neFsvxHByjfrLc12EJfu+DbjI+5s2b50488UTbRskEFD26Gc9Jc0+rULBIahR0S6ZVrlzZtWjRwj6kWOFmf0wwCGEvTGr40ItW0M3JALOgBP0+ZZ3reHy/B01yL1Zm2NZAjYAg/v3NN99k6bEJnFNazfZSWgW/7bbbwt+zF23ZsmVZeg4iItnt6KOPdnXq1LHVbdLJg0F3MFjxe2GjNaZrPM/bYjmeR47pwfRyqpP73wMWcc4++2w7v2Xxhokn//NpZb+JpEXp5ZJpN9xwg6UB1axZ002YMMGKTHgEu2ml6fChR2EKyZphw4bZSYq/LFy40PXp0yfJdbR+kcyZOnWq7dlObbU7uJ3C48SUCqhMQlWrVk0vvYgkBPp0M3HNyvWkSZOsuBp9uv1kdnCl2wcnPgDXmB4dGtNj64knnrCq5MEJo+Cqta9MTrVyv3jEJAAVzJmIql27tla5JdO00i1Zwn7uu+++2wZrUnC8Nm3aJAnCIyk1JzoIsM8///zwv3v06GEVaLt27Rq+Lvi+5EYlSpSwCRwK+US7WJ8/yUytyj6DcKRvv/3WVoZY9Qm2HxERiWf05fafo3yORQqudJNiy339NjKN6dGR18f0WI7nYCKcgmzBlW4yJUknx+mnn25fyfKgmFuFChWsJ7cPwkWyQkG3ZEmtWrVsQGjevHm4xcgll1ziunXrZvtv+LA62L6aWMgrJwBkFART6CkSQnVP9iHlFWwroG3NRx995Dp37mzXsTrNv6+//vosPTbp4ZwApJaVEVnZnCJq9Lel+ioz5uxLY+VCRCTeDR061H333Xe2qkc9Co/PUyYeyZwiKCIF2Pc1Xrp0qbv44otjOqbnlfEceX1Mj+V4jnbt2oVbhflJpPLly1vqOq8zQTbYux2sx8Ke7s8++8zOdYP/b4hkhIJuybQ9e/a4Bx980AKPjh072iw5lixZ4l599VV34YUXphp0H2yvbFaxAsnzYra+atWqMfs9Eh+YkaanJtkVrMDQYoSZa6qfZgXHKMdqat55550k/yZdjUqrnvrWikiiYByPLArZpUsXt2PHDtumRPBLNekFCxZY4A2C9FiP6RrP85ZYjeeRtQf8arrfK04/7pTQrow93kw0DRw4UEG3ZJqCbsnSQEigzX6XZ555xma8sXXrVvvKwJzZqtBZxYfkww8/bDOVwZ6ikjtdcMEFdmLIVgcmW04++WSrXh9ZjCWjDlaRd/Xq1Un+zWpEsWLFrN4Bv1uVy0UkUbHyx75uVhoZ10lr9kH3L7/8kmQPbCzHdI3neUusxvPIMT0yhZ36RH7ynNtOOOEE+/eiRYtsS0WnTp1S7WEvkh4KuiXTSLl97733LN2MD8QGDRpY8O33eO3atSvNgH3v3r1Re/WZCY388IxM/c0LaHGRV5F6Fo30syCO0ZT2bXsbNmxI8u++ffu66667LqrPQUQkO7DH9auvvnLTp0+3f/N5St0WJhP9flofmHgER9Ee0zWe/395dUyPxXgeOabPnDkzyW3s48asWbNsi2SzZs2sHe4nn3xi2yfZax+trjuSN+nokSzp0KGDfTiRZjtx4kS7+GA7rbYKpN36FXGReMUxmlaKuN/XyAQUGR/UOBARSdTPO/arkkZOZwb21vpWSV5k0E2lc/A5qU4ZkgjHeKVKlex7+m6nFHSTxcFeemobUMuA2i5cRLJKLcMky/hwIuDwBViC/L6vSAzQfLCp36EkctDtsyk4/kFq+T333GPpkGR9iIgkCgpLkVJbsWJFS/FNKZ03Muj2/Y1JPfeTkCLxym+T8OeuQbQDw9VXX23bJh544IFwi7xoZmZK3qWVbskSVrUbN25sM+KkAvl93R5pOeyDieQ/9AhafLVIkXgcoOvVq5fq7aSp+fRKqq6ySuRbj1CwhXRzEZFEQMbOunXrklzHfm66MbCPe8SIEbbPO5ipxmohaen+OlbI81K1cUkcHJt+Ip3vfV0CP+FUtGjR8L+pcM6xzuT5+vXr7djnXHbq1Kk59OwlN9BKt2QJ1cEJtkeOHGnByVtvvZXk9o8//jjFn/Orh5oZl3jG8ZnaSjer236VxyPgpugLvT6pvioikshIr6X1IV0ZaAOKYFcSgheqP/M5SbEpX9NFJN6wWs2qNccqC0Ycr15K6eNMnN98880WcPuWoCJZoZVuyRJSzVjpZi8rH2LMkjPr7fl+iJF8IKN93RKvCKqpYJpa0E36WZEiRcJbKCig1qNHD9sXllabMRGReMcKNyuBZPDQqomKzmXLlrXbGPOnTJkSvi8r2z57jYnKwoUL59jzFkmNP9/kWCULE76/vO+9fe+999pt/fv3t0rll156qVXwp26RtkNKVmmlW7KEwZXZ77PPPtsCkPfff98VKFDgoEE3xVcITBR0S7wimCbwTi3oXrt2bZIWOS1atLBtFgq4RSRRkb3DSjZbZ1jZe+ONN6xOxSOPPGLtwnzQ7VfBfetETaRLvPPnmxyrr7/+enhyCb4VGB15qF7uJ9Wffvppy9jk/4Vy5crl4LOX3EBBt0TF22+/7caNG2ftLQg8wP6YRo0apXh/ZsZpQaKgWxJhgE7J7NmzkxRXIT2NGgVLlixJkrYmIpIo2Mf65Zdfhj/DKJAaiTGe/d8+YFmxYoWCbkmoMZ192uAYJpuDlrd4+eWX3RNPPOHatm2bo89VcicF3RIVXbp0cddee60744wzwoE26TrLly8PD8yRKFzhP/hE4o0/NsuXL5/i7R9++GH4e1aF+vXrZzPhrAKxp1tEJNGQncYk+qeffmrba/x+VvZus6LNmE42W3AP7EsvveQKFSpkE+0a0yVecWzSYaRgwYLu559/Dl9PPaKjjjoqvGWSsZxsTGoVTJs2zfXs2dO+imSV9nRLlm3YsMECbopIkaIzY8YMu3769Onugw8+cM2bNw/PIgZRcOqjjz7SOyBxidUeWuaQkRGJE1BOSj2KB7G1AgzoCrpFJFF17Ngx2XWjRo1yAwYMsL7d7G9t3bq1fUaC4HzPnj02pvvrROINxyYBNlvHgpNDvlVYENsm2TJGWjkdSjgXOOecc7L5GUtuo5VuyTJW9yiyQjraV1995VauXBkOTMBesJSQosa+WFU7lXj0xRdf2DGaUvsbZsD98Q0KqA0aNMhSManof//992fzsxURiZ2WLVtaGi6Fp/jsa9euXZLbKT7F5yWfmyLxPKZHtralFRiLRjfccIMtBPmK/Bzv9evXd3fccYfr1q1bjj1vyT200i1ZP4gOP9wtWrTInXjiibanm3RyPrio+Ij58+en+HN8+PHhtmzZMlsNF4kXHJcM0Ndcc02Kt7/66qtJ/k2QXbly5Wx6diIisUXmzmuvvWYtlriQuUaHEtLIwZhNITW/fezdd9+1DB8m2bkf6bki8YLV7U2bNtl5J33nPY7hNm3a2PH95JNPWiG177//3l199dXuwgsvtLotKqAm0aKVbokK9neRSk4VcwJuUtA8Us+Cq4IelVDZR6OZcYk3W7ZssT1fvihgpDlz5oS/r169ugXcKR3jIiKJiL3cVHgmlZz6FZs3bw4H3MifP3+SehcEKv7zUmO6xBt/THKM+nZhqFChgtUoqFSpkrvyyivdFVdcEc5uo1aLAm6JJgXdEjWtWrWyDy8qQ5KK5hGMRKbz+BVygnUN0BLPA3RKNm7cGP6+atWqlnrGvjB6dDP5JCKSyC655BJ3/fXXW79iMtl8j26wf5vV72bNmoWvo60SxVEJVDSmS7zhmKTFLRPkwSwMahOANPIXXnjB3XnnndYqFBQUZB94asWARTJK6eUSNRRQo2I5g/S+ffusX7HvY0zaziuvvJLsZwhq5s6dq3dB4m6ApnVO8ETT45gOtgojrTJIfbpFJNGx6peSm2++2cbz5557zvXq1ctS0EEQzucmwYuCbok3/tgkoGZLo3f55Zcnuy8F1AjMyWhjr/dnn32WYjFgkYxS0C1Rs2DBAutdzEwie159wB3ZXiky6H7mmWcsSA+mronEaxE1tk9wggkKrVDdnJVu7lujRg1VLheRXIvVwr/++sstXLjQAm8/uU7fblYF+dxkhVAknnBsnnfeee7zzz8Pj99kW7JQNH78eMvUZJKdbRKkn3M8t2/f3v596qmn5vTTl1xCQbdEDbPeVapUsZ7dBw4csFZifu8rhVWYYeSDLIgPM9LPmUn0aT4iOYnjlOOxb9++Kd4eXMWhtc6UKVMs/Szy2BYRSXQ//PCDjePUZilevLgVmKJ1ElvDmGhkSw2fiXxuEswwpj/66KNu27ZtKbZbFMluHIucj3Js3nXXXeHrO3fubFvF2EpBAP7TTz+5E044wTrwEJxzTstxndLku0hmHBJS9R+Jsttvv9099thjVojllltucX/++afNhvPBx6AdRLBCoQqqRDJQi+Q0ZrnpN88+Rr5GHq/ULWClBxQa4tgVEcltli9fbsF1vnz57DOPLLZ169YlCUJYJSRoQZMmTdzUqVOtp/Hzzz+faoq6SHZirzadSGjnSZcdjw47BNW0CuMYJ1NTJJZUSE2irlixYjZAUzyN/odo1KiRzSQmOwAPPdRmzdkXq/kfiQfTpk1zJUqUcI0bN05225IlS8IBN4M0QTiTTKSX02JHRCS3oDgk2WtMPpKGO2TIkCRFpUgrZ9KRys9YvHixrYhzXz5HReIBxyLHMFsiPFa0Ob7r1atn19MqzGNVnGKBItGmoFuiisCZfa09evRwL774Ynh/61dffeUGDhyY4s8QmLNv5ptvvtG7ITmOCSBa36WULj548ODw9wTfpFo+9NBDbvLkybbiIyKSW7CizWo3dSyoTn7xxReHPxefeuopC7ZpKXbRRReFf+bSSy+1MX3mzJnhvbMiOWX//v1u1qxZdky+9dZbSYqlBTM2aF974403WnYmW8vI1nj55Zdz6FlLbqWgW6KKQOSyyy6ziqbPPvusu+666+x6KkCOHTs2xdZh7OWm56dmxiWnMfmzevVqy75IaUKJYoEeWyZq1aplk0wE3z7FUkQktyAYSQnbxbZs2WJjPXVcPCpDM6YTcPuaLiI5xRc+ZQEoWNC3aNGitrrtM9foQz969GjbFslx/ffff7uTTz5Zb5xElQqpSdQHaAKQHTt2uObNm9seMD7wtm7dGt47w57ZIALuM844w1YYmWUUySlM/FCRnOMxEunjPrWSXrTfffedFQxMqa2YiEhuQoeRtWvX2p5uvmc1kAlHttb8+OOPSSYnyVpj7yxj+llnnZWjz1vyNo7BqlWr2v5txmuP+gNMrpcvX972epcpU8aq7jOx/vDDD7sVK1ZYkUCRaFIhNYmZUaNG2YcXfT0HDBjwvwPukENSrAb50ksvuauuusr2gx177LF6VyRHsELDxNEHH3yQ7DbS0fyesOuvv9561YqI5Haffvqp69Chg302MkZT84JAO7gKfvzxx4eDb9ovsVeWQpOsIFK7RSS7MUnOpHjPnj3d3Llzw51HKN5Lq9o+ffq4li1bamuYZBt9EkrMbNq0yVa4ab9UsWLF8Cz4uHHjkt3Xz4anFOyIZIfdu3fbLHdKqeVMFFFEzeOEkj3ct956q638iIjkVhScInCmRzcpt2wbo4iax7jOXm5v3rx5VoiS8Z/+yCI5ge2MbIOgtWdwnKaSOXVb1q9f7x5//PHw9T///LON9SKxoqBbYuaCCy6wwivs5aZAhXfnnXcmuy9FKxikg4UuRLI7DY0Bl8E4kt/j5ZG9wR5uMjmYLRcRya0KFixolclJG6co6r333mtbbPwqOJWhCWCCQTjbb+hkojFdcgrHHm1qSS//9ddfw9f7+ivUZWFvNzUJKPzL9RQHZB+4SCwovVxiguIUpPXs2rXLVgRJxw22YCBFrWTJkkl+ZsyYMTaDzgq59slKdqMGQWq9OikO+MorryRZ+SGV8tRTT3W9e/d23bt3z+ZnKyKS8+bPn28pukWKFLF9sWvWrLHr+Z5ghsCHz0oCHJHswiQ5+7Vpacek0YMPPmjX16xZ0wqm+c46b775pt2H45f7kZ3BhBEtxUSiTSvdEhMEL8wa0q+TvV4UXOEDzbvtttuS/Qyr4uwRY2VcJDtxorho0SIrAhhp79697tVXX7XvSa9kxYeqp0wc0YpEAbeI5BW+UBqFqZgkZ5X7iSeesM/QQYMGJWnVxOcpn5PBHsgi2VUUlXRxahE8/fTTdh0TP8ccc4xNEpGtBraTkbE2dOhQ615CxpsCbokVrXRLTGcaqQRNMEN6OQE4vT1x3HHHuZ9++inZz1xxxRVW8IIPPxVfkexCD3l6cpJGzoRR0HnnneemTJkS7tP9wAMP6I0RkTxn586dFrCwElioUCH3yy+/2Oem389Na1C2ivEVBNv333+/pfhOnz49h5+95CUE20yY01eeHvNgHOf8kqxKJsz9ardIdtFKt8QMATcIrimmMnnyZNe2bdvwbLnvjxhEqu6GDRvcjBkz9M5ItmBFhuJ+vXr1ShZw//nnn+6dd96x7w8//HA7eSQTg5lzWuGJiOQVVC2nuwifk506dbK6LQ0aNAjfTjYbe75ZTQQtQOlKQn/kH374IQefueQlLNrMnDnTde7cORxwkz7Ov8nKYAsj3Ug8HZuSXRR0S8wxOJOCO3XqVDds2DC7jpQzZsgjNWrUyPbJBitKisTSa6+9ZpXLr7322mS3kS7pe3MzY86/ycYgrfKxxx7TGyMiecrzzz9vRdNo8/nGG2/Y1jFQhJLPxVq1almLJqxevdpWFCmo5rPcRGKNdp5MkNN/27vvvvvCrWpLly5tE+d0zaFjTrVq1VybNm1sAl4klg6P6aOLOOeuvPJKN2nSJJsF96vbrHQTwPBBF9w/w4ciqejsB2ePmB/QRWKB45AJHiaGKleunOQ2TiLp5elx7DZs2NC2TXCh7YiISF5y4oknpng9k5Kkn/PZSEVoMt34ngy3fv36WXVoAh9f9VwkFqhSzoTQ5ZdfHt7L7SeLunXrZkV6Dxw4YPu4WfEmcwNsZyxQoIDeFIkprXRLzBFE88FWv359a8fk085/++03d+aZZya7//nnn28zkaQBicTSnDlz3KpVq5K0tPPuuOOO8Co3e7/I1KBXNy1yVq5cGU6hFBHJi5gYZzWbz0pSyYcPH257Zqla7lss8hnKHm8uKWW3iUQTW8VYsaZbDsG1xzhfp04dOw7ZKsbYT3bbc889Zz28db4p2UGF1CRbsDeWVcWbbrrJTZgwwapIUoQFFFqjAmoQlSS5ULCFtg8i0cbx2KpVKxuc2YfoU8/8bVQq37dvn/1748aNVoVfREScGzVqlBWgZOxeuHChrXSTzkvGEJ+fBDhMToLxnirRn3/+ud2HLiUi0UadFXpyN27c2L399tuWrQZ6b1O8l8lzv8VRJCdopVuyBYMslxUrVtgKN30RPVJ+IrHySNBDOppILFDchx6zVCMPBtxgVdsH3Oz3Yvac1RsmiERE8rrWrVvb5yb9uNnLTT9ughtw/YABA8L3/eeff6zaOUVVg1t2RKKJdHL6bJ9yyinhgBv06Gbsvueee9zmzZvtOor7kl4ukp200i3Zavz48dYH8c0337T0XApYgWIWkanmpPuwMs5sufZ2SzSR8sh2ByZ2CLwjg27ajRCUI3/+/OFK5WRdkIrmt0iIiORVfBamtMeb1otNmjSxAIdVb5DSy2Q7rcOoLk01aZFooT0YWRYU7WULGH3kwco3WyDIxKBoKjWG7r77bvfqq69aBhsr4u3bt9cbIdlCK92SbQiwaQlGUbVnn302SaXI4Mq3R6EqUnrZLyYSTVTdZVB+6KGHkgXcTAzRbgQUVznjjDOsIi+FWZgxV8AtIpJyUTXGdbLaqlevnqTuBftr/d7ukSNH6uWTqKIwGpPjbBnzATeaNm0aHuPZx01BVLItS5YsacV96Zgjkl200i3ZilReiq888sgj7s4773SvvPJKuOAKLUVIUwtiNvLSSy91ixcvtn06IlnF8UbmBIE0aeRBnBBS9I/Bm5lxBm8mfkiNjAzORUTkf0VRmZAkwOnfv787+eSTbTynGjQr3qw0ggKpjOfcxmo3/xbJKlLK6YJDqzoWdajTwvhNijmZat98842N42RdTJw40fp1M3nOSnfFihX1Bki2UdAt2YoPPYIXKkm2a9fOCqzxAcn19FXcsWOHrS56fGjWq1fPbqMqqgIfySpO+KgZsHz5clezZs0kt7Vs2dLSzcGk0O233642IiIiaejataul6ZIVxGoiwfQXX3xhq4lsHeN23y6UzLXRo0e7iy++2L6KZFXfvn1ty2KJEiWs+C4Irv02Bm4XiQcKuiVHUFiFnscUq2L/LIEQe74IxtmDE/T+++9bq7GU9n2LZATHGzPiHTt2dGPHjk1yG6varNCAvd7s36bnJ1V3SUNXf1kRkeQoSkVBVHohk15OlWg+Q8GE+uuvv27tmdh3SyXzq6++2lo1kfWWWt9vkfQgyCZzjeOPwBvs7SbgBsX76NtNSzuK/VFngCJ/nG+KZDcF3ZJj6WikoTFYf/zxx1Yhmg9DPjx9KprHoM0gvmvXLrt/vnz59K5JpgwePNi2NjBQR7YAI618586d9r1PTUPZsmVtMkiFf0REUp9IJ6COtH37dqtq7otRgjGc7DUm3lkhVwabZAbnhqSK04qOCR0mfEgbp4Udxxa3+wWbiy66yIr4kVn5wgsvWEE1keymQmqSI0grZ7BdtmyZzYIzMIOZb6pPBjEgsxJOoDRkyBC9Y5IpS5cutWIrd911V7KAm+PKB9zs37733nvdrbfeaoM0K+IKuEVEUhcMuMkQIuCZMWOG7bF99NFHbXWxbdu2djup5mQSUVODopYimTFhwgTrhsOx5AvzUrOF9p4E4Zw7klVRqlQp29bAhHubNm3cZZddphdccoRWuiXHTJ482Wa8mYkk9YzZR2bLMWLECDdo0KBkgRF9u2kHceqpp+bQs5ZExEkevTs53jh+gieIDM7FihULt7YhLY3iKsHaAiIicnCzZ8+2Tg+XXHKJFVcja+iTTz6xwpUVKlQIT26CDLYVK1ZYJpGKqklGi6dRk4UtYdT7CWLLIqvbPoOCgJyifsG6QiI5QUG35Lj169e7KlWqhNN5wYciaUB+XxgIyKlgTgBFkRalmUtG0sppU8NxU7t27SS3UdCHbAuwEtOjRw9LWStatKheYBGRDGBVe+DAgdaKif3afI7y2UsbMfokU2Hao04G11P1XGnmktG0ciZz2LZA1xGPbLZOnTq54447zs4ff/jhB1emTBk7zkRymoJuiQv333+/fYAyG8ngCwperVu3Lsn9mBVnxZJV8GHDhuXQs5VEwn4vJms4xiJ7vjPhQ9EVP9HjV7tZ6aa6uYqniYik33///WeBT79+/SzQYaU7eBtbe7Zs2RK+jvGcydDx48fbhKfIwXCskEnRp08fN2bMmPD1FEh95513bPJ827Zt1pKWY4pxnOvJtBDJScqflBzHTCUfoh9++KFr3759OPWHNF8CpSBWKe+++243fPhwC6ZEDlY7oFevXtZ2jj3aQbSnIw3NY2a8YMGCdlJ43nnnKeAWEckgtuXcdttt9lkaDLiZ0Jw3b54FS0EE3KyKE6STMiySFo6RG264wbYlvvjii+HrOd6effZZK8jL6jZVy/me7WO//PKLxnOJC1rplrhAT+SXX37ZVrkJqilg5X377beWfh6ZZk5AxYCttCFJDX22SXfkOGFPYfAEsHr16nZs+f7cU6ZMsTQ1UtI4pqiCKiIimUcbJwKgtWvXWlD0xBNP2CpkMFON9F/G9SZNmtiKpPbcSkoYt88991y3ePFiq8sSnKQ57bTT3KJFi8IT6tQJYFwnq4I6AnXr1tWLKjlOK90SF+655x5rB0aqWWSlaPZ7Bfd782FLgE41c/aOiaRW0Ic0R46tYMAN2of4gLtcuXKWhkYxNb4n6FbALSKSNQRHF154oW0Hoy8ywTQp5kOHDrXgySMoZ/83laifeeYZveySoqefftpNmzbNzgd9wM1YTmFdKuF7jOUE3L7lpwJuiRcKuiUuEEjTJ5lBmQ9QUtSaNWtmtzFLSWXzIIKoJ5980j6EmT0XCaIWwPnnn+/atWvnbrnlliS3vfXWW7b6Ak4EaTfCtoVZs2bpRRQRiRIy0qhkfvPNN7vHHnvMJtZvvPFGG+dJDX788cdd/vz5wwE6k+7cHlmNWmTOnDl2bFBvZffu3faCsBVs3LhxNlFDFfP58+e7r7/+2p100knWIlQk3ii9XOIO+766du3qrrrqKvfNN9/YzCZ7w0gRjpyxvO6669xzzz3nPvroI9eiRYsce84SP+gRy8kes+FLlixJUoWctEZSGX3BNFAFn4r4rL5EFloTEZHMY2U7pfaLbA+jjguTo/RW9ihsyT7czz77LFzkUvI29mg3aNDAVrCp9QPGcc4V2XrI+SJbE9nnzbjP9sRzzjnHMidE4olWuiXu/PzzzzaTSSDN6jf4ICWQ8h+43qhRo1zz5s2t8NWGDRty6BlLvOA4oQUY6YoMuMGAmz2D1apVCwfcpDOyj3vBggWWLUFbMRERiZ5gwM1nL6vbFLg666yzrCAWq5QURg0GWGzvIf38t99+01uRx3EM0AKMyfHg+R9j/Mcff2zf04qOjDa+vvHGG+7aa6+1LWMi8UYr3RKXJk2aZIMyha1IJ9q/f79dz4o3e3l8MI5du3bZLChtIfgQLlSoUA4+c8lJVM0dMWKE++CDD6wSfhCFVmhLBwZwCqwcc8wxOfRMRUTyFvZ2P/LII1anhWJXjOUzZsywQOmpp54K349xns9otgcxMZrSSrnkjSyJLl26WH0WstGCtX1q1KjhVq5caccGkzkqvieJQJ9kEpe6d+9uPbtJM2Pw9fjQZYXywIED4esInFjVZIb80ksvtQ9qyXuY5WbFhKA7MuBm/78PuMFEDnu7RUQke/Ts2dNShK+88krLZGOfLpOhDzzwgAVRwXGecZziWHQzkbzprrvusnM7aq8EA+4TTjjB/j127FgLxsmKmDhxYo4+V5H00Eq3xD2qT5NGzmq3D7b50KV6eXB2kw/nzp07W5ow+3Ml76AIT6tWraxSLgNx8Lhg31fr1q2T7OMG2RJUMA+moIuISOzs2bMnxc9ctvmcccYZFkQFey+T7TZ+/HjXo0cPvS15bBKdSRrO9YJp5cWLF7fifGRMVKhQwer6kFpOpuP69euVvSZx7fCcfgIiaWG2m4qUFMcioKaHJ/gQPv30022g9tj3w0onH8C0fYqsWi25ExVxzzzzTNtiMGbMmCQBN1XKL7nkknDATXVcgnO2IHC8KOAWEck+wc9cAmraOhJEXXHFFRZQUezSf15ze4kSJSyDjcw3Uo0l96MoGuM2LTyDATfbDlhcYXsC53hMxJC1RrDdrVs3BdwS97TSLQkxM07LsAEDBljhldGjRydJQ49MKyIdbciQIVawhftL7rVixQrrx8mWA1p+MRB7VDClLoA/gWvbtq1dR6qaiIjkHD6XqTZN/Q0qTa9atcquZ8zu379/kvtSqZoCq6Sbd+zYMYeesWQHjgcmxI866iibdPHBNunkL7/8sk3AkA1BsT3t45ZEoz3dkhAz4xRgoWAG6WfBD1oKrjFTHnTfffdZX1B6OrLymYio6FqnTh0LIrk0adLEAsaM4rUgReuXX35x/fr1s+rd9EWlvyUnN+yZT1Rr1qyxQJoUM4rxBAPuhQsX2smZD7hLlSpl/bgZvEVEJGcxjt9000322cyWsEWLFtnEKeM2E+ascPsJUipVU7uFbDfuk4g0ph8c7y3vcTDgPuKII9zTTz9t2Wm0jaWzDeeBau8pCSkkkkD++++/UJcuXUKFCxcOVapUiYjKLqNHj052vxtvvNFue+KJJ0KJ5t133w29//77oW+//Ta0du3a0ODBg0NHHHFEaOXKlRl6nHr16oXefPPN0IoVK0Jdu3a1x123bl3oo48+ClWpUiV03nnnhRLRsmXLQscee2yodu3aoR07diS5bdGiReHjIng56qijQqtXr86x5ywiIkn9/vvvycZuTJkyJXT66acn+QzPnz+/jYPvvfdewr2MGtPTNm3aNHtveY/9+12kSJHQrFmzQhMmTLB/N2vWLPTaa6/Z95wDbt68OZvePZHoUNAtCeWPP/4INW7c2D50hw4dGjrkkEPCH9BPPvlkssH75ptvttuGDx8eSnTFihULvfDCC8lORIKXe+65J3z/TZs2hY488sjQ3r17U3y8iRMn2u3//PNPKJF8/vnn9lqccsopoZ07dya5bf78+aFDDz00/HrwWt122232ui1YsCDHnrOIiKRtw4YNoYYNG4amT59uARef4d27d08yzufLly902GGHWVCe6DSm/8/kyZPtPeW9DZ7PnHjiiaHffvvN7jN16tTQ/v377fvHH3/cJt5FEo2Cbkk4v/76q63eEoBXr149yYf0JZdckizwvuuuu+w2Vov//fffUKI5cOBA6PXXX7cAedWqVaFdu3aFatasGRo4cGBo69atdmnSpEno6quvDg9QeOqpp0JnnHFGqo/7/PPPh0qUKBFKJHPmzLEZbiZedu/enSwYDx4LzJpHroKLiEh8IhuLz+7TTjstNGDAAPtKlhaf5cHP9sMPP9wC8XHjxoUSkcb0/4/3kPcy8j3m0qdPHzuHmzdvnp33iSQ67emWhENriPPPP9/2/bz44ou219t79dVXre+n38vLvrH777/f9n0/+OCDVnht3759LlGKhLGPiT7lffr0sYqeJ510klV4Za8bt5UuXdouFBWhuivXeRSdoSBJSnbu3GnF5nr37u0SBfu62rVr5xo2bOhmzpyZpAou+92pXh7EnnhazoiISPx7/vnnre3j66+/bi2h6OVds2ZNq+kSROtQxvZevXpZ/ZZgD+d4pjH9/+M9433lPWTf9j///JPiecqzzz5rLT+5X2TbT5FEo6BbEhoFxvhADvrkk0+st2Ow3ycDM+3GCNYIyjds2ODiHUXPli1b5pYsWeL69u3rLrvsMrd69ep0/Swt1mi1llLQzW1U9SaAv/fee128+/vvv+3vpx/n9ddfbwE2Ey/ehAkTrApuEBMVnJhR+V5EROIfE8oE3BS99J/jBN633XabFdiKbCdK4D1y5Ej7/E+Ez3qN6f/De8V79thjj9kCAmN8EGN95cqV3cCBA93JJ59sBVCZZGdMF0lkCroloTHosurNimb16tXD19O3kQrdVLr0CEA//fRTW+lmVTTY4zsesXpNKyx6S7NKX7duXavqmh4EpgTV/uTF++2331yHDh0saGXlnBnmeLZjxw6rVEpGA23jRo0aFa5oy6w3s9/06uQEzJ+ksVrChMPHH3/sjjvuuBz+C0REJDO+/PJLC84Yr+nAETn2+5XPuXPnWgbU2rVr4/qF1pju7D3ivZozZ46N25GBNOM8WQ7ffPONa9y4sV2+/vpruz7ez1dEDkZBtyS8q6++2oJsVoX5gPbo60nQ+dVXX4WvI1Xts88+c7Vr13Zt2rRxzz33nEsUDFDB1fugyH6VpJafe+65yVa4CWAZ+N99911Lz49ny5cvt8GZ1X0G6CuvvDJ8259//umqVKlifTs90ux5r6+66irXqFEjpZaLiCQwUpBLlixpE+q0k+LzfuLEiTZ2BVONGRe3bNliwfmHH37oEkVeG9Np7cl7RKZhcHXb99wmsOZ6Fhs4f/Nq1KihntySKyjollzh2GOPtVVOen2SmuQHLHo9ErgFg2v6fTIwX3PNNXbh/gRx8eT222+3lXgGJ/aB8e958+bZqm5KWLlmZpiBipljVrqDqeV+cOb1YNWYf2/bts0u8bgf7q233nJNmza1lLKlS5e6Zs2ahW/7/vvv7Xq+BtHXNZjtICIiiYsAjdXucePGWWB26aWXWuBJAMp2Kz7zvf3799v4RibXiBEjwtlP8SIvj+m8F7wnZ555pmUaBvdv8/cTVDNpTnYef8vmzZuthotIrpPTldxEoo2+3BzaFStWDBUsWDBcCfP222+3qqFBY8aMsaqZJ510Uuizzz6LmzfjiiuuCFWoUMEqltOPuk2bNqGZM2eGb69bt26S9mCvvPJKqECBAqGzzjorNHv27FC5cuWSPN7cuXNTbTO2fv36ULygBdjFF18cbhWzb9++JLdTtZ7WIv658/11110Xat26tVW5FRGR3OuOO+4IFS9ePHTLLbeEW4gFW4oF20V+//33oXiRV8d03oMWLVqk+Dw5J6M6Offx7T/XrFkTGjVqVEJ2mhE5mEP4T04H/iLRRjGWWrVq2UwwM79ehQoV3OLFi5Ps9V25cqXtDSY1+ZZbbrHiYqyaJ6obbrjBZsYTbaaY9DgyD8g6eOKJJ1zPnj3DGQv8PaSNB9PJWfnYtGmTK1WqVA4+axERyQ6skJL1xBaxSZMm2b9Z1Z0yZYrVKAli7GCMYH8whTiDXU4STSKO6axuP/PMM1YMjfcppcwDxnSKqrVv396+F8n1DhqWiySwpUuXhgoVKpRkdvXQQw8N3XnnnUnu9/fff4eGDh1qq970wKbnc6J69tlnQ8uXLw8lCvqO9+zZ096bs88+O7Rly5Ykt3/55Ze2shE5S84KN7PkIiKSNzBWT5o0Kcl1DzzwgK14p7by27Jly7ha/c3tY/oPP/xgrzmvfUpZCD4T4emnn7bvixQpEtqzZ09OP22RmNNKt+R6FFmj6FbkPif6OLMHPNh+ir1WrHpTLfPWW291d999d0Kvese7adOm2er2H3/8YZXZL7nkkvDqNkk4rFLcd999SXqrs2JRr149W9mIrM4uIiJ5B4XIKJDKeMH+5+BY4dHxgrZTtKhivEnkVe94xmo2fbUHDBhg30e2AgP7t+nPfcUVV9g5GW1AyUTgfEwkt9Mnj+R6lSpVsnQ0BubI6thURqVAiUdVc9qKkWJO4Q/adXG7dmFE1w8//OAuuugiKwxTv359S/GnSI4PuL/77jvrtU5/9eBJFIXS1qxZ4z7//HMF3CIieRzjwd69e23ilnGEwqlecHsSwfm1117rWrRoYcU5Jbp4TZs3b26vMVvEUgq4qUrOIgcLG2AihBR0BdySVyjoljzBB3bvv/++K1CgQPh6BoeOHTva7b7HJ70g77zzThtEihcvbre3atXKgnHJmu3bt7t+/fpZ8EwlV/Zos9pdtmxZu52Zb/qyVq1a1TIUggjAaQvHbZHtVEREJO85+eST3bfffuveeecdq9myZMkSmyinwwVjeeRY8cknn1hV9G7dutnPSdbwGvJa8pry2gaxp573oFq1am78+PFWX4fzqsj7ieQVCrolTyGAZpX1pZdeSnI9RdRIexo6dGi44Aezr/Pnz7dAfffu3a5JkyauS5cuNrMuGUM7E1L1Wb1m8B0yZIitZgdXtylwV7FiRXu9PSZIypQp44YPH+4efvhhpfqLiEgSxYoVS7LCzWoqBboYW1h9DfJZa5MnT7ZgkHTzn376Sa9oBvGa9e7d2ybQKWQXRKDN+zFs2DArdkrrM1qDcd7FFr5gC1CRvER7uiXPIqBmdfvJJ5+0VXCPII8+0QTZHoH4hAkT3F133WWDCOlRpKBrT3HaSOkjfeyBBx6wNHGqsN522212kuSx4s2+LgbjIFa86c/KCRQz5iIiIgfD1jEyo1j5fu6552z1+7333rNJ9ZQQJLIPmbGJFXJJHZMZDz30kNVbIW0/NX7f/KpVqywwFxEF3ZLH/f7775YaNWPGjGS3FS5c2AJyVmODQSSDOCu1rN4SfBNInnTSSdn8zON/YH7xxRet9deWLVusaAor3eXKlUvXa1+6dGmb3OBkSEREJKNoVeXHECZ/2W+cGlbFjzrqKBvP2QLltzzJ/zCOcz7EZf/+/am+LGSnPfjggzaus33v0UcftS0AIqKgW8TSzejrTZ9IirFEIiV6zpw57vjjjw9f99tvv1lA+dRTT9k+JfqBM1ifeeaZeboyqs8cYIWaQioXXnihGzx4cJKZboresKrwxhtvpDh4U8F89OjRSarKi4iIZBZ9vSneWapUKast4ruZUNk8pRXbrl272mp5o0aN8mwNEc6NyBIgTZzaKwfDORCT68ccc4wF3ExiiMj/p/Rykf/zyy+/uBtvvNH2HKeEStsMxMF9yASWEydOtHZXFAghne3KK6+0ld28MlPO4Mr+uOeff95S9qkITwuQPn362Iq1R5oZr92XX36Z4uMwG06wXrdu3Wx89iIikhds3rzZ7dq1yxUpUsQmg5lsPxjqjNx00002duWV1HNq2HAeNGrUKKuBkxrGdxYd/AT5Bx98oP3aImlQ0C0Sgb3FzNhSrZyAMlLBggWtdzQDsV/V9jPCBJ6s4PJzrHqTPn3WWWe5Y489Nle9zqTZE2BTMZa/l0GaCu9XX321TUwEe5sTbI8cOdIG8ZRWFEg5J12fk5q8nCUgIiLZhzGJzCq2klFwjZRovwIeiYn2c8891/Xs2dMy23JbJhbZex9++KGl4c+bNy9cUDaIFl+8PtRk4TyJ8Zqxn/MfWrMGO8OISHIKukVSwYw4+5jYm0yhtYULF9oeMY8UKqpqU3AtuKebvd7MoNMOy7cZ4z6slJ9zzjlWJT0R09V27txpM9mkmXFyQmE0VvYvuOACS82vUqVKkj3d99xzj70GpJNHoljdzJkz3c8//2yvjdLQREQku23YsMGtW7fOtW3b1gLPyy67zL399ttp/gzjd+3atW2SmUA8UQuq/vjjjzaec75CG6+UAu1IBNqM+x9//LE77rjjsuV5iuQWCrpF0oGWGOedd16qtzPrzeo4KWvB2V72jtECi4GNIJM9zOwRJwCnOjdtNQoVKhSX7wGr0qtXr7bZb54/gyyDMs+Z58+lVq1a4QkEVr9JsSdFnL9569atKT4uVU/79++vVW0REYkrTz/9tI1PwQl2v8KbmsqVK9vkM2NivXr14ra1JRl4y5Ytsww1FhOYSE8vAuzrrrvOdejQwdWvXz8hFw5EcpqCbpF0INik5Qgtw2hHkhoGW1/NnFVtVsM9irRRkI0Algt9Lhm46BV6yimnhC8M2tmdukaATf/xL774wgJnvn799df2nPPnz2+rAJxQkCofObu9aNEid/vtt1uf7bROTNhHN2jQIBu4gy3DRERE4gXjGKu/FF9j3E/PCnAQK8H0oj7ttNNsTK9Tp062Z3MRYHOu8vnnn9sWMNLBU8o6SwnP1W+to8YKLT/bt29vRedEJPMUdItkAHuX6CvNnu65c+em/T/XIYdY0M0MOPu/WeH2GMTZ6+wDXC7MQDPQ8XNVq1a12WT2SRHk+gtp2RQvyegAzknEjh07bPWZYJ+vXEifJ7j2Abb/3cFJgAYNGiRZvSc4p485q9mk5bGnK62TEgrR3Hnnna5Hjx5KIxcRkYQqvjZhwoRwRw4moP3kdEaUKFHCxnTS0osXL24p6Uy4M6ZTUT2j7TFZiSeTLjiek5XGcyNNni1e6cHv5bEY+6nHwpY56rUwrrPfncKoIhIdCrpFMunbb791zz77rBUdYTWYf9N7mlQ0Br0gqp4ysDKAUaWblXCC8eCKb3C1mctXX31le66oDspgH8TPEYSzesygyQw0FwZOHsdfCKQZjNk7HVyF5n4Ud+MxSBFPbZWdwXjWrFlu48aN9hxo5UWgzeRDSvjbX3vtNVvNbtq0qbvmmmvyfBs1ERFJfIyBRx55pH1P0M2EdNDB0tDT4leReQwCdGqm+ECc75n4ZtzmHIPfEUx/jwbqtLCaLSKxo6BbJEp8kEtgnVLV80gMqKRtMYDSrowWYwzizIQHA18CXG73s9nBmW2Ce34vAzBfWXH2QThfSXdnZTxytZznGDmzzsw4e9dZET/11FPdSy+9ZHu/UuqlnRJahFGEhr6mvA6qZCoiIrkRBVMpuDZ79my7MDkez8i6ozisxyJAy5YtbeWerXD8W0RiS0G3SBQRBL/wwgu2h+qzzz7L1GOwSszMNoXJmFUnzatFixa2H5rgmgCcwJtgnJR1Vrv9LDy3MRseHEBJHeeEgBV2rmdlnjQ0+mVTAOb444+358v+LyqTErjzGCmtZhNIRwbhzMp3797djRgxwtqpiYiI5BWMlWSpffTRR9axhLGVSWjGZ4qRcj2FVD3GVybEGWuZdM/s6vjBUKy1d+/eVvyUSYJ7773XAu3TTz/duo2oGJpI9lLQLRIj7JdmJpz9YPTwZoD16WcEpwS4BMoE1wdDYE1wTJo3g6d/HPZKr1271oqkUImUS/Xq1d35559v+7JoA8IJAavgnTt3thQyfmdGC8MwQBNcUywNnExceOGFrkuXLqpkKiIikgrajTJWf//993ZeEImtWGShkSHGHvK0irUy9lLcjAw27j927NgktzOxTi0YirddfPHFFmCLSHxQ0C2STSvgFGAjICaNmxRvel7T3zoepLYXrWbNmpZ6RkEVVtwp/tamTZskReFERETk4Nh6xuQ5ATgZaGSn0YaL2ipggp5uIEyMBy+M0Uy+s3JNJxHws1OnTrUJeS4UZ8vuKukikn4KukVyCGnftCRh9ZjCaam182D/NSvjvhjawfaLs4LOnu6Dpa0xSLOP3K9ee+z1poI5KWlUXWePuYiIiIiIZI6CbpE4QAo4hdEIvllNZhac1WVSwUklo0o6PcJT4/diU8iMfeDPP/98qvelLQgpZ6xYU1jliSeesBV40tG4nHjiierHKSIiIiISJQq6RRIA/Tg3bNhg6WSkefPVf89+7euvv972XRN8UyiNfeSFCxdOdqGCKUE8fUJFRERERCT2FHSLiIiIiIiIxMihsXpgERERERERkbxOQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhER+X/t2UENAAAMhLD5Vz0VPC5pXRAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAAEQ3AAAAbHG6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAA4BoP7fGAZt7y2GkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -841,22 +786,22 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 19, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAH/CAYAAABZ8dS+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkgdJREFUeJztnQWYE1fUhi+FQnF3d3d3dytSKBRKsVKcIkVK0UKhSIvT4m5FixSnOBR3d3f3dv7nO/9/559kN9msZnfne58nbDK5mcyEZM69R74TwTAMQxFCCCHENnzk7QMghBBCSMhC408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2I5O0DIIQEH48ePVLHjh1TR48eNf8OGzZMVahQQZ7fu3evatmypYoTJ46KHTu2/I0fP74qU6aMqlSpkooZM6a3T4EQEgzQ+BMSzti5c6caPny4OnLkiLpx44aP5w8ePGga/7t376pTp075GDN+/HgVOXJkNXHiRJkcEELCFzT+hIQDDMNQESJEkPtRokRRq1evNp9LkyaNyp07t8qVK5f8LVKkiPlc8eLF1aZNm9TTp0/VkydP5O+VK1fUmjVr1MWLF1WWLFnMsbt27ZKxjRo1UpkyZQrhMySEBCURDFw1CCFhDvx04bYfO3asihcvnpowYYL53NSpU8Vw58yZU9z5Adn3mTNnxMhHjBhRtn3zzTfqt99+Ux999JFq3bq1GjhwoEqcOHGQnhMhJGSg8SckDLJixQo1ZMgQdeDAAXkcNWpUdefOHRUrVqxge88//vhDTZs2Tf3111/yOEaMGKpXr17q22+/VdGiRQu29yWEBD00/oSEsQS+Dh06qAULFpgu/saNG6uOHTuqvHnzhsgxbN++XXXr1s2ceKRIkUKNHDlSNWzYMETenxASeFjqR0gYYd++feLGh+GHK75nz57q+vXravr06SFm+EGpUqXkWObNm6dSpUolSYXIEyCEhB248ickjHD79m2VI0cOlSBBAjVnzhxVqFAhbx+SevPmjfr9998lBwChB/D48WMpGdQJiISQ0AeNPyGhmHPnzjlk1qNML2vWrKE2xv7q1StVokQJlTFjRvFIRI8e3duHRAjxBbr9CQmFYE7ev39/ydhfuXKluT1//vyh1vCD3bt3qxMnTqjFixfLJODatWvePiRCiC/Q+BMSyvjvv/8kqW/QoEEyCYBoT1gB4kGbN29WCRMmFJGhAgUKqB07dnj7sAghTtDtT0go4sOHD6pVq1Zq1qxZEjNHXT3i6WENrPhr164tE4CPP/5YNAjC4nkQEl7hyp+QUMK7d++kbA+GH9n8c+fODbMGE1UA8Fh89tln6v379+rrr78WUSBCSOiAK39CQgEwkHXq1BFZXWjqL1q0SH366acqrIPLy9ChQyX5D+JASAQkhHgfGn9CQgH4GXbv3l0a6UC9r3Llyio8gZLATz75xNuHQQj5P2j8CQkl4KeI0r7MmTOr8Aw8AC9fvlT16tXz9qEQYlto/AnxYlY/EvrQMheu/pACnfug0IcafOjz6xseo4wQjXuCCzQiKlmypLzHunXrVLly5YLtvQghrqHxJ8RLoI4f5XwwgGiVG1SKePhJI8se2vsXLlyQ1rx4j3bt2pmZ+KlTp3b5+lq1ajloC6ACIVKkoOn+/e+//0oPgKVLl6qYMWOqbdu2qXz58gXJvgkhnhM0v2hCiL9AXB+GHzRr1izQhh9eBKyqly1bJrfLly87PA/jrY1/8uTJxeDCAwD3+4sXL+SmgbCQBmP0+OLFi6tKlSqpMmXKBPh4UcWAngBoULR161ZVtWpVtWvXLpUhQ4YAnzshxP9w5U9ICHPq1ClVuHBhMbidOnVSY8aMCfQ+nz9/LsI6b9++lcfQ2UcDHkgDp0+fXpQBobjnbvLw+vVrOSaEIOLGjSvbN2zY4CP5EDkJmEhg0hI7duwAHe+zZ89kEnH48GGVNm1a8VLEixcvQPsihPgfGn9CQpAnT56oggULijsexg/GFSI4/nWdL1y4UO3Zs0eNHz/e3N60aVMx4kikg8EOCl19XB7Onj0rq3Mo9cFdr70E2P/8+fMlTBAQ7t69q4oVK6YuXbqk6tevL5LAbAZESMhA409ICAGjXbNmTUl0gwgOVrtYrXsKDPvy5ctVv379xHugtfSLFi2qQgp4GNBREIp9mBRcvXpVwgIBLef7559/ZALw+eefq2nTpoVo4iMhdobGn5AQ4vTp02KooeSHlXTevHk9eh1+oqtXrxajj0Q+gJa5PXr0UB07dpTEuZAGx4QJSPbs2c1tdevWle0IY2By45/PBZ0KCSEhB40/ISHI+fPnxdh56ipHeKBJkyZSmgdg6L/99lu5YQIQWoAXIEeOHFIZgHJBVDLgGP0b0sDlCB4OJAYSQoIPGn9CQjHIts+dO7e6f/++rPKx2o8fP74KjaCVLxIBdRe/bNmyqUmTJknioSfgHKF5gEkEJIEJIcEHjT8hwQwMGZL8Klas6NH4Bw8eiIHXyW/Hjh1TiRIlUkmSJFGhHVxOZs+eLVLFOA+AqoCxY8eqWLFiuX0t8hkQOsB5b9myRRIiCSHBA7v6ERKMICGvb9++Uh+vk/T8MoAopYPynyZXrlxhwvADGG4Ye4QB2rRpYxpylBH6BRobtWjRQiYQqFyAFgAhJHjgyp+QYAI190jqQ4y/efPm0tnOFRDbQYx8ypQp8hg1+X///XewSu2GBEhshOaApyp+KCPEWORGNGrUSEoJCSFBD40/IcEE+tcPGDBAXPaYALgSsUG9O5TuIHiDlXLPnj3lteGx7A1lgojtY6LjqqYf5X9FihSRxD9MgDzNGSCEeA6NPyHBAFz8efLkUe/fvxdBHujZ+wZkeBESQFY/JgkYW7ZsWRUegZgPkgDhEUFoYPLkyS51Adq2bSvP4zOEHgKz/wkJWmj8CQlisGJF5zrE+2vUqKFWrVrl6yoXEreob79165ZKkyaN2rhxY7jWuMelZty4capr164ieFSoUCH5bBInTuxjLLwDGTNmlHJG5AykS5fOK8dMSHiFxp+QIAaCPFDyQ5tceABSpkzpcuzo0aPVjBkz1Pr161WyZMmUHdi8ebP67LPP1OPHj6WsDw1+EiRI4GMctA2Q7IicAUJI0ELjT0gQg58UOushie/LL7/08TxWvVY3NjLh7Wbgzp07J6V8t2/fFtc+JgRs7ENIyEHjT0gIsmTJEjVixAhx8Qe0I56nPHz4UF27dk3CCs43iAch3o5Jh/6rbwhBQLYXq3LkIQRXs50zZ86o0qVLq3v37qlhw4ZJoqNvYLIE3X+MRRkkISTw0PgTEoQd+1Ca50rMZtu2bZLchyTAn376SfXq1SvI3hs/YyTUQV1v586d8her68ACsSE9EUAJXrVq1VTSpElVUKoCLliwQP34448uJxldunSRfgHVq1eXkAohJPDQ+BMSRHTr1k3NmjVLktpQo27l5MmTqnjx4rLiRvvaRYsWBbqGH+GCFStWyA3GHi50ZyAOhFwC5xsS6dCFDzfsBzfcR509auxxvBcvXpRJhTNI1ENvgtq1a8vEICg9A5gY4Yb+ABpMYvA+6Buwdu1aKYskhAQOGn9CgoAbN25Ipj7K2P766y9VuXJl8zm42dHNDy54TAA2bdrk79a3Gvxc9+7dq2bOnCllgagY0KCJDmSEIRCEagO8V9y4cQN8Tq9evRLXPCYCWKGj5l43GNKkTZtWJgGtWrVy6PAXENDtEK19cU4w8ladA8gFjxo1SkoFjx8/HubFjwjxOjD+hJDA0bp1a0yijVKlShn//fefuf3Zs2dGnjx55LlMmTIZDx48CND+b926ZQwdOlT2gX3pW5o0aYy+ffsa27ZtM169ehWEZ+T6OH7//XejRo0aRpQoURyOpUqVKsaGDRsczt8/HD9+3IgRI4bsq127dg7PPXnyxIgdO7Y8t3Tp0iA6G0LsC40/IYHk3LlzRsSIEcUw7dixw+G5Ro0ayfZEiRIZFy9e9Pe+7969a3z77bcOhjZatGjGl19+aWzdutX4999/DW/x4sULY/ny5UadOnWMCBEimMeXM2dOY8aMGcabN2/8vc8///zT3M+0adMcnsMkB9vz588f4AkGIeR/ofEnJJBoA1+tWjUfz505c0aM4f79+/21z0ePHhl9+vQxokePbhrDIkWKGNOnTxdvQmjjwoULRseOHR2ON3HixMbYsWON9+/f+2tfAwcOlNdHjhzZ2Ldvn7n9/v37MvHBc+vXrw+GsyDEPtD4ExIIjh49ahq7Q4cO+TrGP6tzGPbBgwebLm7cChQoYPz1119hYrWLScvw4cON5MmTO3gCEJbwFHxetWrVktdiP3fu3DGf69Kli1GuXDl/T6YIIY7Q+BMSCEaMGCEu7wYNGpjbTp06ZezcudPf+1q1apWRNGlS02jmyJFD3Ophweg78+7dO2PixIlGvHjxzPNp2LChcf36dY9e//TpUyNz5szyugoVKpifgX+9CIQQ36HxJyQIYv6XLl2S+69fvzZy5cplfPTRR8b8+fM9ev3Dhw+Npk2bmkYyffr08lpvxvODCiQ4tm3bVj4Pna8wZMgQj/IBTp8+LQmOznkUhJDAw1I/QoKQjh07qvHjx6uECROqo0eP+imIg8Y2bdq0UXfu3JHyNTS9GTRoULiT+0W7Ynw2u3btkscQDILWgV+NjJylkK1tkH/99VcpDcydO3ewHTch4ZYgmEAQYjtQVnflyhWHbStXrjRX72vXrvVztf/FF1+Y4+Hi3r17txGeget+7ty5Rvz48eWcY8aMaSxYsMBfSYX37t2T+9pTYg23EEI8h8afkACAWne4spGABm7cuGHGt7t27er2tceOHZP6fIzFPr777rsQqdEPLSDuX7JkSXPi06pVK+Ply5duX7Nw4UIJGdSvX98h0RL5FmfPng2hIyck/EDjT0gAVrDZs2cX4zNq1CiJzZcpU0Ye58uXz208GwI1uhwOsf29e/cadgSJe6jb1/oA+DxPnjzpcjwqKSJFiiRjFy1aJNuqV68uj6GDQAjxHzT+hPiTjRs3itGBGh2U55YsWSKPYdRdrUIxQejfv7+52kUGO1z/dmfTpk2iB6CTAVevXu1ybL9+/WRcggQJRPwIY/EYHhckWhJCPIfGnxB/AmlbGJ0OHTqYhn3q1Kly843nz58bdevWNQ0/QgUsWft/UMdfvnx5+WyglOis7Kd5+/atkTt3bhkH9/+HDx+MlClTymPkEhBCPIfZ/oT4A3S8y5Qpk9ltLmPGjG7HI4sfTX6OHTsmjWomT56smjdvHkJHG3ZAJz80B5o9e7Y8Hjx4sPr+++99dAw8cuSINC9Chz9UC6DxUP/+/VWpUqWk8RAhxDPYGosQf4AyPoDe8v/995+0wHXFzZs3VenSpcXwJ06cWG3bto2G3wXoSIhOhb1795bHP/zwg2rfvr2U+lnJkyeP6tOnj9xv166dqlu3roodO7bKnDmzTAgIIZ7BlT8hHgJjnzp1amnfu3LlStWzZ08x/itWrFD58+d3GHv16lVVrlw5denSJXnN1q1bpf0t8WyC1alTJ2lf/Omnn6r58+c76B6g9S/aFleqVEn16tVLJg5RokTx6jETEtag8SfEHzx9+lQtW7ZMVvVYnSZKlEidPXtWxYkTxxwDgw/DjwlAunTp1JYtW2QCQDznjz/+UE2aNFFv374VLws+c4RN/BL/IYR4Bo0/If4Exj179uzqzZs3au7cueqLL75wyAmA4Yd3ALkBmzdvVilSpPDq8YZVECapVq2aev36tWrQoIF4AHwz+PoS9s8//8ikoGjRol44WkLCFoz5E+Khy1/TvXt3Mfww8o0bNza3X7x4UWL8MPxZs2YV40XDH3DKlCmjli9fLm79xYsXq6+//trh/wHs3btXjD3CBIULF5ZQDCHEb2j8CfGASZMmqQIFCqiffvpJDBJ0+MeOHWtmoz948EBVrVpV3b59W+XIkUMMv1+6/sRvUCmxYMEC+bynT58uvQ+szkpk/O/bt09t3LhRxuzYsUPCMIQQ99D4E+IBs2bNUgcPHpSMdNC0aVNx/QO4pWvXri0uf8T2YYiQC0CChnr16onhB2PGjFEDBgwwn+vXr5+KFy+eGPwsWbKYEwJCiHto/Anxg9OnT0s8GfFm1PUjs1wbILihv/zyS7V7925J+lu7dq1KkiSJtw853NGsWTM1btw4uY+uh9BLAHHjxlUDBw6U+9euXZO/NP6E+A2NPyF+oIVnkHy2evVqie2nSZNGtn333XeSmY5MdJT8ZcuWzctHG37p0KGDaejRHnj79u1yHy2RkWOBsku4/k+dOqVOnDjh5aMlJHRD40+IG5A9jox+gBU+SJ48uVmPPmrUKLk/Y8YMSfYjwQvKKxs2bCiCPvXr15dySiQEQhEQwPiDhQsXevlICQnd0PgT4oadO3dK9j5c/blz5za3I6Gvc+fOch9JgNasfxJ8IMES8f+8efOq+/fviwjQq1evVJ06dSQHQ6v84f+HEOIa1vkT4gYYeGT1A2TvY6X58OFDMT7Q7Yc3AEmAzhr0JHhBfB/VF5gAwBOAioD169erW7duSXklyjAjRYrk7cMkJNTCXwchboARwUoT8eQuXbqIWxmrfBh+lPShBJCGP+RJlSqVWrp0qfz/IMEPmv+Q+iWEeAbd/oS4QTfvQVY5Gskg4Qw6/dGjR1dLlixR0aJFU2EJOPpevnwpK+ZHjx6pZ8+eSakiuuqFNSdgyZIlzUZL6AC4a9cu8znIAiMcENbOiZCQgm5/QtxQrFgxtWfPHukkh7axEPLBT2bevHmhKs6PWDdkh69cuSKhCesNAkTPnz83b84qeVZixIghGgXWGzoSosQRdfTonmftYxAaQOhlzpw5UoFx9OhRqcj45ptvxCODUECRIkW8fYiEhDro9ifEBT169BDDjzI+ZJajixwMP0rLvGn4sVJHm+DDhw/LDT3u8RiSw4EFXg7cMJFwBXQMMBHIlSuXTI5wS5kypfIWWP0jMfPy5ctSAghZYExyAEICNP6E+IQrf0J84dy5c7LK1Wp+cJP/9ddfElvGhOCTTz4J0VX9gQMHpEkQbhAUglvbGYQg0DYYKoPWG1bvsWLFUjFjxjRvCFvAAwB3P/aPG+4jDHDv3j2HGzoY4vM4c+aMJNT5BpLsoLFfvHhx8Y6gqVFIApc/PDM4J5RmIj8DHg8kabo6ZkLsDI0/Ib4wbNgw1bt3b8kYR5wfMWWU+2GlDUGZ4ObJkydq5cqV0kcAOQYwylYSJkwoFQfWW4YMGcw69+ACxwEpXageYkKCiQg8D9BDsIIwQc2aNVWNGjVUiRIlpBY/uIHUL+r9EZZo0aKFGj16tGyHKBNaKxNCLMD4E0IcKVy4MCbFxsCBA43YsWPL/eHDhwfrez5+/NiYOXOmUb16dePjjz+W99S3uHHjGnXr1jUmTJhgnDlzxvjvv/+M0MKLFy+Mbdu2GUOHDjUqVKjg49jx+X311VfGli1bjH///TfYjuPdu3dGoUKF5D2LFy9uRIgQQe536tQp2N6TkLAKV/6EOAE3sVbxK1++vLja0S4WrmXf+skHBvz8sLKHVj3kgeF616CU8LPPPlPVq1eXcENQv3dwegfQ3AiJd2vWrJGQiQZhCIRRkKQH70BQc+HCBfmsUNGAEAjyABD2uHv3bpC/FyFhGm/PPggJbbRv315WjGnTppW/UaJEMU6dOhWk7/HgwQNj1KhRRqZMmRxWyTly5BBvQ1C/n7f48OGDsX37dqN169ZGrFixHM61VKlSxvLly2VMUDJ27FjZf/To0c33OnfuXJC+ByFhHRp/QizAEEWLFk0MhnZfDxs2LMj2f/78eaNly5YyodCGKWbMmEa7du2Mo0ePGuGZV69eGQsXLjSqVq1qfPTRR+b5p0+f3hg3bpzx/PnzIPs/LFCggOw7RowYRsOGDY27d+8Gyb4JCS/Q7U+IBbTkhZtdU6hQIXH3B1Yq9uTJk9IDADK0us4e7um2bdtK2SDq6+0EKggmTJgg4Y7Hjx/LNiTqQUipe/fuIqoUGJCYCflffNb4P0UFAiHEgrdnH4SEJmrXrm2uSLE6PXz4cKD2h9U8EvWs7u5q1aoZO3fuDFVJe95MFkQSY4YMGRwSBAcPHmw8e/YsUPvu2rWr7C9NmjTGy5cv+XkTYoHGn5D/48aNGw7u6LZt2wZ4Xzdv3jRatGhhZpzjb7169YyDBw8G6TGHF1AFsGzZMsl50J9/woQJjdGjRxuvX78O0D4RRkiZMqXsK126dEbJkiWD/LgJCavQ+BPyfyDRThueePHiSVJeQFayAwYMMPMGcGvQoIFx8uTJYDnm8DgJmD9/voMnACv3FStWBGjlvmrVKgevS3hJpCQksND4E2IYxvv3740kSZKYRmL8+PH+ej0M04IFC4xkyZKZ+yhSpIixe/fuYDvm8Axq9qdMmWKkSJHCIVyChEn/kjVrVnMfPXr0CJbjJSSswYQ/QpSShjjZs2eXTnDQ8sdfT+vq0VseiWqoaQdoMDN8+HCp0We738CBev0hQ4aokSNHigYC/m969uwp6otRo0b1aB9o/YveDACJhKj5DwnFQUJCM2zpS4hS0ggGBh9AltYTww9JWzSVwaQBhh+GacCAASJ926BBAxr+IAA9CIYOHaqOHz8ujZXevXsnEr6QM963b59H+6hTp45IMwNUFiD7nxC7Q+NPyP/1g9d89dVXHinJoZ88usihCx4a2kDjvn///iHa9McuoMkSGithFZ8sWTLpL4Bugvh/w4TAHeh3gImD5scffwyBIyYkdEPjT2zPsmXL1J9//in3sVpHdzh3oHc8Vp7o7ocOeRMnTlTbt28PkYY/dgb/N3Xr1lUnTpxQX3zxhdTwwytQsGBBdfToUbevtWo3oCHR9evXQ+CICQm90PgTW4OUl5YtW5qP8+XLJ+1vXWnWN2nSRHTpsdrHJAHiPRDqCe5ueuT/QdwebXuXLFmiEiRIoI4dOyYTAEzCXKUwlStXzuHxzJkzQ+hoCQmd8IpFbA0U99A+V1O6dGlfx/3zzz+y2p83b57kAyDuvGXLFpUyZcoQPFpiBUl88ALUqlVLkgHbt28vHgFMzJxBu+MxY8aovn37ymPkaugcD0JsibfLDQjxFijP06Vk0IBPnjy51JM7M2PGDCNy5MgyLnXq1MauXbu8crzE9f/jyJEjjYgRI8r/EUr7XOkqoIRQN2xCYyVC7ApX/sS2LF++XN24cUPuI1EPcWBk+ms+fPigunTpopo3by5JZVhhIqkPiWYkdOUCdOvWTW3btk0lTZpUqi0QBvjjjz98jEWJH0oFAbw3XP0Tu0LjT2wJYsM//PCD3Ee8vkWLFmJEdOz+4cOHqnLlyuIqBv369ZPJAprPkNBJiRIlpKEP4vsw6tBZGDZsmJkHgMnc7Nmz5QYQ7kFjIULsCEV+iC3ZsGGDGHeAxL2tW7eahv/8+fOqSpUq6tKlS1JnDmOBLHMSNoD+QteuXdXYsWPlMRI6kQyIVT88AxD5wUQPlz4kDF69elVFixbN24dNSIjClT+xJSgR01y8eFElSpRI7d69WxL7ULMPw582bVop5wtPhh+GEeEN6BTo1sK6kuHOnTvq9evXKqyDhEx4bMaNGycTumnTpklLX6z04R0A6dKlk78PHjxQv/32m5ePmJCQh8af2A4Y+b///ltFihRJZHnRWx5ufhjFsmXLqvv370vJHwx/zpw5VWjn6dOnatKkSQ4TGtCrVy+VMGFCNWLECIexqVKlUhkzZnQQx8FrsSrW8XCAlTHUC+EZuXfvnrn93LlzatOmTfK5hWY6dOgg+g0xYsSQygycR65cueQ560p/9OjRUi1AiJ2g8Se246effpK/zZo1kyQ+gJU/avihJV+xYkVJHkucOLEKbUyYMEE8E1jNat68eSOTGJSxWY0Y7mNli8mMBuqDkCGGQfRNmwDbNfACnDp1Su3YsUPCHxqUO+IzGjRokMNrobb3+++/+1pq5y2qVaumdu3aJaqAKAucMmWK2Y9BSzgj6XPx4sVePlJCQhhvlxsQEpIcO3ZMyrwiRIhgnD171qGNL25ffPGF8fbtW28fpvHo0SOjfPnyUoqIjoOanj17ynG2b9/eoQ1u3bp1ZRt62GuuXr0q5/vw4UOPS+as74X7W7duNRYvXuwwDmV1KKcbPXq0uQ3voT9D6zGsWbPGGDFihByHN7l48aK0Btb/97rroj7mvHnzBqhlMCFhFRp/YiuaN28uF/uUKVMaf/zxh5EjRw7TAHTq1EkMaUizZcsW48svvzR++eUXcxuOA9oDOC5rzfrhw4eNRYsWGefOnTNCE3fv3jW6detmNG3a1GF748aN5RwGDx7sMKnApODp06cheow3btwwsmTJYv5/V65cWf5qfYDNmzeH6PEQ4k1o/IltuHfvnhElShTz4p8+fXrzfqNGjUJk5ffixQsREnry5Im57ffff5djKF26tMPYlStXGgcOHAgVnoiAMmXKFPFKbN++3dy2b98+Od+4ceMaHz58CPFJSuLEieX98V1Yu3ateEzwuGrVqiF6LIR4Exp/Yht+/PFHucjHihXLwdWPld+bN29C5BiyZ88u77l06VJz27Vr14y+ffsamzZtMuzAunXrZOJVr149h+0NGjQwWrZsaZw/fz5Y3x/7z5Url/w/JE2aVD53HQo4fvx4sL43IaEF1vkTW4DktzRp0qhbt26ZNd6gcOHCqkCBAqL1HpQgcXD+/PnSc37q1KnmdtSfQywISYeff/65sjNv375VUaJEkfsow0PNPUoRUYaYPn162f7o0SNJQkSSYlCC6o4yZcpIEiCqH9CRcf369apNmzYU/iG2gMaf2IKFCxeqRo0aSdY6DDPo2LGj1INjMhDUPH78WKoFMOlA1zldMogMemTcB8d7hmXwOaHCYv/+/VI1YC3XW7RokRo1apR0UwxKIPaDun9MNvSEEN8PlDDGjh07SN+LkNAGS/2ILdBqb1rLPUuWLOrXX38NEiMMfYAePXqoTp06ObSd7dy5s8jLWksGo0aNGqyGH61uf/75Zynx06xevVr0C1D3bwUqhtmyZVOHDh0yt6EsDtudx8JbAU9GcNX2Q30P5YNWw681GXAu0CvQ4P/Q2okxIKAdcNOmTaULIPQeYPhxDJgYzpkzJ1D7JiRM4O24AyHBzaFDhxxi/LitXr1aYs+elsG5A0l52Cc6/z148MAIapCPgFi0NfFv3rx5Rrp06SRGbiVJkiRyLAcPHjS3zZ49W7ZVqVLFYWyGDBlku7VL4YIFC2Rb2bJlHcbqGDk+M83ff/8tJX+tWrVyGHv//v0gq5pAZQCS8qwliBMnTjSiRYsmORwBBZUVOJ9atWpJpYX1u4FzYtkfCe9E8vbkg5CQWvVrZTfEmfEXDWCSJ09udvbzBMjgTp8+XdzDrVu3lm358+eXVX758uUD7S6GxC5WtfBMaBCThsIeOgrmzp1btkGgBxLEKVKkcHh9nTp1ZPUaK1Ysc1vp0qUl7IFztYKVPFbRUPHTFClSRM2aNUvi71bQyTB+/PimLC64fPmydNBLmTKlw1is4NEfYdWqVfIZ63AHVtf+1dDHqhzSvFag1ofjjhkzprnt/5KXfRUu8o1ChQrJX+Rk4P9TN/sBOCeEIOAtISTc4u3ZByHBCVb2uo4bmd1YlT5+/FiEZ7CtTp06/tqfXkVjX4EtwcPrrfuYOXOm7LtMmTIO44oVKyYVCuvXr3coW9yxY4dx8+ZNw1vgGDZu3CjHocGKOUGCBHIeEFHSzJ07V/4fsMoOLHiPbdu2OZRL4jEqKeC58IRXr16Z3wtoJnzyyScOq/+cOXMG+jgJCc0w5k/CLVgJQr4XGeRYEW7cuFFWtGjLu3fvXnOl6w5UB5w8edJ83LBhQ1nNDhw4MFDHhhbC8BL89ddf5jZUHSAfAHK9VtatWyfegEqVKpnbEANHshpka70FjqFChQpmsxyA4799+7bIAuuMfYDPEP8P1pbI+P8pWLCgyCoj+c5T8B7wZli9LPDu4D3Qs8ETkHuhkzCRkKlX+agAAMePH3fwBhAS7vD27IOQ4AIytHolhxXny5cvzeeSJ08u2xG3dgUUACEEg5V3QGPAEPWBt+Dbb7912N66dWt5f9T3axAnx/jg4t27d6JyB10BK3fu3DEuXboUrIp7+PyuX7/u8N7wDGixndevX5vbIQgEL4d/tBfgBfjpp5+MCxcuOJzXtGnTHPIFrHz99dfy/t99950xbtw40+uSKFEi87jOnDkT4HMmJDRD40/CJVbhFrh3kSSGi3m7du3ECOnt7owtXOp4TfHixR1czJ4YWQ0SAD/66CN5vytXrjgYPsj2BjaxDMZ8woQJxuTJkx22Y7KD0IRVTOiff/6R40iVKpXDWIjtYPvYsWMdtPBjxowpSYFWli1bJkYW+wosMPj4f4IKoBUo7eF48D6BAXLN2M/nn3/u6/NTp041DT7Ot2TJkjJhxOepJ42ZM2cOcRliQkICuv1JuAOu+saNG5tCPnXr1pXELojKIFEP9wHcvrpbHerMJ06cqAYMGGDuR3eCQ1c7TxL5tm7dKm7s5s2bm9uQJAcXPzruWYVqMmXKJGV27sr+nCU4UAaH0ADa6WquXLmi2rdvr4YPH+4wFmECuN8hZqPB+6OcDUl0VpAAic/B2tEPCXXPnz/30aEP3e969+4tn4kGyYhISkTC43///eewD3cyItA7wGtatWrlsB3hArQXRvKiteSvdu3aasWKFcpTMmTIIGGeli1bukz6w/8ryjKRyLh9+3bVrVs3Kf/DsYGzZ8+KvoD1vAgJF4TIFIOQEAKr7hIlSjg0bEETGayCcR8Jat27d5f733zzjfk6NHXBtkiRIjm4jt2B7nVWj8Du3btlH3HixHFY/fsXlPXlyZPHyJ07t8P2+vXry/6tDYBu375tfPrpp0bXrl0dxp4+fVpKHNEdMCAgEREyuM7d+NCHoFmzZpJg53zeaJZkBR0SY8eOLStsa2jDkzJAZ48Iwia666K7cc7As2Mdg8RD7APhB2x3dSxNmjSR99Nem2HDhvl5zISEJWj8SbiiR48ecrGOGjWq/EXd+5EjR+Q+MrrhaoZRg0Fyjve3aNFCXL6eGG5UC0SPHt2hWx2MCWLMaB7jKXC1FypUSDL9Nbdu3TINjzVPAce7fPlycfWHJmBgMQGwViOA/Pnzy3msWrXK3Ab9AUyOXLniXXHq1CmjT58+DpMOVG7ALY//A1dxfSv4f8UExbnLoHMFAxoqodOi/s7oSeHevXv9dcyEhGZo/Em4ASt8HavVvdrRZhZ953G/UqVKMg6d5MaMGSPtfFHy5ekq3zopmDVrlq/COa7Aa//88085Hutqs3fv3rIfq1gPJhEwmEjCC8tiM/AeHD161Hj27JmPDoYVK1Z0GIvPATF+THz8K9SDSYZ/BJmQD2FNJsT3AZNCTGJg5HV+Rtq0aR2+S2nSpPFX7gchoRkafxIuwGpbZ2kjixtqe7gP4wMDjftI5gJI4NLZ/pMmTfJz3/3795fktyVLlpjbYCigjOfOOFtX7TA28BTgPeGJ0Jw4ccKYP3++QzJgeAYrdBhg6yoahld7aqxd9bAKd2ds8fliEmb1LGD/SBj87bffPKoWgMcCaoEJEyaUCZ429DNmzDB++OEHuV+5cmVzItCwYcMwPSEjREPjT8I8uBhDphUXZ6zmsarHfcTNYQC0YUH8Gm7j8ePHS3Y8DL8n8efvv/9eXt+0aVOPjgeiNxCccV7dtm3bVvIMrOI35H8nUii1w+drNawowcNKfOjQoR7vC9UN+L+KHz++R16dFStWmN4iVDDo/2vkBaAaA/c//vhjCWlor8D06dMDfK6EhBZo/EmYR7uSsdrHSh91+Xg8atQoWc0hVgzVOcRxdX19r169XBpuGG2syK314n/99ZfLiQKS65zL+HTeQXDW7Yd3atasKZ+jVbUP6oyYuLnqyQBPAcI8mABaQTmhb2qImGwgBwHvA2/E1q1bzVwRPKd7GuD1SPrDfagtXr16NRjOmJCQg8afhGmQma/d6XDr46KM+6jx1xf79u3bm14BZNDjPurVfaN27dryfPPmzT16fx2zR025Few/oJn25P+B9C4mcBq44/F5wyh7ijXhExM5Z2rUqGHqHMBTpJP8kFyJPATcL1eunOQGFC1a1MxZoPufhGVo/EmYBRdfCLToLnRYmWO1j8elSpUyx8F4IMkLGeO6dEtnzCP73BqbR3kcvAOXL1/28X7Y/4YNG2T1qUF3QLiDPZ0skMAB1UVM4KyhAHwPhg8f7rJEE//HEPBxLhPUFQIDBw6U7wTK+6ydEdE1EUmXejKJZER4dXQYyVlYiZCwBI0/CfPufiRsQaENoGxOt2qFuh5K77SkLGRj8VyyZMkcygI9VZLTiYPIGbBm8SMxjYQs1tI+/f8aI0YMh4mcM1YJYYQNoHQ4ZMgQSRjE6zNlyiTP6UQ/3dZYJwH++uuv8hh/8RgeJ0wOCAmLUOGPhElu3rypunfvLvd//PFHUWiD2t3+/ftlG9rJDhkyRNTdatSoIdv0c7qdq26Pe/36dV/f48yZMw7KbtWrVxdFOGvjHSjmocENCVmsKoVQ46tSpYqoOlpbBq9Zs0ZaMFvHaWbOnKmuXbsmbY319+HcuXPq8ePHqlmzZvK8buzTqFEj+YvWv6Bjx46qVKlS0jq5Xbt2blUMCQm1eHv2QYh/gZtXx+ax0kcsFsD1i22pU6eWVTrcvHgM9Tu47AsWLOiw0sc2ZwU7vX+UdGGsVbgG2ePuVpbEu1gTMuHtgcIjkvN8i/NjLNT+kOAH4Clq06aNr42eoAqpKwKQ+AnQ8EeXky5atChYz4uQ4IArfxLmwKp+5cqVsuqeNm2aevr0qazCoDsPevbsqVavXq127twpjytWrKhGjhyp/vnnH3mcP39++Ys2v7qtqxXo7SdKlEj+Hjp0yKENrHVlSUIX+P+0eoYyZswo/9eJEyd26Degx0LDX7fwxfcJ99Ha97vvvnPYb65cucxWxAcOHJC/mTNnlh4HoHPnzvIdJCRMESxTCkKCCay+obSGry4y7bECQ+c5qPdpPX/E4JH8pWu0UW6H+D9ivFjdWRP2sMqHMiA691nL9XRyFwm7YHUPCWDrdydFihSS2GfdrunSpYt8ZwYNGiTfISSP9uzZU55Dch+ey5kzp/m9gXJhxowZZTsqSggJS9D4kzAF1PZwscVFXKvswf2KBjJW2VjdzrV06dLma11p9qOMC2PR7peEX1C6p1sa+6b+h23o7aD7P2jtCNxH2SYmktgGDQiEjlBRoveJagBUFRASVqDxJ2EGZPRHiRJFLraLFy82t2Pljhp+LcYCoR8do0XZnjN4Hrrzmp07d0qnP/805CFhE6j4oVzTCgw+Vvp6AgltAazskTuis/rxHdN6AFAe1GPRkKlRo0ZyH+WErP0nYQUafxJm0El+2bJlc2gAoxX1UG8P9z4uwFqoBclaAA110BYW9fhYpUFOlpBNmzbJ9wR9IbSAD/oFAJ0wilASNCJQNorH+fLlkx4EKBPUyYW69t/a/4GQ0AwT/kiYYPv27ZKUhSS8U6dOqWrVqpnJWwsWLJC/SNiKHz++jEEZFxIAsQ2TXJRp/fLLL5L8hcdnz5718hmR0ACSOJH0iTLBYsWKyba9e/fKX3zHQPr06VXWrFmlZFQngcaKFUv16dNHnk+ZMqXq1q2b3O/Ro4dDKSghoRZvzz4I8QtrmR5crEmTJpXYv3axahcs3K5W8Dwat+jmLQgZIE8AKn6EaFAqihJOqAfie4KmTCj13Ldvnxk+0gmCaB+Mx1CW1KEjfD8xHh4lPOefRkSEeAsafxLqQctbreCGmm1rtr7W8tdtWK38/PPPsh3VALovOyGugOSzTt7TyaI6l0TX8uvukWgGpFUGMXGAGiDCA7rxD8JPhIRm6PYnoRq4UNu2bWvW78NtHz16dHXp0iWz5h8ULVpUffXVVzIedf1Q/atfv75KkCCBqPIBreRGiG8kT55cXPhYFOXLl0+NGjVKVahQQUWJEsVUgYReBHjx4oXcALQfoCa4YcMGlSdPHlEVHDZsmFfPhRC/oPEnoZqmTZuKgApEWVq0aKEePnyoKlWqJPKqd+7ckTwAUK9ePYnj9+vXT23atElNnDhRpUmTRl2+fFnEgACNP/GLIkWKyF9MHCEQ1LdvX5H8jRcvnuratatMEBD///Dhg1q3bp2MnTRpkvrpp58kv2To0KGybezYsebzhIRG/l8gm5BQxuvXryXRDzRo0EAlS5ZMVlUw+pgQQLFv27Ztpk4/Vl1v376Vx1ixITkrYsSI6uDBg7KtcOHCXjwbElYmmwULFlRVq1aVx0ggffLkifr222/lO5chQwZVu3Ztdfr0abVixQrxOEHh7/379ypbtmyqYcOGsm3Pnj0yDn+1oiQhoQpvxx0IcYVuzwtRFmtdPkr7ILQyb948s/QPyX3169eXeKuuvwanT5+WBEG0aWUNNgkoqPP/9NNPJc6/Z88e+Y7FjBlThIFmz55tfPXVV+b3S5cP4rZ06VJvHzohvkK3Pwl1wJW/bNkyM24KV+z69evN5zNlyqSyZ88u7lbw6aefyir/119/NeOw5cuXl79ZsmQRnfdjx47JGEL8C7570PFHV0B0E0T4KEmSJOr58+dqzpw54i2YMWOG+f2C+x+rf4BcAEJCJb7PCQjxDuiyB8GUjz76yBRfwd9o0aJJZr+zDjtuKMkCy5Ytk8dZsmTx4hmQsM7NmzeNOXPmiHQ02L59u3yvEiRIYHYORC8IXT4KjX8rPXr0MJUoITx16dIl+e46jyPEm3DlT0IV6JaG5D3dr33IkCGqcuXKavDgwZKJrdEZ/DFixDBjqkj00/F+8H+lrF44CxKWGTdunKzmp0yZYuaK4Hv24MEDdeTIEdn29ddfmyJBeE6DRMATJ05I7gm8U3gM4R94rxo1aqT+/fdfL50VIY7Q+JNQReTIkSXh6t27dypVqlSqWbNmau3atZJpjba9GiT9gSZNmkhSH4DbNWbMmKbxP3z4sJQGNm/e3EtnQ8Iius2vTibFd7JcuXJyX4efkICKklMkA+qEUqhKogQVYSu4+ydPnizbkRj46NEjeQ4TCEJCAzT+xOtgNaTLou7du2f2U+/evbuU6eF5GH+s8JHt/99//5n1/cio1owfP15KAbUs6+bNm9X9+/flRoinFC9eXCaUV65cUVevXpVt8D4B1PIDxP+rVKliGndMVjEhQD7Azp075TtYokQJmUjg+wsJ4d27d8tklJDQAI0/8ToDBgyQiyX00WH44TLFKr5OnTryPOqslyxZos6dO6dWr14tJX63b9+WVX7ZsmUd9oXJgq7rh/G3Jv8R4glw48P7BP7++2/5C20JsGvXLjOpVE88sdLHNkwYoEcBj5UGE1hw4MABUwMA0P1PvA3r/InXwSoKxh61+mi+Azp06KBSpEgh9xMlSiQXWKzCMCHQDVVQiw31NT1BiBs3rrlPrMR27Nhha+OPzwDhkVu3bqm7d+/KpAr16IhD6xs+d+RXYMKEv7hhUpU0aVK5QSERBs1uYMWOBj+YQH755ZdS358uXTpx3SMcgCY/1atXF4OPGD/c/1u2bJEJKhoBaTCpRWUA/h902Grp0qUiRoX9JEyY0ItnSexMBGT9efsgiL2BeArkU+Gyx0UXSVRz584Vow/XqTNIpEJnv3nz5kk3NnyFYahgtJAfkDFjRhEHKl26tFxcceENbwYMK0cYGnwOMO64wRuib3iMz9MdMPx+/fwxGYDx0pMBCC3p+0jAhLASng9vwOgjdwTniVJRfFY//PCDxPUxMdWeAeQCbN26VY0ePVqEgKygvBSS1JgAdOrUSdQBz5w5I6/FX3i5hg8f7qUzJHaHK3/iFbAChWGB4ccFFEYESVEAj6GUFidOHEmmsrpRz58/LwYPr9Wx/ZMnT8rKFvkAeqx2+WNfYd3ww9DDWOCzQDtZ/EUyo15JIiHNapghfexsrGGgManSq3vc9OeC/Vu9AVjFWicS1gkFVsO4j9wMPXHAeyAfw3rDe4b1uD8+L5wrvnPQlkDFiTNw/cP4wzNlNf7IS0HFACYA8J7oSQTyAyZMmCAaFug/QYi3oPEnXgHlTxcvXlSff/65Onr0qKyo9EoVOQAw5nC1OidIaS1/eAgwObBmYJcsWdIMA+htaPIT1kA/AnguYORxQ3nZq1ev5Dl8JjCutWrVkr+5cuUSCdrACBjBdY2b/uxQRpk6dWq3r8EkAd4aPRnBDSVy+v8Qkw09EShQoID8f8EzE5ZCUX/++afKkSOH2yQ9GP8uXbpIiAmZ/DD0ABOrhQsXSqLqmDFjRJAKfQJwH5OrCxcuqN9//121b98+BM+KEAteVRkgtuTatWvGJ598IiIoa9euNVasWGE0btxYHlepUkXGPHnyxBRUsVKiRAkZN27cOHMbeqtj25gxY+QxZFYHDBggvdch2BLawXlCMrZPnz5mC1ncMmXKZDRq1MgYMWKEsWXLFodWxqERfO5XrlwRSVucS+XKlUUYB+cSOXJko1KlSsb48eMdxJrCGvi/OnTokNw0uXLlcpCU9o27d+/KZ4Bx7du3N9KlSyfiP/jM0Ir60aNHIXQGhPwvNP4kxMEF759//jFGjhwpj6F8pi+M0FB3xb1790zlPxgZAIOo+6hfuHDBCCu8ePFCJj0tW7Y0EidOLMcfP35848svvzSWLFkS6g29f/6v8f+CiVmFChVE8Q7nmjt3buOHH34w9u/f7+skL7QyfPhwOX7o/GtwHthWp04dt6/Vk9TSpUsbT58+lW2dOnWSbZjkERKS0PiTEGfgwIFyAXz48KE8RlMUXAAjRIhgXL9+3eXrsELCuDx58pjbFi5cKNuyZs1qhHYwefntt9+MGjVqmJ6PzJkzixzsjh07jA8fPhjhHXh08H/2xRdfGHHjxpXPAI2Xvv76a2P16tXGu3fvjNDErFmzxGivXLlSHh84cECOOXr06Mbr169l28GDB00J6levXrncV7Vq1WQcJrDwBIC9e/fKdwFy1Ww8RUISGn8SYqDbGdyluvMeuvKBQoUKyeMmTZq4fT1WVhjXv39/cxteg23fffedPEbXteXLl4caHXWsajdu3Gg0aNDA+Pjjj+XCj4kPvB7oTmhn8H+1bds2o2vXrkaGDBnk/xFekF69eoUaL47uIdGsWTN5DAOdPHlyM2Slt6VMmVK2/fnnny73hcld6tSpZRw6VgL0pYgRI4b0sNDeLEJCAhp/EiLcunVLVnow/IsXLzaGDh0q2w8fPiwXQxhGvRryDayosLLCWKy0NBs2bJBVo27uo9upJkuWzKsrKZwLzhGxXe2ZGD16tHH//n2vHVNoBv9XR44cMTp06GDEjh1bPrNy5cqJl8Cb3oCtW7eaIRntmWnbtq1sa9OmjTkOcXxsQxjHHZMnTzabT+Gc4fFBCKRs2bLy3eDqn4QUNP4kRDh37pxRpEgRI1++fMbLly9lFY9YaceOHeViiJWxO+ASxjissNxdIPWFuVWrVoY3gGcDq0TkMMCdixg+LvC8qHsOvh9wt+vkTkzkhgwZ4pWJEyYeOjyB7n5g3bp15nHpfAVMQnUXSnfhG8T69SS2devW8vfXX3+V97l48aJMeNCdkpDghsafBDtv3ryRuP7p06cl7r1q1SozA1xfWHFBdYe+UGKF5QpciJMkSeLR/oISvC8y3EuWLGlOUJAYpnMaSOBaPGMih4kUblhZHz9+PESPQYeWkJynv89w1WMbElfB27dvzXCWbgXsihYtWpjeIPz98ccfZXvfvn3lcYoUKSQkQkhwQuNPgp2ePXvKRS1NmjSmCxfZ3zpLGnFedxc7q1Ffv369uR1x0927d5srLaywMQZuY1yMgxus5jHJQAIi3hfG/48//uCFOxjAqh9hFMTbkRgKg4xSuZBAT1aRmKi/a/Xr15dtKCnVIGPfmn/iCnxnMQ6TGZ1ICJBAWKxYMamIgCeBkOCExp8EK1gBw2VbqlQpH2V8+gKKhC93ICMa47Cy0kYdLlJsQ5mfXmHrEIJfiYNBAY5Jl27BPb1z585gf0/yv274SZMmyWQQeSJYjbvLFQkKsNLXeQhIUAQoUdy8ebNDPoKuPEEFh1+TRmg4OGsDYJLbsGFD2Y7vMiHBCY0/CTaQvRwlShS5mCEWD2OPCymAqImu7Ueilzt69+4t43BhdK63RowU4CKcMGFChyzs4AChC111AEEe5CIwnu8dnQRMKjEhhAseFSDBWeGBpNLq1auLGJO7eD4mJPhu4HviDrj6rd9frPrx+0AYDImh+E4hSZbfLRJc0PiTYAFGHqsjKPHhoqkvikjksmY9Qx3NL7Jnz+5QGgig3odt2A9AnBWPMQEIDrc79AcQb0apHsq1Zs+ebYu6/NDOgwcPjG7duskkE//3CCfpCWZQ4qkRhoohvofDhg3zc2KstS2geIgkR5S8YkKMUlWoOkaNGtVYtGhREJ0BIY7Q+JNgAa58xC4nTJggjyFPi1iovogitomLHy5y7kC9N8ZhX1oCVbv8rWIp4PLlyw45AUEBVnMQ4UF8FlK1yMwODuNCAgcMaPPmzeU7gdwSTBSDe9V848YN0QHAil0zceJE+W7CkPsF9B4w9qeffpLH+C7rigLkEuikQL8SCAkJCDT+JMiBC167xpEs5cqg40Ltl/Y+XKBW9yjAqgrbypcvbwQnSLpC5j5Ks5CcqCVZSejl5MmTIr2L7wcU9WCggxKs2BHbB/juYuWO99L9Cm7fvm1uQw8Ld0DtEePgxfItrFG3bl15Pn369JxwkiAnbPc6JaGSdevWSXc3tJYtVKiQj+fnzp1rdtxDO1h36C5+6J6mWbJkifxt0KCB/H379m2QHj9aA7dp00ZVqlRJWrmiZfCgQYNUrFixgvR9SNCTLVs2tXz5cunIh7bH2bNnVzNnzjTbDweGq1evqrRp06omTZqo+/fvy3e3dOnS8tyiRYvMboZoBwyWLVvmdn916tSR7n/oiHjp0iWH59D5D90d8R4jR440Oy4SEmQE/XyC2B0t14tbwYIFfbhfdec6d13QdDxXN/KBSx+g4Q1KA5HlD80A7Bt5A9DLD4rSL6z2U6VKJUlkyCpnwlXYBWGipk2bBqkXoECBArI/3ZRK565AvErzyy+/mKWffgGPFsb+/PPPvvaxgLIgyhyhd0BIUELjT4IMlD4hMx9qfqh5RskTtlnBc84leq5AUp1vSYFItIMssLW2H655NI0JKMgUR0a3DjHoyQYJ+yD0hNJAlOthwhmYCZ121WfMmFH2A8Osu0rqXg0IAehkPoQB3OEuRwAVLfh+471Q1YB9uWscRIh/oPEnQQJikohN4kKGrn3At2x4XaKH9q5+Ua9ePRmLeLsr0B0usHK+aLyD1T46teFiHJZazBLPwERTK/Wh+sSvXBNXPH/+3IgZM6bsR09sq1SpIo8HDRpkjoPHC9vgPXLHnTt3zBwB3xr74LuIahdMXKD817179wAdNyHO0PiTIAGroOnTp0uTEneJcdD3x4VOVwG4AiscGGOrhCpW59YyPqy6tFYAWq0GZMKiG7KgsUpIKcYR7wFFPXgB4sSJE+Ayunbt2sl3Rmf5w5ugM/O1V0EnpXoyydVZ/7rTnzOnTp2SqhgtHY2yQEICC40/CRKwQkEpHOr5dS2/M1ht6VwAv+KvK1askHFYkesLKkoFceHWuQL6gog4rH/BigvlhqgPHz9+PFf7NvMCoJEUvjt9+vTx9/894u86dAUXP8JNadOmlbI/nZV//vx5cwxyV9wBLQyMLVq0qK/PowRQT4SnTp3qr2MlxBU0/iTQwL0P17k27K50ybHax/NY/fuFTtTCBVW/B7qoYRu6nuGCrXvA+/eCiJbAcKFCqx0yvXYFUrX4HAB08zGJQqIjxHJq165tnDlzxgivYEKJEBRc7rVq1fK3OiDyQuD+19r8vuURIFcF3094xNxhLRl0VR6Iuv+aNWsaf//9d4j0rSDhHxp/Eij++usvI1u2bCKpi/tQW3MFXKC4wOGi6w5c3LSWOhKe9Pvo7Gc8j4uubuKDmmhPgasXymkwdEFdAx7W+Pbbb0V2GVSuXFkyzE+cOCFyy8iOh9fFP59tWATyzDDiiKtDPMpToFXhV4Ipcl90joFfFC9e3G04DJNddMbEGCTCojkQ8g8ICSg0/iRQ6HilX8154GqFSh/GIuPfHZhI6C5q2iWrO6Z16NDBzAlAMhXkXD0B+9EtUxs3bhyus6ahc6+9MM43/H9pkKDpqvUxyigxHivN8A5i6vAixYsXT5QoAwq8U/B6QdYaYCKFzxB5KX4JRMHzgrEoWXU3BqWvCA9g7Pfffx/gYyWExp8ECqxuoGeO5Dt3QG4VFyyssPwCGvoYi8QqgBUW5HWtyX/+AS5duLHhWoXXIbzX7mNF2Lp1azESKA/DDR4ZfPa6vBKGCSteVy5kHbM+fvy4YQfwucAzhRg9Vt+efkcwDpK8ULXUkrz4runnUO7q3JfCN1C6qktW0eTHN6BxAY+D7oaJvAVCAgoV/kiAOX36tBo8eLDasGGD6tu3r3r//r3LsRgDqlWr5nafHz58UCtWrJD79erVMxX93rx5I+pt+fPn95daG1TSihUrprZs2SKqb999952KECGCCs/EiBFDRYsWTUWOHFkU53DDtkiRIql48eKZyomVK1eWMc78999/qkuXLqJUlyNHDmUH8LlAmbJjx46qffv2qm3bturdu3d+vq5mzZqiZPnHH3+ozz77TLatWbNG3bt3T75n+ju8dOlSt/vJnTu3Spo0qXr16pXasWOHr2PixImj0qVLZ/7OsmTJEoAzJeR/ofEnAeL58+cifVu/fn15vHXrVhUxYkRfx8JYa+MPyVx3bN++XaSB48ePLxdVMGPGDPnbrFkzderUKZFs1dvcceTIEZEXxsRh3759qnr16v4+z/AKjH+tWrV8fQ7G78SJE2rhwoXKTmBy9Msvv6hp06ap6dOny/fl5cuXbl9TuHBh+Ttq1CiVNWtW+b5hAqslrLXxx8TC3b4wUahatao51t24SZMmqfnz56vu3bsH6DwJEQLsMyC2BUlgKLlDHB5JUoi9u6uZPnr0qLgpkWjnyqXpXEMN178GCWjYjv7mOukJjYPcsW/fPqnlhtiKX6VW4ZHOnTs7xPeRBwANBoDPESWZviksQvcAFQB21zzYunWrlNdBotddJQDCXfhe4zuJjpL4LejwFtz+uKHLILb98ccfbt9zyZIlMi5Llixux0EKGFUZKHXFd3vBggUBPk9iX2j8ib/R8ft06dJJrNMvdD1+1apV/UzKw6QCY5H058z169fFaOF5dyV6O3fulHg26vgDI/kbnow/4tHa+EOi1vocgJGC4Uc5pV8JmXYBrXQhq4vSVMTbXYFyVHwn8X1DPwGdn7Jnzx55HvkWeIzJsjvwHloq2N3ka8qUKTKmYsWKcnxIAkQuACH+gW5/EiCXcc6cOdX333+vPv74Yz/Hr1+/Xv4ixuyO3bt3qzt37qjYsWOr8uXL+3h++PDhEu9EJzXtbnUG4Qe8D3ID8L7YF1EqZsyY8tmeO3dOrVq1yofLH65+uKrhTtZjcXv9+rWyK8gV2bx5szp79qx8HxGO8o0ePXpI1z18f9FJUHebnDx5soPrf/Xq1W47UCKmrzsCunP9f/755+rvv/+WHBaEGJCjgU6GhPgLf00ViO2BIAncocich+jIn3/+6auGvwZSpFDRw1cNJVXu0CsoaLCDuXPnitgPMvxRk6+lfF2VY6EsDS5YVB/YXQLVeeWP7H50Q8Tnh5UpsvmtuCoNRO2/3UHYCeqV6NznygOAElRdSokVv1aehDcLNy1Qhd+LO3766ScZB+EhT8BvBmEa3zxlhLiDxp94DIw8jComAGgwgosU1ODcuf5RR641yd2VT+E5iMpgLKR9ra2BUZ7XsWNHs02qb/vBBRdxUCivheca/sCydOlS0aAn/p8AxI0bV0IAvuUAICSFySni9cgDQK2/9XuqJwfIWXEHJroYh3wVd5Nqa/4NxX5IQKDxJx4DWV0o7KGXOdqXQtgHsWS/VOQ86bqHiyXGwasA433o0CF5jBg/PAbae+DcIljL9ULpr0SJEuFekS6wICkNLW6J/4FhRoy9VKlSvnqW8Lwrg40EQnx/MYFwN1lG4yrdNRC/AXegJwUmG2vWrJH3Xb58OScCxGNo/IlHwKhCAlY3Q/GU/PnzeyRygqY9VuGSNm3ayOPPP//cvHjCxem86j958qQos8FL4JeKGiGBBbK6mKAi2c4TjX38buAVgHGGl8xd7wsNpJUx7pdffnE7TnsTmjdvbpQvX17u161b19/nROwJjT/xCLQoRSYyMpZRKuYJcI8iE9ldwxIAgw6pWYxDySBeBxc+HsPouwJlTqg4yJEjh2RZExIS4DsJj9Q333zj6/PwXCG8snjxYvEUaIMM1UV8pzGxdQfCXFalQHcltND5x3dfh+GQixOeGzKRoIPGn3iE1tbHxQZNdrDi9ksCFS5mvAZ1zn7FU3UiGtyWkydPlseQRnWlCwDXKeL7CEPYvSadhDzTpk2T7+jEiRMdtuP7qnNXkLCq2/oiYVU3p0qUKJHbeD40KnSIwNN2wwhDfPrpp5LoaUddC+J/aPyJn+gLEFyeiEnqzOVNmza5fR0aj2AcMvbdoRvu4OKFCUWePHnkMfIJ4Crt3bu3jzgpEgDRKMidZ4CQ4ASGFt9B5+qTFi1amLoWyEPR32WECZDI51fDJPzGtOcLE2NPCe89K0jQwjp/4iezZs1SBQsWVLdv3xZZ31y5cokWuq5JdoXWKC9ZsqTbcVr3HPXQ//77r2rYsKFIpeL97t+/LzXNkF7VTJkyRY0bN05uZcqUCZJzJMS/jBw5Ur5/kLi+dOmSub1Pnz4idY1afS1nje/sRx99ZOoruNP6x3dd/7bw3XcHegHMmTNHejHonhXQcsDvlBC3BPFkgoQzkElftmxZWYUMGTLE3O6Xst+bN2/MDH13MUiED3RWv1WND+WEWinNmiCFFRNWW7oPPSHeBBLJaAcMOV9rCeCXX35prv51oh+qZVauXCn3UZvvzqWv6/39krFGmEyrXkLlD8l/uA+PA35bhLiCxp+4jSNC3AQXr169ehlXr171+LWQ2NXxTXfuyEGDBsm46tWr+yr4g7a0+vVXrlyR4ylTpoxHssKEhAQoRUV5HoR5tEGHRLJOdm3WrJkpx4ucAO3SdydRjTbBGJM0aVI/3flIPERoDFUFKMPVAk1+hduIvaHxJy5BvBHJS2nTppU4JAwuVvSeVgd4UnqUK1cuGTd9+nRpfLJw4UKZZOhVP5IG9QoHY5E8CBEVQkITq1evlkx75LloYHzxHUYZHp7DZACVMg0bNpTtPXr0cDvx1jr/MOqegnJXJBbC4+BKCZMQQONP3AKDD0EfrdYH+Vy/VMoA3JW4cKGpjyuwOsIYuPFh0DNmzGiukKyrftzq168v9dXHjh0L0vMjJKjQJXoo8QP43cCAo2QPFSzogAnwvG6M5W5VrxNf/eoGSEhAYMIfccnly5dV27Zt1cWLF+Xxnj17pNGLTixyxz///CN/kSjoCp30VLZsWXXkyBF1/vx5aSqzb98+2d6vXz95LyQ0/fHHH2rmzJnSUIiQ0Aga/KCpz9dff61u3bqlMmXKJImAK1asUG3atFHp0qWTcVWrVlWffPKJPHf06FGX+ytUqJD83b9/v5/vjeY+x44dU3fv3jW3vXv3LkjOi4RTAjRlILaIY+r4IRL+AFYpaBBz+vRpt6+9ffu2KTjirhc6Gp9gHFrMIjyA++3atZPY/tChQ+X9kPiH8ijd7IeQ0Axq7NFAqUaNGi5X9QihoawV33eUufqlJeDcftk36tWrJ2PHjBkjeQf4vSAPYeDAgZJoSIgzNP7EB8jOx4UEGczIqoewj39A5zK8Plu2bC7HXL58WcYgDgqlMh3fPH78uDkGF08kAiZJkkSyqgkJC6AxFb7Ls2bNMrdB4RLJrQgBYDI9Z84cGeOuyRIm2rrfhV9NflCJg3F4D4D+AzrxDxLbhDhD4098gIsWOpRh9RIQ+vfvLxcdlDu5YtSoUTIGmftYneA+OqZZmTlzpmxnIxoS1sDKGx4reK7u3btnJrDqSS66UOoSPVetrmHwdZMfv3Jd0EMAHgXNjh07JPEvb9684g3wpEMgsRc0/sSl+1InKIElS5ZIdjJU/vxCNyYZN26cyzFI5sOYX3/91UiePLm5woE7FKt8yKGiUx/LlUhYBN9heKzguYIHCw2r8B3X33WoAyIjH/cHDx7scj9aY2PKlCkhevwk/MOEP+IrSB6C2h4miAAJdyNGjFBbt251+zqM18l+BQoU8HXMzZs3JXkQlChRQqVNm1ZFixZNvXz5Up09e1bFjh1btW7dWraNGTMmyM+NkOAGCpi///67WrNmjShkfv/997IdiYAA22rWrCn3ly1b5nI/+fPnl7/uEgMJCQg0/sQBZPPDgDdr1kyylbds2WJK7yLzv0KFCm5ff+PGDZHkhURp7ty5fR2jL3bFihWTi9vGjRvF0Gtp1NmzZ4s0Ki6ecePGDfJzJCQkgHFv2rSpSO/Gjx9fValSRX5bqGh58uSJ+vDhg0j+Hj58WF27ds3XfUBK21Pjv2TJElW+fHmZpIPTp0+rAQMGqEmTJqlNmzaZk3JCBG+7HkjoAfK6aEEK1zsShqBEhliif8VO8LVCm11XIHsZY0aPHi2Pf//9d3mcMmVK6dCHY4AqGiFhHbTbhUqfFt3RuhZax0I3/nEVIkMyLJ5HCMwvpT/sA2MRdgPz5s0zVQI9Edwi9oIrf2KCFfizZ8/E9Y6GIg8ePFDRo0f31z5OnDghf13V46MOefv27XI/derU6t69e2rUqFHy+Ntvv1Vdu3ZVMWLEUL/++mugz4cQbwPPFTxY8GTB5Y/afb3iR+hL1/KvXLnS19dnyZJFvGhPnz516R3QQD9g+vTpasiQIfK4dOnSqlGjRqpVq1ZyHMmTJzfDeIRw5U9MsLI4fPiwj1a9kBdFAp4nLUOR5ezcBMgKlM7wPGr8sSLRqyCsbNDAB/fnz58fZOdESGgAJX6QyV60aJF41LDinzBhgnHo0CHTG/D48WNfX5szZ85AVb3gd4t2woRY4cqfmEBNL0+ePKpcuXIO23/55ReVIkUK1bt3bz/3cfz4cfmbI0cOt6p+eB4te7VaIBTQBg0apPLmzSstfQkJTwwdOlRdvXpVvvNYwaPddbt27eT7ni1bNvEGrF271tfX6tyZgCb94TcWOXLkQB0/CX/Q+BMHHj16JJnKSE7S8qAIBcBNCTe9O3ABQ5KRK7c/eoxv27ZN7uMiCJDVP2HCBLkA7ty5U/3000/yXoSEJ/D9RhItXPJw41upXbu2W9e/TvpDBY5fXL9+Xa1atcqchOvf9KFDh+Q+Qg+U/SWCgx+A2JYff/xR2vbOmDFDXIzp06d3eB5uw1evXrndB2R/db2+b73K0aBENzTRAifoHAgBEiQIQvDHk9ACIWERqPxFiRLFGDBggHzPIcKDVrw6VAZBH9+6ZmIcns+SJYuf74H2vlbZYB1WQFvumjVryn006CLEcQpKbAmSgFAOhPr7P//8Ux04cEBKkax44ja0uvx9W72vXr1a/qZKlUqamsDlCZcmSvuQKLh3716PmgYREhZJmTKl6tChgxo5cqRoaAwePFi247eSOHFiSYaFZ6xy5co+kv4AGmzBu+bsObCC316+fPlUggQJ5HHWrFnVxx9/LNoZumwWv2949ojN8fbsg3gfyILOnTtX5Hhfv34d4P1gRYOvVIsWLXw8h9U9Vh94PkOGDGYJEhKgUqdOzTIkYhvlTF3KisZXWn8f0tb4i14azsCLpuWBz58/7+/31M21kLh79+7dIDkPEvZhcJXISuKLL74Q1TG0GrWCJCMk4P38889+7gcteQHEgZyBwAjEf2LFiiWrfh33R7tTxCl1eRIh4RmI/Xz33XdqwYIFqkyZMuZ2nQODuL9zOR48AxkzZpT7586d8/d7QlQIIGk3UaJEgTwDEl6g8ScmcEUOHz5cMvLfv38v206ePKkWL17sMhPZyoULF+SvvlBZQThB1yLPmTNH7seJE0dt2LBBNW/e3HRtEhLegeIfkmqtIS5UAmDijYQ8rZVhJXPmzPIXGhyEBAU0/jYHqwwYe12C1KtXL/ECRIwYUZ6H/O7o0aMlK99T458hQwYfz+nJQ/Xq1dX8+fPlPgw+9PwhQUqIXYBwVr9+/UQ6G6txTbJkyeTv+vXrfbxGe9M8WfkjZwCTBXjUwJkzZ1Tjxo1FahjxflQd6F4DxMZ4O+5AvAvaieJrEDVqVOPs2bOSefz5558HSMZUxy+dJYERZ9TPIftYxzrjxo1rdOjQIQjPhpCwwbt376TDX758+czfRoIECeRvhQoVfIzX7a3LlSvn575TpUolY/fu3evwG4e40LJly+Q+hIOIvWG2v81BHB51xMg2xupCu+T9i171J02a1Ick8ObNm+Uv4o1oEARvA94LOQKdOnUKgrMgJGyBDHyI/EDYCiAEgHAZJLUhAPTq1Suz2ZV/3f5Tp06V6hxoCwB0zYT3DjodRYsWVf3795e/xN5EwAzA2wdBvA++Br6V2cGoIxaJyQEuWK6AKx/hgpIlS5ra/ZoWLVqoGTNmSLIfBIMA3J0o89Plf4TYDRh6lP/h94FcG0ya06RJI+E3hMmQH2MdmzBhQrPzpnNiLiH+hTF/IsDw+zYP/Oyzz+QChZagAUn2wz7RMAjA8EeNGlUajqD1b+fOnYP0HAgJS6AWHxNmZPhHiRJFfoO6xt857o8qAe0JwG+HkMBC409MKlasKElHf/31l4PxxoVJi4a4AtnKACsXK3BT4mKlEwiR8Id9wSVZoUKFYDkPQsIKmABDXGv58uVSYaOrXvSEWYOJAcSxgF/d/SAGBInfgwcPmtsePnwoIloItSGksH//fh8eOmIvaPxtDLKAYayRBQyQHYysf6zONUeOHFFv3rxRBQoUcLsvvRqBl8CK9hjofZYqVUpWOt988w3V/IjtQQ+M4sWLS+wfKnzdunWT7adOnZJ8HCueGv958+ZJvwC0EtboOD+0PFBeW7hwYSk5JPaFxt/GoAkPVuyYBIC///5bVgso73PGL0Otjb+1dAls3bpV/r548UL2gfeEqFCTJk2C8EwICbt8/fXXoqeBWL51ooxGVwEx/gi9wbgnT57c3IbfJRL+sG9IACOHR5cWEnvChD8bA/1+rOz/++8/H218/QtWLYjpw7hr1yW+Wsj+h2a5Bkl/tWrVCnBVASHhDbjh8TuB8dfiWgArc7TT1qAXAPQBWrZsKRn9hAQGrvxtDBT2IDHqyvDDmCMhCS56d3NEjNNZ/NbVBmKPMPxY6SNvQI/1RDCIELuARD6E3nRejMY5Jq9X/jq/hpDAQONPzISgX3/9VeKFGrjqUcKHVYY7tz8SlvTqX+uIg127dsnf7Nmzq7dv38okAOp/KAckhPw/mBAjt8YKvHJPnz71Yfy1ch8hgYHG38bAsK9Zs0YkdrGa+Pbbb6XpiCZGjBhSf+xX0x1X8X4ds8R+ACYQDRo0YKIfIU5AaCtdunRmK2z8RThu9+7d5hjE6cG9e/fc7gtZ/UWKFBFJXw3yej799FPRFAAzZ86UBED8vok9ocKfTYEbHw113r17p65cuSICI6jp10IiOj5vnQy4As1IgHMCkV756wQlxDNr1qwZxGdCSNgHE2Jk6E+cOFG8ZDD8+jekxX50R77Hjx/Lb8mV6Bae37dvn0P+ACb4qLLRE3SIBmGSAPU/Yk9o/G0KkotQ14/SviRJkkhMHt37AgIuJMDaLhRhBCT/Wd2UqO8vVKhQkBw/IeENJMIiwQ+rdoj6wCtnrdVHJ0DtEcBvDkmCvoFqHXTRRBhOg5Le3377TcWNG1ce16lTR0Jw8DYQe0Ljb+MkI7+kdT98+CAXGZ217woYeoALlsZ60QKYXODipt2ahBBHUO+PJNxKlSqpatWqmcZfS2/jt4MJNNz+uLn6TWISXqNGDYdt+G2ipFCTPn16uRH7wisxcQnyAHCB0U1F/Fr5W1UAkaykQQUAXJkw/oQQ34EbH0Yf6nzIAUCCLIR+rAl+2rvmV9yfEL+g8SemljgMPZKCNFhpYMXhV4KeNv7Wlf/hw4fN+8gFwMqfcr6EuAc5MZg4Dx061KycsXrRtPF3Vv+zgvJa/J6tr0Nuz7Fjx9Tx48dNrx66B0JWWOcXEHtB429TlixZorJmzWpKfP7777/qzp07Dk1DkAyEC4O13MhTt7915Y/afhh+51a/hBBHqlSpIpPuH3/8URL3wIEDB/y18keSIPZjbZyFpFx00UQ+gTb+kNquW7eulPQS+8GYv03BxQDlP7gg6HjjoUOHzLI8/+Ds9kdmsbXvOO537do1yI6dkPAKYv7FihVzkPa1Gn88r9U5XYHfMH7X1g6bmFAg/KZzbuCJg8wvWgNjIkDsB42/TUG9PS4QOvsXmcF58+YN0L4ePXrksPKHa9FZEdA5AYkQ4jv169d3MP4nTpww7+tQgLvVOhIGcbMCgSCrVw+hPB0CIPaEbn+bgvg+pH31yt8Vffr0kSxhd27G58+fO1yYtMtf1yEjq5hNRAjxDOeJMrx0+jemPXP6MSEBhcafmHF5SPvOmDHDYTukfadMmeLQnMcKVvhoTKLLB4F2+WuREUwyCCGegdp75/wY/ZvSE2wafxJYaPxtClqIrlixwnQpwnWPNrvt27d3GIdYPXqNW8v4rKCET7v49QXr/PnzDmMgI0oI8Qy45BGP983465W/O7f/+PHjVenSpdXvv/9ubvvnn39UvXr1pCugBpU9GIcGXMR+MOZvU+bOnauGDRtmtg1F7B8Z+ZD0RYa/Tgzq1auX2/3oVb915X/hwgUfimOEEM9BJj4kejVIzvV05X/q1CnpCAjDbp08LFu2zOy+CdA3ACWDUPsk9oPG36akTp1aVuSQ/dQJfxs3bvT3fpDZDyJHjiyiJMgcvnTpkvk8JhHo6kcI8ZzChQvLX6zWly5dahp/T2L+8N4h1GYV58L+Jk2a5CDBPX36dDH8KVOmDMYzIaEVGn+b8s0338jNL+DSRykfeo1DW9wZ53g/mvjoWD8MP/TDXTUgIYT4jvaWwf0P46/d/lGjRpW/zu1/rWCy7TzhRtmftfQPsALH3jDmT9yCVQRWC2PHjvX1eWfjb3X5IwegXLlyIXSkhIQvzxwm21pAS3fGxCRci3IREhho/IkJPAFo+blo0SJzGzr+AVcqf1ogRK/urS5/uCYZ7yckYEl/OXPmVH/88Yf5+0OSnyfGHw279u/f79DSF4m9mJhD5hfgOYT5MI7yvvaExt+mICEIUp9NmzY1tyEZ6ObNmw5iIN27d5eMfiQF+oazmA9aBFuh8SckYGTLlk0ktzX4bSKvxp3xxwQB/QEQ48fvVtOsWTNx++u8HlT3QAhIy/0S+0Hjb1NwYUA2sVWDH4I+KAlq3bq1uQ3ufCTzeYr1YoXVC5P9CAkY1mx9bfz9WvnD+BcsWFBlypTJQaobuQL4LcOzB+ABgGcBEwy22bYnTPizKZDyRUcvq/Kec22xJ+iVv+78BzUyTcKECf01cSCE/D8w4s7GH8banfFHmA6ufGcgF2z10iHDH13+iH3hlM+mQLQHIh+FChVyOw6xwd69e0t4wJN6YKsSoF5lEEL8D/T4/bvyd4cn7bmJfaDxJyZwBaKsCL3EdRIQYoxjxowRUSDrqt7Vyt/aAwAZy4SQgIHfHrrvaXz7/RESUGj8bQzi/YsXLzYvKoj9NWrUSH3//ffq+vXrplHv1q2bGjVqlAgBuQMTAWvM37mumBDiP3QLX53xr+v70YrXN6DYWbJkScn416BfR/Xq1dWcOXPMbUjgRRmudRuxFzT+NqZdu3aqYcOGIvOpVxp169ZVX375pYNbcfDgwaLx75u+vy7xQ3gAan/WDGOrwhghxP9Yf3OPHz82f19Wj4AVJPEivm8VAdq1a5dau3atQ88NjNu6davLhl0k/MOEPxtToEABWe1r1TCwcOFCf+1Di/tA7Meq8w+SJ08eREdKiD3JkyePKGzCSOP35Zfxnzx5sjp9+rQqXry4ua1jx45ScmvN74F3Dwp/LMW1LzT+NsaVap9vQGkMNfzOFQFW4691/jVJkyYNoiMlxJ6g94b2wkGHwy+3f+7cueXm1zaU+eFG7Avd/sRXrIp+qP2H+7FKlSo+xmnjj4uSc5tRaxkhIcT/YAINd79WzPRr5U+Ip9D4E0nU01n7cDEiSx81+vpCoxP3kBPg3FBEG3+gL1IA4YT48eOH0BkQEj5JnDixufJH+139+/PN+EPCF3LA1tj+yZMn1bp168weAeDixYtS1XPlypUQOQcSOqHxtzEo5ytbtqwYep34A4ONFTwS+HQnMWQcw6WPi4Wzu9GaL2A1/ngNa4oJCRzWvBn8BnVozTrp1syaNUt99tln6tdff3XYVq1aNdW3b19z26pVq1T9+vUliZfYFxp/G4PVOcr8sCrQMr8w2MgChts/V65c5ljfLjZ6H3pCAL1wDbuOERJ4rKEzeOf0b8w3rxpU+5DUB11/Tdy4cUXq17oNJbtI9LNuI/YjguHcmYXYChh6tA6FBr9uGuJfICkKzwFqh7/99lvZBm+CVfCHkPDEhAkT1IgRI0TXAsl048aN81MtMyA8efJEDLh29aPF9ujRo6XhFt7fU3CZpyeOWOHK3+bA7Y+Ll1+GHyEASPx+8cUXPp5LlCiR/LUm/FnDAST0UqZMGTVz5kxvH0aYAi2v4TLv37+/OnTokPx+KleuHCyTXevv0q+Vvzto+IkzNP7EB7jIYCXToEEDU7EPFw9I/C5btsyhT7he5Tsb/+DMRh4wYICpU+58gzEjJDjByhudL5s3by6NdlBbj7DY9OnTg/y9nCflOnEP3jorHz588PFaq+CWVcKbzl4CaPyJ2rRpk+rVq5e6evWqPIYRnTp1qlqyZInavn27bMuQIYMaMmSIGH9ntPFHHbImONuEwuWJi2/RokVFewA3SBAjdOHb8RESVMB4Hjx4UFWoUMHhu47He/bsCXbj72rlP2jQIAm/IfSmgVQ3KnWQ7a8ZPny4lA9axxF7QpEfIheOHTt2iIFv1aqVbGvbtq1caPLly2de4Pr06ePr67Xb32r8dWOg4AB9yrHSQrtgXPD0NlwonVdEhAQlKIVFMitK8Kzg8ZkzZ4L8/XQXPz3xgFSvLtezcuDAAcm70XLbWN1DthvbrP0B9u7d6zCO2BcafyLlQenTp3fQ4v/mm288fr1e+VuFgZz1AEjoAB0bcdOgTTMMQocOHcxtp06d8tFOlngHV7F6awkgDD20+jG2YMGC5uuQpwOdf6uEL3QAMFHA753YGxp/ItrfnoBYP0oCser4/PPPfaz8rcYfq3IS+sCkDrkcGiRw1qtXTxo6aajM6BooXWI17twQB4+1FyooceVBK126tEO8H8mHmMShF4C1pA/d/Kw5ACjLRdc/QhjzJy6BexPhAN31D9nMKGeCwbAaer0KgQKZxq/2v0ENs5k9A2ERhHf0DVUZmLxZtwW05NMOYFKLlfTmzZsdDDQeIwclqLEm1+qSPxhw68ofLvxOnTqp+fPnm4m2aNB1/Phxh+S+gQMHinon8nkIofEnJkicO3bsmPl4zJgxqlSpUpITAHDBQQ5A1apVHQR90qZNK38hGGSNT4YkMWPGlMqEc+fOhej7EvuBMr8pU6aIeh466CE/Bsp7yP4PaqxZ/Mhr0b9Dd5NdVN2gLTdEui5cuGBux0T++vXr9MoRgcafCIsXLxZ3b7t27cxtkAXFSjFFihTmCgLxwtWrV5sGH+j71oQ/38qMghPUWQOdoEhIcNGwYUM1cuRI1a9fP3GzIxT2119/+UgCDGrjr1U2neP1GzZscPjtISkRvwdUv8CTo9m4caP6888/5XdNCBX+iHDt2jVpHwrJT5T36WxgXHw8cQNrlT9UBcANCtckkskIIYH7XcJVD7JmzSqeBqj8jR8/XrZdunRJJgMI30ADwCquhbCdtVqAECsM7hEB2d2I6SOhyYorww/DjguLdiFi9Q/jj/Fw+Ye025+Q8Ii1Q5/2pllX8wi1wfhj8u2sqknDT9xBtz8xcTb8VmDYtQsSsU3UDsPVqUmXLp381Reg4KzzJ8QuWGP2z58/d2ixDUqUKCFj9G8ReTtWpU2A/JxKlSpJPwL+LomGxp/4mmFsrdOvXbu2qIIhYQggoxgr+/379/uI+1uTiZwvQoQQ/4EEPY2usLGu/J2TASHEBd0NJCRaa/sR7//999+DVXmThC34TSAODBs2TFyI1mYvSPpDaohu+9ujRw8REBk8eLA5BhrnwLqysGb/E0L8j7WkFhNuGG890XZexeM3CoEmTNzRxldTo0YN6QCI3y0hGhp/4gAS/eAmtOqB9+3bV125csVs14sYIy4u1nIjlBUBa9YxkpMIIQEHvzsrSMrV3jXo8+N3OGnSJHmM3yOEfjBJL168uPkaVPGgH0aTJk1C+OhJaIbGnziA+mDED60NcmDsdcaxKyANjIuSVZREewoIIUFj/K0KfpigIyHQ+pvDBMCTFt2E0PgTBxAvRI2wq0xhlA/pi1KXLl1Uy5YtTY+Bdv1rdJdAQkjgsv11rN6qY7FixQq1dOlS6c2BCYBzGACPO3fuLLk6rOgmztD4E5fggqEvKIg3Qhce6mKoJ8bFBgqAs2fPNl392vWvsaoAEkL8jy6Z1SG2vHnzOiT5oScDknHnzJkjHrrffvvNfB5JfmPHjlW1atVioy3iAxp/4isLFiwQYw7lPwCXPjqHoeRv+fLlUm7Us2dPeV7HILXx1xcqa40yIcT/k2+9YtceN1cKlkuWLBFv3OPHj81tCNWhRTcm7c4aAIRQ4Y/4CpqADBgwQJUvX15t2rRJtq1fv17c+2XKlPG1ZAjjKlasaKr8QQvAejEihHiOVu/ToAoHdfyvXr2S5lro2PfVV19JfB/bMCkvV66ceAII8Qsaf+IruMgsWrRILi4w4p4A9z86j1ljj7jPjnuE+B/U5bdp08Z8DE3+NWvWqJUrV6pPP/1UVvaXL1/m74sECLr9ia9g9YCEPr8MP9r4Tp48We3cuVPFihXLR9wfbUUJIf5Hh9w0BQoUkL/I5v/xxx/l9+kb6DAIrx11Nog7aPyJR2gHERL9kESECxFW+hAFQktT3WgEcqNWVq1a5ZXjJSSsc/DgQYfHpUuXNmv9v//+ezH+8AIgDGfV5UCrYYTtKlSowCx/4hIaf+KWo0ePqjp16qhevXrJY8QXsdLHhQkZxo0aNVL58+dXJUuWlOet4iJgy5YtXjluQsI6Vnls5NoUKVLExxhMuv/++2/pxKlB979ixYrJpJwhAeIKxvyJWxBjhDwo3P9wIyJrGO5IlPtBMSxmzJgO42/cuKFSpkzp0CwIoQFCiOc8efJE8mc08KihXh8T75w5c4pxh2HH723ixIli6K2/O12my85+xBU0/sQtuIDAxYjEP6j4eQLcklrgBxcolClxBUKI56xevVrVrFnTfIzfIOS1kfGP7prQ8McKn5CAQrc/cQvK9n766Sc/DT8MPGSBIeyjY5MAc8szZ86EwJESEn6YO3euw2PE9ZHI17hxYwmx+Wb48fubPn262XqbEHfQ+BN/8fbtW/P+1q1bRQoYYj4oPapatarkAeCvFSQlEUI8Z+3atQ7x/qJFi6pUqVJJMh9i/KNGjVJff/21dNfUk+9u3bqJ3DaUNwnxCxp/4rHR79evn7j07927J9twAdqwYYP6+eefxeAjLwDVAJUqVXJw81svZIQQv3n+/Ll5H0m00aNHNx9jZY/f3pQpU9SBAwdM4w/Djy5/ut8GIe5gzJ94HPsvWLCgOnTokBh79Abfs2ePmjdvnrQLTZw4sYzTMqJwTaL2H6D+39qXnBDiGnjSYMQ1aN2bI0cOlT17dlO9b/fu3dLKd9q0aaa8tv6d+qa+SYgzNP7EY3bt2qXu3LkjzUT8SuBDnkCfPn3Mx8gFsGYvE0J8B1r81gY9J0+elMk0dDUw4dZiP4QEBk4RicfA/VivXj0/Df/FixdV2bJlHbb1798/mI+OkPABWvVqsNqHNw0JfsmSJXPo6gdQcouufc6CQIT4BY0/CRCIO2r50OvXr6tOnTqJ2h+0yDNkyKCOHDki7X+tXccIIX7/rtA5UwPDnjZtWgmhwcBDtW/06NHq9evX8jxkfv/880/p3kcnLvEPNP7E3yDuD6GR+vXrywVn7969aty4cZILkC5dOvEMYPUPL4EGFzRrwx9CiO/NfKzA+GuQ5b9t2zY1ZMgQs5yva9eu0uFv5MiR1NIg/oIxfxKgjn9Y3UeLFk3t27dPuos1a9ZMVh9wS0LRD8/jOask6bJly0QqmBDiO4UKFVL//POP3E+UKJG06YV8dpQoUdS7d+/U7NmzJbPf2u2PkIBA408CxKZNmyT7P3bs2C7H4KsFT8CVK1fkMRKV9IWNEOITZO6jXBZAsnfmzJlSQrt//36VIkUKcxxW/uizQUhAodufBAjEHl0Zfu3eR3YyxH80TEoixH0TLW34QeHChaVCBpK+SPazam5g4o1yW/zGCAkINP4k0CAZ6fjx42L0ITwCKWDUJqPRyM2bNx08ASgXJIT4BP0zrFn+CKVdvnxZSmvRyEf/dtAmGwm1OgRASECg8SeBAsYeNciI98P4Q973woUL4qaEShkS/3Ahs9b/E0J8X/lrWrRoIX/h2oekL/JnDh8+LNs+++wzyfCfOnUqtTNIgKHxJ4GievXq4v7PlSuXuCOHDx8uq340GEF2MuRH9YVM5woQQhw5duyYQ6mebtwDtT608oVgFrT8NWizbe36R4h/YcIfCTTI7k+YMKHL5yFEoluR6jABBIMIIf8LGvegZBbkzp1bvAAw7nDxa7D6R4ktqmwICSxc+ZNA48rwY14Jw49s5WrVqpnbWe5HyP+DcBkMuwblsujklz59enMbZLWrVKkixl9XzxASGFgrQoIMNO+B6Ei5cuVkZY88ACT8QXwEKoBWT8GbN2/UJ5984tXjJSQ0gN+MdsDCQ4ZYPoR7EFKDtwxhtGvXrqkYMWJIjB+JtIQEFq78SZCBOD9ukPqFwYcS4KVLl8TQYyUDMSDNd99959VjJSS0gO58GnTIjBgxouhhQNTnxo0bkvQH8Z9Tp06JTDaeJySwMOZPggysUpo0aaLat28vFQDr1q1TWbJkUa9evRKBEjQs0eVM6E/+4sULbx8yIV4F1TBQw9TJfUj809UxW7ZsEZGsNGnSePkoSXiExp+EGGhGkiBBApkMgNWrV4trkxC7ArEeVMSAmDFjymofSX6VKlWSXABMlps2baoqVqzo7UMl4Qy6/UmwgWQ/LfKD2v+rV6+KZ0DTqFEjLx4dId4FpbHa8AOIY0HDH0l9YMaMGaKbgQTZBw8eePFISXiECX8kWEBtcoMGDSRjuUuXLrJ6waofMUzkA8DhBBGgEydOqBw5cnj7cAkJcVCrryldurQk+sHlD28Asv8xOYawD7bht0NIUMKVPwkWkidPLu79J0+eSD9yNCxBJjMMvxYwcZY0JcQuwKVvFbxCS95Hjx7J7wa/D2j5o55//Pjx0uCHkKCGK38SLCBRaePGjeLCjBo1qrg3kdgErfJYsWLJRAC65Gj2gwkCtAAIsQudO3c276N0DwqZmCCjRwa8ZpgkExKccOVPgg2UJ8Hwg4wZM8oFDZMCuDBbt25tjmPSH7Hbqt9a3gcNDGhigPXr16uqVavKY+Zik+CExp+ECAsXLlQNGzaUJCc098FKR7N7925JBiTEDnTr1s3sxofJMNz7UPUD0MXAJDlevHhc/ZNghaV+JNi5deuWJP5B7AdJTAsWLBChEms70qRJk8o4QsIz79+/l4x+fdkdM2aMhAAg5IOKGAhhQeM/f/78IoxFSHDBmD8JdpC8NHbsWHFv9ujRQ1b5yAXYunWrXPDgBr19+zYz/0m4p3z58qbhL1KkiLj3UQGDCYFWwMR2QoIbrvxJiKO/clgFIZsZblCATGdcCAkJj6D6BcqWmmXLlkkN/+LFi9Xs2bPVrFmzVPz48b16jMQ+MOZPvMLMmTNlEoAe5bFjx5ZtEASCJDAh4RGo9ln5+eefReK6Q4cOas2aNWry5MleOzZiP+j2JyEOMv2nTZsmhh7NSlDmh46AoFatWuIRICS8afjv2rVL7iO+DzDpRVIfSmLhAevVq5eXj5LYCa78SYhTv359aecL5TLE/K2ufjQH6tOnj1ePj5CgJl++fOZ9SFzD6/Xy5Uv5HeTOnVtNmTKF3fpIiMKYP/EKd+7cEaEfuDth8NHkB/KmursZSgL1ComQsMyIESPMFtYo4YNOP/JcateuLbK+hHgDGn8SKrr9PX78WA0ePNiMe0LffP/+/d4+NEICBUJYWN2jogV88cUXEtqC5gUmAmfOnFEJEyb09mESG0K3P/Eqd+/eVWXLllWVK1dWNWvWNGub//nnHzV37lxvHx4hgaJ48eKm4QeQti5VqpQqUKCAJLvS8BNvwZU/8Sqo/YcMMFb/uKGfuQbJUFg5MRZKwiIo4cMKH2hRq3LlyqnNmzdL2R9q+/ndJt6CK3/iVdDUBHF/rPQh+5snTx7zOcxLcbEkJKyBPJbPP//cfDxhwgRJcMVfAElfGn7iTbjyJ6EGfBWxOkKsv0yZMmbJH5IB2fyHhCUgz3vo0CG5X6xYMUleRQ8LSFuj2oUQb8OVPwk1wM1/9uxZ1bhxY/X999+b25EVzdp/ElaAcp82/CBr1qwqUaJEstrPkiWLV4+NEA1X/iRUgRKo0aNHSxkgygE1iRMndnhMSGgEOStoY21N8luxYoUks547d47Gn4QaaPxJqIuVDhw4UC6STZs2dehp3rNnTzVs2DCvHh8h7kD5HspWAVb7kSNHlnwWTGYJCU3Q+JNQC6R/R40apaZPn25uO3/+vMqQIYNXj4sQ38DqHvkpIG7cuDIJ6NSpk/r1118lpEVIaIIxfxJqyZYtm6pXr550+7NuQ1IgIaGJbdu2mYYfNGrUSP5i5U9IaIQrfxKq46da/x+tUKGFDtD2FBKphIQG8F2Ei19fSpGfcu3aNbVjxw4pVeWqn4RGuPInoRasmqAB0Lx5c7m4ah4+fKiKFi3q1WMjBMALBc+UdQ1VoUIFUaosX748DT8JtXDlT8IEV65ckWS/3377zdz2yy+/qC5dunj1uIi9gRfq0aNHch+GHj0ptm7dKmV9hIRmuPInYYI0adJI05/OnTub27799lt14MABrx4XsS8QntKGH14qrPZjxIjh7cMixCO48idhhnv37kkJoC6l0iAnIH369F47LmI/BgwYICWpGlSkZMyYUeXLl4+rfhImoPEnYQrUTE+cOFHNnDnTYfvz58+56iIhwpQpU6QjnwYJfihLRY0/IWEFGn8SJpk9e7Zq27atdEcD6JmOaoCPPmIki4RMpz5t+Dds2KBy5crl1eMixL/Q+JMwy5MnTyQX4OnTp/I4duzYEhJghjUJDvbu3etQZYLy0yJFiqiVK1fKfULCElwmkTDL69evxeBrMAmA65XzWRLUnDhxwsHw582bVx08eFBKUWn4SViExp+EWZImTap27typvvvuOwdvAGL/1sYqhAQGdOjLmTOn+RjfL6z2M2fOrKJEieLVYyMkoND4kzBNypQp1fDhwyUJS7v7kQeA+ms7TQAmTZokcedYsWLJDavUdevW+Xs/yGBv0qSJlLB17NhRDBy61KVKlUp06nWIxS5s3rxZ5c+f33yM3BK4//G9IyQsQ+NPwgWtWrWSUsBIkSKZHoCYMWPapg9AihQpRAQJrmhoH0BWtnbt2urkyZP+2g9WtLVq1VK3bt2S28iRI8XljeqKv/76S7Vs2VLZhY0bN4panwaTqsGDB4vkNCFhHiT8ERIeePfundGqVSsjQoQICPrLLWLEiMazZ88MOxI3blxj6tSpRunSpc3Pw/nWv39/c/y1a9eMyJEjG0+fPvV1f4sXL5bn379/b4R35syZ4/A55c2b13j58qW3D4uQIIMrfxJugMLa77//rv7++28VMWJE2YaVP1ZsaAVsF3DOCxculNJHuP+XLVsmq9Vu3bqp27dvyw3bW7durbp3726+btWqVapMmTLyefkGXP54TntXwivt2rVTTZs2NR8jnAJXP8V7SHgifP+Kie1A3L9kyZLq+vXrYvC0GmCmTJnUihUrxBUeXjl+/LgY9Tdv3khS2vLly6UFMoDBxrYkSZKYcrQwZlZhJLj8XX0+6FwHl7dV3CY8gtK9ffv2mY+hHHn48GHqR5BwB7/RJNxWAiBpLWHChOa2Tz/9VLVv316FV5Ccd+TIETFeEEBq1qyZKM95wrNnz8Rjgni/b89Bxx4TCcjahkdQHookPqvhR+IjDT8Jr/BbTcI1WA3nyJHDfAxp4PDaBwCr+QwZMkh2+k8//aRy586txowZ49FrURkA4+6cxQ7Z5CpVqkjyJDwJCK2EN+7evSslezdu3DC3Iblxzpw5ct6EhEdo/Em4BvKrmAD07NnT3Hbp0iUVJ04c9e7dOxWeQanj27dvfX3OWQXRN5c/VvyVKlWSSQXyAVDmFt5AFQNCIe/fv5fHmARcvHhRVa5c2duHRkiwQuNPbAHK4OAC14mASF7DhR7lXOGB3r17q+3bt6srV67IZAePt23bpr744gtfx2NFe+bMGSmP/PDhg6z8rS5/bfiRNDht2jR5fOfOHbmFl/LJ+vXrq+bNm5uPoRZ5+vRplS5dOq8eFyEhAY0/sQ1Zs2aVmLhVlQ0GrmzZsiqsAyP+5ZdfSty/fPny0v1w/fr1qmLFir6O/+yzz9SOHTtUixYtJNaPxD+0o7Wq2iH+jYkEQgnIodA3JFOGZeDxQS7I0qVLzW3I7sdnmDZtWq8eGyEhBRv7EFv2BGjcuLFk/2ugYoeLvx3bAkO5D6t/5EOEd8aNGyfnaw1/YFt4TgQlxDe48ie2A4YeyWu46dg3JgRwhSNRzm4gIRLVAeGd1KlTOxh+uPnhxaDhJ3aEK39ia5DoBVf2w4cPzW2of4cXgN3awgdbt24VmV5rrwfoFUyePJntn4lt4cqf2BqUrkHApk2bNuY2NAaC+79r165ePTYSOJCYiIZE6HOgDT8SPo8ePap+++03Gn5ia7jyJ+T/gBogEr6sneuw+r98+bKDWBAJ/fTq1Uu6PVopVaqUJDcSQrjyJ8Qkbty40g2wb9++5jaUuiVKlEjkgcNLiVt45ubNmzJhsxp+hHFQvUDDT8j/Q+NPiBPQsIfrHyVuGjQGgj4+k8NCJ5ikoa0xbvi/06AFMZ7LmzevV4+PkNAGjT8hLioCYPChbGftYodyOGi9Dxo0yKvHR/4XxPLRzAg5Glj1a+CpQT3/1KlTvXp8hIRWaPwJcUPNmjWlIgDJf7rBC9Jk+vfvL5OCxYsXe/sQbUvDhg0lgQ/tdq0ufrj3z549Gy77EBASVDDhjxB/ALnc+fPnO2zDJGDChAnhvt1taAB5F2i7e+DAAYft6D+AVT6U+gghfkPjT4g/efPmjXTMO3funMN2lI51795d/fzzz147tvAK4vYlS5aUFrtW4I0ZOnSoQ+MmQojf0PgTEkDQMQ/tbtFAx5kSJUpIW1gKBQUOrPDRfwFlmM4TLWgzTJo0yWvHRkhYhjF/QgIIGgRBPQ66+BCSsbJz505JQkMb3CVLlnjtGMOqax8NhxBOKViwoIPhR0x/9uzZkuhHw09IwOHKn5AgAj+lr776Si1atEi8As4rVXQPnDt3rsgJE5+gy17r1q19rPIBJlJ4Hl4AQkjgofEnJBhAbBohAfQI8I3ixYurjRs3SkmhndmyZYtMmHxrE4x4PlT5li1bJgJMhJCgg25/QoIBiMrcvXtXkgOrV6/uoBUAdu3aJS5slKrly5dPHTlyRNkBrDV++eUXFStWLPGGlC9f3ofhx3OzZs0S9z/CKjT8hAQ9XPkTEkJcu3ZNNWjQQO3fv1+MoG+gzSzGoLVw/PjxVXjg4MGDorW/fft2Ed7xDbj14QH49ddfZUJECAleaPwJ8QLHjx+X3vLwAEBEyBXwDlSsWFF99913Ut+uhYZCK0h+XL9+vfrhhx/UyZMnXRp7XZv/2WefqenTp8t9QkjIQeNPiJdBaABla0hoQz27O+Aqh6EsXLiw6tixo+QOJEmSxCvtaZ8/f66GDRsmKofwargz9AATlzRp0sikB8ce2icyhIRnaPwJCWWgpwBEa9atWycTA0/BBABhg3jx4qlkyZKprFmzisZ91apV5TFc6+4kb1E+By8EYvBXrlwRiVy46nE8yF949OiRGHiM8wTkOaROnVrVqVNH9enTh7F7QkIRNP6EhHJQ+gatALjH4Up/8eKFCm3A0GPikS5dOtW2bVvVuHFj0UEghIROaPwJCYMgto4e9VARRLncsWPH1LNnzyRDPjgNPHIQEiVKpBInTqzy588vhj5LlizB9p6EkOCBxp+QcMrr169lUnD06FFx4z948EByChCrv3XrlsTcITiEv/oWM2ZMlTFjRlW6dGkJFSRIkEAkir2RU0AICT5o/AkhhBCbwXRbQgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8g4hr166p6tWrq2jRoqlEiRKpHj16qA8fPnj7sAghhBAfRPK5ifiXf//9Vwx/kiRJ1O7du9Xt27fVl19+qT7++GM1dOhQbx8eIYQQ4oBtV/4rV65UkSNHVs+ePZPH7969U9myZVPz5s3z9742bNigTp06pebOnavy5MmjqlatqgYPHqwmTJgg+yWEEEJCExEMwzCCeqfY5atXr1RIA5d7hAgRPBr78uVLFT9+fDH29erVk21Tp05VP//8szp37pz65ptvxJi748WLF/K3X79+atWqVerIkSPmc5cvX1bp0qVThw4dUnnz5g3UeRFCCCGh3u0Pwx8jRgwV0sAYR48e3aOxGFeqVCm1du1a0/gXLVpUnT9/Xgz3oEGDVPfu3T3a1507d1TixIkdtunHeI4QQggJTdg65o84/fDhw8VTAY/BkydPZDsmLgkTJpTEPUIIISS8ESm43O/aJR6S4H39Q7Vq1VSXLl3U4cOHVb58+dSMGTPERQ/D7x+3PxL99u/f7/Dc3bt3zecIIYSQcB/zD0tkypRJNW3aVFWsWFGVLFlSkvfKli2r7t27ZyYDuiJDhgzyd926dapGjRqS5a+9Bb///ruU+2E/UaJECZFzIYQQQjzB9sYfK//Nmzerp0+fqubNm6uBAwcGqNQPWf7JkiWThEHE+TGhaNWqFUv9CCGEhDpsb/w3btyoKlWqpBo1aiSZ/55WCzhz9epV1bZtW7Vt2zZJJmzWrJkaNmyYihTJ1mkVhBBCQiG2N/6EEEKI3bCtyA8hhBBiV2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjH4wcO3ZMOgV+8sknKmXKlNL0xy/QZKhYsWIqZsyY0g64Z8+e6sOHDw5jFi9eLI2E0MI4derUasSIET72M2HCBJU1a1YVNWpUlTlzZjV79uwAncOjR4/UF198oWLFiqXixImjWrZs6bZd85UrV6Q/gm+3JUuWmON8e37hwoX+Pr43b96o9u3bq/jx46sYMWKoevXqme2UXfHVV1/5eO8qVar4+70JISTMAm1/EvQ8ffrUSJw4sfHFF18YJ06cMBYsWGBEjRrV+O2331y+5siRI0bkyJGNgQMHGufPnze2bdtmZMmSxejWrZs5Zu3atUakSJGMSZMmGRcvXjRWr15tJE2a1Bg3bpw5ZuLEiUbMmDGNhQsXyhi8d4wYMYxVq1b5+zyqVKli5M6d29i7d6+xY8cOI0OGDEajRo1cjv/w4YNx+/ZthxvOB+///Plzcxy+ejNmzHAY9/r1a38f3zfffGOkTJnS2Lx5s3HgwAGjSJEiRrFixdy+plmzZnJe1vd+9OiRv9+bEELCKrY1/itWrDA+/vhjMdLg7du3RtasWY25c+cGyf5hgOPGjSv71fTs2dPInDmzy9f07t3bKFCggMM2GOxPPvnEePbsmTyG4a1fv77DmLFjxxopUqQw/vvvP3lctGhRo3v37g5junbtahQvXtxf53Dq1Ckx0v/884+5bd26dUaECBGMmzdveryfPHnyGC1atHDYhv0uX77cCAxPnjyR/8MlS5aY206fPi373rNnj1vjX7t27UC9NyGEhGWC1e3/8uVLuVkbB7579062vX371tex//33n7nt/fv3sg2uXb/G+pcKFSqojz76SFr6gsiRI6uuXbuqgQMHyuNvvvlG3Mjubu7Ys2ePKlWqlOxXU7lyZXX27Fn1+PFjX1+DzwQhAitw2+P8Dx486HbMjRs3pK2wuzH79++XzxSg9TDc3XDTuzsHuPoLFCjg43Pbt2+f8gQc95EjRyRc4Azc9QkSJFCFChVS06dPd/ie6PABjtPdvnE+OCZNlixZVKpUqeTY3YH9JkqUSEIiaMX88OFDj86HEELCA8Fq/LWRfPDggbkN8Wls69Chg8NYXIix/dq1aw5xa2xzNhxp0qSR7adPnw7wsUWPHl2M89q1a81tRYsWVefPn1eXL19WgwYNEqPl7uaOO3fuqMSJEzts04/xnG9gcrB79261YMEC9e+//6qbN2/KcYDbt2+bY5YtWya5AZj8nDt3To0aNcrHmKlTp4pxhEE9cOCAPIah1P8XyBeA4fv444/dngP+X6xEihRJxYsXz+U5ODNt2jTJPUAegxWcF3IXMPlCnL5du3Zq3Lhx5vM4LhwfjtPd8WFyhQmK8+fs7vgQ30cOBD7D4cOHq7///ltVrVpVPnNCCLEDkZSNqV69ulz8YSCxynzy5Ilsx8QiYcKEPgyfK7Jnz26uupHgt27dugAdT6VKlWRyBK9D06ZNVZQoUdQPP/ygduzYIatt0Lp1a3Xx4kVVo0YNMeZIxOvcubMaMGCAOQavgfErUqSInBuMYbNmzSThUI/BavvMmTPme+M9586daz52l9TnKa9fv1bz58+X43HGui1v3rziycG5d+rUSbYlT57c4fiGDh0qN82pU6cCfFyff/65eT9nzpwqV65cKn369OINKF++fID3SwghYYbgjCm8ePFCbjoWDRADx7Y3b974Ovbff/81t7179062OSeC+TY2IJw7d07iwwcPHpTHLVu2NPLmzSv327RpY0SPHt3tTXPlyhVJ0MPtxo0bsq1p06Y+4spbtmyR9/MruQyfF2Lqr169MuPu+/fv95FYh/fC54kkQIy5d++ewxh8ftevX5exOgnQ1Wd29+5d8xxwA9OmTTPixInjMO79+/dGxIgRjWXLlvn5+c6ePVti8s7H5RtIXMQ5OH8vNA8fPnQ4PhwHkvzwmsePHzuMTZUqlTF69GjDPyRIkMCYPHmyv15DCCFhlWBd+cO17gzctNY4uLuxcP365pb2bWxAyJgxo9zWrFkjuQizZs1SGzZsMN3S3bt392g/KLdzBiGE77//Xlbn+hzg4oYrO27cuG73By9EsmTJ5D5CACgTzJcvn8OYiBEjyupYj8H7wVthBe+bIkUKuY8yOngL9MrfGXg5nD0d2Ce8IQgf5M+fX7Zt2bJFwg2FCxf2yOVfq1YtH8flGwij4HOBt8M3EGrAzQqOCecI9z1CBwA5FQgd4dg9BfkSiPknTZrU49cQQkiYxrA5nTt3NnLkyCHlYv369Quy/SITHaV+8ACg1A9ld9GiRXMo9cPq2Tn7/+effzaOHTsmrxk0aJCsnK1Z8ffv35cyP2S1Hz582OjUqZNUA+zbt88cc/bsWWPOnDni2cD2hg0bGvHixTMuX77s7/NASRy8IdjPzp07jYwZMzqU+sH7gHOwvj/A6hxVAagOcAYVDFOmTDGOHz8u4+CVwGcTkM8fpX5Y6cOrglI/VDrgZgXHpz0VKDdEJQSqAfB5bNq0yciXL5+clyuvAyGEhDdsb/w3bNggrmMYNGt4Iig4evSoUaJECSNKlChG8uTJjWHDhjk8jzp35/lX2bJljdixY4tBL1y4sLj0rcD4o5YdYQcYzPLly0sNvhWEClBeB12BWLFiSfjhzJkzDmO2bt0q7+3XhADudnw2qNPHvpo3b+5Qr4/XYz/Yn3PZIiZUvoUZMCHA8WGfOA/oCMDlbh3rar/OICTUrl07KavE51GnTh2p27eiNQUAQimVKlUyEiZMKBOr1KlTG61btzbu3Lnj9n0IISQ8EQH/eNv7QEKeGTNmSAIdEufcZfx7i61bt6q6deuqS5cu+RkmIYQQ4j8o72tTUOII4x8aDb8+vj59+tDwE0JIMMCVPyGEEGIzuPInhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8Q8i0EmuevXqKlq0aNIdr0ePHurDhw9uX3Po0CFVsWJFFSdOHBU/fnz19ddfqxcvXjiMQce6YsWKqZgxY6okSZKonj17+tjv4sWLVZ48eeS90WFwxIgRfh4vtJ369esnneyiRo2qKlSooM6fP+/2NWnSpJGOg8639u3bm2PKlCnj4/lvvvnGz+NZsmSJypIli/rkk09Uzpw5ReHPHdu2bfP1WO7cuePnexFCiO3xdnOB8MCHDx+kM2CFChWk0x6a8aA/PJrbuOLmzZvSjAZd6dB0Z//+/UaxYsWMevXqmWOOHDliRI4c2Rg4cKB0v9u2bZuRJUsWo1u3buYYvFekSJGk09/FixeN1atXG0mTJjXGjRvn9pjRZAgNhFasWCENiGrVqmWkTZtWGuW44t69e9I0R982btzoo/lO6dKlpVGOddzTp0/dHsuuXbuMiBEjSkdDNCXq27evNN1B1z9X6MZE6GBofS/fGgkRQghxxLbGH0YPBkYbprdv3xpZs2Y15s6d6+99wQB/9NFHDp3hYIzRBQ/79Q209k2UKJGDsUIrXxg0GHqAyUOBAgV8tMNFx79nz57JY3Tcq1+/vsOYsWPHGilSpHDZpRDbkyRJYowYMcKhBTG6Dy5YsMBf7ZDTp0/v8D4w/tjuHxo0aGBUr17dYRs6GrZp08ZP4//48WN/vRchhBDDCFa3/8uXL13e3rx54/HY169f+znWv8DN/dFHH6mNGzfK48iRI6uuXbuqgQMHymO4qmPEiOH2ptmzZ4+4qhMnTmxuq1y5snr27Jk6efKkr+//9u1beU8cgwbud7Bz505zDNzgVjAGn93Bgwfdjrlx44a6evWqPL5y5Yq4xOEqB5cvXxb3OD4DTezYsVXhwoXlXDzh3bt3au7cuapFixaybyvz5s1TCRIkUDly5FC9e/dWr1698hE+GDBggMPnZz0W/fl5ciwIdyB0gfDJrl27PDp2QgixO8Fq/N0Zznr16jmMRZzc1diqVav6MB6uDLGnRI8eXZUqVcohtly0aFGJe8M4Dho0SB05csTtTQNDajX8QD92FYMuV66cPIf4PAzp48ePVa9eveS527dvmwZw9+7dasGCBerff/9VN2/elONyHrNs2TLJDfjvv//UuXPn1KhRoxzGoHNf5syZJSfAeky+HbOnMfMVK1aoJ0+eqK+++sphe+PGjWVSgJa8MPxz5sxRTZo0cRiTPn16mRz49fm5OxYY/MmTJ6ulS5fKLWXKlJJvgDwKQggh7omkbAwS9IYPHy7Jb1i9wpgBTCYSJkwoE5LgInv27GrWrFnibYCRjBgxourUqZMYPe0NqFSpkkwO4IVo2rSpihIlivrhhx/Ujh07zDGtW7dWFy9eVDVq1FDv379XsWLFUp07d5aVtR6TPHlydebMmSA9/mnTpsmkLFmyZA7bkbSogTcERrp8+fJyjDD6ABOVwILJDG4aJEXiPX755ReZcBBCCPHSyh+Z665uWK1ZuXfvnsux69atcxgLN7bzmIBQrVo1WR0fPnxYHs+YMUPlzZtXDL9/3P7Iwr97967DvvVjPOcKrJKxusWK/uHDh2Kw79+/r9KlS2eOweQAkxJUEzx48EDVrl1btusxmLRgAoPPAG5+7K9QoUIOY5zRx+TbMbs7Xg3eZ9OmTapVq1Z+jkUoAVy4cMHlGFefnyfHYgXn7e59CCGEhMDKH651b491R8aMGeW2Zs0acb1jJb5hwwZ5Du717t27e7QfhAuGDBkiExjtLUAuAVbh2bJl8/P12uU9ffp0id8jfm0FBl6vsBECgIs7X758DmPgOcAKX4/BMWES4xtp06YVw4oVOGLmAPkJ+/btU23btvXzeDFJwnnCc+IXOjwCD4ArcKw4li5dupjb8Plhu3/Ae7l7H0IIIf+HYXOQmY4yvZQpUxr9+vULVKlfpUqVpDzvr7/+MhImTOhQ6rdv3z4jc+bMxo0bN8xtKMc7ePCglKuNHz/eiBo1qjFmzBiHfaP8DVUAJ06cMAYNGiQVCsuXLzefv3//vlQWnD59WsoMO3XqJNUAeD+/Sv3ixIljrFy5UvZfu3ZtH6V+5cqV81EyiOqEVKlSGT179vSxzwsXLsgxHjhwwLh8+bLsO126dEapUqX8LPVDueLIkSPlPPr37++j1K9Xr15G06ZNzce//PKLVGygMgLj8P+IiotNmza5fS9CCCE2LvXTbNiwQUrGUDLnqjTOE65cuWJUrVpVDDhq/FGL//79ex+laTCKGhizePHiSS1/rly5jNmzZ/vYb9myZaUeHwYd5W8oK7QC41+kSBEjevToRrRo0Yzy5csbe/fudRiD93Sux8e5/vDDD0bixImlxA+vwyTESurUqcUQW1m/fr1ZX+/MtWvXxNDjnLDPDBkyGD169PBR5+/bfhcvXmxkypRJPovs2bMba9ascXi+WbNmUkaoGT58uJQZ4nPB+5UpU8bYsmWLj2MihBDikwj4R3sBSPgEmfd169ZVly5dUnHjxvXqsaDsD2qGyONAdj4hhJCQh/K+NgDljH369PG64dcTEZQ50vATQoj34MqfEEIIsRlc+RNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEGUv/gdLIvayrhMrYAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAH/CAYAAABZ8dS+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkdxJREFUeJztnQW0E1e0hg9SKO7u7u7uTqFIoVgpFIpLkSKlaKFQpDi0uFvR4l4ciru7u3uZt/793pk3yb3JzXWZ/1srN8lk7mQymcw+Z8u/wxmGYShCCCGE2Ibwwb0DhBBCCAlaaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZEYN7Bwghgcfjx4/V8ePH1bFjx8z7oUOHqvLly8vr+/btU999952KHTu2ihUrltzHixdPlS5dWlWsWFHFiBGDXw8hYRAaf0LCGLt27VLDhg1TR48eVTdv3vTy+qFDh0zjf+/ePXX69Gkv64wfP15FihRJTZw4UQYHhJCwBY0/IWEAwzBUuHDh5HHkyJHV6tWrzddSp06tcuXKpXLmzCn3hQsXNl8rVqyY2rx5s3r27Jl6+vSp3F+9elWtWbNGXbp0SWXOnNlcd/fu3bJugwYNVMaMGYP4ExJCApJwBq4ahJBQB366cNuPHTtWxY0bV02YMMF8berUqWK4c+TIIe58v2z77NmzYuQjRIggy1q3bq3++OMPFT58eNWyZUs1YMAAlShRogD9TISQoIHGn5BQyIoVK9TgwYPVwYMH5XmUKFHU3bt3VcyYMQPtPf/66y81bdo0tX79enkePXp01bNnT/XDDz+oqFGjBtr7EkICHhp/QkJZAl/79u3VggULTBd/w4YNVYcOHVSePHmCZB927Nihunbtag48kidPrkaMGKHq168fJO9PCPE/LPUjJJSwf/9+cePD8MMV36NHD3Xjxg01ffr0IDP8oGTJkrIv8+bNUylTppSkQuQJEEJCD5z5ExJKuHPnjsqePbuKHz++mjNnjipYsGBw75J6+/at+vPPPyUHAKEH8OTJEykZ1AmIhJCQB40/ISGY8+fPO2TWo0wvS5YsITbG/vr1a1W8eHGVIUMG8UhEixYtuHeJEOINdPsTEgJBtn2/fv0kY3/lypXm8nz58oVYww/27NmjTp48qRYvXiyDgOvXrwf3LhFCvIHGn5AQxqdPnySpb+DAgTIIgGhPaAHiQVu2bFEJEiQQkaH8+fOrnTt3BvduEUKcoNufkBDEx48fVYsWLdSsWbMkZo66esTTQxuY8desWVMGAJ999ploEITGz0FIWIUzf0JCCO/fv5eyPRh+ZPPPnTs31BpMVAHAY/HVV1+pDx8+qO+//15EgQghIQPO/AkJAcBA1qpVS2R1oam/aNEi9eWXX6rQDsIWQ4YMkeQ/iAMhEZAQEvzQ+BMSQoxkt27dpJEO1PsqVaqkwhIoCfz888+DezcIIf8HjT8hIWgAgNK+TJkyqbAMPACvXr1SderUCe5dIcS20PgTEoxZ/UjoQ8tcuPqDCnTug0IfavChz69veI4yQjTuCSzQiKhEiRLyHuvWrVNly5YNtPcihLiGxp+QYAJ1/CjngwFEq9yAUsSDBwFZ9tDev3jxorTmxXu0bdvWzMRPlSqVy/+vUaOGg7YAKhAiRgyY7t///fef9ABYunSpihEjhtq+fbvKmzdvgGybEOI5AfOLJoT4CsT1YfhB06ZN/W344UXArHrZsmVyu3LlisPrMN7a+CdLlkwMLjwAcL+/fPlSbhoIC2mwjl6/WLFiqmLFiqp06dJ+3l9UMaAnABoUbdu2TVWpUkXt3r1bpU+f3s+fnRDiezjzJySIOX36tCpUqJAY3I4dO6oxY8b4e5svXrwQYZ13797Jc+jsowEPpIHTpUsnyoBQ3HM3eHjz5o3sE0IQceLEkeUbN270knyInAQMJDBoiRUrlp/29/nz5zKIOHLkiEqTJo14KeLGjeunbRFCfA+NPyFByNOnT1WBAgXEHQ/jB+MKERzfus4XLlyo9u7dq8aPH28ub9KkiRhxJNLBYAeErj5CCOfOnZPZOZT64K7XXgJsf/78+RIm8Av37t1TRYsWVZcvX1Z169YVSWA2AyIkaKDxJySIgNH+4osvJNENIjiY7WK27ikw7MuXL1d9+/YV74HW0i9SpIgKKuBhQEdBKPZhUHDt2jUJC/i1nO/ff/+VAcDXX3+tpk2bFqSJj4TYGRp/QoKIM2fOiKGGkh9m0nny5PF49r169Wox+kjkA2iZ2717d9WhQwdJnAtqsE8YgGTLls1cVrt2bVmOMAYGN745LuhUSAgJOmj8CQlCLly4IMbOU1c5wgONGzeW0jwAQ//DDz/IDQOAkAK8ANmzZ5fKAJQLopIB++jbkAYGD/BwIDGQEBJ40PgTEoJBtn2uXLnUgwcPZJaP2X68ePFUSAStfJEIqLv4Zc2aVU2aNEkSDz0BnxGaBxhEQBKYEBJ40PgTEsjAkCHJr0KFCh6t//DhQzHwOvnt+PHjKmHChCpx4sQqpIOZ++zZs0WqGJ8DoCpg7NixKmbMmG7/F/kMCB3gc2/dulUSIgkhgQO7+hESiCAhr0+fPlIfr5P0fDKAKKWD8p8mZ86cocLwAxhuGHuEAVq1amUacpQR+gQaGzVv3lwGEKhcgBYAISRw4MyfkEACNfdI6kOMv1mzZtLZzhUQ20GMfMqUKfIcNfn//PNPoErtBgVIbITmgKcqfigjxLrIjWjQoIGUEhJCAh4af0ICCfSv79+/v7jsMQBwJWKDenco3UHwBjPlHj16yP+GxbI3lAkito+BjquafpT/FS5cWBL/MADyNGeAEOI5NP6EBAJw8efOnVt9+PBBBHmgZ+8dkOFFSABZ/RgkYN0yZcqEye8EYj5IAoRHBKGByZMnu9QFaNOmjbyOYwg9BGb/ExKw0PgTEsBgxorOdYj3V69eXa1atcrbWS4kblHffvv2bZU6dWq1adOmMK1xj1j+uHHjVJcuXUTwqGDBgnJsEiVK5GVdeAcyZMgg5YzIGUibNm2w7DMhYRUaf0ICGAjyQMkPbXLhAUiRIoXLdUeNGqVmzJihNmzYoJImTWqL72LLli3qq6++Uk+ePJGyPjT4iR8/vpf1oG2AZEfkDBBCAhYaf0ICYYaLznpI4vvmm2+8vI5Zr9WNjUx4uxm48+fPSynfnTt3xLWPAQEb+xASdND4ExKELFmyRA0fPlxc/H7tiOcpjx49UtevX5ewgvMN4kGIt2PQoe/1DSEIyPZiVo48hMBqtnP27FlVqlQpdf/+fTV06FBJdPQODJag+491UQZJCPE/NP6EBGDHPpTmuRKz2b59uyT3IQnw119/VT179gxQbwMS6qCut2vXLrnH7Nq/QGxIDwRQgle1alWVJEkSFZCqgAsWLFC//PKLy0FG586dpV9AtWrVJKRCCPE/NP6EBBBdu3ZVs2bNkqQ21KhbOXXqlCpWrJjMuNG+dtGiRf6u4Ue4YMWKFXKDsYcL3RmIAyGXwPmGRDp04cMN28ENj1Fnjxp77O+lS5dkUOEMEvXQm6BmzZoyMAhIzwAGRrihP4AGgxi8D/oGrF27VsoiCSH+g8afkADg5s2bkqmPMrb169erSpUqma/BzY5ufnDBYwCwefNmX7e+1cAY79u3T82cOVPKAlExoEETHcgIQyAI1QZ4rzhx4vj5M71+/Vpc8xgIYIaOmnvdYEiTJk0aGQS0aNHCocOfX0C3Q7T2xWeCkbfqHEAueOTIkVIqeOLEiVAvfkRIsGMQQvxNy5YtMUU2SpYsaXz69Mlc/vz5cyN37tzyWsaMGY2HDx/6afu3b982hgwZItvAtvQtderURp8+fYzt27cbr1+/DvRvEvvx559/GtWrVzciR47ssC+VK1c2Nm7c6PD5fcOJEyeM6NGjy7batm3r8NrTp0+NWLFiyWtLly4NoE9DiH2h8SfEn5w/f96IECGCGKadO3c6vNagQQNZnjBhQuPSpUu+3va9e/eMH374wcHQRo0a1fjmm2+Mbdu2Gf/991+wfX8vX740li9fbtSqVcsIFy6cuX85cuQwZsyYYbx9+9bX2/z777/N7UybNs3hNQxysDxfvnx+HmAQQv4XGn9C/Ik28FWrVvXy2tmzZ8UYHjhwwFfbfPz4sdG7d28jWrRopjEsXLiwMX36dPEmhDQuXrxodOjQwWF/EyVKZIwdO9b48OGDr7Y1YMAA+f9IkSIZ+/fvN5c/ePBABj54bcOGDYHwKQixDzT+hPiDY8eOmcbu8OHD3q7jm9k5DPugQYNMFzdu+fPnN9avXx8qZrsYtAwbNsxIliyZgycAYQlPwfGqUaOG/C+2c/fuXfO1zp07G2XLlvX1YIoQ4giNPyH+YPjw4eLyrlevnrns9OnTxq5du3y9rVWrVhlJkiQxjWb27NnFrR4ajL4z79+/NyZOnGjEjRvX/Dz169c3bty44dH/P3v2zMiUKZP8X/ny5c1j4FsvAiHEe2j8CQmAmP/ly5fl8Zs3b4ycOXMa4cOHN+bPn+/R/z969Mho0qSJaSTTpUsn/xuc8fyAAgmObdq0keOh8xUGDx7sUT7AmTNnJMHROY+CEOJ/WOpHSADSoUMHNX78eJUgQQJ17NgxHwVx0NimVatW6u7du1K+hqY3AwcODHNyv2hXjGOze/dueQ7BIGgd+NTIyFkK2doGefTo0VIamCtXrkDbb0LCLAEwgCDEdqCs7urVqw7LVq5cac7e165d6+Nsv1GjRub6cHHv2bPHCMvAdT937lwjXrx48pljxIhhLFiwwFdJhffv35fH2lNiDbcQQjyHxp8QP4Bad7iykYAGbt68aca3u3Tp4vZ/jx8/LvX5WBfb+PHHH4OkRj+kgLh/iRIlzIFPixYtjFevXrn9n4ULF0rIoG7dug6Jlsi3OHfuXBDtOSFhBxp/Qvwwg82WLZsYn5EjR0psvnTp0vI8b968buPZEKjR5XCI7e/bt8+Wxx+Je6jb1/oAOJ6nTp1yuT4qKSJGjCjrLlq0SJZVq1ZNnkMHgRDiO2j8CfElmzZtEqMDNToozy1ZskSew6i7moVigNCvXz9ztosMdrj+7c7mzZtFD0AnA65evdrlun379pX14sePL+JHWBfP4XFBoiUhxHNo/AnxJZC2hdFp3769adinTp0qN+948eKFUbt2bdPwI1TAkrX/B3X85cqVk2MDpURnZT/Nu3fvjFy5csl6cP9//PjRSJEihTxHLgEhxHOY7U+IL0DHu4wZM5rd5jJkyOB2fWTxo8nP8ePHpVHN5MmTVbNmzXjMnUAnPzQHmj17tjwfNGiQ+umnn7x0DDx69Kg0L0KHP1QLoPFQv379VMmSJaXxECHEM9gaixBfgDI+gN7ynz59kha4rrh165YqVaqUGP5EiRKp7du30/C7AB0J0amwV69e8vznn39W7dq1k1I/K7lz51a9e/eWx23btlW1a9dWsWLFUpkyZZIBASHEMzjzJ8RDYOxTpUol7XtXrlypevToIcZ/xYoVKl++fA7rXrt2TZUtW1ZdvnxZ/mfbtm3S/pZ4NsDq2LGjtC/+8ssv1fz58x10D9D6F22LK1asqHr27CkDh8iRI/PQEuILaPwJ8QXPnj1Ty5Ytk1k9ZqcJEyZU586dU7FjxzbXgcGH4ccAIG3atGrr1q0yACCe89dff6nGjRurd+/eiZcFxxxhE5/EfwghnkHjT4gvgXHPli2bevv2rZo7d65q1KiRQ04ADD+8A8gN2LJli0qePDmPsR9AmKRq1arqzZs3ql69euIB8M7gw0MA/v33XxkUFClShMebEB9gzJ8QD13+mm7duonhh5Fv2LChufzSpUsS44fhz5IlixgvGn6/U7p0abV8+XJx6y9evFh9//33Dt8D2Ldvnxh7hAkKFSokoRhCiM/Q+BPiAZMmTVL58+dXv/76qxgk6PCPHTvWzEZ/+PChqlKlirpz547Knj27GH6fdP2Jz6BSYsGCBXK8p0+fLr0P9EwfION///79atOmTbLOzp07JQxDCHEPjT8hHjBr1ix16NAhyUgHTZo0Edc/gFu6Zs2a4vJHbB+GCLkAJGCoU6eOGH4wZswY1b9/f/O1vn37qrhx44rBz5w5szkgIIS4h8afEB84c+aMxJMRb0ZdPzLLtQGCG/qbb75Re/bskaS/tWvXqsSJE/OYBjBNmzZV48aNk8foegi9BBAnThw1YMAAeXz9+nW5p/EnxGdo/AnxAS08g+Sz1atXS2w/derUsuzHH3+UzHRkoqPkL2vWrDyegUT79u1NQ4/2wDt27JDHaImMHAuUXcL1f/r0aXXy5El+D4S4gcafEDcgexwZ/QAzfJAsWTKzHn3kyJHyeMaMGZLsRwIXlFfWr19fBH3q1q0r5ZRICIQiIIDxBwsXLuRXQYgbaPwJccOuXbskex+u/ly5cpnLkdDXqVMneYwkQGvWPwk8kGCJ+H+ePHnUgwcPRATo9evXqlatWpKDoVX+8P0QQlzDOn9C3AADj6x+gOx9zDQfPXokxge6/fAGIAnQWYOeBC6I76P6AgMAeAJQEbBhwwZ1+/ZtKa9EGWbEiBH5NRDiAv46CHEDjAhmmognd+7cWdzKmOXD8KOkDyWANPxBT8qUKdXSpUvl+0GCHzT/IfVLCPEMuv0JcYNu3oOscjSSQcIZdPqjRYumlixZoqJGjRqqjh9q5F+9eiUz5sePH6vnz59LqSK66lnr50MDJUqUMBstoQPg7t27zdcgC4xwQGj7TIQEFXT7E+KGokWLqr1790onObSNhZAPDMq8efNCVJwfsW7IDl+9elVCE9YbBIhevHhh3pxV8qxEjx5dNAqsN3QkRIkj6ujRPc/axyAkgNDLnDlzpALj2LFjUpHRunVr8cggFFC4cOHg3kVCQhx0+xPigu7du4vhRxkfMsvRRQ6GH6VlwWn4MVNHm+AjR47IDT3u8RySw/4FXg7cMJBwBXQMMBDImTOnDI5wS5EihQouMPtHYuaVK1ekBBCywBjkAIQEaPwJ8Qpn/oR4w/nz52WWq9X84CZfv369xJYxIPj888+DdFZ/8OBBaRKEGwSF4NZ2BiEItA2GyqD1htl7zJgxVYwYMcwbwhbwAMDdj+3jhscIA9y/f9/hhg6GOB5nz56VhDrvQJIdNPaLFSsm3hE0NQpK4PKHZwafCaWZyM+AxwNJmq72mRA7Q+NPiDcMHTpU9erVSzLGEedHTBnlfphpQ1AmsHn69KlauXKl9BFAjgGMspUECRJIxYH1lj59erPOPbDAfkBKF6qHGJBgIALPA/QQrCBM8MUXX6jq1aur4sWLSy1+YAOpX9T7IyzRvHlzNWrUKFkOUSa0ViaEWDAIIV4oVKgQMsWMAQMGGLFixZLHw4YNC9Qj9eTJE2PmzJlGtWrVjM8++0zeU9/ixIlj1K5d25gwYYJx9uxZ49OnTyHmW3v58qWxfft2Y8iQIUb58uW97DuO37fffmts3brV+O+//wJtP96/f28ULFhQ3rNYsWJGuHDh5HHHjh0D7T0JCa1w5k+IE3ATaxW/cuXKiasd7WLhWvaun7x/QA4BZvbQqoc8MFzvGpQSfvXVV6patWoSbgjo9w5M7wCaGyHxbs2aNRIy0SAMgTAKkvTgHQhoLl68KMcKFQ0IgSAPAGGPe/fuBfh7ERKqCe7RByEhjXbt2smMMU2aNHIfOXJk4/Tp0wH6Hg8fPjRGjhxpZMyY0WGWnD17dvE2BPT7BRcfP340duzYYbRs2dKIGTOmw2ctWbKksXz5clknIBk7dqxsP1q0aOZ7nT9/PkDfg5DQDo0/IRZgiKJGjSoGQ7uvhw4dGmDH6MKFC8Z3330nAwptmGLEiGG0bdvWOHbsWJj+Ll6/fm0sXLjQqFKlihE+fHjz86dLl84YN26c8eLFiwD7DvPnzy/bjh49ulG/fn3j3r17AbJtQsIKdPsTYgEteeFm1xQsWFDc/f6Vij116pT0AIAMra6zh3u6TZs2UjaI+no7gQqCCRMmSLjjyZMnsgyJehBS6tatm4gq+QckZkL+F8ca3ykqEAghFoJ79EFISKJmzZrmjBSz0yNHjvhre5jNI1HP6u6uWrWqsWvXrhCVtBecyYJIYkyfPr1DguCgQYOM58+f+2vbXbp0ke2lTp3aePXqFY83IRZo/An5P27evOngjm7Tpo2fj82tW7eM5s2bmxnnuK9Tp45x6NAhHm9vQBXAsmXLJOdBH/8ECRIYo0aNMt68eeOnY4YwQooUKWRbadOmNUqUKMFjT8j/QeNPyP+BRDtteOLGjStJeX6Zyfbv39/MG8CtXr16xqlTp3icPRwEzJ8/38ETgJn7ihUr/DRzX7VqlYPXJawkUhLiX2j8CTEM48OHD0bixIlNIzF+/HhfHRcYpgULFhhJkyY1t1G4cGFjz549PL5+rNmfMmWKkTx5codwCRImfUuWLFnMbXTv3p3fByFM+CPkf0FDnGzZskknOGj5497Tunr0lkeiGmraARrMDBs2TGr02e7Xf6Bef/DgwWrEiBGigYDvpkePHqK+GCVKFI+2gda/6M0AkEiImv+gUBwkJCTDlr6EKCWNYGDwAWRpPTH8kLRFUxkMGmD4YZj69+8v0rf16tWj4Q8A0INgyJAh6sSJE9JY6f379yLhCznj/fv3e7SNWrVqiTQzQGUBsv8JsTs0/oT8Xz94zbfffuuRkhz6yaOLHLrgoaENNO779esXpE1/7AKaLKGxEmbxSZMmlf4C6CaI7w0DAneg3wEGDppffvklCPaYkJANjT+xPcuWLVN///23HAe46dEdzh3oHY+ZJ7r7oUPexIkT1Y4dO4Kk4Y+dwXdTu3ZtdfLkSdWoUSOp4YdXoECBAurYsWNu/9eq3YCGRDdu3AiCPSYk5ELjT2wNkl6/++4783nevHml/a0rzfrGjRuLLj1m+xgkQLwHQj2B3U2P/D+I26Nt75IlS1T8+PHV8ePHZQCAQRi+T+8oW7asw/OZM2fykBJbwysWsTVQ3EP7XE2pUqW8Xe/ff/+V2f68efMkHwBx561bt6oUKVIE4d4SK0jigxegRo0akgzYrl078QhgYOYM2h2PGTNG9enTR54jV0PneBBiS1jzQOwKyvN0KRk04JMlSyb15M7MmDHDiBQpkqyXKlUqY/fu3cGyv8T19zhixAgjQoQI8h2htM+VrgJKCHXDJjRWIsSucOZPbMvy5cvVzZs35TES9RAHRqa/5uPHj6pz586qWbNmklSGGSaS+pBoRkJWLkDXrl3V9u3bVZIkSaTaAmGAv/76y8u6KPFDqSCA94azf2JXaPyJLUFs+Oeff5bHiNc3b95cjIiO3T969EhVqlRJXMWgb9++MlhA8xkSMilevLg09EF8H0YdOgtDhw418wAwmJs9e7bcAMI9aCxEiB1hVz9iSzZu3CjGHSBxb9u2babhv3DhgqpcubK6fPmy1JnDWCDLnIQOoL/QpUsXNXbsWHmOhE4kA2LWD88ARH4w0MOgAAmD165dU1GjRg3u3SYkSOHMn9gSlIhpLl26pBImTKj27NkjiX2o2YfhT5MmjZTzhSXDD8OI8AZ0CnRrYV3JcPfuXfXmzRsV2kFCJjw248aNkwHdtGnTpKUvZvrwDoC0adPK/cOHD9Uff/wRzHtMSNBD409sB4z8P//8oyJGjCiyvOgtDzc/jGKZMmXUgwcPpOQPhj9HjhwqpPPs2TM1adIkhwEN6Nmzp0qQIIEaPny4w7opU6ZUGTJkcBDHwf9iVqzj4QAzY6gXwjNy//59c/n58+fV5s2b5biFZNq3by/6DdGjR5fKDHyOnDlzymvWmf6oUaOkWoAQO0HjT2zHr7/+KvdNmzaVJD6AmT9q+KElX6FCBUkeS5QokQppTJgwQTwTmM1q3r59K4MYlLFZjRgeY2aLwYwG6oOQIYZB9E6bAMs18AKcPn1a7dy5U8IfGpQ74hgNHDjQ4X+htvfnn396W2oXXFStWlXt3r1bVAFRFjhlyhSzH4OWcEbS5+LFi4N5TwkJYoK73ICQoOT48eNS5hUuXDjj3LlzDm18cWvUqJHx7t27YP9SHj9+bJQrV05KEdFxUNOjRw/Zz3bt2jm0wa1du7YsQw97zbVr1+TzPnr0yOOSOet74fG2bduMxYsXO6yHsjqU040aNcpchvfQx9C6D2vWrDGGDx8u+xGcXLp0SVoD6+9ed13U+5wnTx4/tQwmJLRC409sRbNmzeRinyJFCuOvv/4ysmfPbhqAjh07iiENarZu3Wp88803xu+//24uw35AewD7Za1ZP3LkiLFo0SLj/PnzRkji3r17RteuXY0mTZo4LG/YsKF8hkGDBjkMKjAoePbsWZDu482bN43MmTOb33elSpXkXusDbNmyJUj3h5DghMaf2Ib79+8bkSNHNi/+6dKlMx83aNAgSGZ+L1++FCGhp0+fmsv+/PNP2YdSpUo5rLty5Urj4MGDIcIT4VemTJkiXokdO3aYy/bv3y+fN06cOMbHjx+DfJCSKFEieX+cC2vXrhWPCZ5XqVIlSPeFkOCExp/Yhl9++UUu8jFjxnRw9WPm9/bt2yDZh2zZssl7Ll261Fx2/fp1o0+fPsbmzZsNO7Bu3ToZeNWpU8dheb169YzvvvvOuHDhQqC+P7afM2dO+R6SJEkix12HAk6cOBGo701ISIF1/sQWIPktderU6vbt22aNNyhUqJDKnz+/aL0HJEgcnD9/vvScnzp1qrkc9ecQC0LS4ddff63szLt371TkyJHlMcrwUHOPUkSUIaZLl06WP378WJIQkaQYkKC6o3Tp0pIEiOoHdGTcsGGDatWqFYV/iC2g8Se2YOHChapBgwaStQ7DDDp06CD14BgMBDRPnjyRagEMOtB1TpcMIoMeGfeB8Z6hGRwnVFgcOHBAqgas5XqLFi1SI0eOlG6KAQnEflD3j8GGHhDi/EAJY6xYsQL0vQgJabDUj9gCrfamtdwzZ86sRo8eHSBGGPoA3bt3Vx07dnRoO9upUyeRl7WWDEaJEiVQDT9a3f72229S4qdZvXq16Beg7t8KVAyzZs2qDh8+bC5DWRyWO68LbwU8GYFV2w/1PZQPWg2/1mTAZ4FegQbfobUTo19AO+AmTZpIF0DoPcDwYx8wMJwzZ46/tk1IqCC44w6EBDaHDx92iPHjtnr1aok9e1oG5w4k5WGb6Pz38OFDI6BBPgJi0dbEv3nz5hlp06aVGLmVxIkTy74cOnTIXDZ79mxZVrlyZYd106dPL8utXQoXLFggy8qUKeOwro6R45hp/vnnHyn5a9GihcO6Dx48CLCqCVQGICnPWoI4ceJEI2rUqJLD4VdQWYHPU6NGDam0sJ4b+Ews+yNhnYjBPfggJKhm/VrZDXFm3KMBTLJkyczOfp4AGdzp06eLe7hly5ayLF++fDLLL1eunL/dxZDYxawWngkNYtJQ2ENHwVy5cskyCPRAgjh58uQO/1+rVi2ZvcaMGdNcVqpUKQl74LNawUwes2io+GkKFy6sZs2aJfF3K+hkGC9ePFMWF1y5ckU66KVIkcJhXczg0R9h1apVcox1uAOza99q6GNWDmleK1Drw37HiBHDXPZ/ycveChd5R8GCBeUeORn4PnWzH4DPhBAEvCWEhFmCe/RBSGCCmb2u40ZmN2alT548EeEZLKtVq5avtqdn0diWf0vw8P/WbcycOVO2Xbp0aYf1ihYtKhUKGzZscChb3Llzp3Hr1i0juMA+bNq0SfZDgxlz/Pjx5XNAREkzd+5c+R4wy/YveI/t27c7lEviOSop4LnwhNevX5vnBTQTPv/8c4fZf44cOfy9n4SEZBjzJ2EWzAQh34sMcswIN23aJDNatOXdt2+fOdN1B6oDTp06ZT6vX7++zGYHDBjgr31DC2F4CdavX28uQ9UB8gEg12tl3bp14g2oWLGiuQwxcCSrQbY2uMA+lC9f3myWA7D/d+7cEVlgnbEPcAzxPVhbIuP7KVCggMgqI/nOU/Ae8GZYvSzw7uA90LPBE5B7oZMwkZCpZ/moAAAnTpxw8AYQEuYI7tEHIYEFZGj1TA4zzlevXpmvJUuWTJYjbu0KKABCCAYzb7/GgCHqA2/BDz/84LC8ZcuW8v6o79cgTo71A4v379+Lyh10BazcvXvXuHz5cqAq7uH43bhxw+G94RnQYjtv3rwxl0MQCF4O32gvwAvw66+/GhcvXnT4XNOmTXPIF7Dy/fffy/v/+OOPxrhx40yvS8KECc39Onv2rJ8/MyEhGRp/EiaxCrfAvYskMVzM27ZtK0ZIL3dnbOFSx/8UK1bMwcXsiZHVIAEwfPjw8n5Xr151MHyQ7fVvYhmM+YQJE4zJkyc7LMdgB6EJq5jQv//+K/uRMmVKh3UhtoPlY8eOddDCjxEjhiQFWlm2bJkYWWzLv8Dg43uCCqAVKO1hf/A+/gFyzdjO119/7e3rU6dONQ0+Pm+JEiVkwIjjqQeNmTJlCnIZYkKCArr9SZgDrvqGDRuaQj61a9eWxC6IyiBRD48B3L66Wx3qzCdOnKj69+9vbkd3gkNXO08S+bZt2yZu7GbNmpnLkCQHFz867lmFajJmzChldu7K/vT+a1AGh9AA2ulqrl69qtq1a6eGDRvmsC7CBHC/Q8xGg/dHORuS6KwgARLHwdrRDwl1L1688NKhD93vevXqJcdEg2REJCUi4fHTp08O23D+DFagd4D/adGihcNyhAvQXhjJi9aSv5o1a6oVK1YoT0mfPr2Eeb777juXSX/4XlGWiUTGHTt2qK5du0r5H/YNnDt3TvQFrJ+LkDBBkAwxCAkiMOsuXry4Q8MWNJHBLBiPkaDWrVs3edy6dWvz/9DUBcsiRozo4Dp2B7rXWT0Ce/bskW3Ejh3bYfbvW1DWlzt3biNXrlwOy+vWrSvbtzYAunPnjvHll18aXbp0cVj3zJkzUuKI7oB+AYmIkMF17saHPgRNmzaVBDvnz41mSVbQITFWrFgyw7aGNjwpA3T2iCBsorsuulvPGXh2rOsg8RDbQPgBy13tS+PGjeX9tNdm6NChPu4zIaEJGn8SpujevbtcrKNEiSL3qHs/evSoPEZGN1zNMGowSM7x/ubNm4vL1xPDjWqBaNGiOXSrgzFBjBnNYzwFrvaCBQtKpr/m9u3bpuGx5ilgf5cvXy6u/pAEDCwGANZqBJAvXz75HKtWrTKXQX8AgyNXrnhXnD592ujdu7fDoAOVG3DL4ztwFde3gu8VAxTnLoPOFQxoqIROi/qc0YPCffv2+WqfCQnJ0PiTMANm+DpWq3u1o80s+s7jccWKFWU9dJIbM2aMtPNFyZens3zroGDWrFneCue4Av/7999/y/5YZ5u9evWS7VjFejCIgMFEEl5oFpuB9+DYsWPG8+fPvXQwrFChgsO6OA6I8WPg41uhHgwyfCPIhHwIazIhzgcMCjGIgZHX+Rlp0qRxOJdSp07tq9wPQkIyNP4kTIDZts7SRhY31PbwGMYHBhqPkcwFkMCls/0nTZrk47b79esnyW9Lliwxl8FQQBnPnXG2ztphbOApwHvCE6E5efKkMX/+fIdkwLAMZugwwNZZNAyv9tRYu+phFu7O2OL4YhBm9Sxg+0gY/OOPPzyqFoDHAmqBCRIkkAGeNvQzZswwfv75Z3lcqVIlcyBQv379UD0gI0RD409CPbgYQ6YVF2fM5jGrx2PEzWEAtGFB/Bpu4/Hjx0t2PAy/J/Hnn376Sf6/SZMmHu0PRG8gOOM8u23Tpo3kGVjFb8j/DqRQaofjazWsKMHDTHzIkCEeHyZUN+C7ihcvnkdenRUrVpjeIlQw6O8aeQGoxsDjzz77TEIa2iswffp0fm0k1EPjT0I92pWM2T5m+qjLx/ORI0fKbA6xYqjOIY6r6+t79uzp0nDDaGNGbq0XX79+vcuBApLrnMv4dN5BYNbth3W++OILOY5W1T6oM2Lg5qonAzwFCPNgAGgF5YTeqSFisIEcBLwPvBHbtm0zc0Xwmu5pgP9H0h8eQ23x2rVrgfCJCQk6aPxJqAaZ+dqdDrc+Lsp4jBp/fbFv166d6RVABj0eo17dO2rWrCmvN2vWzKP31zF71JRbwfb9mmlP/h9I72IAp4E7HscbRtlTrAmfGMg5U716dVPnAJ4ineSH5ErkIeBx2bJlJTegSJEiZs4C3f8kNEPjT0ItuPhCoEV3ocPMHLN9PC9ZsqS5HowHkryQMa5Lt3TGPLLPrbF5lMfBO3DlyhUv74ftb9y4UWafGnQHhDvY08EC8R9QXcQAzhoKwHkwbNgwlyWa+I4h4ONcJqgrBAYMGCDnBMr7rJ0R0TURSZd6MIlkRHh1dBjJWViJkNAEjT8J9e5+JGxBoQ2gbE63aoW6HkrvtKQsZGPxWtKkSR3KAj1VktOJg8gZsGbxIzGNBC3W0j79vUaPHt1hIOeMVUIYYQMoHQ4ePFgSBvH/GTNmlNd0op9ua6yTAEePHi3PcY/n8DhhcEBIaIQKfyRUcuvWLdWtWzd5/Msvv4hCG9TuDhw4IMvQTnbw4MGi7la9enVZpl/T7Vx1e9wbN254+x5nz551UHarVq2aKMJZG+9AMQ8NbkjQYlUphBpf5cqVRdXR2jJ4zZo10oLZup5m5syZ6vr169LWWJ8P58+fV0+ePFFNmzaV13VjnwYNGsg9Wv+CDh06qJIlS0rr5LZt27pVMSQkxBLcow9CfAvcvDo2j5k+YrEArl8sS5UqlczS4ebFc6jfwWVfoEABh5k+ljkr2Onto6QL61qFa5A97m5mSYIXa0ImvD1QeERynndxfqwLtT8k+AF4ilq1auVtoyeoQuqKACR+AjT80eWkixYtCtTPRUhgwJk/CXVgVr9y5UqZdU+bNk09e/ZMZmHQnQc9evRQq1evVrt27ZLnFSpUUCNGjFD//vuvPM+XL5/co82vbutqBXr7CRMmlPvDhw87tIG1zixJyALfp9UzlCFDBvmuEyVK5NBvQK8LDX/dwhfnEx6jte+PP/7osN2cOXOarYgPHjwo95kyZZIeB6BTp05yDhISqgiUIQUhgQRm31Baw6mLTHvMwNB5Dup9Ws8fMXgkf+kabZTbIf6PGC9md9aEPczyoQyIzn3Wcj2d3EVCL5jdQwLYeu4kT55cEvusyzWdO3eWc2bgwIFyDiF5tEePHvIakvvwWo4cOczzBsqFGTJkkOWoKCEkNEHjT0IVUNvDxRYXca2yB/crGshYZWN1O9dSpUqZ/+tKsx9lXFgX7X5J2AWle7qlsXfqf1iG3g66/4PWjsBjlG1iIIll0IBA6AgVJXqbqAZAVQEhoQUafxJqQEZ/5MiR5WK7ePFiczlm7qjh12IsEPrRMVqU7TmD16E7r9m1a5d0+vNNQx4SOoGKH8o1rcDgY6avB5DQFsDMHrkjOqsf55jWA4DyoF4XDZkaNGggj1FOyNp/Elqg8SehBp3klzVrVocGMFpRD/X2cO/jAqyFWpCsBdBQB21hUY+PWRrkZAnZvHmznCfoC6EFfNAvAOiEUYSSoBGBslE8z5s3r/QgQJmgTi7Utf/W/g+EhGSY8EdCBTt27JCkLCThnT59WlWtWtVM3lqwYIHcI2ErXrx4sg7KuJAAiGUY5KJM6/fff5fkLzw/d+5cMH8iEhJAEieSPlEmWLRoUVm2b98+ucc5BtKlS6eyZMkiJaM6CTRmzJiqd+/e8nqKFClU165d5XH37t0dSkEJCbEE9+iDEJ+wlunBxZokSRKJ/WsXq3bBwu1qBa+jcYtu3oKQAfIEoOJHiAaloijhhHogzhM0ZUKp5/79+83wkU4QRPtgPIeypA4d4fzE+vAo4TXfNCIiJLig8SchHrS81QpuqNm2ZutrLX/dhtXKb7/9JstRDaD7shPiCkg+6+Q9nSyqc0l0Lb/uHolmQFplEAMHqAEiPKAb/yD8REhIhm5/EqKBC7VNmzZm/T7c9tGiRVOXL182a/5BkSJF1Lfffivro64fqn9169ZV8ePHF1U+oJXcCPGOZMmSiQsfk6K8efOqkSNHqvLly6vIkSObKpDQiwAvX76UG4D2A9QEN27cqHLnzi2qgkOHDuVBJiEaGn8SomnSpIkIqECUpXnz5urRo0eqYsWKIq969+5dyQMAderUkTh+37591ebNm9XEiRNV6tSp1ZUrV0QMCND4E58oXLiw3GPgCIGgPn36iORv3LhxVZcuXWSAgPj/x48f1bp162TdSZMmqV9//VXyS4YMGSLLxo4da75OSEjk/wWyCQlhvHnzRhL9QL169VTSpEllVgWjjwEBFPu2b99u6vRj1vXu3Tt5jhkbkrMiRIigDh06JMsKFSoUjJ+GhJbBZoECBVSVKlXkORJInz59qn744Qc559KnT69q1qypzpw5o1asWCEeJyj8ffjwQWXNmlXVr19flu3du1fWw71WlCQkRBHccQdCXKHb80KUxVqXj9I+CK3MmzfPLP1Dcl/dunUl3qrrr8GZM2ckQRBtWlmDTfwK6vy//PJLifPv3btXzrEYMWKIMNDs2bONb7/91jy/dPkgbkuXLuVBJyESuv1JiAOu/GXLlplxU7hiN2zYYL6eMWNGlS1bNnG3gi+//FJm+aNHjzbjsOXKlZP7zJkzi8778ePHZR1CfAvOPej4oysgugkifJQ4cWL14sULNWfOHPEWzJgxwzy/4P7H7B8gF4CQEElwjz4IsYIuexBMCR8+vCm+gvuoUaNKZr+zDjtuKMkCy5Ytk+eZM2fmQSV+5tatW8acOXNEOhrs2LFDzqv48eObnQPRC0KXj0Lj30r37t1NJUoIT12+fFnOXef1CAlOOPMnIQp0S0Pynu7XPnjwYFWpUiU1aNAgycTW6Az+6NGjmzFVJPrpeD/4v1LWYPgUJDQzbtw4mc1PmTLFzBXBefbw4UN19OhRWfb999+bIkF4TYNEwJMnT0ruCbxTeA7hH3ivGjRooP77779g+lSEOELjT0IUkSJFkoSr9+/fq5QpU6qmTZuqtWvXSqY12vZqkPQHGjduLEl9AG7XGDFimMb/yJEjUhrYrFmzYPo0JDSi2/zqZFKck2XLlpXHOvyEBFSUnCIZUCeUQlUSJagIW8HdP3nyZFmOxMDHjx/LaxhAEBISoPEnwQ5mQ7os6v79+2Y/9W7dukmZHl6H8ccMH9n+nz59Muv7kVGtGT9+vJQCalnWLVu2qAcPHsiNEE8pVqyYDCivXr2qrl27JsvgfQKo5QeI/1euXNk07hisYkCAfIBdu3bJOVi8eHEZSOD8hYTwnj17ZDBKSEiAxp8EO/3795eLJfTRYfjhMsUsvlatWvI66qyXLFmizp8/r1avXi0lfnfu3JFZfpkyZRy2hcGCruuH8bcm/xHiCXDjw/sE/vnnH7mHtgTYvXu3mVSqB56Y6WMZBgzQo4DHSoMBLDh48KCpAQDo/ifBDev8SbCDWRSMPWr10XwHtG/fXiVPnlweJ0yYUC6wmIVhQKAbqqAWG+preoAQJ04cc5uYie3cudPWxh/HAOGR27dvq3v37smgCvXoiEPrG4478iswYMI9bhhUJUmSRG5QSIRBsxuYsaPBDwaQ33zzjdT3p02bVlz3CAegyU+1atXE4CPGD/f/1q1bZYCKRkAaDGpRGYDvQYetli5dKmJU2E6CBAmC8VMSOxMOWX/BvRPE3kA8BfKpcNnjooskqrlz54rRh+vUGSRSobPfvHnzpBsbTmEYKhgt5AdkyJBBxIFKlSolF1dceMOaAcPMEYYGxwHGHTd4Q/QNz3E83QHD79PPH4MBGC89GIDQkn6MBEwIK+H1sAaMPnJH8DlRKopj9fPPP0tcHwNT7RlALsC2bdvUqFGjRAjICspLIUmNAUDHjh1FHfDs2bPyv7iHl2vYsGHB9AmJ3eHMnwQLmIHCsMDw4wIKI4KkKIDnUEqLHTu2JFNZ3agXLlwQg4f/1bH9U6dOycwW+QB6Xe3yx7ZCu+GHoYexwLFAO1ncI5lRzySRkGY1zJA+djbWMNAYVOnZPW76uGD7Vm8AZrHWgYR1QIHZMB4jN0MPHPAeyMew3vCeoT3uj+OFz4pzDtoSqDhxBq5/GH94pqzGH3kpqBjAAADeEz2IQH7AhAkTRMMC/ScICS5o/EmwgPKnS5cuqa+//lodO3ZMZlR6poocABhzuFqdE6S0lj88BBgcWDOwS5QoYYYB9DI0+QltoB8BPBcw8rihvOz169fyGo4JjGuNGjXkPmfOnCJB6x8BI7iucdPHDmWUqVKlcvs/GCTAW6MHI7ihRE5/hxhs6IFA/vz55fuCZyY0haL+/vtvlT17drdJejD+nTt3lhATMvlh6AEGVgsXLpRE1TFjxoggFfoE4DEGVxcvXlR//vmnateuXRB+KkIsBKvKALEl169fNz7//HMRQVm7dq2xYsUKo2HDhvK8cuXKss7Tp09NQRUrxYsXl/XGjRtnLkNvdSwbM2aMPIfMav/+/aX3OgRbQjr4nJCM7d27t9lCFreMGTMaDRo0MIYPH25s3brVoZVxSATH/erVqyJpi89SqVIlEcbBZ4kUKZJRsWJFY/z48Q5iTaENfFeHDx+WmyZnzpwOktLece/ePTkGWK9du3ZG2rRpRfwHxwytqB8/fhxEn4CQ/4XGnwQ5uOD9+++/xogRI+Q5lM/0hREa6q64f/++qfwHIwNgEHUf9YsXLxqhhZcvX8qg57vvvjMSJUok+x8vXjzjm2++MZYsWRLiDb1vvmt8LxiYlS9fXhTv8Flz5cpl/Pzzz8aBAwe8HeSFVIYNGyb7D51/DT4HltWqVcvt/+pBaqlSpYxnz57Jso4dO8oyDPIICUpo/EmQM2DAALkAPnr0SJ6jKQougOHChTNu3Ljh8v8wQ8J6uXPnNpctXLhQlmXJksUI6WDw8scffxjVq1c3PR+ZMmUSOdidO3caHz9+NMI68OjgO2vUqJERJ04cOQZovPT9998bq1evNt6/f2+EJGbNmiVGe+XKlfL84MGDss/RokUz3rx5I8sOHTpkSlC/fv3a5baqVq0q62EAC08A2Ldvn5wLkKtm4ykSlND4kyAD3c7gLtWd99CVDxQsWFCeN27c2O3/Y2aF9fr162cuw/9g2Y8//ijP0XVt+fLlIUZHHbPaTZs2GfXq1TM+++wzufBj4AOvB7oT2hl8V9u3bze6dOlipE+fXr5HeEF69uwZYrw4uodE06ZN5TkMdLJkycyQlV6WIkUKWfb333+73BYGd6lSpZL10LESoC9F9OjRpYeF9mYREhTQ+JMg4fbt2zLTg+FfvHixMWTIEFl+5MgRuRjCMOrZkHdgRoWZFdbFTEuzceNGmTXq5j66nWrSpEmDdSaFz4LPiNiu9kyMGjXKePDgQbDtU0gG39XRo0eN9u3bG7FixZJjVrZsWfESBKc3YNu2bWZIRntm2rRpI8tatWplroc4PpYhjOOOyZMnm82n8Jnh8UEIpEyZMnJucPZPggoafxIknD9/3ihcuLCRN29e49WrVzKLR6y0Q4cOcjHEzNgdcAljPcyw3F0g9YW5RYsWRnAAzwZmichhgDsXMXxc4HlR9xycH3C36+RODOQGDx4cLAMnDDx0eALd/cC6devM/dL5ChiE6i6U7sI3iPXrQWzLli3lfvTo0fI+ly5dkgEPulMSEtjQ+JNA5+3btxLXP3PmjMS9V61aZWaA6wsrLqju0BdKzLBcgQtx4sSJPdpeQIL3RYZ7iRIlzAEKEsN0TgPxX4tnDOQwkMINM+sTJ04E6SHVoSUk5+nzGa56LEPiKnj37p0ZztKtgF3RvHlz0xuE+19++UWW9+nTR54nT55cQiKEBCY0/iTQ6dGjh1zUUqdObbpwkf2ts6QR53V3sbMa9Q0bNpjLETfds2ePOdPCDBvrwG2Mi3Fgg9k8BhlIQMT7wvj/9ddfvHAHApj1I4yCeDsSQ2GQUSoXFOjBKhIT9blWt25dWYaSUg0y9q35J67AOYv1MJjRiYQACYRFixaVigh4EggJTGj8SaCCGTBctiVLlvRSxqcvoEj4cgcyorEeZlbaqMNFimUo89MzbB1C8ClxMCDAPunSLbind+3aFejvSf7XDT9p0iQZDCJPBLNxd7kiAQFm+joPAQmKACWKW7ZscchH0JUnqODwadAIDQdnbQAMcuvXry/LcS4TEpjQ+JNAA9nLkSNHlosZYvEw9riQAoia6Np+JHq5o1evXrIeLozO9daIkQJchBMkSOCQhR0YIHShqw4gyINcBMbzg0cnAYNKDAjhgkcFSGBWeCCptFq1aiLG5C6ejwEJzg2cJ+6Aq996/mLWj98HwmBIDMU5hSRZnlsksKDxJ4ECjDxmR1Diw0VTXxSRyGXNeoY6mk9ky5bNoTQQQL0Py7AdgDgrnmMAEBjxUugPIN6MUj2Ua82ePdsWdfkhnYcPHxpdu3aVQSa+e4ST9AAzIPHUCEPFEOfh0KFDfRwYa20LKB4iyRElrxgQo1QVqo5RokQxFi1aFECfgBBHaPxJoABXPmKXEyZMkOeQp0UsVF9EEdvExQ8XOXeg3hvrYVtaAlW7/K1iKeDKlSsOOQEBAWZzEOFBfBZStcjMDgzjQvwHDGizZs3knEBuCQaKgT1rvnnzpugAYMaumThxopybMOQ+Ab0HrPvrr7/Kc5zLuqIAuQQ6KdCnBEJC/AKNPwlw4ILXrnEkS7ky6LhQ+6S9Dxeo1T0KMKvCsnLlygXqt4ekK2TuozQLyYlakpWEXE6dOiXSuzg/oKgHAx2QYMaO2D7AuYuZO95L9yu4c+eOuQw9LNwBtUesBy+Wd2GN2rVry+vp0qXjgJMEOKG71ykJkaxbt066u6G1bMGCBb28PnfuXLPjHtrBukN38UP3NM2SJUvkvl69enL/7t27AN1/tAZu1aqVqlixorRyRcvggQMHqpgxYwbo+5CAJ2vWrGr58uXSkQ9tj7Nly6Zmzpxpth/2D9euXVNp0qRRjRs3Vg8ePJBzt1SpUvLaokWLzG6GaAcMli1b5nZ7tWrVku5/6Ih4+fJlh9fQ+Q/dHfEeI0aMMDsuEhJgBPx4gtgdLdeLW4ECBby4X3XnOndd0HQ8VzfygUsfoOENSgOR5Q/NAGwbeQPQyw+I0i/M9lOmTClJZMgqZ8JV6AVhoiZNmgSoFyB//vyyPd2USueuQLxK8/vvv5ulnz4BjxbW/e2337ztYwFlQZQ5Qu+AkICExp8EGCh9QmY+1PxQ84ySJyyzgtecS/RcgaQ675ICkWgHWWBrbT9c82ga41eQKY6Mbh1i0IMNEvpB6AmlgSjXw4DTPwM67arPkCGDbAeGWXeV1L0aEALQyXwIA7jDXY4AKlpwfuO9UNWAbblrHESIb6DxJwECkuAQm8SFDF37gHfZ8LpED+1dfaJOnTqyLuLtrkB3OP/K+aLxDmb76NSGi3FoajFLPAMDTa3Uh+oTn3JNXPHixQsjRowYsh09sK1cubI8HzhwoLkePF5YBu+RO+7evWvmCHjX2AfnIqpdMHCB8l+3bt38tN+EOEPjTwIEzIKmT58uTUrcJcZB3x8XOl0F4ArMcGCMrRKqmJ1by/gw69JaAWi16pcBi27IgsYqQaUYR4IPKOrBCxA7dmw/l9G1bdtWzhmd5Q9vgs7M114FnZTqySBXZ/3rTn/OnD59WqpitHQ0ygIJ8S80/iRAwAwFpXCo59e1/M5gtqVzAXyKv65YsULWw4xcX1BRKogLt84V0BdExGF9C2ZcKDdEffj48eM527eZFwCNpHDu9O7d29ffPeLvOnQFFz/CTWnSpJGyP10GeuHCBXMd5K64A1oYWLdIkSLevo4SQD0Qnjp1qq/2lRBX0PgTfwP3Plzn2rC70iXHbB+vY/bvEzpRCxdU/R7oooZl6HqGC7buAe/bCyJaAsOFCq12yPTaFUjV4jgA6OZjEIVER4jl1KxZ0zh79qwRVsGAEiEouNxr1Kjha3VA5IXA/a+1+b3LI0CuCs5PeMTcYS0ZdFUeiLr/L774wvjnn3+CpG8FCfvQ+BN/sX79eiNr1qwiqYvHUFtzBVyguMDhousOXNy0ljoSnvT76OxnvI6Lrm7ig5poT4GrF8ppMHQBXQMe2vjhhx9EdhlUqlRJMsxPnjwpcsvIjofXxTfHNjQCeWYYccTVIR7lKdCq8CnBFLkvOsfAJ4oVK+Y2HIbBLjpjYh0kwqI5EPIPCPErNP7EX+h4pU/NeeBqhUof1kXGvzswkNBd1LRLVndMa9++vZkTgGQqyLl6ArajW6Y2bNgwTGdNQ+dee2Gcb/i+NEjQdNX6GGWUWB8zzbAOYurwIsWNG1eUKP0KvFPwekHWGmAghWOIvBSfBKLgecG6KFl1tw5KXxEewLo//fSTn/eVEBp/4i8wu4GeOZLv3AG5VVywMMPyCWjoY10kVgHMsCCva03+8w1w6cKNDdcqvA5hvXYfM8KWLVuKkUB5GG7wyODY6/JKGCbMeF25kHXM+sSJE4YdwHGBZwoxesy+PT1HsB4keaFqqSV5ca7p11Du6tyXwjtQuqpLVtHkxzugcQGPg+6GibwFQvwKFf6Inzlz5owaNGiQ2rhxo+rTp4/68OGDy3WxDqhatarbbX78+FGtWLFCHtepU8dU9Hv79q2ot+XLl89Xam1QSStatKjaunWrqL79+OOPKly4cCosEz16dBU1alQVKVIkUZzDDcsiRoyo4saNayonVqpUSdZx5tOnT6pz586iVJc9e3ZlB3BcoEzZoUMH1a5dO9WmTRv1/v17H//viy++ECXLv/76S3311VeybM2aNer+/ftynulzeOnSpW63kytXLpUkSRL1+vVrtXPnTm/XiR07tkqbNq35O8ucObMfPikh/wuNP/ETL168EOnbunXryvNt27apCBEieLsujLU2/pDMdceOHTtEGjhevHhyUQUzZsyQ+6ZNm6rTp0+LZKte5o6jR4+KvDAGDvv371fVqlXz9ecMq8D416hRw9vXYPxOnjypFi5cqOwEBke///67mjZtmpo+fbqcL69evXL7P4UKFZL7kSNHqixZssj5hgGslrDWxh8DC3fbwkChSpUq5rru1ps0aZKaP3++6tatm58+JyGCn30GxLYgCQwld4jDI0kKsXd3NdPHjh0TNyUS7Vy5NJ1rqOH61yABDcvR31wnPaFxkDv2798vtdwQW/Gp1Cos0qlTJ4f4PvIAoMEAcBxRkumdwiJ0D1ABYHfNg23btkl5HSR63VUCINyF8xrnJDpK4regw1tw++OGLoNY9tdff7l9zyVLlsh6mTNndrsepIBRlYFSV5zbCxYs8PPnJPaFxp/4Gh2/T5s2rcQ6fULX41epUsXHpDwMKrAukv6cuXHjhhgtvO6uRG/Xrl0Sz0Ydv38kf8OS8Uc8Wht/SNRaXwMwUjD8KKf0KSHTLqCVLmR1UZqKeLsrUI6KcxLnG/oJ6PyUvXv3yuvIt8BzDJbdgffQUsHuBl9TpkyRdSpUqCD7hyRA5AIQ4hvo9id+chnnyJFD/fTTT+qzzz7zcf0NGzbIPWLM7tizZ4+6e/euihUrlipXrpyX14cNGybxTnRS0+5WZxB+wPsgNwDvi20RpWLEiCHH9vz582rVqlVeXP5w9cNVDXeyXhe3N2/e2PbwIVdky5Yt6ty5c3I+IhzlHd27d5euezh/0UlQd5ucPHmyg+t/9erVbjtQIqavOwK6c/1//fXX6p9//pEcFoQYkKOBToaE+ApfDRWI7YEgCdyhyJyH6Mjff//trYa/BlKkUNHDqYaSKnfoGRQ02MHcuXNF7AcZ/qjJ11K+rsqxUJYGFyyqD+wugeo880d2P7oh4vhhZopsfiuuSgNR+293EHaCeiU697nyAKAEVZdSYsavlSfhzcJNC1Th9+KOX3/9VdaD8JAn4DeDMI13njJC3EHjTzwGRh5GFQMANBjBRQpqcO5c/6gj15rk7sqn8BpEZbAupH2trYFRntehQwezTap328EFF3FQKK+F5Rp+/7J06VLRoCe+HwDEiRNHQgDe5QAgJIXBKeL1yANArb/1PNWDA+SsuAMDXayHfBV3g2pr/g3FfohfoPEnHgNZXSjsoZc52pdC2AexZJ9U5DzpuoeLJdaDVwHG+/Dhw/IcMX54DLT3wLlFsJbrhdJf8eLFw7winX9BUhpa3BLfA8OMGHvJkiW99SzhdVcGGwmEOH8xgHA3WEbjKt01EL8Bd6AnBQYba9askfddvnw5BwLEY2j8iUfAqEICVjdD8ZR8+fJ5JHKCpj1W4ZJWrVrJ86+//tq8eMLF6TzrP3XqlCizwUvgk4oaIf4FsroYoCLZzhONffxu4BWAcYaXzF3vCw2klbHe77//7nY97U1o1qyZUa5cOXlcu3ZtX38mYk9o/IlHoEUpMpGRsYxSMU+AexSZyO4algAYdEjNYj2UDOL/4MLHcxh9V6DMCRUH2bNnlyxrQoICnJPwSLVu3drb1+G5Qnhl8eLF4inQBhmqizinMbB1B8JcVqVAdyW00PnHua/DcMjFCcsNmUjAQeNPPEJr6+NigyY7mHH7JIEKFzP+B3XOPsVTdSIa4peTJ0+W55BGdaULANcp4vsIQ9i9Jp0EPdOmTZNzdOLEiQ7Lcb7q3BUkrOq2vkhY1c2pEiZM6DaeD40KHSLwtN0wwhBffvmlJHraUdeC+B4af+Ij+gIElydikjpzefPmzW7/D41HsB4y9t2hG+7g4oUBRe7cueU58gngKu3Vq5eXOCkSANEoyJ1ngJDABIYW56Bz9Unz5s1NXQvkoehzGWECJPL51DAJvzHt+cLA2FPCes8KErCwzp/4yKxZs1SBAgXUnTt3RNY3Z86cooWua5JdoTXKS5Qo4XY9rXuOeuj//vtP1a9fX6RS8X4PHjyQmmZIr2qmTJmixo0bJ7fSpUvzGyTBwogRI+T8g8T15cuXzeW9e/cWqWvU6ms5a5yz4cOHN/UV3Gn941zXvy2c++5AL4A5c+ZILwbdswJaDvidEuKWAB5MkDAGMunLlCkjs5DBgweby31S9nv79q2Zoe8uBonwgc7qt6rxoZxQK6VZE6QwY8JsS/ehJyQ4gUQy2gFDztdaAvjNN9+Ys3+d6IdqmZUrV8pj1Oa7c+nren+fZKwRJtOql1D5Q/IfHsPjgN8WIa6g8Sdu44gQN8HFq2fPnsa1a9c8PlqQ2NXxTXfuyIEDB8p61apV81bwB21p9f9fvXpV9qd06dIeyQoTEhSgFBXleRDm0QYdEsk62bVp06amHC9yArRL351ENdoEY50kSZL46M5H4iFCY6gqQBmuFmjyKdxG7A2NP3EJ4o1IXkqTJo3EIWFwMaP3tDrAk9KjnDlzynrTp0+XxicLFy6UQYae9SNpUM9wsC6SByGiQkhIYvXq1ZJpjzwXDYwvzmGU4eE1DAZQKVO/fn1Z3r17d7cDb63zD6PuKSh3RWIhPA6ulDAJATT+xC0w+BD00Wp9kM/1SaUMwF2JCxea+rgCsyOsAzc+DHqGDBnMGZJ11o9b3bp1pb76+PHj/MZIiESX6KHED+B3AwOOkj1UsKADJsDrujGWu1m9Tnz1qRsgIX6BCX/EJVeuXFFt2rRRly5dkud79+6VRi86scgd//77r9wjUdAVOumpTJky6ujRo+rChQvSVGb//v2yvG/fvvJeSGj666+/1MyZM6WhECEhETT4QVOf77//Xt2+fVtlzJhREgFXrFihWrVqpdKmTSvrValSRX3++efy2rFjx1xur2DBgnJ/4MABH98bzX2OHz+u7t27Zy57//59gHwuEkbx05CB2CKOqeOHSPgDmKWgQcyZM2fc/u+dO3dMwRF3vdDR+ATrocUswgN43LZtW4ntDxkyRN4PiX8oj9LNfggJyaDGHg2Uqlev7nJWjxAaylpxvqPM1SctAef2y95Rp04dWXfMmDGSd4DfC/IQBgwYIImGhDhD40+8gOx8XEiQwYysegj7+AZ0LsP/Z82a1eU6V65ckXUQB4VSmY5vnjhxwlwHF08kAiZOnFiyqgkJDaAxFc7lWbNmmcugcInkVoQAMJieM2eOrOOuyRIG2rrfhU9NflCJg/XwHgD9B3TiHyS2CXGGxp94ARctdCjD7MUv9OvXTy46KHdyxciRI2UdZO5jdoLH6JhmZebMmbKcjWhIaAMzb3is4Lm6f/++mcCqB7noQqlL9Fy1uobB101+fMp1QQ8BeBQ0O3fulMS/PHnyiDfAkw6BxF7Q+BOX7kudoASWLFki2clQ+fMJ3Zhk3LhxLtdBMh/WGT16tJEsWTJzhgN3KGb5kENFpz6WK5HQCM5heKzguYIHCw2rcI7rcx3qgMjIx+NBgwa53I7W2JgyZUqQ7j8J+zDhj3gLkoegtocBIkDC3fDhw9W2bdt8yiExk/3y58/v7Tq3bt2S5EFQvHhxlSZNGhU1alT16tUrde7cORUrVizVsmVLWTZmzBh+QyTUAQXMP//8U61Zs0YUMn/66SdZjkRAgGVffPGFPF62bJnL7eTLl0/u3SUGEuIXaPyJA8jmhwFv2rSpZCtv3brVlN5F5n/58uXdHrGbN2+KJC8kSnPlyuXtOvpiV7RoUbm4bdq0SQy9lkadPXu2SKPi4hknThx+QyRUAuPepEkTkd6NFy+eqly5svy2UNHy9OlT9fHjR5H8PXLkiLp+/bq324CUtqfGf8mSJapcuXIySAdnzpxR/fv3V5MmTVKbN282B+WECMHteiAhB8jrogUpXO9IGIISGWKJvhU7wWmFNruuQPYy1hk1apQ8//PPP+V5ihQppEMf9gGqaISEdtBuFyp9WnRH61poHQvd+MdViAzJsHgdITCflP6wDayLsBuYN2+eqRLoieAWsRec+RMTzMCfP38urnc0FHn48KGKFi2ar47QyZMn5d5VPT7qkHfs2CGPU6VKpe7fv69Gjhwpz3/44QfVpUsXFT16dDV69Gh+MyTUA88VPFjwZMHlj9p9PeNH6EvX8q9cudLb/8+cObN40Z49e+bSO6CBfsD06dPV4MGD5XmpUqVUgwYNVIsWLWQ/kiVLZobxCOHMn5hgZnHkyBEvrXohL4oEPE9ahiLL2bkJkBUoneF11PhjRqJnQZjZoIEPHs+fP5/fCglToMQPMtmLFi0Sjxpm/BMmTDAOHz5segOePHni7f/myJHDX1Uv+N2inTAhVjjzJyZQ08udO7cqW7asw1H5/fffVfLkyVWvXr18PFonTpyQ++zZs7tV9cPraNmr1QKhgDZw4ECVJ08eaelLSFhiyJAh6tq1a3LOYwaPdtdt27aV8z1r1qziDVi7dq23/6tzZ/ya9IffWKRIkfy1/yTsQeNPHHj8+LFkKiM5ScuDIhQANyXc9O7ABQxJRq7c/ugxvn37dnmMiyBAVv+ECRPkArhr1y7166+/ynsREpbA+Y0kWrjk4ca3UrNmTbeuf530hwocn7hx44ZatWqVOQjXv+nDhw/LY4QeKPtLBAc/ALEtv/zyi7TtnTFjhrgY06VL5/A63IavX792uw3I/up6fe96laNBiW5oogVO0DkQAiRIEITgjyehBUJCI1D5ixw5stG/f385zyHCg1a8OlQGQR/vumZiPbyeOXNmH98D7X2tssE6rIC23F988YU8RoMuQhyHoMSWIAkI5UCov//777/VwYMHpRTJiiduQ6vL37vZ++rVq+U+ZcqU0tQELk+4NFHah0TBffv2edQ0iJDQSIoUKVT79u3ViBEjRENj0KBBshy/lUSJEkkyLDxjlSpV8pL0B9BgC941Z8+BFfz28ubNq+LHjy/Ps2TJoj777DPRztBls/h9w7NHbA7HPwSyoHPnzhU53jdv3vj5gGBGg1OqefPmXl7D7B6zD7yePn16swQJCVCpUqViGRKxjXKmLmVF4yutvw9pa9yjl4Yz8KJpeeALFy74+j11cy0k7t67dy9APgcJ/TC4SmQm0ahRI1EdQ6tRK0gyQgLeb7/95uORQkteAHEgZyAwAvGfmDFjyqxfx/3R7hRxSl2eREhYBmI/P/74o1qwYIEqXbq0uVznwCDu71yOB89AhgwZ5PH58+d9/Z4QFQJI2k2YMKE/PwEJK9D4ExO4IocNGyYZ+R8+fJBlp06dUosXL3aZiWzl4sWLcq8vVFYQTtC1yHPmzJHHsWPHVhs3blTNmjUzXZuEhHWg+IekWmuIC5UAGHgjIU9rZVjJlCmT3EODg5CAgMbf5mCWAWOvS5B69uwpXoAIESLI65DfHTVqlGTle2r806dP7+U1PXioVq2amj9/vjyGwYeePyRICbELEM7q27evSGdjNq5JmjSp3G/YsMHL/2hvmiczf+QMYLAAjxo4e/asatiwoUgNI96PqgPda4DYmOCOO5DgBe1EcRpEiRLFOHfunGQef/31136SMdXxS2dJYMQZ9WvIPtaxzjhx4hjt27cPwE9DSOjg/fv30uEvb9685m8jfvz4cl++fHkv6+v21mXLlvVx2ylTppR19+3b5/Abh7jQsmXL5DGEg4i9Yba/zUEcHnXEyDbG7EK75H2LnvUnSZLEiyTwli1b5B7xRjQIgrcB74UcgY4dOwbApyAkdIEMfIj8QNgKIASAcBkktSEA9Pr1a7PZlW/d/lOnTpXqHGgLAHTNhPcOOh1FihRR/fr1k3tib8JhBBDcO0GCH5wG3pXZwagjFonBAS5YroArH+GCEiVKmNr9mubNm6sZM2ZIsh8EgwDcnSjz0+V/hNgNGHqU/+H3gVwbDJpTp04t4TeEyZAfY103QYIEZudN58RcQnwLY/5EgOH3bhz41VdfyQUKLUH9kuyHbaJhEIDhjxIlijQcQevfTp068egT24JafAyYkeEfOXJk+Q3qGn/nuD+qBLQnAL8dQvwLjT8xqVChgiQdrV+/3sF448KkRUNcgWxlgJmLFbgpcbHSCYRI+MO24JIsX748jz6xNRgAQ1xr+fLlUmGjq170gFmDgQHEsYBP3f0gBgSJ30OHDpnLHj16JCJaCLUhpHDgwAEvHjpiL2j8bQyygGGskQUMkB2MrH/MzjVHjx5Vb9++Vfnz53e7LT0bgZfAivYY6G2WLFlSZjqtW7emmh+xPeiBUaxYMYn9Q4Wva9euckxOnz4t+ThWPDX+8+bNk34BaCWs0XF+aHmgvLZQoUJSckjsC42/jUETHszYMQgA//zzj8wWUN7njE+yu9r4W0uXwLZt2+T+5cuXsg28J0SFGjduHICfhJDQy/fffy96GojlWwfKaHTlF+OP0BuMe7Jkycxl+F0i4Q/bhgQwcnh0aSGxJ0z4szHQ78fM/tOnT17a+PoWzFoQ04dx165LhAyQ/Q/Ncg2S/mrUqOHnqgJCwhpww+N3AuOvxbUAZuZop61BLwDoA3z33XeS0U+If+DM38ZAYQ8So64MP4w5EpLgondXFIL1dBa/dbaB2CMMP2b6yBvQ63oiGESIXUAiH0JvOi9G4xyT1zN/nV9DiH+g8SdmQtDo0aMlXqiBqx4lfJhluHP7I2FJz/61jjjYvXu33GfLlk29e/dOBgFQ/0M5ICHk/8GAGLk1VuCVe/bsmRfjr5X7CPEPNP42BoZ9zZo1IrGL2cQPP/wgTUc00aNHl/pjn5ruuIr365gltgMwgKhXrx4T/QhxAkJbadOmNVth4x7huD179pjrIE4P7t+/7/b4Iau/cOHCIumrQV7Pl19+KZoCYObMmZIAiN83sSdU+LMpcOOjoc779+/V1atXRWAENf1aSETH562DAVegGQlwTiDSM3+doIR45hdffBHAn4SQ0A8GxsjQnzhxonjJYPj1b0iL/eiOfE+ePJHfkivRLby+f/9+h/wBDPBRZaMH6BANwiAB6n/EntD42xQkF6GuH6V9iRMnlpg8uvf5BVxIgLVdKMIISP6zuilR31+wYMEA2X9CwhpIhEWCH2btEPWBV85aq49OgNojgN8ckgS9A9U66KKJMJwGJb1//PGHihMnjjyvVauWhODgbSD2hMbfxklGPknrfvz4US4yOmvfFTD0ABcsjfWiBTC4wMVNuzUJIY6g3h9JuBUrVlRVq1Y1jb+W3sZvBwNouP1xc/WbxCC8evXqDsvw20RJoSZdunRyI/aFV2LiEuQB4AKjm4r4NPO3qgAiWUmDCgC4MmH8CSHeAzc+jD7U+ZADgARZCP1YE/y0d82nuD8hPkHjT0wtcRh6JAWZJ0f48DLj8EngRxt/68z/yJEj5mPkAmDmTzlfQtyDnBgMnIcMGWJWzli9aNr4O6v/WUF5LX7P1v9Dbs/x48fViRMnTK8eugdCVljnFxB7QeNvU5YsWaKyZMliSnz+999/6u7duw5NQ5AMhAuDtdzIU7e/deaP2n4YfudWv4QQRypXriyD7l9++UUS98DBgwd9NfNHkiC2Y22chaRcdNFEPoE2/pDarl27tpT0EvvBmL9NwcUA5T+4IOh44+HDh82yPN/g7PZHZrG17zged+nSJcD2nZCwCmL+RYsWdZD2tRp/vK7VOV2B3zB+19YOmxhQIPymc27giYPML1oDYyBA7AeNv01BvT0uEDr7F5nBefLk8dO2Hj9+7DDzh2vRWRHQOQGJEOI9devWdTD+J0+eNB/rUIC72ToSBnGzAoEgq1cPoTwdAiD2hG5/m4L4PqR99czfFb1795YsYXduxhcvXjhcmLTLX9chI6uYTUQI8QzngTK8dPo3pj1z+jkhfoXGn5hxeUj7zpgxw+GIQNp3ypQpDs15rGCGj8YkunwQaJe/FhnBIIMQ4hmovXfOj9G/KT3ApvEn/oXG36agheiKFStMlyJc92iz265dO4f1EKtHr3FrGZ8VlPBpF7++YF24cMFhHciIEkI8Ay55xOO9M/565u/O7T9+/HhVqlQp9eeff5rL/v33X1WnTh3pCqhBZQ/WQwMuYj8Y87cpc+fOVUOHDjXbhiL2j4x8SPoiw18nBvXs2dPtdvSs3zrzv3jxohfFMUKI5yATHxK9GiTnejrzP336tHQEhGG3Dh6WLVtmdt8E6BuAkkGofRL7QeNvU1KlSiUzcsh+6oS/TZs2+Xo7yOwHkSJFElESZA5fvnzZfB2DCHT1I4R4TqFCheQes/WlS5eaxt+TmD+8dwi1WcW5sL1JkyY5SHBPnz5dDH+KFCn41dgQGn+b0rp1a7n5BFz6KOVDr3FoizvjHO9HEx8d64fhh364qwYkhBDv0d4yuP9h/LXbP0qUKHLv3P7XCgbbzgNulP1ZS/8AK3DsDWP+xC2YRWC2MHbsWG9fdzb+Vpc/cgDKli3LI0yIHzxzGGxrAS3dGRODcC3KRYh/oPEnJvAEoOXnokWLzGXo+AdcqfxpgRA9u7e6/OGaZLyfEL8l/eXIkUP99ddf5u8PSX6eGH807Dpw4IBDS18k9mJgDplfgNcQ5sN6lPe1JzT+NgUJQZD6bNKkibkMyUC3bt1yEAPp1q2bZPQjKdA7nMV80CLYCo0/IX4ja9asIrmtwW8TeTXujD8GCOgPgBg/freapk2bittf5/WgugdCQFrul9gPGn+bggsDsomtGvwQ9EFJUMuWLc1lcOcjmc9TrBcrzF6Y7EeI37Bm62vj79PMH8a/QIECKmPGjA5S3cgVwG8Znj0ADwA8CxhgsM22PWHCn02BlC86elmV95xriz1Bz/x15z+okWkSJEjgq4EDIeT/gRF3Nv4w1u6MP8J0cOU7A7lgq5cOGf7o8kfsC2f+NgWiPRD5KFiwoNv1EBvs1auXhAc8qQe2KgHqWQYhxPdAj9+3M393eNKem9gHGn9iAlcgyorQS1wnASHGOGbMGBEFss7qXc38rT0AkLFMCPEb+O2h+57Gu98fIX6Fxt/GIN6/ePFi86KC2F+DBg3UTz/9pG7cuGEa9a5du6qRI0eKEJA7MBCwxvyd64oJIb5Dt/DVGf+6vh+teL0Dip0lSpSQjH8N+nVUq1ZNzZkzx1yGBF6U4VqXEXtB429j2rZtq+rXry8yn3qmUbt2bfXNN984uBUHDRokGv/e6fvrEj+EB6D2Z80wtiqMEUJ8j/U39+TJE/P3ZfUIWEESL+L7VhGg3bt3q7Vr1zr03MB627Ztc9mwi4R9mPBnY/Lnzy+zfa0aBhYuXOirbWhxH4j9WHX+QbJkyQJoTwmxJ7lz5xaFTRhp/L58Mv6TJ09WZ86cUcWKFTOXdejQQUpurfk98O5B4Y+luPaFxt/GuFLt8w4ojaGG37kiwGr8tc6/JkmSJAG0p4TYE/Te0F446HD45PbPlSuX3HxahjI/3Ih9odufeItV0Q+1/3A/Vq5c2ct62vjjouTcZtRaRkgI8T0YQMPdrxUzfZr5E+IpNP5EEvV01j5cjMjSR42+vtDoxD3kBDg3FNHGH+iLlJxY4cOrePHi8egS4g8SJUpkzvzRflf//rwz/pDwhRywNbZ/6tQptW7dOrNHALh06ZJU9Vy9epXfjY2h8bcxKOcrU6aMGHqd+AODjRk8Evh0JzFkHMOlj4uFs7vRmi9gNf74H9YUE+I/rHkz+A3q0Jp10K2ZNWuW+uqrr9To0aMdllWtWlX16dPHXLZq1SpVt25dSeIl9oXG38Zgdo4yP8wKtMwvDDaygOH2z5kzp7mudxcbvQ09IIBeuIZdxwjxP9bQGbxz+jfmnVcNqn1I6oOuvyZOnDgi9WtdhpJdJPpZlxH7Ec5w7sxCbAUMPVqHQoNfNw3xLZAUhecAtcM//PCDLIM3wSr4Q0hYYsKECWr48OGia4FkunHjxvmolukXnj59KgZcu/rRYnvUqFHScAvv7ym4zNMTR6xw5m9z4PbHxcsnw48QACR+GzVq5OW1hAkTyr014c8aDiAhl9KlS6uZM2cG926EKtDyGi7zfv36qcOHD8vvp1KlSoEy2LX+Ln2a+buDhp84Q+NPvICLDGYy9erVMxX7cPGAxO+yZcsc+oTrWb6z8Q/MbOT+/fubOuXONxgzQgITzLzR+bJZs2bSaAe19QiLTZ8+PcDfy3lQrhP34K2z8vHjRy//axXcskp409lLAI0/UZs3b1Y9e/ZU165dk6MBIzp16lS1ZMkStWPHDlmWPn16NXjwYDH+zmjjjzpkTWC2CYXLExffIkWKiPYAbpAgRujCu/0jJKCA8Tx06JAqX768w7mO53v37g104+9q5j9w4EAJvyH0poFUNyp1kO2vGTZsmJQPWtcj9oQiP0QuHDt37hQD36JFCzkibdq0kQtN3rx5zQtc7969vT1a2u1vNf66MVBggD7lmGmhXTAueHoZLpTOMyJCAhKUwiKZFSV4VvD87NmzAX6wdRc/PfCAVK8u17Ny8OBBybvRctuY3UO2G8us/QH27dvnsB6xLzT+RMqD0qVL56DF37p1a4+PjJ75W4WBnPUASMgAHRtx06BNMwxC+/btzWWnT5/20k6WBA+uYvXWEkAYemj1Y90CBQqY/4c8Hej8WyV8oQOAgQJ+78Te0PgT0f72BMT6URKIWcfXX3/tZeZvNf6YlZOQBwZ1yOXQIIGzTp060tBJQ2VG10DpErNx54Y4eK69UAGJKw9aqVKlHOL9SD7EIA69AKwlfejmZ80BQFkuuv4Rwpg/cQncmwgH6K5/yGZGORMMhtXQ61kIFMg0PrX/DWiYzewZCIsgvKNvqMrA4M26zK8ln3YAg1rMpLds2eJgoPEcOSgBjTW5Vpf8wYBbZ/5w4Xfs2FHNnz/fTLRFg64TJ044JPcNGDBA1DuRz0MIjT8xQeLc8ePHzedjxoxRJUuWlJwAgAsOcgCqVKniIOiTJk0auYdgkDU+GZTEiBFDKhPOnz8fpO9L7AfK/KZMmSLqeeigh/wYKO8h+z+gsWbxI69F/w7dDXZRdYO23BDpunjxorkcA/kbN27QK0cEGn8iLF68WNy9bdu2NY8IZEExU0yePLk5g0C8cPXq1abBB/qxNeHPuzKjwAR11kAnKBISWNSvX1+NGDFC9e3bV9zsCIWtX7/eSxJgQBt/rbLpHK/fuHGjw28PSYn4PaD6BZ4czaZNm9Tff/8tv2tCqPBHhOvXr0v7UEh+orxPZwPj4uOJG1ir/KEqAG5QuCaRTEYI8d/vEq56kCVLFvE0QOVv/Pjxsuzy5csyGED4BhoAVnEthO2s1QKEWGFwjwjI7kZMHwlNDieIC8MPw44Li07sw+wfxh/rw+Uf1G5/QsIi1g592ptmnc0j1Abjj8G3s6omDT9xB93+xMTZ8FuBYdcuSMQ2UTsMV6cmbdq0cq8vQIFZ50+IXbDG7F+8eOHQYhsUL15c1tG/ReTtWJU2AfJzKlasKP0I+LskGhp/4m2GsbVOv2bNmqIKhoQhgIxizOwPHDjgJe5vLfFzvggRQnwHEvQ0usLGOvN3TgaEEBd0N5CQaK3tR7z/zz//DFTlTRK64JlAHBg6dKi4EK3NXpD0h4Q/3fa3e/fuIiAyaNAgcx1onAPrzMKa/U8I8T3WkloMuGG89UDbeRaP3ygEmjBwRxtfTfXq1aUDIH63hGho/IkDSPSDm9CqB96nTx919epVs10vYoy4uFjLjVBWBKxZx0hOIoT4HfzurCApV3vXoM+P3+GkSZPkOX6PEPrBIL1YsWLm/6CKB/0wGjduzK+CmND4EwdQH4z4obVBDoy9zjh2BaSBcVGyipJoTwEhJGCMv1XBDwN0JARaf3MYAHjSopsQGn/iAOKFqBF2lSmM8iF9UercubP67rvvTI+Bdv1rdJdAQoj/sv11rN6qY7FixQq1dOlS6c2BAYBzGADPO3XqJLk6bONLnKHxJy7BBUNfUBBvhC481MVQT4yLDRQAZ8+ebbr6tetfY1UBJIT4Hl0yq0NsefLkcUjyQ08GJOPOmTNHPHR//PGH+TqS/MaOHatq1KjBRlvECzT+xFsWLFggxhzKfwAufXQOQ8nf8uXLpdyoR48e8rqOQWrjry9U1hplQojvB996xq49bq4ULJcsWSLeuCdPnpjLEKpDi24M2p01AAihwh/xFjQB6d+/vypXrpzavHmzLNuwYYO490uXLu1tyRDWq1ChgqnyBy0A68WIEOI5Wr1Pgyoc1PG/fv1ammuhY9+3334r8X0sw6C8bNmy4gkgxCdo/Im34CKzaNEiubjAiHsC3P/oPGaNPeIxO+4R4ntQl9+qVSvzOTT516xZo1auXKm+/PJLmdlfuXKFvy/iJ+j2J96C2QMS+nwy/GjjO3nyZLVr1y4VM2ZML3F/tBUlhPgeHXLT5M+fX+6Rzf/LL7/I79M70GEQXjvqbBB30PgTj9CxRyT6IYkIFyLM9CEKhJamutEI5EatrFq1ikeYED9w6NAhh+elSpUya/1/+uknMf7wAiAMZ9XlQKthhO3Kly/PLH/iEhp/4pZjx46pWrVqqZ49e8pzxBcx08eFCRnGDRo0UPny5VMlSpSQ163iImDr1q08woT4Aas8NnJtChcu7GUdDLr/+ecf6cSpQfe/okWLyqCcITfiCsb8iVsQY4Q8KNz/cCMiaxjuSJT7QTEsRowYDuvfvHlTpUiRwqFZEEIDhBDPefr0qeTPaOBRQ70+Bt45cuQQ4w7Djt/bxIkTxdBbf3e6TJed/YgraPyJW3ABgYsRiX9Q8fMEuCW1wA8uUChT4gyEEM9ZvXq1+uKLL8zn+A1CXhsZ/+iuCQ1/zPAJ8St0+xP3J0j48OrXX3/10fDDwEMWGMI+OjapZyBnz57lUSbEF8ydO9fhOeL6SORr2LChhNi8M/z4/U2fPt1svU2IO2j8ia949+6d+Xjbtm0iBQwxH5QeValSRfIAcG8FSUmEEM9Zu3atQ7y/SJEiKmXKlJLMhxj/yJEj1ffffy/dNfXgu2vXriK3DeVNQnyCxp94bPT79u0rLv379+/LMlyANm7cqH777Tcx+MgLQDVAxYoVHdz81gsZIcRnXrx4YT5GEm20aNHM55jZ47c3ZcoUdfDgQdP4w/Cjy5/ut0GIOxjzJx7H/gsUKKAOHz4sxh69wffu3avmzZsn7UITJUok62kZUbgmUfsPUP9v7UtOCHENPGkw4hq07s2ePbvKli2bqd63Z88eaeU7bdo0U15b/069U98kxBkaf+Ixu3fvVnfv3pVmIj4l8CFPoHfv3uZz5AJYs5cJId4DLX5rg55Tp07JYBq6Ghhwa7EfQvwDh4jEY+B+rFOnjo+G/9KlS6pMmTIOy/r168cjTYgHoFWvBrN9eNOQ4Jc0aVKHrn4AJbfo2ucsCESIT9D4Ez+BuKOWD71x44bq2LGjqP1Bizx9+vTq6NGj0v7X2nWMEOLz7wqdMzUw7GnSpJEQGgw8VPtGjRql3rx5I69D5vfvv/+W7n1ahZMQT6DxJ74GcX8IjdStW1cuOPv27VPjxo2TXIC0adOKZwCzf3gJNLigWRv+EEK8b+ZjBcZfgyz/7du3q8GDB5vlfF26dJEOfyNGjKCWBvEVjPkTP3X8w+w+atSoav/+/dJdrGnTpjL7gFsSin54Ha9ZJUmXLVsmUsGEEO8pWLCg+vfff+VxwoQJpU0v5LMjR46s3r9/r2bPni2Z/dZuf4T4BRp/4ic2b94s2f+xYsVyuQ68AvAEXL16VZ4jUUlf2AghXkHmPsplASR7Z86cKSW0Bw4cUMmTJzfXw8wffTYI8St0+xM/gdijK8Ov3fvITob4j4ZJSYS4b6KlDT8oVKiQVMhA0hfJflbNDQy8UW6L3xghfoHGn/gbJCOdOHFCjD6ERyAFjNpkNBq5deuWgycA5YKEEK+gf4Y1yx+htCtXrkhpLRr56N8O2mQjoVaHAAjxCzT+xF/A2KMGGfF+GH/I+168eFHclFApQ+IfLmTW+n9CiPczf03z5s3lHq59SPoif+bIkSOy7KuvvpIM/6lTp1I7g/gZGn/iL6pVqybu/5w5c4o7ctiwYTLrR4MRZCdDflRfyHSuACHEkePHjzuU6unGPVDrQytfCGZBy1+DNtvWrn+E+BYm/BF/g+z+BAkSuHwdQiS6FakOE0AwiBDyv6BxD0pmQa5cucQLAOMOF78Gs3+U2KLKhhD/wpk/8TeuDD9mMjD8yFauWrWquZzlfoT8PwiXwbBrUC6LTn7p0qUzl0FWu3LlymL8dfUMIf6BtSIkwEDzHoiOlC1bVmb2yANAwh9Ef6ACaPUUvH37Vn3++ec8+sT24DejXf7wkCGWD+EehNTgLUMY7fr16yp69OgS40ciLSH+hTN/EmAgzo8bpH5h8KEEePnyZTH0mMlADEjz448/8sgTopR059OgQ2aECBFEDwOiPjdv3pSkP4j/nD59WmSy8Toh/oUxfxJgYJbSuHFj1a5dO6kAWLduncqcObN6/fq1CJSgYYkuZ0J/8pcvX/LoE1uDahioYerkPiT+6eqYrVu3ikhW6tSpg3kvSViExp8EGWhGEj9+fBkMgNWrV4trkxC7ArEeVMSAGDFiyGwfSX4VK1aUXAAMlps0aaIqVKgQ3LtKwhh0+5NAA8l+WuQHtf/Xrl0Tz4CmQYMGPPrEtqA0Vht+AHEsaPgjqQ/MmDFDdDOQIPvw4cNg3FMSFmHCHwkUUJtcr149yVju3LmzzF4w60cME/kASHCCCNDJkydV9uzZ+S0Q24FafU2pUqUk0Q8uf3gDkP2PwTGEfbAMvx1CAhLO/EmgkCxZMnHvP336VPqRo2EJMplh+LWAibOkKSF2AS59q+AVWvI+fvxYfjf4fUDLH/X848ePlwY/hAQ0nPmTQAGJSps2bRIXZpQoUcS9icQmaJXHjBlTBgLQJUezHwwQoAVAiF3o1KmT+Rile1DIxAAZPTLgNcMgmZDAhDN/EmigPAmGH2TIkEEuaBgUwIXZsmVLcz0m/RG7zfqt5X3QwIAmBtiwYYOqUqWKPLfK/RIS0ND4kyBh4cKFqn79+pLkhOY+mOlo9uzZI8mAhNiBrl27mt34MBiGex+qfgC6GBgkx40bl7N/Eqiw1I8EOrdv35bEP4j9IIlpwYIFIlRibUeaJEkSWY+QsMyHDx8ko1/P6seMGSMhAAj5oCIGQljQ+M+XL58IYxESWDDmTwIdJC+NHTtW3Jvdu3eXWT5yAbZt2yYXPLhB79y5w8x/EuYpV66cafgLFy4s7n1UwGBAoBUwsZyQwIYzfxLk6IsfZkHIZoYbFCDTGRdCQsIiqH6BsqVm2bJlUsO/ePFiNXv2bDVr1iwVL168YN1HYh8Y8yfBwsyZM2UQgB7lsWLFkmUQBIIkMCFhEaj2Wfntt99E4rp9+/ZqzZo1avLkycG2b8R+0O1Pghxk+k+bNk0MPZqVoMwPHQFBjRo1xCNASFjT8N+9e7c8RnwfYNCL5D6UxMID1rNnz2DeS2InOPMnQU7dunWlnS+UyxDzt7r60Ryod+/e/FZImCJv3rzmY0hcw+v16tUr+R3kypVLTZkyhd36SJDCmD8JFu7evStCP3B3wuCjyQ/kTXV3M5QE6hkSIaGZ4cOHmy2sUcIHnX7kudSsWVNkfQkJDmj8SYjo9vfkyRM1aNAgM+4JffMDBw4E964R4i8QwsLsHhUtoFGjRhLaguYFBgJnz55VCRIk4FEmQQ7d/iRYuXfvnipTpoyqVKmS+uKLL8za5n///VfNnTuX3w4J1RQrVsw0/ADS1iVLllT58+eXZFcafhJccOZPghXU/kMGGLN/3NDPXINkKMycIAhESGgDJXyY4QMtalW2bFm1ZcsWKftDbT/PbRJccOZPghU0NUHcHzN9yP7mzp3bfA1JUbhYEhLaQB7L119/bT6fMGGCJLjiHkDSl4afBCec+ZMQA4w9ZkeI9ZcuXdos+UMyIJv/kNAE5HkPHz4sj4sWLSrJq+hhAWlrVLsQEtxw5k9CDHDznzt3TjVs2FD99NNP5nJkRbP2n4QWoNynDT/IkiWLSpgwocz2M2fOHKz7RoiGM38SokAJ1KhRo6QMEOWAmkSJEjk8JyQkgpwVtLG2JvmtWLFCklnPnz9P409CDDT+JMTFSgcMGCAXySZNmjj0NO/Ro4caOnRosO4fIe5A+R7KVgFm+5EiRZJ8FgxmCQlJ0PiTEAukf0eOHKmmT59uLrtw4YJKnz59sO4XId6B2T3yU0CcOHFkENCxY0c1evRoCWkREpJgzJ+EWLJmzarq1Kkj3f6sy5AUSEhIYvv27abhBw0aNJB7zPwJCYlw5k9CdPxU6/+jFSq00AHankIilZCQAM5FuPh1iAr5KdevX1c7d+6UUlXO+klIhDN/EmLBrAkaAM2aNZOLq+bRo0eqSJEiwbpvhAB4oeCZsuamlC9fXpQqy5UrR8NPQiyc+ZNQwdWrVyXZ748//jCX/f7776pz587Bul/E3sAL9fjxY3mMGT56Umzbtk3K+ggJyXDmT0IFqVOnlqY/nTp1Mpf98MMP6uDBg8G6X8S+QHhKG354qTDbjx49enDvFiEewZk/CTXcv39fSgB1KZUGOQHp0qULtv0i9qN///5SkqpBRUqGDBlU3rx5OesnoQIafxKqQM30xIkT1cyZMx2Wv3jxgrMuEiRMmTJFOvJpkOCHslTU+BMSWqDxJ6GS2bNnqzZt2kh3NICe6agGCB+ekSwSNJ36tOHfuHGjypkzJw87CVXQ+JNQy9OnTyUX4NmzZ/I8VqxYEhJgaRUJDPbt2+dQZYLy08KFC6uVK1fKY0JCE5wmkVDLmzdvxOBrMAiA69VadkVIQHDy5EkHw58nTx516NAhKUWl4SehERp/EmpJkiSJ2rVrl/rxxx8dvAHIuLY2ViHEP6BDX44cOcznOL8w28+UKZOKHDkyDy4JldD4k1BNihQp1LBhwyQJS7v7kQeA+ms7DQAmTZokceeYMWPKDbPUdevW+Xo7yGBv3LixlLB16NBBDBy61KVMmVJ06nWIxS5s2bJF5cuXz3yO3BK4/3HeERKaofEnYYIWLVpIKWDEiBFND0CMGDFs0wcgefLkIoIEVzS0DyArW7NmTXXq1ClfbQcz2ho1aqjbt2/LbcSIEeLyRnXF+vXr1XfffafswqZNm0StT4NB1aBBg0RympBQj0FIGOH9+/dGixYtjHDhwiHoL7cIESIYz58/N+xInDhxjKlTpxqlSpUyj4fzrV+/fub6169fNyJFimQ8e/bM2+0tXrxYXv/w4YMR1pkzZ47DccqTJ4/x6tWr4N4tQgIMzvxJmAEKa3/++af6559/VIQIEWQZZv6YsaEVsF3AZ164cKGUPsL9v2zZMpmtdu3aVd25c0duWN6yZUvVrVs38/9WrVqlSpcuLcfLO+Dyx2vauxJWadu2rWrSpIn5HOEUuPop2UvCEmH7V0xsB+L+JUqUUDdu3BCDp9UAM2bMqFasWCGu8LDKiRMnxKi/fftWktKWL18uLZABDDaWJU6c2JSjhTGzytHC5e/q+KBzHVzeVnGbsAhK9/bv328+h3LkkSNHqB9Bwhyc+ZMwWwmApLUECRKYy7788kvVrl07FVZBct7Ro0fFeEEAqWnTpqI85wnPnz8Xjwni/d69Bh17DCQgaxsWQXkokvishh+JjzT8JKxC40/CNJgNZ8+e3XwOaeCw2gcAs/n06dNLdvqvv/6qcuXKpcaMGePR/6IyAMbdOYsdssmVK1eW5El4EhBaCWvcu3dPSvZu3rxpLkNy45w5c+RzExIWofEnYRrIr2IA0KNHD3PZ5cuXVezYsdX79+9VWAalju/evfP2NWcVRO9c/pjxV6xYUQYVyAdAmVtYA1UMCIV8+PBBnmMQcOnSJVWpUqXg3jVCAhUaf2ILUAYHF7hOBETyGi70KOcKC/Tq1Uvt2LFDXb16VQY7eL59+3bVqFEjb9fHjPbs2bNSHvnx40eZ+Vtd/trwI2lw2rRp8vzu3btyCyvlk3Xr1lXNmjUzn0Mt8syZMypt2rTBul+EBAU0/sQ2ZMmSRWLiVlU2GLgyZcqo0A6M+DfffCNx/3Llykn3ww0bNqgKFSp4u/5XX32ldu7cqZo3by6xfiT+oR2tVdUO8W8MJBBKQA6FviGZMjQDjw9yQZYuXWouQ3Y/jmGaNGmCdd8ICSrY2IfYsidAw4YNJftfAxU7XPyt2e92Acp9mP0jHyKsM27cOPm81vAHloXlRFBCvIMzf2I7YOiRvIabjn1jQABXOBLl7AYSIlEdENZJlSqVg+GHmx9eDBp+Ykc48ye2BolecGU/evTIXIb6d3gB2K0tbLBt2zaR6bX2eoBeweTJk9n+mdgWzvyJrUHpGgRsWrVqZS5DYyC4/7t06RKs+0b8BxIT0ZAIfQ604UfC57Fjx9Qff/xBw09sDWf+hPwfUANEwpe1cx1m/1euXHEQCyIhn549e0q3RyslS5aU5EZCCGf+hJjEiRNHugH26dPHXIZSt4QJE4o8cFgpcQvL3Lp1SwZsVsOPMA6qF2j4Cfl/6PYnxAlo2MP1jxI3DRoDQR+fyWEhEwzS0NYYN3x3GrQgxmt58uQJ1v0jJKRB40+Ii4oAGHwo21m72KEcLnz48GrgwIE8biEAxPLRzAg5Gpj1a+CpQT3/1KlTg3X/CAmp0PgT4oYvvvhCKgKQ/Aejr5vA9OvXTwYFixcv5vELJurXry8JfGi3a3Xxw71/7ty5MNmHgJCAggl/hPgCyOXOnz/fYRkGARMmTAjz7W5DAsi7QNvdgwcPOixH/wHM8qHURwjxGRp/QnzJ27dvpWPe+fPnHX9M4cKpbt26qd9++43HNIBB3L5EiRLSYtcKvDFDhgxxaNxECPEZGn9C/Ag65qHdLRroOFO8eHFpC0uhIP+BGT76L6AM03mgBW2GSZMm+fMdCLEnjPkT4kfQIAjqcdDFh5CMlV27dkkSGtrgLlmyhMfYl659NBxCOKVAgQIOhh8x/dmzZ0uiHw0/IX6HM39CAggkAn777bdq0aJF4hVw+KGFCyfdA+fOnStywsQr6LLXsmVLL7N8gIEUXocXgBDif2j8CQkEEJtGSAA9AryjWLFiatOmTVJSaGe2bt0qAybv2gQjng9VvmXLlokAEyEk4KDbn5BAAKIy9+7dk+TAatWqOWgFgN27d4sLG6VqefPmVUePHrWNd+T3339XMWPGFG9IuXLlvBh+vDZr1ixx/yOsQsNPSMDDmT8hQcT169dVvXr11IEDB8QIegfazGIdtBaOFy9emPhuDh06JFr7O3bsEOEd74BbHx6A0aNHy4CIEBK40PgTEgycOHFCesvDAwARIVfAO1ChQgX1448/Sn27FhoKqSD5ccOGDernn39Wp06dcmnsdW3+V199paZPny6PCSFBB40/IcEMQgMoW0NCG+rZ3QFXOQxloUKFVIcOHSR3IHHixMHSnvbFixdq6NChonIIr4Y7Qw8wcEmdOrUMerDvIX0gQ0hYhsafkBAGegpAtGbdunUyMPAUDAAQNogbN65KmjSpypIli2jcV6lSRZ7Dte5O8hblc/BCIAZ/9epVkciFqx77g/yFx48fi4HHep6APIdUqVKpWrVqqd69ezN2T0gIgsafkBAOSt+gFQD3OFzpL1++VCENGHoMPNKmTavatGmjGjZsKDoIhJCQCY0/IaEQxNbRox4qgiiXO378uHr+/LlkyAemgUcOQsKECVWiRIlUvnz5xNBnzpw50N6TEBI40PgTEkZ58+aNDAqOHTsmbvyHDx9KTgFi9bdv35aYOwSHcK9vMWLEUBkyZFClSpWSUEH8+PFFojg4cgoIIYEHjT8hhBBiM5huSwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNfwBx/fp1Va1aNRU1alSVMGFC1b17d/Xx48eA2jwhhBASYEQMuE3Zl//++08Mf+LEidWePXvUnTt31DfffKM+++wzNWTIkODePUIIIcQB2878V65cqSJFiqSeP38uz9+/f6+yZs2q5s2b5+ttbdy4UZ0+fVrNnTtX5c6dW1WpUkUNGjRITZgwQbZLCCGEhCTCGYZhBPRGscnXr1+roAYu93Dhwnm07qtXr1S8ePHE2NepU0eWTZ06Vf3222/q/PnzqnXr1mLM3fHy5Uu579u3r1q1apU6evSo+dqVK1dU2rRp1eHDh1WePHn89bkIIYSQEO/2h+GPHj26CmpgjKNFi+bRulivZMmSau3atabxL1KkiLpw4YIY7oEDB6pu3bp5tK27d++qRIkSOSzTz/EaIYQQEpKwdcwfcfphw4aJpwIeg6dPn8pyDFwSJEggiXuEEEJIWCNiYLnftUs8KMH7+oaqVauqzp07qyNHjqi8efOqGTNmiIseht83bn8k+h04cMDhtXv37pmvEUIIIWE+5h+ayJgxo2rSpImqUKGCKlGihCTvlSlTRt2/f99MBnRF+vTp5X7dunWqevXqkuWvvQV//vmnlPthO5EjRw6Sz0IIIYR4gu2NP2b+W7ZsUc+ePVPNmjVTAwYMUH4p9UOWf9KkSSVhEHF+DChatGjBUj9CCCEhDtsb/02bNqmKFSuqBg0aSOa/p9UCzly7dk21adNGbd++XZIJmzZtqoYOHaoiRrR1WgUhhJAQiO2NPyGEEGI3bCvyQwghhNgVGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgHIsePH5dOgZ9//rlKkSKFNP3xCTQZKlq0qIoRI4a0A+7Ro4f6+PGjwzqLFy+WRkJoYZwqVSo1fPhwL9uZMGGCypIli4oSJYrKlCmTmj17tp8+w+PHj1WjRo1UzJgxVezYsdV3333ntl3z1atXpT+Cd7clS5aY63n3+sKFC329f2/fvlXt2rVT8eLFU9GjR1d16tQx2ym74ttvv/Xy3pUrV/b1exNCSKgFLX1JwPPs2TMjUaJERqNGjYyTJ08aCxYsMKJEiWL88ccfLv/n6NGjRqRIkYwBAwYYFy5cMLZv325kzpzZ6Nq1q7nO2rVrjYgRIxqTJk0yLl26ZKxevdpIkiSJMW7cOHOdiRMnGjFixDAWLlwo6+C9o0ePbqxatcrXn6Ny5cpGrly5jH379hk7d+400qdPbzRo0MDl+h8/fjTu3LnjcMPnwfu/ePHCXA+n3owZMxzWe/Pmja/3r3Xr1kaKFCmMLVu2GAcPHjQKFy5sFC1a1O3/NG3aVD6X9b0fP37s6/cmhJDQim2N/4oVK4zPPvtMjDR49+6dkSVLFmPu3LkBsn0Y4Dhx4sh2NT169DAyZcrk8n969epl5M+f32EZDPbnn39uPH/+XJ7D8NatW9dhnbFjxxrJkyc3Pn36JM+LFClidOvWzWGdLl26GMWKFfPVZzh9+rQY6X///ddctm7dOiNcuHDGrVu3PN5O7ty5jebNmzssw3aXL19u+IenT5/Kd7hkyRJz2ZkzZ2Tbe/fudWv8a9as6a/3JoSQ0Eyguv1fvXolt/+91v8v79+/l2Xv3r3zdt1Pnz6Zyz58+CDL4Nr1aV3fUr58eRU+fHhp6QsiRYqkunTpogYMGCDPW7duLW5kdzd37N27V5UsWVK2q6lUqZI6d+6cevLkibf/g2OCEIEVuO3x+Q8dOuR2nZs3b0pbYXfrHDhwQI4pQOthuLvhpnf3GeDqz58/v5fjtn//fuUJ2O+jR49KuMAZuOvjx4+vChYsqKZPn+5wnujwAfbT3bbxebBPmsyZM6uUKVPKvrsD202YMKGERNCK+dGjRx59HkIICQsEqvHXRvLhw4fmMsSnsax9+/YO6+JCjOXXr193iFtjmbPhSJ06tSw/c+aMn/ctWrRoYpzXrl1rLitSpIi6cOGCunLliho4cKAYLXc3d9y9e1clSpTIYZl+jte8A4ODPXv2qAULFqj//vtP3bp1S/YD3Llzx1xn2bJlkhuAwc/58+fVyJEjvawzdepUMY4wqAcPHpTnMJT6u0C+AAzfZ5995vYz4HuxEjFiRBU3blyXn8GZadOmSe4B8his4HMhdwGDL8Tp27Ztq8aNG2e+jv3C/mE/3e0fBlcYoDgfZ3f7h/g+ciBwDIcNG6b++ecfVaVKFTnmhBBiByIqG1OtWjW5+MNAYpb59OlTWY6BRYIECbwYPldky5bNnHUjwW/dunV+2p+KFSvK4AhehyZNmqjIkSOrn3/+We3cuVNm26Bly5bq0qVLqnr16mLMkYjXqVMn1b9/f3Md/A+MX+HCheWzwRg2bdpUEg71Ophtnz171nxvvOfcuXPN5+6S+jzlzZs3av78+bI/zliX5cmTRzw5+OwdO3aUZcmSJXPYvyFDhshNc/r0aT/v19dff20+zpEjh8qZM6dKly6deAPKlSvn5+0SQkioITBjCi9fvpSbjkUDxMCx7O3bt96u+99//5nL3r9/L8ucE8G8W9cvnD9/XuLDhw4dkuffffedkSdPHnncqlUrI1q0aG5vmqtXr0qCHm43b96UZU2aNPESV966dau8n0/JZTheiKm/fv3ajLsfOHDAS2Id3gvHE0mAWOf+/fsO6+D43bhxQ9bVSYCujtm9e/fMz4AbmDZtmhE7dmyH9T58+GBEiBDBWLZsmY/Hd/bs2RKTd94v70DiIj6D83mhefTokcP+YT+Q5If/efLkicO6KVOmNEaNGmX4hvjx4xuTJ0/21f8QQkhoJVBn/nCtOwM3rTUO7m5duH69c0t7t65fyJAhg9zWrFkjuQizZs1SGzduNN3S3bp182g7KLdzBiGEn376SWbn+jPAxQ1Xdpw4cdxuD16IpEmTymOEAFAmmDdvXod1IkSIILNjvQ7eD94KK3jf5MmTy2OU0cFboGf+zsDL4ezpwDbhDUH4IF++fLJs69atEm4oVKiQRy7/GjVqeNkv70AYBccF3g7vQKgBNyvYJ3xGuO8ROgDIqUDoCPvuKciXQMw/SZIkHv8PIYSEagyb06lTJyN79uxSLta3b98A2y4y0VHqBw8ASv1Qdhc1alSHUj/Mnp2z/3/77Tfj+PHj8j8DBw6UmbM1K/7BgwdS5oes9iNHjhgdO3aUaoD9+/eb65w7d86YM2eOeDawvH79+kbcuHGNK1eu+PpzoCQO3hBsZ9euXUaGDBkcSv3gfcBnsL4/wOwcVQGoDnAGFQxTpkwxTpw4IevBK4Fj45fjj1I/zPThVUGpHyodcLOC/dOeCpQbohIC1QA4Hps3bzby5s0rn8uV14EQQsIatjf+GzduFNcxDJo1PBEQHDt2zChevLgROXJkI1myZMbQoUMdXkedu/P4q0yZMkasWLHEoBcqVEhc+lZg/FHLjrADDGa5cuWkBt8KQgUor4OuQMyYMSX8cPbsWYd1tm3bJu/t04AA7nYcG9TpY1vNmjVzqNfH/2M72J5z2SIGVN6FGTAgwP5hm/gc0BGAy926rqvtOoOQUNu2baWsEsejVq1aUrdvRWsKAIRSKlasaCRIkEAGVqlSpTJatmxp3L171+37EEJIWCIc/gS394EEPTNmzJAEOiTOucv4Dy62bdumateurS5fvuxjmIQQQojvoLyvTUGJI4x/SDT8ev969+5Nw08IIYEAZ/6EEEKIzeDMnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBBiM2j8CSGEEJtB408IIYTYDBp/QgghxGbQ+BNCCCE2g8Y/gEAnuWrVqqmoUaNKd7zu3burjx8/uv2fw4cPqwoVKqjYsWOrePHiqe+//169fPnSYR10rCtatKiKESOGSpw4serRo4eX7S5evFjlzp1b3hsdBocPH+7j/kLVuW/fvtLJLkqUKKp8+fLqwoULbv8nderU0nHQ+dauXTtzndKlS3t5vXXr1j7uz5IlS1TmzJnV559/rnLkyCEKf+7Yvn27t/ty9+5dH9+LEEJsT3A3FwgLfPz4UToDli9fXjrtoRkP+sOjuY0rbt26Jc1o0JUOTXcOHDhgFC1a1KhTp465ztGjR41IkSIZAwYMkO5327dvNzJnzmx07drVXAfvFTFiROn0d+nSJWP16tVGkiRJjHHjxrndZzQZQgOhFStWSAOiGjVqGGnSpJFGOa64f/++NM3Rt02bNnlpvlOqVClplGNd79mzZ273Zffu3UaECBGkoyGaEvXp00ea7qDrnyt0YyJ0MLS+l3eNhAghhDhiW+MPowcDow3Tu3fvjCxZshhz58719bZggMOHD+/QGQ7GGF3wsF3vQGvfhAkTOhgrtPKFQYOhBxg85M+f30s7XHT8e/78uTxHx726des6rDN27FgjefLkLrsUYnnixImN4cOHO7QgRvfBBQsW+Kodcrp06RzeB8Yfy31DvXr1jGrVqjksQ0fDVq1a+Wj8nzx54qv3IoQQYhiB6vZ/9eqVy9vbt289XvfNmzc+rutb4OYOHz682rRpkzyPFCmS6tKlixowYIA8h6s6evTobm+avXv3iqs6UaJE5rJKlSqp58+fq1OnTnn7/u/evZP3xD5o4H4Hu3btMteBG9wK1sGxO3TokNt1bt68qa5duybPr169Ki5xuMrBlStXxD2OY6CJFSuWKlSokHwWT3j//r2aO3euat68uWzbyrx581T8+PFV9uzZVa9evdTr16+9hA/69+/vcPys+6KPnyf7gnAHQhcIn+zevdujfSeEELsTqMbfneGsU6eOw7qIk7tat0qVKl6MhytD7CnRokVTJUuWdIgtFylSROLeMI4DBw5UR48edXvTwJBaDT/Qz13FoMuWLSuvIT4PQ/rkyRPVs2dPee3OnTumAdyzZ49asGCB+u+//9StW7dkv5zXWbZsmeQGfPr0SZ0/f16NHDnSYR107suUKZPkBFj3ybt99jRmvmLFCvX06VP17bffOixv2LChDArQkheGf86cOapx48YO66RLl04GBz4dP3f7AoM/efJktXTpUrmlSJFC8g2QR0EIIcQ9EZWNQYLesGHDJPkNs1cYM4DBRIIECWRAElhky5ZNzZo1S7wNMJIRIkRQHTt2FKOnvQEVK1aUwQG8EE2aNFGRI0dWP//8s9q5c6e5TsuWLdWlS5dU9erV1YcPH1TMmDFVp06dZGat10mWLJk6e/ZsgO7/tGnTZFCWNGlSh+VIWtTAGwIjXa5cOdlHGH2AgYp/wWAGNw2SIvEev//+uww4CCGEBNPMH5nrrm6YrVm5f/++y3XXrVvnsC7c2M7r+IWqVavK7PjIkSPyfMaMGSpPnjxi+H3j9kcW/r179xy2rZ/jNVdglozZLWb0jx49EoP94MEDlTZtWnMdDA4wKEE1wcOHD1XNmjVluV4HgxYMYHAM4ObH9goWLOiwjjN6n7zbZ3f7q8H7bN68WbVo0cLHdRFKABcvXnS5jqvj58m+WMHndvc+hBBCgmDmD9d6cK/rjgwZMshtzZo14nrHTHzjxo3yGtzr3bp182g7CBcMHjxYBjDaW4BcAszCs2bN6uP/a5f39OnTJX6P+LUVGHg9w0YIAC7uvHnzOqwDzwFm+Hod7BMGMd6RJk0aMayYgSNmDpCfsH//ftWmTRsf9xeDJHxOeE58QodH4AFwBfYV+9K5c2dzGY4flvsGvJe79yGEEPJ/2D3rEZnpKNNLkSKF0bdvX3+V+lWsWFHK89avX28kSJDAodRv//79RqZMmYybN2+ay1COd+jQISlXGz9+vBElShRjzJgxDttG+RuqAE6ePGkMHDhQKhSWL19uvv7gwQOpLDhz5oyUGXbs2FGqAfB+PpX6xY4d21i5cqVsv2bNml5K/cqWLeulZBDVCSlTpjR69OjhZZsXL16UfTx48KBx5coV2XbatGmNkiVL+ljqh3LFESNGyOfo16+fl1K/nj17Gk2aNDGf//7771KxgcoIrIfvERUXmzdvdvtehBBCbFzqp9m4caOUjKFkzlVpnCdcvXrVqFKlihhw1PijFv/Dhw9eStNgFDUwZnHjxpVa/pw5cxqzZ8/2st0yZcpIPT4MOsrfUFZoBca/cOHCRrRo0YyoUaMa5cqVM/bt2+ewDt7TuR4fn/Xnn382EiVKJCV++D8MQqykSpVKDLGVDRs2mPX1zly/fl0MPT4Ttpk+fXqje/fuXur8vdvu4sWLjYwZM8qxyJYtm7FmzRqH15s2bSplhJphw4ZJmSGOC96vdOnSxtatW73sEyGEEK+Ewx/tBSBhE2Te165dW12+fFnFiRMnWPcFZX9QM0QeB7LzCSGEBD2U97UBKGfs3bt3sBt+PRBBmSMNPyGEBB+c+RNCCCE2gzN/QgghxGbQ+BNCCCE2g8afEEIIsRk0/oQQQojNoPEnhBBCbAaNPyGEEGIzaPwJIYQQm0HjTwghhNgMGn9CCCHEZtD4E0IIITaDxp8QQgixGTT+hBBCiM2g8SeEEEJsBo0/IYQQYjNo/AkhhBCbQeNPCCGE2Awaf0IIIcRm0PgTQgghNoPGnxBCCLEZNP6EEEKIzaDxJ4QQQmwGjT8hhBCi7MX/AEsi9rIISi1PAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -910,12 +855,12 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm8lPP7//+2RrKlHW2kSKWkRSqiUqJUJKIkZYvs9FF2RShEmz0RUkqWUinthITIUlmy79m3+T+e1/d/3b97pnNOnTrnzDlnXs/HY87M3HPPnHtm7nkv1/t1va6tEolEIgghhBBCCCGEEEIIIYQQYgO23nCTEEIIIYQQQgghhBBCCCFAQXQhhBBCCCGEEEIIIYQQIhsURBdCCCGEEEIIIYQQQgghskFBdCGEEEIIIYQQQgghhBAiGxREF0IIIYQQQgghhBBCCCGyQUF0IYQQQgghhBBCCCGEECIbFEQXQgghhBBCCCGEEEIIIbJBQXQhhBBCCCGEEEIIIYQQIhsURBdCCCGEEEIIIYQQQgghskFBdCGEEEIIIYQQQgghhBAiGxREFyLD+frrr8OQIUNC165dQ7Vq1cJWW21lFyGEEEIUfv78889w3XXXhRo1aoQddtghVKpUKfTt29f6dyGEEEIUfj766KNwzTXXhOOOOy7sueeeNh+vWrVqug9LCJHCVolEIpG6UQiROcydOzccccQR1lEzAf/ss8/Cb7/9FtQ0CCGEEIWb//77L7Rv3z7MmDEjNGnSJLRs2TJ88MEHYcqUKbYwvmTJklC2bNl0H6YQQgghcuDBBx8Mp59+ethmm23C/vvvH1auXBn23nvvsHbt2nQfmhAihpToQmQ4dNLz5s0LP/30U1i1apV11kIIIYQo/Dz00EMWQO/evXtYtGhRGDp0aHjqqafCPffcE1avXh2uuuqqdB+iEEIIITZCixYtwuLFi8P69evDW2+9Fbbbbrt0H5IQIgsURBeigCEti3Tr+KozKnCuHe7XqlWrQI6nfPny1mnvvPPOBfL/hBBCiOJIOvr3cePG2TW2bHErtn79+oXq1auHCRMmhN9//z3P/p8QQghR3ElHf06fTUbZjjvumGevKYTIexREF0IIIYQQoojxxx9/hKVLl4aaNWuGKlWqJD3G5L5169bh119/DcuWLUvbMQohhBBCCFFc2DbdByCE2DgjRowIP/744ybv36lTp3DQQQfl6zEJIYQQIn39O0XI8ESnnklW+HY80ps3b55HRyyEEEKIVDRfFyIzUBBdiCLSKX/88ce5SkFTpyyEEEIU3/6dWiaw6667ZrnvLrvskrSfEEIIIfIHzdeFyAwURBeiCLAlVbnnzp1rlzh02Kx+CyGEEKJo9u9CCCGEKByoPxciM1AQXYhiDgH0a6+9Nmlbz549FUQXQgghijCuQM9Oaf7zzz8n7SeEEEIIIYTYfBREF6KA2W677cK///6b7eO//fZbtF9eeKxdc801dhFCCCFE8enfq1evHrbeemvzPM8K356dZ7oQQggh0t+fCyGKDgqiC1HAVKxYMXz44YfmmValSpUNHn///fej/Rx5rAkhhBCFm4Lu33fcccfQqFGjsGTJkg3+ZyKRCC+++GLYaaedQsOGDbfwnQkhhBCZg+brQojs2DrdByBEptGuXTu7vuGGG8J///2X9Bj3b7zxRrvdtm3bJI81JsSbeunVq1cBvyshhBAis0lH/963b1+7vvLKK+1xZ8yYMWH16tXhlFNOsWC7EEIIITYNzdeFENmxVSI+4hZC5Du//PJLOOyww8Kbb74Z6tSpEypUqGBqsTZt2oQvv/wyrFixIjRp0iTMnj07lCxZskCOKd6JT5kyxXxU8U13rrjiilCrVq0CORYhhBCiKJKO/p3JfPv27cOMGTPstVu2bGnqucmTJ5vKbenSpaFs2bJ58r+EEEKITCAd/fm3334bLrnkkuj++PHjbRG8a9eu0bZbb701lClTJk/+nxBi81AQXYg0dczDhg0LEyZMCB999JFtw9f04IMPDqeddlo4++yzwzbbbFNgx7PVVlvl+PhLL70UDj/88AI7HiGEEKIoko7+/c8//wxDhw61Cfenn34aSpcuHTp06GAKuvLly+fp/xJCCCEygYLuz1GyV6tWLcd91qxZYwvkQoj0oSC6EGmGlOuzzjorjBs3LvTp0yfdhyOEEEKIPED9uxBCCFH0UX8uhHDkiS5EmilRooRdb7ut6vwKIYQQxQX170IIIUTRR/25EMJREF0IIYQQQgghhBBCCCGEyAYF0YUQQgghhBBCCCGEEEKIbJAnuhBCCCGEEEIIIYQQQgiRDVKiCyGEEEIIIYQQQgghhBDZoCC6EEIIIYQQQgghhBBCCJENKi8sRBHi66+/Dr/99lsoU6ZMKFWqVLoPRwghhBBCCCGEEEKIYo+U6EIUQt54441wwAEHhPr164f33nsvnH/++eG4444LNWvWDNWqVQsnnHBC+Pfff23fFStWhCOPPDK8+uqr6T5sIYQQQgghhBBCCCGKHSosKkQh4Msvvww77LBD2G233ez+d999F8qVKxe22mqrKFieSunSpUPHjh3DV199FZ577jnbtt9++1mA/ZhjjrFge/ny5e01hBBCCCGEEEIIIYQQm4eC6EKkmUWLFoWuXbuGxo0bh8mTJ0dB7+7du4eJEydu0Wtvs802oXLlyqFv377hoosuCttvv30eHbUQQgghhBBCCCGEEJmB7FyESDMEtlGeL1y4MDz77LPR9qFDh5qdy8Zo0KBBuPHGG83+JRVU7GvWrAlXXnllqF27dpg1a1aeH78QQgghhBBCCCGEEMUZBdGFSAPxBJD999/fguXffPNNGD16dPjkk09se5UqVcKcOXNMpb711sk/1Ro1aljgfO3ateG1114LAwcODO+8844VHe3Xr1+W//PDDz8MrVu3Dt26dQvr1q3L53cohBBCCCGEEEIIIUTxQEF0IQqY5cuXh0MPPTR8+umnFjhv1apVWLp0adhuu+1Mjd6jRw8rLAorV64M8+bNC//991/YfffdrcAoBURXrVplgXMC7XF23HHHMGrUqHDPPfeEChUqhD322CNUr149VKpUKRx88MEWjH/iiSdCrVq1wm233Rb+/vvvNH0KQgghhBBCCCGEEEIUDeSJLkQBws+tefPmFixv3759+OCDD+yy0047hV9//dX22XnnncP69evDBRdcYAHxv/76y5Tq06ZNC3vttVeu/hd2LgTOf/nlFwuYv/XWW+HSSy8Ny5Yts32weHnwwQdDw4YN8+09CyGEEEIIIYQQQghRlFEQXYgCZvXq1eGcc84xG5Zvv/3W1OJ4osNuu+0Wfvzxx6T9O3XqFB555BELtG8O/MTvvPNOU66jdv/zzz9DqVKlwvfff28K91122SXMnTt3k/zXhRBCCCGEEEIIIYTINGTnIkQB8M8//0S3q1WrZspwAuiVK1eOAugEuAmgY8niXHHFFeGpp57a7AA6oEAfP368+aX/9NNP4Y8//rD/TQAdfv7559C2bdvw/vvvb9F7FEIIIYQQQgghhBCiOKIguhD5DHYteJC/9NJLdn+rrbYyX/IWLVpERURRhhPs5vr333+3gDo2K0OGDNmgqGhu2X777cP06dPD0KFD7TiyAm/2o446ynzahRBCCCGEEEIIIYQQ/w/ZuQiRz5x22mmmBKeY6IIFCyyI7kVDKSqKSh01eokSJcxqBXuXKVOmmHd6XvPFF1+Eli1bWmA/DoF6lOk1a9YM8+fPD2XLls3z/y2EEEIIIYQQQgghRFFESnQh8pmxY8eGvn37hnXr1oUxY8aYRzkccMAB5ot+3nnnhR122MEC6BUqVAhLly7NlwA6VKxYMcycOdOKl8YhgL7tttuGVatWhaOPPtpsX4QQQgghhBBCCCGEEAqiC5HvYM1CMdGPP/443HjjjeG5556LHttzzz1D+fLlzad8m222MZuXffbZJ1+P54033gjr169P2oYPe5kyZcLuu+8eXn/99XDccceZrYwQQgghhBBCCCGEEJmO7FyEyAduu+22sOuuu4Y+ffqEwYMHh+uvv94C1Vi2EDAnmN6vX7/wzjvvhMMOO8z80G+99dZw8cUXF8jxXXbZZRbAr169uhUzrVOnjqngsXs5/PDDrdjoMcccY7YyLAIIIYQQQgiRHddcc43V30GI8eijj1qGoxBCCCFEcUJBdCHymJdfftkC0fy0hg0bFi699FLbXrdu3bBixYpQpUoVU6XXq1cvfPvtt2bz0rlz5zBp0qTILz2d4NveunVrC/YT/L/qqqvSfUhCCCGEEKIQ88svv4RXX301tGvXLjzwwAOhe/fum/1ajKGvvvrqMG7cOBN7NGvWLIwaNSrUqFEjT49ZCCGEECI3KIguRB6Dqvz22283f/GpU6eG77//3jzOKdi5/fbb2z5//fVXqFy5cvjkk09sQrBs2bKwyy67pOV4f/31Vzs2/Nk/+uijUKlSpTB8+PDw22+/mQqd7SjVhRBCCCGEyIlevXqFr7/+Osm+MLfcfPPNYciQIeGhhx4K1apVC4MGDQpvvfVWWLlypdUREkIIIYRIBwqiC5EPUCSUwDmKHALQH3zwgSm799577/Dpp5+GfffdN3z44Ydm8UIh0XQFqZmMtGnTJnz++edRwVMmJxyrXx988MFhyZIlSssVQgghhChgGJ8hbEgHJUuWzHWW5OjRo0P//v1tbFm2bNnNer8IOrA4vOSSS2wbBe+pIfTggw+Gk046KdevKYQQQgiRF6iwqBB5xJdffhkFolFwd+zYMZo8EIxGcU4AfaeddrIAOowdOzatKm+KmBLIdxU8xU05Vo6RazzcUaJjSyOEEEIIIQoWAuilSpVKy2VzgvcEuv/5558wceLEaBsZjxv7XxMmTLB916xZY2Pqo446Kno+dYYaN24cFi9enEefqhBCCCFE7pESXYg84PfffzePc/zOST1FQQMjR440NQ5BaixcPECNhcpZZ51l/o7p5r333jN1D36T7777bth6663Df//9Z4+hPqKJwIbm9ddfD7Vr10734QohhBBCZAyMGQkyp8vnnHHrpkKQm/Fkhw4dzNKFTEYfJ1MDKCcYi+68885h0aJF9hoo2StWrBg9fuKJJ9q49PHHH9+CdySEEEIIsfnIn0GIPADbFlTmTHRQbzvnnHOOqXEee+yx8Morr1hwnUnBgQceGEaMGBEKA7Vq1bLr+++/Pxx66KFRAB1V+r///ht233338MMPP4TTTz/dJjaydRFCCCGEKDhLFYLZ6frfuYGxLQH0a6+9NjRo0MAyL7EwJOuRayGEEEKIoozsXITIA1q0aGEFj7p06WLpp668QdU9YMCA8OSTT4ZWrVqFL774wrbfeeedScH2wkCTJk3MggZQnhNAJ2BOAJ3JDwsFFEwVQgghhBAFA+pr1ODpuOTGDx0xyeTJk8NFF10U6tevb9mLbtGSGzuXChUq2PVXX32V9Prc98eEEEIIIdKBguhC5BFMNvCBXL58uflAkrrqUFCUoDTWKCeccEI44ogjQmHjkUceCU8//bQFzrGe8WA6CwFHH3203R88eLBZvgghhBBCCOFgYVi3bt1w+OGH2/0ePXpEgfGGDRva+Diny3HHHWf7VqtWzYLls2fPjl77559/DkuXLg1NmzZN07sTQgghhJAnuhBbBDYthxxyiKWo+mSBCcTKlSttAvDoo4+G5s2bhyeeeCJ069Yt7LDDDuZBjnd6YYPiUfi6H3zwwVZwFB/Krl27hu+//z7sv//+4ZhjjgnPP/+8FXZauHCh2b0IIYQQQojMhjHkXnvtFe66665wyimnRMp0xrtkZzZq1ChXr3fzzTeHoUOHWp0hguqDBg0KK1assPE1Y2khhBBCiHQgc2MhNpO1a9eGXr16mVJ7zJgxFkAn7bV06dLmg04QGpuXnj17RmqaK664olAG0N338u23397AZsZTZ8eOHWupuSiBHn74YfNIF0IIIYQQmQ3jQsaRFP+MZ2GiSifTMbdB9Msuu8zqDPXt2zf8+OOP4bDDDgsvvPCCAuhCCCGESCtSoguxmXzwwQfh3HPPDX///bf5NGJzQirqtGnTLLBO8Jkioii3CTwTPGcf/MWLCjQP2NJw/BQYpVDq4sWLQ+XKlcP7779f6HzdhRBCCCGEEEIIIYTIa+SJLsRmUqNGjTBz5kwrJEpwvEyZMuHjjz+OinQSQCeQ/sYbb9i22267rcgE0D/88EMrkoq1C+pziqKiAiKAvttuu4VPPvkkjB49Ot2HKYQQQgghhBBCCCFEvqMguhBbqNResGCB3e7UqVN48803w8477xxWrVpl27B0oUgnhUQ7d+4cigpnnnlmmDx5si0AEDD3IqNAgVS48cYbw/r169N6nEIIIYQQQgghhBBC5DcKoguRS1566SVTlf/xxx/mgf7ss8+Gxx9/3IpuQtOmTcN3330XKlWqZEFoCnDecccdtm9R4dJLLw3t27cPDRs2DP/995/5XP7www9m6ULgHNX9N998E0aMGJHuQxVCCCGEEEIIIYQQIl+RJ7oQuYCAMhYny5cvD4MHDw7XXnutbf/666/D2WefHV555ZXw888/26V69eph9erV4bzzzgt33XVXKIosWrQoNGvWzBYCUKATTP/tt98smE5QfZdddrH3uMcee6T7UIUQQgghhBBCCCGEyBekRBcil5x//vnmE44n+i+//GLbypUrF5566qlw3333me951apVLbjM7UGDBoWiyqGHHhratGljAXQC5wTQsashgL7XXnvZYsHQoUPTfZhCCCGEEEIIIYQQQuQbCqILkQu23nrrcPrpp4cnn3wy9OzZ09TmWLc4BJw/+ugjszuBvn37WoC9qMIiwf7772+3f/rppyRP9D///NOuR44cGdatW5fGoxRCCCGEEEIIIYQQIv9QEF2IzQAbF6xdDjroILN1Wbt2bfTYa6+9FpYtW2aFOC+55JJQlEFZj587Ni68X9Toe+65ZzjggAPCwIEDzeoFb/jrrrsu3YcqhBBCCCGEEEIIIUS+IE90ITYBbEtOOOGEcMUVV5j/d7169Wx7t27drKho8+bNw7nnnmv7tGvXLsycOTP069cvjB49OhRlKCJ61FFHhdatW5sinaB55cqVrUgql4ULF4bDDjvMPNNXrlwZ9ttvv3QfshBCCCGEEEIIIYQQecq26T4AIYoC99xzjwXGP/nkk1CzZk3bduyxx4ann37abuMTftJJJ4WJEyfafgSVL7/88lDU4X0tXbo028cJqh9zzDHh2WefDTfffLMp14UQQgghhBBCCCGEKE7IzkWITeDUU08NAwYMCKeddlqYOnWqqbBRpOML3qBBg/DCCy/Yft9++61d9+jRI1SrVi0UR/7++29TqD/xxBPh0UcfjYqrPvLII+GLL75I9+EJIYQQQogC5pprrgk77LBDOPHEE8M///yT7sMRQgghhMhzFEQXYhPAB3z48OFhwYIFdr9r165WXNQfwy+8adOm9jgB9iuvvDIUJ3B9mjFjhqnOq1atagsEWNmcddZZYd68eWbj8tdff1mRUSGEEEIIkVlQB+j5558P06ZNi8bIWzLupOZQxYoVw4477mjWgh988EGOzxkyZEg45JBDLIuyXLlyoVOnTmHVqlVJ+xx++OGRJaFfGMsKIYQQQmwKCqILsYkQJN5tt93CdtttF8qWLRt+/fXXULdu3TBr1ix7nEKiQHDZLV+KCx999FE4+uijbXL0+eefm10NVKpUya5R5MOoUaPscxFCCCGEEJlDqVKlwhFHHGH2huPHj9+i17rlllvCnXfeabWFsBXcaaedQtu2ba2YfXYg6qA+0ZIlS8KLL75omZNt2rTZYFx65plnWuakX/hfQgghhBCbggqLCpEDeHy/+uqrVlAUBTa89957oXHjxlZs1H3QKbr57rvv2uMrVqwIderUCcWN448/3hYPHnzwQZuYAAoeUnd///13C6gTYL/rrrvCeeedl+7DFUIIIYQoNuQkUkDcwHhsU/bdeuutTd29sX0JXG8OBL779+9vY0LGjbmFqSljyosvvtjU7fDTTz+F8uXL2xiUsfem8M0335gineB6ixYtIiX6QQcdFEaMGJHr4xJCCCGEkBJdiGzAz/H6668PY8aMCdOnT4+2k1qK0oVA+uzZs20bg3To2LFjsQygw5QpU8LYsWPN6xL22msvm+i497t/Brfffnv4999/03qsQgghhBDFTemd3aVLly5J+zImy27fdu3aJe2LSCSr/TYXAt2MoRGZOPPnz8/x+LlMmDDB9l2zZk348ssvzcLF2XXXXW3cvXjx4k0+DgLvULp06aTt/J8yZcqEAw880OwXf/vtt81+r0IIIYTILLZN9wEIUVjZdtttw8MPPxzuueceU+N8+OGHYd9997WB/E033WQWJ927dzcbF1JH4dJLLw3FHRYQmIB8/fXXdp/PwRX42N0w+SHgjm+8EEIIIYTIDAhyv/LKK+HYY4+1sSKKdGjYsGFYvnx5js9FaQ4E0OP344/7YxuDWkUDBgwIzZo1s2C5c/LJJ4cqVaqY0p1x6+WXX26+6ZMnT871exVCCCFE5iE7FyE2AgN2BtxYmLzzzjtm3eLw8xk0aFC48cYbQ4MGDcKyZcvM4qQ48/7775sv5dq1a02N/tlnn4Xq1auH1atX22Rl4cKFoVGjRrawUNw/CyGEEEKIgqAo2LlQFwiLv2uvvdbGxRQDRYCSGxYtWmTjSexgyP50yIRkXPn4449v9DXOPvtsq+OzYMECG6tmx5w5c8KRRx5pQpl99tknV8cphBBCiMxDdi5CbAQKG1FUlDRSig/NnDnTgueAbQlqdTj//POLfdAY33eKpq5bty6poCipwExCUKmXKFHCVEgE04UQQgghxJZDUDu7SzyAvrF94wH0nPbNLZ9++qkpui+66KJQv379ULt27ciiJTd2LhUqVLDrr776Kun1ue+P5QR1ebBhfOmll3IMoANjeyCILoQQQgixMWTnIkQKBMjxlmzZsqUparBzAe7ffPPN4ZlnnrFr9kHBwqQBb0X2Le7UqlXLCjKRUst7Puecc8x3M64yYtIybty4cNttt4XDDjssrccrhBBCCCHyn5EjR4a6deta8U7o0aNHuP/++8PVV1+dKzsXau0QLKfuEGNO+Pnnn8PSpUtNYZ7T+B37GCwF586dG9XsyQk/prjiXQghhBAiO2TnIkQKBIFbtWplSh0KDg0ePNjU12XLlrW00J49e4aHHnoo7LHHHmbtwrb//e9/4YYbbgiZAKp8fOCz47333rPPBVU+abxKjxVCCCGEKL5QnBPV91133RVOOeUU24bIBDtE7P2w+csNiFWGDh1q422C4Vgn4mG+cuXKSHVPBuTxxx9vynNA2PHoo4+GqVOn2rjdoZYRY3pq+PB4+/btbQzP61144YV23PPmzcvTz0MIIYQQxRPZuQiRQpMmTcLo0aMtMD5mzBjbdsIJJ1iwnGKj33//vW3Dr5Ft+FCeddZZIVPILoCOdzx+6U888YR9hqzP+ecnhBBCCCGKJ1gblixZ0nzLnb333ttU6Y888kiuX++yyy4zVXnfvn3DIYccEn755ZfwwgsvJNnWEBT/9ttvo/ujRo0KP/30k/1PlOV+cQ91xq+zZs0Kbdq0sczKiy++2LJKyTAVQgghhNgUpEQXIhtQv/Tq1csG4AzIH3vssdC5c+cwbdq08M8//5j6hZRRJgybUuSouMGEZtKkSbaQgNoIaxvSbimuyudFKi1KHwqPpnp1CiGEEEIIIYQQQghRVJAnuhA5BIl33313C6QPGzbMthEUJoCO0hpFDKCUyTQoMEpq7n///WcpvCw08Ll888039viiRYtCpUqVwueff26BdnwxhRBCCCGEEEIIIYQoisjORYiYHQk+iTNmzDArknPPPddU1ASHuWDfMn36dNsXf8bff/891K9f37ZnGnhNsqBAEajtttsufPHFF6Y2//jjj8MBBxxgvulce3qtEEIIIYQQQgghhBBFFQXRhfj/ufvuu8Pzzz8frrnmGiuKCfg7EignINy4cWMLFhM4RmkN559/frRvJrH11ltboSj8KLG4gerVq0cFnIDH8Ivns6J4kxBCCCGEEEIIIYQQRREF0YX4/znjjDPCgAEDQr9+/azwkJcL6N69e3j77bfDzjvvbEHhI4880hTXu+22W+jWrVvIVCpUqGALCD179rT7WLfAG2+8EXbaaaewZs2a0Lx5c9smNboQQgghhBBCCCGEKKooiC7E/0/VqlXD8OHDw/vvvx9at24devfuHT1GsBiFOsFzvNLh1FNPDTvuuGPIdI466qhQrly58OOPP4YqVaqEP/74I9StW9cew+oFHnnkkbB+/fo0H6kQQgghhBBCCCGEELlHQXQhYuBzPnbsWLu9//77h9GjR0dBc9h+++3N8gX69OkTMp158+aF2rVrm+0NoM4HAups22effUKtWrXsMySQLoQQQgghhBBCCCFEUUNBdJHxvPjii+Zt/uGHH4aJEyeG7777LlSuXDm8+uqr4eyzzw4XXnihqdNh/Pjx4e+//w6HHHJIpLbOZPbcc8/wwQcfhG+++cZU6B06dDBv+Zdfftn847FxOeuss2xfbrtFjhBCCCGEEEIIIYQQRYVt030AQqSbYcOGWSAd65E5c+ZEVi0333yz3S5dunSoWbOmBdTnzp1r26RC/z/23XffMH369NCiRYtQqlSpLIus4pl+5ZVXhrfeesuKkTZt2jQtxyqEEEIIIYQQQgghxOYgJbrIeC677LJwzDHHhMaNG4fly5eHHXbYIfz111/hn3/+CYcddliYNm2a7Yf/+bvvvms2JSeddFK6D7vQwGdH0dWsAuhAgdH27dvb7fvuu6+Aj04IIYQQQgghhBBCiC1DQXSR8VAYEzX1pEmT7P7JJ58c+XcfccQR4b333gs77bRT+Oqrr2xbt27dwi677JLWYy6s/Pnnn2Hq1KlhxIgR4dBDDw0nnnhiaNCgQfT4448/nuQxL4QQQgghij7XXHONCVEY+yFEEUIIIYQobiiILkQIpjxftWqV3aYQJn7eFSpUiLZ17do1TJkyxW7LymVDZs2aFY499tjQsGHD0KlTp/DYY4+FxYsXh++//94exyaHIqME0J944ol0H64QQgghhMhDLrnkkvD8889bBueTTz65Ra9FDZ3BgweHihUrWiYoghdq8GwsiE9WZPzCmF4IIYQQIq9QEF1kLFiLjBw50gK722+/vVm5vPLKK6ZKhx49eoSnn37ableqVCn89ttvYf/995endxZQeJXPzVXmHjzHA53ioz/88ENo1KiRbZOlixBCCCFE8YLaOGRwYnk4fvz4LXqtW265Jdx5551h9OjRYenSpZYR2rZt2/DHH3/k+LzatWubEMYvCxYs2KLjEEIIIYSIo8KiImOV5yhcPv/887DrrrtaIVEUK3Xq1DF/b4Lq7o1+8MEHW+FRV6Fn5/2dyaDUx+7m6KOPtiKjH374Ydh7773Dp59+Go488siwbt06e3ybbbYJixYtMoscqYOEEEIIITaNX3/9NdvHGF8xbt2UfbfeemtTd29sXwLXm0OTJk1C//79wzfffBPKli27WSp0bAGvuuqq0LFjR9v28MMPh/Lly5u4Jae6RNtuu61lkgohhBBC5AdSoouMhAH6wIEDQ/PmzUP9+vVNZQ5MQFBUE/SdOXOmbaMo5rJly8J2220XTjvttDQfeeGkXLly4dprrzWVfuvWrW0b9i3w3Xff2fXcuXNDq1at7Pb999+fxqMVQgghhCh6Su/sLl26dNlgXJbdvu3atUvat2rVqlnut7k8+OCD5ok+ceLEaNv8+fNzPH4uEyZMiArSf/nll2bh4iB4ady4sVkF5gSWL2SPVq9ePZxyyinhk08+2ez3IYQQQgiRioLoIiMpUaJEOPfcc8O8efMsML7XXntZkNcpU6aM3Wci4AVFjz/+eNsucobCq8BCBDDhQc3/33//mbULPPTQQ+Hvv/9O63EKIYQQQoi8gzEf1ojUyfGgOFAzB9vEnC7HHXec7UsAHVCex+G+P5YVBNkZt7/wwgth1KhRFoxHLLN+/fp8e79CCCGEyCxk5yIymoULF4Y33njDFOi///67KVYqV65sj5HqeuKJJ4YBAwbYfRUU3Tj4VrpqHzXQQQcdZBOjKlWqhNdeey2sXbvWJkEsTDz77LNWhFQIIYQQQuSM153Jzs4lztdff52jnUscxmZ5BTYsHTp0sOzEBg0amL3fvvvua2NqrvOTuMK+bt26FlRn/ElB+zPOOCNf/7cQQgghMgMp0UXGQbEiPM6xdLnrrrtsGymfF154YahWrZr5LfIYTJ48Ofz44482CMfbW+TMJZdcYsVaa9asaffxPT/mmGNC9+7dwzPPPGMWOW6JowKjQgghhBCbBh7l2V3ifugb2zfuh57TvrmFOjiMmy+66CKzSqTIp6vRc2Pn4p7mngnqcD83fue77bZb2G+//SyQL4QQQgiRF0iJLjIKlOZ4of/7779hzpw54amnnrLtjRo1sqAuRUVRTl955ZXhuuuuC+PGjbPHUbCkKnfEhvTo0cMKiuJjeeihh2ZZPLR3795h2LBh4bnnnrPCrnhXCiGEEEKIogsiChTghx9+eDQmpAbO1VdfHdm55ITbtyBoIVg+e/Zsy2iEn3/+2bIdzz777Fwp9z/66KNw6qmnbtH7EkIIIYRwtkq45FaIDICg7dChQ8PHH39sA/0bbrghtGjRIuy+++5h6tSp5pNOcBcfxSFDhlgwneA5qa4Eh8WWwwIGn/miRYvsM77iiivSfUhCCCGEEGIz+e2336y+EBmeZHe6Mp1MziVLlphYJTfcfPPNNl6nhg5B9UGDBoUVK1aElStXRqp7MkSpV3TeeedF2ZB4sfM/Ge8TvCdwz3PKli2bD+9aCCGEEJmGpLUio0D1fOedd4bHH388jB071raddNJJZjUC9erVswA6KaDffPONbTv66KMVQN8CKCjKogUKpVtvvTVUrVrVFEmAQknreEIIIYQQRZeHH344lCxZ0moJOYydUaU/8sgjuX69yy67LPTv3z/07ds3HHLIIaYqp2Bo3LYGlfm3334b3f/ss8/MPhBLQY5jjz32sAC+AuhCCCGEyCukRBcZCSmiWI7sueeeppjBJ71Vq1Zhl112MU90VC1PPvmk+S/i74jSRWw6TGqY7KDuf/fdd03J/+uvv9qCxcSJE0PHjh3tO2BSNG/ePFOmCyGEEAUFw18Web0gI/39tGnTLPssXoTwgQceMDXrCSecEA477DDbRt/FYjwL7l26dEnbexBCCCGEEEIUHFKii4yAiTLWLajMPQX0/fffD2PGjLEJMnjxS6AQERPqcuXKhQ4dOqT12IsaqM7xtSQIMX369PDOO++E5s2b22PuK//8889bIB1UYFQIIUR+8fvvv29QWBCPZBbNp0yZkqRiRfWKBUScZ5991jLYsJJwsIro06dPUrDd1bNYxY0fPz4pWI/VhRBCCCGEEKJoo8KiIiOYMWOG+Snefvvt4YsvvgglSpQINWrUCD/++KNNsPFxZAKNXzcB35kzZ9rzevXqFbbbbrt0H36RAi9KFiFI6y1Tpox9ltwG1OdY5rz55ptWNApQ/BOg2HXXXdN85EIIIYoyBKz//vvvsP3229t9ChE2a9bM+ngyouIL66jJV69eHW2rWLGi+Sl7sWvGBti6NWjQwF6P26NGjbLX//LLL0Pbtm1DqVKlbF8sI1599VXLwHrrrbfsPj7OvOaff/4Z6tSpEw444AALxG+11VYF/rkIIYQQQgghthzZuYiMgIk06rIDDzzQgunxgO369evNcqRr165WBImA7oABA2yS/d5775m3osgdBCcILjz11FP2uVauXNnsXL777rvQr18/ywBwj0s++9GjR9t2IYQQYnOgEOHw4cOtj6dIOPz0009muYInMgFzD3p/8MEH1seXLl3a+nky01CrDx48OOy44462D7Zud999d7b/Lz4+4H+S7ZYTKNRZQH7llVfCsmXLzDrmjz/+sOe5TYwQQgghhBCi8CIlusgIGjdubAox1GOozNq1axcVQdp5550toIutCynY33//vU2uUaQrgL55eKCiffv2dvuTTz4JnTt3Nn/5H374IWy77bam2rvkkkssiE6BUQXRhRBCbAoEvalfcvHFF0ee5vTb2LDNnTs3CqKzYL5u3TpThKMARyVOdtRrr71mF14nTo8ePULt2rXtNkUJyUQjAE9W1e67727b//nnn/DXX3+ZKh21OuMKAvAo1vk/WLcwjnj77bftmNCqsJDM9kaNGtliclwBj6KdzDgeQ7HO/8NGzvtRIYQQQgghROFAQXSRURCsZSJLUBdbl+rVq9vEmgs+6UcccYRNZgG/U7FlYJtz9NFHh0mTJlng3P3Q27RpE5577jlT4bEdZR7BDQIIQgghRHZgp9KkSRNbkCXwfPjhh9t2ioQ3bdrULh7sJlCOjYpbqBB4R20eZ++997Z99t13X1OhEwBHKY6FC2px+jCguGj9+vWj57EQHAd/9N69e9v4gv4M1bnDtjgE/r2wKWMS9o3vT9/JAv9OO+1kC/8cG0F87NKoOYK6nvso6SmQzr5CCCGEEEKI/EVBdFGsQfFFAJciYkyIUY7B6aefbtYutWrVCrNmzTLFGaBgQyFGwTFsSMTmw+fev39/+4xh4cKFFgDAV7ZVq1amzMNzngJtKNTHjRtnVjpCCCGEB8wpUP3GG2+E6667zrahDj/xxBOtiLV7nwN9CopxCoHS/7BQi50LxUM7depk+7Ro0SIcf/zx4eCDD7YLQXEW1OfNm2eLuajC40VIyZDyIDoL7ATcUZsTuKauB8HwJ554Inz77bdWJDu1UDYBfRaHOVbGFtjIAPVXcgIfdS68Ls9dvHhxjvsTVK9atap9BvSz9Lv8X8Y5rqAXQgghhBBCbBnyRBfFmiFDhoSBAwda0Pacc86xwDip0hdeeKFtZwJ98sknWyCX9G8Uao8++mg466yzooC72DwWLFhgljhM6LmQnt6yZUtT/MXT1LHZwV6HIADfg/vRCiGEyGw++ugjU2GjJOc2xTqBoaury1FyP/PMM1aDgwA69x36lVtuuSWceeaZ0TYyoHbYYQe7TQDdC4nG4X82bNjQ+iwC0ywCL1q0yALtvNaIESNsP4qTe5B66623Nos4jo1j2NjwmmNjAZ/nsxjA4j33sYpBZY8dDIvO2QXcef8E8VHc5wTvj4A6tnWHHnqoqfgVWBdCCCGEECL3SIkuijVMHrFsQfF81113RTYtqJ6BYPk111xjE2kUW0zCPS1bbBko8GbMmGGp9nG1YCqtW7e2IAXp7ijSSckXQgiReaDUXrlyZejYsaPd32effcynHAU4AWrHA+j+nJNOOim6z6ItC+ZdunQxuxcCzezz5JNPmkKdhXT6JkBVTlAZWxT6LPbff//9w8iRI22Bd+LEiRscIz7qFCt/6aWXwpw5c8x6BdU41iwUy3Z4TeqqoGDfb7/97Jr3w7iEY3CLs41Bhtz1118ffv75Z6shQpFuIEifUwCd900AnsVpLv6eAd93AuoIDLBX41iFEEIIIYQQOSMluij2MIlcsWKFFf1iUkm6NUF1lFj33HNP6N69eyhXrly48sorTaFer149Sx2PT9JF3kOaPUo7irkygSdrANUfAQMhhBCZBYFpArsosrEw4ToVAshki3399dfhf//7X7T9hBNOMPU4wXP6evrvtWvXhkceecSC54wBHDKh8D3HFgZQfWPhglIbCIYTXOd/AAFwrF8I4rPYi7VKPFgO9GE8n/1QsHNN4D+vxxGo1Ane33333aa+Z0xz0EEHmfc7cAwE9fFrJ7APFF/ls1myZEmYP39+UlFTV9CzeIBtDVlhHD/bhBBCCCGEEMkoiC4yAqxaCJgzwWYSTnHLiy66KLzzzjumzrrsssvsmsJe+HLj5S3yFlR0U6dOtUn/zTffbAXT2MZ3wH0WMQherFq1yoIWQgghiv8iN30C0P6TEYZamyAxGUoO3uCow7lQ6wQ7FtTV2dmSnH/++bavD3FRfVM8nDEA/ujYhhGERmnOeAAv9U8//TQKHo8ZM8aODbuW2bNnm2d63FYFKxayrChGzgVld0EGnlGk33DDDVZQdPTo0ZZpx3sGMr+wqVuzZo0dN59nz549rRYM/vJnn322KeEJ8rOYjU1OnL322ssWJbp162bBdQkKxKZCZufQoUPDcccdZ4tdm5ptIYQQQghRZCCILkRx46233krMmTMn8d9//9n9H3/8MTFixIjEk08+mdhqq62YVdvjfvvpp5+26xIlSiS+++67dB9+seK+++5LtGzZMnHsscfaZ3zaaacltt56a7t9+eWX23WzZs0SxxxzjN2+9NJL033IQggh8pEffvghMWDAgETTpk0T//77b7R9/fr1SfutWbMm0b9//8SOO+5o/QOX6tWrJ4YNG5b46aefov0+/vjjxB9//BHdHzlypO175JFHWh/07bff2nhgwYIFiVNPPTVRsmTJ6PW4HHDAAYlPP/008euvvyYeffTRRLt27aJ+yi8HHnhg4qqrrkq88soriX/++SdRGPAxDu/v+uuvj8Y0fonf5/3UqlUrsf322yftU6NGjUTnzp0T7du3T+y8885Jj1WpUiVx2WWXJd599910v1VRBOD3y9iasTS/oy09twcNGpSoUKFCYocddrDf8vvvv5/jczhf4+evX84555xoH8ajqY/369dvi45VCCGEEJmDguiiWHLiiSfawJgJb5xrr73WtjNBvvLKK+12mzZtEmeddZbd7t69e9qOubhC0JzP9vjjj7frsmXLJlq3bm23L7nkkihQMWrUqOjxP//8M92HLYQQIp/46quvooDtzJkzs9znscceS2yzzTZRoKtBgwaJxx9/PCmAvXz58sQpp5xi+917773RdgLsH374YdLrEZCLB8722WefxP/+9z9bdH/ttdcSZ5xxxgZB5CZNmiRuu+22DV6rMPLCCy8kdtllFwv2ExSPLwI0atQo6X3VrFnTxjsEJ30bwfUvvvgiMWXKFHtsp512SnpO8+bNE+PHj0/89ttv6X6ropDTs2dPG2dvCUOHDk3suuuuJnJ58803E8cdd1yiWrVqid9//z3b53z99dd2DvvlxRdftHP3pZdeSgqin3nmmUn7xRfkhBBCCCFyQkF0UexAvYJyDaXZ66+/Him1gMn39OnTE/Pnz0+UK1fOBteoZZh4cnv27NlpPfbiCJ/18OHDLQhRpkwZ+5xRtrkCrm3btnabRQ0UR9wmY0AIIUTx4fPPP0+6/+CDDyZmzJiR7f4EtwjkokAlGBbvy1G7et/hl759+26gYv/kk0+i+8uWLTNF++mnn55YvHixKdfp/1HDx1+natWqicGDB29U9VpYFf4ffPCB3V69enXi/PPPT+y7776Jt99+29TkqP9ZKBg4cGCUpTd27FgLspMNlrqIwXdEFlk8IL/bbrvZ6/D5ioLll19+yfaSGlzOad/UhZDs9ttcEEVsu+22FtTeHPitMx4k48ThXEXhznm5qVxwwQW2WBZvOwiis10IIYQQYnNQEF0UW37++efExIkTE/Xr109Mnjw56TEG4xdddJEptkj1ZmKIwiWeVi7yHlJm3dLF0+lJQee6cuXKiSuuuCLKDhBCCFH0+fvvvy2YSwBsxYoV2e6D5RpWK3GwWImzdOnSRKtWrZIsSrp162YBcgfVqqvTUZfHQXFKoPmGG26IFm25bLfddomTTz45MW/evGI1DhgzZoy9P0QDBFkJfBPcxNZl0qRJFlxEWMC2Hj16RLYtBOCxgqGfPu+88xJLlixJXHfddUl2Gf7Zv/rqq+l+mxlDVlYlfsGOJ06qZVH8QiA5jgscUi+bS+PGje35d955Z7Tt5ZdftkWxnC6PPPKI7fvRRx/Z8994442k123RooW1JZsCGY177LFH4sYbb0zaznvn/fJY7dq1bdyJjZMQQgghxKagii+i2FKqVKlw2223hTfeeMMKhh5zzDFWcAt23XVXe4w5CcXB4IwzzijQwmCZCIXKKNhGQTcKT1HUjeJwfB+ffPKJFWeDF198MaxduzZUrVo13YcshBBiC6Bw6Mcffxz+/PNPK2xZp06dpMcXLVpkxS5XrFhh9/v16xeaNWsWFbmMc/nll4e5c+daX96nT59w8cUXh+rVq9tj9PWDBg0Kzz77bLT/V199ZQVL6dspTjpixAgrwklRa6hYsWI466yzQt++fUOFChVCcYPxDYVU27Zta8VYKeTN2Oi9996zIqt8zhRw/eeff8IjjzxixSBPPfVU65/pj99++20r0Eq/fdppp1kB9tWrV4fhw4dbP/3444/bhf8zcODAcNRRR6kQaYazePHi8Morr4Rjjz02TJgwIfTv39+2N2zYMCxfvjzH55YvX96uv/zyy6T78cf9sY3x9NNPW2HgXr16JW2n6G6VKlVCpUqVrM2hTaGg/eTJk3P1PoUQQgiRoWxSqF2IIsKiRYuswJjbiHixUJRWKLFQPcdZtWpVpKj67LPP0nTUxZ+//vrL0vaxbHEbHfenxwO9T58+pkR/6qmnLHWf7fjXCiGEKHqgekZd7tC/plq3UAyTtt9Vr6VLlzbldPx533zzTVKxUfr4Xr16JdauXRttw3YFRXSqQhqfc/dfv/jii5OUuWShTZgwIWPqb8TtLObOnWuWNYyN/PPAGueoo46K7qNMJ3OMbL5U5T8qf6x58KMnc4B9/XGUwqj5RebauVCTCAsg7BQ5J9xeKDcsXLjQnptqAXXCCSfY628KZDR26NBho/th48j/Kgp1D4QQQgiRfhREF8UGUrBJUSaFm6B5p06dbGBMASEmfdxm8k26KINmJpVMrNme6gUq8hZS6Cla5sVb3caFVPtnnnkm8d1330Up9EzaeXzPPfdMCqYIIYQo/KxcuTJRp06dHBdC8TXGTsGDr71797aAebx+yT333JPYfffdE5deemmO/8+LhGM/Ql/vQTuCgPQzpUqViv7PwQcfbIUzi5NlS2454ogj7LOgUCNjIj437vNZU4DRC39zqVu3ro2VCGpiF+Ke6PTZccsdPKbjQXleA+sdkVlQg4BFFS/kiV3KNddcU+B2LiyyseBDUdKNQTvB/6IwrxBCCCHExlAQXRQbmICjmKJIKANvnxiiSPcA7oIFC6KJO4NrlG/cJpAr8hcm6yjbUKnFi72lQrE3/470vQghRNGCYp2033iOs4CaVdCKRVJXhNNHx8F/u0GDBlFAtmHDhkkLqmQ2UXTUweMc5TnKaGBfFO0VK1ZMeo3nnnsuSZGdqRBgPOmkkxJffvml3UcxTGA97h2NWv3QQw9NTJs2LWlhA+95MsYcPs/777/fvlOC6WeddVaSMp1FjVRfe1F8oWg8v11nyJAhVkAeUL+zwJXThVpG8cKit956a/RatCWbWlj06quvtudvihCDeQHnKrUUhBBCCCE2hoLoothB6jaFsLzQEhNDbjdq1MjSt7m911572cSP2xTKYnIo0g/BkZkzZ1rRV1fKCSGEKFpQJDQe6E7lxRdftEAXbb5DkI223xfAd91118Rdd92VFAibM2dO4oADDkg0a9Ysy4A4i7QE5j2IS8Fwgm6ZrDzfFAYPHmwBT/+cCCz27Nkz8fXXX0f7UCSSzz0ebHz22WejMdWTTz5p3wlFSXmuf4/Y6FCUNNVCRBQvKM5JNoOryQHBBOfB5mQlDB061LIepk6dagWJO3bsaL/nuG0NwhnaiDicw9gDXn755Ru8JpYtnIssBlFkl9euXr26KdyFEEIIITYFBdFFseP777+PvE/xYGVyx+2HH3440aRJE7tNeqnfjquvRMGC6ui9996zdHwm4Hvvvbd9JyjduMaaRyo2IYQovOBbTJZRdkFSfMcvvPDCxAMPPJDtaxCY3W+//aLg92mnnWYL4g7BXLcC41KmTJkkD2P25Tlxf3UC+WQ2iZx59913zfrCx0wEIbFx4T41TAg0stjhYymU5ldccYV931hgENiM27jQpwOe9Icddlj0GIFNXksUT0aNGmUZJvGFMSDLoX///rl+PRZksIQqX768KdCpl0MdoziIYFiMi8M5zPmWuq8H9QmY0z7wmvvuu6/ZRWWVMSOEEEIIkRUKootiAengPoFnAkgKMgXLPBjLhBs/Rm5vt912poLz257SLAoG1D98FxQyY7HD/WxRFFE0itvnnnuuTXRUYFQIIQov9Lf16tWzthorj1TWrVtntiA8jtUai9zZWYzsvPPOiUqVKpm6OQ4LrBSg9sKW9A/uyc3/xzsdxar7ovft29eKlopND1aOGzcucc455yRZ6uBnHV/UePvttxNdunSJthGApL4MYy8Cme6Jzrhq4MCBphjmtalz4gvkXOjnc8pSEEIIIYQQorCiILooFio4PM8JlKeqllGuMGlDNXXyySdHk0Em2dzGR1UUHKTV87kfcsghVniO26SQe9r3Qw89FKXxjx8/PlLCSU0ohBCFEyxWaM/ff//9pO34aqMi9TY9VYX8448/Jt2nGGE8yM7jJ554YhR8xabl1VdfjR6n+GDLli2jx+vXr2/BX7HlEBi/4YYbEpdcckmkUkdljACBwqwsdvjnjmBh/fr1lhngxUe5tGnTJsnqg3EY2WVenPS+++6TR70QQgghhChSbB2EKOKsWbMmVKxYMdSsWTPsueeeSY/dfffd4YwzzgidOnUKTzzxhG3r3bt3mDBhgt0+++yz03LMmcoRRxwRtttuu1CqVKlw4okn2rYZM2aEI4880m5/+OGHoVq1auGnn34Kf//9d6hUqVL4+uuvw1NPPZXmIxdCCOGsX78+qV1/4403Qo0aNew+Ao3bb7/d2vWvvvoq1KlTJyxbtiwcd9xx0XNo06tWrRpmzpwZbTv88MPD7rvvHt3fcccdw6pVq8I222wTrrrqKnuNhg0bhv/++y+MGjUq1K1bN8ybNy+ULFky3HnnneHVV18NjRs3LrDPoDhzySWX2GdOnzx//vyw7777hnXr1oU2bdqEPfbYI6xcuTIaP91///3hnXfeCfvss0+YPn16mDx5cqhQoUK46KKLotfjOxoyZIh9hw0aNAg//vijjc3atm0bPv/88zS+UyGEEMWZ7777LqxevTr8/PPP0bZff/01LF682MYucZh//vLLLzaOEUKIbEl3FF+IvAAPRlToKJ9IK/7hhx+SHkedVqtWrUTz5s0Tw4cPNyUUxcmkgip4XGlI+r6n31MYitukfFP0idsUMLv22mvtNnYAQggh0gt95vXXX28+2GSBpYK9imd6cenRo4epkB2yivBH9sc7deq0gX96vNA3BQUpAuh89tlniaOOOip6PrZfKNJF3vL0009bkUj8peGXX34x33uU5vEirWQb4D2feo7Ev3PAYu/111+32xSKvfXWWxM77LCDfYd77LFHYvLkyQXyvoQQQhR9yH5avnx5UvYadTgOP/zwDcYV2IV6trPDc9lWsWLFpH299srtt98ebfvmm2/sNbE8i8cNOIb4eEUIkTkoiC6KDTNnzrSOb8cdd8zSD5WJHz6c1atXt/1Gjx6dluMU/w8WNfguCMowYef2o48+aoXLuD1r1izzV+U2gyMhhBDpgwJ8++yzj7XJeJFnxcUXX2yLowRX4xNOin+yOOoB8MsuuyypCOHq1asTjRo1soXUrMArHds27+fvuOOOpICuyFtS7XYQJ7DI4RBYZ9wV55133rGFDWqfOCxy4HeP7R4iBj8nVq5cmWjQoEF0PpxxxhkWlBBCCCGA2hqLFy9OTJ8+PWl706ZNrd94/PHHo23YvbkgK95vEURn0fb0009PDB061GzKCIrvtNNOZhMXH2PQV/EaFNKmwDZ91EEHHRTZkDn0cY0bN7b56tlnn20FuukTGdPQt7FYLIQoviiILoosTLYoauUTMvdGPf/8863wGKvJ77333gZqKPYhYEtnJ9I7MLrzzjvt+9h///3tO+M2Hrjug4tfuqsCGPwIIYRILwS7c1qEJrDNpDcOivIqVapE/ujPPPNM0uNMkNnuyuR4AJfALZPeuPf5qlWr8uGdiexAicfiyQUXXBAp73r16mXfBxljvpjhWQIEGxhvAaIGAhb+/aFmZ0HFv1u80r0uSs2aNS0QL4QQIrOgb0EhTsaZs2jRoiwV4z179rSxwr333mv1OAiA33TTTYkjjjjCamo5I0eOjPqerC633XabLQbzHK+dlt2FAucs9Ddp0sTmrVnt48IvFvrpA1955RUbr3CMyn4XovigILoospBqRUdFkHXBggVR54ViuUSJEnafQmUPP/ywFcmKFxq99NJL0334GQ1qtF122SVx5ZVX2kDD0+yYeF900UU2iWYgBQsXLrTH+U594i2EEKJgYOJH4Dw7KCh6yimnZFsAGiVyqVKlrB3fd999TbEVf+14cWnUZVh9OZ988ompvXyCihWMCk0XPI888oh9/tj4EBQnaO4L31w6duxoWQp8d/Hvi7EWyjy+ZzIX3MKlQoUKifnz5yfZwqD84zHUgWSkCSGEKL6kBpU9iI1aPC6Yo5D10UcfbeIrwBoM9TeZbfQXqYHsCRMmRK9///33W7C9du3aiWOOOcaC71iTeZHrrC6o0xHkEV9wK5i8vFCsm8ws5r8E5lG6s7jM/+P/ko1Hfzlp0iSzo8U6T1l3QhQuFEQXRRbUT0zIxo0bl2jXrp11TH369LHArE/G8fXkdo0aNRJvvvlm1HnFJ+mi4CFgznfB4OSGG25IjBkzxibgPkCKwyDokEMOsf2vueaatByvEEJkIrS/TOpY9EQRlgoLnijE3J4lu9fAqoP2/rvvvou245vdrVu3aGJ51llnJdmFEGQtV65cpGx+6qmn8uldik3hiSeesDT1OAQoCAbwHVF3BsUd3+GAAQOSfOu//vpr2/+tt96yYAbbSYNHJeiwT9zvngWT+PkghBCi6EPff+qpp1p2Wrx+BqpwFtwHDRpk9xHAIYbD8jNeG8Wzyv2CyIrAN/0HweguXbqYYtwX7z3L2ccjH3/8sfU/LN6XLl3anovIDoV5TsFvXwROx4XjZRGb98gCNnZ2L7zwgsUzpHAXouDZij/Zlx0VonDz1VdfhTVr1oSmTZuGrbfeOixbtiwcccQRVl376aefDrfeemtYsGBBuOyyy8IPP/wQxo0bF7p06RImTZqU7kPPaNavXx/efPPNcOihh9r3trGq6jNnzgwnn3xyKFu2bPjkk0/CDjvsUGDHKoQQmcoff/wR2rRpE+bPnx8efPDB0LNnz+gx2vDWrVuHb775JtSpUyfMmjUrlCtXzh5jaPn333+H7bff3u7/9ddfYauttgrbbbed3f/nn3+s/X/11VfDtttuG+66665w1llnRa89duzYcN5559lr1K1b1/rzatWqFfj7F9mzcOHCULp0aevPO3fuHNatWxd23333MHXq1NC8efPw1FNPhdNPP90er1KlSnjppZfsO/z1119Dnz59wsSJE8OAAQPC8OHDo9f8999/w9VXXx1uvPFGu8/rTJ48OZQpUyaN71QIIcTm8uWXX4ZPP/00HHLIIdH4gL7g448/Ds8991xo166dbf/tt9/C+++/H2bPnh1mzJgRXn755fDnn3/aY4MGDQrXXXdd9Hr0EZUrVw7HHHNM2G+//WxMsfPOO9t1HMYcFSpUCBUrVgylSpUKy5cvD99//330+B133BEOOuggix9wLHPnzrV+KCd23XVXe83y5cuHPffc027T9+2222524fGSJUuGEiVK2OW///4Lr7/+ur2vbbbZxuIWa9euDd9++22efL78b96DXxo3bmyfCWMuIUT+oCC6KPKccMIJFhQnyFq/fv1w6aWXhv333z/ce++9oVmzZtaB0jnSqRAQmDdvXmjRokW6D1tkA00SARsGIXyHLHwQQOnXr58F0Nl2xhlnpPswhRAiIyDoyeTvuOOOi7a99tprFkBncfrggw+2Ce8ee+xhjzEB7d+/f/jss88skOqB81Ro2//3v/9Z/+19MhPg888/P4waNSrq3x944IGw0047Fch7FZvGW2+9ZQFuAgIEOvjuO3XqFJYuXWoBhdWrV4cdd9wxvPvuu+HYY4+1AAbnkC+q0M8TRO/atWuW58czzzwTevToEX7++eewzz77hOnTp4datWql4Z0KIYTYXGjLO3bsaPPyd955J9rO4iiLsIjgCDR/9NFHoWXLlrYYG6dSpUrW1zAWoG95/vnnTVhFUJo5PwvxzpFHHmnzfALJvBaL+wSr27dvn/SaiLcIdjNWoY/JKhTG47Vr1w4HHHCABaSrV69uF4L/zE/zAoL2jHV4b7xPAvy33357+OKLL6J9CPwTDGcxGjgW+kQC8ytXrrTFiazwz5YL4ytiIN7/CiHygDSo34XYIqi+TSqWQ/FQClzhhe5p5aQYd+7c2W7zGKlh3MYWRGlPhQu+D4rIkdZNCjg2PXxXfH/nnXee3SY979Zbb7XbBxxwgL5DIYTIR9x+IysoEkpxbtpj0p9/+OGH6DH8r0866SR7jFTpWbNmJT3Xi1I68QKieJ+6NRvPvfHGG9XWF+JCo6TLH3bYYVHNGa7xdJ03b17Svlj4xM8nvtPU75Xz5rTTTotqocDbb7+dqFq1amTnk3ouicLH1VdfbdYKJ5xwQuLvv/9O9+EIIQoQ+ncsRpYuXZrUx+P9zfwb206gbaAQKLU24s/FHxzLlLZt21rdM+ziHn/8cbNioQ9ItTjBqvX7779PTJkyJXHmmWcmqlevvoG1HH7i9CPMHcuXL5+lVQr1OI4//ngbc3D8FDZN19iDY+CYsKLBwiUnixe83lO38Vln5feOdzy+8sOGDbN+VmMrIbYMBdFFkYJGv27dutax4Hce57777rOOYs899zT/cy9URmVsPM+4jaenKDyMHj3a/FGpru6BkxkzZthtBgF44sa/R/e3e/7559N96EIIUSyhyGPJkiWtXU6FyS/FQT2A/vPPPycFQvEi9SLfTH7j0GfXq1fPArCpfPnll4mDDz44mgSm9u+i8MGiR3wBJSvwSE8tiEaAg6Jw8QWVwYMHR4EDgisOwfdDDz008oR98MEH8+GdiLw8J+bMmWOB9C0tDksNhNatW0fj9zfeeCPPjlMIkfe4YI2AdOpCKvN3xG4XXHBBVOuE+Xq8f6BmBkHvOD6m4MLiPXVUxo4daz7pBIVpa+LBYuaOLOTjGY7Pudfs8AtzSgp5UuuFwp2p/68wQLH2xYsXW//62GOP2fvhuHlvFEVl7EV9N39PLDo0aNAgmi/75YorrrAFCBYnUoPqe++9t/XDzz33XJb1yIQQOaMguihS0BFTVIOJVrxAma92U9GbiX+PHj2sk+jYsWPirrvustusUKeq4ER6YTDFd8MAwQuKURiWQmTcRtXUqVMnu83AwYuVHXHEEek+dCGEKJZQ0JF2tmvXrlmqlRYuXGhtNAqweHAd9SnPY9LKxCwOE0FXRzGxi0M2GQWzeKxMmTI2eRRFj/HjxycmTpwY3Ufttuuuu1r/7gVC4wIHxmdeVI5zicKzbCc4wAK7wwT/lFNOiSb/FJ8ThZuePXtaVsmW8PDDD1tm4rhx4xREF6KQZoZ/+umn0X0KTxPovuiii6KxA4FgAtpeUNovBHYpkMnC2x9//GGLZscdd5wtljImcBBN/e9//7PFOc9u4ToeGGb8QKFSspnq16+/QcAYJTqFy1Gsb2zhtzDC54GKnvGR96UffvhhFEhH2HDTTTdZ9hafAwsLLFSQFcYiBRc+23322ce+h9QCqajU6af5fBRQF2LTUBBdFEk++eQT63xJHUbpFIfOgsk/EzVSynxyfvfdd6fteEXWMOBCUcCghgEU3xMdPyl+3MaeZ/bs2XabTp9JlKe3LVmyJN2HL4QQxQ4mv7TLbtOR3T4OE1q3cEGBHlcSe3DVJ3tMcuM2D7TpTAx5jAkeCixR9GBhhe+Yi6fyT5482c4HvlsUgx4wR/3n6kEUdS6IIDjQu3fvaGIft/Ph+uKLL44eGzhwYEamo//yyy92ib93Pje2EYjKat+40pNsEbalBkqy23dzGTVqlI3VcrKF2lTWrFmjILoQhYxLLrnEfpeXXnpp0vbUdgi1s7fbtPsoo5955hlrX/hNn3POOVG2iV98EZUxyIQJE0xkVaVKlaT2CbsXlO8Ir7AWS1WbN2/e3BZcCUAXh76CcdO7776bFAdhISGuPqf/9fGUX/jc+Jx23nnnJLV+w4YNTalfqVKlpP3ZDyHizJkzJTwUIgcURBdFEvzKPEWL1POsOsiPPvrIVFGubvMJnCicMKByT3uC6H4bNRKdPbdJ38Pjntso1IUQQmw5OU0yCdKhBH799dezfJwUbOxfCJhOmzYt6THqk/gkr0+fPkmTYIKt7nNKKvJXX32Vh+9IFCRMtgmA40sb/47xl+Xc4Dtu1qxZ5ImLVZv76tepU8fsfPw8dEsALnFFI9dkG/pjffv23cAqprjj7z0enL7hhhui31cc/9wJQjvDhw+3bSeffHLSvh54QcnosJC2uTRu3Nhe784774y2vfzyy6Z4zOkS90h2FEQXIv3Q1saDqtOnT7eFMmxR4vtMnTo1KdjL7xb1M3WvXAX+wQcfJJo2bZoUvCWYe/nll1sbhMId5TiZTPF9sIMhmMw4o0OHDkne3wSQ27RpY+2W9yfFmW+//dbabcZd1Axj0SD+WbFAvcsuuyQtLOALn7rgQLt7+umn2yI1Fi+pli9kAfB9CSGSURBdFAnomPHCdPWMp5tT1ArfRfzNUn2yeQ6TM/YjJVQUftwX9fDDD7fUNG6TmocSwS15KDTjQRluCyGE2DKuuuoq86pOLQZI4NLVwSxsZpfqS4CMVODUALpPxlCjxQOe7O/KKDyv4wVGRdHE08azUqn7YgmBEw+kEyypUKGCbd9vv/1MWZca7MW6j7T1OARJPLOBczOTAulFIYi+aNEiG6Mde+yxFkx3UJUSjMnpEq+x4CiILkR6IbvswAMPTDz00ENJYwO3ckF9jpVqrVq17LeKpUgc9o0H4BG1ESAnAIzHuauesR9JDfJWrlzZ5oYsvHKNj3r8cQqWYheTCYHzVGhTydZ2UN0TD6HtpwC8K/n5jPisyAIAMv74LL1wt8dI6EsZm9GXpBZyRbVOdpkKRgvxfyiILooETz75pDXidNBr166NVOionGrWrBmplFGxfPzxx/YcCpN5alLcu1UUPlgAQVWAj65PjpmIMRBgcs1AjaC6Txw7d+4cWQMIIYTYfOILk/SpcYYNGxapvFJ9zvEyzQ4mbz5BQ6kWV7q/9NJLVjzU61vk9DqiaML3zcKMF4hFQejKcxRyvmhC4JQgCdtTC9EinIgHCFI99jMxkF4U7FwI1BBAJ3OF72dLVYwKoguRXjwDiIyxeNtDm4NVajywjfoZ9XI8sEuGEsHx+HMJnH/xxRdJ/4dAOa/BHB+71hdffNG2UW8lrjpn0Q/ldFzxLhKWzRfP0gc+c/pcsgZol32hlO8Fm9T27dtb4NzBWpXvkHEbNeWwYotbxqBOZ+E2qwLxQmQSCqKLIgGNOg03K6ek8LpaGasPbuOnRko5nQQr21i5uAUIfmmicIMSwYuHUtWdAij4pdPZZzU5JtWP/fm+V69enZZjFkKI4sITTzxhqdRxCID65Cluy+BBTFTEBEezgwXta665JmnizOIo6cO8JpOznHzXRdHF65rggevCBoKqjNVQtMXt9Xgc3/yNQV8fVzNmaiC9MEM2AeMyFsoAGwfaAJCdixBFA1TM8cUvFtiuu+66pKKc/FZ9AZQLgXRsRTzTiNfo0qVLUgCWgLjDPJ0MNepbOIwVqKfw+eefmx1rqiqdeT/bUxcMxf/7/Gh7sUFzyO45+OCDkz5HFiUuuOCCJKsXLFIp6h6vS0L/yndIliEF4eN+6wghzjvvPM3BRcaiILooMtBpeqCcBpyOgorU3B4yZIgFYLlNARLUdNxGyZwXhY1E/rJgwQLr9FkZ35RUMTIL8L7LKoVZCCHElkHBbrdbofBXPBBOMMwLRqYWFctJVU7A3T1O6aezs4YRRR/6cQq833PPPUnbWRzfWH0axmweeHfefPNNm8BjQ5JdIB0P3eJQQK4ogyUUalWHsXmNGjXstuxchCj8jBkzxtrUdu3a5bif20hh84bfuQe2ET8RpI0HbRFGEUCnfSbzjULk3m6zeObBebJq7rvvPmsz/LksxBLYpQ8QuYdxFiJEPmcWIeLfC5mALGqnbrv55pttjBbf3rp1a8sMQLxIGx8PtCOE0/cjMg0F0UWRgsm8K9geeOCBKK2LlC6f1OOpRgErbsdXY0XR931jktWiRQsrjuJpf1KjCyHE5vmcojBLhSCn1xOhWFXc1gE7tbJly9pjKJTiAU364fLly5v9WipMrPfYY4+olklW/1cULzYW0OZx1IxxVSG+tqiXqX8S90gnK8IFFD179kxSnVMXx9WOWMiI9EC7gWVPXE3Od8h3QxHh3PLdd99Z4Jx2iu8WBSr3Uy0ghBB5B37ZzKdZBI0vdC9ZsiTxyiuvRPdZ8CJDLZ5Nxu88rjzH2sntQ3hdCpTHHydQj+0IfQALrnFlO1lLV199tQqObyHMjwl677XXXvZ9kiHAIod/D3ims7hNcVGPo+CHjiCCfbFNdSsd/Nbpt7kwJ2/btm1SoJ1zhucIkQkoiC4KNbNmzUrMmTMnuk+jjjc2nTmTLBptPFvPPffcKNULf21fvV63bl1aj19sPqiPBg0aZH7o5cqVs84dBYNXGye9TGp0IYTIPaTtMjGipkhqzRDuMzkiIE5atUPgm0mUF3yOB8JRD1erVi0KkscDqKiKK1WqFBUB83RvkTkweSf1+7PPPou20b9zTmDh5hloPL7PPvvYdjIN48XisPXzyTyp6PFzDAsAn8hTPFMUPHwHWDqkeqmjbOzfv3+uX8+FMqkXAmtCiLyBhSkCqXHixYiZR+NP7v1+qm1WvB3mMfZhgT0eTEW9HPc0p83n/7IIz2M+duDCuIN5fVZZKWLz4HuJf6fAvJnMrvj3OXXqVAumo0SPf7+I1rDeobBofNGURZPly5ebEj2+OEKQnsxyIYozCqKLQgud6/77728N8v3337+Bf6t3tqxuEzDnPiujdOBSoRdNPvzwQytmQofthWpQmbVs2dJuDxgwwPzzuF2vXj2p0YUQYjMgY4s2lklUVjCxwrM0PpHyFG0WNeN2GyjRmjZtao+xuB23UCMgT+YQj3GNulRkHmeccYadA3iz+qQdkYSP3VCXezAG9bIXpWU850VIwevgcMGjNyt7AS7sJ4QQInuoL0VwG3/r1DkUC5t33HFHZOtGkLRXr16RZRuPU3iSrLW4jVtWdU5o02nrjznmGLN1o61/5plnEgceeGBS8DxV2S7yhxkzZthnThFSz+xBFIE1D7VuKOrt/TQF5bFsoR5dPAvolltusdfo2LGjBcyx243b+HBe4R4QXwgXojihILootNCgo16hY6UDjq+W0gGjRMYP04tgYPPx+OOP2206fVWOLnqwMs7317lzZ5sg+6TbO3wGenTWPqhDmeZqdAZ3QgghNg0C2vFCYTl5Vd99993WzpIRFC8ORr9MyjaPYeUQVx+hPqZf5jGU6HF7DpFZoIIj6wGhQxyUb65Q/N///hdtx7qNxRq2s4getxUgsOMTdYI48XHhhRdeGC2sx7MYhRBCJEObSQY3wc94gBSFsQvSuDRu3DipiDiZbJ6Vlpr9w5jg3nvvtQzxON7/E2zFX9ufi3UItRNk8VZwkGHYo0ePpJo22PF5nTkuFHXlPGAf34avOm4A2O/Q17qvPf0t2WGMKclAOPbYY6PnlCpVKnH99ddrcUQUOxREF4UeJvZUjaZDj/ux+QCA1E4adib2TNJotK+55pq0Ha/YfPDOw+9+5syZpmYkaM73SaHYhg0bRhNtTwNHAbFo0aKouAmDMyGEELkDCwasVlAMZ5VGjRqYiTZFx+IwofLgOsW+4xNpUnx5DAsuFZ0Scf/8OARcfMIdL0T6+uuvR/ZtqN3iRccZ47GdDIj49vh5l7qoI4QQmQyFO1kQj7fFqYvnFA53aw4C3PT5LmL79ttvI7GTt7G8nrfBtNkE3P1x5mcOwjYsQTzwigqaQsSpdnKi4IiLE1lEYYx35ZVXWuDbsw+wYUONHv9eKfyKdS5e6h06dEg6H8gm4HxgPOjzdi5kl1HbRMW/RXFBQXRRJNLNPEi6bNmypNReBzUdFb3Zj+Jl8lwtHmDf4lkGZB54lgG2L7vuuqvdx9oH/z1us/othBAi6wn0cccdl3jxxRc3eIzFaJ80U4ciK7ygVFyN5pPtsWPHJu177bXXRsH1VPWxECySY9WWer4wzmOi7VB0DhuAvffeO8lCiPOQcy6r7AkUb02aNLHXw19dWYlCiEyHNtOtMVn8zimwyn6nnnpqVNST55LpXaZMmSgoine2W7cxLydz3APkzNNuvfVWUyzzXCxZvbA4F+Zscbs4kX588ZnMBFeq+/dFJiH96Pjx483uxbezKAII3+LWPJ6FwLmEYwD9tz+GUG7VqlVpfrdCbDkKootCB95qBE+ZyNP5tmrVyhpeOnQm+nTEjzzySNJzSPX1Rvq2225L27GLvIUiY6gV+F5Z1cYHndtXXHFFpETD+gW1maeEx60GhBBC/B/0jbSRZcuWTUqdJmXX208mPA4TIOw2slMOoWZDtYRXZpxJkyZFEyYWt4WIQ8o3heRYgOH8As6xM88804IwI0eOTNqfCXq8wG12xAPqBH/cV51CtywgCSFEJoPXNXNorDAd2sahQ4cmjQni9lnePlMMlPaUYOmCBQuix6ZNm2Ze2t7nn3TSSVaM1LOLmzdvHj3Gc+MZa6LwgKqc74pCoQ51S7B4idfOQaR48cUXm4WL99+A+pxMMix4UzPAOLeoZ+bzeRbGqWGSWoRaiKKEguii0OHFoehsSSHytC+sXLBtcfUxK52olAA/NrbvtddeG3T+oujBd4jX6bhx4xL9+vWz7xbvcwZr3D7ttNNM+UAauKcR+n6HHnqo0sWEECIFJj+oxSZMmBBtQynmNmjdu3dP2t/7VRRJORFvb5mAlSxZ0p6HR6YQWZ0vKNhICY9bsNGXL1y4cKPPT81G5PUGDx5shejjj73zzjuRHQwp6UIIkUmwsBjPLKOtjBf3Rg2OjRttJGODVOJWWdh94G0dX5AkOErQ1C0+PMuN4CjZRWSi8RhjAgpRKmhauEmdOxNrIQMhbrnDecD21Bo306dPt0A8Y8rUmI5nl73//vumRPdFFSxZU216hSgqKIguCh14qKEcIm2obt261tBedNFFNunyAiesfnqhSQpWoazLKqVcFE3INOD7pLAYE2F81i6//HIb0KFsyAqUah68iaeDCyGEyBq3cSFFNz5RYjKEWojH8DyNg4otK2UvfqlVqlSx51A4LD4BFyIOwZSsrPni8HiqXQsLQFgOxYvccd7tueeekaVb3OfVx4pcHnrooXx4J0IIUfjAMgMxGgVAsyrqSNYZtivuZR1Xp1MXpVevXpYBvjGw2qT4pP8P6p/Ei5LSJq9duzaP353Ib7BP80VoBGweZMcSkG0UlPcx45dffmnnEGNGMh69D16yZElk+YdIA0sYXoM5vtv7kH3G+ZMafBeisKMguiiU0MiSduYerfF08zlz5iQOOOCAyNbjuuuui1bBNWkvPhNsfNkI3tCxbiy7gMdRsFF0lHMBRZrOBSGE+D+P6Kx49913o/RalEUObaer09q2bZukTpo8ebJtp2BUfNLDpKl9+/aRD7WKhYncQPp//DxDIUk/TqEz3851u3bt7BzDvs/9er12ji/6XHXVVUmvjUqd7TvssIMVvhNCiOIOgWsEZijF4+Ij5kvx4qCI1uKqYtpSLDy8sGS8KDiLmmeddZapk7Oyd0N17Orz0qVLW90LZQYXTRBKUPiV88Pn03zH9Kcej6EfnjdvnonY4gpz6pitXr3azjUEcO6VjzDumWeesdfCT/+UU05JUqWrAL0oSiiILgotXizy5ptvjm5TBZoCJb5yzkq7r6RPnDgx3YcsCniAiJ0Lgz/Uj1j9cD746jaPCSFEJsPkh4yueJEwh9RrJtkEv+MTXVK2fQGbuhQObS39Lo+hHIozZMiQyOvyjTfeKIB3JooLTKopFE4hOofaJh6MYQwYLyK/33772Xb8W+MZEQ8//HA0IceXP6sFHnzSeQ0hhCjuLFu2zOw3HKxdfIGcADkBUQ+QMgbAwg2va7dHJUDq0K+zsOnzb+zh4qrluPd5p06dkv6vKLrELXg4RygUj7ARsYQryRGwsd+YMWMi291SpUpF9euwbIkXHsVZwLPMyBx3NwFEHdj+xLPJhCisKIguCg00whSl8Aabxpr0MoqQeEPNgMALiDLh8tV0VHFqdIs/eODjhc9AkGCNqySw+OE8oMDd7bffbrdJ705NBRdCiEyCCY9PerG9SAV/1HjRRtpTn0RjqeagQEJd5P1tPHhJu+xKI+pYCJEbyDhz9RrnmTNq1Kho7Edx0XgGhaeZo4qMc+GFF0YT+HhxMwLnFDPlsbi6XQghigNkhtEeoiTPDtTBKMS5uH85rF+/PtGtW7coyIlwzbPJaCtpoz1rjSKi8ec++eSTtuDu7S62WWpfiycjRoyw75l5uFv++DnTsmVLs3Uhiwz1um9nH+IznJ9Y8/p2FnM8boPAw21ivAZaquhDiMKGguiiUECxCU8PwhM9zrBhwyxY2rt378i6pXLlyonFixdHXlubUoxKFE1efvnlROfOnU0RiQc+3zfKta5du9pt0rtRrflkG7WE+/KSWiiEEJkMKqC432l2MPFt0qSJtZ3HH3980kQYn0ufJH/wwQfRdgLzTKq94LMmzyK3cM6gIk/12Wf7GWecEVkDEAByGAP4+A/rPwdVJVZwnh4ef03Uc75ApPo5QojiBNYbPj/OyV+a+VK8LaWdJQDKc2kf77zzzqgfp3Bo3HKDQCe+1sD/OOecc6LHGjVqlPjwww8L4J2KdHHjjTdav3vHHXdE23ABwBGgevXqUZYX/TD1dpiTE3CPw4I4Y8Z4vw2cc4gwfJ7PPgg0hCisKIguCgVMdEaOHGmB8hkzZtgKZ5wVK1ZYcNQLR1IQxVVxJ510UtqOW+QvZCUwIOR7ZjEFbzVu165d2wrf+YR41qxZFvRxyx+Kj3lF+HhleiGEyHTI4qIPzSrgTc0RFEJ4VDsoevGTpk0lXdfh+d7u1qpVyybcQuQleKq6/cDBBx+cFBy69tprowLzCDEcMitQnWP9lwrjCPdHz65IuRBCFDUoxIwC+IUXXoi2ofQluB7flhUoy7FvWbBgQbSN/twtOBC5MW7wMQP2LQTNPYBOfbK47YcovhCLiY8duY2V6vLly5P2YzuiyHhNM1/Uxgoo/hr0xWRD+G2ve0cQnsC9xBmiMKIguih0PtekjFF8Iu7F6oMB/LWoCE36mE+e6MxF8QVLAVIUmRiTXogizYM5/fv3t9t4/saD6gSCmjVrZrdPPvnkdL8FIYQoUJgApy5GA6m2npaNVVpWpE5YjjrqKNu/devWSY9Rd4LteFerYKPICzi/sHGJFwfFi99rnRAQio8JyUQbNGhQkg0MpKra48/xAmiMG7LbTwghCjseeHTi/TMFxT1jF/srV5A7qQKjeLDTOf/88xMVKlRI8kZHSeztMTZxzz77bB6+I1GUoP+k3khqTTrm58y940XtUacfeeSRifPOOy+p36XAKPar+O0TjPfx6+mnn55kL5R6rguRbhREF2kn3ulT/IwGs1WrVonJkycneVrGO3qKQ7EfRVFEZkGqoVf5JiXRvfhGjx5taWPcrlevnqVue7p3XF0hhBDFHVS6THTxJ43jRbpTA+JZ+aU72LcwUYovWKP89QJS8cKPQmwJKNd84kwf7jz33HOWfZgqrkgNnmcFi+/xcxev1TJlytj/GDhwYB6/AyGEyH9Q/hLgzsqqjf68adOmUbFGL/DowUzmSsydqC8RhzFBPPBJsBOfa38MT2yvf0Jm0Jo1a/L1PYrCDQ4CnAvYufgiDUFxdw3gHGER3BdfvG8nY4L9XNleqVIl206B8eeffz56fexdXPRBBnrcSlCIdKMgukgr+F0xMcLTnIbUg56klrFyjrIY7/P4CuRNN90UFY5U+njmwaBuv/32s3PgyiuvjILqBIwI7DAw7Nixo02cvfBsgwYNNmmyLYQQRR0mu55q/fjjj0fb6Wc9Rfatt96KtqMyIyBOUeZNgbb00EMPtdfCf1ptq8hLBgwYYOdiarH4jaV0Y/XCeDG1HgA2BRQfj9sNEHjy38KSJUvy+B0IIUT+4pm49MXxtpGsXbdhYT4U95X+9ddfE8ccc4w9xnw7XhuC9rFfv37Wp6dm6HD/zDPPjIKgPXv2zFK5LjILxn4XX3xxYvr06UnbyXL0hWq8zV977bWolgmBcrYjhvRx6BdffBGNKemTb7nlluicpk/3ujucz9llUApR0CiILtKKF4A6++yzrRqze5xj38Ht+vXrm51H+fLlbSWdwQGFzXiM7SJzYJWb84TB29SpU+0cKFGihBWyYbWblG4GiHGlGooz77BZ0RZCiEwAtRm2Z/FAJBletIUUa3R4nEVGttPvOkxgUlVqDkWlvMgoFmxCFDQEhjjHHVRtjBdRwMXPWxToPgZIzVz0gnksyjN2EEKIohTAvO6666JijoAyfJ999rF2DXXvO++8Ez2GsMgDldSEiCvYEaRhjeXBdWqTxZ/nc3Uei3ujC5EKc3DOJ85FX8xBpEEAHeif991332gM6dtZBHfhGxfsXHzhm9iPF73HPjC1KKkQ6UBBdJFW8GRj5Rs/LW8cSdv1dDGKoaAi4jbFJQigchtVUapKSRRvXn311ahzxeanR48etrDCYC4nJSSKNp5TtmzZpMGmEEJkCrNnz45Su+PWFg888EDkmerptTBlyhSbMF9wwQUbeKp7qi7e1ULkJ/TtrmJzvMA4lkUO40FfJCKYHi9AShFdV7hhFxMPDnkaedxrXQghCiOpPuZZZfHQnlFYmb46HtiMq9Pnz58fPUa/78WbqTOGSMlhrOBFHrHsSFUcC5EqdqtZs6ZlQnKbYrdYB3r/e/fdd9t+3333XdRfs92D4sznsYjxGND//ve/6LWxGaImnscBEM5pMUekEwXRRaGYJOFhTaNIERMvYoZ36zXXXGO3q1SpYhYv3ngq/TYzueGGG5JSE7MCdRoTanz8TjvtNLMqqFWrlp03DDCFEKK4QruXOrHgvivQKOrkYJOGpyrbhw0blrTdF6/jntG8zhFHHBHZuGghW+QnTMCx+yOwE1dUTpgwwc7BbbbZJmksuG7duqjg3aWXXpr0Wiy6s50Jftzzd9q0adFrYSkohBCFkRUrVlgAPL54mArK3QsvvDApI5dAuNcRwxaD13GoK1WjRo3IEjNuh8V+2Ka6feqbb76Zj+9OFAdY8C5dunRi7733jhZ8OCddYX711VdH+7KdrEjU6Kl9L8VqUZ4zBojDmBMbV48F9e7dOykjTYiCZCv+BCEKmL/++itsv/32dvvnn38O5557bnj22WfDXXfdFXr06GGPzZo1K7Rp0yb88ccf4dFHHw033XRTePvtt8OZZ54Zxo4dGzKR//77L3z33Xfhiy++CL/88kv4559/7PL333/bNT/nbbfdNumyww47hPLly4cKFSqE7bbbLhRHfvrpp1CiRInw1ltvhX79+oW+ffvauXL33XeHgw46KNx4443hmGOOsc9j+fLloXbt2uk+ZCGEyFP+/fffUKtWrbDLLruExx57LOy33362nX6B/pR2kO0VK1a07dddd124+uqrwz777BPeeecda0Nh0KBB4YYbbghVq1a17SVLlrTtDz74YDj99NPDjjvuaG0tzxNbxp9//mn9+ddff23jIu/T/bL11ltv0Kfvuuuu9h3uvvvuYauttgrFebzTvn37sHDhwjBhwoRw3HHHRY+dfPLJdi7vu+++4Y033gilSpWy7VOnTg2dOnWyz2X+/PmhWbNmtv2HH36wfp/P+rLLLgs333xz9FonnnhiePLJJ0PDhg3DkiVLwjbbbJOGdyuEENlzxx13hAEDBoRDDz00zJ07N5rPffXVV6Fs2bLWV2TFr7/+au3o559/Hl588UXr1+H9998PrVq1CuvWrQtVqlQJM2bMCDVr1rTHaDs7dOhg8/MDDjggvPDCC2HvvfcuwHdbNGGsRV9DP8O8NLU/p09L7c+Jd5QrV876dB+DFWXee+89+xz233//aBv3n3vuOTsP42MWtn/00UfWj6fCY/F9v/3221CmTBm7fd9999k8n8+T/p6xALEOIQoSBdFFgfP777+HOnXqWFDz+uuvtwk/0Okcfvjh1rEzyVmzZo1NbNjGvpdeemnYY489wqpVq+y6OE6meW+fffaZfRYMeLiO3/7yyy8tYL65MNCio+ZSqVKlDW4zgCpdunQoCjBAofl66aWXwtlnnx369OljA5ELLrjAggwLFiwILVq0sAENizMEkZhgN2/ePMybN69YBx+EEJkHC4RMsAlyf/LJJ2GnnXbKdt/vv/8+VKtWzSbJEydODN26dbPtPI9+gMXrp556KnTu3DnanwD9N998YwFI+miRMwQ3Pvjgg2z7cy58rpsLE+6s+nO/T9CDhRQm6kUVxjwEgVIXbOjX69ata+MlJtNjxoyJHmOhhwUfnvPmm29Gv4NnnnnGAvEEmxYtWhQaN25s2/kemPAzphg+fLgFqoQQorCBoKxdu3a2gApr1661eU7btm2tDcwukI7oav369dECOrz++usWRN9zzz0tuE6fATNnzrTAJHN15kvMm/z/ZTIEwYlPfPrpp9n251yYy28uzL9zmqPTnzPPLUq8+uqrFufxBRr47bffwogRIyyuExf3sYg9cuRIC5LHFxRuu+22MHToUFvoadCggW17+umnw0knnWSf9xFHHGH3PZ4kREGgILoocJiwd+/e3SZ4dEi+eogKi0Z13Lhx4fbbb48mO6yAM5FnEEDD2rt371DUodFfsWJFeO211+zCYAZlnwfICfBmF/D2C4Hi+Gq2d0SoEePqdAZCTETjnXy88+cxPnuHwMrBBx8cXeiwCtuiBecE5wGLK0cffXTo2rWrfQavvPKKZSrwmXKOMQA855xz7LOaPXu2DTbpvB944IHQq1evdL8NIYTIU1Dr0JcwqciJKVOmmAIXlRlKXp98u8K3ZcuWtkDpi40sVI4ePdr2J1hfXLOaNhf6Ue/P/YLCz2Gck11fzoVsMfaJ9+koohmixzPOuPz444/Z9udck63msKBSr14968e9T+c7LA7fH+fnkUceaZ8RgR5XqhMMR6hBsOP88883Badz6qmn2mfIwjpjLIfsRrLYULQzLo0Hm4QQIh2wgEgbnlVwnLaeTBsEZwQoWRh0EdTq1autTbzwwgtzfH36qcqVK0dtIc9hXMCcENXwpEmT7P9nGvQRK1euTOrPWZBFXOAwL86uP2c78076WS7epzOe8jm6X3hNFtyz68+5xP8vix7xOToXMs0LI4xFmXcztiG7AcU5/fWxxx5r7gPHH3+8xYRQ4xOrqF69uo2lWrdubWNUFsA5FznPly1bFnbeeecwffp0e00fA3Ts2NEWiJo0aWKxAT53IQoCBdFFWkAVTEPJ6jfp5DScDp0KqeTXXnttOO+886xzQZGOwo5GOLuV9sIK74cgebwzxmqE7UySSTH2jrB+/fqWVsdKc0FNcmkCUMMx4ee44oF9OibgmOIdNgqu3XbbLaQL0rsPO+wwGzhyrEyM6XAPOeQQW8Vu2rSppXmRPnbVVVfZeyGojrXL5ZdfbilhpJwVtsUBIYTIS1hsZMGaYGJqe0caLYpebCxcBUTbyUSPCYsrflicZIJCX0EWj09gMhXU+HxW8T6diS4QxIj3lQSsfUJdUNlPTDoZXxFciY89yHTjO2RCi4rbj5Hvn6BzYR9bYS1EFgRCC1epoWS79dZbLQjE+3PFJIvmjCMJjteoUSMpOJLV2IrxAuc+5/ppp50WHnrooQJ8Z0IIkQxtFapz+hTao3gwm4VCFroJ7JJxQ79McBUIvjI/ov0fNWpUOOuss6LnMcdDxEW7nwrzbOZJBHm7dOliqne3XS3O0PYT7GXMEw+Y8znRZ5OBF5+jIzQjaF1Qnw19Nt8332tqYN8z2RhjpM7R44vE6RwrsdBN8Pv555+PlOIEwjnHGKsghmOxhnHJnDlzbDGcxSMC5zyH55IxSbAcGyPsBQnA41IAfA5Y//JZNGrUyNTq6YxPiAyiQB3YhYhxzjnnWGEICp5lVWF54cKFiSeffDKq3rx8+fJEUYFiGBMnTkyccsopid13393ew7bbbps46KCDrJDGPffcYwWx4gWuChsU8Fi1alXi0UcfTVx88cVWSG6XXXaJinBRYO72229PfPjhh2k5PirI//7771FBsV133dWObfjw4Vagltv77LOPVaH3St8UEatdu7bdPvPMM9Ny3EIIkddk1ZdQjJG2bquttkq89957G32Nxx9/3IpCnX766Un9QOPGje11Tj311EQmwvjkrbfeStx0001W7IrP0wuxtWnTxgpdTZo0KbFmzZosxzKFhZ9//tn6wxEjRth3ecABB0R9Y/ny5W1sQr/666+/JgobFCGjWBnHSsF5548//rDv4IknnsiyoG5ufjdLly6NCpYtWrQoj9+BEEJsOsyBt9tuu8ROO+1k/U+8zWvVqpW1U+XKlUt89NFH0WPffvuttes+//niiy+ixxgD0M4zj1u2bFnS/5o8ebLN67yfL+7FGunj6Ovo8/hMPM7AZ8f7p4+kr6TIemGF/o0xB2MPxiD0g15YmzEKYxXGLG+//XZaxyVff/21jT1SmTFjRmKHHXaw423Xrp2d10BshAK6Hh/y59JXH3300badYuOzZs2KXovCpIxdeaxhw4aJ77//vgDfochUFEQXBRpY9qAnnbl32A8++GCiXr161qDGYd99993X9hkwYECisEOV8zvuuCNx5JFHWsCc4yZoPmjQIKt47u+9KENA5f3330+MGjXKOr3tt9/e3icDj8svv9wGff/8809ajm3s2LF2LCVLlrQq8pUqVbL7//vf/xIXXXRR1CHPmzdPE2UhRLHhl19+SZQtWzbRrVu3pMkDE0TaueOPPz5pkk1wPTt++ukn28eZMGGCvQYT+c8//zyRKRC0ZZLGgmy1atWiz6Bz586JBx54ILF27dpCHTDPzbnz0ksvJS655JJEzZo17X0yse3QoYP1qYXpO0dUwXF99tlnuX7up59+mnSfhfcuXbok2rZtm/Q99u7d2z6Dgw8+OG1jGSGEAOYrzz77bNIcjH6eNqpUqVKJ1157LXqMYOMhhxxij+25554WYHUItLPN56XxccIzzzxjwXoPoBfXdo82f8yYMdaHePCWPo++jz6QvrCoQ1/G2IQxCmMVxiy8T8YwF1xwgY1pGNukk+effz4aV/C5ExDnGDt27BgdG4s8Hkhv1qxZFEgnjtK+fftonBIPpCO09EUEhB9ZBe6FyEsURBcFxllnnZWoXLly4rnnnrPGkobu2GOPjRrE4447ziZt3vFfd911tr1ixYo2sS9sMJhhxXTgwIGJAw880I6VgQiTspEjRyY+/vjjRHGHVXoUDL169bIgDp9BmTJl7P5TTz1VIIMSBg0oKFmoaNmypR0DK/KsznMbxQbnD98TCznA8fEYizfFXXEhhCjeoMKlPatevbr1S/Ddd99FE0UUVQ6Lumy74oorNkmt5erfG264IVHc+eGHH2zRgCCFZzbttddeibPPPtsmfsVhIXxjIHAYNmxYokWLFpFKncAM4zEmqeleONjY/2cBKD55JiB03nnn2dgMtZpDll2JEiXs/TFWcL788sso4+6hhx7Kp3chhBC5B+EPAjTasxdffDHazjzGVboEEleuXJnUpjE2cMETymBn5syZkRiKfq84zYfoK+iz6Lt8cYE+jb7t1ltvtT6guMOYhbELYxhfRGFsw3fNWIcxT0GPVTl/mXt7XIfz2PtiFrGdeCCdbHgHxToLIWxnrBJnxYoVkSKdbPlMGLOJ9KEguigQaMiqVq1qDdudd94ZWYK4epgBwZQpUywFiVXJBQsWRI0qtiiFCQYkQ4cOtVQ5H7CcdtppNhHL5JVPJqso0VGkezohSom+fftukDqYl9x11132v2rVqmUpjwSOCJJzzk2fPj0KKsVhEOk2O1jSCCFEUZ8sxlU5TBJ9odADj/RP3u6h6nWYxND/pgYor7/+etuXxe/CbD22JfCe586da9ZrPuZAhYxlyOuvv572oHE6ISA9fvz4xAknnJDYeeed7bOpW7eu9bkFPfnO7vjiYNfGYn7//v2Ttnft2jVL60BfUKpSpUrS+X3zzTfbdhaQNAkXQhQUH3zwQeKYY44x1XR20F9js+nQpvXr1y+yucCWyqHPb9CgQbTIHs8seuWVVyKlMqrldCuU8wpU9vRRderUsfdG30UfRl+W2mdkEpwnjGkY2/g5wZiHsQ9joIIY62D/in0Oc/T4gg3iygoVKiReffXVpP25z/Gljj8JpDNmzQrOa2IPLtQsLue1KHwoiC4KDBpBAuK+IowntQdbsWthgsNtGkxXpx911FGFYhJLIPaFF16wgQZWLQRqe/ToYalIxTX1LS8Gg4MHDzYlH99l/fr1zQs+r7MKUFwy2eV//fnnn4lPPvkkx/05nwggcSwe6E9N9RZCiKIK/ZUrz8aNG7dBYH2//faL+i329ToRZFDFFxp9IhKfsBcXeH+33HKLfRa8xxo1aljwVH1B1tC3YiuANRACCII1iAcQPBT0GI1zl/6eAFBccUlwyf1g41ZtfKceLHr44YezzLS49tprk8aqPm7hHBFCiIIAlTTtTqdOnXL1PDy8mZs+/fTTSW02Wbm8HouLzMniGUdufdG6dWvbtyhDH0TGHXY0zM/5LOir6LOK+nvLL+gXGfO4bS7WNii745kK+QFz9KzGDJtaiyUrYRyLRfH6bCwKeCYm45TCEEcSxQ8F0UVa0s6ZnA8ZMiRSco8ePTryHL333nvtNilm6U63omFGOc8Em2NiZZv7KlqRuwkvinDseph8892jFMNbPa/ITiVJx8kFWxn84FBrup/gjTfemGjatKndxhtVCCGKA0wcaddIhfWJCaofDxjSxzrYcbENC4u4utjrSKDKLk4TECw9UEGhwOJy8skn22J4cXqP+Q3F6hi/+UINHrt4sBaUapvvCrUm/xs1eZyePXvadhaG4sETsge9gGp8IR9hhys44xZ81Orx3xAL9UIIkd8wL0I8Fq/7gHoca4qNzYfjHuhut0mAnDpRqHMdVO5kl3kRxqKcQU2fc//991vGnRdTpW+KF1QVG+9PGQMxFiLuwriI4vLMlwvif2M3kzr+Ins9vuDt+5LpTnZ7fH/650aNGllGWTzTgnGw19676qqr8v29iMxDQXSR75A+5BDMxJ+MNHG8s93TCt9zbpNm5BN9CkKmC4qwoI4nsEAjTOAVqxJNtLcMBoZ0Znz3qMWYCOPJl5efK6/F5Jn/hT89ivNzzjknUsMz4PI0NtK/vZMlnUwIIYoKtHVMkvE3j6cpUziUGiRXX311tM1rRKBI82Anz2cSzXZqRsSVQm5tQgZWcVjIpUaHq/wYYxBUzeTU7rwARRgF4T1zkHOL/r0gipFSyJ0FoNSxA9+p12eJq8tJ//asAxaIHJ7v5wUqxvg5g3XNptYPEEKIvIbFb2+fDjvssKT2jnnqxgLgzIXidprMwd3Kg/Ywv1XH+QULAfQ13tYzl6QvykqlLDYd+k/GRp6JRZ0x+tn8yri/7LLLNlgMZ7EIQSX+9czRHYroep2WeI0ezmFX0zPHj/8mXJTJBftgIfISBdFFvoJHq/tSxTu3uI81lbF9BdnVb1SSTocHK+lNZ5xxhjXUFKe48sorld6dDxDEue+++6JJKpW0WQnPC7/6du3aWSExrAl4bVQYLIB4sREWcQg8eeGRCy+8MPILLK6+v0KI4geTY1fRbswmyyfi8cVpJp3+/PhkGqs1tvOcorxwzLHjm7n//vvb+2nWrJllwxWn4mmFBSa+9LtMflmAoRBYuhYpsB/yhXKC7Q4LQl6P5+23397gd8TiSnwCPnXq1ChDsqgGm4QQhV99jr1KVjAHdV/vuBKdrDEypOnbCKbHWbt2bZavRSC0Y8eO0YJnvG0sKtCnECegbaddps9Jd8Z6cYQxEmMlt9nFeheroLweD44ZM8YEdWSGO/wPlPA+Nl28eHH0mM/ruZAt5mDlUq5cucieKO6DjvWb9/vFQRQiCg8Koot8Zfjw4eZNRmXoeBCdRhJlHOk6FBV1P1b25Tb2HwUJ6UCXXnqpeWihkua4N9WfS2w+nAco0V0NSXV50u03Fw8K8T0ykDzyyCPtfpMmTRIPPfRQVMQW1TmdM/fvvvvuqGq5Ur6EEEUFVGVMdPBDzQkCgCwiMomIp4kffvjh1u5hdeUwsfbsHPyuiyrz5s2L7LroB5YsWZLuQ8oICO6QUYhtG5l8TI45T/N7Uf6ZZ55JGle0atXKvnt8ceNwn+K6cYUbsNiSOubjdbAz4nUYHwohRF6CUhxlOGIf7CfiMA/2gOHjjz8ebWcu7XZW2LLEF/jeeusta3vJvk0tqOiCNQLQCIuKEvQhqI/pU3h/9DGFobh1JsDYyftTxlSMrfKSeF0Th3MXQZxb/sYXmbB0YTvxotmzZycVIfXaJ2RiesCfa7d523XXXbXoIvIMBdFFvsMKIZXDGSjEiz0BkxZSzinYSapaVpOe/IT/j38aDSuNLyuWeV34UmwcL/bp6dZ4s6WqKzYVFkAYSLotAd8tr4mFEL7s7vPrHqlMqD3liwB7dooQIYQo7GBhQT+bqhiir6PwYtxmzSci8WLM+E26mqco8uabb0b2IrTz8fcsCo6vvvoqcf7551ufWqFChcSoUaM2COrkBfj+Mm5AzRZfKEFpzv9G0Rb/v1jNfPPNN5v8+h7IIshFppsQQuSlsppFXha54wvcZEB79ixq6zgsTLpYCIsL58cff4xsLVggj7d7CNY8IF+UCoXzHrDkpA+hPadPoW8R6RG8uRUQiziMtfIasiV8cYSFk0MOOSSyHuL89kWk7t27R/P3eH01FscZC/AYjgdxOzdX1VNAVQswIi9QEF3kOyjbXG0+bty4LBsvilL5RCVe3Ck/O2bSiCpVqmTHxiBFE6T0498LHvl59b344JFgEUp1CoW5p5oPCE466aRo1ZsV96JsYSCEyEyY1HhR7o0VQ0Rljn8kk5H4xN376pdffjlR1MYZPXr0sAkUgQSUe/JHLVzfC/YD+fG9nHbaaTZmSE3V3hwrPo4NVXtcxUbRMn4T+LcKIUReQpsTV8dy37NoWQgmABjvtz1TjPpODu0UYjS3pYovFBJoJ+BelLJt+Qwo+kxfTt9BvYqiaD9T3Ej9XujbUwvabi4EyZmHE+z2c54FE6+TF7cFJvsMG1i3BY7/Rm6++WbbzsILi+wOsQR/LbLe88vnXWQOCqKLfIFO24tL0fl5SjWTdlJz8Er3BozJvhcZpfErKopnUXAZAhQd2ZwK8gy6JkyYkOjSpUvk68ZCjnewDEjxZSe1kfPAB5qPPfZYvrwvIYTIC7BxYRIdD5a7fyqTaYfJdHaLgmyPW230798/KiZVVCCVvSAUz6LwZgjwG3CV2qbCuY9qLd7Xs80tgLB3cdjPfYmlYBNC5Ce0Z7RDWE7GM2PZ7kFAgpfxfv22226LsmmXLl2apHSvUqWKPUb7WxQWlukb8lvxLPI+Q2BL64agKEfkluqDjk0LFkQEvuPj1S+++MIW5sePH5/0OvwucDjIatGFDEy3cmUfIbYEBdFFnkNwnGAlAUkmtJ5aQyDUPalYDaeTpKHE6sUDnPk5+SVlnUaY/8Vq55Z4b4uCgUEj6i/OJQaPKMlzYyPEpBcFOoOy8uXL2+IJ20mHpLo7xAeiFB3l/EDVJlsfIURhxSeZWFF5O0Zx7lT/VFQ9pK9uzBOcCZAvIrLIXdjh/ZKWTso7Y4qbbrop3723Rd561Z9yyikbzZjICz744APLNovbADz11FNRgb34Av3AgQNte506daKAE9e1a9e27ZxnQgixJRDAQzSWXZFrthM8jOOCNAKH8TYL+zZXp1NbzKHdatu2rW1nbPD9998nCjME/BG2ufd2UcuGy0QYczGfxquesRhjsi3J5MbjnELfqbAtK+U4NQU2Nzud2FRuYgpCpKIgushzSJlh4s6KoltkdOrUyVYsPZjuxR8YSHiQPa+LVTg06AQaaOQpIJlavEUUfigSetRRR9l50qdPn00KcPO9o0Bv1qyZpZstX758o8ViyZ5wT8ELL7wwD9+BEELkDbRt1O/AL9Ltrsj+ot1CZePBZAo2sY0JtmeGuWVWqnIXL3X2pchzYbez4j0zpnArri1VQImChfOLiSx+pixuP/3003n22nPnzjVVZhz3Qj3jjDOSglSekRhXpBFo8joq8cUon3iXK1cu8dtvv+XZ8QohMgv65a233trak9xk5GBPRV2nuA86NhbVqlWL+sJ43002r48JVqxYkSjMkPlDX0CfQFtb2McgIhnGYN26dYvq2uWnPS7nRlYZYSySZ7XwQsxnwIABSeeU1/7BGSFeE0iI3KAgushX2xQaKQYLrjZnNdwLQjRp0iRx0EEH2W0qJ+cHDDpcfU6BKaXiFu1ziuAPldk3VZWOH1p2So94qjaDWgacLO7ccccdUeCpsA88hRACrrjiCmu3unbtuoG9S4cOHaJtkyZNsm3Vq1ePJhUEBVHkFnYrq7j6nONFTSyKLizs4HPq9gRbqkqnv/a+m8KiDnZtrjyLWwP4GJUxRVylfs0119j2evXqRb8RFp/cFoFxiBBCbA60KVixnXXWWUnbhw8fnrj88stzvUg3depUW1CPL4zT5rk63bPVCrv6nL7AF/tF0YQ+lbEZwWnGkluyGILFKoH5uGgOL/TevXubD3p8O9lmiCRZACfb3EFARzZ6ag0BXgd7YbYfdthh8kcXm4WC6CLfYIBAA0Uj6GniXlWcyczFF18cVVfO62rbNNz33Xefqc8pHir1efFSpXvRnTPPPDNXtiso0eksb731Vjs/GbR66iAqDm6zsOMqx+bNm0sRIYQo1NBGeQaNq2fZ5go1CkE5rVu3tm0E2J2xY8fatsqVK2900TFdoGxC4eRjinjhNFF04Tx96KGHLHORbEUCQlvCCSeckDj77LM3OD9OPPHEyBc4/r/JvGA7nq4OwXzPlowXK3XfYaxdNC4QQuQVBAzdq5k6Tg7tDAHxjRFvj8imoS/ntRCtFda2igwk1Oe0/VKfFy9VOv2w1+fZnPgO5wL1ynye7/BaBMtTz21sXTzjjD49bvPicaeSJUsm3n333Wg7wXYW0Hnshhtu2OL3LTIPBdFFnsHkG5WY+5rjx0bxMy/q2KJFi2jlj5Vn/Kq5PXr06DxXn7uNDAr3wu4DJ3IPHSd++3SADBZnzpy50f1RmDNgmz59emQhRPDIz8Prr7/eFnS8gj0dLreZ4AshRGGAfhWv1HiBMCYt1HHYfvvtI69U6o3QfhEMdBsrJups4+JFl2gbqUfCtttvvz1R2OD4UDShbELhhNJJFD+oUUIRuS1VpWdXOI+iZa5Ie+mll6Lt+P97Qb54ITLSv9l+xBFHRNvIZPTgel4WRhVCFH+wWctK8Uof53aVrVq1SgomM89hO0W/UxeVKayYFa7sJvO7MNZ2om2nHoZnyXl9KlG8IP5TpkwZG7sh5MjtIgmLR8SNEM7FidcAiBcVxZbF5/AXXXRR0pjAhXdkl6FCd5jfe/ZavCCvEJuCgugiz6AxozEircwbSxovUm+wdPGCTaTbuNK3UaNGeVotnAaR1yegQLBUFG9I1WLQybmEx1l2heVY4PFiZv/73/8sZdKLit1yyy2RbyBFw3zFmoKm7oEqGyAhRGHAvc/jdizAbQKFDpNuL97osDjItjZt2kTb5syZEwXbU33S0w1qYpRMHB/KJnmfF284hx988MF8G8Odc8450bgz/tvxAFbcVpAJOUF3xrPxIn7nnnvuBhZJQgixMVDUIiRLLRj6yCOPWJtCxja2FA7WJmRT89iIESOi7bRdeKMTMEzNsiYTzYOCGysmng5o08k4Qn3OfF3q88xRpSOoxL4nN2R3flx33XX2mojgEIfEsxtcKBIfP7BQQ0Cf7RdccEHS67uXO4tOWMAKsakoiC7yDNKxUPpSkDE1mMmExL0vSbV1r/R4gZQtAfW7T5CoYC71eebAIsw999xjgW9WmVNXrR1UZnfffbd1mhTjqVOnjp0vHTt2TBx++OGR6gwLF27jpV+zZk27fd555xX4+xJCiFTwAScDJ25LkQpqN/pi2i6fZNNOuqdz3PfcM8VS/VnTDd7VVatWNRUTiiaROXz22WdRNiEZYpsTaCEARS2eO++8M9qGctOV5JMnT462v/LKKxbcSvXYp1ZK6v9etWpVNEmPT96FECI7CB56weIFCxZE21mgY8HQ7U7jeHCPhby4gp2Mb8+eiddtos2jXgiPDRo0KFGYoB314uWMXaQ+zywYwzGWw2Lwrbfe2qzX4Fx3FTnCuGbNmkV2rHEbQheQIICLCy8YC3vfPXv27Gg78SLqrGWV8SFETiiILvIUguf4RaLwnT9/ftJjTOLp/Pfbb788baxQqxEERTWU6QWf5s6dm9hrr73sNqpqvMEIuPB9ECx+7733EsUVOliCLlmde1nxxhtv2CCUc3HYsGGRfQtFxbBF8IGoL/i8/vrrBfI+hBAiJ5gwuM8kC8ipKeLcf+6550w1696Q8+bNs7YMZZsXLiNY6WmxmzuxyQ+mTJliwc6cFkUzgUzuzxkvetAFJVt2WWbZQTE9nktQKf5cMs/4LN3iyMlNoN7rClDMVwghNgUCeqn2kF4QnMyyuM3E888/n+Xcg9cgGMljtI/x9suFag0aNEjyhE43tL+uRt7cRdHiQib36Yzl8Dnn/aIYzw0PPPCAzcvJIo9nonumxtVXXx1t53dEHMoz1OOwsM72Sy+9NGn7jBkzogD7yy+/vNnvUWQWCqKLPGXSpEnRRB1PKlQ7cbwwEyuEeZE6zsSflU3SdAgSZDpkAaD0h7Zt21rH8/bbbyeWL19uq//4h+d2MlqUYEGlZcuWFhwfN25cjkEoAudub8D5Onjw4Cg9jA6WDhsVmxccbdKkSZ5aDwkhRF70uUzANqY8w++cCXmfPn2ibSwYer2SwgCTaybZnvpbnPuqTSHT+3NAHc4CN0rxjz/+eJOfRx9/2mmnbdKC+sZgrEpQK3Wcyzi2MAWrhBBFB6wj3MM5HlQkCEhQPdXbGXr16mXbCUbG2x63cWHuQx9RWKDNPuigg2xRPJ79k6lkep/OOe/ZjxTz3NQFFQqOu41afB5OEV7Gv88888wGIjns2VKtWPn/06ZNy/J/nHHGGfY/9t133w0W2YXICgXRxRZDMQa812jY3CLjxBNPjIKTFG+k4UI556uG99133xb/XwYdrGgymGBFsjjDKquvkqZeCBo7eHrFJ3txUDCwf3FfbECZiTWBZzvE07xSC+8QIG/cuLENPMmSoHOns8buxReASDv04qMqMiqEKEy4PdqmZHaR7u2ByLi9C56shUmthsKuOC9Yqj/PHQQYOFcJWsetELYUJvDx8QHWCq5Uj1sRMm5lUZ1ifj7GwNeXz1+FboUQ2UE/Fq9Vkgrty5AhQ5KCidynbdlzzz2TPJpZEPR+gsLhcTsKt2+LK3LTDcdLgJMM4bjtTHFEfXrufhMu4MCyaFMD1hQEzyronle1fHgdfnMcFzXRhNgYCqKLLYIGDYUujQ5FUzxw7l7S3bt3t2v8pk4//XS7ffDBB2/RBJn/yQomr0XRsUwoBMF75PPF+wtfTy4XX3yxpSxR6RxYzSbYm50yioI1hS1tPz/BJx2LH6py+2cUr+5NSiSBcwa4TNJzwouPVqpUKSPONyFE4YNFPOo2xBfzvK91JRvpwGTSsLidEzNnzrTn4dPq9i7pgsA+SmMUx6m+1MUR9ee5hwADGRMseG+OCIPAd2r6NuccdVJSPVNRTcYLoFGIlO0Et5yBAwduUKRXCCHiTJw40TLABgwYkKvnMNcYP358tI3FPhep0XfEIbuM7bVq1TIBUGEAOy3aagLIZAgXd9Sn5x4yuhjzYT/EYlJekNX5T8xo1qxZGwTg+Y6odxYP4qNS5zsgdpAp34PYfLYOQmwBf/zxR6hVq1YoVapUmD9/vm1r1apVWLVqVShdunRYuXKlbTvssMPCgw8+aLfvuOOOsPXWm3fq/fbbb6F79+7hqquuCtdcc0148skn7X8Xd3iPJUuWDNtvv32oUKGCXdi27bbb2ucMU6dODW3btrV9Uvnvv//CgAEDQrNmzcKBBx4YMoGzzz47vPjii2H58uWhUaNG0bkITZs2DWvXrrVzqUaNGqFevXobPP+LL74IX3/9dVi6dGlYsWJFqFatWvj888/DLbfcUsDvRAghgvWxL730Unj33Xft/rp166yvpT9t2bKlbXv66afDsGHDwrXXXhs979dff93gte677z67PuWUU8KOO+4Y0sXChQvDIYccEr7//vuwaNGi0Llz51DcUX+ee8qWLWv9ee/evcMZZ5xh7/+ff/7Z6PMQC40dO9b677feeiva/sEHH4Q33ngjDBkyJPz555+2rV27dqF+/fr2e7nzzjuTxhIwZswY++yB44BZs2bZ71AIIVKhT6PN2H333ZPapLfffjvb53Tr1i28//774eSTT4620UY1b948lCtXztqs+Ovfe++9dnvcuHGhRIkSIZ3QJl9wwQWhT58+dqHNLlOmTCjuqE/PPV26dLHz99tvv7UxILc3hb///jtcf/314dVXX03aPn78+FC1alXr1+O/NcaURx11VJg4cWLSdr6LkSNHWizJOfbYY0PHjh3tPD7nnHNsPyGyZQsC8EJEoIxzFToe5XEVOiuvWGb4ti1RIqFiZ+WSFcxM44ILLkhKCyN9jMJrcbXUww8/nOVzsTchHfrTTz9NZBqrV69OHHjggXYevvjii1nugxITpcdrr71mGRNYuuBV2KlTp6javWda7LDDDrnyZhVCiLzg3XfftVoPtFNAe0+bdMghh0T7UGSbbSNHjoz8VXfbbTfrO+hDPf3biyf7a6UD/CxRq6Ew9mPLFNSfb1mWGQVxUYFvin+se7DiJ+zwu0DtyfZRo0ZF27FnYRu/mZ9++sm2oVTjPtvjqfiHHXaYbbv55pvz/D0KIYoH9LFxywkvYoiVRW6LbMZfhwLiqHh5LeYt6Ya2mDYZFS9tdKahPn3zwOq3efPmNiYlO3xjeBYYKv+48txthIkTxW3arrvuOttO7bx4hhk+6mxnLBHPRmd+T5yJx/CsFyI7FEQXeQL+UTQ4VJfmGqsMD6Z7w7bjjjtudsoOXq4HHHCA+b5RMCITyamD5vMhGJFqWwLnnnuuVQMnmJyp4HV69NFHJ0qUKGEp23Hw6qMzvuKKK6Kq9+eff751rNx2z2GC6oceeugWLwYJIURe4At72Ld4O0c/wDZSg+MFmegD3EaNQLxPQnI7ic8rsOTYaqutrPhTJhZnVH++ZcyePdtq4hDI9mB3dmDZdtddd22Q6k3hcH4HFHPzc5DfiFsk8Xj8+/IxrkO9H7YxNk3X70gIUXSgnWjYsKG1GxSZjMNc4/7778+yjlNWjBkzJrJk83oN6YI2mLYYsdKcOXMSmYj69M2H/pdC4IwJ+Q3kBPZAfK4sSMT7XexZfLH7tttuS3ptxrps79u3b9JreR0ezt34a7EwznZiToyrhcgKBdHFZsPknBVEB/8oD5x7MJ0GiAmKFwvbHAi816hRwwo+eLHHTCS1g6Ywh3fQDKbijwEdAp0zaqucCttkCkygOS8ZyMSrxD/22GNREZ/Ro0fbbVbEUa1xm6I47kWIoo1OntsLFy5M6/sRQmQ2BO/ifugeMKd4ldO7d+9oYTBVrR4voFiQ4EPN/0d9VZwLiOaE+vMth+J6BJDIdPzhhx9y/XzU6BUrVrRzkc889fxk3Onn58qVK20b/sauFkQVysI8219//fU8fGdCiKLMRx99lGWWzHPPPRfVXYhnX9GWuSo23r6zGH7sscean3Ycsslc9DNixIhEOuFYUFnTFi9ZsiSRqahP3zLoa/v167dBdlhWZLdo7QIRlOTxRYmXX37ZtjN/jxflpS931fkjjzySFHjfd999bTvKdyGyQkF0sVmw6s3kgQuDBZ+Q3HjjjdbwkDbjQUcvyLipFZjj0AgSxCTNyf9PppLaQbPSyiIFCwvHHHNM0sqrqxoY1MydOzcqdMIl3UXk0gnFxciMYKBK8Ny54447bEGIjpnPknOWiTnqAG736NEj6oCPO+64yEJB6jMhREGwbNkyC5KvW7fO7tP2ULiKdsoXs5mQ0Tadc8450aSkXLlyto3CSj5p8IXAtWvXFvj7oJ/if1NoLZPbT/Xnefe7wHKNIqGbWsAurlwnAMX5yBjT1egUicOaMNW+he+LIDo2RA7F7TXRFkLEwaKMeTAZMw79XbNmzay9oO+O06pVK9t+xhlnZKmUpU+IQ/aZZ8GkFk0uSGhzDzroIAvop9MarjCgPn3L4TfiWV/Dhw/fpOfEhRg8n++A55N9Hh9jkvXIds5XrJAcxCRsZ0E9rjqfMmWKbSfOlY6xsij8KIguNgssMFh5ZpU1NQXps88+M7sLVDxYYNAIUak7t9BooWJHVScP6g07aJQJdNDu0+3p+w7bs7pkuscXqZKnnnqqTYbjgfR45gMpiXEfdDz+OnToYLfxIERFwm38U4UQIr9BtU2bc+WVV2a7j6esPvXUU0nqNgKCHiD0IDbpqwXNrbfeav8b66xMDqCD+vO8480330yULVs2Ubdu3SzT5Z333nvPsjAIZPn5R8DCP/fHH388yaLw5JNPtgzL+Lg31bMWD1eeu99++2X8OS2E+D9lNotyzBuYDzvz5s2LMl19MRywP/Ht8bku1qUu3qHtcdjHM2CmT5+eSBf4S9PmslAfP75MRX163kA/evnll9tncfvtt+e47/z58+0cnDlzZlI/7zV/8D13EJu43QtWbPEsdVedkz0QPw7P2mQsIEQqCqKLzYYGhjQzVL3YYKRyySWXWOOz//77b7LHm8PAo3r16nbJxEIbuYGACZ+x2HRYhSaQzrkbt3aBRYsWmfUB5y6eq0cddZTdZtHIg+fu88/EObfnthBC5Jbrr7/eFq3jgb44pI57EWRX5HoBJtqr1GKIcb/ngoBCpwqgbxz155sHAQuUnxQVixffi0PgimAGE2yK9DosppPlkapo21RVu0/Y4wF3IUTmwrxg6dKlSdsouuk2ZnF8juEZZA7za7afdNJJSdtdUUvANl19KfZZtLW0ue+8805ajqGooD4993BeM1bkPMdeLTt8rt60adMs6/RdddVVSdvJPOO78MxMh2A7z0m1hcOmzRc34sVHhQAF0cVmQ4qSp4W3b9/efFl9EkIQnEKiPMbkJDeQzkRwEhW6Umg2DpXep02blu7DKJKDXIJLeKR7sVE6UhTq2A81adIkGvCiTD/vvPMsEIRKAKWJWxbhwSaEEAUJE9fUgkf0v3g3O1hc0EZRgMmVOLRvbCvI7C4y0WThsmmoP998UG6iNGNCnV0xMLLH8uLcj7++B7viKjYhhHDIkEGxTf8btyZ99dVXIy/0NWvWRNsJwHsNBpS1Dgt1Pu9ODdIXFLR9zI/INFdgceOoT99yaxcK0WcFQW/GlalWbiykv/LKKxvsj/VRbu2PunXrZsdAPy9EHAXRRa4bNQKONEJUOaZh8UrjTF7wcyNlieusKh5vDBpCUtIJYqamPgmR13AeU2yU1MgXX3zRUrtr1qxpVcIZ3LICTmCKtMVU8GvzgqSZ7GEnhCh46COZTOMJnRX0u2SIHX/88bYwDUxE3JKqoKBYE8eJ/6cC6CK/YeLMojeexJtTh8dtjxwWpfr37x/5qLOAfuSRR9r/wDsdHnzwQftdHXjggXn0LoQQRZF4sdBUqBuGdUscr6lAZmwcr83EXCQrj3Selw5oU2lbsYjLKkgpRF7CmBEhG2PIeOHP/P6f8aLACEZZ5OJ3R6a6EI6C6CJXeIVjbFY8hZXUGE8t4xpvKV8pX7hwYa4mL82bNzdvy3iqrRD5CX5oFCBhUoy6M7tU8KyUJV54dNiwYfl+nEIIAQTF3Ss1PtjfGK6Yve666xIFAQWz8IXt1atXklWGEPnJggULEiVLlrSAU04LNwS84o9TYAy1KIp24DEK9/Gbueeee6Jt1Olhm0/qCaxznrONCbcQIvOgj8MLncKFm9oOEFRv3bq12VHFazy4Cv39999PUqG7tUQ6PMhp+7p27Wpta27m9kJs6e+KMSR9LHUFciKr4uJkfng2poPwjXk7KvY4/PYQfyI+iePCUKyXhHAURBe5Aj9WJhl4ocUD6Ch5qTLNbbfB6NSpU646Z4o4Yq2hzlmkIz0RFRmT49TCZL4qjS0RQXYUIli4EEBv1aqVneukNaZ6qQkhRF5AEaRq1aolBg0aZPefe+65qP91dRgWaBQ/yi4rBtWsFyNjopDfUHB8jz32SBxxxBG5Tp8VYkuZNGmSnes33HBDlo9feumlUQaa0717d3vOKaecEm2jsBnbDjnkkGjb4MGDIxtDp23btraNQLwQIvMgyI24jLlwvB/GpiU3i8j01WS6YmWRlQqdQHY6YPE9XrhciIKCMSRFPrFRjdsexUWYBLqpefLhhx9G21mE4jdJbCm+IOU2SghR4rVMmOO7CPS1116LtvM/faE8XTZKovChILrINUzYK1SoYI0JK+4+wXCFuq+U52ai7kXHsvO9EqKggj6kauOXTvo2PuisgOPPjyqkWbNmdp76NSlerkrzAJcQQuQlF110kbUxF154od0fMmSI3SfoB/Pnz7f7FStWtEU/Lg899JB5qbrSlokv+xCMz29bFYIAderUsf+VlRWWEAUBHuWc89Trya4gGVYtDtZI3q+7bzpqdZ88+2SbTEnfz+0bWFhnGwITIURmggjnpZdeiu4TPKcfJEN7SwpwepuTLhX65MmT7X9fe+21Bf6/hXCVOb+lunXrRlZqcXwhm4XvOGSaZ7X41KVLF9uOpWscFtHZ3qFDhywL+h533HF5+r5E0UVBdJFrSHXdaaedEqVLl45W8lDixlXoufFrmz17tk1GUtNqhChoGPwyYWaCTUq4D1rdn7BevXpRYb7GjRvbdaNGjewa9cmmWsEIIURuJg9YqXnRUPxT4yrbW2+91e57CiqqGe7TlvlkA2/VeCA+vyBowHGUKlUqSeEjREHDuchEmXMxNfD02WefWX+fuqBE5gS/kyuuuCLaxvnMNhazHOoKxG1e4hZLOfkiCyEyB+xaaBfwEI/XaLj//vutjfnkk0826XXcTiI14FcQIIhjzk8QUrZsIp0wpqQ/p09OPRdZpMrKszxugxQfk7Iw5fP5119/PdqOFZNvj9ccQpTiKvV0LGSJwoeC6GKToLGKe7YRLCSVNa5Gp8CiN1SbWrGbtBuC8XjCof4VIt0wKeYcRlmG6oJ073Xr1lnHzXaU6qne/56BkV3quBBC5BVup4Y6DE488US7P3ToULuP/6Mv9ME///wTLXrjU56fYHVBu4j9lRDpBis2Fr9RsGXll5qd4pK0ceqlwDPPPGPbqNfj1kS33XZblJXmoJBj22OPPZaP70gIUdjILrurR48e1ib069cvaT5do0aNpEU4YMGb+QVZZPH58Oeffx7VICvowoYsCOLzThuam/orQuQXZJbxW7j66qs3+TluhcR1VqrzVPth/92mqtf9dVILAYvMREF0sUkQSKThaNeuXTRYePLJJ02N48UVfWKfWpAhO7DLoGgTwUgKMwlRWKAaOB5q2CQ4rvbE8mW33XZLyryoX79+9FhWaWZCCJEXMAFHFUZ7gzIG8EPn/syZM+1+nz597D6+z3H/R9Rw+blY/cQTT9j/ufHGG/PtfwiRW9auXWsBcDxVs/Lnx0/1q6++stv8PnxM64VD2eYWhlOmTImU7C4aIcgFF198sd3v3bt3gb4/IUR6wfqBgBvq1rjYDI/mVB9lFrLZtvPOOyfNF0aNGmXbCbDHVbYo1tlOwcOChHaxRYsW1nbShgpRWECwxm+COFRWkPXhlmyActwzxeKCUH6vLoaLiz9dvc5jPs4GfsdsJz7g/b7IXLYOQmwCK1asCNtuu20oW7ZstK1r165h/vz54fTTTw9VqlQJr732mm0fPHjwRl/vv//+Cz169AifffZZmDZtWth9993z9fiFyA133HFHOPTQQ0Pnzp3DJ598Yts4z2vUqBG+++67UKdOHdv28ccfh6233jq88cYbYe+997bHRo8eneajF0IUF3755ZcwcuTIMHXqVEQP4Z9//gk33nhj6Nu3b9hnn33s8Q8++MD2rVevnl3TL0OLFi3ses6cOXbdsmVL68fzA9rAnj17hm7duoUrr7wyX/6HEJsD49OnnnoqLFiwIAwYMCDpsVmzZlm/3r9/f7vP76Nfv352++677462nXbaaaFcuXLhxx9/tG177rlnuOiii8LYsWPDTjvtZNtat25t1y+++KL9VoUQxZ+vv/46PPfcc2HSpEmhRIkS0fbHH388/PHHH6F27drhkEMOibbff//9dn3SSSeFUqVK2W3aC/p5OPfcc21eAb/99ls0p7j00ksL9H1dcMEFYfHixWHy5MnWhgpRWBg4cKCNNRlzLl++POkx+t+qVauG3r17R9uYs3fp0sV+Z9dff320vVatWvY6MGTIkGj7gQceGI499ljb/9577422N2rUyGIDf//9dxg1alQ+v0tR6El3FF8UHViN23HHHU197qqdjaXEZMfAgQNthe/ZZ5/Np6MVYsvTGKtWrWp2RWRioE5zH1RWocuXL5/kjY5XIdds/+2339J9+EKIYoArYshyyYqFCxfa45UqVYrUb66QdfsKL6w0fPjwfDlGxgN77723tY9x31chChNjx4613wGKz7jfrxfldbsC/M2xX4gr08iczErFHodzv0SJEvZ6cUWqEKL4Qnb2a6+9lhgxYkTSdjJfaAtuvvnmpHaEeTTbFy9eHG2fN2+ebSPL7Icffoi233vvvVFBcGzZ0mFrKURhhP6WLPDKlSsnxaTImqAeEPN3Cv3G+3pql2EDE7dfop8nhhX3Pwd+0xMmTNgge9MzLrF801w/s1EQXWwyY8aMsYaDBgtrC2+cPv30U2uweIy08Y1BynnqwEKIwogX1Onevbt5EtIpU3gMX7Q777zTBs0sLi1ZssQm2DzOuc1jQgixpVBMlELdJ598craFuVno8wVsiiXSBuFj6inZbv9Ce5bXMBmhPkq5cuU2uUiaEOni3HPPtUXw+G8Bz/O8mgx7zRSNAYTIXLB6cJuIuBWKL+Ttv//+SYG8nj172nYKiDo87laRw4YNK7Bjp22kjTzvvPMK7H8KsTkw5mTsyRg0/ntCXJKVdWFeiDx4XeJg/C6pPyQyFwXRxUbxyUXTpk0jvzb3Z0NJfskll9j9li1bbvS1WIVHscZEI7tCLEIUJlyRwSCW3wJBqewYPXp0tNCkQrlCiPxQpr/xxhsb1F7w/pR2ijaoS5cudn/BggWRaibus5pX3H///fb6BCKFKOxQLLR27doWnNqYsjwrUIPy+3PWrFmTuOOOOyJVKcV9+T0ce+yxeXrcQoiiA+0E3ude7NvBYzxVRPbzzz8nSpYsadsJ/jkUEWUbvupxRW1+QptI23jggQdGhZWFKMxMmzbNficPPPBAvv0P5vPxOf3111+fljoFonChILrIkY8++shUbG5Vsc0220TFFjxlvFSpUnZNQ7YxzjzzTNtfRUpEUYHAU6tWrSwwziJQVtC5ssLNeV26dOkcC54IIcTmQvGynKxZsHCZPn16VBT5uuuus/3JnslryEKjWOlpp52W568tRH5BxiRjWX4bqcSDVex3+umnJx566KEo2IVtEuNfLF/gnHPOsd9X3759oxRwHxdrIV2I4s2MGTMSgwYNSrJ+ymkuQTuBNVs8a8stW2rWrJkkLqPtYXuvXr0SBcW1115rbWOqtYUQhZlTTz3VrFoo+B2H3xNFRVO38bu97777kraTVU6MKm735i4MiD+xdnHWrVsXxcPeeeedfHlPovCjwqIiR5555pnw66+/hjfffNPuV65c2a733Xdfu6YgE4XNatasGY455pgcX2vmzJlh3Lhx4dZbb1WRElFkoMDPfffdF77//vuosM8LL7wQXn/9dSs2RpESipaccMIJ9jsoX7687TNixIg0H7kQorixZs0au65WrVpUpDtOmTJlrC8+7LDDkoqKtmrVKk+PAxHGmWeeaYXR1NaJokTDhg3D5Zdfbn33ihUrbBtF7o888kjry//66y/bNm/evPDAAw9EBcR23nlnKyDOuU+hUqD4GEyfPt22H3TQQWHXXXe1cfFbb72VtvcohMh/xo8fb+3Io48+uklziTFjxoSvvvrK2hGHIoht2rQJZ5xxRthqq61sG+3HE088YbfZXhAwz+e9XHHFFeHggw8ukP8pRF5wxx13hJIlS9qY1It6//7776Fp06bWJ7///vvRvi+99FJo27ZtuPDCC8P69euj7YyViVHdcsst4d9//422f/HFF+HTTz+1IuJOpUqVor4/vl1kGOmO4ovCDSt2pJSVLVvWVtw85Wz33XePUsS5xsYiJyh2xkreUUcdJRsXUSRhdZpz3ZWg7lXIeR3PyNh6661zVSNACCGyA2UMtRbGjx9v972g8euvv24FyEj1rlevXpY2U7///rvVcmD/VatW5elxoeLhdVG9C1HUwKoAywK3deH3g8qc/nvOnDm2D2pzV5uhUoPbbrvN7mPL4L8xrzmACh3atGlj97GCE0IUXygySJYX82Tn6aefTpx//vlJhUM3hfjc2G3SsE8tiDkzbSC1VWTjIooqWArym+G343To0MHGyI888khSRsh+++23Qe0SCot7JvnkyZOTMi4ZF8THAYCdscfBNscaThR9pEQXOcKqOCvi33zzjSnOfvvtt7DHHnuEH374Iey2227h22+/NeUbitycuOSSS8KPP/4Y7r333milXYiiRL9+/Uyp9vLLL4cSJUqEJk2amOKMFeo999zTfidkZqAM3WeffaLVcSGE2Fw+/vjjsHbtWlPG/P333+Hrr7+27bQ5H3zwQfjjjz9s2/bbbx+WL18eBg0aFGbPnm37cB9Vbbly5axtyito81Dx9OzZc6MZaEIURujDH3zwQVOiDxkyxH4/qEn5rR1xxBG2T4UKFUK7du3s9kMPPWTXXbt2tev58+eHzz//POywww5Rlof/7hgbwJIlS9Ly3oQQBQMZqCjGUbw6jzzySLjzzjvDc889F2377rvvwmuvvbZB5lic+NyYDBjo1atXgcyZb7rpJsucoU2kbRSiqNGhQweLRQ0YMMAyy3wOzu1TTjklKSPkggsusNt33XVX9JvcaaedwllnnWW3R44cGe2/1157hfbt29ttlOoO2SOMrYmD4bQgMg8F0cVGOfzww83WxS1cCKbHr88555yw4447Zvv8GTNmWPBcNi6iKMNAFlsXFpJOPPHEcM8991ggyR8DFps88AWPP/64TbSFEGJzYNC+aNGicPTRR1taKamq2223nS1eeztDOjgwkL/hhhssZRxeffVVuz7kkEPybCIuGxdRXMCyAOsCLAywMmjZsmWSzQKwUAQPP/ywLWRhaUjALG7p4kF30sTjQfTFixcX8DsSQqQTFro9oEZQz6GtwEbquOOO28AOhkXpONxnkY4+e2MCtbyAxXbGDVdeeaVsXESRhjEpY1O3dalevboJP1Phd4UIDiHK888/H23v27ev/e6wdmFBPb7dF9P5jcO2224bunfvHi2cicxDQXSRJTQ+DAAGDx5sClvUZvg9M3ln4k4jw+reNttsYwrd7Pjpp59Cnz59QuvWra1RE6IowyIQi0EMfBkon3/++WGXXXax30LZsmUt2wKFKOpQJtt0tu6nKoQQucWDdtRacHUNbQxqGg+i++L022+/bdd4QKYG0fOK+++/P1oYJxtNiKIMmRu1atUyxadPjsF90fE93X333cO6desipXmXLl0iH/R4EJ3AF6/RuHFju88EHQWqEKL4wSIZtZLiLFy4MPz888+mUCVo7nhbEVes038TzKO+Sfx13Au9efPmpoLNT2jnaPv2339/awuFKMrQV+NRTt0yz+ZwEKG46pxAO7EpiItBGEt7ZhkL5w4ZaVmpznv06GHXTz/9tP3uRWahILrIEibjzz77bBg2bJiluRI0nzhxom2rV69epHxjgkGBheygECOBdNm4iOICK9JHHXWUdcBffvllOPTQQ207vxMggA6c94B6/Z9//knjEQshigMUJAMvXpwaRPfiSSx450cQnSD+RRddFE4//fTI5kKI4mDrgpUBti4UI0MYwkIVgS0eP/nkk21f9gO3MJo7d66JTOrWrRtKly5tff97771nt/03uHTp0jS+OyFEfsCYHjsHMsJWrlwZbfdC3swRWOgG2pRZs2ZtoE4nwxuYQ9BmOMy1oVu3bvn+PoYOHWrzfdo2n8MIUZShfyaDjExxF56cffbZJkiJB8DPO+88i0vx21yzZk20nUUl4DfhQffsVOdkbuy3337W98ftm0RmoCC6yBIm5ahtGzVqZGlentaCopzVdzzRISd1OemxBM+ZmNB4CVEcoNPlvMaHmAUlVryxM0KpRnoYyjMGxAycuc/qN/sIIURuYREOWyjakwMOOCDcfPPNUWppPIhO9tiqVavsPoN6VDF+P66I2xJQquEBffvtt+fJ6wlRGGAiTN0eAkoEzgl8ozhzuxbUovym6tSpY/cJkOMhjDKdvp9gGRNxxsW+jyxdhCi+YNOISpxsLF8w84W1eHaK2zzRf2MVxYJbahA9bvGyevXqsGzZMmtTvP5CfsGchfk5bV+DBg3y9X8JUZCgLmcBHDcFYNzKwpdbrgFiUOqcMa5mnu507tw51K5d2xbP//zzz2g7gXnEcwTf4/EAz0zz8YLIHLaiumi6D0IUTlhZw6ICpQ3pZRRQgQkTJlgKCwMCVu+wdMluNZB01nfeecdsYIQoTlx22WVh+PDhFqDiQuCcgqJkZtBhkyLORJt9jj/++DB58uR0H7IQogjBoN/7ToJ6qd6O2LawWE2qOAvepJsyqP/111+tqCFpqSxge7B9S6AfJwBAoab4JEKI4gCZY/inMs7lgvKsRYsW9nvyaVJusilHjx5t6jcUqS+++GI+HrkQIl2wWI2lI1AvCTsJLFKY+3odsYsvvtgWngnAeWHC9evXm4qdfcle8UA8+7E/fbfbR+UXZNwQ+Pvoo49M8CNEcYLivqjRyTLbeeedbQxdv379Dfp9fr+pfTt9/qb29xQMJgZQsmRJq4vGtcgMpEQX2ULaCwF0Gh8KKZLKwoDBBwFnnHFGtgH0l19+2VJbbrzxRgXQRbGEgmRU80bFRoXva6+91hRrTJoPO+wwGyD37t07UpygXBdCiE0Ff+X27dtbm+KFvOOgeiUbhuCfq84JmqOOzWsrl//973+m3HEVvBDFCYJIAwcOtCwzBCIUGfVJNNe5tSN0ZScTeCFE8cQD6EDGNgvZKNQR1DiufkX16rCwRgC9Ro0aSUr2adOm2XXHjh3z9bgZL5DlRpunALoojrBIxHiYsSt9emoAHTj3s+rbc9Pf09eTDcoiGvWCROagILrYAKwnHn300fDYY4/ZfQ+CUziBAcK8efMs1cwDhKmwgnf55ZdbcDG/09GESBcozwmkU8SEFMxU/v3333DggQdax42iVNW7hRC5gWA4dUiYcJOaysSXVG8UNYDl2vLly60oWKofOvvlVRB90aJFYerUqeH666+Xb6ootpx77rmhYsWK4aqrrso2O5PfAZNlF5qgNndPZKwR+L2RBUKKuNcx8N+rEKL4wm/+k08+Ca+//noUhMPekT461eLFvZlZJHfYd8GCBRtYvOQHtHFkzZ5zzjn5+n+ESBeMmRmzEruK26oxN3evc4fsTYoCp/b3jL8Z/8bjW+xHbSBEpsBvvVOnTnab/UUGgZ2LEHGOPPJIclcTO+ywg11z2Wabbex6l112sev27dtn+/wpU6bYPi+++GKBHrcQBc2vv/6aqFixYqJbt26JMWPGJEaNGpVo1apV4swzz0xUqFAh0bhx48ROO+1kv4cDDjgg8d9//6X7kIUQRZQuXbpYWzJy5MgNHvvrr78Sq1atSrz11lt2n/aGfZ9//vkt+p+0Wc2bN0/Uq1cv8e+//27RawlR2Lnvvvvsd7N48eLE0KFDEw0aNEj89NNP9ljdunXtsUmTJtn9Dh062P2bbrop6f6IESPsftWqVe3+3Llz0/iOhBB5Ce1BzZo1EyeffLL1uznx559/JubMmZO4/fbbk7bzfNqGadOmRdvGjx9v22hn8pNXXnnF/s8DDzyQr/9HiHTDmJXfU4sWLWwse/3119ucPd4nf/TRR4lSpUrZXH39+vXR9muuucZ+J8cff3y0jdfYd999bfvEiROj7TNmzLBte+65p+b5GYSU6GIDGjdubKlorMJ5CrlXDvdq43iiZwWKW9LDSD/nIkRxBu+zq6++2gr/kTpGEd45c+aYWu3LL780r0NWuMnmQK32yiuvpPuQhRBFFFfAYiOVCm0MxQ/JfqEfxpMVUKlvCdiyzZ8/31S23v8LUVzBko3fDCngDz74oKlKqQkEbdq0sesnn3zSrtu1a2fXFBWNZ324lRK/RXj77bfT8E6EEPkBbQJZYShSPVMbhWpWJebI3EKBjjdzHJSxU6ZMCYcffni0za0gqCeWX3CMZNBSOPHUU0/Nt/8jRGGAMStjVyyGn3/+easPRBHRiRMnRvtUq1bNMtCYq0+aNCna7tkguDP42BvVOYVH44WBgfopxAMo1isLt8xBMyKxAfiYe2oK6eSeZgY//vijbTv22GOzfO7DDz8c3n333TB06NACPGIh0ge2RnggUkzUO12KBoGndPoilE/GhRBiY3hxMmosAIN8YLBOoWL8HL3gdxzspfBTZz+8IDcX0l6vvPJK84c++uijt+CdCFE0oKAoBcFZDGeyjEd6t27d7DH/rVHI9/fff48CYATE8DdWEF2I4g91SLBtGDFiRLSN4FyFChVCly5dsgymp0IBUubZ1BwDnuOLca1bt863Y8cajraNNi67mmZCFCdY7CbIzVi2f//+tnh1xx13RI8zT/cFpXgQ/aCDDjKvc/r6eHFwX+QiuM4YGZj/u10TwhORGSiILrKEQDmFEak0DPhH7bHHHnabAHpWRc5oaFDlUoQUP3QhMgGUKLfddptlblADgEJB/Bb4DbHoBF5UlA56UwbYQghBIPyjjz6yhel4EB0lOj7LFPomeAcDBgwI11xzTfjhhx+i/fFH3xL1OLVRUNWwKJ7bwopCFFUo6te0aVObJJ9++ulRoIsg+Z577mm/Q2oDoVgvW7as9fcEzhs2bGj7UZ+Avh+1J7zzzjtpfT9CiLyDADhe5i42A37/jPMJpntfSd9MfbCnnnrKssNygjaC7FXmDYceemi+HDfzeFTozZo1y1YIJ0Rxg9/jzTffHFasWGEXfreptX1cXU6wPC6C8984vuoOv8/ddtvNxKXx7PK2bdsmFRIWxR8F0cUGCjaCfBRjuO6665JUtD5ZP+mkk7J87t13322DACwthMgkUKgxgWal+7zzzrNtqECBxSh+U3TaFB1ylZoQQuRE1apVLVjnypa4ncv3338f9c9//vmnKWuuvfZaa2s8iL4lVi685uDBg8Pxxx8fmjRpkifvR4iiAJNnFo6wbXDrFt/uhQD5TXIfhRvwOyWgjnINeG5cia7FcyGKL27hgHrVefPNN8Mtt9wS+vbtm6T67tWrlxX2dHENuAqd9oSCiPkBmbBvvPGGFsVFxsEYloD4oEGDbGybVVFgBHDEubB9cTyIjnWLL4SRreYB83ghUVeiUxzY42WieKMguohAwUbqOEobFG6kt+D1jMIWWJ1DkeM+kHFolIYNG2aqHRoiITIJBqSkR7IqTcVuOlm3QOK3BK5mi6eLCSFEdrAQx6SaOiWpdi7xIDoej8DkG5WcB9Fr1aq1RSp0VHVaFBeZCL87LIwQlBB8Ovfccy0Q7qncTJ65j9WRB9EhbunC749MEMbWCEyEEEWfhx56yPzQyRRz3LKpTp060TYXzDRq1CgKWtNv83xsU+NZYng2xwNxeQ1tFf+T+bvbwwmRSXD+r127NkyYMCGMGjXKapzQNwO/TwQjgFWiw28FFwbm8/zmHbc3nD17dlIgHtEcYpdly5YV4DsT6UJBdJE0CGASjlULAT+usWYhzcy9H2lk8H5KhWA7q+oXX3xxGo5ciPRDId1KlSpZQTICWYBnMSvSdNAeVEfZJlWaECK3xO1c4kH0zz//3G7T/tDWUNB4S5TotE8o21HdMjEQIhNhPMv4l2Kj99xzj6k4jzzySLNwI2vzww8/jILoFBTjd+OWL/wOGSt7TYI1a9ak+d0IIbYUxvEoyQmuxdWmbtnkFk6AdQTUr18/2rZkyRK7pgg4ATeg3UC9CvkV4MZigjn+JZdcki+vL0Rhh7EsY9q77rrLnBOwbqG+SaqlC1lm/ttGEOfWR3Ff9FatWtk1QhPfl0UxHw/MnTu3AN+ZSBfbpu0/i0JH8+bNbYBAkUQm4yhr6OhJT2XCAATVU2EAQIEVVubwYBUiE2HSjC/xZZddZr8DsjrIymCgjGcqatKzzz7bVsJJ9VbdACFETqBo8dRSCpbhZ4rXMgXMsguiw6pVq7ZIiU7fTyo62WVCZCoEzAmK0X9j2YYiDXHJI488EurWrWt9PONfAuRYL3ngnTGAw3Ym2vT7+eV1LIQoGMg0RTBDm8BiNpCtzYIauIVTPIhOW5GqTo9bpFFAnPpjiNi8rkJewxydY8svpbsQRYELLrjArFjoo3v27BkJRIEF8DvvvNMC7XHPdKyXsGqNuyxUrlzZFs482yweR6MGAsXGRfFHQXSRBAo20lvozMePHx+6d+9ukwS8nFHV+OpbHFbQUejEfaSEyETwQ6eASYMGDZKqfzukgKNEx9JFQXQhRE4QKKdYMcpX1C5xFVl2QfSffvrJLlCtWrXN+r+0Xah2CBYIkckL40y6+/XrZ77G7nceF5OwjwfQIe59DP4cAulCiKINv+e4ItWD4BTtJAO1fPnyto37bvESD6IvX758A3W620QQxMsPP3SKk6O4HTt2rLzQRUbTunVry9Bk0Yu5ehyC4f3799/gOfvss0+Wr5VVlqZbLy5dutRiZ/q9FW9k5yKS8JQyKoTjhUoRUS8wygo221Nh5Q7lLf5SQmQy/D7OOuus8MADD0Re6HG8SMkLL7yQhqMTQhQlWLgmvTurFG9UsE2bNjW7iHgQ/dNPP7XbTOhdKZcbUNVOmzYtnH/++ZoAiIznlFNOsd/SyJEjc/1cJtEeYEeJLoQofuCN3qxZM1OXe5/Johl1xFC0ktGdUxA9K3V6XkLbxWI7bZkQmQy/T8a2Tz/9dL70yRQWRvRCZon6/OKPgugiWjXD94mCJ+ABQCqO+6p7VgVFKWg2ZcoUK7oUT2kRIlPBsgXvYjxUKRaE9xqFyUgHW7lyZTSQ/uqrr9J9qEKIQgxWUPPnzw9z5syx+xQMRd3GpP3ee+8NixYtMosIL1qIzYsH0d2LObeMGzfOaqL06NEjD9+JEEUTivj26dPHFsYJdnnG5cSJEy1TExUpSs8OHTpYMVJAzVaxYkVL61YQXYjiDZmnCNDwUnbef/99u8YCAl9lwIrN24F69epF+7722mt2nR/ZqdjOPPjgg+GMM87IUgQnRKZx6qmnmi0bmRmMrenb43CfbDP6dYdxONsGDx4cbWOezxiA3ziWTi58IZDucTVRvFHUU0QNBOleXpCMVDRXsXlqeFZBdDpnVt1olIQQwYqKMUAmaH7ccceZxUu3bt3CLbfcYtXBd9llF9tv1qxZ6T5UIUQRgsF5nTp1oqC5M3z4cEspJ9i3JUF0gvNMIAigb46KXYjiCL8rAmCNGjUyFZtbsxFInzFjhvXp3GcczXgZ32R+oyyaK4guRPGhd+/epiLn954TWJ/SJz/88MNJWV4E77CE2W233aI+l/oj+RVExzqStuvMM8/M89cWoijC2JYxLkF06p5Qx+Tff/9Nimthuxq3bfr6669t2+TJk5MW2CnYizWML4SB1zXA5lgUbxREFwYqGmxbKGTmeKNCQJ10NNLH47AdNRyrcz4gEEL830DbO1lA2cnvBfw3NnPmzDQeoRCiqOHZXt6WONhN0D+jXP/ss89sGwXCcwuBAYJ/mnAL8f9AaUbBMBSlFBJDgeaqc4rwli1b1gqN+cQZz1XPHPEgOvYOqb9bIUTRgsA4maQovHMCcRl9Mip1h+A7Wd7x4BptxJ9//mkLcdl5L28JZJYR0E+dvwuRyTDG/e6770xs0rFjxyT7VQLrMHv27Ghby5Yt7ZpiogTU3RrGi4XHC4l6lokXFhbFFwXRhcHEoHbt2kmBP9JTvEhSVip0VuBWr16tCbcQKVCIjAJD7mXsgXN+W//8808URMczVQghsoNaJBQwWrduXRREp91AkU7WC5PwOFuiRGfCTXGzeKq5EOL/bNrou2+99VZTsvmkmpRtxsquPlu2bFlSEJ3FLCbbBMrwSRVCFF1Gjx5tNY3idUrwQ2cRjUyUjUFbwKK3Ey8+mteWqGSWc0yaowuxYVYnfTa/O7Iv479JD6IT4/KFbwQqXiCYhfOcVOe+n2eYiOKLgugiArU5aS1//fVXtI2iKJBV0VBU6EwWGEAIIZJVKH379jX/VNQlntXhAXQUbSg+qTkghBDZgSUEwbjvv/8+KlrGwJ5iolzYRhbZwIEDLYC+uUF0FOwEBzThFmJDjj/+eCvOx7jX1enUICA4/sorr0RWDKR1I0qBVatWWV/P8+Dbb79N4zsQQmwpiM3atm1rv32HLBP6XfyQnauvvtounhmWHV4nyUVsecl9990X9thjD2u7hBDJMNZljp76G8W2DdsllOrxQLhnny1ZsiTa5gWCX3/99WjbgQceGNUM1MJ58UZBdGE+baStkJKKgrZEiRIWBARS1uIpKw7Km2nTppmvlE/shRD/j9NOO828UX1wzO/KF6j89xX3XBNCiFTGjx9v/XO1atWS7Fy8LWGhe9SoUWHIkCEWaCewDqjUcwNej2SeUb9BCJEMATJ+G3gMr1+/3n5/cUsXD6IzmXZrF8bJBM5RsYGC6EIUL8gKc3sHsk+dkSNH2uK21xQDbCM6d+6cVLDQg+hkm+X1ceHhjN0qcw8hRDL054x5p0yZYqI2t2hifu6ZZhQeddyaKa469yA6C+bYvLl9K3UPfLsoviiILmxScNRRR4UBAwaYuoZOnxRyt3JhVS3V85w0FywqGBQIITYED0IWplB3gqeFsejknXXcR00IIVIhCwxPU5QxHkQnsyUeRHc/R3xVCaQDCrTc8Mwzz1i/74WPhRDJUCicAqH8tqgf4BNtLBN8sRyLQ36nrlT95JNPFEQXohjAotgTTzwRpk+fHlkx/vDDD1YcNB5EZz/vhytVqmTX7D9r1iwL2MVxOza3gMorsIlBIa85uhBZs+uuu4bDDz88XH/99aFixYpJdcqogZKd6pwguv/+6ee5cN+tmdzZAd5///0Cez+i4FEQXdgqNZYT+DWzok7wfMaMGeYBCVnZtaBCr169ep6vngtR3ALpBLv4jflAm1VqV4bEO2ghhMiJHXfc0a5ZhPP2hMG711ygbWFSD3GPx43BwvncuXMtSCiEyBoWmVCp8dsjcE7aNwFz+ngyP1CgU1OANPCmTZtGQXYF0YUo+vC7Rr2KPYpnYLtdA4vPPq73bDCyV1yARlDd+2kv+s1iuKvSPeiWVzBHZ+GdIKEQImsY8/K7hrh1C307sbB4AWHiXYyxiZf9+OOPSfuiUsfazfHfM4WIRfFl23QfgEg/559/vjUKHTp0CK+++mpUURifR4gXUPFJO6q1E044QVYuQuTARRddZL+TESNGmI8inugMrBncolKnWCB+bD6oFkKIOO+8845NtGvWrGkL26jcUMIywKc9wVrCwX/ZFeq5CaKzaM5rHXvssfnyHoQoDhAko+gYXqe33367ZZfx+0OAAig/4/ZIjgfRfbIuhCh6MN/1hTHHs8BQtTq0D65C9zkyGSmuVo8H21mQY2Eur+cAzNGZc8jKRYjsYczbv39/qx/Qu3fvaDtxL37b3rd71iciFXdpcKZOnbrB6+LqAFKiF2+kRBeGp6EwCTj11FNt1dwLJaQq0UllIfinCbcQOYNihQk0vys8jelYKfhHgMsreEuNLoTIjltvvdVSskkDHzx4cLjpppusDfGi33H1iwfUGeSjmMmNaq1evXqRl7MQImtOOukkE5p89dVX9juLT7KzQ0p0IYo+BMXJ2OKS2ufG+9usLNU8iB4v+E09MqDfTQ3MbQn4Oy9dulSZZUJsBLzLmYtjURyHha2s+vZN/Z3i1ADYv4nii4LoIlK7AStvFCMhPQVlGimqXiAhPuFm1d09o4QQWUOHe8wxx9hvJpUmTZrYtYLoQojsIEuM/hjPxjgHHXSQFTN0b0bwFFNSyDc1S4x+/rnnntOEW4hNoH379naNJ3p2eP0Tv60guhDFEzJLGcvTHztZWap58VGvlRAPoiOwyUvwbMdmytsqIUT2IAilP2csnBXxMbaDFVNO+/li2aeffpqnxyoKFwqiZzj4OlI41IsfOu7TxuQ9dTJOmhidMyt1QoicIf1z5cqV5pHK76lFixbml+YpYAqiCyGy46qrrjJVWc+ePW1y/uGHH1owbuHChWHZsmVR4TImzR5Ez42VC6/D6yqILsTGwYaNrA0yQm655RYbQxNE69y5c1iwYIFlm9Hnz5kzx0Qo9Pfuixz3URVCFH0OPfTQsHjx4jBhwoQcg+junU774WDlCHmdAcYcnePyxTshRPYw9uU3i+Bt3Lhx0faXX345NG7cOHTt2jXaxvibBTPsFeMLZPilk3niC+geROd3jwWjKJ4oiJ7hYOOCCj3u1RhPD3fLiXinj82LrFyE2DQoNAYEwqg5wKSbjtiLD7322mvZroALIUS8fglBuoceeijaxkSZRTosJjanqChZMqjcKYwkhNg4derUCatXrw4PPvigeQ7Tt9OvY+lA387vEbsl+nisFbwgsCbTQhRdsDJt2LBh6NKlS4779enTxwoK3nzzzdE2xvg77bRTUmDbvdNTs8y2BAohvvjii1oUF2IT4TdN3z1z5sykrHH6dmoDsjjuUECYAqT0/x4rK126tHmfM/723zTb3A4G+2NRPFEQPcOho73//vtt9Qwlm+PFSJgspKaJUbzs6KOPLvBjFaIoQqYHRYPKlStn95lce9oXvzkm1nTIQgiRE+676sXMgP54//33D7Vr1w6//vpr0n4bg3aISQOL4vH+XwiRPRT4BX439O/8dsgOwdrBPZH9NhNrv02ASwhRNPnll19M9OL2p9lBsHzfffdNskKlngnPHzp0aLTNA25xi5ctZfbs2dbOSOgmxKZB/92mTRsLfF9yySXRdvp2V5q70JRMEn7fjJ3d75wxuGeT+FweBwdfHGMhXRRPNGvKcEg3dT82GgKHiuFZBdGZcJOemhulmxCZzsCBA6N0zrjq3IuUvPvuu2k7NiFE4YUChtQfYUDvwXGKmbVr186KF6GCdf766y+79qKjG2PVqlWmnJVqTYhNB/sWgmTYs6A28zE0QbFSpUrZbVepEUR3UYqU6EIUXViopn7I2LFjo21ko2DdcN55523Sa8QXqz24lpdKdKxcyFaL200IIXIGu0QWv+MLWgTL3ZaFsbIHx71oaFz85gtmcQ90t25SLZTii4Lowjrce+65Z4NiSKSgUtQsvg3/1COPPDJNRypE0YTfDL8fJtjx35kvVpH+LYQQqdBmkE6K+s1tIVDFkCJKYTKuUbnh0eztyabWK+F1mdQffvjh+foehChOMJGmT2c8DNQ4AVK6yTrzhS5AseZFyKREF6LoglKVxWuEZM5PP/1kNqcE4JwnnnjChDN4KueEB9fiPulbCn06bdOmFhYXQoRwxBFH2G/G+3SnVq1adv3ee+9F2zwuFg+i+0KYZ5eAWze5gE4UPxREz3AmT55sjQMFFZgIxNXorLq7UtaLjZJGfvDBB6fpaIUomqBaIxiGn5oTD3RJiS6EyArUMJMmTbLJsatiULC5Kh2l+vXXXx9uvPHGXCvRSU1nksD/EEJsOtQQYPEb+wRXfcaD6Eyc/XflqnQp0YUoXvgCWVxhju3pkCFDzE/Z6devnwXgKQbu/H/t3Qm41eP6+P/PwTHPJUdCZEiIzISQZB4yZEqGzPM8Hpnn6Zgzi2NIpgwlUcaQiIgUklkiwzF8z3H6X+/793/WWXtYtcfW3mu9X9e17b3X3tUqe32ez3M/91CXQeAzQjs39vPu0aXaYX9OQungwYNjvlCS1vaUiY7qMtFbt24d7w2ilxeD6GWMDJl99tkn22KLLSKDjUy3gw8+OHcqXrmVCxtuuEBLtUcWWhomWrmti0F0SYUwyKxz5865AB036mnj/euvv+YCdCmIXtNMdNZ013Op9shaS/fQKROdjTYtEkF2anqNpgoRg+hS88VaO2zYsGzIkCG5x9Jam17j+R/nr8McgvPr8itU0iDwhRdeuEGe35gxY6LS1TVdqj1as5GwwgFY5SB6fiZ6dUH06jLR0/pPtYpKk0H0MsYNPRtzBiKQZc4L/frrr8+6d+8eX6/cU40NN9+bP11c0syRpcIiy3sySFms6b2W+qgRRM9v8yJJleXfqFcOonP9SO0iapKJzkafjBs33FLt7bjjjrlAGeXdVJsRQGd2wXrrrRf3yeuuu27MM3CwqNT8UQHWrVu3bNddd809ltbadICN1EqFQHmSXvv514IUbG+oIDp7dJ4PVeSSamfttdeO9+zPkw4dOuTW9oTYGEmmaRYKuAfg16cBo0jVogwUVmn6X+8OlR36qz7zzDNxMSBwzik57ydPnhxfz58sDrPWpLqj5cL+++8fp9ctWrTIZaOzYFOGSW/j1K5BkhKyWkeNGhUbcKrFuKFPJaL5N+hpo16TTHQqz2gz4Zou1V6rVq2ipQv3z1tuuWU2YcKE3NdOPPHEeH/QQQdVqDSzT7HUfBEU4/VO6wcC5Lyeqwuip9Yu+Ykxqe1Lapmav243VDs19ugdO3ascTs3Sf+z9957Z7feemt2zDHH5B7bfPPNK6ztoHtDfssX7LTTTvGWLw0ZN4heusxEV26a8HHHHZfdfvvt2aeffloliM4Nw5tvvumGW6qjDTbYIFdyyc03bwS7UouGdHglSfnuv//+rEePHln//v2zfv36xSBRhpyBOSUpOJey0vNnmxTCes6vW2ONNRr52UulicwzXkczk1q35c8YktS80OqU4Nkrr7ySW3NTwDrNPSiUiZ6C6OkakFo78evz+6nXh3t0qe547fDarcmaXhMpiJ5aOKn0GEQvc9zcp35NZMscfvjhuWBeflkK2bN8nwu0VDcMLSGTJc0WSFKZGJnoklQZ2W/rrLNOlJUmVK1QVkrbiFQinjbtacNek6Gi6UZfUu1wP8xw0Zm1aakcQJNUGqgqZR3Nb+2QguL563DKSk/XgBR0T2t3fXGAzrXIPbpUN+zPmW9SeY9eV+m17SyU0mUQvYw9/PDDUY6aj4WdjTgZsqn/KtJFpfL3S6oZTrhpoXT22Wdniy++eLyxaNOmAQbRJVWHNmuvv/56tIQiq4UhR5SO8p7HuK7kZ8Dll5YXwpruei7Vb5NMoIzBv/vtt1+0eLnyyivjgIve6H369In76EGDBsX3G0SXSstWW20VCWi33HJL7rG0HucfruVnpecH1hoqiP722287VFSqJ5JK7rrrrujKkDA8nLX98ccfzz1G2yTmEqXhoswpIvE0vyVrWu9rktSi5skgehkjaDd27NhqezXSYiK/xIwNN49xIZFUe7zGGCTEzfO3334bb2SPpICXQXRJM9OrV69s5ZVXzh544IHcY0OHDs3eeuutGFZckyA6FWhsut1wS3XXtm3beD9y5MiYa8KcgqlTp8YMA96o3mQYYSrnNoguNW9HHHFEVIW9+OKLBb/n1FNPjbaNVHYntG0hOS21dkrva9J6rTZDRTm8k1Q3Cy64YKzX3E8n9DRnbc/fo//www/ZtGnTYr1Pr2NaI7Pup6qT9NpOr3WVHoPoZYxMtmuvvbbar+W3coFDRaWGCYDlyx88ZBBd0sy0a9cu3n/00Ue5x1ib6W2eWrPk92etDmXfHOa5pkt1x2uOe2XmnaTKTWYUpPdpwG861DKILjVvVH+98cYbM5xhxOHa6quvHj3Uk0mTJsV1oLHWXPbotH1zqKhUd3vttVeu+jNJazvZ5vltnJCC6Kn6JL8CJa33BtFLl0H0MkbZySqrrFJtqVl+K5d04+AJt1Q/Bx54YO7jysOEDKJLKuT000+PgB0VLKCEnA05azUVLkgb6JllorOewzVdql/W2mabbRZZaa1bt47H+DjdU6cKz3So1VBZp5KK47TTTsueeOKJbIsttshlqRK8Zj89o8PrytXeSeW9d11xP+B6LtVPjx49qrRiSmv7l19+Wasgukqfd3RljmGH11xzTXb00UdXeHzhhReukC1LSWoagCipbtJiXDkLvfICLUn5aBdBuWjaqH/66afZxIkTI4BOaxcy3dLXZhZEJ6OGXqz0dJRUvzV9xIgRubWdQy4Os3gNpjU+vS7NEpWatxQ8T+abb77sww8/jNf7N998EwfdBLSZOUZ7tfzEmZoE1euKNb1r164N+ntK5YZ74rnmmqtC1nlKKs3fo6cYWao8y68yS+t+ykBPFWkqPWailzEGGr777ruRScNk8fyLQH4QnV5QDEbIDwBKqj1Oq3mdVc5CB/1TJak6Bx10UPbSSy9lffv2zbVzSQfbDz74YPb3v/89l2E+syA6mwHW84beyEvlhsA4VWTMN8F3330Xm/D84HnaTC+00EJFfKaSGhpraOUgG+3SzjzzzOyOO+7Ifd/555+fbbfddnHgll+VkqrI6oNsdoJ+7tGl+r+eF1100ez555/PZZTzeeU9egqM579+0/10qi5JXzOIXroMopexq666Ktt6662zYcOGxYThbbfdNmvZsmWVIHo6kavc4kVS7TB0hAOpylnoqSxUkqpDqXbnzp2z9u3bx005gfLUczUdgKeb/jTIsBDWdNdzqWGSUQiSP/vss7mKkfR6TIdZBtGl0sDrmwDb448/XrBnctpHc6CWvPbaa9mTTz6Zm2WS2j80ROsHWkoQsHNNl+qPajIqSdivI80ayt+jVzc0NAXR0/7eIHrpM4hexsg+p5cbC/17772XPfbYY9lGG20UXzOILjU8yjvJUiN7jayRNm3a5LJHGPTnABJJM0KAbrnllouPF1hggXjPwVy6huT3ZS7EILrUMFZcccXcRpthgh06dMg6deqUrb322rG+d+zYMbeJNoguNW8knG266aZZ7969c49VzkSvLojO/IT8bNb8IHp9+6K7R5caDpnnrNVpP87rmbV9pZVWyn1Pu3btYiZR/vBg1nySXSontdA6UaXJnuhl7IILLohF96ijjsrGjx8fJeHTpk0rGERffPHFi/ZcpVLAwkz1B8GuwYMH57LVUvk3J935rz1JSl555ZXsxRdfjKqxXr16RV/05557Ltc2giw5fP/99zP8fVjTV1555VnynKVSxjyhq6++Ottrr70qtG/Id/bZZ8d7g+hS80bwjAQ0Ds8IkhEMpw86WI+RAmusw9zfkzSTXvtpj52C6GStkrFan3kJBtGlhtOzZ89ou5Tukddcc81szJgxFb7nnHPOibd8VJvkSxWhKdlFpcdM9DKXTsApRd13332rDaJzus5NgUORpPrjRjd/aAmvq5SpZksXSYVcf/312amnnpq1aNEiO+OMMyI7Jn+4Ucpy4/2MqlpST3RJ9VPd0LHK0n21QXSpeZt33nkjG33IkCG5QHiqDEutWtgvkxjD/jpdF1JgnVYR+S0iatJ+bWbSn2EQXao/7o1ntJ7XlEH00mcQvcylIDrl3/fee28MGkW6OYCl31LjBdEL9VyTpHzdunXLdt9992gZAfqjkxm3zDLLxOcMOKwcuKuMKhjWe9d0qf4o1V5kkUWqrOn50uGWQXSp9NDmYYUVVsitqfRGppUTJk+enGvliG+++SbekziT7vtn1n5tZrj20IIiVbRKqjtex1SRpArPujKIXvoMopexCy+8MMpQE/qqpuy12Wb734+GQXSp4YwePTqyUaj2YFNNZkvaZBtEl1TIfvvtlz3wwAPZjjvuGFlvZKBPmDAhu/322+PrfJ5u2Au1dPn666/jvWu6VH9TpkyJlg1XXXVVBNPIYltvvfWytm3bZl27do22D7xGYas2qfSS0Lp37559+OGH2XXXXZf7Wmrx8tlnn1Voh5qC6ODwrSbt12bGPbrUcN5+++14f+6558Z72jaxjrO2//rrr7l2yLR1uuSSS3KvaypSSHBJ14X0unbdL132RC9jLPqffPJJtV9LU4bTAk3Gm6T6S6fTKXCeL031lqRCCNqxJnPoTabbUkstFS3ZyH7bcsst4xpTaGNu/1Sp4cwxxxwxi4C3qVOnRjIKr08+Tn2S06AxX3NS8/f8889nxx9/fLbkkktmgwYNqvZ7SFAjGS21ekmZ6PnZrWSPE2RviEx0ry1Sw0iv0XHjxuUeSwfhaY/O63bSpEm576Xyk3gaiXEpfpZaN7Vq1WqW/x00a5iJXsaOPPLIbP/9959pEJ0TtnQDIJVqr2EyxyjNJovs9ddfb7Q/q3fv3gW/ll8BIknV4cZ9+eWXj48ZeETmyyabbBLZMpV7r1aWMuFc01XKZtWaTuXHxhtvHBloaYNN5lr+rIJ0oEXQTVLzRvXom2++mY0cOTKXdQo+ZkgoOnbsmK266qrxvVh77bXjcJtK1GRma3VNuUdXOZhVazpDwsE9deXktrRH59Ac8803X4W1Pr9lG1VqMIheuozYlDEW9c6dO880iE4P1fwe6Wq6Nt100+zOO+8s9tNoVmiPQFZJ375948aYYX2UZ9b3xnZGr7tCUsaaJFXn9NNPjzLwNIz4yiuvzFq2bBnvQVZ6fhl5ZazncE1v+lzPm/6aTiY6bVzob5wCaqnkO80lSJtpg+hS87faaqtlDz30UDZq1KjcY2eeeWYM/CbQV50555yzwjDRmg4lrgn36M2Ha3rTX9P5vUH7FlBdViiIng7JUmX5ggsumPvetO6nwzKVHoPoZW7dddfNjj766BkG0SkZZ6PQWM4+++z486p7Y8GRGhPBp4MOOiiqMsgmu+mmm2JhTH2GG9qMXktmokuaEYaIkhmTriNsIsh0ffnll7NzzjknF8BLA80qS3NPGmtNdz1XOa7pKQM1Xwqq854D8tQXWVLzRSZsjx49Iis27ZV5fdOW5d13381lptIvmYrvQlKQbkZDiWvCPbpK3axc09NrKd0r52eip0S3ypnoqdoszTngfiBVfdpqqXQZsSljnJKx6FOKml741QXRuRikrLfGcOKJJ8bFcYMNNoibCd5OOOGEbJVVVskefvjhRvtzJXqXUl65xRZbVAhk8zmlmo0hnU5Xx0x0STPSs2fPyFxLA43SzfvYsWNjs5sy0OnFXJ0U7GusNd31XOW2pn/33Xe5rPPKUoYo7RZc36XSzU7HO++8kwvEnXrqqZGZzvUh9Ukne/axxx6rEET/4osv6vVnE+xzj65SNavX9HRP/dFHHxVs55KSVVIQPQXM00E5r2kOz6lAsZ1L6TKIXsYGDx6cdenSJbv11lvjorHOOutkc801V3wtP6umsU+5KXHjRJGLDRsN3niMP5PBK1Jj4eaWUq3KGWJ8/vXXXzfKn5luoAvdLEhSIQsvvHBktqy55prxebpOpWy2NKRsZpnojVX14nquclvTn3jiiRgqli8FtchaRbq3ltT8sc72798/10Ytrcdvv/123MezBqahoimw/sEHH2RDhw7N9XJOrdcKHXjXlHt0lbJZvaY/++yz8X7AgAE1budSeYhomn3AfYAV5qXL/7NljIVwhRVWiIWRUnAWdk6WwQCU/AXaDJqm6cILL4ybmfT24osvZoceemiFxwoFU1Qc6eQ6ZamlRRgff/xxkZ6VpOaE/qvt27ePj1nDU6/ztKmYURCd9Ty/2kxNg+t585ReewTNUuAsrfNpyKhru1Q6yDTt3bt3dtZZZ8Wauuyyy8aaTAA9Bc1Tb2UC61h55ZXj/fvvvx/v07Wi8gFcbblHb7pc05ufdACeKkQIghMb4/Wb7punTp0ar7nUAz3NNUgDfu+4444KwXaVJoPoZWzLLbeMU/HHH38869atWzyWLghp0jDcbDddLMZjxozJvTG08txzz63wWCoZVFUM5GMhTKVYs2La/Z577pn7mP9fv/zyS+7zxvozJZUOWrf06dMnNu4PPvhgtsYaa8Tj+cMNuamvrrLF9bzpcj1vnms6vZHTay4NGEsbcavLpNJDX2baSRx22GHR2oF1lWpupEzztC5z3a4uiM76nTJt8xPXass1velyTW9+a3rKeE/vORxj1sG4ceNy38PrlQz11Ao5VYKm/ufjx49v8OelpscgeplLQXOyZRgymspO8oPobAaqG5rUmLwpqBlK6ZZffvncG5nNlBPlP9aYZX7NHRmca621Vq58K/U/43P6/zWGgQMHxvttt902u+uuuyoE0VNJqCQVwvp82223ZW+88UYMOEvXqoUWWii3ZhNMry7Dia9x85+C7bOC63nNuJ43zzV9xx13jKpOMtLTep7at6SWDTfeeGOj/NmSZj32ys8880x22WWX5fbRKYj+2muvVchET0F0Au+YOHFiHK7x6wgQ1rdSpdBg48bkml4zrunNb01Pw3JPPvnk3Gtzhx12yI444ohcvCy1TUwHIOlee+mll65wLUizi1SaDKKXOfqrcoHCqFGjoq1L5SA6F/jUR3VWWWCBBaIs/cMPP5ylf67Kz/HHH5/dcsstEdAmQ4TMEkqwmALeGCgDA4Es+qil02423WkImSQVwg06g73oyUownOHgZMURyEvren7GW760YZuVa7rruUp5Tc9/LaUe6EkaQJZem5JK0yabbJJtttlm2XrrrRefE/gDWaxcf5ZccslYm7lepKzWFVdcseBaXVMcjLtHVymblWt6ei2le2WyzOnY8PTTT+c+T2s9iSvcg6e5BimInl4X6fWt0mQQvcztu+++FT7/448/4n1+aVkxguhMMIeZuWpsPXv2zC6//PLobUj5JVkjQ4YMqTLEpKHsvPPO8b5NmzbZ+uuvn+uZSlmY2R2SZoaDb65ZW221VWS9sam45pprcq2iUiuJ/PLTYgbRXc9Vyms6AwNT79P02mMzTZvE77//Pj43iC6VHgJo9DwnE5yD7Oeeey47/PDDc/f4vJG1zhrN/X1aA9988814n+aQVbdW15R7dJW6Wbmmp9dSWsunTZtWodIz9T8nC53XNFnpqQKNdZ9rQgqiu+6XNmtIyhzl4NX1bEx9HWfVKffVV19d4XNuLBpj6nKpGzFiRLGfQrN05JFHxtuskHqopeFDiVPuJdUW5aKDBg2KAcUcipMNN2DAgKxv377Ze++9V+X708agMdd01/OG4Xre9Nd0Xkf5ZeapJeI222wTJeAdO3aMtg2prYuk0kHLFmaUvPDCC1ERVtmwYcMisJaqTDt16hRB93Tollq8NPUgumt6w3BNb/prOtnu4L6axJT0c576r+cH0TFhwoTc59yHT5o0KRJRudc2iF7azEQvc5deemlsuiubMmVK7mOGleUH1SXVXXotpeFDlYPrkjQzZLuQAZt6mz///PPxMSWmBO5QXRCd9Ryu6VL90Qd9scUWy7VxWXXVVbMXX3wx22uvvXIH5bwerTKTSg/BZAJnn3zySYX9c8o0X2mllSq0abzgggvi60cddVSFIDotX+rKPbrUcFIWeerIUDmIntq5pCA6iahUZKT2TRySpdd2apes0mQQvcyRKUNLico+++yz3MdMG04XDUn1k/qqVWYQXVJtMJyYXo3pusLAKspd08acEnIGMOVjPYdrulR/BLDoe5raMrDRZkNN6XfaTKdDLUmlhQxtWjal1qhkGrMO77LLLtUO72b2Uf6BWho+SuAuv41qbbhHlxpOSizt1atXtUH0NFQ03UtTgTJ69OjIXEf+4blKm0F0Rdnp7rvvXuExg+hS47j33nurfZyhQ5JUE2zEd9xxx6xr167RLiLNMyGYfvbZZ2ezzz57zFvIz5CDQXSpYfFaYoO90UYbZauttlr0am3RokV2xx13xNfdTEuliZ7MBMbzh36TfUpLh/Hjx8djHGwTLCfQlhBgpwULv557fz6nz3NduEeXGk5qybbppptWG0Tn/pr77fPPP7/aX59ex+mATKXLIHqZ++mnn+KC0blz5wo3Ap9//nkug42SFRdoqWGQoVZdafeyyy5blOcjqXm68soro+cqGelgLf/222+z++67L1dCXrlMnNYTBNhd06X6I/jFa4khoo8++mhkpaaeqqnvsUF0qfSxZ55vvvmyLl26xOdPPfVULqhGdipDR3HFFVfEjITUZzy1gUgtYGor7dGry3yXVDu8lrhH5l4ZqUIkBdHBQVlqjchQ4XyvvfZa7kBNpc0gepmjZyqlKwwnI/s8DT/iosBmPJ1yp0EKkuqHDXX+gVUKdhlEl1QXW265ZbynN2t+r+bqZi+wOSD7zTVdqj8C51R8PPnkkzEc8LLLLssNGuXx1CddUml66623si222CLbbrvt4vOtt9463g8ePDjeb7755vE+XRcItn/xxRfZSy+9VCGIXnmtrin26L/++mskxUmqH4LgCy+8cDZ16tT4nMoyXl+0P67sl19+iWA6+3q+h9c1byS0pNe1SpdB9DLHzX2bNm2ydu3axSk5PRxTW4nU0oUFmgsFb5LqhwWWMs5ULpZOsw2iS6oLejLizz//jPdzzDFH7hrz6quvVvl+y7+lhguggQ10at+QnxHKvfUCCyxQtOcnqXFxD0+AnKowAtm0SE3Dvhn4SYA9fc51ImWq8zlr9oYbbhifv/zyy3X6823RJjUc5gwRQB81alSFZDeS3yZOnBidG4455phcpSeDRb/77rtIYklZ6MTWqEpRaTOIXua4uSdYzgVgjz32iAtAykbPD6LDBVqqP1olEeCipcsjjzySTZkyJR43iC6ptoYPH56tscYa2UorrZQ99NBDuSB6QnZbCq4nBtGlhpH6no4cOTI7/vjj42MCZcn6669ftOcmqfGtsMIK2Y033ph98MEHMZ+Etbh9+/ZR0U2FCkOH2VdTHcZ6TYYqbR2nTZsWLVzWW2+9yFz99NNPI8mmttyjSw0ntWpZZpllqnxt7Nix2SuvvJI78HrjjTfiPffg4Gtw3S8PBtFVodz0wAMPzPVCT1k19FuD5d9S/XBIxY02N9hkoRBQBws2g8gkqTYYZEjbCPov8zEB9NTKhY+pIKPNRD7WdNdzqf5Syxbum9PH+Otf/xrvGTYqqbQdeuih2XLLLZf7fJdddon3Dz/8cCTMpFYvBNVpqbbZZpvF52Svk8yWDuNSi5e6BNFd06X6o/f53nvvHYdfL774Yta1a9fsggsuiK+9//778X7llVeO9ynznIMwsK8HbZJV+gyiK3CxSItwGm6SBpJ5yi01jA8//DA222SoTJgwIXd6TRZ6dcNGJWlGWrZsGdkxZLHRmu2MM87ITjvttPhauqZUbuliJrrUMHgdpbkmZJMmqfqD0m9J5aVXr17ZLbfcEhnqSMO/CaLT7im1eHnmmWcqtGRLQbjaIAmHQLxrulR/vI5S3IuhwLQ6ThnnKSGlQ4cOVYLotG5K8bPUskmlzSC6otz7rrvuyn2eeqmyMQeLM72eXKCl+kmDRshEp+ojbbTTgixJtUVWDAG8vn37ZrfeemvcwLNuE2AvFET/5ptvqrR5kVQ79EJOWef0RgVZpxyW07IhJahIKm3MFDviiCOym2++OVq69OnTJ1tsscVyw0VpD9G9e/do97TVVlvF42S6Enwj2zVlpteFB+NS/XFP/O233+aC6FSOg9dz/gwUujfQN51kOKyzzjpRRcK6zxwUElpU+gyiK3q4ffLJJ1Uep2yFjFmy2bggkOkmqe7ogZhfEpakjHRJqiv6qfI2aNCgqCrr169ftQPLWM+52a9L/1VJ/88ff/yRPf300zFMMGnbtm3WrVu3+JiBgfnZ6ZJKF4fVN9xwQ3b11VdXGC4MqlXYZxNgZ+Aggbbtt98+O/bYY+M6wsE31wqCcpMnT671n+0eXao/qke4Nyb7PL+tMUF09u8pE53Mcw7AUhIL7VjTAVhq1aTS592dYihK//79I9s8HxnptJ9Ax44dcydwkuqGUi8OpT7++OMKj3fq1Kloz0lS80c1WbqJf/DBB7PrrrsuNuW8sRFIg8LTeg7XdKnuyCjlvpkex7jnnnuygQMH5voa2w9dKh977rlnts8++2TXXnttfE4w7vrrr4/rwJQpU6q0bOSw+7LLLstatWoVVSvrrrtunbPR6anuei7VTwqMV54NSBA9tW7hAIzXLG+85nfdddd4fPDgwfE+VZmo9BlEV2wA6N+2wQYbVPla6otOGwoW6HRhkVS3QFd1vc/NRJdU34AemWgEzdmw0xf9oYceyrWQSr1XU9YaZeajR48u4jOWmjeyTXndpazTpZdeOob6jhgxIj43iC6VV1X33XffHa1ZuM9nLb799tujEmzAgAHxPeyhyVifNGlSlV+/5ZZbxvunnnqq1n826zzJOT/88EMD/E2k8kRgfOGFF86OP/74aNfy+eef57LNqTijJVOKlVFpdu+992bnnntuVJkQcCeellozqfQZRFfOiSeemJsgnrzzzju5Bfrnn3/OJk6cWKRnJzVv9CBmOEnlgygmgS+++OJFe16Smr+ePXtGKWqPHj1yj3GDnwYiDR06NPc4G3zW9DQESVLtpdfPzjvvHCXcjz76aC7rlGF/66+/frGfoqQiIkENd9xxR7w/7LDDIgh3zTXX5OYoEDSnn3raf9MiihYvtZEOy13TpbojEE5wnLV71KhRuW4NiyyySLbbbrvF4ddtt91W5dcNGTIk3vPaJgiv8mAQXeG3336LUzcyajiJS9JAsjXXXDPem7km1a8femW2cpFUX4suumgMMqO8NAXK2YinLFlKxPMP8Nh0u55Ldccmm2A5LRvmmmuu7IEHHsh9bYsttsjmnHPOoj4/SbMe2eBXXHFFtHeivQvXAdZaAtwpUP7Pf/4zWqaecsop2bbbbpv94x//iDWZpJpffvkle/7552v1Z6644opxLXJNl+qGe2VeP+lAitcxCW70P8/H65mBo3RqSPfXHKCD17LKh0F05ey///7Zk08+GSXgqb3EyJEjY7goQxMoY3GBluqmcpnlAgssEO8NoktqKPRj5NqSP9iMgDqH5Pk9UzkY//rrr2MAqaTau+CCC+JgintmMtHyB/Vus802RX1ukoqDwzQqu88555w43N5ll13icYaKsj63bNky+/bbb6M6bMcdd8wF4QiqpyD7Y489Vqs/k9Yx7Nvdo0t1wyEXr0sOo0BCyldffRWvWypG8pNQLr744my11VaL1zgJcmkQKVVpKh8G0ZWbHN67d+9sr732isWcU3HKV8hQTxtvM9ekuuO1k/qhU/KdBvl27ty5yM9MUikNRiKbLfVt5JqTAur5LV1Sto1rulS3Q/F//etf0RO9utfQ1ltvXZTnJan4LVw23njjyDL/888/s4MPPjiXfU51GPvs1OKF72O95nrCQVwKwj388MPxa2vDPbpUdw8++GDudZpw/0x8rF+/fnH4dcYZZ0QwnZZLaS9P8ikHYPRNZwCpyodBdOXQT5VeTpShDRw4MLfJTtOKUw9Vh4tKtUdrJEq+wdASeqQzhMThY5IaCjf3EyZMyJZYYomoIMvPSOdmP2EIIl930y3VXv7rKvU7TlZdddUY3iup/Mw333zZCy+8EO3V/vrXv2ZdunSJdiu0aWHwKFXfIGHtu+++y/bee+/4/K677oo2UOzDqRJjIGltsEf/6KOPCraOlFQYQ0R5vTLglzhX/hrP3AIOukguZc4Qr08y1jkEoxINZqGXH4PoqoDhSKDHI/2e8NJLL+UWaKYTs0hLqjluaumPOMccc2SDBw+uMLB3wQUXLPbTk1QiDjjggOzkk0/Ozj333BiENPfcc+e+xqY8tW9Jw0UNoku1N2bMmNzH+Ztt2MpFUsJae9RRR0V1SseOHaPtCn2WyV7lAG7fffeN73v88cezn3/+Odtpp53i8wEDBtTqz0mJb/lt2yTVfJ/etWvX7LLLLouWTK1bt45qEqrNhg8fHt/Dazj1P2edp1tDSk7ZY489ivr8NesZRFcFnIKTHcspHCdtKROdTYLTv6W6ee211+I9p9z33ntvdvbZZ1c4tJKkhkAW7CWXXBKlpd26dYverJSjJo888kju41RdJql2OHziULw6BtElsW9+4okn4kD7iCOOiGzW1L7x0EMPjffPPvtsLrDO/LH77rsv23333XPtJXispmglQRa8B+NS7eUPFeV1SQyM19+IESOiDRPVmx06dMgF0Tnsou0S/dK576ZHusqLQXRVQAZb5T5sDCR77733oh8Uw0Vff/31oj0/qTlK2ea8fijnTAyiS2oMn332WQw0Y/jh4YcfnhtuRqu2ZO21147MdMpYJdUMG+sbb7wxEk7yE1BAGyVbtEn64IMPsu233z6SZiZOnFjhaz179syeeeaZXG/l1OJl1KhRcS1p1apVDDlMX68JrkcE492jS7VDC0SC5gTROfxKr7vu3bvH4Vc6HH///ffjjYQ4stJT/3SGkKr8GERXBQwjqy67JpWrsLinC4qkmuH1ww0uh1EJnztUVFJjIDuGvsxsCBZYYIEIpINercxjwKabbhrXIVpMSap5Zdknn3wS2WnIr/QgizQ/uC6pPFENxhDRk046Kfqc46uvvorqMALs7Kdnm+3/hWFo6UKvZfqiE6BLfdL79+9fqz+T35MB4rXJYJfK3XnnnRfviW8RJCexhFaI9DzPD6Kn/ucE12n/8txzz8XnBtHLk0F0VTkdr+4Um15t2GGHHWLx59ROUs2Q/UmFR/6NLT0RGUwiSQ2NzXjKMD///PNjc7366qtHq7bU0mXRRReNrNlBgwYV+dlKzcekSZNyH7dv3z6qOUaOHJm7h5YkkKlKe7XFFlssPj/11FOzK664IirEEnouc+idWkkg9Ul/7LHHsu+//77Gfx579B9//DE3y0zSzJFcAjoupCz0TTbZJJs8eXIcmM8555zZ5ptvHq9fkk5OP/307M4774zv4/Fll122qM9fxWEQXRXMO++8UQ623HLLxTCU/IFkU6ZMiY04p3MpqC5pxuiBPn78+GpvdiWpMRxyyCGRObPIIovEADMy0lPmLL1WE8rNhw0bFht5STNHxmjKPqdFG71R//Wvf8XH66+/frGfnqQm3DIV9FIm45XhofRaTo+nFqpt27aNvTjB9dpko3fq1ClbcsklPRiXaoi1mwoRAuRUbOa3ciHRhJkGBx54YMwboEpkq622ytZdd90YCow+ffoU+W+gYjGIrioIntOrrXJ5CiUtBNkJpLtASzVzyy23VPv4zjvvPMufi6TysNRSS0UbqaOPPjr3GFVkoASVnunpMO/333+PQLqkGeMwivtfDp+OPfbYeB09//zzuSz0/OQTScJHH32U9e7dO1o9ce/PdeTCCy+MgzeC5iTbcC258sorY+3+xz/+EQfhuOmmm+L7a4LrD9cmrlE1/TVSOSPexWHVAQccEJnoaT0niM5sgr///e/ZDTfcUOH1xK8hS50kFffy5csguqpgQ3388cdH76f8wYcp+5wFmlIxFn5JM/bbb79V2ytxxRVXLMrzkVQ+2IhXN+cklaKusMIK2UorreTBuFQDTzzxRJR3k3F+9dVXZ+PGjct9bY899ijqc5PUNJFpTkb5WWedlZ1xxhnxGIHzBRdcMGaT0Orxsssuy1q3bh17huuvvz6GgdPykUrWFNirCfboH3/8cWS6S5oxYlu0ZeNemPjXcccdF0NDO3TokPseHl911VUjW53M9euuuy4e52CM7gwqTwbRVQUXBHo8UvpNmWo6DafEhce222676O/sMDJpxn766aco/U64YQY3x5LU2BhoRll4/vBD3HbbbdEfPWWjExxMn0uqHqXduO+++yo8zoab15kkVXb22Wdn3bp1i17K9D5nb81627dv3+zMM8/MVa0yo4RMdNqncrCdBoymoF1N0KOZqnEPxqUZI5bFWs5h1cSJEyOznAoROi8wV4jWhxxqPfroo3Fgzvd+8cUXuWGjRxxxRLH/Cioig+iqFhk2/fr1i9IyAuqcjv/yyy/ZkCFD4uN11lnHvujSTHDwxCKNXXfdNdeT2PIvSbPC0KFD4yCvcjb6p59+mj377LO5IPo333yTjRo1qkjPUmoeKOGmZcKHH35Y4fFDDz3UVi6SqrXaaqvFWpwO2s4777y4XhCkI3C33nrrRbbrNddck2vBdumll2aHHXZYfMww8PyBxjNLhKMVhUF0acaY90eQnHvk/AG+7Ns58Np9992jdcvNN9+cyzxP7ZXIVl9++eWL+OxVbAbRVa0NN9wwTsTZaHPixikd0oATysXIRKePlKTqXXLJJVmLFi3ixnnNNdeMIDo9EBn+I0mNjbWam/2LLrooMtTy3XrrrfF+gw02iOuUm26pMA6avv3229hA//jjjxWCVr169Srqc5PUfKyyyirZ/vvvHwHzNm3aRN/llHG+4447RmCdgzrmmJDBTtb6tddeW6t1/9VXX43rlaTqMTdogQUWiIGiBM45rOIwa/jw4TFslMGiDP7l89lmmy3mnqT75iOPPLLYT19FZhBdBVGeSrCPC0vKumGTzWkdmWs///xzrfq0SeWEm9/Ro0dnP/zwQ0zzTgvvbrvtZsaapFmCG38Owik7pXQ8vwqGDcN3330Xw8623XZbg+jSTDbc1dlzzz2jbZIkzQiJNFR4r7322hEUZ4Aowwu32WabOMwmgDdy5MjsmGOOie+/4IILch+zh8g/vJsR1vMZXbMk/b/XR48ePWIGAR0Y+Jj75JQwyn497d053OL7iX1xCMa+XuXNILoKmjZtWpWNwX/+85/s/vvvzzp27Binc2zCJVXFjXDqg87izKAfMAFckorRz5k1m7V7oYUWimFmacAoB+PvvvtuNmHChGI/TanJIfucfqgcOFVGKxdJmhn20OwH3nzzzdzam5CFPnbs2GzffffNjjrqqMiQZT1mvSZox4ylG264oUZ/DoF5gvLu0aXq8dp67733omqDYaHMBcIWW2yRDRgwINeGNQXU+/TpE69dnHTSSZGgovLmT4AKYhDZmDFjqjzOwk8m7V577RXTxX/99deiPD+pqfdDpySTwyiyS0Dfw5VXXrnYT01SGQYB11133fiYDQPZNqAHK8F0Wr4QWL/99tuL/Eylpodg1LBhw3IzTghSgVZtzAiSpJmZb775IuuVHsvp8O3tt9+Oli30ZSZYDtpI/POf/8w++uij6Kd+2mmnxeNXXXVVjffc7NGpQqMthaSq7VaJc7EvZ8Yfryt6nL/++utRMUK1yFtvvRWZ53Rm+Pzzz+O1tOSSS0b1mWQQXQXNNddc2cUXXxyn2fkYPjZ+/Pg4laO0bODAgUV7jlJTRMujhx56KFq55DvooIOK9pwklS/ml9x1113x8dSpU6MHK5lun332WQw3m3feebN99tknu+OOOyKoLul/CHwllHgnDhSVVBtkvrIXSJmsI0aMiCHfZ5xxRm644fvvv58tt9xyWevWreNzejHz+ZQpU7JbbrmlRn/O3nvvnc0555yxpkv6H+5xqSxjqOgJJ5yQa9nC64zBoaAaZKeddoo1/uSTT465QjjxxBPjdSUZRNcMHXzwwbkLRz4W5Xbt2sWgspou6FK5IMuTss18nHgz6VuSinEoft5552WbbLJJLhs9Bf8uu+yyyFRnY8/wxFTWKimLoX75bY7YQDOwb7HFFnOgqKQ6o7Kla9eukenKfJIzzzwzMtDJPj/kkENiXQbzlQj2geS2mmSj04419XTmGibp/0mZ5+3bt8823XTTOMTiUIu2hm3bto21nYD6CiuskN14440RdJ80aVL2t7/9LV6XEgyia6bYdB977LGxCU84qeMCxKb7pZdeilNzSf8vOFVd38I99tgjMj8lqRiYxzB06NAoRwU9VkHbtuHDh2err756tKbwYFz6HzbYVGyw4U5tFsDAPyo4JKm2vvjii6j0JhntwgsvzO2taQPJfvvll1+OKrEDDzwwW3/99aMtJAG+r7/+usa90dmjf/LJJ9lzzz3XyH8bqfngHpc2LsSuUvyKChFaHr744ovRKz3FvKjiZMAvyEgnIU6CQXTNFCfhbK451Z5//vnjMdq43H333dnOO++ctWjRIuvXr1+xn6bUJAwaNKjarA9uhCWpmNgYnH766VUeJxs9VZ8NGTIkNt6SsshEW2mllaI9W2q3QG/jI444othPTVIz1bJly0i6IUjHPBLar7DfppKVwYU4/vjjY/8NAnm0kkjZ6PRqnpnOnTvHHKbUokIqd9zbMrOMAyZebx9//HE8fvjhh+e+hxZLu+yyS8wrIL5lFrqqYxBdM0XJN1PDKfPu0aNHnISDKcV//etf40JEe5eaLOhSqaMXeuUeqZ06dco23HDDoj0nSUrIuFlwwQVzPVlB4Hzs2LExMIkNfX4PaKlcPfnkkzFUlHJu7oETNtwklkhSXQ+0H3jggWzcuHHRUuLyyy+PtZcBo2S7LrvsspGtPnny5GzVVVeNAzzaSq244oox14Tvnxn2Ihz2Pfroo/H7SOXuiiuuiIRQ2qvy+qB94TvvvBPtlHgjCY7Whw8//HC8PvkYHG5ZeaZ8BtE1U1xkGEJG9hofs4DTluKDDz6I0nA2E5ym33nnncV+qlJRUfLNwsvpNq+RNHzklFNOcfiYpCbhww8/jFYu+UH0tEkgw5aDcfqo/vLLL0V7jlJTcM4558T7/ADUHHPMES0OJak+CI6n4aFkuqbA+GOPPZb94x//iI95f+SRR8bHHG4fdthh8THf++WXX870z+jdu3cEDT0YV7njnva2226LpE+Ghuav6fvss08M76XVCwklJJoQUGeYL73RrSZXZQbRVSM77rhjLNz33ntvBM650OCqq67KllpqqSh7ufbaax1eorJ2xhlnxGJMwJzMEso0qdzg9SFJTQGDzNiUk32+zDLL5B4n45YBZmSuscno379/UZ+nVEwkh9AbFfmDwvfff/9c4EuSGgKzSWgtcdddd2XPP/98VIyx9+baw1q83XbbxcdkztJLnblkJLjNDAF0AoAEB7mmSeWK19Yff/wRAXLmDDBfAGSbk/zGfIL81obEtVIrJTovSPkMoqvG2rRpk/Xp0yc+pk8UCKi/++67MWCJMrPBgwcX+VlKxTF+/PiYE0AZJpvs119/PR4/4YQTIrAuSU0FmwOC6ZS2dujQocJBIIF15p1cc801HoyrbBG4IlCVb/bZZ89OPfXUoj0nSaWHNhL0L7/oootiD5ECdqzBSyyxRLbHHntEC9W55547Bh1vs8028XVaqb711lsz/f05NGeW2T333NPofxepKeJeltfTrrvuGm2SXnrppWiZxOvq/vvvz1WGfPTRR1mrVq2i+oz1n9clv0aqzCC6aoWNdeW2FJS7cirOVGMmjHOaJ5WbK6+8Mt7TIuH222+P/qn0NySgLklNUerJSusp1nYGLr344ovZcccdFweDZKdL5YaMzfPPP7/K41RppEpMSWqoIaMnn3xytsMOO0Q2LKhkJXucirGjjjoqa9euXRzgkdDGnCUC6+y3CZDP7LCbYCHtK8iy5feVyg2tVmllSCs2qj5eeOGF7M8//8yGDx8eryMqPWhjCFq7DBgwIO6JaadkO1ZVxyC6aoUTuspB8oEDB8ZQBsphXnnllezxxx8v2vOTioEMDxbcNdZYI5s2bVru8aOPPjp6DEtSU0SWDdhYp4/JRmcQcvfu3ePj/FYWUjlgwG7lfsO0RTjzzDOL9pwklS6uLQwAbdGiRa6KlYM8KsAZbJwO8Wgxte2220ZAnP0F+26qYGfm7LPPjnYxKVAolQvuYTmk2mijjeLeNg0L5WApxayWXnrpSH5j7h/VHthvv/2ytdZaq6jPXU2XQXTVygEHHBBDSihpzXfWWWdl3bp1ixN0BpByuieVC1oiMKiP0+2EKd5kj0hSU7XooovmPqa8FWSik5FOaTnZ6A4NVzlhLX/yySfjYzLQ0kE4m/DFFlusyM9OUiliX52f8Uqm+cILL5yNGjUqKr5Zl9dZZ53crBIy0lNPdK5NP/zwwwx//9VWWy3r1atXdu655zo0XGWF6vBPPvkk7nEPP/zwaEVMm1XWehJD6bJANfkll1wSbQ5pWcxrj3tgqRCD6KoVSr7ZUB9yyCEVHh80aFD2xhtvZBdffHGcktt3TeVi4sSJsfBWLqc85ZRT3HBLatIoW73hhhuyxRdfvMLjZLytssoqkZFLBttvv/1WtOcozUqUb6f1nNcFrV14T4sjSWpMBPUIjm+yySa5OWS0SqX12qRJkyJg/sEHH0Rg8KGHHorM2W+//TYenxkC6ATb6QMtlQP6mvft2zdaGnFIlZLduPdt3759Ntdcc8Xrgvd77713Ln5FPKvyfbGUzyC66oRs8913373CY6eddlqckjOAgcz033//vWjPT5pVCDJV7jHICfbxxx9ftOckSTXBpuKwww6LQHo+yr4ZPkrZKyWufCyVuilTpmSXXnppttJKK8V8k6+//joe556Wdi6S1NhrMpniHORxDTrooIMisE7AfOONN44D7b322isC7WSpk2EO2rSMGDFihr83Q8PJxOUaxzBTqdQxTJSf9WHDhkXb1ZEjR8brilaFHCY9//zzsd7zGiN55Oeff87WX3/9eN1JM2IQXXXyt7/9LaYYM0Gc0zvQQ4pSGXq4Mfn4xhtvLPbTlBp9RgAVGJVxqu2GW1JzQTnrlltuWaVHK22pDj744ChrnVm5uNTc8TPPZpqMz5SNvvzyy7uhljTLEOSmVzNVrgT6qApLB3oLLbRQ9tZbb0VvZxBcp0c6WKvJvJ1ZElzKbpdK2ffffx8Z5XRPYCA47VvmnnvuaEvMus5rpWfPnjGo96qrrsoee+yxiGv169cvAu3SjPgTojrh4sLpHcNOttlmm2yppZaKx5l6zIWJ3ukXXHBBDFyUShUn2fRVy0efwsrtjiSpqWe/pXU8oZqMihoy3qi2YUMvlarXXnstu/nmm6Nt4R9//JF7/JZbbhLouwgAADRRSURBVImNtSTNClxvtttuu/iYg+z7778/m2eeeaIVBf3RMXDgwFzwnMdJbpswYcJM27rQZvLEE0/Mrr/++uzTTz+dBX8bqTgIoHMfm+aTEZsiE/2rr77K3nnnnUj65DUwbdq0iFmlfX3Hjh2L/MzVHPxlOikXUh28//77cTGif9Srr74aQ1EoQWMTQmCdYDoLdZqCLJUSMkHWXHPN+JibW4JMDNTl9UBfNUlqTljHN9tss2yJJZaIIUwJB+bPPPNMdvnll8cMiCWXXLKoz1NqDOutt172+uuvV3iM4X733Xdf0Z6TpPLGgR6VMCStMZ+E1hMEBa+77rqsRYsW2QILLBCVM1y/OAgEg5HZhxfCXr1du3bZ1ltv7eBwlaTPP/88fsb/85//RPXG2LFj496Vli20L2SWAIdOhEFpRUxrJILnvOcgXZoZg+iqF3586NH28ssvZ4ssskiUey+66KJxYaIcjT6q9FZ1OINKDYst5ZXc4FImRiYIQXUWYMvAJDVHDCgjc2f11VeP7BxwIE6Anc37LrvsEqWuUil59913c72FEzJAOUxq1apV0Z6XpPI2aNCgbMcdd4yq1/Hjx8d+gzWavs1t27aNajFasbEX6dy5c+zH2XMTNCTrvBCC8EcffXRk5NKeVSolHDw9+OCDWevWrWNPToIn7YfXXXfdaNVG5eVnn32WC6ATOOcQao011ij2U1czYaRH9S4BZ2gDUr9UelBRDnPKKafEBevUU08t8rOUGr5EjBtUsjnmm2++3LRv+6hJas4IGLK52GijjXKPkX1O6Tfr+m233RZVOFIpJYPQS7gyKi8MoEsqph122CEy0AcPHhwBdLzyyitR/U2rqU022ST6pqNLly7RP51h4H369IlrWyFc85ZddtnsuOOOm+H3Sc3N6NGjs9tvvz1eN0899VTML+OAabfddosAOgkhBNA5ZHr77bfj15D4aQBdtWEmuuqN3lIdOnTIZa3lX8TYbLOQz6y0TGouOCyiDIwAOuWVtHDBYYcdFiViktTc0XeVDQiHgmw62LCzcWfjzW2jJa8qFSeccEJ25ZVXVniMSow333zTQ3FJTQr7DgLlVHxvuumm2dChQ2N9JuuWIYkEBcm2pcUk2bczGor89NNPZ1tttVUkAFV3kCg1N1RkrL322lG5QXs22qvy2kiZ5wsvvHAuXsUMM9q+MFuAQb4khko15d2h6o2yMYLolS8+LNz77bdfLNB8XDnILjVHDM9lYC4/7ymATiujiy66qNhPTZIaRAqQE0BP1zoOxMl8GzduXAxkkpo7kj0qB9AZ6te/f38D6JKaHPYftFij3dSIESOyQw45JOvdu3fWq1ev+JwDwDR8lP3KBx98UPD36t69e3bggQfGQaJDRlUKmMPHPeruu+8e1RsE0Dlk+uKLL+LrF154YRw+kQxHAJ2BvHfccYcBdNWamehqEJzuDR8+PBbyfGxOKJ/h1LxHjx5xoZKaKyoqtttuuyqPM3iMAWSSVAoImrOeDxgwIDLfEtq0MUiZjQpZPmm4stTcsP0hY/ONN96Iz9lo83NPWfdJJ51U7KcnSVWQmEYGOdm2HAJyHVt55ZWz999/PxJ6CBqyTtNalZkO7du3j17PCy64YMGgPD3R+T6y2g0mqrliLWfALveo//rXv3Kz+vj5Zu4JlRr3339/3NfyMT/rzzzzTNa1a9diP3U1QwbR1aC4KD300EO5DF0yehhaQhk4p91PPPFElM1IzQ03pAwooUQy/7LJifZzzz3njaekkkNfSdbufKznhx9+eKzztHVh9onU3Nx0003Rhi3fxhtvHAkhBNQlqan58MMPI2mH5B0yzw899NB4nCGjkyZNijkODAjHoosuGnuXnXbaKfbmhaprUlsXrolktkvNsY3LWmutFW1cdtlll5jX991338UcAVoLM+OEQbpTpkyJobw//fRTdtppp0VmulQXBtHVoDjRvvPOO6OELGFQAxlrTBenVxungZwOSs3JFltskT377LMVHiN4xM8zpZWSVGq4RaSnJBv2hMPEgQMHxkAzMt5s7aLmhmAT2WkLLbRQzPXh55z1nNYHBKMkqaniepUSd84999ysb9++8TkBdIaKskZ/+eWXcU3jsPs///lPrNMMBy+Etqtk6Y4dO9ZroJodfrYvu+yyyEYn2W2dddaJx0ly4zBpgw02iJZH7OMZNMqBOR+T7CnVhUF0Naiff/45W2aZZaJ8Jv80nNJv+qOzaeFEnEC71FwwcGSHHXao8jj9gekTLEml6uWXX866dOmSqzAD6zgH5Kztr776apSWS80Bff65TyVD89dff61QdbH//vsX9blJUm0Q9Oagm9lkp556alTHktC25JJLRh/oBRZYIPbmBNmpBt9mm22q/X3IzGWPTq9oWlxYXavm1saFw6SzzjorDpmuvfbaOBR65JFHso022iibOHFi1qJFi2zq1Kmx/lNFudhiixX7qasZc2qOGhSLNSeB++yzT7bnnnvmLlAMOaGs5qqrrsruuuuu6C0tNQccCBEor3xaTelj5TYHklRq6BvNBmXZZZfNPfboo49GRVnHjh3jgJxSWqk5OOaYY2KgWH4Afeutt46fY0lqLn755Zdsyy23jEA6wW8OtqkSo6UFSWw8RgCdtZrA4l577RXBxOrQM/3WW2+N7Nx+/frN8r+LVBfce7J2EyB/8cUXY0YfCR/co44cOTIy0vmZJz5FAJ2BvI899pgBdNWbmehqcPxIMdChU6dOceFiYeaEm1NyhpvQN53+VLTBoMRGasrI2qAcjIU6VVcwzZub1pYtWxb76UlSo2PzMf/888f1kJ7RrPP0V/3nP/+Z7bvvvtmJJ55ob0k1eQzaI7BEe4Nk8cUXzw3lk6TmZNCgQdkll1wSyWkLL7xwVNpQOcv8se222y4OwGlZRdCQftAMIX3ppZcK7r8PPvjg7N577409Tv7BudQUnX766ZG8ycHR77//HkNDx4wZE/ejtDNi756GhoPZAD169Cj201YJMIiuRsNFjAy2f//737nHdt999+yKK66I7DW+xqLvACc15cX5oosuip7nLM5kr2Hw4MGRiS5J5YQAevfu3XPrOmWxVJ6xYWEzz6ZdaopI7iBTMz8Tk4OgN998M1t99dWL+twkqa4InKehoWeffXZUf5OZO2zYsAgeMgj8+uuvjzZstHjp3LlztGyZZ555qvxeJL1xPeRQkWA7mbtSU221yrw9+v3TiojgOAdJJH2AlkQp4YPXCK8L2r1IDcF2Lmo0bFa6detW4TFOCCmjefDBB2NxZyiZ1BS98MILkd3BIkz2WgqgH3nkkQbQJZUlekum7DSujZ9++mn2zjvvZNtvv32Uio8bN67YT1Gqgo00hz+VWxkw18QAuqTmLAXQQdJPCiRuvvnm2eTJkyMTnb7RTz/9dHyNOSe0XM2vyEmoHqcVxvjx42NGhLmWaoree++9uOckiH7ooYdmJ5xwQhwYMQ8AtGDlZ5f3BNB33XXX7Mwzzyz201YJMYiuRrXbbrtVeeyoo46KsnD6o5OVTo90qSmZNGlStvPOO8fNJotwKgOjgoKyMUkqR2xI2LQgba7JBlpuueUiK50ycgY2Sk0J1RIEjvJxIH7AAQcU7TlJUkOaNm1aXNd4v/TSS8dMJwKN9Ik+7LDDIpB+9NFHRwU4CW1HHHFEtUFyDhb79+8fiW+2aVNTwwER95pUSxAYpyc6B+S0dOFgiD7ol156abRzoWqS5A9iTfmHTVJ92c5FjY5BD717945s3oRe0pwinnHGGbFQP//889n6669f1OcppUE9G2ywQTZhwoQKw/LIzuBntk2bNkV9fpJUTGT13HzzzZH5kz+c8dxzz83+8Y9/RBXakCFDYkMjFdsjjzxSpQcqa/yIESOyOeecs2jPS5IaGte1u+++OxJ+CDRyeMh17v/+7/8iiEjYh7fU6mJGLS74Gu1hyExPh+dSMREUpxqcAyHuP/k55jF+xueee+5cJQWZ5yTEcSDEa4KkOKkhGUTXLEGJNz3Q6UmZEDRnCngqsR01apQBShU9OLTxxhtnr7zySrXtXfiaJCmL6yTXRK6bCS2wOBynBysBdamYGI7HYD0CSKmijMHgo0ePzlq3bl3spydJjZoUxDBwktnSkMUUPM934403RkuMyljbmWVGGxjW+9VWW20WPnupKiop+Hl94IEHsr///e+5FoL9+vXLnnvuueiA0Ldv30h6o7URff0ZHi41NOsaNEt06NAhMntXXHHF3GOvvvpqlJINHDgwSsQZeJKf1SbNaiy81QXQr7nmGgPokpRnww03zO68884Kj1Fay6wTrpm33npr0Z6bRB/gbbfdNrIvUwCdbDXm8RhAl1TqaJ266aabxh6brPKDDjqo2vYttHohCFkZ107aYLRr1y6y2r/77rtZ9Mylqphhcu2118YbMSMOhnDsscfGQQ+BdVq3EUBnjWd4rgF0NRaD6Jpl6NHGpoYSb8ptwAb89ttvzwYNGpS9//772YEHHugQExUFw26Z8F0ZCzI9BiVJFW299dbZYostlvucsloC6Pvuu29ko5MBJ81qZJ6vtdZaMRA8vwLyqaeeylZZZZWiPjdJmhXIPOeax7rMvptA+cknnxxfqxxcJBP9hhtuqPJ7zDfffNE/nesoLTL4vaRZjWpwDnvINOdnlQOePn36RCCdyrKHH344qix+//33bNFFF82GDh2atW3btthPWyXMdi6apbioUV5Gphq9qtJkcPq3cSGkbOyCCy7ITj/99GI/VZWRMWPGRI9ULof55Y5rr712BIHosyZJqooqM8poTzvttBhkhiWWWCJbdtll42u0amPoqDQrsHb37NkzDsbzkbCx//77F+15SdKsxp77oYceitlkmDx5ctaxY8fYb7NOM8skH1m+1SUOsRfafPPNI3BJsJ19kjQrfPrpp7Efp7KCIbkkajBbb88998y1E0z7dnqfk5VOC2GpMRlE1yzHBY+TRE4NE04UKbvhpJGSM0p2WKilxkYFBBlr9En97bffIghEIJ1sNX4eOdGWJM0YAXM22WT/gn6UZARzQM7wcDbsUmM79dRTozd/5VZtDMiTpHLGUPBDDjkkPmbgMvPJWJ/bt2+fXXHFFfE480zoPV0Ze/ODDz44rqVcU6XGRgeDLl26RAUEP6v3339/JL29/vrruTZtCYF1YkkMt5cam+1cNMsRMCfznD7p+YF1ysJZ0OmTziLN90iN6aOPPorFmOA5p9tff/11BNCXWmqpbMiQIQbQJamGCJp37do19zkDw8kK+vnnn7MtttgimzJlSlGfn0ofg8YqB9BpE2jAR5Ky7LXXXstl7pLMdtNNN2VPPvlkBCWPOeaY+BrvL7/88iq/lp7qF110UQTRL7744ln+3FVevv3227inZF4eP6ME1DFy5MgqAXQS4UaMGGEAXbOMQXQVxbzzzpvtuOOOFR4jY61z587R8+qAAw7I9ttvv2zAgAFFe44q/fIwBu4waIyDndRaiJ9NSsHatGlT7KcoSc0Gm3IGPDHELHnnnXdic8NAsm7dumXff/99UZ+jShfB8spzTXr16hXZk7YekKQs22WXXbIWLVpEkJxD7o8//jiuj7Rrofc5SUQ46aSTsuOOOy7XLiO/0uess86K9m1XX311kf4WKnXcK3LPSPLF4MGDsxNOOCEqJpLu3bvn7jX5maVy3HknmpVs56KiYWGmXIyT8HS6iAUWWCB75ZVX4pSbsh36Wu68885Ffa4qLbQboDzsiy++iMzzhKG3L730UrbeeusV9flJUnP16quvxlDRt956K/cY/dF//PHHbLnllotyWzbvUkO56qqrsuOPP77CYyRkXH/99QbQJSkP1WHstcePH5/ttNNO2QcffFDwexkmSmV4/mwoQkcE0y+99NK4xrLeSw1l2rRpEUCnRSAJbgyvZ47e7LPPHhnoVDa+/fbbEWDnnvLZZ591iKhmOTPRVTRk/1533XXZm2++mbVu3brC4k5GOgs0J+b0T3/ggQeycnLjjTfG4BemqfNGyxFOYmuL/vL77LNPnOgeddRR2UorrZTNM8882dJLLx0HGAQ1yg0LcadOnWK4Tn4AnY32oEGDDKBLUj3Qt5LS8B122CH32CeffBJrDy1eKM+dOnVqVk5c0xsP2ZCVA+gEdQygS1JVBNDB+sE6RAXuQgstFOtSZQMHDoygZf6azXWVRDcqz2jBSg/1cuJ63nj4OWO2DhUSrOP/+te/Yt/ObJ127drFvzVVEwTQ+X9ABroBdBWDQXQVHaXebLjzhz799NNP2UYbbRT9LZm+vNdee5VVj3RaiXCDMnr06OyNN96IBYX2N++9916tfh9K8whkfPnll/FG+d67776b3XnnndHzm/LnckIAhyA5rQVS+5Z0oEO/NfryS5Lqh6qeRx99NA7CEyp/uNbSSmuzzTaLfpflwjW9cZxxxhnRciAfiRckaBhAl6QZI5GNhCKGMrIPqm4NefnllyO5jcPwhOvrlVdemZ188skRTCcrvVy4njeOb775JtqsUi0+fPjwCJKDKgh+Pj/88MPoh87P6zbbbBOV40suuWSxn7bKFe1cpKbg4IMPprXQ9BYtWsR73v72t79NHzt27PQ+ffpM/8tf/jL95ptvnl6uFllkkem33nrr9C5duuT+fSq/9e3bN/f9kydPnj7nnHNO//HHH6v9/QYMGBBf//e//z29HIwbN2764osvPn3uueeu8G8222yzTX/mmWeK/fQkqeSMHz8+1nHW73TNnX/++ae3bNlyevv27ad/8cUX08uVa3rd/fe//52+0047Vfn32nvvvaf/+eefxX56ktRsPP/889PfeOON3LV16623nj7PPPNUWZtatWoV35uP72ed4uvnnHNOfF6OXM/r5/PPP5++0korxb3h6NGjYx0/5phj4t9trrnmqvDveNRRR5XNv4uarjmKHcSXEjKH6HtFq42ePXvGY19//XW2ySabRJsNSnkOPvjgKOFhoEm5ZBnR/4u+8JQ0UcZEf3j+TbbaaqvsxBNPjO/p0aNHtuqqq+Y+B/9mnOhSalYdysT4GhmDpY4sCrIEfvvtt+z333/PPc7PFENE6Y8uSWpYK664YvSufP/996P3Kr0uf/nllxgkzhq+8cYbZ48//njWoUOHrFy4ptcPVWRk6FHpkI/BY5dddlnZ3BtKUkNg/Un+/e9/R6909ksMclx33XWzsWPHRrsX9uRkXZMxfcwxx8S1ljcqydlPnX766VHpS4Z6qa9Diet5/ZHBv/3228e9IW+0ZyPz/KGHHoqvp9ar/KzRvo1WN1Kx2c5FTQZTls8///wo82bRZmHCDz/8EEFOFpu+fftG+S7tXX799deslHHTMv/888eNyaGHHpo98sgjEWhYdNFFY1Hla7TC4W3OOeeMnnY8VrlMrDrc5Jx33nlxKFHqbrvttrih4edr+eWXj3YCqScg5WIG0CWp8bRq1Squswwv42MQRKdtGwPK6KH+xBNPZKXONb3+6B1LoKJ///4VHr/iiisisGMAXZLqjmtofrtL2q3+97//jQA6QxzZm9NCa++9947AcUJy20033RT9wmmNybW6lLmeNwySKLgHZE9+0kknRaIbbVpSAD3h34+DBwPoaioMoqvJYQEaNmxYtvLKK+ceYwGnzyUn4Zz4ciElMErfrFLFgJExY8Zkr732WnbYYYdlvXv3zsaNG1ejX0twggyC6hZovrbtttvGYp/fh77UcBNIn74+ffrkbgDfeeed+JiKh+eee67aITqSpIa3+OKLZ3fccUfuc7KL6LHKEC2ykC655JIIqpcq1/T64d9u2WWXjR60lQffVR4sKkmqPRKOnn322dg7PfXUU9kSSyyRywRm2CN7dNx3330xY2rChAm5X3vIIYdkQ4cOzd566634GhVopcr1vH6417vooouiSrxbt27RW585eOCgZvbZZ6/wb81hznbbbVfEZyxVZBBdTRInjmeeeWaVrCI2SmQPp8nMa6+9dgyZKEWcXJM5vdZaa8VCs/rqq9d4AjpTwlmAl1pqqQqP//zzz1Fixokvp+bcLJUiMiDIhLjmmmuyFi1aVBkIw2LMz44kadZhGBQbw3nmmadCKS/B0VNPPTXbZ599ooy8FLmm1x2JE2uuuWYEGBKSKljL84fXSpLqh3XqlltuiX0UGde0YkvyM8xZu7kuP/zww7nHqCbnuswwSALpDCstRa7ndUcnAToK0P6HzgMkUnDvlw5r5ptvvlw3Ar6Pg/NVVlmlyM9aqsgguposLpyc8B555JEVHr/hhhvixHLEiBGxgNHm5a677spKHRnUaYGprPJhA2VinO7mY/O55ZZbxsLPhpQbnFJE5gN99emDjqlTp+a+tsYaa8QNYdu2bYv4DCWpfNGW7auvvooNdkJGOv0/KeGlyuyLL77ISp1res2y1ahQ4O+eX6VAAILKsnXWWaeoz0+SShmJSPvvv398THYwe+589LDmIJPvSYectH155ZVXon86VWaXXnppSVeZwfW8ZuggkGbd8fNBnCcdPhA85+9NmyD+HWgNdM8991RogyM1FQbR1aSxQbr22msjSE6mWkKp2UYbbRQX2F69emX77bdfDJXK7+PWnNFb7oUXXsgmTZoUQV8+59CAHnTV4dSafrPffvtt/Btwyp1fJpYWZxYmeoTzOe1NeEunvaWAjAeyAj777LPIZsy/aeMmj+yIhRdeuKjPUZLKHVnEbLIpgU5Yl1i/CKhTKcTmqlS4ptcea/gee+wRFQr5yNQbPXp0ZK9Jkhq/goyZE2Rc0wrz9ttvj2qy/ODwnXfeGdnCVIqnNYwMdbKNTznllNirl0qVmet53bz66qsR16GTQEp0Q/o54u9PT3TiPXQZoNe8c07UZE2XmonBgwcTEa3wtsACC0wfOHDg9GuuuWb67LPPPr179+7Tp06dOr25O+CAA6Yvs8wy0+ecc87piy222PSuXbtOHzp0aO7rq6+++vS+ffvmPu/fv//0eeedd/q22247fdiwYdPbtGlT4fcbPnx4lX+79PbJJ59Mb+7+/PPP6RdffHHuZ6Ly3/Gss86a/t///rfYT1OSVMn2229f5ZrdqlWrWP/uvPPO6aXANb12Pvroo+ktWrRwLZekJmjVVVfNXZf/8pe/VPj4lFNOmf7777/nvvf++++fPs8880xfZ511pn/22WfTmzvX89q74447pv/1r3+d3qlTp+lff/113NvNNddcVf6+e+655/Qffvih2E9Xmqm/8J9iB/KlmpZKXXjhhfH+/vvvrzCwhPYuXbt2jawlSoFuvvnmsh1AweRqTrppe1MOyASgjJAsAE776SmXMDV9wIABBSegS5KKj+s3rVyuu+66CrNR6J256667xnrGQOhyVE5rOlsShs8edNBBca+X0Bt2yJAhUf4tSSou9tsPPPBA7nPab/z73//OVQB37Ngxqshpo4k333wzWpjQ/uXqq6/O9t1337LMMi6n9Rxk3x9xxBExAJzqsS+//DLbYIMNchULySKLLJLdeuutWY8ePYr2XKXasJ2Lmo3ZZpstho1SGta9e/cKX6Pf2rHHHps9/fTT0Q+bHmyUif/www9ZuVl11VVjUnipY4NNO5+VV145e+mll6JUkIBLwrCSDz/80AC6JDVx9FmldRvDtBKu5wRP0xCuBx98MCtH5bKm0we/S5cu2YEHHlghgL7iiitmkydPNoAuSU0E+y/23ddff30MyPy///u/Ci00mVnBfpygMclNDCB9++23Y39OC1b2ZgRUy025rOfgno0WPyRJEL+hPQ0HCJUD6DvvvHM2fvx4A+hqVsxEV7NFhvGee+5ZYbPF0BNOd9l4H3fccTGkgqz0bbfdtqjPVQ3r008/jY02vfEZepM/PBTHH3989O4jM0KS1HzcdNNNVTaZLVu2zL777rts9913j2z1cs1KL0VsQwjIEGyp3P+VfuhUIJZjxqIkNQf0siaZ7YILLqi2hzf7NNZ1ZlNxLWeo5CGHHBL9r6+55ppsn3328RpfQuh5TvY5QXTiL4suumh29913V/k+qseJ0fTs2dP//2p2DKKr2WKhZoN15ZVXVgikg2wmpj0z7IMsNk69r7rqKodKNnNcrlhwTzzxxAiQp0F0CYcn//znP7PddtutqM9TklR3DO3iMJQBkvkYZsbheNqQq3kjE5EAyvDhwys83rZt22zo0KHZCiusULTnJkmq+f6MbPMxY8ZkO+20U/bkk09Ge5fKe3OGki633HLZ999/Hwen7Nlov9qvX7+sdevWRXv+ahgEzg8//PCoTGBPzjDZ/CrxhCRI4jd/+9vfivI8pfqynYuaLbLOL7vsstiEnXvuuRVOMZ9//vlsvfXWixYfTLpmQjglVATU1Xyzz7t16xbTusENWH4AffXVV88mTJhgAF2SmrlNNtkke+ONN2JDxmyLhA0ZPVXpk05PVrLT1TwDLmSmESSn1DsfZd+s5QbQJal5YA/++uuvR5Cc/te009xyyy0rfA9785VWWik744wzYg9/zz33ZI8++mg2atSoaPvBmmBuZ/PNPiejnGpBDkuWX375qBKvHEBfbbXV4ufg3nvvNYCuZs0gupq9xRdfPPv73/8evdZSgBV//PFHttdee2XPPfdcvHHh3mabbWIIJX251DyQyUDPPQ5BXn311XiMIEr+jdsVV1yRvfXWW9kyyyxTxGcqSWpIBMvZiOVnqFECDgaR0iudzVjlajQ1XRMnTszat28fg+XYYKegCSXfzDc577zzsjnmmKPYT1OSVAtkHrPHJkBONRHtXXgsH8lPtOgiG50Bo1tttVX23nvvxf6cNYEs9o8//rhofwfVDvdeVBNwL/bMM89E4uKCCy4Yg2TzkQzBXp3HSZKQmjvbuaikEGRNvbWYCE3WWioBZzGnDJwWMATYKRWnLchCCy1U7KetAgsz2QwpK22JJZbIvvrqqwrfQ2D9iSeeMHguSSXevo3S3zvvvDMbN25c7nHWem5j11hjjeySSy6JaiV7azZN33zzTXbyySdn/fv3r/K1I488MgIqBF8kSc0fLT0ImNP3fO65566yh8MiiywSazsBdHql00ubrGZ6prP/I1FOTQ/3XbRco20uSWz0N+eAhL07MZZ8tN5jlo2Z5yolBtFVcgicswCfdNJJMXw0H8PI6LtGyRk90+edd97s9NNPj/5dLPBqGjjN5rCDE2uy0zp37pw9/vjjua/z/4pWPtxsGTCRpPJaH3beeecYZpa/JpChvtlmm2UXX3xxtu666xb1Oep/mF1y/vnnR6Ck8tC5FVdcMQaEt2nTpmjPT5LUuBXFBFfZf/ft2zebNm1ale9Zcsklc5npBFxZxwnKnnDCCfFGdrOahtdeey326LRiow0PbfU4JK9so402yq699tpIcpBKje1cVHLIOl966aWz+++/P3vggQcq9FMluN6jR4/ox8Ubp6NkRtGjjQy36qaKa9ahB+4WW2wRffQo82Z4KL3P8wPoBxxwQPbJJ59E5poBdEkqL2SbMyODQ/HKLV5efPHFmIdCG5jx48cX8VmKbDSyEFu0aBGH3vn3V9yXPfLII/H/yAC6JJUuWrpwzWeQKPs3kqNAdXjyxRdfxEwremmTnc7aQILbpZdemrVr1y4C7JUznDVrffDBBxE3WX/99aMisFOnTtGKp3IAncA6rdm4HzOArlJlEF0liwArAy7oz0VgPd/IkSMjU41eqy+88EJ8TB83hlNSTmaBxqzFABr+X62zzjpx4zT//PPHYk0pYELLFv6/8f/TkjBJKl8EZtm4McRs2WWXzT2ehk0/9thj0Xf74IMPjs25Zh2C5bRsITjOALn8AeBUDNxwww1RRUDvW0lS+Vh44YWjrcuTTz4Ze3DWAx5LWNeZb0aV0lJLLZW98847sVaQjU7CG2uLCW+z1ueff54ddNBBERx/5ZVXou0aLXNp45JvrbXWihYvY8eOjQpyqZTZzkVlgUGUkyZNikUgDadMWAw47d5hhx2yiy66KIaQbrjhhtHni0Ens83mWVNjIVBOiTeBELIUaMVT+ZLEAQgZCPy/M/NcklQZh9/0VP3xxx8rPM6awZBKMuB4o0pNjVeyf8cdd2SnnHJKlXJ97qPIRqeCjAozSZLw9ttvRzJbfuJUQlLVUUcdFVXK119/ffbwww/HPCwOaMmKrjy4VA2Hij/62fPvTtUAiYZkmLPW5yO4TsXA1ltv7T5dZcMgusoOmc4EzMl+zscCcdxxx8VJKsF0+qZTVsbiTZY6QzNUf/TFe/rpp6MnPe/JQKB0jxK/yptugh4MhKV3vSRJhbCxYw2/9dZbqy37ZnPHpvuYY46JLCk3ew2DNnms55dffnm1/+577rlndvPNN0cwRJKkytiTE4ilNRutWPMrmBIy0Xv16pUNHz48ZmnQR50kOCrOWrZsWZTnXWoICxIoZ01/6KGHYi/Ovr06G2+8cXbFFVdEFblUbgyiqyx9+eWX2bnnnhsb6f3226/KAkEGOoHzgQMHxhtBXHpxMy185ZVXLtrzbs5++OGH7J577omBMdwsUY7PqfW9995b4d+fBZus80suuSRbaKGFivqcJUnNC7e1lB8zfHT06NEVvpY2hPTp5JCWNmL5fVlV83/jUaNGxWB2qvcqbyU4oKAvPcHz/FJ9SZJmhFlYZD+fd955VbKeQfb5dtttF+3BmK2BvffeO9rAkAjnAXnt0WKNwwsGgY4ZMybui6gOrxwf4d+WeyuC523bti3a85WKzSC6yho//mRDMwWcQaOVdejQIUrG6O9FdhsTqAm8E+RlAIoZ0jU70WYjzWEEN0McQlAi9vPPP1f4XgLm9LwjS9Ap7JKk+nrttdey7t27V2nzkt8urHfv3rGmr7nmmrP8+TU3/DvefffdkTH42WefVfk6hxS01enXr59tWyRJdfbuu+9GOxEy0AmqV65YBjOyyIR+4403otc6B+Ss5wTVTcSauTfffDO75ZZbotf8r7/+GkHy6kKD9Kcn45/kA/fokkF0KYfgLQNOqishY8GgTJwBZmwgKSNjcaZMmRPZTTfd1A3j/49LCtO66VHLvxV9z/m34t+Q7MDKlxxOu4899tjoo2rLHElSQyMjneomstaqW+PRsWPHqEyj3Vu7du1m+XNsqthYMyyMIAb3PtVtG+g1Twbb9ttvbxagJKlRgurMLKuchJXQ3oW2YVQ7k6VOshst3OinbtLb/3z00UexR7/rrruiHz3xi+r60TNPhjjHSSedlK222mpFea5SU2UQXcpDL7YvvvgiTlqHDBlSpYyJErKePXtmW265ZQSK77vvvmzy5MkR/N1qq61i802LElqVlBMyzF944YVYlB9//PHIFuCGhaxzysKqm6RO9sD5558fWYAs1JIkNSbWdAZcUmFW3bqUkPm20047xZq+3nrrxQDyckJG3xNPPBHZaVSTVYdg+WabbRbDRB3YKklqbAR7H3zwwQj+Pvroo9mECROq/T6C6KzbtCnhYwLprOe0gVliiSWycsK9DlV57NEZzFro3ywhYZB5cIcddlj820mqyiC6VAADsuj3efXVV2eLLrpoNnXq1AoZWATUu3Tpkh144IHZxIkTI3jMMFLKmTfaaKNYrHlbYYUVslLtcT548OD4e/OeMu9WrVrFzUmnTp2i/3l1GX8MIqE8j5I7SZKK4a233ooeoLQbYz2rLJU1U0lFxRnrebdu3UpyQCZ/T9rWMUjstttui2SCQljjTz755Eg24H5HkqRiHfgef/zxEVjnkLy6sBZrOa3bqKoC7V/SHp0M61Ksnvrll1+yZ555JoLmvM2oVQsWX3zxmPvGv6VtcKSZM4guzQTBYV4mZE2TccXAk8oIqG+wwQbRh42F66mnnorFi8x2MtoYVLruuutGz9Xll1++WW48p0yZEiXxvFHSTeY5p9urr756HDIwrJUSuuouKWSkM5iVfmr2UpMkNSXjx4+P0m/KxWd0W8zavfnmm0c1GgPMWNOb4+BMDrj5OzMcdMSIERE8596lEAIQlHVfeeWVbrAlSU0K6zaH4VSHn3322ZHcVV2LEuQHkwke0/KFijPW9Pbt2zfLyrNp06ZFf/OXX345/u6vvvrqDO9l+DcgPtGnT5/Ym9tOVaodg+hSLduWkIF14403RqZ6oYWJLGtKoegzxgaVgDrDNEEQmUxtFuv0RrZ6Uwqsf/PNN7EYp6A5b2mIGM9/ueWWi8+5Yanc8iZp2bJllMzvscce0bpFkqSmjIPhF198Mbv88suz4cOH5zLXZoSBW+uvv3629tprR1CdNw6Wm1LA/P333491nGq5YcOGRfXczA4LWOc5/GZejP1kJUnNaS2/8847o9KMPS3B9ZqEvAigd+jQIdtkk01iTWePTiJYU2o7SjIfe3QC5c8991wchs/oEDwhUM69yjnnnBOHBk0p7iA1NwbRpTr66aefomfoxRdfnE2aNKngoJO55porgsj0YSN4nh+g5teB8nC+xuab3qKUS/PWunXreN/QJ8Sczn/99ddRBscbWeS8Uc7N80ql3GTYrbrqqvH8eB5MP6eXGhn21SHAzmCxvn37lmwbG0lS+QzgoryZTep3330XB+k1wVyUzp07x7peeT0n860hN+TcxlMxl7+e837cuHGxwSZ4UBP0PiVoQNCc9jXNMRtPkqTq1kn2sAzJpD84CWCFMtULrekE06k6pwUMQ0zT2k51VkO2hOHgm1gB6zjrN9nlH3zwQcxiY32v6X0Ih9/LLLNMHIYffvjhHoZLDcggutQACKAzgIthpJzsElwvlKENguIdO3aM/qpsrNmc05+VQSkEsBmEkm+++ebLbcDzF2024umNljIs4iy+vLHI8v63336rEDDnjT8vH7+eQD+LLfi1ZJrTwqW6vuYJf9c2bdpEG5sjjjgiW2SRRer9bylJUlPEmnjVVVdlN9xwQ6z7M1rnZxawZoZIu3btsrZt28b6y2P5azpv/P6V13Sy0D7++ONox8JazoF+XW7l+f0JBNAHlf7m3GdIklQOqCin/epZZ50VQeoZ7Xdnhv0wayr7exLK2KOTDc/aTPCa6uwU/GbN5v6B7+c5cAhOOxY+rmtYjoQ9YgNkmh955JHZhhtuWJK93qWmwiC61AgIXFMyTUuXmpSQsfiS9UXfUbK/yeKmV9mKK64YWeAsrgTCU4YZb5RupU112mCz4SaYnoLqvE+Z8PnBdxZver+moHv+7zkj/F5kqvXo0SPr3r17lLy5SEuSyhGZbPQT79evX2Srs/Y3tdtq7i9oLbfssstG33d6m3N/4dotSVLFNZ2EuEcffTTmf5ERnh5vCms7+3AOvEla23bbbSPLnKQ813Np1jKILjUyXmJsrF966aXIVh8zZkz0J2Vjm06pa4KAOAsngXZ6kec/zu/F4/w5vGdx5ffmVJvM9rpmy/F7rbLKKtnuu++e7b333pENL0mSCmMtfuyxx7LHH388WqqwFnNgTY911uaGlA7h2VxzP8H636VLl1i3t9hiC0u4JUmqJ/bSVJqTvU6rN9Z1EuV4z76cZDbWYr6Pt5nt7wl885bfm5wDb/batH2jSo3WMbSDpZWMPcylpsMgulQkLLaUhtObjcGj9913X5R41TXgXVeUnjEYjeEpqXc7g1EpR5MkSQ2LdZ6WaQz4ZPP9+eefx/0AJeW0dWGznDbhtGxho02FGtVpiy22WBxus6mm4kySJEnSrGEQXWqiaLnCEJEnn3wyysjIXmMzzYabISOpbzqba17GnH7zPWSd0WuVIDg92BheSrY6H9N+hWA5WWr0P/dUW5IkSZIkSZoxg+iSJEmSJEmSJBVgGqokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZKUVe//Aw2MLTmX7oMQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm8lPP7//+2RrKlHW2kSEXSIhVRKakIWaKEskX25aMsoRIK0WaJRLZSspRKaSckRJbKkn3f9/k/ntf3f92/e6ZzTp0658w5M6/n4zHNzD1zplnfy3W9rte1WSKRSAQhhBBCCCGEEEIIIYQQQqzD5useEkIIIYQQQgghhBBCCCGEguhCCCGEEEIIIYQQQgghRB5IiS6EEEIIIYQQQgghhBBC5IKC6EIIIYQQQgghhBBCCCFELiiILoQQQgghhBBCCCGEEELkgoLoQgghhBBCCCGEEEIIIUQuKIguhBBCCCGEEEIIIYQQQuSCguhCCCGEEEIIIYQQQgghRC4oiC6EEEIIIYQQQgghhBBC5IKC6EIIIYQQQgghhBBCCCGEguhCiJz46quvwqBBg8Kxxx4batSoETbbbDM7CSGEEKL48+eff4brr78+1KpVK2yzzTahSpUqoXfv3ja/CyGEEKL48+GHH4Zrr702dOrUKey66662H69evXq6n5YQIoXNEolEIvWgECJ7mDNnTjj00ENtomYD/umnn4bffvstaGgQQgghijf//fdf6NChQ5g+fXpo2rRpaNWqVXj//ffD5MmTLTG+ePHiUL58+XQ/TSGEEELkwbhx48Jpp50Wtthii7D33nuHFStWhN133z2sWbNG75sQxQjZuQiR5TBJz507N/z4449h5cqVNlkLIYQQovjzwAMPWAD9xBNPDAsXLgyDBw8OTz75ZLj77rvDqlWrwtVXX53upyiEEEKI9dCyZcuwaNGi8PPPP4c333wzbLXVVnrPhCiGKIguRBFDWRbl1vGsMypwzh2u16lTp0ieT8WKFW3S3n777Yvk/xNCCCEykXTM72PHjrVzbNniVmx9+vQJNWvWDBMmTAi///57gf1/QgghRKaTjvmcOZuKsm233bbAHlMIUfAoiC6EEEIIIUQJ448//ghLliwJtWvXDtWqVUu6jc19mzZtwq+//hqWLl2atucohBBCCCFEprBlup+AEGL9DB8+PPzwww8b/FZ16dIl7LfffnprhRBCiAyd32lChic6/Uxywo/jkd6iRYsCesZCCCGESEX7dSGyAwXRhSghk/JHH32UrxI0BdGFEEKIzJ3f6WUCO+64Y4733WGHHZLuJ4QQQojCQft1IbIDBdGFKAFsSlfuOXPm2CkOG3DUbEIIIYQomfO7EEIIIYoHms+FyA4URBciwyGAft111yUd69Gjh4LoQgghRAnGFei5Kc1/+umnpPsJIYQQQgghNh4F0YUoYrbaaqvw77//5nr7b7/9Ft2vIDzWrr32WjsJIYQQInPm95o1a4bNN9/cPM9zwo/n5pkuhBBCiPTP50KIkoOC6EIUMZUrVw4ffPCBeaBWq1Ztndvfe++96H6OPNaEEEKI4k1Rz+/bbrttaNy4cVi8ePE6/2cikQgvvPBC2G677UKjRo028ZUJIYQQ2YP260KI3Nhcb40QRUv79u3t/IYbbgj//fdf0m1cv/HGG+1yu3btkjzW2BBv6Klnz55F/KqEEEKI7CYd83vv3r3t/Morr7TbndGjR4dVq1aFk08+2YLtQgghhCi+87kQomSwWSK+4hZCFDq//PJLOPjgg8Mbb7wR6tWrFypVqmRqsbZt24YvvvgiLF++PDRt2jTMmjUrlC5dukg+kfgkPnnyZPNRxTfdueKKK0KdOnWK5LkIIYQQJZF0zO9s5jt06BCmT59uj92qVStTw0+aNMlU60uWLAnly5cvkP9LCCGEyAbSMZ9/88034ZJLLomujx8/3pLgxx57bHTslltuCeXKlSuQ/08IsXEoiC5EmibmoUOHhgkTJoQPP/zQjuFresABB4RTTz01nH322WGLLbYosuez2Wab5Xn7iy++GA455JAiez5CCCFESSQd8/uff/4ZBg8ebBvuTz75JJQtWzZ07NjRFHQVK1Ys0P9LCCGEyAaKej5HyV6jRo0877N69WpLkAsh0oeC6EKkGUquzzrrrDB27NhwxhlnpPvpCCGEEKIA0PwuhBBClHw0nwshHHmiC5FmSpUqZedbbqk+v0IIIUSmoPldCCGEKPloPhdCOAqiCyGEEEIIIYQQQgghhBC5oCC6EEIIIYQQQgghhBBCCJEL8kQXQgghhBBCCCGEEEIIIXJBSnQhhBBCCCGEEEIIIYQQIhcURBdCCCGEEEIIIYQQQgghcmHL3G4QQhQ/vvrqq/Dbb7+FcuXKhTJlyqT76QghhBBCCCGEEEIIkfFIiS5EMeT1118P++yzT9h///3Du+++G84///zQqVOnULt27VCjRo1w3HHHhX///dfuu3z58nDYYYeFV155Jd1PWwghhBBCCCGEEEKIjEONRYUoBnzxxRdhm222CTvttJNd//bbb0OFChXCZpttFgXLUylbtmzo3Llz+PLLL8Ozzz5rx/baay8LsB955JEWbK9YsaI9hhBCCCGEEEIIIYQQYuNQEF2INLNw4cJw7LHHhiZNmoRJkyZFQe8TTzwxTJw4cZMee4sttghVq1YNvXv3DhdddFHYeuutC+hZCyGEEEIIIYQQQgiRHcjORYg0Q2Ab5fmCBQvCM888Ex0fPHiw2bmsj4YNG4Ybb7zR7F9SQcW+evXqcOWVV4a6deuGmTNnFvjzF0IIIYQQQgghhBAik1EQXYg0kEgkost77723Bcu//vrrMGrUqPDxxx/b8WrVqoXZs2ebSn3zzZN/qrVq1bLA+Zo1a8Krr74arrrqqvD2229b09E+ffrk+H9+8MEHoU2bNqFbt25h7dq1hfwKhRBCCCGEEEIIIYTIDBREF6KIWbZsWTjooIPCJ598YoHz1q1bhyVLloStttrK1Ojdu3e3xqKwYsWKMHfu3PDff/+FnXfe2RqM0kB05cqVFjgn0B5n2223DSNHjgx33313qFSpUthll11CzZo1Q5UqVcIBBxxgwfjHHnss1KlTJ9x6663h77//1ucvhBBCCCGEEEIIIUQeyBNdiCJWoLdo0cKC5R06dAjvv/++nbbbbrvw66+/2n2233778PPPP4cLLrjAAuJ//fWXKdWnTp0adtttt3z9X9i5EDj/5ZdfLGD+5ptvhksvvTQsXbrU7oPFy7hx40KjRo0K7TULIYQQQgghhBBCCFGSURBdiCJm1apV4ZxzzjEblm+++cbU4niiw0477RR++OGHpPt36dIlPPTQQxZo3xgIpt9xxx2mXEft/ueff4YyZcqE7777zhTuO+ywQ5gzZ84G+a8LIYQQQgghhBBCCJFtyM5FiCLgn3/+iS7XqFHDlOEE0KtWrRoF0AlwE0DHksW54oorwpNPPrnRAXRAgT5+/HjzS//xxx/DH3/8Yf83AXT46aefQrt27cJ77723Sa9RCCGEEEIIIYQQQohMREF0IQoZ7FrwIH/xxRft+mabbWa+5C1btoyaiKIMJ9jN+e+//24BdWxWBg0atE5T0fyy9dZbh2nTpoXBgwfb88gJvNkPP/xw82kXQgghhBBCCCGEEEL8P2TnIkQhc+qpp5oSnGai8+fPtyC6Nw2lqSgqddTopUqVMqsV7F0mT55s3ukFzeeffx5atWplgf04BOpRpteuXTvMmzcvlC9fvsD/byGEEEIIIYQQQgghSiJSogtRyIwZMyb07t07rF27NowePdo8ymGfffYxX/TzzjsvbLPNNhZAr1SpUliyZEmhBNChcuXKYcaMGda8NA4B9C233DKsXLkyHHHEEWb7IoQQQgghhBBCCCGEUBBdiEIHaxaaiX700UfhxhtvDM8++2x026677hoqVqxoPuVbbLGF2bzssccehfp8Xn/99fDzzz8nHcOHvVy5cmHnnXcOr732WujUqZPZygghhBBCCCGEEEIIke3IzkWIQuDWW28NO+64YzjjjDPCgAEDwsCBAy1QjWULAXOC6X369Alvv/12OPjgg80P/ZZbbgkXX3xxkXwel112mQXwa9asac1M69WrZyp47F4OOeQQazZ65JFHmq0MSQAhhBBCCCFy49prr7X+OwgxHn74YatwFEIIIYTIJBREF6KAeemllywQjW3L0KFDw6WXXmrH69evH5YvXx6qVatmqvQGDRqEb775xmxejjnmmPDEE09EfunpBN/2Nm3aWLCf4P/VV1+d7qckhBBCCCGKMb/88kt45ZVXQvv27cP9998fTjzxxI1+LNbQ11xzTRg7dqyJPZo3bx5GjhwZatWqVaDPWQghhBAiPyiILkQBg6r8tttuM3/xKVOmhO+++848zmnYufXWW9t9/vrrr1C1atXw8ccf24Zg6dKlYYcddkjLZ/Hrr7/ac8Of/cMPPwxVqlQJw4YNC7/99pup0DmOUl0IIYQQQoi86NmzZ/jqq6+S7Avzy5AhQ8KgQYPCAw88EGrUqBH69+8f3nzzzbBixQrrIySEEEIIkQ4URBeiEKBJKIFzFDkEoN9//31Tdu++++7hk08+CXvuuWf44IMPzOKFRqLpClKzGWnbtm347LPPooanbE54rn5+wAEHhMWLF6ssVwghhBCiiGF9hrAhHZQuXTrfVZKjRo0Kffv2tbVl+fLlN+r1IujA4vCSSy6xYzS8p4fQuHHjwgknnJDvxxRCCCGEKAg2L5BHEUKEL774IgpEo+Du3LlztHkgGI3inAD6dtttZwF0GDNmTFpV3jQxJZDvKniam/JceY6c4+GOEh1bGiGEEEIIUbQQQC9TpkxaThsTvCfQ/c8//4SJEydGx6h4XN//NWHCBLvv6tWrbU19+OGHR39Pn6EmTZqERYsWFdC7KoQQQgiRf6REF6IA+P33383jHL9zSk9R0MCIESNMjUOQGgsXD1BjoXLWWWeZv2O6effdd03dg9/kO++8EzbffPPw33//2W2oj0gMYEPz2muvhbp166b76QohhBBCZA2sGQkyp8vnnHXrhkKQm/Vkx44dzdKFSkZfJ9MDKC9Yi26//fZh4cKF9hgo2StXrhzdfvzxx9u69NFHH92EVySEEEIIsfGobboQBQC2LajM2eig3nbOOeccU+M88sgj4eWXX7bgOpuCfffdNwwfPrxYvPd16tSx8/vuuy8cdNBBUQAdVfq///4bdt555/D999+H0047zTY2W26pYUMIIYQQoqgsVQhmp+v/zg+sbQmgX3fddaFhw4ZWeYmFIVWPnAshhBBClGRk5yJEAdCyZUtreNS1a1crP3XlDarufv36hccffzy0bt06fP7553b8jjvuSAq2FweaNm1qFjSA8pwAOgFzAuhsfkgU0DBVCCGEEEIUDaivUYOn45QfP3TEJJMmTQoXXXRR2H///a160S1a8mPnUqlSJTv/8ssvkx6f636bEEIIIUQ6UBBdiAKCzQY+kMuWLTMfSEpXHRqKEpTGGuW4444Lhx56aLF73x966KHw1FNPWeAc6xkPppMIOOKII+z6gAEDzPJFCCGEEEIIBwvD+vXrh0MOOcSud+/ePQqMN2rUyNbHeZ06depk961Ro4YFy2fNmhU99k8//RSWLFkSmjVrpjdcCCGEEGlDnuhCbALYtBx44IFWouqbBTYQK1assA3Aww8/HFq0aBEee+yx0K1bt7DNNtuYBzne6cUNmkfh637AAQdYw1F8KI899tjw3Xffhb333jsceeSR4bnnnrPGTgsWLDC7FyGEEEIIkd2whtxtt93CnXfeGU4++eRImc56l+rMxo0b5+vxhgwZEgYPHmx9hgiq9+/fPyxfvtzW16ylhRBCCCHSgcyNhdhI1qxZE3r27GlK7dGjR1sAnbLXsmXLmg86QWhsXnr06BGpaa644opiGUB338u33nprHZsZL50dM2aMleaiBHrwwQfNI10IIYQQQmQ3rAtZR9L8M16FiSqdSsf8BtEvu+wy6zPUu3fv8MMPP4SDDz44PP/88wqgCyGEECKtSIkuxEby/vvvh3PPPTf8/fff5tOIzQmlqFOnTrXAOsFnmoii3CbwTPCc++AvXlLAfgZbGp4/DUZplLpo0aJQtWrV8N577xU7X3chhBBCCCGEEEIIIQoaeaILsZHUqlUrzJgxwxqJEhwvV65c+Oijj6ImnQTQCaS//vrrduzWW28tMQH0Dz74wJqkYu2C+pymqKiACKDvtNNO4eOPPw6jRo1K99MUQgghhBBCCCGEEKLQURBdiE1Uas+fP98ud+nSJbzxxhth++23DytXrrRjWLrQpJNGosccc0yJea/PPPPMMGnSJEsAEDD3JqNAg1S48cYbw88//5zW5ymEEEIIIYQQQgghRGGjILoQ+eTFF180Vfkff/xhHujPPPNMePTRR63pJjRr1ix8++23oUqVKhaEpgHn7bffbvctKVx66aWhQ4cOoVGjRuG///4zn8vvv//eLF0InKO6//rrr8Pw4cPT/VSFEEIIIYQQQgghhChU5IkuRD4goIzFybJly8KAAQPCddddZ8e/+uqrcPbZZ4eXX345/PTTT3aqWbNmWLVqVTjvvPPCnXfeWSLf54ULF4bmzZtbIgAFOsH03377zYLpBNV32GEHe4277LJLup+qEEIIIYQQQgghhBCFgpToQuST888/33zC8UT/5Zdf7FiFChXCk08+Ge69917zPa9evboFl7ncv3//EvseH3TQQaFt27YWQCdwTgAduxoC6LvttpslCwYPHpzupymEEEIIIYQQQgghRKGhILoQ+fnBbL55OO2008Ljjz8eevToYWpzrFscAs4ffvih2Z1A7969LcBeUiFJsPfee9vlH3/8MckT/c8//7TzESNGhLVr16bxWQohhBBCCCGEEEIIUXgoiC7ERoCNC9Yu++23n9m6rFmzJrrt1VdfDUuXLrVGnJdcckmJfn9R1uPnjo0Lrxc1+q677hr22WefcNVVV5nVC97w119/fbqfqhBCCCGEEEIIIYQQhYI80YXYALAtOe6448IVV1xh/t8NGjSw4926dbOmoi1atAjnnnuu3ad9+/ZhxowZoU+fPmHUqFEl+v2liejhhx8e2rRpY4p0guZVq1a1JqmcFixYEA4++GDzTF+xYkXYa6+90v2UhRBCCCGEEEIIIYQoULbU+ynE+rn77rstMP7xxx+H2rVr27GjjjoqPPXUU3YZn/ATTjghTJw40e5HUPnyyy8v8W8tr2vJkiW53k5Q/cgjjwzPPPNMGDJkiCnXhRBCCCGEEEIIIYTIJGTnIsQGcMopp4R+/fqFU089NUyZMsVU2CjS8QVv2LBheP755+1+33zzjZ1379491KhRIyPf27///tsU6o899lh4+OGHo+aqDz30UPj888/T/fSEEEIIIUQRc+2114ZtttkmHH/88eGff/7R+y+EEEKIjENBdCE2AHzAhw0bFubPn2/Xjz32WGsu6rfhF96sWTO7nQD7lVdemVHvayKRCNOnTzfVefXq1S1BgJXNWWedFebOnWs2Ln/99Zc1GRVCCCGEENkFfYCee+65MHXq1GiNvCnrTnoOVa5cOWy77bZmLfj+++/n+TeDBg0KBx54oFVRVqhQIXTp0iWsXLky6T6HHHJIZEnoJ9ayQgghhBAbgoLoQmwgBIl32mmnsNVWW4Xy5cuHX3/9NdSvXz/MnDnTbqeRKBBcdsuXTOHDDz8MRxxxhG2OPvvsM7OrgSpVqtg5inwYOXKkvS9CCCGEECJ7KFOmTDj00EPN3nD8+PGb9Fg333xzuOOOO6y3ELaC2223XWjXrp01s88NRB30J1q8eHF44YUXrHKybdu266xLzzzzTKuc9BP/lxBCCCHEhqDGokLkAR7fr7zyijUURYEN7777bmjSpIk1G3UfdJpuvvPOO3b78uXLQ7169TLufT366KMteTBu3DjbmAAKHkp3f//9dwuoE2C/8847w3nnnZfupyuEEEIIkTHkJVJA3MB6bEPuu/nmm5u6e333JXC9MRD47tu3r60JWTdujAqdNeXFF19s6nb48ccfQ8WKFW0Nytp7Q/j6669NkU5wvWXLlpESfb/99gvDhw/P9/MSQgghhJASXYhcwM9x4MCBYfTo0WHatGnRcUpLUboQSJ81a5YdY5EOnTt3zsgAOkyePDmMGTPGvC5ht912s42Oe7/7e3DbbbeFf//9N63PVQghhBAi05TeuZ26du2adF/WZLndt3379kn3RSSS0/02FgLdrKERmTjz5s3L8/lzmjBhgt139erV4YsvvjALF2fHHXe0dfeiRYs2+HkQeIeyZcsmHef/KVeuXNh3333NfvG3337b6NcqhBBCiOxiy3Q/ASGKK1tuuWV48MEHw913321qnA8++CDsueeetpC/6aabzOLkxBNPNBsXSkfh0ksvDZkOCQQ2IF999ZVd531wBT52N2x+CLjjGy+EEEIIIbIDgtwvv/xyOOqoo2ytiCIdGjVqFJYtW5bn36I0BwLo8evx2/229UGvon79+oXmzZtbsNw56aSTQrVq1Uzpzrr18ssvN9/0SZMm5fu1CiGEECL7kJ2LEOuBBTsLbixM3n77bbNucVBi9+/fP9x4442hYcOGYenSpWZxksm899575ku5Zs0aU6N/+umnoWbNmmHVqlW2WVmwYEFo3LixJRYy/b0QQgghhCgKSoKdC32BsPi77rrrbF1MM1AEKPlh4cKFtp7EDobqT4dKSNaVjz766Hof4+yzz7Y+PvPnz7e1am7Mnj07HHbYYSaU2WOPPfL1PIUQQgiRfcjORYj1QGMjmopSRkrzoRkzZljwHLAtQa0O559/fsYHjfF9p2nq2rVrkxqKUgrMJgSVeqlSpUyFRDBdCCGEEEJsOgS1czvFA+jru288gJ7XffPLJ598Yoruiy66KOy///6hbt26kUVLfuxcKlWqZOdffvll0uNz3W/LC/ryYMP44osv5hlAB9b2QBBdCCGEEGJ9yM5FiBQIkOMt2apVK1PUYOcCXB8yZEh4+umn7Zz7oGBh04C3IvfNdOrUqWMNmSip5TWfc8455rsZVxmxaRk7dmy49dZbw8EHH5zW5yuEEEIIIQqfESNGhPr161vzTujevXu47777wjXXXJMvOxd67RAsp+8Qa0746aefwpIlS0xhntf6HfsYLAXnzJkT9ezJC39OccW7EEIIIURuyM5FiBQIArdu3dqUOjQcGjBggKmvy5cvb2WhPXr0CA888EDYZZddzNqFY//73//CDTfckBXvJap8fOBz491337X3BVU+ZbwqjxVCCCGEyFxozonq+8477wwnn3yyHUNkgh0i9n7Y/OUHxCqDBw+29TbBcKwT8TBfsWJFpLqnAvLoo4825Tkg7Hj44YfDlClTbN3u0MuINT09fLi9Q4cOtobn8S688EJ73nPnzi3Q90MIIYQQmYnsXIRIoWnTpmHUqFEWGB89erQdO+644yxYTrPR7777zo7h18gxfCjPOuusrHkfcwug4x2PX/pjjz1m7yGKIH//hBBCCCFEZoK1YenSpc233Nl9991Nlf7QQw/l+/Euu+wyU5X37t07HHjggeGXX34Jzz//fJJtDUHxb775Jro+cuTI8OOPP9r/ibLcT+6hzvp15syZoW3btlZZefHFF1tVKRWmQgghhBAbgpToQuQC6peePXvaApwF+SOPPBKOOeaYMHXq1PDPP/+Y+oWSUTYMG9LkKNNgQ/PEE09YIgG1EdY2lN3SXJX3i1JalD40Hk316hRCCCGEEEIIIYQQoqQgT3Qh8ggS77zzzhZIHzp0qB0jKEwAHaU1ihhAKZNt0GCU0tz//vvPSnhJNPC+fP3113b7woULQ5UqVcJnn31mgXZ8MYUQQgghhBBCCCGEKInIzkWImB0JPonTp083K5Jzzz3XVNQEhzlh3zJt2jS7L/6Mv//+e9h///3teLaB1yQJBZpAbbXVVuHzzz83tflHH30U9tlnH/NN59zLa4UQQgghhBBCCCGEKKkoiC7E/89dd90VnnvuuXDttddaU0zA35FAOQHhJk2aWLCYwDFKazj//POj+2YTm2++uTWKwo8SixuoWbNm1MAJuA2/eN4rmjcJIYQQQgghhBBCCFESURBdiP+f008/PfTr1y/06dPHGg+hRocTTzwxvPXWW2H77be3oPBhhx1miuuddtopdOvWLWvfv0qVKlkCoUePHnYd6xZ4/fXXw3bbbRdWr14dWrRoYcekRhdCCCGEEEIIIYQQJRUF0YX4/6levXoYNmxYeO+990KbNm1Cr169oveGYDEKdYLneKXDKaecErbddtusf/8OP/zwUKFChfDDDz+EatWqhT/++CPUr1/f3hesXuChhx4KP//8c9a/V0IIIYQQQgghhBCi5KEguhAx8DkfM2aMXd57773DqFGjoqA5bL311mb5AmeccUbWv3dz584NdevWNdsbQJ0PBNQ5tscee4Q6derYe0ggXQghhBBCCCGEEEKIkoaC6CLreeGFF8zb/IMPPggTJ04M3377bahatWp45ZVXwtlnnx0uvPBCU6fD+PHjw99//x0OPPDASG2dzey6667h/fffD19//bWp0Dt27Gje8i+99JL5x2PjctZZZ9l9uewWOUIIIYQQQgghhBBClBS2TPcTECLdDB061ALpWI/Mnj07smoZMmSIXS5btmyoXbu2BdTnzJljx6RC/z/23HPPMG3atNCyZctQpkyZHJus4pl+5ZVXhjfffNOakTZr1qwIP10hhBBCCCGEEEIIITYNKdFF1nPZZZeFI488MjRp0iQsW7YsbLPNNuGvv/4K//zzTzj44IPD1KlT7T3C//ydd94xm5ITTjgh6983h/eOpqs5BdCBBqMdOnSwy/fee6/eNyGEEEIIIYQQQghRolAQXWQ9NMZETf3EE0/Ye3HSSSdF/t2HHnpoePfdd8N2220XvvzySzvWrVu3sMMOO2T9+5YTf/75Z5gyZUoYPnx4OOigg8Lxxx8fGjZsGN3+6KOPJnnMCyGEEEKIks+1115rQhTWfghRhBBCCCEyDQXRhQjBlOcrV66094JGmPh5V6pUKTp27LHHhsmTJ9tlWbmsy8yZM8NRRx0VGjVqFLp06RIeeeSRsGjRovDdd9/Z7djk0GSUAPpjjz2m75wQQgghRAZxySWXhOeee84qOB9//PFNeix66AwYMCBUrlzZKkERvNCDZ31BfKoi4yfW9EIIIYQQBYWC6CJrwVpkxIgRFtjdeuutzcrl5ZdfNlU6dO/ePTz11FN2uUqVKuG3334Le++9tzy9c4DGq7xvrjL34Dke6DQf/f7770Pjxo2j910IIYQQQmQO9MahghPLw/Hjx2/SY918883hjjvuCKNGjQpLliyxitB27dqFP/74I8+/q1u3rglh/DR//vxNeh5CCCGEEHHUWFRkrfIchctnn30WdtxxR2skimKlXr165u9NUN290Q844ABrPOoq9Ny8v7MZlPrY3RxxxBHWZPSDDz4Iu+++e/jkk0/CYYcdFtauXWu3b7HFFmHhwoVmkSN1kBBCCCHEhvHrr7/mehvrK9atG3LfzTff3NTd67svgeuNoWnTpqFv377h66+/DuXLl98oFTq2gFdffXXo3LmzHXvwwQdDxYoVTdySV1+iLbfc0ipJhRBCCCEKAynRRVbCAv2qq64KLVq0CPvvv7+pzIENCIpqgr4zZsywYzTFXLp0adhqq63CqaeemuZnXjypUKFCuO6660yl36ZNGzuGfQt8++23dj5nzpzQunVru3zfffel8dkKIYQQQpQ8pXdup65du66zLsvtvu3bt0+6b/Xq1XO838Yybtw480SfOHFidGzevHl5Pn9OEyZMiBrSf/HFF2bh4iB4adKkiVkF5gWWL1SP1qxZM5x88snh448/3ujXIYQQQgiRioLoIispVapUOPfcc8PcuXMtML7bbrtZkNcpV66cXWcj4A1Fjz76aDsu8obGq0AiAtjwoOb/77//zNoFHnjggfD333/rrRRCCCGEyBBY82GNSJ8cD4oDPXOwTczr1KlTJ7svAXRAeR6H635bThBkZ93+/PPPh5EjR1owHrHMzz//XGivVwghhBDZhexcRFazYMGC8Prrr5sC/ffffzfFStWqVe02Sl2PP/740K9fP7uuhqLrB99KV+2jBtpvv/1sY1StWrXw6quvhjVr1tgmiMTEM888Y01IhRBCCCFE3njfmdzsXOJ89dVXedq5xGFtVlBgw9KxY0erTmzYsKHZ++255562pua8MIkr7OvXr29BddafNLQ//fTTC/X/FkIIIUR2ICW6yDpoVoTHOZYud955px2j5PPCCy8MNWrUML9FboNJkyaFH374wRbheHuLvLnkkkusWWvt2rXtOr7nRx55ZDjxxBPD008/bRY5bomjBqNCCCGEEBsGHuW5neJ+6Ou7b9wPPa/75hf64LBuvuiii8wqkSafrkbPj52Le5p7JajD9fz4ne+0005hr732skC+EEIIIURBICW6yCpQmuOF/u+//4bZs2eHJ5980o43btzYgro0FUU5feWVV4brr78+jB071m5HwZKq3BHr0r17d2soio/lQQcdlGPz0F69eoWhQ4eGZ5991hq74l0phBBCCCFKLogoUIAfcsgh0ZqQHjjXXHNNZOeSF27fgqCFYPmsWbOsohF++uknq3Y8++yz86Xc//DDD8Mpp5yySa9LCCGEEMLZLOGSWyGyAIK2gwcPDh999JEt9G+44YbQsmXLsPPOO4cpU6aYTzrBXXwUBw0aZMF0gueUuhIcFpsOCQze84ULF9p7fMUVV+htFUIIIYQoofz222/WX4gKT6o7XZlOJefixYtNrJIfhgwZYut1eugQVO/fv39Yvnx5WLFiRaS6p0KUfkXnnXdeVA2JFzv/J+t9gvcE7vmb8uXLF8KrFkIIIUS2IWmtyCpQPd9xxx3h0UcfDWPGjLFjJ5xwglmNQIMGDSyATgno119/bceOOOIIBdA3ARqKkrRAoXTLLbeE6tWrmyIJUCgpjyeEEEIIUXJ58MEHQ+nSpa2XkIP4BFX6Qw89lO/Hu+yyy0Lfvn1D7969w4EHHmiqchqGxm1rUJl/88030fVPP/3U7AOxFOR57LLLLhbAVwBdCCGEEAWFlOgiK6FEFMuRXXfd1RQz+KS3bt067LDDDuaJjqrl8ccfN/9F/B1RuogNh00Nmx3U/e+8844p+X/99VdLWEycODF07tzZPgM2RXPnzjVluhBCCFFUkMAlyesNGZnvp06datVn8SaE999/v6lZjzvuuHDwwQfbMeYukvEk3Lt27aoPTQghhBBCiCxASnSRFbBRxroFlbmXgL733nth9OjRtkEGb34JNCJiQ12hQoXQsWPHtD73kgaqc3wtCUJMmzYtvP3226FFixZ2m/vKP/fccxZIBzUYFUIIUVj8/vvv6zQWxCOZpPnkyZOTVKyoXrGAiPPMM89YBRtWEg5WEWeccUZSsN3Vs1jFjR8/PilYj9WFEEIIIYQQomSjxqIiK5g+fbr5Kd52223h888/D6VKlQq1atUKP/zwg22w8XFkA41fNwHfGTNm2N/17NkzbLXVVul++iUKvChJQlDWW65cOXsvuQyoz7HMeeONN6xpFKD4J0Cx4447pvmZCyGEKMkQsP7777/D1ltvbddpRNi8eXOb46mIiifWUZOvWrUqOla5cmXzU/Zm16wNsHVr2LChPR6XR44caY//xRdfhHbt2oUyZcrYfbGMeOWVV6wC680337Tr+DjzmH/++WeoV69e2GeffSwQv9lmmxX5+yKEEEIIIYTYdGTnIrICNtKoy/bdd18LpscDtj///LNZjhx77LHWBImAbr9+/WyT/e6775q3osgfBCcILjz55JP2vlatWtXsXL799tvQp08fqwBwj0ve+1GjRtlxIYQQYmOgEeGwYcNsjqdJOPz4449muYInMgFzD3q///77NseXLVvW5nkq01CrDxgwIGy77bZ2H2zd7rrrrlz/v/j6gP+Tare8QKFOAvnll18OS5cuNeuYP/74w/7ObWKEEEIIIYQQxRcp0UVW0KRJE1OIoR5DZda+ffuoCdL2229vAV1sXSjB/u6772xzjSJdAfSNwwMVHTp0sMsff/xxOOaYY8xf/vvvvw9bbrmlqfYuueQSC6LTYFRBdCGEEBsCQW/6l1x88cWRpznzNjZsc+bMiYLoJMzXrl1rinAU4KjEqY569dVX7cTjxOnevXuoW7euXaYpIZVoBOCpqtp5553t+D///BP++usvU6WjVmddQQAexTr/D9YtrCPeeuste06o40kkc7xx48aWTI4r4FG0UxnHbSjW+f+wkfN5VAghhBBCCFE8UBBdZBUEa9nIEtTF1qVmzZq2seaET/qhhx5qm1nA71RsGtjmHHHEEeGJJ56wwLn7obdt2zY8++yzpsLjOMo8ghsEEIQQQojcwE6ladOmlpAl8HzIIYfYcZqEN2vWzE4e7CZQjo2KW6gQeEdtHmf33Xe3++y5556mQicAjlIcCxfU4sxhQHPR/fffP/o7EsFx8Efv1auXrS+Yz1CdOxyLQ+DfG5uyJuG+8fszd5Lg32677Szxz3MjiI9dGj1HUNdzHSU9DdK5rxBCCCGEEKJwURBdZDQovgjg0kSMDTHKMTjttNPM2qVOnTph5syZpjgDFGwoxGg4hg2J2Hh43/v27WvvMSxYsMACAPjKtm7d2pR5eM7ToA2F+tixY81KRwghhPCAOQ2qX3/99XD99dfbMdThxx9/vDWxdu9zYE5BMU4jUOYfErXYudA8tEuXLnafli1bhqOPPjoccMABdiIoTkJ97ty5lsxFFR5vQkqFlAfRSbATcEdtTuCavh4Ewx977LHwzTffWJPs1EbZBPRJDvNcWVtgIwP0X8kLfNQ58bj87aJFi/K8P0H16tWr23vAPMu8y//LOscV9EIIIYQQQohNQ57oIqMZNGhQuOqqqyxoe84551hgnFLpCy+80I6zgT7ppJMskEv5Nwq1hx9+OJx11llRwF1sHPPnzzdLHDb0nChPb9WqlSn+4mXq2Oxgr0MQgM/B/WiFEEJkNx9++KGpsFGSc5lmnYCK29XlKLmffvpp68FBAJ3rDvPKzTffHM4888zoGBVQ22yzjV0mgO6NROPwfzZq1MjmLALTJIEXLlxogXYea/jw4XY/mpN7kHrzzTc3izieG8+B87zguZHA5+9JBpC85zpWMajssYMh6ZxbwJ3XTxAfxX1e8PoIqGNbd9BBB5mKX4F1IYQQQggh8o+U6CKjYfOIZQuK5zvvvDOyaUH1DATLr732WttIo9hiE+5l2WLTQIE3ffp0K7WPqwVTadOmjQUpKHdHkU5JvhBCiOwDpfaKFStC586d7foee+xhPuUowAlQOx5A97854YQTouskbUmYd+3a1exeCDRzn8cff9wU6iTSmZsAVTlBZWxRmLO4/9577x1GjBhhCd6JEyeu8xzxUadZ+Ysvvhhmz55t1iuoxrFmoVm2w2PSVwUF+1577WXnvB7WJTwHtzhbH1TIDRw4MPz000/WQ4Qm3UCQPq8AOq+bADzJaU7+mgHfdwLqCAywV+O5CiGEEEIIIfJGSnSR8bCJXL58uTX9YlNJuTVBdZRYd999dzjxxBNDhQoVwpVXXmkK9QYNGljpeHyTLgoeyuxR2tHMlQ08VQOo/ggYCCGEyC4ITBPYRZGNhQnnqRBAplrsq6++Cv/73/+i48cdd5ypxwmeM9czf69ZsyY89NBDFjxnDeBQCYXvObYwgOobCxeU2kAwnOA6/wcQAMf6hSA+yV6sVeLBcmAO4++5Hwp2zgn8F/Q6ApU6wfu77rrL1Pesafbbbz/zfgeeA0F9/NoJ7APNV3lvFi9eHObNm5fU1NQV9CQPsK2hKoznzzEhhBBCCCFEMgqii6wAqxYC5myw2YTT3PKiiy4Kb7/9tqmzLrvsMjunsRe+3Hh5i4IFFd2UKVNs0z9kyBBrmMYxPgOuk8QgeLFy5UoLWgghhMj8JDdzAjD+UxGGWpsgMRVKDt7gqMM50esEOxbU1bnZkpx//vl2X7dUQfVN83DWAPijYxtGEBqlOesBvNQ/+eSTKHg8evRoe27YtcyaNcs80+O2KlixUGVFM3JOKLuLMvCMIv2GG26whqKjRo2ySjteM1D5hU3d6tWr7Xnzfvbo0cN6weAvf/bZZ5sSniA/yWxscuLstttulpTo1q2bBdclKBAbCpWdgwcPDp06dbJk14ZWWwghhBBClBgSQmQgb775ZmL27NmJ//77z67/8MMPieHDhycef/zxxGabbcau2m73y0899ZSdlypVKvHtt9+m++lnFPfee2+iVatWiaOOOsre41NPPTWx+eab2+XLL7/czps3b5448sgj7fKll16a7qcshBCiEPn+++8T/fr1SzRr1izx77//Rsd//vnnpPutXr060bdv38S2225r8wOnmjVrJoYOHZr48ccfo/t99NFHiT/++CO6PmLECLvvYYcdZnPQN998Y+uB+fPnJ0455ZRE6dKlo8fjtM8++yQ++eSTxK+//pp4+OGHE+3bt4/mKT/tu+++iauvvjrx8ssvJ/75559i8f3wNQ6vb+DAgdGaxk/x67yeOnXqJLbeeuuk+9SqVStxzDHHJDp06JDYfvvtk26rVq1a4rLLLku888476X6pogTA75e1NWtpfkeb+t3u379/olKlSoltttnGfsvvvfdenn/D9zX+/fXTOeecE92H9Wjq7X369Nmk5yqEEEKI7EFBdJGRHH/88bYwZsMb57rrrrPjbJCvvPJKu9y2bdvEWWedZZdPPPHEtD3nTIWgOe/t0Ucfbefly5dPtGnTxi5fcsklUaBi5MiR0e1//vlnup+2EEKIQuLLL7+MArYzZszI8T6PPPJIYosttogCXQ0bNkw8+uijSQHsZcuWJU4++WS73z333BMdJ8D+wQcfJD0eAbl44GyPPfZI/O9//7Ok+6uvvpo4/fTT1wkiN23aNHHrrbeu81jFkeeffz6xww47WLCfoHg8CdC4ceOk11W7dm1b7xCc9GME1z///PPE5MmT7bbtttsu6W9atGiRGD9+fOK3335L90sVxZwePXrYOntTGDx4cGLHHXc0kcsbb7yR6NSpU6JGjRqJ33//Pde/+eqrr+w77KcXXnjBvrsvvvhiUhD9zDPPTLpfPCEnhBBCCJEXCqKLjAP1Cso1lGavvfZapNQCNt/Tpk1LzJs3L1GhQgVbXKOWYePJ5VmzZqX1uWcivNfDhg2zIES5cuXsfUbZ5gq4du3a2WWSGiiOuEzFgBBCiMzhs88+S7o+bty4xPTp03O9P8EtArkoUAmGxedy1K4+d/ipd+/e66jYP/744+j60qVLTdF+2mmnJRYtWmTKdeZ/1PDxx6levXpiwIAB61W9FleF//vvv2+XV61alTj//PMTe+65Z+Ktt94yNTnqfxIFV111VVSlN2bMGAuyUw2WmsTgM6KKLB6Q32mnnexxeH9F0fLLL7/kekoNLud139RESG7321gQRWy55ZYW1N4Y+K2zHqTixOG7isKd7+WGcsEFF1iyLD52EETnuBBCCCHExqAgushYfvrpp8TEiRMT+++/f2LSpElJt7EYv+iii0yxRak3G0MULvGyclHwUDLrli5eTk8JOudVq1ZNXHHFFVF1gBBCiJLP33//bcFcAmDLly/P9T5YrmG1EgeLlThLlixJtG7dOsmipFu3bhYgd1CtujoddXkcFKcEmm+44YYoactpq622Spx00kmJuXPnZtQ6YPTo0fb6EA0QZCXwTXATW5cnnnjCgosICzjWvXv3yLaFADxWMMzT5513XmLx4sWJ66+/Pskuw9/7V155Jd0vM2vIyarET9jxxEm1LIqfCCTHcYFD6mljadKkif39HXfcER176aWXLCmW1+mhhx6y+3744Yf296+//nrS47Zs2dLGkg2BisZddtklceONNyYd57Xzermtbt26tu7ExkkIIYQQYkNQxxeRsZQpUybceuut4fXXX7eGoUceeaQ13IIdd9zRbmNPQnMwOP3004u0MVg2QqMyGrbR0I3GUzR1ozkcn8fHH39szdnghRdeCGvWrAnVq1dP91MWQgixCdA49KOPPgp//vmnNbasV69e0u0LFy60ZpfLly+363369AnNmzePmlzGufzyy8OcOXNsLj/jjDPCxRdfHGrWrGm3Mdf3798/PPPMM9H9v/zyS2tYytxOc9Lhw4dbE06aWkPlypXDWWedFXr37h0qVaqUcZ8z6xsaqbZr186asdLIm7XRu+++a01WeZ9p4PrPP/+Ehx56yJpBnnLKKTY/Mx+/9dZb1qCVefvUU0+1BuyrVq0Kw4YNs3n60UcftRP/z1VXXRUOP/xwNSLNchYtWhRefvnlcNRRR4UJEyaEvn372vFGjRqFZcuW5fm3FStWtPMvvvgi6Xr8dr9tfTz11FPWGLhnz55Jx2m6W61atVClShUbcxhTaGg/adKkfL1OIYQQQmQpGxRqF6KEsHDhQmsw5jYi3iwUpRVKLFTPcVauXBkpqj799NM0PevM56+//rKyfSxb3EbH/enxQD/jjDNMif7kk09a6T7H8a8VQghR8kD1jLrcYX5NtW6hGSZjv6tey5Yta8rp+N99/fXXSc1GmeN79uyZWLNmTXQM2xUU0akKaXzO3X/94osvTlLmUoU2YcKErOm/EbezmDNnjlnWsDby9wNrnMMPPzy6jjKdyjGq+VKV/6j8sebBj57KAe7rt6MURs0vstfOhZ5EWABhp8h3wu2F8sOCBQvsb1MtoI477jh7/A2BisaOHTuu937YOPJ/lYS+B0IIIYRIPwqii4yBEmxKlCnhJmjepUsXWxjTQIhNH5fZfFMuyqKZTSUba46neoGKgoUSepqWefNWt3Gh1P7pp59OfPvtt1EJPZt2bt91112TgilCCCGKPytWrEjUq1cvz0QovsbYKXjwtVevXhYwj/cvufvuuxM777xz4tJLL83z//Mm4diPMNd70I4gIPNMmTJlov/ngAMOsMaZmWTZkl8OPfRQey9o1MiaiPeN67zXNGD0xt+c6tevb2slgprYhbgnOnN23HIHj+l4UJ7HwHpHZBf0ICCp4o08sUu59tpri9zOhSQbCR+akq4Pxgn+LxrzCiGEEEKsDwXRRcbABhzFFE1CWXj7xhBFugdw58+fH23cWVyjfOMygVxRuLBZR9mGSi3e7C0Vmr35Z6TPRQghShY062T8xnOcBGpOQSuSpK4IZ46Og/92w4YNo4Bso0aNkhKqVDbRdNTB4xzlOcpo4L4o2itXrpz0GM8++2ySIjtbIcB4wgknJL744gu7jmKYwHrcOxq1+kEHHZSYOnVqUmID73kqxhzez/vuu88+U4LpZ511VpIynaRGqq+9yFxoGs9v1xk0aJA1kAfU7yS48jrRyyjeWPSWW26JHouxZEMbi15zzTX29xsixGBfwHeVXgpCCCGEEOtDQXSRcVC6TSMsb7TExpDLjRs3tvJtLu+222628eMyjbLYHIr0Q3BkxowZ1vTVlXJCCCFKFjQJjQe6U3nhhRcs0MWY7xBkY+z3BPiOO+6YuPPOO5MCYbNnz07ss88+iebNm+cYECdJS2Deg7g0DCfols3K8w1hwIABFvD094nAYo8ePRJfffVVdB+aRPK+x4ONzzzzTLSmevzxx+0zoSkpf+ufIzY6NCVNtRARmQXNOalmcDU5IJjge7AxVQmDBw+2qocpU6ZYQ+LOnTvb7zluW4NwhjEiDt9h7AEvv/zydR4Tyxa+iySDaLLLY9esWdMU7kIIIYQQG4KC6CLj+O677yLvUzxY2dxx+cEHH0w0bdrULlNe6pfj6itRtKA6evfdd60cnw347rvvbp8JSjfOseaRik0IIYov+BZTZZRbkBTf8QsvvDBx//335/oYBGb32muvKPh96qmnWkLcIZjrVmCcypUrl+RhzH35m7i/OoF8KptE3rzzzjtmfeFrJoKQ2LhwnR4mBBpJdvhaCqX5FVdcYZ83FhgENuM2LszpgCf9wQcfHN1GYJPHEpnJyJEjrcIknhgDqhz69u2b78cjIYMlVMWKFU2BTr8c+hjFQQRDMi4O32G+b6n39aA+AXPGBx5zzz33NLuonCpmhBBCCCFyQkF0kRFQDu4beDaAlCDTsMyDsWy48WPk8lZbbWUqOL/sJc2iaED9w2dBIzOSHe5ni6KIplFcPvfcc22jowajQghRfGG+bdCggY3VWHmksnbtWrMF4Xas1khy52Yxsv322yeqVKli6uY4JFhpQO2NLZkf3JOb/x/vdBSr7oveu3dva1oqNjxYOXbs2MQ555yTZKmDn3U8qfHWW28lunbtGh0jAEl/GdZeBDLdE5111VVXXWWKYR6bPieeIOfEPJ9XlYIQQgghhBDFFQXRRUao4PA8J1CeqlpGucKmDdXUSSedFG0G2WRzGR9VUXRQVs/7fuCBB1rjOS5TQu5l3w888EBUxj9+/PhICSc1oRBCFE+wWGE8f++995KO46uNitTH9FQV8g8//JB0nWaE8SA7tx9//PFR8BWblldeeSW6neaDrVq1im7ff//9LfgrNh0C4zfccEPikksuiVTqqIwRINCYlWSHv+8IFn7++WerDPDmo5zatm2bZPXBOozqMm9Oeu+998qjXgghhBBClCg2D0KUcFavXh0qV64cateuHXbdddek2+66665w+umnhy5duoTHHnvMjvXq1StMmDDBLp999tlpec7ZyqGHHhq22mqrUKZMmXD88cfbsenTp4fDDjvMLn/wwQehRo0a4ccffwx///13qFKlSvjqq6/Ck08+meZnLoQQwvn555+TxvXXX3891KpVy64j0LjttttsXP/yyy9DvXr1wtKlS0OnTp2iv2FMr169epgxY0Z07JBDDgk777xzdH3bbbcNK1euDFtssUW4+uqr7TEaNWoU/vvvvzBy5MhQv379MHfu3FC6dOlwxx13hFdeeSU0adJEH1IBcMkll9h7zpw8b968sOeee4a1a9eGtm3bhl122SWsWLEiWj/dd9994e233w577LFHmDZtWpg0aVKoVKlSuOiii6LH4zMaNGiQfYYNGzYMP/zwg63N2rVrFz777DN9ZkIIIQqFb7/9NqxatSr89NNP0bFff/01LFq0yNYucdh//vLLL7aOEUKIXEl3FF+IggAPRlToKJ8oK/7++++TbkedVqdOnUSLFi0Sw4YNMyUUzclyakwmChdXGlK+7+X3NIbiMiXfNH3iMg3MrrvuOruMHYAQQoj0wpw5cOBA88GmCiwV7FW80otT9+7dTYXsUFWEP7Lf3qVLl3X80+ONvmkoSBNA59NPP00cfvjh0d9j+4UiXRQsTz31lDWJxF8afvnlF/O9R2keb9JKtQHe86nfkfhnDljsvfbaa3aZRrG33HJLYptttrHPcJdddklMmjRJH6EQQogNguqnZcuWJVWv0YfjkEMOWWddgV2oVzs7/C3HKleunHRf771y2223Rce+/vpre0wsz+JxA55DfL0ihMgeFEQXGcOMGTNs4tt2221z9ENl44cPZ82aNe1+o0aNSsvzFP8Pkhp8FgRl2LBz+eGHH7bGZVyeOXOm+atymcWREEKI9EEDvj322MPGZLzIc+Liiy+25CjB1fiGk+afJEc9AH7ZZZclNSFctWpVonHjxpZIzQm80rFt83n+9ttvTwroioIl1W4HcQJJDofAOuuuOG+//bYlNuh94pDkwO8e2z1EDP6dWLFiRaJhw4bR9+H000+3oIQQQggB9NZYtGhRYtq0aUlvSLNmzWzeePTRR6Nj2L25ICs+bxFEJ2l72mmnJQYPHmw2ZQTFt9tuO7OJi68xmKt4DBpp02CbOWq//faLbMgc5rgmTZrYfvXss8+2Bt3MiaxpmNtIFgshMhcF0UWJhc0WTa18Q+beqOeff741HiOb/O67766jhuI+BGyZ7ER6F0Z33HGHfR577723fWZcxgPXfXDxS3dVAIsfIYQQ6YVgd15JaALbbHrjoCivVq1a5I/+9NNPJ93OBpnjrkyOB3AJ3LLpjXufr1y5shBemcgNlHgkTy644IJIedezZ0/7PKgY82SGVwkQbGC9BYgaCFj454eanYSKf7Z4pXtflNq1a1sgXgghRHbB3IJCnIozZ+HChTkqxnv06GFrhXvuucf6cRAAv+mmmxKHHnqo9dRyRowYEc09OZ1uvfVWSwbzN947LbcTDc5J9Ddt2tT2rTndx4VfJPqZA19++WVbr/AcVf0uROagILoosVBqxURFkHX+/PnR5IViuVSpUnadRmUPPvigNcmKNxq99NJL0/30sxrUaDvssEPiyiuvtIWGl9mx8b7oootsE81CChYsWGC385n6xlsIIUTRwMaPwHlu0FD05JNPzrUBNErkMmXK2Di+5557mmIr/tjx5tKoy7D6cj7++GNTe/kGFSsYNZoueh566CF7/7HxIShO0NwT35w6d+5sVQp8dvHPi7UWyjw+ZyoX3MKlUqVKiXnz5iXZwqD84zbUgVSkCSGEyFxSg8oexEYtHhfM0cj6iCOOMPEVYA2G+pvKNuaL1ED2hAkTose/7777LNhet27dxJFHHmnBd6zJvMl1TifU6QjyiC+4FUxBnmjWTWUW+18C8yjdSS7z//H/Uo3HfPnEE0+YHS3Weaq6E6J4oSC6KLGgfmJDNnbs2ET79u1tYjrjjDMsMOubcXw9uVyrVq3EG2+8EU1e8U26KHoImPNZsDi54YYbEqNHj7YNuC+Q4rAIOvDAA+3+1157rT4uIYQoIhh/2dSR9EQRlgoJTxRibs+S22Ng1cF4/+2330bH8c3u1q1btLE866yzkuxCCLJWqFAhUjY/+eSThfQqxYbw2GOPWZl6HAIUBAP4jOg7g+KOz7Bfv35JvvVfffWV3f/NN9+0YAbHKYNHJehwn7jfPQmT+PdBCCFEyYe5/5RTTrHqtHj/DFThJNz79+9v1xHAIYbD8jPeG8Wryv2EyIrAN/MHweiuXbuaYtyT917l7OuRjz76yOYfkvdly5a1v0Vkh8I8r+C3J4HTceL5ksTmNZLAxs7u+eeft3iGFO5CFD2b8U/ubUeFKN58+eWXYfXq1aFZs2Zh8803D0uXLg2HHnqoddd+6qmnwi233BLmz58fLrvssvD999+HsWPHhq5du4Ynnngi3U89q/n555/DG2+8EQ466CD73NbXVX3GjBnhpJNOCuXLlw8ff/xx2GabbYrsuQohRLbyxx9/hLZt24Z58+aFcePGhR49ekS3MYa3adMmfP3116FevXph5syZoUKFCnYbS8u///47bL311nb9r7/+CptttlnYaqut7Po///xj4/8rr7wSttxyy3DnnXeGs846K3rsMWPGhPPOO88eo379+jaf16hRo8hfv8idBQsWhLJly9p8fswxx4S1a9eGnXfeOUyZMiW0aNEiPPnkk+G0006z26tVqxZefPFF+wx//fXXcMYZZ4SJEyeGfv36hWHDhkWP+e+//4Zrrrkm3HjjjXadx5k0aVIoV66cPgohhCiBfPHFF+GTTz4JBx54YLQ+YC746KOPwrPPPhvat29vx3/77bfw3nvvhVmzZoXp06eHl156Kfz55592W//+/cP1118fPR5zRNWqVcORRx4Z9tprL1tTbL/99nYehzVHpUqVQuXKlUOZMmXCsmXLwnfffRfdfvvtt4f99tvP4gc8lzlz5tg8lBc77rijPWbFihXDrrvuapeZ+3baaSc7cXvp0qVDqVKl7PTff/+F1157zV7XFltsYXGLNWvWhG+++aZA3l/+b16Dn5o0aWLvCWsuIUThoCC6KPEcd9xxFhQnyLr//vuHSy+9NOy9997hnnvuCc2bN7cJlMmRSYWAwNy5c0PLli3T/bRFLrC4ImDDIoTPkMQHAZQ+ffpYAJ1jp59+ut4/IYQoAgh6svnr1KlTdOzVV1+1ADrJ6QMOOMA2vLvssovdxga0b9++4dNPP7VAqgfOU2Fs/9///mfzt8/JbIDPP//8MHLkyGh+v//++8N2222nz7oY8eabb1qAm4AAgQ4++y5duoQlS5ZYQGHVqlVh2223De+880446qijLIDBd8iTKszzBNGPPfbYHL8fTz/9dOjevXv46aefwh577BGmTZsW6tSpk4ZXKoQQYmNhLO/cubPty99+++3oOMlRkrCI4Ag0f/jhh6FVq1aWjI1TpUoVm2tYCzC3PPfccyasIijNnp9EvHPYYYfZPp9AMo9Fcp9gdYcOHZIeE/EWwW7WKswxOelJub1u3bphn332sYB0zZo17UTwn/1pQUDQnrUOr43XSYD/tttuC59//nl0HwL/BMNJRgPPhTmRwPyKFSssOZET/t5yYn1FDMTnXyFEAZAG9bsQmwTdtynFcmgeSoMrvNC9rJwS42OOOcYucxulYVzGFkRlT8ULPg+ayFHWTQk4Nj18Vnx+5513nl2mPO+WW26xy/vss48+QyGEKETcfiMnaBJKc27GY8qfv//+++g2/K9POOEEu41S6ZkzZyb9rTeldOINRPE+dWs2/vbGG2/UWF+MG41SLn/wwQdHPWc4x9N17ty5SffFwif+fWLOT12H8b059dRTo14o8NZbbyWqV68e2fmkfpdE8eOaa64xa4Xjjjsu8ffff6f76QghihDmdyxGlixZkjTH4/3N/hvbTmBsoBEovTbif4s/OJYp7dq1s75n2MU9+uijZsXCHJBqcYJV63fffZeYPHly4swzz0zUrFlzHWs5/MSZR9g7VqxYMUerFPpxHH300bbm4PnT2DRdsQKeA88JKxosXPKyeMHrPfUY73VOfu94x+MrP3ToUJtnFQsRYtNQEF2UKBj069evbxMLfudx7r33Xpsodt11V/M/90ZldMbG84zLeHqK4sOoUaPMH5Xu6h44mT59ul1mEYAnbvxzdH+75557Lt1PXQghMhKaPJYuXdrG5VTY/NIc1APoP/30U1IgFC9Sb/LN5jcOc3aDBg0sAJvKF198kTjggAOiTWDq/C6KHyQ94gmUnMAjPbUhGgEOmsLFEyoDBgyIAgcEVxyC7wcddFDkCTtu3LhCeCWiIL8Ts2fPtkD6pjaHpQdCmzZtovX766+/XmDPUwhR8LhgjYB0aiKV/TtitwsuuCDqdcJ+PT4/0DODoHccX1NwInlPH5UxY8aYTzpBYcaaeLCYvSOJfDzD8Tn3nh1+Yk9JI096vdC4M/X/Kw7QrH3RokU2vz7yyCP2enjevDaaorL2or+bvyaSDg0bNoz2y3664oorLAFBciI1qL777rvbPPzss8/m2I9MCJE3CqKLEgUTMU012GjFG5R5tpuO3mz8u3fvbpNE586dE3feeaddJkOdqoIT6YXFFJ8NCwRvKEZjWBqRcRlVU5cuXewyCwdvVnbooYfqoxNCiEKAho6Ms8cee2yOaqUFCxbYGI0CLB5cR33K37FpZWMWh42gq6PY2MWhmoyGWdxWrlw52zyKksf48eMTEydOjK6jdttxxx1tfvcGoXGBA+szbyrHd4nGsxwnOECC3WGDf/LJJ0ebf5rPieJNjx49rKpkU3jwwQetMnHs2LEKogtRTCvDP/nkk+g6jacJdF900UXR2oFAMAFtbyjtJwK7NMgk8fbHH39Y0qxTp06WLGVN4CCa+t///mfJOa9u4TweGGb9QKNSqpn233//dQLGKNFpXI5ifX2J3+II7wcqetZHPpd+8MEHUSAdYcNNN91k1Vu8DyQWSFRQFUaSghPv7R577GGfQ2qDVFTqzNO8PwqoC7FhKIguSiQff/yxTb6UDqN0isNkweafjRolZb45v+uuu9L2fEXOsOBCUcCihgUUnxMTPyV+XMaeZ9asWXaZSR8lkpe3LV68WG+rEEIUMGx+GZfdpiO3+zhsaN3CBQV6XEnswVXf7LHJjds8MKazMeQ2NngosETJg8QKnzEnL+WfNGmSfR/4bFEMesAc9Z+rB1HUuSCC4ECvXr2ijX3czofziy++OLrtqquuyspy9F9++cVO8dfO+8YxAlE53Teu9KRahGOpgZLc7ruxjBw50tZqedlCbSirV69WEF2IYsYll1xiv8tLL7006XjqOITa2cdtxn2U0U8//bSNL8z/55xzTlRt4idPorIGmTBhgomsqlWrljQ+YfeC8h3hFdZiqWrzFi1aWMKVAHQmzBWsm955552kOAiJhLj6nPnX11N+4n3jfdp+++2T1PqNGjUypX6VKlWS7s/9ECLOmDFDwkMh8kBBdFEiwa/MS7QoPc9pgvzwww9NFeXqNt/AieIJCyr3tCeI7pdRIzHZc5nyPTzuuYxCXQghxKaT1yaTIB1K4Ndeey3H2ynBxv6FgOnUqVOTbqM/iW/yzjjjjKRNMMFW9zmlFPnLL7/UR1lCocqPADi+tPHPGH9Zvht8xs2bN488cbFqc1/9evXqmZ2Pfw/dEoBTXNHIOdWGflvv3r3XsYrJdPy1x4PTN9xwQ/T7iuPvO0FoZ9iwYXbspJNOSrqvB15QMjok0jaWJk2a2OPdcccd0bGXXnrJFI95neIeyY6C6EKkH8baeDX3tGnTLFGGLUr8PlOmTEkK9hIoR/1M3ytXgb///vuJZs2aJQVvCeZefvnlNgahcEc5TiVT/D7YwRBMZp3RsWPHJO9vAsht27a1ccvnk0zmm2++sXGbdRc9w0gaxN8rEtQ77LBDUmIBX/jUhAPj7mmnnWZJaixeUi1fqALg8xJCJKMguigRMDHjhenqGS83p6kVvov4m6X6ZPM3bM64HyWhovjjvqiHHHKIlaZxmdI8lAhuyUOjGQ/KcFkIIcSmcfXVV5tXdWozQAKXrg4msZlbqS8BMkqBUwPovhlDjRYPeHJ/V0bheR1vMCpKJl42npNK3ZMlBE48kE6wpFKlSnZ8r732MmVdarAX6z7K1uMQJPHKBr6b2RRILwlB9IULF9oa7aijjrJguoOqlGBMXqd4jwVHQXQh0gvVZfvuu2/igQceSFobuJUL6nOsVOvUqWPjCJYicbhvPACPqI0AOQFgPM5d9Yz9SGqQt2rVqrY3JPHKOT7q8dtpWIpdTDYEzlNhTKVa20F1TzyEsZ8G8K7k5z3ivaIKAKj44730xt0eI2EuZW3GXJLayBXVOtVlahgtxP+hILooETz++OM2iDNBr1mzJlKho3KqXbt2pFJGxfLRRx/Z39CYzEuT4t6tovhBAgRVAT66vjlmI8ZCgM01CzWC6r5xPOaYYyJrACGEEBtPPDHJnBpn6NChkcor1eccL9PcYPPmGzSUanGl+4svvmjNQ72/RV6PI0omfN4kZrxBLApCV56jkPOkCYFTgiQcT21Ei3AiHiBI9djPxkB6SbBzIVBDAJ3KFT6fTVUxKoguRHrxCiAqxuJjD2MOVqnxwDbqZ9TL8cAuFUoEx+N/S+D8888/T/p/CJTzGOzxsWt94YUX7Bj9VuKqc5J+KKfjineRsGq+eJU+8J4z51I1wLjsiVI+F2xSO3ToYIFzB2tVPkPWbfSUw4otbhmDOp3EbU4N4oXIJhREFyUCBnUGbjKnlPC6WhmrDy7jp0ZJOZMEmW2sXNwCBL80UbxBieDNQ+nqTgMU/NKZ7HPaHFPqx/35vFetWpWW5yyEEJnCY489ZqXUcQiA+uYpbsvgQUxUxARHc4OE9rXXXpu0cSY5Svmw+2Tn5bsuSi7e1wQPXBc2EFRlrYaiLW6vx+345q8P5vq4mjFbA+nFGaoJWJeRKANsHBgDQHYuQpQMUDHHk18k2K6//vqkppyM8Z4A5UQgHVsRrzTiMbp27ZoUgCUg7rBPp0KN/hYOawX6KXz22Wdmx5qqSmffz/HUhKH4f+8fYy82aA7VPQcccEDS+0hS4oILLkiyesEilabu8b4kzK98hlQZ0hA+7reOEOK8887THlxkLQqiixIDk6YHyhnAmSjoSM3lQYMGWQCWyzQgQU3HZZTMBdHYSBQu8+fPt0mfzPiGlIpRWYD3XU4lzEIIITYNGna73QqNv+KBcIJh3jAytalYXqpyAu7ucco8nZs1jCj5MI/T4P3uu+9OOk5yfH39aVizeeDdeeONN2wDjw1JboF0PHQzoYFcSQZLKNSqDmvzWrVq2WXZuQhR/Bk9erSNqe3bt8/zfm4jhc0bfuce2Eb8RJA2HrRFGEUAnfGZyjcakfu4TVLdg/NU1dx77702ZvjfkoglsMscIPIP6yxEiLzPJCHinwuVgCS1U48NGTLE1mjx423atLHKAMSLjPHxQDtCOH0+IttQEF2UKNjMu4Lt/vvvj8q6KOnyTT2eajSw4nI8GytKvu8byoiWLVtacxQv+5MaXQghNs7nFIVZKgQ5vZ8Izaritg7YqZUvX95uQ6EUD2gyD1esWNHs11JhY73LLrtEvUxy+n9FZrG+gDa3o2aMqwrxtUW9TP+TuEc6VREuoOjRo0eS6py+OK52xEJGpAfGDSx74s1B+Qz5bGginF++/fZba0rIOMVniwKV66kWEEKIggO/bPbTJEHjie7FixcnXn755SSFMxVq8Woyfudx5TnWTm4fwuPSoDx+O4F6bEeYA0i4xpXtVC1dc801aji+iVDBRdB7t912s8+TCgGSHP454JlOcpvmoh5HwQ8dQQT3xTbVrXTwW2fe5sSevF27dkmBdr4z/I0Q2YCC6KJYM3PmzMTs2bOj6wzqeGMzmbPJYtDGs/Xcc8+NSr3w1/bs9dq1a9P6/MWm+WD279/f/NArVKhgkzsKBu82TnmZ1OhCCJF/KNtlY0RPkdSeIVxnc0RAnLJqh8A3myhv+BwPhKMerlGjRhQkjwdQURVXqVIlagLm5d4ie2DzTun3p59+Gh1jfuc7gYWbV6Bx+x577GHHqTSMN4vD1s8385Six79jWAD4Rp7mmaLo4TPA0iHVSx1lY9++ffP9eC6UST0RWBNCFAwkpgikxok3I2YfjT+5z/uptlnxcZjbuA8J9ngwFfVy3NOcMZ//lyQ8t/nagRPrDvb1OTUZFhsHn0v8MwWquKnsin+eU6ZMsWA6SvT454toDesdGovGk6YkTZYtW2ZK9HhyhCA9leVCZDIKootiC5Pr3nvvbQPyfffdt45/q0+2ZLcJmHOdzCgTuFToJZMPPvjAmpkwYXujGlRmrVq1ssv9+vUz/zwuN2jQQGp0IYTYCKjYYoxlE5UTbKzwLI1vpLxEm6Rm3G4DJVqzZs3sNpLbcQs1AvJUDnEb56hLRfZx+umn23cAb1bftCOS8LUb6nIPxqBe9qa0rOe8CSl4HxxOePTmZC/AifsJIYTIHfpLEdzG3zq1vxSJzdtvvz2ydSNI2rNnz8iyjdtpPEnVWtzGLac+J4zpjPVHHnmk2box1j/99NOJfffdNyl4nqpsF4XD9OnTowauXtmDKAJrHnrd0NTb52kaymPZQj+6eBXQzTffbI/RuXNnC5hjtxu38eF7hXtAPBEuRCahILootjCgo15hYmUCjmdLmYBRIuOH6U0wsPl49NFH7TKTvjpHlzzIjPP5HXPMMbZB9k23T/gs9JisfVGHMs3V6CzuhBBCbBgEtOONwvLyqr7rrrtsnKUiKN4cjHmZkm1uw8ohrj5Cfcy8zG0o0eP2HCK7QAVH1QNChzgo31yh+L///S86jnUbyRqOk0SP2woQ2PGNOkGc+LrwwgsvjGze4lWMQgghkmHMpIKb4Gc8QIrC2AVpnJo0aZLURJxKNq9KS63+YU1wzz33WIV4HJ//Cbbir+1/i3UIvRNk8VZ0UGHYvXv3pJ422PF5nzlONHXle8B9/Bi+6rgBYL/DXOu+9sy3VIexpqQC4aijjor+pkyZMomBAwcqOSIyDgXRRbGHjT1do5nQ435svgCgtJOBnY09mzQG7WuvvTZtz1dsPHjn4Xc/Y8YMUzMSNOfzpFFso0aNoo22l4GjgFi4cGHU3ITFmRBCiPyBBQNWKyiGcyqjRg3MRpumY3HYUHlwnWbf8Y00Jb7chgWXmk6JuH9+HAIuvuGONyJ97bXXIvs21G7xpuOs8ThOBUT8ePx7l5rUEUKIbIbGnSTE42NxavKcxuFuzUGAmznfRWzffPNNJHbyMZbH8zGYMZuAu9/O/sxB2IYliAdeUUHTiDjVTk4UHXFxIkkU1nhXXnmlBb69+gAbNtTo8c+Vxq9Y5+Kl3rFjx6TvA9UEfB9YD/q+nRPVZfQ2UfNvkSkoiC5KRLmZB0mXLl2aVNrroKajozf3o3mZPFczA+xbvMqAygOvMsD2Zccdd7TrWPvgv8dlst9CCCFy3kB36tQp8cILL6xzG8lo3zTThyInvKFUXI3mm+0xY8Yk3fe6666Lguup6mMhSJJj1Zb6fWGdx0bboekcNgC77757koUQ30O+czlVT2AH0LRpU3s8/NVVlSiEyHYYM90ak+R3XoFV7nfKKadETT35Wyq9y5UrFwVF8c526zb25VSOe4Ccfdott9xiimX+FktWbyzOiT1b3C5OpB9PPlOZ4Ep1/7yoJGQeHT9+vNm9+HGSIoDwLW7N41UIfJdwDGD+9tsQyq1cuTLNr1aITUdBdFHswFuN4CkbeSbf1q1b28DLhM5Gn4n4oYceSvobSn19kL711lvT9txFwUKTMdQKfK5ktfFB5/IVV1wRKdGwfkFt5iXhcasBIYQQ/wdzI2Nk+fLlk0qnKdn18ZMNj8MGCLuN3JRDqNlQLeGVGeeJJ56INkwkt4WIQ8k3jeRIwPD9Ar5jZ555pgVhRowYkXR/NujxBre5EQ+oE/xxX3Ua3ZJAEkKIbAava/bQWGE6jI2DBw9OWhPE7bN8fKYZKOMpwdL58+dHt02dOtW8tH3OP+GEE6wZqVcXt2jRIrqNv41XrIniA6pyPisahTr0LcHiJd47B5HixRdfbBYuPn8D6nMqybDgTa0A47tFPzPfz5MYp4dJahNqIUoSCqKLYoc3h2KypYTIy76wcsG2xdXHZDpRKQF+bBzfbbfd1pn8RcmDzxCv07Fjxyb69Oljny3e5yzWuHzqqaea8oEycC8j9PsddNBBKhcTQogU2PygFpswYUJ0DKWY26CdeOKJSff3eRVFUl7Eg+xswEqXLm1/h0emEDl9X1CwURIet2BjLl+wYMF637DUakQeb8CAAdaIPn7b22+/HdnBUJIuhBDZBInFeGUZY2W8uTdqcGzcGCNZG6QSt8rC7gNv63hCkuAoQVO3+PAqN4KjVBdRicZtrAloRKmgafEmVTBBrIUKhLjlDt8Djqf2uJk2bZoF4llTpsZ0vLrsvffeMyW6J1WwZE216RWipKAguih24KGGcoiyofr169tAe9FFF9mmyxuckP30RpM0rEJZl1NJuSiZUGnA50ljMTbC+KxdfvnltqBD2ZATKNU8eBMvBxdCCJEzbuNCiW58o8RmCLUQt+F5GgcVW07KXvxSq1WrZn9D47D4BlyIOARTcrLmi8PtqXYtJICwHIo3ueN7t+uuu0aWbnGfV18rcnrggQf0IQghsgIsMxCj0QAUi6tUqDrDdsW9rOPqdPqi9OzZ0yrA1wdWmzSf9P+D/ifxpqSMyWvWrCngVycKG+zTPAmNgM2D7FgCcoyG8r5m/OKLL+w7xJqRikefgxcvXhxZ/iHSwBKGx2CP7/Y+VJ/x/UkNvgtR3FEQXRRLGGQpO3OP1ni5+ezZsxP77LNPZOtx/fXXR1lwbdozZ4ONLxvBGybW9VUXcDsKNpqO8l1AkabvghBC/J9HdE688847UXktyiKHsdPVae3atUtSJ02aNMmO0zAqvulh09ShQ4fIh1rNwkR+oPw//j1DIck8TqMzP855+/bt7TuGfZ/79XrvHE/6XH311UmPjUqd49tss401vhNCiEyHwDUCM5TicfER+6V4c1BEa3FVMWMpFh7eWDLeFJyk5llnnWXq5Jzs3VAdu/q8bNmy1vdCjSRLJgglaPzK98P303zGzKcej2Eenjt3ronY4gpz+pitWrXKvmsI4NwrH2Hc008/bY+Fn/7JJ5+cpEpXA3pRklAQXRRbvFnkkCFDost0gaZBiWfOybR7Jn3ixInpfsqiiBeI2Lmw+EP9iNUP3wfPbnObEEJkM2x+qOiKNwlzKL1mk03wO77RpWTbE9j0pXAYa5l3uQ3lUJxBgwZFXpevv/56EbwykSmwqaZROI3oHHqbeDCGNWC8ifxee+1lx/FvjVdEPPjgg9GGHF/+nBI8+KTzGEIIkeksXbrU7DccrF08QU6AnICoB0hZA2Dhhte126MSIHWY10ls+v4be7i4ajnufd6lS5ek/1eUXOIWPHxHaBSPsBGxhCvJEbBxv9GjR0e2u2XKlIn612HZEm88irOAV5lROe5uAog6sP2JV5MJUVxREF0UGxiEaUrhAzaDNeVlNCHxgZoFgTcQZcPl2XRUcRp0Mx888PHCZyFIsMZVElj88D2gwd1tt91mlynvTi0FF0KIbIINj296sb1IBX/UeNNGxlPfRGOp5qBAQl3k8208eMm47Eoj+lgIkR+oOHP1Gt8zZ+TIkdHaj+ai8QoKLzNHFRnnwgsvjDbw8eZmBM5pZsptcXW7EEJkAlSGMR6iJM8N1MEoxDm5fzn8/PPPiW7dukVBToRrXk3GWMkY7VVrNBGN/+3jjz9uCXcfd7HN0viamQwfPtw+Z/bhbvnj35lWrVqZrQtVZKjX/Tj3IT7D9xNrXj9OMsfjNgg83CbGe6Clij6EKG4oiC6KBTSb8PIgPNHjDB061IKlvXr1iqxbqlatmli0aFHktbUhzahEyeSll15KHHPMMaaIxAOfzxvl2rHHHmuXKe9GteabbdQS7stLaaEQQmQzqIDifqe5wca3adOmNnYeffTRSRthfC59k/z+++9HxwnMs6n2hs/aPIv8wncGFXmqzz7HTz/99MgagACQwxrA139Y/zmoKrGC8/Lw+GOinvMEkfrnCCEyCaw3fH+cl780+6X4WMo4SwCUv2V8vOOOO6J5nMahccsNAp34WgP/xznnnBPd1rhx48QHH3xQBK9UpIsbb7zR5t3bb789OoYLAI4ANWvWjKq8mIfpt8OenIB7HBLirBnj8zbwnUOE4ft87oNAQ4jiioLooljARmfEiBEWKJ8+fbplOOMsX77cgqPeOJKGKK6KO+GEE9L2vEXhQlUCC0I+Z5IpeKtxuW7dutb4zjfEM2fOtKCPW/7QfMw7wsc70wshRLZDFRdzaE4Bb3qOoBDCo9pB0YufNGMq5boOf+/jbp06dWzDLURBgqeq2w8ccMABScGh6667LmowjxDDobIC1TnWf6mwjnB/9NyalAshREmDRswogJ9//vnoGEpfguvxYzmBshz7lvnz50fHmM/dggORG+sGXzNg30LQ3APo9CeL236IzIVYTHztyGWsVJctW5Z0P44jioz3NPOkNlZA8cdgLqYawi973zuC8ATuJc4QxREF0UWx87mmZIzmE3EvVl8M4K9FR2jKx3zzxGQuMhcsBShRZGNMeSGKNA/m9O3b1y7j+RsPqhMIat68uV0+6aST0v0ShBCiSGEDnJqMBkptvSwbq7ScSN2wHH744Xb/Nm3aJN1G3wmO412tho2iIOD7hY1LvDkoXvze64SAUHxNSCVa//79k2xgIFXVHv8bb4DGuiG3+wkhRHHHA49OfH6mobhX7GJ/5QpyJ1VgFA92Oueff36iUqVKSd7oKIl9PMYm7plnninAVyRKEsyf9BtJ7UnH/py9d7ypPer0ww47LHHeeeclzbs0GMV+Fb99gvG+fj3ttNOS7IVSv+tCpBsF0UXaiU/6ND9jwGzdunVi0qRJSZ6W8Yme5lDcj6YoIrug1NC7fFOS6F58o0aNsrIxLjdo0MBKt73cO66uEEKITAeVLhtd/EnjeJPu1IB4Tn7pDvYtbJTiCWuUv95AKt74UYhNAeWab5yZw51nn33Wqg9TxRWpwfOcIPke/+7itVquXDn7P6666ip9YEKIEgfKXwLcOVm1MZ83a9YsatboDR49mMleib0T/SXisCaIBz4JduJz7bfhie39T6gMWr16daG+RlG8wUGA7wJ2Lp6kISjurgF8R0iCe/LF53YqJrifK9urVKlix2kw/txzz0WPj72Liz6oQI9bCQqRbhREF2kFvys2RniaM5B60JPSMjLnKIvxPo9nIG+66aaocaTKx7MPFnV77bWXfQeuvPLKKKhOwIjADgvDzp0728bZG882bNhwgzbbQghR0mGz66XWjz76aHScedZLZN98883oOCozAuI0Zd4QGEsPOuggeyz8pzW2ioKkX79+9l1MbRa/vpJurF5YL6b2A8CmgObjcbsBAk/+W1i8eLE+QCFEicIrcZmL42MjVbtuw8J+KO4r/euvvyaOPPJIu439drw3BONjnz59bE5PrdDh+plnnhkFQXv06JGjcl1kF6z9Lr744sS0adOSjlPl6IlqvM1fffXVqJcJgXKOI4b0dejnn38erSmZk2+++eboO82c7n13+D7nVkEpRFGjILpIK94A6uyzz7ZuzO5xjn0Hl/fff3+z86hYsaJl0lkc0NiM2zgusgey3HxPWLxNmTLFvgOlSpWyRjZkuynpZoEYV6qhOPMJm4y2EEJkA6jNsD2LByKp8GIspFmjw+0kGTnOvOuwgUlVqTk0lfImo1iwCVHUEBjiO+6gamO9iAIu/r1Fge5rgNTKRW+YR1KetYMQQpSkAOb1118fNXMElOF77LGHjWuoe99+++3oNoRFHqikJ0RcwY4gDWssD67Tmyz+d75X57a4N7oQqbAH5/vEd9GTOYg0CKAD8/Oee+4ZrSH9OElwF75xws7FE9/EfrzpPfaBqU1JhUgHCqKLtIInG5lv/LR8cKRs18vFaIaCiojLNJcggMplVEWpKiWR2bzyyivR5IrNT/fu3S2xwmIuLyUkijb+pnz58kmLTSGEyBZmzZoVlXbHrS3uv//+yDPVy2th8uTJtmG+4IIL1vFU91JdvKuFKEyY213F5niDcSyLHNaDniQimB5vQEoTXVe4YRcTDw55GXnca10IIYojqT7mOVXxMJ7RWJm5Oh7YjKvT582bF93GvO/Nm+kzhkjJYa3gTR6x7EhVHAuRKnarXbu2VUJymWa3WAf6/HvXXXfZ/b799ttovua4B8XZz2MR4zGg//3vf9FjYzNETzyPAyCcUzJHpBMF0UWx2CThYc2gSBMTb2KGd+u1115rl6tVq2YWLz54qvw2O7nhhhuSShNzAnUaG2p8/E499VSzKqhTp459b1hgCiFEpsK4l7qx4Lor0Gjq5GCThqcqx4cOHZp03JPXcc9oHufQQw+NbFyUyBaFCRtw7P4I7MQVlRMmTLDv4BZbbJG0Fly7dm3U8O7SSy9NeiyS7hxngx/3/J06dWr0WFgKCiFEcWT58uUWAI8nD1NBuXvhhRcmVeQSCPc+Ythi8DgOfaVq1aoVWWLG7bC4H7apbp/6xhtvFOKrE5kACe+yZcsmdt999yjhw3fSFebXXHNNdF+OUxWJGj117qVZLcpz1gBxWHNi4+qxoF69eiVVpAlRlGzGP0GIIuavv/4KW2+9tV3+6aefwrnnnhueeeaZcOedd4bu3bvbbTNnzgxt27YNf/zxR3j44YfDTTfdFN56661w5plnhjFjxmTlZ/bff/+Fb7/9Nnz++efhl19+Cf/884+d/v77bzvn57zlllsmnbbZZptQsWLFUKlSpbDVVluFTOTHH38MpUqVCm+++Wbo06dP6N27t31X7rrrrrDffvuFG2+8MRx55JH2fixbtizUrVs33U9ZCCEKlH///TfUqVMn7LDDDuGRRx4Je+21lx1nXmA+ZRzkeOXKle349ddfH6655pqwxx57hLffftvGUOjfv3+44YYbQvXq1e146dKl7fi4cePCaaedFrbddlsba/k7sWn8+eefNp9/9dVXti7yOd1Pm2+++Tpz+o477mif4c477xw222yzjF7vdOjQISxYsCBMmDAhdOrUKbrtpJNOsu/ynnvuGV5//fVQpkwZOz5lypTQpUsXe1/mzZsXmjdvbse///57m/d5ry+77LIwZMiQ6LGOP/748Pjjj4dGjRqFxYsXhy222CINr1YIIXLn9ttvD/369QsHHXRQmDNnTrSf+/LLL0P58uVtrsiJX3/91cbRzz77LLzwwgs2r8N7770XWrduHdauXRuqVasWpk+fHmrXrm23MXZ27NjR9uf77LNPeP7558Puu++uj2c9sNZirmGeYV+aOp8zp6XO58Q7KlSoYHO6r8FKMu+++669D3vvvXd0jOvPPvusfQ/jaxaOf/jhhzaPp8Jt8ft+8803oVy5cnb53nvvtX0+7yfzPWsBYh1CFCUKoosi5/fffw/16tWzoObAgQNtww9MOocccohN7GxyVq9ebRsbjnHfSy+9NOyyyy5h5cqVdp6Jm2le26effmrvBQsezuOXv/jiCwuYbywstJioOVWpUmWdyyygypYtG0oCLFCYZF988cVw9tlnhzPOOMMWIhdccIEFGebPnx9atmxpCxqSMwSR2GC3aNEizJ07N6ODD0KI7IMEIRtsgtwff/xx2G677XK973fffRdq1Khhm+SJEyeGbt262XH+jnmA5PWTTz4ZjjnmmOj+BOi//vprC0AyR4u8Ibjx/vvv5zqfc+J93VjYcOc0n/t1gh4kUtiol1RY8xAESk3YMK/Xr1/f1ktspkePHh3dRqKHhA9/88Ybb0S/g6efftoC8QSbFi5cGJo0aWLH+RzY8LOmGDZsmAWqhBCiuIGgrH379pZAhTVr1tg+p127djYG5hZIR3T1888/Rwl0eO211yyIvuuuu1pwnTkDZsyYYYFJ9ursl9g3+f+XzRAEJz7xySef5Dqfc2Ivv7Gw/85rj858zj63JPHKK69YnMcTNPDbb7+F4cOHW1wnLu4jiT1ixAgLkscTCrfeemsYPHiwJXoaNmxox5566qlwwgkn2Pt96KGH2nWPJwlRFCiILoocNuwnnniibfCYkDx7iAqLQXXs2LHhtttuizY7ZMDZyLMIYGDt1atXif/UGPSXL18eXn31VTuxmEHZ5wFyAry5Bbz9RKA4ns32iQg1YlydzkKIjWh8ko9P/tzGe+8QWDnggAOiExNWcUta8J3ge0By5YgjjgjHHnusvQcvv/yyVSrwnvIdYwF4zjnn2Hs1a9YsW2wyed9///2hZ8+e6X4ZQghRoKDWYS5hU5EXkydPNgUuKjOUvL75doVvq1atLEHpyUYSlaNGjbL7E6zP1KqmjYV51OdzP6Hwc1jn5DaXc6JajPvE53QU0SSK4xVnnH744Ydc53POqVZzSKg0aNDA5nGf0/kMM+Hz4/t52GGH2XtEoMeV6gTDEWoQ7Dj//PNNwemccsop9h6SWGeN5VDdSBUbinbWpfFgkxBCpAMSiIzhOQXHGeuptEFwRoCSxKCLoFatWmVj4oUXXpjn4zNPVa1aNRoL+RvWBewJUQ0/8cQT9v9nG8wRK1asSJrPScgiLnDYF+c2n3OcfSfzLCef01lP+R7dTzwmCffc5nNO8f+XpEd8j86JSvPiCGtR9t2sbahuQHHOfH3UUUeZ+8DRRx9tMSHU+MQqatasaWupNm3a2BqVBDjfRb7nS5cuDdtvv32YNm2aPaavATp37mwJoqZNm1psgPddiKJAQXSRFlAFM1CS/aacnIHTYVKhlPy6664L5513nk0uKNJR2DEI55ZpL67wegiSxydjrEY4ziaZEmOfCPfff38rqyPTXFSbXCY01HBs+Hle8cA+ExPwnOITNgqunXbaKaQLyrsPPvhgWzjyXNkYM+EeeOCBlsVu1qyZlXlRPnb11VfbayGojrXL5ZdfbiVhlJwVt+SAEEIUJCQbSVgTTEwd7yijRdGLjYWrgBg72eixYXHFD8lJNijMFVTx+AYmW0GNz3sVn9PZ6AJBjPhcScDaN9RFVf3EppP1FcGV+NqDSjc+Qza0qLj9OfL5E3Qu7msrrIWogkBo4So1lGy33HKLBYF4fa6YJGnOOpLgeK1atZKCIzmtrVgv8N3nu37qqaeGBx54oAhfmRBCJMNYheqcOYXxKB7MJlFIopvALhU3zMsEV4HgK/sjxv+RI0eGs846K/o79niIuBj3U2GfzT6JIG/Xrl1N9e62q5kMYz/BXtY88YA57xNzNhV48T06QjOC1kX13jBn83nzuaYG9r2SjTVG6h49niRO51qJRDfB7+eeey5SihMI5zvGWgUxHMka1iWzZ8+2ZDjJIwLn/A1/S8UkwXJsjLAXJACPSwHwPmD9y3vRuHFjU6unMz4hsogidWAXIsY555xjjSFoeJZTh+UFCxYkHn/88ah787Jly0rM+0czjIkTJyZOPvnkxM4772yvYcstt0zst99+1kjj7rvvtoZY8QZXxQ0aeKxcuTLx8MMPJy6++GJrJLfDDjtETbhoMHfbbbclPvjgg7Q8PzrI//7771FDsR133NGe27Bhw6xBLZf32GMP60Lvnb5pIla3bl27fOaZZ6bleQshREGT01xCM0bGus022yzx7rvvrvcxHn30UWsKddpppyXNA02aNLHHOeWUUxLZCOuTN998M3HTTTdZsyveT2/E1rZtW2t09cQTTyRWr16d41qmuPDTTz/ZfDh8+HD7LPfZZ59obqxYsaKtTZhXf/3110RxgyZkNCvjudJw3vnjjz/sM3jsscdybKibn9/NkiVLooZlCxcuLOBXIIQQGw574K222iqx3Xbb2fwTH/Nat25t41SFChUSH374YXTbN998Y+O6738+//zz6DbWAIzz7OOWLl2a9H9NmjTJ9nU+z2d6s0bmOOY65jzeE48z8N7x+pkjmStpsl5cYX5jzcHagzUI86A31maNwlqFNctbb72V1nXJV199ZWuPVKZPn57YZptt7Pm2b9/evtdAbIQGuh4f8r9lrj7iiCPsOM3GZ86cGT0WjUlZu3Jbo0aNEt99910RvkKRrSiILoo0sOxBTyZzn7DHjRuXaNCggQ2ocbjvnnvuaffp169fsf+k6HJ+++23Jw477DALmPO8CZr379/fOp77ay/JEFB57733EiNHjrRJb+utt7bXycLj8ssvt0XfP//8k5bnNmbMGHsupUuXti7yVapUsev/+9//EhdddFE0Ic+dO1cbZSFExvDLL78kypcvn+jWrVvS5oENIuPe0UcfnbTJJrieGz/++KPdx5kwYYI9Bhv5zz77LJEtELRlk0ZCtkaNGtF7cMwxxyTuv//+xJo1a4p1wDw/350XX3wxcckllyRq165tr5ONbceOHW1OLU6fOaIKntenn36a77/95JNPkq6TeO/atWuiXbt2SZ9jr1697D044IAD0raWEUIIYL/yzDPPJO3BmOcZo8qUKZN49dVXo9sINh544IF226677moBVodAO8d8XxpfJzz99NMWrPcAeqaOe4z5o0ePtjnEg7fMecx9zIHMhSUd5jLWJqxRWKuwZuF1soa54IILbE3D2iadPPfcc9G6gvedgDjPsXPnztFzI8njgfTmzZtHgXTiKB06dIjWKfFAOkJLTyIg/MgpcC9EQaIguigyzjrrrETVqlUTzz77rA2WDHRHHXVUNCB26tTJNm0+8V9//fV2vHLlyraxL26wmCFjetVVVyX23Xdfe64sRNiUjRgxIvHRRx8lMh2y9CgYevbsaUEc3oNy5crZ9SeffLJIFiUsGlBQkqho1aqVPQcy8mTnuYxig+8PnxOJHOD5cRvJm0xXXAghMhtUuIxnNWvWtHkJvv3222ijiKLKIanLsSuuuGKD1Fqu/r3hhhsSmc73339vSQOCFF7ZtNtuuyXOPvts2/hlQiJ8fSBwGDp0aKJly5aRSp3ADOsxNqnpThys7/8nARTfPBMQOu+882xthlrNocquVKlS9vpYKzhffPFFVHH3wAMPFNKrEEKI/EOFDAI0xrMXXnghOs4+xlW6BBJXrFiRNKaxNnDBE8pgZ8aMGZEYinkvk/ZDzBXMWcxdnlxgTmNuu+WWW2wOyHRYs7B2YQ3jSRTWNnzWrHVY8xT1WpXvL3tvj+vwPfa5mCS2Ew+kUw3voFgnEcJx1ipxli9fHinSqZbPhjWbSB8KoosigYGsevXqNrDdcccdkSWIq4dZEEyePNlKkMhKzp8/PxpUsUUpTrAgGTx4sJXK+YLl1FNPtY1YNmc+2ayiREeR7uWEKCV69+69TulgQXLnnXfa/1WnTh0reSRwRJCc79y0adOioFIcFpFus4MljRBClPTNYlyVwybRE4UeeGR+8nEPVa/DJob5NzVAOXDgQLsvye/ibD22KfCa58yZY9ZrvuZAhYxlyGuvvZb2oHE6ISA9fvz4xHHHHZfYfvvt7b2pX7++zblFvfnO7fnFwa6NZH7fvn2Tjh977LE5Wgd6QqlatWpJ3+8hQ4bYcRJI2oQLIYqK999/P3HkkUeaajo3mK+x2XQY0/r06RPZXGBL5TDnN2zYMEqyxyuLXn755UipjGo53QrlggKVPXNUvXr17LUxdzGHMZelzhnZBN8T1jSsbfw7wZqHtQ9roKJY62D/in0Oe/R4wgZxZaVKlRKvvPJK0v25zvNLXX8SSGfNmhN8r4k9uFAzU77XovihILooMhgECYh7RhhPag+2YtfCBofLDJiuTj/88MOLxSaWQOzzzz9vCw2sWgjUdu/e3UqRMrX0rSAWgwMGDDAlH5/l/vvvb17wBV1VgOKSzS7/159//pn4+OOP87w/3ycCSDwXD/SnlnoLIURJhfnKlWdjx45dJ7C+1157RfMW9/U+EVRQxRONvhGJb9gzBV7fzTffbO8Fr7FWrVoWPNVckDPMrdgKYA2EAIJgDeIBBA9FvUbju8t8TwAorrgkuOR+sHFPcz5TDxY9+OCDOVZaXHfddUlrVV+38B0RQoiiAJU0406XLl3y9Xd4eLM3feqpp5LGbKpyeTySi+zJ4hVHbn3Rpk0bu29JhjmIijvsaNif814wVzFnlfTXVlgwL7LmcdtcrG1QdscrFQoD9ug5rRk2tBdLTsI4kkXx/mwkBbwSk3VKcYgjicxDQXSRlrJzNueDBg2KlNyjRo2KPEfvueceu0yJWbrLrRiYUc6zweY5kdnmuppW5G/DiyIcux4233z2KMXwVi8oclNJMnFywlYGPzjUmu4neOONNyaaNWtml/FGFUKITICNI+MapbC+MUH14wFD5lgHOy6OYWERVxd7HwlU2Zm0AcHSAxUUCixOJ510kiXDM+k1FjY0q2P95okaPHbxYC0q1TafFWpN/m/U5HF69Ohhx0kMxYMnVA96A9V4Ih9hhys44xZ89Orx3xCJeiGEKGzYFyEei/d9QD2ONcX69sNxD3S32yRATp8o1LkOKneqy7wJY0muoGbOue+++6zizpupMjfFG6qK9c+nrIFYCxF3YV1Ec3n2y0Xxf2M3k7r+ono9nvD2+1LpTnV7/P7Mz40bN7aKsnilBetg77139dVXF/prEdmHguii0KF8yCGYiT8ZZeJ4Z7unFb7nXKbMyDf6NIRMFzRhQR1PYIFBmMArViXaaG8aLAyZzPjsUYuxEcaTryDfVx6LzTP/F/70KM7POeecSA3PgsvL2Cj/9kmWcjIhhCgpMNaxScbfPF6mTONQepBcc8010THvEYEizYOd/D2baI7TMyKuFHJrEyqwMiGRS48OV/mxxiComs2l3QUBijAawnvlIN8t5veiaEZKI3cSQKlrBz5T788SV5dT/u1VBySIHP7evxeoGOPfGaxrNrR/gBBCFDQkv318Ovjgg5PGO/ap6wuAsxeK22myB3crD8bDwlYdFxYkAphrfKxnL8lclJNKWWw4zJ+sjbwSiz5jzLOFVXF/2WWXrZMMJ1mEoBL/evboDk10vU9LvEcP32FX07PHj/8mXJTJCftgIQoSBdFFoYJHq/tSxSe3uI81nbE9g+zqNzpJp8ODlfKm008/3QZqmlNceeWVKu8uBAji3HvvvdEmlU7aZMILwq++ffv21kgMawIeGxUGCRBvNkISh8CTNx658MILI7/ATPX9FUJkHmyOXUW7Ppss34jHk9NsOv3v45tprNY4zt+U5MQxzx3fzL333tteT/Pmza0aLpOapxUX2Pgy77L5JQFDI7B0JSmwH/JEOcF2h4SQ9+N566231vkdkVyJb8CnTJkSVUiW1GCTEKL4q8+xV8kJ9qDu6x1XolM1RoU0cxvB9Dhr1qzJ8bEIhHbu3DlKeMbHxpICcwpxAsZ2xmXmnHRXrGcirJFYK7nNLta7WAUV9Hpw9OjRJqijMtzh/0AJ72vTRYsWRbf5vp4T1WIOVi4VKlSI7IniPuhYv/m8nwmiEFF8UBBdFCrDhg0zbzI6Q8eD6AySKOMo16GpqPuxcl8uY/9RlFAOdOmll5qHFippnveG+nOJjYfvAUp0V0PSXZ5y+43Fg0J8jiwkDzvsMLvetGnTxAMPPBA1sUV1zuTM9bvuuivqWq6SLyFESQFVGRsd/FDzggAgSUQ2EfEy8UMOOcTGPayuHDbWXp2D33VJZe7cuZFdF/PA4sWL0/2UsgKCO1QUYttGJR+bY76nhZ2Uf/rpp5PWFa1bt7bPHl/cOFynuW5c4QYkW1LXfDwOdkY8DutDIYQoSFCKowxH7IP9RBz2wR4wfPTRR6Pj7KXdzgpblniC780337Sxl+rb1IaKLlgjAI2wqCTBHIL6mDmF18ccUxyaW2cDrJ18PmVNxdqqIIn3NXH47iKIc8vfeJIJSxeOEy+aNWtWUhNS731CJaYH/Dl3m7cdd9xRSRdRYCiILgodMoR0DmehEG/2BGxaKDmnYSelajltegoT/n/80xhYGXzJWBZ040uxfrzZp5db482Wqq7YUEiAsJB0WwI+Wx4TCyF82d3n1z1S2VB7yRcB9twUIUIIUdzBwoJ5NlUxxFxH48W4zZpvROLNmPGbdDVPSeSNN96I7EUY5+OvWRQdX375ZeL888+3ObVSpUqJkSNHrhPUKQjw/WXdgJotnihBac7/jaIt/v9iNfP1119v8ON7IIsgF5VuQghRkMpqkrwkueMJbqqivXoWtXUcEpMuFsLiwvnhhx8iWwsS5PFxD8GaB+RLUqNwXgOWnMwhjOfMKcwtIj2CN7cCIonDWqugoVrCkyMkTg488MDIeojvtyeRTjzxxGj/Hu+vRnKctQC34XgQt3NzVT0NVJWAEQWBguii0EHZ5mrzsWPH5jh40ZTKNyrx5k6FOTFTRlSlShV7bixStEFKP/654JFfUJ+LLx4JFqFUp1GYe6r5guCEE06Ist5k3EuyhYEQIjthU+NNudfXDBGVOf6RbEbiG3efq1966aVESVtndO/e3TZQBBJQ7skftXh9LtgPFMbncuqpp9qaIbVUm+9zfuG5oWqPq9hoWsZvAv9WIYQoSBhz4pYkXPcqWhLBBADj87ZXitHfyWGcQozmtlTxRCGBdgLuJanalveAps/M5cwd9KsoifYzmUbq58LcntrQdmMhSM4+nGC3f+dJmHifvLgtMNVn2MC6LXD8NzJkyBA7TuKFJLtDLMEfi6r3wvJ5F9mDguiiUGDS9uZSTH5eUs2mndIcvNJ9AGOz701GGfxKiuJZFF2FAE1HNqaDPIuuCRMmJLp27Rr5upHI8QmWBSm+7JQ28j3wheYjjzxSKK9LCCEKAmxc2ETHg+Xun8pm2mEznVtSkONxq42+fftGzaRKCpSyF4XiWRTfCgF+A65S21D47qNai8/1HHMLIOxdHO7nvsRSsAkhChPGM8YhLCfjlbEc9yAgwcv4vH7rrbdG1bRLlixJUrpXq1bNbmP8LQmJZeaGwlY8i4KvENjUviEoyhG5pfqgY9OCBRGB7/h69fPPP7fE/Pjx45Meh98FDgc5JV2owHQrV+4jxKagILoocAiOE6wkIMmG1ktrCIS6JxXZcCZJBkqsXjzAWZibX0rWGYT5v8h2bor3tigaWDSi/uK7xOIRJXl+bITY9KJAZ1FWsWJFS55wnHJIurtDfCFK01G+H6jaZOsjhCiu+CYTKyofx2jOneqfiqqH8tX1eYKzAfIkIknu4g6vl7J0St5ZU9x0002F7r0tCtar/uSTT15vxURB8P7771u1WdwG4Mknn4wa7MUT9FdddZUdr1evXhRw4rxu3bp2nO+ZEEJsCgTwEI3l1uSa4wQP47ggjcBhfMzCvs3V6fQWcxi32rVrZ8dZG3z33XfF+kMj4I+wzb23S1o1XDbCmov9NF71rMVYk21KJTce5zT6ToVjOSnH6SmwsdXpxKbyE1MQIhUF0UWBQ8kMG3cyim6R0aVLF8tYejDdmz+wkPAge0E3q3AY0Ak0MMjTQDK1eYso/tAk9PDDD7fvyRlnnLFBAW4+dxTozZs3t3KzZcuWrbdZLNUT7il44YUXFuArEEKIgoGxjf4d+EW63RXVX4xbqGw8mEzDJo6xwfbKMLfMSlXu4qXOfWnyXNztrHjNrCncimtTFVCiaOH7xUYWP1OS20899VSBPfacOXNMlRnHvVBPP/30pCCVVyTGFWkEmryPSjwZ5RvvChUqJH777bcCe75CiOyCeXnzzTe38SQ/FTnYU9HXKe6Djo1FjRo1orkwPndTzetrguXLlyeKM1T+MBcwJzDWFvc1iEiGNVi3bt2ivnaFaY/LdyOnijCS5DklXoj59OvXL+k75b1/cEaI9wQSIj8oiC4K1TaFQYrFgqvNyYZ7Q4imTZsm9ttvP7tM5+TCgEWHq89pMKVS3JL9nSL4Q2f2DVWl44eWm9IjXqrNopYFJ8md22+/PQo8FfeFpxBCwBVXXGHj1rHHHruOvUvHjh2jY0888YQdq1mzZrSpICiIIre4W1nF1ec8X9TEouRCYgefU7cn2FRVOvO1z900FnWwa3PlWdwawNeorCniKvVrr73Wjjdo0CD6jZB8clsE1iFCCLExMKZgxXbWWWclHR82bFji8ssvz3eSbsqUKZZQjyfGGfNcne7VasVdfc5c4Ml+UTJhTmVtRnCateSmJEOwWCUwHxfN4YXeq1cv80GPH6faDJEkCXCqzR0EdFSjp/YQ4HGwF+b4wQcfLH90sVEoiC4KDRYIDFAMgl4m7l3F2cxcfPHFUXflgu62zcB97733mvqc5qFSn2eWKt2b7px55pn5sl1BiU5J2C233GLfTxatXjqIioPLJHZc5diiRQspIoQQxRrmO6+gcfUsx1yhRiMop02bNnaMALszZswYO1a1atX1Jh3TBcomFE6+pog3ThMlF76nDzzwgFUuUq1IQGhTOO644xJnn332Ot+P448/PvIFjv/fVF5wHE9Xh2C+V0vGm5W67zDWLlJKCiEKCgKG7tVMH6f4GEVAfH3ExyOqaZjLeSxEa8V1rKICCfU5Y7/U55mlSmce9v48GxPf4TtLvzLf5zs8FsHy1O82ti5eccacHrd58bhT6dKlE++88050nGA7CXRuu+GGGzb5dYvsQ0F0UWCw+UYl5r7m+LHR/MybOrZs2TLK/JF5xq+ay6NGjSpw9bnbyKBwL+4+cCL/MHHit88EyGJxxowZ670/CnMWbNOmTYsshAge+fdw4MCBltDxDvZMuFxmgy+EEMUB5lW8UuMNwti00Mdh6623jrxS6TfC+EUw0G2s2KhzjJM3XWJspB8Jx2677bZEcYPnh6IJZRMKJ5ROIvOgRwlN5DZVlZ5b4zyalrki7cUXX4yO4//vDfnijcgo/+b4oYceGh2jktGD6wXZGFUIkflgs5aTrzNznNtVtm7dOinozT6H4zT9Tk0q01gxJ1zZTeV3ceztxNhOPwyvkvP+VCKzIP5Trlw5W7sh5MhvMofkEXEjhHNx4j0A4k1FsWXxPfxFF12UtCZw4R3VZajQHfb3Xr0Wb8grxIagILooMBjMGIwoK/PBksGL0hssXbxhE+U2rvRt3LhxgXYLZ0Dk8QkoECwVmQ2lWiw6+S7hcZZbYzkSPN7M7H//+5+VTHpTsZtvvjnyDaRpmGesaWjqHqiyARJCFAfc+zxuxwJcJlDosOn25o0OyUGOtW3bNjo2e/bsKNie6pOeblATo2Ti+aFskvd5ZsN3eNy4cYW2hjvnnHOidWf8t+MBrLitIBtygu6sZ+NN/M4999x1LJKEEGJ9oKhFSJbaMPShhx6yMYWKbWwpHKxNqKbmtuHDh0fHGbvwRidgmFplTSWaBwXX10w8HTCmU3GE+pz9enFVyYuCV6UjqMS+Jz/k9v24/vrr7TERwSEOiVc3uFAkvn4gUUNAn+MXXHBB0uO7lztJJyxghdhQFEQXBQblWCh9aciYGsxkQ+Lel5Tauld6vEHKpoD63TdIdDCX+jx7IAlz9913W+CbLHNq1tpBZXbXXXfZpEkznnr16tn3pXPnzolDDjkkUp1h4cJlvPRr165tl88777wif11CCJEKPuBU4MRtKVJB7cZczNjlm2zGSfd0jvuee6VYqj9rusG7unr16qZiQtEksodPP/00qiakQmxjAi0EoOjFc8cdd0THUG66knzSpEnR8ZdfftmCW6ke+/RKSf2/V65cGW3S45t3IYTIDYKH3rB4/vz50XESdCQM3e40jgf3SOTFFexUfHv1TLxvE2Me/UK4rX///sXqw2Ac9eblrF2kPs8uWMOxlsNi8M0339yox+C77ipyhHHNmzeP7FjjNoQuIEEAFxdesBb2uXvWrFnRceJF9FnLqeJDiLxQEF0UKATP8YtE4Ttv3ryk29jEM/nvtddeBTpYoVYjCIpqKNsbPs2ZMyex22672WVU1XiDEXDh8yBY/O677yYyFSZYgi45ffdy4vXXX7dFKN/FoUOHRvYtNBXDFsEXop7wee2114rkdQghRF6wYXCfSRLIqSXiXH/22WdNNevekHPnzrWxDGWbNy4jWOllsRu7sSkMJk+ebMHOvJKi2UA2z+esFz3ogpIttyqz3KCZHn9LUCn+t1Se8V66xZGTn0C99xWgma8QQmwIBPRS7SG9ITiVZXGbieeeey7HvQePQTCS2xgf4+OXC9UaNmyY5Amdbhh/XY28sUnRTCGb53TWcvic83pRjOeH+++/3/blVJHHK9G9UuOaa66JjvM7Ig7lFepxSKxz/NJLL006Pn369CjA/tJLL230axTZhYLookB54oknoo06nlSoduJ4YyYyhAVROs7Gn8wmZToECbIdqgBQ+kO7du1s4nnrrbcSy5Yts+w//uH53YyWJEiotGrVyoLjY8eOzTMIReDc7Q34vg4YMCAqD2OCZcJGxeYNR5s2bVqg1kNCCFEQcy4bsPUpz/A7Z0N+xhlnRMdIGHq/kuIAm2s22V76m8lz1YaQ7fM5oA4nwY1S/KOPPtrgv2OOP/XUUzcoob4+WKsS1Epd57KOLU7BKiFEyQHrCPdwjgcVCQISVE/1doaePXvacYKR8bHHbVzY+zBHFBcYs/fbbz9Liserf7KVbJ/T+c579SPNPDc0oULDcbdRi+/DacLL+vfpp59eRySHPVuqFSv//9SpU3P8P04//XT7P/bcc891kuxC5ISC6GKToRkD3msMbG6Rcfzxx0fBSZo3MnChnPOs4b333rvJ/y+LDjKaLCbISGYyZFk9S5p6Imjs4OkV3+zFQcHA/TM92YAyE2sCr3aIl3mlNt4hQN6kSRNbeFIlweTOZI3diyeAKDv05qNqMiqEKE64PdqGVHZR7u2ByLi9C56sxUmthsIukxOWms/zBwEGvqsEreNWCJsKG/j4+gBrBVeqx60IWbeSVKeZn68x8PXlu6pGt0KI3GAei/cqSYXxZdCgQUnBRK4ztuy6665JHs0kBH3fR+PwuB2F27fFFbnphudLgJMK4bjtTCaiOT1/vwkXcGBZtKEBaxqC5xR0L6hePjwOvzmeFz3RhFgfCqKLTYIBDYUugw5NUzxw7l7SJ554op3jN3XaaafZ5QMOOGCTNsj8n2QweSyajmVDIwheI+8v3l/4enK6+OKLrWSJTudANptgb27KKBrWFLey/cIEn3QsfujK7e9RvLs3JZEEzlngsknPC28+WqVKlaz4vgkhih8k8ejbEE/m+VzrSjbKgamkIbmdFzNmzIgafbu9S7ogsI/SGMVxqi91JqL5PP8gAqBigoT3xogwCHynlm/znaNPSqpnKqrJeAM0GpFynOCWc9VVV63TpFcIIeJMnDjRKsD69euXr79hrzF+/PjoGMk+F6mxF4xDdRnH69SpYwKg4gB2WozViLyoEM50NKfnHyq6WPNhP0QyqSDI6ftPzGjmzJnrBOCJo9DvLB7ER6XOb4nYQbbESsTGs3kQYhP4448/Qp06dUKZMmXCvHnz7Fjr1q3DypUrQ9myZcOKFSvs2MEHHxzGjRtnl2+//faw+eYb99X77bffwoknnhiuvvrqcO2114bHH3/c/u9Mh9dYunTpsPXWW4dKlSrZiWNbbrmlvc8wZcqU0K5dO7tPKv/991/o169faN68edh3331DNnD22WeHF154ISxbtiw0btw4+i5Cs2bNwpo1a+y7VKtWrdCgQYN1/v7zzz8PX331VViyZElYvnx5qFGjRvjss8/CzTffXMSvRAghgs2xL774YnjnnXfs7Vi7dq3NtcynrVq1smNPPfVUGDp0aLjuuuuit+zXX39d5+2799577fzkk08O2267bdre3gULFoQDDzwwfPfdd2HhwoXhmGOOCZmO5vP8U758eZvPe/XqFU4//XRbz/zzzz/r/TvEQmPGjLH5+80334yOv//+++H1118PgwYNCn/++acda9++fdh///3t93LHHXckrSVg9OjRtpYCngfMnDnTfodCCJEKcxpjxs4775w0Jr311lu5vlndunUL7733XjjppJOiY4xRLVq0CBUqVLAxK/7499xzj10eO3ZsKFWqVFo/BMbkCy64IJxxxhl2YswuV65cyHQ0p+efrl272vf3m2++sTUglzeEv//+OwwcODC88sorScfHjx8fqlevbvN6/LfGmvLwww8PEydOTDpOvGTEiBEWS3KOOuqo0LlzZ/sen3POOXY/IXJlEwLwQkSgjHMVOh7lcRU66mgsM/zYpiiRULGTuSSDmW1ccMEFSdYtlI/ReC2ulnrwwQdz/FvsTSiH/uSTTxLZxqpVqxL77ruvfQ9feOGFHO+DEhOlx6uvvmoVE1i64FXYpUuXqNu9V1pss802+fJmFUKIguCdd96xXg+MU8B4z5h04IEHRvehyTbHRowYEfmr7rTTTjZ3MId6+bc3T/bHSgf4WaJWQ2Hszy1b0Hy+aVVmNMRFBb4h/rHuwYqfsMPvArUnx0eOHBkdx56FY/xmfvzxRzuGUo3rHI/b5R188MF2bMiQIZvwaoQQmQxzbNxywpsYYmWR3yab8cehgTgqXh6LfUu6YSxmTEbFyxidbWhO3ziw+m3RooWtSakOXx9eBUYlflx57jbCxIniNm3XX3+9Had3XrzCDB91jrOWiFejs78nzsRteNYLkRsKoosCAf8oBhy6S3OOVYYH031g23bbbTe6ZAcv13322cd832gYkY3kNUHz/hCMSLUtgXPPPde6gRNMzlbwOj3iiCMSpUqVspLtOHj1MRlfccUVUdf7888/3yZWLrvnMEH1gw46aJOTQUIIURB4Yg/7Fh/nmAc4hn1XvCETc4DbqBGI901IfjfxBQWWHJtttpk1f8rG5oyazzeNWbNmWU8cAtke7M4NLNvuvPPOdUq9aRzO74Bmbv4d5DfiFkncHv+8fI3r0O+HY6xN0/U7EkKUHBgnGjVqZOMGTSbjsNe47777cuzjlBOjR4+OLNm8X0O6YAxmLEasNHv27EQ2ojl942H+pRE4a0J+A3mBPRCxD0Qk8XkXexZPdt96661Jj81al+O9e/dOeizvw8N3N/5YJMY5TsyJdbUQOaEgutho2JyTQXTwj/LAuQfTGYDYoHizsI2BwHutWrWs4YM3e8xGUidoGnN4EJ3FVPw2YEIggI7aKq/GNtkCG2i+lwSZ4l3iH3nkkaiJz6hRo+wyGXFUa1ymKY57EaJoY5Ln8oIFC9L6eoQQ2Q3Bu7gfugfMaTDt9OrVK0oMpqrV4w0UixJ8qPn/qZDK5AaieaH5fNOhuR4BJCodv//++3z/PWr0ypUr23eRNVTq95N1p38/V6xYYcfwN/aKPlShJOY5/tprrxXAKxJCZAIffvhhjlUyzz77bNR3IV59xVjmqtj4fo1k+FFHHWU9r+JQTeain+HDhyfSCc+FSmjG4sWLFyeyFc3pmwZzbZ8+fdapDsuJ3JLWLhBBSR4XDr700kt2nP17vCkvc7mrzh966KGkwPuee+5px1G+C5ETCqKLjYKsN5sHTiwWfENy44032sBD2YwHHb0h44Z2YI7DIEgQEysS/3+yldQJmkwrSQoSC0ceeWRS5tVVDSxq5syZEzUj5ZTuJnLphOZiVEawUCV47tx+++2WEGJi5r3kO8vGHPUml7t37x5NwJ06dYosFKQ+E0IUBUuXLrUg+dq1a+06Yw/NpRmnPJlN0pSx6Zxzzok2JRUqVLBjNFbyTYMnAtesWVPkHx7zFP83jdayefzUfF5wvwss12gSuqEN7OLKdQJQfB9ZY7oanSZxWBOm2rew/iKIjg2RQ3N7bbSFEHGwKGMfTMWMw3zXvHlzGy+Yu+O0bt3ajp9++uk5KmXZl8Sh+syrYFKbJhcljLn77befBfTTaQ1XHNCcvunwG/Gqr2HDhm3Q38SFGPw98zR/T/V5fI1J1SPH+b5iheQgJuE4CfW46nzy5Ml2nDhXOtbKovijILrYKLDAIPOMEjrVJuTTTz81uwtUPFhgMAjRqTu/MGihYkdVJw/qdSdolAkE0d2n28v3ox93CDmest3ji1LJU045xTbD8UB6vPKBksS4Dzoefx07drTLeBCiIuEy/qlCCFHYoNpmzLnyyitzvY+XrD755JNJ6jYCgh4g9CA25atFzS233GL/N9ZZ2RxAB83nBccbb7yRKF++fKJ+/fo5Wto57777rlVhEMjy7x+iAl9HPfroo0kWhSeddJJVWMbXval9ZfBw5W/32muvrP9OCyH+T5lNUo59A/thZ+7cuVGlqyfDAfsTPx7f62Jd6uIdxh6H+3gFzLRp09L2luMvzZhLoj7+/LIVzekFA3Pz5Zdfbt/v2267Lc/7zps3z76DM2bMSJrnvecPvucOYhO3e8GKLV6l7qpzKvzjz8OrNlkLCJGKguhio2GAocwMVS82GKlccsklNvjsvffeG+zx5rDwqFmzpp2ysRlmfiBgwnssNhyy0ATS+e7GrV1g4cKFZn3AdxfP1cMPP9wukzTy4Ln7/LNxzu93Wwgh8svAgQMtaR0P9MWhdNybILsi1xswMV6lNkOM+z0XBTQ6VQB9/Wg+3zgQFaD8pKlYvPleHAJXCA7YYNOk1yGZTpVHqqJtQ1XtvmGPB9yFENkL+4IlS5YkHaPpptuYxfE9hleQOeyvOX7CCSckHXdFLaKqdCWjsc9irGXMffvtt9PyHEoKmtPzD99rxBZ8z7FXyw3fqzdr1izHPn1XX3110nEqz4iXeGWmQ7Cdv0m1hcOmzQWI8eajQoCC6GKjwUbEy8I7dOhgvqy+CSEITiNRbmNzkh+wHCE4iQpdJTTrh07vU6dO3chPMbsXuQSX8Ej3ZqNMpCjUsR9q2rRptOBFmX7eeedZIAglP0oTtyzCg00IIYoSNq6pDY+Yf/FudrC4YIyiAZMrcRjfOFaU1V1UosnCZcPQfL7xoNxEacaGOrdmYFSPFcR3P/74HuyKq9iEEMKhQgbFNvNv3Jr0lVdeibzQV69eHR0nAO89GFDWOiTqfN+dGqQvKhj72B9Raa7A4vrRnL7p1i40os8Jgt5YA6ZauZFIf/nll9e5P9ZH+bU/6tatmz0H5nkh4iiILvI9qBFwZBCiyzEDi3caZ/OCnxu2Ipzn1PF4fTAQUpJOEDPVnkSIgobvMc1GKY184YUXrLS7du3a1iWcxS0ZcAJTlC2mgl+bNyTNZp95IUTRwxzJZhpP6Jxg3qVC7Oijj7bENLARcUuqooJmTTxPenRku4WLKHzYOJP0xpN4Y/rwuO2RQ1Kqb9++kY86CfTDDjvM/g+802HcuHH2u9p3330L6FUIIUoi8WahqdA3DOuWON5TgcrYON6bib1ITh7p/F06YExlbMUiLqcgpRAFCWtGhGysIeONPwv7/4w3BUYwSpKL3x2V6kI4CqKLfOEdjrFZ8RJWSmO8tIxzvKU8U75gwYJ8bV5atGhh3pbxUlshChP80GhAwqYYdWdupeA5KUu88ejQoUP1IQkhigSC4u6VGl/srw9XzF5//fWJooCm1vjC9uzZM8kqQ4jCZP78+YnSpUtbwCmvxA0Br/jtNBhDLYqiHbiNxn38Zu6+++7oGH16OOabegLrfM85xoZbCJF9MMfhhU7jwg0dBwiqt2nTxuyo4j0eXIX+3nvvJanQ3VoiHR7kjH3HHnusja352dsLsam/K9aQzLH0FciLnJqLU/nh1ZgOwjf27ajY4/DbQ/yJ+CSOC0OxXhLCURBd5Av8WNlk4IUWD6Cj5N1xxx3tsttgdOnSJV+TM00csdbQ5CzSUZ6IiozNcWpjMs9KY0tEkB2FCBYuBNBbt25t33XKGlO91IQQoiCgCVKNGjUS/fv3t+vPPvtsNP+6OgwLNJof5VYVg2rWm5GxUShsaDi+yy67JA499NB8l88Ksak88cQT9l2/4YYbcrz90ksvjSrQnBNPPNH+5uSTT46O0diMYwceeGB0bMCAAZGNodOuXTs7RiBeCJF9EORGXMZeOD4PY9OSnyQyczWVrlhZ5KRCJ5CdDki+xxuXC1FUsIakySc2qnHbo7gIk0A3PU8++OCD6DhJKH6TxJbiCSm3UUKIEu9lwh7fRaCvvvpqdJz/0xPl6bJREsUPBdFFvmHDXqlSJRtMyLj7BsMV6p4pz89G3ZuO5eZ7JURRBX0o1cYvnfJtfNDJgOPPjyqkefPm9j31c0q8XJXmAS4hhChILrroIhtjLrzwQrs+aNAgu07QD+bNm2fXK1eubEk/Tg888IB5qbrSlo0v9yEYX9i2KgQB6tWrZ/9XTlZYQhQFeJTznadfT24NybBqcbBG8nndfdNRq/vm2TfbVEr6/dy+gcQ6xxCYCCGyE0Q4L774YnSd4DnzIBXam9KA08ecdKnQJ02aZP/3ddddV+T/txCuMue3VL9+/chKLY4nskl8x6HSPKfkU9euXe04lq5xSKJzvGPHjjk29O3UqZM+EGEoiC7yDaWu2223XaJs2bJRJg8lblyFnh+/tlmzZtlmJLWsRoiihsUvG2Y22JSE+6LV/QkbNGgQNeZr0qSJnTdu3NjOUZ9sqBWMEELkZ/OAlZo3DcU/Na6yveWWW+y6l6CimuE6Y5lvNvBWjQfiCwuCBjyPMmXKJCl8hChq+C6yUea7mBp4+vTTT22+T00oUTnB7+SKK66IjvF95hjJLIe+AnGbl7jFUl6+yEKI7AG7FsYFPMTjPRruu+8+G2M+/vjjDXoct5NIDfgVBQji2PMThJQtm0gnrCmZz5mTU7+LJKly8iyP2yDF16Qkpnw//9prr0XHsWLy4/GeQ4hSXKWejkSWKH4oiC42CAaruGcbwUJKWeNqdBos+kC1oR27KbshGI8nHOpfIdINm2K+wyjLUF1Q7r127VqbuDmOUj3V+98rMHIrHRdCiILC7dRQh8Hxxx9v1wcPHmzX8X/0RB/8888/UdIbn/LCBKsLxkXsr4RIN1ixkfxGwZaTX2puikvKxumXAk8//bQdo1+PWxPdeuutUVWag0KOY4888kghviIhRHEjt+qu7t2725jQp0+fpP10rVq1kpJwQMKb/QVVZPH98GeffRb1ICvqxoYkBPF5ZwzNT/8VIQoLKsv4LVxzzTUb/DduhcR5TqrzVPth/92mqtf9cVIbAYvsREF0sUEQSGTgaN++fbRYePzxx02N480VfWOf2pAhN7DLoGkTwUgaMwlRXKAbOB5q2CQ4rvbE8mWnnXZKqrzYf//9o9tyKjMTQoiCgA04qjDGG5QxgB8612fMmGHXzzjjDLuO73Pc/xE1XGEmqx977DH7f2688cZC+z+EyC9r1qyxADieqjn58+On+uWXX9plfh++pvXGoRxzC8PJkydHSnYXjRDkgosvvtiu9+rVSx+SEFkE1g8E3FC3xsVmeDSn+iiTyObY9ttvn7RfGDlypB0nwB5X2aJY5zgND4sSxsWWLVva2MkYKkRxAcEavwniUDlB1YdbsgHKca8UiwtC+b26GC4u/nT1Orf5Ohv4HXOc+IDP+yJ72TwIsQEsX748bLnllqF8+fLRsWOPPTbMmzcvnHbaaaFatWrh1VdfteMDBgxY7+P9999/oXv37uHTTz8NU6dODTvvvLM+B1FsuP3228NBBx0UjjnmmPDxxx/bMb7ntWrVCt9++22oV6+eHfvoo4/C5ptvHl5//fWw++67222jRo1K87MXQmQKv/zySxgxYkSYMmUKoofwzz//hBtvvDH07t077LHHHnb7+++/b/dt0KCBnTMvQ8uWLe189uzZdt6qVSubxwsDxsAePXqEbt26hSuvvLJQ/g8hNgbWp08++WSYP39+6NevX9JtM2fOtHm9b9++dp3fR58+fezyXXfdFR079dRTQ4UKFcIPP/xgx3bddddw0UUXhTFjxoTtttvOjrVp08bOX3jhBfutCiEyn6+++io8++yz4YknngilSpWKjj/66KPhjz/+CHXr1g0HHnhgdPy+++6z8xNOOCGUKVPGLjNeMM/Dueeea/sK+O2336I9xaWXXlqkr+uCCy4IixYtCpMmTbIxVIjiwlVXXWVrTdacy5YtS7qN+bd69eqhV69e0TH27F27drXf2cCBA6PjderUsceBQYMGRcf33XffcNRRR9n977nnnuh448aNLTbw999/h5EjRxbyqxTFnnRH8UXJgWzctttua+pzV+2sryQmN6666irL8D3zzDOF9GyF2PQyxurVq5tdEZUYqNPcB5UsdMWKFZO80fEq5Jzjv/32m95+IcQm44oYqlxyYsGCBXZ7lSpVIvWbK2TdvsIbKw0bNqxQPhHWA7vvvruNj3HfVyGKE2PGjLHfAYrPuN+vN+V1uwL8zbFfiCvTqJzMScUeh+9+qVKl7PHiilQhROZCdfarr76aGD58eNJxKl8YC4YMGZI0jrCP5viiRYui43PnzrVjVJl9//330fF77rknagiOLVs6bC2FKI4w31IFXrVq1aSYFFUT9ANi/06j3/hcT+8ybGDi9kvM88Sw4v7nwG96woQJ61RvesUllm/a62c3CqKLDWb06NE2cDBgYW3hg9Mnn3xiAxa3UTa+Pig5T11YCFEc8YY6J554onkSMinTeAxftDvuuMMWzSSXFi9ebBtsbue7zW1CCLGp0EyURt0nnXRSro25SfR5AptmiYxB+Jh6SbbbvzCeFTRsRuiPUqFChQ1ukiZEujj33HMtCR7/LeB5XlCbYe+ZojWAENkLVg9uExG3QvFE3t57750UyOvRo4cdp4Gow+1uFTl06NAie+6MjYyR5513XpH9n0JsDKw5WXuyBo3/nhCX5GRdWBAiDx6XOBi/S/oPiexFQXSxXnxz0axZs8ivzf3ZUJJfcskldr1Vq1brfSyy8CjW2Gjk1ohFiOKEKzJYxPJbICiVG6NGjYoSTWqUK4QoDGX666+/vk7vBZ9PGacYg7p27WrX58+fH6lm4j6rBcV9991nj08gUojiDs1C69ata8Gp9SnLcwI1KL8/Z/Xq1Ynbb789UpXS3Jffw1FHHVWgz1sIUXJgnMD73Jt9O3iMp4rIfvrpp0Tp0qXtOME/hyaiHMNXPa6oLUwYExkb991336ixshDFmalTp9rv5P777y+0/4P9fHxPP3DgwLT0KRDFCwXRRZ58+OGHpmJzq4otttgiarbgJeNlypSxcway9XHmmWfa/dWkRJQUCDy1bt3aAuMkgXKCyZUMN9/rsmXL5tnwRAghNhaal+VlzYKFy7Rp06KmyNdff73dn+qZgoYqNJqVnnrqqQX+2EIUFlRMspblt5FKPFjF/U477bTEAw88EAW7sE1i/YvlC5xzzjn2++rdu3dUAu7rYiXShchspk+fnujfv3+S9VNeewnGCazZ4lVbbtlSu3btJHEZYw/He/bsmSgqrrvuOhsbU60thCjOnHLKKWbVQsPvOPyeaCqaeozf7b333pt0nKpyYlRxuzd3YUD8ibWLs3bt2ige9vbbbxfKaxLFHzUWFXny9NNPh19//TW88cYbdr1q1ap2vueee9o5DZlobFa7du1w5JFH5vlYM2bMCGPHjg233HKLmpSIEgMNfu69997w3XffRY19nn/++fDaa69ZszGalNC05LjjjrPfQcWKFe0+w4cPT/MzF0JkGqtXr7bzGjVqRE2645QrV87m4oMPPjipqWjr1q0L9HkgwjjzzDOtMZrGOlGSaNSoUbj88stt7l6+fLkdo8n9YYcdZnP5X3/9Zcfmzp0b7r///qiB2Pbbb28NxPnu06gUaD4G06ZNs+P77bdf2HHHHW1d/Oabb6btNQohCp/x48fbOPLwww9v0F5i9OjR4csvv7RxxKEJYtu2bcPpp58eNttsMzvG+PHYY4/ZZY4XBezzeS1XXHFFOOCAA4rk/xSiILj99ttD6dKlbU3qTb1///330KxZM5uT33vvvei+L774YmjXrl248MILw88//xwdZ61MjOrmm28O//77b3T8888/D5988ok1EXeqVKkSzf3x4yLLSHcUXxRvyNhRUla+fHnLuHnJ2c477xyViHOOjUVe0OyMTN7hhx8uGxdRIiE7zXfdlaDuVcj3Ol6Rsfnmm+erR4AQQuQGyhh6LYwfP96ue0Pj1157zRqQUerdoEGDHG2mfv/9d+vlwP1XrlxZoG8yKh4eF9W7ECUNrAqwLHBbF34/qMyZv2fPnm33QW3uajNUanDrrbfadWwZ/DfmPQdQoUPbtm3tOlZwQojMhSaDVHmxT3aeeuqpxPnnn5/UOHRDiKvQ3SYN+9SisD5lDKS3imxcREkFS0F+M/x2nI4dO9oa+aGHHkqqCNlrr73W6V1CY3GvJJ80aVJSxSXrgvg6ALAz9jjYxljDiZKPlOgiT8iKkxH/+uuvTXH222+/hV122SV8//33YaeddgrffPONKd9Q5ObFJZdcEn744Ydwzz33RJl2IUoSffr0MaXaSy+9FEqVKhWaNm1qijMy1Lvuuqv9TqjMQBm6xx57RNlxIYTYWD766KOwZs0aU8b8/fff4auvvrLjjDnvv/9++OOPP+zY1ltvHZYtWxb69+8fZs2aZffhOqraChUq2NhUUDDmoeLp0aPHeivQhCiOMIePGzfOlOiDBg2y3w9qUn5rhx56qN2nUqVKoX379nb5gQcesPNjjz3WzufNmxc+++yzsM0220RVHv67Y20AixcvTstrE0IUDVSgohhH8eo89NBD4Y477gjPPvtsdOzbb78Nr7766jqVY3Hie2MqYKBnz55Fsme+6aabrHKGMZGxUYiSRseOHS0W1a9fP6ss8z04l08++eSkipALLrjALt95553Rb3K77bYLZ511ll0eMWJEdP/ddtstdOjQwS6jVHeoHmFtTRwMpwWRfSiILtbLIYccYrYubuFCMD1+fs4554Rtt90217+fPn26Bc9l4yJKMixksXUhkXT88ceHu+++2wJJfhuQbPLAFzz66KO20RZCiI2BRfvChQvDEUccYWWllKputdVWlrz2cYZycGAhf8MNN1jJOLzyyit2fuCBBxbYRlw2LiJTwLIA6wIsDLAyaNWqVZLNApAoggcffNASWVgaEjCLW7p40J0y8XgQfdGiRUX8ioQQ6YREtwfUCOo5jBXYSHXq1GkdOxiS0nG4TpKOOXt9ArWCgGQ764Yrr7xSNi6iRIO1ILEpt3WpWbOmCT9T4XeFCA4hynPPPRcd7927t/3usHYhoR4/7sl0fuOw5ZZbhhNPPDFKnInsQ0F0kSMMPiwABgwYYApb1Gb4PbN5Z+POIEN2b4sttjCFbm78+OOP4Ywzzght2rSxQU2Ikky1atUsGcTCl4Xy+eefH3bYYQf7LZQvX96qLVCIog5ls81k636qQgiRXzxoR68FV9cwxqCm8SA64xK89dZbdo4HZGoQvaC47777osQ41WhClGSo3KhTp44pPn1zDO6Lju/pzjvvHNauXRspzbt27Rr5oMeD6AS+eIwmTZrYdTboKFCFEJkHSTJ6JcVZsGBB+Omnn0yhStDc8bEirlhn/iaYR3+T+OO4F3qLFi1MBVuYMM4x9u299942FgpRkmGuxqOcvmVezeEgQnHVOYF2YlMQ7+nDWtory0icO1Sk5aQ67969u50/9dRT9rsX2YWC6CJH2Iw/88wzYejQoVbmStB84sSJdqxBgwaR8o0NBg0WcoNGjATSZeMiMgUy0ocffrhNwF988UU46KCD7Di/EyCADnzvAfX6P//8k8ZnLITIBGhIBt68ODWI7s2TSHgXRhCdIP5FF10UTjvttMjmQohMsHXBygBbF5qRIQwhUUVgi9tPOukkuy/3A7cwmjNnjolM6tevH8qWLWtz/7vvvmuX/Te4ZMmSNL46IURhwJoeOwcqwlasWBEd90be7BFIdANjysyZM9dRp1PhDewhGDMc9trQrVu3Qv/wBg8ebPt9xjbfwwhRkmF+poKMSnEXnpx99tkmSIkHwM877zyLbfHbXL16dXScpBLwm/Cge26qc6rZ9tprL5v74/ZNIjtQEF3kCJty1LaNGze2Mi8va0FRTvYdT3TIS11OeSzBczYmDF5CZAJMunyv8SEmoUTGGzsjlGqUh6E8Y0HMwpnrZL+5jxBC5BeScNhCMZ7ss88+YciQIVFpaTyITvXYypUr7TqLelQxfj2uiNsUUKrhAX3bbbfpgxQZAxth+vYQUCJwTuAbxZnbtaAW5TdVr149u06AHA9hlOnM/QTL2IizLvb7yNJFiMwFm0ZU4lRjecLME2vx6hS3eWL+xiqKhFtqED1u8bJq1aqwdOlSG1O8/0JhwZ6F/TljX8OGDQv1/xKiKEFdTgIcNwVg3Uriyy3XADEofc5YV7NPd4455phQt25dS57/+eef0XEC84jnCL7H4wFemebrBZE9bEZ30XQ/CVE8IbOGRQVKG8rLaKACEyZMsBIWFgRk77B0yS0bSDnr22+/bTYwQmQSl112WRg2bJgFqDgROKehKJUZTNiUiLPR5j5HH310mDRpUrqfshCiBMGi3+dOgnqp3o7YtpCsplSchDflpizqf/31V2tqSFkqCWwPtm8KzOMEAGjUFN9ECJEJUDmGfyrrXE4oz1q2bGm/J98m5aevwKhRo0z9hiL1hRdeKMRnLoRIFySrsXQE+iVhJ4FFCntf7yN28cUXW+KZAJw3Jvz5559Nxc59qV7xQDz34/7M3W4fVVhQcUPg78MPPzTBjxCZBM19UaNTZbb99tvbGnr//fdfZ97n95s6tzPnb+h8T8NgYgClS5e2vmici+xASnSRK5S9EEBn8KGRIqUsLBh8EXD66afnGkB/6aWXrLTlxhtvVABdZCQ0JKObNyo2Onxfd911plhj03zwwQfbArlXr16R4gTluhBCbCj4K3fo0MHGFG/kHQfVK9UwBP9cdU7QHHVsQVu5/O9//zPljqvghcgkCCJdddVVVmWGQIQmo76J5jy/jXld2ckGXgiRmXgAHajYJpGNQh1BjePqV1SvDok1Aui1atVKUrJPnTrVzjt37lyoz5v1AlVujHkKoItMhCQR62HWrszpqQF04Luf09yen/meuZ5qUJJo9AsS2YOC6GIdsJ54+OGHwyOPPGLXXQlH4wQWCHPnzrVSMw8QpkIG7/LLL7fgYmGXowmRLlCeE0iniQklmKn8+++/Yd9997WJG0WpuncLIfIDwXD6kLDhpjSVjS+l3ihqAMu1ZcuWWVOwVD907ldQQfSFCxeGKVOmhIEDB8o3VWQs5557bqhcuXK4+uqrc63O5HfAZtmFJqjN3RMZawR+b1SBUCLufQz89yqEyFz4zX/88cfhtddei4Jw2DsyR6davLg3M0lyh/vOnz9/HYuXwoAxjqrZc845p1D/HyHSBWtm1qzErrAhju/N3evcoXqTpsCp8z3rb9a/8fgW96M3ECJT4LfepUsXu8z9RRaBnYsQcQ477DBqVxPbbLONnXPaYost7HyHHXaw8w4dOuT6pk2ePNnu88ILL+iNFRnNr7/+mqhcuXKiW7duidGjRydGjhyZaN26deLMM89MVKpUKdGkSZPEdtttZ7+HffbZJ/Hff/+l+ykLIUooXbt2tbFkxIgR69z2119/JVauXJl488037TrjDfd97rnnNun/ZMxq0aJFokGDBol///13kx5LiOLOvffea7+bRYsWJQYPHpxo2LBh4scff7Tb6tevb7c98cQTdr1jx452/aabbkq6Pnz4cLtevXp1uz5nzpw0viIhREHCeFC7du3ESSedZPNuXvz555+J2bNnJ2677bak4/w9Y8PUqVOjY+PHj7djjDOFycsvv2z/z/3331+o/48Q6YY1K7+nli1b2lp24MCBtmePz8kffvhhokyZMrZX//nnn6Pj1157rf1Ojj766OgYj7Hnnnva8YkTJ0bHp0+fbsd23XVX7fOzCCnRxTo0adLEStHIwnkJuXcO927jeKLnBIpbysMoP+ckRCaD99k111xjjf8oHaMJ7+zZs02t9sUXX5jXIRluqjlQq7388svpfspCiBKKK2CxkUqFMYbmh1S/MA/jyQqo1DcFbNnmzZtnKluf/4XIVLBk4zdDCfi4ceNMVUpPIGjbtq2dP/7443bevn17O6epaLzqw62U+C3CW2+9lYZXIoQoDBgTqApDkeqV2ihUc2oxt/XWW5sCHW/mOChjJ0+eHA455JDomFtB0E+ssOA5UkFL48RTTjml0P4fIYoDrFlZu2Ix/Nxzz1l/IJqITpw4MbpPjRo1rAKNvfoTTzwRHfdqENwZfO2N6pzGo/HGwED/FOIBNOuVhVv2oB2RWAd8zL00hXJyLzODH374wY4dddRROb5zDz74YHjnnXfC4MGD9c6KrABbIzwQaSbqky5Ng8BLOj0J5ZtxIYRYH96cjB4LwCIfWKzTqBg/R2/4HQd7KfzUuR9ekBsLZa9XXnml+UMfccQR+sBExkNDURqCkwxns4xHerdu3ew2/63RyPf333+PAmAExPA3VhBdiMyHPiTYNgwfPjw6RnCuUqVKoWvXrjkG01OhASn7bHqOAX/jybg2bdoU2nPHGo6xjTEut55mQmQSJLsJcrOW7du3ryWvbr/99uh29umeUIoH0ffbbz/zOmeujzcH9yQXwXXWyMD+3+2aEJ6I7EBBdJEjBMppjEinYcA/apdddrHLBNBzanLGQIMqlyak+KELkQ2gRLn11lutcoMeADQK4rfAb4ikE3hTUSboDVlgCyEEgfAPP/zQEtPxIDpKdHyWafRN8A769esXrr322vD9999H98cffVPU4/RGQVVDUjy/jRWFKKnQ1K9Zs2a2ST7ttNOiQBdB8l133dV+h/QGQrFevnx5m+9Rnzdq1MjuR38C5n7UnvD222+n9fUIIQoOAuB4mbvYDPj9s84nmO5zJXMz/cGefPJJqw7LC8YIqlfZNxx00EGF8nGxj0eF3rx581yFcEJkGvwehwwZEpYvX24nfrdUiMRxdTnB8rgIzn/j+Ko7/D532mknE5fGq8vbtWuX1EhYZD4Koot1FGwE+WjGcP311yepaH2zfsIJJ+T4rt111122CMDSQohsAoUaG2gy3eedd54dQwUKJKP4TTFp03TIS72FECIvqlevbsE6V7bE7Vy+++67aH7+888/TVlz3XXX2VjjQfRNsXLhMQcMGBCOPvro0LRpU31QImtg80ziCNsGt27x494IkN8k11G4Ab9TAuoo14C/jdu5KHkuRObiFg6oV5033ngj3HzzzaF3795Jqu+ePXtaY08X14Cr0BlPaIhYGFAJ+/rrryspLrIO1rAExPv3729r25yaAiOAI86F7YvjQXSsWzwRRrWaB8zjjURdiU5zYI+XicxGQXQRgYKN0nGUNijcKG/B6xmFLZCdQ5HjPpBxGJSGDh1qqh0GIiGyCTbTlEeSlaZjN5OsWyDxWwJXs8XLxYQQIjdIxLGppk9Jqp1LPIiOxyOw+UYl50H0OnXqbJIKHVWdkuIiG+F3h4URghKCT+eee64Fwr2Um80z17E68iA6xC1d+P1RCcLaGoGJEKLk88ADD5gfOpVijvc9qFevXnTMBTONGzeO1OnM2/w9tqnxKjE8m+OBuIKGsYr/k/2728MJkU3w/V+zZk2YMGFCGDlypPU4YW4Gfp8IRgCrRIffCi4M7Of5zTtubzhr1qykQDyiOcQuS5cuLcJXJtKFgugiaRHAJhyrFgJ+nGPNQpmZez8yyOD9lArBdrLqF198sd5RkZXQSLdKlSrWkIxAFuBZTEaaCdqD6ijbpEoTQuSXuJ1LPIj+2Wef2WXGH8YaGhpvihKd8QllO6pbNgZCZCOsZ1n/0mz07rvvNhXnYYcdZhZuVG1+8MEHURCdhmL8btzyhd8ha2XvSbB69eo0vxohxKbCOh4lOcG1uNrULZvcwgmwjoD9998/OrZ48WI7pwk4ATdg3EC9CoUV4MZigj3+JZdcUiiPL0Rxh7Usa9o777zTnBOwbqG/SaqlC1Vm/ttGEOfWR3Ff9NatW9s5QhO/L0kxXw/MmTOnCF+ZSBdbpu1/FsWOFi1a2AKBJolsxlHWMNFTnsqGAQiqp8ICgAYrZObwYBUiG2HTjC/xZZddZr8DqjqoymChjGcqatKzzz7bMuGUeqtvgBAiL1C0eGkpDcvwM8VrmQZmuQXRYeXKlZukRGfupxSd6jIhshUC5gTFmL+xbEORhrjkoYceCvXr17c5nvUvAXKslzzwzhrA4Tgbbeb9wvI6FkIUDVSaIphhTCCZDVRrk1ADt3CKB9EZK1LV6XGLNBqI038MEZv3VSho2KPz3ApL6S5ESeCCCy4wKxbm6B49ekQCUSABfscdd1igPe6ZjvUSVq1xl4WqVata4syrzeJxNHog0GxcZD4KooskULBR3sJkPn78+HDiiSfaJgEvZ1Q1nn2LQwYdhU7cR0qIbAQ/dBqYNGzYMKn7t0MJOEp0LF0URBdC5AWBcpoVo3xF7RJXkeUWRP/xxx/tBDVq1NioN5ixC9UOwQIhsjkxzqa7T58+5mvsfudxMQn38QA6xL2Pwf+GQLoQomTD7zmuSPUgOE07qUCtWLGiHeO6W7zEg+jLli1bR53uNhEE8QrDD53m5Chux4wZowbhIqtp06aNVWiS9GKvHodgeN++fdf5mz322CPHx8qpStOtF5csWWKxM7dxEpmJ7FxEEl5SRodwvFBpIuoNRslgczwVMncob/GXEiKb4fdx1llnhfvvvz/yQo/jTUqef/75NDw7IURJgsQ15d05lXijgm3WrJnZRcSD6J988oldZkPvSrn8gKp26tSp4fzzz9cGQGQ9J598sv2WRowYke/3gk20B9hRogshMg+80Zs3b27qcg+akTSjjxiKViq68wqi56ROL0gYu0i2M5YJkc3w+2Rt+9RTTxXKnExjYUQvVJZozs98FEQXUdYM3ycanoAHAOk47ln3nBqK0tBs8uTJ1nQpXtIiRLaCZQvexXio0iwI7zUak1EOtmLFimgh/eWXX6b7qQohijFYQc2bNy/Mnj3brtMwFHUbm/Z77rknLFy40CwivGkhNi8eRHcv5vwyduxY64nSvXv3AnwlQpRMaOJ7xhlnWGKcYJdXXE6cONEqNVGRovTs2LGjNSMF1GyVK1e2sm4F0YXIbKg8RYCGl7Lz3nvv2TkWEPgqA1ZsHlhr0KBBdN9XX33VzgujOhXbmXHjxoXTTz89RxGcENnGKaecYrZsVGawtmZuj8N1qs2Y1x3W4RwbMGBAdIx9PmsAfuNYOrnwhUC6x9VEZqOop4gGCMq9vCEZpWiuYvPS8JyC6EzOZN0YlIQQwZqKsUAmaN6pUyezeOnWrVu4+eabrTv4DjvsYG/TzJkz9XYJITYYFuf16tWLgubOsGHDrKScYN+mBNEJzrOBIIC+MSp2ITIRflcEwBo3bmwqNrdmI5A+ffp0m9O5zjqa9TK+yfxGSZoriC5E5tCrVy9TkfN7zwusT5mTH3zwwaQqL4J3WMLstNNO0ZxL/5HCCqJjHcnYdeaZZxb4YwtREmFtyxqXIDp9T+hj8u+//ybFtbBdjds2ffXVV3Zs0qRJSQl2GvZiDeOJMPC+Btgci8xGQXRhoKLBtoVGZo4PKgTUKUejfDwOx1HDkZ3zBYEQ4v8W2j7JAspOfi/gv7EZM2borRJCbPiC7f+v9vKxxMFugvkZ5fqnn35qx2gQnl8IDBD804ZbiP8HSjMahqEopZEYCjRXndOEt3z58tZozDfOeK565YgH0bF3SP3dCiFKFgTGqSRF4Z0XiMuYk1GpOwTfqfKOB9cYI/78809LxOXmvbwpUFlGQD91/y5ENsMa99tvvzWxSefOnZPsVwmsw6xZs6JjrVq1snOaiRJQd2sYbxYebyTqVSbeWFhkLgqiC4ONQd26dZMCf5SneJOknFToZOBWrVqlDbcQKdCIjAZD7mXsgXN+W//8808URMczVQghcoNeJDQwWrt2bRREZ9xAkU7VC5vwOJuiRGfDTXOzeKm5EOL/bNqYu2+55RZTsvmmmpJt1squPlu6dGlSEJ1kFpttAmX4pAohSi6jRo2ynkbxPiX4oZNEoxJlfTAWkPR24s1HC9oSlcpynpOS4kKsW9XJnM3vjurL+G/Sg+jEuDzxjUDFGwSTOM9Lde738woTkbkoiC4iUJtT1vLXX39Fx2iKAjk1DUWFzmaBBYQQIlmF0rt3b/NPRV3iVR0eQEfRhuKTngNCCJEbWEIQjPvuu++ipmUs7GkmyoljVJFdddVVFkDf2CA6CnaCA9pwC7EuRx99tDXnY93r6nR6EBAcf/nllyMrBsq6EaXAypUrba7n7+Cbb77RWytECQaxWbt27ey371BlwryLH7JzzTXX2Mkrw3LD+yS5iK0guffee8Muu+xiY5cQIhnWuuzRU3+j2LZhu4RSPR4I9+qzxYsXR8e8QfBrr70WHdt3332jnoFKnGc2CqIL82mjbIWSVBS0pUqVsiAgULIWL1lxUN5MnTrVfKV8Yy+E+H+ceuqp5o3qi2N+V56g8t9X3HNNCCFSGT9+vM3PNWrUSLJz8bGERPfIkSPDoEGDLNBOYB1QqecHvB6pPKN/gxAiGQJk/DbwGP7555/t9xe3dPEgOptpt3ZhnUzgHBUbKIguRGZBVZjbO1B96owYMcKS295TDLCNOOaYY5IaFnoQnWqzgn5eeDhjt8reQwiRDPM5a97JkyebqM0tmtife6UZjUcdt2aKq849iE7CHJs3t2+l74EfF5mLgujCNgWHH3546Nevn6lrmPQpIXcrF7JqqZ7nlLlgUcGiQAixLngQkphC3QleFkbSySfruI+aEEKkQhUYnqYoYzyITmVLPIjufo74qhJIBxRo+eHpp5+2ed8bHwshkqFR+Jo1a+y3Rf8A32hjmeDJciwO+Z26UvXjjz9WEF2IDICk2GOPPRamTZsWWTF+//331hw0HkTnfj4PV6lSxc65/8yZMy1gF8ft2NwCqqDAJgaFvPboQuTMjjvuGA455JAwcODAULly5aQ+ZfRAyU11ThDdf//M85y47tZM7uwA7733nt7+DEZBdGFZaiwn8Gsmo07wfPr06eYBCTnZtaBCr1mzZoFnz4XItEA6wS5+Y77QJkvtypD4BC2EEHmx7bbb2jlJOB9PWLx7zwXGFjb1EPd4XB8kzufMmWNBQiFEzpBkQqXGb4/AOWXfBMyZ46n8QIFOTwHKwJs1axYF2aVEF6Lkw+8a9Sr2KF6B7XYNJJ99Xe/VYFSvuACNoLrP0970m2S4q9I96FZQsEcn8U6QUAiRM6x5+V1D3LqFuZ1YWLyBMPEu1tjEy3744Yek+6JSx9rN8d8zjYhF5rJlup+ASD/nn3++DQodO3YMr7zyStRRGJ9HiDdQ8U07qrXjjjtOVi5C5MFFF11kv5Phw4ebjyKe6CysWdyiUqdZIH5svqgWQog4b7/9tm20a9eubYltVG4oYVngM55gLeHgv+wK9fwE0Uma81hHHXWU3nwhcoEgGU3H8Dq97bbbrLqM3x8CFED5GbdHcjyI7pt1IUTJg8C5J8YcrwJD1eowPrgK3YPtVKS4Wj0ebCchR2KuoPcA7NHZc8jKRYjcYc3bt29f6x/Qq1ev6DhxL37bPrd71SciFXdpcKZMmbLO4+LqAFKiZzZSogvDy1DYBJxyyimWNfdGCalKdEpZCP5pwy1E3qBYYQPN7wpPYyZWGv4R4PIO3lKjCyFy45ZbbrGSbMrABwwYEG666SYbQ7zpd1z94gF1FvkoZvKjWmvQoEHk5SyEyJkTTjjBhCZffvml/c7im+zckBJdiJIPQXEqtjilzrnx+TYnSzUPoscbftOPDJh3UwNzmwL+zkuWLFFlmRDrAe9y9uJYFMchsZXT3L6hv1OcGgD7N5G5KIguIrUbkHmjGQnlKSjTKFH1BgnxDTdZd/eMEkLkDBPukUceab+ZVJo2bWrnCqILIXKDKjHmYzwb4+y3337WzNC9GcFLTCkh39CG38zzzz77rDbcQmwAHTp0sHM80XPD+5/4ZQXRhchMqCxlLc987ORkqebNR71XQjyIjsCmIMGzHZspH6uEELmDIJT5nLVwTsTX2A5WTHndz5Nln3zyid76DEZB9CwHX0cah3rzQ8d92ti8p27GKRNjciZTJ4TIG8o/V6xYYR6p/J5atmxpfmleAqYguhAiN66++mpTlfXo0cM25x988EH45ptvwoIFC8LSpUujxmVsmj2Inh8rFx6Hx5UfuhDrBxs2qjaoCLn55pttDU0Q7Zhjjgnz58+3ajPm/NmzZ5sIhfnefZHjPqpCiJLPQQcdFBYtWhQmTJiQZxDdvdMZPxysHKGgK8DYo/O8PHknhMgd1r78ZhG8jR07Njr+0ksvhSZNmoRjjz02Osb6m4QZ9orxBBl+6VSeeALdg+j87rFgFJmJguhZDjYuqNDjXo3x8nC3nIhP+ti8yMpFiA2DRmNAIIyeA2y6mYi9+dCrr76aawZcCCHi/UsI0j3wwAPRMTbKJOmwmNiYpqJUyaBypzGSEGL91KtXL6xatSqMGzfOPIeZ25nXsXRgbuf3iN0SczzWCt4QWJtpIUouWJk2atQodO3aNc/7nXHGGdZQcMiQIdEx1vjbbbddUmDbvdNTq8w2BRohvvDCC0qKC7GB8Jtm7p4xY0ZS1ThzO70BSY47NBCmASnzv8fKypYta97nrL/9N80xt4PB/lhkJgqiZzlk4O677z7LnqFkc7wZCZuF1DIxmpcdccQRRf5chSiJUOlB06AKFSrYdTbXXvbFb46NNROyEELkhfuuejMzYD7ee++9Q926dcOvv/6adL/1wTjEpoGkeHz+F0LkDg1+gd8N8zu/HapDsHZwT2S/zMbaLxPgEkKUTH755RcTvbj9aW4QLN9zzz2TrFDpZ8LfDx48ODrmAbe4xcumMmvWLBtnJHQTYsNg/m7btq0Fvi+55JLoOHO7K81daEolCb9v1s7ud84a3KtJfC+Pg4Mnx0iki8xEu6Ysh3JT92NjIHDoGJ5TEJ0NN+Wp+VG6CZHtXHXVVVE5Z1x17k1K3nnnnbQ9NyFE8YUGhvQfYUHvwXGambVv396aF6GCdf766y8796aj62PlypWmnJWVixAbDvYtBMmwZ0Ft5mtogmJlypSxy65SI4juohQp0YUouZCopn/ImDFjomNUo2DdcN55523QY8ST1R5cK0glOlYuVKvF7SaEEHmDXSLJ73hCi2C527KwVvbguDcNjYvfPGEW90B36yYS7CIzURBd2IR79913r9MMiRJUmprFj+Gfethhh+ldEyIf8Jvh98MGO/4782QV5d9CCJEKYwblpKjf3BYCVQwlojQm4xyVGx7NPp5saL8SHpdN/SGHHKI3XogNhI00czrrYaDHCVDSTdWZJ7oAxZo3IZMSXYiSC0pVktcIyZwff/zRbE4JwDmPPfaYCWfwVM4LD67FfdI3FeZ0xqYNbSwuhAjh0EMPtd+Mz+lOnTp17Pzdd9+NjnlcLB5E90SYV5eAWze5gE5kHgqiZzmTJk2ywYGGCmwE4mp0su6ulPVmo5SRH3DAAWl6tkKUTFCtEQzDT82JB7qkRBdC5ARqmCeeeMI2x66KQcHmqnSU6gMHDgw33nhjvpXolKazSeD/EEJsOPQQIPmNfYKrPuNBdDbO/rtyVbqU6EJkFp4giyvMsT0dNGiQ+Sk7ffr0sQA8zcCdjWkEnhfYubGf1x5diPzB/hxB6XPPPWf9hRyf212JDjkp0atUqWLnCqJnFwqiZzEoZLp37x7+v/buBM7qeX/8+Pfi2rMUuQgRSYjshGwJWbNkS5Ys2WVfruz7du1ZE9earVASZQ2JiEghkS1Llmu5W//H6/37f849s5yatZk55/V8PObOzJlRc09zvp/v5/15L9tss01ksJHpdthhh+VOxcu3cmHDDRdoqfrIQkvDRMu3dTGILqkQBpl16tQpF6DjRj1tvH/99ddcgC4F0auaic6a7nouVR9Za+keOmWis9GmRSLITk2v0VQhYhBdarpYa0eMGJENGzYs91haa9NrPP/j/HWYQ3D+u/wKlTQIfLHFFquTn2/cuHFR6eqaLlUfrdlIWOEArHwQPT8TvbIgemWZ6Gn9p1pFxckgegnjhp6NOQMRyDLnhX7DDTdkXbt2ja+X76nGhpvvzZ8uLmn2yFJhkeU9GaQs1vReS33UCKLnt3mRpPLyb9TLB9G5fqR2EVXJRGejT8aNG26p+nbZZZdcoIzybqrNCKAzu2DDDTeM++QNNtgg5hk4WFRq+qgA69KlS7bHHnvkHktrbTrARmqlQqA8SWtz/rUgBdvrKojOHp2fhypySdWz3nrrxXv250n79u1za3tCbIwk0zQLBdwD8N+nAaNI1aIMFFZx+l/vDpUc+qs+88wzcTEgcM4pOe+nTp0aX8+fLA6z1qSao+XCQQcdFKfXLVq0yGWjs2BThklv49SuQZISslrHjBkTG3CqxbihT30W82/Q00a9KpnoVJ7RZsIgulR9LVu2jJYu3D9vu+222aRJk3JfO+mkk+L9oYceWqbSzD7FUtNFUIzXO60fCJDzeq4siJ5au+QnxqS2L6llav66XVft1Nijd+jQocrt3CT9z3777Zfddttt2XHHHZd7bKuttiqztoPuDfktX7DrrrvGW740ZNwgevEyE125acInnHBCdscdd2SffvpphSA6NwxvvvmmG26phjbeeONcySU337wR7EotGtLhlSTlu//++7Pu3btnAwcOzPr37x+DRBlyBuaUpOBcykrPn21SCOs5/93aa6/tky3VAJlnvI5mJ7Vuy58xJKlpodUpwbNXXnklt+amgHWae1AoEz0F0dM1ILV24r/P76deG+7RpZojoYTXblXW9KpIQfTUwknFxyB6iePmPvVrIlvmyCOPzAXz8stSyJ7l+8xak2qGoSVksqTZAkkqEyMTXZLKI/tt/fXXj7LShKoVykppG5FKxNOmPW3YqzJUNN3oS6oe7ocZLpoqQAopH0CTVByoKmUdzW/tkILi+etwykpP14AUdE9rd21xgM61yD26VDPsz5lvUn6PXlPpte0slOJlEL2EPfLII1GOmo+FnY04GbKp/yrSRaX890uqGk64aaF0zjnnZEsttVS8sWjTpgEG0SVVhjZrr7/+erSEIquFIUeUjvKex7iupGtM+dLyQljTXc+l2m2SCZQx+PfAAw+MFi9XXXVVHHDRG713795xHz148OD4foPoUnHZbrvtIgHt1ltvzT2W1uP8w7X8rPT8wFpdBdHffvtth4pKtURSyV133RVdGRKGh7O2DxkyJPcYbZOYS5SGizKniMTT/Jasab2vSlKLmiaD6CWMoN348eMr7dVIi4n8EjM23DzGhURS9fEaY5AQN8/ffPNNvJE9kgJeBtElzU7Pnj2z1VZbLXvggQdyjw0fPjx76623YlhxVYLoVKCx6TZrTaq51q1bx/vRo0fHXBPmFHz33Xcxw4A3qjcZRpjKuQ2iS03bUUcdFVVhL774YsHvOe2006JtI5XdCW1bSE5LrZ3S+6q0XqvOUFEO7yTVzCKLLBLrNffTCT3NWdvz9+g//PBDNmPGjFjv0+uY1sis+6nqJL2202tdxccgegkjk+26666r9Gv5rVzgUFGpbgJg+fIHDxlElzQ7bdq0ifcfffRR7jGC4fQ2T61Z8vuzVoaybw7zDKJLNcdrjntl5p2kyk1mFKT3acBvOtQyiC41bVR/vfHGG7OcYcTh2lprrRU91JMpU6bEdaC+1lz26LR9c6ioVHP77rtvrvozSWs72eb5bZyQguip+iS/AiWt9wbRi5dB9BJG2cnqq69eaalZfiuXdOPgCbdUO4ccckju4/LDhAyiSyrkjDPOiIAdFSyghJwNOWs1FS5IG+jZZaKznsM1Xapd1tqWW24ZWWnLLLNMPMbH6Z46VXimQ626yjqV1DBOP/307Iknnsi22WabXJYqwWv207M6vC5f7Z2U33vXFPcDrudS7XTv3r1CK6a0tn/xxRfVCqKr+HlHV+IYdnjttddmxx57bJnHF1tssTLZspSkpgGIkmomLcbpdZUvf4GWpHy0i6BcNG3UP/3002zy5MkRQKe1C5lu6WuzC6KTUUMvVno6Sqrdmj5q1Kjc2s4hF4dZvAbTGp9el2aJSk1bCp4nCy20UPbhhx/G6/3rr7+Og24C2swco71afuJMVYLqNcWavvXWW9fpnymVGu6J55tvvjJZ5ympNH+PnmJkqfIsv8osrfspAz1VpKn4mIlewhho+O6770YmDZPF8y8C+UF0ekExGCE/ACip+jit5nVWPgsd9E+VpMoceuih2UsvvZT169cv184lHWw/9NBD2V//+tdchvnsguhsBljP63ojL5UaAuNUkTHfBN9++21swvOD52kzveiiizbgTyqprrGGlg+y0S7trLPOyu68887c911wwQXZjjvuGAdu+VUpqYqsNshmJ+jnHl2q/eu5efPm2fPPP5/LKOfz8nv0FBjPf/2m++lUXZK+ZhC9eBlEL2FXX311tv3222cjRoyICcPdunXLllhiiQpB9HQiV77Fi6TqYegIB1Lls9BTWagkVYZS7U6dOmXt2rWLm3IC5annajoATzf9aZBhIazprudS3SSjECR/9tlncxUj6fWYDrMMokvFgdc3AbYhQ4YU7Jmc9tEcqCWvvfZa9uSTT+ZmmaT2D3XR+oGWEgTsXNOl2qOajEoS9utIs4by9+iVDQ1NQfS0vzeIXvwMopcwss/p5cZC/95772WPP/54tummm8bXDKJLdY/yTrLUyF4ja6RVq1a57BEG/TmARNKsEKBbaaWV4uNmzZrFew7m0jUkvy9zIQbRpbrRtm3b3EabYYLt27fPOnbsmK233nqxvnfo0CGXiWYmutS0kXC2xRZbZL169co9Vj4TvbIgOvMT8rNZ84Pote2LbqKbVHfIPGetTvtxXs+s7auuumrue9q0aRMzifKHB7Pmk+xSPqmF1okqTvZEL2EXXnhhLP7HHHNMNnHixCgJnzFjRsEg+lJLLdVgP6tUDFiYqf4g2DV06NBctloq/+akO/+1J0nJK6+8kr344otRNdazZ8/oi/7cc8/l2kaQJYfvv/9+lk8aa/pqq63mEyvVEvOErrnmmmzfffct074h3znnnBPvDaJLTRvBMxLQODwjSEYwnD7oYD1GCqyxDnN/T9JMeu2nPXYKopO1SsZqbeYlGESX6k6PHj2i7VK6R15nnXWycePGlfmec889N97yUW2SL1WEpmQXFR8z0UtcOgGnFPWAAw6oNIjO6To3BQ5FkmqPg6v8oSW8rlKmmi1dJBVyww03ZKeddlrWokWL7Mwzz4zsmPzhRinLjfezqmpJPdEl1U5lQ8fKS/fVBtGlpm3BBReMbPRhw4blAuGpMiy1amG/TGIM++t0XUiBdVpF5LeIqEr7tdlJf4ftXKTa4954Vut5VRlEL34G0UtcCqJT/n3vvffGoFGkmwNY+i3VXxC9UM81ScrXpUuXbK+99oqWEaA/OplxK6ywQnzOgMPygbvyqIJhvXfDLdUepdqLL754hTU9XzrcMoguFR/aPKyyyiq5NZXeyLRywtSpU3OtHPH111/HexJn0n3/7NqvzQ7XHlpQpIpWSTXH65gqklThWVMG0YufQfQSdtFFF0UZakJf1ZS9Ntdc//vVMIgu1Z2xY8dGNgrVHmyqyWxJm2yD6JIKOfDAA7MHHngg22WXXSLrjQz0SZMmZXfccUd8nc9T6Wihli5fffVVvDeILtXe9OnTo2XD1VdfHcE0stg23HDDrHXr1tnWW28dbR94jcJWbVLxJaF17do1+/DDD7Prr78+97XU4uWzzz4r0w41BdHB4VtV2q/Njnt0qe68/fbb8f68886L97RtYh1nbf/1119z7ZBp63TppZfmXtdUpJDgkq4L6XXtul+87Ilewlj0P/nkk0q/lqYMpwWajDdJtZdOp1PgPF+a6i1JhRC0Y03m0JtMt+WWWy5aspH9tu2228Y1ptDG3P6pUt2ZZ555YhYBb999910ko/D65OPUJzkNGvPgSmr6nn/++axv377Zsssumw0ePLjS7yFBjWS01OolZaLnZ7eSPU6QvS4y0b22SHUjvUYnTJiQeywdhKc9Oq/bKVOm5L6Xyk/iaSTGpfhZat3UsmVL/2mKlJnoJezoo4/ODjrooNkG0TlhSzcAUrH2GiZzjNJssshef/31evu7evXqVfBr+RUgklQZbtxXXnnl+JiBR2S+bL755pEtU773ankpE841XcVsTq3pVH5sttlmkYGWNthkruXPKkgHWgTdJDVtVI+++eab2ejRo3NZp+BjhoSiQ4cO2RprrBHfi/XWWy8Ot6lETWa3VleVe3SVgjm1pjMkHNxTl09uS3t0Ds2x0EILlVnr81u2UaUGg+jFy4hNCWNR79Sp02yD6PRQze+RrsZriy22yAYMGNDQP0aTQnsEskr69esXN8YM66M8s7Y3trN63RWSMtYkqTJnnHFGlIGnYcRXXXVVtsQSS8R7kJWeX0ZeHus5XNMbP9fzxr+mk4lOGxf6G6eAWir5TnMJ0mbaILrU9K255prZww8/nI0ZMyb32FlnnRUDvwn0VWbeeectM0y0qkOJq8I9etPhmt7413T+bNC+BVSXFQqip0OyVFm+yCKL5L43rfvpsEzFxyB6idtggw2yY489dpZBdErG2SjUl3POOSf+vsreWHCk+kTw6dBDD42qDLLJbr755lgYU5/hujar15KZ6JJmhSGiZMak6wibCDJdX3755ezcc8/NBfDSQLPy0tyT+lrTXc9Vimt6ykDNl4LqvOeAPPVFltR0kQnbvXv3yIpNe2Ve37Rleffdd3OZqfRLpuK7kBSkm9VQ4qpwj65iNyfX9HRvnO6V8zPRU6Jb+Uz0VG2W5hxwP5CqPm21VLwMopcwTslY9ClFTS/8yoLoXAxS1lt9OOmkk+LiuPHGG8fNBG8nnnhitvrqq2ePPPJIvf29Er1LKa/cZpttygSy+ZxSzfqQTqcrYya6pFnp0aNHZK6lgUbp5n38+PERwE4Z6PRirkwK9tXXmu56rlJb07/99ttc1nl5qeKD9kmu71LxZqfjnXfeyQXiTjvttMhM5/qQ+qSTPfv444+XCaJPmzatVn83wT736CpWc3pNT/fUH330UcF2LilZJQXRU8A8HZTzmubwnAoU27kUL4PoJWzo0KFZ586ds9tuuy0uGuuvv34233zzxdfys2rq+5SbEjdOFLnYsNHgjcf4Oxm8ItUXbm4p1SqfIcbnX331Vb38nekGutDNgiQVsthii0VmyzrrrBOfp+tUymZLQ8pml4leX1UvrucqtTX9iSeeiKFi+VJQi6xVpHtrSU0f6+zAgQNzbdTSevz222/HfTx72jRUNAXWP/jgg2z48OG5Xs6p9VqhA++qco+uYjan1/Rnn3023j/44INVbudSfohomn3AfYAV5sXLIHoJI1i9yiqrRPCaUnAWdrK/wQCU/AXaDJrG6aKLLoqgRXp78cUXsyOOOKLMY4WCKWoY6eQ6ZamlRRgff/xxA/1UkpoS+q+2a9cuPmYNT73O06ZiVkF01vP8ajM1Dq7nTVN67RE0S4GztM6nIaOu7VLxINO0V69e2dlnnx1r6oorrhhrMgH0FDRPvZUJrGO11VaL9++//368T9eK8gdw1eUevfFyTW960gF4qhAhCE5sjNdvum/+7rvv4j469UBPcw2Iq+HOO+8sE2xXcTKIXsK23XbbOBUfMmRI1qVLl3gsXRDSpGG42W68CJiPGzcu98bQyvPOO6/MY6lkUBUxkI+FMJVizYlp9/vss0/uY/69fvnll9zn9fV3SioetG7p3bt3bNwfeuihbO21147H84cbclNfWWWL63nj5XreNNd0eiOn11waMJY24laXScWHvsy0k+jTp0+0dmBdpZobKdM8rcvswyoLorN+p0zb/MS16nJNb7xc05vemp4y3tN7DseYdTBhwoTc9/B6JUM9tUJOlaCp//nEiRPr/OdS42MQvcSloDnZMgwZTWUn+UF0NgOVDU2qT94UVA3tblZeeeXcG5nNlBPlP1afrXiaOjI411133Vz5Vup/xuf06K8PgwYNivfdunXL7rrrrjJB9FQSKkmFsD7ffvvt2RtvvBEDztK1atFFF82t2QTTK8tG52vc/Kdg+5zgel41rudNc03fZZddoqqTjPS0nqf2Lallw0033VQvf7ekOY+98jPPPJNdfvnluX10CqK/9tprZTLRUxCdwDsmT54ch2v8dwQIa1upUmiwcX1yTa8a1/Smt6ZvscUW8f6UU07JvTZ33nnn7KijjsrFy1LbxJSkmO61l19++TLXgjS7SMXJIHqJo78qFyiMGTMm2rqUD6KzQKc+qnNKs2bNoiz9ww8/nKN/r0pP3759s1tvvTUC2mSIkFlCCRZTwOsDZWAgkEUftXTazaY7DSGTpEK4QWf4Nj1ZCYYzHJysOAJ5aV3Pz3jLlw5V5+Sa7nquYl7T819LqQd6kgaQpdempOK0+eabZ1tuuWW24YYbxucE/kAWK9efZZddNtZmrhcpq7Vt27YF1+qq4mDcPbqK2Zxc09NrKd0rk2VOx4ann34693la60lc4R48zTVIQfQUu0qvbxUng+gl7oADDijz+R9//BHv80vLGiKIzgRzmJmr+tajR4/siiuuiN6GlF+SNTJs2LAKQ0zqym677RbvW7VqlW200Ua5nqmUhZndIWl2OPjmmrXddttF1hubimuvvTbXKiq1ksgvP23IILrruYp5TWdgYOp9ml57bKZpk/j999/H5wbRpeJDAI2e52SCc5D93HPPZUceeWTuHp83stZZo7m/T3vaN998M96nOWSVrdVV5R5dxW5Orunp3jit5TNmzChT6Zn6n5OFzmuarPRUgca6zzUhBdFd94ubfR5KHOXglfVsTH0d59Qp9zXXXFPmc24s6mPqcrEbNWpUQ/8ITdLRRx8db3NC6qGWhg/ll/1JUnVQLjp48OAYUMyhONlwDz74YNavX7/svffeq/D9aWNQn2u663ndcD1v/Gs6r6P8MvPUEnGHHXaIEvAOHTpE24bU1kVS8aBlCzNKXnjhhagIK2/EiBERWEtVph07doygezp0Sy1eGnsQ3TW9brimN/41nWx3cF9NYkqKRaX+6/lBdEyaNCn3OffhU6ZMiURU7rUNohc3M9FL3GWXXRab7vKmT5+e+5hhZflBdUk1l15LafhQ+eC6JM0O2S5kwKbe5s8//3x8TIkpgTtUFkRnPc+/DkmqOfqgL7nkkrk2LmussUb24osvZvvuu2/uoJzXo1VmUvEh4YvA2SeffFJm/5wyzVddddUybRovvPDC+PoxxxxTJohOy5eaco8u1Z2URZ46MpQPoqd2LimITiIqFSapfROHZOm1ndolqzgZRC9xZMrQUqK8zz77LPcx04bTRUNS7aS+auUZRJdUHQwnpldjuq4wVJpy17Qxp4ScAUz5WM/hmi7VHgEs+p6mtgxstNlQU/qdNtPpUEtScSFDm5ZNqTUqmcasw7vvvnulw7uZfZR/oJaGjxK4y2+jWh3u0aW6kxJLe/bsWWkQPQ0VTffSVKCMHTs2MteRf3iu4mYQXVF2utdee5V5JgyiS/Xj3nvvrfRxhg5JUlWwEd9ll12yrbfeOtpFpHkmBNPPOeecbO655455C/kZcjCILtUtDqTYYG+66abZmmuuGb1aW7Rokd15553xdTfTUnGiJzOB8fyh32Sf0tJh4sSJ8RgH2wTLCbQlBNhpwcJ/z70/n9PnuSYMokt1J7Vk22KLLSoNonN/zf32BRdcUOl/n17H6YBMxcsgeon76aef4oLRqVOnMjcCn3/+eS6DjZIVs9akukGGWmWl3SuuuKJPsaQqu+qqq6LnKhnpYC3/5ptvsvvuuy9XQl6+TJzWEwTYXdOl2iP4xWuJIaKPPfZYZKWmnqqp77FBdKn4sWdeaKGFss6dO8fnTz31VC6oRnYqQ0dx5ZVXxoyE1Gc8tYFILWCqK+3RK8t8l1Q9vJa4R+ZeGalCJAXRwUFZao3IUOF8r732Wu5ATcXNIHqJo2cqpSsMJyP7PA0/4qLAZjydcqdBCpJqhw11/oFVCnYZRJdUE9tuu228pzdrfq/mymYvsDkg+801Xao9AudUfDz55JMxHPDyyy/PDRrl8dQnXVJxeuutt7Jtttkm23HHHePz7bffPt4PHTo03m+11VbxPl0XCLZPmzYte+mll8oE0cuv1VXFHv3XX3+NpDhJtUMQfLHFFsu+++67+JzKMl5ftD8u75dffolgOvt6vofXNW8ktKTXtYqXQfQSx819q1atsjZt2sQpOT0cU1uJ1NKFBZoLBW+SaocFljLOVC6WTrMNokuqCXoy4j//+U+8n2eeeXLXmFdffbXC91v+LdVdAA1soFP7hvyMUO6tmzVr5tMtFSnu4QmQUxVGIJsWqWnYNwO8CbCnz7lOpEx1PmfN3mSTTeLzl19+uUZ/vy3apLrDnCEC6GPGjCmT7Eby2+TJk6Nzw3HHHZer9GSw6LfffhtJLCkLndgaVSkqbgbRSxw39wTLuQDsvffecQFI2ej5QXRY/i3VHq2SCHDR0uXRRx/Npk+fHo8bRJdUXSNHjszWXnvtbNVVV80efvjhXBA9IbstBdcTg+hS3Uh9T0ePHp317ds3PiZQlmy00UY+1VIRW2WVVbKbbrop++CDD2I+CWtxu3btoqKbChWGDrOvpjqM9ZoMVdo6zpgxI1q4bLjhhpG5+umnn0aSTXW5R5fqTmrVssIKK1T42vjx47NXXnkld+D1xhtvxHvuwcHX4LpfGgyiq0y56SGHHJLrhZ6yaui3Bsu/pdrhkIobbW6wyUIhoA4WbAaRSVJ1MMiQthH0X+ZjAuiplQsfU0FGm4l8rOmu51LtpZYt3Denj/HnP/853jNsVFJxO+KII7KVVlop9/nuu+8e7x955JFImEmtXgiq01Jtyy23jM/JXieZLR3GpRYvNQmiu6ZLtUfv8/322y8Ov1588cVs6623zi688ML42vvvvx/vV1tttXifMs85CAP7etAmWcXPILoCF4u0CKfhJmkgmafcUt348MMPY7NNhsqkSZNyp9dkoVc2bFSSZmWJJZaI7Biy2GjNduaZZ2ann356fC1dU8q3dDETXaobVGimuSZkkyap+oPSb0mlpWfPntmtt94aGepIw78JotPuKbV4eeaZZ8q0ZEtBuOogCYdAvNXiUu3xOkpxL4YC0+o4ZZynhJT27dtXCKLTuinFz1LLJhU3g+iKcu+77ror90ykXqpszMHiTK8nF2ipdtKgETLRqfpIG+20IEtSdZEVQwCvX79+2W233RY38KzbBNgLBdG//vrrCm1eJFUPvZBT1jm9UUHWKYfltGxICSqSihszxY466qjslltuiZYuvXv3zpZccsnccFHaQ3Tt2jXaPW233XbxOJmuBN/Idk2Z6TXhwbhUe9wTf/PNN7kgOpXj4PWcPwOF7g30TScZDuuvv35UkbDuMweFhBYVP4Poih5un3zySYVngrIVMmbJZuOCQKabpJqjB2J6beVLGemSVFP0U+Vt8ODBUVXWv3//SgeWsZ5zs1+T/quS/s8ff/yRPf300zFMMGndunXWpUuX+JiBgfnZ6ZKKF4fVN954Y3bNNdeUGS4MqlXYZxNgZ+AggbaddtopO/744+M6wsE31wqCclOnTq323+0eXao9qke4Nyb7PL+tMUF09u8pE53Mcw7AUhIL7VjTAVhq1aTi592dYijKwIEDI9s8HxnptJ9Ahw4dcidwkmqGUi8OpT7++OMyj3fs2NGnVFKNUU2WbuIfeuih7Prrr49NOW9sBNKg8LSewzVdqjkySrlvpscx7rnnnmzQoEG5vsb2Q5dKxz777JPtv//+2XXXXRefE4y74YYb4jowffr0Ci0bOey+/PLLs5YtW0bVygYbbFDjbHR6qrueS7WTAuPlZwMSRE+tWzgA4zXLG6/5PfbYIx4fOnRovE9VJip+BtEVGwD6t2288cYVno3UF502FCzQ6cIiqWaBrsp6n5uJLqm2AT2qxQias2GnL/rDDz+cayGVeq+mrDXKzMeOHeuTLtUQ2aa87lLW6fLLLx9DfUeNGhWfG0SXSquq++67747WLNznsxbfcccdUQn24IMPxvewhyZjfcqUKRX++2233TbeP/XUU9X+u1nnSc754Ycf6uD/iVSaCIwvtthiWd++faNdy+eff57LNqfijJZMKVZGpdm9996bnXfeeVFlQsCdeFpqzaTiZxBdOSeddFJugnjyzjvv5Bbon3/+OZs8ebLPmFQD9CBmOEn5gygmgS+11FI+p5JqrEePHlGK2r1799xj3OCngUjDhw/PPc4GnzU9DUGSVH3p9bPbbrtFCfdjjz2Wyzpl2N9GG23k0yqVMBLUcOedd8b7Pn36RBDu2muvzc1RIGhOP/W0/6ZFFC1eqiMdlrumSzVHIJzgOGv3mDFjct0aFl988WzPPfeMw6/bb7+9wn83bNiweM9rmyC8SoNBdIXffvstTt3IqOEkLkkDydZZZ514b+aaVLt+6OXZykVSbTVv3jwGmVFemgLlbMRTliwl4vkHeGy6Xc+lmmOTTbCclg3zzTdf9sADD+S+ts0222TzzjuvT69UYsgGv/LKK6O9E+1duA6w1hLgToHyv//979Ey9dRTT826deuW/e1vf4s1maSaX375JXv++eer9Xe2bds2rkWu6VLNcK/M6ycdSPE6JsGN/uf5eD0zcJRODen+mgN08FpW6TCIrpyDDjooe/LJJ6MEPLWXGD16dAwXZWgCZSwu0FLNlC+zbNasWbw3iC6prtCPkWtL/mAzAuockuf3TOVg/KuvvooBpJKq78ILL4yDKe6ZyUTLH9S7ww47+JRKJYjDNCq7zz333Djc3n333eNxhoqyPi+xxBLZN998E9Vhu+yySy4IR1A9Bdkff/zxav2dtI5h3+4eXaoZDrl4XXIYBRJSvvzyy3jdUjGSn4RyySWXZGuuuWa8xkmQS4NIqUpT6TCIrtzk8F69emX77rtvLOacilO+QoZ62nibuSbVHDe3qR86Jd9pkG+nTp18WiXV2WAkstlS30auOSmgnt/SJWXbuOmWanYo/o9//CN6olf2Gtp+++19WqUSbeGy2WabRZb5f/7zn+ywww7LZZ9THcY+O7V44ftYr7mecBCXgnCPPPJI/LfV4R5dqrmHHnoo9zpNuH8mPta/f/84/DrzzDMjmE7LpbSXJ/mUAzD6pjOAVKXDILpy6KdKLyfK0AYNGpTbZKdpxamHqsNFpeqjNRIl32BoCT3SGULi8DFJdYWb+0mTJmVLL710VJDlZ6Rzs58wBJGvG0SXqi//dZX6HSdrrLFGDO+VVHoWWmih7IUXXoj2an/+85+zzp07R7sV2rQweJSqb5Cw9u2332b77bdffH7XXXdFGyj24VSJMZC0Otijf/TRRwVbR0oqjCGivF4Z8EucK3+NZ24BB10klzJniNcnGescglGJBrPQS49BdJXBcCTQ45F+T3jppZdyCzTTiVmkJVUdN7X0R5xnnnmyoUOHlhnYu8gii/hUSqoTBx98cHbKKadk5513XgxCmn/++XNfY1Oe2rek4aIG0aXqGzduXO7j/M02bOUiKWGtPeaYY6I6pUOHDtF2hT7LZK9yAHfAAQfE9w0ZMiT7+eefs1133TU+f/DBB6v1JKbEt/y2bZKqvk/feuuts8svvzxaMi2zzDJRTUK12ciRI+N7eA2n/ues83RrSMkpe++9t091iTGIrjI4BSc7llM4TtpSJjqbBKd/SzXz2muvxXtOue+9997snHPOKXNoJUl1gSzYSy+9NEpLu3TpEr1ZKUdNHn300dzHqbpMUvVw+MSheGUMokti3/zEE0/EgfZRRx0V2aypfeMRRxwR75999tlcYJ35Y/fdd1+211575dpL8FhV0UqCLHgPxqXqyx8qyuuSGBivv1GjRkUbJqo327dvnwuic9hF2yX6pXPfTY90lRaD6CqDDLbyfdgYSPbee+9FPyiGi77++us+a1I1pGxzXj+UcyYG0SXVh88++ywGmjH88Mgjj8wNN6NVW7LeeutFZjplrJKqho31TTfdFAkn+QkooI2SLdokffDBB9lOO+0USTOTJ08u84T06NEje+aZZ3K9lVOLlzFjxsS1pGXLljHkMH29KrgeEYx3jy5VDy0QCZoTROfwK73uunbtGodf6XD8/fffjzcS4shKT/3TGUKq0mMQXWUwjKyy7JpUrsLini4okqqG1w83uBxGJXzuUFFJ9YHsGPoysyFo1qxZBNJBr1bmMWCLLbaI6xAtpiRVvbLsk08+iew05Fd6kEWaH1yXVJqoBmOI6Mknnxx9zvHll19GdRgBdvbTc831f2EYWrrQa5m+6AToUp/0gQMHVuvv5M9kgHh1MtilUnf++efHe+JbBMlJLKEVIj3P84Poqf85wXXavzz33HPxuUH00mQQXRVOxys7xaZXG3beeedY/Dm1k1Q1ZH9S4ZF/Y0tPRAaTSFJdYzOeMswvuOCC2FyvtdZa0aottXRp3rx5ZM0OHjzYfwCpiqZMmZL7uF27dlHNMXr06Nw9tCSBTFXaqy255JLx+WmnnZZdeeWVUSGW0HOZQ+/USgKpT/rjjz+eff/991V+Mtmj//jjj7lZZpJmj+QS0HEhZaFvvvnm2dSpU+PAfN5558222mqreP2SdHLGGWdkAwYMiO/j8RVXXNGnuQQZRFcZCy64YJSDrbTSSjEMJX8g2fTp02MjzulcCqpLmjV6oE+cOLHSm11Jqg+HH354ZM4svvjiMcCMjPSUOUuv1YRy8xEjRsRGXtLskTGass9p0UZv1H/84x/x8UYbbeRTKKlgy1TQS5mMV4aH0ms5PZ5aqLZu3Tr24gTXq5ON3rFjx2zZZZf1YFyqItZuKkQIkFOxmd/KhUQTZhoccsghMW+AKpHtttsu22CDDWIoMHr37u1zXaIMoqsCguf0aitfnkJJC0F2AulmrklVc+utt1b6+G677eZTKKleLLfcctFG6thjj809RhUZKEGlZ3o6zPv9998jkC5p1jiM4v6Xw6fjjz8+XkfPP/98Lgs9P/lEkvDRRx9lvXr1ilZP3PtzHbnooovi4I2gOck2XEuuuuqqWLv/9re/xUE4br755vj+quD6w7WJa1RV/xuplBHv4rDq4IMPjkz0tJ4TRGc2wV//+tfsxhtvLPN64r8hS50kFffypcsguipgQ923b9/o/ZQ/+DBln7NAUyrGwi9p1n777bdKeyW2bdvWp05SvWIjXtmck1SKusoqq2SrrrqqB+NSFTzxxBNR3k3G+TXXXJNNmDAh97W9997b51BSBWSak1F+9tlnZ2eeeWY8RuB8kUUWidkktHq8/PLLs2WWWSb2DDfccEMMA6flI5WsKbBXFezRP/7448h0lzRrxLZoy8a9MPGvE044IYaGtm/fPvc9PL7GGmtEtjqZ69dff308zsEY3RlUmgyiqwIuCPR4pPSbMtV0Gk6JC4/tuOOO0d/ZYWTSrP30009R+p1wwwxujiWpvjHQjLLw/OGHuP3226M/espGJziYPpdUOUq7cd9995V5nA03rzNJKu+cc87JunTpEr2U6X3O3pr1tl+/ftlZZ52Vq1plRgmZ6LRPJZs8DRhNQbuqoEczVeNWjEuzRiyLtZzDqsmTJ0dmORUidF5grhCtDznUeuyxx+LAnO+dNm1abtjoUUcd5VNcwgyiq1Jk2PTv3z9Kywioczr+yy+/ZMOGDYuP119/ffuiS7PBwROLNPbYY49cT2LLvyTNCcOHD4+DvPLZ6J9++mn27LPP5oLoX3/9dTZmzBj/UaRZoISblgkffvhhmcePOOIIW7lIqtSaa64Za3E6aDv//PPjekGQjsDdhhtuGNmu1157ba4F22WXXZb16dMnPmYYeP5A49klwtGKwiC6NGvM+yNIzj1y/gBf9u0ceO21117RuuWWW27JZZ6n9kpkq6+88so+xSXMILoqtckmm8SJOBttTtw4pUMacEK5GJno9JGSVLlLL700a9GiRdw4r7POOhFEpwciw38kqb6xVnOzf/HFF0eGWr7bbrst3m+88cZxnXLTLRXGQdM333wTG+gff/yxTNCqZ8+ePnWSqmT11VfPDjrooAiYt2rVKvoup4zzXXbZJQLrHNQxx4QMdrLWr7vuumqt+6+++mpcryRVjrlBzZo1i4GiBM45rOIwa+TIkTFslMGiDP7l87nmmivmnqT75qOPPtqntcQZRFdBlKcS7OPCkrJu2GRzWkfm2s8//1ytPm1SKeHmd+zYsdkPP/wQ07zTwrvnnnuasSZpjuDGn4Nwyk4pHc+vgmHD8O2338aws27duhlEl2az4a7MPvvsE22TJGlWSKShwnu99daLoDgDRBleuMMOO8RhNgG80aNHZ8cdd1x8/4UXXpj7mD1E/uHdrLCez+qaJen/Xh/du3ePGQR0YOBj7pNTwij79bR353CL7yf2xSEY+3qVNoPoKmjGjBkVNgb//ve/s/vvvz/r0KFDnM6xCZdUETfCqQ86izODfsAEcElqiH7OrNms3YsuumgMM0sDRjkYf/fdd7NJkyb5DyOVQ/Y5/VA5cCqPVi6SNDvsodkPvPnmm7m1NyELffz48dkBBxyQHXPMMZEhy3rMek3QjhlLN954Y5WeZALzBOXdo0uV47X13nvvRdUGw0KZC4Rtttkme/DBB3NtWFNAvXfv3vHaxcknnxwJKipt/gaoIAaRjRs3rsLjLPz0ctt3331juvivv/7qsyhV0g+dkkwOo8guAX0PV1ttNZ8rSXM8CLjBBhvEx2wYyLYBPVgJptPyhcD6HXfc4b+MVA7BqBEjRuRmnBCkAq3amBEkSbOz0EILRdYrPZbT4dvbb78dLVvoy0ywHLSR+Pvf/5599NFH0U/99NNPj8evvvrqKu+52aNThUZbCkkV260S52JfPmTIkHhd0eP89ddfj4oRqkXeeuutyDynM8Pnn38er6Vll102qs8kg+gqaL755ssuueSSOM3Ox/CxiRMnxqkcpWWDBg3yWZTy0PLo4YcfjlYu+Q499FCfJ0lzHPNL7rrrrvj4u+++ix6sZLp99tlnMdxswQUXzPbff//szjvvjKC6pP8h8JVQ4p04UFRSdZD5yl4gZbKOGjUqhnyfeeaZueGG77//frbSSitlyyyzTHxOL2Y+nz59enbrrbdW6e/Zb7/9snnnnTfWdEn/wz0ulWUMFT3xxBNzLVt4nTE4FFSD7LrrrrHGn3LKKTFXCCeddFK8riSD6Jqlww47LHfhyMei3KZNmxhUVtUFXSoVZHlStpmPE28mfUtSQxyKn3/++dnmm2+ey0anogyXX355ZKqzsWd4YiprlZTFUL/8NkdsoBnYt+SSSzpQVFKNUdmy9dZbR6Yr80nOOuusyEAn+/zwww+PdRnMVyLYB5LbqpKNTjvW1NOZa5ik/5Myz9u1a5dtscUWcYjFoRZtDVu3bh1rOwH1VVZZJbvpppsi6D5lypTsL3/5S7wuJRhE12yx6T7++ONjE55wUscFiE33Sy+9FKfmkv4vOFVZ38K99947Mj8lqSEwj2H48OFRjgp6rIK2bSNHjszWWmutaE3hwbj0P2ywqdhgw53aLICBf1RwSFJ1TZs2LSq9SUa76KKLcntr2kCy33755ZejSuyQQw7JNtpoo2gLSYDvq6++qnJvdPbon3zySfbcc8/5DyT9f9zj0saF2FWKX1EhQsvDF198MXqlp5gXVZwM+AUZ6STESTCIrtniJJzNNafaCy+8cDxGG5e7774722233bIWLVpk/fv395mUsiwbPHhwpVkf3AhLUkNiY3DGGWdUeJxs9FR9NmzYsNh4S8oiE23VVVeN9myp3QK9jY866iifHkk1ssQSS0TSDUE65pHQfoX9NpWsDC5E3759Y/8NAnm0kkjZ6PRqnp1OnTrFHKbUokIqddzbMrOMAyZebx9//HE8fuSRR+a+hxZLu+++e8wrIL5lFroqYxBds0XJN1PDKfPu3r17nISDKcV//vOf40JEe5eqLOhSsaMXemqTkHTs2DHbZJNNGuxnkqSEjJtFFlkk15MVBM7Hjx8fA5PY0Of3gJZK1ZNPPhlDRSnn5h44YcNNYokk1fRA+4EHHsgmTJgQLSWuuOKKWHsZMEq264orrhjZ6lOnTs3WWGONOMCjrVTbtm1jrgnfPzvsRTjse+yxx+LPkUrdlVdeGQmhtFfl9UH7wnfeeSfaKfFGEhytDx955JF4ffIxONyy8kz5DKJrtrjIMISM7DU+ZgGnLcUHH3wQpeFsJjhNHzBggM+mShol3yy8nG7zGknDR0499dQKgXVJaggffvhhtHLJD6KnTQIZthyM00f1l19+8R9IJe3cc8+N9/kBqHnmmSdaHEpSbRAcT8ND6becAuOPP/549re//S0+5v3RRx8dH3O43adPn/iY7/3iiy9m+3f06tUrgoYejKvUcU97++23R9InQ0Pz1/T9998/hvfS6oWEEhJNCKgzzJfe6FaTqzyD6KqSXXbZJRbue++9NwLnXGhw9dVXZ8stt1yUvVx33XUOL1FJO/PMM2MxJmBOZgllmlRu8PqQpMaAQWZsysk+X2GFFXKPk3HLADMy19hkDBw4sEF/TqkhkRxCb1TkDwo/6KCDcoEvSaoLzCahtcRdd92VPf/881Exxt6baw9r8Y477hgfkzlLL3XmkpHgNjsE0AkAEhzkmiaVKl5bf/zxRwTImTPAfAGQbU7yG/MJ8lsbEtdKrZTovCDlM4iuKmvVqlXWu3fv+Jg+USCg/u6778aAJcrMhg4d6jOqkjRx4sSYE0AZJpvs119/PR4/8cQTI7AuSY0FmwOC6ZS2tm/fvsxBIIF15p1ce+21HoyrZBG4IlCVb+65585OO+20BvuZJBUf2kjQv/ziiy+OPUQK2LEGL7300tnee+8dLVTnn3/+GHS8ww47xNdppfrWW2/N9s/n0JxZZvfcc0+9/3+RGiOyynk97bHHHtEm6aWXXoqWSbyu7r///lxlyEcffZS1bNkyqs9Y/3ld8t9I5RlEV7WwsS7floJyV07FmWrMhHFO86RSc9VVV8V7WiTccccd0T+V/oYE1CWpMUo9WWk9xdrOwKUXX3wxO+GEE+JgkOx0qdSQsXnBBRdUeJwqjVSJKUl1NWT0lFNOyXbeeefIhgWVrGSPUzF2zDHHZG3atIkDPBLamLNEYJ39NgFyAoSzQrCQ9hVk2fLnSqWGVqu0MqQVG1UfL7zwQvaf//wnGzlyZLyOqPSgjSFo7fLggw/GPTHtlGzHqsoYRFe1cEJXPkg+aNCgGMpAOcwrr7ySDRkyxGdVJYUMDxbctddeO5sxY0bu8WOPPTZ6DEtSY0SWDdhYp4/JRmcQcteuXePj/FYWUilgwG75fsO0RTjrrLMa7GeSVLy4tjAAtEWLFrkqVg7yqABnsHE6xKPFVLdu3SIgzv6CfTdVsLNzzjnnRLuYFCiUSgX3sBxSbbrppnFvm4aFcrCUYlbLL798JL8x949qDxx44IHZuuuu26A/uxovg+iqloMPPjiGlFDSmu/ss8/OunTpEifoDCDldE8qFbREYFAfp9sJU7zJHpGkxqp58+a5jylvBZnoZKRTWk42ukPDVUpYy5988sn4mAy0dBDOJnzJJZds4J9OUjFiX52f8Uqm+WKLLZaNGTMmKr5Zl9dff/3crBIy0lNPdK5NP/zwwyz//DXXXDPr2bNndt555zk0XCWF6vBPPvkk7nGPPPLIaEVMm1XWehJD6bJANfmll14abQ5pWcxrj3tgqRCD6KoWSr7ZUB9++OFlHh88eHD2xhtvZJdcckmcktt3TaVi8uTJsfCWL6c89dRT3XBLatQoW73xxhuzpZZaqszjZLytvvrqkZFLBttvv/3WYD+jNCdRvp3Wc14XtHbhPS2OJKk+EdQjOL755pvn5pDRKpXWa1OmTImA+QcffBCBwYcffjgyZ7/55pt4fHYIoBNspw+0VAroa96vX79oacQhVUp24963Xbt22XzzzRevC97vt99+ufgV8azy98VSPoPoqhGyzffaa68yj51++ulxSs4ABjLTf//9d59dFT2CTOV7DHKC3bdv3wb7mSSpKthU9OnTJwLp+Sj7ZvgoZa+UuPKxVOymT5+eXXbZZdmqq64a802++uqreJx7Wtq5SFJ9r8m//PJLHORxDTr00EMjsE7AfLPNNosD7X333TcC7WSpk2EO2rSMGjVqln82Q8PJxOUaxzBTqdgxTJTf9REjRkTb1dGjR8frilaFHCY9//zzsd7zGiN55Oeff8422mijeN1Js2IQXTXyl7/8JaYYM0Gc0zvQQ4pSGXq4Mfn4pptu8tlV0c8IoAKjPE613XBLaiooZ912220r9GilLdVhhx0WZa2zKxeXmjp+59lMk/GZstFXXnllN9SS5hiC3PRqpsqVQB9VYelAb9FFF83eeuut6O0Mguv0SAdrNZm3s0uCS9ntUjH7/vvvI6Oc7gkMBKd9y/zzzx9tiVnXea306NEjBvVeffXV2eOPPx5xrf79+0egXZoVf0NUI1xcOL1j2MkOO+yQLbfccvE4U4+5MNE7/cILL4yBi1Kx4iSbvmr56FNYvt2RJDX27Le0jidUk1FRQ8Yb1TZs6KVi9dprr2W33HJLtC38448/co/feuutsbGWpDmB682OO+4YH3OQff/992cLLLBAtKKgPzoGDRqUC57zOMltkyZNmjR7G50AADQvSURBVG1bF+Y6nHTSSdkNN9yQffrpp3Pg/43UMAigcx+b5pMRmyIT/csvv8zeeeedSPrkNTBjxoyIWaV9fYcOHfwn02z9aSYpF1INvP/++3Exon/Uq6++GkNRKEFjE0JgnWA6C3WagiwVEzJB1llnnfiYm1uCTAzU5fVAXzVJakpYx7fccsts6aWXjiFMCQfmzzzzTHbFFVfEDIhll122QX9OqT5suOGG2euvv17mMYb73XfffT7hkhoEB3q0liBpjfkktJ4gKHj99ddnLVq0yJo1axaVM1y/OAgEg5HZhxfCXr1NmzbZ9ttv7+BwFaXPP/88fsf//e9/R/XG+PHj496Vli20L2SWAIdOhEFpRUxrJILnvOcgXZodg+iqFS4+9Gh7+eWXs8UXXzzKvZs3bx4XJsrR6KNKb1WHM6jYsNhSXskNLmViZIIQVGcBtgxMUlPEgDIyd9Zaa63IzgEH4gTY2bzvvvvuUeoqFZN3330311s4IQOUw6SWLVs22M8lqbQNHjw422WXXaLqdeLEibHfYI2mb3Pr1q2jWoxWbOxFOnXqFPtx9twEDck6L4Qg/LHHHhsZubRnlYoJB08PPfRQtswyy8SenARP2g9vsMEG0aqNysvPPvssF0AncM4h1Nprr93QP7qaCNu5qNYl4AxtQOqXSg8qymFOPfXUuGCddtppPssquhIxblDJ5lhooYVy077toyapKSNgyOZi0003zT1G9jml36zrt99+e1ThSMWUDEIv4fKovDCALqkh7bzzzpGBPnTo0Aig45VXXonqb1pNbb755tE3HZ07d47+6QwD7927d1zbCuGat+KKK2YnnHDCLL9PamrGjh2b3XHHHfG6eeqpp2J+GQdMe+65ZwTQSQghgM4h09tvvx3/DYmfBtBVHWaiq9boLdW+fftc1lr+RYzNNgv57ErLpKaCwyLKwAigU15JCxf06dMnSsQkqamj7yobEDJ42HSwYWfjzsabDbclryoWJ554YnbVVVeVeYxKjDfffNOqMkmNCvsOAuVUfG+xxRbZ8OHDY30m65YhiQQFybalxSTZt2TkFvL0009n2223XSQAVXaQKDU1VGSst956UblBezbaq/LaSJnniy22WC5exQwz2r4wW4BBviSGSlVlJrpqjbIxgujlLz4s3AceeGAs0HxcPsguNUUMz2VgLr/vKYBOK6OLL764oX80SaoTqSckAfR0reNAnMy3CRMmxEAmqakj2aN8AJ2hfgMHDjSALqnRYf9BizXaTY0aNSo7/PDDs169emU9e/aMzzkATMNH2a988MEHBf+srl27ZoccckgcJDpkVMWAOXzco+61115RvUEAnUOmadOmxdcvuuiiOHwiGY4AOgN577zzTgPoqjYz0VUnON0bOXJkLOT52JxQPsOpeffu3eNCJTVVVFTsuOOOFR5n8BgDyCSpGBA0Zz1/8MEHI/MtoU0bg5TZqJDlk4YrS00NFRVkbL7xxhvxORttfu8p6z755JMb+seTpApITCODnGxbDgG5jq222mrZ+++/Hwk9BA1Zp2mtykyHdu3aRa/nRRZZpGBQnp7ofB9Z7WbjqqliLWfALveo//jHP3Kz+vj9Zu4JlRr3339/3NfyMb/rzzzzTLb11ls39I+uJsgguuoUF6WHH344l6FLRg9DSygD57T7iSeeiLIZqanhhpQBJZRI5vcP5ET7ueee88ZTUtGhryRrdz7W8yOPPDLWedq6MPtEampuvvnmaMOWb7PNNouEEALqktTYfPjhh5G0Q/IOmedHHHFEPM6Q0SlTpsQcBwaEo3nz5rF32XXXXWNvTnu2WbV14ZpIZrvUFNu4rLvuutHGZffdd495fd9++23MEaC1MDNOGKQ7ffr0GMr7008/Zaeffnpkpks1YRBddYoT7QEDBkQJWcKgBjLWmC5OrzZOAzkdlJqSbbbZJnv22WfLPEbwiN9nSislqdhwYEhPSTbsCYeJgwYNioFmZLzZ2kVNDcEmstMWXXTRmOvD7znrOa0PCEZJUmPF9SpljJ933nlZv3794nMC6AwVZY3+4osv4prGYfe///3vWKcZDl4IbVfJ0h0/frzXQDU5/G5ffvnlkY1Ostv6668fj5PkxmHSxhtvHC2P2MczaJQDcz4m2VOqCYPoqlM///xztsIKK0T5TP5pOKXf9Edn08KJOIF2qalg4MjOO+9c4XH6A9MnWJKK1csvv5x17tw5V2EG1nEOyFnbX3311Sgtl5oC+vxzn0qG5q+//lqm6uKggw5q0J9NkqqDoDcH3cwmO+2006I6loS2ZZddNvpAN2vWLPbmBNmpBt9hhx0q/XPIzGWPTq9oWlzY1kVNrY0Lh0lnn312HDJdd911cSj06KOPZptuumk2efLkrEWLFtl3330X6z9VlEsuuWRD/+hqwhwsqjrFYs1J4P7775/ts88+uQsUQ04oq7n66quzu+66K3pLS00BB0IEysufVlP6WL7NgSQVG/pGs0FZccUVc4899thjUVHWoUOHOCCnlFZqCo477rgYKJYfQN9+++3j91iSmopffvkl23bbbSOQTvCbg22qxGhpQRIbjxFAZ60msLjvvvtGMLEy9Ey/7bbbIju3f//+c/z/i1QT3HuydhMgf/HFF2NGHwkf3KOOHj06MtL5nSc+RQCdgbyPP/64AXTVmpnoqnMs1Ax06NixY1y4WJg54eaUnOEm9E2nPxVtMCixkRozsjYoB2OhTtUVTPPmpnWJJZZo6B9Pkuodm4+FF144rof0jGadp7/q3//+9+yAAw7ITjrpJHtLqtFj0B6BJdobJEsttVRuKJ8kNSWDBw/OLr300khOW2yxxaLShspZ5o/tuOOOcQBOyyqS2ugHzRDSl156qeD++7DDDsvuvffe2OPkH5xLjdEZZ5wRyZscHP3+++8xNHTcuHFxP0o7I/buaWg4mA3QvXv3hv6xVQQMoqvecBEjg+1f//pX7rG99toru/LKKyN7ja+x6DvASY15cb744ouj5zmLM9lrGDp0aGSiS1IpIYDetWvX3LpOWSyVZ2xY2MyzaZcaI5I7yNTMz8TkIOjNN9/M1lprrQb92SSppgicp6Gh55xzTlR/k5k7YsSICB4yCPyGG26INmy0eOnUqVO0bFlggQUq/FkkvXE95FCRYDuZu1JjbbXKvD36/dOKiOA4B0kkfYCWRCnhg9cIrwvavUh1wXYuqjdsVrp06VLmMU4IKaN56KGHYnFnKJnUGL3wwguR3cEiTPZaCqAfffTRBtAllSR6S6bsNK6Nn376afbOO+9kO+20U5SKT5gwoaF/RKkCNtIc/pRvZcBcEwPokpqyFEAHST8pkLjVVltlU6dOjUx0+kY//fTT8TXmnNByNb8iJ6F6nFYYEydOjBkRXDulxua9996Le06C6EcccUR24oknxoER8wBAC1Z+d3lPAH2PPfbIzjrrrIb+sVVEDKKrXu25554VHjvmmGOiLJz+6GSl0yNdakymTJmS7bbbbnGzySKcysCooKBsTJJKERsSNi1Im2uygVZaaaXISqeMnIGNUmNCtQSBo3wciB988MEN9jNJUl2aMWNGXNd4v/zyy8dMJwKN9Inu06dPBNKPPfbYqAAnoe2oo46qNEjOweLAgQMj8Y0qM6kx4YCIe02qJQiM0xOdA3JaunAwRB/0yy67LNq5UDVJ8gexpvzDJqm2bOeiesegh169ekU2b0IvaU4RzzzzzFion3/++WyjjTbyX0ONYlDPxhtvnE2aNKnMsDyyM/idbdWqVYP+fJLUkMjqueWWWyLzJ38443nnnZf97W9/iyq0YcOGxYZGamiPPvpohR6orPGjRo3K5p133gb7uSSprnFdu/vuuyPhh0Ajh4dc5/75z39GEJGgOW+p1cWsWlzwNdrDkJmeDs+lhkRQnHaqHAhx/8nvMY/xOz7//PPnKinIPCchjgMhXhMkxUl1ySC65ghKvOmBTk/KhKA5U8BTie2YMWMMUKrBg0ObbbZZ9sorr1Ta3oWvSZKyuE5yTeS6mdACi8NxerASUJcaEsPxGKxHAClVlDEYfOzYsdkyyyzjP46kok4KYhg4yWxpyGIKnue76aaboiVGeaztzDKjDQzr/ZprrjkHf3qpIiop+H194IEHsr/+9a+5FoL9+/fPnnvuueiA0K9fv0h6o7URff0ZHi7VNesaNEe0b98+Mnvbtm2be+zVV1+NUrJBgwZFiTgDT/Kz2qQ5jYW3sgD6tddeawBdkvJssskm2YABA8o8J5TWMuuEa+Ztt93m86UGQx/gbt26RfZlCqCTrcY8HgPokoodrVO32GKL2GOTVX7ooYdW2r6FVi8EIcvj2kkbjDZt2kRW+7fffjuHfnKpImaYXHfddfFGzIiDIRx//PFx0ENgndZtBNBZ4xmeawBd9cUguuYYerSxqaHEm3IbsAG/4447ssGDB2fvv/9+dsghhzjERA2CYbdM+C6PBZkeg5KksrbffvtsySWXzH1OWS0B9AMOOCCy0cmAk+Y0Ms/XXXfdGAieXwH51FNPZauvvrr/IJKKHpnnXPNYl9l3Eyg/5ZRT4mvlg4tkot94440V/oyFFloo+qdzHaVFBn+WNKdRDc5hD5nm/K5ywNO7d+8IpFNZ9sgjj0SVxe+//541b948Gz58eNa6dWv/oVRvbOeiOYqLGuVlZKrRqypNBqd/GxdCysYuvPDC7IwzzvBfRnPMuHHjokcqGRr55Y7rrbdeBIHosyZJqogqM8poTz/99BhkhqWXXjpbccUV42u0amPoqDQnsHb36NEjDsbzkbBx0EEH+Y8gqWSw53744YdjNhmmTp2adejQIfbbrNPMMslHlm9liUPshbbaaqsIXBJsZ58kzQmffvpp7MeprGBILokazNbbZ599cu0E076d3udkpdNCWKpPBtE1x3HB4ySRU8OEE0XKbjhppOSMkh0Waqm+UQFBxhp9Un/77bcIAhFIJ1uN30dOtCVJs0bAnE022b+gHyUZwRyQMzycDbtU30477bTozV++VRsD8iSplDEU/PDDD4+PGbjMfDLW53bt2mVXXnllPM48E3pPl8fe/LDDDotrKddUqb7RwaBz585RAcHv6v333x9Jb6+//nquTVtCYJ1YEsPtpfpmOxfNcQTMyTynT3p+YJ2ycBZ0+qSzSPM9Un366KOPYjEmeM7p9ldffRUB9OWWWy4bNmyYAXRJqiKC5ltvvXXucwaGkxX0888/Z9tss002ffp0n0vVKwaNlQ+g0ybQgI8kZdlrr72Wy9wlme3mm2/OnnzyyQhKHnfccfE13l9xxRUVni56ql988cURRL/kkkt8OlWvvvnmm7inZF4ev6ME1DF69OgKAXQS4UaNGmUAXXOMQXQ1iAUXXDDbZZddyjxGxlqnTp2i59XBBx+cHXjggdmDDz7ov5DqrTyMgTsMGuNgJ7UW4neTUrBWrVr5zEtSFbEpZ8ATQ8ySd955JzY3DCTr0qVL9v333/t8ql4QLC8/16Rnz56RPWnrAUnKst133z1r0aJFBMk55P7444/j+ki7Fnqfk0SEk08+OTvhhBNy7TLyK33OPvvsaN92zTXX+JSqXnCvyD0jyRdDhw7NTjzxxKiYSLp27Zq71+R3lspx551oTrKdixoMCzPlYpyEp9NFNGvWLHvllVfilJuyHfpa7rbbbv5Lqc7QboDysGnTpkXmecLQ25deeinbcMMNfbYlqQZeffXVGCr61ltv5R6jP/qPP/6YrbTSSlFuy+ZdqitXX3111rdv3zKPkZBxww03GECXpDxUh7HXnjhxYrbrrrtmH3zwQcHnh2GiVIbnz4ai9zTB9Msuuyyusaz3Ul2ZMWNGBNBpEUiCG8PrmaM399xzRwY6lY1vv/12BNi5p3z22WcdIqo5zkx0NRiyf6+//vrszTffzJZZZpkyizsZ6SzQnJjTP/2BBx4oqX+pm266KQa/ME2dN1qOcBJbXfSX33///eNE95hjjslWXXXVbIEFFsiWX375OMAgqFFqWIg7duwYw3XyA+hkYgwePNgAuiTVAn0rKQ3feeedc4998sknsfbQ4oXy3O+++66knmPX9PpDNmT5ADpBHQPoklQRAXSwJ2RvSQXuoosuGnvN8gYNGhRBy/w1m/0SiW5UntGClR7qpcT1vP7we8ZsHSokWMf/8Y9/xL6d2Tpt2rSJ31GqJgigEychA71169b1+BNJlTOIrgZHqTcb7vyhTz/99FO26aabRn9Lpi/vu+++JdUjnVYi3KCMHTs2e+ONN2JBof3Ne++9V60/h9I8AhlffPFFvFG+9+6772YDBgyInt+UP5cSAjhkmdNaILVvSQc69FujL78kqXao6nnsscfiIDyh8odrLa20ttxyy+h3WSpc0+vHmWeeGS0H8pF4QYKGLVwkadZIZCOhiKGM7IMq2xe+/PLLkdzGYXjC9fWqq67KTjnllAimk5VeKlzP68fXX38dbVapFh85cmQEyUEVBL+fH374YfRD5/d1hx12iMrxZZddtp5+Gmk2ZkqNxGGHHTaTX8kWLVrEe97+8pe/zBw/fvzM3r17z/zTn/4085ZbbplZqhZffPGZt91228zOnTvnnp/yb/369ct9/9SpU2fOO++8M3/88cdK/7wHH3wwvv6vf/1rZimYMGHCzKWWWmrm/PPPX+Y5m2uuuWY+88wzDf3jSVLRmThxYqzjrN/pmrvwwgvPXGKJJWa2a9du5rRp02aWKtf0mvvvf/87c9ddd61wD7TffvvN/M9//lOH/0qSVNyef/75mW+88Ubu2rr99tvPXGCBBSrsN1u2bBnfm4/vZ+/J188999z4vBS5ntfO559/PnPVVVeNe8OxY8fGOn7cccfF79V8881X5vfwmGOOKZnYhRqveWYXZJfmFDKH6HtFq40ePXrEY1999VW2+eabR5sNSnkOO+ywKOFhoEmpZBnR/4u+8JQ0UcZEf3iek+222y476aST4nu6d++erbHGGrnPwXPGiS7tYCpDKxe+RsZgsSOLgkz+3377Lfv9999zj/M7xRBR+qNLkupW27Zto3fl+++/H71X6XX5yy+/xCBx1vDNNtssGzJkSNa+ffuSeepd02uHKjKyJal0yMfgscsvv7xk7g0lqS6wp0z+9a9/Ra909ksMctxggw2y8ePHR7sX9uRURlPVfNxxx8W1ljcqydlPnXHGGVHpS4Z6Kewt4Xpee1TZ77TTTnFvyBvt2cg8f/jhh+PrqfUqv2u0b6MdrdTQbOeiRoMpyxdccEGUebNoszDhhx9+iCAnAeF+/fpF+S7tXX799desmHHTsvDCC8eNyRFHHJE9+uijEWho3rx53JzwNVrh8DbvvPNGTzseK9/KpTLc5Jx//vlxKFHsbr/99rhB5Pdr5ZVXjnYCqScg5WIG0CWp/rRs2TKuswwv42MQRKdtGwPK6KH+xBNPFP0/gWt67THfhWSCgQMHlnn8yiuvjMCOAXRJqjmuofntLmm3+t///jcC6AxxZG9OC6399tsvkrsSkttuvvnm6BdOa0yu1cXM9bxukETBPSB78pNPPjkS3WjTkgLoCTEOkgMNoKuxMIiuRocg8YgRI7LVVlst9xgLOH0uOQknK5sLKYFR+mYVKwa+jBs3LnvttdeyPn36ZL169comTJhQpf+W4AQZBJUF0flat27dIiCf34e+2HATSJ++3r17524A33nnnfiYiofnnnuu0iE6kqS6t9RSS2V33nln7nOyi+ixyqBrspAuvfTSCKoXK9f02uF+aMUVV4w5MeUH35UfLCpJqj4Sjp599tnYOz311FPZ0ksvncsEZtgje3Tcd999MWNq0qRJuf/28MMPz4YPH5699dZb8TUq0IqV63ntcK938cUXR5V4ly5dorc+c/DAQc3cc89d5rnmMGfHHXes5d8q1R2D6GqUOHE866yzKmQVsVEiezhNZl5vvfViyEQxIruczOl11103Fpq11lqryhPQmbZOkHy55ZYr8/jPP/8cbWA48SWznZulYkQGBJkQ1157bdaiRYsKA2FYjPndkSTNOQyD4vB2gQUWKFPKS3D0tNNOy/bff/8oIy9Gruk1R+LEOuusE0kACUkVrOX5w2slSbXD3vPWW2+NfRQZ17RiS/IzzFm7uS4/8sgjuceoJue6zDBIAukMKy1Gruc1RycBOgrQ/ofOAyRScO+XDmsWWmihXDcCvo+D89VXX72O/uWkumEQXY0WF06ysI8++ugyj994441xYjlq1KhY6Gnzctddd2XFjgzqtMCUV/6wgVYunO7mY/O57bbbxsLPhpQbnGJE5gN99emDju+++y73tbXXXjtuCFu3bt2AP6EklS7asn355ZexwU7ISGdGByW8VJlNmzYtK3au6VXLVqNCgfuZ/CoFkgSoLFt//fXr9d9IkkoZiUgHHXRQfEx2MHvufPSw5iCT70mHnLR9eeWVV6J/OlVml112WVFXmcH1vGroIJBm3fH7QZwnJQgSPCc2QZsgYhW0BrrnnnvKtKqVGguD6GrU2CBdd911ESQnUy2h1GzTTTeNC2zPnj2zAw88MIZK5fdxa8roLffCCy9kU6ZMiaAvn3NoQA+6ypBZTr/Zb775Jp4DMtHzW7mkADoLEz3C+Zz2Jryl095iQMYDmfufffZZZDPm37Rxk0d2xGKLLdagP6MklTqyiNlk06YsYV1i/SKgTqUQm6ti4Zpefazhe++9d1Qo5KOabuzYsZG9Jkmq/woyZk5QFU0rzDvuuCOqyfITuAYMGBDZwlSKp30pGepkG5966qmxVy+WKjPX85p59dVXI65DJ4GU6Ib0e0SMgp7oxHvoMsA8OOecqNGaKTURQ4cOJSJa5q1Zs2YzBw0aNPPaa6+dOffcc8/s2rXrzO+++25mU3fwwQfPXGGFFWbOO++8M5dccsmZW2+99czhw4fnvr7WWmvN7NevX+7zgQMHzlxwwQVnduvWbeaIESNmtmrVqsyfN3LkyArPXXr75JNPZjZ1//nPf2Zecsklud+J8v8fzz777Jn//e9/G/rHlCSVs9NOO1W4Zrds2TLWvwEDBhTF8+WaXj0fffTRzBYtWriWS1IjtMYaa+Suz3/605/KfHzqqafO/P3333Pfe//9989cYIEFZq6//vozP/vss5lNnet59d15550z//znP8/s2LHjzK+++iru7eabb74Ka/w+++wz84cffqiHfzWpbv2J/2noQL5U1VKpiy66KN7ff//9ZQaW0N5l6623jqwlSoFuueWWkh1AweRqsvloe1MKyNanjJBMfTIf6PuezDfffNmDDz5Y6YBVSVLjwPWbVi7XX399mdko9M7cY489Yj1jIHQpKqU1nS0Jw2cPPfTQuNdLmN8ybNiwKP+WJDUs9tsPPPBA7nPab/zrX//KVQB36NAhqshpo4k333wz2nLR/uWaa67JDjjggJLMMi6l9RxUyB911FExAJzqsS+++CLbeOONcxULyeKLL57ddtttWffu3RvsZ5Wqw3YuajLmmmuuGDZKaVjXrl3LfI1+a8cff3z29NNPRz9serBRJv7DDz9kpWaNNdbI+vTpkxU7Nti081lttdWyl156KUoFCbgkDCv58MMPDaBLUiNHn1VatzHwOuF6TvA0Dcp+6KGHslJUKms6ffA7d+6cHXLIIWUC6G3bts2mTp1qAF2SGgn2X+y7b7jhhmy55ZbL/vnPf5ZpocnMCvbjBI1JbmIA6dtvvx37c1qwktxEQLXUlMp6Du7ZaPFDkgTxG1rIcoBQPoC+2267ZRMnTjSAribFTHQ1WWQY77PPPmU2Www94XSXjfcJJ5wQQyrISu/WrVuD/qyqW59++mlstOmNz9Cb/OGh6Nu3b/TuIzNCktR03HzzzRU2mUsssUT27bffZnvttVdkq5dqVnoxIvBCQIZgS/kZLfRDpwKxFDMWJakpoJc1yWwXXnhhpXO22KexrjObims5QyUPP/zw6H997bXXZvvvv7/X+CJCz3OyzwmiE39p3rx5dvfdd1f4PqrHidH06NHDf381OQbR1WSxULPBuuqqq8oE0kE2E9OeGf5BFhun3ldffbVDJYtgs82Ce9JJJ0WAPA2iSzg8+fvf/57tueeeDfpzSpJqjsHaHIYyQDIfw8w4HE8bcjVtZCISQBk5cmSZx1u3bp0NHz48W2WVVRrsZ5MkVX1/Rrb5uHHjsl133TV78skno71L+b05Q0lXWmml7Pvvv4+DU/ZstF/t379/tswyy/h0N3EEzo888sioTGBPzjDZ/CrxhCRI4jd/+ctfGuTnlGrLdi5qssg6v/zyy2MTdt5555U5xXz++eezDTfcMFp83H777TEhnBIqAupqutnnXbp0iWnd4AYsP4C+1lprZZMmTTKALklN3Oabb5698cYbsSFjtkXChoyeqvRJpycr2elqmgEXMtMIklPqnY+yb9ZyA+iS1DSwB3/99dcjSE7/a9ppbrvttmW+h735qquump155pmxh7/nnnuyxx57LBszZky0/WBNcFRf080+J6OcakEOS1ZeeeWoEi8fQF9zzTXj9+Dee+81gK4mzSC6mryllloq++tf/xq91lKAFX/88Ue27777Zs8991y8ceHeYYcdYgglfbnUNJDJQM89DkFeffXVeIwgSv6N25VXXpm99dZb2QorrNCAP6kkqS4RLGcjlp+hRgk4GERKr3Q2Y+Wr0dR4TZ48OWvXrl0MlmODnYImlHwz3+T888/P5plnnob+MSVJ1UDmMXtsAuRUE9HehcfykfxEiy6y0Rkwut1222Xvvfde7M9ZE8hi//jjj33emwjuvagm4F7smWeeicTFRRZZJAbJ5iMZgr06j5MkITV1tnNRUSHImnprMRGarLVUAs5iThk4LWAIsFMqTluQRRddtKF/bBVYmMlmSFlpSy+9dPbll1+W+R4C60888YTBc0kq8vZtlP4OGDAgmzBhQu5x1nqCsGuvvXZ26aWXRrWS/bMbp6+//jo75ZRTsoEDB1b42tFHHx0BFYIvkqSmj5YeBMzpez7//PNX2MNh8cUXj7WdADq90umlTVYzPdPZ/5Eop8aH+y5artE2lyQ2+ptzQMLenRhLPlrvMcvG1i0qJgbRVXQInLMAn3zyyTF8NB/DyOi7RskZPdMXXHDB7Iwzzoj+XSzwahw4zeawgxNrstM6deqUDRkyJPd1/q1o5cPNlgETSSqt9WG33XaLYWb5awIZ6ltuuWV2ySWXZBtssEGD/oz6H2aXXHDBBREoKT90rm3btjEgvFWrVj5lklSkFcUEV9l/9+vXL5sxY0aF71l22WVzmekEXFnHCcqeeOKJ8UZ2sxqH1157LfbotGKjDQ9t9TgkL2/TTTfNrrvuukhykIqN7VxUdMg6X3755bP7778/e+CBB8r0UyW43r179+jHxRuno2RG0aONDLfKpoprzqEH7jbbbBN99CjzZngovc/zA+gHH3xw9sknn0TmmgF0SSotZJszI4ND8fItXl588cWYh0IbmIkTJzbgTymy0chCbNGiRRx6599fcV/26KOPxr+RAXRJKl60dOGazyBR9m8kR4Hq8GTatGkx04pe2mSnszaQ4HbZZZdlbdq0iQB7+QxnzVkffPBBxE022mijqAjs2LFjtOIpH0AnsE5rNu7HDKCrWBlEV9EiwMqAC/pzEVjPN3r06MhUo9fqCy+8EB/Tx43hlJSTOdhkzmIADf9W66+/ftw4LbzwwrFYUwqY0O+cfzf+PS0Jk6TSRWCWjRtDzFZcccXc42nY9OOPPx59tw877LDYnGvOIVhOyxaC4wyQyx8ATsXAjTfeGFUE9L6VJJWOxRZbLNq6PPnkk7EHZz3gsYR1nflmVCktt9xy2TvvvBNrBdnoJLyxtpjwNmd9/vnn2aGHHhrB8VdeeSXartEylzYu+dZdd91o8TJ+/PioIJeKme1cVBIYRDllypRYBNJwyoTFgNPunXfeObv44otjCOkmm2wSfb4YdDLXXJ411RcC5ZR4EwghS4FWPOUPMDgAIQOBfzszzyVJ5XH4TU/VH3/8sczjrBkMqSQDjjeq1FR/Jft33nlnduqpp1Yo1+c+imx0KsioMJMkCW+//XYks+UnTiUkVR1zzDFRpXzDDTdkjzzySMzD4oCWrOjyg0tVd6j4o589zztVAyQakmHOWp+P4DoVA9tvv737dJUMg+gqOWQ6EzAn+zkfC8QJJ5wQJ6kE0+mbTlkZizdZ6gzNUO3RF+/pp5+OnvS8JwOB0j1K/Mpvugl6MBCW3vWSJBXCxo41/Lbbbqu07JuAOpvu4447LrKkPJStG7TJYz2/4oorKn3e99lnn+yWW26JYIgkSeWxJycQS2s2WrHmVzAlZKL37NkzGzlyZMzSoI86SXBUnC2xxBI+qXWARDYC5azpDz/8cOzF2bdXZrPNNsuuvPLKqCKXSo1BdJWkL774IjvvvPNiI33ggQdWWCDIQCdwPmjQoHgjiEsvbqaFr7baag32czdlP/zwQ3bPPffEwBhulijH59T63nvvLfP8s2CTdX7ppZdmiy66aIP+zJKkprcJpPyY4aNjx44t87W0IaRPJ4e0tBHL78uqqj/HY8aMicHsVO+VryDjgIK+9ATP80v1JUmaFWZhkf18/vnnV8h6BtnnO+64Y7QHY7YG9ttvv2gDQyKcB+TVR4s1Di8YBDpu3Li4L6I6vHx8hOeWeyuC561bt/YXWSXLILpKGhs/sqGZAs6g0fLat28fJWP09yK7jQnUBN4J8jIAxQzpqp1os5HmMIKbIQ4hKBH7+eefy3wvAXN63pEl6BR2SVJtvfbaa1nXrl0rtHnJbxfWq1evWNPXWWcdn/DZ4Hm8++67I2Pws88+q/B1Diloq9O/f3/btkiSauzdd9+NdiJkoBNUL1+xDGZkkQn9xhtvRK91DshZzwmqm4g1e2+++WZ26623Rq/5X3/9NYLklc2Foz89Gf8kH7hHlwyiSzkEbxlwUlkJGQsGZeIMMGMDSRkZizNlypzIbrHFFm4Y/z8WX6Z106OW54q+5zxXPIdkB5ZfnDntPv7446OPqi1zJEl1jYx0qpvIWqtsjUeHDh2iMo12b23atPEf4f9jY82wMIIY3PtUtsGm1zwZbDvttJNZgJKkegmqM7OsfBJWQnsX2oZR7UyWOslutHCjn7pJb//z0UcfxR79rrvuin70zCmprB8982SIc5x88snZmmuu6W+0lMdMdCkPvdimTZsWJ63Dhg2rUMZECVmPHj2ybbfdNgLF9913XzZ16tQI/m633Xax+aZFCa1KSgkZ5i+88EIsykOGDIlsAW5YyDqnLKyySepkD1xwwQWRBchCLUlSfWJNZ8AlFWaVrUsJmW+77rprrOkbbrhhDCAvJWT0PfHEE5GdRjVZZchY23LLLWOYqANbJUn1jWDvQw89FMHfxx57LJs0aVKl30cQnXWbNiV8TCCd9Zw2MEsvvXRJ/UNxr0NVHnt0BrMWes4SEgaZB9enT5947iRVZBBdKoABWfT7vOaaa7LmzZtn3333XZkMLALqnTt3zg455JBs8uTJETxmGCnlzJtuumks1rytssoqRdvjfOjQofH/m/eUebds2TJuTjp27Bj9zyvL+GMQCeV5lNxJktQQ3nrrregBSrsx1rPyUlkzlVRUnLGed+nSpSgHZPL/k7Z1DBK7/fbbI5mgENb4U045JZINuN+RJKmhDnz79u0bgXUOySurlGItp3UbVVWg/Uvao5NhXYw91H/55ZfsmWeeiaA5b7Nq1YKllloq5r7xXNoGR5o9g+jSbBAcZtEha5qMKwaelEdAfeONN44+bCxcTz31VCxeZLaT0cag0g022CB6rq688spNcuM5ffr0KInnjZJuMs853V5rrbXikIFhrZTQVbZAk5HOYFb6qdlLTZLUmEycODFKvykXL7TJBGv3VlttFdVoDDBjTW+KgzM54Ob/M8NBR40aFcFz7l0KIQBBWfdVV13lBluS1KiwbnMYTnX4OeecE8ldlbUoQX4wmeAxLV+oOGNNb9euXZOsPJsxY0b0N3/55Zfj//urr746y3sZngPiE7179469ue1UpeoxiC5Vs20JGVg33XRTZKpX+qL6058iy5pSKPqMsUEloM4wTRBEJlObxTq9ka3emALrX3/9dSzGKWjOWxoixs+/0korxefcsJRveZMsscQSUTK/9957R+sWSZIaMw6GX3zxxeyKK67IRo4cmctcmxUGbm200UbZeuutF0F13jhYbkwB8/fffz/WcarlRowYEdVzszssYJ3n8Jt5MfaTlSQ1pbV8wIABUWnGnpbg+qzWvIQAevv27bPNN9881nT26CSCNaa2oyTzsUcnUP7cc8/FYfisDsETAuXcq5x77rlxaNCY4g5SU2MQXaqhn376KXqGXnLJJdmUKVMKDjqZb775IohMHzaC5/kBav47UB7O19h801uUcmnelllmmXhf1yfEnM5/9dVXUQbHG1nkvFHOzc+VSrnJsFtjjTXi5+PnYPo5vdTIsK8MAXYGi/Xr169o29hIkkpnABflzWxSv/322zhIrwrmonTq1CnW9fLrOZlvdbkhJzBAxVz+es77CRMmxAab4EFV0PuUoAFBc9rXNMVsPEmSKlsn2cMyJJP+4CSAFcpUL7SmE0yn6pwWMAwxTWs77U/qsiUMB9/ECljHWb/JLv/ggw9iFhvre1XvQzj8XmGFFeIw/Mgjj/QwXKpDBtGlOkAAnQFcDCPlZJfgeqEMbRAU79ChQ/RXZWPN5pz+rAxKIYDNIJR8Cy20UG4Dnr9osxFPb7SUYRFn8eWNRZb3v/32W5mAOW/8ffn47wn0s9iC/5ZMc1q4VNbXPOH/a6tWraKNzVFHHZUtvvjitX4uJUlqjFgTr7766uzGG2+MdX9W6/zsAtbMEGnTpk3WunXrWH95LH9N540/v/yaThbaxx9/HO1YWMs50K9Khl15/PkEAuiDSn9z7jMkSSoFVJTTfvXss8+OIPWs9ruzw36YNZX9PQll7NHJhmdtJphNdXYKfrNmc//A9/MzcAhOOxY+rslanhL2iA2QaX700Udnm2yySVH2epcaC4PoUj0gcE3JNC1dqlJCxuJL1hd9R8n+JoubXmVt27aNLHAWVwLhKcOMN0q30qY6bbDZcBNMT0F13qdM+PzgO4s3vV9T0D3/z5wV/iwy1bp375517do1St5cpCVJpYhMNvqJ9+/fP7LVWftrugmuL9xf0FpuxRVXjL7v9Dbn/sK1W5Kksms6CXGPPfZYzP8iIzw93hjWdvbhHHiTtNatW7fIMicpz/VcmrMMokv1jEWXjfVLL70U2erjxo2L/qRsbNMpdVUQEGfhJNBOL/L8x/mzeJy/h/csrvzZnGqT2V7TbDn+rNVXXz3ba6+9sv322y+y4SVJUmGsxY8//ng2ZMiQaKnCWsyBNT3WWZvrUjqEZ3PN/QTrf+fOnWPd3mabbSzhliSplthLU2lO9jqt3ljXSZTjPftyktlYi/k+3ma3vyfwzVt+b3IOvNlr0/aNKjVax9AOllYy9jCXGg+D6FIDYbGlNJzebAweve+++6LEq6YB75qi9IzBaAxPSb3bGYxKOZokSapbrPO0TGPAJ5vvzz//PO4HKCmnrQub5bQJp2ULG20q1KhOW3LJJeNwm001FWeSJEmS5gyD6FIjRcsVhog8+eSTUUZG9hqbaTbcDBlJfdPZXLPR5vSb76H3Gr1WCYLTg43hpWSr8zHtVwiWk6VG/3NPtSVJkiRJkqRZM4guSZIkSZIkSVIB/2vCJEmSJEmSJEmSyjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJCmr3P8DDYwtOQdj6o0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -991,12 +936,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qmc1eP///8L0SKhvSwtpE37HimklCQSkkpIZGuzJgopFNkS9UGSbEVR2ihbq/bSTmmV0kJZM//b4/r+rvf/PWfOmTln5mwz87zfbsfMnDlzznum4329r9f1ul6vY1JSUlKMiIiIiIiIiIiIiIikcWzau0REREREREREREREBAqii4iIiIiIiIiIiIiEoCC6iIiIiIiIiIiIiEgICqKLiIiIiIiIiIiIiISgILqIiIiIiIiIiIiISAgKoouIiIiIiIiIiIiIhKAguoiIiIiIiIiIiIhICAqii4iIiIiIiIiIiIiEoCC6iIiIiIiIiIiIiEgICqKLiIiIiIiIiIiIiISgILpILrdnzx4zZMgQc/XVV5ty5cqZY445xt5EREQk+f3111/mscceMxUqVDD58uUzpUuXNrfeeqsd30VERCT5bd682QwcONC0bdvWnHbaaXY+XrZs2UQflogEOCYlJSUl8E4RyT3mzp1rLrzwQjtQMwHfvn27OXLkiNGpQUREJLn9999/pnXr1mbGjBmmYcOGpmnTpmbjxo3mo48+sgvjCxYsMMWKFUv0YYqIiEg63nzzTdOtWzdz3HHHmcqVK5vvv//enHHGGWbLli2JPjQR8VEmukguxyD95ZdfmoMHD5r169fbwVpERESS39ixY20AvWPHjmbevHlm6NChZuLEiWbkyJHmhx9+MA8//HCiD1FEREQycMEFF5j58+eb3377zaxatcocf/zxiT4kEQlCQXSROGNbFtut/avOZIHz0eHrSpUqxeV4SpQoYQftk046KS6vJyIikhMlYnwfPXq0/UhZNn8pth49epjy5cub8ePHmz/++CNqryciIpLTJWI8Z8xmR1n+/Pmj9pwiEn0KoouIiIiIZDN//vmnWbhwoalYsaIpU6ZMqu8xub/kkkvM4cOHzXfffZewYxQRERERySnyJPoARCRjI0aMMAcOHAj78e3atTM1a9aM6TGJiIhI4sZ3mpBRE51+JsG4+6mR3qRJkygdsYiIiATSfF0kd1AQXSSbDMpbt26NaAuaBmUREZGcO77TywQnn3xy0McWKlQo1eNEREQkNjRfF8kdFEQXyQay0pV77ty59ubHgM3qt4iIiGTP8V1ERESSg8ZzkdxBQXSRHI4A+qBBg1Ld17VrVwXRRUREsjGXgR4q0/zQoUOpHiciIiIiIpmnILpInB1//PHm6NGjIb9/5MgR73HRqLE2cOBAexMREZGcM76XL1/eHHvssbbmeTDu/lA100VERCTx47mIZB8KoovEWalSpcymTZtszbQyZcqk+f6GDRu8xzmqsSYiIpLc4j2+58+f39SvX98sWLAgzWumpKSYWbNmmRNPPNHUrVs3i7+ZiIhI7qH5uoiEcmyiD0Akt2nVqpX9+MQTT5j//vsv1ff4evDgwfbzli1bpqqxxoQ43NuNN94Y599KREQkd0vE+H7rrbfajw8++KD9vvPqq6+aH374wXTq1MkG20VERCQ8mq+LSCjHpPivuEUk5n7//Xdz/vnnmxUrVphq1aqZkiVL2myxFi1amN27d5uVK1eahg0bms8//9wUKFAgLsfkH8Q/+ugjW0eVuunOAw88YCpVqhSXYxEREcmOEjG+M5lv3bq1mTFjhn3upk2b2uy5SZMm2Sy3hQsXmmLFikXltURERHKDRIzne/fuNf369fO+HjdunF0Ev/rqq737hg0bZooWLRqV1xORzFEQXSRBA/Mzzzxjxo8fbzZv3mzvo65pnTp1TJcuXcztt99ujjvuuLgdzzHHHJPu9+fMmWOaNWsWt+MRERHJjhIxvv/1119m6NChdsK9bds2U7hwYdOmTRubQVeiRImovpaIiEhuEO/xnEz2cuXKpfuYH3/80S6Qi0jiKIgukmBsub7tttvM6NGjzS233JLowxEREZEo0PguIiKS/Wk8FxFHNdFFEixv3rz2Y5486vMrIiKSU2h8FxERyf40nouIoyC6iIiIiIiIiIiIiEgICqKLiIiIiIiIiIiIiISgmugiIiIiIiIiIiIiIiEoE11EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREJCw//fSTueyyy0yBAgVM8eLFzb333mv+/fdfk5PlSfQBiIiIiIiIiIiIiEjyO3r0qA2glyxZ0sybN8/s2rXLdOnSxRx//PHmySefNDnVMSkpKSmJPggRERERERERERGR7IbQ6pEjRxLy2mSCH3PMMRk+bvLkyaZDhw5m7969plChQubvv/82NWvWNP379zedOnWK6DU/++wz06ZNG7Nz505TokQJe9+oUaPM/fffb3755RdzwgknmJxIQXQRERERERERERGRTDh8+LApWLBgQl77999/NyeeeGJYx1ikSBEzfvx40759e3vfmDFjzNNPP202bNhgbrvtNvP2229n+Fp45JFHzJQpU8zy5cuN8+OPP5ry5cubpUuXmlq1apmcSOVcRERERERERERERHIoAu0XXHCBmTZtmhdEb9Sokdm4caMNgD/22GOmX79+YT3X7t27vQx0x33N93IqBdFFREREREREREREMllSxWVpJ+K1w0Ud86eeesqWn6EEzIEDB+z9ZNEXK1bMNgiV0BREFxEREREREREREckEAtLhlFRJtNatW5tevXqZZcuWmdq1a5s33njDll4hgB5JOZeSJUuaRYsWpfrezz//7H0vp1IQXURERERERERERCQHq1Chgr1NnTrVNhYdO3asmTlzpv1eJOVcGjVqZAYPHmz27NnjZa/PmjXLNiytUqVKTH+HRFJjUREREREREREREZEcjkz0zz//3Bw8eNB069bNDBo0KOLnOHr0qKlZs6YpXbq0bUxKHfTOnTubW265xTz55JMmp1IQXURERERERERERCSHI2O8RYsWpmPHjmb8+PG2FE1mbN261dx+++1m7ty5tpRN165dzdChQ02ePDm36ImC6CIiIiIiIiIiIiIiIRwb6hsiIiIiIiIiIiIiIrmdgugiIiIiIiIiIiIiIiEoiC4iIiIiIiIiIiIiEoKC6CIiIiIiIiIiIiIiISiILiIiIiIiIiIiIiISgoLoIiIiIiIiIiIiIiIhKIguIiIiIiIiIiIiIhKCgugiIiIiIiIiIiIiIiEoiC4iIiIiIiIiIiIiEoKC6CIiIiIiIiIiIiIiISiILiIiIiIiIiIiIiJh+emnn8xll11mChQoYIoXL27uvfde8++//4Z8/JYtW8zNN99sypUrZ/Lnz2/OOuss8+ijj5q///471WOOOeaYNLcFCxaYZJAn0QcgIiIiIiIiIiIiIsnv6NGjNoBesmRJM2/ePLNr1y7TpUsXc/zxx5snn3wy6M+sW7fO/Pfff+bVV181Z599tlm9erXp3r27OXz4sBk2bFiqx86ePdtUrVrV+7pIkSImGRyTkpKSkuiDEBEREREREREREcmuCAiHctxxx5l8+fKF9dhjjz3WZmtn9NgTTzwx7GObPHmy6dChg9m7d68pVKiQzQCvWbOm6d+/v+nUqZOJxGeffWbatGljdu7caUqUKGHvGzVqlLn//vvNL7/8Yk444YSwnueZZ54xr7zyivnhhx+8THQy1ZctW2aPLdmonIuIiIiIiIiIiIhIFhQsWDDkrX379qkeSwmUUI9t1apVqseWLVs26OMi0bx5cxucnzVrlv2aQHefPn3MoEGD7Ne33XZbusdf0Pd68+fPN9WqVfMC6GjZsqU5dOiQWbNmTdjHdPDgQVO4cOE097dt29b+fc4//3wzZcoUkyxUzkVEREREREREREQkhyJr/YILLjDTpk3zAvqNGjUyGzduND/++KN57LHHTL9+/cJ6rt27d6cKoMN9zffCsWnTJvPiiy+mKuVCoH748OHmvPPOswH/iRMnmnbt2pmPP/7YBtYTTUF0ERERERERERERkSz4/fff0y3n4rdnz56QjyWA7EeZk2igjvlTTz1lqOxNw84DBw54wetixYrZ7O942LFjh7n00ktteRnqojtFixa12fFOvXr1bMkYyr4kQxBd5VxEREREREREREREspjtHermr4ee0WP99dDTe2ykWrdubZuAUnMcb7zxhqlVq5YNoEdSzqVkyZLm559/TvXc7mu+lx6C4hdeeKFp3Lixee211zI85gYNGtis9WSgTHQRERERERERERGRHKxChQr2NnXqVNtYdOzYsWbmzJn2e5GUc2nUqJEZPHiwzaZ32evUWqdhaZUqVdLNQCeAXqdOHRvAD8y4D2b58uWmVKlSJhkck0IOv4iIiIiIiIiIiIjkWL169TKff/65berZrVs3r7FoJI4ePWpq1qxpSpcubZ5++mlbB71z587mlltuMU8++aR9zKJFi0yXLl3sa5122mk2gN6sWTNTpkwZG7z3l7dx2evcT8NTsuMxadIkM2DAADNmzBh7rImmTHQRERERERERERGRHI666M8//7zp2LGjGThwYKae47jjjjOffvqpuf32221WOqVlunbtarPZnSNHjpj169ebf/75x8tUpywLt9NPPz3V8/nzux9//HGzdetWkydPHlOpUiXz3nvvmauvvtokA2Wii4iIiIiIiIiIiIiEoMaiIiIiIiIiIiIiIiIhqJyLSDa3f/9+M336dFs3itpS3IoWLWqOOeaYRB+aiIiIiIiIiIhItqcgukg2RBfladOmmXHjxtk6VHztV6BAARtML1++vK1RRc0rERERERERERERiZxqootkI8uXLzevvfaabazw66+/evdXrVrVFCxY0DZfoCtyoLZt29rGEWXLljXJYMKECbYT9LHHHmsbUtSvX99Uq1Yt0YclIiIiIiIiIiKShoLoItnESy+9ZO655x7z33//2a9LlSplOnXqZDp37myqV6/uPe7PP/8027ZtswF1yrwQPP/3339N/vz5Tf/+/U2/fv1M3rx543LMu3btMiNHjrSB/dGjR3v3V6xY0WzYsMH7mtIzt956q3nyySdN4cKF43JsIiIiIiIiIiIi4VAQXSTJEQAneE4wGldccYW54447zEUXXWSzuDPy/fff28fPnTvXfl2hQgXz8ssvm0suuSRmx7x06VIzYsQI8+6775p//vnHBsk3bdpky8vgrrvuMjt27LALAmSku2OjlvsLL7xgOnbsGLNjExERERERERERiYSC6CJJ7MCBA+aaa64xs2bNsoHop556ymaSR9o0lP/NKaHSt29fr9zL66+/brp16xbV4/3mm29stvtXX33l3Xf++eeb3r1725IyefIEb8PA43v27GnWrFljM+4J+ouIiIiIiIiIiCQDBdFFktTmzZtNmzZtzLp162yj0HfeecdmoWfFoUOHTJ8+fcz//vc/W4/8ww8/NFdeeWVUjvfjjz827du3t9nlBMuvvfZa06tXL1O3bt2wfp6MdRqldu3aNawM+3jtAggV+BcRERERERERkdxBQXSRJLR48WLTqlUrs2/fPnP66aebKVOmmFq1akXluflf/pZbbrGZ6CeccIKZOnWqad68eZafl7IsBMwbNmxohg4dak477bQsPd/PP/9sHn30UfPMM8+Yk046yUTb/v377d95xYoVZuXKlfYjf4dnn33Wfv/IkSO22Wm7du3swkNWfx8REREREREREcmeFEQXSTIEj2vXrm127txp6tWrZyZPnmybiEbT0aNHbab4xIkTzYknnmhmz55tg9+RooEpQX5XXoagP41BIy03E4jTUoMGDWyQm5IzBPyj5bfffjNPP/20GT58uPnjjz9Sfa9JkyZeKZq3337bNm0Fiw033nijue+++8xZZ50VtWMREREREREREZHkd2yiD0BEUpcPoakmAfTKlSubL774IuoBdFAuZfz48ba56OHDh03r1q3N6tWrI3qO9957zx4jTUqdIkWKZDmADp5j2LBh9uMbb7xhg/3R+vuyQPHEE0/YADqNTjt06GC/Jtufv4nTqVMn89lnn9nA+t9//21ee+01c84555j7778/KsciIiIiIiIiIpId/fTTT+ayyy6z5YeLFy9u7r33XhtzSU/ZsmVtnMd/o5JBdqFMdJEk8tBDD5khQ4bY7HCysAlSx9Lvv/9uA+kLFiywwfp58+bZk1p6OCmSkf3cc8/Zry+99FIzbdq0qATPQ/09yG6n5EpmSqpwivMf2+OPP27eeust26SVevDhHPfXX39tj4OguvuahqkiIiIiIiIiIrnJ0aNHTc2aNU3JkiVtCd5du3aZLl26mO7du5snn3wy5M8Rb7r55pvt4xzK9xIDyw6UiS6SJMiEJlALGn/GOoCOggUL2gA4tb856dHUk8ag6Z0oKXHiAugPPPCA+eSTT2ISQMfAgQNt5vivv/5qy6mkd2zBLFq0yDRt2tR8/vnn3n2sjq5Zs8ZcddVVYR832ej8nW699Vb79dixYyP8TUREREREREQkJ2Onf6jbn3/+GfZjA0vPhnpcJCgVTKnaQ4cO2a/ZcV+lSpVUO/LDNXPmTPP999/bMrgE0+npR8IilQp43vQQNCf47m7ZJYAOBdFFksDmzZvtqh3uvvtuW688Xk499VR7MuXERT3wkSNHBn0cAWxWDN99912TJ08e88EHH9igP5/HCid4Tuj58+e3ddsp7RJuXXnK4lBXnazxRx55xPtevnz57PNmxoABA8yECRPMq6++mqmfz8zrnX322WbEiBF214CIiIiIiIiIJCcSFUPd2rdvn+qxlEAJ9ViC0oEZ3MEeF4nmzZubY4891syaNct+TVykT58+ZtCgQfbr2267Ld3jL+h7vfnz59tkzBIlSnj3tWzZ0gboSVpMD+VbKAVcq1Ytm8WeUQmYZKIgukiCscLIyfTgwYOmUaNG9iQSb+XKlbPlTUDN7x9++CFNSZSePXvaDGzqqRNIv/rqq+NybJUqVbIZ6RgzZkyGj//222/tyZhjJNOc7Ho+jwaaqF533XV24IkWVo8pE8PgxSA0Z84c73s0e2WBpXfv3ubMM8+0QfU9e/ZE7bVFREREREREJOcjcfKCCy6wu+wdYlAbN240P/74o3nsscfM8uXL0705u3fvThVAh/ua74VC0ijxGeIePXr0sKVfKBecXcQuhVREwq77vWLFClO0aFHz/vvvZzpLOqtuv/12m13+5Zdf2oxzSqC4YDHB6AoVKtivx40bl2YFNdZuueUWe8Kn2WcoBPqff/55r5mF25bE1qJYOHLkiNm2bZupWLFixD974MABm80+ffp0W4fev92JbVEXXnih/ZwBju1QZKIzsNEAlYarlLbh96QxqoiIiIiIiIgkXno7yElI9EsvQS4wcW/Lli1RODpjG4GSQOl6xxGbAFnmxYoVs9nxsdSnTx/v8+rVq9v4F8F0qhzkzZvXJDs1FhVJILa51KhRw9YaZzUwcMtOvJH1zImMADFlXQis+61bt85mhiejTz/91Fx++eX2c7LFR48eHfH2pnDRiJWmpGxBYgEkcDDM6N+8WbNmZu/evd59ZcqUsQ1e2V518cUX2wUVP94flNxhsKPOuyvDw3PREFZEREREREREJD0k551zzjlmyZIltv8cCYtLly61N8q5UOM8nEWCRx55xPb182enk81Ooh/PRXWAcBDTOPfcc22sKTMJivGmILpIgvC/HoFTMr4JyE6aNMkkgxdffNFusSHzmxMjzTRPOeUUk0zcqmngfdSVr1+/vrnzzjtj1uwUrNZSAoePEydOtE1Kw0WWPAsnHO8dd9xhWrRoYeueh3O8/Ax161kguOKKK8yll15qm3KIiIiIiIiIiGSEIHrnzp1tPKpJkybebngy413T0VDOPvts+5GStG3atDG7du3ystdfe+01u2Oe5wk3q5zqAcRxSDIkUTDZKYgukiAEzSmLwsll7dq1NiibDGggSqY0DTlRp04dW2c8GbbWELAmG5vtPpSc+fjjj+3J/uSTTw4ZXI8VasS/8sortoY8jTHSW+mlBAulZmhqiq1bt5rSpUub448/Pi7HKiIiIiIiIiLSq1cvm8xJX75u3bp5jUUjcfToUVs6l7jG008/beugE5gns50652AXPQFyXuu0006zzUgXLlxoYzgkA/I1/d+oyED/vexAjUVFEtRM1NWCYqUuWQLorvZWx44dU61SJkMAHZs2bTKLFy+29cTvuecem8F/00032eA54hVAh9tqxDEFQ5Z63759TdWqVe2KLEF0f/mWZAugU5d99uzZttGpiIiIiIiIiOQ81EVfvXq1Of/8883AgQMz9RzHHXecLanLR5qT3nDDDTZgTnNShzLB69evN//884/9mrgSTUWbNm1q4ySDBw+2QXTiJdmFMtFFEuDxxx+3pVJOP/10W/uJ0inJYtWqVfYk6IKpBNGpU5UnT+L7EP/88892BZNVT39jVk7UkdQlj2YNdlZfly1blqpcC+VW+Pd1dc9bt25thg8fHtV68uwUoAksWfk0AMkqfg/qu1N7vW3btva+lStX2vrvZP3H++8rIiIiIiIiIpIslIkuEmc//fST7TwMynwkUwCdoC8BVALorA7SOHPDhg3mzTffNMmAFcwCBQrYz+niTMCX1ctEBHhdLTAy0d1aJJncNNCg1At/y8qVK9taYVOnTo16Q1bqqQ8YMMDWSI/Evn377Gpzhw4dUt1PLbQSJUqY/fv326/5ne666y4bpO/fv39Uj11EREREREREJDtREF0kzijfQjmXCy64wFxzzTUmWRCgvvrqq82WLVvMWWedZeuPu+ApNbL+/PPPhB4fGfuNGzc2v/32m/2agK/LmE4ESvBQPobu1DTOoJY8GfFsiypcuLBt0EpmN80/Y4GgN1zt+lDI2nd/M7CjgIWHDz/80GzevNm7n4WdnTt3mq5du9qv+X1omFqqVClz++23x+R3EBERERERERHJDhREF4mjJUuWmPfff9/WHadGdjxreIeTIU/WOQ0eyPAmC53g6RlnnGG2b99uRo4cmbBjIxBMQHfbtm2mQoUK9u/G5wR9E4V6Xv369bNNRalvzr8pnaW5j2aid955Z0zrnrsg+jfffBPyMTTyqFu3rs0od2jCyuLI66+/booWLerdX7BgQfs7OGT3U3eeRRVquIuIiIiIiIiI5FYKoovEERnAoHEnNaiTCdnn3333nZkyZYpt8oB8+fKZRx991H5Oh+VDhw4l5NgI6L711lvm4osvNvPmzbMlUxBpKZNoIlObbPhffvnFZp6DBYdnnnnG+zqWaAIC6rH7M839WGxYvny5/Tf99ddfvfsp50IXbgLqGaFsjquVTz16/g1ERERERERERHITBdFF4oQyHx999JENbNIMM1n89ddf3uelS5c2zZo1S/V9yntUrFjR1tKmOWY8USbFIaN61qxZNnu6Xbt2tqZ3yZIlTSLs3r3btGrVymad8zdZuHBh3I+BfysC3ATzCeRj165d5osvvvAeU69ePTN27Fi7wyCrgX3+Lcj853cXEREREREREclNjklxHfFEJKauv/56M2HCBFt3/IMPPjDJgKAodcafeuopc+2114Z8HMdL/XZKfvzwww+mWLFiMT+2F154wZYdoVlngwYNTLKYPn26XVggqJw/f34bSKc2O0H+eKLEDpnvZOlTY3/lypW2zj7HRK3zcLLMI0Htd4Lx//77r6lfv35Un1tEREREREREJJkpE10kDgg+vvfee/Zz16wz0QiGEtjfunWrretN3fFQ2rdvb2rXrm0Dqc8++2xMj4t1vYcfftjW4+b1PvnkE5MsGft9+/a1GegE0KtVq2ZL3Dz++OOpao7Hy6ZNm7wGp9Rer1Gjhq1dTs34vXv3Rv31WEDhPaAAuoiIiIiIiIjkNgqii8QBQWrKbrRp0yZpaqE/9thj5ssvv7TBUQL8ZDSHQsPJAQMG2M9HjRplg9uxCqD36dPHqx3PR4LUoR67fv16mxkfa7zWZZdd5i0g0DSUpp3ly5e3X/NvG08cD/Xpabb69ttv2/vy5MljS7lQM5769iIiIiIiIiIiEh0KoovE2JYtW8y4ceOSKgudEilPPPGE/fzVV18155xzToY/c/nll9ss5wMHDpjXX389JoHhXr16mREjRnjBemrHU0M+mAceeMBUqlTJe3wscQw9evQwRYoUMZMnTzYvvviibbrq6snnzZvXxBP16WlOO2nSJFvWxaFGfKi/V1bNnTvXjB8/3mzcuDEmzy8iIiIiIiIikqwURBeJMeqNUzqlefPmpmHDhok+HNsY8oYbbrBB61tuucWWdAkHmeq9e/e2nz/33HP2d4oWjoWSKNRBJwg8ZswYG7ROj6tBTjZ9LBw5csSsWbPG+5pGppRQof658/fff8ctiP7bb795n9NclZI39957r7n44otNPLCowftm6tSpcXk9EREREREREZFkoSC6SAxRO9tlbRP0TDTqnnfq1Mn8/PPP5txzzzXPP/98RD9PQ02yscmu/+ijj6J2XP/88499ThdAv/nmmzP8GZpoYtWqVVEvL0Od+PPPP99cdNFFqTK9TznllFSPc5noJ5xwgokVSsWMHDnSnHnmmba2vsPvfNJJJ9mmovFADXgC9uxGEBEREREREZHc66effrJlbwsUKGCKFy9uk/zSS7Zkdzsxn2C3xYsX28e4uFDgbcGCBSYZKIguEkOvvfaazVauV6+eF/RNJDK+yeCmDvr7779vT3aR4PF33HGH/fyZZ56xzxcNBKEnTpxoPvvsM3PTTTeF9TMlSpSwN45h3bp1JlrmzJlj/0bLli2zAewdO3aEfGw8yrkwYFC2hTI6Y8eOtfdxXOwGeOSRR2JWnz4QpYgoA8QgKSIiIiIiIiK509GjR21sgHgXfdmIVbz55ps2RhFK48aNza5du1LdqI5Qrlw5r9KAQ+zB/7g6deqYZKAgukiMkF39yiuv2M/vvvvumNWqjgTNJykvQ13rypUrZ+o5CKITNGal8Jtvvsn0sRAIJpDvAvE8Z8uWLSN6Dvc7fP/99yarOA4y8y+55BKzd+9eU7t2bbNkyRLToEGDkD/jyrlEOxOdvw2DEnjf/O9//7N12F2TVQYRMtApsVO2bNmovraIiIiIiIiIRO7w4cMhb3/++WfYjw3ccR7qcZGgvxuxi0OHDnnxjCpVqtjeZ5GaOXOmjcO8/fbbpmbNmqZVq1Y2XvHyyy97cZJAvDZ93NzN9Zzr1q1bmngZ3/M/9vjjjzfJQEF0kRghe3jnzp02W5p62onEydW/rYaTUGaxTYeyLhg2bFimg8S33nqrufbaa+2Wn8zihI+1a9earGCAuvHGG21jU4LX1P5mgYASKumpX7++GTBggLnqqqtMtGzevNmWkSHT3ylTpoy58847zbHH/t8p2zX3JIAej8GEv88vv/wS89cRERERERERya7Y9R/q1r59+zSxlVCPJSjtx9w/2OMiQZ8+YgqzZs3ygtp9+vQxgwYNsl/fdttt6R5/Qd/rzZ8/35Z8Jd7lkBRJgN7fWy49U6ZMMfv27bNB9ED0ouPvQ5ldHpcsFEQXiREyh0GDzHg0nkwPJ8MmTZrYAG00cKIFJzMX0I00gE52NSdwMr6zGkTPaib6k08+ad566y2b2f3ss8/az/Pnz5/hzzVq1Mg89thj5pprrjHRQvCeZqkE0f3NRP3c3zxe9clZXT799NPNQw89FJfXExEREREREZHoOfHEE22Z4WnTpqWKaRBf+PHHH21sY/ny5enenN27d6cKoMN9zffCQUyIwDuxBodA/fDhw80HH3xgpk6daoPo7dq1S5pAep5EH4BITrR06VLz7bff2vIpBLAT6b333rNBUALWNBQ966yzsvycFStWtCuj1DB/9dVXw85Ip2RKz549vQA6x9WxY8dMHwcDADW3GjZsaLLigQcesHW8CBLTPDPeWFhwWeZdunSxix1kxtM4NJhNmzbZj2effXZcjo/3Mluy2FIlIiIiIiIiImml17OMpD2/PXv2hHysiw84NNyMBuqYU+KX2AwlVOi95oLXxYoVs9nf8bB9+3YzY8YMW+LXr2jRol7SJugvSIUHkgzJTk80ZaKLxDALnQzlUqVKJew4ODG5ID6NIWnkEC233367/fjGG2+kqdcVDCdpasMTdOdkPW7cuCwF0MH2IbYeBW51CudYWH119dhZkaVxRaQBdGqTU0qGLUiZDZ5Th53VVVc3jL8NK8Dly5cP+XOrVq2KayY6DUIWLVoUdtNXERERERERkdyG2EKoW758+cJ+bODO+FCPi1Tr1q1tHGPZsmVePKdWrVo2gB5JOZeSJUvaJE0/93U45YN5XZL0wgmM06fOJRImmoLoIlFG7egJEybYz++6666EHQcBWmqXs7LI6h21u6OJky81w3/99Ve71SYj9913n3nppZdskJgT5vXXX28S4a+//jLdu3e3K7BDhgzx7s9M41dWcCkpk9na8PztaL5BPbFwm3lQs90F0S+88EITL7yHTj311Li9noiIiIiIiIhED4l43CiVsmDBAjN27FhbPgWRlHNp1KiRjUv4s+mptV6oUCGv7G4oJDMSE2IXfjg93njdRCan+qmci0iUUaqEQC1BR1bMEoUM5y+++MIUKFDAlk2JdgNKtiJR2/zhhx82r7zyij0BpqdGjRr2Z3isa0waDWztWbFihSlXrpypVKlSuo/lBE8TUMqTsD0qq7Xq3danUGVXgnHbptxWJTLzWXihfEs4+BuylWvx4sXm3HPPNbF05MgR22yEskQiIiIiIiIikr2REEkZldGjR9uSti45j1Iu4ZZzadGihQ2Wd+7c2Tz99NO2DjqxoTvuuMOLs7CbnTjR559/bk477TTvZ4lTUYP9lltuSfO8BPWJQZAdj0mTJpnXX3/djBkzxiQDZaKLRBEBUvc/N+VOMpPdHA2sCFLnG6wqnnPOOTF5nZtvvtkGWFnB9K9KBnPDDTeY9evX2yzwaKImOoOAy/5P729Sv359G0A/+eSTbT33vn37ZrlcDs4444ywHs8WpGbNmtnBxKFDN9umInmvEEinDnys3180WaULOI1WRURERERERCR7Y1f+6tWrbVnZgQMHZuo5jjvuOPPpp5/aj2SlE+8hYE42uz8pjxjQP//8kybxlFLDoZIg2a1fp04dm5Q6efJk2+evW7duJhkovVAkiubOnWubQpKZTD30RGHljixltrz06NEjZq9DrSsyu1nFJMOcrGq/UaNGmSuuuMLbehONpqaB3Il3w4YNIR/DyZ366zT5oBnnJ598kmHWeji2bdtmP/q7SaeHweCrr76yteEp4RJpENzVcI/X4szHH39sduzYkaapiYiIiIiIiIhkP5dccokXW8iKMmXK2F5zoZBAGOx13nnnnZA/Q9WCaFYuiDZFRkSiyGWhU+87M00eoqVixYo2SEvzzlgHXF2DUWp6Hzp0yLufLT18r2nTpul2qI7Gidsf0A5E04yrr77aHgPblBYuXBiVADqDgXvNcDPRR4wYYYP5rKRm5t+FbH/q0Pfr18/EA1n7DHD8/UREREREREREcisF0UWihCaREydOtJ9Hu2RJuNgu489Gj0cjSILklStXNocPH/aaYxIsvv/+++3n1Pr2d3GONhfA/umnn4J+nyz4l19+2dZvnzFjhilcuHBUXnf//v3mjz/+SDcTnZ0JNB91+PcgKO0C/5Eig54SMux2iAdqmRH0D+wiLiIiIiIiIiKSmyiILhIlBJBpKFqzZk1Tu3btuL8+Qd2qVavaGuGBNadiiYxqt2hAbSsC1r1797ZfP/roo7ZRRSyRmQ3Kjvz777/2871796Yq70LtdkrNRLO5qstCL1asWNAg87p168xFF11ka9MTTI8GytKgTZs2Jpbc31FERERERERERIw5JiUahXBEcjn+N6pRo4ZtXvnSSy/ZjsTxRgkZmmtS83vZsmUxzf4ORNC6dOnSqYL3Dz74oBk8eHDMy8n8999/NojNa5ON/ttvv3lBZkq3EOSOBTLC6RyN/v37B30MDUM5vueeey7L5X0oS8Pf2H1OPfpYueuuu8yKFSvMk08+aZuNiIiIiIiIiIjkZmosKhIF3333nQ2gE8wlmB1vlAghgE5n5LfffjuuAXQULVrUZt8TtEbfvn3jEkAHTS9PO+00s2XLFltrnOad1GYvV66czc6PVRCdEi7+4DkLKexGaNeunff3HzlyZNSacrqGHfXq1YtpAP3vv/+27yfKE7lyNSIiIiIiIiIiuZnKuYhEwejRo+1HGjDGow6539atW03Pnj3t5wMGDDANGjQwieCy76mjTSA7HgF0Z+DAgaZTp062DjsB9AsuuMAsWrTInHPOOXE7BrK3O3fubO655x7vvmgF0F099HiUcqGW/sqVK82wYcPMxRdfHNPXEhERERERERHJDhREF8mi33//3WaB45Zbbonrax89etR07drVHDx40AbPQ5UViQcy8Ck3Ql34yZMnx+11KeMyb948mwVO6ZSbbrrJzJo1y2bHxxI7D9asWeM1c+3QoYPdiUCT1WhXyfrzzz/t74TLL7/cxBqZ/ewmiOYigIiIiIiIiIhIdqUIiUgWvf/++zaQXqFCBZsBHU/Dhw83X375pa23TRmXPHniW6Hp448/tiVUQCkZGni6BqPx8vDDD5vXXnvNZr7z9xgzZozNpo61O++805x77rnmo48+sl83bdrUlpTp169f1LPwDx8+bG699VbTpEkT27g2VtRQVEREREREREQkLQXRRbKIoK3LQo9nCRMUKVLEFChQwDz//PO2oWg8ffrpp+aaa66xGejffPONva9bt2724+zZs21AOR7uu+8+U716dVvSpWrVqnH5N9i2bZtX/71QoULe/SVKlIjZvzPNSb/66quY/X5kz19yySX2ffzzzz/H5DVERERERERERLIjBdFFsoByHvPnz7cZ4F26dIn765P5vX79elvCJJ5mzJhh2rdvb0upEEhv1KiRvZ9mnq6O9htvvBGz1+d39geYBw0aZB599FFbEz4eCJxTtgb8DXKCxYsXm7lz59qyODQXFRERERERERGR/6MgukgWuLIl1KkuWbJk3F7XBXBx+umnxzUD/vPPPzft2rWzgVYC6W+99ZYt5eK4ki4E0anZHm0vv/yyzTgfNWqUd5/728cyg5qSPc7u3bvtx/z589u/RSytWLHCTJ8+PSZ/S7/69eubb7/91rz00kvmjDPOiOlriYiIiIiIiEj29dNPP5nLLrvMVkcoXry4uffeezMsEbt06VK7A/6UU06xCZGUrfXHWlzMqXHjxuakk06ysZ77778/zfNSVplSt7x2mTJlzDPPPGPiQUF0kSwEsgkgx7uh6LRp00zFihVtaY94o/46CwY0umzbtq155513zPHHH5/qMVdeeaU9IVLyhLIu0ULG9x133GFrkRNQ/u6779KUUdmzZ0/Um3pi5syZtub9hx9+aL9et26d/UgT0Vg33xw2bJhp1aqVeeCBB0ysMVC5RRARERERERERkUBHjx61AXSSK+fNm2fGjh1r3nzzTfPII4+E/JmdO3ea5s2b21LElMclWZDqDjfeeGOqJMLWrVubSy+91Cxbtsz24JsyZUqqeMhnn31mOnXqZG677TazevVqM3LkSFv+loTAWFMQXSQLTTX37dtnTjvtNNOyZcu4vOYvv/xiS7ds3brVTJo0ycTT5s2b7Unyjz/+sEFdVv6CNfDMly+fPaFFs8EovzerlZwcybp/6qmnzOjRo73vs+oJgvuBq5jRWjwg+3zEiBE2SO+C6JUqVTKxdOjQITNx4kT7eYcOHWLyGvy9fvvtt5g8t4iIiIiIiEhucfjwYXvzJ/cRaOY+f0UB/2P/+++/VMmD3EdsI5zHRmLy5Mk2hkOcwR1XlSpVbEnXzCQafv/99+btt9+2GeHEiB5//HFbOSBUeVj66pGEyWNIDK1Xr56tMEDMY9OmTfYxBM3peUcwnmB706ZNzdNPP21/xsUtxo0bZysCEEQvX768jVM9+OCDNk4Ui6RKPwXRRTLJBYhppukvZxIrnAxc00fKmQwZMsTEEycnfleC2QTw8+bNG/KxLpuZhYa9e/dm6XWXL19uT64EstnOw4mfZqL+EjYnnniivUWzpIv/5EvT0qFDh9qBgtddu3atl4keSx988IFdtOB1+BvEAu8jBicWRUREREREREQkcwoWLGhv/jgIpUa4j131fiQDcj9lURyCxdwXuEO8bNmy9n4XiwCZ35EgC5yd9LNmzbJfE1Dv06eP7TEHgtLu+EPdHHoDVqtWzasKAJJLCdCTXR4Miwi8pn83PyVy8c0333iPITHTj8ewqLBkyZJ0H7N9+3abcBpLCqKLZMKWLVu8E0+8mnqOGTPGbmPhpMNKoTvZxAvB4xdeeMEeQ+AJK1CtWrXsjZVRViazkoHepEkTeyJ0W34oJxOMv6RLVoPnDFzXX3+9F0hntZQ6XNTbQteuXe0qa4sWLUwsuUGR7U2xqHvPFqypU6fav1l6iyIiIiIiIiIikn2ReHjBBRfYEsFOo0aNzMaNG82PP/5oHnvsMZvEmN7NYae+P4AO97XrIRfooosust9jUYFs9f3793tlWnbt2uUF4ikPM2HCBBuv2LFjhz2uwMeQ2EntdDLzN2zYYIYPH57qMbGSJ6bPLpJD0TTTreSVK1cu5q/HSa1Xr17288GDB5saNWqYeODkyu9K0J7gPYHcjALoDiunrLSSsX/PPfdkKghcrFgx079/fzN37lx7Ej311FNDPpZV3B9++CHLmehsI+rdu7ddACCQHixof+GFF9pbLHEcrMaySnvDDTfE5DXYQbF48WLz0Ucf2Rr3IiISX0wgWMiktNaRI0e8mztH58mTx97I/GEM5Mbn8WwoLiIiIiLhceVlXQIeaLhJPIdrOj+XAOhPkKQPXPfu3dNUOyCRM/Cx/lri4aL0iSt7wvXkgQMH7P1cXxJ/caVyY6Fq1aq2djrZ75Rf4Xe8++67bfDdZaeTqEiQnaz4zp0722S/AQMGmK+//tp7DH8fyg23adPGxm0KFSpkY05UEIh1z7pjUmJdMEYkh2E1jK00bBUhsHvdddfF9PU4KZx33nk22EnglmadsT4xuFIs11xzjX19mlv27ds3op9nVbFUqVJ2qw0Z5PXr1w/r5w4ePGi3AJ1xxhn2a05RrC5mVDKHQDA1spo1a2bOPPNMkxVk3INFgHj8rYNhoHjiiSdsbTH/SrGIiGQfXDOwEE6GDDc+Z5GULBkWfX/99deIn5PxkAbe1JIsU6aMvbkamUx8mGxwO/nkk+2kghtZR9pxJCIiIpK7cS16zjnn2NIotWvXtiWDly5dam8ErjOqJPD7/1skoGY5VQr82elks1MGmOeiMkF6uA4mM55APteq7777bqo+cMSBuF4mgYQFBGq3L1q0KFWZW66zyWwn+E9WOg1JWZjg61hRJrpIhCjjQgC9cOHCtplBrFH7iYAyJztW7eIR1KWZA9nP//77r7n22mvt6mCkONm1b9/evPPOOzYbPZwgOvW9rrrqKpv1/u2333rZduHUnL/yyitNZv++jz76qF3xdcH39H5fTuCrVq2y9b9YTIkVV+8rM6vLGWFA+uqrr2xQRdmMIiLRQ01Lzq/fffedvS1btszLLA+FrCQmD2QscSPDiHMzkwsmKixGs6Dt8l6YMNDYnK2u3MLB410QnR1tXMswGXG3c889N6aZRyIiIiKSeBUqVLA3yrqyI5IYE73fQNmUfv36hfU8jRo1steUBK3dNSTXl1zTcm2ZEVf65fXXX7fVDui958e1cOnSpe3nJK8SEyPo70ec6LTTTvMewzHFMoAOBdFFMlGbHASZwy1tkhU00/zwww/tqp7Lzo6lV155xQaUmazzO1LOJXDbUbgo6UIQnRPas88+6zX/DIaVR1ZByaY7/fTT7UJFpUqVTKyx2srAQbb8nDlzMgwqM9iQoU6ZF1ZeY4XXYQWXLU/R9tlnn9ltXAxU06dPT1i2vYhIdkcmOefRL774wo4hlBULRGCcrHGyftzEhXGOyQO7rwi0E3BnIZmguDsnd+rUyY6hfgTYmagwnlJDkkA7i7tk3/CRheFAjGssapOdQxk6xjuadXPzozxdw4YNzYgRIxRQFxEREcmhuCZ8//33zejRo81DDz3klarl+i/ca8AWLVrYYDklV55++mmbEf7www/bWJJL3CBzvEuXLvY61QW7X3rpJdO4cWObMEnQnVI3Q4cOtbssHcq5XHrppfaamNrnfJ/jdcmVNG0lRkYVAq59iVl98MEHaa5tY0FBdJEIG126wGlgt+RoI5jMxJvJLze2xcQSQfMnn3zSnvhw++23mxdffDGsLPBQOKkxKWcBgJMcDTkDsfrJaiev5ZpNEDQIbFKREQIJBJ0JMPC64eL3pfb4fffdF1ZW9rp16+zHypUrm1jiWOrUqROT56ZRKwtA1NZXAF1EJPJz6OTJk23ZM7LOyQx3GDPr1q1rg9Gcw7kRQHdjKZnqn376qV2w5kKf6wo/Sr64BWQWshs0aGCD75RsIRuH7J5gYxVjOOMgAXJqRv7xxx9m27ZtNihPFjq9RbgFw6SFYD5jNc/BwjdjBJMoVzqG3Vfczj//fPu7iYiIiEj2RELd888/bzp27GjriGfGcccdZ69piRuRAU6CB/Ee1wQU7MZcv3693VHpEFinEgC7LbnmffXVV20gPjDpjyx3dmMSs+C6mzK3fiRCEkfiGpjX5zo33BLCWaGa6CIRIJua2uDUYeJ//lhhQk6WMFtRXnvtNVvXNNaYbJP1TF1x6nEPGjQoKqU+qOvN8zVp0sQGG/zINqfu1YIFC+zXrIJy0s1M4J4SNNSnD/Y6wYLt/pMwZWvCzba/+OKLbcYh2466detmoo3AB3Vt08vajwb+9qz++ld8RUQkOILMZLi89dZbNkjtRymUli1b2kVggswEuh0us7m5BUsWbMmucVgsJxuHi3+C72QCsQMtIwTGycyh9Be1KFng5Rj9C8SPP/64fW0y5ck4CoZxntflmFjU5vlo9JTeGMiiOGMH4xXlz/h5rouY5GRl4V1EREREJJkpiC4SJv5XIcjMdmtWy2699daYvRYBbFYECaQS8CULLR5YvVu5cmWmaqCnF6wlg47AMKuQ/t/liiuusJn9TMYJTFAiJSvHTvCBjD+XLR6IbfZk0LHqSaAg0mxy3gNk5rF9iEavBA6ijfrxdO5mVZUVWhERSQzO+fPnzzcvv/yyDVi7UikEngmW0xeFceyss85K83P0zqBMGTcWwymjAvp9sGDMFljGLMYR+oCk58CBA/bn6DVCwB00J6UsjB/HRa8OxkEWld3uL7J4vv/+e7sgz/Zaysfw+9CQm+d2qDPJLjuyk/gdGL+fe+45m92+Y8cO73EcL49h19c999zj3c9Yzu9EEgC/b+DxiYiIiIhkZwqii4SJiTSTV7LG6BLszzSLphkzZtgsaf7XJLAcuLUlmg4dOmQn4oENGqKNDDi25FDvinpZDhN06qCPHDkyy+VqCBCwyMEkfv/+/UEfQyCf2lrU6yJzPdIgOj9XqlQpm1FIxj7vhWgjk57yMtT9uv/++6P63BMnTjQ1a9ZME/AREZH/H8FySppQs5GFbIe6j9R1pFY5Nc0DEZB+++23bX1JFqQdFt1ZfA8Xu6NYqOV6gCxyPmf8uuaaa+zYBb4miM8x1apVy45/Z599dkS9Wsg8p5HU+PHjbVCdr8HYxmuxU4wSaVwjUHaG16bm5ObNm+3jeN2SJUvaEjUsUpOZ7jds2DC7e09EREREJCdQTXSRCBuKMrGMVQCdiSiTcwLoPXr0iGkAnQA2mWSuZmosm3jyuxBEJ7BArXM3qSYIQYAgGlwNdYIYBAJcZh/N2ggcU66F4DeBETL8M9MU1gVFyK6LRQCdWrgE0DlOauFGEws/BH+oR0ZAhm33IiLy/2OX0qhRo2zwl9JfYKy4/vrrbb1H6psHK3PGwi07iGh45LLVGYNYQKbWZJs2bcIu5cbCMju0aFjqx7hDjxGHcSKzza0ZI/l5jpFj43XZYbVmzRr7e1O/8s0337Q38DdhHO/fv7/NhqdhFMhoD0RmPmVlyJznb0eg/cwzzzTHH3+8fc3u3bvbhIRYlywTEREREYk2BdFFwkDWscv+ilVDUbZbk/VFnVMm6iNGjDCxQjCYyT3bswk+M2GOJYL1hQsXtkEBypRQ0iUrpVuCYWJPoJwMvj179tgAPSVxqLFOw9QHHnjAPq5IkSKZfg0XRK9evbqJBQIVYCeC614dLWQIkuVOcCNWxy8ikl3HeJorUbrEBa/POOMMGywmqJ3RuMHCOovRBNBpvkmgmIVQxqWMgtkrVqyw9cRBPXF2VXEM/CwlUdg9RemXYJnv4SA4TjY9AW9qp3PbuHGjretOHXbs3LnTzJ49O9XPsVjgNqvedtttZurUqXY8ZcGdUjF8j/GWG4uzLFgz9tJg6sYbb7R/zzlz5niv6VBXHvw+LKzz+4mIiIiIZAcKoouEga3Ohw8ftnVGzzvvvJi8Bs3GaFbKxJmmXZnJlA4HGeHXXnutDRpQzmTatGm2hmqs8Dp33XWXF5igYRpBhmgjw41GrGRck0nHBJ0SMUz0t27dGpXXYBcCz0td9GgjyO2y/nr27Bn15+dvQdY/JXyi0TBWRCS7I/hLvXL6kFCuBJREoWY5u8KC1Son8E2pNcqafP7553asJvj9yiuv2GbNDRo0SPccy5jEbqCxY8faxXnGSMYs1+R58ODBNmuba41wG14HQ5Y6u74o2RYMPUpcEJ2GqPwdyBhn8aB06dJ2YWD16tU2K59roE8++cTeWOynYSnXQ36zZs2yx/7ll1/a3h7jxo2zzbepCc/4z/GQnc7v63bDsbjN34NAOsF1AvBXXnmlXTRQprqIiIiIJB1qootIaP/991/KueeeSzpWyogRI2L2Ot98801KqVKlUqZOnRqz3+Ppp59OOeaYY+zv0rRp05Rff/01JZa+/PLLlLPOOsu+3rHHHuu99vLly2PyetWrV7fP7/6G/M4LFixIyQ7eeOMNe+xly5ZN+ffffxN9OCIiORZjw6RJk1IqVKhgz7vc+Hz8+PEp//zzT9Cf+euvv1JeffXVlDJlyng/w3k7XAcOHEh5+eWXU2rUqOH9PLeSJUumzJ8/P9O/y4YNG+zzXn311SnTp0/37v/iiy9S/W7XXHNNypAhQ1I+++yzlG3bttm/QbjWrVuX0rFjR28Mz5MnT0qfPn1S9u/fn+ax3377bcpFF13kvfapp56a8uKLL9rv8ZoLFy5Mue6661KOP/547zFt27ZN6dKli/d1vnz57H3jxo1LOXLkSKb/NiIiIiIi0aQgukgG5s6dayd1J554YtAJYzT9/vvvMXvuMWPGeBPUW265xQYEYmngwIHe65155pkpX331VUqHDh3s1z169Ij6661YsSKlRIkSKWeccUbKDz/8kJLdNGrUyP5tCHJEEwsngwcPjvm/t4hIdrBx48aUli1beuNT8eLFU0aOHJny999/B3380aNHbXC9XLly3s8w1gwfPjzsMXvKlCkpBQoU8H4+b968KZ06dUqZMWNGyKB9KDye65K+ffumnHPOOakC8nfffbf3uMOHD9uAeTQXy1etWpVy2WWXea9XtGhRu7DA38iZNm1ayptvvpny9ttvewkId9xxR8qDDz5og/3Ozp07baD8hBNOSHnkkUfsQgKBeRaS/b/TKaecknLnnXem/Pnnn1H7PUREREREMkNBdJEMkN3FRO62226L+nPv2LHDBn/jgQnoBRdckPLSSy9FlIGWWRMnTrR/t+7du9sMPH9mHAsSBw8ejOrr/fzzz3ZCf/rpp9usuWjbunVryrBhw2zwIhZ++umnlAEDBtjfI5rHTLCGv/lHH30UtecVEcluGAMfffRR75xI8Pbhhx9OOXToUMifYZyqXbu2F9Blt9jzzz+fYXY0Y6x/0X3Xrl0287pKlSr25/ft25ep34HAM5nd/iAzz3vhhRemPP744ylLly5NiYUff/zRBuTdWM7np512mncM559/fsr3339vv1e1alV736xZs+yuKoLp7nqgbt26NnPePU/jxo3t/RMmTPBe68knn7Q71/hbu4B6rVq17M9F+7pBRERERCQSx/CfRJeUEUlW1OykXvjRo0fNqlWrzLnnnhu156YB2YUXXmibVVIDnWaS0bZgwQJTt25dr67qf//9Z2uHx8KBAwdsjVXqwTo0TKtRo4b3NaebKlWqmHXr1pmXX345S7W/ea6FCxeahg0bevfxNU3PTj75ZBNtEyZMMNdff71p3LixreuaHfA3euedd2wtdGr4qha6iORGNL2k2eWaNWvs19Tcfumll0yFChUy/FmacH/zzTfm/vvvN7169Uq3VjfXChMnTjRDhw61PTpmzJjhfY9xjzri4Z6H6ZNBDXJqtdPg1J3TzzrrLNsgmobdNOhu2bKlrV8eDfTMYByl0XmbNm28+znuDRs22Brw1E8HjUZ5DNcUXFtQP75///5m9+7d5ocffrBNSOvXr28fy9+dmuv0FGFMokY6YxI9Wfjeo48+apur8vfjMTyHqzPPNRi/N89H81Z6h1BzvUePHrY+O/XjRURERETiIqKQu0guQ5aaqx8eTWx9vvbaa716oZs2bYr68w8aNMjWL73//vtTYomMu7Fjx9ot8UWKFEnZvXt3uo+nrjy/N9u8M5sRT0Yh/yb8ftRXdXht6qGT8R5tDzzwQEx2JMRjV4CISG5EGSvG8eOOO84r3fL++++HPO/+8ccftvzVnj17vPu2bNmS6utQYy4Z1/4a6+y4InM8EmRuz549O+XGG29MOemkk+zzFCpUyB6XQ7mySEvABMOxkSHOLijnk08+8cbnwB15ZJiTge6QFb5kyZKU7777LqV169be703m/tq1a4O+Jn9L1yfFXZ8Elhqjprq/bnzz5s1tJrzbEXDvvfd636N8Gxnx/JuJiIiIiMSagugi6QRqmXAzUfvggw9iEpBlG/bnn38e1ecmkOyv93rrrbfGLFC7cuVKu43bvValSpVSli1blu7PsMU9f/789vFff/11pl+7c+fOtsYsjcecd9991z4vZWuizQUJ/DVdo4GGa61atYpqmZjffvstZH1fEZHcUvu8Tp063vhEM8tffvkl3UbYLghO35BwMLZS77xatWre6xQuXNj2BNm7d2/Yx0oplH79+qWULl06VakWmpg+9NBDWe7HwnFSPs6PhWhe47XXXvPuo+Ho2WefbZuIRnLdwGPfeecd+7vznIzx1JkP9hyUz7n55pu935F/I4LrgYsJlE+jwSiPKViwoK1LT1kc/q6UrnGv5fqu+Mu4UbtdC9QiIiIiEm0KoouEQFYZkzOynKIZkKQJl5v4kcEdTZMnT04pVqyYN4mluVcsEIi46667vOw+gtlDhw4Nu3nlTTfdZH+OiXo4XGM3f1CCzMDAibdrAkuztWgj4y2rgf9ATPIrV64c9eA8AQqCOosXL47ac4qIZBfU2HaZ3ARbyT4PhfrcNLt24zKB7PQe7+cWbl0DTOp5s4gZKZpuuudhdxrHQzNuf8POzGKcpBEqfw+C0w7NPMn49i9EZ9X27dtt5rj7Xa644oqQCwCTJk2yu9d4HB+poR6IOuj+hfpvvvnG+x7P27NnT1s/ne/lyZPH7jogU58s94oVK9rmqiIiIiIi0aKa6CIhUPt6/vz5tg7ngAEDovKc1Kamhih1PwcOHGjrgEbD4cOHTZ8+fWzNUVSvXt2MHz8+qjXc/TVTy5UrZ2ua4qqrrjLPPfecOfPMM8N+jiVLltha7dQy3bJliyldunS6j+/SpYsZN26c6d27t3n22WdDPo6ardRupT4sNWOjWe/91FNPtZ/v37/fnHLKKVF53rlz59q6+NTY3blzZ1Tq2vLvQl146uh+/fXX5vzzz4/KsYqIJDtqed9zzz3m1VdftV83adLE1uCmznYwX3zxha2Vvm3bNvv1rbfeap5++ul0+2ow3rq66H///bepVauWadu2rbnvvvu8cSI9vBZjNbXFOf9j69attt56165dbX+UvHnzZroPyuuvv257kbg66lxvFC5c2PZhoQcLYyS4/I9Fnwzqo7/wwgu2hjx/H2q4T5o0yV6XBOL3bt++vb0moJ8KNc8D+7Zw/IMGDbI9avjdAtGLpW/fvrZG+xVXXGH/PTt16mTrsc+ZMyfVeyOzf1cREREwljJ20fuDcWnXrl32xjxu3759tp8J80Y+MmdmHGQcY7x1Yy49PxiPuDYpWLCgKVq0qPn999/tvLhkyZJ2ns1YzbhZtWpV+3gRSSKJjuKLJCNqfLpyK2wfjha2k/O8Xbp0iepWY2qqU3+V7Cu2hFOKJpoCs+EoEVOrVq2gmWPhOu+88+zfgq3qGZkxY4bNonvmmWfSfRw1Wl3GWjQz0MgIdFvGo6lDhw72eck6jPZOgVjtQhARSUaM1Y0bN/bqbQ8YMCDd2uFkYLvxgjrdGZXUYicU52oynP270/zZ3aEw3s+ZM8dmZrvM6TZt2kT4G6Z9zqVLl6bKfKc0C8/dqFGjVI9dvXp1qrrq8cBOKMrRuJ1xb731VtDHcVy9evVK2bp1a7rP579mYqznOs2Psns///yzVzJmzZo13rXLkSNH7G4yyvSkV9JHRETEjU0LFiyw4+o999xjd1mdfvrpqUquxeuWN29e25uEUnEff/xxysyZM+0uM5UtE0kMBdFFgujatasdtK6//vqoPi8T+ueffz7ssifpCRw42VYe7frqHC/BWOrEUv/c+f3337O8zZyGZm6rvT/gzUVB9+7d7XZ8v19//TWsv4mrt7558+aUaKHUCs952WWXRe05aerG9nOed/ny5VF7XhGR3GbRokW29Brn05NPPjlVA8xQ9u3bZ0u3EBhPrwQLY92YMWO80iPcmMCGgwD7hx9+mFKvXr1UE+ILL7zQ3p8VzZo1s8/FWOqvac5kf/r06SnJgIWHSy+91Pu9KVsTzrUDv1OofxMWMFq0aGHrpft/98BrAa7j2rdvb5+HALtbCFeJFxERCRwzKAXGnJc5aM2aNb2SpZHcmNfRl4vSY/QIo+QYJU9DPZ7FXYLi//vf/+x1wQknnBDR63GMXMdceeWVtkQsJdVEJPYURBcJQDaUC26yAp1V0Qg4ByKrjIy7L774IiUWyGRnQCc7zw3UN954Y1Rfg+BCuXLl7HO/8sor3v00E3MN1TJTi94957fffhu1Y2XSTVZdNGuM0xgtWMZgZrFoEI33q4hIdsIE1DWgpMcEdbRDCexpQSA9PWR6N2zY0BsHq1atahuQhotsc/ezHONtt91mM6QjHY/pd3Lfffelur9379520Tjaza6jjeuf/v37e38HAtvpBbJdnfnatWvb3ieB+FkWtN2OgxdeeCHoNRI7CXkM/UEYHwlqBF4zzZ8/P0q/pYiIZCeML/Q/69y5s9f3KlSg+u6777bzYsYMdpMXKlQo5OOZh/pdcskldj5Nvy5uNO/mMSzqMtf1J1IRDKcvCj1WeA12mbuxjM/btm1re5mkF1hn5zYJe+ntxBORrFEQXSQAA6XLFItGAJ2yJTTSDGfLdzhby9ii7gbUc889N6oBehp1DRkyJKVUqVLeYFy0aNGUp556KlPN0jLCIO8C5u734G/GlrXMNvAkKB2YnZdsuLBxWwK5gItGBgUXaQQURo4cGZVjFBFJdi+99JJXHqV169a2zEcwlPPo1q2bfdwbb7yR4fPy+DvvvNN77oIFC6YMHz48w4Vdxi//Y0aPHm0nwwSRXamRSBHod2P+999/791PWZLslFVNlpz7PerXrx+yrAqLwa5BOtc4wf5ujKG33367d53Cv02gefPmpZQsWdJ+n6BE4DUF2fp8jwBKtBMdREQkuTBXYoGVJKa6devaOVNGmd4EshnDK1WqlOq5yDbn+4xVLPg2bdo0pUmTJnbXGSXf/IvlzKvTew1/aVTmcOk99tNPP/UW1/0L/MFu7MqjjCwLycyrp02bpsC6SJTkSXRNdpFkQjPG0aNH288ffPDBLD0XTaxouvntt9+aNWvWmIceesg22MosmkR2797dNtHC5Zdfbl5++eU0Tbgyi0W1hg0bes9Ps08and1+++226UksuL7GNGih8djVV19tG7Z98MEHmX5OmrvRnKVevXomWdF4jaay7733nv2ds4r3WqlSpWyTmksuuSQqxygikqwYOxhThw4dar9mbBw5cqTJkydP0EaeV155pW1eyXj5888/Z/j8nEtXrVplz9UdO3Y0w4YNS7cBNo3GRo0aZYYMGWIGDx5sbrnlFq8p9rXXXmtOOumksH6vzZs320bdvC6/D2gKevPNN5sTTjjB5MuXz3ssjciyE/4WNEtr166dWbRokW36OnPmTHPGGWekehwNRrneofHq6tWrTbNmzcznn39uxziHf2euf4oUKWKeeOIJ21iUv1m/fv28xzRq1Mh899139jqM12vRooWZPHmyN0bSiJz3A3/faF1HiYhIclm3bp0ZP368ef/99+15369mzZqmZcuWtjHoW2+95Y0He/futd+nMShoFMrtlFNOsV936NDBfs1zEzsINpZXqVLFfl67dm3bfLx48eL2+Rm3ChUqZI+Fawd/4/MzzzzTXHfddba5KGPYkSNHzMGDB81XX31lfvvtN1OsWDHvGqVNmza2mXgo/Ny7775rP+d65sMPP7QNSqtVq2Z69uxpm3DTyFREMiFa0XiRnIAsb/63qFOnTpaadbDSy5Yst/2KjKisZIfTyNOtLJNZRX3PrDYTIav9nXfeSVWffejQoTbzi5pw0ajbHogsQX/2GdvuXSYAK+XJ2CBlx44dNuONmrjJ7qeffkr0IYiIxBRZw9QZdWPiE088EXLsoPSKy2qmpvns2bNDPi+7rfyZ3dRHzajPCOPkqFGjvHrs3KhVHgn/sVM+xpV+CZVVn92RTe92YrGFfu3atUEft3HjRu9xbIHfvXt30Mc9+uij3t/+ueeeC7qroFWrVvb71JulNI6zcOHCVI3Y2TGYjNchIiIS2Q4udjsznw+Vqc1ONne+pzE5pcb836d827XXXmvLt1x00UWp5vKuz4bLVicz/a677kp5+umn7c4o5o7Oq6++and409jajx1S/PyqVatS7V7jPsq2+JUtWzZNmdn333/fK33G54MGDbLHy/UIu+iYt1L2rXjx4kF/f+bf7OAjO19EIqMgusj/c+jQIbtli4GFwTErE3y2B7sJW3qT9nBMmjTJG/BodhJOg830rF+/PqVv3762oSfPycDrDwjEagLJxQr1WxnQ/djyxlZ5jmXKlCkpyYZj4tiqV6+e6EMREcnVCHJSHs1NAJmchvL66697/U1oEvbjjz+GfCylPqhZSgmXcI+D8iSuBwc3Ar6vvfZa2L08uDagbBxBYIfx995777WNUXPytmt6z7Dlnb9biRIlQtaJZyGDurE8rlatWrZcTjAEDyg9F6ovCIHyq666ypaTYUt7MPztKflD3fqc/LcXEcmJOId/9dVXKTfccENK3rx5QwbPmYtSl5wktxUrVng/zwIrCXA333yzbYjtYgLuNnDgQO+xlBmjRjrjuCsHxutTjzyw9BqJaa7knB8lVrjPf21CoJ7rkMBrG5Lp6LHCmOiwgM/zEvz3o0Qq97v+La7kZ6i/B4vUW7ZssUluGfWJEZH/oyC6yP/zzDPPeINJZuuXM1DdcccdXiMSf8ZTpAF9/3P26tUromZmwbLZmdy7Gm7uRhbY+PHjU6KNCwoms/6mYFOnTrWvSUPUwED9/fff79VJzWoQn0UGXiuzf/tAgwcPtsfWqVOnqDzfs88+axcUopFlSKM0Mh9yasaiiIjDuMzkmPMxWVZvvfVWyMeSWeV2OZGZFap2ODuyWFR2j2XyGc751NVXd0FgmlvyXBnxj28TJkywP0+GWW7Mfub6gMWNjALp7Fgjk+6BBx5I9+8UrAmpH4Hx9Jpv8z3eB7y3srJ7UERE4odFUgLVbjxxN+qYu8+Zk1epUiVVzy9uTz75ZKqdYK4Pij/LnOD1sGHDUgXGWaTn+y1btkx1LCz2Mp75e3AQnF68eHHI3VRZ/d39yXWMkSQaUJt979693v1kx3O81IIny50FBP/vSdIfO8JZaCaTnblquAkBIrmRgugi/28QcgMrK8uZxYo2mW9MxDITnCbYTWNTtp9nNCEMF4O2f0WeY7vssstSPvnkk6g0Ow2mXbt29rVefPHFVBNYtk4HmwSzok9mAD8zc+bMLL323Llz7fOQVRgNNGXh+Sh1k1Vk0dHohecj0zAr+Lej9A7PFZjdLyKSkzBusBWa8x1jrH8HVSg083r44YdDNo2kXIh/0s3E88CBA2EdDwFXtmLTdDtUdnTgjjIWiQmcOwTdWaQlKzu3YpJfo0YNL5DuD1L4RdqUdcmSJam2yIcqfxb4evw7sZ1eRESSGwveBMEZO9w4zvUBmeSLFi2y1w0svBNM9wfHCSB37NjRJr35S4Axr2LBlvIolIljzsrclYV2Sqn6d5bz/Mynzz///FTH5C8PlkzYYU/W+yuvvGK/5m/z7bffplk08N9YeODvF4vgv0h2pyC6SEqKzdJmwGD1Nau1wMmC5vkiwSSfVW1Xu5WbG+gifR4y1tni5degQQNb241AcDTrZnOxwAUIQXP/hQMr9pRoIUAQrnvuucf+3mTLZwXb4tyqeqjgSSTIXOD5+HfNKurT8Vzly5ePyrGx4NCoUaNU2QYiIjkJkz0Wl10G+rvvvhuypnm4wVaC8G7bNeMui8rpLW4zifaXXUE4wfPAut2Ub5HQgXSuwdhWnh4WHyZOnJjuDi2CJGzXD7UoQvCc12I3nr92bbB66txERCQ5UHKEHmb+citkULsgun+ey9zUlS8977zz7FhOyRb3+NKlS6eaj82fPz9NDyxqovNYdkM5BNez+y7glStX2sUBxkF2X3Xo0CFkQJ04wrp16xJ9yCJJQ0F0yfUImru6pmxfyswEPytBTLZ4MTj5t59Fko3N6/Mcffr08ZqbEUD2b+8iCJDV7eKUmJkxY0bKp59+6t3HhYfLAJgzZ06qYEakq/Hbt2+3x+2v45YZbD9zK+s7d+5MyQp+B1biea5t27Zl6bn4+7PNj+eidJCIiGTskUce8cZHtmwHw3Zpti+TWZ5RNjkTcDf5btKkiR17Qp2z2ZlGrW0ey46ucMYUgrhXXHGFzYZ2CNSyqBxpRnVuwb9f5cqVvZJ6of5OjMksHPM4GqOHei5XR50F/mDXPlyzuZrsLNwHq4HO+6hp06Z25562tYuIJBZzy8cff9yWWPGXIfHXOmc+3bBhw1SB8TfeeMMmarnmnO5G01HKa7rkOcZpt2PbP9YzltNkPJySbdkN46P/d928ebO3YzrwVqBAgSzNz0VyEgXRJdd7+eWXva3EkWSWucHnvvvus6u4DDyR/iwNrFwtVrLiyOAONxOeOqFsVSfbyj/IMfjdeOONWco4J8hAWRS6lQd2ASdI4UdAmOPOapAZ/D14DRqgZAX/HjwPGQVZsXz5cvs8BFyyugjBsfBc+fLly9KiC8cRqr6viEhO3CXGjbE6GAKurrRVkSJFUjUKC4WyHfTiCNVAkkxlfw8RAryhGlIGuuaaa7zyMBI+riFc8Jvt9P7eMH5cc7lFDRIIgmGrvQuuUHIn1DWU243w0EMPpfk+W/kZr3lMRqVhREQkNljEpDyof7c252Z/3XIW0V1ZUG7+8do1I3dz5J49e9qgOHNXgvJ+buE0VGmxnM7tjKfWO38n15zd3Zin09yUmu+MoSK5lYLokqsRNGcrEwMDq9GRBjPvvfdeb2Bh0IkUAxQ/27lz57Ay3PyB3Oeffz7V6jvN0z7++OOIMsC5MGE7V2B97osuuijN78QEl4x9trXFqgkapVhc5jcd1jPLBT+y2jT1vffe87IVs4p/Y56LBY6soJTB6aefHrXGqSIiyYgSK25XEVu3g6F3iAug09dk7dq1QR/H7q5wMqjINOO13FZvMq+YaIfKRGZBc+TIkXbh2SGwe+utt4Y8Fglt/fr1XqCEQEawRQ7q1l5++eX2MWQWstMuGEriubquBMRDjafuOipYnxICMTSbExGR+OO87HYpcSNx7NVXX7WLmwTPmZ/5g+cswFI+zd+omoA4jxs7dqyXhMS53S28+8eZaJTazElIprvrrrtSBdJpwO7P5ieoLpLbKIguuRo1wt1ELJJa6ASR+/Xr5w0i4QbgKXnirynGxNvfwTsYtpeNGDHCblHzN7wi6M5Eki3NbHHLCEFwAq+rV6/27uNzlwXvv3CgUSV/k0Q02OrRo4c9JrZsZzZY7xrQBdawzQz+jTZt2pSl52B7ucuKI0Mus/h7NG7c2D7PoEGDsnRMIiLJil1ABLA513Xr1i3oWBAYQCcAGwwZ7ARSqYvKQm16+L6bkBPEzag+N1lrPDaS/h+SPpcBzt+VWvjBEDh3Zfiobxvs/cF9JBe4Mnmhapvffvvt9jGU7WGsFhGRxGIsbtOmjTfPps8FC9ZuQfutt96yzb3d95kzPvbYY7aUC1936tQp1TyO+b6/sTeLsW3btrW73bLaCy03oC9Y4M53/41xONLd/CLZmYLokmsxCXMDMKvT4WJi5ppgprfF3I/SKm6LN6VKMgoOU+6DlXaakLlyL9wuvvjiDF+LiwGy7tj65n8dF5z2b1vmYoRO5HQX99dQT+RKPIsDLnjy0UcfZeo52L7Nz9N9PRkQhKdGLgshWUUWxdNPP520HeBFRLKC8iyurAfjZbAscALo1apV8wLowRpekV12xx13eOMnu6iCnTcDs50Zez/44IOg4zSTRP/4yKScBedQtdolc/j7Z5SkQMa/2zHAzrxQ11Jut2GoXiTsPnDvpTvvvDPkMbGzgIUVNfIWEYkNxnsC3m4xm91olO7icwK5DuNz/fr1U6pUqWJLslDOxY0ZPJ5zuRvDmTNxf/Xq1WO2kzq3+Pbbb73+XoE3Sr9EI3lNJDtQEF1yLYLJnPSrVq1qV6TDweTZZS1xGzVqVLqPZ3LG4O6/GODnQ616u5XxwBpkZB+/8MILqWqUu+D822+/bWu7+YOsLvDufzyBAeqZBzZPTcYLiv79+3vZY6Fq1qaHbXxkKVCqJpmoOZmISGiMjWy75vxfoUKFVIu7gQuTNNIOFUBnkbxFixbeGDpkyJCgYx07wXidjHaEgYVpspX9i7uM2Tqvxwb/Zm5iHqq8G9dFbkt+qB15NENnYp/ev9OCBQtsCZ5Q7zd/Y/Drrrsuk7+RiIiEQuksAt1u3HY9K9x8sHnz5qnO87Nnz0659NJLU2WrP/jgg7Z0m/+6gCbRXFfQKFzlWrKO6x7KpfH3DhZMJ7Eg0j5xItmNguiSK+3evTtT2c40uiIQTZCawTgUJlyUTilfvrw3qJDtvWzZsjSPC2xewkUCj+d1yKh228/JvKMZmj+TzpWj6dChQ6rnoCFI+/bts22dMi54mBTzuyWipIwL5rRq1cpuJ090R3Ym/7NmzUroMYiIxBrZY65RWEY1xTdu3Bj0MUzemHC7muaMm4E4p9PTxC04s+sr3IV3ti1L7HF9RMDaNX7fvn170MfQYD0eE3au3zierVu3xvy1RERyC+ZbjzzyiJdARuKZ649FIJ05rfsejaUdyre4hVZ2nTG3d1nnGqdjj7+3K5kWeOvVq1eiD08kphREl1w9UWcrWKSZ2NTMzCjw7hpScitdurRtcOl/HTfQM9EnO526586SJUtsYODgwYPeffwsk0ie75tvvvHuZ7WdLPUnnngiJachY979/VwjmHji34DXL1iwYJay9ceMGZPlCb4rT0OmnIhITuRv8kj2cLDFxHCaPHbv3t0+Bw2Ygz2eYKirpe6aPbNw68c5n+C7/9xNGQ/KtmRmd5RkDuVzXKkVat1mtXYt7yHq7aeHf3sFykVEYo+McZqBuvHYld9yu7BdaTdu9AFj15BDVjo9sDZs2ODdR2IaZb6uvvpqjdVxMmXKFDtX9wfRyVSnFBu75dWcW3IiBdEl12GAdSvc/jIooTAIT58+PaLXYKLHlrQHHnjA23rGxIwt49RG95drIVPuk08+8X523rx5dnt53bp1Uz0nmeXUfqNTeW5Axr3rAM627sw0J2Ort79DeyTYScBrc3GXWQRgyHTk/Uat98xiKzrPobq7IpJTJ9IsWAb27XAYP7t27WobNFMvOz1kmffs2TPNOZfnoDGZa/JMP5CPP/446HO4xuEq3ZF4lO455ZRT0mQhBsM1VuDuPn9zdcr3nXzyybbufjDs+GNXAo+hGV16/IkOIiISPsZjdnS7XeE0/iYBjbrn7ERm97abJ7MgTvNu5sDMjV0JVs7X7BYOnCOGOr9L7FAKze0c4+Zf/HCL4Go8KjmJguiS67j6adQeDycYTvCax9PBO5Rp06bZFXJ/zU3/Cji1uWvUqJFqQKHJJAM/Fwb+ep9M9Ph+vnz5Uo4cORL0+XIL6pq7rf2RXhRdddVV9mcDa8CHiyZkWQ2iUC6A52ArYlatX78+KevXi4hkdcHU1UFt1qxZ0LHO9clgMdHfXMwhuzij8yM/58bfNm3a2Al4KGSrE9QfMGCAzrtJYOLEid6/XaikBhZI+D61b4P9mxF4cXXNb7vttqDPQb1cl/keKmDP+5OFHq5LlLEuIhIZgqmdOnXyzumcl/3lutz32KnNuZqm4O6xxYoV88q4uV3fjNWh+llIfL3zzjt2ETpYiRfK9LCDXiQnUBBdchWC3ZzI2erl3/4VamJPYJzHk7nmzxZ3yHQjs9wNECNGjPC+529ewuDOajsDCFvPXG10suX4Obaf+zFJVJZT6klv4N8onOxtt1U/M/h34uep05cZLICQWcFzkNUuIiJp9enTx5scBzbPBg283RhLeaxAlEtjd1dGWcquxvbw4cNTBVlZ/GbRNHChXGNwcnHXS6HeJwS0XVbjG2+8EfQ5mMC7GrqhyqxxrecSGfyl9hzeO02bNs30LjkRkdyKhCB2BLkgOQFwgq6u/5ebW5O5/Pjjj9tm3m78Zx74008/pZpnd+vWTT2jkgz92OrVqxc0kM6td+/eavAq2Z6C6JJrMFF2zcb69u2bYQDUZawzkQrMfOLkT9YTmUguO47npHQLEzNWzi+66CJvos5HBn+y7fwTt7lz59rMO5XpSH97Nn9jyqJQLz5cH374of25OnXqZOp13SR53Lhxmfr5sWPHelva3NbDSFCjlxroWSkDIyKSzJj8uolVsIVqaqMz0eb7LIwGevXVV73moNdff32qcy3jLufhwP4igTjHux1P6WWnS2JRpsftWGAnQbB/S9c/hMBLqMzEFi1a2MdQHigYnpdavOlloy9atChlxowZ2qUgIhImxngahbqGoW5sP/vss20JtVCZ6vQw4Wc7duxod3Xnxp3Z2Q07+QmWhwqkU7Y2WLNwkexCQXTJNZ5//nkviymwiZgfg/fFF1/sbT2aPXt2qu8TBCfw7QYCVltpmkHJFibx7qKA2+LFi72fcz9DQ1GJDBdO/O3OO++8sCet7DRwiyD+MjvhKlu2bJpGrpGgXA8/T7merDS/5f2libqI5DT79+9POe2000KW1yBjzS1U33TTTWnOg6NHj/bGWs6X/swmJnBuN9G1116b7jmUwHurVq1SXn/9dWVHJTmus1xN+2DZ5oz11M1NL1mCALjLggxVP931RKEWu+q4iohkHuMvu73cgrc/u5yEJdcPheQndx6vX7++PUezG5ivf/nlF7u7l/u++OKLRP9KEqYJEybYWIpLhvMH0kuVKqUyPJJtKYguucLevXtTTj31VHvSJnMtFCbeF1xwgVdjLVjtLpfFxLZhAvOrV6+2XcD9AwMBWJpi+mua0xCUbelcCEhkqBPvtmlTby0cBENcAIZ6uZHgZ10pFl47UqtWrfK2jO/evTslMyj5w0WkLhZFJCdyQW6y0IIFKnv16mW/T4MxxmY/AqhuQsbj/EFy+me4pmRMuFm49n+fxqT0OlHAPHsaOnSot3MgWE1yrrVcGb5QJVuuuOKKdLPRWVg566yz7GNeeeWVdI+H95beSyIiaREAp+SKmx/TNNTNj1i8dvczZtNE2tm4cWOaMi0sbn733XcJ+C0kK5jPusQ05vLNmzdPyZs3r42dKElMsisF0SVXIMuNkzdbgTMqrcGWcSZn3377bdDvkx3HwM/kjIagLvOcCT310RcuXGg7iXMfTU8kOqiNx9+UzMVwM8MoqcPPkLEYKQZ2VsgzMzkmSMN76Morr4z4ZwOPQUQkp5k5c6Y3efY31vbj3EsAPLCkFeVXXACdDHT/eZLJGiW0XJCVPih+BNhd1luoutmS3LiGa9Sokf03vOyyy9KMk3x9ySWXeLsQguE6zTUhDXVN6HYvMuEPhTr6lStXDntxX0Qkt6DEacuWLb0F7QsvvNDLRHcL3a7Wed26dVPuv/9+7xzOzjCSmfw7uiX74tqLOveuL92LL75ox2ESG++44w5bio2SbSLZhYLokuOxdddNuKlBnhEGb9e4hM//97//pTz00EOpvu9vPlq6dGm7wso2Y+f9999P+eijjzJVRiSzcno2FFn9biW7f//+Yf0M9Ux5PLXF4+3w4cOZymIPzLgUEclJWAR153KC4JF666237IScxfHADHO3Y+mcc85JWbt2bdCfZ9LGFnHG72TGeK6F1OAow+LKugRLVmD3Ge8xdv+F+huy4JLe3/fQoUP2udO7jhswYIA9hrZt22byNxERyZlBU3pSuexj+pswv2Fhk3rY3E828oMPPmjLrLosdZKXOC936NDB3kcWe06Q0+fo4c7j3b+rK5fm38XPoklm5s0iiXAM/zEiOdTRo0dNgwYNzJIlS0znzp3NW2+9leYx+/btM4888oh5+umnzYknnujdf+DAAdOjRw/z/vvvm2OOOcYsWLDALF682IwdO9Z8/fXXJm/evGbbtm3m7LPPNn///beZN2+eadSoUVSOm/8td+/ebX766Seza9euVLedO3d6n//222/m33//Nf/884/577//7M9yrHny5DHHH3+8yZcvnylRooQpVaqUdytdunSqz8uVK2cfnx189NFH5qqrrjInnHCCWbVqlTnnnHPSffyGDRvML7/8YmrVqmUKFChgkt3WrVvNeeedZwYMGGC6d+9ujj322EQfkohIVD300ENmyJAh5swzzzRr1qwxBQsW9L73xRdfmLffftu8/PLLJn/+/CGfg/G4fv363jmSsbBChQrm559/Ni1btjTvvvuuOeWUU8yhQ4dMnz59zL333msqVqwYl98vGK4Rfvjhh1Tjd+B4vmfPHvPXX3/ZMZ2buzw/7rjj7BjNjd8p1HjOrUyZMqZYsWImNxg0aJAZOHCgvcZZu3atOfXUU9Nc//G3iyX+Tb/88kt7XXLyySfH9LVERLKD7du3m+bNm5v169ebQoUKmRkzZpiGDRummscxXnXq1MmMGDHCjnc1a9a03ytbtqw3N+da4M4774z5eTwzmFsyZws1nnMjjuDGc8Yj/xydG3GE4sWLhxzP+bp8+fJ2zptTEKvgmuz5558P+n1+30WLFpkiRYrE/dhEIqEguuRoI0eONHfccYed3DCYM9nyY9LKQE9A9rrrrjMTJkyw93/zzTd2cCeIzUB300032Un7ypUr7fdHjRplA+x4+OGH7USegZ7BMFL8L8gFB4F+/41jc7iAKFmyZJoBlt+LYLkbkBmcGagJqjNoHzlyxAbjAwd57ncIVNSoUcPUqVPHu1WpUiUpA+v8rVq3bm2mT59uLr74YjNr1iz7O0fbm2++aSZNmmSuvvpq06VLl4h+dt26dTZYk5nj6tevnxk+fLi54IILzNy5c2Pyu4mIJArBTsYbxqiPP/7YXHHFFd73GKuqV69uJ6cERx999FHve0uXLjVnnHFGugFiFrlZ9B46dKg36e7WrZs9nxNwZwyPxzmVQDjXFG4s59j5mkC6c9JJJ6UZz7k+YeHbjen8Dox5bqGc2/79+9OM51wruEV0nH766anGc26B1z45AX9nAi+MuT179rQLL5lx8OBBu/iS3qK8+/tqYVtEJP2FReZnW7ZssYu+BJLvvvtuGyx34++rr75qF8wZr8H8+6yzzrLn18cee8wkG8aHwDk683aH42b+Hzims7DLeO7GdDdHd2P6n3/+aZ87MAhPUoBDAL1atWqpxvNzzz3XBuCzK65rBg8ebBPGguG9QLIif0ORZKUguuRYDEwEM5kgvfTSSzaY7sdAxUDPpJ4A9eeff24f/8QTT9hBnEkTWV3cN3PmTPszTGoZBDdt2mS/lxkMoPPnz7cr8999950djAkagImuGyRr165ts8QZRIoWLRq1yRv/yzNA8/tzEcDCAMfAsZC5zfeZyLvAerNmzWxmH9kEyWDz5s32AoKLj3feecd07Ngx6q/Ru3dve8F33333maeeeirsn+MCiEAP75mFCxfaQEmk7w0CAZdccompXLlyJo5cRCQ5MbawaM3kuU2bNmbKlCnepJrvXXbZZeazzz6zgXQC3i4TnXGpcePGdkLKOE0GOwhKr1692o6VoezYscMG6l944QX7HLGwd+9eM23aNDvpYyzlmJggc73AgrQb05kIn3baaXZM9+96yyrGDQLpjOmMj/6JPkF38LocQ7169UyrVq3s3ywnLNLOmTPHXHTRRfb6iMUKrlv8CFaMHz/efi9Y5hvvQQI4/G349wtm2LBh9hqSG+9bERFJi/GnadOmdtwtXLiw+fXXX+39JD+NGTPGjn3MrXkMyWqct9kFznmbeQ9WrFhhrwEShWsRxguuRciIZhxlbgeuQfzBbIK9/E4E0KOZLX/48GE7nvN39C/If//993a8JyjPPJhjaNKkif37EifIbpjvkoAYDHNpEiKuv/76uB+XSFgSUkRGJA46d+5sa2zVrl07TeOo7du3ezXZaFRJs1DqlbVr186rzUXjqpNPPtlrGkpdbe6jWRm13SJBbc0PP/wwpUuXLrahimusQlMsarPScZxjSnT9U47zyy+/THnuuedSbrjhhpSKFSt6TUBo1EUjkC1btqQkS5PRkiVLphw4cCDdx86bN882LaEBWLiuv/56+/zDhg2L6LiGDh1qf+68886L6OdERHI6+oS4Oqg//PBDqu+99NJL3vdWr17t3b9r166UcuXK2e/Vq1fPayrNWMWYRK1VmlM5v/zyS8qUKVNSPXe0x1Wej3rrND2lOZprLl6tWjVbv5XfZf78+bb+ZyJxnPydqRX/wAMP2L+Xu6bhuoea8lOnTs32zbxcjdULLrggzb8113auJ06wGvlcd7l/v3Xr1gV9/nvuucd+v2vXrkG//88//9gmtTfeeGPS19kXEYkF5oauqbeb53JzTZ6rV69uG43i7bfftvXPaTDu72E1duzYhBw7YyBjYY8ePWyfM46XsZJjZ+xkDGUsTfQcnWsKri24xuBag2sO17SVaxGuSUKNY8mKHjX+uuiBN74vkowURJcciQaiLvjtn2Bj9+7dtukY32fA37RpU6qGZUzK+disWTP7GBqjLFmyxH7/xx9/TNm3b19Yx0Bz0pdffjnl0ksv9RpgnXvuubaJCoNgdmkwwu9M8JyLCYLp7mLo4Ycftn/bRPweTFRdgD+jxnQjR460j7v44ovDfn530RfJBR0XV+59RTPaSHz33XfZ5v0gIhIpGoqdffbZ9vzob9TtmkTmy5fPfu/555/37idQziI495911lm2URn279+f0qBBA3v/iSeemDJjxgwv4F6mTBk7Tn377bdRPX4CpVxX9O3b11uAz58/v20oOWbMGPva2QFNMr/44ouUXr16pZQvX977G5JA8Prrr3t/4+xk69at9t+C34Wm7oGuuOIK+73u3bsH/XmSGfj+/fffH/T7s2fP9hbtgwVRuK9EiRL2MSQhiIjkJixGuvHEH0Bv2rSp9zlBcv/5c8KECSmHDx9O2DEz1jHmMfa5huRcZ/Tu3duOkek1lE4mO3fuTBk9erS9FnHjINcoXKtwzcK1S7Lj+N37hLGUuAuLGCRV8G8hkowURJcch4GvSpUq9mRMppUfAzjZSi6Azsr53r17ve+xGr1jxw4b0HQB0eHDh0cU3OXC4KKLLrI/mydPHhu8HTFiRMrmzZtTsruDBw/aSSpZ6qeeeqr9HblwevLJJ+1AHk+ff/65twK/ePHikI8jq9EFPMLNEqtRo4b9mc8++yzs4+EYXBd6gj/hIoDE+6Rx48ZeloaISE7y7LPPeoFI//mR4HqtWrXs91q0aOEtJrJ7zAU3ixUrlrJx40Z7/6+//ppSt25dez+ZbP5zP2M4WclMhFetWhWV4yb7jKB/qVKl7GvykWDsJ598kvBM86zi77VmzRq7g4rxh6QDxtPLL7/c/n7ZYfLtPProo/bfh4Ua3lN+X3/9tbfLIdgiAVmGfJ8FmGBBcq4bXJBl+fLlQV9/0KBB9n3i3qciIrkBiWVVq1ZNE0BnTHGfM2aSfOXmicyruZ+5ZDyzuxnT2KnGGMdYx5jHcTIGMhYmOtM8q1iUYOzm7821lrtmYWwK3P2XbNxuRG5k1HMNGGz3mEiyUBBdchxOvm4wD5Y1vnTpUrsFipMzZT5OP/10O3i2atXKlmxx2EJUqVKllFmzZmX4mmSz9+nTx07qee0mTZrYLGYy5nIqLkbmzJljtzgToD7uuOPsij5ZgfG6EHFlV1i1DizZEyxLjOMNh9vOR4Z4uFj152euvfbalEiwKEEmIFkEIiI5DUFzNzaSte23cuVK+z1uLGA77Nji8WSou91kLHi7gDvj+4oVK+yiuT/Yy0IkgfasYCyZOHFiSvPmzb1t3T179kzYzqt4IcDMzi2X/U/JF8rN+f9dkvk9Vrx4cXvc7JwLvAZwOxcIdgcLPLggeagFebeg89RTT8XsdxARyU44d7pgOcFazr0uKcgFRCmR4nZj33777V4SFDvG+vXrF5cxlTGMsYwxzZV5ZazLjjuvwsXflWsWrl0oQ+tK63BtE2q+nGiDBw/23jfjxo1LGTVqlE3SI6ZCciJVAkSShYLokqOwrddNhqhRGQp1tCmz4k7Wp5xyipep5CaMDDLpbediYsaFACvarGYTBCCQmhtXTlksoHQNmQb8HdkJwOAX6616bKF3NV5Zxc4o2E4JmnDwPuDxlLIJ92KFxRh+hrq/kdq2bZst/yMiktO4iRG7u4JlN5Od9tVXX6UKiLo66OPHj7f3sSDudgiRmU6mOTujCHSzTTwaCL4/88wzNiPZZdK9+eabCd1yniiUsGMnX8GCBW1QhDE0sDResnGl23h/BO7q4n3E9xing70HXV31UCVdXnjhBft93m8iIrkdc2RXKos5NAvi4Bzq5tY33XST13Pi6quvTrUbOB61uxmzGLsYwxjLGNNcedbchGsYrmXc4gbXOFzrJFuiH3EVl5BGYl6wGuns9hdJBgqiS45y5ZVXeo0d3eo2gfDrrrvONph0AUsX7GVgdQM8NzLPM6qDxkme7VJuQk9WO9l12X1rdzTwt6EmKP8O/F0p+cIqciyDEG4LGCvtoerSUqOcxzRs2DDD52OC7Wq/h1v/ngCQO4bs3qRNRCRaWLB2pb9oJhYuGoRSJ9OhRAcL1uwqYucYaNbtanpnpSY5wXMC8SzAkzFHA/DcONEO9e9Ho3FX75bmZf4Fj2TCtZuruz9kyJBU3yN440oNBDaexXvvvefVxA22k45dD26MD5U5yetTPk5l2UQkp3PBTuZLZDc7JB8xXnTu3NkLhBLIbt++fdwyvxmjGKtcyVFKqrLoLv/Xg4trHK51uObh2ieru/eiifGVHd0uRhMYRGfHe3YvuyM5g4LokmN8+umn3uqlWxHnRMtgwf1s9aXZmCvV4QKlrgQHGUpMFtPb5vTNN994AzONR8lE18k8OC6kaPrJ35ltfq+88kpMGrXw7+Vq5HKhFgwLJ3yfHQMEZ8JB0Cbcf1sC73SZDyxVkB62peXGXQsikns89thj3gK1f2yloVfgrp2MzrcEQgPrelJbNZKyW34s7hJsJYuOQHz//v1t43FJi3+7jz/+2Cv10qZNG+86K5kwrnJ8hQsXThM0IVjQsmXLoE1nCXyzIB+qpjljPNcZZFaGCsbQOJ7Xdo1uRURyotdee82bP5PhXbZs2VS7ad955x0vAHrjjTfa3mB8TlmsWGKx05XeYqxizErW0iWJRuIB1zxc+3ANRF34ZNl1RzKa61/nSgH5bxyrSKIpiC45Aid+BnFOrtRYC6yrSmCdWukMFv6TMl+7GlvpNZ1k6zhZcPxMzZo1U6ZPn67geZgIetA8hgA2HcPJ+Ip2DTzqmPL8/PvMnj076GPYOUBGwqJFi1ISjYk670EuMslcExHJadgq7Mptvfvuu6nKrrmxmLEUjAlMfv0LkSxkEmz3j7Xz58/P8q4vAqL0PGFBnUVeFnsVPA8P/078W5LxzZhLtmG4Zc/igX/bihUr2vfWE088kep7sb5mI9PypJNOimjHhYhIdkIymQuQuz4UjAcErN052DUaZe5HEHv9+vUp9evXT9mwYUPM55kcSyzmmTkV1z70h+PflGsiFkiSoak4PXBcWT9/0qNLiCMxLzv0a5GcS0F0yRFYTXX1Lt1WWhqcuBMuE3EykKnV3bRpUy/g7uqthrJlyxbbOJMTNgFYVtc1MGc+Q6B169ZeI9BwGrZGgosAV3c32III29WSZeGD9xWZfC1atEiaYxIRiaZHH33UnpOZULtxk/OdW5CmWZS7n4xw7mN7MRMjJt5uS+8999xjHzN58mS7+Ei5sMxkl/HaH3zwgR0j3M6lzZs3R/m3zh3YVUYN8pIlS9p/E/6N9uzZk5IMCGK72ujxLLPHtafGcxHJqRibOee7RqKuyTeL4pTwdElMPI6dP/5gbCzOjZSHufvuu22QleOK1Y7n3GDTpk0pHTt2tP+mLERTLi/R4xkJjOx0cIHzwIx0SvOmlwApEksKoku2R3MSt0rp6rLx0Z1wH3/8cTsQELhkwGWbUKdOnWwj0FDbbhmE2YbO5JAarDTNJCtOso6a6Y0aNfK2hG/fvj1qtVv5t+J5aWSXlQsJmuWQnRgOar737t3bq9MbiWTZOiciEk2UvKB+NOdjAtcOY7PLLHLnTLLLXe1U+lcwXvfs2dN7nMtWZ4KeL1++NA3Kwr1OcE21aCq+bNmyKP/GudPvv/9ux1v+rcnCJrCe6EQDAjdnnnmm/bcmqy4QZQfYiRCIazyCMNdcc03I6z2uDSkPJyKSm3Duc2Oo6y+RN29eL6hOiVMXwGa+Xa9ePZs8FQuMMczLCbAy9jAGMRZJ1nFtxDWS6y/HLoJEYoeDP3BOjx3Kz3DNSMmeZFm8l9xHQXTJ1phsu1prZDnzNQMAE23uI+ucgZZtXgz6btvxoUOHQk6EqPPJiZkTNOVg1CQq+vh3IphCJgPb/ekaHo0V73Hjxtl/9/z589uLuGC4yEuvIzn1dd2uhoxwzG5XQ7BmZSIiudHzzz/v1UJ3QVUWsN35kt1jbvHT3UcDcM6p1Lt0mUf+MjBYunRpRFuNyVgfNmyYvSagnBh9TCQ2W6979Ohh/90uuuiihJd4efbZZ72MOn9Qn+s5d31Ilpsf7z2SK/jeggUL0jzn8uXL7XUhQSMRkdzk/vvv9+ZXLqDpGjlTdqNMmTIpY8eOtY8lEYn7GzZsGPVsZkq3XHjhhfb5GXMYeyT6uFbi35fxkt4ziawtz64Gt1Nx3rx59t+c5u/KQpdEUhBdsjXKq3Bi5STvtmWzGn3VVVd5Ndn8NbTef//9kM9FcJWsdTLf+FnqbEtsUWKFmqqu4UxW65txseaakdDBOxBZcmQt9OnTJ+Rz8O/Oz59xxhkZvh71zN37L5yscoL8vMeUMSEiORVBy7POOsueGznnOvQl4T7qbnIO5HztSrYwCSegTtaR20VGSTbG7MzWKyeDisw5no/dQtr5E3uUaSMLnAxBsroTtR2cRAlXj/+TTz5J9b22bdva+yk3FMiVGiJoEIj3p7ueDNZclAz37t27p9x6661R/m1ERBKH3WDu3MfciI+VK1e2H8kKdn0oKJnKLh4Slbp06RLVXTtcV3A9QekYxphQ/a8kerhm6tWrl72GSmRWOokTlP9z5WB5j3Ef1xcE1Pft25fwHXCS+yiILtkWExq3jYzApB9bwgNrZzEIBGYeBcs+f+ihh7S6GWdkcfNvycUYmQxZmXjzb+xKA0ydOjXV96jxxv1kJIZ6jYULF9rHkFWREVfHl10Q4VyMEDxywSERkZx6PneTa7dg6G8y+sYbb9j7+MjXNLQi85dMX9dwlB4Xrrb1ueeeGzRoGQoZUwRBWdwkk+rrr7+O2e8qafFvRSCZfzt2CobaFRZr9957r7cj0Y9rDPe+CuR2QdAkNBhXMo4da8EahruG9SIiOQFlUF0D0dtvv92O5a1atbJfM9eibAufc26M1Q4knpcdTi77nEVSiZ+vvvrKy0pnl1cistIp/Vq4cGH7HmCxumbNmva9R3kXxtxatWrFtQeKiILokm3dddddXiNJtolPmjTJBkbJXPM3oGDizqAbrNwGK5lPPPGEss+TACvJlN1xtdJ37tyZ6efq27evfR6awfLecLjwooYf3wtVq4/6vHyfEgMZYWU+MNsyFFbJJ0yYYC8EtUgjIjmVK7HWr18/7z7G5mnTptmSLW4CRt8RmpHRVwI0+iag3rx5czs2f//99ymnnXaaHevDXVglkMl5mWsAMqiUfZ44M2fOtFmLZKWPGjUq7lnpZEHyfuK96L+2Ywecuz8ws44FF+5nUT/Y8Z5//vn2+++9916a7/Fee+qpp2yQIdEN2UREsorzGI283aIjQUruu/nmm+197nxIiRcC6x999FHUX5+xgzGE7HN2OkliML7RQNxlpXOtFW/EeQITJP03JahJPCmILtkStbCYfHPSZFClqYjLenJZyNxYPQ/VQIyJVIsWLezzUPs8JwQ2586d69XyJjBRt25de/FRrFgxW6OO5mrJbvLkyXYCyy1YXdJwECx3Wd8DBw5M9T3KvHA/Ow6yUs6FLWTuPbh169ZMHaeISE7CTiDOiZwbw8lAJvvcn9VExhNjsz8LLtyAJDuPKNeVU7LPc8J47s9Kp6F7vDPFXLk4Fuj9uPbjfkoM+XF8blwPtpBP01G+N2LEiJgfu4hIIrldO26Xtn8sdjXSCaqSoe6C6ZktvxaIc/H1119vn5cxJJLdaMkqJ4zpXKNRro9rLRIj4u2WW26x74kTTjghTRB99OjRcT8eyb2ONSLZDIs/d955p/nvv//MddddZ4455hjz8MMP2+999dVX5ujRo+bYY481+fPnN3PmzDE1a9ZM8xzr1q0zDRo0MIsXLzYzZ840Tz75pMmbN6/J7iZPnmwuv/xy+/mXX35p7rjjDrNgwQIza9Ys888//5gWLVqYw4cPm2TWtm1bs3z5clO+fHnTtGlTM27cuIif46STTjLPPfec/XzIkCFm8+bN3veuvfZa+/Hdd9+176VA+fLlsx///PPPdF+Dvy/vwSpVqpgzzzwz3ccGex0RkZzmhRdesB+vvPJKU6ZMmQzPpTVq1LBjtlOgQAGzc+dO7+vixYvbMT6j8+szzzxj2rRpY5o1a2aWLl1qzj//fJPd5YTxvFChQubVV181EyZMMBMnTrRjuv/fN9b4m+HDDz80Bw8e9O7nvYLPPvss1eO5bqxYsaL9fMWKFWmer2TJkvbj7t27Y3rcIiKJtGvXLnP33Xd750XmyZzLsXHjRm+sf/TRR+3n3bt3N2PHjjUlSpTI8mvv2LHDXHDBBeajjz6yczVel7Eku8sJY3qTJk3sNRZj+WWXXWaGDRsW1znus88+a68t//77bxvr8bvvvvvMnj174nYsksslOoovEilXJ5UaWGSku1pt3bp1S3n44YdTGjVqZOt2sVIabEWclVNKvNAAZdOmTSnZAQ2wQm1f8tf75Hf+7LPPgj7Hnj177OO//PLLlOyAnQH8m3LM1DaNtAYbGROUBXDlYZzffvvN6y4frHyPq2t60kknZZihQamBnj17pvs4no96+4H12UVEchLOra6muRtnli5dmlKkSBGbdcU5mTGZHhJr1qzx+lTQlIzyWpTW4LHUvQxVbisQ5bpcGbD+/ftni+ZSuXE8B3XEGTNLlSple4/EA+8512SeRqeB43yBAgXSZMdTcohsdP/jA/ugdO3aNehrUbeV+r2JqBkrIhIt9IVwvU1ciStKtrALl3F20KBBdiyP9pjLDmTGCDK2meNnB7lxTOffnd0JHDNNZP2lU2ONCgSh/t4dO3a0Gf8isaYgumS7Sbor00Ez0QsuuMDrCE5QE9RSnTNnjh2QAic4w4YNs5MjgqrZaWsYvzeNNFgg2LVrl71R95vJIbXEsXr1ahv4pWt1MG7SGKq5ajLi34xt0/ybcfFGM9lIsDXO1T6dMWNGmi3Z/pq9DpNfysH8/fffYR1fRhcON910k32tSy+9NKJjFxHJjlu/Kafitn1fddVV3sQGHTp0sF83aNDALmKzJdiV12Jca9iwod3iHE7jsB07dqTUr1/fLprTbyK7yK3jOdy/Mb1Jxo0bF5fXpEY5fyveV4EJFcHeZxxjqFr6XEdQImbMmDFpvsd73k3kKUMkIpIdffzxx15ZNlfOxZXPcD2gWCx86aWXotr/4a233rJjQ+PGjaNWFiYecvOY/s4779hrMK7pstLLLFL8vUOVdeF9G6qUr0i0KIgu2QqZ5q5hJNnJfE5TUBqepFenkkAnK6U8hvrn2TFLiIYe/hVtVr5r1KjhfU1d+KuvvjrkivFll11mm4FkR0xcyYYgYzGwEVhGaC7HvzsXMyywYPbs2bZWeqTPlRks5hAgUtNaEcnJaJrMuZaGof766NRMZQJJBpabkJNtVqdOHfs145I7NzNWk+mWETKZyVYjs5kM5+wmN4/n7DK78cYb7b/9fffdF/PrMcZgrhPTaygerd+L+ra83yNd8BcRSQa///677QnlduTy0SWv1atXzy4wMk4zXnHfE088keXXZAxwc3p2IGfHHmW5eUxnfsu1GO+TRYsWxeU16Z1DLXkXOGcXJDcS59ht/sEHH8TlOCT3Uk10yTa2bNli657i3nvvtXWxQB2x1atX29pY55xzTpqfO3TokLnkkkvM+++/b9555x1b1+24444zOQ211qgnHgx11/gbUVsuO6JO3KJFi2xtXGrZL1y4MOyffeSRR0zhwoXNmjVrzOjRo+19F198sa3jF+z9Eg5q1lEPPRzFihUzgwcPNnXr1s3Ua4mIJLuffvrJ9iBB586d7ccnnnjCfrz66qtNhQoVTK9evezXd911lxk/frxZsmSJKVKkiB2T8+TJ4/Wk4L70fPrpp7ZeKnUxv/vuO1OnTh2T0+Tk8Zz+M6+//rq9hqOeaocOHcxff/0Vs9djDHZ/y//9738x/b1+++03W+M/J9TvFZHcZ+jQoWbbtm22txTnM+ZP9LGgXwl9Is477zzzxx9/mBtvvNGULl3adOnSJUuvx7mfMWD48OFmxIgR9hydE3qU5aYxnfktPeboD8a12dSpU2P+mqeeeqq9fsAJJ5xgpk+fbjZs2GBWrlxp+6Bx3SkSSwqiS7ZBwwgGWwKgPXr0MLfddluq79OArHr16qnu279/vw2gMzgxwe/YsaPJqQ1gli1bZpt8BKIJK0EHfv/TTz/dZFcEYWjAUrVqVftv+s0334Q90D722GP28wEDBpgDBw5k+DN9+/Y111xzjQ0MBUNwiPfbyJEjQz6HmomKSG5BA2jOeTT2LFu2rFm7dq1duAaNv1966SWzfv16e96kIdWLL75ov8d5ljE93ODmpEmTzFVXXWVat25t5s6d6zV6zElyw3jOgnjv3r1tYGHatGn23zSjZt5ZcfPNN9uPb7/9thewJ9h9//3326CQ/7qA9zHXl7xPAxuI8j0W0fft25fu75ZRM1wRkWTzww8/eMlqR44csR9do8uiRYvaZo4Ezk855RS7KM6YfsYZZ2T69QjG04ScMYCx4J577smR587cMKaXKlXK/g6tWrWy/6Y0hY01EjZodMr78pVXXrHvzcqVK9tjEYk1BdElWyDz+IMPPrDZ5s8995wNoPoDmGSyffvtt+a0007z7tu7d6+56KKL7IrkF198YRo2bGhyEv+FxieffGIaN25sMwb8kz0GZwYyfv9y5cqZ7O7kk0+2q82serds2dL+XuFg0aVKlSp24usC6uxgmDhxornlllvSZJXzN+P9Rof4YLgY4rnS29FAIJ4MjU2bNkX0O4qIZCeMNW+99Zb9vGvXrt6YzP3t2rUzJUqUMIMGDfIWMu+++24v++qXX34x//77r/2YkQkTJtige/v27c17772Xo7LVcuN4jjZt2tjfl8n35Zdf7gVsYrGbjQn2r7/+ambPnm3vY/xmUWbevHn25v+3mDVrlvnqq69skMhv1apVpmDBgvZ6QkQkJ3nggQfsImPz5s3t+Y9xhq9ZGCepiDnYqFGjvPGKc2Fmca7nnM9iOEFkxoKcJDeO6ewk5NqMRXF2F8Q6s56/MbsX+EilgS+//NK88MILNimDZDfm+x9//HFMj0FysUTXkxHJCE1LXAPRFi1apHz99dcphQsX9upgBWsOSU3VatWqpZQoUSLbNekIt97a8OHD7e9HXW9qqfG13+23355y8skn2y7VrtEJtyNHjqRkd/wONOqkmcnnn38e1s9Mnz7da0JCQxxq7vH3CdYNnQZk3D958uSg70dXh426vKFqtXFsPIb66yIiORXnQc51BQoUsI0aaaTlalBTK5OeEK6x4/bt21Muvvhi29eE2qucT6dOnZphc7Lx48fbZlHU0s6OPU0CaTxPjd+LeuLNmjUL2dQzq+68806v5q7D59z3wAMPBK3vT6M7v7Vr19r76dESiH87GokPGjQoJscvIhIr9ClxPUxWrlxpx+oyZcrYORN1pvle2bJl7bjF97KCczznes75gfOv7Epj+v+PazT60HHNRuPRWHM9VqiJHthklLGaOblItCmILknvk08+sSdCOnYz4Lhu4a4hGQ05/Pbv359Su3ZtG+j8/vvvU3KKwAGaRm0M0PwdCNjS2dsvcCBxtzfeeCMlJyAITiCdwA0LK+Fo3ry5/Rt07do11cDLxYzf5Zdfbu8fNWpUmufg4tE1x0vvYofg0f333x/VzvUiIsmGACTnxGuuuca7j7H3mWeesZ///ffftun3/Pnz7decE3fs2BH283/44Yf2fMv5OnC8z640nqfFOM54TrIEjeuibc6cOfZvduqpp9r3JF5//XXvWtKPawTuf/LJJ1Pdv27dupBB9I8++sh+r0GDBlE/dhGReCSr+ZtfkpBG4Jz7L7zwQhukLFKkSETjdyDO7Zzjea5vvvkmJafQmJ4a12qMo1y7TZw4MaavxfuRZqLB/p4VK1ZM2bp1a0xfX3InBdEl6Vczq1atak+EZ511lhe8dIH0YcOGpXo8WXBMYMhUX7FiRUpuwOBUuXLllNyIIDYXdnSQJ4siI3QNd5kW7FD47LPP7NcsuPzzzz/e42699VZ7P93VA02ZMsV+79xzz4367yMikt0w/nBOnDBhQsjH+BcTych68MEHU51zQ+F8SxZcx44dc0QGekZy83gOdpYRcGAh+6+//orqc/P+cbvIZs6cae8jsOF2qPkD9/3797f39+zZM+wgOt8bOnRoypgxY6J63CIiseR26jLWkrDmFsBZRHRzpD179tjz5RdffJHp1+Gc3qZNG3uOz8rzZCe5eUxnzL3uuuvszkQSImOJpDX3HvYH0Um+PHjwYExfW3In1USXpEad1TVr1pgTTzzR1jbPkyePmTFjhvnwww/NmDFjTJ8+fbzHUuOaOlzr1q0zM2fOTNNkNKeiJt1TTz1lcqP8+fPbWnP8W1966aW2M3d66tWrZzt2s4DYv39/29CuSJEith4vdfkc15SEjvSBaJiHatWqRf33ERHJTqgZzTnx+OOPtw2lqG/ub6bFuOx6RFADffny5baZ45AhQ2wjsfTMnz/fnq+pmzp27Nh0e1DkFLl5PAd9bKgRy3Ue/Uqi2aCb9w8Nz0A/FJx11lmmWLFitjEZ9c4d1+Bt+/btYT9/xYoV7XvbNTEVEUl2nGMHDhzonSOpgc48msbLzKnpJ0EvMs6TZ599trnwwgsz/TqcG5mfU6c6s8+T3eTmMZ33E3Ec6t1zLcc1Xazcd999plChQqmuQXHw4EFbx18k2hREl6TFpMY1gSR4jpIlS5pzzjnHToQYjP2NO5ikEwhlcK5Tp47JLbjAIciQW7HAMnXqVPveaNu2rR0w00OzEQb2KVOmmMWLF9uLRNAMxSlTpoz9uHXr1jQ/7xqFVqhQIejz0/hu8ODB5sCBA1n6vUREkp0LhDMhZgLTpEkT07FjR9uE7IYbbjCVK1c248aNM88//7xtBs6C5fjx422A1J17g9m2bZsd51n4pKEoQfrcILeP52BB/M0337Tvm+HDh0f1uZnIg0A9QSKuIWvUqGHvW7lypfe44sWLew3q/VwTcprci4hkdwS1FyxYYOfZBNAZx2nMeM8999iFQcbhaMyphw0bZt5++217bm/ZsqXJLXL7mM61G9dwdevWtdd8kSxMR4KmrcSB/DEjh+sIGpASVxKJFl0FStJi9XLLli2mQIECXmCUky+dlwONHj3avPjii/bWrFmzBBytJBId4wnm/PzzzzaAw+Q4FC4Ku3XrZj8fMGCAufbaa+3nkyZN8rImy5cvbz/u3r07zc9XrVrVXHLJJaZ27dppvrd06VLzwQcfmEGDBtmLURGRnIxFa7Rr185OxLlx35IlS8wXX3xhg+kvv/yyDT62b9/enjtZaGTM9i+C+x05csQ+3wknnGDPy3nz5o3zbyWJxjj+4IMP2uyyadOmRe15uT5ksr1nzx4vK46dbCVKlDB//vmn9zh2qMFdEzh//PGH/ch1aSB2Te7bty9qxyoiEmsk/cDt+jl06JAdm2+77TY7jrODjIXGH3/8MdOvwTmcXToPPfSQPbdL7sI1HLu/CKhzbefG0Wi76667zEknnZQmG53xvnfv3nZ+LhI1ia4nIxIMTZ9cM5PA25IlS1I99quvvrL1tgKbQ0ruM2PGDFsv/9577033cTQZcXXT6AxP8xea0f74449e09Jffvkl4qag1FQdN25cymOPPZal30NEJNnt2rXL9pfgPErD5VtuucV+3qVLl5TGjRvbz2kg5hqDr1+/PsPn5Jx77bXX2gaTy5Yti8vvIcnbmIza6IUKFUpZu3Zt1J6XGq28JwcMGGC/dk1GA2u5BqvZT03gG264IeWOO+5I873SpUvb5124cGHUjlVEJFZo9s05y/UZo7+Ua77co0cP21vs0ksvtT1JMosm45zDOZfnlMbgkjlLly61DUB5P0U6v460Njr980qVKpVy5plnphQvXjylTJkyKZMnT47Ja0rupCC6JCUaM3ESLFq0qJ1MuwA6DR/9tmzZYhueNGvWLOhESHKf5557zr5X3nrrrXQfd/PNN9vHtWrVKuXXX3+N2/GJiOQEnGM5h9apUyfl8OHDdqLM188++6z9SPOwkiVLemN5pUqVMgyGDh482D7+gw8+iNvvIcmLhmA0l69QoULUxun//e9/9j3WsGHDlGhh4f2MM86wz7tv376oPa+ISKxcddVVaZox0mTZNRPdv3+/DXYeOXIkU8/POfvss8+25/BDhw5F/fgl+3n//fft+2vIkCExef7du3d772GS5FgMp6FtrIL2knupnIskHbbPuu1llSpVslu78eijj5pXX33Ve9zhw4fNFVdcYWtis0Unt9RMlfRRx++mm24y3bt3NwsXLgz5OLaKU9f0s88+Mz/88ENYz80WsVhtQxMRyU4o1wJKtFDChW3g9JOYNWuWvf/cc8+1JbFo0kiNSr5P2YxQKMlFw2fGele7WnI36vPyvqBMCqXXArdpZwbvVyxatMjs378/1fcy28iU7eqULvr9999tuRgRkWRGeRZ6Q4C5kCtR5Rp40z/qlFNOsaVd8ufPH/Hzc67mnP3rr7/aHlSU2RDp0KGDeeSRR2xpn08++STqz881ZqdOneznlBLk2pPSgKHKB4pkloLoknRoQMHgzuD9zTffeE0cH3744VQTHepa0+SRwblo0aIJPGJJJgyUNLCjEQ4NcXbt2hX0cWeddZa5/vrr7edu0YYgz44dO+znr732ml2kcTV/sWzZMnuhSV30QHRf573rFn1ERHIqxmAXRL/ooovM2LFj7eetWrWyC5MgqAgaOlEvmmDoqaeeGvT5vv/+e9uIlMZTTLBE/GM1iRK836irm1VnnHGGTdCgTv+cOXPsfXfeeadd7HHvXb7He7F169b2usBhfE9vIZ2kDhGRZDdq1Cg7jrOo+M4779hzGwF0zm/0mWLulJX5DP0sOGd/+OGHXp8pEZAoQW105uBr166N+vP36tXLfqQOO316eA/SM4/YwNSpU1P1PxHJtESnwov4sd2mevXqabaXzZs3L9Xj3nzzTW35lgy3dFFKoE2bNiG3cVGrz9X0pT4qdXtvvPFG+z1q7HP/gw8+6D1+ypQp9r66deumep4DBw7Yn+V7y5cvj/FvJiKSWJs2bbLnO/qRUCfa1VTt3bu3/cg28T179qQ888wzGW6jpRQbPSkqV66c8ttvv8Xtd5DsWapt9uzZWX6uu+66yz4XdX9xzTXXeKWIHGqqct+OHTu8+4YOHWrvoxyciEh2RHmWwoUL23PZxx9/bPs40MfEzWPcvChw7h2uWbNm2Z8fMWJE1I9dcgau9bjmoxxgLMrxUuY3WF89bu+++27UX09yH2WiS1L5/PPPzcqVK+3nbtvuOeecY+rXr+89hkxhSnaQtaYt35Leli7K/3z66adm3LhxQR9TuXJlm22GpUuXmr/++stmnv/999+mYsWK9n7/KjkdvlG8ePFUz8N79d577zWXXXaZqV69egx/KxGRxHNZ6A0bNjRFihSxO3EoozV8+HC7g2zQoEF2LOf7GW2j5WdXrFhhs9kLFiwYp99Aspu7777bNGvWzNx8883mt99+i0pJF1d6qFy5cvYjuyCdfPny2Y/+rLW9e/d6ZWb8evToYTp37mxWrVqVpeMSEYk1MnMps1KyZEnTpk0bO8du3ry5nQMxL2LORDZvo0aNIn5udu5wjr7wwgvNXXfdFZPjl+yPa70333zT7vB++umno/78jMmuVJEfpX8pDyeSVQqiS1JhAu6wtZatu9TMcjXa2Hp266232vpszz//fAKPVLKDtm3b2sUWFl127twZ9DG9e/f2JtPFihUzBw4csIs5rmQLZQYct62bUkN+BJEef/xxG7BX3TURyelcGQxKuVCipV+/fuZ///ufPf9xHqUExy233GKaNGli3n///ZDPQ6D9scces1u/69WrF8ffQLIbJsOvv/66DWSzaJ0VTZs2te9V+qFwbRAsiO7qAPvLt7jJN2O+w3Up28bffvttuwAvIpLM3njjDfuRniUko9GLjHMrmMtQU/q5557L1HNzbuY8yfVAYABTxI/FG679SLqI9gI05Vwp9UtpNj/GfRa8RbJKZzdJGtRMnT59uvf1M888Y4YOHWoz0R0y1aZNm2brVat5k4SDxRYyylh8CdY0rHHjxqZu3bp28uvq9hH0qVKliv2cuvsuE80F0QOz0EREcgvOo3PnzrWfk23mduPQVHHLli12AfLSSy+13zvzzDPtDp1gmLjfeOONdoynRqZIRgh2k7XGLrPZs2dn+nkYw2l8CxqQly1bNqxMdLcYX6pUqVT/P3BtSiDAPaeISDLiHOcWwd05jaD38uXLzbPPPmuDj5lFMhLzc+bvbmFSJD0DBw60fe+4FuSaMFpo9t2lS5c09zPXJ44kklUKokvSCFz1JhvYjzIubC9jBfHyyy+P89FJdsViCxd1NBN566230nyfVWky1V3AHJR0IdOMjHNWsTds2BAyiE7zPC4+gwXoRURymu3bt9umY3ny5DEHDx60W79p/Ehgkaw2AuonnHCCzWxjcTxUs0UWyclEZ0svEx6RcNx22212gYaSAf6mn5Gi1BBoPOYCPiwCubHcZaL7g+iu8Tg7JR2yLVkooiGu3scikszYMQOXJb5o0SJbiu3rr7+2YzlzpcxwZVzYneZKaYhkhDGTa0BK+lHaL5qCBdExadIkNReVLFMQXZICE/Hx48enuu+KK67wPmdS0717d1OgQAGVcZGIsejC4gvBcjcJ9rvmmmtsbUCyMehKT0kXMi1dSRcCQXCd6nkfOmPGjDG1atXSRaOI5AqLFy+2H8m6femll+xEZfDgwTYT3fU0ceU2QtU453FsG6dkGzuBRMJF8IdSAYzXWSnr4ur9EkQvU6aMXVA/fPiwV/ecRSL4s+Pc9cNpp52Wxd9CRCT+KD0FEoRcqVR26jK3pj41O3Myg5Ju+/fvVxkXiRil/CjrQmk/dw0ZDfQoC7Y7jP8HWDgPLPUiEgmd5SQpEED3rwqSAezfAk4G8WeffWYziqm/KhIpLhAJfpPFFoisyZ49e6bawk0tfkq6EAQiqA4GY5rwVKpUyftZGpzxGJfVJiKSG4LoTFDctvB169Z5AUfqUKbXYJlMdbbu0ryZ7F2RSDEBpmQA14SBuxbD5cZs3s8EfVgMJ7Dumpa65vY0InOL6ASJAoPo77zzjm1M7h4vIpKMNm/ebDN+naNHj9rFQkpkDRkyxJZVcztzI0FprdGjR9tzsiuNJRIJ3nuU9uvWrZt9X0YDC+PXX399mvt5fvoBuAQ5kcw4JkU1CCTBeAsyefEP7JzYXE1qJi5nn322bQQ1YcKEBB6pZHds4Wrfvr2t20cnej8yzKjfy8p0//79bVO84sWL2y3dGTULZUBmAq2t3CKS03HuJHDJFnBKtnCe3LNnjw02uqxdtnSHCm7S1IyfJeONxlIimcFYzXUhZQTIoIw0+5Gfp9wbOyGXLFliateunebalHGdbE2e+9dffzUPPfSQvVaYMmWKvS5g9wVJH1wDUNrtjDPOiPJvKSISHQS5yfgF5y8XAjrppJNsmbbM9HviPFqzZk27i/err77KcL4kEgrXhCxuc41IokU0kOBRuXJlO44TQyLpjYVyFsw1XktWKBNdEu67775LFUAnA90F0PHCCy/Y7bVPPvlkgo5Qcgoa5jBwPvjgg2lqmJNZRjM8MCEmm4LM9XAuCBmcFUAXkZyOCTNjNn755Rf70WXgEkCnlwRbcynTEgw7zsg4ooSWAuiSFQS2yaBk+3dmEiz4efcedLsr/Bj7WRhywXkC7qNGjbK71Nx1AbvUuG7gmlUTchHJDqVc4J8DUcs8MwF0txNn1apVNkCvALpkRYMGDWxfHXYoRqtmOTseaVzKvJ73Z6tWrez1p8ZrySoF0SXh2I4b6msyf2g+RgkOdfqWrGIA5f1EEOjDDz9M832yIzF27FhtzRYRCUDzZTJ3WTQk+9eN027yTI1qsokuueSSoD//8ssv26akTzzxRFyPW3ImFsXpnzNgwADz999/R/zzNWrUsB8zu62bBqOffvqpWb16daZ+XkQkHsg0d/XO6RPl9+OPP9pbpP766y977m3Xrp1KWkpU0F9n586dZuTIkVF5Pq5N27Ztaz9nB5lItCiILgn1xx9/pGooyoSkdOnS3tcEPAlmPvzwwwk6QslpLrjgAtO6dWtbssXfMMxdWFLPlyBP7969TZ8+fWyGBllmTLJpvkPwaPjw4fbxPIayBdOnT0/QbyMiEj9knIHMHiblLkuXcyrlsliIZNISLCON4Ds7yiiVxc+LRGvSvXXrVvPqq69G/LOueThBcJrkkqzBTjUw9nfs2NFrJsr7nfItwSgDU0SS2ccff2w/nnfeeTY71zVOxuTJkzOV+cs5lzJW2iku0UJddMZexnWuGaPBBdFJnqOJOKVbKRPM7nTXz0ckUgqiS0LRLJRAeuAg7yYsL774ounbt6+tuSoSLVzwkVFJPd/ABqOdO3e2nzOhfu655+xW8bVr19pJNtvByHZzwXfq/9FYz/8eFhHJqdyEgzrQqFu3rs0qJxhJber0toRTeoNzJZlrItHCe69Lly7m8ccf95qChotm4WCRnKzKLVu22KCQK33w7rvvmsOHD9uvO3XqZGsHu11sPF5jv4hkBzT/dMlCjMWunMWgQYPs19SNjgTnWsZ+aldH+rMi6aGcC/3wKBEUDY0bN7bl2BivGd+3bdtmm+wSc/r222+j8hqS+yiILgk1btw473MG4zp16nhfDxw40DaAIIguEk1s4aZjNxePDNR+LojuMsuYNLtJtsvccEH0MWPGmDfffNMO0CIiOR0Lii7zfPfu3Wb06NG2URmBRSbT/jHdj909LEr26tUr1W4zkWhgLGcR59lnn43o5wj+MNbTGNf1NXG1/l15GOqiY+PGjfYjWWyYOnWqXUxiZ4WISDL3MiHpB+vXr7dlLSjf4ubYlGGLFDtyOecyVxeJJnqU3XPPPfaakWvHrGLuTr+9QOyIrFatWpafX3InBdElYdgWSy1JsCL+0EMPpZqo052ZMi6ZbXYikh6y1mhY+/zzz6e6ny7z5cuX95ruuCy077//3guiu3rptWrVMl27djUlSpSI+/GLiCQqiE7wkfMeE3K2xZLR6xYng3nsscdMvnz5bMBdJNoIbN9xxx1m2LBhNiAerhNPPNGO93ClWgiis1Dussy5BuV7bjLvShEtWLDABtp5DhGRZLVixQqzf/9++zlza0pUfvDBB3ZXbmbOX5xjCaLfddddatAoMUFzenaHM1ePhgsvvDDNfczl1eBeMktBdEmYTz75xAtGEpz015RkYKc+Og1FRWKB2qc9evSw28X82ei8Dzt06OB9/cMPP9iPBIsCg+giIrkpm82Vc6lUqZINjDNWsz2WIDqNRgsUKJDm52gSxa6dBx54wCsDIxJtJGIwfo8YMSJTddFd8J0yBf6yMATRN2zYYD8vUqSIOfXUU+3nTz31lF1UYneFiEiymjt3bqqvKX/FThqagrudN5EgQ5hzresfIRJtjLNcM7LbkWvIrDr//PPT3MduDLe4JBIpBdElYfxNoJo1a+Z9TrbPe++9Z7fyuO21IrFA41Aal7z99tup7vcH0clWB5NoF0Qn+4wGezTjcUF2EZGcjD4lLDjSTLRnz57m0UcfNcuXL/fKYIVqrjhy5EiTP39+LYpLTBHgprHta6+9FlGtcpdZ7oJJvMddQzPet5RzoTcK/Fu/eb+zmMSCvIhIdgmiszBIKUpKsVCSJRKcHznHUsaKOtMiscI1IzsYX3nllSw/FzsmixUrlub+L774IlNNdUUURJeE4ITl6rPBX1Jj1KhRdgsPkyGRWGLyS9du3n+ufAtq165typYt633NJNrfUJQSLwTe27Vrl6YcjIhITuRqQp988sm2obLDubJixYpBf4ZgJgvm3bp1U2k2iTnKC5BdOX78+LB/xo31P//8c5ogOu91Vw4BlCwSEckujh49mmq+DRbCySYnk/yss86K6Pk4t5K9e+edd0b5SEVSY/yl1w5xoawGuln0DpaNfvXVV5vFixdn6bkld1IQXRLi66+/9oKWTGBc88a//vrLrjgy4da2b4kHtmJT79x1rneDbfv27b3PWb1m8ly8eHFz0UUX2cw1st7q1aunSbWI5Arbtm2zH/0LjtiyZYuZOHFi0J955513zL59+2xwUyTWCAhdfvnlaRbG01OmTBkviM5iEDeXnekWflwQnZ4puPLKK03v3r2j0vRMRCRWKEV54MCBVPdNnz7d7qqhHFskOKdybiX5yPWSEImlu+++2+4I51oyq8477zz78bjjjrM7y1lM4rZjx44oHKnkNsekhHuVKRJFBMnZSgYm31dddZX9nJNkp06dbN3VUJltItHEKZCJMZPvSZMmefd//vnnpnnz5qZkyZJ2gGWgFRHJrZ544gkzYMAAOwEhu80pWrSoDaQHa1BWt25d24CU+qsi8eDGbpI1gmWeBaI0W/Xq1e3CuCvf5pI6yEqnNuv//vc/8+2335p7773XFCxY0DYyZYGdOuq8/0VEktGECRPSNPxmcZDyVez6jgQZ7U2bNrVJRxdffHGUj1QkuMsuu8yOtVnNGF+4cKFp2LChTdJkAZzd5Vy3an4vmaF3jSTE+++/75XJcAF0UGeN+ugKoEu8MBG+9dZbzZQpU1JllbFiTT3U3bt320x1EZHczGWi+wPoBBNp+hQsgL506VKzZMkS28BZJF4uvPBCuyjO9WQkmejsmPj999+9++nJ45qI3nzzzeb11183lStXtkFzkj9orKsAuogkM9fPgcVvp0qVKnaRMFKcU6ktzY5ckXhhjv7dd9/Z5vVZQcIc/x+wM4PxnioICqBLZumdIwmpq0p2D/zBcho3fvnll6Z79+4JPDrJjdj9QEaG2x0BmpmQcYGZM2faj9q4IyK5PYjuUN6KuqgshgczevRoU7p0adO6des4HaHI/9X7pendBx98YGv3ZoSsTNcgjx0VGWFxneSPhx9+OCrHKyIS6yC6v6niggULIuobAXpNfPjhh/bcGqqJuEisMtFLlSplrymzgoVxFoGg5DjJKgXRJe7ee++9VLWunDFjxtiJjD8zXSQe2NrVoUMH+x7877//vPtbtGhhPw4aNMiWJOAilC3f9evXN1WrVrVbxbmwFBHJbUH0K664wpa3CIbmy5Rno0E4tSdF4olmZP/++2/YgSIWe9CmTRtTqVIl8+yzz5rOnTvbHWqUeyEQRXNxEZHsxPVz6Nixo3cf5asinWu//fbbdhca51aReOIakmtJxnOuLbOCXRguME/yHM1L+/fvH6UjldxEQXSJuxkzZqQ6KboMX4Lr1113nc0AFok3Lgx/+OEHW34gMIhOkzHqsbH9i6A5tQRZxaZGarAyBiIiOQ1lW8AWWBYSWXQcPHhw0MfSuIzzpibckgj0Mrn00ktTJW2kx5VlYaGIRnzz5s2zQaO1a9eaRx55xDYQf+mll+yuNEoacA0gIpLMmLO4pokEzl1JCwLr7CSLBOdSdpWRUCQSb1xLck3pYkhZDaJTD50bz0nfAJFIKYgucUedVLcK6Gq0keXz008/mXbt2iX46CS3atKkia1/SuaZf7AlSz3QH3/8YebOnWsbkbI9TEQkJ2OHjiuNQT1oznssfrsJSSDOo+eee66tTS2SCFxPEgz3NwsNJbC2ufsZAkaLFi2yn7NwNGLECFvjf9SoUTE6ahGR6Fi9erX9yFybnWGUrmKuEymSiObPn685uiQMZVjYAf7JJ59k6XmCXbMGNt4VCYeC6BL3Ad3VQydLyOGkSHabq0EtEm/sjCDLwj9AU/evcePGaR7LdjLeq1deeWWcj1JEJP4OHjzo9YSgweLXX39tevXqlWocd9jyPXXqVHP55Zcn4EhFjJeoweLPtGnTIg6iEzRy1wXswCAIVatWLXPJJZeYOnXq2PJvIiLJzPV4YExm4ZudNE888UTEz+POoZxTRRKFa8pPP/00VXP7aATR1ShXMkNBdIkrf9PQa665JlXWGpNx6lOJJErbtm3tNsetW7d69zVq1CjN41gIUpNREcktXBY6QcWPPvrIq4lOk8VAZKyxjZzzqUgiS7o0aNAg1e6ySDPRf/75Z/uRXRWUbuvdu7f57rvvbN10EZHs0seE4GPDhg3tjppI5y+cQ/nZSEvAiEQT15SMzQsXLsz0c1SsWDHNfb/99lsWj0xyIwXRJSGlXEATUezatcssXrxYWWuScC1btrRBIi42HS4cA5HdRiCJybSISG4JotOs8a+//jLHHnts0HMj2M3DZJvJukgicV1JDVXes5EE0VkE8mdy6r0sItm9GTiL3gQR2WUbrj///NNmsGuOLonGOFysWLGwFsZD4f8Byhr57d69W4lxEjEF0SWuaOIAf51pApZMyCmlIZJIdOlu1qxZqgG6Xr16QR/bvn17069fvzgenYhIYoPoDg3AQwUmOX+2adPGjusiic5c+/33320Pk/S4a1IWyN1HdkbSQNxlon/55ZdZ2kYuIhJP/l21JAgNGzbMvPLKKxE9x5w5c2wJS+0sk0SjrBrXllmti84uNb/bbrvNKzUsEi7NcCRu2C7jVvr8TRyYcJ9//vmmSJEiCTw6kf/DhSIXjXTsdoH1M888035esGBB22iMCXXt2rVDNtUTEclJDhw4kGZBnD4mgTZu3GjWrVunCbckBcbqsmXLZpi5xqKQy1JjFwULQKeffrrdJekWkVhgD9YDQEQkGf3444/e5+wi+/vvv03p0qUjeg7OneXLl9d8R5IC15Ysbm/atCnTz8HYHiiS3RkiUBBd4ubdd9/1Pu/fv7/9yMrf7NmztU1MkgbvRQJEbAF3qKuKgQMH2m1fq1atMkuWLDEjR45M4JGKiMRHYNY59dCDZZqTIUQDs+bNm8fx6ESCY2LMmM77Mr3t2q62f/Xq1W0ddEoY0Dx34sSJZtCgQXYBnWx1AukiItnBjh070iwqRoJzJudOzqEKMkoyoLk315hZyUYvVaqU/fj000/b3WVc3wbr7yOSHgXRJW4GDx5sPzIQu5XwRYsW2ckKtahFkgFZa9QMZOu2U7lyZftx7dq1CTwyEZHElmJzevXqFfRxlM1o0qSJbcIokgzIHqc2sD8rM1QmOtejOP744+11KhP2Rx55xPTt29cG1++55564HbeISFbGbMqw+K1cuTKi59i8ebMNxGuOLsmCa0uqF2RUoi2cIDo9+UgGoXSbFokkUgqiS1xQX9I1OGEF0SGbt0CBAtomJkmlbt269r0ZLIiu5iMiktuwDdzfFLxmzZpBH8d5k/OnSLJw70f/mB4qiP7HH3+EfAwTbTLSRUSSHb0gAv3www8RPYc7Z2pMl2Seo2c2iM7OcpHMUhBd4oJabG6SQo1ph5Mgk3GaRYgkizp16pgVK1bY9y3cIs+8efNscx4WfqpWrWpGjx6d4CMVEYlvEP20004LmmnOhGTnzp32/CmSLKhxTg3U9Cbdbis32erlypUzN9xwg7n99tvNxx9/bLPVRESyYxDdza85r3Xs2DGi5+CcecYZZ5hixYrF5BhFMoNrTHZIsDssMwoVKmQ/TpgwwcambrrppigfoeQGCqJLXJDB44Lo/gk2A7Qm3JJseE+SkebKt5xzzjmpdlXwPRqbaHItIrmtnMvBgweDPsYFKTWmS7LhPZleEJ3Fcfc+3759uxk/frwZNWqUueqqq0yZMmVsiaLA0ggiIskeRKc0FVq1amXOO++8iJ5Dc3RJRu49uXTp0kz9vL8iAvXQp06dGrVjk9xDQXSJCyYlhw4dsp83bdrUfuTrDRs2aICWpFOrVi1bH81NulkA8u+gwP333286dOiQoCMUEYl/EP3UU0+19SiD4XzJ9+krIZKMQfRQ5dhoLua4HWgggM57n4CU6vyLSHbx22+/eUHCChUqhCzBFgrnSoKUmqNLsmFXBdeamS3p4pI6nRYtWkTpyCQ3URBd4uLll1/2JiaNGjWyH5ctW2Y/aoCWZHPSSSfZ7HP/AF2kSJE0NdlcrXQRkZzMZeru37/fVK9ePd2sNTVokmTD+5L37pYtWzIMovvf75dddpn56aefzGuvvRaX4xQRiWYmOsHwhg0b2gbLkaB++oEDBzRHl6TDNWbt2rWjFkTv1q1blI5MchMF0SUuRowY4X3OiQ+c/KhDWalSpQQemUh4279LlCiR7qRbRCQnl2TLiLZ+S7Jy78tQk25/9rm/BALlD6gJXK9evTgcpYhIdPjLT40bN8706NEjop9XeTbJziXaIgmiFy5cOEpHJbmJgugSc2yF9ddTdVtiXVNRl/EjkmwD9PLly73JNY3J/NasWWOzNEREcrpjjz021U6dQDR4otGTJtySjFgEpyFuqEl34KL4n3/+aT+GKl0kIpJdxmwS1s4999yIfp5zJfMeGjOLJBuuNbdt22Z++eWXLAfRA3eai4RDQXSJOTJ6XBabf1AnCBlqW7hIotWoUcM2EP3xxx/t14F1fh9//HGvJJGISE7mgoooXbp0mu/TaBka0yWZx/TVq1eHFUSnBAKBp0GDBpnNmzfH6QhFRKLD7aZxc+8hQ4ZE9POM6RrPJZnHc4Qa09Pjj0Vh8uTJUTsuyT0URJe4oLEJyARydu7cmSa7VyRZuPfqrl277Eca8/g7e/Pe1eq1iOQG1JN2SpYsmeb7jOfQmC7JPKa78TzUIpG/nj/3/e9//wvZjFREJDsE0f/77z9z3HHHRfTzmqNLdpqjR4IEOT96oIlESnU0JC4dwhnAUapUKfuR8i5swXFfiyQb9950A7TLvqSh6OLFixN6bCIi8eRfMCxUqFDQCTf3u3JtIsk4prvFnkAHDx60H5s2bWqmTZtmNmzYYMu50VT07LPPjvORiohkjb9UKrtqIsW5MtiuM5FkULBgQXsLNaanxy2a0+vk008/DXpNK5IRBdEl5oYNG+Z97mqrUT8VCqJLsmJQ5cLTBdEZrP0d70VEcgt/FluwCTnnSY3nksx4f3LtSemWwKxMF0Q/+eST7fubreJuu7iISHbORGfewjmO81s4OEfu2bNHY7okNd6fWclEpza6av5LZqmci8TcunXr0py43MqhVrklWbGtm/ene68qiC4iuVW5cuW8z12PEz8F0SXZMZ6zKzJYIzLXJDzcIJOISHYJov/999+mQIECYf8sAXTOlRrTJdnH9KwE0TOzQ0PEURBdYq5nz55enUnXvMmd9DRAS3ZZ5XZB9O3bt9sstvPOOy/BRyciEh9btmwJ2ZQJnCe1KC7ZqUSbH+M6xo8fb8qXL2+6d+9utm7dGvdjFBGJBjdnQZUqVVIF1TMSWMZSJCdlorvr2ZkzZ5qHHnooBkcmuYGC6BJz1JgsWrSo/dx95KRHILJYsWIJPjqRyILoIENj1apVCTwyEZH4mTVrVqo+J4HYsaNFcUlm7v0ZrIaqG+dJ9Pjxxx/NmDFjzNixY+N+jCIi0eAvU1GtWrWIftadIzWmS3btc5Iet2gemCAiEgkF0SXmyOahkShc0zEmLCVKlAia0SaSGS+//LIpW7asrXHWoEEDs2jRoqgG0Xlev379+mX5+UVEsoOKFSt6nwfbFq5yLpLs4znXnOyKDJa5tm3btlRfN2zY0Fx99dVZfk0RkUQ45ZRTvM8De0BkhHMk50rVi5bsMkePxMqVK73Pu3btmuXjkNxJEUyJuRdeeMGrN+lqqdLcqWTJkgk+spynWbNm5s033zS5zXvvvWf69OljHn30UbN06VLbEKxly5a2rl9WB+jdu3d72ed+11xzTZaeW0Qku6hevbr3eWBN6SNHjtheERrTo0vjeXTHc8oZsBvSjel+O3bs8D5nh+S8efNsCQQRkeyIILhLVAtMAsoIc3TOg3ny5InR0eVOGtOjP0dnZyTXoJH44YcfvP9HOA6RzFAQXeISRHdcbfQ///wzoiYn6Rk4cKB93mA3BizJ+Z599llbw7Rbt2524jtq1Cj7/nr99dez9Lw0Hfnrr79S1fMPluUhIpKT+RcR16xZk+p7jOeIxpiu8VxiNZ4Hjul++/bt8z6/+OKLvWtVEZHsyp3HPvroo4h+TnN0yS5zdAQb09Nz8ODBVD8vkhkKokvM5c2b1/vcBSIp7xKtFW7KanBybtSokd3Ww61v376matWqZtKkSVF5DUledJ1fsmSJad68uXcf2Rd8PX/+/Cw9N+9RV4ooMBM90pVvEZHsyr+I+Nlnn6X6njtHRmNM13ieu8VyPHfv0X///TfVfYztbiEI559/fpZfR0Qk0VwZl5SUlIh+TnN0yS5zdASO6eEcE7R7UrJCQXSJuS5dunifuxMdH6M1QNPwkRVNSsVwQuTGfTx/4cKFo/Iakrz27t1rAzzUO/Xj62DbtiPd/u3es4Er3Wo6JiK5BdtwnY0bN6b6njtHRmNM13ieu8VyPA8c0/19e/zIkhMRye443/mDhuHSHF2yyxw9M0F0p0iRIll6fcndFESXmHN10FGuXDnvhBdpoxNJ68knn7QXI+729ddfm9tuuy3VfT/99FOiDzPbmjx5ss1SIysjsHmJVrBFJLfw77wJPBe6CYzG9KzReB5769evN8OGDUszzvu1bds2zkclIhJ9rlxFZoLoGs+zTmN6bC1cuNB+3LJlS9g/s2zZMu/zDh06xOS4JHdQxwiJazmXP/74w35UvcnoYDD2N7js1KmTad++vbnqqqu8+0qXLm1yMhqFcbFHIxy/aDSvPfPMM72tZ4HPn9P/riIizuOPP2569uxpP3eNwh2N59Gh8Ty247lz9tlnp/p68eLFqRI9rrvuuqi8johIIhUqVMjLBI6ExvTo0Jge2zGd5rdgMSKSa1mnV69eWXp9yd0URJeYYuCeOXOm9/X+/ftD1qWMptxyAcBWOP92OLIOihcvnmaSmNN3OtSpU8d8/vnnpl27dvY+ssf5+s4778zSc9NBnMGfm78mOn/zypUrZ/nYRUSyg5o1a4bsB5HZupTh0niu8Twa4zkqVKjgPW+wJuH9+/c31apVy/LriIgkmhubI62Jrjl6dGhMj+2YXrZs2VTB9Eiy13kPunIwIpmhci4SU2Twrlq1yvt6xYoVIetSRtNJJ51ka21t2LAhZq8hyaNPnz5m9OjRtk752rVrze23324OHz5sO4FnBe9RN8hu377du79JkybmnHPOyfJxi4hkB5zvatWq5U2Afvnll6jVpcyIxvPcJVbjeahav/731SWXXJLl1xARSQZnnXWW93ngDrL0aI4u2WWOjnDr97OY5DLieQ+KZIWC6BJTrPQ9/fTTXm21HTt2eCc86kzHSsuWLe3H2rVrx+w1JHlce+21ts7pI488YjMmly9fbqZPn56mkUmk/B3q/XXrlKkmIrkJ2Tv+bB+3IA53jozVmK7xPHeJ1XgeOKY7mzZtsh/JEHQl3EREsrsrrrgiZEPw9GiOLtlljh5JEH3u3LleaaPq1atn6bVFVM5F4rICOW3aNLt1588///RWAA8ePBi11xgxYkSqr6tWrZrlrs/ZEQNEbsW2sGhs9/bjPepWq/2Z6K5BrohIbjBw4EBbO5rdZWSiL1q0yDRv3jxVPcpojekaz/+PxvPojueBYzrIhnNNyX777Tf73uY9LiKS3V1wwQXe56tXrzb16tUL6+c0R48NjenRn6PjxBNPDOvxX375pfe56/Ejklm6UpSYI3BepkwZ+/nvv/9uP5YqVcrs2rUrwUcmkj7eo7xXsXPnTu/+KVOmJPCoRETi67zzzjMNGza0tS0DFxXZ+k3zKI3pkswImBMod2M6Pv74Y+/zVq1aKYAuIjkGu2vy5ctnP3/zzTfD/jnOkQQoA/ufiCQTrjnZIRlubfMHHnjAq8fftGnTGB+d5HS6WpSYW7BggXn99de9gDpbaRigf/31V/PXX38l+vBEwgqib9682btfTUVFJDd57rnn7ISabHSX1eZXunTpVAuNIsnGLfLwXnVee+01+5GSg+PHj0/YsYmIRFuBAgVMpUqVgo7Z6XHnSC2MSzLj/ekfzzOydOlSWxedpA//YrpIZiiILjH32GOPhTzp5cbtXJJ9+N+rbPN2ddT69u2b4CMTEYmvM844w/v8u+++82pLQrvLJNm596d/8rxy5Ur7kUm1y9gUEckJfvzxR1t/GiSu/fHHH2H9nDtHakyX7JLolhEWkdq3b+/V4ncZ6SKZpSC6xFxg/eh169YFLZEhkmx4f7r3qqu91qBBAzvhFhHJTfxNF5mMr1mzxvtaQXRJdu560z/pPnDggDeui4jkJCVLlky1OLhkyZKwfk5BdMluc/T0kATXrFkzL3FTu8klGhREl5gbNWqUKVSoUKrtNBqgJdmRZfnzzz/b9yq1VF1TXH82pohIbkAfiA8++CDVfV9//bX3ucq5SLLjejN//vzm5JNPtl9/+umn3vcuueSSBB6ZiEj0FS5c2LRp08b7+rPPPgvr50455RQbfNeYLjmhnMucOXPMvn37vK9dRrpIViiILjFHwwd/BhuNnYoUKWLvVxBdktXevXu9+v3z5s1LVeNfRCQ3yZMnjz0n+k2fPt37nPMkWT7UmxRJ5q3fbhv3I4884n3v5ptvTuCRiYjEhj/IOHPmzLB+hnOkdpdJMuNak2vOcDLRiTv51a9fP4ZHJrmFgugSF+eee673+bJly+wAzTYzDdCSHeqn+huO/fPPPwk8KhGR+GvUqJHXINxZtGiR9znnyb///tvWXRXJDvVTN23aZD+S0EGGuohITlOvXj3v8xUrVph///03rJ9TEF2SGZnlzMfDCaK/+OKL3ufnnHOOyZs3b4yPTnIDBdEl5phUb968OdUgDrLTaXoikozce5PyLfPnz/fu79q1awKPSkQk/k499VTTpUuXVPVV9+zZ42WnuzJXGtMlWfHedO9Tavq77LQWLVok+MhERGKDPmQOQcdwd9NyrtR4Ltlhjp4e+p7MnTvX+9pf3kgkKxREl5grWLCgrYPubN++3daYrlmzZqr7RZIJ780SJUrYHRPbtm2z9x133HGmU6dOiT40EZG44/z3xhtvmJNOOsm7b/bs2d5us2OPPVZjuiQlGostX77c1KpVK00pojvvvDOBRyYiEjvsEPPzn/vSwxydcybnTpFkw7Um16T+SgeBKMnatGnTVO/hDh06xOkIJadTEF1i7oQTTjBDhgyxJzJ/h/A6deqY9evXp6lVJZIM3HsUrqlopUqVEnxUIiKJwYSarJ5q1ap5902aNMl+LFCggKlSpYo9b4okmw0bNpjff//dG9P79OljP1JasEmTJgk+OhGR2Ljmmmu8ZsqRBNE5VzI/37hxYwyPTiRzuNasWrVquqXYaKS7cuVK72uuU1UPXaJFQXSJi3vvvdeMGjXKNifDlClT7ABNYwgm5iLJhPelC6J/9913XrM8dfQWkdyKLPTbb7/dTkJcRu9XX33lnR85XyqILsnIvS9r165ts9K2bNliv6bJ/YknnpjgoxMRiY26deumKlnFuZBSbBnhXOkeL5LMiW6hNGvWzAwfPtzLVm/Xrp3dMSkSDXonSdywEl60aFH7+Zw5c2zWGvVVNUBLstmxY4e9yGSAfu+997z71WRHRHKrxo0bm5YtW9qdOQ0aNLC7zH7++We7owycL1etWpVm+7hIonGdWb58eVvb398Qt2PHjgk9LhGRWLvwwgtteRbnk08+yfBnWGAsW7as5uiSdP766y97rZlREJ1ywr1797Y9UKBEOIkmBdElLqhLdf/995vdu3fbr9euXWtrWdWoUUMDtCQd955kgH7//fe9+6+99toEHpWISOJw/vv000/N+PHj7c4yxm/MmDHDO18SQF+9enWCj1QkdNbaM888493PzgoRkZysdevW5uqrr/a+fv3118P6Oe0uk2TENSZNct1uiWAoPchOcq5ZN2/ebJM+Lrnkkrgep+RsCqJLXJDBO27cOO9rVgXprKwBWpIR78nixYub0047zavZ37x5c7s1TEQkt6Ik23nnnWc/d01E3333XfuRTDe2ympMl2RC+ZZly5Z5QXRXE5idkOpzIiI53QMPPGAefvhh7+t58+aFtbOWcybjvJqLSjLhGpNrTZfIEWjFihW2jFG9evVM27Zt7X0XX3yxOemkk+J8pJKTKYgucXH66afbbWF+EydOtAP0unXrbMMnkWTLWtu3b59dzUaPHj3s7gkRkdzs/PPP93aYYcGCBbasC02bKleu7AXXRZIBjfFYDGdM79Wrlzly5Ii9nzrBNBYVEcnJCCZSQtXPX6oyo+aiZPKKJAuuMXk/c80ZzJAhQ9K8Z7t27Rqno5PcQkF0iZsNGzbYGmvO7Nmz7UohTcn8NSpFEonAEO9H3pujR4/27mcVW0QkN3vxxRfNY489lub+jz76yH7kvDl//vwEHJlIcO79yNbvV1991bufWqkiIjldnz59zA033JDqvrfeeivDn3O7dzSmSzLh/ci1ZijnnHNOqq8JtruMdJFoURBd4ub4449PFYgkUEnWWqlSpWzNKpFksHDhQrN3717bQO+pp57y7qeemohIbsZ4Td3zwF05Y8eOtR85b7KVdtu2bQk6QpHUuL6sX7++yZs3r22K68oSNWnSJNGHJiISF9WqVUv1NSWu2KWTHhLfCFZqji7J4qeffjIrV640l156adDvs9Ns5MiRqe6jgXj+/PnjdISSWyiILnF12WWXeZ9TJmPx4sXm8ssvN1OmTLEZ6SKJRtf6okWL2gvHgwcPegtAJ554YqIPTUQkoSiBsWrVKnPllVemup+SLr/88oud2BCg1KRbksFff/1lG9+ShTZ48GDvft6/Ks8mIrkFPZ0Ym/3GjBmT4c9x7qSPBIvnIonGtSXv42BBdGr3v/LKK7YUq1+3bt3ieIT/X3t3Amf1vD9+/Pu/9/IjS7rJUmhBUUmyb2WJLLkX2YosIYQsiayVNdl3yRJR2bJdIVS6QqJC1ijJLkv25efO//F6+33PPTPNN0XNOWfm9Xw85s7MmTP5Ts09n+/n/XkvqikMoqtK0cIl31133RULNL2r6I0uFRoHOh07dix3kk0fVUmq6ZZffvmkZcuW8wTRMXz48KROnTpJ27Zt43VUKrRx48bFzB3uM/N7APfq1aug1yVJVYk1mWGMFYPoP/zww3y/j9dO+qI/9dRTi/kKpQX7PW7Xrl1Su3btco+TiLnddtuVG6CLhg0bJltssUUVX6VqAoPoqlKVlYDzokeZDRnAUiFxmPPaa69FdUR+79RzzjmnoNclScXkn//8ZzJjxoykcePG5fqls5Hh9XPMmDEODFfBcV/JJvqFF16I39e0JRHtXSSppiDomGaT056SitsvvvgiGTFixHy/r1WrVsnqq6/uHl0Fx2HO2LFjK+1vPn78+DjoSVu2pY466igHiGuxMIiuKkX2zzPPPBObmrSly/vvvx8l4mauqdC4SeTmsn379rlegc2aNYteqpKk3zYy/fr1S7p27RoDy1q0aBGPv/3228mLL74YQXQ266NHjy70paoG40CH+0o23P3798893r17dzfVkmoUsndvuummXELbcccdFx9feeWV822nymslr6G2XVWhcU/JvSX3mBVRATlq1KhIejv55JPjsaWWWirWe2lxMIiuKkUZ+Oabbx79U9Os9AEDBsQCTXCdnqpSoXCTyPBb3tNbDS7AkvRftWrVis34hAkTkjZt2iSXXnppstVWW8XXeHzNNdeMwLoH4yqkdMAtG24yLlOHHXZYQa9LkqrasssuG72hmzRpEi1cGNBIgHzq1KnJs88+O9/vZY8+a9asmIciFQr3lMSR8isgU/wu77zzztHO5fXXX4/HunXrFi0GpcXBILoKggWbBR333HNPsssuu8THnCJKhfDll19GORgb7tNPPz33eIcOHQp6XZJUTDgAP/PMM6MM/LLLLosZEgcffHB8bdiwYcn3338fr6MPP/xw8uuvvxb6clWDK8vo4Z9WT4CB4auttlqBr0ySqh6Bxr59+yZDhgyJz9PM8ssvv/x3s9jZs9vSRYXCvST3lBWz0OfMmZO8+uqryQMPPBAJmtOmTcsNtk+rLaTFwSC6qhxTkykfmzt3bnz+9ddfx1DRzTbbLALqUqFOuFmkmfhN9lrayiVtVSBJ+s0JJ5yQ7LvvvlGx88svv8TazSab9ZxAOj3T2dxwMClVNYJD/E6ynp9yyim5xwkgSVJNxB6HhKGbb765XED87rvvjnlQWWhpSZave3QVCv3OiR9V7Ifeo0ePZOONN05233336HTAQTnrP8kdTZs2Ldj1qvoziK4qx4vb008/Xe6x8847LznwwAMjE/2DDz4o2LWp5mJKPa1c7r///lx2htPoJSnboYceGu8fffTR3CBR1nM2NWxgeF2VqhqDRF9++eVkiSWWSKZMmRKPLbfcchEIkqSaWkU2aNCgONxOq8FT55577ny/lz06rV+YeyJVNe4lSWzbdNNNc4/Rpm3cuHHRnij1008/xXvm9UiLk0F0VTkmgp922mkx7Ts1ZsyYOEVkCMQtt9xS0OtTzUP/NA52Dj/88OSCCy6Ix1isV1555UJfmiQVJbLOP/roo1zLjNS7776bPPLII9F7+t57743sIakqDR48ONq20HIo1bt379wsHkmqiU466aQ46F5nnXXKPT58+PBcL+nKUNXToEGDeG2VqhL3kNxLck+ZPxScg6C///3vlQ4Z3Wabbar4KlXTGERXQfTv3z8W8hQl4fSzojycwWTpUEepqk6469atG4c46XBbFmFJUuXISmNTk2b+5GOTftBBB8VaPnTo0IJcn2omKiIICLVv3z7Xk/8vf/mL/VEl1XgMWzzggANyfaMXNBv9b3/7W3zvHXfckas6k6rCbbfdFhXi3FPmGzBgQPLmm2/O8/xzzjmnXLBdWhwMoqtgWMTps5a69NJLY0NOFhul4VJVYAgeQ3YYjJcOxwO/i5Kkym211VbJDjvsED0pK2LA06xZs6LC7Prrr/dgXFXm9ttvj3X9mWeeyT3WvXv3eSomJKkmWmONNZIdd9xxnsc5fGRG2fzat/HaSiBdqgrcO9KCaI899kjq1auXa9fGfWVlhz78XpsEp6pgEF0FQxkOm/DUW2+9lXz11VcxFOKKK64o6LWp5uBmkEE7LND8/qW9UzfZZJNCX5okFS2ye0ePHh0H4J06dZrn6/369UuOPfbYyBR6/PHHC3KNqlnIVmNw/bbbbhv3lGkGJb+LkqTfApMVA40tWrSI18+TTz458/saNmwYgx2vuuqq3OwoaXF67LHH4h6Se0lQ+UhG+lFHHRVD7SvLQpeqgkF0FQxZak8++WS5xxgEQcktG/P59WaTFgVuAjmw4aaQfqmp559/vqDXJUmlhDknAwcOTDbYYIPcYwwKp0UWj3kwrqrAYQ33jq+99lq5qjLnm0jSbz7++OPkrLPOKvfYFltsEQeODz30UOzBs7BHf/XVV+fZv0uLA/eObdq0SbbccsvcAVCHDh2S2rVrxxu/syn28ibAqaoYRFfBrL322kmXLl2iN3ra1oXTxqZNmyarrLJKZBNJixMDbbkZZKDos88+G4+tuuqq8wzckSRlH0b++OOPyTLLLJOceeaZsbanTj311Nh0M2i0st6V0qLecNevXz8G3qbVEqecckqhL0uSigavkZ07d84FJps0aRItM9Js3xNOOKHSLF+0a9cuadWqlQfjWuxoLUQmOveQaY/zpZdeOqofZ8+eHTPMhg0bFo8zNPyCCy4o8BWrJjGIroK30rjoooviRXDJJZeMx4455pjk6KOPTm655ZZ4kZQWV+CHsq/1118/ueGGG3KP33PPPQW9LkkqJdOmTYvN+PHHH59sttlm8TnltmxqyFZr0KBBHIwzbFRaXF588cWofuB3LdW1a9ekUaNGBb0uSSrG2REMF61Vq1YyY8aMqOKhzSoHj1Ty0HO6MgQzCbLzvZMnT67y61bNQc9zEtv23Xff5Oeff46Dnc8//zze03aVweEkaoDfyebNmxf6klWD/L8ym1qpCHz99dfJTjvtlMsG/ve//53sueeeUZpz4403FvryVA0xvHbnnXdO7rzzzligQdCHfmu8lyQtmO222y5p3LhxsssuuyRnn312suuuu8asCTbizD4h640D8pdeeilZb731Cn25qoYYKPbOO+8kM2fOjENy1nEy0tNhZJKk8liXP/nkk1i32Qu98sor8XidOnWS6dOnJ3Xr1p3ne/73f/831nEGlJIpLC1q3CvSCvDaa69NjjzyyOSAAw5IpkyZEms63Qs23XTTqHq8+OKLI9BOpSOBdamqmImuojB48OBcAB2U7pxxxhmRjW5vdC1q9FTr06dPsvXWW0c2RYpMSQPokrRwnnjiieSmm25KllhiieTll19OLr/88nid5fX06aefjkDmmmuuGb3TpUWNigcyKaloTHODyEwzgC5J2Xr16pVstNFG0dry7bffzj3OITivoZWhDzX7JXqn0xZTWtS4V1xrrbWSQw89NOJAI0aMiAoJfi/p6f/AAw8kl1xySTyXQLoBdFU1M9FVcGy0mzVrVm7xTjdFvHhyEjly5MiCXZ+qH9oH7b///rHpJnOS0jCyJamAkCT9MdxScjg5YcKEco/TYoPBowceeGC8zvJ6Ky2q3zmGiZE1OXfu3HiMgbZz5syJPv2SpHl9//33kcVLNfiQIUNiCDNZ5vlINKKyrLLXXdq38X7ixIm5ntXSnzV+/PjovU+l+D777JN88803Mavsww8/nOe5PG/s2LH+/qnKmYmugqP/Gj2tOAnP16NHj6R///7Jfffdlzz33HMFuz5VL/RVY/gdrYLoiZ4Oz2GxliT9cZ9++mmUeFdE5hBBTg7FGfRo/oYWFeaYvPDCC7kAOshQM4AuSdnoh37wwQcn22+/fVK7du2kadOmuX15qnv37slXX301z/cStBwwYEAyadKk5N57763S61b1xb0h94ht2rRJ9tprr/ichMrKAui0daHdiwF0FYKZ6CoK/Bry1rp161w/NrAw9+vXL/n73//uSaMWiauvvjraBdF64JBDDonHqIRgCrgk6Y9r27ZtZJrTq5KgOWt2eptJCTgzTti0U4rLQab0Z3AI3qJFiwjyfPbZZ/EYhzj0Rc8PBEmS5kXmOWvzscceG/sjXjepEAft2BjeSBAzaz4Z88x4vaUdDH+O9Gfcf//9yR577BGtgqZOnZp8++230a8/X3pfedFFFyUnnXRSwa5VNZtBdBXlsMfU6quvHr1VO3XqlIwaNarc16SFxWJMX15auAwfPjyGiIJqh913373QlydJJe3hhx+ODc8RRxwRGWxswCsOfyTwScY6g6OcQaE/Y9CgQTF0LB/Dx0jIkCQtmA8++CD2R+m+KA2Ip+1d2J936NBhnu/j9ZasYV6LWfOlP4rftVatWiX169ePlqvdunXLfC4tAceNG+c9pArGNA0VFXqppuVkmD17dvTG4nFOG9PFXfojzj///MhYo19q+rtE1poBdEn68zigpP0am590KFl+Ww2yiygdJ2vthhtuKOCVqtQxYOyss85Kll9++dxjPXv2NIAuSQtpxRVXTDbffPP4mAHhBDTJCCZDHQcddFC0ZauIFm2dO3dO+vbtG6/J0h/FPSFDRGkTRFXjeuutF5VmJFTmVzlwT0kPfwPoKiQz0VVU2Hyni3i+Bx98MLLRTz755OTcc88tyLWptNEzlSE4TPxmqjzlipQt/vjjj3HDKEladL777rvkoYceil6rBNdTyy67bPLPf/4zWrrQvq1Ro0YFvU6VJobUMiQ8rXZYaaWVYkD9csstV+hLk6SScuKJJyaXXXZZsuSSS8bsKPZHffr0iT0Te6dp06Yl2223XRyEVwxevv/++0nLli1jXb/11lsL9jOodNESiKA5GehUNeCHH36I30cOdBhwu++++8Z6f911181TgSZVNTPRVVRYqDn1ZmOUPw2c4PkZZ5wRp5MEQ6WFQdY5fXjXX3/9WIjTfn8sxAbQJWnR4jX27rvvjj6q7du3j96VzKBg801brS+++CKpU6dOcthhhzlkVAuNw5mhQ4eWaxd08803G0CXpD+AWVGNGzdODjjggNzQxqOOOiqyfqn4Ya80ZsyYShPZVltttQjA33bbbfHaLC3s/SJ995l/x16de0dm6lA1zj0jCRm9evWK9Z5ZOrQLlArNTHQVrTlz5iQDBw6MzTdYuEeOHBkB0RdffDEWeGlBkElx8cUXxxs3iulNH+2CJEmLFmXdDBf9/PPPk8GDByd77713zDeh0qxjx47RF713796xvptVpIXBAQwl3mSpzZ07Nx7bc889YxC9JOmPIUhJBjotVCdMmBDrcr9+/aLtJdnp6VDHJ554IrLS8xFOYm2nRzrt2jgklxbEtddemxx99NExM2fs2LFxf8ihTfPmzSOhcvLkydGTv0mTJhH/WWGFFQp9yZJBdBX3Ys6J5O233x6fs7Bzwk3/avqj099a+j2TJk2KCgf69THwLs1cYyBJu3btCn15klQtkZX2ySefJMccc0yy0UYbJa+99lpUlH344YeRNUwva9q8sK7T1oUsOOn3dO3aNTLV0rkmtAf66KOP4r0k6c8hED58+PDkzDPPjGSjHXbYIdZtsoLZQ6288spRFU4yUsXhpBxwki3M+i8taBuX/fbbLwLkU6dOrfR5ZKU/++yzzjxR0bCdi4rWSy+9FK038st9aPXCJvzCCy+M4Kg0P/Q75yCGwTf8PqUB9NNPP90AuiQt5p7VZJsvvfTScYgJ5lEQQGdI1Ndffx0bJkp4KeVN22xJWZiPQ2JF/pB5MtQMoEvSokHLNbLJyT6ngpcAOus4eyh6VHM4vttuu8Xz8jVo0CAqzmi1ZVsX/R7u+RhCz1BbgugkWqSoeMhHxaIBdBUTg+gqWrRrYYEmAz01Y8aMKBPnhZTgKEFSKUv//v1j0BjDbmgFBNoKOJxWkqrOXnvtFVVkFD8SQGdQFN54443IQqKE9/rrry/0ZarI27iw4c7Xs2fPZMsttyzYNUlSdUKgnDYuo0aNilYul1xySbLKKqtE+6xatWpFYJ1AOgfgDIHMn0uBgw46KFpwdO/ePV6zpSwExqkKJ7GNvXnaMgjcK6YDbA8//PCI+UjFxHYuKmr0uOQ0slOnTrnHCKoz/ZvNFC+s11xzTUGvUcWJnn0dOnSIPmtXXXVVPMaAHHqoVpwsL0laPL755psIoo8fPz7KwGfNmhXreH7m+bbbbptMnDgxeeaZZ2IAtJSP35U99tgjMtFTTZs2jcw113NJWnRomzFo0KCo+u7cuXMccqdrdtrSJX3PwEey1Su2dWnZsmVU/JLAlJ8MJ4HqcFqtEobkUIb7xHxpsgX3hlSb8RypmPiqpqJG8JyBUfRUTbGIUyJOWTjDKFjopXxkn++zzz4x+IbfkdTJJ5/shluSqhCtNtLS3KOOOioGRlVs3cIQs9VXXz2qhj777LMCXamKFe2A8gPobKg5cHE9l6RFiwHgQ4YMiUPvjTfeOB6jnQvSgHj6OJnqN9xwwzxtXWjpwms22exSvk8//TT65tPKj9ZsFdsCpQF0+utzCGMAXcXITHSVBNq2UPJNcDTFoDLebrzxxuTJJ59M2rZtW9BrVHGgzy6n22RIsDiT9QhuBhk+VrHPmiRp8aKnKq/N66yzTvRMPeGEE5LllluuXPYRfTHRvHnz5PHHH3fjpHDnnXdGv9QUazhD7dq0aVPQ65Kk6o59VKtWrZK33nor1ug5c+YkK620UvLyyy9HEhsHnATWR4wYES058g0YMCA59dRT4zWcxCaJli3t27dP3nzzzVjHuderW7du/J5RQU6nAZ5DC6HnnnsuadiwYaEvWaqUmegqCQRC6YeONPOIF1825VtvvXVkrL/77rsFvkoVGoHzLl26RMCGQ5U0gL7CCivEYwbQJanq1a9fPwLoOO6445KBAwcmr7/+erLVVlvlnsPmnNdqMowZIm6OhyZPnpwccMAB5R4bPHiwAXRJWsyoGDvppJNi/012MGs02cPNmjWLvfiZZ56ZGwrO3uvhhx8u9/2nnHJKtIOhn/WUKVMK9nOoOHBPR7997vFos0p1A615qUCkXRu/XwTQab3K75IBdBUzg+gqCSzYRxxxRCzGbKBSw4YNS7bffvvIaONFuGJJkGoWhpM88sgjEaShQgG0DnjvvffsySdJRYAD7/vuuy82TMw9YU2nDzqZ51Sb8THl4fmtuFTzfPzxx0nHjh3LDa5jkChBG0nS4sW+iWQ1WmvwWowvv/wyguNkpaetOGjZxnNIaBszZkzu+0lcuummm6K6jD36J598UsCfRoVGFeItt9yS/M///E+s4yRWcEhOwhtDarkv5D6QFi4elKvY2c5FJYMFmpNvFmUGkO28886xmOPqq69O+vTpk+ywww7JPffcY8C0BrrjjjtiMWaTzQl3+tJG9kPr1q0LfXmSpCSJw3BKv2m7RUYSmyqC6bR4YV1nrd9www2TqVOnJqNHj47ZFqpZCM4wlG7SpEm5/vn04KW82/s7SaoatFx7+umnY20+/PDDI0GJ+SUceLMH32CDDaJVZu3atZO5c+dGFjHr9hZbbJH7M95///14/W7SpEkE2Qmiqmah7S4xmsrCjnXq1InfJZLe7r///mSXXXYpyDVKC8MgukoSvdhYoL/77rv4nOA608FPPPHE5LTTTkvOPffcQl+iqniSPBO8yYJgAf7+++/jccrDONGWJBWHL774IgaMMpCMQ/G11147+eGHH2KI+LRp06L3Kho3bhybcl7fmzZtWujLVhUhaM6B+PDhw3OPrbHGGvF7YfBFkgo3n4zWLOyzW7ZsmfTu3TuyiwmcE2xffvnlI3OdzPSHHnoo2WabbXLfywEoB6MconNwbnvNmoP+55tuumms7flzcPKHiPKe/fpuu+1WsOuUFobpHCrZrOM0gA7KfVnUGWBy3nnnRb9V1ZyeqWRIkLk4fvz4XACd3wWyGyVJxYOeqgwaW2211ZIGDRrE63S6gUoD6Jg5c2YckNOyjY9V/ZHX06NHj3IBdPrkv/TSSwbQJamAfvnll2SppZaKYDpBcA6/CYzynraqBNAJpNPiZaeddopAeorKs5tvvjkGR9Jy0xzOmhNAZ3YdvyMVA+hknqddBrgnNICuUmIQXSWJE00WcEqAUrxA33777ZGNTr+2K6+8sqDXqMXvlVdeifKwNddcMxZqSgZBJcL5559vpoMkFTk23//4xz8q/dpnn30WG3ZausyePbvKr01Vh6AKQ+wGDRpUbpPNOk8gXZJUOGeddVYEwQ866KAInu+zzz5JixYtIhBKC640kM5BOZ9TDcy+PEXf6+uvvz5abrJPN5Bevb3zzjvRTpX7OAaG5mNt51CGHugE0KlElEqJQXSVJF5s6XVNv8y6devmHmeA5KhRoyKTiZNuFutSdN111yWtWrWKE33eNt988xiYubD69+8fZdGUzx977LExoJVp2JRG0zucUvlS9frrryft27ePbMbXXnst+fzzz3MHLAwYlSQVN3qpdujQIbLQKROvDANI2ZiTkf7BBx8kpcg1ff4IplBNeOmll+YeIzuNTThrvCSpsPr16xetVMkoZ0govatfffXVZN11140gKcF0WrlQEczXqBLv2rVrzC1LHXHEEdEC5qKLLoqgfCkG0l3Pfx/3atyz8XtBQhvB8nSeSRpA59CFvzdasUqlxiC6Stb6668fGci8ANeqVSv3+BtvvJE88cQTyWGHHRZ9VznxLjVsGgcMGJC8+OKLyQsvvBBZeEw252ZlYTzwwAOR4ffhhx/GG33j6Tk7ZMiQ5NFHH43p2KWI0m5669WrVy822WQqppvuBx98sNCXJ0laAKuuumq0YNt1112Ta665JjbWlWGTyaad1/1Zs2YlpcY1PRtBlF69esXfT4oeu6ztDLCTJBUew0MZMkrQuH79+lHxmyY1NW/ePCrCcc4550QrFwLBIEBMYhtBdvAxbVepGu7Tp0/JBdJdz+ePe7S2bdvGvyu/B7RnY5YdQ2mJ1xBAX2mllZJx48Y5OF6li8GiUin76aefytq2bcsKXPaXv/wl3vNWp06dsh49esTHF154YVmp4+e58cYby9q1a5f7GSu+9e3bN/f89957r2zJJZcsmzt3bqV/3l133RVf/+WXX8pKyaRJk+LvYoMNNiirV69euX9vfmZJUmn59ddfcx8PHDiwrE+fPmWXX375PGvc8ssvX7b66quXvf3222WlzjX9t3/3I488stzPvMIKK7iWS1KRmz17dtmOO+4Yr9t//etfy9Zdd934eOjQofH1//znP2XHHHNM7rW9Q4cOZV9++WXu+y+77LJ4vGfPnvHcUuZ6/pvnn3++bLnllitbZpll4t9+9OjR8fijjz4aazt/D02aNCmbPn16oS9V+lPMRFfJYyBZ48aNozyIk2GGnuDLL7+MAaS0dqH3Gi0+6OFWaiiHGzFiRAxS5fSfsnd60JG5RSk8bzx++OGHRz/RFBnZTEan1KwylInxNf7+SsXYsWOjPIwKhLfffjv6rGGVVVZJPv30U7PWJKkEpWW+aRbyiiuuGNlqZGRROp1Wm9HWhbWLQVVUJJUi1/TfUOZ94IEHlmu7R+9zMvFcyyWpeH311VfRPnP06NHJVlttFesa+7KTTz45WpSkLVbvueeeaFHCYOjHHnssBoxOnz49vn788cfH+s4MM9a7in2zS4Hr+X/x78vvBANE+fugjc+OO+4Y6zztffid4e9iwoQJyVprrVXoy5X+FIPoqhabb0qExo8fn/Tu3Tt5/vnncyVkLEI33XRTcvTRRycXXHBBsvfee8fU8FLAMC16y3HjceSRRyb33XdflMsxsIVFla8RPOaNXmMEGXisYplYVo9Zyu26d++elIprr702hohyc0JZWDrlu2nTpjFQtJRuNCRJ86I8mvWazSaHpgwuY4NKGxfavdBbk0A66zibsXvvvTcpFa7p/8UB+JZbbhmJDikGxb/77rtJgwYNCnptkqT548CzW7dusYbRI32//faLNh2XXHJJtHwBw0VZ32jzQisX2sG8+eabEWhlfhlYCxlWetttt0XANU2OKnau5+Xxb7jzzjvP05qHGM3QoUMjiZE2u9zX8XcilTqD6KoWWLA43cZ6662XrLzyyrmvsYhz0s2mnBNzNm5s1IodA0amTp2aTJw4MXq7Mw2dAZoLgiDDU089VekCzdfoP8tiz5CYYkdmAj8/gZUuXbpEAD3NViBjkZ+TXuiSpNK24YYbRo90stDJ0mKA+HPPPRezTxhGlh6Wpoeoe+21VwznKoUqM9f031BBQBYavWRTHI6TsUeQRZJU/M4+++xYz9Zee+3k9ttvjzVt9913j/04B90krrHGsS8nY5vEtrp160alOGsW+/K0IongKr3VN95449jnFTvX899w78UhAoPhKwbQOTzg69y3kQh3ww03xKGDVB0YRFe1w5BJFvN8vIgzsIxTUBZ2Fmky14sZiw8bTYIKZNEzSPWKK65YoO8l4MACXLEkmsDDTjvtFBOxOTWnBU4xIyOBzASqCVikhw0bFiVi6aAaMtA90Zak6uO0005LLrvsssg632KLLZLHH388hlBRAp4fLCe7jc0ZG00y1tO1oVi5pidRObDBBhtEoCDVsWPHCJq4uZak0sEanWZXk8x0yCGHRECcdZkkJ1p4pFnbrVq1iqzkzz//PNq1gax1WrPNmDEjEtwmTZoUFUms+7RFKWau50nEU2ivOmjQoHm+xr81ByT16tVLnnzyyTho4PdFqi4MoqvaoSc6J6KUVLFI5SOTjd5tZD3RW5tT0VJB8ICs+spUXJgoE2NSeD42rQSkWfjpxZb2ji9WbKo32WSTXBYDfVPJZOBGjZ+PHnqUE0qSqpd0TSOzib7oBNFZt1kD8tc7SsTBmsbGe9asWUmpqElrOj/rGWecEZUD+dlqtN576KGHyvXElySVFvZsBM3JPn/22WfjsdmzZ8djBIP5esOGDSMTnXYl2223XQTMacHKweqdd96ZrLHGGtEKhu/p1KlTZLqXQpVZTVvPQUU/e/OKlf3pz8rfBz8PlWdt27Yt0FVKi493raqWGGxCWRiLM2VR+ei7xmLVuXPn5Igjjog2IWSvF5NTTz01MuVZnDjB5/Nx48Yl+++/f6XP59T6jTfeiOGaBBU45c4vE0sXZzL1yOrm848//jjeCEoUGwbREBAhw4GT7MmTJ5c7CMnqIydJqj4+/PDD2FBymEqbFzbWFUuGQS9W1kCywigLLzY1eU2nhJ9eqfz7pQia33///QucuSdJKl7rrrtu0qFDh2TbbbdNWrduHe1KmHlB73OyzDkInzlzZqxP7du3j9d/2qGw12P9oqc6h6xkYxNQpyd43759k3333bdc5VIxqMnreTpAtE2bNnEvxrwaKgEHDhwYPyePcWhClQE/56qrrlroy5UWjzKpmvvll1/Kunbtyq673Nvf/va3ssMOO6xsiSWWKGvevHnZ888/X1YsunXrVtawYcOyJZdcsqxevXpl22+/fdno0aNzX19//fXL+vbtm/v8tttuK6tVq1bZrrvuWvbEE0+UrbbaauX+vLFjx87z86dvM2fOLCsWc+bMKevSpUtcV7t27eLfKP9a+/XrV+hLlCRVIdaooUOHxse//vprWf/+/ctq165ddvnll5cts8wy86zrvO/Zs2fZt99+W1Ysauqa/thjj5Utu+yy5a5vjTXWiLVeklR9/PTTT2U//PBD7nPWbdY8XvdbtWpV1rp16/h4yy23LPvPf/6T+542bdqU/fWvf42v1alTp+zWW2+Nr48cOTLWj9VXXz3WkmJRU9fzb775Jv6tuK6//OUvZY0aNYrYSefOnXPXu84665RNnjy50JcqLXb/j/9ZTPF5qWjsueee0V+sUaNG0cOLUrLUDjvsEJ9TckQGO/1VS7k3J+XRnHQzxKOUkG1IZQB9bskmHDNmTO5r9evXj1N8TrklSTUXszJOOeWU5NJLL43+qhdffHFktPGWVpXR9ovS8FtvvTV6rpayUlzTyaQ75phjkqFDh5Z7nLk0tGZzGLgkVW+03aSS+F//+les1ezlNt988+TCCy+MXtq4+eabk0MPPTSqk+if/cknn8TjVC9dd911kdnMukFf7cMPPzzW++WXXz4pVaW4nqd7dCoB0xZ6KeIltLHh3+/444+PFjz0w5eqO9u5qEZg0OiJJ54Yizll4SzYaUCWoWXvvfdeLNKUHxHAfeGFF5JS1bJlyxjgUSq++OKLpGvXrtEfjv5qyA+gM72dAaIG0CVJ3bt3T2655ZYonWYjTinxxIkTk8022yxXTk0JNP1Y6cV5wgknJN9//31SqkptTeeeigOM/AA6G2zuwwYPHmwAXZKqOVqqElTlIHvAgAHR7iVtz0arl9Rbb70V7V7ooU0AnXlmDCalFcg666wTaz2tXwioDxs2LPaJTzzxRFKqSm09596Jli3s0SsG0EEAnZ72tM8lhmIAXTWFmeiqkVgImIpNv7F8e+yxR/Q4YwAKmW5nnXVWSWelFzsGiqXZ57vttlsyYsSI6G2bOvLII+PGSZIkEDDv1q1bMnz48KRVq1Yx54TAOps5enHmryHpoKvGjRvH89isa/Ggly3rOf8u+TbeeOPoF1urVq2CXZskqWrR35v9NLOsmI3Buk0QnX7i9EJPD7+x6aabxv47zURfccUVc1Xjq622WvTc5rkkvJFoxVpz0UUXmWC1GHF4waDYyoLnWHrppSPznMMSDj6kmsQgumokJoezma7s179p06aRvcbpOR+zSO+0007zTNfWHzdjxozk9NNPj6A5N1LTp0+PEv00Y41hrwTQmzdvXuhLlSQVGbLWWCtSDKhkzZ4yZcp8v4+NNy3bVllllSq4yprzb0HgnIOM/Ix/7pk4uDjggAMKen2SpMKj3drIkSOTLl265CrGGB5KexcCtcsuu2yy0UYbRZCddaVZs2bxPbNmzYrns1+84IILkmnTpkX71bp160aWO8NH8+8H9OeQYMh90qBBgzKfwxBYDjZIUJBqIoPoqpHIWGOaNifebPo4ba1o1113jcAuJUqUMrFQpyfm+mP4+z733HNjYebmZ6mllorMg1SdOnXi73uttdYq6HVKkkrDRx99FGXfZEL36tUrufHGG5Ovvvqq0ucS2CVbvXfv3vFWu3btKr/e6oLtw+jRo+PQ+5133in3NXrbclhOUESSJNqYkJ1OhTFtVV999dXYVzO3jPYvkyZNiuexnlMFfs011yRt2rSJ+Sfnn39+7pC2ffv2cSDOIS0VzbQTIbi+4447mvD2J3DfxGE4MRH+/jnI4O887XueVgzQtsWqPtV0HtupRmJBYFGmZyen4vRZqzio5OGHH47e6PQBo283w1Bo98JCr4UfMkZrHPrX8ndOpv+nn35aLoBOYGPs2LEG0CVJC4y1Y/fdd48MNg67WaPJTAPzNvLLvQn8/vzzz7HhbtiwYdwHpMNIteAow2/dunVU6eUH0NODcNZ3A+iSJJBpTmIa7xs0aBCP3Xvvvcm3334bwXBatxx33HHJCiuskLzxxhvRP50AOi1DqFxmqChfI+Ocnui0GWEtZ1A1rcJYi7bffvtYf7RwuAeiTQ796O++++5oicffddqihQA690tUnKWV/FJNZya69H9oH0KG9JJLLhkLR35ZMoMy6NnN4sGwsoMPPjhKneirrmwsvGQcnHfeeXGjtO2220aZ3nfffZd7DtnoBD7ISnDTLUn6I5itwYY7LRPnAJzB1PRN79+/f5SEM6yMTTwZVqmVVlop1qADDzzQoZe/g+AGwYynn3663ONk/1177bWRHWgmoCSpIkJOzz33XCSlpQjaUkHG3jptEwKC4uwLQbCcBKv0OVQyk9yWhrBIzCKw+8ADDySvvfZa0qlTp6h6JqNd2bhP4oCCtrX590T5GjVqFJX7Bx10kDPipDwG0aX/w8JLIJ0+ayzwffr0iRNthqKkyGijXIzJ4pSOE0zv2bOnvbsrKQmjZO/KK69MPvjgg2TnnXdOpk6dmrz//vu55xCsILDB4mwvO0nSokLFE0Fxsqnee++9COyuvfba0euTIWUc5H755ZflvmeNNdaIDSU9vB2CWR5l9ieeeGKlwfMWLVok//73v+PvWpKkBd0rcsjdsWPH+JyscsJSDBWlSoxKMtx5552xP6fajGS2NBGLxCsS3tIAMP25aQ/DekSbt/322y+y2xlurf/i74zqcAa+EkivDPdLp512WrL//vtHtZ+k8gyiS3n4v0N+FhUnr5SZVUTJE1nVbCjp801gnWA6weKaHBB+8803k6uuuioZMmRIZKFz40Jf1HTaOliMeeOmKL1xkiRpUWEDfc4550QLMbLcWI+uvvrqqIqqGDyviMqzHj16JMccc0wE1msqSropt+egO7/1GrhP2meffeKwwg22JGlhsVc85JBDkqZNm0aiFUlrVDq98soryWWXXZYcf/zx8TzatZFlns7bWG+99eL5ZKNjk002Sd5+++3c5wTXeQ7rFvcCJMYRTKf3ek1er0go4D5o8ODBmXNjWrZsGcFz1ncr86RsBtGl+eBEm96fZKCTeV5ZMH3rrbdOZs6cGYs/PcMoP+vWrVuu51tN6KXGRptFmQx9Mgjq168fN0H5Ly/0nKcFDll+fGxZmCSpqrDpZgAZm8S5c+fmSsPnZ5tttonNN4PGa8rmm2AEVWQ33HBDbphYvlVXXTUOzPN7zUuStLAeffTRGPCdtnhJ+5zTGizdJ44ZMyZmZnFoS1s20LqN4DnrOD3SV1555eSOO+6IAaT5h76sV7QNZZ/Oc6ggp/93TZm/xWE4GecXXnhh8vnnn0e7WpIDSHBLcW9DxjlDwsn2l/T7DKJL88FG+4orroiJ4iNGjEjOPvvsGH5SGVq6UCZOGRkbT7LS6e3G5puT8+qEn4+AORO8+Xshs2/DDTeMg4bp06eXC56nPdV4PB1SIklSVaJKisw2MqyoMGNIFhtLWrl17tw51jP6qleGg18q0xhmxma/uq1ltFrjMJzeqLRgq4hgBgfgZ555ZiQLSJK0qFGlzJ6bYDgtXJhhwsE3B7fsq9lr/utf/4pDcWy33XbJk08+mft+9t2sZcw3o80L359aZZVVIgOb5C+qybkXoCKavXt1ws/M3xF94V988cX5Prd3797RxpYEOEkLziC6tBDYYDO8ZMqUKZGFxULMKW/FUnAWfALNL730UjzGpvsf//hHDCddd911S3LwFocHo0aNSh566KHIHGBQKINVuSmZNm3aPMEHfsbWrVtHqxtKwwhCSJJUKO+88068p80L6JFOT+8uXbpEq5d77rknGTZsWDJu3LjYVOa3IkuRAcd6zvCyDh06lOTaxq0/9zFpFdlnn31W6fM4LOCgnJ9VkqTFibWVfSYzs+jb/fXXX0dLtptvvjnX+3zTTTeNgDpDSo899thkl112ybUrYRYK1VT5h8FkWlfcqzP3hH0rayF7VQaR89+mWq0U9+j8PT322GMxj+zxxx/PHBTKfQ0H4sQvyD7faqutqvxaperAILq0kCgzI1uLTDYC4mxAn3nmmeTBBx+sdLHilJw+bTyHYR5s3lmoOf2mFI3ebcV6kk2GHosyNzQTJkyIRZmbDQaIURqXltVVPESgbQuZBHwsSVIxuvbaa6OEmfkdDBJP1zjakS0INtuUP7MpJaDOMK5inYtCxRhD2cj0GzlyZByEV4ZDAQ7827RpEyX1ruOSpKrAoEvatpAlng74Zi9Ky9Tx48cnt9xySwSAwXrLGt6+ffv4nGrxvn37xsccjrN2kcFOVTmoomrWrFm0h8nPUKf3N2s5j7Fv32OPPaIPOwlwderUSYoR9yoM/CYG8cgjj0RCAI/xc1QW2uNA/NZbb42/1+pWSScVgkF06Q9gocrfKO+7777JXXfdNd/voU/4SiutlNStWzduCBh2wmLHgk55WvrGKXhV9xrlxuH111+Psq8XXngh3pNFzyk9ZdxMT2caOqf79KuriJ5ztLPhz2GiOptvSZKKfcNOP1XW8x122CEeY41jrU77sX766acL/OfxPazpbdu2jQ04a3ohAusc3E+ePDkOBh5++OHIOs9qVZPicJx7E9ZzSZKKAUFt2q3RnoTBowzH5I2DYQLitGYByWzM8qBamrU91bhx49h7k3lNSzeC6nfffXf8WZUFnfMfI6jOwTrzUciAZ3/LPLSqjjmwR2ct52ejlc3vDUgH1eL0f6e6jkNz/g7teS4tGgbRpUWYnU5fVcrJKAmf34aVBZoFnT5snHJThvXqq6/G6TpfY1I5CzULPxva9I1APO1TGJKyMLiZoFybwP2HH34Y73mj3I1geRow57/NsBVO63kepexsxrNeJrixYFHnuiRJKnUcIrPRZKPMOkm2F2s6Q8uoPuPAmH6jbGI5XP49ZLkxF4SAOt/LUK90Pec99wILG2Snqi1/Pec9rWoIlrOeZ2WZ5+M+gqAAVWOs/ZSzO/BbklQsCCD36NEjsqg5GGYNBnva++67L4LE6fp5wgknRKCYvuhkW9PuhTll7IFJTuN70jWO4dn0Aq9sePbvoVqrSZMmcUDOe/bN7NsbNGgQa3qaQb8wPyNDP1nHGYrKPQeBcmIDxBSYWZJ/KFAZ7i1ozcKenNY19ImntSzeeuutuO9Y2NiBpGwG0aVFhEWQ/zuxYSYgTR9wJmLz+Z577hmnxzyeX0KWj+nkLMKcerOos9gzAIVAdsXsbwLvLNR8D73euFngLS1HS9/477HBJpMufwHmefx3yDyj3I0NOQs4P8PvnW4T2CdLb7PNNosbEAPokqTqhHXzjTfeyGW4gcxyNuVs5um7ymadDLlFgc0trd14zz0D6zqbfdZ11m7uCbgfYK1mXc/qd5qFNZ/7Bv4s7g1ouXbSSSctkmuXJGlxYm+a31rljDPOiAzrgQMHRtCc/TdB7XTuCdhTU2HGXpe3/DWP51JdzbrLfpo1lX03gWuQpc4eO63oWpCD6RRBfdZv3viYNZ33aciN9Thd11nTfy9APj/8WcwlI4jOPQLZ51xrfoa+pEXPILq0mHDyy2Z75ZVXTnr27BmLJzcBfJ4VSK8Mm2hOtVmMec9bWm7NwkuAnVNn/nze0oWar/FGlhtYrDnNJrM8/Z754c8h0E4Anv82A8jo785QNUmSago22JSBP/XUU5H9RvYZ6ysVaKeeemocLLNeEnhPA9ysm38ky21RGzt2bJSigwABB+ds6iVJKjWsvWR/k7X9wAMPxJwx0KaFli4E1wki5yegMYNs4sSJ8TFV3/Q8Z1bZN998M8+fT7b76NGjo1ochxxySDJkyJCkKhEcX2eddSJhjapx2s7lH57zdQLmJLJxrWkb2BtvvDGyzjk8KMUBqVKpcLKAtJhwAn7eeeflPk8XMxY3yrNOP/30KDOjB3l68l0ZAu4Vv05vtMWFEnaGlNCbnUA6Zevt2rWLU3xJkmoa1kLKv/MRiCZznNJuMtJp60ZWGe1U2MDS6oVhaGS60X/1lFNOWaD/VtZgsHwcprNp5pCc+wkyz8isIzuPGSZsvocPHx7l3KzlKa5VkqRSxdpLC1QOtHfZZZfc48wmo8qKg20GaD/22GMRVKfFyZZbblnuzyB7m0zt9ECcJLfp06fH41tssUUugM5BeGUB9LQKvF69evF11lzasXAvQNA7TWyr+D0E7wnoo3fv3pXea7C+d+nSJRk0aFA8xp9PoJz9+Y477hhDzMk8px3b7NmzIwM9DaLT3kbS4mcQXapCLICUmtE6Jc0QZ5Fl2AkbXhZNStN4DpviXXfddZH9tylLYzNPORw3CWAxX3PNNWMhnjNnTrzx38wfDEqfVEmSVB7Z6ccdd1xuBgqbXwLXvFH5xaE5ay+bZarALrzwwmSnnXaKzDbuA3g7++yzozLslVdeiawyggO9evWKvqgcxrMGs24TACdIzoaZfqdkqIHvmzBhQnzOnJIU/w1Jkqob1lr2zvmYXUIgm8A36+Xee+8d+1wC6QTGUySvEejmLR8B8Y033rjcc1m3WbOpymZNTweNs2bztvXWW+fapvD9BLWzkJBGoB/0PCeAz16fDPq0ao1scx5r0aJFuYN17g04MBg8eHDu8TPPPDMC8g4Dl6qeQXSpANIAero4Unp21VVXxccE2hlOwkJMD1Y2zCya9EbnjVIterSxyDOFPG0Nk26e6dXKYszGnSw4eriy8JJRnmbDs5HnlJ0T84UdgCJJkn7Dupq/jpIRxrpb8Tls6NNhZPm9SunLymE6G3DWfzbltIlh48+Gfr/99ss9l5ZqtI7hean11lsv3iRJqqlYM8k+Z4h3ihZs9Exv1qxZtFsDgWcqwVmnn3766dgrz5w5M3qijxs3LtceBlR6MdOMDHHasVLpteSSS0ZWORnx+QF3/nzWbPblaZCdgDhZ7lSpkUGe4vEZM2bkPufP4hqZO8b9Qn4QnQA6hwO0dOFeId3LcwAvqTAMoktFGFgHvc7o11ZRx44d4zScRbVhw4bxGAs1QXIWYcrI036nLNp8nE4jTy1oWbkkSfrz2Njnb+5TlZWKk7HGW2W9WiVJUnnsdfMD4CDLm71y2kIFBMGPOuqoaMdCqzX6q9N+jSptAuFplReoFiOAToY4A8d5y9epU6fcx7RepYIsS35rVqrAGV7KnLEjjzwyPue6SHqjper2228fb+BeYOTIkdHKxT7nUnFwsKgkSZIkSZKqDUJdJJUxVDtt0ZImrtHGNP348ssvT84555wIsJ977rm57yfQTkIayWsE5WnfxkBS3pOJTvs2UC1+++23x8dUlBMgp2qMarMpU6Yk7du3zwX5qTan3RuBfLLS02Q3KswZBn7wwQeXy1yXVFzMRJckSZIkSVK1QfZ2GkAHgW36oU+cOLFcFTjzSAiwk3me+vHHH5N99tknPuZrzCfBaaedllxwwQUxE4XgO5g7dtJJJ8XHBNn5HKNGjYqWrUiD6LRUXX/99ZNGjRpFYJ42bejevXu8SSpuBtElSZIkSZJUrZFVzlywfFdeeWXSo0ePXKAcZIm3bds22rqssMIKucd//vnneJ/fLpXMcwL2Sy21VGS+p0H0bbbZJmaV8T7F8xguKqk02c5FkiRJkiRJmg+C4rRzYcBofpb7r7/+mptLJqn6MoguSZIkSZIkSVKG/zZ9kiRJkiRJkiRJ5RhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJksyvLEEAAAIwSURBVDIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkpLK/X+EecYUVBfrCQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qmc1eP///8L0SKhvSwtpD3tGymklCQSkkq2yNZmTRRSKLIl6oMkEUVR2ihbq/bSTmmV0kJZM//b4/r+rvf/PWfOmTln5mwz87zfbqOZM2fOec+Z4329r9f1ul6vY1JSUlKMiIiIiIiIiIiIiIikcWzam0REREREREREREREREF0EREREREREREREZF0KBNdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFRERERERERERERBREF5Fg9uzZYwYPHmyuvvpqU65cOXPMMcfYDxEREUl+f/31l3n88cdNhQoVTL58+Uzp0qXNbbfdZsd3ERERSX6bN282AwYMMG3btjWnnXaanY+XLVs20YclIgGOSUlJSQm8UURyj7lz55oLL7zQDtRMwLdv326OHDlidGoQERFJbv/9959p3bq1mTFjhmnYsKFp2rSp2bhxo/noo4/swviCBQtMsWLFEn2YIiIiko633nrLdOvWzRx33HGmcuXK5vvvvzdnnHGG2bJli143kSSici4iuRyD9JdffmkOHjxo1q9fbwdrERERSX5jxoyxAfSOHTuaefPmmSFDhpiJEyeaESNGmB9++ME88sgjiT5EERERycAFF1xg5s+fb3777TezatUqc/zxx+s1E0lCCqKLxBnbsthu7V91Jgucfx2+rlSpUlyOp0SJEnbQPumkk+LyfCIiIjlRIsb3UaNG2X8py+Yvxda9e3dTvnx5M27cOPPHH39E7flERERyukSM54zZ7CjLnz9/1B5TRKJPQXQRERERkWzmzz//NAsXLjQVK1Y0ZcqUSfU9JveXXHKJOXz4sPnuu+8SdowiIiIiIjlFnkQfgIhkbPjw4ebAgQNhv1Tt2rUzNWvW1EsrIiKSQ8d3mpBRE51+JsG426mR3qRJkygdsYiIiATSfF0kd1AQXSSbDMpbt26NaAuagugiIiI5d3ynlwlOPvnkoPctVKhQqvuJiIhIbGi+LpI7KIgukg1kpSv33Llz7YcfE3Cy2URERCR7ju8iIiKSHDSei+QOCqKL5HAE0AcOHJjqtq5duyqILiIiko25DPRQmeaHDh1KdT8REREREck8BdFF4uz44483R48eDfn9I0eOePeLRo21AQMG2A8RERHJOeN7+fLlzbHHHmtrngfjbg9VM11EREQSP56LSPahILpInJUqVcps2rTJ1kAtU6ZMmu9v2LDBu5+jGmsiIiLJLd7je/78+U39+vXNggUL0jxnSkqKmTVrljnxxBNN3bp1s/ibiYiI5B6ar4tIKMfqpRGJr1atWtl/n3zySfPff/+l+h5fDxo0yH7esmXLVDXWmBCH+3HjjTfG+bcSERHJ3RIxvt92223234ceesh+33nttdfMDz/8YDp16mSD7SIiIpK847mIZA/HpPivuEUk5n7//Xdz/vnnmxUrVpjq1aubkiVL2myxFi1amN27d5uVK1eahg0bms8//9wUKFAgLn8R/yD+0Ucf2Tqq1E13HnzwQVOpUqW4HIuIiEh2lIjxncl869atzYwZM+xjN23a1GbDT5o0yWatL1y40BQrViwqzyUiIpIbJGI837t3r+nbt6/39dixY+0i+NVXX+3dNnToUFO0aNGoPJ+IZI6C6CIJGpifffZZM27cOLN582Z7G3VN69SpY7p06WLuuOMOc9xxx8XteI455ph0vz9nzhzTrFmzuB2PiIhIdpSI8f2vv/4yQ4YMsRPubdu2mcKFC5s2bdrYDLoSJUpE9blERERyg3iP52SylytXLt37/Pjjj3aBXEQSR0F0kQRjy/Xtt99uRo0aZW655ZZEH46IiIhEgcZ3ERGR7E/juYg4qokukmB58+a1/+bJoz6/IiIiOYXGdxERkexP47mIOAqii4iIiIiIiIiIiIiEoCC6iIiIiIiIiIiIiEgIqokuIiIiIiIiIiIiIhKCMtFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREFEQXEREREREREREREYmMMtFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREREQXQRERERERERERERkcgoE11EREREREREREREJAQF0UVEREREREREREREQlAQXURERERERERERETC8tNPP5nLLrvMFChQwBQvXtzcd9995t9//83Rr16eRB+AiIiIiIiIiIiIiCS/o0eP2gB6yZIlzbx588yuXbtMly5dzPHHH2+eeuopk1Mdk5KSkpLogxARERERERERERHJbgitHjlyJCHPTSb4Mccck+H9Jk+ebDp06GD27t1rChUqZP7++29Ts2ZN069fP9OpU6eInvOzzz4zbdq0MTt37jQlSpSwt40cOdI88MAD5pdffjEnnHCCyYkURBcRERERERERERHJhMOHD5uCBQsm5LX7/fffzYknnhjWMRYpUsSMGzfOtG/f3t42evRo88wzz5gNGzaY22+/3bzzzjsZPhceffRRM2XKFLN8+XLj/Pjjj6Z8+fJm6dKlplatWiYnUjkXERERERERERERkRyKQPsFF1xgpk2b5gXRGzVqZDZu3GgD4I8//rjp27dvWI+1e/duLwPdcV/zvZxKQXQRERERERERERGRTJZUcVnaiXjucFHH/Omnn7blZygBc+DAAXs7WfTFihWzDUIlNAXRRURERERERERERDKBgHQ4JVUSrXXr1qZnz55m2bJlpnbt2ubNN9+0pVcIoEdSzqVkyZJm0aJFqb73888/e9/LqRREFxEREREREREREcnBKlSoYD+mTp1qG4uOGTPGzJw5034vknIujRo1MoMGDTJ79uzxstdnzZplG5ZWqVIlpr9DIqmxqIiIiIiIiIiIiEgORyb6559/bg4ePGi6detmBg4cGPFjHD161NSsWdOULl3aNialDnrnzp3NLbfcYp566imTUymILiIiIiIiIiIiIpLDkTHeokUL07FjRzNu3DhbiiYztm7dau644w4zd+5cW8qma9euZsiQISZPnpxb9ERBdBERERERERERERGREI4N9Q0RERERERERERERkdxOQXQRERERERERERERkRAURBcRERERERERERERCUFBdBERERERERERERGREBREFxEREREREREREREJQUF0EREREREREREREZEQFEQXEREREREREREREQlBQXQREREREREREREREQXRRUREREREREREREQio0x0EREREREREREREZEQFEQXERERERERERERkbD89NNP5rLLLjMFChQwxYsXN/fdd5/5999/Q95/y5Yt5uabbzblypUz+fPnN2eddZZ57LHHzN9//53qPsccc0yajwULFiTFXyVPog9ARERERERERERERJLf0aNHbQC9ZMmSZt68eWbXrl2mS5cu5vjjjzdPPfVU0J9Zt26d+e+//8xrr71mzj77bLN69Wpz6623msOHD5uhQ4emuu/s2bNN1apVva+LFCliksExKSkpKYk+CBEREREREREREZHsioBwKMcdd5zJly9fWPc99thjbbZ2Rvc98cQTwz62yZMnmw4dOpi9e/eaQoUK2QzwmjVrmn79+plOnTqZSHz22WemTZs2ZufOnaZEiRL2tpEjR5oHHnjA/PLLL+aEE04I63GeffZZ8+qrr5offvjBy0QnU33ZsmX22JKNyrmIiIiIiIiIiIiIZEHBggVDfrRv3z7VfSmBEuq+rVq1SnXfsmXLBr1fJJo3b26D87NmzbJfE+ju3bu3GThwoP369ttvT/f4C/qeb/78+aZ69epeAB0tW7Y0hw4dMmvWrAn7mA4ePGgKFy6c5va2bdva1+f88883U6ZMMclC5VxEREREREREREREciiy1i+44AIzbdo0L6DfqFEjs3HjRvPjjz+axx9/3PTt2zesx9q9e3eqADrc13wvHJs2bTIvvfRSqlIuBOqHDRtmzjvvPBvwnzhxomnXrp35+OOPbWA90RREFxEREREREREREcmC33//Pd1yLn579uwJeV8CyH6UOYkG6pg//fTThsreNOw8cOCAF7wuVqyYzf6Ohx07dphLL73UlpehLrpTtGhRmx3v1KtXz5aMoexLMgTRVc5FREREREREREREJIvZ3qE+/PXQM7qvvx56eveNVOvWrW0TUGqO48033zS1atWyAfRIyrmULFnS/Pzzz6ke233N99JDUPzCCy80jRs3Nq+//nqGx9ygQQObtZ4MlIkuIiIiIiIiIiIikoNVqFDBfkydOtU2Fh0zZoyZOXOm/V4k5VwaNWpkBg0aZLPpXfY6tdZpWFqlSpV0M9AJoNepU8cG8AMz7oNZvny5KVWqlEkGx6SQwy8iIiIiIiIiIiIiOVbPnj3N559/bpt6duvWzWssGomjR4+amjVrmtKlS5tnnnnG1kHv3LmzueWWW8xTTz1l77No0SLTpUsX+1ynnXaaDaA3a9bMlClTxgbv/eVtXPY6t9PwlOx4TJo0yfTv39+MHj3aHmuiKRNdREREREREREREJIejLvoLL7xgOnbsaAYMGJCpxzjuuOPMp59+au644w6blU5pma5du9psdufIkSNm/fr15p9//vEy1SnLwsfpp5+e6vH8+d1PPPGE2bp1q8mTJ4+pVKmSef/9983VV19tkoEy0UVEREREREREREREQlBjURERERERERERERGREFTORSSb279/v5k+fbqtG0VtKT6KFi1qjjnmmEQfmoiIiIiIiIiISLanILpINkQX5WnTppmxY8faOlR87VegQAEbTC9fvrytUUXNKxEREREREREREYmcaqKLZCPLly83r7/+um2s8Ouvv3q3V61a1RQsWNA2X6ArcqC2bdvaxhFly5Y1yWD8+PG2E/Sxxx5rG1LUr1/fVK9ePdGHJSIiIiIiIiIikoaC6CLZxMsvv2zuvfde899//9mvS5UqZTp16mQ6d+5satSo4d3vzz//NNu2bbMBdcq8EDz/999/Tf78+U2/fv1M3759Td68eeNyzLt27TIjRoywgf1Ro0Z5t1esWNFs2LDB+5rSM7fddpt56qmnTOHCheNybCIiIiIiIiIiIuFQEF0kyREAJ3hOMBpXXHGFufPOO81FF11ks7gz8v3339v7z507135doUIF88orr5hLLrkkZse8dOlSM3z4cPPee++Zf/75xwbJN23aZMvL4O677zY7duywCwJkpLtjo5b7iy++aDp27BizYxMREREREREREYmEgugiSezAgQPmmmuuMbNmzbKB6KefftpmkkfaNDQlJcWWUOnTp49X7uWNN94w3bp1i+rxfvPNNzbb/auvvvJuO//8802vXr1sSZk8eYK3YeD+PXr0MGvWrLEZ9wT9RUREREREREREkoGC6CJJavPmzaZNmzZm3bp1tlHou+++a7PQs+LQoUOmd+/e5n//+5+tR/7hhx+aK6+8MirH+/HHH5v27dvb7HKC5ddee63p2bOnqVu3blg/T8Y6jVK7du0aVoZ9vHYBhAr8i4iIiIiIiIhI7qAgukgSWrx4sWnVqpXZt2+fOf30082UKVNMrVq1ovLYZKXfcsstNhP9hBNOMFOnTjXNmzfP8uNSloWAecOGDc2QIUPMaaedlqXH+/nnn81jjz1mnn32WXPSSSeZaNu/f799nVesWGFWrlxp/+V1eO655+z3jxw5YpudtmvXzi48ZPX3ERERERERERGR7ElBdJEkQ/C4du3aZufOnaZevXpm8uTJtoloNB09etRmik+cONGceOKJZvbs2Tb4HSkamBLkd+VlCPrTGDTScjPBAv0NGjSwQW5KzhDwj5bffvvNPPPMM2bYsGHmjz/+SPW9Jk2aeKVo3nnnHdu0FSw23Hjjjeb+++83Z511VtSORUREREREREREkt+xiT4AEUldPoSmmgTQK1eubL744ouoB9BBuZRx48bZ5qKHDx82rVu3NqtXr47oMd5//317jDQpdYoUKZLlADp4jKFDh9p/33zzTRvsj9brywLFk08+aQPoNDrt0KGD/Zpsf14Tp1OnTuazzz6zgfW///7bvP766+acc84xDzzwQFSORUREREREREQkO/rpp5/MZZddZssPFy9e3Nx333025pKesmXL2jiP/4NKBtmFMtFFksjDDz9sBg8ebLPDycImSB1Lv//+uw2kL1iwwAbr582bZ09q6eGkSEb2888/b7++9NJLzbRp06ISPA/1epDdTsmVzJRUIavdf2xPPPGEefvtt22TVurBh3PcX3/9tT0OguruaxqmioiIiIiIiIjkJkePHjU1a9Y0JUuWtCV4d+3aZbp06WJuvfVW89RTT4X8OeJNN998s72fQ/leYmDZgTLRRZIEmdAEakHjz1gH0FGwYEEbAKf2Nyc9mnrSGDS9EyUlTlwA/cEHHzSffPJJTALoGDBggM0c//XXX205lfSOLZhFixaZpk2bms8//9y7jdXRNWvWmKuuuirs4yYbndfptttus1+PGTMmwt9ERERERERERHIydvqH+vjzzz/Dvm9g6dlQ94sEpYIpVXvo0CH7NTvuq1SpkmpHfrhmzpxpvv/+e1sGl2A6Pf1IWKRSAY+bHoLmBN/dR3YJoENBdJEksHnzZrtqh3vuucfWK4+XU0891Z5MOXFRD3zEiBFB70cAmxXD9957z+TJk8d88MEHNujP57HCCZ4Tev78+W3ddkq7hFtXnrI41FUna/zRRx/1vpcvXz77uJnRv39/M378ePPaa69l6ucz83xnn322GT58uN01ICIiIiIiIiLJiUTFUB/t27dPdV9KoIS6L0HpwAzuYPeLRPPmzc2xxx5rZs2aZb8mLtK7d28zcOBA+/Xtt9+e7vEX9D3f/PnzbTJmiRIlvNtatmxpA/QkLaaH8i2UAq5Vq5bNYs+oBEwyURBdJMFYYeRkevDgQdOoUSN7Eom3cuXK2fImoOb3Dz/8kKYkSo8ePWwGNvXUCaRfffXVcTm2SpUq2Yx0jB49OsP7f/vtt/ZkzDGSaU52PZ9HA01Ur7vuOjvwRAurx5SJYfBiEJozZ473PZq9ssDSq1cvc+aZZ9qg+p49e6L23CIiIiIiIiKS85E4ecEFF9hd9g4xqI0bN5off/zRPP7442b58uXpfji7d+9OFUCH+5rvhULSKPEZ4h7du3e3pV8oF5xdxC6FVETCrvu9YsUKU7RoUTNhwoRMZ0ln1R133GGzy7/88kubcU4JFBcsJhhdoUIF+/XYsWPTrKDG2i233GJP+DT7DIVA/wsvvOA1s3DbkthaFAtHjhwx27ZtMxUrVoz4Zw8cOGCz2adPn27r0Pu3O7Et6sILL7SfM8CxHYpMdAY2GqDScJXSNvyeNEYVERERERERkcRLbwc5CYl+6SXIBSbubdmyJQpHZ2wjUBIoXe84YhMgy7xYsWI2Oz6Wevfu7X1eo0YNG/8imE6Vg7x585pkp8aiIgnENpdzzz3X1hpnNTBwy068kfXMiYwAMWVdCKz7rVu3zmaGJ6NPP/3UXH755fZzssVHjRoV8famcNGIlaakbEFiASRwMMzob96sWTOzd+9e77YyZcrYBq9sr7r44ovtgoof7w9K7jDYUefdleHhsWgIKyIiIiIiIiKSHpLzzjnnHLNkyRLbf46ExaVLl9oPyrlQ4zycRYJHH33U9vXzZ6eTzU6iH49FdYBwENOoVq2ajTVlJkEx3hREF0kQVv4InJLxTUB20qRJSfG3eOmll+wWGzK/OTHSTPOUU04xycStmgbeRl35+vXrm7vuuitmzU7Bai0lcPh34sSJtklpuMiSZ+GE473zzjtNixYtbN3zcI6Xn6FuPQsEV1xxhbn00kttUw4RERERERERkYwQRO/cubONRzVp0sTbDU9mvGs6GsrZZ59t/6UkbZs2bcyuXbu87PXXX3/d7pjnccLNKqd6AHEckgxJFEx2CqKLJAhBc8qicHJZu3atDcomAxqIkilNQ07UqVPH1hlPhq01BKzJxma7DyVnPv74Y3uyP/nkk0MG12OFGvGvvvqqrSFPY4z0VnopwUKpGZqaYuvWraZ06dLm+OOPj8uxioiIiIiIiIj07NnTJnPSl69bt25eY9FIHD161JbOJa7xzDPP2DroBObJbKfOOdhFT4Cc5zrttNNsM9KFCxfaGA7JgHxN/zcqMtB/LztQY1GRBDUTdbWgWKlLlgC6q73VsWPHVKuUyRBAx6ZNm8zixYttPfF7773XZvDfdNNNNniOeAXQ4bYacUzBkKXep08fU7VqVbsiSxDdX74l2QLo1GWfPXu2bXQqIiIiIiIiIjkPddFXr15tzj//fDNgwIBMPcZxxx1nS+ryL81Jb7jhBhswpzmpQ5ng9evXm3/++cd+TVyJpqJNmza1cZJBgwbZIDrxkuxCmegiCfDEE0/YUimnn366rf1E6ZRksWrVKnsSdMFUgujUqcqTJ/F9iH/++We7gsmqp78xKyfqSOqSR7MGO6uvy5YtS1WuhXIr/H1d3fPWrVubYcOGRbWePDsFaAJLVj4NQLKK34P67tReb9u2rb1t5cqVtv47Wf/xfn1FRERERERERJKFMtFF4uynn36ynYdBmY9kCqAT9CWASgCd1UEaZ27YsMG89dZbJhmwglmgQAH7OV2cCfiyepmIAK+rBUYmusuEJ5ObBhqUeuG1rFy5sq0VNnXq1Kg3ZKWeev/+/W2N9Ejs27fPrjZ36NAh1e3UQitRooTZv3+//Zrf6e6777ZB+n79+kX12EVEREREREREshMF0UXijPItlHO54IILzDXXXJM0rz8B6quvvtps2bLFnHXWWbb+uAueUiPrzz//TOjxkbHfuHFj89tvv9mvCfi6jOlEoAQP5WPoTk3jDGrJkxHPtqjChQvbBq1kdtP8MxYIesPVrg+FrH33moEdBSw8fPjhh2bz5s3e7Szs7Ny503Tt2tV+ze9Dw9RSpUqZO+64Iya/g4iIiIiIiIhIdqAgukgcLVmyxEyYMMHWHadGdjxreIeTIU/WOQ0eyPAmC53g6RlnnGG2b99uRowYkbBjIxBMQHfbtm2mQoUK9nXjc4K+iUI9r759+9qmotQ3529KZ2luo5noXXfdFdO65y6I/s0334S8D4086tatazPKHZqwsjjyxhtvmKJFi3q3FyxY0P4ODtn91J1nUYUa7iIiIiIiIiIiuZWC6CJxRAYwaNxJDepkQvb5d999Z6ZMmWKbPCBfvnzmscces5/TYfnQoUMJOTYCum+//ba5+OKLzbx582zJFERayiSayNQmG/6XX36xmedgweHZZ5/1vo4lmoCAeuz+THM/FhuWL19u/6a//vqrdzvlXOjCTUA9I5TNcbXyqUfP30BEREREREREJDdREF0kTijz8dFHH9nAJs0wk8Vff/3lfV66dGnTrFmzVN+nvEfFihVtLW2aY8YTZVIcMqpnzZpls6fbtWtna3qXLFnSJMLu3btNq1atbNY5r8nChQvjfgz8rQhwE8wnkI9du3aZL774wrtPvXr1zJgxY+wOg6wG9vlbkPnP7y4iIiIiIiIikpsck+I64olITF1//fVm/Pjxtu74Bx98kBSvNkFR6ow//fTT5tprrw15P46X+u2U/Pjhhx9MsWLFYn5sL774oi07QrPOBg0amGQxffp0u7BAUDl//vw2kE5tdoL88USJHTLfydKnxv7KlSttnX2OiVrn4WSZR4La7wTj//33X1O/fv2oPraIiIiIiIiISDJTJrpIHBB8fP/99+3nrllnohEMJbC/detWW9ebuuOhtG/f3tSuXdsGUp977rmYHhfreo888oitx83zffLJJyZZMvb79OljM9AJoFevXt2WuHniiSdS1RyPl02bNnkNTqm9fu6559ra5dSM37t3b9SfjwUU3gMKoIuIiIiIiIhIbqMgukgcEKSm7EabNm2Sphb6448/br788ksbHCXAT0ZzKDSc7N+/v/185MiRNrgdqwB67969vdrx/EuQOtR9169fbzPjY43nuuyyy7wFBJqG0rSzfPny9mv+tvHE8VCfnmar77zzjr0tT548tpQLNeOpby8iIiIiIiIiItGhILpIjG3ZssWMHTs2qbLQKZHy5JNP2s9fe+01c84552T4M5dffrnNcj5w4IB54403YhIY7tmzpxk+fLgXrKd2PDXkg3nwwQdNpUqVvPvHEsfQvXt3U6RIETN58mTz0ksv2aarrp583rx5TTxRn57mtJMmTbJlXRxqxId6vbJq7ty5Zty4cWbjxo0xeXwRERERERERkWSlILpIjFFvnNIpzZs3Nw0bNkz4601jyBtuuMEGrW+55RZb0iUcZKr36tXLfv7888/b3ylaOBZKolAHnSDw6NGjbdA6Pa4GOdn0sXDkyBGzZs0a72samVJChfrnzt9//x23IPpvv/3mfU5zVUre3Hfffebiiy828cCiBu+bqVOnxuX5RERERERERESShYLoIjFE7WyXtU3QM9Goe96pUyfz888/m2rVqpkXXnghop+noSbZ2GTXf/TRR1E7rn/++cc+pgug33zzzRn+DE00sWrVqqiXl6FO/Pnnn28uuuiiVJnep5xySqr7uUz0E044wcQKpWJGjBhhzjzzTFtb3+F3Pumkk2xT0XigBjwBe3YjiIiIiIiIiEju9dNPP9mytwUKFDDFixe3SX7pJVuyu52YT7CPxYsX2/u4uFDgx4IFC0wyUBBdJIZef/11m61cr149L+ibSGR8k8FNHfQJEybYk10kuP+dd95pP3/22Wft40UDQeiJEyeazz77zNx0001h/UyJEiXsB8ewbt06Ey1z5syxr9GyZctsAHvHjh0h7xuPci4MGJRtoYzOmDFj7G0cF7sBHn300ZjVpw9EKSLKADFIioiIiIiIiEjudPToURsbIN5FXzZiFW+99ZaNUYTSuHFjs2vXrlQfVEcoV66cV2nAIfbgv1+dOnVMMlAQXSRGyK5+9dVX7ef33HNPzGpVR4Lmk5SXoa515cqVM/UYBNEJGrNS+M0332T6WAgEE8h3gXges2XLlhE9hvsdvv/+e5NVHAeZ+ZdcconZu3evqV27tlmyZIlp0KBByJ9x5VyinYnOa8OgBN43//vf/2wddtdklUGEDHRK7JQtWzaqzy0iIiIiIiIikTt8+HDIjz///DPs+wbuOA91v0jQ343YxaFDh7x4RpUqVWzvs0jNnDnTxmHeeecdU7NmTdOqVSsbr3jllVe8OEkgnps+bu7D9Zzr1q1bmngZ3/Pf9/jjjzfJQEF0kRghe3jnzp02W5p62onEydW/rYaTUGaxTYeyLhg6dGimg8S33Xabufbaa+2Wn8zihI+1a9earGCAuvHGG21jU4LX1P5mgYASKumpX7++6d+/v7nqqqtMtGzevNmWkSHT3ylTpoy56667zLHH/t8p2zX3JIAej8GE1+eXX36J+fOIiIiIiIiIZFfs+g/10b59+zSxlVD3JSjtx9w/2P0iQZ8+YgqzZs3ygtq9e/c2AwcOtF/ffvvt6R5/Qd/zzZ8/35Z8Jd7lkBRJgN7fWy49U6ZMMfv27bNB9ED0ouP1ocwu90sWCqKLxAiZw6BBZjwaT6aHk2GTJk1sgDYaONGCk5kL6EYaQCe7mhM4Gd9ZDaJnNRP9qaeeMm+//bbN7H7uuefs5/nz58/w5xo1amQef/xxc80115hoIXhPs1SC6P5mon7uNY9XfXJWl08//XTz8MMPx+X5RERERERERCR6TjzxRFtmeNq0aaliGsQXfvzxRxvbWL58ebofzu7du1MF0OG+5nvhICZE4J1Yg0OgftiwYeaDDz4wU6dOtUH0du3aJU0gPU+iD0AkJ1q6dKn59ttvbfkUAtiJ9P7779sgKAFrGoqeddZZWX7MihUr2pVRapi/9tprYWekUzKlR48eXgCd4+rYsWOmj4MBgJpbDRs2NFnx4IMP2jpeBIlpnhlvLCy4LPMuXbrYxQ4y42kcGsymTZvsv2effXZcjo/3Mluy2FIlIiIiIiIiImml17OMpD2/PXv2hLyviw84NNyMBuqYU+KX2AwlVOi95oLXxYoVs9nf8bB9+3YzY8YMW+LXr2jRol7SJugvSIUHkgzJTk80ZaKLxDALnQzlUqVKJew15sTkgvg0hqSRQ7Tccccd9t8333wzTb2uYDhJUxueoDsn67Fjx2YpgA62D7H1KHCrUzjHwuqrq8fOiiyNKyINoFObnFIybEHKbPCcOuysrrq6Ybw2rACXL18+5M+tWrUqrpnoNAhZtGhR2E1fRURERERERHIbYguhPvLlyxf2fQN3xoe6X6Rat25t4xjLli3z4jm1atWyAfRIyrmULFnSJmn6ua/DKR/M85KkF05gnD51LpEw0RREF4kyakePHz/efn733Xcn7PUlQEvtclYWWb2jdnc0cfKlZvivv/5qt9pk5P777zcvv/yyDRJzwrz++utNIvz111/m1ltvtSuwgwcP9m7PTONXVnApKZPZ2vC8djTfoJ5YuM08qNnugugXXnihiRfeQ6eeemrcnk9EREREREREoodEPD4olbJgwQIzZswYWz4FkZRzadSokY1L+LPpqbVeqFAhr+xuKCQzEhNiF344Pd543kQmp/qpnItIlFGqhEAtQUdWzBKFDOcvvvjCFChQwJZNiXYDSrYiUdv8kUceMa+++qo9Aabn3HPPtT/DfV1j0mhga8+KFStMuXLlTKVKldK9Lyd4moBSnoTtUVmtVe+2PoUquxKM2zbltiqRmc/CC+VbwsFryFauxYsXm2rVqplYOnLkiG02QlkiEREREREREcneSIikjMqoUaNsSVuXnEcpl3DLubRo0cIGyzt37myeeeYZWwed2NCdd97pxVnYzU6c6PPPPzennXaa97PEqajBfsstt6R5XIL6xCDIjsekSZPMG2+8YUaPHm2SgTLRRaKIAKn7n5tyJ5nJbo4GVgSp8w1WFc8555yYPM/NN99sA6ysYPpXJYO54YYbzPr1620WeDRRE51BwGX/p/ea1K9f3wbQTz75ZFvPvU+fPlkul4MzzjgjrPuzBalZs2Z2MHHo0M22qUjeKwTSqQMf6/cXTVbpAk6jVRERERERERHJ3tiVv3r1altWdsCAAZl6jOOOO858+umn9l+y0on3EDAnm92flEcM6J9//kmTeEqp4VBJkOzWr1Onjk1KnTx5su3z161bN5MMlF4oEkVz5861TSHJTKYeeqKwckeWMlteunfvHrPnodYVmd2sYpJhTla138iRI80VV1zhbb2JRlPTQO7Eu2HDhpD34eRO/XWafNCM85NPPskwaz0c27Zts//6u0mnh8Hgq6++srXhKeESaRDc1XCP1+LMxx9/bHbs2JGmqYmIiIiIiIiIZD+XXHKJF1vIijJlythec6GQQBjsed59992QP0PVgmhWLog2RUZEoshloVPvOzNNHqKlYsWKNkhL885YB1xdg1Fqeh86dMi7nS09fK9p06bpdqiOxonbH9AORNOMq6++2h4D25QWLlwYlQA6g4F7znAz0YcPH26D+aykZubvQrY/dej79u1r4oGsfQY4Xj8RERERERERkdxKQXSRKKFJ5MSJE+3n0S5ZEi62y/iz0ePRCJIgeeXKlc3hw4e95pgEix944AH7ObW+/V2co80FsH/66aeg3ycL/pVXXrH122fMmGEKFy4clefdv3+/+eOPP9LNRGdnAs1HHf4eBKVd4D9SZNBTQobdDvFALTOC/oFdxEVEREREREREchMF0UWihAAyDUVr1qxpateuHffXlaBu1apVbY3wwJpTsURGtVs0oLYVAetevXrZrx977DHbqCKWyMwGZUf+/fdf+/nevXtTlXehdjulZqLZXNVloRcrVixokHndunXmoosusrXpCaZHA2Vp0KZNGxNL7nUUERERERERERFjjkmJRiEckVyO/43OPfdc27zy5Zdfth2J440SMjTXpOb3smXLYpr9HYigdenSpVMF7x966CEzaNCgmJeT+e+//2wQm+cmG/23337zgsyUbiHIHQtkhNM5Gv369Qt6HxqGcnzPP/98lsv7UJaG19h9Tj36WLn77rvNihUrzFNPPWWbjYiIiIiIiIiI5GZqLCoSBd99950NoBPMJZgdb5QIIYBOZ+R33nknrgF0FC1a1GbfE7RGnz594hJAB00vTzvtNLNlyxZba5zmndRmL1eunM3Oj1UQnRIu/uA5CynsRmjXrp33+o8YMSJqTTldw4569erFNID+999/2/cT5YlcuRoRERERERERkdxM5VxEomDUqFH2XxowxqMOud/WrVtNjx497Of9+/c3DRo0MIngsu+po00gOx4BdGfAgAGmU6dOtg47AfQLLrjALFq0yJxzzjlxOwaytzt37mzuvfde77ZoBdBdPfR4lHKhlv7KlSvN0KFDzcUXXxzT5xIRERERERERyQ4URBfJot9//91mgeOWW26J6+t59OhR07VrV3Pw4EEbPA9VViQeyMCn3Ah14SdPnhy356WMy7x582wWOKVTbrrpJjNr1iybHR9L7DxYs2aN18y1Q4cOdicCTVajXSXrzz//tL8TLr/8chNrZPazmyCaiwAiIiIiIiIiItmVIiQiWTRhwgQbSK9QoYLNgI6nYcOGmS+//NLW26aMS5488a3Q9PHHH9sSKqCUDA08XYPReHnkkUfM66+/bjPfeT1Gjx5ts6lj7a677jLVqlUzH330kf26adOmtqRM3759o56Ff/jwYXPbbbeZJk2a2Ma1saKGoiIiIiIiIiIiaSmILpJFBG1dFno8S5igSJEipkCBAuaFF16wDUXj6dNPPzXXXHONzUD/5ptv7G3dunWz/86ePdsGlOPh/vvvNzVq1LAlXapWrRqXv8G2bdu8+u+FChXybi9RokTM/s40J/3qq69i9vuRPX/JJZfY9/HPP/8ck+cQEREREREREcmOFEQXyQLKecyfP99mgHfp0iXuryWZ3+vXr7clTOJpxowZpn379raUCoH0Ro0a2dtp5unqaL/55psxe35+Z3+AeeDAgeaxxx6zNeHjgcA5ZWvAa5ATLF682MydO9eWxaG5qIiIiIiIiIiI/B8F0UWywJUtoU51yZIl4/ZaugAuTj/99LhmwH/++eemXbt2NtBKIP3tt9+2pVwcV9KFIDo126PtlVdesRnnI0eO9G5zr30sM6gp2ePs3r3b/ps/f377WsTSihUrzPTp02PyWvrVr1/ffPvtt+bll182Z5xxRkyfS0RERERERESyr59++slcdtlltjpC8eLFzX333ZdhidilS5faHfCnnHKKTYikbK0/1uJiTo0bNzYnnXSSjfU88MADaR6XssqUuuW5y5QpY5599lkTDwqii2QhkE0AOd4NRadNm2YqVqxoS3vEG/XXWTCg0WXbtm3Nu+++a44//vhU97nyyivtCZGSJ5R1iRYyvu+8805bi5yA8nfffZemjMqePXui3tQTM2fOtDXvP/zwQ/v1unXr7L80EY11882hQ4eaVq1amQcffNDEGgOVWwQREREREREREQl09OhRG0AnuXLevHlmzJgx5q233jKPPvpoyBdr586dpnnz5rYUMeVxSRakusONN96YKomwdevW5tJLLzXLli2zPfimTJmSKh7y2WefmU6dOpnbb7/drF692owYMcKWvyUhMNYURBfJQlPNffv2mdNOO820bNkyLq/jL7/8Yku3bN261UyaNMnE0+bNm+1J8o8//rBBXVb+gjXwzJcvnz2hRbPBKL83q5WcHMm6f/rpp82oUaO877PqCYL7gauY0Vo8IPt8+PDhNkjvguiVKlUysXTo0CEzceJE+3mHDh1i8hy8Xr/99ltMHltEREREREQktzh8+LD98Cf3EWjmNn9FAf99//vvv1TJg9xGbCOc+0Zi8uTJNoZDnMEdV5UqVWxJ18wkGn7//ffmnXfesRnhxIieeOIJWzkgVHlY+uqRhMl9SAytV6+erTBAzGPTpk32PgTN6XlHMJ5ge9OmTc0zzzxjf8bFLcaOHWsrAhBEL1++vI1TPfTQQzZOFIukSj8F0UUyyQWIaabpL2cSK5wMXNNHypkMHjzYxBMnJ35XgtkE8PPmzRvyvi6bmYWGvXv3Zul5ly9fbk+uBLLZzsOJn2ai/hI2J554ov2IZkkX/8mXpqVDhgyxAwXPu3btWi8TPZY++OADu2jB8/AaxALvIwYnFkVEREREREREJHMKFixoP/xxEEqNcBu76v1IBuR2yqI4BIu5LXCHeNmyZe3tLhYBMr8jQRY4O+lnzZplvyag3rt3b9tjDgSl3fGH+nDoDVi9enWvKgBILiVAT3Z5MCwi8Jz+3fyUyMU333zj3YfETD/uw6LCkiVL0r3P9u3bbcJpLCmILpIJW7Zs8U488WrqOXr0aLuNhZMOK4XuZBMvBI9ffPFFewyBJ6xAtWrVsh+sjLIymZUM9CZNmtgTodvyQzmZYPwlXbIaPGfguv76671AOqul1OGi3ha6du1qV1lbtGhhYskNimxvikXde7ZgTZ061b5m6S2KiIiIiIiIiEj2ReLhBRdcYEsEO40aNTIbN240P/74o3n88cdtEmN6Hw479f0BdLivXQ+5QBdddJH9HosKZKvv37/fK9Oya9cuLxBPeZjx48fbeMWOHTvscQXeh8ROaqeTmb9hwwYzbNiwVPeJlTwxfXSRHIqmmW4lr1y5cjF/Pk5qPXv2tJ8PGjTInHvuuSYeOLnyuxK0J3hPIDejALrDyikrrWTs33vvvZkKAhcrVsz069fPzJ07155ETz311JD3ZRX3hx9+yHImOtuIevXqZRcACKQHC9pfeOGF9iOWOA5WY1mlveGGG2LyHOygWLx4sfnoo49sjXsREYkvJhAsZFJa68iRI96HO0fnyZPHfpD5wxjIB5/Hs6G4iIiIiITHlZd1CXig4SbxHK7p/FwCoD9Bkj5wt956a5pqByRyBt7XX0s8XJQ+cWVPuJ48cOCAvZ3rS+IvrlRuLFStWtXWTif7nfIr/I733HOPDb677HQSFQmykxXfuXNnm+zXv39/8/XXX3v34fWh3HCbNm1s3KZQoUI25kQFgVj3rDsmJdYFY0RyGFbD2ErDVhECu9ddd11Mn4+TwnnnnWeDnQRuadYZ6xODK8VyzTXX2OenuWWfPn0i+nlWFUuVKmW32pBBXr9+/bB+7uDBg3YL0BlnnGG/5hTF6mJGJXMIBFMjq1mzZubMM880WUHGPVgEiMdrHQwDxZNPPmlri/lXikVEJPvgmoGFcDJk+OBzFknJkmHR99dff434MRkPaeBNLckyZcrYD1cjk4kPkw0+Tj75ZDup4IOsI+04EhEREcnduBY955xzbGmU2rVr25LBS5cutR8ErjOqJPD7/1skoGY5VQr82elks1MGmMeiMkF6uA4mM55APteq7733Xqo+cMSBuF4mgYQFBGq3L1q0KFWZW66zyWwn+E9WOg1JWZjg61hRJrpIhCjjQgC9cOHCtplBrFH7iYAyJztW7eIR1KWZA9nP//77r7n22mvt6mCkONm1b9/evPvuuzYbPZwgOvW9rrrqKpv1/u2333rZduHUnL/yyitNZl/fxx57zK74uuB7er8vJ/BVq1bZ+l8spsSKq/eVmdXljDAgffXVVzaoomxGEZHooaYl59fvvvvOfixbtszLLA+FrCQmD2Qs8UGGEedmJhdMVFiMZkHb5b0wYaCxOVtd+QgH93dBdHa0cS3DZMR9VKtWLaaZRyIiIiKSeBUqVLAflHVlRyQxJnq/gbIpffv2DetxGjVqZK8pCVq7a0iuL7mm5doyI670yxtvvGGrHdB7z49r4dKlS9vPSV4lJkbQ34840Wmnnebdh2OKZQAdCqKLZKI2OQgyh1vaJCtopvnhhx/aVT2XnR1Lr776qg0oM1nnd6ScS+C2o3BR0oUgOie05557zmv+GQwrj6yCkk13+umn24WKSpUqmVhjtZWBg2z5OXPmZBhUZrAhQ50yL6y8xgrPwwouW56i7bPPPrPbuBiopk+fnrBsexGR7I5Mcs6jX3zxhR1DKCsWiMA4WeNk/biJC+Mckwd2XxFoJ+DOQjJBcXdO7tSpkx1D/QiwM1FhPKWGJIF2FnfJvuFfFoYDMa6xqE12DmXoGO9o1s2HH+XpGjZsaIYPH66AuoiIiEgOxTXhhAkTzKhRo8zDDz/slarlGjPcpIoWLVrYYDklV5555hmbEf7II4/YWJJL3CBzvEuXLvY61QW7X375ZdO4cWObMEnQnVI3Q4YMsbssHcq5XHrppfaamNrnfJ/jdcmVNG0lRkYVAq59iVl98MEHaa5tY0FBdJEIG126wGlgt+RoI5jMxJvJLx9si4klguZPPfWUPfHhjjvuMC+99FJYWeChcFJjUs4CACc5GnIGYvWT1U6eyzWbIGgQ2KQiIwQSCDoTYOB5w8XvS+3x+++/P6ys7HXr1tl/K1eubGKJY6lTp05MHptGrSwAUVtfAXQRkcjPoZMnT7Zlz8g6JzPcYcysW7euDUZzDueDALobS8lU//TTT+2CNRf6XFf4UfLFLSCzkN2gQQMbfKdkC9k4ZPcEG6sYwxkHCZBTM/KPP/4w27Zts0F5stDpLcJHMExaCOYzVvMYLHwzRjCJcqVj2H3Fx/nnn29/NxERERHJnkioe+GFF0zHjh1tHfHMOO644+w1LXEjMsBJ8CDe45qAgt2Y69evtzsqHQLrVAJgtyXXvK+99poNxAcm/ZHlzm5MYhZcd1Pm1o9ESOJIXAPz/FznhltCOCtUE10kAmRTUxucOkz8zx8rTMjJEmYryuuvv27rmsYak22ynqkrTj3ugQMHRqXUB3W9ebwmTZrYYIMf2ebUvVqwYIH9mlVQTrqZCdxTgob69MGeJ1iw3X8SpmxNuNn2F198sc04ZNtRt27dTLQR+KCubXpZ+9HAa8/qr3/FV0REgiPITIbL22+/bYPUfpRCadmypV0EJshMoNvhwp4Pt2DJgi3ZNQ6L5WTjcPFP8J1MIHagZYTAOJk5lP6iFiULvByjf4H4iSeesM9NpjwZR8EwzvO8HBOL2jwejZ7SGwNZFGfsYLyi/Bk/z3URk5ysLLyLiIiIiCQzBdFFwsRElCAz261ZLbvtttti9toRwGZFkEAqAV+y0OKB1buVK1dmqgZ6esFaMugIDLMK6f9drrjiCpvZz2ScwAQlUrJy7AQfyPhz2eKB2GZPBh2rngQKIs0m5z1AZh7bh2j0SuAg2qgfT+duVlVZoRURkcTgnD9//nzzyiuv2IC1K5VC4JlgOX1RGMfOOuusND9H7wzKlPHBYjhlVEC/DxaM2QLLmMU4Qh+Q9Bw4cMD+HL1GCLiD5qSUhfHjuOjVwTjIorLb/UUWz/fff28X5NleS/kYfh8acvPYDnUm2WVHdhK/A+P3888/b7Pbd+zY4d2P4+U+7Pq69957vdsZy/mdSALg9w08PhERERGR7ExBdJEwMZFm8krWGF2C/Zlm0TRjxgybJc0ElsBy4NaWaDp06JCdiAc2aIg2MuDYkkO9K+plOUzQqYM+YsSILJerIUDAIgeT+P379we9D4F8amtRr4vM9UiD6PxcqVKlbEYhGfu8F6KNTHrKy1D364EHHojqY0+cONHUrFkzTcBHRET+fwTLKWlCzUYWsh3qPlLXkVrl1DQPRED6nXfesfUlWZB2WHRn8T1c7I5ioZbrAbLI+Zzx65prrrFjF/iaID7HVKtWLTv+nX322RH1aiHznEZS48aNs0F1vgZjG8/FTjFKpHGNQNkZnpuak5s3b7b343lLlixpS9SwSE1mut/QoUPt7j0RERERkZxANdFFImwoysQyVgF0JqJMzgmgd+/ePaYBdALYZJK5mqmxbOLJ70IQncACtc7dpJogBAGCaHA11AliEAhwmX00ayNwTLkWgt8ERsjwz0xTWBcUIbsuFgF0auESQOc4qYUbTSz8EPyhHhkBGbbdi4jI/49dSiNHjrTBX0p/gbHi+uuvt/UeqW8erMwZC7fsIKLhkctWZwxiAZlak23atAm7lBsLy+zQomGpH+MOPUYcxonMNrdmjOTnOUaOjedlh9WaNWvs7039yrfeest+gNeEcbxfv342G56GUSCjPRCZ+ZSVIXOe145A+5lnnmmOP/54+5y33nqrTUiIdckyEREREZFoUxBdJAxkHbvsr1g1FGW7NVlf1Dlloj58+PCY/W0IBjO5Z3s2wWcmzLFEsL5w4cI2KECZEkq6ZKV0SzBM7AmUk8G3Z88eG6CnJA411mmY+uCDD9r7FSlSJNPP4YLoNWrUMLFAoALsRHDdq6OFDEGy3AluxOr4RUSy6xhPcyVKl7jg9RlnnGGDxQS1Mxo3WFhnMZoAOs03CRSzEMq4lFEwe8WKFbaeOKgnzq4qjoGfpSQKu6co/RIs8z0cBMfJpifgTe10PjZu3GjrulOHHTt37jSzZ89O9XMsFrCgj9tvv91MnTrVjqcsuFMqhu8x3vLB4iwL1oy9NJi68cYb7es5Z84c7zkd6sqD34eFdX4/EREREZHsQEF0kTCw1fnw4cO2zuh5550Xk9eMZmM0K2XiTNOuzGRKh4OM8GuvvdYGDShnMm3aNFtDNVZ4nrvvvtsLTNAwjSBDtJHhRiNWMq7JpGOCTokYJvpbt26NynOwC4HHpS56tBHkdll/PXr0iPrj81qQ9U8Jn2g0jBURye4I/lKvnD4klCsBJVGoWc6usGC1ygl8U2qNsiaff/65HasJfr/66qu2WXODBg3SPccyJrEbaMyYMXZxnjGSMcs1eR40aJDN2uZaI9yG18GQpc6uL0q2BUOPEhdEpyEqrwMZ4ywelC5d2i4MrF692mblcw30ySef2A8W+2lYyvWQ36xZs+yxf/nll7a3x9ixY23zbWrCM/5zPGSn8/u63XAsbvN6EEgnuE4A/sorr7SLBspUFxEREZGkkyIi6frvv/9SqlWrRjpWyvDhw2P2an3zzTcppUqVSpk6dWrMfo9nnnkm5ZhjjrG/S9OmTVN+/fXXlFj68ssvU8466yz7fMcee6z33MuXL4/J89WoUcM+vnsN+Z0XLFiQkh28+eab9tjLli2b8u+//yb6cEREcizGhkmTJqVUqFDBnnf54PNx48al/PPPP0F/5q+//kp57bXXUsqUKeP9DOftcB04cCDllVdeSTn33HO9n+ejZMmSKfPnz8/077Jhwwb7uFdffXXK9OnTvdu/+OKLVL/bNddckzJ48OCUzz77LGXbtm32NQjXunXrUjp27OiN4Xny5Enp3bt3yv79+9Pc99tvv0256KKLvOc+9dRTU1566SX7PZ5z4cKFKdddd13K8ccf792nbdu2KV26dPG+zpcvn71t7NixKUeOHMn0ayMiIiIiEk0KootkYO7cuXZSd+KJJwadMEbT77//HrPHHj16tDdBveWWW2xAIJYGDBjgPd+ZZ56Z8tVXX6V06NDBft29e/eoP9+KFStSSpQokXLGGWek/PDDDynZTaNGjexrQ5Ajmlg4GTRoUMz/3iIi2cHGjRtTWrZs6Y1PxYsXTxkxYkTK33//HfT+R48etcH1cuXKeT/DWDNs2LCwx+wpU6akFChQwPv5vHnzpnTq1CllxowZIYP2oXB/rkv69OmTcs4556QKyN9zzz3e/Q4fPmwD5tFcLF+1alXKZZdd5j1f0aJF7cICr5Ezbdq0lLfeeivlnXfe8RIQ7rzzzpSHHnrIBvudnTt32kD5CSeckPLoo4/ahQQC8ywk+3+nU045JeWuu+5K+fPPP6P2e4iIiIiIZIaC6CIZILuLidztt98e9ddqx44dNvgbD0xAL7jggpSXX345ogy0zJo4caJ93W699VabgefPjGNB4uDBg1F9vp9//tlO6E8//XSbNRdtW7duTRk6dKgNXsTCTz/9lNK/f3/7e0TzmAnW8Jp/9NFHUXtcEZHshjHwscce886JBG8feeSRlEOHDoX8Gcap2rVrewFddou98MILGWZHM8b6F9137dplM6+rVKlif37fvn2Z+h0IPJPZ7Q8y87gXXnhhyhNPPJGydOnSlFj48ccfbUDejeV8ftppp3nHcP7556d8//339ntVq1a1t82aNcvuqiKY7q4H6tatazPn3eM0btzY3j5+/HjvuZ566im7c43X2gXUa9WqZX8u2tcNIiIiIiKROIb/JLqkjEiyomYn9cKPHj1qVq1aZapVqxa1x6YB2YUXXmibVVIDnWaS0bZgwQJTt25dr67qf//9Z2uHx8KBAwdsjVXqwTo0TDv33HO9rzndVKlSxaxbt8688sorWar9zWMtXLjQNGzY0LuNr2l6dvLJJ5toGz9+vLn++utN48aNbV3X7IDX6N1337W10Knhq1roIpIb0fSSZpdr1qyxX1Nz++WXXzYVKlTI8Gdpwv3NN9+YBx54wPTs2TPdWt1cK0ycONEMGTLE9uiYMWOG9z3GPeqIh3sepk8GNcip1U6DU3dOP+uss2yDaBp206C7ZcuWtn55NNAzg3GURudt2rTxbue4N2zYYGvAUz8dNBrlPlxTcG1B/fh+/fqZ3bt3mx9++ME2Ia1fv769L687NdfpKcKYRI10xiR6svC9xx57zDZX5fXjPjyGqzPPNRi/N49H81Z6h1BzvXv37rY+O/XjRURERETiIqKQu0guQ5aaqx8eTWx9vvbaa716oZs2bYr64w8cONDWL33ggQdSYomMuzFjxtgt8UWKFEnZvXt3uvenrjy/N9u8M5sRT0YhfxN+P+qrOjw39dDJeI+2Bx98MCY7EuKxK0BEJDeijBXj+HHHHeeVbpkwYULI8+4ff/xhy1/t2bPHu23Lli2pvg415pJx7a+xzo4rMscjQeb27NmzU2688caUk046yT5OoUKF7HE5lCuLtARMMBwbGeLsgnI++eQTb3wO3JFHhjkZ6A5Z4UuWLEn57rvvUlq3bu393mTur127Nuhz8lq6Pinu+iSw1Bg11f1145s3b24z4d2OgPvuu8/7HuXbyIjnbyYiIiIiEmsKooukE6hlws1E7YMPPohJQJZt2J9//nlUH5tAsr/e62233RazQO3KlSvtNm73XJUqVUpZtmxZuj/DFvf8+fPb+3/99deZfu7OnTvbGrM0HnPee+89+7iUrYk2FyTw13SNBhqutWrVKqplYn777beQ9X1FRHJL7fM6dep44xPNLH/55Zd0G2G7IDh9Q8LB2Eq98+rVq3vPU7hwYdsTZO/evWEfK6VQ+vbtm1K6dOlUpVpoYvrwww9nuR8Lx0n5OD8WonmO119/3buNhqNnn322bSIayXUD93333Xft785jMsZTZz7YY1A+5+abb/Z+R/5GBNcDFxMon0aDUe5TsGBBW5eesji8rpSucc/l+q74y7hRu10L1CIiIiISbQqii4RAVhmTM7KcohmQpAmXm/iRwR1NkydPTilWrJg3iaW5VywQiLj77ru97D6C2UOGDAm7eeVNN91kf46JejhcYzd/UILMwMCJt2sCS7O1aCPjLauB/0BM8itXrhz14DwBCoI6ixcvjtpjiohkF9TYdpncBFvJPg+F+tw0u3bjMoHs9O7v5xZuXQNM6nmziBkpmm66x2F3GsdDM25/w87MYpykESqvB8Fph2aeZHz7F6Kzavv27TZz3P0uV1xxRcgFgEmTJtnda9yPf6mhHog66P6F+m+++cb7Ho/bo0cPWz+d7+XJk8fuOiBTnyz3ihUr2uaqIiIiIiLRoproIiFQ+3r+/Pm2Dmf//v2j8jpRm5oaotT9HDBggK0DGg2HDx82vXv3tjVHUaNGDTNu3Lio1nD310wtV66crWmKq666yjz//PPmzDPPDPsxlixZYmu1U8t0y5YtpnTp0unev0uXLmbs2LGmV69e5rnnngt5P2q2UruV+rDUjI1mvfdTTz3Vfr5//35zyimnROVx586da+viU2N3586dUalry9+FuvDU0f3666/N+eefH5VjFRFJdtTyvvfee81rr71mv27SpImtwU2d7WC++OILWyt927Zt9uvbbrvNPPPMM+n21WC8dXXR//77b1OrVi3Ttm1bc//993vjRHp4LsZqaotz/sfWrVttvfWuXbva/ih58+bNdB+UN954w/YicXXUud4oXLiw7cNCDxbGSJBIE4s+GdRHf/HFF20NeV4farhPmjTJXpcE4vdu3769vSagnwo1zwP7tnD8AwcOtD1q+N0C0YulT58+tkb7FVdcYf+enTp1svXY58yZk+q9kdnXVUREBIyljF30/mBc2rVrl/1gHrdv3z7bz4R5I/8yZ2YcZBxjvHVjLj0/GI+4NilYsKApWrSo+f333+28uGTJknaezVjNuFm1alV7fxFJIlqPEEmLGp+u3Arbh6OF7eQ8bpcuXaK61Zia6tRfJfuKLeGUoommwGw4SsTUqlUraOZYuM477zz7WrBVPSMzZsywWXTPPvtsuvejRqvLWItmBhoZgW7LeDR16NDBPi5Zh9HeKRCrXQgiIsmIsbpx48Zeve3+/funWzucDGw3XlCnO6OSWuyE4lxNhrN/d5o/uzsUxvs5c+bYzGyXOd2mTZsIf8O0j7l06dJUme+UZuGxGzVqlOq+q1evTlVXPR7YCUU5Grcz7u233w56P46rZ8+eKVu3bk338fzXTIz1XKf5UXbv559/9krGrFmzxrt2OXLkiN1NRpme9Er6iIiIuLFpwYIFdly999577S6r008/PVXJtXh95M2b1/YmoVTcxx9/nDJz5ky7y0xly0QSQ0F0kSC6du1qB63rr78+qq8PE/oXXngh7LIn6QkcONlWHu366hwvwVjqxFL/3Pn999+zvM2chmZuq70/4M1Fwa233mq34/v9+uuvYb0mrt765s2bU6KFUis85mWXXRa1x6SpG9vPedzly5dH7XFFRHKbRYsW2dJrnE9PPvnkVA0wQ9m3b58t3UJgPL0SLIx1o0eP9kqP8MEENhwE2D/88MOUevXqpZoQX3jhhfb2rGjWrJl9LMZSf01zJvvTp09PSQYsPFx66aXe703ZmnCuHfidQv1NWMBo0aKFrZfu/90DrwW4jmvfvr19HALsbiFcJV5ERCRwzKAUGHNe5qA1a9b0SpZG8sG8jr5clB6jRxglxyh5Gur+LO4SFP/f//5nrwtOOOGEiJ6PY+Q65sorr7QlYimpJiKxpyC6SACyoVxwkxXorIpGwDkQWWVk3H3xxRcpsUAmOwM62XluoL7xxhuj+hwEF8qVK2cf+9VXX/Vup5mYa6iWmVr07jG//fbbqB0rk26y6qJZY5zGaMEyBjOLRYNovF9FRLITJqCuASU9JqijHUpgTwsC6ekh07thw4beOFi1alXbgDRcZJu7n+UYb7/9dpshHel4TL+T+++/P9XtvXr1sovG0W52HW1c//Tr1897HQhspxfIdnXma9eubXufBOJnWdB2Ow5efPHFoNdI7CTkPvQHYXwkqBF4zTR//vwo/ZYiIpKdML7Q/6xz585e36tQgep77rnHzosZM9hNXqhQoZD3Zx7qd8kll9j5NP26+KB5N/dhUZe5rj+RimA4fVHoscJzsMvcjWV83rZtW9vLJL3AOju3SdhLbyeeiGSNgugiARgoXaZYNALolC2hkWY4W77D2VrGFnU3oFarVi2qAXoadQ0ePDilVKlS3mBctGjRlKeffjpTzdIywiDvAubu9+A1Y8taZht4EpQOzM5LNlzYuC2BXMBFI4OCizQCCiNGjIjKMYqIJLuXX37ZK4/SunVrW+YjGMp5dOvWzd7vzTffzPBxuf9dd93lPXbBggVThg0bluHCLuOX/z6jRo2yk2GCyK7USKQI9Lsx//vvv/dupyxJdsqqJkvO/R7169cPWVaFxWDXIJ1rnGCvG2PoHXfc4V2n8LcJNG/evJSSJUva7xOUCLymIFuf7xFAiXaig4iIJBfmSiywksRUt25dO2fKKNObQDZjeKVKlVI9FtnmfJ+xigXfpk2bpjRp0sTuOqPkm3+xnHl1es/hL43KHC69+3766afe4rp/gT/YB7vyKCPLQjLz6mnTpimwLhIleRJdk10kmdCMcdSoUfbzhx56KEuPRRMrmm5+++23Zs2aNebhhx+2DbYyiyaRt956q22ihcsvv9y88soraZpwZRaLag0bNvQen2afNDq74447bNOTWOA5QYMWGo9dffXVtmHbBx98kOnHpLkbzVnq1atnkhWN12gq+/7779vfOat4r5UqVco2qbnkkkuicowiIsmKsYMxdciQIfZrxsYRI0aYPHnyBG3keeWVV9rmlYyXP//8c4aPz7l01apV9lzdsWNHM3To0HQbYNNobOTIkWbw4MFm0KBB5pZbbvGaYl977bXmpJNOCuv32rx5s23UzfPy+4CmoDfffLM54YQTTL58+bz70ogsO+G1oFlau3btzKJFi2zT15kzZ5ozzjgj1f1oMMr1Do1XV69ebZo1a2Y+//xzO8Y5/J25/ilSpIh58sknbWNRXrO+fft692nUqJH57rvv7HUYz9eiRQszefJkb4ykETnvB17faF1HiYhIclm3bp0ZN26cmTBhgj3v+9WsWdO0bNnSNgZ9++23vfFg79699vs0BgWNQvk45ZRT7NcdOnSwX/PYxA6CjeVVqlSxn9euXds2Hy9evLh9fMatQoUK2WPh2sHf+PzMM8801113nW0uyhh25MgRc/DgQfPVV1+Z3377zRQrVsy7RmnTpo1tJh4KP/fee+/Zz7me+fDDD22D0urVq5sePXrYJtw0MhWRTIhWNF4kJyDLm/8t6tSpk6VmHWRJsSXLbb8iIyor2eE08nQry2RWUd8zq81EyGp/9913U9VnHzJkiM38oiZcNOq2ByJL0J99xrZ7lwnASnkyNkjZsWOHzXijJm6y++mnnxJ9CCIiMUXWMHVG3Zj45JNPhhw7KL3ispqpaT579uyQj8tuK39mN/VRM+ozwjg5cuRIrx47H9Qqj4T/2Ckf40q/hMqqz+7Ipnc7sdhCv3bt2qD327hxo3c/tsDv3r076P0ee+wx77V//vnng+4qaNWqlf0+9WYpjeMsXLgwVSN2dgwm43WIiIhEtoOL3c7M50NlarOTzZ3vaUxOqTH/9ynfdu2119ryLRdddFGqubzrs+Gy1clMv/vuu1OeeeYZuzOKuaPz2muv2R3eNLb2Y4cUP79q1apUu9e4jbItfmXLlk1TZnbChAle6TM+HzhwoD1erkfYRce8lbJvxYsXD/r7M/9mBx/Z+SISGQXRRf6fQ4cO2S1bDCwMjlmZ4LM92E3Y0pu0h2PSpEnegEezk3AabKZn/fr1KX369LENPXlMBl5/QCBWE0guVqjfyoDux5Y3tspzLFOmTElJNhwTx1ajRo1EH4qISK5GkJPyaG4CyOQ0lDfeeMPrb0KTsB9//DHkfSn1Qc1SSriEexyUJ3E9OPgg4Pv666+H3cuDawPKxhEEdhh/77vvPtsYNSfXM6X3DFveed1KlCgRsk48CxnUjeV+tWrVsuVygiF4QOm5UH1BCJRfddVVtpwMW9qD4bWn5A9163Pyay8ikhNxDv/qq69SbrjhhpS8efOGDJ4zF6UuOUluK1as8H6eBVYS4G6++WbbENvFBNzHgAEDvPtSZowa6YzjrhwYz0898sDSaySmuZJzfpRY4Tb/tQmBeq5DAq9tSKajxwpjosMCPo9L8N+PEqnc7vq3uJKfoV4PFqm3bNlik9wy6hMjIv9HQXSR/+fZZ5/1BpPM1i9noLrzzju9RiT+jKdIA/r+x+zZs2dEzcyCZbMzuXc13NwHWWDjxo1LiTYuKJjM+puCTZ061T4nDVEDA/UPPPCAVyc1q0F8Fhl4rsy+9oEGDRpkj61Tp05RebznnnvOLihEI8uQRmlkPuTUjEUREYdxmckx52OyrN5+++2QLw6ZVW6XE5lZoWqHsyOLRWV3Xyaf4ZxPXX11FwSmuSWPlRH/+DZ+/Hj782SY5cbsZ64PWNzIKJDOjjUy6R588MF0X6dgTUj9CIyn13yb7/E+4L2Vld2DIiISPyySEqh244n7oI65+5w5eZUqVVL1/OLjqaeeSrUTzPVB8WeZE7weOnRoqsA4i/R8v2XLlqmOhcVexjN/Dw6C04sXLw65myqrv7s/uY4xkkQDarPv3bvXu53seI6XWvBkubOA4P89SfpjRzgLzWSyM1cNNyFAJDdSEF3k/w1CbmBlZTmzWNEm842JWGaC0wS7aWzK9vOMJoThYtD2r8hzbJdddlnKJ598EpVmp8G0a9fOPtdLL72UagLL1ulgk2BW9MkM4GdmzpyZpeeeO3eufRyyCqOBpiw8HqVusoosOhq98HhkGmYFfztK7/BYgdn9IiI5CeMGW6E53zHG+ndQhUIzr0ceeSRk00jKhfgn3Uw8Dxw4ENbxEHBlKzZNt0NlRwfuKGORmMC5Q9CdRVqysnMrJvnnnnuuF0j3Byn8Im3KumTJklRb5EOVPwt8Pv5ObKcXEZHkxoI3QXDGDjeOc31AJvmiRYvsdQML7wTT/cFxAsgdO3a0SW/+EmDMq1iwpTwKZeKYszJ3ZaGdUqr+neU8PvPp888/P9Ux+cuDJRN22JP1/uqrr9qveW2+/fbbNIsG/g8WHnj9YhH8F8nuFEQXSUmxWdoMGKy+ZrUWOFnQPF4kmOSzqu1qt/LhBrpIH4eMdbZ4+TVo0MDWdiMQHM262VwscAFC0Nx/4cCKPSVaCBCE695777W/N9nyWcG2OLeqHip4EgkyF3g8/q5ZRX06Hqt8+fJROTYWHBo1apQq20BEJCdhssfisstAf++990LWNA832EoQ3m27ZtxlUTm9xW0m0f6yKwgneB5Yt5vyLRI6kM41GNvK08Piw8SJE9PdoUWQhO36oRZFCJ7zXOzG89euDVZPnQ8REUkOlByhh5m/3AoZ1C6I7p/nMjd15UvPO+88O5ZTssXdv3Tp0qnmY/Pnz0/TA4ua6NyX3VAOwfXsvgt45cqVdnGAcZDdVx06dAgZUCeOsG7dukQfskjSUBBdcj2C5q6uKduXMjPBz0oQky1eDE7+7WeRZGPz/DxG7969veZmBJD927sIAmR1uzglZmbMmJHy6aeferdx4eEyAObMmZMqmBHpavz27dvtcfvruGUG28/cyvrOnTtTsoLfgZV4Hmvbtm1Zeixef7b58ViUDhIRkYw9+uij3vjIlu1g2C7N9mUyyzPKJmcC7ibfTZo0sWNPqHM2O9Ootc192dEVzphCEPeKK66w2dAOgVoWlSPNqM4t+PtVrlzZK6kX6nViTGbhmPvRGD3UY7k66izwB7v24ZrN1WRn4T5YDXTeR02bNrU797StXUQksZhbPvHEE7bEir8Mib/WOfPphg0bpgqMv/nmmzZRyzXndB80HaW8pkueY5x2O7b9Yz1jOU3GwynZlt0wPvp/182bN3s7pgM/ChQokKX5uUhOoiC65HqvvPKKt5U4kswyN/jcf//9dhWXgSfSn6WBlavFSlYcGdzhZsJTJ5St6mRb+Qc5Br8bb7wxSxnnBBkoi0K38sAu4AQp/AgIc9xZDTKD14PnoAFKVvD34HHIKMiK5cuX28ch4JLVRQiOhcfKly9flhZdOI5Q9X1FRHLiLjE+GKuDIeDqSlsVKVIkVaOwUCjbQS+OUA0kyVT29xAhwBuqIWWga665xisPI+HjGsIFv9lO7+8N48c1l1vUIIEgGLbau+AKJXdCXUO53QgPP/xwmu+zlZ/xmvtkVBpGRERig0VMyoP6d2tzbvbXLWcR3ZUF5cM/Xrtm5G6O3KNHDxsUZ+5KUN7PLZyGKi2W07md8dR653VyzdndB/N0mptS850xVCS3UhBdcjWC5mxlYmBgNTrSYOZ9993nDSwMOpFigOJnO3fuHFaGmz+Q+8ILL6Rafad52scffxxRBjgXJmznCqzPfdFFF6X5nZjgkrHPtrZYNUGjFIvL/KbDema54EdWm6a+//77XrZiVvE35rFY4MgKShmcfvrpUWucKiKSjCix4nYVsXU7GHqHuAA6fU3Wrl0b9H7s7gong4pMM57LbfUm84qJdqhMZBY0R4wYYReeHQK7t912W8hjkdDWr1/vBUoIZARb5KBu7eWXX27vQ2YhO+2CoSSeq+tKQDzUeOquo4L1KSEQQ7M5ERGJP87LbpcSHySOvfbaa3Zxk+A58zN/8JwFWMqn+RtVExDnfmPGjPGSkDi3u4V3/zgTjVKbOQnJdHfffXeqQDoN2P3Z/ATVRXIbBdElV6NGuJuIRVILnSBy3759vUEk3AA8JU/8NcWYePs7eAfD9rLhw4fbLWr+hlcE3ZlIsqWZLW4ZIQhO4HX16tXebXzusuD9Fw40quQ1SUSDre7du9tjYst2ZoP1rgFdYA3bzOBvtGnTpiw9BtvLXVYcGXKZxevRuHFj+zgDBw7M0jGJiCQrdgERwOZc161bt6BjQWAAnQBsMGSwE0ilLioLtenh+25CThA3o/rcZK1x30j6f0j6XAY4ryu18IMhcO7K8FHfNtj7g9tILnBl8kLVNr/jjjvsfSjbw1gtIiKJxVjcpk0bb55NnwsWrN2C9ttvv22be7vvM2d8/PHHbSkXvu7UqVOqeRzzfX9jbxZj27Zta3e7ZbUXWm5AX7DAne/+D8bhSHfzi2RnCqJLrsUkzA3ArE6Hi4mZa4KZ3hZzP0qruC3elCrJKDhMuQ9W2mlC5sq98HHxxRdn+FxcDJB1x9Y3//O44LR/2zIXI3Qip7u4v4Z6IlfiWRxwwZOPPvooU4/B9m1+nu7ryYAgPDVyWQjJKrIonnnmmaTtAC8ikhWUZ3FlPRgvg2WBE0CvXr26F0AP1vCK7LI777zTGz/ZRRXsvBmY7czY+8EHHwQdp5kk+sdHJuUsOIeq1S6Zw+ufUZICGf9uxwA780JdS7ndhqF6kbD7wL2X7rrrrpDHxM4CFlbUyFtEJDYY7wl4u8VsdqNRuovPCeQ6jM/169dPqVKlii3JQjkXN2Zwf87lbgxnzsTtNWrUiNlO6tzi22+/9fp7BX5Q+iUayWsi2YGC6JJrEUzmpF+1alW7Ih0OJs8ua4mPkSNHpnt/JmcM7v6LAX4+1Kq3WxkPrEFG9vGLL76Yqka5C86/8847trabP8jqAu/++xMYoJ55YPPUZLyg6Nevn5c9FqpmbXrYxkeWAqVqkomak4mIhMbYyLZrzv8VKlRItbgbuDBJI+1QAXQWyVu0aOGNoYMHDw461rETjOfJaEcYWJgmW9m/uMuYrfN6bPA3cxPzUOXduC5yW/JD7cijGToT+/T+TgsWLLAleEK93/yNwa+77rpM/kYiIhIKpbMIdLtx2/WscPPB5s2bpzrPz549O+XSSy9Nla3+0EMP2dJt/usCmkRzXUGjcJVryTqueyiXxusdLJhOYkGkfeJEshsF0SVX2r17d6aynWl0RSCaIDWDcShMuCidUr58eW9QIdt72bJlae4X2LyEiwTuz/OQUe22n5N5RzM0fyadK0fToUOHVI9BQ5D27dtn2zplXPAwKeZ3S0RJGRfMadWqld1OnuiO7Ez+Z82aldBjEBGJNbLHXKOwjGqKb9y4Meh9mLwx4XY1zRk3A3FOp6eJW3Bm11e4C+9sW5bY4/qIgLVr/L59+/ag96HBejwm7Fy/cTxbt26N+XOJiOQWzLceffRRL4GMxDPXH4tAOnNa9z0aSzuUb3ELrew6Y27vss41Tscer7crmRb40bNnzzgcgUjiKIguuXqizlawSDOxqZmZUeDdNaTko3Tp0rbBpf953EDPRJ/sdOqeO0uWLLGBgYMHD3q38bNMInm8b775xrud1Xay1J988smUnIaMeff6uUYw8cTfgOcvWLBglrL1R48eneUJvitPQ6aciEhO5G/ySPZwsMXEcJo83nrrrfYxaMAc7P4EQ10tddfsmYVbP875BN/9527KeFC2JTO7oyRzKJ/jSq1Q6zartWt5D1FvPz387RUoFxGJPTLGaQbqxmNXfsvtwnal3figDxi7hhyy0umBtWHDBu82EtMo83X11VdrrI6TKVOm2Lm6P4hOpjql2Ngtr+bckhMpiC65DgOsW+H2l0EJhQnz9OnTI3oOJnpsSXvwwQe9rWdMzNgyTm10f7kWMuU++eQT72fnzZtnt5fXrVs31WOSWU7tNzqV5wZk3LsO4GzrzkxzMrZ6+zu0R4KdBDw3F3eZRQCGTEfeb9R6zyy2ovMYqrsrIjl1Is2CZWDfDofxs2vXrrZBM/Wy00OWeY8ePdKcc3kMGpO5Js/0A/n444+DPoZrHK7SHYlH6Z5TTjklTRZiMFxjBe7u8zdXp3zfySefbOvuB8OOP3YlcB+a0aXHn+ggIiLhYzxmR7fbFU7jbxLQqHvOTmR2b7t5MgviNO9mDszc2JVg5XzNbuHAOWKo87vEDqXQ3M4xPvyLH24RXI1HJSdREF1yHVc/jdrj4QTDCV5zfzp4hzJt2jS7Qu6vuenPVqM297nnnptqQKHJJAM/Fwb+ep9M9Ph+vnz5Uo4cORL08XIL6pq7rf2RXhRdddVV9mcDa8CHiyZkWQ2iUC6Ax2ArYlatX78+KevXi4hkdcHU1UFt1qxZ0LHO9clgMdHfXMwhuzij8yM/58bfNm3a2Al4KGSrE9Tv37+/zrtJYOLEid7fLlRSAwskfJ/at8HeCwReXF3z22+/PehjUC/XZb6HCtjz/mShh+sSZayLiESGYGqnTp28czrnZX+5Lvc9dmpzrqYpuLtvsWLFvDJubtc3Y3WofhYSX++++65dhA5W4oUyPeygF8kJFESXXIVgNydytnr5t3+FmtgTGOf+ZK75s8UdMt3ILHcDxPDhw73v+ZuXMLiz2s4AwtYzVxudbDl+ju3nfkwSleWUetIb+BqFk73ttupnBn8nfp46fZnBAgiZFTwGWe0iIpJW7969vclxYPNs0MDbjbGUxwpEuTR2d2WUpexqbA8bNixVkJXFbxZNAxfKNQYnF3e9FOp9QkDbZTW++eabQR+DCbyroRuqzBrXei6RwV9qz+G907Rp00zvkhMRya1ICGJHkAuSEwAn6Or6f7m5NZnLTzzxhG3m7cZ/5oE//fRTqnl2t27d1DMqydCPrV69ekED6Xz06tVLDV4l21MQXXINJsqu2VifPn0yDIC6jHUmUoGZTwzcZD2RieSy43hMSrcwMWPl/KKLLvIm6vzL4E+2nX/iNnfuXJt5pzId6W/P5jWmLAr14sP14Ycf2p+rU6dOSma4SfLYsWMz9fNjxozxtrS5rYeRoEYvNdCzUgZGRCSZ0TDZTayCLVRTG52JNt9nYTTQa6+95jUHvf7661Odaxl3OQ8H9hcJxDne7XhKLztdEosyPW7HAjsJgv0tXf8QAi+hMhNbtGhh70N5oGB4XGrxppeNvmjRopQZM2Zol4KISJgY42kU6hqGurH97LPPtiXUQmWq08OEn+3YsaPd1Z0bd2ZnN+zkJ1geKpBO2dpgzcJFsgsF0SXXeOGFF7wspsAmYn4M3hdffLG39Wj27Nmpvk8QnMC3GwhYbaVpBiVbmMS7iwI+Fi9e7P2c+xkaikpkuHDitTvvvPPCnrSy08AtgvjL7ISrbNmyaRq5RoJyPfw85Xqy0vyW95fKuIhITrN///6U0047LWR5DTLW3EL1TTfdlOY8OGrUKG+s5Xzp3/3FBM7tJrr22mvTPYcSeG/VqlXKG2+8oeyoJMd1lqtpHyzbnLGeurnpJUsQAHdZkKHqp7ueKNRiVx1XEZHMY/xlt5db8PZnl5Ow5PqhkPzkzuP169e352h2A/P1L7/8Ynf3ctsXX3yhP0c2MX78eBtLcclw/kB6qVKlVIZHsi0F0SVX2Lt3b8qpp55qT9pkroXCxPuCCy7waqwFq93lspjYNkxgfvXq1bYLuH9gIABLU0x/TXMagrItnQsBiQx14t02beqthYOAigvAUC83EvysK8XCc0dq1apV3pbx3bt3p2QGJX+4iNTFoojkRC7ITRZasEBlz5497fdpMMbY7EcA1U3IuJ8/SE7/DNeUjAk3C9f+79OYlF4n/qC7ZB9Dhgzxdg4Eq0nOtZYrwxeqZMsVV1yRbjY6CytnnXWWvc+rr76a7vHw3tJ7SUQkLQLglFxx82Oahrr5EYvX7nbGbJpIOxs3bkxTpoXFze+++04vczbDfNYlpjGXb968eUrevHlt7ERJYpJdKYguuQJZbpy82QqcUWkNtowzOfv222+Dfp/sOAZ+Jmc0BHWZ50zoqY++cOFC20mc22h6ItFBbTxeUzIXw80Mo6QOP0PGYqQY2NkOnpnJMUEa3kNXXnllxD8beAwiIjnNzJkzvcmzv7G2H+deAuCBJa0ov+IC6GSg+8+TTNYooeWCrPRB8SPA7rLeQtXNluTGNVyjRo3s3/Cyyy5LM07y9SWXXOLtQgiG6zTXhDTUNaHbvciEPxTq6FeuXDnsxX0RkdyCEqctW7b0FrQvvPBCLxPdLXS7Wud169ZNeeCBB7xzODvDSGby7+iW7ItrL+rcu750L730kh2HSWy88847bSk2SraJZBcKokuOx9ZdN+GmBnlGGLxd4xI+/9///pfy8MMPp/q+v/lo6dKl7Qor24ydCRMmpHz00UeZKiOSWTk9G4qsfreS3a9fv7B+hnqm3J/a4vF2+PDhTGWxB2ZciojkJCyCunM5QfBIvf3223ZCzuJ4YIa527F0zjnnpKxduzbozzNpY4s443cyYzzXQmpwlGFxZV2CJSuw+4z3GLv/Qr2GLLik9/oeOnTIPnZ613H9+/e3x9C2bdsw/qIiIrknaEpPKpd9TH8T5jcsbFIPm9vJRn7ooYdsmVWXpU7yEuflDh062NvIYs8JcvocPdx5vPu7unJp/l38LJpkZt4skgjH8B8jkkMdPXrUNGjQwCxZssR07tzZvP3222nus2/fPvPoo4+aZ555xpx44one7QcOHDDdu3c3EyZMMMccc4xZsGCBWbx4sRkzZoz5+uuvTd68ec22bdvM2Wefbf7++28zb94806hRo6gcN/9b7t692/z0009m165dqT527tzpff7bb7+Zf//91/zzzz/mv//+sz/LsebJk8ccf/zxJl++fKZEiRKmVKlS3kfp0qVTfV6uXDl7/+zgo48+MldddZU54YQTzKpVq8w555yT7v03bNhgfvnlF1OrVi1ToEABk+y2bt1qzjvvPNO/f39z6623mmOPPTbRhyQiElUPP/ywGTx4sDnzzDPNmjVrTMGCBb3vffHFF+add94xr7zyismfP3/Ix2A8rl+/vneOZCysUKGC+fnnn03Lli3Ne++9Z0455RRz6NAh07t3b3PfffeZihUrJuwvyTXCDz/8kGr8DhzP9+zZY/766y87pvPhLs+PO+44O0bzwe8Uajzno0yZMqZYsWImNxg4cKAZMGCAvcZZu3atOfXUU9Nc//HaxRJ/0y+//NJel5x88skxfS4Rkexg+/btpnnz5mb9+vWmUKFCZsaMGaZhw4ap5nGMV506dTLDhw+3413NmjXt98qWLevNzbkWuOuuu2J+Hs8M5pbM2UKN53wQR3DjOeORf47OB3GE4sWLhxzP+bp8+fJ2zptTEKvgmuyFF14I+n1+30WLFpkiRYrE/dhEIqEguuRoI0aMMHfeeaed3DCYM9nyY9LKQE9A9rrrrjPjx4+3t3/zzTd2cCeIzUB300032Un7ypUr7fdHjhxpA+x45JFH7ESegZ7BMFJMlLngINDv/+DYHC4gSpYsmWaA5fciWO4GZAZnBmqC6gzaR44cscH4wEGe2x0CFeeee66pU6eO91GlSpWkDKzzWrVu3dpMnz7dXHzxxWbWrFn2d462t956y0yaNMlcffXVpkuXLhH97Lp162ywJjPH1bdvXzNs2DBzwQUXmLlz58bkdxMRSRSCnYw3jFEff/yxueKKK7zvMVbVqFHDTk4Jjj722GPe95YuXWrOOOOMdAPELHKz6D1kyBBv0t2tWzd7Pifgzhgej3MqgXCuKdxYzrHzNYF056STTkoznnN9wsK3G9P5HRjz3EI5H/v3708znnOt4BbRcfrpp6caz/kIvPbJCXidCbww5vbo0cMuvGTGwYMH7eJLeovy7vXVwraISPoLi8zPtmzZYhd9CSTfc889Nljuxt/XXnvNLpgzXoP591lnnWXPr48//njSvbyMD4FzdObtDsfN/D9wTGdhl/Hcjeluju7G9D///NM+dmAQnqQAhwB69erVU43n1apVswH47IrrmkGDBtmEsWB4L5CsyGsokqwURJcci4GJYCYTpJdfftkG0/0YqBjomdQToP7888/t/Z988kk7iDNpIquL22bOnGl/hkktg+CmTZvs9zKDAXT+/Pl2Zf67776zgzFBAzDRdYNk7dq1bZY4g0jRokWjNnlj8GKA5vfnIoCFAY6BYyFzm+8zkXeB9WbNmtnMPrIJksHmzZvtBQQXH++++67p2LFj1J+jV69e9oLv/vvvN08//XTYP8cFEIEe3jMLFy60gZJI3xsEAi655BJTuXLlTBy5iEhyYmxh0ZrJc5s2bcyUKVO8STXfu+yyy8xnn31mA+kEvF0mOuNS48aN7YSUcZoMdhCUXr16tR0rQ9mxY4cN1L/44ov2MWJh7969Ztq0aXbSx1jKMTFB5nqBBWk3pjMRPu200+yY7t/1llWMGwTSGdMZH/0TfYLu4Hk5hnr16plWrVrZ1ywnLNLOmTPHXHTRRfb6iMUKrlv8CFaMGzfOfi9Y5hvvQQI4vDb8/YIZOnSovYbkg/etiIikxfjTtGlTO+4WLlzY/Prrr/Z2kp9Gjx5txz7m1tyHZDXO2+wC57zNvAcrVqyw1wCJwrUI4wXXImREM44ytwPXIP5gNsFeficC6NHMlj98+LAdz3kd/Qvy33//vR3vCcozD+YYmjRpYl9f4gTZDfNdEhCDYS5NQsT1118f9+MSCUtCisiIxEHnzp1tja3atWunaRy1fft2ryYbjSppFkq9snbt2nm1uWhcdfLJJ3tNQ6mrzW00K6O2WySorfnhhx+mdOnSxTZUcY1VaIpFbVY6jnNMia5/ynF++eWXKc8//3zKDTfckFKxYkWvCQiNumgEsmXLlpRkaTJasmTJlAMHDqR733nz5tmmJTQAC9f1119vH3/o0KERHdeQIUPsz5133nkR/ZyISE5HnxBXB/WHH35I9b2XX37Z+97q1au923ft2pVSrlw5+7169ep5TaUZqxiTqLVKcyrnl19+SZkyZUqqx472uMrjUW+dpqc0R3PNxatXr27rt/K7zJ8/39b/TCSOk9eZWvEPPvigfb3cNQ3XPdSUnzp1arZv5uVqrF5wwQVp/tZc27meOMFq5HPd5f5+69atC/r49957r/1+165dg37/n3/+sU1qb7zxxqSvsy8iEgvMDV1TbzfP5cM1ea5Ro4ZtNIp33nnH1j+nwbi/h9WYMWMS8sdhDGQs7N69u+1zxvEyVnLsjJ2MoYyliZ6jc03BtQXXGFxrcM3hmrZyLcI1SahxLFnRo8ZfFz3wg++LJCMF0SVHooGoC377J9jYvXu3bTrG9xnwN23alKphGZNy/m3WrJm9D41RlixZYr//448/puzbty+sY6A56SuvvJJy6aWXeg2wqlWrZpuoMAhmlwYj/M4Ez7mYIJjuLoYeeeQR+9om4vdgouoC/Bk1phsxYoS938UXXxz247uLvkgu6Li4cu8rmtFG4rvvvss27wcRkUjRUOzss8+250d/o27XJDJfvnz2ey+88IJ3O4FyFsG5/ayzzrKNyrB///6UBg0a2NtPPPHElBkzZngB9zJlythx6ttvv43qH4lAKdcVffr08Rbg8+fPbxtKjh492j53dkCTzC+++CKlZ8+eKeXLl/deQxII3njjDe81zk62bt1q/xb8LjR1D3TFFVfY7916661Bf55kBr7/wAMPBP3+7NmzvUX7YEEUbitRooS9D0kIIiK5CYuRbjzxB9CbNm3qfU6Q3H/+HD9+fMrhw4cTdsyMdYx5jH2uITnXGb169bJjZHoNpZPJzp07U0aNGmWvRdw4yDUK1ypcs3Dtkuw4fvc+YSwl7sIiBkkV/C1EkpGC6JLjMPBVqVLFnozJtPJjACdbyQXQWTnfu3ev9z1Wo3fs2GEDmi4gOmzYsIiCu1wYXHTRRfZn8+TJY4O3w4cPT9m8eXNKdnfw4EE7SSVL/dRTT7W/IxdOTz31lB3I4+nzzz/3VuAXL14c8n5kNbqAR7hZYueee679mc8++yzs4+EYXBd6gj/hIoDE+6Rx48ZeloaISE7y3HPPeYFI//mR4HqtWrXs91q0aOEtJrJ7zAU3ixUrlrJx40Z7+6+//ppSt25dezuZbP5zP2M4WclMhFetWhWV4yb7jKB/qVKl7HPyL8HYTz75JOGZ5lnF67VmzRq7g4rxh6QDxtPLL7/c/n7ZYfLtPPbYY/bvw0IN7ym/r7/+2tvlEGyRgCxDvs8CTLAgOdcNLsiyfPnyoM8/cOBA+z5x71MRkdyAxLKqVaumCaAzprjPGTNJvnLzRObV3M5cMp7Z3Yxp7FRjjGOsY8zjOBkDGQsTnWmeVSxKMHbzenOt5a5ZGJsCd/8lG7cbkQ8y6rkGDLZ7TCRZKIguOQ4nXzeYB8saX7p0qd0CxcmZMh+nn366HTxbtWplS7Y4bCGqVKlSyqxZszJ8TrLZe/fubSf1PHeTJk1sFjMZczkVFyNz5syxW5wJUB933HF2RZ+swHhdiLiyK6xaB5bsCZYlxvGGw23nI0M8XKz68zPXXnttSiRYlCATkCwCEZGchqC5GxvJ2vZbuXKl/R4fLGA77Nji/mSou91kLHi7gDvj+4oVK+yiuT/Yy0IkgfasYCyZOHFiSvPmzb1t3T169EjYzqt4IcDMzi2X/U/JF8rN+f8uyfweK168uD1uds4FXgO4nQsEu4MFHlyQPNSCvFvQefrpp2P2O4iIZCecO12wnGAt516XFOQCopRIcbux77jjDi8Jih1jffv2jcuYyhjGWMaY5sq8MtZlx51X4eJ15ZqFaxfK0LrSOlzbhJovJ9qgQYO8983YsWNTRo4caZP0iKmQnEiVAJFkoSC65Chs63WTIWpUhkIdbcqsuJP1Kaec4mUquQkjg0x627mYmHEhwIo2q9kEAQik5saVUxYLKF1DpgGvIzsBGPxivVWPLfSuxiur2BkF2ylBEw7eB9yfUjbhXqywGMPPUPc3Utu2bbPlf0REcho3MWJ3V7DsZrLTvvrqq1QBUVcHfdy4cfY2FsTdDiEy08k0Z2cUgW62iUcDwfdnn33WZiS7TLq33noroVvOE4USduzkK1iwoA2KMIYGlsZLNq50G++PwF1dvI/4HuN0sPegq6seqqTLiy++aL/P+01EJLdjjuxKZTGHZkEcnEPd3Pqmm27yek5cffXVqXYDx6N2N2MWYxdjGGMZY5orz5qbcA3DtYxb3OAah2udZEv0I67iEtJIzAtWI53d/iLJQEF0yVGuvPJKr7GjW90mEH7dddfZBpMuYOmCvQysboDng8zzjOqgcZJnu5Sb0JPVTnZddt/aHQ28NtQE5e/A60rJF1aRYxmEcFvAWGkPVZeWGuXcp2HDhhk+HhNsV/s93Pr3BIDcMWT3Jm0iItHCgrUr/UUzsXDRIJQ6mQ4lOliwZlcRO8dAs25X0zsrNckJnhOIZwGejDkagOfGiXaovx+Nxl29W5qX+Rc8kgnXbq7u/uDBg1N9j+CNKzUQ2HgW77//vlcTN9hOOnY9uDE+VOYkz0/5OJVlE5GczgU7mS+R3eyQfMR40blzZy8QSiC7ffv2ccv8ZoxirHIlRympyqK7/F8PLq5xuNbhmodrn6zu3osmxld2dLsYTWAQnR3v2b3sjuQMCqJLjvHpp596q5duRZwTLYMFt7PVl2ZjrlSHC5S6EhxkKDFZTG+b0zfffOMNzDQeJRNdJ/PguJCi6SevM9v8Xn311Zg0auHv5WrkcqEWDAsnfJ8dAwRnwkHQJty/LYF3uswHlipID9vScuOuBRHJPR5//HFvgdo/ttLQK3DXTkbnWwKhgXU9qa0aSdktPxZ3CbaSRUcgvl+/frbxuKTF3+7jjz/2Sr20adPGu85KJoyrHF/hwoXTBE0IFrRs2TJo01kC3yzIh6ppzhjPdQaZlaGCMTSO57ldo1sRkZzo9ddf9+bPZHiXLVs21W7ad9991wuA3njjjbY3GJ9TFiuWWOx0pbcYqxizkrV0SaKReMA1D9c+XANRFz5Zdt2RjOb617lSQP4PjlUk0RRElxyBEz+DOCdXaqwF1lUlsE6tdAYL/0mZr12NrfSaTrJ1nCw4fqZmzZop06dPV/A8TAQ9aB5DAJuO4WR8RbsGHnVMeXz+PrNnzw56H3YOkJGwaNGilERjos57kItMMtdERHIatgq7clvvvfdeqrJrbixmLAVjApNf/0IkC5kE2/3B9fnz52d51xcBUXqesKDOIi+LvQqeh4e/E39LMr4Zc8k2DLfsWTzwt61YsaJ9bz355JOpvhfrhAcyLU866aSIdlyIiGQnJJO5ALnrQ8F4QMDanYNdo1HmfgSx169fn1K/fv2UDRs2xHyeybHEYp6ZU3HtQ384/qZcE7FAkgxNxemB48r6+ZMeXUIciXnZoV+L5FwKokuOwGqqq3fpttLS4MSdcJmIk4FMre6mTZt6AXdXbzWULVu22MaZnLAJwLK6roE58xkCrVu39hqBhtOwNRJcBLi6u8EWRNiuliy7BnhfkcnXokWLpDkmEZFoeuyxx+w5mQm1Gzc537kFaZpFudvJCOc2thczMWLi7bb03nvvvfY+kydPtouPlAvLTHYZz/3BBx/YMcLtXNq8ebP+6JnArjJqkJcsWdL+Tfgb7dmzJyleS4LYrjZ6PMvsce2p8VxEcirGZs75rpGoa/LNojglPF0SE/dj548/GBuLcyPlYe655x4bZOW4YrXjOTfYtGlTSseOHe3flIVoyuUlejwjgZGdDi5wHpiRTmne9BIgRWJJQXTJ9mhO4lYpXV02/nUn3CeeeMIOBAQuGXDZJtSpUyfbCDTUtlsGYbahMzmkBitNM8mKk6yjZnqjRo28LeHbt2+PWu1W/lY8Lo3ssnIhQbMcshPDQc33Xr16eXV6I5EsW+dERKKJkhfUj+Z8TODaYWx2mUXunEl2uaudSv8KxusePXp493PZ6kzQ8+XLl6ZBWbjXCa6pFk3Fly1bpj94FPz+++92vOVvTRY2gfVEJxoQuDnzzDPt35qsukCUHWAnQiCu8QjCXHPNNSGv97g2pDyciEhuwrnPjaGuv0TevHm9oDolTl0Am/l2vXr1bPJULDDGMC8nwMrYwxjEWCRZx7UR10iuvxy7CBKJHQ7+wDk9dig/wzUjJXuSZfFech8F0SVbY7Ltaq2R5czXDABMtLmNrHMGWrZ5Mei7bceHDh0KORGizicnZk7QlINRk6jY/N0IppDJwHZ/uoZHY8V77Nix9u+eP39+exEXDBd56XUkp76u29WQEY7Z7WoI1qxMRCQ3euGFF7xa6C6oygK2O1+ye8wtfrrbaADOOZV6ly7zyF8GBkuXLo1oqzEZ60OHDrXXBJQTo4+JxGbrdffu3e3f7aKLLkp4iZfnnnvOy6jzB/W5nnPXh2S5+fHeI7mC7y1YsCDNYy5fvtxeFxI0EhHJTR544AFvfuUCmq6RM2U3ypQpkzJmzBh7XxKRuL1hw4ZRz2amdMuFF15oH58xh7FHoo9rJf6+jJf0nklkbXl2NbidivPmzbN/c5q/KwtdEklBdMnWKK/CiZWTvNuWzWr0VVdd5dVk89fQmjBhQsjHIrhK1jqZb/wsdbYltiixQk1V13Amq/XNuFhzzUjo4B2ILDmyFnr37h3yMfi78/NnnHFGhs9HPXP3/gsnq5wgP+8xZUyISE5F0PKss86y50bOuQ59SbiNupucAzlfu5ItTMIJqJN15HaRUZKNMTuz9crJoCJzjsdjt5B2/sQeZdrIAidDkKzuRG0HJ1HC1eP/5JNPUn2vbdu29nbKDQVypYYIGgTi/emuJ4M1FyXD/dZbb0257bbbovzbiIgkDrvB3LmPuRH/Vq5c2f5LVrDrQ0HJVHbxkKjUpUuXqO7a4bqC6wlKxzDGhOp/JdHDNVPPnj3tNVQis9JJnKD8nysHy3uM27i+IKC+b9++hO+Ak9xHQXTJtpjQuG1kBCb92BIeWDuLQSAw8yhY9vnDDz+s1c04I4ubvyUXY2QyZGXizd/YlQaYOnVqqu9R443byUgM9RwLFy609yGrIiOuji+7IMK5GCF45IJDIiI59XzuJtduwdDfZPTNN9+0t/EvX9PQisxfMn1dw1F6XLja1tWqVQsatAyFjCmCoCxukkn19ddfx+x3lbT4WxFI5m/HTsFQu8Ji7b777vN2JPpxjeHeV4HcLgiahAbjSsaxYy1Yw3DXsF5EJCegDKprIHrHHXfYsbxVq1b2a+ZalG3hc86NsdqBxOOyw8lln7NIKvHz1VdfeVnp7PJKRFY6pV8LFy5s3wMsVtesWdO+9yjvwphbq1atuPZAEVEQXbKtu+++22skyTbxSZMm2cAomWv+BhRM3Bl0g5XbYCXzySefVPZ5EmAlmbI7rlb6zp07M/1Yffr0sY9DM1jeGw4XXtTw43uhavVRn5fvU2IgI6zMB2ZbhsIq+fjx4+2FoLagiUhO5Uqs9e3b17uNsXnatGm2ZIubgNF3hGZk9JUAjb4JqDdv3tyOzd9//33KaaedZsf6cBdWCWRyXuYagAwqZZ8nzsyZM23WIlnpI0eOjHtWOlmQvJ94L/p3FrIDzt0emFnHggu3s6gf7HjPP/98+/33338/zfd4rz399NM2yJDohmwiIlnFeYxG3m7RkSAlt9188832Nnc+pMQLgfWPPvooqi86z8XYwRhC9jk7nSQxGN9oIO6y0rnWijfiPIEJkv4PJahJPCmILtkStbCYfHPSZFClqYjLenJZyHyweh6qgRgTqRYtWtjHofZ5Tghszp0716vlTWCibt269uKjWLFitkYdzdWS3eTJk+0Elo9gdUnDQbDcZX0PGDAg1fco88Lt7DjISjkXtpC59+DWrVszdZwiIjkJO4E4J3JuDCcDmexzf1YTGU+Mzf4suHADkuw8olxXTsk+zwnjuT8rnYbu8c4Uc+XiWKD349qP2ykx5MfxuXE92EI+TUf53vDhw2N+7CIiieR27bhd2v6x2NVIJ6hKhroLpme2/FogzsXXX3+9fVzGkEh2oyWrnDCmc41GuT6utUiMiLdbbrnFvidOOOGENEH0UaNGxf14JPc61ohkMyz+3HXXXea///4z1113nTnmmGPMI488Yr/31VdfmaNHj5pjjz3W5M+f38yZM8fUrFkzzWOsW7fONGjQwCxevNjMnDnTPPXUUyZv3rwmu5s8ebK5/PLL7edffvmlufPOO82CBQvMrFmzzD///GNatGhhDh8+bJJZ27ZtzfLly0358uVN06ZNzdixYyN+jJNOOsk8//zz9vPBgwebzZs3e9+79tpr7b/vvfeefS8Fypcvn/33zz//TPc5eH15D1apUsWceeaZ6d432POIiOQ0L774ov33yiuvNGXKlMnwXHruuefaMdspUKCA2blzp/d18eLF7Rif0fn12WefNW3atDHNmjUzS5cuNeeff77J7nLCeF6oUCHz2muvmfHjx5uJEyfaMd3/9401XjN8+OGH5uDBg97tvFfw2Wefpbo/140VK1a0n69YsSLN45UsWdL+u3v37pget4hIIu3atcvcc8893nmReTLncmzcuNEb6x977DH7+a233mrGjBljSpQokeXn3rFjh7ngggvMRx99ZOdqPC9jSXaXE8b0Jk2a2GssxvLLLrvMDB06NK5z3Oeee85eW/7999821uN3//33mz179sTtWCSXS3QUXyRSrk4qNbDISHe12rp165byyCOPpDRq1MjW7WKlNNiKOCunlHihAcqmTZuyxR+ABlihti/5633yO3/22WdBH2PPnj32/l9++WVKdsDOAP6mHDO1TSOtwUbGBGUBXHkY57fffvO6ywdrHuvqmp500kkZZmhQaqBHjx7p3o/Ho95+YH12EZGchHOrq2nuxpmlS5emFClSxGZdcU5mTKaHxJo1a7w+FTQlo7wWpTW4L3UvQ5XbCkS5LlcGrF+/ftmiuVRuHM9BHXHGzFKlStneI/HAe841mafRaeA4X6BAgTTZ8ZQcIhvdf//APihdu3YN+lzUbaV+byJqxoqIRAt9IVxvE1fiipIt7MJlnB04cKAdy6M95rIDmTGCjG3m+NlBbhzT+buzO4Fjpomsv3RqrFGBINTr3bFjR5vxLxJrCqJLtpukuzIdNBO94IILvI7gBDVBLdU5c+bYASlwgjN06FA7OSKomp22hvF700iDBYJdu3bZD+p+MzmkljhWr15tA790rQ7GTRpDNVdNRvzN2DbN34yLN5rJRoKtca726YwZM9JsyfbX7HWY/FIO5u+//w7r+DK6cLjpppvsc1166aURHbuISHbc+k05Fbft+6qrrvImNujQoYP9ukGDBnYRmy3BrrwW41rDhg3tFudwGoft2LEjpX79+nbRnH4T2UVuHc/h/sb0Jhk7dmxcnpMa5bxWvK8CEyqCvc84xlC19LmOoETM6NGj03yP97ybyFOGSEQkO/r444+9smyunIsrn+F6QLFY+PLLL0e1/8Pbb79tx4bGjRtHrSxMPOTmMf3dd9+112Bc02Wll1mkeL1DlXXhfRuqlK9ItCiILtkKmeauYSTZyXx+/PHH24Yn6dWpJNDJSin3of55dswSoqGHf0Wble9zzz3X+5q68FdffXXIFePLLrvMNgPJjpi4kg1BxmJgI7CM0FyOvzsXMyywYPbs2bZWeqSPlRks5hAgCpb1LiKSU9A0mXMtDUP99dGpmcoEkgwsNyEn26xOnTr2a8Yld25mrCbTLSNkMpOtRmYzGc7ZTW4ez9llduONN9q//f333x/z6zHGYK4T02soHq3fi/q2vN8jXfAXEUkGv//+u+0J5Xbk8q9LXqtXr55dYGScZrzitieffDLLz8kY4Ob07EDOjj3KcvOYzvyWazHeJ4sWLYrLc9I7h1ryLnDOLkg+SJxjt/kHH3wQl+OQ3Es10SXb2LJli617ivvuu8/WxQJ1xFavXm1rY51zzjlpfu7QoUPmkksuMRMmTDDvvvuuret23HHHmZyGWmvUEw+Gumu8RtSWy46oE7do0SJbG5da9gsXLgz7Zx999FFTuHBhs2bNGjNq1Ch728UXX2zr+AV7v4SDmnXUQw9HsWLFzKBBg0zdunUz9VwiIsnup59+sj1I0LlzZ/vvk08+af+9+uqrTYUKFUzPnj3t13fffbcZN26cWbJkiSlSpIgdk/PkyeP1pOC29Hz66ae2Xip1Mb/77jtTp04dk9Pk5PGc/jNvvPGGvYajnmqHDh3MX3/9FbPnYwx2r+X//ve/mP5ev/32m63xnxPq94pI7jNkyBCzbds221uK8xnzJ/pY0K+EPhHnnXee+eOPP8yNN95oSpcubbp06ZKl5+PczxgwbNgwM3z4cHuOzgk9ynLTmM78lh5z9Afj2mzq1Kkxf85TTz3VXj/ghBNOMNOnTzcbNmwwK1eutH3QuO4UiSUF0SXboGEEgy0B0O7du5vbb7891fdpQFajRo1Ut+3fv98G0BmcmOB37NjR5NQGMMuWLbNNPgLRhJWgA7//6aefbrIrgjA0YKlatar9m37zzTdhD7SPP/64/bx///7mwIEDGf5Mnz59zDXXXGMDQ8EQHOL9NmLEiJCPoWaiIpJb0ACacx6NPcuWLWvWrl1rF65B4++XX37ZrF+/3p43aUj10ksv2e9xnmVMDze4OWnSJHPVVVeZ1q1bm7lz53qNHnOS3DCesyDeq1cvG1iYNm2a/Ztm1Mw7K26++Wb77zvvvOMF7Al2P/DAAzYo5L8u4H3M9SXv08AGonyPRfR9+/al+7tl1AxXRCTZ/PDDD16y2pEjR+y/rtFl0aJFbTNHAuennHKKXRRnTD/jjDMy/XwE42lCzhjAWHDvvffmyHNnbhjTS5UqZX+HVq1a2b8pTWFjjYQNGp3yvnz11Vfte7Ny5cr2WERiTUF0yRbIPP7ggw9stvnzzz9vA6j+ACaZbN9++6057bTTvNv27t1rLrroIrsi+cUXX5iGDRuanMR/ofHJJ5+Yxo0b24wB/2SPwZmBjN+/XLlyJrs7+eST7Wozq94tW7a0v1c4WHSpUqWKnfi6gDo7GCZOnGhuueWWNFnlvGa83+gQHwwXQzxWejsaCMSTobFp06aIfkcRkeyEsebtt9+2n3ft2tUbk7m9Xbt2pkSJEmbgwIHeQuY999zjZV/98ssv5t9//7X/ZmT8+PE26N6+fXvz/vvv56hstdw4nqNNmzb292Xyffnll3sBm1jsZmOC/euvv5rZs2fb2xi/WZSZN2+e/fD/LWbNmmW++uorGyTyW7VqlSlYsKC9nhARyUkefPBBu8jYvHlze/5jnOFrFsZJKmIONnLkSG+84lyYWZzrOeezGE4QmbEgJ8mNYzo7Cbk2Y1Gc3QWxzqznNWb3Av9SaeDLL780L774ok3KINmN+f7HH38c02OQXCzR9WREMkLTEtdAtEWLFilff/11SuHChb06WMGaQ1JTtXr16iklSpTIdk06wq23NmzYMPv7UdebWmp87XfHHXeknHzyybZLtWt0wseRI0dSsjt+Bxp10szk888/D+tnpk+f7jUhoSEONfd4fYJ1Q6cBGbdPnjw56PvR1WGjLm+oWm0cG/eh/rqISE7FeZBzXYECBWyjRhppuRrU1MqkJ4Rr7Lh9+/aUiy++2PY1ofYq59OpU6dm2Jxs3LhxtlkUtbSzY0+TQBrPU+M6hXrizZo1C9nUM6vuuusur+auw+fc9uCDDwat70+jO7+1a9fa2+nREohrMRqJDxw4MCbHLyISK/QpcT1MVq5cacfqMmXK2DkTdab5XtmyZe08lO9lBed4zvWc8wPnX9mVxvT/H9do9KHjmo3Go7HmeqxQEz2wyShjNXNykWhTEF2S3ieffGJPhHTsJujpuoW7hmQ05PDbv39/Su3atW2g8/vvv0/JKQIHaBq1EUTndSBgS2dvv8CBxH28+eabKTkBQXAC6QRuWFgJR/Pmze1r0LVr11QDLwsOfpdffrm9feTIkWkeg4tH1xwvvQUJgkcPPPBAVDvXi4gkGwKQnBOvueYa7zbG3meffdZ+/vfff9um3/Pnz7dfc07csWNH2I//4Ycf2vMt5+vA8T670nieFuM44znJEjSui7Y5c+bY9+mpp55q35N44403vGtJP64RuP2pp55Kdfu6detCBtE/+ugj+70GDRpE/dhFROKRrOZvfklCGoFzbr/wwgttkLJIkSIRjd+BOLdzjuexvvnmm5ScQmN6alyrMY5y7TZx4sSYvva8H2kmGizmUbFixZStW7fG9Pkld1IQXZJ+NbNq1ar2RHjWWWd5wUsXSB86dGiq+5MFxwSGTPUVK1ak5AYMTpUrV07JjQhic2FHB3myKDJC13CXacEOhc8++8x+zYLLP//8493vtttus7fTXT3QlClT7PeqVasW9d9HRCS7YfzhnDh+/PiQ9/EvJrJr6qGHHkp1zg2F8y1ZcB07dswRGegZyc3jOdhZRlIAC9l//fVXVB+b94/bRTZz5kx7G8kHboeaP3Dfr18/e3uPHj3CDqLzvSFDhqSMHj06qsctIhJLbqcuYy0Ja24BnEVEN0fas2ePPV9+8cUXmX4ezult2rSx5/isPE52kpvHdMbc6667zu5MJCEylkhac+9hfxCd5MuDBw/G9Lkld1JNdElq1Flds2aNOfHEE21t8zx58pgZM2aYDz/80IwePdr07t3buy81rqnDtW7dOjNz5sw0TUZzKmrSPf300yY3yp8/v601x9/60ksvtZ2501OvXj3bsZsFxH79+tmGdkWKFLH1eKnL57imJHSkD0TDPFSvXj3qv4+ISHZCzWjOiccff7xtKEV9c38zLcZl1yOCGujLly+3zRwHDx5sG4mlZ/78+fZ8Td3UMWPGpNuDIqfIzeM56GNDjViu8+hXEs0G3bx/aHgG+qHgrLPOMsWKFbONyah37rgGb9u3bw/78StWrGjf266JqYhIsuMcO2DAAO8cSQ105tE0XmZOTT8JepFxnjz77LPNhRdemOnn4dzI/Jw61Zl9nOwmN4/pvJ+I41Dvnms5ruli5f777zeFChVKdQ2KgwcP2jr+ItGmILokLSY1rgkkwXOULFnSnHPOOXYixGDsb9zBJJ1AKINznTp1TG7BBQ5BhtyKBZapU6fa90bbtm3tgJkemo0wsE+ZMsUsXrzYXiSCZihOmTJl7L9bt25N8/OuUWiFChWCPj6N7wYNGmQOHDiQpd9LRCTZuUA4E2ImME2aNDEdO3a0TchuuOEGU7lyZTN27Fjzwgsv2GbgLFiOGzfOBkjduTeYbdu22XGehU8aihKkzw1y+3gOFsTfeust+74ZNmxYVB+biTwI1BMk4hry3HPPtbetXLnSu1/x4sW9BvV+rgk5Te5FRLI7gtoLFiyw82wC6IzjNGa899577cIg43A05tRDhw4177zzjj23t2zZ0uQWuX1M59qNa7i6devaa75IFqYjQdNW4kD+mJHDdQQNSIkriUSLrgIlabF6uWXLFlOgQAEvMMrJl87LgUaNGmVeeukl+9GsWbMEHK0kEh3jCeb8/PPPNoDD5DgULgq7detmP+/fv7+59tpr7eeTJk3ysibLly9v/929e3ean69ataq55JJLTO3atdN8b+nSpeaDDz4wAwcOtBejIiI5GYvWaNeunZ2I88FtS5YsMV988YUNpr/yyis2+Ni+fXt77mShkTHbvwjud+TIEft4J5xwgj0v582bN86/lSQa4/hDDz1ks8umTZsWtcfl+pDJ9p49e7ysOHaylShRwvz555/e/dihBndN4Pzxxx/2X65LA7Frct++fVE7VhGRWCPpB27Xz6FDh+zYfPvtt9txnB1kLDT++OOPmX4OzuHs0nn44YftuV1yF67h2P1FQJ1rOzeORtvdd99tTjrppDTZ6Iz3vXr1svNzkahJdD0ZkWBo+uSamQR+LFmyJNV9v/rqK1tvK7A5pOQ+M2bMsPXy77vvvnTvR5MRVzeNzvA0aKUZ7Y8//ug1Lf3ll18ibgpKTdWxY8emPP7441n6PUREkt2uXbtsfwnOozRcvuWWW+znXbp0SWncuLH9nAZirjH4+vXrM3xMzrnXXnutbTC5bNmyuPwekryNyaiNXqhQoZS1a9dG7XGp0cp7sn///vZr12Q0sJZrsJr91AS+4YYbUu6888403ytdurR93IULF0btWEVEYoVm35yzXJ8x+ku55svdu3e3vcUuvfRS25Mks2gyzjmcc3lOaQwumbN06VLbAJT3U6Tz60hro9M/r1SpUilnnnlmSvHixVPKlCmTMnny5Jg8p+ROCqJLUqIxEyfBokWL2sm0C6DT8NFvy5YttuFJs2bNgk6EJPd5/vnn7Xvl7bffTvd+N998s71fq1atUn799de4HZ+ISE7AOZZzaJ06dVIOHz5sJ8p8/dxzz9l/aR5WsmRJbyyvVKlShsHQQYMG2ft/8MEHcfs9JHnREIzm8hUqVIjaOP2///3PvscaNmyYEi0svJ9xxhn2cfft2xe1xxURiZWrrroqTTNGmiy7ZqL79++3wc4jR45k6vE5Z5999tn2HH7o0KGoH79kPxMmTLDvr8GDB8fk8Xfv3u29h0mSYzGchraxCtpL7qVyLpJ02D7rtpdVqlTJbu3GY489Zl577TXvfocPHzZXXHGFrYnNFp3cUjNV0kcdv5tuusnceuutZuHChSHvx1Zx6pp+9tln5ocffgjrZWWLWKy2oYmIZCeUawElWijhwjZw+knMmjXL3l6tWjVbEosmjdSo5PuUzQiFklw0fGasd7WrJXejPi/vC8qkUHotcJt2ZvB+xaJFi8z+/ftTfS+zjUzZrk7pot9//92WixERSWaUZ6E3BJgLuRJVroE3/aNOOeUUW9olf/78ET8+52rO2b/++qvtQUWZDZEOHTqYRx991Jb2+eSTT6L+gnCN2alTJ/s5pQS59qQ0YKjygSKZpSC6JB0aUDC4M3h/8803XhPHRx55JNVEh7rWNHlkcC5atGgCj1iSCQMlDexohENDnF27dgW931lnnWWuv/56+7lbtCHIs2PHDvv566+/bhdpXM1fLFu2zF5oUhc9EN3Xee+6RR8RkZyKMdgF0S+66CIzZswY+3mrVq3swiQIKoKGTtSLJhh66qmnBn2877//3jYipfEUEywR/1hNogTvN+rqZtUZZ5xhEzSo0z9nzhx721133WUXe9x7l+/xXmzdurW9LnAY39NbSCepQ0Qk2Y0cOdKO4ywqvvvuu/bcRgCd8xt9ppg7ZWU+Qz8Lztkffvih12dKBCRKUBudOfjatWuj/qL07NnT/ksddvr08B6kZx6xgalTp6bqfyKSaYlOhRfxY7tNjRo10mwvmzdvXqr7vfXWW9ryLRlu6aKUQJs2bUJu46JWn6vpS31U6vbeeOON9nvU2Of2hx56yLv/lClT7G1169ZN9TgHDhywP8v3li9frr+MiORomzZtsuc7+pFQJ9rVVO3Vq5f9l23ie/bsSXn22Wcz3EZLKTZ6UlSuXDnlt99+i9vvINmzVNvs2bOz/Fh33323fSzq/uKaa67xShE51FTlth07dni3DRkyxN5GOTgRkeyI8iyFCxe257KPP/7Y9nGgj4mbx7h5UeDcO1yzZs2yPz98+PCoH7vkDFzrcc1HOcBYlOOlzG+wvnp8vPfee1F/Psl9lIkuSeXzzz83K1eutJ+7bbvnnHOOqV+/vncfMoUp2UHWmrZ8S3pbuij/8+mnn5qxY8cGvU/lypVtthmWLl1q/vrrL5t5/vfff5uKFSva2/2r5HT4RvHixVM9Du/V++67z1x22WWmRo0a+qOISI7mstAbNmxoihQpYnfiUEZr2LBhdgfZwIED7VjO9zPaRsvPrlixwmazFyxYME6/gWQ399xzj2nWrJm5+eabzW+//RaVki6u9FC5cuXsv+yCdPLly2f/9Wet7d271ysz49e9e3fTuXNns2rVqiwdl4hIrJGZS5mVkiVLmjZt2tg5dvPmze0ciHkRcyayeRs1ahTxY7Nzh3P0hRdeaO6+++6YHL9kf1zrvfXWW3aH9zPPPBP1x2dMdqWK/Cj9S3k4kaxSEF2SChNwh621bN2lZpar0cbWs9tuu83WZ3vhhRcSeKSSHbRt29YutrDosnPnzqD36dWrlzeZLlasmDlw4IBdzHElWygz4Lht3ZQa8iOI9MQTT9iAvequiUhO58pgUMqFEi19+/Y1//vf/+z5j/MoJThuueUW06RJEzNhwoSQj0Og/fHHH7dbv+vVqxfH30CyGybDb7zxhg1ks2idFU2bNrXvVfqhcG0QLIju6gD7y7e4yTdjvsN1KdvG33nnHbsALyKSzN588037Lz1LSEajFxnnVjCXoab0888/n6nH5tzMeZLrgcAApogfizdc+5F0Ee0FaMq5UuqX0mx+jPsseItklc5ukjSomTp9+nTv62effdYMGTLEZqI7ZKpNmzbN1qtW8yYJB4stZJSx+BKsaVjjxo1N3bp17eTX1e0j6FOlShX7OXX3XSaaC6IHZqGJiOQWnEfnzp1rPyfbzO3Goanili1b7ALkpZdear935pln2h06wTBxv/HGG+0YT41MkYwQ7CZrjV1ms2fPzvQLxhhO41vQgLxs2bJhZaK7xfhSpUql+v+Ba1MCAe4xRUSSEec4twjuzmkEvZcvX26ee+45G3zMLJKRmJ8zf3cLkyLpGTBggO17x7Ug14TRQrPvLl26pLmduT5xJJGsUhBdkkbgqjfZwH6UcWF7GSuIl19+eZyPTrIrFlu4qKOZyNtvv53m+6xKk6nuAuagpAuZZmScs4q9YcOGkEF0mudx8RksQC8iktNs377dNh3LkyePOXjwoN36TeNHAotktRFQP+GEE2xmG4vjoZotskhOJjpbepnwiITj9ttvtws0lAzwN/2MFKWGQOMxF/BhEciN5S4T3R9Ed43H2SnpkG3JQhENcfU+FpFkxo4ZuCzxRYsW2VJsX3/9tR3LmStlhivjwu40V0pDJCOMmVwDUtKP0n7RFCyIjkmTJqm5qGSZguiSFJiIjxs3LtVtV1xxhfc5k5pbb73VFChQQGVcJGIsurD4QrDcTYL9rrnmGlsbkGwMutJT0oVMS1fShUAQXKd63ofO6NGjTa1atXTRKCK5wuLFi+2/ZN2+/PLLdqIyaNAgm4nuepq4chuhapxzP7aNU7KNnUAi4SL4Q6kAxuuslHVx9X4JopcpU8YuqB8+fNire84iEfzZce764bTTTtMfTESyHUpPgQQhVyqVnbrs2qU+NTtzMoOSbvv371cZF4kYpfwo60JpP3cNGQ30KAu2O4z/B1g4Dyz1IhIJBdElKRBA92f7kAHs3wJOBvFnn31mM4qpvyoSKS4QCX6TxRaIrMkePXqk2sJNLX5KuhAEIqgOBmOa8FSqVMn7WRqccR+X1SYikhuC6ExQ3LbwdevWeQFH6lCm12CZTHW27tK8mexdkUgxAaZkANeEgbsWw+XGbN7PBOZZDCew7pqWuub2NCJzi+gEiQKD6O+++65tTO7uLyKSjDZv3mwzfp2jR4/axUJKZA0ePNiWVXM7cyNBaa1Ro0bZc7IrjSUSCd57lPbr1q2bfV9GAwvj119/fZrbeXz6AbgEOZHMOCZFNQgkwXgLMnnxD+yc2FxNaiYuZ599tm0ENX78+AQeqWR3bOFq3769rdtHJ3o/Msyo38vKdL9+/WxTvOLFi9st3Rk1C2VAZgKtrdwiktNx7iRwyRZwSrZwntyzZ48NNrqsXbZ0hwpu0tSMnyXjjcZSIpnBWM11IWUEyKCMtIkdP0+5N3ZCLlmyxNSuXTvNtSnjOtmaPPavv/5qHn74YXutMGXKFHtdwO4Lkj64BqC02xlnnKE/pogkJYLcZPyC85cLAZ100km2TFtm+j1xHq1Zs6bdxfvVV19lOF8SCYVrQha3uUYk0SIaSPCoXLmyHceJIZH0xkI5C+YaryUrlIkuCffdd9+lCqCTge4C6HjxxRft9tqnnnoqQUcoOQUNcxg4H3rooTQ1zMksoxkemBCTTUHmejgXhAzOCqCLSE7HhJkxG7/88ov912XgEkCnlwRbcynTEgw7zsg4ooSWAuiSFQS2yaBk+3dmEiz4efcedLsr/Bj7WRhywXkC7iNHjrS71Nx1AbvUuG7gmlUTchHJDqVc4J8DUcs8MwF0txNn1apVNkCvALpkRYMGDWxfHXYo+qsTZAU7Hmlcyrye92erVq3s9afGa8kqBdEl4diOG+prMn9oPkYJDnX6lqxiAOX9RBDoww8/TPN9siMxZswYbc0WEQlA82Uyd1k0JPvXjdNu8kyNarKJLrnkkqCv3SuvvGKbkj755JN6bSXLWBSnf07//v3N33//HfHPn3vuufbfzG7rpsHop59+alavXp2pnxcRiQcyzV29c/pE+f3444/2I1J//fWXPfe2a9dOJS0lKuivs3PnTjNixIioPB7Xpm3btrWfs4NMJFoURJeE+uOPP1I1FGVCUrp0ae9rAp5kuT3yyCMJOkLJaS644ALTunVrW7LF3zDMXVhSz5cgT69evUzv3r1thgZZZkyyab5D8GjYsGH2/tyHsgXTp09P0G8jIhI/ZJyBzB4m5S5Ll3Mq5bJYiGTSEiwjjeA7O8oolcXPi0Rr0r1161bz2muvRfyzrnk4QXCa5JKswU41MPZ37NjRaybK+53yLcEoA1NEktnHH39s/z3vvPNsdq5rnIzJkydnKvOXcy5lrLRTXKKFuuiMvYzrXDNGgwuikzxHE3FKt1ImmN3prp+PSKQURJeEolkogfTAQd5NWF566SXTp08fW3NVJFq44COjknq+gQ1GO3fubD9nQv3888/breJr1661k2y2g5Ht5oLv1P+jsZ7/PSwiklO5CQd1oFG3bl2bVU4wktrU6W0Jp/QG50oy10Sihfdely5dzBNPPOE1BQ0XzcLBIjlZlVu2bLFBIVf64L333jOHDx+2X3fq1MnWDna72Li/xn4RyQ5o/umShRiLXTmLgQMH2q+pGx0JzrWM/dSujvRnRdJDORf64VEiKBoaN25sy7ExXjO+b9u2zTbZJeb07bff6o8hmaIguiTU2LFjvc8ZjOvUqeN9PWDAANsAgiC6SDSxhZuO3Vw8MlD7uSC6yyxj0uwm2S5zwwXRR48ebd566y07QIuI5HQsKLrM8927d5tRo0bZRmUEFplM+8d0P3b3sCjZs2fPVLvNRKKBsZxFnOeeey6inyP4w1hPY1zX18TV+nflYaiLjo0bN9p/yWLD1KlT7WISOytERJK5lwlJP1i/fr0ta0H5FjfHpgxbpNiRyzmXubpINNGj7N5777XXjFw7ZhVzd/rtBWJHZPXq1bP8+JI7KYguCcO2WGpJghXxhx9+ONVEne7MlHHJbLMTkfSQtUbD2hdeeCHV7XSZL1++vNd0x2Whff/9914Q3TXSq1WrlunataspUaKEXmwRyTVBdIKPnPeYkLMtloxetzgZzOOPP27y5ctnA+4i0UZg+8477zRDhw61AfFwnXjiiXa8hyvVQhCdhXKXZc41KN9zk3lXimjBggU20M5jiIgkqxUrVpj9+/fbz5lbU6Lygw8+sLtyM3P+4hxLEP3uu+9Wg0aJCZrTszucuXo0XHjhhWluYy6vBveSWQqiS8J88sknXjCS4KS/piQDO/XRaSgqEgvUPu3evbvdLubPRud92KFDB+/rH374wf5LsCgwiC4ikpuy2Vw5l0qVKtnAOGM122MJotNotECBAml+jiZR7Np58MEHvTIwItFGIgbj9/DhwzNVF90F3ylT4C8LQxB9w4YN9vMiRYqYU0891X7+9NNP20UldleIiCSruXPnpvqa8lfspKEpuNt5EwkyhDnXuv4RItHGOMs1I7sduYbMqvPPPz/NbezGcItLIpFSEF0Sxt8EqlmzZt7nZPu8//77diuP214rEgs0DqVxyTvvvJPqdn8QnWx1MIl2QXSyz2iwRzMeF2QXEcnJ6FPCgiPNRHv06GEee+wxs3z5cq8MVqjmiiNGjDD58+fXorjEFAFuGtu+/vrrEdUqd5nlLpjEe9w1NON9SzkXeqPAv/Wb9zuLSSzIi4hklyA6C4OUoqQUCyVZIsH5kXMsZayoMy0SKyRSsoPx1VdfzfJjsWOyWLFiaW7/4osvMtVUV0RBdEkITliuPhv8JTVGjhxpt/AwGRKJJSa/dO3m/efKt6B27dqmbNmy3tdMov0NRSnxQuC9Xbt2acrBiIjkRK4m9Mknn2wbKjucKytWrBj0ZwhmsmDerVs3lWaTmKO8ANmV48aNC/tn3Fj/888/pwmi81535RBAySIRkezi6NGjqebbYCGcbHIyyc8666yIHo9zK9m7d911V5SPVCQ1xl967RAXymqgm0XvYNnoV199tVm8eLFeeomYguiSEF9//bUXtGQC45o3/vXXX3bFkQm3tn1LPLAVm3rnrnO9G2zbt2/vfc7qNZPn4sWLm4suushmrpH1Vq9ePU2qRSRX2LZtm/3Xv+CILVu2mIkTJwb9mXfffdfs27fPBjdFYo2A0OWXX55mYTw9ZcqU8YLoLAbx4bIzXU8eF0SnZwquvPJK06tXr6g0PRMRiRVKUR44cCDVbdOnT7e7aijHFgnOqZxbST5yvSREYumee+6xO8K5lsyq8847z/573HHH2Z3lLCbxsWPHjigcqeQ2x6SEe5UpEkUEydlKBibfV111lf2ck2SnTp1s3dVQmW0i0cQpkIkxk+9JkyZ5t3/++eemefPmpmTJknaAZaAVEcmtnnzySdO/f387ASG7zSlatKgNpAdrUFa3bl3bgJT6qyLx4MZukjWCZZ4FojRbjRo17MK4K9/mkjrISqc26//+9z/z7bffmvvuu88ULFjQNjJlgZ066rz/RUSS0fjx49M0/GZxkPJV7PqOBBntTZs2tUlHF198cZSPVCS4yy67zI61Wc0YX7hwoWnYsKFN0mQBnN3lXLdqfi+ZoaiQJMSECRO8MhkugA7qrFEfXQF0iRcmwrfddpuZMmVKqqwyVqyph7p7926bqS4ikpu5THR/AJ1gIk2fggXQly5dapYsWWIbOIvEy4UXXmgXxbmejCQTnR0Tv//+u3c7PXlcE9Gbb77ZvPHGG6Zy5co2aE7yB411FUAXkWTm+jmw+O1UqVLFLhJGinMqtaXZkSsSL8zRv/vuO9u8PitImOP/A3ZmMN5TBUEBdMksBdElIXVVye6BP1hO48Yvv/zS3HrrrfqrSFyx+4GMDLc7AjQzIeMCM2fOtP9q446I5PYgukN5K+qishgezKhRo0zp0qVN69at43SEIv9X75emdx988IGt3ZsRsjJdgzx2VGSExXWSPx555BG93CKSLYLo/qaKCxYsiKhvBOg18eGHH9pza6gm4iKxykQvVaqUvabMChbGWQSCkuMkqxREl7h7//33U9W6ckaPHm0nMv7MdJF4YGtXhw4d7Hvwv//+825v0aKF/XfgwIG2JAEXoWz5rl+/vqlatardKs6FpYhIbguiX3HFFba8RTA0X6Y8Gw3CqT0pEk80I/v333/DDhSx2IM2bdqYSpUqmeeee8507tzZ7lCj3AuBKJqLi4hkJ66fQ8eOHb3bKF8V6Vz7nXfesbvQOLeKxBPXkFxLMp5zbZkV7MJwgXmS52he2q9fvygdqeQmCqJL3M2YMSPVSdFl+BJcv+6662wGsEi8cWH4ww8/2PIDgUF0moxRj43tXwTNqSXIKjY1UoOVMRARyWko2wK2wLKQyKLjoEGDgt6XxmWcNzXhlkSgl8mll16aKmkjPa4sCwtFNOKbN2+eDRqtXbvWPProo7aB+Msvv2x3pVHSgGsAEZFkxpzFNU0kcO5KWhBYZydZJDiXsquMhCKReONakmtKF0PKahCdeuh88Jj0DRCJlILoEnfUSXWrgK5GG1k+P/30k2nXrp3+IpIQTZo0sfVPyTzzD7ZkqQf6448/zNy5c20jUraHiYjkZOzQcaUxqAfNeY/FbzchCcR5tFq1arY2tUgicD1JMNzfLDSUwNrm7mcIGC1atMh+zsLR8OHDbY3/kSNHxuioRUSiY/Xq1fZf5trsDKN0FXOdSJFENH/+fM3RJWEow8IO8E8++SRLjxPsmjWw8a5IOBREl7gP6K4eOllCDidFsttcDWqReGNnBFkW/gGaun+NGzdOc1+2k/FevfLKK+N8lCIi8Xfw4EGvJwQNFr/++mvTs2fPVOO4w5bvqVOnmssvvzwBRypivEQNFn+mTZsWcRCdoJG7LmAHBkGoWrVqmUsuucTUqVPHln8TEUlmrscDYzIL3+ykefLJJyN+HHcO5ZwqkihcU3766aepmttHI4iuRrmSGQqiS1z5m4Zec801qbLWmIxTn0okUdq2bWu3OW7dutW7rVGjRmnux0KQmoyKSG7hstAJKn700UdeTXSaLAYiY41t5JxPRRJZ0qVBgwapdpdFmon+888/23/ZVUHptl69epnvvvvO1k0XEckufUwIPjZs2NDuqIl0/sI5lJ+NtASMSDRxTcnYvHDhwkw/RsWKFdPc9ttvv2XxyCQ3UhBdElLKBTQRxa5du8zixYuVtSYJ17JlSxsk4mLT4cIxENltBJKYTIuI5JYgOs0a//rrL3PssccGPTeC3TxMtpmsiyQ6c40aqrxnIwmiswjkz+TUe1lEsnszcBa9CSKyyzZcf/75p81g184ySTTG4WLFioW1MB4K/w9Q1shv9+7dSoyTiCmILnFFEwf460wTsGRCTikNkUSiS3ezZs1SDdD16tULet/27dubvn37xvHoREQSG0R3aAAeKjDJ+bNNmzZ2XBdJdOba77//bnuYpMddk7JA7v5lZyQNxF0m+pdffpmlbeQiIvHk31VLgtDQoUPNq6++GtFjzJkzx5aw1M4ySTTKqnFtmdW66OxS87v99tu9UsMi4dIMR+KG7TJuC5m/iQMT7vPPP98UKVJEfw1JOC4UuWikY7cLrJ955pn284IFC9pGY0yoa9euHbKpnohITnLgwIE0C+L0MQm0ceNGs27dOk24JSkwVpctWzbDzDUWhVyWGrsoWAA6/fTT7S5Jt4jEAnuwHgAiIsnoxx9/9D5nF9nff/9tSpcuHdFjcO4sX7685juSNHN0Frc3bdqU6cdgbA8Uye4MESiILnHz3nvveZ/369fP/svK3+zZs7VNTJIGWxYJELEF3KGuKgYMGGC3fa1atcosWbLEjBgxIoFHKiISH4FZ59RDD5ZpToYQDcyaN2+uP40kHBNjxnTel+nVAXa1/WvUqGHroFPCgOa5EydONAMHDrQL6GSrE0gXEckOduzYkWZRMRKcMzl3cg5VkFGSAc29ucbMSjZ6qVKl7L/PPPOM3V3G9W2w/j4i6VEQXeJm0KBB9l8GYrcSvmjRIjtZoRa1SDIga42agWzddipXrmz/Xbt2bQKPTEQksaXYnJ49ewa9H2UzmjRpYpswiiQDssepDezPygyVic71KI4//nh7ncqE/dFHHzV9+vSxwfV77703bsctIpKVMZsyLH4rV66M6DE2b95sA/Gao0uy4NqS6gUZlWgLJ4hOTz6SQSjdpkUiiZSC6BIX1Jd0DU5YQXTI5i1QoIC2iUlSqVu3rn1vBguiR9rVXkQku2MbuL8peM2aNYPej/Mm50+RZOHej/4xPVQQ/Y8//gh5HybaZKSLiCQ7ekEE+uGHHyJ6DHfO1JguyTxHz2wQnZ3lIpmlILrEBbXY3CSFGtMOJ0Em4zSLEEkWderUMStWrLDvW7ja5/PmzbPNeVj4qVq1qhk1alSCj1REJL5B9NNOOy1opjkTkp07d9rzp0iyoMY5NVDTm3S7rdxkq5crV87ccMMN5o477jAff/yxzVYTEcmOQXQ3v+a81rFjx4geg3PmGWecYYoVKxaTYxTJDK4x2SHB7rDMKFSokP13/PjxNjZ100036Q8hEVMQXeKCDB4XRPdPsBmgNeGWZMN7kow0V77lnHPOSbWrgu/R2ESTaxHJbeVcDh48GPQ+LkipMV2SDe/J9ILoLI679/n27dvNuHHjzMiRI81VV11lypQpY0sUBZZGEBFJ9iA6panQqlUrc95550X0GJqjSzJy15hLly7N1M/7KyJQD33q1KlROzbJPRREl7hgUnLo0CH7edOmTe2/fL1hwwZNuCXp1KpVy9ZHc5NuFoD8OyjwwAMPmA4dOiToCEVE4h9EP/XUU209ymA4X/J9+kqIJGMQPVQ5NpqLOW4HGgig894nIKU6/yKSXfz2229ekLBChQohS7CFwrmSIKUWxSXZsKuCa83MlnRxSZ1OixYtonRkkpsoiC5x8corr3gTk0aNGtl/ly1bZv/VAC3J5qSTTrLZ5/4BukiRImlqsrla6SIiOZnL1N2/f7+pUaNGullratAkyYb3Je/dLVu2ZBhE97/fL7vsMvPTTz+Z119/PS7HKSISzUx0guENGza0DZYjQf30AwcOaI4uSYdrzNq1a0ctiN6tW7coHZnkJgqiS1wMHz7c+5wTHzj5UYeyUqVK+itI0m//LlGiRLqTbhGRnFySLSPa+i3JyiVrhJp0+7PP/SUQKH9ATeB69erF4ShFRKLDX35q7Nixpnv37hH9vMqzSXYu0RZJEL1w4cJROirJTRREl5hjK6y/nqrbEuuairqMH5FkG6CXL1/uTa5pTOa3Zs0am6UhIpLTHXvssal26gSiwRONnrSzTJIRi+A0xA016Q5cFP/zzz/tv6FKF4mIZJcxm4S1atWqRfTznCuZ99CYWSTZcK25bds288svv2Q5iB6401wkHAqiS8yR0eOy2PyDOkHIUNvCRRLt3HPPtQ1Ef/zxR/t1YJ3fJ554witJJCKSk7mgIkqXLp3m+zRahsZ0SeYxffXq1WEF0SmBQOBp4MCBZvPmzXE6QhGR6HC7adzce/DgwRH9PGO6xnNJ5vEcocb09PhjUZg8eXLUjktyDwXRJS5obAIygZydO3emye4VSRbuvbpr1y77L415/J29ee9q9VpEcgPqSTslS5ZM833Gc2hMl2Qe0914HmqRyF/Pn9v+97//hWxGKiKSHYLo//33nznuuOMi+nnN0SU7zdEjQYKcHz3QRCKlOhoSlw7hDOAoVaqU/ZfyLmzBcV+LJBv33nQDtMu+pKHo4sWLE3psIiLx5F8wLFSoUNAJN7e7cm0iyTimu8WeQAcPHrT/Nm3a1EybNs1s2LDBlnOjqejZZ58d5yMVEckaf6lUdtVEinNlsF1nIsmgYMGC9iPUmJ4et2hOr5NPP/006DWtSEYURJeYGzp0qPe5q61G/VQoiC7JikGVC08XRGew9ne8FxHJLfxZbMEm5JwnNZ5LMuP9ybUnpVsCszJdEP3kk0+272+2irvt4iIi2TkTnXkL5zjOb+HgHLlnzx6N6ZL0Y3pWMtGpja6a/5JZKuciMbdu3bo0Jy63cqhVbklWbOvm/eneqwqii0huVa5cOe9z1+PET0F0SXaM5+yKDNaIzDUJDzfIJCKSXYLof//9tylQoEDYP0sAnXOlFsYl2cf0rATRM7NDQ8RREF1irkePHl6dSde8yZ30NEBLdlnldkH07du32yy28847L8FHJyISH1u2bAnZlAmcJ7UoLtmpRJsf4zrGjRtnypcvb2699VazdevWuB+jiEg0uDkLqlSpkiqonpHAMpYiOSkT3V3Pzpw50zz88MMxODLJDRREl5ijxmTRokXt5+5fTnoEIosVK6a/gGSrIDrI0Fi1alUCj0xEJH5mzZqVqs9JIHbsaFFckpl7fwaroerGeRI9fvzxRzN69GgzZsyYuB+jiEg0+MtUVK9ePaKfdedIjemSXfucpMctmgcmiIhEQkF0iTmyeWgkCtd0jAlLiRIlgma0iWTGK6+8YsqWLWtrnDVo0MAsWrQoqkF0Htevb9+++kOJSK5QsWJF7/Ng28JVzkWSfTznmpNdkcEy17Zt25bq64YNG5qrr746y88pIpIIp5xyivd5YA+IjHCO5FypetGSXebokVi5cqX3edeuXbN8HJI7KYIpMffiiy969SZdLVWaO5UsWVKvfpQ1a9bMvPXWW7nudX3//fdN7969zWOPPWaWLl1qG4K1bNnS1vXL6gC9e/duL/vc75prrsnSY4uIZBc1atTwPg+sKX3kyBHbuExjenRpPI/ueE45A3ZDujHdb8eOHd7n7JCcN2+eLYEgIpIdEQR3iWqBSUAZYY7OeTBPnjwxOrrcSWN69Ofo7IzkGjQSP/zwg/f/CMchkhkKoktcguiOq43+559/RtTkJD0DBgywjxvsgwFLcr7nnnvO1jDt1q2bnfiOHDnSvr/eeOONLD0uTUf++uuvVPX8g2V5iIjkZP5FxDVr1qT6HuM5ojGmazyXWI3ngWO63759+7zPL774Yu9aVUQku3LnsY8++iiin9McXbLLHB3BxvT0HDx4MNXPi2SGgugSc3nz5vU+d4FIyrtEa4WbshqcnBs1amS39fDRp08fU7VqVTNp0qSoPIckL7rOL1myxDRv3ty7jewLvp4/f36WHpv3qCtFFJiJHunKt4hIduVfRPzss89Sfc+dI6Mxpms8z91iOZ679+i///6b6jbGdrcQhPPPPz/LzyMikmiujEtKSkpEP6c5umSXOToCx/RwjgnaPSlZoSC6xFyXLl28z92Jjn+jFUSn4SMrmpSK4YTIB7fx+IULF47Kc0jy2rt3rw3wUO/Uj6+DbduOdPu3e88GrnSr6ZiI5BaUynI2btyY6nvuHBmNMV3jee4Wy/E8cEz39+3xI0tORCS743znDxqGS3N0yS5z9MwE0Z0iRYpk6fkld1MQXWLO1UFHuXLlvBNepI1OJK2nnnrKBh3cx9dff21uv/32VLf99NNPeukyafLkyTZLjayMwOYlWsEWkdzCv/Mm8FzoJjAa07NG43nsrV+/3gwdOjTNOO/Xtm3bOByJiEhsuXIVmQmiazzPOo3psbVw4UL775YtW8L+mWXLlnmfd+jQISbHJbmDOkZIXMu5/PHHH/Zf1ZuMDgLm/gaXnTp1Mu3btzdXXXWVd1vp0qVNTkajMC72aITjF43mtWeeeaa39Szw8XP66yoi4jzxxBOmR48e9nPXKNzReB4dGs9jO547Z599dqqvFy9enCrR47rrrovK84iIJFKhQoW8TOBIaEyPDo3psR3TaX4LEgYjuZZ1evbsmaXnl9xNQXSJKQbumTNnel/v378/ZF3KaMotFwCUq/GXrCHroHjx4mkmiTl9p0OdOnXM559/btq1a2dvI3ucr++6664sPTYdxBn8+fDXROc1r1y5cpaPXUQkO6hZs2bIfhCZrUsZLo3nGs+jMZ6jQoUK3nVCsCbh/fr1M9WrV8/y84iIJJobmyOtia45enRojh7bOXrZsmVTBdMjyV7nutKVgxHJDJVzkZgig3fVqlXe1ytWrAhZlzKaTjrpJFtra8OGDTF7DkkevXv3NqNGjbJ1yteuXWvuuOMOc/jwYdsJPCt4j7pBdvv27d7tTZo0Meecc06Wj1tEJDvgfFerVi1vAvTLL79ErS5lRjSe5y6xGs9D1fr1XydecsklWX4OEZFkcNZZZ3mfB+4gS4/m6JJd5uiR9ONhMcllxHNdKZIVCqJLTLHS98wzz3i11Xbs2OGd8KgzHSstW7a0/9auXTtmzyHJ49prr7V1Th999FGbMbl8+XIzffr0NI1MIuXvUO+vLa9MNRHJTcje8Wf7uAVxuHNkrMZ0jee5S6zG88Ax3dm0aZP9l118roSbiEh2d8UVV4RsCJ4ezdElu8zRIwmiz5071yttVKNGjSw9t4jKuUhcViCnTZtmt+78+eef3grgwYMHo/Ycw4cPT/V11apVs9z1OTtigMit2BYWje3efrxH3Wq1PxPdNcgVEckNBgwYYGtHs7uMTPRFixaZ5s2bp6pHGa0xXeP5/9F4Ht3xPHBMB9lwrinZb7/9Zt/bvMdFRLK7Cy64wPt89erVpl69emH9nObosaExPfpzdJx44olh3f/LL7/0Pnc9fkQyS1eKEnMEzsuUKWM///333+2/pUqVMrt27dKrL0mN9yjvVezcudO7fcqUKQk8KhGR+DrvvPNMw4YNbW3LwEVFtn7TPEpjuiQzAuYEyt2Yjo8//tj7vFWrVgqgi0iOwe6afPny2c/feuutsH+OcyQBysD+JyLJhGtOdkiGW9v8wQcf9HrsNG3aNMZHJzmdgugScwsWLDBvvPGGF1BnKw0D9K+//mr++usv/QUkWwTRN2/e7N2upqIikps8//zzdkJNNrrLavMrXbp0qoVGkWTjFnl4rzqvv/66/ZeSg+PGjUvYsYmIRFuBAgVMpUqVgo7Z6XHnSC2MSzLj/ekfzzOydOlSWxedpA//YrpIZiiILjH3+OOPhzzp5caSK5J9+N+rbPN2ddT69OmT4CMTEYmvM844w/v8u+++82pLQrvLJNm5gJB/8rxy5Ur7L5Nql7EpIpIT/Pjjj7b+NEhc++OPP8L6OXeOVBBdskuiW0ZYRGrfvr3XL89lpItkloLoEnOB9aPXrVsXtESGSLLh/eneq672WoMGDeyEW0QkN/E3XWQyvmbNGu9rBdEl2bnrTf+k+8CBA964LiKSk5QsWTLV4uCSJUvC+jkF0SW7zdHTQxJcs2bNvMRN7SaXaFAQXWJu5MiRplChQqm202iAlmRHluXPP/9s36vUUnVNcf3ZmCIiuQF9ID744INUt3399dfe5yrnItkhay1//vzm5JNPtl9/+umn3vcuueSSBB6ZiEj0FS5c2LRp08b7+rPPPgvr50455RQbfFeim+SEci5z5swx+/bt8752GekiWaEgusQcDR/8GWw0dipSpIi9XVvFJFnt3bvXq98/b968VDX+RURykzx58thzot/06dO9zzlPkuVDvUmRZN767bZxP/roo973br755gQemYhIbPiDjDNnzgzrZzhHaneZJDOuNbnmDCcTnbiTX/369WN4ZJJbKIgucVGtWjXv82XLltkBmm1mCqJLdqif6m849s8//yTwqERE4q9Ro0Zeg3Bn0aJF3uecJ//++29bd1UkO9RP3bRpk/2XhA4y1EVEcpp69ep5n69YscL8+++/Yf2cguiSzMgsZz4eThD9pZde8j4/55xzTN68eWN8dJIbKIguMcekevPmzakGcZCdTtMTkWTk3puUb5k/f753e9euXRN4VCIi8XfqqaeaLl26pKqvumfPHi873ZW50pguyYr3pnufUtPfZae1aNEiwUcmIhIb9CFzCDqGu5uWc6XGc8kOc/T00Pdk7ty53tf+8kYiWaEgusRcwYIFbR10Z/v27bbGdM2aNVPdLpJMeG+WKFHC7pjYtm2bve24444znTp1SvShiYjEHee/N99805x00knebbNnz/Z2mx177LEa0yUp0Vhs+fLlplatWmlKEd11110JPDIRkdhhh5if/9yXHubonDM5d4ok4xyda1J/pYNAlGRt2rRpqvdwhw4d4nSEktMpiC4xd8IJJ5jBgwfbE5m/Q3idOnXM+vXr09SqEkkG7j0K11S0UqVKCT4qEZHEYEJNVk/16tW92yZNmmT/LVCggKlSpYo9b4okmw0bNpjff//dG9N79+5t/6W0YJMmTRJ8dCIisXHNNdd4zZQjCaJzrmR+vnHjRv1pJOlwrVm1atV0S7HRSHflypXe11ynqh66RIuC6BIX9913nxk5cqRtToYpU6bYAZrGEEzMRZIJ70sXRP/uu++8Znnq6C0iuRVZ6HfccYedhLiM3q+++so7P3K+VBBdkpF7X9auXdtmpW3ZssV+TZP7E088McFHJyISG3Xr1k1VsopzIaXYMsK50t1fJJkT3UJp1qyZGTZsmJet3q5dO7tjUiQa9E6SuGElvGjRovbzOXPm2Kw16qtqgJZks2PHDnuRyQD9/vvve7erEa6I5FaNGzc2LVu2tDtzGjRoYHeZ/fzzz3ZHGThfrlq1Ks32cZFE4zqzfPnytra/vyFux44dE3pcIiKxduGFF9ryLM4nn3yS4c+wwFi2bFnN0SXp/PXXX/ZaM6MgOuWEe/XqZXugQIlwEk0KoktcUJfqgQceMLt377Zfr1271tayOvfcczVAS9JxCzsM0BMmTPBuv/baaxN4VCIiicP579NPPzXjxo2zO8sYvzFjxgzvfEkAffXq1fozSdJmrT377LPe7eysEBHJyVq3bm2uvvpq7+s33ngjrJ/T7jJJRlxj0iTX7ZYIhtKD7CTnmnXz5s026eOSSy6J63FKzqYgusQFGbxjx471vmZVkM7KGqAlWSfcxYsXN6eddppXs7958+Z2a5iISG5FSbbzzjvPfu4ag7/33nv2XzLd2Cqr3WWSTCjfsmzZMi+I7moCsxNSfU5EJKd78MEHzSOPPOJ9PW/evLB21nLOZJxXc1FJJlxjcq3pEjkCrVixwpYxqlevnmnbtq297eKLLzYnnXRSnI9UcjIF0SUuTj/9dLstzG/ixIl2gF63bp1t+CSSbFlr+/bts6vZ6N69u909ISKSm51//vneDjMsWLDAlnWhaVPlypW94LpIMqAxHovhjOk9e/Y0R44csbdTJ5jGoiIiORnBREqo+vlLVWbUXJRMXpFkwTUm72euOYMZPHhwmvds165d43R0klsoiC5xs2HDBltjzZk9e7ZdKaQpmb9GpUgiERji/ch7c9SoUd7trGKLiORmL730knn88cfT3P7RRx/Zfzlvzp8/PwFHJhKcez+y9fu1117zbqdWqohITte7d29zww03pLrt7bffzvDn3O4djemSTHg/cq0ZyjnnnJPqa4LtLiNdJFoURJe4Of7441MFIglUkrVWqlQpW7NKJBksXLjQ7N271zbQe/rpp73bqacmIpKbMV5T9zxwV86YMWPsv5w32Uq7bdu2BB2hSGpcX9avX9/kzZvXNsV1ZYmaNGmil0pEcoXq1aun+poSV+zSSQ+JbwQrNUeXZPHTTz+ZlStXmksvvTTo99lpNmLEiFS30UA8f/78cTpCyS0URJe4uuyyy7zPKZOxePFic/nll5spU6bYjHSRRKNrfdGiRe2F48GDB70FoBNPPDHRhyYiklCUwFi1apW58sorU91OSZdffvnFTmwIUGrSLcngr7/+so1vyUIbNGiQdzvvX5VnE5Hcgp5OjM1+o0ePzvDnOHfSR4LFc5FE49qS93GwIDq1+1999VVbitWvW7ducTxCyS0URJe4ooSL34QJE+wATe0qaqOLJBoLOm3atEm1kk0dVRGR3K5QoUKmWrVq/1979wFlV1X+DfjYEJEWkV5CkdADRJEeWiA0laI06dKl996RpoCgKL1KkS6CEKpI70jvUpXeFFQ+nG/9tv8z3pnMgQSSKZnnWesyM3fuhJk7s+4++91vGSmIHueee241YMCAaujQoeV1FHrajTfeWGbu5DqztQfwTjvt1KPfF0B3ypqcYYydg+gffPDBx35dXjvTF/2Pf/zjWP4OYdT+jpdYYolqkkkm6XB/EjGXXnrpDgN0Y+DAgdUiiyziqWWME0SnW3VVAp4XvZTZJAMYelIOcx555JFSHdHaO/Wggw7q0e8LoDf53ve+Vz3zzDPVTDPN1KFfejYyef28/vrrDQynx+W6Mpvou+++u/y91i2J0t4FoL9I0LHOJk97ylTcvvnmm9V55533sV83ePDgavrpp7dHp8flMOeGG27osr/5TTfdVA566pZttS233NIAccYKQXS6VbJ/br311rKpqVu6vPjii6VEXOYavWHDnYvLYcOGtfcKnG222UovVQD+u5HZf//9q/XWW68MLJtrrrnK0/LUU09V99xzTwmiZ7M+YsQITxc9Jgc6ua7MhvuAAw5ov3+zzTazqQb6lWTvnnLKKe0Jbdttt115/9hjj/3Ydqqf+9znymuotqv0tFxT5toy15idpQLyyiuvLElvu+66a7lv/PHHL+s9jA2C6HSrlIEvvPDCpX9qnZV+2GGHlQU6wfX0VIWekovEDL/N2/RWCwswwP9MMMEEZTN+yy23VEOGDKmOOuqoarHFFiufy/2zzDJLCaw7GKcn1QNus+FOxmVtk0026dHvC6C7TTjhhKU39Mwzz1xauGRAYwLk999/f3Xbbbd97Ndmj/7cc8+VeSjQU3JNmThSawVkLX/LK6ywQmnn8uijj5b7Nt5449JiEMYGQXR6RBbsLOhx4YUXViuuuGJ5P6eI0BPeeuutUg6WDfdee+3Vfv/w4cP9QgD+Tw7A99lnn1IGfvTRR5cZEhtuuGH53DnnnFO9//775XX0iiuuqD766CPPGz1WWZYe/nX1RGRg+HTTTec3AvQ7CTTut99+1emnn14+rjPQjznmmE/MYs+eXdtVekquJXNN2TkL/fXXX68efvjh6rLLLisJmg899FD7YPu62gLGBkF0ul2mJqd87J133ikfv/vuu2Wo6EILLVQC6tBTJ9xZpDPxO9lrdSuXulUBAP+1ww47VGuuuWap2Pnwww/L2p1NdtbzBNLTMz2bmxxMQndLcCh/k1nPd9ttt/b7E0AC6I+yx0nC0KmnntohIH7BBReUeVBN0tIyWb726PSU9DtP/KhzP/StttqqWmCBBapVVlmldDrIQXnW/yR3DBo0qMe+X8Z9guh0u7y43XzzzR3uO+SQQ6r111+/ZKK/9NJLfit0u0ypTyuXSy+9tD07wzR6gGY/+tGPyturrrqqfZBo1vNsarKByesqdLcMEv3zn/9cfelLX6ruu+++ct9EE01UAkEA/bWK7IQTTiiH23U1eO3ggw/+2K/NHj2tXzL3BLpbriWT2Lbgggu235c2bTfeeGNpT1T717/+Vd5mXg+MTYLodLtMBN9zzz3LtO/a9ddfX04RMwTitNNO81uhW6V/Wg52Nt100+rQQw8t92WxnnLKKf0mALqQrPO//vWv7S0zan/5y1+qP/zhD6X39EUXXVSyh6A7nXTSSaVtS1oO1XbZZZf2WTwA/dHOO+9cDrpnn332Dvefe+657b2ku5Kqnmmnnba8tkJ3yjVkriVzTZmWRLUcBH3ta1/rcsjokksu6ZfEWCWITo844IADykJeS0l4+lmlPDyDyeqhjtBdJ9yTTTZZOcSph9tmEQaga8lKy6amzvxplU36BhtsUNbys846y1NIt0lFRAJCw4YNa+/J//nPf15/VKDfy7DFddddt71v9Khmo3/xi18sX/ub3/ymveoMusOZZ55ZKsRzTdnqsMMOqx5//PGRHn/QQQd1CLbD2CCITo/JIp4+a7WjjjqqbMiTxZbScOgOGYKXITsZjFcPx4v8LQLQtcUWW6xadtllS0/KzjLg6bnnnisVZr/+9a8djNNtzj777LKu33rrre33bbbZZiNVTAD0RzPMMEO13HLLjXR/Dh8zo+zj2rfltTWBdOgOScRIC6JVV121mnzyydvbteW6sqtDn/xdS4KjOwii02NShpNNeO2JJ56o3n777TIU4uc//7nfDN0iF4MZtJMFOn9/de/Ub3/7234DAA2S3TtixIhyAL766quP9Pn999+/2mabbUqm0DXXXON5ZKxLtloG1y+11FLlmrLOoMzfIgD/DUx2DjTONddc5fVz1113bXyKBg4cWAY7Hnfcce2zo2Bsuvrqq8s1ZK4lI5WPyUjfcssty1D7rrLQoTsIotNjkqV23XXXdbgvgyC22267sjH/uN5sMCbkIjAHNrkoTL/U2p133ukJBhhFmXNyxBFHVPPPP3/7fRkUnhZZuc/BON0hhzW5dnzkkUc6VJWZbwLwX3/729+qfffdt8PTscgii5QDx8svv7zswZtkj/7www+PtH+HsSHXjkOGDKkWXXTR9gOg4cOHV5NMMkm55W+2lr28BDi6iyA6PWbWWWet1llnndIbvW7rktPGQYMGVVNNNVXJJoKxKQNtczGYgaK33XZbuW/qqaceaeAOAM2Hkf/85z+rr371q9U+++xT1vbaHnvsUTbdGTTaVe9KGNMb7mmmmaYMvK2rJXbbbTdPMsD/yWvk2muv3R6YnHnmmUvLjDrbd4cddugyyzeWWGKJavDgwQ7GGevSWiiZ6LmGrHucf+UrXynVjy+88EKZYXbOOeeU+zM0/NBDD/VbodsIotPjrTSOPPLI8iI43njjlfu23nrr6sc//nF12mmnlRdJGFuBn5R9zTvvvNWJJ57Yfv+FF17oCQcYRQ899FDZjG+//fbVQgstVD5OuW02NclWm3baacvBeIaNwthyzz33lOqH/K3V1ltvvWrGGWf0pAN0mh2R4aITTDBB9cwzz5QqnrRZzcFjKnnSc7orCWYmyJ6vvffeez2njDXpeZ7EtjXXXLP697//XQ523njjjfI2bVczODyJGpG/yTnnnNNvg27zuTZNregF3n333Wr55Zdvzwb+05/+VK222mqlNOfkk0/u6W+PcVCG166wwgrV+eefXxboSNAn/dbyFoBRs/TSS1czzTRTteKKK1YHHnhgtdJKK5VZE9mIZ/ZJst5yQP7AAw9U88wzj6eVMS4DxZ5++unq2WefLYfkWceTkV4PIwOgo6zLr7zySlm3sxd68MEHy/0DBgyonnzyyWqyySYb6Sn7f//v/5V1PANKkykMY1quFdMK8Pjjj6+22GKLat11163uu+++sqane8GCCy5Yqh5/+tOflkB7Kh0TWIfuIhOdXuGkk05qD6BHSnf23nvvko2uNzpjWnqq7b777tXiiy9esilqyZQUQAcYPddee211yimnVF/60peqP//5z9UxxxxTXmfzenrzzTeXQOYss8xSeqfDmJaKh2RSpqKxzg1KZpoAOkCznXbaqfrWt75VWls+9dRT7ffnEDyvoV1JH+rsl9I7PW0xYUzLteI3vvGN6kc/+lGJA5133nmlQiJ/l+npf9lll1U/+9nPymMTSBdAp7vJRKfHZaM922yzdVi8601RXjxzEnnxxRf32PfHuCftg374wx+WTXcyJ1MalmzJVEAA8OkkgJnDyVtuuaXD/WmxkcGj66+/fnmdzestjKm/uQwTS9bkO++8U+7LQNvXX3+99OkHYGTvv/9+yeJNNfjpp59ehjAny7xVEo1SWdbV627at+XtHXfc0d6zGj6rm266qfTeT6X4GmusUb333ntlVtnLL7880mPzuBtuuMHfH91OJjo9Lv3X0tMqJ+Gtttpqq+qAAw6oLrnkkur222/vse+PcUv6qmX4XVoFpSd6PTwnizUAn96rr75aSrw7S+ZQgpw5FM+gR50EGVMyx+Tuu+9uD6BHMtQE0AGapR/6hhtuWC2zzDLVJJNMUg0aNKh9X17bbLPNqrfffnukr03Q/LDDDqvuuuuu6qKLLvI0M0bk2jDXiEOGDKm+//3vl4+TUNlVAD1tXdLuxQEOPUEmOr1CXiRzm2+++dr7sUUW5v3337/62te+5qSRMeIXv/hFaReU1gMbbbRRuS+VEJkCDsCnN3To0JJpnl6VCZpnc1MHzFMCnhkn2bSnFDcHmfBZ5BB8rrnmKkGe1157rdyXQ5z0RW8NBAEwsmSeZ23eZpttyv4or5upEI+0Y8vwxgQxm+aTZZ5ZXm/TDib/DnwWl156abXqqquWVkH3339/9fe//730629VX1ceeeSR1c477+wJp0cIotMrhz3Wpp9++tJbdfXVV6+uvPLKDp+D0ZXFOH1508Ll3HPPLUNEI9UOq6yyiicU4DO44ooryoZn8803Lxls2YB3Hv6YwGcy1jM4ygwKPosTTjihDB1rleFjScgAYNS89NJLZX9U74vqgHjd3iX78+HDh4/0dXm9TdZwXouz5sOnlb+1wYMHV9NMM01pubrxxhs3PjYtAW+88UbXkPQYaRr0KumlWpeTxQsvvFB6Y+X+nDbWizt8Gj/5yU9Kxlr6pdZ/S8laE0AH+OxyQJn2a9n81EPJWttqJLsopePJWjvxxBM95XxqGTC27777VhNPPHH7fdtuu60AOsBo+vrXv14tvPDC5f0MCE9AMxnByVCPDTbYoLRl6ywt2tZee+1qv/32K6/J8GnlmjBDRNMmKFWN88wzT6k0S0Jla5VDrinTw18SBj1JJjq9Sjbf9SLe6ne/+13JRt91112rgw8+uEe+N/q29EzNEJxM/M5U+ZQrpmzxn//8Z7lgBGDM+cc//lFdfvnlpddqguu1CSecsPre975XWrqkfduMM87oaWe0ZUhthoTX1Q5TTDFFGVA/0UQTeTYBRsOOO+5YHX300dV4441XZkdlf7T77ruXPVP2Tg899FC19NJLl4PwzsHLF198sZp77rnLun7GGWd43hltaQmUoHky0FPVEB988EH5e8yBTgbcrrnmmmW9/9WvfjVSBRp0N5no9CpZqHPqnY1R6zTwBM/33nvvcjqZYCiMjmSdpw/vvPPOWxbiut9fFmIBdIAxK6+xF1xwQemjOmzYsNK7MjMosvlOW60333yzGjBgQLXJJpsYMspoy+HMWWed1aFd0KmnniqADvApZFbUTDPNVK277rrtQxu33HLLkvWbip/sla6//vouE9mmm266EoA/88wzy2szjO71YvruZ/5d9uq5dsxMnVSN55oxCRk77bRTWe8zSyftAqGnyUSn13r99derI444omy+Iwv3xRdfXAKi99xzT1ngYVQkk+KnP/1pueVCsb7oS7sgAMaslHVnuOgbb7xRnXTSSdUPfvCDMt8klWYrr7xy6Yu+yy67lPVdVhGjIwcwKfFOlto777xT7ltttdXKIHoAPp0EKZOBnhaqt9xyS8n23X///Uvby2Sn10Mdr7322pKV3iqDHrO2p0d62rXlkBxGxfHHH1/9+Mc/LjNzbrjhhnJ9mEObOeecsyRU3nvvvaUn/8wzz1ziP5NOOqknlh4niE6vXsxzInn22WeXj7Ow54Q7/avTHz39reGT3HXXXaXCIf36MvCuzlzLQJIllljCEwgwFiQr7ZVXXqm23nrr6lvf+lb1yCOPlIqyl19+uWQNp5d12rxkXU9bl2TBwSdZb731SqZaPdck7YH++te/lrcAfDYJhJ977rnVPvvsU5KNll122bJuJys4e6gpp5yyVIUnGanzcNIccCZbOOs/jGobl7XWWqsEyO+///4uH5es9Ntuu83ME3oN7VzotR544IHSeqO13CetXrIJP/zww0twFD5O+p3nICaDb/L3VAfQ99prLwF0gLHcszrZ5l/5ylfKIWZkHkUC6BkS9e6775YNU0p4U8pbt9mCJpmPk8SK1iHzyVATQAcYM9JyLdnkyT5PBW8C6FnHs4dKj+ocjn/nO98pj2s17bTTloqztNrS1oVPkmu+DKHPUNsE0ZNoUUvFQ6tULM4333yeVHoNQXR6rbRryQKdDPTaM888U8rE80Ka4GiCpNDkgAMOKIPGMuwmrYAibQUMpwXoPt///vdLFVlKvhNAz6CoeOyxx0oWUkp4f/3rX/uV8LFtXLLhbrXttttWiy66qGcNYAxIoDxtXK688srSyuVnP/tZNdVUU5X2WRNMMEEJrCeQngPwDIFsnUsRG2ywQWnBsdlmm5XXbGiSwHiqwpPYlr153TIocq1YD7DddNNNS8wHehPtXOjV0uMyp5Grr756+30Jqmf6dzZTeWH95S9/2aPfI71TevYNHz689Fk77rjjyn0ZkJMeqp0nywMwdrz33nsliH7TTTeVMvDnnnuurOOtmedLLbVUdccdd1S33nprGQANrfK3suqqq5ZM9NqgQYNK5pr1HGDMSduME044oVR9r7322uWQu16z65Yu9dsMfEy2eue2LnPPPXep+E0CU2syHESqw9NqNcHyHMrkOrFVnWyRa8NUm+Ux0Jt4VaNXS/A8A6PSU7WWRTwl4ikLzzCKLPTQKtnna6yxRhl8k7+R2q677mrDDdCN0mqjLs3dcssty8Cozq1bMsRs+umnL1VDr732mt8PHaQdUGsAPRvqHLgIoAOMWRkAfvrpp5dD7wUWWKDcl3YuUQfE6/uTqX7iiSeO1NYlLV3ymp1sdmj16quvlr75aeWX1myd2wLVAfT0188hjAA6vZFMdPqEtG1JyXeCo7UMKsvt5JNPrq677rpq6NChPfo90jukz25Ot5MhkcU5WY+Ri8EMH+vcZw2AsSs9VfPaPPvss5eeqTvssEM10UQTdcg+Sl/MmHPOOatrrrnGxoni/PPPL/1Sa1nDM9RuyJAhniGAsSj7qMGDB1dPPPFEWaNff/31aooppqj+/Oc/lyS2HHAmsH7eeeeVlhytDjvssGqPPfYor+FJbIK0bBk2bFj1+OOPl3U813qTTTZZ+TtLBXk6DeQxaSF0++23VwMHDvSk0SvJRKdPSCA0/dCjzjzKi2825YsvvnjJWP/LX/7Sw98lPS2B83XWWacEbHKoUgfQJ5100nKfADpA95tmmmlKAD2222676ogjjqgeffTRarHFFmt/TDbnea1OhnGGiKfMl/7t3nvvrdZdd90O95100kkC6ABjWSrGdt5557L/TnZw1uhkD88222xlL77PPvu0DwXP3uuKK67o8PW77bZbaQeTftb33Xef31c/l2u69NvPNV7arKa6Ia15U4GYdm35+0oAPa1X87ckgE5vJohOn5AFe/PNNy+LcTZQtXPOOadaZpllSkZbXoQ7lwTRv2Q4yR/+8IcSpEmFQqR1wPPPP68nH0AvkAPvSy65pGyYMvcka3r6oKdkN9VmeT/l4a2tuOh//va3v1Urr7xyh8F1GSSaoA0AY1cyzJOsltYaeS2Ot956qwTHk5Vet+JIy7Y8Jglt119/ffvXJ3HplFNOKdVl2aO/8sorfmX9WKoQTzvttOrLX/5yWceTWJFD8iS8ZUhtrgtzHZgWLirN6O20c6HPyAKdk+8syhlAtsIKK5TFPH7xi19Uu+++e7XssstWF154oYBpP/Sb3/ymLMbZZOeEu85iTPbDfPPN19PfHgBVVQ7DU/qdtlvJSMqmKsH0tHjJup61/pvf/GZ1//33VyNGjCizLehfEpzJULq77rqrvX9+evCmvNuQOoDukZZrN998c1mbN91005KglPklOfDOHnz++ecvrTInmWSS6p133ilZxFm3F1lkkfZ/48UXXyyv3zPPPHMJsieISv+StruJ0XRVYThgwIDyt5Skt0svvbRaccUVe+R7hNEhiE6flF5sWaD/8Y9/lI8TXM908B133LHac889q4MPPrinv0W6eZJ8JngnCyIL8Pvvv1/uT3lYTrQB6B3efPPNMmA0A8lyKD7rrLNWH3zwQRki/tBDD5XeqzHTTDOVTXle3wcNGtTT3zbdJEHzHIife+657ffNMMMM5e9C8AWg5+aTpTVL9tlzzz13tcsuu5Ts4gTOE2yfeOKJS+Z6MtMvv/zyaskll2z/2hyA5mA0h+g5ONdes/9I//MFF1ywrO2tc3Bah4jmbfbr3/nOd3rs+4TRoZ0LfTbruA6gR8p9s6hngMkhhxxS+q3Sf3qmJkMimYs33XRTewA9fwvJbgSg90hP1Qwam2666appp522vE7XG6g6gB7PPvtsOSBPy7a8z7gvWWpbbbVVhwB6+uQ/8MADAugAPejDDz+sxh9//BJMTxA8h98JjOZt2qomgJ5Aelq8LL/88iWQXkvl2amnnloGR6blppkn/SeAntl1+RvpHEBP5nndZSDXhALo9CWC6PRJOdHMAp4SoFpeoM8+++ySjZ5+bccee2yPfo+MfQ8++GApD5tlllnKQp2SwUglwk9+8hOZDgC9XDbf3/3ud7v83GuvvVY27Gnp8sILL3T790b3SVAlQ+xOOOGEDpvsrPMJpAPQc/bdd98SBN9ggw1K8HyNNdao5pprrhIITQuuOpCeg/J8nGrg7Mtr6Xv961//urTczD5dIH3c9vTTT5d2qrmOy8DQVlnbcyiTHugJoKcSEfoSQXT6pLzYptd1+mVONtlk7fdngOSVV15ZMply0p3Fui/61a9+VQ0ePLic6Oe28MILl4GZo+uAAw4oZdEpn99mm23KgNZMw05pdHqHp1S+r3r00UerYcOGlWzGRx55pHrjjTfaD1gyYBSA3i29VIcPH16y0FMm3pUMIM3GPBnpL730UtUXWdM/XoIpqSY86qij2u9Ldlo24VnjAehZ+++/f2mlmozyDAlN7+qHH364mmOOOUqQNMH0tHJJRXA+lyrx9dZbr8wtq22++ealBcyRRx5ZgvJ9MZBuPf9kuVbLNVv+LpL0mGB5Pc+kDqDn0CWxjbRihb5GEJ0+a9555y0ZyHkBnmCCCdrvf+yxx6prr7222mSTTUrf1Zx49zXZNB522GHVPffcU919990lCy+TzXOxMjouu+yykuH38ssvl1v6xqfn7Omnn15dddVVZTp2X5TS7vTWm3zyycsmO5mK9ab7d7/7XU9/ewCMgqmnnrq0YFtppZWqX/7yl2Vj3ZUcBGfTntf95557rs89t9b0Zgmi7LTTTuWap5Yeu1nbM8AOgJ6X4aEZMprErmmmmaZU/NZJTXPOOWepCI+DDjqotHJJslYkiSuJbQmyR95P29VUDe++++59LpBuPf94uUYbOnRo+b3m7yDt2TLLLkNpE69JAH2KKaaobrzxRoPj6bvaoI/717/+1TZ06NCswG2f//zny9vcBgwY0LbVVluV9w8//PC2vi4/z8knn9y2xBJLtP+MnW/77bdf++Off/75tvHGG6/tnXfe6fLf++1vf1s+/+GHH7b1JXfddVd5Luaff/62ySefvMPvOz8zAH3LRx991P7+EUcc0bb77ru3HXPMMSOtcRNPPHHb9NNP3/bUU0+19XXW9P/+3rfYYosOv+NJJ53UWg7Qy73wwgttyy23XHnd/sIXvtA2xxxzlPfPOuus8vn//Oc/bVtvvXX7a/vw4cPb3nrrrfavP/roo8v92267bXlsX2Y9/68777yzbaKJJmr76le/Wn73I0aMKPdfddVVZW3P73vmmWdue/LJJ3v09wWflUx0+rwMJJtppplKeVAymTL0JN56660ygDStXdJ7LS0+0sOtr0k53HnnnVcGqeb0P2Xv6UGXzK2UwueW+zfddNPST7SWjOxMRk87mK6klUs+l+evr7jhhhtKeVgqEJ566qnSZy2mmmqq6tVXX5W1BtAH1WW+dRby17/+9ZKtlqqplE7X1WZp65K1K4OqUpHUF1nT/ytl3uuvv36HtnvpfZ5qORnoAL3X22+/XdpnjhgxolpsscXKupZ92a677lraiNYtVi+88MLSRvTLX/5ydfXVV5cBo08++WT5/Pbbb1/W98wwyx62c9/svsB6/j/5/eZvIgNEE7NIG5/llluurPNp75O/mcQrbrnlluob3/hGD/7W4LMTRGec2HynROimm26qdtlll+rOO+9sLyHLZvuUU06pfvzjH1eHHnpo9YMf/KBMDe8LMkwrveVy4bHFFltUl1xySSmXy8CWBL7zuQSPc0uvsQQZcl/nVi5NPWZTbrfZZptVfcXxxx9fhojmACFlYfWU70GDBpWBon3pMACAkaWFWdbrHAjn0DSDy3KInDYuafeS3poJpGcdz2bsoosu6jNPozX9f3IAvuiii5ZEh1oGxf/lL3+ppp122h75/QAwanLgufHGG5d9aXqkr7XWWqVNx89+9rPS8iUyXDR71rR5SSuXtIN5/PHHS6A188si+9sMKz3zzDNLwLVOjurtrOcd5Xe4wgorjNSaJzGas846qyQxps1urusSt4C+ThCdcUICqDndjnnmmaeacsop2z+XRTwn3dmU58Q8G7ds1Hq7DAG9//77qzvuuKP0ds809AzQHBUJMvzxj3/sMoiez6X/bC58MiSmt0tmQn7+BFbWWWedEkCvsxWSsZifM73QAejbvvnNb5Ye6clCTyVVBojffvvtZfZJhpHVh6X1Ier3v//9MkC7L1SZWdP/KxUEyULLvJdaDsdTVZcgCwC934EHHlj2qLPOOmt19tlnl33qKqusUvbjOehO4lr2rdmXJ2M7iW2TTTZZqRTPPjT78roiKcHV9FZfYIEFyj6vt7Oe/1euvXIQksHwnQPoSfDL53PdlkS4E088sSQGwrhAEJ1xToZMZjFvlRfxDCzLKWgW9izSyVzvzbL4ZKOZoEKy6DNI9ec///kofW0CDgmSdy6JTuBh+eWXLxOxk9meFji9WTISkpmQaoIs0uecc04pEasH1SQD3Yk2wLhjzz33rI4++uiSdb7IIotU11xzTRlClRLw1mB5stuyOcthcDLW67Wht7KmV6VyYP755y+H+bWVV165BE1srgH6jqzRdQV0kpk22mijEhDPupwkp7TwqLO2Bw8eXLKS33jjjdKuLZK1ntZszzzzTElwu+uuu0pFUtb9tC7tzaznVYmnpL3qCSecMNLzk991Dkgmn3zy6rrrrivJcPl7gXGFIDrjnPREz4loSsgSSG6VTLb0bkvWU3pr51S0r0jwIFn1Xem8MKWVy/e+970O92XTmoB0Fv70S697x/dW2VR/+9vfbs9iSN/UZDLkQi0/X3ropZwQgHFLvaYlsyl90RNEz7qdNaB1vUuJeGRNy8b7ueeeq/qK/rSm52fde++9S+VAa7ZaWu9dfvnlHXriA9C3ZM+WoHmyz2+77bZy3wsvvFDuS8JWPj9w4MCSiZ6WoksvvXQJmKcFaw5Wzz///GqGGWYorWDyNauvvnrJdO8LVWb9bT2PVPRnb965sr/+WfN85OdJ5dnQoUN76LuEscdVK+OkDDZJWVgW55SMtUrftSxWa6+9drX55puXNiHJXu9N9thjj5Ipn8UpJ/j5+MYbb6x++MMfdvn4ZJY/9thjZbhmggrJRG9t5VIvzsnUS1Z3Pv7b3/5WbglK9DYZRJOASDIccpJ97733djgIaer1DsC44+WXXy4byhymps1LNtadS4YjvVizBqZyK2XhvU1/XtNTwp9eqfn91RI0v/TSS0e5ug6A3muOOeaohg8fXi211FLVfPPNV1ptZuZFep8nyzwH4c8++2xZn4YNG1Ze/9OyNHu9rF/pqZ5D1lRMJ6CeuV377bdfteaaa3aoXOoN+vN6Xg8QHTJkSLkWy7yaVAIeccQR5efMfTk0SZVBfs6pp566p79dGDvaYBz34Ycftq233nrZdXe4ffGLX2zbZJNN2r70pS+1zTnnnG133nlnW2+x8cYbtw0cOLBtvPHGa5t88snblllmmbYRI0a0f37eeedt22+//do/PvPMM9smmGCCtpVWWqnt2muvbZtuuuk6/Hs33HDDSD9/fXv22WfbeovXX3+9bZ111inf1xJLLFF+R63f6/7779/T3yIA3Shr1FlnnVXe/+ijj9oOOOCAtkkmmaTtmGOOafvqV7860rqet9tuu23b3//+917ze+qva/rVV1/dNuGEE3b4/maYYYay1gMw7vjXv/7V9sEHH7R/nHU7a15e9wcPHtw233zzlfcXXXTRtv/85z/tXzNkyJC2L3zhC+VzAwYMaDvjjDPK5y+++OKyfkw//fRlLekt+ut6/t5775XfVb6vz3/+820zzjhjiZ2svfba7d/v7LPP3nbvvff29LcKY93n8p+xFJ+HXmO11VYrPcBnnHHG0sMrpWS1ZZddtnyckqNksKe/al/uzZny6Jx0Z4hHX5Jsw1QGpM9tsgmvv/769s9NM8005RQ/p9wA9F+ZlbHbbrtVRx11VOmv+tOf/rRktOVWV5Wl7VdKw88444zSc7Uv64trejLptt566+qss87qcH/m0qQ1m2HgAOO2tN1MJfHvf//7slZnL7fwwgtXhx9+eOmlHaeeemr1ox/9qFQnpX/2K6+8Uu5P9dKvfvWrktmcdSN9tTfddNOy3k888cRVX9UX1/N6j55KwLqFXi3xkrSxye9v++23Ly140g8fxnXaudAvZNDojjvuWBbzlIVnwa4Dshla9vzzz5dFOuVHCeDefffdVV8199xzlwEefcWbb75ZrbfeeqU/XPqrRWsAPdPbM0BUAB2AzTbbrDrttNNK6XQ24iklvuOOO6qFFlqovZw6JdDpx5penDvssEP1/vvv99knrq+t6bmmygFGawA9G+xch5100kkC6ADjuLRUTVA1B9mHHXZYafdSt2dLq5faE088Udq9pId2AuiZZ5bBpGkFMvvss5e1Pq1fElA/55xzyj7x2muvrfqqvrae59opLVuyR+8cQI8E0NPTPu1zE0MRQKe/kIlOv5SFYPrppy/9xlqtuuqqpcdZBqAk023fffft01npvV0GitXZ59/5zneq8847r/S2rW2xxRblwgkAIgHzjTfeuDr33HOrwYMHlzknCaxnM5denK1rSD3oaqaZZiqPy2adsSO9bLOe5/fSaoEFFij9YieYYAJPPUA/kf7e2U9nllVmY2TdThA9/cTTC70+/I4FF1yw7L/rTPSvf/3r7VXj0003Xem5nccm4S2JVllrjjzySAlWY1EOLzIotqvgeXzlK18pmec5LMnBB/Qnguj0S5kcns10V92MBg0aVLLXcnqe97NIL7/88iNN1+bTe+aZZ6q99tqrBM1zIfXkk0+WEv06Yy3DXhNAn3POOT3NAHSQrLWsFbUMqMyafd99933sM5WNd1q2TTXVVJ7RMfi7SOA8BxmtGf+5ZsrBxbrrruu5Bujn0m7t4osvrtZZZ532irEMD017lwRqJ5xwwupb3/pWCbJnXZltttnK1zz33HPl8dkvHnroodVDDz1U2q9ONtlkJcs9w0dbrwf4bJJgmOukE044ofExGQKbg40kKEB/JIhOv5SMtUzTzol3Nn05be1spZVWKoHdlCillCkLdX1izqeT5/vggw8uC3MufsYff/ySeVAbMGBAeb6/8Y1veIoB+ER//etfS9l3MqF32mmn6uSTT67efvvtLh+bwG6y1XfZZZdym2SSSTzDn1KSEEaMGFEOvZ9++ukOn0tv2xyWJygCAGljkuz0VBinrerDDz9c9tWZW5b2L3fddVd5krKepwr8l7/8ZTVkyJAy/+QnP/lJ+yHtsGHDyoF4DmlT0Zx2IgmuL7fcchLePoNcN+UwPDGRPP85yMhzXvc9rysG0rZFVR/9nWM7+qUsCFmU07Mzp+Lps9Z5UMkVV1xReqOnD1j6dmcYStq9ZKFn9IeMpTVO+tfmOU+m/6uvvtohgJ7Axg033CCADsAoy9qxyiqrlAy2HHZnjU5mWmTeRus8jQR+//3vf5cN98CBA8t1QD2MlFGXMvz55puvVOm1BtDrg/Cs7wLoAEQyzZOYlrfTTjttue+iiy6q/v73v5dgeFq3bLfddtWkk05aPfbYY6V/egLoaRmSyuUMFc3nknGenuhpM5K1PIOq0yosa9EyyyxT1h9GT66B0iYn/egvuOCC0hIvz3XdoiUB9FwvpeKsruSH/k4mOvyftA9JhvR4441XFo7WsuQMykjP7iweGVa24YYbllKn9FWnWRbeZBwccsgh5UJpqaWWKmV6//jHP9ofk2z0BD6SlWDTDcCnkdka2XDXZeI5AM9g6vRNP+CAA0pJeIaVZROfDKvaFFNMUdag9ddf39DLT5DgRoIZN99880gZ/scff3zJDtT6DoDOcoh9++23l6S0WoK2qSDL3rpuExIJimdfGAmWp0K5fkwqmZPcVrdkTWJWAruXXXZZ9cgjj1Srr756qXpORjvNcp2UA4q0rW29Jmo144wzlsr9DTbYwIw4aCGIDv8nC28C6emzlgV+9913LyfaGYpSS0ZbysUyWTyl4wmmb7vttnp3d1ESlpK9Y489tnrppZeqFVZYobr//vurF198sf0xX/jCF0pgI4uzXnYAjCmpeEpQPNlUzz//fAnszjrrrKXXZ4aU5SD3rbfe6vA1M8wwQ9lQpoe3IZgdpcx+xx137DJ4Ptdcc1V/+tOfynMNAKO6V8wh98orr1w+TlZ5AuMZKpoqsVSSxfnnn1/256k2SzJbnYiVxKskvNUB4PTnTnuYrEdp87bWWmuV7PYMt+Z/8pylOjwDXxNI70qul/bcc8/qhz/8Yan2AzoSRIcWWbxbs6hy8poys85S8pSs6mwo0+c7gfUE0xMs7s8B4ccff7w67rjjqtNPP71koefCJX1R62nrkcU4t1wU1RdOADCmZAN90EEHlRZiyXLLevSLX/yiVEV1Dp53lsqzrbbaqtp6661LYL2/Skl3yu1z0N3aei1ynbTGGmuUwwobbABGV/aKG220UTVo0KCSaJWktVQ6Pfjgg9XRRx9dbb/99uVxadeWLPN63sY888xTHp9s9Pj2t79dPfXUU+0fJ7iex2TdyrVAEuMSTE/v9f68XiWhINdBJ510UuPcmLnnnrsEz7O+J9kN6JogOnyMnGin92cy0JN53lUwffHFF6+effbZsvinZ1jKzzbeeOP2nm/9oZdaNtpZlJOhnwyCaaaZplwE1aV2kZ7zaYGTLL+8n770ANAdsunOALJsEt9555320vCPs+SSS5bNdwaN95fNd4IRqSI78cQT24eJtZp66qnLgXlrr3kAGF1XXXVVGfBdt3ip+5ynNVi9T7z++uvLzKwc2qYtW6R1W4LnWcfTI33KKaesfvOb35QBpK2Hvlmv0jY0+/Q8JhXk6f+d9jD95TA8GeeHH3549cYbb5R2tUkOSIJbLdc2yTjPkPBk+wOfTBAdPkY22j//+c/LRPHzzjuvOvDAA8vwk67MOeecpUw8ZWTZeCYrPb3dsvnOyfm4JD9fAuaZ4J3nJZl93/zmN8tBw5NPPtkheF73VMv99ZASAOhOqZJKZlsyrFJhliFZ2Vimldvaa69d1rP0Ve9KDn5TmZZhZtnsj2trWVqt5TA8vVHTgq2zBDNyAL7PPvuUZAEAGNNSpZw9d4LhaeGSGSY5+M7BbfbV2Wv+/ve/L4fisfTSS1fXXXdd+9dn3521LPPN0uYlX1+baqqpSgZ2kr9STZ5rgVREZ+8+LsnPnOcofeHvueeej33sLrvsUtrYJgEOGHWC6DAassHO8JL77ruvZGFlIc4pb+dS8Cz4CTQ/8MAD5b5sur/73e+W4aRzzDFHnxy8lcODK6+8srr88stL5kAGhWawai5KHnrooZGCD/kZ55tvvtLqJqVhCUIAQE95+umny9u0eYn0SE9P73XWWae0ernwwgurc845p7rxxhvLprK1FVktGXBZzzO8bPjw4X1ybctBd65j6iqy1157rcvH5bAgB+X5WQFgbMramn1mZmalb/e7775bWrKdeuqp7b3PF1xwwRJQz5DSbbbZplpxxRXb25VkFkqqqVoPg5Np3Xmvnrkn2bdmLcxeNYPI8/9OtVpf3KPnebr66qvLPLJrrrmmcVBormtyIJ74RbLPF1tssW7/XmFcIIgOoyllZsnWSiZbAuLZgN56663V7373uy4Xq5ySp09bHpNhHtm8Z6HO6XdK0dK7rbeeZCdDL4tyLmhuueWWsijnYiMDxFIaV5fVdT5ESNuWZBLkfQDojY4//vhSwpz5HRkkXq9xaUc2KrLZTvlzNqUJqGcYV2+di5KKsQxlS6bfxRdfXA7Cu5JDgRz4DxkypJTUW8cB6A4ZdJm2LckSrwd8Zy+alqk33XRTddppp5UAcGS9zRo+bNiw8nGqxffbb7/yfg7Hs3Ylgz1V5ZEqqtlmm620h2nNUE/v76zluS/79lVXXbX0YU8C3IABA3rlLz7XKhn4nRjEH/7wh5IQkPvyc3SuBq8PxM8444zyvI5rlXTQEwTR4VPIQtW6UV5zzTWr3/72tx/7NekTPsUUU1STTTZZuSDIsJMsdlnQU55W33IK3t29RnPh8Oijj5ayr7vvvru8TRZ9TulTxp3p6ZmGntP99KvrLD3n0s4m/04mqmfzDQC9fcOefqpZz5dddtlyX9a4rNV1P9ZXX311lP+9fE3W9KFDh5YNeNb0ngis5+D+3nvvLQcDV1xxRck6b2pVU8vheK5Nsp4DQG+QoHbaraU9SQaPZjhmbjkYTkA8rVkiyWyZ5ZFq6azttZlmmqnsvZN5nZZuCapfcMEF5d/qKujcel+C6jlYz3yUZMBnf5t5aN0dc8gePWt5fra0svmkAemRavH0f091XQ7N8xzqeQ5jhiA6jMHs9PRVTTlZSsI/bsOaBToLevqw5ZQ7ZVgPP/xwOV3P5zKpPAt1Fv5saOtbAvFpn5IhKaMjFxMp107g/uWXXy5vc0u5W4LldcA8/+8MW8lpfR6XUvZsxrs61Y5cWGRRz/cFAH1dDpGz0cxGOetksr2ypmdoWarPcmCcfqPZxOZw+ZMkyy1zQRJQz9dmqFe9nudtrgVGN8ieqrbW9Txv06omwfKs501Z5q1yHZGgQKrGsvannN3AbwB6iwSQt9pqq5JFnYPhrMGRPe0ll1xSgsT1+rnDDjuUQHH6oifbOu1eMqcse+Akp+Vr6jUuw7PTC7yr4dmfJNVaM888czkgz9vsm7Nvn3baacuaXmfQj87PmKGfWcczFDXXHAmUJzaQmEJmlrQeCnQl1xZpzZI9eVrXpE98WsvGE088Ua47Rjd2ADQTRIcxJItggs3ZMCcgnT7gmYidj1dbbbVyepz7W0vIWmU6eRbhnHpnUc9inwEoCWR3zv5O4D0Ldb4mvd5ysZBbXY5W3/L/ywY7mXStC3Ael/9PMs9S7pYNeRbw/AyfdLqdwH6y9BZaaKFyASKADsC4JOvmY4891p7hFsksz6Y8m/n0Xc1mPRlyY0I2t2ntlre5Zsi6ns1+1vWs3bkmyPVA1uqs6039Tptkzc91Q/6tXBuk5drOO+88Rr53ABibsjdtba2y9957lwzrI444ogTNs/9OULueexLZU6fCLHvd3FrXvDw21dVZd7OfzpqafXcC15Es9eyx64quUTmYriWon/U7t7yfNT1v64S0rMf1up41/ZMC5B8n/1bmkiWInmuEZJ/ne23N0AfGPEF0GEty8pvN9pRTTlltu+22ZfHMRUA+bgqkdyWb6JxqZzHO29zqcussvAmw59Q5/35u9UKdz+WWLLfIYp3T7GSW11/zcfLvJNCeAHz+3xlAlv7uGaoGAP1FNtgpA//jH/9Yst+SfZb1NRVoe+yxRzlYznqZwHsd4M66+Wmy3Ma0G264oZSiRwIEOTjPph4A+pqsvcn+Ttb2ZZddVuaMRdq0pKVLgusJIrcmoGUG2R133FHeT9V3ep5nVtl777030r+fbPcRI0aUavHYaKONqtNPP73qTgmOzz777CVhLVXjaTvXeniezydgnkS2fK91G9iTTz65ZJ3n8KAvDkiFvsJkARhLcgJ+yCGHtH9cL2ZZ3FKetddee5Uys/Qgr0++u5KAe+fPpzfa2JIS9gwpSW/2BNJTtr7EEkuUU3wA6G+yFqb8u1UC0ckcT2l3MtLT1i1ZZWmnkg1sWr1kGFoy3dJ/dbfddhul/1fTYLBWOUzPpjmH5LmeSOZZMuuSnZcZJtl8n3vuuaWcO2t5Ld8rAPRVWXvTAjUH2iuuuGL7/ZlNliqrHGxngPbVV19dguppcbLooot2+DeSvZ1M7fpAPEluTz75ZLl/kUUWaQ+g5yC8qwB6XQU++eSTl89nzU07llwLJOhdJ7Z1/poE7xPQj1122aXLa42s7+uss051wgknlPvy7ydQnv35csstV4aYJ/M87dheeOGFkoFeB9HT3gYY+wTRoRtlAUypWVqn1BniWWQz7CQb3iyaKU3LY7IpXmmllcbY/ztladnMpxwuFwmRxXyWWWYpC/Hrr79ebvl/tg4GTZ9UAKCjZKdvt9127TNQsvlN4Dq3VH7l0DxrbzbLqQI7/PDDq+WXX75ktuU6ILcDDzywVIY9+OCDJasswYGddtqp9EXNYXzW4KzbCYAnSJ4Nc/qdJkMt8nW33HJL+ThzSmr5fwDAuCZrbfbOrTK7JIHsBL6zXv7gBz8o+9wE0hMYryV5LYHu3FolIL7AAgt0eGzW7azZqcrOml4PGs+andviiy/e3jYlX5+gdpMkpCXQH+l5ngB+9vrJoK+r1pJtnvvmmmuuDgfruTbIgcFJJ53Ufv8+++xTAvKGgUP3E0SHHlAH0OvFMaVnxx13XHk/gfYMJ8lCnB6s2TBn0Uxv9NxSqpUebVnkM4W8bg1Tb57TqzWLcTbuyYJLD9csvMkor7Phs5HPKXtOzEd3AAoA8L81vHUdTUZY1t3Oj8mGvh5G1tqrNH1Zc5ieDXjW/2zK0yYmG/9s6Ndaa632x6alWlrH5HG1eeaZp9wAoL/Kmpns8wzxrqUFW3qmzzbbbKXdWiTwnErwrNM333xz2Ss/++yzpSf6jTfe2N4eJlLplZlmyRBPO9ZUeo033nglqzwZ8a0B9/z7WbOzL6+D7AmIJ8s9VWrJIK/l/meeeab94/xb+R4zdyzXC61B9ATQcziQli65Vqj38jmAB3qGIDr0wsB6pNdZ+rV1tvLKK5fT8CyqAwcOLPdloU6QPItwysjrfqdZtPN+PY28Nqpl5QDAZ5eNfevmvtZVqXgy1nLrqlcrANBR9rqtAfBIlnf2ynULlUgQfMsttyztWNJqLf3V034tVdoJhNdVXpFqsQTQkyGegeO5tVp99dXb30/r1VSQNWltzZoq8AwvzZyxLbbYonyc7ytJb2mpuswyy5RbfT1w8cUXl1Yu+pxD72CwKAAAAADjjGRvJ6ksQ7XrFi114lramNbvH3PMMdVBBx1UAuwHH3xw+9cn0J6EtCSvJSif9m0ZSJq3yURP+7ZItfjZZ59d3k9FeQLkqRpLtdl9991XDRs2rD3In2rztHtLID9Z6XWyWyrMMwx8ww037JC5DvQuMtEBAAAAGGcke7sOoEcC2+mHfscdd3SoAs88kgTYk3le++c//1mtscYa5f18LvNJYs8996wOPfTQMhMlwffI3LGdd965vJ8gez6OK6+8srRsjTqInpaq8847bzXjjDOWwHzatMVmm21WbkDvJogOAAAAwDgtWeWZC9bq2GOPrbbaaqv2QHkkS3zo0KGlrcukk07afv+///3v8ra1XWoyzxOwH3/88Uvmex1EX3LJJcussryt5XEZLgr0Tdq5AAAAAMDHSFA87VwyYLQ1y/2jjz5qn0sGjLsE0QEAAAAAoMH/mj4BAAAAAAAdCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAIDEU4UAAAIJSURBVAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoOra/weEecYUK+d0hAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1072,12 +1017,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQmclfP7//+2ZC1LFLJUCpWlkhRCRKSUrZQiWUqlBSXLB22KkJ320kILhRaVNUlaqCSSPUlki0K2+T+e1/d/nd89p5lpljMz58y8no/HaWbuc59z7nPO3X2936/3db2uHdLS0tKCEEIIIYQQQgghhBBCCCG2YcdtNwkhhBBCCCGEEEIIIYQQAiSiCyGEEEIIIYQQQgghhBCZIBFdCCGEEEIIIYQQQgghhMgEiehCCCGEEEIIIYQQQgghRCZIRBdCCCGEEEIIIYQQQgghMkEiuhBCCCGEEEIIIYQQQgiRCRLRhRBCCCGEEEIIIYQQQohMkIguhBBCCCGEEEIIIYQQQmSCRHQhhBBCCCGEEEIIIYQQIhMkogshhBBCCCGEEEIIIYQQmSARXYhiyNatW0Pfvn3DEUccEXbbbbdQrly50L59+/D9998X9qEJIYQQIoGxukKFCmGHHXbI8Fa/fv18O34hhBBCZI/PPvss9O7dOzRt2jQcfPDBFqOJ30KI5GLnwj4AIUTB8t9//4VmzZqFOXPmhLp164aLL744fPLJJ2HEiBHh1VdfDe+8804oU6ZMYR+mEEIIUWxJdKzee++9Q/fu3bfZrgm6EEIIUfjMnz8/9OnTJ+y0006hatWqYcOGDYV9SEKIDNghLS0tLaM7hBBFk9GjR4errroqtGrVKkyYMMFWuWHIkCGhY8eOluU2dOjQwj5MIYQQotiSyFjtQvmXX36Zr8cshBBCiNzx+eefW6VZ9erVw+67724VaAceeKBitxBJhkR0IQoZVpkp0a5Ro0Z47733Ytv/+OOPcOyxx4Ydd9wxvP/++xZIE8HJJ58cFi5caAG5fPnyse1cCipXrhy+++67sHHjRgveQgghhEjtWC0RXQghhEjuuB+PRHQhkhN5ogtRyBAca9WqFZYtWxbWr18f287EeODAgVa+PXz48IS81p9//hkWLVoUjjrqqHSTciDL7eyzzw5btmwJS5cuTcjrCSGEEEWBVI/V+KuPGTMmDBgwIDz22GP2/EIIIYQo/LgvhEgd5IkuRBLQpEkTmwzPmDHDSrQd/FD33HPPMGrUqNClSxfb9tBDD4Vffvkl2899wQUX2Aq6NyzBZ5UmZRnh2xkUnHrqqXl8V0IIIUTRIZVjNRl17dq1S7etdu3a4ZlnngmVKlXK9nEKIYQQxYWCivtCiNRBIroQSUDjxo2tG3d8gN5ll12ssQjB+/fffw977LGHBeivvvoq289NGbcH6E2bNsUajGXEXnvtlW4/IYQQQqR2rEY8R2w/5phjQsmSJcOaNWvC4MGDw7hx40KDBg3CypUrQ6lSpbJ9rEIIIURxoKDivhAidZCILkQSQKnYQQcdFF599VUr4456q1GyDd6+QL5oQgghRMGTqrH6rrvuSvc3k/axY8fa7wjplKPfeOONhXR0QgghRHKSqnFfCJF/yBNdiCQAj9PzzjvPVrIJ0g7BmIwxSrcpGcsrntWWWfbar7/+mm4/IYQQQhTNWN2hQwf7uWDBgjw9jxBCCFEUKai4L4RIHZSJLkQSlYuNHDnSysX4He6+++7w77//hmuvvTa2X1781g4//HDrJI6Pakb49sx8WIUQQojiTFGK1fvvv3+6bDohhBBCFHzcF0KkDjukef2JEKJQ2bx5s01oy5YtG9auXRvefPPNUL9+/XD00UeHd99917zX3D8tJ35ro0ePDldeeWXs75NOOim88847toJevnz52HYuBZUrVw7fffdd2Lhxo3UeF0IIIUTRjNVYurRt29Yy0ocMGZLr5xFCCCGKKgUV9+PBOubAAw+UTYwQSYbsXIRIEmj2dfrpp4evv/46zJ49O1x22WXW6OvZZ5+NBWcgkDKJzu4tPjh7U5Rbb7015uEGQ4cODZ9//nlo3bq1BHQhhBAihWL133//HVavXh0+++yzdM/DNsrQ42F7r1697HfegxBCCCEKL+4LIVIDZaILkUQ88sgjoVu3bmHXXXcN//zzT5g+fXpo1KhRQl/jv//+M2+3OXPmhLp169qg4NNPPw1Tp061FfRFixaFMmXKJPQ1hRBCiKJCMsZqJu8VK1a0rPVo1lrv3r3D4MGDw2mnnWb34d2Kj+usWbNMeEekHzBgQEKPXQghhChKFETc/+GHH0KPHj1if9P4m8XySy65JLbt/vvvj1mxCSEKB4noQiQRZJdVqlTJmpjgvdauXbt8eZ2tW7eGe+65x4Izq+qlS5cOTZo0Cf379w8HHHBAvrymEEIIURRIxlidmYg+b9688MQTT4Rly5aZBQxZ6UzA69SpEzp16hQaNmyYL8cuhBBCFBUKIu57HM+KL774whbShRCFh0R0IYQQQgghhBBCCCGEECIT5IkuhBBCCCGEEEIIIYQQQmSCRHQhhBBCCCGEEEIIIYQQIhMkogshhBBCCCGEEEIIIYQQmSARXQghhBBCCCGEEEIIIYTIBInoQgghhBBCCCGEEEIIIUQmSEQXQgghhBBCCCGEEEIIITJBIroQQgghhBBCCCGEEEIIkQkS0YUQQgghhBBCCCGEEEKITJCILoQQQgghhBBCCCGEEEJkgkR0IYQQQgghhBBCCCGEECITJKILIYQQQgghhBBCCCGEEJkgEV0IIYQQQgghhBBCCCGEyASJ6EIIIYQQQgghhBBCCCFEJkhEF0IIIYQQQgghhBBCCCEyQSK6EEIIIYQQQgghhBBCCJEJEtGFEEIIIYQQQgghhBBCiEyQiC6EEEIIIYQQQgghhBBCZIJEdCGEEEIIIYQQQgghhBAiEySiCyGEEEIIIYQQQgghhBCZIBFdCCGEEEIIIYQQQgghhMgEiehCCCGEEEKIIkHv3r3DbrvtFlq0aBH++eefwj4cIYQQQghRRJCILoQQQgghhCgS9OjRI7z00kvhxRdfDFOmTEn48w8bNizUr18/7LXXXmGHHXYIv/zyS66fi+OrUqWKif7HHntsmDVrVpb7X3nllfaa8bejjz463SJC/P28Rm544403wvHHHx923XXXULly5TBmzJgs9//yyy8zPL533nknx6/9008/hdatW9vnvM8++4Srr746bN68Ocv9u3TpEo466qiw++67h8MOOyx07do1bNq0Kd1+GR3fxIkTc3x8QgghhCh+SEQXQgghhBBCFAlKliwZzjjjjNCyZcswbty4hD//77//Hs4999xw22235el53n777dCqVSsTh5ctWxYuuOACu33wwQeZPubhhx8O3377bez29ddfh9KlS4fmzZun2w9RPbrfW2+9lePj++KLL0Ljxo3ts1y+fHno3r17uOaaa8KcOXO2+9hXXnkl3evXqlUrx6+PgL5q1arw8ssvhxkzZoQ333wztG/fPtP9169fb7f777/fPkME/9mzZ9vnG8/o0aPTHR+fuxBCCCHE9tghLS0tbbt7CSGSlj/++CN07tw5TJ48OdSoUSPMnz/fsmqEEEIIIRLJli1bMr1vp512sozq7Oy74447Wrbw9vbdc889c32sQ4YMscxkhNUyZcqEREOWNgLzzz//bJnSOeXSSy+1941A7NStW9fGchx7dnj++efDRRddZIJ3+fLlY5nobEf4zgu9evUKM2fOTCfqszBB5j3idGaZ6BUrVrRFAd5Hbvnoo49CtWrVwpIlS8IJJ5xg23jN8847L6xbty6UK1cu25n+bdq0sc955513tm2MkadNmybhXAghhBA5RpnoQqQ4H3/8sWXUMEFYsGBBnidNQgghhBCZZXlndrv44ovT7Vu2bNlM923UqFG6fStUqJDhfnmBTGQ80aNWHSQaZPUeuE2YMCHkFexesF7JioULF4azzjor3bZzzjnHtmeXkSNH2nO4gO588sknJjQffvjhltG9du3adPdzbBxjfh1f06ZN7fuvV6+e2erELz4gZCO4Z/XaLEy4gA4cC4svixYtCtkFKxfsYFxAd0g+2X///cOJJ54YRo0aFZRTJoQQQojskH5EIYRIOZjwdevWLTzxxBNh0qRJ4cgjjyzsQxJCCCGEKDQQYRcvXhzOP/98E8XJSAdE2e0lGxxwwAF5fn38uA866KAs99mwYcM2r8XfbM8OZNjj/f7000+n216nTh1bQMAbHKuSPn36hFNPPdUyykuVKmX7cGz//fdfro7v119/tSrIaCVBdEz6wAMPhFNOOcUE7+eee84yvsmMR1iHPfbYw46tRIkSWb42InwUhHCsa7L7+fzwww+hX79+21jA9O3bN5x55pl2HHPnzg2dOnUyr3X804UQQgghskIiuhApDo2eHnroIbsJIYQQQuQXWTV2xM4lyvfff5/pvgisUbLKSs4NjImaNGliAjKNMT/99FMbLyH88jM7DBgwwG7Ohx9+aOJ4dhg7dmzsd7LAsSZx8FLPq586PPXUU5atHW9LEs3yP+6440xUJ1Md2z/3Bx84cGC6x0Sz/rE/ya6dTDxkd994442xv2vXrm1i/3333RcT0cn+Xr16dWyf6667LowfPz5b51h2QejHz53PHXubKHfccUfs95o1a1olJ8cnEV0IIYQQ20MiuhBCCCGEEGK75MSjPL/23R4025w6dao1pEQkpckm2eh33XWX2bnEW8nEM3ToULNAQdxt0aJFbHt2fbjj4XHR7HeyqeHAAw8M3333Xbp9+Zvt2wP7EWxILr/88rDLLrtkuS9CO1WKLCRkRvT4sD/J6vi4P6Ms9MxAxOe7yAwyw3v06JFuG68dvwiDNc9PP/203c/nt99+s8avZN3jfZ5VxrsfHxnrW7duDbvuumu23pMQQgghiicS0YVIcbzcFn9JynZpUEWWFc2uhBBCCCGKE4899phlYLvnN5nVCM6I6Dmxc0HsdsE7L2BDklH2+0knnRReffXV0L1799g2xGa2b4958+aZKO6Z5VlBZvdnn31mgntmZHZ8s2bNSrctu8cXhc87K2sbbFvirVt4DRqYvvvuu6FWrVq27bXXXjMLGkTvrDLQ8W1HDMeLPdroNqvj23fffSWgCyGEEGK7SEQXIoX5999/rRkXEzQajFJ+279//9C8eXOJ6EIIIYQoVvz+++9h+PDh4dFHH41tI6sc+xQ80rESya6dS1bJC9w8s3vlypWW9YzVS05Ed/rZnH766eYhjvUIDVCXLl0ahg0bFtvn1ltvDd988006exhvKIqYfMwxx2zzvGR14wWPhQtWKiweYLXTqlWrHL1PMvFZkLj55pvDVVddZSI2ljAzZ86M7cP9ZHuzGOAWM2TGUwEAVASwgDFixIgcvXbVqlUtm/zaa6+1se3ff/8drr/++tCyZctYRQCfS4MGDeyz4XtFQG/YsKGdA9jD8Dc3KFOmjH0G06dPt2z6unXrmsDOogCWPfGZ8EIIIYQQGZHekFAIkVIwgUBI50Z5K5MmJgYnn3xyYR+aEEIIIUSBgqBKw8ioDcuhhx5qWelR3+28gKiLSIzAC6eddpr9Teazw+tdeeWVWT4PYzWagiKaV69ePTz77LPWgDMqjFNhiKd6lE2bNlnDzsyy0NetW2eCOc07+Rz222+/8M4775iQ7HBsnqmfGRUrVjTBHKGZ40PsRwwn0zvavJMs9yhYo5A9jsj/wgsvWNP7du3axe5/4403rHpyez74WPBUqVLFhPLzzjsv1KtXL90CA8I6CSSI5vDee++FRYsW2aIGCyVkv/sNix/A2uXxxx+3TPcaNWqYdc/gwYNtoUEIIYQQYnvskIapnhAiZWESwYSJyY4QQgghhChcyAKnqen2hPTCggx4Khbjm24WBKNHj7bsbxq1bs+vXAghhBAimZCdixApDhMQCehCCCGEEIXPqlWrwt577x2uuOKKkIyQyU72eNSWpSDBZx0RXQK6EEIIIVINZaILUQTB3oXyX4nrQgghhBBCCCGEEELkDWWiC5HC3HLLLeYr2aFDB2swCl999VWoVq2a/U5DJRopCSGEEEIIIYQQQgghcocy0YVIUfivS7Oon3/+OSxfvtyaPnkWOmXE8MEHH8TEdSGEEEIIIYQQQgghRM5RJroQKcp///1nTas++uijcOSRR8a2k3mOH+chhxyiLHQhhBBCCCGEEEIIIfKIMtGFEEIIIYQQQgghhBBCiEzYMbM7hBBCCCGEEEIIIYQQQojijkR0IVKUzz77LGzYsMG80eOhoejNN98czj//fLN9EUIIIYQQQgghhBBC5A7ZuQiRopxzzjlh7ty5YdSoUaFdu3bp7vv7779DqVKlwtatW8Mnn3wSKleuXGjHKYQQQgghhBBCCCFEKqNMdCFSlH/++SfssMMOoWrVqtvcV6JEidC7d+8wfPjwULp06UI5PiGEEEKIgobxz2677RZatGhhYyUhhBBCCCESgTLRhUhhsG3ZY489ws4771zYhyKEEEIIUehs3rw5LFmyJDRq1CiMHj06tGrVKtfPxTTprrvusqSEX375JZxyyinhySefDEcccURCj1kIIYQQQiQ/ykQXIoXZa6+9JKALIYQQQvz/lCxZMpxxxhmhZcuWYdy4cXl6rkGDBoVHHnkkDBkyJCxatCjsueeeZqf3559/Jux4hRBCCCFEaqBMdCGKKPzX/uabb8Ly5ctD48aNzfpFCCGEECI3Y4rff/+9UF6birvcjGEQvrt06RLWr18fypQpk6v3XK5cuXDTTTeFHj162LZNmzaFAw44IIwZM8ZEeiGEEEIIUXxQCqsQKUjTpk3D7rvvHvr3759pSTFNRStWrGh+oGvXrg2HHnpogR+nEEIIIVIfBHQyvAvLnoUM8JyC0M0YaOLEiSamw/z5883mJSuGDh0aWrduHb744ouwYcOGcNZZZ8Xu23vvvUOdOnXCwoULJaILIYQQQhQzJKILkWJs2bIlzJo1K/z777/hgQceyHQ/mmpVr149/PXXX2Hjxo0S0YUQQghRLEDkXrx4cTj//PPDhAkTYiL6CSecYBV6WUGmOSCgR/+O3u/3CSGEEEKI4oNEdCFSjF122SW8/PLLYcWKFeGQQw7Jcl/8O3faaacCOzYhhBBCFD2wVCEjvLBeO6c89NBDoUmTJqFPnz7h+OOPD59++mmoXLmyVfHxUwghhBBCiJwiEV2IFKNEiRLWMIvb9pCALoQQQoi8gid5bixVCoOvv/46TJ061RIOatasGY4++mjLRr/rrrtyZOdy4IEH2t/fffddOOigg2L383eNGjXy/X0IIYQQQojkQiK6EMUA7x+s5qJCCCGEKMo89thj4bjjjgv169e3v9u0aRNGjRplInpO7FzoK4OQ/uqrr8ZE819//dWq/Dp27FgA70QIIYQQQiQTO6S5uiaESHr478rksFatWuHEE08MO++8/XWwrl27hueee84aa5166qkFcpxCCCGEEIXRABWru0cffdSyyT0zvXz58uGdd96xsVNOuPfee8M999wTnnrqKRPV77jjjvD++++HDz/80HrPCCGEEEKI4oMy0YVIIT7//HMTxfFFJxsqOyI6Zcfr168P8+bNk4guhBBCiCLL2LFjzUO9RYsWsW00Vicrffz48TkW0W+++WZr6N6+ffvwyy+/hHr16oXZs2dLQBdCCCGEKIYoE12IFILMp9tuuy38999/4cUXX8zWY5YsWWITwDp16lhDLSGEEEIIIYQQQgghRPaRiC6EEEIIIYQQQgghhBBCZMKOmd0hhBBCCCGEEEIIIYQQQhR35IkuRIqwefNmayxaqlSpHD929erVYfr06aFSpUrhoosuypfjE0IIIYQQQgghhBCiKKJMdCFShIkTJ4bSpUuHTp065fixL730kjXHGjlyZL4cmxBCCCGEEEIIIYQQRRWJ6EKkCCtWrAj//PNPKFOmTLrtixcvTvf3M888Ey677LLwzTffxLadeeaZoVmzZqFp06YFdrxCCCGEEEIIIYQQQhQF1FhUiBTiyy+/DLvssksoV65c+Omnn0Lbtm3DjBkzLNP83HPPtX2uueYayzhv3rx5mDx5cmEfshBCCCGEEEIIIYQQKY080YVIISpUqBD7HW/0ihUrhhIlSpjnuYvo7dq1Cz/++GMYMmRIIR6pEEIIIYQQQgghhBBFA2WiC5HifPfdd+GAAw7I1r5btmwJy5YtC/Xq1cv34xJCCCGEEEIIIYQQoiggT3QhUgCaiXJbs2aNeaNH1762J6A///zzoWXLlmHjxo1hv/32C6effrpZwQghhBBCCCGEEEIIIbaPRHQhkpytW7eGsWPHhieffNKyyE844YRw5ZVXhr///jtbWeqtW7cOkyZNCrNmzQqVK1cOhx56aPjiiy8K5NiFEEIIIQqS3r17h9122y20aNHCGrILIYQQQgiRCCSiC5Hk7LjjjiaC33jjjeGHH36wLPTNmzeHnXfefksDstQHDx4cevXqZdno8+bNMwG9Vq1aBXLsQgghhBAFSY8ePazh+osvvhimTJmSp+dizHXnnXeGgw46KOy+++7hrLPOCp988kmWjxk4cGCoXbu29a4pW7ZsuOCCC8LHH3+cbp/69euHHXbYId3tuuuu2+7x8H6qVKliiwTHHnusJUhkxRtvvLHN63DbsGFDlo+jYpEkjL322ivss88+4eqrr7axZ1aN7zN6HW7R7yCj+ydOnJjlsUydOjU0bNjQqinZf/ny5VnuL4QQQgiRX8gTXYgUAzsXJmVM6IQQQgghxLZQtff9999vV2jOinvvvddE8aeeesqaud9xxx1h5cqV4cMPPzQhOyNo9E7iAkI6mfC33XZb+OCDD+wxe+65Z0xEP/LII0Pfvn1jj9tjjz1MtM6Mt99+O5x22ml2PE2aNAlPP/20Hd97770XjjnmmExF9DPOOMNE/OhzM44kSSMzGjVqFL799tswdOhQq3ykaT3vh9fMiH///ddsA6MMGzYs3HffffY8JUuWtG2I4KNHj7bPyEGkz+yzhHHjxlkCSLly5cK1115rVZk1atTIdH8hhBBCiPxCIroQxbQR6X///ZflBEoIIYQQIr5BuQu+CKLw119/mdBKhdyuu+66zb5kcPt4g/3Yf6eddkonnGa2b4kSJXJ9rEOGDAldunQJ69evD2XKlMnx45kiIdzedNNNlt0OmzZtsjHUmDFjTCjPDojLiNZUAyKCu4iOEPzQQw9l+3guvfRS+5xmzJgR21a3bl17Ht5rViL6zz//bGJ1dvjoo49CtWrVwpIlS8xCEGbPnh3OO++8sG7dOvtMskPNmjXD8ccfH0aOHBnbxjkzbdo0y87PKWS7s5AhEV0IIYQQhYUUNCGSmM8++yw8/vjjoV+/fpbJkxeYxDVr1swyn4466qgwaNCghB2nEEIIIYo+ZBRzw17OIduYbddff326fRGO2b527drYNsY0bMMeJEqFChVsOwKug1CdF3g8meBRu5D58+fH3kNmtwkTJti+ZD9je4KFi7P33nuHOnXqhIULF2b7OBDeoXTp0um28zr777+/ZZHfeuut4ffff9/mM8Hf3eE1o8cC55xzTraOBdGZCsazzz47LFiwYJvPyRdE/HUQ3F1AB16XxY1FixZl6z2/++67ZrsS/z1D586d7X2feOKJYdSoUbZYEW8Lg/gvhBBCCJFsbN9UWQhRaDz77LPhlltusd8ffPBBm9AxgcsNlPFSSoyn5Zo1ayyTyZ9bCCGEEKKogBC8ePHicP7555tYTUY6IAxvz1ObTHNw33D/O3r/9jzFHar+unfvHk455ZR0liuXXXZZKF++vGV1v//++9a7BssV/L+dSpUqmdjs8Jo5PRaEc7LUed80qh8xYoRlwSOGkyUOjCtJroi+DgsgUagyYBEgu++b7POqVauGk08+Od127GvOPPNMq2SYO3du6NSpk41Lu3btavdTecCxcL8QQgghRLIhEV2IJIYJFuWwlOFSApxbAR0osR47dqz5Vn7zzTfmdymEEEIIkV28uWRU5OzZs6cJxfENz/Ejd4uWaBYyvtbYuUQhAzl+XzzNcws2KfiG9+nTx8TiTz/9NFSuXNmen58FBe8XP/S33nor3fb27dvHfqdBKGJ3gwYNrAIR8RxeffXVPL8+gnRUIEfU5jVIzMBrHC688EK7JYo//vjDvNPxj48nuo3xLfY0VDK4iH7wwQeH1atXJ+xYhBBCCCESiexchEhi8NukYdTnn38ennjiiTw/30knnRTq1atnvppZNa8SQgghhIiHxpjcovYfu+yyi22L+qFH9432XyHTmG3xjSQz2zc3fP3115bRfeONN5pQe/TRR8csWnJi53LggQfGeslE4W+/Lyuwt6Hq7/XXXw+HHHJIlvtiEQOI/ZnBa+b2WKJgo7K91/EFEAdbnJ9++ilbr0UVJdY0V1xxxXb35X3js06WvBBCCCFEsiMRXYgUgMkqk8tEwsQLexghhBBCiKLCY489Fo477jizLYE2bdrEhHG3c8nq1rRpU9uXJpaIxtGM8F9//dWsUEhKyAw8vhHQaaD52muv2fNsD7eYISM9M3jN+Oz0l19+Octjyey1tvc6v/zyi/maO7wPrGlc7N+elQufYXaauXIs++677zYLMEIIIYQQyYjsXIRIUu6//37LiLrmmmu2KZHOK5MnTw6XX365TVzw4MyLTYwQQgghRDJABvTw4cPDo48+GtvWunXrcNttt5lHOlnY2bVzIYEBm5r+/fuHI444wsRw7EjwMb/gggti+2HDgh2KN1bFwgU7kxdeeCGUKlUq5iPOWAs7GexUuP+8884L++23n3mi33DDDWbbh/ifGd26dQunn356eOCBB0Ljxo2tYerSpUvDsGHDYvvQoBTLPuz73NaG4yYb/88//zRPdARx/MgzAy/zc88912x38FP/+++/7b1RHcl7B16D983r8Jk6ZLi/+eabYdasWds87/Tp0y2Bo27dulaJwALAgAEDQo8ePbL8HsiApznt+vXr7W/GrcACR06z8IUQQggh8oIy0YVIQiijxWO0Y8eOYdCgQQl/fvxB//rrL5vMRJtYCSGEEEKkKoi6+LW3aNEitu3QQw+1rPTx48fn+Pluvvlma0qKh3nt2rXNE3727Nnp7GgQxX/44YfY308++WTYtGmTvSYZ336bNGlSzP7mlVdeCQ0bNgxVqlQJN910U7j44otNZI5SoUKF0Lt373R+5ojviObVq1c325Tnn38+XcPSb7/91gRnh7Eez4/vOgL8ihUr7LURwJ0xY8aks+cBMvc5NvZD7McKMCrWI6wjZrNoEWXUqFFmXcN7iwd7nscff9wy3WvUqBGGDh0aBg8eHO6666503vgcyxtvvBHb9uKLL5otDwsHgJjP3wj8QgghhBAFyQ5p1BwKIZKKBQsWWBYQk5Qff/wx4VYuQFYWExoy0guyyZYQQgghhMgcxGmy1F966aWYLU1+gYg9b968dMJ1YYF//EUXXWS9gKiWFEIIIYRIJiSiC5Gk/Pvvv9Yci0wkIYQQQghRPJg5c6Y1lOdnfoMdCz7yUVuWwoIqzLJly9pPIYQQQohkQyK6EMWcf/75xyxdLrnkkrDjjnJ4EkIIIYQQQgghhBAiihQzIZLMC71JkyZhyZIlBfJ6//33n/lKXnrppdagSgghhBBCCCGEEEIIkR6J6EIkEffcc4+V7uJ/+dZbb+X7661evTp88MEH9vsvv/yS768nhBBCCCGEEEIIIUSqIRFdiCTi6quvDjvttJM1lCqIhkrVqlULJ5xwglm5kAEvhBBCCCGEEEIIIYRIjzzRhUhCS5e5c+eGNm3aFMjrcQnYYYcdCuS1hBBCCCGEEEIIIYRINSSiCyFivPvuu2HdunWhWbNmhX0oQgghhBBCCCGEEEIkBbJzESIJuPbaa0PPnj3Djz/+WGjHMHnyZLN24Vg2b95caMchhBBCCCGEEEIIIUQysXNhH4AQxZ1PPvkkjBw50mxVVq5cGXr37h3q1q1boMcwe/bs0Lp167DLLruEhg0bmid7yZIlC/QYhBBCCCGEEEIIIYRIRpSJLkQhU7ly5TB9+vSw9957hzlz5oQ1a9Zs9zEbN24Mzz77bPjjjz9i22bMmBFKly69jRXLr7/+ut3nQ7SnoekxxxwTHn300VC2bNlcvhshhBBCCCGEEEIIIYoWEtGFKGRo6tm4cePw2muvha5du4ZLLrkky/3//vvvUKVKldC8efOwcOHC2Pbffvst/Pzzz9tYsZx99tmhatWq4fXXX8/0OffZZ5/w2WefmSf6vvvum4B3JYQQQgghhBBCCCFE0UB2LkIUIv/880/Yeef/+294/PHH2y2erVu3hvnz54ezzjrL/i5RokRo2bJleOutt8Kff/4Z269Jkybhww8/NEsW56effgrLly8P//33XzjyyCOzPJaDDz449jve7A888EDo3r27stKFEEIIIYQQQgghRLFmhzSMmIUQBc68efPCVVddFfr37x9atWqVqW1L7dq1w9dffx0++uijmBD+77//mv1Kdti0aVNYsWJFOO2002Lb/ve//4Udd9wx9OrVK+y5557bZLqfeeaZJtLfcMMNYfDgwXl6n0IIIYQQQgghhBBCpDKycxGikHjwwQfD559/HoYOHRruuOOOsHbt2m32KVOmTKhevXo48MAD092fXQEd8FqPCuhfffVVGDRoUOjXr1945ZVX0u2LpUz58uXNGobXxQpGCCGEEEIIIYQQQojijDLRhSgktmzZEh555JEwfPjw8MUXX9jPa665JsydOzfUr18/Zsvy/fffh5IlS4Y99tgjIa/Lf/mpU6dapjlCfhSE+ooVK5p4T+a7/NGFEEIIIYQQQgghRHFHIroQhQi2LM8++2wYN25cmDhxYujTp0+4//77wy233BIGDhxYYMeBt3rHjh3DnXfeGdatWxfq1KmTzltdCCGEEEIIIYQQQojiiuxchChgfv3113S2LJdeemmYMWOGZZsjXuNVDgW5vnX77beHMWPGWPPSunXrxgR0GpI+/fTTdr8QQgghhBBCCCGEEMURZaILUcCZ58cee2yoVKlSeOKJJ8Khhx66zT5r1qyJNRAtKLBxad26dejdu3do0KBBbPv8+fPNT32HHXYIK1euDEcffXSBHpcQQgghhBBCCCGEEIWNRHQhCpC3337bROm99tor3HPPPWadwrZp06aFUqVKFeqxcSlALIePP/44XHHFFeH3338PJ554Yjj88MNDt27dLFteCCGEEEIIIYQQQojihER0IQoYMs1XrVoVunTpEr755hvbduONN4YHHnggJAurV68O1apVM1F9xYoV4ZhjjinsQxJCCCGEEEIIIYQQolDYuXBeVojiC1Yt2Lhcf/31YezYsaFq1aqhb9++IZlYvny5ZaYfcsgh4cADDyzswxFCCCGEEEIIIYQQotBQJroQBcDmzZvthiD9xx9/hN13330bC5VkY8qUKaFWrVpm5QJkz99yyy2hffv24fzzzy/swxNCCCGEEEIIIYQQokDYsWBeRojizf333x8qV64c2rZta5nnn376qW1PVgEdmjdvHhPQt27dGh588MEwY8aM8L///c/EfyGEEEIIIYQQQgghigMS0YXIZxCc33rrrbBly5bw2muvha+++ioMGDAgpAK//fZbuOqqq0K5cuXC5MmTQ/ny5cMzzzyT1OK/EEIIIYQQQgghhBCJRHYuQhQA/DebO3du2GuvvcIpp5xif3/++eehYsWKIZn577//rMHoxx9/HHbaaadw8sknh1mzZoWSJUsW9qEJIYQQQgghhBBCCFEgSEQXIp+JeqB/8cUXoU+fPuHXX38NU6dOTcjzL126NKxZsybUqFHDBG/4+++/Let9//33D9WrVw8775z7HsKI/3vuuWf4559/Qu3atcMee+xh2//666+wyy67JOQ9CCGEEEIIIYQQQgiRrEhEFyIfefjhh8PAgQPDuHHjwtlnnx3bnpuGogjw1113ndnCYA/j4LM+duzYMGjQoNCzZ0/b9t1331kTU2B/F76nTZsW1q1bF84555xw5JFH5uo94Y/OexoyZEj44IMPTKgXQgghhBBCCCGEEKKoIk90IfKJefPmhe7du5ugPXjw4HTNOLcnoL/yyivhmmuuCc8991xsG1YwZIUvWLDAhHHnuOOOCw0aNAgHH3xwOhsWMtDJTncBHch+79q1a5g4cWJsG8f19ddfZ+s9/fnnn3bso0ePtvfVqVOnbD1OCCGEEEIIIYQQQohURSK6EPnE999/H0qXLh1q1aoVnnjiiXD77bfbtszE6ajI/uabb4aRI0da5riz3377hTFjxpiIHrVRuemmm0x0v+yyy2LbDjrooLB8+fKwbNmydK+D2N6oUaNwxhlnxLaxz2GHHRbq16+f7hji4XgOP/xwE+DZF0qVKpXjz0UIIYQQQgghhBBCiFQi90bJQogMcauW5s2bm4ULWeH33XdfuOeee8yGBYE8um+3bt3CU089ZdvJHoemTZuasN64ceN0z411S1648sor7RZlyZIldrzYskQz5FetWhWqVq0adtzx/9baNm7cGL799luzpiEjnmO86KKL8nQ8QgghhBBCCCGEEEIkOxLRhUggiOJt2rQJp5xyilmd7LPPPrb99NNPt2zxHj16pNsf0Xrt2rXWaPSFF16IiegnnHCC3QqCDh06hGbNmoXffvsttu3HH3+01z/00EMt871MmTL2fvh5+eWX23FffPHFsSamGzZssEz5qHWMEEIIIYQQQgghhBBFATUWFSKB4DmOuLzTTjuF1atXh8qVK8fuIyMdIZ2MdGxa9t57b9u+YsWK8MMPP5jFimd9FzavvvqqZZlXqlQpvPvuu5l6uK9cuTJceumldvx4spNpv+eeexb48QohhBBCCCGEEEIIkV8kh2InRBGhTp065lf+77//mv1JFET0zp07h9dffz2MGjUqtp3sc7zKk0VAB47nm2++CU8//XRMQP/nn39s+5NPPmnZ5zQWxXud/RDR8WB/6aWXCvvQhRBCCCGEEEIIIYRIKMpEFyKBICz37NkzfP7552H+/PmhX79+oUKFCqF169aWnT5lyhTL1qbJaNmyZUMq8cwzz1jz0r322itUq1bNmqSSbf/222+H33//PWzZsiVccsklhX2YQgghhBBCCCGEEEIkFInoQuQRMrGHDRsW7rjjjrDzzv/XZmDr1q3h3nvvDXfddZf9jY0LWdypDO+J90mm/Z133hk2bdpkWfVHH320CetCCCGEEEIIIYQQQhRFksc/QogUBNuWCy64IPTt2zfceOONse277rpr+Omnn+x3vMLPPPPMkOrwnrp06WKNSMlK//TTT21b+fLlw/Dhw62p6uLFi8MHH3xgGet4vQshhBBCCCGEEEIIker8X9qsECJXYNFy8803m9f5b7/9Fr7++utw6KGH2n39+/cPxx9/fGjTpk2mjTlzA2I1WeD4kGOh8ueff4Y//vjDfuKrXqJECcsW5yfNS0uXLh323XffWJZ8IvBFAZqk/vLLL2Hu3Lnh119/DT169AiHH3642dksXbo0rFq1yo5DCCGEEEIIIYQQQohURXYuQuQRxGuysfEIr1GjRli2bFmen/Pnn38O77//fvjkk08s4/uzzz4zYRrPdV6Hxp45BUGdrPiKFSuaTzu3KlWqhOOOO86E/9wI/WTi9+nTxzzfOaaaNWuGFi1ahPXr14eBAweGunXr5vg5hRBCCCGEEEIIIYRIJpSJLkQu+Pjjj02QLlmyZNhtt92sUWi3bt3Cl19+GaZNmxZGjBgRBgwYEKpXr54tEf6dd96xhqPvvfee3b766qvtPo7X5rb77rvbMXD777//TMz+66+/7EbGOjfw3z/88MMMBXbE9Nq1a4d69eqFU045JVuNT5988slYNvojjzxiYj/WLmTCH3vssdt9vBBCCCGEEEIIIYQQyY4y0YXIIdio1KpVK5QqVSrMmDHDMrrh6aefDvXr17dM7AULFoRrrrnGBOV4ELqXLFkSZs2aFd544w0T0BG84/FM8cqVK9sNm5Ry5cqZuF2mTBkTzbPDP//8Y5ntHPe6detM6P/iiy8ssx1B/aOPPrJ94jnyyCPNtqVx48bhjDPOCHvuuec2+7z66qvhrLPOsn1efPFFs7PhWHm+559/PjRr1syy0hHXTz311Gx+wkIIIYQQQgghhBBCJA8S0YXIIcuXLw8NGzYMmzdvDgsXLtwm2xxx+s477wwPPPBAOOCAA2wbIjm+4S+88EKYPn262bJEOeigg8Lpp58eTjzxRLNEwRZmn332KZD3w7GtXr3a3hfvh4x4moNGoYEoCwQXXnhhuPjii8P+++8fu48FATLYHRYGeI9YvTRt2jS0atXKXoMMe6xkhBBCCCGEEEIIIYRIJSSiC5FD+C9Dw1BE5z322CNMmDAhXHDBBRnu9/bbb4fx48eHyZMnh59++il2H1ns5557bjj77LNNnCZ7O5HNR/MKmeuI6XPmzAkzZ8607HWHBqUcd8uWLU1QzyhDHbGdTPSLLrrIstPJRkdc530KIYQQQgghhBBCCJFKSEQXIpvwX8WF7jVr1ljTTMTmu+66K/Tu3dsy0/Eo//HHH8Po0aPDkCFDzMYkmm2O6Ex2Nlnn+IanyvsmU53s8okTJ6ZrnLrXXnuFNm3ahA4dOpj9y9ChQ0PHjh1tf7Y/+OCD4YknnghTp04NV111VRg5cmShvhchhBBCCCGEEEIIIXKKRHQhssE333xjFi4I4+7t/fvvv4fHHnssdOnSxbzG8UnHroSmo1u3bo1lnCOcIyiTcb7TTjuFVIf3h5g+bty4dIsEvNfffvvNGqreeuutsUWHp556KnTu3Nk80/FY57PBHkYIIYQQQgghhBBCiFRAIroQ2wHRt2rVqtaMk5/4he+4446x++fPnx/atWuXTlDG1xzhGD9wLF8SwZYtW6w5KJnuWMNw++OPP6yJJzeOwbPbsZHheLBa8RtZ42TD77fffumOP7fQIPW1114Lw4YNC9OmTYs1Jz3wwAMtO79t27Zh9913t23ff/+9NURFeL/lllvCvHnzZO0ihBBCCCGEEEIIIVICiehCbAeE6rPOOsuabj700EPmh16vXr3w+uuvWwNRvMOBrOvzzjsv3H777Wb1klOPc7K4V61aZY1JEezJbscKxZ+nefPm4dlnn8308Yjq++67r/2OvQridkaUKFEifPjhhzERG0Gb7HIWCLhFm4Zmlw0bNoTHH3/cMvN/+eUX24Zgz2dBg9S+ffuG2bNnhyuuuMI+L4R2MtOjDUmFEEIIIYQQQgghhEhGJKILkQ0Qht9///3w1VdfmRCMQPztt9/afWR/kwXes2fPUKlSpRw979NPP20NOGlS+umnn5oFSpSNGzfGRG2E8TFjxlgmObfSpUtbljuNPrGJGTt2rGWbA2L/rFmzLHvdb5s2bbLng19//dXsV6B9+/Zh+PDhsdfk9RDTyaY/8cQTQ7NmzczrPTvgCz9q1KjwwAMPhLVr19o2rFvI5iczv1evXtZ09N133w3VqlWzz7QoWNwIIYQQQgghhBBCiKKLRHQhMgCxee7cuSZKn3/++bZt/fr1oXHjxiZ4A+L1ueeeGx599NFQoUKF7XqqY32C9csjjzwSdtttN9vetWtXe7xTrly5cMQRR4TDDz/c/NURnhHLAbsUBOecZrhH+euvv8J3330XDj300Ng2MshnzJgRPvroI1skiAf7GD+GRYsWmSh+3HHHZWkJw2d3ww032GN5PahevbplqvOzU6dOZvkiSxchhBBCCCGEEEIIkexIRBcig6xz7FqwVoF+/fqZt3fv3r0t09qtVbi1aNHCsrYXL16cLlv777//NsEcC5OXXnrJfNQd7FNOO+202O88tkaNGnYrU6ZMKExoloq1C+996dKltnAwefLk2P00BsXGhmx1FhBYVDjnnHNiNjIu1LMQQCb6//73P1uIoNmo27y0bNky3HfffbZggKjO57j33nsnzDteCCGEEEIkH950ngSLAw44oLAPRwghhBAiR0hEFyKDhpnXXHONiccIwmRt41MOderUMeH3hBNOMLsUbFwaNWpkNisOTTZ5PB7lDhMG/L8Rz7nvqKOOCqkGl4pLLrnEssx9MQHIjq9fv35o3bq1fR7wwgsvhDlz5oS7777bBHYy+xHU3aedBQc+DwR5LGPIgKfp6Nlnn11o708IIYQQQiSeN9980/rjYHtIb6Ebb7zRxtGnn356YR+aEEIIIUS2kYguRAYgEjPAd69w7Ff69+9vFiVRGxOE8iVLloRDDjkkHH300bYNuxf8xMkqp9EoGduIw/iY54YVK1aY1QqvRTZ39Ebm+KRJk8Kee+5p+w4aNChMnz7djpfsebK7/SfZ3hy/Z7tjtcJ/f44rJxYxZNnTZBULmJkzZ1qTUuB9knXvYD+D5Y3DgkTDhg0t+97hfqxh3nvvPZtIIarnxa5GCCGEEEIUHoz3qMasUqVKOPjgg23bq6++Gs4666xQtmzZcPLJJ1s/oG7dulkPHyGEEEKIVEEiuhD/v40Jmedt2rQJ77zzjmVU0+gTEHlpgMlkAJsTRHQEbRpojhgxwuxPeByZ1MB/qQULFoSTTjppu00zEZrJckeI9tsXX3xhGTv+2EsvvTSdpUo8HIvbqcQ3CY1n3bp1sQnNTTfdFAYPHmxZ4XiTcyNDiJ80/axVq5b5n2+Pzz77LDz77LO2iNCkSZOYBzz2NBz7tddea8d32GGHWVPWiRMnhosvvthEeBYraMxKhv6UKVPCPvvss93XE0IIIYQQyQkN6V988UWz7uvRo0dMWH/yySctuYTEkwkTJoSrr75aiRNCCCGESCn+X5qoEMXYvgVfbspK77zzzvD111/bdsRmBGm8uxGCe/XqZVnnrVq1MpGYCQGQ5e2Z4MCEAE/1rHjwwQfD2LFjLcN869at29yPVySvC5S98jc+5IjM0ZtnmjvXXXedZXvznH/88YctDvjPn3/+OZ3nuluy8JPseW+YGhXHaXAKLCxs2bIl1K1bN917BYR3PpsoCOI//PCDNS3lxmfywAMPhHvvvTfccsstJtLjmd6hQwfzjX/llVfMX57Pu3z58nb82RHwhRBCCCFE4bB69eowfvx4axZfokQJ29agQQMbN3qeFuNMqiTJPHewNhRCCCGESDWUiS5ECKFPnz528/8OWIvg640FCvz777+hbdu2ljnjkKHepUsXy7YuVapUhuL8smXLwssvv2w2JWRge8Y4QjKCMiCC05yUTG7E5SOPPNKadcaL1fnBn3/+aZnvZN0jmvOTGx7lnnUPLDKQbY79Cn7wfD5kj59yyimxzygKn9drr71mojiP888Vf3ky4FmUYAGA7UOGDAndu3e3RQlsaLDReeaZZ+wzQ1AXQgghxPYhpiJYsuhNTCWGc6OyjRuVXzT7FiIRMNYjq3zDhg3hueeeCxdddJFtJxECQZ1zj3Hmqaeeas3qR44cGa666qrCPmwhhBBCiFwjEV0Ue9544w0TicmcRsSlUejUqVNtAsokwEtNKUu99dZbTdiliSaie3wZ6rfffmu+4DTfxP+R53RotEmWOKxcuTJ88sknZnlSoUKFdD7r8fz666+W+c5z4YO+adMmE9gvvPDC2D4DBw4M33//vU1o+C9NFjfiPDf8J6MZP2SAs7106dLbtZtxELYRwz1L3+G4ybpnoYDJeUa8++674eGHH7aMcxqM8tpffvmlTbJoyOoNR8mij4KwTsa+EEIIUVz47bffbHEb+zXs2oj9LGxjl4b9G+MMxhgseCNQsohPs3LGL9wQMzODRXAyhOltwkI/1hqMdeiNQvUd4xGqy6hCY6xDBZwQDtaGjGV79uwZ28YYju233XabVStmxO23327jPGz86tSpU4BHLIQQQgiRWCSii2ILmdJYmNx8880mPiNo4z2OJzilqXg1csOOBLGYiS2WKHh7ZwSPwfM7+l+Kye0ZZ5xhjUURvd2PPN4XnQkzz491i8NEA7sXtsfDsZLl7hxxxBExD/d4mBBH72MSjbDNezrwwANtslyxYkX7SRb8ZZddlulnhvhNY1A82/lJ9jrHyaTceeyxx+z4aBwVXRxgsv/UU0/ZZ9i1a1ebrCOqd+rUKdx///1h6NChZpfz9NNP2/5M7vlMPXtfCCGEKAp43Cd2O1hdYPPGYnkiYJEcoTy3w3wef8ABB1jfFKzgOGbGMAj2VJWRgcx4ifED4r0o2tCMnjEj5wGJIMccc4xt5/zanq85+7D44zaFQgghhBCpikR0USzBm5HGR376U4KKYItofcMNN5hIDEweyfxmsosYHZ1MYO1Cs1HPLkdQZkJ54oknhnPPPdeEcwRm94gE/MkR7hGLub333nuWkU5WWM2aNe1vB2sXjgfwPyejHOsUbojdiPsOWfJkrDHpZTJDlrf7oZNJ5tYxUL16dcsayo7gjkc8z8djaJR60EEHpduf7Diy5GhCCkz+fbKNSI4gT9NV7GoAAf2ee+6xLP5HHnnEBANsY5iM9+7dO1x55ZW2rWPHjvYemKzPnDkz3WcvhBBCpAqMM1iAnj9/fnjrrbfC4sWLLe4RJ7FGI45SSUbMdrBOQ6RkIZ7HZQaVXYwxqFgrLBgjIKp7g/Jjjz3WEgIYNxSELZ3In3OWZAvE8nbt2sW20xOI85bxGhaEmUHGORWdI0aMyLLSUgghhBAi1ZCILoodiM34eTOJBby5sT9xH3T+S2BNQiZ1v379bILIfdiNNG7c2CxInn/+eSuBvuCCC8K0adNiz02mTVRoRsSONv7MLGOcfRCio5NlMs05NjK/OAYm2WQB+fMxuWF/suijN7dzOf/882PiMxnflIEjcHMja4yFAOxZ2M4iAT/J+nbBnedhX/ZzyDjDvgUvdDwuEfqjUH5O2S6fSTSDngUCBPLRo0fbIgL2MIMGDTLrGzLR3SaGiTfiOn/jN49Az/vFQ5MMdyGEECLZwZccEfKhhx4y+wvGAtkF4ZnFeWImi+3EPsYbLCwT4zMDizbGN5nBOIbn4tiI1fRp4flICGDMwzgDOw68qx3GEsR54jljEATUqNi/PUg0IK4zvmHcRZUaCwQiuWF8zCIOY0XGtSRyZDfrHH90xopUH2LhQg8cIYQQQoiigkR0UaxALMYmZPXq1TZRxXP77rvvNtGWsmfA7xyPcTKr3O+RfRC0o5NHhOEOHTrYzSGjHJsT/L+xi1m/fr3dPBOnRYsWluVeu3ZtuzGxZKLCa7EPwvmsWbNifqh4ofPTy7vxb2ciDGSiX3/99Zm+V4R+su2BRp1RmxYmxmS2Y03DZKdz584xL0ufJDFZ5jXIWkcM4Gf0csEiw4IFC2J/MzEncx/4nMj2Z3KOUM5zAWI4mXjjxo2zjH1gosXr9O3bN5ZNx2fBcyEKkMEHZLD36tUrl9+8EEIIkT8Q/1gYZiEesZsKMx9TOAiSZGkjIlNlxmOIjYwDqPQis5fY+Pbbb2f6OsRmKtHI8mZ8QFY7i9/EcxbZaRrK2IbXogqNBXRiLnHU+70AQjljECDbHZs3joHxCfvzGlSO8fgoiPQI6sR+bNi8eo7FcCrvPv74Yxs/ZTa14LgaNGgQ6tevbzcy112gFYUDfXI47/geGAsC3x9jXMan0fFwdmHsxxiYxvHRakwhhBBCiFRHIrooNjDZYxJJNhX2IYjVTGjJmsbOBVG3ZcuW5ksaLT9lO9lgwCQDkR2vdCYYgPCLaM7kGesR7F+iMFkmGwvIRmMCyrEwieVGtjvHAY8++qj5hWc2+eRYsYoBJihklTFBwcbFb0yyEaYRnMn6chGdpqi894wy4jj2pk2bxsR3su6PO+642I3JNhn2TNiZYDOB5rPs0aOHPYbJNhN4JuJ4v9OolaZkQDY5GW9k8NMMDXGcrLdXXnnFPjteFz90MuDJVGPyBezHogLvF6sc3tcTTzyxTQNSIYQQoiAhxlK9RewjZk2ZMiVdI3GgioqFdV9EzgyES+LqihUrtrmPBW8W8BHeGZcsXLjQFr4Bmw3iamZQ9UY1GmMaKrwYsxA/EeCJp5k1eOR1Lr30UntfH374oY01GJswvuAYvYk4lm18DojhjGOotONvfK/5XByOlwWDeEHeYQxD83F6yrAAQCYzCxCMObaX9SxyRzSjnF5AfN98Tz7WAqoUstt8nnOcsa162AghxP+D6yjXRrQBbvzO9ZI4ysK188EHH1jFGTHQb2gOioFCJCmI6EIUdRYtWpS26667smCUdsQRR6TNmTMn3f0vvfRS2rPPPmv316pVK23Tpk2x+0aNGmXbxo0bl/b7779v89w33XSTPc5vZcuWTWvXrl3a008/nbZ+/Xq7DRkyJK1ly5Zp5cuXT7cvN543epxXXHFFWp8+fex1Oc5Vq1al/fLLL2n//fdfQj6LzZs3p33xxRdp77zzTtqkSZPS7rnnnrS1a9fG7ue144+R27777pvWuHHjtOXLl2/znDNmzNhm/zp16qTdf//9aV999VWGx3HSSSfZflWqVIl9Lr17905bsmRJ2rHHHmufH/zzzz9p1113Xex5BwwYkLDPQgghhMhu7Jw8eXLaBRdckFaiRIm0nXfeOcNYGX8rVapU2n777ZdWt27dtPbt21uMP/nkk9P23HPPdPvtsMMOaTVr1kzr1q1b2nPPPZf23XffxV57y5Yt6Y7llltusf07duxoMXP27Nlpw4YNS9txxx3tuXitrVu32r6vvfZaWo0aNdK91i677GL7dO/e3eL0E088kXb55ZenlStXzu73+AsffvhhWocOHWyc5M/JGCL6fDvttFNao0aN0iZOnGj7M6445ZRT0u3DsXEcN998c1rTpk3T9tprr3T377bbbmlNmjRJO++88+zvLl26pHvP0c9D5A6+V8ZmY8aMSXden3/++WkjR45M+/vvv3P8nDye76x27dr2uxBCFAeYixKX3njjjbShQ4faLUq1atUyHRegFcydOzdt6tSpNk/2OXF8XN1///1tTrx69eq0b7/91q7RxPz33nsv7ddffy209y5EcUciuijyzJs3L91k9dBDD7UJ5AMPPJBOjL3rrrssYLFPv379bLKLeP3vv//afvzkua655pq0t99+O93zH3nkkWk9e/ZMW7BgQdqGDRvSNm7cGLv/+eef3yYwsv9ll12WNnjw4LRPP/00LZlgEoSYP3z4cJvEnnrqqWm777577Ng/+uij2L6I/A8++KBNmr/88su0xx9/PK1+/fo2uc9socCF8UsuuSTdfogMLDYwSWeQEP1u+AyZ5Pm+CAgS0oUQQuQnf/31l8Wfiy66KF0czOzG+MIXnYmfjBV+++03E9+bN2+etscee6Tbn7jHWIAY+f3332/z+n/++aeJk4xNoiIysZbHt2nTJt3+xG4W7uPj4/Tp09N69OiRds4559ikPH6ijgjw8MMPp73yyit2YxxDnG7btm3aMcccE9sX4RtxvHr16vZ8jKMQZaPPV7JkSYvlMH78+LTjjz8+Js7zWuvWrbP3S6IAovuVV16Zdvjhh2/zWSIcsJjAZ8BnwzYW3P/44498+76LEoyl+C75Hp3+/fvb53juuecm7HU++eQTO4/5//HWW28l7HmFECLZeOqpp0wfqFevXlrp0qW3if8kmhHvv/766wyF8YxuxEMWlg8++OBtFtfjb4MGDbJ5uf/NmOKoo45Ka9GiRdpjjz2WtmbNGs2PhSgAJKKLIs38+fNjk9aKFSvGRHKfzBFs3n///bRmzZqly5ZiX35H6P3555/THnroIctg930Q0h2CFSvEBDaCKo8no9r56aef0k4//XQT6ZnQIMynopCwePHitEcffdQWExxEAf9MDjvssLTOnTvbZJxJMsH8tNNOs4w9JvUOK+grVqxIu/vuu+1xTJ6jAxE++5kzZ9q+TJ7JlGPRwwcLvt/tt9+ugYIQQoh8A7ExOoElXrFgTkwn1jOOIM6RCc5YAeGSyix+IiheffXVlokefQ5iHNnYCxcuTCdwfvDBB2ldu3ZN+9///pfuGKjW4nFkrTm8FkJ3VhCL77zzzlg8BQR9Pw4WyqnyQsTnNdlGDEcUJyu8YcOGscx2xPoDDzww3ftANEVIZ4zDGIhY7/e9+OKL9noI8/zNBH/lypVpY8eOte0HHHCAbeezYxzBsbrAiwgfnzV/yCGH2O98FoCozliC4+XY+F38PxgbVahQwT4zxsEOY17GZmQ0JhLOZW5CCFEUoPL85ZdftkSxKPGLxj43jV9kRxj/5ptvbPF72rRp6eJZmTJlbBzAQjFVaSxyO1xHzz77bBtjsFjNfuzPAjaJZxMmTDDNIn4xPH4BmgVwrv2ff/55riqMhBBZIxFdFFmwK/HJK2VTHlwoO73jjjvSbr31Vitf9mxoJouUWX/22WeWPcbKLhYsUeGW57vqqqtsckzmNdYiRx999DYBjElpcYDSNYK9W+X4jQlyp06dTCD44Ycf0j2mQYMGsckzq/lklZH9Tla+T9J79epl+yK2e8m8L4BEs9f5HoUQQoi8wkSTDDImsTfeeKNl10bjGhNXJqXYmkW3E8schO2BAwdatVm8cE5cW7p0aWzxlyq0H3/8MfZY7FJ83ygsYEct13h81FqOkm7iKo9zuxVgoZnnIxZHH+sxlUw5Bzs7xGxierztHDGX94j4ygIB4xsXupnY+7GQNY5wMGvWLFt4B94vx8ZCOSK5v1/GXogE8Z8Rr9WqVStLbmChgcy86D4nnniiHevo0aPtbx97sIgBLAogqk+ZMiW24O/VbUUVkhZYzOAzjcL3xNiXczrRsHDCWFkIIYoCxEayyLEiO+uss2Kxhbknc1QXxKkCI5bfcMMNGQrYVKFhlUaccrCIZZGcuMX4gPEF12sW6bGLZXGe7PIoCOH++hwLGerEUfYldgJjFcRyYmd8lRs3BHcWoInXJPmdeeaZVgHGYroQIm9IRBdFknfffTdt7733jq368pMsqUceeSQ2gY1OhAlkWJI4TACjWVcI5U8++WQs8DApi/p58tyUSTPJzMwDvCiDXyuTa8qy99lnH/tMWK2PwuSZiSwT9aiXLIsVlH4zESdLv3LlyrbdV+avvfZaG7SQaeYl39GKAioAhBBCiNzABJdFXM92jr8R01h8R8CNVqwhqpMdjliLjQribTQbm0kvMRHLt/iqKbazD2OSaBzFe5zJt+9PNVb0sezP2IYKLYf7vQQ8areGmM3z0fskCnZzLnJnBM9HLxYm+0zwo58Fvuc+BsLmhnFR9HFM0klQcNGfbWTTRRMRbrvttpjlHaIFMT66EI9vOj6xfK4sxCOmMwaLLqCTmcf3wiI+r+ee8dHsPCx4AGGfMQNJEVGwo2NckUr2MAgxjDPxuXdI6vD3jLjtYCfE4gefpcP3QVZk1HIwp/AaWPSwwEFmuxBCpDJUZWVkKYZoTfVTpUqV7O++ffumW7ykQp1FX2zNXn/9dUv8Yi5Mgh3buUWJVrTH31i8joKNW2b7YhsTBdE+ej/jE5IAzjjjDKsqy+g5GO9QVU8MVFW3EDlHIrooclC65KXC0YDDxCGapUWwc6GcSR6ZS9FsLyxcsHMhMJJNRcPNaKCheSgBasSIEVZaLf4PPmMy6jwzzCddlLoxwcYjlQw8SuJ9oYMbK+VM+sioYqLNCjoZdmRS8ViyAyjhpqlb/GCAlXUhhBAiu1AlRUZYfINLvx133HExKxQq0HxRHtEXH2gWhYlTUXGdGz6o0WwvhEYm1dFsaJp5IuwSBzMC8RgBlNdjTON4BjbZ3VEQtN988810+wLjF6zTsJJzEI2JxZSRRzPaEQIQRhG5oxx00EEWnxG3XZB/5plnbJKPP7onILBYEJ3EI1qTUY7we/3118cWyH2BgUq0ZcuWmaCP5RtN2qPZdHjPRiFBgWOL2r/xOz1svBk8nw/jMp7fy/DdOo7jx1LGQYhnOw3aoln/jDWiFiiJgkUBkgkQX6IgcnN+sHARTQTh/CM7MWqh51aD0eoHPkNf7Ik29nS7PfenB2x32IawwgJNbqDagoZ5fH7Rz1MIIVIBrlseM6I9RrguskDILd6GjUVcFqXjYWGbhtjxlWvc2BbFK4aI+ySAMU4gYYx+avHXUo6POS+xEW2C2E4sZV9ibfzzMiagAi7eVgZbLxarOfZ4S7aooB5dgBdCbB+J6KLITYrJbCYo0AwLH04yohHByXQiUESbdzEpYwLsq8NMpvHmdDGYSVzU/4xsMyfqZSqyhgl+NIuMQM6KPoMCJrqePcYEGnHCFzOYbDIhjlYE4Kl633332fN5lQFixAsvvFDYb1MIIUSSw2I4oni0oolxAxNpGmDSxJrs5ahdxccff2wiLyXdiNBkYLug6eI6dnDx3twI5x7fyHx2WHh3axMmuBxPNLscmMjzOOKnQwYxC9H33ntv2quvvhrbTpk57wfxOirWM1nnORCsPVub+/24mZQ79G1hW8eOHdMdh1eOEY89kQDRNzoJpxKPDLyMmq8iBvOTpATei78vv0VFbOxkGAcwFotmiJO5f+GFF5oIjFBMNnbU6gUxHbGchXcWPp5++unYggJjtSeeeML2Y+Ee8ZgbQjTfDSXxPA4Q5NmPyoPoZ4M1Dp8lzxvt8cI5wudG0kUUzhWe38eTQPY4z121atV0++I9z3YWAOKFcW4sRDhUAvA985jouJckD95jFMa9LHpEm9eTtc7YmHFVXkBIj4r+QgiRzJDMxTXyhBNO2GZxkesZFWDE0WhjT5K46GtCEh7XWRZZ46+zfv3mRqzk+oqVFpVcxMRo8h2/o0FwTWdhm0V4quDoSUIcicI2xHlujEloPHrppZfaWIHeKdHFVWIVC6/EaLQLxin4udOTJFrtxut7tXh0cYDxC2MKYjXHgwUY71UZ6kJkjkR0UWQgo8pLmsg8J4gAwcAzngkWvp0JBtlY0UBCKTYTKs/I8vvYTlaVJg25Bw95Gq5GP1cWNhigIFAgYjAx94EBmW4IFWSpjRkzJl3gpwTNy+F9OxPv6GRcCCGEcBBTJ06cGJtE+w0B0uMOFWpe7cQifBQyy1nAjWZzkY3LgjCTbyacZH7j/R2FCS+WcQiYxDOynKNVb2SQ81xU0EUnrYjkVLwxiY5mjJM9z/6I0T4m4b15E1Den4NPOQsDbGdhwHERnPscxkYIAggBUaEAyxqeE3sUPz5iNplt7tsazbxjXMUEns8vunjOewGeA6Gb+I8gjDAO2LnRvJx9EcwdRH+3yUGUcEhy8Njvr4Eo7t8P34WDoOEZd1HcwofqOUAsQfxmG1Y2flzR9+j2KIji/l14w1MHmxm2M3aJF8ZZfIkmYXTr1s2O218PWCggcz4+I5/HJULYiFZl8r3TgHZ7AhTnrxBCpBJkeDNnjNqaEONYLGZhlGt19JrKgime5/RGY3GVKnVsWaKZ5q4jAPcjPNOHzat7yCLnehlvpZaVRQsLx1HwZc9sX0TvKNEKbcYBxBgeT48Qxix+XIw/Ro4caYvqCObR+BwvrHusojIrvnpKCCERXRQRmFiwUusBgJVaMrZYtfVtlDmx6kvmEF6m0WBEgxCabDFZoSmI38cEk+wmVqlFYiCIk83lgwkGM3z20UklAZ+FEB9YvPjii7ZPtLyO6oFbbrnFVvXJgvOsgWiWmBBCiOINsQUhOyPPU25MdBEt8db26iYmoowjeCzxiGyuaINy4hPbPLsbEMZ98klFlROdoPvYAxE7GhMZqzDppVm2+1qz3cVjxOqoMO5WJMRSB4E5I29VsqoRq6NiLEkEZI3j9RrFe8Uw0XbImnORPwrZdmznc2MMFY3PCBYI/5SIU76OlQvH/cUXX9hjo1Yi/vnwfIjRZAhGs6fJ2Is+L2XwCOuIFtjEkAXOAkHUb5b3Fu2Bg0jO9x9dGHFrE27R5ptkjyOu87kBYwzEFt4DiRpeAcD7crHdF05YjCGDj4UHziuqDKLnIaIGWfPR7w2Rh+chAzI6DmKB5Ntvv03LTxDTDzvsMHv9aF+gKCwisIjCZx+tfhBCiGSF+BnNEudGljgCMrE2KiDHJ2Cx0H3xxRdvU1nFfNQrohyEdmIUi+lki2Of4vtjg5ZR/GfRFEssKoJI0OvcufM2Nmr0NMEu1m/Dhg2zzHI0iag3O9BcFNu1aHVdNFktmrXOgjJVb8RMstdJLMCijjjAgn38wriL6tiDYSWj7HQh/g+J6KJIwAQ5esHH69N90QkqlEV5gy7EdN+vdevW6TxEmZix8so+TCJz6xkptg/fBQGZQUEUvGKZHDMx98w6bqy0M6igHJxsdjLYHTIJo4sl0aw9IYQQxRPEYrcT4RZt/MkiORVPTCKjTUXJGkfARNAkkxhR2u9DdMbHFPGRsUPUagUQaZmkIwKTocYYIyq0MxFmIk72W9T6xTOwuXFMDpPdjARs7EzwQeX9OSwE8HfUhgZyMulFECDrzO1NAFGfY4oKv4BwTgWZC9Bk37l9DNnhUbByYTtVfhwnQgPZgcRyLPMolY9m+mGzR4a+w5gA/3W/nyxtxOp40QRLnmhzUUSU6IJGFAR+BBGOLQoCSVR0yAzGLvjQInCQoEEVA2IMr0s2PAIMix1RECu4nzGpw7nEOcg5UxgCBUkIJDVw/BnBOJjFFT7XqLWMEEIkM4jCzCOZPxKvvEFoNNZTfcQ1Llqdg2Wa74MmQFxDWCfGRON5tOoo/saYAvut6HyUOMdrEQOxkyVeULXFMRBjsfSiApuFYeILcZ6/GTewCM5+LGQydqAajNgcjRnELbLkiZ08F3GGaqko8SI5MZhxC69HtRTPQRZ+fLNSv2FVJoSQiC6KAASXaJaSC+ceHCi9jQYZSpK5j1XmmjVr2mQuGjzJlJLfeeHAJC5aIUC2HgMYF9PZhm8c2ebetA0QDchg88cy2dZquRBCFE+I42T9erYZP31cwE8mlgjF7pXtk2V6axA7mKhGJ5sI7mRIM4kGMriIS2RfRxuUOTyHi+9MyB3GGm5pRtWbQ/NRhGGEV3zBHSbcCONkA6cCfBYsdiMKO0zMEdUZa+E7SwZcfHYfYy4EAV808PEcAgKTerL8qVoji9urBfn8yShk0SLaOJXKQTL+3MudTDwW2lkYQRyIluLz+fJdY80CHAP2f2SdI0BELUx4XsT9eE9zFvR5HV4DkYPHe3Uc5x3Cyc0332wJArw+n0eqLfTzOXGOCiFEskGMYDGXqiCqlqMLpYwFiDseV7g+E2e4nlGxjl0JyVdcnx3iLYlcxHmeG7Gb7O969erZPNT7mQBWWGRxk1GO+E0lE/alLPKyCM+cFSszbM6IK1FbmUTciG/EVhqao2sQa9BFsDPjs4hfEGY8goUYi9ceI/3GmMXnzsQ7KqyivV+8YopERSqo6O2SarFMiEQhEV2kNKzg+iSZiRhiKpMhAhliOcGOiVa0YReTNUqn3CedWzR4isKD74+SMf9eCPBkAOBT75NSbgwOuLEyzwCBsjgP7r4PpeFCCCGKD0z8yAyLlmrjZ4r46VVq0YxbMsJoWI0AymSQ7HJfaHehm4ZbZJ8xYXSIO4ipxCWywvBRJestChNVYhKT3GhzL8YfHB9jkOhzcixFcfEX71n/PFnsnj59ujVZjVYIYBfimfldunSx8ZzfhziApZtneOM/T4Y/f3vWOQ3KHUQTtrEgEc0S9DEf5fAOC/IuyANiPCX4iPVsj3qFs+jiz8V35ZD9Xr9+/ZgFDmNMLGA4l1g0QZDxCojMLFOSDZq68j0JIUQyM3v27HQL3mSck2SFAO5wTaYqiYovrt0Z+aRTjRON71RKk3UdLyJzY7EdiNdc57Eqw16U8YBbkW7vRkwgnjH+IOsbaxcy16mOwt6N7HCqpPgbmxiOn1jI/rxG1D4tqxtjEB5HHGaBnqoub9rNuIa5NA21iZVRrYTKfCzsyNZnDIQ4H31vxEj6h1Al5xVmQhQnJKKLlIUVZJ+YMEklAygKZVB+P5MiJjJM0qIlSkyq8LVU5nlywYSZVXL/nijz5vska5BBzbx582w72W14jrqIjjDh/p6eGSaEEKJow4SPiVzUwxSB1ZtLYpWB0EoJNJPsaHYWj2VSiR85YwnPVsdvm4wz7EDIImPyGn2cV0MhmPpYA2s5z1Ynq9mrqHh8FEq5i6JgnhF8HogXUbsWPg8ysonrLpgTvzt16mTjMW6UlzN2w+uVxRFsZqJetIgn7IPQjTCAYM13iYiOqI2gwWdMVny0GSzb3aqPLHGEfb5b/z4YW5KBx9iQDEa28xp8Z9j3IK74d5wdEN95nzRDj4Jwge9+9D0VNJz38e+Fz9C9e+Pt9oQQIhlgQRLROVrRRPUQSXEIu1SPxVuvkHgX37CTBt0sgEarm1kYje7DuIJrInNQmmKTqIdFjNvGZnQj5rB4jzhNMhgVWMxd6c+BYI5QHqVNmzYWI8eOHRvbRizDx50M+CgcA8dClRoiPjGJWMVxsQiN8E3We0Ye6dxIMERYxxIO7YQxTDyLFi3aRvTneUl0i8byqFjPGCwnsVGIVEYiukhJmNSwSusZRNwIZpQuMSmKNhQl24nA5ZloLqrTnEqe58n9HdMozW1aGMQQ+PGl4z4myUxyGWAglLBaH/1+fVJemBNUIYQQ+QuZ5ZRx+/Wf7DLKm8n4dogZeIR6tRKirkP8iDalROAlU81BSN9nn32sMopSbSbpZGVFiWY8R5sv4pXNa2FHUtwhkYHPLbpQ0bt3b2ue6Znl8f7kjOmYzEe/R8Z4GcECO0kS0aak0e8QkcK/I0Tz7Pp7u/0MWXmewZdXEKpd2I/3mi9IsCgio5Bmc9HPGNGH74nzXQghkgns2FwgRtwlg5rK5GjPMxpJf/DBB+keR0a36wZYnzCfJC4hSDPfdKh2QiimopkeKFwniU3Rfht+4zhI5EJjoBoNQdubg5Op7ZVSfiwk87GNMQV2ZVh8gS8I8Jr4o1MZ5xanLCRHbVNc/xg8eHC6GEfyGQuzvtiPoI2NGeMQrulks3tT8vgbdnLEZ8Yvro0wf2axN95HnTk2FjXRxelo8gIL18UlSUAUXySii5SEoOaBMLoKiieaX9QJbGQPEUSiPpunn356Os80kfzZBgxQWDXn+2PlnODMwMe9SPmuCfT33Xdf7JzwARaDJgVzIYQoWnBdJ3vcr/lMSqk+wmaFvxG9Ea+JFfiV+hiABViyt5joegzxiSrNQHkMnqJRyB7D55SMZx974LnukFXN65ENF99sVKSH7Dq3zCFzzsGKLzo2w+ommh0IZOlhscP3FAVh3b3SmeBnJkzTIwcx3Bdb+J63Nz6g2u3UU09NJzQnqrE6fu4I6g7CftSzPb/x5APK9ePJrCGrEEIUJiyYct0iO5yKpGh2OSIxC9cIwfTniC5gk7lNtRixnLkllU+edIXg7eCXTjUS886oNZxXvrPoTqUa13DEbXpneIY3Ywq0B2xIsSmLPhYR28cQ0UprBGkE7Oh2RHtEfjLl3Ubl/PPPt5iIJRmiO8dPLKTaiX3Zh2rs+M+KDHLvG0Ls4dqOXzuNrr2SO3qjypvXIvHA/d/xl8cX3hMOsMsh058xly+MR2/nnXfeNvFbiKKERHSRUpAFRClR1PuaG5k0eJISwDyI4lnmDb8ocyJQsfLsgVfCavLDd0STUL4zSueYAAOLJXQ+53uNiiMMgoYPHx47D3zwQxaAvm8hhCg6MBH2RXMqlpg4M/lzQZwsWiasZKX7wiqTT6xCyDqLZlF16NDBRFs8shlfEDvIAkPwZZIexRuDcuMYohnSijPZh4y3qIBM9j8ZgA6xnWzCN9980/7ms6VKwD97xJBoU3jsVhC7/X7Eg+jzO5SuIyr4frxORs1ho/Da0eeifwvWAYmsZiR7EMEEm8Foo9T8hPfE94Bwj9VBfBM6IYQobLi2Rxf1iNVct4i/Pt9DyOWazLUcgddjRXxFGgviDRo0SKchMH6gAShVZtGqNr/VrFnThHFEc3/eSpUqpR111FE2diB2ZSQik9zlC/q+2E88o4EnOkX16tVjC/sDBgyw8QsiuGscc+fO3UbEp/qa44xuIwufmMSiMA1RaZbqPUY8izy6uM++xE/ve0HcpeHoFVdcsU12OcdOpR3Z+Fid8RlGq8OA7HkqAohf0X4mPBdjMCGKIhLRRcrA4D7a8MsnxQQN98KMruQShAhuDk0v8D0j+wgrF5EasPrNYAQ/VCCA4w/n33Pbtm3tb/ek9UYx/N2rV6/Y7wyCVIEghBCpC9d/sq4Q/DzzGKsvYoTHBCbIeGhjw+FxASGdzDDGAWSQ+75Mgl2kdWhESkyh4o0xBg28ovYvLOYy2WXRlsm9yDt8L3i4kiXOZB+h2/ubID6QFcgYkLGex3VvFBvN3GaBhAZvfj8ZihnZv/BcZF97xRrZeNnNvOYc9DJ9LGISBQIFze04r1nMKUiwM/DxlIR0IUQywLUWyxPm81zrM7o2Ea+J/9h4kXWOzadf/xHYb7vttti+iMR+H3GFbGuq2YgTUbGauICw7fNJmoTTiJQkLRL5/PG+P4ue2MjyfCTpEbto5InYj10Z2eqTJk2y7G/+dhin8Fgy5KNgv4JOwfuhRxg6B+MZYgPP7zEQgdz7wJAYwEKCJxKgl3gvOMYvI0aMiM2jEcRdvI/C6/EZU1mH1Vq8jQvjKRLa8FH3BWxiLlYw0c+VhQjEdAR43hsZ8zRfVZKBKEpIRBcpA35e0Ys5gYPV2Kh3KZMlJiG+D7/He1gyUdIkIbXhe2ZAFR/cfVWfGxmHBOzGjRvHtjEgQIARQgiRetd97LmiDbMol45mFTMh9kbhixcvtkklFWhMJsmeinqfY/OG5ycNH6NxAUGX2EGWsZcpM5lmO/D8GWU4i9yDvQ4Zdv7dUN7OondUEKEU3hugIbR7xhv9cOK9u6lWczGB582seTx+tDSgYz8ECjL/sgOCANmLHHci4byK9/HNj0ZtlOFHPxMyGfk/RSanEEIUNmRHI0r79Z+FbTLPqTCKLpwyx0fQZVHUr/ncENcR1qPXT6xP2If4QpJdvD84lU9kcbPgjo1JfGNOPNfJrMaTHVEdQZ1xBA3LCwoXrzk+4iFZ4CwC09uFeTD2NC5qk0HOXJjY6fNkPi/eHxn6iOkOnxOWeFjHYGfj8DufCVnm8d7nZLOT6IamgnVOfNNWz2T33xm7kc0vRFFAIrpICfC3jF6UEUOZDLPiSVBzPzD3DSNQ4FdG8yi8yjThLTogjLiAThm2T4A5F1g5Z3BEM1kXPFh5jw6sEGG0iCKEEKkDYmfURsWzZpkQMj5gUZ1Mr3ixFEsWrvcPPPBAbDKHFRjZXwjlnmnFeIFJOFle0WbUlHCToUbDrswaWorEwKIF1YSeEUjJO4IFFQGebUe898oBEiL8++O7jU783V+cknvOi6wg65uGpD6OiFYdZEX8OAJhImovk6jxDtUSiW5MSyYjiwBYG0S935UpKIQobLgusTjq2eQ00GShFJGbbTTwjEKc9nEBFqAsmM+cOdPmgsR+B52Ax0azzrF+IyOb36PbyYCn0ogsd+acaA28TjLPH8l4p5EolUUVK1a043V7GuIp2sg555xjdi6MjRDgSTQjzpKQSJylGiyqmfC5Y49DbGAf+pLFW74gnrOwzfiLuMvnFs3Uj7/xuvmxOCxEQSIRXSQ9DOy9pMpLlHxVlRuNkZgQePBjpZPyJc9Oo2M2t0RnDImCh6Zibs1CEKfMjeZwBGQ/H/DJi/qbMqhg/2gAx3tOCCFE8oOIGu1zweSMKrSo4IcQSgkyE91oaTTxAWHcr/2UXFNi7cyZM8d8tLGH8awzJtU+UWaB3kugRcGA0OFiCfH+4Ycftok5oq8L6cR1z6hu3bq1+dlmRHwlYmaVaOxHRYKfJ1jC5ERQ5txjnErj+u35q+cEF3cSaRuDQOJWOWTsCyFEMsC1KVp1TiLce++9F1vMZhvXLuJ1FLKyaShOI0wE4WhvDMRkLNhoEhqdB7I4SRNQ9AMWYKMiOmMMYkCqg6jNggJ2aNi9eAY5/uduW+NWMEBcJf5Gx0jeHJVxWPR7YpGCsVVULEeoZ2xGQ1Gy86+66irrSYYlXryQTtZ7diu/hEhGJKKLpIbAyEXZL7qU70YFdFZQydDxkmuEc58kEQTwJPPstaIunDLhS+YV8kTAKjgTVbqWe1m3Q4Ani42yfW/2xUCB4E3jWffP9YFSQTXuEkIIkXOYqOFFGl1AxxcUr1AyzKLiNplrlDF7VhQgpntTUUT4xx9/3LLSfOLmYwUXSz2rmWysZFh0J54X18xghGj3nqUkHTGAiTnVB1QXRuEzin5OeIsjrsfDWJFqRUrTM/pc2Ubpu59v+OdmN1uO5rOMNRiDJjLDjmPmPfPeEwlZ/Pvtt58JS/FjKSGEKAy4bnsc7tKli2VM+0Ki23wRG5i/4bMdvY7jNY5o6/sS8/Hvjvp6sy2+oo3bvHnzzI4EKy0ytKMiclGZo/P6ZKkjflN1h25y7bXX2qIEc+KJEyemPfPMMzaPZp5NnKSyijhMbIvGCT4j4jDPSfN1FiKYZ/vnyXybhW2v3qN3DBUCGWWl8z37orgQqcQO/BOESFLWrFkTatSoEf744w/7u1y5cmH9+vVh1113DWPGjAktW7YMmzdvDocddlj4+eefw5w5c0LDhg3TPcfatWvDww8/HAYNGhR22mmnkArw33LDhg127N9++226G+/ff//tt9/CP//8E/7+++/w33//2WN32GGHsPPOO4cSJUqE3XbbLRxwwAHhoIMOit34DKO/V6xY0fZPFT766KNQpUoVe58O733HHXcMzz77bOjcuXO48cYbwxVXXBHatGkTXnvtNdunVKlS4ffffw///vuv/b3PPvuE999/Pxx66KGF9l6EEEJkzNVXXx1GjRplv/fu3TvccccdYebMmaFFixbhzz//DO3btw9Dhw4Nw4cPDx07drRr+5lnnhmee+65MGvWLHs8+x1++OFhypQpYf78+aF79+4W+1q1ahWefPLJ0LZtW/sJxFteY+DAgRYbE8lff/0VPv/883TxOz6ef//992Hr1q0W07n58JxxCzGaG3Ers3jOrXz58qFMmTKhKMD757u94IILQtmyZTPc56233gpHH3102Hfffe1vYnz9+vVtfDB9+vR0j3vwwQdtbABdu3a1vxk3xDN69Ohw7bXX2vnUuHFjG1cwltoeq1atss+/ZMmSIdlZtGhROPfcc8P+++8fFi5caD+FEKKw+eyzz8KyZctCpUqV7BpFXOSaSqxv1qxZuPnmm8MTTzxh+06cODFceumlYdq0aaFdu3Zh06ZNtr1Bgwb2uJUrV9rfaAZsq127dqhevXq46KKLbE5InKhVq1YYPHiwaQ05YePGjeGrr77KNJ5z++WXX2Lx3OeePkfnxnERozKL5/zN+GWXXXZJ+OeMfrBlyxbTURYsWGBjJvQTXovxSr9+/cL//vc/25fPFR3mwAMPtL8vu+yy8Mwzz4Q777wz9OnTx7Zx/4QJE0xr+eSTT2zbnnvuGTp06BB69epl7/uEE06wcZZ/Dj7GOe+882xsJ0QqIRFdJC1cxAmYs2fPtr+ZPBKQmCDedNNNFvDOOeccu+/HH3+0iQ6T5qVLl4a6deuGVIH/guvWrQvvvvtuuhsDAIdJNMErPsDuvffeJpZ7QCYoEagR1QnaTCgR4+ODPNud3Xff3QYVDCT8Vq1atZQR1l955ZXQrVs3+/757hHPjz/+eAveiCYnnXSSfcbvvPOOfY4+kOH3efPmhVNOOaWw34IQQog4mKS1bt3a4tx7771nYh/Xd67hTZs2tfsRQn2ihyA+ZMiQ0LdvXxPCARF0/PjxNn5gwnjqqaea+M79PpkjbhD3EgVCOJN3j+UcO38zpnGYwMfHcxa8EWs9phOjiF2+UM6NZIH4eM5YwRfR4ZBDDkkXz7nx3EWBW2+9NZx22mmhUaNG9pmefPLJ9tkxTkRsYGH8jDPOCD/99FM46qijbHzA55GRkM54cdiwYRkK6UzomzdvbsIAQg4iTXaE9CgICnz2LPonirfffjscccQRuV4oITHlyCOPjCUkcJ7xfEIIURgQx7/55pvQo0ePbURerp/MUSdPnmzxj2vy6tWr7f5OnTqFe++91wR2YkHNmjXt2rbXXnvZIiFwbSc2+tyPOTICLz8ZV5QuXTpdQlZmfPfdd9vM0Zm3O7wOYnh8TGdxl3juMd3n6B7TWeTnueNFeN67g6h97LHHpovnxxxzjAnwiYIxxAcffGCCNwsNaC0vvfSSJS/wma9YscLGVyw+33///aFLly5hxIgRNibzxQeOmc+a72Pq1KlhwIABYfny5XYf8/EbbrjBtJs33ngj9OzZM3z66ad2H5/LU089ZQl9vC/GRkKkBIWdCi9ERlBCRGdtL/fBt4tyK7ww8Tx3Py3KiKLcd999dh92H/ioJSOUJeM59r///c9Kf6PdwWmkQhOTO+64I23atGnmB0+H8kSWgFF+RTkczdMoiaNhC56i+MO5HxylXDRSo1wOz8xEenwm8hyh7MwbnPCd8zk99dRTZufSr1+/2OfaqFEjayYTX0aGH54QQojkwK24aKiIfRvX6dq1a6cNHTo05r3pNhuUEPu1nJiJPcv5558f23bTTTdZibKXiRN7PZbSeMs9PLGNywvYhxB3rrnmGuu/gY+3j1soJcdrm2aVNOjCRsObXicK3hee8DT/Il7zuWBpE7Uwo4SdptrERWxuUtEm5rnnnov51T700ENWUu7e3owD+BvwYvUm89j5YAkQBZs3P5f4zjIbX9FfxZuSYyOYk5LzCRMm2OM4jkTZpdxwww32nIx7csOCBQtifQHiG/AKIURBQgwaOHBgzGKTmE9cj8YmbNWI3SNGjIj1RkMHwMM7asnJNTbqz03spVeWXzNpPI19CTHwyy+/3O5xESOJlYwneL2oTQmxlRhLrCXmEnsTfT1ljMBYgTEDYwfGEIwl3MPce4MRvxh7MAZJBMRCrGyYG2N9g00Zn7tbtfC+HfaLfld9+vRJ23vvvdOGDBlif3MfFjnuqc6N58GOD9vVqM8974tYiw7Bd71hw4aEvB8h8hOJ6CLpoMFTfOdnJsNff/11ugYW+J0TwKJ07do15mlKAHj77bfTkgEm988++6xN/mnq4c098HQnkLzwwgvm71rYE1uOk8UKGoHQyIqA5gEbX1KC+fYGIAUFjcZcrEBAJyjHM2nSpNjAiwEIA6joebVw4ULbLyP/VCGEEAUHk2hEx+HDh9siOdfoevXqmQ+6Tx5d9GSy7f1R8Dln0lWrVi37m8nymDFjrKE4fzO5K1u2rDUMjXqdIpLmJubymI8++sgmgxyfj0uIMXi2PvbYYxZbCtvnk+NEhJgyZYo1SSOGM8l1Uf26664zf9T45pvJCgvnUc/b9u3bm2c4/vj8zXt78803bV/GKZUqVYq9V76veJHbvzd8YTMT0hEx9txzz9hifHb9zhE1aITK2DVR4zqEI8Qg+gTkBvyBvbeAEEIUZr+TDh06xK7liN14muOb/cgjj2Q4r/e+Z8TtatWq2bUQDYDxQnTBGP9u5oYItojr06dPt+t/VnGO+4iFHJOL5sQTYiaxkxhKLC3sOTpjCsYWjDEYa7jfO7GMsQhjEhLkEgHJBd5rhkQG4iRCNwvYwKI1sZfFBD4Xb+bqiQsO97EATuPXaANS9mvRokVsG7qN/06/jmTRb4TIDInoIum4/PLL0wmdXMAJrt5kihvdnwmcrGJ279493eNZnUYsJRgTqAsLJnc0MiPoI+hz3Mccc0zarbfeakEwVZqAku2PeM5gwkVrAieZ9HT9Lsz3wedL1/WMIHAzoaZTu2f7c74wgfTziGx7FmPoAF/YgocQQhRXaFLljUGZHPOTGP7TTz9Z3ORvGixG4w2Ln1z/16xZk3b44YfHFqe55sNtt91mk2sXD7ndeOONuTo+xhIIqoiiRxxxRGzSx1iDzCnGKKkAIvBrr71m4yb/zBCJ+Yxozk3lWzJDXGfRxDPY+PzJBPQJPIvmJCUA2xFb2M4YgIX3jDLSOb+yaiRH5aBP8MluzO6Yhwq+RIouPBfjytxWeHhSBItKQghRGCBYe2Uw1/GHH37YqoW8yhwBNZoU9frrr9t1fcCAATb39/k0Irlf3z2ORbUDrvnxiXZRiHXEPGKfVxyx8IqgT4xMZIPo/IQ4hx5CLPQ4xRiFsQpjlrzqIIzBPvzwQ8vA57lJamBBGdHeK5uAuMiCRTQrHxG+f//+llnPcYwePTrtkEMOiX1HZ555pmkivqAd/Q7ZhvZQ2AsXQmSGRHSRVDBZibfcIIvIJ0iIuE8//bTtSzYO28iajoeLLlnVBQ0TFbpbExhcDGjQoIGt3MaXFKciTApZdSZL3Vf+mYgzuCGQJwNMlAnm55xzjh0f5WQsBJCdyN8M1HgPPmjyzDwEGyGEEAULGUfxAvpJJ50UsxFDoEYQZxJGNm50UkX2uld3VaxY0SZ7DvtT4cWEnOw0sttzavNG9hmvTRY7r8FPMrKYLKb6wiuf46pVq9LuueeetJNPPtkEDSaulLDz/gozCWF7PP/887GYfvrpp9s54lY+bv8HZCJS9o5VXryIDtjmZcduhXGEn5tkRuZ0Ys/+ZDoWpiDwww8/2AKERAkhRGGAmOpiLMI4i+DYlnr1OfZbZI3Hz99XrlwZqzzjxoKgC6+I6iREffXVV7adCiuE+Ywyz4lpL774osUKHk/MI/YRA4mFqX5tJLGA2M0YxT9TxiyMYRjL5AU+m5dffjlt5MiRscUOBHSsZogtwJjN4xxiuidA3HXXXenOAez3PH4Tr0luc/s+XyTxG3azqVItJ4oXEtFF0sCqLxnBLpb7xdRLubjAUsYVZcmSJbaa3KNHj0L10Pr0008tw42gwrEi+uNTllV2U6rDYIQMAbIDWf0mELKiP2fOnEIZiDDoIluez59BEucEQZqyN69QqF+/vvnMwe233x4bCHiwZuAlhBCiYCBrHIHbrVsoG+YWH8+JKe5vSnk1UGnk4jtCKYu7F198sQmsLL5Hq5SYIGfXtovJH+XHPtlnoZX+IIVdeZXfMJbCK/7444+PJTBgN/fNN9+kJSNk2TEuRAhhcYUxCecAAol763smHWO07JCV0EDmerQaMrtw7rZs2dIe9+STT6YlAt5rds9FjjvZKwyEEEWfsWPHxirMWej0a7hXOJOMhUjLvIyYDezHIqhbtWEF4tdhr0jihmVqZhDDiGXENPYlxhHrivJ1kfjAmIWxi3/GzJEZ2+TFw/23336zxDk+v+rVq8f6dDBmQyznb4R1Xh/bNGz2iMGOL84Tay+88MLY94fo797rUeteT3JLlO+7EIlCIrpICrjYugAavXgiRCOcI6qzupwRnTt3tn3JLEYYLagSLCZGHBsTNgI5QZ/yqXjvzeIAiwVYq7g3KSV2NBcpKK9xMg29xJ5b79697ZjITMjqMe676zcWAopCxYAQQiQ7LIL75I4FTuIFN7w2yUij9NfBPsyv09insCjq1URUfjEZZ5xALHb/dO7PSQYTEz2ak/sknQw1vNWLY88MyuAZcyF2kIGNjQkT8mSDygJEFwdxAO/07VkHZZR0Qek47zUrMYZG7C7ekHGXXTivOD8TIaKzuEPigotMmYFYQSUkx0vloJq1CSEKG+w9qD4j4cqzkU877TSbs/Xt2zcW50mEArLEPaPa9/fY79diKo89GzoKMYvYxXWdWEZMy8ripajCGIaxDGMaPjPGOMSkvCT6oYGweM34Cy2EpMe6devaT6q9o/tFoTcc9rxuTcZ5wHjPv0/64mCn4/ZjfmMRRIhkQiK6SAro+Bxv48LqJRdfypK8iRSwihr1S2Py7KXWNAShGUZ+wjFRLuUrsDT2YFKf6qXdifpsyBpgdZnFECZurFgXhAhBwzGyDLwzeFZQ+o0tULSRid8YXESz2IQQQiQeynS55lKBRokvMKnzijR+Iogibvr1mcoixEufTOPN6bEXKzXu8wxy7suueE4mFRNzJoBM8orjRDsjGGthmef+6VQLePPOZITMQreWYzxCYgOVac7cuXPNRoBxW7yAQMaeZztm9h6jY1IqKD744INsHRePi1oN5QWy8nh9MsyzAusWT0yh+boQQhQ0zP8ymh/ffffddn0iEY34H200iv2Ii6/M6d0WxKvSsX5FZMdzO6PFRK7f7tlN7MJS1e3hijtLly61MQ5jHcY8jH2imeK5wZMcWLCgWShJkZ6Qhkh+77332ryaht+e5BBdlOf7p9LQkyix6EPrwS/dv3cse+h/I0SyIBFdJEU5d3zpDjesQQiiZKlTns3Fl67T7MsFNupjSfYRK5/xdi+JhgwmD8xkzvF6qe6hll/gQ3799ddb9hWLHGRg5WeVACVmmS2gcCwMtjyTjEkyDWTiywH9xnELIYTIP4gHLJZzzR04cKDFcYRvXxAnUwlLFr9Gk8E2e/bsmGcmGVBUG2HVEe2NQvY5za+2F5uZ3PO6VCTR0IpKNmXrZgzfDeMwt3qhMVxGHuOFCd8dVXBVqlSx3906ICqKc6540gVZ2tExCe/Rm9ByTrj1Wzws7ODD7gJNNKmjIKDaEUHeF54yA9GC5BMy6yUgCSEKGq6V5557rs2XM7oGTZw40aw4/bpLrCcms1DJ9Q2hlczk+Dlaq1atMnw9qtgaN24cs2whZuXFuqQoQzIZYx7GPsQ7Mv7zkvDGAjXe9Z6chn868fbII49M54vOd8QCb/z8Hfi+WeD275neODwfC9ZoCXynzPOpYhSisJGILgoVJh80A+Nied5556XVqFEjdvHEHiXei3PBggU2QWLluiDFawKDN63iGJnISzzPHvie4VPK4AjLlUmTJhWIryz+aQgrlA0SfPFaYxBHIzH3hvOJsFu5RAdpZDoIIYRI7KTaYydVQ1FrDLzO+ZtJEzYdxHuyhtlGlhpVZz5BQwBlMR3R1K/dLJBmB2wuhg4dakI9sYFFU4nn2YPYjfBBg26+t8svv9wWqZNlrHHIIYfELOUYPzZr1iwmijOOg2XLlplwwParr7463ViOjElK0rmP7Eef3Gc0vnDbH7K8czIeRFhA6NmeHYsQQqQqiNdkJXtMR/gkrkez0lnwRmT3xU7mbG7tgfWI90eLJjshqsd7mUfnmcSmgppnFgUY+2CLi+UNY6Jhw4blqak4i89UDJJZjvjdsWNH000yW8jFhoeFbarGODcYI5IdH/3OOTd87FemTBk7L8hUF6IwkYguChUmMFwUCZpkNXlGOhNnbEEyCoIE5o8//thWK5n85qdVCNnvNM7kYk7GERYgCsy5g9VnFkrcqodV6vwCnzYffDHhx1uNEn8m+3x/VBQw6WWC7BNmP+/4yWOnTJmSb8cnhBDFDa69LEYzYSO++zUayy+u034dJs7C8OHDLfbyGAR1b0BKHFm+fLmJ6J7lxK1bt25Zvj7XfK7r/hhKj9UDI3eQwU1jMZqBURnAZx+tDiwsmMB78zjGGYgtbn/Cdu+TwhjBx5tk4EVBfOd9cR8iUGYCOVlzfg57A/PsgOjOYxiTJBoECTLwKYOnp4DGq0KIgoZrpttjcY0k8QwBnRhONbdbaZFtjh86tiJkJ9PE2y1bPK4jwFKR1qVLF8t2jl6Pub537drVXoNrdn5XPBdlWNwlw5/PnDkzFUy5TRZEhPeqfcZzxF7sd7xHDRa+brPmyRQsfEetVPFFR9T384Bxhi9++8IKFYdCFBYS0UWhgRWKXwzJQvMSHi6M3Id4zUX19ddf3+axnrHGrWrVqjlqHpYdCMI0OOGiTVdwmmZur1mVyB6IJ5RoeUn4unXrEvr8BG9vSILIgviSlU8+1RAeqFmJ95Vu91UVQgiRd+64445YVhHXZs/ixabNs4x69uyZ7jEstpLBRn8N7j/jjDMsW4nJHX7UXL95DJO/rCbPvIY31SLzjWxkkXcQQfC2RfRAIEFYL2zhliQLP78aNmxoZeuMJfmbSkYfDzzyyCOxcWT8ojmVaD4eQHDPDDInfYKPSJQdEPJZGMqtvysLSAgPiAzxCSZU2EUr6lT2LoQoaB5++OHYfB6rVQRa5tJuhRqds5PMhIDufU58sTwqnmJhFYUYw7ycZqHEHmLQ9uytRPZgbOTVASxAE09zA/Fo1qxZVvXnsZeFdioK/dzwPiHE2PjG5TyeWO1WP34u+Hnit0Q06xYiN0hEF4WGT2i5HXbYYekaihAMsXPhbzzTyWJmJdpXRZlE0xiDiVL8pDuvkBGP7xYl4mTzZFbOK3IP3yOlWJRwkXlA1/BE2uNg4UIJ2fa8ShHcyVxjkOBZaTQvQdineayEFiGEyDtuo+UL31G7DCZL/fr1swxzhPDoZJjFTLfNoNEo1+TmzZtbllN2So557vvvv9+qjLATy+++KcUVMqC9MRxe9YVt8cKEnOxGjocGtlQVutULGeAu9JPd6Is58TA5p6ltVmMT7nPLGBJBCiLZYtCgQfZ6jIHjj4WqDkSoG2+80cZAQghRkJAU5/Op++67z+xCvDF19erVTUiNLlpOmDAhZsmGKB7vf37ppZem8zXHuoXFdLd5I/aIxMNYCWscxk4scuTFW/6FF16wRV/GYFQOYPXSvXv3TPfHjoe5OPNz4hoxz+1dWNyOt18dOXJkro9NiNwiEV0UGt5QLOp7xUq1T24QQClLBbcBoQN0FErCMur6nRuYvDORpyyMyboyePIfOoLjqcp3i0dovAd+oiH7gS7tlACSzYW3Hp78DA6YcHIcJ5xwglUheBkh2fKqQhBCiNxBtpFnl7ngSFlufIYTsb9Pnz4Wf8lcQ2D3RpYstLPgGp1kcy3PCp6fxXrGGEza8tP6Tfy/ygG+K74nROjC7B1DFhwTbhZhyEYnGYPkjGgJOLGfRfy8ZM8znvDM9/gxan5A1t6FF15owkJGJIOtjhCi+IEdhy9WYtca7TGBkE6CkvukE+tpKlq2bFn72xc9sWUhhpANTRa7wzWaSifGDtz/yiuvFOp7LQ4wZkLsZgyVl6x0GD9+fGwsR8ylSsx70aAF0FCWxAhu3iuPpEoH+xcXz4nrUe2IG4sxQhQkEtFFoUDjCr/wkQmEfQa/U/YTD5Mc7FtoDElWen4QzT7noh315RL5D8GRgRPNv5566qmETrwZeDHZxJ/PBRzOJwYHWARw7lHqz8STUjHup+rBvU653XvvvQk7HiGEKC6QVU4ZL9dRGjmzWE0VEhOexYsXp1sExzc1mlnUqFGjmL0WmcXHHXecZa8zeWISlVljRsYMZE6RQUUmlZpEFyw0EGvfvn2sASxZ4IVZARFdnEe02R4ZjT9I6sCiILOxCWIP75cx5NKlS7N1bDznXXfdZRYseRnzUPLOOIckATW8F0IUJtisYcfKPNqTpJjbMc/yuOA+6a4HuHUWN3qdxS9qUtlEhZNnn2fnOi4Sx5tvvhnLSqeBe26z0p9//nl7Lu9b0rt3b9tOfxr+pjmsW57RZyXeoo8qc7drdWs+n7ezWC4bVlGQSEQXBQoDfCbPftEjO42/faLMhDozAZuJAhdeMoloeJEIWPHs37+/ss+TAL5fAqh7pSciGBLomzZtGgu4rHSzCj5q1Ci7n8lu1JuP8mj2a9mypQ0Y/HF4sH399dd5Ph4hhChO+KSZ2E3GrsMkCS9TLDAQObne+2L6ddddZ3YU/I5XOhMnqs6IEQiPL730kmUVZwTlv2RMIbSTQaXs88KDJnBUe5GVjod3Mgi80fElWXDvvvtu7G/Gn+3atTOf8yhUolGGzvk4YsSITJ/bMyxJyMiOyIANgfcCoNl5buDYKHs/55xzzLYGoQmxSgghChOEbxKVWFikQonMc651WL3Q9BjIJnfrF79xHXURnZhB7CCGMHfjeUThwFgKYduz0hlr5RYSIK688kr7/klyo/loVomSnAd33nmnLcij22AJ4+cLyXFu/0tSphAFhUR0UaCwChkNlmQEu7cZZbBcKJlU00iCSXZ8aa4HW8rF8mqxQfkQ5UQ8J97nRSH7nIYdfDaANybWJAw+ECcINKkwucI7jax0bomoPEAYJ+hjF8MgIKvzhkUUzyaL9+VjxVsIIUT2mThxok2O6F2CpQYQ570BIk2mib0+DiDbnCx0v+5isYatFnEtqwbR7sWKMF9Uss+LQjyPZqUj8ibKfi83UOVWoUIFsxTgs+OzZXFn48aNdj82L14qTpVEFKrR3IYoM/GARSIsh3LS7IysPrLYczKejWZpLly40LIDeV1vuEYzdSGEKCiGDx+eYcyleTKJcp4sx+2aa66xzHSufVy7fDtzcRYD/VpIrPAMZWIIsSTVKQoxnUzySpUq2VgLXSa3EHfdBg2bHs6HaA86BHOPdTSRdasf3+eee+6JnTs1a9Y0IZ1FcRLe4vUjIfIDieiiwKAsx5uLRD3QPXhy0XMRk6BCwMTeJRpUuEDSACqvmeh0+iaziFXyouSrhu+rN5NiMMJqP6V1+H/jK89Kfip0MCdDDC9bJoXui59bsGnJToWBZ76T1eULNfFCOhNWIYQQ2WfOnDl2/STecj1mws3fTKDx2PQMNQRKGo65GEh5bnRBk6qxjIg2nqLyqKiUeheVeA7PPPOMfd+1a9fO994nGYEwQ4KG9z1hAu9l4Sywcw5xY3zJNu6LVjGQWY4dEffh8ZtZpvkjjzwSO9ddnE80+MUiYjCOBaoy+D/22WefpT322GP58ppCCJERLNp5s0diUzxU2Xj1OVnmbpXpSXHENuL3ypUrY9VKLHRynaZSh4X4okJRienoM+eff76NuWgem5sqMx5DvCKe8hzeeBataO3ateaVf/HFF5toTlUDFV40+o5vsB29sSiO0I7tn6xdRH4jEV0UGFz8os1DfPLiP6NlPgRNGosRZLlxAU0UrJyStVOtWjV7jVQA38z4YOE3JnYOEytK3TMC8YL9582bl5YKkJ1IaTXHTBZjXjqDx8Nz0SkcwQabAD5DBmuUV3vzk4MOOsiyJaKfNd6+Qgghsp4cuZCNXZaLlTQaY7Hcm4ziW84CpwvlZBth/8Hv+KGTmcV4AVGdSXhGTa14frcBu/322/PUILKgKI7x3O3TmOQSW/G4L2g+//zzWNl3586dTbjwBRvORaDagePzfaK4BRH3RSfzUSg1p5rCvXsTDee7N1RTA1EhRGFCnPcmkNhgIoDS9Nj9zgGhlPvr168fi/3x9i1RqEDmGkwiU9RuK5kpjjGdsRY95DhmKr6j1qg5nY9j2cd3jpUac3J6mbDYgqjuiwpoAlGxnliNkB9dkOHmizTE6vxayBYCJKKLAoGMHvc79SBKaa+X8mDhEQ8TZibRifJ45OJ7//3328UWz+1UKg1jJfbaa6+10ndK4rnddNNN5uPuJe6sZvPZZlYWTAkynzWr/akC39lDDz1k3xmiCn64eYFyQ1ao3fucSghKBgnUvAaBm4GAi+dewh290QRVCCFExlA9xISIBs0I216GS6wi28ptXJg8kT1br149m0gTl7mPKjFKebmfRXUW0Wn+HQ8ZzSeeeKJlOJPpnCoU13gOvFcyzxCvsU8paBAwPJZT0Yjtilu4uLAfbXAbL3h4WTnfTWYZ9ZS7uy0cdgbbA9GAPi3xXuxZfYb8fyEJBAuZVEkGEUIULYhjXOuwyWJO3atXL/ubORTXNWfMmDGxyvP4GzZs0bEDsYFKZCqSU4XiHNPxM2cMRhV3XrK/+ZyIg+hCiOrM1zNLoOQzPO2000wf8v5lUWsgvzHuVF8ckV9IRBcFAh5oXNC8iRJCJsGS38uVK2fZO5nBqjaZN0y0o0E5JyCMunCK/3kis5oLChp6RFe0WflG/HXuvvtuK0XObMWYbH+agaQilCozKCOjMaNsxOyAAI9dgA/wjjzySCurI3CTIUf5oMN2X+ihU3x0pRvvNiGEENtC5o9n+9Ic1LOCnnvuuVhPFLZ9+OGHsccQj2n6zH1knHfq1Mks3TJrHgoIngj1ZDZz/U41inM8J6OMpmJ83zfffHOBj8dc6KEikUWc5s2b299kCXrWm8d9zrGoFz/HysIN91EplxleZdmqVavtHg9igY9LsuON7lWdlLvjGYzoRB8BIYQoKGbMmGHXIebneH1jjeriJVW+ZKV7tjpisi8s+j7EeJ9PcV2l4tivq6nYo6w4x3QqChmLoefE9xPJLnwGLJ54v7yzzjrLLPw8+5wxpCdLUKFAlSKLEiyGe0WZV4pFb9gCpaLmI5Ifiegi38EiI77UhpVWL8NB1ObiySomK7c0/IyK34idLrbnpikVq+MI8KxSsmKaqmwvQDOxy8w//LrrrjN/WRpupCpkdGGnwkQztw1HyRRg4skAL6ugikDjiz5kevE5E5yzmykmhBDFkcsvv9yunVhaeNa527VRUUZD0fhG3lxvXWwnTvt4Af/sjJg+fbpNmsho9malqUZxj+dMjGkkxndNokRBiiaIO2QMco7xObPw4z1QODeB7DUW7WmKS2Z5lGXLlqW1bdvWxgaZwT4+5s3IJzgKY5EGDRpYb4Ds+PlTpcGY9uGHHzahARErEU3YhRAiu/N6snx9sZwkJfy83caKjGKaPbJI6dVoHtdJops7d24s05xrPzGA+6k8zo2/djJQ3GM6WeiMyRjDscCSG1jEZlyAWM65glBOpRVZ/J5pzrkDiPWvvvqq/T5kyJDYgk68DSs3xqVCJBqJ6CLfIaBGL2aUfRGAKZ/lby6OXAg9MwgRnUwbt1shoFIK5hfLnMBzEbi4qKZ6U8isAjTBCxEimjHl4OvJBBE/0FSHgRor9aw+Z9QJPjsBensr0lRFcM5VrVrVzslhw4ZZ9jsCkA8MspMtJoQQxYmXX345NpFB4HObjKgdG9dWFsMR2bt27WoiuJfjeuNHF9SxX4uHbCTuL2jhNdEonqdfEGHBJbeeqrkBIZqycURz4jnVbnjrRz9zxqZ58R3HI5jz+KKLLkrQUaeZIEX2JsflzVBzm/knhBC5wa0umSdx3fb+VYcffrhlJbvgec8999giZbQXGv3IvHcJYwGsOokBxIJURjH9/xIfGZvxXrHzywt46WOtRuNa5u18viRfZuRcQBwkWYOeOjzGXQ+iCZyMSYVIJBLRRb6Cx5dPiD3ThwZOQ4cOtd89wJAZhC8621nB9tXqvKxIE7hr1KhhpeXvvfdeWqoTH6B79+4d+/z43KL3AZ8dwZkM/uz4cqaS99wZZ5xhg7LcLKxEQYShWRhCOYs2DAT5vMhCY/DHechrId6zwMPfdFfnnGLlWwghxP8tPnrJdpcuXcx6jQw17Dri47hfWxEx3VOVUmAWvSdPnmyZR0899dQ2r0ElGeXg3sAslVE8/3+QWcakl6xqt1MpCLKT9Z0dolZwUfDz90WlRHxnPIfbIaRyxqIQIrXx5Da8q+kT5dc5LF2Yd/N3w4YNTfykx0k0ke6RRx6x5+BaTwUO134W4FMdxfT/g7HZpZdearEqL71q+HyYb3PO0LuEHiTRvmjc70lxLCqzgINFEKI7C+C4G3gihwvqieivJ4SzYxAiH7nzzjvD33//HU455ZSwbt26sPPOO4e2bduGCRMm2P2tW7e2nyVKlAhNmzYN7du3D/vss0+oWrVqOPbYY8OPP/6Yq9flcWeeeWb49ttvwxtvvBFq1qwZihqlSpUKGzZsCGvWrAkvvviifX5ROnfuHMaPHx+efvrp2L7c/vjjj5DKlCxZMsycOTOcdtppoXHjxuG1117L8XPwGZx//vlh//33D5UrV7bz7uuvv7ZzZf369fb8LVq0sH3nzZsXtm7dGurUqWN/83lyfnXv3j38+uuvCX9/QgiRaowaNSqsWrUqlC5dOvTp08fi+AMPPBDuvffe0K5dO4tH3333Xfjyyy/tfrjqqqvC8OHD7fcyZcrYtbx58+ahUqVK4Yorrkj3/Fx327RpEy6//HKLa4wZihLFNZ7D2WefHV566aXwzjvvhCZNmoTff/+9QF6Xz9H5559/bKwKJBi9//77sfv4e9q0aeGJJ55I9/iff/7ZxhHVqlULGzdu3Ob52c4YhccPHjx4u8fz77//hpUrV9r+8cyYMcPGxHxWF154YZg0aVL466+/cvyehRAir+ywww42lz/ppJPC3LlzbduNN94YZs+eHZYvX27x//jjj7f4/8knn9j9O+64o8XvLl262DWea/2iRYvsMWeddVYoahTXmM7YDI0HfYfbM888k+vnIibC5s2bTdO54IILwpYtW2zbPffcE5o1a2af1+677x4qVKgQypYtG8qXLx+OPvpoi5m1a9e22M79Dz/8cDjqqKMS9j6FUCa6yDfwPfeVZ28sSrkNWTu+ar127doMH0ujMF85pBlZTiAD7vjjj08rU6ZMuuZlRW2Vm5VW73ZO6RxZ/1Ey6oLObfTo0WlFAbLIzz33XMtIz6m1izfE4YbvKR2+8TAlowL/U8+cxJPXV8HHjx+/zWdJxqUQQhR3yKjimhjfN4IqML9e8nvTpk3td2y53EOVWJ1VphCNo8hqohmll4GnOorn20IcJ56TwViQ1i589jQfu+OOO8zaBWsZzkWal8Frr71mnzWWA1988UXscZyL+P5yH+d/RtBwz7/TrDzUqeTwhrz4CMeDB7v7D7t1Atl+QghRUHAtdKvVKNhhvfTSSzav59rkvcz8RoNIzzbn2s41fs8990x766230ooKiunpIT4Stxi7YcOXG9yujBt9ybBrwYqNSiy3bPFsd6yB2E52OlaAVEAwnvTvoGLFilYFyeOFSAQS0UW+QQMxDwoES34iROLnyO80doLu3bubSBkt06GUmwsvE5mMJhRZledSwkMzqBUrVqQVBwhO+NIVRwia2K3gkZ6TxloEZs4TAjz+/JkxaNAgO1cR2Rk4egdwv1Emhm2QEEIUd+g7QlMorpd+PT7nnHPsWnnZZZdZqbdfN6+44orY5NKvp8T7+IV1FjbZv1WrVtvtZ1EUKM7xHLBo45zA+7Sgeo9gIcT5x5jz/ffft3ONvxkjIAQwXuCcZhtWQlFcYMe2MCqwOzzWF+PxEc4KbBB47xnZ1PE82BkhQDE+pqkfVgpCCFEQYJnBXOuggw7a5lqHBSZ2Glzn6HcSP08iSQm4pjdp0sSuc1w7iwPFOaYzZiNmEh/z6nlPA3os0l5//XX7m4Q3FmfiwSbI++yceuqp6caY3IjHWO2kagNbkTxIRBf5Bv6W0QsXFzJEblagfUJBVrqvXJOlhjemZ5ohqrOynRMfLl4T72oy2YsLZAAgNBRXCJhkNdI8lgagiYRGLy7ukEV2wQUXbCP80OhLCCGKO0ykEfe4LtIzwhuGM4HC8xN/UM+g9YZPAwYMsKw1smvxDY2CSLjLLrtYo6pU90DPLsU9ngPjPr73yy+/vMAmupxjPulmXIpYxN/Dhw+3+xGBfKwav2DvY10qLjNi5MiRdj+ZcVm9H8a8md3PYj9er95UrSAz9YUQ4vrrr7frGJXeXIdonEljcKC3FNU89DmJz6ym3wliKtc2mjdzbaf5Y3GhuMd0xm7EV5LQ8rLwS9IcsZbF7lmzZlmmP2NOh3OMnmmAX7+ffzT2dveD6HlJwocQeUEiusg3YdObOVB+w8/mzZvbJMEbjVJmw8SAbF8mH0ymfb/cgLUGr+mrlKL4wHlVpUoVs2aJVjRkFxZuyDSfNm2aZVvcfffdaVdffbXdx4DRS+zIBON3Lw/jRvl5RuWNQghR1MFuzZscMinhmlihQgXLOKO0mb+ZfGPvRjkui9zeeKxevXo2sc7IooWMdK6zLJBi3SWKFx5r77vvvgJ5PUQgYjmvOXbs2Ni5jMWKV6thJ+RWRFGxG3HbM9lpihsPE3sanrEP9i7ZhUa7vH9ECBfiacQnhBAFCQlKPqdncdztLQ855JBYxRDXKwTzqFCJcOmWLV7Zy7VdFC8YwxE3SbLIbVNsxomtW7e2WPr444+n7bvvvma9RnxkUYdqx5NPPtmSNfm7fPnydr4de+yxseoIT97wCgm3bBMiN0hEF/kC2bl+ocIHjIkFQRjvKrYheMaDiM7FkYlKTrOPhg0bFvOuFsUTzi+y0Rs1apSjsv8HHnjA7IbccoiSMz93CfZ33nlnbHGH4OxZ6ARw3w+fNSGEKE6w4IjwSGYZlWRMqLkeEo+ZOHsWuk+aqObp2rVrbDs/yVCKh+wiFi9ZgM/KR1oUbW699VYTYWbOnFkgrzdw4EA7J8uWLWvn9jHHHGN/c84CGeruw4pPfxT6s7DdF9/jufbaa+1+MjGzC5n4biFD2TqTfio2hBCiIPFsXkRLMoK9nwkJR/HXOL95ryngGs61/LbbbivEdyEKkw0bNtiYrlatWnYO5QYWbOh1x/iSWFy3bl3rg0elI/N/YqTboRGv2ca5eNNNN6UT0P2GFhXNZhciJ0hEFwmH5kzuHY33VBRWCtneq1evDB97ySWXxMq/sttADF8sJuQdO3ZMyPGL1C6bI1D27Nkz2485+uij7ZxDCGJgSNNRmneR+YVoTuk295NByYo3ZXn49FPm7YGYAC2EEMVN5PTy7gkTJsQESKwmmjVrZn8zsXaY7HjzRJ/QELuj3tcsoGP3gjjvE3BRPGEMiDc6FQwfffRRvr8e5yHVbC6cu4c/56j35mF8yzYsiKKL9Z6NTvOyjLzcKWPnfhJFMrNiIdmEikrGH0C2J/YI9BqgdxCPZ7xSVJrrCiGSH28OTszGQoOkIc9Cp8cZ10S2U4njcyKqzTwZDtGTazjXcl27ijecS4jf9B3Jq1UbMRfLVbcUWrJkiVVGRiGxkvOR88/7mjBGjQrpmTUFF2J7SEQXCYVyLsRIvzhFG4cQPMuUKRMraWW1kPujExEv/ybYZge6LPOc9evXLzaeqSJrHnzwwVhJdnZgokwDMTrHZ5TBzjb3+Zs3b166+2644QarrlCDEiFEcQLbLPeNxgaL7CJ+79u3r91PBvktt9xiDb59HMBiY3xPiajIDmS2sX3KlCmF8r5EcoFVGsIxfuKML/MbxgGcf/j7UhJODx9e271cWVg/++yz01544YVt4j4T+Mysh9jXrQ15bGYJIS7QO54lR2Y8toc5sYMRQohEZaGTBLdx40YTJPkbAd0XxZl3uWUVt6ZNm9pjuWbT5JFrONdOIbyRN5VfeQEBnXOLbHQWpnE9iLcVZkGbWM4CEJUQ3NCoaPQaFdILqtpNFC0koouEQrNQvyghPFKGSjNGMsq4sR3bDC5sNHDy5g74UUZXKrNTws0FkkZl+K8S2IXwyepVV11l1RDxDcByCyXYnKs333xzQp5PCCGKwmJltWrVrA+Ji+Pxsdiz1piIu4XL1KlTbaxA5m00Mw0RkvtpWCaEw3lSunRpE6+9sWZ+V7T5eUkJeqISNLp162bnNzYtGYHtUe/evbexJVTPFSFEYcD1lsowssxXrVplC+Oeae6NRhHI461cqJ7hsVyzuXZ7JY8QgE0qgnZeGq5i4YKtKhXk2LJi5UJDe6CPCclx7du3T1u+fHna4sWLzbqFBM0vvvjCFnSiTXBxTVAynMgpEtFFwmDSgaDtHtFk9Lh/JBcxbyqCp5oLnWSRe0PR+Iy0rODxeFQjyL///vv5+r5E6kE2GA1GDjrooLT169fn+DxmRZsgi+/p/Pnz08aNG5fOnmjixImWaUGH8Jdeeintuuuus27zGigKIYo6XCPJAOKayKSFxomjRo1Ku//++9OJ4ix0e6baiSeeGFtcjy6aO0zQyWRDbFfJt4iHykWEHLc6SRYymnhTvZZR8zTGEl5anpHlC7DwX7NmzVgCAGIAvq40ZVN/ACFEYYC/NNcizzansaPbtzz88MOx8QA3FgK9Upd9ohXpQgBjPPrhcD5h95NbqBAjLnrvMqoliMnYspJ9Tuz0eTl2gtF4zeO8j8/FF18sEV3kGInoImFQZsrFiBJvSlDdI5JJMxcnVqS97Ct6ISXQRps3ZYcxY8ao5FtkCRlkdAJv0qRJtoIjti4MBPHiJfgyWeccw6efCbF7ApIV1qlTJ/ubTIzDDz88NngkgAshRFGG0leud0xQEMqjkEV+1llnmWDI5Nq9U6NZapUqVUonIpLpi686JbYI8kJkVf1ArC4IGMdiC8f4gXJxMsSXLl1q93GeYj10xhlnpFv0IeONZJLjjjtum3EH+3n2G/8/MqJBgwZ2/xVXXGGWSb4/CQFaXBJCFBY//vijzYtY0CM7Pd5fmvnWypUr09liPfTQQ4V92CJJIYYy5sMKMK/VXsRakt6idmr06YnvpYLTAUmd7E/2+vTp0y2D3RNChMgJEtFFwiDDnAsRDSOiZdysNnKB9Kx0D7JRaMbkgmV2VsRp8ojFhhBZgfco59VTTz213X29TNEbiRFgEdVpmgMIP+6dRia6N9Rzsd0fp07fQoiiDGIiVWDxDZWZwBxwwAF2LWQC45Vp2K5FRXSstqL9J/r162cZawiQQmQGIjL9b8qXL5/v/ros8vgCOZmUbsXi/Xrw+nVvYCbiUaHJPf/dRz1KixYtMrUs4v8E4+Mrr7zSPNAZt/iiU0EtHAghBGC1kVF17bvvvpsunkctMYBEIyw24hcYhYhn0aJFlpzWv3//PD8XcZqxAVWNEF/tNWLECLOQYQzhY1Iq1n3hmvk7PX0ya/wtRDwS0UVCIBvNS7tYjSYr3UV1PM+5UPI73mgI6t5NGfBNw9fKG5VkBauHPC+vwWRFiO3BYgsZk998802W+yEA4ZnWq1cvK1uMzyK7+uqr7Rzt2bNnusx0bFyiA8mRI0fm8zsSQojChSxZ/M+xXyHbjKwiX1wsV65czAKLay8/vakTGbWPPfZY7HloPMrk5dZbby3U9yNSA5qJsYDToUOHfH+tzp0727nLJPvjjz+2eM/fnLPRRrk0H43Srl072962bdttnnPYsGF2H9mc8fi4gv8PDv0GMstaF0KI/JrTE7uJ2czfo2BlyXUq2kiUG5atgA8112iu1UJkJ4GNmJcXa96o2wEL1czj6bvnmekffPCBefd71jn2Lfzkb3qURM9jjkeI7CARXSSEefPmpbsIUVZDtji/L1myxIR0fsdag+wcfueC59loXACfe+657dpujB492h6bl2YUonjBYguLLo0bN86T51m8LzqZFvyNJzoDRj/3jz322AQevRBCJCf4NnPNo8oMUf3cc8+1v2+77ba0E044wX5nYZKfLGbSayLaJJEFdfyfmdxEy3CFyAr8eDmnsAzIT/Du90k3jfLcwoCfgEjkwnrU19WtDBGZ4ivTeAz3kXQStS5iO1mfPB+PA3m0CiEKA6wtvAqGzFwWBkmO45rEdYoM3uicnzEAMXzu3LnZSogTwuG8oUE9ld15sXXB47xHjx5m4eJVYpMmTbL7mP/z98EHH2w/zznnHHs9fidBLjqHJwZrAUhkhx2DEAlgypQpsd933nnncPDBB4dNmzaFkiVLhho1aoQFCxbYfaecckpYsmRJbL8DDjggXHPNNfb3RRddFHbYYYdMX+Obb74J3bt3D5dffnk4//zz8/09iaJB6dKlw7Bhw8LMmTPD2LFjc/TY/3+hMaxbt87OXVi+fHn4888/Y38vWrQo1KtXL/aYDz74IPz6668JfhdCCFG4cC1cuXKl/YRJkybZzwsuuCBs3rw5zJ071/5u2rRp2LhxYyhRokRYvXq1bdt3331D+fLlw1577RV7vnvuuSe8//77YcyYMWHXXXctlPckUo/rrrsunHHGGeHqq6/O11h72GGHhSuuuMJ+v/vuu8Ntt91mv0+ePDl8+umnoWLFinauw2OPPRZ73EknnRQOP/xw+z/x/PPPp3tOHsP4+N9//w3vvfeebZszZ06oXLlyeOihh8I///wTFi5caI9t0qSJjY+/+uqrfHuPQggRhfju17Prr78+PPfcc2H06NGhZcuW4e+//w6HHHKIzYmcgw46KLz11lth69atdk0+88wzQ4cOHQrxHYhUgrEfY8AVK1aEe++9N9fPU7Zs2XDfffeFKlWqmCY1ceLE0KJFC7uP50c7euGFF8JOO+1kMZdzFcaPHx/at28fe57//vsvtGvXLgHvTBR1JKKLPPPHH3/YRcipXbt22HHHHU1kPO200+yCFRXRu3btGjZs2BBq1aoVfvzxx/DJJ59kKZ57UL/22mvDHnvsER5++OF8f0+iaMGiCwG0W7duthiTFR999FGoX7++DQwbNGhgk+FDDz007LnnnmH//fe3QSTBPiqis3/0XO3Xr1++vychhChIli5dGo477rhQp04dE/t88fzSSy+1BUomH6eeeqrd/9lnn6Vb7H7iiSfC/PnzY38jnnOd7NWrVzjhhBMK5f2I1ITx5ciRI2382LNnz3x9rVtuucVeb8aMGRbbGzVqZD85n4HxLDz11FPhl19+sd8Zz7Zp08Z+Hzdu3DbPyRjZ/z/B66+/bv93GCsjrjPxr1SpUpg1a5aJVyScCCFEQcDiHslAu+22W2jbtq0t7kGnTp3CLrvsYte6tWvX2jbm5Ox7/PHHhx49eoSff/7Zrs1cM4XILsTEm2++OfTt29fGhnmlYcOGNlcn6QOYuzNGRXe67LLLbBtJHyTAsfjDWDYaZ+fNmxdefvnlPB+HKOIUdiq8SH3uvfdeK4HxchgaLWbk80j56u+//57OC50mEHiude3aNcvXGDNmzDYNnITICTQCw48XS6GsoJFotEzxqKOOspJuGnt5SdjDDz9sJds0yMOjn1Jvtu+xxx72k9cRQoiiRJcuXez6dtlll8UsKyibJa67bcuoUaNsX/qe4HMZvZbiS+mxHxuXY445RjYuItdgGcB5ld9NN93GhYafs2bNst+xK8Q3GHsDzmO2PfLII7HHrFmzJjbuje/fQxM17mvVqlVsG1YJP//8s1klYKGw3377pc2YMSPt/vvvz9f3JoQQUa6//nq7PrVs2dLsWL0ZOJZsbPPrIbeyZcta81CstfibpuNC5AbGglj7YbMSbTyfG+i74/P3DRs2pHXv3t16nQHWa37+cr767z5edYu2MmXKyFJNZIlEdJFnEAyjIvqUKVPS3f/CCy/Y9uOOOy7ddibSftHyhiQZgackr0HwFiIv4Lu/PS9Vzjc81PH0ZWKLvxqTZejTp489vnXr1hbkOYcBHzcmv3QHb968uXkFCyFEUYHJxKGHHhrrSdKtWzf7naZMXAvxUMVncuXKlXY9vOuuu2ILi4wNmMQ4CO3cF9+wTIicgHhTr149G1vye35BHx+SPWhGxrl+xBFHpDVq1Cjtyy+/tPtHjBiRds0116S9++676R43YMAAG0PECwJz5syx85/niUITURqm0px82bJl+fZ+hBAiMyGzdOnSsX5P1113nf1+4YUXxubru+yyS0x4vOCCC+zaSy8orsUSHUUi+uzQ/y4v0PS+QoUKaXfeeWesEa4n0HnSG7cHH3zQFq333XdfG5cyXvU+KNx69uyZoHcmiiIS0UWeQESkoUh09W7t2rUx0RF8Mt22bVtbHSSbh0ak8Ouvv9pFLqtstIEDB1rwVqMHkVcY4J100kkmkOdmsMegknP5yCOPzJfjE0KIZARRz0VxFhqZoPA3i+RRatWqlbb//vtbJi33T5gwISY2Ak3KEONbtGhRCO9CFDW8Uf348ePz7TUYK0TP4ej4Njd88803dswI89EsdZJJvAmvEEIUNCwElipVKq1cuXI2P/cGjVdddZX9rF69erqMXZovjxs3LtZ8WYi8cskll9gYkbFiXvDHr1ixwoTyN998MxbPWQRHi2Ifqsa8oSkJIsRndAKvKo9vDi6EI9MqkSfwj8YTfffdd7dmSkcccYR5O5YqVcq8U/ndmyfhmYbvFA0eaChGA4ktW7aEPn36ZNpU7KeffrJ9aSRFQyYh8gJepZxPeJE+++yzOX589erV7SdNxWguKoQQxQEaMrnXJHH92GOPtabN9I2Ijgfeffddi9v4VePxjBclDUWdxx9/PHz77behf//+hfI+RNGCcWezZs3CHXfcEf766698GzdEz2H6o+QF+q3gN0wiU9WqVc1Lfc2aNfb3nXfeaT2DBg0aZP7CQghRUDBP5/ozc+bMMG3aNGvczNzb/aEPPPBA85ouWbKk9Ws44IAD7NpLc/G6desW9uGLIgBNvNevXx/rO5JbiLGAFsXY1HvvEM9p+D1q1CjbB92qRIkSdh99fH777Tc7l2kAzlh14MCBCXhXoigiEV3kiTfffNN+0mSR7tyrV6+OTQYItDQXWbZsme1Ts2ZNmyDQSIzH0bAp2uE7IxA8aWD2v//9r0Dejyj60Oz2vPPOC7fffrudo5mBCESHbvZlkHjRRRdZA519993XRCTO9alTp4YaNWpYwx3O86ZNm9pgkkl95cqVw+eff16g700IIfKDF1980X5yjWMCzd/ff/99+O6772LC+IQJE2wfrpFAk0SujfyETZs2hQEDBoRrrrnGJi5CJGrS/dVXX4WhQ4fm+2vRmPzjjz+237/++uvw0ksv2e+MeWkyTnM0P9+9aWj37t3D22+/HdvGJJ4JOlSpUiXss88+4cYbb7SxMcL5K6+8YuNjb1QqhBAFBc1CmdewCM4iHwuVXOtovDhnzhzbp3379uGKK66way5NRonrQiSCI488Mlx99dUW1xkz5hUWhZi/c74Sp5nbk8BJHGYuj3ZFM1O0pjfeeMPO9wcffDCcffbZ9ngWtD/55JMEvDNR5IjlpAuRQ77//vu0s88+20pe+vbtG9v++OOP27bzzz8/bdOmTTFvKZomAU3ITjvtNCsJ69ixY6bPT0PS3XbbzexehEgky5cvt1JqfHwz45RTTomdu9447Pbbb0879dRTY+XjXsZYv359K4P0hmP+uH79+hXo+xJCiERDk1C3n/juu+/S3XfffffZfQ0bNoxZvERvbHNuu+02s3+jXFaIREJpNo3AsCDIL4YNG2b/B5o1a5b23nvv2e/Ee0rCt27dGvMSjjY6bdeunW3r0aPHNiXrPkbAM/2WW25JK1mypI1N8ES/8cYb8+19CCFEPJnZqp533nnbxPWZM2fatZZrLlYvQiSSdevWmf7DnDuvMDfH5xwvf+bsWBXRuww7YhqP+tgWC0Iagffq1ctiOc10fb6PjZH8/kU8ykQXueaZZ56JlXidfPLJse2+YsdqIlnpULZsWcu2AaxfsMMgCxhbjczo3bu3ZbzddNNN+fxORHEDW5bLLrvMrIR+//33DPfBQohKCiwLLrnkknDfffeF5s2bh6OPPtruJyudbHPgfGY7mRusnHPewnPPPVeA70oIIRLP3nvvbXYuVIYRxym1dWbPnm0/jznmmPDll1/GymK5FmJbMXz4cPubTHWye8jKLVeuXCG9E1FUIZZjPTB48OB8ew3GuWSyYXXAOXzooYdavJ8+fXrYZZddwoUXXmj7USrunHXWWfbTx8rOYYcdZj85Zv6vkHVHludRRx0VrrrqqvDAAw/k2/sQQoh4qBqrVq1amDFjRmwblWaefe6QwYs1Btcorl/M1YVIJFRqdevWzcaMjB3zalE0bNgw05uIr1RQknlO7OY+IK4zb6eKjDEu9m1bt26NPceKFSs0nxfbIBFd5ElEByYAbdq0sYvTZ599FhPRKdf2sldKVrFwwfIC8RxvdGwvKF/NCPyr8FvDxmWvvfYqwHcligv9+vULP/zwQ3j44YczvL9169YWRCn9uuuuu0KPHj1MfEcschG9UqVKsRJvgrBPjFlA8sCbiHI0IYQoLFj4xsYFq4rFixfbBAdBcfPmzWH+/Pm2jy9Gen+TJ5980spkXUTs27ev+U/yHEIkGmJv586dw/3332+T5PyAhfJatWpZ2ffkyZNt3Atjx461n9i4AQtOjAfAz3/GAow3sEFCpKJXAPixYomALSJWSFE7GCGEyG+wteC6xNybeI8NFTGdxUFiN/P8+N5QiOhdunSxxUQhEg36EOcfc/W8gjUrfXxq165ti9707tlvv/1C27Zt7X76+LkeRd++66+/3n7HJo5jAET9rCxgRfFDIrrIFQRXzyJH6MZziqxzmo4gpANZui6iI7ATbFn1I2OIRg80Lbn44oszfH781Q455BDLBhYiP6BZTocOHSzDPKNsdLIt8ACMx0X0VatW2USY4MuE+YsvvoiJ6i6ms33u3Ln5/l6EEKIgQBgHhHT8I2nmWKFChVh/FIR1KnhOPPHEcPjhh9s2MtdHjBhhPs9ekSZEorntttssbj/00EP59ho+6X7qqafC5Zdfbr/ji85iO4I5fsL4B3svIKowfVGdBScm5zQvY7wAiFVUcJDxyQJUmTJl8u3YhRAiI1auXGkLejRNJumNhuE0DWUOQ3z3hT1+JyOXDGGutbfeemthH7ooorCgzJiRasZo9WMiFsPJRAdiNlVlNBNlLk/8Rrdi7MrfLG6zwAQcg1dWCgES0UWuWLBggWXjIHQzIQAEdAKwX+y4z0V0stIp7eYCRdkqTUsyg9KdSZMm2aqfZ7UJkR/QzItM8fHjx2e6DwEUIRzBaN68ebEMM4IrA0vEeF+xdhHdu4LDrFmz8v19CCFEfsDEmsbKiH1REZ2sWRogwjnnnGOiomeocc2MNgN/4oknLLtNi+IiPyGzDCsUSrf/+OOPfHmNli1b2uI6mWyMBTjnGQeQxck5zv8Fz0Z3aFQGCxcuDK1atTJR/dxzz42NIxo3bmz/z6h8YzySmcWcEELkB243dfrpp4fXXnvNrm3M27Gz5HrqkBXMXJ9tNAjnfiHyC8aMzKepbEyUdoVlUYsWLUw4J067Reuzzz4bzjvvPPud85t9AK3LufPOOy1RRAiQiC5yBUEWWK3GysJFcy42XIROO+00W91zEZ0O33in0smbCyJiemaTnCFDhlj5DJMhIfITBHBsCrB0cXE8CuXXPjFu0qRJqF+/voninJ9MnDn3WRwCqjFcRCc704n3QhVCiFThnXfeCf379w9du3Y1cZxJCNSrVy8mqHNdxOYCf1SH7FogzhP3KaeVNZvIb6h4/Omnn8KECRPy5fnJFHeLFqopsSWM+qD73xmJ6O+991649957rYoNwR8YC2MXR5Um5eQ9e/a0DDghhCgofJ5y9tlnW2UNMJ/BHmv58uWx/Zjfc239+eefY5YXQuRnP54rr7zSdKE///wzz89Xs2ZNqw6jWpy5PG4IJMgB3v+//PJLTFCnbxqgAbDQDVScqV+JcCSiizyJ6Fxc3L4FEZ0MHbzSydhlIvD555/bfd6AkQkDF0JKx1xgj0ImDiuOTLhV9i0KAhrdffjhh7GsyijYtXhWOQISzUaotnC7FoQirIpY2UZYZ9DJ5JgKCgI1IM7LF10IkYog/AGNxGigzCSDuE+WGj7PLqgjDLpFBde/QYMG2e9PP/20TTwQN4XIb4jBVEdmtjCeCC666CL7ib+5i+ZMxPFLbdSokf3NAvuWLVvs97p169pP///BONmrLBHlaViOPRKNe6MVHEIIkd+Q9OO9Tc4888xYs3DmRSzq+fyF6xbzH66tJB+5XZsQ+QkJHCS0MZbMK2hQxGrOdzLN6WNCvzMS6tCmqBTD/59Yzr7M+UkEIUnEwQJ248aNeT4Wkfpsa/grxHagBGbJkiX2O6uD2K64iB6/H7fofZSB4bfGKja+6PHgtcbFSSvcoqCgaoJzkcUbsjDimTlzpg0csSDCAxAIwAhKWLjENyb1CTYDUwaf8jgVQqS6iE6mrIvmNGgiQwgf57fffjsMHDjQsn+9Og37F8rCgesqwqIvpAtREJNussWpmmCBJ9EgnHt2GskeU6dOtfO+RIkSFu9Xr15ti0z0BgAW3a+44gr7f+G4iM44Yd26dTahp1kvmZ8+zhBCiPyGTHOEQhKAsKpgfk7VGCJ6FOL+okWLbME8ft4jRH5BLKUCgrFkIhwKoo1wid3EaWIv53+dOnViSSII59gXEY+J+STa4aXO/xH6rmBNLIo3EtFFjiHj9vHHHw+dOnUyPzSfPJNJg50Lq3hcdNzmhWDcsWNHy8LhokP378zAh4rScLJ7hSgIOFfbt29vi0H48bs9i5PRJJzmOlHLgsz+n0hAF0IUBRGdMlgv83bvc+I/Yjqe5y4YNmzYMCag81i8o6PWFkLkN2eccYZlpDOezA8Rnbjepk2b2N8XXnhhuvvjx6/8/xg7dmxYunRp+OCDD8xL2O1cEK8Q2LFNIvtNAroQoiAh4xZxEvHQG4STZY64ToYuc3fm8fSOGjBggC2Ik7EuREHBHB0hm4bdjEUTAXoVVoOMYYnnVK6R+Ek2usNiPPczn0c8dz/0xx57LNx88812nyi+yM5F5BgyaNzOgp8EW1bxmDiMHj3aSr7wknIRHXGdjCBubdu2tay1jFizZo3ZwFx77bUF+n6EaN26tQXJMWPGZGt/Sry2J6ILIUQqQ7ND4jjCHsI5C9zYsnjzJfCGo9hdwauvvhrrdzJ8+HDrjRLdX4j8hgUdhOopU6ZYVmVhQ08VGonefvvtYfHixWHUqFFh8ODBdh8l5JSX0zfolltuKexDFUIUM4455pgwcuRIEwZdRHcrLLegIsmISnK8orm2arFPFCRUfZHgxpgyUYwbN85cD2644QazF6aKnFjtY1l6ntB0FIs1dC3Gsdi04qxA/x+SSUXxRiK6yBVff/11rCymd+/eJpCTjYNfKhcgLjhREZ2mS6eeeqrZX9CAMSNGjBhhmW1uhyFEQUFJNr6knIMeQKMQaMnWKFmypNm6UH4NnMs01yPQ4sPKwJPJMoITvoJkwRF0yeaIdvgWQohkh4VtXyynxwl2V4888ohlBLHwiOjHwncURHQW2vGDxsOSDDfGA0IUJDQjI+bmV4NRbFiorOT/BItGffv2tWQS+gDRdJzscv7fsBBFPwEsZugXRDUH4wyOD/h/hb8wovoll1ySL8cqhBDZgV4mWLW4eO7Q14FMdK5tfu0SoqBgDMlYknjuvUbyCtnn6FLEbnqfzZ071+yK6JPGYhJ2xSzC0wOQWE+iHVZtLCLBgw8+mLBjEamJRHSRY/CC8k7enpHueAMSRMmoiI7ntJevchGMb/jE35MmTQotW7aMNXIUoiBhYMgEGPuBzDwDCZj4ArvXP81OGFTiHfjJJ59YdgaPxzcNv2AWl9iHjHVvsiuEEKkAfR8Af8go9C1BIL/33nu3uV4iJJIJzCIi2TqacIvCgKxJFrQZV+YH+J9j04JPKn0BGBMvXLjQKjOwNMS6hWQTMs8BMX3GjBm279VXXx3zdqUcHLsjjlUIIQoS5jVYTLEo6FnpJ510ksXuKGznWko27gEHHFBIRyuKM4wlOS/nzJmTsBhOEgh2w1SX44KAFkViHHEbUR1fdBa4yUanUoP4TeIoMZ65PQviovgiEV3kiK1bt1onY5oxxDdoADLRfWLgGefuMe1BGTE9vhQM0XHt2rWW4SZEYcCK9L777htefPHFbe7jnMeuiEyxyZMnxzLGCKJ4BUbPb3wFgWak4Od6Vr0AhBAi2bj00kvDypUrw3333WcZOWTp/Pjjj+ZL6YvovnAOVKNNnz7dfuc6ysQbb2ohCgPGk0x6idOJhriOXyogpLtHMJUYwOQbmHiz+O4JJ24Bh40LIF5RVu69hYQQoqCgbwkNQ6tUqRLb5gt/DoIhyW0sEmqOLgoLvPip+vYxZiKIalG9evWyn4xvTzzxRPudBDl+R7ciRpONzu8kz8Gjjz6aYfW6KB5IRBc5ggkAFw+CKrAizeSAbPPPPvss/P777zEB0QV1VrrxpiRrh8ycjDKDuChS1uoNyYQoaNzzLKMAzcCRMi7OY2xfEIcyE9G9kgL7F/AAG9/pXgghkhkWBLnWYWE1f/58K+nGM9KvZfGNk/FVZQGdMcLMmTPN4kqIwvRRJf7OmjUrX54/IxGdTHSy2XyMQNYcC+9kpgM2CdyPtzAwTsb6BZ90IYQoSMhCB0R0qsvwnCZud+7cOd1iul9DuaYKUVhwblLR5SJ2oiBBhPPcF7tXrVoV9t9/f9OvuM8rxZ577rnQoEGD2OPQvRKVGS9SD4noIke4JQXZZWTcNGzY0DLU1q9fbyt6XhLGap1nqCE+tmjRInTq1MlKWpmQx0PWGhcpHidEYYE3KXYtePdnBcEVsHXBugD83HcRnYWmqBewRHQhRKpbuxD73SudcliH333BkIw1Mta5ngpRmJYuderUybC6LBH4ZBpLIyrViPdUYNIz5fjjj4+NBy677LKYSI5PO1ZvCFaecILg3qxZs3w5RiGEyAzEQuAahFVr+/btwzvvvBOrqOGahmUF11AW0enxJERhwZiS5DWE7URC3z4SRbxCjEa6/jv2Lq5n0dcEL3Xw+T3VZqJ4IhFd5EpEr1atmmXelCtXLjZxRkz8+++/YxNqz0THzoWJN80Z8JWK59tvvw1LlixR1poodMiyJDCy0h0PIjhdvJkQc7+XgXkGujcOdREdUd37APiKtRBCpAp33HGHNVRi0uILizRJdhG9Q4cOtpAOxH4aMgHVPEy2vSRWiMKCcSWZYlgRJhrGvxUqVLDMcjI6Pfuc8Wzt2rXtdybi2LmQoe6LTkzI69evH8vsxDIpvu+AEEIUlIjOIiC2qlC1alVLfgPiOHMd/KE1RxeFDWNKKiATvTB+yy23WKInTUbjk+WwhLv55pvt982bN9sxUGnuc36ahXuSiSheSEQXuRLRDz/88Ng2F9EJtDQQZVLNxMJX7mgWeuSRR4Zdd93VstbjQZBEgMdKQ4jCBCsCJrcZBWhWn8nUYCW6bdu2MRsX787NRJr/Cz5RRlRyf3RfLBJCiFSA6xmNQ1n4xqYt2uPERXQm3t5kGRo1amQ/uX42adIkVqUjRGFmrjHxfeONN/Ll+cl0BzLjTjjhhJiIvs8++9g4GBDYyYpHdAcSTLxXkG8TQoiCBnspYH7OQiNJQCQTeZJQ6dKlbQGQeY4qy0RhQ4U3Y8tE+qL73P/xxx+P2RVhFzN27Fj7ncqMk08+2XoAMsdfvnx5TK8iQZSxMnbFovihGY7IVcAlK23IkCE2geYCAkyYb7/9dsv6YcU62mSUpqEEaH7Gw4S7Xr166bJ2hSgsGCgyaIzvTn/aaafFznMCKoNOD7YsKpFJxu94+9OgFAGdngGsmpPN4V5rQgiR7LDg7ZVlXMdcRCc7Z+PGjbEJhNtUIahTpfPJJ59YFpsm3CIZIDscMTu/LF2wOGBBnYxzss/5/0HWJh7CWLqQWOIZa9zHuIEEE89co5+QEEIUNMxX6FMGXqnDtYyEH5/XH3LIIXbtZI5DBboQhQ1jS8ad+ZH9zflOTGbMwAJSyZIlbcEbCzbs28hA5//MhRdeaPv7/xN6Cbilqyg+SEQXOYKybmAVsGPHjtatOJqJHsUz1AjKvXv3tpU7GihFIcONpkwqExPJAuci4lF8sxCy0DnXGXguWLDAgitg/4JVC9mZZKHPnj3b/l+QlckKNn0ACMDz5s0rpHckhBA5g2sWkFGL8Od/M8EgbiMUXn755SYIsrC4bNmy2NiA/b3pohCFCeNSYjrnpU94E8l1111nC079+vULV111VZg0aVJ47733wiWXXGKVHN98841tIxueMcDZZ59tYwiy2UANRYUQhQG9zFjgYw7jc3syfaMwZ+fayTU0fo4vRGFADGWMmehsdKCRKP1JGNeSAIdgjk0hiSH33XefxfpTTjkljB492mI3VelAfM+vBuYiefl/Xe+EyAaUuzApiK7CUf6F6OhNGBzPYqM0jEw2PNHdAsNZvHixPY59hEgGWIEmq5IJb/PmzdPdFx1EulVL/HkvhBCpjluveYWYi+jEcq6DX375pQnpwGTDr4fYZpx66qnWMFGIZICm9Y8++qhVUkatCBOB90ABxCisC2+66Sb7nTEEDXaxeiGD7eGHHzb7QuxdXLRyb3QhhChIECLxgCbhzbN63Z4SuJZRScOcX3N0kSwwtsS9gLEmfcoS/X+CeE3cnjx5sv1/wC+9SpUq1jOARDkWx0n+ZAHqhRdeCGPGjLGxxYQJE8IFF1yQ0OMRyY1EdJEjjj32WLu51ykiOj6QrN6xjUycKVOm2Iqdl7CuW7fObqzeLVy4MJbBC++++65NLlQmJpIJzmnOzexMnjn3hRCiKEG2ObgY3qtXL5tsu4dztFEy1TZMOFq0aGHXzfiKMyEKE/cq59xMtIieUTn4/fffb2NjFpsQovjJ+Bi7I8bC+KPTqIyFp1tvvTVfj0cIITICm0mah0cX86I2lpUrV7YFv+g1VIhkgPNx/PjxCX9e4vRjjz1mY10y3rElJuucpqOeRDdgwACb9999992WGPrcc8+ZdRuZ8exP9aYoHsjOReQKv5gwUSDDHHGcyQlZuZS18NNF9Lvuust+4pUan53GpKZGjRrblJAJUZjUqlUrrFixInYOOz4hZvKLZQvgH0i2xkknnWR/sxJN1gaZHVdeeaUNTvkbz/RXX321UN6PEELkBM9IY5EbyMZh0oBd1UUXXZTuWsY4AP9IfNMpEef6KUQyiUWI29tbGM8tJI0wNsDy7c4777T+J0OHDrUxAHYvXvJN+Te2b94v6Oijj7aeQUIIUZiMGzfOfJ2jsGDONZOGilSbCZEsMMakQsIrJBNJ1apVzZ4NL3S3dRk8eLDpVAMHDjRxHV929Kz27duHHj16WCIofQUQ1EXxQSK6yDY0TXjggQesdCUqokeh1MX3dQHSV7a5wCCkRyFAa8Itkg3OSVaaP/roo3TbybgEFom8iQhi08qVK2MZG5SYYXOA7+nSpUutpBuhnQm1C+9CCJEKmeguojtc66ZNmxZrSOZxn0ozFykV00WywTmZXyI6YwDGtsOGDbOJPf83GA8wyaYB2ldffWX9VBgbYOdCrxRQdqcQorCgKgavZ+boCOXxSW6Ihpqji2TEz0n6jyQassvpWUJSCCI9SaLYFxLX+ZuYjhUx/19YGCeRlB5onmySH71XRHIiEV1kG4RDVtzatWuXqZVFqVKl7CelMN5wlNIWF91Z2XMI3GTlKECLZKNmzZp2zsZPummQi79q165drSQbfLGI/xOc875otO+++8b80l2IcmFKCCGSmcaNG5sH5BNPPGFxnsahWLi4V3q0F8SgQYOsOofrJdc9+koIkYwien5McN2OkEV3JtQwYsQIa0AOLKi3adPGstrA95GILoQoLKigIev2nnvuiSUJRfs+USWOSKk5ukg2KlasaGPN/FgY5/+Ax3TGwW5BjP85lZjAeJh5PT2CwN0U6HUyderUhB+TSE4koots46I4eAkqkwIERcq+8I3yxqE+WQBKW8nGJUC7yO4XIVCAFskG5ynl2fEBmi7dL730kjUI22WXXdKJSSwWIaD7JJ3/IxLRhRCpCLGc/ic0WUY8x/MRyyq3omCh3Lnkkkvsp2etRSfiQiQDnJcsAJFRlmh8wk0zUXzPvfKSpBEfEz/zzDPbVKJp7CuEKCz8eoQP9O23327XqtNOOy1WXcYiH/Fe1ymRbDDGZEyaX9VlWK25KO5V52PHjg0ff/yx/c5PhHMf66JxuaDuiSai6CMRXeRKRH/yySetOzEXGkpZsavg5hMGfNG9+SiZ61dfffU2kxcufmSv0fVYiFQr/ya7DFwoRzT34Ml5TZdv/h8Av8Pff/9dAEcuhBCJj/3EdBfRo+OBzz//3H6q9FskK35e5sek2ysvqEqjJ4qPAbA42n///e3vCy+8MLbw7gvrPlEXQoiCxivJmcPTLPHee+81qwqgx5nHdcV0Udws2sh0hwYNGlhfEyCppHXr1vY7SaEki/p9VKJfc8019vvLL7+cL8ckkg+J6CLbRCfNZ511ll1cyL6laZNfVFxEJyPXLV/IxsEvEu+ojJqKkr0jRDIGaHzRos1FychkQYjGIj/++GO6gSj/F/BQA1akWb32igxfUHIxXQghkhmsXPr37x+efvrpWHUNWTe+MOjZ5zBy5EjzisQPWhNukYwQkw8++OB8mXRT7k1j3ejiOuMCKs+8Cq1z586W1eacccYZsR5CQghR0HgCkF+zSATyeQ3XLa6VNGT2Ob4QyQRjTXzKN27cmPDnLl++fOz3I444wn7yf2P8+PExW2J0rWbNmtnv2B41adLEfqdanUo0UfSRiC6yTWZeklERHeuWunXrWnmri+iIiYiHUYsXWLVqVTjuuOMK4MiFyDnVq1e3ifAXX3wR20YAZTGIKgwEo/hMdBr1AJN1b0IaXSTSpFkIkQqwgHjHHXdYCWtURPfS1mgFGZm4nsGmmC6SOaZ7A/BEwTj28ccft5gPCOUunNNQlIx0n4BHJ/skoQghRGHhcxevkCXme7Ic9xHTFc9FMsdzSHRMB7Qsj+FeaUYTXsDq1V+XngLEeOwNaTRK5Rm/E99dAxBFF4noItv4xACWLFkShg4damKiN1hEVGQljk7Gffv2jWXdMnlgVS6a0Qvr16+3VW4hkhGfFGNTFA2sZJUjJnl2OSXadLanLwCZZ2Skc15TjUH2G6vW/B+hPIz7hBAi2fHFv3gLKv+bEnDYb7/9wpVXXmnxHBTTRTLH9Gg8TwQPPfRQuP7662M2R7feeqtlyCE+4S/MAhS/05QsWs155plnJvQ4hBAiJ3i2rMd0XyD37HTN0UWqzdETBcI5lkaVKlWy/wMI5WvWrAkrV6404RyxvGfPnjbnr127tmkDNCH1GE9T8Xj3BVH0kIguciSiu3D4/PPPmxfUuHHjYt5R0Yxd8Ez0Tp06hYsuuii0aNEidh9Bm6wcL4sRItnwczMaoPH3Z3BJoHTrojZt2oS1a9eGRx99NLRt29Z80clYpxoDexd6AWB3gL8g/w+EECLZ8SbgZNW4lzOTbBbJX3vttZjv4znnnGNjACbcXBPJxhEiWWO6L/Ykijp16lhVBgtJJI4wmX7zzTetCS9Z6UzGyfAko81hwR1/VSGEKCxc8MvIeqJevXp2reRaJUQygo0at0THdLdzwb519uzZFqtJECWx5J133gmPPPKI2beRIDpp0qTwxhtvmJ0LiXO+EFWmTJnQtGnThB+XSC5kRi2yDdm3U6dONTHdbSvwo3IRnW1cQJhwk33jZaxkq1PaEvVQxT8VJKKLZAVBiHM4s1VutyfCxiWeqIWLLzwJIUSq4Nc1rnNehUbWDZZUlLF6CS2TGOA6qXgukhnOT8aeLITvtNNOCXlOmonRJwU6dOgQ65HConrNmjXN+5yx87x588K5555r42Gaj2pcIIQoTFq1amWLfRmJ6FdccUUYM2aMYrpIajg/8yMTPZ5BgwbZza1dnnzySft/Q0wnvlOR+eKLL1rV+VFHHWUL6FqAKvpIRBc5wpsozJ8/336SgYsn+tFHH20XDybcp59+uq3guV8VJTCI7aecckqss7GvHOoiI5IVAiPnZ0ar3FRS+GQ5IxFdCCGKiohO1s0NN9xgWeYskEf7m1CyyoRCIrpIdojnZF9SBek2hIkaK0TLy4HFJkT1KCtWrLCfF154YcJeWwghcgM2VNCnT58ME4G4Viqmi2SP6QUhort4npUdG/Zt7pmO7vXWW2/Fmo2KoolSIUSemi4gjhNoyUojw4YSFlbnyEj3THR8oREcves3+EVPAVqk0io3vQCYHLu9ATRs2NBKH7FtwfuUoPnTTz+Z3RFZaK+++qp5qNFwNz+6iAshRH6K6FTlDB48OPTr189uM2bMiO1HrxOyarlOalFcpJpFW25ZunRpmDt3rtm0kEwya9asULly5XDeeeeFXr162RiZhqP4pB5xxBG2nfjPQhSJJkIIkQxQTfPEE0+k24Y1BSimi+KaiY5VK/3OZs6caVUbeKMT87F0QSjHxg2Y+x9//PHmoU6Sicf3Z5991nqkaN5fdFEmusgRixcvNu8nLhh4ntPBGy90Jg8OFx38n71c1q1b3AIGuOhxP6K7EKkSoGkeFm2Qi80B/x/8PpqO0MEb0entt9+2v8n28K7e8gsWQqQClKcCMR5fdPdIxyNy0aJFsf18OxU7J5xwQiEdrRDZF9E5V7FayQtkb7KYxML5Rx99ZFnnVGAiqDMmYNzL6zDpZsxAfxRgMZ2FeCGEKEwQyrGd2GeffcyqLQrbQYluIpnh/PQ5eKIhGQ7d6vvvv7ck0G+++SZMmzbNbI4YFwP9T+iFhpAOCOYkl8LTTz9tVeuMpXv06JEvxygKF2WiixwxYsSI0LFjR5tIk10L7o0KXFhcUPeO395g1H1VAWGSDHX5QopEQdYXJVecbzT7YsEn0SI6DUaaN28ejjnmmHTZmojjBFqgmzfn9aeffrrNPtH/A0IIkawgjtM8lPjOdYtJ9apVq7aJ2VdddZX9lJ2LSPZ4zpgT65W8Zq6RbUacJ7bTE4Cxbq1atew+BHMXpMhSx38dNm/ebD+vvfbaPL8PIYTIKyz8cR176qmnYovhDmIg10rsWoVIlTl6IsHG0MV0TyrZd999Y81DgffCYrknjZJUSg9AYFyAZzp2x6JoIgVT5AiyzIFsGxcSmVjTNImLGWUslK6CTyTIvJkyZUq4/fbbY89Dlk4iPSnF/1G/fn1bJS1u0CH7xhtvDHfddZetSuPHf84558SE7dzCOe0ZZMA5O3nyZHsdIOMcKO368MMP7XdKvAikWBhh++KZ65SCCSFEqnDWWWfZBIAJArGdmO+L4w7l3sR6RELF9MSieJ7YeE4G+P77758upucGxKWHHnrInmfBggVWceY9gBDqsXDxmB/tmcLjLrnkkjy9thBCJAK/NlEpS7WZ9zzjOoWNG5XieKOLxKGYnvg5OudufCVFIvCkN+by/juLTcuXL48tOiGqY/dSo0aNmLbVrVu32P+t/v37h0aNGiX82ERyIBFd5MoLHRGdRmOI5507d7bVaiYUCOqsbLu9BbzxxhvWUPT9999Pl7GeqKzc3r17W9DP6EbAEkUf/HrJ8GrXrl2oVq1aGDJkiJ1fNL3LC/j6Z9S5nrIucG90unF7SRlWR/47pd4I6i60CyFEKuLWa/GTakREL21NRExXPBf5Fc+zium5wassWVzy/xf0CPLsTc5Z9xb28bNnrAkhRLKI6NhN+LyFaxQVNJqji1SYo0OiYnoUn9+Teb7rrrvGXoeKdBfRSR4h2cSbiqODsVjv1obLli1L+HGJ5EEiusgR5cuXt594P+IpSTdi/NTIPucis2XLltjEwlcYKf/mIjR27Nj/r737AI+q2h42fq7l2hW72MWOBbuCBexixwqi2HtHAVHsXbGDqNiwotjwItiwAFawYcFesOvFgl3U+Z533W/PfxIy1CQzk7y/5xmSzEwmZ8LJ2Xuvvfba+dchm622Zrhp/Lk4t2zZMpb1cDvhhBMig+6+++6rlZ+h8sW59dJLL0VDlnDO8fVzzz03Xa/NOVqYeUmJFiaE+vbtmx8wVw+i83eRPmeJN7t0wyC6pEoyfPjw2Eh0yJAh+cBgKueSgoGUfEnXyNpo023PG7e6bM/TOVq4r8nUYgk6e/5Q0jAN3N977738xDqv/f3338fnTC6lPgJ23XXX6T5+SaoNjN2RylOk6xblqhyjq1LG6JieNn1KgugprpUSRijjlvq/SKsw2XSUzPi05wrvj74C5zl/V2pYDKJrqqTaTmTXphqP6UKWlrMQPF933XWzzTbbLL5mEMEFiOVhCRe82mqguZgxo8kFjwsZN+7j9VNNKzVc1Oola4Jl1IX4enqXbTOjXNg4sySNzUJYcQEaS1Dnjc3FUiY6HYb0OQNspDJHklQJWGl22mmnxXUvlXJLAfOUAcS1N10ja6NNtz1v3OqyPa+pTZ8aDIKPOOKI2PeHJdq06WSasxpzhx12yP99sDoDhRvwIpV5kaRSS9fYVAojjem5/tZmEN02vXGr6zF6fQTRCzPRkVZpdOvWLQLl6b3ddNNNWc+ePWMVOsi033bbbWMCPcUF1HAYRNdUL+mmAWQwQSCRDDXqP3ERYaMIUC+KbB1m3lK2GrN3hcttuOC5rHX6nXfeedEZSTcyBw877LAq91F6R9Nm4MCBMQmUAkdsMFKIxpWawHQQeB6f8/fBbDQz7QTRX3vttegskq0uSZUiXbPeeeedbJlllqky4Ka2NNhgPA1gbNOnj+153eNcZpA7LQgy0QemDAHo83IfA/nCDXfTZqJpEJ4mndgfSJLKQSpBkZKBqo9tbM+nn2163UoT1R9//HGtv3Zq54l3UXudvm4qa0jfmJUc3JgISBuP8j30kQsnh/h+4gJMJqhhcccITTXqQXHRYDMlMtVuu+22uJCkIHq6qNEAs7HSJ598Esu4CjdXSBcnTR8a4z322CP/NaVGmPHcZZdd8vcR2G3ICOZwrrGhR6Ha2Lw27QGQBshpNjrhvOf3ner/swKDQTqdUgbNfP9nn32W/7uRpEoLolMzNZVy41pIiaoOHTrEwKVVq1a257XE9rxu2/OETPJpQR3Uiy++OJZno3v37tmmm24aKzRvvfXWbM8994xkkfXWWy/6vW+88Ub+e1mJmbLmJKnUUltSPTkIlp6oHbbpddump6B2Kq9Sm9IkEpPic8wxR/ys9HP69+8fQXHG+TzGZPruu+8e95FQN3To0Pzr9O7dO/6eBgwYkG2zzTa1fpwqHTPRNU2bhIwYMSIGDATHUT0TncxzsnfTTPcXX3xRZVZ7eutSTk5jGdQz28mAMN24oFO7tvC+hr67Otle1B4vbLRSI5bOz2nFDuKct+ncPeqoo6o0+gSXaBj5e8CGG24YmQbg74GJJpDFmWaqJakSUK6CtpRJwrnnnjvuI2uKchVpaSrBwbqsSwnbc9vz2mjP0zndrl27qf4+yrZwrrO3yXXXXZcdd9xx8XfB/kDPPvts1qxZs3wGZwqypxrD9AtSdroklQOSfA488MCsU6dOEz1GCVbH6NPPNr1u23RKqRYG02tT2iuA42cflGHDhkV7D/ZAoT9AcHzUqFHZBRdcEJMhBNl5r126dMmXQCSZ9Pjjj4/SLmmPNDUMDfsvV3WCzLNko402io8MqgmYs1EEgccnnngiZlpT3Siycij7wizs9NalnNKMIbLluWC5oWPD17lz52zfffeNHbHJArv88stjk1t2Ap8enKOF2WM0kuxoz7lFVnrKOkuDZv4emHUGm+5S1gg8R5IqCQO+ZZddNjZUZnUNA26yblM99JSRw/UWddWm2543LnXVnk/Pfjy9evWKpflnnXVWHF9CuTZWm6XSLazUoI/A30vaVJT+MXsFpZVtklRqXKeuv/76uLZeddVVEz3uGF2VMEZHXUxEFAbRU0nXFA/Ye++9s6eeeiom1Emu47lbbbVVjPt32223fOb9p59+GkmkxxxzTKxcJ2tdDYeZ6Jouq666amyoQA0ostHZqZh6k2wySoAxlbnAuHHjst9++y1/wUsXpbqw9dZbx0dqUqvhY1UE5x2b4HHusRqCwHb1jUymVvXNdWgoaSSRduumzAFLuPiaHbkfffTRuL9NmzbZyJEj43OD6JIqUWpDKU3BgJsM3LTyBgQKU7teV2267XnjUlftOaZ1wzyy0Bj0V894Y1KJ8zPtFUDWWQqeJ9RSNYAuqRwR2LvjjjvyYxowfneMrkoYo5ciiJ7KHbFC8+CDD46kUTYVPeWUU7Lbb789/p7S5qIkodAvuOyyy7Inn3yy1o9TpWMmuqbJQw89FDeWgTH7Rj3IRx55JOpDgk0YWLJE9k0hyryQxcYsNEthakvKhCsc2Ezvrs+ViJnRxorZYG61iXOUczWh5nmqc5o2yk0NLZuGsdnut99+G0u6WMLNEq70fZJUaViaevfdd2ejR4/OL8MeNGhQleekUhW11abbnv+P7Xnttuc1telTiuXaLOGmviv7npDFWVjaLdUVpmxb+ltJDjjggFo4ckmqXQQH2duEj4zPExKDHKPXPtv02h+joy4yvCcVRE/oD7OKg0kBJoRYrX7uuefGY2kfIbLRKetDH+Gee+6JLHY1DGaia5owy9anT59syJAhEURHysAlI+fxxx+PZTvVpd2JCbJ/+eWX9XzU0tThHOVcTahxnrLM6HDSoI4ZMya+3nLLLaM+G9mazLbT8L788svZK6+8Yia6pIq0zz77xOQgE+VMHFK+ojB7iPIVDBwILtqmq5yRSU6ZlcI2fUpRyoUJ9H79+sWydEoQ0P9lcM2GYpRsSX8PhfXPGWTXVHNYkkrt7LPPjmvZgw8+GBODhddKApRphY1UjuhzsjqsLjbt5nXZ64SP/D0glTIszICnjU+rONKqTMw777zxkRjA4YcfHnEzJhH4Wg2DQXRNk1TS4umnn84H0QkqcmMJC/elgQq1o9G1a9d85g6PMSuXsnmlcg+iMytNoKgQy9LYLITGkR3YyUKjbjCbiqQBNc9JfwOSVEm4/jVv3jxqPN57771xPfvoo4/yjzOpSNk2AunUfpTKVZrk4VydUj///HOc42RSHn300TEIZik3N/4W2AOF7LJrr702Nh1LWe5peTl7CrAqU5LKzYorrhgf2TgxjVuQrmNOjKuccX5OTXs+Nc4///xo0ynXkjYJJ6McTManci6F5V2IgT3wwAPxOdnp6W+LIDvBc5Ltrrnmmjo5XtU/g+iaJptttll8JPuGACEXmrfeeisuFJtvvnk8luqhp6yciy66KLvhhhvi83TRa4zLuVSZDTSZ5SeeeGL+MRpPSrgwS92hQ4fYZV2SGqpUliqVrkgGDhzo6jKVvXR+Tk0merdu3SLQxKqyK6+8MjYPZ/+fZ599Nl6HUi2HHnpodumll8aqNJbrE0BPmXFkrUtSOWIfJ7DarEePHpH4U7hho226Kmm1eF1J2eYpuzwF0dNkU/p7IRP9pJNOiq+POOKI/PcTJ6PEK4mkxA7Gjx9f58esumcQXdNk+eWXz1ZaaaW4ULA5BEtekh133DE+vvDCC1GnqnCHbzLZkC56Zq6pnHF+FjbQqcY/DScb5bIUMmE5JBuHfPbZZzEbTQYapRBSYytJlYiAIXUcWXHDIKKwTQeT4wbRVe5Sf3NKB92c57TrbAyWlnGDQNNqq60WnzMgJrOMki5kqoPyLfSPmVg/+eST6+S9SNL0YoKQa1uq/5zKVY4dOzY+2qarksbodeX++++PADntPFIQPGWip2RRguWXXHJJrNxcbLHF8o9RDmb77bePGBjljvfff/86P2bVPYPommYpWM4gIyF42LJly2iUCSaSoZsuOkhlLdJFzwZa5YqG7+uvv86fq4MHD45gUjr3aSTJQGOFBbUDr7jiiqxz584RaBo6dGgs4WInbjYZlaRKHqjcfvvtMQCoaX8HNiaznIvKHf1N+qaFtX8nhYxyVl+w8pLSg5RsSYNl+reFtttuuyhzRMm3iy++OHvppZeyESNG5DM7JancMI5p0aLFRPenEhS26Wqs5VwoTczefmwoXpiRjsMOOyxuqVRbSixhvyD6AjyPvkaKebF6k/uaNGkSZV4eeeSRSMRTZbN3p+kOohNcZJOFU089NUpbMGOX6qQvscQSWc+ePfPf8+6778ZHakez3NUgusoVm+AyYE5BdJZts4wbG2+8cZQvuuuuu+K857lp13Umje6+++74fNddd803upJUyXugsLHyKqusEp8zOZhKVtDuc52kPFuqDSmV69LvKW2T33nnnejP0razpw+D5rPOOiv6sWzGd9BBB0XiCJnqqf1Pfw833XSTtdAllb211lorPhZO+DGmcXWZyhl9TfqcdZGJzl4o9HeZDK8pEe7cc8/N+vTpE7GswiB62gslSeVfBgwYEHsLgbjBe++9l/9eVS6D6Jpm1IMm64YlKynDhwsPGWuFWepLLrlkfjBBcJ2LDYMYakPZQKtS6qcW1gFmIJ1KuXBOP/roo7EMkllrZsXTxiJsNipJlYz2O2WrpcA5AwuCiKBkFddJloRXr5cuVWL9VDLPKXXw9NNPx4CZVWf0ZQ8//PDssccei6XdlDzg7+GQQw7JTx4RfKIvwAbjKWlEksoVq8dRWLKK6xmTgY7RVa7I5CaBsy6C6J9++ml8ZNUa/dr1118/23PPPYsmiTARxYpMVp/znP79+8eqzVTuhX2DmJRnjxU2LE2JpqpsBtE1XcvAWJbCbB2DC2qmEhznIkK9SGa1mcUbPXp0fgfwm2++OV8Sg+9h+atUjtK5yWqKVOc0YYnjiy++mM8257xG+/btI6BOvTQml1LnVJIqGUtUQdYtmyyTAXTjjTfGfQQTU1aNbbrKFedmas8np23btnFjAomNwqh3zrlP8seRRx6ZDRs2LOvbt2/Wu3fv6PNWx4qN1O+VpHK16aabxjVu5513rnI/pSdsz1UpY/Ta9Mknn+TjVHzOeH/48OER46J8K5nkv/76a/75lG1Zaqml4vmsYCfRbtSoUfk90YgfnHLKKbE5OXGzN954I14n7UWgymQQXdOFQGFaGsvFY/PNN4/PhwwZEpuNMfPGZotcfMDFpUuXLvH5Gmuskb388sslPHqpOM5N6psxaEbhZnpsmEsDztItNtmlgeVzNhJlBhq77bab9VAlNQhsigT2e6BNZ+8HsnUTJsu53tmmqxyRHc7gdc0115zsc2nbyUBnAzDa+iStwkgl3SjlQmZZUlgmhgl1SaqEcTzZsdWvWYxpuGamzUalckJfk2TOVVddtdZfO22sS1wrZaWnYD31zCnnts0229T4vfzd0EdmtTrfD6o2nHPOOdkyyyyTPfTQQ9nIkSNjBRt119M+K6o8RnhUK9h5mI1I9ttvv/iazFxm3rjQbLvttlWey2aNWHvttSPInmbqpHLCKgrOUQbGZJ6//fbb+cdoCFMGx3333Ref77DDDtGgs/ke9tprrxIduSTVLpamMhD44YcfIsuWAfeGG26Yf/zqq6+Omo9cN6VyQ2kVyg3Spk8Om4aysoIl1x07dowJIgLmJICkckVMqu+7775x/8orrxz3FS715vskqVIwMcg1Lfnggw9ifE7WrVRu6GvSFy0sQ1TbQXSyywsD6kib7RZuaEriaOfOnaNsC7beeuusR48e2eyzzx5f009IiIlRK51V68TAUnUGVR6D6Jpu1D0nY5f6qO3atcvmmmuuyOR54okn4nEGIgQXCwPuYDDDoIOZbqmccF6mIHrKwnzhhRfyj3/zzTfxkYkilmOxlIuNR8nE7N69ezx/3XXXLdnxS1Jtog2npAuZvFzzmFwsbNepBc310iC6ylE6L9MmepNCiZZvv/02vodVlFdccUV28sknZz179oz+LP2Diy66KPoE1DxNQfTC/YLSRLsklTtWlT3//PP5pCBQvgq26SpHhWP02pYmjmjHU2mXlIn++eefTxREp59A9nmKeyXEBkDplvSRVeocN/0J4l9MXqkyGUTXdGPDMTZZoi4kGyuk2tEMRBhkEFxcfPHF889nAE5GEFlrs846qw20yg6NJIFyGjpmkF955ZX8YwSONtpoo9h0h0mjq666KmamWdrF7PLpp5+e/ec//6mytFuSKt21114bS2i33HLLbMSIEVWya7jecb1kjxTrPKrc0M9s1qxZtNGTQoZ5v379onYp7TiZmRdccEGsLKPGObVOyRw77bTT4vk877nnnqvyGqlkoSRVAlbYMIYh85xyFKDMBNm3jtFVjpM+9DXrKojOqkvOfUrFjBkzJu5baaWVqtRiT5npSCvUqvcviI2BgDmT73POOWdMTrFvGmVhiJ+pchlE13RjucuOO+4Yn/fq1Ss2YGKAwecEIpnZThcYUF+NwQkNNRcQG2iVm3RO0kCTYVmYcbnZZptFyRbqpKV6qfPNN1++4ylJDVHKqgGbiqbNlcF1ctlll40AOpsmSZWWtUaWGIF2Ntkj+YPVZJQmZMJ8nXXWiUE7ZY0oZUSAicA6g+Yvv/wyJpFYuj3PPPPk+8OSVAmaNm0a+5QhfQTXQ8foKjf0MSdMmDBFK8umBUmgZKAzsfTWW2/FfSR+ghIsKNw4nBJw1bPTkfYTIMH0tddei1gCq9gIqBMbSwkn7jtQmQyiq1Ycc8wx8ZEMHkq7nHnmmbFZCXWh+JrZ7bTJIlnoxx57bHzu8m+VI87JhRZaKM5hbgyMQZ1UNg8FDSy1UpMzzjgj6qHZGEpqyGjP2e+kumeeeSbaedt0lRPaZFaTTS6IfsMNN8Tk+KBBg6LOKgNdJocSBsBkpjNg5vy/5ppronQLQfVUL52/ASfUJVWatm3bxsdRo0bl7yNQyeozxzUqJ/Qx6WvWdSY3QW5KFNOmU7aNyfNU6qUwiJ5KvpBUWihtRs5qtjQ5xUrOnXfeOeJgTNyTdEoCyvfff1+n70W1zyC6akWbNm1i2cuvv/4aA5Hk3//+d2T0VF/mQr1JZuYY1LBhI4F1qRw3FaVmGYNjPqeWGTWBwUQRDTiNI40qy7xpGNnATJIaagYQE4znn39+ftOkhKAiAw0G3VK5oH1m4mdSQXTKuPTp0yeWaH/44YfZOeeck/Xt2zcGyqlOMEuyBw8eHGUIBwwYEINr/hbuvPPO+HtgpQYbnUlSpdlpp53iY2EpSsYzXDvZZFQqF/QxyQyv3getDQTKC2NY9HmJbZFER7CcUjK09SlgzmR7sSB6eq3C0i/8fd1///3ZJZdcEo/fcccdEQ/r379/rb8X1S2D6KoVXBRSNvrll18eFxkycjbffPPI3mHGcNy4cfkNmHg+gXSWyHIBKlwWLpUSjRrnI+cmM8PspI0tttgiavyvttpqsdHY3XffHfez0RiNIecxG4qmummS1NAwcFlkkUWipuPqq69e5TEmG5lkrF4jWiqldD5Oauk3E+dkoVOCkKxLMjBvv/32OKcJqg8dOjQ2F0110NlQlDb/sMMOiwEyj6XNwySp0lCqis0Tua4ljNNhm65ywvnIGL0unHrqqVFBgUnz6hnlBO1JmDvuuOPyZV5/+OGHmGiqHizHL7/8Eh9T6VdWsaVyMLwHJunpN9x6663ZgQceWCfvR3XHILpqDWUuqKv21VdfxcWBzRjYqfimm27KLxNLJV1SPSiy1/kels9K5YBAOUu4KUVEbVTO57TRCFnpZKFRxoXMNQLrlHuhbiq6detW4qOXpLpDG546+2ngkNp1MMlI7UcCklI5oH9JgIi9S2pCwJwsdTLWKcnGnj2nnHJK9thjj2XXXXddZGjuvvvuMcHeqVOnWI7N0uw99tgjssg41y+88MJsyJAh9f7eJKk2pNW21VFqwjG6ysXYsWNjDE698rqKATCZThnXwgklkEBCkJ0V6AlZ5GDvlOqZ8amPzKq1hx56KJLs6EMwUU8SChUall566WzDDTeMrHdVFoPoqjUEF5lNY/kX5V0IqrPJwueff54tv/zy8RwGG2n2kLprDEp22GGH7MEHH5zoYiWVAgNoAubUOqUxTe655574uMsuu0SGGhhoM1vNyouWLVtGQyhJDdl+++0XgfM333wzMnIZEKRMHTZZpH6kg26VA9rmRx55ZJKbfZLowSrJ559/PlaWsaKM/iyD2j333DPKtLEqbf3118+uuuqq2FCU7DE2HEuDZGqo05eVpErFZGH1iXECfQ8//HB+E0SplOhb0sesiyA6MamRI0fG57T3G220UXxkT5VimFAn6P7kk09O9BgrNlMQnVWa/F1x7MTKKA9DEin9jmWWWabW34vqnkF01SrKt6SLATWjOnfunL/okbXLBgq///573Pf444/HslgGN9Rboza6VGpM6DCIZqkWgfHCbDUQLEpB8+WWWy7r1atX3N+jR48qtQQlqSFafPHF86vLWL5KsDFdH2+55ZZsk002ieuoVGpPPfVU7LlTLIhOuYLevXtn77//ftQ17devX2Sfk9TB5NDee+8dwXISQlg9SdkWVlqSpZaWc+Oggw7KL9mWpEpEwJDkoSOPPDJ/H2NzJguffvrpkh6bBPqWrVu3jja4tqVznba8WbNmUdqVW9rTj1jWRx99VCXpk3E/Weg17YdSGESnD8Hf1vDhw+O1iSOw6p1+BH0N+h6bbbaZG4xWEIPoqtONH/bdd9/I6mWAQkYPQXXKYCQMuLlokMVDBrBUSkzmMGAmo4zzNGWfJ2Sas6FYykI/99xzY1KI2eoUVJKkhu7oo4/OL2Xl85SJTg1pBhOUcnPDcJUa/Uo2+6J0YE1Yms3GYaA0CzXODz300OyBBx6Ix/h+EkL4msQPAu6pdNvrr7+ef53CoJMkVSIyZSl9xeRhykanHSdj1jG6So0ANxnfk1pZNj3S6vN11103X7aVzcPpQxDcJjZAAHxKAt1sRppqovMaYMUbf1dUZGCvFeINIChPTIH3dtttt9XJe1PtM4iuOtGlS5eoMUmt6LQZ05lnnhkzb+3bt88/j6XfBNBZQmvmmkqNTiJZlZyPbBzCLDFShjkZ6k2aNIlsDTYc5Wvqmp133nlmoUtqNLhGMiD47bffYlVO4SZPI0aMiKXfjz76aEmPUY0bA1P6lQy4a2qfWbpN9jlZYCytps1n0zDadQa/tOu4/vrr43w+5JBD4mv6tH379s2/Disv2CBMkhoCNlZkpW3CuMiyqyo1+pS0xXVVOi2ttqBPmwLqjPfpP5AYCoLohfur7L///tkJJ5wQ8axCaT81Ylxkohfi74mJ+dRHJqGU0sdkwLPniirDTKU+ADVMaVnLOeecE3VTL7vssqiHTu1Jak0WLqVlaQyDHJbD8jXLYqRSoJNISaIvvvgin3EG6v6ya33Xrl2zY445Jvv666+jUd1uu+0iA72wfqAkNXRc/2688cZYokpJFwbXqZ4qbTp9AK6n7CEhlULa4LZY1hrZZIMHD85eeumlCILPOeeccV6ThcbG4ikhhM32CCiRBMImowTYOceTs88+u97ekyTVNUpLsL9Z4WaOtPGsviFxSCoF+pSsKquLGuKc36w2A3GAK664Ij5Pe51R1gX0Dwqzzflb4XuJD9QURGcz0uqT+FdffXVUZqD/TDZ6x44do4wcSaaFk1cqb0Z+VCfYVJTNFth86eKLL84uvfTSGHDvuuuuEw04eJxgJBjQSKXAgHrYsGExw114jjLjTAeSeqgEy9l9m920EwPokhojNl8mgE4mL6Uvkh9++CEee+ihhyLbVyrVyjImwMkUr45AOINx2vtx48ZFthgDXQa07dq1i2w3+qsXXHBBJH70798/NjJjU/HDDz88JtUJujPgren1JalSNW/evMr4hiAh10FLuqhU6EvSp6yrLHTafLLK02ai7KeClBlemKWekCTK3wbJn6zeKJQy0wmiV0fSKHGEFi1aRFIemenPPvtsduyxx8bGo6oMRn9UJ9gooWfPnvE5Gb00yFycqAuVlsQmffr0ycaMGROD7uo1qKX6nOGmkWYpd+HSK7LYqPvLZmI8To20jTfeOCZ/3K1eUmPHQLt6zWmCkZTDYmJSqm8MbOlPEvhmgFqITXDphzJ4Zck2bTzPe++992JlGZNArVq1ym699dZ8EImB9ZAhQ2K5NVnr9Amoz/rqq6+W6B1KUt3YeeedYwNxJsgLE4oco6tUCGIz4V1X9dDZ+4TqCWz8yYoL2nfOeRJCGetTphDs45ek7HSeUx01z0E99eqYtCfoTp8i1UVnEp9+Cz+fFe/st6byZhBddYblMFzsCDqSuZNqqbEBExeQQj169Mg6deoUmejUhZLqG3VPOWeZUb777rvz97NKgmVXbJJLLdRrr702e+aZZ7Lzzz8/GllJaswOOOCAiQbXBCfJ0uW6KtW3UaNGxcZgtNvVXXnllbGJKJgwJ+mDQPsee+wRq86WX375OJ+POOKIfJCc2v8pMw0puE5QXZIaErJhq2+W/M0338T1kPJXUn2jL8kENlnidY3+AGXcWI1GWz9y5MhYvUZ8IJUrBrGANMle3QcffBAfl1122Rp/RocOHeJvbLHFFosg/fjx4yNeRsm4q666aqKEU5Ufg+iqUwxWKH9BNhobJ7Dz8KabbhpLwAsHIiyJ2WuvvWK5GHXTpfrESghmmQ8++ODstNNOi9lulmqDzcWGDh0as9Q0qEz4gBlrNiOTpMaM0hbVA4pksDVt2jS7995743oq1Sc2/uS8TLXNC9H/JAusTZs2UQOVVWZkpxMgYpA8aNCg2GT05ptvjg3EqXtK34AMNAa2ZKm/8847JXlfklQfKDlRuIqHAF+TJk2qbKos1Qf6kPQlOSdr2iR8etHGM3H+888/x9drr712NmDAgKhTjieeeCI+Er8qLOGastOnJYhO6ZZevXpl8847b9Rd32+//WLyqnXr1vE4pZPS8ag8GURXnWIZy+mnnx4DE4LpBB3JNGcAQjZ6WirG8tk33ngj23PPPbMbbrihyhIyqT5muDk3OV8p05IaVbBsGyeddFJ20UUXxbm61lprOUssSf9/MEBGL5k6hdjUkbacshhSfWHgeeedd8YKCbLMC5FpzoCXiXMmx6lLSptPMJ0+6cCBA2OVGavRZp555tjL5/LLL49a6AyeeV2C7pR0k6SGaoEFFoigYSFW5HAtNLin+kQSJtUMalpZVhseffTRbPfdd8/WWWedGh+nmgJ9gsLVGfQl6OPSx6gpO/7999+fZBA9YUU7m6BTroZ4A/uvsS8b96VkPpUng+iqc8cff3z29ttvxwWKXb1ZIot0cUizit27d49BDxeRhx9+uKTHrMaDYDkZZ8wCH3bYYfn7Cf6QrcaGo+wEzjIyZsJpMJnocfMPSfpfrdSuXbvG56zYSWjLCTZec801Toyr3tx2223RrtOfLMQgvGPHjlmzZs2ihimDXDLOCQrRnpN5xvfSH6Cdv+uuu2JzsFNOOSW+n317UvCI5BBJasgoK1Hojz/+iGsg10ypPtB3pIwqG36TkFkX7r///vjI3iiUgWOSvfqEEjGswk3EP/nkk9jnj6S66mXdKM2SEvAKy7/UhL4I5eX4ucQaiImx4j1VbFD5MoiuOkc2D4PshMEHWb/ffvttbEbGIAaUfGHnZWYCr7jiihIesRoTOoMEyplp/u6776o8xsZ4qXQLddHRrVu3GjcRkaTGPFm+yCKLxCC7EAMNVp499thjJTs2NR4EyikjyMZ4hYNQyrWsueaasfyaDbvIImPiPAWJyDhn+fTVV18dg9h+/fpF35UyLqBeeqp/yoA63S9JDRX7Q7CSjABmwvWP62ba50yqS4888kj0IY8++ug6eX36BrT94Dw/9dRTs+bNm8cKtEkhQeSrr76qMemTjUlBvfNiZV9Zwcnk/Zlnnhn113luoc8++ywS99h4lP6Kyo9BdNUrMn2oQ5kye9i9mNpTCYMfLiwsrak+EyjVNjqBTNiwAS6NNEuzEmr//f3331ETlc8JsJONTgMrSfo/ZOKcccYZ8XlhzUjqQjIQd2Jc9YHJGvqOxxxzTJX7+/TpE8ujceCBB0ZGGWVZUr+TCXOy3Qigs9KMDDMyz+gDMMCl9EtCH6CwVrAkNVR77713lLhKuFayj1nhNVGqK/QdyfambnhdoIwKiXRkuTPRTvwJqZQR7T3lVQhqV0d/oTBJNCGrHC1atCj6c5nMp39R2F8GG/eSic6eLvRBOCbKxzppVX4MoqveMNvHjBuNLxk9DGJYcksGUMoY4muWs5DRxsBGqktsFsL5SBmX6rXWKEHA8m3OQwLpL774Yiz1ZvNbSVJVBCdXXnnlmHRksjz55ptvsiFDhrgZo+plwM3AtXDZNTp16hSbkjEgZnA8fPjw/MpIMtwYpLJxKCvT9t9//wiwM8jdbrvtYh+ftDkuA1v3Q5HUmKywwgoxGZ4wDnJiXHWNUsBkopNcWRcbiiKVJiILnUl42n3iUJQfZmUl5/lpp50W/YDCvQEmVaKQTcrBaxTTs2fPeE3eW/LRRx9lLVu2zM4999woO0cAHayKq77nkMpATqpHo0aNys0444xMp+XOO++83GyzzZbbbbfdcrPOOmvcx2311VfPnX322blZZpklN3bs2FIfshqof/75J9e6detcixYtcmuvvXb+/GvSpEnuyCOPzD9HkjRl3nrrrdz48eNz48aNy7f13BZYYIHcPvvsU+rDUwPvX3Ku3XzzzVXu/+STT3KdOnXKDRs2LDdkyJDcTDPNFM87/PDDc3///Xf+eYXtPZ/ffvvtuffeey+36KKL5s/jO++8s17fkySV2ujRo/PXwMLbSy+9VOpDUwPWsWPHXNOmTXO///57nbz+zz//nJtzzjnjXB4xYkSuXbt28XmXLl3i8Ycffji+5hgK+wrnn39+bsEFF8xddtllNb7uqquuGt933333TfUx8bN32mmn3Ndffx1fjxkzxlhEmTITXfWK0i0siwEfH3jggSjxQm30wmUwZLLNPffckbku1QVmt1nGRS1flk8V3n/xxRdnf/31V2xMNmrUqJIepyRVCjLR55prrtiYsXDzZdpzVvKkWpFSbWNz+pVWWik2D01YAbHeeutlt9xyS9a6deuolU7bzjJpNv4q7GOyJ89PP/0Un5P1ttdee2XLLbdc9vjjj2dt27aNlWl77rlnSd6bJJXKaqutFtfCQrPPPntcc6W6QPk1NtwkC7xww/raxIo0Nspddtllo1zroEGD8ivXcPfdd8dHSr4Wll2hr8C+fjWVdfvhhx9ihTtatWo11cdE6aT77rsvSsqBPk1dZeFr+vyLSPp0voY0VVgCs/XWW8fAhOA5ZTKoN00DzTIaMADnQnLSSSdlb7zxRgzMpdo8B6mxRmCHQfUJJ5wQ93M+snyMpVTUSLvgggui3hmb480555ylPmxJqgh0LVkC/v777+fvoxQGpTbSJk5SbaE+7xZbbBGDz7QJHjVMKRXIucgAmBsB9M033zwGzi+88EI222yzxYCXc5Jl1Tw2ePDgWDo977zzVvkZLOHm+ZLU2FALnXH6jz/+ONG1l1JYUm2ilNp7770X7TPlTOoKJVTYD40Ej6OOOipiAyTWUV6Y0sJMrA8bNiw2EgWxATbXJY7ARPxSSy1V5fWYuKcELH8rHH8x7L1CwJ0YBEH8Yp599tkI8JOcQvIpG5BSglalZya66h0DGXb7ZpaNADn1KJnNK7yIsNkC9VMZAKVNSKXa0r9//5jl7tatW35lBNgFm0E2gXQC6Kk2ugF0SZpyd955Z5UAOpgkJ9NnxIgRJTsuNTwEyUm4WH/99WNAWriqjMfY9JbJcNp2VkNSh5QAOkFyaqAymE11SZs3bx5BdPqe7NdDXzQxgC6psSJweM4551S5j8Ae117zMVWbCFrTDnO+1WUAHdQ/Zw+VBx98sEoWOl8TQF966aWrbGp6//33RwCd1RnVA+hI+61MLgu9d+/e2YknnjjJvYJ23XXX+NnbbLNNdtddd8Xvo3PnztmXX345ze9XtccgukqC2T02cyCgTiN8zz335Je/FA7CCaBzwXr++edLdqxqWP7888/YXIzlWZdffnnMBCc0jOuss05ks4GBNcu+JUlTbo899ois80Isf2VAwuSlg27VFvqPlF1j4jste+b8Yhk0y7EJoJNFycZ4DD6ZJCebiwB6r169YuUZGKButdVWce6SqU4/gcErG+NKUmNHBizXzoQg48iRI7N77723pMelhoO2mz4iGeG77bZbnf0c2vhCrEYj3kQZN1ACDvvss0+VUi5pI9IOHTrU+LqPPvpofGRV26SwYo7Sc5PKQk9/ax9++GE8l77JzTffnDVt2nQK36XqkuVcVFJk/pL5w2m4/fbbx8xjoeOOOy6WijEIevLJJ60LpenGoJng+H777ReZZoXITGOCZ8yYMbFD9lNPPVVjzTNJ0qS9+uqrkfnL5GSy+OKLR5mNgQMHxkSmND0mTJiQrbLKKjEQZRk1WEJ91llnRQ1+2nSWXy+66KKxPJtJc5ZGsxryyCOPjAAQtftZcUY/s3379jHRTpYZy7upxUrWevUJIUlqjMjaTdm2YIzE5DiJcIX7oEjTgr3yCDATjN5yyy3r5GdQmo0scrLFr7/++lhlUYiY1EEHHRST8C+//HJMwINVbJQl5HHKwHDeF2LCfeGFF47PmbAnnjA9WL1JMP/AAw+MMscqL2aiq6QIoIPg+HXXXTfRhYxMYWbz2ADy4YcfLtFRqqFg5pnyLXvvvXfWr1+/iR6noSSATqkhlk4ZQJekabPGGmvEUu9CqU71ySefXKVUhjQtmAgnaM4eOhg/fnwMjFO2GAF0BrJsIE4AnZIvBID4mgA6gXMy0in1QtYbAXRqn6aVkVdeeaUBdEkqSERKmx6Ca+a77747UVKSNLVoh+kbEvepqwB6qnTAykjKurJBLj+3EDEpyrwRFE8BdBAXIIBOiZXqAfTCLPQ111xzugPomHXWWbNDDjkkH0DnZ6fNz5kIoCa7SscgusoCFyqWxhRu5JQuGgxiGBRRO+qPP/4o4VGq0p133nkxkCa7rHoA5+CDD45Gj8A5M+HMNkuSpt1pp50WWb2Fxo4dG0FKJs6laUWA/Iwzzojl10zYgElySrekRbb0KdnEnv7jgAED4vMFF1ww6pFSuo1SgaxypEwBKyaoQcoKCj5nGTf9AknS/6y++upRxzkFDBPKX3FNlqYVfUIS2dKeZHWBvsFVV10Vnx9xxBGRid6sWbMok1Jd9X1Q2rZtG6VmWMVWk4ceeig+br311pM8BgLgZJlPDeJfJADy2q+88kqUu9lhhx2m+nVUewyiqyywzJbSLmQUsdS2EIMZgp48VrgJpDQ1qJl60UUXZYceemjWt2/f/P2cWwR5rrjiiqiFzk7YlHKRJE0frq9s5Fy9FBvLvrt27WomjaYZZdkYjNKup5VmbCyaBr5kcZFxRrkXBprzzz9/fpNwsstffPHFyDJLg1Bej9ItZHqRjU4/wRKCklRVkyZNIlOY8mwJmb2UYJWmBeVR6BOSec0Ed11h0pyJcvoHlHVlZcWnn34afYkUK+BWk5VXXjkC/DXVQ+f7qauOwg3Oa0KZGDY8Jyg+Ob/88kvsD0jwnJJ1rKCjRvp3332XjRs3Lvvggw+m8J2rthlEV1lgWQwbk5AFzAw3WcA00oUXPS6sXLyKXdykSc3g0lgSLGfWOWHJFUu2OKcYeLP6gRq+kqTaK9t2ySWXRPZvwvJZApTUnXRrHk0tBqvUNafkH5tvkYixxRZbxOCVwSyTNATHKSdEZhvLrxmEEjhPUoCcFWqDBg2K7C7KDZHIwWo0JoAkSRNjNS+TjQntOPWbUyBRmlIkS1L3m4nuiy++uE5/VtpInJ9HQJoEzbnnnjtWnqF79+7Zuuuum89Wn1KUHCbgTbnC9dZbb5LPff/99+M9zzPPPJN9XYL9VGSgrDH9aALprJjj7+yNN96IJAGVCBuLSuXizjvvZDQdtx122CH/ObcFFlgg16JFi9wqq6yS+/3330t9qKog3bt3z80888y5JZZYIn8+LbXUUrmhQ4fmmjRpktt3331zEyZMKPVhSlKD1r9//yrtOrc+ffqU+rBUQcaNG5dbZJFFctttt13un3/+yX311Ve5RRdddKLzihtt+zzzzBOfzz///NHm/+c//8m1bdt2on7km2++mVtvvfVyH374YcnemyRVAsZMa6655kTX3IUXXjj33XfflfrwVEF69+4d585jjz1Wpz/nueeei58z00wz5T7++ONcq1at4usTTjghHn/rrbfi6xlmmCEeT3744YfcnnvumXv88cejz1GTDh06xPd27tx5ssfBa3z55Ze5zz//fIqO+6KLLspde+21uW+++Wai11HpGERX2bn44ovzjfGBBx6Ym3XWWasEPgmGEhSVpsSLL74YDeKhhx5apaO3+OKL5xZaaKH4fMMNN8z98ssvpT5USWrQ/vzzzxhkp+vw7LPPnptjjjkMXGqK7b333hEY/+yzz+Lr1q1bTxTImXHGGXPbbrtt/usNNtgg9+677+aOPvro/H0XXnhh7rfffqvy2g5KJWnKvPbaa7kjjjiiyrWXAOU+++xT6kNThaDvRx+QMXpd69ixY5yjBxxwQO7JJ5+Mz2eZZZbcF198EY8ffPDBcd9OO+1U5fuuvPLKuL958+Y19hF+/PHH6MvyHAL19YGA+iabbJIbMmRIvJfDDz/c/ks9M4iussNF4JhjjskHOk866aQqDXS7du0iKEpwVJoUBsg0emussUaVLHRus802W3xcddVVzZqQpHoaMFUPeM4999y5TTfdNPf333+X+vBU5gYOHBjnzM033xxf//HHHxNloZN4Qbuevj722GNzL7/8cm611VbL30cfc9iwYfG9ZKdLkqbN8ccfP1G7/uCDD5b6sFTm6PO1adMmEiTHjx9f5z+PZLnLL788JtS32GKLOE+ZBMLYsWMjSZP7nnnmmSoxqZVWWinu79WrV42ve91118XjK664Yr0Fsrt06ZKPkzERwOf9+vWrl5+t/7EmusoOdSovvfTS2DX5kUcemWhjJ3Y/pgYUNa7dlViTcuaZZ0a9M2qds3FIMsMMM0Td1KWWWirOsXnnnbekxylJjcEyyyyTtW3btsp948ePj31PrrnmmpIdl8ofG2mxMfh2222XderUKXvqqaeyZZddNvviiy/yz6Gm6mGHHRa1QtlElI1FeU6rVq2y119/PVtooYWywYMHZxtssEG21VZbxfdSE926/JI0bdivbK655qpyHzWnuWZLxfTp0yfacfYmq37+1IXZZ589NhCnnv/jjz+e3+Ae1GKfMGFC1qZNm+gvJI899lj29ttvR38i1U2vLu21xh4/k9uMnFrmPI8a6lOK/snHH38cx8Ix4pxzzom/sUcffTQ7//zz4/Nddtllil9TteD/B9Olsp6ppBZ64Qz38ssvH0vG0gyiVB211VixkEq2FC415OOCCy4Ys9GSpPot6cLS08LrMst5ySB+9dVXS314KtN+IEus2cOEOqJkOabsK249evSIsmxvv/12PJfMyDFjxkSt0/Qc6qCTbXbUUUfl76Ou+s8//1zqtydJFYvs25YtW06Ujc412xVmqgl9PUqgHHbYYXX+s+gz/PXXX1XuGzVqVNRiB/uqpNLB1D0vRMmUtKKtJqNHj87HFr7++uvJHstBBx0Uz+/atesUHz9/Q2n1fE1xi5T9bjmX+mUmusoeWcOnnHJKlfvILm7SpEl29dVXZ9dee23Jjk3liZ2v99hjj2z55ZfPvvnmm/z9//73v+MjmedkoPO4JKn+zDzzzNmVV16Zbbnllvn7fvnll8jg2WmnnbJvv/22pMen8nP66adnDz74YHbrrbdm//zzT5wnf/zxRzw299xzRztPZteKK64YfUZWM6600kqxonHhhRfOevfunV111VXRL+jVq1d8X48ePbKBAwdmc8wxR4nfnSRVLtru9u3bZ7PMMkuV+7m+nnHGGSU7LpUn2usdd9wx2utLLrmkTn8W/QV+VosWLbLRo0fn71977bWjf4APP/ww+gmsUNtss83yzxk2bFjciB106dKlxtenLwt+BivdJoeVcscdd9xEKzInhT7NWmutFTGLcePG1fj39+abb2YbbbRR9sknn2SvvfbaFL+2pt2/iKRPx/dLdY5TdJtttoklK9Uttthi2ddff50NHTo022STTUpyfCovlAagISQoQwmXwksc59Cff/6ZNW3aNBokSVJp/PjjjzEoKAyaM1jh+s2y1TTpqcbtrrvuigANJQO6deuW7bbbbtm9994bj6222mpRMuDzzz+PEn+HHHJILA/v3r17/vsp+0c/cdVVV81+/vnnSMAgGL/99tuX8F1JUsPBWGvs2LHZ999/n6277rrZX3/9VeUazgSmxBh8iy22yN55551s1KhR2RJLLFEv/QfKxZCAyeT7kksuOUQFie4AADJWSURBVNHzKJPy1VdfVTkeSr7RFyXwTemZ6uhXUBaW1xw+fHgEsUv1t7fhhhtmzz33XJRM/OijjyLpYIcddijJ8TQWZqKr7DHDds8998TAujoGTlwwdt1116gXpcaNOmd77bVX9tlnn8W5URhAb968edQ6o56qAXRJKi0yiKsPOhhgkflz9NFHW6da2csvv5ztv//+0a4fcMABMemSAugg+4q2nkExE+cMJE8++eQ4h5JZZ501Bro777xzJFu88sorBtAlqZbH6lxn11hjjey6666r8hi1pLnuqnGjT3fUUUdlzz//fHb//ffXeQD9119/zU466aT4nExyEi6XW2657NRTT61xhWTh8XCse+65Z6xoS69RHdUQCKCvt9560fco5d/e3XffHQkGJJ2CPWBUt8xEV0VlGDPwYbavOpbhcHvmmWdi8wc1TjR0F154YWwkSkA9BWrYPGTQoEFZy5YtS32IkqSCQQ4D7n79+mWvvvpqlccou3HkkUeW7NhUWmSFkdG4yCKLxGZcLMcuLM+W8BwC6WmDUYLubBZ6yy23RPB98cUXz59rlBugfyBJqhtPPPFEZBsXhpi4jtPGM1ZX40SfjgQJNhJlUryuESxnA06C40zirLPOOpFwyX2UCX7rrbcibkSfgThBTTiHa9oslFVtJHH+97//naKVFrzOZZddlm277bYRmK8rBPVHjhwZCSrEQezv1B0z0VUxCIZS83LzzTevcUkNS4M6deoU9a/U+Nx+++0RQKe+aQqgp8kXGsDqtfokSaU1++yzR33Ixx9/fKLsIDKWGIyr8WEguMsuu0RJADLWVl999YkC6AwOCawzYCSA3qxZs1h6TVkX+omUfuHcKjzXHFBKUt2qXkozTYqyGijtZaHGhSxw2mNu9RFAp3TLRRddFJ9ffvnlsS8KAfRFF1003y8g8Y4ScJ07dy76OjUF0NOEAAH0ZZddNvoqk0MC6AknnBCBfErMTa3bbrstVtJfc801k3wesQ4C6A899FD8rC+//HKqf5amjEF0VRQGQVwYqFOFwqU3NMwMtk477bQSHqFKgTpgNMppSXchzpERI0ZYwkWSytT8888fQXTqVReiVNu7775bsuNS/SMRgoEtpVwo3UJ988K6+Sy7Zl8TBsNsoMWmWyzVvvPOO2Pz0NatW0eG2YILLhgbkLrgVpLqz7777ptdfPHFkeVbuLcJZTy4tntNblxIctx9991j007Oi/oqG0N5wK233jom288///x4jI1MSbZ7+umnY4UbE+uFKx7TRqRkyxcm5FXfzycF6Nk4t1gWeyF+JsfSsWPHKDE3tegHDx48OHvjjTcm+1ze97HHHhsrP/idU3tedYByLlKlmTBhQu7yyy/PvfLKK7kZZ5yR1jhuM888c3y88MILS32IqicvvfRSbp555sktuOCC+fMg3RZZZJHc2LFjS32IkqTJGDJkyETXcG5NmzbNffjhh6U+PNWDf/75J3fUUUfF/3vv3r2rtOszzDBD7vHHH8+9+OKLua+//jp366235tZcc83cAw88kOvYsWPuX//6V/55hxxySG7cuHGlfjuS1Kh99NFH+Wtzuh199NFxrVfD98EHH+QWW2yx3Morr5z77rvv6uVnjh8/PtemTZvcv//979w777yT22677eK822yzzeK8+/PPP3OrrLJK3Hf44YdX+d7bb7897p9rrrly33zzTY2vf/rpp8dzeE9//fXXVB3b1D4/eeutt3I33nhjbujQoVP0fPrMq666ahwn7/Xvv/+epp+r4qyJrop33333RbZa4Wwf2chXXHFFdswxx5T02FS32DiDrDNqk7GzdqGFFlooZmzJRpMklT9KcpGt9sADD+TvI9OYutasKKrrjahUOgxHunbtmvXs2TNuZ555ZvbTTz/FYx06dMiWXnrpqH/erl27/PPJFLvgggvypYDYWOvss8+u05qjkqQpw3W6VatW0a4XYvUQ7X2xchmqfGPHjo3NvFk9xmbfrCCrz/OOGMCHH34YZYQ4htGjR0ffgCxyyr0tsMACkSU/33zzxfcQS+Bx9lihH9GjR4+JXpfScSuuuGI8d8CAAdHnKFffffddrADg74zSLpSf4T2rlkwiwC5VBLKRqmeuzTTTTPGxT58+uUp09dVX51ZbbbWYCeW2wQYb5AYPHjzVr3PGGWdEhhYZWWR3rbDCCrlZZ501t8QSS0QmwA8//JCrVMzKkqWW/q/Tbc4554xZZ2aiJUmV55hjjqlyXSe7uFmzZrnPPvssV4ls0yeN7LBTTjkl/q/PPvvseE+F//8pk5HVZWQ20v4nP/30U659+/a5UaNGlfQ9SJImzrxNGbHVbz169KjIjHTb88mjr7bccsvlll566ZKuCL/ttttyc8wxR+6kk06Krz/++OPc7LPPHuffzTffXOW5Xbp0ifuXWWaZ3K+//lrj6/H/xXP4P5+S7O6vvvoq17Nnz9xvv/2WKyUqNBAzoYKDaodBdDUIJ5xwQr6US/XblVdemas0Dz74YO6hhx7Kvfvuu7EU6eSTT47398Ybb0zV67DU+a677sq9/vrruV122SVe9/3334/lQMsvv3xu1113zVWiV199NTf//PPHUq3C/+utt946lnlP63IpSVJ5uPfeeydqz5daaqkYBFUa2/TiCKKkweuhhx4aE+E19eWaNGmSa9euXW7uuefOrbXWWi5PlqQKQJvdqVOn3PXXX1+lBCu3E088seIC6bbnk///JulhySWXrNdSfP37948+RPUkOkrK/Pzzz/E5fQjOu9atW1c579588818Ut6gQYNqfP3hw4fnJ/WndNI+lafbaaedpuu93X///bn33ntvmvo9v//+e26dddbJJymodhhEV4MxcuTI3MILL1zj4Ksh1Eifd955owPChb+m98iNOl0JM78EmX/88ccaX+/uu++Ox6kvX2n/z9RALwygpyy16rXNJEmVqWvXrjW2c2TTMNCsdLbpuRgQknHHe91mm22K/h4INjBxnr4mC/CLL74o9eFLkqYCwczqCVAEGistkF6d7fn/EOgleE4QvT4THr788st8H+Hiiy8u+rzXXnst/o8Imhf2QzbaaKP43h133LHG76OOeosWLeI5Bx988BQfF/+Piy666BTXMq8JyYHpHJrWVfbsHUMG/lZbbWUCQi0xiK4GhYto8+bNa2y8mCmuxAsHWdV33nlnNKZc9Fn2xSYRZN/zfrm1bNkyLuosa0569eoVF8ti+vbtm1tggQVyleSJJ56IZVnV/29ZTseM/S+//FLqQ5Qk1QKyZ1g6S9tW/ZrPgJUVSZXINv1//vjjj9z+++8f/5+tWrWqsd/G/3Ph5qLLLrtsbPxViX05SWrsKJNBmY/q13oy1WkTKo3t+f+hT0bAeMUVV6zX0nv8H2y++eZxHq2xxhrxO99www0jZjAlhg0bFsl4rIIrFvg/66yz4vXnm2++ohuOFjO9sYkxY8bE+1l99dWn+TUogUepIBISvv3225gUILCuaTdDbdVWl8rBIosskh1xxBE1PnbeeefFBgtsBlEpm2bOOeec2SyzzJIddthh2f333581b948NsCYaaaZ4jHeL7d///vf2eyzzx73JQMHDsx23HHHGl+bzSXYNOOQQw7JKsXVV1+dbb755tlvv/1W5f6FF144e/nll7N77rknfgeSpMpH23fbbbdl1113XXbLLbdk66+/fv6x77//PjZKuvfee7NKYZv+f7799ttsiy22yG699dZs9dVXz5599tkqj/M72HbbbeP/meeyIVmfPn2yMWPGZHvttVdsNitJqixsJPrnn39OdD9t/MYbbxzX+0pge14VfTE2kOX9Pv3009liiy1Wbz+bzcWHDh0av+M77rgjO/7447NnnnkmO/LII7O//vorNhl98803i34/5x3Pv+GGG7Klllpqosdfe+217KyzzorPe/XqlS244IKTPSZ+ZjK9sQk2Ox0xYsREm/NOjZVXXjl74okn4jXmn3/+7KCDDooNV9P70tSzF6oGh4vmoEGDspNPPjkatkL33XdfXOQ//vjjrNyx+/Orr76avfDCC9nhhx+e7bvvvtlbb701Rd87fvz4aMRqaqB5bLvttovG/owzzsjKHZ0t3j//rzRK//zzT/6xNdZYI3beXm655Up6jJKkurPPPvtEwHXmmWfO38fgaLfddsvOPPPMKu1CubJN/78B6brrrhvvfa655spGjx6df4zBb+fOnbN33303+89//pNtueWW2UUXXZS9//770Z8r/P+XJFWWWWedNXvqqadijE5bUBhgfPHFFyPYV9gmlCvb8/+h78Vx0hfj/QwfPjyS2+oLP++0007LJ9sRbO7fv38244wzZjfeeGNMaPTt2zcm65mYKKZly5bZHnvsUWMMYr/99ov+Zrt27bL27dtP9pg++uijbM0114xjqU2zzTbbdH0/75EJHSy//PLxu1l77bVr6egan5lKfQBSXaAB4gYCrCeeeGL+MRo5LhrMGm+yySZZueJCl4LDHO/IkSOzK664Irv22msn+71DhgyJBniJJZaocv9PP/2UbbPNNjFw5f2X+4CUjARWD9DZqMlOO+1k9rkkNQIDBgzIJkyYENf8X3/9NX8/AzgG3WSyzTHHHFm5sk3/X7Zap06dsgUWWCD77rvvqmRr8R5YefDBBx/E53jkkUcic1GS1DAss8wy2bnnnhuf//DDD9lCCy0UHzFu3LgIQNLe77LLLlm5sj3PYmU/kwckKPL/2b1793ptr8nY79ChQwTy6Vdw3qQVixzPBhtsEBPwTMzznOr9Q4LrG220UUzcFNO1a9eYLCF7m9VwU/L+0gRRjx49sieffHK6fiePP/54tuGGG053AL26xRdfPCYVUqxMU89MdDV41Rupv//+Oxrr1q1bxzLxSkED8Mcff9T4WPULNMvECDBXn93eaqutouF/8MEHIxugnBEUWWuttSYKoNO5eOyxx6IxO/3000t2fJKk+sPAhEEPA7bqAwruI7v5k08+ySpFY2rTea+sGCBbjUmQsWPHVgmgpwDCjz/+WKW0iwF0SWq4yIZt0aLFRO3FrrvuGmO8Slhl1tjac7Cin+Duo48+mj3wwAPRP6vv9pp+BIkVrAq48MILI5P8999/z9q2bZt16dIlyr/S5/jll18i5nPcccdVyWBndRsTIKxorwkTOUyM4KabbpriDHsmUiiXQmLH9PxOKFXLe2nWrFn2zTffZLWZzLD//vtHmeMvvvgiP3nFSgImHTRlzERXg7feeuvFLCMzpp9++mnclxrlQw89NGYLL7nkkrJqsJjN5cK55JJLxsCSGl8sfyMrqyYElt9+++24yFKPjVnuwuz71DiTvUemF19zA7W9WPZUTqhv3rFjx4nq5lGrjAZ7hRVWiHqqkqTGg4EJGPQQMCeLiGW2oF72KqusEmVANt1006ycNOY2ncD4gQceGAM3jovssZoccMABsSy7ppqkkqSGiTEdCVMkThE4TKjXzKQqbcfcc8+dlYvG3J6D7GoC1ryv5557Llt11VVLchycL6wAIEjO7/Odd96JWuwpeM0eecR4+B3ye017qfD/wN4qxIJ4HwSpq3vvvfei34Ju3bplO+ywwxQfF+cqCR/Ti0mZRRddNOJYrNaoLZSloY/MqodU3/2YY46JvjNBdX6nJjBMgenYlFSqGD/88EPsRDx69Ohc06ZNJ9oVvFmzZrkXX3wxVy4OOOCA3FJLLRW7fS+44IKx6/Sjjz6af7xFixa5008/Pf/1Lbfckpt99tlz2223Xe7xxx/PLb744lVe78knn5zoPafbRx99lCsX//3vf3MdOnSY6BjZNXvGGWfMPfLII6U+RElSGRg5cmS0kTPMMMNEbcZhhx2W+/nnn3PlorG26bTZiy66aLThxY63bdu2uTFjxpT6UCVJJfDPP//knnjiifj8q6++yi255JJV2ohZZ521rMZ/jbU9p0919NFHx3FtttlmMWYvhfHjx1f5mvhOx44dI04wbNiwuK9v375xnPQPhw4dWuW5rVu3jsdWXHHFiV4L48aNi8d4ziabbJKbMGHCZI+pf//+uX79+uXqIn7F8dTF31yhL774Is7j119/vdZ/VkP1L/6ZkmC71FCQtUaJl6+++mqix0466aSor8pu25WK2UTeIxtsVBKWr7F5x/fff1/l/nXWWSdm+7n/rrvumqJdsSVJDRs1tVmxRIk26kZW786S8cUy44033jirZJXYppNFR2YY2Vhk0fF/lNC/IrOKkjwsJ3ZjK0lSYab3BRdcMNH9e++9d9a7d++yykpvDO15Kn9CCRAylWm3jz766JJkyLNigUxqNg3deeed8/fT/2MVA/0JNvakAgGZ3Oeff37EdhJKulCihSx6NrJdaaWVqrw+38OqgGHDhkXdcJ7TtGnTSR7TK6+8En0a/l/J0m/Tps00vz+y4z/77LOIe5QaqyfYgLTcVkKUC2uiq9GhAeBCV9NSFRptliWNGjUqq1QcPzuFV1IghI4R9eGqB9CpPzZo0KDs1ltvjTroBtAlSSlITvtAoJzBE4O6wlrptC1sHn7UUUdV2Yi00lRam05bTVkdBrksn04BdPpc1L/lvquuuiqWvhtAlyQVYt8MUB+8ECU5KG/BpHmlqrT2nL4TgWdqii+yyCJRHoWvSxFYff311/Oxgrvvvjv78ssv8+V56V+k/sTSSy+dXXnlldnuu+8eG4MmN9xwQ77GOSVfqgfQCcRTVo4AOhM1gwcPnmwAHdT0p3QMJWKmJ2mDGu7t27fPVl999eyZZ57J6gOTBOw/wIbuhd59992sZcuWUcaGkkWqQalT4aVSYNkKS28GDx6ce/rpp2tcQtW9e/fc77//XupDbdAefPDB3BxzzFHj759lRTUts5IkqSannHJKjaVDmjRpkhsxYkSpD69Bo70+5JBDii5Lb9OmTe62227Lvfnmm6U+VElSmaLkRo8ePaJEynPPPZebb775JmpPdtppJ8eIdWz48OG55ZZbLsrpXHrppbm//vqrZMfy8ccfR2k4/u832mij+JpSvO3atcv99NNPky1Zwuc77LBDfH9hqZ3Cx4844oh4fKaZZso99thjkz2mv//+u8r3T+/vh/Oe2MfMM88cfaX6sO2228Z75r0XGjRoUG622WbLbbDBBrnffvutXo6l0hhEl3K53FNPPVXjoG/hhReOQHv12lGaPh988EH+wl14o+E49dRT4/P27dtXaaAkSSqGdnrPPfeM9oOapDW16XvttVfuyy+/LPWhNii003fccUfUhq3pd05926uuusp+lCRpqn3//fdRf7ymMeONN97oWLGW0UdiXxkSElq1apV75513Sno81F5faaWV4v98lVVWiQD6WmutFV8vs8wyuW+//TYC0N26dZtknXaec9NNN03UF+HrI488Mr8H2+Rqm1MjvXPnzrmDDz54uvs1nLuFNde/++673DPPPJOrLy+88ELEXe67776JHhs1apT95UkwiC7lcrmTTz45f/GsaRC4+uqrx2y4pg8bxtDoFMtUu+SSS+J55bTJqySpsjYoYyCy++6759Zee+0a2xoGQGzYpOn7XT/88MO55s2b1/g7Tv0pBuOSJE2LP/74I9e0adOi4/SFFloo2iInaqcPfSJW87EJ6jzzzBObai677LK5pZdeOjLSSxEHYbUB2dD8P7Mh67vvvpvbdNNN42sm7gnw8/9+0EEHxX1rrLFGlUmVzz//fJLnBY+lzVI5t5iUmZJN7dOG9s8+++w0vzdWR3K8NWXGl6Orr746+nNmpv+PQXQpl4slOFdeeWXsmk3mOdlqNQ0KuXC/9dZbpT7civPjjz9GeZyaOj/cx1L7IUOGlPowJUkNCJ395ZdfvsYsNgZBZ511lgOCafD888/nNtxww6IT4iussEKUyiPDybJ4kqTpwficMThBUVY2MW6s3u4QZCWzVlOHPlDPnj2jbA59JVbhF2vb63usft5558XPnXfeeXOvvvpqlG/h67nmmisypQmCE19IfTrKxCYE2BdZZJEI/Na0WoG+SYr3EIu44YYbpvi4SPq7++67p+u9caz87AUWWKDskzrISKesD8d78803l/pwyoJBdKmISWVMt23bNjd27NhSH2LZo4G64IILcjPOOONEv0NqbbFkiaXeK664Yu7tt98u9eFKkhoQ6m+z3JeBFJlVNbXntE+9evUqab3PSjFmzJjcNttsU+PvkQEsWWwffvhhqQ9TktSADRw4sOgYfeWVV462SpNGn4fMayYf+L2RgV7sd1rYX3rvvffqLeufYzzqqKNicmS//faLYyDQz4pDkAiRjq1Pnz757+MYF1tssbh/tdVWmyhIPW7cuMi0TzXQJ1XCheeecMIJua+//nqa3wd12/ld33///fn7+B1efvnlUY6mVO66664Iik/J/ycTKGT8u+LjfwyiSzXgAtG6det8sHfOOeessTHhOW6SVXP9upNOOinq1RVb5s3MMejomKkmSaqrLCsymJj4JiOJQG9NE7vcd8YZZ+R++eWXUh9y2aHEGpt5FRtYb7nllvFxzTXXtD6tJKlO0aan8eQcc8xRY7vERpT1WV+6UtDHufbaa6NUS7E2fZZZZsmXTEmlS9KNjHXK67D56/Sgr1DYXyCYTHkUAuaFSQ0En48//viIx3As9957b5SWoRRK9XKwO++8cyTnpZUKlJsjY5z3QT8lxR1SjXVuBOITfjYblm699db5+9KGpGSMF244+sUXX8RqOyoZFKJmO3u/FfYl+/btG6/ByshySdj45JNPIqOf4xowYMBUf/+ECRNy11xzTZWa7o2JQXSpCC4KzEwyA/nZZ59Fg81sZU2NDVluzC429sEj2eRpMF39RicnBS5cCiRJKgUGXyn7qNgkb8eOHWOA0ZixCdekNgxleTWZXF27do1+Eht2UbtWkqS6RvlVJr4JSjJJ3qZNmxrbqrnnnjvXu3fvaNMaM/o0Xbp0yQfIi93oGz311FOTzUonwZANKYl9kFC41FJLRf30wlUABLwJdh977LFVjoVANa/xyiuv5O+jD8F9BMD33nvvfLCZwDP3X3HFFZE5jf333z9/HOeee27+NdJzufFz2YvtoYceiq/ZjPSWW27JT7qkMn8PPPBA/vvJcE8bmCYcY0qmpE9UWNaO+3jfhTbeeOOJ9oPh90OmP3vsFZYQfP3116MsDcmH9RXbSrEqfr/nnHNOlEmalkB49/9fRmf77bdvlNnpBtGlKcQFomXLlpNsUJgh3XfffSPo3ljQGLAUvthAm1uLFi3iuYcffnhs9sYyK0mS6hvtz2677Zbr1KlTZFcTNC+2qTjLgZn0bUyDb34/DP6KTTKkrLT11luvUQ6cJEnlh2zaSbXn3E+gnc0pGwv6LiT5EbydVPyCjOTLLrssAs+sJP/vf/8bGdVk8p955pmxz0lN30dW+q+//pq77rrr8vcV7h1HOb20cj956aWXYhKe+9lcM+Hnpn4HgfTRo0dHAiP9kQ4dOlR5XYLdPIea5gkB7rQCnj1bUgkXNiclw5x+XzrGzTbbLI6D5D8eL6y9v84660QJmUJkoBPkJ8M8ef/996O8Sfv27askEFBOiJ+x7rrr5u/j98h9TDIUSjXeiaMkn376aZQNZsPTQj///PMUJWvSL+O9V49FUZKGWM3QoUOr3D+tmfF33XVXTC70798/1xgZRJemELN07KDMLuDdunWLi3W6+BWb+WZDjG+++SbX0FB+5Z577onduic1oUCHhSVRzLSisWfqS5LKQxo4sCSXWpdkZ7FcuFibxuBn0KBBDXLpKoM2MtRq2qwt3cjaYqDNZlhLLLFEZDA1xN+FJKnykBlM0JYSHkx+U4ajWJ1vgq3U2G6I+5vRLrOxN++/eimWmn4PtP9JsYlxxv2nnXZaja9BljlB7e222y6C6jvttFNsAIuUwV1YC5wSINxHoDj1IQhmp9XqlE3h/3KrrbbKfz+r3AtjCKkcC+8zIdjPfZSaKcz2Xn/99fPBeeISPI/vY8KgMAiPLbbYIp43//zz54+NGMa2224be+UVni/0gVJWPyscwZ4wZGaTPEhAPmF/uM033zx+duFmnewJx3ss/P1QJidVOUjoo1Kmhv/Pwg1QeT3O91TOBh999FF8PxMVhf+fhx56aNx/4IEH5mrL19XqxLOZ648//phrDAyiS1OpekYaF8vJLXliR2My1FnOU6mZW9QqY5aaGnOTeq9s4MHviOVMBCQKl0lJklRuaKcIEpOBNKlAcrqxfJfl4ZU6WKAfQhYWg91iGedpwMmN/gtZYWn/knKp6SlJUpJKuyRkyaa2rFg7R/CWkhYjR46s2DE6fZHbbrstxuCTeq8EYcnGp7QLAXRW2E9NKZGXX345t/baa1d5zZQxTQA1TbiTnY7XXnst17lz5wjcPvnkk3EfpWII6F599dX5LG0C5ymoT4ZzqnfOa3EfQfRWrVrly7mkeu6FQXRqnxdmvVPKhSzxdJyFWdgkRKSAOyVnklRxgGRJvh8cd3oNSsIkqXwtr0vJmLR/DPcR8C5EX4v7mUBIiAmlgH2hlKC5xx575O9jVUA6BhIZkh133DHum2eeefL3kYWefneF2ftvvPFG1Jyvq33ofvvtt5jc4L0XlulpqAyiS9OBxjZtOLHNNtvkTjzxxNwBBxwwycE3jRuNw6233hq7NZcrZmCHDx8em3QwCTCpzgfviY9sKpYaOGqiUSdVkqRyR0Y6gWU2g2IwxsQxWVWTav9ShjptPwOicl5t9d1338UKMgaikxpkk7nH4wzA2HysMde8lCRVLoK+TBST7ctqcsqapJIfxYLMBKIvvPDCsh7D0tdgnD25FWRpnJ4ymws3u5zWLHyCsMQGCn8G5VoJ3pJxvcEGG0T8IElxksINOAnik4VNUDr9fxCc79OnT6z452s+MrHBjcQF7iORjwA9/Rn6J4svvni+PA8/n8l++nFs+Jmy2OnP7LrrrlHSJSU+UCWAIDWP8xoJAXOyyLk/ZXzTNzz//PPzPz/1hcge79mzZ5Ua8Dz3oosuqhIsT6WGqN3O+ZhwDNT051wrRP/zlFNOqbIpLiVneB7ncGHsiIkIyg4Wlsvh+Pi9cryFEwSUn+Hn/ec//8nVhXfeeSdWgiy88MJRDqihM4gu1QIu4IUDTAbUk8tkKwyqc8FhSRHZcIW1ueozYM5sMY0gy7QnlZlWeGNTCWb9aVRoBJnhlCSp0jEIpH0my4gJ4jTAnly7yICVTJzjjjsuMn9KEVhn8E9WGkuTmQiYVNC8MHjOR5Yok91F/U36NQyMJEmqRJTNeOSRR/JfM96dkjaxsDwrpTjYlLIUgXX6EPQlCKCS6TslY3Sew9icOt6UFeE+VojXVn+EsX+qd55uHFuqvU4/Ihk4cGBko/N7T1J2NwFs4gcEuQlapz4WcRHqj7OZaHq/lE6hP0Lwmc3f088lIxzET/g5hf00VhcSVE/HVVhnnH4O97FqvjCGQyyEwDR13gv/DyhRU67JBNWPi/fJZEZh/f9+/frlz4NCTEaQAFkbm5v+9NNPVSYK0FD3wfsX/2SSatVpp52WXXLJJdn222+fLbLIItnZZ58dnw8fPnyKX2PWWWfNmjVrli233HLZ2muvnbVp0yZbcskl4/V4bGr8/fff2bfffpu999572bPPPpt98MEH2ciRI7OxY8dm48ePz/7666/Jvsbss8+eLbvsstnrr7+ezT///NmBBx6YHXDAAdmKK64Yr7nCCitkCyywwFQdlyRJ5eqLL77I3n777Wh/X3jhhWzllVfOttxyy2zUqFHRPn/44YdT9DozzTRTtswyy2Trr79+ttJKK2VLLbVUtO20qbSnM8www1Qd16+//pp9/vnn2ZgxY7Ivv/wye+ONN7JnnnkmjvW3336boteYeeaZsw4dOmR33nlnvL899tgj69y5c3bkkUdm559//lQdjyRJleDnn3+O9vi///1v9sgjj2TvvPNO9uKLL2b33nvvFLefc801V7bQQgtlm2yySbbooovGOH2VVVbJFl988RgvT41//vknGzduXPbZZ59FG/7SSy9lL7/8cjZ69Ojshx9+iDH8lJhnnnmir8Fr7bTTTtkDDzwQ9xPqe//997Pll18+q03nnHNOduqpp050P32bq666Kttmm23i66eeeirbfPPNIw4ycODAiDn88ssv0Wf517/+lS288MIRj2jXrl08n9/fZZddlg0ZMiT/HrDEEktkxx9/fHbmmWdmP/74Y/7+bt26xe/p9ttvj/9b8LoDBgzIdtlll/icWMW7776btWzZMmIW+Omnn7Lu3bvH/yPvg+el31f6vCEZNmxYdtNNN2UtWrTIjjvuuPx7nXfeeeP3+corr2RrrLFG3P/mm2/GjT4r/dVpNXz48OhfHnLIIVnv3r2nuq9bzgyiS3WEBgJzzDFHfBw0aFC2ww47RANHA9K2bdvsueeeiwv/tCq8yDMgpiHmT3rGGWfMJkyYEJ9Pi3SR4/X4GbwHGnQa6MUWWyzbcMMNs8GDB091R0GSpEr1559/ZltssUUMwhiM9OrVK9rIWWaZJSameXxKB7zF2l5utK28Lu34H3/8MV2viX//+9/RR6BfQvCf12Yy/b777otJgTnnnDOCB9w/tZP0kiRVEtpq2nECfAkBxNdeey3ayK+++iraX27TgzE/bTrjcdpg2vM0Vq8txxxzTATNN95446xv377ZtddeG5PhBC7rEu+hVatW2fPPPx9fk+hHMDzZcccds/322y8m+Uku3HvvvSP57qCDDsruv//+OGb6HUxkkKDAa6255ppZ8+bNs7POOiviI/zOmNRnguGOO+7Ivvnmm3htnr/gggtG4JdgeMJEARMGHBvHQuAdTJIQRN92222z+eabr05/L5WEPuEJJ5wQEzZPP/10/L7B/xcJoPyf3Xrrrfnnk4zJJMm/pnCSgf+7k08+ORIvr7/++qwhMYgu1RNmuvv16xez1+3bt4+ZawbezFqTUQZm+whUczGrLzTuNOgJAXJmDpmdvfDCC2NmuH///jEIB40V70GSpMaIwV2TJk3yXx966KHZddddlx122GEx0GOF1+qrrx4DDtpYMsfrq7td2KaTGUc2EVl3HB9Z60wC3HPPPXGM9EXIhpckqTHr06dPZKOzIotgKxgLX3DBBdGuEmAkCY62vHDcXF9tOpPdrVu3jiS8I444ImvatGn29ddfxxh9zz33LEkW9e+//x6xixTcJkj+/fffR5A8IdOZjH36HE8++WTcx++XTHOOl+8lIE5AnWzlLl26RJCcCX0Cr2uttVZ8zgQEcRPiJOnngffLSrrDDz88fk7Hjh0j4Y9saz5q6l199dXZzTffHJMx++67b9zHyg3+n7h99NFH+STRySE4zwQV/29Ikx6VHksyiC6VENllZKczQ0qAnQvTeuutl5133nnZKaeckn8eM4IjRoyIxif9ydKY06DSWBUiC50GpbBECxc6ljCxTIyAPY/TID/22GPZZpttFhc2lkCRVcfMMTO3lG1h8L3RRhtFoF+SJE3sk08+yYYOHZqtuuqq2brrrhtZUwwIWULM4G+fffaJzHUyeGijKQNDu0qQvRADRNru6pnntNmF3XVeg9JuTMaTAc9yaDKw6CdceumlUYaGbDoG2xzPBhtsEIFzXl+SJE0epUhSUJaxOu0zwVyymclmJ2ua8imUZSOwS6Cxentdk/Sc9JExPZncH3/8cbT/ZMgzbieTm7H6UUcdFcdA3yKhvefn0s8oZZkM4goE0lO/hQQCkgHpl/C7qr7inux8bgTgV1tttXiv9J+IhzDRT6yDFQC8Jr8XYhf8XgtxP8F1fgbZ0rvvvnu9vufGiPNtq622iqSMN998s8pKCILqlNUhZjQ5JJ2w+uCWW26JSY9KZRBdKgPVZ45vu+22mAUkY4zZZeqNM2hOA2yywwl+06impTLM9NLg3HXXXfF8AuPM+m666aYx43viiSdGJhoXL5Z8MUtMJ4Cfy8wv38+Am4+SJGnaMeij/icDSJbL0s4zMKRNp85nz5494zncyCpjQMjEeI8ePWJJNqvCaJ+ZYGdinZJw9AFY5kwbzmMMZAiYM4gmA/7BBx/M9t9//1g6mzTU+p6SJNUHVpMVljAl85ka04y5yQ4vrBHOWJxJa8bhTG7PPffckX1LO0/5NOqDX3755ZEgR/IcAWdWtjHhzqQ3e66Q1EYWMEiWoy9BwJna6+U62UC8YVKmZHKhGCYJWFlHjW5qrRPMrfRM5krExBGTJssss0z+vqWXXjoSSR599NE4v0HpHPqkJHCk2vggLkVWOkF3JksKyylVGoPoUoUgeE5jzYz3wQcfnM0222xx/0MPPRRBdwbVNNAJy6G42DEzSLYaWPbFLDYXPGavJUlS/aENp1YnS7HJJgfZV0yI084zgZ6wORebb1F2Zeedd477eA5BdjbyZkKdjC5JklQ61OJ++OGHIyBOdnRCYJ2SrozLCZKD1WgE0smkLlx5zv0E67m/0ia/6a9QQmV6S93w/ikzR410JijYjJ3kwCktH6L6k8vlYiNcJpSowU8iCDi32QSWPip77yS77bZbxKbIWO/atWu+T0s1hMISiZXAILokSZIkSZKkqcYkAvupkSlONj2r78ggJ1OdTPu0Rwyr68lSptwLK+Cpgc5qPEraEjSvtAkEVTV48OBswIABsXKAvYJSsJwEUD4WbvqaVnCQHMKms5XCILokSZIkSZKk6UKI8ccff8zGjBkTXxNQJWOZ1XOUpkkbTapxmDBhQpQlZMUGJQ5THX9KGlHWkLLDF198cVYpDKJLkiRJkiRJkurcH3/8kX377bexcW4lrUAwiC5JkiRJkiRJUhH/y6OXJEmSJEmSJEkTMYguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkrGb/D+rO/ZzMcj5MAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQmcjfX7//9u32hRVFoQFVqQRCUpRSLaiChpIWRJpOVT1iiV0iL7rpTSYgmtkjaEpKS9JKVNUWmb/+N5ff/X+d1zzIxZzsycM/N6Ph7HzNznPufc55zbfb3fr/d1va4d0tLS0oIQQgghhBBCCCGEEEIIIbZhx203CSGEEEIIIYQQQgghhBBCIroQQgghhBBCCCGEEEIIkQXKRBdCCCGEEEIIIYQQQgghMkEiuhBCCCGEEEIIIYQQQgiRCRLRhRBCCCGEEEIIIYQQQohMkIguhBBCCCGEEEIIIYQQQmSCRHQhhBBCCCGEEEIIIYQQIhMkogshhBBCCCGEEEIIIYQQmSARXQghhBBCCCGEEEIIIYTIBInoQgghhBBCCCGEEEIIIYREdCGEs3Xr1jBgwIBw5JFHht133z2ULVs2dOjQIXz//ff6kIQQQogiFKvLly8fdthhhwxv9evXz7fjF0IIIUT2+PTTT0O/fv1Cs2bNwiGHHGIxmvgthEgudi7sAxBCFCz//fdfaN68eZg/f36oU6dOuOiii8LHH38cxo4dG1566aXw1ltvhdKlS+trEUIIIYpIrN5nn31Cjx49ttmuCboQQghR+CxatCj0798/7LTTTqFKlSphw4YNhX1IQogM2CEtLS0tozuEEEWTCRMmhCuvvDK0bt06TJs2zVa5YeTIkaFTp06W5TZq1KjCPkwhhBCi2JLIWO1C+RdffJGvxyyEEEKI3PHZZ59ZpVm1atXCHnvsYRVoBx10kGK3EEmGRHQhChlWmSnRrl69enj33Xdj2//4449w3HHHhR133DG89957FkgTwSmnnBLefPNNC8jlypWLbWc9rVKlSuG7774LGzdutOAthBBCiNSO1RLRhRBCiOSO+/FIRBciOVFjUSEKGVaYa9asGZYvXx7Wr18f287EeMiQIVa+PWbMmIS81p9//hnefvvtcPTRR6eblANZbmeffXbYsmVLWLp0aUJeTwghhCgKpHqsxl994sSJYfDgweGhhx6y5xdCCCFE4cd9IUTqIE90IZKApk2b2mR49uzZVqLt4Ie61157hfHjx4euXbvatvvvvz/88ssv2X7u888/31bQvWEJPqs0KcsI386g4LTTTsvjuxJCCCGKDqkcq8moa9++fbpttWrVCo899lioWLFito9TCCGEKC4UVNwXQqQOEtGFSAKaNGli3bjjA/Suu+5qjUUI3r///nvYc889LUB/+eWX2X5uyrg9QG/atCnWYCwj9t5773T7CSGEECK1YzXiOWL7scceG0qUKBHWrl0bhg0bFqZMmRIaNGgQVq1aFUqWLKmvWQghhCiEuC+ESB0koguRBFAqdvDBB4eXXnrJyrij3mqUbIP3AFZjMCGEEKLgSdVY3bdv33R/M2mfPHmy/Y6QTjl6z549C+nohBBCiOQkVeO+ECL/kCe6EEkAHqfnnnuurWQTpB2CMRljlG5TMpZXPKsts+y1X3/9Nd1+QgghhCiasbpjx472c/HixXl6HiGEEKIoUlBxXwiROigTXYgkKhcbN26clYvxO9xxxx3h33//Dddcc01sv7z4rR1xxBHWSRwf1Yzw7Zn5sAohhBDFmaIUqw844IB02XRCCCGEKPi4L4RIHXZI8/oTIUShsnnzZpvQlilTJnz11VfhtddeC/Xr1w/HHHNMWLZsmXmvuX9aTvzWJkyYEK644orY3yeffHJ46623bAW9XLlyse1cCipVqhS+++67sHHjRus8LoQQQoiiGauxdGnXrp1lpI8cOVJfsxBCCFFIcT8erGMOOugg2cQIkWTIzkWIJIFmX6effnr4+uuvw7x588Kll15qjb6efPLJWHAGJtRMorN7iw/O3hTl5ptvjnm4wahRo8Jnn30W2rRpIwFdCCGESKFY/ffff4c1a9aETz/9NN3zsI0y9HjY3qdPH/ud9yCEEEKIwov7QojUQJnoQiQRDzzwQOjevXvYbbfdwj///BNmzZoVGjdunNDX+O+//8zbbf78+aFOnTo2KPjkk0/CzJkzbQX97bffDqVLl07oawohhBBFhWSM1UzeK1SoYFnr0eZm/fr1C8OGDQv16tWz+/Buxcd17ty5Jrwj0g8ePDihxy6EEEIUJQoi7v/www+hV69esb9p/M1i+cUXXxzbds8998Ss2IQQhYNEdCGSCLLLKlasaE1M8F5r3759vrzO1q1bw5133mnBmVX1UqVKhaZNm4ZBgwaFAw88MF9eUwghhCgKJGOszkxEX7hwYRgxYkRYvny5WcCQlc4EvHbt2qFz586hYcOG+XLsQgghRFGhIOK+x/Gs+Pzzz20hXQhReEhEF0IIIYQQQgghhBBCCCEyQZ7oQgghhBBCCCGEEEIIIUQmSEQXQgghhBBCCCGEEEIIITJBIroQQgghhBBCCCGEEEIIkQkS0YUQQgghhBBCCCGEEEKITJCILoQQQgghhBBCCCGEEEJkgkR0IYQQQgghhBBCCCGEECITJKILIYQQQgghhBBCCCGEEBLRhRBCCCGEEEIIIYQQQoicoUx0IYQQQgghhBBCCCGEECITJKILIYQQQgghhBBCCCGEEJkgEV0IIYQQQgghhBBCCCGEyASJ6EIIIYQQQgghhBBCCCFEJkhEF0IIIYQQQgghhBBCCCEyQSK6EEIIIYQQQgghhBBCCJEJEtGFEEIIIYQQQgghhBBCiEyQiC6EEEIIIYQQQgghhBBCZIJEdCGEEEIIIYQQQgghhBAiEySiCyGEEEIIIYQQQgghhBAS0YUQQgghhBBCCCGEEEKInKFMdCGEEEIIIYQQQgghhBAiEySiCyGEEEIIIYoE/fr1C7vvvnto2bJl+Oeffwr7cIQQQgghRBFBIroQQgghhBCiSNCrV6/w/PPPh+eeey7MmDEj4c8/evToUL9+/bD33nuHHXbYIfzyyy+5fi6Or3Llyib6H3fccWHu3LlZ7n/FFVfYa8bfjjnmmHSLCPH38xq54dVXXw0nnHBC2G233UKlSpXCxIkTs9z/iy++yPD43nrrrRy/9k8//RTatGljn/O+++4brrrqqrB58+Ys9+/atWs4+uijwx577BEOP/zw0K1bt7Bp06Z0+2V0fNOnT8/x8QkhhBCi+CERXQghhBBCCFEkKFGiRDjjjDNCq1atwpQpUxL+/L///ns455xzwi233JKn53njjTdC69atTRxevnx5OP/88+32/vvvZ/qY4cOHh2+//TZ2+/rrr0OpUqVCixYt0u2HqB7d7/XXX8/x8X3++eehSZMm9lmuWLEi9OjRI1x99dVh/vz5233siy++mO71a9asmePXR0BfvXp1eOGFF8Ls2bPDa6+9Fjp06JDp/uvXr7fbPffcY58hgv+8efPs841nwoQJ6Y6Pz10IIYQQYnvskJaWlrbdvYQQScsff/wRunTpEp544olQvXr1sGjRIsuqEUIIIYRIJFu2bMn0vp122skyqrOz74477mjZwtvbd6+99sr1sY4cOdIykxFWS5cuHRINWdoIzD///LNlSueUSy65xN43ArFTp04dG8tx7NnhmWeeCRdeeKEJ3uXKlYtlorMd4Tsv9OnTJ8yZMyedqM/CBJn3iNOZZaJXqFDBFgV4H7nlww8/DFWrVg1LliwJJ554om3jNc8999ywbt26ULZs2Wxn+rdt29Y+55133tm2MUZ++umnJZwLIYQQIscoE12IFOejjz6yjBomCIsXL87zpEkIIYQQIrMs78xuF110Ubp9y5Qpk+m+jRs3Trdv+fLlM9wvL5CJjCd61KqDRIOs3gO3adOm5fnLx+4F65WsePPNN8NZZ52VblujRo1se3YZN26cPYcL6M7HH39sQvMRRxxhGd1fffVVuvs5No4xv46vWbNm9v3XrVvXbHXiFx8QshHcs3ptFiZcQAeOhcWXt99+O2QXrFywg3EB3SH55IADDggnnXRSGD9+fFBOmRBCCCGyQ/oRhRAi5WDC17179zBixIjw+OOPh6OOOqqwD0kIIYQQotBAhH3nnXfCeeedZ6I4GemAKLu9ZIMDDzwwz6+PH/fBBx+c5T4bNmzY5rX4m+3ZgQx7vN8fffTRdNtr165tCwh4g2NV0r9//3DaaadZRnnJkiVtH47tv//+y9Xx/frrr1YFGa0kiI5J77333nDqqaea4P3UU09ZxjeZ8QjrsOeee9qx7bLLLlm+NiJ8FIRwrGuy+/n88MMPYeDAgdtYwAwYMCCceeaZdhwLFiwInTt3Nq91/NOFEEIIIbJCIroQKQ6Nnu6//367CSGEEELkF1k1dsTOJcr333+f6b4IrFGyykrODYyJmjZtagIyjTE/+eQTGy8h/PIzOwwePNhuzgcffGDieHaYPHly7HeywLEmcfBSz6ufOkyaNMmyteP9vKNZ/scff7yJ6mSqY/vn/uBDhgxJ95ho1j/2J9m1k4mH7O6ePXvG/q5Vq5aJ/XfffXdMRCf7e82aNbF9rr322jB16tRsnWPZBaEfP3c+d+xtotx2222x32vUqGGVnByfRHQhhBBCbA+J6EIIIYQQQojtkhOP8vzad3vQbHPmzJnWkBKRlCabZKP37dvX7FzirWTiGTVqlFmgIO62bNkytj27Ptzx8Lho9jvZ1HDQQQeF7777Lt2+/M327YH9CDYkl112Wdh1112z3BehnSpFFhIyI3p82J9kdXzcn1EWemYg4vNdZAaZ4b169Uq3jdeOX4TBmuenn37a7ufz22+/WeNXsu7xPs8q492Pj4z1rVu3ht122y1b70kIIYQQxROJ6EKkOF5ui78kZbs0qCLLimZXQgghhBDFiYceesgysN3zm8xqBGdE9JzYuSB2u+CdF7AhySj7/eSTTw4vvfRS6NGjR2wbYjPbt8fChQtNFPfM8qwgs/vTTz81wT0zMju+uXPnptuW3eOLwuedlbUNti3x1i28Bg1Mly1bFmrWrGnbXn75ZbOgQfTOKgMd33bEcLzYo41uszq+/fbbTwK6EEIIIbaLRHQhUph///3XmnExQaPBKOW3gwYNCi1atJCILoQQQohixe+//x7GjBkTHnzwwdg2ssqxT8EjHSuR7Nq5ZJW8wM0zu1etWmVZz1i95ER0p5/N6aefbh7iWI/QAHXp0qVh9OjRsX1uvvnm8M0336Szh/GGoojJxx577DbPS1Y3XvBYuGClwuIBVjutW7fO0fskE58FiRtvvDFceeWVJmJjCTNnzpzYPtxPtjeLAW4xQ2Y8FQBARQALGGPHjs3Ra1epUsWyya+55hob2/7999/huuuuC61atYpVBPC5NGjQwD4bvlcE9IYNG9o5gD0Mf3OD0qVL22cwa9Ysy6avU6eOCewsCmDZE58JL4QQQgiREekNCYUQKQUTCIR0bpS3MmliYnDKKacU9qEJIYQQQhQoCKo0jIzasBx22GGWlR713c4LiLqIxAi8UK9ePfubzGeH17viiiuyfB7GajQFRTSvVq1aePLJJ60BZ1QYp8IQT/UomzZtsoadmWWhr1u3zgRzmnfyOey///7hrbfeMiHZ4dg8Uz8zKlSoYII5QjPHh9iPGE6md7R5J1nuUbBGIXsckf/ZZ5+1pvft27eP3f/qq69a9eT2fPCx4KlcubIJ5eeee26oW7duugUGhHUSSBDN4d133w1vv/22LWqwUEL2u9+w+AGsXR5++GHLdK9evbpZ9wwbNswWGoQQQgghtscOaZjqCSFSFiYRTJiY7AghhBBCiMKFLHCamm5PSC8syIDH9i++6WZBMGHCBMv+plHr9vzKhRBCCCGSCdm5CJHiMAGRgC6EEEIIUfisXr067LPPPuHyyy8PyQiZ7GSPR21ZChJ81hHRJaALIYQQItVQJroQRRDsXSj/lbguhBBCCCGEEEIIIUTeUCa6ECnMTTfdZL6SHTt2tAaj8OWXX4aqVava7zRUopGSEEIIIYQQQgghhBAidygTXYgUhXYGNIv6+eefw4oVK6zpk2ehU0YM77//fkxcF0IIIYQQQgghhBBC5BxloguRovz333/WtOrDDz8MRx11VGw7mef4cR566KHKQhdCCCGEEEIIIYQQIo8oE10IIYQQQgghhBBCCCGEyIQdM7tDCCGEEEIIIYQQQgghhCjuSEQXIkX59NNPw4YNG8wbPR4ait54443hvPPOM9sXIYQQQgghhBBCCCFE7pCdixApSqNGjcKCBQvC+PHjQ/v27dPd9/fff4eSJUuGrVu3ho8//jhUqlSp0I5TCCGEEEIIIYQQQohURpnoQqQo//zzT9hhhx1ClSpVtrlvl112Cf369QtjxowJpUqVKpTjE0IIIYQoaBj/7L777qFly5Y2VhJCCCGEECIRKBNdiBQG25Y999wz7LzzzoV9KEIIIYQQhc7mzZvDkiVLQuPGjcOECRNC69atc/1cWOb17dvXkhJ++eWXcOqpp4ZHHnkkHHnkkQk9ZiGEEEIIkfwoE12IFGbvvfeWgC6EEEII8f9TokSJcMYZZ4RWrVqFKVOm5OlzGTp0aHjggQfCyJEjw9tvvx322msvs9P7888/9XkLIYQQQhQzlIkuRBGF7KlvvvkmrFixIjRp0sSsX4QQQgghcjOm+P333wvlg6PiLjdjGITvrl27hvXr14fSpUvn6j2XLVs23HDDDaFXr162bdOmTeHAAw8MEydONJFeCCGEEEIUH+QBIUQK0qxZs7DHHnuEQYMGZVpSTFPRChUqmB/oV199FQ477LACP04hhBBCpD4I6GR4F5Y9CxngOQWhmzHQ9OnTTUyHRYsWmc1LVowaNSq0adMmfP7552HDhg3hrLPOit23zz77hNq1a4c333xTIroQQgghRDFDIroQKcaWLVvC3Llzw7///hvuvffeTPejqVa1atXCX3/9FTZu3CgRXQghhBDFAkTud955J5x33nlh2rRpMRH9xBNPtAq9rCDTHBDQo39H7/f7hBBCCCFE8UEiuhApxq677hpeeOGFsHLlynDooYdmuS/+nTvttFOBHZsQQgghih5YqpARXlivnVPuv//+0LRp09C/f/9wwgknhE8++SRUqlTJqvj4KYQQQgghRE6RiC5EirHLLrtYwyxu20MCuhBCCCHyCp7kubFUKQy+/vrrMHPmTEs4qFGjRjjmmGMsG71v3745snM56KCD7O/vvvsuHHzwwbH7+bt69er5/j6EEEIIIURyIRFdiGIAzbFAzUWFEEIIUZR56KGHwvHHHx/q169vf7dt2zaMHz/eRPSc2LnQVwYh/aWXXoqJ5r/++qtV+XXq1KkA3okQQgghhEgmdkhzdU0IkfTw35XJYc2aNcNJJ50Udt55++tg3bp1C0899ZQ11jrttNMK5DiFEEIIIQqjASpWdw8++KBlk3tmerly5cJbb71lY6eccNddd4U777wzTJo0yUT12267Lbz33nvhgw8+sN4zQgghhBCi+KBMdCFSiM8++8xEcXzRyYbKjohO2fH69evDwoULJaILIYQQosgyefJk81Bv2bJlbNthhx1mWelTp07NsYh+4403WkP3Dh06hF9++SXUrVs3zJs3TwK6EEIIIUQxRJnoQqQQZD7dcsst4b///gvPPfdcth6zZMkSmwDWrl3bGmoJIYQQQgghhBBCCCGyj0R0IYQQQgghhBBCCCGEECITdszsDiGEEEIIIYQQQgghhBCiuCNPdCFShM2bN1tj0ZIlS+b4sWvWrAmzZs0KFStWDBdeeGG+HJ8QQgghhBBCCCGEEEURZaILkSJMnz49lCpVKnTu3DnHj33++eetOda4cePy5diEEEIIIYQQQgghhCiqSEQXIkVYuXJl+Oeff0Lp0qXTbX/nnXfS/f3YY4+FSy+9NHzzzTexbWeeeWZo3rx5aNasWYEdrxBCCCGEEEIIIYQQRQE1FhUihfjiiy/CrrvuGsqWLRt++umn0K5duzB79mzLND/nnHNsn6uvvtoyzlu0aBGeeOKJwj5kIYQQQgghhBBCCCFSGnmiC5FClC9fPvY73ugVKlQIu+yyi3meu4jevn378OOPP4aRI0cW4pEKIYQQQgghhBBCCFE0UCa6ECnOd999Fw488MBs7btly5awfPnyULdu3Xw/LiGEEEIIIYQQQgghigLyRBciBaCZKLe1a9eaN3paWlrsvu0J6M8880xo1apV2LhxY9h///3D6aefblYwQgghhBBCCCGEEEKI7SMRXYgkZ+vWrWHy5MnhkUcesSzyE088MVxxxRXh77//zlaWeps2bcLjjz8e5s6dGypVqhQOO+yw8PnnnxfIsQshhBBCFCT9+vULu+++e2jZsqU1ZBdCCCGEECIRSEQXIsnZcccdTQTv2bNn+OGHHywLffPmzWHnnbff0oAs9WHDhoU+ffpYNvrChQtNQK9Zs2aBHLsQQgghREHSq1cva7j+3HPPhRkzZuTpuRhz3X777eHggw8Oe+yxRzjrrLPCxx9/nOVjhgwZEmrVqmW9a8qUKRPOP//88NFHH6Xbp379+mGHHXZId7v22mu3ezy8n8qVK9siwXHHHWcJElnx6quvbvM63DZs2JDl46hYJAlj7733Dvvuu2+46qqrbOyZVeP7jF6HW/Q7yOj+6dOnZ3ksM2fODA0bNrRqSvZfsWJFlvsLIYQQQuQX8kQXIsXAzoVJGRM6IYQQQgixLVTtff/999sVmrPirrvuMlF80qRJ1sz9tttuC6tWrQoffPCBCdkZQaN3EhcQ0smEv+WWW8L7779vj9lrr71iIvpRRx0VBgwYEHvcnnvuaaJ1ZrzxxhuhXr16djxNmzYNjz76qB3fu+++G4499thMRfQzzjjDRPzoczOOJEkjMxo3bhy+/fbbMGrUKKt8pGk974fXzIh///3XbAOjjB49Otx99932PCVKlLBtiOATJkywz8hBpM/ss4QpU6ZYAkjZsmXDNddcY1WZ1atXz3R/IYQQQoj8QiK6EMW0Eel///2X5QRKCCGEECK+QbkLvgii8Ndff5nQSoXcbrvtts2+ZHD7eIP92H+nnXZKJ5xmtu8uu+yS6y9g5MiRoWvXrmH9+vWhdOnSucpCR7i94YYbLLsdNm3aZGOoiRMnmlCeHRCXEa2pBkQEdxEdIfj+++/P9vFccskl9jnNnj07tq1OnTr2PLzXrET0n3/+2cTq7PDhhx+GqlWrhiVLlpiFIMybNy+ce+65Yd26dfaZZIcaNWqEE044IYwbNy62jXPm6aeftuz8nEK2OwsZEtGFEEIIUVhIQRMiifn000/Dww8/HAYOHGiZPHmBSVzz5s0t8+noo48OQ4cOTdhxCiGEEKLoQ0YxN+zlHLKN2Xbdddel2xfhmO1fffVVbBtjGrZhDxKlfPnyth0B10Gozgs8nkzwqF3IokWLYu8hs9u0adNsX7KfsT3BwsXZZ599Qu3atcObb76Z7eNAeIdSpUql287rHHDAAZZFfvPNN4fff/99m88Ef3eH14weCzRq1Chbx4LQTgXj2WefHRYvXrzN5+QLIv46CO4uoAOvy+LG22+/na33vGzZMrNdif+eoUuXLva+TzrppDB+/HhbrIi3hUH8F0IIIYRINrZvqiyEKDSefPLJcNNNN9nv9913n03omMDlBsp4KSXG03Lt2rWWyeTPLYQQQghRVEAIfuedd8J5551nYjUZ6YAwvD1PbTLNwX3D/e/o/dvzFHeo+uvRo0c49dRT01muXHrppaFcuXKW1f3ee+9Z7xosV/D/dipWrGhis8Nr5vRYEM7JUud906h+7NixlgWPGE6WODCuJLki+josgEShyoBFgOy+b7LPq1SpEk455ZR027GvOfPMM62SYcGCBaFz5842Lu3WrZvdT+UBx8L9QgghhBDJhkR0IZIYJliUw1KGSwlwbgV0oMR68uTJ5lv5zTffmN+lEEIIIUR28eaSUZGzd+/eJhTHNzzHj9wtWqJZyPhaY+cShQzk+H3xNM8t2KTgG96/f38Tiz/55JNQqVIle35+FhS8X/zQX3/99XTbO3ToEPudBqGI3Q0aNLAKRMRzeOmll/L8+gjSUYEcUZvXIDEDr3G44IIL7JYo/vjjD/NOxz8+nug2xrfY01DJ4CL6IYccEtasWZOwYxFCCCGESCSycxEiicFvk4ZRn332WRgxYkSen+/kk08OdevWNV/NrJpXCSGEEELEQ2NMblH7j1133dW2Rf3Qo/tG+6+Qacy2+EaSme2bG77++mvL6O7Zs6cJtcccc0zMoiUndi4HHXRQrJdMFP72+7ICexuq/l555ZVw6KGHZrkvFjGA2J8ZvGZujyUKNirbex1fAHGwxfnpp5+y9VpUUWJNc/nll293X943PutkyQshhBBCJDsS0YVIAZisMrlMJEy8sIcRQgghhCgqPPTQQ+H444832xJo27ZtTBh3O5esbs2aNbN9aWKJaBzNCP/111/NCoWkhMzA4xsBnQaaL7/8sj3P9nCLGTLSM4PXjM9Of+GFF7I8lsxea3uv88svv5ivucP7wJrGxf7tWbnwGWanmSvHst9++22zACOEEEIIkYzIzkWIJOWee+6xjKirr756mxLpvPLEE0+Eyy67zCYueHDmxSZGCCGEECIZIAN6zJgx4cEHH4xta9OmTbjlllvMI50s7OzauZDAgE3NoEGDwpFHHmliOHYk+Jiff/75sf2wYcEOxRurYuGCncmzzz4bSpYsGfMRZ6yFnQx2Ktx/7rnnhv3339880a+//nqz7UP8z4zu3buH008/Pdx7772hSZMm1jB16dKlYfTo0bF9aFCKZR/2fW5rw3GTjf/nn3+aJzqCOH7kmYGX+TnnnGO2O/ip//333/beqI7kvQOvwfvmdfhMHTLcX3vttTB37txtnnfWrFmWwFGnTh2rRGABYPDgwaFXr15Zfg9kwNOcdv369fY341ZggSOnWfhCCCGEEHlBmehCJCGU0eIx2qlTpzB06NCEPz/+oH/99ZdNZqJNrIQQQgghUhVEXfzaW7ZsGdt22GGHWVb61KlTc/x8N954ozUlxcO8Vq1a5gk/b968dHY0iOI//PBD7O9HHnkkbNq0yV6TjG+/Pf744zH7mxdffDE0bNgwVK5cOdxwww3hoosuMpE5Svny5UO/fv3S+ZkjviOaV6tWzWxTnnnmmXQNS7/99lsTnB3Gejw/vusI8CtXrrTXRgB3Jk6cmM6eB8jc59jYD7EfK8CoWI+wjpjNokWU8ePHm3UN7y0e7Hkefvhhy3SvXr16GDVqVBg2bFjo27dvOm98juXVV1+NbXvuuefMloeFA0DM528EfiGEEEKIgmSHNGoOhRBJxeLFiy0LiEnKjz/+mHArFyAriwkNGekF2WRLCCGEEEJkDuI0WerPP/98zJYmv0DEXrhwYTrhurDAP/7CCy+0XkBUSwohhBBCJBMS0YVIUv79919rjkUmkhBCCCGEKB7MmTPHGsrzM7/BjgUf+agtS2FBFWaZMmXspxBCCCFEsiERXYhizj///GOWLhdffHHYcUc5PAkhhBBCCCGEEEIIEUWKmRBJ5oXetGnTsGTJkgJ5vf/++898JS+55BJrUCWEEEIIIYQQQgghhEiPRHQhkog777zTSnfxv3z99dfz/fXWrFkT3n//ffv9l19+yffXE0IIIYQQQgghhBAi1ZCILkQScdVVV4WddtrJGkoVREOlqlWrhhNPPNGsXMiAF0IIIYQQQgghhBBCpEee6EIkoaXLggULQtu2bQvk9dLS0sIOO+xQIK8lhBBCCCGEEEIIIUSqIRFdCBFj2bJlYd26daF58+b6VIQQQgghhBBCCCGEkJ2LEMnBNddcE3r37h1+/PHHQjuGJ554wqxdOJbNmzcX2nEIIYQQQgghhBBCCJFM7FzYByBEcefjjz8O48aNM1uVVatWhX79+oU6deoU6DHMmzcvtGnTJuy6666hYcOG5sleokSJAj0GIYQQQgghhBBCCCGSETUWFaKQqVSpUpg1a1bYZ599wvz588PatWu3+5iNGzeGJ598Mvzxxx+xbbNnzw6lSpXaxorl119/3e7zIdrT0PTYY48NDz74YChTpkwu340QQgghhBBCCCGEEEULiehCFDI09WzSpEl4+eWXQ7du3cLFF1+c5f5///13qFy5cmjRokV48803Y9t/++238PPPP29jxXL22WeHKlWqhFdeeSXT59x3333Dp59+ap7o++23XwLelRBCCCGEEEIIIYQQRQPZuQhRiPzzzz9h553/77/hCSecYLd4tm7dGhYtWhTOOuss+3uXXXYJrVq1Cq+//nr4888/Y/s1bdo0fPDBB2bJ4vz0009hxYoV4b///gtHHXVUlsdyyCGHxH7Hm/3ee+8NPXr0UFa6EEIIIYQQQgghhCjW7JCGEbMQosBZuHBhuPLKK8OgQYNC69atM7VtqVWrVvj666/Dhx9+GBPC//33X7NfyQ6bNm0KK1euDPXq1Ytt+9///hd23HHH0KdPn7DXXnttk+l+5plnmkh//fXXh2HDhuXpfQohhBBCCCGEEEIIkcrIzkWIQuK+++4Ln332WRg1alS47bbbwldffbXNPqVLlw7VqlULBx10ULr7syugA17rUQH9yy+/DEOHDg0DBw4ML774Yrp9sZQpV66cWcPwuljBCCGEEEIIIYQQQghRnFEmuhCFxJYtW8IDDzwQxowZEz7//HP7efXVV4cFCxaE+vXrx2xZvv/++1CiRImw5557JuR1KT6ZOXOmZZoj5EdBqK9QoYKJ92S+yx9dCCGEEEIIIYQQQhR3JKILUYhgy/Lkk0+GKVOmhOnTp4f+/fuHe+65J9x0001hyJAhBXYceKt36tQp3H777WHdunWhdu3a6bzVhRBCCCGEEEIIIYQorsjORYgC5tdff01ny3LJJZeE2bNnW7Y54jVe5VCQ7QpuvfXWMHHiRGteWqdOnZiATkPSRx991O4XQgghhBBCCCGEEKI4okx0IQo48/y4444LFStWDCNGjAiHHXbYNvusXbs21kC0oMDGpU2bNqFfv36hQYMGse2LFi0yP/UddtghrFq1KhxzzDEFelxCCCGEEEIIIYQQQhQ2EtGFKEDeeOMNE6X33nvvcOedd5p1CtuefvrpULJkyUL9Lsh8RyyHjz76KFx++eXh999/DyeddFI44ogjQvfu3S1bXgghhBBCCCGEEEKI4oREdCEKGDLNV69eHbp27Rq++eYb29azZ89w7733Js13sWbNmlC1alUT1VeuXBmOPfbYwj4kIYQQQgghhBBCCCEKhZ0L52WFKL5g1YKNy3XXXRcmT54cqlSpEgYMGBCSiRUrVlhm+qGHHhoOOuigwj4cIYQQQgghhBBCCCEKDWWiC1EAbN682W4I0n/88UfYY489trFQSTZmzJgRatasaVYuQPb8TTfdFDp06BDOO++8wj48IYQQQgghhBBCCCEKhB0L5mWEKN7cc889oVKlSqFdu3aWef7JJ5/Y9mQV0KFFixYxAX3r1q3hvvvuC7Nnzw7/+9//TPwXQgghhBBCCCGEEKI4IBFdiHwGwfn1118PW7ZsCS+//HL48ssvw+DBg1Pic//tt9/ClVdeGcqWLRueeOKJUK5cufDYY48ltfgvhBBCCCGEEEIIIUQikZ2LEAUkpC9YsCDsvffe4dRTT7W/P/vss1ChQoWk/vz/++8/azD60UcfhZ122imccsopYe7cuaFEiRKFfWhCCCGEEEIIIYQQQhQIEtGFyGeiHuiff/556N+/f/j111/DzJkzE/L8S5cuDWvXrg3Vq1c3wRv+/vtvy3o/4IADQrVq1cLOO+e+hzDi/1577RX++eefUKtWrbDnnnva9r/++ivsuuuuCXkPQgghhBBCCCGEEEIkKxLRhchHhg8fHoYMGRKmTJkSzj777Nj23DQURYC/9tprzRYGexgHn/XJkyeHoUOHht69e9u27777zpqYAvu78P3000+HdevWhUaNGoWjjjoqV+8Jf3Te08iRI8P7779vQr0QQgghhBBCCCGEEEUVeaILkU8sXLgw9OjRwwTtYcOGpWvGuT0B/cUXXwxXX311eOqpp2LbsIIhK3zx4sUmjDvHH398aNCgQTjkkEPS2bCQgU52ugvoQPZ7t27dwvTp02PbOK6vv/46W+/pzz//tGOfMGGCva/OnTtn63FCCCGEEEIIIYQQQqQqEtGFyCe+//77UKpUqVCzZs0wYsSIcOutt9q2zMTpqMj+2muvhXHjxlnmuLP//vuHiRMnmogetVG54YYbTHS/9NJLY9sOPvjgsGLFirB8+fJ0r4PY3rhx43DGGWfEtrHP4YcfHurXr5/uGOLheI444ggT4NkXSpYsmePPRQghhBBCCCGEEEKIVCL3RslCiAxxq5YWLVqYhQtZ4XfffXe48847zYYFgTy6b/fu3cOkSZNsO9nj0KxZMxPWmzRpku65sW7JC1dccYXdoixZssSOF1uWaIb86tWrQ5UqVcKOO/7fWtvGjRvDt99+a9Y0ZMRzjBdeeKHOAiGEEEIIIYQQQghRpJGILkQCQRRv27ZtOPXUU83qZN9997Xtp59+umWL9+rVK93+iNZfffWVNRp99tlnYyL6iSeeaLeCoGPHjqF58+bht99+i2378ccf7fUPO+wwy3wvXbq0vR9+XnbZZXbcF110UayJ6YYNGyxTPmodI4QQQgghhBBCCCFEUUCNRYVIIHiOIy7vtNNOYc2aNaFSpUqx+8hIR0gnIx2bln322ce2r1y5Mvzwww9mseJZ34XNSy+9ZFnmFStWDMuWLcvUw33VqlXhkksusePHk51M+7322qvAj1cIIYQQQgghhBBCiPwiORQ7IYoItWvXNr/yf//91+xPoiCid+nSJbzyyith/Pjxse1kn+NVniwCOnA833zzTXj00UdjAvo///xj2x955BHLPqexKN7r7IeIjgf7888/X9iHLoQQQgghhBBCCCFEQlEmuhAJBGG5d+/e4bPPPguLFi0KAwcODOXLlw9t2rSx7PQZM2ZYtjZNRsuUKZNSn/1jjz1mzUv33nvvULVqVWuSSrb9G2+8EX7//fewZcuWcPHFFxf2YQohhBBCCCGEEEIIkVAkoguRR8jEHj16dLjtttvCzjv/X5uBrVu3hrvuuiv07dvX/sbGhSzuVIb3xPsk0/72228PmzZtsqz6Y445xoR1IYQQQgghhBBCCCGKIsnjHyFECoJty/nnnx8GDBgQevbsGdu+2267hZ9++sl+xyv8zDPPDKkO76lr167WiJSs9E8++cS2lStXLowZM8aaqr7zzjvh/ffft4x1vN6FEEIIIYQQQgghhEh1/i9tVgiRK7BoufHGG83r/Lfffgtff/11OOyww+y+QYMGhRNOOCG0bds208acuQGxmixwfMixUPnzzz/DH3/8YT/xVd9ll10sW5yfNC8tVapU2G+//WJZ8onAFwVokvrLL7+EBQsWhF9//TX06tUrHHHEEWZns3Tp0rB69Wo7DiGEEEIIIYQQQgghUhXZuQiRRxCvycbGI7x69eph+fLlef5Mf/755/Dee++Fjz/+2DK+P/30UxOm8VzndWjsmVMQ1MmKr1Chgvm0c6tcuXI4/vjjTfjPjdBPJn7//v3N851jqlGjRmjZsmVYv359GDJkSKhTp06On1MIIYQQQgghhBBCiGRCmehC5IKPPvrIBOkSJUqE3Xff3RqFdu/ePXzxxRfh6aefDmPHjg2DBw8O1apVy5YI/9Zbb1nD0XfffdduX3755XYfx2tz22OPPewYuP33338mZv/11192I2OdG/jvH3zwQYYCO2J6rVq1Qt26dcOpp56arcanjzzySCwb/YEHHjCxH2sXMuGPO+647T5eCCGEEEIIIYQQQohkR5noQuQQbFRq1qwZSpYsGWbPnm0Z3fDoo4+G+vXrWyb24sWLw9VXX22CcjwI3UuWLAlz584Nr776qgnoCN7xeKZ4pUqV7IZNStmyZU3cLl26tInm2eGff/6xzHaOe926dSb0f/7555bZjqD+4Ycf2j7xHHXUUWbb0qRJk3DGGWeEvfbaa5t9XnrppXDWWWfZPs8995zZ2XCsPN8zzzwTmjdvblnpiOunnXZaNj9hIYQQQgghhBBCCCGSB4noQuSQFStWhIYNG4bNmzeHN998c5tsc8Tp22+/Pdx7773hwAMPtG2I5PiGP/vss2HWrFlmyxLl4IMPDqeffno46aSTzBIFW5h99923QL4bjm3NmjX2vng/ZMTTHDQKDURZILjgggvCRRddFA444IDYfSwIkMHusDDAe8TqpVmzZqF169b2GmTYYyUjhBBCCCGEEEIIIUQqIRFdiFw09qRhKKLznnvuGaZNmxbOP//8DPd74403wtSpU8MTTzwRfvrpp9h9ZLGfc8454eyzzzZxmuztRDYfzStkriOmz58/P8yZM8ey1x0alHLcrVq1MkE9owx1xHYy0S+88ELLTicbHXGd9ymEEEIIIYQQQgghRCohEV2IbIIo7kL32rVrrWkmYnPfvn1Dv379LDMdj/Iff/wxTJgwIYwcOdJsTKLZ5ojOZGeTdY5veKq8bzLVyS6fPn16usape++9d2jbtm3o2LGj2b+MGjUqdOrUyfZn+3333RdGjBgRZs6cGa688sowbty4Qn0vQgghhBBCCCGEEELkFInoQmSDb775xixcEMbd2/v3338PDz30UOjatat5jeOTjl0JTUe3bt0ayzhHOEdQJuN8p512SvnPm/eHmD5lypR0iwS8199++80aqt58882xRYdJkyaFLl26mGc6Hut8NtjDCCGEEEIIIYQQQgiRCkhEF2I7IPpWqVLFmnHyE7/wHXfcMXb/okWLQvv27dMJyviaIxzjB47lSyLYsmWLNQcl0x1rGG5//PGHNfHkxjF4djs2MhwPVit+I2ucbPj9998/3fHnFhqkvvzyy2H06NHh6aefjjUnPeiggyw7v127dmGPPfawbd9//701REV4v+mmm8LChQtl7SKEEEIIIYQQQgghUgKJ6EJsB4Tqs846y5pu3n///eaHXrdu3fDKK69YA1G8w+0/0w47hHPPPTfceuutZvWSU49zsrhXr15tjUkR7MluxwrFn6dFixbhySefzPTxiOr77bef/Y69CuJ2Ruyyyy7hgw8+iInYCNpkl7NAwC3aNDS7bNiwITz88MOWmf/LL7/YNgR7PgsapA4YMCDMmzcvXH755fZ5IbSTmR5tSCqEEEIIIYQQQgghRDIiEV2IbIAw/N5774Uvv/zShGAE4m+//dbuI/ubLPDevXuHihUr5ujzfPTRR60BJ01KP/nkE7NAibJx48aYqI0wPnHiRMsk51aqVCnLcqfRJzYxkydPtmxzQOyfO3euZa/7bdOmTfZ88Ouvv5r9CnTo0CGMGTMm9pq8HmI62fQnnXRSaN68uXm9Zwd84cePHx/uvffe8NVXX9k2rFvI5iczv0+fPtZ0dNmyZaFq1ar2mRYFixshhBBCCCGEEEIIUXSRiC5EBiA2L1iwwETp8847z7atX78+NGnSxARvQLw+55xzwoMPPhjKly+/XU91rE+wfnnggQfC7rvvbtu7detmj3fKli0bjjzyyHDEEUeYvzrCM2I5YJeC4JzTDPcof/31V/juu+/CYYcdFttGBvns2bPDhx9+aIsE8WAf48fw9ttvmyh+/PHHZ2kJw2d3/fXX22N5PahWrZplqvOzc+fOZvni2fBCCCGEEEIIIYQQQiQrEtGFyCDrHLsWrFVg4MCB5u3dr18/y7R2axVuLVu2tKztd955J1229t9//22CORYmzz//vPmoO9in1KtXL/Y7j61evbrdSpcuXajfB81SsXbhvS9dutQWDp544onY/TQGxcaGbHUWEFhUaNSoUcxGxoV6FgLIRP/f//5nCxE0G3Wbl1atWoW7777bFgwQ1fkc99lnn4R5xwshhBBCiOTDm86TYHHggQcW9uEIIYQQQuQIiehCZNAw8+qrrzbxGEGYrG18yqF27dom/J544olml4KNS+PGjc1mxaHJJo/Hozz2H22HHcz/G/Gc+44++uiUnPhcfPHFlmXuiwlAdnz9+vVDmzZt7POAZ599NsyfPz/ccccdJrCT2Y+g7j7tLDjweSDIYxlDBjxNR88+++xCe39CCCGEECLxvPbaa9YfB9tDegv17NnTxtGnn366Pm4hhBBCpAwS0YXIAERiBvjuFY79yqBBg8yiJGpjglC+ZMmScOihh4ZjjjnGtmH3gp84WeU0GiVjG3EYH/PcsHLlSrNa4bXI5o7eyBx//PHHw1577WX7Dh06NMyaNcuOl+x5srv9J9neHL9nu2O1gjDOceXEIoYse5qsYgEzZ84ca1IKvE+y7h3sZ7C8cViQaNiwoWXfO9yPNcy7775rEylE9bzY1QghhBBCiMKD8R7VmJUrVw6HHHKIbXvppZfCWWedFcqUKRNOOeUU6wfUvXt36+EjhBBCCJEqSEQX4v+3MSHzvG3btuGtt96yjGoafQIiLw0wmQxgc4KIjqBNA82xY8ea/QmPI5MaEKYXL14cTj755O02zURoJssdIdpvn3/+uWXs+GMvueSSdJYq8XAsbqcS3yQ0nnXr1sUmNDfccEMYNmyYZYXjTc6NDCF+0vSzZs2a5n++PT799NPw5JNP2iJC06ZNYx7w2NNw7Ndcc40d3+GHH25NWadPnx4uuugiE+FZrKAxKxn6M2bMCPvuu6/ORyGEEEKIFIWG9M8995xZ9/Xq1SsmrD/yyCOWXELiybRp08JVV12lxAkhhBBCpBT/L01UiGJs34IvN2Wlt99+e/j6669tO2IzgjTe3QjBffr0sazz1q1bm0jMhADI8vZMcCCTGk/1rLjvvvvC5MmTLcN869at29yPVySvC5S98jc+5IjM0ZtnmjvXXnutZXvznH/88YctDvjPn3/+OZ3nuluy8JPseW+YGhXHaXAKLCxs2bIl1KlTJ917BYR3PpsoCOI//PCDNS3lxmdy7733hrvuuivcdNNNJtLjmd6xY0fzjX/xxRfNX57Pu1y5cnb82RHwhRBCCCFE4bBmzZowdepUaxa/yy672LYGDRrYuJGkEh9nUiVJ5rmDtaEQQgghRKqhTHQhQgj9+/e3mw/4sRbB1xsLFPj3339Du3btLHPGIUO9a9eulm1dsmTJDMX55cuXhxdeeMFsSsjA9oxxhGQEZUAEpzkpmdyIy0cddZQ164wXq/ODP//80zLfybpHNOcnNzzKPeseWGQg2xz7Ffzg+XzIHj/11FNjn1EUPq+XX37ZRHEe558r/vJkwLMowQIA20eOHBl69OhhixLY0GCj89hjj9lnhqAuhBBCiO1DTEWwZNGbmEoM50ZlGzcqv2j2LUQiYKxHVvmGDRvCU089FS688ELbTiIEgjrnHuPM0047zZrVjxs3Llx55ZX68IUQQgiRskhEF8WeV1991URiMqcRcWkUOnPmTJuAMglwj27KUm+++WYTdmmiiege79/97bffmi84zTfxf+Q5HRptkiUOq1atCh9//LFZnpQvXz6dz3o8v/76q2W+81z4oG/atMkE9gsuuCC2z5AhQ8L3339vExom0WRxI85zw38ymvFDBjjbS5UqtV27GQdhGzHcs/QdjpusexYKmJxnxLJly8Lw4cMt45wGo7z2F198YZMsGrJ6w1Gy6KMgrJOxL4QQQhQXfvvtN1vcxn4NuzZiPwvb2KVh/8Y4gzEGC94IlCzi06yc8Qs3xMzMYBGcDGF6m7DQj7UGYx16o1B9x3iE6jKq0BjrUAEnhIO1IWPZ3r17x7YxhmP7LbfcYtWKGXHrrbfaOA8bv9q1a+sDFUIIIUTKIhFdFFvIlMbC5MYbbzTxGUEb73E8wSlNxauRG3YkiMVMbLFEwds7I3gMnt+edQ1Mbs844wxrLIro7X7k8b7oTJh5fqxbHCYa2L2wPR6OlSx358gjj4x5uMfDhDh6H5NohG3e00EHHWST5QoVKthPsuAvvfTSTD8zxG8ag+LZzk+y1zlOJuXOQw89ZMdH46jo4gCT/UmTJtln2K1bN5usI6p37tw53HPPPWHUqFFml/Poo4/a/kzu+Uw9e18IIYQoCnjcJ3Y7WF1g88ZieSJgkRyhPDomyenjDzzwQOubghUcx8wYBsGeqjIykBkvMX5AvBdFG5rRM2bkPCAR5Nhjj7XtnF/bawjPPiz+uE2hEEIIIUSqIhFdFEvwZqTxkU8uKUFFsEW0vv76600kBiaPZH4z2UWMjk4msHah2ahnlyMoM6E86aSTwjnnnGPCOQKze0QC/uQI94jF3N59913LSCcrrEaNGva3g7ULxwP4n5NRjnUKN8RuxH2HLHky1pj0Mpkhy9v90Mkkc+sYqFatmmUNZUdwxyOe5+MxNEo9+OCD0+1PdhxZcjQhBSb/PtlGJEeQp+kqdjWAgH7nnXdaFv8DDzxgggG2MUzG+/XrF6644grb1qlTJ3sPTNbnzJmT7rMXQgghUgXGGSxAL1q0KLz++uvhnXfesbhHnMQajThKJRkx28E6DZGShXgelxlUdjHGoGKtsGCMgKjuDcqPO+44Swhg3FAQtnQif85Zki0Qy9u3bx/bTk8gzlvGa1gQZgYZ51R0jh07NstKSyGEEEKIVEMiuih2IDbj580kFvDmxv7EfdCZPGBNQib1wIEDbYLIfdiNNGnSxCxInnnmGSuBPv/888PTTz8de24ybaJCMyJ2tPFnZhnj7IMQHZ0sk2nOsZH5xTEwySYLyJ+PyQ37k0Ufvbmdy3nnnRcTn8n4pgwcgZsbWWMsBGDPwnYWCfhJ1rcL7jwP+7KfQ8YZ9i14oeNxidAfhfJzynb5TKIZ9CwQIJBPmDDBFhGwhxk6dKhZ35CJ7jYxTLwR1/kbv3kEet4vHppkuAshhBDJDr7kiJD333+/2V8wFsguCM8szhMzWWwn9jHeYGGZGJ8ZWLQxvskMxjE8F8dGrKZPC89HQgBjHsYZ2HHgXe0wliDOE88ZgyCgRsX+7UGiAXGd8Q3jLqrUWCAQyQ3jYxZxGCsyriWRI7tZ5/ijM1ak+hALF3rgCCGEEEIUFSSii2IFYjE2IWvWrLGJKp7bd9xxh4m2lD0Dfud4jJNZ5X6P7IOgHZ08Igx37NjRbg4Z5dic4P+NXcz69evt5pk4LVu2tCz3WrVq2Y2JJRMVXot9EM7nzp0b80PFC52fXt6NfzsTYSAT/brrrsv0vSL0k20PNOqM2rQwMSazHWsaJjtdunSJeVn6JInJMq9B1jpiAD+jZeEsMixevDj2NxNzMveBz4lsfybnCOU8FyCGk4k3ZcoUy9gHJlq8zoABA2LZdHwWPBeiABl8QAZ7nz59cvnNCyGEEPkD8Y+FYRbiEbupMPMxhYMgSZY2IjJVZjyG2Mg4gEovMnuJjW+88Uamr0NsphKNLG/GB2S1s/hNPGeRnaahjG14LarQWEAn5hJHvd8LIJQzBgGy3bF54xgYn7A/r0HlGI+PgkiPoE7sx4bNq+dYDKfy7qOPPrLxU2YWMhxXgwYNQv369e1G5roLtKJwoE8O5x3fA2NB4PtjjMv4NDoezi6M/RgD0zg+Wo0phBBCCJHqSEQXxQYme0wiyabCPgSxmgktWdPYuSDqtmrVynxJo+WnbCcbDJhkILLjlc4EAxB+Ec2ZPGM9gv1LFCbLZGMB2WhMQDkWJrHcyHbnOODBBx80v/DMJp8cK1YxwASFrDImKNi4+I1JNsI0gjNZXy6i0xSV955RRhzH3qxZs5j4Ttb98ccfH7sx2SbDngk7E2wm0HyWvXr1sscw2WYCz0Qc73catdKUDMgmJ+ONDH6aoSGOk/X24osv2mfH6+KHTgY8mWpMvoD9WFTg/WKVw/saMWLENg1IhRBCiIKEGEv1FrGPmDVjxox0jcSBKioW1n0ROTMQLomrK1eu3OY+FrxZwEd4Z1zy5ptv2sI3YLNBXM0Mqt6oRmNMQ4UXYxbiJwI88TSzBo+8ziWXXGLv64MPPrCxBmMTxhccozcRx7KNzwExnHEMlXb8je81n4vD8bJgEC/IO4xhaD5OTxkWAMhkZgGCMcf2sp5F7ohmlNMLiO+b78nHWkCVQnabz3OOM7ZVDxshhPh/cB3l2og2wI3fuV4SR1m4dt5//32rOCMG+g3NQTFQiCQlTYhiwNtvv5222267kRqVduSRR6bNnz8/3f3PP/982pNPPmn316xZM23Tpk2x+8aPH2/bpkyZkvb7779v89w33HCDPc5vZcqUSWvfvn3ao48+mrZ+/Xq7jRw5Mq1Vq1Zp5cqVS7cvN543epyXX355Wv/+/e11Oc7Vq1en/fLLL2n//fdfQj6LzZs3p33++edpb731Vtrjjz+eduedd6Z99dVXsft57fhj5LbffvulNWnSJG3FihXbPOfs2bO32b927dpp99xzT9qXX36Z4XGcfPLJtl/lypVjn0u/fv3SlixZknbcccfZ5wf//PNP2rXXXht73sGDByfssxBCCCGyGzufeOKJtPPPPz9tl112Sdt5550zjJXxt5IlS6btv//+aXXq1Enr0KGDxfhTTjklba+99kq33w477JBWo0aNtO7du6c99dRTad99913stbds2ZLuWG666Sbbv1OnThYz582blzZ69Oi0HXfc0Z6L19q6davt+/LLL6dVr1493Wvtuuuutk+PHj0sTo8YMSLtsssuSytbtqzd7/EXPvjgg7SOHTvaOMmfkzFE9Pl22mmntMaNG6dNnz7d9mdcceqpp6bbh2PjOG688ca0Zs2ape29997p7t99993TmjZtmnbuuefa3127dk33nqOfh8gdfK+MzSZOnJjuvD7vvPPSxo0bl/b333/n+Dl5PN9ZrVq17HchhCgOMBclLr366qtpo0aNsluUqlWrZjouQCtYsGBB2syZM22e7HPi+Lh6wAEH2Jx4zZo1ad9++61do4n57777btqvv/5aaO9diOKORHRR5Fm4cGG6yephhx1mE8h77703nRjbt29fC1jsM3DgQJvsIl7/+++/th8/ea6rr7467Y033kj3/EcddVRa79690xYvXpy2YcOGtI0bN8buf+aZZ7YJjOx/6aWXpg0bNiztk08+SUsmmAQh5o8ZM8YmsaeddlraHnvsETv2Dz/8MLYvIv99991nk+Yvvvgi7eGHH06rX7++Te4zWyhwYfziiy9Otx8iA4sNTNIZJES/Gz5DJnm+LwKChHQhhBD5yV9//WXx58ILL0wXBzO7Mb7wRWfiJ2OF3377zcT3Fi1apO25557p9ifuMRYgRn7//ffbvP6ff/5p4iRjk6iITKzl8W3btk23P7Gbhfv4+Dhr1qy0Xr16pTVq1Mgm5fETdUSA4cOHp7344ot2YxxDnG7Xrl3ascceG9sX4RtxvFq1avZ8jKMQZaPPV6JECYvlMHXq1LQTTjghJs7zWuvWrbP3S6IAovsVV1yRdsQRR2zzWSIcsJjAZ8BnwzYW3P/44498+76LEoyl+C75Hp1BgwbZ53jOOeck7HU+/vhjO4/5//H6668n7HmFECLZmDRpkukDdevWTStVqtQ28Z9EM+L9119/naEwntGNeMjC8iGHHLLN4nr8bejQoTYv978ZUxx99NFpLVu2THvooYfS1q5dq/mxEAWARHRRpFm0aFFs0lqhQoWYSO6TOYLNe++9l9a8efN02VLsy+8IvT///HPa/fffbxnsvg9CusNklRViAhtBlceTUe389NNPaaeffrqJ9ExoEOZTUUh455130h588EFbTHAQBfwzOfzww9O6dOlik3EmyQTzevXqWcYek3qHFfSVK1em3XHHHfY4Js/RgQif/Zw5c2xfJs9kyrHo4YMF3+/WW2/VQEEIIUS+gdgYncASr1gwJ6YT6xlHEOfIBGesgHBJZRY/ERSvuuoqy0SPPgcxjmzsN998M53A+f7776d169Yt7X//+1+6Y6Bai8eRtebwWgjdWUEsvv3222PxFBD0/ThYKKfKCxGf12QbMRxRnKzwhg0bxjLbEesPOuigdO8D0RQhnTEOYyBivd/33HPP2eshzPM3E/xVq1alTZ482bYfeOCBtp3PjnEEx+oCLyJ8fNb8oYcear/zWQCiOmMJjpdj43eRlm5cWr58efvMGAc7jHkZm5HRmEg4l7kJIURRgMrzF154wRLFosQvGvvcNH6RHWH8m2++scXvp59+Ol08K126tI0DWCimKo1Fbofr6Nlnn21jDBar2Y/9WcAm8WzatGmmWcQvhscvQLMAzrX/s88+y1WFkRAiaySiiyILdiU+eaVsyoMLZae33XZb2s0332zly54NzWSRMutPP/3UssdY2cWCJSrc8nxXXnmlTY7JvMZa5JhjjtkmgDEpLQ5Qukawd6scvzFB7ty5swkEP/zwQ7rHNGjQIDZ5ZjWfrDKy38nK90l6nz59bF/Edi+Z9wWQaPY636MQQgiRV5hokkHGJLZnz56WXRuNa0xcmZRiaxbdTixzELaHDBli1WbxwjlxbenSpbHFX6rQfvzxx9hjsUvxfaOwgB21XOPxUWs5SrqJqzzO7VaAhWaej1gcfazHVDLlHOzsELOJ6fG2c8Rc3iPiKwsEjG9c6GZi78dC1jjCwdy5c23hHXi/HBsL5Yjk/n4ZeyESxH9GvFbr1q0tuYGFBjLzovucdNJJdqwTJkywv33swSIGsCiAqD5jxozYgr9XtxVVSFpgMYPPNArfE2NfzulEw8IJY2UhhCgKEBvJIseK7KyzzorFFuaezFFdEKcKjFh+/fXXZyhgU4WGVRpxysEilkVy4hbjA8YXXK9ZpMculsV5ssujIIT763MsZKgTR9mX2AmMVRDLiZ3xVW7cENxZgCZek+R35plnWgUYi+lCiLwhEV0USZYtW5a2zz77xFZ9+UmW1AMPPBCbwEYnwgQyLEkcJoDRrCuE8kceeSQWeJiURf08eW7KpJlkZuYBXpTBr5XJNWXZ++67r30mrNZHYfLMRJaJetRLlsUKSr+ZiJOlX6lSJdvuK/PXXHONDVrINPOS72hFARUAQgghRG5ggssirmc7x9+IaSy+I+BGK9YQ1ckOR6zFRgXxNpqNzaSXmIjlW7y9CtvZhzFJNI7iPc7k2/enGiv6WPZnbEOFlsP9XgIetVtDzOb56H0SBbs5F7kzguejFwuTfSb40c8C33MfA2Fzw7go+jgm6SQouOjPNrLpookIt9xyS8zyDtGCGB9diMc3HZ9YPlcW4hHTGYNFF9DJzON7YRGf13PP+Gh2HhY8gLDPmIGkiCjY0TGuSCV7GIQYxpn43Dskdfh7Rtx2sBNi8YPP0uH7ICsyajmYU3gNLHpY4CCzXQghUhmqsjKyFEO0pvqpYsWK9veAAQPSLV5Soc6iL7Zmr7zyiiV+MRcmwY7t3KJEK9rjbyxeR8HGLbN9sY2JgmgfvZ/xCUkAZ5xxhlWVZfQcjHeoqicGyh5ViJwjEV0UOShd8lLhaMBh4hDN0iLYuVDOJI/MpWi2FxYu2LkQGMmmouFmNNDQPJQANXbsWCutFv8HnzEZdZ4Z5pMuSt2YYOORSgYeJfG+0MGNlXImfWRUMdFmBZ0MOzKpeCzZAZRw09QtfjDAyroQQgiRXaiSIiMsvsGl344//viYFQoVaL4oj+iLDzSLwsSpqLjODR/UaLYXQiOT6mg2NM08EXaJgxmBeIwAyusxpnE8A5vs7igI2q+99lq6fYHxC9ZpWMk5iMbEYsrIoxntCAEIo4jcUQ4++GCLz4jbLsg/9thjNsnHH90TEFgsiE7iEa3JKEf4ve6662IL5L7AQCXa8uXLTdDH8o0m7dFsOrxno5CgwLFF7d/4nR423gyez4dxGc/vZfhuHcfxYynjIMSznQZt0ax/xhpRC5REwaIAyQSIL1EQuTk/WLiIJoJw/pGdGLXQc6vBaPUDn6Ev9kQbe7rdnvvTA7Y7bENYYYEmN1BtQcM8Pr/o5ymEEKkA1y2PGdEeI1wXWSDkFm/DxiIui9LxsLBNQ+z4yjVubIviFUPEfRLAGCeQMEY/tfhrKcfHnJfYiDZBbCeWsi+xNv55GRNQARdvK4OtF4vVHHu8JVtUUI8uwAshto9EdFHkJsVkNhMUaIaFDycZ0YjgZDoRKKLNu5iUMQH21WEm03hzuhjMJC7qf0a2mRP1MhVZwwQ/mkVGIGdFn0EBE13PHmMCjTjhixlMNpkQRysC8FS9++677fm8ygAx4tlnn9XXIIQQIktYDEcUj1Y0MW5gIk0DTJpYk70ctav46KOPTOSlpBsRmgxsFzRdXMcOLt6bG+Hc4xuZzw4L725twgSX44lmlwMTeR5H/HTIIGYh+q677kp76aWXYtspM+f9IF5HxXom6zwHgrVna3O/HzeTcoe+LWzr1KlTuuPwyjHisScSIPpGJ+FU4pGBl1HzVcRgfpKUwHvx9+W3qIiNnQzjAMZi0QxxMvcvuOACE4ERisnGjlq9IKYjlrPwzsLHo48+GltQYKw2YsQI24+Fe8RjbgjRfDeUxPM4QJBnPyoPop8N1jh8ljxvtMcL5wifG0kXUThXeH4fTwLZ4zx3lSpV0u2L9zzbWQCIF8a5sRDhUAnA98xjouNekjx4j1EY97LoEW1eT9Y6Y2PGVXkBIT0q+gshRDJDMhfXyBNPPHGbxUWuZ1SAEUejjT1J4qKvCUl4XGdZZI2/zvr1mxuxkusrVlpUchETo8l3/I4GwTWdhW0W4amCoycJcSQK2xDnuTEmofHoJZdcYmMFeqdEF1eJVSy8EqPRLhin4OdOT5JotRuv79Xi0cUBxi+MKYjVHA8WYLxXZagLkTkS0UWRgYwqL2ki85wgAgQDz3gmWPh2JhhkY0UDCaXYTKg8I8vvYztZVZo05B485Gm4Gv1cWdhggIJAgYjBxNwHBmS6IVSQpTZx4sR0gZ8SNC+H9+1MvKOTcSGEEMJBTJ0+fXpsEu03BEiPO1SoebUTi/BRyCxnATeazUU2LgvCTL6ZcJL5jfd3FCa8WMYhYBLPyHKOVr2RQc5zUUEXnbQiklPxxiQ6mjFO9jz7I0b7mIT35k1AeX8OPuUsDLCdhQHHRXDucxgbIQggBESFAixreE7sUfz4iNlktrlvazTzjnEVE3g+v+jiOe8FeA6EbuI/gjDCOGDnRvNy9kUwdxD93SYHUcIhycFjv78Gorh/P3wXDoKGZ9xFcQsfqucAsQTxm21Y2fhxRd+j26Mgivt34Q1PHWxm2M7YJV4YZ/ElmoTRvXt3O25/PWChgMz5+Ix8HpcIYSNalcn3TgPa7QlQnL9CCJFKkOHNnDFqa0KMY7GYhVGu1dFrKgumeJ7TG43FVarUsWWJZpq7jgDcj/BMHzav7iGLnOtlvJVaVhYtLBxHwZc9s30RvaNEK7QZBxBjeDw9Qhiz+HEx/hg3bpwtqiOYR+NzvLDusYrKrPjqKSGERHRRRGBiwUqtBwBWasnYYtXWt1HmxKovmUN4mUaDEQ1CaLLFZIWmIH4fE0yym1ilFomBIE42lw8mGMzw2UcnlQR8FkJ8YPHcc8/ZPtHyOqoHbrrpJlvVJwvOswaiWWJCCCGKN8QWhOyMPE+5MdFFtMRb26ubmIgyjuCxxCOyuaINyolPbPPsbkAY98knFVVOdILuYw9E7GhMZKzCpJdm2e5rzXYXjxGro8K4W5EQSx0E5oy8VcmqRqyOirEkEZA1jtdrFO8Vw0TbIWvORf4oZNuxnc+NMVQ0PiNYIPxTIk75OlYuHPfnn39uj41aifjnw/MhRpMhGM2eJmMv+ryUwSOsI1pgE0MWOAsEUb9Z3lu0Bw4iOd9/dGHErU24RZtvkj2OuM7nBowxEFt4DyRqeAUA78vFdl84YTGGDD4WHjivqDKInoeIGmTNR783RB6ehwzI6DiIBZJvv/02LT9BTD/88MPt9aN9gaKwiMAiCp99tPpBCCGSFeJnNEucG1niCMjE2qiAHJ+AxUL3RRddtE1lFfNRr4hyENqJUSymky2OfYrvjw1aRvGfRVMssagIIkGvS5cu29io0dMEu1i/jR492jLL0SSi3uxAc1Fs16LVddFktWjWOgvKVL0RM8leJ7EAizriAAv28QvjLqpjD4aVjLLThfg/lIkuigRMkKMXfLw+3RedoEJZlDfoQkz3/dq0aZPOQ5SJGSuv7MMkMreekWL78F0QkBkURMErlskxE3PPrOPGSjuDCsrByWYng90hkzC6WBLN2hNCCFE8QSx2OxFu0cafLJJT8cQkMtpUlKxxBEwETTKJEaX9PkRnfEwRHxk7RK1WAJGWSToiMBlqjDGiQjsTYSbiZL9FrV88A5sbx+Qw2c1IwMbOBB9U3p/DQgB/R21oICeTXgQBss7c3gQQ9TmmqPALCOdUkLkATfad28eQHR4FKxe2U+XHcSI0kB1ILMcyj1L5aKYfNntk6DuMCfBf9/vJ0kasjhdNsOSJNhdFRIkuaERB4EcQ4diiIJBERYfMYOyCDy0CBwkaVDEgxvC6ZMMjwLDYEQWxgvsZkzqcS5yDnDOFIVCQhEBSA8efEYyDWVzhc41aywghRDKDKMw8kvkj8cobhEZjPdVHXOOi1TlYpvk+aALENYR1Ykw0nkerjuJvjCmw34rOR4lzvBYxEDtZ4gVVWxwDMRZLLyqwWRgmvhDn+ZtxA4vg7MdCJmMHqsGIzdGYQdwiS57YyXMRZ6iWihIvkhODGbfwelRL8Rxk4cc3K/UbVmVCCInooghAcIlmKblw7sGB0ttokKEkmftYZa5Ro4ZN5qLBk0wp+Z0XDkziohUCZOsxgHExnW34xpFt7k3bANGADDZ/LJNtrZYLIUTxhDhO1q9nm/HTxwX8ZGKJUOxe2T5ZprcGsYOJanSyieBOhjSTaCCDi7hE9nW0QZnDc7j4zoTcYazhlmZUvTk0H0UYRnjFF9xhwo0wTjZwKsBnwWI3orDDxBxRnbEWvrNkwMVn9zHmQhDwRQMfzyEgMKkny5+qNbK4vVqQz5+MQhYtoo1TqRwk48+93MnEY6GdhRHEgWgpPp8v3zXWLMAxYP9H1jkCRNTChOdF3I/3NGdBn9fhNRA5eLxXx3HeIZzceOONliDA6/N5pNpCP58T56gQQiQbxAgWc6kKomo5ulDKWIC443GF6zNxhusZFevYlZB8xfXZId6SyEWc57kRu8n+rlu3rs1DvZ8JYIVFFjcZ5YjfVDJhX8oiL4vwzFmxMsPmjLgStZVJxI34RmyloTm6BrEGXQQ7Mz6L+AVhxiNYiLF47THSb4xZfO5MvKPCKtr7xSumSFSkgoreLqkWy4RIFMpEFykNK7g+SWYihpjKZIhAhlhOsGOiFW3YxWSN0in3SecWDZ6i8OD7o2TMvxcCPBkA+NT7pJQbgwNurMwzQKAszoO770NpuBBCiOIDEz8yw6Kl2viZIn56lVo045aMMBpWI4AyGSS73BfaXeim4RbZZ0wYHeIOYipxiawwfFTJeovCRJWYxCQ32tyL8QfHxxgk+pwcS1Fc/MV71j9PFrtnzZplTVajFQLYhXhmfteuXW085/chDmDp5hne+M+T4c/fnnVOg3IH0YRtLEhEswR9zEc5vMOCvAvygBhPCT5iPdujXuEsuvhz8V05ZL/Xr18/ZoHDGBMLGM4lFk0QZLwCIjPLlGSDpq58T0IIkczMmzcv3YI3GeckWSGAO1yTqUqi4otrd0Y+6VTjROM7ldJkXceLyNxYbAfiNdd5rMqwF2U84Fak27sRE4hnjD/I+sbahcx1qqOwdyM7nCop/sYmhuMnFrI/rxG1T8vqxhiExxGHWaCnqsubdjOuYS5NQ21iZVQroTIfCzuy9RkDIc5H3xsxkv4hVMl5hZkQxQmJ6CJlYQXZJyZMUskAikIZlN/PpIiJDJO0aIkSkyp8LZV5nlwwYWaV3L8nyrz5PskaZFCzcOFC2052G56jLqIjTLi/p2eGCSGEKNow4WMiF/UwRWD15pJYZSC0UgLNJDuancVjmVTiR85YwrPV8dsm4ww7ELLImLxGH+fVUAimPtbAWs6z1clq9ioqHh+FUu6iKJhnBJ8H4kXUroXPg4xs4roL5sTvzp0723iMG+XljN3wemVxBJuZqBct4gn7IHQjDCBY810ioiNqI2jwGZMVH20Gy3a36iNLHGGf79a/D8aWZOAxNiSDke28Bt8Z9j2IK/4dZwfEd94nzdCjIFzgux99TwUN5338e+EzdO/eeLs9IYRIBliQRHSOVjRRPURSHMIu1WPx1isk3sU37KRBNwug0epmFkaj+zCu4JrIHJSm2CTqYRHjtrEZ3Yg5LN4jTpMMRgUWc1f6cyCYI5RHadu2rcXIyZMnx7YRy/BxJwM+CsfAsVClhohPTCJWcVwsQiN8k/WekUc6NxIMEdaxhEM7YQwTz9tvv72N6M/zkugWjeVRsZ4xWE5ioxCpjER0kZIwqWGV1jOIuBHMKF1iUhRtKEq2E4HLM9FcVKc5lTzPk/s7plGa27QwiCHw40vHfUySmeQywEAoYbU++v36pLwwJ6hCCCHyFzLLKeP26z/ZZZQ3k/HtEDPwCPVqJURdh/gRbUqJwEummoOQvu+++1plFKXaTNLJyooSzXiONl/EK5vXwo6kuEMiA59bdKGiX79+1jzTM8vj/ckZ0zGZj36PjPEyggV2kiSiTUmj3yEihX9HiObZ9fd2+xmy8jyDL68gVLuwH+81X5BgUURGIc3mop8xog/fE+e7EEIkE9ixuUCMuEsGNZXJ0Z5nNJJ+//330z2OjG7XDbA+YT5JXEKQZr7pUO2EUExFMz1QuE4Sm6L9NvzGcZDIhcZANRqCtjcHJ1PbK6X8WEjmYxtjCuzKsPgCXxDgNfFHpzLOLU5ZSI7aprj+MWzYsHQxjuQzFmZ9sR9BGxszxiFc08lm96bk8Tfs5IjPjF9cG2H+zGJvvI86c2wsaqKL09HkBRaui0uSgCi+SEQXKQlBzQNhdBUUTzS/qBPYyB4iiER9Nk8//fR0nmki+bMNGKCwas73x8o5wZmBj3uR8l0T6O++++7YOeEDLAZNCuZCCFG04LpO9rhf85mUUn2EzQp/I3ojXhMr8Cv1MQALsGRvMdH1GOITVZqB8hg8RaOQPYbPKRnPPvbAc90hq5rXIxsuvtmoSA/ZdW6ZQ+acgxVfdGyG1U00OxDI0sNih+8pCsK6e6Uzwc9MmKZHDmK4L7bwPW9vfEC122mnnZZOaE5UY3X83BHUHYT9qGd7fuPJB5Trx5NZQ1YhhChMWDDlukV2OBVJ0exyRGIWrhGC6c8RXcAmc5tqMWI5c0sqnzzpCsHbwS+daiTmnVFrOK98Z9GdSjWu4Yjb9M7wDG/GFGgP2JBiUxZ9LCK2jyGildYI0gjY0e2I9oj8ZMq7jcp5551nMRFLMkR3jp9YSLUT+7IP1djxnxUZ5N43hNjDtR2/dhpdeyV39EaVN69F4oH7v+Mvjy+8Jxxgl0OmP2MuXxiP3s4999xt4rcQRQmJ6CKlIAuIUqKo9zU3MmnwJCWAeRDFs8wbflHmRKBi5dkDr4TV5IfviCahfGeUzjEBBhZL6HzO9xoVRxgEjRkzJnYe+OCHLAB930IIUXRgIuyL5lQsMXFm8ueCOFm0TFjJSveFVSafWIWQdRbNourYsaOJtnhkM74gdpAFhuDLJD2KNwblxjFEM6QVZ7IPGW9RAZnsfzIAHWI72YSvvfZa7DOmSsA/e8SQaFN47FYQu/1+xIPo8zuUriMq+H68TkbNYaPw2tHnon8L1gGJrGYkexDBBJvBaKPU/IT3xPeAcI/VQXwTOiGEKGy4tkcX9YjVXLeIvz7fQ8jlmsy1HIHXY0V8RRoL4g0aNEinITB+oAEoVWbRqja/1ahRw4RxRHN/3ooVK6YdffTRNnYgdmUkIpPc5Qv6vthPPKOBJzpFtWrVYgv7gwcPtvELIrhrHAsWLNhGxKf6muOMbiMLn5jEojANUWmW6j1GPIs8urjPvsRP73tB3KXh6OWXX75NdjnHTqUd2fhYnfEZRqvDgOx5KgKIX9F+JjwXYzAhiiIS0UXKwOA+2vDLJ8UEDffCjK7kEoQIbg5NL/A9I/sIKxeRGrD6zWAEP1QggOMP599zu3bt7G/3pPVGMfzdp0+f2O8MglSBIIQQqQvXf7KuEPw88xirL2KExwQmyHhoY8PhcQEhncwwxgFkkPu+TIJdpHVoREpMoeKNMQYNvKL2LyzmMtll0ZbJvcg7fC94uJIlzmQfodv7myA+kBXIGJCxnsd1bxQbzdxmgYQGb34/GYoZ2b/wXGRfe8Ua2XjZzbzmHPQyfSxiEgUCBc3tOK9ZzClIsDPw8ZSEdCFEMsC1FssT5vNc6zO6NhGvif/YeJF1js2nX/8R2G+55ZbYvojEfh9xhWxrqtmIE1GxmriAsO3zSZqE04iUJC0S+fzxvj+LntjI8nwk6RG7aOSJ2I9dGdnqjz/+uGV/87fDOIXHkiEfBfsVdAreDz3C0DkYzxAbeH6PgQjk3geGxAAWEjyRAL3Ee8Exfhk7dmxsHo0g7uJ9FF6Pz5jKOqzW4m1cGE+R0IaPui9gE3Oxgol+rixEIKYjwPPeyJin+aqSDERRQiK6SBnw84pezAkcrMZGvUuZLDEJ8X34Pd7DkomSJgmpDd8zA6r44O6r+tzIOCRgN2nSJLaNAQECjBBCiNS77mPPFW2YRbl0NKuYCbE3Cn/nnXdsUkkFGpNJsqei3ufYvOH5ScPHaFxA0CV2kGXsZcpMptkOPH9GGc4i92CvQ4adfzeUt7PoHRVEKIX3BmgI7Z7xRj+ceO9uqtVcTOB5M2sejx8tDejYD4GCzL/sgCBA9iLHnUg4r+J9fPOjURtl+NHPhExG/k+RySmEEIUN2dGI0n79Z2GbzHMqjKILp8zxEXRZFPVrPjfEdYT16PUT6xP2Ib6QZBfvD07lE1ncLLhjYxLfmBPPdTKr8WRHVEdQZxxBw/KCwsVrjo94SBY4i8D0dmEejD2Ni9pkkDMXJnb6PJnPi/dHhj5iusPnhCUe1jHY2Tj8zmdClnm89znZ7CS6oalgnRPftNUz2f13xm5k8wtRFJCILlIC/C2jF2XEUCbDrHgS1NwPzH3DCBT4ldE8Cq8yTXiLDggjLqBThu0TYM4FVs4ZHNFM1gUPVt6jAytEGC2iCCFE6oDYGbVR8axZJoSMD1hUJ9MrXizFkoXr/b333hubzGEFRvYXQrlnWjFeYBJOlle0GTUl3GSo0bArs4aWIjGwaEE1oWcEUvKOYEFFgGfbEe+9coCECP/++G6jE3/3F6fknvMiK8j6piGpjyOiVQdZET+OQJiI2sskarxDtUSiG9OSycgiANYGUe93ZQoKIQobrkssjno2OQ00WShF5GYbDTyjEKd9XIAFKAvmc+bMsbkgsd9BJ+Cx0axzrN/IyOb36HYy4Kk0IsudOSdaA6+TzPNHMt5pJEplUYUKFex43Z6GeIo20qhRI7NzYWyEAE+iGXGWhETiLNVgUc2Ezx17HGID+9CXLN7yBfGchW3GX8RdPrdopn78jdfNj8VhIQoSiegi6WFg7yVVXqLkq6rcaIzEhMCDHyudlC95dhods7klOmNIFDw0FXNrFoI4ZW40hyMg+/mAT17U35RBBftHAzjec0IIIZIfRNRonwsmZ1ShRQU/hFBKkJnoRkujiQ8I437tp+SaEmtn/vz55qONPYxnnTGp9okyC/ReAi0KBoQOF0uI98OHD7eJOaKvC+nEdc+obtOmjfnZZkR8JWJmlWjsR0WCnydYwuREUObcY5xK4/rt+avnBBd3Emkbg0DiVjlk7AshRDLAtSladU4i3LvvvhtbzGYb1y7idRSysmkoTiNMBOFobwzEZCzYaBIanQeyOEkTUPQDFmCjIjpjDGJAqoOozYICdmjYvXgGOf7nblvjVjBAXCX+RsdI3hyVcVj0e2KRgrFVVCxHqGdsRkNRsvOvvPJK60mGJV68kE7We3Yrv4RIRiSii6SGwMhF2S+6lO9GBXRWUMnQ8ZJrhHOfJBEE8CTz7LWiLpwy4UvmFfJEwCo4E1W6lntZt0OAJ4uNsn1v9sVAgeBN41n3z/WBUkE17hJCCJFzmKjhRRpdQMcXFK9QMsyi4jaZa5Qxe1YUIKZ7U1FE+Icfftiy0nzi5mMFF0s9q5lsrGRYdCeeF9fMYIRo956lJB0xgIk51QdUF0bhM4p+TniLI67Hw1iRakVK0zP6XNlG6bufb/jnZjdbjuazjDUYgyYyw45j5j3z3hMJWfz777+/CUvxYykhhCgMuG57HO7atatlTPtCott8ERuYv+GzHb2O4zWOaOv7EvPx7476erMtvqKN28KFC82OBCstMrSjInJRmaPz+mSpI35TdYducs0119iiBHPi6dOnpz322GM2j2aeTZyksoo4TGyLxgk+I+Iwz0nzdRYimGf758l8m4Vtr96jdwwVAhllpfM9+6K4EKnEDvwThEhS1q5dG6pXrx7++OMP+7ts2bJh/fr1YbfddgsTJ04MrVq1Cps3bw6HH354+Pnnn8P8+fNDw4YN0z3HV199FYYPHx6GDh0adtppp5AK8N9yw4YNduzffvttuhvv33//7bffwj///BP+/vvv8N9//9ljd9hhh7DzzjuHXXbZJey+++7hwAMPDAcffHDsxmcY/b1ChQq2f6rw4YcfhsqVK9v7dHjvO+64Y3jyySdDly5dQs+ePcPll18e2rZtG15++WXbp2TJkuH3338P//77r/297777hvfeey8cdthhhfZehBBCZMxVV10Vxo8fb7/369cv3HbbbWHOnDmhZcuW4c8//wwdOnQIo0aNCmPGjAmdOnWya/uZZ54ZnnrqqTB37lx7PPsdccQRYcaMGWHRokWhR48eFvtat24dHnnkkdCuXTv7CcRbXmPIkCEWGxPJX3/9FT777LN08Ts+nn///fdh69atFtO5+fCccQsxmhtxK7N4zq1cuXKhdOnSReKU4v3z3Z5//vmhTJkyGe7z+uuvh2OOOSbst99+9jcxvn79+jY+mDVrVrrH3XfffTY2gG7dutnfjBvimTBhQrjmmmvsfGrSpImNKxhLbY/Vq1fb51+iRImQ7Lz99tvhnHPOCQcccEB488037acQQhQ2n376aVi+fHmoWLGiXaOIi1xTifXNmzcPN954YxgxYoTtO3369HDJJZeEp59+OrRv3z5s2rTJtjdo0MAet2rVKvsbzYBttWrVCtWqVQsXXnihzQmJEzVr1gzDhg0zrSEnbNy4MXz55ZeZxnNuv/zySyye+9zT5+jcOC5iVGbxnL8Zv+y6664J/5zRD7Zs2WI6yuLFi23MhH7CazFeGThwYPjf//5n+/K5osMcdNBB9vell14aHnvssXD77beH/v372zbunzZtmmktH3/8sW3ba6+9QseOHUOfPn3sfZ944ok2zvLPwcc45557ro3thEglJKKLpIWLOAFz3rx59jeTRwISE8QbbrjBAl6jRo3svh9//NEmOkyaly5dGurUqRNSBYLIunXrwrJly9LdGAA4TKIJXvEBdp999jGx3AMyQYlAjahO0GZCiRgfH+TZ7uyxxx42qGAg4beqVaumjLD+4osvhu7du9v3z3ePeH7CCSdY8EY0Ofnkk+0zfuutt+xz9IEMvy9cuDCceuqphf0WhBBCxMEkrU2bNhbn3n33XRP7uL5zDW/WrJndjxDqEz0E8ZEjR4YBAwaYEA6IoFOnTrXxAxPG0047zcR37vfJHHGDuJcoEMKZvHss59j5mzGNwwQ+Pp6z4I1Y6zGdGEXs8oVybiQLxMdzxgq+iA6HHnpounjOjecuCtx8882hXr16oXHjxvaZnnLKKfbZMU5EbGBh/Iwzzgg//fRTOProo218wOeRkZDOeHH06NEZCulM6Fu0aGHCAEIOIk12hPQoCAp89iz6J4o33ngjHHnkkbleKCEx5aijjoolJHCe8XxCCFEYEMe/+eab0KtXr21EXq6fzFGfeOIJi39ck9esWWP3d+7cOdx1110msBMLatSoYde2vffe2xYJgWs7sdHnfsyREXj5ybiiVKlS6RKyMuO7777bZo7OvN3hdRDD42M6i7vEc4/pPkf3mM4iP88dL8Lz3h1E7eOOOy5dPD/22GNNgE8UjCHef/99E7xZaEBref755y15gc985cqVNr5i8fmee+4JXbt2DWPHjrUxmS8+cMx81nwfM2fODIMHDw4rVqyw+5iPX3/99abdvPrqq6F3797hk08+sfv4XCZNmmQJfbwvxkZCpASFnQovREZQQkRnbS/3wbeLciu8MPE8dz8tyoii3H333XYfdh/4qCUjlCXjOfa///3PSn+j3cFppEITk9tuuy3t6aefNj94OpQnsgSM8ivK4WieRkkcDVvwFMUfzv3gKOWikRrlcnhmJtLjM5HnCGVn3uCE75zPadKkSWbnMnDgwNjn2rhxY2smE19Ghh+eEEKI5MCtuGioiH0b1+latWqljRo1Kua96TYblBD7tZyYiT3LeeedF9t2ww03WImyl4kTez2W0njLPTyxjcsL2IcQd66++mrrv4GPt49bKCXHa5tmlTTowkbDm14nCt4XnvA0/yJe87lgaRO1MKOEnabaxEVsblLRJuapp56K+dXef//9VlLu3t6MA/gb8GL1JvPY+WAJEAWbNz+X+M4yG1/RX8WbkmMjmJOS82nTptnjOI5E2aVcf/319pyMe3LD4sWLY30B4hvwCiFEQUIMGjJkSMxik5hPXI/GJmzViN1jx46N9UZDB8DDO2rJyTU26s9N7KVXll8zaTyNfQkx8IsvvtjucREjiZWMJ3i9qE0JsZUYS6wl5hJ7E309ZYzAWIExA2MHxhCMJdzD3HuDEb8YezAGSQTEQqxsmBtjfYNNGZ+7W7Xwvh32i35X/fv3T9tnn33SRo4caX9zHxY57qnOjefBjg/b1ajPPe+LWIsOwXe9YcOGhLwfIfITiegi6aDBU3znZybDX3/9dboGFvidE8CidOvWLeZpSgB444030pIBJvdPPvmkTf5p6uHNPfB0J5A8++yz5u9a2BNbjpPFChqB0MiKgOYBG19Sgvn2BiAFBY3GXKxAQCcox/P444/HBl4MQBhARc+rN9980/bLyD9VCCFEwcEkGtFxzJgxtkjONbpu3brmg+6TRxc9mWx7fxR8zpl01axZ0/5msjxx4kRrKM7fTO7KlCljDUOjXqeIpLmJuTzmww8/tMkgx+fjEmIMnq0PPfSQxZbC9vnkOBEhZsyYYU3SiOFMcl1Uv/baa80fNb75ZrLCwnnU87ZDhw7mGY4/Pn/z3l577TXbl3FKxYoVY++V7yte5PbvDV/YzIR0RIy99torthifXb9zRA0aoTJ2TdS4DuEIMYg+AbkBf2DvLSCEEIXZ76Rjx46xazliN57m+GY/8MADGc7rve8Zcbtq1ap2LUQDYLwQXTDGv5u5IYIt4vqsWbPs+p9VnOM+YiHH5KI58YSYSewkhhJLC3uOzpiCsQVjDMYa7vdOLGMswpiEBLlEQHKB95ohkYE4idDNAjawaE3sZTGBz8WbuXrigsN9LIDT+DXagJT9WrZsGduGbuO/068jWfQbITJDIrpIOi677LJ0QicXcIKrN5niRvdnAiermD169Ej3eFanEUsJxgTqwoLJHY3MCPoI+hz3sccem3bzzTdbEEyVJqBk+yOeM5hw0ZrASSY9Xb8L833w+dJ1PSMI3Eyo6dTu2f6cL0wg/Twi257FGDrAF7bgIYQQxRWaVHljUCbH/CSG//TTTxY3+ZsGi9F4w+In1/+1a9emHXHEEbHFaa75cMstt9jk2sVDbj179szV8TGWQFBFFD3yyCNjkz7GGmROMUZJBRCBX375ZRs3+WeGSMxnRHNuKt+SGeI6iyaewcbnTyagT+BZNCcpAdiO2MJ2xgAsvGeUkc75lVUjOSoHfYJPdmN2xzxU8CVSdOG5GFfmtsLDkyJYVBJCiMIAwdorg7mODx8+3KqFvMocATWaFPXKK6/YdX3w4ME29/f5NCK5X989jkW1A6758Yl2UYh1xDxin1ccsfCKoE+MTGSD6PyEOIceQiz0OMUYhbEKY5a86iCMwT744APLwOe5SWpgQRnR3iubgLjIgkU0Kx8RftCgQZZZz3FMmDAh7dBDD419R2eeeaZpIr6gHf0O2Yb2UNgLF0JkhkR0kVQwWYm33CCLyCdIiLiPPvqo7Us2DtvImo6Hiy5Z1QUNExW6WxMYXAxo0KCBrdzGlxSnIkwKWXUmS91X/pmIM7ghkCcDTJQJ5o0aNbLjo5yMhQCyE/mbgRrvwQdNnpmHYCOEEKJgIeMoXkA/+eSTYzZiCNQI4kzCyMaNTqrIXvfqrgoVKthkz2F/KryYkJOdRnZ7Tm3eyD7jtcli5zX4SUYWk8VUX3jlc1y9enXanXfemXbKKaeYoMHElRJ23l9hJiFsj2eeeSYW008//XQ7R9zKx+3/gExEyt6xyosX0QHbvOzYrTCO8HOTzMicTuzZn0zHwhQEfvjhB1uAkCghhCgMEFNdjEUYZxEc21KvPsd+i6zx+Pn7qlWrYpVn3FgQdOEVUZ2EqC+//NK2U2GFMJ9R5jkx7bnnnrNYweOJecQ+YiCxMNWvjSQWELsZo/hnypiFMQxjmbzAZ/PCCy+kjRs3LrbYgYCO1QyxBRizeZxDTPcEiL59+6Y7B7Df8/hNvCa5ze37fJHEb9jNpkq1nCheSEQXSQOrvmQEu1juF1Mv5eICSxlXlCVLlthqcq9evQrVQ+uTTz6xDDeCCseK6I9PWVbZTakOgxEyBMgOZPWbQMiK/vz58wtlIMKgi2x5Pn8GSZwTBGnK3rxCoX79+uYzB7feemtsIODBmoGXEEKIgoGscQRut26hbJhbfDwnpri/KeXVQKWRi+8IpSzuXnTRRSawsvgerVJigpxd2y4mf5Qf+2SfhVb6gxR25VV+w1gKr/gTTjghlsCA3dw333yTloyQZce4ECGExRXGJJwDCCTure+ZdIzRskNWQgOZ69FqyOzCuduqVSt73COPPJKWCHiv2T0XOe5krzAQQhR9Jk+eHKswZ6HTr+Fe4UwyFiIt8zJiNrAfi6Bu1YYViF+HvSKJG5apmUEMI5YR09iXGEesK8rXReIDYxbGLv4ZM0dmbJMXD/fffvvNEuf4/KpVqxbr08GYDbGcvxHWeX1s07DZIwY7vjhPrL3gggti3x+iv3uvR617PcktUb7vQiQKiegiKeBi6wJo9OKJEI1wjqjO6nJGdOnSxfYlsxhhtKBKsJgYcWxM2AjkBH3Kp+K9N4sDLBZgreLepJTY0VykoLzGyTT0Entu/fr1s2MiMyGrx7jvrt9YCCgKFQNCCJHssAjukzsWOIkX3PDaJCON0l8H+zC/TmOfwqKoVxNR+cVknHECsdj907k/JxlMTPRoTu6TdDLU8FYvjj0zKINnzIXYQQY2NiZMyJMNKgsQXRzEAbzTt2cdlFHSBaXjvNesxBgasbt4Q8ZdduG84vxMhIjO4g6JCy4yZQZiBZWQHC+Vg2rWJoQobLD3oPqMhCvPRq5Xr57N2QYMGBCL8yRCAVninlHt+3vs92sxlceeDR2FmEXs4rpOLCOmZWXxUlRhDMNYhjENnxljHGJSXhL90EBYvGb8hRZC0mOdOnXsJ9Xe0f2i0BsOe163JuM8YLzn3yd9cbDTcfsxv7EIIkQyIRFdJAV0fI63cWH1kosvZUneRApYRY36pTF59lJrGoLQDCM/4Zgol/IVWBp7MKlP9dLuRH02ZA2wusxiCBM3VqwLQoSg4RhZBt4ZPCso/cYWKNrIxG8MLqJZbEIIIRIPZbpcc6lAo8QXmNR5RRo/EUQRN/36TGUR4qVPpvHm9NiLlRr3eQY592VXPCeTiok5E0AmecVxop0RjLWwzHP/dKoFvHlnMkJmoVvLMR4hsYHKNGfBggVmI8C4LV5AIGPPsx0ze4/RMSkVFO+//362jovHRa2G8gJZebw+GeZZgXWLJ6bQfF0IIQoa5n8ZzY/vuOMOuz6RiEb8jzYaxX7ExVfm9G4L4lXpWL8isuO5ndFiItdv9+wmdmGp6vZwxZ2lS5faGIexDmMexj7RTPHc4EkOLFjQLJSkSE9IQyS/6667bF5Nw29PcoguyvP9U2noSZRY9KH14Jfu3zuWPfS/ESJZkIgukqKcO750hxvWIARRstQpz+biS9dp9uUCG/WxJPuIlc94u5dEQwaTB2Yy53i9VPdQyy/wIb/uuuss+4pFDjKw8rNKgBKzzBZQOBYGW55JxiSZBjLx5YB+47iFEELkH8QDFsu55g4ZMsTiOMK3L4iTqYQli1+jyWCbN29ezDOTDCiqjbDqiPZGIfuc5lfbi81M7nldKpJoaEUlm7J1M4bvhnGYW73QGC4jj/HChO+OKrjKlSvb724dEBXFOVc86YIs7eiYhPfoTWg5J9z6LR4WdvBhd4EmmtRREFDtiCDvC0+ZgWhB8gmZ9RKQhBAFDdfKc845x+bLGV2Dpk+fblacft0l1hOTWajk+obQSmZy/BytdevWGb4eVWxNmjSJWbYQs/JiXVKUIZmMMQ9jH+IdGf95SXhjgRrvek9Owz+deHvUUUel80XnO2KBN37+DnzfLHD790xvHJ6PBWu0BL5T5vlUMQpR2EhEF4UKkw+agXGxPPfcc9OqV68eu3hijxLvxbl48WKbILFyXZDiNYHBm1ZxjEzkJZ5nD3zP8CllcITlyuOPP14gvrL4pyGsUDZI8MVrjUEcjcTcG84nwm7lEh2kkekghBAisZNqj51UDUWtMfA6528mTdh0EO/JGmYbWWpUnfkEDQGUxXREU792s0CaHbC5GDVqlAn1xAYWTSWeZw9iN8IHDbr53i677DJbpE6Wscahhx4as5Rj/Ni8efOYKM44DpYvX27CAduvuuqqdGM5MiYpSec+sh99cp/R+MJtf8jyzsl4EGEBoWd7dixCCJGqIF6TlewxHeGTuB7NSmfBG5HdFzuZs7m1B9Yj3h8tmuyEqB7vZR6dZxKbCmqeWRRg7IMtLpY3jIlGjx6dp6biLD5TMUhmOeJ3p06dTDfJbCEXGx4Wtqka49xgjEh2fPQ759zwsV/p0qXtvCBTXYjCRCK6KFSYwHBRJGiS1eQZ6UycsQXJKAgSmD/66CNbrWTym59WIWS/0ziTizkZR1iAKDDnDlafWShxqx5WqfMLfNp88MWEH281SvyZ7PP9UVHApJcJsk+Y/bzjJ4+dMWNGvh2fEEIUN7j2shjNhI347tdoLL+4Tvt1mDgLY8aMsdjLYxDUvQEpcWTFihUmonuWE7fu3btn+fpc87mu+2MoPVYPjNxBBjeNxWgGRmUAn320OrCwYALvzeMYZyC2uP0J271PCmMEH2+SgRcF8Z33xX2IQJkJ5GTN+TnsDcyzA6I7j2FMkmgQJMjApwyengIarwohChqumW6PxTWSxDMEdGI41dxupUW2OX7o2IqQnUwTb7ds8biOAEtFWteuXS3bOXo95vrerVs3ew2u2fld8VyUYXGXDH8+c+bMVDDlNlkQEd6r9hnPEXux3/EeNVj4us2aJ1Ow8B21UsUXHVHfzwPGGb747QsrVBwKUVhIRBeFBlYofjEkC81LeLgwch/iNRfVV155ZZvHesYatypVquSoeVh2IAjT4ISLNl3BaZq5vWZVInsgnlCi5SXh69atS+hHR/D2hiSILIgvWfnkUw3hgZqVeF/pdl9VIYQQeee2226LZRVxbfYsXmzaPMuod+/e6R7DYisZbPTX4P4zzjjDspWY3OFHzfWbxzD5y2ryzGt4Uy0y38hGFnkHEQRvW0QPBBKE9cIWbkmy8POrYcOGVrbOWJK/qWT08cADDzwQG0fGL5pTiebjAQT3zCBz0if4iETZASGfhaHc+ruygITwgMgQn2BChV20ok5l70KIgmb48OGx+TxWqwi0zKXdCjU6ZyeZCQHd+5z4YnlUPMXCKgoxhnk5zUKJPcSg7dlbiezB2MirA1iAJp7mBuLR3LlzrerPYy8L7VQU+rnhfUKIsfGNy3k8sdqtfvxc8PPEb4lo1i1EbpCILgoNn9ByO/zww9M1FCEYYufC33imk8XMSrSvijKJpjEGE6X4SXdeISMe3y1KxMnmyaycV+QevkdKsSjhIvOAruGJtMfBwoUSsu15lSK4k7nGIMGz0mhegrBP81gJLUIIkXfcRssXvqN2GUyWBg4caBnmCOHRyTCLmW6bQaNRrsktWrSwLKfslBzz3Pfcc49VGWEnlt99U4orZEB7Yzi86gvb4oUJOdmNHA8NbKkqdKsXMsBd6Ce70Rdz4mFyTlPbrMYm3OeWMSSCFESyxdChQ+31GAPHHwtVHYhQPXv2tDGQEEIUJCTF+Xzq7rvvNrsQb0xdrVo1E1Kji5bTpk2LWbIhisf7n19yySXpfM2xbmEx3W3eiD0i8TBWwhqHsROLHHnxln/22Wdt0ZcxGJUDWL306NEj0/2x42EuzvycuEbMc3sXFrfj7VfHjRuX62MTIrdIRBeFhjcUi/pesVLtkxsEUMpSwW1A6AAdhZKwjLp+5wYm70zkKQtjsq4MnvyHjuB4qvLd4hEa74GfaMh+oEs7JYBkc+Gthyc/gwMmnBzHiSeeaFUIXkZItryqEIQQIneQbeTZZS44UpYbn+FE7O/fv7/FXzLXENi9kSUL7Sy4RifZXMuzgudnsZ4xBpO2/LR+E/+vcoDviu8JEbowe8eQBceEm0UYstFJxiA5I1oCTuxnET8v2fOMJzzzPX6Mmh+QtXfBBReYsJARyWCrI4QofmDH4YuV2LVGe0wgpJOg5D7pxHqaipYpU8b+9kVPbFmIIWRDk8XucI2m0omxA/e/+OKLhfpeiwOMmRC7GUPlJSsdpk6dGhvLEXOpEvNeNGgBNJQlMYKb98ojqdLB/sXFc+J6VDvixmKMEAWJRHRRKNC4wi98ZAJhn8HvlP3EwyQH+xYaQ5KVnh9Es8+5aEd9uUT+Q3Bk4ETzr0mTJiV04s3Ai8km/nwu4HA+MTjAIoBzj1J/Jp6UinE/VQ/udcrtrrvuStjxCCFEcYGscsp4uY7SyJnFaqqQmPC888476RbB8U2NZhY1btw4Zq9FZvHxxx9v2etMnphEZdaYkTEDmVNkUJFJpSbRBQsNxDp06BBrAEsWeGFWQEQX5xFttkdG4w+SOrAoyGxsgtjD+2UMuXTp0mwdG8/Zt29fs2DJy5iHknfGOSQJqOG9EKIwwWYNO1bm0Z4kxdyOeZbHBfdJdz3ArbO40essflGTyiYqnDz7PDvXcZE4XnvttVhWOg3cc5uV/swzz9hzed+Sfv362Xb60/A3zWHd8ow+K/EWfVSZu12rW/P5vJ3FctmwioJEIrooUBjgM3n2ix7ZafztE2Um1JkJ2EwUuPCSSUTDi0TAiuegQYOUfZ4E8P0SQN0rPRHBkEDfrFmzWMBlpZtV8PHjx9v9THaj3nyUR7Nfq1atbMDgj8OD7euvv87z8QghRHHCJ83EbjJ2HSZJeJligYHIyfXeF9OvvfZas6Pgd7zSmThRdUaMQHh8/vnnLas4Iyj/JWMKoZ0MKmWfFx40gaPai6x0PLyTQeCNji/Jglu2bFnsb8af7du3N5/zKFSiUYbO+Th27NhMn9szLEnIyI7IgA2B9wKg2Xlu4Ngoe2/UqJHZ1iA0IVYJIURhgvBNohILi1QokXnOtQ6rF5oeA9nkbv3iN66jLqITM4gdxBDmbjyPKBwYSyFse1Y6Y63cQgLEFVdcYd8/SW40H80qUZLz4Pbbb7cFeXQbLGH8fCE5zu1/ScoUoqCQiC4KFFYho8GSjGD3NqMMlgslk2oaSTDJji/N9WBLuVheLTYoH6KciOfE+7woZJ/TsIPPBvDGxJqEwQfiBIEmFSZXeKeRlc4tEZUHCOMEfexiGARkdd5g4ePZZPG+fKx4CyGEyD7Tp0+3yRG9S7DUAOK8N0CkyTSx18cBZJuThe7XXSzWsNUirmXVINq9WBHmi0r2eVGI59GsdETeRNnv5Qaq3MqXL2+WAnx2fLYs7mzcuNHux+bFS8WpkohCNZrbEGUmHrBIhOVQTpqdkdVHFntOxrPRLM0333zTsgN5XW+4RjN1IYQoKMaMGZNhzKV5MolynizH7eqrr7bMdK59XLt8O3NxFgP9Wkis8AxlYgixJNUpCjGdTPKKFSvaWAtdJrcQd90GDZsezodoDzoEc491NJF1qx/f584774ydOzVq1DAhnUVxEt7i9SMh8gOJ6KLAoCzHm4tEPdA9eHLRcxGToELAxN4lGlS4QNIAKq+Z6HT6JrOIVfKi5KuG76s3k2Iwwmo/pXX4f+Mrz0p+KnQwJ0MML1smhe6Ln1uwacmOv71nvpPV5Qs18UI6E1YhhBDZZ/78+Xb9JN5yPWbCzd9MoPHY9Aw1BEoajrkYSHludEGTqrGMiDaeovKoqJR6F5V4Do899ph937Vq1cr33icZgTBDgob3PWEC72XhLLBzDnFjfMk27otWMZBZjh0R9+Hxm1mm+QMPPBA7112cTzT4xSJiMI4FqjL4P/bpp5+mPfTQQ/nymkIIkREs2nmzR2JTPFTZePU5WeZulelJccQ24veqVati1UosdHKdplKHhfiiQlGJ6egz5513no25aB6bmyozHkO8Ip7yHN54Fq3oq6++Mq/8iy66yERzqhqo8KLRd3yD7eiNRXGEdmz/ZO0i8huJ6KLA4OIXbR7ikxf/GS3zIWjSWIwgy40LaKJg5ZSsnapVq9prpAL4ZsYHC78xsXOYWFHqnhGIF+y/cOHCtFSA7ERKqzlmshjz0hk8Hp6LTuEINtgE8BkyWKO82pufHHzwwZYtEf2s8fYVQgiR9eTIhWzsslyspNEYi+XeZBTfchY4XSgn2wj7D37HD53MLMYLiOpMwjNqasXzuw3YrbfemqcGkQVFcYznbp/GJJfYisd9QfPZZ5/Fyr67dOliwoUv2HAuAtUOHJ/vE8UtiLgvOpmPQqk51RTu3ZtoON+9oZoaiAohChPivDeBxAYTAZSmx+53Dgil3F+/fv1Y7I+3b4lCBTLXYBKZonZbyUxxjOmMteghxzFT8R21Rs3pfBzLPr5zrNSYk9PLhMUWRHVfVEATiIr1xGqE/OiCDDdfpCFW59dCthAgEV0UCGT0uN+pB1FKe72UBwuPeJgwM4lOlMcjF9977rnHLrZ4bqdSaRgrsddcc42VvlMSz+2GG25IO+aYY2Il7qxm89lmVhZMCTKfNav9qQLf2f3332/fGaIKfrh5gXJDVqjd+5xKCEoGCdS8BoGbgYCL517CHb3RBFUIIUTGUD3EhIgGzQjbXoZLrCLbym1cmDyRPVu3bl2bSBOXuY8qMUp5uZ9FdRbRaf4dDxnNJ510kmU4k+mcKhTXeA68VzLPEK+xTyloEDA8llPRiO2KW7i4sB9tcBsveHhZOd9NZhn1lLu7LRx2BtsD0YA+LfFe7Fl9hvx/IQkEC5lUSQYRQhQtiGNc67DJYk7dp08f+5s5FNc1Z+LEibHK8/gbNmzRsQOxgUpkKpJTheIc0/EzZwxGFXdesr/5nIiD6EKI6szXM0ug5DOsV6+e6UPevyxqDeQ3xp3qiyPyC4nookDAA40LmjdRQsgkWPJ72bJlLXsnM1jVJvOGiXY0KOcEhFEXTvE/T2RWc0FBQ4/oijYr34i/zh133GGlyJmtGJPtTzOQVIRSZQZlZDRmlI2YHRDgsQvwAd5RRx1lZXUEbjLkKB902O4LPXSKj650490mhBBiW8j88WxfmoN6VtBTTz0V64nCtg8++CD2GOIxTZ+5j4zzzp07m6VbZs1DAcEToZ7MZq7fqUZxjudklNFUjO/7xhtvLPDxmAs9VCSyiNOiRQv7myxBz3rzuM85FvXi51hZuOE+KuUyw6ssW7duvd3jQSzwcUl2vNG9qpNydzyDEZ3oIyCEEAXF7Nmz7TrE/Byvb6xRXbykypesdM9WR0z2hUXfhxjv8ymuq1Qc+3U1FXuUFeeYTkUhYzH0nPh+ItmFz4DFE++Xd9ZZZ5mFn2efM4b0ZAkqFKhSZFGCxXCvKPNKsegNW6BU1HxE8iMRXeQ7WGTEl9qw0uplOIjaXDxZxWTlloafUfEbsdPF9tw0pWJ1HAGeVUpWTFOV7QVoJnaZ+Ydfe+215i9Lw41UhYwu7FSYaOa24SiZAkw8GeBlFVQRaHzRh0wvPmeCc3YzxYQQojhy2WWX2bUTSwvPOne7NirKaCga38ib662L7cRpHy/gn50Rs2bNskkTGc3erDTVKO7xnIkxjcT4rkmUKEjRBHGHjEHOMT5nFn68BwrnJpC9xqI9TXHJLI+yfPnytHbt2tnYIDPYx8e8GfkER2Es0qBBA+sNkB0/f6o0GNMOHz7chAZErEQ0YRdCiOzO68ny9cVykpTw83YbKzKKafbIIqVXo3lcJ4luwYIFsUxzrv3EAO6n8jg3/trJQHGP6WShMyZjDMcCS25gEZtxAWI55wpCOZVWZPF7pjnnDiDWv/TSS/b7yJEjYws68Tas3BiXCpFoJKKLfIeAGr2YUfZFAKZ8lr+5OHIh9MwgRHQybdxuhYBKKZhfLHMCz0Xg4qKa6k0hswrQBC9EiGjGlIOvJxNE/EBTHQZqrNSz+pxRJ/jsBOjtrUhTFcE5V6VKFTsnR48ebdnvCEA+MMhOtpgQQhQnXnjhhdhEBoHPbTKidmxcW1kMR2Tv1q2bieBejuuNH11Qx34tHrKRuL+ghddEo3iefkGEBZfceqrmBoRoysYRzYnnVLvhrR8dQzE2zYvvOB7BnMcXXnhhgo46zQQpsjc5Lm+GmtvMPyGEyA1udck8ieu296864ogjLCvZBc8777zTFimjvdDoR+a9SxgLYNVJDCAWpDKK6f+X+MjYjDEadn55AS99rNVoXMu8nc+X5MuMnAuIgyRr0FOHx7jrQTSBkzGpEIlEIrrIV/D48gmxZ/rQwGnUqFH2u4vAZAbhi852VrB9tTovK9IE7urVq1tp+bvvvpuW6sQH6H79+sU+Pz636H3AZ4eATgZ/dnw5U8l77owzzrBBWW4WVqIgwtAsDKGcRRsGgnxeZKEx+OM85LUQ71ng4W+6q3NOsfIthBDi/xYfvWS7a9euZr1Ghhp2HfFx3K+tiJjuqUopMIveTzzxhGUeTZo0aZuPlUoyysG9gVkqo3j+/yCzjEkvWdVup1IQZCfrOztEreCi4Ofvi0qJGIPxHG6HkMoZi0KI1MaT2/Cupk+UX+ewdGHezd8NGzY08ZMeJ9FEugceeMCeg2s9FThc+1mAT3UU0/8PxmaXXHKJxaq89KrhHGO+zTlD7xJ6kET7onG/J8WxqMwCDhZBiO4sgONu4IkcLqgnor+eEM6OQYh85Pbbbw9///13OPXUU8O6devCzjvvHNq1axemTZtm97dp08Z+7rLLLqFZs2ahQ4cOYd999w1VqlQJxx13XPjxxx9z9bo87swzzwzffvttePXVV0ONGjVCUaNkyZJhw4YNYe3ateG5556zzy9Kly5dwtSpU8Ojjz4a25fbH3/8EVKZEiVKhDlz5oR69eqFJk2ahJdffjnHz8FncN5554UDDjggVKpUyc67r7/+2s6V9evX2/O3bNnS9l24cGHYunVrqF27tv3N58n51aNHj/Drr78m/P0JIUSqMX78+LB69epQqlSp0L9/f4vj9957b7jrrrtC+/btLR5999134YsvvrD74corrwxjxoyx30uXLm3X8hYtWoSKFSuGyy+/PN3zc91t27ZtuOyyyyyuMWYoShTXeA5nn312eP7558Nbb70VmjZtGn7//fcCeV0+R+eff/6xsSqQYPTee+/F7uPvp59+OowYMSLd43/++WcbR1StWjVs3Lhxm+dnO2MUHj9s2LDtHs+///4bVq1aZfvHM3v2bBsT81ldcMEF4fHHHw9//fVXjt+zEELklR122MHm8ieffHJYsGCBbevZs2eYN29eWLFihcX/E044weL/xx9/bPfvuOOOFr+7du1q13iu9W+//bY95qyzzipyX0pxjemMzdB40He4PfbYY7l+LmIibN682TSd888/P2zZssW23XnnnaF58+b2ee2xxx6hfPnyoUyZMqFcuXLhmGOOsZhZq1Yti+3cP3z48HD00Ucn7H0KoUx0kW/ge+4rz95YlHIbsnZ81fqrr77K8LE0CvOVQ5qR5QQy4E444YS00qVLp2teVtRWuVlp9W7nlM6R9R8loy7o3CZMmJBWFCCL/JxzzrGM9Jxau3hDHG74ntLhGw9TMirwP/XMSTx5fRV86tSp23yWZFwKIURxh6onronxfSOoAvPrJb83a9bMfseWyz1UidVZZQrROIqsJppRehl4qqN4vi3EceI5GYwFae3CWIrmY7fddptZu2Atw7lI8zJ4+eWX7fzEcuDzzz+PPY5zEd9f7uP8zwga7vkYLSsPdSo5vCEvPsLx4MHu/sNunUC2nxBCFBRcC91qNQp2WM8//7zN67k2eS8zv9Eg0rPNubZzjd9rr73SXn/99SLz5Smmp4f4SNxi7IYNX25wuzJu9CXDrgUrNiqx3LLFs92xBmI72elYAVIBwXjSdZIKFSpYFSSPFyIRSEQX+QYNxDyAEiz5iRCJnyO/09gJevToYSJltEyHUm4uvExkMppQZFWeSwkPzaBWrlyZVhwgOOFLVxwhaGK3gkd6ThprEZg5Twjw+PNnxtChQ+1cRWRn4OgdwP1GmRi2QUIIUdyh7whNobhe+vW4UaNGdq289NJLrdTbr5uXX355TFz06ynxPn5hnYVN9m/duvV2+1kUBYpzPAcs2jgn8D4tqN4jWAhx/jHmfO+99+xc42/GCAgBjBc4p9mGlVAUF9ixLYwK7A6P9cV4fISzAhsE3ntGNnU8D3ZGCFCMj2nqh5WCEEIUBFhmMNc6+OCDt7nWYYGJnYY3FY+fJ5GkBFzTmzZtatc5rp3FgeIc0xmzETOJj3n1vKcBPRZpr7zyiv1NwhuLM/FgE+R9dk477bR0Y0xvWI8dbqo2sBXJg0R0kW/gbxm9cHEhQ+RmBdonFGSl+8o1WWp4Y3qmGaI6K9s58eHiNfGuJpO9uEAGAEJDcYWASVYjzWNpAJpIaMbq4g5ZZOeff/42wg+NvoQQorjDRBpxj+siPSO8YTgTKPyc6eHhGbTe8Gnw4MGWtUZ2Lb09oiAS7rrrrtaoKtU90LNLcY/nwLiP7/2yyy4rsIku55hPuhmXIhbx95gxY+x+RCAfq8Yv2PtYl4rLjBg3bpzdT2ZcVu+HMW9m97PYj9erN1UryEx9IYS47rrr7DpGpTfXob59+1pjcKC3FNU89DmJr9il3wliKtc2mjdzbaf5Y3GhuMd0xm7EV5LQ8rLwS9IcsZbF7rlz51oFGWNOh3OMnmmAX7+ffzT2dveD6HlJwocQeUEiusg3YdObOVB+w88WLVrYJMEbjVJmw8SAbF8mH0ymfb/cgLUGr+mrlKL4wHlVuXJls2aJVjRkFxZuyDR/+umnLdvijjvuSLvqqqvsPgaMboNDJhi/e3kYN8rPMypvFEKIog52a97kkEkJ18Ty5ctbxhn2Y/zN5Bt7N8pxWeT2xmN169a1iXVGFi1kpHOdZYEU6y5RvPBYe/fddxfI6yECEct5zcmTJ8fOZSxWvFoNOyG3IoqK3YjbnslOU9x4mNjT8Ix9sHfJLjTa5f0jQrgQTyM+IYQoSEhQ8jk9i+Nub3nooYfGKoa4XiGYR4VKhEu3bPHKXq7tonjBGI64SZJFbptiM05s06aNxdKHH344bb/99jPrNeIjizpUO55yyimWrMnf5cqVs/PtuOOOi1VHePKGV0i4ZZsQuUEiusgXyM71CxVe3UwsCMJ4V7ENwTMeRHQujkxUcpp9NHr06Jh3tSiecH6Rjd64ceMclf3fe++9ZjfklkOUnPm5S7C//fbbY4s7BGfPQieA+374rAkhRHGCBUeERzLLqCRjQs31kHjMxNmz0H3SRDVPt27dYtv5SYZSPGQXsXjJAnxWPtKiaHPzzTebCDNnzpwCeb0hQ4bYOVmmTBk7t4899lj7m3MWyFB3H1Z8+qPQn4XtvvgezzXXXGP3k4mZXcjEdwsZytaZ9FOxIYQQBYln8yJakhHs/UxIOIq/xvnNe00B13Cu5bfccou+uGLKhg0bbExXs2ZNO4dyAws29LpjfEksrlOnjvXBo9KR+T8x0u3QiNds41y84YYb0gnofkOLimazC5ETJKKLhENzJveOxnsqCiuFbO/Tp0+Gj7344otj5V/ZbSCGLxYT8k6dOiXk+EVql80RKHv37p3txxxzzDF2ziEEMTCk6SjNu8j8QjSndJv7yaBkxZuyPHz6KfP2QEyAFkKI4iZyenn3tGnTYgIkVhPNmze3v5lYO0x2vHmiT2iI3VHvaxbQsXtBnPcJuCieMAbEG50Khg8//DDfX4/zkGo2F87dw59z1HvzML5lGxZE0cV6z0aneVlGXu6UsXM/iSKZWbGQbEJFJeMPINsTewR6DdA7iMczXikqzXWFEMmPNwcnZmOhQdKQZ6HT44xrItupxPE5EdVmngyH6Mk1nGu5rl3FG84lxG/6juTVqo2Yi+WqWwotWbLEKiOjkFjJ+cj5531NGKNGhfTMmoILsT0koouEQjkXYqRfnKKNQwiepUuXjpW0slrI/dGJiJd/E2yzA12Wec769esXG89UkTX33XdfrCQ7OzBRpoEYneMzymBnm/v8LVy4MN19119/vVVXqEGJEKI4gW2W+0Zjg0V2Eb8PGDDA7ieD/KabbrIG3z4OYLExvqdEVGQHMtvYPmPGjEJ5XyK5wCoN4Rg/ccaX+Q3jAM4//H0pCaeHD6/tXq4srJ999tlpzz777DZxnwl8ZtZD7OvWhjw2s4QQF+gdz5IjMx7bw5zYwQghRKKy0EmC27hxowmS/I2A7ovizLvcsopbs2bN7LFcs2nyyDWca6cQ3sibyq+8gIDOuUU2OgvTuB7E2wqzoE0sZwGISghuaFQ0eo0K6QVV7SaKFhLRRUKhWahflBAeKUOlGSMZZdzYjm0GFzYaOHlzB/wooyuV2Snh5gJJozL8VwnsQvhk9corr7RqiPgGYLmFEmzO1RtvvFEfshCi2OOLlVWrVrU+JC6Ox8diz1pjIu4WLjNnzrSxApm30cw0REjup2GZEA7nSalSpUy89saa+V3R5uclJeiJStDo3r27nd/YtGQEtkf9+vXbxpZQPVeEEIUB11sqw8gyX716tS2Me6a5NxpFII+3cqF6hsdyzeba7ZU8QgA2qQjaeWm4ioULtqpUkGPLipULDe2BPiYkx3Xo0CFtxYoVae+8845Zt5Cg+fnnn9uCTrQJLq4JSoYTOUUiukgYTDoQtN0jmowe94/kIuZNRfBUc6GTLHJvKBqfkZYVPB6PagT59957T9+iSAfZYDQYOfjgg9PWr1+f4/OYFW2CLL6nixYtSpsyZUo6e6Lp06dbpgUdwp9//vm0a6+91rrNa6AohCjqcI0kA4hrIpMWGieOHz8+7Z577kknirPQ7ZlqJ510UmxxPbpo7jBBJ5MNsV0l3yIeKhcRctzqJFnIaOJN9VpGzdMYS3hpeUaWL8DCf40aNWIJAIgB+LrSlE39AYQQhQH+0lyLPNucxo5u3zJ8+PDYeIAbC4Feqcs+0Yp0IYAxHv1wOJ+w+8ktVIgRF713GdUSxGRsWck+J3b6vBw7wWi85nHex+eiiy6SiC5yjER0kTAoM+ViRIk3JajuEcmkmQsXK9Je9hW9kBJoo82bssPEiRNV8i2yhAwyOoE3bdo0W8ERWxcGgnjxEnyZrHNe4tPPhNg9AckK69y5s/1NJsYRRxwRGzwSwIUQoihD6SvXOyYoCOVRyCI/66yzTDBkcu3eqdEstYoVK6YTEcn0xVedElsEeSGyqn4gVhcEjGOxhWP8QLk4GeJLly61+zhPsR4644wz0i36kPFGMsnxxx+/zbiD/Tz7jf8fGdGgQQO7//LLLzfLJN+fhAAtLgkhCosff/zR5kUs6JGdHu8vzXxr1apV6Wyx7r//fn1hIkOIoYz5sALMa7UXsZakt6idGn164nup4HRAUif7k70+a9Ysy2D3hBAhcoJEdJEwyDDnQkTDiGgZN6uNXCA9K92DbBSaMblgmZ0VcZo8YrEhRFbgPcp5NWnSpO1+UF6m6I3ECLCI6jTNAYQf904jE90b6rnY7o9Tp28hRFEGMZEqsPiGykxgDjzwQLsWMoHxyjRs16IiOlZb0f4TAwcOtIw1BEghMgMRmf435cqVy3d/XRZ5fIGcTEq3YvF+PXj9ujcwE/Go0OSe/+6jHqVly5aZWhbxf4Lx8RVXXGEe6IxbfNGpoBYOhBACsNrIqLp22bJl6eJ51BIDSDTCYiN+gVGIeN5++21LThs0aFCePxziNGMDqhohvtpr7NixZiHDGMLHpFSs+8I183d6+mTW+FuIeCSii4RANpqXdrEaTVa6i+p4nnOh5He80RDUvZsy4JuGr5U3KskKVg95Xl6DyYoQ24PFFjImv/nmmyz3QwDCM61Pnz5WthifRXbVVVfZOdq7d+90menYuEQHkuPGjdOXIoQo0pAli/859itkm5FV5IuLZcuWjVlgce3lpzd1IqP2oYceij0PjUeZvNx8882F+n5EakAzMRZwOnbsmO+v1aVLFzt3mWR/9NFHFu/5m3M22iiX5qNR2rdvb9vbtWu3zXOOHj3a7iObMx4fV/D/waHfQGZZ60IIkV9zemI3MZv5exSsLLlORRuJcsOyFfCh5hrNtVqI7CSwEfPyYs0bdTtgoZp5PH33PDP9/fffN+9+zzrHvoWf/E2Pkuh5zPEIkR0koouEsHDhwnQXIcpqyBbn9yVLlpiQzu9Ya5Cdw+9c8DwbjQvgU089tV3bjQkTJthj89KMQhQvWGxh0aVJkyZ58jyL90Un04K/8URnwOjn/nHHHZfAoxdCiOQE32aueVSZIaqfc8459vctt9ySduKJJ9rvLEzyk8VMek1EmySyoI7/M5ObaBmuEFmBHy/nFJYB+Qne/T7pplGeWxjwExCJXFiP+rq6lSEiU3xlGo/hPpJOotZFbCfrk+fjcaBGZ0KIwgBrC6+CITOXhUGS47gmcZ0igzc652cMQAxfsGBBthLihHA4b2hQT2V3Xmxd8Djv1auXWbh4ldjjjz9u9zH/5+9DDjnEfjZq1Mhej99JkIvO4YnBWgAS2WHHIEQCmDFjRuz3nXfeORxyyCFh06ZNoUSJEqF69eph8eLFdt+pp54alixZEtvvwAMPDFdffbX9feGFF4Yddtgh09f45ptvQo8ePcJll10WzjvvPH1vIluUKlUqjB49OsyZMydMnjw5R5/a/7/QGNatW2fnLqxYsSL8+eefsb/ffvvtULdu3dhj3n///fDrr7/q2xFCFCm4Fq5atcp+wuOPP24/zz///LB58+awYMEC+7tZs2Zh48aNYZdddglr1qyxbfvtt18oV65c2HvvvWPPd+edd4b33nsvTJw4Mey2226F8p5E6nHttdeGM844I1x11VX5GmsPP/zwcPnll9vvd9xxR7jlllvs9yeeeCJ88sknoUKFCnauw0MPPRR73MknnxyOOOII+z/xzDPPpHtOHsP4+N9//w3vvvuubZs/f36oVKlSuP/++8M///wT3nzzTXts06ZNbXz85Zdf5tt7FEKIKMR3v55dd9114amnngoTJkwIrVq1Cn///Xc49NBDbU7kHHzwweH1118PW7dutWvymWeeGTp27KgPVWQLxn6MAVeuXBnuuuuuXH9qZcqUCXfffXeoXLmyaVLTp08PLVu2tPt4frSjZ599Nuy0004WczlXYerUqaFDhw6x5/nvv/9C+/bt9e2J7SIRXeSZP/74wy5CTq1atcKOO+5oImO9evXsghUV0bt16xY2bNgQatasGX788cfw8ccfZymee1C/5pprwp577hmGDx+ub03kCBZdCKDdu3e3xZis+PDDD0P9+vVtYNigQQObDB922GFhr732CgcccIANIgn2URGd/aPn6sCBA/UNCSGKFEuXLg3HH398qF27tol9vnh+ySWX2AIlk4/TTjvN7v/000/TLXaPGDEiLFq0KPY34jnXyT59+oQTTzyxUN6PSE0YX44bN87Gj717987X17rpppvs9WbPnm2xvXHjxvaT8xkYz8KkSZPCL7/8Yr8znm3btq39PmXKlG2ekzGy/3+CV155xf7vMFZGXGfiX7FixTB37lwTr0g4EUKIgoDFPZKBdt9999CuXTtb3IPOnTuHXXfd1a51X331lW1jTs6+J5xwQujVq1f4+eef7drMNVOI7EJMvPHGG8OAAQNsbJhXGjZsaHN1kj6AuTtjVHSnSy+91LaR9EECHIs/jGWjcXbhwoXhhRde0BcoskYJ+yKv3HXXXVYC4+UwNFrMyOeR8tXff/89nRc6TSDwXOvWrVuWrzFx4sRtGjgJkRNoBIYfL5ZCWUEj0WiZ4tFHH20l3TT28pKw4cOHW8k2DfLw6KfUm+177rmn/eR1hBCiKNG1a1e7vl166aUxywrKZonrbtsyfvx425e+J/hcRq+l+FJ67MfG5dhjj5WNi8g1WAZwXuV30023caHh59y5c+137ArxDcbegPOYbQ888EDsMWvXro2Ne+P799BEjftat24d24ZVws8//2xWCVgo7L///mmzZ89Ou+eee/L1vQkhRJTrrrvOrk+tWrUyO1ZvBo4lG9v8esitTJky1jwUay3+pum4ELm1dcHaD5uVaOP53EDfHZ+/b9iwIa1Hjx7W6wywXvPzl/PVf/fxqlu0lS5dWpZqIkskoos8g2AYFdFnzJiR7v5nn33Wth9//PHptjOR9ouWNyTJCDwleQ2CtxB5Ad/97Xmpcr7hoY6nLxNb/NWYLEP//v3t8W3atLEgzzkM+Lgx+aU7eIsWLcwrWAghigqIhYcddlisJ0n37t3td5oycS3EQxWfyVWrVtn1sG/fvrGFRcYGTGIchHbui29YJkROQLypW7eujS35Pb+gjw/JHjQj41w/8sgj0xo3bpz2xRdf2P1jx45Nu/rqq9OWLVuW7nGDBw+2MUS8IDB//nw7/3meKDQRpWEqzcmXL1+eb+9HCCEyEzJLlSoV6/d07bXX2u8XXHBBbL6+6667xoTH888/36699ILiWqw+DiIRfXbof5cXaHpfvnz5tNtvvz3WCNcT6Dzpjdt9991ni9b77befjUsZr3ofFG69e/fWFyoyRSK6yBOIiDQUia7effXVVzHREXwy3a5dO1sdJJuHRqTw66+/2kUuq6ZiQ4YMseCtRg8irzDAO/nkk00gz81gj0El5/JRRx2lL0MIUWxA1HNRnIVGJij8zSJ5lJo1a6YdcMABlknL/dOmTYuJjUCTMsT4li1bFsK7EEUNb1Q/derUfHsNxgrRczg6vs0N33zzjR0zwnw0S51kEm/CK4QQBQ0LgSVLlkwrW7aszc+9QeOVV15pP6tVq5YuY5fmy1OmTIk1XxYir1x88cU2RmSsmBf88StXrjSh/LXXXovFcxbB0aLYh6oxb2hKggjxGZ3Aq8rjm4ML4ci0SuQJ/KPxRN9jjz2smdKRRx5p3o4lS5Y071R+9+ZJeKbhO0WDBxqK0UBiy5YtoX///pk2Ffvpp59sXxpJ0ZBJiLyAVynnE16kTz75ZI4fX61aNftJUzGaiwohRHGAhkzuNUlcP+6446xpM30jouOBZcuWWdzGrxqPZ7woaSjqPPzww+Hbb78NgwYNKpT3IYoWjDubN28ebrvttvDXX3/l27gheg7THyUv0G8Fv2ESmapUqWJe6mvXrrW/b7/9dusZNHToUPMXFkKIgoJ5OtefOXPmhKefftoaNzP3dn/ogw46yLymS5QoYf0aDjzwQLv20ly8Tp06+qJEnqGJ9/r162N9R3ILMRbQohibeu8d4jkNv8ePH2/7oFvtsssudh99fH777Tc7l2kAzlh1yJAh+lZFhkhEF3nitddes580WaQ795o1a2KTAQItzUWWL19u+9SoUcMmCDQS43E0bIp2+M4IBE8amP3vf//TNyUSAs1uzz333HDrrbfaOZoZiEB06GZfBokXXnihNdDZb7/9TETiXJ85c2aoXr26NdzhPG/WrJkNJpnUV6pUKXz22Wf61oQQKc9zzz1nP7nGMYHm7++//z589913MWF82rRptg/XSKBJItdGfsKmTZvC4MGDw9VXX20TFyESNen+8ssvw6hRo/L9A6Ux+UcffWS/f/311+H555+33xnz0mSc5mh+vnvT0B49eoQ33ngjto1JPBN0qFy5cth3331Dz549bWyMcP7iiy/a+NgblQohREFBs1DmNSyCs8jHQiXXOhovzp8/3/bp0KFDuPzyy+2aS5NR4roQieCoo44KV111lcV1xox5hUUh5u+cr8Rp5vYkcBKHmcujXdHMFK3p1VdftfP9vvvuC2effbY9ngXtjz/+OAHvTBQ5YjnpQuSQ77//Pu3ss8+2kpcBAwbEtj/88MO27bzzzkvbtGlTzFuKpklAE7J69epZSVinTp0yfX4aku6+++5m9yJEIlmxYoWVUuPjmxmnnnpq7Nz1xmG33npr2mmnnRYrH/cyxvr161sZpDcc88cNHDhQX5wQIqWhSajbT3z33Xfp7rv77rvtvoYNG8YsXqI3tjm33HKL2b9RLitEIqE0m0ZgWBDkF6NHj7b/A82bN09799137XfiPSXhW7dujXkJRxudtm/f3rb16tVrm5J1HyPgmX7TTTellShRwsYmeKL37Nkz396HEELEk5mt6rnnnrtNXJ8zZ45da7nmYvUiRCJZt26d6T/MufMKc3N8zvHyZ86OVRG9y7AjpvGoj22xIKQReJ8+fSyW00zX5/vYGMnvX8SjTHSRax577LFYidcpp5wS2+4rdqwmkpUOZcqUsWwbwPoFOwyygLHVyIx+/fpZxtsNN9ygb0kkFGxZLr30UrMS+v333zPcBwshKimwLLj44ovD3XffHVq0aBGOOeYYu5+sdLLNgfOZ7WRusHLOeQtPPfWUvjkhREqzzz77mJ0LlWHEcUptnXnz5tnPY489NnzxxRexsliuhdhWjBkzxv4mU53sHrJyy5YtW0jvRBRViOVYDwwbNizfXoNxLplsWB1wDh922GEW72fNmhV23XXXcMEFF9h+lIo7Z511lv30sbJz+OGH20+Omf8rZN2R5Xn00UeHK6+8Mtx777359j6EECIeqsaqVq0aZs+eHdtGpZlnnztk8GKNwTWK6xdzdSESCZVa3bt3tzEjY8e8WhSNHj3a9CbiKxWUZJ4Tu7kPiOvM26kiY4yLfdvWrVtjz7Fy5UrN58U2SEQXeRLRgQlA27Zt7eL06aefxkR0yrW97JWSVSxcsLxAPMcbHdsLylczAv8q/Nawcdl77731LYmEM3DgwPDDDz+E4cOHZ3h/mzZtLIhS+tW3b9/Qq1cvE98Ri1xEr1ixYqzEmyDsE2MWkDzwJqIcTQghCgsWvrFxwarinXfesQkOguLmzZvDokWLbB9fjPT+Jo888oiVybqIOGDAAPOf5DmESDTE3i5duoR77rnHJsn5AQvlNWvWtLLvJ554wsa9MHnyZPuJjRuw4MR4APz8ZyzAeAMbJEQqegWAHyuWCNgiYoUUtYMRQoj8BlsLrkvMvYn32FAR01kcJHYzz4/vDYWI3rVrV1tMFCLRoA9x/jFXzytYs9LHp1atWrboTe+e/fffP7Rr187up4+f61H07bvuuuvsd2ziOAZA1M/KAlYUPySii1xBcPUscoRuPKfIOqfpCEI6kKXrIjoCO8GWVT8yhmj0QNOSiy66KMPnx1/t0EMPtWxgIfIDmuV07NjRMswzykYn2wIPwHhcRF+9erVNhAm+TJg///zzmKjuYjrbFyxYoC9QCFEkQBgHhHT8I2nmWL58+Vh/FIR1KnhOOumkcMQRR9g2MtfHjh1rPs9ekSZEornlllssbt9///359uH6pHvSpEnhsssus9/xRWexHcEcP2H8g70XEFWYvqjOghOTc5qXMV4AxCoqOMj4ZAGqdOnS+XbsQgiREatWrbIFPZomk/RGw3CahjKHIb77wh6/U2FLhjDX2ptvvlkfqMgXWFBmzEg1Y7T6MRGL4WSiAzGbqjKaiTKXJ36jWzF25W8Wt1lgAo7BKyuFAInoIlcsXrzYsnEQupkQAAI6AdgvdtznIjpZ6ZR2c4GibJWmJZlB6c7jjz9uq36e1SZEfkAzLzLFp06dmuk+BFCEcASjhQsXxjLMCK4MLBHjfcXaRXTvCg5z587VlyeESEmYWNNYGbEvKqKTNUsDRGjUqJGJip6hxjUz2gx8xIgRlt2mRXGRn5BZhhUKpdt//PFHvrxGq1atbHGdTDbGApzzjAPI4uQc5/+CZ6M7NCqDN998M7Ru3dpE9XPOOSc2jmjSpIn9P6PyjfFIZhZzQgiRH7jd1Omnnx5efvllu7Yxb8fOkuupQ1Ywc3220SCc+4XILxgzMp+msjFR2hWWRS1btjThnDjtFq1PPvlkOPfcc+13zm/2AbQu5/bbb7dEESFAIrrIFQRZYLUaKwsXzbnYcBGqV6+ere65iE6Hb7xT6eTNBRExPbNJzsiRI618hsmQEPkJAjg2BVi6uDgehfJrnxg3bdo01K9f30Rxzk8mzpz7LA4B1RguopOd6cR7oQohRKrw1ltvhUGDBoVu3bqZOM4kBOrWrRsT1LkuYnOBP6pDdi0Q54n7lNPKmk3kN1Q8/vTTT2HatGn58vxkirtFC9WU2BJGfdD974xE9HfffTfcddddVsWG4A+MhbGLo0qTcvLevXtbBpwQQhQUPk85++yzrbIGmM9gj7VixYrYfszvubb+/PPPMcsLIfKzH88VV1xhutCff/6Z5+erUaOGVYdRLc5cHjcEEuQA7/9ffvklJqjTNw3QAFjoBirO1K9EOBLRRZ5EdC4ubt+CiE6GDl7pZOwyEfjss8/sPm/AyISBCyGlYy6wRyEThxVHJtwq+xYFAY3uPvjgg1hWZRTsWjyrHAGJZiNUW7hdC0IRVkWsbCOsM+hkckwFBYEaEOfliy6ESEUQ/oBGYjRQZpJB3CdLDZ9nF9QRBt2iguvf0KFD7fdHH33UJh6Im0LkN8RgqiMzWxhPBBdeeKH9xN/cRXMm4vilNm7c2P5mgX3Lli32e506deyn//9gnOxVlojyNCzHHonGvdEKDiGEyG9I+vHeJmeeeWasWTjzIhb1fP7CdYv5D9dWko/crk2I/IQEDhLaGEvmFTQoYjXnO5nm9DGh3xkJdWhTVIrh/08sZ1/m/CSCkCTiYAG7cePGPB+LSH22NfwVYjtQArNkyRL7ndVBbFdcRI/fj1v0PsrA8FtjFRtf9HjwWuPipBVuUVBQNcG5yOINWRjxzJkzxwaOWBDhAQgEYAQlLFziG5P6BJuBKYNPeZwKIVJdRCdT1kVzGjSRIYSP8xtvvBGGDBli2b9enYb9C2XhwHUVYdEX0oUoiEk32eJUTbDAk2gQzj07jWSPmTNn2nm/yy67WLxfs2aNLTLRGwBYdL/88svt/4XjIjrjhHXr1tmEnma9ZH76OEMIIfIbMs0RCkkAwqqC+TlVY4joUYj7b7/9ti2Yx897hMgviKVUQDCWTIRDQbQRLrGbOE3s5fyvXbt2LEkE4Rz7IuIxMZ9EO7zU+T9C3xWsiUXxRiK6yDFk3D788MOhc+fO5ofmk2cyabBzYRWPi47bvBCMO3XqZFk4XHTo/p0Z+FBRGk52rxAFAedqhw4dbDEIP363Z3EymoTTXCdqWZDZ/xMJ6EKIoiCiUwbrZd7ufU78R0zH89wFw4YNG8YEdB6Ld3TU2kKI/OaMM86wjHTGk/khohPX27ZtG/v7ggsuSHd//PiV/x+TJ08OS5cuDe+//755CbudC+IVAju2SWS/SUAXQhQkZNwiTiIeeoNwsswR18nQZe7OPJ7eUYMHD7YFcTLWhSgomKMjZNOwm7FoIkCvwmqQMSzxnMo1Ej/JRndYjOd+5vOI5+6H/tBDD4Ubb7zR7hPFF9m5iBxDBo3bWfCTYMsqHhOHCRMmWMkXXlIuoiOukxHErV27dpa1lhFr1641G5hrrrlG34ooUNq0aWNBcuLEidnanxKv7YnoQgiRytDskDiOsIdwzgI3tizefAm84Sh2V/DSSy/F+p2MGTPGeqNE9xciv2FBB6F6xowZllVZ2NBThUait956a3jnnXfC+PHjw7Bhw+w+SsgpL6dv0E033VTYhyqEKGYce+yxYdy4cSYMuojuVlhuQUWSEZXkeEVzbdVinyhIqPoiwY0xZaKYMmWKuR5cf/31Zi9MFTmx2sey9Dyh6SgWa+hajGOxacVZgf4/JJOK4o1EdJErvv7661hZTL9+/UwgJxsHv1QuQFxwoiI6TZdOO+00s7+gAWNGjB071jLb3A5DiIKCkmx8STkHPYBGIdCSrVGiRAmzdaH8GjiXaa5HoMWHlYEnk2UEJ3wFyYIj6JLNEe3wLYQQyQ4L275YTo8T7K4eeOABywhi4RHRj4XvKIjoLLTjB42HJRlujAeEKEhoRkbMza8Go9iwUFnJ/wkWjQYMGGDJJPQBouk42eX8v2Ehin4CWMzQL4hqDsYZHB/w/wp/YUT1iy++OF+OVQghsgO9TLBqcfHcoa8Dmehc2/zaJURBwRiSsSTx3HuN5BWyz9GliN30PluwYIHZFdEnjcUk7IpZhKcHILGeRDus2lhEgvvuuy9hxyJSE4noIsfgBeWdvD0j3fEGJIiSUREdz2kvX+UiGN/wib8ff/zx0KpVq1gjRyEKEgaGTICxH8jMM5CAiS+we/3T7IRBJd6BH3/8sWVn8Hh80/ALZnGJfchY9ya7QgiRCtD3AfCHjELfEgTyu+66a5vrJUIimcAsIpKtowm3KAzImmRBm3FlfoD/OTYt+KTSF4Ax8ZtvvmmVGVgaYt1CsgmZ54CYPnv2bNv3qquuinm7Ug6O3RHHKoQQBQnzGiymWBT0rPSTTz7ZYncUtnMtJRv3wAMP1JckChzGkpyX8+fPT1gMJwkEu2Gqy3FBQIsiMY64jaiOLzoL3GSjU6lB/CZxlBjP3J4FcVF8kYgucsTWrVutkzHNGOIbNACZ6D4x8Ixz95j2oIyYHl8Khuj41VdfWYabEIUBK9L77bdfeO6557a5j3MeuyIyxZ544olYxhhBFK/A6PmNryDQjBT8XM+qF4AQQiQbl1xySVi1alW4++67LSOHLJ0ff/zRfCl9Ed0XzoFqtFmzZtnvXEeZeONNLURhwHiSSS9xOtEQ1/FLBYR09wimEgOYfAMTbxbfPeHELeCwcQHEK8rKvbeQEEIUFPQtoWFo5cqVY9t84c9BMCS5jUVCzdFFYYEXP1XfPsZMBFEtqk+fPvaT8e1JJ51kv5Mgx+/oVsRostH5neQ5ePDBBzOsXhfFA4noIkcwAeDiQVAFVqSZHJBt/umnn4bff/89JiC6oM5KN96UZO2QmZNRZhAXRcpavSGZEAWNe55lFKAZOFLGxXmM7QviUGYiuldSYP8CHmDjO90LIUQyw4Ig1zosrBYtWmQl3XhG+rUsvnEyvqosoDNGmDNnjllcCVGYPqrE37lz5+bL82ckopOJTjabjxHImmPhncx0wCaB+/EWBsbJWL/gky6EEAUJWeiAiE51GZ7TxO0uXbqkW0z3ayjXVCEKC85NKrpcxE4UJIhwnvti9+rVq8MBBxxg+hX3eaXYU089FRo0aBB7HLpXojLjReohEV3kCLekILuMjJuGDRtahtr69ettRc9Lwlit8ww1xMeWLVuGzp07W0krE/J4yFrjIsXjhCgs8CbFrgXv/qwguAK2LlgXgJ/7LqKz0BT1ApaILoRIdWsXYr97pVMO6/C7LxiSsUbGOtdTIQrT0qV27doZVpclAp9MY2lEpRrxngpMeqaccMIJsfHApZdeGhPJ8WnH6g3ByhNOENybN2+eL8cohBCZgVgIXIOwau3QoUN46623YhU1XNOwrOAayiI6PZ6EKCwYU5K8hrCdSOjbR6KIV4jRSNd/x97F9Sz6muClDj6/p9pMFE8kootciehVq1a1zJuyZcvGJs6IiX///XdsQu2Z6Ni5MPGmOQO+UvF8++23YcmSJcpaE4UOWZYERla640EEp4s3E2Lu9zIwz0D3xqEuoiOqex8AX7EWQohU4bbbbrOGSkxafGGRJskuonfs2NEW0oHYT0MmoJqHybaXxApRmJlrZIphRZhoGP+WL1/eMsvJ6PTsc8aztWrVst+ZiGPnQoa6LzoxIa9fv34ssxPLpPi+A0IIUVAiOouA2KpClSpVLPkNiOPMdfCHVmWZKGwYU1IBmeiF8ZtuuskSPWkyGp8shyXcjTfeaL9v3rzZjoFKc5/z0yzck0xE8UIiusiViH7EEUfEtrmITqClgSiTaiYWvnJHs9Cjjjoq7Lbbbpa1Hg+CJAI8VhpCFCZYETC5zShAs/pMpgYr0e3atYvZuHh3bibS/F/wiTKikvuj+2KREEKkAlzPaBzKwjc2bdEeJy6iM/H2JsvQuHFj+8n1s2nTprEqHSEKM3ONie+rr76aL89PpjuQGXfiiSfGRPR9993XxsGAwE5WPKI7kGDivYJ8mxBCFDTYSwHzcxYaSQIimciThEqVKmULgMxzVFkmChsqvBlbJtIX3ef+Dz/8cMyuCLuYyZMn2+9UZpxyyinWA5A5/ooVK2J6FQmijJWxKxbFD81wRK4CLllpI0eOtAk0FxA7mXbcMdx6662W9cOKdbTJKE1DCdD8jIcJd926ddNl7QpRWDBQZNAY352+Xr16sfOcgMqg04Mti0pkkvE73v40KEVAp2cAq+Zkc7jXmhBCJDsseHtlGdcxF9HJztm4cWNsAuE2VQjqVOl8/PHHlsWmCbdIBsgOR8zOL0sXLA5YUCfjnOxz/n+QtYmHMJYuJJZ4xhr3MW4gwcQz1+gnJIQQBQ3zFfqUgVfqcC0j4cfn9YceeqhdO5njUIEuRGHD2JJxZ35kf3O+E5MZM7CAVKJECVvwxoIN+zYy0Pk/c8EFF9j+/v+EXgJu6SqKDxLRRY6grBtYBezUqZN1K45mokfxDDWCcr9+/WzljgZKUchwoymTysREssC5iHgU3yyELHTOdQaeixcvtuAK2L9g1UJ2Jlno8+bNs/8XZGWygk0fAALwwoULC+kdCSFEzuCaBWTUIvz530wwiNsIhZdddpkJgiwsLl++PDY2YH9vuihEYcK4lJjOeekT3kRy7bXX2oLTwIEDw5VXXhkef/zx8O6774aLL77YKjm++eYb20Y2PGOAs88+28YQZLOBGooKIQoDepmxwMccxuf2ZPpGYc7OtZNraPwcX4jCgBjKGDPR2ehAI1H6kzCuJQEOwRybQhJD7r77bov1p556apgwYYLFbqrSgfieXw3MRfLy/7reCZENKHdhUhBdhaP8C9HRmzA4nsVGaRiZbHiiuwWG884779jj2EeIZIAVaLIqmfC2aNEi3X3RQaRbtcSf90IIkeq49ZpXiLmITiznOvjFF1+YkA5MNvx6iG3GaaedZg0ThUgGaFr/4IMPWiVl1IowEXgPFECMwrrwhhtusN8ZQ9BgF6sXMtiGDx9u9oXYu7ho5d7oQghRkCBE4gFNwptn9bo9JXAto5KGOb/m6CJZYGyJewFjTfqUJfr/BPGauP3EE0/Y/wf80itXrmw9A0iUY3Gc5E8WoJ599tkwceJEG1tMmzYtnH/++Qk9HpHcSEQXOeK4446zm3udIqLjA8nqHdvIxJkxY4at2HkJ67p16+zG6t2bb74Zy+CFZcuW2eRCZWIimeCc5tzMzuSZc18IIYoSZJuDi+F9+vSxybZ7OEcbJVNtw4SjZcuWdt2MrzgTojBxr3LOzUSL6BmVg99zzz02NmaxCSGKn4yPsTtiLIw/Oo3KWHi6+eab8/V4hBAiI7CZpHl4dDEvamNZqVIlW/CLXkOFSAY4H6dOnZrw5yVOP/TQQzbWJeMdW2Kyzmk66kl0gwcPtnn/HXfcYYmhTz31lFm3kRnP/lRviuKB7FxErvCLCRMFMswRx5mckJVLWQs/XUTv27ev/cQrNT47jUlN9erVtykhE6IwqVmzZli5cmXsHHZ8QszkF8sWwD+QbI2TTz7Z/mYlmqwNMjuuuOIKG5zyN57pL730UqG8HyGEyAmekcYiN5CNw6QBu6oLL7ww3bWMcQD+kfimUyLO9VOIZBKLELe3tzCeW0gaYWyA5dvtt99u/U9GjRplYwDsXrzkm/JvbN+8X9AxxxxjPYOEEKIwmTJlivk6R2HBnGsmDRWpNhMiWWCMSYWEV0gmkipVqpg9G17obusybNgw06mGDBli4jq+7OhZHTp0CL169bJEUPoKIKiL4oNEdJFtaJpw7733WulKVESPQqmL7+sCpK9sc4FBSI9CgNaEWyQbnJOsNH/44YfptpNxCSwSeRMRxKZVq1bFMjYoMcPmAN/TpUuXWkk3QjsTahfehRAiFTLRXUR3uNY9/fTTsYZkHvepNHORUjFdJBuck/klojMGYGw7evRom9jzf4PxAJNsGqB9+eWX1k+FsQF2LvRKAWV3CiEKC6pi8Hpmjo5QHp/khmioObpIRnyMSf+RREN2OT1LSApBpCdJFPtC4jp/E9OxIub/CwvjJJLSA82TTfKj94pITiSii2yDcMiKW/v27TO1sihZsqT9pBTGG45S2uKiOyt7DoGbrBxNuEWyUaNGDTtn4yfdNMjFX7Vbt25Wkg2+WMT/Cc55XzTab7/9Yn7pLkS5MCWEEMlMkyZNzANyxIgRFudpHIqFi3ulR3tBDB061KpzuF5y3aOvhBDJKKLnxwTX7QhZdGdCDWPHjrUG5MCCetu2bS2rDXwfiehCiMKCChqybu+8885YklC07xNV4oiUmqOLZKNChQo21syPhXH+D3hMZxzsFsT4n1OJCYyHmdfTIwjcTYFeJzNnzkz4MYnkRCK6yDYuioOXoDIpQFCk7AvfKG8c6pMFoLSVbFwCtIvsfhECBWiRbHCeUp4dH6Dp0v38889bg7Bdd901nZjEYhECuk/S+T8iEV0IkYoQy+l/QpNlxHM8H7GscisKFsqdiy++2H561lp0Ii5EMsB5yQIQGWWJxifcNBPF99wrL0ka8THxY489tk0lmsa+QojCwq9H+EDfeuutdq2qV69erLqMRT7iva5TItlgjMmYNL+qy7Bac1Hcq84nT54cPvroI/udnwjnPtZF43JB3RNNRNFHIrrIlYj+yCOPWHdiLjSUsmJXwc0nDPiie/NRMtevuuqqbSYvXPzIXqPrsRCpVv5Ndhm4UI5o7sGT85ou3/w/AH6Hv//+uwCOXAghEh/7iekuokfHA5999pn9VOm3SFZcCMqPSbdXXlCVRk8UHwNgcXTAAQfY3xdccEFs4R3IYvOJuhBCFDReSc4cnmaJd911l1lVAD3OPK5LRBfFzaKNTHdo0KCB9TUBkkratGljv5MUSrKo30cl+tVXX22/v/DCC/lyTCL5kIgusk100nzWWWfZxYXsW5o2+UXFRXQyct3yhWwc/CLxjsqoqSjZO0IkY4DGFy3aXJSMTBaEaCzy448/phuI8n8BDzVgRZrVa6/I8AUlF9OFECKZwcpl0KBB4dFHH41V15B14wuDnn0O48aNM69I/KA14RbJCDH5kEMOyZdJN+XeNNaNLq4zLsC+za3cunTpYlltzhlnnBHrISSEEAWNJwD5NYtEIJ/XcN3iWklDZp/jC5FMMNbEp3zjxo0Jf+5y5crFfj/yyCPtJ/83pk6dGrMlRtdq3ry5/Y7tUdOmTe13qtWpRBNFH4noIttk5iUZFdGxbqlTp46Vt7qIjpiIeBi1eIHVq1eH448/Xt+ASEqqVatmE+HPP/88to0AymIQVRgIRvGZ6DTqASbr3oQ0ukikSbMQIhVgAfG2226zEtaoiO6lrdEKMjJxPYNNMV0kc0z3BuCJgnHsww8/bDEfEMpdOKehKBnpPgGPTvZJQhFCiMLC5y5eIUvM92Q57iOmK56LZI7nkOiYDmhZHsO90owmvIDVq78uPQWI8dgb0miUyjN+J767BiCKLhLRRbbxiQEsWbIkjBo1ysREb7CIqMhKHJ2MBwwYEMu6ZfLAqlw0oxfWr19vq9xCJCM+KcamKBpYySpHTPLsckq06WxPXwAyz8hI57ymGoPsN1at+T9CeRj3CSFEsuOLf/EWVP43JeCw//77hyuuuMLiOSimi2SO6dF4ngjuv//+cN1118Vsjm6++WbLkEN8wl+YBSh+pylZtJrzzDPPTOhxCCFETvBsWY/pvkDu2emao4tUm6MnCoRzLI0qVqxoY1qE8rVr14ZVq1aZcI5Y3rt3b5vz16pVy7QBmpB6jKepeLz7gih6SEQXORLRXTh85plnzAtqypQpMe+oaMYueCZ6586dw4UXXhhatmwZu4+gTVaOl8UIkWz4uRkN0Pj7M7gkULp1Udu2bcNXX30VHnzwwdCuXTvzRSdjnWoM7F3oBYDdAf6C/D8QQohkx5uAk1XjXs5Mslkkf/nll2O+j40aNbIxABNurolk4wiRrDHdF3sSRe3ata0qg4UkEkeYTL/22mvWhJesdCbjZHiS0eaw4I6/qhBCFBYu+GVkPVG3bl27VnKtEiIZwUaNW6Jjutu5YN86b948i9UkiJJY8tZbb4UHHnjA7NtIEH388cfDq6++anYuJM75QlTp0qVDs2bNEn5cIrmQGbXINmTfzpw508R0t63Aj8pFdLZxAWHCTfaNl7GSrU5pS9RDFf9UkIgukhUEIc7hzFa53Z4IG5d4ohYuvvAkhBCpgl/XuM55FRpZN1hSUcbqJbRMYoDrpOK5SGY4Pxl7shC+0047JeQ5aSZGnxTo2LFjrEcKi+o1atQw73PGzgsXLgznnHOOjYdpPqpxgRCiMGndurUt9mUkol9++eVh4sSJiuki6WN6fmSixzN06FC7ubXLI488Yv9viOnEdyoyn3vuOas6P/roo20BXQtQRR+J6CJHeBOFRYsW2U8ycPFEP+aYY+ziwYT79NNPtxU896uiBAax/dRTT411NvaVQ11kRLJCYOT8zGiVm0oKnyxnJKILIURREdHJurn++usty5wF8mh/E0pWmVBIRBfJDvGc7EuqIN2GMFFjhWh5ObDYhKgeZeXKlfbzggsuSNhrCyFEbsCGCvr3759hIhDXSi2Mi2SP6QUhort4npUdG/Zt7pmO7vX666/Hmo2KoolSJEWemi4gjhNoyUojw4YSFlbnyEj3THR8oREcves3+EVPAVqk0io3vQCYHLu9ATRs2NBKH7FtwfuUoPnTTz+Z3RFZaC+99JJ5qNFwNz+6iAshRH6K6FTlDBs2LAwcONBus2fPju1HrxOyarlOalFcpJpFW25ZunRpWLBggdm0kEwyd+7cUKlSpXDuueeGPn362BiZhqP4pB555JG2nfjPQhSJJkIIkQxQTTNixIh027CmAMV0UVwz0bFqpd/ZnDlzrGoDb3RiPpYuCOXYuAFz/xNOOME81Eky8fj+5JNPWo8UzfuLLspEFzninXfeMe8nLhh4ntPBGy90Jg8OFx38n71c1q1b3AIGuOhxP6K7EKkSoGkeFm2Qi80B/x/8PpqO0MEb0emNN96wv8n28K7e8gsWQqQClKcCMR5fdPdIxyPy7bffju3n26nYOfHEEwvpaIXIvojOuYrVSl4ge5PFJBbOP/zwQ8s6pwITQZ0xAeNeXodJN2MG+qMAi+ksxAshRGGCUI7txL777mtWbVHYDkp0E8kM56fPwRMNyXDoVt9//70lgX7zzTfh6aefNpsjxsVA/xN6oSGkA4I5yaXw6KOPWtU6Y+levXrlyzGKwkWZ6CJHjB07NnTq1Mkm0mTXgnujAhcWF9S947c3GHVfVUCYJENdvpAiUZD1RckV5xvNvljwSbSIToORFi1ahGOPPTZdtibiOIEW6ObNef3JJ59ss0/0/4AQQiQriOM0DyW+c91iUr169eptYvaVV15pP2XnIpI9njPmxHolr5lrZJsR54nt9ARgrFuzZk27D8HcBSmy1PFfh82bN9vPa665Js/vQwgh8goLf1zHJk2aFFsMdxADuVZi1ypEqszREwk2hi6me1LJfvvtF2seCrwXFss9aZSkUnoAAuMCPNOxOxZFE4noIkeQZQ5k27iQyMSapklczChjoXQVfCJB5s2MGTPCrbfeGnsesnQS6Ukp/o/69evbKmlxgw7ZPXv2DH379rVVafz4GzVqFBO2cwvntGeQAefsE088Ya8DZJwDpV0ffPCB/U6JF4EUCyNsXzxznVIwIYRIFc466yybADBBILYT831x3KHcm1iPSKiYnlgUzxMbz8kAP+CAA9LF9NyAuHT//ffb8yxevNgqzrwHEEI9Fi4e86M9U3jcxRdfnKfXFkKIRODXJiplqTbznmdcp7Bxo1Icb3SROBTTEz9H59yNr6RIBJ70xlzef2exacWKFbFFJ0R17F6qV68e07a6d+8e+781aNCg0Lhx44Qfm0gOJKKLXHmhI6LTaAzxvEuXLrZazYQCQZ2Vbbe3gFdffdUair733nvpMtYTlZXbr18/C/oZ3QhYouiDXy8ZXu3btw9Vq1YNI0eOtPOLpnd5AV//jDrXU9YF7o1ON24vKcPqyH+n1BtB3YV2IYRIRdx6LX5SjYjopa2JiOmK5yK/4nlWMT03eJUli0v+/4IeQZ69yRjUvYV9/OwZa0IIkSwiOnYTPm/hGkUFjeboIhXm6JComB7F5/dknu+2226x16Ei3UV0kkdINvGm4uhgLNa7teHy5csTflwieZCILnJEuXLl7Cfej3hK0o0YPzWyz7nIbNmyJTax8BVGyr+5CE2ePDn2PGSzJWqFm+DPxfnkk0+2sh5uN9xwg2XQzZw5U99wEYdza9myZRbI/r/27gM8qmp72Pi59i52sYsdC3YFC9jFjhVEsRfsooAFe1fsICo2rCg2vAg2LIAVbFiwF67diwW7qPM977rfnv9JyECAtCHv73kCySSZTJLJ2XuvvfZaCc853n7++een6b55juYzLynRwoZQ3759iwvmykF0/i7S6xzxpks3DKJLKifDhw+PRqJDhgwpBgZTOZcUDKTkS7pG1sSY7njeuNXmeJ6eo/m+JlOKI+j0/KGkYVq4v//++8WNde77+++/j9fZXEpzBOy2227T/PglqSawdkcqT5GuW5Srco2uclmjY1rG9OoE0VNcKyWMUMYtzX+RTmHSdJTM+NRzhe+PuQKxKP6uNH0xiK4pkmo7kV2bajymC1k6zkLwfL311ss233zzeJtFBBcgjoclXPBqKojOxYwdTS54XMh44TbuP9W00vSLWr1kTXCMOo+3p/XYNjvK+cGZsjE0C+HEBRgsQZ03moulTHQmDOl1FthIZY4kqRxw0uz000+P614q5ZYC5ikDiGtvukbWxJjueN641eZ4XtWYPiVYBB9xxBHR94cj2ozpZJpzGnPHHXcs/n1wOgP5BrxIZV4kqb6la2wqhZHW9Fx/azKI7pjeuNX2Gr0uguj5THSkUxrdu3ePQHn63m6++easZ8+ecQodZNpvt912sYGe4gKafhhE1xQf6SZIzWKCQCIZatR/4iJCowhQL4psHXbeUrYau3f54zZc8DzWOu3OP//8mKCkFzIHDz/88Aq3UXpHU2fgwIGxCZQCRzQYyWNwpSYwEwQ+jtf5+2A3mp12guivv/56TEbJVpekcpGuWe+++2627LLLVlhwU1saNBhPCxjH9GnjeF77eC6zyJ0aBJmYA1OmBcx5uY2FfL7hbmommhbhadOJ/kCS1BCkEhQpGajy2sbxfNo5pteutFH9ySef1Ph9p3GeeBe115nrprKGzI05ycELGwGp8Sifwxw5n8DJ5xMXYDNB0xc7RmiKUQ+KiwbNlMhUu/322+NCkoLo6aLGAExjpU8//TRKreSbK6SLk6YNAfM999yz+DalRtjx3HXXXYu3EdidnhHM4blGQ4+8mmhem3oApAVy2o1OeN7z8071/zmBwSKdSSmLZj7/s88+K/7dSFK5BdGpmZpKuXEtpERVhw4dYuHSqlUrx/Ma4nheu+N5Qib51KAO6iWXXBLHs3HyySdnm222WZzQvO2227K99torkkXWX3/9mPe++eabxc/lJGbKmpOk+pbWhpWTg2DpiZrhmF67Y3oKaqfyKjUpbSKxKT7nnHPG10pfp3///hEUZ53P+9hM32OPPeI2EuqGDh1avJ/evXvH39OAAQOybbfdtsYfp+qPmeiaqsZfI0aMiAUDwXFUzkQn85zs3bTT/cUXX1TY1Z7WupST01iC9Ox2siBML1zQqV2bv216765Othe1x/ODVhrE0vNzatFBnOdteu4eddRRFQZ9gksMjPw9YKONNorTAODvgY0mkMWZdqolqRxQroKxlE3CeeaZJ27jZBPlKtLRVIKDtVmXEo7njuc1MZ6n53S7du2m+PMo28Jznd4m119/fXbcccfF3wX9gZ577rmsWbNmxQzOFGRPNYaZF6TsdElqCEjyOeigg7JOnTpN9D5KsLpGn3au0Wt3jU4p1XwwvSalXgE8fvqgDBs2LMZ70AOF+QDB8VGjRmUXXnhhbEoRZOd77dq1a7EEIsmkxx9/fJR2ST3SNH2YvqNrqhVkniUbb7xx/M+imoA5jSIIPD755JORDZ3qRpGVQ9kXMqWntS5ldTOGyJbngmVDx+lfly5dsv322y86YpMFdsUVV0STWzqBTwueo/nsMQZJOtrz3CIrPWWdpUUzfw/sOoOmu5Q1Ah8jSeWETdnlllsuGipzuoYFN1m3qR56ysjheovaGtMdzxuX2hrPp6UfT69eveJo/tlnnx2PL6FcG6fNUukWTmowR+DvJTUVZX5Mr6B0sk2S6hvXqRtuuCGurVdfffVE73eNrnJYo6M2kgXzQfRU0jXFA/bZZ5/s6aefjg11kuv42K233jrW/bvvvnsx8/4///lPJJEec8wxcXKdrHVNP8xE1zRZbbXVoqECNaDIRqdTMfUmaTJKgDGVucC4ceOy3377rXjBSxel2rDNNtvE/9Sk1vSPUxE872iCx3OP0xAEtis3MplSlZvrMFAySCJ166bMAUe4eJuO3I899ljc3qZNm2zkyJHxukF0SeUojaGUpmDBTQZuOnkDAoVpXK+tMd3xvHGprfEcU9swjyw0Fv2VM97YVOL5mXoFkHWWgucJtVQNoEtqiAjs3XnnncU1DVi/u0ZXOazR6yOInsodcULzkEMOiaRRmoqeeuqp2R133BF/T6m5KEkozAsuv/zy7Kmnnqrxx6n6Yya6psrDDz8cLxwDY/eNepCPPvpo1IcETRgoK0L2TR5lXshiI7OMozA1JWXC5Rc209r1uRyxM9pYsRvMS03iOcpzNaHmeapzmhrlpoGWpmE02/3222/jSBdHuDnClT5PksoNR1PvueeebPTo0cXSKoMGDarwMalURU2N6Y7n/+N4XrPjeVVjenVxXJsj3NR3pe8JWZz50m6prjBl29LfSnLggQfWwCOXpJpFcJDeJvzP+jwhMcg1es1zTK/5NTpqI8N7UkH0hPkwpzjYFCDhhNPq5513Xrwv9REiG52yPswR7r333shi1/TBTHRNFXbZ+vTpkw0ZMiSC6EgZuGTkPPHEE3Fsp7LUnZgg+5dffulPXw0az1Geqwk1zlOWGRNOBtQxY8bE21tttVXUZyNbk912Bt5XXnkle/XVV81El1SW9t1339gcZKOcjUPKV+SzhyhfwcKB4KJjuhoyMskps5If06uLUi5soPfr1y+OpVMmkPkvi2sailGyJf095Oufs8iuquawJNW3c845J65lDz30UGwM5q+VBCjTCRupIWLOyemw2mjazf3S64T/+XtAKmWYz4BnjE+nONKpTMw333zxPzGAzp07R9yMRD/e1vTBILqmSipp8cwzzxSD6AQVeeEIC7elhQq1o9GtW7di5g7vY1cuZfNKDT2Izq40gaI8jqXRLITBcc8994wsNOoG01QkLaj5mPQ3IEnlhOtf8+bNo8bjfffdF9ezjz/+uPh+NhUp20YgndqPUkOVNnl4rlbXzz//HM9xTkccffTRsQjmKDcv/C3QA4Xssuuuuy6ajqUs93S8nJ4CnMqUpIZmpZVWiv9pnJjWLUjXMTfG1ZDx/JyS8XxKXHDBBTGmU64lNQknoxxsxqdyLvnyLsTAHnzwwXid7PT0t0WQneA5yXbXXnttrTxe1T2D6Joqm2++efxP9g0BQi40b7/9dlwotthii3hfqoeesnIuvvji7MYbb4zX00WvMZZcUXkO0GSWn3jiicX3MXhSwoVd6g4dOmTLL798PT5SSapdqSxVKl2RDBw40NNlavBSQGhKMtG7d+8egSZOlV111VXRPJz+P88991zcD6VaDjvssOyyyy6LU2kc1yeAnjLjyFqXpIaIPk7gtFmPHj0i8SffsNEgusrptHhtSdnmKbs8BdHTZlP6eyET/aSTToq3jzjiiOLnEyejxCuJpMQOxo8fX+uPWbXPILqmygorrJCtvPLKcaGgOQRHXpKddtop/n/xxRejTlW+wzeZbEgXPTPX1JDx/MwP0KnGPwMnjXI5CplwHJLGIZ999lnsRpOBRimENNhKUjkiYEgdR07csIjIj+lgc9wSbWro0nyzuotunueM6zQGS8e4QaBp9dVXj9dZEJNZRkkXMtVB+Rbmx2ysn3LKKbXyvUjStGKDkGtbqv+cylWOHTs2/jeIrnJao9eWBx54IALkjPNIQfCUiZ6SRQmWX3rppXFyc/HFFy++j3IwO+ywQ8TAKHd8wAEH1PpjVu0ziK6ploLlLDISgoctW7aMQZlgIhm66aKDVNYiXfQcoNVQMfB9/fXXxefq4MGDI5iUnvsMkmSgccKC2oFXXnll1qVLlwg0DR06NI5w0YmbJqOSVM4LlTvuuCMWAOuvv/5E76cxmeVc1NAx32Rumq/9OylklHP6gpOXlB6kZEtaLDO/zdt+++2jzBEl3y655JLs5ZdfzkaMGFHM7JSkhoZ1TIsWLSa6PZWgMNFNjbWcC6WJ6e1HQ/F8RjoOP/zweEml2lJiCf2CmAvwccw1UsyL05vc1qRJkyjz8uijj0YinsqbsztNcxCd4CJNFk477bQobcGOXaqTvuSSS2Y9e/Ysfs57770X/1M7muOuBtHVUNEElwVzCqJzbJtj3Nhkk02ifNHdd98dz3s+NnVdZ9Ponnvuidd322234qArSeXcA4XGyquuumq8zuZgKlnBuM91kvJsqTak1FCPfld3TH733XdjPsvYTk8fFs1nn312zGNpxnfwwQdH4giZ6mn8T38PN998s7XQJTV4a6+9dvyf3/BjTePpMjVkzDWZc9ZGJjq9UJjvshleVSLceeedl/Xp0ydiWfkgeuqFkqTyLwMGDIjeQiBu8P777xc/V+XLILqmGvWgybrhyErK8OHCQ8ZaPkt9qaWWKi4mCK5zsWERQ20og+gql/qp+TrALKRTKRee04899lgcg2TXml3x1FiEZqOSVM4Yv1O2Wgqcs7AgiAhKVnGd5Eh45XrpUjnWTyXznFIHzzzzTCyYOXXGXLZz587Z448/Hke7KXnA38Ohhx5a3Dwi+MRcgAbjKWlEkhoqTo8jX7KK6xmbga7R1VCRyU0CZ20E0f/zn//E/5xaY167wQYbZHvttVfJJBE2ojiRyelzPqZ///5xajOVe6FvEJvy9FihYWlKNFV5M4iuaToGxrEUdutYXFAzleA4FxHqRbKrzS7e6NGjix3Ab7nllmJJDD6H469SQ5Sem5ymSHVOE444vvTSS8Vsc57XaN++fQTUqZfG5lKanEpSOeOIKsi6pckyGUA33XRT3EYwMWXVOKaroeK5mcbzyWnbtm28sIFEozDqnfPcJ/njyCOPzIYNG5b17ds36927d8x5K+PERpr3SlJDtdlmm8U1bpdddqlwO6UnHM9VLmv0mvTpp58W41S8znp/+PDhEeOifCuZ5L/++mvx4ynbsvTSS8fHc4KdRLtRo0YVe6IRPzj11FOjOTlxszfffDPuJ/UiUHkyiK5pQqAwHY3l4rHFFlvE60OGDIlmY+y80WyRiw+4uHTt2jVeX3PNNbNXXnnF34AaJJ6b1Ddj0Yx8Mz0a5jKAc3SLJrsMsLxOI1F2oLH77rtbD1XSdIGmSKDfA2M6vR/I1k3YLGfj3DFdDRHZ4Sxe11prrcl+LGM7Geg0AGOsT9IpjFTSjVIuZJYl+TIxbKhLUjms48mOrXzNYk3DNTM1G5UaEuaaJHOuttpqNX7fqbEuca2UlZ6C9dQzp5zbtttuW+Xn8nfDHJnT6nw+qNpw7rnnZssuu2z28MMPZyNHjowTbNRdT31WVH4MoqtG0HmYRiT7779/vE1mLjtvXGi22267Ch9Ls0ass846EWRPO3VSQ8IpCp6jLIzJPH/nnXeK72MgTBkc999/f7y+4447xoBO8z3svffe9fTIJalmcTSVhcAPP/wQWbYsuDfaaKPi+6+55pqo+ch1U2poKK1CuUHG9MmhaSgnKzhy3bFjx9ggImBOAkgqV8Sm+n777Re3r7LKKnFb/qg3nydJ5YKNQa5pyYcffhjrc7JupYaGuSZz0XwZopoOopNdng+oIzXbzTc0JXG0S5cuUbYF22yzTdajR49sjjnmiLeZJyTExKiVzql1YmCpOoPKj0F0TTPqnpOxS33Udu3aZXPPPXdk8jz55JPxfhYiBBfzAXewmGHRwU631JDwvExB9JSF+eKLLxbf/80338T/bBRxHIujXDQeJRPz5JNPjo9fb7316u3xS1JNYgynpAuZvFzz2FzMj+vUguZ6aRBdDVF6XqYmepNCiZZvv/02PodTlFdeeWV2yimnZD179oz5LPODiy++OOYE1DxNQfR8v6C00S5JDR2nyl544YViUhAoXwXHdDVE+TV6TUsbR4zjqbRLykT//PPPJwqiM08g+zzFvRJiA6B0S/qfU+o8buYTxL/YvFJ5MoiuaUbDMZosUReSxgqpdjQLERYZBBeXWGKJ4sezACcjiKy12WabzQFaDQ6DJIFyBjp2kF999dXi+wgcbbzxxtF0h02jq6++OnamOdrF7vIZZ5yR/fvf/65wtFuSyt11110XR2i32mqrbMSIERWya7jecb2kR4p1HtUQF9zNmjWLMXpSyDDv169f1C5lHCcz88ILL4yTZdQ4p9YpmWOnn356fDwf9/zzz1e4j1SyUJLKASdsWMOQeU45ClBmguxbg+hqiJs+zDVrK4jOqUue+5SKGTNmTNy28sorV6jFnjLTkU6oVZ5fEBsDAXM23+eaa67YnKJvGmVhiJ+pfBlE1zTjuMtOO+0Ur/fq1SsaMLHA4HUCkexspwsMqK/G4oSBmguIA7QamvScZIAmwzKfcbn55ptHyRbqpKV6qfPPP39x4ilJ06OUVQOaiqbmyuA6udxyy0UAnaZJUrllrZElRqCdJnskf3CajNKEbJivu+66sWinrBGljAgwEVhn0fzll1/GJhJHt+edd97ifFiSykHTpk2jTxnS/+B66BpdDQ1zzAkTJlTrZNnUIAmUDHQ2lt5+++24jcRPUIIF+cbhlICrnJ2O1E+ABNPXX389YgmcYiOgTmwsJZzYd6A8GURXjTjmmGPifzJ4KO1y1llnRbMS6kLxNrvblLoAWejHHntsvO7xbzVETBoXXnjheA7zwsIY1EmleSgYYKmVmpx55plRD83BUNL0jPGcfieVPfvsszHOu+hWQ8KYzGmyyQXRb7zxxtgcHzRoUNRZZaHL5lDCApjMdBbMPP+vvfbaKN1CUD3VS+dvwA11SeWmbdu28f+oUaOKtxGo5PSZ6xo1JMwxmWvWdiY3QW5KFDOmU7aNzfNU6iUfRE8lX0gqzUvNyDnNljanOMm5yy67RByMjXuSTklA+f7772v1e1HNM4iuGtGmTZs49vLrr7/GQiSZZZZZIqOn8jEX6k2yM8eihoaNBNalhthUlJplLI55nVpm1AQGG0UM4AyODKoc82ZgpIGZJE2vGUBsMF5wwQXFpkkJQUUWGiy6pYaC8ZmNn0kF0Snj0qdPnzii/dFHH2Xnnntu1rdv31gopzrBHMkePHhwlCEcMGBALK75W7jrrrvi74GTGjQ6k6Rys/POO8f/+VKUrGe4dtJkVGoomGOSGV55DloTCJTnY1jMeYltkURHsJxSMoz1KWDOZnupIHq6r3zpF/6+HnjggezSSy+N9995550RD+vfv3+Nfy+qXQbRVSO4KKRs9CuuuCIuMmTkbLHFFpG9w47huHHjig2Y+HgC6RyR5QKUPxYu1ScGNZ6PPDfZGaaTNrbccsuo8b/66qtHo7F77rknbqfRGIMhz2Maiqa6aZI0vWHhsuiii0ZNxzXWWKPC+9hsZJOxco1oqT6l5+Okjn6zcU4WOiUIybokA/OOO+6I5zRB9aFDh0Zz0VQHnYaijPmHH354LJB5X2oeJknlhlJVNE/kupawTodjuhoSno+s0WvDaaedFhUU2DSvnFFO0J6EueOOO65Y5vWHH36IjabKwXL88ssv8X8q/coptlQOhu+BTXrmDbfddlt20EEH1cr3o9pjEF01hjIX1FX76quv4uJAMwY6Fd98883FY2KppEuqB0X2Op/D8VmpISBQzhFuShFRG5Xnc2o0QlY6WWiUcSFzjcA65V6om4ru3bvX86OXpNrDGJ4m+2nhkMZ1sMlI7UcCklJDwPySABG9S6pCwJwsdTLWKclGz55TTz01e/zxx7Prr78+MjT32GOP2GDv1KlTHMfmaPaee+4ZWWQ81y+66KJsyJAhdf69SVJNSKdtK6PUhGt0NRRjx46NNTj1ymsrBsBmOmVc8xtKIIGEIDsn0BOyyEHvlMqZ8WmOzKm1hx9+OJLsmEOwUU8SChUalllmmWyjjTaKrHeVF4PoqjEEF9lN4/gX5V0IqtNk4fPPP89WWGGF+BgWG2n3kLprLEp23HHH7KGHHproYiXVBxbQBMypdcpgmtx7773x/6677hoZamChzW41Jy9atmwZA6EkTc/233//CJy/9dZbkZHLgiBl6tBkkfqRLrrVEDA2P/roo5Ns9kmiB6ckX3jhhThZxoky5rMsavfaa68o08aptA022CC7+uqro6Eo2WM0HEuLZGqoM5eVpHLFZmHljXECfY888kixCaJUn5hbMsesjSA6MamRI0fG64z3G2+8cfxPT5VS2FAn6P7UU09N9D5ObKYgOqc0+bvisRMrozwMSaTMO5Zddtka/15U+wyiq0ZRviVdDKgZ1aVLl+JFj6xdGij8/vvvcdsTTzwRx2JZ3FBvjdroUn1jQ4dFNEe1CIzns9VAsCgFzZdffvmsV69ecXuPHj0q1BKUpOnREkssUTxdxvFVgo3p+njrrbdmm266aVxHpfr29NNPR8+dUkF0yhX07t07++CDD6Kuab9+/SL7nKQONof22WefCJaTEMLpScq2cNKSLLV0nBsHH3xw8ci2JJUjAoYkDx155JHF21ibs1n4zDPP1Otjk8DcsnXr1jEG17T0XGcsb9asWZR25SX19COW9fHHH1dI+mTdTxZ6Vf1Q8kF05hD8bQ0fPjzumzgCp96ZRzDXYO6x+eab22C0jBhEV602fthvv/0iq5cFChk9BNUpg5Gw4OaiQRYPGcBSfWIzhwUzGWU8T1P2eUKmOQ3FUhb6eeedF5tC7FanoJIkTe+OPvro4lFWXk+Z6NSQZjFBKTcbhqu+Ma+k2RelA6vC0Wwah4HSLNQ4P+yww7IHH3ww3sfnkxDC2yR+EHBPpdveeOON4v3kg06SVI7IlKX0FZuHKRudcZyMWdfoqm8EuMn4ntTJsmmRTp+vt956xbKtNA9nDsFpNGIDBMB5fXJoRppqonMf4MQbf1dUZKDXCvEGEJQnpsD3dvvtt9fK96aaZxBdtaJr165RY5Ja0akZ01lnnRU7b+3bty9+HEe/CaBzhNbMNdU3JolkVfJ8pHEIu8RIGeZkqDdp0iSyNWg4ytvUNTv//PPNQpfUaHCNZEHw22+/xamcfJOnESNGxNHvxx57rF4foxo3FqbMK1lwV3VKjKPbZJ+TBcbRasZ8moYxrrP4ZVzHDTfcEM/nQw89NN5mTtu3b9/i/XDyggZhkjQ9oLEiJ20T1kWWXVV9Y07JWFxbpdPSaQvmtCmgznqf+QOJoSCInu+vcsABB2QnnHBCxLPyUj81Ylxkoufx98TGfJojk1BK6WMy4Om5ovIwU30/AE2f0rGWc889N+qmXn755VEPndqT1JrMH6XlaAyLHI7D8jbHYqT6wCSRkkRffPFFMeMM1P2la323bt2yY445Jvv6669jUN1+++0jAz1fP1CSpndc/2666aY4okpJFwKWqZ4qYzpzAK6n9JCQ6kNqcFsqa41sssGDB2cvv/xyBMHnmmuueF6ThUZj8ZQQQrM9AkokgdBklAA7z/HknHPOqbPvSZJqG6Ul6G+Wb+bIGM/pGxKHpPrAnJJTZbVRQ5znN6fNQBzgyiuvjNdTrzPKuoD5QT7bnL8VPpf4QFVBdJqRVt7Ev+aaa6IyA/NnstE7duwYZeRIMs1vXqlhM/KjWkFTUZot0HzpkksuyS677LJYcO+2224TLTh4P8FIsKCR6gML6mHDhsUOd/45yo4zE0jqoRIsp/s23bQTA+iSGiOaLxNAJ5OX0hfJDz/8EO97+OGHI9tXqq+TZWyAkyleGYFwFuOM9+PGjYtsMRa6LGjbtWsX2W7MVy+88MJI/Ojfv380MqOpeOfOnWNTnaA7C96q7l+SylXz5s0rrG8IEnIdtKSL6gtzSeaUtZWFzphPVnlqJko/FaTM8HyWekKSKH8bJH9yeiMvZaYTRK+MpFHiCC1atIikPDLTn3vuuezYY4+NxqMqDwbRVStolNCzZ894nYxeBmQuTtSFSkdikz59+mRjxoyJRXflGtRSXe5wM0hzlDt/9IosNur+0kyM91MjbZNNNonNH7vVS2rsWGhXrjlNMJJyWGxMSnWNhS3zSQLfLFDzaILLPJTFK0e2GeP5uPfffz9OlrEJ1KpVq+y2224rBpFYWA8ZMiSOW5O1zpyA+qyvvfaav1xJ05VddtklGoizQZ5PKHKNrvpCEJsN79qqh07vE6on0PiTExeM7zznSQhlrU+ZQtDHL0nZ6XxMZdQ8B/XUK2PTnqA7c4pUF51NfOYtfH1OvNNvTQ2bQXTVGo7DcLEj6EjmTupmTAMmLiB5PXr0yDp16hSZ6NSFkuoadU95zrKjfM899xRv55QEx65okkst1Ouuuy579tlnswsuuCAGWUlqzA488MCJFtcEJ8nS5boq1bVRo0ZFYzDG7cquuuqqaCIKNsxJ+iDQvueee8apsxVWWCGez0cccUQxSE7t/5SZhhRcJ6guSdMTsmErN0v+5ptv4npI+SuprjGXZAObLPHaxnyAMm6cRmOsHzlyZJxeIz6QyhWDWEDaZK/sww8/jP+XW265Kr9Ghw4d4m9s8cUXjyD9+PHjI15Gybirr756ooRTNTwG0VWrWKxQ/oJsNBon0Hl4s802iyPg+YUIR2L23nvvOC5G3XSpLnESgl3mQw45JDv99NNjt5uj2qC52NChQ2OXmgGVDR+wY00zMklqzChtUTmgSAZb06ZNs/vuuy+up1JdovEnz8tU2zyP+SdZYG3atIkaqJwyIzudABGL5EGDBkWT0VtuuSUaiFP3lLkBGWgsbMlSf/fdd/2FSppuUXIif4qHAF+TJk0qNFWW6gJzSOaSPCerahI+rRjj2Tj/+eef4+111lknGzBgQNQpx5NPPhn/E7/Kl3BN2elTE0SndEuvXr2y+eabL+qu77///rF51bp163g/pZPS41HDZBBdtYpjLGeccUYsTAimE3Qk05wFCNno6agYx2fffPPNbK+99spuvPHGCkfIpLrY4ea5yfOVMi1pUAXHtnHSSSdlF198cTxX1157bXeJJen/LwbI6CVTJ4+mjozllMWQ6goLz7vuuitOSJBlnkemOQteNs7ZHKcuKWM+wXTmpAMHDoxTZpxGm3nmmaOXzxVXXBG10Fk8c78E3SnpJknTqwUXXDCChnmcyOFaaHBPdYkkTKoZVHWyrCY89thj2R577JGtu+66Vb6fagrMCfKnM5hLMMdljlFVdvwHH3wwySB6wol2mqBTroZ4A/3X6MvGbSmZTw2TQXTVuuOPPz5755134gJFV2+OyCJdHNKu4sknnxyLHi4ijzzyiL8Z1QmC5WScsQt8+OGHF28n+EO2Gg1H6QTOMTJ2whkw2eix+Yck/a9Wardu3eJHwYmdhLGcYOO1117rxrjqzO233x7jOvPJPBbhHTt2zJo1axY1TFnkknFOUIjxnMwzPpf5AOP83XffHc3BTj311Ph8+vak4BHJIZI0PaOsRN4ff/wR10CumVJdYC1OGVUafpOQWRseeOCB+J/eKJSBY5O98oYSMax8E/FPP/00+vyRVFe5rBulWVICXr78S1WYi1Bejq9LrIGYGCfeU8UGNVwG0VXryOZhkZ2w+CDr99tvv41mZCxiQMkXOi+zE3jllVf6m1GdYDJIoJyd5u+++67C+2iMl0q3UBcd3bt3r7KJiCQ15s3yRRddNBbZeSw0OHn2+OOP19tjU+NBoJwygjTGyy9CKdey1lprxfFrGnaRRcbGeQoSkXHO8elrrrkmFrH9+vWLuStlXEC99FT/lAV1ul2Splf0h+AkGQHMhOsf183U50yqTY8++mjMIY8++uhauX/mBoz94Hl+2mmnZc2bN48TaJNCgshXX31VZdInjUlBvfNSZV85wcnm/VlnnRX11/nYvM8++ywS92g8ynxFDY9BdNUpMn2oQ5kye+heTO2phMUPFxaO1lTeCZRqGpNANmxogMsgzdGshNp/f//9d9RE5XUC7GSjM8BKkv4PmThnnnlmvJ6vGUldSBbiboyrLrBZw9zxmGOOqXB7nz594ng0DjrooMgooyxLmneyYU62GwF0TpqRYUbmGXMAFriUfkmYA+RrBUvS9GqfffaJElcJ10r6mOWviVJtYe5Itjd1w2sDZVRIpCPLnY124k9IpYwY7ymvQlC7MuYL+STRhKxytGjRouTXZTOf+UV+vgwa95KJTk8X5iA8JnqxuGnV8BhEV51ht48dNwZfMnpYxHDklgyglDHE2xxnIaONhY1Um2gWwvORMi6Va61RgoDj2zwPCaS/9NJLcdSb5reSpIoITq6yyiqx6chmefLNN99kQ4YMsRmj6mTBzcI1f+wanTp1iqZkLIhZHA8fPrx4MpIMNxapNA7lZNoBBxwQAXYWudtvv3308UnNcVnY8rGS1FisuOKKsRmesA5yY1y1jVLAZKKTXFkbDUWRShORhc4mPOM+cSjKD3Oykuf56aefHvOAfG+ASfXuo0k5uI9SevbsGffJ95Z8/PHHWcuWLbPzzjsvys4RQAen4ir3HFIDUJDq0KhRowozzjgjZ8AK559/fmH22Wcv7L777oXZZpstbuNljTXWKJxzzjmFWWedtTB27Fh/P6oV//zzT6F169aFFi1aFNZZZ53i869JkyaFI488svgxkqTqefvttwvjx48vjBs3rjjW87LgggsW9t13X3+MqtX5Jc+1W265pcLtn376aaFTp06FYcOGFYYMGVKYaaaZ4uM6d+5c+Pvvv4sflx/vef2OO+4ovP/++4XFFlus+Dy+6667/A1KalRGjx5dvAbmX15++eX6fmiajnXs2LHQtGnTwu+//14r9//zzz8X5pprrngujxgxotCuXbt4vWvXrvH+Rx55JN7mMeTnChdccEFhoYUWKlx++eVV3u9qq60Wn3f//fdP8WPia++8886Fr7/+Ot4eM2aMsYgGykx01SlKt3AsBvz/4IMPRokXaqPnj8GQyTbPPPNE5rpUG9jd5hgXtXw5PpW//ZJLLsn++uuvaEw2atQofwGSVA1kos8999zRmDHffJnxnJM8qVakVNNoTr/yyitH89CEExDrr79+duutt2atW7eOWumM7RyTpvFXfo5JT56ffvopXifrbe+9986WX3757Iknnsjatm0bJ9P22msvf3GSGpXVV189roV5c8wxR1xzpdpA+TUabpIFnm9YX5M4kUaj3OWWWy7KtQ4aNKh4cg333HNP/E/J13zZFeYK9PWrqqzbDz/8ECfc0apVqyl+TJROuv/++6OkHJjT1FYWvqbNv4ikT+N9SFOEIzDbbLNNLEwInlMmg3rTDNAcowELcC4kJ510Uvbmm2/GwlyqyecgNdYI7LCoPuGEE+J2no8cH+MoFTXSLrzwwqh3RnO8ueaay1+AJFUDU0uOgH/wwQfF2yiFQamN1MRJqinU591yyy1j8Zma4FHDlFKBPBdZAPNCAH2LLbaIhfOLL76YzT777LHg5TnJsWreN3jw4Dg6Pd9881X4Ghzh5uMlqbGhFjrr9B9//HGiay+lsKSaRCm1999/P8ZnypnUFkqo0A+NBI+jjjoqYgMk1lFemNLCbKwPGzYsGomC2ADNdYkjsBG/9NJLV7g/Nu4pAcvfCo+/FHqvEHAnBkEQv5TnnnsuAvwkp5B8SgNSStCq/pmJrrp/0s0wQ3T7ZpeNADn1KNnNy19EaLZAo0cWQKkJqVRT+vfvH7vc3bt3L56MAF2wWWQTSCeAnmqjG0CXpOq76667KgTQwSY5mT4jRozwR6kaQ5CchIsNNtggFqT5U2W8j6a3bIYztnMakjqkBNAJklMDlcVsqkvavHnzCKIz96RfD3PRxAC6pMaKwOG5555b4TYCe1x7zcdUTSJozTjM8602A+ig/jk9VB566KEKWei8TQB9mWWWqdDU9IEHHogAOqczKgfQkfqtTC4LvXfv3tmJJ544yV5Bu+22W3ztbbfdNrv77rvj59GlS5fsyy+/nOrvVzXHILrqBbt7NHMgoM4gfO+99xaPv+QX4QTQuWC98MIL/qZUI/78889oLsbxrCuuuCJ2ghMGxnXXXTey2cDCmmPfkqTq23PPPSPrPI/jryxI2Lx00a2awvyRsmtsfKdjzzy/OAbNcWwC6GRR0hiPxSeb5GRzEUDv1atXnDwDC9Stt946nrtkqjNPYPFKY1xJauzIgOXamRBkHDlyZHbffffV6+PS9IOxmzkiGeG77757rX0dxvg8TqMRb6KMGygBh3333bdCKZfUiLRDhw5V3u9jjz0W/3OqbVI4MUfpuUlloae/tY8++ig+lrnJLbfckjVt2rSa36Vqk+VcVK/I/CXzh4vmDjvsEDuPeccdd1wcFWMR9NRTT1kXStOMRTPB8f333z8yzfLITGODZ8yYMdEh++mnn66y5pkkadJee+21yPxlczJZYokloszGwIEDYyNTmhYTJkzIVl111ViIcowaHKE+++yzowY/YzrHrxdbbLE4ns2mOUejOQ155JFHRgCI2v2cOGOe2b59+9hoJ8uM493UYiVrvfKGkCQ1RmTtpmxbsEZic5xEuHwfFGlq0CuPADPB6K222qpWfoiUZiOLnGzxG264IU5Z5BGTOvjgg2MT/pVXXokNeHCKjbKEvJ8yMDzv89hwX2SRReJ1NuyJJ0wLTm8SzD/ooIOizLEaFjPRVa8IoIPsoeuvv36iCxmZwuzm0QDykUceqadHqekFO8+Ub9lnn32yfv36TfR+BkoC6JQa4uiUAXRJmjprrrlmHPXOS3WqTznllAqlMqSpwUY4QXN66GD8+PGxME7ZYgTQWcjSQJwAOiVfCADxNgF0AudkpFPqhaw3AujUPk0nI6+66ioD6JKUS0RKTQ/BNfO9996bKClJmlKMw8wNifvUVgA9VTrgZCRlXWmQy9fNIyZFmTeC4imADuICBNApsVI5gJ7PQl9rrbWmOYCO2WabLTv00EOLAXS+dmp+zkYANdlVfwyiq0HgQsXRmHwjp3TRYBHDoojaUX/88Uc9PkqVu/PPPz8W0mSXVQ7gHHLIITHoEThnJ5zdZknS1Dv99NMjqzdv7NixEaRk41yaWgTIzzzzzDh+zYYN2CSndEsqF8Sckib2zB8HDBgQry+00EJRj5TSbZQK5JQjZQo4MUENUk5Q8DrHuJkXSJL+Z4011og6zilgmFD+imuyNLWYE5LIlnqS1QbmBldffXW8fsQRR0QmerNmzaJMSmWV+6C0bds2Ss1wiq0qDz/8cPy/zTbbTPIxEAAny3xKEP8iAZD7fvXVV6PczY477jjF96OaYxBdDQLHbCntQkYRR23zWMwQ9OR9+SaQ0pSgZurFF1+cHXbYYVnfvn2Lt/PcIshz5ZVXRi10OmFTykWSNG24vtLIOdWqTjj23a1bNzNpNNUoy8ZilHE9nTSjsWha+JLFRcYZ5V5YaC6wwALFJuGUZ3nppZciyywtQrk/SreQ6UU2OvOEys9bSWrsmjRpEpnClGdLyOylBKs0NSiPwpyQzGs2uGsLm+ZslDM/oKwrJyv+85//xFwixQp4qcoqq6wSAf6q6qHz+dRVR77BeVUoE0PDc4Lik/PLL79Ef0CC55Ss4wQdNdK/++67bNy4cdmHH35Yze9cNc0guhoEjsXQmIQsYHa4yQJmkM5f9LiwcvEqdXGTJrWDy2BJsJxd54QjVxzZ4jnFwpvTD9TwlSTVXNm2Sy+9NLJ/E47PEqCk7qRNRjWlWKxS15ySfzTfIhFjyy23jMUri1k2aQiOU06IzDaOX7MIJXCepAA5J9QGDRoU2V2UGyKRg9NobABJkibGaV42GxPGceo3p0CiVF0kS1L3m43uSy65pFZ/cKmROF+PgDQJmvPMM0+cPMPJJ5+crbfeesVs9eqi5DABb8oVrr/++pP82A8++CC+53nnnXey90uwn4oMlDVmHk0gnRNz/J29+eabkSSgelKQGpC77rqLM7jxsuOOOxZf52XBBRcstGjRorDqqqsWfv/99/p+qCojJ598cmHmmWcuLLnkksXn09JLL10YOnRooUmTJoX99tuvMGHChPp+mJI0Xevfv3+FcZ2XPn361PfDUhkZN25cYdFFFy1sv/32hX/++afw1VdfFRZbbLGJnle8MLbPO++88foCCywQY/6///3vQtu2bSeaR7711luF9ddfv/DRRx/V2/cmSeWANdNaa6010TV3kUUWKXz33Xf1/fBURnr37h3Pnccff7xWv87zzz8fX2emmWYqfPLJJ4VWrVrF2yeccEK8/+233463Z5hhhnh/8sMPPxT22muvwhNPPBFzjqp06NAhPrdLly6TfRzcx5dffln4/PPPq/W4L7744sJ1111X+Oabbya6H9Ufg+hqcC655JLiYHzQQQcVZptttgqBT4KhBEWl6njppZdiQDzssMMqTPSWWGKJwsILLxyvb7TRRoVffvnFH6gk1aI///wzFtnpOjzHHHMU5pxzTgOXqrZ99tknAuOfffZZvN26deuJAjkzzjhjYbvttiu+veGGGxbee++9wtFHH1287aKLLir89ttvFe7bRakkVc/rr79eOOKIIypcewlQ7rvvvv4IVS1sWjMHZI1e2zp27BjP0QMPPLDw1FNPxeuzzjpr4Ysvvoj3H3LIIXHbzjvvXOHzrrrqqri9efPmVc4Rfvzxx5jL8jEE6usCAfVNN920MGTIkPheOnfu7PyljhlEV4PDBeqYY44pBjpPOumkCgN0u3btIihKcFSaFBbIDHprrrlmhSx0Xmafffb4f7XVVjNrQpLqaMFUOeA5zzzzFDbbbLPC33//7e9AkzRw4MB4ztxyyy3x9h9//DFRFjqJF4zr6e1jjz228MorrxRWX3314m3MMYcNGxafS3a6JGnqHH/88RON6w899JA/Tk0Sc742bdpEguT48eNr/adFstwVV1wRG+pbbrllPE/ZBMLYsWMjSZPbnn322QoxqZVXXjlu79WrV5X3e/3118f7V1pppToLZHft2rUYJ2MjgNf79etXJ19b/2NNdDU41Km87LLLomvyo48+OlFjJ7ofUwOKGtd2JdaknHXWWVHvjFrnNA5JZphhhqibuvTSS8dzbL755vMHKUm1bNlll83atm1b4bbx48dH35Nrr73Wn79KopEWjcG33377rFOnTtnTTz+dLbfcctkXX3xR/Bhqqh5++OFRK5QmojQW5WNatWqVvfHGG9nCCy+cDR48ONtwww2zrbfeOj6XmujW5ZekqUO/srnnnrvCbdSc5potldKnT58Yx+lNVvn5UxvmmGOOaCBOPf8nnnii2OAe1GKfMGFC1qZNm5gvJI8//nj2zjvvxHwi1U2vLPVao8fP5JqRU8ucj6OGenUxP/nkk0/isfAYce6558bf2GOPPZZdcMEF8fquu+5a7ftUDfj/wXSpQe9UUgs9v8O9wgorxJGxtIMoVUZtNU4spJIt+aOG/L/QQgvFbrQkqW5LunD0NH9d5jgvGcSvvfaavwpVOQ/kiDU9TKgjSpZjyr7ipUePHlGW7Z133omPJTNyzJgxUes0fQx10Mk2O+qoo4q3UVf9559/9icuSVOJ7NuWLVtOlI3ONdsTZqoKcz1KoBx++OG1/gNizvDXX39VuG3UqFFRix30VUmlg6l7nkfJlHSirSqjR48uxha+/vrryT6Wgw8+OD6+W7du1X78/A2l0/NVxS1S9rvl6OqWmehq8MgaPvXUUyvcRnZxkyZNsmuuuSa77rrr6u2xqWGi8/Wee+6ZrbDCCtk333xTvH2WWWaJ/8k8JwOd90uS6s7MM8+cXXXVVdlWW21VvO2XX36JDJ6dd945+/bbb/11qIIzzjgje+ihh7Lbbrst++eff+J58scff8T75plnnhjnyexaaaWVYs7IacaVV145TjQussgiWe/evbOrr7465gW9evWKz+vRo0c2cODAbM455/SnLUlTibG7ffv22ayzzlrhdq6vZ555pj9XVcB4vdNOO8V4femll9bqT4f5Al+rRYsW2ejRo4u3r7POOjE/wEcffRTzBE6obb755sWPGTZsWLwQO+jatWuV989cFnwNTrpNDifljjvuuIlOZE4Kc5q11147Yhbjxo2r8u/vrbfeyjbeeOPs008/zV5//fVq37em3r+IpE/D50u1jqfotttuG0dWKlt88cWzr7/+Ohs6dGi26aab+ttQlAZgICQoQwmX/CWO59Cff/6ZNW3aNAYkSVL9+PHHH2NRkA+as1jh+s2x1bTpqcbt7rvvjgANJQO6d++e7b777tl9990X71t99dWjZMDnn38eJf4OPfTQOB5+8sknFz+fsn/ME1dbbbXs559/jgQMgvE77LBDPX5XkjT9YK01duzY7Pvvv8/WW2+97K+//qpwDWcDU2INvuWWW2bvvvtuNmrUqGzJJZesk/kD5WJIwGTzfamllpro4yiT8tVXX1V4PJR8Yy5K4JvSM5Uxr6AsLPc5fPjwCGLX19/eRhttlD3//PNRMvHjjz+OpIMdd9yxXiqzZsAAADInSURBVB5PY2Emuho8dtjuvffeWFhXxsKJC8Zuu+0W9aLUuFHnbO+9984+++yzeG7kA+jNmzePWmfUUzWALkn1iwziyosOFlhk/hx99NHWqVb2yiuvZAcccECM6wceeGBsuqQAOsi+YqxnUczGOQvJU045JZ5DyWyzzRYL3V122SWSLV599VUD6JJUw2t1rrNrrrlmdv3111d4H7Wkue6qcWNNftRRR2UvvPBC9sADD9R6AP3XX3/NTjrppHidTHISLpdffvnstNNOq/KEZP7x8Fj32muvONGW7qMyqiEQQF9//fVj7lGff3v33HNPJBiQdAp6wKh2mYmussowJnOI3b7KOIbDy7PPPhvNH9Q4MdBddNFF0UiUgHoK1NA8ZNCgQVnLli3r+yFKknKLHBbc/fr1y1577bUKPxfKbhx55JH+rBopssLIaFx00UWjGRfHsfPl2RI+hkB6ajBK0J1mobfeemsE35dYYonic41yA8wPJEm148knn4xs43wiE9dxxnjW6mqcmNORIEEjUTbFaxvBchpwEhxnE2fdddeNhEtuo0zw22+/HXEj5gzECarCc7iqZqGcaiOJ87///W+1TlpwP5dffnm23XbbRWC+thDUHzlyZCSoEAdxvlN7zERX2SAYSs3LLbbYosojNRwN6tSpU9S/UuNzxx13RACd+qYpgJ42XxgAK9fqkyTVrznmmCPqQz7xxBMTZQeRscRiXI0PC8Fdd901SgKQsbbGGmtMFEBncUhgnQUjAfRmzZrF0WvKujBPpPQLz638c80FpSTVrsqlNNOmKKeBUi8LNS5kgTMe81IXAXRKt1x88cXx+hVXXBF9UQigL7bYYsV5AYl3lIDr0qVLyfupKoCeNgQIoC+33HIxV5kcEkBPOOGECORTYm5K3X777XGS/tprr53kxxHrIID+8MMPx9f68ssvp/hrqXoMoqussAjiwkCdKuSP3jAws9g6/fTT6/ERqj5QB4xBOR3pzuM5MmLECEu4SFIDtcACC0QQnXrVeZRqe++99+rtcanukQjBwpZSLpRuob55vm4+x67pa8JimAZaNN3iqPZdd90VzUNbt24dGWYLLbRQNCC19ZMk1Z399tsvu+SSSyLLN9/bhDIeXNu9JjcuJDnuscce0bST50VdlY2hPOA222wTm+0XXHBBvI9GpiTbPfPMM3HCjY31/InH1IiUbPl8Ql7lfj4pQE/j3FJZ7Hl8TR5Lx44do8TclGIePHjw4OzNN9+c7MfyfR977LFx8oOfObXnVQtoLCqVmwkTJhSuuOKKwquvvlqYccYZ2e6Ol5lnnjn+v+iii+r7IaqOvPzyy4V55523sNBCCxWfB+ll0UUXLYwdO9bfhSQ1cEOGDJnoGs5L06ZNCx999FF9PzzVgX/++adw1FFHxe+9d+/eFcb1GWaYofDEE08UXnrppcLXX39duO222wprrbVW4cEHHyx07Nix8K9//av4cYceemhh3Lhx/s4kqR59/PHHxWtzejn66KPjWq/p34cfflhYfPHFC6usskrhu+++q5OvOX78+EKbNm0Ks8wyS+Hdd98tbL/99vG823zzzeN59+effxZWXXXVuK1z584VPveOO+6I2+eee+7CN998U+X9n3HGGfExfE9//fXXFD22Kf345O233y7cdNNNhaFDh1br45kzr7baavE4+V7//vvvqfq6Ks2a6Cp7999/f2Sr5Xf7yEa+8sors2OOOaZeH5tqF40zyDqjNhmdtfMWXnjh2LElG02S1PBRkotstQcffLB4G5nG1LXmRFFtN6JS/SF7rFu3blnPnj3j5ayzzsp++umneF+HDh2yZZZZJuqft2vXrvjxZIpdeOGFxVJANNY655xzarXmqCSperhOt2rVKsb1PE4PMd6XKpeh8jd27Nho5s3pMZp9c4KsLp93xAA++uijKCPEYxg9enTMDcgip9zbggsuGFny888/f3wOsQTeT48V5hE9evSY6H4pHbfSSivFxw4YMCDmHA3Vd999FycA+DujtAvlZ/ieVUMmEWCXygLZSJUz12aaaab4v0+fPoVydM011xRWX3312AnlZcMNNywMHjx4iu/nzDPPjAwtMrLI7lpxxRULs802W2HJJZeMTIAffvihUK7YlSVLLf2u08tcc80Vu87sREuSys8xxxxT4bpOdnGzZs0Kn332WaEcOaZPGtlhp556avyuzznnnJin5H//KZOR02VkNjL+Jz/99FOhffv2hVGjRtX671GSNGWZtykjtvJLjx49yjIj3fF88pirLb/88oVlllmmXk+E33777YU555yzcNJJJ8Xbn3zySWGOOeaI598tt9xS4WO7du0aty+77LKFX3/9tcr7I6bCxxCXqU5291dffVXo2bNn4bfffivUJyo0EDOhgoNqhkF0TRdOOOGEYimXyi9XXXVVodw89NBDhYcffrjw3nvvxVGkU045Jb6/N998c4ruh6POd999d+GNN94o7LrrrnG/H3zwQRwHWmGFFQq77bZboRy99tprhQUWWCCOauV/19tss00c857a41KSpIbhvvvum2g8X3rppWMRVG4c00sjiJIWr4cddlhshFc1l2vSpEmhXbt2hXnmmaew9tprezxZksoAY3anTp0KN9xwQ4USrLyceOKJZRdIdzyf/O+bpIelllqqTkvx9e/fP+YQlZPoKCnz888/x+vMIXjetW7dusLz7q233iom5Q0aNKjK+x8+fHhxU7+6m/apPN3OO+88Td/bAw88UHj//fenat7z+++/F9Zdd91ikoJqhkF0TTdGjhxZWGSRRapcfE0PNdLnm2++mIBw4a/qe+SFOl0JO78EmX/88ccq7++ee+6J91Nfvtx+z9RAzwfQU5Za5dpmkqTy1K1btyrHObJp2Awud47phVgQciqO3+u2225bcm5DQgAb5+ltTup98cUX9f0rlCRNAYKZlROgCDSWWyC9Msfz/yHQS/CcIHpdJjx8+eWXxTnCJZdcUvLjXn/99YijEDTPz0M23njj+Nyddtqpys+jjnqLFi3iYw455JBqPy5iLYsttli1a5lXheTA9Lcytafs6R1DBv7WW29tAkINMYiu6QoX0ebNm1e5CCObuxwbK5BVfdddd8Wkg4s+pVloEkH2Pd8vLy1btoyLOseak169esXFspS+ffsWFlxwwUI5efLJJ+NYVuXfLSVvyKr/5Zdf6vshSpJqANkzHJ1lbKt8zWfByomkcuSY/j9//PFH4YADDojfZ6tWraqct/F7zjcXXW655aLxVznO5SSpsaNMBmU+Kl/ryVRnTCg3juf/hzkZAeOVVlqpTkvv8TvYYost4nm05pprRlxko402iphBdQwbNiyS8TgFVyrwf/bZZ8f9zz///CUbjpYyrbGJMWPGxPezxhprTPV9UAKPMnkkJHz77bexKUBgXVNvhpqqrS41BIsuumh2xBFHVPm+888/Pxos0AyiXJpmzjXXXNmss86aHX744dkDDzyQNW/ePBpgzDTTTPE+vl9eZplllmyOOeaI25KBAwdmO+20U5X3TXMJmmYceuihWbm45pprsi222CL77bffKty+yCKLZK+88kp27733xs9AklT+GPtuv/327Prrr89uvfXWbIMNNii+7/vvv49GSffdd19WLhzT/8+3336bbbnlltltt92WrbHGGtlzzz1X4WfFvGa77baL3zMfS0OyPn36ZGPGjMn23nvvaDYrSSovNBL9888/J7qdMX6TTTaJ6305cDyviLkYDWQZu5955pls8cUXr7PfBc3Fhw4dGjGAO++8Mzv++OOzZ599NjvyyCOzv/76K5qMvvXWWyU/n+cdH3/jjTdmSy+99ETvf/3117Ozzz47Xu/Vq1e20EILTfYx8TWTaY1N0Ox0xIgREzXnnRKrrLJK9uSTT8Z9LLDAAtnBBx8cDVfT96Up5yxU0x0umoMGDcpOOeWUCD7n3X///XGR/+STT7KGju7Pr732Wvbiiy9mnTt3zvbbb7/s7bffrtbnjh8/PgaxqoLovG/77bePgPyZZ56ZNXRMtvj++b0yKP3zzz/F96255prReXv55Zev18coSao9++67bwRcZ5555uJtLI5233337KyzzqowLjRUjun/tyBdb731Yj4z99xzZ6NHjy7+jFj8dunSJXvvvfeyf//739lWW22VXXzxxdkHH3wQ87n871+SVF5mm2227Omnn441OmNBPsD40ksvRbAvPyY0VI7n/8Pci1gCczFiDsOHD4/ktrrC1zv99NOLyXYEm/v375/NOOOM2U033RRJh3379o3NepIHS2nZsmW25557VhmD2H///WO+2a5du6x9+/aTfUwff/xxttZaa8VjqUmzzz77NH0+3yNJl1hhhRXiZ7POOuvU0KNrfGaq7wcg1QaCxLyAAOuJJ55YfB8LNy4aZHZvuummDfYXwIUuBYd5vCNHjsyuvPLK7Lrrrpvs5w4ZMiSC5EsuuWSF23/66ads2223jYUr339DX5CSkcDpATYEqrLzzjubfS5JjcCAAQOyCRMmxDX/119/Ld7OAo5FN5lsc845Z9ZQOab/L1utU6dO2YILLph99913FbK1mJdw8uDDDz+M1/Hoo49G5qIkafqw7LLLZuedd168/sMPP2QLL7xw/I9x48ZFAJLxftddd80aKsfzLE72k+BHgiK/z5NPPrlOx2tO1Xfo0CEC+cwreN6kE4s8ng033DA24NmY52Mqzw8Jrm+88caxcVNKt27dIqGR7G1Ow1Xn+0sbRD169MieeuqpafqZPPHEE9lGG200zQH0ypZYYonYVEixMk05M9E13ascSP77779jsG7dunUcEy8XDAB//PFHle+rfIGmlAsB5soZ6FtvvXUM/A899FBkAzRkBEXWXnvtiQLoLK4ff/zxGMzOOOOMent8kqS6w8KERQ8LtsoLCm4ju/nTTz8tm19JYxrT+V45MUC2GpsgY8eOrRBAT5v8P/74Y4XSLgbQJWn6RTZsixYtJhovdtttt1jjlcMps8Y2noMT/QR3H3vssezBBx+M+Vldj9fMI0is4FTARRddFJnkv//+e9a2bdusa9euUf6VOccvv/wSMZ/jjjuuQgY7p9tIUuREe1XYyCF5ETfffHO1M+xJdqRcCokd0/IzoVQt30uzZs2yb775JqvJZIYDDjggyhx/8cUXxc0rThKw6aDqMRNd0731118/dhnZMf3Pf/4Tt6VB+bDDDovdwksvvbRBDVjs5nLhXGqppWJhSY0vjr+RlVUVAsvvvPNOXGSpmU4mej77Pg3OZO+R6cXbvIDaXhx7akiob96xY8eJ6uZRq4wBe8UVV4x6qpKkxoOFCVj0EDAni4hjtqBe9qqrrhplQDbbbLOsIWnMYzqB8YMOOigWbjwusseqcuCBB8ax7KpqkkqSpk+s6UiYInGKwGFCvWY2VRk75plnnqyhaMzjOciuJmDN9/X8889nq622Wr08Dp4vnNInSM7P8913341a7Cl4TY88Yjz8DPm5pl4q/B7orUIsiO+DIHVl77//fsxb0L1792zHHXes9uPiuUrCx7RiU2axxRaLOBanNWoKZWmYI1OZINV3P+aYY2LuTFCdn6kJDNUwDU1JpbLxww8/RCfi0aNHF5o2bTpRV/BmzZoVXnrppUJDceCBBxaWXnrpwiyzzFJYaKGFouv0Y489Vnx/ixYtCmeccUbx7VtvvbUwxxxzFLbffvvCE088UVhiiSUq3N9TTz010fecXj7++ONCQ/Hf//630KFDh4keI12zZ5xxxsKjjz5a3w9RktQAjBw5MsbIGWaYYaIx4/DDDy/8/PPPhYaisY7pjNmLLbZYjOGlHm/btm0LY8aMqe+HKkmqB//880/hySefjNe/+uqrwlJLLVVhjJhtttka1PqvsY7nzKmOPvroeFybb755rNnrw/jx4yu8TXynY8eOEScYNmxY3Na3b994nMwPhw4dWuFjW7duHe9baaWVJrovjBs3Lt7Hx2y66aaFCRMmTPYx9e/fv9CvX79CbcSveDy18TeX98UXX8Tz+I033qjxrzW9+hf/VCfYLk0vyFqjxMtXX3010ftOOumkqK8666yzZuWK3US+RxpslBOOr9G84/vvv69w+7rrrhu7/dx+9913V6srtiRp+kZNbU4sUaKNupGVp7NkfHHMeJNNNsnKWTmO6WTRkRlGNhZZdPyOEuZXZFZRkofjxDa2kiTlM70vvPDCiX4g++yzT9a7d+8GlZXeGMbzVP6EEiBkKjNuH3300fWSIc+JBTKpaRq6yy67FG9n/scpBuYTNPakAgGZ3BdccEHEdhJKulCihSx6GtmuvPLKFe6fz+FUwLBhw6JuOB/TtGnTST6mV199NeY0/F7J0m/Tps1Uf39kx3/22WcR96hvnJ6gAWlDOwnRUFgTXY0OAwAXuqqOqjBocyxp1KhRWbni8Xfu3Dkrp0AIEyPqw1UOoFN/bNCgQdltt90WddANoEuSUpCc8YFAOYsnFnX5WumMLTQPP+qooyo0Ii035TamM1ZTVodFLsenUwCdORf1b7nt6quvjqPvBtAlSXn0zQD1wfMoyUF5CzbNy1W5jefMnQg8U1N80UUXjfIovF0fgdU33nijGCu45557si+//LJYnpf5RZpPLLPMMtlVV12V7bHHHtEYNLnxxhuLNc4p+VI5gE4gnrJyBNDZqBk8ePBkA+igpj+lYygRMy1JG9Rwb9++fbbGGmtkzz77bFYX2CSg/wAN3fPee++9rGXLllHGhpJFqkJ9p8JL9YFjKxy9GTx4cOGZZ56p8gjVySefXPj999/9BdWihx56qDDnnHNW+fPnWFFVx6wkSarKqaeeWmXpkCZNmhRGjBjhD60WMV4feuihJY+lt2nTpnD77bcX3nrrLX8PkqQqUXKjR48eUSLl+eefL8w///wTjSc777yza8RaNnz48MLyyy8f5XQuu+yywl9//VVvz9hPPvkkSsPxu994443jbUrxtmvXrvDTTz9NtmQJr++4447x+flSO/n3H3HEEfH+mWaaqfD4449P9jH9/fffFT5/Wn8+PO+Jfcw888wxV6oL2223XXzPfO95gwYNKsw+++yFDTfcsPDbb7/VyWMpNwbRpUKh8PTTT1e56FtkkUUi0F65dpSmzYcffli8cOdfGDhOO+20eL19+/YVBihJkkphnN5rr71i/KAmaVVj+t5771348ssv/SHWIMbpO++8M2rDVvUzp77t1Vdf7TxKkjTFvv/++6g/XtWa8aabbnKtWMOYI9FXhoSEVq1aFd599916fdZSe33llVeO3/mqq64aAfS111473l522WUL3377bQSgu3fvPsk67XzMzTffPNFchLePPPLIYg+2ydU2p0Z6ly5dCocccsg0z2uYP+Vrrn/33XeFZ599tlBXXnzxxYi73H///RO9b9SoUc6XJ8EgulQoFE455ZTixbOqReAaa6wRu+GaNjSMYdAplal26aWXxsc1pCavkqTyalDGQmSPPfYorLPOOlWONSyAaNikaftZP/LII4XmzZtX+TNO8ykW45IkTY0//vij0LRp05Lr9IUXXjjGIhPepg1zIk7z0QR13nnnjaaayy23XGGZZZaJjPT6iINwwo1saH7PNGR97733Cptttlm8zcY9AX5+7wcffHDctuaaa1bYVPn8888n+bzgfalZKs8tNmWq09Q+NbR/7rnnpvp743Qkj7eqzPiG6Jprron5nJnp/2MQXSoU4gjOVVddFV2zyTwnW62qRSEX7rffftuf2RT68ccfozxOVZMfbuOo/ZAhQ/y5SpJqDJP9FVZYocosNhZBZ599tguCqfDCCy8UNtpoo5Ib4iuuuGKUyiPDybJ4kqRpwfqcNThBUU42sW6sPO4QZCWzVlM+T+rZs2eUzWGuxCn8UmN7Xa/Vzz///Pi68803X+G1116L8i28Pffcc0emNEFw4gtpTkeZ2IQA+6KLLhqB36pOtjM3SfEeYhE33nhjtR8XSX/33HPPNH1vPFa+9oILLtjgkzo4nUBZHx7vLbfcUt8Pp0EwiC6VMKmM6bZt2xbGjh3rz24yGKAuvPDCwowzzjjRz5BaWxxZ4qj3SiutVHjnnXf8eUqSagz1tznuy0KKzKqqxnPGp169etVrvc9yMWbMmMK2225b5c+RBSxZbB999FF9P0xJ0nRs4MCBJdfoq6yySoxVmjTmPGRes/nAz40M9FI/0/x86f3336+zrH8e41FHHRWbI/vvv388BgL9nDgEiRDpsfXp06f4eTzGxRdfPG5fffXVJwpSjxs3LjLtUw30SZVw4WNPOOGEwtdffz3V3wd12/lZP/DAA8Xb+BleccUVUY6mvtx9990RFK/O75MNFDL+PfHxPwbRpSpwgWjdunUx2DvXXHNVOZjwMTbJqrp+3UknnRT16kod82bnGEx0zFSTJNVWlhUZTGx8k5FEoLeqjV1uO/PMMwu//PKLv4hKKLFGM69SC+utttoq/l9rrbWsTytJqlWM6Wk9Oeecc1Y5LtGIsi7rS5cL5jjXXXddlGopNabPOuusxZIpqXRJeiFjnfI6NH+dFmSH5zPECSZTHoWAeT6pgeDz8ccfH/EYHst9990XpWUohVK5HOwuu+wSyXnppALl5sgY5/tgnpLiDqnGOi8E4hO+Ng1Lt9lmm+JtqSEpGeP5hqNffPFFnLajkkEeNdvp/ZafS/bt2zfug5ORDSVh49NPP42Mfh7XgAEDpvjzJ0yYULj22msr1HRvTAyiSyVwUWBnkh3Izz77LAZsdiurGmzIcmN3sbE3wiSbPC2mK78wyUmBC48CSZLqA4uvlH1UapO3Y8eOscBozGjCNamGoRyvJpOrW7duMU+iYRe1ayVJqm2UX2Xjm6Akm+Rt2rSpcqyaZ555Cr17944xrTFjTtO1a9digLzUC3Ojp59+erJZ6SQY0pCS2AcJhUsvvXTUT8+fAiDgTbD72GOPrfBYCFRzH6+++mrxNuYQ3EYAfJ999ikGmwk8c/uVV14ZmdM44IADio/jvPPOK95H+lhe+Lr0Ynv44YfjbZqR3nrrrcVNl1Tm78EHHyx+PhnuqYFpwmNMyZTMifJl7biN7ztvk002magfDD8fMv3psZevKf7GG29EWRqSD+sqtpViVfx8zz333CiTNDWB8JP/fxmdHXbYoVFmpxtEl6qJC0TLli0nOaCwQ7rffvtF0L2xYDDgKHyphTYvLVq0iI/t3LlzNHvjmJUkSXWN8Wf33XcvdOrUKbKrCZqXairOcWA2fRvT4pufD4u/UpsMKStt/fXXb5QLJ0lSw0M27aTGc24n0E5zysaCuQtJfgRvJxW/ICP58ssvj8AzJ8n/+9//RkY1mfxnnXVW9Dmp6vPISv/1118L119/ffG2fO84yumlk/vJyy+/HJvw3E5zzYSvm+YdBNJHjx4dCYzMRzp06FDhfgl28zHUNE8IcKcT8PRsSSVcaE5KhjnzvvQYN99883gcJP/x/nzt/XXXXTdKyOSRgU6Qnwzz5IMPPojyJu3bt6+QQEA5Ib7GeuutV7yNnyO3scmQl2q8E0dJ/vOf/0TZYBqe5v3888/VStZkXsb3XjkWRUkaYjVDhw6tcPvUZsbffffdsbnQv3//QmNkEF2qJnbp6KBMF/Du3bvHxTpd/ErtfNMQ45tvvpnufsaUX7n33nujW/ekNhSYsHAkip1WNPZMfUlSw5AWDhzJpdYl2VkcFy41prH4GTRo0HR5dJVFGxlqVTVrSy9kbbHQphnWkksuGRlM0+PPQpJUfsgMJmhLCQ82vynDUarON8FWamxPj/3NGJdp7M33X7kUS1U/B8b/pNTGOOv+008/vcr7IMucoPb2228fQfWdd945GsAiZXDna4FTAoTbCBSnOQTB7HRanbIp/C633nrr4udzyj0fQ0jlWPg+E4L93EapmXy29wYbbFAMzhOX4OP4PDYM8kF4bLnllvFxCyywQPGxEcPYbrvtolde/vnCHChl9XPCEfSEITOb5EEC8gn94bbYYov42vlmnfSE43vM/3wok5OqHCTMUSlTw+8z3wCV++P5nsrZ4OOPP47PZ6Mi//s87LDD4vaDDjqoUFO+rlQnnmauP/74Y6ExMIguTaHKGWlcLCd35ImOxmSoc5ynXDO3qFXGLjU15ib1vdLAg58Rx5kISOSPSUmS1NAwThEkJgNpUoHk9MLxXY6Hl+tigXkIWVgsdktlnKcFJy/MX8gKS/1LGkpNT0mSklTaJSFLNo1lpcY5greUtBg5cmTZrtGZi9x+++2xBp/U90oQlmx8SrsQQOeE/ZSUEnnllVcK66yzToX7TBnTBFDThjvZ6Xj99dcLXbp0icDtU089FbdRKoaA7jXXXFPM0iZwnoL6ZDineufcF7cRRG/VqlWxnEuq554PolP7PJ/1TikXssTT48xnYZMQkQLulJxJUsUBkiX5fPC4031QEiZJ5Wu5X0rGpP4x3EbAO4+5FrezgZAQE0oB+7yUoLnnnnsWb+NUQHoMJDIkO+20U9w277zzFm8jCz397PLZ+2+++WbUnK+tPnS//fZbbG7wvefL9EyvDKJL04DBNjWc2HbbbQsnnnhi4cADD5zk4pvBjcHhtttui27NDRU7sMOHD48mHWwCTGrywffE/zQVSwMcNdGokypJUkNHRjqBZZpBsRhj45isqkmNfylDnbGfBVFDPm313XffxQkyFqKTWmSTucf7WYDRfKwx17yUJJUvgr5sFJPty2lyypqkkh+lgswEoi+66KIGvYZlrsE6e3InyNI6PWU255tdTm0WPkFYYgP5r0G5VoK3ZFxvuOGGET9IUpwk34CTID5Z2ASl0++D4HyfPn3ixD9v8z8bG7yQuMBtJPIRoGc+w/xkiSWWKJbn4euz2c88joafKYud+cxuu+0WJV1S4gNVAghS837uIyFgThY5t6eMb+aGF1xwQfHrp7kQ2eM9e/asUAOej7344osrBMtTqSFqt/N8THgM1PTnuZbH/PPUU0+t0BSXkjN8HM/hfOyIjQjKDubL5fD4+LnyePMbBJSf4ev9+9//LtSGd999N06CLLLIIlEOaHpnEF2qAVzA8wtMFtSTy2TLB9W54HCkiGy4fG2uugyYs1vMIMgx7UllpuVfaCrBrj+DCoMgO5ySJJU7FoGMz2QZsUGcFtiTGxdZsJKJc9xxx0XmT30E1ln8k5XG0WQ2AiYVNM8Hz/mfI8pkd1F/k3kNCyNJksoRZTMeffTR4tusd6szJubLs1KKg6aU9RFYZw7BXIIAKpm+1Vmj8zGszanjTVkRbuOEeE3NR1j7p3rn6YXHlmqvM49IBg4cGNno/NyTlN1NAJv4AUFugtZpjkVchPrjNBNN3y+lU5iPEHym+Xv6umSEg/gJXyc/T+N0IUH19LjydcaZ53Abp+bzMRxiIQSmqfOe/x1QoqahJhNUflx8n2xm5Ov/9+vXr/g8yGMzggTImmhu+tNPP1XYKMD02gfvX/yTSapRp59+enbppZdmO+ywQ7boootm55xzTrw+fPjwat/HbLPNljVr1ixbfvnls3XWWSdr06ZNttRSS8X98b4p8ffff2fffvtt9v7772fPPfdc9uGHH2YjR47Mxo4dm40fPz7766+/Jnsfc8wxR7bccstlb7zxRrbAAgtkBx10UHbggQdmK620UtzniiuumC244IJT9LgkSWqovvjii+ydd96J8ffFF1/MVllllWyrrbbKRo0aFePzRx99VK37mWmmmbJll10222CDDbKVV145W3rppWNsZ0xlPJ1hhhmm6HH9+uuv2eeff56NGTMm+/LLL7M333wze/bZZ+Ox/vbbb9W6j5lnnjnr0KFDdtddd8X3t+eee2ZdunTJjjzyyOyCCy6YoscjSVI5+Pnnn2M8/u9//5s9+uij2bvvvpu99NJL2X333Vft8XPuuefOFl544WzTTTfNFltssVinr7rqqtkSSywR6+Up8c8//2Tjxo3LPvvssxjDX3755eyVV17JRo8enf3www+xhq+OeeedN+Ya3NfOO++cPfjgg3E7ob4PPvggW2GFFbKadO6552annXbaRLczt7n66quzbbfdNt5++umnsy222CLiIAMHDoyYwy+//BJzln/961/ZIossEvGIdu3axcfz87v88suzIUOGFL8HLLnkktnxxx+fnXXWWdmPP/5YvL179+7xc7rjjjvidwvud8CAAdmuu+4arxOreO+997KWLVtGzAI//fRTdvLJJ8fvke+Dj0s/r/T69GTYsGHZzTffnLVo0SI77rjjit/rfPPNFz/PV199NVtzzTXj9rfeeitemLMyX51aw4cPj/nloYcemvXu3XuK57oNmUF0qZYwQGDOOeeM/wcNGpTtuOOOMcAxgLRt2zZ7/vnn48I/tfIXeRbEDMRcEGecccZswoQJ8frUSBc57o+vwffAgM4Avfjii2cbbbRRNnjw4CmeKEiSVK7+/PPPbMstt4xFGIuRXr16xRg566yzxsY076/ugrfU2MsLYyv3yzj+xx9/TNN9YpZZZok5AvMSgv/cN5vp999/f2wKzDXXXBE84PYp3aSXJKmcMFYzjhPgSwggvv766zFGfvXVVzH+8jItWPMzprMeZwxmPE9r9ZpyzDHHRNB8k002yfr27Ztdd911sRlO4LI28T20atUqe+GFF+JtEv0Ihic77bRTtv/++8cmP8mF++yzTyTfHXzwwdkDDzwQj5l5BxsZJChwX2uttVbWvHnz7Oyzz474CD8zNvXZYLjzzjuzb775Ju6bj19ooYUi8EswPGGjgA0DHhuPhcA72CQhiL7ddttl888/f63+XMoJc8ITTjghNmyeeeaZ+HmD3xcJoPzObrvttuLHk4zJJsm/qrnJwO/ulFNOicTLG264IZueGESX6gg73f369Yvd6/bt28fONQtvdq3JKAO7fQSquZjVFQZ3BvSEADk7h+zOXnTRRbEz3L9//1iEg8GK70GSpMaIxV2TJk2Kbx922GHZ9ddfnx1++OGx0OOE1xprrBELDsZYMsfr6uBnfkwnM45sIrLueHxkrbMJcO+998ZjZC5CNrwkSY1Znz59IhudE1kEW8Fa+MILL4xxlQAjSXCM5fl1c12N6Wx2t27dOpLwjjjiiKxp06bZ119/HWv0vfbaq16yqH///feIXaTgNkHy77//PoLkCZnOZOwz53jqqafiNn6+ZJrzePlcAuIE1MlW7tq1awTJ2dAn8Lr22mvH62xAEDchTpK+Hvh+OUnXuXPn+DodO3aMhD+yrflfU+6aa67JbrnlltiM2W+//eI2Tm7we+Ll448/LiaJTg7BeTao+L0hbXqUeyzJILpUj8guIzudHVIC7FyY1l9//ez888/PTj311OLHsSM4YsSIGHzSQpzBnAGVwSqPLHQGlHyJFi50HGHimBgBe97PgPz4449nm2++eVzYOAJFVh07x+zcUraFxffGG28cgX5JkjSxTz/9NBs6dGi22mqrZeutt15kTbEg5Agxi7999903MtfJ4GGMpgwM4ypB9jwWiIzdlTPPGbPzQXjug9JubMaTAc9xaDKwmCdcdtllUYaGbDoW2zyeDTfcMALn3L8kSZo8SpGkoCxrdcZngrlkM5PNTtY05VMoy0Zgl0Bj5fG6Kulj0v+s6cnk/uSTT2L8J0OedTuZ3KzVjzrqqHgMzC0Sxnu+LvOM+iyTQVyBQHqat5BAQDIg8xJ+VpVP3JOdzwsB+NVXXz2+V+ZPxEPY6CfWwQkA7pOfC7ELfq553E5wna9BtvQee+xRp99zY8Tzbeutt46kjLfeeqvCSQiC6pTVIWY0OSSdcPrg1ltvjU2PcmUQXWoAKu8c33777bELSMYYu8vUG2fRnBbYZIcT/GZQTUdl2OllwLn77rvj4wmMs+u72WabxY7viSeeGJloXLw48sUuMZMAvi47v3w+C27+lyRJU49FH/U/WUByXJZxnoUhYzp1Pnv27BkfwwtZZSwI2Rjv0aNHHMnmVBjjMxvsbKxTEo45AMecGcN5HwsZAuYsosmAf+ihh7IDDjggjs6Wml9IkqTq4zRZvoQpmc/UmGbNTXZ4vkY4a3E2rVmHs7k9zzzzRPYt4zzl06gPfsUVV0SCHMlzBJw52caGO5ve9FwhqY0sYJAsx1yCgDO11xvqZgPxhkmpzuZCKWwScLKOGt3UWieYW+6ZzOWIjSM2TZZddtnibcsss0wkkjz22GPx/Aalc5iTksCRauODuBRZ6QTd2SzJl1MqNwbRpTJB8JzBmh3vQw45JJt99tnj9ocffjiC7iyqGaATjkNxsWNnkGw1cOyLXWwueOxeS5KkusMYTq1OjmKTTQ6yr9gQZ5xnAz2hORfNtyi7sssuu8RtfAxBdhp5s6FORpckSao/1OJ+5JFHIiBOdnRCYJ2SrqzLCZKD02gE0smkzp8853aC9dxebpvfzFcooTKtpW74/ikzR410Nihoxk5yYHXLh6juFAqFaITLhhI1+EkEAc9tmsAyR6X3TrL77rtHbIqM9W7duhXntFRDyJdILAcG0SVJkiRJkiRNMTYR6KdGpjjZ9Jy+I4OcTHUy7VOPGE7Xk6VMuRdOwFMDndN4lLQlaF5uGwiqaPDgwdmAAQPi5AC9glKwnARQ/s83fU0nOEgOoelsuTCILkmSJEmSJGmas5R//PHHbMyYMfE2AVUyljk9R2ma1GhSjcOECROiLCEnNihxmOr4U9KIsoaUHb7kkkuycmEQXZIkSZIkSZJU6/7444/s22+/jca55XQCwSC6JEmSJEmSJEkl/C+PXpIkSZIkSZIkTcQguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkrKq/T/qzv2cj/MinAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1165,12 +1110,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAJOCAYAAAD7+gCVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA96ZJREFUeJzsnQe0FFX29cscMGFAzHlMKCYYIwYwAkYkq4CSERBhBjEndEYUEBUQBAMgmEBERDBgnlEQBRUZR8csRlRUjNPf+p3vf980TYeq6gq3qs5eq3nvNd3V1RXu3fecffZZLZfL5RyFQqFQKBQKRSxYPZ6PVSgUCoVCoVAAJWMKhUKhUCgUMULJmEKhUCgUCkWMUDKmUCgUCoVCESOUjCkUCoVCoVDECCVjCoVCoVAoFDFCyZhCoVAoFApFjFAyplAoFAqFQhEjlIwpFAqFQqFQxAglYwqFQqFQKBQxQsmYQqGwErfeequz4447Ouuuu67z5z//2Xn55ZfLvn7hwoXOEUccIa/fbrvtnL///e+rvOb+++939thjD3nNPvvs48ycOTPEb6BQKBTuoGRMoVBYhylTpjj9+vVzLr/8cufVV1916tev7xx//PHOF198UfT133//vXPcccc5O+ywgzN//nznhhtucK644grn9ttvr3nNiy++6LRp08Y599xznQULFjinnnqqPN54440Iv5lCoVCsitW0UbhCobANRMIaNGjg3HLLLfL3f//7X4l2nX/++c7AgQNXef3IkSOdiy++2Fm6dKmz9tpry3O8btq0ac7bb78tf7dq1cr58ccfnRkzZtS87+CDD3b2228/Z9SoUZF9N4VCoSiERsYUCoVV+PXXXyW61aRJk5rnVl99dfn7pZdekr87dOjgHHXUUTX/z/ONGjWqIWKASNqSJUucZcuW1bwmf5vmNWabCoVCEReUjCkUCqvw1VdfOX/88Yez5ZZbrvQ8fxP5AltttZWz/fbb1/wfzxd7vfm/cq8x/69QKBRxYc3YPlmhUCh84rrrrot7FxQKhSIwaGRMoVBYhc0339xZY401nM8//3yl5/m7bt26Rd/D88Veb/6v3GtKbVOhUCiigpIxhUJhFdB9HXjggc6TTz5Z8xwCfv4+5JBDir6H55999lnnt99+q3luzpw5zu677+7Url275jX52zSvKbVNhUKhiApKxhQKhXXA1mLMmDHOXXfd5SxevNjp3r27VEJ27NhR/v+iiy5yzj777JrXt23bVkgcthVvvvmmWGMMHz5ctmPQp08fZ9asWc6NN94oFZZYX8ybN8/p1atXLN9RoVAoDFQzplAorAM2FF9++aVz2WWXicAe+wmIlBHgf/bZZ86HH35Y8/qNN97YmT17ttOzZ0+JqpHq5L1dunSpec2hhx7qTJo0ybnkkkucQYMGObvttptYX9SrVy+W76hQKBQG6jOmUCgUCoVCESM0TalQKBQKhUIRI5SMKRQKhUKhUMQIJWMKhUKhUCgUMULJmEKhUCgUCkWMUDKmUCgUCoVCESOUjCkUCoVCoVDECCVjCoVCoVAoFDFCyZhCoVAoFApFjFAyplAoFAqFQhEjlIwpFAqFQqFQxAglYwqFQqFQKBQxQsmYQqFQKBQKRYxQMqZQKBQKhUIRI5SMKRQKhUKhUMQIJWMKhSIV+P33351nn31WfioUCkWSoGRMoVCkArlczlm2bJn8VCgUiiRByZhCoVAoFApFjFAyplAoFAqFQhEjlIwpFAqFQqFQxAglYwqFQqFQKBQxQsmYQqFQKBQKRYxQMqZQKBQKhUIRI5SMKRQKhUKhUMQIJWMKhUKhUCgUMULJmEKhUCgUCkWMUDKmUCgUCoVCESOUjCkUCoVCoVDECCVjCoVCoVAoFDFCyZhCoVAoFApFjFAyplAoFAqFQhEjlIwpFAqFQqFQxAglYwqFQqFQKBQxQsmYQqFQKBQKRYxQMqZQKBQKhUIRI5SMKRQKhUKhUMQIJWMKhUKhUCgUMULJmEKhUCgUCkWMWDPOD1coFOlBLpdzvv32W+fzzz+Xnz///HPN45dfflnpZ7nf//vf/zprr722s84663j6+fjjjzvLli1zttpqK2fHHXd0NttsM2eNNdaI+7AoFApFRayWYwRVKBSKIvjtt9+cr776SggWjy+++KLkTx683hasttpqzqabbupsvvnmzhZbbCGPcr9D4tZaa624d1uhUGQQSsYUiozjm2++cd555x3nX//610o/P/jgA+frr7/2vL2NN97YqV27trPeeus56667rkSu+Jn/e7HnzO+rr766kDqiZb/++qurn99//70zf/58+XzeT3TNK4ii7bDDDs6uu+4qj1122aXm95133ln2T6FQKMKAkjGFIgP44YcfnH//+9+rEC5+ViJckBuiR3Xq1HG23HLLmp/5v5ufvC4u0gKBmzlzpnPSSSdJVIzvRVTvyy+/rHmU+/v3338vu/1tt922KFHj9w033DCy76lQKNIHJWMKRYpARAiC9corr8hj0aJF8venn35a9n1bb72186c//cnZbbfd5CePnXbayalbt66k+pKgvconY17TjRy3zz77zHn33XeFtPLI/53IWzlAyg466KCax/777+9stNFGVX4jhUKRFSgZUygSCm5dUomGePEgVbd8+fKir0fQXki4+B0iscEGGzhJRzVkrNJxJoJWiqjxf4UgMsfxLSRotWrVCmy/FApFeqBkTKFICJYuXboS8Zo3b15RIoBWi4m/QYMG8nOPPfYQ0kWEK80Ii4xVAunQV199Vc6HeXz44YdF07177rnnSgRtv/32Uy2aQqFQMqZQ2AhuyzfffNN54oknnGeeeUbI1yeffLLK6yAd++67r0zskC8ee+21l7PmmtlzrYmLjBUDlaVEKXkYglbs/EHEDj/8cOfYY491mjRpIuQM0qZQKLIFJWMKhSVgsoZ8mQeRsMLUF0QLwmXIF0RMIyv2kbFiQJOWT84g2JC2fGCx0bhxYyFmEDSqOxUKRfqhZEyhiAmIwol6zZkzR8jX4sWLV0k3NmrUSCbngw8+WFKOadB2ZZWMFYKh9+233645/08//bRUveaD9LIhZkcffbSzySabxLa/CoUiPCgZUygiJAsvv/xyzeT7j3/8w/njjz9q/p/0FBEvM/kecsgh4rulSCcZK7b///znP2uuD34vvD4aNmwo18fxxx8v10cSqlwVCkVlKBlTKEIWdz/88MPOtGnTikY+qGQ0eiEiH5ilKrJJxgrx3XffOXPnzhViBkFbsmTJSv9Px4AWLVo4LVu2dA499FDVmikUCYaSMYUiYKADgnw98MADzlNPPbVSdCNfE8SDHoqKYJA2MlYIKjQNMXvssceErOX7xBliRsRMiZlCkSwoGVMoAhJnT506VQgYOrD8djxUyJ1xxhlO06ZNnfr16+tEGRLSTsbyQRsoSNn9998vxD+fmG2zzTbOmWeeKQ+0hnq9KRT2Q8mYQuETH3/8sfPQQw8JAXv++edFkG2A9otIBSSMVKQifGSJjOWD3pwQs/vuu09S4vndAmjhBCkjYvbnP/9ZKnIVCoV9UDKmUHgAjvcPPvigELCXXnpppf8jCmEImKYfo0dWyVghMZs9e3YNMcvvxrDddts5rVq1crp06SJVmnGDAgVaddGpAKKoUGQZSsYUigpAdD958mTnjjvukApIA6IMhx12mBCw008/XSY7RXxQMrYyfv75Z+fxxx+XVCbELL94hKKR7t27O82bN4/FIPivf/2r8/e//73m77/85S/O3/72t8j3Q6GwBUrGFIoSwKDz9ttvdyZNmlQzkaG/wfsLAnbaaaeJcFphB5SMlcaKFSucWbNmyYKCY2SGffRlRMo6d+4s1ZlRRcSIIheChY5GyBRZhSo7FYo8oLcZNWqUc8ABB4juCzIGESOtw0oel3wsKnr27KlETJEYYCDM4mHGjBnS5HzgwIFS2cv1fPnllzvbb7+9aMu4tsNen5Oa9PK8QpEFaGRMkXlwC7BaHzNmjKQjf/rpJ3l+7bXXFv0XkYMjjzxSxc+WQyNj3vVl6B9HjhwpBSgGNJbv1q2bc84554Ti+K+RMYViVSgZU2QWy5YtcyZMmCAkbNGiRTXP77nnnpK2OeussyR6oEgGlIz5B9c/pOyee+6pSckTTWvbtq1oyw488MBQNWP8ff311wf6GQpFkqBkTJEpcLm/8MILkn5E2IzIGdBsm/J/SBiifI2CJQ9KxqoH1ZcsUG677TbnjTfeqHkenSTpTLpEBHVvaDWlQvE/KBlTZALYUNx7772rNOTeZ599JA3Zrl07bUWU8ElTyVjwixaiZSxaOLaAhcpll10m1Zi6YFEogoOSMUXqncpPPfVUaR9jQCn/2WefLSSMxss6qaTDgkDJWHjmxlwDRJPRmQE0X5CyE044wdX9kxRCr1DEBsiYQpE2/PDDD7lhw4blttxySxYbqzz+8Y9/xL2L1oNjlKRj9+uvv+amTZsmPxXB49NPP8317ds3t+6669ZcCwcddFBu+vTpuf/+978l3/eXv/xlpeuHvxUKxcpQawtFqvDNN984V111lbPDDjs4ffv2dT7//POir8tiGT3RCQTa/HQDtSBQ5AMfsqFDhzr/+c9/nP79+zvrr7++M2/ePOfkk08WgT89MvN7sgKutfzIKuBvt9egQpEVKBlTpAKffvqpTBCQMITGX3/9tbPzzjtLmq0YSJdkCRwHUkukZ/lZ6ri4OUZZO3aKlVG3bl3nhhtuEFLGdVSrVi1nwYIF4mO2//77S6swQ8qU0CsULlEQKVMoEoV//etfuc6dO+fWXnvtmjTIvvvum7v33ntzv/32W9E0yV//+tdcllBNutHWY8e+33333St9B01TxoMvv/wyd/HFF+c23HDDmutk7733zj300EO5l156KVGpboUiLigZUyQSb731Vq5ly5a51VdfvWaAP/zww3OPPvpoUf1Ksck7K+B7F5sQed4NbDt2pTRIfsiYbd8tyfj6669zl112WW7jjTeuOTfHHHNMrmPHjlYSeoXCJigZUyQKn3/+ea5bt265NdZYo2Zwb9q0ae65556Le9esRdKE+H6/i1cypsLycLBs2bLcJZdckltnnXXkuLJgatGiRe7WW29N5DWnUEQB1YwpEtPo+LrrrnN23XVX6R35xx9/OKeccorz2muvSb+9ww8/PFQxe5KBlQCWFPlA65NEi4GgNEgqLA8PtFC6+uqrnbffflvaiaEfQ0d26aWXiuD/999/j3sXFQrroGRMYTUYyHEE33333Z1BgwaJQziVW3PnzpXqrfr160ciZk868Aaj99/dd98tP/20nrGBwAZVVKDC8vCx4447Cgl76qmnxFyZSudevXqJyJ/nFApFHiKJvykUPjB37tzcgQceWJNG2m677XITJkzI/fHHH763maaUXZSwKaVXqqjAS5pSr4NwUajFo5jmtttuy2266aY1x/r000/Pvffee3HvqkJhBZSMxYDBgweLWeIGG2yQ22KLLXKnnHJK7u23317pNaNHj84deeSRNRVK6DDc4Omnn87tv//+Ul24yy675MaPH7/Ka2655ZbcDjvsIJqOhg0b5v75z3/mbMKSJUvkmJhBm2PAMfvpp59iF7NnETYSlyCqKW2tFE0zcUfk36tXrxrNJ2MQlZiYNCtKAyK7zz77yFjI4+CDD87NnDmz7Htef/11KWriGG+77ba5v/3tb6u85r777svtvvvu8pp69epJAZQiHigZiwHHH3+8kKQ33ngj99prr+VOOumk3Pbbb7/SgDR06NDcddddJw+3ZIxV5vrrr5/r16+fVBuOGDFCBr1Zs2bVvGby5MlC1MaNG5d78803xRZik002EWG8DSXy559/fm7NNdeU78y+d+/ePdB9s5FYxAEvVYRJIbBaTRk/3N5fixYtyjVu3Ljm/7fZZhuJepdz8s8y6HIAUcLKh8XqoEGDcmuttZbMIcXw3XffSfeRdu3ayWuw+llvvfVkkW/wwgsvyBj797//XeYLii7YJudGET2UjFmAL774QgakZ555pmikyy0ZYwWKv08+WrVqJeTPgEhYz549a/4m5bf11lsL6YsLK1askAEhvySeCknIYhjIekTEa8oxKQRWfcbihxfiDvGaOnVqbqeddqp53QknnJD76KOPYtn3pKF27dq5sWPHloyk8f+//PJLzXOMc0TBDLAGYpzNx5///Odc165dQ9xrRSmogN8CfPfdd/Jz00039fS+o446yunQoUPN3y+99JLTpEmTlV5z/PHHy/Omafb8+fNXes3qq68uf5vXRI3Zs2c7e+21l1T7cRwQ5D/xxBNSIcnztorZkwo/VYRpqsZU2FNgQYPxU0891Xnrrbeca6+91llnnXWcWbNmOfXq1ZN7k2CBYlVQST558mTnxx9/dA455BB5jnmA+cCA8bxRo0bO2muvvdJcsGTJEmfZsmWu5gtFtFAyZkG1ID0UDzvsMBmEvGD77beXfnEGS5cudbbccsuVXsPf33//vVhDfPXVV3IjF3sN740S3377rXPuuefKzU9bla233toZP368kMXGjRuH/vkQibPOOitzhMJvFWHYBLawUtNN5WYQ1Z02VIimCX6I+7rrriuV0tjUNGzYUBZl55xzjrRXKtVbNotYtGiRs8EGGwhp7datmzN16tSaBSvzAPNBpbnA/F+510Q9Fyj+DyVjZopIgIEpYvpSoXkvacrddttNhO75QGfA+xG/f/LJJ/L7iy++uNJrBgwYIOnLKPUPpEbZl9VWWy3Xu3fv3PLlyyP7/CzDxpRjYdqUa7FSGrVYqjUq01fVmYV3jKi6vPbaa0W7xDnZbLPNRGSuyEnK8Z133snNmzcvN3DgwNzmm29eUspx7LHH5rp06bLSc7yWY4o+DHCMJ02atNJrMOatU6dOiN9CUQpKxmIE2i2qXMqVd3shY0cccUSuT58+Kz2HUH+jjTaquZkRbKLTyMfZZ5+dO/nkk3Nh46uvvsq1bdu2ZvL705/+ZJVzflYmWZs0c6XIYTmyWOo9LDLCtrawyeIjzaAScL/99qs5zmhfGT8U/wMFEIWEy+Css86SivR8PPXUU3Isv/nmG/kbqyAKxfJBOyt6+yqih6YpYwAkGPNDwsyYH+60006BbBf9wJNPPrnSc3PmzKnRFaAfwDA1/zWkSfnbvCYsYP5ISH3SpEmiUyOVQVrCq3N+WMiSEWy1KccgU3tuTVbzX1fqPf/+97+r/txy++NWb+cn5Zp0BP0d9913X9kWrv1rrLGGM2XKFGfvvfd2pk+fHsj20wDG7l9++aXo/zGeP/vss85vv/220lyAeXbt2rVdzReKiBEDAcw8sGugchBT088++6zmke+jxd8LFizIjRkzRlYzzz77rPyNT0/+6odwdaG1BWnHxYsXS8i5mLUFnjJ33nmnhKtZWWFtsXTp0lC+K9s944wzala4VHva5mtmY+rOJuRHDIOODCUpMuamUtBPyjXpCDta+Morr+T23HPPmu2fc845rn0X0wLGeart//Of/+QWLlwofyPxmD17ds3/Mx8YfPvtt2JtwXNYWzDuMzcUWltgIzRkyBCZLy6//HK1togRSsZiQKkJJ9+glRuj0mswhWVgKkxrEt7HS2znnXcuavqK/xi+ZryGySIM0kHZ+j333FPjuM1Nf+mll+Z+/vnnnG1Iio9WHKnawok2DNJa+BmU11dKoxZLtYZt+lqJwPkhlklHVAsZ7G/69+8vBITtI+/IX2SmHZ06dRJtMWM2RuGkKA0RA8wDzAelTF/xcbv++utX2S56POQibJeFspq+xgclY4rA8fHHH+eaNWtWMzDTEYConq2wKTIWtW6tXNSrffv2rshFEKS18Hu7OQ6Fr4nC9LUcgStF6pNA8v1ed1EvZJ5//vncrrvuWvM5ZAEQ/SsUSYeSMUWg0TBMCCkYYKBktUVlVBJMOG0QtUctDncT9UpSpCcq09dSxCWpkbFqrrs4FjJ0KqH4yXwWUSK6dygUSYaSMUUgQKNw2mmn1QyQpD9LteqwFXFWU0Y9qbklDpUeNnUvsMGB30/KNU4Ecd3FtZCZMmWK6KD4TFJ48+fPj+RzFYowsGbUBQOK9IGqyBYtWjjvvvuus9ZaazmDBw92LrjgAqmCShIwpozLBLZcdV8Y++S2ihFjXKrkDKgyxYyT9+OqnjXTXDeVqqeffvpKx4eqQFuPVxDXXbHvHAVatmwpFdq4+DP2YJw9evRoqYhWKJKG1WBkce+EIpng0hk3bpzTs2dPKbHGARoLiwYNGjhpQVQTKZ+DpUYhsJ7w8rlu97fU5+UD4oXthc1kIh+U8c+cOdM56aSTZFGQJfg9R0Fdd34Q1HVFN4927drJuQfnn3++c+ONN2buGlAkG0rGFL7w008/CQm788475W8mQHyrNttsMyctgIzk+0rhjUYUIKrPM2TI7YT20EMPedrfYp8XZ9Tr999/d7744gvn008/db788ktn+fLlNY8ffvhhld/pzUd7L/yWeOCrBI444giJyuJnx6NWrVrSRmbDDTeseeT/ze9bbLGFtJSpW7du4ibxaq/Taq87P9dJ0PcW5//KK690rrrqqppr4L777pPzqVAkAUrGFJ7BIExakl5pTHbXXHONDK78nhbEFTHwMskVTmjFUGl/o4p6QbQ++OAD+Sx6kX722WfygHiZ3yFixYaj9ddffyUCZX5CstZcc80a0jVhwgR5fdu2bWsmaD6XhYMhcPmkDjJXDJtvvrn0SoWc5T923HFHOU6YNOc3YI4TUUdUgyBSYd5bmMKSWqcfL+fwwQcfrBgBVihsgJIxhSfcf//90uCbyYymsvfee69z9NFHO2kDOqli2hOifwz2ccNNmjHq/WUoockwk3rhA02PcQOHQBGxKCQ8+X/XqVPH2WijjYRwudUeek1TQtYgZFzLROIKyWH+7zx+/fVXeR/7AyGDuBQ+ttlmm0gXJVFfp0EQqbD3ecmSJRLhXbx4sZDmESNGOF26dKl6uwpFmFABv8IVmIhYAQ8fPlz+btSokTN58mSZONMIJlYvz0cNtwL8sPYX4kWEa/78+TWPV1991fnmm2/k/yEkhrAcf/zxKxGWbbfd1oooKvtgUpUQwfr165f9vhCyQpL52GOPObfccotE4AAEcv/995e2Y+ax2267hfZ9o75OgxD8h73PtPyBNHbo0EFS9127dnXmzZsnpGydddYJ5DMUisARSo2mwmp89913nl7/wQcf5A4++OCVStezYLRog/dYNZ5WQe7vhx9+KFYCHBN8nWrXrl3zObih05T4yiuvFGsJWqvQlD4r1hbcC++8805uxowZueuuuy7XokWL3E477VRzfDbccMNco0aNcn379pWuFLwWT744r1O/Ni5BWbBEcW9xjDkfxrUfN/qktlHyOmYrkgclYxkDkyQtL5gQ3OCxxx7LbbbZZjKY0cPy4YcfzmUJcXqPVTLjLDahBbW/kC+2QxsW2mqZz9huu+1yp556au7qq6/OzZw5M7Sepkn1GcsHfWTnzJkjbWjOPPPMlY4j7WnatWsnvWf//e9/V03OvJz3as2FgyJSUd1bjz/+uIxd7Ou+++6b+/TTT3NJAvfiI488kvvxxx/j3hVFiFDNWAZBKfiLL74oaYFdd921pJ6GyiQeXCIHHHCA2FaQelKED7fanKAE+B999JEzd+7cmsd7770nz++7777OUUcdJQ98nNBy2YokWFssW7ZM7j1znEntcq+RujXHmcfOO+/srLbaaqkQ/NsAio1Il5Nq5tjOnj3b2WWXXRzbwX35+uuvyzGm4leRYoTJ9BT2gnB9qQgZ0TNW7Wbl261bN2nUq4huNR92z7/ff/9d+vwR1dhzzz1rtr/PPvvkzj///NyDDz6YuBYztkXG3HauIL154YUX5g488MDc6quvLueBNGefPn1yTz75ZKDfJ+pekjZEmA3effddSanzfTfddNPca6+9lktCROyLL76Ie1cUEUDJWIZRjJAxOaAJYsBaY401pNekIvrekWG0R1q+fLmQrA4dOuQ233xz2d4WW2yR69ixY+7+++9PHPlKAxkrdk9Onz5dFkCkMjlHG2+8ca5169a5SZMm5b755puqth9HL8moe6663Y911lkn9+yzz+ZshBKx7EHJWMaRT8g+/vhj0VQwUNWqVSs3a9asuHfPGtgwifnR5nz++ee5kSNH5k488URp3M529tprr9zAgQNzL7zwgkTI0oI0kLF8oCOj3+Lll1+eO+CAA2oWSEcffXRu6NChMmFnRfBfLUrtB4QM0mMTlIhlE0rGFELIbrvtttxWW20lA9SWW26pTXcTnN754YcfchMnTsyddNJJMnnnT+CIxdOKtJGxYpM096kh1lQJHnXUURK99lolGJXgP677xu1+GIJ711135WyAErHsQsmYIjd37lxJhTAwUfH13nvvxb1L1sGWFX45ewUime3bt5eoJvt26KGHyuSd9PSjW6SdjBVaHYwfPz7XpEkTIWVEeM4444zc1KlTcz///LM1170t902p/WDBYn6/6aabcnFCiVi2oWQs48A7yqSvGjZsmLv33ntd215kDTb4jhVi3rx5IvQmmsk+7bHHHrlrrrkmk4Q6S2QsH8gLhgwZktt///3lGsDGoUuXLqKHqtYyI4jIli33TbH9+OOPP3IXXHBBzXODBg0K1APOLZSIKdTaIsMYOnSo069fP/md9iETJ050fvnllxrbi6+//jpR5etRwE1Jf9hl//RXpA3VqFGjxBqB1kJt2rRx2rVrJxYkYVgiJAFJsLYIG2+99ZbcxzzoBbrHHnuIAz3thzbddFMn61YYxfaDKZDG6IMGDZK/aZ102223uW7DVS3UvkIhiJsNKqIHq0HcwM1qECuDfCE3+hOq63BVj7sCKoqS+SDL7sOsHFu0aFGue/fu4uiOBUKzZs1kNZ2FbghukNXIWKl7HFuMli1b5tZaa63cuuuumzv77LN9XeNRR7biuqdvv/32GmsRzI45hmFDI2IKAyVjGQN+YbiBm4H173//+ypheQYwtGO0bsknZLboo4IkPkFswwz8CKmD1sdAtLCjQKjNturWrZu79NJLpUWVYmUoGSsOuiTQFmjHHXeUa6hBgwZyvXrRlnkhN9WQqbjvaWQbhpCxYA0zZalETJEPJWMZAh5F9MhjoGG1TMVdOZ1IISGLugIqbGFwENsoHPiDqhzDEwwdEO2H2MZhhx0mer44ej4mBUrGyoPoNx5mxx57bI3H3BVXXCFtm4JCNUTIlnv6zjvvrHkftiJhQImYohBKxjICbvp69erJALPRRhvlnnrqKVcDWj4hsykyFoSwuNptuGnW7XUi+Oqrr3KXXXaZNOJec801c+ecc47ajLiEkjH3oJl7jx49JH1J9W2/fv2kEKAalLofiBi7iZTZcE8b3HzzzaFVWSoRUxSDkrEMAGsD2twwsGy99da5hQsXelrhQsgeeOABq6osbVhFl/Mu8qqv+eijjyQtsv766+fWW289qZDUVKQ3KBnL+TIFpoIQaxuqqs8777zcv/71L1/bcnM/lIuU2XBP5+Pqq6+ueT8N3YOAEjFFKSgZSzlIQey33341eqMlS5a4fm++9qNcL8u4EISw2O02iulgqo0EAM4HYmHSxlgSXHLJJTpQ+4SSsep8y66//nqxSEEzhfB/wYIFnrYRRKQ4ynu6EtCLDRgwQLaBl9vkyZNz1UCJmKIclIylXCNm2qgwyJKaqAb5hMyGxr9RVV6V08H4Hfg5hvQbZJCHJFNIwYSo8A8lY9Xjp59+EqNgGpVzPTdt2tRTQ+0gNJQ2VUhDyLp27Sr7jWyApu5+oERMUQlKxlIKGn5TNWWEum+88UYg202S7UUQcJP28DLwf/bZZ2JPwcBOI2j6RlLhqqgeSsaCA1W8EyZMyO26666yYGjXrp1rI+Ewq4vjKnxo27at7DsaOzqWeIESMYUbKBlLIYiwHHzwwTJ4bLbZZq40Ym6RFNuLalfG5v1UUwUhCIYcX3zxxaIJQ5xPJIwohCI4KBkLHhxLFgxEb0ml40mIzswtKkWOg7pPwx5/OA7NmzeX77DBBhvkXn75ZVfvUyKmcAslYykDlgjYIDBoMOl71X1UQhJsL6r1KnKTanE7+BP1uvHGG3ObbrqpCPMHDhzouamzwh2UjIUHms8PHjxYhP6QERYp33//fVWEKej7NOwIPffy0UcfLZ/F/YwJczkoEVN4gZKxlA2YxkcMMXgYlgi2216E1djYqy4M924mIHzC1lhjDdGdfPLJJwF8Q0UpKBkLH1iv9O/fXxqTI3/AAsJPB4hqi1/iakAOAf3zn/9cUxD1/vvvF32dEjGFVygZSwl+/PHHmlUbPmJuw+h+YLPtRbU+Q6XeTyTAbTqEaOShhx4q72vRooWnClaFfygZiw6QDaqA0ZNhm0NT8ihtMILyE/NboW6sgqhUZxGcDyViCj9QMpYCoD1q0qSJDA70LXzppZdC/8xSthdxV1mGFRlz836OQ69evcQaYO+99849/fTTAXwjhVsoGYse8+bNq4kUtW/fXgpUorDBiCsyZoAHIJFBPpP2cqZtkhIxhV8oGUs40DGccMIJMijgpP3888/Hsh82VVlW6zPk9f2kJMePHy+DM2QYjZgSguihZCwecP2TXtx8880lKj906FBXqctqbTCibmBeCKKBFDXw2RjEKhFTVAMlYwkGkw4+QAwGVOk988wzse2LbVWWUVVpvfrqq7lDDjlEvivl76oLiw9KxuIF6TtsW0zq0s14VK0NRtyR+NGjR9fsK9XSSsQUfqFkLKEgLN65c2cZBKjSizslloQqyyAHb3QitCwyKUmv3kOK4KFkzL7U5dlnn+26EXm5SFfcpKsc+I4mM1GpwlKhKAUlYwkFPlUMAJCB6dOnx7071ldZBlkKT3pil112ERI8ZMgQnfwtgZIx+1KXVHVvtdVWrseoYqQragsLLyA1OXXq1Bo7IcY+Kk4VCq9QMpZAPPjgg5IK4OYfNmxYzhbYXGUZhOCXaFjv3r3l2B9++OG+GyorwoGSMfvw8ccf10gpiCDRos0L4hbql0O+RuzLL7/M7bjjjrJvjRs39mX3ocg2VncUicIrr7zitG/fHhLt9OzZ0+ndu7djC/72t785//jHP5y7777bmTRpktO4cWPnX//6l/Pvf/877l2T/fDyfCGee+45p379+s6YMWOcm266yZk7d66z2267BbyXCkW6sM022ziPPPKIM378eOfhhx926tWr5zz66KOR3bdh4aOPPnJef/11589//rOzxRZbOJtvvrkzffp0p1atWs6TTz7pXHjhhbHunyJ5UDKWIHzwwQdO8+bNnRUrVjgnnniiM2zYMGe11VZzbAKD01lnnSU/N9lkE+fQQw+tIWT//Oc/nXvuuUd+Ro0//elPnp43+Omnn5wLLrjAOfLII526devKANy3b19njTXWCGlPFYp0gTGqQ4cOzptvvikLmmbNmsnf3377bWj3bZREzGCfffaR8Q3cfPPNzrhx42LbR0UCEXdoTuG+t2G9evUkDL7vvvu6bkViA2yxvfBaCv/Pf/4zt9tuu0lzYOwqaBissBeapkxG4dG4cePEAmPrrbfOzZ49u+J74rawyIcb+4orrrhC9hPbixdeeCHS/VMkF0rGEgD0B8cff7zc4IhhGRCShKhtL8pVXrmpymLCgHytueaauYYNG+befvvtUPZTESyUjCUHH330Ue7YY48V/eWgQYMqaqxsqKZ06yNG8cIZZ5whY9yWW26pdjcKV1AyZjkgBt26davxEqNsPGmI0vai2sorKqGaNWsm7x0wYIBO7AmCkrFkAdJy3XXXSe9WCmJsXmR6NXRdvnx5TcskSCffVaEoByVjloMIDTc0K0gmmiQiCtsLtkX/yGoqr7Cs2HbbbXObbbaZtHdSJAtKxpIJuoZst912uU033dQKm55C+HXWX7x4sdjfMAYNHz48tP1TpANKxiwG/jXGwgJSlmSEaXtRqa1KpQgcWrBrrrlGPNuOOOIISaGECVbNbo0wFf8fpLE4bkyITI40X8dgc+HChbnXX39dmrOj8bv33nuVjCUQRKSbN28u9+sFF1yQ++WXX3I2oNoWR7feeqt8J3Snb7zxRuD7p0gPVuOfuIsIFKti/vz5TqNGjaSar1u3bs5tt91mXeWkV1BFSWUllVC777678+KLL8rvu+6660r/R5WSl20efPDBZV+D3UapbX7++ediFUI5+iWXXOJcdtllzpprrumEgT/++EP297HHHnN+/fVXqcrcaqutnKyCoeeHH36Qqrrvvvuu5iePH3/8Uf6PymF+53j997//XeVhtgP4e/311xeLlbXWWivmb6fwCs7j8OHDnb/85S9SdTllyhRn5513jnQf8sehrbfeumjVpNfv1LRpU7nn99tvPxmL1llnncD3W5F8KBmzEJROMwB89tlnzvHHH+/MmDEjNIIQJ5h8IWTvvPOOEBMDBmMmVDeD5rvvvutceeWVJV/317/+1bn++utLeradeuqpQpImTpwovmhhgf3EbwmLj+2228754osvnD333NM599xzE0+yKwGS9OWXX8r1/NVXX8mDvyHCkK3ff/9dHtiFMFGtu+66ztprry2/8zP/kf8chItjt/rq/9+h59lnn3W++eYb8YFTMpZczJs3z2nVqpWcy/vuu8859thjI/lcxoq///3v8vtRRx3lnH/++c4RRxzhm4gZLF26VGwvuO7djG2KbELJmGX47bffJCLGCgqDxBdeeMHZaKONnLTi+eefd95//33ngQceEFNIN9Gs/EGzFC6//HLxYiu1DUxpIUKswKdOnRpahOr7778Xk8uXX35ZSEaDBg2cTTfd1Pnkk0/kuS5dujh77723kxZAbA3x+vTTT52PP/7Y+fDDDyXC+8svv8gx4LHhhhvKdc3PDTbYQB4QrGrw9NNPKxlL0UKtdevWzhNPPCHnE2IU5qIlP8IOEevatatz3XXXObfffrunSH0pTJs2zTnttNPkO3Cd4luoUOQjfeGWhINUGURk4403FkfnNBMx8J///Me54ooraqJbhpAR9So2CDJoViJikDW2WYoscIyJlmFOy2ALOQgarHFIcTAIL1u2TEjfTjvtVDOh4EzOOYaokRJJKnkglcg5hHAR0TXEi0UFx5XvSLpns802ExJaLeFSZAMYRpMR4F7u06ePs3DhQufWW28NLcVnHP3ziRifWWoc8goi8Oedd54zduxY5+yzz5axge+oUBgoGbMIs2bNqiEad9xxh0zeaQdE5L333pNIVj4hK+awDRGjrUox8P5ddtmlrOaMKFW7du2cmTNnOkOGDHH69esXymqbz4FIE/mqU6eOc9JJJxWdRA488EBnzpw5kqpN0kqZSOZbb70lExWRL1KNhnhtu+22QrqUeCmqBdKMG2+8UVJ8EKS3337befDBB50tt9wy8M9i3CgkYub5oDB06FCJiiFZ6NWrlzNhwoTAtq1IPjRNaQlI6SDwJMXTo0cPWQVmBSbtiFgXQvb111/LarjYa0qhXFoToNU6+eSTJT04efJkSWGGGQ0jXXbQQQc522+/fUV9DCmZAQMGCJlJgv6Lc0S0j/ZQpHf5ud5668W9a5qmTDFeeuklSfNB8Fms7b///oFun6guGlKubUPEyulN/YJx6vDDD5cI/b333iupWIUCKBmzANyYiFSZTEhnccOGkTqzGUaQTzSQyJKpsnRTMVlp0KRS8swzz6xp5rvHHnsEvv/Lly+XSYIBnc9p2LChq5QKVYKkY9AJtmjRwkkC6LvHOWJSsQlKxtINorCk+4jK3nXXXXJPB91rkii9n6puLzCyDNKUED8KehQKTVNagMGDB8tEUqtWLSnnzhoRAwx8ZvAzVZaAKFmp1CQphY4dO5YdNBHqn3POOc7RRx8tx7Z27dqB7jdrGQZUigDcRsPywUqfNAzfFwLn5b1xAVsSSvX57mmvBFXYA1Lgzz33nNOpUyenZcuWzrBhw1aJoHtd/EGE0D0a+woeYZEwg4svvlgkKewDYxNFCqYiWJFd6BUQMyjHN2JzvMSY6LIOVoyHHnqo89prr4l+Y/To0UVfV4mI4VmERqxt27YilA+aiBENg+yNGzdObBnwE/JDpogAoo9hH5MQqCadTDSX6JhCESVIh2NDQ1ofO5yLLrrI8z1DJJ1IO/ctthMspqq1r/ACorb33HOPLL5ZhDPuKxRKxmIEvjNt2rQRHQ4VNjwU/x9LliyRQZPU3SmnnLLK//N/pYgYgzODNIM1g/add94ZeNoKES5kj9UtQnz8iPxWehFdYhukX0iX2I4ddthBrCjQOSoUUYMoEvpRinCQJ2BRg0+dG5hq7HyxPpEqno8Su+22m3PDDTfI71R347mnyDaUjMUECEOHDh1kQiMaliXBvhuQQjBVlvmEjAEUTV0pjRiDMmkM/p9KLAbeIFNpEOennnrKGTlypFQRUggQRGqRCjG0ZlR64sdlM0it7rjjjlIMoVDEhQsvvFAiTDwQ92Op4mZcKVY1aawtogQegyzC6DgxcODAyD9fYReUjMUEypxJSxFNQctEpEHxP5iS8kJCVi41yWDMoEzJOAM01hVBpyWJsj300ENCwJo0aRJoFSEDM+QcXYyNiweMXNk3vJKeeeYZse4gXalQxAVamdHZggUSRVDoNssBjVghEQvawsItkDaYRTjjChWjiuxCyVgMoOLOrISo/KKCUrEyIFy0DsknZJi0Yh5aDAzCpiKVwZlBOkhgbEoVIWlEqgj33XffwMXrEHL0Y1R/VppUoiJgmLgSraPIhDYuLBx4Dk83yCnHRaGIEyeccIKQMaQNyAWojiwGnkesz3iST8TKSR7CBp9LmhX07NlTFzcZhlpbRAxC0njkMImdccYZzv33368VaT6bixvgzUaUirQZxIGqxKDA7cGKlWpJdGcM9mF6apFmxeqC70DhQdTg+3Ic33jjDSmgQOAMcNEnGojQmRU9+wlB5ngwGdoAtbbINiBj9PI110K+aXa+fQXXcP64EhcRyx+/2A+qyImU4TOpyB6UjEUIDjUmfzS/RQTNZKctMbzB2F4YQobwlQbfFEOwOt5rr70C+yy0W3iHkZpDIwWJjqIEHaLOyp1+fFQuRpWCfPPNN50FCxZIqpTnIGB8b7oIFFsw3HLLLULMunfv7tgAJWMKSBc2NrTjYjwggltIxGwEJAxXfuYDSKKt+6kID0rGIgRRMPxxsDFggi9nZKqoTMgYuOj3xt8MvEGaueJvhvYM5368wyDPUYFb8vHHHxcyxAAdFgFEY8ckRZTggw8+kOIE3PSJKEDAKn0uXkmcB1Lu66+/vhM3lIwpAJFdCBkFNthgYMFiMxEDpCcZZ1igk7ZEl6nIFlQzFhFoH0OkAzB5KRHzD0gYK95WrVrJ5Dt37txAiRiaKFaqEBTSn1ESMUAUioH5nXfekXZJQRM9vtcDDzzgXH311TWTFZ9HgcQhhxwihMwNAaxXr550EMDmQ6GwBdtss40UmGCeTUGPMXP1ChYpFAJFYXuRL+anL3HUVhuK+KFkLCIgEiWlhu4JX5s4EOXgEub+fPHFFzLIspq85pprAo0c4fU1atQo5+effxb9SVz9IrG5gBQRfXJTsl8JpG3mz58vqUUqeYloMWlhVEsrJn73ehyJ3DHhET1UKGwCmsbLLrtMCn6oxEa078cYFu9HfvJ32MDoGkd+oGL+7EHJWEQu+2PGjJHfcZOPo91RHINLGPuD2BWNGJFGImIMtGgsqiUERqiPKzfnh8/wa+IaFA444AD5vnxPvyDqNWfOHKmGpK0U26M4oHnz5hLZqqYYAfJGixoibQqFLTAaMQpLiJCRQidt+f7773syhs0Hf0exiKVimQUgCydNVWYLSsZCBiJwzP0A+qYjjzwy8n2Ic3AJcn/QhmFfAaFAH4SI37ROqoaQoZUiAjV58mRnq622kgpB0gZxA6JEJBUyRjTQa9UuPnb4KdEcnQmJSN8xxxwjEa2gKnjZP86HDVYcCkWhWJ/7GT0pGkIIGc3GK6GUAWwUxrCYP1911VXy+6BBg0S7qsgGlIyFDCISlFxzkxUSkKgQ5+AS1P4gxj355JNlsMWHK18jVg0hI32HdxbEhUpMjFdtshrZc889ZR9NY+5KgLBCvuhAQBEAkxFRsAYNGjgbbrhh4PtHk3NSQujbFIo4UapqkhQ8izcWXUTLiKqXQykD2KiMYbG24L5igXPppZdG8pmK+KFkLESgPyIyAUaMGBF4o2q3CHNw8aP78ro/TPZ4biFmhzTtvffeq7zGDyH78ccfJS35wgsvyABuY5N2InRYarz66qtlySoDNzYcXG+QVaJfkDDMaWlfFBY47qRVVMSviBOV7Ctw3mdxgoUL9wWLOzeG036NYavR51Jtz3wBkLe4Ta8qkg0lYyGBVVjnzp0lqtGsWTPRNsWFIAaXIHVfXvaHaBArRVz1qQAsV4XqhZAR/ke/h7cWqWMGa1vBvuHOjxlsYUNkSBiGtGhNSMdgzMr1xso6KnsHvMiMNYZCETXc+ogRTccUGi89/B7LNRfnfqIH7t133122F25Y+lzGJCQZ7CNVz4r0Q33GQgIVeZhhMokSIbNhsq/kOu3FlZrXFiNGDFxuSZ6bz6MiisHorrvuksHNjzFsIahqZcVJuoKmwWGk74IG3+mJJ55w2rRp4xx22GGyskecTPqFyk+ienxfVtVRg8kNDz1IM4L+rPuMQUqjMAdWuCdi+SDlT3SsQ4cOMg4EKUsIYlzMfw9WM0TH33777aJjmSI9iH7kzojpoFkNXXvttVYQMcBgUGpAYH/zNW1Erlgd+tF9uR10yu0PwHcHIsZ+uSVi+REyCBnIH8RIUzAA01eRlWccla1+wHfiOqLQAG8vTIMR9UPA0LrFQcLydW2s6Tj3cZIxG4CFAk2f0YgSicEPj/NmQ0FI2uDXWf/EE08UeQI2EtjHYI8TFIIYFw0gdSeddJJE8xD1E6VTpBdKxkJA7969xVIACwH8YmxHqerG008/veQAErbIlUgLJrn9+vVz+vfv7/n9xQgZJBkihm8XZq5xW1d4xX777eeMHDlS+kYiyMcjLMw+mW4BocUXTbUtjpwbKlkhxxRSmGuxfv36YiUCOYuDmHGPv/LKK1JRCHm3qUjFD6ptccTijsXMgAEDhDgbQ+5qEfS4eOWVVwoZw5yZ6sogza0VdkFj6QFj2rRpzkMPPSSDMRN/ElbEfqob3ei+/IpYifq0b99eRPs33HCD74kjX0PGNm+//XZJ7yWRiAH2mcEYKwkE+jYQMQPTAxCNZFZBdHDx4sVSvYeR7qmnnio2KRTuUCSC4S5RGAot0DRGZepJOp7P5D7gHiBy59UqxSYE1WuSRd6FF17o9OnTR8Zsryg2vgWtzzWdMUh9Q8wU6YVqxgIE0TBSNjRavuiii8TWIgmoRudQSvflNe1pgBCcqA8Vk1Q/BVEJiN7qiiuukEmpXbt2oVYXhg0EvVRMEonq2rWrNdokyAVtXDp27BiZBYBtmjGKQpAlUP1aKE1gmOX6owk8EVrOI0SCaCcRM4ogwopW4Z+HoTGFHeglqczl+OA5xyNJfTyDbvoNyUHMT5U2UXQimG5QaXzzor+tBL4v1wnXx8KFC+V6UaQPSsYCBOlJSpJJiXHT2BS58Dq48HdhBZHbAcYvufvhhx9EnI6e6+WXXxbCERSYjIYNGyaTHuantpAYP6CZMN5opJEhrjaASY1iCyKR6FyySMZIAxJ1IpJRjvAz5ELcSOtCzDh2VMFyzzDp1qpVK7B94jOGDx9ekyIFROSoIuZe3nnnnaXSm8/PGhHLt7ghgsk54RzWqVMnMpG+W5x55plSTX7GGWfIT0X6kNwZyTIwsKHnAfwMkohF0VOyUim3l3JtP2lPJiSqmxBAo7UJkogBqpL69u0rkxMRtyTbMDBhGyNLKiltAOQWg9ks68bwWttoo40qRl6JcHB9k4LCyJhrE0Jw7733ShoTvSTN6qtdJ3ONYwlDehvSZYB0Av85ClhIV958881SGGJzijksIgYgv8hLuJcgphTI2GaiTWSf6+bBBx+UxZgifVAyFhAQV5J6QFSNJimJPSUZ6M4666xVVnde2xf5EbFSNclAM2HChNDC8PmEDFFskhvxskIm7QUhswXYa1CtCrHIGiA+2A8gBvcCJlgq+tCYkUakGpUoLtG92267TWxD/JIk0pF0/yjVVQKz3uOOO06ixXjYoWmDBGaJiBkQGUQ3xkK0V69eZYlwHA79yDZIp4LLL788tM9RxAclYwGAwRMiQXTAizlgUnpKel0JehWxcuxY+REVIMUTJiBk6GRono13WVIJGVEo9C1cC7b0r4NEQxziarMVJ9CJok2ksKKaqlQmXdO+aunSpaLD456nAKBSxCYfFKrgpwXRK0dgGLM4b0TJ+DyiZESObYmSRUHEDJBI4A9J4RVEOGoT7UqAhHG+yByQTlWkC0rGqgQrKMqjAeLlIKM6NvSUZLIv1eqm3ErQrYM1Ay1Rv1atWkl0MWywL0QwmOwI9yeZkBFJYd+ZdG0AEz/peVLNWQPfmXMRRHqdKBZp6MaNGwtJApMmTZJ76vnnn3d++eWXitvAEBix/gEHHODqM4mSoaUkSkZqkyiZm6baaSFiBp06dZLqSh50tAjDob+ayDNV5kCjY+mDCvirBFqD0047TSYhmiUziAaFOISi5UT9hf+XPwD5qR5CbM1ksemmm8oks/766zthgtUkuhyiF6Ru5s6dK62E0GBhAJkEG5JCMGHQi5L9j6uKMR/jx4+X9Cn+cFkS8I8dO1ZSfERdwwDFLYsWLRLBPwJzOkfgY1jMtPirr74SSxhSnrTF8gp80ow/H5FqoslR+5LFQcQMkJtgDEuad/78+UJQ3SLIKspSVcvY20D82T8qdxXpgEbGqgChfKPhYvIJkoh5CYeHIfAvliI1K7LClaAfXRtrACKJVE5CaMMmYgyqEDGiN0ZDgwEmRDrJETImZVpukVqyYf+ZKEibQgiyAtKHRI9JHYcFzjGk6IQTTpACAappuQdZUBQWcRApZZ8wd/UDoyWDBHHPEJUr11g7TUQM4BHJ8aVNGu3H3KZso9D3Uqlv+hyTUlakB0rGqgB6DlZBpCYKSZONVY5eUCoVSnl8obGrH10bAwnaB6wAwi6rJy2J1xIRBdKT+av8pBMyNCREL4iYRK0lLAY0T0QWsqQbwxuPyFU1ejEvpMy0yWEBg83BkCFDnHnz5kkRAdF5Fh5ETKqJ9PJeqj2JvjHuYNnDNZZ2ImZAtJ4xg+N6ySWXWKXvJYUKIMlJNu9VrAwlYz5BRMfk7flJSbvtVY5e4LZiyI+ujQEOnd0FF1wgYuUwge4FIkv5OsevWLol6YSMCAipFKIktHqKE9wHdD7Ikm6MqBjRlDDHgEJwPUOUSKcBFjX4iXH9QtKC6ofLdtCSEe1ERwbRC0vZYgsRM4D0YrDMmFpJlxmlvpf9YlFJ9HP06NGBb18RD5SM+cSNN94oqxLCxl26dIllH8IcANymSEtVeJUic+hREOtTCRi26BX9EBomIgaYOpbTvSSdkGF1wQLhiSeeiHtXxNMK/VSSvdy8gPtts802i6XfI6Ts8MMPl3Q1ESwqu4loBbkvRONIW0I2WdjQWonoZ5qJmAHyE6KQZB7KRQajtLvg3JroGFWfXqpsFfZCyZgP4KVEagCwcoqrvY7bAcCvpsxNivS8885b5X2lyrxZUUNc0ROhyQjzuOF1BRGDkDFRuUnZJJmQMYGxWiZygUVB3JE60nZMsGkHBBjiGUWKshy4vjneHHtSbGFsH80aBQEQfuwf+O5pJmJGBsBYwFhFK7VSY0LUdhc48qNR5F7HJFiRfCgZ8wEatjLZc6MRkYgLbgaAajVlXlKkpqqsVMSLJsX33XefvCbfETxoILjFPBYtD9VtxSrO0kjITBuiuK0uKMGHeKNfSjvoNYm4PUzxvhtgWEqUjAhWmCATwD2CDpNOIzStTysRM0ATTCHDc889J+bUNthdQA67d+8uv5OeVlOE5EPJmEcsXrxYyASgfDyO1ITbASBMTVmpCb9UtItenYTWu3XrJqu6sEBqDFEzNgCkJqmI8oqkEjJIJ75UkCB6D8YFrgGc6LPQGgm9GBqtOPvQsg+cc0xL/VzvXkFKFtKHTOPWW2/1fZ6TQMQM6JCAMfVVV11VtutFqcVrGOjatavca1j2MPYrkg0lYx5x0UUXyeRMBRuTvQ0oNQCEpSkjukZ00G3qFE0D+7fbbruJB1SYmD17triVI26uZoBPKiGjUXft2rWlw0CcLupU3VI8kWY9C9EIFmeVGkuHCRYfRMWwbIGMRQUThTMichY/aSViBphSI3nA0+/777+Pe3fkumvbtm1NdEyRbCgZ8wCMSRGvop+IwnG5WoQhKi2Vniynkbj22mudt956S6J3YUYQEC8TsaMLQhB2GUkkZGhcTj/9dNGSQErjtLjAKb5U94Y0AO0jabo49WKYs2KyS0Q0aqNbojJ0CYCYoc9kfHSTLksiEQOM+8bUuH///o4NMEJ+sgFxd0xQVAclYx5A70TTMgNzS9sRhmlsqaga9h7FCCou0YMHD5ZVZZhu0aRp6HFJKX6Q5yaJhIyoFFFIJsegRNZegdUGdg9pJmN8NyJDXpuDBwXMXokEs7iC/MZFUIjIcd+hB3300UfLVtEmlYgZ7LDDDlK8RQEDxz4MeBmP6R5CCpVxqVw/TYX9UDLmEkzGuJwTeRg4cKCTFARtGlsqqmb8jvLBRNWhQweZKC6++GInLLBSnThxokTdcNcPGkkkZETHEJaHNWFUAvcJESME7mkFrWlwq4d0xoGZM2eKZhVX/jjBPrDQotJy1qxZYkZaLEWedCJmQEV4kyZNnHPPPVeseoKEn4IrEx2jQCrKTgmKYKFkzAOpAXhkhVkJaLtprJcSbiqP0NRgSBmWjQWDPoM/g2IlL7EsETJ0YwzmCxYsiM1igqpKmlXHFZ0LE5z/JUuWiFYrDpAeRbjN4iOufSgE0VjsL1j0sTjKJ2RpIWKAMYYiLsacCy+8MLDt+i24Qr9MJBpjXo67IplQMuYCuIkTggdh9BuLC34F/m5KuPG7woONiBih9DCAPuWRRx4RwgcRC9vvLWmEDOd0dETo6OIwYCVSktbWSBiAIuKOSy9GSh4TViI0NoH+vJjQcv+TaiM6niYiVpiupCUe0cA4x2NSxT179pTfTaW/InlQMuYC3HRMZqQDcI63GV70BtUI/MuVcCPcJj2JkB6tWFhgwH/mmWecAw44IBSjy6QTMshp06ZNJVXIZBg1mHgRd6exNRJ6MRYDUV13+aAYBjuJI488Umw1bAOROggZUdlhw4bJfZomImbQuXNnKZzgZxDpymrG4/bt24s0gHE/C/5+aYSSsQogzTJu3Dj53XatmFe9QRgCf4BgH1PIMNOTdEEwJf1Rp42TRMhojYPA/Mknn4zF6oIIAsQhba2RmPAgYkyAUYLjSEU3EagovKyqsV2AiJNK3XfffVNHxArTlV6qK0uNp9W4+DMOGsNfDK8VyYOSsQq4+eabJdIDuaFqxVb41RsELfBnkmIbvC6s9CTnw4iE8ROLA0kiZHSJwIahnFllmLqxb7/9Vj4/LaCKkchYHK77NIOn1RQFM25afMUBIoZErClwoF1a0jS2XoCFDuMdpMyN8Wql8bQaF38yFYaMqSN/8qBkrAzQhOAwbaJicbvtl0M1Bq9BCfwZAKjsYZIKKz3JZ0yfPl1Sb+jE4pyQkkLIsB2gopXBncrTKMHnGrF7WkCk76effopcLwYJg1Dvueee0pbIZiL2xhtvSPoO3WLagRM+Ugl0W+XGALfjqV8X/1NPPVWauiMLwH9OkSwoGSsDnKUJQTP4NW/e3LEZXvQGbtOOXgke6RPE4uhEwtKyoD+hRxxVZAiY40ZSCBkDNWJq7FmiBJMD6bw06cb4LhRGRNF6KB8Uq7D4KGYjYwOySMQA54RFO56K2EuUQlgdUQwYc7G0AYzvimRByViZVNjQoUPld/L4UWtDvMKt3sBL2tELwSNS0LdvXylyoNQ6DHzzzTfOtGnTJPK20047ObYgCYQM4kCanbY1UXt/kaaioi7s44LHEhE4mjrzuP/++4XA0BoKA9x58+ZJz07IFGlTvxo6PoPm0VFXb9LflXuW3pC2IatEzIDzghk41eOlmqeH0RGlVKqS6n/mMEVyEI9bYQLAygKR+LbbblvT/8t2oDdgZcRKixvcbdqR9xQLiRuCl/+eUoJSbCw4Xkx8YaRzGeynTp3q/Pjjj1JFZhsgZIB9BPSvs03Tc8wxxzgvv/yyRC9p2B7VAmOvvfaSqMGHH34YKomGrPOALHENInaHAGKvAfHiJ89zXnhg1rrJJpuIuJwHJIdiB8g+5LXYdUyknLYz2HZEbWXBvprrzCZknYgZoO+iqIj+xcUsJryMp37B9UH6/NNPPxVTYBaJimRAyVgRMICbG6Zfv36h+1cFCW7sUjd3uTB5qfdUIngAoS7Ha8CAAWL8GAYgEUSeaL0SdQ++tBAyyAdRS4ofiBJFVfxg9E0Ud4Qd0Vx33XWFdBY77pAGSBkCfCK5aLB4UDFNtIzneA33O6lVxNksxiBn6O6MTQcRhyjF+1z3LHQoxFhnnXUcm6BE7H+A0NOHF+0YhQtEy/yMp9WA675du3bODTfcIAEFJWPJgZKxIiAVxsSBizkDTFrgNkxOBC1/sChH8BiMe/fuLaXVYYn2iXaQbqKc3xa38aQSMiI6EAyE4FgOQF7CBuSG84bwPU4Q6WJfeBTTG3ItE3nFyZwHETZIKxE2SBDkDOLG71GRIqJ5M2bMkM9GJG4TlIgVF/MTFYOQsYAsdu+XG0+DSlVCxrhuGDvj8MJTeIfdQqiYBhhTTnz++eeLADktcKMr82plQWPgMEX7nA9C/0Qwwug7mUUNGREW7CaeeuqpSJuXo3siKmUrIGvc73ijQXxwt6fwAZJBEQ8pSkhslJHZJ554Qo4Zon2bdKtKxCqL+Y0/ZRwLLhZaRIFN5xiF/bDn7rYEDDCshmk6DRlLG8r52Hi1soBkYPlx1FFHyaQVBvhsSA3E0Nb0ZNIIGVEqPOBYuUfl/8XkQDUnKe0kwRA0yCRaHEgIfQCjstahcpjJNarPdAMlYuVBf050xpdffrmkvuNAvueYIhlQMlbEzsKkl6KumIoKpXxsvJZec6NTnQahC0O0T6qI9CR6HdvTk0kjZFi1kH5D5BsFSDGTHkwaGcsH1zppXYhZVHIJPo8KZVugRMwdrr76alnoYBoeByCDRFJfeOGFVNnKpBlKxvLAzUNKDHTp0sXJGryUXiNivuyyy0pWYlYLiALngpWlbVqZNBAyUsoI3WlbFUUjbyYGCNkHH3zgJBW47qO3iyJCi76OHpREWTbeeGPHBigR82bngn6MhSq6LTfw2nauHIjiGv2qmdMUdkPJWB5I3ZFKQZu0//77O1mDl95oI0eOlBJ/qofCACk0fJX47CSlJ5NEyPAdQ8g+a9asSPZpjz32EA+mIJoqRw3GhS+++CISfzuzEKE6zxYbFyVi3nHJJZdIAYablkZetbpuYPweEfIr7IeSsbzBZsyYMZmNinnpjYaWBRKGySETbNBg+xQGJKF6MsmEjGgV+4Qn0UsvvRT659WrV09ExUlsjbR48WJJxYdl3ZIPmmsTpaeAwIaFiBIxf8Cz7sILL3RGjBghC9eg+wpXQtOmTeUnhscU7CjshpKx/wO5dVI2eAm1adPGyTIq9UYbMmSIVDciUA0Ds2fPluhJktOTSSFkNPIm2vPss8+GLjamxJ5IXBI1LJAxhPwsEMKOwFGdTJoramPZYlAiVh0gY1w3V1xxReRtkriGqAJmnIm6DZrCO5SM/R9MT7HWrVtH3nMuScBn6aabbpJKU/QzQQNNEU1umYiSZLabZEKG1QXkGhIcNrCNwImfVFySQAsp9j1sewmIGNeEDVYWSsSqB4sPWiSNHz9eCH3UbZJMdIxMg8JuKBlzHGfZsmXSxy4JKcogRZ5+MHjwYEmdYGkRNJigp0+fLts3ru1phG2EjKrhBg0aiDcSTu9hwvh1LV261EkK2F/SPEQawgRCb+5r9KphR+AqQYlYcOjevbtUhF966aVVa3W9olmzZiuRfIW9UDL2fxYNGCvihcSkZCvCEHl6AQJmIogXXHBBKK7OdD0gNM+kF4ZVhk2wjZCxgiYSw6AdJkzaJIoKzqAAIaGVVJANnUv1n0QmcdxxxzlxQolYsKBbA2J+ijJKRcfcaHX94NBDD5VqXDSIFEUp7EXmyVi+cJ+Bx1YSEJbI0wtw2WdS6tWrVyjbpxybyZpJAA0TrWnSDJsIGSlhJl18wDj+YVpqEImLuzWSF1BwQBNxHmEBcop1xhFHHBFr1w8lYuEADS79TCFdfrW6fkCWwfjUaarSbmSejEFmFi1aJOaK7du3d2yFF5FnGKlMUjW0+cA7J6xeZ2j1unXrJlWatBUhSgNRoTw8rbCJkDEJcG7nzJkjVY9hAdPUjz76KNTPCBLsa5gO+KTnMXhlsj7ssMOcuKBELNzoGGL+iRMnimYyShjdmFpc2I3MkzETFWvZsqWzySabOLbCrcgzrFQmvmKkcvv16+eECVJlaGb69+8vPjkQSiJy8+fPT5zoO2mEjGOPiS9FGrThCQt77bWXVG4mwQAWDd2KFStCdd2nkhtNGunJuJrKKxELH+iREfRTjR4lKAYh4/P666+XtdhQxItMkzH8rCZPniy/MwDZDDciz7BSmUxGQ4cOdTp06CCpxKhWkqQsIciQsAceeECIcxIm8CQTMvR6EHwqWrk/wgDEBtKRhNZIRM1J4YblL8YCh0gkx5zrPQ4oEYsGpJ+pQh87dqyYH0cFZAEszIGmKu1FpsnYpEmTZIXOIBhnesAtKok8w/KroSwbAWghGQx7gqBvIgMYUbIzzzxTCgggZFS+hkUU4oQthIzoGAQ8LG8idIek5LCLsB3cO+wrWrcwQOqIqMVJJ53kxAElYtECMkYEevjw4ZF+rqmqVDJmLzJNxpIg3Pci8vTiV+NWV4Ze64YbbpA0blQNkgF9+ZggSFkyeGEASySQXn2QFQazp556KjG6oyQRMqKRVGGR1kAvFQaINJECDNtothpw7bOP+IuFAdLBpN+p4K5Tp44TNZSIRQ+KQEhX3nLLLa4WlEHpf41u7IknnpCFlsI+ZJaMLViwQHyVSEFAbtIAt341XnRlpHGpfAvDV6zcJEhUDFKQnxblXDGoDBgwQHx7MCml1UiY1X9ZJWTHHnusHG+KKMLQ6u29997iNo+dia2gUwDfPSzPO6ws0BDRsD1qKBGLD+huWYSMGjWq7OuC1P9i24R3HUQMjaLCPmSWjN13333y8+STT5acelpQKZXpRVfGgI1WjNLo+vXrO1EBkow2jIbtxQBJQ7/GCpPJknTzHXfcIT0W04K4CZkhvqQSiZAFDVJ/VDBj52Ar3nzzTWe99dYLpTk4JIiqOs5zWCnQUlAiFi/oXELlPgvJUpXiQet/yfyYpvNKxuxEJskYgxGrUtCiRYvUuemXS2V60ZVB5iBGvXv3dqICgxPpR5rsYlZYSWzOKhNCTTqNlSYWAbT2SQPiJmSQYRq1k9r45ZdfAt02qWeimzYXZEAUmTiDbtZtOk2w7YYNGwa6bTefPW7cOLlPmjdvrkQsRu0YlY0PP/xw0f8PQ/97+OGH1zQOV9iHTJIxVoSkR6jYi0s4G5ebvhddGSs3UjRRDtgQDwYpwupuJ3WO36BBg0RXBrG9+eabZcCJ29U+DYQMMT9teoikhNGknMIQtm8bqHJk38JogfT000+LoTER5yj7T0LEKMahQrRevXoyBtpMhtMMtLAUjTHGRtWv0hSpschOs3djUpFJMmaiYpCMOJqCx+mm71ZXhnCZqsWePXtGNmFANIiKbbHFFhWjYsXSaqeeeqoYK5J2pkoNkezbb7/tJB1xEjKiV0zcL730UuCkie3a2hqJAhKu+6BbIBG1hYyhmYuy/2o+EWMBSpqf57BZUO+p+KJjLHI4J1H0q+SaQ6PINVjsMxXxItNk7Iwzzojl892GoMNKY7rpg8YgDcFh0I4KpnrPbVSsGCBiaMk6duwo0Q2+Iw9sMZKMOAkZ5rtUrc6aNSvQ7aL9g3QjlLcN9BBk4iJNGyRIT+a3qImDiGEui70I1xTnlf+zMTqZdhB1Rjt52223RdKvEm8/qqSBpirtQ+bIGITHNP5FMxEH3ISgw05jltOVMdFj+9G2bdvIuhLwmU8++aSQqdq1aweSAqPqkugn6RgGPKJlELSkIi5ChtfbUUcdJYL2oI1aaTNEqsy27gpUEGNpEWRUmIUGhMi0nYqLiBlACrmmli1bJq9Jey9Y28DxP++885wJEyY4y5cvj6RfpUlVqojfPqye1ahY48aNA5n0/aBSCDrupuDYGTBx0IcyKixcuFAm5X322SewbTKRUkF00UUXSQseBiD8yTiOtk3+thMyyFitWrXECDbIY4fhMhPRJ5984tgCyAkeUEH76k2dOlVIGOcwbiJmgG6W/eHegxSkzbfPdkDGsLm49957I/m8fBE/hWwKe5BZMhZXitJNCDrupuBUJSKGP+igg5yoJg20YhgihhExwDoA09o+ffqIRpBKMr6jjekxWwmZiSRD0l9++eXAtgtJZlKwyW8M8kLUIsgWSFQlo8PEUwwCZAMRM+CeaNSokbyWtmNJXagkEdtvv72cn9GjR0fyeVTvci+z+Im6YbmiPDJFxkg94HhNxASxd9woFYKOsyk4Yl4iY1FGxZgEODfVaMXcAP1Pjx49JP1K9ANvMlak/J40xEHIiFoyecydOzcw53x0iRRs2NQaacmSJbJPQUXOMbelDQ0pWarobCJiBsgDGIeIHmOmrIgOjLWQdR5hg4WpuQZVN2YXVs9iVIxVIIOtrYizKTjkhKhAq1atnChAVITqMiY+ImNRAFLB8SSFiQ6K8nImoKSlaOIgZIiOv/vuO4lkBgXSgSwCbDj+EBmiBkG2QKIROD5tUVhZ+CFihZWzFGpwTSmiAdcF7bBIE0eZqlTdmF3IJBmLO0UZdVNwL6lMBgRMVL1aS/gFqUKiIqSrogSheiYq2jzhsA65GDZsmLTJSlKaJmpCRnSRlfUrr7wSWIUqJfcUVtgQHYOIsS9B2U58++23zosvvigdLMLqcRkEETPYY489ZKFKhxLSqopoxqI2bdrIQjiKBZWK+O1EZsgYgyxeSYDJKytNwb2kMhnEEdLTqiMqcE5IVeG4HweoFOQY46fGfjAJYesRVoPsNBCyZs2aSUSTdHYQwFiVCckG3RiV1mi6giJj6BNp+xS2cXIQRMyAcQJTUBZm2lQ6GrRr185ZunRpoBHnSmSMa4XFgsIOZIaMUckEDjnkEGmYmnSEkcqcOHGiCOij8kDC2whvMQgkvdPiBCkaBP5ETRkUEdQiZqaqLgmIkpChO2nSpIloq/Djqhak7vBbQjcYNyCENKeHQAUR9cV0mMkPz7IkEDHjR4WUA4H3Qw89pFV3EYBiKcbBKFKVRLeRBnBeo6rQV1RGZshYklKUcaQyTcNtqg6JEEUBUl1oacJoxFzNoEjqEtJOypLWSgjWbdAz2UTI0J2QykZrF8TnMBFBguPsK0o0iH0I4nrkfoLIoAU64ogjAtm/KIhYfsSYyjvGFR6KcMFilOgY10xQxTGV+s4CMiEKO5AJMvbll186zz77bI0AOU0IIpUJnnvuOUnNRZWihNyQokRHQ4rKJkBGmzZt6vTv31+iJAiaaa2E2N92REXIiGbxOeiKgtCeUFTBNRFnqtIsUoJIUWL/QeT32GOPDbzReNhELD9azP1JqvXTTz8NdNuKVQEZYzFCl4awYfwctS2SPcgEGWMyZeBCeGxTFCZssMoqRKn+ZoTHKb037TKi0ObQiDno3n9BggrPTp06OZ07dxZSQxqXyY/oic2IipBx7tB7USJfbUQLzSDpz3fffdeJsx8l+1Ct0B4rC8YcUkEUJySRiBkwZvJZpOy1uXS44HpBrxdFqlLJmH3IBBkjzQRYpWYFxfRipYoXqB6jKTgrs6i0W0QOSHPF0ajdzyDZr18/iZaha6K1EqvXKNIJthOyFi1aiIN+EN5URGJwgo8LVHOyD2imqsHMmTOFwJx44omhWFlERcQAx4KUPVFDk11QhAcyE3S5IJsTBRlD86kk2w5kgow988wzNS1dbEaQbvpe9GL0hMQ7ivLqKPD555+L+NvmqFghmFQRYtNaab/99pMUK1YYpOiibNptGyGj4IPVPJ9RbSqL1kik9sKeiIqBvoxff/111ZFzor3cv3SwIMWdZCKWf45J3UISNF0ZLtDsco5JDYcJsiC0N0Oza0MVsyIDZAwdFKkPM5naiqDd9L3oxYjyMNhG5fU1b948IQbbbrutkzRQZYfukEgZJrWPPPKIc+utt5Ykv1kgZCYCZCJCfoHhKKv0OI4lekCiQNUuEJAGEO2l2jQNRCw/kqLpyvCBxxvzFONKmOB+5X4Dmqq0A6tnJSpG9UiY5eXVIAw3fTfWF4ABlhufvoNRpCghA1RR0lan2nRQ3IMmbUw6dOggURWIDlFNIiNZI2QUPGCHgpVDNUUOVPCh04ujZyiRWtLmVD9Wsw32HVsIvktaiFhhutKMqYpwwFhM14awZRCqG7MLq2dFL2ZzijIsN/1K1hf5DYxx3Y8CRClJRSH8TgNwLIfkEgkh3E/VJREidHhZImTYIBAprLatFGlC/K2i7oKAVo3UjV+Nl0kt4ZcGaUkTEStMV3KOg+q+oFgVjMWMH8hHwoSSMbuQejJmVnH0IbQVYTYGL2d9YVKURCOiSuFy4xNJCaoJsw1gAofs4E8GOcMmBH8yIoA2tVYKk5BxDEjfovfi+/sFqXIijVF2QCCaSRFCNQsEvjO6S5z2g4z42kLECi1IaHyuZrDhYPfdd5exP2yLCyVjdiHVZIzmw//+979lojDNUW1E0G76XqJn3PBofsLyQsoHWhMc95OoFXMDbBFat27t9O7dW35HP4STvw09F6MgZES1IKMUNUBM/E5EIEpRMZMR179fvRjpJKIYfHceaSViAKKJ5IPrBysQRXipSuQjYS7mDBkjtR6n2bIiA2TMRMWobIqq8XXcbvpeomekgyBHUaUomWCXLVuWeq83UlW9evUSYkaFHr0uJ0+eLN897YSM7ZJiofLOD4iaotuKksCi9cLnzK+mdMaMGbLgC7KNmI1EDFB9R59fFlaaqgwPjMlUnVPsFBY233xzaY0EkmBonXZkgozZnKIM0k3fayEAKy/c76PqRYnRK9WIthPjoFC/fn1JXXL98d1HjBjhPPHEE1a0VgqLkHFuiULTZsWvZ9huu+0mEz4Tf9iA9GDX4NfoFQNg2mbRRqsa8b/tRIx9grSSniSliw1OmG2esg7Mt9HoaaoyO0g1GUuCeD/IVKaXQgBDxiAKUZAjXMmJwmGqmSVAdplMOXdEBCFj6Mk4FnHrycIiZJgrQ7r9Wl2gG4OIReHGD2GEHPttgUQqepNNNgnMysJGIkaBD+eSceSYY46RaxnCbVsbszSBY8v5VzKWHaSWjBFCJy1mu14syFSmF28xJjsih+jFogDn4ttvv019irIUSIER9ezevbtck6Qt77jjDokApY2QMZE0a9ZM0uBU63oFUSo0XOg9wwa6p3XWWUe6LHgFExiFBiz2IJ9pI2JEwJ5++mkxOGYMwVvv1FNPTUTXjDSAa4BrgXRlWMBoGajxa/xILRl76qmn5Cdu6axc04JyqUy33mKmHRHaHibjKMCggqg96wM5RKNPnz5CgEiPjRw5UqIrTHxpImTcd2jnmMy9phshq7jXR9EaiUlom222EULmBWimiFoQ6W3QoEGqiBiRwvnz54uFxXrrrSe9WXlwnBTRwWR0wvR1w84F0OZNES9SG2dmEkhLitJr9AyLAVIKrGZLWVqQwoWkomsKG0zGaIiylqIsRzbw5YKw0FCaKCc94rAX4RFFZWshDCmfOnWq/DznnHOqtmg444wzxHeNe9GrLpGqSioUv//++9DMmkmdE0En9eZnsUcVJdqpavtP2kLEsKogNcx+0CqHcYTrkaIKRfRgMcN9wFhNm6SwyRjnP6rexIoMkbE06cW8AgJWioTlHx+cwqNwwWeAZ1JFlKr4H5jkqJpCCE10DGJGdIrJOKrWVGESMiIpaFIoICF6hCmsW/A+KjJZVCCODwMI0oFXvRg2ADTNpp1MtebFthAx/OHwxSPiBwFjP9KUUUgqmL/MXBYGWCBDwFasWCHXQFBFKArvSGWaEm0SgzgXmVb8FI9Uvfjii5ERVbQ/aGqCbhGTFmCAe+655zrnnXeepIgmTJjg3HnnnbFYBwSdsoRsMsFDNL2W3ROdCbM1EtFIPoPWXF4AWYVIY/CadCKGwe7zzz8v5NKk0InCKBGzA4zRXKdU7YYB0vOmoX0UsgBFxsgYlWqAlavtg4oXg9YgPxO9WBRkjNA3ImldcVUGEZoLL7xQJmZ8tmhAji4p7B51YRIyCDjXGdeAV0E+KRTSJ2FVnUL0IGJe0owI9vFkwsMP64GkEjHOKdIBQ5LpsUpxiV+LD0U4MLZMYerGzDlX3Vi8SCUZM8QmCj1UNfDT3igIGL3YvvvuG9g2ieg8/PDD4kPESs70ZiT0TTWQin/dwVT/XnTRRZKqo5Jt+PDh8jNKK4wgCRnbgpQ99thjnr4Dehmc/MOIEJJqxITXa5qRdDLp1moKX+IkYnw2HRJGjRolxBKn9/79+4urfrXaN0W4urGwoCJ+O5BKzZgppycyZitKGbQimi3Ue/HaSoJ8LwhDL0aIG8E1AzppKSonsQtAJM2k50UvpHAkrduiRYsaPRlElwo3hPB+PbHi0pBxTZxyyiliycK17LaRNro5vjvXvnEKDwqY8GLBYdovuQFu6KSLSOP5LbKIk4ih3eRcfvPNNxLV47PxhFNkWzemZMwOpHIpxECbb2hnI8Job+RWL0aUJegUJWk1NHpMuoYwMHHRQBmhNFWe+GpRhcaKPG7D06SANj2kj7Azwf6CiXzixInSZilJETKIFekQJhW3aVeiaZD4MFojvf3220JI0Ka5AYsKjE/xyfMbcY+LiLEYGjdunDNmzBgh0+3atZNFHfY2UXQ5UFQHxmqu17B0Y0rG7EDqImNMFqZKyubIWDXtjYpFz9xG0NCJkEIMurKRVTeTG4SMSZR94EFkB20OOhs0Q3PmzBEXevzGmJxJE/G6avQ3WcDee+8tBo3YREBoOJacY8iSV4+suCJkXLfDhg2T8++2Hyrkh4mI+zrISC6GtF4qVrluIWSYJPtJ58VBxNhf9ptiHfzCWCQZ6xTStOjF+L+ovAYV/mDGashzGH2ElYzZgdSRMfQlpMnwJrLZ18oYtOaTLS/tjQrJFu/N3xbbJhpVCFJdTGpB6sUgdxCuYukzJi6eN//HShxNGYJubn7IIfuzxRZbiJia1Ca9CUlzKlY9lo0bN5ZzTysrRL1M7kymBxxwQKianyAIGVE+tElcg3wH/q4ECBOyA9Lg1dpIGKBhJDrn1nWfyBKkZf/99/c1psRBxDjG6DchZOw3n5nv18aCiUkYaQHWIVk3Y7YZXHNEcDmnYZMx9RqLD6kjY4bAEBWz/aKqZNDqtr2RlwgaNzRRFlbKQYGJEp8axKaVQBQHs1MexoaEtDLRTIgZqz9sA9gWURFInGmPo/jfRIrZKLq/Bx98UB54RDHRh1kNFwQho00SpAQxPxV8lWCudSKBQZExPp/rCdLvBnxf7hc/JCpqIoYEgOsBwsn9QySvFIFkQTZjxgyJtCLkV9gJ5jGziAkDxtqFBcpXX30lC2NF9EgdGTMXrM0pSrcGrW6iZ14jaBwfbuygJwAmZT8+YlR1Uj3Ig4mLpsSQM9rUoDcj+kOUjAmFyYXJmYiKVn79f1PV3r17OwsWLJBJFU0QEyz+V2E1f6+WkFGYQFNtyBjR0UqpQkT2iPeD1I2ZggA31yvpd15Pis9rJ4AoiRhpR84JcgB0dhQZoG0rd5+w6IGQoiGlCwGeawo7wZiN7i9MrzHasxEdUzIWD1JHxpjAbRfvB93eyG0EjRQhRAeD0SDx8ccfy0RVbSSSiQOCwQNCQbqZyZAJhjQo0TP65UE0WM0RKaEaLizikRSQhuJ6Rx+EgSfHCW0Qer0wIorVEjL2DQLAueT8VXovhIGWUaTDq23IDUFi0qEYxs1r+Y6Qf/bZRiLGPUJRDOMe5xpSxflxe94ZI7heiKxmsVtJksjY4MGDZbHqJgPhFYyn3BcsrIPotarwjjXTbPialfZGlP8XolgEDSKGH1iQkTE0BqQpwxDgG+sBYz9AGN3ozSBpRISYdFjJoXsgpYkOqNoJO4ngWJGSwjZi2rRpQnSogERjBlELOpJYDSFjX1hgjB07VjyvSLeWA/cyEVJSldXe15B6igFKLWDyAWHEBoLqQy+kNioixvaNKTDHhegd3Ry8RkVY/EDiiU5zHSnsgxmzyWyQ6g8aJhpGmlIRD1J157FKNOmMNJGxciimFwPYEZQS7wdphovmC2POoPQ85UC6kkHJDExMlOjMiBoi8iZ6QuqFyQVyRkSFFV8U/TdtAWlftFjcB5D0KVOm1OjJTNsTGwiZIc5EdIjslROQcz4h2EGQMaKsbIuUdzkQRYbQcg2hsbSJiGFxwLklirHtttuKfrCa+49UMVFVFmtGy6mwC4xjpJ/DImPG4kXJWHxIFRnD7R2gB3HrH5R0eNWLMfAGKd4nbE7FVhzHm2gcqRUeTIKkS5kEiZohSuYBgTMpTaIhrABtL+wIApCNCy64QIgY+iwc15loIQdB9githpCdccYZzpAhQ4QIECmrlL4Oonce1wYEplKki0pEor5EG20hYkTA0AYSEYZ0n3rqqZJSqjbqSZqfiBrEmIVaFu6PpCFsEb+SsfiRKjJmmgpnJSrmRS8GiB4FLd6HjJHaCJLg+QETEqTLVAZBECkCIK3JdUFqE5LAJEbUzJCzNJf0c0wg5ESeIGREDvHsIh2FBiqoiKFfQgaZRrsFYWQ/y7XMIlVNpIpIrN9+s1wTLNgqRX94DfvEvrl1/g+TiLFtGnmjDeOcogVEGxZkOn6PPfaQDgOffPKJkFWFfWDsxng5DCgZix+pImMMhFkjY271YqZhd+vWrUMR79sG0pWkl0yKiWozUlSIlSEkrDCJjtDAnCgSKTNSZ2m00OBY0BmBSfyBBx4QJ3miKxRJMAnHScjQObEv7BOFJaWiPOjeiFYR8W3YsKGvfeT6J8JQydKCewqS7rZVUJhEjOsVDSBSAM4Vx4trNmiQwmaMYMGmZMxOcA8gsudaCLpoSclY/EgVGTMh3CRUUgbRb9KLXoybmDSHl158cYr3gwapufxCCKIfTJ5MdhxHhOSImZmIiJxxXvg9TRYanKcuXbrIdQdpolck1wOpuCAmeD+EDKLI5/MezkcpPSNpNEg/aUa/ZIwoKSSrXAQOoo7eDt8tN8bDYRExJkVIIVFdqucg00ER52KApHLdExGEpIfd1UHhHSbbQcQfo94goWQsfqSKjDGhJiEy5tYtvxJh86IXM691U0XmFqzQSBtVEkPbCLRjpHp4MKHir0PkjMkeV3JSQhC4fL1ZWnSIfJcBAwZIBR2tiW699VbRHnEsqu184IeQMbFw76IdQ9NYKjoJWYD8c778kGTOMaa4pd5rrCyIErm1vgiaiJkemNz7EEfE2lTIRlGEQmSYIgnuAzo6KOyCiegylisZSx9SQ8aI0rDyBfTwsxVu3fLdEDYvejFuYAb0IImTEe9T5ZNkMDlDuExFGt+JiBmTEhM4ky26OL4nkzkpTY5xkls28Z2xlGBQZ/KHDJnWSkSeqokIeiVkxupi5MiRYmGBKWwxcF9zTqgm9FoZ6qbql88mnU1hQSXyEzQRY3t0n6BfJL8zFnAcgiy2qAQ+Cz0e2jElY/aByDAaxlKL8GoyL0rG4seaabK1MBeszaJsN9Est4TNrV7MbJ+JKEhNlBHvJ5mUlEqdkeo26e7vv/++pmUTP0nlcBxJHxl/M0huEvVmnLsWLVqIqJ/rCX0S6X5SVcV6jYZFyCC5RMXoAQlBLCbS5/8hKlzLXskY543PL7WAIYVPE3ZSgZWix0ETMWND8vXXXwvRJ20btA2JW/D5HKtqCiUU4YFrsxIZc5t5KUbGli9fLrYumqaOHqkhYwymIK5BzC3cRLP8ErZSejHz3iBTlEZ3lTYiVgwQ/EMPPVQewLRs4phCHrAEoJoUjZlp2QRRS5LejBV3jx49hGDQhByyQfEDgnG/mkCvhAyrBq7pxx9/3GnVqtUq/0/1IJMGOiqvbvEQaSKbpb4L5qmcr0pWFkESMQgP5BedGpo9/MI45nFeN+jpiIyhS1IndvvA2ELBSyl46VOcD4g31x3XN4sC2+fRNCI1ZIzoBQijVUSQcNNvMijCVvh806ZNnSBBM2Kbo5BhgWuMB9V2DF6mZRM/mcTQPnFc8lOaXp3R4wLRQNKBxqeN74Nm6cgjj/S1WvZCyCC9ROggt6RKi6XUOZ4QITpJeIlEUvVbqrAHck3nDqpNy+kCgyJipMG5RiDyEEy2E1brKj9RYSr1IK9KxuwDYwlGzshyivnBeZ0XDCBiLFZYYJOqVDIWPVJDxkyuOwkXUaV+k0ERNgMmLqIJQUbGGAy++OIL68lv2GAQQ1hrxLX0T8RCgWgHejMmeVK5pmUTZIKHzRFF9he9EiL2hx9+WNJ3fA+eq9R8ulpCxmcQmUE71bVr11U+i8gR2iqE/G7TqFQSr1ixQo57MTz44INClilgCJuIYR2BRQepIPzOSAfbZg3DGIr+1ivhVYQPxnBSiSyEi3ngeZkXCsFCBDJGZEwRPVJDxljdgqSQg0r9JoMgbAaQAjR1QZIxhM5McFmMjJUDkQ7Ez0YAvWzZshq9Gb0i81s2ETkzejMbWzYh6KYvI2130DTdd999opcjlbfddtuFQsgggthKTJ48WbRrhdEZdI+8j/vCLRnj+HPMi/mLQTIxOuVeK2WiGgQR4xjy3RmnIOWkfzn/NoJ0O8eXcaOSJ5siWpgxnPGkGBnzMi8UwhRiqYg/HqSGjDHYJYmMRUHYDEwbGSaBoEBfSFbOtq3qbQMRF1JQPJjUmfhJaWIhQDqOCj7TsglSxuS35ZZbWqU3g3j16dNHyBFRndGjR0uEzGtUxy0hY9scGyJypBbzSRJkjXvcS2skUq28pzAayQIFfRzHvlRnimqJGIsW9Gi8H70axRJ0RLDp/ObvK9cnhJFjQ/RFyZhdMGP4hx9+WPW8UAhTufvjjz8GtLeKTJIx0wopCWnKKAlbWFFDyBgDtkbG3IMJGGJjokocP0gZaU30ZqQ2Ea+j2SFqQhQIU1ZbCC+EBXJk9E6szilq8KJ3ckvIsJe4+eabxe8NEpQPCAIeaRTtVEr3coy5/tGiFYJtE90lSlWMHFVDxP744w8hk+juODZo7vjuNlWpkSrl2PAgPcXiikIU0rnYngTdOk1RPTg/jA9mTK9mXii2bcA9oYgeqSFjxmMsTZGxoIBmhhs4yP6ReDaR+rExvZYUEOXBSsE4q0MuIGZcy0Rz0BeZlk1Gb0ZqLs4JnXNOIQi9LUld0i+S9CtExa3ZshtCxn1MhAx9GGL+fGE9hBAixTEq5dhvAMmFGBWmNCn4od8j2ypWKFANESPyidaOCEO1FalBguMA6SL6RdSL/SPqSMq8cePGQv45FkH2vFQEDwIOjOlBQ8lYvEgNGUMXksXImBuwigr6uFCWr4N2sCDKg8eWcddGu2EsNBC1v/TSSzV6M9OyiShbHISYUvhOnTpJRBpSNmnSJCE86MncLIjcEDLc5yGnNDk/66yzap5n+0wcEK1KZIz3c1wL9VmQJY4lqdagiBgEh2IAUkjorlq2bFmVV1sQRTZoFk30i3sWcg8xRIsHuYeAqZ9YssD1Xyky5gcmyqxkLB6khoxRug40MrYquHGDPi4M8krGwgXRIPy0eEAQ0EVCzkhtGuuJWrVq1bRsIn0XRhPpcuBz+/XrJ/5GpFhx0ad4AQJTKYVYiZChYeG7056q0CcPEorAvBIgbLw2P42K3ozoFZWbhZYjfogYFbQzZswQTR0pZfzSqu1i4BdEu7jfiX4hJYCQcRxJd0MMOV8Iv4vZIiiSAcbycpoxv9DIWLxIBRljwEHvgH4pyvYhSQGDMxN2kCBqAxFQRAMmdqI7JsKDVxUEhcgPDu6QC4gM5MJUaULOorgf2De8yNAYIfAntch+oTuq1FexEiGDjBmiRyTH/B/kgjZOlOGXasfFpMJ1mt/HD7JFJA+rEXRc1RAxXk8bKfp7AlK3QfT39AKuA9pDcY9jNYMOzEQC2R/IF/c+KXFFOkCWg3siLDJmDNQV0WLNNLVCSlNUzGtvsXJgoK52G8XSH6RiFPGAFBsaLaPTohIOQobejAdRGqJBVGaalk2QmTB9o9gnOkAg6CddR7QI3RuaqXK2KuUIGUSPSNNdd90l94TpgoDWi0pI7hEIXzFACAtbIJHuhbS0bt16pWPhlYjxubjnk/pj+7wniqgkui8IJvc0aVG0b2gIiXZBXI3uy2YfO0UwacpSxq9+oZGxeJEKMsZqME1kzG1vMTeEjRsWsWeQx4bVOA9NU9oDImD5FVRM1EZvxnVCBIfzZVo2ETVDexZGKo30KoatVFtCsO68804pUoCwlHK4L0fI6AgAoSQti1EqRIN0IEUpaNZKkTGqU01zZcA1i/4MwpLvxu+FiJH6g2iS/uSeQsvG/oUF7l+KZbiHiYCxCOK4oPPiWBjdFxFRTT1mA1x3pKMxfw2y0lrJWLxIBRlDs5EW8b7b3mJuCRs3LGHnIMkYx5sJzKYyfcXKICLGgyo5zpVJZUIisKYgtQaBMxYaEPpS6T6/IJXIdUnVItWPt9xyi2ipSOUVI/LlCBlWFzfddJPs98knnyzPQSohY3y/YqQSTRlkxfwfrv7IGSBc5jm3RMwQOe5P0vO8ljRgGMUTTIaQL6IfRMHYRz4TAk0LLs5X0nqfKoKDGcu5PpSMpQepIGPGpC4NkTG/TcJLNYM1rS3QyARNxkhLKewHk7Zpw2SIhUlnQtIWLlwomiLImLHQYOIPItXFZ5M+g4SRVsTMFeID8ULLVUgoShEyrl8qAEkz8pN7nYgU+45YvbAjABEsUngQF0BEie4H6NqICLolYryGrgMQMX5nn3ldkFo8CCKpU74H1hMsnpgYIcqm6hHdl95vivyxHKLOgicoKBmLF6kgY0R/QLH2EElD0E3CzbEJ0pyVm1XJWHLBecMSwthCQFogJFw//ESAz2sgPPktm6rRm0HsWrVqJaJ+BPSQLYgVVhiFPl+lCBmEifZFRLg6duwoZIw0Hn5jhWSMFC37ayYrUotElwzhckPEiKyxr0x6kDr21RC5asBns0gi+mV0XxxvNGdE2yBfHBMtRlIUgxnL0YkGCbW2iBepIGPmokyDG3zQTcLDIGMaGUsXSHVAAniY9AckBZKD1oxoFqtm9GYmpcnCx0+aDILXs2dP2T5eX2PHjpUiBET++TYTxQgZqU1IExWbpFwxVIXAEN0rBHo1IgjoyrAC4QGZ4j6oRMQgR4jzKQBgG5BINGZ+04J8HseUfYbwogEj8oh+ju9giiuITKruS1EJZiw3Y3tQ0MhYvEgVGUuLhinIJuFhEFWNjKUbECYekBQqldFlGb0Z1ySu+xA4omYmpVno11UJkBsiW2jJ0JRB/A4++GAhYSYCV4yQIdbH/JZ94N7g8xcsWCCpPgOuTXwH6QHJ77wf8gjZLEfE+K5o0iCfED98yLC/8BMRpMrSNIjHH44FjIk2cqxohs5nawcLhVeYiKmSsXQhVZqxNFX3BdUk3NywQaY8mFiYRHQiST/QknF9magr5960bIKk0QoJskIEyaQ0ebi5F9k2hAS7CggTxAwNGEUHpFCJRBUjZNhnjBkzRqJ2RJYgZxBFA7RX6OLYD3poohdr3769bK8UEeN7YMXB99t3330lUkdUzS34PHNciNQRXeP+IPrF9vJ1eET2eL3ePwo/4L7h/go6TWmuRxYsiuiRCjJmCEeayJgbuGkGG0ZkjAlLTSSzCe4xHPZ5AIgO5IYIEIQGkTwRaiqb0T1BiCBp5YgHCwUsIoggoe267777RDRPWhEtWDFCZpqFn3/++XItkoY0ICJFFIr33n///UIksdYoRsTQbfGZ/EQkz2dSxFAJTFj5EUOE96QYuc94v0nnFutJyXP55FGh8ArumaAjY4aEaZVuPEjFjMoqNItkzA24YTkuQZInwthhmocqkgNSbojyeTCYE5WCDJF2NC2biAZBjCBnEBR0XsUGfF7Tt29fEfYTPRo9erSkGiFOhYSM6NiNN94oNh0QP1ocmUgWRAehPf8H6D9ZSMRYpFDdSSSO74B1BgSz3ESEz5fxboO8YcBqvNvw/HLr3QYZI3rG+zU6pvADSL+SsXQhFWTMXJRp0YwFfWyCrsoyaUqFIh8M4hAqHkSY0GBByogeQT5I4dHWCNKUHz0q9ErCPoLUHq8l0sb7Dj/8cHnkEzKiwlR+UgDAZ0CMqK6ENEHi6EKADo22SYaIoQMjHfr000/LNYwmDOuNYgs5CBvki88naoflBIsQ9Gdo1yBffqpM+f4YVRNVLGWCq1BUImNBpymVjMULz0cdsS3iU1ajhOWpOsoHF0ivXr1ktYggcK+99nJGjRpVcbusUGmjwqDIYF7oowVIOZBu4DUIgBlk801fNTK2KjgfQVeZMpEoGVNUAtFYRPotWrRwBgwY4Fx66aXOKaecIiJ2oksPPPCA3OcjRoxwpk+fLpor002DNCPjTP/+/eX12FnceuutElUjKkZKFNIFESIah4Df2EQASCDXvakMhYgxJqG1pPE4lhekONGGmXEDHRevnTJlinP99dc7V199tUTP8CxjHKOqkkIZqkGbNm0qRNJPhJj9gqiyXYXCDzRN6R+MF2hIqV6Go8AliMaXA43ZueeJ8jMGMZ6ZNowGZAGIrhMUQp5B55FQI2OI5RHXdurUSQTkhejXr5+sPCdMmCCrX6qeevToIeTNOGcXggGU1AGrVogbAyLbp+VHly5d5DUIcdu0aeNcd911TrNmzZxJkyZJzzp635kBXMnYqmA1H3SfOtIrab9hFcEDny/MX3kA/LuMvxmDIUJ8BjJSfUZvho7r3HPPldQjEbGJEydKRIqI1jPPPCMpP7bDwEj6nIUZ17vx7qIlElWU6LsYl9g2KUmIVH5nAjRnGK+a/eRzWRxC2oKOXjEB8NmGOCoUXsE1HnRD7yyQsWXLlsl4gOwBI2cKj1i4lasGZ76DiBERh4ewwDv77LNlITZ48GB5DeMIr+nWrZuMUSz4zjvvPFlIIpMIhYyRfuBRCuwsAltC/wAyhfaDdEIpMsbOsyodN26cDKBUSLHypf2JIWPDhw+XVSyMFLBqRRNCixWThlMyVvwGCzqKxcWpfkiKagHJYVDkwXWK7ovoGMQI4sTDECNSmowrxloDMDiahslc41yTLMxYMPI3xAyyxoKNVCjjDwQP8sW20X0RUTMEkDZNED0i82FOSGybz1QypvALru+gqx6zQMb+9re/yf2NhtSg0HS6EIw3jEvY3tBiDn0o/IMo+RVXXCGchSAS20HHCsgIUGA0dOjQ8MhYJVCmTsqByBbRMEJ3DKDslEGHDh3E3Zr/A6yIEQDn+1bxBThwMFlYK68h6pYPXkOalPeGqRlz05Db7euCeo3b15Xq21cNmPyUjCmCBNcog5kZGFmcUaFprCIgUExAkCukCsa9nnseE1UiY/xOtID0KK8lesB2IH1E2VmtMjbx/wyqaNMgXxC9qPWm7IP6OSmquV+UjHkH9z+84cwzz5TIOoswMnedO3eueQ0EixQjHAXAPUhlMmYYsI3u3bvLuIQ+ldeQ2csHr6EgyS0CJ2PoP4hmoc9gwOHE4glkCBMgdJd/IaH9KGSn5ovzf5AxfuYfDPManmfADSsy5rYht5vXBfUaL68LI6WoZEwRNliYMQDyyBfTk3YkrQDp4ro2EgX+5kFUjGsTkTzXKf+PNovxhpRjqaKBqMG+c28qFH6gZMwfkCuMHDlSAjuDBg0SC53evXvLeEPkHbB4M318QSnuYf6v3GuIfrPoMoa6kZMxKqBgoPgLIfhH8EqUzDBHdF9BwrhvsxrOd+KuFuhY+D75B5K/0aqxqvbyuqBe4+V1gMgiffCGDRsW2HEhIofDOKlkhSJqQLS41xnomECIirEgg4xx/zOw8hxkzEww/D8kjgdVmnEDksiCNcjxSpEdsODg2gny+jFBDbPtJGO11VYraufEeMAcabReRLVY5JFmNGSMAkQeUSNQMgYDhG0itEXMBihRZ9IeMmTIKmE8A7QfpBzyYf42zb9LvYbnTVUSaU83DNQL7r333lWeQ+hrKjm9vC6o13h5HWlMjgmTUFBgsmP1ZG5ehSJKcN1xz0No+J2JA+Jlrkd+5znGI6JPDMrcA+jPbAFFBxQlFN6vCoUbMPdBOIK8ftBWAu6tpF+XderUEfuZQpCVozI6H+i7MH4uBTgGmnc//IQIvFtOEigZM0y9MMxZSWzIQbv44ovlvaZUHHE+aQVT5cBr0Hzk52B5Dc+bElPK5oM0NyUCRWuWQrAfhZGqSq8L6jVeXgdg/FwUxSpfFYokAJKFqB/ygsifqKyRQPDTRMcYZ/iJXAENGIMgxT1MWtwDphiAcYUioTjJGVYd6Gux3FAovOL222+Xaz/I64csiiEySb8uVysho6GSEi1qYcCCLF4pwDGuvfZaCXZwbAz3gGgZYsdrCgms4Sdu4Zm5oN3Ibz2CuJbIF8JaBjpKzql4ZCDkCyKSu/vuu6Uy0uCiiy4Srw+eB23btnWuvPJKKWFHC0XYkOrJfNF/nz59ZNtUKxB1mzx5spASLkpSdAzEQUfFOJB4ERU25C48wG5eF9RrvLwOcFxMtZlCkQQQzcLXh2guIlrTa5KFGqm9Aw88UBqBU0lpPO8YGHkffyPcZzA2AzJ/Q74gamyP7T788MMyZqEhY2WMkD/KxvfsG4RRO1ko/IAxHTIW5PVjgijcT2m9Li+44AJZBJGmbNmypUS84BA8DHBoILtHcANguwXpomUbcy76sEsuuUTkV6bwB0sL3od2m+JFqrVp60YnkdDIGATItCYBpsKRfCsVCJAkyFa7du0k3Akhg1WyswYMogy2+RoQykf5cgy0COguu+yyGlsLwAHEW4yDQCqUwZNKSty3Tal4GHDbkNvN64J6jZfXGTKmUNgMVp2QJAS2jA0I8Y0IFl8y7nPIEwMk6RTueeNCTvQLomVsXFiUGSLG30TA0DlCvFjw8VruGxaSrJJNeoZUA8JdPitsewvIpU1pU0WyEEaVvEnzp7nvcIMGDYRowVGuuuoqKRxETw1fKZQQGDCGzJgxQ6onCXhw38J3eL8B24F4QfYIJLFoHDt2rGtbC7BaLgUzNSQO35CgTfDSANzKubBuvvnmuHdFoagBJApCZFKPpEiIbCFLgDSxEjXRKp6ndJxiIFzHIWfc6xAsNCBYWzAxQbLYLpEwUpWQMhaEDIwIdV944QUheSxc8Eo02y4WheP/KHtnoYPutVjDb7/gM9GoUE7PfikUXoH+Ggd5ukUEBUgJZAJzdQIfimiRCgrMQIxYVy0XVgUTU9IrYxTJB9cgxAuJA6QHDRfPcX0at3tSiYV9VLGyoPqRaDokDQJDX0mIGPoPtkckHdKFlxiEDCKFtoP3EMXn9YwRVEgRWaNn5YIFC8REGmKX72+GUSz7yYP9xOgRp27SoOwnKU2IYjVdLSCERB9MY3OFwitYdJTTOfmBaa8UdPs8RYbImNF6oBdRF/6VQUjVeDEpFFGmUYgyEXEiHYjGC6IDCcHmBpIE+Sr05slPWyJyh4xBhDp27CiRMvpZ4myNWz6fAbEhrYidDlEy/obQ8R4+j6gbvTF5HzIKouimeTj2O0TLSPcbMsb4wX7xAETdTASPCBr7Q1SLqATkkNeR2vSS2sGSg9ezDYXCD0x6PuhtgqC3q8gQGTMXD9ExJWMrg9W3aaSuUIQJ/OwgLui+IEEM7kSriVKRjoM00a+2nNaFa5VoFNpUyBbiWWMYnU/E0H5QKUzKkc+lxxyiYyLjRAwggMcee6zoQ3i/IWQ0G4eQIbLFPRutKu3acPUnpV8YreJvPosH+0NEz2jbeD+mkXwfiCCtljCp5fdy3xGCR2QtbuNZRXJBFCvoCJZGxuJFKsiYuXggY+UafmYRDPikboiORd3yRZFuoNuCmJiUHqSIa83ovkjp8XBTpQjRgdjgFYh1Bf3fmjdvLqSF/8snYvSYpI8twlq0M3gY8nozmRDlev3114UcIcSncnLgwIHyf/mEDOIECXvuueckQkal1OGHHy4krliky5AuHhA8U51JqhTyR19e9p8FITo1tg0BJX2aD1KqRAdVUqHwCxY6YZExjYzFg1SQMTPYaa+34seGyYybV8mYohqg8YJ0QD6IfKHJQuyOUB49FVEqCI7XiA9RJlKSH330kZAnKpWMmWIhEaPLBESL9+ArSCqUaBrpQlKVANE9UTIiVwj1qWqi1JwoWyEh43VslyputGmQMjRlzZo1E4JXDhA2CB8PQ04hphBUUppozajC4ngQEURrxgMyRqRNobApMmbSlBoZiwepIGMmtZA1MuamUThVYEZboxoVhRdw3eCpY1KP6L64x4gQUWlIFMmk5fyACkpIGL6CRMDwGzS9KEsRMQghaUxE+xAa3k+EjEicIWMsQEhbou+iMIBtUolJWbrx4ssnZEZMj+8Q9xF6MqrUeM8ZZ5wh39UN+A75/TQhXflpW74naVsiD+w7ZBbSqREyhReQ5eA+CDqCpZGxeKFkLKFw2yiclBGl9GbVo1BUIkj5BAKxOQQC8oPFA5EdiE81XkRMJFQ4Qp6IrGHmDNnK32YxIgYwkf7yyy/F8wdSSJqQlF+hRgvdGGbUbAevH74TvoQYN5YiZOZ9Xbt2Fe8x9hEjR8gVqVGvkxQLIYoFeLAfn376qewHujO+F4aTLJBIZ1IEwHEtTGkqFFFFsDQyFi9SQcZMWiQrZIyIWD4RA/xNVVhhhIzB3kTGFIpCkOIj7WhSjxAdyBL3FNoriAIELIjCGK5DUoxEttCXkVpENF9IckoRMYTv+I2xP5AmrmmiS5C5QpA6hOyRxiT1CSEiVWlSoeUIGcSOtmKQMGOjwULnqKOOkipQP2abvAcdGQ/AAoljDUGjWMFozYjC0a4JYsbx14IkRVRCe42MxYvUVVNmAayuSz2vZExRDpAASJcxOYUMGEsYiABRJETnQRfCQILQUKE5w84C8gMpKkQpIgZISUIezXNc7xBH9rcYGUMjSWqQz4FELVy4UGwpTH/bcoQM8H68yEw6FDJHNIsombG+8AtSq6QojTaOc0BKmPOBFxrHirQnETMsPSBnfA9ta6YIizRpZCxeKBlLINCIuX2eCZY0E+kmRfYAucGzy7T/gRSZThUQASJGkBmukzDa/zBxIIwnZUhVJRqswmb2bogYxHHRokWiATORcFKpFA8YQpMPyCXpS0gnIn6E+o0bN5Z+cUSizD5UImRmQUO7FKKHkLJ77rlHInNEokv5pHkFxI9tGiNPJkaIGZE/ChHQlTFJEjWDaELOsAxRvVn2QJobBHXtGWhkLF6kgowZN+ystEMi+oVGrLBReDERP5MVk6CSseyAc53faoj0HhExo0+CfDGhh9mDjogVlYkQKxZJ9JbFMqKUzUU5Isb/ESmCYGFlkU/QqOIsBSoY0ZhhQcF3rV+/vthn0EMO/ZvZFzeEDHDMevToIWlL0oq0j6EKk8rLoNOJTIgsrniwmKIYAHK2ePFi+XzIJTq+fL2Z+pZlA1wHwG/hTCloZCxepIqMZSUy5qVRuHHhN6seRfpAisu0GoJ8mVZDDKpEWtA6QcCqaeHjBcZMlf3g2kQXVi7tWY6IAcT0WEW0atWqhiTRzBeCAskrBdJ7kDGiY/idEfkjSobJK9E6fMwM3BIytsFrIXZo37DBIGIH0WRfwoguEv2CSPNAxwa5JNrJpIwujvQpZJA0JpEzyBnnXa1s0gmipRR6BLkAYO40bfOUjMWDVJAxoj9ZI2MAAlaOhOVXmyoZSw8gL5ATYzaKSB1CRrSEdCPpOCZtIidRAs0TESzID5WE9JGEGJRDJSLG94JsEAXI9/1iEQIpybfCKASEBAIKOYSMAQgL3QAgMVhz5JNEt4QMsF20Y9x/fGfsMDB9ZYFkfMfCgmkpxQOgo2OChpxBgjkuLMCM3oyfYaWhFdGDc23OfdCpT6LFGmGNB6kgY4haIWRZI2NuwcSoZCzZIBJi2vBAxExBBroRBOamwjCOCRd5gGlhRBSnadOmQmwq7UslIgaoZsRugybf+eA4QKTK6VsYFyBfENZ8YP5Kuu+hhx5yzj333JX+zwshM8e/Q4cOzltvvSVECINZyA/tl6LqBkKExDQ7J6XJvQ4xwxeOogXOAwsyomamGIAom+rNkkvGgk5RGjKmvnfxIRVkDDC4KBkrPWGUqsBU2An0G6bVEKlHUnLovpjgmVCJ9DC5umk1FBbYHyJMpAIhAJDCk046yVX6xA0Rw/6C7aPvyjde5b0cEzcRKAgKxAvCaNK0pGGIiiHG5/gWRu+8EjIAGeZ8oJOjvdINN9wgxRFUY0Z5jphIiWzwQE/GseI4Qs6IEGINwv4wJvD/EDMeRNIUyQDnEj1kEooCFBkkY6wUNPpTHExklOSzatZVj51Ar0G0BwIG0SDlx3MQCETqhx12mOi+bKl0gtxDZpgYIDykJHG9dwM3RAyQ/oPw5Wu7ABWhRAYhQJWAZg19GBYXDRs2rHme40mFJ9GxCy+8cJUonh9CRiSOnpWkQefMmSPFAgsWLBCdGtWbcUQt+UzOizk3XFNMvJw3jj/RPLIKRFWNvxm/k/JW2BsZM9dnUFAyFj9SRcZMlYliZZCqQVcCWVU9gB2AkKD1gnyRRiOlxDliQkcPYkT3tg2OCOchSbQaghiSoiPC4hZuiRhkj4gW+rdCAsoxA5CHSsD+gRTdkiVLViJjkA1E9xMnThStF5GyQvghZCbyhnaMz+NYTZ06VSJmPGesK+IC3zvffJZsgrHQQPfG+SFKBok1FhqMrao3swMsqMNMU9o23mQJqSFjTGAM3opVQeQCUS83nJKx+ECqEVJgWg2RimRwJWqBOB3yxbmyceKDKBrTUyZsLCZwvveyr26JGNEwolmQMEhpISCvkCw36T/2j5ROsTQ9xq2kfIliEbkqll71S8gAhAdNGtWWfMbIkSMlmsf3tuU+JCpGmpYH1yI2KJAzjjGVonxXUuP5FhpoUBXx2daQcg+ajBGJB0rG4kNqyBgXJ87VWYObZuFMOpAxVlRMPopowKBpdF94YqHdgWgQqYF0MTGj/YpT9+WGQDEpGyE9lg5UEXq1yXBLxMw1TdTw7LPPXoXs0cuS/8Pfyy0gEHwHonqFFaakECFJRIWIXBVDNYSM/eeYca7R1hGFwx+QSByENkyvN69AwoBlAg/2l2uVY8a4QbqVxunYZTDWGr0Z13FUlikKR8YSwLGvdl4oJeBXxAN7RoIqwQDBIJ0mXVSlG8pts3DjzG9WP4pwgB4nv9UQkxjkgegDURLSVkS/ktIMmu9Amo3qTXSHNNn2syL3QsQgsJAWolnFNGFMRthdFGuBVApc/6TniFDRFikfTD4QO4TtuPuX0r1VQ8gAnw/54rPQaSHyp/oUPRxkzUaQMidSYqIlXMumZROmt0QvIWKcK44xkTMkETYRzLTBRHjLLardzgv50DRl/EjNXcMkwUBOGJfIQ9qJlpdm4QyqpBrMDacIBpAMJqf8VkNocDjeXI9EP/DBCjqlEDaIgDHRQl4gkq1bt/ZNGLwQMYBFBvfweeedV/T/8VZjsveivSIlSFqT81RIxgAkCYE/fSu7detWcjvVEjLAfYh5LcScAojJkycLMaNNlO3XCRFciklM1wPS7Fz/LIJJv7MQRi9n9GaQMyb3tCyObQDXMAuGUrYpXuaFfCgZix+pIWOm6TADQ9xkLAqi5aVZOGCg//LLL6v6XgpHNDVG90XE6NtvvxXCQfoL4kU0h0koidEBInsmlUYUhMpABPR+v4tXIsbETjoR/VapCBXROvShXnV1RG+IRLFPhe8luoM2bfr06eIXVq5KMwhCBkjvde3atSYFfPPNNwvhJVKWFJsJNH2QLh4QMUg8UTMiw1SSEg3Ecii/n2bcY3PSYeaVcv9f6nklY3YjeTNGCRhHYsiYm5L3sBAV0fLSLBwwEKL7UHgXrhONMa2GILSQFqItTPCQFa430wUiiYCgEAUjKsX3Q2N4yimnVCUy90rEAJEigGlsMVANzKTB9rwCMkAqknMIESoE9xXE6OGHHxY9VDmyFxQh4zPwZoPEm+IIyCDRO6/FEXGD6BfCfh6kkNGbmZZNkGDSmhRIkO42ejPun6B7eqYdzAHlUvRe5wUzxrHIBErG4kNqyBiDAINXmPYWlSJeURItL83CAatTBnzSaEkmDmGDSYQJG/JFFAZyT5SIFA26L9zbGQzTUlHG90O8TqSPVF737t2rtl/wQ8QwJOUeKGca66YFUikQrUR8DtkpRsZILR9//PHOXXfdJcShEuELipABvi/f21hhQIoxu6WnpxfbEJtgUvUm9YrODw0lD74fCxpTycl3JAqr6czyIPrIPVCq0MTPvFDYCikpetY0IjVkjJufyYTJJS6xfNREy0uzcAgEAyDHJ+zeeUkCxIGKMXyzjO4L7aERd+OizrFLW28/okzYLdCEm3QSE38QxqR+iBjXJfuCDqZc42/E+6Tw3JrL5gMixjmEZJcC9xDVraQNIUaVDHaDJGSAVDdFEtzPaPbuvPNOiR6hJ/PznW0Cx5/vYpzjTcsmUv1YEkGQjRZNURxErYlglYtyeZ0XCm0tlBDHh9SQMZOqLBYZi0osHwfRctssnImWSQ+ykXUyxkTAcTWthtB9EREj2sUqnbQjxzyJuq9K4BrAgJQHLvZBtuzxQ8QA+8KEgIt/KTJoWiBVE7Vjwic6bCKdxYDVBYTtkUcecdq0aVNxm0ETMmAqE02rqZtuuslTq6kkAKE/0XqiPUSgNT1WGcbsuBIZ8zIvAKLiIOgWSwpvSNVsw8q3MDIWpVg+LqLlBkxiRA9ZiWYNTL4QL9NqiLA86S6iLBwX9DkQMFtaDYUF08wa4gMhJ+ISVDNrv0QMYsx7KNUv7BGZD6KXkGbOlV/wnSFjFGCUSnUiOIegQoL4LKNFjZqQca/SsonWSqYJ++uvvy5pcjdN2JMCFs+cFyJnivLguiVyVe4+8QMTLQ56u4oMkzEu1PzIWBxi+TiIlttjg36DyFjaATHge5pWQxB0NCtMkEyukAUm46SnftwCITW6MK5JyBe2EUFGR/0SMQA5JC1cTgdjJiKil9UU55AGg4CTFiunO0NAv3DhQulb2atXL1fbDoOQmUpPTHaNnuzRRx+VQgTSykmfPDmfVGDSlkpRGfRSZdEStObXGMkm/XpKOtZMWwSEydcgLrF81ETLLdA+UTWXRhA54bwaywnTaoj0B0abfHeiYGmJKLgBJIeoClWCgDQXmqwgj0E1RAzCTIUvRKZShI7zShq5mugl3xtCZtIypUCUBkIGGWMCpFVVnITM6Bc7duwohQ4Q2DFjxsjEDIkNKroZNVgkoVd002NU4ch97KXzhFcylnX5StxIFRlDfMtAxYqLMH9cYnlbge4EcTI9EpNeDQjRMH5faE74TqQemZhY4RFBYZC3udVQWIAgERWmKhADVQbwZs2aBa43qoaI8V4iPUzGVDGWA/czxC2IykIsFTB4hayXI3YcM1KDM2bMECLvllSFScgAtiOMP+jsOO5DhgyRtCrHMGnXOgtndEoUXimcivcACwMiokFDI2N2IFVkjAln6NChkpYhJWezhisMVCpUwNjy6quvlsrBclVrtgrPGbyN5QQl8qY8nmgH34dJE2FwlsHxwa/r448/lkhgp06dQhFHV0PEAGlAzie6tUokAp0f5DsI/0BTmAEhg8SUi6Ih5h87dqxEFylycIuwCRkElnv5gAMOkCpU7nsijEQ+KdRJAlg4Ec0u1ghesSoYs7kHgo6MUcTDWAqUjMWLVJExBLdoLFhFG3+btBCtSnBjvWFuZKJJtpMxJnvSGKbPI+cUc0Iinui+ONeQL21s+/9BE3JIGCJ9Ij5YJBBFCQPVEjFINAQHkuiGPBiBcRBN7tEJEhVmcitHxgBRG7RltCvifvFighs2IQPsD2TW6Mlo54RxbLt27ax3ujcpSi89RrMMLGgABDxImJQ9/mJJz5YkHakiY0zU5L0R6DJApYVoVYJb6w2ODxWntlZUkmo0ui+iIVTaoftiAkW3A7kgzZQl3VclUJhA6plrgGgD5Ai9U1jHqFoiBqhUJCrSo0cPV6+HjEO6mbyDABFDSKsbEBHjmpw2bZpz9tlne/qcKAiZaQVHUcaUKVOkUpZoGdFi7hlbU5ecU+5lqlcV7vRizG1Bk2zVi9mDVJExQPQLkWuW4KUfGYTG7UQUNgi7E/liQIAgYmqINoIVP55QaADRCaXFWyloUsRq2WgA9913X+lrGKY9RxBEjOo5el9yHbox+SQaShSlUhTLC0jHoAfD4qRSCpfJD1JFJM+Pz1lUhIzIMSn7wYMHy/WAdhavNCJPRBRtWsAQGeVep5WYwg7xvqYo40cqyVjWejB6sd4gYkhkgkkx6iosBmHTagi9EFoFKmAhW6zuSVkxeWhLjvLgGGJVAYElHY/9AhHPMBEEEQM4y3PO6X3pBlwrvD7IdBbkhCgbujE3ejpS4nh8kQbs27evZ2ITNiHjvmLM4/4xqWmiYkTIEPpzDJnIbUnpo2ekYjWsNHrawAKV84vFSdBQMmYPUknGJkyY4GQJRL8gWehFKqVmmViuvfZa0cyYSSLMCZzoAxG6/FZDTGaQCEwtmWT53aaVu62gFQpkBvE7BLZVq1aubRdsIGJcA1ircA261V9BJEi1BUk2iR5CTKjGdROdgbg1adJE0oCvvPKKL8lDmIQMoohWNr/BOoUsyBQYF/AmIxqJJgjCFre5MdFwKp2TaskRNRg/EdqHERlTw1d7kEoyRsSAkn4vgtskA71QPhEzz/EonDiwt4D4cIOHQcYgDKbVEOeBv5nM0YawEubBjZ/GVkNhgcgHInKiHKTtDj/8cDHKjOIYBkXEjJUFqbRKTbgLo4Bh9AUl3Ui7IfbLzbYR8kPE+A644vvRYoVByNCIob+CmBcjNzS379KlixB4oqkUeaDV4vsEpcHzAsZlHmnW8AYN7n30vozdQUMjY/YgdTOi8SJCFxWkziQtmjFuam68cg2TvQrI2ZaxnEALAnmACKMJIvKA9ouVu8IbIAroH0k3YdfCtQ0ZiiqNGxQRA2i0iIzS79EtAYHIcz3RAihokKqE3BKtczMRGauLUaNGCaHxmzKCkJF2IuV5zz33OOecc45vogkxx42fCjuizOW6b9SvX1/uQ84l+jf809AZQsyibA7NmERBThA2JVkBulAimkHb9pD+Z7EDlIzFj9SRMVaHhOMr+QhlVTMGGLhxFy/XMLkUmEiIeBnLCcTVbIdVNqtw0jkM8lomXR1o60Ukg8pSoopdu3aVooaoECQRgzQwoXB9cG24BWlEiH0Y9geQEFK9jBNuJyIidETFiKgRnfRzjXOvYDgLgYJoknbGsNUrIaPKmNTj5ptv7rRo0cLV+7nXOZd8Bz7X+BIy0UfRGsyMHfihxRGVSyI4z5g3Q9qDBq4DnBOKVMLWnCoySMYAg3eWKiq9tmvCHPfuu++WiciNbw1RGaP7YjBFvwDQ3aBJ4XgjwFfdV/VgoqYSDrdtjidCd5NaTiIRAzTnpsm3V2sIiCgR1jCIvVk8mDSNWxClYxIjstW5c2fPpJRjQZT4qquukntp2LBhvggZ+8C10q1bN89yDBasrVu3lvGBCBkFPdzLjAVhRrAZPzjuYaTb0grGXVLRYZjjMsYAdKdRRkcVGSJjDCoQjSzBS7smo9lBTF2MjDFpUOnIgwmDY4mHFZMiwlvSHaR5bPUwSiJYoZoWN0yynD/SYlEf46CJGH5i6BkZ8I0Rs9v94NrDeDUsEGkkBewlQoz4/YgjjqhpvF4q+lwIyOizzz4r9xCeYJAfE43wSsiYnJFhYGXi9vNLfX90a1ikoIXjO7E9dJ3IGYKO8BDp5DpQbzH3ICrGuSiXhg6CjCniRyrJGFUnVD5lDW7NbdHsYPJHqtEQAaoeIV/8pOKR0nMiB2yPvxGME/1SBA8qW5mMOf6kz4h2xJHmDZqIASZ5tgtx8AIIBwQmTC8qFhTopyA2XiYkJkasBjCC7d+/f0UCBamEkEJ02rdvv9K5NaJ+t4QMok56kkUUkoBqwWcZSwwiZKSTiWBxPNB8BhUxYVyB9IZdwZ1GMhaGXgwYCyglY3YgtWSMiY0WMboKKw40L/fff79MADjdkz7gWJF2hKixakZLAFEjXYQvmZKxYEH6F7JCxIBjTR/JaiIdthExIkek0yDyXtNfvJd9ClPoTWSKSBf76GVCIlJBuhIBPtFMImXFwP4TfYDccL8RuS4WgXNLyIhOE11jkUT1ZJDRK6pc6TbA2Mk1SbSM6xIiEMTCgCg844oKxe3Qi7FtExlDQ6iIH6kkY6TSGGTRjTVq1MjJGio1DAf0tKO8npVv27ZtZZCsU6fOKithBnyq+EhVehFfK0qDSCPaIawSGBSZBJms49LchUHEIPFUHaJnwlfMKygOQZwOSQgLHG8sLvgsryBVz/1FZA0NVGGXCCJYHE+ObcuWLeX8losyVSJkRrBPVJu+o7Vq1XLCAEJ+tk/xE/5kXKemcMFvJwwWHSz46Jmp2iQ79GJUUVKtzCKca1kRP1KpuGYQY6WbJRF/vnCfgRSxND/5u1SqhYmSwZ0myDiRlxoomXTwBiLNoPAPJmYq8YYPHy4RFbyeBg4cKAuGNBExwPekIpTtef1uVFBigxFFFIXPYFIiJeoVVAUCRPCFEx2EiogS3RGInLkhIRAyHP4hh7yfc2OIGMfTEBov2js/YF+553v37i2fh4YUYkY6F5LtFXiccZx10vcGiHBYejGToiQ9rdpfO5BKMgYIt6dRxE/Ui/QIP902DC/2WiZIUi0MspVAegENGas0hT/gwzZy5EjRGZGSZNLFkiBO/7WwiBiRP/RHpLqN758XQGbYRhReVJAOJjw/YwWRZKJi9A1EE0U0jAmUFB8LnPPPP99V/81KhIwIKjYYRLCjbCHEcWF/qNQm1Uy6FZE/djZuwX5DdtH+aVTMGxibiaiGoRdT8b59SDUZS1tkrFLUq5z5azFgXMnEQa+4SqXw6MUQIiu8gabNkyZNcsaPHy+TEpGGHj16uOqJmEQiBrDmgJiQCvdLXI05cdggeoVWEn2UH3DsiDCzQCItC7nG8R7rCL8p1nxCNnnyZNG/sr24tD2kRBkr+vXrJ9EtihGefPJJuZ7dRsXU5NUbsA8iBR5GP0qgejH7kGoyhmiUEH9Wol5ezV/RKpGmfOSRRyruGysoVv9+0hRZBJ0JICUjRoyQ9M7RRx8tEQZSk3EjTCIGcYDgEzFC8+UHRGBIxUXVMgv7jEoLklKAfHFumTxZIF1wwQUSvao2CmQIGSlbtkthTdzgnJx77rlCNonWYAtC1K6UfAFbE9K/XGPqQegNHFvGEK9VyG6hkTH7kNo7hPQIWgdj35CFqJcxfy3cbikRPxEv9CxuyBgTDGJPLymKLAKigx7j5ptvFpsAUrzowrAhsKEfZ5hEDFCJBxHJb1rtBaQnIXTYTkQFIjcrVqzwfW1zf0E+0VUGqb+BkA0dOlSIT1Dty6oF55axANJ55plnSnQMzZypfi2c8LFqCaODQtrBmMwcFsZ9gMuAyXLQJkthB1JLxoyIn1Jw2xFk1AvzV8S+OOzz8/rrry/72YTBSTmQVqqkj/FbeZYVIDofO3asc99998mkTDqStCSVvTYgbCKG7grSQMTVLylh8USkJcoJ3BgY+5U1QFCwgMAiw0QcggJ9SNGfQXZsIWSAhRlVsiz++IlXHkTc6EohthQccC1oVMwbyD5AxsJKUb7++uvyE6KMflVhB1J9l5CqpOO97SnIoKNePEd5uhsDWMLgTH6k1CoBckuZOn5Hiv+BiAiebaNHj5ZULsL8Pn36WOXLFjYRI51GagUNlpvrrhRoT4TWauutt3aiAqlGUnDVRNFZrGALgcCd9FIWCBlAL4c2kEgZkztVwhRvkKrGCsdPAUfWgSaPwoewUpRq9monUk3GSB3YQMYqpSDDinq5gRHXuk1VEkHQVOX/CAjVc6QkiYiQVuLcsgiwCWETMcAkDBHF2LSaSAiRV0xNowaVn6RHq1loGLPpMKLxNhMywMKDzhFoyoia8aCdl1ZQegdjMUUlYXUrwK8OaI9QuxC/iCVEoIdCDAx5CLMrfTmT1VIpSCYt81ovjb7dtjzyAsLhpNcIj5dz9UaQzeqXCZOUZZZBSo5IEASE8875ZMK0DVEQMSKDbJ/jwPVRTeUpepY4xOpo+4joEJnDNNpv1SHbgaDTrijo7h+GkJnJlM+yCRAvoi1UXLJQsSU9nzRMnz7dadasWeD9QQEFbSZAUapzhCIepDoyRpUUpCHM6FhQdhNhRL28kDEqn4huVAKCT0LoDLZZBJGPcePGiV0F5JXKMtoYZZWIAVLcCOBPO+20qrbDPcExjUPwzThBupLK12rAvnMssLkIA7ZHyACehErE/IFUOdrFsFKUbJ/xm3OEzlFhD1JNxgCtJMIiY0HbTXjRegUJPo/JaOLEia5SldzIfq0Akgqq/DBsxbiVSiQGS3yXqokEpYGIUbRAihaCQHVuNSAqhaA4DmJLWo1UG/tQDaiYZcEyb968qreVZEKm8AfGYKpnTXeHoGHmQqLPjOMKe6BkzCLhfVgo9x0AGh/cvakCrCQ+RqBNeiQrVZVEaiA09AxEWItJ4qBBg0TPYWuVWFREjM+hgg4dIQ7t1W4L532i2XGBzyZCjCVOtduhjyOWD2H58ikhSx9IIULGKIgIqycrYwLA2V9hF+ycTQImY+h7li1blirhfdC9Ktu3by8GjUyulUCVFNqetPeqZKKjmTqTKno5ImGk4mzu5RYVETMl8mgy8RSr9pig68ReJc7+haY1UrWdO4zVBSSJCFlYUEKWLrDY4zwyFocF1YvZi9STMVap9Icrpoeq1vE+LLuJoOClVyUVlUR9JkyY4EoXw8otrdExoiMQ5zvvvFPSkx07dhRtmF9H+TQSMSKotGupW7duINWjaFmIDMTZNofvglUDnlnVAvE+26O/JNdQWFBClh4QFcPShQBCWHpXUucsFsKq1FT4R+rJWKlUZRqE95XgtVclBqVEgYiQlQO6HqJjaRv8SU/hE3XLLbfId6OROmTbb3VdWokYoPKQ6ChVpEGACBs+XXFGHUk7B2lsTEUlvnxz5851woQSsuSDgij6kLZp0yaUKsr8FCVjt40FR1lHJslYWoT3lVDqO5RKLzIQ8H8PPvhgxW3jUQN5YUJOOiAypAiGDx8u1wmpMloYcd3YqguLk4hhQfHSSy9Jn80gjG2ZiCgIscGqgYIMrDr4jtWC6DGmp7TFwgIlTCghSzaIMlPlGGaKUvVidsP+mSYAMKnS0NakC5IivK8Wxb4DOO+884pqxwiRM5m7SVVC9Hh9qWOZFBCRGTVqlDN16lQpx+/du7fTqlUrsTlIAqImYgDbBgjUKaecEtg5gNhTqRs3iIJSWYnONAhA7BHxE3ElDRsmlJAlF4y5pOjD7BWpejG7kQkyhm4M01cT+UqC8D4o8B0wdC1EKe0YKzNSUFgWlAMRI8gewuskeo5R0HHvvffKseF3qkl79uwpbXGSgjiI2HvvvScCd/oRBuUlBXnAEgIX/LhBCp506ZIlSwLZHikntJjYfwS1zXJQQpY8ULiCbQ5jb1gdC4j2mp6UGhmzE5kgY4WpStuF935QrhihlA6nWFQLDRDpFcTrbjQxvJYJOimAOGJSOmLEiBpSwbkn5ZYkxEHEjJUFUcOjjz46sO1iaQEJtiUljG6MtCnfNwjQ3gnvKPSYUfR1VUKWLEyZMkWMglkQhgVkBVzPLHjC7Eaj8A87Rr8IwORBxCdNUa+gLTgA1WRox8aMGVPRI4koAqt+UwlnMxiIaJCLLox2NQxK6MIQ6ROVSRLiIGKAVD8khY4NQR0zogJLly4teY3GAbRraCeD6sFqrC4oDGCsiQJKyJIDZBL08SzXYq6SV2QlmECERsXsRWbI2PHHHy8XZH6lYFKiXuUQtAUHoOEvaUo3nmOUSLPaZ0K1FXwX0pGY2kIiSEdy3pPYsiUuIsbKnapABPtBRhEh8kQrbYpMQsaIJgelGzPkCIsdrC6WL18e2HYrfaYSMrsxf/588aLr2rVr1V6R5UA2AIRlm6GoHpkhY3j+EMV59NFHnaSh2i4AXiOBrOJJQY4ePdqVHo8KtMWLFzu2gUmPylC+B2QRZ+u+ffsGUgGYJSIGnnzySVnIBGVlYYDvEWnPLbfc0rEFuOeTyoEoBgnE2d99951UzkUFJWR2g7GJNHap9kdevCJLgSpNYz58wgknVLnHirCQGTIGSK8glMxqCtJLJJDoGBVglTyXSMEw2GMFQMrJBhBpIYpDSvLVV1+V40ZKMsmNceMkYnhlMZizmGFREyTQixExsg0sMiDwQWq86AVIxSjnMKgUqBsoIbMTLG4mTZok1e2l0v5evSJLRcWQkbAYoAJeYScyRcZo7kzqjZRLVlOQbjUIiEnRj9EYuxIwEcSd3oboGKJ8Whhhv8DA079/f6dZs2ZWtzCymYgB7hn2geMYNMmDxOPFZRuM51nQ1i277babLGCI0Eeps1RCZh8okqKTBd09SqGUJ6QXjaWRm2hUzG5kioxBGihbJ+WSBITVBcCNBqFWrVpOp06dRGtVibxCdBCGfvjhh1U3WfYLohjjx4+XliJEMzp37iz7X7t2bSfJiJuI0RoIS4YmTZoE7r1GGpBzRXst24CYmu/71ltvBbpdKkZpH4UeLUhNmhsoIbPrvmbR2KJFi5J2OozLRM2KPe9W58znoFMEFAko7EWmyJiJjmHwmQSEkYL0okHo0aNHjR+XGyE/1ZVBT16VgJHv9OnTJYJHSpWm1TT03mWXXZykI24iRjUtAznnNYwqLCxRIMs2FlLgD4a2MAzbFiZfvjfRsVKRj7CghMwOcF9x/M8//3zX4zRgceyl8h+ZBr12sVbhvCvsRSbJGJN3JdsGGxBGFwAvGgQIDcJStFeVUipE0ho1aiRu6oTewwbn78UXX3SGDRsmHjroIS666CLnsMMOs8avKslEDHB8aS7MZwd9TPl+RFIp/rAV2J+EpYVEv4hNyAsvvOBEDSVk8YMxFQ1mqYbdpcbpYnKLcpITk6Iksk1nCYW9SP6s5RGU9rIajWMQ9AM/fmjlbk4v0TaA5mrhwoWiwaoEBnh0ZmFHxxiobrvtNiHVm222mUTCqPKjCi4NsIGIQUCwgoEshdEoHSL2448/SrsgW4GWjQhZGNczkQrI3pw5c1ay24kKSsjiA36HRMYYW0s57rsdpytJTsy4rXox+5E5MsbqgAszSVWVXqogK92cXqNtONSzneuuu67iZ5NuIjpGaieM9AtNyenhdtdddwlZOOecc8SfBx1gWmADEQPYL2ANgh1IGDAEIAyiFxQoSoG0oJsLS8MKITUeUFFDCVk8YEHNIqdly5YlX+NmnK4kOSGqa0yGlYzZj8yRsXzdmO2u8V7hVg/mJdrGyo30H1ESCEIlMLiz6g8ymkBRADYbtDAyYnIGJpujKkkmYp9++qloTRj4iTyGAdLZderUsbrKldQsQn7sN8JaGGJ2yz0Y1mdUghKyaEHRCvf4gAEDKnaxqDROV5KcsKBiTKEBuY32MYqVkUkyhsgbvQbptzTBix7MS7QNSwP8kdxExyBiRxxxhJh5VhsdYyChBc/NN98sZJC0ESSM1lZp0IXZSMRM/0nSc6WMKKsFmkJ8trB5sB1EMIheYZwZBtBlMinTtzKoXpheoYQsOrA4ZhHSoUMHV68vN05XSmUavZhWUSYD6ZrRXIJKJoTeSamqdAuvejC3gPhgmkp06vXXX6/4eo4tKctq0jtURuJO/dBDD4nFQO/evZ3WrVtbWXmXFiJmfNog0rQPCytqxfYhZKzYbQdpVMjSokWLQtk+kecGDRrIvYKWKC4oIQsfLECQWFxwwQWB6FvLpTLJ+qheLFnIJBkDZ555ZqJ0Y3FVXxpAhHAld1NAgIgfKwRC8l6jY7SLmTJlipRwoxHjc3v16lXSiyfpsImI0bkAQTmpyYYNG4b2OUz2pOjKNUa2BUR6adVEejwsoHnkM4hkxOXTB5SQhYubbrpJqs7pbhIUSqUyX3vtNfFeZCFLpkJhPzJLxhBPEgVAu5Im+Km+dAOiA+gcaLbtZqCGjDHwuJ3EIAJoHEhJEoXg/UTjsKxIK2wiYoBUMK74VKaGmQZGH0Xvx6SkmlmEoKMLM42IzcHnn3/uPPvss06cUEIWDlhYEunv2bOnLFaDRLFUJuMKOO6446QNl8J+JGM0DGk1yoWatuiYVz2YF3Ts2FEqzCB8lYBRKOlKBvVyvmNMcKQ+IWGQMaIlRPcIrVcSuCYZthExIpLYvaDLw3IhLHz//fdCOqpNnUfdGolOAZX6tFYDFi58Dt1BMOmME0rIggfFR9zzffr0Cf2zSFGyaAatWrUK/fMUwSCzZAy0b9/elbt8VlCpX+V6660n0THaDpGCrASE9gzspXRmaCjuuOMOZ/LkyaKd6d69u1hyBL1ytA22ETGA7xEpsrD3hQmeKChVhEkBInuiC0TSwwRFMixc3Hj6hQ0lZMGB4g9SlKQny9nwVBp/3YLxlnOGLi3ofrKK8JBpMnbKKadIc2s3ovS0w02/SkCYHf3WJZdcUnGbiO2JPmLwSeTFgAkH1/wxY8YIITvttNOcvn37JkJDlEYiRtqQymIimUzCYQIPOq4LIqxJAYUMpFUpPAgTRIL3228/Z968ea4WO2FDCVkwGDx4sPwcNGhQ1eOvG5ioGNXQaSx4SisyTcYQN0IEIAVZhpd+lUTHrrjiCrnh58+fX3HbDCx43OBbBRGB/FLGT/NxdDJUkvFIin4obUSMfSISQ+Tn2GOPDf2zSPWhwUoaSN2SXg27l6RpUE7fShtatikhq36hQ7cQMgqlFiBexl8vKcpyprIK+5D+GdBFqhJXdxpOZxVe/MkAzvdoixDYVwJVc/jc0HD8kUcekegCpq3owtBPoMUJO+JgA2wkYgA7BQgS6Yywe9dRHECE1GbX/VLAE41UephVlYDPoG8lxAePPRughMw/LrvsMrFSws4iqPG30v3MeMqiGT9NRXKQeTLWuHFjuXDvv/9+J+0opUkoJaYuFQUgnULoHcE9j0qoV6+elFfT/uXCCy+U9DDhcyIkDPJUT4YdcYgTthIx0sVPPfWUpJ2JUoYNJheiPWijkobttttOrtmw+66CTTfdVNKiRCwxnLUBSsi844033pDx9tJLLy2bLiw19hWOy240ZSYqBhHTFGWykHkyhtM4XlZpT1WW0yQU8ycD5513XkntAoSC7dAqqVJbKVb7+LpRjVnoF4a5KF5O+OKkEbYSMfD0009L/7qw+k8WAhsZPMyoHEwaSKOTbo/KCgftGHYIkGVboITMG9CIkd7u3LlzydcwvjLOFns+vxrejaZMU5TJRubJGGjXrp2U9Uex6o0DbjQJ2FVgtFqIUtoFCBYeZoiNjaeNH1A5iY0FIn8mnzTBZiLGsea8UtVIFCZsEBH76KOPQrXNiKI1Eul27DnCBtF6eq/iO4Z5py1QQuYO3PPIMq655pqSnSyKjcuAcTjfH9KtpgwNL4sFNIdhtTJThAclY44jGg10LMXISBrgVpNQatAo9f4jjzxS9GAXX3xxVWnGQw45RDRoVFjaIFpOOxEDpMDQ65188smRCZnRZSYxRZmfNiJFH7bFhQFjEvcDbcgqRZ+jhBKy8uBcoacl9V/O56vUuFo4Drsdv01UDP1nEqPPWYeSsTwhP671cbYjibtnpZ/elqzgEIxi2lpNqrhFixbyMw02I7YTMSZQosBHHXVUZLoSPpNoahKag5cC1XDouarpueoF3A8HHnig3BNRfaZbKCErDbwrybQQvSpXJe52vHWjKdMUZfKhZOz/0KlTJ+fbb79NXfNwLz0r/fS2RJSP99iVV14pnmF+UbduXYmy4UMVtwN5momYsbKAhGHKGxVIn9B/MeldFSg6Id0aFUghk8rHDoZIpk1QQrYqSGH3799fFpdUjZeDm/HWraYMuQjRZyJijKOK5EHJ2P9h6623los4rUJ+tz0r/fS2vOqqq0SnwCBUDai4RCeT1HSl7UQMoDP5+OOPJT0Zlbcb0WZ6OyY5KpavGyPdGqWOCxkF9iPcF7ZBCdnKYFGKfQuO+25Qbrx1qykDppNM8+bNZSxWJA9KxvLQtWtXqTBL66Ditmdl4esqlVQzIDNo0NaI41dNWobKPqInSUtXJoGIQSLmzp0rVYFRare4n7DRwOIk6SA1hB8btgVRgT6vmMHOnj07kuIBr1BC9v/BNTF8+HCxssAKpdpx2a2mjHsLMmeK0RTJhJKxPFCBwkSVViG/H7ht08FgwoDcq1cv6T1YTbqS85CkdGUSiBjAJoHJPCorCwPTJy+Kqs2wQRqIa9SPIWe1VhdEXNz4+sWBrBMyNFuMffQx7devXyDbdKspQ1pDdfS2226rKcoEQ8lYHkjbkJ+nEXaaTUjdwkubDo7drbfeKkLjasT84PDDD3f22msvCdvbnq5MChHD/R5HdwThaLeiBFoWiFhaWl5hz0HalXMfFYiGEM1EGE6a2UZkmZCRFXjmmWecESNGlKxK9wq3Gt7bb79dfp577rmSXVAkE+kYHQNEly5dxAgTj5isw2ubDlbvPXr0kN6VTFZBpCttNoNNChED2COYsvcogS/Xl19+KdYlacGuu+4qiwSit1ECzR2Elr6VNlldZJ2QLV++XDqLMGYdd9xxgW67koaXhvJIQ6hUpghNkVwoGSsAUQOah9PcNevwY3Vx9dVXi2FltaF6zgMhd6rwmMxtQ5KIGM3ZmRyp7iJdGCX4XNLWadCL5UfGOI5R+Y0ZQMSIbPK5CxcudGxF1gjZ5Zdf7km0H6TW10hqGCuR2CiSCyVjRXD++eeLvsaWRr1ho5RA34/VBQMxg9KUKVOcadOmVZ2uxCGe1AwiVVuQJCJGBAfhN+flsMMOi/zziR5hzUCz5LQAAT8C7TiIBno1WkoR6bRZSpEVQkaF67BhwyQbEDUZ4vwjqTEZHUWyoWSshMVC/fr1neuuu87JukDfj9UFFT2UWHfr1q2qFkekK3GwxmgTQmZDaiZJRAxw3D777DOJ9kat2eJYoRfDmytt4DtRYBKHSTTRMTz9nnvuOcdmpJ2QrVixwunQoYPTsGHDwET7XjB9+nTJGtDvl8bgimRDyVgJUBlDlUpa+1V6EegXC5OXs7tAvzB69GhZuRFlrHZAh5D98MMPsZ+LpBExtCxM2FR4xeHxhRcX1Zt4x6UNpOq5zuNwxsewl3P65JNPiibPZqSZkGFhwWLjzjvvjEU4b4T7aMWSbqasUDJWEpAPIjJEhtIKrwJ9L3YXrNaoqsSMsNquBvToo5k42qe49GNJI2Jgzpw5zo8//hi5lUX+dUQ0k8rYNJpEb7jhhnJNxgE0eJzbxx9/3LEdaSRkL774osgx0MjGUZyClpb721RRKpIPJWMlsM4668hFPnHiRHG/TjJKRbH8CPS92F2QrsTpnXRltZ5hjRs3rtGPkR6IEkkkYqSxFixYIGSZRUUcQC+GvinqooEoQMoXI1Ymxbh0a7Qi476Lax+ySsgYfzp27CiZgjjSk/nCfao3KShRJB9KxsoA8Trh5yFDhjhJRbkolh+BvpdoGmmcUaNGSTVdtelKzkObNm2kWTOpt6g8npJIxNjnxx57TFIXRBTjAOccPyxsINIKWiORhqWnbVyfz6KRvpVRep5lnZBdcsklkp5EPB9HepJ7ywj3O3fuHPnnK8KBkrEyYOKHxNxxxx3O559/7iQNbqJYXgX6paJmpSq7SFfecsstYor40EMPOdWAqjyibQxGRH3CRhKJGFi0aJHz7rvvSrl7UAaUXkG0hghCGlOU+fcCk3GUrZEKFzuI+ZcsWeK8+uqrThKQdEJGZH7o0KHOtddeG5t3Hj5zFOXUqVNHMg+KdEDJmAuRJkSDnmNJg9soltuelaWiaYDOBaVaJRHRgsjQ+7MaM1hASJ7KQFLHrE7DQlKJGESVljkM1DSYjgtMtKTyiN6kFaR/t9hii1hE/AZ8PnYXREKjTt9njZARBT3nnHMkw9C3b9/Y9oPFLaCSM67FliJ4KBmrALxjWrRoIa1+MPZLEvxowtyAaFqx/p2ltGOs4Kn8YeAgslVti6NDDjlEPMjwgaNbQtBIKhEDtGShyOH000+Ptf0QRBmRe9qrvBgfSMfGmSY84IADJHLPuU8KkkbIKEQhJci9NWHChNjaDtGRhCpaPp9uJ4r0QMmYC1x55ZWyKrLVlT9I01a3KLUiY4VeagU/adIk59lnn3Wuueaaqj4bckd0jBQYExBVZUEhyUSMxQJVXhwXxOVx4aeffpI0Shx2GlEDTRxeY3zfuLD++utLxTFtcWzsVpEGQjZmzBjnvvvuk59xRntvvPFG+dmyZctY73FF8FAy5gJoAxBCoxVgokm7aasblIquQVxLpSuPPPJIaR3Ca5g4qiWDpFZpQM22gnAjTzIRA7NmzZJOBXHvN/3yOB9Uv2aBjHEtotOLExBwjjmLIRvMkdNEyDi3ffr0kapwSFBc+Oijj0R7C+iFqUgXlIy5BO0uWHWOGzfOSYNpaxhRt3L7YHDxxRc7Rx11lKQrv/jiC6ca4PNEiTkmmHPnzq0q/Zl0IoaGjkmD7hEUOsQJigfoT0rxRtpBVIrvGTeRIG21//77i5AfMpwk2EzIiLpDwFh8htV70i3wbfz999+do48+Wgo3FOmCkjGXgHwwYNxwww0ikk6yaWuQUTciXV72gUkD7zYGFbZbrdaG9CdCVqIBpOj8RAV4T5KJmLGywM+LZuA2EEN6N2YFFJWQpuSajhMcc8gh1XbV6jKjhq2EjE4sRKTotcsCI04JAl1NQP/+/WPbD0V4UDLmMTr24YcfivYpzQJ9L1E37BO87gORBESwuIcH4eFGn8C2bdtKaxgErl6JGLozvhe6G3pqJg1EQ7gumzVrFrtgnl6kPDiWWQGpSggxEcE4gZaSClr24+WXX3aSBtsIGdIOWh2hFY7LxsKAginam5GOjss7UBEulIx5AFEHdDC0wAhCo2SzQN+LLYaffcA5+qKLLnIGDRokEalqwXmhghB/K7eRQUPE8Inq2bOnCM6rTXdGDcTjTz31lGjn9ttvv7h3R449EaIs6MXyFwNEpN58800r7Da4FtAPBlnYkjVCRh9cqhWxsiCCHyfIxAwbNqxGKxZnlbQiPOhZ9bjyJDrGyhOriywK9PnuhaTQ7z5cddVVYlFB70QiO9XisMMOE5K3cOFCaQfklohRsk6zXdpfQcQoCIg75eQWkEcignH1nyzWAokJNW7dWpQgGkmKkO9uA9COYfmCBUISETchI7KLmSrpZ+PpFSeo4sQ+ZcsttxStrSKdUDLmEeiJSMFAJLhpsybQpxKyGCkstg+ltp0/iaHVIqpwyimnVL2ShyyfdNJJsn8vvfRSyfNTSMSOP/54eX6XXXapaS9CtCnK6Kcf8P0gv/QotEEsT6oOf7Es9srjO3M+bKi2Rju45557io1MnJYbSSRkRKEQ7NPiavr06VIcFCcYq4yUg5ZytL9SpBNKxjyCEPGIESPkZiVdmXaBPpN9MZF+uYpJN9vObzn18MMPSwWYEeJXe34YTOvVqyeEq9AUthQRy59UeZ5GzHPmzLFici0FRPtE8mzRuRGN/OGHH4QIZA1Ekrn2SG/ZABaMXOuI+ZNkdRE3ISMNCIllkWjDooJFITpYFqxYayjSCyVjPnDsscc6DRo0kFRlEMSoVATJBoE+kS4iRsVQ6ru73bYBkR2+PwNgtYawAN8ntB5MSKTxTCPnSkTMADNFNGQQxdmzZ0sa0DZw7BcvXixl7nGv3g0g1BzjLJIxUkgbb7yxnBMbQNUyzvzYndhCEG0nZBi6stDGQgL7HRtgomLIKDbbbLO4d0cRIpSMVXHjoisqFfFxi3IRJBsE+n5IoZ+IHo76pH4vu+wyZ+rUqU61oAwdDzJE+awuKQ13Q8QM6O3YvXt3IaK836Z0D9EwKlEhYbZMGoDiCY5bFvvlERWjNVIQ2seggJAfgkh0zBY7HlsJ2XPPPScLMKJP3Pc2ACJNIQbXVpy9MBXRQMmYT9SvX19KjKdNmybRFz9wE0GKWqBf7HmvpNBvRO+SSy5xzjzzTNGeIcKvFoT2WVFCqCB4bomYASL0Ll26iF3ACy+8ELt1gQHXBylBdHa2VFYx2SMyLhVFzQL47rRNC6Nfql9gDgpBxIMvyQiTkKFzpACG7Q8fPtyxBRSLAfYty/dVVmDHSJ5Q0Pwa0Tg6Az/mpV7sI/wK9EvBK8HyQgr9RvQ4luPHj5doFtVMND+uFrVq1RLyVbduXVn1uiViBghm27dvL7YmaDcgiXFqcNCwQf6xU8BzyBZAVLHZ2HvvvZ2sgsUGWsMgFhJBgcgY1wr6R6LDSUYYhAzvLhY1jBP333+/NVHd+fPnOw899JCMiaWMtRXpgpKxKkA5O6JzTDcxMfWKMDVhbjRpXqNuXiom/Ub0GBQR9FPJiKEskYZqgHs2AzeE2a87PfobBmxWqKTiqNSstnOAXzzxxBMygdhiZWHAMaY61gbRc5zEh44QQRXYBAU0mdxHELKkI0hCRh9X5BHc04w5nDtbcOmll8pPrCyyvMDJEpSMVYkbb7xRVsOYlxarvCtn7xCmJsxtVWM1UTe/265keYH2Bq0E0RaMXBk0/RKx119/XT6/2oGWFSr6LAoDiDCgI/O7X36xdOlSWTFTPGLTxGFaIG299dbWpE3jAlEoUshxkfViINpDdTGpSu6JpCMIQsb54V5GKwYRg7DaAiQRVEqzCNSoWHaQ7ZEzANSuXVtICAMwxMyrvUNYmjA/VY1RbNut5QWD4yOPPCLu/H56WAZJxPKByz06Mgg4hDFKfRADNMBLzSZgZ0FKOeiIblJbIxHVtY30sF9M7jNmzEis1UVQhIzvjyAeM1Va29lUBJMfFaMAifOmyAaUjAUAomKk1yBWpurOC1kJQxMWtk+Zn217JXCNGjVyJk+eLJYXffr0cT2JhEXEDBDT9u7dWwZKImRRCPtptYN1BB0GMPW0CewXAn6iL1kH1waRKIpFbAIRSwpRsLng3kgD/BIyFrxYWNBz0rZ0P10T6ADCNWRImSIbUDIWALBRICqGg7y5gcI2bI1bk+Zn26W+O6L9UoSMjgcjR46UtiTXXXdd7EQsPyJKhOyYY44RwTb7H1ZPS4gOeh/6Dh5yyCGObWAipHIVr62sA6KMpYQtlbf54PzgnTdz5szIU+y2ELI77rhDFs9UKlYyUa0kpwgaLDapKAddu3YVuYYiO1AyFhDoa4jH0rhx44QMRCXOL4cwNWl+tl3qu48ePbpsyhLSgwfZxRdf7IwdOzZ2ImZAqhIBMNWWGMvi/UXKLgwNCXoxPstGTRbWADpxrKwb43zZ2E4Lq4tPP/1UtFJpgVtCRnsjxhJIGH6GQcgpggQkGakKi3sIoyJbsG9kTyioJJsyZYqsbkhhIbIOW5zvBtVq0sqtDv1UYxbrd+kmZcmKsUePHrJifPDBB2MnYvnCfs51r1695HMhZEEaf2IXgWgf920GadvwxRdfSIeCPfbYI+5dsQZYs5j0rW1YsWKFXLM22W9EQciwg2nVqpVE2omycwzi0NqWAppYExWjByVWPIpsYc24dyBNOOKIIyRthY4Ih37ICtWADBBEhaImYgZ8rt9qyfxBCSLFd3KzbQauYt/bHBNSk0TECsF7im2PwZM2JUz8rVu3Fk8gBtY4iVg+SE0xiGIui/UFkRGiEIimq8GCBQukrRPRFo4pRrRof7BRsAEQDtKzqhf7H4gSoiGlNZIttgREbLHg+fLLL+WexMcvbTCEzBjcGvE7UcCmTZs6hx9+uDNx4sSK92Q5iUlYYzieYvgYbrjhhmUXrIr0QslYgOAmR5PAIDBgwAAZAPwSobhRanUIkar0fSqROPP+YmSsXBqX40sUjjZUNAMnQkZ1Y9xELF8vBFHceeedpTMD1Y+kONDp+AGVmlTp4jXEdpjcSWWgH4P87bPPPrH3pXzvvfdEPxf3ftgErlMIGcfGhkgYxR/GeoQKPe4ZG9PdYRAyIrdUHzM+YGHhpvglaokJixmTNr3gggu0B2VGkc47MkYQwSBdhzEn2oSklpH7LUDw0oDcTxqXdDCr2+bNmzstWrQQDZkNRCw/gsf+UDoPKSM9QkTCq7if62bevHlSndewYUPZLo77bLdt27ZCSLHWYNLhWosDfCdSslk2ei0FjglkOgwNoRvgefjyyy9LX0pjEozxMc3D00rECgkZGjGqj/nO2ORQZOIGUfg/5gN7DRZaLGr69esXymco7IdGxkIAq5thw4bJQHjvvffK5Jk0+F0degnx+03jIpyH4BE1gviStoOc2Va5hr4NnzQiZES0qIR0GyWD5DChNmvWbKW0CmSUiYbv/Morr0gZPDo1NCZ4s5HGjAqkh6kgtqktky3geua8EZWKMjLO+cBWg3PDtQYJI6pqo94wTGDhQcUki2PkDaSNvSAqiQn3uNGKQQBtkR8ooke6l0gxgUEYIgYQ86PTsBnFRPp+V4deSZyXFksGTDSsJElTQlaYcEgL2ngdHHnkkULOvUTJ+H/0I2jOjBi8EPgQHXbYYXJOSGMS7Zg9e7boY6LqQWiIt5q9rgoitURolixZEsnnEYFDqwjxp+jjzDPPdAYOHOgcffTRmSNi3AP0oCUiRvSYRZsfp/5y/o9B2V5A+lh4kdZmrlBkF0rGQgJRCm7kr7/+WgxLbUW5Em4/lZjVhvgrlZTni/XRTWEKi5CfyQdzWBtBlIyUNfuIUz0TJtdFKRBNgWzRm9NNlJCIGxpFrjciZ2jKnn322dC7A6BD4rvZ0lzZJpBWJirDMQoTEG9S1ZAO/OioGISEsQiwzRw4CrDgOeGEEyS1z4J42223Dby5eFC2F/TENFpafCrdplEV6cRquaSKmhIAQtCEndH3oF+wLZXGqo7BpBAQr2rD8qWqKavZn1JVkxxf+sxBzEaNGuV07tzZsRVUWRLRI7JHtAzSDoHKv2YgaxR/MKl4BceCCkzSlxwvhPVUY7LyDlIrhGno4MGDZdJjX23AhAkTnLffftu58sorq65iDQJYklD1i1YrSE0jQzbRHr4r/nakqGnpg8XKOuus42QVRMcpoKFzB7/nkxuOE6SV8aiaFkNBjplE9KmiJHqJ8345uw1F+qGasRDBYMBgjFknkREGCZs0AWGWcPupIi23P1SClaqahMwQvTOu+BAedBg2Dm5MnFwLpFLQetErkHTKdtttJ/tLGhPzYCIbfsCxYFJmm0zWpK7wlIKgUQxA2jOItBUO85iaqqVFaTDxE7lctGiRWN4EQYA57kR4IGScS4pYOAf5hD6LuP32253u3bvL8WAsKCSlpWwv4hozn3jiCSFiLBrQtNk4VimiRbbv4AhwyimnyE3Kior0XTE7h7hgQ5cAN58LUalkX8GgRr+5rbbaSogY6cDhw4dbESEpBPtEJANrClIpEDC0RZAliGSHDh2qJkx8Bh5XPNgm1x/VdUwaCLuZyCG4ficBCAFEg3OjKA48o0jjcm79kjFIF/YMnDeuaSKdpKWJzpCCy/okzvG55pprxBoC42Xu+VIR4CAIWRBjJulkow/r2bOnLmgUAtWMhQwGS/xtzOqN9JEtiLqE28/+3HDDDSJOdmNfwbGmZRLHmX6WpCxs7sGHnxA6L1b0RPVIa5FSJKoVdDSORQF9U/k8elxSiUnqnIgZKRyvQAuFZi/tNgnVAt0Y7YdwWPcC7CiIqEHWIQ+Qc65nFhpoD00kNcug0AUCBhGDkBFhqnQ9+m0uHuSYSQcAZAosikipKxRANWMRAXJAOx90QgyyUYs1y2m4/Oi7woTZHyYct0SsEGhG2rRpI1EEfo/S8sEPWC1Tjr/DDjvIhBEmuOXRk0H+qNpE6E9ah+MNeaiUSv/+++/FWqRJkyYS4bMFtmnGAJMuaTN0jNz75cC1Dsk1liFcB2gKqarlvVknX/lgkUVPWFJ9ZBvOO+88T++vVkPmdzwlusnz3EN0afG634r0QslYRGBlXL9+ffEAQtA7ZMiQyD7bTVsj2xBEiyN0WRRNYMCJKF77vRUX/BMh4LrkeDNJUYWH4B9iRqqtEETVqFzlOrLJLdxGMgbJvvbaa4VQFSvgoWADAoa9AWSMRQMEjNQVk7ZWqq4KiAwV1OghKdoh6usHQYn6vYy1nTp1klZwXA+QNluuU0X8UDIWIaiAQudBKJ2BhEq0JFdMhoUge00ShcRzCH0T6WJawShKEwd6TRpihm0CEVwiZujLSG8SnZkyZYq8zphV2gIbyRigSwRpR/zmGG45rowFH3/8sTwP4UXbBwkjTZ3lishKoIAB8sXxI81OP+BqECQhqzTWotk0Yy6fSdReoTBQAX+EQGODnwyRMULstLsJO30WR9PbahB0029E8gyCDOCYpN51111ScaVYFRBW3PR5EHngGqESk1Sb0degcyGSQzpV4Q5EGLEuIFJLShitE0L8PffcU67PPfbYI3PGrH7w1FNPiV6OaCyLWY5btQiqyrLSWEuF8/nnny9/40+mRExRCCVjEYPegnfeeadEbGiXQ1+yMLUgtlVMRknEDIhGMhGee+65Mpgj+L388stVfF4GpMdIlfEglcm5ISrBAoJ0GlEchTtAGl544QWxAiFKy4QPmYX8KiqDaOJtt90m5tlUpRKZpeAlKARFyMqNtSwCWRQSBXVjnq3IHnQ2ihgQAFbJ+AKhd0DEmaWKybCIWKX2JKTbIL4YlV599dVCyuJq4pw0cK2iu0Owz2QIEdN+lN4i4pBaih0w8mWyVyLmDhBYfPmomsQOgh6vQRKxoKosy4213DvmeRaC2O8oFIVQzVhMmDp1qjSiRR8CgUDcHyZsq5gMkoh5LVBAa0I/RyrU0JGRRlK4A43vieoed9xxjm2wVTMGnnnmmZq2WAp3oKcvLvWMXXTW6NixY+ifGYSGrHCsNa3aSEkTWdaiDEUxaGQsJqDJMT5YLVu2FCFvmCjX9DbpEbF8Igb4u1wD35NPPllEtUTG0HIwUSrcVQRDdiAVCm8gGvLee+85K1asiHtXEgEsV7g3ITV4M0ZBxIKMkJmx9r777hMixuIAeYoSMUUpKBmLCejEuDnRM3Hjs2LOWpAyCI1YKdEs5ePlCBnVa2g4SLmResN+AGG1ojSoYCNyQGWlwhs4ZthY0BxaURqMgUTBqEpEqI+NCuQoSgRByACdE3DYB4MGDQrczFmRLigZixGkKOfMmSOrJvRMd9xxh5MVBCXWLyWaxQiSAZ0UZikw2NMfEosG3OnR89A6SFEcRHaIjtnkLZYUoBFjAcYxVBQHRJ8sAR0pKLah6CGudlvVEjJIJSbfX331lSz4bLOBUdgHJWMWVFrRxgNQ+oyVQNoRZNVkMdGsl5Ql4nQ0RpBi/LXQ7tHEV7EqmJjwGtMq1MpAfoCPGJEdWhqhUyRFhaWFYlVwnIgccR+S1rv11lvFfDhOVEPISE8++OCDMr5oelLhBjqqWgBWgk2bNnV+/vlnWRmmucovDPsKxPpowLAK8ZLKzEfjxo1FpwIZQ5zOShZLB8X/yAXWFloJVvzY0H+Swoa5c+cK8eJBA3hS33hK0faG6KtN7aNsABGkoUOHigcg4wG9UhHt2wI/hIyWR/npyf333z/kvVSkAeozZgFIX7CSIuW2ZMkSIWf0s0tbL7qwfMSAKUwgPenXUw1h+qxZsySaBhlD2E/1ILq+rOODDz6QfolZJmMQB3RfpNO+/vpredCaB/sFE/XCP4zUGscJSwvTtUCxKjh+HTp0cGbMmCFG2NjO2BhB8uJDZtKTfDcWdhdffHGEe6pIMpSMWQJ8sOifyCqKEn1W0Ogm0oIwiVhhyjK/utKrpxopuIEDB0qbFapdGVBvueUW+T3LkypaJ1IutjdcD6IlFJFpiCc/eUC4IGFErrkG0H9h3gnxgnAhzod8oaXL8jXiBSx6iBZyTCFjZAZshltChiEtzcs1PanwCvUZswzox3CaRi9BtR/eNElHFETMraeaF781Vrescola4gmHC3hWbR2GDx8uxIR0kq1gEfPWW29JD0hINcUGgHQz0SsepBTzf4d8kUrkJ8/xOwU1TKZMpES2OOe0geJ3CBcPjXj5A305+/Xr54wbN8459thj5afbyLMNXonlfMgo/qFKm5ZXdPi44oorYtlHRTKhZMwycDpYJRIlQ9yPsDXJot+oiViQ5rAG999/v5Ayzg3CYnR9WZqIiQxR5ICLPG7itoKOFphqotHKN33lXEHOeI4K5lq1akkkmp88WPjQG5LnNt54Y4mC8JPolxYrBAcql4mGQWjo0du5c2fX95HfezcqQsbYwIJt2rRpEk1nIa1RMYUXKBmzEKRIuNERBZ922mlCBmxzFE8aEWNVjdVFIRD+u1ll4waOKJdzgcCYKFmdOnWcLIBzePvttzvNmzePvcKtHDAH/fDDDyUqAelioudBlAuyxb4ruYqHzKMJGzt2rLTU4qeXRvPV3rtREDKsiejqwbXGAnq//faLZb8UyYWOTBaC1TqaClZWtE0q55VlK2wiYuUqKt1UWgK+A+lKNCEI+0lH8HcWQBUZUSObiZgBUWR0XGi46tatKylG0orsvxKx6DF79myJqBK1xMyVv70QsSDu3bCrLJ966imJnAMKf5SIKfxARydLgVaM1RYgpD9y5EgnKbCNiJWrqHRbaWlAivLNN990jjzySKdVq1aSmiAak1YQONcWSAo/7vO0MDr++OPlHsP2A+sZP+n9oO7dMAgZ3mhdunQRLRzpcawsFAo/UDJmMUiHXX311TWGsETLbIeNRKyUOazXSksD0pOkK4mSkSpB20dZPoLwtIH0LC7iWba0ULgHBRDoKnfffXfn4YcflmgYRq477rijFfdu0ECkj/8eVcZo2Ki0VSj8QDVjloPTwwrzrrvuEkHx888/L+01bIStRCzMiiz0MFdddZUzbNgwZ+edd3ZGjBgh0YC04KWXXnImTpwoje3Rw9gMNGNUst100006KcZ0raCrxLgVW57rrrsu0HHAhmrKfHBftG/fXqJ9LM7QJRarslQo3EAjY5aDG33MmDHiO7Z8+XKptETYbxtsI2IM3Pfcc88qrZDYv7POOqviYF7q/YVgRTxkyBD57miV6G9JRDMtqUv0YnxH24mYIt6UZKdOnURDxXgFKUOk72YccHufebl3owAWKqQnjU6Mez6I5uKK7ELJWALAKp+SaUL/9Lujqo2KS1tgGxEjhUH11dlnn12xWXhQ70fQj5AXx34mI1KX1157baJTl6ScmFw0RamolJJkfELXiqVDscrHMO7TuIDfXosWLcQImDZqVO8G0VxckW1omjJB+M9//uM0bNhQNDynnHKKNKKN2/LCNiJWbRl8qfez0qe61U2KhAimSV1iaMnvbdu2jf1c+WmBRMqvUaNGUpFoOzRNGQ2YMtCDIVZfvHixeIeRksQYN8l2FW6/O9E5UpR0XiAlW2hxU84YVqEoBY2MJQgYbtKAGA8lBsMBAwbEuj+2EbEgyuBLvY4Jx+0KHm3fDTfcIBVktLfiffyk7UuS1j4Ik9lf3OYVCvDss89KFwb8DyEjeGoho/BCxGy1q3AD/PYgYiysKOAp5jWoETKFHygZSxgon0bMD4YOHSppgjhgIxELogzezetwAnejcSFVSZ860pYQGtLLRJlMfzvb8c4772jbH4Vg4cKFolfF0oXUO35hTzzxhHPQQQf52p6tdhXl8Oqrrzq9e/eW34kEHn744SVfq4RM4RVKxhII/K3QIwEGh5kzZ0b6+bYSsSDK4Iu9vxjGjx/vipABommk0DhPpDCJLJBmxq/MVtDAmciY6sWyDaQRpOUwMoVYEA0iGkZfyWpgs11FMZB6RCdG/9KTTz7Z6d+/f8X3KCFTeIFqxhIKThvl45ACXMexvKAnWpaJWJBl8Ob9DL6kKEvBa488mlcj8r/00ktFk4WWbODAgVIAYBPQAtHyCZuOpPRGVc1YcHjvvfck1X7HHXeIXhCROuNN0MfVNruKYsjvO4lfGhGy2rVru36/asgUbqBkLMGAKJx44olSxYetAnoOvK6yTsSCRmGT4mrE/fnnDq3N9ddfLxWyRMouuugiayakRx991HnyySclCpAUKBmrHugcuSaJgEE4+vXrJ9F3WrSliWB5ASlJihW4xyFVBx54oOdtKCFTVIKmKRMMBgcqKvfaay/nk08+cY4++miJtoSBNBOxSl5HRL6o8qKdS7Xi/vxzh0EmqcBx48ZJyyHef8wxx4hjedxrpCVLlqTuPCtKA10jxBtDaaLs6FEZS1ggeCFiSbWrKAWi2KbF0c033+yLiAFNWSoqQclYwsFNjpCWFRdGoxAyiFOQSDMRczt58N3phFAJRNBI7bg1soSUsV30Yw888IA4+h933HFiYYL4n7Rm1GAVD7mnWk6RXkD4EeJjKA1RoGDjzjvvFLJA+zWaq3tZzHDdF0aQ3Ra72AgyDR06dJDfiRCWWoy5hRIyRTkoGUsBEFmTqtxll11EcEt0hck0CKSZiDFJFJs8SpEpt+J+P5EySuVx8UYczQSJPQZ/77nnns4tt9wiJC1KvRAC/rp160b2mYrosGLFCtGaEuVBE4h5KcSfBcE555zjKcWbv5gppa203a6ilGYS6QByAu5D9HNBQAmZohSUjKUEaMYgZAhMuckhZEuXLq1qm2kmYn49xUzK8u677xatWCV4jQxgI0GlGueS1BFFGX379hXzWKIVpA/DBqlTUlP42SnSA9KOFItst912IsZnEUdKnOsT37DVV1+96sVM0uwqioFx86STTpIIMVZCLMy8HptyUEKmKAYlYynC9ttvLyJmfnKjQ8joG+cHaSdi1XiKmR55TGhuImV+IwOQwfvuu08m0T59+sjveJfRgoXfWbWHkbpCv6ZRsfS0LMJsGI87intGjRolCw2uSYo0mjRp4ttHzs11bbNdRTHQZq5Zs2bO+++/L0J7TLZpAB40lJApCqFkLGUgMmaqKwm1M9jSPskLskDEgvIUcxMpyyd9XhojG3Aur776atEETpgwwfntt9/Ea44IB5GOINNARAWoSFS9WLLBtcI1Q9cOiNinn34qvSOp3KXa1GtFX7HrttRihvuA+4H7gsrMpOD33393Wrdu7cyfP186Cjz22GOeOwt4gRIyRT7U2iKlQIyLW/Znn30mqS4Impu2NlkhYmF5ihXaYPC3mZAK/8+rR1k+0PfQmoVuDN99953ToEEDp3379kLSttxyS8cvXnjhBakgI22VtF6aWbe2WLZsmRSBQNgRnyPAb9OmjdOtWzffTvmVrtty13uSwDRIdTOEdd1115VryW3D82qhthcKoGQsxSDdRKXU559/7hxwwAFSdVnOrDCLRCwMT7FiPkthNUZGjE0aigmYlTzVl2jOIGannnqqJ1sCALmDyBNRTRqySMYotKCzA+eftCPRHdLYnH8INYUgYSxQ8q9bN75itnuPIdCHZJKyxS6IYxcllJAplIylHERQsLv48ssvJXqCYHfjjTde5XVKxFaeOEhNjh49uuzrvES2SPGg1SkE6Rz0Z0Hg66+/du6//35pZIxXFJERJhVc/pmgKwnymcgvu+wySYva1hHADbJCxjhPzz33nDNp0iQ530RGWWxBwEizVdvCqtKCxOt1G2REOAxgcMtxA8OGDRN9ZhxQQpZtKBnLSJNfCBkTFdVBjz/++EorZiViq6JUJMtvZMttZCyoCAICZCZrSCARUloanXDCCWLsSaUYLW6KWVowGRFNdZPStg1pJmMQLu5bBOVEwkhJog9t166dPLBASfJ1HxcgtUSBiQBStYzZbZxQQpZdqIA/A8BVmxQlglHsEpiMf/jhB/k/JWLVifvdiufdNEYuZkDrR/APmKhxDn/rrbfk/CL0R9TNtuvUqeM0atRIUjP5VhmQMdI0XvruKcIDhHrEiBGSdubeRA9IuyK0TVwPnK9rrrnGFxErdV0FXSFZans2eI8tWLCgxkuM3pNDhgyJe5dU1J9haGQsQ5g3b56sAo3gGwE41VVKxILRznjZXmHky01EIoj0DgUdaIuIsEDQ0ZyxL02bNpXfiZglUS+WhsgYCyQKKPgeRL8gXnwPIpVENKmK3GGHHar+nHJpw1LXoZ/+qzZHxiBiXOdcL5Af7oUwLCz8QiNk2YOSsYzh5ZdflsgY+iK0JQ8//LAQM0VlhFk5VkpTFtSkWAw4r9MMHGKG+B9POqJi+NTttttu0vN0v/32kxRnEpA0Mgb5YsKdO3euPOi+gB6MaliiYRAwHPI32mijwD7TDTkK+jq3reISIoaGklQvx2LWrFlFdbRxQwlZtqBkLINg4CflweRLyopVuN8GuFmDV02X29e71erkI0ghNMMA2kIqyZ555hlJbxINJFoAOcMwFILG90DgH6QjeVbIGB5ueFgR/SokX0S/zGP33Xf3bcQaVCFJ0NWPtlRTJoWIGSghyw6UjGUMTLBMWkyoVF+hJyLywSRMg2pFcPBaReamii2qdA8WGaS1iZrhWYWBMGlMonJMXhjO8sBUFPJgA0GziYyRDoZ45T8wXgUsgPLJF10VwiJfSUkbxkHEKIgIMuoYJiHj/OAbaVMqVREslIxlEDi4M1nRfBrhKqmqNddcU+wcIGiK6lf0fie9/M+jebNXi4GwIhAMEwiKTc9MomgIzCH3hqDRP5MHxIyf6JsQJEdFNOIgY6T7Od7mwXGBeEHGABo8os48sJ/gJ8UVUR0Tm9OGUUbLXn31VdGIJY2IFY7ZivRCyVjGwWTaoUMHcV0HRG4GDBgQ62RhC6rxRwrKV8xLAUEcfk40FYfMsx9EWSkIob8f5J7JA9NZIkEUiPCTlBx9L83fQU4wYZAx0oiYJhPVgnzmEy8efJ4BkUJ0doZ88SDFG8a9VC2RiTttGOW1mk/EsPYhNZkkIqbIBpSMKSQlxWB44403yt+9e/cWv524005xotp0Thi+YuUiGjaln0irvPbaa0LOSG8SUcNChR6pOMZD1MwDvzuKBvhJupwHvzNZYloLmeOn+T8emNcWIzjlyBjDHJ+9fPlyeSCeN7/zwBSZaBYPiJf5nefzh0giXZyrwgd6HvYzLJSLmNpmoloJUV6rSsQUScGace+AIn5AuvDYoTn0hRde6Nx8880yERHFoU9bFlHOH8nNhGF8xQrJU6GvmJdJlf8jrVyMvFW7v0GC1KTRQxUCcvPGG2+IR9YHH3wgkTSuNYgahI3UOUQJAgTh4tqkRyY/zYO/IWSQOf7mdTx4D0UpWHewwODxxx9/SKSObfJ7KUDeiNhRYcwDuwPzu3mQdi1mlhs2KmkJ+T+ui6RovqK6VpWIKZIEjYwpVgLpynPOOUc0CghGp02bJpNr1hDU6t2rr1jUfk5xp6uKgSEJUkaUC00WD34n4sbEik8e5IqCAgiWIV2kFCFe++yzj5ArQ96IrpmIm/mZ/zs/maRtigS7bV4fVFutKK+DKCJj+UQMYo11ixIxhdWAjCkU+XjiiSdyG264ISQ9t88+++Q+/vjjXBbxl7/8RY6Befz1r38NbNt33333Stsu9uDzw9zfwtfz9z/+8Q/ZN34mDb/++mtu2rRp8jNpyD/uhefFzaOa81XsOkjyvfXPf/4zV7t2bdnuoYcemvvuu+8C27ZCERaUjCmKYsGCBbm6devKgLbddtvlFi1alMsiwiInbC+MSdbt/rr5/FKTsq2EzVYyVul4+SFfQRGZUtdBFOc2jOvo4Ycfzq233npKxBSJg5IxRUn85z//ye2+++4ysNWqVSs3ZcqUuHcpVXAzCTNZhQE3kblik3IcUZSkkbFyUa7C4+WWlBeSr6CITKnrIKzrLkyMGDEit/rqq8v+n3DCCbnvv/8+7l1SKFxDyVgMeOaZZ3LNmjXLbbXVVjJwTJ06daX/P+ecc1YZHI8//viK23366adz+++/f27ttdfO7bLLLrnx48ev8ppbbrklt8MOO+TWWWedXMOGDSWkXw5fffVVrnHjxjX70a9fv9xvv/2WSyPiiPiYzxw7dmykEQq3JCB/Uo4zipIUMuaGYOcfL7ekmOsjyghtHOfU7/33xx9/yLhk9r1z586pHKMgl3369Mltv/32uXXXXTd3yCGH5F5++eWy7/nggw9yJ510kkQLt9hii1z//v1XOTZu5g1F+FAyFgNmzpyZu/jii3MPPfRQSTLGyu6zzz6reXzzzTdlt/nee+/l1l9/fRmU3nrrLVklrrHGGrlZs2bVvGby5Mlyw40bNy735ptvyqC1ySab5D7//POy2+bmzZ9kjjzyyNzSpUtzaYINEZ8wdTRhEgc3UZRKE20QRDgqMlZqX4MkuHFeB2F/XpD3308//ZQ744wzat43ePDg3H//+99cGtGyZcvcXnvtJYv5d955J3f55ZfnNtpoo5Ka3t9//z1Xr169XJMmTUR2wryz+eab5y666CJP84YiGigZixmlyNgpp5ziaTsMXnvvvfdKz7Vq1WqliBqRsJ49e660otx6661z1113navPeOCBB3IbbLCB7PM222yTe+mll3JpQBqiA0F8XqVJ2e9xqjTRBkWEX3zxRSFj/Cz8bsW+b6nX+P0uQaV+g0xDukWcOkC/19UXX3wh0SFeyyJz4sSJubQC0glJmjFjxkrPH3DAAbKwLwbIF2nb/IXzyJEjhcD98ssvrucNRTRQMmYpGdt4440lrPynP/0p161bN0kX5oPoFK8zOOKIIySEnQ8iYNx4gJuPm7nws84+++zcySef7Hp/WT3tsccest9rrbVW7rbbbkv8SjRNupmoxeaVoiiVJtqgiDD7RSoGMsZPFh6FpKlw34u9Jozv4uZ42VoUYev9969//Su36667yuuI7s+dOzeXZpCi5LtS6Z6Pww47TOYCQKQMCYrBpZdemqtfv/5KrycSxnZeffVVV/OGIjrYY6yjqMEJJ5wgvkG0mcHo85lnnnFOPPHElUwrabOCEaXB0qVLpdVMPvgbvyb8mDDV5P3FXsN73WLPPfd0Xn75ZeeMM84QL7IePXo4HTt2lM9IKvBW8vJ8moHPE35VpfyeuB7xg+L65GelnoblDD7d/L9b36pCU1Su0Xzw/25ew7ZKodK+GqPfQsNWN8er0nFPM7zefy+++KKYuNLZgT6f/I0nYpqBHx7f+eqrr5YOEYzlEyZMkD6xpg/q5ptv7uyyyy4V5wTzf27mDUV0UAd+C9G6deua3zGw3HfffeUmmzt3rtO4cWN5nsE9zoHh/vvvd2644Qbnoosucu666y5pkPzggw86O+20k5M0uHHLDxM2Gq+WA/vodj8rTbRBEGEvxM3Ntkp9Nzf7WqpLgt/zmrRrI+z774EHHnDat2/v/PLLL85BBx3kzJgxYxUykVbQ77ZTp07ONttsI10oaDzfpk0baUwPevXqJQ9FQhFhFE7hMk1ZDAgvR40aVfL/o0pTFoKwOfvG99h0000TLfyMI1VkQ+FA2KiU2qxWQG7Sg/lpSjfarSD0b0GL3b3YYqQN5e4/pBBDhgzJrbbaanIsmjdvnvvhhx9yWQTf+9NPP60R9VMtWQyapkwWlIwlgIx99NFHMghhaFgKDNRUzuSjTZs2qwj4e/XqtZKAHyG+WwF/ufLpBg0ayHdhP6+55hrZtiI5hQNhI+xqykLN2J///OdVSFMhuSn2miC+S1TVrVnBihUrcl26dKk5BhQhUSmYdVBhj7Z49OjRZQX8+dXyvBai9fPPP7ueNxTRQMlYDFi+fLmUGvNgcLnpppvkd0gN/4cXDJWKmK4SeaJiZrfddqu5gcBZZ52VGzhw4ColygMGDMgtXrw4d+uttxa1tsBf7M477xQhPgMc4tcgbCoYMM8777yaAZNoW2HRgSLZhQO2i8yjqKasBuU+y48tRhZABTeidLPQIzqW9IIhv2Asf+yxx2Ssnz17tkS9WFAYKxdsKY455phVrC2OO+643GuvvSbvpyismLVFuXlDEQ2UjMUATPaKDbRUR1LCzM3DTUO1IgMRfmCFhKmwmtJsd7/99pMy75133rmoeR83LKaBvIZIWdCT0JgxY2TbfB/aKT366KOBbj9NSFJkLAkpMxtMX/0eP7+2GGnGqaeeutJ3P/PMM3NZBh1QGNcZXxlbiRB+++23Nf9fWE0J3n///dyJJ54o0WLkJBdeeGFR09dK84YifCgZUwSOefPm1dhf8CBipq1J7DXcDJM0Rhl5spWMuTl+Npi/2gL0ra1bt848GVVkC2ptoQgcBx54oPPqq686ffv2lb/Hjh0rFaFUgyqqs4qIA37tJ6iIO/jgg52zzz5bfvJ3FuHm+FVji5EmfPjhh06jRo2cyZMnh145q1DYhNVgZHHvhCK9gIDhQ/b+++/L3xC0wYMHO+utt17cu6bwYK8AmSoEBKGU3YKf91QLPJe++OILp06dOuLJZAu8HIssWFmUwsyZM8Vr7ZtvvhH7nOXLl0d6/SgUcUIjY4pQcdRRR4kHWefOneXvYcOGiT/OK6+84mQVTLh4BpUzGLUJpaI25SbFIMxcvYD9MR58/LQpCufl+GXR/PX33393Bg0a5DRt2lSIGP5hr7/+uudrTqFINOLOkyqyA8T8W221lWg/qNi55JJLanqkZQVJEMIHof+KsjihlM+YbfqiavVztlez+gF+WRQjmesD6538qvE0fmeFohiUjCkixddffy0+NmbwpYpn4cKFuSwgSdWTSSpOMJWIhWQsTTYQSSbxpfDkk0/m6tSpI99nww03lGpBhSKr0DSlIlJsuummzqRJk5z77rvP2WyzzZzXXntN0hII2fN7b6YRUafuslKckPbeosV6b1bqo2kzaGV08cUXO02aNBGNH8U98+bNc1q2bBn3rikUsUHJmCIWnHnmmc4bb7zhNG/e3Pn111+dgQMHOkcccYSzZMkSJ61IO2kohig0UH40bUnSDKaJxNOcHc0oRTxkZs4991wh6mm+BxQKV4g7NKfINnDTphcaaQouR4xuScGk1ZcsCb5iSUWhA39a0o1pSG/ToYPvSnse9p305IMPPhj3bikU1kDJmMIK4BRNw1sz0eAwjeYnja1PsiJKjvp72mr6GgSpSjKJhxzvvvvuNfverl07bZWmUBRAyZjCKsyYMSO366671gzchx56aG7+/Plx75YiAYJz28lYtb1Ik0bif/zxx1y/fv2kpyTfk0rqhx9+OO7dUiishJq+KqwU+A4dOtS55pprnB9//NFZbbXVxKfs2muvdTbffPO4d09RAXEYvtps+hr3cYkDzz33nNOpUyfn3//+t/x9zjnnyD1du3btuHdNobASKuBXWId11llHBP2I+du2bStC39tvv93ZbbfdnFtuuUVMIhX2Ig7Buc2mr0ktNPADFk99+vRxjjzySCFi22yzjfPoo486d955pxIxhaIMNDKmSMQq+/zzzxdXbrDPPvs4N998s7j7K+xD1BEg83m02Lr33nudNm3aOCtWrLA24pTWlke0PqM68r333pO/+f3GG290Nt5447h3TaGwHhoZU1gPLC/mz5/v3HbbbeJTtmjRIufoo492WrVq5Xz00Udx754i5ghQ0qwf0tbyiBZGPXr0kHsSIrbddts5s2bNcsaOHatETKFwCSVjikRgjTXWcLp37y4TLAP/6quvLsaxu+++u2jLiIQosmf4mlX/Nhvw22+/SYR61113dUaOHCnPde3aVfwDjz/++Lh3T6FIFJSMKRIFXPtvvfVWiZQRMYOEXXrppc4uu+zijBgxwvn555/j3kVFxBGgLGixbALKFnRgyAXQhy1btsypV6+e8+STTzqjRo1yNtpoo7h3UaFIHFQzpkgsuHQnT54sYv8PP/xQnkMwPGjQINGrUAigyA5sr6ZMA4h6XXjhhc7s2bPl7y222MK5+uqr5X5bc8014949hSKx0MiYIrHA8gKxNqlL0iTbbrut88knnzg9e/aUysvRo0dLqyWF/S1/ggA9TvN/KoLDl19+KTKB+vXrCxFba621nAEDBjjvvPOOpCaViCkU1UHJmCLxIALWrVs3KaXH+mLrrbcWYT/PoRsaM2aM6FsU0YAUIdWNZ599tvy00WZC4d7zb8iQIaILIwX53//+1zn99NOdxYsXS7NyFegrFMFA05SK1AHdGASMZsRLly6V53bccUfRlqFhYlWvSJ+xqaYpgwPTwrRp0yT69e6778pz+++/vxi34iGmUCiChUbGFKnDuuuuK75klNkzeWy55ZbO+++/L7qWPfbYw7nrrrvUODYkxGUzkQTT16RgwYIFYlNBBAwiVrduXWfcuHHOK6+8okRMoQgJSsYUqQUmoH379hVShvkkYmN+79Chg7PXXnuJpumPP/6IezdThThsJojGkTLLB39HqVdLA1599VXnzDPPdA488EDnmWeekUXNxRdfLES6Y8eOYi+jUCjCgZIxReqx/vrrO/369XP+85//yCRNf0uEx2ia8CkbPny4891338W9m6lAHDYTSTN9tbHDxYknnigk7IEHHpAUZevWrZ23335bPPw23HDDuHdRoUg9VDOmyBx++OEH8Sq74YYbnK+//lqe22CDDSRi1qtXLyFoiuS0/ElaOyQbwLD/+OOPi64SMgYwUoaEYRWDh5hCoYgOSsYUmQVNjSdMmCAu4m+99VbN87iH9+7d2znhhBNkglLYD6JvmP4aMsb5C9P1P6mgGnLq1KlCwkhLgrXXXlsWIkQ0MU9WKBTRQ8mYIvPgFnjqqadkMp8+fbr8DSjnpxCAiUpdxe2HVlOWBtYukyZNEoJK+tGk7/EIw8QVs2SFQhEflIwpFHlA4E9DcpocGx2ZpjCTQzhmzpzpnHTSSWpf8n8gXTt+/HjRSn7wwQfy3CabbCKLDKKH6CcVCkX8UDKmUHhIYZK6ZCLTFKYderF8KBlb2TEfOwqsXT7//HN5joghhSw46WukV6GwC0rGFAoXKUxI2SOPPFKTwqTdUufOnUWfRBsmxf+0W/k2E+iQ/va3v0Xy2VknY9i0zJkzR6K6pNtN14ntt99ezkOnTp2kyEGhUNgHJWMKhYcUJlWYd9xxR00Kk/6YRx11lNO+fXvnjDPOyHR7mDjd97OsGcPQmFQkD9qAGTRo0MDp0aOH065du0ySU4UiSdA8i0LhEjvvvLOYx3788cfO7bff7jRq1EgiZU8//bS4++P0j2kmbWTo6Zc1xOn3lTUHfq6vKVOmOMcdd5xcl1dddZUQsdq1a4sW7PXXX3defvll0ToqEVMo7IdGxhSKKoAomio19GX52jImRYgZEbPDDjssE/qyuCJjWfIZW7RokURm6R7xzTff1DzfpEkTWRCceuqp4pyvUCiShfTPEApFiNhhhx2ciy66yHnjjTekp1///v2drbfe2lm2bFlN9GynnXZyBg0a5Lz55ptOmhGH+34WHPi///57uZY4jvvuu690jICIYUdx6aWXSvocrRiGrUrEFIpkQiNjCkUIQuq5c+c6EydOlPYyy5cvr/m//fbbTzQ8RM0gcmlE1NWUaYyMffXVV1KMQNEIP/9fe/cSEtUbxnH86Z9oIYVoUVZKUdGFxEozalNS0MKUFhG1yC60aBN0gWoTtWvRJqLLNtxVUC2MjOwmXSBJIiISDamFWbSwKBO7/fm9cIZzpsku1rxzxu8HXs6cM2d0zMxfz3nP8/b19bnjOTk5VldX56pgak7MepFAdiCMAf+QQkFjY6O7jKlfqp8/f048N3v2bLcmoNpkqIJGVWP4duDXP8Pt7e3uLkgFsLt377pu+eG/KwpgGzdudHMTAWQXwhiQJloH89y5c26O2Z07dyK/bFXVqa6uToQzdf9Hdt9NqWB++/ZtF74Uwjo7OyPPl5eXW21trauEVVZWujt3AWQnwhjggeaUNTc3W1NTkxvd3d2R5xXGFMoUztQ6Q0vXZDpfzV7j1GdMLVH0/Vb4unz5svt7ENB7ViBX+Fq9enXWXsYG8D3CGOCZfgR1l5x+OesXtaol4cuZeXl5tmzZMhfONHTJKtOqJD6bvWZyGNP38dGjR9bS0uIuV9+6dSvyvS0qKrKamhpXAVObCjrjA8MTYQzIwLvn1PVfwUwB7cWLF5Hn1fFfE9arqqrcqKiocOtnDtdmr5l0mVLLEOnr1pwvvZ/W1tbE5PuAwnRw+VHvk0n4AAhjQAbTj+fTp08TwUyVlYGBgcg56mE2Z86cRDjTKCsrS1t1SD2v6uvrvzve0NDgJpz7mMCv9UP/dWVOFS61NFHoCkbyvC9RtUthVZUvhTBdxgWAMMIYELMFzFVtUXf1YISXwAnozswFCxa4JXGCgKZ5aP/i8qbvyli6Wluo3YQ+ZhC89Gev70cyVb5U8Vq6dKnbKigPh6a/AP5czhBeCyDN8vPz3YR+jcDLly9dQAuHtN7e3kRoCK8KoHA2b948t4TO9OnT3dBE8dzc3CE3ew3PGUtHs9dfafr6u+9Bywypiapeq9HR0ZF4rD/nZGPGjHGfQ6FLQ48LCwv/+GsBMDxRGQOyjH6kdbksCGYKaW1tbT9cL1NVm9LS0khAC4aO/eri577upvzdypia8qqaGISscPDSotvhliPJZs2alQheGnPnzmXOF4AhI4wBw4DmmWl+k4KZmouq+vPs2TM3FFwGozv+wuFs/PjxVlBQ4CptGuHHasHh407PPXv22MmTJ12jV1Xp1BJEQ5cW1d8tGF1dXS6oJs+7S652KVDOnDnTbYOhfX2tAPC3EcaAYUw//j09PYlgFg5pGro78HfopoEgnCVvNRR0FNZUfdLn/tk2+Vh/f38kXAUj1dytweiyrObQhYNW8Fgd7jOtdQiA7EYYA/BDWlczHNBUWdIi1ZqTpoalGsHjcP8sH3S5UC0+iouLbdy4ca6iF4xgv6SkxAUubbm8CCBTEMYADJn+GVF1KghmqcKatuqhpqqThuaqpdoO9pwqWuFwFR66RKr2H5nU9BUAfgVhDEBWyISmrwDwJ2h+AyD21EpjxYoV7rG22geAuCCMAYg1tbYI9zgT7es4AMQBYQxArA3W9BUA4oAwBiDWfrTWI2tAAogLwhiAWAuWYwpL53JMADBU3E0JICtwNyWAuKIyBiArVFZWRrYAEBeEMQAAAI8IYwCygrr0azFzbQEgTpgzBgAA4BH/hQQAAPCIMAYAAOARYQwAAMAjwhgAAIBHhDEAAACPCGMAAAAeEcYAAAA8IowBAAB4RBgDAADwiDAGAADgEWEMAADAI8IYAACAR4QxAN61tLRYbW2tTZo0yUaMGGEXL15MPPfp0yfbt2+flZWVWX5+vjunvr7euru7f/pxb968aQsXLrS8vDybMWOGnT59+rtzTpw4YVOnTrVRo0bZ4sWL7f79+3/96wOAwRDGAHj34cMHKy8vd8EoWV9fn7W1tdmBAwfc9vz589be3m51dXWDfsyuri6rqamx6upqe/jwoe3cudO2bdtmV65cSZxz5swZ2717tx08eNB9bL2HVatW2evXr//J1wkAqYz49u3bt5TPAIAHqoxduHDB1qxZ88NzWltbraqqyp4/f26lpaUpz1E17dKlS/b48ePEsfXr11tvb681NTW5fVXCFi1aZMePH3f7X79+tZKSEtuxY4ft37//r39tAJAKlTEAsfP27VsX2goKChLHli9fbps3b07s37t3z1auXBl5napeOi4DAwP24MGDyDn//fef2w/OAYB0IIwBiJX+/n5X9dqwYYONHTs2cVwVsuLi4sR+T0+PTZgwIfJa7b97984+fvxob968sS9fvqQ8R68FgHTJSdtnAoAh0mT+devWmWZXnDp1KvJcQ0ODt/cFAENBGAMQqyCmeWLXr1+PVMVSmThxor169SpyTPt63ejRo23kyJFupDpHrwWAdOEyJYDYBLGOjg5rbm62oqKin75myZIldu3atcixq1evuuOSm5trFRUVkXM0gV/7wTkAkA5UxgB49/79e+vs7Iy0pVA7isLCQjcPbO3ata71RGNjo5vnFczp0vMKVaLeY5MnT7bDhw+7/e3bt7u7JPfu3Wtbt2511bSzZ8+6OywDamuxadMmq6ysdHdnHj161LXZ2LJlS9r/DAAMX7S2AOCdmrOqH1gyBaVDhw7ZtGnTUr7uxo0b7i5K0VbNW8ONXfVxd+3aZU+ePLEpU6a4XmXhOy5Fge3IkSMu4M2fP9+OHTvmWl4AQLoQxgAAADxizhgAAIBHhDEAAACPCGMAAAAeEcYAAAA8IowBAAB4RBgDAADwiDAGAADgEWEMAADAI8IYAACAR4QxAAAAjwhjAAAAHhHGAAAAzJ//AYk0BMrz/gOnAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAJOCAYAAAD7+gCVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA995JREFUeJzsnQe0FFX29cscMGFAxBwYs5hgjBhAUQEjkkVAyQiIMIOYszOiJBUQBFRAggoiKoIiGGcQREFFxtExIkZUzGH6W7/z/e+bpulQ1V3hVtXZazXvvaa7urrCvfues88+62UymYyjUCgUCoVCoYgE60fzsQqFQqFQKBQKoGRMoVAoFAqFIkIoGVMoFAqFQqGIEErGFAqFQqFQKCKEkjGFQqFQKBSKCKFkTKFQKBQKhSJCKBlTKBQKhUKhiBBKxhQKhUKhUCgihJIxhUKhUCgUigihZEyhUCgUCoUiQigZUygUVuKuu+5y9thjD2fTTTd1/vznPzsLFy4s+vqlS5c6xx9/vLx+1113df7+97+v85pp06Y5++23n7zm4IMPdp544okAv4FCoVC4g5IxhUJhHaZMmeL07dvXueaaa5xXX33VqVOnjtOoUSPn888/z/v67777zjn11FOd3Xff3Vm8eLFz2223Oddee61zzz33VL3mpZdeclq1auVcdNFFzpIlS5yzzz5bHm+88UaI30yhUCjWxXraKFyhUNgGImF169Z17rzzTvn7v//9r0S7LrnkEmfAgAHrvH7EiBHOFVdc4axatcrZeOON5TleN2PGDOftt9+Wv1u0aOH88MMPzqxZs6red9RRRzmHHnqoM3LkyNC+m0KhUORCI2MKhcIq/PrrrxLdatiwYdVz66+/vvz98ssvy9/t27d3TjzxxKr/5/n69etXETFAJG3FihXO6tWrq16TvU3zGrNNhUKhiApKxhQKhVX48ssvnT/++MPZcccd13qev4l8gZ122snZbbfdqv6P5/O93vxfsdeY/1coFIqosGFkn6xQKBRl4pZbbtFjp1AoEgONjCkUCquw/fbbOxtssIHz2WefrfU8f9esWTPve3g+3+vN/xV7TaFtKhQKRVhQMqZQKKwCuq8jjjjCeeaZZ6qeQ8DP30cffXTe9/D8c8895/z2229Vz82dO9fZd999nerVq1e9Jnub5jWFtqlQKBRhQcmYQqGwDthajB492rnvvvuc5cuXO926dZNKyA4dOsj/X3755U67du2qXt+6dWshcdhWvPnmm2KNMXToUNmOQe/evZ3Zs2c7t99+u1RYYn2xaNEip2fPnpF8R4VCoTBQzZhCobAO2FB88cUXztVXXy0Ce+wnIFJGgP/pp586H374YdXrt956a2fOnDlOjx49JKpGqpP3du7cueo1xxxzjDNp0iTnyiuvdAYOHOjUrl1brC8OOuigSL6jQqFQGKjPmEKhUCgUCkWE0DSlQqFQKBQKRYRQMqZQKBQKhUIRIZSMKRQKhUKhUEQIJWMKhUKhUCgUEULJmEKhUCgUCkWEUDKmUCgUCoVCESGUjCkUCoVCoVBECCVjCoVCoVAoFBFCyZhCoVAoFApFhFAyplAoFAqFQhEhlIwpFAqFQqFQRAglYwqFQqFQKBQRQsmYQqFQKBQKRYRQMqZQKBQKhUIRIZSMKRSKROD33393nnvuOfmpUCgUcYKSMYVCkQhkMhln9erV8lOhUCjiBCVjCoVCoVAoFBFCyZhCoVAoFApFhFAyplAoFAqFQhEhlIwpFAqFQqFQRAglYwqFQqFQKBQRQsmYQqFQKBQKRYRQMqZQKBQKhUIRIZSMKRQKhUKhUEQIJWMKhUKhUCgUEULJmEKhUCgUCkWEUDKmUCgUCoVCESGUjCkUCoVCoVBECCVjCoVCoVAoFBFCyZhCoVAoFApFhFAyplAoFAqFQhEhlIwpFAqFQqFQRAglYwqFQqFQKBQRQsmYQqFQKBQKRYRQMqZQKBQKhUIRIZSMKRQKhUKhUEQIJWMKhUKhUCgUEWLDKD9coVAkB5lMxvnmm2+czz77TH7+/PPPVY9ffvllrZ/Ffv/vf//rbLzxxs4mm2zi6edTTz3lrF692tlpp52cPfbYw9luu+2cDTbYIOrDolAoFCWxXoYRVKFQKPLgt99+c7788kshWDw+//zzgj958HpbsN566znbbruts/322zs77LCDPIr9DonbaKONot5thUKRQigZUyhSjq+//tp55513nH/9619r/fzggw+cr776yvP2tt56a6d69erOZptt5my66aYSueJn9u/5njO/r7/++kLqiJb9+uuvrn5+9913zuLFi+XzeT/RNa8girb77rs7++yzjzz23nvvqt/32msv2T+FQqEIAkrGFIoU4Pvvv3f+/e9/r0O4+FmKcEFuiB7VqFHD2XHHHat+Zv9ufvK6qEgLBO6JJ55wzjjjDImK8b2I6n3xxRdVj2J///7770W3v8suu+Qlavy+5ZZbhvY9FQpF8qBkTKFIEIgIQbBeeeUVeSxbtkz+XrlyZdH31apVy/nTn/7k1K5dW37y2HPPPZ2aNWtKqi8O2qtsMuY13chx+/TTT513331XSCuP7N+JvBUDpOzII4+sehx22GHOVlttVeE3UigUaYGSMYUipkDuSSrREC8epOrWrFmT9/UI2nMJF79DJLbYYgsn7qiEjJU6zkTQChE1/i8XROY4vrkErVq1ar7tl0KhSA6UjCkUMcGqVavWIl6LFi3KSwTQajHx161bV37ut99+QrqIcCUZQZGxUiAd+uqrr8r5MI8PP/wwb7p3//33X4ugHXrooapFUygUSsYUChtBNObNN990nn76aWfBggVCvj755JN1XgfpOOSQQ2Rih3zxOOCAA5wNN0yfa01UZCwfqCwlSsnDELR85w993XHHHeeccsopTsOGDYWcQdoUCkW6oJExhcISMFlDvsyDSFhu6guiBeEy5AsiplV+9pGxfECTlk3OINiQtmxgsdGgQQMhZhA0qjsVCkXyoWRMoYgIiMKJes2dO1fI1/Lly9dJN9avX18m56OOOkpSjknQdqWVjOWLfr799ttV5//ZZ5+VqtdskF42xOykk05yttlmm8j2V6FQBAclYwpFiGRh4cKFVZPvP/7xD+ePP/6o+n/SU0S8zOR79NFHi++WIplkLN/+//Of/6y6Pvg99/qoV6+eXB+NGjWS6yMOVa4KhaI0lIwpFAGLux999FFnxowZeSMfVDIavRCRD8xSFekkY7n49ttvnfnz5wsxg6CtWLFirf+nY0CzZs2c5s2bO8ccc4xqzRSKGEPJmELhM9ABQb4eeughZ968eWtFN7I1QTzooajwB0kjY7mgQtMQsyeffFLIWrZPnCFmRMy0CEChiBeUjCkUPomzp0+fLgQMHVh2Ox4q5M477zyncePGTp06dXSiDAhJJ2PZoA0UpGzatGlC/LOJ2c477+ycf/758kBrqMRMobAfSsYUijLx8ccfO4888ogQsBdeeEEE2QZov4hUQMJIRSqCR5rIWDbozQkxmzp1qqTEs7sF0MIJUkbE7M9//rNU5CoUCvugZEyh8AAc7x9++GEhYC+//PJa/0cUwhAwTT+Gj7SSsVxiNmfOnCpilt2NYdddd3VatGjhdO7cWao0owYFCrTqolMBRFGhSDOUjCkUJYDofvLkyc69994rFZBVN8966znHHnusELBzzz1XJjtFdFAytjZ+/vln56mnnpJUJsQsu3iEopFu3bo5TZs2jcQg+K9//avz97//vervv/zlL87f/va30PdDobAFSsYUigLAoPOee+5xJk2aVDWRob/B+wsCds4554hwWmEHlIwVxk8//eTMnj1bFhRED01KHX0ZkbJOnTpJdWZYETGiyLlgoaMRMkVaoX03FIosoLcZOXKkc/jhh4vuCzIGESOtw0oel3wsKnr06KFETBEbYCDM4mHWrFnS5HzAgAFS2cv1fM011zi77babaMu4trO1j0GA1KSX5xWKNEAjY4rUg8mH1fro0aMlHfnjjz/KMdl4441F/0Xk4IQTTlDxs+XQyJh3fRn6xxEjRkgBigGN5bt27epceOGFgTj+a2RMoVgXSsYUqcXq1audCRMmCAlbtmxZ1fP777+/pG0uuOACiR4o4gElY+WD6x9S9sADD1Sl5ImmtW7dWrRlRxxxhBOkZoy/b731Vl8/Q6GIE5SMKVIFomAvvviipB8RNiNyBjTbpvwfEoYoXy0A4gclY5WD6ksWKHfffbfzxhtvVD2PTpJ0Jl0i/Lo3tJpSofgflIwpUgFsKB588MF1GnIffPDBkoZs06aNtiKK+aSpZMz/RQvRMhYtHFvAQuXqq6+WakxdsCgU/kHJmCLxTuVnn322tI8xoJS/Xbt2QsJovKyTSjIsCJSMBWduzDVANBmdGaAaElJ22mmnubp/4kLoFYrIkFEoEojvv/8+M2TIkMyOO+5Iadg6j3/84x9R76L14BjF6dj9+uuvmRkzZshPhf9YuXJlpk+fPplNN9206lo48sgjMzNnzsz897//Lfi+v/zlL2tdP/ytUCjWhlpbKBKFr7/+2rn++uud3Xff3enTp4/z2Wef5X1dGsvoiU4g0OanG6gFgSIb+JANHjzY+c9//uP069fP2XzzzZ1FixY5Z555pgj86ZGZ3ZPVXHPZkVXA326vQYUiLVAypkgEVq5cKRMEJAyh8VdffeXstddekmbLB9IlaQLHgdQS6Vl+Fjoubo5R2o6dYm3UrFnTue2224SUcR1Vq1bNWbJkifiYHXbYYdIqzJAyJfQKhUvkRMoUiljhX//6V6ZTp06ZjTfeuCoNcsghh2QefPDBzG+//ZY3TfLXv/41kyZUkm609dix7/fff/9a30HTlNHgiy++yFxxxRWZLbfcsuo6OfDAAzOPPPJI5uWXX45VqluhiApKxhSxxFtvvZVp3rx5Zv31168a4I877rjM448/nle/km/yTgv43vkmRJ53A9uOXSENUjlkzLbvFmd89dVXmauvvjqz9dZbV52bk08+OdOhQwcrCb1CYROUjClihc8++yzTtWvXzAYbbFA1uDdu3Djz/PPPR71r1iJuQvxyv4tXMqbC8mCwevXqzJVXXpnZZJNN5NywYGrWrFnmrrvuiuU1p1CEAdWMKWLT6PiWW25x9tlnH+kd+ccffzhnnXWW89prr0m/veOOOy5QMXucgZUAlhTZQOsTR4sBvzRIKiwPDrRQuuGGG5y3335b2omhH0NHdtVVV4ng//fffw/w0xWKeELJmMJqMJDjCL7vvvs6AwcOFIdwKrfmz58v1Vt16tQJRcwed+AN9o9//MO5//775Wc5rWdsILB+FRWosDx47LHHHkLC5s2bJ+bKVDr37NlTRP48p1AoshBK/E2hKAPz58/PHHHEEVWpqF133TUzYcKEzB9//FH28UxSyi5M2JTSK1RU4CVNqddBsMjV4lFMc/fdd2e23XbbqvN27rnnZt57772A90ShiAeUjEWAm2++WcwSt9hii8wOO+yQOeusszJvv/32Wq8ZNWpU5oQTTqiqUEKH4QbPPvts5rDDDpPqwr333jszbty4dV5z5513ZnbffXfRdNSrVy/zz3/+M2MTVqxYIcfEDNocA47Zjz/+GLmYPY2wkbj4UU1pa6Vokok7Iv+ePXtWaT4Zg6jExKRZURgQ2YMPPljGQh5HHXVU5oknnih6yF5//XUpauIY77LLLpm//e1v67xm6tSpmX333Vdec9BBB0kBlCIaKBmLAI0aNRKS9MYbb2Ree+21zBlnnJHZbbfd1hqQBg8enLnlllvk4ZaMscrcfPPNM3379pVqw+HDh8ugN3v27KrXTJ48WYja2LFjM2+++abYQmyzzTYijLehRP6SSy7JbLjhhvKd2fdu3br5um82Eoso4KWKMC4EVqspo4fb+2vZsmWZBg0aVP3/zjvvLFHvYk7+aQZdDiBKWPmwWB04cGBmo402kjkkH7799lvpPtKmTRt5DVY/m222mSzyDV588UUZY//+97/LfEHRBdvk3CjCh5IxC/D555/LgLRgwYK8kS63ZIwVKP4+2WjRooWQPwMiYT169Kj6m5RfrVq1hPRFhZ9++kkGhOySeCokIYtBIO0REa8px7gQWPUZix5eiDvEa/r06Zk999yz6nWnnXZa5qOPPopk3+OG6tWrZ8aMGVMwksb///LLL1XPMc4RBTPAGohxNht//vOfM126dAlwrxWFoAJ+C/Dtt9/Kz2233dbT+0488USnffv2VX+//PLLTsOGDdd6TaNGjeR50zR78eLFa71m/fXXl7/Na8LGnDlznAMOOECq/TgOCPKffvppqZDkeVvF7HFFOVWESarGVNhTYEGD8bPPPtt56623nJtuusnZZJNNnNmzZzsHHXSQ3JsECxTrgkryyZMnOz/88INz9NFHy3PMA8wHBozn9evXdzbeeOO15oIVK1Y4q1evdjVfKMKFkjELqgXpoXjsscfKIOQFu+22m/SLM1i1apWz4447rvUa/v7uu+/EGuLLL7+UGznfa3hvmPjmm2+ciy66SG5+2qrUqlXLGTdunJDFBg0aBP75EIkLLrggdYSi3CrCoAlsbqWmm8pNP6o7bagQTRLKIe6bbrqpVEpjU1OvXj1ZlF144YXSXqlQb9k0YtmyZc4WW2whpLVr167O9OnTqxaszAPMB6XmAvN/xV4T9lyg+D8UjJkpQgEGpojpC4XmvaQpa9euLUL3bKAz4P2I3z/55BP5/aWXXlrrNf3795f0ZZj6B1Kj7Mt6662X6dWrV2bNmjWhfX6aYWPKMTdtyrVYKo2aL9UalumruvYHd4yourzppptEu8Q52W677URkrshIyvGdd97JLFq0KDNgwIDM9ttvX1DKccopp2Q6d+681nO8lmOKPgxwjCdNmrTWazDmrVGjhh7uCKBkLEKg3aLKpVh5txcydvzxx2d69+691nMI9bfaaquqmxnBJjqNbLRr1y5z5plnZoLGl19+mWndunXV5PenP/3JKuf8tEyyNmnmCpHDYmSx0HtYZARtbWGTxUeSQSXgoYceWnWc0b4yfij+BwogcgmXwQUXXCAV6dmYN2+eHMuvv/5a/sYqiEKxbNDOit6+ivChacoIAAnG/JAwM+aHe+65py/bRT/wzDPPrPXc3Llzq3QF6AcwTM1+DWlS/javCQqYPxJSnzRpkujUSGWQlvDqnB8U0mQEW2nK0c/Unlvn/OzXFXrPv//974o/t9j+uNXblZNyjTv8/o6HHHKIbAvX/g022MCZMmWKc+CBBzozZ870ZftJAGP3L7/8kvf/GM+fe+4557fffltrLsA8u3r16q7mC0XIiIAAph7YNVA5iKnpp59+WvXI9tHi7yVLlmRGjx4tq5nnnntO/sanJ3v1Q7g619qCtOPy5csl5JzP2gJPmfHjx0u4mpUV1harVq0K5Lyw3fPOO69qhUu1p22+Zjam7mxCdsTQ78hQnCJjbioFy0m5xh1BRwtfeeWVzP7771+1/QsvvNC172JSwDhPtf1//vOfzNKlS+VvJB5z5syp+n/mA4NvvvlGrC14DmsLxn3mhlxrC2yEBg0aJPPFNddco9YWEULJWBQHvcCEk23Qyo1R6jWYwjIw5aY1Ce/jJbbXXnvlNX3FfwxfM17DZBEE6aBs/YEHHqhy3Oamv+qqqzI///xzxjbExUcrilRt7kQbBGnN/QzK60ulUfOlWoM2fS1F4MohlnFHWAsZ7G/69esnBITtI+/IXmQmHR07dhRtMWM2RuGkKA0RA8wDzAeFTF/xcbv11lvX2S56POQibJeFspq+RgclYwrf8fHHH2eaNGlSNTDTEYConq2wKTIWtm6tWNSrbdu2rsiFH6Q193u7OQ65rwnD9LUYgStE6uNA8su97sJeyLzwwguZffbZp+pzyAIg+lco4g4lYwpfo2GYEFIwwEDJaovKKC+TY5pF7WGLw91EveIU6QnL9LUQcYlrZKyS6y6KhQydSih+Mp9FlIjuHQpFnKFkTOEL0Cicc845VQMk6c9CrTpsRZTVlGFPam6JQ6mHTd0LbHDgLyflGiX8uO6iWshMmTJFdFB8Jim8xYsXh/K5CkUQ2DDsggFF8kBVZLNmzZx3333X2WijjZybb77ZufTSS6UKKk7AmDIqE9hi1X1B7JPbKkaMcamSM6DKFDNO3o+retpMc91Uqp577rlrHR+qAm09Xn5cd/m+cxho3ry5VGjj4s/Yg3H2qFGjpCJaoYgb1oORRb0TiniCS2fs2LFOjx49pMQaB2gsLOrWreskBWFNpHwOlhq5wHrCy+e63d9Cn5cNiBe2FzaTiWxQxv/EE084Z5xxhiwK0oRyz5Ff11058Ou6optHmzZt5NyDSy65xLn99ttTdw0o4g0lY4qy8OOPPwoJGz9+vPzNBIhv1XbbbZeYIwoZyfaVwhuNKEBYn2fIkNsJ7ZFHHvG0v/k+L8qo1++//+58/vnnzsqVK50vvvjCWbNmTdXj+++/X+d3evPR3gu/JR74KoHjjz9eorL42fGoVq2atJHZcsstqx7Zf/P7DjvsIC1latasGbtJvNLrtNLrrpzrxO97i/N/3XXXOddff33VNTB16lQ5nwpFHKBkTOEZDMKkJemVxmR34403yuDK70lBVBEDL5Nc7oSWD6X2N6yoF0Trgw8+kM+iF+mnn34qD4iX+R0ili9Qv/nmm69FoMxPSNaGG25YRbomTJggr2/dunXVBM3nsnAwBC6b1EHm8mH77beXXqmQs+zHHnvsIccJk+bsBsxRIuyIqh9EKsh7C1NYUuv04+UcPvzwwyUjwAqFDVAypvCEadOmSYNvJjOayj744IPOSSedlLijiE4qn/aE6B+DfdRwk2YMe38hUjQZZlLPfaDpMW7gECgiFrmEJ/vvGjVqOFtttZUQLrfaQ69pSsgahIxrmUhcLjnM/p3Hr7/+Ku9jfyBkEJfcx8477xzqoiTs69QPIhX0Pq9YsUIivMuXLxfSPHz4cKdz584Vb1ehCBIq4Fe4AhMRK+ChQ4fK3/Xr13cmT54sE2cSwcTq5fmw4VaAH9T+QryIcC1evLjq8eqrrzpff/21/D+ExBCWRo0arUVYdtllFyuiqOyDSVVCBOvUqVP0+0LIcknmk08+6dx5550SgQMQyMMOO0zajplH7dq1A/u+YV+nfgj+g95nWv5AGtu3by+p+y5dujiLFi0SUrbJJpv48hkKhe8IpEZTYTW+/fZbT6//4IMPMkcdddRapetpMFq0wXusEk8rP/f3ww8/FCsBjgm+TtWrV6/6HNzQaUp83XXXibUErVVoSp8WawvuhXfeeScza9aszC233JJp1qxZZs8996w6PltuuWWmfv36mT59+khXCl6LJ1+U12m5Ni5+WbCEcW9xjDkfxrUfN/q4tlHyOmYr4gclYykDkyQtL5gQ3ODJJ5/MbLfddjKY0cPy0UcfzaQJUXqPlTLjzDeh+bW/kC+2QxsW2mqZz9h1110zZ599duaGG27IPPHEE4H1NI2rz1g26CM7d+5caUNz/vnnr3UcaU/Tpk0b6T3773//u2Jy5uW8V2ou7BeRCuveeuqpp2TsYl8POeSQzMqVKzNxAvfiY489lvnhhx+i3hVFgFDNWApBKfhLL70kaYF99tmnoJ6GyiQekPbDDz9cbCtIPSmCh1ttjl8C/I8++siZP39+1eO9996T5w855BDnxBNPlAc+Tmi5bEUcrC1Wr14t9545zqR2uddI3ZrjzGOvvfZy1ltvvUQI/m0AxUaky0k1c2znzJnj7L333o7t4L58/fXX5RhT8atIMIJkegp7Qbi+UISM6BmrdrPy7dq1qzTqVYS3mg+659/vv/8uff6Iauy///5V2z/44IMzl1xySebhhx+OXYsZ2yJjbjtXkN687LLLMkcccURm/fXXl/NAmrN3796ZZ555xtfvE3YvSRsizAbvvvuupNT5vttuu23mtddey8QhIvb5559HvSuKEKBkLMXIR8iYHNAEMWBtsMEG0mtSEX7vyCDaI61Zs0ZIVvv27TPbb7+9bG+HHXbIdOjQITNt2rTYka8kkLF89+TMmTNlAUQqk3O09dZbZ1q2bJmZNGlS5uuvv65o+1H0kgy756rb/dhkk00yzz33XMZGKBFLH5SMpRzZhOzjjz8WTQUDVbVq1TKzZ8+OevesgQ2TWDnanM8++ywzYsSIzOmnny6N29nOAQcckBkwYEDmxRdflAhZUpAEMpYNdGT0W7zmmmsyhx9+eNUC6aSTTsoMHjxYJuy0CP4rRaH9gJARfbIJSsTSCSVjCiFkd999d2annXaSAWrHHXfUprsxTu98//33mYkTJ2bOOOMMmbyzJ3DE4klF0shYvkma+9QQa6oETzzxRIlee60SDEvwH9V943Y/DMG97777MjZAiVh6oWRMkZk/f76kQhiYqPh677339KhYusIvZq9AJLNt27YS1WTfjjnmGJm8455+dIukk7Fcq4Nx48ZlGjZsKKSMCM95552XmT59eubnn3+25rq35b4ptB8sWMzvd9xxRyZKKBFLN5SMpRx4R5n0Vb169TIPPviga9uLtMEG37FcLFq0SITeRDPZp/322y9z4403ppJQp4mMZQN5waBBgzKHHXaYXAPYOHTu3Fn0UJVaZvgR2bLlvsm3H3/88Ufm0ksvrXpu4MCBvnrAuYUSMYVaW6QYgwcPdvr27Su/0z5k4sSJzi+//FJle/HVV1/Fqnw9DLgp6Q+67J/+irShGjlypFgj0FqoVatWTps2bcSCJAhLhDggDtYWQeOtt96S+5gHvUD3228/caCn/dC2227rpN0KI99+EJSgMfrAgQPlb1on3X333a7bcFUKta9QmAtRkTKwGsQN3KwGsTLIFnKjP6G6Dlf1qCugwiiZ97PsPsjKsWXLlmW6desmju5YIDRp0kTEx2nohuAGaY2MFbrHscVo3rx5ZqONNspsuummmXbt2pV1jYcd2Yrqnr7nnnuqrEUwO+YYBg2NiCkMlIylDPiF4QZuBta///3v64TlGcDQjtG6JZuQ2aKP8pP4+LENM/AjpPZbHwPRwo4CoTbbqlmzZuaqq66SFlWKtaFkLD/okkBboD322EOuobp168r16kVb5oXcVEKmor6nkW0YQsaCNciUpRIxRTaUjKUIeBTRI4+BhtUyFXfFdCK5hCzsCqighcF+bCN34PercgxPMHRAtB9iG8cee6zo+aLo+RgXKBkrDqLfeJidcsopVR5z1157rbRt8guVECFb7unx48dXvQ9bkSCgREyRCyVjKQEuzgcddJAMMFtttVVm3rx5rga0bEJmU2TMD2Fxpdtw06zb60Tw5ZdfZq6++mppxL3hhhtmLrzwQrUZcQklY+5BM/fu3btL+pLq2759+0ohQCUodD8QMXYTKbPhnjYYNmxYYFWWSsQU+aBkLAXA2oA2NwwstWrVyixdutTTChdC9tBDD1lVZWnDKrqYd5FXfc1HH30kaZHNN988s9lmm0mFpKYivUHJWKYsU2AqCLG2oar64osvzvzrX/8qY0vu7odikTIb7uls3HDDDVXvp6G7H1AipigEJWMJBymIQw89tEpvtGLFCtfvzdZ+FOtlGRX8EBa73UY+HUylkQDA+UAsTNoYS4Irr7xSe9GVCSVjlfmW3XrrrWKRgmYK4f+SJUs8bcOPSHGY93QpoBfr37+/bAMvt8mTJ2cqgRIxRTEoGUu4Rsy0UWGQJTVRCbIJmQ2Nf8OqvCqmgyl34OcY0m+QQR6STCEFE6KifCgZqxw//vijGAXTqJzruXHjxp4aavuhobSpQhpC1qVLF9lvZAM0dS8HSsQUpaBkLKGg4TdVU0ao+8Ybb/iy3TjZXvgBN2kPLwP/p59+KvYUDOw0gqZvJBWuisqhZMw/UMU7YcKEzD777CMLhjZt2rg2Eg6yujiqwofWrVvLvqOxo2OJFygRU7iBkrEEggjLUUcdJYPHdttt50oj5hZxsb2odGVs3k81lR+CYMjxFVdcIZowxPlEwohCKPyDkrFgjikLBqK3pNLxJERn5halIsd+3adBjz8ch6ZNm8p32GKLLTILFy509T4lYgq3UDKWMGCJgA0CgwaTvlfdRynEwfaiUq8iN6kWt4M/Ua/bb789s+2224owf8CAAZ6bOivcQclYcKD5/M033yxCf8gIi5TvvvuuIsLk930adISee/mkk06Sz+J+xoS5GJSIKbxAyVjCBkzjI4YYfPHixb5/hu22F0E1NvaqC8O9mwkIn7ANNthAdCeffPKJD99QUQhKxoIH1iv9+vWTxuTIH7CAKKcDRKXFL1E1IIeA/vnPf64qiHr//ffzvk6JmMIrlIwlBD/88EPVqg0fMbdh9HJgs+1FpT5Dhd5PJMBtOoRo5DHHHCPva9asmacKVkX5UDIWHiAbVAGjJ8M2h6bkYdpg+OUnVm6FurEKolKdRXA2lIgpyoGSsQQA7VHDhg1lcKBv4csvvxz4ZxayvYi6yjKoyJib93McevbsKdYABx54YObZZ5/14Rsp3ELJWPhYtGhRVaSobdu2UqAShg1GVJExAzwAiQzymbSXM22TlIgpyoWSsZgDHcNpp50mgwJO2i+88EIk+2FTlWWlPkNe309Kcty4cTI4Q4bRiGmz6vChZCwacP2TXtx+++0lKj948GBXqctKbTDCbmCeC6KBFDXw2RjEKhFTVAIlYzGffPABYjCgSm/BggWR7YttVZZhVWm9+uqrmaOPPlq+K+XvqguLDkrGogXpO2xbTOrSzXhUqQ1G1JH4UaNGVe0r1dK0nVMoyoGSsZiCsHinTp1kEKBKL+qUWByqLP0cvNGJ0LLIpCS9eg8p/IeSMftSl+3atXPdiLxYpCtq0lUMfEeTmShVYalQFIKSsZgCnyoGAMjAzJkzo94d66ss/SyFJz2x9957CwkeNGiQpiQtgZIx+1KXVHXvtNNOrseofKQrbAsLLyA1OX369Co7IcY+Kk4VCq9QMhZDPPzww5IK4OYfMmRIxhbYXGXph+CXaFivXr3k2B933HFlN1RWBAMlY/bh448/rpJSEEGiRZsXRC3UL4ZsjdgXX3yR2WOPPWTfGjRoUJbdhyLdWN9RxAqvvPKK07ZtW0i006NHD6dXr16OLfjb3/7m/OMf/3Duv/9+Z9KkSU6DBg2cf/3rX86///3vqHdN9sPL87l4/vnnnTp16jijR4927rjjDmf+/PlO7dq1fd5LhSJZ2HnnnZ3HHnvMGTdunPPoo486Bx10kPP444+Hdt8GhY8++sh5/fXXnT//+c/ODjvs4Gy//fbOzJkznWrVqjnPPPOMc9lll0W6f4r4QclYjPDBBx84TZs2dX766Sfn9NNPd4YMGeKst956jk1gcLrgggvk5zbbbOMcc8wxVYTsn//8p/PAAw/Iz7Dxpz/9ydPzBj/++KNz6aWXOieccIJTs2ZNGYD79OnjbLDBBgHtqUKRLDBGtW/f3nnzzTdlQdOkSRP5+5tvvgnsvg2TiBkcfPDBMr6BYcOGOWPHjo1sHxUxRNShOYX73oYHHXSQhMEPOeQQ161IbIAtthdeS+H/+c9/ZmrXri3NgbGroGGwwl5omjIehUdjx44VC4xatWpl5syZU/I9UVtYZMONfcW1114r+4ntxYsvvhjq/iniCyVjMQD6g0aNGskNjhiWASFOCNv2oljllZuqLCYMyNeGG26YqVevXubtt98OZD8V/kLJWHzw0UcfZU455RTRXw4cOLCkxsqGakq3PmIUL5x33nkyxu24445qd6NwBSVjlgNi0LVr1yovMcrG44YwbS8qrbyiEqpJkyby3v79+2ulZIygZCxegLTccsst0ruVghibF5leDV3XrFlT1TIJ0sl3VSiKQcmY5SBCww3NCnLGjBmZOCIM2wu2Rf/ISiqvsKzYZZddMtttt520d1LEC0rG4gm6huy6666Zbbfd1gqbnlyU66y/fPlysb9hDBo6dGhg+6dIBpSMWQz8a4yFBaQszgjS9qJUW5VSETi0YDfeeKN4th1//PGSQgkSrJrdGmEq/j9IY3HcmBCZHGm+jsHm0qVLM6+//ro0Z0fj9+CDD2o0M4YgIt20aVO5Xy+99NLML7/8krEBlbY4uuuuu+Q7oTt94403fN8/RXKwHv9EXUSgWBeLFy926tevL9V8Xbt2de6++27rKie9gipKKiuphNp3332dl156SX7fZ5991vo/qpS8bPOoo44q+hrsNgpt87PPPhOrEMrRr7zySufqq692NtxwQycI/PHHH7K/Tz75pPPrr79KVeZOO+3kpBUMPd9//71U1X377bdVP3n88MMP8n9UDvM7x+u///3vOg+zHcDfm2++uVisbLTRRhF/O4VXcB6HDh3q/OUvf5GqyylTpjh77bVXqAcyexyqVatW3qpJr9+pcePGcs8feuihMhZtsskmvu+3Iv5QMmYhKJ1mAPj000+dRo0aObNmzQqMIEQJJl8I2TvvvCPExIDBmAnVzaD57rvvOtddd13B1/31r391br311oKebWeffbaQpIkTJ4ovWlBgP/FbwuJj1113dT7//HNn//33dy666KLYk+xSgCR98cUXcj1/+eWX8uBviDBk6/fff5cHdiFMVJtuuqmz8cYby+/8zH5kPwfh4titv/7/d+h57rnnnK+//lp84JSMxReLFi1yWrRoIedy6tSpzimnnBLK5zJW/P3vf5ffTzzxROeSSy5xjj/++LKJmMGqVavE9oLr3s3YpkgnlIxZht9++00iYqygMEh88cUXna222spJKl544QXn/fffdx566CExhXQTzcoeNAvhmmuuES+2QtvAlBYixAp8+vTpgUWovvvuOzG5XLhwoZCMunXrOttuu63zySefyHOdO3d2DjzwQCcpgNga4rVy5Urn448/dj788EOJ8P7yyy9yDHhsueWWcl3zc4sttpAHBKsSPPvss0rGErRQa9mypfP0008LuYYYBbloyY6wQ8S6dOni3HLLLc4999zjKVJfCDNmzHDOOecc+Q5cp/gWKhTZSF64JeYgVQYR2XrrrcXROclEDPznP/9xrr322qroliFkRL3yDYIMmqWIGGSNbRYiCxxjomWY0zLYQg78BukJUhwMwqtXrxbSt+eee1ZNKDiTc44haqRE4hrJIZXIOYRwEdE1xItFBceV70i6Z7vtthMSWinhUqQDGEaTEeBe7t27t7N06VLnrrvuCizFZxz9s4kYn1loHPIKIvAXX3yxM2bMGKddu3YyNvAdFQoDJWMWYfbs2VVE495775XJO+mAiLz33nsSycomZPkctiFitFXJB96/9957F9WcEaVq06aN88QTTziDBg1y+vbtG8hqm8+BSBP5qlGjhnPGGWfknUSOOOIIZ+7cuZKqjdNKmUjmW2+9JRMVkS9SjYZ47bLLLkK6lHgpKgXSjNtvv11SfBCkt99+23n44YedHXfc0feDy7iRS8TM835h8ODBEhVDstCzZ09nwoQJvm1bEX9omtISkNJB4EmKp3v37rIKTAtM2hGxLoTsq6++ktVwvtcUQrG0JkCrdeaZZ0p6cPLkyZLCDDIaht7lyCOPdHbbbbeS+hhSMv379xcyEwf9F+eIaB/toUjv8nOzzTaLetc0TZlgvPzyy5LmI7LKYu2www7zdftEddGQcm0bIlZMb1ouGKeOO+44idA/+OCDkopVKICSMQvAjYlIlVUT6Sxu2CBSZzbDCPKJBhJZMlWWbiomSw2aVEqef/75Vc1899tvP9/3f82aNTJJMKDzOfXq1XOVUqFKkHQMOsFmzZo5cQB99zhHTCo2QTVjyQZRWNJ9RGXvu+8+uaf97jVJlL6cqm4vMLIM0pQQPwp6FApNU1qAm2++WSaSatWqSTl32ogYYOAzg5+psgREyQqlJkkpdOjQoeigiVD/wgsvdE466SQ5ttWrV/c9GsaAShGA22hYNljpk4bh+0LgvLw3KmBLQqk+3z3plaAKe0AK/Pnnn3c6duzoNG/e3BkyZMg6EXSviz+IELpHY1/BIygSZnDFFVeIJIV9YGyiSMFUBCvSC70CIgbl+EZsjpcYE13awYrxmGOOcV577TXRb4waNSrv60oRMTyL0Ii1bt1ahPJ+EzGiYZC9sWPHii0DfkLlkCkigOhj2Mc42P6RTiaaS3RMoQgTpMOxoSGtjx3O5Zdf7vmeIZJOpJ37FtsJFlOV2ld4AcU6DzzwgCy+WYQz7isUSsYiBL4zrVq1Eh0OFTY8FP8fK1askEGT1N1ZZ521zmHh/woRMQZnBmkGawbt8ePH+16tiAgXssfqFiE+fkTlVnoRXWIbpF9Il9iO3XffXawo0DkqFGGDKBL6UYpwkCdgUYNPnRuYauxssT6RKp4PE7Vr13Zuu+02+Z3qbjz3FOmGkrGIAGFo3769TGhEw9Ik2HcDUgimyjKbkDGAoqkrpBFjUCaNwf9TicXA62cqDeI8b948Z8SIEVJFSCGAH6lFKsTQmlHpiR+XzSC1uscee0gxhEIRFS677DKJMPFA3I+liptxJV/VpLG2CBN4DLIIo+PEgAEDQv98hV1QMhYRKHMmLUU0BS0TkQbF/2BKynMJWbHUJIMxgzIl4wzQWFf4nZYkyvbII48IAWvYsKGvVYQMzJBzdDE2Lh4wcmXf8EpasGCBWHeQrlQoogKtzOhswQKJIih0m8WARiyXiPltYeEWSBvMIpxxhYpRRXqhZCwCUHFnVkK4S1NBqVgbEC5ah2QTMkxaMQ/NBwZhU5HK4Mwg7ScwNqWKkDQiVYSHHHKI7+J1CDn6Mao/S00qYREwTFyJ1lFkQhsXFg48h6cb5JTjolBEidNOO03IGNIG5AJUR+YDzyPWZzzJJmLFJA9Bg88lzQp69Oihi5sUQ60tQgYhaTxymMTOO+88Z9q0aVqRVmZzcQO82YhSkTaDOFCV6CchYcVKtSS6Mwb7ID21SLNidcF3oPAgbPB9OY5vvPGGFFAgcAa46BMNROjMip79hCBzPJgMbYBaW6QbkDF6+ZprIds0O9u+gms4e1yJiohlj1/sB1XkRMrwmVSkD0rGQp7oMPmj+S0iaCY7bYnhDcb2whAyhK80+KYYgtXxAQcc4Nv5QruFdxipOTRSkOgwStAh6qzc6cdH5WJYKcg333zTWbJkiaRKeQ4Cxvemi0C+KOCdd94pxKxbt26ODVAypoB0YWNDOy7GAyK4uUTMRkDCcOVnPoAk2rqfiuCgZCxEEAXDHwcbAyb4YkamitKEjIGLfm/8zcDrp5kr/mZoz3DuxzsM8hwWIEJPPfWUkCEG6KAIIBo7JimiBB988IEUJ+CmT0QBAlbqc/FK4jyQct98882dqKFkTAGI7ELIKLDBBgMLFpuJGEB7yTjDAp20JbpMRbqgmrGQQPsYIh2AyUuJWPmAhLHibdGihWir5s+f7ysRQxPFShWCQvozTCIGiEIxML/zzjvSLslvosf3euihh5wbbriharLi8yiQOProo4WQuSGABx10kHQQwOZDobAFO++8sxSYYJ5NQY8xc/UKFikUAoVhe5Et5qcvcdhWG4rooWQsJCASJaWG7glfmygQ5uAS5P58/vnnMsiymrzxxht9jRzh9TVy5Ejn559/Fv1JVP0isbmAFBF9clOyXwqkbRYvXiypRSp5iWgxaWFUSysmfvd6HIncMeERPVQobAKaxquvvloKfqjERrRfjjEs3o/85O+ggdE1jvxAxfzpg5KxkFz2R48eLb/jJh9Fu6MoBpcg9gexKxoxIo1ExBho0VhUSgiMUB9Xbs4Pn1GuiatfOPzww+X78j3LBVGvuXPnSjUkbaXYHsUBTZs2lchWJcUIkDda1BBpUyhsgdGIUVhChIwUOmnL999/35MxbDb4O4xFLBXLLABZOGmqMl1QMhYwEIFj7gfQN51wwglO2IhycPFzf9CGYV8BoUAfhIjftE6qhJChlSICNXnyZGennXaSCkHSBlEDokQkFTJGNNBr1S4+dvgp0RydCYlI38knnywRLb9sOdg/zocNVhwKRa5Yn/sZPSmV0BAymo2XQiED2DCMYTF/vv766+X3gQMHinZVkQ4oGQsYRCQoueYmyyUgYSHKwcWv/UGMe+aZZ8pgiw9XtkasEkJG+g7vLIgLlZgYr9rU/Hr//feXfTSNuUsBwgr5ogMBRQBMRkTB6tat62y55Za+7x9NzkkJoW9TKKJEoapJUvAs3lh0ES0jql4MhQxgwzKGxdqC+4oFzlVXXRXKZyqih5KxAIH+iMgEGD58uO+Nqt0iyMGlHN2X1/1hssdzCzE7pOnAAw9c5zXlELIffvhB0pIvvviiDOA2NmknQoelxquvvlqUrDJwY8PB9QZZJfoFCcOclvZFQYHjTlpFRfyKKFHKvgLnfRYnWLhwX7C4c2M4Xa4xbCX6XKrtmS8A8ha36VVFvKFkLCCwCuvUqZNENZo0aSLapqjgx+Dip+7Ly/4QDWKliKs+FYDFqlC9EDLC/+j38NYidcxgbSvYN9z5MYPNbYgMCcOQFq0J6RiMWbneWFn73Ry9EPAiM9YYCkXYcOsjRjQdU2i89PB7LNZcnPuJHrj3339/0V64QelzGZOQZLCPVD0rkg/1GQsIVORhhskkSoTMhsm+lOu0F1dqXpuPGDFwuSV5bj6PiigGo/vuu08Gt3KMYXNBVSsrTtIVNA0OIn3nN/hOTz/9tNOqVSvn2GOPlZU94mTSL1R+EtXj+7KqDhtMbnjoQZoR9KfdZwxSGoY5sMI9EcsGKX+iY+3bt5dxwE9Zgh/jYvZ7sJohOv7222/nHcsUyUH4I3dKTAfNauimm26ygogBBoNCAwL7m61pI3LF6rAc3ZfbQafY/gB8dyBi7JdbIpYdIYOQgexBjDQFAzB9FVl5RlHZWg74TlxHFBrg7YVpMKJ+CBhatyhIWLaujQgm5z5KMmYDsFCg6TMaUSIx+OFx3mwoCEkaynXWP/3000WegI0E9jHY4/gFP8ZFA0jdGWecIdE8RP1E6RTJhZKxANCrVy+xFMBCAL8Y21GouvHcc88tOIAELXIl0oJJbt++fZ1+/fp5fn8+QgZJhojh24WZa9TWFV5x6KGHOiNGjJC+kQjy8QgLsk+mW0Bo8UVTbYsj54ZKVsgxhRTmWqxTp45YiUDOoiBm3OOvvPKKVBRC3m0qUikHlbY4YnHHYqZ///5CnI0hd6Xwe1y87rrrhIxhzkx1pZ/m1gq7oLF0nzFjxgznkUcekcGYiT8OK+Jyqhvd6L7KFbES9Wnbtq2I9m+77bayJ45sDRnbvOeeeyS9F0ciBthnBmOsJBDo20DEDEwPQDSSaQXRweXLl0v1Hka6Z599ttikULhDkQiGu0RhKLRA04hpcRggHc9nch9wDxC582qVYhP86jXJIu+yyy5zevfuLWO2V+Qb3/zW55rOGKS+IWaK5EI1Yz6CaBgpGxotX3755WJrEQdUonMopPvymvY0QAhO1IeKSaqf/KgERG917bXXyqTUpk2bQKsLgwaCXiomiUR16dLFGm0S5II2Lh06dAjNAsA2zRhFIcgSqH7NlSZA1Lj+aAJPhJbzCJEg2knEjCKIoKJV+OdhaExhB3pJKnM5PnjO8YhSX+cVfjf9huQg5qdKmyg6EUw3KDW+edHflgLfl+uE62Pp0qVyvSiSByVjPoL0JCXJpMS4aWyKXHgdXPg7t4LI7QBTLrn7/vvvRZyOnmvhwoVCOPwCk9GQIUNk0sP81BYSUw5oJow3GmlkiKsNYFKj2IJIJDqXNJIx0oBEnYhkFCP8EDOIG2ldiBnHjipY7hkm3WrVqvm2T3zG0KFDq1KkgIgcVcTcy3vttZdUevP5aSNi2RY3RDA5J5zDGjVqhCbSd4vzzz9fqsnPO+88+alIHuI7I1kGBjb0PICffhKxMHpKlirl9lKuXU7akwmJ6iYE0Ght/CRigKqkPn36yORExC3ONgxM2MbIkkpKGwC5xWA2zboxvNa22mqrkpFXIhxc36SgMDLm2oQQPPjgg5LGRC9Js3o3Jr/FwDWOJQzpbUiXAdIJ/OcoYCFdOWzYMCkMsTnFHBQRA5Bf5CXcSxBTCmRsM9Emss918/DDD8tiTJE8KBnzCYgrST0gqkaTFMeekgx0F1xwwTqrO6/ti8oRsVI1yUAzYcKEwMLw2YQMUWxYmp0gwAqZtBeEzBZgr0G1KsQibYD4YD+AGNwLmGCp6ENjRhqRalSiuET37r77brENKZckkY6k+0ehrhKY9Z566qkSLcbDDk0bJDBNRMyAyCC6MRaiPXv2LEqEo3DoR7ZBOhVcc801gX2OIjooGfMBDJ4QCaIDXswB49JT0utK0KuIlWPHyo+oACmeIAEhQydD82y8y+JKyIhCoW/hWrClfx0kGuIQVZutKIFOFG0ihRWVVKUy6Zr2VatWrRIdHvc8BQClIjbZoFAFPy2IXjECw5jFeSNKxucRJSNybEuULAwiZoBEAn9ICq8gwmGbaJcCJIzzReaAdKoiWVAyViFYQVEeDRAv+xnVsaGnJJN9oVY3xVaCbh2sGWiJ+rVo0UKii0GDfSGCwWRHuD/OhIxICvvOpGsDmPhJz5NqThv4zpwLP9LrRLFIQzdo0EBIEpg0aZLcUy+88ILzyy+/lNwGhsCI9Q8//HBXn0mUDC0lUTJSm0TJ3DTVTgoRM+jYsaNUV/Kgo0UQDv2VRJ6pMgcaHUseVMBfIdAanHPOOTIJ0SyZQdQvRCEULSbqz/2/7AGonOohxNZMFttuu61MMptvvrkTJFhNosshekHqZv78+dJKCA0WBpBxsCHJBRMGvSjZ/6iqGLMxbtw4SZ/iD5cmAf+YMWMkxUfUNQhQ3LJs2TIR/CMwp3MEPob5TIu//PJLsYQh5UlbLK/AJ8348xGpJpocti9ZFETMALkJxrCkeRcvXiwE1S38rKIsVLWMvQ3En/2jcleRDGhkrAIQyjcaLiYfP4mYl3B4EAL/fClSsyLLXQmWo2sjokgkkcpJCG3QRIxBFSJG9MZoaDDAhEjHOULGpEzLLVJLNuw/EwVpUwhBWkD6kOgxqeOgwDmGFJ122mlSIEA1LfcgC4rcIg4ipewT5q7lwGjJIEHcM0TlijXWThIRA3hEcnxpk0b7Mbcp2zD0vVTqmz7HpJQVyYGSsQqAnoNVEKmJXNJkY5WjFxRKhVIen2vsWo6ujYEE7QNWAEGX1ZOWxGuJiALpyexVftwJGRoSohdETMLWEuYDmiciC2nSjeGNR+SqEr2YF1Jm2uSwgMHmYNCgQc6iRYukiIDoPAsPIiaVRHp5L9WeRN8Yd7Ds4RpLOhEzIFrPmMFxvfLKK63S95JCBZDkOJv3KtaGkrEyQUTH5O35SUm77VWOXuC2YqgcXRsDHDq7Sy+9VMTKQQLdC0SW8nWOX750S9wJGREQUilESWj1FCW4D+h8kCbdGFExoilBjgG54HqGKJFOAyxq8BPj+oWk+dUPl+2gJSPaiY4Molep5YbtRMwA0ovBMmNqKV1mmPpe9otFJdHPUaNG+b59RTRQMlYmbr/9dlmVEDbu3LmzEwWCHADcpkgLVXgVInPoURDrUwkYtOgV/RAaJiIGmDoW073EnZBhdcEC4emnn456V8TTCv1UnL3cvID7bbvttouk3yOk7LjjjpN0NREsKruJaPm5L0TjSFtCNlnY0FqJ6GeSiZgB8hOikGQeikUGw7S74Nya6BhVn16qbBX2QslYGcBLidQAYOUUVXsdtwNAuZoyNynSiy++eJ33FSrzZkUNcUVPhCYjyOOG1xVEDELGROUmZRNnQsYExmqZyAUWBVFH6kjbMcEmHRBgiGcYKcpi4PrmeHPsSbEFsX00axQEQPixf+C7J5mIGRkAYwFjFa3UCo0JYdtd4MiPRpF7HZNgRfyhZKwM0LCVyZ4bjYhEVHAzAFSqKfOSIjVVZYUiXjQpnjp1qrwm2xHcbyC4xTwWLQ/VbfkqzpJIyEwboqitLijBh3ijX0o66DWJuD1I8b4bYFhKlIwIVpAgE8A9gg6TTiM0rU8qETNAE0whw/PPPy/m1DbYXUAOu3XrJr+Tng4qdawID0rGPGL58uVCJgDl41GkJtwOAEFqygpN+IWiXfTqJLTetWtXWdUFBVJjiJqxASA1SUWUV8SVkEE68aWCBNF7MCpwDeBEn4bWSOjF0GhF2YeWfeCcY1pazvXuFaRkIX3INO66666yz3MciJgBHRIwpr7++uuLdr0otHgNAl26dJF7Dcsexn5FvKFkzCMuv/xymZypYGOytwGFBoCgNGVE14gOuk2domlg/2rXri0eUEFizpw54laOuLmSAT6uhIxG3dWrV5cOA1G6qFN1S/FEkvUsRCNYnJVqLB0kWHwQFcOyBTIWFkwUzojIWfwklYgZYEqN5AFPv++++y7q3ZHrrnXr1lXRMUW8oWTMAzAmRbyKfiIMx+VKEYSotFB6sphG4qabbnLeeustid4FGUFAvEzEji4IfthlxJGQoXE599xzRUsCKY3S4gKn+ELdG5IAtI+k6aLUi2HOiskuEdGwjW6JytAlAGKGPpPx0U26LI5EDDDuG1Pjfv36OTbACPnJBkTdMUFRGZSMeQC9E03LDMwtbUcQprGFomrYe+QjqLhE33zzzbKqDNItmjQNPS4pxffz3MSRkBGVIgrJ5OiXyNorsNrA7iHJZIzvRmTIa3Nwv4DZK5FgFleQ36gIChE57jv0oI8//njRKtq4EjGD3XffXYq3KGDg2AcBL+Mx3UNIoTIuFeunqbAfSsZcgskYl3MiDwMGDHDiAr9NYwtF1YzfUTaYqNq3by8TxRVXXOEEBVaqEydOlKgb7vp+I46EjOgYwvKgJoxS4D4hYoTAPamgNQ1u9ZDOKPDEE0+IZhVX/ijBPrDQotJy9uzZYkaaL0UedyJmQEV4w4YNnYsuukisevxEOQVXJjpGgVSYnRIU/kLJmAdSA/DICrIS0HbTWC8l3FQeoanBkDIoGwsGfQZ/BsVSXmJpImToxhjMlyxZEpnFBFWVNKuOKjoXJDj/K1asEK1WFCA9inCbxUdU+5ALorHYX7DoY3GUTciSQsQAYwxFXIw5l112mW/bLbfgCv0ykWiMeTnuinhCyZgL4CZOCB4E0W8sKpQr8HdTwo3fFR5sRMQIpQcB9CmPPfaYED6IWNB+b3EjZDinoyNCRxeFASuRkqS2RsIAFBF3VHoxUvKYsBKhsQn058WElvufVBvR8SQRsdx0JS3xiAZGOR6TKu7Ro4f8bir9FfGDkjEX4KZjMiMdgHO8zfCiN6hE4F+shBvhNulJhPRoxYICA/6CBQucww8/PBCjy7gTMshp48aNJVXIZBg2mHgRdyexNRJ6MRYDYV132aAYBjuJE044QWw1bAOROggZUdkhQ4bIfZokImbQqVMnKZzgpx/pykrG47Zt24o0gHE/Df5+SYSSsRIgzTJ27Fj53XatmFe9QRACf4BgH1PIINOTdEEwJf1hp43jRMhojYPA/JlnnonE6oIIAsQhaa2RmPAgYkyAYYLjSEU3EagwvKwqsV2AiJNKPeSQQxJHxHLTlV6qKwuNp5W4+DMOGsNfDK8V8YOSsRIYNmyYRHogN1St2Ipy9QZ+C/yZpNgGrwsqPcn5MCJh/MSiQJwIGV0isGEoZlYZpG7sm2++kc9PCqhiJDIWhes+zeBpNUXBjJsWX1GAiCERawocaJcWN42tF2Chw3gHKXNjvFpqPK3ExZ9MhSFj6sgfPygZKwI0IThMm6hY1G77xVCJwatfAn8GACp7mKSCSk/yGTNnzpTUGzqxKCekuBAybAeoaGVwp/I0TPC5RuyeFBDp+/HHH0PXi0HCINT777+/tCWymYi98cYbkr5Dt5h04ISPVALdVrExwO14Wq6L/9lnny1N3ZEF4D+niBeUjBUBztKEoBn8mjZt6tgML3oDt2lHrwSP9AlicXQiQWlZ0J/QI44qMgTMUSMuhIyBGjE19ixhgsmBdF6SdGN8Fwojwmg9lA2KVVh85LORsQFpJGKAc8KiHU9F7CUKIaiOKAaMuVjaAMZ3RbygZKxIKmzw4MHyO3n8sLUhXuFWb+Al7eiF4BEp6NOnjxQ5UGodBL7++mtnxowZEnnbc889HVsQB0IGcSDNTtuasL2/SFNRURf0ccFjiQgcTZ15TJs2TQgMraEwwF20aJH07IRMkTYtV0PHZ9A8OuzqTfq7cs/SG9I2pJWIGXBeMAOnerxQ8/QgOqIUSlVS/c8cpogPonErjAFYWSAS32WXXar6f9kO9AasjFhpcYO7TTvynnwhcUPwst9TSFCKjQXHi4kviHQug/306dOdH374QarIbAOEDLCPgP51tml6Tj75ZGfhwoUSvaRhe1gLjAMOOECiBh9++GGgJBqyzgOyxDWI2B0CiL0GxIufPM954YFZ6zbbbCPich6QHIodIPuQ13zXMZFy2s5g2xG2lQX7aq4zm5B2ImaAvouiIvoX57OY8DKelguuD9LnK1euFFNgFomKeEDJWB4wgJsbpm/fvoH7V/kJbuxCN3exMHmh95QieAChLserf//+YvwYBCARRJ5ovRJ2D76kEDLIB1FLih+IEoVV/GD0TRR3BB3R3HTTTYV05jvukAZIGQJ8IrlosHhQMU20jOd4Dfc7qVXE2SzGIGfo7oxNBxGHMMX7XPcsdCjE2GSTTRyboETsf4DQ04cX7RiFC0TLyhlPKwHXfZs2bZzbbrtNAgpKxuIDJWN5QCqMiQMXc1Z6SYHbMDkRtOzBohjBYzDu1auXlFYHJdon2kG6iXJ+W9zG40rIiOhAMBCCYzkAeQkakBvOG8L3KEGki33hkU9vyLVM5BUncx5E2CCtRNggQZAziBu/h0WKiObNmjVLPhuRuE1QIpZfzE9UDELGAjLfvV9sPPUrVQkZ47ph7IzCC0/hHXYLoSIaYEw58SWXXCIC5KTAja7Mq5UFjYGDFO1zPgj9E8EIou9kGjVkRFiwm5g3b16ozcvRPRGVshWQNe53vNEgPrjbU/hA2o0iHlKUkNgwI7NPP/20HDNE+zbpVpWIlRbzG3/KKBZcLLSIApvOMQr7Yc/dbQnQPrAapuk0ZCxpKOZj49XKApKB5ceJJ54ok1YQ4LMhNRBDW9OTcSNkRKnwgGPlHpb/F5MD1ZyktOMEQ9Agk2hxICH0AQzLWofKYSbXsD7TDZSIFQf9OdEZX3PNNZL6jgLZnmOKeEDJWB47C5NeCrtiKiwU8rHxWnrNjU51GoQuCNE+qSLSk+h1bE9Pxo2QYdVC+g2RbxggxUx6MG5kLBtc66R1IWZhySX4PCqUbYESMXe44YYbZKGDaXgUgAwSSX3xxRcTZSuTZCgZywI3Dykx0LlzZydt8FJ6jYj56quvLliJWSkgCpwLVpa2aWWSQMhIKSN0p21VGI28mRggZB988IETV+C6j94ujAgt+jp6UBJl2XrrrR0boETMm50L+jEWqui23MBr27liIIpr9KtmTlPYDSVjWSB1RyoFbdJhhx3mpA1eeqONGDFCSvypHgoCpNDwVeKz45SejBMhw3cMIfvs2bND2af99ttPPJj8aKocNhgXPv/881D87cxChOo8W2xclIh5x5VXXikFGG5aGnnV6rqB8XtEyK+wH0rGsgab0aNHpzYq5qU3GloWSBgmh0ywfoPtUxgQh+rJOBMyolXsE55EL7/8cuCfd9BBB4moOI6tkZYvXy6p+KCsW7JBc22i9BQQ2LAQUSJWHvCsu+yyy5zhw4fLwtXvvsKl0LhxY/mJ4TEFOwq7oWTs/0BunZQNXkKtWrVy0oxSvdEGDRok1Y0IVIPAnDlzJHoS5/RkXAgZjbyJ9jz33HOBi40psScSF0cNC2QMIT8LhKAjcFQnk+YK21g2H5SIVQbIGNfNtddeG3qbJK4hqoAZZ8Jug6bwDiVj/wfTU6xly5ah95yLE/BZuuOOO6TSFP2M30BTRJNbJqI4me3GmZBhdQG5hgQHDWwjcOInFRcn0EKKfQ/aXgIixjVhg5WFErHKweKDFknjxo0TQh92myQTHSPToLAbSsYcx1m9erX0sYtDitJPkWc5uPnmmyV1gqWF32CCnjlzpmzfuLYnEbYRMqqG69atK95IOL0HCePXtWrVKicuYH9J8xBpCBIIvbmv0asGHYErBSVi/qFbt25SEX7VVVdVrNX1iiZNmqxF8hX2QsnY/1k0YKyIFxKTkq0IQuTpBQiYiSBeeumlgbg60/WA0DyTXhBWGTbBNkLGCppIDIN2kDBpkzAqOP0CPRdpJeVnQ+dC/SeRSZx66qlOlFAi5i/o1oCYn6KMQtExN1rdcnDMMcdINS4aRIqiFPYi9WQsW7hP6yNbSUBQIk8vwGWfSalnz56BbJ9ybCZrJj80TLSmSTJsImSkhHGaxweM4x+kpQaRuKhbI3kBBQc0EecRFCCnWGccf/zxkXb9UCIWDNDg0s8U0lWuVrcckGUwPnWaqrQbqSdjkJlly5aJuWLbtm0dW+FF5BlEKpNUDW0+8M4JqtcZWr2uXbtKlSZtRYjSQFQoD08qbCJkTAKc27lz50rVY1DANPWjjz4K9DP8BPsapAM+6XkMXpmsjz32WCcqKBELNjqGmH/ixImimQwTRjemFhd2I/VkzETFmjdv7myzzTaOrXAr8gwqlYmvGKncvn37OkGCVBmamX79+olPDoSSiNzixYtjJ/qOGyHj2GPiS5EGbXiCwgEHHCCVm3EwgEVD99NPPwXquk8lN5o00pNRNZVXIhY80CMj6KcaPUxQDELG5/XXXy9qsaGIFqkmY/hZTZ48uSpFaTPciDyDSmUyGQ0ePNhp3769pBLDWkmSsoQgQ8IeeughIc5xmMDjTMjQ60HwqWjl/ggCEBtIRxxaIxE1J4UblL8YCxwikRxzrvcooEQsHJB+pgp9zJgxYn4cFpAFsDAHmqq0F6kmY5MmTZIVOoNglOkBtygl8gzKr4aybASguWQw6AmCvokMYETJzj//fCkggJBR+RoUUYgSthAyomMQ8KC8idAdkpLDLsJ2cO+wr2jdggCpI6IWZ5xxhhMFlIiFC8gYEeihQ4eG+rmmqlLJmL1INRmLg3Dfi8jTi1+NW10Zeq3bbrtN0rhhNUgG9OVDSE7KksELA1gigfTqg6wwmM2bNy82uqM4ETKikVRhkdZALxUEiDSRAgzaaLYScO2zj/iLBQHSwaTfqeCuUaOGEzaUiIUPikBIV955552uFpR+6X+Nbuzpp5+WhZbCPqSWjC1ZskR8lUhBQG6SALd+NV50ZaRxqXwLwles2CRIVAxSkJ0W5VwxqPTv3198ezAppdVIkNV/aSVkp5xyihxviiiC0OodeOCB4jaPnYmtoFMA3z0ozzusLNAQ0bA9bCgRiw7oblmEjBw5sujr/NT/YtuEdx1EDI2iwj6kloxNnTpVfp555pmSU08KSqUyvejKGLDRilEaXadOHScsQJLRhtGwPR8gaejXWGEyWZJuvvfee6XHYlIQNSEzxJdUIhEyv0Hqjwpm7BxsxZtvvulsttlmgTQHZwFBVR3nOagUaCEoEYsWdC6hcp+FZKFKcb/1v2R+TNN5JWN2IpVkjMGIVSlo1qxZ4tz0i6UyvejKIHMQo169ejlhgcGJ9CNNdjErLCU2Z5UJoSadxkoTiwBa+yQBURMyyDCN2klt/PLLL75um9Qz0U2bCzIgikycfjfrNp0m2Ha9evV83babzx47dqzcJ02bNhVvOUU02jEqGx999NG8/x+E/ve4446rahyusA+pJGOsSkmPULEXlXA2Kjd9L7oyVm6kaMIcsCEeDFKE1d1O6hy/gQMHiq4MYjts2DAZcKJ2tU8CIUPMT5ueBQsWBNKknMIQtm8bqHJk34JogfTss8+KoTER5zD7T0LEKMahQvSggw6SMdBmMpxkoIWlaIwxNqx+laZIjUV2kr0b44pUkjETFYNkRNEUPEo3fbe6MoTLVC326NEjtAkDokFUbIcddigZFcuXVjv77LPFWJG0M1VqiGTffvttJ+6IkpARvWLifvnll30nTWzX1tZIFJBw3fvdAomoLWQMzVyY/VeziRgLUNL8PIfNgnpPRRcdY5HDOQmjXyXXHBpFrsF8n6mIFqkmY+edd14kn+82BB1UGtNNHzQGaQgOg3ZYMNV7bqNi+QARQ0vWoUMHiW7wHXlgixFnREnIMN+lanX27Nm+bhftH6QbobxtoIcgExdpWj9BejK7RU0URAxzWexFuKY4r/yfjdHJpIOoM9rJu+++O5R+lXj7USUNNFVpH1JHxiA8pvEvmoko4CYEHXQas5iujIke24/WrVuH1pWAz3zmmWeETFWvXt2XFBhVl0Q/Sccw4BEtg6DFFVERMrzeTjzxRBG0+23USpshUmW2dVegghhLCz+jwiw0IESm7VRURMwAUsg1tXr1anlN0nvB2gaO/8UXX+xMmDDBWbNmTSj9Kk2qUkX89mH9tEbFGjRo4MukXw5KhaCjbgqOnQETB30ow8LSpUtlUj744IN92yYTKRVEl19+ubTgYQDCn4zjaNvkbzshg4xVq1ZNjGD9PHYYLjMRffLJJ44tgJzgAeW3r9706dOFhHEOoyZiBuhm2R/uPUhB0nz7bAdkDJuLBx98MJTPyxbxU8imsAepJWNRpSjdhKCjbgpOVSJi+COPPNIJa9JAK4YhYhARA6wDMK3t3bu3aASpJOM72pges5WQmUgyJH3hwoW+bReSzKRgk98Y5IWohZ8tkKhKRoeJpxgEyAYiZsA9Ub9+fXktbcfiulCJI3bbbTc5P6NGjQrl86je5V5m8RN2w3JFcaSKjJF6wPGaiAli76hRKAQdZVNwxLxExsKMijEJcG4q0Yq5Afqf7t27S/qV6AfeZKxI+T1uiIKQEbVk8pg/f75vzvnoEinYsKk10ooVK2Sf/IqcY25LGxpSslTR2UTEDJAHMA4RPcZMWREeGGsh6zyCBgtTcw2qbswurJ/GqBirQAZbWxFlU3DICVGBFi1aOGGAqAjVZUx8RMbCAKSC40kKEx0U5eVMQHFL0URByBAdf/vttxLJ9AukA1kE2HD8ITJEDfxsgUQjcHzawrCyKIeI5VbOUqjBNaUIB1wXtMMiTRxmqlJ1Y3YhlWQs6hRl2E3BvaQyGRAwUfVqLVEuSBUSFSFdFSYI1TNR0eYJh3XIxZAhQ6RNVpzSNGETMqKLrKxfeeUV3ypUKbmnsMKG6BhEjH3xy3bim2++cV566SXpYBFUj0s/iJjBfvvtJwtVOpSQVlWEMxa1atVKFsJhLKhUxG8nUkPGGGTxSgJMXmlpCu4llckgjpCeVh1hgXNCqgrH/ShApSDHGD819oNJCFuPoBpkJ4GQNWnSRCKapLP9AMaqTEg26MaotEbT5RcZQ59I26egjZP9IGIGjBOYgrIw06bS4aBNmzbOqlWrfI04lyJjXCssFhR2IDVkjEomcPTRR0vD1LgjiFTmxIkTRUAflgcS3kZ4i0Eg6Z0WJUjRIPAnasqgiKAWMTNVdXFAmIQM3UnDhg1FW4UfV6UgdYffErrBqAEhpDk9BMqPqC+mw0x+eJbFgYgZPyqkHAi8H3nkEa26CwEUSzEOhpGqJLqNNIAFVVgV+orSSA0Zi1OKMopUpmm4TdUhEaIwQKoLLU0QjZgrGRRJXULaSVnSWgnBug16JpsIGboTUtlo7fz4HCYiSHCUfUWJBrEPflyP3E8QGbRAxx9/vC/7FwYRy44YU3nHuMJDESxYjBId45rxqzimVN9ZQCZEYQdSQca++OIL57nnnqsSICcJfqQywfPPPy+pubBSlJAbUpToaEhR2QTIaOPGjZ1+/fpJlARBM62VEPvbjrAIGdEsPgddkR9CYIoquCaiTFWaRYofKUrsP4j8nnLKKb43Gg+aiGVHi7k/SbWuXLnS120r1gVkjMUIXRqChvFz1LZI9iAVZIzJlIEL4bFNUZigwSorF4X6mxEep/TetMsIQ5tDI2a/e//5CSo8O3bs6HTq1ElIDWlcJj+iJzYjLELGuUPvRYl8pREtNIOkP999910nyn6U7EOlQnusLBhzSAVRnBBHImbAmMlnkbLX5tLBgusFvV4YqUolY/YhFWSMNBNglZoW5NOLFSpeoHqMpuCszMLSbhE5IM0VRaP2cgbJvn37SrQMXROtlVi9hpFOsJ2QNWvWTBz0/fCmIhKDE3xUoJqTfUAzVQmeeOIJITCnn356IFYWYRExwLEgZU/U0GQXFMGBzARdLsjmhEHG0HwqybYDqSBjCxYsqGrpYjP8dNP3ohejJyTeUZRXh4HPPvtMxN82R8VywaSKEJvWSoceeqikWLHCIEUXZtNu2wgZBR+s5vmMSlNZtEYitRf0RJQP9GX86quvKo6cE+3l/qWDBSnuOBOx7HNM6haSoOnKYIFml3NMajhIkAWhvRmaXRuqmBUpIGPooEh9mMnUVvjtpu9FL0aUh8E2LK+vRYsWCTHYZZddnLiBKjt0h0TKMKl97LHHnLvuuqsg+U0DITMRIBMRKhcYjrJKj+JYogckClTpAgFpANFeqk2TQMSyIymargweeLwxTzGuBAnuV+43oLoxO7B+WqJiVI8EWV5eCYJw03djfQEYYLnx6TsYRooSMkAVJW11Kk0HRT1o0sakffv2ElWB6BDVJDKSNkJGwQN2KFg5VFLkQAUfOr0oeoYSqSVtTvVjJdtg37GF4LskhYjlpivNmKoIBozFdG0IWgahujG7sH5a9GI2pyiDctMvZX2R3cAY1/0wQJSSVBTC7yQAx3JILpEQwv1UXRIhQoeXJkKGDQKRwkrbSpEmxN8q7C4IaNVI3ZSr8TKpJfzSIC1JImK56UrOsV/dFxTrgrGY8QP5SJBQMmYXEk/GzCqOPoS2IsjG4MWsL0yKkmhEWClcJhQiKX41YbYBTOCQHfzJIGfYhOBPRgTQptZKQRIyjgHpW/RefP9yQaqcSGOYHRCIZlKEUMkCge+M7hKnfT8jvrYQsVwLEhqfYxqq8B/77ruvjP1BW1woGbMLiSZjNB/+97//LROFaY5qI/x20/cSPeOGR/MTlBdSNtAD4bgfR62YG2CL0LJlS6dXr17yO/ohnPxt6LkYBiEjqgUZpagBYlLuRATCFBVDdLj+y9WLkU4iisF355FUIgYgmkg+uH6wAlEEl6pEPhLkYs6QMVLrUZotK1JAxkxUjMqmsBpfR+2m7yV6RjoIchRWipIJdvXq1Yn3eiNV1bNnTyFmVOjR63Ly5Mny3ZNOyNguKRYq78oBUVN0W2ESWLRe+JyVqymdNWuWLPj8bCNmIxEDVN/R55eFlaYqgwNjMlXnFDsFhe23315aI4E4GFonHakgYzanKP100/daCMDKC/f7sHpRYvRKNaLtxNgv1KlTR1KXXH989+HDhztPP/20Fa2VgiJknFui0LRZKdczrHbt2jLhM/EHDUgPdg3lGr1iAEzbLNpoVSL+t52IsU+QVtKTpHSxwQmyzVPagfk2Gj1NVaYHiSZjcRDv+5nK9FIIYMgYRCEMcoQrOVE4TDXTBMgukynnjoggZAw9Gcciaj1ZUIQMc2VId7lWF+jGIGJhuPFDGCHH5bZAIhW9zTbb+GZlYSMRo8CHc8k4cvLJJ8u1DOG2rY1ZksCx5fwrGUsPEkvGCKGTFrNdL+ZnKtOLtxiTHZFD9GJhgHPxzTffJD5FWQikwIh6duvWTa5J0pb33nuvRICSRsiYSJo0aSJpcKp1vYIoFRou9J5BA93TJptsIl0WvALCRKEBiz3IZ9KIGBGwZ599VgyOGUPw1jv77LNj0TUjCeAa4FogXRkUMFoGavwaPRJLxubNmyc/cUtn5ZoUFEtluvUWM+2I0PYwGYcBBhVE7WkfyCEavXv3FgJEemzEiBESXWHiSxIh475DO8dk7jXdCFnFvT6M1khMQjvvvLMQMi9AM0XUgkhv3bp1E0XEiBQuXrxYLCw222wz6c3Kg+OkCA8moxOkrxt2LoA2b4pokdg4M5NAUlKUXqNnWAyQUmA1W8jSghQuJBVdU9BgMkZDlLYUZTGygS8XhIWG0kQ56RGHvQiPMCpbc2FI+fTp0+XnhRdeWLFFw3nnnSe+a9yLXnWJVFVSofjdd98FZtZM6pwIOqm3chZ7VFGinaq0/6QtRAyrClLD7AetchhHuB4pqlCEDxYz3AeM1bRJCpqMcf7D6k2sSBEZS5JezCsgYIVIWPbxwSk8DBd8BngmVUSpiv+BSY6qKYTQRMcgZkSnmIzDak0VJCEjkkL5PAUkRI8whXUL3kdFJosKxPFBAEE68KoXwwaAptm0k6nUvNgWIoY/HL54RPwgYOxHkjIKcQXzl5nLggALZAjYTz/9JNeAX0UoCu9IZJoSbRKDOBeZVvzkj1S99NJLoRFVtD9oavxuEZMUYIB70UUXORdffLGkiCZMmOCMHz8+EusAv1OWkE0meIim17J7ojNBtkYiGsln0JrLCyCrEGkMXuNOxDDYfeGFF4RcmhQ6URglYnaAMZrrlKrdIEB63jS0D0MWoEgZGaNSDbBytX1Q8WLQ6udnohcLg4wR+kYkrSuu0iBCc9lll8nEjM8WDcjRJQXdoy5IQgYB5zrjGvAqyCeFQvokqKpTiB5EzEuaEcE+nkx4+GE9EFcixjlFOmBIMj1WKS4p1+JDEQyMLVOQujFzzlU3Fi0SScYMsQlDD1UJymlv5AeMXuyQQw7xbZtEdB599FHxIWIlZ3ozEvqmGkjFv+5gqn8vv/xySdVRyTZ06FD5GaYVhp+EjG1Byp588klP3wG9DE7+QUQISTViwus1zUg6mXRrJYUvURIxPpsOCSNHjhRiidN7v379xFW/Uu2bIljdWFBQEb8dSKRmzJTTExmzFYUMWhHN5uq9eG0pQb4XBKEXI8SN4JoBnbQUlZPYBSCSZtLzohdSOJLWbdasWZWeDKJLhRtC+HI9saLSkHFNnHXWWWLJwrXstpE2ujm+O9e+cQr3C5jwYsFh2i+5AW7opItI45VbZBElEUO7ybn8+uuvJarHZ+MJp0i3bkzJmB1I5FKIgTa795aNCKK9kVu9GFEWv1OUpNXQ6DHpGsLAxEUDZYTSVHniq0UVGivyqA1P4wLa9JA+ws4E+wsm8okTJ0qbpThFyCBWpEOYVNymXYmmQeKDaI309ttvCyFBm+YGLCowPsUnr9yIe1REjMXQ2LFjndGjRwuZbtOmjSzqsLcJo8uBojIwVnO9BqUbUzJmBxIXGWOyMFVSNkfGKmlvlC965jaChk6EFKLflY2supncIGRMouwDDyI7aHPQ2aAZmjt3rrjQ4zfG5EyaiNdVor9JAw488EAxaMQmAkLDseQcQ5a8emRFFSHjuh0yZIicf7f9UCE/TETc135GcjGk9VKxynULIcMkuZx0XhREjP1lvynWwS+MRZKxTiFNi16M/wvLa1BRHsxYDXkOoo+wkjE7kDgyhr6ENBneRDb7WhmD1myy5aW9US7Z4r3Z22LbRKNyQaqLSc1PvRjkDsKVL33GxMXz5v9YiaMpQ9CNYBRyyP7ssMMOIqYmtUlvQtKcinWPZYMGDeTc08oKUS+TO5Pp4YcfHqjmxw9CRpQPbRLXIN+Bv0sBwoTsgDR4pTYSBmgYic65dd0nsgRpOeyww8oaU6IgYhxj9JsQMvabz8z2a2PBxCSMtADrkLSbMdsMrjkiuJzToMmYeo1Fh8SRMUNgiIrZbmBXyqDVbXsjLxE0bmiiLKyU/QITJT41iE1LgSgOZqc8jA0JaWWimRAzVn/YBrAtoiKQONMeR/G/iRSzUXR/Dz/8sDzwiGKiD7Iazg9CRpskSAlifir4SsFc60QC/SJjfD7XE6TfDfi+3C/lkKiwiRgSAK4HCCf3D5G8QgSSBdmsWbMk0oqQX2EnmMfMIiYIGGsXFihffvmlLIwV4SNxZMxcsDanKN0atLqJnnmNoHF8uLH9ngCYlMvxEaOqk+pBHkxcNCWGnNGmBr0Z0R+iZEwoTC5MzkRUtPLr/5uq9urVy1myZIlMqmiCmGDxvwqq+XulhIzCBJpqQ8aIjpZKFSKyR7zvp27MFAS4uV5Jv/N6UnxeOwGEScRIO3JOkAOgs6PIAG1bsfuERQ+EFA0pXQjwXFPYCcZsdH9Beo3Rno3omJKxaJA4MsYEbrt43+/2Rm4jaKQIIToYjPqJjz/+WCaqSiORTBwQDB4QCtLNTIZMMKRBiZ7RLw+iwWqOSAnVcEERj7iANBTXO/ogDDw5TmiD0OsFEVGslJCxbxAAziXnr9R7IQy0jCIdXmlDbggSkw7FMG5ey3eE/LPPNhIx7hGKYhj3ONeQKs6P2/POGMH1QmQ1jd1K4kTGbr75ZlmsuslAeAXjKfcFC2s/eq0qvGPDJBu+pqW9EeX/ucgXQYOI4QfmZ2QMjQFpyiAE+MZ6wNgPEEY3ejNIGhEhJh1WcugeSGmiA6p0wo4jOFakpLCNmDFjhhAdKiDRmEHU/I4kVkLI2BcWGGPGjBHPK9KtxcC9TISUVGWl9zWknmKAQguYbEAYsYGg+tALqQ2LiLF9YwrMcSF6RzcHr1ERFj+QeKLTXEcK+2DGbDIbpPr9homGkaZURINE3XmsEk06I0lkrBjy6cUAdgSFxPt+muGi+cKY0y89TzGQrmRQMgMTEyU6M6KGiLyJnpB6YXKBnBFRYcUXRv9NW0DaFy0W9wEkfcqUKVV6MtP2xAZCZogzER0ie8UE5JxPCLYfZIwoK9si5V0MRJEhtFxDaCxtImJYHHBuiWLssssuoh+s5P4jVUxUlcWa0XIq7ALjGOnnoMiYsXhRMhYdEkXGcHsH6EHc+gfFHV71Ygy8for3CZtTsRXF8SYaR2qFB5Mg6VImQaJmiJJ5QOBMSpNoCCtA2ws7/ABk49JLLxUihj4Lx3UmWsiBnz1CKyFk5513njNo0CAhAkTKSqWv/eidx7UBgSkV6aISkagv0UZbiBgRMLSBRIQh3WeffbaklCqNepLmJ6IGMWahlob7I24IWsSvZCx6JIqMmabCaYmKedGLAaJHfov3IWOkNvwkeOWACQnSZSqDIIgUAZDW5LogtQlJYBIjambIWZJL+jkmEHIiTxAyIod4dpGOQgPlV8SwXEIGmUa7BWFkP4u1zCJVTaSKSGy5/Wa5JliwlYr+8Br2iX1z6/wfJBFj2zTyRhvGOUULiDbMz3T8fvvtJx0GPvnkEyGrCvvA2I3xchBQMhY9EkXGGAjTRsbc6sVMw+6WLVsGIt63DaQrSS+ZFBPVZqSoECtDSFhhEh2hgTlRJFJmpM6SaKHBsaAzApP4Qw89JE7yRFcokmASjpKQoXNiX9gnCksKRXnQvRGtIuJbr169svaR658IQylLC+4pSLrbVkFBEjGuVzSASAE4Vxwvrlm/QQqbMYIFm5IxO8E9gMiea8HvoiUlY9EjUWTMhHDjUEnpR79JL3oxbmLSHF568UUp3vcbpOayCyGIfjB5MtlxHBGSI2ZmIiJyxnnh9yRZaHCeOnfuLNcdpIlekVwPpOL8mODLIWQQRT6f93A+CukZSaNB+kkzlkvGiJJCsopF4CDq6O3w3XJjPBwUEUO7Aykkqkv1HGTaL+KcD5BUrnsigpD0oLs6KLzDZDuI+GPU6yeUjEWPRJExJtQ4RMbcuuWXImxe9GLmtW6qyNyCFRppo1JiaBuBdoxUDw8mVPx1iJwx2eNKTkoIApetN0uKDpHv0r9/f6mgozXRXXfdJdojjkWlnQ/KIWRMLNy7aMfQNBaKTkIWIP+cr3JIMucYU9xC7zVWFkSJ3Fpf+E3ETA9M7n2II2JtKmTDKEIhMkyRBPcBHR0UdsFEdBnLlYwlD4khY0RpWPkCevjZCrdu+W4Imxe9GDcwA7qfxMmI96nyiTOYnCFcpiKN70TEjEmJCZzJFl0c35PJnJQmxzjOLZv4zlhKMKgz+UOGTGslIk+VRAS9EjJjdTFixAixsMAUNh+4rzknVBN6rQx1U/XLZ5POprCgFPnxm4ixPbpP0C+S3xkLOA5+FluUAp+FHg/tmJIx+0BkGA1joUV4JZkXjYxFjw2TZGthLlibRdluolluCZtbvZjZPhORn5ooI96PMykplDoj1W3S3d99911VyyZ+ksrhOJI+Mv5mkNw46s04d82aNRNRP9cT+iTS/aSq8vUaDYqQQXKJitEDEoKYT6TP/0NUuJa9kjHOG59faAFDCp8m7KQCS0WP/SZixobkq6++EqJP2tZvGxK34PM5VpUUSiiCA9dmKTLmNvOSj4ytWbNGbF00TR0+EkPGGExBVIOYW7iJZpVL2Arpxcx7/UxRGt1V0ohYPkDwjznmGHkA07KJYwp5wBKAalI0ZqZlE0QtTnozVtzdu3cXgkETcsgGxQ8IxsvVBHolZFg1cE0/9dRTTosWLdb5f6oHmTTQUXl1i4dIE9ks9F0wT+V8lbKy8JOIQXggv+jU0OzhF8Yxj/K6QU9HZAxdkjqx2wfGFgpeCsFLn+JsQLy57ri+WRTYPo8mEYkhY0QvQBCtIvyEm36TfhG23OcbN27s+AmaEdschQwKXGM8qLZj8DItm/jJJIb2ieOSndL06oweFYgGkg40Pm18HzRLJ5xwQlmrZS+EDNJLhA5yS6o0X0qd4wkRopOEl0gkVb+FCnsg13TuoNq0mC7QLyJGGpxrBCIPwWQ7QbWuKicqTKUe5FXJmH1gLMHIGVlOPj84r/OCAUSMxQoLbIpHlIyFj8SQMeMcHIeLqFS/Sb8ImwETF9EEPyNjDAaff/659eQ3aDCIIaw14lr6J2KhQLQDvRmTPKlc07IJMsHD5ogi+4teCRH7o48+Kuk7vgfPlWo+XSkh4zOIzKCd6tKlyzqfReQIbRVCfrdpVCqJf/rpJznu+fDwww8LWaaAIWgihnUEFh2kgvA7Ix1smzUMYyj6W6+EVxE8GMNJJbIQzueB52VeyAULEcgYkTFF+EgMGWN1C+JCDkr1m/SDsBlACtDU+UnGEDozwaUxMlYMRDoQPxsB9OrVq6v0ZvSKzG7ZROTM6M1sbNmEoJu+jLTdQdM0depU0cuRytt1110DIWQQQWwlJk+eLNq13OgMukfex33hloxx/Dnm+fzFIJkYnXKvFTJR9YOIcQz57oxTkHLSv5x/G0G6nePLuFHKk00RLswYzniSj4x5mRdyYQqxtCVSNEgMGWOwixMZC4OwGZg2MkwCfoG+kKycbVvV2wYiLqSgeDCpM/GT0sRCgHQcFXymZROkjMlvxx13tEpvBvHq3bu3kCOiOqNGjZIImdeojltCxrY5NkTkSC1mkyTIGve4l9ZIpFp5T240kgUK+jiOfaHOFJUSMRYt6NF4P3o1iiXoiGDT+c3eV65PCCPHhuiLkjG7YMbwDz/8sOJ5IRemcveHH37waW8VqSRjphVSHNKUYRK2oKKGkDEGbI2MuQcTMMTGRJU4fpAy0prozUhtIl5Hs0PUhCgQpqy2EF4IC+TI6J1YnVPU4EXv5JaQYS8xbNgw8XuDBGUDgoBHGkU7pdK9HGOuf7RouWDbRHeJUuUjR5UQsT/++EPIJLo7jg2aO767TVVqpEo5NjxIT7G4ohCFdC62J363TlNUDs4P44MZ0yuZF/JtG3BPKMJHYsiY8RhLUmTML6CZ4Qb2s38knk2kfmxMr8UFRHmwUjDO6pALiBnXMtEc9EWmZZPRm5Gai3JC55xTCEJvS1KX9Isk/QpRcWu27IaQcR8TIUMfhpg/W1gPIYRIcYwKOfYbQHIhRrkpTQp+6PfItvIVClRCxIh8orUjwlBpRaqf4DhAuoh+EfVi/4g6kjJv0KCBkH+OhZ89LxX+g4ADY7rfUDIWLRJDxtCFpDEy5gasovw+LpTl66DtL4jy4LFl3LXRbhgLDUTtL7/8cpXezLRsIsoWBSGmFL5jx44SkYaUTZo0SQgPejI3CyI3hAz3ecgpTc4vuOCCqufZPhMHRKsUGeP9HNdcfRZkiWNJqtUvIgbBoRiAFBK6q+bNm1fk1eZHkQ2aRRP94p6F3EMM0eJB7iFg6icWL3D9l4qMlQMTZdbIWDRIDBmjdB1oZGxdcOP6fVwY5JWMBQuiQfhp8YAgoIuEnJHaNNYT1apVq2rZRPouiCbSxcDn9u3bV/yNSLHiok/xAgSmVAqxFCFDw8J3pz1Vrk8eJBSBeSlA2HhtdhoVvRnRKyo3cy1HyiFiVNDOmjVLNHWklPFLq7SLQbkg2sX9TvQLKQGEjONIuhtiyPlC+J3PFkERDzCWF9OMlQuNjEWLRJAxBhz0DuiXwmwfEhcwODNh+wmiNhABRThgYie6YyI8eFVBUIj84OAOuYDIQC5MlSbkLIz7gX3DiwyNEQJ/UovsF7qjUn0VSxEyyJghekRyzP9BLmjjRBl+oXZcrPC5TrP7+EG2iORhNYKOqxIixutpI0V/T0Dq1o/+nl7AdUB7KO5xrGbQgZlIIPsD+eLeJyWuSAbIcnBPBEXGjIG6IlxsmKRWSEmKinntLVYMDNSVbiNf+oNUjCIakGJDo2V0WlTCQcjQm/EgSkM0iMpM07IJMhOkbxT7RAcIBP2k64gWoXtDM1XMVqUYIYPoEWm677775J4wXRDQelEJyT0C4csHCGFuCyTSvZCWli1brnUsvBIxPhf3fFJ/bJ/3hBGVRPcFweSeJi2K9g0NIdEuiKvRfdnsY6fwJ01ZyPi1XGhkLFokgoyxGkwSGXPbW8wNYeOGRezp57FhNc5D05T2gAhYdgUVE7XRm3GdEMHhfJmWTUTN0J4FkUojvYphK9WWEKzx48dLkQKEpZDDfTFCRkcACCVpWYxSIRqkAylKQbNWiIxRnWqaKwOuWfRnEJZsN34vRIzUH0ST9Cf3FFo29i8ocP9SLMM9TASMRRDHBZ0Xx8LovoiIauoxHeC6Ix2N+aufldZKxqJFIsgYmo2kiPfd9hZzS9i4YQk7+0nGON5MYDaV6SvWBhExHlTJca5MKhMSgTUFqTUInLHQgNAXSveVC1KJXJdULVL9eOedd4qWilRePiJfjJBhdXHHHXfIfp955pnyHKQSMsb3y0cq0ZRBVsz/4eqPnAHCZZ5zS8QMkeP+JD3Pa0kDBlE8QXoV8kX0gygY+8hnQqBpwcX5ilvvU4V/MGM514eSseQgEWTMmNQlITJWbpPwQs1gTWsLNDJ+kzHSUgr7waRt2jAZYmHSmZC0pUuXiqYIMmYsNJj4/Uh18dmkzyBhpBUxc4X4QLzQcuUSikKEjOuXCkDSjPzkXicixb4jVs/tCEAEixQexAUQUaL7Abo2IoJuiRivoesARIzf2Wde56cWD4JI6pTvgfUEiyeiFBBlU/WI7kvvN0X2WA5RZ8HjFzQyFi0SQcaI/oB87SHiBr+bhJtj46c5Kyt3JWPxBZM6lhDGFgLSAiHh+uEnAnxeA+HJbtlUid4MYteiRQsR9SOgh2xBrLDCyPX5KkTIIEy0LyLC1aFDByFjpPHwG8slY6Ro2V8zWZFaJLpkCJcbIkZkjX1l0oPUsa+GyFUCPptFEtEvo/vieKM5I9oG+eKYaDGSIh/MWI5O1E+otUW0SAQZMxdlEtzg/W4SHgQZ08hYskCqAxLAw6Q/ICmQHLRmRLNYNaM3MylNFj7lpMkgeD169JDt4/U1ZswYKUJA5J9tM5GPkJHahDRRsUnKFUNVCAzRvVygVyOCgK4MKxAekCnug1JEDHKEOJ8CALYBiURjVm5akM/jmLLPEF40YEQe0c/xHUxxBZFJ1X0pSsGM5WZs9wsaGYsWiSJjSdEw+dkkPAiiqpGxZAPCxAOSQqUyuiyjN+OaxHUfAkfUzKQ0c/26SgFyQ2QLLRmaMojfUUcdJSTMRODyETLE+pjfsg/cG3z+kiVLJNWXTX7wHaQHJL/zfsgjZLMYEeO7okmDfEL88CHD/qKciCBVlqZBPP5wLGBMtJFjRTN0Pls7WCi8wkRMlYwlC4nSjCWpus+vJuHmhvUz5cHEwiSiE0nygZaM68tEXTn3pmUTJI1WSJAVIkgmpcnDzb3ItiEk2FVAmCBmaMAoOiCFSiQqHyHDPmP06NEStSOyBDmDKBqgvUIXx37QQxO9WNu2bWV7hYgY3wMrDr7fIYccIpE6ompuweeZ40Kkjuga9wfRL7aXrcMjssfr9f5RlAPuG+4vv9OU5npkwaIIH4kgY4ZwJImMuYGbZrBBRMaYsNREMp3gHsNhnweA6EBuiABBaBDJE6GmshndE4QIklaMeLBQwCKCCBLarqlTp4ponrQiWrB8hMw0C7/kkkvkWiQNaUBEiigU7502bZoQSaw18hExdFt8Jj8RyfOZFDGUAhNWdsQQ4T0pRu4z3m/Sufl6UvJcNnlUKLyCe8bvyJghYVqlGw0SQcZYhaaRjLkBNyzHxU/yRJoySPNQRXxAyg1RPg8Gc6JSkCHSjqZlE9EgiBHkDIKCzivfgM9r+vTpI8J+okejRo2SVCPEKZeQER27/fbbxaYD4keLIxPJguggtOf/AP0nc4kYixSqO4nE8R2wzoBgFpuI8Pky3m2QNwxYjXcbnl9uvdsgY0TPeL9GxxTlANKvZCxZSAQZMxdlUjRjfh8bv6uyTJpSocgGJARCxYMIExosSBnRI8gHKTzaGkGasqNHuV5J2EeQ2uO1RNp433HHHSePbEJGVJjKTwoA+AyIEdWVkCZIHF0I0KHRNskQMXRgpEOfffZZuYbRhGG9kW8hB2GDfPH5RO2wnGARgv4M7Rrkq5wqU74/RtVEFQuZ4CoUpciY32lKjYxFC8/lQYhtEZ+yGiUsT9VRNrhAevbsKatFqjMOOOAAZ+TIkSW3ywqVNioMigzmuT5agJQD6QZegwCYQTbb9FUjY+uC8+F3lSkTiZIxRSkQjUWk36xZM6d///7OVVdd5Zx11lkiYie69NBDD8l9Pnz4cGfmzJmiuTLdNEgzMs7069dPXo+dxV133SVRNaJipEQhXRAhonEI+I1NBIAEct2bylCIGGMSWksaj2N5QYoTbZgZN9Bx8dopU6Y4t956q3PDDTdI9AzPMsYxqioplKEatHHjxkIky4kQs18QVbarUJQDTVOWD8YLNKRUL8NR4BJE44uBxuzc80T5GYMYz0wbRgOyAETXCQohz6DzSKCRMcTyiGs7duwoAvJc9O3bV1aeEyZMkNUvVU/du3cX8macs3PBAErqgFUrxI0Bke3T8qNz587yGoS4rVq1cm655RanSZMmzqRJk6RnHb3vzACuZGxdsJr3u08d6RXVFSi8Ap8vzF95APy7jL8ZgyFCfAYyUn1Gb4aO66KLLpLUIxGxiRMnSkSKiNaCBQsk5cd2GBhJn7Mw43o33l20RKKKEn0X4xLbJiUJkcruTIDmDONVs598LotDSJvf0SsmAD7bEEeFwiu4xv1u6J2GyNjq1atlPED2gJEzhUcs3IpVgzPfQcSIiMNDWOC1a9dOFmI333yzvIZxhNd07dpVxigWfBdffLEsJJFJBELGSD/wKAR2FoEtoX8AmUL7QTqhEBlj51mVjh07VgZQKqRY+dL+xJCxoUOHyioWRgpYtaIJocWKScMpGct/g/kdxeLiVD8kRaWA5DAo8uA6RfdFdAxiBHHiYYgRKU3GFWOtARgcTcNkrnGuSRZmLBj5G2IGWWPBRiqU8QeCB/li2+i+iKgZAkibJogekfkgJyS2zWcqGVOUC65vv6se00DG/va3v8n9jYbUINd0OheMN4xL2N7QYg59KPyDKPm1114rnIUgEttBxwrICFBgNHjw4ODIWClQpk7KgcgW0TBCdwyg7JRB+/btxd2a/wOsiBEAZ7f74Atw4GCysFZeQ9QtG7yGNCnvDVIz5qYht9vX+fUat68r1LevEjD5KRlT+AmuUQYzMzCyOKNC01hFQKCYgCBXSBWMez33PCaqRMb4nWgB6VFeS/SA7UD6iLKzWmVs4v8ZVNGmQb4gemHrTdkHInkKRbn3i5Ix7+D+hzecf/75EllnEUbmrlOnTlWvgWCRYoSjALgHqUzGDAO20a1bNxmX0KfyGjJ72eA1FCS5he9kDP0H0Sz0GQw4XDR4AhnCBAjdZV9IaD9y2an54vwfZIyf2QfDvIbnGXCDioy5bcjt5nV+vcbL64JIKSoZUwQNFmYMgDyyxfSkHUkrQLq4ro1Egb95EBVjoYBInuuU/0ebxXhDyrFQ0UDYYN+5NxWKcq8fJWPegVxhxIgREtgZOHCgWOj06tVLxhsi74DFm+njCwpxD/N/xV5D9JtFl+luEDoZowIKBoq/EIJ/BK9EyQxzRPflJ4z7NqvhbCfuSoGOhe+TfSD5G60aq2ovr/PrNV5eB4gs0gdvyJAhvh0XInI4jJNKVijCBkSLe52BjgmJqBgLMsgY9z8DK89BxsyExf9D4nhQpRk1IIksWP0crxTpAQsOrh0/rx8T1DDbjjPWW2+9vHZOjAfMkUbrRVSLRR5pRkPGKEDkETZ8JWMwQNgmQlvEbIASdSbtQYMGrRPGM0D7QcohG+Zv0/y70Gt43lQlkfZ0w0C94MEHH1znOYS+ppLTy+v8eo2X15HG5JgwCfkFJjtWZubmVSjCBNcd9zyEht+ZOCBe5nrkd55jPCL6xKDMPYD+zBZQdEBRQu79qlC4AXMfhMPP6wdtJeDeivt1WaNGDbGfyQVZOSqjs4G+C+PnQoBjoHkvh58QgXfLSXwlY4ap56bFSokNOWhXXHGFvNeUiiPOJ61gqhx4DZqP7Bwsr+F5U2JK2byf5qZEoGjNkgv2IzdSVep1fr3Gy+sAjJ+LIl/lq0IRB0CyEPVDXhD5E5U1Egh+mugY4ww/kSugAWMQpLiHSYt7wBQDMK5QJBQlOcOqA30tlhsKhVfcc889cu37ef2QRTFEJu7X5XrrrZf3eSop0aLmBizI4hUCHOOmm26SYAfHxnAPiJYhdrwml8AafuIWnpkL2o3s1iOIa4l8IaxloKPknIpHBkK+ICK5+++/XyojDS6//HLx+uB50Lp1a+e6666TEna0UIQNqZ7MFv337t1btk21AlG3yZMnCynhoiRFx0Dsd1SMA4kXUW5D7twD7OZ1fr3Gy+sAx8VUmykUcQDRLHx9iOYiojW9Jlmokdo74ogjpBE4lZTG846BkffxN8J9BmMzIPM35AuixvbY7qOPPipjFhoyVsYI+bMLiIIG+wZh1E4WinLAmA4Z8/P6MUEU7qekXpeXXnqpLIJIUzZv3lwiXnAIHgY4NJDdI7gBsN2CdNGyjTkXfdiVV14p8itT+IOlBe9Du03xItXatHWjk0hgZAwCZFqTAFPhSL6VCgRIEmSrTZs2Eu6EkMEq2VkDBlEG22wNCOWjfDkGWgR0V199dZWtBeAA4i3GQSAVyuBJJSXu26ZUPAi4bcjt5nV+vcbL6wwZUyhsBqtOSBICW8YGhPhGBIsvGfc55IkBknQK97xxISf6BdEyNi4sygwR428iYOgcIV4s+Hgt9w0LSVbJJj1DqgHhLp8VtL0F5NKmtKkiXgiiSt6k+ZPcd7hu3bpCtOAo119/vRQOoqeGr+RKCAwYQ2bNmiXVkwQ8uG/hO7zfgO1AvCB7BJJYNI4ZM8a1rQVYL5OAmRoSh2+I3yZ4SQBu5VxYw4YNi3pXFIoqQKIgRCb1SIqEyBayBEgTK1ETreJ5SscpBqK9F+SMex2ChQYEawsmJkgW2yUSRqoSUsaCkIERoe6LL74oJI+FC16JZtv5onD8H2XvLHTQveZr+F0u+Ew0KpTTs18KhVegv8ZBnm4RfgFSApnAXJ3AhyJcJIICMxAj1lXLhXXBxBT3yhhF/ME1CPFC4gDpQcPFc1yfxu2eVGJuH1WsLKh+JJoOSYPA0FcSIob+g+0RSYd04SUGIYNIoe3gPUTxeT1jBBVSRNboWblkyRIxkYbYZfubYRTLfvJgPzF6xKmbNCj7SUoTolhJVwsIIdEH09hcofAKFh3FdE6V9Hj2u32eIkVkzGg90IuoC//aIKRqvJgUijDTKESZiDiRDkTjBdGBhGBzA0mCfOV682SnLRG5Q8YgQh06dJBIGf0scbbGLZ/PgNiQVsROhygZf0PoeA+fR9SN3pi8DxkFUXTTPBz7HaJlpPsNGWP8YL94AKJuJoJHBI39IapFVAJyyOtIbXpJ7WDJwevZhkJRDkx63k+YxuN+b1eRIjJmLh6iY0rG1garb9NIXaEIEvjZQVzQfUGCGNyJVhOlIh0HaaJfbTGtC9cq0Si0qZAtxLPGMDqbiKH9oFKYlCOfS485RMdoxYgYQABPOeUU0YfwfkPIaDYOIUNki3s2WlXateHqT0o/N1rF33wWD/aHiJ7RtvF+TCP5PhBBWi1hUsvvxb4jBI/IWtTGs4r4giiW3xEsjYxFi0SQMXNRQsaKNfxMIxjwSd0QHQu75Ysi2UC3BTExKT1IEdea0X2R0uPhpkoRogOxwSsQ6wr6vzVt2lRIC/+XTcToMUkfW4S1aGfwMOT1ZjIhyvX6668LOUKIT+XkgAED5P+yCRnECRL2/PPPS4SMSqnjjjtOSFy+SJchXTwgeKY6k1Qp5I++vOw/C0J0amwbAkr6NBukVIkOaksxRblgoRMUGdPIWDRIBBkzg532est/bJjMuHmVjCkqARovSAfkg8gXmizE7gjl0VMRpYLgeI34EGUiJfnRRx8JeaJSyZgp5hIxukxAtHgPvoKkQommkS4kVQkQ3RMlI3KFUJ+qJkrNibLlEjJex3ap4kabBilDU9akSRMheMUAYYPw8TDkFGIKQSWlidaMKiyOBxFBtGY8IGNE2hQKmyJjJk2pmrFokAgyZlILaSNjbhqFUwVmtDWqUVF4AdcNnjom9Yjui3uMCBGVhkSRTFquHFBBCQnDV5AIGH6DphdlISIGISSNiWgfQsP7iZARiTNkjAUIaUv0XRQGsE0qMSlLN1582YTMiOnxHeI+Qk9GlRrvOe+88+S7ugHfIbufJqQrO23L9yRtS+SBfYfMQjo1QqbwArIc3Ad+R7A0MhYtlIzFFG4bhZMyopTerHoUilIEKZtAIDaHQEB+sHggsgPxqcSLiImECkfIE5E1zJwhW9nbzEfEACbSX3zxhXj+QApJE5Lyy9VooRvDjJrt4PXDd8KXEOPGQoTMvK9Lly7iPcY+YuQIuSI16nXyYyFEsQAP9mPlypWyH+jO+F4YTrJAIp1JEQDHNTelqVCEFcHSyFi0SAQZM2mRtETGiIhlEzHA31SF5UbIGOxNZEyhyAUpPtKOJvUI0YEscU+hvYIoQMD8KIzhOiTFSGQLfRmpRUTzuSSnEBFD+I7fGPsDaeKaJroEmcsFqUPIHmlMUp8QIlKVJhVajJBB7GgrBgkzNhosdE488USpAi3HbJP3oCPjAVggcawhaBQrGK0ZUTjaNUHMOP5akKQIS2ivkbFokbhqyjSA1XWh55WMKYoBEgDpMiankAFjCQMRIIqE6NzvQhhIEBoqNGfYWUB+IEW5KETEAClJyKN5jusd4sj+5iNjaCRJDfI5kKilS5eKLYXpb1uMkAHejxeZSYdC5ohmESUz1hflgtQqKUqjjeMckBLmfOCFxrEi7UnEDEsPyBnfQ9uaKYIiTRoZixZKxmIINGJun2eCJc1EukmRPkBu8Owy7X8gRaZTBUSAiBFkhuskiPY/TBwI40kZUlWJBiu3mb0bIgZxXLZsmWjATCScVCrFA4bQZANySfoS0omIH6F+gwYNpF8ckSizD6UImYku0y6F6CGk7IEHHpDIHJHoQj5pXgHxY5vGyJOJEWJG5I9CBHRlREKImkE0IWdYhqjeLH0gzQ38uvYMNDIWLRJBxowbdlraIRH9QiOW2yg8n4ifyYpJUMlYesC5zm41RHqPiJjRJ0G+mNCD7EFHxIrKRIgVEWt6y2IZUcjmohgR4/+IFEGwsLLIJmhUcRYCFYxozLCg4LvWqVNH7DPoIYf+zeyLG0IGOGbdu3eXtCVpRdrHUIVJ5aXf6USiHiyueLCYohgAcrZ8+XL5fMglOr5svZn6lqUDXAeg3MKZQtDIWLRIFBlLS5rSS6Nw48JvVj2K5IEUl2k1BPkyrYaIpBBpQesEAaukhY8XGDNV9oNrE11YsbRnMSIGENNjFdGiRYsqkkQzXwgKJK8QSO9BxoiO4XdG5I8oGSavROvwMTNwS8jYBq+F2KF9wwaDiB1Ek30JIrpI9AsizQMdG+SSaCeTMro40qeQQdKYRM4gZ5x3tbJJJoiWUujh5wKAudO0zVNri2iQCDJG9CdtZAxAwIqRMAPK9pWMJQeQF8iJMRtFpA4hI1pCupF0HJM2kZMwgeaJCBbkh0pC+khCDIqhFBHje0E2iAJk+36xCIGUZFth5AJCAgGFHELGAISFbgCQGKw5skmiW0IG2C7aMe4/vjN2GJi+skAyvmNBwbSU4gHQ0TFBQ84gwRwXFmBGb8bPoNLQivDBuTbn3u/UJ9FijbBGg0SQMUStELK0kTG3YGJUMhZvEAkxbXggYqY6Ft0IAnNTYRjFhIs8wLQwIorTuHFjITal9qUUEQNUM2K3QZPvbHAcIFLFRMyMC5AvCGs2MH8l3ffII484F1100Vr/54WQmePfvn1756233hIihMEs5If2S2F1AyFCYpqdk9LkXoeY4QtH0QLngQUZUTNTDECUTfVm8SVjfqcoDRlT37vokAgyBhhclIwVnjAKVWAq7AT6DdNqiNQjKTl0X0zwTKhEephc3bQaCgrsDxEmUoEQAEjhGWec4Sp94oaIYX/B9tF3ZRuv8l6OiZsIFAQF4gVhNGla0jBExRDjc3xzo3deCRmADHM+0MnRXum2226T4giqMcM8RxAsIhs80JNxrDiOkDMihFiDsD+MCfw/xIwHkTRFPMC5RA8Zh6IARQrJGCsFjf7kBxMZJfmsmnU1bCfQaxDtgYBBNEj58RwEApH6scceK7ovW/rGQe4hM0wMEB5Skrjeu4EbIgZI/0H4srVdgIpQIoMQoFJAs4Y+DIuLevXqVT3P8aTCk+jYZZddtk4UrxxCRiSOnpWkQefOnSvFAkuWLBGdGtWbUUQt+UzOizk3XFNMvJw3jj/RPLIKRFWNvxm/k/JW2BsZM9enX1AyFj0SRcZMlYlibZCqQVcCWVU9gB2AkKD1gnyRRiOlxDliQkcPYkT3tq1UEc5Dkmg1BDEkRUeExS3cEjHIHhEt9G+5BJRjBiAPpYD9Aym6FStWrEXGIBuI7idOnChaLyJluSiHkJnIG9oxPo9jNX36dImY8ZyxrogKfO9s81myCcZCA90b54coGSTWWGgwtqrezA6woA4yTWnbeJMmJIaMMYExeCvWBZELRL3ccErGogOpRkiBaTVEKpLBlagF4nTIF+fKxokPomhMT5mwsZjA+d7LvrolYkTDiGZBwiCluYC8QrLcpP/YP1I6+dL0GLeS8iWKReQqX3q1XEIGIDxo0qi25DNGjBgh0Ty+ty33IVEx0rQ8uBaxQYGccYypFOW7khrPttBAg6qIzraGlLvfZIxIPFAyFh0SQ8a4OHGuThvcNAtn0oGMsaJi8lGEAwZNo/vCEwvtDkSDSA2ki4kZ7VeUui83BIpJ2QjpsXSgitCrTYZbImauaaKG7dq1W4fs0cuS/8Pfyy0gEHwHonq5FaakECFJRIWIXOVDJYSM/eeYca7R1hGFwx+QSByENkivN69AwoBlAg/2l2uVY8a4QbqVxunYZTDWGr0Z13FYlikKR8YSwLGvdF4oJOBXRAN7RoIKwQDBIJ0kXVSpG8pts3DjzG9WP4pggB4nu9UQkxjkgegDURLSVkS/4tIMmu9Amo3qTXSHNNkuZ0XuhYhBYCEtRLPyacKYjLC7yNcCqRC4/knPEaGiLVI2mHwgdgjbcfcvpHurhJABPh/yxWeh00LkT/UpejjImo0gZU6kxERLuJZNyyZMb4leQsQ4VxxjImdIImwimEmDifAWW1S7nReyoWnK6JGYu4ZJgoGcMC6Rh6QTLS/NwhlUSTWYG07hDyAZTE7ZrYbQ4HC8uR6JfuCD5XdKIWgQAWOihbxAJFu2bFk2YfBCxAAWGdzDF198cd7/x1uNyd6L9oqUIGlNzlMuGQOQJAT+9K3s2rVrwe1USsgA9yHmtRBzCiAmT54sxIw2UbZfJ0RwKSYxXQ9Is3P9swgm/c5CGL2c0ZtBziBySVkc2wCuYRYMhWxTvMwL2VAyFj0SQ8ZM02EGhqjJWBhEy0uzcMBA/8UXX1T0vRSOaGqM7ouI0TfffCOEg/QXxItoDpNQHKMDRPZMKo0oCJWBCOjL/S5eiRgTO+lE9FuFIlRE69CHetXVEb0hEsU+5b6X6A7atJkzZ4pfWLEqTT8IGSC916VLl6oU8LBhw4TwEimLi80Emj5IFw+IGCSeqBmRYSpJiQZiOZTdTzPqsTnuMPNKsf8v9LySMbsRvxmjAIwjMWTMTcl7UAiLaHlpFg4YCNF9KLwL14nGmFZDEFpIC9EWJnjICteb6QIRR0BQiIIRleL7oTE866yzKhKZeyVigEgRwDQ2H6gGZgXP9rwCMkAqknMIEcoF9xXE6NFHHxU9VDGy5xch4zPwZoPEm+IIyCDRO6/FEVGD6BfCfh6kkNGbmZZNkGDSmhRIkO42ejPuH797eiYdzAHFUvRe5wUzxrHIBCrgjw6JIWMMAgxeQdpblIp4hUm0vDQLB6xOGfBJo8WZOAQNJhEmbMgXURjIPVEiUjTovnBvZzBMSkUZ3w/xOpE+UnndunWr2H6hHCKGISn3QDHTWDctkAqBaCXic8hOPjJGarlRo0bOfffdJ8ShFOHzi5ABvi/f21hhQIoxu6WnpxfbEJtgUvUm9YrODw0lD74fCxpTycl3JAqr6cziIPrIPVCo0KSceSG3FVJc9KxJRGLIGDc/kwmTS1Ri+bCJlpdm4RAIBkCOT9C98+IEiAMVY/hmGd0X2kMj7sZFnWOXtN5+RJmwW6AJN+kkJn4/jEnLIWJcl+wLOphijb8R75PCc2sumw2IGOcQkl0I3ENUt5I2hBiVMtj1k5ABUt0USXA/o9kbP368RI/Qk5XznW0Cx5/vYpzjTcsmUv1YEkGQjRZNkR9ErYlgFYtyeZ0Xcm0tlBBHh8SQMZOqzBcZC0ssHwXRctssnImWSQ+ykXYyxkTAcTWthtB9EREj2sUqnbQjxzyOuq9S4BrAgJQHLvZ+tuwph4gB9oUJARf/QmTQtECqJGrHhE902EQ68wGrCwjbY4895rRq1arkNv0mZMBUJppWU3fccYenVlNxAEJ/ovVEe4hAa3qsNIzZcSky5mVeAETFgd8tlhTekKjZhpVvbmQsTLF8VETLDZjEiB6yEk0bmHwhXqbVEGF50l1EWTgu6HMgYLa0GgoKppk1xAdCTsTFr2bW5RIxiDHvoVQ/t0dkNoheQpo5V+WC7wwZowCjUKoTwTkEFRLEZxktatiEjHuVlk20VjJN2F9//XVJk7tpwh4XsHjmvBA5UxQH1y2Rq2L3STkw0WK/t6tIMRnjQs2OjEUhlo+CaLk9Nug3iIwlHRADvqdpNQRBR7PCBMnkCllgMo576sctEFKjC+OahHxhG+FndLRcIgYgh6SFi+lgzERE9LKS4hzSYBBw0mLFdGcI6JcuXSp9K3v27Olq20EQMlPpicmu0ZM9/vjjUohAWjnukyfnkwpM2lIpSoNeqixa/Nb8GiPZuF9PcceGSYuAMPkaRCWWD5touQXaJ6rmkggiJ5xXYzlhWg2R/sBok+9OFCwpEQU3gOQQVaFKEJDmQpPl5zGohIhBmKnwhciUitBxXkkjVxK95HtDyExaphCI0kDIIGNMgLSqipKQGf1ihw4dpNABAjt69GiZmCGxfkU3wwaLJPSKbnqMKhy5j710nvBKxtIuX4kaiSJjiG8ZqFhxEeaPSixvK9CdIE6mR2LcqwEhGsbvC80J34nUIxMTKzwiKAzyNrcaCgoQJKLCVAVioMoA3qRJE9/1RpUQMd5LpIfJmCrGYuB+hrj5UVmIpQIGr5D1YsSOY0ZqcNasWULk3ZKqIAkZwHaE8QedHcd90KBBklblGMbtWmfhjE6JwiuFU/IeYGFARNRvaGTMDiSKjDHhDB48WNIypORs1nAFgVKFChhb3nDDDVI5WKxqzVbhOYO3sZygRN6UxxPt4PswaSIMTjM4Pvh1ffzxxxIJ7NixYyDi6EqIGCANyPlEt1aKRKDzg3z74R9oCjMgZJCYYlE0xPxjxoyR6CJFDm4RNCGDwHIvH3744VKFyn1PhJHIJ4U6cQALJ6LZ+RrBK9YFYzb3gN+RMYp4GEuBpimjRaLIGIJbNBasoo2/TVKIVim4sd4wNzLRJNvJGJM9aQzT55FzijkhEU90X5xryJc2tv3/oAk5JAyRPhEfLBKIogR1biohYpBoCA4k0Q15MAJjP5rcoxMkKszkVoyMAaI2aMtoV8T94sUEN2hCBtgfyKzRk9HOCePYNm3aWO90b1KUXnqMphlY0AAIuJ8wKXv8xeKeLYk7EkXGmKjJeyPQZYBKCtEqBbfWGxwfKk5tragk1Wh0X0RDqLRD98UEim4HckGaKU26r1KgMIHUM9cA0QbIEXqnoI5RpUQMUKlIVKR79+6uXg8Zh3QzefsBIoaQVjcgIsY1OWPGDKddu3aePicMQmZawVGUMWXKFKmUJVpGtJh7xtbUJeeUe5nqVYU7vRhzm98kW/Vi9iBRZAwQ/ULkmiZ46UcGoXE7EQUNwu5EvhgQIIiYGqKNYMWPJxQaQHRCSfFW8psUsVo2GsBDDjlE+hoGac/hBxGjeo7el1yHbkw+iYYSRSkVxfIC0jHowbA4KZXCZfKDVBHJK8fnLCxCRuSYlP3NN98s1wPaWbzSiDwRUbRpAUNklHudVmIKO8T7mqKMHokkY2nrwejFeoOIIZEJJsWwq7AYhE2rIfRCaBWogIVssbonZcXkoS05ioNjiFUFBJZ0PPYLRDyDhB9EDOAszzmn96UbcK3wej/TWZATomzoxtzo6UiJ4/FFGrBPnz6eiU3QhIz7ijGP+8ekpomKESFD6M8xZCK3JaWPnpGK1aDS6EkDC1TOLxYnfkPJmD1IJBmbMGGCkyYQ/YJkoRcplZplYrnppptEM2MmiSAncKIPROiyWw0xmUEiMLVkkuV3m1butoJWKJAZxO8Q2BYtWri2XbCBiHENYK3CNehWfwWRINXmJ9kkeggxoRrXTXQG4tawYUNJA77yyitlSR6CJGQQRbSy2Q3WKWRBpsC4gDcZ0Ug0QRC2qM2NiYZT6RxXS46wwfiJ0D6IyJgavtqDRJIxIgaU9HsR3MYZ6IWyiZh5jkfuxIG9BcSHGzwIMgZhMK2GOA/8zWSONoSVMA9C4klsNRQUiHwgIifKQdruuOOOE6PMMI6hX0TMWFmQSivVhDs3ChhEX1DSjbQbYr/cbBshP0SM74ArfjlarCAIGRox9FcQ83zkhub2nTt3FgJPNJUiD7RafB+/NHhewLjMI8kaXr/BvY/el7Hbb2hkzB4kbkY0XkToovzUmSRFM8ZNDRkq1jDZq4CcbRnLCbQgkAeIMJogIg9ov1i5K7wBooD+kXQTdi1c25ChsNK4fhExgEaLyCj9Ht0SEIg81xMtgPwGqUrILdE6N3oZY3UxcuRIITTlpowgZKSdSHk+8MADzoUXXlg20YSY48ZPhR1R5mLdN+rUqSP3IecS/Rv+aegMIWZhNodmTKIgxw+bkrQAXSgRTb9te0j/s9gBqhmLHokjY6wOCceX8hFKq2YMMHDjLl6sYXIhMJEQ8TKWE4ir2Q6rbFbhpHMY5LVMujLQ1otIBpWlRBW7dOkiRQ1hwU8iBmlgQuH64NpwC9KIEPsg7A8gIaR6GSfcTkRE6IiKEVEjOlnONc69guEsBAqiSdoZw1avhIwqY1KP22+/vdOsWTNX7+de51zyHfhc40vIRB9GazAzduCHFkVULo7gPGPeDGn3G7gOcE4oUglac6pIIRkDDN5pqqj02q4Jc9z7779fJiI3vjVEZYzui8EU/QJAd4MmheONAF91X5WDiZpKONy2OZ4I3U1qOY5EDNCcmybfXq0hIKJEWIMg9mbxYNI0bkGUjkmMyFanTp08k1KOBVHi66+/Xu6lIUOGlEXI2Aeula5du3qWY7BgbdmypYwPRMgo6OFeZiwIMoLN+MFxDyLdllQw7pKKDsIclzEGoDsNMzqqSBEZY1CBaKQJXto1Gc0OYup8ZIxJg0pHHkwYHEs8rJgUEd6S7iDNY6uHURzBCtW0uGGS5fyRFgv7GPtNxPATQ8/IgG+MmN3uB9cexqtBgUgjKWAvEWLE78cff3xV4/VC0edcQEafe+45uYfwBIP8mGiEV0LG5IwMAysTt59f6PujW8MiBS0c34ntoetEzuB3hIdIJ9eBeou5B1ExzkWxNLQfZEwRPRJJxqg6ofIpbXBrbotmBwNBUo2GCFD1CPniJxWPlJ4TOWB7/I1gnOiXwn9Q2cpkzPEnfUa0I4o0r99EDDDJs12IgxdAOCAwQXpRsaBAPwWx8TIhMTFiNYARbL9+/UoSKEglhBSi07Zt27XOrRH1uyVkEHXSkyyikARUCj7LWGIQISOdTASL44Hm06+ICeMKpDfoCu4kkrEg9GLAWEApGbMDiSVjTGy0iNFVWH6geZk2bZpMADjdkz7gWJF2hKixakZLAFEjXYQvmZIxf0H6F7JCxIBjTR/JSiIdthExIkek0yDyXtNfvJd9ClLoTWSKSBf76GVCIlJBuhIBPtFMImX5wP4TfYDccL8Ruc4XgXNLyIhOE11jkUT1pJ/RK6pc6TbA2Mk1SbSM6xIi4MfCgCg844oKxe3Qi7FtExlDQ6iIHokkY6TSGGTRjdWvX99JG0o1DAf0tKO8npVv69atZZCsUaPGOithBnyq+EhVehFfKwqDSCPaIawSGBSZBJmso9LcBUHEIPFUHaJnwlfMKygOQZwOSQgKHG8sLvgsryBVz/1FZA0NVG6XCCJYHE+ObfPmzeX8FosylSJkRrBPVJu+o9WqVXOCAEJ+tk/xE/5kXKemcKHcThgsOljw0TNTtUl26MWooqRamUU417IieiTSaZNBjJVumkT82cJ9BlLE0vzk70KpFiZKBneaIONEXmigZNLBG4g0g6J8MDFTiTd06FCJqOD1NGDAAFkwJImIAb4nFaFsz+t3o4ISG4wwoih8BpMSKVGvoCoQIILPneggVESU6I5A5MwNCYGQ4fAPOeT9nBtDxDiehtB40d6VA/aVe75Xr17yeWhIIWakcyHZXoHHGcdZJ31vgAgHpRczKUrS06r9tQOJJGOAcHsSRfxEvUiP8NNtw/B8r2WCJNXCIFsKpBfQkLFKU5QHfNhGjBghOiNSkky6WBJE6b8WFBEj8of+iFS38f3zAsgM2wjDiwrSwYRXzlhBJJmoGH0D0UQRDWMCJcXHAueSSy5x1X+zFCEjgooNBhHsMFsIcVzYHyq1STWTbkXkj52NW7DfkF20fxoV8wbGZiKqQejFVLxvHxJNxpIWGSsV9Spm/poPGFcycdArrlQpPHoxhMgKb6Bp86RJk5xx48bJpESkoXv37q56IsaRiAGsOSAmpMLLJa7GnDhoEL1CK4k+qhxw7Igws0AiLQu5xvEe64hyU6zZhGzy5Mmif2V7UWl7SIkyVvTt21eiWxQjPPPMM3I9u42KqcmrN2AfRAo8iH6UQPVi9iHRZAzRKCH+tES9vJq/olUiTfnYY4+V3DfSvqz+y0lTpBF0JoCUDB8+XNI7J510kkQYSE1GjSCJGMQBgk/ECM1XOSACQyourJZZ2GeUWpAUAuSLc8vkyQLp0ksvlehVpVEgQ8hI2bJdCmuiBufkoosuErJJtAZbEKJ2heQL2JqQ/uUaUw9Cb+DYMoZ4rUJ2C42M2YfEkjHSI2gdjH1DGqJexvw1d7uFRPxEvNCzuCFjTDCIPb2kKNIIiA56jGHDholNACledGHYENjQjzNIIgaoxIOIZDet9gLSkxA6bCfCApGbn376qexrm/sL8omu0k/9DYRs8ODBQnz8al9WKTi3jAWQzvPPP1+iY2jmTPVr7oSPVUsQHRSSDsZk5rAg7gNcBkyWgzZZCjuQWDJmRPyUgtsOP6NemL8i9sVhn5+33npr0c8mDE7KgbRSKX1MuZVnaQGi8zFjxjhTp06VSZl0JGlJKnttQNBEDN0VpIGIa7mkhMUTkZYwJ3BjYFyurAGCggUEFhkm4uAX6EOK/gyyYwshAyzMqJJl8cdPvPIg4kZXCrGl4IBrQaNi3kD2ATIWVIry9ddfl58QZfSrCjuQWDJmUpV0vLc9Bel31IvnKE93YwBLGJzJj5RaKUBuKVPH70jxPxARwbNt1KhRkspFmN+7d2+rfNmCJmKk00itoMFyc90VAu2J0FrVqlXLCQukGknBVRJFZ7GCLQQCd9JLaSBkAL0c2kAiZUzuVAlTvEGqGiuccgo40g40eRQ+BJWiVLNXO5FoMkbqwAYyVioFGVTUyw2MuNZtqpIIgqYq/0dAqJ4jJUlEhLQS55ZFgE0ImogBJmGIKMamlURCiLxiaho2qPwkPVrJQsOYTQcRjbeZkAEWHnSOQFNG1IwH7by0gtI7GIspKgmqWwF+dUB7hNqF6EUsAQI9FGJgyEOQXemLmawWSkEyaZnXemn07bblkRcQDie9Rni8mKs3gmxWv0yYpCzTDFJyRIIgIJx3zicTpm0Ig4gRGWT7HAeuj0oqT9GzRCFWR9tHRIfIHKbR5VYdsh0IOu2K/O7+YQiZmUz5LJsA8SJ6TsUlCxVb0vNxw8yZM50mTZr43h8UUNBmAhSFOkcookGiI2NUSUEagoyO+WU3EUTUywsZo/KJ6EYpIPgkhM5gm0YQ+Rg7dqzYVUBeqSyjjVFaiRggxY0A/pxzzqloO9wTHNMoBN+ME6QrqXytBOw7xwKbiyBge4QM4EmoRKw8kCpHuxhUipLtM35zjtA5KuxBoskYoJVEUGTMb7sJL1ovP8HnMRlNnDjRVaqSG7lcK4C4gio/DFsxbqUSicES36VKIkFJIGIULZCihSBQnVsJiEohKI6C2JJWI9XGPlQCKmZZsCxatKjibcWZkCnKA2Mw1bOmu4PfMHMh0WfGcYU9UDJmkfA+KBT7DgCND+7eVAGWEh8j0CY9kpaqSiI1EBp6BiKsxXhz4MCBouewtUosLCLG51BBh44Qh/ZKt4XzPtHsqMBnEyHGEqfS7dDHEcuHoHz5lJAlD6QQIWMURATVk5UxAeDsr7ALds4mPkfG0PesXr06UcJ7v3tVtm3bVgwamVxLgSoptD1J71UJqaaZOpMqejkiYaTibO7lFhYRMyXyaDLxFKv0mKDrxF4lyv6FpjVSpZ07jNUFUSsiZEFBCVmywGKPa4axOCioXsxeJJ6MsUqlP1w+PVSljvdB2U34BS+9KqmoJOozYcIEV7oYVm5JjY4RHYE4jx8/XtKTHTp0EG1YuY7ySSRiRFBp11KzZk1fqkfRshAZiLJtDt8FqwY8syoF4n22R39JrqGgoIQsOSAqhqULAYSg9K6kzlksBFWpqSgfiSdjhXRjSRDel4LXXpUYlBIFIkJWDOh6iI4lTa9CegqfqDvvvFO+G43UIdvlVtcllYgBKg+JjlJF6geIsOHTFWXUkbSzn8bGVFTiyzd//nwnSCghiz8oiKIPaatWrQKposxOUTJ221hwlHakkowlRXhfCoW+Q6H0IgMB//fwww+X3DYeNZAXJuS4AyJDimDo0KFynZAqo4UR142turAoiRgWFC+//LL02fTD2JaJiIIQG6waKMjAqoPvWCmIHmN6SlssLFCChBKyeIMoM1WOQaYoVS9mN+yfaXwAkyoNbU26IC7C+0qR7zuAiy++OK92jBA5k7mbVCVEj9cXOpZxARGZkSNHOtOnT5dy/F69ejktWrQQm4M4IGwiBrBtgECdddZZvp0DiD2VulGDKCiVlehM/QDEHhE/EVfSsEFCCVl8wZhLij7IXpGqF7MbqSBj6MYwfTWRrzgI7/0C3wFD11wU0o6xMiMFhWVBMRAxguwhvI6j5xgFHQ8++KAcG36nmrRHjx7SFicuiIKIvffeeyJwpx+hX15SEHosIXDBjxqk4EmXrlixwpftkXJCi4n9h1/bLAYlZPEDhSvY5jD2BtWxgGiv6UmplZR2IhVkLDdVabvwvhwUK0YopMPJF9VCA0R6BfG6G00Mr2WCjgsgjpiUDh8+vIpUcO5JucUJURAxY2VB1PCkk07ybbtYWkCCbUkJoxsjbcr39QO0d8I7Cj1mGH1dlZDFC1OmTBGjYBaEQQFZAdczC54gu9Eoyocdo18IYPIg4pOkqJffFhyAajK0Y6NHjy7pkUQUgVW/qYSzGQxENMhFF0a7GgYldGGI9InKxAlREDFAqh+SQscGv44ZUYFVq1YVvEajANo1tJN+9WA1VhcUBjDWhAElZPEBMgn6eBZrMVfKK7IUTCBCo2L2IjVkrFGjRnJBZlcKxiXqVQx+W3AAGv6SpnTjOUaJNKt9JlRbwXchHYmpLSSCdCTnPY4tW6IiYqzcqQpEsO9nFBEiT7TSpsgkZIxosl+6MUOOsNjB6mLNmjW+bbfUZ6pTv91YvHixeNF16dKlYq/IYiAbAIKyzVBUjtSQMTx/iOI8/vjjTtxQaRcAr5FAVvGkIEeNGuVKj0cF2vLlyx3bwKRHZSjfA7KIs3WfPn18qQBMExEDzzzzjCxk/LKyMMD3iLTnjjvu6NgC3PNJ5UAU/QTi7G+//VYq58KCEjK7wdhEGrtQ+yMvXpGFQJWmMR8+7bTTKtxjRVBIDRkDpFcQSqY1BeklEkh0jAqwUp5LpGBYfWMFQMrJBhBpIYpDSvLVV1+V40ZKMs6NcaMkYnhlMZizmGFR4yfQixExsg0sMiDwfmq86AVIxSjn0K8UqBsoIbMTLG4mTZok1e2F0v5evSILRcWQkbAYoAJeYSdSRcZo7kzqjZRLWlOQbjUIiEnRj9EYuxQwEcSd3oboGKJ8Whhhv8DA069fP6dJkyZWtzCymYgB7hn2gePoN8mDxOPFZRuM55nf1i21a9eWBQwR+jB1lkrI7ANFUnSyoLtHIRTyhPSisTRyE42K2Y1UkTFIA2XrpFzigKC6ALjRIFSrVs3p2LGjaK1KkVeIDsLQDz/8sOImy+WCKMa4ceOkpQjRjE6dOsn+V69e3YkzoiZitAbCkqFhw4a+e6+RBuRc0V7LNiCm5vu+9dZbvm6XilHaR6FH81OT5gZKyOy6r1k0NmvWrKCdDuMyUbN8z7vVOfM56BQBRQIKe5EqMmaiYxh8xgFBpCC9aBC6d+9e5cflRshPdaXfk1cpYOQ7c+ZMieCRUqVpNQ299957byfuiJqIUU3LQM55DaIKC0sUyLKNhRT4g6EtDMK2hcmX7010rFDkIygoIbMD3Fe0XLvkkktcj9OAxbGXyn9kGvTaxVoFOYnCXqSSjDF5l7JtsAFBdAHwokGA0CAsRXtVKqVCJK1+/fripk7oPWhw/l566SVnyJAh4qGDHuLyyy93jj32WGv8quJMxADHl+bCfLbfx5TvRySV4g9bgf1JUFpI9IvYhLz44otO2FBCFj0YU9FgFmrYXWiczie3KCY5MSlKItt0llDYi/jPWh5BaS+r0SgGwXJQjh9asZvTS7QNoLlaunSpaLBKgZUXOrOgo2MMVHfffbeQ6u22204iYVT5UQWXBNhAxCAgWMFAloJolA4R++GHH6RdkK1Ay0aELIjrmUgFZG/u3Llr2e2EBSVk0QG/QyJjjK2FHPfdjtOlJCdm3Fa9mP1IHRljdcCFGaeqSi9VkKVuTq/RNhzq2c4tt9xS8rNJNxEdI7UTRPqFpuT0cLvvvvuELFx44YXiz4MOMCmwgYgB7BewBsEOJAiQogFBED2/QFEKpAXdXFAaVgip8YAKG0rIogELahY5zZs3L/gaN+N0KckJUV1jMqxkzH6kjoxl68Zsd433Crd6MC/RNlZupP+IkkAQ3ETHWPX7GU2gKACbDVoYGTE5A5PNUZU4E7GVK1eK1oSBn8hjECCdXaNGDaurXEnNIuTHfiOohSFmt9yDQX1GKSghCxcUrXCP9+/fv2QXi1LjdCnJCQsqxhQakNtoH6NYG6kkY4i80WuQfksSvOjBvETbsDTAH8lNdAwidvzxx4uZZ6XRMQYSWvAMGzZMyCBpI0gYra2SoAuzkYiZ/pOk5woZUVYKNIX4bGHzYDuIYBC9wjgzCKDLZFKmb6VfvTC9QglZeGBxzCKkffv2rl5fbJwulco0ejGtoowHkjWjuQSVTAi941JV6RZe9WBuAfHBNJXo1Ouvv17y9RxbUpaVpHeojMSd+pFHHhGLgV69ejktW7a0svIuKUTM+LRBpGkfFlTUiu1DyFix2w7SqJClZcuWBbJ9Is9169aVewUtUVRQQhY8WIAgsbj00kt90bcWS2WS9VG9WLyQSjIGzj///FjpxqKqvjSACOFK7qaAABE/VgiE5L1Gx2gXM2XKFCnhRiPG5/bs2bOgF0/cYRMRo3MBgnJSk/Xq1Qvsc9CLkaIr1hjZFhDppVUT6fGggOaRzyCSEZVPH1BCFizuuOMOqTqnu4lfKJTKfO2118R7kYUsmQqF/UgtGUM8SRQA7UqSUE71pRsQHUDnQLNtI74uBsgYA4/bSQwigMaBlCRRCN5PNA7LiqTCJiIGSAXjik9lapBpYPRR9H6MS6qZRQg6uiDTiNgcfPbZZ85zzz3nRAklZMGAhSWR/h49eshi1U/kS2UyroBTTz1V2nAp7Ec8RsOAVqNcqEmLjnnVg3lBhw4dpMIMwlcKGIWSrkSvVsx3jAmO1CckDDJGtIToHtU/pQSucYZtRIyIJHYv6PKwXAgK3333nZCOSlPnYbdGolNAqT6tlYCFC59DdxBMOqOEEjL/QfER93zv3r2doEGKkkUzaNGiReCfp/AHqSVjoG3btq7c5dOCUv0qN9tsM4mO0XaIFGQpILRnYC+kM0NDce+99zqTJ08W7Uy3bt3EksPvlaNtsI2IAXyPSJEFvS+Qc6KgVBHGBYjsiS4QSQ8SFMmwcHHj6Rc0lJD5B4o/SFGSnixmw1Nq/HULxluyF+jS/O4nqwgOqSZjZ511ljS3diNKTzrc9KsEhNnRb1155ZUlt4nYnugjBp9EXgyYcHDNHz16tBCyc845x+nTp08sNERJJGKkDaksJpLJJBwk8KDjuiDCGhdQyEBalcKDIEEk+NBDD3UWLVrkarETNJSQ+YObb75Zfg4cOLDi8dcNTFSMaugkFjwlFakmY4gbIQKQgjTDS79KomPXXnut3PCLFy8uuW0GFjxu8K2CiEB+KeOn+Tg6GSrJeMRFP5Q0IsY+EYkh8nPKKacE/lmk+tBgxQ2kbkmvBt1L0jQop2+lDS3blJBVvtChWwgZhUILEC/jr5cUZTFTWYV9SP4M6CJVias7DafTCi/+ZADne7RFCOxLgao5fG5oOP7YY49JdAHTVnRh6CfQ4gQdcbABNhIxgJ0CBIl0RtC96ygOIEJqs+t+IeCJRio9yKpKwGfQt5I0Ex57NkAJWfm4+uqrxUoJOwu/xt9S9zPjKYtm/DQV8UHqyViDBg3kwp02bZqTdBTSJBQSUxeKApBOIfSO4J5HKRx00EFSXk37l8suu0zSw4TPiZDg2E/1ZNARhyhhKxEjXTxv3jxJOxOlDBpMLkR70EbFDbvuuqtcs0H3XQXbbrutpEWJWGI4awOUkHnHG2+8IePtVVddVTRdWGjsyx2X3WjKTFQMIqYpyngh9WQMp3G8rJKeqiymScjnTwYuvvjigtoFCAXboVVSqbZSrPbxdaMaM9cvDHNRvJzwxUkibCVi4Nlnn5X+dUH1n8wFNjJ4mFE5GDeQRifdHpYVDtox7BAgy7ZACZk3oBEjvd2pU6eCr2F8ZZzN93x2NbwbTZmmKOON1JMx0KZNGynrD2PVGwXcaBKwq8BoNReFtAsQLDzMEBsbT5tyQOUkNhaI/Jl8kgSbiRjHmvNKVSNRmKBBROyjjz4K1DYjjNZIpNux5wgaROvpvYrvGOadtkAJmTtwzyPLuPHGGwt2ssg3LgPG4Wx/SLeaMjS8LBbQHAbVykwRHJSMOY5oNNCx5CMjSYBbTUKhQaPQ+0844QTRg11xxRUVpRmPPvpo0aBRYWmDaDnpRAyQAkOvd+aZZ4YmZEaXGccUZXbaiBR90BYXBoxJ3A+0ISsVfQ4TSsiKg3OFnpbUfzGfr0Ljau447Hb8NilK9J9xjD6nHUrGsoT8uNZH2Y4k6p6V5fS2ZAWHYBTT1kpSxc2aNZOfSbAZsZ2IIQ4nCnziiSeGpivhM4mmxqE5eCFQDYeeq5Keq17A/XDEEUfIPRHWZ7qFErLCwLuSTAvRq2JV4m7HWzeaMk1Rxh9Kxv4PHTt2dL755pvENQ/30rOynN6WiPLxHrvuuuvEM6xc1KxZU6Js+FBF7UCeZCJmrCwgYZjyhgXSJ/RfjHtXBYpOSLeGBVLIpPKxgyGSaROUkK0LUtj9+vWTxSVV48XgZrx1qylDLkL0mYgY46giflAy9n+oVauWXMRJFfK77VlZTm/L66+/XnQKDEKVgIpLdDJxTVfaTsQAOpOPP/5Y0pNhebsRbaa3Y5yjYtm6MdKtYeq4kFFgP8J9YRuUkK0NFqXYt+C47wbFxlu3mjJgOsk0bdpUxmJF/KBkLAtdunSRCjM3jbCT3LMy93WlSqoZkBk0aGvE8askLUNlH9GTuKUr40DEIBHz58+XqsAwtVvcT9hoYHESd5Aawo8N24KwQJ9XzGDnzJkTSvGAVygh+//gmhg6dKhYWWCFUum47FZTxr0FmTPFaIp4QslYFqhAYaJKqpC/HLht08FggmdYz549pfdgJelKzkOc0pVxIGIAmwQm87CsLAxMn7wwqjaDBmkgrtFyDDkrtbog4uLG1y8KpJ2Qodli7KOPad++fX3ZpltNGdIaqqN32WUXTVHGGErGsg/G+utLfp5G2Ek2IXULL206OHZ33XWXCI0rEfOD4447zjnggAMkbG97ujIuRAz3exzdEYSj3QoTaFkgYklpeYU9B2lXzn1YIBpCNBNhOGlmG5FmQkZWYMGCBc7w4cMLVqV7hVsN7z333CM/L7roIskuKOKJZIyOPqJz585ihIlHTNrhtU0Hq/fu3btL70omKz/SlTabwcaFiAHsEUzZe5jAl+uLL74Q65KkYJ999pFFAtHbMIHmDkJL30qbrC7STsjWrFkjnUUYs0499VRft11Kw0tDeaQhVCpThKaIL5SM5YCoAc3Dae6adpRjdXHDDTeIYWWloXrOAwUVVOExmduGOBExmrMzOVLdRbowTPC5pK2ToBfLjoxxHMPyGzOAiBHZ5HOXLl3q2Iq0EbJrrrnGk2jfT62vkdQwViKxUcQXSsby4JJLLhF9jS2NeoNGIYF+OVYXDMQMSlOmTHFmzJhRcboSh3hSM4hUbUGciBgRHITfnJdjjz029M8neoQ1A82SkwIE/Ai0oyAa6NVoKUWk02YpRVoIGRWuQ4YMkWxA2GSI84+kxmR0FPGGkrECFgt16tRxbrnlFiftAv1yrC6o6KHEumvXrhW1OCJdiYM1RpsQMhtSM3EiYoDj9umnn0q0N2zNFscKvRjeXEkD34kCkyhMoomO4en3/PPPOzYj6YTsp59+ctq3b+/Uq1fPN9G+F8ycOVOyBvT7pTG4It5QMlYAVMZQpZLUfpVeBPr5wuTF7C7QL4waNUpWbkQZKx3QIWTff/995OcibkQMLQsTNhVeUXh84cVF9SbecUkDqXqu8yic8THs5Zw+88wzosmzGUkmZFhYsNgYP358JMJ5I9xHKxZ3M2WFkrGCgHwQkSEylFR4Feh7sbtgtUZVJWaElXY1oEcfzcTRPkWlH4sbEQNz5851fvjhh9CtLLKvI6KZVMYm0SR6yy23lGsyCqDB49w+9dRTju1IIiF76aWXRI6BRjaK4hS0tNzfpopSEX9oZKwANtlkE7nIJ06cKO7XcUahKFY5An0vdhekK3F6J11ZqWdYgwYNqvRjpAfCRByJGGmsJUuWCFlmUREF0Iuhbwq7aCAMkPLFiJVJMSrdGq3IuO+i2oe0EjLGnw4dOkimIIr0ZLZwn+pNCkoU8YeSsSJAvE74edCgQU5cUSyKVY5A30s0jTTOyJEjpZqu0nQl56FVq1bSrJnUW1geT3EkYuzzk08+KakLIopRgHOOHxY2EEkFrZFIw9LTNqrPZ9FI38owPc/STsiuvPJKSU8ino8iPcm9ZYT7nTp1Cv3zFcFAyVgRMPFDYu69917ns88+c+IGN1EsrwL9QlGzQpVdpCvvvPNOMUV85JFHnEpAVR7RNgYjoj5BI45EDCxbtsx59913pdzdLwNKryBaQwQhiSnK7HuByTjM1ki5ix3E/CtWrHBeffVVJw6IOyEjMj948GDnpptuisw7D585inJq1KghmQdFMqBkzIVIE6JBz7G4wW0Uy23PykLRNEDngkKtkohoQWTo/VmJGSwgJE9lIKljVqdBIa5EDKJKyxwGahpMRwUmWlJ5RG+SCtK/O+ywQyQifgM+H7sLIqFhp+/TRsiIgl544YWSYejTp09k+8HiFlDJGdViS+E/lIyVAN4xzZo1k1Y/GPvFCeVowtyAaFq+/p2FtGOs4Kn8YeAgslVpi6Ojjz5aPMjwgaNbgt+IKxEDtGShyOHcc8+NtP0QRBmRe9KrvBgfSMdGmSY8/PDDJXLPuY8L4kbIKEQhJci9NWHChMjaDtGRhCpaPp9uJ4rkQMmYC1x33XWyKrLVld9P01a3KLQiY4VeaAU/adIk57nnnnNuvPHGij4bckd0jBQYExBVZX4hzkSMxQJVXhwXxOVR4ccff5Q0ShR2GmEDTRxeY3zfqLD55ptLxTFtcWzsVpEEQjZ69Ghn6tSp8jPKaO/tt98uP5s3bx7pPa7wH0rGXABtAEJotAJMNEk3bXWDQtE1iGuhdOUJJ5wgrUN4DRNHpWSQ1CoNqNmWH27kcSZiYPbs2dKpIOr9pl8e54Pq1zSQMa5FdHpRAgLOMWcxZIM5cpIIGee2d+/eUhUOCYoKH330kWhvAb0wFcmCkjGXoN0Fq86xY8c6STBtDSLqVmwfDK644grnxBNPlHTl559/7lQCfJ4oMccEc/78+RWlP+NOxNDQMWnQPYJChyhB8QD9SSneSDqISvE9oyYSpK0OO+wwEfJDhuMEmwkZUXcIGIvPoHpPugW+jb///rtz0kknSeGGIllQMuYSkA8GjNtuu01E0nE2bfUz6kaky8s+MGng3cagwnYr1dqQ/kTISjSAFF05UQHeE2ciZqws8POiGbgNxJDejWkBRSWkKbmmowTHHHJItV2lusywYSshoxMLESl67bLAiFKCQFcT0K9fv8j2QxEclIx5jI59+OGHon1KskDfS9QN+wSv+0AkAREs7uF+eLjRJ7B169bSGgaBq1cihu6M74Xuhp6acQPREK7LJk2aRC6YpxcpD45lWkCqEkJMRDBKoKWkgpb9WLhwoRM32EbIkHbQ6gitcFQ2FgYUTNHejHR0VN6BimChZMwDiDqgg6EFhh8aJZsF+l5sMcrZB5yjL7/8cmfgwIESkaoUnBcqCPG3chsZNEQMn6gePXqI4LzSdGfYQDw+b9480c4deuihUe+OHHsiRGnQi2UvBohIvfnmm1bYbXAtoB/0s7AlbYSMPrhUK2JlQQQ/SpCJGTJkSJVWLMoqaUVw0LPqceVJdIyVJ1YXaRTo891zSWG5+3D99deLRQW9E4nsVIpjjz1WSN7SpUulHZBbIkbJOs12aX8FEaMgIOqUk1tAHokIRtV/Ml8LJCbUqHVrYYJoJClCvrsNQDuG5QsWCHFE1ISMyC5mqqSfjadXlKCKE/uUHXfcUbS2imRCyZhHoCciBQOR4KZNm0CfSsh8pDDfPhTadvYkhlaLqMJZZ51V8UoesnzGGWfI/r388ssFz08uEWvUqJE8v/fee1e1FyHaFGb0sxzw/SC/9Ci0QSxPqg5/sTT2yuM7cz5sqLZGO7j//vuLjUyUlhtxJGREoRDs0+Jq5syZUhwUJRirjJSDlnK0v1IkE0rGvB6w9dd3hg8fLjcr6cqkC/SZ7POJ9ItVTLrZdnbLqUcffVQqwIwQv9Lzw2B60EEHCeHKNYUtRMSyJ1WepxHz3LlzrZhcCwHRPpE8W3RuRCO///57IQJpA5Fkrj3SWzaABSPXOmL+OFldRE3ISANCYlkk2rCoYFGIDpYFK9YaiuRCyVgZOOWUU5y6detKqtIPYlQogmSDQJ9IFxGjfCj03d1u24DIDt+fAbBSQ1iA7xNaDyYk0nimkXMpImaAmSIaMojinDlzJA1oGzj2y5cvlzL3qFfvBhBqjnEayRgppK233lrOiQ2gahlnfuxObCGIthMyDF1ZaGMhgf2ODTBRMWQU2223XdS7owgQSsYquHHRFRWK+LhFsQiSDQL9ckhhORE9HPVJ/V599dXO9OnTnUpBGToeZIjyWV1SGu6GiBnQ27Fbt25CRHm/TekeomFUokLCbJk0AMUTHLc09ssjKkZrJD+0j34BIT8EkeiYLXY8thKy559/XhZgRJ+4720ARJpCDK6tKHthKsKBkrEyUadOHSkxnjFjhkRfyoGbCFLYAv18z3slheVG9K688krn/PPPF+0ZIvxKQWifFSWECoLnlogZIELv3Lmz2AW8+OKLkVsXGHB9kBJEZ2dLZRWTPSLjQlHUNIDvTtu0IPqllgvMQSGIePDFGUESMnSOFMCw/aFDhzq2gGIxwL6l+b5KC+wYyWMKml8jGkdnUI55qRf7iHIF+oXglWB5IYXlRvQ4luPGjZNoFtVMND+uFNWqVRPyVbNmTVn1uiViBghm27ZtK7YmaDcgiVFqcNCwQf6xU8BzyBZAVLHZOPDAA520gsUGWkM/FhJ+gcgY1wr6R6LDcUYQhAzvLhY1jBPTpk2zJqq7ePFi55FHHpExsZCxtiJZUDJWAShnR3SO6SYmpl4RpCbMjSbNa9TNS8VkuRE9BkUE/VQyYihLpKES4J7NwA1hLtedHv0NAzYrVFJxVGpW2jmgXDz99NMygdhiZWHAMaY61gbRc5TEh44QfhXY+AU0mdxHELK4w09CRh9X5BHc04w5nDtbcNVVV8lPrCzSvMBJE5SMVYjbb79dVsOYl+arvCtm7xCkJsxtVWMlUbdyt13K8gLtDVoJoi0YuTJolkvEXn/9dfn8SgdaVqjosygMIMKAjqzc/SoXq1atkhUzxSM2TRymBVKtWrWsSZtGBaJQpJCjIuv5QLSH6mJSldwTcYcfhIzzw72MVgwiBmG1BUgiqJRmEahRsfQg3SOnD6hevbqQEAZgiJlXe4egNGHlVDWGsW23lhcMjo899pi485fTw9JPIpYNXO7RkUHAIYxh6oMYoAFeajYBOwtSyn5HdOPaGomorm2kh/1icp81a1ZsrS78ImR8fwTxmKnS2s6mIpjsqBgFSJw3RTqgZMwHEBUjvQaxMlV3XshKEJqwoH3Kytm2VwJXv359Z/LkyWJ50bt3b9eTSFBEzAAxba9evWSgJEIWhrCfVjtYR9BhAFNPm8B+IeAn+pJ2cG0QiaJYxCYQsaQQBZsL7o0koFxCxoIXCwt6TtqW7qdrAh1AuIYMKVOkA0rGfAA2CkTFcJA3N1DQhq1Ra9LK2Xah745ovxAho+PBiBEjpC3JLbfcEjkRy46IEiE7+eSTRbDN/gfV0xKig96HvoNHH320YxuYCKlcxWsr7YAoYylhS+VtNjg/eOc98cQToafYbSFk9957ryyeqVQsZaJaSk7hN1hsUlEOunTpInINRXqgZMwn0NcQj6WxY8cKGQhLnF8MQWrSytl2oe8+atSooilLSA8eZFdccYUzZsyYyImYAalKBMBUW2Isi/cXKbsgNCToxfgsGzVZWAPoxLG2bozzZWM7LawuVq5cKVqppMAtIaO9EWMJJAw/Qz/kFH4CkoxUhcU9hFGRLtg3sscUVJJNmTJFVjeksBBZBy3Od4NKNWnFVoflVGPm63fpJmXJirF79+6yYnz44YcjJ2LZwn7Odc+ePeVzIWR+Gn9iF4FoH/dtBmnb8Pnnn0uHgv322y/qXbEGWLOY9K1t+Omnn+Satcl+IwxChh1MixYtJNJOlJ1jEIXWthDQxJqoGD0oseJRpAsbRr0DScLxxx8vaSt0RDj0Q1aoBmSAICoUNhEz4HPLrZbMHpQgUnwnN9tm4Mr3vc0xITVJRCwXvCff9hg8aVPCxN+yZUvxBGJgjZKIZYPUFIMo5rJYXxAZIQqBaLoSLFmyRNo6EW3hmGJEi/YHGwUbAOEgPat6sf+BKCEaUloj2WJLQMQWC54vvvhC7kl8/JIGQ8iMwa0RvxMFbNy4sXPcccc5EydOLHlPFpOYBDWG4ymGj+GWW25ZdMGqSC6UjPkIbnI0CQwC/fv3lwGgXCIUNQqtDiFSpb5PKRJn3p+PjBVL43J8icLRhopm4ETIqG6Mmohl64UginvttZd0ZqD6kRQHOp1yQKUmVbp4DbEdJndSGejHIH8HH3xw5H0p33vvPdHPRb0fNoHrFELGsbEhEkbxh7EeoUKPe8bGdHcQhIzILdXHjA9YWLgpfglbYsJixqRNL730Uu1BmVIk846MEEQwSNdhzIk2Ia5l5OUWIHhpQF5OGpd0MKvbpk2bOs2aNRMNmQ1ELDuCx/5QOg8pIz1CRMKruJ/rZtGiRVKdV69ePdkujvtst3Xr1kJIsdZg0uFaiwJ8J1KyaTZ6LQSOCWQ6CA2hG+B5uHDhQulLaUyCMT6meXhSiVguIUMjRvUx3xmbHIpM3CAM/8dsYK/BQotFTd++fQP5DIX90MhYAGB1M2TIEBkIH3zwQZk844ZyV4deQvzlpnERzkPwiBpBfEnbQc5sq1xD34ZPGhEyIlpUQrqNkkFymFCbNGmyVloFMspEw3d+5ZVXpAwenRoaE7zZSGOGBdLDVBDb1JbJFnA9c96ISoUZGed8YKvBueFag4QRVbVRbxgksPCgYpLFMfIG0sZeEJbEhHvcaMUggLbIDxThI9lLpIjAIAwRA4j50WnYjHwi/XJXh15JnJcWSwZMNKwkSVNCVphwSAvaeB2ccMIJQs69RMn4f/QjaM6MGDwX+BAde+yxck5IYxLtmDNnjuhjwupBaIi3mr2uCyK1RGhWrFgRyrkgAodWEeJP0cf555/vDBgwwDnppJNSR8S4B+hBS0SM6DGLtnKc+ov5P/plewHpY+FFWpu5QpFeKBkLCEQpuJG/+uorMSy1FcVKuMupxKw0xF+qpDxbrI9uClNYhPxMPpjD2giiZKSs2Uec6pkwuS4KgWgKZIvenG6ihETc0ChyvRE5Q1P23HPPBd4dAB0S382W5so2gbQyURmOUZCAeJOqhnTgR0fFICSMRYBt5sBhgAXPaaedJql9FsS77LKL783F/bK9oCem0dLiU+k2japIJtbLxFXUFAMQgibsjL4H/YJtqTRWdQwmuYB4VRqWL1RNWcn+FKqa5PjSZw5iNnLkSKdTp06OraDKkogekT2iZZB2CFT2NQNZo/iDScUrOBZUYJK+5HghrKcak5W3n1ohTENvvvlmmfTYVxswYcIE5+2333auu+66iqtY/QCWJFT9otXyU9PIkE20h++Kvx0palr6YLGyySabOGkF0XEKaOjcwe/Z5IbjBGllPKqkxZCfYyYRfaooiV7ivF/MbkORfKhmLEAwGDAYY9ZJZIRBwiZNQJAl3OVUkRbbHyrBClVNQmaI3hlXfAgPOgwbBzcmTq4FUilovegVSDpl1113lf0ljYl5MJGNcsCxYFJmm0zWpK7wlIKgUQxA2tOPtBUO85iaqqVFYTDxE7lctmyZWN74QYA57kR4IGScS4pYOAfZhD6NuOeee5xu3brJ8WAsyCWlhWwvohozn376aSFiLBrQtNk4VinCRbrv4BBw1llnyU3Kior0XT47h6hgQ5cAN58LUSllX8GgRr+5nXbaSYgY6cChQ4daESHJBftEJANrClIpEDC0RZAliGT79u0rJkx8Bh5XPNgm1x/VdUwaCLuZyCG45U4CEAKIBudGkR94RpHG5dyWS8YgXdgzcN64pol0kpYmOkMKLu2TOMfnxhtvFGsIjJe55wtFgP0gZH6MmaSTjT6sR48euqBRCFQzFjAYLPG3Mas30ke2IOwS7nL257bbbhNxshv7Co41LZM4zvSzJGVhcw8+XPXRebGiJ6pHWouUIlEtv6NxLArom8rn0eOSSkxS50TMSOF4BVooNHtJt0moFOjGaD+Ew7oXYEdBRA2yDnmAnHM9s9BAe2giqWkGhS4QMIgYhIwIU6nrsdzm4n6OmXQAQKbAooiUukIBVDMWEiAHtPNBJ8QgG7ZYs5iGqxx9V5Aw+8OE45aI5QLNSKtWrSSKwO9hWj6UA1bLlOPvvvvuMmEEHU1ATwb5o2oToT9pHY435KFUKv27774Ta5GGDRtKhM8W2KYZA0y6pM3QMXLvFwPXOiTXWIZwHaAppKqW96adfGWDRRY9YUn1kW24+OKLPb2/Ug1ZueMp0U2e5x6iS4vX/VYkF0rGQgIr4zp16ogHEILeQYMGhfXRrtoa2QY/Whyhy6JoAgNORPHa7y2/4J8IAdclx5tJiio8BP8QM1JtuSCqRuUq1xHRPVtgIxmDZN90001CqPIV8FCwAQHD3gAyxqIBAoYOjElbK1XXBUSGCmr0kBTtEPUtB36J+r2MtR07dpRWcFwPkDZbrlNF9FAyFiKogELnQSidgYRKtDhXTAYFP3tNEoXEcwh9E+liWsEoChMHek0aYoZtAhFcImboy0hvEp2ZMmWKvM6YVdoCG8kYoEsEaUf85ohKclwZCz7++GN5HsKLtg8SRpo6zRWRpUABA+SL40eanX7AlcBPQlZqrEWzacZcPpOovUJhoAL+EIHGBj8ZImOE2Gl3E3T6LIqmt5XA76bfiOQZBBnAMUm97777pOJKsS4grLjp8yDywDVCJSapNqOvQedCJId0qsIdiDBiXUCklpQwWieE+Pvvv79cn/vtt1/qjFnLwbx580QvRzSWxSzHrVL4VWVZaqylwvmSSy6Rv/EnUyKmyIWSsZBBb8Hx48dLxIZ2OfQlC1ILYlvFZJhEzIBoJBPhRRddJIM5gt9rrrlGxedFQHqMVBkPUpmcG6ISLCBIpxHFUbgDpOHFF18UKxCitEz4kFnIr6I0iCbefffdYp5NVSqRWQpe/IJfhKzYWMsikEUhUVA35tmK9EFLocI+4OuvL6tkfIHQOyDiTFPFZFBErFR7EtJtEF+MSm+44QYhZVE1cY4buFbR3SHYZzKEiGk/Sm8RcUgtxQ4Y+TLZKxFzBwgsvnxUTWIHQY9XP4mYX1WWxcZa7h3zPAtB7HcUilyoZiwiTJ8+XRrRog+BQCDuDxK2VUz6ScS8FiigNaGfIxVq6MhIIyncgcb3RHVPPfVU6w6ZrZoxsGDBgqq2WAp3oKcvLvWMXXTW6NChQ+CHzg8NWe5Ya1q1kZImsqxFGYp80MhYRECTY3ywmjdvLkLeIFGs6W3cI2LZRAzwd7EGvmeeeaaIaomMoeVgolS4qwiG7EAqFN5ANOS9995zfvrpJz10LoDlCvcmpAZvxjCImJ8RMjPWTp06VYgYiwPkKUrEFIWgZCwioBPj5kTPxI3PijltbUL90IgVEs1SPl6MkFG9hoaDlBupN+wHEFYrCoMKNiIHVFYqvIFjho0FzaEVhcEYSBSMqkSE+tioQI7ChB+EDNA5AYd9MHDgQN/NnBXJgpKxCEGKcu7cubJqQs907733OmmBX2L9QqJZjCAZ0ElhFgKDPf0hsWjAnR49D62DFPlBZIfomE3eYnEBGjEWYBxDRX5A9MkS0JGCYhuKHqJqt1UpIYNUYvL95ZdfyoLPNhsYhX1QMmZBpRVtPAClz1gJJB1+Vk3mE816SVkiTkdjBCnGXwvtHk18FeuCiQmvMW2BVBrID/ARI7JDSyN0iqSosLRQrAuOE5Ej7kPSenfddZeYD0eJSggZ6cmHH35YxhdNTyrcQMmYBWAl2LhxY+fnn3+WlWGSq/yCsK9ArI8GDKsQL6nMbDRo0EB0KpAxxOmsZLF0UPyPXGBtoZVg+Y8N/ScpbJg/f74QLx40gCf1jacUbW+IvtrUPsoGEEEaPHiweAAyHtArFdG+LSiHkNHyKDs9edhhhwW8l4okQH3GLADpC1ZSpNxWrFgh5Ix+dknrRReUjxgwhQmkJ8v1VEOYPnv2bImmQcYQ9lM9iK4v7fjggw+kX2KayRjEAd0X6bSvvvpKHrTmwX7BRL3wDyO1xnHC0sJ0LVCsC45f+/btnVmzZokRNrYzNgrcvfiQmfQk342F3RVXXBHiniriDCVjlgAfLPonsoqiRJ8VNLqJpCBIIpabssyurvTqqUYKbsCAAdJmhWpXBtQ777xTfk/zpIrWiZSL7Q3X/WgJRWQa4slPHhAuSBiRa64B9F+Yd0K8IFyI8yFfaOnSfI14AYseooUcU8gYmQGb4ZaQYUhL83JNTyq8Qn3GLAP6MZym0UtQ7Yc3TdwRBhFz66nmxW+N1S2rXKKWeMLhAp5WW4ehQ4cKMSGdZCtYxLz11lvSAxJSTbEBIN1M9IoHKcXs3yFfpBL5yXP8TkENkylRGiJbnHPaQPE7hIuHRrzKA305+/bt64wdO9Y55ZRT5KfbyLMNXonFfMgo/qFKm5ZXdPi49tprI9lHRTyhZMwyEOZmlUiUDHE/wtY4i37DJmJ+msMaTJs2TUgZ5wZhMbq+NEVAiAxR5ICLPG7itoKOFphqotHKNn3lXEHOeI4K5mrVqkkkmp88WPjQG5Lntt56a4mC8JPolxYr+Acql4mGQWjo0dupUyfX91G5925YhIyxgQXbjBkzJJrOQtrGlKvCXigZsxCkSLjREQWfc845QgZscxSPGxFjVY3VRS4Q/rtZZeMGjiiXc4HAmChZjRo1nDSAc3jPPfc4TZs2jbzCrRgwB/3www8lKgHpYqLnQZQLssW+K7mKhsyjCRszZoy01OKnl0bzld67YRAyrIno6sG1xgL60EMPjWS/FPGFVlNaCFbraCpYWdE2qZhXlq2wiYgVq6h0U2kJ+A6kK9GEIOwnHcHfaQBVZESNbCZiBkSR0XGh4apZs6akGEkrsv9KxMLHnDlzJKJK1BIzV/72QsT8uHeDrrKcN2+eRM4BhT9KxBTlQMmYpUArxmoLENIfMWKEExfYRsSKVVS6rbQ0IEX55ptvOieccILTokULSU0QjUkqSL9oCyRFOe7ztDBq1KiR3GPYfmA9U0563697NwhChjda586dRQtHehwrC4WiHCgZsxikw2644YYqQ1iiZbbDRiJWyBzWa6WlAelJ0pVEyUiVoO2jLB9BeNJAehYX8TRbWijcgwIIdJX77ruv8+ijj0o0DCPXPfbYw4p7128g0sd/jypjNGxU2ioU5UA1YzGITLDCvO+++0RQ/MILL0h7DRthKxELsiILPcz111/vDBkyxNlrr72c4cOHSzQgKXj55ZediRMnSmN79DA2A80YlWx33HGHTooRXSvoKjFuxZbnlltu8XUcsKGaMhvcF23btpVoH4szdIn5qiwVCjfQyJjl4EYfPXq0+I6tWbNGKi0R9tsG24gYA/cDDzywTisk9u+CCy4oOZgXen8uWBEPGjRIvjtaJfpbEtFMSuoSvRjf0XYipog2JdmxY0fRUDFeQcoQ6bsZB9zeZ17u3TCAhQrpSaMT4573o7m4Ir1QMhYDEPqmZJrQP/3uqGqj4tIW2EbESGFQfdWuXbuSzcL9ej+CfoS8OPYzGZG6vOmmm2KduiTlxOSiKUpFqZQk4xO6Viwd8lU+BnGfRgX89po1ayZGwLRRo3rXj+biinRD05Qxwn/+8x+nXr16ouE566yzpBFt1JYXthGxSsvgC72flT7VrW5SJEQwTeoSQ0t+b926deTnqpwWSKT86tevLxWJtkPTlOFJJ9CDIVZfvny5eIeRksQYN852FW6/O9E5UpR0XiAlm2txU8wYVqEoBI2MxQgYbtKAGA8lBsP+/ftHuj+2ETE/yuALvY4Jx+0KHm3fbbfdJhVktLfiffyk7QuDeVyAMJn9xW1eoQDPPfecdGHA/xAygqcWMgovRMxWuwo3wG8PIsbCigKefF6DGiFTlAMlYzED5dOI+cHgwYMlTRAFbCRifpTBu3kdTuBuNC6kKulTR9oSQkN6mSiT6W9nO9555x1t+6MQLF26VPSqWLqQescv7Omnn3aOPPLIso6QrXYVxfDqq686vXr1kt+JBB533HEFX6uETOEVSsZiCPyt0CMBBocnnngi1M+3lYj5UQaf7/35MG7cOFeEDBBNI4XGeSKFSWSBNDN+ZbaCBs5ExlQvlm4gjSAth5EpUSuiQUTD6CtZCWy2q8gHUo/oxOhfeuaZZzr9+vUr+R4lZAovUM1YTEH6iPJxSAGu41he0BMtzUTMzzJ4834GX1KUheC1Rx7NqxH5X3XVVaLJQks2YMAAKQCwCWiBaPmETUdceqOqZsw/vPfee5Jqv/fee0UviEid8cZvHy3b7CryIbvvJH5pRMiqV6/u+v2qIVO4gZKxGAOicPrpp0sVH7YK6Dnwuko7EfMbuU2KKxH3Z587tDa33nqrVMgSKbv88sutmZAef/xx55lnnpEoQFygZKxyoHPkmiQCBuHo27evRN9p0ZYkguUFpCQpVuAeR2JwxBFHeN6GEjJFKWiaMsZgcKCi8oADDnA++eQT56STTpJoSxBIMhEr5XVE5IsqL9q5VCruzz53GGSSChw7dqy0HOL9J598sjiWRy30X7FiReLOs6Iw0DVCvDGUJsqOHpWxhAWCFyIWV7uKQiCKbVocDRs2rCwiBjRlqSgFJWMxBzc5QlpWoRiNQsggTn4iyUTM7eTBd6cTQikQQSO149bIElLGdtGPPfTQQ+Lof+qpp4qFCeJ/0pphg1U85J5qOUVyAeFHiI+hNP5YFGyMHz9ePLJov0ZzdS+LGa773Aiy22IXG0GmoX379vI7EcJCizG3UEKmKAYlYwkAImtSlXvvvbcIbomuMJn6gSQTMSaJfJNHITLlVtxfTqSMUnlcvBFHM0Fij8Hf+++/v3PnnXcKSQtTL4SAv2bNmqF9piI8/PTTT6I1JcqDJhDzUog/C4ILL7zQky4sezFTSFtpu11FIc0k0gHkBNyH6Of8gBIyRSEoGUsI0IxByBCYsrKFkK1ataqibSaZiJXrKWZSlvfff79oxUrBa2SAdjJUqnEuSR1RlNGnTx8xjyVaQfowaJA6JTWFn50iOSDtSLHIrrvuKmJ8FnGkxLk+8Q1bf/31K17MxM2uIh8YN8844wyJEGMlxMLM67EpBiVkinxQMpYg7LbbbiJi5idEA0JG37hykHQiVomnmOmRx4TmJlJWbmQAMjh16lSZRHv37i2/411GCxZ+Z9UeROoK/ZpGxZLTsgizYTzuKO4ZOXKkLDS4JinSaNiwoSwAyoGb69pmu4p8oM1ckyZNnPfff1/c8zHZpgG431BCpsiFkrGEgciYqa4k1M5gS/skL0gDEfPLU8xNpCyb9HlpjGzAubzhhhtEEzhhwgTnt99+E685IhxEOvxMAxEV+Prrr1UvFnNwrXDN0LUDIrZy5UrpHUnlLi2uvLbpyXfdFlrMcB9wP3BfUJkZF/z+++9Oy5YtncWLF0tHgSeffNJzZwEvUEKmyIZaWyQUiHFxy/70008l1QVBc9PWJi1ELChPsVwbDP42E1Lu/3n1KMsG+h5as9CN4dtvv3Xq1q3rtG3bVkjajjvu6JSLF198USrISFvFrZdm2q0tVq9eLUUgEHbE5wjwW7Vq5XTt2rVsp/xS122x6z1OICJMdTOEddNNN5VryW3D80qhthcKoGQswSDdRKXUZ5995hx++OFSdVnMrDCNRCwIT7F8PktBNUZGjE0aigmYlTzVl2jOIGZnn322J1sCALmDyBNRjRvSSMYotKCzA+eftCPRHdLYnH8INYUgQSxQsq9bN75itnuPIdCHZJKyxS6IYxcmlJAplIwlHERQsLv44osvJHqCYHfrrbde53VKxNaeOEhNjho1quix9RLZIsWDVicXpHPQn/mBr776ypk2bZo0MsYrisgIkwou/0zQpQT5TORXX321pEVt6wjgBmkhY5yn559/3pk0aZKcbyKjLLYgYKTZKm1hVWpB4vW69TMiHAQwuOW4gSFDhog+MwooIUs3lIylpMkvhIyJiuqgp556aq0VsxKxdVEoklVuZMttZMyvCAICZCZrSCARUloanXbaaWLsSaUYLW7yWVowGRFNdZPStg1JJmMQLu5bBOVEwkhJog9t06aNPLBAifN1HxUgtUSBiQBStYzZbZRQQpZeqIA/BcBVmxQlglHsEpiMv//+e/k/JWKVifvdiufdNEbOZ0BbjuAfMFHjHP7WW29J6hmhP6Jutl2jRg2nfv36kprJtsqAjJGm8dJ3TxEcINTDhw+XtDOyAfSAtCtC28T1wPm68cYbyyJiha4rvyskC23PBu+xJUuWVHmJ0Xty0KBBUe+SivpTDI2MpQiLFi2SVaARfCMAp7oqzRoxP7UzXraXG/lyE5HwI71DQQfaIiIsEHQ0Z+xL48aN5XciZnHUiyUhMsYCiQIKvgfRL4gX34NIJRFNqiJ33333ij+nWNqw0HVYTv9VmyNjEDGuc64Xug9wLwRhYVEuNEKWPigZSxkWLlwokTH0RWhLHn30USFmitIIsnKskKbMr0kxH3Bepxk4xAzxP550RMXwqatdu7b0PD300EMlxRkHxI2MQb5oPD1//nx50H0BPRjVsETDIGA45G+11Va+faYbcuT3dW5bxSVEDA0lqV6OxezZs/PqaKOGErJ0QclYCsHAT8qDyZeUFavwchvgpg1eNV1uX+9Wq5MNP4XQlPajLaSSbMGCBZLeJBpItAByhmEoBI3vgcDfT0fytJAxPNzwsCL6lUu+iH6Zx7777lu2EatfhSR+Vz/aUk0ZFyJmoIQsPVAyljIwwTJpMaFSfYWeiMgHkzANqhX+wWsVmZsqtrDSPVhkkNYmaoZnFQbCpDGJyjF5YTjLA1NRyIMNBM0mMkY6GOKV/cB4FbAAyiZfdFUIinzFJW0YBRGjIMLPqGOQhIzzg2+kTalUhb9QMpZC4ODOZEXzaYSrpKo23HBDsXOAoCkqX9GXO+llfx7Nm71aDAQVgSByRs9T0zOTKBoCc8i9IWj0z+QBMeMn+iaKRsIiGlGQMdL9HG/z4LhAvCBjAA0eUWce2E/wk+KKsI6JzWnDMKNlr776qmjE4kbEcsdsRXKhZCzlYDJt3769uK4DIjf9+/ePdLKwBZX4I/nlK+algCAKPyeaikPm2Q+irBSE0N8Pcs/kgekskSAKRPhJSo6+l+ZvPyeYIMgYaURMk4lqQT6ziRcPPs+ASCE6O0O+eJDiDeJeqpTIRJ02DPNazSZiWPuQmowTEVOkA0rGFJKSYjC8/fbb5Wj06tVL/HaiTjtFiUrTOUH4ihWLaNiUfiKt8tprrwk5I71JRA0LFXqk4hgPUTMP/O4oGuAn6XIe/M5kiWktZI6f5v94YF6bj+AUI2NE9vjsNWvWyAPxvPmdB6bIRLN4QLzM7zzPew2IdHGuch/0emQ/g0KxiKltJqqlEOa1qkRMERdsGPUOKKIHpAuPnVq1ajmXXXaZM2zYMJmIiOLQpy2NKOaP5GbCML5iueQp11fMy6TK/5FWzkfeKt1fP0Fq0uihcgG5eeONN8Qj64MPPpBIGtcaRA3CRuocogQBgnBxbdIjk5/mwd8QMsgcf/M6HryHohSsO1hg8Pjjjz8kUsc2+b0QIG9E7Kgw5oHdgfndPEi75jPLDRqltIT8H9dFXDRfYV2rSsQUcYJGxhRrgXTlhRdeKBoFBKMzZsyQyTVt8Gv17tVXLGw/p6jTVfkAqYKUEeVCk8WD34m4kWrCJw9yRUEBBMuQLlKKEK+DDz5YyJUhb0TXTMTN/Mz+nZ9E4myKBLttXu9XW60wr4MwImPZRAxijXWLpiYVViOjUOTg6aefzmy55ZbkZjIHH3xw5uOPP07lMfrLX/4ix8A8/vrXv/q27fvvv3+tbed78PlB7m/u6/n7H//4h+wbP+OGX3/9NTNjxgz5GTdkH/fc8+LmUcn5yncdxPne+uc//5mpXr26bPeYY47JfPvtt75tW6EICkrGFHmxZMmSTM2aNWVA23XXXTPLli1L5ZEKipywvSAmWbf76+bzC03KthI2W8lYqeNVDvnyi8gUug7COLdBXEePPvpoZrPNNlMipogdlIwpCuI///lPZt9995WBrVq1apkpU6bo0fIRbiZhJqsg4CYyl29SjiKKEjcyVizKlXu83JLyXPLlF5EpdB0Edd0FieHDh2fWX3992f/TTjst891330W9SwqFaygZiwALFizINGnSJLPTTjvJwDF9+vS1/v/CCy9cZ3Bs1KhRye0+++yzmcMOOyyz8cYbZ/bee+/MuHHj1nnNnXfemdl9990zm2yySaZevXoS0i+GL7/8MtOgQYOq/ejbt2/mt99+yyQRUUR8zGeOGTMm1AiFWxKQPSlHGUWJCxlzQ7Czj5dbUsz1EWaENopzWu7998cff8i4ZPa9U6dOiRyjIJe9e/fO7LbbbplNN900c/TRR2cWLlxY9D0ffPBB5owzzpBo4Q477JDp16/fOsfGzbyhCB5KxiLAE088kbniiisyjzzySEEyxsru008/rXp8/fXXRbf53nvvZTbffHMZlN566y1ZJW6wwQaZ2bNnV71m8uTJcsONHTs28+abb8qgtc0222Q+++yzotvm5s2eZE444YTMqlWrMkmCDRGfIHU0QRIHN1GUUhOtH0Q4LDJWaF/9JLhRXgdBf56f99+PP/6YOe+886red/PNN2f++9//ZpKI5s2bZw444ABZzL/zzjuZa665JrPVVlsV1PT+/vvvmYMOOijTsGFDkZ0w72y//faZyy+/3NO8oQgHSsYiRiEydtZZZ3naDoPXgQceuNZzLVq0WCuiRiSsR48ea60oa9WqlbnllltcfcZDDz2U2WKLLWSfd95558zLL7+cSQKSEB3w4/NKTcrlHqdSE61fRPill14SMsbP3O+W7/sWek2538Wv1K+faUi3iFIHWO519fnnn0t0iNeyyJw4cWImqYB0QpJmzZq11vOHH364LOzzAfJF2jZ74TxixAghcL/88ovreUMRDpSMWUrGtt56awkr/+lPf8p07dpV0oXZIDrF6wyOP/54CWFngwgYNx7g5uNmzv2sdu3aZc4880zX+8vqab/99pP93mijjTJ333137FeiSdLNhC02LxVFKTXR+kWE2S9SMZAxfrLwyCVNufue7zVBfBc3x8vWoghb779//etfmX322UdeR3R//vz5mSSDFCXflUr3bBx77LEyFwAiZUhQDK666qpMnTp11no9kTC28+qrr7qaNxThwR5jHUUVTjvtNPENos0MRp8LFixwTj/99LVMK2mzghGlwapVq6TVTDb4G78m/Jgw1eT9+V7De91i//33dxYuXOicd9554kXWvXt3p0OHDvIZcQXeSl6eTzLwecKvqpDfE9cjflBcn/ws1dOwmMGnm/9361uVa4rKNZoN/t/Na9hWIZTaV2P0m2vY6uZ4lTruSYbX+++ll16StkZ0dqDPJ3/jiZhk4IfHd77hhhukQwRj+YQJE6RPrOmDuv322zt77713yTnB/J+beUMRHtSB30K0bNmy6ncMLA855BC5yebPn+80aNBAnmdwj3JgmDZtmnPbbbc5l19+uXPfffdJg+SHH37Y2XPPPZ24wY1bfpCw0Xi1GNhHt/tZaqL1gwh7IW5utlXou7nZ10JdEso9r3G7NoK+/x566CGnbdu2zi+//OIceeSRzqxZs9YhE0kF/W47duzo7LzzztKFgsbzrVq1ksb0oGfPnvJQxBQhRuEULtOU+YDwcuTIkQX/P6w0ZS4Im7NvfI9tt9021sLPKFJFNhQOBI1Sqc1KBeQmPZidpnSj3fJD/+a32N2LLUbSUOz+QwoxaNCgzHrrrSfHomnTppnvv/8+k0bwvVeuXFkl6qdaMh80TRkvKBmLARn76KOPZBDC0LAQGKipnMlGq1at1hHw9+zZcy0BP0J8twL+YuXTdevWle/Cft54442ybUV8CgeCRtDVlLmasT//+c/rkKZccpPvNX58l7CqW9OCn376KdO5c+eqY0AREpWCaQcV9miLR40aVVTAn10tz2tZoP/888+u5w1FOFAyFgHWrFkjpcY8GFzuuOMO+R1Sw//hBUOlIqarRJ6omKldu3bVDQQuuOCCzIABA9YpUe7fv39m+fLlmbvuuiuvtQX+YuPHjxchPgMc4lc/bCoYMC+++OKqAZNoW27RgSLehQO2i8zDqKasBMU+qxxbjDSACm5E6WahR3Qs7gVD5YKx/Mknn5Sxfs6cOSLOZ0FhrFywpTj55JPXsbY49dRTM6+99pq8n6KwfNYWxeYNRThQMhYBMNnLN9BSHUkJMzcPNw3VigxE+IHlEqbcakqz3UMPPVTKvPfaa6+85n3csJgG8hoiZX5PQqNHj5Zt831op/T444/7uv0kIU6RsTikzGwwfS33+JVri5FknH322Wt99/PPPz+TZtABhXGd8ZWxlQjhN998U/X/udWU4P3338+cfvrpEi1GTnLZZZflNX0tNW8ogoeSMYXvWLRoUZX9BQ8iZtqaxF7DzSBJY5iRJ1vJmJvjZ4P5qy1A39qyZcvUk1FFuqDWFgrfccQRRzivvvqq06dPH/l7zJgxUhFKNaiiMquIKFCu/QQVcUcddZTTrl07+cnfaYSb41eJLUaS8OGHHzr169d3Jk+eHHjlrEJhE9aDkUW9E4rkAgKGD9n7778vf0PQbr75ZmezzTaLetcUHuwVIFO5gCAUslso5z2VAs+lzz//3KlRo4Z4MtkCL8ciDVYWhfDEE0+I19rXX38t9jlr1qwJ9fpRKKKERsYUgeLEE08UD7JOnTrJ30OGDBF/nFdeeSW1R54JF8+gYgajNqFQ1KbYpOiHmasXsD/Gg4+fNkXhvBy/NJq//v77787AgQOdxo0bCxHDP+z111/3fM0pFLFG1HlSRXqAmH+nnXYSLQgVO1deeWVVj7S0IA5CeD/0X2EWJxTyGbNN7F6pfs72atZygF8WxUjm+sB6J7tqPInfWaHIByVjilDx1VdfiY+NGXyp4lm6dGkqzkKcqifjVJxgKhFzyViSbCDiTOIL4ZlnnsnUqFFDvs+WW24p1YIKRVqhaUpFqNh2222dSZMmOVOnTnW2224757XXXpO0BEL27N6bSUTYqbu0FCckvbdovt6bpfpo2gxaGV1xxRVOw4YNReNHcc+iRYuc5s2bR71rCkVkUDKmiATnn3++88YbbzhNmzZ1fv31V2fAgAHO8ccf76xYsSKxZyTppCEfwtBAlaNpi5NmMEkknubsaEYp4iEzc9FFFwlRT/I9oFC4QtShOUW6gZs2PTRJU3A5YnRLCiapvmRx8BWLK3Id+JOSbkxCepsOHXxX2vOw76QnH3744ah3S6GwBkrGFFYAp2ga3pqJBodpND9JbH2SFlFy2N/TVtNXP0hVnEk85Hjfffet2vc2bdpoqzSFIgdKxhRWYdasWZl99tmnauA+5phjMosXL456txQxEJzbTsYq7UUaNxL/ww8/ZPr27Ss9JfmeVFI/+uijUe+WQmEl1PRVYaXAd/Dgwc6NN97o/PDDD856660nPmU33XSTs/3220e9e4oSiMLw1WbT16iPSxR4/vnnnY4dOzr//ve/5e8LL7xQ7unq1atHvWsKhZVQAb/COmyyySYi6EfM37p1axH63nPPPU7t2rWdO++8U0wiFfYiCsG5zaavcS00KAcsnnr37u2ccMIJQsR23nln5/HHH3fGjx+vREyhKAKNjCliscq+5JJLxJUbHHzwwc6wYcPE3V9hH8KOAJnPo8XWgw8+6LRq1cr56aefrI04JbXlEa3PqI5877335G9+v/32252tt9466l1TKKyHRsYU1gPLi8WLFzt33323+JQtW7bMOemkk5wWLVo4H330UdS7p4g4AhQ364ektTyihVH37t3lnoSI7brrrs7s2bOdMWPGKBFTKFxCyZgiFthggw2cbt26yQTLwL/++uuLcey+++4r2jIiIYr0Gb6m1b/NBvz2228Sod5nn32cESNGyHNdunQR/8BGjRpFvXsKRaygZEwRK+Daf9ddd0mkjIgZJOyqq65y9t57b2f48OHOzz//HPUuKkKOAKVBi2UT0HCiA0MugD5s9erVzkEHHeQ888wzzsiRI52tttoq6l1UKGIH1YwpYj0pTJ48WcT+H374oTyHYHjgwIGiV6EQQJEe2F5NmQQQ9brsssucOXPmyN877LCDc8MNN8j9tuGGG0a9ewpFbKGRMUVsgeUFYm1Sl6RJdtllF+eTTz5xevToIZWXo0aNklZLCvtb/vgBepxm/1T4hy+++EJkAnXq1BEittFGGzn9+/d33nnnHUlNKhFTKCqDkjFF7EEErGvXrlJKj/VFrVq1RNjPc+iGRo8eLfoWRTggRUh1Y7t27eSnjTYTCveef4MGDRJdGCnI//73v865557rLF++XJqVa6WkQuEPNE2pSBzQjUHAaEa8atUqeW6PPfYQbRkaJlb1iuQZm2qa0l8JwIwZMyT69e6778pzhx12mBi34iGmUCj8hUbGFInDpptuKr5klNkzeey4447O+++/L7qW/fbbz7nvvvvUODYgRGUzEQfT17hgyZIlYlNBBAwiVrNmTWfs2LHOK6+8okRMoQgISsYUiQUmoH369BFShvkkYmN+b9++vXPAAQeIpumPP/6IejcThShsJojGkTLLBn+HqVdLAl599VXn/PPPd4444ghnwYIFsqi54oorhEh36NBB7GUUCkUwUDKmSDw233xzp2/fvs5//vMfmaTpb4nwGE0TPmVDhw51vv3226h3MxGIwmYibqavNna4OP3004WEPfTQQ5KibNmypfP222+Lh9+WW24Z9S4qFImHasYUqcP3338vXmW33Xab89VXX8lzW2yxhUTMevbsKQRNEZ+WP3Frh2QDIFxPPfWU6CohYwAjZUgYVjF4iCkUivCgZEyRWtDUeMKECeIi/tZbb1U9j3t4r169nNNOO00mKIX9IPqG6a8hY5y/IF3/4wqqIadPny4kjLQk2HjjjWUhQkQT82SFQhE+lIwpUg+iBPPmzZPJfObMmfI3oJyfQgAmKnUVtx9aTVkYWLtMmjRJCCrpR5O+xyMME1fMkhUKRXRQMqZQZAGBPw3JaXJsdGSawowP4XjiiSecM844Q+1L/g+ka8eNGydayQ8++ECe22abbWSRQfQQ/aRCoYgeSsYUCg8pTFKXTGSawrRDL5YNJWNrO+ZjR4G1y2effSbP0SaKQhac9DXSq1DYBSVjCoWLFCak7LHHHqtKYdJuqVOnTqJPog2T4n/arWybCXRIf/vb30I5PGknY9i0zJ07V6K6pNtN14nddttNzkPHjh2lyEGhUNgHJWMKhYcUJlWY9957b1UKk/6YJ554otO2bVvnvPPOS3V7mCjd99OsGcPQmFQkD9qAGdStW9fp3r2706ZNm1SSU4UiTtBSMYXCJfbaay8xj/3444+de+65x6lfv75Eyp599llx98fpH9NM2sjQ0y9tiNLvK20O/FxfU6ZMcU499VS5Lq+//nohYtWrVxct2Ouvv+4sXLhQik+UiCkU9kMjYwpFBUAUTZUa+rJsbRmTIsSMiNmxxx6bCouMqCJjafIZW7ZsmURm6R7x9ddfVz3fsGFDWRCcffbZ4pyvUCjiheTPEApFgNh9992dyy+/3HnjjTekp1+/fv2cWrVqOatXr66Knu25557OwIEDnTfffDPR5yIK9/00OPB/9913ci1xHA855BDpGAERw47iqquukvQ5WjEMW5WIKRTxhEbGFIoAhNTz5893Jk6cKO1l1vy/9u4lJKo3jOP4Y4kWUogWZaUUFV1ItDSjNiUFLUxpEVGL7EKLNkEXqDZRuxZtIrpsw10F1cLIyG7SBZIkIiLRkFqYhQvrXyZ2+/N74Qxnpsku1rxzxu8HXs6cM2dGRwN/Pec9z/vff7HnysvL3RweVc0U5DJRqu+mzMTKWG9vr7sZQTeNaNvf3++OZ2dnW11dnauCqTkx60UCmYEwBvxDCgWNjY3uMqb+qH7+/Dn23Ny5c92agGqToQoaVY2R24Ffcw/b29vdXZAKYPfu3XPd8sP/VhTANm3a5OYmAsgshDEgRbQO5vnz590cs7t378b9sVVVp7q6OhbO1P0fmX03pYL5nTt3XPhSCOvs7Ix7vqyszGpra10lrLKy0t25CyAzEcYADzSnrLm52Zqamtzo7u6Oe15hTKFM4UytM7R0Tbrz1ew1Sn3G1BJFv2+FrytXrrh/BwF9zwrkCl9r1qzJ2MvYAL5HGAPS4BKV7pLTH2f9oVa1JHw5Mzc315YvX+7CmYYuWaVblcRns9d0DmP6PT5+/NhaWlrc5erbt2/H/W4LCwutpqbGVcDUpoLO+MDIRBgD0vDuOXX9VzBTQHv58mXc8+r4rwnrVVVVblRUVLj1M0dqs9d0ukypZYj0uTXnS99Pa2trbPJ9QGE6uPyo75NJ+AAIY0CaV82ePXsWC2aqrAwODsadox5m8+bNi4UzjdLS0pRVh9Tzqr6+/rvjDQ0NbsK5jwn8Wj/0X1fmVOFSSxOFrmAkzvsSVbsUVlX5UgjTZVwACCOMARFbwFzVFnVXD0Z4CZyA7sxcuHChWxInCGiah/YvLm/6roylqrWF2k3oPYPgpZ+9fh+JVPlSxWvZsmVuq6A8Epr+Avhz2cN4LYAUy8vLcxP6NQKvXr1yAS0c0vr6+mKhIbwqgMLZggUL3BI6M2fOdEMTxXNycobd7DU8ZywVzV5/penr734PWmZITVT1Wo2Ojo7YY/2cE40bN859DYUuDT0uKCj4488CYGSiMgZk4KVNXS4LgplCWltb2w/Xy1TVpqSkJC6gBUPHfnXxc193U/5uZUxNeVVNDEJWOHhp0e1wy5FEc+bMiQUvjfnz5zPnC8CwEcaAEUDzzDS/ScFMzUVV/Xn+/LkbCi5D0R1/4XA2ceJEy8/Pd5U2jfBjteDwcafn3r177dSpU67Rq6p0agmioUuL6u8WjK6uLhdUE+fdJVa7FChnz57ttsHQvj4rAPxthDFghFfRenp6YsEsHNI0dHfg79BNA0E4S9xqKOgorKn6pK/9s23isYGBgbhwFYxkc7eGosuymkMXDlrBY3W4T7fWIQAyG2EMwA9pXc1wQFNlSYtUa06aGpZqBI/D/bN8UIsItfgoKiqyCRMmuIpeMIL94uJiF7i0paUEgHRBGAMwbKpcqToVBLNkYU1b9VBT1UlDc9WSbYd6ThWtcLgKD10iVfuPdGr6CgC/gjAGICOkQ9NXAPgTNL8BEHlqpbFy5Ur3WFvtA0BUEMYARJpaW4R7nIn2dRwAooAwBiDShmr6CgBRQBgDEGk/WuuRNSABRAVhDECkBcsxhaVyOSYAGC7upgSQEbibEkBUURkDkBEqKyvjtgAQFYQxAAAAjwhjADKCuvRrMXNtASBKmDMGAADgEf+FBAAA8IgwBgAA4BFhDAAAwCPCGAAAgEeEMQAAAI8IYwAAAB4RxgAAADwijAEAAHhEGAMAAPCIMAYAAOARYQwAAMAjwhgAAIBHhDEA3rW0tFhtba1NmTLFsrKy7NKlS7HnPn36ZPv377fS0lLLy8tz59TX11t3d/dP3/fWrVu2aNEiy83NtVmzZtmZM2e+O+fkyZM2ffp0GzNmjC1ZssQePHjw1z8fAAyFMAbAuw8fPlhZWZkLRon6+/utra3NDh486LYXLlyw9vZ2q6urG/I9u7q6rKamxqqrq+3Ro0e2a9cu2759u129ejV2ztmzZ23Pnj126NAh9976HlavXm1v3rz5J58TAJLJ+vbt27ekzwCAB6qMXbx40dauXfvDc1pbW62qqspevHhhJSUlSc9RNe3y5cv25MmT2LENGzZYX1+fNTU1uX1VwhYvXmwnTpxw+1+/frXi4mLbuXOnHThw4K9/NgBIhsoYgMh5+/atC235+fmxYytWrLAtW7bE9u/fv2+rVq2Ke52qXjoug4OD9vDhw7hzRo0a5faDcwAgFQhjACJlYGDAVb02btxo48ePjx1XhayoqCi239PTY5MmTYp7rfbfvXtnHz9+tN7eXvvy5UvSc/RaAEiV7JR9JQAYJk3mX79+vWl2xenTp+Oea2ho4OcLIJIIYwAiFcQ0T+zGjRtxVbFkJk+ebK9fv447pn29buzYsTZ69Gg3kp2j1wJAqnCZEkBkglhHR4c1NzdbYWHhT1+zdOlSu379etyxa9euueOSk5NjFRUVcedoAr/2g3MAIBWojAHw7v3799bZ2RnXlkLtKAoKCtw8sHXr1rnWE42NjW6eVzCnS88rVIl6j02dOtWOHDni9nfs2OHukty3b59t27bNVdPOnTvn7rAMqK3F5s2brbKy0t2deezYMddmY+vWrSn/GQAYuWhtAcA7NWdVP7BECkqHDx+2GTNmJH3dzZs33V2Uoq2at4Ybu+p9d+/ebU+fPrVp06a5XmXhOy5Fge3o0aMu4JWXl9vx48ddywsASBXCGAAAgEfMGQMAAPCIMAYAAOARYQwAAMAjwhgAAIBHhDEAAACPCGMAAAAeEcYAAAA8IowBAAB4RBgDAADwiDAGAADgEWEMAADAI8IYAACA+fM/iTQEyrSaGjMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1204,7 +1149,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1237,7 +1182,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1245,37 +1190,37 @@ "output_type": "stream", "text": [ "Test statistics: A = 0.272\n", - "P-value = 3.9016510340511927e-07\n" + "P-value = 3.901651034051532e-07\n" ] } ], "source": [ "from pycircstat2.hypothesis import omnibus_test\n", "\n", - "A, pval = omnibus_test(c1.alpha)\n", - "print(f\"Test statistics: A = {A:.3f}\")\n", - "print(f\"P-value = {pval}\")" + "result = omnibus_test(c1.alpha)\n", + "print(f\"Test statistics: A = {result.A:.3f}\")\n", + "print(f\"P-value = {result.pval}\")" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-02-19 14:26:50CET\n", + "Last updated: 2025-11-03 14:20:33CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "pycircstat2: 0.1.10\n", - "matplotlib : 3.10.0\n", - "numpy : 2.2.2\n", - "polars : 1.21.0\n", + "numpy : 2.3.4\n", + "matplotlib : 3.10.7\n", + "pycircstat2: 0.1.15\n", + "polars : 1.34.0\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -1290,7 +1235,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -1304,7 +1249,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/T0-utils.ipynb b/examples/T0-utils.ipynb index 36d8ad8..a1a4007 100644 --- a/examples/T0-utils.ipynb +++ b/examples/T0-utils.ipynb @@ -280,14 +280,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 17:56:28CET\n", + "Last updated: 2025-11-03 14:20:54CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "numpy : 2.2.3\n", - "pycircstat2: 0.1.12\n", + "numpy : 2.3.4\n", + "pycircstat2: 0.1.15\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -302,7 +302,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -316,7 +316,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/T1-descriptive-statistics.ipynb b/examples/T1-descriptive-statistics.ipynb index eb168b0..2f3ba0b 100644 --- a/examples/T1-descriptive-statistics.ipynb +++ b/examples/T1-descriptive-statistics.ipynb @@ -66,7 +66,7 @@ "c11 = Circular(data=b11)\n", "\n", "u, r = circ_mean_and_r(alpha=c11.alpha)\n", - "print(f\"μ={np.rad2deg(u).round(2)}, r={r.round(2)}\")" + "print(f\"μ={np.round(np.rad2deg(u), 2)}, r={np.round(r, 2)}\")" ] }, { @@ -100,13 +100,13 @@ "\n", "mp1 = circ_moment(alpha=c11.alpha, p=1, centered=False)\n", "u1, r1 = convert_moment(mp1) \n", - "print(f\"μ1={np.rad2deg(u1).round(2)}, r1={r1.round(2)}\")\n", + "print(f\"μ1={np.round(np.rad2deg(u1), 2)}, r1={np.round(r1, 2)}\")\n", "\n", "# second moment\n", "\n", "mp2 = circ_moment(alpha=c11.alpha, p=2, centered=False)\n", "u2, r2 = convert_moment(mp2)\n", - "print(f\"μ2={np.rad2deg(u2).round(2)}, r2={r2.round(2)}\")" + "print(f\"μ2={np.round(np.rad2deg(u2), 2)}, r2={np.round(r2, 2)}\")" ] }, { @@ -310,13 +310,13 @@ "c1 = Circular(data=d1)\n", "s = angular_std(alpha=c1.alpha)\n", "s0 = circ_std(alpha=c1.alpha)\n", - "print(f\"s={np.rad2deg(s).round()}, s0={np.rad2deg(s0).round()}\")\n", + "print(f\"s={np.round(np.rad2deg(s))}, s0={np.round(np.rad2deg(s0))}\")\n", "\n", "d2 = load_data('D2', source='zar')\n", "c2 = Circular(data=d2['θ'].values[:], w=d2['w'].values[:])\n", "s = angular_std(alpha=c2.alpha, w=c2.w)\n", "s0 = circ_std(alpha=c2.alpha, w=c2.w)\n", - "print(f\"s={np.rad2deg(s).round()}, s0={np.rad2deg(s0).round()}\")" + "print(f\"s={np.round(np.rad2deg(s))}, s0={np.round(np.rad2deg(s0))}\")" ] }, { @@ -336,7 +336,7 @@ } ], "source": [ - "from pycircstat2.descriptive import compute_C_and_S, circ_var, circ_r\n", + "from pycircstat2.descriptive import compute_C_and_S, circ_var\n", "C, S = compute_C_and_S(alpha=c2.alpha, w=c2.w)\n", "np.sqrt(C**2 + S**2), circ_r(alpha=c2.alpha, w=c2.w)" ] @@ -402,12 +402,12 @@ " n=circ_zar_ex4_ch26.n,\n", " method=\"approximate\",\n", ")\n", - "print(np.rad2deg([lb, ub]).round())" + "print(np.round(np.rad2deg([lb, ub])))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -420,7 +420,7 @@ "median 279.0 247.5 245.0 \n", "mean 280.8 248.7 247.6 \n", "95% median CI [245. 315.] [229. 277.] [229. 267.] \n", - "95% bootstrap mean CI [266.2 305.3] [216. 266.5] [230.2 262.1] \n", + "95% bootstrap mean CI [263. 306.9] [227.7 272.5] [234.5 263.2] \n", "95% large-sample mean CI - - [232.7 262.5] \n" ] } @@ -438,13 +438,13 @@ " \n", " e = np.deg2rad(d)\n", " mean = circ_mean(e)\n", - " table['mean'].append(np.rad2deg(mean).round(1))\n", + " table['mean'].append(np.round(np.rad2deg(mean), 1))\n", " median = circ_median(e, method='deviation', average_method=\"unique\")\n", - " table['median'].append(np.rad2deg(median).round(1))\n", + " table['median'].append(np.round(np.rad2deg(median),1))\n", "\n", " # CI for median\n", " median_lb, median_ub, ci = circ_median_ci(alpha=e, method='deviation')\n", - " table['95% median CI'].append(np.rad2deg([median_lb, median_ub]).round(1))\n", + " table['95% median CI'].append(np.round(np.rad2deg([median_lb, median_ub]), 1))\n", "\n", " # CI for mean using bootstrap\n", " mean_lb, mean_ub = circ_mean_ci(\n", @@ -452,7 +452,7 @@ " B=200,\n", " method=\"bootstrap\",\n", " )\n", - " table['95% bootstrap mean CI'].append(np.rad2deg([mean_lb, mean_ub]).round(1))\n", + " table['95% bootstrap mean CI'].append(np.round(np.rad2deg([mean_lb, mean_ub]), 1))\n", "\n", " if i == 2:\n", " # CI for mean using dispersion\n", @@ -460,7 +460,7 @@ " alpha=e,\n", " method=\"dispersion\",\n", " )\n", - " table['95% large-sample mean CI'].append(np.rad2deg([mean_lb_large_sample, mean_ub_large_sample]).round(1))\n", + " table['95% large-sample mean CI'].append(np.round(np.rad2deg([mean_lb_large_sample, mean_ub_large_sample]), 1))\n", " else:\n", " table['95% large-sample mean CI'].append('-')\n", "\n", @@ -481,14 +481,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 17:57:05CET\n", + "Last updated: 2025-11-03 14:19:06CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "pycircstat2: 0.1.12\n", - "numpy : 2.2.3\n", + "numpy : 2.3.4\n", + "pycircstat2: 0.1.15\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -503,7 +503,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -517,7 +517,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/T2-hypothesis-testing.ipynb b/examples/T2-hypothesis-testing.ipynb index e8bf9fb..4c229fe 100644 --- a/examples/T2-hypothesis-testing.ipynb +++ b/examples/T2-hypothesis-testing.ipynb @@ -76,13 +76,13 @@ "\n", "Test Statistics (ρ | z-score): 0.82522 | 5.44787\n", "P-value: 0.00185 **\n", - "Bootstrap P-value: 0.00680 **\n" + "Bootstrap P-value: 0.00190 **\n" ] }, { "data": { "text/plain": [ - "RayleighTestResult(r=np.float64(0.8252177448200448), z=np.float64(5.4478746109270455), pval=np.float64(0.0018516375077209267), bootstrap_pval=0.0068)" + "RayleighTestResult(r=np.float64(0.8252177448200448), z=np.float64(5.4478746109270455), pval=np.float64(0.0018516375077209267), bootstrap_pval=0.0019)" ] }, "execution_count": 2, @@ -121,20 +121,32 @@ "Modified Rayleigh's Test of Uniformity\n", "--------------------------------------\n", "H0: ρ = 0\n", - "HA: ρ ≠ 0 and μ = {angle:.5f} rad\n", + "HA: ρ ≠ 0 and μ = 1.57080 rad\n", "\n", "Test Statistics: 9.49761\n", "P-value: 0.00001 ***\n" ] + }, + { + "data": { + "text/plain": [ + "VTestResult(V=np.float64(9.49761189405115), u=np.float64(4.2474611638017805), pval=1.081033140912164e-05)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.hypothesis import V_test\n", "\n", + "\n", "d7 = load_data('D7', source='zar')['θ'].values[:]\n", "c7 = Circular(data=d7)\n", "\n", - "V, u, pval = V_test(angle=np.deg2rad(90), alpha=c7.alpha, verbose=True)" + "result = V_test(angle=np.deg2rad(90), alpha=c7.alpha, verbose=True)\n", + "result\n" ] }, { @@ -165,15 +177,27 @@ "Test Statistics: 0.42752\n", "P-value: 0.00434 **\n" ] + }, + { + "data": { + "text/plain": [ + "OmnibusTestResult(A=0.42751661005395464, pval=0.00434303283691405, m=3)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.hypothesis import omnibus_test\n", "\n", + "\n", "d8 = load_data('D8', source='zar')['θ'].values[:]\n", "c8 = Circular(data=d8)\n", "\n", - "A, pval = omnibus_test(c8.alpha, verbose=True)" + "result = omnibus_test(c8.alpha, verbose=True)\n", + "result\n" ] }, { @@ -203,12 +227,23 @@ "Test Statistics: 5\n", "P-value: 0.00661 **\n" ] + }, + { + "data": { + "text/plain": [ + "BatscheletTestResult(C=5, pval=0.006610751152038574)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.hypothesis import batschelet_test\n", "\n", - "C, pval = batschelet_test(angle=np.deg2rad(45), alpha=c8.alpha, verbose=True)" + "result = batschelet_test(angle=np.deg2rad(45), alpha=c8.alpha, verbose=True)\n", + "result\n" ] }, { @@ -301,14 +336,27 @@ "text": [ "Kuiper's Test of Circular Uniformity\n", "------------------------------------\n", + "H0: The sample is drawn from a circularly uniform distribution.\n", + "HA: The sample is not drawn from a circularly uniform distribution.\n", "\n", "Test Statistic: 1.5047\n", - "P-value = 0.1691 \n" + "P-value = 0.175 \n" ] + }, + { + "data": { + "text/plain": [ + "KuiperTestResult(V=1.5046778098675793, pval=0.175, mode='simulation', n_simulation=9999)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "V, pval = kuiper_test(c_pigeon.alpha, n_simulation=9999, verbose=True)" + "result = kuiper_test(c_pigeon.alpha, n_simulation=9999, verbose=True)\n", + "result\n" ] }, { @@ -330,14 +378,27 @@ "text": [ "Watson's One-Sample U2 Test of Circular Uniformity\n", "--------------------------------------------------\n", + "H0: The sample is drawn from a circularly uniform distribution.\n", + "HA: The sample is not drawn from a circularly uniform distribution.\n", "\n", "Test Statistic: 0.1361\n", - "P-value = 0.1369 \n" + "P-value = 0.1404 \n" ] + }, + { + "data": { + "text/plain": [ + "WatsonTestResult(U2=0.13612891737891739, pval=0.1404, mode='simulation', n_simulation=9999)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "U2, pval = watson_test(c_pigeon.alpha, n_simulation=9999, verbose=True)" + "result = watson_test(c_pigeon.alpha, n_simulation=9999, verbose=True)\n", + "result\n" ] }, { @@ -359,15 +420,28 @@ "text": [ "Rao's Spacing Test of Circular Uniformity\n", "-----------------------------------------\n", + "H0: The sample is drawn from a circularly uniform distribution.\n", + "HA: The sample is not drawn from a circularly uniform distribution.\n", "\n", "Test Statistic: 2.8261\n", - "P-value = 0.0766\n", + "P-value = 0.0814\n", "\n" ] + }, + { + "data": { + "text/plain": [ + "RaoSpacingTestResult(statistic=161.9230769230769, pval=0.0814, mode='ungrouped', n_simulation=9999)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "U, pval = rao_spacing_test(c_pigeon.alpha, n_simulation=9999, verbose=True)" + "result = rao_spacing_test(c_pigeon.alpha, n_simulation=9999, verbose=True)\n", + "result\n" ] }, { @@ -402,18 +476,30 @@ "H0: symmetrical around median\n", "HA: not symmetrical around median\n", "\n", - "Test Statistics: 14.50000\n", - "P-value: 0.66406 \n" + "Test Statistics: 14.00000\n", + "P-value: 0.64062 \n" ] + }, + { + "data": { + "text/plain": [ + "SymmetryTestResult(statistic=14.0, pval=0.640625)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.hypothesis import symmetry_test\n", "\n", + "\n", "d9 = load_data('D9', source='zar')['θ'].values[:]\n", "c9 = Circular(data=d9)\n", "\n", - "statistics, pval = symmetry_test(alpha=c9.alpha, verbose=True)" + "result = symmetry_test(alpha=c9.alpha, verbose=True)\n", + "result\n" ] }, { @@ -451,12 +537,23 @@ "Failed to reject H0:\n", "μ0 = 1.57080 lies within the 95% CI of μ ([1.41993 1.86297])\n" ] + }, + { + "data": { + "text/plain": [ + "OneSampleTestResult(reject=False, angle=1.5707963267948966, ci=(1.4199346419045753, 1.8629658424528266))" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.hypothesis import one_sample_test\n", "\n", - "reject_or_not = one_sample_test(angle=np.deg2rad(90), alpha=c7.alpha, verbose=True)" + "result = one_sample_test(angle=np.deg2rad(90), alpha=c7.alpha, verbose=True)\n", + "result\n" ] }, { @@ -491,20 +588,32 @@ "H0: all samples are from populations with the same angle.\n", "HA: all samples are not from populations with the same angle.\n", "\n", - "Test Statistics: 1.86524\n", - "P-value: 0.18701 \n" + "Test Statistics: 1.86487\n", + "P-value: 0.18706 \n" ] + }, + { + "data": { + "text/plain": [ + "WatsonWilliamsTestResult(F=1.864868424860857, pval=0.1870636995031886, df_between=2, df_within=16, k=3, N=19)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.hypothesis import watson_williams_test\n", "\n", + "\n", "data = load_data(\"D11\", source=\"zar\")\n", "s1 = Circular(data=data[data[\"sample\"] == 1][\"θ\"].values[:])\n", "s2 = Circular(data=data[data[\"sample\"] == 2][\"θ\"].values[:])\n", "s3 = Circular(data=data[data[\"sample\"] == 3][\"θ\"].values[:])\n", "\n", - "F, pval = watson_williams_test(circs=[s1, s2, s3], verbose=True)" + "result = watson_williams_test([s1, s2, s3], verbose=True)\n", + "result\n" ] }, { @@ -543,6 +652,16 @@ "Test Statistics: 0.14574\n", "P-value: 0.11261 \n" ] + }, + { + "data": { + "text/plain": [ + "WatsonU2TestResult(U2=0.14574314574314576, pval=0.11261025234391597)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -550,7 +669,9 @@ "d = load_data(\"D12\", source=\"zar\")\n", "c0 = Circular(data=d[d[\"sample\"] == 1][\"θ\"].values[:])\n", "c1 = Circular(data=d[d[\"sample\"] == 2][\"θ\"].values[:])\n", - "U2, pval = watson_u2_test(circs=[c0, c1], verbose=True)" + "\n", + "result = watson_u2_test([c0, c1], verbose=True)\n", + "result\n" ] }, { @@ -570,6 +691,16 @@ "Test Statistics: 0.06123\n", "P-value: 0.59716 \n" ] + }, + { + "data": { + "text/plain": [ + "WatsonU2TestResult(U2=0.06123215627347858, pval=0.5971567816257365)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -577,7 +708,9 @@ "d = load_data(\"D13\", source=\"zar\")\n", "c0 = Circular(data=d[d[\"sample\"] == 1][\"θ\"].values[:], w=d[d[\"sample\"] == 1][\"w\"].values[:])\n", "c1 = Circular(data=d[d[\"sample\"] == 2][\"θ\"].values[:], w=d[d[\"sample\"] == 2][\"w\"].values[:])\n", - "U2, pval = watson_u2_test(circs=[c0, c1], verbose=True)" + "\n", + "result = watson_u2_test([c0, c1], verbose=True)\n", + "result\n" ] }, { @@ -607,6 +740,16 @@ "Test Statistics: 3.67827\n", "P-value: 0.15895 \n" ] + }, + { + "data": { + "text/plain": [ + "WheelerWatsonTestResult(W=3.6782700358857188, pval=0.15895485976111798, df=2)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -616,7 +759,8 @@ "c0 = Circular(data=d[d[\"sample\"] == 1][\"θ\"].values[:])\n", "c1 = Circular(data=d[d[\"sample\"] == 2][\"θ\"].values[:])\n", "\n", - "W, pval = wheeler_watson_test(circs=[c0, c1], verbose=True)" + "result = wheeler_watson_test([c0, c1], verbose=True)\n", + "result\n" ] }, { @@ -638,10 +782,22 @@ "text": [ "Wallraff test of angular distances / dispersion\n", "-----------------------------------------------\n", + "H0: The groups have equal dispersion around the specified reference angle.\n", + "HA: At least one group differs in dispersion around the specified angle.\n", "\n", "Test Statistics: 18.50000\n", "P-value: 0.77510 \n" ] + }, + { + "data": { + "text/plain": [ + "WallraffTestResult(U=18.5, pval=0.7750969621959847)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -650,7 +806,9 @@ "d = load_data(\"D14\", source=\"zar\")\n", "c0 = Circular(data=d[d[\"sex\"] == \"male\"][\"θ\"].values[:])\n", "c1 = Circular(data=d[d[\"sex\"] == \"female\"][\"θ\"].values[:])\n", - "U, pval = wallraff_test(angle=np.deg2rad(135), circs=[c0, c1], verbose=True)" + "\n", + "result = wallraff_test(samples=[c0, c1], angle=np.deg2rad(135), verbose=True)\n", + "result\n" ] }, { @@ -664,19 +822,36 @@ "text": [ "Wallraff test of angular distances / dispersion\n", "-----------------------------------------------\n", + "H0: The groups have equal dispersion around the specified reference angle.\n", + "HA: At least one group differs in dispersion around the specified angle.\n", "\n", "Test Statistics: 13.00000\n", "P-value: 0.17524 \n" ] + }, + { + "data": { + "text/plain": [ + "WallraffTestResult(U=13.0, pval=0.17524424540000594)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "from pycircstat2.utils import time2float\n", "\n", + "\n", "d = load_data(\"D15\", source=\"zar\")\n", "c0 = Circular(data=time2float(d[d[\"sex\"] == \"male\"][\"time\"].values[:]))\n", "c1 = Circular(data=time2float(d[d[\"sex\"] == \"female\"][\"time\"].values[:]))\n", - "U, pval = wallraff_test(angle=np.deg2rad(time2float(['7:55', '8:15'])), circs=[c0, c1], verbose=True)" + "\n", + "result = wallraff_test(\n", + " samples=[c0, c1], angle=np.deg2rad(time2float(['7:55', '8:15'])), verbose=True\n", + ")\n", + "result\n" ] }, { @@ -701,8 +876,18 @@ "HA: The two samples do not come from the same population.\n", "\n", "Observed Test Statistic: 105.98051\n", - "P-value: 0.57343 \n" + "P-value: 0.59940 \n" ] + }, + { + "data": { + "text/plain": [ + "AngularRandomisationTestResult(statistic=105.98051488302602, pval=0.5994005994005994, n_simulation=1000)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -712,7 +897,8 @@ "c0 = Circular(data=d[d[\"sample\"] == 1][\"θ\"].values[:])\n", "c1 = Circular(data=d[d[\"sample\"] == 2][\"θ\"].values[:])\n", "\n", - "T, pval = angular_randomisation_test(circs=[c0, c1], n_simulation=1000, verbose=True)\n" + "result = angular_randomisation_test([c0, c1], n_simulation=1000, verbose=True)\n", + "result\n" ] }, { @@ -724,14 +910,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 17:57:42CET\n", + "Last updated: 2025-11-04 14:22:36CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "numpy : 2.2.3\n", - "pycircstat2: 0.1.12\n", + "numpy : 2.3.4\n", + "pycircstat2: 0.1.15\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -746,7 +932,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -760,7 +946,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/T3-circular-distributions.ipynb b/examples/T3-circular-distributions.ipynb index 22e6c6a..ed3829b 100644 --- a/examples/T3-circular-distributions.ipynb +++ b/examples/T3-circular-distributions.ipynb @@ -37,7 +37,9 @@ "\n", "- [Sine-Skewed Jones-Pewsey Distribution](#sine-skewed-jones-pewsey-distribution)\n", "- [Asymmetric Extended Jones-Pewsey Distribution](#asymmetric-extended-jones-pewsey-distribution)\n", - "- [Inverse Batschelet distribution](#inverse-batschelet-distribution)" + "- [Inverse Batschelet distribution](#inverse-batschelet-distribution)\n", + "- [Wrapped Stable distribution](#wrapped-stable-distribution)\n", + "- [Kato-Jones distribution](#kato-jones-distribution)" ] }, { @@ -60,16 +62,18 @@ "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/2g/cw502gdd0hj9q05c6n34nkvr0000gn/T/ipykernel_68456/3993589730.py:44: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - " ax[\"a\"].legend(frameon=False)\n" - ] + "data": { + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8QZJREFUeJzs3QWUVeX3+P8t3SXdKSopIp0indIhLYKAlCidIt2h0o0gSIeKdEsIioCCtHR3CPzX3v/vnR/wAQWcmXPPue/XWnfNvUM9d5g58ex66cGDBw8EAAAAAAAAAAAglIUJ7X8QAAAAAAAAAABAEaQAAAAAAAAAAACOIEgBAAAAAAAAAAAcQZACAAAAAAAAAAA4giAFAAAAAAAAAABwBEEKAAAAAAAAAADgCIIUAAAAAAAAAADAEQQpAAAAAAAAAACAIwhSAAAAAAAAAAAARxCk8LCUKVNKvXr1Qv3fPXz4sLz00ksyadIkcaPVq1fb+vXjw6ZOnSqvvvqqhA8fXmLFiiVupN8P+n3xMH2v3bt3d+TrWqhQIcmYMaOEBrd/XwIAAAAAAABeRJDChf78809p3LixpE6dWiJFiiQxYsSQvHnzyrBhw+TmzZtOL8+T9u3bZxv8adKkkbFjx8qYMWMkkM2YMUOGDh0q/sif1wYAAAAAAADgUeEeew0/t2TJEqlSpYpEjBhR6tSpY1nod+7ckfXr18snn3wiv/32W9AG+u+//y5hwhCHel4FChSwYE+ECBGCPqfZ//fv37dAUNq0acVL9L2GCxfuuQMBu3fvllatWv2nr2tIeNraUqRIYf++VsIAAAAAAAAA8A8EKVzk0KFDUr16ddtsXblypSRKlCjo15o1ayYHDhywIIaPBjL+zfXr1yVq1Kjiz0J7jRrY0QqVh505c8Y+Bmebpxs3bkiUKFHEaY+/1+B269YtC0w86esamrTVk5P/PgAAAAAAAID/RZq9i/Tv31+uXbsm48ePfyRA4aMZ/i1btnzqTArtxa8btWvWrJGmTZtK/PjxJWnSpEG/vmzZMilYsKBEjx7dWki99dZblpX+tL/v4bkC+vgnv/zyi/1ZX4uqhAkTSoMGDeT8+fOP/D6djaBr3LNnj9SsWVNix44t+fLle+rf6/v9j/O9V51D8PD6y5QpY1UnOXLksHXoeqZMmfKPsxP0z3Xr1s2ex4sX739mOHzxxReSIUMGCwolTpzYAkaXLl36n6+RVr1s377dKgo0ONGxY8egOQkDBw6UUaNG2Xr014oVKybHjh2TBw8eyGeffWb/T5EjR5by5cvLhQsX5FnMnz/f/k19n/px3rx5T/x9j7+fq1evWhWCvm99T/p9UrRoUdmxY0fQe9Fg2JEjR+zP6sM358L3tZs5c6Z07txZkiRJYu/nypUrT531ofTrkidPHnuPqVKlkq+++upf/z+f9H/1T2t72kwKDfjlz5/fAmEahNKv8d69e5/4faaBQP0+1t8XM2ZMqV+/vgWbAAAAAAAAALwYKilcZNGiRbaJrZu5/4UGKHSzvWvXrlaloHTjVoMGutneoUMH24T9+eef5bvvvrNgwX+1fPlyOXjwoG3qaoDC15ZKP27evPl/Ag3a0ipdunTSu3dv26gPLrrJXLlyZWnYsKHUrVtXJkyYYJvOb775pr33J9H5BhrI0E3+L7/8UqJFiyaZM2cO2rzu0aOHvPPOO/Lhhx9aiy39PVu3bpUNGzY80lpIAzIlS5a0apj33ntPEiRIEPRr06dPt7ZdH330kQUhNCBVtWpVefvtt20Dvl27drb2ESNGSNu2bW3d/+SHH36QSpUqyeuvvy59+vSxf1u/9g8HpZ6mSZMmMmfOHGnevLn9ef2zGtjRjfts2bJJp06d5PLly3L8+HEZMmSI/Rn9mjxMAytaPaFrvX379j+2eLp48aKUKlXK3m+NGjXkm2++sa+l/hn9nnwez7K2h/3444/2f6I/V/p/qe2g9GusM140KPP4kHFdowZR9Guqvz5u3DgL4vTr1++51gkAAAAAAADg/0eQwiU0E/2vv/6yLO//Kk6cOLJixQoJGzasvdZN3RYtWlh1gW6IP9wSJ7gCBBoY+fjjjx/5XK5cuWxTWjfANZP9YVmyZHmkiiO4aBBh7dq1Qf+ebjonS5ZMJk6caNUMT1KhQgXZuXOnBSk0wBE3blz7/NmzZ22zWqsetArFN//j1VdftQ3+adOmWWDA59SpU1YhoEPPfXyVAfp/u3//fsvOV/fu3bO/WzfNt23bFjQzQv9NDWhoIOSf2nlpUEODIPq19f2dWiWja9V2Yf9EKxEaNWokgwYNCvrcp59+GvRcqyq0QkKDCxpseVqLJ123Vkb8mxMnTti/1aZNG3utX5+cOXNasKx27drPNUPiWdb2MJ3joj8PmzZtso++/+833njDqmcmT578yO/Xz2slk48GcPQ1QQoAAAAAAADgxdDuyUVBCqWtmP4r3YD2BSh8VQ7a4qd9+/b/07P/Sa2UXsTDm9W6gX3u3DkLUihfG6HHs/lDglYGPBwQ0YqS9OnTW5XH89IsfK1+0NZIDw8o16+vtst6eD6I0qDCw0GLxytHfMEEpZv0SjfaHx5qrZ/Xf1ODGk9z8uRJC6popcjDf6du4Ov7/zdaRbNlyxYLHrwo/befJUCh9P09HLjRCgp9rXNAtA1USPF9nbSSxhegUFolo1+rpUuX/uv3pX4vaaDC9/MJAAAAAAAA4PkQpHAJ3fRWGkz4r7RdzcP+/PNP+6hzC0KKtjDSeRma3a+b1xoc8K1DKzn+bY3BJXny5P/zOZ17oZn3z0vnHigNcjxMN9m1fZDv1300w/9pbY8eX5cvuKBVHk/6/D+t1/fvarusxz2+1ifRVlO7d++2f1ura7QN0vMGcZ7n/0/neDw+GP2VV16xj4/PoAhOT/v/U6+99poF0nzt0J72/6TfO+pFvn8AAAAAAAAAEKRwVZBCN3N18/i/etYM98c9rapCWxP9G22rNHbsWMtEnzt3rs1M0HkX6v79+y+8xudd08MVJA8LzrkXT/NP7+lp63Jivfp/pUEJnc2g33MDBgyweR3a0iqkv8dC4nsvODn5/QMAAAAAAAB4EUEKFylTpoxVPWj//OCUJk0a+/hvARDNGr906dL/fP7xioHHaZa5zsDQdlI6ZPrdd9+1djpabfBf+TLZH1/Xv60pOPhmO+ici4dpO6ZDhw796+yHkF6Xzrh43ONrfZpEiRLZHJH58+fbe3n55Zfl888/D/Y2YErbSj1esfDHH3/YR9/g6uf5f37WtT3t/0/t27fPZo88XuEBAAAAAAAAIHgRpHARHV6sm6bvv/++nD59+n9+XQMYw4YNe+6/V4cp66wLHdSs8yKeliGuwYzNmzfbJrzP4sWL5dixY8+Uff54tvnQoUMluAIsOgzbRze8Hx94HBLeeecda980fPjwR96bDlLWFlalS5cWJ2iAIWvWrPY1eLiVls4e2bNnzz/+Wa1MeLz9Vvz48a2i4vbt20Gf0+/DJ7XpehF///23jB49Oui1fn/pa20J9uabbz71/1nXOmbMmP/5+551bQ9/nR4OfmiwTit9SpUq9Z/fGwAAAAAAAIB/9v8m8sLv6UbtjBkzpFq1atYzv06dOjZHQjd1N27cKLNnz7YhwC/SSmrIkCEW/HjrrbekZs2alrm+a9cuuXHjRtCGv/76nDlzpESJEtYSSIMi06ZNC9pA/qe/v0CBAjbr4O7duzabQTeBNUP/v9IAi84JaNiwoXzyyScWEJkwYYJtcB89elRCkv4bHTp0sOoQ/ZqUK1fOsvK/+OIL+zrq0GunaMBJgyT58uWTBg0a2EwQbd+kbZuuXbv21D+nM0+SJk0qlStXlixZski0aNFsQPjWrVtl0KBBQb9PgwezZs2SNm3a2HvV31e2bNkXWqsGQPr162fzJ3QWhf69OtBaAxDhw4e336Pr1kHr+vXW96KDrmfOnGkBjsc9z9q0lVXJkiUld+7c9j108+ZN+zrp7A+dxQEAAAAAAAAgZFFJ4TK6Ef7LL7/YJvKCBQukWbNm1kZJN3h1E1mz+l+EbtAuXLjQAgqfffaZtGvXTnbs2GEbuD7Fixe3f0Nb8bRq1craTmklhW5q/xsNruifHzVqlG006+bz88w4eBr9e+bNm2eBki5dutj712BK8+bNJTToRvbIkSMtINK6dWv55ptv5IMPPrAgjG+D3QkaNNGglVYb6Ndb54BMnDhRsmfP/o9/LkqUKNbmSYME3bp1s/fkC7zopr+P/h4NZunfqR8/+uijF16rBsSWLl0q27Zts0CTVubo17RRo0aP/L7p06dLnjx5pG/fvtK7d28pXLiwPX/c86xNq2F0Noq2s+ratasMHDjQgiEbNmwIseHtAAAAAAAAAP6flx4w8RUAAAAAAAAAADiASgoAAAAAAAAAAOAIghQAAAAAAAAAAMARBCkAAAAAAAAAAIAjCFIAAAAAAAAAAABHEKQAAAAAAAAAAACOIEgBAAAAAAAAAAAcEc6ZfxYAAHjF/fv35cSJExI9enR56aWXnF4OAAB4igcPHsjVq1clceLEEiaMO3MWue4AAMB71x4EKQAAwH+iGwXJkiVzehkAAOAZHTt2TJImTSpuxHUHAADeu/YgSAEAAP4TzWT0XXTEiBHD6eUAAICnuHLlim3w+87dbsR1BwAA3rv2IEgBAAD+E1+rBd0oYLMAAAD/5+Y2SVx3AADgvWsPdzahBAAAAAAAAAAArkeQAgAAAAAAAAAAOIIgBQAAAAAAAAAAcARBCgAAAAAAAAAA4AiCFAAAAAAAAAAAwBEEKQAAAAAAAAAAgCPCOfPPAt714MEDuXnzply6dEkuX74s9+/ff64/HyZMGIkRI4bEihVLokSJIi+99FKIrRUAAAAAAAAAnESQAviXgMPFixfl8OHD9jh79qwFH/Rz+tH3ePz1nTt3guXfDx8+vAUrfI/YsWM/8XncuHElZcqU9nj55ZcJbAAAAAAAAABwBYIUCHjXrl2TQ4cO2UMDEY8/v3Llygv9vb6KiHDhnu/H7N69e/Zv6se7d+9aYEQfzypatGiSKlUqe2jQwvfc91rXBAAAAAAAAAD+gCAFAoZWOOzcuVN+/vlne+zdu9cCEefOnfvXPxs/fnzb5E+YMOEzVTboI3r06C9c0aAVHBo8eVqlxsOv9fnp06ftvZw6dcr+3K+//mqPJ4kTJ469l/Tp08sbb7wh2bJls4+6fgAAAAAAAAAITQQp4Em6We8LRuzYscM+Hjx48Km/XzfoH6888D3XjzobIjRpcEODHPpIlizZM/85nYVx5MiRp1aGnD9/Xi5cuGCP7du3y4wZM4L+rL5PDVY8HLhIlCgRraMAAAAAAAAAhJiXHmjKNuBi2gpp/fr1FozwBSROnjz5xN+bIkWKoI34TJkySerUqW1zPmbMmBIItI2UBjE0YLN79+6gII4GMZ5WQeILWOjH/PnzS4IECUJ93QD8/9iix9HLly/TUg4AAD/mhXO2F94DAACB4soznrcJUsCV39xr166VlStX2mPXrl3/83s0+//xdkZZs2a1odJ4eissX5DH1w7r/v37//N7M2TIIEWKFJG3335bChYsaK2tAPgPPT4OGDDAqqU0YDtv3jypUKHCP/6Z1atXS5s2beS3336z6q3OnTtLvXr1nvnfZLMAAAB38MI52wvvAQCAQHHlGc/btHuC37t165Zs3LjRAhIrVqyQrVu32lDph2XMmFFy5swZFJTInDmzRI0a1bE1u40GGgoVKmQPnxs3bthcC1/Q4qeffrKAkG5i6mP48OE2HPzNN9+0gIUGLvLmzRvqrbEAPOr69euSJUsWadCggVSsWPFff79WUpUuXVqaNGki06dPt+Ps+++/b+3eihcvHiprBgAAAAAAgYtKCvidv//+W7Zt22YbZRqY2LBhg9y+ffuR35MmTZqgbP7ChQtbWyKEPJ1poRnXvv+b33///ZFfDx8+vOTOnTvo/0YDR/o5AM7QqrJ/q6Ro166dLFmyxFrA+VSvXt0qrL777rtn+nfIaAQAIHidO3fOEg+0XW1w8sI52wvvAQAAf7Njxw5L/A5uVFLAVe7evWub3nPmzLENNd0Mf5hm9OrGtz40KBHcF+t4Ntouq1KlSvZQf/31V1DbLQ1cHDt2zFrN6KNbt25WoVG+fHmpXLmyFC1aVCJGjOj0WwDwmE2bNsk777zzyOe0gqJVq1ZP/TMaOH44eKwXHQAAIHjs379fSpUqJeHChbOK8tixYzu9JAAA4FH379+X9u3bW9voqVOnynvvvefIOghSwDG6wfXjjz9aYGLBggVy8eLFoF/TC3ENRvgy8nW+hGYEw78kSZJEateubQ8tyvrzzz+Dqiz0oRlgkydPtodGS8uWLStVqlSRYsWKSeTIkZ1ePgAROXXqlCRIkOCRz+lrDTzcvHnziT+rffr0kR49eoTiKgEACAzr16+3CkhN2tLELL2eJkgBAABCgt7z657et99+a681+dgpBCkQ6vMlvv/+ewtMLFy48JHsW90U0/7pmnVfoEAByxyCe2gQKW3atPZo3LixzQ3RVl36f60HuxMnTli/e31EixZNypQpY//XJUuWZI4F4DIdOnSwQds+eizXgdsAAODFzZw5U+rWrSt37tyRt956SxYtWvQ/iQQAAADB4cyZM9b9ZPPmzRIhQgQZP368Y1UUil1ghDgdwKx9zWfPni2LFy+Wa9euBf1a4sSJrXWQblbr0OWwYcM6ulYEH/2/1GCTPoYOHWoHPQ1Y6EMjs3oTpg8NUGg5u34P6PBeDWAACD0JEyaU06dPP/I5fa3VT0+reNLWbbRvAwAgeGhFslYpdurUyV6/++67Mm3aNBJ5AABAiNi3b5/txR06dMgqNrX1fsGCBcVJBCkQYnbu3CljxoyxC+yrV68GfV6zbXVDWh+5cuWSMGHCOLpOhDz9P86TJ489Bg0aJFu3bg0KWOgB0fc8atSoUqNGDfnggw8ke/bstPgCQoEOu1+6dOkjn1u+fLl9HgAAhPxsviZNmsiECRPstVYq9u/fn+QtAAAQItasWWOtJS9duiSpU6e2/QBts++0lx5o2gYQTK5fv27Z8Rqc+Omnn4I+nzJlSgtK6DwCLV1m8xlKDz8///yzBSi00ubAgQNBv5Y1a1ZrG1WzZk3L6AbwbLRazfez9MYbb8jgwYNtxk+cOHEkefLk1qpJh95PmTLFfo8GCjNmzCjNmjWTBg0a2DyZFi1ayJIlS2yA9rPQdk8xY8aUy5cv8/MKAMAz0vOm3iPpnD5N6hkxYoQ0bdo0RP9NL5yzvfAeAABwwtSpU6Vhw4aWJKGJ49qKP168eH5x3iZIgWCxa9cuGT169CNVE+HDh7dSZd1oLlSoEBUT+Ed6KNJBgRrg0oCFDlZXVFcAz2f16tUWlHic9rieNGmS1KtXTw4fPmy/7+E/07p1a9mzZ48kTZpUunTpYr/vWbFZAADA8zly5Ii1Ov3tt9/senfWrFn2OqR54ZzthfcAAEBo77n17NlTunfvbq81SUITF5/W4jk4EaRAiHta1USaNGlsQ1k3uOLHj+/oGuFO58+ft+iuBr60T56PZoXr9xbVFYB/YbMAAIBnt23bNilbtqycOnXKZvTp3D69zg0NXjhne+E9AAAQWu7cuSONGjUK6qbw6aef2iys0EomJ0iBELN792754osvnlg1oRvImsFL1QSCs7pCgxXaEurx6ooPP/xQsmXL5vQygYDHZgEAAM9mwYIFlnBz48YNyZw5s7VX1CrG0OKFc7YX3gMAAKHh4sWLUrFiReueoPOudD9X925DE0EKBLtNmzZJ7969LdPHh6oJhGZ1hUZ9tXLn4eqKYsWKSceOHaVAgQK0ggIcwmYBAAD/btiwYdZeUW/Bde7TN998E+rnTS+cs73wHgAACGkHDx60VpK6hxYtWjRrrV6iRAm/PW+T7o5/pBfQy5cvt+qIPHnyWIBCN4IrVapkA97++OMPKxMiQIGQ9vLLLwf1zF+zZo1Ur17dosA//PCDzTzJly+fZaIRdwUAAIA/uXfvnrRo0UJatWpl16qa5LVo0SI22AEAQIjYsmWLDcbWAIVWbG7YsMGRAMXzIEiBJ7p//77MmzdPcuTIYZnqWhakLZ0aNGhg3+DaeqdIkSK0dUKo0yCZVk18/fXXsn//fmv5FDFiRNm4caOUKVPG+vnq4EG9GQQAAACcdO3aNWuLO2LECHvdv39/+eqrr+zeCgAAILh9++23lsx79uxZ2yPTgIW2mPR37DDjEXfv3rWBxRkzZrSeZTrUTSe9t2zZUv78808ZP368vPLKK04vEzCpUqWyfnqHDh2STz75xMrXdu3aZVUWr776qowbNy5ojgUAAAAQmk6cOCEFCxa0qolIkSJZmwW9ZqVFKQAACG4PHjyQgQMHSpUqVeTWrVuWyLt27VpJnDixuAFBCpibN2/aZm+6dOmkTp06snfvXusX1qlTJzly5IgMHTpUkiVL5vQygSdKlCiRZaXp92qPHj0kTpw4cuDAAWnUqJHNTdHv3+vXrzu9TAAAAASIX3/91dos7NixQ+LFiyerVq2SypUrO70sAADgQX///bc0bdrUkiE0WNG8eXOZP3++JfO6BUGKAKeVE6NGjbKM9GbNmtkmr86X6NOnjz3v1auXXVQDbqDBia5du9r37uDBgy1a/Ndff9ksixQpUsigQYOorAAAAECI0plpefPmlWPHjkn69Oll8+bNFrAAAAAIblevXpVy5cpZO0mt1tREXW0zqXNc3YQgRYDSqNqCBQusrZNG106fPi3JkyeXkSNHyuHDh6V9+/ZWSQG4kUaKNTBx8OBBGTNmjFVTnD9/Xtq2bSuvvfaafPPNNwzYBgAAQLAbO3aslCpVyjYMtNWTzk1LnTq108vyO5pI9N5778nLL79s7YUzZcpkrYYBAMCzO378uOTPn1+WLVtm51OdL6wt+92IIEUA0ou/woULS4UKFeSPP/6wSgmtptD2OFpNod/UgBfoQG1t+aTD3nWeiraF0vkV1apVkzx58thNIwAAAPBf3b9/3xK9PvjgA7l3755twH///fdW6YtHXbx40SpNdHi4bqrs2bPHKp5jx47t9NIAAHCNnTt3Ss6cOW02a4IECWz+RPny5cWtXnpAOnHAOHr0qM2YmDZtmr3W4W2aba4X0zFixHB6eUCI07kUOkRI51fcuHHDPqcDhbS9mVZbAHgxV65cseq7y5cvcz4BAATkfL+6devaYGyl7Ue7d+/ulwOy/eGcrfefGzZskHXr1j3T79d2rQ+3bNX3oPMSue4AAASqpUuXWgLutWvXJEOGDLJkyRJrc+6PnvXag0qKAKDfDB07drR+qL4AhWb2/P7779K7d28u7BAwokaNKt26dbOqoYYNG9qNo95MaguoNm3ayIULF5xeIgAAAFzk7NmzUqRIEbum1MqAyZMnS48ePfwyQOEvFi5cKNmzZ7dkIZ2H+MYbb1ibrKfRhCLd3PA9NEABAECg+vLLL6Vs2bIWoNBrkPXr1/ttgOJ5EKTw+GR3/cZNmzatXdjdunXL+qJqu6epU6faDAogEGnbp3HjxllpXLFixWyA/JAhQ+xnRT/euXPH6SUCAADAz2nSlw7E3rRpk8SKFcsGZtepU8fpZfk9nRun96np0qWzllgffvihtGjRwgI8T9KhQwfLvvQ9dCA5AACB2Fqybdu20rRpU3veoEEDa5uo1yBeQLsnj9ILZB2Uor341SuvvCIDBgywSBtZPcCj9OZID/S7d++219r6afDgwVKuXDmnlwa4gj+0jgAAIDRp32ed8afzFVKlSmVtFrQ619/5wzk7QoQIVknx8Hw4DVJs3brVAj5ueA8AAISmGzduSO3atWXu3Ln2+vPPP7cgvhv2eGn3FKDOnTtn2TvFixe3AEXcuHFl5MiRtvmqG65u+OYFQpv+vGhVhZaZJ0yYUP78808bNqQl6KdOnXJ6eQAAAPAj06dPl6JFi1qAQgdWbt682RUBCn+qan799dcf+Zx+/XSGIgAAeNTp06elcOHCFqDQQP+MGTOsrb/X9ngJUniEFsR8/fXXdrGnrZz0G1UrKbT3frNmzaw/KoCnCxs2rLz//vuyf/9+adeunb2eM2eO/UxNnDjRfsYAAAAQuPR68LPPPrP5ftoetFKlSrJq1Sqbq4BnlzdvXmuV9bA//vjDE/20AQAITnv27LHWkj/99JPEiRNHVqxYITVq1BAvIkjhAZpxom2catasaYPbMmbMaGWyQ4cOtXIaAM8uWrRo0rdvXys3z5Ytm2XIaZ8/zZbTCgsAAAAEHg1K6DVh165d7fUnn3wi33zzjUSOHNnppblO69atrfqkd+/ellSnGaFjxoyx5DoAAPD/W7lypeTJk0cOHz5sM1T13JkvXz7xKoIULqZDUrSVU4YMGawHqpb89OzZU7Zv325lxwBe3BtvvCFbtmyxWS5686nR6kyZMsnAgQNtKD0AAAACw6VLl6RkyZIyadIkq7bVoc/9+/eXMGG4nX4Rb731lsybN886AWiCnVanaIJdrVq1nF4aAAB+YdKkSdaaXOc4aAWiJqOnS5dOvIzB2S61d+9ea03jGzam37DaT59eqEDw0wqKDz74wKLY6s0335Rx48ZJ1qxZnV4a4BcYYAkA8CrNXixVqpTdf2nFrVZPaMDCrbxwzvbCewAA4EkePHhgVZu9evWy19WqVbOARaRIkcStGJzt4TJjrZbQzVENUOiFslZTrF27lgAFEELSpEkjP/74o4wfP15ixYpl1UrZs2e3QUU3b950enkAAAAIAdr/WSvUNUCRJEkSWb9+vasDFAAAwH/dvn3b5l75AhS656QtEd0coHgeBClc5Oeff7YM7m7dulmwonTp0jZARXt3UmoMhCwdRq99iPVnrnLlynLv3j3p06ePZMmSxcruAAAA4B3ajqhQoUJy5swZSxDTNqB63QcAABDcLly4IMWKFbOghLaW1O4dn3/+eUDt9wbOO3V5qc/w4cNtmvvu3bslXrx41r9z0aJFkixZMqeXBwSURIkSyezZs+3GVZ/v379f8ufPb8O2dU4MAAAA3H3vNXjwYKlUqZJVzGqrJ61a10oKAACA4HbgwAHJnTu3XW9oO6Rly5ZJw4YNJdAQpPBz58+flwoVKkjLli2teqJ8+fKWyV29enXL7AbgDP251J/FGjVqWFVFhw4drPz/9OnTTi8NAAAAL+Dvv/+W5s2by8cff2zBiqZNm8qCBQskevToTi8NAAB4kLby1wDFH3/8YYnoGzZskKJFi0ogIkjhx9atW2elxQsXLpQIESLIiBEjLHs7bty4Ti8NgIjNp5g+fbqV4UWOHFl++OEHawOg8ysAAADgHteuXbOEsC+++MKSwbSaQmf/hQsXzumlAQAAD/rmm2/k7bfflnPnzll7f20tmTFjRglUBCn8kGZl65AU7YF6/PhxSZcunWzevNmyeqieAPyL/kxqGd62bdvsZKKVFNpHUAccaTYeAAAA/Ntff/1l7TuXLl1qiSfffvuttG7dmnsvAAAQ7LRas1+/flKtWjUbll2uXDlZs2aNtRQPZAQp/MzJkydtg7NLly7W37527dqyfft2eeONN5xeGoB/8Prrr8tPP/0kjRs3thOODtUuWLCgHD161OmlAQAA4Cl27dolOXPmlJ07d0r8+PFl9erV8u677zq9LAAA4EF37961faP27dvba23vP3fuXIkaNaoEOoIUfuS7776zVjErV660b87JkyfLlClT6IEKuIRm3n311VdWsqfDjrS3oP5Ma5s2AAAA+BcdTJkvXz6rpHjttdesej1HjhxOLwsAAHjQlStXpEyZMjJ27FgJEyaMDBs2TIYOHSphw4Z1eml+gSCFn0TRPv30Uxu6e/bsWdvU1OqJOnXqOL00AC+gSpUqlo2nN7mXLl2SihUrWru2W7duOb00AAAAiMjo0aOlbNmyNouicOHCNqgyVapUTi8LAAB40LFjxywxQmeZRokSRebPny8tWrRwell+hSCFw86cOWMXxQMGDLDXzZo1swye9OnTO700AP+B3uSuW7dOPvnkE3s9atSooEw9AAAAOENb6mqCWJMmTWwWYL169ayiPXbs2E4vDQAAeNCOHTusteSvv/4qCRMmlLVr11qiBB5FkMJBu3fvtm9SzdqJGTOm9SAbOXKkRIoUyemlAQgGESJEkP79+1srgbhx41qFlFZX6EcAAACErps3b0rVqlWDEsQ+++wzmTBhgl2zAQAABLdFixZJ/vz5bQZxxowZZcuWLfLmm286vSy/RJDCIUuXLpU8efLI4cOHJW3atPZNyoA2wJtKlChhQ7UzZMggJ06csBPUnDlznF4WAABAwFWwf/vttxaUmDZtmnTu3Fleeuklp5cGAAA8aMSIEVKhQgW5ceOGFC1aVNavXy/Jkyd3ell+iyBFKHvw4IEMGTLEynquXr0qhQoVor0TECDtn3SQts6e0Sw+nVvx+eef2zEBAAAAIWfv3r2SK1cuSwzTtk7Lly+XWrVqOb0sAADgQdpOsnXr1jZzQttMNmrUSJYsWWJddPB0BClCeUB248aNpU2bNvZN+v7778v3338vL7/8stNLAxAKYsSIIQsXLpRWrVrZa83eq127NgO1AQAAQsjq1autgv3QoUOSOnVq2bRpkxQoUMDpZQEAAA+6fv26VKpUSYYOHWqv+/btK6NHj5bw4cM7vTS/F87pBQSKCxcuSOXKlWXVqlVWUjxo0CDbqKS82Lu0nOvOnTvy999/20ODVL7n+tAMej1IhQsX7pGHfk5L0CNHjsz3hwfp/7FWU7366qvSvHlzmT59uvz5558yf/58SZAggdPLAwAA8IwpU6ZYYpheh+fOnVsWLFgg8eLFc3pZAADAg06dOmWdc7Zt2yYRI0a06xCdhYVnQ5AiFPzxxx9SpkwZ2b9/v0SLFk1mzpwppUuXdnpZeAEaWLh06ZINvNGHzhfwPX/8tUZP/4soUaJIokSJgh6JEyd+4mstWSeY4T5aVZUuXTqLsGvLNx2orQOVMmfO7PTSAAAAXH/N3qNHD3sobbM5efJkSwICAAAIbr/99puUKlVKjh49KnHjxrXECK3kxLMjSBHCVqxYYRUUurGdIkUK24TMlCmT08vCP9Aqhz179sj27dtl165dcvz48UcCEY+35tGecr7AgQ7AyZkzpz3XrHiNnD6pWkIfvn/rSQ/9N3S438P/rh7wNAii30sP038jYcKEQYGLJEmS2Eb3m2++aYOatSoD/untt9+23si+IGbevHllxowZFnkHAADA87t9+7b1fp46daq9bteunfTu3VvChKHTMQAACH4//vijJaBeuXJFXnnlFVm6dKmkSZPG6WW5zksPmNoaYiZOnGgXyDowRcuLtZ1L/PjxnV4WHqKl37r5rwEJfezYscMCExok0OoEzXTX4NLTKhk0OKAVD6FJhy5rCdnTKjk0aqvVOzr3RAMUvoCF75ExY0YCF37YDk4z/FauXGnfd8OGDZOPPvrI6WUBz0wvxjRge/nyZZu9AgCAU9dUFStWlDVr1kjYsGHlyy+/tPsxeOuc7YX3AADwhgkTJlinDE04zp8/v8ybN4/Zwy943iZIEUKGDx8uLVu2tOe1atWScePGSaRIkZxeVkDT+RAPByT08csvv1i2lW4M64yAhzfzs2bNKtGjRxc30lZTGmx5+L1qdYgvcKHVPNmyZQt6r/paKzLgbMBMZ1SMGTPGXvfq1Us6derk9LKAZ8JmAQDAaTrjS1vq/v7773YNP3v2bClevLjTy/I7Xjhne+E9AADcTffXunTpYtWaqmbNmhawYG/tfxGkcJB+g/o2Fz/++GMZMGAAMwMcoMGH1atXy+LFi63nvwYkNFChpd6vvfZa0Aa9btZrQELnhXh9kPeTAhda6aMtqbTCIleuXHZzp22I6Nkb+vRw3LNnT+nevbu9bt++vR1POH7A37FZAABw0qZNm6RcuXJy7tw5SZo0qSxZsoQ5Xx4+Z3vhPQAA3Eu7r9SvX99mDqvOnTvbXg57N09GkMIB+qXU4ESfPn3stW40du3alW/SUKQ3Jtr7beHChfL999/LtWvXrF1ToUKFgoISWbJkkahRozq9VL+graMeDlysXbvWstC0hVXRokXtZk+DFjpfA6Fn0KBB0rZtW3uubZ+GDh1KH2X4NTYLAABOmTNnjtSuXds2DN544w1LUNK2rPDuOdsL7wEA4E7nz5+XChUqyPr1623e7NixY6VevXpOL8uvEaRwoMyndevW1uZJafWEb5MRIUtLujUooY+NGzfa/4UOr9bhw7rJrhUCBIqejR4O9u3bF/T11Kw0pV9P/Vrq4/XXX+frGQq++uor+fDDD+25Ruj1xKe9lQF/xGYBAMCJ61a959LB2KpMmTLy9ddfe746+r/ywjnbC+8BAOA++/fvl1KlSsmBAwfsPDR37lzrRIJ/RpAiFGm7nA8++MB6j6kvvvgiaHMRwU+H0WzYsEEWLVpkG+l6kNDWRJr5r4EJzfzXwdb4786cOWOVKfq11soUnXWRKlWqoICFDgXSVlEIGVOmTLEAhQbeqlWrJlOnTuXrDb/EZgEAILTvB3SW1+jRo+21PtfKUxI6AuOc7YX3AABwF62c0AoKraTQji26V6ZJvPh3BClCcdhtnTp1rA+ZtmOZOHGivUbwtyXS0m0NSmiP2YsXL0rChAktKKGPIkWKWIsihBwtoV+1alVQcOivv/6yg0zJkiWDgha00Qp+3377rdSoUcOONfq9/s0330ikSJGcXhbwCDYLAAChec6pWrWqJdBode+QIUOkZcuWTi/LNbxwzvbCewAAuIfu+datW9fm3L711lu2L0Zb9GdHkCKUNm01u1k3bDW7ecaMGVK5cmWnl+UpOuxa29xMmzZNLl26ZAPwfBviOl+CPv3O0MPGzp07g9pC7dixQ6JHjy41a9aURo0a2f8Ngo9G6CtVqmTHnHfeeUfmz59PQAh+hc0CAEBoOH78uFVN6z2CVlJre6fy5cs7vSxX8cI52wvvAQDgjr0vnTus84fVu+++a/uTJEk/H4IUIUzb3ug35/LlyyVixIjWh0z7kuG/02HXs2bNsuDEli1bLDqpLW8aNmwoadOmdXp5eILDhw9buzN9aIVFtmzZLFihQQtuHIKHVrFoJYUee/LmzWsVRXqQB/wBmwUAgJD2888/29yJEydO2P2BVllnz57d6WW5jhfO2V54DwAA/6bdLJo0aRLU2r9NmzbSv39/WkuG4HmbNPQXcOPGDQtIaIBCs5mXLVtGgCIY/Prrr3YASJw4sW1wx4kTx4I/x44ds8glAQr/lTJlSunZs6cFK7TsLWnSpNYbWGeDNGjQQLZv3+70El2vcOHCdszRA7vOZNEZLFevXnV6WQAAACFOkzN0FpoGKDJkyGCJTAQoAABASNBOLtraXAMU2sFl5MiRMmjQIAIUIYwgxQtE0rQH6tq1ay36o5uGunmIFx86vmDBAnn77betlZNmRLVu3VoOHTpkLW60WoVBwe4RLlw4y3DT/9MjR45Ihw4dZOXKlXYTmS9fPpk9e7YNOsSLyZ07t1VUvPzyy7J161Zrb6AtoAAAALzqiy++sFavWk2qc+h0cKUOrAQAAAhuupel3StWrFhhiena4rxZs2ZOLysgEKR4Dvfv37escM3k0cG1uqGum4Z4flriM3jwYEmXLp1UqFDBNlp1EI0GJ3r06MGNhwckSZJEOnfuLH/++adVxGgAQwN8qVOnln79+smFCxecXqIrvfHGG/Ldd99JtGjRLGChQ7UJ/AAAAC8mM3388ce2MeC7D9MK9lixYjm9NAAA4EHbtm2TnDlzyp49e6zLy7p162wWFkIHQYpnpKM7NMNfB6Roec+cOXOs5BjPP+zuo48+sg3s9u3bS548eeSnn36SjRs32hByqia8R39etCJm9erV1ktYBz9369bNWkI1btzYAlN4PlqZotH8CBEi2BBt/ToyXggAAHipvW6VKlUsqUn17t1bxo0bx70CAAAIEdoRpECBAnL69Gnr9KKtJTVJFKGHIMUz6tWrlwwfPtyeT548mUjac9Ks+U8//dQqJ77++msbOKMlVBr0eeutt5xeHkJJ1qxZraff0aNHpWPHjnYSSJ8+vbRs2VLOnDnj9PJcRdvM6YB57Y+oX9N27do5vSQAAID/TDcH9Dpn3rx5EjFiRLt30BaiL730ktNLAwAAHjRs2DBLrr1586aUKFHCKig0sRahiyDFM/ZB7dq1a9A3bq1atZxekquyoPr27WstfvTr+Mknn8jBgwdtyLIOVUZgih8/flArKK2qmDRpkqRJk8ZafTEM+tlpqzTNKlQDBgyQ/v37O70kAACAF6btFbTNglZa6wwu7QddvXp1p5cFAAA82lqyRYsW0qpVK+tO0aRJE1m0aJHNIEboI0jxLzRzp3nz5vZcAxX6zYtnGzA+ZswYq5zQr1vt2rVtQ1qDE/yww0eHEHXq1MkCV9qyqE+fPhasGDFihNy+fdvp5blC/fr1LUChtJrCF7QAAABwk5UrV1orWK221nuITZs22eBKAACA4Hbt2jWrntD9J6VJn5pcrfNU4QyCFP9Ah9PWqVPHomk6sK179+5OL8nv6ddq9uzZkjFjRtt0LlSokOzbt89+6BMkSOD08uCnNFNu4MCB8scff0iZMmUsiv3qq69aOzAdlIh/1rZtW5vxovTn7ttvv3V6SQAAAM9Mq2qLFy8uly9flnz58lmAQgMVAAAAwe3EiRNSsGBBq5qIFCmS7WNq5xdaSzqLIMVT6CDnihUryt9//y01atSweRR8s/4zLcfOkSOHVK1a1bLhdUjy9OnTrdUT8CySJ09u8xV+/fVXm1+hFTg6qGjp0qUMhv4XOlDy/ffft6BOzZo15ccff3R6SQAAAP9Ir++6dOlilaF636WtnZYvX24JLAAAAMFN95ty5colO3bskHjx4lklZ+XKlZ1eFghSPNnu3bttMLZvYIpm9uhwWjyZ/mAXK1ZM3nnnHQkbNqysXr3aNpV1kxl4Ea+//roNS9RgYaxYseznUatyNm/e7PTS/JYGUb/66iupVKmS3Llzx+ZVbN261ellAQAAPJG29nzvvfekV69e9lpbgGqCk2Y0AgAABLcffvjBWkkeO3ZM0qdPb3tMuXPndnpZ+D/svD/m3Llz1m7m0qVL1hNV26ZEiBDB6WX5Je0Xq9lOb775pv2Az50710qztWQKCA56stCg15IlS+xnUl9rz8D9+/c7vTS/pEFCvbkvUqSIXL9+XcqXL29ljAAAAP7k/PnzUrRoUZkxY4b1fh4/frwFK0gMAwAAIWHs2LFSqlQpuXr1qu1balIsnV/8C1eBjw17rlKlim2+a7si7U0WJUoUp5fll2XZo0ePtrkT69evt5sKLZfSzWNaYiG46feUnki0fZjOqNi5c6dkyZJFhg4dyryKJ4gYMaJVoejP58mTJ+3n8tatW04vCwAAwBw4cMAST9atWycxYsSQZcuWSYMGDZxeFgAA8CDdN9IZnh988IHcu3fP2oprRUWcOHGcXhoeQ5DiIW3atLGs7WjRosnChQv5hn0CDeBoa6cmTZrYrI49e/bYTYVmQAEhSTPratWqZe3YGjVqJK1bt7bot97o4lHRo0eXBQsW2DHsp59+sp9XZnoAAACnadai9oHWqlidRaavtWUsAABAcNM2/toBpl+/fva6W7duMnnyZDrm+CmCFP9n3LhxMnLkSHuu7VK0Jz7+H93gHDNmjGTKlEl+//13+f777+21Zj8BoSlq1KgybNgwWbNmjbUyypw5s72mquJRWrb4zTffWAsoPQnr1wgAAMAps2bNkrfffttaPWXPnl22bNkiGTJkcHpZAADAg86ePWutsGfPni3hw4eXKVOmSPfu3ekA48cIUvxfRk/Tpk3t+WeffSblypVzekl+5ejRo1K8eHFp3LixVKtWzVo7aTUF4KQCBQrIL7/8Iu+//760atXKBmtTVfEoPSEPGjTInn/88cfy448/Or0kAAAQgMlOffv2tUxGHZatM7O0ej1hwoROLw0AAHiQJldr5abOzY0VK5a1d9I2T/BvAR+kOH78uFSsWNHmUVSuXFk6derk9JL86oZCB8tob/u9e/fKd999Z69jxozp9NKAoKqK4cOH243uX3/9ZVUV+pqqiv+nRYsWUq9ePfuaVK1aVf7880+nlwQAAAKE3mNpD+gOHTrYa00s+fbbb+0aDgAAILitXbvWZl8dPHhQUqVKZYEKTWqF/wsT6L3JdKjs6dOnrY3RxIkTKft5qHqiRIkSdlOhG5s6B0CrKQB/pLMptKqiYcOG0rJlSylcuDCb8f9Hj2lffvml5MiRQy5evGjZi1evXnV6WQAAwOMuX74spUuXtra6OltsxIgRMmTIEGtFCQAAENy0fX/RokVt7yNnzpyyefNmefXVV51eFp5RmECuEtAN+G3bttlwWR0yqwOzA51+XfRGQqsndCj2smXL7DXVE/B3mpGnN7+rVq2SY8eOWVWFvqaqQiRSpEgyb948SZQokfz2229Sp04dvi4AACBEE57y5csny5cvlyhRosj8+fOlefPmTi8LAAB4dC9T2/e/9957cufOHalUqZLtDcWPH9/ppeE5BGyQYvDgwTJt2jTL5NEhKloCFOh0Y7dkyZLSqFEjqVKlilVPaDUF4CZaxqdVFfXr17dWRzqgUcv8Al3ixIll7ty5EiFCBNso6Nmzp9NLAgAAHrR9+3bLXtR7CU2QWLdunZQtW9bpZQEAAA/SoESDBg2ka9eu9vqTTz6Rb775RiJHjuz00vCcAjJIoQNTPv30U3uuJce6iRnodKBulixZ7GZi6dKlMn78eKon4FpaFTVy5EhZuXKlHDlyxL63Fy5cKIFOB0d99dVX9rxHjx5WXQEAABBc9HqrQIECcurUKWunq20WsmXL5vSyAACAB2lbJ02unjRpkiWha6vr/v37W5tJuE/A/a/p/Akt/9FWJxppC/SyYy2J0kHD+kOtGU+//vqrVVMAXqCzKbSqolixYlKhQgXp3bu3fc8HMq0w0bkdvufajgEAAOC/0nsKvd66ceOG9YPWCorkyZM7vSwAAOBBhw4dkjx58lhbJ01UXbRokTRp0sTpZeE/CKgghW5O6qbc2bNnrV/9qFGjAnpQ9u3bt621k25YtmnTRhYvXiyxY8d2ellAsIoePbq1dNPSv06dOkmNGjXs5jmQDRw40KoqdKClBm3v3bvn9JIAAIBL6XWE3k/oQ++39P5iyZIlVGUDAIAQsWXLFtvT2LdvnyRJkkTWr19PwrUHBFSQQtu/6CBoHSI7Y8YM+xiotKJE21zpXI4pU6ZYOZSWRgFepKV+3bt3t2CFRtfz589vM1gCVbhw4exnX7MNNMuxX79+Ti8JAAC40PXr16VixYpWRaH69u0ro0ePlvDhwzu9NAAA4EE6a1NnkZ45c0ayZs1qAQtt8Q33C5gghc5a0OEpasCAAZIhQwYJVDt27JDs2bNbadSaNWukdu3aTi8JCBWVK1eWDRs2yLlz5+Stt96STZs2SaBKkyaNBW5Vt27d5KeffnJ6SQhGWimYMmVKC8ZrK79/+/8dOnSopE+f3oaLJUuWTFq3bi23bt0KtfUCANzn5MmTUrBgQZtDETFiRBtS2a5du4CuVAcAACFDqzUHDRpk+zp6r1qqVClZu3atVVLAGwIiSKHfvDVr1rT2RvpN3KxZMwlUevOQL18+SZgwoWzdutU2rxA6NJNfb9qe9NAoMEKHRtr1ez9dunT2ddcBS4GqTp06UrVqVfn777+lVq1acu3aNaeXhGAwa9Ysa+GnwScNSmtWSfHixS3T5Em0srB9+/b2+/fu3Svjx4+3v6Njx46hvnYAgHsSwLTNwvbt2yVu3LjWD7pKlSpOLwsuvi969dVXnV4WAMBP6Z6F7uW2bdvWghVNmzaVBQsWWHtveEdABCk6dOhgA6Hjx48vEyZMCMjsHh0U3qVLF6lWrZq8++67RBsdoAdT7dGbO3duyzzTx8cff2xVPVquhtCjx4IVK1ZYFZHOqdENXT3pBRo9Fn711VeWOX/gwAFp1aqV00tCMBg8eLAda/R7+/XXX7f/4yhRotj570k2btwoefPmtWC+Vl/ooHmd3fJP1Rca9L9y5cojDwBAYPjhhx/svHH06FF55ZVXZPPmzXZ9CzwPvQfy3RPpQ/uJAwDwuKtXr0r58uXlyy+/tD0Mvd/VrhDaxhre4vkgxXfffWdtLNTEiRMlQYIEEog/0Nor9vPPP7c+sdqLXlt6IHRp/3/dKIwQIYJVsuhDP6cH1jhx4ji9vICj/w9jx461Hsr6KF26tFy8eFECTezYsWXq1Kl2stcM+m+//dbpJeE/uHPnjmW1vvPOO4/MZNHXT2tvlidPHvszvqDEwYMHZenSpVZ5+DR9+vSxgai+hwa6AADep9cKen7Q4LTO+NJzi7aQBJ6X3gP57on0oRU5AAA87K+//pICBQrY/anuY+p+hbYmDsTk80Dg6SDF2bNnpV69eva8efPm/7jh4lU6d0I3oFauXGn9YukTC/w/+rPw0UcfWTBTW0Bp24Lff/9dAo32k9Z2P0oz8I8fP+70kvCCdN7KvXv3/icgr69PnTr1xD+jFRQ9e/a0VoA66FQ3m7QV2j+1e9IKxcuXLwc9AnkQPQAESlW2nhfef/99O89om8jly5eTaIMXtn//fkmcOLGkTp3avp+0MudpqOAEgMCza9cua1G/c+dO64axevVq6wwD7/JskEJ7lDVs2FBOnz5tpaT9+/eXQLNu3TobDnzz5k0rwy5TpozTSwL8kmaZaxZ52LBhJUeOHNbGIND06NFDsmfPbtUkOqtCNyMQGPRir3fv3vLFF1/YDAttP7dkyRL57LPPnvpndEBqjBgxHnkAALw930+r6FTXrl2tClPPBcCL0E0nnQuniULavkMT67QyRzsAPAkVnAAQWJYtW2ZJdFpJ8dprr9mepu7VwNs8G6QYPXq0LFq0yFq66FDQQGtvpJlNOig1U6ZMsmXLFutLDv9DVYv/SJs2rZ34tMdy2bJlbQhTINEMej1WaksyHX45aNAgp5eEF6CtEjTYpgH6h+lrbaXwJDqvSOezaHasnjM0O0WDFrohQLAKAAKbVugVKVJEZs2aZe15dGNZExu4hsV/UbJkSRu0njlzZrtn1TYely5dkm+++eaJv58KTgAIHDpTUfdkrl27JoULF5YNGzZIqlSpnF4WQoEngxR//vmnDcJV/fr1s4ufQLJ48WL7gdYfZr3ge/nll51eEp4ievTo1oLljz/+cHopELFs8Pnz59vPT+XKlWX27NkSSNKlS2fzOVSnTp1k9+7dTi8Jz0kD82+++aYNhvfRQIO+ftpQ0xs3btjciodpoMNXlQgACEx6faqtMDdu3GjZ699//73UrVvX6WXBg2LFimVD2A8cOPDEX6eCEwC8T+9bP/nkE/nwww+ttaS279eKO52jicDguSCFbqg0bdrUWhy9/fbb0qJFCwkk2qZDh2Rrdoo+D7QKErfRzCGVLVs2p5eChzZ5Z86cKdWqVZPq1avboPlA0qBBAylfvrzcvXtXGjduTCa9C2mQXofCT548Wfbu3WsXedevX5f69evbr2s7L81I9NGgnLZa0O97bbeglXhaXaGf9wUrAACB1zZWg9ua/JUyZUobkK33VkBI0GxZ/V5LlCiR00sBADhAE+e0wm7gwIH2WlsPT5gwwfZnEDjCicdoiaj2k9dsCy0Rejw71Mu+/vpra9mhGeDaJ1bbt8C/DB069JHXOi/lacNs4RxtZ6AbvJEiRbINXe3FrK1wAoG2bxgxYoRl3mvmpF4YBMp79woNsJ09e9Z6huvxJWvWrJaB4humrYMpHz43du7c2f7f9aP2/IwXL54FKD7//HMH3wUAwCna/lED23fu3LH+zwsXLgw6hwDBoW3btnatkSJFCjlx4oR069bNEiNq1Kjh9NIAAKHszJkzUq5cOWtVr0EJ3YOoVauW08uCA1564KFeDtrHUgeq6KaM9krVDZpAof1hNQNagxT6A032K/DfaRXBRx99ZAOFR44cKc2aNZNAMWTIEMvI19LKffv2Sfz48Z1eEvzYlStXrBWI9ommBQMAuJPeFupMIg1aK63O1sQnnVcF7/CHc7ZWK69du1bOnz9vyRE6HFWTI9KkSeOa9wAA+O+08r906dJW0R8nThyZN2+eFChQwOllIZg963nbU5UU2kNdAxTp06eXdu3aSaDQmwcNUGi2c6BVjwAhSX+WNDihbdOaN29ur7V1TiDQ4MyUKVNk586dlu2mzwEAgDdpm8cmTZpYspP6+OOPpX///txXIERoi0kAQGBbvXq1vPvuu5ZwrkFqnamr84kQuDxz1fnTTz9ZT22lH7XdUyDQ9lY6TEaDFAQogOCnbXAGDBggrVq1snk3vpv3QGh5NXr0aHv/GghduXKl00sCAAAhQDcHdJ6dXuPovcSoUaOsJzT3FQAAICRoEmSxYsXsGkRnYOnsKwIU8MSV599//20DXrVEWdsdFS5cWALB/PnzpWbNmvbQzURuJICQoRv1gwcPtgxDrVjSXs2BQPtQa2BGaQXJ7du3nV4SAAAIRocPH5a8efPaLKqoUaPKokWLgs79AAAAwUn3bbt37y5169a1Ks6qVataQqS2/gM8sas9fPhwa0mivdN9k+C9Tsug9IdZe8VOnDiRGRRAKAQqNLNQT6Y6THvOnDkSCLQ/cKJEieSPP/6Qvn37Or0cAAAQTLZu3Sq5cuWSPXv2SOLEiWX9+vVSqlQpp5cFAAA8SJMedT9FZwir9u3by9dffy2RIkVyemnwE64PUhw9ejRoQLb2TQ2E4a6a6aTBCS3Lnj59urVlARDytFpp3LhxFiCsUaOGZRt6nQ43Gjp0qD3XYZoarAAAAO6vyC5YsKCcPn1asmTJIlu2bJGsWbM6vSwAAOBBFy5ckOLFi1sraU2yHjNmjPTp04eOMHiE678bWrRoIdevX7cyZZ3LEAgZT+XKlbOWVjqPInz48E4vCQgoekKdPHmy/RxWrlxZ1q5dK15XpUoVKVGihNy5c8faPmmJJgAAcB89h2vygSY83bx5087v69atk6RJkzq9NAAA4EEHDx6UPHnyyJo1ayR69OjWGaZRo0ZOLwt+yNVBigULFthDKwkCYWj0yZMnpUKFCpIpUyaZO3duwAwHB/yNBge1LFGDo5UqVbJ+zoHQ6krLMLVfpFZwAQAA983x0wSv1q1bW7BCZ21pVahuGAAAAAS3zZs3W2vJ33//XZIlSyYbNmywgdnAk7h2V//WrVvSsmVLe/7xxx9LxowZxcv0/b777rv2fN68eRI5cmSnlwQEtAgRIsjs2bPtxr58+fJy7do18bLUqVNLly5dgo65Xn+/AAB4iZ63Ndlp5MiRlnygc/y++OIL2sYCAIAQofsl2gXm7Nmzki1bNgtYaNI14LkgxZdffilHjhyxIW++jTOv0kynDz74QHbt2mX9Y3WILQDnvfzyy7Jw4UIrX9Rh2vfv3xcva9u2raRNm1bOnDkjgwcPdno5AADgGZw4cUIKFCggS5YssapI3TTQhAMNVgAAAAT3HuaAAQNslqcmXJctW9ZaPen+LeC5IMXly5fl888/t+fdu3eXqFGjipfpZqAOlxk/fry89dZbTi8HwEO0ikvbH2kAsUePHuL16pFevXrZc73o0IwIAADgv3755RfJmTOn/PzzzxIvXjxZtWqVtaoEAAAIidaSOsfy008/tdcfffSRdYOJFi2a00uDC7gySKHlyefPn5f06dNL/fr1xcuWLVtmP9zt27eXmjVrOr0cAE+gQ7R1875nz56Wnej1IdpaqqltI3zBYgAA4H++//57yZcvnxw/flxeffVV2bJli/WFBgAACG5XrlyRMmXKyOjRo61ac9iwYTJ8+HAJGzas00uDS7z0QOtwXOTUqVOSJk0auXHjhsyZM8fTmUD79u2zzCctz9YsbX6wAf+lh1INJC5YsMCGQb3xxhviVcuXL7dhV1pZoQOwUqZM6fSS4AcXpDFjxrRKxxgxYji9HAAIeGPGjJGmTZvKvXv3pFChQjJ37lyJHTu208uCH/DCOdsL7wEAvOTYsWNSunRp+fXXXyVKlCjy9ddfWzIn8DznbddVUnz22WcWoMiRI4dUrFhRvOrixYv2A500aVJrJUOAAvBvmimgLdlef/11G6R9+vRp8aqiRYtKkSJF5M6dO9K1a1enlwMAAP6Pzsdq166dNG7c2AIUOjNLKyoIUAAAgJCgLSW1UlMDFAkTJrT5EwQo8CJcFaQ4cOCAZQWpfv36eXbYm/Zwq1atmpw7d86G8pIdAriDZgxo1ZNu3muVl370qr59+9rHadOmWb9rAADgrJs3b9o9RP/+/e21zsqaNGmSVT4CAAAEt8WLF0v+/PnlxIkTkiFDBtm8ebNkz57d6WXBpVwVpOjSpYtt4JcoUcLKlr1KZ1CsXLnSettraysA7qHVTzoYauvWrdZmwWUd9Z6ZXnhUrVrV3l/Hjh2dXg4AAAHt7Nmz8vbbb1s73PDhw8vUqVOt2tGrSV0AAMBZo0aNsi4S169fl3feecfaXqdIkcLpZcHFXBOk2LFjh8ycOdOe9+nTR7xq4sSJMmTIEBk6dKi1UwHgPrlz57aqL23/NHLkSPEqHRYeLlw4WbJkiaxdu9bp5QAAEJB0PpS2WdDsRW3rpLOj3nvvPaeXBQAAPEjbSbZp00aaN29ubSYbNmwoS5cutZkDQEAEKdq3b28fa9WqJVmzZhUv2rRpkzRp0kQaNWokzZo1c3o5AP6DunXr2om7devW8uOPP4oXpUuXTt5//317rv2vvVo1AgCAv9K+z5occfDgQUmdOrXdTxQsWNDpZQEAAA/SGcGVK1e25GrVu3dvGTt2rFVxAv/VSw9csKu0YsUKKx3Sb3rNFEqVKpV4jU44z5gxo6RMmdLeL71jAffT9nRlypSxSrDffvtN4sWLJ15z8uRJSZs2rV2saJurChUqOL0kOODKlSuWOaPnMuYoAUDo0LlQDRo0kLt371olhc6y8+K1BoKXF87ZXngPAOA2p06dsoHY2to6YsSINveqevXqTi8LHjpv+30lhcZQOnToYM+1ysCLAQqlGdf6nzV9+nQCFIBHaCukyZMnWwmkV6ujEiVKJK1atbLnOptC3ysAAAjZ+yMdil27dm0LUGhGo86zI0ABAABCwp49eywhQgMUL7/8siVXE6BAcPP7IMWqVavshyBy5MjSuXNn8aJly5bJhAkTZNCgQZI8eXKnlwMgGCVIkMDmUsyePdseXvTpp59KrFixZO/evbJo0SKnlwMAgGfduXNH6tWrJ927dw86B8+aNcvulQAAAIKbJkLkyZNHjhw5Yi2ftbVk3rx5nV4WPMjvgxQDBgywj1rKHD9+fPGaS5cu2QyKYsWKBfV2B+At1apVk4oVK0rTpk3lzJkz4jVatqeVbg8fswEAQPC6ePGiFC9eXKZMmSJhw4aV0aNHS79+/SRMGL+/pQMAAC6kLZ302kM7v+TLl88CFBqoAEKCX1/R/vrrr/Ldd9/Zhbe2Q/IifV/am0sHzbz00ktOLwdACNCf7S+++MLaM3i17VOLFi2sVd2GDRvswgUAAAQfHYytWYyrV6+W6NGjy+LFi+WDDz5welkAAMCDdO+iS5cuUr9+fZu1qa2dli9fbq2egIAMUgwcONA+VqpUSVKnTi1es3TpUpk4caIMHjyYNk9AALR9GjVqlMyZM0e++eYb8eJsivfee8+eU00BAEDw2bJli/WB3rdvnyRNmlTWr18vJUqUcHpZAADAg27fvm339r169bLXnTp1svm5kSJFcnpp8LiXHmh4zA8dP37chmRrxE4vzHPkyCFea/OUIUMGyZQpk82koIoC8D493FapUkXWrFkjv/32m+da2OkwLT2u6fHs999/pww0gGhFoLb90jLgGDFiOL0cAPCMb7/91jYKbt26JW+88YZVUCROnNjpZcHFvHDO9sJ7AAB/dP78ealQoYIlRIQLF85aS2r7fSA0ztt+W0kxfPhwC1AUKFDAcwEK1bp1a7l27RptnoAAbPukdD6Fn8aIX9jrr78upUuXtvelFWIAAODF6LlUq8o1uUEDFHp+Xbt2LQEKAAAQIg4cOCC5c+e2AIVuJGtCNQEKhKYw/hph0Wid+uSTT8RrlixZYsNndBMvWbJkTi8HQCjS6glt+6SZkV5s++Q7ZusxzotDwgEACGmaqKXJDHpO9c2zmj9/vkSLFs3ppQEAAA/S2ZLaWnL//v3Wjn7jxo3yzjvvOL0sBBi/DFKMGTPGAhWvvfaalCpVSrzk4sWLNuRO+8gSkQQCU9WqVaVy5cq26XD69GnxEq1+e+uttyzrU4MxAADg2V29elXKlSsnX331lVVgDhkyREaMGGEtFwAAAILbrFmzpEiRItbqKXv27NZyX9s4AxLoQYo7d+7I0KFD7Xnbtm0lTBi/W+J/QpsnAEo38PUY4LW2T/qefNUU+h5v3Ljh9JIAAHCFv/76S/Lnz2/tFSJHjixz586VVq1acc8AAACCne5D9O3bV6pXr27DssuXLy+rV6+WhAkTOr00BCi/iwDMnDnTLtATJUoktWrVEq+1eZo8ebJlRCVNmtTp5QBwuO2TzqfQDQjNXPCSihUrSurUqS0TY+LEiU4vBwAAv7dz506bw7dr1y67RlizZo0NrgQAAAhud+/elUaNGkmHDh3stSZFaEvqqFGjOr00BLAw/jggTrVo0UIiRowoXird1jZPJUuWlPr16zu9HAB+QIdh6kPbPp07d068ImzYsNKmTRt7rrN37t275/SSAADwW0uXLrUKihMnTsjrr79ubRa0dSIAAEBwu3z5spQuXVrGjx9v3Wu0raQmU+t9POAkvwpSrFy5Un799VcbCtekSRPxEg2+aFaxr78sAKiRI0daFkPv3r3FSzQY+/LLL8vBgwdl0aJFTi8HAAC/9OWXX0rZsmWtHezbb79tgytTpkzp9LIAAIAHHT16VPLlyyfLly+XKFGiyIIFC6R58+ZOLwvwvyDFhAkT7ON7770nsWLFEq84c+aMDBo0SD766CNJnjy508sB4Ee0pYPO39H5DXrB4BV6wdOwYcNHju0AAOD/d//+fTv/62wqfV6vXj2bReGleyAAAOA/tm/fLjlz5pTdu3dbi/1169ZJmTJlnF4W4H9BikuXLllvduXb2PKKXr16Sbhw4YJ6vQHAw7Q1km5KdOvWTbzE19pO21icOnXK6eUAAOAXbty4Ye0eNYnJd6+gAf0IESI4vTQAAOBBCxculAIFCth9eaZMmay1ZLZs2ZxeFuCfQQodmH3r1i37YXnzzTfFK7TVibZ4ateuncSJE8fp5QDwQ9rirkuXLjJlyhT57bffxCteffVVyZMnj82kmDp1qtPLAQDAcadPn5bChQtbcpYGJaZPny6dOnWiHSwAAAgRw4cPlwoVKliSRLFixWT9+vWSLFkyp5cF+G+QwtcORDNvvXSR3rVrV4kbN660bNnS6aUA8GMffPCBpEiRQjp27CherKbQY/yDBw+cXg4AAI7Zu3ev5MqVS3766SdLXvrxxx+lZs2aTi8LAAB4kCYL6l6kPvRevFGjRrJ48WKJESOG00sD/DdIocOyt27dai2RdB6FV+zatUtmzJhhgQrtzw4AT6PZlJ999pmVYerQTK+oWrWqHf/27dsnmzdvdno5AAA4YtWqVVZdePjwYUmbNq1s2rRJ8ufP7/SyAACAB12/fl0qVqxoVRSqX79+Mnr0aAkfPrzTSwP8O0gxceJE+1iuXDmJFy+eeIXOoNCbEK/N2AAQMmrUqCFZsmSR9u3be6bqQLM0tO+2YoA2ACAQTZ482dor6Aw+DVRogOKVV15xelkAAMCDTp48KQULFrQEyIgRI8o333wjn376qae61sCbHA9S3LlzJ6hXeYMGDcQr1qxZI8uWLbNBeEQqATyLMGHCSJ8+faxH5JIlS8QrfMd2nT2kGR0AAAQCTTjo1q2b1KtXT/7++2+pVq2arFixwlrBAgAABLfdu3dba8nt27fb9YZWcvqSBgF/53iQQvuhnTt3ThIlSiTFixcXr9yQ6KBsHQBeuXJlp5cDwEVKlChhWQ9aiaU9JL1A21loVdm1a9dkzpw5Ti8HAIAQd/v2baldu7b07NnTXuvMKW0DGylSJKeXBgAAPOiHH36QvHnzytGjRyV9+vTWbjl37txOLwtwT5DC1+qpbt26NpPCC+bPny9btmyRvn37WmY0ADwrLcHUY4dmQEyfPl288p58A7R9x3wAALzqwoUL1t5Jz+Nhw4aVcePGyeeff859AQAACBHjx4+XUqVKyZUrV6RAgQKyceNGSZMmjdPLAp7LSw8cbHx+4sQJSZYsmdy/f19+//13T/Rm1VLuzJkzS5IkSWT58uVOLweAS+mQqx07dtixUftIut3x48clRYoUdrzfv3+/VVbAO/RiOGbMmHL58mWbQwIAgerPP/+0TYI//vjDjodaQVi0aFGnlwV46pzthfcAAMFB7687d+5sbaPVe++9Z8kRXthDgHc863nb0XQenUWhP1BajuSFAIWaMmWK7N27N+gAAQAvQjMujx07Jl999ZV4QdKkSS2rVE2aNMnp5QAAEOw0a1H7QGuAQhOxNmzYQIACAACEiFu3bknNmjWD9h+7du1qe5IEKOBWjgYp9IdH+dqAeOEAocPxdChN9uzZnV4OABd77bXXbNBmr169LOrspQHaeux3sIgPAIBgN3v2bHn77bdt1p7OpdPWrxkzZnR6WQAAwIP0eqNIkSIya9YsCR8+vCUC9ujRw1otA27lWJBCM4z27NljP0xeGS49bdo0+euvv+Szzz5zeikAPKB79+5y6dIl6y/pBWXKlJGoUaNahcjPP//s9HIAAPjPNOjer18/qVq1qg3LLleunKxZs0YSJUrk9NIAAIAH6X6qVm5qBWesWLHk+++/tzm/gNs5FqRYsGCBfSxUqJD1pfLCDcrw4cNtEy59+vROLweAB2irCN30GDlypNy7d0/cLnLkyFK8eHF7Pn/+fKeXAwDAf3L37l1p3LixtG/f3l63aNFC5s6dawF5AACA4LZu3TrJnTu3zcBKmTKlBSoKFy7s9LIAbwQpKlSoIF6wevVq+fXXX6Vly5ZOLwWAh+gx5eDBg7JkyRLxAt8x33cOAADAjbQVoyYnjR07VsKECSPDhg2zR9iwYZ1eGgAA8KAZM2bIO++8IxcuXJAcOXLI5s2brU004BUvPXCgMfjp06etBFr/aW37oQNVvbDxppHMX375hR5wAIKVZkpEiRJFVqxYIW6nF1Tx48e3yhA9ZqZOndrpJSGYNuu0KvLy5csSI0YMp5cDACFK719Kly5tCUp6fv7666+tzRPgBl44Z3vhPQDAs9K90969e0vnzp3tdcWKFWXq1Kl2DQJ46bztSCXFokWL7IdMh0t7IUChWc4LFy60Em8CFABCoppi5cqVthnidnHixJECBQrYc6opAABus2PHDsmZM6edkxMmTChr164lQAEAAELEnTt3pGHDhkEBio8//lhmz55NgAKe5EiQwmutnrRffOzYsaVWrVpOLwWAB1WqVEmSJElic2+8gJZPAAA3Wrx4sQXaT548KRkyZLA2C2+++abTywIAAB506dIlKVmypEycONFaS44aNUoGDhxozwEvCvXv7GvXrsny5cvtefny5cXt9P2MHz9ePvjgAyKZAEJE+PDhpWnTpjJt2jQ5d+6cuJ3v2K9Dv7zwfgAA3jdixAg7f12/fl2KFi0qGzZskBQpUji9LAAA4EGHDx+WvHnzWkeFaNGiWUca3RMAvCzUgxTff/+93L59W9KkSWMZSG6nPWg1UPHhhx86vRQAHqaB0Pv378uUKVPE7XRTJ2vWrPZ+NCsVAAB/pTOUWrdubW1d9bz1/vvvy5IlS6yvLgAAQHDbunWr5MqVS/bs2SOJEye25L5SpUo5vSzAe0GKh1s9eWF+w9ixY638Knny5E4vBYCHxY0b1wZk6TFHZ/q4HS2fAAD+TqsmtOXi0KFD7bUOrRwzZoxVOAIAAAS3efPmScGCBeX06dOSJUsW2bJliyX4AYEgVIMUd+/eDcqa9UKrp507d1qEs1GjRk4vBUAA0GPNvn37rMWE2/nOAVpdd+PGDaeXAwDAI06dOiWFChWyYHrEiBGterpDhw6eSLIC/Enfvn3t56pVq1ZOLwUAHKOJiEOGDLHkiJs3b0qJEiWsgiJp0qROLw3wZpBi/fr1cvHiRcsIzpMnj7idZjQnSpRISpcu7fRSAAQA3SzRVnmaxel2mhWibZ/0AuzHH390ejkAAAT57bffJGfOnLJt2zZ5+eWXZcWKFVK9enWnlwV4jib8jR49WjJnzuz0UgDAMX///bd89NFH0qZNGwtWNGnSxGZQRI8e3emlAd4NUvjaepQtW1bChg0rbqaZv9OnT5f69etLuHDhnF4OgAAQJkwY64U9e/ZsC/i6mWbM+aopaPkEAPAXGjjXZKqjR49KunTpZPPmzTa4EkDw0rmOtWrVssS/2LFjO70cAHDsWKitkEeNGmX3yAMHDpQvvviCfUYEpFANUqxatco+6gwHt9NNwsuXL0vDhg2dXgqAAFKvXj3LtNAgqdv5hn/5zg0AADhpwoQJdp9y5coVyZcvn2zatEnSpk3r9LIAT2rWrJl1JHjnnXf+9ffevn3bfi4ffgCA2504cUIKFCggS5YskUiRItk+48cff0xrSQSsUAtSXLhwQX799Vd7rj+EbqcZH3pBlTp1aqeXAiCAJEyY0KrR9BjkdpqpqtUhhw4dkmPHjjm9HABAgLp//7506tTJko80EaBGjRqyfPlya/UEIPjNnDlTduzYIX369Hmm36+/L2bMmEGPZMmShfgaASAk7dq1y1pL/vzzzxIvXjxL3NN5FEAgC7UghQ561d5q6dOnlwQJEoibHT9+3N5P3bp1nV4KgACtpvjll1/k999/FzfTHpvZsmWz5zoUDACA0Hbr1i1rOdO7d2973blzZ6tW1IxGAMFPE1Natmz5XD9nOrReuxj4HiS3AHCz7777zio2dW/x1VdflS1btkiuXLmcXhYQOEGKtWvX2seCBQuK2y1evNhmajAwG4ATtIorcuTIsnDhQnE73znBd44AACC0nDt3zs6pmtWtvZ+13dNnn31GmwUgBG3fvl3OnDljiSr6c6ePNWvWyPDhw+35vXv3/ufPRIwYUWLEiPHIAwDcaPTo0VKmTBmbRVGoUCHZuHGjpEqVyullAYEZpPBCq6dFixbZ+2DAFwAnRIkSRYoWLWrHIrfznRMIUgAAQtP+/fsld+7cVh2t7WM0q7F+/fpOLwvwvCJFilgb6J07dwY9smfPbhVN+lyTAQHAi60lP/30U2nSpIkFY+vUqSPff/89+4rAQ0JlXLxGCDVjwgtBCn0vK1aseOb+mQAQEnQuRePGjS0LNG7cuOJWWuaq9u7da1l18ePHd3pJAACPW79+vVSoUEHOnz8vKVKkkKVLl8rrr7/u9LKAgKDtPjNmzPjI56JGjWozYB7/PAB4wc2bNy0oMWfOHHvdo0cP6dKlC5WbgBOVFJs2bbJIYcqUKV0/5EqH6N2+fVvKlSvn9FIABDAtEdVsDN1YcbM4ceJIpkyZgjaNAAAISdraSTO5NUDx1ltvyebNmwlQAACAEKGJeG+//bYFKMKHDy9Tp06Vrl27EqAAnApSeK3V02uvvSZp0qRxeikAAljChAklR44ctHwCAOAZPHjwwCqha9SoIXfu3LFKitWrV9v5FMDz08S94KI/i0OHDg22vw8A/MG+fftsILYmRGhbJ016fu+995xeFuC3CFI8B60G0aHZVFEA8Ad6LNIe2sF5k+gEghQAgJB09+5dadSokXTs2NFet2nTxjIadcYTgGezbNkyqVu3rqROndqygfXnRwdYFyxYUD7//HM5ceKE00sEAL+xZs0ayZMnjxw6dMiOm9phRo+XABwMUty6dUu2bNniiSCFvo+zZ88SpADgF/RYpHNyNPvMzfLnz28fdVjipUuXnF4OAMBDLl++LKVKlZLx48dLmDBhZOTIkTJo0CCG8wLPaN68efLKK69IgwYNJFy4cNKuXTuZO3euDXwdN26cbbr9+OOPtgmnA2H1fhkAAtm0adOkaNGicvHixaBKivTp0zu9LMDvhfjg7J9++smyfLWUOm3atOJm2lZFB9TmzJnT6aUAgA0X1IGfemwqXry4uFWiRIkkXbp0sn//ftmwYYOULl3a6SUBADzgyJEjdk757bffbDDvrFmzOMcAz6l///4yZMgQKVmypAX6Hle1alX7+Ndff8mIESNsc65169YOrBQAnG8t2bNnT+nevbu9rlKlikyePFkiR47s9NIAVwgTmq2e3D4YZuHChTaslswrAP5Aj6laTaHHJr0gcjNaPgWvUaNGScqUKSVSpEgWWNeEgX+iFSzNmjWzgFHEiBEtY9LtQ9kBBLZt27ZZ9qIGKPTYtm7dOgIUwAvQFiX6s/OkAMXDkiRJIn379iVAASAg6byrevXqBQUotOps5syZBCgAfwpSaFmTypcvn7jZn3/+KXv27KHVEwC/osekY8eOya5du8TNfOcI3zkDL04zhbXferdu3WTHjh2SJUsWq7Q5c+bMUy+otRz58OHD1qP9999/l7Fjx9pmAwC40YIFC6wFzalTpyRTpkzWsvWNN95welkAAMCDtK2T3m9NmTLFkppHjx5tQdt/C+4CCOV2T7/++qt9zJo1q7iZtlOJECGCbeQAgD9VIOjQQj1Gufk461u7njO0KsTtlXdOGjx4sA2IrV+/vr3+6quvZMmSJTJhwgRp3779//x+/fyFCxdk48aNNghTaRUGALjRsGHDLJNbzyW6YfDNN9/YeRLAi9HEh+e5BgGAQHLw4EGrNtu3b59Ejx5dZs+e7epWzIBngxQ6qO7o0aNBvdPdTNupFClSRKJFi+b0UgAgiAZPS5QoYceoLl26iFu99tprlnWiWSgnTpwgi/8FaVXE9u3bpUOHDkGf0wyed955x9o1PIl+7+TOndvaPWn2cbx48aRmzZpWovy09oY6a0ofPleuXAmBdwMAz+7evXsWnNCe+Kpx48Y2JFsH/QJ4cT///PMjr7VK8++//w4aAvvHH3/Y9cKbb77p0AoBwBlaqVm2bFk5e/asJE2a1BLDMmfO7PSyANcK0dqj3bt320f9YY0dO7a4lW6aaZ90PfgAgL/RY5P23tbNfbfyzUF4uAIPz+/cuXO2UZcgQYJHPq+vte3J07J/tM2T/jmdQ6HBrkGDBkmvXr2e+u/06dNHYsaMGfRIlixZsL8XAHhW165dk3fffTcoQKGDfr/88ksCFEAwWLVqVdBDrzm1ldrx48ctWKEPbTtauHBhZr4ACCjffvutFCpUyAIU2lJSAxYEKAA/DlL88ssv9lF7wbrZypUrbfNGh2YDgL8pVaqUtUf64YcfxM185wrfuQOh4/79+xI/fnwZM2aMZUFWq1ZNOnXqZG2inkYrNbRa0vfQDQoAcIIG6HXTVNseRooUydosfPLJJ7QNBEKAJjFoosLDCYj6XBMb9NcAwOu0neTAgQOlSpUqcuvWLdsn1KTmxIkTO700wPVCNEjhy4Z1e5BCM5S19QiZogD8UZw4cazkXo9VbubLPKGS4sXFjRvXWi6cPn36kc/r64QJEz7xzyRKlMiqWB5u7aTtt7TyQttHPa3yRXu8P/wAgNCm54tcuXJZNre2qtPEosqVKzu9LMCztL2jZg0/Tj939epVR9YEAKFFW901bdrUkiE0WKHtcufPn09beMBNQQq3lzxpf+9s2bI5vQwAeCo9Rumxys18AW2CFP9tRolWQ6xYseKRSgl9rXMnniRv3rxy4MAB+30+2l9agxf69wGAP9LqQT1+aSWXBuo3b9781OMcgOChbdXq168vc+fOtZZP+tCWJw0bNpSKFSs6vTwACDEaiC1XrpxVm2u15pAhQ6zN5NNm+AHwoyCFRhW9UEmh70M3/hgEBsCf6TFq165dlt3hVr5zxd69e+Xu3btOL8e12rRpI2PHjpXJkyfb1/LDDz+U69ev26aCqlOnziODtfXXL1y4IC1btrTghA586927t2UGAYA/0mOctjrUDQNt9bRx40ZJnTq108sCPE8350qWLCk1a9aUFClS2EOflyhRQr744gunlwcAIeKvv/6S/Pnzy7JlyyRy5MgWqG3VqhWtJYFgFmLT5DSrQvtU68C6V199VdzqyJEjtnlDkAKAP9Nj1M2bN21T2q2BYb3R1VJZHYC6f/9+ef31151ekivpTAltu9C1a1dr2ZQ1a1b57rvvgoZpHz16VMKE+X85CtrK8Pvvv5fWrVtb5aO2N9SARbt27Rx8FwDwv7Tiq2PHjtKvXz97Xbt2bRk3bhxVX0AoiRIligUjBgwYIH/++ad9Lk2aNBI1alSnlwYAIWLnzp1SunRpm4Gl91M6A+utt95yelmAJ4VYkMJXRaHl126+cfC1TyFIAcCfvfHGG0HHLLcGKXTjPGPGjNayQ88hBCleXPPmze3xJKtXr/6fz2mLFP26A4C/0kB8vXr15JtvvrHX3bp1swdZjEDo06CE21s6A8C/Wbp0qVStWtWq0vXeVCvOU6ZM6fSyAM8KsSDFL7/8Yh/dulnmoxt+2pdbHwDgr3RwsQ4/1mOWbuK4lZ4zdLNczyFaEQAAgFaHlS9fXjZt2iThw4e36gltXQcg9G3bts2ChVqZeefOnUd+TVugAIAXaNXYRx99ZFWcRYoUkTlz5kisWLGcXhbgaSE2k8JLQ7OpogDgBnqscvvwbN85g+HZAACls3Jy5cplAQrdHNCB2QQoAGfMnDlT8uTJY+1F582bZzPEfvvtN1m5cqXEjBnT6eUBwH+mQYm2bdvafD59rnP9tKKCAAXggSCFmyspGJoNwE30WKU9M70wPJsgBQBg7dq1FqA4ePCgpEqVygZkFypUyOllAQGrd+/eMmTIEOvJri2dhw0bJvv27bN2KMmTJ3d6eQDwn9y4cUMqV64sgwYNste9evWS8ePHu7qFPSCBHqTQzX29mVDafsSttIT1/PnzBCkAuGp4tt4supXvnKHHXzcHWwAA/8306dOlaNGicvHiRcmZM6e1AnzttdecXhYQ0HRYtg6QVbppp33adS5M69atZcyYMU4vDwBe2OnTp6Vw4cJWJabHN70O6dSpE7OvALcHKS5fvmwXLCpp0qTiVgzNBuDW4dlulSBBAgkXLpyV1p48edLp5QAAQpkmO2nm4nvvvWf97itVqmStZOLHj+/00oCAFzt2bLl69ao9T5IkiezevdueX7p0yTKQAcCNtIWdVm7+9NNPEidOHPnxxx+lZs2aTi8LCDghEqQ4fvy4fdQf7ihRoohb7dixQxImTCiJEyd2eikA8K+0F3C6dOns2OVWYcKEsZveh88lAIDAoEGJBg0aSJcuXey19oTWAb1uvp8AvKRAgQKyfPlye16lShVp2bKlNGrUSGrUqGGDZQHAbVatWmWzdg4fPixp06a1GVj58+d3ellAQAoXEn/psWPH7GOyZMnEzTQbOVu2bE4vAwCemR6z3FxJ4Tt3HDlyxM4luXPndno5AIBQoJnYvqoJDViPGjVKmjRp4vSyADxk5MiRcuvWLXuubVDChw9vs2L0Z7dz585OLw8AnsvkyZPl/ffftzbDGqhYsGCBxI0b1+llAQErRIMUbm715Buazc0RADfR9nQ6zPDevXsSNmxYcSPfucN3LgEAeNuhQ4esz722W4gWLZpVT5QsWdLpZQF4iG7iLV68WIoXL26vNZjYvn17p5cFAC+039etWzf57LPP7HW1atVk0qRJEilSJKeXBgS0EG335OZKCn0PZ8+eZR4FAFfRY5b2BP7999/FrXznDto9AYD3bdmyxfpAa4BC2/2tX7+eAAXgh3RmmCbw+SopAMCNbt++bXOvfAGKjh07yowZMwhQAF4NUnihkmLfvn32MVOmTE4vBQCeme+Y5TuGuRGVFAAQGObNmyeFChWSM2fOSNasWS1gkSVLFqeXBeApcuTIITt37nR6GQDwQi5cuCDFihWzoIR2HRg3bpx8/vnnVhkGwKPtnrxQSXHy5En7yNBsAG6iPTS1P7DvGOZGVFIAgPfbLAwePFg++eQTe66VE7NmzZLo0aM7vTQA/6Bp06bSpk0bSyTR6t2oUaM+8uuZM2d2bG0A8E8OHDhgrSX/+OMPiREjhsyZM0eKFi3q9LIAPISZFE9x4sQJiR07NiVfAFzlpZdekkSJEtkxzK2opAAAb/e1b9GihXz55ZdBm57Dhg2zVjIA/Fv16tXto/4MP3ztqcFG/agz0QDA32zcuFHKly8v586dk+TJk8uSJUskY8aMTi8LwGOC/W5AL1C8UkmhG30A4DZ67PJCJYW+h7t371plCADA/a5du2bDKZcuXWobmgMHDpTWrVvbcwDuGHIPAG4ye/ZsqV27ts2i0AqwRYsWsdcHBEqQ4tKlS3L9+nV7rsPv3IogBQC3cnuQIn78+BaY0ACFvg/NdgEAuNtff/0lZcqUsX72kSNHlmnTpknFihWdXhaA55AiRQqnlwAAz5xA3b9/f2nfvr29LleunM2ieLxNHQD/EezTYXxVFC+//LJEiRJF3EpbpRCkAOBGbm/3pIPLfEFu5lIAgPvt2rVLcubMaQEKDUSvXr2aAAXgEps3b37m33vjxg357bffQnQ9APBvNNmtcePGQQEKbVE3d+5cAhRAoAUpNEvK7VUUSrN3GZoNwI302OXmSoqH51IQpAAAd1u2bJnky5fP7hFee+012/DMkSOH08sC8Iy0TUrx4sWtZYqvY8Lj9uzZIx07dpQ0adLI9u3bQ32NAOBz5coVq9wcO3asJb/p3Ct9hA0b1umlAQjtdk+XL1+2j3HixBE3l4XR7gmAW+mx6+zZs66e5xA7duygi0wAgDuNHj1amjVrZsN0CxcuLN9++23Q8R2AO2gAQgfdd+7cWWrWrCmvvPKKJcREihRJLl68KPv27bN5M++++6788MMPkilTJqeXDCBAHTt2TEqXLi2//vqrdXaZOXOmlC1b1ullAXAqSHH16lX7GD16dHEr3RS7efMmQQoAruQ7dp0+fTqoIsFtfOcQ3zkFAOAe9+/ftxYLAwYMsNd169aVMWPGSIQIEZxeGoDnpAkv2ipFH9u2bZP169fLkSNH7H45S5Ys0rp1awtCujlJEYD77dixwyooNOE4YcKEsnjxYhuUDSCAgxSaRaGiRYsmbuXr5U6QAoAb+Y5deixza5DCdw7xnVMAAO6gG5faHkarJlTPnj0tA/ull15yemkA/qPs2bPbAwD8iQYkqlevbi3pMmbMKEuWLJHkyZM7vSwAz4kgxRP4erkzkwKAG/mOXW6eS0GQAgDc58yZM1KuXDnZsmWLVU1MmDBBatWq5fSyAACAR40YMUJatWplVZxFixa1+TkxY8Z0elkA/GFwtpeCFFRSAHCjePHi2WAwghQAgNCifelz5cplAQqdO7F8+XICFAAAIETovCttN6et6DRA8f7771sFBQEKwL1CLEjh5pkU2iJF1x81alSnlwIAzy1MmDCSIEGCoNZ1buQ7h3g9SFGnTp1H5m7s2rXLBp4DgJusXr1acufOLYcOHZLUqVPLpk2bpECBAk4vCwAAeJC2dapUqZIMHTrUXvfp08dmX+kMHQDuFexBCt9mi9srKaiiAOBmegzzQiWF1wdnT58+3fq3++TPn1+OHTvm6JoA4HlMnTpVihUrJpcuXbJAxebNmyV9+vROLwsAAHjQqVOnpFChQrJgwQKJGDGifP3119K+fXtmXwEeQLunJyBIAcDtvBKk8HolxYMHD/7xNQD4Kz1ede/e3SrCtAKsatWqsnLlSms5CMD7bt265fQSAASY3377TXLmzCnbtm2Tl19+WVasWGEDswF4A0GKJ7h48aId8ADArfQYduHCBXGrQAlSAIAb3blzR+rWrSs9evSw15rBqJmMkSJFcnppAEKQ9n3/7LPPJEmSJHatdvDgQft8ly5dZPz48U4vD4CH/fjjj5InTx45evSopEuXzio38+bN6/SyAAQjZlI8wd9//00vOwCupscwHSbmVoEyk0Lt2bNHfvnlF3toZrIOn/W99j0AwJ+SeYoXL25tnsKGDWs9oLUXtM5DAuBtvXr1kkmTJkn//v0lQoQIQZ/PmDGjjBs3ztG1AfCuCRMmSMmSJeXKlSvWHldnX6VNm9bpZQEIZuGC+y/0wkwKLVkPFy7YvzQAEGr0GObmAcyBMpNCFSlS5JE2T2XKlLGP2ldVP68f3RxwAuAdmjVdqlQp+f333y2YPGfOHJtHASAwTJkyxQKTeu3SpEmToM9nyZLFkiwAILirt7RSq3fv3va6Zs2aFrDQWRQAvId2T0+ppAjpIMWXX34pmTNnlhgxYthDBw0uW7bsuf8eLbN/7733rK3LRx99ZIMKI0eOLMmTJ5cWLVrI5cuXQ2T9+O902JNmIsH91qxZI8mSJbPnmk361ltv2eZN/PjxpUKFCraZE9r0GKbHMrcKlHZPhw4dsk0//fj4w/d5XysFAHCStlXIlSuXndP0nLdhwwYCFECA+euvv56YvawbiW5OjgHgn3NvatWqFRSg0GDFtGnTCFAAHhbsO/E3btywj7pR7lah0e4padKk0rdvX+ulp5mykydPlvLly8vPP/8sGTJkeOa/Z8GCBdYH+MSJE/YYOHCgvP7663LkyBHLbtHPaZYbgJCjP4dly5YNClg0a9bMAhV6LOnYsaNt4mhLn6hRo4bamvQY5uYgRZQoUR45p3hVihQpnF4CAPwrvZasXbu2bRi88cYbsnjxYkmcOLHTywIQyvQ+c926df9z/aLHCD02AEBwOHfunCX7aUKEJt9pBVf9+vWdXhYAtwUptDeterh1hduERiWFb0PT5/PPP7fqCs1S0w1O3eh8km7dukn37t3t+bFjx+S3336TEiVKWDXGt99+G/T70qRJY3+nVlmExvsBvEh/1nxDQR9XsGBBWb16tT1fuHChjBw50p5/9913j/w+rZbRiort27dLgQIFJLS4vZJCM/IePqd43f79+y3YdfjwYWvvlCpVKrswT506tdNLAxDA9Hp+wIAB0q5du6B2dDog280V0wBeXNeuXaVu3bpWUaHXanPnzrXqKm0DpcFLAAiO+yJtLXngwAGJGTOm7XNpizkA3hfsO9e+zXA3b46F9kwK7TU+e/ZsuX79urV9evfdd20zU4MPbdu2td9TsWJFG0jme+3bGNWWQRqgeBJt9aS/RoACeDH686bVSLt377abMKXVShqI8L3WQOGZM2fk7bfffuLf4Wu5FidOnFBcuftnUvjOIYFw/NIWYXrTrzf7GtDSTcGzZ89alZyWNz983AeA0DwON2/eXEaPHm2v9fnQoUMDJngM4H9p5f+iRYukZ8+eViGs1y/ZsmWzzxUtWtTp5QFwufXr11ui1vnz561ia8mSJc/VaQSAuxGkeILQqjz49ddfLSihpfOakTZv3jwroVX67+vnEiZMaK8jRIhg7U8ezlzTrFu9UHxaedxnn30mH3zwQYi/Dzwb3Wz09VNUN2/etMoZven30ZZAOk8E/kF/3vTnTn/+fD+L+jn9+fQFHfTnsHjx4vZ7Hqebzq1atZK8efNakDE0ub2SIlCCFKtWrZLOnTtbj9WWLVtK7Nix7fM6Z0g3AzVQkSNHjlCtwgGAK1euSLVq1Swor9VdQ4YMsWMUAOTPn1+WL1/u9DIAeMzMmTOtUuvOnTvWOlmTcn334AACA0GKJ9AMMV+rkZCkQ6537txpmdbax1MPyNrmyReo+LebR/2948ePf+KvlS5d2v4eX2soOE9nhFStWjXotQ6BqlSpklXJ+NDf2X00SPFwoOlh2rpNqzA0IyS06THMzdmugRKk+Oqrr+T999//n2O1BsE0S/HUqVPWCpAgBYDQcvz4cbuO/OWXX2zG3IwZMyyrEQAAILhpFbnOa9VZjkqvOaZPnx40oxBA4CBI4WAGsmZep02b1p6/+eabsnXrVhk2bFhQWf0/WbZsmQUhkiVL9sjnr169am2iokePbpUZIT0AHM9ONx0fbvmjN/7a2sX3PQD3OXnypA27182cx2ngQnvzrl27VpImTRrqa3P7LJpACVL89NNPMnXq1Kf+ug6qrVOnTqiuCUDg0nOazp3QVocJEiSw81j27NmdXhYAB2mVp1ZUPQutBAWAZ6XtiT/88MOg5Ns2bdpI//79XZ1sB+DFEaTwo17umvl8+/btJ/7a4xeGT2r1pBUU2nYmYsSIVhoXKVKkEF0vEIge/lnU/rt58uR5JPikmSAfffSRBQl1sLYOQA6E2TrBLVCCFKdPn5aUKVM+9df1+0erKQAgpGnfZ23xpDPSNBFm6dKl1g8aQGDT9pMAENwuXboklStXlhUrVkiYMGFk+PDh1okAQOAiSOFQJUWHDh2kZMmSNn9Aqx+0lF43NL///vsn/n6tjNi3b58N6NUNUa2keHiYqgYoihUrJjdu3JBp06bZa32oePHiEYkGgon+LOqm8R9//GHBwHLlyj3y63phpT/PGkj0/V4VM2ZMq54JLVRSuIPOJHrSPBMfrYbTvqwAEJJGjRolLVq0sISZd955R2bPni2xYsVyelkA/IC2JAaA4HTkyBEpVaqUzeSMGjWqzJo164ndCQAEFoIUT9kUCun1a7BBW3houxjdvMycObMFKIoWLfrE31+lShWbadCgQQNp3bq1De/Nli1b0K/v2LFDtmzZYs8fbx906NChf8zUhTM0KAX30WolLUHVmTJarfR4dpnOD1CFChV65PMTJ06UevXqhdo69Rjm5nZvgRKkUOPGjbNj+pNoEBsAQsq9e/fkk08+scHYSq8zdVaOm88fAIKXJr7FiBEj6Pk/8f0+AHiabdu2WWtJrSjXmZzaWvKNN95welkA/ABBCocqKZ408PphOlD78b7k+lCa6Va2bNlHfl03RLXNDIDg9XgQIkOGDFYdMXfuXOncufP/BAX95eeQSgp30Gq6sWPH/uvvAYDgptW3tWrVkvnz59vrzz//3Cp9n7X3PIDAmUmhiXU6S08rrJ50jNDrX/28Bj6fhSb16OPw4cNB19ddu3a1TgMAvEu7DdSoUUNu3rxpibraatKJ+Y0A/BNBCj+aSfGsMmbMKLlz53Z6GUBA08z3fv36ib9iJoU7+G7OASA0afaiJrxs3brVWs5NmjTJNg0A4HErV64Mmr+2atWqYPk7dVOyb9++ki5dOgtwTJ482eYt/vzzzxawAOA9w4YNs64g+jOv3Qm++eYbqq8APIIgxRNEiRLFhgb6qw8++MDpJQABT2fA+DM9hoXmDIzgFihBCr3xb968uWzevPl/LtIvX75sg9m19Ur+/PkdWyMAb9H+z9oHWvtB68ajZjXmy5fP6WUB8FMFCxYMep4qVSpJlizZ/1RT6KbjsWPHnvnvfLwrgFZyaWWFXg89KUhx+/Zte/j8W9spAP5DK6w0ODFixAh73bhxYxk5cqTn7/MAPL8wEsy8EKRImDChlbQCgFvpMSxRokTiVoESpNB2Yo0aNXpiFpHOK9KL+MGDBzuyNgDeDIxq8FMDFNquUDcECVAAeFYapDh79uz/fP7ChQv2ay+6gTlz5kxLsHlat4A+ffrYdZHvoYESAP7v2rVr8u677wYFKHS2owYkvX6PB8BPghQRI0YM6nPrVjq8hyAFADfTY5gey9xK+5Q+fE7xql27dkmJEiX+sWJn+/btobomAN6kLZ20vYJWaeXNm1c2bdpkrVYA4Fn5Zk88aSMyUqRIz/V3/frrr9Y+Va/1mjRpIvPmzZPXX3/9ib9X5+Xoscv3eJ6qDQDOOHHihFViLVq0yI4Ps2fPlk8++YTZVwCeKtjDl3HjxrWP58+fF7fS7OMzZ864fvAsgMC9gXR7JcW5c+ceOad4uS98+PDhn/rreg56UsYiADzPOUEH0vbq1cteV69eXSZOnPjcG4oAAlebNm3so24udunSxdojP1wJsWXLFsmaNetz/Z3p06eXnTt3WtBhzpw5UrduXVmzZs0TAxUayPB64grgJRqELF26tAUU48WLZ60lmasKwLEghW+DyY10Y09v6HTzKEmSJE4vBwCey9WrV61kniCF/9NzzO7du63typP88ssvrv5/BOAs7eHeoEEDmTFjhr3u2LGjfPbZZxImTLAXUwPwMB1orfQeWTcfI0SIEPRr+jxLlizStm3b5/o79c/5rn/efPNN2bp1qw3WHT16dDCvHkBo+v7776VKlSp2T6rByKVLl0rq1KmdXhaAQA5SuDnz07chpJnIBCkAuI2vXZ2bN7d95xCvByl0eK1mJGrLp8ezmrXlVbdu3aRMmTKOrQ+Ae2lVs/aBXrdunVVl6cafBiwA4HmtWrXKPtavX98CCU+apfVf3b9//5Hh2ADcZ8yYMdK0aVOrsNJWT3PnzpU4ceI4vSwAgRqk0FIut1dS+Pq4M5cCgBv5jl1unknhO4f4zile1blzZ7t4f+WVV6R58+aWbaT27dsno0aNsgv8Tp06Ob1MAC5z4MABC4Lu37/fNhO//fZbeeedd5xeFgCX01ZxwUFnTJQsWVKSJ09u2dZa7bV69WrLwAbgPhpk1J9rHYytateuLePGjXuk6goA/g2VFE8QP358K4MnSAHAjaikcI8ECRLIxo0b5cMPP7QLe22j4Ov5rANuNVChvwcAnpUeU8qVK2eVFLoBuGTJEsmYMaPTywLgAdpOtG/fvrJixQqb4agbkw87ePDgM/09+mfr1Klj16wxY8aUzJkzW4CiaNGiIbRyACFFq791powOxlZaCa4PBmQDeF7MpHiCsGHDWqDixIkTTi8FAJ6bHruiRo0q0aNHF7cKlJkUKkWKFNar9eLFi5b9rIGKdOnSSezYsZ1eGgCXmTVrlm0UaMuU7Nmzy6JFiyRhwoROLwuAR7z//vs23FqzpDUZ5kU3IcePHx/sawPgTGJZ+fLlZdOmTRI+fHirntAAJAC8CNo9PYW2SaGSAoAb6bHLza2eAqnd08M0KPHWW285vQwALqTBzX79+llFltINg+nTp1vAGgCCy7Jly6w6K2/evE4vBYDD/vjjD2vbphVUsWLFknnz5kmhQoWcXhYAFwsT3H+hL+v12rVrcuvWLXErzQwhSAHAjfTY5eZWT7rZFkiVFADwX9y9e1c++OCDoABFq1atbAYFAQoAIZFQwRBcAGvXrpVcuXJZgCJVqlTWapIABQC/C1JoT8lw4cK5vpqCIAUAt3J7kOLKlSu26aYIUgDA012+fFlKly5t7RV0ntrw4cNlyJAh1roUAILbZ599Jl27dpUbN244vRQADtFKTZ0fo61qc+bMKZs3b5bXXnvN6WUB8IBgb/ekfSl1U+nUqVPWny5p0qTiRrrBpz3CAcCNMymyZMkibh+arVnAkSNHdno5AOCXjh49agGK3bt3S5QoUWweRZkyZZxeFgAPGzRokPz555+SIEECSZkypfWgf9iOHTscWxuAkK92//zzz6VLly72ulKlSjJ16lTu1wD4b5BC+YIUbq6k0H7up0+flnv37pGNBsBV3D6TglZPAPDPdCNQAxK+yrnFixdLtmzZnF4WAI+rUKGC00sA4IA7d+5I48aNZdKkSfb6k08+kb59+1oVJwD4fZDi4WxYN9IbPg1Q6GaZZooAgBto+b22S3JzuyeCFADwdIsWLZLq1avb8T5Tpkw2xDZZsmROLwtAAOjWrZvTSwAQyi5dumRVEytXrrQE3lGjRlnAAgCCW4iEPX0ZvMeOHRO30vJVdeDAAaeXAgDPzHfMSpEihbi5hYlyc6AFAELCiBEjLJNZAxTFihWT9evXE6AAAAAh4tChQ5InTx4LUESLFs0qNwlQAHBVkCJt2rSu3+DXwT8RIkSQ7du3O70UAHhmeszS2UBZs2YVt/KdO9KlS+f0UgDAL2h1b8uWLaVFixZy//59adSokW0UxIgRw+mlAQiwY9HAgQMlR44ckjBhQokTJ84jDwDesWXLFsmVK5fs3btXkiRJYokRJUqUcHpZADwsRIIUvo2l/fv3i1tpgCJz5swEKQC4ih6zXnnlFYkePbq4le/cQZACAESuX78uFStWlOHDh9tr7QE9evTo/xlYCwAhrUePHjJ48GCpVq2aXL58Wdq0aWPHJ+1L3717d6eXByCYzJs3TwoVKiRnzpyx5DcNWGTJksXpZQHwOIIU/+DNN98kSAHAVfSYpccuNyNIAQD/Px2MXbBgQVm4cKFEjBhRZs2aJe3atbOKOQAIbdOnT5exY8fKxx9/LOHChZMaNWrIuHHjpGvXrrJ582anlwfgP3rw4IEMGjTIZlDcunVLSpUqJWvXrrVKCgBwdZDixIkTlv3lVrrRp6Vtbn4PAALH33//Lbt27XJ1kELfw8GDB+05QQoAgWz37t3WZkGDz3HjxrV+0FWrVnV6WQAC2KlTpyRTpkz2XPvTazWFKlOmjCxZssTh1QH4r/dhzZo1k7Zt21qwomnTprJgwQJXV+gDcJcQCVI83JPSzXMpdKNP+/7+8ssvTi8FAP7Vvn375ObNm64OUujQ7Lt371rGMMNgAQSqH3/8UfLmzWvHRG3hpxnKOrgSAJyUNGlSq/BSadKkkR9++MGeb9261a7dALjTtWvXpHz58vLll19ataZWU4wcOdIqpgDA1UGKhzNg3RykyJgxo/X7peUTADfwHaveeOMNcSvfOUNvfLW/MQAEmgkTJkjJkiXlypUrUqBAAdm0aZMdEwHAae+++66sWLHCnn/00UfSpUsXu++vU6eONGjQwOnlAXgBf/31l+TPn1+WLl0qkSNHlm+//dbmzdBaEkBoC7GwqF6s6HAdtw/P1nJWghQA3ECPVXrsjREjhrgV8ygABCqt3u3cubP06dPHXteqVUvGjx9PdjIAv9G3b9+g5zo8O3ny5BZI1eu2smXLOro2AM9PWwWXLl3aAhXx48eXRYsWSY4cOZxeFoAAFWJBirRp09pHNwcplLZNYQgYADfw0tBs3zkEAAKBDqesV6+eDcZWOoS2e/fuZDEC8Gu5c+e2BwD3WbZsmc260lZPr732mlVSpEyZ0ullAQhgIVpJ4ZUghZbda593LX0DAH9079492blzp5XhuxmVFAACzblz56wP9MaNG63387hx46Ru3bpOLwsA/seUKVP+8de17RMA//fVV19J8+bN7R7y7bffthZPsWLFcnpZAAJciAcp3DyTwhek0AO3lsHlypXL6eUAwFOHZt+4ccP1lRS+cwZBCgCBQAOzpUqVsmNfzJgxZe7cubZZAAD+qGXLlo+8vnv3rl1/apvkKFGiEKQAXNBasl27djJw4EB7rVWco0ePtp9hAPD84OyTJ09a+Zhb6UwKhmcD8He+Y1S2bNnErf7++285ePCgPSdIAcDr1q1bZwkwGqBIkSKFVVIQoADgzy5evPjIQ+/zf//9d8mXL598/fXXTi8PwD/Q7iDa3skXoOjZs6d1DSFAAcDzQQotFYsbN649/+OPP8StdFhhxowZCVIA8Gt6jNI5DpqJ61aHDx+2QEWkSJEkSZIkTi8HAELMjBkz5J133pELFy7YgMotW7bI66+/7vSyAOC5aWKJDtR+vMoCgP84c+aMFC5c2No6aVBi2rRp0qVLF2ZfAQiMIIXKnDmzfdyxY4e4mbZPIUgBwJ95YWi27zirFWxhwoTo6cnzRo0aZYPvNOCTM2dO+emnn57pz82cOdNuVipUqBDiawQC0YMHD+Tzzz+XWrVqyZ07d2yO0KpVqyRBggROLw0AXpjO0zlx4oTTywDwBHv37rXKTU2IiB07tixfvtyuQwAgYGZSKM0MW7lypW2OvP/+++JWuvE3ceJE67epvTYBwJ9o9YEOzdbBq27m20jXcwde3KxZs6RNmzY2EE8DFEOHDpXixYtbO4b48eP/YyVL27ZtJX/+/KG6XiBQaO/2Jk2aWGsF9fHHH0u/fv0kbNiwTi8NAJ7JwoUL/yfwqu2dR44cKXnz5nVsXQCebPXq1ZYQcenSJUmdOrUsXbpU0qdP7/SyACD0gxRvvfWWfdy6dau4WYECBWx4th7gdbghAPiTTZs2yfXr1+1Y5Wa+c4Xv3IEXM3jwYGnUqJHUr1/fXmuwYsmSJbYx2r59+yf+GT3HaUZVjx49rE++3sj8k9u3b9vD58qVK8H8LgBv0Z+pypUry4oVK6xSbMSIEdK0aVOnlwUAz+XxSkutvowXL57N0xk0aJBj6wLwv6ZMmWLJwpokkTt3blmwYIH9vAKAvwrRfhq+bNhff/3VqhDc6rXXXpM0adL8T+YIAPgDPTZpqxA3b+5rNYiv3ROVFC9O28fo11F73fvohqi+1mDW0+jgPK2yaNiw4TP9O3369LH5J75HsmTJgmX9gBdplZJmGGuAImrUqLJo0SICFABc6f79+488NMnh1KlTNmcnUaJETi8PwP9VOHXv3l3q1q1rAQodlq0dTghQAAjoIIUOPtWLFb140VYkbqUZImXLlrWbSj3gA4A/0WNTmTJlXD3HQXulajA7evTolCD/B+fOnbNz7uP97fW1biI8yfr162X8+PEyduzYZ/53OnToIJcvXw56HDt27D+vHfAirRDTPtB79uyRxIkT288bVbkAvHC9QRUl4H+00lmDE1odrbSK+uuvv7Y5dQDg78KE9Oa+L7P3WYd2+qty5crZMDC3DwEH4C06Z0AfeoxyM985Inv27K4OtrjN1atXpXbt2hagiBs37jP/uYgRI0qMGDEeeQB41Pz586VgwYJy+vRpyZIliw2szJo1q9PLAoAXblvXrFkzu17Q5AcdwJswYUJLXHBz1wTAKy5cuGBz6KZOnWrzrsaMGWPVz9xbAXCLEJ1J4Wvboa1I3D6XIl++fBIrVix7LzpIGwD8pYpCM2Mebu/jRr5zBK2e/hvdONCbEt0UfZi+1o2Ex/3555/WikarBX20fYMKFy6cBcC03SGAZ6dVtzqwXgdj6/MSJUrIN998Y5ViAODWzU/taf/XX3/ZDCtth6y0Skxn7CxfvtwqxX755RfZvHmztGjRwuklAwHl4MGDVqmp1+56vTFnzhwpVqyY08sCgOcS4iFVr1RShA8fXkqWLGkbggDgL/SYpAGKKFGiiJv5zhFunqvhDyJEiGCBdO19/3DQQV/r5sLjXn31VZsbpS0ZfQ+tyilcuLA9Z9YE8PzzdT766CNp06aNBSiaNGlix2kCFADcTGdX6TWGJjeMHj1aWrVqZQ/N1D5w4IDNxNLKzKJFi9qsKgChRwOD2lpSAxR67b5hwwYCFABcKcQrKbR1h9KLF83AiBMnjriVbtxoPz/tvc3GDQCnnT9/3rLWvvrqK3Gzmzdv2ka5opLiv9PNUe1Fq+df/XpqRvf169elfv369ut16tSxmVFa/q1VOBkzZnzkz2vVoHr88wD+2bVr16RGjRqyePFia3k6YMAA+3nU5wDg9vZ1Gpx4fOaV0krN/v37WxZ3t27d7BoEQOjQigkNEN66dUuyZctmiRE6AwsA3CjEKyk0KJE2bVp7vm3bNnEzLdfX9hdUUwDwB0uXLrUseR2a7Waasa/Zx3rjmzRpUqeX43rVqlWTgQMHSteuXa3/vX59v/vuu6CNhaNHj8rJkyedXibgKTq3rECBAhag0ODf7Nmzrd0TAQoAXqDXDRkyZHjqr2tig/a91yAFgJCn1ZoaHKxSpYoFKPR+cM2aNQQoALhaqEzQ8WXGun0uhWaX6g0oQQoA/kCPRdoeKVGiROKVeRRs6AWP5s2by5EjR+T27ds2rDdnzpxBv7Z69WqZNGnSU/+s/ppmTAJ4NloJpj9jP//8s8SLF09WrVollSpVcnpZABCsM690htXTHDp0SOLHjx+qawIClSZ3ffjhh9KuXbug6369do8WLZrTSwMA/w9SeGUuha/l08qVK+Xq1atOLwVAANPNZ82O12OS2zGPAoBbff/995I3b145fvy4zXjx9YUGAC8pXry4dOrUyWZPPOmatEuXLtZ1AEDIunLlipQtW9bar2lyl7Z11eH1YcOGdXppAOD/MymU72ZNe6ffu3fP1QdQPSHokLAffviBLDkAjtFyXg2Wuj1IoaXK69ats+cPZ/sDgL8bO3asZTLqtW2hQoVk7ty5Ejt2bKeXBQAhMjhbZ12lS5dOmjVrZkFZvYbbu3evfPHFFxaomDJlitPLBDxNEyJKly4tv/zyi0SJEkVmzJgh5cuXd3pZAOCuSgq9oIkRI4YNzt6xY4e4WerUqa0fJy2fADhJj0HJkyeXTJkyiZv9/vvvNiMhYsSIki9fPqeXAwD/SmcBtW/fXj744AMLUOgweq2oIEABwKt0ZtimTZvk9ddflw4dOkiFChXk3XffteoK/dyGDRvsuhRAyNCWkprQpQEKHVavCWsEKAB4TagEKXTYdJEiRey53sS5nWYuL1myxG5MASC0aebawoUL7Vjk9hkOvnNC/vz5LSMIAPzZzZs3pXr16tKvXz973b17d5vjEiFCBKeXBgAhKlWqVLJs2TI5d+6ctbbTx9mzZ639aNq0aZ1eHuBZuvek90onTpywhFn92dNEYADwmlAJUvj6WHopSOG7OAMAJ4a0avWB21s9PXxO8J0jAMBf6WacJt3Mnj1bwocPL1OnTpVu3bq5PlgMAM9Dq8Zy5Mhhjzhx4ji9HMDTRo0aZfd8169fl3feeceqllKkSOH0sgDAG0EKLRO9fPmyuJlekCVKlEi+/vprp5cCIADNnDlTYsaMKQULFhQ3u3XrlqxevdqeE6QA4O+t6XTGml7H6gbd8uXL5b333nN6WQAAwIO0a0ebNm2kefPm1mayYcOGsnTpUrsHBACvCrUgRcqUKeWVV16xg+3KlSvFzcKECSP16tWTadOmyY0bN5xeDoAAcvfuXZk4caLUrl3b9e1F1q9fb61TNOibMWNGp5cDAE+kfZ9z584tBw8etHYnGzdudH2QGAAA+CfdY6pcubIMGTLEXn/++ecyduxYq+IEAC8LtSCFKlasmH384YcfxO00kq0VIXPmzHF6KQACyOLFi+XUqVPSqFEjcTvfuUDPDbRLAeCPNCGlaNGicvHiRauk0Fafr776qtPLAgAAHnT69GkpVKiQzJ8/3xLSZsyYIR07duReCUBACNUgxcNzKXTwq5ulSZPG+hJrRBsAQosec7TlXObMmcXtmEcBwF/pdWrPnj2tak0r2DSjUSuB48eP7/TSAACAB+3Zs0dy5swpW7dulZdffllWrFghNWrUcHpZAODNIIVGhLVE7dChQ3LgwAFxO81k1nYle/fudXopAAKADsv+7rvvPFFFcfLkSfnll18sK0izlAHAX9y5c0fq169vQ7HVp59+KrNmzZLIkSM7vTQAAOBBmgiRJ08eOXLkiKRLl85mYOXLl8/pZQGAd4MU0aJFCzrQ+jJo3axChQoW4R43bpzTSwEQACZMmCBRo0aV6tWri1daPb355psSN25cp5cDAEbbOpUoUUImT54sYcOGldGjR0u/fv1sHhkAAEBwmzRpklWWaztx3S/TAIUGKgAg0IT6HZdvLoUXghQRI0aUunXr2o3s7du3nV4OAA+7d++eBSm05FcDvm7nOwf4zgkA4DSt9NUsxlWrVkn06NFtBtAHH3zg9LIAAIBHW0t26dLFqjf//vtvu89bvny5JcICQCAK9SCFr/e43gBqOb3baduV8+fPy+zZs51eCgAP082yY8eOeWLD7P79+3YBrphHAcAfbNmyxfpA79u3T5ImTWrtPLWiAgAAILhpkut7770nvXr1stedOnWSadOmSaRIkZxeGgAETpAiS5YsNnTw+vXrsnbtWnG7V1991TKBhw0b5vph4AD8lx5jcufOLdmzZxe302Fw586ds4oQfU8A4KRvv/3W5qadPXtW3njjDQtYZM6c2ellAQAAD9IkV53JN2PGDAkXLpyMHz/eghW0lgQQ6EL9KKgH3vLly9vzmTNnihe0bNlStm3bZr0DASC46YBprT7TY40X+I79ZcqUkfDhwzu9HAABSpNLBg4cKFWqVJFbt25J6dKlLYEmceLETi8NAAB40IEDByxJa926dRIjRgxZtmyZNGjQwOllAYBfcCRUq732fJlrXmj5pO0AdLCRZjoDQHAbPny4JEmSRCpWrChemK0xa9asR84FABDatPdz06ZN5ZNPPrFghT6fP3++J2b+AAAA/7NhwwbJlSuX7N+/X5InTy4bN26Ud955x+llAUBgBykKFCggiRIlkkuXLnligLZWh3z00UcWdNGe8QAQXLQt0vTp020DzQtVB5o1dPLkSYkVKxbzKAA44urVq1KuXDn56quv5KWXXpLBgwfLyJEjreUCAABAcNMkrSJFilirJ23fq60lM2TI4PSyAMCvOBKkCBs2rFStWtVTLZ/q1asnUaNGlS+++MLppQDwkDFjxthHLwzMfviYr1UhESNGdHo5AALM8ePHJX/+/NZeIXLkyJZg0rp1awtWAAAABCet1uzbt69Ur17dhmVr6/PVq1dLwoQJnV4aAPgdxybz+Np8LFiwQG7cuCFuFz16dOslqBuKXng/AJx39+5dC3zWqlVL4saNK154P3PmzLHntHoCENp27twpOXPmlF27dkn8+PFtk+Ddd991elkAAMCD9N5HE806dOhgr1u1amXJEZrcCgDwoyBFjhw5JFWqVHL9+nVZvHixeIG2fLp8+TLVFACCxYQJE+Svv/6yC1ov+PHHH63EOUGCBFK4cGGnlwMggCxdutQqKE6cOCGvv/66tVnQa1EAAIDgpvtCpUuXlnHjxll78BEjRsiQIUOsqwgAwM+CFFpWryVv6uuvvxYvSJ06tbz//vvSu3dvm7cBAC9KK7J69OghNWvWlIwZM4oX+I71VapU4QIdQKj58ssvpWzZsnLt2jV5++23bXBlypQpnV4WAASsPn36yFtvvWXdCLSyrUKFCvL77787vSwgWBw9elTy5csny5cvlyhRolj3kObNmzu9LADwe44FKR5u96HZbV7Z1O/atavcunVL+vfv7/RSALjYsGHDbGj2Z599Jl5w8+ZNmTdvnj2n1ROA0HD//n1p27atNG3a1J7r/DCdRRErViynlwYAAW3NmjXSrFkz2bx5s23kalucYsWKWZcFwM22b99urSV3794tiRIlknXr1kmZMmWcXhYAuIKjQQrNDtaS+zt37sj8+fPFCxInTmytWYYOHWotBQDgeV24cEH69esnjRs3tgotL9BgtGYxJ0+eXHLlyuX0cgAEQDWaVm0NGjTIXvfq1cta6EWIEMHppQFAwPvuu+8scJwhQwbJkiWLTJo0ybLPdYMXcKuFCxdKgQIF5NSpU5IpUyZrLZktWzanlwUAruFokEJbPvkyar3S8kl9+umnEilSJOnZs6fTSwHg0hL4v//+Wzp37ixe4TvGa5s/7csKACHl9OnTNvdm7ty5FpSYMWOGdOrUya47AQD+2b9fxYkT54m/fvv2bbly5cojD8CfDB8+3NqWaZJE8eLFZf369ZIsWTKnlwUAruL4TpFvLsWKFSvkzJkz4gXaRqBjx442JOmPP/5wejkAXOTYsWM2WO3jjz+2AdNeoDeSS5Yssee0egIQkvbu3WvVWj/99JNtdv34448cdwDAj2k7Pu1EkDdv3qfOYdMEnpgxYwY92PyFv7h37560bNnSHg8ePJBGjRrJokWLJEaMGE4vDQBcx/EgRdq0aSV79ux2cJ85c6Z4hQ5G0h6EXsqEBhDyunfvbkMENUjhFZrNrLN60qdPbyX9ABASVq1aJXny5JHDhw9LmjRpZNOmTZI/f36nlwUA+Ac6m0L79//TXkCHDh2s2sL30KQewGk6Q6VixYpWRaH69u0ro0ePlvDhwzu9NABwJceDFEr7Uaovv/zSos9eoO2eevToIbNnz5Zt27Y5vRwALskA1p68Gtz0UvbNF198EXSsp90KgJAwefJkG7p66dIlC1RogOKVV15xelkAgH9J7Fu8eLEFmZMmTfrU3xcxYkS7Nn74ATjp5MmTUrBgQZtDod+fs2bNknbt2nGvAwBuD1LUrl1bokWLJvv27ZOVK1eKV9SpU0deffVVy/wAgH+jPdO1fL1JkybiFdpyZevWrdYXvmHDhk4vB4DHaHJLt27dLAiqs3yqVatmLUTjxYvn9NIAAP9w7NYAxbx58+z+P1WqVE4vCXhmWvmjrSV10HvcuHHte7hq1apOLwsAXM8vghSaCaEb+mrUqFHiFeHChZPevXtbP2R9AMDTbN682W7Uevbsadk4XuE7puvGIZuGAIKTDlLVRBc9bipNCtEh2VrNCgDw7xZP06ZNs2O2tjk9deqUPW7evOn00oB/9MMPP9j8lKNHj1rFpt7DaQUnAOC/e+mBn/RX2rNnj2TIkEHChAljvYS9MgxLv7x60rp7965lFOv7A4DHjxOFCxeW8+fPy86dOyVs2LDiBefOnbPSfd1I3LJli+TIkcPpJSEEh6PrIEvtE00LBoSGCxcuyLvvvitr1661Y+ZXX30l77//vtPLAgC/5w/n7Ke1xJk4cWJQK2h/fw8IPOPHj5fGjRvbPNUCBQpYglmcOHGcXhYA+L1nPW/7zY7566+/bpt09+/ft2FDXqEXYDpASUsB58yZ4/RyAPih7777TtasWSN9+vTxTIDCdyGvAYrs2bMToAAQbP7880/JnTu3BSj0InfZsmUEKADAZQk6T3o8S4ACCG26R9WxY0e71tAARa1atayiggAFAAQvvwlS+Mo+1ZgxY2xjyyt0oFLJkiWt37xWVADAwxe92qIkX758Urp0afEKvYD/8ssvHzm2A8B/pQOxtQ/0H3/8YVW3GzZskKJFizq9LAAA4EG3bt2SmjVrWjKZ6tq1q0ydOtVT7XkBwF/4VZCifPnykiRJEjl79qznqg70pKaZf0OHDnV6KQD8iAZld+3aZRVXTyt9d6MlS5bIkSNHLMNI51EAwH81e/Zsq7rVVnLZsmWzNnIZM2Z0elkAAMCD9HqjSJEiMmvWLJs3OmnSJOnRo4en7tkAwJ/4VZBCD/xNmjTx3ABtlSVLFmnVqpV06dJF9u7d6/RyAPgBnb/zySefWOmwDmDzEt8xXN9b5MiRnV4OABfTFiD9+/eXqlWrWqVt2bJlrdVTokSJnF4aAADwoP3791tryY0bN1of9e+//17q1q3r9LIAwNP8ZnC2z+nTp618X9si6RwHzZTzihs3bkjWrFkts1jbE3ip9zyA52/zpC1K9AJ49+7dnhr6p21Y0qdPb1lGWkGWKlUqp5eEEMYAS4QUvR5s3ry5VZ2pjz76SIYMGcI1FAAE8DnbC+8B/mvdunVSoUIFuXDhgqRIkUKWLl1qM1QBAAEyONsnQYIEUrlyZU9WU0SJEkUmTpwoP/30kwwaNMjp5QBw0OjRo2XlypUybtw4z91cffHFF/ZRZ2wQoADwXy5mtWpCAxQa9Bw2bJgMHz6cAAUAAAgRM2bMkHfeeccCFDly5LDWkgQoACB0+F2Q4uEhq3qC0JODl2hLl9atW9vAJdo+AYHp0KFD1uapUaNGUqxYMfGS69evW79WxcBsAC/q2LFjki9fPmuvoEke8+fPlxYtWji9LAAA4EHaYOTzzz+XWrVqyZ07d6RixYqyatUqS6IFAARwkCJPnjzWFunWrVvy5Zdfitf06tXLygbr1asnf//9t9PLARDKbZ4aNmwoL7/8sgwcOFC8ZsKECVbClzZtWs8FYACEjp9//lly5colv/76qyRMmNDmT5QrV87pZQEAAI+2ltQ5ep07d7bXbdu2ldmzZ1uSBAAgwIMUWtKvWcZq8ODBcvXqVfESHSKrmcbbtm2j7RMQYL766ivLyhk/frzn2jxpYLlv3772/OOPP5YwYfzyFAPAjy1evFjy588vJ06ckIwZM1qbhTfffNPpZQEAAA+6dOmSlCxZ0hKt9N5F29YOGDCA+xgAcIDfHnmrVasmr7zyirV78tpsCpU7d25p06aNtX3as2eP08sBEEptnj799FNp3Lix9Tr1Gg286MZi0qRJpX79+k4vB4DLjBw5UsqXL29t44oWLSrr16+X5MmTO70sAADgQYcPH7Z23CtWrJBo0aJZosSHH37o9LIAIGD5bZBChyL6yu20Jcq1a9fEa3r27GlDZXUzj7ZPQGC0eYobN65l53jN7du3g6ooOnToIBEjRnR6SQBc4t69ezav66OPPrJjpbZcWLJkicSMGdPppQEAAA/aunWrtZbUhNHEiRPLunXrrKICAOAcvw1SqBo1alhf8/Pnz1vZndfQ9gkIzDZP0aNHF6/REunjx49LkiRJLBgDAM9CqyYqVaokQ4cOtde9e/eWMWPGSPjw4Z1eGgAA8KB58+ZJwYIF5fTp05IlSxZrLakzUQEAzvLrIEW4cOEeqabQG1mv0ei99m6n7RPg/TZPTZo0kSJFiogXqyj69Oljz9u3b08VBYBncurUKSlUqJAsWLDAjhtff/21VWLpbDIAAIDg9ODBAxkyZIglR9y8eVNKlChhFRTaqhYA4Dy/DlKoWrVqSZo0aeTs2bOWiexF2vYpderUUq9ePdo+AR6jrUsaNGhgbZ769+8vXjR58mQ5duyYlUprmxYA+De//fabJWpoNenLL79s/aCrV6/u9LIAAIAH6T6LtpXUuaAarNDksUWLFnmywh0A3MrvgxRaTdGpUyd7rht8N27cEK+JFCmStX3avn17UE93AN4wYsQIWb16tbVD8uJF8J07d6w9i2rXrp0dzwDgn2hAQgdVHjlyRNKlSyebN2+21wAAAMFN55u+++67MmrUKKvW1C4d2k5c95oAAP7D74MU6r333rMB02fOnJHRo0eLF+XMmdNaW2nbJx0WCcD9dAZF27ZtbSDs22+/LV40ZcoU22hMmDChNGrUyOnlAPBzGrDV9gqXL1+W/Pnzy6ZNm2z+GAAAQHA7ceKEFChQQBYvXmzJVLNnz7Z227SWBAD/44oghQ5P7NixY1A1hfYP9KJu3bpJuXLlbGD43r17nV4OgP/g4MGDUqVKFeu37tU2T3fv3pXPP//cnuvMjciRIzu9JAB+3PpOK2MbNmxoLRdq1qwpy5cvt1ZPAAAAwe2XX36xZNCff/5Z4sePb9XtOo8CAOCfXBGkUHXq1JEUKVLYkMUxY8aIF4UJE0amTp1q71ODFRcuXHB6SQBewNWrV6V8+fISO3ZsmTVrlmdLifV4dfjwYUmQIIE0btzY6eUA8FO3bt2yGWO+1nBdunSRadOm2bBsAACA4Pb9999Lvnz55Pjx4/Lqq69aa0kNWAAA/JdrghQRIkQIqqbo16+fXL9+XbxIe9YvXLhQLl68KNWqVWOQNuDCbOHatWtbCyT9WY4TJ454kc6i8FVRfPLJJxIlShSnlwTAD50/f16KFi0qM2fOtICttnvq2bMnbRYAAECI0KTW0qVLW+JY4cKFZePGjdY+HADg31wTpFD16tWTlClTysmTJ2XAgAHiVXoCnTNnjpUjaj97AO5q26bBia+//lpee+018fJAcG1ppVUUTZo0cXo5APzQ/v37JVeuXLJ+/XqJGTOmfPfdd1K/fn2nlwUAADyaLNauXTur8L53755149BrD61uBwD4P1cFKbSawhec0GqKo0ePildpH/vhw4fLsGHDZPz48U4vB8Az0NZOvXr1kr59+1r2jledPn3aMqFVnz59JGrUqE4vCYCf0cBE7ty55cCBA9bGcsOGDVKkSBGnlwUAADxI55ZqJwrfLMDu3bvLpEmTbA8JAOAOrgpSKB10VLBgQetvrINavezDDz+0DGX9qDf7APzX9u3bLUNY+65r+yMv69y5s1y5ckXefPNNqVu3rtPLAeBntLWTBiS01dNbb71lfaAzZMjg9LIAAIAHnT17Vt5++23rRhE+fHibm6fV7bSWBAB3cV2QQk80Q4cOtSHTmrW8bt068TKtpMiTJ49UrFjR05UjgJudOnVKKlSoIBkzZpSxY8d6+oL4559/Dqru0movPRYDgHrw4IFVV9WoUcPm1uhxUVtXJkyY0OmlAQAAD/r999+ttaQmRGhbp+XLl8t7773n9LIAAC/AlbtLWbNmlffff9+et2zZ0voNepWWJ86ePdvaqZQvX96zA8MBt7p9+7YFEfU4NG/ePIkcObJ4eQNSj7n6UTchNYAKAOru3bvSqFEj6dixo71u1aqVZTRGiRLF6aUBAAAPWrNmjbWW1Dl5OtdTB2Rr1w0AgDu5MkihtO+7DmHUrF7tNehl8eLFkwULFtgASh0erhuEAJynP4vakm3Hjh0WoEiSJIl4mQZMtXpNAzE6FwgA1OXLl6VUqVJWZaXVVSNGjJAhQ4ZI2LBhnV4aAADwoGnTpknRokXl4sWLQZUUr776qtPLAgAEYpBCN+61z6DSrD29QfayzJkzW29FzUrUAA0A/2jHpkFSbfGUM2dO8bIbN24Ezdpo3769JEuWzOklAfADR44ckbx588qPP/5oVZ+aVNG8eXOnlwUAADyaJNajRw+pXbu2VXFWrlxZVq5cKfHjx3d6aQCAQA1SqGbNmskrr7wiZ86cCYiN+3fffVd69uwpXbt29Xz1COCGqoKPP/7YNu71ItnrBg4caHNxNDjRtm1bp5cDwA9s27bNshd/++03SZQokaxdu1bKlCnj9LIAAIAH6bwr7SzRvXt3e/3pp5/anFIvt9sFgEASxu3zGrSdgC+jWdsheV3nzp3lgw8+kIYNG8rXX3/t9HKAgLRw4UKpWbOmVK9e3YbEet2xY8ekb9++9nzAgAH0mAdgFRPa9/nUqVOSKVMm2bJli2TLls3pZQEAAA/Stk7FixeXKVOmWDvJ0aNHW/tZbTMJAPAG1x/RtQdyyZIlrdRPs5q97qWXXpIvv/xS3nvvPcvenjt3rtNLAgLK999/L1WqVLFB9pMnTw6Inuva3unmzZuSL18+qfr/tXcncDbW7//Hr7KvIXtU1shWiEJEhGQJJftXi0SltKmEFiIqhWRtQ8gWsu9lSZS+yt5GIYSQZDv/x/v6/md+YyxZZuaeOef1fDzuzDk085l75pz7c3+uz3Vdd98d9HAABEwbQ5TdqTJwWjD44osvKAEHAADihRpjV6hQwRYuXGgZMmSwadOm+cZNAEB4SfJBCnnjjTcsefLkNnXqVJsxY4aFO+0WUHNK1V/UTm5dpAHEvwULFliDBg3stttus9GjR/v7TrjT4qO+VwVItTCpPwFEpuPHj9ujjz5qjz32mNeE1gKB5l4ZM2YMemgAACAMKVNTpSXXr19vefLk8XuTWrVqBT0sAEA8CIsgRZEiReyRRx7xj9u1a2f79++3cKfFUTXSrlOnjjVq1Mhmz54d9JCAsKYJsWqtV65c2ftRqNxcuFP2hErLif6klAsQuQ4ePOjZE/379/fHr732mr377ruWIkWKoIcGAADC0IQJE+yWW26xXbt22fXXX+8Bi5IlSwY9LABAPAmLIIWooXS+fPm8sasaKEUCLQyMGTPGqlev7ru758+fH/SQgLC0fPlyLy1Xrlw5mzRpkqVOndoiQdeuXW3jxo3eEFcLkgAi07Zt27z/hLImUqVKZePGjbOnnnqKzCoAABDnlK3Zt29fL7F7+PBh35i5ePFiy507d9BDAwDEo7AJUqRPn95GjBjhH6uJ0ty5cy0SaLFAOwxuvvlmv3irXj6AuPP5559bjRo1rFSpUr5AFylNo5ctW2avv/66fzxkyBDLnDlz0EMCEIA1a9Z4mYWvv/7asmbN6mXvtGgAAAAQ144dO2bt27f3zRAKVnTo0MEmT57s6z0AgPAWNkEKUSqgLmJRpUkOHDhgkUC7uj/99FO79dZbrV69ejZlypSgh4R/MXDgQLv66qv9Z1e+fHlbsWJF0EPCacybN89rniqDYubMmREzOVaZpzZt2viNQatWrbzMFYDIo1KSFStWtK1bt9o111zjWWU33XRT0MMCAABhSOs3Ws9QOUlla6r3qMpMRkIfQABAmAUppFevXhFX9km02D1x4kRfTFSPivHjxwc9JJzB2LFjrVOnTtatWzffmaod+jVr1rSdO3cGPTTEMH36dM9OUg8KNadPly6dRQr9bm7YsMHLPPXr1y/o4QAIwNChQ73MnRYMVOpp6dKlVqBAgaCHBQAAwtCvv/7q1SFmzJhhadKk8bWNxx9/nNKSABBBwi5IoZ3Ow4cP948VgddO6EihRr5aAFcZhiZNmtioUaOCHhJOQztCHnjgAd+pfu211/rvqUoIRZUrQ/CUUqw+Lwoe6WNNlCOFdkpHlXlS6TzKPAGR5cSJE9a5c2dr27atHT9+3Fq0aOGlJLNkyRL00AAAQBhavXq1Vxf49ttvLUeOHLZo0SK/FwMARJawC1JI1apVvY5hpJV9EqVCfvTRR16ipWXLljZs2LCgh4QYjhw5YqtWrfJm51EuvfRSf6weAAjexx9/bI0bN/aJsTKS1PclUqjM03/+8x9fpNT7R926dYMeEhKgpJx2zGvnmgJSOvR+RAm6yKT3gKZNm1rv3r2js6o+/PDDiHofBAAACZu9XqlSJdu2bZtv4NOGqRtuuCHoYQEAAhCWQQrRDbYWaH755Rd75plnLJIkS5bMs0natWvnO/ZV9kq7IRG83bt3+89CO0Ri0uMdO3YENi78b/dw9+7drVmzZn6MHj3aUqRIYZFE37/KPOXMmZMyTxFUUm7hwoW+MK2GyAqW5s2b12677Tb77bffEnzsCM6uXbu8t9W4ceP8ve+DDz7w9wTKLAAAgPjwzjvv+Kaov/76y+cgS5Ys8TUcAEBkCtsgRcyyT4MGDbL58+dbJNHufO2kffPNN710iy7+f/75Z9DDAhKlgwcPepm0F1980V555RVfnIu0Bm3atdS3b1//eMiQIZR2iaCScioNqOzD6667zooUKeIZeAraRVK5xEin4KQaYitIlSlTJm+YrYxMAACAuKZ55pNPPmkdOnTwjzVnVUaF5iAAgMgVtkEKqVatmj300EP+8b333htRZZ9Eux8fe+wxbz6lhQeV/Ni4cWPQw4poWbNm9UyX33///aTn9Vi715Hwfv75Z6tYsaIvyqn/xPPPPx9xO4cPHz7sNwe6SVD9eco8RXZJuUOHDtnRo0fPGqj6559/bP/+/ScdSJoWL17sAYoffvjBdy+qQfYtt9wS9LAAAEAY0jxTm8OieuC9/PLLvrlU/TUBAJEtrIMU8tprr0WXferYsaNFIpXt+PLLL/1jBSq0GItgaPJVpkyZk3YoR+1Y1iIREtbnn3/uNU8VwNTCXP369S0SqUnu+vXrPVD21ltvBT0cBFxSTiUSc+fOfVKgI7ZXX33VLrvssuhDJaKQ9CiLpkaNGrZ3716fH2iuULRo0aCHBQAAwpA25ql/6MSJE/2+WOV1u3TpEnEbxAAAERqkUNmn9957z3eS6s/333/fIlHhwoV98UEL4bVr1/Z686FQKOhhRSTVilejWpUUWrdunWf7qA6ndrIj4ehnoGyr4sWLe5PgEiVKWCSaMGFCdGBC54QyT5GtV69eNmbMGJs0aZI33T6TZ5991ksIRh1bt25N0HHi4uj6r9J2ypxS9k2jRo28J0n27NmDHhoAAAhDuu+98cYb/b5L9xtz5871nmgAAERMkEJUtkDNH0V1t9esWWORSLtdp06dak888YQ9/vjjdt9993nJDiSsJk2aeO3/rl27eg341atX28yZM0/Z+Yz4oTI2jzzyiLVt29YPZRapDFck2rx5s5fCk6eeesruuOOOoIeEAEvK6X1JQQq9JkqWLHnWf5sqVSrLmDHjSQeSBgUl9Lp/4YUX/LFqQqtZdpo0aYIeGgAACEPaCFGhQgUvs1uwYEEvQXrzzTcHPSwAQCITEUEKUZ35mjVr2t9//+01ECOtP0UULV6pBNaHH37o6ZXaSR57MQvx7+GHH/YSZAoSKcNFZTYQ//744w+rVauWNxIeNGiQN5dPkSKFRSK9FzZu3Nh7CVSqVMl69OgR9JAQYEk5XRdUE1gB07JlyybQaJHQ9u3b59mUyirVfEDvg3369PFsUwAAgLim6gEqP605iPoAKkChKg8AAMQWMXelugEfOXKk5cmTxzZs2GAPPPBARJc7atmypTfL/Omnn3xB6uuvvw56SEC8+v777z0Y9O2333p6cbt27SySPfroo34usmXL5uV9IjVYE4kl5Vq1auXlmqL07t3bd9WPGDHCezipd4WOgwcPBvhdIK7peq9djPPnz/dSmNOmTYv490EAABA/tNbSrVs3+89//mPHjh2ze+65x+/BIjWDHQDw7yImSCG6II4dO9aSJ0/uf77zzjsWycqVK2dfffWV5cqVy3dSq9wDEI5U5ky7yNOmTeu/81WqVLFIpkyqYcOGeZM6ZVRdccUVQQ8JCVhSbsuWLbZ9+/bof6/d9CoBpMwaXQ+iDn0OhAdl7KkOtIJWer1/8cUXnlUGAAAQ11QtQJsiX3rpJX/83HPP2ahRo87a7wwAgEtCEZhO8MYbb3hfBu0cXrJkid1www0WyVT2RZklmjhod3XPnj0tXbp0QQ8LuGiHDx/2fjQqZdOgQQNfnNcO4kj23XffeYBSr3udG+1wAi6Wyoap75GaaNOfInFRE/TmzZv7a15BK2VQEJgEgMgVDtfscPgewtWePXvszjvv9KoNKi05ePBg74UJAIhc+8/xuh1RmRRR1DRaF0410FV/Cl1II5maZX700Uf21ltveYmQUqVK2eeffx70sICLoowJ1eZ/8803PfA2fvz4iA9QqBePdstrsbJGjRrWpUuXoIcEIJ5oD4o2ZTRq1Mhf8+pFoQUDAhQAACA+/PDDD569rvmGFqFmzJhBgAIAcM4iMkihEieqvZ0/f35vXty6dWtvLBrJdE6iatTnzJnTy+EomHPo0KGghwacd3qx6u2rtIkCcKtWrbLOnTtHfGNYLVi2bdvWe/JokVKZU9rdBCD8qPbzww8/7Fmjeu2rL8mUKVMsQ4YMQQ8NAACEITXE1v3Xxo0bLW/evF6xQpuiAAA4VxG7apcpUyb75JNPLFWqVF76gNrb/1OoUCFbtGiRvf766/buu+96aQjVrgaSSvZE6dKl/ff35ZdftuXLl1vx4sWDHlaioNezGmQrMKE/1TAbQPhRw/P69et73y1tQND74cCBA70fFwAAQFzTukrVqlVt9+7dnsmuXljcgwEAzlfEBilEi5kqcRTVzGnevHlBDylR0CKmsiiUVaGFzMqVK5NVgUSfPaHXsNKLlT3x9ddf+2MW5f5vZ9Njjz3mH/fq1csqVaoU9JAAxIPffvvNbr75Zps+fbq/F6rMXadOnTxYAQAAEJeUrdm7d2+7++67/X6sXr16vuExV65cQQ8NAJAERXSQQlT+pGXLlnb8+HFr2LChff/990EPKdEoXLiw15NUlklUVoXSNoHEZOXKlb5jR7+nagStBXl27pxcG1Y3DEeOHPHm4Sr/AiD8aGNB+fLlbfXq1ZY9e3ZbsGCBz2sAAADimvp7Pvjgg15WV1Q6euLEiZYuXbqghwYASKIiPkih3YVDhgyxihUrerfx22+/3Xbs2BH0sBJVVoV2YWrR4/LLL/cdmlrkVBNOIEjarfP888977dOUKVN6sEKNoFOkSBH00BKNP/74w9/TlHqtzLGPPvqIHdVAGJo5c6ZnSCmTomjRol7qTgELAAASI22Eq1u3ruXOndvnppMnTw56SDgPWje54447bOjQod73T9UpdNDvDgBwMSI+SCGpU6f2iZH6MWzZssUvuH/99VfQw0pUrrnmGu9N8dprr3lta2VVLF26NOhhIUKpGXbZsmWtT58+1q1bN697WrJkyaCHlagcPnzYMyeimtep90769OmDHhaAODZ48GCft6gXhepBK+MxX758QQ8LAIAz0r12qVKl/L4SScvWrVt9Y8Ts2bMtbdq0vo6iLAoAAC4WQYr/L2vWrF7DWdkCWgBt2rSpl4DC/9HOiCeffNKzKjJnzuyTE/Wq2Lt3b9BDQwTt2nn22Wd9h7D6TSh74oUXXiB7IpYTJ05YmzZtPLCYMWNGf2+jNiwQfq/zp59+2tq1a+fzldatW3tGha7PAAAkZrVr17ZXXnnF7rzzzqCHgvOgvn+6D1uzZo3lzJkzOiMGAIC4QJAihoIFC9qUKVMsVapUNnXqVG80q2ZQOFmRIkV8p6Ya8CrFM3/+/N4wi8baiM/STv369bMCBQr4n127drUVK1aQPXEGCtyMGTPGAzkTJkygRwcQZlRyUU0qlU0mL730kr333nte+g4AgHC8F9BmpZgHEpaysitXrmzbt2/3ewtlsqsvIAAAcYUgRSwVKlTwuu0yYMAAr62I02dVaAenmvI2b97cewGoXJaCFseOHQt6eAgT2h384Ycferkx9UJR+aJNmzZ5kILsidMbPny49ezZ0z9Wv53q1asHPSQAcWjnzp1e1kkBSAUlRo4c6YFJ+s0AAMLVq6++apdddln0oVKmSDj9+/e3+vXre5muGjVqeLb2lVdeGfSwAABhhiDFadx1113ee0HUNHrSpElBDynRypEjhwdz1q9fb1WqVLG2bdtasWLFbPz48WSh4ILpd0fZTOp9ohIm2qXz/fffexAsT548QQ8v0VJt2AcffNA/1qKlSj4BCB+61t54442+e1FlnebMmeMbBQAACGcq9/rnn39GH+qLgITZMKbyzuo5oTKT999/v3322WceKAIAIK4RpDgD9V5QnWctlmoBQKVlcGYqwzN69GivU6mGnQr0qF7l/Pnzgx4akhiVErv55putXr163itm+fLlvmNYZcZwZqoN27hxY7+ZaNGihb344otBDwlAHFq4cKHddNNN9tNPP3mZxWXLlnnZBQAAwp3KMavPWswD8UtZE40aNfJSu1HZLMrSJpsdABBfCFKcgcomKK1RTb1U+1kNobQwgLO7/vrrvXGnghM6h7feeqvVrFnTgxfA2Xz33XcemFBDdk2KZ8yY4b9HCnbh7LZt22Z16tSxAwcO+KLlsGHDKP0ChBGVvbvtttts3759nkmh4K3K4AEAAMS1HTt22C233GKffvqpB4g+/vhj69y5M/cXAIB4RZDiLNR0duzYsV5yRjWgVX/xt99+C3pYSYLqZUftgP/ll1+8XM8999xjmzdvDnpoSGT0+6GSTmqCrZJOyshZtWqV1apVi4nwOdB7kxYvlfauRUuVp9PNBICkT9mc3bt39/fIo0ePepaigrfZsmULemgAAFywgwcP2urVq/0QbQbUx1u2bAl6aBFP92PaJLZy5Uq7/PLLbd68eX4fDwBAfCNI8S8yZMjgdRdVwkhNorX4vn379qCHlSRogblhw4a+Q169BNRgq2jRota+fXv78ccfgx4eAqZFddU4LVy4sGffKHNp3bp11rRpU7v0Ut6azsXu3bu9MbZuJnLnzm3Tp0+3LFmyBD0sAHHgn3/+8eBEVOm2Z555xsaMGWNp0qQJemgAAFwULYArA19HVB9Ifdy1a9eghxbR5s6daxUqVPBgUaFChXzTYcWKFYMeFgAgQlwSorvxOe/2VmNo/ana+AsWLLCcOXMGPawkRWWztBDdu3dv27t3r5f26dixo6eSsmM+MujtZunSpfbWW2/ZxIkTLV26dN7/RcGK9OnTBz28JGXPnj1WrVo1+/bbb/29aNGiRR7wAYKwf/9+b6KoZpbUiY6b17eC/HpdJ0uWzAYNGmQPPPBA0MMCAISBcLhmh8P3kNiMGDHCHnzwQTt27Jj3B1R2tjIpAABIqOs225XP0VVXXeWBibx589r69eu914LKrODcaffn008/7Tvo3333XS/9pEVWldMaPny4BzEQvjuCP/roI7vhhhu854QW1hWoUPm0F154gQDFeVKQT+XndB5z5Mjh700EKIDwoExD7WJUgELZnMqQIkABAADiw4kTJ+z555+3++67zwMUzZo1szlz5hCgAAAkOIIU50Eln7QYeMUVV9jatWs9UKFyKzg/adOmtbZt29qaNWt8AqQAkBZgFADSBOnnn38OeoiII7/++quXKtHPuFWrVpY1a1ZfcFNZpw4dOhCcuABqnKseFGpGr7r0qhOr7C4ASZ/KKqgx9oYNG/yauGTJEn+9AwAAxLXDhw9b8+bNrWfPnv5Ym8dGjhxJfzsAQCAIUpynAgUKeKAiV65c3mtB9eD/+OOPoIeVJKnEk87flClTbOPGjdaiRQsbMGCA5c+f32rWrOlNt48cORL0MHGetANHP9O6det6cKJPnz5etkSBPfWeqF27Nj0nLiJFTg3FYzayK1asWNDDAhAHxo8f732vdu3a5XW5FbAoUaJE0MMCAABhSGsYuhdXv6vkyZN7uaeXXnqJMswAgMCwUngB1ERq/vz5XmZF5VZUdkXlV3DhChYsaP369bNt27Z56acDBw5Y48aNfSepmoVu2rQp6CHiX/z000/WpUsXD0zUr1/fduzY4XXU1Wj+nXfe8abpuHB6TSjA8+WXX3pzbAUoWMAEwqNXj4K5d911l+9ovOOOO2zx4sWWO3fuoIcGAADCkO6tlbmpjE3VCNdGsjZt2gQ9LABAhKNx9kXQznA1fdaux7Jly3rpokyZMgU9rLChTJWhQ4d6LwMFgSpXrmyNGjXyHfoqvYXgqb/I1KlTvbGaFs1VP10pwyrfpZ3AiBsHDx70AMUXX3zh7zE616VLlw56WEA0GlheeObZww8/bIMHD/bH+lgBezXLBgAgPoTDNTscvoeg6H6iQYMGnkmhzWWfffYZmdkAgERx3SZIEQcL6SrPoN4U5cqVs9mzZ/uJR9zRzlKVflKwQhksR48eteLFi1u9evX8UDNmygclDL1dqBeCyjnpWL16tacHK4DUsmVL3wmcLl26oIcZVv766y+rU6eON9HVe8vcuXM9KAokJiwWXFh21N133+27F1Va4c0337SOHTsGPSwAQJgLh2t2OHwPQVBpp9atW3tJZd1Da7OZqkMAABCfCFIkIJV8qlatmu3Zs8cXD7UbIXv27EEPK2x/sRUI0oRK51k7QDSxUnkMBSxUV1ONuRG3QSIFhxSU0HlXSS7t5r/99ts9q0U9Esggih/KINLvtXY8KUtF2Vrly5cPeljAKVgsOD+//vqrX7c0f9A1a/To0V4mDwCA+BYO1+xw+B4SkpZ8evXqZc8995w/vvPOO71BNvfNAICEQJAigX3zzTfem0KL5mquPWvWLP8T8VsmY9myZb5wrgX0DRs2WOrUqT1QoYVdLQCpwTnO386dOz0IpPOqoNChQ4f891nnVYGJSpUqWYoUKYIeZtiX0lIASGXl9GY+ffp0q1ChQtDDAk6LxYLzmy/o+qSAb86cOf0aRnYUACChhMM1Oxy+h4SiKgQPPfSQ932UJ554wnr37k1pSQBAgiFIEYCNGzdazZo17eeff7Zs2bL5oiILDwl7/qMCFtp5fuLECU9j1aK6eoeoR0L69OmDHmaiLSmk0k1q1qpzuHz5cn/+pptuig5MqPG1SpIgYcrIKUDx22+/efNclYOhSTYSMxYLzo3mBSrxpPdc1X9WMFj1oAEASCjhcM0Oh+8hIej8NG7c2MvFqjxy//79rX379kEPCwAQYfYTpAjGjh07vAyOdkqqNv/48eN9sREJSxktM2bM8ICFFnhV+1sL7Ndcc403HC5TpowfClxE2sRWTZgVkFi1alX0sX79eg/qKOVXgTYFJvR7TNmyhKfeEyr7ojdvBYb0+3vllVcGPSzgrFgs+HfvvPOOPfLII/5eq4w/zQ/oYQUASGjhcM0Oh+8hvv3yyy/e1+7777/3dYmxY8f6YwAAEhpBioBPfqNGjXzHgpoKDxs2zBtUIbgU13Xr1p20KK9FevVakMKFC0cHLaICF+GycKTgjAJm+p7V8DoqIKGXfapUqaxkyZInfe/a2ZsyZcqghx2xPvnkE2vRooU3s6tYsaIH2bJkyRL0sIB/xWLBmR0/ftyefvppe+ONN/zxvffea++++y4l8wAAgQiHa3Y4fA/xaeXKlZ4Jrw2UysqeNm2a3+MCABAEghQB0yKjFiJGjRrlj3v27GmdO3emXE4i6mdxusDF33//7X9fqFAhz7jQoV3s6m2hCZ7+TGwlo1Q2ZPv27X6oxrl6GUQFJlQCSy9x9eooVapUdDBC35cCEiySJR5Kv+7YsaP/vNTMTu8dadKkCXpYwDlhseD01M9HgcdJkyb54x49etizzz7LXAAAEJhwuGaHw/cQXz799FNr1qyZz0G0IU2lJfPkyRP0sAAAEWw/QYrgqaSDAhN9+vTxxx06dLC33nqLJlWJOHChLIOojAMd3377rZdHiklBCgUrYgYuTvdYL8ALXYjSy1Iv4qjgQ1QAIubjqOeULRGTSjbFzpBQ2SACEomTftZatFQDO1Gd2Lfffpv3CSQpLBac6vfff/fSeStWrPAMtffff9+aNm0a9LAAABEuHK7Z4fA9xAetNTz++ON+f6ESvuPGjeP8AAACR5AikU4WVAZq5MiRvrMdiZ9+ZgoCxA4SxA4YnC5YoHJKOlTyK+pQoEB//vDDD/5vChQo4MERHSpLFfXxP//848fpgiNnC4zoY73g2aWbNOhnft9999lHH33kj1955RV77rnn+PkhyWGx4GRr1671us8///yzl2zTrsZKlSoFPSwAAMLimh0O30Ncl5bUeoMys+XBBx+0AQMG+H0nAABJ5brNVSsBqISLFpBbtmxpEyZMsJ07d9rEiRMta9asQQ8N/0KLxXoB6VDT7XMpuxQVwNDPWWW/ogIPMQ/1KVFPjMaNG58UvIgZzFDT6pjBiAwZMiTY9434t2/fPmvSpInNnj3bsyaGDh1qbdq0CXpYAC7S/PnzrWHDhj4BK1iwoE2fPt1LCAIAAMQ1Zf2rvNPUqVP98WuvvWZPPvkkm54AAEkOmRQJaMGCBdagQQOPIKnPgQIWZcuWDXpYABLYmjVrfBFz8+bNXp5LDbNvv/32oIcFXDB2NP6PSjo98MADHoyuWLGiTZ48mQ0JAIBEJRyu2eHwPcQFbY5Tg2yVK1alBmVnaxMcAABJ8bp9aYKOKsJVrVrVli5d6jsqt2zZ4qUfRowYEfSwACSgMWPG2I033ugBCgUrFy9eTIACSOK03+OFF17wbCgFKO655x6bO3cuAQoAABBvm550T6EARbZs2TyTkwAFACApI0iRwIoVK2ZfffWVN9NUzwHVo1fNyNj9BwCEX/8J1YpV49xDhw5Z9erVvTm7GpsDSLp0/W7RooX3lBH1lRk1ahS9pwAAQLxQuVhlbG7dutVLEi9fvtxuuummoIcFAMBFIUgRAKW4TJo0yV5++WWvFTlkyBCrXLmyTzIAhJ8dO3Z4UKJfv37++Nlnn7WZM2eyyxpI4v744w+rUaOGjR492vsJDR8+3Hr06GGXXsr0CgAAxD31sVMW9oEDB6xKlSpeqSF//vxBDwsAgIvGXXRAtIDRpUsXb6iZOXNmW7Fihe+oVt8KAOFj2bJl/tpWWSc1P584caL17NnTm2UDSLpUsk27Fj///HOvqzljxgy79957gx4WAAAIQydOnLDOnTtb27Zt7fjx49ayZUvPqMiSJUvQQwMAIE4QpAhYrVq1bOXKlXbdddfZrl27fLd13759vb41gKRLr+FBgwb5Dic1tStatKgHI++8886ghwbgImnXogIUmzZt8t4yeqzrNwAAQFz7+++/vWRs7969/XH37t3tgw8+sJQpUwY9NAAA4gxBikRA6ZlLlizx3RDaIfHUU09ZkyZNPIUTQNK8kVAD3fbt23svCjWx+/LLL61IkSJBDw3ARRo7dqxVq1bNdu/ebWXLlvXXtvpNAQAAxDVtZLz11ltt3LhxliJFCg9OdOvWzctGAwAQTghSJBJp06b1CceAAQO8rvUnn3xiN954o61ZsybooQE4Dxs2bPBGdno9q6zba6+95jcVKvUEIGlnR/Xq1cvuueceb5Zdr149W7hwoeXMmTPooQEAgDC9r1DmpsrHZsqUycs7tWrVKuhhAQAQLwhSJCLaDdGhQwdbtGiR5cqVy9auXeu7NLXIqbqTABIvZUH179/frr/+evvmm2+8KfacOXM8M4qdTkDSpowo1YBW03vp2LGj95dJly5d0EMDAABhSP3sFKD44Ycf7Oqrr/bSkrfcckvQwwIAIN4QpEiEKlSo4IucdevWtSNHjtgzzzzjE5Iff/wx6KEBOI2tW7dazZo17dFHH/VST6pNr9ewSsIASNr+/PNPq1Onjg0bNsyzo95++23r16+fJUuWLOihAQCAMDRq1CirUaOG7d2718qXL++lJdXfDgCAcEaQIpHKkSOHffrppzZ8+HBLnz69ffHFF1ayZEkbOnQoTbWBREKvxZEjR1qJEiVs7ty5liZNGi/ZNmvWLMuTJ0/QwwNwkbZs2WKVKlXyrCiVZZw8ebI98sgjQQ8LAACE6b3Fyy+/bC1atPDNio0aNbIFCxZY9uzZgx4aAADxjiBFIqYSMffee6/997//tcqVK9tff/3l5SbuuOMO2759e9DDAyKamubedddd3vBeO621y2n16tVesk27rQEkbatWrfLX9XfffeclGD///HPPcAQAAIhrCkq0adPGunbt6o9VMlZ97bQJCgCASMBKWhKQL18+30HRt29fS5kypU2fPt2KFy/uzbUBJLxp06b5a3DChAne6P6VV17xbKfChQsHPTQAcWDq1Km+OWDHjh3+Wl++fLmVLl066GEBAIAwtG/fPqtVq5Z98MEHXk5y0KBB3peSjU8AgEjCVS+J0ATliSee8J2dasy7Z88eu/vuuz0VVLUqAcS/AwcO2AMPPOC7qX///Xe79tprvUbs888/78EKAElf//79rUGDBnbo0CG77bbbbMmSJXbllVcGPSwAABCGfvrpJ+9JqU2JKvOszVDt2rULelgAACQ4ghRJTNSOzi5dunjgQk21VA9/5syZQQ8NCGsLFy60UqVKefNclWKLChqyuxoID8ePH7eOHTvao48+aidOnPCApBYKMmbMGPTQAABAGNJmpxtvvNHWrVtnV1xxhWdmK6MCAIBIRJAiCVLJJzXU0u7OQoUK2W+//Wa1a9e2xo0be5NPAHFH/V+UsVS1alXf6XTVVVdFl19LnTp10MMDEAfU86lhw4b29ttv++NevXrZ4MGDLUWKFEEPDQAAhKFJkyb5/cXOnTvtuuuu84CFNkQBABCpCFIkYdp18c0339hjjz3mtStVH79o0aLWs2dP++eff4IeHpCkHT161N544w275pprPGNJ2RNKvVYj+ypVqgQ9PABxGIjUa3rKlCmWKlUqGzNmjD3zzDP+mgcAAIhLoVDIXn/9dWvUqJH9/fffvtlw8eLFnkkBAEAkI0iRxKVLl87efPNND1bcfPPNXkNb9fFVAmrWrFlBDw9IsqWd1PtFJZ3Uh6J8+fK2YsUKb2JH6RcgfHz33Xce8FfptqxZs9r8+fOtSZMmQQ8LAACEoWPHjlmHDh3sySef9GBF+/btfZNEhgwZgh4aAACBI0gRJhSUWLRokY0cOdJy5sxpmzZt8nqW2qFBCSjg3Gzbts2aNWvmqdfff/+9L1qqB8XSpUutbNmyQQ8PQByaM2eOVaxY0a+RhQsX9n5PalwJAAAQ17TxqX79+r7pSdmayqYYMGCAJU+ePOihAQCQKBCkCCOa7DRv3tw2bNhgjz/+uJeAmjhxohUpUsR69OhBCSjgLKWddKOg0k4ff/yxv5a0s0mvpfvuu8+b1AMIH8OHD7fbb7/d9u/fb5UrV7Zly5ZZgQIFgh4WAAAIQ+ohqfnG9OnTLU2aNDZ+/Hjr1KkTpSUBAIiBlbcwpHI0qqW/evVqr7OtWpddunSx4sWL28yZM4MeHpCoqAm2mtUp7frgwYNe+mXlypU2cOBAy5IlS9DDAxCHTpw4Yc8995zdf//9XnJBgf3Zs2fzWgcAAPHi22+/9dKxujfPnj2733s0bNgw6GEBAJDoEKQIYwpKaBKkpr+5cuWyzZs3e2OuunXr+iQJiGRr1661xo0bW7Vq1fxjlXYaMWKELVmyxEqXLh308ADEscOHD3s5t1dffdUfd+3a1T766CNvlg0AABDXZsyYYZUqVfJMiqJFi3ppSQUsAADAqQhShDmlkGpRZv369d4EWCWgpk2b5k2B7777blu3bl3QQwQSlIJ1LVu29CDehAkTvJSTGtht3LjR2rRpQ2knIAzt3r3bqlevbmPHjvXaz++//769+OKLlFkAAADxYvDgwb45UJna6nenjVD58uULelgAACRarMZFUAmovn37+o7xpk2b+sLMJ5984gu1rVq1sh9++CHoIQLxSs1xH3jgAe/RogbzoVDIU62Vgq2mdZkzZw56iADiwaZNm+ymm27yxYHLLrvMZs2aZa1btw56WAAAIExLSz799NPWrl07O378uM85VHKZew0AAM6OIEWEKVy4sI0ePdoXZu+8806fRKnchRoGt23b1hdygXCyfft2e+SRR6xQoUI2bNgwv1lQw1z1nVAmhQJ1AMLTF1984X1mlEF19dVX29KlS73EGwAAQFxTL0hVK+jTp48/fumll+y9996zlClTBj00AAASPYIUEapEiRI2ceJE++qrr7xPhRZuhw4d6gu5jz76qC/sAknZrl27vBl2/vz5PVPiyJEjvjip3dSfffaZlSlTJughAohHH3/8sd166622Z88eK1eunNeBvvbaa4MeFgAACEM7d+70sk7aBKWghDK3X3jhBUpLAgBwjghSRLiyZcva9OnTfbfpLbfc4gu5/fv3twIFCthTTz3ldbyBpGTv3r3WpUsXr/n6+uuve7PcChUq2Pz5823evHn+MYDwpVJuPXr08H5MuqYpa3DBggWWI0eOoIcGAADCkPo/KnPzyy+/9LJOc+bMsebNmwc9LAAAkhSCFHAVK1b0RRwt4mqCpVRV9bBQeQyVylFNbyAx++mnn7w5vH5ntUD5119/WenSpaODcNrZBCC8HT161O6//34PVIreE9R/KW3atEEPDQAAhKGFCxd67yvdiyiDe9myZVa5cuWghwUAQJJDkAInUTkc1exWOZzrr7/eF3pVKkc9K+rWretBDO1SBRID/S5+/vnn1qhRIytYsKC98cYbtn//fitWrJiXM1PfCZUzI80aCH/79u3z1/uIESPs0ksvtYEDB3qwPVmyZEEPDQAAhKEPP/zQbrvtNp+DKFCh0pK6bwYAAOePIAVOoQVdNRZetWqVp6rWqVPHF4OnTZtm1atXt5IlS9rw4cM92wIIgkq4qOG7ypVpp5ICEmoCr5sEZU7897//9RIvBCeAyPDLL794RqAC6enSpbOpU6da+/btgx4WAAAIQ7o37t69u7Vu3dqzONUsW6Vls2XLFvTQAABIsi4JsS0e52Djxo329ttv23vvvWeHDh3y57JmzWoPPfSQH7ly5Qp6iIiQhnSDBw+2d955x3bs2OHPpU6d2lq2bGkdO3b0DAoACU8ZTJdddpn9+eefljFjxgT92l999ZVn+v3++++WO3duzwS87rrrEnQMAAAkFUFes8Phe/jnn3/sgQce8A1T0rlzZy81qyxOAABw4ddtghQ476bEyqJQc+0tW7b4cylSpLB77rnHF4nLlCkT9BARhpQZ8dZbb9moUaP8xkC0GNmhQwdr27atB8wARN5iweTJk71BtjL7lOWnAEWePHkS7OsDAJDUEKS4cHv27LGGDRvaokWLvJzkoEGDPGABAADOjCAF4tWxY8d8cahfv362ZMmS6OfVdFtpr0p5zZIlS6BjRNKmN6/x48d7rdfFixdHP68ST48//rg1btzYUqZMGegYAQSzWKCpiwKXnTp18o9r1apl48aNswwZMsT71wYAICkjSHFhfvzxRy+JvGHDBp9v6D5FpWYBAMDZEaRAgpba0GLR2LFjPXghWjxWLwuV4dFkLlWqVEEPE0mAarrOmjXL06enTJlihw8f9ueVPq3m2I899pg3paPXBBC5iwW6zihQOWDAAH/crl07z+5Lnjx5vH5dAADCAUGK86eG2PXq1bNdu3ZZ3rx5PXOzRIkS8f51AQAIBwQpkOC2b99uo0eP9p3vKs8TRRkVTZo08YCFMi1YYEZMegtauXKlBybGjBnjk/8o1157rf/eNG/e3G8IAET2YsHBgwetadOmNm3aNH/cp08fe+KJJ7iuAABwjghSnB9lTOh+RJunSpcubVOnTvWyswAA4NwQpECgFKTQorN6CCh4EaVgwYLWokULPwoUKBDoGBGsX375xX8/9Huyfv366OezZ8/ui5C6GdCNAIuPQOKXEIsF27ZtszvuuMO++eYbS506tY0cOdIzrAAAwLkjSHFutEzSt29fe/rpp/1x3bp1fUNe+vTp4+XrAQAQrs71un1pgo4KEUMNTLXDdevWrTZ79mxfcE6bNq1t3rzZunfv7sGKihUr2sCBA32xGpHh119/tcGDB9stt9xiV199tT3//PMeoNCCo5qvK3X6t99+814nasJOgAK4MHpv1WtMr63y5cvbihUrzvrvP/nkEytSpIj/e5UvmD59uiUma9as8e9DAYps2bLZggULCFAAABBh85WEotKSDz30UHSA4pFHHrFJkyYRoAAAIB6RSYEEozIdmtxp5/y8efPsxIkT0X9XrFgx72GhXbLqOUBt8fBw/Phx+/LLLz34oOPbb7896e8VrGjVqpUvNibVnVxAYqP+QHpdvfvuu37Dr6CfghBq9KhMpdiWLl1qlStXtldffdXfg7VLsHfv3vb1119b8eLFA9/RqD41d911lx04cMADKQqg5MuXL06/BgAAkSKxZFKc73wlob4HfW6VKp45c6ZvmHrzzTetY8eOcfo1AACIJPsp94TETGU7Pv74Y/v0009tyZIlJwUsMmfObDVr1vSgRa1atSxr1qyBjhXnZ+/evb6oqKDEjBkz7I8//oj+O0301ZdEjeeaNWtmV155ZaBjBcKRbvRvuOGG6MbSen9VTxftAuzcufMp/1434n/99Vd0nwfR6/S6667zhYPT+eeff/yIOenQ14jrxYIhQ4ZY+/btPeCpoObEiRP9GgEAAJJ2kOJ85isJNe9Q1rfuQVW6WFUAtHGjfv36cfb5AQCIRPvPce7BdnUEQs3G1OxUx549e05a1NZjNVDWcemll/pimSaLOlRGihJAiYvinGvXro3OllDQSQuKUTJlynRS0EmlWgDEjyNHjtiqVavs2WefjX5O76PVq1e3ZcuWnfb/0fOdOnU66Tm9ZidPnnzGr6OsixdffNHi0759+6xr167+fqKdlkOHDrWUKVPG69cEAACJb76SEPMOUVlaBShy5MjhmzfKli0b718TAAD8D0EKBC5LlizeKFlHVHkgTQq14K1JokqR6FD/giuuuMIqVapkFSpU8LJQ2umbIkWKoL+FiKIarfq56AZCP5cvvvjCtmzZctK/iSrfpUM/K8p3AQlj9+7d/j6qm+uY9Dhmg/qYduzYcdp/r+fPRIsKMQMbUTsa45ICnFOnTvW+Rs899xwBagAAInS+khDzDlHvRGWXqrzTVVddFeefHwAAnBkrh0hUkiVL5ovaOnr27OmNt1V/XAGLuXPnelNl1S/VIWnSpPE04aj/R4ELykPFLWW2LF++PDpYpIZ2mrzHlCpVKqtWrVp0YEIN8ACEL73mdcQ3vb/rAAAAkSuh5h26F33jjTfi/esAAIBTEaRAoqYdMg8++KAfhw8f9t37UTv4daj/weLFi/2IUqhQoeighY6iRYv6hBP/TrVg1awu6vzqON1uJtWSU0AoKjCkI126dIGMGcD/UZBW73e///77Sc/rcc6cOU/7/+j58/n3AAAACT1fAQAA4Y0gBZKM1KlTW9WqVf2IWlDfuHHjSQvq69ats02bNvnxwQcf+L/TrpvChQt7sCLmoef0OSORGs/pHOl8xTwUoFAwKLZrrrkmOigRFfhR3VgAiYt6NpQpU8bmzZtnDRo0iH6v1OOHH374tP+PXtv6+8ceeyz6uTlz5vjzAAAAiWG+AgAAwhtBCiRZWiQvUqSIH/fee290aSL1tIgKWuhjlSZas2aNHzGpvnm+fPlOCV7o86kWejjUP//zzz89EyIqCBH18Q8//OA3AqejElrlypWLDkiocTkltICkQzWbW7du7c0e9Vru16+fvw+2adPG/15NqNXfR00oRXWXq1SpYq+//rqXaxszZoytXLnShgwZEvB3AgAAInW+AgAAIgtBCoRdE+7atWv7IWrI9ssvv5ySMaBj37599uOPP/qhnhexF+pz5crl6cax/4z5cfbs2RO8KbS+p127dtn27du9se2Z/tQRu3dETBkzZjwlQKNDgRvKYwFJV5MmTfw9omvXrv4+cN1119nMmTOjm1Oq0X3MTCgFI0ePHm1dunTxBtUqmTd58mQrXrx4gN8FAACI5PkKAACILJeEQqFQ0IMAEpp+7VXz9HTBi23btp3z51G2RbZs2TzTQIENHSohFfuI+bwCACNHjvT//5577vHPoRJLsY+///77lMe7d+/2yfyZsiBOR8GU0wUjFGgJh2wRAMHbv3+/96pR9pYCoAAAIHEKh2t2OHwPAABEiv3neN0mSAHEouyD2BkJp8tW2Llz53kFC+KSggvK4jhddkfs59KnTx/IGAFEDhYLAABIGsLhmh0O3wMAAJFi/zletyn3BMSSLl06K1CggB//VnZJmQ0KWPzxxx+nzYY4XVaEPh4xYoR/jubNm3v/i3/Lvog6VM5KwQdlbyR0mSkAAAAAAAAAiGuscgIXSGWbVDP1QuqmDh8+PF7GBAAAAAAAAABJyf91zgQAAAAAAAAAAEhABCkAAAAAAAAAAEAgCFIAAAAAAAAAAIBAEKQAAAAAAAAAAACBIEgBAAAAAAAAAAACQZACAAAAAAAAAAAEgiAFAAAAAAAAAAAIBEEKAAAAAAAAAAAQiOTBfFkAABAuQqGQ/7l///6ghwIAAM4i6lodde1Oiph3AAAQfnMPghQAAOCiHDhwwP/Mmzdv0EMBAADneO2+7LLLLCli3gEAQPjNPS4JJeUtFAAAIHAnTpywbdu2WYYMGeySSy6J0x0XWoDYunWrZcyYMc4+b7jg/JwZ5+bMODdnx/k5M85NeJwf3f5rkSB37tx26aVJs/pzfM07ktLPMSnjHCcMznPC4DwnDM5z0j7H5zr3IJMCAABcFE008uTJE2+fX5MkJqNnxvk5M87NmXFuzo7zc2acm6R/fpJqBkVCzTuSys8xqeMcJwzOc8LgPCcMznPSPcfnMvdImlsnAAAAAAAAAABAkkeQAgAAAAAAAAAABIIgBQAASJRSpUpl3bp18z9xKs7PmXFuzoxzc3acnzPj3Jwd5yc88HOMf5zjhMF5Thic54TBeY6Mc0zjbAAAAAAAAAAAEAgyKQAAAAAAAAAAQCAIUgAAAAAAAAAAgEAQpAAAAAAAAAAAAIEgSAEAAAAAAAAAAAJBkAIAACRKAwcOtKuvvtpSp05t5cuXtxUrVgQ9pERh8eLFVrduXcudO7ddcsklNnny5KCHlGi8+uqrdsMNN1iGDBkse/bs1qBBA9uwYUPQw0oUBg0aZCVLlrSMGTP6cdNNN9mMGTOCHlai1KtXL39tPfbYY0EPJVHo3r27n4+YR5EiRYIeVqLx22+/WYsWLezyyy+3NGnSWIkSJWzlypVBDwtxOL/45JNP/Hde/14/3+nTpyfYWCPhHA8dOtRuvvlmy5w5sx/Vq1dnzhfPc+UxY8b4e7nmSYj787xv3z7r0KGD5cqVy1KlSmWFCxfmfSMeznO/fv3smmuu8Wtv3rx57fHHH7fDhw8n2Hgj4R5y4cKFVrp0af89LliwoL3//vvxOkaCFAAAINEZO3asderUybp162Zff/21lSpVymrWrGk7d+60SPfXX3/5+dBEHidbtGiR3xQuX77c5syZY0ePHrXbbrvNz1mky5Mnjy++r1q1yhdQq1WrZvXr17fvv/8+6KElKl999ZUNHjzYAzr4P8WKFbPt27dHH1988UXQQ0oU9u7daxUrVrQUKVJ40G/t2rX2+uuv+0IrwmN+sXTpUmvatKndd9999s033/iiro7vvvsuwccerudYi2A6xwsWLLBly5b5YqOu3QoAIu7nyj///LM9+eSTHhhC3J/nI0eOWI0aNfw8jx8/3jfLKBB3xRVXJPjYw/k8jx492jp37uz/ft26dTZ8+HD/HM8991yCjz1c7yF/+uknq1OnjlWtWtVWr17tm3fuv/9+mzVrVvwNMgQAAJDIlCtXLtShQ4fox8ePHw/lzp079OqrrwY6rsRGU7lJkyYFPYxEa+fOnX6OFi1aFPRQEqXMmTOHhg0bFvQwEo0DBw6EChUqFJozZ06oSpUqoY4dOwY9pEShW7duoVKlSgU9jETpmWeeCVWqVCnoYSAe5xd33313qE6dOic9V758+dCDDz4Y72ON1DncsWPHQhkyZAh98MEH8TjKyDzPOrcVKlTwa3/r1q1D9evXT6DRRs55HjRoUCh//vyhI0eOJOAoI+88699Wq1btpOc6deoUqlixYryPNVLuIZ9++ulQsWLFTnquSZMmoZo1a8bbuMikAAAAiYp2IGm3t9L9o1x66aX+WDvsgHP1559/+p9ZsmQJeiiJyvHjx73Ug3ZUqewT/kdZONoxFvO9B/+zadMmLw+QP39+a968uW3ZsiXoISUKU6ZMsbJly9pdd93lJeauv/563zGL8Jlf6PnY7wna3ct8JP7mcIcOHfJMSK7dcX+eX3rpJX+vUmYQ4uc867qguZXmFDly5LDixYtbz549fe6FuDvPFSpU8P8nqiTUjz/+6CW1br/99gQbd7hbFsD1L3m8fWYAAIALsHv3bp/Ia2Ifkx6vX78+sHEhaTlx4oSnJasUi24QYbZmzRq/cVa93vTp09ukSZPs2muvDXpYiYKCNiovoHJPOJnqQqsGseo+q9TTiy++6GVCVO5G/V8imRZF1O9FJSpUYkK/P48++qilTJnSWrduHfTwEAfzix07dpz23+t5xM8c7plnnvGgKAHjuD3PKtOnkjgq24L4O8+6LsyfP98D+lo037x5s7Vv394DbypNhLg5z82aNfP/r1KlSqoQZMeOHbN27dpR7ikOnen6t3//fvv777+9F0hcI0gBAACAsKMdbFpEpXb+/9EisxYnlGGiOslaRFUfj0gPVGzdutU6duzofUzUrBEnq127dvTH6tWhoMVVV11l48aNi/jduAqGKpNCu2RFmRR633n33XcJUgAXQL2TFDRWnwrej+POgQMHrGXLlp7plTVr1qCHE/bXBWWrDBkyxJIlS2ZlypTx/ip9+vQhSBGH9B6ha+8777zj8xIFgzSXe/nll+2FF14Ieni4QAQpAABAoqKbJ03qf//995Oe1+OcOXMGNi4kHQ8//LBNmzbNFi9e7A2j8T/a3V2wYEH/WDfN2vX91ltveaPoSKZyAWrMWLp06ejntKNPvz8DBgywf/75x9+T8D+ZMmWywoUL+4JApMuVK9cpQb6iRYvahAkTAhsT4nZ+oeeZjyTMHK5v374epJg7d64HRBF35/mHH37wRs5169Y9aTFdkidP7s2dCxQokAAjD//fZ10XUqRIcdK8QdcF7UpXWSPNxXDx51mBCAXe1MhZSpQo4WVM27Zta88//7yXi8LFOdP1L2PGjPGSRSH81AAAQKKiybsWUOfNm3fSjZQeUz8fZ6N0bwUoVMZIqfb58uULekiJml5XWoCPdLfeequXwlKWSdSh3fEq1aCPCVCc7ODBg77gpYWYSKdyclrci2njxo2eaYLwmF/o+Zj/XpR1xXwkbudwr732mu+Anjlzpr//Im7Pc5EiRU65ztWrV8+qVq3qH+fNmzeBv4Pw/X3WdUFB/KggUNR1QddMAhRxd57VuyZ2ICJqvva/vtC4WIFc/+KtJTcAAMAFGjNmTChVqlSh999/P7R27dpQ27ZtQ5kyZQrt2LEjFOkOHDgQ+uabb/zQVO6NN97wj3/55ZdQpHvooYdCl112WWjhwoWh7du3Rx+HDh0KRbrOnTuHFi1aFPrpp59C//3vf/3xJZdcEpo9e3bQQ0uUqlSpEurYsWPQw0gUnnjiCX9N6XdnyZIloerVq4eyZs0a2rlzZyjSrVixIpQ8efJQjx49Qps2bQqNGjUqlDZt2tDIkSODHhoucH7RsmVLf3+Mot95/Yz79u0bWrduXahbt26hFClShNasWRPgdxFe57hXr16hlClThsaPH3/StVvzHcTdeY6tdevWofr16yfgiCPjPG/ZsiWUIUOG0MMPPxzasGFDaNq0aaHs2bOHXnnllQC/i/A7z3ov1nn++OOPQz/++KPPZwsUKBC6++67A/wukvY9ZOfOnf08R9F51Zzmqaee8uvfwIEDQ8mSJQvNnDkz3sZIkAIAACRK/fv3D1155ZV+41quXLnQ8uXLgx5SorBgwQKfWMY+dLMZ6U53XnS89957oUh37733hq666ip/PWXLli106623EqA4C4IU/6dJkyahXLly+e/OFVdc4Y83b94c9LASjalTp4aKFy/uiytFihQJDRkyJOgh4SLmF3rtx76ejhs3LlS4cGH/98WKFQt99tlnAYw6fM+xrk2nu3ZrERJx+7scE0GK+DvPS5cuDZUvX96vC/nz5/dA9rFjxwIYefie56NHj4a6d+/ugYnUqVOH8ubNG2rfvn1o7969AY0+6d9Dtm7d2s9z7P/nuuuu85+Jfpfj+57qEv0n/vI0AAAAAAAAAAAATo+eFAAAAAAAAAAAIBAEKQAAAAAAAAAAQCAIUgAAAAAAAAAAgEAQpAAAAAAAAAAAAIEgSAEAAAAAAAAAAAJBkAIAAAAAAAAAAASCIAUAAAAAAAAAAAgEQQoAAAAAAAAAABAIghQAAABAEjdo0CC78sorLV26dNawYUPbtWvXv/4/GzZssJw5c9qBAwfiZUyXXHKJTZ482T/evXu3Zc+e3X799dd4+VoAACA4Ma/5ieHzBOHnn3/28a9evTrooQBJEkEKAAAAIAmbOHGiPfXUU9a/f39buXKlBx0aN278r//fs88+a4888ohlyJAh3seYNWtWa9WqlXXr1i3evxYAAOFmx44dfs3Onz+/pUqVyvLmzWt169a1efPmWVLUvXt3u+666055fvv27Va7du1AxgQgWAQpAAAAgCSsR48e9vDDD1v9+vWtaNGi9sEHH9gXX3zhx5ls2bLFpk2bZv/5z3/O+G+OHz9uJ06ciLNxtmnTxkaNGmV79uyJs88JAEC40w79MmXK2Pz5861Pnz62Zs0amzlzplWtWtU6dOhg4UQZngrCJDZHjx4NeghA2CNIAQAAACRRe/futa+//trq1KkT/Vzu3LmtePHiNnfu3DP+f+PGjbNSpUrZFVdcEf3c+++/b5kyZbIpU6bYtdde64sECmZ89dVXVqNGDc+GuOyyy6xKlSr+NWPatGmTVa5c2VKnTu3/75w5c075msWKFfOxTZo0Kc6+fwAAwl379u29jNCKFSusUaNGVrhwYb+mdurUyZYvX37GUkP79u3z5xYuXOiP9acez5o1y66//npLkyaNVatWzXbu3GkzZszwjQ4ZM2a0Zs2a2aFDh6I/z9VXX239+vU7aUzKglA2xJk888wzPs60adN69scLL7wQvdCv+caLL75o3377rY9Hh56LXe6pQoUK/nliUjnLFClS2OLFi/3xP//8Y08++aTPZ1Tysnz58tHf75noa6hMpjI2dA40vvHjx0f/fdS5HDt2rM95NLfRJgtt3HjppZcsT548PkfSOVCwKLb169f72PX/aT62aNGis44HwP8QpAAAAACSqB9//NH/LFiw4EnPFypUKPrvTufzzz+3smXLnvK8FiV69+5tw4YNs++//977SKh8VOvWrT0zQ4sh+ty33357dC8L3bSrD0bKlCntyy+/tHffffeURYUo5cqV868NAAD+nbIPtRCujAktwsemzQXnS8GFAQMG2NKlS23r1q129913exBi9OjR9tlnn9ns2bO9hOTFUClJBR7Wrl1rb731lg0dOtTefPNN/7smTZrYE0884YEWlXfSoedia968uY0ZM8ZCoVD0cwocaMPDzTff7I+VSbps2TL/d//973/trrvuslq1avnmibNR0EQBHwVK9HXuueceW7du3Un/pnPnztaxY0d/vmbNmv59vP7669a3b1//WnquXr16p3wtleDU9/fNN9/YTTfd5GW5/vjjj4s6n0AkIEgBAAAAJFFROx0VOEifPn308emnn560CzK2X375xW/yY9Mux3feecd3AF5zzTW+A1K7LFu0aGFFihTxXZZDhgzxzx21M1AZG9o1+OGHH3p2hjIqevbsedqvq6+prw0AAP7d5s2bfZFe1+C48sorr1jFihU9m+K+++7z67kyC/RYi//qa7VgwYKL+hpdunTxuYSyMLRIr2wHZXGKshc0V0mePLmXd9Kh52JT8GTbtm0nla9UIKVp06ae6aBsz/fee88++eQTH3eBAgX861SqVMmfPxsFM+6//37P9nj55Zd940bswMxjjz3mmzDy5ctnuXLl8uCENmEooKE5kjZ1KJsidpaJAicKgGjOpPOqLNThw4df1PkEIkHyoAcAAAAA4MIoiCAqbRBzN6V2/kX93en8/fffXoYgNmVDlCxZ8qTnfv/9d19s0NdQSQj1qlCQQosDoh2GauAZM+ihnYOno0WIswVPAADA/4mZRRBXYl7nc+TIEV2SKeZzKi11MZTx8Pbbb9sPP/xgBw8etGPHjnkpqfORLVs2u+2227zUkoIQP/30k2dNDB482P9evTk0J1GgISaVgLr88svP+rljz1P0OGapLImZcbp//34PmCi4E5MeKxvjTJ9bgRh9nthZGgBORZACAAAASKKiFhV04x+z5NPhw4dPWnCITf0l1M/idEEE7U6MSaWeVKZAZQ6uuuoqr8OsG/AjR45cUNkKLToAAIB/p0xJXZeVsXg2l1566SlBjTM1e1ZPhyj63DEfRz2nUo4xP3fsYMnZGkkrkKASSuo7oZJIyiRQOSaVSjpf+jyPPvqoZzkoi6JEiRJ+iIIfyZIls1WrVvmfMSlT42KdrrwWgPhDuScAAAAgicqcObOVKVPmpD4PumnXAoGaXZ+JSjqoTvS5WLJkiS8QqA+F6kcrSLF79+7ov1c5A9W0Vk3pKFGNPGP77rvv/GsDAIB/lyVLFl/oHzhwoP3111+n/L2aY0vUBoCY1+LYmQEXSp875udVVoGyGs5EvS60qeH555/3LAIFWmKXelTmprIg/k39+vV944X6cihIoaBFFM0n9DmU5amNGjEPlZA6m9jzFD3WfOZMtBlEGaOaE8Wkx9dee+0ZP7cySBREOdvnBvA/BCkAAACAJEyLADrU6FLNG1Vfunz58qeUJIhJCx4KZJzLAoEWFz766CMvVaDG2FogiFk7unr16l5qQRkXKnmggInGE5vKPOlGXaUbAADAuVGAQtfrcuXK2YQJE/xar2uyyilFlRbSdfnGG2+0Xr16+d+pz4RKNcYF9abSPEDXd5VY0vU+duZC7HmDSkIqe0LlnjTOSZMmnfRv1KtCgQ4FUrTxQSWazpTN0KBBA290re9L/SiiaO6hOUmrVq1s4sSJ/vlUpurVV1/1BuBnoz4WI0aMsI0bN1q3bt38/1MvibNRQ2z1oVApqw0bNnhjbY1fJTZj/7z0/Sr7RQ3Plbl67733Rv+9+ovEPh8ACFIAAAAASdqdd95p3bt39+CEGlerBENUc8ozqV27ttdJVtPrf6Nmj7rBLl26tLVs2dKzKrJnz35SGQjdbKvPhRZQ1IiyR48ep3weNfO+8sorva40AAA4Nyrf+PXXX1vVqlXtiSeesOLFi3u25Lx587wxcxQtumvnvjIs1fRZDbLjwrPPPmtVqlSxO+64w+rUqeNBAzWpPpN69erZ448/7ov+aiytzAoFGWJSY+latWr596RMjY8//viMn0+BCG2C0PxB84iY1CBbQQqdFzWz1ti++uqrU/5dbCpFpSCK+nN8+OGH/vVjZ0TEpvlPp06d/Gup5JSyO6ZMmeJBmZgUKNKhOZmafuvfqMxmFAU4/vzzz7N+LSASXRKKjy48AAAAABI17fTTjfOsWbMS5Otph6du8Js1a5YgXw8AACA29dzQ5goFNAAkHjTOBgAAACLQgw8+6LWsDxw4YBkyZIjXr6VSDg0bNjypTAMAAAAACJkUAAAAAAAAAMIemRRA4kQmBQAAAAAAAICwx15tIHGicTYAAAAAAAAAAAgEQQoAAAAAAAAAABAIghQAAAAAAAAAACAQBCkAAAAAAAAAAEAgCFIAAAAAAAAAAIBAEKQAAAAAAAAAAACBIEgBAAAAAAAAAAACQZACAAAAAAAAAABYEP4fsVwnNwtX8BcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9f1JREFUeJzs3QWUVeX3+P9Nd3c3qCAgIF0i3V3SJQIioEiXiqQ0IqUgId2hIt3SISIgLd3d/tfe3/+dH/ABBZw558b7tdZdc+8Q55lz75x49rP3DvX333//LQAAAAAAAAAAAA4L7fQGAQAAAAAAAAAAFEEKAAAAAAAAAADgCoIUAAAAAAAAAADAFQQpAAAAAAAAAACAKwhSAAAAAAAAAAAAVxCkAAAAAAAAAAAAriBIAQAAAAAAAAAAXEGQAgAAAAAAAAAAuIIgBQAAAAAAAAAAcAVBCj+WMmVKadCggePbPXr0qIQKFUomTJggvmjVqlU2fv36uEmTJslrr70m4cKFk5gxY4ov0s+Dfi4epz9rz549XdmvhQsXlkyZMokTfP1zCQAAAAAAAPgjghQ+6M8//5T3339fUqdOLREjRpTo0aNLvnz5ZOjQoXL79m23h+eX9u/fbxP8adKkkbFjx8qYMWMkkE2dOlWGDBki3sibxwYAAAAAAADgSWGfeg0vt3jxYqlWrZpEiBBB6tWrZ6vQ7927J+vWrZP27dvLb7/9FjSB/scff0jo0MShXlbBggUt2BM+fPig7+nq/0ePHlkgKG3atOJP9GcNGzbsSwcC9u7dK23atPlP+zUkPG9sKVKksO1rJgwAAAAAAAAA70CQwoccOXJEatasaZOtK1askESJEgX9WcuWLeXQoUMWxPDQQMa/uXnzpkSJEkW8mdNj1MCOZqg87ty5c/Y1OMs83bp1SyJHjixue/pnDW537tyxwMSz9quTtNSTm9sHAAAAAAAA8L9YZu9D+vfvLzdu3JDx48c/EaDw0BX+H3300XN7Umgtfp2oXb16tbRo0ULix48vSZMmDfrzpUuXSqFChSRatGhWQurtt9+2VenP+/8e7yugj3+ye/du+7eeElUJEyaURo0aycWLF5/4e9obQce4b98+qV27tsSKFUvy58//3P/X8/ef5vlZtQ/B4+MvW7asZZ3kzJnTxqHj+f777/+xd4L+ux49etjzePHi/U8Ph6+//loyZsxoQaHEiRNbwOjKlSv/s48062Xbtm2WUaDBic6dOwf1SRg4cKCMHDnSxqN/Vrx4cTlx4oT8/fff8vnnn9v7FClSJKlQoYJcunRJXsS8efNsm/pz6te5c+c+8+89/fNcv37dshD059afST8nxYoVk+3btwf9LBoMO3bsmP1bfXj6XHj23bRp06Rr166SJEkS+3muXbv23F4fSvdL3rx57WdMlSqVfPPNN//6fj7rvfqnsT2vJ4UG/AoUKGCBMA1C6T7+/fffn/k500Cgfo7178WIEUMaNmxowSYAAAAAAAAAr4ZMCh+ycOFCm8TWydz/QgMUOtnevXt3y1JQOnGrQQOdbO/UqZNNwu7YsUN+/PFHCxb8V8uWLZPDhw/bpK4GKDxlqfTrpk2b/ifQoCWt0qVLJ19++aVN1AcXnWSuWrWqNG7cWOrXry/ffvutTTpnz57dfvZn0f4GGsjQSf5Ro0ZJ1KhRJXPmzEGT17169ZKiRYvKBx98YCW29O9s2bJF1q9f/0RpIQ3IlCpVyrJh6tSpIwkSJAj6sylTpljZrg8//NCCEBqQql69uhQpUsQm4Dt06GBjHz58uHzyySc27n/y888/S5UqVeSNN96QPn362LZ13z8elHqe5s2by6xZs6RVq1b27/XfamBHJ+6zZcsmXbp0katXr8rJkydl8ODB9m90nzxOAyuaPaFjvXv37j+WeLp8+bKULl3aft5atWrJjBkzbF/qv9HP5Mt4kbE97pdffrH3RH+v9L3UclC6j7XHiwZlnm4yrmPUIIruU/3zcePGWRCnX79+LzVOAAAAAAAAAP+HIIWP0JXof/31l63y/q9ix44ty5cvlzBhwthrndRt3bq1ZRfohPjjJXGCK0CggZGPP/74ie/lzp3bJqV1AlxXsj8uS5YsT2RxBBcNIqxZsyZoezrpnCxZMvnuu+8sm+FZKlasKDt37rQghQY44saNa98/f/68TVZr1oNmoXj6f7z22ms2wT958mQLDHicOXPGMgS06bmHJzNA39uDBw/a6nz18OFD+7910nzr1q1BPSN0mxrQ0EDIP5Xz0qCGBkF033r+T82S0bFqubB/opkITZs2la+++iroe59++mnQc82q0AwJDS5osOV5JZ503JoZ8W9OnTpl22rXrp291v2TK1cuC5bVrVv3pXpIvMjYHqd9XPT3YePGjfbV836/9dZblj0zceLEJ/6+fl8zmTw0gKOvCVIAAAAAAAAAr4ZyTz4UpFBaium/0gloT4DCk+WgJX46duz4PzX7n1VK6VU8PlmtE9gXLlywIIXylBF6ejV/SNDMgMcDIppRkiFDBsvyeFm6Cl+zH7Q00uMNynX/armsx/uDKA0qPB60eDpzxBNMUDpJr3Si/fGm1vp93aYGNZ7n9OnTFlTRTJHH/0+dwNef/99oFs3mzZstePCqdNsvEqBQ+vM9HrjRDAp9rX1AtAxUSPHsJ82k8QQolGbJ6L5asmTJv34u9bOkgQrP7ycAAAAAAACAl0OQwkfopLfSYMJ/peVqHvfnn3/aV+1bEFK0hJH2y9DV/Tp5rcEBzzg0k+PfxhhckidP/j/f074XuvL+ZWnfA6VBjsfpJLuWD/L8uYeu8H9e2aOnx+UJLmiWx7O+/0/j9WxXy2U97emxPouWmtq7d69tW7NrtAzSywZxXub90z4eTzdGT58+vX19ugdFcHre+6def/11C6R5yqE9733Sz456lc8PAAAAAAAAAIIUPhWk0MlcnTz+r150hfvTnpdVoaWJ/o2WVRo7dqytRJ8zZ471TNB+F+rRo0evPMaXHdPjGSSPC86+F8/zTz/T88blxnj1vdKghPZm0M/cgAEDrF+HlrQK6c9YSHz2gpObnx8AAAAAAADAH5FJ4UPKli1rWQ9aPz84pUmTxr7+WwBEV41fuXLlf77/dMbA03SVufbA0HJS2mS6UqVKVk5Hsw3+K89K9qfH9W9jCg6e3g7a5+JxWo7pyJEj/9r7IaTHpT0unvb0WJ8nUaJE1kdk3rx59rPEiRNHevfuHexlwJSWlXo6Y+HAgQP21dO4+mXe5xcd2/PeP7V//37rPfJ0hgcAAAAAAACA4EWQwodo82KdNG3SpImcPXv2f/5cAxhDhw596f9Xmylrrwtt1Kz9Ip63QlyDGZs2bbJJeI9FixbJiRMnXmj1+dOrzYcMGSLBFWDRZtgeOuH9dMPjkFC0aFEr3zRs2LAnfjZtpKwlrMqUKSNu0ABD1qxZbR88XkpLe4/s27fvH/+tZiY8XX4rfvz4llFx9+7doO/p5/BZZbpexYMHD2T06NFBr/Xzpa+1JFj27Nmf+z7rWMeMGfM//9+Lju3x/fR48EODdZrpU7p06f/8swEAAAAAAAD4Z/+vIy+8nk7UTp06VWrUqGE18+vVq2d9JHRSd8OGDTJz5kxrAvwqpaQGDx5swY+3335bateubSvXd+3aJbdu3Qqa8Nc/nzVrlpQsWdJKAmlQZPLkyUETyP/0/xcsWNB6Hdy/f996M+gksK7Q/680wKJ9Aho3bizt27e3gMi3335rE9zHjx+XkKTb6NSpk2WH6D4pX768rcr/+uuvbT9q02u3aMBJgyT58+eXRo0aWU8QLd+kZZtu3Ljx3H+nPU+SJk0qVatWlSxZskjUqFGtQfiWLVvkq6++Cvp7GjyYPn26tGvXzn5W/XvlypV7pbFqAKRfv37Wf0J7Uej/qw2tNQARLlw4+zs6bm20rvtbfxZtdD1t2jQLcDztZcampaxKlSolefLksc/Q7du3bT9p7w/txQEAAAAAAAAgZJFJ4WN0Inz37t02iTx//nxp2bKllVHSCV6dRNZV/a9CJ2gXLFhgAYXPP/9cOnToINu3b7cJXI8SJUrYNrQUT5s2bazslGZS6KT2v9Hgiv77kSNH2kSzTj6/TI+D59H/Z+7cuRYo6datm/38Gkxp1aqVOEEnskeMGGEBkbZt28qMGTOkWbNmFoTxTLC7QYMmGrTSbAPd39oH5LvvvpMcOXL847+LHDmylXnSIEGPHj3sZ/IEXnTS30P/jgaz9P/Urx9++OErj1UDYkuWLJGtW7daoEkzc3SfNm3a9Im/N2XKFMmbN6/07dtXvvzyS3nnnXfs+dNeZmyaDaO9UbScVffu3WXgwIEWDFm/fn2INW8HAAAAAAAA8P+E+puOrwAAAAAAAAAAwAVkUgAAAAAAAAAAAFcQpAAAAAAAAAAAAK4gSAEAAAAAAAAAAFxBkAIAAAAAAAAAALiCIAUAAAAAAAAAAHAFQQoAAAAAAAAAAOCKsO5sFgAA+ItHjx7JqVOnJFq0aBIqVCi3hwMAAJ7j77//luvXr0vixIkldGjfXLPIdQcAAP537UGQAgAA/CcaoEiWLBl7EQAAH3HixAlJmjSp+CKuOwAA8L9rD4IUAADgP9EMCs9FR/To0dmbAAB4qWvXrtnCAs+52xdx3QEAgP9dexCkAAAA/4mnxJMGKAhSAADg/Xy5PCPXHQAA+N+1h28WoQQAAAAAAAAAAD6PIAUAAAAAAAAAAHAFQQoAAAAAAAAAAOAKghQAAAAAAAAAAMAVBCkAAAAAAAAAAIArCFIAAAAAAAAAAABXhHVns4D/+vvvv+X27dty5coVuXr1qjx69Oil/n3o0KElevToEjNmTIkcObKEChUqxMYKAAAAAAAAAG4iSAH8S8Dh8uXLcvToUXucP3/egg/6Pf3qeTz9+t69e8GyX8OFC2fBCs8jVqxYz3weN25cSZkypT3ixIlDYAMAAAAAAACATyBIgYB348YNOXLkiD00EPH082vXrr3SPvJkRIQN+3K/Zg8fPrRt6tf79+9bYEQfLypq1KiSKlUqe2jQwvPc81rHBAAAAAAAAADegCAFAoZmOOzcuVN27Nhhj99//90CERcuXPjXfxs/fnyb5E+YMOELZTboI1q0aK+c0aAZHBo8eV6mxuOv9fnZs2ftZzlz5oz9uz179tjjWWLHjm0/S4YMGeStt96SbNmy2VcdPwAAAAAAAAA4iSAF/JJO1nuCEdu3b7evhw8ffu7f1wn6pzMPPM/1q/aGcJIGNzTIoY9kyZK98L/TXhjHjh17bmbIxYsX5dKlS/bYtm2bTJ06Nejf6s+pwYrHAxeJEiWidBQAAAAAAACAEBPqb12yDfgwLYW0bt06C0Z4AhKnT59+5t9NkSJF0ET8m2++KalTp7bJ+RgxYkgg0DJSGsTQgM3evXuDgjgaxHheBoknYKFfCxQoIAkSJHB83AC8/9iix9GrV69SUg4AAC/mD+dsf/gZAAAIFNde8LxNkAI++eFes2aNrFixwh67du16ZibC0+WMsmbNak2l8fxSWJ4gj6cc1qNHj/7n72bMmFHeffddKVKkiBQqVMhKWwHwHnp8HDBggGVLacB27ty5UrFixX/8N6tWrZJ27drJb7/9ZtlbXbt2lQYNGrzwNpksAADAN/jDOdsffgYAAALFtRc8b1PuCV7vzp07smHDBgtILF++XLZs2WJNpR+XKVMmyZUrV1BQInPmzBIlShTXxuxrNNBQuHBhe3jcunXL+lp4gha//vqrBYR0ElMfw4YNs+bg2bNnt4CFBi7y5cvneGksAE+6efOmZMmSRRo1aiSVK1f+192jmVRlypSR5s2by5QpU+w426RJEyv3VqJECXYvAAAAAAAIUWRSwOs8ePBAtm7dahNlGphYv3693L1794m/kyZNmqDV/O+8846VJULI054WuuLa89788ccfT/x5uHDhJE+ePEHvjQaO9HsA3KFZZf+WSdGhQwdZvHixlYDzqFmzpmVY/fjjjy+0HVY0AgAQvC5cuGALD7RcbXDyh3O2P/wMAAB4m+3bt9vC7+BGJgV8yv37923Se9asWTahppPhj9MVvTrxrQ8NSgT3xTpejJbLqlKlij3UX3/9FVR2SwMXJ06csFIz+ujRo4dlaFSoUEGqVq0qxYoVkwgRIrCrAS+zceNGKVq06BPf0wyKNm3aPPffaOD48eCxXnQAAIDgcfDgQSldurSEDRvWMspjxYrFrgUAACFCS7137NjRykZPmjRJ6tSpI26g3BNcoxNcv/zyiwUm5s+fL5cvXw76M70Q12CEZ0W+9pfQFcHwLkmSJJG6deva4++//5Y///wzKMtCH7oCbOLEifbQVU7lypWTatWqSfHixSVSpEhuDx+AiJw5c0YSJEjwxL7Q1xp4uH379jN/V/v06SO9evVi/wEAEMzWrVtnGZC6aEsXZun1NEEKAAAQEvSeX+f0Zs+eba918bFbCFLA8f4SP/30kwUmFixY8MTqW50U0/rpuuq+YMGCtnIIvkODSGnTprXH+++/b31DtFSXvtd6sDt16pTVu9dH1KhRpWzZsvZelypVij4WgI/p1KmTNdr20GO5NtwGAACvbtq0aVK/fn25d++evP3227Jw4cL/WUgAAAAQHM6dO2fVTzZt2iThw4eX8ePHu5ZFoZgFRojTBsxa13zmzJmyaNEiuXHjRtCfJU6c2EoH6WS1Nl0OEyYM74if0PdSg036GDJkiB30NGChD43M6k2YPrTRtqaz62dAm/dqAAOAcxImTChnz5594nv6WrOfnpfxpKXbKN8GAEDw0IxkzVLs0qWLva5UqZJMnjyZhTwAACBE7N+/3+bijhw5YhmbWnq/UKFC4iaCFAgxO3fulDFjxtgF9vXr14O+r6ttdUJaH7lz55bQoUPzLvg5fY/z5s1rj6+++kq2bNkSFLDQA6LneZQoUaRWrVrSrFkzyZEjByW+AAdos/slS5Y88b1ly5bZ9wEAQMj35mvevLl8++239lozFfv378/iLQAAECJWr15tpSWvXLkiqVOntvkALbPvtlB/67INIJjcvHnTVsdrcOLXX38N+n7KlCktKKH9CDR1mf4SUHr42bFjhwUoNNPm0KFDQTsma9asVjaqdu3atqIbwIvRbDXP79Jbb70lgwYNsh4/sWPHluTJk1upJm16//3339vf0UBhpkyZpGXLltKoUSPrJ9O6dWtZvHixNdB+EVruKUaMGHL16lV+XwEAeEF63tR7JO3Tp4t6hg8fLi1atAjR/ecP52x/+BkAAHDDpEmTpHHjxrZIQheOayn+ePHiecV5myAFgsWuXbtk9OjRT2RNhAsXzlKVdaK5cOHCZEzgXwMW2ihQA1wasNDG6orsCuDlrFq1yoIST9Ma1xMmTJAGDRrI0aNH7e89/m/atm0r+/btk6RJk0q3bt3s770oJgsAAHg5x44ds1Knv/32m13vTp8+3V6HNH84Z/vDzwAAgNNzbp999pn07NnTXusiCV24+LwSz8GJIAVC3POyJtKkSWPlenSCK378+LwTeGkXL1606K4GvrROnoeuCtfPFtkVgHdhsgAAgBe3detWKVeunJw5c8Z69GnfPr3OdYI/nLP94WcAAMAp9+7dk6ZNmwZVU/j000+tF5ZT5fcJUiDE7N27V77++utnZk3oBLKu4KXPBIIzu0KDFVoS6unsig8++ECyZcvGzgZcxmQBAAAvZv78+bbg5tatW5I5c2Yrr6hZjE7xh3O2P/wMAAA44fLly1K5cmWrnhAmTBibz9W5WycRpECw27hxo3z55Ze20seDrAk4mV2hUV/N3Hk8u6J48eLSuXNnKViwIL1OAJcwWQAAwL8bOnSolVfUhTja92nGjBmOT7L7wznbH34GAABC2uHDh62UpM6hRY0a1UqrlyxZ0mvP287kdcBn6QX0smXLLDsib968FqDQptdVqlSxBm8HDhywNCHKOiGkxYkTJ6hm/urVq6VmzZoWBf7555+t50n+/PltJZp+ZgEAAABv8fDhQ2ndurW0adPGrlV1BePChQuZYAcAACFi8+bN1hhbAxSasbl+/XpXAhQvgyAFnunRo0cyd+5cyZkzp61U17QgLenUqFEj+4Br6Z13332Xsk5wnAbJNGvihx9+kIMHD1rJpwgRIsiGDRukbNmyVs9XGw/qzSAAAADgphs3blhZ3OHDh9vr/v37yzfffGP3VgAAAMFt9uzZtpj3/PnzNkemAQstMentCFLgCffv37eGxZkyZbKaZdrUTTu9f/TRR/Lnn3/K+PHjJX369Ow1eIVUqVJZPb0jR45I+/btLX1t165dlmXx2muvybhx44L6WAAAAABOOnXqlBQqVMiyJiJGjGhlFvSaVRfdAAAABKe///5bBg4cKNWqVZM7d+7YQt41a9ZI4sSJfWJHE6SAuX37tk32pkuXTurVqye///671Qvr0qWLHDt2TIYMGSLJkiVjb8ErJUqUyFal6We1V69eEjt2bDl06JA0bdrU+qbo5/fmzZtuDxMAAAABYs+ePVZmYfv27RIvXjxZuXKlVK1a1e1hAQAAP/TgwQNp0aKFLYbQYEWrVq1k3rx5tpjXVxCkCHCaOTFy5Ehbkd6yZUub5NX+En369LHnX3zxhV1UA75AgxPdu3e3z+6gQYMsWvzXX39ZL4sUKVLIV199RWYFAAAAQpT2TMuXL5+cOHFCMmTIIJs2bbKABQAAQHC7fv26lC9f3spJaramLtTVMpPax9WXEKQIUBpVmz9/vpV10uja2bNnJXny5DJixAg5evSodOzY0TIpAF+kkWINTBw+fFjGjBlj2RQXL16UTz75RF5//XWZMWMGDbYBAAAQ7MaOHSulS5e2CQMt9aR901KnTs2efoouJKpTp47EiRPHygu/+eabVmoYAAC8uJMnT0qBAgVk6dKldj7V/sJast8XEaQIQHrx984770jFihXlwIEDlimh2RRaHkezKfRDDfgDbaitJZ+02bv2U9GyUNq/okaNGpI3b167aQQAAAD+q0ePHtlCr2bNmsnDhw9tAv6nn36yTF886fLly5Zpos3DdVJl3759lvEcK1YsdhUAAC9o586dkitXLuvNmiBBAus/UaFCBfFVof7WJfUICMePH7ceE5MnT7bX2rxNV5vrxXT06NHdHh4Q4rQvhTYR0v4Vt27dsu9pQyEtb6bZFgBezbVr1yz77urVq5xPAAAB2d+vfv361hhbafnRnj17emWDbG84Z+v95/r162Xt2rUv9Pfv3r37RMlW/Rm0XyLXHQCAQLVkyRJbgHvjxg3JmDGjLF682Mqce6MXvfYgkyIA6Iehc+fOVg/VE6DQlT1//PGHfPnll0woIWBEiRJFevToYVlDjRs3thtHvZnUElDt2rWTS5cuuT1EAAAA+JDz58/Lu+++a9eUmhkwceJE6dWrl1cGKLzFggULJEeOHLZYSPshvvXWW1Ym63l0QZFObngeGqAAACBQjRo1SsqVK2cBCr0GWbdundcGKF4GmRR+3tldL/Z0UlYvnpXWRdVU2uzZs7s9vIBI+dYDhuehTcr1e56HJjFpE5vQoUPbI2zYsNZLwfPwtQY3vmj37t3Svn17a26oNMW8W7duVvYsfPjwbg8P8BnesCoTAACn6aIv7T+hfdBixoxpdaALFy7s1W+EN5yzNaNf6SIhDVRs2bLF6mdrw0/NSHkamRQAAIjNJX766ac2r6saNWpk505dJOEP1x4EKfyUTrrqhZ7W4lfp06eXAQMGWKSNVT2vdiDQQM/p06efeJw6dcq+XrhwwZrj6UMDEvrVU07oVUWOHNmCFdGiRQv6GjduXOur4HkkTpw46Ln2FiGw8Wq0XrA21d67d6+91tJPgwYNkvLly/+n9xAIFN4w4QEAgJO07rP2+NP+CqlSpbIyC5qd6+284Zyti4E0k+Lx/nCtW7e2YMXGjRt94mcAAMBJt27dkrp168qcOXPsde/evaVTp04+Mcf7ouftsI6OCiFOJ8t1RcqkSZPstU5qaz1UbeDm7ZE1b8g8OXr0qDUT11VR+lUfBw8etGCENsB7nAYFPAGClClTWhDh8YDC41/1oRfjnqwJfajHMys008KTdfF0wMPzVQMlejGvgRF9/nhLGQ1QJEyYUNKlS2dBKX1oiS/9qjdOvP/PV6JECSlatKh89913lknx559/WrOhqlWryvDhw22/AgAAAGrKlCm2evHevXvWsFLLF2nZIrwYvX964403nvieBnhmz57NLgQA4Clnz561RbS//vqrzS1OmDBBatWqJf6GIIWf0MnqadOmWfaETl5rJE1Xo2g9VI1W4cl9pU3Et23bZo89e/ZYMEInpjVQoSJFihQ02a/9O5InT/5EBkOCBAlcLwekQY1z584FZXPo48SJExZU0QOX9h/xZHNoACN16tT287z55ptW7ksfGlzxhairE3QfNWnSRGrWrClffPGFNdieNWuWLF++3FLpGjRowL4CAAAI8PsIvU7UxtiqSpUqtjhM7x3w4vLly2eLwh6n92P+UE8bAIDgtG/fPilTpowtqo4dO7bMnz9f8ufP75c7mXJPfkAn3Fu0aGEpxipTpkwybtw4W9UT6PRG4tixY0EBCX1s377dMk6UrpDPmjWrvPbaa0HZB/pIkiRJULaDL//sGsDwZIR4MkR27twpf/31V1APhmzZsgUFLfShwQwCFyI7duywoIV+XpQ2Ixo9erSVggLwJMouAAD8nWZNvP/++7Z6UWlfs759+/rcPYM3nLO1rFPevHltQV316tVtgVXTpk1lzJgx8t577/nEzwAAQEhbsWKFVK5c2c53adOmlSVLltiCal9DT4oAoCWCvv76a6tBpuWAdGV/165dpUOHDq6v8ndzYv7333+XVatW2WP16tWWbaC0f8Pjk/H60KyIQE0Vezxwo4+TJ0/an8WJE8carGvTP31kzJjR526+gotm1gwZMsRWy92+fdtWyX322WfSpk0ba3QO4P8wWQAA8GdXrlyxrAmdLNDs2xEjRkjz5s3FF3nLOXvRokV2H6tZ4FqaVksWa6DCl34GAABCyoQJE+y8qPNSmoE4b948K+nviwhS+DmdiNdV3p5mY/qBHTt2rE80a3MiKKETyDlz5rRJdl2lowEJ+gr8M91vGqzQZnW6Hzdt2mQrxghaiJUC074uemOq9POk2UqahQOAyQIAgP/S8gqlS5e2ew7tMzdjxgwpVaqU+Cp/mOD3h58BAIDnzXN2797dykuqGjVqWMAiYsSIPrvDCFL4KZ001rRi7eKuz/VCWV9/8MEHAbPa/ebNm7Js2TJZuHChlbjSrIDHgxKewESUKFHcHqpP034WGqjwBID0ufbB0Mit3php0x5tOK3NwQPlRKGNtT/++GNbTaer6D799FNrtE0dYgQ6JgsAAP5IyxCVK1fOFvNoOVi998iSJYv4Mn84Z/vDzwAAwNPu3r0rjRo1kqlTp9rrzp07y+eff+7z870EKfy0Rn69evVk79699lobp4waNUqSJUsm/k57KGhK8IIFC6yRsf7iah8JvWkoVqwYQQkHgxa//PKLBYj0c6hlxTQopAELfS+0wbi/0wbl2pRem2orrQc4ceJEyZMnj9tDA1zDZAEAwN/MnTvX+iNoyU/NntV7EQ1U+Dp/OGf7w88AAMDjLl26JJUqVZI1a9bYoljtidq4cWO/2EkEKfxsBffw4cOtOZtmT8SLF0+GDRtmKT/+3OB4//79lk6tgQktQ6S/pAUKFLDJcH34YrMYf3LkyBELVuj7o+WhtE6erizT90Y/m9rA3Z9pPUBtWK9BC/1saiqeZlb4eoQbeBVMFgAA/Onea/DgwfLJJ5/Ycy31NG3aNL/JHvaHc7Y//AwAAHgcOnTIFqIfOHDAzmu6KFYXZPsLghR+4uLFi5bqoxPBqkKFClYL31ebpfybM2fO2E3A5MmTLTChv5xaWkgnvvVr7Nix3R4inkFvEH788cegElxaDilz5sxSp04dqVWrliRNmtQv95v+nBqo+OGHH+x18eLF5fvvv5cECRK4PTTAUUwWAAD8gS66+eijj+Trr7+213qdN3ToUCst6y/84ZztDz8DAABKew3rXO+FCxesUs6SJUv8btEvQQo/sHbtWqldu7acPHnSyup89dVX0rJlS7/Lnrh+/bqtStfAhJYS0psAjSBqerV+9eXmMIFIs300YKHvpwYttDSXloTSgEWVKlXshsKf6Aq7b7/9Vj788EMrB6ABCv3ZixYt6vbQAMcwWQAA8HU3btywbGCdHND7Lb33atOmjd/de/nDOdsffgYAALR6jJb113mz7Nmz2xxaokSJ/G7HvOh5m7okXujhw4dWOkYndjVAoWWNtBdAq1at/OYi+dGjR9ZbQoMwOqmrv5R37tyRb775xrIp5syZYxPaBCh8jwbUtEeFHmz1vRw/fryVQGrSpIm919WqVZOlS5fa59wf6O+k1gncunWrRbu1kbtmVGiDI12NBwAAAO/vf6dlZTVAESlSJJk9e7a0bdvWb+69AACAdy127devny2O0ACFzqGtXr3aLwMULyPU37pn4DW0vr2uOF+xYoW9rlu3rowcOdJvaqBq+tKECROsAYzWXHv99dctQKElgVKkSOH28BDCN39aykvLIe3evVtSpkwpzZo1s3Jm/lIeSTMp9IZWP98qb968VgoqEBqKI7CxohEA4Kt27dpl2dt6rRo/fnxbxZgzZ07xV/5wzvaHnwEAEJju379vVXLGjh1rr7XMpGZvhgkTRvwV5Z58kJbI0Qn78+fPS5QoUawWqr72B7/++quMGDFCpk+fbq91NX3z5s0lX758rFAKMBoX1c+DTuRr0EIP0Jo1o+WSdFLfH1aszZw50zJH9EAcM2ZMKwdVqVIlt4cFhBgmCwAAvkize6tXr26lnnTxlPZWS5Uqlfgzfzhn+8PPAAAIPHr+0vnQn3/+2SqODB48WFq3bi3+7hrlnnyHTtJ++umn1hhaAxRZsmSxptG+HqDQ3gSTJk2SXLly2WPdunVWxkpXKWnN/vz58/vFhDRejr7n+nnQiXv9LAwcOFC2b99un4ds2bLZ97X0ly/Tk87OnTttFZ42165cubKVa/P1nwsAAMBf6IKZcuXKWYDinXfekfXr1/t9gAIAALjjxIkTNu+lAYrIkSNbb95ACFC8DHpSuOzcuXN2UTxgwAB7rSk/2n8iQ4YM4qtu3rwpQ4cOlTRp0ligRVeSa9r0wYMHpX379hI3bly3hwgvEStWLEtt279/v2USJU2a1DIQ9AZRfye0qbqv0p9h7dq19plXWrZNT0gamAEAAIB7vfF0gZhmdWuPtAYNGth1qF6XAgAABDddmKuLdffs2SMJEyaUNWvW2EIJPIkghYv27t1rH1JdtaPpqtosWksi+Wqz6MuXL8vnn39uvSU+/vhjKVKkiP2MP/30k5QtW9av66vhv9E0txIlSlgw648//rDPS5cuXayXQ7du3SzDyFebiPfv399KCWhwTjOkNLtCvwIAAMD5/mFa3smzQEzvXTSLV6/ZAAAAgpvOcxUoUMB6EGfKlEk2b94s2bNnZ0c/A0EKlyxZssTq7x89elTSpk1rH1JfrVmvv2i6WlwnlL/88kupWbOmNcWeOHGiZMyY0e3hwcekS5fOGggdOXLEmmprjT4NfGnGhabH+aKSJUtaHw79fTh16pSdoGbNmuX2sAAAAAIug3327NkWlNDys127dqX8LAAACBHDhw+XihUryq1bt6RYsWJWBl/nTvFsBClcaBqsk66a1qOlbAoXLuyz5Z20bM0HH3wgKVOmlDFjxljjYw26aDaIfg/4L5IkSSJfffWVHDt2zFLytb9J6tSpLXChnzNfLP+0YcMG6z2jq/i0b0Xv3r3tmAAAAICQ8/vvv0vu3LltYZiWdVq2bJm899577HIAABDstJxk27ZtreeElpls2rSpLF682Kro4PkIUjjcIPv999+Xdu3a2YdUa+9rKaQ4ceKIr5V16tChg2WAzJw5U3r16iXHjx+3LIoECRK4PTz4Gf396Nmzp33G+vXrZ1lIGtRr06aNz5WBih49uixYsMDGrnT1Xt26dWmoDQAAEEJWrVplGeyapasLXjZu3CgFCxZkfwMAgBDp01ulShUZMmSIve7bt6+MHj1awoULx97+FwQpHHLp0iWrua9lbEKFCiWDBg2y7ANfqn+q6Uk6SawX99oEWEs8HT58WDp27Eg0ECEuatSoFuD7888/pXv37vLdd99Zc/bPPvtMbty44TPvQNiwYS2b6ptvvrHnU6ZMsdIDZ8+edXtoAAAAfuX777+X4sWLy5UrVyRPnjw+m8EOAAC835kzZ6xizvz58yVChAgyffp0W+St88D4dwQpHHDgwAFLL165cqVNtGrTFE378ZUP6YMHDyy4or0CdOW3pkbrRLFODuvKcMBJUaJEsaba+hnUlDktmaTBCi0zdu/ePZ95MzSrSjOpYsaMaTfM2lB79+7dbg8LAADA52k5Tc3ErV+/vmWza5nN5cuXS7x48dweGgAA8EO//fab5MqVS7Zu3Spx48aVFStWSPXq1d0elk8hSBHC9GJYP6QHDx605r9ak75MmTLiKxf3WppGm/02a9ZMChUqJPv377fJYMo6wW160NeeFfq7Vbp0aWus/dprr8mMGTN8ps9DkSJFrDayBgC1nFW+fPksiAkAAIBXc/fuXQtOaElapSsYp02bJpEiRWKXAgCAYPfLL79YaUmd10mfPr0tRNXXeDkEKUKQlqPREk+e9OJff/1V3nzzTfEFhw4dkrJly0qFChUsuLJ9+3aZOnWqrVgHvEny5Mntd02zEDJlyiQ1atSQokWLWoNEX+A5gWnAQstW6e/c8OHD3R4WAACAz5bYnTRpkoQJE8bK62ot6NChue0FAADB79tvv5VSpUrJtWvXpECBArY4nbnTV8PVWggZNmyYNGrUyDq6a3kkTfOJHz+++ELfCa33r9kTe/fulTlz5lhJmrfeesvtoQH/SD+zmvmjjbU1ep05c2b59NNP5fr1616/52LHji0//vijZSxpFkjr1q2tjBUAAABejJYC1VWLq1evlmjRosnixYutNCgAAEBwe/TokZUib9y4sZXJr127tixbtkzixInDzn5FBClCwJdffmmlZ9THH39sK3kiRowo3kwnRrWxyxtvvGHNsXVyV1eiV6pUyWd6ZwBKI9h79uyxOsRamkxLQGmzIm8vARUuXDhrpq3jVtr/pVOnTl4/bgAAALdt3LjRegD+8ccfkjRpUlm3bp1lVAAAAAS3O3fu2IJ0nf/1zN9MnjzZmmXj1RGkCEY6mdi5c2eLpCmdbBwwYIDXT/JraSftk1GxYkULUmgGxeeffy6RI0d2e2jAK9GgoP4eaqBNe8LUrFnTSkDt27fPq/eoHit69OghAwcOtNdankADnhqhBwAAwP+aNWuWlc28cOGCZX9rvy/NqAUAAAhuFy9elGLFilm/q7Bhw1r5cZ1D9fa5X19AkCKY6CRimzZtpE+fPvZagxM62ejNH1ItRaWNh7VPhk7ezps3z9KitYkv4A+0n4qWLFu6dKmVgMqaNauVUdJUPG+mGVijRo2y59qfokmTJvb7CgAAgP+3QKx///5SrVo1W9Go/fTWrFkjiRMnZhcBAIBgd/DgQcvc1IzNGDFiWHn8Bg0asKeDCUGKYKCTh1rvVPtQqK+//lo++eQT8WYHDhyQggULSvv27eWDDz6wIIU27PXmoArwqkqWLGkZQvp5154relLR196sefPmMnHiRGv0qJF5TSW8f/++28MCAABwnS440XuYDh062OtWrVrZgquoUaO6PTQAAOCHNDCRJ08eq0ajC2K1QbZmciL4EKT4j3TSsE6dOtbNXScTdVJRL5i9OaAyePBgyZIli5w7d85WGw0aNIjSTvB7WhtQsyg2bdokt2/fluzZs1v9QG/OqqhXr57MmDHD+lVoX40qVarYSkEAAIBAde3aNcuaGD16tC2wGjJkiGWehgkTxu2hAQAAP6Slnd59910r9fT2229baUktl4/gRZDiP9DJwqpVq9qH1TOJqJOK3pyWVKhQISsl8/7778uuXbskf/78bg8LcJSeULZt2ybt2rWTbt26WST8t99+89p3QQMTujJQ+2wsXLhQypUrJzdv3nR7WAAAAI47efKkFChQwMorRIoUSebOnWv9uwAAAEKitKQubq1Vq5bcu3dPKlWqJKtWrZIECRKws0MAQYpXpJOE5cuXlwULFtgKbZ1E1ICFt/bLGDp0qGVPnDlzRlavXm0rjmiMjUClE/7aP2bjxo32u5wtWzZrUu2tfR9Kly4tS5YskShRosgvv/wiJUqUkKtXr7o9LAAAAMfs2LFDcuXKJbt377bJAc0I13K1AAAAIVE5R/uDdunSxV7rQteZM2cylxqCCFK8glu3btmk4bJly2zSUJvy6mtvdOHCBQumaFNv/eXS7AldfQRAJGfOnLJ9+3Zp27atdO7cWYoXLy6nT5/2yl3zzjvv2DFHmzOtX79eihUrJtevX3d7WAAAACFu8eLFdg9z6tQpyZgxo5VZyJEjB3seAAAEuytXrkipUqWCSvuPGDFCvvrqK0pLhjCCFK8QSatevbqt3IkePbpNGurkoTfSMWbNmtUu4nUVtjb21qAKgCezKjSLQjMUtIG8/s7o77U30tJUK1eulDhx4siWLVts9SA9KgAAgD/7+uuvbdGVZr9qPWhtXKkNKwEAAILbsWPHJF++fLJ8+XKbQ9UKOi1btmRHO4AgxUuWTWrUqJGt5NGJzUWLFtmkobfRkjVffPGFBU/SpEkjO3futAgggOcrUqSIZRppkELLKWlmhTc21X7rrbfkxx9/lKhRo1rAQmsjeuM4AQAA/us9jfbS04kBz32YZrDHjBmTHQsAAILd1q1brbSkLmBNnDixrF27VsqUKcOedghBipdolqIlYSZPnmzpPbNmzfLKsknac0InWLt37y5du3a1yF+SJEncHhbgE+LHj283v9qvon///tZo/vjx4+JttLyBRvPDhw9v/XDef/99O0YBAAD4S3ndatWqyaBBg+y1Nq0cN26chAsXzu2hAQAAPzR//nwpWLCgnD17VjJnzmxVaXSRKJxDkOIFaWaClktSEydO9MpImpar0ebYv/32mz3v1auXhA0b1u1hAT5F6w126NDByqWdOHHCMisWLlwo3kYzpaZPn27j1TqJOmYAAABfp5MDep0zd+5ciRAhgvzwww/SqVMnCRUqlNtDAwAAfmjo0KFSqVIluX37tpQsWdIyKJImTer2sAIOQYoXrIOqmQmeD+57770n3kRXUOsqI82g0CCFlnfS0jUAXl3evHntd0kzprQO8ueff+512QoVK1a0VYVqwIABlv0BAADgq7S8gpZZ+PXXX60Hl2aF16xZ0+1hAQAAPy0t2bp1a2nTpo3N9zRv3twWqWoPYjiPIMW/0JU7rVq1sucaqNAPrzfRprkNGza0eq3t27e3UjUJEiRwe1iAX4gdO7aVU/rss8/s979GjRrWtNGb6O+/BiiUZlN4ghYAAAC+ZMWKFbZIRBtWpkuXTjZu3GiNKwEAAILbjRs3LHti+PDh9loXfeoidSrSuIcgxT/Q5rT16tWzaJo2bOvZs6d4k9OnT1sq9LRp06xXRt++fa1fBoDgo6UFunXrJnPmzJElS5ZI/vz5va5PxSeffCIdO3a059qfYvbs2W4PCQAA4IVNmDDBssKvXr1q11oaoNBABQAAQHA7deqU9SDVrImIESPKzJkzbeE3pSXdRZDiOTZs2CCVK1eWBw8eSK1atawfhTd9WLXj/Ntvv22TpVorzdtKUAH+RiPsely4fPmyNa5ev369eBNtKNmkSRN59OiR1K5d2/rSAAAAeDNdDKaLQTQzVO+7tLTTsmXLrNQTAABAcNuzZ4/kzp1btm/fLvHixbNMzqpVq7KjvQBBimfYu3evNcb2NEzRlT3anNZbaOaE1slPkiSJbNmyxYIV8H6aiaOBrmc9Chcu7Pbw8AIyZ85sv3Ovv/66ZTFpw2pvoZ+jb775RqpUqSL37t2zfhU6VgAAAG909+5dqVOnjnzxxRf2ukuXLjJlyhRb0QgAABDcfv75ZysleeLECcmQIYNs2rRJ8uTJw472Et4z8+4lLly4IGXLlpUrV65YTVQtmxI+fHjxlpVGvXr1ssyOatWqyerVqyVx4sRuDwsvUZKnadOmdgDUUl360F4iGTNmtFJC8A0aadcVfo0aNZLGjRtbSqBmL3gDLfemN/fvvvuu9c6oUKGCpTECAAB4k4sXL0qxYsVk6tSpVvt5/PjxFqzwpoVhAADAf4wdO1ZKly4t169ft1JPWikjderUbg8Lj+Eq8DH379+3yX9t1pYmTRqrTRY5cmTxlo7zLVq0sNX4vXv3lokTJ7LKyMdEjRrVPk8a9EqYMKE99Ht6Y6YNmuE79D3UrIWhQ4fKV199JQ0aNLDjhzeIECGCzJ07VzJlymSBMC1TdefOHbeHBQAAYA4dOmSLdrRkbfTo0WXp0qW2+AMAACC46aJS7eHZrFkzm1utW7euZVQwD+d9CFI8pl27drJq1SqbOF6wYIHXfGB1grF69eoW9dNVRp07d/aq/hhAoGrdurX88MMPVoJNsxY0e8EbRIsWTebPn2/HsF9//VWaN29umVgAAABu0lWLWgf64MGDkjx5cntdtGhR3hQAABDstIy/9rvq16+fve7Ro4ct+vaWijl4EkGK/9+4ceNkxIgR9lzLpbzxxhviDa5evWp9MZYsWWKro1llBHiXGjVq2O+nrgYsUqSIlYzzBpq2OGPGDCsBpSdhzfoAAABwy/Tp0+1aSUs95ciRQzZv3mxlTwEAAILb+fPnrRT2zJkzJVy4cPL9998H9YqFdyJI8f+v6NFSSurzzz+X8uXLizfQUi1aJ2337t3yyy+/SLly5dweEoIZB0f/oCsANQvr6NGjkj9/fisZ5w30hKzlqJT2P9HjCAAAgJM0m7Nv3762klGbZWv2qV43aelTAACA4PbHH39Y5ubGjRslZsyYVt5JyzzBuwV8kOLkyZNSuXJlqydftWpV6dKli3gDTYHWxt260khXaGv3efgfLctz5swZOXDggNtDwX+UPXt2Wb9+vR1L9Hd37969XlOSSntmaB1GLRv3559/uj0kAAAQIPS6SGtAd+rUyV63adNGZs+eLVGiRHF7aAAAwA+tWbPGel8dPnxYUqVKZYGKwoULuz0svIDQgV6bTJvKnj17Vt5880357rvvvGJl+2+//WarsSNFimRZHqRB+68SJUrY12zZsrk9FASDtGnTWqAifvz4UrBgQdm2bZvr+1WPaaNGjZKcOXPK5cuXbfXi9evX3R4WAADwc1q2tkyZMlZWN3To0DJ8+HAZPHiwlaIEAAAIblq+v1ixYjb3kStXLtm0aZO89tpr7GgfETqQ0451Vc/WrVutuaw2mdWG2W7T0k4a4UuUKJFF/5IlS+b2kBCMhgwZYuntHhqA0kyKGzdusJ/9hJYu0Pc4ffr0Vm5JG1e7LWLEiNbTRo8rGgStV6+eZVYAAACEhOPHj9uiq2XLlknkyJFl3rx50qpVK3Y2AAAIkTleLd9fp04duXfvnlSpUkVWrlxpC0jhOwI2SDFo0CCZPHmyreTRJiqaAuS2nTt3WjM5DUwsX75c4saN6/aQALyCGDFiWM1DDUJpFF+j925LnDixzJkzR8KHD28TBZ999pnbQwIAAH5IM0l19aKWvtQFElq6lt56AAAgJGhQolGjRtK9e3d73b59e5kxY4ZVp4FvCcgghU4efvrpp/ZcU441MOC2Xbt22aprDZZogCJOnDhuDwnAfxA9enT58ccfJXPmzFK8eHGvCFRo46hvvvnGnvfq1cuyKwAAAILLggULrOSlZgprOV29/qGsKQAACAla1qlkyZIyYcIEW4Supa779+9vZSbhewLuXdP+E5r+o6VONNLmDWnHe/bsCQpQaEp0rFix3B4SgGBqjL506VLJkiWL9R/ZsmWL6/u1YcOG8tFHHwU913IMAAAA/9WwYcOkYsWKcuvWLcsk1QyK5MmTs2MBAECwO3LkiOTNm9fKOmn5/oULF0rz5s3Z0z4sdKDVKNNJufPnz9vq5pEjR7reKHvfvn0WoNALeM3wiBkzpqvjARC89GS5ZMkSK/2kGRXbt293fRcPHDjQsiq0oaUGbR8+fOj2kAAAgI/S6whdAKEPvd9q2rSpLF682MpfAgAABLfNmzfbnMb+/fslSZIksm7dOilVqhQ72scFVJBixIgRtqpZm8hOnTrVvrod9dMAhdZq1QwKbeANwD8zKrT0U4YMGWxl4e+//+7qeMKGDWs9eTSAoqsc+/Xr5+p4AACAb7p586ZUrlzZsihU3759ZfTo0RIuXDi3hwYAAPyQ9tosXLiwnDt3TrJmzWoBC61eAd8XMEEKbdymzVPUgAEDbFWzm/SXSVdV6yShBijoQQH4f48KDZJqA2st/XTy5ElXx5MmTRoL3KoePXrIr7/+6up4ELw0UzBlypQWjNfmpf/2/g4ZMsSCaNpcLFmyZNK2bVu5c+cObwsA4LlOnz4thQoVsj4UESJEsCaVHTp0cD1THQAA+B/N1vzqq6+katWqdq9aunRpWbNmjWVSwD8ERJBCP7y1a9eWu3fv2oe4ZcuWro7n+vXrUqZMGblx44aVeIofP76r4wHgDO03oxkVevOuzZ20yZOb6tWrJ9WrV5cHDx7Ie++9Z8ck+L7p06dLu3btLPik5cU8PVE0OP4smlnYsWNH+/ua5TN+/Hj7Pzp37uz42AEAvrMATMssbNu2TeLGjWv1oKtVq+b2sOAjevbsadfDjz9ee+01t4cFAPBSOmehc7mffPKJBStatGgh8+fPt6oV8B8BEaTo1KmTNafWYMC3337r6uqee/fuSZUqVeTAgQO2qlqbZQMIHBrl/+mnn+TMmTNSrlw5uX37tmtj0WPhN998YyvnDx06JG3atHFtLAg+gwYNsnrg2oPpjTfesPc4cuTIdv57lg0bNki+fPksmK/ZF5rlV6tWrX/MvtCg/7Vr1554AAACgy6y0vPG8ePHJX369LJp0ybJkyeP28OCj9HKBpqN43loPXEAAJ610LtChQoyatQom8PQ+12tCqFlrOFf/D5IoauWtYyF+u677yRBggSujeXRo0fSoEEDWb16tUX8tHYagMCjK8W0oeSOHTukZs2atirAzeyOSZMm2cleV9DPnj3btbEgeALhuqq1aNGiQd8LHTq0vd64ceMz/03evHnt33iCEocPH7Zm75p5+Dx9+vSxhqiehwa6AAD+T68V9PygwekCBQrYuUVLSAIvSyeXEiZMGPTQjBwAAB73119/ScGCBe3+VEsT63yFliamtKR/8usgxfnz5y0ooFq1avWPEy4hTdORtPzGtGnTZMqUKdbkBUDg0j4Bs2bNspNt8+bN7RjhFq0nreV+lK7Ad7tfBl7dhQsX5OHDh/8TkNfXmr3zLJpB8dlnn0n+/Pmt0alONuk56p/KPWmG4tWrV4MeJ06c4G0DAD+mi630vNCkSRM7z2iZSO2rFzt2bLeHBh918OBB69WWOnVq+zxpZs7zkMEJAIFn165dNm+yc+dOq4yzatUqqVSpktvDQgjy2yCFTvg1btxYzp49a6mk/fv3d3U82txl6NCh1sxUm7wAQKlSpWxFoj60Nq+bevXqJTly5LA+GdqrQicjEBj0Yu/LL7+Ur7/+2npYzJkzxzJ9Pv/88+f+G22Qqs3gH38AAPy7v59m0anu3btbFqaeC4BXoZNOEyZMsKoHWr7jyJEjlpmjJT2ehQxOAAgsWh5fF9FpJsXrr79upSVz5szp9rAQwkL97eby3RCkNbg/+OADCR8+vGzZskUyZ87s2lh0skdrz+tKZZ0IAoDH9e3b11ama6ZVjRo1XF3RpmXobt26ZYHd9u3buzYWvHq5J+0/oVk6FStWDPp+/fr15cqVK1Zq8Gk6KaDNTwcMGBD0vcmTJ0uzZs2smbqWi/o3WvZDyz5pVgUBCwDwrww9rQOt/Yu0PM+4cePsnALf5Y3nbL1GSZEihdUZ14WGz8qk0MfjP4OWmvSmnwEAEHzzuVoNRzM333nnHSvxpGWq4f/XHn6ZSfHnn39aaSXVr18/VwMUv//+uzUgLV++vHzxxReujQOA9+rQoYOluWujY13J7pZ06dLJsGHD7HmXLl1k7969ro0Fr0YD89mzZ5fly5cHfU+zYvT185qaalDq6UBEmDBh7KufrmMAALyAAwcOWBBbAxR6Y/nTTz8RoECIiBkzpjVhP3To0DP/nAxOAPB/et+qCyV1wbkGKLR8v2bcEaAIHH4XpNAJlRYtWsjt27elSJEi0rp1a9fGcunSJQtOJE+e3FKiX2Q1KoDAo02fxo4da6XpdLWilqlzS6NGjWwM9+/fl/fff5+yTz5Ig/T6eZo4caIFyvUi7+bNmxYEU1rOSzN3PDTTT0staCaPllvQGuPdunWz73uCFQCAwLJ27VoLbuvir5QpU1qDbL23AkKCZm7qZy1RokTsYAAIQLpwrlq1ajJw4EB7raWHv/32W1uEh8ARVvzMjBkz5Oeff7bVFpoi5FZg4MGDB1a2RQMVWm4qWrRorowDgG+IFCmSzJs3z/pCVK5cWVasWOFKrWcNmAwfPtxW3uvKSb0w0CaZ8B167jl//rzVDNdm2VrCS1egeJppa2PKx8+NXbt2tfddv2rNz3jx4lmAonfv3i7+FAAAt0ydOtUC21pCUOs/L1iwIOgcAgSHTz75xK41tMTTqVOnpEePHrYwQisQAAACy7lz52yB9+bNmy0ooXMQWmkCgcevelJoLUttqKKTMtoEVido3NKmTRsZMWKErUjVGmoA8CL0xFyoUCFrUKkNtXXy2A2DBw+2FfmaWrl//36JHz++K+OAb/DG+tYAgJejt4XaP0+D1koXTWg2uPY6gv/whnN2zZo1Zc2aNXLx4kVbHKHNUXVxRJo0aXzmZwAA/Hea+V+mTBnL6I8dO7bMnTtXChYsyK71MwHZk0JrqGuAIkOGDFbj3S06sTh06FCr7U6AAsDLyJUrl4wZM0a+++67oP4Qbvjwww9tBf7ly5dttRsAAPBfWuZRMyc9AYqPP/5YZs6cSYACIUJLTGoGhTbDPnnypL1+0QAFAMA/rFq1SvLmzWsBCj0HaGlJAhSBzW+CFL/++qvV1Fb61Y0yKWrbtm3WE6NZs2ZWBxwAXpb2DNDAgGYy6CozN4QNG1ZGjx5tmRy6ilLLTwEAAP+j2eilSpWy8gpaDnDkyJFWE5p+egAAICR8//33Urx4cbsG0R5YGqBInz49OzvA+UWQQvs/aINXTVGuW7eua9kLmrZSvXp1yZw5s9V0d6tMCwDf16dPH0t917JPFy5ccGUMWodag65Kg6662g0AAPiPo0ePSr58+awXVZQoUWThwoVB534AAIDgpPO2PXv2lPr161sWp86h6oJILf0H+EWQQkui7Ny502qnezrBu/GLptkTOpmo6ap0oAfwXzMZtHHlnTt3pEGDBvLo0SNXdqjWB06UKJEcOHBA+vbt68oYAABA8NuyZYvkzp1b9u3bJ4kTJ5Z169ZJ6dKl2dUAACDY6aJHDU5oD2HVsWNH+eGHHyRixIjsbfhHkOL48eNBDbL79+/vWnPXsWPHyowZM+wr9TQBBIckSZJYGuTixYutkbUbtLnRkCFD7Lk209RgBQAA8G3z5s2TQoUKydmzZyVLliyyefNm60UFAAAQ3C5duiQlSpSwUtJhwoSxPpxaPYLSkvCrIEXr1q3l5s2blqbcqFEjV8awe/du+eijj6R58+aWqgQAwUVXNLZv395WGegEghuqVasmJUuWlHv37lnZJ80cAwAAvkfP4br4oHLlynL79m07v69du1aSJk3q9tAAAIAfOnz4sDXIXr16tUSLFk2WLFkiTZs2dXtY8EKh/vbh2ab58+dLxYoVrSzKjh07JFOmTI6P4caNG/L2229beadNmzZJpEiRHB8DAP+mtRoLFiwop0+ftmOdlrZz48IiY8aMVn5KVz/UqVPH8THAe127ds2ybrQ3U/To0d0eDgDgOX382rZtKyNGjLDXusBK++jpvRQChz+cs/3hZwCAQKDzpOXLl5fz589LsmTJrErEm2++6faw4KXnbZ/NpNCJMs1eUB9//LErAQrVqlUrKzk1ffp0AhQAQkS4cOGsVqMe0Js0aeJKJkPq1KmlW7duQcdcDdACAADfoOdtXdylAYpQoUJZH7+vv/6aAAUAAAgRM2fOlHfeeccCFNmyZbOABQEK/BOfDVKMGjVKjh07Zk3ePBNnTps1a5ZMnDjRLvBfe+01V8YAIDCkTJlSxo8fL3PmzJEJEya4MoZPPvlE0qZNK+fOnZNBgwa5MgYAAPByTp06ZRmZunpRm1PqpIEuONBgBQAAQHDSRZUDBgywcvi6wLxcuXJW6knnbwG/C1LoauLevXvb8549e0qUKFEcH4NGAlu0aCGVKlWSevXqOb59AIFH60fr8aZNmzZy8uRJx7evZe2++OILe64XHXocBAAA3kt75+XKlcvKRcaLF09WrlwpVapUcXtYAADAT0tLah/LTz/91F5/+OGHMnfuXIkaNarbQ4MP8MkghaYnX7x4UTJkyCANGzZ0ZQwtW7aUR48eWUYHq5AAOEWbXeoJXhtNuVH2SZtoa6qmlo3wBIsBAID3+emnnyR//vy2sEGzvjdv3iy5c+d2e1gAAMBP+w6ULVtWRo8ebfOkQ4cOlWHDhkmYMGHcHhp8hM8FKc6cORNUZkQnyNxo9KYp0vrQmq4JEiRwfPsAApc2zR4zZoz8+OOP8t133zm+/dChQ0vfvn3tuQZpjx496vgYAADAP9NrhTJlysj169elcOHCsmHDBkmVKhW7DQAABLsTJ07YwghdIBE5cmSZN2+etG7dmj0N/w5SfP7553Lr1i3JmTOnlT5xmtZi1zJPuu0aNWo4vn0A0EmH+vXrS9u2be1iwGnFihWTd999V+7duyfdu3fnDQEAwEtopneHDh3k/fffl4cPH1qZSJ0w0EUOAAAAwU1LSmqm5p49eyRhwoTWf6J8+fLsaPh3kOLQoUO2Kkj169fPlTJLWuZJS6xos2zKPAEI1LJPnmyKyZMnW71rAADgrtu3b9siqv79+9vrXr16yYQJE6ynFAAAQHBbtGiRFChQQE6dOiUZM2aUTZs2SY4cOdjR8P8gRbdu3awJS8mSJS1t2WkzZsyQWbNmyciRIynzBMBVMWPGlLFjx9rqyG+//dbx7euFR/Xq1S1A0rlzZ8e3DwAA/p/z589LkSJF7F4lXLhwMmnSJMt2ZFEVAAAICTo3WqFCBbl586YULVpU1q9fLylSpGBn45WF+tuNJbivYPv27ZI9e/agVKKsWbM6uv3Lly9bo+6CBQtaPwou+AF4g4YNG8qcOXPkjz/+sNRKJx08eFDeeOMNCx5rSqceHxG4TdJixIghV69elejRo7s9HAAIKHoNULp0aTl8+LCVdZo7d64UKlTI7WHBS/nDOdsffgYA8FVaTrJ9+/YyePBge924cWPrV6mLJID/ct72mUyKjh072tf33nvP8QCFJ4tDU6i1Mz0BCgDeYuDAgRI2bFirP+20dOnSSZMmTey5bt9HYt4AAPgNXSSQJ08eC1CkTp1aNm7cSIACAACECO0RXLVq1aAAxZdffmkVHghQIDj4RJBi+fLlsmzZMvvQa+Nsp+3cudOiglrXNXHixI5vHwCeJ06cONYf4vvvv7f0SqdpKYnIkSNb7cn58+c7vn0AAAKV9oUqVqyYZXxrw0o9F2vmNwAAQHA7c+aMld6fN2+eRIgQQX744Qfp1KkTC7kROEEKXZmrH3rVvHlzSZUqlaPbf/TokTXLfv311+XDDz90dNsA8CI0vfLtt9+2Y5WWXnJSokSJpE2bNvZce1PoMRMAAITs/ZEunqpbt67cv3/fVjSuWLFC4sWLx24HAADBbt++fbYgYsuWLbZQUheT16xZkz2NwApSrFy50n4JIkWKJF27dnV8+7o6ecOGDTJixAjSlwB4pdChQ1vTqt27d1vWl9M+/fRTa+T9+++/y8KFCx3fPgAAgeLevXvSoEED6dmzZ9A5ePr06XavBAAAENx0IUTevHnl2LFjVvJZS0vmy5ePHY3AC1IMGDDAvjZq1Ejix4/v6LavXLliF/61atWylCYA8FaaSdG0aVPrn3P27FlHt60NkDTT7fFjNgAACF5a1qlEiRK2iCpMmDAyevRo6devny1WAAAACG4TJkywaw9teJw/f34LUGigAggJXn1Fu2fPHvnxxx/twrtdu3auNcvWxrQA4O20aZVOWrjRRLt169YSPnx464uhFy4AACD4aGNsXcW4atUqiRYtmixatEiaNWvGLgYAACFSWlLnRBs2bGglpbW0k/YK1lJPQEAGKTzBgSpVqkjq1KkdD5B8/fXXlkpNs2wAvkAvGPr06SMTJ050PFCgvSnq1Kljz8mmAAAg+GzevNnqQO/fv1+SJk0q69atk5IlS7KLAQBAsLt7967d23/xxRf2ukuXLjJlyhSJGDEiexshKtTfGh7zQidPnrQm2Rqx0wvznDlzOrr9MmXKyIEDB6w5TLhw4RzdNgC8Km1cnS1bNokePbqsXr1aQoUK5djO1ONlxowZbZt//PEHaaAB5Nq1a1b2S9OA9bMHAAges2fPtomCO3fuyFtvvWUZFCygQqCfs/3hZwAAb3Tx4kWpWLGiLYgIGzaslZbU8vuAE+dtr82kGDZsmAUoChYs6HiAYs2aNbJkyRLp3bs3AQoAPkXL42k2xdq1a2Xp0qWObvuNN96wAK/GvgcNGuTotgEA8Cd6LtWs8mrVqlmAQs+veo9CgAIAAISEQ4cOSZ48eSxAoRPJOp9AgAIS6JkUGmFJliyZfV24cKGULVvWsW3r7tAu9ZretGXLFhrRAfA5ehwrXLiwXLlyRXbs2OHocUyzN3Tbmgp67NgxiR8/vmPbhntY0QgAwUcXan344YfyzTff2OuWLVvKkCFDbEUj8F/5wznbH34GAPAm2luyQoUKlkmRPHlyW7itVRIACfRMijFjxtgP8Prrr0vp0qUd3faCBQuslnvfvn0JUADwSVpuqV+/frJ7926ZOnWqo9vW7Le3337bVn2OHDnS0W0DAODrrl+/LuXLl7cAhZ7PBw8eLMOHDydAAQAAQsT06dPl3XfftQBFjhw5rOQ+AQq4weuCFPfu3bOVQuqTTz5xNFDw8OFD6dy5s/1yFitWzLHtAkBw0wabWkuyW7dulhnmFJ1Qad++vT3XIMWtW7cc2zYAAL7sr7/+kgIFClh5hUiRIsmcOXOkTZs2jvaXAgAAgVOBQRdo16xZ0+YMNJNi1apVkjBhQreHhgDldUGKadOm2QV6okSJ5L333nN0299//701ftVfUgDwdV9++aUcP37cml05qXLlypI6dWpbifHdd985um0AAHzRzp07rQ/frl27rFSilk/UxQYAAADB7f79+9K0aVPp1KmTvdZFEbNnz5YoUaKws+Ga0N7YIE61bt1aIkSI4Ni2tTRJjx49rDmdpjcBgK/TknkNGjSQL774wspHOCVMmDDSrl07e64NtDVLDQAAPJvWfdYMilOnTskbb7xhZRa0dCIAAEBw074AZcqUkfHjx1v1Gi0rqeUl9T4ecJNXBSlWrFghe/bskahRo0rz5s0d3bb+cmoGh07mAYC/6Nmzp/X4cbo/RMOGDSVOnDhy+PBhWbhwoaPbBgDAV4waNUrKlSsnN27ckCJFiljjypQpU7o9LAAA4Ie00kL+/Pll2bJlEjlyZJk/f760atXK7WEB3hek+Pbbb+1rnTp1JGbMmI6mOQ0YMMDqsKVPn96x7QJASEuWLJllU+jKiNu3bzu2w/WCp3Hjxk8c2wEAwP959OiR9d9r0aKFPddztfaicPIeCAAABI5t27ZJrly5ZO/evVZif+3atVK2bFm3hwV4X5DiypUr1hxOeSa2nPLDDz/IsWPHpGPHjo5uFwCcoI2sL1y44HiwQLMpPGUszpw54+i2AQDwVrdu3bISs1999ZW91kxuPUeHDx/e7aEBAAA/tGDBAilYsKDdl7/55ptWWjJbtmxuDwvwziCFNszWvhD6y5I9e3bHtqsrl7RRtkYPddsA4G/SpEkjNWrUsIwxzRxzymuvvSZ58+a1nhSTJk1ybLsAAHirs2fPyjvvvGOLszQoMWXKFOnSpYuEChXK7aEBAAA/NGzYMKlYsaItkihevLisW7fOKi4A3sZrghSeFb668tbJi3SNJv7+++9BHe0BwB9ppphmjGlA2I1sCj3G//33345uGwAAb6L3HLlz55Zff/1VYseOLb/88ovUrl3b7WEBAAA/pIsFP/roI3vovXjTpk1l0aJFEj16dLeHBjxTqL+9YNZIm2VnzpxZwoYNK6dOnZJ48eI5sl390fVGIWLEiLJ69WpHtgkAbtGMsSNHjtgxN3RoZ2LU2rRb613qqo0NGzZInjx5HNkunKXvc4wYMeTq1atc9ALAM6xcuVIqV65sJW7Tpk0rixcvphceXOEP52x/+BkAICTdvHnTFkLowmzVr18/KwNN5ia8+bztFZkU3333nX0tX768YwEKz82CrmQiiwJAINBj3b59+2ThwoWObVNPQFp3W9FAGwAQiCZOnGjlFTRAoWUQN27cSIACAACEiNOnT0uhQoUsQBEhQgSZMWOGfPrppwQo4PVcD1Lcu3cvqFZ5o0aNHN12nz595K233pISJUo4ul0AcEO+fPmkQIECduxzMonOc2zXUlO6ogMAgECg59oePXpIgwYN5MGDB9Yfavny5RI3bly3hwYAAPzQ3r17rWLMtm3b7HpDF2d7Fg0C3s71IIXWQ7tw4YKVA3EyWKDlTrQOLOlOAAJJhw4dZPPmzbJp0ybHtqmBES1tcePGDZk1a5Zj2wUAwC13796VunXrymeffWavO3fuLFOnTrUyswAAAMHt559/toWJx48flwwZMtg9P+WW4UtCe0upp/r161tPCqeMHDnSAiNVq1Z1bJsA4LZSpUpJmjRpZMSIEY5tU+teehpoe475AAD4q0uXLll5pylTpkiYMGFk3Lhx0rt3b8f6QQEAgMAyfvx4KV26tNX+L1iwoPWD1Pt+wJe4eqWsTbKXLFlizz0TWE7QerBaYqp58+YSLlw4x7YLAG7TCZKWLVvKzJkz5cyZM45tt169erbt1atXy6FDhxzbLgAATvrzzz9t1eKaNWusL9PSpUulcePGvAkAACDYPXr0yLI1mzRpIg8fPpQ6depYRkXs2LHZ2/A5rgYpNFCgv1CajpQ+fXrHtqsree/fvy/NmjVzbJsA4C00KKwB2jFjxji2zaRJk9qqUjVhwgTHtgsAgFN01aLWgT5w4IAkS5ZM1q9fL8WKFeMNAAAAwe7OnTtSu3Zt6zmpunfvLt9//701ywZ8katBCv3lcTqLQhvYjRo1SqpUqSIJEyZ0bLsA4C1ixoxpKyw0SKGNPJ1uoK3HficbdwMAENI0Q7FIkSLWay979uzW/ylTpkzseAAAEOz0euPdd9+V6dOn2wJEXQjYq1cvK7UM+CrXghS6wmjfvn32y+RkXwjtbH/w4EH54IMPHNsmAHgbLXf3119/yeLFix3bZtmyZSVKlChy4sQJ2bFjh2PbBQAgpGjQvV+/flK9enVrll2+fHkrbai97wAAAEJiPlUzNzWDUxcg/vTTT9bnF/B1rgUp5s+fb18LFy4sMWLEcGy7o0ePltdff10KFCjg2DYBwNu89dZbkjNnTjsmOiVSpEhSokQJez5v3jzHtgsAQEjQ8rHvv/++dOzY0V63bt1a5syZYwF5AACA4LZ27VrrfaU9sFKmTGmBinfeeYcdDb/gepCiYsWKjm3z7NmzduOgvShIgQIQ6HRi5ccff5QjR444tk3PMd9zDgAAwBddu3bNMgTHjh0roUOHlqFDh9ojTJgwbg8NAAD4oalTp0rRokXl0qVLtuBw06ZNtggb8BeuBCk0WKDRPqUp0U754YcfLDhRt25dx7YJAN6qRo0attpz8uTJjm2zTJkyNoGze/duOXz4sGPbBQAguGjZwvz588vPP/8skSNHlrlz51oWBQAAQEiUluzdu7e89957cu/ePalcubKVsk+QIAE7G37FlSDFwoUL7ZcsR44ckjRpUse2O2XKFJsgixMnjmPbBABvpQGKSpUq2bHRqUbWsWPHloIFC9pzsikAAL5m+/btkitXLtmzZ48kTJhQ1qxZ4+iiKwAAEDg0KNG4cWPp2rWrvf74449l5syZtkgC8DehA6XU0x9//CFbt261yCMA4P/UqVPHjo/btm1zbJdQ8gkA4IsWLVpkgfbTp09LxowZrcxC9uzZ3R4WAADwQ1euXJFSpUrJd999Z6UlR44cKQMHDrTngD9y/JN948YNWbZsmT2vUKGCY9vVlcLRo0e32rEAgP9TpEgRSxPVY6RTPMd+bfp14cIF3goAgNcbPny4nb9u3rwpxYoVk/Xr10uKFCncHhYAAPBDR48elXz58smKFSskatSoVpGmRYsWbg8L8K8gxU8//SR3796VNGnS2AokJ2gZE625XrVqVYkYMaIj2wQAXxA2bFipVauW9ex58OCBI9vUSZ2sWbPKo0ePbFUqAADe6uHDh9K2bVvrOaHnrSZNmsjixYslRowYbg8NAAD4oS1btkju3Lll3759kjhxYlvcV7p0abeHBfhfkOLxUk/axNoJGzdulCNHjlhZEwDAk7QM3tmzZ2X58uWO7RpKPgEAvJ1mTVSpUkWGDBlir7/88ksZM2aMhAsXzu2hAQAAPzR37lwpVKiQ3Z9nyZJFNm/ebAv8gEDgaJDi/v37QatmnS71pA269RcdAPAkraedIUMGV0o+aXbdrVu3eEsAAF7lzJkzUrhwYVtgFSFCBMs47NSpk2OLrIBA0bdvX/u9atOmjdtDAQDXaAWYwYMH2+KI27dvS8mSJS2DQucygUDhaJBi3bp1cvnyZYkbN67kzZvXscDI9OnTrZwJzWUA4H/pjaFmU8yZM8dWjTpBV4Vo2Se9APvll194WwAAXuO3336TXLlyydatWyVOnDiWaVizZk23hwX4ZUmT0aNHS+bMmd0eCgC4Rssuf/jhh9KuXTsLVjRv3tx6UESLFo13BQEltBulnsqVKydhwoRxZJtr1qyRixcvcmMBAP9AJ180QLFs2TLHAiOebArPuQEAALdp4FwXUx0/flzSpUsnmzZtssaVAILXjRs3bJHM2LFjJVasWOxeAAF7LNRSyCNHjrR75IEDB8rXX39tvSOBQONokGLlypX2tVSpUo5tc8GCBZYe9dZbbzm2TQDwNToR8/rrr9sx0yme5l+ecwMAAG769ttv7T7l2rVrkj9/futrlzZtWt4UIAS0bNlSypQpI0WLFv3Xv3v37l37vXz8AQC+7tSpU1KwYEFZvHixRIwYUWbOnCkff/wxpSURsBwLUly6dEn27Nljz/WX0AmaJqUpUpq5Qf1YAPhneqzUvkEPHz50ZFfpSlUtw3fkyBE5ceIEbw8AwBWPHj2SLl26SOPGja3kgpaJ1cxCLfUEIPhNmzZNtm/fLn369Hmhv69/L0aMGEGPZMmS8bYA8Gm7du2y0pI7duyQePHi2cI97UcBBDLHghTr16+3oIE2Z02QIIFj9WR18qt8+fKObA8AfJkeK8+fPy+//vqrI9vTGpvZsmWz59oUDAAAp925c8dKznz55Zf2umvXrjJlyhRb0Qgg+OnClI8++uilfs+0af3Vq1eDHixuAeDLfvzxR8vYPHnypLz22muyefNmyZ07t9vDAgInSKG9IVShQoWc2qRlUUSJEkUKFy7s2DYBwFfphVHcuHHt2OkUzznBc44AAMApFy5csFIzuqpbaz9ruafPP/+cDGwgBG3btk3OnTtnC1X0904fq1evlmHDhtnzZ2X0RogQQaJHj/7EAwB80ejRo6Vs2bLWi0LnKjds2CCpUqVye1hAYAYpnCr1pLS2eokSJVgJBQAvIEyYMFYb2Mm+FJ5zAkEKAICTDh48KHny5LFsby0fo6saGzZsyJsAhLB3333XykDv3Lkz6JEjRw7LaNLnej0KAP5YWvLTTz+V5s2bWzC2Xr168tNPP0msWLHcHhrgNRxpF68RQl0x4WSQ4uzZs5YypSuiAAAv3pdi4sSJcvjwYUmdOnWI7zZNc1W///67raqLHz9+iG8TABDY1q1bJxUrVpSLFy9KihQpZMmSJfLGG2+4PSwgIGi5z0yZMj3xPa1+oD1gnv4+APiD27dvW1Bi1qxZ9rpXr17SrVs3MjcBNzIpNm7caJHClClTOtbkavHixfZVVwUDAF5M8eLFJXz48I6VfIodO7a8+eabQZNGAACEJC3tpCu5NUDx9ttvy6ZNmwhQAACAEKEL8YoUKWIBinDhwsmkSZOke/fuBCgAt4IUbpR60pTtXLlySbx48RzbJgD4w+o27ROhx1CnUPIJABDS/v77b+nTp4/UqlVL7t27Z5kUq1atkoQJE7LzgVdw9+7dYNtv+rs4ZMgQ3gcAfmX//v3W91EXRGhZp2XLlkmdOnXcHhbgtfwySKE3IXqho9FKAMDL0WOnZjXcv3/fkV1HkAIAEJL0fNa0aVPp3LmzvW7Xrp2taIwcOTI7HnhBS5culfr161s5UF0NrL8/2sBaF7f07t1bTp06xb4EgP/f6tWrJW/evHLkyBE7bmqFGT1eAnAxSHHnzh3rDeFkkEJrm58/f14KFy7syPYAwJ/osVN7CW3fvt2R7RUoUMC+arPEK1euOLJNAEBguHr1qpQuXVrGjx8voUOHlhEjRshXX31Fc17gBc2dO1fSp08vjRo1krBhw0qHDh1kzpw51vB13LhxNun2yy+/2CScNoTV+3AACGSTJ0+WYsWKyeXLl4MyKTJkyOD2sACvF+KNs3/99VdLBdVU6rRp04oTNItCL6A0agkAeDnZs2e3BoZ6LNWyeSEtUaJEki5dOjl48KCsX7+eXkIAgGBx7NgxO6f89ttvdl6bPn065xjgJfXv318GDx4spUqVskDf06pXr25f//rrLxk+fLhNzrVt25b9DCDgaFWXzz77THr27Gmvq1WrJhMnTpRIkSK5PTTAJ4R2stRTqFChxAk6sZYzZ067GQEAvBxN4c+fP78dS51CyafgNXLkSEmZMqVEjBjRAk26YOCfaAZLy5YtLWAUIUIEWzG5ZMmSYB4VADhn69attnpRAxR6bFu7di0BCuAVaIkSDfY9K0DxuCRJkkjfvn0JUAAISNrvqkGDBkEBCs06mzZtGgEKwJuCFJrWpHTCy8l+FJR6AoBXp8dQJ/tSeM4RnnMGXp2uFNZ66z169LCSXVmyZJESJUrIuXPnnntBrenIR48etRrtf/zxh4wdO9YmGwDAF82fP99K0Jw5c0befPNNKz371ltvuT0sAADgh7Ssk95vff/991ZOcvTo0Ra0/bfgLgCHyz3t2bPHvmbNmlWcQD8KAAieIEWnTp1sktuJkk+ec4SeMzTY7FTmnT8aNGiQNYht2LChvf7mm29k8eLF8u2330rHjh3/5+/r9y9duiQbNmywLBqlWRgA4IuGDh1qK7n1XKITBjNmzLDmvgBejS58eJlrEAAIJIcPH7Zss/3790u0aNFk5syZdv0BwMuCFNqo7vjx4/Y8U6ZM4gTNotBJFvpRAMB/60sRNWpUx/pSvP7667bqRFehnDp1ilX8r0izIrZt22YBJg9dwVO0aFEr1/AsCxYskDx58li5J119HC9ePKldu7alKOt78izaa0ofHteuXXvVIQNAsHj48KEFJ7Qmvnr//fetSbb2qQPw6nbs2PHEa13A8uDBg6AmsAcOHLDrBb12BIBAopma5cqVk/Pnz0vSpEltYVjmzJndHhbgs0I092jv3r32VX9ZY8WKJU7QHhg5cuSgHwUA/Aca7M2XL19QX6GQ5umD8HgGHl7ehQsXbKIuQYIET3xfX2vZk+et/tEyT/rvtA9Ft27d5KuvvpIvvvjiudvp06ePxIgRI+iRLFky3i4Arrlx44ZUqlQpKEChjX5HjRpFgAIIBitXrgx66GScllI7efKkBSv0ceLECXnnnXfo+QIgoMyePduqD2iAQktKasCCAAXgxUGK3bt321etBetkkzwnVv0CgL/LmTOnHVO1ZIYTPOcKz7kDznj06JHEjx9fxowZY6sga9SoIV26dLEyUc+jmRqaLel56AQFALhBs+900nThwoUSMWJEK7PQvn17ygYCIUAXMehChccXIOpzXdigfwYA/k7vjQcOHCjVqlWTO3fuSNmyZW1hX+LEid0eGuDzQjRI4VkN61SQ4sqVK/Lnn3+SagoAwUAnrLXZ8l9//eXI/vSsPCGT4tXFjRvXSi6cPXv2ie/r64QJEz7z3yRKlMiyWB4v7aTltzTzQstHPS/zRWu8P/4AAKfp+SJ37ty2mltL1a1YsUKqVq3KGwGEEC3vqKuGn6bfu379OvsdgF/TUnctWrSwxRAarNByufPmzbMyyQB8JEjhVMqT3qAo6mECwH/nOZZqjwMneALaBCleXfjw4e19W758+ROZEvpa+048i5b1OnTokP09D60vrcEL/f8AwBv9/PPPdvzSTC6tjb9p06bnHucABA8tq9awYUOZM2eOlXzSh5Y8ady4sVSuXJndDMBvaSC2fPnylm0eKlQoGTx4sJWZfF4PPwBeFKTQqKLTmRQ6kRYlSpSguuYAgFeXJEkSKwPkdJDi999/l/v37zuyTX/Url07GTt2rEycONH25QcffCA3b960SQVVr169Jxpr659funRJPvroIwtOaMO3L7/80lYGAYA30mNc6dKlbcJASz1t2LBBUqdO7fawAL+nk3OlSpWS2rVrS4oUKeyhz0uWLClff/2128MDgBChlQUKFCggS5culUiRIlmgtk2bNpSWBIJZWAkhuqpC61SHDRtWXnvtNXGCTqRlzZqVSCYABANdIZItWzbHghR6o6upstoA9eDBg/LGG284sl1/oz0ltOxC9+7drWSTnhd//PHHoGbax48fl9Ch/98aBW16/dNPP0nbtm0t81GDUxqw6NChg4s/BQD8L8346ty5s/Tr189e161bV8aNG0fWF+CQyJEjWzBiwIABVmZZpUmTxhYKAoA/2rlzp5QpU8Z6YOn9lPbAevvtt90eFuCXQixI4cmi0PRrp8pF6ESarqoCAAQPLR2kE0CaHadBi5CkE+eZMmWykh16DiFI8epatWplj2dZtWrV/3xPS6TofgcAb3X79m1p0KCBzJgxw1736NHDHiF9bgLwvzQo4VRJZwBwy5IlS6R69eqWla73pppxnjJlSt4QwNeCFLt373a01JNmbWhNbfpRAEDw0WNq7969beWIrrAPaXrO0MlyPYdoRgAAAJodVqFCBdm4caOECxfOgudaug6A87Zu3WrBQs3MvHfv3hN/piVQAMAfaNbYhx9+aFmc7777rsyaNUtixozp9rAAvxbaX5pm79ixw74SpAAA322e7Tln0DwbAKC0V07u3LktQKGTA9owmwAF4I5p06ZJ3rx5refV3LlzrYfYb7/9JitWrJAYMWLwtgDweRqU+OSTT6w/nz7Xvn6aUUGAAvCDIIVTmRT79u2zlVVaXgoAEDy0X4HedOrNqBM85wyCFACANWvWWIDi8OHDkipVKmuQXbhwYXYM4JIvv/xSBg8ebDXZtaTz0KFDZf/+/VYOJXny5LwvAHzarVu3pGrVqvLVV1/Z6y+++ELGjx9P7yvAl4MUWrtcbyZU+vTpxalVVtq0Sxt1AwCCh9b61uO4HmOd4DlnaAmBBw8eOLJNAID3mTJlihQrVkwuX74suXLlslKAr7/+utvDAgKaNsvWBrJKgxRap12vFdu2bStjxoxxe3gA8MrOnj0r77zzjmWJ6fFNr0O6dOlC7yvA14MU2h9CL1hU0qRJxQk6geZUQAQAAomTQYoECRJYsFlTa0+fPu3INgEA3kMXO+nKxTp16li9+ypVqlgpmfjx47s9NCDgxYoVS65fv277QXuV7d27155fuXLFViADgC/SqgGaufnrr79K7Nix5ZdffpHatWu7PSwg4IRIkOLkyZP2VX+5I0eOLE4gSAEAvh+kCB06dFCDbs+5BAAQGDQo0ahRI+nWrZu91prQ2qDXqfsJAP+sYMGCsmzZMnterVo1+eijj6Rp06ZSq1YtaywLAL5m5cqV1mvn6NGjkjZtWuuBVaBAAbeHBQSkEKmNdOLEiaBa5k7d0Bw5coRMCgAIoSDFuXPnbJWcEw3D9Nxx7NgxO5fkyZMnxLcHAHCfnmM8WRMasB45cqQ0b97c7WEBeMyIESPkzp079lzLoGhPSO0Vo7+7Xbt2ZV8B8CkTJ06UJk2aWJlhDVTMnz9f4saN6/awgIAVokEKp0o9af8LLQ1CuScACH6eY+vBgwfl7bffDvFd7Dl3eM4lAAD/pouNtM69lluIGjWqZU+UKlXK7WEBeIxO4i1atEhKlChhrzWY2LFjR/YRAJ8sLdmjRw/5/PPP7XWNGjVkwoQJEjFiRLeHBgS0EC335FQmhU6cKYIUABD80qVLZ1+dKvnkOXdQ7gkA/N/mzZutDrQGKLTc37p16whQAF5Ie4ZpdpMnkwIAfNHdu3et75UnQNG5c2eZOnUqAQrAX4MUTmdS6MSZrrpKmDChI9sDgEASLVo0SZQokWNBCjIpACAwzJ07VwoXLmwlBbNmzWoBiyxZsrg9LADPkTNnTtm5cyf7B4BPunTpkhQvXtyCEmHChJFx48ZJ7969LTMMgJ+We3I6k+LPP/+UNGnSSKhQoRzZHgAEGm0idujQIUe2RSYFAPh/mYVBgwZJ+/bt7bmWdpo+fboFxQF4rxYtWki7du1sUWL27NklSpQoT/x55syZXRsbAPwTvZfV0pK68C569Ogya9YsKVasGDsN8CJ+0ZPi1KlTlh4OAAgZiRMnltOnTzuye8mkAAD/rmvfunVrGTVqVNCk59ChQ62UDADvVrNmTfuqv8MeulBQg4369eHDhy6ODgCebcOGDVKhQgW5cOGCJE+eXBYvXiyZMmVidwFeJtjvBvQCxelMCp04e/PNNx3ZFgAEIi33tGvXLke25Tl36LH9/v37Ei5cOEe2CwAIWTdu3LDmlEuWLLEJzYEDB0rbtm3JhgZ8qMk9APiSmTNnSt26da0XhWaALVy40O5tAQRAkOLKlSty8+ZNe+5UdoNmUmhdOQBAyNALOacyKeLHj2+BCQ1Q6DZ1tQsAwLf99ddfUrZsWatnHylSJJk8ebJUrlzZ7WEBeAkpUqRgfwHwCbqAun///tKxY0d7Xb58eetF8XSZOgDeI9i7w3iyKOLEiSORI0eWkPbo0SM5c+YMkVAACOEgxdWrV+XWrVshvp+1cZknyO05pwAAfJdm4uXKlcsCFBqIXrVqFQEKwEds2rTphf+uXif+9ttvIToeAPg3utjt/fffDwpQaIm6OXPmEKAAAi1IoauknMyiuHjxotW2JV0LAEKO5xjrdF8KghQA4NuWLl0q+fPnt3uE119/3SY8c+bM6fawALwgLZNSokQJK5niqZjwtH379knnzp0lTZo0sm3bNvYtANdcu3bNMjfHjh1ri9+075U+woQJw7sCBFq5J11pq2LHji1OlXpSBCkAwJkghd6AhrRYsWIFXWQCAHzT6NGjpWXLltZM95133pHZs2cHHd8B+AYNQGij+65du0rt2rUlffr0kjhxYokYMaJcvnxZ9u/fb/1mKlWqJD///DO9IgG45sSJE1KmTBnZs2ePVXaZNm2alCtXjncECNQgxfXr1+1rtGjRxAmeVb16oQQACBmeY6xTmRSec4jnnAIA8B1ajlVLLAwYMMBe169fX8aMGSPhw4d3e2gAXpL2CdNSKfrYunWrrFu3To4dOya3b9+WLFmySNu2bS0I6dQiRQB4lu3bt1sGhd6vJkyYUBYtWmSNsgEEcJBCV1GoqFGjihM8E2Z6EAIAhIyYMWNKhAgRHAtSeM4hnnMKAMA36MSllofRrAn12Wef2QrsUKFCuT00AP9Rjhw57AEA3kQDEjVr1rSSdJkyZZLFixdL8uTJ3R4WgEALUmiKqW6LlVkAEHJ0cklXyOkx1wkEKQDA95w7d07Kly8vmzdvtmvzb7/9Vt577z23hwUAAPzU8OHDpU2bNpbFWaxYMeufEyNGDLeHBcAbGmc7HaTQ7Tm1LQAIZHqsdSqzgSAFAPgWrUufO3duC1Bo34lly5YRoAAAACFC+11puTktRacBiiZNmlgGBQEKwHeFWJDCqZ4UWq/cqW0BQCDTY61TPSI8x3V/L/dUr169J/bprl275P79+66OCQBe1qpVqyRPnjxy5MgRSZ06tWzcuFEKFizIjgQAAMFOyzpVqVJFhgwZYq/79Oljva+0hw4A3xXsQQrPZIuTmRQEKQAg5Omx1ulMCn9vnD1lyhSr3+5RoEABOXHihKtjAoCXMWnSJClevLhcuXLFAhWbNm2SDBkysBMBAECwO3PmjBQuXFjmz59vPRN/+OEH6dixI72vAD/g8+WedAKLck8AEPL0WOtU0CBQyj39/fff//gaALyVHq969uxpGWGaAVa9enVZsWKFxIsXz+2hAXDAnTt32M8AHPXbb79Jrly5ZOvWrRInThxZvny5NcwG4B98PkhBJgUA+G8mhb8HKQDAF927d0/q168vvXr1ste6glFXMkaMGNHtoQEIQVr3/fPPP5ckSZLYtdrhw4ft+926dZPx48ez7wGEmF9++UXy5s0rx48fl3Tp0lnmZr58+djjgB+hJwUA4IXQkyJk7Nu3T3bv3m0PXZmszWc9rz0PAPAWly9flhIlSliZpzBhwlgNaK0FHTp0sN9WAPAyX3zxhUyYMEH69+8v4cOHD/p+pkyZZNy4ca6ODYD/+vbbb6VUqVJy7do1K4+rva/Spk3r9rAABLOwvt6TQrenDfoAAP5X7snfe1Kod99994kyT2XLlrWvoUKFsu/r14cPH7o4QgD4P7pqunTp0vLHH39Y4HrWrFnWjwJAYPj+++8tMKnXLs2bNw/6fpYsWWyRBQAEd/aWZmp9+eWX9rp27doWsNBeFAD8j8+Xe7p165ZEiRJFnDZq1CjJnDmzRI8e3R7aKHDp0qUv/f9omnydOnXk0qVL8uGHH1qjwUiRIkny5MmldevWcvXq1RAZP9ynzZ50JRIC2+rVqyVZsmT2XFeivv322zbxEz9+fKlYsaJNBHkLPa7fvHnTsW0FQrmnI0eO2KSffn364fm+p5QCALhJyyrkzp3bzkt63lq/fj0BCiDA/PXXX89cvawTidqbBgCCs+/Ne++9FxSg0GDF5MmTCVAAfixsSAQNlE60O0FXl4YNG+w/xr9KmjSp9O3b12rh6UrXiRMnSoUKFWTHjh2SMWPGF/5/5s+fb3V8T506ZY+BAwfKG2+8IceOHbPVKfo9XaUGwD/pMaBcuXJBAYuWLVtaoOLBgwfSuXNnmwDSckBuBGOfpmU99CbUCZEjR37inOKvUqRI4fYQAOBf6bVo3bp1bcLgrbfekkWLFknixInZc0CA0fvUtWvX/s/1ix4j9NgAAMHhwoULtmBPF0TofJ9mcDVs2JCdC/i5sCExiaUeL10RknTCzI0auJ5JRY/evXtbdoWuMtNJRp1sfJYePXpIz5497fmJEyfkt99+k5IlS1o2xuzZs4P+Xpo0aez/1CwLnax0IxAD4NXp77mnoejTChUqJKtWrbLnCxYskBEjRtjzH3/88Ym/p5k2mlGxbds2KViwoOtvhx5rnQpSeLbjOaf4u4MHD1rA6ujRo1beKVWqVHZhTjlDAG7S6/kBAwZIhw4dgsrRaYNspzKmAXiX7t27S/369S2jQq/V5syZY9lVWgZKg5cAEBz3RVpa8tChQxIjRgybJ9MScwD8X7DPfHsm03Vi3Z+DFE9nc8ycOdPKoGjZp0qVKtmEogYfPvnkE/s7lStXtoZinteeyUkt+aMBimfRUk/6ZwQoAN+jv+uaCbV37167gVOaKaWBCM9rDVKeO3dOihQp8sz/w1PuLXbs2OINnAxSeM4hgXD80zJfetOv+1aDUjopeP78ecuy0/Tmx88bAOAUPQ63atVKRo8eba/1+ZAhQwImeAzgf2nlgIULF8pnn31mWb56/ZItWzb7XrFixdhlAP6TdevW2UKtixcvWsbW4sWLX6pSCQDf5hdBCl116oY9e/ZYUEJT33VF2dy5cy0F1rMf9HsJEya01+HDh7fyJY+vPNNVs3qh97z0ts8//1yaNWvm0E+DkKaTjZ56iur27duWeaM3/R5a1kf7kcD36e+6/s7r777nOKDf02ODJ+igx4ASJUrY33nWsa1NmzaSL18+C3B6S5DCqQbOgRKkWLlypXTt2tVqrH700UcSK1Ys+772KdLJQA1U5MyZ0ysyaQAEjmvXrkmNGjUssK7X2YMHD7ZjFAAUKFBAli1bxo4AEKymTZtmmVr37t2z8se6qNdzHw0gMPh8kMKtAIXSJtc7d+601c5ah1MPqFrmyROo+LebP/2748ePf+aflSlTxv4fT2ko+D7tMVK9evWg19oEqkqVKpZl40F958CiQYrHg1SP07JxmoWhq0m8ha7wdypzLVCCFN988400adLkf471GsjSVYpnzpyxUoIEKQA45eTJk3Ydunv3busxN3XqVFvVCAAAEBL3mNrvVfsxKr3mmDJlSlCPQgCBw+eDFE6WH3marn5OmzatPc+ePbts2bJFhg4dGpQW/0+WLl1qQYhkyZI98f3r169bmaho0aJZZka4cOFCbPxwlk46Pl62R2/8tbSL5zOEwHL69GnZsWOHTQQ9TQMXWtd3zZo1kjRpUvEWTpbXC5Qgxa+//iqTJk167p9ro9p69eo5OiYAgUvPS9p3QssVJkiQwM5FOXLkcHtYAFykWZ4vujBQM0EB4EXdv39fPvjgg6DFu+3atZP+/ftTWhIIUAQpgnkC7+7du8/8s6cv7J5V6kkzKLT0S4QIESy1LWLEiME5PAAue/w4oLV78+bN+0TgSleRfPjhhxag1Mba2jzZmxCkCH5nz56VlClTPvfP9TOg2RQAENK07rOWeNIea7qQZsmSJVYPGkBg0/KTABDcrly5IlWrVpXly5fbQrhhw4ZZNQEAgcsvghRO1Uh/XKdOnaRUqVLWP0CzHzQVXicVf/rpp2f+fc2M2L9/vzXJ1UlJzaR4vBmqBiiKFy8ut27dksmTJ9trfah48eIRSQb8gB4HdML5wIEDFogsX778E3+uF2V6LNEgpufvqhgxYljmjdv0WEsmRfDSnkbP6kniodl0WpcVAELSyJEjpXXr1haMLlq0qMycOVNixozJTgdgJY0BIDgdO3ZMSpcubT05o0SJItOnT39mhQEAgcXngxSadaCTPE7TYIOW4NCSLTqBmDlzZgtQFCtW7Jl/v1q1ataToFGjRtK2bVtroJstW7agP9++fbts3rzZnj9d/ufIkSP/uNIWvkmDWggsmiml6avaz0YzpZ5emaa9B1ThwoWf+P53330nDRo0ELfpsVaPuU4IlHJPaty4cXZOeBYNggNASAaf27dvb42xlV6naq8cyo0C8NCFc9GjRw96/k88fw8Anmfr1q1WWlIzyrUnp5aWfOutt9hhAHw/SKGrjW/cuCFOe1bD68dpQ+2n64rrQ+lKtXLlyj3x5zopqaVeAPiPp4MQGTNmtOyIOXPmSNeuXf8nIOntxwA91uox1wmBEqTQbLyxY8f+698BgOCm2bvvvfeezJs3z1737t3bMoVftPY8gMDpSaEL87SXnmZYPesYodew+v0XrXCgC3P0cfTo0aBr5O7du1ulAgD+SysG1KpVS27fvm0LfbXUpDf1YATgLr8IUvjaStNMmTJJnjx53B4GAJfoqvl+/fr53P7XYy1BiuDluTkHACfp6kVdMLNlyxYrOTdhwgSbNACAp61YsSKoh9rKlSuDZQfppGTfvn0lXbp0FuCYOHGi9WvcsWOHBSwA+J+hQ4daVRH9ndcKAzNmzCD7CoB/BSl0su/ixYviS5o1a+b2EAC4SPvP+CINUjyvLFFwC5RMCr3xb9WqlWzatOl/LtKvXr1qzdW19EqBAgVcGyMA/6L1n7UOtNaD1olHXdWYP39+t4cFwEsVKlQo6HmqVKkkWbJk/5NNoZOOJ06ceOH/8+mqAprJpZkVej30rCDF3bt37eHxb2WnAHgPzbDS4MTw4cPt9fvvvy8jRozw+/s8AC8vtASzQCn3BACBhnJPIVMSrGnTps9cRaT9jvQiftCgQSGwZQCBSAOjGvzUAIWWHNQJQQIUAF6UBinOnz//P9+/dOmS/dmrTmBOmzZNbt68+dxqA3369LHrIs9DAyUAfOP+sVKlSkEBCu3PqAFJAhQAHAlSeJqqap1bJ+iqXl8r9wQAvsjJTAqtU6qcatTtll27dknJkiX/Metm27Ztjo4JgH/Skk5aXkGztPLlyycbN260UisA8KI8vSeeNREZMWLEl9qRe/bssetKvdZr3ry5zJ07V954441n/l3tl6PHLs/jZbI2ALjj1KlTlom1cOFCOz7MnDlT2rdvT+8rAM8V7PlVcePGta9OlWDyxZ4UAOCLnOxJceHChSfOKf5cFz5cuHDP/XNdZfSsFYsA8DKTitqQ9osvvrDXNWvWlO++++6lJxQBBK527drZVw1QdOvWTSJHjvxEJsTmzZsla9asL/V/ZsiQQXbu3GlBh1mzZkn9+vVl9erVzwxUaCDD3xeuAP5Eg5BlypSxgGK8ePGstCR9WQG4FqTwTDCFNMo9AYD/lXsKlCBFkiRJZO/evVZ25Vl2794tiRIlcnxcAPyD1nBv1KiRTJ061V537txZPv/8cwkdOtiTqQH4MW1o7Ql66uRj+PDhg/5Mn2fJkkU++eSTl/o/9d95rn+yZ88uW7Zssca6o0ePDubRA3DSTz/9JNWqVbMFbhqMXLJkiaROnZo3AYB7QQqnVn7qhJk2znr06BE3XAAQgnSlm1NBCs85xN+DFNq8Vlckasmnp1c1a8mrHj16SNmyZV0bHwDfpVnNWgd67dq1lpWlE38asACAl7Vy5Ur72rBhQwskPKuX1n+l9/OPN8cG4HvGjBkjLVq0sAwrLfU0Z84ciR07ttvDAhCoQQpN5XIykyJBggR2ANQbMc+2AQDBSyfMNUihx1wneM4h/n5c79q1q128p0+fXlq1amWrjdT+/ftl5MiRdn7r0qWL28ME4GMOHTpkQdCDBw/aZOLs2bOlaNGibg8LgI/TUnHBQXtMlCpVSpInT26rrTXba9WqVbYCG4Dv0SCj/l5rY2xVt25dGTdu3BNZVwDg95kUiRMntq+nT5/2+8ksAHDLmTNn7KtTpYcCJZNCgz4bNmyQDz74wC7stYyCp+azNrjVQIVTgSEA/kGPKeXLl7cFPDoBuHjxYsmUKZPbwwLgB27evCl9+/aV5cuXy7lz52xi8nGHDx9+of9H/229evXsHj5GjBiSOXNmC1AUK1YshEYOICQXs2lPGW2MrTQTXB96PwMAAdWTwjNhphc4enEDAAh+eox9PDAc0gKlJ4VKkSKF1Wq9fPmyrX7WQEW6dOkkVqxYbg8NgI+ZPn26TRRoyZQcOXLIwoULJWHChG4PC4CfaNKkiTW31lXSeh/+qpOQ48ePD/axAXCeLiyrUKGCbNy4UcKFC2fZExqABICALPfkufHyTKABAIKf5xjrVCZFoJR7epwGJd5++223hwHAB2lws1+/fpaRpXTCYMqUKRIlShS3hwbAjyxdutSys/Lly+f2UAC47MCBA1a2TTOoYsaMKXPnzpXChQu7PSwAPix0cP+HnlWvN27ckDt37khIixAhgjXiIUgBACFHj7FaU9SJxmc62RZImRQA8F/cv39fmjVrFhSgaNOmjfWgIEABICQWVNAEF8CaNWskd+7cFqBIlSqVlZokQAHA64IUWlMybNiwjmZTaPkRghQAEHL0GKuZa07UFr127ZpNuimCFADwfFevXpUyZcpYeYXQoUPLsGHDZPDgwRImTBh2G4Bg9/nnn0v37t3l1q1b7F0gQGmmpvaP0VK1uXLlkk2bNsnrr7/u9rAA+IFgL/ekE1g6qaRNVrU+XdKkSSWkafkRghQAEHL0GOt002xdBRwpUiRHtgkAvub48eMWoNi7d69EjhzZ+lGULVvW7WEB8GNfffWV/Pnnn5IgQQJJmTKl1aB/3Pbt210bG4CQz3bv3bu3dOvWzV5XqVJFJk2axP0aAO8NUihPkMLJ5tnabBQAEDJOnTrleD8KsigA4Nl0IlADEp4A8qJFiyRbtmzsLgAhqmLFiuxhIADdu3dP3n//fZkwYYK9bt++vfTt29eyOAHA64MUj6+GDWkpUqSQ5cuXO7ItAAhEx44dk+LFizuyLYIUAPB8CxculJo1a1q5lTfffNOa2CZLloxdBiDE9ejRg70MBJgrV65Y1sSKFSusnOTIkSMtYAEAwS10SPWIUCdOnBAnpE+fXv766y9r1g0ACF4PHjyw1P4MGTI4VsJEOZW5AQC+Yvjw4baSWQMUGjhet24dAQoAABAijhw5Innz5rUARdSoUS1zkwAFAJ8KUqRNm9a+OlWCSYMUTm4PAAIti0IbWXuOtSHNcyxPly6dI9sDAG/38OFD+eijj6R169by6NEjadq0qU0URI8e3e2hAQiwY9HAgQMlZ86ckjBhQokdO/YTDwD+Y/PmzZI7d275/fffJUmSJLYwomTJkm4PC4AfC5EghWdi6eDBgyHx3z93ewcOHHBkewAQSDzHVqeCFJ5zB0EKABC5efOmVK5cWYYNG2a7Q2tAjx49+n8a1gJASOvVq5cMGjRIatSoIVevXpV27drZ8Unr0vfs2ZM3APATc+fOlcKFC8u5c+cka9asFrDIkiWL28MC4Of8IkgRK1YsiRcvHkEKAAihIEXEiBEladKkjuxfghQA8H+0MXahQoVkwYIFEiFCBJk+fbp06NBBQoUKxS4C4LgpU6bI2LFj5eOPP5awYcNKrVq1ZNy4cdK9e3fZtGkT7wjg4/7++2/56quvrAfFnTt3pHTp0rJmzRrLpAAAnw5SnDp1ylZ/OUFX+JJJAQDBT4+telzXVXJO9L84fPiwPSeTAkAg27t3r5VZ2LZtm8SNG9fqQVevXt3tYQEIYGfOnJE333zTnmt9es2mUGXLlpXFixe7PDoA//U+rGXLlvLJJ59YsKJFixYyf/58iRYtGjsWgCNCZMbp8ZqUTval+OOPPxzZFgAEEj22OlXqSZtma/8LXTGcLFkyR7YJAN7ml19+kXz58tkxUY+/ukJZG1cCgJs0q1YzvFSaNGnk559/tudbtmyxazcAvunGjRtSoUIFGTVqlGVrajbFiBEjLGMKAJwSYstiPStgnQxS6GpfjfgCAIKPHludbpqtN75OZG4AgLf59ttvpVSpUnLt2jUpWLCgbNy40Y6JAOC2SpUqyfLly+35hx9+KN26dbP7/nr16kmjRo3cHh6AV/DXX39JgQIFZMmSJRIpUiSZPXu29ZuhtCQAp4VYWFQvVrS5jlN9KXQC7cqVK3L27FlJmDChI9sEgEBYVXPixAnJkCGDI9ujHwWAQPXo0SPp2rWr9OnTx16/9957Mn78eFYnA/Aaffv2DXquzbOTJ09ugVS99y9XrpyrYwPw8nbt2iVlypSxQEX8+PFl4cKFkjNnTnYlAP8KUqRNm9a+OhWkeOutt+zr9u3brbkPAOC/27FjxxPH2JDmOWd4ziEAEAi0OWWDBg2sMbbSJrQ9e/ZkFSMAr5YnTx57APA9S5cutV5Xuijt9ddft0yKlClTuj0sAAEsRDMpnAxS6ME0VqxY1lyQIAUABA89pkaMGFHeeOMNR3YpmRQAAs2FCxesDvSGDRus9vO4ceOkfv36bg8LAP7H999//497Rcs+AfB+33zzjbRq1UoePnwoRYoUsRJPMWPGdHtYAAJcWH/pSaH18rJly2YTagCA4KHH1MyZMzvWNM1zzvCcQwDAn2lgVhfX6LEvRowYMmfOHJssAABv9NFHHz3x+v79+3Lr1i0JHz68RI4cmSAF4AOlJTt06CADBw6015rFOXr0aPsdBgC/b5x9+vRpSx9zQvbs2QlSAEAwByn02OqEBw8eyOHDh+05QQoA/m7t2rWSO3duC1CkSJHCMikIUADwZpcvX37ioff5f/zxh+TPn19++OEHt4cH4B/cvn3byjt5AhSfffaZfPvttwQoAPh/kEJTxeLGjWvPDxw4IE7QibSTJ0/KuXPnHNkeAPgzvfHcv3+/Y0GKo0ePWqBCy0slSZLEkW0CgBumTp0qRYsWlUuXLlmDys2bNztWVg8AgpMuLNGG2k9nWQDwHjpH9s4771hZJ82amDx5snTr1o3eVwACI0ihtESIp5m1EzwTaZR8AoD/bufOnfL33387FqTwHLvffPNNCR06RE9Pfm/kyJHWq0kDPrly5ZJff/31hf7dtGnT7GalYsWKIT5GIBDpMbV3797y3nvvyb1796RSpUqycuVKSZAggdtDA4BXpmVBT506xR4EvNDvv/9umZu6IEL7uC5btsyuQwDA24RokXFdGbZixQqbHGnSpImEtNSpU1sGhwZFSpUqFeLbAwB/psfSCBEiSMaMGR3ZnmciXc8deHXTp0+Xdu3aWUM8DVAMGTJESpQoYeUY4seP/4+ZLJ988okUKFCA3Q+EAK3d3rx5cyutoD7++GPp16+fhAkThv0NwCcsWLDgfwKvWt55xIgRki9fPtfGBeDZVq1aZQsirly5YvNlS5YskQwZMrC7AARekOLtt9+2r1u2bBEnm2dv3brVke0BgD/TY6lmxIULF86R7XnOFZ5zB17NoEGDpGnTptKwYUN7rcGKxYsX28Rox44dn/lvHj58aCuqevXqZXXy9Ubmn9y9e9ceHteuXePtAv6B/k5VrVpVli9fbpliw4cPlxYtWrDPAPiUpzMt9f47Xrx41k/nq6++cm1cAP7X999/b4uFdZFEnjx5ZP78+fb7CgDeKkTraXhWw+7Zs0du3bolTsibN6+sW7fOVnUAAF6dHkv1gtYJ2ovCU+6JTIpXp+VjdD9qrXsPnRDV1xs3bnzuv9PGeZpl0bhx4xfaTp8+fSRGjBhBj2TJkv2HUQP+TbOUdIWxBiiiRIkiCxcuJEABwCc9evToiYcucjhz5oz12UmUKJHbwwPw/2c49ezZU+rXr28BCm2WrRVOCFAACOgghTY+1YsVvXjR2uZOKFy4sFy4cEF+++03R7YHAP7o2LFjcuTIEWuw5lStVA1mR4sWjRTk/0DPf3rOfbq+vb7WSYTnBaPGjx8vY8eOfeHtdOrUSa5evRr0OHHixH8ZNuC3NENM60Dv27dPEidObL9vpUuXdntYAPCfrzfIogS8j2Y6a3BCs6OVZlH/8MMP1qcOAAI6SKHpn56yHS/atPO/0lW/WppEa+8BAF6NHkP1GF6wYEFHdqHnHJEjRw6aZjvo+vXrUrduXQtQxI0b94X/nfYqiR49+hMPAE+aN2+eFCpUSM6ePStZsmSxhpVZs2ZlNwHw2bJ1LVu2tOsFXfygDXgTJkxoCxecqpoA4PkuXbpkfegmTZpk/a7GjBlj2c+aVQ0AEug9KTxlO7TBllN9KSJHjmyNQnWCrVWrVo5sEwD8jR5DtR9F7NixHdme5xxBqaf/RicO9KZEJ0Ufp691IuFpf/75p5WiKVeuXND3tHyDChs2rDXbTpMmzX8cFRB4ZRa0Yb02xtbnJUuWlBkzZlimGAD46uSnLgb866+/rIfV66+/bt/XLDHtsbNs2TLLFNu9e7ds2rRJWrdu7faQgYBy+PBhy9TUa3e93pg1a5YUL17c7WEBgHcFKZzOpPCUfNJGoTrRQtQYAF4tSFGhQgXHdp3nHEHT7P8mfPjwkj17dqt972luqedCff2swP1rr71mfaMe17VrV8uwGDp0KL0mgFfor9OmTRsZOXKkvW7evLlN4GnQDwB8lfau0msMXdzwdElJ/TOdDNXMzJ9//lmGDRvm2jiBQKSBwfLly8v58+ft2n3x4sXy5ptvuj0sAHhpIZ73paU71KFDh2wFhpN9KXRlBwDg5ejKen3osdQJt2/fDpooJ5Piv2vXrp2Vb5o4caL1+vjggw/k5s2b0rBhQ/vzevXqWWkGpfVpM2XK9MQjZsyYtgJLn+uEBIAXc+PGDalUqZIFKLRc3sCBA+Xrr78mQAHAL8rX6THt6QCF0kzN/v37y+zZs+0aROvhA3CGZkxoD0ENUGTLls0CFgQoAPiqEA9SaKmQtGnT2vOtW7eKE+hLAQCvbvXq1Y72o9i5c6etPtYb36RJkzqyTX9Wo0YNm0jo3r271b/X/fvjjz8GTSwcP35cTp8+7fYwAb9y6tQpO2YuWrTIgn8zZ860ck96LAUAX6fXDRkzZnzun+vCBq1g0KNHD0fHBQQqLSepwcFq1arJnTt3pGzZsnYPlzhxYreHBgCvzJEOOp6VsU73pVi5cqUj2wMAf+JmPwom9IKHlnY6duyY3L1715r16jnx8fd3woQJz/23+me6YhLAi9FMMP0d27Fjh8SLF8+uP6tUqcLuA+BXPa80y/Z5jhw5IvHjx3d0TECg0sVdmindoUOHoOt+vXaPGjWq20MDAO8PUrjRl+Ldd9+1Gtz37993bJsA4Ou0f8FPP/1kx1Cn0I8CgK/S42W+fPnk5MmT1uNFyyzkzp3b7WEBQLAqUaKEdOnSRe7du/c/f6YLIrp16yYlS5ZkrwMh7Nq1a1KuXDkZPXq0Le4aMmSI9b4KEyYM+x6Az3Oki5/nZm3dunXy8OFDRw6geuDu1auXbVNr9AEA/t327dstpV+PoU6lKq9du9aeP77aHwC8nfZ+0ZWMem2rPXzmzJkjsWLFcntYABDstDm29ppMly6dtGzZ0oKyeg2nva+0944GKr7//nv2PBCCdEFEmTJlZPfu3VY9ZOrUqVKhQgX2OQC/4UiQQi9ookePbo2zdQLMk1kRkrRpkNbjW7BgAUEKAHhBeszUSTZdGeyEP/74w3okRIgQQfLnz+/INgHgv2acde7cWfr16xfUjF4DFjSaB+CvtGfYxo0bpUWLFtKpUycLUChdyV2sWDEZMWKEJE+e3O1hAn5LS0pq3wntgaXN6hcuXGjzbADgTxwp9xQ2bNig0iGaFu8EvWDSlcA64ea5iAIA/DM9ZpYqVUrChQvnyK7ynBMKFChgK4IAwJvdvn1batasGRSg6Nmzp/VxIUABwN+lSpVKli5dKhcuXLDSdvo4f/68/Pjjj5I2bVq3hwf4rcWLF9u9kgYotIG9/u4RoADgjxwJUnjqWDoZpFDly5eXw4cPWxoqAOCfaUbDrl277NjpFM85wXOOAABvpZNxuuhm5syZFsidNGmS9OjRwxbGAECg0IzbnDlz2iN27NhuDwfwayNHjrR7s5s3b0rRokVl/fr1kiJFCreHBQD+EaTQNNGrV686ss0iRYrYylxdGQwA+GeaNqyZb041Prxz546sWrXKnhOkAODNtDSd9ljT61idoFu2bJnUqVPH7WEBAAA/pP2u2rVrJ61atbIyk40bN5YlS5ZIjBgx3B4aAPh+kCJlypSSPn16O9iuWLHCkW1GjBhRihcvbhNvAIB/psfKQoUKOXbxu27dOiudkihRIsmUKRNvDwCvtHr1asmTJ49l52q5kw0bNtixEgAAILjdunVLqlatKoMHD7bXvXv3tt5XTpXjBQC/D1IoDRion3/+2bFtamqcrno7d+6cY9sEAF9z/fp1WblypaOlnjznAj03UC4FgDeaPHmyNYW9fPmyZVJoHejXXnvN7WEBAAA/dPbsWSlcuLDMmzfP+l1NnTpVOnfuzL0SgIDgaJDi8b4UTjWzLlOmjB3Q9SAPAHi2RYsWyb1796RcuXKO7SL6UQDwVnqd+tlnn0ndunXl/v37tqJRM4Hjx4/v9tAAAIAf2rdvn+TKlUu2bNkiceLEkeXLl0utWrXcHhYA+GeQQiPCmqJ25MgROXTokCPb1JtJbTA0ZcoUR7YHAL5Ij5FazkRLmTjh9OnTsnv3bgsi6yplAPAWGrBt2LChNcVWn376qUyfPl0iRYrk9tAAAIAf0oUQefPmlWPHjkm6dOmsGkj+/PndHhYA+G+QImrUqEEHWs8KWidoY8M1a9bYAR8A8KTz58/Ljz/+6GgTWE+pp+zZs0vcuHF5SwB4BS3rVLJkSZk4caKECRNGRo8eLf369ZPQoR29ZAYAAAFiwoQJVnXk6tWrNl+mAQoNVABAoHH8jsvTl8LJIEWlSpUkcuTIVs8PAPCkGTNmWEZD9erVHds1nnOA55wAAG7TTF9dxaj9eaJFi2Zl8Jo1a+b2sAAAgJ+WluzWrZtlbz548MBKOy1btsxKPQFAIHI8SOHpS6E3gJpO71QGR4UKFaz5oVO9MADAV+ixUVcOO5XR8OjRI7sAf/ycAABu2rx5s9WB3r9/vyRNmlTWrVtnx0UAAIDgdvfuXcti/+KLL+x1ly5d7J4sYsSI7GwAAcvxIEWWLFmsT8TNmzetBJNT9ASgjYh27drl2DYBwNv9+eefsmnTJkdLPWkzuAsXLlgAWftgAICbZs+ebX3TtPTdW2+9ZQGLzJkz86YAAIBgd/HiRevJp5U+woYNK+PHj7dgBaUlAQQ6x4MUeuDVrAY1bdo0x7arJwFdJazRaQDA/2uYrcGCcuXKObZLPMf+smXLSrhw4XgrALhCs2sHDhwo1apVkzt37kiZMmVsAU3ixIl5RwAAQLA7dOiQLdJau3atRI8eXZYuXSqNGjViTwOAG0EKpbX2PCvXnCr5pBNhNWvWlB9++EEePnzoyDYBwNsn6DRIUaVKFevb4wQ9/k6fPv2JcwEAOE1rP7do0ULat29vx0J9Pm/ePAvaAgAABLf169dL7ty55eDBg5I8eXLZsGGDFC1alB0NAG4GKQoWLCiJEiWSK1euONpAW8uZnDp1KqgWOgAEso0bN8qBAwccLfWkq4ZOnz4tMWPGpB8FAFdcv35dypcvL998842EChVKBg0aJCNGjLCSCwAAAMFNF2m9++67VuopR44cVloyY8aM7GgAcDtIESZMGKlevbrjJZ9y5sxpNYZHjx7t2DYBwFvpsTB16tRSpEgRx7bpOeZXrlxZIkSI4Nh2AUCdPHlSChQoYOUVIkWKZFm9bdu2tWAFAABAcNJszb59+1pVD22WraXPV61aJQkTJmRHA4A3BCkeL/Mxf/58uXXrliPb1BvQ999/XxYuXCh//fWXI9sEAG906dIlW9HTrFkzx5q03b9/X2bNmmXPKfUEwGk7d+6UXLlyya5duyR+/Pg2SVCpUiXeCAAAECL3Pnqv1alTJ3vdpk0bWxwRJUoU9jYAeFOQQrMaUqVKJTdv3pRFixY5tl0taxIxYkQZP368Y9sEAG/z/fffy6NHj6Rhw4aObfOXX36xFOcECRLIO++849h2AWDJkiWWQaFlP9944w0rs6DXogAAAMHt6tWrUqZMGRk3bpwtCBs+fLgMHjzYqooAALwsSKFZDZryprSZtVOiR48utWvXljFjxljTRAAINBqcGDVqlDXM1tXETvEc66tVq8YFOgDH6PGuXLlycuPGDStvp40rU6ZMyTsAAC7p06ePvP322xItWjS7Fq1YsaL88ccfvB/wC8ePH5f8+fNbL9TIkSNb9ZBWrVq5PSwA8HquBSkeL/ehq9u0ibZTWrZsaeWe5s2b59g2AcBb6AWzNsx28mL59u3bMnfuXHtOqScATgVkP/nkE2nRooU9b9CggfWiiBkzJm8AALho9erVdk++adMmuy7VsjjFixe3KguAL9u2bZuVlty7d68kSpRI1q5dK2XLlnV7WADgE0L9rZ18XKKbzpQpk+zbt0++++47u3l0SsGCBS2bQy+QACCQ6IWyBmq3b9/uWLNYrb9atWpVSZ48uRw5csSxPhhwxrVr1yRGjBiW2q4Zi4DbtN9Z3bp1Zc6cOfb6iy++kM6dO9MgG0DA88Zz9vnz5y2jQu/N9T7dF38GYMGCBbYYS69B3nzzTVm8eLEkS5aMHQMg4F17wfO2q7NEOjnmWVHrZMknpSuI16xZI7t373Z0uwDgpj///NOy1/QY6FSA4vFjvJb5I0ABICSdPXvW+t5ogCJ8+PAydepU6dKlCwEKAPBSOmmhYseO/cw/v3v3rk1wPP4AvMmwYcOsbJkGKEqUKCHr1q0jQAEAL8n1payevhTLly+Xc+fOObbdSpUqSZIkSWTQoEGObRMA3DZkyBCJFSuWoyWX9EZSVxIpSj0BCEm///675M6dW3799Veb7Prll1847gCAF9NyfG3atJF8+fJZlYXn9bDQFZieB6vT4S0ePnwoH330kT20UkjTpk1l4cKFZPgAgC8GKdKmTSs5cuSwg/u0adMc2264cOGkXbt2MmXKFGtsBAD+TgPB48aNk9atW1sTN6foauY7d+5IhgwZJEuWLI5tF0BgWblypeTNm1eOHj0qadKkkY0bN0qBAgXcHhYA4B9obwqt3/9PcwGdOnWybAvP48SJE+xTuE57qFSuXNmyKFTfvn1l9OjRNtcEAPDBIIXy9KIYNWqURZ+d0qxZM4twDxw40LFtAoBbhg4dKmHChJEPP/zQ0e1+/fXXQcd6J0tMAQgcEydOtKarV65csUCFBijSp0/v9rAAAP9Ay48uWrTIgsxJkyZ97t+LECGC3bc//gDcdPr0aSlUqJD1odDP5/Tp06VDhw7c6wCArwcptLFh1KhRZf/+/bJixQrHtqvb1BXFurJYm3UBgL/SkksjR46U5s2bP7feb0jQkitbtmyxuvCNGzd2bLsAAoMubunRo4cFQR88eCA1atSwEqLx4sVze2gAgH84dmuAYu7cuXb/nypVKvYVfIZm/mhpyW3btkncuHHtM1y9enW3hwUAPs8rghS6EqJevXr2XCfRnKQrirWJq64wBgB/pZlqt2/ftjJ3TvIc03XikElDAMFJG6nqQpfPPvssqByINsmOGDEiOxoAvLzE0+TJk+2YHS1aNDlz5ow99FoV8GY///yz9U/RkuGasblp0ybL4AQA/Heh/nayvtI/2Ldvn2TMmNECBlpL2MlmWB9//LGMHz/eTjSkjgLwN3rDpyvUypcvL2PGjHFsuxcuXLDUfZ1I3Lx5s+TMmdOxbcP5TB1tZKl1ojmPwgmXLl2SSpUqyZo1a6yM3TfffCNNmjRh5wOAD5yzn1f+87vvvgsqBe3tPwMCj84Zvf/++9ZPtWDBgpYJ5GSGOgD4qhc9b3tFJoV644035J133pFHjx5ZsyEn6criW7du2Q0uAPibCRMmWEm7Tz/91PELeQ1Q5MiRgwAFgGDz559/Sp48eSxAoRe5S5cuJUABAD5E10k+6/EiAQrAaTpH1blzZ7vW0ADFe++9ZxkVBCgAIHh5TZDCk/apdKWvTmw5JUmSJFK/fn0ZNGgQKaYA/Mr9+/dlwIABUq1aNUmbNq1j29ULeC0x9fixHQD+K22IrXWgDxw4YFm369evl2LFirFjAQBAsLtz547Url1b+vTpY6+7d+8ukyZNsmbZAAA/DlJUqFDBAga64nfWrFmObrtjx45y8eJFx3tiAEBI+vbbb62Enq7+cdLixYvl2LFjtsJI+1EAwH81c+ZMy7rVUnLZsmWzMnKZMmVixwIAgGCn1xvvvvuuTJ8+XcKGDWvZ6b169XpuuTIAgB8FKfTA37x5c3vudLAgTZo00rRpU/nyyy/lypUrjm4bAEKClrHTC2lNSc6cObOjO9lzDNe06EiRIjm6bQD+RUuA9O/fX6pXr26ZtuXKlbNST4kSJXJ7aAAAwA8dPHjQSktu2LDB6qj/9NNPVn0DABAgQQqlgYJw4cJZOv/27dsd3bam7unNr94IA4CvGzp0qK0A+uyzzxzdrpZh0TqtusrIE3gGgFctWafHkQ4dOtjrDz/80BpVRokShR0KAACC3dq1a6205KFDhyRFihQWqChSpAh7GgACLUiRIEECqVq1qivZFAkTJpS2bdvKkCFD5NSpU45uGwCC06VLl6Rfv37ywQcfSKpUqRzduV9//bV9LVOmjOPbBuA/rl27ZlkT2qtMg54aeB02bJiECRPG7aEBAAA/NHXqVClatKjdS+XMmdNKS77xxhtuDwsAAoLXBSkeb7KqJwg9OTipffv2VprE6ZXHABCctLmbNq/u0qWLozv25s2bVq9V0TAbwKs6ceKE5M+f38orRI4cWebNmyetW7dmhwIAgBApLdm7d28rk3vv3j2pXLmyrFy50hbRAgACOEiRN29eyZo1q9y5c0dGjRrl6La13qA2mB03bpyVLAEAX5zcGz58uHz88ccSP358xxt1X716VdKmTSvFixd3dNsA/MOOHTuszMKePXssy1X7T5QvX97tYQEAAD8tLal99Lp27WqvP/nkE5k5c6YtkgAABHiQQlP6NaNBDRo0SK5fv+7o9nX1b+LEiYNOUgDgS3r27CnRo0e3IIWTNLDct29fe67bDh3aK08xALzYokWLpECBAlZ2M1OmTFZmIXv27G4PCwAA+KErV65IqVKlbKGV3rto2doBAwZwHwMALvDaGaQaNWpI+vTprdyT070pIkaMKL169bLouTbwBgBfsXv3biu3pEHWaNGiObrt8ePH28Ri0qRJpWHDho5uG4DvGzFihFSoUMHKxhUrVkzWrVsnyZMnd3tYAADADx09elTy5csny5cvl6hRo9pCCe3nBwBwh9cGKbQpoieTYeDAgXLjxg1Ht1+vXj1buadZFVrXHQB8oZaqHrMyZMggzZs3d3Tbd+/eDcqi6NSpk0SIEMHR7QPwXXqd1bZtW/nwww/l0aNHVnJh8eLFVoITAAAguG3ZssVKS+7bt8+qaKxdu9YyKgAA7vHaIIWqVauW1TW/ePGipd05HSTRDA6tizx69GhHtw0Ar2Ly5Mm28lhXI4cPH97Rnagp0idPnpQkSZJI48aNHd02AN+lWRNVqlSRIUOG2Osvv/xSxowZI+HChXN7aAAAwA/NnTtXChUqJGfPnpUsWbJYaUntiQoAcJdXBynChg37RDaF3sg6KVeuXLaar0uXLnL+/HlHtw0AL0ObVWsvHy2VV6RIEcezKPr06WPPO3bsSBYFgBdy5swZKVy4sMyfP9+OGz/88INlYmlvMgAAgODOOh88eLAtjrh9+7aULFnSMii0VC0AwH1eHaRQ7733nqRJk8aCBN98843j29eJN71Z1ok3APBWPXr0sLJ4GtB12sSJE+XEiROWKq2BXQD4N7/99puVWdi6davEiRPH6kHXrFmTHQcAAILdgwcPrKxku3btLFihpXEXLlzoeA8/AIAPByk0m0IzGVT//v3l1q1bjm4/bty40rt3bytlsmnTJke3DQAv2ixbSzx1797d8ZVA9+7ds/IsqkOHDhIxYkRHtw/A92hAQhtVHjt2TNKlS2fXV/oaAAAguOlCrkqVKlk5b12Aqou6tJy4zjUBALyH1wcpVJ06dSRVqlRy7tw5V/pDNGvWTLJly0YTbQBe2yxbJ/ratGnj+Pa///57m2hMmDChNG3a1PHtA/AtuuhDyytoiboCBQrIxo0brf8YAABAcDt16pQULFhQFi1aZIupZs6cKR9//DGlJQHAC/lEkEKbJ3bu3Dkom0LrB7rRRHv79u0yatQoR7cNAP9k0qRJrjXLvn//vmWaqU8//VQiRYrk6PYB+I5Hjx5ZZmzjxo2t5ELt2rVl2bJlVuoJAAAgJLLNtc/ojh07JH78+LJq1SrrRwEA8E4+EaRQ9erVkxQpUliTxTFjxji+fa2b/P7771tviiNHjji+fQB42unTpy17olatWvLuu++6EiA5evSoJEiQwI6PAPAsd+7csR5jntJw3bp1k8mTJ1uzbAAAgOD2008/Sf78+eXkyZPy2muvWWlJDVgAALyXzwQpdIWwJ5uiX79+cvPmTcfHoFkcuuJPVwHqikAAcLPMkwYG9Ng4fPhwx7evvSg8WRTt27eXyJEjOz4GAN7v4sWLUqxYMZk2bZrVftZyT5999hllFgAAQIjQRa1lypSR69evyzvvvCMbNmyw8uEAAO/mM0EK1aBBA0mZMqWtHh4wYIDj248ePbqMHz9eVq5cKd98843j2wcAD12FvHDhQjsWuVEuRQMjhw8ftiyK5s2b88YA+B8HDx60TFQtSRcjRgz58ccfpWHDhuwpAAAQ7HQhaYcOHWwh18OHD60ah157xIoVi70NAD7Ap4IUumLYE5zQbIrjx487PoaiRYvaSU/rr1P2CYBbDeBat25tNd0rVqzo+PbPnj1rK6FVnz59JEqUKI6PAYB308BEnjx55NChQ1auc/369a6UpQMAAP5P+5bWqFHDql+onj17yoQJExzv2QcACJAghdJGR4UKFbL6xhoocIMGSuLGjSuNGjWi7BMAV8o8aS33YcOGubL3u3btKteuXZPs2bNL/fr1XRkDAO+lpZ00IKGlnt5++22rA50xY0a3hwUAAPzQ+fPnpUiRIjJr1iwJFy6c9c3r0aMHpSUBwMf4XJAiVKhQMmTIEAkdOrRMnz5d1q5d6/gYokWLZmWfVq1aJaNGjXJ8+wACl150L1q0SEaPHu1KmacdO3bY8U9pkESPxQDgCaJqdlWtWrWsb41meum1UsKECdlBAAAg2P3xxx9WWlIXRGhZp2XLlkmdOnXY0wDgg3xydilr1qzSpEkTe/7RRx9ZvUGn6QrBDz74wLI5tJQBAIS0kydP2jFPL7wrVKjgygSkbl+/6iRk3rx5HR8DAO90//59adq0qXTu3Nlet2nTxlY0Ro4c2e2hAQAAP7R69WorLal98rQxtjbI1qobAADf5JNBCvXFF19YE0Zd1au1Bt2g9Q4TJUokNWvWlLt377oyBgCB4cGDB9aDQvs/DB061JUxzJw507LXIkWKZH2BAEBdvXpVSpcubVlWml01fPhwGTx4sIQJE4YdBAAAgt3kyZOlWLFicvny5aBMitdee409DQA+zGeDFPHixbM6g0pX7ekNstOiRo0qM2bMkD179kjHjh0d3z6AwKGNqnV1kNZ6jx07tuPbv3XrlrRv396e6/EuWbJkjo8BgPc5duyY5MuXT3755RcLos6fP19atWrl9rAAAIAf0ozuXr16Sd26dS2Ls2rVqrJixQqJHz++20MDAARqkEK1bNlS0qdPL+fOnbPMCjdky5ZNBg4caH0yFixY4MoYAPi35cuX2zFOAxX58+d3ZQx6nDt+/LgFJz755BNXxgDAu2zdutVWL/7222+WWbpmzRopW7as28MC8P+1dyfwNtXf/8eXmYzJEKFkzFxEGUKDIaSUhKJUCpkbVIoGNKhUVJSUSgoRMmQWMqRJJUKhZKqMken8H+/1/d/7u25IOffuM7yej8fu3nO67v2cfYa992d91loAEIPU7+rmm2+2vn37+m2V3lafUmV5AwCiX5qQQtFRbMqUKdaoUSPLkCGDXySXKFEi1cegXdisWTOvifjll19akSJFUn0MAGLTli1brGLFilahQgWbNm1aII2qN27caKVKlbJ9+/Z5JkeLFi1SfQyIbLt27fISjMpqzJEjR9DDQSpQxoRK0CnLqnz58vbRRx+RYQUAUSAWjtmx8Bjw76isk+Zc5s6d6+UkX3rpJWvfvj27EQBi6Lgd1ZkUohrIDRs29FS/nj17BjKGNGnS2Ouvv+47Ws1kNRYAOFVHjhzxJtny1ltvBRKgSCjvpACFsjiuv/76QMYAIHKoL84111zjAYr69evbggULCFAAAIAUocbY1atX9wBF9uzZbfLkyQQoACAGRX2QQp599llLnz69TZo0yaZOnRrIGE4//XRfYbx06VJ7+OGHAxkDgNjyxBNPeKmnd955x/Lnzx/IGDT5OGrUKA/GamJSXwHEp8OHD1uXLl2sW7dunkWqFYw692IVKwAASAlLlizx0pLff/+9FSpUyK9NGjRowM4GgBgUE0GK0qVLW+fOnf37O++809NIgqCDZ//+/X1iUWWoAOC/Uvk4BTx79+5tl112WSA7UtkTt956q3+vr+rBAyA+7dmzx7MnXnzxRb/91FNP2SuvvOLlNgEAAMJt3LhxVqdOHdu2bZudf/75HrBQCVwAQGyKiSCFqKFs0aJFvbGrGigFRSWnrrrqKi/7pGg/APxbP/74o1177bVWu3btQDOz9LdXr17tDXE1IQkgPm3atMk/j5Q1kSlTJnv//fftnnvuIbMKAACEnbI1Bw4caM2bN7f9+/d7D9L58+dbwYIF2dsAEMNiJkiRLVs27wshQ4cOtZkzZwYyDtWMV+34woULe7BCDZ4A4N+sVm7atKnlypXLJwJVyi4In376qT3zzDP+/bBhw7ykHYD4s2LFCs8U/fzzzy1Pnjw2Z84cnzQAAAAIt0OHDlnHjh19MYSCFZ06dbIJEyb4fA8AILbFTJBClAqog1hCaZLdu3cHMg7VZv7www/tt99+sxYtWviBFgBOplF2mzZt7KeffvLPkDPOOCOwMk+33HKLXxhoPI0bNw5kHACC9fHHH1uNGjVs48aNVqpUKVu8eLFdfPHFPC0AACDsNH+jhZ4qJ6k+eOo9qjKTQS3aAgCkrpgKUoj6QURC2adixYrZmDFjbPbs2YGOA0D0eOSRR3ylkBplly1bNrBx9OnTx1atWuVlngYNGhTYOAAE59VXX7Urr7zSJwxU6mnRokV+bgMAABBuP//8s9WqVcumTp1qWbJksQ8++MC6d+9OaUkAiCMxF6RQGuDw4cP9e0XgZ82aFdhYLr30Up/ge+6552zEiBGBjQNA5FNQU711+vXrZ02aNAlsHFopnVDmSaXzKPMExF9GV69evax9+/Z2+PBhu/HGG2369OmWO3fuoIcGAABi0JdffmnVqlWzr776yvLnz2/z5s2zq6++OuhhAQBSWcwFKaRu3bpexzDosk+i8lO333673Xnnnb4KEQCS++KLL6xt27Z2ww03+ORgUFTm6eabb/ZJyptuuinQYAlOzZAhQ+ycc86xzJkz+0Xf0qVLT7hiXivXFJDSdvnll5/w5xG79BnQsmVLe/LJJxOzqkaOHOnNsgEAAMJtypQpVrNmTdu0aZOVKVPGF0xdeOGF7GgAiEMxGaQQXWBrgmb9+vV23333BTYO1VIcPHiwTxKpGe7q1asDGwuAyKPSdAoG6KRcWWD6zAhK3759vczTmWeeSZmnKPbee+9Zjx49fIJZzY4rVqxo9evXt61btx7z5+fOnesT02qIrIbphQsXtnr16tkvv/yS6mNHcLZt22aXXXaZvf/++5YhQwZ78803/TMhyM8kAAAQu1566SW/Dtq7d6+fgyxcuNDncAAA8SlNSJ1RY5T6QehgJyr7pPJLQVETba0Q2L9/v2dUqNY7gPi2fft2/1w4cOCAn5QH+bmgVUtqkKssiokTJ5JFEcUUFNcKNAXIRc+pAg+dO3c+qUwdlfhRRoX+vRqnn4xdu3ZZzpw5befOnZYjR45TfgxIXQpONmrUyNauXWu5cuWy8ePHW506dXgaACAGxcIxOxYeQzzTuan6diaUmL3lllu8VHfGjBmDHhoAIMDjdsxmUoiCEh06dPDv27VrF2jZpzPOOMNrOh88eNAaNGjgTwyA+KUVQ40bN7bff//dPxuCDFAoeKqLA10wqP48ZZ6ilwJey5cv95JNCdKmTeu3lSVxMv78808/Vp2oB8Fff/3lJxpJN0Sn+fPn28UXX+wBCq1e1EIKAhQAACAl6DyzefPmiQGKxx57zLPJCVAAAGI6SCFPPfVUYtmnrl27BjqWIkWK+GSkyruo9JMmBgHEH00A6+T822+/talTp1qJEiUCHY9W13///fde5un5558PdCw49ewcZUKo6WBSur158+aT+h0qkViwYMGjAh3JDRgwwFdCJGzK1ED0eeedd+yKK66wP/74wzNwlixZYuedd17QwwIAADFoy5Yt3j/0gw8+8KDEqFGjrHfv3pSWBADER5AiW7ZsNmLECF9Jqq9vvPFGoOMpW7asTZ482ScCWrdu7ZNJAOKHshVuvfVWmzlzpp+gV65cOdDxjBs3LjEwoQbKJ1o9j9j3xBNP2OjRo73cj5puH8/999/vGYEJ28aNG1N1nDg1qvT5+OOPe+aUsm+uvfZa70mSL18+di0AAAi7lStX2kUXXWRLly716w1dC6knGgAAcROkEJUtUPNH6dixo61YsSLQ8ajuuxpTfvjhh9apUyefLAAQH5S18NZbb9nIkSN9BXOQ1qxZ46Xw5J577vHyU4huefLksXTp0vlKtaR0W5kyJzJw4EAPUnz88cdWoUKFE/5spkyZvJZk0g3RQUEJve8feughv3333Xf7OUmWLFmCHhoAAIhBWghRvXp1++mnn6x48eJegrRWrVpBDwsAEGHiIkghDz74oNWvX9/27dvnZVaC7E8hqvk+bNgwGzp0aOJEAYDYLz/39NNPe+bCDTfcEOhY9Fl43XXXeS8BNe/u169foONBeCh1Xtk5s2bNOip7R7fVd+BEr03VBJ42bZpVqVKFpyNG7dixwxo2bOhZpQpmvfzyy/6ZpGxTAACAcHvzzTetXr16fg6ixZoKUJQsWZIdDQD4m7i5KtUF+Ntvv22FChWyVatW2e233x54BoNWMmpyQJODjz76aKBjAZCynn32Wa/1r6Bkly5dAt/dGsNXX31lefPm9fI+GTJkCHpICJMePXp46S5dFCq1vkOHDt6oXc3RpU2bNl6uKcGTTz7pr8vXX3/dezipd4W2PXv28JzEkB9//NFXMc6ePdtLYar05J133hn0sAAAQAzSXEufPn3s5ptvtkOHDvkCLZV4UtYvAADHkt7iiA6I7733ntWuXdu/KsVQ5ZaCpDILKr2gTA+tatRXALHlhRdesJ49e3qpp0ceeSTo4Xipqddee82b1Klh3VlnnRX0kBBGLVq0sG3bttnDDz/swYZKlSp5hkRCM+0NGzYctXJeq+l1HFJmTVK6sEwolYjopj5YV111lW3dutXf7x999JFVrFgx6GEBAIAY9Ndff3kPvnfeecdvP/DAA56xS+YmAOBE0oSCTicIaEWzJgy1cnjhwoV24YUXBj0kz6TQhNCAAQN8IhNAbBg8eLB17tzZA5IqqaPAQJC++eYbq1q1qpd70gS0PneAU6WyYTlz5vQm2vSniCxqgt66dWt/zytgpQwKApMAEL9i4ZgdC48hVv3+++92zTXX2Pz5830RpspbK2ABAIhfu07yuB1XmRQJunfvbgsWLPALd/Wn+Pzzzy137tyBjkkrXg8fPuwlOJQO2bt370DHA+DUDRo0yD9vtEVCgEK9eLRaXpOVatrN5wwQu7QG5bnnnvMAqb5XLwplkWbPnj3ooQEAgBi0du1au/LKK2316tU+CTV27Fi/5gAA4GTEZZBCE4Wqva167OvWrbO2bdvahx9+GHj6ocrApE+f3muDK1ChFc5BT2oC+G+eeeYZnxy899577Yknngj8vaxJyvbt23tPHq2iVvq1VjcBiD06h+jatau99NJLflt9SVR2TucYAAAA4aaG2CotuX37ditcuLBNmTLFypUrx44GAJy0uGmcnVyuXLlszJgxlilTJi99MHDgQIsEClD079/fAxbKqojDalxxYciQId6gNnPmzFatWjVbunRp0ENCmOg9269fPw9QqP5qJAQo5JVXXvEG2QpM6KsaZgOIPWp43rRpUw9Q6LNHAVMdcwhQAACAlKB5lbp163qAonLlyt4LiwAFAODfitsghVxwwQX2/PPP+/eaTJw1a5ZFAgUn1DfjySeftNtuu81XRCJ2qNxGjx49PFNGpcbUvLR+/fre0BTR7ciRI756WWWU1Gfm8ccfj4gAhVY2devWzb9X0KRmzZpBDwlACvjll1+sVq1avnoxS5YsXmZBx5tI+BwCAACxtzhLcxbXX3+9N8tWJsW8efOsQIECQQ8NABCF4jpIISp/ctNNN3k/iGbNmtm3335rkUA17N966y0bOXKkj+vPP/8MekgIEwWgbr/9drvlllusTJkyvsL9tNNO8xJkiF46MW/VqpWvWNZzqqyoSJgYVG1YXTAcOHDArr76auvZs2fQQwKQAlTCUpl5X375peXLl8/mzJnj5w8AAADhdvDgQbvjjjusV69efrtLly72wQcfWNasWdnZAID/JO6DFJpEHDZsmNWoUcO7javR0+bNmy0S3HjjjTZp0iTP8KhXr579/vvvQQ8Jp0gTxcuXL7fLL7888T71QtFtrXZHdFJD6kaNGtmECRM83Vkn7JHgt99+8880pV4rc0yBz0gInAAIr2nTpnmGlDIpzjvvPFu8eLEHLAAAiETz58+3Jk2aWMGCBf3cVOfQiB6aN2ncuLG9+uqrfi2r6hTa6HcHADgVcR+kEPUF0IlRiRIlbMOGDX7A3bt3r0WCBg0a2OzZs+3777+3Sy65xH7++eegh4RToMliZe3kz5//qPt1O1KCY/h3VKarTp06tmzZMps+fXrErFzev3+/Z06sXr3am9ep9062bNmCHhaAMBs6dKift6gXhepBL1y40IoWLcp+BgBELF1rq+StMpARXTZu3OgLIz7++GOvBqB5FGVRAABwqghS/H958uTxGs5nnHGGr3Rv2bKlTyZHAq2G1KSDVmtXr17dVq5cGfSQAJjZunXrPAtr06ZNviKsdu3aEdMbQ+XEFixYYDly5PDPNmrDArFF7/N7773X7rzzTj9fadu2rWdUnH766UEPDQCAE2rYsKH3brvmmmvYU1FE/RQ1N7FixQo788wzEzNiAAAIB4IUSRQvXtwmTpxomTJl8jJLajSrZlCRoFSpUrZo0SLLmTOnT4pGSpNv/PtgmNJgt2zZctT9uq0TPUQPBQ4vvvhiT1HXe1OrwSKF+mGMHj3a0qdPb+PGjbNy5coFPSQAYbRv3z5vUvn000/77UcffdRGjBhhGTNmZD8DAGKy95tKDCXdkLqUla3KDr/++qtfWyxZssQqV67M0wAACBuCFMkoU0F122Xw4MFeWzFSnHXWWfbJJ59Y1apVrX79+vbiiy9GTBAFJ0cTSDqZSxpk0mpY3daEN6KDmpyrrErp0qUjrrTK8OHDrX///v69+u0k7X8CIDZKzOnzRwFIHVPefvttD0zSbwYAEKsGDBjgi/USNpUyRerRvEPTpk29TNcVV1zh2dpFihThKQAAhBVBimNo3ry5PfXUU/59jx49bPz48RYpcuXK5asYunbt6rUf27dv782YET30mlKTsTfffNNLd3Xo0MFP+FSeB5Ht0KFDnmF16623Wrt27WzGjBmWN29eixSqDZvQtFuTlrymgNii/lQXXXSRr15UWSd9BrVu3TroYQEAkKLuv/9+27lzZ+KmvghIeSon2b17d5930MK62267zT766CMPFAEAEG7pw/4bY8Tdd9/t9eZfeeUVnwCYO3euZzBEApVweeaZZ6xChQoepNCkhVZU5suXL+ih4SS0aNHCtm3bZg8//LA3y65UqZLXEU/eTBuR5ffff/fnbs6cOfbSSy95cCmSqDbsdddd5xcTN954oz3yyCNBDwlAGOk8RLW7d+zYYeeee673mlEpSAAAYp3KMWtD6tEiOs2DfPjhh4nZLPfddx+ZmwCAFEMmxXGobILSGtXUS7Wf1RDqxx9/tEiiJpnz5s2zNWvW2IUXXmhffvll0EPCSbrrrrts/fr1Xl9VK2LVgAyRSxkveo7ULE4rlyMtQKHG3Y0aNbLdu3d7rdjXXnuNCwgghowcOdLq1avnAQplUixevJgABQAASBFaSFenTh0PUCg49O6771qvXr24vgAApCiCFP+QsfDee+/5SnfVgFb9xV9++cUiiSYrli1b5iVn1FBbJxAAwkcn5wpQZM6c2d9rqgUfSfTZpMlLpb1rVbXK07HSDIgN6jvVt29fX5Rw8OBBL0c5e/bsiCozBwDAv7Vnzx5fYJewyE6LAfX9hg0b2JkB+/bbb/3a57PPPrMzzjjDeyfecMMNQQ8LABAHCFL8g+zZs3vdRTXGXbt2rU9Q/vrrrxZJChUq5A21mzVrZq1atfKa9Mr+APDfKctF/Seuvvpqbz69aNEiL7ESSbZv3+5j08VEwYIFvfxL7ty5gx4WgDB9Bik4kVC6TSUWRo8ebVmyZGH/AgCimibAzz//fN8Sevbpe5XDRXBmzpxp1atX92BRiRIlPHNTCyEBAEgNBClOgib/VIf+7LPPth9++MEuvfRST4GMJJq0UDmI4cOH21tvveX9M7777rughwVEJQUkdUL+8ssv2wsvvOA9XxSwjLQeGQpQqBfFmWee6Z9RkRZEAfDf39/169f343m6dOls2LBh9sQTT1jatJy2AQCin0oJKVsw+fbGG28EPbS49frrr3up6127dlmtWrXs008/teLFiwc9LABAHOFq9yQpQKFJwMKFC3uj6ssuu8zLrERaH4127dp5SZojR454nwqd6OmED8DJUYk3reRS7XdlT3Tu3Dni6q/+8ccfXn7uq6++8obr+mwqWbJk0MMCEAbr1q3zVYzqOaXgqDKkbr/9dvYtAAAIO80bPPjgg3brrbfaoUOHvDKDevCp1BMAAKmJIMW/oJJPmgw866yzPEtBgQqVW4k0ZcuW9UBFy5Yt7ZZbbvFyEar7CeD4VCJNpdJUc1VNqNUku3LlyhG3yxQ8UQ8KjU916VUntnTp0kEPC0AYqKyCek2tWrXKF0UsXLjQ3+8AAADhtn//fmvdurX179/fbz/00EP29ttv098OABAIghT/UrFixTxQUaBAAfvmm2+83Mpvv/1mkea0006z1157zU8y1EhXk63Lly8PelhARNJ7WQ3iVDLt1VdftVGjRlmOHDks0ij9ukGDBkc1slNQEkD0Gzt2rPe92rZtm2dzKWBRvnz5oIcFAABikOYwNJehflfp06f3ck+PPvpoxGWQAwDiB0GK/0BNpGbPnu1lVlRuRWVXVH4lEmllhIITWbNm9UlYrY44cOBA0MMCIoJSmvv162cXXHCBHT582DOQbrvttog8Od+9e7fXiV2yZIk3x1aAgglMIPqpJOPTTz9tzZs39xWNjRs3tvnz53s/LAAAgHBTn01lbipjM2fOnDZt2jSvwAAAQJAIUvxHKq+iQIXKrXzxxRdejkFlWCKRatVrYvPhhx/2xptVqlTxUjFAPPv222/t4osv9vdFz549PZhXrlw5i0Qq13bllVd6j4xcuXJ5ndiKFSsGPSwAYQiUdujQwe69916/fdddd9mECRMsW7Zs7FsAABB2CxYs8GugNWvWeN9NBSpUxhoAgKARpDgFZcqU8UBFnjx5vPxK/fr1befOnRaJMmTI4JOxGme6dOmsatWqfpusCsTjpOCAAQM8e2Lv3r326aef+u3MmTNbJNIYtbJaFxRa6aQAhcYOILopO6pJkyY2dOhQz94aNGiQvfjii36MBgAACDeVdlJAQqWeLrzwQl/ISOlYAECkIEhxirTyeubMmV5+ZenSpV7XcevWrRaptPpaJyO9e/f2iVmdnCgTBIiX7Inq1av767979+6eUaSAXaRSGTn1oJg3b55lz57dpk+f7plQAKLbzz//bLVq1fLyCuohpd5RXbt2DXpYAAAgRktL6tq/ZcuWvkjxmmuusblz53r5agAAIgVBijBN/CtQoUa2ylTQJOjatWstUmXMmNH69u3r9fdFk7T333+/r9gGYtG+ffvskUce8QwErV5W2SSVPovU7AnZuHGj1axZMzGDQpOZ6isDILppYYDey+ppdeaZZ3oQsmnTpkEPCwAAxKCDBw/a7bffbg888IDfVpnbMWPG+CIJAAAiCUGKMDn//PN94vOcc87xAIXqPCpgEckqVarkgQo1037uuefsvPPOs3HjxvlKCyBWTJ482TOe1CC7R48eiROEkeybb77xz5DvvvvOm+d+8sknHvwEEN2mTJniGRSbNm3y8gqLFy8mOwoAAKQIlaJWX7vhw4db2rRpbciQITZw4EBKSwIAIhJBijA3qFZ9ewUstm3bZnXq1PHVz5FMWRXqTaHJUAUtrrvuOu+tsWrVqqCHBpySdevW2VVXXeU134sVK2YrVqyI6N4TCbSqWhkUv/zyiwcO9ZlSvnz5oIcF4BS99NJL/nmkrEWVhlSjSjWsBAAACLf169dbjRo1vOJD1qxZbeLEidaxY0d2NAAgYhGkCDOVblB9R01AaCJCExJvvvmmRbpzzz3XT1wmTZrkmSCaFKUEFKK5tJMa23/55Zc2duxY7+VQqlQpi3RKva5Xr56vetJFhUo9FSlSJOhhATgFhw8f9tIKnTp1siNHjli7du08o0Jl3AAAAMJNFR0uuugi78eXkJXdqFEjdjQAIKIRpEgBOXLksI8++shat25thw4dsptvvtlXcEdDGaXGjRv7yYwaCw8aNMhKly5t7733XlSMHfFNr9EPP/zQS6gklHZauXKlXXvttZYmTRqLdC+++KK1aNEisZndjBkzLHfu3EEPC8Ap+PPPP6158+b27LPP+m19Nr322muWIUMG9isAAAg7XQ/Vrl3bNm/ebBUqVLAlS5Z4pQcAACIdQYoULKM0cuRIu+eee/y2GlV17tzZV1RGOpXDSSgBpUbDN9xwgzfXnjVrVtBDA45JGQeq83711VdbiRIlvLRT//79PbU5GoIrvXr1si5duvj3SsNWRkWWLFmCHhqAU7BlyxarW7eujR8/3s8JRo0a5ecC0RA0BQAA0ef555/3xU5aJKESzsqgKFSoUNDDAgDgpBCkSEFqTvXUU095RoImJdSoSiul9+/fb9GgaNGivhJD5avSpUvnJaxUimb58uVBDw1wCkaopJoCFDoZV1kn9YGJhtJOcvDgQWvbtq09+eSTfvvxxx+3wYMH08wOiHIK8qvMwtKlSz0jSkH+li1bBj0sAAAQg7QQUgueunXr5oue7rjjDps8ebJXeAAAIFoQpEgFXbt2tdGjR/tKynHjxvlE//bt2y1aKF1UzXs/+OAD27hxo1WpUsWDLT/88EPQQ0Oc+umnn6xNmzZWsWJFL+n07rvveu1VvbeiZZXyjh07vLzaW2+95UGJ119/3R588MGoGT+AY5s9e7ZVr17dP6eKFy9uixcvtpo1a7K7AABA2O3Zs8ezJ1Q6VrRI8uWXX7b06dOztwEAUYUgRSq5/vrrfYW3VjMo7bJy5co+qRotNHGqkx+tXFc97YULF3pj4g4dOnjgAkgNqq2qFULKlPj4448960ArllWSTJlL0ULvowsvvNAfw2mnneZN62+55ZaghwXgFL3xxhteXmHnzp1Wo0YND/CrBB0AAEC4bdq0yRcUTpo0yUs2q2Ssyk2z6AkAEI2iZ1YvBqg29aJFi3zCYsOGDb6yUquno4lWZNx6662eRaFm4GqqXaxYMb9v9erVQQ8PMWrdunUeEDvnnHNsxIgR9tBDD9maNWu8f4MylKKJsqpUBkbjL1KkiM2fP9+uvPLKoIcF4BSotII+lxRsPHTokAdOZ86caXny5GG/AgCAFFn0pGuKzz//3PLmzeuZnNdddx17GgAQtQhSpLKyZcvasmXL7KqrrrK//vrLJ/dVM1LfRxM19b377rtt/fr13qB46tSpVrp0aWvevLmfKAHhOvlu3bq1lSxZ0saOHesN3fWa6927t2XLli2qdrL6T3Tv3t3r0qt/hnq8qL+LsqoARC8dv2+88UbvKSNqjv3OO+/4ikYAAIBwUza2MjZV0UAZ5iotefHFF7OjAQBRjSBFAHLmzGnjx4+3xx57zFMxhw0bZpdccklUlk3Knj27Byu00l21LxWg0KSryl3MmzfPV5cC/5ZKpCiQV6FCBVuwYIE999xzHpzQ5F+uXLmiskyVghKDBg3y2/fff7+Xf2OVNRDdfvvtN7viiits1KhRnmk4fPhw69evX1SVnwMAANHj1Vdf9Szs3bt3e6knVWo499xzgx4WAACnjKvogGgCQ6vBp0yZYqeffrotXbrUJ/fnzJlj0UgrRpURsmrVKp+s+fXXX61OnTrePFQlobSKHDgRlUhR8C7hdaOSYqrvrrJInTt39t4N0Rpw0XtbZZ0U1FMDemUfqVk2gOilzyatWlSfKfWbUkZhu3btgh4WAACIQUeOHLFevXpZ+/bt7fDhw3bTTTd5RkXu3LmDHhoAAGFBkCJgDRo08AbalSpVsm3btvlq64EDB0ZtBoJWkqqczVdffWWTJ0+2TJkyeW3us88+2x599FHbsmVL0ENEhNm+fbs98cQT3tukWbNmduDAARs3bpx9++231rZtW8uQIYNFI72HlV2kFU5qanfeeed5MFIN6AFEN61aVIBCwVT1ltFtHb8BAADCbd++fX6N/eSTT/rtvn372ptvvhl1vfkAADgRghQRQOmZCxcu9NUQWiFxzz33WIsWLTyFM1qpjFWjRo1s7ty59vXXX1uTJk38pKpw4cL+2JQxEq2BGJw6Pfcq46TXfKFChfxE+7LLLvMeDZrsU7Aimsul6EJCDXTV2FtZRGpit2TJEu/bAiC6KTvw0ksv9QBrlSpV/L2tflMAAADhpoWMuk56//33ffGWghN9+vTx620AAGJJ9M4CxhiVstEJx+DBgz0bYcyYMXbRRRd54+BoV758eRs6dKj9/PPP9tRTT3nQQhM8mrBV1ohKQyE+bN261Z5//nkrV66c1apVy0shKcNGr43XX3/dLrjgAot2KnmmRnZ6PyvQote8LipU6glAdAdXlfWl7EA1y1bfHAXizzzzzKCHBgAAYpCuK5S5qWsm9eVTeac2bdoEPSwAAFIEQYoIotUQnTp18obTBQoUsO+++85XaWqSU3Uno516b3Tr1s0flyZ2VKf/wQcf9JX09erVs5EjR0Z19giObe/evd6nRJk1BQsW9EbrKn00Y8YMW716td17770x0UBaWVAvvviinX/++fbFF1/4Y9JjVGYUK52A6KaMKNWAVtN76dq1q/eXyZo1a9BDAwAAMUj97BSgWLt2rZ1zzjmeba7efQAAxCqCFBFITYM1yakSSarPf9999/kJybp16ywWaMJWdfo1cb1582Z75ZVX/HGq/0D+/Pm93qb6WdBsO7qbYE+fPt3LOek5bd26te3YscMn8ZU5M3bsWK/fHs0lnZLauHGj1a9f37p06eKlnvTY9B5WxhCA6LZz504Psr722mv+mfXCCy/YoEGDLF26dEEPDQAAxKB33nnHrrjiCvvjjz+sWrVqXlpSi7wAAIhlaUI0BohYempGjBjhKzb37NnjKzafe+45u+2222JyZfaGDRvs3Xfftbffftu++eYbX4nevHlzbzSsoAaNwSKbgkrqMzFhwgSv2a4m6aVKlbIbb7zRWrVq5b1XYvE9qouIu+66yycys2TJYk8//bR16NAhZgIwwMnYtWuX5cyZ098HOXLkiKnjkgIUOiapLOPo0aN9AQEAANEqFo7ZsfAYjndt8fjjj9vDDz/st6+99lp76623/BoDAIBodbLHbYIUUeDHH3+0m2++2VM+5corr/QVnSoJFavUt0KTv5oQ0iSR6vk3aNDAJ4f0+M8444yghwgzz46YOnWqTZo0yb/qtko6qTm6sifUYyIWA2qiprl33nmnjRs3zm9rlZNKlpUsWTLooQGpLhYnC5YvX26NGzf2jD8db5XhFwt9cwAA8S0Wjtmx8BiSU2UBlZZUXztRyVj1wmLhEwAg2hGkiDGqd68sigceeMBPYHLnzu1lkpRpEMu0mkTNwydOnOjbsmXL/EStZs2aHrDQpknhWJ0Ij0Sqi6qghDYFzlTaSX0Y1ERWm76P9edDk5XKaFK2iBrd9+3b18uy6XsgHsXaZIE+39Qg+88//7Ry5crZRx99ZEWKFAl6WAAAnLJYOGbHwmNISgu9mjVrZnPmzPFykoMHD/bFUAAAxAKCFDFKJSfatGnj9e5Fq9VV519NqeOB+hloglgBi5kzZ9r+/futcOHC3rMjYStatGjMT5KnpvXr13uj84Ttp59+8tJb6regoIRWGus5iAdq7N6jRw/PZJIyZcp4CjarqxHvYmmyQMfUbt26+eKAevXq2ZgxY6L+MQEAEEvH7Fh4DEmrJqi05MqVKy1btmx+3qEKAgAAxAqCFDFMmRSPPfaY9e/f3ydRzjrrLJ80jbeTGa1wnT17tq840eS5AjfKvCBocWpUXitpUEInzlKxYsXEQNBll13mJbjiifZFu3btfH8oCKZghWrGZs6cOeihAYGLhcmCw4cP+/tajbHl9ttvtyFDhliGDBmCHhoAAGETC8fsWHgMoobYWvS1detWv6ZX5qauuQAAiCUEKeLA4sWLPavihx9+SGys9eyzz8ZtSQqlyX7yySeJk+sJQYv8+fNb5cqVj9p0Eki2hdmmTZu87nrSTdkqyYMStWrVits+INofqgmrHily9tlne61YNXMHEBuTBXv37rVWrVp5lp6oBvS9997LcQIAEHOi/ZgdK49h/PjxXhVh3759VqlSJa8WoGtUAABiDUGKOKGJld69e3t5Cq0CPe200+zBBx+0nj17WqZMmSyeJQQtli5dmjgBr1Uqki9fPi/Ro4CFeiiUKlXKihUrZlmyZLFY9Ndff3kviVWrVtmXX36ZuD/UEFYUgEgI4FStWjWugxIJDh486O8r9ZtQmScFte644w578skno/ZiCEgp0TxZoECk+hvpM1HHTQUhW7RoEfSwAABIEdF8zI6Fx6BFdFpYqEVQ+r5hw4b23nvvxV2WOgAgfuw6yeN2mpCOjIh6ai7dqVMnn5SXEiVK+ARr/fr1gx5axNBL/Zdffvlb5oCaH4smoZWFokbc2rQPE74vVKhQxAd9VAbs559/9sya1atXJ37Vpr4SKg0mefPmTQxIJARq9LjJLPk/ysS566677Ntvv/Xb1apV8wZ2VapUCejZBSJbtE4WqM+T6kCrzF2ePHnsww8/tOrVqwc9LAAAUky0HrNj4TEcOnTIunTpYi+//LLf7tixoz3//POWPn36oIcGAECKIUgRp5Pwo0aNsrvvvjtxhXyzZs3sueeei9sSUCezz7Zt23bUhH7CpvuUgZAgd+7cVqBAAd8KFiyY+L02ZWZo9Ys2NTzT16xZs1ratGn/07gUUFDPDa3g17Znzx7/qrGqRJNW/iZsCbd/++23xH+vxtbFixdPDLIkDbyo/BUBiWPTvtT759133/XbmrRU2ZdbbrnlPz+XQDyIxsmCGTNm2HXXXedj1+fjlClTPKMOAIBYFo3H7Fh4DLqWu+GGG/x8Q9diAwcOtO7du3NdBgCIebvIpIjvJ18latT8UyWgVMJIJaA0+Rrp2QCRRIGCjRs3esBCGRjJgwIJ2/79+4/7OxSwSAhaqPmqJrq1ff311/7/K1So4H9Hm8oLJQQjVMbreElOCkAkD5Ik3FYdUwUiFJRKly5diu2bWKN9r/eL3jd6DnTh0KFDB29Qr+AUgNiaLBg+fLjdeeedvqLxkksu8brQvNcBAPEg2o7ZsfAYdC3ZuHFjL7ura/O3337bFxMCABAPdhGkgMpYqGTNvHnzfGdoZb1KQDVo0ICdEyYKJKj3hTIcEgIMx/uqyTAFjRSQGDp0qE+M6/lR0EIBBW1JMzGSfp/wVSv7Tz/9dFbchNGcOXP8efjuu+/89kUXXWRDhgzxUlgAYmuyQJ+/6uM0YMAAv62GlQpYEMAHAMSLaDlmx8pj+Oqrr7y0pAIVyr6fOHGil5IFACBe7CJIgYRJdJWuURaFVv2LVnFohXilSpXYSYhbCko8/PDDNm7cOL+tANBTTz1lbdu2pbQTEIOTBcp6u/nmm705pej9r+wpyt8BAOJJNByzY+UxTJ061a6//npftHbeeefZRx99ZEWLFg16WAAARORxmyLrMU6TL61atbLvv//eevbs6av1J0+ebOeff76fMK1cuTLoIQKpas2aNXbTTTdZuXLlPEChTBY1nVdZL3pPALFp+/btdvnll3uAQs0p33jjDXvkkUcIUAAAgBShzPkmTZp4gKJu3bq2cOFCAhQAAJwAQYo4oUiVmnNp9XjLli19YmbMmDE+UdumTRtbu3Zt0EMEUtSGDRvs9ttvt9KlS3sdWGUZqRasUrAHDx7sZbQAxJ4ffvjBLr74Yp8c0OqN6dOne8YUAABASpSWvPfee733lUr96pxj2rRpXGsAAPAPCFLEmZIlS9qoUaN8Yvaaa67xk6i33nrLSpUqZe3bt/eJXCCWqMxZ586dvaH4a6+95hcLV155pX322WeeSaFAHYDYtGDBAu8zowyqc845xxYtWmSXXnpp0MMCAAAxaN++fV6t4Omnn/bbjz76qI0YMcIyZswY9NAAAIh4BCniVPny5e2DDz6wZcuWWcOGDX3i9tVXX/WJ3C5duiT2rwCilZqZqxfLueee65kSBw4c8MlJraZWPdjKlSsHPUQAKUj9mC677DL7/fffrWrVqrZ48WIrU6YM+xwAAITd1q1bvayTFkEpKKHM7YceeojSkgAAnCSCFHGuSpUqNmXKFF9tWqdOHZ/IffHFF61YsWJ2zz33eB1vIJr88ccf1rt3b6/5+swzz3iz3OrVq9vs2bNt1qxZ/j2A2KVSbv369fN+TDqmKWtwzpw5lj9//qCHBgAAYpD6Pypzc8mSJV7WacaMGda6deughwUAQFQhSAFXo0YNn8TRJK5OsJSqqh4WKo+hUjmq6Q1Esh9//NGbw+s1qwnKvXv32gUXXJAYhNPKJgCx7eDBg3bbbbd5oFL0maD+S6eddlrQQwMAADFo7ty53vtK1yLK4P7000/tkksuCXpYAABEHYIUOIrK4ahmt8rhnH/++T7Rq1I56lnRpEkTD2JolSoQCfRa/OSTT+zaa6+14sWL27PPPmu7du2ysmXLejkz9Z1QOTM1igcQ23bs2OHv99dff93Spk1rQ4YM8WB7unTpgh4aAACIQSNHjrR69er5OYgCFSotqetmAADw7xGkwN9oQleNhZcvX+6pqo0aNfLJ4MmTJ9vll19uFSpUsOHDh3u2BRAElXBRw3eVK9NKJQUk1AReFwnKnPj666+9xAvBCSA+rF+/3jMCFUjPmjWrTZo0yTp27Bj0sAAAQAzStXHfvn2tbdu2nsWpZtkqLZs3b96ghwYAQNRKE2JZPE7C6tWr7YUXXrARI0bYn3/+6fflyZPHOnTo4FuBAgXYj0iVhnRDhw61l156yTZv3uz3Zc6c2W666Sbr2rWrZ1AASH3KYMqZM6ft3LnTcuTIkap/e9myZZ7pt2XLFitYsKBnAlaqVClVxwAAQLQI8pgdC4/hr7/+sttvv90XTEmvXr281KyyOAEAwH8/bhOkwL9uSqwsCjXX3rBhg9+XIUMGu+GGG3ySuHLlyuxRhJ0yI55//nl75513/MJANBnZqVMna9++vQfMAMTfZMGECRO8QbYy+5TlpwBFoUKFUu3vAwAQbQhS/He///67NWvWzObNm+flJF9++WUPWAAAgOMjSIEUdejQIZ8cGjRokC1cuDDxfjXdVtqrUl5z587Ns4D/TJOdY8eO9Vqv8+fPT7xfJZ66d+9u1113nWXMmJE9DMThhIeSQBW47NGjh3/foEEDe//99y179uwp/rcBAIhmBCn+m3Xr1nlJ5FWrVvn5hq5TVGoWAACcGEEKpGqpDU0Wvffeex68EE0eq5eFyvDoZC5Tpkw8I/hHquk6ffp0T5+eOHGi7d+/3+9X+rSaY3fr1s2b0tFrAojfCQ8dZxSoHDx4sN++8847Pbsvffr0Kfp3AQCIBQQp/j01xL7qqqts27ZtVrhwYc/cLF++fAo8OwAAxB6CFEh1v/76q40aNcpXvqs8TwJlVLRo0cIDFsq0YIIZSWkV9GeffeaBidGjR/vJf4IyZcr466Z169Z+QQAgvic89uzZYy1btrTJkyf77aefftp69uzJcQUAgJNEkOLfUcaErke0eOqCCy6wSZMmedlZAABwcghSIFAKUmjSWT0EFLxIULx4cbvxxht9K1asWKBjRLDWr1/vrw+9Tr7//vvE+/Ply+eTkLoY0IUAQS0g8qXGhMemTZuscePG9sUXX1jmzJnt7bff9gwrAABw8ghSnPxCqoEDB9q9997rt5s0aeIL8rJly8bLDQCAFDj3SPtvfilwstTAVCtcN27caB9//LFPOJ922mm2Zs0a69u3rwcratSoYUOGDPHJasSHn3/+2YYOHWp16tSxc845xx588EEPUGjCUc3XlTr9yy+/eK8TNWEnQAH8N/ps1XtM761q1arZ0qVLT/jzY8aMsdKlS/vPq3zBlClTImrXr1ixwh+HAhR58+a1OXPmEKAAACDOzldSi0pLdujQITFA0blzZxs/fjwBCgAAUlCakJYIAKlAZTp0cqeV87NmzbIjR44k/r+yZct6DwutklXPAWqLx4bDhw/bkiVLPPig7auvvjrq/ytY0aZNG59sTI1mu0A8UH8gva9eeeUVv+BX0E9BCDV6VKZScosWLbJLLrnEBgwY4J/BWiX45JNP2ueff27lypULfFWm+tQ0b97cdu/e7YEUBVCKFi0a1r8BAEC8iJRMin97vpJaj0G/W6WKp02b5gumnnvuOevatWtY/wYAAPFk10ketwlSIBAq2/Huu+/ahx9+aAsXLjwqYHH66adb/fr1PWjRoEEDy5MnD89SFPnjjz98UlFBialTp9pvv/2W+P90oq++JGo816pVKytSpEigYwVikS70L7zwwsTG0vp8VU8XrQLs1avX335eF+J79+5N7PMgep9WqlTJJw6O5a+//vIt6UmH/ka4JwuGDRtmHTt29ICngpoffPCBHyMAAEB0Byn+zflKap13KOtb16AqXawqAFq40bRp07D9fgAA4tGukzz3SJ+qowL+PzUbU7NTbb///vtRk9q6rQbK2tKmTeuTZTpZ1KYyUpQAiixKxvruu+8SsyUUdNKEYoJcuXIdFXRSqRYAKePAgQO2fPlyu//++xPv0+fo5Zdfbp9++ukx/43u79Gjx1H36T07YcKE4/4dZV088sgjlpJ27NhhDz/8sH+eaKXlq6++ahkzZkzRvwkAACLvfCU1zjtEZWkVoMifP78v3qhSpUqK/00AAPA/BCkQuNy5c3ujZG0J5YF0UqgJb50kqhSJNvUvOOuss6xmzZpWvXp1Lwullb4ZMmQI+iHEFdVo1fOiCwg9LwsWLLANGzYc9TMJ5bu06bmifBeQOrZv3+6fo7q4Tkq3kzaoT2rz5s3H/HndfzyaVEga2EhY0RhOCnBOmjTJ+xo98MADBKgBAIjT85XUOO8Q9U5UdqnKO5199tlh//0AAOD4CFIgoqRLl84ntbX179/fG2+r/rgCFjNnzvSmyqpfqk2yZMniacIJ/0aBC8pDhZcyWxYvXpwYLFJDO528J5UpUya79NJLEwMTaoAHIHbpPa8tpenzXRsAAIhfqXXeoWvRZ599NsX/DgAA+DuCFIhoWiFzxx13+LZ//35fvZ+wgl+b+h/Mnz/ftwQlSpRIDFpoO++88/yEE/9MtWDVrC5h/2o71mom1ZJTQCghMKQta9as7GIgYArS6vNuy5YtR92v22eeeeYx/43u/zc/DwAAkNrnKwAAILYRpEDUyJw5s9WtW9e3hAn11atXHzWhvnLlSvvhhx98e/PNN/3ntOqmZMmSHqxIuuk+/c54pMZz2kfaX0k3BSgUDEquVKlSiUGJhMCP6sYCiCzq2VC5cmWbNWuWXX311Ymflbp91113HfPf6L2t/9+tW7fE+2bMmOH3AwAARML5CgAAiG0EKRC1NEleunRp39q1a5dYmkg9LRKCFvpepYlWrFjhW1JqwF20aNG/BS/0+1QLPRYadO/cudMzIRKCEAnfr1271i8EjkUltKpWrZoYkFDjckpoAdFDNZvbtm3rzR71Xh40aJB/Dt5yyy3+/9WEWv191IRSVHe5du3a9swzz3i5ttGjR9tnn31mw4YNC/iRAACAeD1fAQAA8YUgBWKuCXfDhg19EzVkW79+/d8yBrTt2LHD1q1b55t6XiSfqC9QoICnGyf/mvT7fPnypXpTaD2mbdu22a+//uqNbY/3VVvy3hFJ5ciR428BGm0K3FAeC4heLVq08M+Ihx9+2D8HKlWqZNOmTUtsTqlG90kzoRSMHDVqlPXu3dsbVKtk3oQJE6xcuXIBPgoAABDP5ysAACC+pAmFQqGgBwGkNr3sVfP0WMGLTZs2nfTvUbZF3rx5PdNAgQ1tKiGVfEt6vwIAb7/9tv/7G264wX+HSiwl3/bt2/e329u3b/eT+eNlQRyLginHCkYo0BIL2SIAgrdr1y7vVaPsLQVAAQBAZIqFY3YsPAYAAOLFrpM8bhOkAJJR9kHyjIRjZSts3br1XwULwknBBWVxHCu7I/l92bJl4zkGkKKYLAAAIDrEwjE7Fh4DAADxYtdJHrcp9wQkkzVrVitWrJhv/1R2SZkNClj89ttvx8yGOFZWhL5//fXX/Xe0bt3a+1/8U/ZFwqZyVgo+KHsjtctMAQAAAAAAAEC4McsJ/Ecq26Saqf+lburw4cPZ7wAAAAAAAADi3v91zgQAAAAAAAAAAEhFBCkAAAAAAAAAAEAgCFIAAAAAAAAAAIBAEKQAAAAAAAAAAACBIEgBAAAAAAAAAAACQZACAAAAAAAAAAAEgiAFAAAAAAAAAAAIBEEKAAAAAAAAAAAQiPTB/FkAABArQqGQf921a1fQQwEAACeQcKxOOHZHI847AACIvXMPghQAAOCU7N69278WLlyYPQkAQJQcu3PmzGnRiPMOAABi79wjTSial1AAAIDAHTlyxDZt2mTZs2e3NGnShHXFhQIfGzdutBw5coTt98YK9g/7htcN7ys+cyJHtHwm6/JfkwQFCxa0tGmjs/pzSp13RNPzGM3Yx+znWMLrmf0cK3al4PHvZM89yKQAAACnRCcahQoVSrG9qJMkJgrYP7x2eF+lJj532Dex/NqJ1gyK1DrviJbnMdqxj9nPsYTXM/s5VuRIoePfyZx7ROfSCQAAAAAAAAAAEPUIUgAAAAAAAAAAgEAQpAAAABEpU6ZM1qdPH/8K9g+vHd5XfO4Ei89k9k884HXOPo4VvJbZz7GE13N87GMaZwMAAAAAAAAAgECQSQEAAAAAAAAAAAJBkAIAAAAAAAAAAASCIAUAAAAAAAAAAAgEQQoAAAAAAAAAABAIghQAACAiDRkyxM455xzLnDmzVatWzZYuXRr0kCLC/PnzrUmTJlawYEFLkyaNTZgwIeghRYwBAwbYhRdeaNmzZ7d8+fLZ1VdfbatWrQp6WBHh5ZdftgoVKliOHDl8u/jii23q1KlBDysiPfHEE/7e6tatW9BDiQh9+/b1/ZF0K126dNDDihi//PKL3XjjjXbGGWdYlixZrHz58vbZZ58FPSyE8fxizJgx/prXz+v5nTJlCvs3jPv41VdftVq1atnpp5/u2+WXX845XwqfK48ePdo/y3WehPDv5x07dlinTp2sQIEClilTJitZsiSfGymwnwcNGmSlSpXyY2/hwoWte/futn//fl7SYbyGnDt3rl1wwQX+Oi5evLi98cYblpIIUgAAgIjz3nvvWY8ePaxPnz72+eefW8WKFa1+/fq2detWi3d79+71/aETeRxt3rx5flG4ePFimzFjhh08eNDq1avn+yzeFSpUyCffly9f7hOol156qTVt2tS+/fbboIcWUZYtW2ZDhw71gA7+T9myZe3XX39N3BYsWMDuMbM//vjDatSoYRkyZPCg33fffWfPPPOMT7QiNs4vFi1aZC1btrRbb73VvvjiC5/U1fbNN9+k+thjdR9rEkz7eM6cOfbpp5/6ZKOO3QoAInz7OcFPP/1kd999tweGEP7X84EDB+yKK67w/Tx27FhfLKNA3FlnncXuDuN+HjVqlPXq1ct/fuXKlTZ8+HD/HQ888AD7OUzXkD/++KM1atTI6tata19++aUv3rntttts+vTplmJCAAAAEaZq1aqhTp06Jd4+fPhwqGDBgqEBAwYEOq5Io1O58ePHBz2MiLV161bfR/PmzQt6KBHp9NNPD7322mtBDyNi7N69O1SiRInQjBkzQrVr1w517do16CFFhD59+oQqVqwY9DAi0n333ReqWbNm0MNACp5fXH/99aFGjRoddV+1atVCd9xxB/s9TPs4uUOHDoWyZ88eevPNN9nHYXwtJ+zb6tWr+7G/bdu2oaZNm7KPw7yfX3755dC5554bOnDgAPs2BfezfvbSSy896r4ePXqEatSowX4P0zXkvffeGypbtuxR97Vo0SJUv379UEohkwIAAEQUrUDSam+l+ydImzat39YKO+Bk7dy507/mzp2bnZbE4cOHvdSDVlSp7BP+R1k4WjGW9LMH//PDDz94eYBzzz3XWrdubRs2bGDXmNnEiROtSpUq1rx5cy8xd/755/uKWcTO+YXuT/6ZoNW9nI+Ebx8n9+eff3omJMfu8L6W5dFHH/XPKmUGIWX2s44LOrfSOUX+/PmtXLly1r9/fz/3Qvj2c/Xq1f3fJJSEWrdunZfUuvLKK9nNYRLE8S99iv1mAACA/2D79u1+Iq8T+6R0+/vvv2ef4qQcOXLE05JVikUXiDBbsWKFXzirXm+2bNls/PjxVqZMGXbN/6/PrfICKveEo6kutGoQq+6zSj098sgjXiZE5W7U/yWeaVJE/V5UokIlJvT66dKli2XMmNHatm0b9PAQhvOLzZs3H/PndT9S5hzuvvvu86AoAePw7meV6VNJHJVtQcrtZx0XZs+e7QF9TZqvWbPGOnbs6IE3lSZCePZzq1at/N/VrFlTFYLs0KFDduedd1LuKYyOd/zbtWuX7du3z3uBhBtBCgAAAMQcrWDTJCq18/+PJpk1OaEME9VJ1iSq+njEe6Bi48aN1rVrV+9jomaNOFrDhg0Tv1evDgUtzj77bHv//ffjfjWugqHKpNAqWVEmhT53XnnlFYIUwH+g3kkKGqtPBZ/H4bN792676aabPNMrT548vDZT+LigbJVhw4ZZunTprHLlyt5f5emnnyZIEUb6jNCx96WXXvLzEgWDdC732GOP2UMPPRTOP4VURJACAABEFF086aR+y5YtR92v22eeeWZg40L0uOuuu2zy5Mk2f/58bxiN/9Hq7uLFi/v3umjWqu/nn3/eG0XHM5ULUGPGCy64IPE+rejT62fw4MH2119/+WcS/idXrlxWsmRJnxCIdwUKFPhbkO+8886zcePGBTYmhPf8QvdzPpI653ADBw70IMXMmTM9IIrw7ee1a9d6I+cmTZocNZku6dOn9+bOxYoVY5eH4fWs40KGDBmOOm/QcUGr0lXWSOdiOPX9rECEAm9q5Czly5f3Mqbt27e3Bx980MtF4dQc7/iXI0eOFMmiEJ41AAAQUXTyrgnUWbNmHXUhpdvUz8eJKN1bAQqVMVKqfdGiRdlhJ6D3lSbg491ll13mpbCUZZKwaXW8SjXoewIUR9uzZ49PeGkiJt6pnJwm95JavXq1Z5ogNs4vdH/SnxdlXXE+Er59LE899ZSvgJ42bZp//iK8r+XSpUv/7Th31VVXWd26df37woULs8vD9HrWcUFB/IQgUMJxQcdMAhTheT0n9K5JHohIOF/7X19onKpAjn8p1pIbAADgPxo9enQoU6ZMoTfeeCP03Xffhdq3bx/KlStXaPPmzXG/T3fv3h364osvfNOp3LPPPuvfr1+/Pu73TYcOHUI5c+YMzZ07N/Trr78mbn/++Wfc75tevXqF5s2bF/rxxx9DX3/9td9OkyZN6OOPP477fXMstWvXDnXt2pV9EwqFevbs6e8pvXYWLlwYuvzyy0N58uQJbd26Ne73z9KlS0Pp06cP9evXL/TDDz+E3nnnndBpp50Wevvtt+N+30Tr+cVNN93kn48J9JrXczxw4MDQypUrQ3369AllyJAhtGLFigAfRWzt4yeeeCKUMWPG0NixY486dut8B+Hbz8m1bds21LRpU3ZxmF/PGzZsCGXPnj101113hVatWhWaPHlyKF++fKHHH3+cfR3G/azPYu3nd999N7Ru3To/ny1WrFjo+uuvZz//x2tI7V/t5wTarzqnueeee/z4N2TIkFC6dOlC06ZNC6UUghQAACAivfjii6EiRYr4hWvVqlVDixcvDnpIEWHOnDl+Ypl808VmvDvWftE2YsSIULxr165d6Oyzz/b3U968eUOXXXYZAYoTIEjxf1q0aBEqUKCAv3bOOussv71mzZqUf9FGiUmTJoXKlSvnkyulS5cODRs2LOgh4RTOL/TeT348ff/990MlS5b0ny9btmzoo48+Yh+HcR/r2HSsY7cmIRHe13JSBClSbj8vWrQoVK1aNT8unHvuuR7IPnToEC/nMO7ngwcPhvr27euBicyZM4cKFy4c6tixY+iPP/5gP//Ha0h91X5O/m8qVarkz4leyyl9TZVG/0m5PA0AAAAAAAAAAIBjoycFAAAAAAAAAAAIBEEKAAAAAAAAAAAQCIIUAAAAAAAAAAAgEAQpAAAAAAAAAABAIAhSAAAAAAAAAACAQBCkAAAAAAAAAAAAgSBIAQAAAAAAAAAAAkGQAgAAAAAAAAAABIIgBQAAABDlXn75ZStSpIhlzZrVmjVrZtu2bfvHf7Nq1So788wzbffu3SkypjRp0tiECRP8++3bt1u+fPns559/TpG/BQAAgpP0mB8JvycIP/30k4//yy+/DHooQFQiSAEAAABEsQ8++MDuuecee/HFF+2zzz7zoMN11133j//u/vvvt86dO1v27NlTfIx58uSxNm3aWJ8+fVL8bwEAEGs2b97sx+xzzz3XMmXKZIULF7YmTZrYrFmzLBr17dvXKlWq9Lf7f/31V2vYsGEgYwIQLIIUAAAAQBTr16+f3XXXXda0aVM777zz7M0337QFCxb4djwbNmywyZMn280333zcnzl8+LAdOXIkbOO85ZZb7J133rHff/89bL8TAIBYpxX6lStXttmzZ9vTTz9tK1assGnTplndunWtU6dOFkuU4akgTKQ5ePBg0EMAYh5BCgAAACBK/fHHH/b5559bo0aNEu8rWLCglStXzmbOnHncf/f+++9bxYoV7ayzzkq874033rBcuXLZxIkTrUyZMj5JoGDGsmXL7IorrvBsiJw5c1rt2rX9byb1ww8/2CWXXGKZM2f2fztjxoy//c2yZcv62MaPHx+2xw8AQKzr2LGjlxFaunSpXXvttVayZEk/pvbo0cMWL1583FJDO3bs8Pvmzp3rt/VVt6dPn27nn3++ZcmSxS699FLbunWrTZ061Rc65MiRw1q1amV//vln4u8555xzbNCgQUeNSVkQyoY4nvvuu8/Hedppp3n2x0MPPZQ40a/zjUceecS++uorH4823Ze83FP16tX99ySlcpYZMmSw+fPn++2//vrL7r77bj+fUcnLatWqJT7e49HfUJlMZWxoH2h8Y8eOTfz/Cfvyvffe83MendtokYUWbjz66KNWqFAhP0fSPlCwKLnvv//ex65/p/OxefPmnXA8AP6HIAUAAAAQpdatW+dfixcvftT9JUqUSPx/x/LJJ59YlSpV/na/JiWefPJJe+211+zbb7/1PhIqH9W2bVvPzNBkiH73lVdemdjLQhft6oORMWNGW7Jkib3yyit/m1RIULVqVf/bAADgnyn7UBPhypjQJHxyWlzwbym4MHjwYFu0aJFt3LjRrr/+eg9CjBo1yj766CP7+OOPvYTkqVApSQUevvvuO3v++eft1Vdfteeee87/X4sWLaxnz54eaFF5J226L7nWrVvb6NGjLRQKJd6nwIEWPNSqVctvK5P0008/9Z/7+uuvrXnz5tagQQNfPHEiCpoo4KNAif7ODTfcYCtXrjzqZ3r16mVdu3b1++vXr++P45lnnrGBAwf639J9V1111d/+lkpw6vF98cUXdvHFF3tZrt9+++2U9icQDwhSAAAAAFEqYaWjAgfZsmVL3D788MOjVkEmt379er/IT06rHF966SVfAViqVClfAalVljfeeKOVLl3aV1kOGzbMf3fCykBlbGjV4MiRIz07QxkV/fv3P+bf1d/U3wYAAP9szZo1PkmvY3C4PP7441ajRg3Pprj11lv9eK7MAt3W5L/6Ws2ZM+eU/kbv3r39XEJZGJqkV7aDsjhF2Qs6V0mfPr2Xd9Km+5JT8GTTpk1Hla9UIKVly5ae6aBszxEjRtiYMWN83MWKFfO/U7NmTb//RBTMuO222zzb47HHHvOFG8kDM926dfNFGEWLFrUCBQp4cEKLMBTQ0DmSFnUomyJ5lokCJwqA6JxJ+1VZqMOHDz+l/QnEg/RBDwAAAADAf6Mggqi0QdLVlFr5l/D/jmXfvn1ehiA5ZUNUqFDhqPu2bNnikw36GyoJoV4VClJockC0wlANPJMGPbRy8Fg0CXGi4AkAAPg/SbMIwiXpcT5//vyJJZmS3qfSUqdCGQ8vvPCCrV271vbs2WOHDh3yUlL/Rt68ea1evXpeaklBiB9//NGzJoYOHer/X705dE6iQENSKgF1xhlnnPB3Jz9P0e2kpbIkacbprl27PGCi4E5Suq1sjOP9bgVi9HuSZ2kA+DuCFAAAAECUSphU0IV/0pJP+/fvP2rCITn1l1A/i2MFEbQ6MSmVelKZApU5OPvss70Osy7ADxw48J/KVmjSAQAA/DNlSuq4rIzFE0mbNu3fghrHa/asng4J9LuT3k64T6Uck/7u5MGSEzWSViBBJZTUd0IlkZRJoHJMKpX0b+n3dOnSxbMclEVRvnx530TBj3Tp0tny5cv9a1LK1DhVxyqvBSDlUO4JAAAAiFKnn366Va5c+ag+D7po1wSBml0fj0o6qE70yVi4cKFPEKgPhepHK0ixffv2xP+vcgaqaa2a0gkSGnkm98033/jfBgAA/yx37tw+0T9kyBDbu3fv3/6/mmNLwgKApMfi5JkB/5V+d9Lfq6wCZTUcj3pdaFHDgw8+6FkECrQkL/WozE1lQfyTpk2b+sIL9eVQkEJBiwQ6n9DvUJanFmok3VRC6kSSn6fots5njkeLQZQxqnOipHS7TJkyx/3dyiBREOVEvxvA/xCkAAAAAKKYJgG0qdGlmjeqvnS1atX+VpIgKU14KJBxMhMEmlx46623vFSBGmNrgiBp7ejLL7/cSy0o40IlDxQw0XiSU5knXairdAMAADg5ClDoeF21alUbN26cH+t1TFY5pYTSQjouX3TRRfbEE0/4/1OfCZVqDAf1ptJ5gI7vKrGk433yzIXk5w0qCansCZV70jjHjx9/1M+oV4UCHQqkaOGDSjQdL5vh6quv9kbXelzqR5FA5x46J2nTpo198MEH/vtUpmrAgAHeAPxE1Mfi9ddft9WrV1ufPn3836mXxImoIbb6UKiU1apVq7yxtsavEpvJny89XmW/qOG5MlfbtWuX+P/VXyT5/gBAkAIAAACIatdcc4317dvXgxNqXK0SDAnNKY+nYcOGXidZTa//iZo96gL7ggsusJtuusmzKvLly3dUGQhdbKvPhSZQ1IiyX79+f/s9auZdpEgRrysNAABOjso3fv7551a3bl3r2bOnlStXzrMlZ82a5Y2ZE2jSXSv3lWGpps9qkB0O999/v9WuXdsaN25sjRo18qCBmlQfz1VXXWXdu3f3SX81llZmhYIMSamxdIMGDfwxKVPj3XffPe7vUyBCiyB0/qDziKTUIFtBCu0XNbPW2JYtW/a3n0tOpagURFF/jpEjR/rfT54RkZzOf3r06OF/SyWnlN0xceJED8okpUCRNp2Tqem3fkZlNhMowLFz584T/i0gHqUJpUQXHgAAAAARTSv9dOE8ffr0VPl7WuGpC/xWrVqlyt8DAABITj03tLhCAQ0AkYPG2QAAAEAcuuOOO7yW9e7duy179uwp+rdUyqFZs2ZHlWkAAAAAACGTAgAAAAAAAEDMI5MCiExkUgAAAAAAAACIeVS9ByJT2qAHAAAAAAAAAAAA4hNBCgAAAAAAAAAAEAiCFAAAAAAAAAAAIBAEKQAAAAAAAAAAQCAIUgAAAAAAAAAAgEAQpAAAAAAAAAAAAIEgSAEAAAAAAAAAAAJBkAIAAAAAAAAAAFgQ/h/IGPHHejSqHAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -122,7 +126,6 @@ "for i, angle in enumerate([0, np.pi / 2, np.pi, 3 * np.pi / 2]):\n", " ax[\"a\"].text(x=angle, y=0.75, s=labels[i], ha=\"center\", va=\"center\", color=\"black\")\n", "\n", - "ax[\"a\"].legend(frameon=False)\n", "ax[\"a\"].set_title(\"Circular uniform distribution\")\n", "\n", "\n", @@ -135,7 +138,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-circularuniform.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-circularuniform.png\")" ] }, { @@ -152,7 +155,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmcjfX///93G0WLtSxJJIWoCJVSCslaRMhStoTKklQkKiQVUpaohFSIshUlS0UiIiVZsmTNlrWPlvO/PV7f33X+Z6YZZrmumTNnnvfbbWrmzMx1rhlzruX92k4LhUIhJyIiIiIiIiIiIiIiksZOT+snFBERERERERERERERgYIUIiIiIiIiIiIiIiKSLhSkEBERERERERERERGRdKEghYiIiIiIiIiIiIiIpAsFKUREREREREREREREJF0oSCEiIiIiIiIiIiIiIulCQQoREREREREREREREUkXClKIiIiIiIiIiIiIiEi6UJBCRERERERERERERETShYIU4qtbb73V3jKaPn36uNNOOy2qfnebN2+2fRo7dmzgz81z8Fw8p+fSSy91tWvXdmlhwYIF9vz8X0RERERERERERDIPBSkkDhaKk/KmxeToNXz48DQJbMTavomIiIiIiIiIiEjaOzMdnlOi2Pjx4+N8PG7cOPfZZ5/95/ESJUok+P1z584NdP8yk8KFC7vjx4+7s846K9mBgDx58rj7778/yd/TvHlz17hxY5c1a9YU7Gnq961y5cr2s2bJkiXQ5xcREREREREREZHooiCFxNGsWbM4H3/zzTcWpIj/eHzHjh1z2bJl0yKzcy4UCrk///zTnXPOOanaDhUrZ599tgvS0aNHXfbs2d0ZZ5xhb+nl9NNPD/xnFRERERERERERkeijdk+SbMxNuOqqq9x3331nGfAEJ5566qkE5yqcOHHC9e7d25UrV85dcMEFtiB+8803u/nz58fZpjd/4aWXXnJvvPGGu+yyyyyrv3z58m7ZsmX/2YfJkye7kiVL2sI2+zJt2jTLzmeOwqnmHCR11sPbb7/tbrvtNnfhhRfavvB8I0aM+M/XebMb5syZ46677joLTowaNeqk2/Z+Rr62QoUK7ssvv/zP1yS0n7t27XIPPPCAu/jii22f8ufP7+rVqxeeJcG+/Pjjj27hwoXh1lzev4c3d4LPdejQwX4utpPYTIrI6phrrrnGftf8DqZOnZqkeR7xt3myfUvs34p/Z/52+D1RgUGwbPv27XG+hn/3c8891x6/66677P28efO6xx57zP3zzz8n/XcQERERERERERGR9KVKCkmRffv2uTvvvNNaBLFwfNFFFyX4dYcOHXJjxoxxTZo0cW3btnWHDx92b775prvjjjvct99+a4vfkSZOnGhf8+CDD9qi9Ysvvujq16/vNm3aFG57NGvWLHfvvfe60qVLuwEDBrgDBw641q1bu4IFC/r6MxKQKFWqlKtbt64788wz3YwZM2xx/99//3UdO3aM87Xr1q2zn5H95ue84oorEt0uPz9fd+ONN7rOnTvbz8Zz5MqVyxUqVOik+9SgQQNb6H/44Ydt0X/Pnj1W6bJ161b7eMiQIfY5Fup79uxp3xP/34afgUV8gkdUUpzM+vXr7Xfdvn1717JlSwvcNGzY0H366aeuWrVqLjmSsm/xgxwEZAhU8e+8e/duN3ToUPf111+7lStXuhw5coS/lmAEf1MVK1a0QNfnn3/uXn75ZQsEPfTQQ8naTxEREREREREREUk7ClJIipDRP3LkSFtsP5mcOXNaJn1kGygW8a+88ko3bNgwW7CPxGI7C+N8H1jsp1KAKgWqFfDkk09aQILFaha8cfvtt1tWPnMc/ELGf2TLpk6dOrkaNWq4V1555T9Big0bNtjCPQvlJ/PXX39Z1QnBGapJvN8LFQrt2rU7aZDi4MGDbvHixW7QoEFWJeDh9+GhkqBXr17hqoOEEAyZN29ekto7/fLLL+7DDz+0QBEIBvFv16NHj2QHKZKyb5G/J56DKplFixaFW0HddNNN9ncwePBg17dv3/DX016LYMrTTz9tHxNUKVu2rP19KUghIiIiIiIiIiISvdTuSVKEVkNkuZ8KC+HeQjwVCPv373d///23tUVasWLFf76ehWYvQAFaQ4FqA+zYscP98MMPrkWLFuEABW655RarrPBTZIDijz/+cHv37rXnYV/4OFKRIkVOGaDA8uXLrfqBRfTIwA0ti2iHdar94XtoiUT1SEoRJErq/IkCBQq4u+++O/zx+eefb797KhkIVAXF+z1R9RE5q6JWrVoWJKGaJj5+p5H42/H+bkRERERERERERCQ6KUghKUIlQ1KHZL/zzjuuTJkytticO3duazXEInP8hX5ccsklcT72AhbeovyWLVvs/8WKFfvP9yb0WGpQqVG1alWbo0FrIfbbm72RUJAiKbz9v/zyy+M8TiurokWLnjIwNHDgQPfJJ59YmyTmgdAOK7nBgqTuq/c7jT9vonjx4vb/hOZX+MX7PSXUNosghfd5D39b/PvE/9tJTTBHREREREREREREgqcghaS6yuBkJkyYYFUCzAag9Q4tkZihwEBqKiviSyzDPxQKJXsfExrmjKQMU964caO1kKJ6gvZOBFXY7y5dutjn4+97Un8fqcUMC1owMaOBhXnaG5UoUcIqG5LK731Nze/ZL0mtDBEREREREREREZHooiCFBGrKlClWITB16lTXvHlza4lEdQIzBFLCmznBDIj44j/mVWEwyyFS/Cz8hDAk+3//+5+bPn26zd2oWbOm7XdqF/i9/WfuRvwZDL/++muStkHAp1u3bm7u3LluzZo17sSJEzYk+lRBg5Tgdxo/QESQBAzqTu7vOan75v2eGEgeH4/5OXtERERERERERERE0o+CFJImGe6RC91Lly51S5YsSdH2mJHAMOVx48a5I0eOxBlyzayKSCxk8/wMXo40fPjwFO03LZ7efvttlxrM4qAtEUPHCS54xo4d+59F/viOHTv2n+AOAYvzzjvPAioe2lOdaltJxQyQadOmhT8+dOiQ/e4Z/J0vX77wPiDy93z06FFr8xVfUveN39OFF15ov6fIn41WV2vXrrXZFCIiIiIiIiIiIpLxnZneOyCxrXbt2lZFwfBlFpapFmDhuWTJknGCDMnRv39/V69ePVepUiUb3s3cgddee82CF5HbZBB1w4YN3bBhwyyDn8X0mTNn2kDmU6levbrN3KhTp45VUrDd0aNH28L5zp07XUoxe+L555+3bdLyikHh/E4IfpxqJgUVDLSgatSokf3+zjzzTAsg7N692zVu3Dj8deXKlXMjRoyw52GmBPvMc6UE8ydat27tli1bZnMw3nrrLXu+yGANvytmifB13bt3twAPX0cwZuvWrXG2l9R94/fE/A3+fRlW3qRJE3veoUOHWgWH13ZLREREREREREREMjYFKSRQzKNgsPOoUaPcnDlzbHGdORWTJ092CxYsSNE2CRy89957rk+fPu6JJ56wIdRUIpC5/+OPP8b5WgIUtFIiMMLgaRb4Bw0aZAGNk2FgM62qevXq5R577DGrGnjooYds4b1Vq1YuNdq1a2fzGtgPFvVLly5tbaWYL3EyhQoVssX6efPmufHjx1uQgiHSkyZNcg0aNAh/Xe/eva3VEkO1Dx8+bIv8KQ1S8Lvld8h+0maJodsffPCBte2KDCgQLOnQoYP9DPyumJ1BGyiCDJGSs2/87WTLls298MILrkePHlaFQbCL4AWDzEVERERERERERCTjOy2UkonEIlGIFkQEERhwLSIiIiIiIiIiIiLRTzMpJMOhMuLvv/+O8xhVGatWrXK33npruu2XiIiIiIiIiIiIiCSPKikkw9m8ebOrWrWqa9asmQ3S/vnnn62dEzMo1qxZ43Lnzp3euygiIiIiIiIiIiIiSaCZFJLhMOuAAcxjxoxxv//+u80qYCg3swsUoBARERERERERERHJOFRJISIiIiIiIiIiIiIi6UIzKUREREREREREREREJF0oSCEiIiIiIiIiIiIiIulCMylEREQkVf7991+3Y8cOd95557nTTjstvXdHREREEkG358OHD7sCBQq400/PmDmLuu4QERGJvWsPBSlEREQkVVgoKFSoUHrvhoiIiCTRtm3b3MUXX+wyIl13iIiIxN61h4IUIiIikipkMnoXHeeff356746IiIgk4tChQ7bA7527MyJdd4iIiMTetYeCFCIiIpIqXqsFFgq0WCAiIhL9MnKbJF13iIiIxN61R8ZsQikiIiIiIiIiIiIiIhmeghQiIiIiIiIiIiIiIpIuFKQQEREREREREREREZF0oSCFiIiIiIiIiIiIiIikCwUpREREREREREREREQkXShIISIiIiIiIiIiIiIi6UJBChERERERERERERERSRcKUoiIiIiIiIiIiIiISLpQkEJERERERERERERERNKFghQiIiIiIiIiIiIiIpIuFKQQEREREREREREREZF0oSCFiIiIiIiIiIiIiIikCwUpREREYsiiRYtcnTp1XIECBdxpp53mPvroo1N+z4IFC1zZsmVd1qxZXbFixdzYsWPTZF9FRERERERERBSkEBERiSFHjx51V199tXv99deT9PW//vqrq1WrlqtSpYr7/vvvXefOnV2bNm3cnDlzAt9XEREREREREZEz03sHRERExD933nmnvSXVyJEjXZEiRdzLL79sH5coUcJ99dVXbvDgwe6OO+4IcE9FREQkMXv37rXEg8KFC6f3roiIiEgmsGLFCuuwkF5USSEiIpKJLVmyxFWtWjXOYwQneDwx//vf/9yhQ4fivImIiIg/li9f7kqXLu1q1KjhDhw4kN67IyIiIjFs3bp17vzzz3flypVzEyZMSLf9UJBCREQkE9u1a5e76KKL4jzGxwQejh8/nuD3DBgwwF1wwQXht0KFCqXR3oqIiMT+bKkbb7zRzs+8UVEhIiIi4qdQKBSunihZsqQ7fPiwfbxt2zaXXhSkEBERkWR58skn3R9//BF+S88LGRERkVjx/vvvu9tvv9399ddf7rTTTnOTJk1yl19+eXrvloiIiMSIw4cPu969e7sKFSq4HTt2uA4dOrh///3XPvfwww/bvX560UwKERGRTCxfvnxu9+7dcR7jY8o9zznnnAS/J2vWrPYmIiIi/mQzUqXYs2dP+5gKxWeeecZVq1YtvXdNREREYsiGDRvciy++aC2cr732Wrdnzx7rjjBt2jRXpUqVdN03VVKIiIhkYjfccIObN29enMc+++wze1xERESCRdVEmzZtwgEKkNl4/fXXp+t+iYiISMb277//upkzZ7oePXpYB4Ru3bpZBQUBirPOOssCFEWLFnVLly5N9wAFVEkhIiISQ44cOWLZEZ5ff/3Vff/99y5XrlzukksusfLN7du3u3Hjxtnn27dv71577TX3+OOPu1atWrkvvvjC2kvMmjUrHX8KERGR2MeCwT333OM+//zzcJuFOnXquNWrV7tSpUql9+6JiIhIBvbbb7+5evXqWbBi9OjR7sCBA/Y4LSVJkiAhYvr06S5v3rwuGqiSQkREJIYsX77cyjZ5Q9euXe19+k5i586dbuvWreGvL1KkiAUkqJ64+uqr3csvv+zGjBnj7rjjjnT7GURERGLdli1bXKVKlSxAceaZ/5c7+MEHH9jQbDIdRURERJKDts1UTkR+nCdPHnufAEXu3LnDbSYbNmxoCYrREqCAKilERERiyK233moXHYkZO3Zsgt+zcuXKgPdMREREvIQCKiZ27dplfaCpqCCr8d1333XZs2dP790TERGRDGbdunWuTJkylviwbds266QwZMgQa+l07rnnuuLFi7sVK1bY19L+qX///u7006OrdkFBCpEUoFTq8OHDFok8ePBg+C2hj48fP56sbZ999tkuZ86cLkeOHOG3yI+99xlqG20HFBERERERSdzHH3/smjZt6o4dO+Yuu+yycHUj1/YiIiIiSUFiIgGIiy66yD4mCFGyZEkLUpAEQZCCAdkkQWzatMktWbLEnXHGGW748OGuXbt2LhopSCGSAAIQ9HHnbfPmzeH3eaOnGwGIk2UqpwUONGReXXzxxe7SSy+1li3em/cxnxcRERERkfQ3dOhQ16VLF7uPoIqRrEd6QlM9cejQIQUqRERE5JSYQdmkSRO3f/9+98svv1jwYfHixe7vv/92xYoVs2AFGJD93XffuZ9//tmdd955bvLkyVHd1llBCsm0yF764YcfbKDsxo0b4wQieKEnteohsUoH7y1btmwWUEgKbliovDhZZQb/52v4Wu/xNWvWJLg99iUygEG2Fj3neVMpuYiIiIhI8P755x8LTgwbNsw+btOmjVu7dq3NiWIhYf78+ZbhWKFChfTeVREREYlyBQoUsLXLo0eP2jXE+PHj3bhx4+xz27dvt0oKZl/RWvL333+35GbmUNIOKpopSCGZAgv59Fv33ujDRiSRtk2JYaBM/MoE3i655BL7HFUKBCnSA9FQetfu27fPSsQjqz289zkQEdTgLX6veYImV1xxRXi4btmyZe3/lIOJiIiIiIg/jhw5Yu2dZsyYYR/TeqFTp06uQ4cOljA1bdo0d+GFF7p69eql966KiIhIlNm/f7979dVXrXpiwoQJ9hjJ0O+//7779ttvXYMGDawaE61bt3YDBgxwixYtcs2aNXN//vmnrfUxTJvARrQ7LZTePWtEfMbC/dKlS8PBCP7Pon1C6N3GC/bKK6+ME4zg/5RCZfQbIiKnkcELSsr5fezYsSPB7yEA4wUseKtYsaLdNImInAwXRd7gT7WqEBER+T9UStSuXdvuSUhuItPxnnvuCX/u008/dQ888ECa7lMsnLNj4WcQERFJio0bN9q8CZKsV69e7UqXLm2PcT1BZxiUK1fOvf7661aR+fLLL7vHH3/cuq/UqlXLghkMzs4I521VUkiGx2I8UcIvvvjCzZs3z61atSrBeREEH+JXDuTPn9/FKg5CpUqVsrf4du/e/Z/KEg5yVGXw9tFHH4W/lgPgbbfd5m6//XZXuXJlzbkQERERETkFqiRYHNi2bZvLkyePmz59uitYsKAtMpx++um2gEBGJJmR/fr1S+/dFRERkSiwatUq9+OPP1oVJmjb3rNnT3fVVVe5EiVKhBOu9+7day3e+/fv79q2bWvroFRpjhw50r6mY8eObsiQITZIO6NQJYVkOLQ6omerF5SgvInhMJGojCCS6AUkrrnmGnvxSuKIaHIw9KpPGK7DgTESw3iuu+66cNDixhtvdOecc0667bOIRAdlNIqIiPz/5s6daxmOhw8fthars2fPtnlw3J8wG47gBO0YGKT91VdfufLly6fZvsXCOTsWfgYREZH4li1bZtUQXDOQQOy1ZCfBYerUqa5+/fqW6ADWQknGzps3r11v3Hvvve6TTz6x9u6vvPKKe/TRR5M8HzdaztsKUkjU40+UBfPPP//cghJcyNNXLVLRokXDC+dVqlSxqKKkHpFZhvB4AaH169fH+XzWrFktUMHvvmrVqnYw9Q6YIpJ5aLFARETk/4wePdo99NBDNiz7lltusUUFKpy5T+E+hmQqWtNyvqS6Oa3vW6LlnM1gzx49etiCyrFjx1yxYsXc22+/bQlRGeVnEBERSQ2CD7R/pNLSW//kPEh7J2ZYFSpUyBKJua4gKDFmzBibOxHpt99+s9aSJB2TRDxx4kR31113uWiidk+S4V+o33zzjZsyZYr78MMPLYIYKV++fHahz+I4b8yQEP9Rmt6wYUN7A+XqBC0IWPDGzQUf8/b000/bIB6G9pA5VqlSJau8EBERERHJDPcvTz31lBs4cKB9zMBKFhNI6qHlAgEKbsxpq+rdoGfWxKoDBw7YvQLJZQQpyAIlGUqV7yIikln89NNPVv1At5i1a9fa+hmVD3SOyZIliy3oP/zww2748OF2jZHQ3FxmUtBakrmzzJNlQHZaVmf6TZUUEjXINvr666/DgYnI4c5kH1WrVi0cmCADKVrKljIrDh3cTHhVFpS1Ex31cNNFKRoBC2ZZZKQ+eCKSPMpoFBGRzIwq75YtW7pJkybZx71793Z9+vSx+5W33nornPX45ptvuoULF1qrJ5J7Mus5+4knnrD7vi+//DJJX88CDm+RPwPZpbruEBGRjIoWTYULF7b29ZwTS5cuHV5rY9h1165d3a5du+yxJk2a2EDsyLm6tJJs1KiRO3r0qM2q4ONoTeBWuyfJEHgxcnE6efJkK4Wm5NnDH27dunUti7969eru7LPPTtd9lZPjxoFgBUEmMsTIkIqsyLj77rstYEHG1FlnnZWu+yoisbfgISIikh5+//13a6uwePFiu8aleqJFixb2ObIhb731VnfixAnXt29fG6bNtfIdd9zhPv3000x7zi5ZsqT9DmhRQdCGNhcM+2TwZ0II+PD7i0/XHSIikhEcOXLEvfHGG+7nn3+2/3tYDyU4kSNHjvBjzJJ49dVX7X3aPr3++uvWXj0S1RVUWVBhQTI31xaR24g2ClJI1OJPjl5qZBVNmzbNLuw9vKi4yGcxmxch5dGS8fz1119WYcGBkn/jffv2hT9HGTf/xg888IC76aabVBEjEgOiYcFDREQkrf3yyy+uZs2abuPGjXYfw3UvQQnvepih2b/++qtVF5OURb9oFhVGjBgRzpjMjOdsL/mMLFES0hgUyqLMyJEjrSIlPlVSiIhIRrZu3TqrdmA9lGuBMmXKJPq1S5cutQ4yVB0+/vjjcdZFCUrwGFUVYF2NcyftoaKZghQSdfhjnDBhgkUNV69eHX48d+7ccbLso/nFxc0Gw6T3799vF8pUgtAXjoONh76qfI6v5fO8eegRR9aQh5uV+EPAaYvEG78XDkweAjtskwwtPs/vKVeuXFalEM2/M35+MqQIWFAts2fPnvDn+L21a9fOss34WUQkY4qGBQ8REZG0RPYjiTfcFxQpUsTaLNCSNtJ3331nrZ8++OADa18Lbr/TM0knGs7Z3LswGJTqE88jjzxiwQqqTzLCzyAiIpIY1g0ZeE1XGA/BBSojWP+KXMNjxitJDw8++GD4Ma4t4q+RHTt2zDVv3tzW1fD888/bLKyMkPirIIVEVdXEqFGjrKfa8ePHw9kz9E7jBXbLLbeka/sfFv43b95sGVAsoFPZQV84giagPPuqq66yxw8ePPif77/zzjvtpsSTPXt2O3gk5Oabb3aLFi2KM7chctE+UtmyZe3GxlO0aFHLxEpIqVKl3Jo1a8If9+vXzw4CDKHjjeAI388NVHoGNJg7wtDA8ePH298DvfNAZJgsKgIWqq4QyXi0WCAiIpnJu+++61q1amX3CRUrVnTTp0+36+3EkJQULa1ro+Gczb0W8wZpjeWhuoQFl+3bt2eIn0FERCSxgdgVKlSwda0tW7YkmpDLWuBjjz1m62Os0/3www8WxEgIrfFph8/6Kl/79ttvu6ZNm7qMIqnnbU2ylTStmqD/KNFBghO0/UnLxXGG0ng92giWEIQgWsnCP5+PVLt27XCQggMAF8te4OH000+3fWdhneAKQYBI3KhQSUG1A58/44wzwovuBDsiUTkSGfggqMO+UH1w+eWXx/laBuCwLa9Cg+cgukq5V/y2WBywCLrEx76TtUT5mGf58uX283CzEPRwa/afoBRvr7zyips4caIFsL7//nv7e+FN1RUiIiIiEo24VmchneoINGjQwBYXzjnnnPDXcP9z7bXXuvLly9vHa9eutRZQzFVo3769knGcc5UqVbLWF5G4L+N+REREJKNhjc5bT6OqkiRh1gMZfB1/XYtrCdrfd+/e3Wa5cl3Qpk2bRJMdCHrUqlXLkqvZFjNgSYCORaqkEF+x+J1Y1QQLzzfeeGPgF+Ys3FMqTISR8iougFmwp80SWU7gz56FeYIpyJYtm7vssstcvnz5LOjAQn6XLl3i/FxE+/gc38diezQgQMFBjd/1xRdfHH6cAMC2bdus+oM3Doz8DqhcuOGGG+KUVvNzb9q0yQ6gHEiJ3JYrV84iv9xc0U4qSPxbECjh7+a9994LB4NUXSGScSijUUREYh1VEyRbjR071j5mceGFF16wJCAPw7BZSOC6mp7TzKTo1KmTDb3k8RkzZqT7NW00nLO5V+O+kGHY3Cdy38bQbAI89913X4b4GURERJi/SuICrQpZ1/KuCah8IOgQ/5zP4GyuJbwOK1dffbWd+1h/SwitoGiPz/muWLFibtasWYlWW0QztXuSNMOf0Jw5c1z//v2tN2taVk2wSO8dBNgPBtD9+OOPCX4tn4us6qCPG/vFC7xAgQLpfsMQNH4/O3futIoSbpi83x9tpThQRg6j83DApMrBw/v8vgjqBHXgonyegAU3dpHVKfTao8Il8kZQRKKDFgtERCSWUfnM8GsWC0hWeu2116wqIhLX01yzck5s3bq1Gz16tN1fUCVNkII2DVRGp7doOWfPnDnTPfnkk279+vXWkpYh2gQqMtLPICIimRvnIc7tXCfMnTvXWhkmhrW4QoUK2fewpvbss8+6Rx99NNGOJu+8845VWFClQWD/448/DjyJOCgKUkjguOCeNm2aBSdWrlwZbo107733WnAiiKoJ2i7NmzfPffPNN5Zxw/bJxPFcf/31VvVAqyQikVREMK+BjzkYREsFRLQhWEHlBTcJlKR7lSiUpo8cOTKcPcaQcP7dCfjw++VGrGrVqu6SSy4JrLqCoIU3XJx2WU888YT9jQXdmkpEkk6LBSIiEqtoDUsVBNfIDL+eNGmSzaSLRGUz18VcS1MBzP1Kes6Bi/Vzdiz8DCIikvEwY4Kqycgh17Qtp7MJ62enMmDAAJvTSvJCYokLoVDIPfPMM+65556zj1n/ooozWmZbpYSCFBIYZiKwcEx5s9dLlCgg2URkwBQsWNDX56M6gzZNHAgih0ODoAN/5Ayr9jKYKKnSLAP/K1U2bNhgfe9oHRUfcySIAEceqP1CmdyQIUPsIE7kGbSlevzxx93999//n3kcIpL2tFggIiKxiKSdOnXq2HBL7nFos0ClcSQyHAlafP7555a4Q7IP9yNUXTCHLdqqgGPhnB0LP4OIiGQsrE0xO4kuJAy5jj9zNj6qK3r06GHzVpnF5K2xkWydWEL3//73P6vGZM0VdBQhWBFt1xJBnbcz9k8paYpZAcOGDbM+aA888IAFKGiXRP+1rVu3updffjnVAQpiZmQgRcbOWJx+6aWXLEDBC5kM/scee8yymJizENl6iAE1ClD4J/JAyL/7jh07rOLiww8/tIMt1TJ8DZllHHQ8zMEYPHiwDfhJbRz0oosusmgzf2P9+vWz8jZmaBAUozScv7sjR46k6jlERERERCJRMU5WJAGKa665xqq14wco0K1bNwtQkDRFYhUBCiopbrvtNlelShVL8BIREZGMx+vq4a1N0brx9ttvP+k6F5+bMmWKJfMyb4JkXjqSgPWzxAIU+/fvd9WrV7cABZ1DxowZY2tgGT1AkRzqlyKnRKRr+PDhtujM4jMYMM0FOS82WgClBpFCereRmcRsCybWM1eCmRZgePI555zjatSoYa2FcufO7cvPJcnHwZQyNt7oy+uVt3MjRmstD1UvVNWAr2VoOWXyZJmltEQtR44cFkXu3LmzHawHDRrkfvvtNwtY0XLskUcecQ8//LCCVCIiIiKSYiwucN/DNSbv16xZ073//vsJ3vMQgODeBePHjw8HMUjsIWhRpkwZG6ItIiIiGcfRo0dtbtLkyZOtYwtVABg3btxJ17RoUd+xY0ebHwHmwbKeeqrW8yRg16xZ0/3yyy9WaUBiMOufmY3aPUmimEEwYsQIG+ZCRA/0TCODnjY7qemHRhRxwYIF7r333rMXH2VQHvq3cpHfqFEjX34OSXsEKWjRxL9x5EBuDrZ333239dejCiK1f5/0/qPtGNU33vZ79uxpAYuM3K9PJKNR2wUREYkFtG6ihSkLCujQoYMbOnToSWeh0bph4cKFVjURiSpgzo3ewka0iIVzdiz8DCIiEr1YsyTRgO4gJMnSgulkuBagaoL1Us5RJCgwT5X1qVO1KF+8eLGrV6+e27t3r7WNJIH7VK2kMhrNpJAU40+C8mZeXMwhAGVKZLE3btzYl4HFlELzIvTkz5/fMvPJtKes2psxIRm/RdiiRYssaDF16lRrFUU1BhUQBQoUsK/Zt2+ftQ1LaQkbJw8CXZTBrV692h6jTyAtohgwlJlK40TSixYLREQko6N9KNeOs2fPtutVWopSwZtQWwauX6neTaxlQzSLhXN2LPwMIiISPUjMfueddyxRwVtDYrYU66MkIZzqfB+5xlmxYkULbCQl0EClRvPmzS25t1y5cm7GjBm2PhprFKSQFA+Ho40T0+a9nmsMaWEGRUqDE7RuomKCFxplT15fN9o5Ub7UpEkTV7ly5VOWP0nGRmSZCPHy5cvths9TrVo1K2kjAMbfAmXyKbnhY/tUVhBMo8QO5cuXtxtMBn6LSHC0WCAiIhkZ1461a9d233//vbWZpR801b8JodXpDTfcYNeZo0ePDlfvkjjD4gb3OyR4RatYOGfHws8gIiLRgdaNRYsWtWRaZkk0aNAg2dtgaZ3rBuZVUIV5qvVNvv7FF1+0agsw62LixIkxm7CtIIUkC71U6bdGv1VwcU4f1u7du6do5gR/eGPHjnVvvvmmTb33Bi+zGO0tQPOnF63ZR/SD42e47LLLwiXau3btslJufh/0ivN88cUXFnUlWlqoUCF77Pjx41bife6558YZJk6GFmXkDPumrZV3Q3P48GH7XUSWg7MPDOqjLRIzQMDzcNDkd8c8EA83VOwfg8NpyQWeZ8uWLZblxTyHaPxd8/vgdxbZ7oufgVK6Vq1apWi+BNUb9BGmDZQ3UJuTxcCBA93ll1/u6/6LyP/RYoGIiGRUq1atstlpBCoYek0WY4UKFRJdyOA+gEHZXMMuW7bMkrrw2muv2Xy0PHny2H0A91PRKBbO2bHwM4iISPphvSwyEZuW5MyRYC0pfvvGhKxYscL17t3bkhq8dbykrnFyLUFCA4kOIMGB5NozYjhxO8nnbYIUknkdOHAg1L1791CWLFkIVoVOO+200P333x/atm1bira3Zs2aUPv27UPZs2e37fF21llnherWrRt67733Qn///XcovSxfvjw0derU0J49e8KPzZ8/P1SxYsVQs2bN4nxtuXLlbN9nzpwZfmzu3Ln22NVXXx3na6tUqWKPT5w4MfzYkiVL7LFLL700ztfWrFnTHn/77bfDj61cudIeK1CgQJyvveuuu+zxkSNHhh/76aef7LEcOXLE+doWLVrY4y+++GL4Mf4NvX+DEydOhB8fO3ZsqG3btqHZs2eHH/vnn39CW7Zssf+ntWPHjoUmT54cql+/fihr1qzhfT777LND/fv3T/F2d+3aFXrwwQdDp59+um3vzDPPDD3yyCOhvXv3+rr/IhIK/fHHH/Y64/8iIiIZBdfD5557rp3DSpQoEdq0adNJv75jx472tdzrfP/993E+x7U01/rDhw8PRbNYOGfHws8gIiJp799//w2NGDEiVKhQIVtf8/z5559JWg87fvx46IknngidccYZdh7q0qVLsp7/4MGDoerVq9v3slY1dOjQUGbwRxLP26kfLiAZNmo4cuRI16dPH+upittuu8299NJL7tprr03xdslep+UOSpUqZWVOtPBh5kBaYY7GBx98YGVSkW2FyMxnZgHzEe64445wBHPp0qXu6NGjcbZB5QIVEJGRzLx587pbbrnFqisYaLNz5057I/rKDARmLtCzjqoIsqf43t27d7srrrjCHqPFFf8HVRBETvkar5iJSojixYtbpQYVGFRB8DPQKmvdunWWlUUFxvXXX2+ts37//XeXO3du65fHcB3+3SJ71/FvzPeTxcXQnsjKj3HjxlllCzNAwM/Dz8DXU73B84DnZTt87amG/aQU+3fPPffYG1FVevKRiUZWm5eZBn5//KxeBcqp8L38jZPR9vjjj1t/4VdffdX6DPbq1cui1ZG/FxERERHJPEaNGmXX41Q1kzXJjLOT3bNwffr6669bliT3O7QojcT1+MyZM9Ngz0VERCQlOIezJsi8VNaHRowYYY8nZb2L9uWsK7JOhkaNGtks36RinZDKzTVr1tiaG51s6tSpk4qfJvao3VMmxEI97XSYDQB6pg4aNMhKl5PTEojFbMqTaKXDfAmw4E9ftU6dOtkA7KBbDPFcHChoVUW7JXz22WeuevXqFhz4+eefw197//3328GEAcsEZLzFeeZvUK7NkBoPbYLWr19v7am8N4IfO3bssGDCiRMn4uwHNzSUhxNg8N4INES+7/WrZaGd4AT/Z44CN0YESxiUQ6sinptghvd/742ghBdQ8rDITkCFIdT00ONnJtDBG62NKKNiXyMX9lms59+e3xEBD6xdu9aVKVPGFvbpw+dp0aKFGz9+vHv++eddz5497TGCFpTB3XjjjYEN9OGw9PXXX9u/iVcqP2zYMNe/f3/Xrl07C/J4g7eTirJ85q14w7VLly5t7cjoJywiqaO2CyIiklFw/U0PaO5/vHsEAhYnS4Th+pmFBL6XFqIkwHho8xqtrZ1i9ZwdCz+DiIgEj7UlzuEkHLMuB4IECxYscG3btk1ScIKkZtbDCGqwPdbgCG7cddddSd6P7777zmZfsZ7I95PUELkGGesOaSaFxEcmOkOwWdhnoZk/EG/RNzlDsVngHjp0qJs0aZItgLdv3z4cfQwKi/NURxAYofrDw4t81qxZltVE1QZ40TNLg0XoyBuIhBAY4ADFAYOecgQxCEgQjIisoGDRn2oCqitYmOeNRXL+zwHGC0AEjf3l5/OqONhP/k8PXWZYsO9Ub3jYN/ad4AWVFhwECUYktL8ESvjeiy++OPwYUWKyyt5++21Xv359e4zfE9thzgX/LgRbwH5Q7RFUdQIZbpxIwN8r+0M1BMGSpCIgRCUFfxfevlNt8+yzz8bsgCKRtKDFAhERyQgIKDRv3tyub8G9EQsPJ0usIlmImW/MhuPaeMyYMeGvJ+HpmmuusYUOkqaSWvGbnmLhnB0LP4OIiAQvocTb5GLdiQCFl9jwyiuvJKtbDLOuGjdubEnJdJwhaEL1ZWZySEEKibRo0SK7eGYRGyzwUrKcnEz4b7/91vXt29deUB6qF7p27WplTn7+8VLdwGI5C+pgAZ4gARf+/FF7i+zsC5+rWrWqVYScaoGfLHoCEt4bAQoW56lsoBqEN68SwatGSMtWVX7g9xO/CuSnn35yP/74Y3g4EAdGAg1ly5a1/3NzlVighUMEWWNe6ysCBSzsE7AhQOS5+eabLYBBu6bIweJ+4d9p2rRp9nf75Zdfhh+//fbbLXB10003JXlbVKV06dLFhhyB4eRk0FWrVs33/RbJDLRYICIi0Y5kp7p161rlN/cUb731lrvvvvuS9L20dOUalDaskYEIEre4LubamutgBSnSRiz8DCIiEjzO2yQYEKCg7XdKsH5Uo0YNS/L2WscnFR1BuE5gTY11yylTpoQHbWcmhxSkEPAHQDkzvflBUIILbC8rPqm4gJ84caK9z2I1cyYeeeSRQFrlEEwhQ4ntc+EP/kwJhHADwOJyUl7UBCUIrLCozhttoagmYf+vuuoqW5z3FurpKZuRyrRTgp/9hx9+SDBIQ4kbrZ9o0cUb75+qOoSqBC9wwQGXoBLVFLTYonID9PpjTgkZa7QY8wvzKohkM1uDwAt9/VLSA5ggF5VA9CNEy5YtLSqeK1cu3/ZVJDPQYoGIiEQzWptyvfjrr79aAtJHH33kKleunOrtco9CtTcJL17r2WgXC+fsWPgZRETEX6zrPPPMM65hw4bh+ausVdExJDkJ2vPmzbP1pcGDB8c53yennT3rZbQb99Y027Rp44YPH55p56IeSup5Oy2meEv6+Pjjj0MFCxa0Ceq8tW3bNnTgwIEUbeuZZ56x6fX3339/aP369b7s37///hvq0qVLqFixYqGtW7eGH586dWrosssuCz333HPJ2t6JEydCX375ZejZZ58N3XbbbaGzzz7bfu4LLrggVLdu3dArr7wS+uabb0LHjx/3Zf9jwZ9//hlatmxZaOjQoaG77747lCtXLvudZc2aNXTLLbfYv/v8+fND//vf/065rX/++Sf0008/2b+r56GHHrLttW/fPs7XfvHFF6Fjx46lev9//fXXULt27ULffvtt+LHt27eHFi1alORtHDp0KPTwww+HTjvtNNvXCy+8MPT+++/H+TlE5OT++OMPe/3wfxERkWjCtWyOHDnsPFW0aNHQzz//nKTrWu5TuLaNNbFwzo6Fn0FERPz1+OOP27mhdOnSKVrPYW3owQcfDK+hTps2LUX7ceTIkVC9evXC2xkwYECmX1/6I4nnbQUpYtCuXbtCDRs2DL8gCAKwKJxUS5YsCdWoUSM0Z86c8GMEN1IbnNi5c2do3rx5cR674YYbbB9HjhwZfiw5L17267333gs1adIkfPNBUKJOnTqhl19+OfTdd9+F/v7771Ttd2bCDdmqVatCQ4YMCd11112hnDlz2u/0vPPOs7+p8ePHh/bu3ZusIMKwYcMsOBT5mLdNPwIV8RFwYPsEqpITrFi8eHGoRIkS4dcNf0Pbtm3zff9EYpEWC0REJBq98847obPOOsvOUdx37NmzJ1kLHSSvHD58+D+f/+ijjyzZJyOKhXN2LPwMIiKSOpyH9+3bF/6Y92vXrm1rmsnFWmXhwoXD60EdOnSwoEVK1j2vu+66cPIvCbASUpAis+KC2cuGp/KhR48eSV4IXrp0qQUnvBflzTff7Nt+ka1/+umn275FBg1mzpxplRPJefFv3LgxNHjwYFuEPvPMM21fr7322lDv3r0to15BCX+DFgR6qE4pX768/a75d6xcuXJo0KBBoXXr1qUom+3iiy+2bUSi0mXs2LEJ3ggmx6OPPhq+GeWtSpUqVmGT1JNcnz59wt9//vnnWxBMRE5OiwUiIhJNSHqiIti7HiTZJqn3RKNGjQp/Hwk6CS1k8LlSpUqFjh49GspoYuGcHQs/g4iIpBzn4iJFioSaN2+equ2w/tSxY8fwef/SSy9NVpJ3pDVr1oQuueQS207u3LlDX331Var2LZYoSJHJsLjqZZB7i/YrVqxI0vfSHocXtve9BDdatWoV2rBhQ4r2hSDB559/Hvrss8/Cj/3111+hfPny2UL3b7/9luxt0g5q4MCBoTJlytg+ZsmSxQIqw4cPj9MqSoLF3wo3bkSnvXZaVB88//zzoU2bNiXrxjEy4s0NHpUVbC851Q+J2bJli7WYigxWcHO6efPmJJ9crr/++vD3tmnTJkPehIqkFS0WiIhINN0XRd7bkLRF4k1SfPrpp3YvxPf17ds3wa+ZPXu2VViQZZkRxcI5OxZ+BhERSV0iNOcBWtyn5lxw6623hq8XWENKSfUEWP8kyZXtFC9e3Lc2+bFCQYpM5JdffrGghPfC6tatW5JmCIA2S9mzZ7fvoyd/y5YtrVIhNdgm26PEKVJy52Hw9WPGjLGDBvvGovi9994bmjJlSooPHOIfFu2p3GnWrFn4b6hSpUqhESNGJKslFDhQUa1RrVq1ODeR/C117do1tHbt2hQHK5hZQfUH+9epU6ckfy+BtV69eoVnVZQsWTL0ww8/pGg/RGKdFgtERCQakATDXDUv8eqNN95I8vfS8tRLmmnRosVJW9ByrZtR70di4ZwdCz+DiIgkb91z1qxZcR778MMPbf5DasydO9eqH/h/Sr355pvhLi90pEnuelhm8IeCFJkDJcjnnntuuJyI9knJMXHixHCPViKRycXFOTMHvv766/Bju3fvDuXNm9cWhxlmnRx8PcNpGjRoYP3bWFyuWrWqtQHSRWj04sTw7rvvhu688067IaSCgWHlkyZNSnG/Xm4MCQzw90mwKjW46WTGRuTJ4uDBg0maf0IZIVVA7AeBMm52M/vQI5H4tFggIiLpjSrwK664Ijz7jKqI5FQL046U7yVBKqkJXxlRLJyzY+FnEBGRpGG9kSAAa57JTX5OqM09wY1IKV2zIsH2qaeeCieMN23aNMPOqwqaghQxjr5pVD14LwYyhpLSRok2Np988kn4YxZbiUamdNHVm3zPizFScudCMEyZF/dFF11k2ytbtqwNvuaGQTIWglSvvvpqqEKFCvZvmSdPnlD37t2TXe7G3+THH39s1TMEFDy0EqO1WWrK59g2VRs33XRTktqi8TPdcccd4ddbo0aN4uyTSGanxQIREUlPixcvtmtOzkUEG0hQSY79+/fb/RRBDt5PqIKYZJxY6C8dC+fsWPgZREQk6V0uSGDlPJzSdu8kH9Apg6RaEhmS2go8McePHw81btw4vEb09NNPK5n1JBSkiGHff/99OEuISgP6pZ4qKEDpM61ueEHSQzUlF3S84BhAvGvXrv/sS3JKqSOjjvR0rVmzprXUoX8b+7h69epkb0uiE22aunTpEsqZM6f9vVIVQ4uo1Aw394a7d+7cOcXbIMBxzjnnhNuctW3bNrRnz55T/r2++OKL4TI+hjQRhRcRLRaIiEj6mTx5cnhWGi1wU5rkRPZjYklfLGywfVpCZPQqi1g4Z8fCzyAiIgmvO9IhhqTsyEX/hBIIkoq23ddcc004oNCkSZM4M1KTiw4dJLyyLdaH3n777RRvK7P4Q0GK2MML9PXXX7c2SPzjFihQILRgwYJTfg+tciiL8l6QtL3ZuXNnsp+f9k1ehDD+cyQHGeiDBw8OFStWLFw1wT6mtpecRK9jx46Fxo0bFx5GXbhwYRuEnpITAwOJatWqFWd2Cu/TB5BodlIRgY+MfF9wwQXWuuxUgxW/+eab0KWXXho+IQ0aNCjJwxhFYpUWC0REJK1xD8L1pHctV7t2bas2T873U6GbFLSXuP/++5PVQipaxcI5OxZ+BhER+a/ff/89lC1bNjvGf/DBB6naFsmxrNdkyZIl3CKfluSpQcLr5ZdfHl5Doj24nJqCFDGGxVdaKnkX4SzS8uI91SJsZIuaUqVK2QJvcqKDkZlCZCkRIHn88cdT9DPQMufJJ5+0igkWd4leUpqtkqjMhdknRMU5UTBPhUHvqW3r9cgjj9jfOEGH5Fq0aFGcwfOU+p8qiMeN6j333BP+nnr16iXrplgk1mixQERE0rr1g9d2ljeqsZNbqfv888/b96b03iajioVzdiz8DCIi8n/iVyi+8MIL1jI8NS22uU5gxlTkGuqOHTtStZ90lvESwEm8/fHHH1O1vczkjySet093EvV27drlbr31Vjdx4kR35plnuldeecXNmDHD5cmT56TfU7p0aTdnzhyXNWtW9+KLL7rvv//eVa1aNUnP+fLLL7siRYq4SZMmhR+766673LZt29zAgQOTtf9btmxxnTp1coULF3avvvqqa9u2rdu8ebP9PDfccIM77bTTkrU9ydiuu+46N3bsWPtbeuSRR9yYMWPsb61du3Zuw4YNKdpm8eLFXaFChdwDDzwQfuzEiRNu//79p/zem2++2S1btswNGzbMZcuWzV47F1xwwUm/J0eOHPbaGDlypL2+Pv74Y3fTTTfZzyQiIiIiwTl06JCrXbu2GzVqlN1HDBkyxK7jzjjjjCRvY8KECa5Xr172PvcoiVm/fr0v+ywiIiJxkTg/YsQIOw+vW7cu/HiPHj1sDfNU6zInw9pp+fLl3bnnnutGjx5ta6j58+dP8fbef/99d/vtt7t9+/bZdpcuXepKliyZ4u1JItIsbCIpwsyHQoUKWcSJvv5ffPFFkr+3devW1l6HuQDJ9eyzz9pzNmvWLJRSRBVbtGhhVRNEG5mdkZq+bxKbiI4PGDDAZqUwY4VqCP7uUxIpj6zKGTFihFXtMMQ7qWgbtXLlyvDHZOSdajAT1UDsO6+XfPnyaU6FZErKaBQRkbSwbdu2UJkyZeycw3wxZp0lF5Xl3oyxk1VRcN/F7LIOHTrEVGvPWDhnx8LPICKS2bF+wzBsjucdO3ZM9fboNhM5EJtZU5s2bUr1Pvbr1y9ckXH33XeHjh49mup9zWz+UCVFxjd9+nRXqVIly84mU5xIXZUqVRKNQI4bNy5OJjdVC1999ZW78sorT/o8f/75pxs6dKj78ccfw4917tzZTZ482b3zzjvJ3u9ffvnFNWrUyJUqVcrNmzfPDRo0yKopevfu7XLlypXs7UlsIzr+xBNPWHUNWXDffPONu+aaa1y9evXcmjVrkhUpj6zKIVJOpl1yKnWKFi1qz+0ZPHiwRcepmOA1lhCqgb799lurXKIK45ZbbrEou4iIiIj4Z+XKla5ixYpu9erV7qKLLnKLFi2y68XkoLK8fv367u+//3aNGzd2AwYMSPRrFy9ebNd///zzjzv9dN02i4iIpNb27dttDRKR1ZD8PzU++eQTW5O599577RwPul7QtSOl/vrrL9emTRvXs2dP+7hr1662TkoHDglImoVNJFmRuhdffNEyd/gnuv322086yZ5+/vRX42uZQZHcGQ/eQOz69eunar/ZD7Z1xhlnWPXH6NGj/9NbTuRUTpw4YUO2ixYtaq8B5ldERsOTioy3Dz/80KLnkUOvqayIfCwxvI6qV68ejpjzOjzZfhw6dMgGNnpf/8wzz2jeimQaymgUEZEgzZw5M5Q9e/bwnL2UXBvyPVS9so0qVaok6XqQgZhc48WSWDhnx8LPICKS2dDtgqHYzITyC1UNVGF46zAlS5a0qsvUYg4pa0Bsk44fr732mi/7m1n9oUqKjIk++q1bt3aPP/64Ze60b9/eIoI5c+ZMtJ8qFQuzZs1yWbJksdkV//7770mfg88TEfQ8+uij1gOuRo0aiWaLn8zBgwfdk08+6YoVK+amTJliveOopiDiyD6JJMdZZ53lmjdv7tauXWsRdf7+qSQiar13794kb4eMNzLliJ57+DtlDoYXCT8Zovo8N1VG55xzjlUFXXXVVe6NN95I8HVy3nnnuY8++sh169bNPu7bt69r0qSJO378eJL3WURERETiGj58uKtbt647evSo9YOmUvxkcyQSs2DBAqt65Xpu6tSpca4RE3PbbbfZNZ6IiIikvovGsWPH3MKFC1O09phQhSUzT19//XX7mLWe5cuXu4svvjhV26UTDDNHWQPKnj27dbnp2LFjqvdXkiDNwiaSpP5plStXDkfqhg4dmmgmNtHC+++/PxwtvO6660Jr1qw55XN89913oQoVKlhPtUj03k+uY8eOWcUHszKIhvbs2dPmC4j46fDhwzYj5bzzzrMZE88991zoyJEjKaqsGDlypFVobNmyJfx4Uqod1q9fH7rpppvCr7dGjRqdNKtuzJgx4V7HvN527NiR7P0VyUiU0SgiIn7j/qRr167h669WrVpZxW1qTJ069aQZltyPderUyTIoY1UsnLNj4WcQEYl1rLtEzhtl7WXWrFmp7jjB2s7AgQNDZ511Vng26Jw5c3zY41Bo2bJl4arLAgUKhFasWOHLdjO7P5J43laQIkow3JrFU/7RWIydPXv2SV/opUuXDgczWLRlaHBSTJgwwb7voosuCh0/fjzF+zt9+vRQkSJFbCH2oYce0iKsBG7Pnj2hzp07h7JkyRK6+OKLQ5MmTUrRyS3+4EMGJhLw27179ym/7+WXX7a/eU6GnLxOZv78+aFcuXLZ6439TckwcJGMQosFIiLiJxKyGE7pBSj69++fous+Ah3JOTeRiMLz1ahRIxSrYuGcHQs/g4hILPv0008tmZkWjalNMIiPtvLlypWz88Bdd91lCQZ++Oijj2yf2W6ZMmV8aRsl/0ftnjIQBrjdfPPNbtOmTTbUZcmSJe7OO+9M9Otp/US7JgbGUX7Uq1cvGxqcWGunnTt3hj9u2rSpe/75560s6uyzz072vm7cuNHVrl3bSq5pwcOwbUqw8+fPn+xtiSRH3rx5bZD1zz//7MqVK2fD2atVq2YfJ0fk4ENK/hnQNHbsWLds2bJTfh8tpxjSOHr0aCsrPBlarzHs/oorrnC//fabDdTmtS0iIiIiidu9e7erUqWKmzZtmrVkeu+996xlJ604k4OEPNozVKpUyQZ1JgVtcEuUKOH69euXwr0XERER1ksYMJ0rVy63b98+X7bptYiirTyt71mXoX1jnjx5Ur1t2nzffffd1o7qjjvucF9++WWq20ZJ8p1GpCIF3yc++eabbywgwVwHFl7pgc9ibHwEJQhEeBfnzHygP+rJggMEFO677z7r37pixQrr9Z9SvFBfeOEFmzdBcISF3bvuuivZNwsifpk9e7b1HNy6davr0qWLe/rpp925556botcgsyT4+/YcOXIkydsiyMjJ8eWXX04w8Mdrm8De119/bf0MZ8yYYTfeIrHk0KFD1mP0jz/+cOeff356746IiGRQP/30k6tZs6b1g86dO7f7+OOPLciQEswH69Onj92vcK1HklVS/PPPP+6MM85wsSoWztmx8DOIiMRagsGnn37qWrZsGX7MS8RO7boha5qdO3e29c9nn33W+YlzPutJzEPFgw8+6F577bVEE8El2PO2KinSEcPbqlataouYXHxTFZFQgGLbtm2ucuXKlkXuoYrhVNULOXLkcBs2bLCL/B9++CHF+8mQGIZzDxw40D322GM20JgIowIUkp64gV2zZo3r3bu3e/XVV92VV17pPvjgg2QPYLr++uvjBCgYdH311Ve7Vq1auQMHDpz0ewkeUtFBNdGNN95oJ+GEXodz5syx1zonV/abAIuIiIiI/P+++OILu57i3uXyyy+3CtSUBihGjRplAQowUPNkAQoqz/fu3Rv+OJYDFCIiIn77/fffrQrxgQcesG4SnqJFi6Z63ZAuMCR0jxkzxg0YMMCuEfxCciprm16AgqTsESNGKECRjhSkSCcsUlJBwaIli5csYhJVim/u3LmubNmylu3NQirRp8SwOLt69erwx2QfTZo0ydrhsI3k2rNnj2vYsKGrV6+etaxhQZhWUZRsiUQDKhdod0bgrHz58q5x48auTp06bseOHSneJq85gg38/1TVR3yeKDuvNU6evM4I6sXnVVCwb3/++adVIX344Ycp3kcRERGRWELrTdorkGF30003WYCCQEVK0CaqQ4cO9j6Vtg899NBJv54K8ZIlS7pZs2al6PlEREQyM5KtWTe85pprrE2jH1jf5PxMUum6detcwYIFbY2mcOHCvmyfNSNacrNOw7rS5MmTXffu3ZWMnd5OOrFCAjFlypTwFPo6deokOMCaIb19+vQJnXbaafZ1ZcuWDW3cuPGkg2PuueceG6S9ePHiVO8jQ4nz5MkTyp07d+j9999P0aA6kbTGoKN8+fKFcuTIEXrnnXdS/HfLa2ju3LlxHjty5EiiX79169bQDTfcEB7uyDBuBjXGx8Coe++9Nzz0nn0UiQUaYCkiIinBtVqvXr3C11CNGzdO8N4oqRYsWBDKmjWrbatt27anvBbkeq18+fL29aNGjQplBrFwzo6Fn0FEJKM6duxY6LnnngsdPHgw/Njhw4dDf/31ly/b3717d6hmzZrha4N69eqF9u7dG/LL6tWrQ4UKFbJt582bN7RkyRLfti2pO28rSJHGxo0bZ4uT/OOwWJnQlPs///zTLtC9F+SDDz6YpIv1Zs2ahc4888zQyJEjU7x/e/bsCTVs2NCet0GDBnZwEMlI9u3bF7rvvvvsb7h27dqh7du3p3qbn3/+uZ28Pvzww5MGCjt37hx+3datWzd09OjRBG+GH3jggfDXjRgxItX7J5LetFggIiLJxT1P06ZNw9dEPXv2tEStlOJ7S5cuHV7QSOpiCfdZY8aMyTRJWbFwzo6Fn0FEJKOqUaOGHYM7derk+7ZZI73sssts+yQdvP76676enz/99NPQeeedZ9u/4oorTpoMLml/3la7pzQ0cuRI16JFC+t7Sq+2d9999z/tZBjaUqNGDff+++9bH7S33nrLvi+hgbz0T6N/voc+avR/Y9BLSkyZMsVmT9AP9r333rNypwsvvDBF2xJJL7ly5XITJkywAYnLli2zv+nx48cne1ZFpKFDh1qfxc8++yzRr8mSJYvNjeG1S4kjrdwS6mVIn2P6KT788MP2MS0IGLotIiIiklns27fPVatWzU2cONGul958801rK3v66Sm/PeV7aanbtm3b8L1UUnCf1bp1a7V4EBERSQJm1V588cXWut5vrJE++eSTto7Deg7tG/06P48ePdrVqlXLHT582Fo9LV682OZmSPQ4jUhFeu9EZvDKK6+4bt262fudOnWyRc/ELsIJNtBnf+rUqe72229P8GsIRjRr1szmWjA0ODWYc9G+fXsLTDA0hkExF110Uaq2KRItN8CPPPKI3QAzB4IbYIIYyfW///3P+iHy2mW+BDh0Jnay5PXJIO+E5sx4+P6nnnoqPLSb4Y4MAdcNsmREnEf4e6eX+Pnnn5/euyMiIlFsw4YNrmbNmm79+vV2zmBOV2oWOkjySu6w63nz5rmdO3e6++67L9Nde8XCOTsWfgYRkYyAdYsPPvjAjrmsP0aukfg1f2Lr1q1u79694Vm6POeJEyd82z6J4gQ+GIyN5s2bW+IoiaYSXedtVVKkAQbregGKJ554woIK8QMUvGg8ZFgzGCaxAAUOHDhgF/gff/zxSYdpn8p3331nBwIGxVHZwU2CAhQSKxhozd81Ab9FixbZIKevv/462dvh5NijR49wgALt2rVzXbt2tUHY8VWsWDEcoOAE27NnT3v+SNwQDxgwwPXr1y8cpBg4cGAKfkoRERGRjIGsRYZgEqC45JJL7OPUBCgOHjxo25s0aVKSv2f//v1W3c4iBVXrIiIikrCxY8e6Jk2auDZt2tgCs8evAAIdMFinIWGa87O3VuLX9uk+07hx43CA4plnnnHvvPOOAhRRSkGKgJHB7bV1efrpp21RMn62DoEGFjUJPHjy5cv3n21FBjJoCTVu3Di3atWqFGWPsHBKNccNN9zgcubM6VauXOmaNm2a6TKJJHPghPf999/bzTBlfbwOI19PycXrjsg71RW8dk51DOjfv7+1NKBaKT6qKQYNGmTvE92nBFFEREQk1pCJedttt1ml63XXXWeVp7RzSKljx4652rVru+XLl7suXbpYq82kIJGEdptXXXWVLVyIiIhIwjhPcr6krfw555zj23apxKDrBWs1rIWyBprU83hS0bKb5G9a2dNGiuAEyaFa94xiPs7BkHhmzZplg6y9gTIJDXt59dVXQ6eddpp9Ta9evRLdFgN7y5UrFzp48KAvg4UZ6stzdunSxQb+imQGDFBkKCOvuerVq4d27dqV4m3NnDkzNGDAgFN+3bFjx2wIvTcUku9J6Fjw5JNP2udPP/300OTJk1O8XyLpQQMsRUQkMVz3cP3jXQsx1PrIkSOp2ib3L97gzhw5coRWrVqVom1kRrFwzo6Fn0FEJBpt2rQp1L9///8Ms/bThg0bbH3Tuy547LHHfD8n//zzz6GiRYuGrxPmz5/v6/YlmPO2ghQB+eqrr0LnnHOO/SM0bdo09M8//8T5PB8TIPBelO3atbMF1MQWOQsXLmxf17t371Tt19dffx0qVKhQKFeuXKHp06enalsiGdXcuXNDF154YShfvnyhefPm+bLN/fv3h/r27ZvgCZzXe9euXU/6eucGnsf5/FlnnWX7KJJRaLFAREQSwnVR69atw9dAnTt3Dv3999+p2ibf36hRI9tetmzZQosXL07S9+3Zs+c/92SZUSycs2PhZxARiTYHDhwIXXDBBXZ8nTp1aiDPQULm+eefb8/BuiTJn35buHBhKGfOnPYcRYoUCa1du9b355Bgzttq9xSA1atXW+kxvc8YLEMPt8gZFH///bcNaRs8eLB9TOuZkSNHujPPPDPB7VFSNWXKFNe9e3drGZVSDMSm1Q0tb2h9U6dOnRRvSyQjo/USLZtoMUAfZNotEbRNKb6Xvsb0N2zVqtV/Ps/r/+WXX7Z5NJQWvvHGG65+/fpW4ujh8eHDh7t77rnH/fXXX1b2SBsEERERkYyI3tW1atVyb775pl0LDRs2zO5/kjvkOv41V4cOHWwGBa0bpk2bZu1rT4UZYrR8YGD3nj17Uvz8IiIisSpHjhyuU6dOrnLlyq506dK+b59zODNDmat744032rok1wl+Yvus99BCirb633zzjbvyyit9fQ4JUDKDH5KEsiWys/nVVqpUKXT06NH/ZBM1bNgwnC09ceLEBLezYsWK0KJFi3zZJ8qm2rdvb8/56KOPJlqxIZLZkInntVlq3rx56Pjx4yne1kcffRS66KKL7LV7qq87++yzreVUQtUSf/75Z6hatWrhzIIff/wxxfskklaU0SgiIpG2bNkSuuqqq8LVDjNmzPAtAzMl7TG//PJLu/6ikjY17T5jQSycs2PhZxARSW9UF44cOTK0Y8eOOGuWQVYd0oGiX79+vreQojPFs88+G67cpOU2XWkkY523T+M/QQZBMpOdO3e6m266yW3atMmVKVPGLVy40CKRkbZv327ZPrt27XIffvhhgtUMX331lUX+zj33XPfdd99Z5UNqBsU0bNjQLV682CopWrduneJticQqBlpTAcHrloy8AgUKpGg7VE9FDpP67bffXMGCBf8zmGnevHn2uZYtWya4nSNHjli237fffmvf//XXX7vChQunaJ9E0gLZMAwiJWv2/PPPT+/dERGRdMT9C1Xl3O/kz5/fzZw505UtW9aXbf/7779WXV6iRAnXpk2bZH3vTz/9ZPdGVJZnZrFwzo6Fn0FEJL09+uij1u2hbt267qOPPgpkoPT06dPdnDlz3GuvvRbYwOoTJ07YYG+62IDrhBdeeCFORxvJGOdt/Yv5hFKiO+64wwIURYsWdZ9++ul/AhRgwXH+/Pn2Qk2s3VK5cuVcyZIlXYUKFdx5552XqrZTbGPt2rX2nApQpK8+ffrYQTmht1tvvTW9dy9Ta9Kkifvyyy8tiFi+fHm3bNmyFG0nMkDx66+/uquvvtpuoGkxEIkARGSAgrYDBDg8BChnz55txwH2iaClWhOIiIhItOMehzYRBChoFUGbBT8CFF5enddCM7kBCnBdldkDFCIiIh7Opaxbsj7hN1pYEyyoV6+etbWePHmyC2ottkaNGhagoJ0kydkvvviiAhQZlP7VfMACJAGHH374weXLl8999tlnljUUGdVbsmRJ+OPLLrvMXkSRInvTs9A5d+5cN2PGDJczZ84U7RPZ4PR444DDgmulSpVStB3xz2OPPebatm1rlTRU3fDWrVs3m4swderU9N69TO+6666z10qhQoXczTffbL0MU4Ogx8GDB+24cLKMgd27d1uQipP3sWPHwo/nzp3bjgNUUKxfv96OGVRYiIiIiEQjsjHvuusuu56pXr26VYenpiLcw8IDM7si75eSgjmAHTt2dBs3bkz1PoiIiGR0VBN+8cUX4Y9JJtiyZYt75JFHfK1y2LFjh7vtttvcSy+9ZB937tzZrg/8RmIo654kZZPoyRpq+/btfX8eSTsKUviQ1dOuXTtrx0JAgDImKik8XExzUU3WzqxZsxLchpdxPX78+DgLlCmN/A0ZMsSG8jK026+bA0k9DprZsmVzWbJksWAWbzzGwPRcuXKl9+6JcxZcXLBggbv33ntds2bN3PPPP5/igdotWrSw4wFt3bJmzZro11F9tXXrVgtuUmYZGaig8opARd68ed3KlSttm7Q5EBEREYkW//zzj7WM4I3rJpJyaPHkRxueKVOmWDU4CT1eG4ekotUD2ZskgyQ3wCEiIhJL1q1b56666ip399132/qDx++WeaynXHvttbYWybY5jw8ePNjWwfy0dOlSd/3117uff/7Z1k14PtZAJWNTkCKVCAgQXKCsiBcfPe09XAw3aNDAonl8PrEXJd/PAePZZ59N1QU0NwVPPPGE69Kli+vRo4f74IMPXPbs2VO8PZHM6Oyzz7abYF6PTz/9tHv44Yft5jslqlatapUZHgIWnEwjUVlDezgCVsyqoIfz0aNHw58vXry4+/jjj+34QYUUgRMRERGRaMA1C8lRVFF4gYFRo0a5s846K9Xb/uSTT1zTpk0tQYNABYlhyUFrTarJBw0adNKEERERkVhHRxcSqklijlxv8BOJAbSOolU1VRrLly+3NVG/kbhAAgLPc80119gaC4nfkvEpSJEKZD7Twgf0Ro3s40YLKCKUVE/QvolsIvrKJ6RXr162GMqg7ZReQNPv7YEHHnADBw60KKWGxIikHKWOvCbfeOMN62nIzIrUZuAxvJ7tUPZIC6hIN910kwUqmEFDqWL8QAWBDPYDzzzzjA21EjmZ119/3V166aUWdKtYsaINYT9VwP2KK66w8xWBNYLd8WepiIiIRKJ1KfMnmEPBPcykSZMsUcqPlhG0oyD4wT0OFa4EPpK7Xc5nixYtco0bN071/oiIiGQ0zKf1OkPQwYPFfVpclyhRIpDn87ZLBwhmUl1++eW+bp+fhbVXutVwr1qzZk07z1NJIbFBq9gptGHDBrtgJrPn/vvvtx5uHi6medGQ/eMFKOIPouEFGzkAjqztAgUKpGhfaA9DQIQe+rzR700yBj/7/on/aFdA9QM335wADx06lOJtUWXFcaBWrVo2uDE+Mv1oD0WgghJJ5txEBkZatWplVR1o3ry5W7NmTYr3RWIbVXRdu3a1gNaKFSssq+SOO+5IdPj6xIkTrQqPr+dC9s0337RtPPXUU2m+7yIikjGQcEEQnPNMnjx5LKjQsGFDX7ZNG12ug1iAYGaXV7WeFFS//vTTT+GPlbQVnfr06WP3QZFvV155ZXrvlohIzGAxnzUIktci21uTxOan48ePh9+vUqWKXRfQmYJW537y5kyRKM5aaocOHazjBOsnEjt01ZYChw8ftgtmpshzcU6Gs7fYzIuFQS1eBcXs2bMtczrSa6+9ZsNdnnzyyVTvy759+2zhk0VNnpOSaMk4OKDu2rXL/fLLL+m9K5IIBjwxF+K7776z2TL8e6UE7ZwIdkTeaHO8iJx5QcUEFVr8XTCrJv5zcaHBiZ8B2hyD9u/fn8qfTmLRK6+8YgE2qusIiI0cOdIuEt96661Eq3wIknH+oPqCYadU/Zys+oIAGkG7yDcREckcuC6iCnTbtm3WlpLkK+5t/EBggmCHN3yboHlyWkf179/femFTDSvRrVSpUlaN473RT1xERPzBuZOFfVouBeX999+3FlK0r/eQIOd3Mq63BuutvXK/y7oq1SESWxSkSCYqJ8hiJkOHKCTlUpGRSLJ3WLwha4eLavqkxcecCBYmWWhM6VDeyBJrqjpoEcOFvGQsZDejbNmy6b0rchK8zr788kvLRGcxd8uWLSm+UIhs6UYWGUMmI2deEPikCmvJkiWucOHC//l+WimwkMzAbaq5uPAQ8Zw4ccICasxD8XA+4mP+phLCwhLf4wUl+NsiwE71UGIGDBjgLrjggvBb5OwVERGJXVTbedWlN998s51b6HPtF+6ruNapW7euzeJKTitc7qtWr15t50LNoIh+LC7ly5cv/EZFjoiIpFxku166MLCu8Pbbb/v+PHSPoT0wiW0kVg4dOtQFZfv27bYew/0pieB0uuC51ZUkRoUkWXr37k1UIZQlS5bQN998k+DX/PPPP6ElS5acdDtfffVV6N9//03xfvz222+h4sWLhwoWLBhat25dircjIkm3efPmUNGiRUOFCxcObdq0KVXbWr16dei0006z48mnn3560q/dtm1bnI9XrVoVypYtm31vly5dUrUfElu2b99ufxeLFy+O83j37t1DFSpUSPT7hg4dGjrrrLNCZ555pn1/+/btT/o8f/75Z+iPP/4Iv/E3yvfxvoiIxB7ub5588kk71vN233332bnAz+37gfurOXPm+LKtWMW5Or3P2c8884xdy+bPnz9UpEiRUNOmTUNbtmxJ9Ot13SEikrjjx4+HHnrooVClSpVCf/31V6DPtWvXrlDlypXD1wNcG/z999+BPNf3339va548z4UXXhhaunRpIM8j0XPtoUqKZCBix+wIUEJMxnNkX1YvG5qs1euvvz78OTKdBw0aFCeqSTZ2SiN/lFbTdobebwzbpsxaRIJHZQOvOSoaeA1u3LgxxdsqXbq0zQJ47rnnwhU1CaE9FBmKlFJ66C05btw4e3/w4MHunXfeSfF+iNAukPYYw4cPtx6iVAjSPpC/zcSQoXr++efHeRMRkdjEPQwtAamiQ+/eve36xK9qBdpEXHPNNW7VqlUp+v7IynTur1RdHv24j6Zn+aeffmrtO2hzSmUOLT0SogpOEZHE7dixw02YMMFmOjEjKigM3b7uuutsWDUtqql45D4yqXOjkoMqEFpLUknBQG5aS1aoUMH355EokwYBk5hA1nP27Nkt8vPoo4/G+RwVFeecc06oQYMGFsGMr3Xr1vZ9tWvXTlX1BMga8SuTW0RSnq3uVTJt2LDBt+2S9XDixIk4jz3yyCPh6q358+fH+VyvXr3sc1mzZlVWgZj//e9/oTPOOCM0bdq0OI+3aNEiVLdu3QS/56abbgo99thjcR4bP368ndeSmtkaDVmZIiLiv99//z1044032jGearuxY8f6uv3169eHChQoYNu/7bbbUrQNroeeeOKJwLNHY0U0nrMPHDgQOv/880NjxoxJ8POqpBARObmpU6eGPvnkk8C2//XXX9u6A8feK664IrR27drAnmvEiBF2T8tzValSJbR///7AnkvShiopfMTgNnq/Hz161IZgv/TSS+HPrV+/3tWuXduqGvh8QhFEZljkzJnTtWvXLlV904iOMjSXygwyX4sUKZLibYlIyhUoUMBeg8yX4ZiwefNmX/o63nfffdbXMXLOBEOhGjRoYP2VGeJN1Zanb9++rk6dOjYHp3HjxhpeLC5LliyuXLlybt68eXFmKfExg9kTO8dRARgpcri7iIhkTr/88otVhy9evNiy1+fMmeNatmzp2/bJnuc6inschihHVo0m1c8//+z69evnXnjhhTjnPslYcuTIYd0BmLWYEFVwiojEvX9r3769+/HHH8OP3X333a5GjRqBPScVFOXLl7cB1swyvPLKK31/Du5bu3fv7h566CHrVHP//fdbxR3rqZI5KEiRBI8//rhbu3atDfTi4tmbIL979247COzdu9cWhSZPnmxtYOKjLQwX4SwmphTDaLiIZzGSIdkMzhWR9JM/f34rpeQ1T/Bw69atqdre999/7z766CM3ffp0a7kTuVhM6Saljn/88Ye78847reUbWFim3QJtqDjGMBxLpGvXrm706NHWBoxzFxd5BNEfeOAB+3yLFi3ck08+Gf56zk20WuD8xt/RZ5995p5++ml7PIjSXRERiX5ffvmlBbdpbcl9BwOyuRfxC9dNbI9rGhY6CDDkzZs32dvhe9977z332GOPnbR9pkS3I0eO2N8a19ciInJynPNGjRplCY5e2/kgsNbpJVCSDDdz5kxrDRxEoJjAS8OGDcNJ4bQefuutt+x5JRNJo8qODGvGjBnhgTCRw22PHDkSuu666+xx2i8xPMZDS6fnn38+tGPHDt/KX8uUKWOl0JREi0j02Lp1qw38o/3Tnj17UrWt6dOnh2bNmpXg5/bt2xcqUaKEHXNKlSplxwXPl19+GTr99NPtc++9916q9kFiw7Bhw0KXXHKJtQljYDZtCT233HJLqGXLluGPaY/Rp0+f0GWXXRY6++yzQ4UKFQp16NAhzt9YRmwdISIiKfPuu+/a+YPjOueQyPscPzAgmfsntn/55Zf7ds8kGeec3a1bt9CCBQtCv/76q7UQqVq1aihPnjxJvpaOhp9BRCS97N69O1S2bNnQF198EdhzrFixwu4Lu3btGkqLn6dixYrhNtcTJkwI/DklbSX1vK0gxUns3LkzlDdvXvtFdu7cOU4Q4t5777XHuZj65Zdf4nxf37597XNXXnml9c9MDWZcVK5cOZQzZ87QmjVrUrUtEQkGcykuvPDCUPny5UOHDx/2bbuHDh2KMxOAm3qvb/OAAQPifO3TTz9tj19wwQWhzZs3+7YPIkmhxQIRkYzPS7TyErTq168fOnr0qO/P07x5c9s+wXFmC6RkP0ePHm1JY5Ixz9ncS+fPn98Wo5jxxsfJmfMWDT+DiEhazh38/PPP4zyW2nm3J0PiI/MJvWQC1iWC8tNPP1nSJ8+VK1eu0MKFCwN7Lkk/mkmRSgRwaI3x+++/uzJlyrgBAwaEP7dmzRqbYk/bJ9qzXH755XG+t1mzZjYvgjZR9M9MKcq2mjZt6pYtW2ZlVfRqFZHoc9lll1mvRPoie/MjUmvfvn3u1ltvdR07dgzPBbjkkkvsWEDfZY4vkXr37m19o2kJxRycIMs+RUREJLYwG6tNmzauV69e9nG3bt2slW22bNl8f67hw4db60Fa2F588cXJ/v4333zTtW3b1lWqVMmXay5Je7SYZBYJrYx/++03+5jraRERievw4cPWQp6WhosWLQo/npp5tyebCfHUU09ZGynm7tLenvkT5513ngsCcz5vvPFGaznMOYDWkpUrVw7kuSRjUJAiEa+99potOp599tlu4sSJ9n9P6dKl3VdffeXGjBljF8fxFS1a1AbYeP2/U4JFyQ4dOlh/+kmTJtkLV0Si17XXXmtBS060rVq1shN8anCMWblypfvwww/d9u3b4zxPjx49/jPomKApsyvOPfdc6yM9cODAVD2/iIiIZA4HDx60mVf0fub64vXXX7ee0PGvNVK7yOLhWoW5SYUKFUrRtq644gqbFXjvvfeqV7WIiMQ0zpnFihWzQAFzG4LCefquu+4KJ2iTFEmCZI4cOQJ5vnHjxrnq1avbNQgzsAhQFC9ePJDnkozjNMop0nsnos0PP/xgU+vJ7Bg2bJjr1KlTkjJ6+B6qLvzQp08f17dvX/f222/bRHsRyRjIOuSmuXPnzu7ll19OVYYDAdJrrrnGlSxZMsHPMwyZTEeCFlRvgZt+jhkELb7++mtXoUKFFD+/SFIdOnTIXXDBBVbJE8QgNRERCcbmzZtdrVq13E8//eSyZ89uyVE1a9b09TnIlGdI9n333eeeeeYZ34Z55sqVy9dASmYRC+fsWPgZREQSwzItSY9nnHGGfUxwYteuXZYQHQSei8TopUuXWjcY1jc5Zwf1s7HWyRsaNWpkaxiRieESe5J63tZVXTx//vmntVgiQMEFOq1WvBJo2jiR2RzfnDlzwiXHmzZtSvU+jBw50l6wtHRRgEIkY2nYsKFVYg0ePNiyEFODY1FkgILjUCSOT6NGjXL33HOPHbtA+wSCJH///bd9/5EjR1K1DyIiIhKbaClLq0gCFAUKFLAqTr8DFNu2bbP2levXr3djx461jMmU4Lpmz5494Y/z5MmjAIWIiMQcAhKsPZKM6KH1YlABCnA+7d69u10L0FIqqAAF66wtW7YMByieeOIJ99577ylAIWG6souHFwkzJy688EKrYvCyoHnBvvvuu1YKTW+2SGQqc/HNC9nLZk6pzz77zBYeH3nkkf/0nBeRjIFWbT179rTX8Mcff+zLNletWuVKlChhrZw8zz77rN2kr1ixIlzxxTFrxIgR1kJh48aN7tFHH/Xl+UVERCR20KKSHte7d+92V199tWVPUr3ppy1btthzcD3CPRItMVPaNoJrKvaPdhAiIiKxivt9OirQevGXX34J9LmoSvQwW5PnC6oTw/79+22uxvjx461C5I033rDWUko4kEj6a4jw+eefu6FDh9r7ZPoQqACRPe9xspbPOeecON+XM2dOm19Ba6jUtHYhw4gMaPqyvfLKK4EMwhGRtEEAgRM9WRC0kEstWkdxk88gq8hB2gwa5MROSSZzcrxjEvMpOIbQX5qFCBERERGuIYYMGeLq168fHorJgkhKBlifqo0USVzeMMyFCxe6woULp2hbtLecO3eu27lzp72JiIjEKhby6cjA+mRQMxr++ecf99hjj9m8XSoePbR9DAIdZ2gnxbUAszVmz55t3WhE4lOQ4v/hIr19+/bhLGgqJsAA7DZt2tj7LA7Wq1cv3E+Lg4aHoW1nnXVWip+fvlxsO2/evBYU8XrPiUjGROCA3orcmPPajsxSSGkbOCqspk+fHieAefvtt7t+/frZ+1Rh0boBlStXtlkVoMoicmCliIiIZD60TOJaokuXLhas4N5nxowZtmDg92IEFRQEKi6//HKroEjpkGxv0YQKCu6RCK6IiIjEkg8++CDO/TqtnjiPBjkgmyRI5lx88sknLkjffPONtZZct26dXQswN5PEbJGEKEjx/1BmRJYyPdi8afYEDrgQpidc1apVLTPau8Cn4oEIJ9nLfkQxaRW1Y8cOW4BMaRm0iEQXbqpp98RcCGZVxJ8pkRz0oaSiiyqJ+AhGcKFx4sQJm0/hBUR69+5tQZLt27fb+yIiIpI5cS3CtQJzs0h2IEtz+PDh7swzz/T9uajM2Lp1q2WAEqBIaZWGVzkKAimNGzf2cS9FRETSH/MZOL/RgYEB1kHi3HzTTTe5mTNn2hwIgv/t2rUL7PmmTJniqlSp4n7//XdXtmxZC1hQvSGSGAUpnHM///yzDanGq6++Gp40TvYxPdloqRJZ3cAFMxfbTL2nh2tq0bue6CXR0yuuuCLV2xOR6EFrgw8//NCGUXbu3Nm37ZL5SAYkxyMWG2hRR7YiVWFe70pa07EA4R3bmF0hIiIimQuJUFRYzpo1yxYlJk+ebFmaQbWWZSgm1aQEKEgASwkSO+rUqWPXUCIiIrGKtovct1933XWBtnxfvny5q1ixolu9erW76KKL7BwdVPCfNYpBgwZZouaff/5p53NaPaX0mkAyj9NCkSkqmRA/PpE9XjC1atWyhT8ODLyQateu7ebPn2+LizfccMN/vo8ZEqntEccwbiKmlFp17do1lT+NiESr0aNHW5YCQ6291nIpRWVE0aJFrXKC4ASLASA4QSWWN0/H06RJE5tdwYUP2QtqJyd+owXiBRdcYBWIXqBfRETSH4sR3OP89ttv1laWqm3aLvhtzZo1Ll++fC5Pnjy+bI+Kj4cfftjOKbSPyp07ty/bldg4Z8fCzyAimZeXaBiZTBDkAj5rmrRYIqGRSgYqKUjGDgKdZ0j4Zp4vOJcPHjxYaxCZ3KEknrczfZCCLJ/777/fIpc//fSTu/TSS8Ofo9Rq6dKl4QAFC4MFCxb07bl5PhYNac/CfmhQtkhs42T9xhtvuMWLF9trP7VBD+ZPvP7666ech0OvySuvvNJOCMOGDbP9EPGTFgtERKLPnDlzLIuR/tNcBzCoskiRIoFkZ7L4wX3UvHnzEmxNmZJFDtpZkkxG4pj4JxbO2bHwM4hI5vTtt99a0iJtoVMzrym5LR9vvvlmSyagg0tQx02OzY0aNbLrD9Y3X3nlFV+7SUjGpSBFEuzbt88u2OnfPnDgQPf4448n+rVk8NBDjRccbVMolU4N5lxUqFDBIqgsNNJvXkRiG5UPlSpVcvv377fWSxykg8LFx9SpU61VHUO8qeDo0KGD9XSmxZ1KLcVPWiwQEYkuJEVw3mf23a233mrXBH4ED+Ij8aJmzZp2/KeNxKeffqr5elEuFs7ZsfAziEjmQyI050qC+8ylnTBhQmDPxfmfdQAvGZp1T87PQcyiAhWbVG5SwUkSOOsQ9erVC+S5JHbP25l6JgVBCV6oV111levSpYs9Nm7cOPfggw9apDESbZ/4pVLK7EeZ0qOPPmqBj0mTJilAIZJJZMmSxdoucdyh9ZNfMWK2w3aPHj1qH+/cudM98MADdnzxZlJwXOOCiGxKZTOIiIjE7gIIFQic91mgaNGihWU0BhGg+OKLL6yCghtOMjQ/++yzVAUouDeiJUQmzqETEZEYRtCAWUutWrWyJMKgsJ5Zt25dmwvhoR1jUAGKlStXxpl3sWjRIgUoJGVCmdSiRYu4+rW3r7/+2h7bsmVL6Pzzz7fHXn311f98z9y5c+1rUmvixIn2HGPGjEn1tkQk4/nggw/sGDBq1ChfttelSxfbXsuWLcOPDRs2zB4755xzQuvWrbPHVq5cGTrjjDPs8dmzZ/vy3CL4448/7O+K/4uISPo4duxY6J577gnf4/Tt2zf077//BvJcM2fODGXNmtWep1q1aqEjR46kanvHjx8PlSpVyrb37LPP+rafEpvn7Fj4GUQkc/jnn39CP/zwQ5o9344dO0Jly5a1Y2S2bNns4yDNmDEjlD17dns+zuObN28O9Pkkts/bp2fWlitkF6Ft27buxhtvtKwjoplUSzBM7qGHHvrP91WrVi3Vw2UYtk0GddOmTe35RCTzoW0cxyAqqn744YdUb48shaxZs7qSJUuGsw9p8XD77bfbcCwGa9Pb+ZprrrHn9D5P2zkRERHJ+H7//Xd32223uSlTptisqvHjx7vevXsHMvNuxowZ7u6773b/+9//LFOTYdzZs2dP1TZppduxY0frz617JBERiQWcJ5s0aWKt3plFETTm3rKeSWvpvHnzWkeY/PnzB/Z8zMdkLYKODlWrVnVff/21K1y4cGDPJ7EvUwYphgwZ4tauXWsv2hdeeMEeoyUKg97onUbLJ8qgNmzYYH3i6B/v1wHq3nvvtWE1I0eO1KBskUyMdgaXX365BSy8Nk0pdcstt1iLBFrYeccVSknffvtt6/f3zTffuJdeeske79u3ry0AbN682fXv39+Xn0VERETSz7p162xRgvM9bZ1ou9SsWbPAno9WuRdeeKFr3LixBUVSO6vPQ5IYc7MKFizoy/ZERETSE/fkJEKTMPjrr78G+lwLFiywBOytW7e64sWL2zUBwZEg0E6ya9eurlOnTpbw3bp1azd79uxAZ25K5pDpghQEHLyFOfqz5cqVy/3yyy/hodkvvviiLRySjUwP14kTJ1pWjx969uzpfvzxR+sTz/BaEcm8CIhyLOAighN8akUOwuaigQoKghGvvvqqPUY2JT0izz33XAvU4pVXXnE7duxI9XOLiIhI+li4cKG74YYbLFmhaNGibsmSJZa8EKQiRYrY4gcDP6naSI3PP//cErk8mtUnIiKxgnPk5MmTraKBhOWgsK5wxx132IyoSpUqucWLF9s1QRDoxnDPPfdY0iVYXx09enSqrwdEMmWQYsCAAfbCLVOmjGvevLlF/Rgwy4IerVFogQKykSldIispcthMSnGQYEHw+eefd9dee60PP4mIZHRXXnmle/nll90bb7zh5s6d68s2d+/ebRco3mBugq2UYP711182OBO0aCDLguPes88+68vzioiISNoiSEA72gMHDoQrKa644grfn4frCe5hPv744/BjF198sTvjjDNStd1PP/3Urln4GVJbVSoiIhIN6FgwduzY8MckCRI4CNLevXutrX39+vUt+J87d+5AnmfXrl3u1ltvdR999JG1m37vvffck08+qS4x4pvTGEzhMolt27ZZlQTZOrNmzXI1a9a0kmKyjyi/osoh/swJfj2pfcERaaQXPAeKr776KtUX9CISOzjGcHNORRfzKVJbIskxhgsHLhpWrVrlihUrZoEL3q9evXr467788ktXuXJlOx7Ru5KSUJGUooyZv12SAGgxJiIiwV47kGTQp08f+5iMRtrVUqUZxHN169bNMia5tqC1lF/9pmlLxb43aNDAvfnmm1rkSCOxcM6OhZ9BRGJzPhRrf3Qr+OCDD6y1c1qZOXOmu/POOwNbb2TNgDXULVu22NomiQtBB18kdiT1vJ2pKim4kCdAwcIcL14vk5nFwQ8//NACFPSJ40Xn8eNiuVevXtbShf7wClCISCSOMdyYkwX52GOPpXp7N910k5VbLl++3AIUuOiii+IEKHDzzTe7WrVqWWsojlEiIiIS/ciUvP/++8MBClrWshASRICCJK42bdqEWzpQXe7nQEySNLhe0aw+ERGJBXny5LHARMmSJQNdwOdagAqGffv2hR+rXbt2YOuNX3zxhXViYK2UxG9aSypAIUHINJUURP1Kly5t7Z14QVESHR+fq1KlimUzU75EMCO1yGpmO8y68GMBUkRi06hRo1z79u3DrQ+CwoUFQ60YTsmx7uqrr7YsyWXLlrnrrrsusOeV2KaMRhGR4JHQQCsHhmOyEDF8+HBr7xiEP//80zVp0sTuiRj8+dZbb7mWLVumertHjhyxdpN58+b1ZT8lc56zY+FnEJHYxLoi57qgjk1smwpE2kUzg4p5F0EG+mld1bZtW0tcICGS64Kg2klJ7FIlRQJDqzlY0IudAMWaNWvc9OnTbXHOQxSSFzzVFgycTS3aPDHvgufr0qVLqrcnIrGLRYaqVataxiIHbr9s3LjRMixB2yeyOpi9Q7CWwC2zedCjR484x0MRERGJHgzGJouRAMV5551nbR2CClBwI0nVOQsRWbJkcVOmTPElQMECB4NDuTeikl1ERCSjo8qA9T7vXprAflABCmZPMEuXAEW2bNncE088EViAgp/n6aeftjVNzt+NGze2No0KUEiQMkWQgqHVXhZQv3797MXGIh3DZAcOHBj+OjJ6li5d6hYuXOiKFCmS6uelhcpvv/2mNk8ickpcXIwZM8YCFPR+9gMzd8qUKWMLC7xP2ycWB9CpUydr9URPaxYguLjiokNERESiC/cnLOxzLmdgNZXaNWrUCOz5aL/kBUOo8CTJyw8kS6xdu9bt3LnTqkJEREQysj179ri6deu6IUOGuDfeeCPQ56KFPJUM3377rcuVK5fdvwd1LUDidrNmzdzzzz8fTvp+99133dlnnx3I84lkmiAFAQmiiyACWKJECZtAz9BYIo9NmzaN8/VnnnmmLy1Pvv/+ezd06FDXt29fd8UVV6R6eyIS++jzTGs4ZlR8/fXXqd4exx7azZF56V1QDBgwwMrsVqxYYUERnpOgLThWUnEmIiIi0YG5ebfeeqsN47z22mstYEECQpBoUcu1AYEKWuH6pWDBglbJOWPGDFexYkXftisiIpIeLrzwQvfaa69ZAjTzooJsX889/bp166zrC8kKQZ1H6TBDh4eJEyfa+ihrEwQrSPoWCVrMz6SYNWuWDZBhgW79+vW2OMfCHRk8VFU89dRTbsKECdZ3tXXr1r6USrHIx1DagwcPWrDirLPO8uVnEZHYR3UD2ZJ//fWXDZPkwiC1LRvIhIw8tr366qvu0UcftQwM2i1wGihatKg7fPiwBXEp5RRJDvWGFhHxF+fml19+2QZj836tWrXc+++/784999xAno/rgUsvvdSqK/1GO92g9lsy5zk7Fn4GEcm4OC9H3l/H/9jv5yKRmiRDkq7nzJnjS3v6hGzYsMHVrFnT1k45tpIoQcBCJLU0k+L/BQuYeI+HH37YyqOfe+45C1AUK1bMWqrwfseOHW0QDBf+fhg/fry1mCKiqgCFiCSHNwhz9erV1m4htTgBxL+AIjuSeRT79++3tnR58uRx3bt3t8/zMQESERERSR/0fuZczbmZ8zb3KrSuDWqhn4qJ8uXLW9W53xWV9M0m+MFgTxERkYzuk08+sURoZtB6ghxczbZJJKxTp451hAkqQEEnB5IlCVBccskltqapAIWktZgOUnz88cfuhx9+sGgNbUzo4zp48GD7HK2YsmbNauVZzzzzjJVRN2rUKNXPSfUEGU9kIvtZHi0imQcLBQzQJmBAn0u/FjwGDRpkmZiUahJExahRoywrg2FfHA8ZtM1FkIiIiKQ9qhrpb02iAgsT3LsMGzYs1ZWViSFL8o477rAMt23btsVZdPED1Zu0jnjnnXd83a6IiEhaozKwRYsWbvbs2VbtGCTmOHmKFy/upk+fHtjQ6g8++MAGcnO+pmqD1pKlSpUK5LlEMm2QggU5kIlEW5POnTvbQh0RSEqYvKzlrl272tAZP4Zb9+7d2y7uX3rppVRvS0Qyr/79+9sxqUePHr5sb8eOHa5Pnz6W+UEvaGZVkDHJEKwrr7zSsjM5RoLjV4x3AhQREYk627dvt5axnKvPOeccN3XqVDs3B5WhOWLECNewYUN34sQJG45NCwm/qzWmTJlivayDHigqIiISNM6RBAsIVHizb4Mwbtw4V6RIEffpp5+6IHHP/8ILL1iSNcOyma1BdWW+fPkCfV6RTDeTglIlJt/TV3Xz5s32Ips2bZpdJE+ePNlddNFFNjjbz+Evq1atcmXLlrXBt7SSEhFJDW7oH3zwQTueMSgrtRiUTeCDoV4seMTvnXngwAErHz169KgtkNSoUSPVzymZg3pDi4ikDnPsqHYkqYDKxpkzZ1plZRA4/1OtSUIEuNZ4/fXXfUnYAklhQVV+SOrFwjk7Fn4GEck4gpw5ER+tn2nziPbt21tCQRBo8fzQQw/ZYGyQFEGyol/XAiKRMv1MCq+Konnz5i5//vx2QKlfv7777rvv3GWXXWYvxttuu81t2rTJt4MWcy/ISH7kkUd82aaIZG6tW7e2cstOnTr50iOaFlJUT3gXWPFnVeTIkcPm80QeQ0VERCRYtI2ggoIARcmSJa3NQlABCnCv4gUoqLJkAcSvRQluPkmsUOWEiIjEShLBDTfc4LZu3Rr4c3EP7gUoWF8kgSAInKtJjCBAQeI2bSVpL6kAhaS3mAxSrFu3zkqwEL+igUU5hmXTf3XRokU2ONYPZDsxxOaVV17RsGwR8QUXCfRyXrlypXv//fd93fY///xjbSXAMEsWFDhukkHB89ICj1kVIiIiEhwCBLSipc81CVRUTzJoOkgkblFRzuIEs/n8zA59++233bJly9zTTz9tFZoiIiIZFYl87dq1s+QBv9owJ/Y8JA0w3xZPPfWUzdH1s/OLh2ALXWc+++wzuxZgli9JkSLRICaDFAyw4UXOBT+VDXfddZc9dvz4cfs8lRU//fST3RSQpezHYt+TTz5pNxbVq1f34ScQEfk/ZG3QG5KbfXpG+2Ht2rXWmo7ZPBy/uED55ptvbKYO7Z7uvfde+zpVU4iIiASDCsnHHnvMZufxPq0YabVIVWNQz+epUqWK+/XXX12rVq18f55HH33U9e3b1/po58yZ0/fti4iIpBWC+CQ4c388cuTIQJ6DtUuCE5w70a9fP3sLor0UnWUqVqzo1qxZY+uiJFrXrl3b9+cRSamYm0mxe/duV7hwYRv6QqUEvdXvvPNOd/bZZ1trJ16IfnvnnXfsxuLbb78NtDRbRDIngqqlS5e2bAo/shz27dvnLr/8crsg4sKkQIECNpiLPoGTJk2yz1177bVWUbFhw4bAMzol41NvaBGRpDt27Ji1pGUwNpiZR9ZkUP2uf/jhB9esWTM3ceJEV6pUqUACIOx7WvXrltSJhXN2LPwMIiLeOZSkAdYVablEZ4Mg0DWhSZMmdg3C2sKsWbMsQVEkLWTamRSvvfaaBSiIDlaqVMmyj0GWEplJZA356c8//7Ts43vuuUcBChEJBP2pW7Zs6Z577jlrB5FauXPntoURAhBXXXWVy5Url+vSpYt9jrYPXLRUrVrVqiyGDBniw08gIiIiXkIVlQych7NkyeLeffdd17Nnz8AW+D///HNr67B69erwud5PJDywXeZc+DE/S0REJD3RgYV5DUuWLEmT56Ol05gxY9zcuXMDC1DQQpoOMwQo6P7y1VdfKUAhUSmmghRUTQwfPtze7969u82JWL58ucuePbv1j6PlU4kSJWxuhF9oGUVfdzKgRESCQo9Kos5+Hb9uvfVWC1Z4WGCgLQOtoD744AM7hoILJvWUFhERST3Osddff71VX5MgQAChadOmgT3fW2+9ZRXlZK9VrlzZ9/lWXusIBm6SKMY8DRERkYyMxMDZs2dbiycSoINAMuDo0aPt/zjzzDNdtWrVAnke2jDyRlJB27ZtbZ1UFWgSrWIqSMGFOIOwL7vsMle3bl2rcMDDDz/s8ubNawELDjK0NvEDC4b0iqM064orrvBlmyIiCbnkkktcx44dbU7E77//7uu2v//+ewtE0BvbC4iQ5VmmTBkL/hKMFRERkZSbP3++u/HGG93mzZtdsWLFLEPz5ptvDuS5WIigmrx169bu77//tkAIGZoERvzGfL/x48e7119/PbCfR0REJK1Q3UinFCods2bNGkjggHbxDOQmaBAU7uPr169vVRQYOHCgGzVqlDvrrLMCe06R1IqZmRS80OmjTjsnLpIvuugiO7Ccd9559hgZw/yoCxYssAxiP0qqWcjjhU7LlIIFC/ryc4iInGyWRNGiRW3Rwa+KCi5aKCu9++673dixY202Bc9DNQVB3RYtWtjxdMuWLYFcpElsUG9oEZHE0We6TZs2FjAgUPHxxx+7PHnyBPJctKIlgeq9996zj3v16uWeffZZ39tJ0dqJFhWS8cTCOTsWfgYRyXy4DuD+mnM08x/5f8OGDX1/np07d7o6depYtSP38CQTBPE8IkmV6WZSUC5NMIJ2Jbzo6asOFt+8liZcnJMd7MdF+uHDh22Ibfv27RWgEJE0wbGMUk0yIPbu3evLNm+77TZbZODi5eyzz7a2eAzWbNCggWvcuLFVntE/e8aMGb48n4iISGZBghT3JGRMsjBB64h58+YFFqAA53QWJ2gdQctG2lb4HaCgRQU9rf2YkyUiIpLeGCLNPXCQuA5o1qyZBSaoZpg8eXIggYM1a9ZYa0kCFFxvUMmpAIVkFKfHUqsn3Hfffe7cc88NZyzRZ33ChAm+95JjkZDyqW7duvm6XRGRk2EwJej/7AcGZ1MNxkUZF0sM6G7SpIlldngfRx5jRURE5NS492jevLlVMeCpp56ycy0JAUFiGPeHH35owRAqL/1GtSXtIdn+uHHjfN++iIhIWlq3bp0lEbCWSLAiqAAF1wR0K+Aee8qUKdbJwG+0dqxUqZLbunWrtaT/5ptv3A033OD784gEJSbaPTGHIn/+/O7EiRNuxYoV7tprrw1/joNM7dq1rbc6n2PhzY8yalquMIjuzTffTPX2RESSgwoxFgZowURLu6BwMUWFWvHixS0zk4sdVY5JQtR2QUQk7r0Jiw+LFi2yew+Sm4IIGHg+++wzt3DhQvf888+7tLB06VI3bdo0N2DAAN+rNCR4sXDOjoWfQUSiA/e8JBIwp5H1wyBmNtCG8e233w5XUNSrV8/352Bt8sEHH7RW+JUrV7bzdBCzqERSIlO1eyIriQDF1VdfHSdAgWPHjlkA44477vAlQAGqNHbt2uUef/xxX7YnIpIcVHDRYoFFDz8dPHjQvfbaa9ZnevDgwTafgoWWm266yR5TxqSIiMjJbdy40bIWCVBwE/bJJ58EGqBgFh+JU/369bPMzKBwr+WpWLGie+GFFxSgEBGRDI/2iC+++KKbPXt2YEOlmZdLx5dJkyb5HqDgPp0gC51kCFDQUoqKCgUoJCOKiSCF14aE6GTXrl1d27ZtrX0J6L22adMm9/TTT/sWZeUARr92yqdERNJaoUKF7OKD4dl+tbLj2Eag9+GHH3YfffSRZZL89ttvNnuHY6t3rI2B4jsREZFALF682PpA//LLL3au/vrrr121atUCea6//vrLdejQwXXq1MkWJWgjwZDMILCoQntIKipFRERiAW0LI+9tCVYEpWbNmtah4K677vJ1u3R5adq0qVU2onfv3pZYyLxJkYwowwcpVq5caW/0X+WFP3LkSBsSt3379vDX0PvVr5YolGYR9HjyySd92Z6ISEr06NHDKrqo7PIDF2UscJQqVcplz57dBnR7xzwqKXiM4O9XX33ly/OJiIjEEs6Xt912m9u7d68rV66ctURiYT8IVDlSPTFixAirZqCqgeuBIBYlqKBg0WP9+vV2nyUiIpLRjR8/3lWtWtVmMVKJ4DeCH7169QonT4Mh1n7ieuP2228Pz7kYO3as69u3r6ocJUPL8EEK+rqBkqmpU6e648ePWzYwQQmyl/w+0AwcONBVr17dlS1b1tdti4gkB5Vc9evXt8ouMij9wIXU6tWrrT0exziCE1RYkI3BMDFogLaIiMh/7w8aNWpk1Y1169a1+RC0mw1qwCfVGmSAkkBA9SOJC0EtSpAI9vnnn1uC1nPPPRfIc4iIiKQlztck6RUrVsxmL/p9XUDCH20YSV6gBb3fqNjkWoAKzhw5crg5c+a4li1b+v48Imnt9Ix+YHn33XftfV6Q9FIHBwTmRbDARl91v9BbdtWqVa579+6+bVNEJKU4FtH7mn7XfqDqLPIizaumYPbFfffdF84UPXz4sC/PJyIikpHRcokhlU888YR9/Mgjj1jSFMGDoLAwQWbmJZdcYosTBEWCsG/fvvD7F198sevfv79v8/1ERETSE/MbvvvuO6s88DtAwTXBsGHD7GOC+9myZfP1Ob788kubfcU6wKWXXmrXAlWqVPH1OUTSS4YOUkyfPt3KnQsWLOiOHj3qtm3bZiVUDKUpWrSoHQzINPYLB5oSJUpYSZWISHpjcGX58uXDF0F+oeR12rRp7qKLLrJFkN9//91t3rzZFS9e3I61BCpEREQys0OHDrnatWu70aNHW4CfGU68Bb2Qz9wJKhyXLVvmypQpE8hz0DKCe6klS5YEsn0REZG0RgAhsgMB51C/z9kEPeh0AFok+l3dMHHiRGtTxTpohQoV3DfffGNrlCKxIkMHKby2I7zwvUU6splo9fTGG2+4HTt2uMKFC/vyXARAKKdmOJ16vIlItGDQ9dy5c639g1/obU2At2fPnq5jx4722Kuvvuruv/9+e18tn0REJDPjvoCKbc6/JEUR2KeKIgi0suVcTLKAp1mzZu7CCy8M5PlIVGARhCDMhx9+GMhziIiIpDWCBlQccA4PwqBBg8KVGUOGDLG1ST8DLLSPorsBs6K4V58/f74lFYrEkgwbpGAwNn3XQASRYa70lOvQoUP4ay644ALfno+gBzchDJYVEYkW9MDOmzevGz58uG/bJPDL4kflypUtMMHHZIryf7JFmffjZ1BEREQko1ixYoVVMv7www8uX7581g42qJZLLKRwLuYc37Bhw0CGe8bHeZ7ELBLAWHARERHJ6OgG8Mwzz1irJM5xfnv//fet5TwGDBgQbpvsB4ISrVu3tvmR6Natm3U28LuNlEg0yLBBCvq9Ek288cYb7a1Pnz6WZUTgYufOnb73mx0zZowFKKjSEBGJFlmzZnWtWrWy1g9kW/qBFnosjDz//PMWrKDtA22lChQo4KpXr25fo+xKERHJbGbOnGlBA+41SpUqZW0WypUrF8hzMXybbS9fvtzlzp3bAgZ+D/f0cE9Fb24PCx+qHhcRkVjBrChaGDLTkfOb32jBdN1119k8Cm9OlR8OHjzo7rzzTvf222/bNcDrr7/uXnrppcCuB0TSW4b9y/7444/t/5Q5kUVMVJRyKhbrihUr5vbu3evbc82YMcPt2rXL13ItERG/tGvXzi5gJk2a5Ns2s2TJkuDjd999d5xjsIiISGZAZUG9evUsG7NatWpWVehXW9n4AQNaLDIDj5lQ11xzjQUqbr31Vt+fy3u+Hj162OLK+PHjA3kOERGR9HbZZZfZvIggAvDMxiW5oH///r5tkzaPlSpVcl988YU799xzbV0ysnOMSCzKkEGKAwcOuAULFtj73Cx4jhw5Yi9iMn05SPjZu+6GG24IbDidiEhqMNyS4x7HKr/99NNPbsKECW7lypV2UURlGb799lub+yMiIhLLGLLZpUsXmzlBu6U2bdq4WbNm+dpW1kNFJG0WaRPB89J7mmDIpZde6oL0v//9z/7vZ5KXiIhIeqPTCvezQaDdI23hI6sQ/QqALFu2zF1//fW273QzoE1VzZo1fdm2SDTLkEGK2bNn24U7ZdYffPCBtX7i4pp2JMymeO+993x7LlqefP75565t27a+bVNExG8co2g78fPPP/u2Tfptc5xl29OnT3cjRoywYy4XTOAxERGRWEXVRIMGDWwAJsiQZEHirLPOCuT5WNz48ccf3RlnnOEGDx5slQ1B95zmOXkuEsAIxoiIiMQCqhGbNWtmlYIk2PmJBL7atWtbtxW/2yBPmzbN3XLLLW737t3u6quvdkuXLrWqSpHMIEMGKbxBN5Ra0+aJmwdKoTxnn322b89FwIOe7zyHiEi04iKJrM53333Xt21eddVV1g+7Ro0adrxlIYMsDvpxI4ihYyIiItGAVq+0WKK9IfcC3BM8+eSTgc5p4B6GxY7PPvvMde7cObDnovqc9lW0egK9rVkQEUkPL7zwgv2t8zcvIuIXOgCULVvW2sH7uci/ceNGmxNx+PBhO3fWqlXLl+1yTiZpgLVHKiu5B+fe++KLL/Zl+yIZwZkug/nzzz/dp59+au+TZURFBZHRDRs2uCJFiiTaRz2lWPCjpdT555/v63ZFRPxe2GjYsKEds5599llfFjbYBgPGvIzRKlWqWE/MEydO2Me8f+jQIR0fRUQkplDNQFuFrVu32tBqAhW0lPUb7aOee+45u5/h3A3mXAQx68LDc91xxx1u8eLF1t6pb9++gT2XSFJamowaNUptlUXEd7RJYu1w3759vq0TUt3AOdSrcuD6wI8k6b///tsCtQzGRvv27S2Z4MwzM9ySrUjmqqRgUYzsn4IFC1pUETfffLNlERcvXjzcL92vVierV6+2frAiItGOY9Wvv/5qgQW/RLa0oFwWXOx5x9tPPvnEt+cSERFJb7R5vfHGGy1Acfnll1srxSACFCya1KlTx/Xp08cCFdxzpAWSvFq1amXBFzJBRdIL9/Rcu44ePdrlzJkzvXdHRGIQSXd+zaslOY/zJpUUJEhzH+zHfCqOhXfddZcFKNjfl156yQ0fPlwBCsmUMlyQwmsvQlkVfeW40CaCSZSUx/zsEUtGMhfwREpFRKIdbZgoB/Wz5ZPnjz/+sL7YZIow9+KGG26wx9XySUREYsVbb71lCxAsRNx0000W9KdNhN+4h6EFBXP2OK+OHTs2TTPJW7du7X755ZfwjCmR9NCxY0drk1K1atVTfi3zJ3ldRr6JiCR2bOnXr5+vCcxsi0ACsyjy5s3r5s6d6/Lnz5/q7e7YscPu4WfNmmXXA5MnT3bdunULtLWkSDTLUEEKSqK9Qa3ei7Z69equZcuWNpPilVde8fW5Jk6c6Bo1auR7CykRkSDQU7pp06Y23NrPizLKWQkEk+3m3UjSeg8ssHjtn0RERDIirvt79uxpi/e0XGjSpInNhSBZyU/0m37ttdcsAEKlBgEQKjW4lwnSvHnzrH0VPa49uXLlCvQ5RU7m/fffdytWrHADBgxI0tfzdWQse2+FChUKfB9FJOP57rvvrArh6aeftoCCX6hquP322915551nFRR+JDCsWrXKVaxYMRz4mD9/vmbhSqaXoYIUTLVnsYwDA31UI9uPUEHh540EraS2bdsW3r6ISEbAMYsWEnPmzPFtmxdddJEN0L7yyittiCg3hmSA8jiZbAsWLPDtuURERNISQXeC8P3797ePe/XqZRWJfvSYjq9Nmzbu4YcftkQCFiKWL19uFeFBOnr0qCUwsKjy4osvBvpcIknBPfajjz6arNcZQ+up6vXe2IaISHzco06YMMESDypUqODbdkmSZpvr1q2z++LUon0yCQu//fab3WOz1qnqRpEMFqRgKA3I5KWvHK1HihYtGshzvffee+7SSy8NtzQREckISpcubW8cw/xEWyfm9DDQi8q1xx9/3NWrVy/OsVlERCQjYXA09xVkdZMlSbsn5kME1WaBQD/PM3jwYGvp4Ecv61PJnj27mzRpkmvRooXr0aNH4M8nkpRM5z179thiIq8H3hYuXOheffVVe5/h7vFlzZrVnX/++XHeRETi4/xN4gHncj/MnDnTZkZ4/GjxNGrUKJupy3a5LiABmxkXIpLBghReZnDDhg2tl+vbb79tQQRaPlE+7Re2NWPGDHf33XerF5yIZDgcu2jD5GfLJ9pCcDxkDhBtpVC3bt1wJoiIiEhGsn79eruP+Prrry1YwLnsgQce8PU5uKfYuXNn+OPmzZvbXCcC/kHeY9CGkXZSHub2vfPOO4FUh4gkFy1TSHz5/vvvw2/XXXedLSzyPteaIiLJcfjwYWvX6CcS8UjKI5DA9v1oLUmiX/v27S0YS/IAa5w5c+b0ZX9FYkGGCVIcPHjQerahSpUq9v8tW7ZYm6fixYv7eqFPf0wG2HgLcCIiGQnHLo6ZLLz4jYurtWvXhudQcOzdtGmT2759u+/PJSIiEoSvvvrKAhQbNmxwhQsXtixGFk79RDtEZluw+Pr777+HH7/ssstckGj5SAIXgzh37doV6HOJpAStm6+66qo4b1T80LqZ90VEkosWctdee63NefID7Zc4h3PvS9XXueeem6rtMRPq3nvvdYMGDbKP+/bt68aOHav5tyIZNUjBYhvZSFzYeweI7t2724wKhuL4ieHcOXLkcJUqVfJ1uyIiaYELKQZdcyzzuy0GbfDon82xmDLVK664IjzHR0REJNrR2omABIv55cuXtwWNkiVL+t7Ohp7VH3zwgbW1SctzJMkDJFvt37/femeLiIjEMpLzuO9ds2aNL9v79ddfXZ06dSywULNmTRvEnZqkaK4DbrvtNjdlyhRLsh4/frzr3bu3uraIZOQgxaJFi+z/ZFjwxtAaUBrF8FY/cYDjYMQBREQko+GChwsrjmV+tsJjFhA9gGkXUaxYMXvM66ftHaNFRESiEefDAQMGWGYk1YB33XWXW7BggcuXL59vz0HG5csvvxyu0rjkkkssQFG/fn2XVmjPSA9tqkNo8yQSlP/973++bYvX4pAhQ3zbnohkHiQY//LLL9bWMLXDp//44w9LxKMCksoMkg2YlZNStHhkn0iIYO3ys88+c82aNUvVPorEsgwXpKAXHDcWefPmDeR5tm3bZr0w1epJRDIyjmEbN260CyM/TZ061bJBWrZsaR+TiQoFKUREJFoxo6lt27buqaeeso+7du1qGY3ZsmXz7Tk4N9aqVcs99thj9nwEJrinSO2CSVKCL6+99prNovLQCldtc8Rvn3zyiV3/FS1a1JL5eP2QvEIwrF+/flbBIyKSHgjQM+MhNZhp0ahRI/fTTz9ZVwLm1KamzdPChQvdjTfeaJUZHDeXLFmi5AGRWAhSHD161C1fvjw85A7PPvusu+eee6zfq584EBEprVGjhq/bFRFJS5SUcvPod8snFj6opPCOkWSK4scff7R2UCIiItGErEgqpN988013+umn24I+1Q5+D+elvzTDtzlHjhw50oIgaTEMc+LEie7hhx92jRs3jjMsW8Qv06ZNs+u/Vq1a2X1yjx49LGmFga9jxoyxRbfPP//cFuEYCBs5g0VEJCgkL5MM4JfNmzfb9riHZl2wYMGCKd7WhAkTXLVq1dyBAwfClRRem2QRSdxpIT97gQSEix5e4LQaYRGMqCaZGlwIsUDmZy83Ft6IoPKcIiIZ2d13322ZnUEM0Ab9tlesWGEXcAzO5oaV55TMh4QBWn+xGEhWpYhINNiyZYtVNxBIZzAvbRv4OAgc/2jhQEuptKxioGqDQdn8XN26dVOPa/H9nE37sl69erk777zTAn2J4Vpw2LBh1oq5S5cuLki67hCRoUOH2rGGCsYXX3zRt+sGWkex/pgSLK+SUN2nTx/7uGHDhtaG6pxzzvFl/0QyqqSetzNEJYXXRsTrfc4LnYWx119/3dcLcfpqUpLFBZiISEbHsYysDb8rzlauXGlDRznBgKxRqOVT9OD8yJBz/m0qVqzovv3221MOnOvYsaPLnz+/y5o1q2VMRrYOERHJaKjCJnuRAAXHNmZD+BmgoB3E448/Hp79xH0KmZdpEaBgAcV7XtrukFzFIo0CFBIEWpTw2jlZgAIkrbzwwguBByhERLzzMOdCb1ZiSv3555/h9wsXLpziAAWVHffff384QEHV2fvvv68AhUgyZKgghddKhIskhtj43ZKJRRwOUFWqVPF1uyIi6YFjGUM8v/rqK1+3e95557kvvvjCSmKxc+dO+7+CFNGBTGH6rT/zzDMW0L/66qvdHXfcYVU1iV1QczHOvyftSdatW+dGjx6dqhJnEZH09PHHH1sLml27drnSpUu7pUuX2r2DH1gQGT58uFUTDho0yNpIpSVaSREIIRjt8bt1lYiISLQbNWqUBSoIDKTU2rVr3WWXXWZt7VKDtk7cb40bN87OyewbQdtTBXdFJK6Uj6lPI1Q3kAkMsnbpD1e5cuVAnmvBggWWBcWCjohIRkdWCe3xOLbRj9vP7Xo9iD/88EN3zTXXWNCYHp4cp72qN0kfr7zyig2IfeCBB8ILWrNmzXJvvfWWe+KJJ/7z9Ty+f/9+t3jxYsvIBVUYIiIZuf0DwQQWDCZNmuRbOxiC8vTlZ/YEOPfVrl3bpaXjx49biyey26mAU/WEBI3Eh+Rcg4iIpJUSJUqkKrBQr149ayXPtcNdd92VonPqpk2bLJH6559/tmS+yZMn2/WHiMRgkGLZsmUWqMibN6976qmnrFyKHm8PPfSQu/jii319LhbyCIAoG0lEYgEXWbfeeqsd2/zWunXrcBkryEDZuHGjLXSrZV76oSriu+++c08++WT4MTJ4qlatagtaCWG4Ov2mWewi+5jzbdOmTe3fNrHzIedl3jx+txQTEUmuf/75x4IT9MTHgw8+aEOyGfTrB4Ly7dq1s6AurfQGDhzoOnXqlCZZkgRcvIWTzp072zm3Tp06ClBImqDNZySqNJnh6A2Bpf0Y1wtUF4mIBI17zgsvvNACAqm5ZmjSpIlbv369u+SSSyyhISXnVCo1OR///vvvtj5JYliZMmVSvF8imV3U1x55bUrI2CUrlIuk/v37W9TTTyy2sLjGgp6ISKzgmMaiddCLyF6FGz2/Jf3QFpGLboZWRuJj2p4klv1Dmye+jzkUTz/9tHv55Zfd888/n+jzMBiWihnvrVChQr7/LCIiSXXkyBF39913hwMUDNAcMWKEbwGKnj17unvuuccCFLSN4rz6yCOPpEmA4r333rMFEBaFwSJK3bp1FaCQNDN//vzwG3+L3Jf/9ttvFqzgbdu2bdZiNKih9CIikVgX5N7Dq2pMCarL58yZY/MiSNIi6JGS5AXutQlQcG1AwEIBCpEYD1LQPgTly5e3DA1ajDAYzu+hdJpHISKxKKi5FGCbZJE+/PDDloWCVatW+f48Eiz+Prgwf+ONNywL8t5777UFOdpEJYZKDVp7eW8sUIiIpAfaNLBoytBqKhxos9C9e3dfF/FZfKUdHsdG2tCWLFnSpQUWPqgI8Vr2iaQ3khhIVMiZM2f4Md4nsYHPiYgEiWTl3bt3u2PHjqU4IDB+/Hj30ksv2ftjx4611sXJrW7k+xs2bGhriLR9ZDYjbZZFJMbbPf3www/2fw5EvDVv3jyQ56EdSo4cORT5FJGYQksIBiD7PZcCn332mQ3uPPfccy2LNfKYLekjT548FtDnfBmJj/Ply5fg9+TPn98W3yJbO9HflcoL2kdlyZLlP9+TNWtWexMRSU+ccwggECilVR3ZkLSvS62jR49aApOXvHTjjTda1ZnfrWZPhZ+JADKDQb02iyLpicpcgmfx8djhw4fTZZ9EJPMgKMqwa5KZUxIU+PHHH212H0g8aNSoUbK+n6pGEvS8ZC7a5TLPQi3jRTJBJQUtmNatWxcewkUFRVAWLlzobr75Zh1cRCSmkElKhinHOL/RbqJ9+/auQoUK4cdYKDp48KDvzyVJQ0CBaoh58+bFqZTg48QW7ipVquQ2bNhgX+ehvzTBi4QCFCIi0WDu3Ll2/OK8Q298Khz8CFBQJXj11VdbYN+7D0FaBCjIzmThg0UUT+PGjW0en+5RJBrQVo1WK1OnTrWWT7zR8oQgWv369dN790QkE6DVYtmyZVP0vcWLF7f5tlQ/cG5NDgKx3P9ynuYee/DgwdZmUudnkUwSpPj555+tRzYZnqBf3J49ewK5IVi+fLmrWLGi79sWEUlvHNvINiEr3k8shtPzu0GDBvaxl1m/Zs0aX59Hkqdr165u9OjR7p133rFMIy7EyQpmUQEtWrSIM1ibz9Nn/dFHH7XgBG1FmP1EZpCISDTiGEcQgQUDAvHMlStatGiqtknrCAZvM2OJoZxUMXBsTEvM0uCYTNu948ePp+lziyQFi3N33nmna9q0qStcuLC98X6NGjXc8OHD03v3RCSGUVXI2l1qsLZIcGHatGnJmiu1fft2S2r+5JNPbF2SQG3nzp01H0okMwUpvLYh3gufwXH0ffMbNyL01GbBTUQk1nBsI0ARmZnpJy9zlaAy1PIpfbG4RZ/U3r17W49VAlQMlvOGaW/dutXt3Lkz/PUMnmNw3LJly6zlIcNgCVgwUE5EJJpQ8cWxqV27dnbOoQ0sFRW5cuVK1XbpJc3xb8iQIbYAQlCXc5kflRnJcf/991vFRqtWrdRST6JStmzZLBixb98+t3LlSnsjmMdj2bNnT+/dE5EYtXfvXque4FzN8Se5uBf666+/wh+feWbSO99zL0XnAGYvcj9Fh4K77ror2fsgIhl8JoW30MXiGlFOhmXfcccdvj/Pd999Z/9XkEJEYhEL1RxDOdZde+21vm//vPPOs8UUWvRBQYr0x0Bz3hLCfJL4WIijVYqISLSisoBF/EmTJtnHzzzzjL2lNouRdrLewF8CBFRpkBWeFqhy++KLL1ydOnXsYxY/qGgjS1MkmhGQ0CxHEUkrK1assPM9wYXkJibMnDnTzrNUSpLYkJwkgNmzZ9vcCs7XJUuWtIrzSy+9NAU/gYhk+CDF6tWrw++zsEZLptSWdyWEhTsySSnrFhGJxRvJK6+80o51bdq08XXb9Otm25GLRJHHbhERkdRiKG+9evXckiVLrFXDmDFjrHWdH3LkyGH/Z5DmoEGD3AUXXODSAlXc5cuXt4ruL7/80oZzQwEKiXbckxMspDIzfitRWqCIiPitevXqVk3BHJzkJCdwjm3WrJm9T2A1OQEKKsQYkk0V5+233+6mTJkSvmYQkUzc7gleuXUQPd9YuFMVhYjEMo5xXtWYnxg+dskll7iCBQuGH2MmRRABZRERyXyoLLj++ustQMHiAFmQqQlQ0CaCuXeeHj16WLunN954I80CFOC5mBmVP39+9/fff6fZ84qkxvvvv28BNWZe0dOd9im0E6UiKC1fPyKSORPvrrjiiiR//Z9//mnt4kkKYD3Rq5o8FYISVFkyn4/3aQFJRYUCFCKZOEhx4MABG07jCWqoNQtplI4pSCEisYxjHBUOkb04/UDgeMOGDZZVt23bNivB5UKQ90VERFKD4AEBik2bNrkiRYrYgOxbb701xdf8LLCWKFHCFi28DHAqMxiGmRYItNAywvPqq69aYJ8WFCIZQf/+/W3o7IwZM1yWLFnc0KFDLehHOxSSVkRE/JbS5Ldu3brZ3Jw8efJY9RfHrFM5duyYu+eee8IBjeeff969+eabSfpeEYnhIIVXRUFvWGZREMmcN2+e78/z66+/uoMHDypIISIxjWMcMyN++ukn37fNAg99tDle0/oJmkshIiKp8e6777pq1apZ4hLJSszNIcCQ0uv9mjVruiZNmljrKOzcudOlpQEDBrhKlSq5p556KvxYzpw5lZkpGQqtU2rVqmXvs2hH0I2ElS5dulg1koiI35hHxTn822+/TfL30JqJdk0YP3683aeeyu7du12VKlWsSozjG9chPXv2DKSbi4hk0CAFfePIyOWAUbhwYd+fZ9WqVfb/IIbJiohE0/BsfP/994E9xz///ONKlSpl7ytIISIiKc2YJHORHtJUOzRo0MBayVx44YXJ3hbVgy+++KKdmz799FNbdOjbt6+1PwzivuJUyQL8bCzq0j5CJCMisHb48GF7n1afVAKBpD8ykEVE/ESSHUGDTz75JMkVFXzPo48+Gm7pWKNGjVN+Dy3sqNwkEMJg7s8//9w1bdo01fsvIjESpGAYK6ii2LVrl1u4cKG77LLLAulzS/9MsoBFMjKG15HZlC1bNruR7969u3ocS9i5555rGSTr168PZPv8vXEsXbBggX0c2e9bREQkKQhKtGrVyj399NP2MZXUtGjg2ia59uzZ46677jpboDh+/Li1iaLtYe/evdOkbQPDPZcuXRpn6CcBfIZ+n3561N6CiZwUrck+++wze5+2aSwEMnSeKiUGy4qI+InzNZWUL730kitfvnySvofh2HRhadOmjXvuuedO+fXz58+3WTubN292xYoVs9aMadUGUkTiOtNFKa+fORfzLHYF1auVIAWDX1XCJRkZGewEKPLly2f9mmlhwFBJ2vDQO1YEHOs45gXh0KFDlh3q9dpmcUZERCSpyMT2qiZYxH/99ddd+/btU7y9vHnzWtZ37ty5rbc010Vpdb3Ptdgdd9xhz0+bRRIFvOQrkYzstddes2G0oA0K9xr8vfPa7dWrV3rvnojEGM7bJUuWtLfkoAXx6NGjT/l177zzjgUzSO4kUPHxxx/bDAsRSR+nR3uQgrIusp6C4gUpRNIDf9v0WT777LPtZrpPnz4p2s7cuXPtJnjChAnW1ufOO++0rAFu8L3BkCJBBik6d+5sLTU8GpwtIiLJmRnB4gABChb0Z86cmewABS2Uxo0b5/7444/wwgaLDyQ7tWzZMk0TkmgjyyIH7XD27duXZs8rEiQW8XhtnnHGGfYxwcQnnnjCTZ8+3QKBBOVERNILVV5fffVVkr6W1lFUVjLvgmPbvffea9UXClCIpK+oDVJEZuFSbsXQvCAoSBFbvF6/6fGW1B6Jnu3bt9tgphtuuMFmowwZMsQNGjTIvfXWW/Z5bs65UT/ZW+RrpHTp0nHalpHBR3b7jz/+6ONvWDIyjnW0ewqiFzbDTGvXrh0nSJHc14SIiGQ+tESiDzT9oFnUZ4GBZIvk4DqKqmuCESw6eJg7kRYLDpzzWKT1nHPOOdaq9uuvv07z2RciQTnzzDPt/sSrpBARCdLy5ctdt27d4rROTAwt4u+77z53yy232AyqU82sYO6V1wrqqaeechMnTrTEURFJX1HZ7omDBoOyPSNHjnQDBw4MpKycfrUKUsQOBrZFLt6npSNHjrjs2bMn+evpSUxQYfDgwZbdd8UVV1h7s1deecX6MT/77LPWizkpOCnHn6vifcznRMCxjtfIjh07bD6F35gbRHYd7cfo/01wmcFjIiIiCWEYJoMpWfSkEpQsbQIVSbV//36bX8G9AgF4rsMuvfRSl5ZICCFRhAoO2lF4AZZLLrkkTfdDJC1UqFDBff/99wq+iUjgCBywVvL7779b94nEkBj3wAMP2NeVKVPGEkFPdt1w9913u0WLFtl966hRo1zr1q0D+glEJCaCFCygec477zzrEXf++ef7/jzeAFkFKSQ9kPVH5mBk+wGqKghSsMjL8GveRPziHeuoIAsiSPHtt9+6HDlyhFtbUBGnIIWIiCS0oMD1Tvfu3e19FvY/+OADu+5PCq6T3nzzTct+9M45tGpgsGYQ57eT4R6F5JLvvvsuzZ9bJK116NDBde3a1aqHypUr958ELRYIRUT8wLUBgYcmTZqcclYO1RNUQhDYYHB2QjZs2GBzPLkX5tw9ZcoUV61atYD2XkRiJkgR2cucix9uYoLg9Wa//PLLA9m+pL1s2bJZRUN6PXdykGXOgm58XoscyqmZMXEy3s/KwGwWiCN51Uh8TgRkl1Kqz7Hvtttu833748ePj9N7m2O5blZFRCQSvZ8feeQRN2LEiPCi59ChQ+38lFT9+vVzzzzzjL1fqlQpN2zYsJNmTvqFazSqPXh+Fje8oMQLL7xgA4TTcu6FSHpo3Lix/Z/XsIe/e14b/J8AooiIHwggnCqIsGbNGkt4AK2zuSZIyOLFi129evXc3r17rdJx1qxZ7qqrrgpkv0UkhoMUV155ZWDPs3nzZutTm9SsLYl+XBwnp+VSeuJiPn5/xW+++caCZpQeJqfdExUY3DDTvsyrvmBwFBkCtB4QAQsohQoVsmNfEJiDQv9thpRyk6rh2SIiEj+5goqH2bNn2zUblQ9dunRJ0uK+twiKBx980Npm0quaIAfnt7TCPnP9xnWXF2jJkiVLmj2/SHoPuRcRiQa0iqRlJO3ia9as6Tp27Jjg102ePNk1b97cvo4k6BkzZrj8+fOn+f6KSAYNUkQOzQ6y3+XOnTt1cJJ0tXXrViuZ5mZ7xYoVlgnoDV5MTrun6tWrWzCCk++LL75ocyh69eplJ+rEyh0lc+KYx7EvCPXr13d16tRxjz76qC3cRB7LRUQkc9u+fburXbu29bNnsDTVopw3khLY4Npm3bp11hLKm7u1cePGNAlO0MaJmRMEIgiSUDXx8ccfu8cffzzw5xaJNppFISJpYeXKle6CCy6wqofEKi3HjRtnMz3z5s3r3nrrrf8kPJDcwPXDE088YR/XrVvX2kFllKRWkczodBeFIrNve/bs6Y4ePRrY7IsCBQoEsm2RpGjRooUNGGYIHQEFFnfbtWuX7O1QeUH7Af5PVUWzZs1s21RjiETimBc59yeoag2okkJERLw5XAy9JEBBAsaCBQtOGaDw5k4wT+m5555zkyZNckuWLAl/Pi0CFCSRXHfdde6NN94IP8Z1FoEKzVySzIJK76Q6duyY+/HHHwPdHxGJfQ0aNHCXXXbZfzpPRGrbtq1VVY4dO9aSFyL99ddfdg73AhS0qJs6daoCFCJRLqorKbj4Jyoa1IGEbOIg20mJnAo32EOGDAm3C0htZhPtE0ROVUmxdu3aQJ/DW7hRJYWIiHzyySeuUaNGVhFRokQJ6wNdpEiRk34PLStpebl69Wr7uGjRopYNef311we+v5Ftpa655hp3+umnB9YmUSQjoFKb12CbNm2spUpC9+Y//fSTVUe9/fbbbuDAgYn2hRcRScp5mOMMHSFOVr3Fubp169b/efzQoUOuYcOGbu7cuXYOHzx4cJw5OiISvaK6kuKdd96xFjhBUbsnEclsgmz35FW/MfQd69evD+x5REQk+o0aNcraABKgYLA1c4tOFqDYvXu3u/POO62NJQGKHDlyWBtMFkDJqgxyMDXBlJtvvtnNmzcv/FirVq2szRRzKEQyK15/tWrVslayvCYJQDDMltf2TTfdZDMey5Yta/MqWBSkmltEJKU419PGicqsggUL/ufz77//vvvjjz8SXUvkuMSxKFu2bO6jjz5SgEIkA4nKIIW3gEYWFQeWoKKzClKISGbDMW///v02OCwIF198cfj9AwcOBPIcIiIS3f7991+b2UDQmrZNLVu2dJ9++qnLmTPnSb+PBVCCAlSadu7c2eZOMLsrLeZrEaT46quvLOPSw/MWK1Ys8OcWiWa8Hlnk47VJyzVarFx11VW2eHjrrbdaMJJWou+9957NbxER8QNVEPGTExYuXOiaNGlix5qDBw/G+RwJzrSWJMCRL18+t2jRIgumikjGEZXtng4fPpzs/pfJxSLdiRMnFKSQdEM/ZpG05h3zCNJeeumlgbQEmDx5sps/f77NWxERkcyFYz/ngg8//NA+Zj4WGdgJVUHs3bvXjRw50vXo0cMWQgkKUEnNuSrI4ADtCHlegieXX365PUYwhIHezAcTkYQxo4U3EZG0RlXmAw88YO/XqFHDEhs8zOds3LixzbMliEprSYZui0jGEpWVFN7C1vbt263sO8hqDQUpRCSzDc5GUC2fzj333PDgbLJnCQaLiEjmsGfPHmvrRIAiS5Ys1qP+6aef/k+Agn7Rffv2tT73fJ4B2R5aLgVdvfDQQw+5fv36ueHDh4cfI3BPL33vPCkiIiJpj2HY9erVs+qsSCQ00FaO4ENkG8Zhw4bZ1xOgoBUdVZEKUIhkTFEXpPjrr79sYcsLUpDRFASvDUnu3LkD2b6ISDTyhloH2YopsncoF4siIhL7fv75ZxtsvXTpUmvrRNvW++677z+JSMyYIDjRp08fq56+9tprXfHixQPbLxKeBg0aFKd/dceOHd0tt9zibr/99sCeV0RERJKPjirTp0+PM9+QNk9eYgGJDeeff76tG3bp0sXa0dFmsk2bNlZBccEFF6Tj3otITLV7ilzQqlmzph18gioVw3nnnRfI9kVEopF3zPOOgUHYtGlT+H2e51Q9yDMzhku+/vrr4X+XVatWuZIlS1rbExGRjNTC8u6777b+0AQgZs+e7a644oo4s+A41g0YMMB614PPP/fcczYQm77TQaElxPfff2/HWWZkeI/xJiIiItGlXbt2rly5cq5ChQr2MbMUH3zwwfDnqlatauuGJEJ8/PHH9jjXF1RaJNRaUkQyjtOjdR4F7rnnnsCfh9YkIiKZRfbs2f9zrPXbTz/9FH4/yOeJBe+++26c2R20Odm2bVu67pOISHKMHz/eVa9e3QIUN9xwg2VARgYowKIBWZEEKGjB8NZbb7k1a9a4hg0b+hagIIuSFg/du3cPV2WD+RhUeERW+YmIiEh0IjhBW0YCFaC107p162wYNm0Zd+3a5W699VYLUDDLirZQTzzxhAIUIjEg6iopIrN7L7roosCeR0EKEcmMzjjjDJctW7ZAgwd169a1xScyZ4Os2IgF/I5O9rGISLTieMVcCd7QqFEjG3p99tlnW9YjgQiqK1hUADMg+LhVq1a2qBBEy9g6depYsIRqbGZjoHPnzjYUW0T89eeff9rrXUQkSG3btnVr1661e0xawnOO37p1q7VuJ1BRqVKl9N5FEYnVSorIBa0gAwg8Dwt1LNiJiGQmtLwIMnjw/PPPW8siKEghIhJ7Tpw44Vq2bBkOUJDBSCYjgYtXX33VWj516NAhzmDL8uXLW2akHwGK3377zbZFqygP2yUAwn7lyZMn/HiQraREMhsqlmjTRmUS9+pei8+nn37a+sSLiKQGiXTz5893mzdvDj924YUXugkTJthsxRtvvNECFJdffrlVbipAIRJborqSggF8lStXDuzgpyoKEcmMOPYF3YbJO74qSJG09liULYMFPs598X9vZcqUSae9ExGJ68CBA65+/fo2h4JknxEjRrjGjRu7V155xYISDKoGi5h+DcTeuHGjHR+LFSsWDjyMHDnSWjvs3LnT5c+f3x5nKLeIuEATUaiYevHFFy272XPVVVe5IUOGuNatW6fr/olIxrZ69Wp32223uUsvvdR9+eWX7uKLL7bHqc5kLsXff/9t7XGnTZtmlRQiEluiLrXIW5hhaGiJEiUCfR4NzZZYQkZBrVq1rEKIbAN6MnMSTwzZCdxIFClSxJ1zzjnusssuc88884xlR0psC7qSAl75v4IUp3b77be7a665xt6OHTvmateube9fe+214f+LiEQDsqaZO0GAgnMJA7L37dvnChcubNcdBCh4n8AFgQUGXKZEZOu7/v37W3CC/3sKFCjgnn32WffJJ59okUIkDY0bN8698cYbNrA2siPB1VdfbUkWIiKpQbtIEhwIUpQuXdraRHbr1s3WLVjbaNq0qfvss8907heJUVEXpPCye4mO8hYUFs7SqpKCGzWyYM8//3x74+aOm6rkoqS+WbNmbv/+/e7hhx+2oYQsLjOA8JFHHnF//PFHIPsvwWDY09ixY33ZFgMiCVAQYFi8eLFlOLHt3r17J/o93EhQsj1q1Cj3448/usGDB1tW4lNPPeXLPmV2CxcudIUKFbL3BwwYYG0uWNAhgHTXXXfZ8K/0wn4EWUlx6NAh+/nx3XffBfY8seDXX3+1RT/+H//Ne9xrpSAikp5oq8AAas5fnN++/vprG5hNJQPVFSwq0O5l/fr1rn379ilq68T3sTBBJqXnuuuuc2eeeaY7evRonK+lvcwdd9zhsmTJ4svPJyKnRj94r6IpEvcUzIUREUkNqii4zqBCkhlT3FNSqemd92n7FMRcKxGJDlHX7snLwPBaXwSFi6i0uqmhRO2FF16wvnlkhrGAXK9ePbdy5UpXqlSpJG+HoUD0/N2xY4e9UVJP3/ctW7bYTR2PTZkyJdCfRfy1bds2V7FiRbdq1SpbOO7YsaPr06dPsrczd+5caxnz+eef28B5sq/pF9ujRw/bXkJ/6zVq1LA3D/2juSAgqBbZQ1pShtcrAzzBxRX/tgQqyAAhEMTCDv9m2bNnT/N9o1LtZFU2qUUwlhYcHO+0wH5yZByLiEQ7ri+bN29ug3Jz5szphg0bZhmOeOyxx6w9KwH4pM56++WXX6xtDAubLDh4uKbljUoNMrO9pA6CIGrTKpL+uPekBUv86xeOEar8FBE/MJOCOVfg/E+iAhVcDzzwQHrvmohktiAFJeNgwT1IZJ6n1SA9b6HS069fP1sIJiONhUsv4zg+Wu94C9YsZpPtzqIyC4Affvhh+Oto08M2qbJg4ZGDeGYXP9suEjfQXiuaU30tfyNUq5zqa1Oy0Ewp48CBA12bNm2sdHr58uXWFoHKGAY/EniKvHFPiNdKZ8mSJbZYQIDCQ3YhQyX5u0nqTQPVOAykksTxmvQGhcZ3yy232MIKpk+f7l577TV7/9NPP43zdVS5UFFBlUFQc3dOhr9rjoFB4uej7Qftx+TUyDwmsEUbNgI8tGFjwY/goYhIeiHYzLXKk08+GX6MBYO3337bEm5AVYVXOUjLOo79HMM8fP/kyZNd165drU0DOM6NHz/ersc4J3rXrgTxaRtFUN9DooWqJUSiA1XaDKenooIg49SpUy3JiXuZmTNnpvfuiUgGRzJxZKvICy64wNa+aI8rIrEv6lazKRnH8ePHA30eLqrSKkgRiYVBbtRY7KbtEz32WKQk+EAmGhhGyPAx72NvwZNMMgIUiS0u8zkFKP7PybLtatas6WbNmhVnMZWb6lMtOoMWBHv37j1p7+Tk/K1z0qXNEjfrtO/64YcfrJyRIAW9liP/Bk6GyqPIAAW8j5NalbRhwwbLjFQVxcnxb0IQdc2aNXZjBn5nBCK8jwkM7dmzx8pVE+K1ZkuvgBDHPo6BQT9HSl8bmQ3twLjp59+E4xG/s99//90q5+jBntTjgIhIalDBwPmNCmCCDrTuu/POO62NZGSiB0OyqQTmWoVgat26de1zv/32m30fgQeuq7i28R4nKE8LJy9IQYINlRS0Q408TwTZ6lVEUo/g5IwZM+w+hSQtrl/Kli1rj1WrVi29d09EMjjWRGh3C65HuMdOTvcREcnYom5FmxsiBJ3ly2KQd/OUFlh8JihBmTwL6NOmTbNyWRBY4LF8+fLZx2SLkX0cudBOhq2XsRYfi+a09knpcEJJGyw2Rg59JFDFQm7kAPchQ4ZYCwT+/lms5C0tkA1FoKxhw4aubdu2afKcGRWvS16fvE691yyP8Tr2gg68XhPrk82xp3Pnzq5SpUoWjEwPaVFJ4R1fgw6GxEI5c69evazH6qOPPmptVMDsIY4HBCoqVKiQLhU3IpLxkeFMK1WuOWk7Ctrw1a5d24IDa9eujVPBS0tSWpRSiUllZ+S8sy5dutj5i8eZjUY1BT2jvSCFN8SS8yF9pL3jGe0Zqlataq0oI89DPXv2TLPfg4j4h2Aig2tFRPw0fPjwcICiYMGCbtmyZeH7bRHJHKIuSOFlf0e22AlCWgYovIjw999/bzd79OykTJY2T16gIilDaBlGmNDnGJjMdlIyyyBWeW2QEhK/XzIZ74mJX21DK5aUon1To0aNwh+TdcTfhddvEWQZehmFyWn3xMn722+/jfM52i14nzsZsiarVKnibrzxRuv1KKlHkKJTp04Jfo4Wb1RhfPXVVy698DcWdCWZVw1HqzpJHMPqafkW//hNwIssRSqhaA+oIIWInAyBTa4ZOGZEJkQQePjggw/coEGDwlVZBNoJTngBa++6iMA6FaO0WmAR0gtQsFBAS0naNjHTCAQ5uL6IrHzg2p1WUFSJRl5nc73Dm4iIiEhC96YkSNDy0btOIcnXS3YQkcwj6oIUXv/yrFmzZvh2J5G48StWrJi9X65cOYsKDx061I0aNeqU3/vJJ59YEMLr9+s5fPiwZb+TiU9lhnfjKMmbERHU18bHomNkex/+BgkQeH8XIBBFpiMLBslp90SVDnNJCLh41RdkONEC7GSBMCooCFDwN0lGZHq0QIs1tPFauXKlBQ/jI3BBv95FixZZ+Wp6SYt2dyxyIaH2aPL/I7hIX/bEMKi2RYsWabpPIhLdaJ00Z84cq7KiQsGbc0U1FsEB2q94s7c4v1M5EXmjnydPHjdv3jyXN2/ecEUXbQtnz55tAVMCo1yfcD1Bu9GKFSv+Zx+oFuQtvhw5cgT4k4tIeuD4kdQEPwKmIiLJuWeketNLyKVSk6pNBShEMqeoC1IE3YLEwyJwerYh4bm5oUxI/IvAhFo9UUHBzSHBHG4gIwdBS8bBhTyDJB988EG3YsUKmwnx8ssv2+eS0+6pevXqFoxgQfPFF1+0TEpayJC17wX8WAxlsZOFCbIiCVAw56Rw4cK2OEEPfI/KKpMn8jVLT16qUiIDUmSHcMFFMJEZJ5EDRdPr+BO/oshvBPSo9KEtiCSOiicylxPD30pS58qISOzh9U/lXYMGDcLnmkmTJtm5njafXpCC8/Z9991nx5MTJ06ErwsZQs1bJNoxcf7n+pFKLq8Sk+2T8MCCAdcUBC24RhCRzI32kyIifqM15D333GPrEyTQvfrqq7Z+ISKZV9QFKbys26ADCCzQ/f333y4tPPnkkzZ4kMU6qh8mTpxoC5VkwSWEygj6B5MVz0InlRSRGfUEKFiUZighpf187M3yICsu6MVH8Q+L2bTFIRuSfzeyIFMyW4TvJUOfLASqKlggpqUY1Rge/l7oTe1luFNpwbBs3uJn9WvYcfLwmmUhiXkiLPp4/bk9XGzxuifg6H0taIkRdGu7xILBQVdSMG+DBXh6kUvimFOU0OwSDxVyLDiKSObA+dcLRnC+Llq0qF0n/Pjjj+HKSAITDLm+5ZZbwt/H95yqRaS3faq3aN30008/2WMENMqXL2/BEJ6T7U+ePFlVESJiuKcQEfET1zE1a9a0axHuhUiaoIUk62QlSpQIt4EXkczlzGhslYKgF+5oK8WibVog2EAGOz8bi5JlypSxAEW1atUS/HqGFzOPoFWrVjakkKG8kb18ybhfunSpvR/ZKggMGjpZVq5EDwZI0uOZ7CRaK6QW2Y5kPSaGrMnI4MP9999vb5J6VDWR1cqMERZ74mecef++/BtEosVWevwbMLQ9Na3LksILApOxKyc3ZswYO84nhMC2iMS+5cuXW1ILxwKq7rwg5U033WSVjpEtVLh+TOwa8lQIZowbN84WBWgJSXIDcyS8mVRcezIrRy1ERcRDMhzHC+/9k/G+TkTkZNc8zLYioY3OERxXGJq9ceNGWyejI8Rzzz2X3rspIukg6laPcufObf8P+uaIm8C0WvxJaOB1JAZqR6JlD2945JFHXJ06dU662CwiaSt+EKJUqVJWHTF16lS7qIofPIy21yvHvsQWxf3iVeyoN/HJUWE3evToU36NiMQOzgmrVq2ySgUvsYTWjJ9//rkFuqmc8JJ1SD5ITbCXbREIvffee8MtJBmmTZCDBJoOHTq4jz76yB6n1ROBkqT2nheRzIHe8CTbcQzhuJXQMcKrAktq62YSeHjbvHlz+FqaeTp0HxCR2EVngSZNmtj1CQmbrP9RPcEaF3O0SLplRqeIZE5RF6To0aOHRU+9AdpBoeUK/dKjHS1TaN8jItGPhX9aaEQ7jn0cA4Mu4UW3bt2sMkwS5t2ci0jmQQLKa6+95h5//PHwOYPrPbIIb7vttjhzxlIaoODmn+qIF154wYLozKHifdBOoXjx4pYEs2zZMmuzMHbsWFs0EBGJ74svvgjPWps/f74v26TVLMckFiMJcLzzzjs2g3HlypUWsBCR2DN06FDrFMJrnk4EjRo1cq1bt7brEKo46UpAwoSIZF5RF6RYuHCh/f+PP/4I9HlYoCObOLL3bzRKyXwCyRjIGJDYwqyYjIBjX9BBCq/dU1rN/snIN/6dOnVy33zzzX9aJHAeZG4NF+0sKopIxrNjxw733nvv2U24N+OhcuXKVt3ATBoP16K0Xkottsm2+/fvH26hSjXWlVdeGf4aWj3RB5pgMguPZDXSVkpEJCGR82+KFCniChUq9J/7Z+6pt23bluRtxu8UwMIklRVcDyUUpPjf//5nb55TtZ0SkehBhRXBiWHDhtnHDz74oLVzIkEDPXv2tACFiEjUBSkof0fQVQ5kPDOcm0yzoKs2RESiBTeRadHuybt5rVSpUqDPEwutw9q2bZtgD2dmGHER/8orryhIIZKBg9cMvSZAQaACdevWdXv37vV9NhDtRfv06eN+++23cHCCG39mH5Gl6AVG69evb0FQWhPSTkptFUQkqQhSeK2fItHek88ltd1TJL5n8uTJNjMtsQ4CAwYMcH379k3xfotI+mBdr2nTpm7GjBn2MXMcH3vsMbvHYXYrQ7LppiIigtOj7dfw7bff2v+DHmrtZRFnhJZPIiJ+IcuWAG3QlRTcaCLoYEhGR2C+Ro0aJ13g/O6779J0n0QkZTZt2mQLaZFziAgQEKy96KKLwo8xf8LvAAVo3USAgjYqZCT/8ssvVpHrBSho6UR7BQIU7NOSJUsUoBCRZEmsCwH31JGt6pLihx9+sOtEjom0Bp02bZorWbJkgl/LvByOXd5bcqo2RCT9qkmpxCJAwfGBYGT37t3d1q1b3dtvv21fQ2tKjgHMab3mmmtcmzZt0nu3RSQdnRmNBzJv6ColnRywguAtnJFRHD8TREQkVnHMCzp4wA2sF6Tw2ptIwnbv3u3OOuusRD9PP/rff/89TfdJRJKPytxrr73WWpDQps1rj8JcHjIGgzjOTp8+3aohvNYoTz/9tL1PdVbkYiFfy0Da559/3j5u3LixLQ4kd0FRRDKvrl272v8JUHCsiexEQCXE0qVLbYExOWjvwsIkQYcpU6a4li1bWuvnhAIVrAkEtS4gIv4jCFmrVi0LKObNm9daS3qVUoULF7Zjxrx588LtJjds2GDJW+pyIpK5RV2Q4u6777YsClAKX7BgwUCex2utEfTsCxGRaOId8xJqL+RnIIRqDXDzSfWGFsMSxjluzZo1ttCYkNWrV7v8+fOn+X6JyMkRiGW2FDfgOOecc1yzZs3sJpv3PUHMPfvyyy9t6Da922kdxY2/dzx5+OGH43wtCT+tWrVyEydOtI+feuop6wN9+ulRV0wtIlGMgdZe0JPFR69CC7x/9dVXJzsgy/d51z/lypWzajAG644aNcrnvReRtDRnzhzXsGFDuyckGElryaJFi8b5mrJly9qbh+SOWbNmWYKWiGReUXcEILqaFkEKr+x+165dgWxfRCQaece8yNYjfuPY7eFG9sSJEwpSJILhtWQk0vIp/u+IzOxnnnnG1a5dO932T0QSPsYxiPrAgQPW4omMQLz66qvujDPOCOx5CWjS8mTmzJn2MdmGDJ0kKJxQ0GHfvn2W/ENQg5t+Fv4IWIiIJNf8+fPt/w888IAFEoJIduFYFjkcW0QyHto3dejQwSqsCDxMnTrV5cqVyz5HIJKKqDJlyvzn+6i24L5IRDK3qAtSRGafRS50+S1fvnz2fwZ/iYhkFt4xr0CBAoE9R+Sxu1q1anGy7SSuXr162cV78eLFXadOnSzbCD///LN7/fXX7QKfwbcikr6Ylea1IMiTJ49l/xGg2L59ezhIEVSAglaoBDOZKcEiHs9DSydaOCVWaUVFBzf769evt8XEDz/80FWtWjWQ/RORzMPrI59aBFzvvPNOd8kll1i2NdVeVKeRgS0iGQ/XJ7yuGYyN5s2buzFjxoTvA6lAZYD2li1b7N5HSVgiEvVBCspHIysbguzDTQ9worUKUohIZsIxj4z9Cy64ILDn8I7dLOLNnTs3sOeJBVS0LF682D300EN2Ye8N3KVFDANuCVQEWfUiIidHtQS92D/77DMbRO0FKiZMmOBy584daOWEh8W7t956y95v0KCB69evXzigmRCOKbSBopKCBUDaJ1BxISKSWiw0vvDCC9ZLfs+ePeH2nh6Ct0nB97Zo0cKuS7kmJbOaAAXJLSKSsVD9zUwZBmODSnDeIlte0m6SBIqLL77Y3Xzzzf/ZxkcffWSzDMuXL++yZ8+epvsvItEjqoIUDMvmxistKilA9pmCFBIrtm7dagudlGMzFJkLhQEDBiSpryOl1RUrVrRhVfScTe7gO8k4OOZx7AuiT3r8YzfZxnJqZGHTq5XF0P+vvTuBs7H+////7tMiSdFC2bcWOymyZ8lalkqRhMgSRUqlEskaWhFJWUpEm6UQWaIFIbK1WCtLkZAkdf63x+v7v87vzDBjzJzrnDNnnvfb7ZQ5M3POdc7MXMv7tXHyTqDiiiuucNmzZ4/2polkeBxPOa5SMfHxxx9bkAA5cuTw7TmpoKJ6Im/evPYxVVYrV6503bp1Cw6dTMrUqVPt+M9x/dprr3UzZ84MVg+LiKRV+/btbbg1WdJpOZ8cN25c2LdNRCKP5LTGjRu7L774whKBqZ4gABmKfQYtMcHnEyfLce3D91BVtXHjRmupKSIZU0wFKdg5cUG2f/9+y9Lws5ICnFhxESiS3rGgwfBOFiLIoGQhmgM9JwoDBw485fczgJP2PwQpJL6xz/N7ELO37+YElP05WTEa0npqBCXIHhKR6Ab83377bTsusvjGcZRZDvx9li9f3vfnX7JkiQUjCDKsXbvWEg2ofpsyZcopz6GHDBliFVlgweCtt95SNqKIhBXBWqqzKleuHO1NEZEoo8KUtm1UUHG9x2zZG264IcHXHD58ODgPi1aVVIonxjnP9ddf77Zt22YVoCKSccXUqhFDdLg4fPDBByNSScGirCopJJpYgKCCgQUI2o/17ds3VY9DS50NGzZY+wmqIDhZeOaZZ6xVDEOLT3WxwfcPGzYsla9C0hP2eX7Oowjdd1PySzsUvwPOIiLhwIV0yZIl3WOPPWbtnTxcUPsdoODCvFmzZjZkcs2aNRZQ5rie0krkDh06BAMU3bt3txkUClCISLgRsPWG4IpIxkVSBYEFAhQFCxa0RMnEAQqwtsfXEHxIar2BtRDWI0LbaopIxhRTQQoQpPjyyy/t32r3JKlFJQ43r787WKznPiL1J/va0J6qXPBz39GjR1P0talB64gaNWpY6wYqGF544QU3dOjQYN/pTp06WZuJ5G4eyitZWAntXc+iysGDB9369euT3IY9e/ZYRsOkSZN0QpDB2j35KfG+O/TvUEQkloQezzmutmvXzo7NJA5EAucUTz75pLU2mD59ulWdcfxn4DU92k/ljz/+sEpK2ifwvbRTeP755yMyK0NEMh6SoJ566il35MiRaG+KiEQJlZrMj6FVLQmXrN8VLVr0hK9btGiRnZ9QmTphwgR3wQUXRGV7RST9iKl2T94Qrfnz59u//c6+ZWgPmWrHjx9PUd9+ST+8BXx+n7yFBgIALATQS3Xs2LHBr6WvNCfaW7dudQUKFLD7qEAg6n/nnXfaQdjD51mA/fbbb13x4sXtvvHjx9tC/+nigE1QgcUEDtwMwVy3bp177rnnrCSyX79+7uGHH07RYzFwPvFwXe/j0GH0iReO27RpY4sh9K0mi1PiGz/znTt3uty5c/v6PKH7brKRNfhZRGJxfzhx4kTXv39/9+mnnwbnP9AyiRZPkUCyAokK7JdRs2ZNOydISXDCS+whQME5CYkGzKO46aabfN5qEcnIhg8f7n788Uc7t+O6KPH+ctWqVVHbNhHx/9yJGbK9e/e2j5nTRbJj5syZT/r11apVs+oJEipOVmXh2bdvn1Xfi4jE1Mo8WeuU2IdevPmJwaQEKFicLVKkiK/PJZIY1ROUSIYOnGOxgiAFMyYInvg5mPPll1+24VReewiJfwTtqK658sorfX2e0H03cyn8HNItIpJab7zxhg2rZ9GNakZEKkABWu8VLlzYKiA49jdt2jTF+0sWAglIeNVxs2bNctdcc43v2ywiGVuTJk2ivQkiEgV0pejYsaMlaKJnz55u8ODByc4d5HMPPfRQso9LZwcS6GirSdIIrZ9EJOOKqSDFOeecYzsmD73r/Kxy8Bbq6H2nIEX89ZVGaAsjDqT0aU78+8TCLUIzALp06WLVEYnbJXjVBqFfSzVCalAeyYCpxLzWOFQ4MGMiJa+TgdnLly8/4YDvfe5k+FujTRSzYEJRVdGyZUsryZT4wr4OfgYp+P2lTYknqd8/EZFII4BK9i/nAQQDCAwsWLDA3X///RF5fhIDnn32WauS9AK4HOfp755UFuLJzJw50zVv3tyqQGn1yBBbrxJERMRPffr0ifYmiEiEHThwwKomWD9gfYSuEwQskkJnlEqVKqWonfSyZcssQZMW2gpQiEhMzaQg0kp2t5fFRoCCUnY/2z2xIwxdUJP4wLBIbqEZiQTBuC/xorz3taFZAPwOcl/iA2VSX5vaxdyvvvoqwX30c6TCh4M/7Z4YnpncLbQCg1ZRXsDFa7ND38dixYqd9PnpW001h/dYH330kd1PuwjKOCX+sK/jb4LMXb/QDo1qDc+YMWN8ey4RkZTigpoA7SuvvBK8j8oDEhj8vijmeM+8Cfo1017Ka5MAsgdPJ0DBeTKZzAQo6tSp45YuXaoAhYiIiPiCltgEHAhQ0FKbys3kAhSsKzRo0MDOsVLSvv2WW25xP/30k64ZRST2ghReBnu+fPmCH/sZQGChmQVhL7tYJNIIwvXo0cNt3rzZvf3227b40K1bN/scrZ6o8Enu5mGhgmBEq1atLPAwd+5cm7/B35MXlKHSgsGcXise/s5KlCgRvHnZ9SxgE8CT+MO+Ln/+/L4uyCXeZ48aNcq35xIRSSmC/yzsc3z0KhYjgXZS9evXd82aNbPjb6FChezj00WWIecHDzzwgA37ptqThQINoRSRSGJfRI95WrNQLUslWOhNROIHCZW0p964caMlVZAYUa9evWS7PLRo0cKqIlh3uOSSS1L0PDy2WlaKSEwGKUBvXY/fVQ4szCpIIdFy9913u7/++stO9AkosADRoUOHVC2+sFjB/6mquOuuu+yxqcbwsDhDMISTBsmY2Nf5PY/C22fzu0hblUi1URERCUX2HsNdPSzqv//++9YqKRJzcujdTNUESQAERqjmfOqpp2zI9ekGKf7880/LNKQCEvSAJuMwkvMzRETw9NNPW6u8O+64w4bhkmzF/onkv759+0Z780QkTDhnYtg1nRrKlCljAYvSpUsn+fUkgNx3331u06ZNNnPrtdde01xCEUnfMymwe/fuBL3ryEDzEwt2b731lq/PIZIUFhgY1hnafiK1yJD3WjadDCcZyWWPFihQIKLZpRKdIEWNGjV8fQ5vn92uXTtrr+LXTCERkaQsXLjQKheoDPz8888taMotkgNfaenE/AnceOONtj+kevd0MRj75ptvdl9//bVVRk6cONHdfvvtPmyxiMipcd08duxY17BhQwtKkDXNvrZUqVLWtpZqLxFJv1gPIBBJO0z+TeumKVOmuKxZsyb7fQzUnjRpkgUs6RCRkioKghpHjx61WV1JtagWkYwl5iopWNiaN29e8EIyEpUUtNwhy1xEJJ7L8wkgRKqSgsU4BShEJBrYz1E1+PfffyeY1RRJDz30kLU6YEGPSorUBCiouqDNAgEKLvbpB60AhYhEO6GwZMmS9m/601NNgZtuusnNnj07ylsnImnBTFi6OxA08CojPvzww1MGKNavX2/fBzo5VKtW7ZTPRXCCoMYbb7xhbaJERGIySEF7EG7exZzfQQovYsuOVUQkXrEvZcHO7ywVb5/NzBNOOFWdIyJ+Y0bDihUrEvQ2XrRokd0X2kLU78HYXMx7mCvFueWdd96ZqnYH8+fPd5UrV7ZEGoIuZCgzuFJEJJqYW0eFF6igILkQ7G+9OXgikv5w3da4cWPr8MB5y/Dhw92IESNSlHRGe19aWFM52qtXrxR3lKAFJ19/7bXXhuEViEg8iLkgxeuvv24ZGl4f861bt1pE1y+UprLjJUtNJJJYQKHVk0gkePs4P4eSsVDnBSkeeeQRy7phNoqIiJ8X1TVr1rQF/G+++SZ4f9myZSMys+GXX36xfuy0l+LCPjSTmJYHqT0XZm7FwYMHLRvxiy++sMVAEZFoa9q0qVuwYIH9m+t1WtuRXMj53j333BPtzRORVPj5559d1apVrXV05syZ3bvvvmvzZlKaZEHVKHNqvHZPKUEbTtpRDxw4MNXnSyISf86K1Z0kAwHZcRGg2LZtmytSpIgvz3Xuuee64sWLK0ghInGNfVyhQoVc9uzZfXsO2qocOnTI/r19+3b7/wUXXODb84mIZMmSxV188cWWwcvcneSGOoY7KMtQSFoiEEwg4YVswFq1aqWpIuTJJ590gwYNso9btmzpxo0bp+xkEYkZgwcPDv6bRUkqZwmkEqhgfo6IpC8keDBjhjU4qkCpbihfvvxpPQZVq8ytEBGJyyAFi1wDBgwIRlTpo+5XkALlypVTkEJE4hr7OPZ1kRiaTYCZGRiLFy+2bGYRkXCi1QiBiXPOOcey/EaNGmWzxQoWLBiR5yd5pn379sFsYi7mCVh4fdpTg97Mbdq0cVOnTrWPn3rqKRtKm5pWUSIikVKxYkW7iUj68/HHH9usK6pSixYtapUUBQoUSNH3rl692pJDCFaerlWrVllbSypR/VznE5H0J+aCFCxqvfzyy8GMMrDzq1evnm/PycIdpWn0a1e2mojEG/alnEg+8cQTvj4P+2rv+UB7klMNWhMROR0zZsxwbdu2dR07drQWAWCWWaSwfyPjcMOGDdYSoX///q5bt24WnE2t3377zfpAf/7551aRQcCjdevWYd1uEZFwmDhxYrKfV5tPkfRh9OjRrmvXrpZYRttMWjxly5YtRd+7f/9+CzCQtEGSCOdlp4O1N9peM7trwoQJqXwFIhKPYi5IQW9fdpBeJi5YXPMTPdr/+ecft27dOg3tEZG4w5wIKtT8nEcRuq+mDQq94CO5cCgiGQNtQLk4JgOPSgOqKSKJKt/nnnvOAiS0YkprBiD75wYNGlgl2oUXXujee+89WywQEYlFBGVDcQ3NIiX74vPOO09BCpEYR7LFo48+6oYNG2YfU8VJq/WUnk/x/bSjJEBBK+EmTZqc9jbUrVvXffnllxboEBEJFXMTaq677jr37LPPJrjoW7Fiha/PSf9igiJq+SQi8SgSQ7MT76tZbHvmmWfcTz/95OtzikjGCEx4uKCdPn26W7p0aUQCFARdGYgdmj3MxfWiRYvSHKD47LPP3PXXX28Bivz581slhQIUIhLLfv/99wQ32sRs3rzZValSxb399tvR3jwRScZff/1l7Z28AEW/fv3c66+/flrnU3zPnDlzrJqUxIrUzDukSwrnPI0aNTrt7xWR+BZzQQou+Hr27GknOh5K6r1hrH5gB1usWDG3cuVK355DRCRa2LfRX5Qe7n45duxYgqq3P/74w05iGSgrIpLaAAHtAKhy/fPPP4P333rrrREJUOzYscPVqVPH3XfffdYSgaGSnrTOipg8ebKrXbu2VYUw0+Krr76yc1ERkfSGodkM1E5cZSEisWPv3r2uRo0a1rWEc6g333zT9e7d+7TOZ2bPnu2efvpp+/err75qyb6pxfNq7paIxHyQwuNdqBFA4CLV7yoHgiJktImIxBv2baGBXz/QLo+5Pueee65l1FStWtV16NDBsoMl8kaOHGmBKX4eFSpUcMuXL0/R902ZMsUuGFJTui0SbgcOHHBDhw5133zzTUR7FnPeOX78eBuETVspb/bE5ZdfHpbHHjBggLVKILjbtGlTt3DhQrXHE5F0jXk6tG0WkdizceNGq9wkIYLrtE8++cTOQ0539qD3PV26dHF33XXXaW/HggULbB4FbeJERNLFTApvgKA3gJAoL2VptBG54YYbfHtOHpty/l27doXlIlREJBZQ0bBq1SrXqVOniLR6qlatmpUAM1OIC1aJvKlTp7oePXrYQDwCFGSi056Gdgw5cuRI8vvoLfvwww9bgEkkFnAh/dZbb1lFbefOnSPynL/++qsFWD/44AP7mIt6AiRXXnllmh+bi3L2xbRWwEMPPeSGDBmSpqHbIiKRNGPGjBMCr1w/jxgxwlWuXDlq2yUiJ0d7ShIiSPxghsRHH33krrrqqtN+nLlz59p1ZaVKlWw21+liX/H4449b4hTtgHv16nXajyEi8S8mV5CaNWtmO1Oy58gye+KJJ1KcBZpa1atXt//zvC1atPD1uUREIllFwYAzP4O88PbRzBUiE18BiujhwuHee+91bdu2tY8JVlCezcLoY489dtLvIahEdhQl3PzOcCGTHKpmuHnU1kvCgQvYl19+2ebneNVf7Lv83n+F/h7TuoAFt7PPPtta1tGCNBxBBP6mbrvtNssiZPg2r5M2UiIi6UniSkvO+S699FKbpzN8+PCobZeInIh5Wu3bt7ckiYoVK7oPP/zQ/l5T4/7773e5c+e2YGRqWm5yrUGwhGSQdu3apWobRCT+xWS7JyK8uXLlcpdccontTCMxPJsy+6JFi1qQQkQkXrBPy5Mnj+1X/eTto+mtvm/fvlMucos/COzTHpFe9x4WRPn4iy++SPL7WIylyiKlFw2DBg2y4ejeLW/evGHZfsnYRo0aZT3NGerIQNZIu+CCC6x9QfHixS3wSlAvHAEKqpS4qCdAkSVLFjdz5kwFKEQkXSLxJfTGwuPu3bttzo66EYjETtJH3759XevWrS1AwXnVp59+mqoABX/jnltuuSXV7SlJYOO86ocffki2sltEMraYDFK89tprNpywTZs2rly5cpahsX37dhv24ycy9RSkEJF4wj6NfZufg8kOHz5s7Vi8LJtatWpZm5aksvbF33aJXEwkvoDgYxYRTmbp0qVu3LhxbuzYsSl+Hkq0Kfn2bjt37kzztotwMU0lA/uObNmyReQ5CbD++OOPwY+feeYZt3LlSlemTJmwPT4to9hHkoDD31uDBg3C8tgiItE831AVpUjsodKZ8ylvwDXnVG+//bbNqTtdBB+pbA3nvBmSp0REkhKTewhvMY32FAzlueyyyyJSTcFCHgOBNPRLROIB1QyrV6/2vVUKMy/IpiOjfseOHcEqChbkJLYdOnTItWrVygIUVC+mVKZMmSzrPPQmktphjp7zzz/fAgQPPPCAr4FVEMyjIojeynfeeWdwiCO/26m5kD8Z5lrQTnTPnj0WfGFgZbiCHyIikcb5HdfmnC+Q/EBCCtfpJC4cOXIk2psnkuHt37/f5tAxnJpK0FdffdXOdVITGOB8jArrL7/8MjhLK7VoPev3Wp6IxIeYDFJ4yDp788037YIRkZpLsXjxYl+fR0QkEsjYjeQ8Ci5Wcffdd1t1xT333OPr88qJWDjgooRF0VB87AX8Q5FBTiuam2++2cqwudG/lsGY/Ds0w1wk3K0I+vTpY62V3nnnneD9kZhnQ+UPFV8McDx+/LjLnz+/O3r0aFhf2/PPP29tEf766y9Xr149m/VC6z0RkfS6+FmhQgU3YcIEd+utt9r8CW6NGjWyGTvVqlWz/SjnhC+99FK0N1ckw9myZYslXrCWlTVrVhuQzYy61GCwNX/b/E1T/ZmWIdc8FskntARev359qh9HRDKG/8VqlgYDPIkAez22IzWXgovlefPm+fo8IiKR8Mknn9isgEjNo2BhDsWKFbO+62RFS2QxyI42ifS+9xCo4mNvxlOoq6++2q1bt86tWbMmeOOipEaNGvZvzZoQv1ApwQI++w0qviLl3XffdaVKlbKLePZR48ePd1OnTrUL+nAg6EHbux49ethr69Spk82gCNfji4hEA7OrOMcgeWHMmDGue/fudiNTmx7zXK9TmXnjjTdaZa2IRA7VDrSW3Lx5s527L1u2zNWpUydVj0WiGclLu3btciVKlLBWUWmZz3X22WdbxSpJc6y1iYgkx/90tVQ477zzbGfoLXj9+uuv9n+GfnLx52eW3U033WTlbLQBCMewRBGRaGD/STY8J5l+tk3heajYAAOzoRPQ6GJxlF601157rWUtvfDCC+7PP/90bdu2DVa65M6d28q/aWvDBUgobxZA4vtFwo3fwZo1a1qlgd/IBmRBjcU18Lfx1ltvuSJFioTtObiwb9GihZs1a5btd4cOHWp/j363rhIR8Rvt69h/nmxoLpWazz77rGVcUyHHOYiIRMb06dMtQMh5zjXXXGOJEaltucsaGAEFEpUYbs35TFpburLPICGEWRkiIumykoIsDS7syHZjsYQ+wWSgUWFBbzw/saBHUMTv1lIiIn6inNZr4+N3Wz7m+NCWjwU69t8DBgxwo0aN8vV5JWl33HGHGzZsmHvqqaes/z0XGnPmzAkuLDA3hOwokUhbtGiR69q1azAJhWSQSAQoQKCAqi/+zxBJgqvhDFCwH6TdCRf0BP+mTZvmHnroIQUoRCQucN6QXBIKiQ30vSdIISL+41yK4GCzZs0sQEGyLVWiaZkJSMUUQQ7OY0h2ox1muHgt3EVE0l2QAlzY0cu3cuXK9rHXrmTu3Lm+Pi9lcvT0ZqcsIpJesQ+jlQlte/zk7ZOvuOIK+3+BAgWsdQoLdBI9LARv377dspYY1ksf6dCFYjKaksLnyJgUCae9e/dalu3IkSPduHHjInYBT7sz7+J4ypQp1tKTCg7aD4QLLdP4G6Nt1aWXXuoWLlxoPdtFROIF18ckvyRl69atlnktIv6ju0jnzp3do48+Gjzv59w9ra1227RpY8FIZs+EXjuk9lr0wQcfdL///nuaHkdEMpaYDVJ4vCCF1+LJ7yAFWX1EoYkgi4ikV+zD6tat63vWirdPpryYk1mG0Q4cONBOckVEPCxeMUy6efPmNnfMbwcPHrTWS3379g3eRzC1du3aYd8Hcq7KYEhmvHh9oUVE4gnnlE888URwVmQoEiJ69+4dsco4kYyM8xsq5Wm/RrUmbV0ZXh+OVuUFCxa0hIvbb789zUEUko7ZtpdeeinN2yUiGccZAa/mPsbQ4unbb791H3/8sZ30VK9e3TLTKCP97bffXPbs2X177vfee88y4BgM5vfAWRGRcNuzZ4+7/PLL3RtvvOFrX2CG3l500UVWYkx7KQZmS8a9YGJQ5h9//JHm3rUSP5iFwuIV+wkPp51+t0DyLrAZ5uoNes2TJ0/Yn2fs2LGWyUgPZwZCcv7o5/mpiEi0jtkEYpl1RfJLly5dLCjL/nzjxo3W4pN9PS318uXL5yJB5x2SEfF32LBhQ7d27Vqb4zp58mTXuHHjND3mqlWr3M6dO9P8OIlRuUo7qvfff99at4tIxnYwhcftmK2kYEdJZi598ZgR8emnn7qiRYta2f6CBQt8fe46derYRa2qKUQkPZo9e7YtAtJaxU9LliyxAAWLf+yfRURCg6Us3Ddq1Mj2Ex4/AxQsmLFYRiUDAQoWy2hvFu4ABeeizLXo0KGDBSgYRk9FhQIUIhKv2I9+8cUXlpDSq1cv16RJE9e0aVOrruC+ZcuWRSxAIZIRkYBB1ToBCobVM38irYEFWrgR9OBvOdytXllTmz9/vgIUInJaYjZIQV9zbpUqVbKqCq/M1IvK+olefrQs+fDDD319HhERP7DvYt9Jb3Q/eftiKt3ImD5w4IC1OuHfIpKx7du3z33//fdu06ZNVsngt0OHDll7JzJ8aUdCcIQL+ooVK4a9goyWVUOGDLGPaSfFHBeSW0RE4hmtYOhyQFcDzve4kUw4Z84cV6RIkWhvnkhcJ6BVrVrV/fLLLzYzgr89KpvSglkRJLTt3r3bBt+Ha47hyVrCiYik+yAFbZ0YwEUFRc6cOe2+G2+80f5PtprfXapo90R0mgOBiEh6wQknF4uRGNrqzaOgdC9btmzuvvvuswXBKlWq+P7cIhLbyKylIpXMWy6o/UQ1A8HSqVOn2gyz4cOHW0ZgaJupcGAxjiSWadOm2eDtSZMmuT59+vjevkpEJJZQNVa+fHm7hXs/KyIJjRw50hIvSAJjrhZVS/nz50/TY9KejWoo2rXlzp3bffTRR9aGJa0InhQuXDjsVRkiknHEbJAiFL3OWfiinJQ+mDt27HCbN2/29TlZ4OMCdMqUKb4+j4hIOE2fPt2GlZHp63dPVPbNBJTJwGGRkHJeyo/LlCnj63OLSGyi73Do+RlZfwyr9hvDIh944AG70CbBpEePHmEPHPC6aCNF0IUFuk8++cTdddddYX0OEREREXBtxflM165drc1ku3btwhJM4HFbtWplbXvpC091VLjaYlJlyjUiM7pEROI2SHHxxRdbVHbNmjV2gRiawesXsoJvuukm9+abb/r6PCIi4cQ+iywbggWRaPVUrlw52zfjkUcecbt27XKjR4/29blFJPZQXUCCB6059+7d6/vzkQXI3AlPmzZtLCOQVnfhRuCDZJktW7ZYu5PPP//cKjdEREREwu3IkSPutttuc88//7x9PGDAADd27FhLok0LupGQ1ME5G20qSS4pWbJkmLbaubfffts9/fTTwe0WEYmrIMXPP/9sWXhcGFI2Bu//fgcpQIYc/Yw3bNjg+3OJiKQVVWZkxUQiu9fbB9PShblBtOUrVKiQ3UfFm4hkLCzac45Wr149Sy7xe1/H+WHNmjWtBZPHj+GMBH5pN0orPRJlSJq5+uqrw/48IiIiInv27HE33HCDtUwikDB58mT3+OOPh6VClCAFbTF5LFpWch4VTueee6576qmnfD8PFJH49b/0UEGxbds2V7ZsWbuP1iJYtGiRRZj9VL9+fauoeOutt3x9HhGRcOAkNnPmzNZj1E8EJWh1Ap4PlStXVl92kQwsR44c7quvvnKvvPKKtV/yy/z5890111zjVqxYYf2ZQ6spwokL+X79+llLBPZ5ZDQyJ43XKSIiIhJuJMdWqFDBznFYC1uwYIFr0aJF2B6ftbQXXnjBHv/2228Py2NyjkTLKBGRuA9SEIl999133bp166x9CeiBTqn9X3/95WbNmuXr85MNzM6bhT/6AIqIxCoW1Mj4JUDhRzZx4kVCsopZrKP9CXLlymUDFHv37u3rc4tIbKDdUsuWLW1/4GGAql/BSvZxgwYNsnZS+/bts0DF119/bdW24Xbs2DHXtm1bG4rttbJjKLcXlBUREREJJxIhaFm5fft2m+fFDKwqVaqE5bF5LM5twHka7XrDZdiwYa5Bgwbu3nvvDdtjikjGFdNBCjRq1MiVKFHCdnygsoL7vJ53fuMCnEoO+g+LiMSqtWvXWhCXfZbfvH0vARGq2kDmNFk5ao8nkjE899xzlsTRvHlzd/jwYV+f69ChQzbvgnYH3vDIZcuWuQIFCoT9uQjA0rJqwoQJtl8bM2aMDYL0KnlFREREwmn8+PGWhPHHH39YYIKgAoGKcCCZhPZRzFulAjXcGMRNCynacIqIpNVZLp3ImzevK1OmjA1ovfTSS+2+jz76yHbkF154oW/Py0GCi+DXX389bJFsEZFwe+ONN2zfWKdOHV+fhyo2eqSiWbNmlomzfPlyWzwk+0etUEQyhh49elhgsnPnzu7888/39bmeeOIJG+5Ib+YRI0b4lq23detWS4rZtGmTVaS98847FrAQERER8aNKlBkO/fv3t49p7cS6Ex1FwoEEX5LKqKLgvCZcjxvqySeftIQVb3asiEhanBFgzxjD2LyZM2da+Vv27NktW7hLly7u/vvvt4xdFubatGnj6zYMGDDAbr/88ovNqBARiSXM58mdO7fr2LGjGzx4sK/PRQs+erPny5fPFvSUXSw4ePCgJQyQOHDBBRdEe3PEJ0ePHvXlAvdUDhw44G655RY3cOBAG17tB+Zp3HzzzTaIO0+ePG727NmuVKlSvjyXiEg0xcMxOx5eg2RstM285557rCrVS8hgFla4rq1YN6tevbqdQ9144422pkY783Cu02keoYiE+7gd86tL7PgefPBB9+KLL7rrrrvOFshq1qwZHCA0ZcoU37eBgwcDgSZNmuT7c4mInC6yfTkB7dChg+/P5e1zyZhRgEIk4yBRgzkQI0eO9P25aOn04Ycf2gUwSBAhWcWvAAXnlrRCIEBRtmxZC1goQCEiIiJ+YLYWgQMCFLRKGjdunFVThOva6ocffrDqeq4PqXSnGjWcAQoej0rT3bt3h+0xRUSQLlaYWrVq5Tp16mSDWT0skHk99rio9NPll19uZXKjR48OXjCLiMQK9k30MS1UqJDv0e9Zs2bZvxmSTdsVhruxmEgv1V27dvn6/CISPcyi2bhxo3v22Wd96WnsYb7F7bffbuddfgdEOKdj4COt66gSadiwoVuyZEmC800RERGRcCGAULFiRffZZ59ZNvHHH39sSbHh8tNPP7natWu7PXv2WLt0KkOzZMkStsendRRdTebNm+deeeWVsD2uiEi6mUnRt2/fBB9/99137ueff3bXXnutW7lypZs2bZq77777fN0Gei7XqlXLLV682LLtRERiAftAsn7JaPEbwQgW8q666iq3atUqa73Cgt7evXtt38iJKgFlEYk/zKDgwpQkkXBe7Ibatm2ba9y4sbUoOPvss915553n/HL8+HG7yCbIC84jqdolo1FEREQk3JYtW2bnOVRS0DqXGavFixcPe+Xr77//7q688ko3d+7csLcrZz4YAQqSVmhRJSKS4SopQhFpZoGsffv27o477ohYy6caNWq4YsWKuZdfftn35xIRSSmqGfLnz2+91CPZ6omsHPC87B9pw0IrPhGJH1RH0XrJa7/Zq1cvV7BgQV+ea9GiRZZ8QoAiZ86c9nE4MwtDHTp0yDVq1MgCFLyu5557zvalClCIiIiIH6ZOnWpJrwQoON8hySzcAQqv2p0WmZ988onLkSOH8wPrYlTRE7AQEcmwQQraihQoUMB2hlu2bLHeyKBUbufOnb4+NxexXbt2dR988IHbsWOHr88lIpIStLojcEAG8Jlnnunrc3FCTdYMqlWr5r755hvrm1q/fn3Xp08f98UXX1jGjojEh82bN9tFNJWkfre6HDNmjPVmZj9Trlw5t2LFCuuh7AfaIFStWtWSXjJnzmzzKJh9puGPIiIiEm6cQw0ePNiSvBiWTSUFiRiXXXZZ2J6Dyol169YFP+ZcikqNcFqwYIHbtGlTWB9TRCTdBikoJSNAwYWsl61LmxMuNL3IdCRmY5x//vmWbSciEm3sD1lYa9eune/PNX36dGuPQm9T7wSVfqqXXHKJ788tIpFHIJKBiLQm+OOPP3x7HuZcEGhl/9KiRQtrIZc3b15fnmvNmjWuQoUK9trILmSRoGnTpr48l4iIiGRs//zzj+vQoYNVoqJ79+6WHBHOtpnMDGSINUlky5cvd36g3fott9xiVRqrV6/25TlERNJVkIKFMTKF9+/fH2xrMnPmTLugxVtvveV7ph8BCjIKaQ9AtFpEJFoYXEv/dNqhXHzxxb4/H/tYsM/1hmezL/7++++D7WBEJH4wvPq9995zCxcuDHs/41BFixZ1w4cPdwMGDLD9jF9zKOj7TGILvZppU0CbBS62RURERMKNBI+GDRu61157zarPaRv+/PPPh7X6/fDhw/YcBCd4XL/OoS688EJbjytVqpQvLapERDxnBPxe2Q+Tv/76y7LssmbNGmz7xM5+w4YNrnTp0lY6R7sR+qL7iaxCnvvJJ5+0m4hINBCgeOihh9wPP/xg+yQ/ffvtt65kyZK2z+XfZcuWtX0uJ8S0ZOHEleoKVVVkXGRx8XvABdkFF1wQ7c2RVOL8ir9jvwZjewhusj8pXLiwi4RXXnnFWnYSUKUalyxGPwMvIiKxLBaO2YMGDbJAOOePtN7jfHLIkCE2ezK9vAaRpNAenOAB100EDuj6cdNNN4X1OQhQNGjQwFqf87fAHAqvHbpfVSHM9Lrooot8ew4RiV8pPW6nm0oKTl4IUIAhsfRJ5mKTHun098PIkSN93w56B5K5zALhkSNHfH8+EZHEjh075oYNG2ZVDX4HKDBq1Cj7f5MmTdyePXusxRTzJ5gPxGImVWYKUIikb8z6otKAC14ufP2yePFiSyihEsvPNlLgPPHhhx+2dlL8u02bNjaLQgEKEZHo4ljQpUsX9+WXX9qAXxZA69SpY5XCIunZ119/ba0lCVBcfvnlFkQId4CCvxMek8dmsY81MT8CFMzx8px99tkKUIiI79JNkCLUv//+6+6++2779/vvv28nOHjnnXfc3r17fX/+nj17WrsnSvdERCKNliicND722GMRiXhPmjTJ/s2+9oYbbrCKMjKCqGJjn0sbFRFJ33777TcLGvA37dci0fjx421ANq07STw5evSo8wuJJM2aNbNWUujfv797/fXXLbgqIiLRNWfOHAsc0zqG80mOD2Sfs8Arkl7NmDHDZkNwrUQVOq0lwx084PyGAAWBPi9A4Uf7yg8//NAqXmlTJSISKekqSEFg4I477rBKCgb3TJs2zRbHrrvuOruRXTxu3Djft6NgwYJWvUEmM88pIhLJIC3l8I0aNYpIT9CJEydaVjV942vUqJGgLylY8KO/u4ikb1zgLliwwNoF5MyZM6yPTRXDE0884dq2bWvZssy7YGh1uJ/HQ8UX+ytaibCPmjx5sj0/VWAiIhJ7vMq6pDK1aTNK4kzoTSSWvPTSS1Z1ThChbt26bunSpS5v3ry+PNdZZ51lyR5z5861qg0/UOHEWhct2UREIiVdBSlYGGNn//PPP7t169a52267zZ177rn2Oa+agqHWzK7wGxnMO3futAtfEZFI+eCDD9zmzZtdr169fH8uRhZ5bfRolxLamiWdjDMSkWT8+uuvCUr5aaVJa4JwzxQjwWTgwIH2MfO83n77bWvj6YeNGzdaOylm5rDYNX/+fGuNJyIisYlAdvfu3V3lypVdiRIlkpxhwVqAd/Nr8VckNQlk3bp1sxvXR/fee6+bOXOmb7NSmHFBxQatnvycx0oFBdX7tDkXEYmUdDM4O7TsLFeuXHYh7WXE8RK4CM6XL5/bt2+ftYAiiu23xo0bW2R5/fr1Fs0WEfH7Io59H/3UyXb2G1nVtWvXtpkTLGRSscYJNyesY8aMcStXrrQFR3oIS8amAZbpD9WpVBvws+NvnSpRP3Ts2NG9+uqr1suYNpleu04/LFy40CptDxw4YC0KqLZlfo6IiMTuMbtz5842L4hkxDx58iRZScEt9DUQqIiV1yAZE+0x77zzTgsaYPDgwe6RRx4Je+UmA6tJ8CAA4mdVKH9jmTJl8u3xRSTjOhhvg7NDAwMslHk7Z8rquAAlkty+ffuIDdBG37593XfffefeeOONiDyfiGRszN1ZvXq1e/rppyPyfN6+lEVFgrHff/+9BWYJFE+fPt32u372lBcR/9DGjYtr2hLQgskv7K/Kli1rbQP8DFBMmDDBAqYEKCpVquS++OILBShERGJc165d3axZsyzInFSAAiycsqgRehOJpl27drnq1atbgILfT+b1Pfroo2EPIrCwV69ePUv68KpS/UBrpwYNGlhFCNUhIiLRkO6CFIkRJPjhhx+sb3qnTp3soEBpP+1Q/MZFN7MpCFZwkS8i4ueJI1ULDRs2dFWrVvX9+WhnR+Wa1+qJfSxuvfVW64FKttsLL7ygKgqRdIoM1CVLllgVRbgX80NbSF122WU2CJULeT9QTdunTx8bwEq7T1pL8ZouvfRSX55PRETCs+8mQEEHBKqD/armE/HDt99+a62WOL+55JJL7HeYeVvhRuIF11qff/65VdL7ed3lzSV7/fXX3ZYtW3x7HhGRuAtSbNu2zS5IKadr3bq13ccJDr2Hb775Zvt41KhREdmWZ555xu3du9d69omI+IU2KZww0pM3EmjnRHsp2sHQNoXsIHj7XNrrkWnjzQUSkdjHIn7oAETmTxQvXjysz0E7giJFirg333wzeJ9frQloS9CqVSvXr18/+5hZPcwK035JRCS2MU+S4wT7bJJfdu/ebTdaOIvEsnnz5tn8lB07dliSx5dffmkVnOG2f/9+a7v71Vdf2ToXQQQ6ivilfv36VrXP7YorrvDteURE4momBebMmWM70Zw5c1q2XsmSJe2im0U8MgPr1q1rJaAM2KaXeiROsjjBYgExe/bsvj+fiGQstGQhUED2jFfR4CcW/tiXMlSXtk6U/JKdzH0Eif/3v3QZ35YM1N9aTkTQsW3btu69996z1gQEIMOJ08lnn33WPfbYY/Yxw6o5N/ILF+9Nmza1apAzzzzTjR49Otj2U0REYvuYnVTwmjbKVMalh9cgGc+4ceOs7RLXRtWqVQsmyobbnj173I033ujWrVtnlRp0CildurTz6/xQ13Yi4re4nUmBmjVrWpuloUOH2kWxl9nL4h3RZiK/vAGRmhXRu3dva8UyZMiQiDyfiGQstFViyK2XLew3MqEJUOTOndvmAHmBETKWN2zY4Dp06GDZPCKSfjA/hsQOslSZRxFOXKzTtsMLUDz44IMJKinC7ccff3QVK1a0AAUnuQxcVYBCRCT94Br+ZLeUBChEIo2F/Mcff9zONTjnadmypVVU+BGgIFmMRBICFFS8Llq0yLcAxdixY23eRbjPC0VEMlQlRWJcdNN6hJfChSsHjM6dO9sCGx8zyCgSgYphw4bZfAyeV0QkHPbt2+cKFSpkGdAEKyLRDqZo0aK2LyPwShCYfRon5FSsvfXWW9bmrkmTJpY9JAJlNKafQAV9jUn2CBdmct155502w4bM2OHDh1uQwi8MxG7UqJH77bffrLrro48+ciVKlPDt+URE4k08HLPj4TVI+jl3Injmtb596qmnbCapX60sQYeQ/v37WwUFLTT9vMbkb2nkyJE2g1BExC9xXUmRWJ48eawcDuxgWczjPto9UZIXCT179nRZsmSxwbYiIuHy9NNPW/bOE088EbEqCgIUlBZzssrwWYIRDzzwgLvqqqus1V6nTp2CFWwiEtu2b98e/DezGsIZoCDbjwpWAhQkhHAB72eAYtq0aZZdSIDimmuusT7NClCIiIiIHzjfqFWrlp3fnHXWWW78+PF2beZHgCI0d5iKjfXr1/sWoMDFF19syb0PP/ywJfiKiMSCdB2kIHtvwoQJbs2aNa5Hjx5WdseNC2Wv5QBDZrmI9huRoAEDBtiBiyw/EZG0+uabbyzw2qdPHwsW+I1qCbJ28NBDD9lMH3qU3nzzze7FF1+0+2mx8sorr1glhYjENgKMtMDkb9YPnG8R9MiWLZv75JNPXLNmzXx5Hm/exe23327ndOyTaPVEGwQRERGRcPv+++/tuocKVLJ/586d61uS1qpVq1z16tWt3a6HBFi/rvc8FSpUsBbqflaFiIhkmCAFgQlK72iBwrBs+h+TWYd27dq5XLlyWSuoSM2mIOJdrlw5yz4O3fmLiKRmUa5Lly5WvdCtW7eIPOeUKVPcd999Z/1VeW4RSd/oY/zPP//Yxa9f3T1p/7Z27VpXtWpVXx6f7ad669FHH7WP77//fgu++HXxLiIiIhnbZ5995q6//nqrLs+fP3/YW2Umfi6qRPm/d67jl8WLF7uyZcu6HTt2+Po8IiIZMkhBJLtAgQKuVKlSJ3yOlgah1RQMtvbbmWee6UaNGmXZz6NHj/b9+UQkfk2aNMktW7bMjRgxwp199tlRqaKgvJmeq/QNpHKNajECvyKSPpDEMXnyZKukCFeWHBe4DRs2tAHc4HGZDeFX71KqJl599VV7Hiq6XnrpJTvfEhEREQk3zptoZbl//35Xvnx5ay1ZrFgxX56LuVp16tSx851q1ar5On+Q9sG072Ugt3fNJyISa9L14Gw2nRvtSDwbN260nXuDBg2suoJhQLt27bIL3HvvvTci28XzTJ8+3W3evNnlyJEjIs8pIvHjwIEDVkFBVg3VDZHA87Ro0cJlz57dbdu2zX355Ze2DyVYQWCCnvMEhumNSrWFyoIllAZYxg7vZ+DH3+h7771nQ7JpudS7d2/Xr18/55edO3daMISL6fPOO8/m5TAwW0RE0iYejtnx8BoktrCuNHDgwOCM0VtuucWSxjgH8evaq1WrVu748eN2vsPcrcyZMzs/cU1HgIL1MpJ6RUQiJUMMzuYCPDRA4UW+CUjQu5gd7yOPPGL3c8ChZUAkULnBtnmVHCIip4MZFH/++acbNmxYRJ6PzBpatoChtxw0nnvuuWDrPA4m9H6nV2rbtm0VoBCJUZz0ValSxXXt2jXsbSc5t7rtttssQNG0aVPXq1cv55fVq1dbmwUCFJdddpnNn1CAQkRERPzAOhGtu70ABcOkCRr4FaCg+wZJHwQo+D9tLP0KUHiVr8iTJ491/FCAQkRiVboOUoRGvRlWTXYvfdTPOecc6xtIaV7Hjh1dzpw5LTN44sSJEdmeSy65xIIizMLQEG0ROR30dqfFE4EKTiQjgcqvDRs22PBbyoDXr19vw+EIAvMxbrzxRutvr+CrSOyaP3++/f1ysRs6fDGt51i0euN8in936NDB12y/WbNm2XyLX375xZUoUcLO5Zj3JSIiIuJHBXv9+vXd66+/btc+BBAYJp04GTZcaKFLMhjnVMwypVrDr9a+XLsVLFjQ1sZERNKDuAhSsGhWqVIlO5iQcUc0Gs8//7xdRHvVFFxkR6qagpZP1157rf2frEMRkVMhm4bKhUgOy6aKwmvZ0r17d6ua8Pqhki1Ny7xQfp2wi0ja3XrrrRZ0nD17tp0PhWP/QHWVl1nI/8nA82smBAHaxo0bWyUZgdGlS5e6fPny+fJcIiIikrGRyFq5cmW3YMECa3FLokTnzp19fU6qM+bNm2edPzjv8fPaivWwPXv2+DrrQkQknOJitemmm26yYESmTJmCC23gQn379u2uU6dONhti69atFqmOBC7gicZT3fH0009H5DlFJH0j0Lpq1SqrwqIiLBLoMU/mNcEJAiN79+4N7idZnDx69Kj1TFWwVSR2EUzw0EO5bNmyYXncn3/+2b355pv2by5waQvnR7s3WlOxv7n//vvttdBygUAL+yURERGRcFuxYoW1lqSaPFeuXO6zzz6zigo/cB316aefBj8mCaxnz56+t9BlnhczxCLVUUREJK3iIkhB/2WGYxOJRunSpV2tWrXsovfll1+2aLVXTfHUU09Zhl4klCxZ0p5vyJAhdhAUEUnKt99+6/r27Ws9UCtUqBCR5+SE2WvfRICCdk+vvPKK3V++fHmrUKNtDAO1K1asGJFtEpHTM2HCBLuoZhhZuOXNm9d99NFHFqjwq7qLczIqQLwsP9plMv/Cr9YHIiIikrFxfcOsPaoMWDuitWSZMmV8mxfWoEEDV6dOHTdz5kzntx9++CH4b9bBqJjXDAoRSS/iIkhBBDpxtl2PHj3s/2PHjrUDA7Mq6MdHViBBg0h59NFHLaOxTZs2lpEsIpIYbejYRxQuXDiilVcvvfSS+/HHH20oNsERNGvWzLKYCeyyb6UFFbMxaMEiIrHXR5ngAW0DqMAKB4IdoYkVBCxbtmzp/LB79253ww03uA8//NCqYcn4YyC335mFIiIikvEwB4IWSCRHMFC6Xr16VkHh1xxA5mtVq1bNqijo/OHXPC8PyWZXX311xLqHiIiEW1wEKUJRUfHTTz/ZAYfyPYIVtF4iejxs2LBgSxX6D0YCmYDjx4+3iDZZ0iIiidGTdPXq1baviFSmC4uDtG7BoEGDXNasWe3fxYoVs+AuJ+9o1aqV7S8pSRaR2EL1Exe+BCpolZRWv/32m1Wi1qxZ0y1fvtz5iTZznKetXLnSXXzxxdYPunnz5r4+p4iIiGRMJF5xrsT6EMEKWoJT2eBdA4Xbxo0brRJ97dq1LmfOnG7JkiWudu3azk/ff/+9dRNRFw8RSa/iKkhBVJzWBCy8MYDo888/d3369LEhSN4Q2Bo1alhFg9f+KRJKlChh20FwhFJCERHPunXrrHqCfRIZy5HyxBNPuEOHDrnrrrvOAhGcrCeFQC/lwiISe6655hprlZTWwYtUmpLtR9CAYKlfw7FBQIJBlcwNu+KKK9yXX35pH4uIiIiE2+HDh20taOTIkVatSfLqqFGj3FlnneXL8y1btszOa3bs2OGuvPJK98UXX4RtXlhyeF3vvvuue/HFF31/LhERP8RVkKJcuXIWOeZCmwW3xO0C+Ni7kJ82bZpbvHhxxLaNBUgWEmjpEqmZGCIS25j90Lp1a1uki2SlFYuQXmsYTmLZJ/bv39/dcccd7rvvvgu2kaH8WURiy7Fjx1yHDh3c1q1bw/aYtH1jvhdZf7lz57a/fc6p/PD6669btSutOKtWrWoX7kWKFPHluURERCRj81ouzZo1y5IwWAd66KGHfGstuXnzZquY+P33323OIAEL2o77dU7IeZWXbMY13S233KK2mSKSbsVVkIKLXcrpOAB5O2Z22PRq5sBE8KJUqVKuY8eO9jnaIxDUiASi9BMnTrRo+gMPPBCR5xSR2MbMGlqe0DeUfuyRwD6RfR//v+uuu6wMed++fVbp9c4777g1a9bY15FpxH6zXbt2EdkuEUkZZjbQko0BjLQuSCsCE/yt09aNuThLly61fsbh9t9//1kFF/sUtvvOO+90n3zyibV6EhEREQk31oYIFNBWN0eOHG7RokXBlrZ+oXLi7rvvdjfddJO15Lzkkkt8eR6u5agO4bzq8ccf9+U5REQiLa6CFAQmSpYsecL9tH8iK5BMYfTr18/6OH/zzTdu3LhxEdu+okWL2sIf0e4333wzYs8rIrGHQbFUMVCWS5VVpEyZMsVa4dG+afDgwXbfkCFDrPVTmTJl3G233Wb3UfF1zjnnWG96EYkd9FKmTdvLL7+c5jYFzMuqXr26ZRkWL17czpUKFCjgwo02mwzfHjhwoH3cu3dvOw+KVHBWREREMpa5c+dalSjzSkm+oLUkAQs/kPh65MiR4JoUaz7vv/++r+1yeR6u27JkyWLJJiIi8eCMQHKNyNMxLog3bNhgi39cdLPj5mKe8rtChQrZ4mD37t3dpZdeau1NCFpEAm83kXUOWqtWrbJIu4hkLFRUERBgcfC9996LWEkuJ89XXXWVnawTvH3yySdtcZLsafaZs2fPdg0aNAh+PZ8j68ivfq0SPw4ePOguvPBCa+FzwQUXRHtz4h5VCWmdQeG1CaAtwK5du+xi3o9sPyq1mjRpYhUa7EteffVV17Zt27A/j4iIZJxjdjy8BvEP5xr33XefBQ+YScqchuzZs/vyXH/99ZdVp3OdxSDuSF837d6921122WURfU4REb+O23FVSRHauoBMQHoec9CgDVTdunWtvYDX952DFhH1X3/91RbrIoXFSIY00fP59ttvt4VBEck4/vnnH9eiRQuXNWtWq+SKZM/QZ5991gIU+fPnt16sGDBggO2HGO5Wv379BF+fK1cuBShEYgBt4cgA9IQjQAGqpaZPn+5bO4Lvv//eXX/99Rag4KR0zpw5ClCIiIiIb0kctNOlvTcBCpJDOffwK0Cxd+9eqzon6Yxzqa+//tr5iXZVDRs2tDUujwIUIhJP4jJIwRDazJkz240LZG8hDrQX4GL/7LPPtiHaeOmll9ymTZsitn0sTk6dOtWe8+GHH47Y84pI9D311FPuq6++srZLF110UUSrN2jrBFpMsX9k8C6ZRt4+koDJihUrbH6PiMQGKhFuvvlmd8MNN9iFdloxp6tnz57BIYsMkSSAEG4EJph5Q0spAqMMjqxVq1bYn0dERESEhfs77rjDkrJAcur48eMtIcMPdO2gfRRJJARBmLPlVzsp7/WR6PbRRx+5QYMG+fY8IiLRFJdBCjJ/aVvAhTGDslGuXDkbksRFOYuEoLqCgUZUWBBtJ/IeKRxygCgAAHipSURBVLR6ef75561fIVmMIhL/2C8xB4K+7CzeRQr7vc6dO1vFBK3vvIFxw4cPt/0fA3hpPcU+sHXr1tYS7+OPP47Y9olI0ri45lyGyqZrr702TY9FSzcCHgQquXD3C0FYAhIEWJifwQU8My9EREREwo3uGFQ0sK5CMuqkSZNcnz59fKtYX7BggatUqZLbtm2btc394osvfJ8LQYIZia60lurVq5evzyUiEi1xO5MiqWg3g7VZiFuzZo0rXbq0ZRJzH0Niqai4//77I7Y9vPXNmze3RQMG2XoBFRGJP1R1lS9f3k5o6VcarnYtKcFiJC1WWOxcvXq1K1asmN3Pfo/hu7Vr17bFT0qWGcD2zTffWOWFH9nVEp/UG9pfnLfQc5hARWoxC4sMQ1rONW3a1AIJ4c4u5LyGQOzjjz9uHzOL4q233vJ1cKSIiGS8Y3Y8vAYJD2aOMlNvy5YtVtHA+Q7JV355++23rY0UiV60y/3ggw98aZkJ5lwwI7BIkSK+PL6ISKwdt+M+SMHLI7JNT2QWBamiKFGihC3EeYuEzIjo0qWLXUSvXbvWouGRwiIhB7cDBw5YmxUGeYtIfGFHzD6I/REZxdmyZYvYc9O6iQxmtoHFQ/q0ngpzK/LkyROR7ZP4oMWC8CNQmC9fvrA8Fpl3LVu2tP7MBCrIMCTTMJwIflCxxawddO/e3So2zjzzzLA+j4iIpE08HLPj4TVI2i1evNgSL37//XdXsGBBa4XE3FE/kfDFzNNGjRq5119/3dpm+mHXrl32HCSR0SpYsydEJD3L0IOzPSwIElUnCEDmMvr162cDq0OzmDt16mS9nolU33PPPRFt+5QlSxb34Ycf2nM3a9bMLvJFJH6wKHjnnXfaieaMGTMiGqBgH9ihQwc7ENByxRuWTQUZ2T9JUYBCJLqormS+Vu/evdN8TsIsLvZB3gBJKhvCHaBgH8P5FgEKzq+o0KKlpQIUIiIi4gfOb2688UYLUJAMRiKYXwGK0LzesmXLWnIp51N+BSi89k4s6pHUSgKZiEhGENdBCnoQMvshU6ZMVv6XGAe0Q4cO2QU1F9YEDJYsWWKVFZHEQMn33nvPFiW6desW0ecWEX/R9oRht2QyX3nllRF97okTJ1pGES1daPnEvB4CovRsJWjx448/Br921qxZ7tixYxHdPhFJutcxf4+bNm1KUz9lqjG85Iv27du7N954I+yBg+3bt1syyPz584OJF127dg3rc4iIiIh4AYOnn37atWrVyhI86ZDx6aefuhw5cvjyfDt37rR2vXTn8BQtWtS3eRceEttItF2+fHmaZ5KJiKQXcR2kQM+ePW2g0YMPPpjgfnoVsmBIliIYFDtkyBD7N+1QThbU8FOVKlUsOPLKK6/YTUTiI8Pn2WeftZYndevWjehz0+bJC3pyIu/NoRg0aJDtE3/77TeXM2dOu++TTz6xYbpkHzFcW0Sii3OTd99914IKabkIpl0UAcr77rvPjRkzJuyzcFauXGnZi+vXr3eXX365JXrcdNNNYX0OEREREZDA0aZNG9e3b1/7+JFHHrFEMKoO/EDFBDMFqdLo2LGjrx03qHLv0aNHsAMIWK9inUpEJKOI+yDFRRdddNL+fWT7sUhHSwKGaINeygxZikbbJ5DlyODuBx54wC1cuDCizy0i4UXvUP6mOZGmN3ukM4w4kaYFC5k3Dz/8cHB4N0ETvPDCC+7888+3f7PPY4GxcePGvpYti0jK2wnccsstwb/R0xUabKTV08iRI8MeoKBignMmBnqXLFnS9nnXXHNNWJ9DRERExOuCQdIXleJUhZJ8QZJpuM9vQgdkV6tWzc5zmGlK8MCv5wKvh1aZd911l9u3b59vzyMiEsviPkgRiuzhuXPn2r/r1KljMyAIRJBhyP856DD8iAHaDGGKRkXDc88952rUqOGaNGnivvnmm4g/v4ik3ebNmy2buFy5cm706NG+lwMnxlDc2bNnJ2jzxOInLVjIQOIEnwVQD8EJAhhUXIhIdLz66qvWuoCgYVofh1aXv/zyi/PLiy++aIMq2Vb2J0uXLnV58+b17flEREQk46LLBS2XFi1a5LJmzWptapm75wfWhZ544glL8iDpg2u6ZcuWWYtuP/F66tWrZ+tRF198sa/PJSISqzJMkIISvauuusq1bNnSHThwIBgQoKKC/oIs5MVC2ycWE6dPn+6KFCliBykG3IpI+sHCIIt2l156qWXcMBMn0s/vtXmiFLp48eL2b/Yr8+bNs+0ZMWLECYET9oUXXHBBRLdVRP7Pr7/+am0pGcLILS0BCqqoCJSSaRhuDN+m2pPqMAKfXFCzn9O+Q0RERPxApSatJZnTlSdPHkuMYJ3ED3/99Zclcg0cODC4HvTBBx/4dp5DYqxXRXv22WfbLMFbb73Vl+cSEUkPMkyQgpYnhQsXtuxCWqCAg5zXz5AD0P79++3fVFZQ2vfnn3+6du3a2UV5JHEQ5ADFoiGLnSxeiEjsIwDKSTP7DKq2aDcXSd6iIdtBFQczeXDo0KHgXB72dQRBwSImPeRFJLoIanLc5++XNnGp8dprr1mAAgQq+VsPp8OHD1v1BG0yQes4KsW4qBYREREJN+Zz3XDDDbYeUrZsWQtYlCpVyrfnI5mLpFH+T2X64MGDrbWUH0j64LXRktMT6ep7EZFYk2GCFBxsPvvsMxsQG1qqx4U8mcbMp3j88cftvtC2T5QU9u/fP+Lby0BbFjkPHjzoGjRoYIsDIhK7yLxp1KiR++mnn+xvNxqtT+hjmrjNEwjAst8rWLCge+yxx+y+PXv2uC5dulhPefZzIhJd/C3Sjzg1F6jjxo1z9957b/C8hn1BOC90qdBi+7zqsHfeeceCoLqYFhERET8Sr4YNG2btuWm51LBhQ0usypUrl2/P560DTZgwwdo7MRvCT1yXcR7Feo+IiGSwIAXo7Zf4gpoMwFGjRtn99B/0hmVTdeHNpKBPO8GNSGMbPv74Y2vbQNkfveRFJPZQOUHf0pUrV1qQoFixYhHfhs8//zyYOU0rOwa8eQhQEKSlpDhz5sx2H1lBnHxXrFjRKsdEJPIIJu7duzdNj0FShRegICsv3AGKdevWWZuFVatWuUsuucQtXLjQFg1EREREwu348ePW2YJkCIIHJFXRcun8888P+3Px+C+99JLNBPMCFXSzoCLdr9fmoXXm8uXLg4myIiLi3BkBb2+cgfz999/Wk53yOu8A9MMPPwRboITiwp8WCrRiWL16tcudO3fEt/fTTz919evXt/6Ib775pm8lhyKS+hZLb7zxhp1AM1wt0rwS6J9//tk1b97cTZ48OcWLlP/884/atUiakQV24YUXWjtFzSdImRkzZtjQelpPrl271mXPnv20H4PswtKlS7vvvvvOde3a1S60wxmgYI7NbbfdZi3jmOtFEJYEChERSb/i4ZgdD69BTsT5xh133GGJmpzPDB8+3Bbz/ajc5Byqc+fOwdmkH374oVXF+xWceOqpp2wWKsmvXrW7iEhGcTCFx+0MVUnhIdv44YcftpsXozlZgAJc8DPHgkVADpgs6EVazZo1bZAm7RXuueeeiM/IEJGTY/9x//33WyCTdivRCFCwP6AiggAFi4gMzvVO5KmoILOaVlRJUYBCJDo477j66qstASE1AQqce+65lshAW8pwByjGjh1r7SZZMKDVE9VaClCIiIiIH2iZW7VqVQtQUPn93nvv2Uw9PwIUXDeRsEqAghZPXDPdfPPNzs/XRpIsLXaZQSYiIieXIYMUHOwKFSqUoKzPs337dnfjjTda6R04QE6bNs0iPfQmfOKJJ6KyzWQyMryJSgqytr22VCISHew72Jcw7IzAQOvWraOyHQMHDrRsZ/ZV06dPd1mzZg22aOnVq5cNueUk30PLJ7KGmEkhItFDWzjONYYOHXra37tr167gv6nw5NwkXBfxnF8wu4ZzDS8Iypydiy66KCyPLyIiIhJqzZo1rkKFCu6bb76x2ZxcrzRp0sSX56IFLt00GMJNksicOXN8C4Z4ChQoYAltU6ZM8a1aQ0QkHmTIIAX92WmNQFUCkfNQzzzzjJs/f75dlP/555/BbEd6PoPFBFo0RAM974n201amY8eOClSIRDFAQSXWiy++aLNrvH7wkbZgwQLXp08f+zfb4c2hoKUd+zDm2FDdwb7D2276u44ePdqCGxK/CJ5xQUSmPRd9XuA9qYx5Mte4UONWu3btZL9e0ua3334L/pugIoPuT8f7779vwxZp6xZuVF21aNHCDRkyxD5m/zJx4kQbli0iIiISblQWVKlSxf3yyy+WwPHll1+66667zpfnYh2FLhUka5UsWdKtWLHCElTDje4bzJrYsGFD8D7medGZQ0REkpYhgxQInesQWk1BEIKsxO+//94W8zwMru7WrZv9m4zprVu3umig+oODK5H49u3bq/WTSISxv6A3KmXBlO126tQpKtvBiTzBB7aHgGtoJUfv3r2txz2zdGhF5WUG8X9awnAhEK2qMPHf1KlTXY8ePWyBmWHHzCyoW7dukgOaKT1nYZqByPTKzZs3r6tTp46Vwkt4EVigZdK7776bqu+fNWuWXeASiKSCKpxoa1mrVi1rLUkbuAkTJri+ffv6mlkoIiIiGdeoUaOszRLJoZyD0LmCJBu/eC2+OZfinNevNpZUsw8aNChq7cJFRNKtQAb3+eefB6655prA+vXrg/fNnz+fqIXdZs+eHbz/77//Dlx//fV2f7ly5QJ//fVXlLY6EJg0aVLgf//7X+Duu+8OHD9+PGrbIakzYsSIQP78+QOZMmUKlC9fPvDVV19Fe5MkBf7999/AfffdZ/uA0aNHR207/vnnn0DVqlVtO0qVKhU4cuRI8HOLFi0KnHHGGfa5Dz74IGrbKNHDPqVLly4Jfm9z5coVGDRoUIq+n2NK1qxZAxMmTEjxc/7xxx/2O8f/5eT++++/QL169ex96t2792l//7x58wLnnHOOfX/z5s3DeuzftGlToHDhwvbY2bJlCyxcuDBsjy0iIrElHo7Z8fAaMjLOTR966KHgmkvbtm1trcUPx44dS/Dx6tWr7ZzMT7t37w4ULVo08O677/r6PCIi8XbczrCVFJ7BgwdbpinleB6i+GRKgwxlrzUDLRnIUKUv89dff22ZqtFCKxeGaXNr3ry5ZVVKfGY5S2wgC4b9AW2VqE6g5Vq0PPnkk9ZPlVYxzKFgHgX++OMPd/fdd1t1Rbt27Vzjxo3tfj4+cOBA1LZXIocWXxyfaNnkoa0hH5MxlhJHjhyx3/fkZhBwzDl48GCCmySPigTaRbIP8dq0pRS9mfl75ufLoG1mVIVWhKbFkiVLXMWKFd2PP/5o2YsMyGaYpIiIiEi4cZ5J66Phw4cH223TJeJ021+mBFWnVE98++23wfvKlCkT9irRQ4cOJWgJzlwN5gNyziYiIqchkMHt2LEj0KFDh8Bvv/2W4H4yk4sVK2aRnqZNmyaItn/00UfBqP8rr7wSiCYypc8999xAjRo1AgcOHIjqtkhkspwl8g4fPhxo0KBB4Oyzzw689dZbUd0Wqqi8/c+0adMSfG7ZsmWWBV2oUKHAwYMHg/dPnDgxcMkllwSmTJkShS2WSPr555/td4MqwVA9e/a0fU9KdO7c2X6HkqsW7NOnT/D3MPSmjMbw++KLLwLnn3++vb/sh8KZafjmm28GqzMqVKgQ2LNnT9geW0REYlM8VCHEw2vIiKgw4HyUnx3nH5MnT/blebi+7t+/f7C6nApUv7CORDXqmWeeaddiIiJyIlVSpBC9t8eMGeMuvvjiBPeTmfzmm29aX2bmU/z+++/Bz9WvX9/169fP/t2lSxf38ccfu2ghs5IMgdWrV1vm4+7du6O2LRKZLGeJrH379tnPh0xm+sF7Q6ijgW2gmgPMzLntttsSfL5SpUo2i4J+91RZeFUUr7/+ulWEbdmyJSrbLemrunDKlCk2nJmh28n12qVyx7vt3LkzotuZnlDxyCDz0PlXp4OfxeHDh63Kk7/tcGQasi39+/e3qkyOS8zdYiZJjhw50vzYIiIiIolt3LjRXX/99W758uVWrTt//nybiRZuVI83bdrUKs8537n33nttpqdfWEfidTHXVHO8RETS5qw0fn/c2bBhgytatKgdYMqWLevmzJljC3+JF2s46NEagcGSt99+u7VeoXQwGqpWrWrtGurVq2fb6pU1SuxhoZhh55SAhuLjTZs2RW275OR27Nhhrbj4uTFc+Nprr43atvD7wQk3bXhYUGQxOanAKzcP+7K5c+daiypO0iW+XXLJJdYGaM+ePQnu5+PLLrss2e8dNmyY/V5x0ViqVKlkvzZTpkx2k1PvQ2gNx0BIfjYMUDxd/Ezy58/vWrdunWzgKKUISrBN48ePt48ffvhhN2TIEAuYi4iIiIQbiRC0PiKAwDrF7Nmz3ZVXXhn251mzZo1dJ5GYxXkqSSK0wA03Hv/yyy8PttxlADjX+NmzZw/7c4mIZCS6Ig3BnIASJUpYj3dPzZo1EywKeJmQLPy9+uqr9nkyHBs2bOh++uknFy0lS5a0PtJkWBKoIFtfRFKP3qX8LR09etQtW7YsqgEK5pU0aNDAKrrI1KEfvbegyAlxq1at7GQ/KewX7rvvPqsMk/jGz7pcuXJuwYIFwfv+++8/+5i5A0l59tlnrScwgflo/q7HGwKGAwYMsArMxJVPyeF8goCkd77B32+WLFnSvD0sDrAtBCgIZjEfY+jQoQpQiIiIiC9I6qxTp46dg1SuXNm6B/gRoFi5cqWd6xJAYMYW129+BCioOGam5GOPPRa874ILLlCAQkQkDHRVGoL2KAQhVqxYccLnWOR5+umngwO1vcUgWi8UK1bM/fLLLxaoiObwUDItly5d6goWLGitn5JbtJT0l+UskcOCLhVKlO8S/PPjRPp0hss1atTIbd261RUqVMiGsnlZO3jqqaesNR0VXaHt3gievvPOO6luMSPpO+A+duxYuyiktL5z586Wyd+2bVv7PMPVadfkIYu+d+/e1haMizp+j7jxOyRpQ4ChW7dudjxO6aBrAhRVqlSxjEOCpOHCPoTA66effurOP/98a1/XqVOnsD2+iIiIiIdrkD59+rg2bdq448ePu+bNm1u1LtfDfqCrBUEK1mRI2CRpxw8XXnihnSPTYpfqVBERCaNkJ1ZkMEePHg0sXrz4pJ9jCKk3GHT8+PEJPrdt27bAZZddZp+rW7du4NixY4FoD/lt1KiRDYoaPHhwgqHfEn0MC+vatWuCwV65c+fW4OwYwN/Kyy+/bIPPateuHfVh9MePHw80bdrU9i0XXXRRYPPmzQk+P3369OB+KfFA7+7du9v99957b4S3WmIBv8f58uWzoYTsc7788svg56pXrx5o3bp18OP8+fOfdAg2w7FTSgMsE1q7dm3gn3/+Oe3vY3D1VVddZe/lFVdcEbZB1vz8c+TIYY/L8WbNmjVheVwREUl/4uGYHQ+vId7XVVq2bBk8p3z88cftmjfcfvzxR3suD78PfjwPw7FDzZs3z67TREQkvMdtBSlOQ9++fe1NzZQpU2DlypUJPrdixYrAeeedZ59v37591AMDHJyfeOIJ254777wzcOTIkahuj/w/U6ZMsd8hgl0bNmwIdOjQIZAtW7bA7t27o71pGdrff/9tC/r8zbDAn5oFxnDr0aOHbQ8LzUuWLEnwuW+//TaQJUsW+zxflxhBL37P5syZE8EtloxKiwX/z9atWwMXXnhhoEqVKoFff/01xd+3f//+QOnSpe19zJs3b2D79u1h2Z733nsvkDlzZnvcMmXKBH766aewPK6IiKRP8XDMjofXEK/27dsXqFatmv18SPx67bXXfHmeadOmBbJmzRro0qVLwC8krLGWQkKPftdERPw/bqvdUxIOHTpkrZ32798fvI92GDfffLP7+++/bYDtr7/+GvwcPbzpT0hfZwbU0j4jmtiO/v37u7ffftu99957rlq1au7nn3+O6jbJ/2FwKgNqadNDWSoDvugDn3iYtkR25kOtWrWsT/u4cePc888/784666yobtOIESPcc889Z/9mu2g/5aGnK/sgWvjUqFHjpPsb+qRu27bNBn+LSGSH3NMiknkxtARICf6WaU/wzTff2LGAlnP58uVL03aQiMI+hAGSf/31l82iWLJkicudO3eaHldERETkZH788UdrucT5BnMaPv7447DPhaDFEq00mzVrZms2tF0KZ3vMxGsqzNDYuXOntcsUERF/nUGkwufnSJcYUstBlUGX06ZNC97/xx9/uPLly7vvvvvO5j588sknCRYzWVi8//777d+TJ092LVq0cNFGT8bGjRvboskHH3xg2y8i/4dFQWY+cHJLQI+BbtE2c+ZM16RJE/ubHThwYIL5AdzH3zP95BnKy9/3pZdemuDzGoIrkcY8JhbkOUZyUZrRcZHOuQGzok6FxAcSIDifYOjiokWLXKlSpdL0/PR+5gJ+1KhR9jFzSV566aWoB19FRCT64uGYHQ+vId6wmM811W+//WbXKB999JErUaJEWJ+DBCwS/pYvX24fP/roo5aYGc7zG+YBnnfeecGPv/zyS5sxVqFChbA9h4hIRnMwhcdtrWQl4ZlnnnFXXHGFe/DBBxPcz5v6/vvv29BJFhI4MIbq2rVr8HsYTvrhhx+6aGNo1MqVK22xhIoKBqoqNiXibOA0g2QZkL1ixYqYCFCwUElmEMGG9u3bW0VEKLKz8+TJ4zJlymT7otAAxaRJk6yygsG7IhI9hQsXTlGAAhs2bHCff/65y5Ili13QpzVAwTBHApkEKLioHj58uBs5cqQCFCIiIuILkjq5BiFAwdrDV199FfYABcmWZcuWtQAFSR0kdQ0ePDis5zezZ8+2NSAe23P99dcrQCEiEiEKUiSBgysLByxgJlasWDE3YcIEd+6555704Dt06FB35513WiYji41kPEfbZZddZkGVNm3auA4dOtj2EckSyYhorXLPPfe4Vq1auVtuucV99tlnaW6tEg6UEZOBRGZ16CJjqLPPPtu98sor7ttvv7X9lIdKEIKmlFcTfBGRyPn999+tXdP69etP+3u54Ka9ExffXAinBW0daQ1HsCNz5sxu+vTprkePHifsR0RERETSisRH2s7efvvtdv3CdczixYvd5ZdfHtbnodUt1278n4DB6tWr3U033eTCbeHChe6XX34JttwVEZHIUrunFNqzZ49VT5Dp6Nm1a1eSB2ACFC1btnTvvPOOO+ecc6yiol69ei4WTJ061d17770uR44c9u/QhU6ReMfiPifS27dvt+zi1q1bx8QCHif09Iyndzwn3e+++67tO0L3N1RNJJct9MMPP1hLF2ZqnHnmmRHachG1XeCYyjwqqiC4cD5VyzVOvZiFE85ZRLSuI1BCoILj+4wZM5T5JyIicXnMjofXkN79888/rkuXLtalAQ888IAt7vt1DUIyx9KlS60Vbug1UlpwPsaMCyrUwXXYCy+8YLNJSfYQEZHwULunMEfUS5cubQfeUKEBCkob9+3bF/yYhUSymRlYyYGP/vK0cYkF9HFctWqVy5Ytmw22YlFTsSqJd/yOs4h43XXX2ckz7Z2oLIqFAAUn3CwuesNtyX4OPflmh16zZk0LdLKvSUqRIkXs71kBCpHIoh8y2YPjxo1L0UwYsg6LFy9urRjDYc6cOa5KlSoWoChatKj1T1aAQkREYhWVv8xjypUrl52LswAt6QfXJiRVEaDgvOfFF1+0WzivQUj2ZEaoh/WUYcOGhS1AQQIYazVU1nsITDALUAEKEZHoUJAiBTjw/vrrr9b/8GQtksiapBqBBQoGLYW2ZXn77bftgOqVP9LOJRawmLls2TLLfmC4Ji1v9u/fH+3NEvEFf7dUNpHtzKwY/pZp2xYrQ+YITNCC6sYbb7Th3V42D9h38Pe5adMmuzGTIhRtYmhNJyLRQ0UEFZPXXnvtKb+WYCkXwCQ2cBxOqzFjxthCAbMo6AfNYxYsWDDNjysiIuIXzntJAqSqWdKXnTt3WmLEvHnzbMA0AabEyZxpwXpKx44dLbGS6zaCCX51yqDqlBl/XGOJiEj0KUiRAtWrV7fFBxY2T1aWQjSfRVAGX3IwpdVTaKCClkpkitAznoUE2rrEAhZCaQvDiQXbVLJkSRsWJRJPWMSnBQuzYQgasqAXK9kxDJWrW7euLS5SKcF+hlk3HoZn046K10CrOf5WQ9vDMCCb1lUsjJI5LSKRbXNAksLp4EKYC2889thjliSQWuwfHnnkEdepUycLXrKvoKKCYZIiIiKxjAQdqhCbNm0a7U2R00A3Bio1161bZzMvvYqYcCHxqnz58u7VV1+1ChtmadLuNlyoWveUKVPGgmRff/21u/rqq8P2HCIiknoKUqQQwYWkFjZp2TBz5kxbXGQhlAWI0PZJBDGmTZvmGjRoYAdG2rowqDdWMKB37dq1tpDL66QFDkOpRNKzQ4cOuc6dO7vatWtbVjH92ps3b+5iBW1eCFCwnTfccIPtQ0L3MexDHnzwQQty0j6OCovEWdoEQbmPqhCG74pI5PTr18/axw0fPjxFX79o0SLXokULCy60a9fOeiqnFucSBCiHDh0a3JY33ngjbC0QREREYgmVxSQFht4ksljnqFatmlU2lChRwpKtwjXbkuseWkdxXbN+/XpLyqJSY8CAAcnO40spkkh5rEKFCiWozGDdhjUQERGJDQpSpALZ2E899VSC+yh5ZDGR1lCvv/66e/LJJ0+oWmAQbp06day8lYAFlRexIk+ePO6jjz6yftpkehJ44WOR9Ii2alQGTZo0yY0YMcIqEWKp/QlZSLR2YmhQ1apVLUBBuXTinvXMl8CECRNs35EYJ/D0aiV7OrRFlIj4i4vpHTt2WAVD3rx5U/Q3T8tHFlloATl69OhUz8Nh4DZtnTinICjB/KvevXvHxHwdERERPwwaNMgGbnq3lBx7JXxefvllS2z02tMyTy9fvnxheWwCCCReUDVBEgaPT3IZiWbh4s092b17txs/fnzYHldERMIsIKdl9erVlEjYbeHChSd8fuzYscHPv/jiiyd8/siRI4FatWrZ588///zAJ598Eog1O3bsCNStW9e2sU2bNoHff/892pskkiKHDh0KdO7c2X53b7jhhsCPP/4YiDVLly4NZM+e3baxUqVKgYMHD57wNXv37g1ceOGF9jXPP//8CZ//9ddfI7S1Iinzxx9/2O8r/89Ili1blqKva9Kkib0/1atXD/z111+pfr6NGzcGChYsaI/FfmTx4sWpfiwREcmYYu2Yzba8//77yX7N0aNHbXu9286dO2PqNcSr48ePB7p37x5c32jfvn3g2LFjYX8eHvess84KDB06NPDvv/+G5TFZwwh9LNZx3nzzzcB///0XlscXEZHwn3uokuI00buQHtCPP/64lTsm1r59e+uvCaoSjh07luDztHNhQFOtWrWsDz0VFZMnT3axhMwUsrMZ7kmLGco5p0+fnqCFlUgsliBTPUHVgVc9QUlvLCGDh6yg33//3VWsWNH+zrJmzXrC19F7lTkxtIPp3r17gs/Rmq1w4cLW5kV/kyLRValSpRR93VtvveV69OhxwtyZ00G7KPYbW7dutX3bF198cdLzEBERkXhDxTCzIUNv4i+qJm699Vb3wgsvBKtZmBVBu9lwVE+EtpfmOWgf9fDDD1tnirRi7eKqq66y9YzQdZyWLVuq8lREJIYpSJEKgwcPtp6GSR1ACWDQpoVFxpP1h6atCwOqGbLN4E0OlintaR0pHLzpmf3tt99ar8lmzZpZu5lNmzZFe9NEEtiyZYsNbON25ZVX2iC3Ll26hOUEN5xo78KJ/tGjR21b58+ff8IFFifsntKlS7tevXqd8DgEDunDS4snWs2ISOTw98esGP6OTyX075njPsd5WlSkxsSJE+0YzAX99ddf77788ku7+BYREREJN9oiMTOP5AoCRLS7fuyxx8KywL99+3Z7bFo8MacLWbJkcddcc40Ll59//tnaY5K8pqQuEZH0I7ZW8dKJ0IMzB9aRI0daVUTo5++//36XLVu24H2Jh3txsKeCgsUOkDVAlqV3oI6lqgpOTshSZzGYwVKcoIS+XpFooGdp3759bWg01QX0Z2fhPtaqJzgxpl88Q7z5+7733nttoTPxDIoNGzbYouNnn32W7OP16dPHBuROmzYtLIPkRCRlGHLPgEWy/UaNGpXs11JFSaUk86vScnHM97Kfa926tSU1kDDAzB2qrURERNIrriXXrFljN1AlyL+Z9yTRxeDqChUquJUrV7qLL77YqtObN28elseeMmWKJWItW7bMEi7ClQB55MgR99NPPwU/JmHtlVdecQsXLlTlhIhIenIaLaTkJDp16mR9teg3nVR/wxdeeCFw2WWXBb7//vuTfn7YsGHBPo/Nmze3npuxiD7a/fr1C5x77rmBPHnyBN555x31dJSomDFjhvVlP+eccwKPP/544PDhw4FY9M8//wTuueee4N933759T/o3wxwY/qb4mho1apzwNXysvzWJZbHW39ovs2bNCtSvXz/w999/J/k19D9u0aKFvR9ZsmRJ9WwczgVatWoV3H88+uijYevTLCIiGVcsHLOZ7egd30JvrVu3TjevIR4xL/OCCy6w9/aKK65Icv3idPFz4mfr/ZwrVqwYttmBX331VaBAgQKBKlWq6DxJRCRGaSZFhLRq1cp6yjdu3PikUfq///7bygy9ksnvvvvuhK956KGH3Jtvvmn9HckuqF+/vvvjjz9crKGPNhnhZHzTAooSTfrrk2UhEglUTJCd3KhRI3fFFVdYaydar1EiHIt9XJs0aeJef/11az1FD1eqIBLvJ7ySZ7J/rr76aquQSPw1tJjr0KHDCTNuRCSyGjZs6D766KOTtnL0MLeKtghUOlE1lZrqrv3797u6deu6SZMmuTPPPNP2H+wHYq2NnYiISGpw7ku1YOLb+PHjo71pGRbXLKxD0AGiatWqNvuqSJEiaX7czz//3OZBsCbCeQxVpkuWLAlb9fvll19urZ24pgqtphARkXQoYmGTOLZv375kP7979+5A0aJFLWpERcX69euTzFw4//zz7etKlSoV+PnnnwOxbPbs2YFixYrZ9jZr1iywefPmaG+SxKktW7YE7rrrrsAZZ5wRKFKkSODdd9+N6cqCvXv3BsqXL29/G5kzZ7bKj5P54YcfAvny5bOvK1SoUGD79u0nfA1ZRmeeeaZ9Da9bJBbFc0bjL7/8Ejh48GCKvva5554LZglOmjQpVc/H3/xVV11lj5E1a9bA3LlzU/U4IiIi8XrMjofXECuoPqAy3Tt/ufPOO8PW2eH48ePB9QKqHT777LM0P+aRI0ds3SRxZc6hQ4fS/NgiIuIPVVJE0EUXXZSgTz59HEPlzJnTLVq0yJUsWTJYUUFGeGJUJZBVwNfz+UqVKsX0oGoy2tlOsi7oKclsgE6dOrlffvkl2psmcYKsmG7dutmsBgZN0weeSp5bbrklZvuL0lO3cuXKbvny5bZvoI8rg7IT27x5s6tevbr13mXgN3/7+fLlO+HryDKaMWOGzYLhdYtI5DBHpkWLFtY/+VRVg++8847NlsKQIUPcXXfdddrPx7GUwdjsH5gJRc9mBmaLiIiIhNvRo0ddy5Yt3cCBA+1juibQ4YH5meFANejEiRNdmzZtbOZIlSpV0vR4v/76q605sA7BuZKH9ZXzzz8/DFssIiLRpCBFmBdUWXSsUaOG27ZtW4LP5ciRwwY3XXPNNXZw5WtWrVp1wmOULVvWSitZtKRkkcWKmTNnuljFiUfbtm2tjRWLMrSqoSy0V69e7sCBA9HePEnHA2oZFlu4cGEr++bfP/zwgwXBaIsWqwikXHfdde777793+fPnt/LmihUrnvRrhw0b5n7++Wc70V68eLHLnTt3ko/LifigQYN83HIRORnaBnA85/iePXv2ZL/u7rvvtn937drV9ezZ87Sfa/r06XZuwDkC5wIELEhuEBEREQm3ffv2WZIk7aZpUUniYb9+/dKUCEbLrrFjx7oRI0YE76NN9BtvvOEuvPDCNG/zpZdeatdOJHWS/CkiIvFFQYowoi/+8ePH3b///nvSaoKLL77YsqorVKhg/aaprjiZggULWvYkmQbMpqD/Pr0bedxYxbwKZmv8+OOP7sEHH3QvvviiLdI+/vjjtrgjktKTZQISBQoUsP7rHTt2dFu2bLHfo1icOxF6Qs720kOe18DJOMFGKkCSwsl79+7dbT9w2WWXJfjc4cOH7XPsJ0QkeqhuomJw1qxZFjRNSp48edyYMWPcHXfc4V544YXTusBn/zF06FDXrFkzy2i86aabrLIqV65cYXoVIiIiIv8PCVUkQ7LmQPBgzpw5lniYFnv27LF1C+bosS4QWumQWqyFEDjh/Mgzbtw46zZBcqiIiMSXM+j5FO2NiCdkU3IQTW7IFMOo3n333VOeCDAk9+GHH3Yvv/yyfVyvXj331ltvJWgvFat27drlnnvuOTd69GgL3LRr185eC4vPIolRUTB8+HAbDkt7lXvvvdd+X2h3Euv4e6aE+f3337eP+V0nAEHgLjEysgnenWoBk4VOWsdQhcHFQ6y2thIJ/TvgIpeLyQsuuMBlVJxSnc7fK8dHKi8IcIB/E+SgSlFERMQP8XDMjofXEC1Lly51TZo0scQqrktmz57tihcvnqbHpDVt+/btrRr0nHPOsQpwEq4YlJ2Wcyoq1L/++mv3zDPPuCeffDJN2ygiIrF/3FYlRZiRTRkaoKDffGjkH/xAQgMU/LC++uqrEx6LA/xLL73kJk2a5DJnzmwZDtdee631c4x1l19+uWWG0rKKLHjKSHlfaIfBTAERL4uHE1qqhygxpgqH3xkqcdJDgGLjxo2ufPnyFqDg75Ugy2uvvXbSAAWtW8qUKWOv8VSxYSqnaPl2uhnZIhIeBA045iaHYzfHcjIHPafz90pbO+bV8Fx8H3/vJCUoQCEiIiJ+4Jq8Vq1aFqAgAMAaRFoCFJwLkaDVuHFjC1CUKlXKZngxoystAQpwbkRFBtdEXG+JiEgG4NPgbgkEAhs3bgzkzp070LBhw8Dff/990q85fPhwoEqVKoHMmTMH5s2bl+RjrVmzJlCoUCGbhn7uuecGJk6cGEhPeJ3PP/98IE+ePPYaGjVqFJg/f37gv//+i/amSYTxM1+8eHHgtttuC/zvf/8L5MyZMzBkyJDAH3/8EUhPpk+fHjj//PPt95nf66+++irJr/3ss8+CX1u1atXAkSNHTvn4//zzT5i3WMQ//P3y+53e/o5PZv369YFzzjnHXg9/uydz7NixQJ06dexrKlaseNrHsp07dwZKly5t33/eeecFPvjggzBtvYiISPwfs+PhNUQS5ykDBw6094xb06ZNA3/++WeaHpP1jSuvvNIe74wzzgj07NkzcPTo0VQ/3rZt2wJ33HGHrRGEbndS6ygiIhJ/x21VUviIbAJ6ym/dutVKWk6GjElKXv766y/LqKQN1MmULl3ashLq169vlRlUJNAWgpZQ6QHzBCj5ZGYFfSSZM8CgLjI3Ro4caRmlEt/+/PNPG6RGNQE9ROnzzs+eFkiPPPJIuinVpj0L23vbbbfZ7AgG3VKGnFSGz8cff2yzKvjamjVr2sdURoWixRWPSWWGhwF2IhJ5tCW877777JhcuXLlEz5PJVSnTp3cvHnz3HnnnWcVj6dTQbF69WqbTfXNN9/YPJrFixdbBqKIiIhIuP3zzz/WSpfuBqA6Ydq0aXYOkxZUkVNFQUU85zLPPvusy5QpU6ofj4rSqVOn2vZ5VeecX/E8IiKSQUQsbJJBkTG+d+/eZL+G7ACyGbzMBrLKk8rK/PfffwNPPfVU8GsrVaoU+PnnnwPpDa9v4cKFgVtvvTVw5plnWpZ5x44dA6tXr472pkmYrVu3LtC1a9fAhRdeaFk2N998s1UN8buc3vC3XLNmzeDf38MPP5xsxcOIESOsWoSvrVu3bpIVFIMHD7avueyyywKHDh3y8RWI+CMeMxqPHz9+0vv79etnr5W/7ZkzZ57WY86ePTuQJUsW+/7ixYtb1qCIiEgkxcMxOx5eQyQcOHAgULt27eB5y8iRI9P0eCtXrgysWrUqwbnSwYMHU/VYib933759gSZNmmg9QEQkDqX0uK0gRYRt3rz5pAEIFjrvv//+4OJn+/btrZ1EUmbMmGGLvnxtjhw5TnuhJJbQ9qJPnz6BXLly2espX768nUD9+uuv0d40SaX9+/cHxowZE6hcubL9TGnp1KtXr8CWLVsC6dUnn3wSbFfGIuPUqVOT/frHHnss+Pd8zz33JFuq/NtvvwWuu+66wKRJk3zYchH/xcNiQUoChBMmTAj+Xb/yyiun9fgc17ygJQsGLByIiIhEWjwcs+PhNfiNRAgSIrxrl1mzZqX6sbiOIVGS5MKiRYumqHVtcmiTS9vLNm3apOlxREQkfVC7pxjEEE7aNnmllqFo7ULLCAYGM2SK4bu0k0gKbSho/1SyZEm3d+9e+5gyzvTYNolh43379rWByR988IG79NJLXbdu3Wz4Nq+LAV9HjhyJ9mbKKdCGjHZlt9xyi7Uw6dy5s7X5euedd2yA/MCBA60cOL3hd++BBx5wN954o/vpp59seBtD5m6//fZkv4/2T/wtDxo0yP6ekytVvvjii93nn3/u7rrrLh9egYikpI3bDTfc4Fq2bGltGk+GVgbt27e3f9OeLbljdKh///3XWhd06dLFWrvdc8897qOPPrJWjyIiIiLhxjrB9ddf79avX+9y5crlPvvsM9ewYcNUPda6devssfr162fnNAzH/vvvv9O0fSTL0vbyww8/TPK8S0REMh4FKSKIhVoWcjnQsyByMiyGcrBm4f7hhx9O9vGKFCnili9fbosf9GtkIZQgCCch6RGBGvpyz5o1y/3yyy/Wl3Lfvn2uRYsWLmfOnK5169buk08+sZMjiQ0suC1atMgW7ghMMKdh586d1pP0559/dnPnznXNmjVLt71E+fu65ppr3Msvv2wf06d+1apVNkvlZLz+qWjatKnbtGmTe+yxx07ar555HMyn8GgGhUj0LF261GZFEDxI6sI7b968rnDhwhagJPiY0iAn+8DnnnvOPh4wYIAdq88+++ywbr+IiIgIWEtg/t/u3bstoEByVdmyZU/7cVivGDx4sLv22mvtHOmiiy6y5EFu2bJlO63H2rNnjyV7eJjNNX78ePfdd9/Z44qIiOAMyin0VkQOC/B16tQ55aItiyShg6d+//13lz179iS/noM+i/hUI7AgSoCDbIdzzz3XpXcM2548ebJ788037USGrPMGDRq4Ro0a2UDirFmzRnsTM9wAbIJFM2bMcLNnz7ZKnkKFClkGMrerrrrKxcOAuf79+9uCIkExMpBef/11+31Lypo1a6yaiWqSfPnynbKqqn79+rZQyfcVK1bMh1chEjkHDx60yoA//vjDXXDBBS49WrFihQXIkxtizbGY42rmzJlTdEHOcYpgJ8d8LsYJuouIiERTPByz4+E1+IGuDA8++KAlTnHdQkV7at4fqhu4VuEcBjfddJMbO3asJaWdLhK8CJpw/vTDDz+oklREJAM6mMLjtoIUUUbVQ5UqVU6aae359NNPXZMmTdy4ceMsIzO5H3qPHj3s61CiRAk3adIkV6ZMGRcP+FX9+uuvrSUUC+RUpLDIW6NGDWsLxS1//vzR3sy4RFXEzJkz7bZgwQILohUtWtQW4PjdJBsmud/h9GTDhg2uVatWdkKNO++8040YMSLZICHBx+bNm1sAh79RLghOFQThOaiYGjp0aNy8d5JxxetiwV9//WUZiLSCOt39CG0Vtm3bZhmCZDVyrBcREYm2eDhmx8NrCCeSqghOeNXfHTt2tOuX1FZqc91NYiUJHLSk5roltdcrVGSwLsHP6a233nJXXHFFqh5HRETSLwUp0oFXXnnF2sfQ4onWRkkd+O+++24LNoC+/km1j/GwgE9GNxnuLOIz74H+2fHWTobFHxbNeb20HOIEiBkdtWrVsgWlatWqJbuwLEljx0EAjfeVIBklvmeeeaarWrWqBSYICNFuLN5aV5F91KtXLwvCsLDI3+ipZk9w4s5FAd9fu3ZtN23atJOWQHu7Wu9vl4sJZlYoQCHxIL0uFtByrVy5ci5HjhwnfI6/6TvuuMO99957bvTo0XZcTQn2mczm4b1gP0kLKV2Qi4hIrEivx+x4ew3hcvjwYUuq4roYtN2lq8LpXmNs3rzZZkJ67yez+EBSVUpxvcN2cO70xhtvBLeBSlWqMLj2ERGRjOdgCo/bOkpEkTdbgR9UcicRHOC7d+9u/2boNsN1ORlJCovI3377rfXEJ2P7iSeesMVlWiXFkwIFCrj777/fWg/99ttvburUqTY/4P3337fsftpC0X+TBWQCGbTpkJNjR0Hrpp49e7rrrrvOFui9oeXMXyDr5ddff3ULFy609zPeAhQEvAhuUYlEgILyZip1kgtQkGHdoUMHG/LOYiYLmCxGnixAwd86g8QJMnoI+ihAIRLdVoLM0aHd2vfff3/C5zl2Tp8+3f5WU9rGjpZOtFdgn1q5cmX3xRdfKEAhIiIivmDxn1ZKBAZop0SyFNdzp3ONwXUKld3MtiSx0UNw4nQCFOCanNaWEyZMsO4HHlrnKkAhIiKnokqKKKPPI4vCKTmRGDVqlFVdcCLBggknIVQOJIUfLXMcunbtalEremJz0kKg47zzznPxjEVnqgC4sbDO0HLeYxajyJr1brTCypIli8tIWFz/5ptvrHWWdyOoxUJ77ty5rX0WlSjcmDURzwvpDLIfNmyYBQ94X/hdYMAtAYfkXjftr2jlwvvI1zFULrkLAgJA9HLl5Jz3mlZZIvEkPWY00pKJzEMq7mhjF3rxTHLAPffcY/+eOHGitTlIDsfbp556ymbZgPZvPEY8zIUSEZH4kh6P2fH4GtKKhCquR3bu3OkuvfRSay1ZsWLF03qMjRs3urZt21prS5CoxePQjSGl6N4QWpHKTD8SKh999NHTHrAtIiLxSe2e0iGCD4MGDbKgQlIH9KVLl9riB4ukDO5k6O6VV16Z7OOyQE9fSob1gqG+tJei2iCeF6ATBy0IVnACxqL82rVr3bFjx2xR6uqrr7aABVUYVA3wfubNmzfdZ3sQdOD3hAoaFuO8gAQno/yucfJJkIvXzUwJghKFCxfOML8TtHmhEodsavD6X3vtNXsPUhLcqFSpkr2/VJnQ5ulUnn76aQuSJTdXRiS9Sq+LBVQbHjhwwC7uPQS3b7zxRmsh+OSTT7pnnnkm2ceg+oqAxuTJk+1jEgH4nvR+DBERkfiUXo/Z8fYa0mLevHlWDXro0CFLXqSam+SylOIch0Qt2kJzHsN7yPpAmzZtUnwtyDkUawyc/xAwUeWoiIgkRUGKdIhMbE4WqKygRQQtJk6GtjvMqaCdEbMqUnIiwY+ZkkvaRhG0AC0p6Kd/qiBHPCJAsX79elu0Z0Ay/ycrnpM0ZMqUyU60eG+8Gy2OqDSgVycBoljAYvmuXbus1PeHH36wgIR3o30J1QGgioaARGgVCQPMeJ0ZDQEr/g7IEgI/T6on6D2f3N8S7zWBHe/vksfhfaV8+WRoL0ZlBl8jEu/iZbGAfef1119vf7/sE7jwTi7YsG/fPmutyAwf5j6NGTMmWIEhIiISi+LhmB0PryG1xo4da21kSTqj1RPzH2jVm1JcM5L0yPWvVz3x6quvnnZrJ1DJQYBk+PDh1jZXRETkZBSkSIeoimjQoIF7/vnnbXHkVFnyLLR7rST2799vi9VUAiTnyJEj1tqGvpN8PwuoDNYi8zOjtT06WUbJ9u3bT1jo5/8EdkL/VPjjYnGaBW7vljNnTpc1a1Z3/vnnJ/i/928CGyx2ceO9B+8/P0tuLIKTDUN5bOj/vRvBKYIR/Jy9W+I5G1SAhAZWvFv+/PlPq2w3HvH+8nvP7z//ZkGRYAUtWvgZJYffAyogGjdubBURp0KFBUFAAkO0XEsq4CgSL9LTYgGzZKiEat269QmByX79+rk+ffpYoIIB2MkFpLnI55jN/oHX/O6776aoqkpERCSa0tMxO55fw+niepFr9iFDhtjHtKKkCvx0E6K4pqS6myAH1RM8TkqSHnnPvfbTXuvoTZs2WUUq500iIiJJUZAinfrzzz9PO1jAj5DWTQyQHjlypPWVPBUWVRj4S8sbb3Gb4Mgtt9ySYdr9nA4qErZu3RoMEiQOFvAxJ3wEFjiBDCd+HgQ5aEdCMCRxcMT7mBLfeJ81klrMhOD33WvtxNyNESNG2An6qTCQvX379vazJRC1efNm27kmZ/78+ZaVRH/WL7/80v6+ROJZelksmDt3rqtXr54FKammS1xJyPGUbEKOqfy9J+Xzzz+3oCUDImmhSBbhqZIEREREYkF6OWbH+2s43WtRWjG988479jFtmki0Sul1O0l3oec8S5Yssa4BXEOmFO2BmafJLD7mTYiIiIT7uH1Wih9RIiI0QEH2PL0mOQmoWbNmsoEN2hRx8kKbicWLF1uwIrlgByclLNzOmDHDFm+pIOC56MNNCyjmNMj/QzYtC9qnWtRmgYufQ2gVhPdvsve9qglag9DHk5+rV11BVczJqjB4bgWOUmfLli3uwQcftN9zENChtdPtt99+yveUnxffO3r0aPu4WrVq7u233z5lgAJkU0+fPt2VLl1aAQqRGMI+lwxEjpnexTr7bfbLVDyxX6C/8qkCl1Rh8BjXXnutmzlzprvssssi9ApEREQkIyERjsQI2kFTGU/1BK2fU4IuCr1797aKCQIct956a/C65lS4ViWpw7tm6tKliy0uFS1aNI2vSEREJAlUUkhsevDBB6lyCeTNmzdw9OjRZL/233//DfTv3z/wv//9z76naNGigdWrV6foef78889A7969A5kyZbLv5THatm0b2Lp1a5heiUhk7dy5M9CxY8fAWWedZb/T/L9nz56BgwcPpuj7N2zYEChTpox9L7cnnngi8M8//yT7PZMmTQr88ssvYXoFIunLH3/8YX8r/D+9GT58eKBevXqBAwcOJPt1//33X2DQoEHB/UKjRo0Chw8fjth2ioiIZPRjdjy9hpTYtGlToHDhwvZas2XLFli4cGGKv3fBggWBQoUKBc9bunfvnuLvnTx5cqBgwYKBjz/+OHjf8ePHT3k9JCIikpbjdtLTICXqBgwYYJUR06ZNO+WAYzLxn3jiCeuhTdnmxo0bbQA3mRPeMOik0CKIPtzffvuta9SokWWUvvHGG5Zlet9991l/fZH0YM+ePTZngiHnDLBlzgizIdauXeueffbZU86e8DKOyC5iRswll1zi5syZ4/r372+ZRElh1gX9XGmXdqq/NxGJvN27dyeYK+SZNWuWzWXi75yZEsllEzLLolevXvYxFYgMqszos5xERETEH7RkqlixorWrLVCggLWavOGGG075fcwsvPfee12tWrWsqpyqbjoo0No5pRiqTatjOix4qDhN7npIREQkrRSkiGG0+Rk3bpz1f/SsWrXKZiAkpXr16ra4SiknC7STJ0+2/6cEC7sffvih9dCn7ROLMq+88oorXLiwtb1hAVgkFu3bt8899thjNpfjxRdftEABgQZO7ll8PJ2yZIJ2zzzzjGvYsKH9LRHkOJWmTZu6iy66yIboZvQB5SKxhv0BF/W0YQsNuhOYb9GihQUvuJhPap4TrQ3YH9BegYQALthpm8DFuoiIiEi4vfXWW3Y9TsCBtYCvvvoqRdczzJukPTHnLOjcubOd73CNkhQSFEm82LZtW/A+2k2T4EX7WhERkUjR4Ox05KeffrL+1yyMMJj3VCcqnFQwuNfrOckJCIs1BD9SggXeJ5980uYneIu3DzzwgOvZs6ctyIpEG4uHZAUxZ4K5HyhfvrxVIZE9lJJZHvxN8PX8nbCICW+3mNz3U3EROqh8//79+ruQDCuWB1guXbrULvTZvk2bNrls2bJZf2f2FVyQE8BgoPY555xzwvfu2LHDAhRc4PP3PmXKFHfzzTdH5XWIiIjE+zE7I72Gk+EahApuhmKDxMNJkyal+Pr9k08+cXXq1LH5kmPHjnVVqlQ55fd07drV5lnSwYEESRERkWgdt1VJkY6wmMoiKC1oUjKMl0HYoUOxOPlgkC8LNinB9zKEm8UbFnNYlB08eLArWLCge/rpp+2XTCQaGBYf+rtIgILfbQbYUglEsCElAYrly5e7cuXKWeVE+/btbeg5+N7kvp+2MFRtrFu3LnifAhQisYkL9PXr11uAgQDFsWPH7KKfAAUVhAT0TxagoNUB2YsEKGijSMBeAQoRERHxA+cnVHV6AQoSAxl2nVyAgiREzlM8JGVwXrN69eokAxQEQkI7LdCylpa4+fPnD+vrEREROV0KUqQjtF1iAZYe2ueff37w/pQUw3AiMmLECPf9999b8OH+++93hw8fPuX3sVBLNgbPO2PGDFsIJjjRt29f643JHAzNrJBIoeUYQQmCE/SGpwSaiiLmttAK7aabbkpRcIJgxCOPPGJ9Xlm8vPTSS22uxLnnnnvK7+XvbfTo0bYttJYSkdhHUNHr4/zQQw9ZwIEMDgKbF1988Qlfz/0cK5llUaJECTsGXnPNNVHYchEREYl3Bw4ccPXq1XMTJkywrgm0XKbdEm0mk8I1TNWqVe16ZufOncH7ScRI6ppm4cKFlnz48ssvB+8jIYPreS84IiIiEi0KUqQzLKqEVlFMnTrVTmhoNZMchlzRy7Jdu3a2yErAomTJktY2KiVY+CWDlIVgMjooIWWBeODAgRasaNmypVuxYkWaX5/IyTAbgsyifPnyWYCMVi0E7Sh/ppqBqqHkTuJDUUlEsI2gBNlHd955p9uwYYNr1qxZigIcfA0Z2VRfEKwQkdhEFeAPP/xwwv0cBzlu8XfMsSwxLtybNGli1YME6ZctW2b7HhEREZFwY0B1pUqVLIBAIiIJiZ06dUry648ePWoBhbJly9owbaxduzZFz8UQ7pUrV9paANdBHiopREREok0zKdJ5yxsyylmwHTRokA0OTmmvSoaEbt++3T6+++673ZAhQ9xll12W4uf+999/rbKC4aHMrvBwgtW9e3cbJExgRCS1+B3jJJ3fsUWLFgXvv/766+137JZbbjntIdX0o2eYHLu9XLlyWZAhJe1bOPEnQNemTZtUvRaReBdrvaE5LhKAINDART/7jcTtEzNlynTCPqdHjx42GBscJ2mTeLr7GRERkVgWa8fsjPoaQBJho0aN3N69e13u3Lnd7NmzLZkqKVwTdezY0X333Xf2MdcxnKucrBU01ztUhtIqmmt0/PPPP9Yyl8dgdqWIiEgsHbcVpEjnvvnmGzdq1Ci7URqaUvTwp10OJzV8H70sT5ZRmhIs3tL25u2337YTH3CiREsp+vxnz549VY8rGXfn9cYbb9hC4ZYtW+w+fkepdOjWrdsJi42nwi4utEKCk/mcOXO6YcOGWX/6UyETu3jx4tYybc6cOdbrVURie7GAtgcMgCRYQZUfWYpU/9HSIKmgP1VVBN/BBTwt4VJSXSUiIpKexNoxO6O+hvfff9+6EdCGtkyZMpacRaAiqesZqiteffVV+5jkQq6VqCZP6lyFdlGPPvqoBSioJNc5jYiIRIsGZ2cQZFqMGTMmGKCgbPPxxx93O3bsSPb7KOmkzJM+22SqhwYoWNA5ndgVfbrpn0llBqWn9PdngYgFnjx58rguXbpYBrvIqcqPH3zwQfudoVKCAAUBLk6uWWAkCHY6AQp+hzn5ZzA2feU9DJN77bXXUhSgAIN1W7Ro4Ro0aJBsZpOIxA4C5fPmzbOWhlRTNG7c2FWvXt199NFHJ3ztrl277HMEKKiuoA0U+x1dzIuIiEi4cY0yfPhwmx1BgKJ+/frWmSCpAAU4J+Hahf937tzZbdy48YRWtVSEkogYOhCb63JmbIUOyhYREYlVqqSIM1Q0sMB7+eWX2yJvSgYBJ25rQ39Lsk2ff/75JLNOk0OfzMmTJ1vwg3kBHh6L1lJ33HHHSQeVSsZDZjNDr5ktQYaPh6AZVROcXGfJkiVVMywIeHhtovj3c889d1q97BlEd9555wVbw5xzzjlatBRJZxmNXLAToKB9AgFQgvChrQ2pImzYsKEF9mmH8OGHHwZbIoiIiMSjWD1mZ4TXQLDggQcesMHYuO++++z6/WRtkjdv3mwJiEWLFrWPSbrgWv1kSVu0tiQxsEqVKsFqi6TaW4qIiESaKikyKBZbCAb07t37tAMUYIBw5syZ3RdffGEnQHfddZdVRZwOnpc2G7SiWrBggbXXYagxPTc5eSKAwlDSd999106cJGM5duyYZSyT/cNiIT1RvRLkunXruo8//titX7/eSppPN0BBxQQtxqjuIUDB7+KTTz7p+vXrl+LH4G+HYfQ9e/YM3sfJvQIUIrGPzERmLLGf8f6eCVCwL/jggw8SBCiYz1S5cmULUFx55ZVWWagAhYiIiPiBKgcSJwhQcF3BOQudDRIHKEj469u3rytVqpRr27ZtcMA1yVNJVZWTTEV1BddYBDM8ClCIiEh6okqKOESGBu2fvEVV2ugwjKtixYop+v5ffvnFFnbHjx9v5agELViwpX1TarLavcVj2vWQMb969erg/ZStUllBxjyLQ1oIjk/8HpHBPHHiRGulsm/fvuDnSpQoYT9/+sGT6ZxazJh4+umn3eHDh+1jWjTRVz5fvnyn9TgsXBKkYIAuvVz1OymSPjIaCagTbODinlZv/J/9AKju8/6NcePGWSCU4yVtEPj6iy66KCrbLSIiktGO2RntNfz888/upptusmpvrq3ffPNNd8stt5zwdST40c7p+++/t49pBcU5TGibWlpE0bqW1926devg/VxnkQiYHt4PERHJWA5qcLaAQda0rVm5cqUNI2YxOKW+/vpra5Pz2Wef2cfXXnutW758eZoXbcmSJ1jx1ltvuZ9++il4f6FChaxygwFiLDRJ+scsCX7O/Ly/++674P1kMxOU4PeROQ/hCATwu0qLMa9VWUqDcmQn8XsYGsxgWDazKEQk/SwWcDrDvoYB9w899JAd+7iQZ74EAUvv750g/KBBg+xjjjcELJRpKCIiGUUsHLMz0muguwDdDghU5MiRw6odErdUJqGPBCmS+kDnAdpAnWwwNtf0dC3IlSuXtXfWOYyIiMQ6BSnE/Pnnn65Dhw42LJQTpNPNKufX47333rNKiq5du9rJk9fnm1ZNXs/+1OAxaMnDohKtn7wMeFx11VV2MseN3pqUsEr6CIp9/vnn1l6FG+3DPPyuNG3a1AITtWrVOmnv1ZQiQ5oTdOaneGXPzLegVVTz5s2tvVhK/Pbbb1bJQ1CCv4+UDtMWkdheLKC14KhRo2zgPYsBVBey32jTpo2bOnWqfc1TTz1l7RRULSUiIhlJrB2z4/k1cG1y++2323UusyW4PipYsGCCr2GGI4kVvBauYZhT0b9/f3t93vUKVehcH4Nr8Nq1a1vCV7t27XSdLCIiMU9BCkmAntuhAQqGa9GLO6UnNSzuwJtz8c4777j777/fslUpSc2aNWuato/emfQLJ2Axf/58a8Hh4bHr1KljAQsWnHLmzJmm55Lw4sSZE3BOuhk4feDAgeDnWBi84YYbLDBBSXM4fk8YBjd06FBrS3bjjTe6efPmpfrx+L2m3dSuXbtsIZPgiYikr8UCqiXOPvvsBIFPKiZeeukl6+XMdrGfogXCsmXL7OtokxDaIkFERCSjSC8L/On9NYwZM8aSJkjMq1GjhiXlZc+e/YSv4/NUVpA0MXr0aFeuXLng5z788ENrV3nddde5xYsXR/gViIiIhIeCFJKkb7/91jLQr7jiCluwOdnJ0qk0atTIzZw50/5NH+/u3btb0CIcmej88jIXYNasWVYBwjyNULSd8qosOIlLada8hAe7DPqpetUSDEQP3Y1cfPHFFkzi50NwKTW/XycbNMeQOQbMeb8PzK+gjQsn/6eTCb1p0yZ39dVXBz9mWC6/w2oxJpI+FwsIlhPcHjt2rF3EJ94f0NeZfRIVU2wj1YE1a9aM6DaKiIjEivSwwJ+eXwOJEo899pglVYGkCJKsvORAqr+ZpUf7SeZTeO2eLr30Ukvw4vu961taRFF5wRBt5lV41RUiIiLpiYIUkiQCAMx+YFA1w0JT29aHIV4DBw4MzhrgF+2BBx6wgAUL1eHASRqzMVgMJ2jBv0NRVUE7KF4LN4Iv6ssZXvysCUrQxumLL76wGSVUMYQqU6ZMMHBUvnx5O8EOF07qe/Xq5fbv328fFyhQwD7mhP90f9bdunVzL7/8sv3eN27cOGzbKJLRRWuxgPYJhQsXtuAlxx4qJthneBf9S5cutb919h/sOziWFCtWLGLbJyIiEmtieYE/vb8GqjupIKdqAv369bNgBAkU3uyshx9+2P3666+ud+/e9vnQuY3cx+w+WlZ6Nm7caAlWak8pIiLplYIUkiwyOI4dOxZsncQJFdmllJOeTmUC5am0fhowYICdWIEMVTI9/EBbHq+1EG1+QudYgEVrKi0IWDA4mf+rPdTpYZGPYARBCW4rVqyw349QzJegF6rXgouqBr8w1LZ9+/ZW+fPEE09Y/1Vau6TG448/bgNzQwfpikj6Xixgn/Xss8/agEmOa1RdderUyYZPMoOC+wie0tJNxwMREcnoYnWBP72/BhIm6DZAlTlVE6+//rpr2bJlcO4E1d8ke4H5FAQiaIvr4XPVqlWz9spc82pWnoiIxAsFKeS0kLXBgC6GDrOwk5qKB2ZKPPPMM/Y4LF5jz549dlJG4CLcbZkYGsZJoLeYzsI6i1WJFSpUKFhpQXsoMlFi5WQ22gjy0P5o1apVwfeR1iiJ0bLJC/p4//fmk4QLu6IlS5bYAiMn6AyNAwuM9GNlpsXpVmjwWrJkyeJy5coVnGmxcuVKe3wRiY/FAloksG+nwou5E9OnT7cgJJmLaNq0qXvzzTctuCoiIpLRxeICf3p/DVxPkbi1detWu27iupjrDbazb9++NieL5D7ORZ566inXtWtX+xqubbj+9q6FSPzjmkdVnyIiEk8UpJDTQgYqWeaUoHJilFrer5NXjkoJa58+fSwLngHbtOih/78feG56jnuL7dyo7jjZr3ju3LktgyXxLUeOHHFZSktJMaXCiW87d+486dfzXniBHW7Ma/Br9gc7KX7vCE5s2LDB7rvqqqts+9Lys5g4caLr0KGDBcy8kmsRiY/FAp6H/X3JkiVt4D1tndhvkYX4yCOPWPaiN69iyJAhYW1BJyIikp7F2gJ/en8NixYtsoSIAwcOWHIcMxW5lkG7du2C5yS33nqre+6551y+fPnchAkTrNozb9687scff0x1lbiIiEh6oCCFnDaqHkIX6VnsYXGbk67ULhZTWcHQMAYfg+x7skUIWJxswGm48QcQWm1BVQdZt0kh84WFLqot+D9tjC6//HLrDcr/s2bNGnNBDP6EqYigLJjXxv8ZskZGjxeM2LdvX5Lfz8+8RIkSwYBEhQoVfAskhWLOBWXOzDb5888/7T6yiyiL5veD+SJpsXbtWnfNNdfYAiaZSl6PehFJ/4sFDz74oAXX2V99+eWX9py0GWRQJf8nqMr8Ga8iS0RERGJvgT+9vwaSomhLyww/qs2p/r7kkkuC14vbtm2zKk/OT0qXLm3Xlzh69Ki7/vrr3e23327nNLpOERGReKYghaQJJ06lSpWydjkjR45M00IPC+gsRLMg/c033wTvr1q1qlu8eHHEF/2ZxxG6gO/dKM891Z8DJ5Be0MILXHj/v/TSS+3zBGK8W+KPuZ111lkJHpPSX2Y+8J6f7MbnuNHKygtCJP4/bYxOhaGxiStHCMaEa8j56WrWrJm1ZQElzQQmGDTHjis1aPe1ZcuWYO9X8PvG73GsBZZE4k0kFwvYT5N9yMKAZ+zYse7555+3aixavDEribYLIiIiEpsL/On5NXAu8vTTT9sNBBto6US7SbaNmXoezknuvvtuSwb79NNPEzyGrlFERCQjOKgghaQFi94MGGYRiIx0b+GYBfXUts3gV42MV9r6TJ061d11113BEzjvc2TF+tVW6FQIBHz33XfBoMXmzZstAOAFA7xqkFh1/vnnBwMm3GjR5AUjKDmOVj92frZUs0yZMsWCXWwXCFDxu8B9BKzScpLOYzF4jkoXAhVkMIlIfC8WcPwgM5EMxZkzZ1o1IPNnZs+e7cqUKRORbRAREUlvor3An95fA3MR7733XmtXi0cffdQSvzgn4VwEzPvzqsJpr0sbqGuvvdZ98sknds0mIiKSkRxUkELCgdLV0B6ZtGoiiEAAI3/+/Kl+XKoCqBKgnRJWrFjhypcvb7MiyLC/4447LGARS9kltCQiWJFUNQMtlZKqhOB9TAne68SVF96NiofQyo3E1RyxdMLLbuXrr7+2zCFu27dvt/spZ6YXaziEBswY3M7vC2XUAwcOtBZWIhL/iwX0ee7SpUuw+o8AhXdcERERkRMpSJF6+/fvt/mNJEhxHUJgYuHChdZWGJyDkBhWo0YNN3r06OD30Z2AGY0iIiIZ0UEFKSTcaIdUuHDhYBsdBpaGy9tvv+06duyYoFqBoWKUzhKwKFeuXEwFLFKzoE7WjRe4YAEfZNhwIksQIlOmTOl+uCs/PwJYBCYYAueh/UqjRo1c27Zt3Y033pim52CnxqyTJUuWWIsn7z07duyYO+ecc9L8GkQkNhcL2L88++yzdlxgjg4zKXr06GFB0Xr16tl+h2oqERERSZqCFKlDtTatJKm2JzmsevXqNiSb8xCudZ588km7Zq1Tp47NOWRGoGZNiIiIOAUpxB+rV692ixYtsox4D4vFtNZI6wkii/dz5861haYZM2bYLAsP2SrVqlVL0+OLP6iK8dorHT9+3Co7uI+T8ptvvtkWFDmhD9dJOjNFKJk+cOCAZU2r77xIxlgsoJ0CQQoCkwQl+PtHp06dbEh24nk/IiIiciIFKU4fbYlJuPr1119d3rx5rXUxH3PNc91117n33nvPqihYWqGd7W233abKbhERkf+fghQSsZJXFoxpU7R06VKbfRAOtEgiM4WAxcqVK21WhJcxP3ToUDtBJCO/SpUqylCJMCpCKGmmpyrBJHYytHPyZom8+uqrtvO56aabLKsoHPNRCISxKOmhByyDyuvWrZuuK2xE4kUkFgueeuopq6IKxfHgoYce0n5AREQkhRSkOD3Tp093rVq1soQ6quBnzZplM7C6du3qRo4caS2Qf/jhByVLiIiIJEFBCokI2j7RjolWRVRZeAvVZNSH60Qt8ewBsld++eUX+5g2SQQqCFhwYyZBtAZvxzPKmjkhnz9/vgUMCBx4CFDxe8CA7nCjmoYWYwSl1qxZYz3nRSTjLRYQqGbgpNcSkH3/m2++6W699dawP5eIiEg8U5AiZVgmGTZsmHvkkUcSVHUOHjw4mFR31113uXbt2lkyla5BRURE0nbc1pFU0oSgwLfffutmzpwZPDEjkEA/TuYP7NmzJ83PETqngYAFJ4utW7e2DBYyWlg454Txmmuusd6gknYEgXhvQ4fTPvzww27OnDkWoMiZM6dr2bKlmzhxotu7d29YAxS0c/LQ75U2XwUKFLC+riKSMmT28XfDYj5D5ZcvX57s10+bNs1dffXV9vXMG6KSLVb8+eef1tbNC1DQXo4hlQpQiIiIZKzzlUgh4e7ee+9NEKAAVf4eqvnfffddO0dRgEJERCTtdDSVNKNigiHXns8++8ytXbvWvf/++zYUOpzI2m/RooUbP368++mnn9z69evdCy+84Bo2bGithQhUhLYloiT3/vvvtwU4Bn+rcOhEvCe0a+Iku3v37q548eIud+7ctgjo4eSbDKHhw4fbz3bXrl2WxUzpc7Zs2cKyHURUmzRpYhcqzJvwjB492n3//feufv36YXkekXhHn2QGSvfp08etWrXKgsm0RiOgeDK0b2O/SiYgFXH8HXIjAB1tZCnS4/nHH3+0j4sUKWILGNdff320N01EREQieL4SKVyTkLAxbty44H1Uc5IkwbUPCXkiIiISfmr3JL4NF9uyZYu78847g/dR7cCA7WbNmvnSs/PYsWOWcZs9e3b7+NNPP3W1atVK8DUXXXSRVXlwotm0aVMbdJZR0aKJnwkzP/bt25fgc/R393q9Rwq7Ii5O1q1bZxctDNwWkdNHJiL7thEjRiRok0fA9rHHHjvh62nZx76Tlm4eggDsrwkSngxBYG6h5Zs8R7jbLoRmVdLubdGiRcF9vIiIiKTfdk+nc74SqfMOkuCuvPJKS5IAgQm2j+sSKvo1d0JERMS/cw8dZcUXLHCFZrpu2rTJPfvss7b4TZCAk79wO+ecc+zm4aSXag7aQX311VdWAcCgbwY+c6NlkRekoMqCbBkvgEHmbjwMYqVtE0EI70ZghtJlUFY9d+5c+zcn3CwA8n7Url3b1axZ0wI6fqGV1BtvvGFtwlgYpUSa95sFURYg/ZhvIZIREKz9+uuvXa9evYL38ffF3/UXX3xx0u/hfjIZQ5HJ+MEHHyT5PIMGDXJPP/208xMVVeybwWyaFStWJNjHi4iISMY4X4nEeQfGjBkTDFAUKlTIrh+p1ocCFCIiIv7SkVYiIkeOHHZiuWPHjgQBigkTJtjiU+XKlcMeFMiaNWuwbYl3Mkz7EhbrOSkOnV9Bi6oBAwYEP2ahnO3iRnsRhqLRrz3WUH3AibTXVot5Dl26dLHWKNwSV0jQmskLUlxxxRUWFKBFFiXNBC0i2ef18ccft0XIGTNmBH9GlSpVitg2iMSj3377zTL9CMKG4mOCxSeze/fuk3499yeFRYXQwIaX0RhO7K9mz57t5s2bZ/uLeAgci4iIyOmfr0TivAN9+/Z1hw8ftoStm2++OeyPLyIiIklTkEIigqz8p556KsF9tBehnJdhqEuXLrVAhZ/IwGVBPnRuhYdMGfqxE8AgkMFiv1d9gKpVqwaDFAxM4wTWC2Jw4/sJxPA6qcLIlClT2Lab0mf6tP7666/WQssLQHDjY9pnEewBmT60SvJ6pZKRVKxYMasO4Rb6HvO5jh07Or/xXlKlsnHjxmBvVwZi8x6yDTfeeKPv2yAi4cU+Lpz7uaRQ3ZWR2/KJiIhI5M47zjzzTPf888/7/jwiIiJyIgUpJGoITtx22222AB+aQf/ee+9ZZk2jRo0icjKKKlWq2A1UJjCoOTQQwDBpD4vt3u1kGDh9ww032L+nTJniXnrpJQteXHzxxcH/04uNaoIjR45YtQNtqEL/z7a89tpr9hhkD9M6i/fkZNi+0EDMyy+/bFlIBE+olvBKlKOFYNQjjzxiVR9kQ7Nd6NatW1S3SyQe0TuZC+w9e/YkuJ+PL7vsspN+D/efzteLiIiIRPp8RUREROKbghQSNZyAvv7665b177XxYCH7iSeesDJfFumpboi0zJkz23wGbifToUMHV7FixQQVDdu2bbPgAjeCEB4+l1Qf+OTkypUr+G/emxIlSti/8+fPH2xB5VVxcF+o++67z0UL/eMJkpx99tluyJAhdh+VJQzgJmBCtYmI+IdAJbN1FixYEGyjxj6Wj7t27XrS72F/xue7d+8evI+5PdwvIiIiEgvnKyIiIhLfFKSQqKPlj4e5EbfeequbPn26tTHyLFq0yCouqLzIly+fi6bLL7/cbkkh0OJp3ry5tVtKXCnBRHuCISzmh1ZY8H9uuXPnTvCYa9ascbGKCwrvZ8jMEUqkaedEey+vimPo0KFR3kqRjIOeza1bt7YWb+XLl3cvvPCCVTS1bdvWPn/33XfbPoYhlF5VEzN6hg8f7ho2bGgVYLS6e/XVV6P8SkRERCSjnq+IiIhIxqIghcQU2jv179/fPfPMMwmGpLLwzYBlFvcZwB0aDIi1Yaqh2+NVO8SjadOmucGDB1tbrj59+th91apVc506dbKFzki16hKRhO644w6bYUOgkOHXZcqUcXPmzAkOpySYGBocpt3e5MmT3ZNPPmkt2ah6+uCDD4IVXCIiIiKRPl8RERGRjOWMQGjat0iMIqP37bffds8995wrW7as3bd8+XJ3yy23uJYtWwZbC4k//vnnH7dkyRLLcsqaNavd98Ybb7h77rnHBpF//fXX0d5EEYmigwcP2qwdAskXXHBBtDdHRERE4viYHQ+vQUREJKM4mMLj9v9LpRSJYcyBYCC1F6DAzJkz3c8//5xgcDTmz5/vDhw4EIWtjF8M8q5du7b7+OOPg/fdfPPNNlMk9D4RERERERERERGR06F2T5JuMWCbwa7McPD8/vvvrl69etZyaefOnTacW1KOPrBUrXzzzTdWKeG1rqJfPcEgop6eSy65RD1jRUREREREREREJE3U7kniCgOmaf9Ev/V169YF7+/atavbuHGj9VuvVatWVLcxVvz111/WMuuss85ylStXtvv+/vtvly1bNnf06FG3du1aV7JkSbv/0KFD7rzzznNnnnlmlLdaRGKR2i6IiIikD/FwzI6H1yAiIpJRHFS7J8mIGLi2fv16t3Tp0gT305Lo008/tdkKns2bN7tHHnnEzZs3z2UE7AwIQnhee+01d8MNN9iQcg/Drh988EH37LPPuksvvTR4P3MoFKAQERERERERERGRcFO7J4lLROhCzZgxw3322WeuUqVKwfsITgwdOtQqBurUqRO8/91333V58+a1gMc555zj0qPjx49bhYSnadOm9h7Mnj3b2mGhatWq1g6L1xpq4MCBEd9eERERERERERERyZgUpJAMoXjx4nYLVapUKdeuXTtXoUKF4H1UWrRo0cL+v3XrVlegQAG7/+uvv3Y//PCDK1++vCtYsKCLpWAE25o5c2b7mJZWjRs3Dm5/aNDmv//+s4CMF6QoXbq0++WXX4JzJ0REREREREREREQiTe2eJMNiGDQtj+69994Eg7erVavmChcu7PLlyxe8f9KkSa558+ZuxIgRwftY9B88eLBVKPBvv/u3EYAI1bNnT5clSxY3atSo4H1URnz//fdu27ZtCYZc9+nTx/3888/W3spDcEIBChEREREREREREYkmVVKIhMiRI4ebP3/+CfdTUVGxYkV37bXXBu8jENCrVy+rYvjzzz+D9zPjYdGiRa5z587utttus/uobKCKIU+ePPYcXnCAufWhgQK+j+enYqNRo0YJBszg8OHDFpjw5kQcO3bMbdq0Kfj92bNnt8e4+uqrEwyjiaXqDxERERERERERERGPKilEUqB79+7u888/t1ZQHqon7rrrLptnERpoWLlypQ3p/u2334L37dixwwIcXrDgr7/+coUKFbIAB4EHDwGGAQMGuI8++ih4H8GG888/32XLls39+uuvwfupANmyZYsbM2bMCRUiOXPmVJWEiIiIiIiIiIiIxDxVUoikUpEiRawNVGK9e/d2zZo1SzDrgtZLl19+uQUcCB4QnCCI8ffff1sbpquuusq+rnLlyu6+++5zN9xwQ4LH3Lt3b3DuhIfHExEREREREREREUnPzgjQb0ZEIuLff/91Z555ZnAY9yWXXOJy587tzjpL8UIRSb+8tnQEZENbzYmIiEhsiYdjdjy8BhERkYziYAqP21oZFYkgL0CBcuXKRXVbRETCxct34ORDREREYpd3rE7PuYo67xAREYm/cw8FKURERCRNDh06ZP/PmzdvtDdFREREUnjsJqsxPdJ5h4iISPyde6jdk4iIiKTJf//953755ReXNWtWm7sTzowLFiB27typdg4nofcnaXpvkqb3Jnl6f5Km9yY+3h8u/1kkyJUrl/vf//7n0iO/zjvS088xPdN7HBl6nyND73Nk6H1O3+9xSs89VEkhIiIiacKJRp48eXx7fE6SdDKaNL0/SdN7kzS9N8nT+5M0vTfp//1JrxUUkTrvSC8/x/RO73Fk6H2ODL3PkaH3Of2+xyk590ifqRMiIiIiIiIiIiIiIpLuKUghIiIiIiIiIiIiIiJRoSCFiIiIxKRMmTK5Pn362P/lRHp/kqb3Jml6b5Kn9ydpem+Sp/cnPujn6D+9x5Gh9zky9D5Hht7njPEea3C2iIiIiIiIiIiIiIhEhSopREREREREREREREQkKhSkEBERERERERERERGRqFCQQkREREREREREREREokJBChERERERERERERERiQoFKURERCQmjRw50hUoUMCde+65rkKFCm758uXR3qSYsGTJEnfzzTe7XLlyuTPOOMN98MEH0d6kmDFo0CB33XXXuaxZs7ocOXK4Jk2auM2bN0d7s2LCK6+84kqVKuUuuOACu1WsWNF9/PHH0d6smDR48GD72+revXu0NyUm9O3b196P0NvVV18d7c2KGT///LO766673MUXX+wyZ87sSpYs6VauXBntzZIwnl9MmzbNfuf5en6+H330UcS2NSO8x2PHjnVVq1Z12bNnt1vt2rV1zufzufKUKVNsX855koT/fT5w4IDr0qWLu/zyy12mTJnclVdeqf2GD+/zCy+84K666io79ubNm9c9+OCD7ujRoxHb3oxwDblo0SJ3zTXX2O9xkSJF3Pjx433dRgUpREREJOZMnTrV9ejRw/Xp08etWrXKlS5d2tWtW9ft3bvXZXR//vmnvR+cyEtCixcvtovCL7/80n3yySfun3/+cXXq1LH3LKPLkyePLb5//fXXtoBas2ZN17hxY7d+/fpob1pMWbFihRszZowFdOT/KV68uNu1a1fwtnTp0mhvUkz4/fffXeXKld3ZZ59tQb8NGza44cOH20KrxMf5xeeff+5atGjh2rVr51avXm2Luty+/fbbiG97vL7HLILxHi9cuNB98cUXttjIsZsAoIT/XHnbtm3u4YcftsCQhP99PnbsmLvxxhvtfZ4+fbolyxCIy507d8S3PZ7f58mTJ7vHHnvMvn7jxo1u3Lhx9hiPP/54xLc9Xq8ht27d6ho2bOhq1Kjh1qxZY8k77du3d3PnzvVvIwMiIiIiMaZ8+fKBLl26BD/+999/A7ly5QoMGjQoqtsVaziVe//996O9GTFr79699h4tXrw42psSk7Jnzx547bXXor0ZMePQoUOBK664IvDJJ58EqlevHujWrVu0Nykm9OnTJ1C6dOlob0ZMevTRRwNVqlSJ9maIj+cXt99+e6Bhw4YJ7qtQoUKgY8eOvm9rRj2HO378eCBr1qyBCRMm+LiVGfN95r2tVKmSHftbt24daNy4cYS2NuO8z6+88kqgUKFCgWPHjkVwKzPe+8zX1qxZM8F9PXr0CFSuXNn3bc0o15CPPPJIoHjx4gnuu+OOOwJ169b1bbtUSSEiIiIxhQwksr0p9/f873//s4/JsBNJqT/++MP+f9FFF0V7U2LKv//+a60eyKii7ZP8H6pwyBgL3ffI//n++++tPUChQoVcy5Yt3Y4dO6K9STFhxowZ7tprr3XNmjWzFnNly5a1jFmJn/ML7k+8TyC7V+cj/p3DHTlyxCohdewO//vcr18/21dRGST+vM8cFzi34pwiZ86crkSJEm7gwIF27iXhe58rVapk3+O1hNqyZYu11GrQoEHEtjvefRGF499Zvj2yiIiISCr89ttvdiLPiX0oPt60aVPUtkvSl//++8/KkmnFwgWiOLdu3Tq7cKZf7/nnn+/ef/99V6xYsWhvVkwgaEN7Ado9SUL0haYHMX2fafX09NNPW5sQ2t0w/yUjY1GEeS+0qKDFBL8/DzzwgDvnnHNc69ato715Eobzi927d5/067lf/DmHe/TRRy0oqoBxeN9n2vTREoe2LeLf+8xx4dNPP7WAPovmP/zwg7vvvvss8EZrIgnP+3znnXfa91WpUoUOQe748eOuU6dOavcURkkd/w4ePOj++usvmwUSbgpSiIiIiEjcIYONRVT1zv9/WGRmcYIKE/oks4jKHI+MHqjYuXOn69atm80xYVijJFS/fv3gv5nVQdAif/787p133snw2bgEQ6mkIEsWVFKw3xk9erSCFCKpwOwkgsbMqdD+OHwOHTrkWrVqZZVel1xySbQ3J+6PC1SrvPrqq+7MM8905cqVs/kqQ4cOVZAijNhHcOwdNWqUnZcQDOJc7plnnnG9e/eO9uZJKilIISIiIjGFiydO6vfs2ZPgfj6+7LLLorZdkn507drVzZo1yy1ZssQGRsv/Ibu7SJEi9m8umsn6fvHFF21QdEZGuwAGM15zzTXB+8jo4/dnxIgR7u+//7Z9kvyfbNmyuSuvvNIWBDK6yy+//IQgX9GiRd27774btW2S8J5fcL/ORyJzDjds2DALUsyfP98CohK+9/nHH3+0Qc4333xzgsV0nHXWWTbcuXDhwhHY8vj/fea4cPbZZyc4b+C4QFY6bY04F5O0v88EIgi8McgZJUuWtDamHTp0cE888YS1i5K0Ser4d8EFF/hSRQH91ERERCSmcPLOAuqCBQsSXEjxsfrnS3Io9yZAQRsjSu0LFiwY7U2KafxdsQCf0dWqVctaYVFl4t3IjqdVA/9WgCKhw4cP24IXCzEZHe3kWNwL9d1331mlicTH+QX3h349qLrS+Uh4z+GeffZZy4CeM2eO7X8lvO/z1VdffcJxrlGjRq5GjRr277x580b4FcTv7zPHBYL4XhDIOy5wzFSAInzvM7NrEgcivPO1/5sLLWkVleOfbyO5RURERFJpypQpgUyZMgXGjx8f2LBhQ6BDhw6BbNmyBXbv3h3I6A4dOhRYvXq13TiVe+655+zf27dvD2R0nTt3Dlx44YWBRYsWBXbt2hW8HTlyJJDRPfbYY4HFixcHtm7dGli7dq19fMYZZwTmzZsX7U2LSdWrVw9069Yt2psREx566CH7m+J3Z9myZYHatWsHLrnkksDevXsDGd3y5csDZ511VmDAgAGB77//PvDWW28FzjvvvMCbb74Z7U2TVJ5ftGrVyvaPHn7n+RkPGzYssHHjxkCfPn0CZ599dmDdunVRfBXx9R4PHjw4cM455wSmT5+e4NjN+Y6E731OrHXr1oHGjRtHcIszxvu8Y8eOQNasWQNdu3YNbN68OTBr1qxAjhw5Av3794/iq4i/95l9Me/z22+/HdiyZYudzxYuXDhw++23R/FVpO9ryMcee8zeZw/vK+c0PXv2tOPfyJEjA2eeeWZgzpw5vm2jghQiIiISk15++eVAvnz57MK1fPnygS+//DLamxQTFi5caCeWiW9cbGZ0J3tfuL3xxhuBjO6ee+4J5M+f3/6eLr300kCtWrUUoEiGghT/zx133BG4/PLL7Xcnd+7c9vEPP/wQ7c2KGTNnzgyUKFHCFleuvvrqwKuvvhrtTZI0nF/wt5/4ePrOO+8ErrzySvv64sWLB2bPnh2FrY7f95hj08mO3SxCSnh/l0MpSOHf+/z5558HKlSoYMeFQoUKWSD7+PHjUdjy+H2f//nnn0Dfvn0tMHHuuecG8ubNG7jvvvsCv//+e5S2Pv1fQ7Zu3dre58TfU6ZMGfuZ8Lvs9zXVGfzHvzoNERERERERERERERGRk9NMChERERERERERERERiQoFKUREREREREREREREJCoUpBARERERERERERERkahQkEJERERERERERERERKJCQQoREREREREREREREYkKBSlERERERERERERERCQqFKQQEREREREREREREZGoUJBCRERERERERERERESiQkEKEREREZF07pVXXnH58uVzWbJkcbfccov79ddfT/k9mzdvdpdddpk7dOiQL9t0xhlnuA8++MD+/dtvv7kcOXK4n376yZfnEhERkegJPebHwuNEw7Zt22z716xZE+1NEUmXFKQQEREREUnH3nvvPdezZ0/38ssvu5UrV1rQ4bbbbjvl9/Xq1cvdf//9LmvWrL5v4yWXXOLuvvtu16dPH9+fS0REJN7s3r3bjtmFChVymTJlcnnz5nU333yzW7BggUuP+vbt68qUKXPC/bt27XL169ePyjaJSHQpSCEiIiIiko4NGDDAde3a1TVu3NgVLVrUTZgwwS1dutRuSdmxY4ebNWuWa9OmTZJf8++//7r//vsvbNvZtm1b99Zbb7n9+/eH7TFFRETiHRn65cqVc59++qkbOnSoW7dunZszZ46rUaOG69Kli4snVHgShIk1//zzT7Q3QSTuKUghIiIiIpJO/f77727VqlWuYcOGwfty5crlSpQo4ebPn5/k973zzjuudOnSLnfu3MH7xo8f77Jly+ZmzJjhihUrZosEBDNWrFjhbrzxRquGuPDCC1316tXtOUN9//33rlq1au7cc8+17/3kk09OeM7ixYvbtr3//vthe/0iIiLx7r777rM2QsuXL3e33nqru/LKK+2Y2qNHD/fll18m2WrowIEDdt+iRYvsY/7Px3PnznVly5Z1mTNndjVr1nR79+51H3/8sSU6XHDBBe7OO+90R44cCT5OgQIF3AsvvJBgm6iCoBoiKY8++qht53nnnWfVH7179w4u9HO+8fTTT7tvvvnGtocb9yVu91SpUiV7nFC0szz77LPdkiVL7OO///7bPfzww3Y+Q8vLChUqBF9vUngO2mRSscF7wPZNnz49+HnvvZw6daqd83BuQ5IFiRv9+vVzefLksXMk3gOCRYlt2rTJtp3v43xs8eLFyW6PiPwfBSlERERERNKpLVu22P+LFCmS4P4rrrgi+LmT+eyzz9y11157wv0sSgwZMsS99tprbv369TZHgvZRrVu3tsoMFkN47AYNGgRnWXDRzhyMc845x3311Vdu9OjRJywqeMqXL2/PLSIiIqdG9SEL4VRMsAifGMkFp4vgwogRI9znn3/udu7c6W6//XYLQkyePNnNnj3bzZs3z1pIpgWtJAk8bNiwwb344otu7Nix7vnnn7fP3XHHHe6hhx6yQAvtnbhxX2ItW7Z0U6ZMcYFAIHgfgQMSHqpWrWofU0n6xRdf2NetXbvWNWvWzNWrV8+SJ5JD0ISAD4ESnqd58+Zu48aNCb7msccec926dbP769ata69j+PDhbtiwYfZc3NeoUaMTnosWnLy+1atXu4oVK1pbrn379qXp/RTJCBSkEBERERFJp7xMRwIH559/fvD24YcfJsiCTGz79u12kZ8YWY6jRo2yDMCrrrrKMiDJsrzrrrvc1VdfbVmWr776qj22lxlIxQZZgxMnTrTqDCoqBg4ceNLn5Tl5bhERETm1H374wRbpOQaHS//+/V3lypWtmqJdu3Z2PKeygI9Z/Geu1cKFC9P0HE8++aSdS1CFwSI91Q5UcYLqBc5VzjrrLGvvxI37EiN48ssvvyRoX0kgpUWLFlbpQLXnG2+84aZNm2bbXbhwYXueKlWq2P3JIZjRvn17q/Z45plnLHEjcWCme/fuloRRsGBBd/nll1twgiQMAhqcI5HUQTVF4ioTAicEQDhn4n2lCnXcuHFpej9FMoKzor0BIiIiIiKSOgQRQGuD0GxKMv+8z53MX3/9ZW0IEqMaolSpUgnu27Nnjy028By0hGBWBUEKFgdAhiEDPEODHmQOngyLEMkFT0REROT/Ca0iCJfQ43zOnDmDLZlC76O1VFpQ8fDSSy+5H3/80R0+fNgdP37cWkmdjksvvdTVqVPHWi0RhNi6datVTYwZM8Y+z2wOzkkINISiBdTFF1+c7GMnPk/h49BWWQitOD148KAFTAjuhOJjqjGSemwCMTxO4ioNETmRghQiIiIiIumUt6jAhX9oy6ejR48mWHBIjPkSzLM4WRCB7MRQtHqiTQFtDvLnz299mLkAP3bsWKraVrDoICIiIqdGpSTHZSoWk/O///3vhKBGUsOemeng4bFDP/buo5Vj6GMnDpYkN0iaQAItlJg7QUskKglox0SrpNPF4zzwwANW5UAVRcmSJe0Ggh9nnnmm+/rrr+3/oajUSKuTtdcSEf+o3ZOIiIiISDqVPXt2V65cuQRzHrhoZ4GAYddJoaUDfaJTYtmyZbZAwBwK+kcTpPjtt9+Cn6edAT2t6Snt8QZ5Jvbtt9/ac4uIiMipXXTRRbbQP3LkSPfnn3+e8HmGY8NLAAg9FieuDEgtHjv0cakqoKohKcy6IKnhiSeesCoCAi2JWz1SuUkVxKk0btzYEi+Yy0GQgqCFh/MJHoMqTxI1Qm+0kEpO4vMUPuZ8Jikkg1AxyjlRKD4uVqxYko9NBQlBlOQeW0T+j4IUIiIiIiLpGIsA3Bh0yfBG+ktXqFDhhJYEoVjwIJCRkgUCFhcmTZpkrQoYjM0CQWjv6Nq1a1urBSouaHlAwITtSYw2T1yo07pBREREUoYABcfr8uXLu3fffdeO9RyTaafktRbiuHz99de7wYMH2+eYM0GrxnBgNhXnARzfabHE8T5x5ULi8wZaQlI9QbsntvP9999P8DXMqiDQQSCFxAdaNCVVzdCkSRMbdM3rYh6Fh3MPzknuvvtu995779nj0aZq0KBBNgA8OcyxeP311913333n+vTpY9/HLInkMBCbORS0stq8ebMN1mb7abGZ+OfF66X6hYHnVK7ec889wc8zXyTx+yEiClKIiIiIiKRrTZs2dX379rXgBIOracHgDadMSv369a1PMkOvT4Vhj1xgX3PNNa5Vq1ZWVZEjR44EbSC42GbOBQsoDKIcMGDACY/DMO98+fJZX2kRERFJGdo3rlq1ytWoUcM99NBDrkSJElYtuWDBAhvM7GHRncx9KiwZ+syA7HDo1auXq169urvppptcw4YNLWjAkOqkNGrUyD344IO26M9gaSorCDKEYrB0vXr17DVRqfH2228n+XgEIkiC4PyB84hQDMgmSMH7wjBrtm3FihUnfF1itKIiiMJ8jokTJ9rzJ66ISIzznx49ethz0XKK6o4ZM2ZYUCYUgSJunJMx9Juvoc2mhwDHH3/8kexziWREZwT8mMIjIiIiIiIxjUw/Lpznzp0bkecjw5ML/DvvvDMizyciIiKSGDM3SK4goCEisUODs0VEREREMqCOHTtaL+tDhw65rFmz+vpctHK45ZZbErRpEBERERERgSopREREREREREREJO6pkkIkNqmSQkREREREREREROKecrVFYpMGZ4uIiIiIiIiIiIiISFQoSCEiIiIiIiIiIiIiIlGhIIWIiIiIiIiIiIiIiESFghQiIiIiIiIiIiIiIhIVClKIiIiIiIiIiIiIiEhUKEghIiIiIiIiIiIiIiJRoSCFiIiIiIiIiIiIiIhEhYIUIiIiIiIiIiIiIiLiouH/A/4gWVQ2A743AAAAAElFTkSuQmCC", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmcjfX///93JUKLtVASSSEqQlGikKxFhCxlKaGyJBWJFpIKKUtUQmQvW1EilRIRKcmSJWuWIpTqc/63x+v7u87/zDTDLNc1c+bM8367DTNnZq5z5syca3m/ttNCoVDIiYiIiIiIiIiIiIiIpLHT0/oORUREREREREREREREoCCFiIiIiIiIiIiIiIikCwUpREREREREREREREQkXShIISIiIiIiIiIiIiIi6UJBChERERERERERERERSRcKUoiIiIiIiIiIiIiISLpQkEJERERERERERERERNKFghQiIiIiIiIiIiIiIpIuFKQQEREREREREREREZF0oSCF+KpatWr2ltH069fPnXbaaVH13G3dutUe07hx4wK/b+6D++I+PZdccomrV6+eSwtLliyx++d/ERERERERERERyTwUpJA4WChOypsWk6PXiBEj0iSwEWuPTURERERERERERNJelnS4T4liEyZMiPPx+PHj3UcfffSf20uWLJng9y9cuDDQx5eZFClSxB0/ftydeeaZyQ4E5MuXz91zzz1J/p5WrVq5Zs2auWzZsqXgkab+sVWtWtV+1qxZswZ6/yIiIiIiIiIiIhJdFKSQOFq2bBnn46+++sqCFPFvj+/YsWMuR44cWmR2zoVCIffnn3+67Nmzp+qvi4qVs846K9C/0KNHj7qcOXO6M844w97Sy+mnnx74zyoiIiIiIiIiIiLRR+2eJNmYm3DllVe6b775xjLgCU488cQTCc5VOHHihOvbt68rX768O++882xB/MYbb3SLFy+Os01v/sKLL77oXn/9dXfppZdaVn+FChXcihUr/vMYpk2b5kqVKmUL2zyWWbNmWXY+cxRONecgqbMe3nrrLXfzzTe7888/3x4L9zdy5Mj/fJ03u2HBggXu2muvteDE6NGjT7pt72fkaytWrOg+++yz/3xNQo9zz5497t5773UXXXSRPaaCBQu6hg0bhmdJ8Fi+//579+mnn4Zbc3m/D2/uBJ/r1KmT/VxsJ7GZFJHVMVdffbU91zwHM2fOTNI8j/jbPNljS+x3xe+Zvx2eJyowCJbt3Lkzztfwez/77LPt9ttvv93ez58/v3vkkUfcv//+e9Lfg4iIiIiIiIiIiKQvVVJIihw4cMDddttt1iKIheMLLrggwa87fPiwGzt2rGvevLnr0KGDO3LkiHvjjTfcrbfe6r7++mtb/I40adIk+5r777/fFq1feOEF16hRI7dly5Zw26N58+a5u+66y5UpU8YNHDjQHTp0yLVr185deOGFvv42CUiULl3aNWjQwGXJksXNmTPHFvf/97//uc6dO8f52g0bNtjPyOPm57z88ssT3S4/P19XuXJl17VrV/vZuI88efK4woULn/QxNW7c2Bb6H3zwQVv037dvn1W6bN++3T4eOnSofY6F+t69e9v3xP/d8DOwiE/wiEqKk9m4caM91x07dnRt2rSxwE2TJk3chx9+6GrWrOmSIymPLX6Qg4AMgSp+z3v37nXDhg1zX3zxhVu9erXLlStX+GsJRvA3ValSJQt0ffzxx+6ll16yQNADDzyQrMcpIiIiIiIiIiIiaUdBCkkRMvpHjRpli+0nkzt3bsukj5w1wCL+FVdc4YYPH24L9pFYbGdhnO8Di/1UClClQLUCHn/8cQtIsFjNgjduueUWy8pnjoNfyPiPbNnUpUsXV7t2bffyyy//J0ixadMmW7hnofxk/v77b6s6IThDNYn3vFChcN999500SPHbb7+5ZcuWucGDB1uVgIfnw0MlQZ8+fcJVBwkhGLJo0aIktXf66aef3IwZMyxQBIJB/O569eqV7CBFUh5b5PPEfVAls3Tp0nArqBtuuMH+DoYMGeL69+8f/nraaxFMefLJJ+1jgirlypWzvy8FKURERERERERERKKX2j1JitBqiCz3U2Eh3FuIpwLh4MGD7p9//rG2SKtWrfrP17PQ7AUoQGsoUG2AXbt2ue+++861bt06HKDATTfdZJUVfooMUPz+++9u//79dj88Fj6OVLRo0VMGKLBy5UqrfmARPTJwQ8si2mGd6vHwPbREonokpQgSJXX+RKFChdwdd9wR/vjcc8+1555KBgJVQfGeJ6o+ImdV1K1b14IkVNPEx3Maib8d7+9GREREREREREREopOCFJIiVDJELrKfzNtvv+3Kli1ri8158+a1VkMsMsdf6MfFF18c52MvYOEtym/bts3+L168+H++N6HbUoNKjRo1atgcDVoL8bi92RsJBSmSwnv8l112WZzbaWVVrFixUwaGBg0a5D744ANrk8Q8ENphJTdYkNTH6j2n8edNlChRwv5PaH6FX7znKaG2WQQpvM97+Nvi9xP/byc1wRwREREREREREREJnoIUkuoqg5OZOHGiVQkwG4DWO7REYoYCA6mprIgvsQz/UCiU7MeY0DBnJGWY8ubNm62FFNUTtHciqMLj7tatm30+/mNP6vORWsywoAUTMxpYmKe9UcmSJa2yIan8fqypeZ79ktTKEBEREREREREREYkuClJIoKZPn24VAjNnznStWrWylkhUJzBDICW8mRPMgIgv/m1eFQazHCLFz8JPCEOy//rrLzd79mybu1GnTh173Kld4PceP3M34s9g+Pnnn5O0DQI+PXr0cAsXLnTr1q1zJ06csCHRpwoapATPafwAEUESMKg7uc9zUh+b9zwxkDw+bvNz9oiIiIiIiIiIiIikHwUpJE0y3CMXupcvX+6+/PLLFG2PGQkMUx4/frz7448/4gy5ZlZFJBayuX8GL0caMWJEih43LZ7eeustlxrM4qAtEUPHCS54xo0b959F/viOHTv2n+AOAYtzzjnHAioe2lOdaltJxQyQWbNmhT8+fPiwPfcM/i5QoED4MSDyeT569Ki1+YovqY+N5+n888+35ynyZ6PV1fr16202hYiIiIiIiIiIiGR8WdL7AUhsq1evnlVRMHyZhWWqBVh4LlWqVJwgQ3IMGDDANWzY0FWpUsWGdzN34NVXX7XgReQ2GUTdpEkTN3z4cMvgZzF97ty5NpD5VGrVqmUzN+rXr2+VFGx3zJgxtnC+e/dul1LMnnj22Wdtm7S8YlA4zwnBj1PNpKCCgRZUTZs2tecvS5YsFkDYu3eva9asWfjrypcv70aOHGn3w0wJHjP3lRLMn2jXrp1bsWKFzcF488037f4igzU8V8wS4et69uxpAR6+jmDM9u3b42wvqY+N54n5G/x+GVbevHlzu99hw4ZZBYfXdktEREREREREREQyNgUpJFDMo2Cw8+jRo92CBQtscZ05FdOmTXNLlixJ0TYJHEyePNn169fPPfbYYzaEmkoEMve///77OF9LgIJWSgRGGDzNAv/gwYMtoHEyDGymVVWfPn3cI488YlUDDzzwgC28t23b1qXGfffdZ/MaeBws6pcpU8baSjFf4mQKFy5si/WLFi1yEyZMsCAFQ6SnTp3qGjduHP66vn37WqslhmofOXLEFvlTGqTgueU55HHSZomh21OmTLG2XZEBBYIlnTp1sp+B54rZGbSBIsgQKTmPjb+dHDlyuOeff9716tXLqjAIdhG8YJC5iIiIiIiIiIiIZHynhVIykVgkCtGCiCACA65FREREREREREREJPppJoVkOFRG/PPPP3FuoypjzZo1rlq1aun2uEREREREREREREQkeVRJIRnO1q1bXY0aNVzLli1tkPaPP/5o7ZyYQbFu3TqXN2/e9H6IIiIiIiIiIiIiIpIEmkkhGQ6zDhjAPHbsWPfrr7/arAKGcjO7QAEKERERERERERERkYxDlRQiIiIiIiIiIiIiIpIuNJNCRERERERERERERETShYIUIiIiIiIiIiIiIiKSLjSTQkRERFLlf//7n9u1a5c755xz3GmnnaZnU0REJEqFQiF35MgRV6hQIXf66RkzZ1HnHSIiIrF37qEghYiIiKQKAYrChQvrWRQREckgduzY4S666CKXEem8Q0REJPbOPRSkEBERkVShgsI76Tj33HP1bIqIiESpw4cPW2KBd+zOiHTeISIiEnvnHgpSiIiISKp4LZ4IUChIISIiEv0ycntGnXeIiIjE3rlHxmxCKSIiIiIiIiIiIiIiGZ6CFCIiIiIiIiIiIiIiki4UpBARERERERERERERkXShIIWIiIiIiIiIiIiIiKQLBSlERERERERERERERCRdKEghIiIiIiIiIiIiIiLpQkEKERERERERERERERFJFwpSiIiIiIiIiIiIiIhIulCQQkRERERERERERERE0oWCFCIiIiIiIiIiIiIiki4UpBARERERERERERERkXShIIWIiIiIiIiIiIiIiKQLBSlERERiyNKlS139+vVdoUKF3Gmnnebee++9U37PkiVLXLly5Vy2bNlc8eLF3bhx49LksYqIiIiIiIiIKEghIiISQ44ePequuuoq99prryXp63/++WdXt25dV716dfftt9+6rl27uvbt27sFCxYE/lhFRERERERERLLoKRAREYkdt912m70l1ahRo1zRokXdSy+9ZB+XLFnSff75527IkCHu1ltvDfCRioiISGL2799viQdFihTRkyQiIiKBW7VqlXVYSC+qpBAREcnEvvzyS1ejRo04txGc4PbE/PXXX+7w4cNx3kRERMQfK1eudGXKlHG1a9d2hw4d0tMqIiIigdmwYYM799xzXfny5d3EiRNdelGQQkREJBPbs2ePu+CCC+LcxscEHo4fP57g9wwcONCdd9554bfChQun0aMVERGJ/dlSlStXtuMzb1RUiIiIiPgpFAqFqydKlSrljhw5Yh/v2LHDpRcFKURERCRZHn/8cff777+H39LzREZERCRWvPvuu+6WW25xf//9tzvttNPc1KlT3WWXXZbeD0tERERixJEjR1zfvn1dxYoV3a5du1ynTp3c//73P/vcgw8+aNf66UUzKURERDKxAgUKuL1798a5jY8p98yePXuC35MtWzZ7ExEREX+yGalS7N27t31MheJTTz3latasqadXREREfLNp0yb3wgsvWAvna665xu3bt8+6I8yaNctVr17dpSdVUoiIiGRi119/vVu0aFGc2z766CO7XURERIJF1UT79u3DAQqQ2XjdddfpqRcREZEUo0Ji7ty5rlevXtYBoUePHlZBQYAiS5YsFqAoVqyYW758eboHKKBKChERkRjyxx9/WHaE5+eff3bffvuty5Mnj7v44outfHPnzp1u/Pjx9vmOHTu6V1991T366KOubdu27pNPPrH2EvPmzUvHn0JERCT2sWBw5513uo8//jjcZqF+/fpu7dq1rnTp0un98ERERCQD++WXX1zDhg0tWDFmzBh36NAhu52Wkv/8848lRMyePdvlz5/fRQNVUoiIiMSQlStXWtkmb+jevbu9T99J7N69223fvj389UWLFrWABNUTV111lXvppZfc2LFj3a233ppuP4OIiEis27Ztm6tSpYoFKMhmxJQpU2xoNpmOIiIiIslB22YqJyI/zpcvn71PgCJv3rzhNpMkSZCgGC0BCqiSQkREJIZUq1bNTjoSM27cuAS/Z/Xq1QE/MhEREfESCqiY2LNnj/WBpqKCrMZ33nnH5cyZU0+SiIiIJMuGDRtc2bJlLfFhx44d1klh6NCh1tLp7LPPdiVKlHCrVq2yr6WLArOwTj89umoXFKQQSQFKpY4cOWKRyN9++y38ltDHx48fT9a2zzrrLJc7d26XK1eu8Fvkx977DLWNth2KiIiIiIgk7v3333ctWrRwx44dc5deemm4upFzexEREZGkIDGRAMQFF1xgHxOEKFWqlAUpSIIgSMGAbJIgtmzZ4r788kt3xhlnuBEjRrj77rvPRSMFKUQSQACCPu68bd26Nfw+b/R0IwBxskzltMCOhsyriy66yF1yySXWssV78z7m8yIiIiIikv6GDRvmunXrZtcRVDGS9cjgbKonDh8+rECFiIiInBIzKJs3b+4OHjzofvrpJws+LFu2zOZMFC9e3IIVYED2N99843788Uerppg2bZqrXbu2i1YKUkimRfbSd999ZwNlN2/eHCcQwQs9qVUPiVU6eG85cuSwgEJScMFC5cXJKjP4n6/ha73b161bl+D2eCyRAQyyteg5z5tKyUVEREREgvfvv/9acGL48OH2cfv27d369ettThQLCYsXL7YMx4oVK+rXISIiIidVqFAhW7s8evSonUNMmDDBjR8/3j63c+dOq6Rg9hWtJX/99VdLbmYOJe2gopmCFJIpsJBPv3XvjT5sRBJp25QYBsrEr0zg7eKLL7bPUaVAkCI9EA2ld+2BAwesRDyy2sN7nx0RQQ3e4veaJ2hy+eWXh4frlitXzv6nHExERERERPzxxx9/WHunOXPm2Me0XujSpYvr1KmTJUzNmjXLnX/++a5hw4Z6ykVERCQOkqhfeeUVq56YOHGi3UYy9Lvvvuu+/vpr17hxY6vGRLt27WzWxNKlS13Lli3dn3/+aWt9DNMmsBHtTguld88aEZ+xcL98+fJwMIL/WbRPCL3beMFeccUVcYIR/H/OOedk+AsiIqeRwQtKynk+du3aleD3EIDxAha8VapUyS6aREROhpMib/CnemqLiIj8H865yWLkmoTkJjId77zzTvscVRQffvihu/fee9P06YqFY3Ys/AwiIiJJsXnzZps3QZL12rVrXZkyZew2zifoDIPy5cu71157zSoyX3rpJRuMzXJ/vXr13OTJk63VU0Y4bquSQjI8FuOJEn7yySdu0aJFbs2aNQnOiyD4EL9yoGDBgi5WsRMqXbq0vcW3d+/e/1SWsJOjKoO39957L/y17ABvvvlmd8stt7iqVatqzoWIiIiIyClQJVG3bl23Y8cOlz9/fjd79mzLYmSR4fTTT7cFBDIiyYx87rnn9HyKiIiIY03z+++/typM0La9d+/e7sorr3QlS5YMJ1zv37/fWrwPGDDAdejQwdZBqdIcNWqUfQ1Vm0OHDrV5FRmFKikkw6HVET1bvaAE5U0Mh4lEZQSRRC8gcfXVV9uLVxJHRJOdoVd9wnAddoyR2Llde+214aBF5cqVXfbs2fW0imRyymgUERH5/y1cuNAyHI8cOWItVufPn2/z4Lg+YTYcwQnaMTBI+/PPP3cVKlTQMVvnHSIiksmtWLHCqiE4ZyCB2GvJToLDzJkzXaNGjSzRAayFkoxNIgTnG3fddZf74IMPrL37kCFD3MMPP+wy2nqBghQS9YgGsmD+8ccfW1CCE3n6qkUqVqxYeOG8evXqFlWU1CMyyxAeLyC0cePGOJ/Pli2bBSp47mvUqGE7U2+HKSKZh4IUIiIi/2fMmDHugQcesGHZN910ky0qUOHMdQrXMSRT0ZqWi3Sqm9P6uiVajtkM9uzVq5ctqBw7dswVL17cvfXWW5YQlVF+BhERkdQg+ED7xwsvvDC8/slxkPZOzLAqXLiwJRJzXkFQYuzYsTZ3ItIvv/xibZ1IOiaJmPZO0TbnSu2eJMO/UL/66is3ffp0N2PGDIsgRipQoICd6LM4zhszJMR/+fLlc02aNLE3UK5O0IKABW9cXPAxb08++aSVsDO0h8yxKlWqZKiyMhERERGR1Fy/PPHEE27QoEH2MQMrWUwgqadz584WoGBBnbaq3sJ6Zk2sOnTokF0rkFxGkIIsUJKhVPkuIiKZxQ8//GDVD3SLWb9+va2fUQVB55isWbNaIP7BBx90I0aMsHOMhObmMpOC1pLMwOKcggHZSQn2RytVUkjUINvoiy++CAcmIoc7k31Us2bNcGCCDCRevJJ+iPByMeFVWVDWTnTUww6SUjQCFsyyyJJFI3BEYpUyGkVEJDOjyrtNmzZu6tSp9nHfvn1dv3797HrlzTffDGc9vvHGG+7TTz+1Vk8k92TWY/Zjjz1m132fffZZkr6eBRzeIn8GsktVSSEiIhkVLZqKFCli7es5JpYpUya81vbuu++67t27uz179thtzZs3t4HYkXN1aSVJkIM5vcyinTdvnm0vGqndk2QIvBg5OZ02bZqVQlPy7OGkuUGDBpbFX6tWLXfWWWel62OVk+PCgWAFQSYyxMiQiqzIuOOOOyxgQcbUmWeeqadTJIZEw4KHiIhIevj111/d7bff7pYtW2bnuFRPtG7d2j5HNmS1atXciRMnXP/+/W2YNufKtWvXtgqCzHrMLlWqlLv11lutRQVBG9pcMOyTwZ8JIeDD8xefzjtERCQjIJDw+uuvux9//NH+97AeSnAiV65c4duYJfHKK6/Y+7R9eu2116y9eqSRI0faYGwqLEjm5twichvRRkEKiVpEBemlRlbRrFmz7MTew4uKk3wWs3kRUh4tGc/ff/9tFRbsKPkdHzhwIPw5yrj5Hd97773uhhtuUEWMSAyIhgUPERGRtPbTTz+5OnXquM2bN9t1DOe9BCW882GGZv/8889WXUxSFv2iad3A4oKXMZkZj9le8hlZoiSkMSiURZlRo0ZZRUp8qqQQEZGMbMOGDa5kyZK2Hsq5QNmyZRP92uXLl1sHGaoOH3300TjrogQluI2qCrRt29aOndGeCKwghUQdToQnTpxoUcO1a9eGb8+bN2+cLHt6r0UrLjYYJn3w4EE7WaYShL5w7Gw8ZEXxOb6Wz/PmOf/88y1ryMPFSvwh4LRF4o3nhR2Th8AO22Tnw+d5nvLkyWNVCtH8nPHzkyFFwIJqmX379oU/x/N23333WbYZP4uIZEzRsOAhIiKSlsh+JPGG64KiRYta2wVa0kb65ptvrPXTlClTrH0tWKBIz7a10XDM5tqFntlUn3geeughC1ZQfZIRfgYREZHEsG7IwGu6wngILlAZwfpX5BoeM15Jerj//vvDt3FuEX+N7NixY65Vq1a2robnnnvOPf744xki8VdBComqqonRo0dbT7Xjx4+Hs2eaNm1qL7CbbropXaN+LPxv3brVMqBYQKeygz5uBE1AefaVV15pt//222//+f7bbrvNLko8OXPmtJ1HQm688Ua3dOnSOHMbIhftI5UrV84ubDzFihWzTKyE0H9u3bp14Y/ZWbETYAgdbwRH+H4uoNIzoMHcEYYGTpgwwf4ejh49arcTGSaLioCFqitEMh4tFoiISGbyzjvvWPYi1wmVKlVys2fPtvPtxJCUFC2ta6PhmM21FvMGaY3lobrk2WefdTt37swQP4OIiEhiA7ErVqxowYNt27YlmpDLWuAjjzxi62Os03333XcWxEgIrfFph8/6Kl87btw4m1ORUST1uK1JtpKmVRP0HyU6SHCCtj9puTjOUBqvRxvBEoIQRCtZ+OfzkerVqxcOUrAD4GTZCzycfvrp9thZWCe4QhAgEhcqVFJQ7cDnzzjjjHBkk2BHJCpHIgMfBHV4LFQfXHbZZXG+9pJLLrFteRUa3AfRVcq94rfFeuuttyzoEh+Pnawlysc8K1eutJ+Hi4Wgh1vz+AlK8fbyyy+7SZMmWQDr22+/tb8X3lRdISIiIiLRiHN1FtKpjkDjxo1tcSF79uzhr+H655prrnEVKlSwj+k/zbkvMxW4DsoIGY9Bq1KlirW+iMR1WbQO/BQRETkZ1ui89TSqKkkSZj2QwdfxgxScS9D+vmfPnjbLlfOC9u3bJ5rsQNCjbt26llzNtt5//31L7o1Fp4V4dkR8wuJ3YlUTZMlXrlw58BNzFu4pFSbCSHkVJ8As2NNmiSwn8GfPwjzBFOTIkcNdeumlrkCBAhZ0YCG/W7ducX4uon18ju9jsT0aEKBgp8ZzfdFFF4VvJwCwY8cOq/7gjR0jzwGVC9dff32c0mp+7i1bttgOlB0pkdvy5ctb5JeLK9pJBYnfBYES/m4mT54cDgapukIk41BGo4iIxDqqJggykL0IFheef/55SwLyfPjhh7aQwHk1PaeZScFgS4ZecvucOXPSPUgRDcdsrtW4LiRww3Ui120MzSbAc/fdd2eIn0FERIT5qyQu0KqQdS3vnIDKB4IO8Y/5JC5wLuF1WLnqqqvs2Mf6W0KY9cpcK453xYsXty4u8ROaMwK1e5I0wyLzggUL3IABA6w3a1pWTbBI7+0EeBwMoPv+++8T/Fo+F1nVQR83HheL8oUKFUr3C4ag8fzs3r3bKkq4YPKeP9pKsaOkMiM+dphUOXh4n+eLoE5QOy7K5wlYcGEXWZ3yxBNPWIVL5IWgiEQHLRaIiEgso/KZRQL6RpOs9Oqrr7qOHTvG+RrOpzln5ZjYrl07N2bMGLu+oEqaIAVtGqiMTm/RcsyeO3eu9dLeuHGjtaRliDaBioz0M4iISObGcYhjO+cJCxcutFaGiWEtrnDhwvY9rKk9/fTT7uGHH060o8m4cePsuEiVBhWI7733XuBJxEFRkEICxwn3rFmzLDixevXqcGuku+66y4ITQVRN0HZp0aJF7quvvrKMG7ZPJo7nuuuus6oHIotEIqmIYF4DH7MziJYKiGhDsILKCy4S1q9fH65EqVatmhs1alQ4e4wh4fzeCfjw/HIhVqNGDXfxxRcHVl1B0MIbLk67rMcee8z+xoJuTSUiSafFAhERiVW0hqUKgnNkhl9PnTrVZtJForKZ82LOpWnBwPVKes6Bi/Vjdiz8DCIikvEwY4Kqycgh17Qtp7MJ62enMnDgQJvTSvJCYokLoVDIqjNoLwnWvwhYRMtsq5RQkEICw0wEFo4pb/Z6iRIFJJuIDJgLL7zQ1/ujOoM2TewIIodDg6ADJ6cMq/YymCipSmwwjaS8UmXTpk02+JvWUfExR4IIcOSO2i+UyQ0dOtR24kSeQVuqRx991N1zzz3/mcchImlPiwUiIhKLSNqpX7++DbfkGmfevHlWaRyJDEeCFh9//LEl7pDsw/UIVRfMooi2KuBYOGbHws8gIiIZC2tTzE6iCwlDruPPnI2P6opevXq51q1bWyWEt8ZGsnViCd1//fWXa9u2rc1vBR1Fnnnmmag7lwjquJ2xf0pJU8wKGD58uPVBu/feey1AQbskInzbt293L730UqoDFEQMyUCKHJXC4vSLL75oAQpeyGTwP/LII5bFxJyFyNZDDKhRgMI/kTtCfu+7du2yiosZM2bYzpZqGb6GzDJ2Oh7mYAwZMsQG/KR27M0FF1xg0Wb+xp577jkrb2OGBkExSsP5u/vjjz9SdR8iIiIiIpGoGCcrkgDF1VdfbdXa8QMU6NGjhwUoSJoisYoABZUUN998s6tevboleImIiEjG43X18NamaN14yy23nHSdi89Nnz7dknmZN0EyLx1JwPpZYgGKgwcPulq1almAgoTssWPH2hpYRg9QJIf6pcgpEekaMWKELTqz+AwGTHNCzouNFkCpQaSQ3m1kJjHbgon1zJVgpgWaNGnismfP7mrXrm2thfLmzavfWjphZ0oZG2/05fXK27kQo7WWh6oXqmrA1zK0nDJ5ssxSWqKWK1cuiyJ37drVdtaDBw92v/zyiwWsaDn20EMPuQcffFBBKhERERFJMRYXuO7hHJP369Sp4959990Er3kIQHDtggkTJoSDGCT2ELQoW7asDdEWERGRjOPo0aM2N2natGnWsYUqAIwfP/6ka1q0qO/cubN7//337WPmwbKeeqrW83QuqVu3rvvpp5+s0oAgx8nmW8Sq00KpTXOWmMUMgpEjR9owFyJ6oGcaGfS02UlNPzSiiEuWLHGTJ0+2rHzKoDz0b+Ukv2nTpr78HJL2CFLQoonfceRAbna2d9xxh3vqqaesCiK1f5/0/qPtGNU33vZ79+5tAYuM3K9PJKNR2wUREYkFtG6ihSkLCujUqZMbNmzYSWeh0brh008/taqJSFQBs6jhLWxEi1g4ZsfCzyAiItGLNUsSDegOQpJsu3btTvr1nAtQNcF6KccoEhSYp8r61KlalC9btsw1bNjQ7d+/32bpzp8//5StpDIazaSQFCNuRXkzLy6ieaBMiSz2Zs2a+TKwmFJoXoSeggULWmY+mfaUVXszJiTjtwhbunSpBS1mzpxpraKoxqAColChQvY1Bw4csLZhKS1h4+BBoIsyuLVr19pt9AmkRRQDhjJTaZxIetFigYiIZHS0D+XckcUBzldpKUoFb0JtGTh/pcVsYi0bolksHLNj4WcQEZHoQWL222+/bYkK3hoSs6VYHyUJ4VTH+8g1zkqVKllgIymBBtrYM7OC5N7y5cu7OXPm2PporFGQQlI8HI42Tkyb93quMaSFGRQpDU7QuomKCV5olD15fd1o50T7pubNm7uqVauesvxJMjYiy0SIV65caRd8HkrYKGkjAMbfAmXyKbngY/tUVhBMo8QOFSpUsAtMBn6LSHC0WCAiIhkZ54716tVz3377rbWZfeedd6z6NyG0Or3++uvtPHPMmDHh6l0SZ1jc4HqHBK9oFQvH7Fj4GUREJDrQurFYsWKWTEubpcaNGyd7GwQzOG9gXgVVmKda3+TrX3jhBau2ALMuJk2aFLMJ2wpSSLLQS5V+a/RbBSfn9GHt2bNnimZOcMI4btw498Ybb9jUe2/wMovR3gI0L8pozT5iIDc/w6WXXhou0d6zZ4+VcvN80JvW88knn1jUlWgppVk4fvy4lXifffbZcYaJk6FFGTnDvmlr5V3QHDlyxJ6LyHJwHgOD+miLxAwQcD/sNHnumAfi4YKKx8fgcFpygfvZtm2bZXkxzyEan2ueD56zyHZf/AyU0rVt2zZF8yWo3qCPMG2gvIHaHCwGDRrkLrvsMl8fv4j8Hy0WiIhIRrVmzRrrA02ggqHXZDFWrFgx0YUMrgMYlM057IoVKyypC6+++qrNR8uXL59dB3A9FY1i4ZgdCz+DiIikH9bLIhOxaUnOHAnWkuK3b0zIqlWrXN++fS2pwVvHS+oaJ+cSJDSQ6AASHEiuPSOGE7eTfNxmJoVkXocOHQr17NkzlDVrVmaThE477bTQPffcE9qxY0eKtrdu3bpQx44dQzlz5rTt8XbmmWeGGjRoEJo8eXLon3/+CaWXlStXhmbOnBnat29f+LbFixeHKlWqFGrZsmWcry1fvrw99rlz54ZvW7hwod121VVXxfna6tWr2+2TJk0K3/bll1/abZdcckmcr61Tp47d/tZbb4VvW716td1WqFChOF97++232+2jRo0K3/bDDz/Ybbly5Yrzta1bt7bbX3jhhfBt/A6938GJEyfCt48bNy7UoUOH0Pz588O3/fvvv6Ft27bZ/2nt2LFjoWnTpoUaNWoUypYtW/gxn3XWWaEBAwakeLt79uwJ3X///aHTTz/dtpclS5bQQw89FNq/f7+vj19EQqHff//dXmf8LyIiklFwPnz22WfbMaxkyZKhLVu2nPTrO3fubF/Ltc63334b53OcS3OuP2LEiFA0i4Vjdiz8DCIikvb+97//hUaOHBkqXLiwra95/vzzzySthx0/fjz02GOPhc444ww7DnXr1i1Z989xq1atWva9rFUNGzYslBn8nsTjduqHC0iGjRqOGjXK9evXz3qq4uabb3Yvvviiu+aaa1K8XbLXabmD0qVLW5kTLXyYOZBWmKMxZcoUK5OKbCtEZj4zC5iPcOutt4YjmMuXL3dHjx6Nsw0qF6iAiIxk5s+f3910001WXcFAm927d9sb0VdmIDBzgZ51VEWQPcX37t27111++eV2Gy2u+B9UQRA55Wu82fVUQpQoUcIqNajAoAqCn4FWWRs2bLCsLCowrrvuOmud9euvv7q8efNav7yLL77Yfm+Rvev4HfP9ZHExtCey8mP8+PFW2cIMEPDz8DPw9VRvcD/gftkOX3uqYT8pxeO788477Y2o6rRp0ywTjaw2LzMNPH/8rF4FyqnwvfyNk9H26KOPWn/hV155xfoM9unTx6LVkc+LiIiIiGQeo0ePtvNxqprJmmTG2cmuWTg/fe211yxLkusdWpRG4nx87ty5afDIRUREJCU4hrMmyLxU1odGjhxptydlvYv25awrsk6Gpk2b2izfpOI+qdyk2wxrbnSyqV+/vn6REU4jUhF5g8Q+Fuppp8NsANAzdfDgwVa6nJyWQCxmU55EKx3mS4AFf/qqdenSxQZgB91iiPtiR0GrKtot4aOPPnK1atWy4MCPP/4Y/tp77rnHdiYMWCYg4y3OM3+Dcm2G1HhoE7Rx40ZrT+W9EfzYtWuXBRNOnDgR53FwQUN5OAEG741AQ+T7Xr9aFtoJTvA/cxS4MCJYwqAcWhVx3wQzvP+9N4ISXkDJwyI7ARWGUNNDj5+ZQAdvtDaijIrHGrmwz2I9v3ueIwIeWL9+vStbtqwt7NOHz8MAnwkTJrhnn33W9e7d224jaEEZXOXKlQMb6MNu6YsvvrDfiVcqP3z4cDdgwAB33333WZDHG7ydVJTlM2/FG65dpkwZa0dGP2ERSR21XRARkYyC8296QHP9410jELA4WSIM588sJPC9tBAlAcZDm9dobe0Uq8fsWPgZREQkeKwtcQwn4Zh1Oaxbt84tWbLEdejQIUnBCZKaWQ8jqMH2WIMjuHH77bcn+XHQHorZVyQ68/0kNUSuQca6w0k8bitIkYmQic4QbBb2WWjmD8Rb9E3OUGwWuIcNG2ZT6FkA79ixYzj6GBQW56mOIDBC9YeHF/m8efMsq4mqDRBEYJYGi9CRFxAJITDADuqbb76xnQZBDAISBCMiKyhY9KeagOoKFuZ5Y5Gc/9nBeAGIoPF4+fm8Kg4eJ//TQ5cZFjx2qjc8PDYeO8ELKi3YCRKMSOjxEijhey+66KLwbUSJySp76623XKNGjew2nie2w5wLfi8EW8DjoNojqOoEMtw4kIC/Vx4P1RAES5KKgBCVFPxdeI+dapunn346ZgcUiaQFLRaIiEhGQEChVatWdn4Lro1YeDhZYhXJQsx8YzYc58Zjx44Nfz0JT1dffbUtdJA0ldSK3/QUC8fsWPgZREQkeAkl3iYX604EKLzEhpdffjlZ3WKYddWsWTNLSr7yyittDZPqy8zksIIUEmnp0qV28swiNljgpWQ5OZnwX3/9tevfv79FIT1UL3Tv3t3KnPz846W6gcVyFtTBAjxBAk78ORn1Ftl5LHyuRo0aVhFyqgV+sugJSHhvBChYnKeygWoQ3rxKBK8aIS1bVfmB5yd+FcgPP/zgvv/++/BwIFpxEWgoV66c/c/FVWKBFiLFZI15ra8IFLCwT8CGnavnxhtvtAAG7ZoiB4v7hd/TrFmz7O/2s88+C99+yy23WODqhhtuSPK2qErp1q2bDTkCw8nJoKtZs6bvj1skM9BigYiIRDuSnRo0aGCV31xTvPnmm+7uu+9O0vfS0pVzUNqwRgYiSNzivJhza86DFaRIGzrvEBGRpOC4TYIBAQrafqcE60e1a9e2JG+vdXxS0RGE8wTW1FhvYr3MG7SdmRxWkEK8BWvKmenND4ISnGB7WfFJxQn8pEmT7H0Wq5kz8dBDDwXSKodgChlKbJ8Tf2+hnEAIFwAsLiflRU1QgsAKi+q80RaKahIeP9FLFue9hXp6ymakMu2U4Gen911CQRpK3Gj9RIsu3nj/VNUhVCV4gQt2uASVqKagxRaVG6DXH3NKyFijxZhfmFdBJJvZGgRe6OuXkh7ABLmoBKI3INq0aWNR8Tx58vj2WEUyAy0WiIhINKO1KeeLP//8syUgvffee65q1aqp3i7XKFR7k/DitZ6NdrFwzI6Fn0FERPzFus5TTz3lmjRpEp6/yloVHUOSk6C9aNEiW18aMmRInON9ctrZs172yCOPuKFDh4bXOekAk1nnoh5O6nE7jQZ5Szp4//33QxdeeKFNUOetQ4cOoUOHDqVoW0899ZRNr7/nnntCGzdu9OXx/e9//wt169YtVLx48dD27dvDt8+cOTN06aWXhp555plkbe/EiROhzz77LPT000+Hbr755tBZZ51lP/d5550XatCgQejll18OffXVV6Hjx4/78vhjwZ9//hlasWJFaNiwYaE77rgjlCdPHnvOsmXLFrrpppvs97548eLQX3/9dcpt/fvvv6EffvjBfq+eBx54wLbXsWPHOF/7ySefhI4dO5bqx//zzz+H7rvvvtDXX38dvm3nzp2hpUuXJnkbhw8fDj344IOh0047zR7r+eefH3r33Xfj/BwicnK///67vX74X0REJJpwLpsrVy47ThUrViz0448/Jum8lusUzm1jTSwcs2PhZxAREX89+uijdmwoU6ZMitZzWBu6//77w2uos2bNStHj+OOPP0INGzYMb+f555/P9OtLvyfxuK0gRQzas2dPqEmTJuEXBEEAFoWT6ssvvwzVrl07tGDBgvBtBDdSG5zYvXt3aNGiRXFuu/766+0xjho1KnxbcnYmPK7JkyeHmjdvHr74IChRv3790EsvvRT65ptvQv/880+qHndmwgXZmjVrQkOHDg3dfvvtody5c9tzes4559jf1IQJE0L79+9PVhBh+PDhFhyKvM3bph+BivgIOLB9AlXJCVYsW7YsVLJkyfDrhr+hHTt2+P74RGKRFgtERCQavf3226EzzzzTzu247ti3b1+yFjpIXjly5Mh/Pv/ee+9Zsk9GFAvH7Fj4GUREJHU4Dh84cCD8Me/Xq1fP1jSTi7XKIkWKhNeDOnXqZEGLlKx7XnvtteHk3ylTpiR7G7FIQYpMihNmLxueyodevXoleSF4+fLlFpzwXpQ33nijb4+LbP3TTz/dHltk0GDu3LlWOZGcF//mzZtDQ4YMsUXoLFmy2GO95pprQn379rWMegUl/A1aEOihOqVChQr2XPN7rFq1amjw4MGhDRs2pCib7aKLLrJtRKLSZdy4cQleCCbHww8/HL4Y5a169epWYZPUg1y/fv3C33/uuedaEExETk6LBSIiEk1IeqIi2DsfJNkmqddEo0ePDn8fCToJLWTwudKlS4eOHj0aymhi4ZgdCz+DiIikHMfiokWLhlq1apWqp5H1p86dO4eP+5dcckmykrwjrVu3LnTxxRfbdvLlyxf64osvUvXYYomCFJkMi6teBrm3aL9q1aokfS/tcXhhe99LcKNt27ahTZs2peixECT4+OOPQx999FH4tr///jtUoEABW+j+5Zdfkr1N2kENGjQoVLZsWXuMWbNmtYDKiBEj4rSKkmDxt8KFG9Fpr50W1QfPPvtsaMuWLcm6cIyMeHOBR2UF20tO9UNitm3bZi2mIoMVXJxu3bo1yQeX6667Lvy97du3z5AXoSJpRYsFIiISTddFkdc2JG2ReJMUH374oV0L8X39+/dP8Gvmz59vFRZkWWZEsXDMjoWfQUREUpcIzXGAFvepORZUq1YtfL7AGlJKqifA+idJrmynRIkSKV5PjVUKUmQiP/30kwUlvBdWjx49kjRDALRZypkzp30fPfnbtGljlQqpwTbZHiVOkZI7D4OvHzt2rO00eGwsit91112h6dOnp3jHIf5h0Z7KnZYtW4b/hqpUqRIaOXJkslpCeTssqjVq1qwZ5yKSv6Xu3buH1q9fn+JgBTMrqP7g8XXp0iXJ30tgrU+fPuFZFaVKlQp99913KXocIrFOiwUiIhINSIJhrpqXePX6668n+XtpeeolzbRu3fqkLWg5182o1yOxcMyOhZ9BRESSt+45b968OLfNmDHD5j+kxsKFC636gf9T6o033gh3eaEjTXLXwzKD3zWTInOgBPnss8+2F0PevHmtfVJyTJo0KdyjlUhkcnFyzsyByDKmvXv3hvLnz2+LwwyzTg6+nuE0jRs3tv5tLC7XqFHD2gDpJDR6cWB45513QrfddptdEFLBwLDyqVOnprhfLxeGBAb4+yRYlRpcdDJjI/Jg8dtvvyVp/gllhFQB8TgIlHGxq6HaInFpsUBERNIbWYuXX355ePYZVRHJqRamHSnfS4JUUhO+MqJYOGbHws8gIiJJw3ojQQDWPJOb/JxQm3uCG5FSumZFgu0TTzwRThhv0aJFhp1XFTQFKWIcfdOoevBeDGQMJaWNEm1sPvjgg/DHLLYSjUzpoqs3+Z4XY6TkzoVgmDIv7gsuuMC2V65cORt8zQWDZCwEqV555ZVQxYoVw734evbsmezB6/xNvv/++1Y9Q0DBQysxWpulZpA726Zq44YbbkhSWzR+pltvvTX8emvatGmcxySS2WmxQERE0tOyZcvsnJPzNIINJKgkx8GDB+16iiAH7ydUQUwyzueffx7K6GLhmB0LP4OIiCS9ywUJrByHU9runeQDOmWQVEsiQ1JbgSfm+PHjoWbNmoXXiNi2klkTpyBFDPv222/DWUJUGtAv9VRBAUqfaXXDC5Ieqik5oeMFxwDiPXv2/OexJKeUOjLqSE/XOnXqWEsd+rfxGNeuXZvsbUl0ok1Tt27dQrlz57a/V6piaBGVmuHm3nD3rl27pngbBDiyZ88ebnPWoUOH0L59+0759/rCCy+Ey/gY0kQUXkS0WCAiIuln2rRp4VlptMBNaZIT2Y+JJX2x+MD2aQmR0assYmGBPxZ+BhERSXjdkQ4xJGVHLvonlECQVLTtvvrqq8MBhebNm8eZkZpcdOgg4ZVtsT701ltvpXhbmcXvavcUe3iBvvbaa9YGiRdDoUKFQkuWLDnl99Aqh7Io7wVJ25vdu3cn+/5p38T3P/nkk/+5j+QgA33IkCGh4sWLh6smeIyp7SUn0evYsWOh8ePHh4dRFylSxAahp+TAwECiunXrxpmdwvv0ASSanVRE4CMj3+edd561LjvVYMWvvvoqdMkll4QPSIMHD07yMEaRWKXFAhERSWtcg3A+6Z3L1atXz6rNk/P9VOgmBe0l7rnnnmS1kIpWsXDMjoWfQURE/uvXX38N5ciRw/bxU6ZMSdVTRHIs6zVZs2YNt8inJXlqZ2N4a5msIdEeXE5NQYoYw+IrLZW8k3AWaXnxnmoRNrJFTenSpW2BNznRwchMIbKUCJA8+uijKfoZaJnz+OOPW8UEi7tELynNVklU5sLsE6LiHCiYp8Kg99S29XrooYfsb5ygQ3ItXbo0zuB5Sv1PFcTjQvXOO+8Mf0/Dhg2TdVEsEmu0WCAiImnd+sFrO8sb1djJrdR99tln7XtTem2TUcXCMTsWfgYREfk/8SsUn3/+eWsZnpoW25wnMGMqcg11165dqXrK6SzjJYCTePv999/rV+jzcft0J1Fvz549rlq1am7SpEkuS5Ys7uWXX3Zz5sxx+fLlO+n3lClTxi1YsMBly5bNvfDCC+7bb791NWrUSNJ9vvTSS65o0aJu6tSp4dtuv/12t2PHDjdo0KBkPf5t27a5Ll26uCJFirhXXnnFdejQwW3dutV+nuuvv96ddtppydqeZGzXXnutGzdunP0tPfTQQ27s2LH2t3bfffe5TZs2pWibJUqUcIULF3b33ntv+LYTJ064gwcPnvJ7b7zxRrdixQo3fPhwlyNHDnvtnHfeeSf9nly5ctlrY9SoUfb6ev/9990NN9xgP5OIiIiIBOfw4cOuXr16bvTo0XYdMXToUDuPO+OMM5K8jYkTJ7o+ffrY+1yjJGbjxo2+PGYRERGJKxQKuZEjR9pxeMOGDeHbe/XqZWuYp1qXORnWTitUqODOPvtsN2bMGFtDLViwYIq39+6777pbbrnFHThwwLa7fPlyV6pUKf1K/ZbUqIekD2Y+FC5c2CJO9PX/5JNPkvy97dq1s/Y6zAVIrqefftrus2XLlqGUIqrYunVrq5og2sjsjNT0fZPYRHR84MCBNiuFGStUQ/B3n5JIeWRVzsiRI61qhyHeSUXbqNWrV4c/JiPvVIOZqAbisfN6KVCggOZUSKakjEYREUkLO3bsCJUtW9bOu5gvxqyz5KKy3JsxdrIqCq67mF3WqVOnmGrtGQvH7Fj4GUREMjvWbxiGzf68c+fOqd4e3WYiB2Iza2rLli2pfozPPfdcuCLjjjvuCB09ejTVjzWz+V2VFBnf7NmzXZUqVSw7m0xxInXVq1dPNAI5fvz4OJncVC18/vnn7oorrjjp/fz5559u2LBh7vvvvw/f1rVrVzdt2jT39ttvJ/tx//TTT65p06audOnSbtGiRW7w4MFWTdG3b1+XJ0+eZG9PYhvR8ccee8yqa8iC++qrr9zVV1/tGjZs6NatW5esSHlkVQ6RcjLtklOpU6xYMbtvz5AhQyw6TsUEr7GEUA309ddfW+USVRg33XSTRdlFRERExD+rV692lSpVcmvXrnUXXHCBW7p0qZ0vJgeV5Y0aNXL//POPa9asmRs4cGCiX7ts2TI7//v333/d6aerAYGIiEhq7dy509YgEVkNyf+p8cEHH9iazF133WXHeND1gq4dKfX333+79u3bu969e9vH3bt3t3VSOnBIQNI7miIJR+peeOEFy9zhV3TLLbecdJI9/fzpr8bXMoMiuTMevIHYjRo1StWvg8fBts444wyr/hgzZsx/esuJnMqJEydsyHaxYsXsNcD8ishoeFKR8TZjxgyLnkcOvaayIvK2xPA6qlWrVjhizuvwZI/j8OHDNrDR+/qnnnpK81Yk01BGo4iIBGnu3LmhnDlzhufspeTckO+h6pVtVK9ePUnngwzE5BwvlsTCMTsWfgYRkcyGbhcMxWYmlF+oaqAKw1uHKVWqlFVdphZzSFkDYpt0/Hj11Vd9ebyZ1e+qpMiY6KPfrl079+ijj1rmTseOHS0imDt37kT7qVKxMG/ePJc1a1abXfG///3vpPfB54kIeh5++GHrAVe7du1Es8VP5rfffnOPP/64K168uJs+fbr1jqOagogjj0kkOc4880zXqlUrt379eouo8/dPJRFR6/379yd5O2S8kSlH9NzD3ylzMLxI+MkQ1ee+qTLKnj27VQVdeeWV7vXXX0/wdXLOOee49957z/Xo0cM+7t+/v2vevLk7fvx4kh+ziIiIiMQ1YsQI16BBA3f06FHrB02l+MnmSCRmyZIlVvXK+dzMmTPjnCMm5uabb7ZzPBEREUl9F41jx465Tz/9NEVrjwlVWDLz9LXXXrOPWetZuXKlu+iii1K1XTrB0NWGNaCcOXNal5vOnTun+vFKEqR3NEXi9k+rWrVqOFI3bNiwRDOxiRbec8894WjhtddeG1q3bt0pn85vvvkmVLFiReupFone+8l17Ngxq/hgVgbR0N69e9t8ARE/HTlyxGaknHPOOTZj4plnngn98ccfKaqsGDVqlFVobNu2LXx7UiqPNm7cGLrhhhvCr7emTZueNKtu7Nix4V7HvN527dqV7McrkpEoo1FERPzG9Un37t3D519t27a1itvUmDlz5kkzLLke69Kli2VQxqpYOGbHws8gIhLrWHeJnDfK2su8efNS3XGCtZ1BgwaFzjzzzPBs0AULFvjwiEOhFStWhC644ALbbqFChUKrVq3yZbuZ3e9JPG4rSBElGG7N4im/NBZj58+ff9IXepkyZcLBDBZtGRqcFBMnTrTv40V3/PjxFD/e2bNnh4oWLWoLsQ888IAWYSVw+/btC3Xt2jWUNWvW0EUXXRSaOnVqig5u8QcfMjCRgN/evXtP+X0vvfSS/c1zMOTgdTKLFy8O5cmTx15vPN6UDAMXySi0WCAiIn4iIYvhlF6AYsCAASk67yPQkZyFbBJRuL/atWuHYlUsHLNj4WcQEYllH374oSUz06IxtQkG8dFWvnz58nYcuP322y3BwA/vvfdeKHv27LbdsmXL+tI2Sv6P2j1lIAxwu/HGG92WLVtsqMuXX37pbrvttkS/ntZPtGtiYBzlR3369LGhwYm1dtq9e3f44xYtWrhnn33WyqLOOuusZD/WzZs3u3r16lnJNS14GLZNCXbBggWTvS2R5MifP78Nsv7xxx9d+fLlbTh7zZo17ePkiBx8SMk/A5rGjRvnVqxYccrvo+UUQxrHjBljZYUnQ+s1ht1ffvnl7pdffrGB2ry2RURERCRxe/futfOoWbNmWevYyZMnW8tOWnEmBwl5tGegZQODOpOCNrglS5Z0AwYM0K9IREQkhVgvYcB0njx53IEDB3x5Hr0WUZwb0PqedRnaN+bLly/V26bN9x133GHtummF/9lnn6W6bZQk32lENFLwfeKTr776ygISzHVg4ZUe+CzGxkdQgkCEd3LOzAf6o54sOEBA4e6777b+ratWrbJe/ylF37jnn3/e5k0QHGFh9/bbb0/2xYKIX+bPn289B7dv3+66devmnnzySXf22Wen6DXILAn+vj1//PFHkrdFkJGD40svvZRg4I/XNoG9L774wvoZzpkzx1WvXj3Zj1Mkmh0+fNh6jP7+++/u3HPPTe+HIyIiGdQPP/zg6tSpY/2g8+bN695//30LMqQE88H69etn1yuc65FklRT//vuvO+OMM1ysioVjdiz8DCIisZZg8OGHH7o2bdqEb/MSsVO7bsiaZteuXW398+mnn3Z+4pjPehLzUMFcYN5PLBFcgj1u//8pxZLmGN5Wo0YNW8T0hrIkFKDYsWOHq1q1qmWRe6hiOFX1Qq5cudymTZvsJP+7775L8eNkSAzDuQcNGuQeeeQRG2hMhFEBCklPXMCuW7fO9e3b173yyivuiiuucFOmTEn2AKbrrrsuToCCyPlVV13l2rZt6w4dOnTS7yV4SEUH1USVK1e2g3BCr8MFCxbYa52DK4+bAIuIiIiI/P8++eQTO5/i2uWyyy6zCtSUBihGjx5tAQowUPNkAQoqz/fv3x/+OJYDFCIiIn779ddfrQrx3nvvtW4SnmLFiqV63ZAuMCR0jx071g0cONDOEfxCciprm16AgqRs1nYUoEg/ClKkExYpqaBg0ZLFSxYxiSrFt3DhQleuXDnL9mYhlehTYlicXbt2bfhjso+mTp1q7XDYRnLt27fPNWnSxDVs2NBa1rAgTKsoSrZEogGVC7Q7I3BWoUIF16xZM1e/fn23a9euFG+T1xzBBv4/VfURn3/11VfttcbBk9cZQb34vAoKHtuff/5pVUgzZsxI8WMUERERiSW03rz11lstw+6GG26wAAWBipSgTVSnTp3sfSptH3jggZN+PRXipUqVcvPmzUvR/YmIiGRmJFuzbnj11Ve7bNmy+bJN1jc5PpNUumHDBnfhhRfaGk2RIkV82T5rRrTkZp2GdaVp06a5nj17Khk7vf2/GRaShqZPnx6eQl+/fv0EB1gzpLdfv36h0047zb6uXLlyoc2bN590cMydd95pg7SXLVuW6sfIUOJ8+fKF8ubNG3r33XdTNKhOJK0x6KhAgQKhXLlyhd5+++0U/93yGlq4cGGc2/74449Ev3779u2h66+/PjzckWHcDGqMj4FRd911V3joPY9RJBZogKWIiKQE52p9+vQJn0M1b948wWujpFqyZEkoW7Zstq0OHTqc8lyQ87UKFSrY148ePTqUGcTCMTsWfgYRkYzq2LFjoWeeeSb022+/hW87cuRI6O+///Zl+3v37g3VqVMnfG7QsGHD0P79+0N+Wbt2bahw4cK27fz58/uyhir+HLcVpEhj48ePt8VJfjksViY05f7PP/8MNWvWLPyCvP/++5N0st6yZctQlixZQqNGjUrx49u3b1+oSZMmdr+NGze2nYNIRnLgwIHQ3XffbX/D9erVC+3cuTPV2/z444/t4DVjxoyTBgq7du0aft02aNAgdPTo0QQvhu+9997w140cOTLVj08kvWmxQEREkotrnhYtWoTPiXr37m2JWinF95YpUya8oJHUxRKus8aOHZtpkrJi4ZgdCz+DiEhGVbt2bdsHd+nSxfdts0Z66aWX2vZJOnjttdd8PT4vWLAgdM4559j2L7/88pMmg0vaH7fV7ikNjRo1yrVu3dr6ntKr7Z133vlPOxmGtjBJ/t1337U+aG+++aZ9X0IDeemfRv98D33U6P92//33p+jxTZ8+3WZP0A928uTJVu50/vnnp2hbIuklT548buLEiTYgccWKFfY3PWHChGTPqog0bNgw67P40UcfJfo1WbNmtbkxvHYpcaSVW0K9DOlzTD/FBx980D6mBQFDt0VEREQyiwMHDriaNWu6SZMmha95aCt7+ukpvzzle2mp26FDh/C1VFJwndWuXTu1eBAREUkCZtVedNFF1rreb6yRPv7447aOw3oO7Rv9moc7ZswYmxF65MgRa/W0bNkym5sh0eM0IhXp/SAyg5dfftn16NHD3u/SpYsteiZ2Ek6wgT77M2fOdLfcckuCX0MwomXLljbXgqHBqcGcCybYE5hgaMzIkSPdBRdckKptikTLBfBDDz1kF8DMgXjjjTcsiJFcf/31l/VD5LXLfAmw60zsYMnrk0HeCc2Z8fD9TzzxRHhoN8MdGQKugfSSEXEc4e+dXuLnnntuej8cERGJYps2bbJFgo0bN9ox42TXPElBkldyh10vWrTI7d692919992Z7twrFo7ZsfAziIhkBKxbTJkyxfa5rD9GrpH4NX9i+/btbv/+/eFZutzniRMnfNs+ieKsvQwaNMg+btWqlSWOkmgq0XXcViVFGmCwrhegeOyxxyyoED9AwYvGQ4Y1g2FOdrJ+6NAhO8F///33TzpM+1S++eYb2xEwKI7KDob5KkAhsYKB1vxdc/G7dOlSG+T0xRdfJHs7HBx79eoVDlDgvvvuc927d7dB2PFVqlQpHKDgANu7d2+7/0hcEA8cONA999xz4SCFd9AUERERiUVkLTIEkwAFwy/5ODUBit9++822N3Xq1CR/z8GDB626nUUKKjhEREQkYePGjXPNmzd37du3twVmj18BBDpgsE5DwjTHZ2+txK/t032mWbNm4bWWp556yr399tsKUEQpBSkCRga319blySeftEXJ+Nk6BBpY1CTw4ClQoMB/thUZyKAl1Pjx492aNWtSlD3CwinVHNdff73LnTu3W716tWvRokWmyySSzIED3rfffusuvvhiK+vjdRj5ekouXndE3qmu4LVzqn3AgAEDrKUB1UrxEdEfPHiwvU9ZIyWIIiIiIrGGTMybb77ZKl2vvfZa99VXX1k7h5Q6duyYq1evnlu5cqXr1q2btdpMChJJaLd55ZVX2sKFiIiIJIzjJMdL2spnz57dt6eJSgy6XrBWw1ooa6BJPY4nFS27SYSglT1tpFhDJTlU655RzMc5GBLPvHnzbJC1N1AmoWEvr7zySui0006zr+nTp0+izyEDe8uXLx/67bfffBkszFBf7rNbt2428FckM2CAIkMZec3VqlUrtGfPnhRva+7cuaGBAwee8uuOHTtmQ+i9oZB8T0L7gscff9w+f/rpp4emTZuW4sclkh40wFJERBLDeQ/nP965EEOt//jjj1Q9YVy/eIM7c+XKFVqzZk2KtpEZxcIxOxZ+BhGRaLRly5bQgAED/jPM2k+bNm2y9U3vvOCRRx7x/Zj8448/hooVKxY+T1i8eLGv25dgjtsKUgTk888/D2XPnt1+CS1atAj9+++/cT7PxwQIvBflfffdZwuoiS1yFilSxL6ub9++qXpcX3zxRahw4cKhPHnyhGbPnp2qbYlkVAsXLgydf/75oQIFCoQWLVrkyzYPHjwY6t+/f4IHcF7v3bt3P+nrnQt4bufzZ555pj1GkYxCiwUiIpIQzovatWsXPgfq2rVr6J9//knVk8X3N23a1LaXI0eO0LJly5L0ffv27fvPNVlmFAvH7Fj4GUREos2hQ4dC5513nu1fZ86cGch9kJB57rnn2n2wLknyp98+/fTTUO7cue0+ihYtGlq/fr3v9yHBHLfV7ikAa9eutdJjep8xWIYebpEzKP755x8b0jZkyBD7mNYzo0aNclmyZElwe5RUTZ8+3fXs2dNaRqUUA7FpdUPLG1rf1K9fP8XbEsnIaL1EyyZaDNSoUcPaLRG0TSm+l77G9Dds27btfz7P6/+ll16yeTSUFr7++uuuUaNGVuLo4fYRI0a4O++80/39999W9sgAbhEREZGMiN7VdevWdW+88YadCw0fPtyuf5I75Dr+OVenTp1sBgWtG2bNmmXta0+FGWK0fGBg9759+1J8/yIiIrEqV65crkuXLq5q1aquTJkyvm+fYzgzQ5mrW7lyZVuX5DzBT2yf9R5aSNFWn9aSV1xxha/3IQFKZvBDklC2RHY2T22VKlVCR48e/U82UZMmTcLZ0pMmTUpwO6tWrQotXbrUl+ebsqmOHTvafT788MOJVmyIZDZk4nltllq1ahU6fvx4irf13nvvhS644AJ77Z7q68466yxrOZVQtcSff/4ZqlmzZjiz4Pvvv0/xYxJJK8poFBGRSNu2bQtdeeWV4WqHOXPm+JaBmZL2mJ999pmdf1FJm5p2n7EgFo7ZsfAziIikN6oLR40aFdq1a1ecNcsgqw7pQPHcc8/53kKKzhRPP/10uHKTltt0pZGMddw+jX+CDIJkJrt373Y33HCD27Jliytbtqz79NNPLRIZaefOnZbts2fPHjdjxowEqxk+//xzi/ydffbZ7ptvvrHKh9QMimnSpIlbtmyZVVK0a9cuxdsSiVUMtKYCgtctGXmFChVK0XaonoocJvXLL7+4Cy+88D+DmRYtWmSfa9OmTYLb+eOPPyzb7+uvv7bv/+KLL1yRIkVS9JhE0gLZMAwiJWv23HPP1ZMuIpKJcf1CVTnXOwULFnRz58515cqV82Xb//vf/6y6vGTJkq59+/bJ+t4ffvjBro2oLM/MYuGYHQs/g4hIenv44Yet20ODBg3ce++9F8hA6dmzZ7sFCxa4V199NbCB1SdOnLDB3nSxAecJzz//fJyONpIxjtv6jfmEUqJbb73VAhTFihVzH3744X8CFGDBcfHixfZCTazdUvny5V2pUqVcxYoV3TnnnJOqtlNsY/369XafClCkr379+tlOOaG3atWqpfOjy9yaN2/uPvvsMwsiVqhQwa1YsSJF24kMUPz888/uqquusgtoWgxEIgARGaCg7QABDg8Byvnz59t+gMdE0FKtCURERCTacY1DmwgCFLSKoM2CHwEKL6/Oa6GZ3AAFOK/K7AEKERERD8dS1i1Zn/AbLawJFjRs2NDaWk+bNi2wtdjatWtbgIJ2kiRnv/DCCwpQZFAKUviABUgCDt99950rUKCA++ijjyxrKDKq9+WXX4Y/vvTSS+1FFCmyNz0LnQsXLnRz5sxxuXPnTtFjIhucHm/scFhwrVKlSoq2I/555JFHXIcOHayShqob3nr06GFzEWbOnKmnOp1de+219lopXLiwu/HGG62XYWoQ9Pjtt99sv3CyjIG9e/dakIqD97Fjx8K3582b1/YDVFBs3LjR9hlUWIiIiIhEI7Ixb7/9djufqVWrllWHp6Yi3MPCAzO7Iq+XkoI5gJ07d3abN29O9WMQERHJ6Kgm/OSTT8Ifk0ywbds299BDD/la5bBr1y538803uxdffNE+7tq1q50f+I3EUNY9Scom0ZM11I4dO/p+P5J2FKTwIavnvvvus3YsBAQoY6KSwsPJNCfVZO3MmzcvwW14GdcTJkyIs0CZ0tKkoUOH2lBehnb7dXEgqcdOM0eOHC5r1qwWzOKN2xiYnidPHj3FUYDg4pIlS9xdd93lWrZs6Z599tkUD9Ru3bq17Q9o65YtW7ZEv47qq+3bt1twkzLLyEAFlVcEKvLnz+9Wr15t26TNgYiIiEi0+Pfff61lBG+cN5GUQ4snP9rwTJ8+3arBSejx2jgkFa0eyN4kGSS5AQ4REZFYsmHDBnfllVe6O+64w9YfPH63zGM95ZprrrG1SLbNcXzIkCG2Duan5cuXu+uuu879+OOPtm7C/bEGKhmbghSpRECA4AJlRbz46Gnv4WS4cePGFs3j84m9KPl+dhhPP/10qk6guSh47LHHXLdu3VyvXr3clClTXM6cOVO8PZHM6KyzzrKLYF6PTz75pHvwwQft4jslatSoYZUZHgIWHEwjUVlDezgCVsyqoIfz0aNHw58vUaKEe//9923/QYUUgRMRERGRaMA5C8lRVFF4gYHRo0e7M888M9Xb/uCDD1yLFi0sQYNABYlhyUFrTarJBw8efNKEERERkVhHRxcSqklijlxv8BOJAbSOolU1VRorV660NVG/kbhAAgL3c/XVV9saC4nfkvEpSJEKZD7Twgf0Ro3s40YLKCKUVE/QvolsIvrKJ6RPnz62GMqg7ZSeQNPv7d5773WDBg2yKKWGxIikHKWOvCZff/1162nIzIrUZuAxvJ7tUPZIC6hIN9xwgwUqmEFDqWL8QAWBDB4HnnrqKRtqJXIyr732mrvkkkss6FapUiUbwn6qgPvll19uxysCawS7489SERERiUTrUuZPMIeCa5ipU6daopQfLSNoR0Hwg2scKlwJfCR3uxzPli5d6po1a6ZfnIiIZDrMp/U6Q9DBg8V9WlyXLFkykPvztksHCGZSXXbZZb5un5+FtVe61XCtWqdOHTvOU0khsUFBihTatGmTnTCT2XPPPfdYDzcPJ9O8aMj+8QIU8QfR8IKNHABH1nahQoVS9FhoD0NAhB76vNHvTTIGP/v+if9oV0D1AxffHAAPHz6c4m1RZcV+oG7duja4MT4y/WgPRaCCEknm3EQGRtq2bWtVHWjVqpVbt25dih+LxDaq6Lp3724BrVWrVllWya233pro8PVJkyZZFR5fz4nsG2+8Ydt44okn0vyxi4hIxkDCBUFwjjP58uWzoEKTJk182TZtdDkPYgGCmV1e1XpSUP36ww8/hD9OaftcCVa/fv3sOijy7YorrtDTLiLiExbzWYMgeS2yvTVJbH46fvx4+P3q1avbeQGdKWh17idvzhSJ4qyldurUyTpOsH4isUNnbSlw5MgRO2Fmijwn52Q4e4vNvFgY1OJVUMyfP98ypyO9+uqrNtzl8ccfT/Uv8MCBA7bwyaIm90lJtGQc7FD37Nnjfvrpp/R+KJIIBjwxF+Kbb76x2TL8vlKCdk4EOyIvtNlfRM68oGKCCi3+LphVE/++ONHgwM8AbfZBBw8e1O9N/uPll1+2ABvVdQTERo0aZSeJb775ZqJVPgTJOH5QfcGwU6p+TlZ9QQCNoF3km4iIZA6cF1EFumPHDmtLSfIV1zZ+IDBBsMMbvk3QPDmtowYMGGC9sKmGlehWunRpq8bx3ugnLiIi/uDYycI+LZeC8u6771oLKdrXe0iQ8zsZ11uD9dZeud5lXZXqEIktClIkE5UTZDGToUMUknKpyEgk2Tss3pC1w0k1fdLiY04EC5MsNKZ0KG9kiTVVHbSI4UReMhaym1GuXLn0fihyErzOPvvsM8tEZzF327ZtKT5RiGzpRhYZQyYjZ14Q+KQK68svv3RFihT5z/fTSoGFZAZuU83FiYeI58SJExZQYx6Kh+MRH/M3lRAWlvgeLyjB3xYBdqqHEjNw4EB33nnnhd8iZ6+IiEjsotrOqy698cYb7dhCn2u/cF3FuU6DBg1sFldyWuFyXbV27Vo7FmoGRfRjcalAgQLhNypyREQk5SLb9dKFgXWFt956y/enlO4xtAcmsY3EymHDhrmg7Ny509ZjuD4lEZxOF9y3upLEqJAkS9++fYkqhLJmzRr66quvEvyaf//9N/Tll1+edDuff/556H//+1+Kn/1ffvklVKJEidCFF14Y2rBhQ4q3IyJJt3Xr1lCxYsVCRYoUCW3ZsiVVT93atWtDp512mu1PPvzww5N+7Y4dO+J8vGbNmlCOHDnse7t165aqxyGxZefOnfZ3sWzZsji39+zZM1SxYsVEv2/YsGGhM888M5QlSxb7/o4dO570fv7888/Q77//Hn7jb5Tv430REYk9XN88/vjjtq/n7e6777ZjgZ/b9wPXVwsWLPBlW7GKY3V6H7OfeuopO5ctWLBgqGjRoqEWLVqEtm3blujX67xDRCRxx48fDz3wwAOhKlWqhP7+++9An6o9e/aEqlatGj4f4Nzgn3/+CeS+vv32W1vz5H7OP//80PLlywO5H4mecw9VUiQDETtmR4ASYjKeI/uyetnQZK1ed9114c+R6Tx48OA4UU2ysVMa+aO0mrYz9H5j2DZl1iISPCobeM1R0cBrcPPmzSneVpkyZWwWwDPPPBOuqEkI7aHIUKSU0kNvyfHjx9v7Q4YMcW+//XaKH4cI7QJpjzFixAjrIUqFIO0D+dtMDBmq5557bpw3ERGJTVzD0BKQKjr07dvXzk/8qlagTcTVV1/t1qxZk6Lvj6xM5/pK1eXRj+toepZ/+OGH1r6DNqdU5tDSIyGq4BQRSdyuXbvcxIkTbaYTM6KCwtDta6+91oZV06KaikeuI5M6Nyo5qAKhtSSVFAzkprVkxYoVfb8fiTJpEDCJCWQ958yZ0yI/Dz/8cJzPUVGRPXv2UOPGjS2CGV+7du3s++rVq5eq6gmQrepXJreIpDxb3atk2rRpk29PI1kPJ06ciHPbQw89FK7eWrx4cZzP9enTxz6XLVs2ZRWI+euvv0JnnHFGaNasWXGekdatW4caNGiQ4LN0ww03hB555JE4t02YMMGOa0nNbI2GrEwREfHfr7/+GqpcubLt46m2GzdunK/b37hxY6hQoUK2/ZtvvjlF2+B86LHHHgs8ezRWROMx+9ChQ6Fzzz03NHbs2AQ/r0oKEZGTmzlzZuiDDz4I7Gn64osvbN2B48fll18eWr9+fWD3NXLkSLum5b6qV68eOnjwYGD3JWlDlRQ+YnAbvd+PHj1qQ7BffPHF8Oc2btzo6tWrZ1UNfD6hCCIzLHLnzu3uu+++VPVNIzrK0FwqM8h8LVq0aIq3JSIpV6hQIXsNMl+GfcLWrVt96et49913W1/HyDkTDIVq3Lix9VdmiDdVW57+/fu7+vXr2xycZs2aaXixuKxZs7ry5cu7RYsWxZmlxMcMZk/sGEcFYKTI4e4iIpI5/fTTT1YdvmzZMps/tGDBAtemTRvftk/2POdRXOMwRDmyajSpfvzxR/fcc8+5559/Ps6xTzKWXLlyWXcAZi0mRBWcIiJxr986duzovv/++/Btd9xxh6tdu3ZgTxMVFBUqVLAB1swyvOKKK3y/D65be/bs6R544AHrVHPPPfdYxR3rqZI5qN1TEjz66KNu/fr1NtCLk2dvgvzevXttJ7B//35bFJo2bZq1gYmPtjCchLOYmFIMo+EknsVIhmQzOFdE0k/BggWtlJLXPMHD7du3p2p73377rXvvvffc7NmzreVO5GIxpZuUOv7+++/utttus5ZvYGGZdgu0oWIfw3Aske7du7sxY8ZYGzCOXZzkEUS/99577clp3bq1e/zxx8NPFMcmWi1wfOPv6KOPPnJPPvmk3R5E6a6IiES/zz77zILbtLbkuoMB2VyL+IXzJrbHOQ0LHQQY8ufPn+zt8L2TJ092jzzyyEnbZ0p0++OPP+xvjfNrERE5OY55o0ePtgRHr+18EFjr9BIoSYabO3eutQYOotUvgZcmTZqEk8JpPfzmm2/a/UomkkaVHRnWnDlzwgNhIofb/vHHH6Frr73Wbqf9EsNjPLR0evbZZ0O7du3yrfy1bNmyVgpNSbSIRI/t27fbwD/aP+3bty9V25o9e3Zo3rx5CX7uwIEDoZIlS9o+p3Tp0rZf8Hz22Weh008/3T43efLkVD0GiQ3Dhw8PXXzxxdYmjIHZtCX03HTTTaE2bdqEP6Y9Rr9+/UKXXnpp6KyzzgoVLlw41KlTpzh/YxmxdYSIiKTMO++8Y8cP9uscQyKvc/zAgGSun9j+ZZdd5ts1k2ScY3aPHj1CS5YsCf3888/WQqRGjRqhfPnyJflcOhp+BhGR9LJ3795QuXLlQp988klg97Fq1Sq7LuzevXsoLX6eSpUqhdtcT5w4MfD7lLSV1OO2ghQnsXv37lD+/PntiezatWucIMRdd91lt3My9dNPP8X5vv79+9vnrrjiCuufmRrMuKhatWood+7coXXr1qVqWyISDOZSnH/++aEKFSqEjhw54tt2Dx8+HGcmABf1Xt/mgQMHxvnaJ5980m4/77zzQlu3bvXtMYgkhRYLREQyPi/RykvQatSoUejo0aO+30+rVq1s+wTHmbeXksc5ZswYSxqTjHnM5lq6YMGCthjFjDc+Ts6ct2j4GURE0nLu4McffxznttTOuz0ZEh+ZT+glE7AuEZQffvjBkj65rzx58oQ+/fTTwO5L0o9mUqS+wsRaY/z666+ubNmybuDAgeHPrVu3zqbY0/aJ9iyXXXZZnO9t2bKlzYugTRT9M1OKsq0WLVq4FStWWFkVvVpFJPpceuml1iuRvsje/IjUOnDggKtWrZrr3LlzeC7AxRdfbPsC+i6zf4nUt29f6xtNSyjm4ARZ9ikiIiKxhdlY7du3d3369LGPe/ToYa1sc+TI4ft9jRgxwloP0sL2oosuSvb3v/HGG65Dhw6uSpUqvpxzSdqjxSSzSGhl/Msvv9jHnE+LiEhcR44csRbytDRcunRp+PbUzLs92UyIJ554wtpIMXeX9vbMnzjnnHMC+bUw57Ny5crWcphjAK0lq1atGsh9ScagmRSJePXVV23R8ayzznKTJk2y/z1lypRxn3/+uRs7dqydHMdXrFgxG2Dj9f9OCRYlO3XqZP3pp06dai9cEYle11xzjQUtOdC2bdvWDvCpwT5m9erVbsaMGW7nzp1x7qdXr17/GXRM0JTZFWeffbb1kR40aFCq7l9EREQyh99++81mXtH7mfOL1157zXpCxz/XSO0ii4dzFeYmFS5cOEXbuvzyy21W4F133aVe1SIiEtM4ZhYvXtwCBcxtCArH6dtvvz2coE1SJAmSuXLlCuT+xo8f72rVqmXnIMzAIkBRokSJQO5LMo7TKLtI7wcRbb777jubWk9mx/Dhw12XLl2SlNHD91B14Yd+/fq5/v37u7feessm2otIxkDWIRfNXbt2dS+99FKqMhwIkF599dWuVKlSCX6eYchkOhK0oHoLXPSzzyBo8cUXX7iKFSum+P5Fkurw4cPuvPPOs0qeIAapiYhIMLZu3erq1q3rfvjhB5czZ05LjqpTp46v90GmPEOy7777bvfUU0/5NswzT548vgZSMotYOGbHws8gIpIYlmlJejzjjDPsY4ITe/bssYToIHBfJEYvX77cusGwvskxO6ifjbVO3tC0aVNbw4hMDJfYk9Tjts7q4vnzzz+txRIBCk7QabXilUDTxonM5vgWLFgQLjnesmVLqn95o0aNshcsLV0UoBDJWJo0aWKVWEOGDLEsxNRgXxQZoGA/FIn90+jRo92dd95p+y7QPoEgyT///GPf/8cff6TqMYiIiEhsoqUsrSIJUBQqVMiqOP0OUOzYscPaV27cuNGNGzfOMiZTgvOaffv2hT/Oly+fAhQiIhJzCEiw9kgyoofWi0EFKEDAv2fPnnYuQEupoAIUrLO2adMmHKB47LHH3OTJkxWgkDAFKeLhRcLMifPPP9+qGLwsaF6w77zzjpVC05stEpnKnHzzQvaymVPqo48+soXHhx566D8950UkY6BVW+/eve01/P777/uyzTVr1riSJUtaKyfP008/bRfpq1atCld8sc8aOXKktVDYvHmze/jhh325fxEREYkdtKikx/XevXvdVVddZdmTVG/6adu2bXYfnI9wjURLzJS2jeCcisdHOwgREZFYxfU+HRVovfjTTz8Fel9UJXqYrcn9BdWJ4eDBgzZXY8KECVYh8vrrr1trKVVESiQFKSJ8/PHHbtiwYfY+mT4EKkBkz7udrOXs2bPHeRJz585t8ytoDZWa1i5kGJEBTV+2l19+OZBBOCKSNgggcKAnC4IWcqlF6ygu8hlkFTlIm0GDHNgpyWROjrdPYj4F+xD6S7MQISIiIsI5xNChQ12jRo3CQzFZEEnJAOtTtZEiicsbhvnpp5+6IkWKpGhbtLdcuHCh2717t72JiIjEKhby6cjA+mRQMxr+/fdf98gjj9i8XSoePbR9DAIdZ2gnxbkAszXmz59v3WhE4lOQ4v/hJL1jx47hLGgqJsAA7Pbt29v7LA42bNgw3E+LnYYna9as7swzz3QpRV8utp0/f34Lini950QkYyJwQG9FLsx5bUdmKaS0DRwVVrNnz44TwLzlllvcc889Z+9ThUXrBlStWtVmVYAqi8iBlSIiIpL50DKJc4lu3bpZsIJrnzlz5tiCgd+LEVRQEKi47LLLrIIipUOyvUUTKii4RiK4IiIiEkumTJkS53qdVk8cR4MckE0SJHMuPvjgAxekr776ylpLbtiwwc4FmJtJYrZIQhSk+H8oMyJLmR5s3jR7AgecCNMTrkaNGpYZ7Z3gU/FAhJPsZT+imLSK2rVrly1AprQMWkSiCxfVtHtiLgSzKuLPlEgO+lBS0UWVRHwEIzjROHHihM2n8AIiffv2tSDJzp077X0RERHJnDgX4VyBuVkkO5ClOWLECJclSxbf74vKjO3bt1sGKAGKlFZpeJWjIJDSrFkzHx+liIhI+mM+A8c3OjAwwDpIHJtvuOEGN3fuXJsDQfD/vvvuC+z+pk2b5qpXr+5+/fVXV65cOQtYUL0hkhgFKZxzP/74ow2pxiuvvBKeNE72MT3ZaKkSWd3ACTMn20y9p4dratG7nugl0dPLL7881dsTkehBa4MZM2bYMMquXbv6tl0yH8mAZH/EYgMt6shWpCrM611JazoWILx9G7MrREREJHMhEYoKy3nz5tmiBIsGZGkG1VqWoZhUkxKgIAEsJUjsqF+/vp1DiYiIxCraLnLdfu211wba8n3lypWuUqVKbu3ate6CCy6wY3RQwX/WKAYPHuyaNm3q/vzzTzue0+oppecEknmcFopMUcmE+PGJ7PGCqVu3ri38sWPghVSvXj23ePFiW1y8/vrr//N9zJBIbY84hnETMaXUqnv37qn8aUQkWo0ZM8ayFBhq7bWWSykqI4oVK2aVEwQnWAwAwQkqsbx5Op7mzZvb7ApOfMheUDs58RstEM877zyrQPQC/SIikv5YjOAa55dffrG2slRt03bBb+vWrXMFChRw+fLl82V7VHw8+OCDdkyhfVTevHl92a7ExjE7Fn4GEcm8vETDyGSCIBfwWdOkxRIJjVQyUElBMnYQ6DxDwjfzfMGxfMiQIVqDyOQOJ/G4nemDFGT53HPPPRa5/OGHH9wll1wSfnIotVq+fHk4QMHC4IUXXujbL4n7Y9GQ9iw8Dg3KFoltHKxff/11t2zZMnvtpzbowfyJ11577ZTzcOg1ecUVV9gBYfjw4fY4RPykxQIRkeizYMECazdJ/2nOAxhUWbRo0UCyM1n84Dpq0aJFCbamTMkiB+0sSSYjcUz8EwvH7Fj4GUQkc/r6668taZG20KmZ15Tclo833nijJRPQwSWo/Sb7ZqonOP9gfXPo0KE2C0vksIIUp3bgwAE7Yad/+6BBg9yjjz6a6NeSwUMPNV5wtE2hVDo1mHNRsWJFi6Cy0Ei/eRGJbVQ+VKlSxR08eNBaL3FxFRROPmbOnGmt6hjiTQVHp06drKczLe5Uail+0mKBiEh0ISmC4z6z76pVq2bnBH4ED+Ij8aJOnTq2WEwbiQ8//FDz9aJcLByzY+FnEJHMh0RojpUE95lLO3HixMDui+M/6wBeMjTrnnRdCGIWFXbs2GGVm999952tb7IO0aBBg0DuS2L3uJ2pZ1IQlOCFeuWVV7pu3brZbePHj3f333+/RRoj0faJJ5VSZj9apTz88MMW+Jg6daoCFCKZRNasWa3tEvsdWj/51W2P7bDdo0eP2se7d+929957r+1fvJkU7Nc4ISKb0s/ZGCIiIhJdCyBUIHDcZ4GidevWltEYRIDik08+sQoKLjjJ0Pzoo49SFaDg2oiWEJm8G7GIiMQoggbMWmrbtq0lEQaF9UwCBMyF8NCOMagAxerVq62VJAEKqjVop68AhaRIKJNaunQpZ7/29sUXX9ht27ZtC5177rl22yuvvPKf71m4cKF9TWpNmjTJ7mPs2LGp3paIZDxTpkyxfcDo0aN92V63bt1se23atAnfNnz4cLste/bsoQ0bNthtq1evDp1xxhl2+/z58325bxH8/vvv9nfF/yIikj6OHTsWuvPOO8PXOP379w/973//C+S+5s6dG8qWLZvdT82aNUN//PFHqrZ3/PjxUOnSpW17Tz/9tG+PU2LzmB0LP4OIZA7//vtv6Lvvvkuz+9u1a1eoXLlyto/MkSOHfRykOXPmhHLmzGn3x3F869atgd6fxPZx+/TM2nKF7CJ06NDBVa5c2bKOiGZSLUEE8IEHHvjP99WsWTPVw2UYtk0GdYsWLez+RCTzoW0c+yAqqsg2SK2GDRu6bNmyuVKlSoWzD2nxcMstt9hwLAZr09v56quvtvv0Pk/bOREREcn4fv31V3fzzTe76dOn26yqCRMmuL59+wYy827OnDnujjvucH/99ZdlSjKMO2fOnKnaJq10O3fubP25dY0kIiKxgONk8+bNrdU7syiCxtxb1jNpLZ0/f37rCFOwYMHA7o/5mKxF0NGhRo0a7osvvnBFihQJ7P4k9mXKIAXDW9avX28v2ueff95uoyUKg94YoE3LJ8qgNm3aZH3i6B/v1w7qrrvusvKnUaNGaVC2SCZGO4PLLrvMAhZem6aUuummm6xFAi3svMUISknfeust6/f31VdfuRdffNFu79+/vy0AbN261Q0YMMCXn0VERETSz4YNG2xRguM9bZ1ou9SyZcvA7o9Wueeff75r1qyZBUVSO6vPQ5IYc7MuvPBCX7YnIiKSnrgmJxGahMGff/450PtasmSJJWBv377dlShRws4JCI4EgXaS3bt3d126dLGE73bt2rn58+cHOnNTModMF6Qg4OAtzNGfLU+ePO6nn34KD81+4YUXbOGQbGR6uE6aNMmyevzQu3dv9/3331ufeIbXikjmRUCUfQEnERzgUytyEDYnDVRQEIx45ZVX7DayKdeuXevOPvtsC9Ti5Zdfdrt27Ur1fYuIiEj6oO/z9ddfb8kKxYoVc19++aUlLwSpaNGitvjBwE+qNlLj448/tkQuD8M2RUREYgHHyGnTpllFAwnLQWFd4dZbb7UZUVWqVHHLli2zc4Ig0I3hzjvvtKRLsL46ZsyYVJ8PiGTKIMXAgQPthVu2bFnXqlUri/oxYJYFPVqj0AIFZCNTukRWUuSwmZRiJ8GC4LPPPuuuueYaH34SEcnorrjiCvfSSy+5119/3S1cuNCXbe7du9dOULzB3ARbKcH8+++/bXAmaNFAlgX7vaefftqX+xUREZG0RZCAdrSHDh0KV1Jcfvnlvt8P5xNcw7z//vvh2y666CJ3xhlnpGq7H374oZ2z8DOktqpUREQkGtCxYNy4ceGPSRIkcBCk/fv3W1v7Ro0aWfA/b968gdzPnj17XLVq1dx7771n7aYnT57sHn/8cXWJEd+cxmAKl0ns2LHDqiTI1pk3b56rU6eOlRSTfUT5FVUO8WdO8PSktpcrkUZ6wbOj+Pzzz1N9Qi8isYN9DBfnVHQxnyK1JZLsYzhx4KRhzZo1rnjx4ha44P1atWqFv+6zzz5zVatWtf0RvSspCRVJKcqY+dslCYAWYyIiEuy5A0kG/fr1s4/JaKRdLVWaQdxXjx49LGOScwtaS/nVb5q2VDz2xo0buzfeeEOLHGkkFo7ZsfAziEhszodi7Y9uBVOmTLHWzmll7ty57rbbbgtsvZE1A9ZQt23bZmubJC4EHXyR2JHU43amqqTgRJ4ABQtzvHi9TGYWB2fMmGEBCvrE8aLz+DFsrk+fPtbShf7wClCISCT2MVyYkwX5yCOPpPrJueGGG6zccuXKlRagwAUXXBAnQIEbb7zR1a1b11pDsY8SERGR6Eem5D333BMOUNCyloWQIAIUJHG1b98+3NKB6nI/B2KSpMH5imb1iYhILMiXL58FJkqVKhXoAj7nAlQwHDhwIHxbvXr1Altv/OSTT6wTA2ulJH7TWlIBCglCpqmkIOpXpkwZa+/EC4qS6Pj4XPXq1S2bmfIlghmpRVYz22HWhR8LkCISm0aPHu06duwYbn0QFE4sGGrFcEr2dVdddZVlSa5YscJde+21gd2vxDZlNIqIBI+EBlo5MByThYgRI0ZYe8cg/Pnnn6558+Z2TcTgzzfffNO1adMm1dv9448/rN1k/vz5fXmckjmP2bHwM4hIbGJdkWNdUPsmtk0FIu2imUHFvAs/kqsTQ+uqDh06WOICCZGcFwTVTkpilyopEhhazc6CXuwEKNatW+dmz55ti3MeopC84Km2YOBsatHmiXkX3F+3bt1SvT0RiV0sMtSoUcMyFrng8svmzZstwxK0fSKrg9k7BGsJ3DKbB7169YqzPxQREZHowWBsshgJUJxzzjnW1iGoAAUXklSdsxCRNWtWN336dF8CFCxwMDiUayMq2UVERDI6qgxY7/OupQnsBxWgYPYEs3QJUOTIkcM99thjgQUo+HmefPJJW9Pk+N2sWTNr06gAhQQpU7R7Ymi1lwX03HPP2YuNRTqGyQ4aNCj8dWT0LF++3H366aeuaNGiqb5fWqj88ssvavMkIqfEycXYsWMtQEHvZz8wc6ds2bK2sMD7tH1icQBdunSxVk/0tGYBgpMrTjpEREQkunB9wsI+x3IGVlOpXbt27cDuj/ZLXjCECk+SvPwauLl+/Xq3e/duqwoRERHJyPbt2+caNGjghg4d6l5//fVA74sW8lQyfP311y5Pnjx2/R7UuQCJ2y1btnTPPvtsOOn7nXfecWeddVYg9yeSaYIUBCSILoIIYMmSJW0CPUNjiTy2aNEiztdnyZLFl5Yn3377rRs2bJjr37+/u/zyy1O9PRGJffR5pjUcMyq++OKLVG+PfQ/t5si89E4oBg4caOXxq1atsqAI90nQFuwrqTgTERGR6MDcvGrVqtkwzmuuucYCFiQgBIkWtZwbEKigFa5fCLBQyTlnzhxXqVIl37YrIiKSHs4//3z36quvWgI086KCbF/PNf2GDRus6wvJCkEdR+kwQ4eHSZMm2fooaxMEK0j6FglazM+kmDdvng2QYYFu48aNtjjHwh0ZPFRVPPHEE27ixInWd7Vdu3a+lEqxyMdQ2t9++82CFWeeeaYvP4uIxD6qG8iW/Pvvv22YJCcGqW3ZQCZk5L7tlVdecQ8//LBlYNBugcNAsWLF3JEjRyyISymnSHL/ztQbWkTEPxybX3rpJRuMzft169Z17777rjv77LMDeZo5H7jkkkusutJvtNMN6nFL5jxmx8LPICIZF8flyOvr+B/7fV8kUpNkSNL1ggULfGlPn5BNmza5OnXq2Nop+1YSJQhYiKSWZlL8v2ABE+/x4IMPWvbOM888YwGK4sWLW0sV3u/cubMNguHE3w8TJkywFlNEVBWgEJHk8AZhrl271totpBYnF/FPoMiOZB7FwYMHrS1dvnz5XM+ePe3zfEyARERERNIHvZ85VnNs5rjNtQqta4Na6KdiokKFClZ17ndFJX2zCX4w2FNERCSj++CDDywRmhm0niAHV7NtEgnr169vHWGCClDQyYFkSQIUF198sa1pKkAhaS2m63Xef/99991331mWBW1M6OM6ZMgQ+xytmLJly2blWU899ZSVUTdt2jTV90n1BBlPZCL7WR4tIpkHCwUM0CZgQJ9LvxY8Bg8ebJmYlGoSRMXo0aMtK4NhX+wPGbTNSZCIiIikPaoa6W9NogILE1y7DB8+PNWVlYkhS/LWW2+1DLcdO3bEWXTxA9WbtI54++23fd2uiIhIWqMysHXr1m7+/PlW7RikvXv3ht8vUaKEmz17dmBDq6dMmWIDuTleU7VBa8nSpUsHcl8imTZIwYIcyESirUnXrl1toY4IJCVMXtZy9+7dbegM76dW37597eT+xRdfTPW2RCTzGjBggO2TevXq5cv2du3a5fr162eZH/SCZlYFGZMMwbriiissO5N9JNh/xXgnQBERkaizc+dOaxnLsTp79uxu5syZdmwOKkNz5MiRrkmTJu7EiRM2HJsWEn5Xa0yfPt16WQc9UFRERCRoHCMJFhCo8GbfBmH8+PGuaNGi7sMPP3RB4pr/+eeftyRrhmUzW4PqygIFCgR6vyKZbiYFpUpMvqev6tatW+1FNmvWLDtJnjZtmrvgggtscLafw1/WrFnjypUrZ4NvaSUlIpIaXNDff//9tj9jUFZqMSibwAdDvVjwiN8789ChQ1Y+evToUVsgqV27tn6BkiTqDS0ikjrMsaPakaQCKhvnzp1rlZVB4PhPtSYJEeBc47XXXvMlYQskhQVV+SGpFwvH7Fj4GUQk4why5kR8tH6mzSM6duxoCQVBoMXzAw88YIOxQVIEyYp+nQuIRMr0Mym8KopWrVq5ggUL2g6lUaNG7ptvvnGXXnqpvRhvvvlmt2XLFufXTou5F2QkP/TQQ75sU0Qyt3bt2lm5ZZcuXXzpEU0LKaonvBOs+LMqcuXKZfN5IvehIiIiEizaRlBBQYCiVKlS1mYhqAAFuFbxAhRUWbIA4teiBIvGJFaockJERGIlieD6669327dvD/y+uAb3AhSsL5JAEASO1SRGEKAgcZu2krSXVIBC0ltMtnvasGGDlWAhfkUDi3IMy6b/6tKlS21wrB/IdmKIzcsvv6xh2SLiC04S6OW8evVq9+677/r6rP7777/WVgIMs2RBgf0mGRTcLy3wmFUhIiIiwSFAQCta+lyTQEX1JIOmg0TiFhXlLE4wm8/P7NC33nrLrVixwj355JNWoSkiIpJRkch33333WfKAX22YE7sfkgaYb4snnnjC5uj62fnFQ7CFrjMfffSRnQswy5ekSJFoEJNBCgbY8CLnhJ/Khttvv91uO378uH2eyooffvjBLgrIUvZjse/xxx+3C4tatWr58BOIiPwfsjboDcnFPj2j/bB+/XprTcdsHvZfnKB89dVXNlOHdk933XWXfZ2qKURERIJBheQjjzxis/N4n1aMtFqkqjGo+/NUr17d/fzzz65t27a+38/DDz/s+vfvb320c+fO7fv2RURE0gpBfBKcuT4eNWpUIPfB2iXBCY6deO655+wtiPZSdJapVKmSW7duna2Lkmhdr1493+9HJKVibibF3r17XZEiRWzoC5US9Fa/7bbb3FlnnWWtnXgh+u3tt9+2C4uvv/460NJsEcmcCKqWKVPGsin8yHI4cOCAu+yyy+yEiBOTQoUK2WAu+gROnTrVPnfNNddYRcWmTZsCz+iUjE+9oUVEku7YsWPWkpbB2GBmHlmTQfW7/u6771zLli3dpEmTXOnSpQMJgPDY06pft6ROLByzY+FnEBHxjqEkDbCuSMslOhsEga4JzZs3t3MQ1hbmzZtnCYoiaSHTzqR49dVXLUBBdLBKlSqWfQyylMhMImvIT3/++adlH995550KUIhIIOhP3aZNG/fMM89YO4jUyps3ry2MEIC48sorXZ48eVy3bt3sc7R94KSlRo0aVmUxdOhQH34CERER8RKqqGTgOJw1a1b3zjvvuN69ewe2wP/xxx9bW4e1a9eGj/V+IuGB7TLnwo/5WSIiIumJDizMa/jyyy/T5P5o6TR27Fi3cOHCwAIUtJCmwwwBCrq/fP755wpQSFSKqSAFVRMjRoyw93v27GlzIlauXOly5sxp/eNo+VSyZEmbG+EXWkbR150MKBGRoNCjkqizX/uvatWqWbDCwwIDbRloBTVlyhTbh4ITJvWUFhERST2Osdddd51VX5MgQAChRYsWgT21b775plWUk71WtWpV3+dbea0jGLhJohjzNERERDIyEgPnz59vLZ5IgA4CyYBjxoyx/5ElSxZXs2bNQO6HNoy8kVTQoUMHWydVBZpEq5gKUnAiziDsSy+91DVo0MAqHPDggw+6/PnzW8CCnQytTfzAgiG94ijNuvzyy33ZpohIQi6++GLXuXNnmxPx66+/+vokffvttxaIoDe2FxAhy7Ns2bIW/CUYKyIiIim3ePFiV7lyZbd161ZXvHhxy9C88cYbA3lKWYigmrxdu3bun3/+sUAIGZoERvzGfL8JEya41157LbCfR0REJK1Q3UinFCods2XLFkjggHbxDOQmaBAUruMbNWpkVRQYNGiQGz16tDvzzDMDu0+R1IqZmRS80OmjTjsnTpIvuOAC27Gcc845dhsZw/yoS5YssQxiP0qqWcjjhU7LlAsvvNCXn0NE5GSzJIoVK2aLDn5VVHDSQlnpHXfc4caNG2ezKbgfqikI6rZu3dr2p9u2bQvkJE1ig3pDi4gkjj7T7du3t4ABgYr333/f5cuXL5CnjFa0JFBNnjzZPu7Tp497+umnfW8nRWsnWlRIxhMLx+xY+BlEJPPhPIDra47RzH/k/yZNmvh+P7t373b169e3akeu4UkmCOJ+RJIq082koFyaYATtSnjR01cdLL55LU04OSc72I+T9CNHjtgQ244dOypAISJpgn0ZpZpkQOzfv9+Xbd588822yMDJy1lnnWVt8Ris2bhxY9esWTOrPKN/9pw5c3y5PxERkcyCBCmuSciYZGGC1hGLFi0KLEABjuksTtA6gpaNtK3wO0BBiwp6WvsxJ0tERCS9MUSaa+AgcR7QsmVLC0xQzTBt2rRAAgfr1q2z1pIEKDjfoJJTAQrJKE6PpVZPuPvuu93ZZ58dzliiz/rEiRN97yXHIiHlUz169PB1uyIiJ8NgStD/2Q8MzqYajJMyTpYY0N28eXPL7PA+jtzHioiIyKlx7dGqVSurYsATTzxhx1oSAoLEMO4ZM2ZYMITKS79RbUl7SLY/fvx437cvIiKSljZs2GBJBKwlEqwIKkDBOQHdCrjGnj59unUy8ButHatUqeK2b99uLem/+uord/311/t+PyJBiYl2T8yhKFiwoDtx4oRbtWqVu+aaa8KfYydTr149663O51h486OMmpYrDKJ74403Ur09EZHkoEKMhQFaMNHSLiicTFGhVqJECcvM5GRHre0kIWq7ICIS99qExYelS5fatQfJTUEEDDwfffSR+/TTT92zzz6bJr+G5cuXu1mzZrmBAwf6XqUhwYuFY3Ys/AwiEh245iWRgDmNrB8GMbOBNoxvvfVWuIKiYcOGvt8Ha5P333+/tcKvWrWqHaeDmEUlkhKZqt0TWUkEKK666qo4AQocO3bMAhi33nqrLwEKUKWxZ88e9+ijj/qyPRGR5KCCixYLLHr46bfffnOvvvqq9ZkeMmSIzadgoeWGG26w25QxKSIicnKbN2+2rEUCFFyEffDBB4EGKJjFR+LUc889Z5mZQeFay1OpUiX3/PPPK0AhIiIZHu0RX3jhBTd//vzAhkozL5eOL1OnTvU9QMF1OkEWOskQoKClFBUVClBIRhQTQQqvDQnRye7du7sOHTpY+xLQe23Lli3uySef9C3Kyg6Mfu2UT4mIpLXChQvbyQfDs/1qZce+jUDvgw8+6N577z3LJPnll19s9g77Vm9fGwPFdyIiIoFYtmyZ9YH+6aef7Fj9xRdfuJo1awZyX3///bfr1KmT69Kliy1K0EaCIZlBYFGF9pBUVIqIiMQC2hZGXtsSrAhKnTp1rEPB7bff7ut26fLSokULq2xE3759LbGQeZMiGVGGD1KsXr3a3ui/ygt/1KhRNiRu586d4a+h96tfLVEozSLo8fjjj/uyPRGRlOjVq5dVdFHZ5QdOyljgKF26tMuZM6cN6Pb2eVRScBvB388//1y/MBERkXg4Xt58881u//79rnz58tYSiYX9IFDlSPXEyJEjrZqBqgbOB4JYlKCCgkWPjRs32nWWiIhIRjdhwgRXo0YNm8VIJYLfCH706dMnnDwNhlj7ifONW265JTznYty4ca5///6qcpQMLcMHKejrBkqmZs6c6Y4fP27ZwAQlyF7ye0czaNAgV6tWLVeuXDlfty0ikhxUcjVq1Mgqu8ig9AMnUmvXrrX2eOzjCE5QYUE2BsPEoAHaIiIi/70+aNq0qVU3NmjQwOZD0G42qAGfVGuQAUoCAdWPJC4ENRuCRLCPP/7YErSeeeaZQO5DREQkLXG8JkmvePHiNnvR7/MCEv5ow0jyAi3o/UbFJucCVHDmypXLLViwwLVp08b3+xFJa6dn9B3LO++8Y+/zgqSXOtghMC+CBTb6qvuF3rJr1qxxPXv29G2bIiIpxb6I3tf0u/YDVWeRJ2leNQWzL+6+++5wpuiRI0d8uT8REZGMjJZLDKl87LHH7OOHHnrIkqYIHgSFhQkyMy+++GJbnCAoEoQDBw6E37/ooovcgAEDfJvvJyIikp6Y3/DNN99Y5YHfAQrOCYYPH24fE9zPkSOHr/fx2Wef2ewr1gEuueQSOxeoXr26r/chkl4ydJBi9uzZVu584YUXuqNHj7odO3ZYCRVDaYoVK2Y7AzKN/cKOpmTJklZSJSKS3hhcWaFChfBJkF8oeZ01a5a74IILbBHk119/dVu3bnUlSpSwfS2BChERkczs8OHDrl69em7MmDEW4GeGE29BL+Qzd4IKxxUrVriyZcsGch+0jOBa6ssvvwxk+yIiImmNAEJkBwKOoX4fswl60OkAtEj0u7ph0qRJ1qaKddCKFSu6r776ytYoRWJFhg5SeG1HeOF7i3RkM9Hq6fXXX3e7du1yRYoU8eW+CIBQTs1wuqDKqUVEkotB1wsXLrT2D36htzUB3t69e7vOnTvbba+88oq755577H21fBIRkcyM6wIqtjn+khRFYJ8qiiDQypZjMckCnpYtW7rzzz8/kPsjUYFFEIIwM2bMCOQ+RERE0hpBAyoOOIYHYfDgweHKjKFDh9rapJ8BFtpH0d2AWVFcqy9evNiSCkViSYYNUjAYm75rIILIMFd6ynXq1Cn8Needd55v90fQg4sQBsuKiEQLemDnz5/fjRgxwrdtEvhl8aNq1aoWmOBjMkX5n2xR5v34GRQRERHJKFatWmWVjN99950rUKCAtYMNquUSCykciznGN2nSJJDhnvFxnCcxiwQwFlxEREQyOroBPPXUU9YqiWOc3959911rOY+BAweG2yb7gaBEu3btbH4kevToYZ0N/G4jJRINMmyQgn6vRBMrV65sb/369bMsIwIXu3fv9r3f7NixYy1AQZWGiEi0yJYtm2vbtq21fiDb0g+00GNh5Nlnn7VgBW0faCtVqFAhV6tWLfsaZVeKiEhmM3fuXAsacK1RunRpa7NQvnz5QO6L4dtse+XKlS5v3rwWMPB7uKeHayp6c3tY+FD1uIiIxApmRdHCkJmOHN/8Rguma6+91uZReHOq/PDbb7+52267zb311lt2DvDaa6+5F198MbDzAZH0lmH/st9//337nzInsoiJilJOxWJd8eLF3f79+327rzlz5rg9e/b4Wq4lIuKX++67z05gpk6d6ts2s2bNmuDtd9xxR5x9sIiISGZAZUHDhg0tG7NmzZpWVehXW9n4AQNaLDIDj5lQV199tQUqqlWr5vt9effXq1cvW1yZMGFCIPchIiKS3i699FKbFxFE+3Zm45JcMGDAAN+2SZvHKlWquE8++cSdffbZti4Z2TlGJBZlyCDFoUOH3JIlS+x9LhY8f/zxh72IyfRlJ+Fn77rrr78+sOF0IiKpwXBL9nvsq/z2ww8/uIkTJ7rVq1fbSRGVZfj6669t7o+IiEgsY8hmt27dbOYE7Zbat2/v5s2b52tbWQ8VkbRZpE0E90vvaYIhl1xyiQvSX3/9Zf/7meQlIiKS3ui0wvVsEGj3SFv4yCpEvwIgK1ascNddd509droZ0KaqTp06vmxbJJplyCDF/Pnz7cSdMuspU6ZY6ydOrmlHwmyKyZMn+3ZftDz5+OOPXYcOHXzbpoiI39hH0Xbixx9/9G2b9NtmP8u2Z8+e7UaOHGn7XE6YwG0iIiKxiqqJxo0b2wBMkCHJgsSZZ54ZyP2xuPH999+7M844ww0ZMsQqG4LuOc19cl8kgBGMERERiQVUI7Zs2dIqBUmw8xMJfPXq1bNuK363QZ41a5a76aab3N69e91VV13lli9fblWVIplBhgxSeINuKLWmzRMXD5RCec466yzf7ouABz3fuQ8RkWjFSRJZne+8845v27zyyiutH3bt2rVtf8tCBlkc9ONGEEPHREREogGtXmmxRHtDrgW4Jnj88ccDaRMReQ3DYsdHH33kunbtGth9UX1O+ypaPYHe1iyIiKSH559/3v7W+ZsXEfELHQDKlStn7eD9XOTfvHmzzYk4cuSIHTvr1q3ry3Y5JpM0wNojlZVcg3PtfdFFF/myfZGMIIvLYP7880/34Ycf2vtkGVFRQWR006ZNrmjRoon2UU8pFvxoKXXuuef6ul0REb8XNpo0aWL7rKefftqXhQ22wYAxL2O0evXq1hPzxIkT9jHvHz58WPtHERGJKVQz0FZh+/btNrSaQAUtZf1G+6hnnnnGrmc4doM5F0HMuvBwX7feeqtbtmyZtXfq379/YPclkpSWJqNHj1ZbZRHxHW2SWDs8cOCAb+uEVDdwDPWqHDg/8CNJ+p9//rFALYOx0bFjR0smyJIlwy3ZimSuSgoWxcj+ufDCCy2qiBtvvNGyiEuUKBHul+5Xq5O1a9daP1gRkWjHvurnn3+2wIJfIltaUC4LTva8/e0HH3zg232JiIikN9q8Vq5c2QIUl112mbVSDCJAwaJJ/fr1Xb9+/SxQwTVHWiDJq23bthZ8IRNUJL1wTc+565gxY1zu3Ln1ixAR35F059e8WpLzOG5SSUGCNNfBfsynYl94++23W4CCx/viiy+6ESNGKEAhmVKGC1J47UUoq6KvHCfaRDCJknKbnz1iyUjmBJ5IqYhItKMNE+WgfrZ88vz+++/WF5tMEeZeXH/99Xa7Wj6JiEisePPNN20BgoWIG264wYL+tInwG9cwtKBgzh7H1XHjxqVpJnm7du3cTz/9FJ4xJZIeOnfubG1SatSoccqvZf4kr8vINxGRxPYtzz33nK8JzGyLQAKzKPLnz+8WLlzoChYsmOrt7tq1y67h582bZ+cD06ZNcz169Ai0taRINMtQQQpKor1Brd6LtlatWq5NmzY2k+Lll1/29b4mTZrkmjZt6nsLKRGRINBTukWLFjbc2s+TMspZCQST7eZdSNJ6DyyweO2fREREMiLO+3v37m2L97RcaN68uc2FIFnJT/SbfvXVVy0AQqUGARAqNbiWCdKiRYusfRU9rj158uQJ9D5FTubdd991q1atcgMHDkzSE8XXkbHsvRUuXFhPsIj8xzfffGNVCE8++aQFFPxC26VbbrnFnXPOOVZB4UcCw5o1a1ylSpXCgY/FixdrFq5kehkqSMFUexbL2DHQRzWy/QgVFH5eSNBKaseOHeHti4hkBOyzaCGxYMEC37Z5wQUX2ADtK664woaIcmFIBii3k8m2ZMkS3+5LREQkLRF0Jwg/YMAA+7hPnz5WkehHj+n42rdv7x588EFLJGAw5sqVK60iPEhHjx61BAYWVV544YVA70skKbjGfvjhh5P1OmNoPVW93hvbEBGJj2vUiRMnWuJBxYoVfXuCSJJmmxs2bLDr4tSifTIJC7/88otdY7PWqepGkQxWScFQGpDJS185Wo8UK1YskPuaPHmyu+SSS8ItTUREMoIyZcrYG/swP9HWiTk9DPSicu3RRx91DRs2jLNvFhERyUgYHM11BVndZEnS7on5EEG1WSDQz/0MGTLEWjr40cv6VHLmzOmmTp3qWrdu7Xr16hX4/YkkJdN53759tpjI64G3Tz/91L3yyiv2PsPd48uWLZs799xz47yJiMTH8ZvEA47lfpg7d67NjPD40eJp9OjRNlOX7XJeQAI2My5EJIMFKbzM4CZNmlgv17feesuCCLR8onzaL2xrzpw57o477lAvOBHJcNh30YbJz5ZPtIXgpI85QLSVQoMGDcKZICIiIhnJxo0b7Triiy++sGABx7J7773X1/vgmmL37t3hj1u1amVznQj4B9lvmjaMtJPyMLfv7bffDqQ6RCS5aJlC4su3334bfrv22mttYZH3OdcUEUmOI0eOWLtGP5GIR1IegQS270drSRL9OnbsaMFYkgdY48ydO7cvj1ckFmSYIMVvv/1mPdtQvXp1+3/btm3W5qlEiRK+nujTH5MBNt4CnIhIRsK+i30mCy9+4+Rq/fr14TkU7Hu3bNnidu7c6ft9iYiIBOHzzz+3AMWmTZtckSJFLIuRhVM/0Q6R2RYsvv7666/h2y+99FIXJFo+ksDFIM49e/YEel8iKUHr5iuvvDLOGxU/tG7mfRGR5KKF3DXXXGNznvxA+yWO4Vz7UvV19tlnp2p7zIS666673ODBg+3j/v37u3Hjxmn+rUhGDVKw2EY2Eif23g6iZ8+eNqOCoTh+Yjh3rly5XJUqVXzdrohIWuBEikHX7Mv8botBGzz6Z7Mvpkz18ssvD8/xERERiXa0diIgwWJ+hQoVbEGjVKlSvrezoWf1lClTrK1NWh4jSR4g2ergwYPWO1tERCSWkZzHde+6det82d7PP//s6tevb4GFOnXq2CDu1CRFcx5w8803u+nTp1uS9YQJE1zfvn3VtUUkIwcpli5dav+TYcEbQ2tAaRTDW/3EDo6dETsQEZGMhpMoTqzYl/nZCo9ZQPQApl1E8eLF7Tavn7a3jxYREYlGHA8HDhxomZFUA95+++1uyZIlrkCBAr7dBxmXL730UrhK4+KLL7YARaNGjVxaoT0jPbSpDqHNk0hQ/vrrL9+2xWtx6NChvm1PRDIPEox/+ukna2uY2uHTv//+uyXiUQFJZQbJBszKSSlaPPKYSIhg7fKjjz5yLVu2TNVjFIllGS5IQS84Lizy588fyP3s2LHDemGq1ZOIZGTswzZv3mwnRn6aOXOmZYO0adPGPiYTFQpSiIhItGJGU4cOHdwTTzxhH3fv3t0yGnPkyOHbfXBsrFu3rnvkkUfs/ghMcE2R2gWTpARfXn31VZtF5aEVrtrmiN8++OADO/8rVqyYJfPx+iF5hWDYc889ZxU8IiLpgQA9Mx5Sg5kWTZs2dT/88IN1JWBObWraPH366aeucuXKVpnBfvPLL79U8oBILAQpjh496lauXBkecoenn37a3Xnnndbv1U/siIiU1q5d29ftioikJUpKuXj0u+UTCx9UUnj7SDJF8f3331s7KBERkWhCViQV0m+88YY7/fTTbUGfage/h/PSX5rh2xwjR40aZUGQtBiGOWnSJPfggw+6Zs2axRmWLeKXWbNm2flf27Zt7Tq5V69elrTCwNexY8faotvHH39si3AMhI2cwSIiEhSSl0kG8MvWrVtte1xDsy544YUXpnhbEydOdDVr1nSHDh0KV1J4bZJFJHGnhfzsBRIQTnp4gdNqhEUwoppkanAixAKZn0OzWXgjgsp9iohkZHfccYdldgYxQBv02161apWdwDE4mwtW7lMyHxIGaP3FYiBZlSIi0WDbtm1W3UAgncG8tG3g4yCw/6OFAy2l0rKKgaoNBmXzc/Xo0UM9rsX3Yzbty/r06eNuu+02C/QlhnPB4cOHWyvmbt26Bfqb0HmHiAwbNsz2NVQwvvDCC76dN9A6ivXHlGB5lYTqfv362cdNmjSxNlTZs2fXL0wytcNJPPfIEJUUXhsRr/c5L3QWxl577TVfT8Tpq0lJFidgIiIZHfsysjb8rjhbvXq1DR3lAAOyRqGWT9GD4yNDzvndVKpUyX399denHDjXuXNnV7BgQZctWzbLmIxsHSIiktFQhU32IgEK9m3MhvAzQEE7iEcffTQ8+4nrFDIv0yJAwQKKd7+03SG5ikUaP6+LRDy0KOG1c7IABUhaef755wMPUIiIeMdhjoXerMSU+vPPP8PvFylSJMUBCio77rnnnnCAgqqzd999VwEKkWTIUEEKr5UIJ0kMsfG7JROLOOygqlev7ut2RUTSA/syhnh+/vnnvm73nHPOcZ988omVxGL37t32v4IU0YFMYfqtP/XUUxbQv+qqq9ytt95qVTWJnVBzMs7vk/YkGzZscGPGjElVibOISHp6//33rQXNnj17XJkyZdzy5cvt2sEPLIiMGDHCqgkHDx5sbaTSEq2kCIQQjPb43bpKREQk2o0ePdoCFQQGUmr9+vXu0ksvtbZ2qUFbJ663xo8fb8dkHhtB21MFd0UkrpSPqU8jVDeQCQyydukPV7Vq1UDua8mSJZYFxYKOiEhGR1YJ7fHYt9GP28/tej2IZ8yY4a6++moLGtPDk/20V/Um6ePll1+2AbH33ntveEFr3rx57s0333SPPfbYf76e2w8ePOiWLVtmGbmgCkNEJCO3fyCYwILB1KlTfWtDR1C+Xbt2NkAYHPvq1avn0tLx48etxRPZ7VTAqXpCgkbiQ3LOQURE0krJkiVTFVho2LChtZLn3OH2229P0TF1y5Ytlkj9448/WjLftGnT7PxDRGIwSLFixQoLVOTPn9898cQTVi5Fj7cHHnjAXXTRRb7eFwt5BECUjSQisYCTrGrVqtm+zW8s0nhlrCADZfPmzbbQrZZ56YeqiG+++cY9/vjj4dvI4KlRo4YtaCWE4er0m2axi+xjjrctWrSw321ix0OOy7x5/G4pJiKSXP/++68FJ+iJj/vvv9+GZDPo1w8E5dnmgQMHrC3eoEGDbGB1WmRJEnDxFk66du1qx9z69esrQCFpgjafkajSZIajNwSW9mOcL1BdJCISNK45zz//fAsIpOacoXnz5m7jxo3u4osvtoSGlAQoqNTkePzrr7/a+iSJYWXLlk3x4xLJ7KK+9shrU0LGLlmhnCQNGDDAop5+YrGFxTUW9EREYgX7NBatg15E9irc6Pkt6Ye2iJx0M7QyEh/T9iSx7B/aPPF9zKF48skn3UsvveSeffbZRO+HwbBUzHhvhQsX9v1nERFJqj/++MPdcccd4QAFAzRHjhzpW4Cid+/e7s4777QABW2jWKR9+OGH0yRAMXnyZFsAYVEYLKI0aNBAAQpJM4sXLw6/8bfIdfkvv/xirwPeduzYYS1GgxpKLyISiXVBrj0+/PDDFD8xVJcvWLDA5kWQpEXQIyXJC1xrE6Dg3ICAhQIUIjEepKB9CCpUqGAZGrQYYTCc30PpNI9CRGJRUHMpwDa7dOlimaRkoWDNmjW+348Ei78PTsxff/11y4K86667bEGONlGJoVKD1l7eGwsUIiLpgTYNLJoytPqss86yNgs9e/b0dRGfxVfa4bFvpA1tqVKlXFpg4YPqDa9ln0h6I4mBRIXcuXOHb+N9Ehv4nIhIkEhW3rt3rzt27FiKAwITJkxwL774or0/btw4a12c3OpGvr9JkyY205a2j8xmpM2yiMR4u6fvvvvO/mdHxFurVq0CuR/aoeTKlUuRTxGJKbSEYACy33Mp8NFHH9ngzrPPPtuyWCP32ZI+8uXLZwF9jpeR+LhAgQIJfk/BggVt8S2ytRP9Xam8oH1U1qxZ//M9tDrhTUQkPXHMIYBAoJRWdWRD0r4utY4ePWoJTAT6UblyZas687vV7KnwMxFAZjCo12ZRJD1RmUvwLD5uO3LkSLo8JhHJPAiKMuyaZOaUBAW+//57m90HEg+aNm2arO+nqpEEPS+Zi3a5zLNQy3iRTFBJQQumDRs2hIdwUUERlE8//dTdeOON2rmISEwhk5QMU/ZxfqPdRMeOHV3FihXDt7FQ9Ntvv/l+X5I0BBSohli0aFGcSgk+TmzhrkqVKm7Tpk32dR76SxO8SChAISISDRYuXGj7L4479ManwsGPAAVVgldddZUF9r3rEKRFgILsTBY+WETxNGvWzObxaQFEogFt1Wi1MnPmTGv5xBstTwiiNWrUKL0fnohkArRaLFeuXIq+t0SJEjbfluoHjq3JQSCW61+O01xjDxkyxNpM6vgskkmCFD/++KP1yCbDE/SL27dvXyAXBCtXrnSVKlXyfdsiIumNfRvZJmTF+4nFcHp+N27c2D72MuvXrVvn6/1I8nTv3t2NGTPGvf3225ZpxIk4WcEsKqB169ZxBmvz+YMHD1p/dYITtBVh9hOZQSIi0Yh9HEEEFgwIxDNXrlixYqnaJq0jGLzNjCWGclLFwL4xLTFLg30ybfeOHz+epvctkhQszt12222uRYsWrkiRIvbG+7Vr13YjRozQkygigaGqkLW71GBtkeDCrFmzkjVXaufOnZbU/MEHH9i6JIHarl27aj6USGYKUnhtQ7yesgyOo++b37gQoac2C24iIrGGfRsBisjMTD95masElaGWT+mLxS36pPbt29d6rBKgYrCcN0x7+/btbvfu3eGvZ/Acg+NWrFhhLQ8feughC1gwUE5EJJpQ8cW+6b777rNjDm1gqajIkydPqrZLL2n2f0OHDrUFEIK6HMv8qMxIjnvuuccqNtq2bauWehKVcuTIYcEIhsivXr3a3gjmcVvOnDnT++GJSIzav3+/VU9wrGb/k1xcC/3999/hj7NkSXrne66l6BzA7EWup+hQcPvttyf7MYhIBp9J4S10sbhGlJNh2bfeeqvv9/PNN9/Y/wpSiEgsYqGafSj7umuuucb37Z9zzjm2mEKLPihIkf4YaM5bQphPEh8LcbRKERGJVlQWsIg/depU+/ipp56yt9QOyKadrDfwlwABVRpkhacFqtwWL15sbSfA4gcVbWRpikQzAhIpHVorIpJcq1atsuM9wYXkJibMnTvX1a9f3yolSWxIzly9+fPn29wKjtelSpWyivNLLrlEv0CRzBikWLt2bfh9FtZoyZTa8q6EsHBHJill3SIisXghecUVV9i+rn379r5um37dbDtykShy3y0iIpJaDOVt2LCh+/LLL61Vw9ixY611nR9y5cpl/zNIc/Dgwe68885zaYEq7goVKlhFN3MwvKoNBSgk2nFNTrCQysz4rURpgSIi4rdatWpZNQVzcJKTnMAxtmXLlvY+gdXkBCioEGNINlWct9xyi5s+fXr4nEFEMnG7J3gn7qnNlkoIC3eqohCRWMY+zqsa8xPDxy6++GJ34YUXhm9jJkUQAWUREcl8qCy47rrrLEDB4gBZkKkJUNAmgrl3nl69elm7p9dffz3NAhTgvpgZVbBgwTgtKESi2bvvvusqV65sM6/o6c7fLu1EP/nkkzR9/YhI5ky8u/zyy5P89X/++ae1iycpgPVEr2ryVAhKUGXJfD7epwUkFRUKUIhk4iDFoUOHbDiNJ6ih1iykUTqmIIWIxDL2cVQ4+L0QQuB406ZNllW3Y8cOK8HlRJD3RUREUoPgAQGKLVu2uKJFi9qA7GrVqqX4nJ8F1pIlS9qihZcBTmUGwzDTAoEWWkZ4XnnlFQvs04JCJCMYMGCADZ2dM2eOy5o1qxs2bJgF/WiHQtKKiIjfUpr81qNHD5ubky9fPqv+Yp91KseOHXN33nlnOKDx7LPPujfeeCNJ3ysiMRyk8Koo6A3LLAoimYsWLfL9fn7++Wf322+/KUghIjEfpGBmxA8//OD7tlngoY82+2taP0FzKUREJDXeeecdV7NmTUtcIlmJuTkEGFJ6vl+nTh3XvHlzax2F3bt3p+kvaODAga5KlSruiSeeCN+WO3duZWZKhkLrlLp169r7LNoRdCNhpVu3blaNJCLiN+ZRcQz/+uuvk/w9tGaiXRMmTJhg16mnsnfvXle9enWrEmP/xnlI7969A+nmIiIZNEhB3zgyctlhFClSxPf7WbNmjf0fxDBZEZFoGp6Nb7/9NrD7+Pfff13p0qXtfQUpREQkpRmTZC7SQ5pqh8aNG1srmfPPPz/Z26J68IUXXrBj04cffmiLDv3797f2h0FcV5wqWYCfjUVd2keIZEQE1o4cOWLv0+qTSiCQ9EcGsoiIn0iyI2jwwQcfJLmigu95+OGHwy0da9eufcrvoYUdlZsEQhjM/fHHH7sWLVqk+vGLSIwEKRjGCqoo9uzZ4z799FN36aWXBtLnlv6ZZAGLZGQMryOzKUeOHHYh37NnT/fPP/+k98OSKHH22WdbBsnGjRsD2T5/b+xLlyxZYh9H9vsWERFJCoISbdu2dU8++aR9TCU1LRo4t0muffv2uWuvvdYWKI4fP25tomh72Ldv3zRp28Bwz+XLl8cZ+kkAn6Hfp58etZdgIidFa7KPPvrI3qdtGguBDJ2nSonBsiIifuJ4TSXliy++6CpUqJCk72E4Nl1Y2rdv75555plTfv3ixYtt1s7WrVtd8eLFrTVjWrWBFJG4srgo5fUz52Sexa6gerUSpGDwq0q4JCMjg50ARYECBaxfMy0MGCpJGx56x4qAfR37vCAcPnzYskO9XtsszoiIiCQVmdhe1QSL+K+99prr2LFjip/A/PnzW9Z33rx5rbc050Vpdb7Puditt95q90+bRRIFvOQrkYzs1VdftWG0oA0K1xr8vfPa7dOnT3o/PBGJMRy3S5UqZW/JQQviMWPGnPLr3n77bQtmkNxJoOL999+3GRYikj5Oj/YgBWVdZD0FxQtSiKQH/rbps3zWWWfZxXS/fv1StJ2FCxfaRfDEiROtrc9tt91mWQNc4HuDIUWCDFJ07drVWmp4NDhbRESSMzOCxQECFCzoz507N9kBCloojR8/3v3+++/hhQ0WH0h2atOmTZomJNFGlkUO2uEcOHAgze5XJEgs4vHaPOOMM+xjgomPPfaYmz17tgUCCcqJiKQXqrw+//zzJH0traOorGTeBfu2u+66y6ovFKAQSV9RG6SIzMKl3IqheUFQkCK2eL1+0+MtqT0SPTt37rTBTNdff73NRhk6dKgbPHiwe/PNN+3zXJxzoX6yt8jXSJkyZeK0LSODj+z277//3sdnWDJ6kIJ2T0H0wmaYab169eIEKZL7mhARkcyHlkj0gaYfNIv6LDCQbJEcnEdRdU0wgkUHD3Mn0mLBgWMei7Se7NmzW6vaL774Is1nX4gEJUuWLHZ94lVSiIgEaeXKla5Hjx5xWicmhhbxd999t7vppptsBtWpZlYw98prBfXEE0+4SZMmWeKoiKSvqGz3xE6DQdmeUaNGuUGDBgVSVk6/WlVSxA4GtkUu3qelP/74w+XMmTPJX09PYoIKQ4YMsey+yy+/3Nqbvfzyy9aP+emnn7ZezEnBQTn+XBXvYz4nAvZ1vEZ27dpl8yn8xtwgsutoP0b/b4LLDB4TERFJCMMwGUzJoieVoGRpE6hIqoMHD9r8Cq4VCMBzHnbJJZek6ZNNQgiJIlRw0I7CC7BcfPHFafo4RNJCxYoV3bfffqvgm4gEjsABayW//vqrdZ9IDIlx9957r31d2bJlLRH0ZOcNd9xxh1u6dKldt44ePdq1a9cuoJ9ARGIiSMECmuecc86xHnHnnnuu7/fjDZBVkELSA1l/ZA5Gth+gqoIgBYu8DL/mTcQv3r6OCrIgghRff/21y5UrV7i1BRVxClKIiEhCCwqc7/Ts2dPeZ2F/ypQpdt6fFJwnvfHGG5b96B1zaNXAYM0gjm8nwzUKySXffPNNmt+3SFrr1KmT6969u1UPlS9f/j8JWiwQioj4gXMDAg/Nmzc/5awcqieohCCwweDshGzatMnmeHItzLF7+vTprmbNmvpliUSRqAxSRPYy5+SHi5ggeL3ZL7vsskC2L2kvR44cVtGQXvedHGSZs6Abn9cih3JqZkycjPezMjCbBeJIXjUSnxMB2aWU6rPvu/nmm31/UiZMmBCn9zb7cl2siohIJHo/P/TQQ27kyJHhRc9hw4bZ8SmpnnvuOffUU0/Z+6VLl3bDhw8/aeakXzhHo9qD+58xY0a46uP555+3AcJpOfdCJD00a9bM/uc17OHvntcG/xNAFBHxAwGEUwUR1q1bZwkPoHU25wQJWbZsmWvYsKHbv3+/VTrOmzfPXXnllfpFiUSZqA9SXHHFFYHdz9atW61PbVKztiT6cXKcnJZL6YmT+fj9Fb/66isLmlF6mJx2T1RgcMFM+zKv+oLBUWQI0HpABCygFC5c2PZ9QWAOCv23GVLKRaqGZ4uISPzkCioe5s+fb+dsVD5069YtSYv73iIo7r//fmubSa9qghwc39IKj5nzN3pZ02YKWbNmTbP7F0nvIfciItGAVpG0jKRdfJ06dVznzp0T/Lpp06a5Vq1a2deRBD1nzhxXsGDBNH+8IpJBgxSRQ7ODHDa3e/du7ZwkXW3fvt1KprnYXrVqlWUCeoMXk9PuqVatWhaM4OD7wgsv2ByKPn362IE6sXJHyZw4IWPfF4RGjRq5+vXru4cfftgyZCP35SIikrnt3LnT1atXz/rZM1iaalGOG0kJbHBus2HDBmsJ5c3d2rx5c5oEJ2jjxMwJAhEESaiaeO+991yvXr0Cv2+RaKNB8CKSFlavXu3OO+88q3pIrNJy/PjxNtMzf/787s033/xPwgPJDZw/PPbYY/ZxgwYNrB1URklqFcmMTndRKDL7tnfv3u7o0aOBzb4oVKhQINsWSYrWrVvbgGGG0BFQYHH3vvvuS/aTR+UF7Qf4n6qKli1b2rapxhCJxD4vcu5PUNUaUCWFiIh4c7gYekmAggSMJUuWnDJA4c2dYJ4SVQtTp051X375ZZzjTdBIIrn22mvd66+/Hr6N86xBgwZp5pJkGlR6J9WxY8fc999/H+jjEZHY17hxY3fppZf+p/NEpA4dOlhV5bhx4yx5IdLff/9tx3AvQEGLupkzZypAIRLlorqSgoGrREWDinSSTRxkOymRU+ECe+jQoeG+zKnNbKJ9gsipKinWr18f6JPkDctWJYWIiHzwwQeuadOmVhFRsmRJ6wNdtGjRkz4xtKyk5eXatWvt42LFilk25HXXXRf4ExrZVurqq692p59+emBtEkUyAiq1eQ22b9/eWqokdG3+ww8/WHXUW2+9ZUG8xPrCi4gk5TjMfoaOECer3uJY3a5du//cfvjwYdekSRO3cOFCO4YPGTIkzhwdEYleUV1J8fbbb1sLnKCo3ZOIZDZBtnvyqt8Y+o6NGzcGdj8iIhL9Ro8ebW0ACVAw2Jq5RScLUOzdu9fddttt1saSAEWuXLmsDSYLoGRVBjmYmmDKjTfe6BYtWhS+rW3bttZmijkUIpkVr7+6detaK1lekwQgGGbLa/uGG26wGY/lypWzeRUsClLNLSKSUhzraeNEZdaFF174n8+/++677vfff090LZH9EvuiHDlyWHtGBShEMo6oDFJ4C2hkUbFjCSo6qyCFiGTGIMXBgwdtcFgQLrroovD7hw4dCuQ+REQkuv3vf/9zjz76qAWtadvUpk0b9+GHH7rcuXOf9PtYACUoQKVp165dbe4Es7vSYr4WQYrPP//cMi493G/x4sUDv2+RaMbrkUU+Xpu0XKPFypVXXmmLh9WqVbNgJK1EJ0+ebPNbRET8QBVE/OSETz/91DVv3tz2Nb/99lucz5HgTGtJAhwFChRwS5cutWCqiGQcUdnu6ciRI8nuf5lcLNKdOHFCg7Ml3dCPWSQ9ghQgSHvJJZcE0hJg2rRpbvHixTZvRUREMhf2/RwLZsyYYR8zH4sM7ISqIPbv3+9GjRplQ6hZCCUoQCU1x6oggwO0I+R+CZ5cdtlldhvBEAZ6Mx9MRBLGjBbeRETSGlWZ9957r71fu3ZtS2zwMJ+zWbNmNs+WICqtJRm6LSIZS1RWUngLWzt37rSy7yCrNbwFOxGRzDI4G0G1fDr77LPDg7PJniUYLCIimcO+ffusrRMBiqxZs1qP+ieffPI/AQr6Rffv39/63PN5BmR7aLkUdPXCAw884J577jk3YsSI8G0E7uml7x0nRUREJO0xDLthw4ZWnRWJhAbayhF8iGzDOHz4cPt6AhS0oqMqUgEKkYwp6oIUf//9ty1seUEKMpqC4LUhyZs3byDbFxGJRt5Q6yBbMUX2DuVkUUREYt+PP/5og62XL19ubZ1o23r33Xf/JxGJGRMEJ/r162fV09dcc40rUaJEYI+LhKfBgwfH6V/duXNnd9NNN7lbbrklsPsVERGR5KOjyuzZs+PMN6TNk5dYQGLDueeea+uG3bp1s3Z0tJls3769VVCcd955etpFMqioa/cUuaBVp04d2/kEVSqGc845J5Dti4hEI2+f5+0Dg7Bly5bw+9zPqXqQZ2YMl3zttdfCv5c1a9a4UqVKWdsTEZGM1MLyjjvusP7QBCDmz5/vLr/88jiz4NjXDRw40HrXg88/88wzNhCbvtNBoSXEt99+a/tZZmR4t/EmIiIi0eW+++5z5cuXdxUrVrSPmaV4//33hz9Xo0YNWzckEeL999+32zm/oNIiodaSIpJxnB6t8yhw5513Bn4/tCYREckscubM+Z99rd9++OGH8PtB3k8seOedd+LM7qDNyY4dO9L1MYmIJMeECRNcrVq1LEBx/fXXWwZkZIACLBqQFUmAghYMb775plu3bp1r0qSJbwEKsihp8dCzZ89wVTaYj0GFR2SVn4iIiEQnghO0ZSRQAVo7bdiwwYZh05Zxz549rlq1ahagYJYVbaEee+wxBShEYkDUVVJEZvdecMEFgd2PghQikhmdccYZLkeOHIEGDxo0aGCLT2TOBlmxEQt4jk72sYhItGJ/xVwJ3tC0aVMben3WWWdZ1iOBCKorWFQAMyD4uG3btraoEETL2Pr161uwhGpsZmOga9euNhRbRPz1559/2utdRCRIHTp0cOvXr7drTFrCc4zfvn27tW4nUFGlShX9AkRiRNRVUkQuaAVZ5cD9sFDHgp2ISGZCy4sggwfPPvustSyCghQiIrHnxIkTrk2bNuEABRmMZDISuHjllVes5VOnTp3iDLasUKGCZUb6EaD45ZdfbFu0ivKwXQIgPK58+fKFbw+ylZRIZkPFEm3aqEziWt1r8fnkk09an3gRkdQgkW7x4sVu69at4dvOP/98N3HiRJutWLlyZQtQXHbZZVa5qQCFSGyJ6koKBvBVrVo1sJ2fWj2JSGbEvi/oNkze/lVBiqS1x6JsGSzwceyL/7yVLVs2kN+TiEhyHTp0yDVq1MjmUJDsM3LkSNesWTP38ssvW1CCQdVgEdOvgdibN2+2/WPx4sXDgYdRo0ZZa4fdu3e7ggUL2u0M5RYRF2giChVTL7zwgmU3e6688ko3dOhQ165dOz39IpJia9eudTfffLO75JJL3GeffeYuuugiu53qTOZS/PPPP9Yed9asWVZJISKxJepSi7yFGYaGlixZMtD70dBsiSVkFNStW9cqhMg2oCczB/HEkJ3AhUTRokVd9uzZ3aWXXuqeeuopy46U2BZ0JQW88n8FKU7tlltucVdffbW9HTt2zNWrV8/ev+aaa8L/i4hEA7KmmTtBgIJjCQOyDxw44IoUKWLnHQQoeJ/ABYEFBlymRGTruwEDBlhwgv89hQoVck8//bT74IMPtEghkobGjx/vXn/9dRtYG9mR4KqrrrIkCxGR1KBdJAkOBCnKlCljbSJ79Ohh6xasbbRo0cJ99NFHOvaLxKioC1J42b1ER3kLCgtnaVVJwYUaWbDnnnuuvXFxx0VVclFS37JlS3fw4EH34IMP2lBCFpcZQPjQQw+533//PZDHL8Fg2NO4ceN82RYDIglQEGBYtmyZZTix7b59+yb6PVxIULI9evRo9/3337shQ4ZYVuITTzzhy2PK7D799FNXuHBhe3/gwIHW5oIFHQJIt99+uw3/Si88jiArKQ4fPmw/P7755pvA7icW/Pzzz7box//x37zbvVYKIiLpibYKDKDm+MXx7YsvvrCB2VQyUF3BogLtXjZu3Og6duyYorZOfB8LE2RSeq699lqXJUsWd/To0ThfS3uZW2+91WXNmtWXn09ETo1+8F5FUySuKZgLIyKSGlRRcJ5BhSQzprimpFLTO+7T9imIuVYiEh2irt2Tl4Hhtb4ICidRaXVRQ4na888/b33zyAxjAblhw4Zu9erVrnTp0kneDkOB6Pm7a9cue6Oknr7v27Zts4s6bps+fXqgP4v4a8eOHa5SpUpuzZo1tnDcuXNn169fv2RvZ+HChdYy5uOPP7aB82Rf0y+2V69etr2E/tZr165tbx76R3NCQFAtsoe0pAyvVwZ4gpMrfrcEKsgAIRDEwg6/s5w5c6b5U0yl2smqbFKLYCwtONjfaYH95Mg4FhGJdpxftmrVygbl5s6d2w0fPtwyHPHII49Ye1YC8Emd9fbTTz9Z2xgWNllw8HBOyxuVGmRme0kdBEHUplUk/XHtSQuW+Ocv7CNU+SkifmAmBXOuwPGfRAUquO699149wSIxLuqCFJSMgwX3IJF5nlaD9LyFSs9zzz1nC8FkpLFw6WUcx0frHW/BmsVsst1ZVGYBcMaMGeGvo00P26TKgoVHduKZXfxsu0hcQHutaE71tfyNUK1yqq9NyUIzpYyDBg1y7du3t9LplStXWlsEKmMY/EjgKfLCPSFeK50vv/zSFgsIUHjILmSoJH83Sb1ooBqHgVSSOF6T3qDQ+G666SZbWMHs2bPdq6++au9/+OGHcb6OKhcqKqgyCGruzsnwd80+MEj8fLT9oP2YnBqZxwS2aMNGgIc2bCz4ETwUEUkvBJs5V3n88cfDt7Fg8NZbb1nCDaiq8CoHaVnHvp99mIfvnzZtmuvevbu1aQD7uQkTJtj5GMdE79yVID5towjqe0i0ULWESHSgSpvh9FRUEGScOXOmJTlxLTN37tz0fngiksGRTBzZKvK8886ztS/a44pI7Iu61WxKxnH8+PFA74eTqrQKUkRiYZALNRa7aftEjz0WKQk+kIkGhhEyfMz72FvwJJOMAEVii8t8TgGK/3OybLs6deq4efPmxVlM5aL6VIvOoAXB/v37T9o7OTl/6xx0abPExTrtu7777jsrZyRIQa/lyL+Bk6HyKDJAAe/jpFYlbdq0yTIjVUVxcvxOCKKuW7fOLszAc0YgwvuYwNC+ffusXDUhXmu29AoIse9jHxj0faT0tZHZ0A6Mi35+J+yPeM5+/fVXq5yjB3tS9wMiIqlBBQPHNyqACTrQuu+2226zNpKRiR4MyaYSmHMVgqkNGjSwz/3yyy/2fQQeOK/i3Ma7naA8LZy8IAUJNlRS0A418jgRZKtXEUk9gpNz5syx6xSStDh/KVeunN1Ws2ZNPcUikiqsidDuFpyPcI2dnO4jIpKxRV2QggsiBJ3ly2KQd/GUFlh8JihBmTwL6LNmzbJyWRBY4LYCBQrYx2SLkX0cudBOhq2XsRYfi+a09knpcEJJGyw2Rg59JFDFQm7kAPehQ4daCwT+/lms5C0tkA1FoKxJkyauQ4cOaXKfGRWvS16fvE691yy38Tr2gg68XhPrk82+p2vXrq5KlSoWjEwPaVFJ4e1fgw6GxEI5c58+fazH6sMPP2xtVMDsIfYHBCoqVqyYLhU3IpLxkeFMK1XOOWk7Ctrw1atXz4ID69evj1PBS0tSWpRSiUllZ+S8s27dutnxi9uZjUY1BT2jvSBF3rx57X+Oh/SR9vZntGeoUaOGtaKMPA717t07zZ4HEfEPwUQG14qI+GnEiBHhAMWFF17oVqxYEb7eFpHMIeqCFF72d2SLnSCkZYDCiwh/++23drFHz07KZGnz5AUqkjKElmGECX2OgclsJyWzDGKV1wYpIfH7JZPxnpj41Ta0Ykkp2jc1bdo0/DFZR/xdeP0WQZahl1GYnHZPHLy//vrrOJ+j3YL3uZMha7J69equcuXK1utRUo8gRZcuXRL8HC3eqML4/PPP0+2p5m8s6EoyrxqOVnWSOIbV0/It/v6bgBdZilRC0R5QQQoRORkCm5wzsM+ITIgg8DBlyhQ3ePDgcFUWgXaCE17A2jsvIrBOxSitFliE9AIULBTQUpK2Tcw0AkEOzi8iKx84d6cVFFWikefZnO/wJiIiIpLQtSkJErR89M5TSPL1kh1EJPOIuiCF1788W7ZsGb7dSSQu/IoXL27vly9f3qLCw4YNc6NHjz7l937wwQcWhPD6/XqOHDli2e9k4lOZ4V04SvJmRAT1tfGx6BjZ3oe/QQIE3t8FCESR6ciCQXLaPVGlw1wSAi5e9QUZTrQAO1kgjAoKAhT8TZIRmR4t0GINbbxWr15twcP4CFzQr3fp0qVWvppe0qLdHYtcSKg9mvz/CC7Slz0xDKpt3bq1njIRCaN10oIFC6zKigoFb84V1VgEB2i/4s3e4vhO5UTkhX6+fPncokWLXP78+cMVXbQtnD9/vgVMCYxyfsL5BO1GK1Wq9J9nn2pB3uLLlSuXflMiMYb9R1IT/AiYiogk55qR6k0vIZdKTao2FaAQyZyiLkgRdAsSD4vA6dmGhPvmgjIh8U8CE2r1RAUFF4cEc7iAjBwELRkHJ/IMkrz//vvdqlWrbCbESy+9ZJ9LTrunWrVqWTCCBc0XXnjBMilpIUPWvhfwYzGUxU4WJsiKJEDBnJMiRYrY4gQ98D0qq0yeyNcsPXmpSokMSJEdwgkXwURmnEQOFE2v/U/8iiK/EdCj0oe2IJI4Kp7IXE4MfytJnSsjIrGH1z+Vd40bNw4fa6ZOnWrHetp8ekEKjtt333237U9OnDgRPi9kCDVvkWjHxPGf80cqubxKTLZPwgMLBpxTELTgHEFEMjfaT4qI+I3WkHfeeaetT5BA98orr9j6hYhkXlEXpPCyboMOILBA988//7i08Pjjj9vgQRbrqH6YNGmSLVSSBZcQKiPoH0xWPAudVFJEZtQToGBRmqGElPbzsTfLg6y4oBcfxT8sZtMWh2xIfm9kQaZktgjfS4Y+WQhUVbBATEsxqjE8/L3Qm9rLcKfSgmHZvMXP6tew4+ThNctCEvNEWPTx+nN7ONnidU/A0fta0BIj6NZ2iQWDg66kYN4GC/D0IpfEMacoodklHirkWHAUkcyB468XjOB4XaxYMTtP+P7778OVkQQmGHJ90003hb+P7zlVi0hv+1Rv0brphx9+sNsIaFSoUMGCIdwn2582bZqqIkTEcE0hIuInzmPq1Klj5yJcC5E0QQtJ1slKliwZbgMvIplLlmhslYKgF+5oK8WibVog2EAGOz8bi5Jly5a1AEXNmjUT/HqGFzOPoG3btjakkKG8kb18ybhfvny5vR/ZKggMGjpZVq5EDwZI0uOZ7CRaK6QW2Y5kPSaGrMnI4MM999xjb5J6VDWR1cqMERZ74meceb9ffgeRaLGVHr8DhranpnVZUnhBYDJ25eTGjh1r+/mEENgWkdi3cuVKS2phX0DVnRekvOGGG6zSMbKFCuePiZ1DngrBjPHjx9uiAC0hSW5gjoQ3k4pzT2blqIWoiHhIhmN/4b1/Mt7XiYic7JyH2VYktNE5gv0KQ7M3b95s62R0hHjmmWf0BIpkQlG3epQ3b177P+iLIy4C02rxJ6GB15EYqB2Jlj284aGHHnL169c/6WKziKSt+EGI0qVLW3XEzJkz7aQqfvAw2l6v7PsSWxT3i1exo97EJ0eF3ZgxY075NSISOzgmrFmzxioVvMQSWjN+/PHHFuimcsJL1iH5IDXBXrZFIPSuu+4Kt5BkmDZBDhJoOnXq5N577z27nVZPBEqS2nteRDIHesOTbMc+hP1WQvsIrwosqa2bSeDhbevWreFzaebp0H1ARGIXnQWaN29u5yckbLL+R/UEa1zM0SLplhmdIpI5RV2QolevXhY99QZoB4WWK/RLj3a0TKF9j4hEPxb+aaER7dj3sQ8MuoQXPXr0sMowSZh3cS4imQcJKK+++qp79NFHw8cMzvfIIrz55pvjzBlLaYCCi3+qI55//nkLojOHivdBO4USJUpYEsyKFSuszcK4ceNs0UBEJL5PPvkkPGtt8eLFvjxBtJpln8RiJAGOt99+22Ywrl692gIWIhJ7hg0bZp1CeM3TiaBp06auXbt2dh5CFSddCUiYEJHMK+qCFJ9++qn9//vvvwd6PyzQkU0c2fs3GqVkPoFkDGQMSGxhVkxGwL4v6CCF1+4prWb/ZOQL/y5durivvvrqPy0SOA4yt4aTdhYVRSTj2bVrl5s8ebJdhJOBjKpVq1p1AzNpPJyL0noptdgm2x4wYEC4hSrVWFdccUX4a2j1RB9ogsksPJLVSFspEZGERM6/KVq0qCtcuPB/rp+5pt6xY0eSn8D4nQJYmKSygvOhhIIUf/31l715TtV2SkSiBxVWBCeGDx9uH99///3WzokEDfTu3dsCFCIiURekoPwdQVc5kPHMcG4yzYKu2hARiRZcRKZFuyfv4rVKlSqB3k8stA7r0KFDgj2cmWHESfzLL7+sIIVIBg5eM/SaAAWBCjRo0MDt37/f99lAtBft16+f++WXX8LBCS78mX1ElqIXGG3UqJEFQWlNSDsptVUQkaQiSOG1fopEe08+l9R2T5H4nmnTptnMtMQ6CAwcOND1799fvyiRDIZ1vRYtWrg5c+bYx8xxfOSRR+wah9mtDMmmm4qICE6Ptqfh66+/tv+DHmrtZRFnhJZPIiJ+IcuWAG3QlRRcaCLoYEhGR2C+du3aJ13g/Oabb9L0MYlIymzZssUW0iLnEBEgIFh7wQUXhG9j/oTfAQrQuokABW1UyEj+6aefrCLXC1DQ0on2CgQoeExffvmlAhQikiyJdSHgmjqyVV1SfPfdd3aeyD6R1qCzZs1ypUqVSvBrmZfDvst7S07VhoikXzUplVgEKNg/EIzs2bOn2759u3vrrbfsa2hNyT6AOa1XX321a9++vX5dIplYlmjckXlDVynpZIcVBG/hjIzi+JkgIiKxin1e0MEDLmC9IIXX3kQStnfvXnfmmWcm+vTQj/7XX3/V0ycS5ajMveaaa6wFCW3avPYozOUhYzCI/ezs2bOtGsJrjfLkk0/a+1RnRS4W8rUMpH322Wft42bNmtniQHIXFEUk8+revbv9T4CCfU1kJwIqIZYvX24LjMlBexcWJgk6TJ8+3bVp08ZaPycUqGBNIKh1ARHxH0HIunXrWkAxf/781lrSq5QqUqSI7TMWLVoUbje5adMmS95SlxORzC3qghR33HGHZVGAUvgLL7wwkPvxWmsEPftCRCSaePu8hNoL+RkIoVoDXHxSvaHFsIRxjFu3bp0tNCZk7dq1rmDBgoH9rkQkZQjEMluKC3Bkz57dtWzZ0i6yed8TxNyzzz77zIZu07ud1lFc+Hv7kwcffDDO15Lw07ZtWzdp0iT7+IknnrA+0KefHnXF1CISxRho7QU9WXz0KrTA+1dddVWyA7J8n3f+U758easGY7Du6NGjfX70IpKWFixY4Jo0aWLXhAQjaS1ZrFixOF9Trlw5e/OQ3DFv3jxL0BKRzCvq9gBEV9MiSOGV3e/ZsyeQ7YuIRCNvnxfZesRv7Ls9XMieOHFCQYpEMLyWjERaPsUP5JCZ/dRTT7l69eoF9rsSkZTt4xhEfejQIWvxREYgXnnlFXfGGWcE9pQS0KTlydy5c+1jsg0ZOklQOKGgw4EDByz5h6AGF/0s/BGwEBFJrsWLF9v/9957rwUSgkh2YV8WORxbRDIe2jd16tTJKqwIPMycOdPlyZPHPkcgkoqosmXL/uf7qLbgukhEMreoC1JEZp9FLnT5rUCBAvY/g79ERDILb59XqFChwO4jct9ds2bNONl2ElefPn3s5L1EiRKuS5culm2EH3/80b322mt2gs/gWxFJX8xK81oQ5MuXz7L/CFDs3LkzHKQIKkBBK1SCmcyUYBGP+6GlEy2cEqu0oqKDi/2NGzfaYuKMGTNcjRo1Anl8IpJ5eH3kU4uA62233eYuvvhiy7am2ovqNDKwRSTj4fyE1zWDsdGqVSs3duzY8HUgFagM0N62bZtd+ygJS0SiPkhB+WhkZUOQfbjpAU60VkEKEclM2OeRsX/eeecFdh/evptFvIULFwZ2P7GAipZly5a5Bx54wE7svYG7tIhhwC2BiiCrXkTk5KiWoBf7Rx99ZIOovUDFxIkTXd68eQOtnPCwePfmm2/a+40bN3bPPfdcOKCZEPYptIGikoIFQNonUHEhIpJaLDQ+//zz1kt+37594faeHoK3ScH3tm7d2s5LOScls5oABcktIpKxUP3NTBkGY4NKcN4iW17SbpIEiosuusjdeOON/9nGe++9Z7MMK1So4HLmzJmmj19EokdUBSkYls2FV1pUUoDsMwUpJFZs377dFjopx2YoMicKAwcOTFJfR0qrK1WqZMOq6Dmb3MF3knGwz2PfF0Sf9Pj7brKN5dTIwqZXK4uhnLwTqLjssstc7ty59fSJpDOOpxxXqZj44IMPLEiA888///9r707gbKz///+/+1QkFC2UfWmzkyJrWbKWpVIkIUJRpFSSSNlCK1JSlhZFm6UQWaIFoWSLrNmXhCTU+d8er+//Or8zwzBmznXOmTPP++12ypyZOdvMXOd9vV+bb/dJBRXVE3nz5rWPqbJavHix69y5c3DoZFI+/PBDe//nff26665zkydPDlYPi4ikVtu2bW24NVnSqVlPjho1Sj8MkThAclrDhg3dd999Z4nAVE8QgAzFMYOWmODziZPlOPfhe6iqWrVqlbXUFJH0KaaCFBycOCHbt2+fZWn4WUkBFlacBIqkdWxoMLyTjQgyKNmI5o2ehUK/fv1O+/0M4KT9D0EKiW8c8/wexOwdu1mAcjwnK0ZDWk+PoATZQyIS3YD/Bx98YO+LbL7xPsosB/4+y5Ur5/v9z5s3z4IRBBl+/vlnSzSg+m38+PGnXUMPHDjQKrLAhsF7772nbEQRCSuCtVRnVapUSa+sSDpHhSlt26ig4nyP2bI33XRTgq85dOhQcB4WrSqpFE+MNc8NN9zgNm7caBWgIpJ+nThlL4oYosPJ4SOPPBKRSgo2ZVVJIdHEBgQVDGxA0H6sd+/eKbodWuqsXLnS2k9QBcFi4bnnnrNWMQwtPt3JBt8/ePDgFD4LSUs45vk5jyL02E3JL+1Q/A44i4iEAyfSJUqUcE8++aS1d/JwQu13gIIT8yZNmtiQyWXLlllAmff15FYit2vXLhig6NKli82gULsEEQk3ArbeEFwRSb9IqiCwQICiYMGCliiZOEAB9vb4GoIPSe03sBfCfkRoW00RSZ9iKkgBghTff/+9/VvtniSlqMTh4vV3B5v1XEek/mRfG9pTlRN+rjty5EiyvjYlaB1RrVo1a91ABcPLL7/sBg0aFOw73aFDB2szcaqLh/JKNlZCe9ezqXLgwAG3YsWKJB/Dzp07LaNh3LhxWhCks3ZPfkp87A79OxQRiSWh7+e8r7Zp08bem0kciATWFE8//bS1Npg4caJVnfH+z8BrerSfzp9//mmVlLRP4Htpp/DSSy9FZFaGiKQ/JEE988wz7vDhw9F+KCISJVRqMj+GVrUkXLJ/V6RIkRO+bs6cObY+oTJ1zJgx7oILLojK4xWRtCOm2j15Q7Rmzpxp//Y7+5ahPWSqHT9+PFl9+yXt8Dbw+X3yNhoIALARQC/VkSNHBr+WvtIstDds2OAKFChg11GBQNT/7rvvtjdhD59nA/aXX35xxYoVs+tGjx5tG/1nijdsggpsJvDGzRDM5cuXuxdffNFKIvv06eMee+yxZN0WA+cTD9f1Pg4dRp9447hVq1a2GULfarI4Jb7xM9+yZYvLnTu3r/cTeuwmG1mDn0UkFo+HY8eOdc8//7z7+uuvg/MfaJlEi6dIIFmBRAWOy6hevbqtCZITnPASewhQsCYh85B5FLfccovPj1pE0rMhQ4a43377zdZ2nBclPl4uWbIkao9NRPxfOzFDtmfPnvYxc7pIdsyUKdNJv75q1apWPUFCxcmqLDx79+616nsRkZjamSdrnRL70JM3PzGYlAAFm7NXXHGFr/clkhjVE5RIhg6cY7OCIAUzJgie+DmY87XXXrPhVF57CIl/BO2orrnqqqt8vZ/QYzdzKfwc0i0iklLvvPOODatn041qRkQqQAFa7xUuXNgqIHjvb9y4cbKPl2wEEpDwquOmTJnirr32Wt8fs4ikb40aNYr2QxCRKKArRfv27S1BE926dXMDBgw45dxBPvfoo4+e8nbp7EACHW01SRqh9ZOIpF8xFaTIkCGDHZg89K7zs8rB26ij952CFPHXVxqhPQ15I6VPc+LfJzZuEZoB0LFjR6uOSNwuwas2CP1aqhFSgvJIBkwl5rXGocKBGRPJeZ4MzF64cOEJb/je506GvzXaRDELJhRVFc2bN7eSTIkvHOvgZ5CC31/alHiS+v0TEYk0Aqhk/7IOIBhAYGDWrFnuoYceisj9kxjwwgsvWJWkF8DlfZ7+7kllIZ7M5MmTXdOmTa0KlFaPDLH1KkFERPzUq1cvvcAi6cz+/futaoL9A/ZH6DpBwCIpdEapWLFistpJL1iwwBI0aaGtAIWIxNRMCiKtZHd7WWwEKChl97PdEwfC0A01iQ8Mi+QSmpFIEIzrEm/Ke18bmgXA7yDXJX6jTOprU7qZ+8MPPyS4jn6OVPjw5k+7J4ZnnuoSWoFBqygv4OK12aHvY9GiRU96//StpprDu60vvvjCrqddBGWcEn841vE3QeauX2iHRrWG54033vDtvkREkosTagK0r7/+evA6Kg9IYPD7pJj3e+ZN0K+Z9lJemwSQPXgmAQrWyWQyE6CoVauWmz9/vgIUIiIi4gtaYhNwIEBBS20qN08VoGBfoV69erbGSk779ttuu839/vvvOmcUkdgLUngZ7Pny5Qt+7GcAgY1mNoS97GKRSCMI17VrV7dmzRr3wQcf2OZD586d7XO0eqLC51QXDxsVBCNatGhhgYfp06fb/A3+nrygDJUWDOb0WvHwd1a8ePHgxcuuZwObAJ7EH451+fPn93VDLvExe/jw4b7dl4hIchH8Z2Of90evYjESaCdVt25d16RJE3v/LVSokH18psgyZH3w8MMP27Bvqj3ZKNAQShGJJI5F9JinNQvVslSChV5EJH6QUEl76lWrVllSBYkRderUOWWXh2bNmllVBPsOl1xySbLuh9tWy0oRickgBeit6/G7yoGNWQUpJFruvfde9/fff9tCn4ACGxDt2rVL0eYLmxX8n6qKe+65x26bagwPmzMEQ1g0SPrEsc7veRTeMZvfRdqqRKqNiohIKLL3GO7qYVP/008/tVZJkZiTQ+9mqiZIAiAwQjXnM888Y0OuzzRI8ddff1mmIRWQoAc0VWqRnJ8hIoJnn33WWuXdddddNgyXZCuOTyT/9e7dWy+SSJxgzcSwazo1lC5d2gIWpUqVSvLrSQB58MEH3erVq23m1ltvvaW5hCKStmdSYMeOHQl615GB5ic27N577z1f70MkKWwwMKwztP1ESpEh77VsOhkWGafKHi1QoEBEs0slOkGKatWq+Xof3jG7TZs21l7Fr5lCIiJJmT17tlUuUBn47bffWtCUSyQHvtLSifkTuPnmm+14SPXumWIw9q233up+/PFHq4wcO3asu/POO314xCIip8d588iRI139+vUtKEHWNMfakiVLWttaqr1EJO1iP4BAJO0w+Tetm8aPH++yZs16yu9joPa4ceMsYEmHiORUURDUOHLkiM3qSqpFtYikLzFXScHG1owZM4InkpGopKDlDlnmIiLxXJ5PACFSlRRsxilAISLRwHGOqsF//vknwaymSHr00Uet1QEbelRSpCRAQdUFbRYIUHCyTz9oBShEJNoJhSVKlLB/05+eagrccsstburUqfrhiKRhzISluwNBA68y4vPPPz9tgGLFihX2faCTQ9WqVU97XwQnCGq888471iZKRCQmgxS0B+Hincz5HaTwIrYcWEVE4hXHUjbs/M5S8Y7ZzDxhwanqHBHxGzMaFi1alKC38Zw5c+y60Baifg/G5mTew1wp1pZ33313itodzJw501WqVMkSaQi6kKHM4EoRkWhibh0VXqCCguRCcLz15uCJSNrDeVvDhg2twwPrliFDhrihQ4cmK+mM9r60sKZytHv37snuKEELTr7+uuuuC8MzEJF4EHNBirffftsyNLw+5hs2bLCIrl8oTeXAS5aaSCSxgUKrJ5FI8I5xfg4lY6POC1I8/vjjlnXDbBQRET9PqqtXr24b+D/99FPw+jJlykRkZsO2bdusHzvtpTixD80kpuVBStfCzK04cOCAZSN+9913thkoIhJtjRs3drNmzbJ/c75OazuSC1nv3XfffdF+eCKSAlu3bnVVqlSx1tGZMmVyH3/8sc2bSW6SBVWjzKnx2j0lB204aUfdr1+/FK+XRCT+nBOrB0kGAnLgIkCxceNGd8UVV/hyX+edd54rVqyYghQiEvdBikKFCrns2bP7dh+0VTl48KD9e9OmTfb/Cy64wLf7ExHJnDmzu/jiiy2Dl7k7pxrqGO6gLEMhaYlAMIGEF7IBa9SokaqKkKefftr179/fPm7evLkbNWqUspNFJGYMGDAg+G82JamcJZBKoIL5OSKStpDgwYwZ9uCoAqW6oVy5cmd0G1StMrdCRCQugxRscvXt2zcYUaWPul9BCpQtW1ZBChGJawQpONZFYmg2AWZmYMydO9eymUVEwolWIwQmMmTIYFl+w4cPt9liBQsWjMgLTfJM27Ztg9nEnMwTsPD6tKcEvZlbtWrlPvzwQ/v4mWeesaG0KWkVJSISKRUqVLCLiKQ9X375pc26oiq1SJEiVklRoECBZH3v0qVLLTmEYOWZWrJkibW1pBLVz30+EUl7Yi5IwabWa6+9FswoAwe/OnXq+HafbNxRmka/dvXSFJF4w7GUhWSPHj18vR+O1d79gfYkpxu0JiJyJiZNmuRat27t2rdvby0CwCyzSOH4RsbhypUrrSXC888/7zp37mzB2ZTas2eP9YH+9ttvrSKDgEfLli3D+rhFRMJh7Nixp/y82nyKpA0jRoxwnTp1ssQy2mbS4ilbtmzJ+t59+/ZZgIGkDZJEWJedCfbeaHvN7K4xY8ak8BmISDyKuSAFvX05QHqZuGBzzU/0aD927Jhbvny5hvaISNxhTgQVan7Oowg9VtMGhV7wkdw4FJH0gTagnByTgUelAdUUkUSV74svvmgBEloxpTYDkONzvXr1rBLtwgsvdJ988oltFoiIxCKCsqE4h2aTkmPx+eefryCFSIwj2eKJJ55wgwcPto+p4qTVenLXU3w/7SgJUNBKuFGjRmf8GGrXru2+//57C3SIiISKuQk1119/vXvhhRcSnPQtWrTI1/ukfzFBEQ3PFpF4FImh2YmP1Wy2Pffcc+7333/39T5FJH0EJjyc0E6cONHNnz8/IgEKgq4MxA7NHubkes6cOakOUHzzzTfuhhtusABF/vz5rZJCAQoRiWV//PFHggttYtasWeMqV67sPvjgg2g/PBE5hb///tvaO3kBij59+ri33377jNZTfM+0adOsmpTEipTMO6RLCmueBg0a6OclIrEdpOCEr1u3brbQ8VBS7w1j9QMH2KJFi7rFixf7dh8iItHCsY3+ovRw98vRo0cTVL39+eeftohloKyISEoDBLQDuO6669xff/0VvP7222+PSIBi8+bNrlatWu7BBx+0lggMlfSkdlbE+++/72rWrGlVIcy0+OGHH2wtKiKS1jA0m4HaiassRCR27Nq1y1WrVs26lrCGevfdd13Pnj3PaD0zdepU9+yzz9q/33zzTUv2TSnuV3O3RCTmgxQe70SNAAInqX5XORAUIaNNRCTecGwLDfz6gXZ5zPU577zzLKOmSpUqrl27dpYdLJE3bNgwC0zx8yhfvrxbuHBhsr5v/PjxdsKQktJtkXDbv3+/GzRokPvpp58i2rOYdefo0aNtEDZtpbzZE5dffnlYbrtv377WKoHgbuPGjd3s2bPVHk9E0jTm6dC2WURiz6pVq6xyk4QIztO++uorW4ec6exB73s6duzo7rnnnjN+HLNmzbJ5FLSJExFJEzMpvAGC3gBCoryUpdFG5KabbvLtPrltyvm3b98elpNQEZFYQEXDkiVLXIcOHSLS6qlq1apWAsxMIU5YJfI+/PBD17VrVxuIR4CCTHTa09COIUeOHEl+H71lH3vsMQswicQCTqTfe+89q6h94IEHInKfu3fvtgDrZ599Zh9zUk+A5Kqrrkr1bXNSzrGY1gp49NFH3cCBA1M1dFtEJJImTZp0QuCV8+ehQ4e6SpUq6YchEmNoT0lCBIkfzJD44osv3NVXX33GtzN9+nQ7r6xYsaLN5jpTHCueeuopS5yiHXD37t3P+DZEJP7F5A5SkyZN7GBK9hxZZj169Eh2FmhK3XjjjfZ/7rdZs2a+3peISCSrKBhw5meQF94xmrlCZOIrQBE9nDjcf//9rnXr1vYxwQrKs9kYffLJJ0/6PQSVyI6ihJvfGU5kToWqGS4etfWScOAE9rXXXrP5OV71F8cuv49fob/HtC5gw+3cc8+1lnW0IA1HEIG/qTvuuMOyCBm+zfOkjZSISFqSuNKSNd+ll15q83SGDBkStcclIidinlbbtm0tSaJChQru888/t7/XlHjooYdc7ty5LRiZkpabnGsQLCEZpE2bNvpxiUjaafdEhDdXrlzukksusYNpJIZn58yZ0xUpUsSCFCIi8YJjWp48eey46ifvGE1v9b179552k1v8QWCf9oj0uvewIcrH3333XZLfx2YsVRbJPWno37+/DUf3Lnnz5g3L45f0bfjw4dbTnKGODGSNtAsuuMDaFxQrVswCrwT1whGgoEqJk3oCFJkzZ3aTJ09WgEJE0iQSX0IvbDzu2LHD5uyoG4FI7CR99O7d27Vs2dICFKyrvv766xQFKPgb99x2220pbk9JAhvrqnXr1p2ysltE0reYDFK89dZbNpywVatWrmzZspahsWnTJhv24ycy9RSkEJF4wjGNY5ufg8kOHTpk7Vi8LJsaNWpYm5aksvbF33aJnEwkPoHgYzYRTmb+/Plu1KhRbuTIkcm+H0q0Kfn2Llu2bEn1YxfhZJpKBo4d2bJli8gLQoD1t99+C3783HPPucWLF7vSpUuH7fZpGcUxkgQc/t7q1asXltsWEYnmekNVlCKxh0pn1lPegGvWVB988IHNqTtTBB+pbA3nvBmSp0REkhKTRwhvM432FAzlueyyyyJSTcFGHgOBNPRLROIB1QxLly71vVUKMy/IpiOjfvPmzcEqCjbkJLYdPHjQtWjRwgIUVC8mV8aMGS3rPPQiktJhjp4sWbJYgODhhx/2NbAKgnlUBNFb+e677w4OceR3OyUn8ifDXAvaie7cudOCLwysDFfwQ0Qk0ljfcW7OeoHkBxJSOE8nceHw4cP6gYhE2b59+2wOHcOpqQR98803ba2TksAA6zEqrL///vvgLK2UovWs33t5IhIfYjJI4SHr7N1337UTRkRqLsXcuXN9vR8RkUggYzeS8yg4WcW9995r1RX33Xefr/crJ2LjgJMSNkVD8bEX8A9FBjmtaG699VYrw+ZC/1oGY/Lv0AxzkXC3IujVq5e1Vvroo4+C10ding2VP1R8McDx+PHjLn/+/O7IkSNhfW4vvfSStUX4+++/XZ06dWzWC633RETS6uZn+fLl3ZgxY9ztt99u8ye4NGjQwGbsVK1a1Y6jrAlfffXVaD9ckXRn/fr1lnjBXlbWrFltQDYz6lKCwdb8bfM3TfVnaoZcc1skn9ASeMWKFSm+HRFJH/4Xq1kaDPAkAuz12I7UXApOlmfMmOHr/YiIRMJXX31lswIiNY+CjTkULVrU+q6TFS2RxSA72iTS+95DoIqPvRlPoa655hq3fPlyt2zZsuCFk5Jq1arZvzVrQvxCpQQb+Bw3qPiKlI8//tiVLFnSTuI5Ro0ePdp9+OGHdkIfDgQ9aHvXtWtXe24dOnSwGRThun0RkWhgdhVrDJIX3njjDdelSxe7kKlNj3nO16nMvPnmm62yVkQih2oHWkuuWbPG1u4LFixwtWrVStFtkWhG8tL27dtd8eLFrVVUauZznXvuuVaxStIce20iIqfif7paCpx//vl2MPQ2vHbv3m3/Z+gnJ39+ZtndcsstVs5GG4BwDEsUEYkGjp9kw7PI9LNtCvdDxQYYmA0tQKOLzVF60V533XWWtfTyyy+7v/76y7Vu3TpY6ZI7d24r/6atDScgobxZAImvFwk3fgerV69ulQZ+IxuQDTU218DfxnvvveeuuOKKsN0HJ/bNmjVzU6ZMsePuoEGD7O/R79ZVIiJ+o30dx8+TDc2lUvOFF16wjGsq5FiDiEhkTJw40QKErHOuvfZaS4xIactd9sAIKJCoxHBr1jOpbenKMYOEEGZliIikyUoKsjQ4sSPbjc0S+gSTgUaFBb3x/MSGHkERv1tLiYj4iXJar42P3235mONDWz426Dh+9+3b1w0fPtzX+5Wk3XXXXW7w4MHumWeesf73nGhMmzYtuLHA3BCyo0Qibc6cOa5Tp07BJBSSQSIRoACBAqq++D9DJAmuhjNAwXGQdiec0BP8mzBhgnv00UcVoBCRuMC64VRJKCQ20PeeIIWI+I+1FMHBJk2aWICCZFuqRFMzE5CKKYIcrGNIdqMdZrh4LdxFRNJckAKc2NHLt1KlSvax165k+vTpvt4vZXL09OagLCKSVnEMo5UJbXv85B2Tr7zySvt/gQIFrHUKG3QSPWwEb9q0ybKWGNZLH+nQjWIympLC58iYFAmnXbt2WZbtsGHD3KhRoyJ2Ak+7M+/kePz48dbSkwoO2g+ECy3T+BujbdWll17qZs+ebT3bRUTiBefHJL8kZcOGDZZ5LSL+o7vIAw884J544ongup+1e2pb7bZq1cqCkcyeCT13SOm56COPPOL++OOPVN2OiKQvMRuk8HhBCq/Fk99BCrL6iEITQRYRSas4htWuXdv3rBXvmEx5MYtZhtH269fPFrkiIh42rxgm3bRpU5s75rcDBw5Y66XevXsHryOYWrNmzbAfA1mrMhiSGS9eX2gRkXjCmrJHjx7BWZGhSIjo2bNnxCrjRNIz1jdUytN+jepQ2royvD4crcoLFixoCRd33nlnqoMoJB3z2F599dVUPy4RST/OCng19zGGFk+//PKL+/LLL23Rc+ONN1pmGmWke/bscdmzZ/ftvj/55BPLgGMwmN8DZ0VEwm3nzp3u8ssvd++8846vfYEZenvRRRdZiTHtpRiYLen3hIlBmX/++Weqe9dK/GAWCptXHCc8LDv9ntHgnWAzzNUb9JonT56w38/IkSMtk5EezgyEZP3o5/pURCRa79kEYpl1RfJLx44dLSjL8XzVqlXW4pNjPS318uXLF5EfktYdkh7xd1i/fn33888/2xzX999/3zVs2DBVt7lkyRK3ZcuWVN9OYlSu0o7q008/tdbtIpK+HUjm2iNmKyk4UJKZS188ZkR8/fXXrkiRIla2P2vWLF/vu1atWnZSq2oKEUmLpk6dapuAtFbx07x58yxAweYfx2cRkdBgKRv3DRo0sOOEx88ABRtmbJZRyUCAgs0y2puFO0DBWpS5Fu3atbMABcPoqahQgEJE4hXH0e+++84SUrp37+4aNWrkGjdubNUVXLdgwYKIBShE0iMSMKhaJ0DBsHrmT6Q2sEALN4Ie/C2Hu9Ure2ozZ85UgEJEzkjMBinoa86lYsWKVlXhlZl6UVk/0cuPliWff/65r/cjIuIHjl0cO+mN7ifvWEylGxnT+/fvt1Yn/FtE0re9e/e6tWvXutWrV1slg98OHjxo7Z3I8KUdCcERTugrVKgQ9goyWlYNHDjQPqadFHNcSG4REYlntIKhywFdDVjvcSGZcNq0ae6KK66I9sMTiesEtCpVqrht27bZzAj+9qhsSg1mRZDQtmPHDht8H645hidrCScikuaDFLR1YgAXFRQ5c+a0626++Wb7P9lqfnepot0T0WneCERE0goWnJwsRmJoqzePgtK9bNmyuQcffNA2BCtXruz7fYtIbCOzlopUMm85ofYT1QwESz/88EObYTZkyBDLCAxtMxUObMaRxDJhwgQbvD1u3DjXq1cv39tXiYjEEqrGypUrZ5dwH2dFJKFhw4ZZ4gVJYMzVomopf/78qXqZaM9GNRTt2nLnzu2++OILa8OSWgRPChcuHPaqDBFJP2I2SBGKXudsfFFOSh/MzZs3uzVr1vh6n2zwcQI6fvx4X+9HRCScJk6caMPKyPT1uycqx2YCymTgsElIv1HKj0uXLu3rfYtIbKLvcOj6jKw/hlX7jWGRDz/8sJ1ok2DStWvXsAcOeF60kSLowgbdV1995e65556w3oeIiIgIOLdiPdOpUydrM9mmTZuwBBO43RYtWljbXvrCUx0VrraYVJlyjsiMLhGRuA1SXHzxxRaVXbZsmZ0ghmbw+oWs4FtuucW9++67vt6PiEg4ccwiy4ZgQSRaPZUtW9aOzXj88cfd9u3b3YgRI3y9bxGJPVQXkOBBa85du3b5fn9kATJ3wtOqVSvLCKTVXbgR+CBZZv369dbu5Ntvv7XKDREREZFwO3z4sLvjjjvcSy+9ZB/37dvXjRw50pJoU4NuJCR1sGajTSXJJSVKlAjTo3bugw8+cM8++2zwcYuIxFWQYuvWrZaFx4khZWPw/u93kAJkyNHPeOXKlb7fl4hIalFlRlZMJLJ7vWMwLV2YG0RbvkKFCtl1VLyJSPrCpj1rtDp16lhyid/HOtaH1atXtxZMHqq5/Aj80m6UVnokypA0c80114T9fkRERER27tzpbrrpJmuZRCDh/fffd0899VRYKkQJUtAWk9uiZSXrqHA677zz3DPPPOP7OlBE4tf/0kIFxcaNG12ZMmXsOlqLYM6cORZh9lPdunWtouK9997z9X5ERMKBRWymTJmsx6ifCErQ6gTcHypVqqS+7CLpWI4cOdwPP/zgXn/9dWu/5JeZM2e6a6+91i1atMj6M4dWU4QTJ/J9+vSxlggc88hoZE4az1NEREQk3EiOLV++vK1x2AubNWuWa9asWdhun720l19+2W7/zjvvDMttskaiZZSISNwHKYjEfvzxx2758uXWvgT0QKfU/u+//3ZTpkzx9f7JBubgzcYffQBFRGIVG2pk/BKg8CObOPEmIVnFbNbR/gS5cuWyAYo9e/b09b5FJDbQbql58+Z2PPAwQNWvIdIc4/r372/tpPbu3WuBih9//NGqbcPt6NGjrnXr1jYU22tlx1BuLygrIiIiEk4kQtCyctOmTTbPixlYlStXDsttc1usbcA6jXa94TJ48GBXr149d//994ftNkUk/YrpIAUaNGjgihcvbgc+UFnBdV7PO79xAk4lB/2HRURi1c8//2xBXI5ZfvOOvQREqGoDmdNk5ag9nkj68OKLL1oSR9OmTd2hQ4d8va+DBw/avAvaHXjDIxcsWOAKFCgQ9vsiAEvLqjFjxthx7Y033rBBkF4lr4iIiEg4jR492pIw/vzzTwtMEFQgUBEOJJPQPop5q1SghhuDuGkhRRtOEZHUOselEXnz5nWlS5e2Aa2XXnqpXffFF1/YgfzCCy/07X55k+Ak+O233w5bJFtEJNzeeecdOzbWqlXL1xeXKjZ6pKJJkyaWibNw4ULbPCT7R61QRNKHrl27WmDygQcecFmyZPH1vnr06GHDHenNPHToUN+y9TZs2GBJMatXr7aKtI8++sgCFiIiIiJ+VIkyw+H555+3j2ntxL4THUXCgQRfksqoomBdE67bDfX0009bwoo3O1ZEJDXOCnBkjGE8vMmTJ1v5W/bs2S1buGPHju6hhx6yjF025lq1auXrY+jbt69dtm3bZjMqRERiCfN5cufO7dq3b+8GDBjg633Rgo/e7Pny5bMNPWUXCw4cOGAJAyQOXHDBBXpR4tSRI0d8OcE9nf3797vbbrvN9evXz4ZX+4F5GrfeeqsN4s6TJ4+bOnWqK1mypC/3JSISTfHwnh0Pz0HSN9pm3nfffVaV6iVkMAsrXOdW7JvdeOONtoa6+eabbU+Ndubh3Kfzq8WniMSf5L5vx3ztOge+Rx55xL3yyivu+uuvtw2y6tWrBwcIjR8/3vfHwJsHA4HGjRvn+32JiJwpsn1ZgLZr1873F8875pIxowCFSPpBogZzIIYNG+b7fdHS6fPPP7cTYJAgQrKKXwEK1pa0QiBAUaZMGQtYKEAhIiIifmC2FoEDAhS0Sho1apRVU4Tr3GrdunVWXc/5IZXuVKOGM0DB7VFpumPHjrDdpohImghSoEWLFq5Dhw42mNXDBpnXY4+TSj9dfvnlViY3YsSI4AmziEis4NhEH9NChQr5Hv2eMmWK/Zsh2bRdYbgbm4n0Ut2+fbuv9y8i0cMsmlWrVrkXXnjBl57GHuZb3Hnnnbbu8jsgwpqOgY+0rqNKpH79+m7evHkJ1psiIiIi4UIAoUKFCu6bb76xbOIvv/zSkmLD5ffff3c1a9Z0O3futHbpVIZmzpw5bLdP6yi6msyYMcO9/vrrYbtdEZE0M5Oid+/eCT7+9ddf3datW911113nFi9e7CZMmOAefPBBXx8DPZdr1Kjh5s6da9l2IiKxgGMgWb9ktPiNYAQbeVdffbVbsmSJtV5hQ2/Xrl12bGShSkBZROIPMyg4MSVJJJwnu6E2btzoGjZsaC0Kzj33XHf++ec7vxw/ftxOsgnygnUkVbtkNIqIiIiE24IFC2ydQyUFrXOZsVqsWLGwV77+8ccf7qqrrnLTp08Pe7ty5oMRoCBphRZVIiLprpIiFJFmNsjatm3r7rrrroi1fKpWrZorWrSoe+2113y/LxGR5KKaIX/+/NZLPZKtnsjKAffL8ZE2LLTiE5H4QXUUrZe89pvdu3d3BQsW9OW+5syZY8knBChy5sxpH4czszDUwYMHXYMGDSxAwfN68cUX7ViqAIWIiIj44cMPP7SkVwIUrHdIMgt3gMKrdqdF5ldffeVy5Mjh/MC+GFX0BCxERNJtkIK2IgUKFLCD4fr16603MiiV27Jli6/3zUlsp06d3GeffeY2b97s632JiCQHre4IHJABfPbZZ/v6orGgJmsGVatWdT/99JP1Ta1bt67r1auX++677yxjR0Tiw5o1a+wkmkpSv1tdvvHGG9abmeNM2bJl3aJFi6yHsh9og1ClShVLesmUKZPNo2D2mYY/ioiISLixhhowYIAleTEsm0oKEjEuu+yysN0HlRPLly8PfsxaikqNcJo1a5ZbvXp1WG9TRCTNBikoJSNAwYmsl61LmxNONL3IdCRmY2TJksWy7UREoo3jIRtrbdq08f2+Jk6caO1R6G3qLVDpp3rJJZf4ft8iEnkEIhmISGuCP//807f7Yc4FgVaOL82aNbMWcnnz5vXlvpYtW+bKly9vz43sQjYJGjdu7Mt9iYiISPp27Ngx165dO6tERZcuXSw5IpxtM5kZyBBrksgWLlzo/EC79dtuu82qNJYuXerLfYiIpKkgBRtjZArv27cv2NZk8uTJdkKL9957z/dMPwIUZBTSHoBotYhItDC4lv7ptEO5+OKLfb8/jrHgmOsNz+ZYvHbt2mA7GBGJHwyv/uSTT9zs2bPD3s84VJEiRdyQIUNc37597Tjj1xwK+j6T2EKvZtoU0GaBk20RERGRcCPBo379+u6tt96y6nPahr/00kthrX4/dOiQ3QfBCW7XrzXUhRdeaPtxJUuW9KVFlYiI56yA3zv7YfL3339bll3WrFmDbZ842K9cudKVKlXKSudoN0JfdD+RVch9P/3003YREYkGAhSPPvqoW7dunR2T/PTLL7+4EiVK2DGXf5cpU8aOuSyIacnCwpXqClVVpF9kcfF7wAnZBRdcEO2HIynE+oq/Y78GY3sIbnI8KVy4sIuE119/3Vp2ElClGpcsRj8DLyIisSwW3rP79+9vgXDWj7TeYz05cOBAmz2ZVp6DSFJoD07wgPMmAgd0/bjlllvC+oIRoKhXr561PudvgTkUXjt0v6pCmOl10UUX+XYfIhK/kvu+nWYqKVi8EKAAQ2Lpk8zJJj3S6e+HYcOG+f446B1I5jIbhIcPH/b9/kREEjt69KgbPHiwVTX4HaDA8OHD7f+NGjVyO3futBZTzJ9gPhCbmVSZKUAhkrYx64tKA054OfH1y9y5cy2hhEosP9tIgXXiY489Zu2k+HerVq1sFoUCFCIi0cV7QceOHd33339vA37ZAK1Vq5ZVCoukZT/++KO1liRAcfnll1sQIdwBCv5OuE1um80+9sT8CFAwx8tz7rnnKkAhIr5LM0GKUP/++6+799577d+ffvqpLXDw0UcfuV27dvl+/926dbN2T5TuiYhEGi1RWDQ++eSTEYl4jxs3zv7Nsfamm26yijIygqhi45hLGxURSdv27NljQQP+pv3aJBo9erQNyKZ1J4knR44ccX4hkaRJkybWSgrPP/+8e/vtty24KiIi0TVt2jQLHNM6hvUk7w9kn7PBK5JWTZo0yWZDcK5EFTqtJcMdPGB9Q4CCQJ8XoPCjfeXnn39uFa+0qRIRiZQ0FaQgMHDXXXdZJQWDeyZMmGCbY9dff71dyC4eNWqU74+jYMGCVr1BJjP3KSISySAt5fANGjSISE/QsWPHWlY1feOrVauWoC8p2PCjv7uIpG2c4M6aNcvaBeTMmTOst00VQ48ePVzr1q0tW5Z5FwytDvf9eKj44nhFKxGOUe+//77dP1VgIiISe7zKuqRaydBmlMSZ0ItILHn11Vet6pwgQu3atd38+fNd3rx5fbmvc845x5I9pk+fblUbfqDCib0uWrKJiERKmgpSsDHGwX7r1q1u+fLl7o477nDnnXeefc6rpmCoNbMr/EYG85YtW+zEV0QkUj777DO3Zs0a1717d9/vi5FFXhs92qWEtmZJI+OMROQUdu/enaCUn1aatCYI90wxEkz69etnHzPP64MPPrA2nn5YtWqVtZNiZg6bXTNnzrTWeCIiEpsIZHfp0sVVqlTJFS9ePMkZFuwFeBe/Nn9FUpJA1rlzZ7twfnT//fe7yZMn+zYrhRkXVGzQ6snPeaxUUFC9T5tzEZFISTODs0PLznLlymUn0l5GHE+Bk+B8+fK5vXv3Wgsooth+a9iwoUWWV6xYYdFsERG/T+I49tFPnWxnv5FVXbNmTZs5wUYmFWssuFmwvvHGG27x4sW24UgPYUnfNMAy7aE6lWoDfnb8rVMl6of27du7N99803oZ0ybTa9fph9mzZ1ul7f79+61FAdW2zM8REZHYfc9+4IEHbF4QyYh58uRJspKCS+hzIFARK89B0ifaY959990WNMCAAQPc448/HvbKTQZWk+BBAMTPqlD+xjJmzOjb7YtI+nUg3gZnhwYG2CjzDs6U1XECSiS5bdu2ERugjd69e7tff/3VvfPOOxG5PxFJ35i7s3TpUvfss89G5P68YymbigRj165da4FZAsUTJ060466fPeVFxD+0cePkmrYEtGDyC8erMmXKWNsAPwMUY8aMsYApAYqKFSu67777TgEKEZEY16lTJzdlyhQLMicVoAAbp2xqhF5Eomn79u3uxhtvtAAFv5/M63viiSfCHkRgY69OnTqW9OFVpfqB1k716tWzihCqQ0REoiHNBSkSI0iwbt0665veoUMHe1OgtJ92KH7jpJvZFAQrOMkXEfFz4UjVQv369V2VKlV8f6FpZ0flmtfqiWMsbr/9duuBSrbbyy+/rCoKkTSKDNR58+ZZFUW4qw1CW0hddtllNgiVE3k/UE3bq1cvG8BKu09aS/GcLr30Ul/uT0REwnPsJkBBBwSqg/2q5hPxwy+//GKtlljfXHLJJfY7zLytcCPxggSMb7/91irp/axe9+aSvf322279+vW+3Y+ISNwFKTZu3GgnpJTTtWzZ0q5jgUPv4VtvvdU+Hj58eEQey3PPPed27dplPftERPxCmxQWjPTkjQTaOdFeinYwtE0hOwjeMZf2emTaeHOBRCT2sYkfOgCR+RPFihUL633QjuCKK65w7777bvA6v1oT0JagRYsWrk+fPvYxs3qYFabjkohIbGOeJO8THLNJftmxY4ddaOEsEstmzJhh81M2b95sSR7ff/+9VXCG2759+6zt7g8//GD7XAQR6Cjil7p161rVPpcrr7zSt/sREYmrmRSYNm2aHURz5sxp2XolSpSwk2428cgMrF27tpWAMmCbXuqRWGSxwGIDMXv27L7fn4ikL7RkIVBA9oxX0eAnNv44ljJUl7ZOlPySncx1BIn/9780Gd+WdNTfWk5E0LF169buk08+sdYEBCDDieXkCy+84J588kn7mGHVrI38wsl748aNrRrk7LPPdiNGjAi2/RQRkdh+z04qeE0bZSrj0sJzkPRn1KhR1naJc6OqVasGE2XDbefOne7mm292y5cvt0oNOoWUKlXK+bU+1LmdiPgtbmdSoHr16tZmadCgQXZS7GX2snlHtJnILy9ApGZF9OzZ01qxDBw4MCL3JyLpC22VGHLrZQv7jUxoAhS5c+e2OUBeYISM5ZUrV7p27dpZNo+IpB3MjyGxgyxV5lGEEyfrtO3wAhSPPPJIgkqKcPvtt99chQoVLEDBIpeBqwpQiIikHZzDn+ySnACFSKSxkf/UU0/ZWoM1T/Pmza2iwo8ABcliJJIQoKDidc6cOb4FKEaOHGnzLsK9LhQRSVeVFIlx0k3rEZ4KJ668YTzwwAO2wcbHDDKKRKBi8ODBNh+D+xURCYe9e/e6QoUKWQY0wYpItIMpUqSIHcsIvBIE5pjGgpyKtffee8/a3DVq1Miyh0SgjMa0E6igrzHJHuHCTK67777bZtiQGTtkyBALUviFgdgNGjRwe/bssequL774whUvXty3+xMRiTfx8J4dD89B0s7aieCZ1/r2mWeesZmkfrWyBB1Cnn/+eaugoIWmn+eY/C0NGzbMZhCKiPglrispEsuTJ4+Vw4EDLJt5XEe7J0ryIqFbt24uc+bMNthWRCRcnn32Wcve6dGjR8SqKAhQUFrMYpXhswQjHn74YXf11Vdbq70OHToEK9hEJLZt2rQp+G9mNYQzQEG2HxWsBChICOEE3s8AxYQJEyy7kADFtddea32aFaAQERERP7DeqFGjhq1vzjnnHDd69Gg7N/MjQBGaO0zFxooVK3wLUODiiy+25N7HHnvMEnxFRGJBmg5SkL03ZswYt2zZMte1a1cru+PCibLXcoAhs5xE+41IUN++fe2Niyw/EZHU+umnnyzw2qtXLwsW+I1qCbJ28Oijj9pMH3qU3nrrre6VV16x62mx8vrrr1slhYjENgKMtMDkb9YPrLcIemTLls199dVXrkmTJr7cjzfv4s4777Q1HcckWj3RBkFEREQk3NauXWvnPVSgkv07ffp035K0lixZ4m688UZrt+shAdav8z1P+fLlrYW6n1UhIiLpJkhBYILSO1qgMCyb/sdk1qFNmzYuV65c1goqUrMpiHiXLVvWso9DD/4iIinZlOvYsaNVL3Tu3DkiL+D48ePdr7/+av1VuW8RSdvoY3zs2DE7+fWruyft337++WdXpUoVX26fx0/11hNPPGEfP/TQQxZ88evkXURERNK3b775xt1www1WXZ4/f/6wt8pMfF9UifJ/b63jl7lz57oyZcq4zZs3+3o/IiLpMkhBJLtAgQKuZMmSJ3yOlgah1RQMtvbb2Wef7YYPH27ZzyNGjPD9/kQkfo0bN84tWLDADR061J177rlRqaKgvJmeq/QNpHKNajECvyKSNpDE8f7771slRbiy5DjBrV+/vg3gBrfLbAi/epdSNfHmm2/a/VDR9eqrr9p6S0RERCTcWDfRynLfvn2uXLly1lqyaNGivrzQzNWqVauWrXeqVq3q6/xB2gfTvpeB3N45n4hIrEnTg7N56FxoR+JZtWqVHdzr1atn1RUMA9q+fbud4N5///0ReVzcz8SJE92aNWtcjhw5InKfIhI/9u/fbxUUZNVQ3RAJ3E+zZs1c9uzZ3caNG933339vx1CCFQQm6DlPYJjeqFRbqCxYQmmAZezwhpH58Tf6ySef2JBsWi717NnT9enTx/lly5YtFgzhZPr888+3eTkMzBYRkdSJh/fseHgOElvYV+rXr19wxuhtt91mSWOsQfw692rRooU7fvy4rXeYu5UpUybnJ87pCFCwX0ZSr4hIpKSLwdmcgIcGKLzINwEJehdz4H388cftet5waBkQCVRu8Ni8Sg4RkTPBDIq//vrLDR48OCIvHJk1tGwBQ29503jxxReDrfN4M6H3O71SW7durQCFSIxi0Ve5cmXXqVOnsLedZG11xx13WICicePGrnv37s4vS5cutTYLBCguu+wymz+hAIWIiIj4gX0iWnd7AQqGSRM08CtAQfcNkj4IUPB/2lj6FaDwKl+RJ08e6/ihAIWIxKo0HaQIjXozrJrsXvqoZ8iQwfoGUprXvn17lzNnTssMHjt2bEQezyWXXGJBEWZhaIi2iJwJervT4olABQvJSKDya+XKlTb8ljLgFStW2HA4gsB8jJtvvtn62yv4KhK7Zs6caX+/nOyGDl9M7RqLVm+sp/h3u3btfM32mzJlis232LZtmytevLit5Zj3JSIiIuJHBXvdunXd22+/bec+BBAYJp04GTZcaKFLMhhrKmaZUq3hV2tfzt0KFixoe2MiImlBXAQp2DSrWLGivZmQcUc0Gi+99JKdRHvVFJxkR6qagpZP1113nf2frEMRkdMhm4bKhUgOy6aKwmvZ0qVLF6ua8Pqhki1Ny7xQfi3YRST1br/9dgs6Tp061dZD4Tg+UF3lZRbyfzLw/JoJQYC2YcOGVklGYHT+/PkuX758vtyXiIiIpG8kslaqVMnNmjXLWtySKPHAAw/4ep9UZ8yYMcM6f7Du8fPciv2wnTt3+jrrQkQknOJit+mWW26xYETGjBmDG23gRH3Tpk2uQ4cONhtiw4YNFqmOBE7gicZT3fHss89G5D5FJG0j0LpkyRKrwqIiLBLoMU/mNcEJAiO7du0KHifZnDxy5Ij1TFWwVSR2EUzw0EO5TJkyYbndrVu3unfffdf+zQkubeH8mHVBayqONw899JA9F1ouEGjhuCQiIiISbosWLbLWklST58qVy33zzTdWUeEHzqO+/vrr4MckgXXr1s33FrrM82KGWKQ6ioiIpFZcBCnov8xwbCLRKFWqlKtRo4ad9L722msWrfaqKZ555hnL0IuEEiVK2P0NHDjQ3gRFRJLyyy+/uN69e1sP1PLly0fkhWLB7LVvIkBBu6fXX3/dri9XrpxVqNE2hoHaFSpU0A9PJAaNGTPGTqoZRhZuefPmdV988YUFKvyq7mJNRgWIl+VHu0zmX/jV+kBERETSN85vmLVHlQF7R7SWLF26tG/zwurVq+dq1arlJk+e7Py2bt264L/ZB6NiXjMoRCStiIsgBRHoxNl2Xbt2tf+PHDnS3hiYVUE/PrICCRpEyhNPPGEZja1atbKMZBGRxGhDxzGicOHCEa28evXVV91vv/1mQ7EJjqBJkyaWxUxgl2MrLaiYjUELFhGJvT7KBA9oG0AFVjgQ7AhNrCBg2bx5c+eHHTt2uJtuusl9/vnnVg1Lxh8Duf3OLBQREZH0hzkQtEAiOYKB0nXq1LEKCr/mADJfq2rVqlZFQecPv+Z5eUg2u+aaayLWPUREJNziIkgRioqK33//3d5wKN8jWEHrJaLHgwcPDrZUof9gJJAJOHr0aItokyUtIpIYPUmXLl1qx4pIZbqwOUjrFvTv399lzZrV/l20aFEL7rJ4R4sWLex4SUmyiMQWqp848SVQQauk1NqzZ49VolavXt0tXLjQ+Yk2c6zTFi9e7C6++GLrB920aVNf71NERETSJxKvWCuxP0SwgpbgVDZ450DhtmrVKqtE//nnn13OnDndvHnzXM2aNZ2f1q5da91E1MVDRNKquApSEBWnNQEbbwwg+vbbb12vXr1sCJI3BLZatWpW0eC1f4qE4sWL2+MgOEIpoYiIZ/ny5VY9wTGJjOVI6dGjhzt48KC7/vrrLRDBYj0pBHopFxaR2HPttddaq6TUDl6k0pRsP4IGBEv9Go4NAhIMqmRu2JVXXum+//57+1hEREQk3A4dOmR7QcOGDbNqTZJXhw8f7s455xxfXuwFCxbYumbz5s3uqquuct99913Y5oWdCs/r448/dq+88orv9yUi4oe4ClKULVvWIsecaLPhlrhdAB97J/ITJkxwc+fOjdhjYwOSjQRaukRqJoaIxDZmP7Rs2dI26SJZacUmpNcahkUsx8Tnn3/e3XXXXe7XX38NtpGh/FlEYsvRo0ddu3bt3IYNG8J2m7R9Y74XWX+5c+e2v33WVH54++23rdqVVpxVqlSxE/crrrjCl/sSERGR9M1ruTRlyhRLwmAf6NFHH/WtteSaNWusYuKPP/6wOYMELGg77teakHWVl2zGOd1tt92mtpkikmbFVZCCk13K6XgD8t50OGDTq5k3JoIXJUuWdO3bt7fP0R6BoEYkEKUfO3asRdMffvjhiNyniMQ2ZtbQ8oS+ofRjjwSOiRz7+P8999xjZch79+61Sq+PPvrILVu2zL6OTCOOm23atInI4xKR5GFmAy3ZGMBI64LUIjDB3zpt3ZiLM3/+fOtnHG7//fefVXBxTOFx33333e6rr76yVk8iIiIi4cbeEIEC2urmyJHDzZkzJ9jS1i9UTtx7773ulltusZacl1xyiS/3w7kc1SGsq5566ilf7kNEJNLiKkhBYKJEiRInXE/7J7ICyRRGnz59rI/zTz/95EaNGhWxx1ekSBHb+CPa/e6770bsfkUk9jAolioGynKpsoqU8ePHWys82jcNGDDArhs4cKC1fipdurS744477DoqvjJkyGC96UUkdtBLmTZtr732WqrbFDAv68Ybb7Qsw2LFitlaqUCBAi7caLPJ8O1+/frZxz179rR1UKSCsyIiIpK+TJ8+3apEmVdK8gWtJQlY+IHE18OHDwf3pNjz+fTTT31tl8v9cN6WOXNmSzYREYkHZwVO1Yg8DeOEeOXKlbb5x0k3B25O5im/K1SokG0OdunSxV166aXW3oSgRSTwchNZ501ryZIlFmkXkfSFiioCAmwOfvLJJxEryWXxfPXVV9tineDt008/bZuTZE9zzJw6daqrV69e8Ov5HFlHfvVrlfhx4MABd+GFF1oLnwsuuCDaDyfuUZWQ2hkUXpsA2gJs377dTub9yPajUqtRo0ZWocGx5M0333StW7cO+/2IiEj6ec+Oh+cg/mGt8eCDD1rwgJmkzGnInj27L/f1999/W3U651kM4o70edOOHTvcZZddFtH7FBHx6307riopQlsXkAlIz2PeNGgDVbt2bWsv4PV9502LiPru3bttsy5S2IxkSBM9n++8807bGBSR9OPYsWOuWbNmLmvWrFbJFakABV544QULUOTPn996saJv3752HGK4W926dRN8fa5cuRSgEIkBtIUjA9ATjgAFqJaaOHGib+0I1q5d62644QYLULAonTZtmgIUIiIi4lsSB+10ae9NgILkUNYefgUodu3aZVXnJJ2xlvrxxx+dn2hXVb9+fdvj8ihAISLxJC6DFAyhzZQpk104QfY24kB7AU72zz33XBuijVdffdWtXr06Yo+PzckPP/zQ7vOxxx6L2P2KSPQ988wz7ocffrC2SxdddFFEqzdo6wRaTHF8ZPAumUbeMZKAyaJFi2x+j4jEBioRbr31VnfTTTfZiXZqMaerW7duwSGLDJEkgBBuBCaYeUNLKQKjDI6sUaNG2O9HREREhI37u+66y5KyQHLq6NGjLSHDD3TtoH0USSQEQZiz5Vc7Ke/5kej2xRdfuP79+/t2PyIi0RSXQQpK7GhbwIkxg7JRtmxZG5LESTmbhKC6goFGVFgQbSfyHim0esBfrEsAAHixSURBVHnppZesXyFZjCIS/zguMQeCvuxs3kUKx70HHnjAKiZofecNjBsyZIgd/xjAS+spjoEtW7a0lnhffvllxB6fiCSNk2vWMlQ2XXfddal6qWjpRsCDQCUn7n4hCEtAggAL8zM4gWfmhYiIiEi40R2Digb2VUhGHTdunOvVq5dvFeuzZs1yFStWdBs3brS2ud99953vcyFIMCPRldZS3bt39/W+RESiJW5nUiQV7WawNhtxy5Ytc6VKlbJMYq5jSCwVFQ899FDEHg8vfdOmTW3TgEG2XkBFROIPVV3lypWzBS39SsPVriU52IykBzybnUuXLnVFixa16znuMXy3Zs2atvlJyTID2H766ServPAju1rik3pD+4t1Cz2HCVSkFLOwyDCk5Vzjxo0tkBDu7ELWNQRin3rqKfuYWRTvvfeer4MjRUQk/b1nx8NzkPBg5igz9davX28VDax3SL7yywcffGBtpEj0ol3uZ5995kvLTDDnghmBV1xxhS+3LyISa+/bcR+k4OkR2aYnMpuCVFEUL17cNuK8TUJmRHTs2NFOon/++WeLhkcKm4S8ue3fv9/arDDIW0TiCwdijkEcj8gozpYtW8Tum9ZNZDDzGNg8pE/r6TC3Ik+ePBF5fBIftFkQfgQK8+XLF5bbIvOuefPm1p+ZQAUZhmQahhPBDyq2mLWDLl26WMXG2WefHdb7ERGR1ImH9+x4eA6SenPnzrXEiz/++MMVLFjQWiExd9RPJHwx87RBgwbu7bfftraZfti+fbvdB0lktArW7AkRScvS9eBsDxuCRNUJApC5jD59+tjA6tAs5g4dOlivZyLV9913X0TbPmXOnNl9/vnndt9NmjSxk3wRiR9sCt5999220Jw0aVJEAxQcA9u1a2dvBLRc8YZlU0FG9k9SFKAQiS6qK5mv1bNnz1SvSZjFxTHIGyBJZUO4AxQcY1hvEaBgfUWFFi0tFaAQERERP7C+ufnmmy1AQTIYiWB+BShC83rLlCljyaWsp/wKUHjtndjUI6mVBDIRkfQgroMU9CBk9kPGjBmt/C8x3tAOHjxoJ9ScWBMwmDdvnlVWRBIDJT/55BPblOjcuXNE71tE/EXbE4bdksl81VVXRfTlHjt2rGUU0dKFlk/M6yEgSs9Wgha//fZb8GunTJnijh49GtHHJyJJ9zrm73H16tWp6qdMNYaXfNG2bVv3zjvvhD1wsGnTJksGmTlzZjDxolOnTmG9DxEREREvYPDss8+6Fi1aWIInHTK+/vprlyNHDl9eoC1btli7XrpzeIoUKeLbvAsPiW0k2i5cuDDVM8lERNKKuA5SoFu3bjbQ6JFHHklwPb0K2TAkSxEMih04cKD9m3YoJwtq+Kly5coWHHn99dftIiLxkeHzwgsvWMuT2rVrR/S+afPkBT1ZyHtzKPr372/HxD179ricOXPadV999ZUN0yX7iOHaIhJdrE0+/vhjCyqk5iSYdlEEKB988EH3xhtvhH0WzuLFiy17ccWKFe7yyy+3RI9bbrklrPchIiIiAhI4WrVq5Xr37m0fP/7445YIRtWBH6iYYKYgVRrt27f3teMGVe5du3YNdgAB+1XsU4mIpBdxH6S46KKLTtq/j2w/NuloScAQbdBLmSFL0Wj7BLIcGdz98MMPu9mzZ0f0vkUkvOgdyt80C2l6s0c6w4iFNC1YyLx57LHHgsO7CZrg5ZdfdlmyZLF/c8xjg7Fhw4a+li2LyOn/dj233XZb8G/0TIUGG2n1NGzYsLAHKKiYYM3EQO8SJUrYMe/aa68N632IiIiIeF0wSPqiUpyqUJIvSDIN9/omdEB21apVbZ3DTFOCB37dF3g+tMq855573N69e327HxGRWBb3QYpQZA9Pnz7d/l2rVi2bAUEgggxD/s+bDsOPGKDNEKZoVDS8+OKLrlq1aq5Ro0bup59+ivj9i0jqrVmzxrKJy5Yt60aMGOF7OXBiDMWdOnVqgjZPbH7SgoUMJBb4bIB6CE4QwKDiQkSi480337TWBQQNU3s7tLrctm2b88srr7xigyp5rBxP5s+f7/Lmzevb/YmIiEj6RZcLWi7NmTPHZc2a1drUMnfPD+wL9ejRw5I8SPrgnG7BggXWottPPJ86derYftTFF1/s632JiMSqdBOkoETv6quvds2bN3f79+8PBgSoqKC/IBt5sdD2ic3EiRMnuiuuuMLepBhwKyJpBxuDbNpdeumllnHDTJxI37/X5olS6GLFitm/Oa7MmDHDHs/QoUNPCJxwLLzgggsi+lhF5P/s3r3b2lIyhJFLagIUVFERKCXTMNwYvk21J9VhBD45oeY4p2OHiIiI+IFKTVpLMqcrT548lhjBPokf/v77b0vk6tevX3A/6LPPPvNtnUNirFdFe+6559oswdtvv92X+xIRSQvSTZCClieFCxe27EJaoIA3Oa+fIW9A+/bts39TWUFp319//eXatGljJ+WRxJsgb1BsGrLZyeaFiMQ+AqAsmjlmULVFu7lI8jYNeRxUcTCTBwcPHgzO5eFYRxAUbGLSQ15EoougJu/7/P3SJi4l3nrrLQtQgEAlf+vhdOjQIaueoE0maB1HpRgn1SIiIiLhxnyum266yfZDypQpYwGLkiVL+vZCk8xF0ij/pzJ9wIAB1lrKDyR98NxoyemJdPW9iEisSTdBCt5svvnmGxsQG1qqx4k8mcbMp3jqqafsutC2T5QUPv/88xF/vAy0ZZPzwIEDrl69erY5ICKxi8ybBg0auN9//93+dqPR+oQ+ponbPIEALMe9ggULuieffNKu27lzp+vYsaP1lOc4JyLRxd8i/YhTcoI6atQod//99wfXNRwLwnmiS4UWj8+rDvvoo48sCKqTaREREfEj8Wrw4MHWnpuWS/Xr17fEqly5cvnyYnvVDOwDjRkzxto7MRvCT5yXsY5iv0dERNJZkAL09kt8Qk0G4PDhw+16+g96w7KpuvBmUtCnneBGpPEYvvzyS2vbQNkfveRFJPZQOUHf0sWLF1uQoGjRohF/DN9++20wc5pWdgx48xCgIEhLSXGmTJnsOrKCWHxXqFDBKsdEJPIIJu7atStVt0FShRegICsv3AGK5cuXW5uFJUuWuEsuucTNnj3bNg1EREREwu348ePW2YJkCIIHJFXRcilLlixhvy9u/9VXX7WZYF6ggm4WVKT79dw8tM5cuHBhMFFWREScOyvgHY3TkX/++cd6slNe570BrVu3LtgCJRQn/rRQoBXD0qVLXe7cuSP+eL/++mtXt25d64/47rvv+lZyKCIpb7H0zjvv2AKa4WqR5pVAb9261TVt2tS9//77yd6kPHbsmNq1SKqRBXbhhRdaO0XNJ0ieSZMm2dB6Wk/+/PPPLnv27Gf8upNdWKpUKffrr7+6Tp062Yl2OAMUzLG54447rGUcc70IwpJAISIiaVc8vGfHw3OQE7HeuOuuuyxRk/XMkCFDbDPfj8pN1lAPPPBAcDbp559/blXxfgUnnnnmGZuFSvKrV+0uIpJeHEjm+3a6qqTwkG382GOP2cWL0ZwsQAFO+JljwSYgb5hs6EVa9erVbZAm7RXuu+++iM/IEJGT4/jx0EMPWSCTdivRCFBwPKAiggAFm4gMzvUW8lRUkFlNK6qkqJ+8SHSw7rjmmmssASElAQqcd955lshAW8pwByhGjhxp7SbZMKDVE9VaClCIiIiIH2iZW6VKFQtQUPn9ySef2Ew9PwIUnDeRsEqAghZPnDPdeuutzs/nRpIsLXaZQSYiIieXLoMUvNkVKlQoQVmfZ9OmTe7mm2+20jvwBjlhwgSL9NCbsEePHlF5zGQyMryJSgqytr22VCISHRw7OJYw7IzAQMuWLaPyOPr162fZzhyrJk6c6LJmzRps0dK9e3cbcssi30PLJ7KGmEkhItFDWzjWGoMGDTrj792+fXvw31R4sjYJ10k86wtm17DW8IKgzNm56KKLwnL7IiIiIqGWLVvmypcv73766Sebzcn5SqNGjXx5kWiBSzcNhnCTJDJt2jTfgiGeAgUKWELb+PHjfavWEBGJB+kySEF/dlojUJVA5DzUc88952bOnGkn5X/99Vcw25Gez2AzgRYN0UDPe6L9tJVp3769AhUiUQxQUIn1yiuv2Owarx98pM2aNcv16tXL/s3j8OZQ0NKOYxhzbKju4NjhPW76u44YMcKCGxK/CJ5xQkSmPSd9XuA9qYx5Mtc4UeNSs2bNU369pM6ePXuC/yaoyKD7M/Hpp5/asEXauoUbVVfNmjVzAwcOtI85vowdO9aGZYuIiIiEG5UFlStXdtu2bbMEju+//95df/31vrzQ7KPQpYJkrRIlSrhFixZZgmq40X2DWRMrV64MXsc8LzpziIhI0tJlkAKhcx1CqykIQpCVuHbtWtvM8zC4unPnzvZvMqY3bNjgooHqD95cicS3bdtWrZ9EIozjBb1RKQumbLdDhw5R+RmwkCf4wOMh4BpaydGzZ0/rcc8sHVpReZlB/J+WMJwIRKsqTPz34Ycfuq5du9oGM8OOmVlQu3btJAc0U3rOxjQDkemVmzdvXlerVi0rhZfwIrBAy6SPP/44Rd8/ZcoUO8ElEEkFVTjR1rJGjRrWWpI2cGPGjHG9e/f2NbNQRERE0q/hw4dbmyWSQ1mD0LmCJBu/eC2+WUux5vWrjSXV7P37949au3ARkTQrkM59++23gWuvvTawYsWK4HUzZ84kamGXqVOnBq//559/AjfccINdX7Zs2cDff/8dpUcdCIwbNy7wv//9L3DvvfcGjh8/HrXHISkzdOjQQP78+QMZM2YMlCtXLvDDDz/opUwD/v3338CDDz5ox4ARI0ZE7XEcO3YsUKVKFXscJUuWDBw+fDj4uTlz5gTOOuss+9xnn30Wtcco0cMxpWPHjgl+b3PlyhXo379/sr6f95SsWbMGxowZk+z7/PPPP+13jv/Lyf3333+BOnXq2OvUs2fPM36ZZsyYEciQIYN9f9OmTcP63r969epA4cKF7bazZcsWmD17dthuW0REYks8vGfHw3NIz1ibPvroo8E9l9atW9teix+OHj2a4OOlS5famsxPO3bsCBQpUiTw8ccf+3o/IiLx9r6dbispPAMGDLBMU8rxPETxyZQGGcpeawZaMpChSl/mH3/80TJVo4VWLgzT5tK0aVPLqpT4zHKW2EAWDMcD2ipRnUDLtWh5+umnrZ8qrWKYQ8E8Cvz555/u3nvvteqKNm3auIYNG9r1fLx///6oPV6JHFp88f5EyyYPbQ35mIyx5Dh8+LD9vp9qBgHvOQcOHEhwkVOjIoF2kRxDvDZtyUVvZv6e+fkyaJsZVaEVoakxb948V6FCBffbb79Z9iIDshkmKSIiIhJurDNpfTRkyJBgu226RJxp+8vkoOqU6olffvkleF3p0qXDXiV68ODBBC3BmavBfEDWbCIicgYC6dzmzZsD7dq1C+zZsyfB9WQmFy1a1CI9jRs3ThBt/+KLL4JR/9dffz0QTWRKn3feeYFq1aoF9u/fH9XHIpHJcpbIO3ToUKBevXqBc889N/Dee+9F9UdAFZV3/JkwYUKCzy1YsMCyoAsVKhQ4cOBA8PqxY8cGLrnkksD48eOj8IglkrZu3Wq/G1QJhurWrZsde5LjgQcesN+hU1UL9urVK/h7GHpRRmP4fffdd4EsWbLY68txKJyZhu+++26wOqN8+fKBnTt3hu22RUQkNsVDFUI8PIf0iAoD1qP87Fh/vP/++77cD+fXzz//fLC6nApUv7CPRDXq2WefbediIiJyIlVSJBO9t9944w138cUXJ7iezOR3333X+jIzn+KPP/4Ifq5u3bquT58+9u+OHTu6L7/80kULmZVkCCxdutQyH3fs2BG1xyKRyXKWyNq7d6/9fMhkph+8N4Q6GngMVHOAmTl33HFHgs9XrFjRZlHQ754qC6+K4u2337aKsPXr10flcUvaqi4cP368DWdm6Papeu1SueNdtmzZEtHHmZZQ8cgg89D5V2eCn8WhQ4esypO/7XBkGvJYnn/+eavK5H2JuVvMJMmRI0eqb1tEREQksVWrVrkbbrjBLVy40Kp1Z86caTPRwo3q8caNG1vlOeud+++/32Z6+oV9JJ4Xc001x0tEJHXOSeX3x52VK1e6IkWK2BtMmTJl3LRp02zjL/FmDW96tEZgsOSdd95prVcoHYyGKlWqWLuGOnXq2GP1yhol9rBR/O+//1oJaCg+Xr16ddQel5zc5s2brRUXPzeGC1933XVRe6n4/WDBTRseNhTZTE4q8MrFw7Fs+vTp1qKKRbrEt0suucTaAO3cuTPB9Xx82WWXnfJ7Bw8ebL9XnDSWLFnylF+bMWNGu8jpjyG0hmMgJD8bBiieKX4m+fPndy1btjxl4Ci5CErwmEaPHm0fP/bYY27gwIEWMBcREREJNxIhaH1EAIF9iqlTp7qrrroq7PezbNkyO08iMYt1KkkitMANN27/8ssvD7bcZQA45/jZs2cP+32JiKQnOiMNwZyA4sWLW493T/Xq1RNsCniZkGz8vfnmm/Z5Mhzr16/vfv/9dxctJUqUsD7SZFgSqCBbX0RSjt6l/C0dOXLELViwIKoBCuaV1KtXzyq6yNShH723ociCuEWLFrbYTwrHhQcffNAqwyS+8bMuW7asmzVrVvC6//77zz5m7kBSXnjhBesJTGA+mr/r8YaAYd++fa0CM3Hl06mwniAg6a03+PvNnDlzqh8PmwM8FgIUBLOYjzFo0CAFKERERMQXJHXWqlXL1iCVKlWy7gF+BCgWL15sa10CCMzY4vzNjwAFFcfMlHzyySeD111wwQUKUIiIhIGCFCFoj0IQYtGiRSe8UGzyPPvss8GB2t5mEK0XihYt6rZt22aBimgODyXTcv78+a5gwYLW+ulUm5aS9rKcJXLY0KVCifJdgn9+LKTPZLhcgwYN3IYNG1yhQoVsKJuXtYNnnnnGWtNR0RXa7o3g6UcffZTiFjOStgPuI0eOtJNCSusfeOABy+Rv3bq1fZ7h6rRr8pBF37NnT2sLxkkdv0dc+B2S1CHA0LlzZ3s/Tu6gawIUlStXtoxDgqThwjGEwOvXX3/tsmTJYu3rOnToELbbFxEREfFwDtKrVy/XqlUrd/z4cde0aVOr1uV82A90tSBIwZ4MCZsk7fjhwgsvtDUyLXapThURkTA6yTyLdOvIkSOBuXPnnvRzDCH1BoOOHj06wec2btwYuOyyy+xztWvXDhw9ejQQ7SG/DRo0sEFRAwYMSDD0W6KPYWGdOnVKMNgrd+7cGpwdA/hbee2112zwWc2aNaM+jP748eOBxo0b27HloosuCqxZsybB5ydOnBg8LiUe6N2lSxe7/v7774/wo5ZYwO9xvnz5bCghx5zvv/8++Lkbb7wx0LJly+DH+fPnP+kQbIZjJ5cGWCb0888/B44dO3bGPzcGV1999dX2+l955ZVhG2TNzz9Hjhx2u7zfLFu2LCy3KyIiaU88vGfHw3OI932V5s2bB9eUTz31lJ3zhttvv/1m9+Xh98GP+2E4dqgZM2bYeZqIiIT3fVtBijPQu3dve1EzZswYWLx4cYLPLVq0KHD++efb59u2bRv1wABvzj169LDHc/fddwcOHz4c1ccj/8/48ePtd4hg18qVKwPt2rULZMuWLbBjxw69TFH0zz//2IY+fzNs8KdkgzHcunbtao+HjeZ58+Yl+Nwvv/wSyJw5s32er0usf//+9ns2bdq0CD5iSa+0WfD/bNiwIXDhhRcGKleuHNi9e3eyX8N9+/YFSpUqZX/TefPmDWzatCksP5tPPvkkkClTJrvd0qVLB37//few3K6IiKRN8fCeHQ/PIV7t3bs3ULVqVfv5kPj11ltv+XI/EyZMCGTNmjXQsWPHgF9IWGMvhYQe/a6JiPj/vq12T0k4ePCgtXbat29f8DraYdx6663un3/+sQG2u3fvDn6OHt70J6RPPANqaZ8RTTyO559/3n3wwQfuk08+cVWrVnVbt26N6mOS/8PgVAbU0qaHslQGfNEHPvEwbYnszIcaNWpYn/ZRo0a5l156yZ1zzjlR/REMHTrUvfjii/ZvHhftpzz0dOUYRAufatWqnfR4Q5/UjRs32uBvEYnskHtaRDIvhpYAycHfMu0JfvrpJ3svoOVcvnz5UvU4SEThGMIAyb///ttmUcybN8/lzp07VbcrIiIicjK//fabtVxivcGchi+//DLscyFosUQrzSZNmtieDW2XwtkeM/GeCjM0tmzZYu0yRUTEX2cRqfD5PtIkhtTypsqgywkTJgSv//PPP125cuXcr7/+anMfvvrqqwSbmWwsPvTQQ/bv999/3zVr1sxFGz0ZGzZsaJsmn332mT1+Efk/bAoy84HFLQE9BrpF2+TJk12jRo3sb7Zfv34J5gdwHX/P9JNnKC9/35deemmCz3tDtUUihXlMbMjzHslJaXrHSTprA2ZFnQ6JDyRAsJ7Inj27mzNnjitZsmSq7p/ez5zADx8+3D5mLsmrr74a9eCriIhEXzy8Z8fDc4g3bOZzTrVnzx47R/niiy9c8eLFw3ofJGCR8Ldw4UL7+IknnrDEzHCub5gHeP755wc//v77723GWPny5cN2HyIi6c2BZL5vaycrCc8995y78sor3SOPPJLgel7UTz/91IZOspHAG2OoTp06Bb+H4aSff/65izaGRi1evNg2S6ioYKCqYlMizgZOM0iWAdmLFi2KiQAFG5VkBhFsaNu2rVVEhCI7O0+ePC5jxox2LAoNUIwbN84qKxi8KyLRU7hw4WQFKLBy5Ur37bffusyZM9sJfWoDFAxzJJBJgIKT6iFDhrhhw4YpQCEiIiK+IKmTcxACFOw9/PDDD2EPUJBsWaZMGQtQkNRBUteAAQPCur6ZOnWq7QFx254bbrhBAQoRkQhRkCIJvLmyccAGZmJFixZ1Y8aMceedd95J33wHDRrk7r77bstkZLORjOdou+yyyyyo0qpVK9euXTt7fESyRNIjWqvcd999rkWLFu62225z33zzTapbq4QDZcRkIJFZHbrJGOrcc891r7/+uvvll1/sOOWhEoSgKeXVBF9EJHL++OMPa9e0YsWKM/5eTrhp78TJNyfCqUFbR1rDEezIlCmTmzhxouvatesJxxERERGR1CLxkbazd955p52/cB4zd+5cd/nll4f1xaXVLedu/J+KhqVLl7pbbrnFhdvs2bPdtm3bgi13RUQkstTuKZl27txp1RNkOnq2b9+e5BswAYrmzZu7jz76yGXIkMEqKurUqeNiwYcffujuv/9+lyNHDvt36EanSLxjc5+F9KZNmyy7uGXLljGxgceCnp7x9I5n0f3xxx/bsSP0eEPVxKmyhdatW2ctXZipcfbZZ0fokYuo7QLvqcyjogqCE+fTtVzjpJ5ZOOGcRUTrOgIlBCp4f580aZIy/0REJC5bJcXDc0jrjh075jp27GhdGvDwww/b5r5f5yAkc8yfP99a4YaeI6UG6zFmXFChDs7DXn75ZZtNSrKHiIiEh9o9hTmiXqpUKXvjDRUaoKC0ce/evcGP2Ugkm5mBlbzx0V+eNi6xgD6OS5YscdmyZbPBVmxqqv2TxDt+x9lEvP76623xTHsnKotiIUDBgpvNRW+4LdnPoYtvDujVq1e3QCfHmqRcccUV9vesAIVIZNEPmezBUaNGJWsmDFmHxYoVs1aM4TBt2jRXuXJlC1AUKVLE+ierd7KIiMQqKn+Zx5QrVy5bi7MBLWkH5yYkVRGgYN3zyiuv2CWc5yAkezIj1MN+yuDBg8MWoCABjL0aKus9BCaYBagAhYhIdKjdU3JepP/9z+3evdv6H56sRRJZk1QjsEHBoKXQtiwffPCBvaF65Y+0c4kFbGYuWLDAsh8YrknLm3379kX7YYn4gr9bKpvIdmZWDH/LtG2LlSFzBCZoQXXzzTfb8G4vmwccO/j7XL16tV2YSRGKNjG0phOR6KEigorJ66677rRfS7CUE2ASG3gfTq033njDNgqYRUE/aG6zYMGCqb5dERERv7DuJQmQqmZJW7Zs2WKJETNmzLAB0wSYEidzpgb7Ke3bt7fESs7bCCb41SmDqlNm/HGOJSIi0acgRTLceOONtvnAxubJykmJ5rMJyuBL3kxp9RQaqKClEpki9IxnI4G2LrGAjVDawrCw4DGVKFHChkWJxBM28WnBwmwYgoZs6MVKdgxD5WrXrm2bi1RKcJxh1o2H4dm0o+I50GqOv9XQ9jAMyKZ1FRujZE6LSGTbHJCkcCY4EebEG08++aQlCaQUx4fHH3/cdejQwYKXHCuoqGCYpIiISCwjQYcqxMaNG0f7ocgZoBsDlZrLly+3mZdeRUy4kHhVrlw59+abb1qFDbM0aXcbLlSte0qXLm1Bsh9//NFdc801YbsPERFJOQUpkongQlIbm7RsmDx5sm0ushHKBkRo+ySCGBMmTHD16tWzN0baujCoN1YwoPfnn3+2jVyeJy1wGEolkpYdPHjQPfDAA65mzZqWVUy/9qZNm7pYQZsXAhQ8zptuusmOIaHHGI4hjzzyiAU5aR9HhUXiLG2CoFxHVQjDd0Ukcvr06WPt44YMGZKsr58zZ45r1qyZBRfatGljPZVTirUEAcpBgwYFH8s777wTthYIIiIisYTKYpICQy8SWexzVK1a1SobihcvbslW4ZptyXkPraM4r1mxYoUlZVGp0bdv31PO40sukki5rUKFCiWozGDfhj0QERGJDQpSpADZ2M8880yC6yh5ZDOR1lBvv/22e/rpp0+oWmAQbq1atay8lYAFlRexIk+ePO6LL76wftpkehJ44WORtIi2alQGjRs3zg0dOtQqEWKp/QlZSLR2YthflSpVLEBBuXTinvXMl8CYMWPs2JEYC3h6tZI9HdoiSkT8xcn05s2brYIhb968yfqbp+Ujmyy0gBwxYkSK5+EwcJu2TqwpCEow/6pnz54xMV9HRETED/3797dB2d4lOe+9Ej6vvfaaJTZ67WmZp5cvX76w3DYBBBIvqJogCYPbJ7mMRLNw8eae7Nixw40ePTpstysiImEWkDOydOlSSiTsMnv27BM+P3LkyODnX3nllRM+f/jw4UCNGjXs81myZAl89dVXMfcT2Lx5c6B27dr2GFu1ahX4448/ov2QRJLl4MGDgQceeMB+d2+66abAb7/9FnOv3Pz58wPZs2e3x1ixYsXAgQMHTviaXbt2BS688EL7mpdeeumEz+/evTtCj1Ykef7880/7feX/6cmCBQuS9XWNGjWy1+fGG28M/P333ym+v1WrVgUKFixot8VxZO7cuSm+LRERSZ9i7T2bx/Lpp5+e8muOHDlij9e7bNmyJaaeQ7w6fvx4oEuXLsH9jbZt2waOHj0a9vvhds8555zAoEGDAv/++29YbpM9jNDbYh/n3XffDfz3339huX0REQn/2kOVFGeI3oX0gH7qqaes3DGxtm3bWn9NUJVw9OjRBJ+nnQsDmmrUqGF96KmoeP/9910sITOF7GyGe9JihnLOiRMnJmhhJRKLJchUT1B14FVPUNIbS8jgISvojz/+cBUqVLC/s6xZs57wdfReZU4M7WC6dOmS4HO0ZitcuLC1edHfpEh0VaxYMVlf995777muXbueMHfmTNAuiuPGhg0b7Nj23XffnXQdIiIiEm+oGGY2ZOhF/EXVxO233+5efvnlYDULsyJoNxuO6onQ9tLcB+2jHnvsMetMkVrsXVx99dW2nxG6j9O8eXNVnoqIxDAFKVJgwIAB1tMwqTdQAhi0aWGT8WT9oWnrwoBqhmwzeJM3y+T2tI4USiLpmf3LL79Yr8kmTZpYu5nVq1dH+6GJJLB+/Xob2MblqquuskFuHTt2DMsCN5xo78JC/8iRI/ZYZ86cecIJFgt2T6lSpVz37t1PuB0Ch/ThpcUTrWZEJHL4+2NWDH/HpxP698z7Pu/ztKhIibFjx9p7MCf0N9xwg/v+++/t5FtEREQk3GiLxMw8kisIENHu+sknnwzLBv+mTZvstmnxxJwuZM6c2V177bUuXLZu3WrtMUleU1KXiEjaEVu7eGlE6Jszb6zDhg2zqojQzz/00EMuW7ZswesSD/fizZ4KCjY7QNYAWZbeG3UsVVWwOCFLnc1gBkuxQAl9viLRQM/S3r1729Boqgvoz87GfaxVT7Awpl88Q7z5+77//vttozPxDIqVK1fapuM333xzytvr1auXDcidMGFCWAbJiUjyMOSeAYtk+w0fPvyUX0sVJZWSzK9Kzckx38txrmXLlpbUQMIAM3eothIREUmrOJdctmyZXUCVIP9m3pNEF4Ory5cv7xYvXuwuvvhiq05v2rRpWG57/Pjxloi1YMECS7gIVwLk4cOH3e+//x78mIS1119/3c2ePVuVEyIiackZtJCSk+jQoYP11aLfdFL9DV9++eXAZZddFli7du1JPz948OBgn8emTZtaz81YRB/tPn36BM4777xAnjx5Ah999JF6OkpUTJo0yfqyZ8iQIfDUU08FDh06FJM/iWPHjgXuu+++4N937969T/o3wxwY/qb4mmrVqp3wNXys/qkSy2Ktv7VfpkyZEqhbt27gn3/+SfJr6H/crFkzez0yZ86c4tk4rAVatGgRPH488cQTYevTLCIi6VcsvGcz29F7fwu9tGzZMs08h3jEvMwLLrjAXtsrr7wyyf2LM8XPiZ+t93OuUKFC2GYH/vDDD4ECBQoEKleurHWSiEiM0kyKCGnRooX1lG/YsOFJo/T//POPlRl6JZO//vrrCV/z6KOPunfffdf6O5JdULduXffnn3+6WEMfbTLCyfimBRQlmvTXJ8tCJBKomCA7uUGDBu7KK6+01k60XqNEOBb7uDZq1Mi9/fbb1nqKHq5UQSQ+Tnglz2T/XHPNNVYhkfhraDHXrl27E2bciEhk1a9f333xxRcnbeXoYW4VbRGodKJqKiXVXfv27XO1a9d248aNc2effbYdPzgOxFobOxERkZRg7Uu1YOLL6NGj9YJGCecs7EPQAaJKlSo2++qKK65I9e1+++23Ng+CPRHWMVSZzps3L2zV75dffrm1duKcKrSaQkRE0qBoR1Piwd69e0/5+R07dgSKFCliWQNUVKxYsSLJzIUsWbLY15UsWTKwdevWQCybOnVqoGjRovZ4mzRpElizZk20H5LEqfXr1wfuueeewFlnnRW44oorAh9//HFMVxbs2rUrUK5cOfvbyJQpk1V+nMy6desC+fLls68rVKhQYNOmTSd8DVlGZ599tn0Nz1skFsVzRuO2bdsCBw4cSNbXvvjii8EswXHjxqXo/vibv/rqq+02smbNGpg+fXqKbkdERCRe37Pj4TnECqo0qUz31i9333132Do7HD9+PLhfQLXDN998k+rbPHz4sO2bJK7MOXjwYKpvW0RE/KFKigi66KKLEvTJp49jqJw5c7o5c+a4EiVKBCsqyAhPjKoEsgr4ej5fsWLFmB5UTUY7j5OsC3pKMhugQ4cObtu2bdF+aBInyIrp3LmzzWpg0DR94Knkue2222K2vyg9dStVquQWLlxoxwb6uDIoO7E1a9a4G2+80XrvMvCbv/18+fKd8HVkGU2aNMlmwfC8RSRymCPTrFkz6598uqrBjz76yGZLYeDAge6ee+454/vjvZTB2BwfmAlFz2YGZouIiIiE25EjR1zz5s1dv3797GO6JtDhgfmZ4UA16NixY12rVq1s5kjlypVTdXu7d++2PQf2IVgredhfyZIlSxgesYiIRJP6BoR5Q5VNx2rVqrmNGzcm+FyOHDlscNO1115rb658zZIlS064jTJlylhpJZuWlCyyWTF58mQXq1h4tG7d2tpYsSlDqxrKQrt37+72798f7YcnaXhALcNiCxcubGXf/HvdunUWBKMtWqwikHL99de7tWvXuvz581t5c4UKFU76tYMHD3Zbt261hfbcuXNd7ty5k7xdFuL9+/f38ZGLyMnQNoD3c97fs2fPfsqvu/fee+3fnTp1ct26dTvjF3TixIm2NmCNwFqAgAXJDSIiIiLhtnfvXkuSpN00LSpJPOzTp0+qEsFo2TVy5Eg3dOjQ4HW0iX7nnXfchRdemOrHfOmll9q5E0mdJH+KiEh8UZAijOiLf/z4cffvv/+etJrg4osvtqzq8uXLW79pqitOpmDBgpY9SaYBsynov0/vRm43VjGvgtkav/32m3vkkUfcK6+8Ypu0Tz31lG3uiCR3sUxAokCBAtZ/vX379m79+vX2exSLcydCF+Q8XnrI8xxYjBNspAIkKSzeu3TpYseByy67LMHnDh06ZJ/jOCEi0UN1ExWDU6ZMsaBpUvLkyePeeOMNd9ddd7mXX375jE7wOX4MGjTINWnSxDIab7nlFqusypUrV5iehYiIiMj/Q0IVyZDsORA8mDZtmiUepsbOnTtt34I5euwLhFY6pBR7IQROWB95Ro0aZd0mSA4VEZH4cha9oaL9IOIJ2ZS8iZ5qyBTDqD7++OPTLgQYkvvYY4+51157zT6uU6eOe++99xK0l4pV27dvdy+++KIbMWKEBW7atGljz4XNZ5HEqCgYMmSIDYelvcr9999vvy+0O4l1/D1Twvzpp5/ax/yuE4AgcJcYGdkE7063gclGJ61jqMLg5CFWW1uJhP4dcJLLyeQFF1yQbl8YllRn8vfK+yOVFwQ4wL8JclClKCIi4od4eM+Oh+cQLfPnz3eNGjWyxCrOS6ZOneqKFSuWqtukNW3btm2tGjRDhgxWAU7CFYOyU7OmokL9xx9/dM8995x7+umnU/UYRUQk9t+3VUkRZmRThgYo6DcfGvkHP5DQAAU/rB9++OGE2+IN/tVXX3Xjxo1zmTJlsgyH6667zvo5xrrLL7/cMkNpWUUWPGWkvC60w2CmgIiXxcOCluohSoypwuF3hkqctBCgWLVqlStXrpwFKPh7Jcjy1ltvnTRAQeuW0qVL23M8XWyYyilavp1pRraIhAdBA95zT4X3bt7LyRz0nMnfK23tmFfDffF9/L2TlKAAhYiIiPiBc/IaNWpYgIIAAHsQqQlQsBYiQathw4YWoChZsqTN8GJGV2oCFGBtREUG50Scb4mISDrg0+BuCQQCq1atCuTOnTtQv379wD///HPS1+TQoUOBypUrBzJlyhSYMWNGkq/bsmXLAoUKFWJnM3DeeecFxo4dm6ZeY57nSy+9FMiTJ489hwYNGgRmzpwZ+O+//6L90CTC+JnPnTs3cMcddwT+97//BXLmzBkYOHBg4M8//0xTP4uJEycGsmTJYr/P/F7/8MMPSX7tN998E/zaKlWqBA4fPnza2z927FiYH7GIf/j75fc7rf0dn8yKFSsCGTJksOfD3+7JHD16NFCrVi37mgoVKpzxe9mWLVsCpUqVsu8///zzA5999lmYHr2IiEj8v2fHw3OIJNYp/fr1s9eMS+PGjQN//fVXqm6T/Y2rrrrKbu+ss84KdOvWLXDkyJEU397GjRsDd911l+0RhD7upPZRREQk/t63VUnhI7IJ6Cm/YcMGK2k5GTImKXn5+++/LaOSNlAnU6pUKctKqFu3rlVmUJFAWwhaQqUFzBOg5JOZFfSRZM4Ag7rI3Bg2bJhllEp8++uvv2yQGtUE9BClzzs/e1ogPf7442mmVJv2LDzeO+64w2ZHMOiWMuSkMny+/PJLm1XB11avXt0+pjIqFC2uuE0qMzwMsBORyKMt4YMPPmjvyZUqVTrh81RCdejQwc2YMcOdf/75VvF4JhUUS5cutdlUP/30k82jmTt3rmUgioiIiITbsWPHrJUu3Q1AdcKECRNsDZMaVJFTRUFFPGuZF154wWXMmDHFt0dF6YcffmiPz6s6Z33F/YiISDoRsbBJOkXG+K5du075NWQHkM3gZTaQVZ5UVua///4beOaZZ4JfW7FixcDWrVsDaQ3Pb/bs2YHbb789cPbZZ1uWefv27QNLly6N9kOTMFu+fHmgU6dOgQsvvNCybG699VarGuJ3Oa3hb7l69erBv7/HHnvslBUPQ4cOtWoRvrZ27dpJVlAMGDDAvuayyy4LHDx40MdnIOKPeMxoPH78+Emv79Onjz1X/rYnT558Rrc5derUQObMme37ixUrZlmDIiIikRQP79nx8BwiYf/+/YGaNWsG1y3Dhg1L1e0tXrw4sGTJkgRrpQMHDqTothJ/7969ewONGjXSfoCISBxK7vu2ghQRtmbNmpMGINjofOihh4Kbn23btrV2EkmZNGmSbfrytTly5DjjjZJYQtuLXr16BXLlymXPp1y5craA2r17d7QfmqTQvn37Am+88UagUqVK9jOlpVP37t0D69evT7Ov6VdffRVsV8Ym44cffnjKr3/yySeDf8/33XffKUuV9+zZE7j++usD48aN8+GRi/gvHjYLkhMgHDNmTPDv+vXXXz+j2+d9zQtasmHAxoGIiEikxcN7djw8B7+RCEFChHfuMmXKlBTfFucxJEqSXFikSJFkta49Fdrk0vayVatWqbodERFJG9TuKQYxhJO2TV6pZShau9AygoHBDJli+C7tJJJCGwraP5UoUcLt2rXLPqaMMy22TWLYeO/evW1g8meffeYuvfRS17lzZxu+zfNiwNfhw4ej/TDlNGhDRruy2267zVqYPPDAA9bm66OPPrIB8v369bNy4LSG372HH37Y3Xzzze7333+34W0MmbvzzjtP+X20f+JvuX///vb3fKpS5Ysvvth9++237p577vHhGYhIctq43XTTTa558+bWpvFkaGXQtm1b+zft2U71Hh3q33//tdYFHTt2tNZu9913n/viiy+s1aOIiIhIuLFPcMMNN7gVK1a4XLlyuW+++cbVr18/Rbe1fPlyu60+ffrYmobh2P/880+qHh/JsrS9/Pzzz5Ncd4mISPqjmRQRxEYtG7m80bMhcjJshvJmzcb9Y489dsrbu+KKK9zChQtt84N+jWyEEgRhEZIWEaihL/eUKVPctm3brC/l3r17XbNmzVzOnDldy5Yt3VdffWWLI4kNbLjNmTPHNu4ITDCnYcuWLdaTdOvWrW769OmuSZMmabaXKH9f1157rXvttdfsY/rUL1myxGapnIzXPxWNGzd2q1evdk8++eRJ+9Uzj4P5FB7NoBCJnvnz59usCIIHSZ14582b1xUuXNgClAQfkxvk5Bj44osv2sd9+/a19+pzzz03rI9fREREBOwlMP9vx44dFlAguapMmTJn/OKwXzFgwAB33XXX2RrpoosusuRBLtmyZTuj29q5c6cle3iYzTV69Gj366+/2u2KiIjgLMou9FJEDhvwtWrVOu2mLZskoYOn/vjjD5c9e/Ykv543fTbxqUZgQ5QAB9kO5513nkvrGLb9/vvvu3fffdcWMmSd16tXzzVo0MAGEmfNmjXaDzHdDcAmWDRp0iQ3depUq+QpVKiQZSBzufrqq108DJh7/vnnbUORoBgZSG+//bb9viVl2bJlVs1ENUm+fPlOW1VVt25d26jk+4oWLerDsxCJnAMHDlhlwJ9//ukuuOCCNPnSL1q0yALkpxpizXsx76uZMmVK1gk571MEO3nP52ScoLuIiEg0xcN7djw8Bz/QleGRRx6xxCnOW6hoT8nrQ3UD5yqsYXDLLbe4kSNHWlLamSLBi6AJ66d169apklREJB06kMz3bQUpooyqh8qVK58009rz9ddfu0aNGrlRo0ZZRuapfuhdu3a1r0Px4sXduHHjXOnSpV08YLH1448/WksoNsipSGGTt1q1atYWikv+/Pmj/TDjElURkydPtsusWbMsiFakSBHbgON3k2yYU/0OpyUrV650LVq0sAU17r77bjd06NBTBgkJPjZt2tQCOPyNckJwuiAI90HF1KBBg+LmtZP0K143C/7++2/LQKQV1JkeR2irsHHjRssQJKuR93oREZFoi4f37Hh4DuFEUhXBCa/6u3379nb+ktJKbc67SawkgYOW1Jy3pPR8hYoM9iX4Ob333nvuyiuvTNHtiIhI2qUgRRrw+uuvW/sYWjzR2iipN/57773Xgg2gr39S7WM8bOCT0U2GO5v4zHugf3a8tZNh84dNc54vLYdYADGjo0aNGrahVLVq1VNuLEvSWPATQON1JUhGie/ZZ5/tqlSpYoEJAkK0G4u31lVkH3Xv3t2CMGws8jd6utkTLNw5KeD7a9as6SZMmHDSEmivaM372+VkgpkVClBIPEirmwW0XCtbtqzLkSPHCZ/jb/quu+5yn3zyiRsxYoS9ryYHx0xm8/BacJykhZROyEVEJFak1ffseHsO4XLo0CFLquK8GLTdpavCmZ5jrFmzxmZCeq8ns/hAUlVycb7D42Dt9M477wQfA5WqVGFw7iMiIunPgWS+b+tdIoq82Qr8oE61iOANvkuXLvZvhm4zXJfFSFLYRP7ll1+sJz4Z2z169LDNZVolxZMCBQq4hx56yFoP7dmzx3344Yc2P+DTTz+17H7aQtF/kw1kAhm06ZCT40BB66Zu3bq566+/3jbovaHlzF8g62X37t1u9uzZ9nrGW4CCgBfBLSqRCFBQ3kylzqkCFGRYt2vXzoa8s5nJBiabkScLUPC3ziBxgowegj4KUIhEt5Ugc3Rot7Z27doTPs9758SJE+1vNblt7GjpRHsFjqmVKlVy3333nQIUIiIi4gs2/2mlRGCAdkokS3E+dybnGJynUNnNbEsSGz0EJ84kQAHOyWltOWbMGOt+4KF1rgIUIiJyOmr3FGX0eWRTODkLieHDh1vVBQsJNkxYhFA5cKpMBuY4dOrUyaJW9MRm0UKg4/zzz3fxjE1nqgC4sLHO0HJeYzajyJr1LrTCypw5s0tP2Fz/6aefrHWWdyGoxUZ77ty5rX0WlShcmDURzxvpDLIfPHiwBQ94XfhdYMAtAYdTPW/aX9HKhdeRr2Oo3KlOCAgA0cuVxTmvNa2yROJJWsxopCUTmYdU3NHGLvTkmeSA++67z/49duxYa3NwKrzfPvPMMzbLBrR/4zbiYS6UiIjEl7T4nh2PzyG1SKjifGTLli3u0ksvtdaSFSpUOKPbWLVqlWvdurW1tgSJWtwO3RiSi+4NoRWpzPQjofKJJ5444wHbIiISn9TuKQ0i+NC/f38LKiT1hj5//nzb/GCTlMGdDN296qqrTnm7bNDTl5JhvWCoL+2lqDaI5w3oxEELghUswNiU//nnn93Ro0dtU+qaa66xgAVVGFQN8HrmzZs3zWd7EHTg94QKGjbjvIAEi1F+11h8EuTieTNTgqBE4cKF083vBG1eqMQhmxo8/7feesteg+QENypWrGivL1UmtHk6nWeffdaCZKeaKyOSVqXVzQKqDffv328n9x6C2zfffLO1EHz66afdc889d8rboPqKgMb7779vH5MIwPek9fcQERGJT2n1PTvenkNqzJgxw6pBDx48aMmLVHOTXJZcrHFI1KItNOsYXkP2B1q1apXsc0HWUOwxsP4hYKLWliIikhQFKdIgMrFZLFBZQYsIWkycDG13mFNBOyNmVSRnIUGWJyWXtI0iaAFaUtBP/3RBjnhEgGLFihW2ac+AZP5PVjyLNGTMmNEWWrw23oUWR1Qa0KuTAFEsYLN8+/btVuq7bt06C0h4F9qXUB0AqmgISIRWkTDAjOeZ3hCw4u+ALCHw86R6gt7zp/pb4rUmsOP9XXI7vK6UL58M7cWozOBrROJdvGwWcOy84YYb7O+XYwIn3qcKNuzdu9daKzLDh7lPb7zxRrACQ0REJBbFw3t2PDyHlBo5cqS1kSXpjFZPzH+gVW9ycc5I0iPnv171xJtvvnnGrZ1AJQcBkiFDhljbXBERkZNRkCINoiqiXr167qWXXrLNkdNlybPR7rWS2Ldvn21WUwlwKocPH7bWNvSd5PvZQGWwFpmf6a3t0ckySjZt2nTCRj//J7DjDT4Gi2I2p9ng9i45c+Z0WbNmdVmyZEnwf+/fBDbY7OLCaw9ef36WXNgEJxuG8tjQ/3sXglMEI/g5e5fEczaoAAkNrHiX/Pnzn1HZbjzi9eX3nt9//s2GIsEKWrTwMzoVfg+ogGjYsKFVRJwOFRYEAQkM0XItqYCjSLxIS5sFzJKhEqply5YnBCb79OnjevXqZYEKBmCfKiDNST7v2RwfeM4ff/xxsqqqREREoiktvWfH83M4U5wvcs4+cOBA+5hWlFSBn2lCFOeUVHcT5KB6gttJTtIjr7nXftprHb169WqrSGXdJCIikhQFKdKov/7664yDBWye07qJAdLDhg2zvpKnw6YKA39peeNtbhMcue2229JNu58zQUXChg0bgkGCxMECPmbBR2CBBWQ48fMgyEE7EoIhiYMj3seU+Mb7rJGUYiYEv+9eayfmbgwdOtQW6KfDQPa2bdvaz5ZA1Jo1a+yk6FRmzpxpWUn0Z/3+++/t70sknqWVzYLp06e7OnXqWJCSarrElYS8n5JNyHsqf+9J+fbbby1oyYBIWiiSRXi6JAEREZFYkFbes+P9OZzpuSitmD766CP7mDZNJFol97ydpLvQNc+8efOsawDnkMlFe2DmaTKLj3kTIiIi4X7fPifZtygRERqgIHueXpMsAqpXr37KwAZtili80GZi7ty5Fqw4VbCDRQkbt5MmTbLNWyoIuC/6cNMCijkN8v+QTcuG9uk2tdng4ucQWgXh/Zvsfa9qgtYg9PHk5+pVV1AVc7IqDO5bgaOUWb9+vXvkkUfs9xwEdGjtdOedd572NeXnxfeOGDHCPq5atar74IMPThugANnUEydOdKVKlVKAQiSGcMwlA5H3TO9kneM2x2Uqnjgu0F/5dIFLqjC4jeuuu85NnjzZXXbZZRF6BiIiIpKekAhHYgTtoKmMp3qC1s/JQReFnj17WsUEAY7bb789eF5zOpyrktThnTN17NjRNpeKFCmSymckIiKShIDErEceeYT+QoG8efMGjhw5csqv/ffffwPPP/984H//+599T5EiRQJLly5N1v389ddfgZ49ewYyZsxo38tttG7dOrBhw4YwPRORyNqyZUugffv2gXPOOcd+p/l/t27dAgcOHEjW969cuTJQunRp+14uPXr0CBw7duyU3zNu3LjAtm3bwvQMRNKWP//80/5W+H9aM2TIkECdOnUC+/fvP+XX/ffff4H+/fsHjwsNGjQIHDp0KGKPU0REJL2/Z8fTc0iO1atXBwoXLmzPNVu2bIHZs2cn+3tnzZoVKFSoUHDd0qVLl2R/7/vvvx8oWLBg4Msvvwxed/z48dOeD4mIiKTmfTvpaZASdX379rXKiAkTJpx2wDGZ+D169LAe2pRtrlq1ygZwkznhDYNOCi2C6MP9yy+/uAYNGlhG6TvvvGNZpg8++KD11xdJC3bu3GlzJhhyzgBb5owwG+Lnn392L7zwwmlnT3gZR2QXMSPmkksucdOmTXPPP/+8ZRIlhVkX9HOlXdrp/t5EJPJ27NiRYK6QZ8qUKTaXib9zZkqcKpuQWRbdu3e3j6lAZFBlep/lJCIiIv6gJVOFChWsXW2BAgWs1eRNN9102u9jZuH999/vatSoYVXltJ2lgwKtnZOLodq0OqbDgoeK01OdD4mIiKSWghQxjDY/o0aNsv6PniVLltgMhKTceOONtrlKKScbtO+//779PznY2P3888+thz5tn9iUef31113hwoWt7Q0bwCKxaO/eve7JJ5+0uRyvvPKKBQoINLC4Z/PxTMqSCdo999xzrn79+va3RJDjdBo3buwuuugiG6Kb3geUi8Qajgec1NOGLTToTmC+WbNmFrzgZD6peU60NuB4QHsFEgI4YadtAifrIiIiIuH23nvv2fk4AQf2An744Ydknc8wb5L2xKxZ8MADD9h6h3OUpJCgSOLFxo0bg9fRbpoEL9rXioiIRMpZlFNE7N4kVX7//Xfrf83GCIN5T7dQYVHB4F6v5yQLEDZrCH4kBxu8Tz/9tM1P8DZvH374YdetWzfbkBWJNjYPyQpizgRzP1CuXDmrQiJ7KDmzPPib4Ov5O2ETE95h8VTfT8VF6KDyffv26e9C0q1YHmA5f/58O9Hn8a1evdply5bN+jtzrOCEnAAGA7UzZMhwwvdu3rzZAhSc4PP3Pn78eHfrrbdG5XmIiIjE+3t2enoOJ8M5CBXcDMUGiYfjxo1L9vn7V1995WrVqmXzJUeOHOkqV6582u/p1KmTzbOkgwMJkiIiItF631YlRRrCZirBAVrQULZ5OgzCDh2KxeKDQb5s2CQH38sQbjZv2MxhU3bAgAGuYMGC7tlnn7VfMpFoYFh86O8iAQp+txlgSyUQwYbkBCgWLlzoypYta5UTbdu2taHn4HtP9f20haFqY/ny5cHrFLgTiU2coK9YscICDAQojh49aif9BCioICSgf7IABa0OyF4kQEEbRQL2ClCIiIiIH1ifUNXpBShIDGTY9akCFCQhsk7xkJTBumbp0qVJBigIhIR2WqBlLS1x8+fPH9bnIyIicqYUpEhDaLvEBiw9tLNkyRK8PjnFMCxEhg4d6tauXWvBh4ceesgdOnTotN/HRi3ZGNzvpEmTbCOY4ETv3r2tNyZzMDSzQiKFlmMEJQhO0BueEmgqipjbQiu0W265JVnBCYIRjz/+uPV5ZfPy0ksvtbkS55133mm/l7+3ESNG2GOhtZSIxD6Cil4f50cffdQCDmRwENi8+OKLT/h6rue9klkWxYsXt/fAa6+9NgqPXEREROLd/v37XZ06ddyYMWOsawItl2m3RJvJpHAOU6VKFTuf2bJlS/B6EjGSOqeZPXu2JR++9tprwetIyOB83guOiIiIRIuCFGkMmyqhVRQffvihLWhoNXMqDLmil2WbNm1sk5WARYkSJaxtVHKw8UsGKRvBZHRQQsoGcb9+/SxY0bx5c7do0aJUPz+Rk2E2BJlF+fLlswAZrVoI2lH+TDUDVUOnWsSHopKIYBtBCbKP7r77brdy5UrXpEmTZAU4+Boysqm+IFghIrGJKsB169adcD3vg7xv8XfMe1linLg3atTIqgcJ0i9YsMCOPSIiIiLhxoDqihUrWgCBREQSEjt06JDk1x85csQCCmXKlLFh2vj555+TdV8M4V68eLHtBXAe5KGSQkREJNo0kyKNt7who5wN2/79+9vg4OT2qmRI6KZNm+zje++91w0cONBddtllyb7vf//91yorGB7K7AoPC6wuXbrYIGECIyIpxe8Yi3R+x+bMmRO8/oYbbrDfsdtuu+2Mh1TTj55hcgTqcuXKZUGG5LRvYeFPgK5Vq1Ypei4i8S7WekPzvkgAgkADJ/0cNxK3T8yYMeMJx5yuXbvaYGzwPkmbxDM9zoiIiMSyWHvPTq/PASQRNmjQwO3atcvlzp3bTZ061ZKpksI5Ufv27d2vv/5qH3Mew1rlZK2gOd+hMpRW0Zyj49ixY9Yyl9tgdqWIiEgsvW8rSJHG/fTTT2748OF2oTQ0uejhT7scFjV8H70sT5ZRmhxs3tL25oMPPrCFD1go0VKKPv/Zs2dP0e1K+j14vfPOO7ZRuH79eruO31EqHTp37nzCZuPpsEAPrZBgMZ8zZ043ePBg609/OmRiFytWzFqmTZs2zXq9ikhsbxbQ9oABkAQrqPIjS5HqP1oaJBX0p6qK4Ds4gaclXHKqq0RERNKSWHvPTq/P4dNPP7VuBLShLV26tCVnEahI6nyG6oo333zTPia5kHMlqsmTWqvQLuqJJ56wAAWV5FrTiIhItGhwdjpBpsUbb7wRDFBQtvnUU0+5zZs3n/L7KOmkzJM+22SqhwYo2NBJzpwLD3266Z9JZQalp/T3Z4OIDZ48efK4jh07Wga7yOnKjx955BH7naFSggAFAS4W12wwEgQ7kwAFv8Ms/hmMTV95D8Pk3nrrrWQFKMBg3WbNmrl69eqdMrNJRGIHgfIZM2ZYS0OqKRo2bOhuvPFG98UXX5zwtdu3b7fPEaCguoI2UBx3dDIvIiIi4cY5ypAhQ2x2BAGKunXrWmeCpAIUYE3CuQv/f+CBB9yqVatOaFVLRSiJiKEDsTkvZ8ZW6KBsERGRWKVKijhDRQMbvJdffrlt8iZnEHDitjb0tyTb9KWXXkoy6/RU6JP5/vvvW/CDeQEebovWUnfddddJB5VK+kNmM0OvmS1Bho+HoBlVEyyuM2fOnKIZFgQ8vDZR/PvFF188o172DKI7//zzg61hMmTIoE1LkTSW0cgJOwEK2icQACUIH9rakCrC+vXrW2Cfdgiff/55sCWCiIhIPIrV9+z08BwIFjz88MM2GBsPPvignb+frE3ymjVrLAGxSJEi9jFJF5yrnyxpi9aWJAZWrlw5WG2RVHtLERGRSFMlRTrFZgvBgJ49e55xgAIMEM6UKZP77rvvbAF0zz33WFXEmeB+abNBK6pZs2ZZex2GGtNzk8UTARSGkn788ce2cJL05ejRo5axTPYPm4X0RPVKkGvXru2+/PJLt2LFCitpPtMABRUTtBijuocABb+LTz/9tOvTp0+yb4O/HYbRd+vWLXgdi3tlVYvEPjITmbHEccb7eyZAwbHgs88+SxCgYD5TpUqVLEBx1VVXWWWhAhQiIiLiB6ocSJwgQMF5BWsWOhskDlCQ8Ne7d29XsmRJ17p16+CAa5KnkqoqJ5mK6grOsQhmeBSgEBGRtESVFHGIDA3aP3mbqrTRYRhXhQoVkvX927Zts43d0aNHWzkqQQs2bGnflJKsdm/zmHY9ZMwvXbo0eD1lq1RWkDHP5pA2guMTv0dkMI8dO9Zaqezduzf4ueLFi9vPn37wZDqnFDMmnn32WXfo0CH7mBZN9JXPly/fGd0OG5cEKRigSy9X/U6KpI2MRgLqBBs4uafVG//nOACq+7x/Y9SoURYI5f2SNgh8/UUXXRSVxy0iIpLe3rPT23PYunWru+WWW6zam3Prd9991912220nfB0JfrRzWrt2rX1MKyjWMKFtamkRRetannfLli2D13OeRSJgWng9REQkfTmgwdkCBlnTtmbx4sU2jJjN4OT68ccfrU3ON998Yx9fd911buHChanetCVLnmDFe++9537//ffg9YUKFbLKDQaIsdEkaR+zJPg58/P+9ddfg9eTzUxQgt9H5jyEIxDA7yotxrxWZckNypGdxO9haDCDYdnMohCRtLNZQDCUYw0D7h999FF77+NEnvkSBCy9v3eC8P3797ePeb8hYKFMQxERSS9i4T07PT0HugvQ7YBARY4cOazaIXFLZRL6SJAiqQ90HqAN1MkGY3NOT9eCXLlyWXtnrWFERCTWKUgh5q+//nLt2rWzYaEskM40q5xNn08++cQqKTp16mSLJ6/PN62avJ79KcFt0JKHTSVaP3kZ8Lj66qttMceF3pqUsEraCIp9++231l6FC+3DPPyuNG7c2AITNWrUOGnv1eQiQ5oFOvNTvLJn5lvQKqpp06bWXiw59uzZY5U8BCX4+0juMG0Rie3NAloLDh8+3AbesxlAdSHHjVatWrkPP/zQvuaZZ56xdgqqlhIRkfQk1t6z4/k5cG5y55132nkusyU4PypYsGCCr2GGI4kVPBfOYZhT8fzzz9vz885XqELn/Bicg9esWdMSvtq0aaPzZBERiXkKUkgC9NwODVAwXIte3Mnd/GdzB96ci48++sg99NBDlq1KSWrWrFlT9YrTO5N+4QQsZs6caS04PNx2rVq1LGDBhlPOnDn1040hLJxZgLPoZuD0/v37g59jY/Cmm26ywAQlzeH4PWEY3KBBg6wt2c033+xmzJiR4tvj95p2U9u3b7eNTIInIpK2Nguoljj33HMTBD6pmHj11VetlzOPi+MULRAWLFhgX0ebhNAWCSIiIulFWtngT+vP4Y033rCkCRLzqlWrZkl52bNnP+Hr+DyVFSRNjBgxwpUtWzb4uc8//9zaVV5//fVu7ty5EX4GIiIi4aEghSTpl19+sQz0K6+80jZsTrZYOp0GDRq4yZMn27/p492lSxcLWoQjE51fXuYCTJkyxSpAmKcRirZTXpUFi7jkZs1LeFBdQz9Vr1qCgehc57n44ostmMTPh+BSSn6/TjZojiFzDJjzfh+YX0EbFxb/Z5IJvXr1anfNNdcEP2ZYLr/DajEmkjY3CwiWE9weOXKkncQnPh7Q15ljEhVTPEaqA6tXrx7RxygiIhIr0sIGf1p+DiRKPPnkk5ZUBZIiSLLykgOp/maWHu0nmU/htXu69NJLLcGL7/fOb2kRReUFQ7SZV+FVV4iIiKQlClJIkggAMPuBQdUMC01pWx+GePXr1y84a4AF4sMPP2wBCzaqw4FFGrMx2AwnaMG/Q1FVQTsongsXgi/qyxle/KwJStDG6bvvvrMZJVQxhCpdunQwcFSuXDlbYIcLi/ru3bu7ffv22ccFChSwj1nwn+nPunPnzu61116z3/uGDRuG7TGKpHfR2iygfULhwoUteMl7DxUTHDO8k/758+fb3zrHD44dvJcULVo0Yo9PREQk1sTyBn9afw5Ud1JBTtUE+vTpY8EIEii82VmPPfaY2717t+vZs6d9PnRuI9cxu4+WlZ5Vq1ZZgpXaU4qISFqlIIWcEhkcR48eDbZOYkFFdinlpGdSmUB5Kq2f+vbtawsrkKFKpocfaMvjtRaizU/oHAuwaU2lBQELBifzf7WHOjNs8hGMICjBZdGiRfb7EYr5EvRC9VpwUdXgF4batm3b1ip/evToYf1Xae2SEk899ZQNzA0dpCsiaXuzgGPWCy+8YAMmeV+j6qpDhw42fJIZFFxH8JSWbno/EBGR9C5WN/jT+nMgYYJuA1SZUzXx9ttvu+bNmwfnTlD9TbIXmE9BIIK2uB4+V7VqVWuvzDmvZuWJiEi8UJBCzghZGwzoYugwGzspqXhgpsRzzz1nt8PmNXbu3GmLMgIX4W7LxNAwFoHeZjob62xWJVaoUKFgpQXtochEiZXFbLQR5KH90ZIlS4KvI61REqNlkxf08f7vzScJF7KL5s2bZxuMLNAZGgc2GOnHykyLM63Q4LlkzpzZ5cqVKzjTYvHixXb7IhIfmwW0SODYToUXcycmTpxoQUgyF9G4cWP37rvvWnBVREQkvYvFDf60/hw4nyJxa8OGDXbexHkx5xs8zt69e9ucLJL7WIs888wzrlOnTvY1nNtw/u2dC5H4xzmPqj5FRCSeKEghZ4QMVLLMKUFlYZRS3mwCrxyVEtZevXpZFjwDtmnRQ/9/P3Df9Bz3Ntu5UN0ROi/Bkzt3bstgSXzJkSNHXJbSUlJMqXDiy5YtW0769bwWXmCHC/Ma/Jr9wckFv3cEJ1auXGnXXX311fb4UvOzGDt2rGvXrp0FzLySaxGJj80C7ofjfYkSJWzgPW2dOG6Rhfj4449b9qI3r2LgwIFhbUEnIiKSlsXaBn9afw5z5syxhIj9+/dbchwzFTmXQZs2bYJrkttvv929+OKLLl++fG7MmDFW7Zk3b17322+/pbhKXEREJC1QkELOGFUPoZv0bPawuc2iK6WbxVRWMDSMwccg+55sEQIWJxtwGm4sXEOrLajqIOs2KWS+sNFFtQX/p43R5Zdfbr1B+X/WrFljLohBEIaKCMqCeW78nyFrZPR4wYi9e/cm+f38zIsXLx4MSJQvX963QFIo5lxQ5sxsk7/++suuI7uIsmh+P5gvkho///yzu/baa20Dk0wlr0e9iKT9zYJHHnnEguscr77//nu7T9oMMqiS/xNUZf6MV5ElIiIi0XnPjufnQFIUbWmZ4Ue1OdXfl1xySfB8cePGjVblyfqkVKlSdn6JI0eOuBtuuMHdeeedtqbReYqIiMQzBSkkVVg4lSxZ0trlDBs2LFUbPWygsxHNhvRPP/0UvL5KlSpu7ty5Ed/0Zx5H6Aa+d6E892RVF6FYQHpBCy9w4f3/0ksvtc8TiPEuiT/mcs455yS4TUp/mfnAa36yC5/jQisrLwiR+P+0MTodhsYmrhwhGBOuIednqkmTJtaWBZQ0E5hg0BwnHClBu6/169cHe7+C3zd+j2MtsCQSbyK5WcBxmuxDNgY8I0eOdC+99JJVY9HijVlJtF0QERGR6L1nx+tzYC3y7LPP2gUEG2jpRLtJHhsz9TysSe69915LBvv6668T3IbOUUREJD04kMz37bMCp9uVlXSJTW8GDLMJREa6t3HMhnpK22bwq0bGK219PvzwQ3fPPfcEF3De58iK9aut0OkQCPj111+DQYs1a9ZYAMALBnjVILEqS5YswYAJF1o0ecEISo6j1Y+dny3VLOPHj7dgF48LBKj4XeA6AlapWaRzWwyeo9KFQAUZTCIS35sFvH+QmUiG4uTJk60akPkzU6dOdaVLl47IYxAREUlror3Bn9afA3MR77//fmtXiyeeeMISv1iTsBYB8/68qnDa69IG6rrrrnNfffWVnbOJiIikJwcUpJBwoHQ1tEcmrZoIIhDAyJ8/f4pvl6oAqgRop4RFixa5cuXK2awIMuzvuusuC1jEUnYJLYkIViRVzUBLpaQqIXgdk4PXOnHlhXeh4iG0ciNxNUcsLXgJTPz444+WOcRl06ZNdj3lzPRiDYfQgBmD2/l9oYy6X79+1sJKROJ/s4A+zx07dgxW/xGg8N5XRERE5EQKUqTcvn37bH4jCVKchxCYmD17trUVBmsQEsOqVavmRowYEfw+uhMwo1FERCQ9OqAghYQb7ZAKFy4cbKPDwNJw+eCDD1z79u0TVCswVIzSWQIWZcuWjamARUo21Mm68QIXbOCDDBsWsgQhMmbMmOaHu/LzI4BFYIIhcB7arzRo0MC1bt3a3Xzzzam6DzZBmXUyb948a/HkvWZHjx51GTJkSPVzEJHY3PDg+PLCCy/Y+wJzdJhJ0bVrVwuK1qlTx447VFOJiIhIdN+z4/E5UK1NK0mq7UkOu/HGG21INusQznWefvppO2etVauWzTlkRqBmTYiIiDgFKcQfS5cudXPmzLGMeA+bxbTWSO0Ckc376dOn20bTpEmTbJaFh2yVqlWrpur2xR9UxXjtlY4fP26VHVzHovzWW2+1DUUW9OFapDNThJLp/fv3W9a0+s6LpI/NAtopEKQgMElQgr9/dOjQwYZkJ573IyIiItF5z46350BbYhKudu/e7fLmzWuti/mYc57rr7/effLJJ1ZFQcCCdrZ33HGHKrtFRET+f6qkkIiVvLJhTJui+fPn2+yDcKBFEpkpBCwWL15ssyK8jPlBgwbZApGM/MqVKytDJcKoCKGkmZ6qBJM4OaCdkzdL5M0337SThltuucWyisIxH4VAGJuSHnrAMqi8du3aabrCRiReRGKz4JlnnrEqqlC8Hzz66KM6DoiIiCSTghRnZuLEia5FixaWUEcV/JQpU2wGVqdOndywYcOsBfK6deuULCEiIpIEBSkkImj7RDsmWhVRZeFtVJNRH66s1sSzB8he2bZtm31MmyQCFQQsuDCTIFqDt+MZZc0syGfOnGkBAwIHHgJU/B4woDvcqKahxRhBqWXLllnPeRFJfxseBKoZOOm1BOTY/+6777rbb7897PclIiISzxSkSB6qIgYPHuwef/zxBFWdAwYMCCbV3XPPPa5NmzaWTKVzUBERkdStPbSbK6lCUOCXX35xkydPDi7MCCTQj5P5Azt37kz1Kxw6p4GABYvFli1bWgYLGS1snLNgvPbaa603qKQeQSBe29DhtI899pibNm2aBShy5szpmjdv7saOHet27doV1gAF7Zw89HulzVeBAgWsr6uIJA+ZffzdsJnPUPmFCxee8usnTJjgrrnmGvt65g1RyRYr/vrrL2vr5gUoaC/HkEoFKERERNLXeiVSSLi7//77EwQoQJW/h1a2H3/8sa1RFKAQERFJPQUpJNWomGDIteebb75xP//8s/v0009tKHQ4kbXfrFkzN3r0aPf777+7FStWuJdfftnVr1/fWgsRqAhtS0RJ7kMPPWQbcAz+JiNGEuI1oV0Ti+wuXbq4YsWKudy5c9smoIfFNxlCQ4YMsZ/t9u3bLYuZ0uds2bKF5SUlotqoUSM7UWHehGfEiBFu7dq1rm7duvrRiSQDfZIZKN2rVy+3ZMkSCybTGo2A4snQvo3jKpmAVMTxd8iFAHS0kaVIj+fffvvNPr7iiitsA+OGG26I9kMTERGRCK5XIoVzEhI2Ro0aFbyOak6SJDj3ISFPREREwu+sgHZtxafhYuvXr3d333138DqqHRiw3aRJE196dh49etQybrNnz24ff/31165GjRoJvuaiiy6yKg8Wmo0bN7ZBZ+kVLZr4mTDzY+/evQk+x5wHr9d7pHAo4uRk+fLldtLCwG0ROXNkInJsGzp0aII2eQRsn3zyyRO+npZ9HDtp6eYhCMDxmiDhyRAE5hJavsl9hLvdU2hWJe3e5syZEzzGi4iISNpt93Qm65VIrTtIgrvqqqssSQIEJnh8nJdQ0e/HOayIiEi8O5DMtYfeZcUXbHCFZrquXr3avfDCC7b5TZCAxV+4ZciQwS4eFr1Uc9AO6ocffrAKAAZ9M/CZCy2LvCAFVRZky3gBDDJ342EgM22bCEJ4FwIzlC6Dsurp06fbv1lwswHI61GzZk1XvXp1C+j4hVZS77zzjrUJY2OUEmlebzZE2YD0Y76FSHpAsPbHH3903bt3D17H3xd/1999991Jv4fryWQMRSbjZ599luT99O/f3z377LPOT1RUcWwGs2kWLVqU4BgvIiIi6WO9Eol1B954441ggKJQoUJ2/ki1PhSgEBER8ZeCFBIROXLksIXl5s2bEwQoxowZY5tPlSpVCntQIGvWrMG2Jd5imPYlbNazKA6dX0GLqr59+wY/ZqOcx8WF9iIMRaNfe6yh+oCFtNdWi3kOHTt2tNYoXBJXSNCayQtSXHnllRYUoEUWJc0ELSLZ5/Wpp56yTchJkyYFf0YVK1aM2GMQiUd79uyxTD+CsKH4mGDxyezYseOkX8/1SWFTITSw4WU0hhPHq6lTp7oZM2bY8SIeAsciIiJy5uuVSKw70Lt3b3fo0CFL2Lr11lv1oxIREYkgBSkkIsjKf+aZZxJcR3sRynkZhjp//nwLVPiJDFw25EPnVnjIlKEfOwEMAhls9nvVB6hSpUowSMHANBawXhCDC99PIIbnSRVGxowZw/a4KX2mT+vu3buthZYXgODCx7TPItgDMn1oleT1SiUjqWjRolYdwiX0NeZz7du3d37jtaRKZdWqVcHergzE5jXkMdx8882+PwYRCS+OceE8ziWF6q703JZPREREIrfuOPvss91LL72kl1xERCQKFKSQqCE4cccdd9gGfGgG/SeffGKZNQ0aNIjIYhSVK1e2C6hMYFBzaCCAYdIeNtu9y8kwcPqmm26yf48fP969+uqrFry4+OKLg/+nFxvVBIcPH7ZqB9pQhf6fx/LWW2/ZbZA9TOssXpOT4fGFBmJee+01y0IieEK1hFeiHC0Eox5//HGr+iAbmseFzp07R/VxicQjeidzgr1z584E1/PxZZdddtLv4foz+XoRERGRSK9XREREJL4pSCFRwwL07bfftqx/r40HG9k9evSwMl826aluiLRMmTLZfAYuJ9OuXTtXoUKFBBUNGzdutOACF4IQHj6XVB/4U8mVK1fw37w2xYsXt3/nz58/2ILKq+LgulAPPvigixb6xxMkOffcc93AgQPtOipLGMBNwIRqExHxD4FKZuvMmjUr2EaNYywfd+rU6aTfw/GMz3fp0iV4HXN7uF5EREQkFtYrIiIiEt8UpJCoo+WPh7kRt99+u5s4caK1MfLMmTPHKi6ovMiXL5+Lpssvv9wuSSHQ4mnatKm1W0pcKcFEe4IhbOaHVljwfy65c+dOcJvLli1zsYoTCu9nyMwRSqRp50R7L6+KY9CgQVF+lCLpBz2bW7ZsaS3eypUr515++WWraGrdurV9/t5777VjDEMovaomZvQMGTLE1a9f3yrAaHX35ptvRvmZiIiISHpdr4iIiEj6oiCFxBTaOz3//PPuueeeSzAklY1vBiyzuc8A7tBgQKwNUw19PF61QzyaMGGCGzBggLXl6tWrl11XtWpV16FDB9vojFSrLhFJ6K677rIZNgQKGX5dunRpN23atOBwSoKJocFh2u29//777umnn7aWbFQ9ffbZZ8EKLhEREZFIr1dEREQkfTkrEJr2LRKjyOj94IMP3IsvvujKlClj1y1cuNDddtttrnnz5sHWQuKPY8eOuXnz5lmWU9asWe26d955x9133302iPzHH3/USy+Sjh04cMBm7RBIvuCCC6L9cERERCSO37Pj4TmIiIikFweS+b79/1IpRWIYcyAYSO0FKDB58mS3devWBIOjMXPmTLd///4oPMr4xSDvmjVrui+//DJ43a233mozRUKvExERERERERERETkTavckaRYDthnsygwHzx9//OHq1KljLZe2bNliw7kl+egDS9XKTz/9ZJUSXusq+tUTDCLq6bnkkkvUM1ZERERERERERERSRe2eJK4wYJr2T/RbX758efD6Tp06uVWrVlm/9Ro1akT1McaKv//+21pmnXPOOa5SpUp23T///OOyZcvmjhw54n7++WdXokQJu/7gwYPu/PPPd2effXaUH7WIxCK1XRAREUkb4uE9Ox6eg4iISHpxQO2eJD1i4NqKFSvc/PnzE1xPS6Kvv/7aZit41qxZ4x5//HE3Y8YMlx6wiCcI4XnrrbfcTTfdZEPKPQy7fuSRR9wLL7zgLr300uD1zKFQgEJERERERERERETCTe2eJC6RWRNq0qRJ7ptvvnEVK1YMXkdwYtCgQVYxUKtWreD1H3/8scubN68FPDJkyODSouPHj1uFhKdx48b2GkydOtXaYaFKlSrWDovnGqpfv34Rf7wiIiIiIiIiIiKSPilIIelCsWLF7BKqZMmSrk2bNq58+fLB66i0aNasmf1/w4YNrkCBAnb9jz/+6NatW+fKlSvnChYs6GIpGMFjzZQpk31MS6uGDRsGH39o0Oa///6zgIwXpChVqpTbtm1bcO6EiIiIiIiIiIiISKT9L+L3KBIjGAZNy6P7778/weDtqlWrusKFC7t8+fIFrx83bpxr2rSpGzp0aPA6Nv0HDBhgFQr82+/+bQQgQnXr1s1lzpzZDR8+PHgdlRFr1651GzduTDDkulevXm7r1q3W3spDcEIBChEREREREREREYkmVVKIhMiRI4ebOXPmCa8JFRUVKlRw1113XfA6AgHdu3e3Koa//voreD0zHubMmeMeeOABd8cdd9h1VDZQxZAnTx67Dy84EAgEEgQK+D7un4qNBg0aJBgwg0OHDllgwpsTcfToUbd69erg92fPnt1u45prrkkwRC6Wqj9EREREREREREREPKqkEEmGLl26uG+//dZaQXmonrjnnntsnkVooGHx4sU2pHvPnj3B6zZv3mwBDi9Y8Pfff7tChQpZgIPAg4cAQ9++fd0XX3wRvI5gQ5YsWVy2bNnc7t27g9dTAbJ+/Xr3xhtvnFAhkjNnTlVJiIiIiIiIiIiISMxTJYVICl1xxRXWBiqxnj17uiZNmiSYdUHrpcsvv9wCDgQ0CE4QxPjnn3+sDdPVV19tX1epUiX34IMPuptuuinBbe7atSs4d8LD7YmIiIiIiIiIiIikZWcF6DcjIhHx77//urPPPjs4jPuSSy5xuXPndueco3ihiKRdXls6ArKhreZEREQktsTDe3Y8PAcREZH04kAy37e1MyoSQV6AAmXLltVrLyJxwct3YPEhIiIisct7r07LuYpad4iIiMTf2kNBChEREUmVgwcP2v/z5s2rV1JERCSNvHeT1ZgWad0hIiISf2sPtXsSERGRVPnvv//ctm3bXNasWW3uTjgzLgh8bNmyRe0c9Prod0d/VxGh445em3j/3SGLkU2CXLlyuf/9738uLfJr3ZGWfo5pmV5jvc7xRL/Pep3jxQEf3/+Su/ZQJYWIiIikCguNPHny+PYqskjSRoFeH/3u6O8qknTc0WsTz787abWCIlLrjrTyc0zr9BrrdY4n+n3W6xwvLvDp/S85a4+0mTohIiIiIiIiIiIiIiJpnoIUIiIiIiIiIiIiIiISFQpSiIiISEzKmDGj69Wrl/1f9Prod0d/VzruRJeOyXp90gP9nus1jhf6XdbrHE/0+5w+XmMNzhYRERERERERERERkahQJYWIiIiIiIiIiIiIiESFghQiIiIiIiIiIiIiIhIVClKIiIiIiIiIiIiIiEhUKEghIiIiIiIiIiIiIiJRoSCFiIiIxKRhw4a5AgUKuPPOO8+VL1/eLVy4MNoPKSbMmzfP3XrrrS5XrlzurLPOcp999lm0H1LM6N+/v7v++utd1qxZXY4cOVyjRo3cmjVrov2wYsLrr7/uSpYs6S644AK7VKhQwX355ZfRflgxacCAAfa31aVLl2g/lJjQu3dvez1CL9dcc020H1bM2Lp1q7vnnnvcxRdf7DJlyuRKlCjhFi9eHO2HJWFcX0yYMMF+5/l6fr5ffPGFXt8wvsYjR450VapUcdmzZ7dLzZo1tebzea08fvx4O5azTpLwv8779+93HTt2dJdffrnLmDGju+qqq3Tc8OF1fvnll93VV19t77158+Z1jzzyiDty5Ih+pcN4Djlnzhx37bXX2u/xFVdc4UaPHu38pCCFiIiIxJwPP/zQde3a1fXq1cstWbLElSpVytWuXdvt2rXLpXd//fWXvR4s5CWhuXPn2knh999/77766it37NgxV6tWLXvN0rs8efLY5vuPP/5oG6jVq1d3DRs2dCtWrIj2Q4spixYtcm+88YYFdOT/KVasmNu+fXvwMn/+fL08zrk//vjDVapUyZ177rkW9Fu5cqUbMmSIbbRKfKwvvv32W9esWTPXpk0bt3TpUtvU5fLLL79E/LHH62vMJhiv8ezZs913331nm428dxMAlPC9zp6NGze6xx57zAJDEv7f56NHj7qbb77ZXueJEydasgyBuNy5c+vlDuPr/P7777snn3zSvn7VqlVu1KhRdhtPPfWUXucwnUNu2LDB1a9f31WrVs0tW7bMknfatm3rpk+f7nwTEBEREYkx5cqVC3Ts2DH48b///hvIlStXoH///lF9XLGGpdynn34a7YcRs3bt2mWv0dy5c6P9UGJS9uzZA2+99Va0H0bMOHjwYODKK68MfPXVV4Ebb7wx0Llz52g/pJjQq1evQKlSpaL9MGLSE088EahcuXK0H4b4uL648847A/Xr109wXfny5QPt27fX6x6m1zix48ePB7JmzRoYM2aMXuMw/i57r23FihXtvb9ly5aBhg0b6jUO8+v8+uuvBwoVKhQ4evSoXlsfX2e+tnr16gmu69q1a6BSpUp63cN0Dvn4448HihUrluC6u+66K1C7du2AX1RJISIiIjGFDCSyvSn39/zvf/+zj8mwE0muP//80/5/0UUX6UUL8e+//1qrBzKqaPsk/4cqHDLGQo898n/Wrl1r7QEKFSrkmjdv7jZv3qyXxjk3adIkd91117kmTZpYi7kyZcpYxqzEz/qC6xMfE8ju1XokfK9xYocPH7ZKSL13h/d3GX369LFjFZVB4s/rzPsCayvWFDlz5nTFixd3/fr1s7WXhO91rlixon2P1xJq/fr11lKrXr16epnDJBrvf+f4dssiIiIiKbBnzx5byLOwD8XHq1ev1msqyfLff/9ZWTKtWDhBFOeWL19uJ870682SJYv79NNPXdGiRfXS/P/9uWkvQLsnSYi+0PQgpu8zrZ6effZZaxNCuxvmv6RnbIow74UWFbSY4Pfn4YcfdhkyZHAtW7aM9sOTMKwvduzYcdKv53rxZw33xBNPWFBUAePwvs606aMlDm1bxL/XmfeFr7/+2gL6bJqvW7fOPfjggxZ4ozWRhOd1vvvuu+37KleuTIcgd/z4cdehQwe1ewqjpN7/Dhw44P7++2+bBRJuClKIiIiISNwhg41NVPXO/3/YZGZzggoT+iSzicocj/QeqNiyZYvr3LmzzTFhWKMkVLdu3eC/mdVB0CJ//vzuo48+SvfZuARDqaQgSxZUUnDcGTFihIIUIinA7CSCxsyp0PE4fA4ePOhatGhhlV6XXHKJfjd9fl+gWuXNN990Z599titbtqzNVxk0aJCCFGHEMYL33uHDh9u6hGAQa7nnnnvO9ezZM5x3JRGkIIWIiIjEFE6eWNTv3LkzwfV8fNlll0XtcUna0alTJzdlyhQ3b948Gxgt/4fs7iuuuML+zUkzWd+vvPKKDYpOz2gXwGDGa6+9NngdGX38/gwdOtT9888/dkyS/5MtWzZ31VVX2YZAenf55ZefEOQrUqSI+/jjj6P2mCS86wuu13okMmu4wYMHW5Bi5syZFhCV8L3Ov/32mw1yvvXWWxNspuOcc86x4c6FCxfWSx6G32feF84999wE6wbeF8hKp60RazFJ/etMIILAG4OcUaJECWtj2q5dO9ejRw9rFyWpk9T73wUXXOBLFQX0UxMREZGYwuKdDdRZs2YlOJHiY/XPl1Oh3JsABW2MKLUvWLCgXrBT4O+KDfj0rkaNGtYKiyoT70J2PK0a+LcCFAkdOnTINrzYiEnvaCfH5l6oX3/91SpNJD7WF1wf+vWg6krrkfC9xnjhhRcsA3ratGl2/JXw/i5fc801J7zPNWjQwFWrVs3+nTdvXr3kYfp95n2BIL4XBPLeF3jPVIAiPL/P3uyaxIEIb732f3OhJbWi8v7n20huERERkRQaP358IGPGjIHRo0cHVq5cGWjXrl0gW7ZsgR07dqT71/TgwYOBpUuX2oWl3Isvvmj/3rRpU7p/bR544IHAhRdeGJgzZ05g+/btwcvhw4fT/Wvz5JNPBubOnRvYsGFD4Oeff7aPzzrrrMCMGTPS/WtzMjfeeGOgc+fOem0CgcCjjz5qf1P87ixYsCBQs2bNwCWXXBLYtWtXun99Fi5cGDjnnHMCffv2Daxduzbw3nvvBc4///zAu+++m+5fm7S6vmjRooUdHz38zvMzHjx4cGDVqlWBXr16Bc4999zA8uXLo/gs4us1HjBgQCBDhgyBiRMnJnjvZr0j4XudE2vZsmWgYcOGeonD/Pu8efPmQNasWQOdOnUKrFmzJjBlypRAjhw5As8//7xe6zC+zhyLeZ0/+OCDwPr16209W7hw4cCdd96p1zmF55C8vrzOHl5X1jTdunWz979hw4YFzj777MC0adMCflGQQkRERGLSa6+9FsiXL5+duJYrVy7w/fffR/shxYTZs2fbwjLxhZPN9O5krwuXd955J5De3XfffYH8+fPb39Oll14aqFGjhgIUp6Agxf9z1113BS6//HL73cmdO7d9vG7dOv9/adOIyZMnB4oXL26bK9dcc03gzTffjPZDklSsL/jbT/x++tFHHwWuuuoq+/pixYoFpk6dqtc4jK8x700ne+9mE1LC+7scSkEK/17nb7/9NlC+fHl7XyhUqJAFso8fP65f5zC+zseOHQv07t3bAhPnnXdeIG/evIEHH3ww8Mcff+h1TuE5JP/ndU78PaVLl7afCb/Lfp9TncV//KvTEBEREREREREREREROTnNpBARERERERERERERkahQkEJERERERERERERERKJCQQoREREREREREREREYkKBSlERERERERERERERCQqFKQQEREREREREREREZGoUJBCRERERERERERERESiQkEKERERERERERERERGJCgUpREREREREREREREQkKhSkEBERERFJ415//XWXL18+lzlzZnfbbbe53bt3n/Z71qxZ4y677DJ38OBBXx7TWWed5T777DP79549e1yOHDnc77//7st9iYiISPSEvufHwu1Ew8aNG+3xL1u2LNoPRSRNUpBCRERERCQN++STT1y3bt3ca6+95hYvXmxBhzvuuOO039e9e3f30EMPuaxZs/r+GC+55BJ37733ul69evl+XyIiIvFmx44d9p5dqFAhlzFjRpc3b1536623ulmzZrm0qHfv3q506dInXL99+3ZXt27dqDwmEYkuBSlERERERNKwvn37uk6dOrmGDRu6IkWKuDFjxrj58+fbJSmbN292U6ZMca1atUrya/7991/333//he1xtm7d2r333ntu3759YbtNERGReEeGftmyZd3XX3/tBg0a5JYvX+6mTZvmqlWr5jp27OjiCRWeBGFizbFjx6L9EETinoIUIiIiIiJp1B9//OGWLFni6tevH7wuV65crnjx4m7mzJlJft9HH33kSpUq5XLnzh28bvTo0S5btmxu0qRJrmjRorZJQDBj0aJF7uabb7ZqiAsvvNDdeOONdp+h1q5d66pWrerOO+88+96vvvrqhPssVqyYPbZPP/00bM9fREQk3j344IPWRmjhwoXu9ttvd1dddZW9p3bt2tV9//33SbYa2r9/v103Z84c+5j/8/H06dNdmTJlXKZMmVz16tXdrl273JdffmmJDhdccIG7++673eHDh4O3U6BAAffyyy8neExUQVANkZQnnnjCHuf5559v1R89e/YMbvSz3nj22WfdTz/9ZI+HC9clbvdUsWJFu51QtLM899xz3bx58+zjf/75xz322GO2nqHlZfny5YPPNyncB20yqdjgNeDxTZw4Mfh577X88MMPbc3D2oYkCxI3+vTp4/LkyWNrJF4DgkWJrV692h4738d6bO7cuad8PCLyfxSkEBERERFJo9avX2//v+KKKxJcf+WVVwY/dzLffPONu+666064nk2JgQMHurfeesutWLHC5kjQPqply5ZWmcFmCLddr1694CwLTtqZg5EhQwb3ww8/uBEjRpywqeApV66c3beIiIicHtWHbIRTMcEmfGIkF5wpggtDhw513377rduyZYu78847LQjx/vvvu6lTp7oZM2ZYC8nUoJUkgYeVK1e6V155xY0cOdK99NJL9rm77rrLPfrooxZoob0TF65LrHnz5m78+PEuEAgEryNwQMJDlSpV7GMqSb/77jv7up9//tk1adLE1alTx5InToWgCQEfAiXcT9OmTd2qVasSfM2TTz7pOnfubNfXrl3bnseQIUPc4MGD7b64rkGDBifcFy04eX5Lly51FSpUsLZce/fuTdXrKZIeKEghIiIiIpJGeZmOBA6yZMkSvHz++ecJsiAT27Rpk53kJ0aW4/Dhwy0D8Oqrr7YMSLIs77nnHnfNNddYluWbb75pt+1lBlKxQdbg2LFjrTqDiop+/fqd9H65T+5bRERETm/dunW2Sc97cLg8//zzrlKlSlZN0aZNG3s/p7KAj9n8Z67V7NmzU3UfTz/9tK0lqMJgk55qB6o4QfUCa5VzzjnH2jtx4brECJ5s27YtQftKAinNmjWzSgeqPd955x03YcIEe9yFCxe2+6lcubJdfyoEM9q2bWvVHs8995wlbiQOzHTp0sWSMAoWLOguv/xyC06QhEFAgzUSSR1UUySuMiFwQgCENROvK1Woo0aNStXrKZIenBPtByAiIiIiIilDEAG0NgjNpiTzz/vcyfz999/WhiAxqiFKliyZ4LqdO3faZgP3QUsIZlUQpGBzAGQYMsAzNOhB5uDJsAlxquCJiIiI/D+hVQThEvo+nzNnzmBLptDraC2VGlQ8vPrqq+63335zhw4dcsePH7dWUmfi0ksvdbVq1bJWSwQhNmzYYFUTb7zxhn2e2RysSQg0hKIF1MUXX3zK2068TuHj0FZZCK04PXDggAVMCO6E4mOqMZK6bQIx3E7iKg0ROZGCFCIiIiIiaZS3qcCJf2jLpyNHjiTYcEiM+RLMszhZEIHsxFC0eqJNAW0O8ufPb32YOQE/evRoitpWsOkgIiIip0elJO/LVCyeyv/+978TghpJDXtmpoOH2w792LuOVo6ht504WHKqQdIEEmihxNwJWiJRSUA7JlolnSlu5+GHH7YqB6ooSpQoYRcQ/Dj77LPdjz/+aP8PRaVGap2svZaI+EftnkRERERE0qjs2bO7smXLJpjzwEk7GwQMu04KLR3oE50cCxYssA0C5lDQP5ogxZ49e4Kfp50BPa3pKe3xBnkm9ssvv9h9i4iIyOlddNFFttE/bNgw99dff53weYZjw0sACH0vTlwZkFLcdujtUlVAVUNSmHVBUkOPHj2sioBAS+JWj1RuUgVxOg0bNrTEC+ZyEKQgaOFhPcFtUOVJokbohRZSp5J4ncLHrGeSQjIIFaOsiULxcdGiRZO8bSpICKKc6rZF5P8oSCEiIiIikoaxCcCFQZcMb6S/dPny5U9oSRCKDQ8CGcnZIGBzYdy4cdaqgMHYbBCE9o6uWbOmtVqg4oKWBwRMeDyJ0eaJE3VaN4iIiEjyEKDg/bpcuXLu448/tvd63pNpp+S1FuJ9+YYbbnADBgywzzFnglaN4cBsKtYBvL/TYon3+8SVC4nXDbSEpHqCdk88zk8//TTB1zCrgkAHgRQSH2jRlFQ1Q6NGjWzQNc+LeRQe1h6sSe699173ySef2O3Rpqp///42APxUmGPx9ttvu19//dX16tXLvo9ZEqfCQGzmUNDKas2aNTZYm8dPi83EPy+eL9UvDDyncvW+++4Lfp75IolfDxFRkEJEREREJE1r3Lix6927twUnGFxNCwZvOGVS6tata32SGXp9Ogx75AT72muvdS1atLCqihw5ciRoA8HJNnMu2EBhEGXfvn1PuB2GeefLl8/6SouIiEjy0L5xyZIlrlq1au7RRx91xYsXt2rJWbNm2WBmD5vuZO5TYcnQZwZkh0P37t3djTfe6G655RZXv359CxowpDopDRo0cI888oht+jNYmsoKggyhGCxdp04de05UanzwwQdJ3h6BCJIgWD+wjgjFgGyCFLwuDLPmsS1atOiEr0uMVlQEUZjPMXbsWLv/xBURibH+6dq1q90XLaeo7pg0aZIFZUIRKOLCmoyh33wNbTY9BDj+/PPPU96XSHp0VsCPKTwiIiIiIhLTyPTjxHn69OkRuT8yPDnBv/vuuyNyfyIiIiKJMXOD5AoCGiISOzQ4W0REREQkHWrfvr31sj548KDLmjWrr/dFK4fbbrstQZsGERERERERqJJCRERERERERERE4p4qKURikyopREREREREREREJO6p671IbPpftB+AiIiIiIiIiIiIiIikTwpSiIiIiIiIiIiIiIhIVChIISIiIiIiIiIiIiIiUaEghYiIiIiIiIiIiIiIRIWCFCIiIiIiIiIiIiIiEhUKUoiIiIiIiIiIiIiISFQoSCEiIiIiIiIiIiIiIlGhIIWIiIiIiIiIiIiIiLho+P8AguxZVPI5k1IAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -238,7 +251,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-triangular.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-triangular.png\")" ] }, { @@ -255,7 +268,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQmcjeX//3+1UdInIUKylqIi2iwllCVZkqIUspRQpCKyFUVSKkkSWklEiy1rypItS3ayRmWJkiUt5/94vr+/+/zPjJkxM+Y+27yej8cxZ85232ecc9/Xdb3e79frtEAgEHBCCCGEEEIIIYQQQgghhBBh5vRwb1AIIYQQQgghhBBCCCGEEAIkUgghhBBCCCGEEEIIIYQQIiJIpBBCCCGEEEIIIYQQQgghRESQSCGEEEIIIYQQQgghhBBCiIggkUIIIYQQQgghhBBCCCGEEBFBIoUQQgghhBBCCCGEEEIIISKCRAohhBBCCCGEEEIIIYQQQkQEiRRCCCGEEEIIIYQQQgghhIgIEimEEEIIIYQQQgghhBBCCBERJFIIcRK+/vprd9ppp9lPj+bNm7vChQun6/V4Hs8/Ge+++65td9u2benaTlL7yOv17t07Xa8nhBBCCCGEEEIIIYQQGY1EChH1/Pjjj+7hhx92RYsWdWeffbb73//+5ypWrOhee+01d/To0UjvXtwzevRo9+qrr0Z6N4QQQgghhBBCCCGEEHHImZHeASFSYvLkye7uu+92WbNmdU2bNnVXXnmlO378uJs3b5576qmn3Jo1a9zbb78d9v0aPny4+++//9L13A0bNrjTT4+MPoioc+aZZ6ZZpFi9erXr2LGjb/slhBBCCCGEEEIIIYTInEikEFHL1q1bXePGjV2hQoXc7NmzXb58+YL3tWvXzm3evNlEjFMlEAi4Y8eOuXPOOSfVzznrrLPSvT0El0hBJ4qf8HfMkiVLxEQYIYQQQgghhBBCCCFEbKGVRBG1DBgwwP35559uxIgRCQQKj+LFi7sOHToEfx81apSrWrWqy5MnjwkBJUuWdEOHDj3heeQ03HHHHe6rr75y1157rYkTw4YNs/t++uknV79+fXfuuefa6zz++OPur7/+SlXew+HDh90TTzzhChYsaNsvUaKEGzhwoIkgJ8ukoCOEfWdfLr74Yte3b980dWp89tln1mWCCMHPiRMnJvm4xJkUhw4dsg4J9ol95j3fdttt7vvvv7f7b7nlFhOCtm/fbs/l4r1vL6vj448/dt27d3cFChRw2bJlc3/88Ueq91sIIYQQQgghhBBCCJG5USeFiFq+/PJLy6GoUKFCqh6PIFGqVClXt25dszTi+W3btrXFfjovElsu3XvvvZZ10bp1axMUsEKqVq2a27Fjh3vsscdc/vz53QcffGBdHCcDIYLtzpkzx7Vs2dKVKVPGRBAsqXbt2uUGDRqU7HN/+eUXV6VKFffPP/+4p59+2gQSLKxS29kxffp0d9ddd5ko069fP7d//3734IMPmthxMtq0aePGjx/v2rdvb8/nuVhprVu3zpUtW9Y988wz7vfffzfxxnsP2bNnT/Aaffr0se6JJ5980gQdrgshhBBCCCGEEEIIIURqkEghohKq8Vncr1evXqqfM3fu3AQL+yy816xZ073yyisniBRYRU2bNs3VqFEjeBtB3Bs3bnSffPKJ5WAAAkbp0qVPuu0vvvjCxAw6IFjYB7bJ6/C67EuxYsWSfO6LL77o9u7d6xYtWuSuv/56u61Zs2bu0ksvTdX77tKli8ubN6+JC+eff77dVrlyZVe9enWzykoJuiR4jy+//HLwts6dOwev01VBh8SBAwfc/fffn6zF09KlS9NklyWEEEIIIYQQQgghhBAguycRlXiWQeedd16qnxO6SE71/759+2yxfsuWLfZ7KEWKFEkgUMCUKVPMVqphw4bB27Aveuihh066bZ57xhlnWAdGKNg/0WUxderUFJ974403BgUKuPDCC12TJk1Out2ff/7ZrVixwkQNT6DwxAU6I05Gjhw5TBzZvXu3Sy9sWwKFEEIIIYQQQgghhBAiPUikEFHJ//73v2BmQmqZP3++u/XWW80uicV3Fvq7detm9yUlUiSG3AVyLshZCAUrqJPBc7GHSiyqXHHFFcH7U3puUl0Tqd0upPf55H6sXr3acjQQScirQNRJC0n9LYUQQgghhBBCCCGEECI1SKQQUStSsOjPAnpq+PHHHy1Pgu4J7J2wMZoxY4YFX0PiEGpV/v8f99xzj4kSgwcPtr/3Sy+9ZLkeKXV+JEZ/SyGEEEIIIYQQQgghRHqRSCGiljvuuMPEh4ULF570sYRkE9pMNgRh2Lfffrt1VaRlAZ38BraHPVPikO3UPBfLpMSdH+vXrw/en9JzN23adMLtqd0upPf5gMUVAeOfffaZ27p1q8uVK5d7/vnng/cn7iwRQgghhBBCCCGEEEKIjEIihYhaCHDGuqlVq1bu119/PeF+BAVCqYE8CAgVGLB4GjVqVKq3h7CB0DB+/PjgbUeOHHFvv/12qp7777//ujfeeCPB7YMGDbJF/lq1aqX43O+++84tXrw4eBtB2h999FGqBIYyZcq49957L4GlFV0ka9euTfG57G9iG6w8efJYRwWCjwf/B4kfd7KcDMSZv//+O9XPEUIIIYQQQgghhBBCZE7OjPQOCJEcxYoVc6NHj3aNGjWybIemTZu6K6+80h0/ftwtWLDAjRs3zjVv3tweW716dZclSxZXp04d66T4888/3fDhw23RnUXz1NC6dWsTGdjOsmXLTAD44IMPLDz7ZLDdKlWquGeeecZt27bNlS5d2k2fPt19/vnnrmPHjvZeUhJj2E7NmjVdhw4dTBRAGKFLYtWqVSfddr9+/Vzt2rVdpUqVXIsWLdxvv/1m9k3YNvF3SA66Pi6++GILCmd/s2fP7mbOnOmWLFniXn755eDjypUr58aOHes6derkrrvuOnsc7zc5unbtaqIJXRmFCxc+6f4LIYQQQgghhBBCCCEyLxIpRFRTt25dW6gnK4EF/6FDh7qsWbO6q6++2hbSERa8kGg6ILp37+6efPJJd9FFF7lHHnnEwrNZuE8NiBGzZs1yjz76qC3y83uTJk2sCwIBISVOP/10s5rq2bOnLejTwcECPfv9xBNPpPhcxJA5c+bYdvv37292S23atLGOhpYtW550v9k3BBveOwIBggjb5+/19ddfp/h+sXlCTJkwYYLldhAc/uabb9rfzoPHrFixwl6TzhDEk5RECiGEEEIIIYQQQgghhEgtpwUSG/ALIYQQQgghhBBCCCGEEEKEAWVSCCGEEEIIIYQQQgghhBAiIkikEEIIIYQQQgghhBBCCCFERJBIIYQQQgghhBBCCCGEEEKIiCCRQgghhBBCCCGEEEIIIYQQEUEihRBCCCGEEEIIIYQQQgghIoJECiGEEEIIIYQQQgghhBBCRIQzI7NZIYQQQsQL//33n9u9e7c777zz3GmnnRbp3RFCCCFEMgQCAXfo0CGXP39+d/rpsVmzqHGHEEIIEX9jD4kUQgghhDglWCgoWLBgpHdDCCGEEKlk586d7uKLL3axiMYdQgghRPyNPSRSCJEOjh075n777bfg5e+//3bVqlUL3t+rVy+3Zs0a98cff5zwXCp+Pv300+DvnTt3ditWrDjhMTlz5nS5cuVyzz//vDvjjDPs9vXr17vjx48H7zvnnHN8fZ9CCJEaOGZ5g47//e9/kd4dIYQQQiQD8xMW+L1zdyyicYcQQggRf2MPiRRCJALBYdu2be7AgQPu+uuvD95ev359t2zZMrd//3539OjRBM9BCWSQ7DFjxgy3cOHCJF//ggsuSPA7rzl79uwkH3v22We7/v37B3/v0qWL++KLLxLc7wkW+fLlM/Eje/bsdh/7yQEgS5Ysaf4bCCFEWvCsFlgo0GKBEEIIEf3Esk2Sxh1CCCFE/I09JFKITM2cOXPcDz/84DZv3uw2bdpkP7du3er+/fdfd8kll7jt27cHH7tnzx73008/BX/HR80TCAoUKJDgdR999FHXpEkTGzQn9ltLLBp07drVtWjRIoFXGyqj16ERCgJEnjx57L5//vnHOjpod+bCfp977rnBx7Zu3dp9/vnnrnDhwq548eLu0ksvtUvo9VienAghhBBCCCGEEEIIIWKf0wKsiAoRx7DQjxDx3Xff2WJ+3759g/dVqlTJzZ8//4TnYKN02WWXuaVLl7ozz/w/LW/58uUW0oYwwYUuhUiFzXmhM4gVdExw+fPPP12DBg2Cj6ELZMmSJUk+n/fH4739R6xBACldurQ6L4QQaQZh9fzzz3e///67KhqFEEKIKCYeztnx8B6EEEKIzMIfqTxvq5NCxB27du1yCxYscIsWLTJhAjslOg6AbAc6F7yOA3Ik6ExI3GGAdVJiAeKaa65x0QIdEF57M50SScH7//nnn4NdIl6nCD+zZcuW4P09/vjjbuXKlS5r1qyubNmy7oYbbnA33nij/SxUqJA6LoQQQgghhBBCCCGEEL4gkULENIcPH7Zuh5tuuim46E4Q9ejRoxM8LkeOHNZZwMI7wdOeSPHss8+6eAVhIX/+/Ha5+eabk30c3SFYW5GpQWcGWRqheRr8zUJ//+uvv0zMEEIIIYQQQgghhBBCiFNFIoWIKbA52rhxo5s8ebJdvv32W7NzWrNmjStZsmTQwmndunUJugGwboqUNVO0w9+FMG7+tnRaeB0o/FyxYoUrWrRoAkGD/I1SpUq52rVr24W/uzothBBCCCGEEEIIIYQQ6UGZFCImQIR4++23TZj48ccfE9zHovn777/vqlatGrH9i1eOHj1q3nF58+a13zds2OAuv/zyBI/BDgqx4vbbb7f/A/IuhBCZC3lDCyGEELFBPJyz4+E9CCGEEJmFP1J53lZpuYhKfvrpJwu59ti6dat7/fXXTaA466yz3K233uoGDRpki+Y8VgKFPyA4eAIFlChRwv4PBg8e7GrWrGm2T9u3b3dvvvmmu+OOO9xzzz0XfKz0TyGEEEIIIYQQQgghxMmQSCGiAha0Fy9e7Lp16+ZKly7tChYsaAvhHogQrVu3dhMmTHD79+93M2bMcB07djQbJxFesH9q3769mzp1qv1fYBXVpk0b+z+jm8KD+6+88krLCJk/f75ECyGEEEIIIYQQQgghxAkok0JEFMKaP/jgA7NroivCg4yDn3/+Ofh7tmzZzO5JRBcEkNepU8cuiUUIrLmw6eLy0ksvuWLFirmmTZvapXDhwhHbZyGEEEIIIYQQQgghRPSgTAoRMf755x930UUXWTW+Zy1Ut25dsw3CSih37tyR3kVxCvz2229u+vTpbtKkSe7zzz93f/75Z/C+ypUrW1dMzpw5I7qPQoiMQd7QQgghRGwQD+fseHgPQgghRGbhj1Set9VJIcLCf//957755hurrh8wYIB1Spx55pmuUaNGVmnfrFkzd9ddd8XdIPPvv/82MSYtnHHGGS5Lliwu1kGAaNy4sV0OHz5sosR7773nZs+ebXkjF1xwQfCx69evd5deeqm9dyGEEEIIIYQQQgghROZBnRTCVwhZxsqJy7Zt2+y2efPmuYoVK9r1f//9NyYWpvmaYD9FSDcdAgcOHLBLcte9348cOZKu7dFVwiI/C/lcQq8n/p3rBQoUcPnz53enn356TFh87dixI/gZOHr0qMuXL58777zz3AMPPGCCFQHdQojYQRWNQgghRGwQD+fseHgPQgghRGbhD3VSiEhB5wBV8wRfI0h48EG85557XK5cuYK3RZNA8ddff5mQsmXLFhNXQi9bt261xfRwwbZ27dpll9Ry9tlnuyJFiliwNfkPoRcyILg/GiBgm4vHunXrTFxBAOrXr59dbrjhBgvnptPmrLPOiuj+ChFr0LVGDsyyZctMXJ04caKrX79+is/5+uuvXadOnayzje9n9+7dXfPmzcO2z0IIIYQQQgghhMi8SKQQGc6sWbNscRlYfL7tttusOp5FMjoEIg3KHYt3XDZu3BgUIqjwT6mxCEGFbgWviyE1nQ45cuRIs3UTFlEHDx5Mtjsj8XV+ImYcO3bMFvy5JAZ7LbotPNHisssuc+XKlbNLqO1SJChbtqwtpH755ZdmBzV16lS3aNEiu3Tt2tWNHDnSPkNCiNSBvVrp0qVdixYtXIMGDU76eETY2rVruzZt2riPPvrIjuGtWrWyDqcaNWqEZZ+FEEIIIYQQQgiReZHdkzhlWGBeu3atq1atWjB/okqVKnZ56KGHbGE/UmC3tHz5crd06VK3ZMkSuyBMJMe5556bZCcCtxUqVChqq/rpXsFCCbElqU6Q0NDqxBQvXtxde+217rrrrrOfiAbZs2d3keLXX391I0aMsE4crpNXgagCHK4QXIQQqYPvy8k6Kbp06WJ5QatXrw7eRpYMYum0adNStR3ZLgghhBAZA+NdLozvt2/fbrltGUk8nLPj4T0IIYQQ0cRf/89dxg/7ddk9Cd9BmHj55Zfdhx9+aHkCLJJny5bNuiewDgn3YjJfqB9++MGECE+UwLoE0SQx2B+xIF+qVKkEYkSePHlichGcEHKEFC6JYZKzb9++BKIFfxf+RggamzdvtsvHH39sj+f/74orrkggXFCVHS67qLx587pu3bq5J554wmxrPIECmjZtaj+5r0yZMmHZHyHinYULF7pbb701wW10UHTs2DHF4y2X0EGHEEIIES8wfqbIh4KZ/fv3W+cyP6tXr27zBZg5c6Z799133aFDh8yqNfRy/PhxN2zYMFe1alV77JgxY1zr1q0tj8+7eGKEdz8FAkCWn2e5eMkll9jYnbG+EEIIIYQfsG5at25dG9s899xz7plnnnGRQKMdkSYYSCNADBw40E2ZMiV4++WXX+5++eWX4CJ5OBb62ZdVq1a5r776yi7kXzAhSMxFF11ki+3eBYujCy+80GUW+L/g/XK58cYbE9zHhAuxwhN1+Ek2BCIGF+yXgA6S8uXL28Ill2uuucb3kO6sWbMmsHmiY4cJHJM6hDEWVZ966il7TCwKS0JECxy7EQdD4XeEBxZakrLpIzvm2WefDeNeCiGEEBnbbU2xDhWDFStWDNqfMvbt06ePjTt5TGJmzJgRFPZ5PjaJyREq4DN+xY4xpXkNHY2vv/66CR+hY/VNmzZZAZEQQgghhB906NDBTZ8+3a4z7ogUEilEqiEjoF27dpblACwM43dOVTsL2OFg7969NjlAlOALxOJaKGRBeB0AXhcAWQwiafh7URHGxYNJWahwwYVODLoauKCoInggDiBY8FyEIL/BH5/PIN07n3zyiSm8XK666ir35JNPunvvvTdq7biEiDfIiyFoO3QhhsBtIYQQItrA6pV5AxaiGzZssAtZdB6MJz3bWiyW6FzwoEs8d+7cNmbOlSuX/e5RoUIFG5dik4qgH3qhA5kiLo969epZ5zIZd96Fgh8qF8mCevvtt60QzINuDV6DsTeWs0IIIYQQfhG6tlqzZk0XKSRSiFSDfxgCBQPvBx980D3++OOWZ+AndEZgReJ1S3z//fcJ7meiQPaFt9COd5qq6k9dDKhTp45dvMouJmtM7vg/mD17tolFo0ePtgtgB+V1WVCNRheEH9AFwzZfeOEF99prr7nhw4ebxRfB7OwTgpkQIm0gMmJnEQq/4xWZVBcF8B3363suhBBCpAcE88WLF7vvvvvONWzYMCgSsPj/6KOPnvB4uiewgA2NaLz99tvdt99+a+dGLinltF155ZV2SQ1Y43IJ3deRI0daBhsdGaEFYFQzMp5mHhQuu1UhhBBCZC7++usvm9NTmDx+/Pjg7RdffHHE9kkihUgWxAEG+gyUgYE+Lc2IAVQU+QWD9s8++8xNmDDBKosShz6Ha0FcuOCECTGKS9u2bW3CxOTPE44QrlauXGmXAQMGmHB0yy23uLvuussmWjly5MjwfWJCOWjQINezZ0+rPONzSUi7B97AoRNBIUTy0AkXat8HdKyFq0NOCCGESA+7d+92c+bMMRGCeQt5eZ7gQCeCJ1Jcf/317o477nAlS5a0giZu5yedEUkV63DxCwp/ECYQKBiveoVgZE+wz2PHjrUuC5BAIYQQQgg/mDt3rmvSpImtu3prvuRf0VHq5zjoZJwWCC0dEcI5a4EmuJgPK4Nksgn8SHdPrOBNnTrVquS//PJLd+zYseB9kbAWEhljwZUlSxarSLvvvvtscphcVfapwmHM66Dh+g033GBC2osvvmh2UEJkJhB2sZQA8mNeeeUV6zjDqoJFEKyadu3aZcGcsHXrVqsExc6vRYsW1i312GOPucmTJ9txN7XiMossv//+u3VgCCGEEH7CucqzaAqlSJEilsHWqlWrYGh1pGFsymLAq6++6r744ougkELOBOdbztUU+FAIhOhy8803+7o/8XDOjof3IIQQQkSK+vXru88//9zcSig8Pvfcc4PZWfwMtbcM53lbIoVIkEVAEOo777xj4W74pGLrRHicH0oa26DyCWHi008/tQ+rB6IIGQNYDpUpU8b3kGaRsWHmkyZNch9//LEFAHrQ2XDnnXeaYMGkEpXWD5YvX24VcyjACBdNmzZ1zz33nC3OCpEZ4LiKKJEYbNEI42zevLkFhYZ6X3MdCz+qUGnv7NGjhz0utWixQAghhB9s377dxpUUMbF4TyEV0IVAQQrFKJzzKlWqZOJE3rx5XbRAERbjYbp/6Tj2qFWrluvYsaMVYXlFNhMnTrRsNYp6/CYeztnx8B6EEEKISHHo0CHXu3dvW4+l0Lhz586W/Xr06NETsn8zAokUIk1Vt1ScU2175MgRu61u3bquX79+1hadkfBxw+9szJgxNmgP/fATcI0wwSI2woSyJWIf8iL4v+bAxyQztDvmnnvusf9rLGUy+v9606ZNFvA9btw4+x1LMCrVqCDHf1gIkbFosUAIIURGsWPHDpsoY320dOnS4O10HITm00Wrvee+ffvcW2+95YYMGRKc61CRSLEA41HspnhfCCoFCxYM+/7Fwzk7Ht6DEEIIES6OHz/uZs6caU4nHhR+sO5brFgxc9Bh3SzUpSQjkUghUs3+/fvtQ8mHhQokcgVuuummDJ9s0KHBYjVerB7Yj9x99922WE0FVCx3TPBVQvChQyQ0h4EuEar6saryFsixVyHvgw6V0JZu7FV4foUKFYK5H//9958dJGJZtOFvg1cw//9MOrGI8ihUqJCJU61bt3ZFixbN0O3yN0YRpsUe+PsvWLAg6FEshMgYtFgghBAiI8aLTJ6nTZsWvI25AXMEOgy4YJEUzZa5dE289957QetairAI7Wacy7wHsEnFZoH517x588J+3oyHc3Y8vAchhBAiHBw7dsy6OHFPYD2ONVjWZSlKR7zA9olC9Wg4b8fuirA4JbDk8SA0jgE1i+ks4GaUQMFE45tvvnENGza0xWdso/giUEnEojRt21hMUWnEQn00ChQIBHi379y5M8HtBMzQoh3aCYLPLF82wqVD4ffGjRsn6CRg0Zzb+vfvn+Cx2K3Uq1fPLFc88K7FGimxNzxdAUx4QtvHEUMQOaINBBaElzfeeMP+nuSPYMOUPXt2+7vwdyCYm/eOuptR2im2T3j7Iv7guY9P8WWXXZYhry2EEEIIIU5tnD1//vwE40WKdPhZuXJlN3ToUBtrM25+6qmnolKgYMzKpB+LWopghg0bZosBeDx/9NFHVpjUpUuXoEABjEWZM+TPnz+i+y6EEEKI+Ofss892V199tXWfegIBa48IFBRTM4aJFqJvVVj43jWBz3jp0qVt4daD7IkGDRpkSLU+HmYjR460lmwmGIgfLJzjF8tgfc+ePVZRTzUUwcrRMsGgpRzbKxQ+j5deesn82bEOCoWFdC6hHQFe90To84EvPe+dBXkPwr+5jQNFKHSyEPoc6qd78OBBm8QlFnHwrqU7hfs9CK8mnDqxCspC/XfffRcMwokk+O3WrFnTqsz4LKDkIsDwf4Agg/iDoIB4lRH7y2eaqrwVK1aYMOb9HfmcdujQwf36668Z8K6EEEIIIURq7ZCwF6B4hC6J0IIb8vF++uknW/hv06aNWYRGIxQGMXe47rrrbExPbgZjTsbgiCrY29Ipzrg3MXQR00HBuFRdAEIIIYTwm1deecUsM1l7mzJlio1BKIZ+7bXXbPxCUTnrkR988EFkdxS7JxH//Pfff4GPPvoocOGFF1KiHjjttNMCffr0ydBtbN++PfD0008HcuXKZdvgcs455wQeeuihwA8//BCIFlavXh3o3bt3YNiwYQluz5Mnj+3zsmXLgrd9/PHHgTPOOCPQsGHDBI99//33Ax988EFg//79wduOHj0aOHz4sP2tM5K//vorsGvXrsBPP/2U4PZRo0YFnn322cCePXuCtw0ePNjeQ/369RM8tnjx4nb7nDlzgrdt27YtMGHChMCOHTsC0cD69esD7du3D2TPnj34+cmRI0egU6dOgR9//DHDt8dnlW1ccMEFgREjRmT4/5sQmYnff//dvk/8FEIIIZJi5cqVgRYtWgSyZs2aYKw3bty4QKzw559/Bl5//fVAkSJFgu/h7LPPDrRp0yawYcOGJJ9z6NChQKNGjQKLFi0KRAPxcM6Oh/cghBBC+MX48eMDjzzyyAnrXMeOHQuuDz755JPB2++++2677dVXX43oeVsiRSZg69atgZo1awYH0qVKlQosWLAgQ16bD/zcuXMDd911ly3me9soVKhQ4KWXXkqwiB8JWITv3LmzLch7INawj+XLl0/w2Icffjhw//33B9asWZNAIPj7778DscI///xjYlHooj7/R7feemugYMGCCf4Ob7zxhv0dbr/99gSvMXny5MDatWvttSLBwYMH7cDoHTg9Ua1u3bqBGTNmZJiY8P333wfKli0b3EaVKlUCGzduzJDXFiKzocUCIYQQyUFBDOMsb8zFhTHYe++9Fzhy5EggFti7d2+gV69egZw5cwbfQ+7cua3wiftSgoIbb37E3CLSxMM5Ox7egxBCCOEH27ZtC5x55pl2nhw9enSC+/r162e3X3TRRQnOoRUrVrTbP/nkE1/2SSKFMEaOHBnIli2bfRiyZMli3RMZMThm4Z5ugtKlSyeYcFStWjUwceLEsC9wsz9UJ7HtUG644QbbrzFjxgRv27x5c6BZs2aBt956K5CZoROjTJky1o3hcfz4cfuc8Dfj7+TBgSTcYs2///5rgkmNGjUSfMZKliwZGD58uO3rqcJ7GjhwoHX88NpU9r3wwgsZ8tpCZCa0WCCEECI56DbOly+fFTTdc889gXnz5sVMByvFPx06dAjOp7gULVo0MGTIEOugTg1//PFH4LbbbsuwIrFTJR7O2fHwHoQQQgi/ePPNNwPt2rVLsI6HO8u5555r50/Wc0NhbMPtjNEied4+jX8iazgl/ASPf8KICaZ+++23XYkSJU7p9ciWIEMAv9gNGzbYbWQgPPDAA+7RRx+1LIFwwMf2r7/+sgAYwNeVwG98awnY83IHBg4caGHd5HCQ9SBShiDzu+66y8KsCQv3/o6dO3e2jAh86shxCDd81gjdfvfdd92ff/5pt+Fj3LNnT3f//febl96pQKghvsfTp0+33x977DHz5hNCpA6yeM4//3z3+++/y19bCCEyMYzRyaMjh278+PHujDPOCOajFStWzF1yySUuFli/fr3r37+/vQ/yJ6Bs2bLu6aefthw/730lx44dO6L2vcbDOTse3oMQQgiRURw6dMj9/fffLmfOnMk+hqysMWPGuAoVKtgaqpdJzNgtW7Zs7tixY7Z+WrRo0YidtxWcHWcQBkxQmwfhbYQpMzE4FYGC4GYmGgRu88Fm0ZgP/wsvvGDhdsOGDQubQDFo0CALnuanx/XXX+8KFChgX7bQ4Oonn3zSDR06VAJFKsmXL59bsGCB/Z+GBnUvXbrUDnq5c+dOIGjcc889bvjw4b7vF5/dwYMH2369/PLLLk+ePCYsEPheqlQpC2JHQEsvCB7Tpk2zkCCuP/HEExm6/0IIIYQQ8c7MmTNtTH733Xe7zz77zOYOHoRLR+uifSjLly+3/S9ZsqR77733TKCoWrWqFbIwHua+kwkUjI2LFy9uhV0ieXbt2mXFRrly5bKit6uuusr+xkIIIYRIPayTUbRdv359K+ZOim+++cYECoQJ1tY8gQIOHjxoAoW3JhhJJFLEEYsXL3ZXX321pbXTTeBRvXr1BAvOaQFFjW4MKocYlK9Zs8blyJHDKupZJO7atWuKSt2pwLZ5T2zD+8LAWWed5fbs2eO+/fbb4G1ZsmSxyn8mROyfODVCD1jepPP77793tWvXDt42e/ZsN27cOBOoQqELA1HLD1BeO3Xq5LZs2eIGDBhgk5qNGze6Jk2a2Gef/UnvtnnPTJR4vdBJdLdu3RJ81oQQQgghxP8P4/Vq1aq52267zRaZs2fPbt2uzElihe+++87Gucx5EFeYh9CNvmjRIjdr1ix7b4nHx8mxevVqq2acMWOG7/sdqxw4cMBVrFjR5nVTp051a9eutUKkCy64INK7JoQQQsQUBw8etPVZ1rK2bdt2wv2MSdq1a2fXH3roIRvrhEIBMnAOpmggksjuKQ7gv5Cugi5duli1Dx0FtFmfSvcAr0llORMMr6LlvPPOc48//rhdwiEEsNjMYjFVNgglderUsdsRYPjy8f6yZs3q+36IpKGbhgqxvHnz2oHO+z+7+OKLbRJHxRldDn5Cd8frr79utl4cmIFuH+zI6CJK7WQyOehAonoOkY/XRDA7WfWcEJkR2S4IIUTm4/Dhw2aX+eGHHwaLhh555BEr8KDrNRaYP3++e+6554KWn4z5GjVqZGM+KvvTA929Y8eOdffee+8pj0Xj9ZyNbRZ/+9QWAlEZGlodynsoWLCgxh1CCCGE+79OCdZPCxcufMJ9r7zyirmFUOTLOh4/Q8GNB5cUCtCXLVsW0bGHRIoYZ9++fZa3MHnyZPudPIF33nkn3SICHwcq5Hv06OEWLlxot5177rnm0e99qP0A5Q7f102bNrkpU6YEb3/mmWfME43qedrHRXTD/9+1115r1+l28USkuXPn2oSNbJRTzY9ICg50CHVcPLuvcuXK2aSzVq1a6Z4gkn/Rtm1bs4ECqgSZiGM3JoSIrgUPIYQQ4YXiFKrh6UJo2rSpjbsKFSrkYmUyTwEK8x6gCIX3gDhx6aWXpum19u7d60aOHGkZbtEoSkTjORs7LTptsKhgnkCRHWPu1q1bJ/n43r172/9XYjTuEEIIkRkZPny4q1y5srvssstSfBxF35dffrmtbbFW3LJlSxfVYw9fYrtFWPjmm28CBQoUsIT0rFmzWnr7f//9l+7XW716daBq1ar2elzOPvvswBNPPBH49ddfAxnNv//+G9i3b1/w9/379wfOPPNM2+6GDRsyfHsifBw7diywfPnyBLfdcsst9n/72muv+bptPkfdunULnHvuucHPccWKFQPLli07pdd99913A9myZbPXy5MnT2D69OkZts9CxAO///67fT/4KYQQIn6ZMmVK4I8//gj+vnLlysDixYsDscL8+fMD1apVC44TzzrrrEDr1q0DW7ZsSfe497LLLrPX6t+/fyAWiIZzNnNXLl27dg18//33gWHDhtnckzF3cn9n9te77Ny5M+LvQQghhIgEQ4YMsXNg0aJFAwcPHkzxsffcc489tnz58rYOG+1jD2VSxDCEBaOKoZzhl0p7dXqqd1C06JLAJodqIlq16ZzA9x8bnYxu1ybIm31mfz1oK+rXr5/78ssvY6YCSyQN3RNlypRJUGXH/zddOHj7epBx0bdvX7d79+4M2zafo+eff978+J566inz06OV/LrrrjMPPvxv00OzZs3M9oy2fzpEqPzi8yqEEEIIkRmg6xkrgNtvv9298MILwdvJBGOcFQu5GXTX0vlBxgRZCA8//LB1Ab/99tuuSJEi6R73YoXL87EaFamD+QGe2HyWrrnmGrOOpYvirbfeSvbvTOVl6EUIIYTIjDRs2NAVLVrUtWjRIsXzIdlYWLRjZfnmm2+mO6s4nET/HopkwVcMOyQ8wxAY0mPt9NFHH7kSJUrYa2HHc+edd5pH2WuvvZZhqe4MQkODr3Pnzm0WTvPmzbNtejz55JPujjvuUM5EnMGBkHDtX3/9NYEA9cYbb5itGG31Gc2FF15owdpMPPED5jPIQRmxZMSIEekK177iiitMDMR7me/OydrqhBBCCCFiHcZMWAowDho3bpzZIsVSPtcPP/xgRTJk2ZG3h+0oi+GMEVkQT29xFDmAHowNV61aZX8jkTqYZ2L5FAp/vx07dkRsn4QQQoho5Z+QcQeF5CtXrrT14OQK1clx8sKy27dvn6CQODHcf+ONNwZjBCKJRIoYYubMme7+++8PLuxTJU4levbs2dM1YL/lllvs9QiixnuVgfuECROSDFpJL6h2LOaSN+FBVsD48eNtchBLkxxxaiT+v65Zs6arVKlSMHQb+CxmZHcF/rZ0HBGATYg3GS6tWrVyFSpUSFcgEN+5oUOH2nPJf/H47bffMmR/hRBCCCGiBYqKmC8wVsNDmDE84YqM1aKdzZs3uyZNmlgh1xdffGFFM3TGUoxF50R6xQkKVXj/5JSFBjmnZz6WmaGjhf+LUDZu3KiOeiGEECIR69ats/UsL0crNeMOXHFYcyVPlcywlFixYoUV5IYWl0cKiRQxoph1797dVa9e3TofGFinFyYYHTt2tLZaAuOyZctmbbaIFljYZES1VWh3BL8zwaHyKjSjnQVeArlF5gXLgG+//dYmKR7vvvuudVdwX0bCBHv58uXu5Zdfduedd54dgLEmoPJt//79aX492tM9EFSo/CLc/fjx4xm630IIIYQQkWDSpEm2wM9YjTH7oEGDbPzEHCLabakY3xESSaEK8w/GlWvWrLFxJvYIpwJBzy+99JLNoyZOnJhh+53ZwCKLwHXmoQhK/F8xx/WqPoUQQgjxf7z66qsm5Hfp0iXBumpyYN3vFZSwBkZgdUp4RcIZ5aZzKkikiHKo0EacwGefDyPeqc2bN0/z6/DcDz74wKydsHJCSEAoQJHDbicjLJYYXDIhGDt2bPA27KNGjhxpPrDpycsQmQvUYbor6Hbw4LM6atQod/To0VN6bbyHERKo2qKyju8ENlR8J7AxSI8FlDeJJ6eCyXvlypXN1koIIYQQIpYha4IuWAo9Vq9ebUVO0dwBTcYehS7Fixe38R3jR/IzyEBjbsIcJSMoWLCg+/TTT62ztnHjxhnympkRioUQecaMGeOuvPJK16dPH1uEYYwuhBBCiP8f1nA7dOjgpk6detJ1Vda5yP+lK6JKlSpmf36yx3siRf78+V2kOY307EjvhEgaqkpq165tihnV3++88066KsypHKKiiAwIwH6JPIDbbrstQ/e3V69e1kaEjQ9fHiHSC4cl7+CLZVijRo2sW4FJckaF/VABR7UWr+lNlvAmDu2SSC0EvmMhQDA3dml4+SX22RUinmFxiAoNuvUUZimEELEJuQqIEx5r1661xf1oDlqkixVRgjkItp6ArzLZZDfddFOGbGPr1q3u77//jps8sng4Z8fDexBCCCGSWw+bOXNmutZscd/B1p9CdMZ1Jxu7UBifK1cuu46w4VdGcGrP29E74szkLFiwwAbYCBSXXHKJmz9/fpoFCirDCcRm0RWBAmunfv362Qf1VAUKFmOpeEEA8Xjsscdse1g7CXEqhKrDVO3hT8vnP3SSfOjQoVPaxs0332zVdXRAcJDEY5lQRbqWQkOJUkOdOnWsZZ3qvW3btrny5cu7GTNmnNL+CSGEEEKEA7pV6dbG3im00IiCi2gVKJjAf/bZZ9aFyxwEgYKJOF0OzKMySqAgmJI5Wa1atdzevXsz5DWFEEIIIZIb3zRt2tQcddJq9Y+VOZ2vQHdpaoorvC4KhAq/BIq0EJ2jTmHWNEeOHHHXXnut+b9eddVVaXr+9u3bLdDtiSeesAojOjLWr1/vnn766Qz54D366KOuZ8+eJnp48KHGX1TBcSIjwZaMwJ/OnTsHbyNDBb887JtOpRmM7xkHcSygGjZsGMx/YWJLJ1Na4ASAUMFzUYmZzKqjSAghhBDRDN0S119/vU2EKRJhjBXtLFu2zGyosJVlvJYnTx6zX6I7tkGDBhlqMct4k0wOutqVPSaEEEIIPznttNOs+JVi3bTabD755JNWtIGN4lNPPZWq50RTHgVIpIhSsJ6hEnvu3LmWxp5aWLB9//33rVX766+/tkE1kw7saPBQPZU2Z9pyPFgcZht169ZN92sKkRYxgU4gj48//tgdPnzY7dq1K0MmonzHsJUit4WuCsQGqgmxD0iLCIJQx/eW9jqExYyq4hNCCCGEyGjI/GLOweJ+3rx53fTp0xMUhUQbTKSx16SIC9vOs88+2z3zzDMmVGBty3gxo0EAwXKBAPECBQpk+OsLIYQQQoTSs2dPc/1o2bJlqp8ze/Zs9+6779r6GGvAWbJkSdXzKNQtUqSIK1q0qIsGlEkRJfz111/WnfDQQw/ZwDs9oJjRqj1hwgT7HcsZFl2LFSt2yl+QF154wbxeu3XrlmRugBCR8Oi7+OKLLavCsyBDLaatDXuo9LJjxw4Lp58zZ479TugieTBpUZbZP0S9HDlyBH+n+i4a2ueE8AN5QwshRGzNO9q3b2/jG8AGljkDQkU0gkcyocp9+/a1IhWgIIT5yakUYSU3WacTnUIsutLjkXg4Z8fDexBCCCEAm8qRI0dakWxauyc8206KyCnaIHeVDOJoQ5kUMQS+YfiNDR8+3NqWGYinlSlTplhLDwLFmWeeab76VBidqkABBOb9+++/CfInQAKFiBR89phQewIFDBkyxI0YMcImlaeivZIBgwBCvgqiAt8tuiLwOE7L/nkCBbz44ovWVfHLL7+ke7+EEEIIITICxjYIFORNsPA/bdq0qBQoGM99/vnnljvRtWtXEyjIh1i8eLGJKhktUMDrr79ul7vvvtsdPHgww19fCCGEEMKDRXsKY1nLeu2119L1GozlECjo+KSAI5ZRJ0WEwWufvAh+oiYROo1gkVr+/PNP8x1DcfMC7j788EN3zTXXpGt/ECNoEaLVp0qVKsEA7hUrVlgAtxDRyvLly63yjfDE+vXr220c3vhMI9ylB4S5Bx54wF4bCDBi4ooCnFro8CCvgk4nBJDJkyeboChEPKGKRiGEiC1Y9Gesn5Z5RzhhbkSX+VdffWW/58+f34o+7rvvPl/DvCkWq1evnnWnk28Rj8TDOTse3oMQQgjh2Zlz+eijj8yyPy1gC0W2GOteFK1T+B7L522JFBFk3rx5Ngj+7bffzJ5m0qRJaVq8xDefVucff/zRfie0GtUMf9b0QhA2lk5UjrMwm55WIyEihXc487p8qL7r0qWLe/nll00MTA/YND377LOuf//+JtghNJD7Urly5VS/Bqo26rgnRo4fP946QYSIF7RYIIQQ0Z8/UadOHZc7d24XzRw5csTmMy+99JKNwfBUpgiF+Un27Nl92ebPP/+cwNYz3i1t4+GcHQ/vQQghRObk77//tvNX6JgsPWOP48ePW1zADz/84Bo1amRCR1qhIIOsV2w1iQzwC9k9RTmzZs2yyiUEClSvRYsWpVqg4MM7dOhQd/PNN5tAQaszr4c9TXoEilCdiqohuigefPBBW5AVIpbgoB56YB84cKDbsGGDW7hwYbpfk8kx9mkEJvLdILOiatWqJnykVuMtXry47QPfWQ7Od9xxh4mSQgghhBB+QsYCHQktWrRwjRs3tkq7aOWzzz4zK0/GXUy8a9SoYaHeiBZ+CRRTp061jldCJj3iWaAQQgghROTw1oMoWsUZ51TGHs8//7wJFBdeeKEbPHhwuvaHTgxsNKNl7JM+DxRxymAZQ7hJrVq1rKo6W7ZsqW5BJgiFUBXAL5VBdaj/fWrBH5+QYcQI/M8gZ86cbuPGjeqgSCX87fbu3WsVWPw8dOiQXTjYhP7kQkghj/cuLHDTrs6Fvzf5B0zAzjvvPLt4172fHHio8uKn/n9SB0IAijBdRh4//fST/e3T6mNcoUIFt3LlSguafO+998xmbenSpebpnJqWvFy5crnp06e7Jk2aWL4FijXffTI0hBBCCCH8mAgjTLAQz+STAik/rZLSCwUgCClffPGF/U7XKuM37Dv9njQvWbLExuuMzVq1ahWVfx8hhBBCxAcUquNaQ87WqlWrbJ0pPaxYsSKYP0E+K+uEaYV1sd27dwdtNaMB2T1FsJV5wIAB5gfL4nRqYHGVhU0G0wygsZ9hoTS9g3e6Nwif4/l0ZBQpUiRdrxPP0IqERQ/CDZY9fIG5IEpw+fXXX61CLanq+8SCA10uiAueMAGeYEFVGyJGYmGDKrLE8BqEGyJYeBcOKFTrUwl26aWXugsuuCAsf59YhDa4L7/80oS5e++9N83P9zqZOnToYP/3V199tZs4caJ1WaS2tQ+btk8++cTESiblQsQ6sl0QQojoYvv27VapRyfCOeecYz7H0eZTzDiKyj+KppiskyHG3KZ79+5p9mROL4zrKP4ig4zxe2YgHs7Z8fAehBBCZE5Yi2XMU65cuXQ9/++//3bXXXedFdHeddddVvyaHshN9cQN1iP9HAcpkyIKWb9+vStRokS6RIVvvvnGuib27NljC9Bjx45Nl6c9H7xQUaRPnz6uWrVq6Vbv4gG+AghAtDnxf4QgwQVxAhHCI0+ePK5AgQJBUSCxSMD9niiRUV9uRApEC77QXscGl1ChhAv7H7qvHGgQKxAtuFx++eUWfE5lWrS0cUUCOpGwDpg/f751QZQpUybdr4X9U8OGDYPfSfz/Uhs+yaScIMj05mQIEW1osUAIIaKHZcuW2RiDsSHjVDoU8CyOtn1s3bq1VRNCxYoV3bBhw1ypUqV83S6d7G+++abr2LFjpu1Mjodzdjy8ByGEEJnH4YPxWHpFicQ899xzrlevXubWsWbNGitiTg9YRVF0SzYG641+IpEiymBywIJm586dTRhI7UIx/z207mBXk56q7dDFbjo3qB5nMT6zVtrz99y5c6dNjEIv3hcSgQEhyVvc9y4s+Ef7AJjOC7o9PJHFu5DJwIEAOIhxYAy9ENqemYQLPgP8n4dO1ulOIiw+rZkuiEMo13j40R1Dux3f8bT+PQ8cOOAWLFgg0ULELFosEEKI6IDuXOYLa9eudaVLl7aJ8cUXX+yiBUSC3r17W24Y3cRY1hKSTWaG31ZLjAHJFfv666+tY4PtZkbi4ZwdD+9BCCFE/PP555+bIw5CAoWyp2qrtGLFCuuiYH14zJgxZuuZXiicrVmzpo0b6cqIhvO2MinCAKLCPffcYx8iqvMZkKemcodB/COPPGL+94A1zfDhw9PV/sw2P/zwQ7dt2zb3/vvvm1VNZpmo8WVjMsKF8GJamoCDBIv0bdq0sZ90GjCJi9UFewSWa665xi6JJ2R0WyBOeaIMn6l+/foFc0huuOEGd8stt7gqVarY82k9i1f4/w0VKOhKoSuJz8OMGTOs2yS18HmZO3duMCfm6aeftr8v11Mb8Ii4RAcG/z/8v2AFJYQQQgiRHphj0PaPEEBuFuPDaIGxON0TFNUAE2uyJ9JbAZieMSDjfioH69SpE5ZtCiGEECLzwjpbyZIlzWo/PbkRiZ1BWC9ibRkLT6zMT4Voy6MAdVL4zLhx40xcYLGcnwgEqVkAJkAOtY0FT6qKqPShmyItC+h8gLF28p6DxQ3+tOxHrC7Ep1WUwCYLpY4KedrIuXgdBHwR4/XvkNrgdE+04LMxb948y0phMnvTTTfZwZRLvIsWdDDQ5YTggIiVntZ/DqNYFDz22GPmD3jllVeaOElOSGoExIcfftgWEvg8jho1yjVr1iyd70aIyKCKRiGEiCwUQtH5G63nCDpNGSsBY3DyverWrRu2+UHo+O7gwYPWwZFZiYdzdjy8ByGEEPFJ4nGHd6461fXHxx9/PFjcQcHFqYoeFMliHYUlOlaYfiK7pygAj3pULj6ghLGx+JiaBVAWixEosCDCnof8CXIj0sL06dNt4RNxgwXYeAarnKlTp1oY8rRp02zi4YkS3kI77VCpDSjPrLC4TvuZJ/B4ogUHEDoNmEjefvvt5lcXb/CZ+e2334I2aggHCFx8dtICYg/fNwQgJr+EY6cmO4bt0Y3x1ltv2YmLjqmWLVum+/0IEW60WCCEEJGBqVzXrl3dK6+8YuPhtM4Z/GbWrFlm5UQBFjA/efHFF+2cEQ4++OAD98Ybb7iZM2dGVVdJJImHc3Y8vAchhBDxB2tB9erVM5cNuh0yipkzZwbXlrDyjDWr8FSftxEpRMbz4YcfBk4//XQEoEDz5s0D//zzT6qe9/nnnwfOPvtse16ZMmUCW7duTdf2e/bsaa9xww03BP77779AvLFp06bAK6+8ErjlllsCZ5xxhr3XcuXKBXr16hX49ttvA8eOHYv0LsY8x48fDyxYsCDQp08f+xzxN+YzXalSpcCAAQMC69ati8vPFgwbNsze7wMPPJDm97hr167AjTfeaM8/66yzAmPGjEnV89hOu3bt7Hlc2AchYoXff//dPrf8FEIIER7+/fffQNu2bYNjB8bG0cKhQ4cCjzzySHDfChcuHJg9e3ZY94FzUt68eW37L730Uli3Hc3Ewzk7Ht6DEEKI+KNHjx52fipYsGCGrUvu378/UKBAAXvdNm3aBOL5vB2/Hi4RhqpsKpuohn777bdTFQRHpwU+rXRe3HHHHdZBkS1btlRvk+157UPdunVzZ511luvYsWPcWBoRAPjRRx+Zjc66deusM4JqMYLF+XsVKFAg0rsYV/D5KV++vF26d+9uivDkyZMtBL5Xr17Wto+tAOpwkyZNLGwnXtizZ491PWF1ldbvDxYGdKJg2cR3+L777rOuqEcffTTF57GdwYMHm7XWa6+9ZpWGBNzffffdp/huhBBCCBFvMF9o1aqVe/fdd20MgZUS84hogG7U5s2bu61bt9rvZOwNGDAg1XldGQWVegRW0m3dqVOnsG5bCCGEEJmPnj17uv3795s1U0a5ubRr187t2rXL1t8GDhzo4hnZPfnI4sWLLaD3ZAIF/wXYMnXp0sV+Z1CP3UtqcwB4Pm3MixYtspbmeBElvCAXEusRJ5YvX24WOvXr17f2qVtvvTXskx3xf2ADNXv2bJv4IRpxECaHAXszMk/SEj4drSCEXX755cHvE21p2ASkRnD0LJwIqOe7CT169HDPPvvsSb+ffJ8RNPjbTpkyxV111VUZ8G6E8BfZLgghRHgtOrGSpRiCogqECsZgkeavv/6y8Q4TaMYzjAdHjhwZVgsqbGCZP5QqVSps24w14uGcHQ/vQQghRHyAVTp2836sxY4ePdqKghnvkad6/fXXZ9hrU5BM0cuHH37oLrvsMucnyqSIAIRS88em+jm1sJBJRfrLL79sv3O9f//+afpwb9iwwRYymbDEojdZUh/eCRMm2BeFhXAq+uvUqWNfTDIRlC0RXfC5++qrr+z/i4V1AtsrV65s/1/kM6Tl+xCtcOCuWrWqO+eccyxciKCi1MDhtW/fvqamA90RdP6cLJuG7e3bty/V2xEi0mixQAghwicENGrUyMZcjJEp5rnrrrsivVsW4IhQsmrVKvudHIpBgwaF9ZxA7kX16tXtnETxVsGCBcO27VgiHs7Z8fAehBBCxD6s9fTp08fWcb3C84xiy5YtrkyZMu7QoUNW8OqtK2UErEWT5ct6HuMnv8dMqT1vp64kWJwUFhQJMbnpppvczp07U/UcPgx0TXgCBd0UBMmlVX0rUaKEvQYWMSzixyIs5jKZePDBB91FF11kP1mopaPk119/dePHjzdbIQkU0QcTZOy2CIrn/4pqvixZsrg2bdrY/yUTVpTlWNZDV6xY4ZYsWWLB2BxcUwvfZSoKhw4dGrRiYGEBISclEDFCBQr+flQFCiGEECJzwxjh3HPPtTHxZ599FnGBgkkuod10jyNQXHjhhbZfI0aMCPviMZNfxqV0o6dlvCaEEEIIkR4Y98Dhw4cz9HWPHz9ua0cIFJUqVTJL/4xew2ZNGli3ixbUSZFB1je0MX/33XeuUKFCbuHChS5fvnwnfQ5e89i5MNmgFbpp06ap2h6L90wG8LqP9RwGvshU4L/11lu2EMzfDz9d/haqfoptfv75Z/u/JZNl8+bNrmTJkuZJzP9tLFY8rVmzxryVEWTSA0Ib3SWcbKpUqWIT+NT8HeiOYgHiiiuuMI/nWPzbifhHFY1CCBE+mAswLol0Hhh5ZWRwTZ8+3X5njPTOO+9EtBOUYjHmVmSEifg9Z8fDexBCCBEfUHB9ww03ZOhrPvnkk1aMjjPJypUrM3x9FEt9CorJudi4caPzG3VShHGSwMIjAgUfnqlTp55UoCBUm64LBArsY2jXTq1AAQS/YQvFdqleikVYtOZ9ILK0bdvWPGv5e/z444/umWeekUARB/A9eOqpp8yObMaMGSZSEOTO/3n79u0t8yGWwNs4VKBg/2vUqGGtcakB6yuOD+SozJkzx91yyy3WeZKa7ZLFwomJ1/DUbiGEEEJkDjj305XJvANYhI+0QDF58mTbBwQK5jMUHH3xxRdhFSiotSOQG5tYD+YQEiiEEEII4QebNm1yLVu2tOJTj4wWKCZPnhx03MGpxI/10VGjRtnPaMg0SwCdFCJ9/Pfff4F27drRiRLImjVr4Ntvvz3pc3766adAqVKl7Dk5cuQIzJs3L83b3bhxYyBv3ryBUaNG2T7EEosWLQrUr18/cNpppwVy5swZ6NKlS2Dbtm2R3i0RJvj8d+/ePZAnTx77Dtx+++2p+t5EI5UqVbL30LBhwzQ9b+nSpYELL7zQnlu8ePHAli1bTvqcJUuWBLJly2bPadasWcx970X88/vvv9vnk59CCCEyjuPHj9tYg2Ns69atI707gaNHjwYee+wx2x8upUuXDqxduzYi+/Lxxx/bPpxzzjmBrVu3RmQfYpF4OGfHw3sQQggRe2OywoUL2/mnc+fOvq2Z5c6d27bBeMsPWINlTZZthGv8lNrztjopToGBAwdaCC5e89ja4BN2Mvsbqqdpz6bC59tvv7UE+NSwa9eu4HXacbCdIc/Cj/R4P6qcZs6caZZYKIy8fyyAfvrpJwuXweJJZA7ooiBUiO4DAqgJmyfHhQudNLHkPsf+01kxePDgND2vXLlylm1RuHBh6ygiZJy/Q0rg8zxu3DirnGS7vXr1OsW9F0IIIUS0Q+fEAw88YJaR5H2Rzxbp6sHy5cu7119/3X7v0KGDdZNjSRkJsMOsW7eu69evn42rhBBCCCH8gtwrOlsrVKhgzjB+jPvuv/9+y4u45pprrFvUD95//31be6tatWrUjZ8kUqSTP//80wQKIB8CG5aU2Lt3r7v11lttUZIPAYuUV155Zao+pFjmMPj/4YcfgrfTVh3tYEU1ceJEEyawtzpw4ID75JNPzCanVatWMfEehD8Q9ojFGQGL2J39888/rnbt2nYgJoDbszOIZooWLeq+/PLLBCFDCI+psWNCaOQYcPnll5t3MieHUCEyKW6//XY7IQJCD6HyQgghhIhPmDw+/PDDbuzYsTYp/vTTT12tWrUitj+Mz8qWLWsZcrlz5zYrgldffdWdffbZYd2P/fv3B4taCMgm4wuxRAghhBAio2HMwdjDo2bNmm7evHm+2Fv27t3bff3112YRzviPdTM/oMCeQg/WZaMNiRTphA/NggUL3KBBg8xnPyVYnK9evbpbu3atVZLPnj071WoVC/3Lli2zRHd87GMB9pmJDCJMgwYNXLZs2dxXX31l74OwcKrBhYDTTz/dKuD4LvH55kB/77332uI9HQOxIFZ4sP+IDYgJR44cOenj6aaiwwixY8uWLSZi7tmzJ8XnECrfo0cPuz537tyY6jwRQgghROrg/E6R0ogRI2ysNGbMmAS5WOHk6NGjrk2bNjY+o0jr5ptvNqGC8U64Wb58ueVgvPjii8HbYqGrXAghhBCxBwWoLOTTRRoqVPgx9qAAtm/fvnYd5xkKW/2iSpUq1qXL2C7akEiRRkIXBVlkPJlAgbhA1ROD+Tx58rhZs2a5IkWKpHp7VE7x4aEj4bHHHnPR/rdBjMCahg87i68sPqMEItJoEiGSg88GVmh8fpYuXWoTUOzMSpcubSGMsbAYjzCB0s33PLVdQoiWHBMuvvhit379evue/Pbbbyk+59lnnzURkBY9faeEEEKI+AP7Ii8w8Z133rFqt0hABzgT82HDhtmYo3v37jZuYfwSCbCW2r17t/voo4/csWPHIrIPQgghhMgcUHDOuOfHH3+0IlG/4PWx94RHH300KsWDcCGRIo0qGoLD6NGjU71oWadOHbdo0SKXM2dON2PGDFeiRImTPm/hwoU2IfHgufXr13fRzOLFiy1zgtYnOiewvZk0aZJNbIRIa2YDlgZ8puisqFevnmVW0FIXzWBXxT5T9ZgW8YCuKk58vNeVK1faMeaPP/5I9vG8dqNGjayyEhBwsMsSQgghRHxQqlQpK3ygY/vBBx+MyD5gx8mYjLHJhRdeaIUk2E1isRQpHnnkERNMmGeE22ZKCCGEEJkLClCxt6RwFpcYP2DdmGKU33//3dZPyT72Czpie/bsaRlj0YpEijTQrVs3G6AzQCZjIiX++usv+xCjtv3vf/+z51EdfjLIa6D1Bg9aOhCinQ0bNlgeB7kTWNXw5WXicLIQcSFOxnXXXWd2SHx3OHAjVCD6hWazRBslS5ZMMGnmmJGa7IjLLrvM3muuXLlM6MDSITWWUZxkmjRp4tq3b3/K+y6EEEKI6IACDeYEJ+vY9gMKH55++mkrkKJoomLFitYRTr5cuMH2880333THjx8P3vbQQw+5HDlyhH1fhBBCCBH/4OzBmmZo4QgFqX5AwWnbtm2tIARBZNy4cS5LlizOLygGpuCE9xOtbiUSKVIJdkueojVq1CirKEqp44JKZxZX6SqYMmWKWSClBrz4WXRkMTa1z4kEBw8eNPspvrBLlixx7777rn2x2G9Z0IiMgs8SFkicKPBjZsKOBRQT1H379rlohuwZ7BrYVyb3J4MMl+nTp7vzzz/fToosDpzMyoC/C9ZPVBV+8MEHGbj3QgghhAgnFDZt3749+Hta7GEzCgqOGHd5mQ+IJGRuYXEbCVq2bOnatWtnxVtCCCGEEH7bSlauXNmKRTZu3Oj79sieIIsVlwzWdQr4bKfJWjY0a9YsatdtJVKk0h8Mf3x44oknUmzzoeKnadOm1iJNmzadBVQgpQTPIWwa+KC89dZbpnARzh1tsJ98ibCt4gPev39/66bgQ65AbOEXHLQbN25sIsXrr79uCjOfQb4r0RquTUfUc889ZxkSZcqUSdVzypYt66ZOnerOPfdcs4e75557TPRMDnI8evXqZdcJtVy9enWG7b8QQgghwsP3339vXZQVKlSweUckoOiIcQiiBOOQsWPHmt0U+XiRgrEf+1KjRo2I7YMQQgghMgcUxOKAc/3117uLLrrI121hZ07+BFDcyvqRn2zZssUKYlhzZs06WjktEK09HlHC0aNHbcJAJTRiAwP35AbrLOC3bt3ajRw50h5D98XJ2oJYgCQgBT/6V199NWrVLOBvQDUTYdgEudBZEqnKKpG5odIPKwKEMvyShwwZYpZj0Q42cBxyT+ajzHHm9ttvt04KhApycJITARFpeCxdGAg3LDKcd955Pr0DIZIGSxC6gPDSxOJQCCFE6ieNzDV+/fVXV7VqVevAptApnNARTbED4xTGEsxhrrjiChcJGCeFzofonM2dO3dE9iVeiYdzdjy8ByGEEJEn8biDsGzWU/zM4NqxY4c55xAjgH3+J5984vtacM+ePc3qCftO1o6i9bytToqTgKURi/PYO1FRlFI1Ue/evU2goOoba5rU+JahZPG6Q4cOdWvWrHHRCF9SPO9ZDMbmiQVUFk0lUIhIgV8f3zUEMxbpb7zxRteqVauTZsVEEs8GjkrJw4cPp/hYVPQJEybY8YYT1pNPPpnsYxEvPvzwQ3fxxRdbVxN/B2nPQgghRPTDAnzNmjVNoKB6D3EgnAIFYxPmOoRzI1DUrVvXsrEiJVBglUnRyf79+4O3SaAQQgghhB+Q8Ym1E2tLHhdccIGvAgVrQWyTtSscNygU8VugOHDggBs8eLBdZ70ompFIkQJ0RjAwZhEQ0SElfzAW7VGlgKBc0tlTw6233mqWNZ999pl50kcb48ePt5wMLJ5eeuklE2ywmBEiGihfvrzlMtBJgUUa1X/vv/9+VC7Sr1+/3s2aNcva+latWnXSx9eqVcvEB6DLCr/C5EBERczgZMrPN954I0P3XQghhBAZy5EjR6xwYdOmTa5QoULWQRHOinAmx1TTeZNWiq0QSSJVlY5gQvYEHaHenEoIIYQQwi9Y5/zyyy8tgyu0QMIvWKeiMMQrhCcmAFtLvxkwYIAVnF911VWpXquOFBIpUoCOCLzBWFysVq1aiuEqLVq0sOudO3cOXk8O2ltCK6kZkGPXEk0wcaHq++677zabKyq0O3XqFFFfWiGSAhGxbdu29hllYZ98FJTpn3/+2UUTnBBmzpxpYgriSmrA6smbqGO1RhdTcvCaWLBhHce2hBBCCBG9hVD4AS9atMjlzJnTTZs2Lawdyj/88IO77rrrrKMbSwMmyWRcMfeJFMwxKNrCOpfMOyGEEEIIP2EdCdcY7I9y5crl+/aef/55y1dlzINzxiWXXOLCQc6cOW28x/ajPUtYmRTJtPxkyZLFLqnxEiNUhTZtWqT5oKX0n+61dfMhQbELt+dsamAR9ZFHHjEbHSrUESuiOStDiFCY4OKrfPz4cQvZbtKkSdR+fjlusFCRL1++ZB/DIfr++++3bi1aD1nQuPTSS5N97G+//RaWE6wQocgbWgghUg/navIn1q5dawUMN998c9i2/cUXX9jYiPlO8eLF7fdI2TthMbVx40YVV4SZeDhnx8N7EEIIEX6+//57s1kKd2EGa8VeFwMuGRRlhHvsecEFF0RsbUyZFKcACetMFhAgUoLBPcKE5yP70UcfnVSV2rp1q3Vm0N6zfft2F00goDRu3NiCWypVqmQTJ36P1gVeIZKifv36lu+CGEgoPb//8ssvLtrgJFG9evWTHmv4/o0YMcI8mvESxBqCn8k9NlSg4DstHVoIIYSILihW+vbbb83iKVwCBeOBF1980cZFzGEQSSh8iJRAwVgGuyneP3MjIYQQQgg/YV2FIvOnn346rNtlvEWBCNC5EW6Bwht7xsLarkSKREydOtWCSwiN27lzZ7KPo/qZD9nKlSvNXoUqpOzZs5/09WmtnjRpkrVXX3bZZS5aYP9LlSrlZsyYYWIL3RS8LyFiERbq6TxArcaOrWTJkhZQH02gJHNhoYCuj5Q4++yzrUOkYMGCVnGIDRvezSfzVyxWrJi1EwohhBAi8oT6HdN2TzZduDoWmjdvbpNyxArsDbCYYsIaKRjb/PPPPzanisZiEiGEEELEF4w9cIxh3MH4IxxQqE5x+7Fjx8zmf9CgQS5c9OnTx9Z4Y6lwVSJFCLSdeIpWhw4dLIshObp27WoL+9g1sXiYkpfY7t273Z49e4K/EzwdqaqlpCYthMTg4U+lNhXo9913X0wobEKcjDvvvNM+01Tq0RX00EMPWVBlNFC4cGGroiRMG7uFk3HRRReZRRzBSjyHY1RKJ5stW7aYCEKWBRkzQgghhIgcdAtg10jeQjgniwgjjIPef/996/jGypVLpHPmzjnnHMvCWLBggc2NhBBCCCH8hELzr7/+2go6w2H3RFh17dq1bT0Yi6mPP/7YnXnmmS4crFy50vLGcO+g0DVWkEgRwpNPPul27dpl1ccEiiQHnRako8PIkSPdjTfeeFJLF+yTos3eafPmza5ChQpu6NCh5t3PRIGFUCHiidy5c9vJ4J133nEffvihiXFYmUUDF198sXV5eHDywD4uObCVo0MEEZHvLYsMyfHMM8+YxzOWT7QUCiGEEMJFzNqoTp069pOCg5N1Q2YUmzZtcuXLl7eiCPx/6RiniyJS0NU6atSo4O8XXnihdXILIYQQQmQ0FGuSV3r48OHgbZUrVw5LUTZuGWRQrFu3zhUoUMAcdeiiDRfPPPOMFcWQMVyiRAkXK0ik+H+Q5s4ipic8ZMuWLcnHMcinGht69OhhXQcpwWQEOxe+FOFqJ0rtJKFs2bJWab1w4ULL4VD3hIhX+Gy3bNnSLVmyxL6H2K4hNkZT29vy5cute4ssDbq6koNWQTylgW6Kr776KsnHZcmSxRYCqJr85JNPzPpKCCGEEOEFSyMmiBQHFSpUyE2cONHO0X7DnIVCKoQKtkvHAh0VkeKbb74JdrUuW7YsYvshhBBCiPiHtR4KRIYNG+YeeeSRsG/74YcfdrNnz7ZYAAQKhIpw8dVXX7nJkyfbWhCWT7GERArn3KFDh4I2T15odlKQUdGgQQOrfiJcunfv3id9bboy5s+fbz5gRYoUcZHm6NGj9mVhkkDbEZMExAohMgNU6yFU3Hvvve7BBx90TZs2te9/NICqzkmEy8kqLOn6Yv8RXO655x5bgEiKcuXKuS5duth1TsyhXthCCCGE8J/OnTvbPIACKLqW8+TJ4/s2x4wZY3kXdHQTEElgY6Q7Fm666SYr7qK7E8sDIYQQQgg/C1VfeeUVs9rHrj+cdO/e3YpisZSiQDyc454//vgjuL7NmAur0VjitEA0lRJHCIJMEB3oevjhhx/M8z2pKqiqVataVRKL+vxMrtuCIBasnYoWLeqi7X3Wr1/fLGUGDx5sleXqnhCZFQLiaf1D0WbRIBpa4GgFxAIqNW2AtA9Wq1bNzZs3z8QIKiSTqswkd4ZjFhZXLA7wvoXwYzB0/vnnWxcQliJCCCH+zyKWogIYP368tf37CdO6gQMHmjACbI8siuTmLH5DIQjzKs/3mTkSxRgissTDOTse3oMQQgh/zg+h54Vwjz1Ya33sscfs+vDhw12rVq1cOGnbtq1Zg1Mkn9z6djSft9VJ4Zz953333Xdu5syZyf4H9u3b14QJFg+xTklusM/kALWKRUM6KKIFwmGwuMF6avHixfZFkUAhMntoEp1ETJzJqZg2bVqkd8lU/lCBgrCj5GziECSolMyZM6e9j+SqA7JmzWqLJARk5s2b107SQgghhPC/OIjuZejZs6fvAgXndybFnkDx+OOPpzhn8ZsdO3ZY9t3TTz8dvE0ChRBCCCH8gLVYrI3oHCVrOBJjD8ZdWHID+xJugWLNmjUmUABxBtEiUKQFiRT/Dxbwkut8mDt3btDH66233jILp5TslFCrUIdCvxiRhH3Gg5bQXQQKwnSFEM5ddtlllslCsD32Z7QDRktz2bhx40xY7NSpU7L7RNeFF0DJvk+ZMiXJx/E6W7ZsscdogUAIIYQITxEU1XTYMvbq1cvXbTH/oCv8jTfeCNobcPE6GCIBBWCrV692H374odu3b1/E9kMIIYQQ8Q85wB9//LH76aef3Keffhr27ZM/8cADD9jaTbt27Sy4OtyUKlXK3nu3bt3MCSgWydR2T1QYEWKCXxjVxkmBhzuL+wgOzZs3Dy4IpsSRI0fcnDlzbNEzkuBr37FjR/fmm29a1sbLL79sYowQ4sTqQ04iBFI3a9bMhL2zzz47ovuELdP9999vixtcP/PMM5N9LJWTLITkzp3bui/y58+f4mtz2FcnlchIZLsghBCROeeSO0EwJLaPzGc++OADd/fdd7toAJuDGjVquEsuuSTSuyLi7JwdD+9BCCFExrJt2zYTC1q0aBHW7S5fvtxVrlzZbC4pGkEsUXFoQmT3dBK++eYb9+qrr5qNE2FyyU0q8JFFoMCvnkXA5Ni9e3fwOm3VkRYoqFiqXr26TQ7efvtt9/rrr0ugiDAErTNJTepyyy23RHr3MjWcQPr372/VfpxQqlSp4n7++eeI21Fxgh09enSKAgUMGDDAxFS+96j3KVk6bdiwwTpHkuu6EEIIIUT6GTZsmAkHHn4KFFQLEkiNQJEjRw4L6I6kQEFRBZWMHgQ3SqAQQgghhF/Wmox9PAoXLhx2gYJcUdZeEShY16NYJNwCxdq1a92ePXtcPJApRQoW8Ogs8AbPN998c5KPo2X6yy+/NO93Fi7pukgKgmuLFy/u3nvvPRcNbNq0yTz2abGeNWtWMNldRJYnn3zS/i/Kly9vC+BcnnjiCWvJmjBhQqR3T/w/YYDsGXyUr7/+evsORRLEktAT3N69e5N8HF0fY8eONYEUYYOOkOQYMWKELWbQfUGothBCCCEyBkKq27RpYzaLoYv1frB+/XrLfGBiSgcl4xcEi0iBpRUdoPfee6/yr4QQQgjhK5s3b3Y33nijq1+/vmV0RkokufXWW61Y9Nprr3Wff/552B05fv/9d1evXj1XsmTJqMpFTi+ZUqQYOXKkW7Vqlbvgggtcv379knzMihUrbFEZBg4c6MqUKZPs6xFeixfs5MmTI+5nz5ezYsWK1jWxZMmSiE5WREIQuVhERvS66KKL7MJtVMkTfiyiAxYW+O7kypXLvj+IkJGG8GzsqOjo4mScFNw3ZMiQYEAnQkRS9OjRwz57P/74owmxQgghhMiYVn8vKJuuRj/DCukCpyty586ddv7nnH/llVe6SIKt0znnnGPzkEhmYQghhBAi/ilUqJCt05IzyvpGuMFxp1q1auaqQ+HxtGnTwm4/GPh/7j+sEbG2eMUVV7hY5/TM6INFBoW3kMdCZGL+/PNP16hRI3f8+HFXt25d1759+xRfk4U+WrvJq4ikzzttTrQXEQDOwiqtTkKItENF4ty5c+2kR+j8F198EfF8GTokDhw4YN1dyUGexn333WcVjFQy8vjEnHfeee7555+363369Em2O0PENghWnAOo5KCzbvHixSk+HvtDFrpYYCpYsKBlNh07dixs+yuEELEMGXYNGjSw4+btt99ucww/x/tMitkmhRWM+ZmoR4LQ4iy6Opgkd+nSRblXQgghhPBl3OGNPSjMHjdunFn5FyhQIKz7QecE60R0UhQrVszGZkmtLfvNoEGD3MSJE60Qevz48XFR/JzpRAo6J/DquvTSS13btm2TfAxWUBs3brQPOl0XJxtoc/9DDz3ka8XUycCOihwMKr+xeCJAVwiRfgj1mTp1qn2v7rzzTrNJihQEYWIJxvecxeOUjkVDhw61EyWWVdiLJdXdhZiBAENrIFkpIr7A+qtTp05mvfH9999bXgkVrsn5VJJ78vTTT9vj8dTks85rdOvWLez7LoQQsQbdjtgcEdbI+Zd8K786CRgL3HHHHWYlhf8xBQyRGvNjiUk3B7kYoUUeQqQ3q+/yyy+P9G4JIYSIUv755x/Xrl0798orrwRvo3OBIsxwQiEoc2vmzawZz5w50+XLl8+Fm3nz5rnOnTsHCw6xm4oHMpVIQYcEC3iehRNqU2JQ4t59912bXBD+lpwa9tJLL1mlUDR4rr722mtWNc0FD7RIiiUibajSLLrxsh6wb2jVqpV74YUXImbpxomPDq+TwYkaCzpsxD799FPr8EoMOReo7kAXGH7WIn5g4IZAResn3pRvvfWWWc0huicFNiHYc9CFQ/cFC1+cT1LqviDPhM7E0IsQQmRG+vfvby3+jBkQEbCT9QPmJ4Ri0+nNTzork8vL8xvGQhRocf5IqXhCiJTAHsPL6eMSDRarQgghohPcLVjPZR0W6+pIcPDgQZsrUwh44YUXmkARCQebPXv22NoQ69HM4clDixcylUjBQJ6sib59+7o6deokqYh5gdpdu3Z1lStXTjaYmqrTAQMGuEmTJrlIwQQBn/qOHTu6p556yiYvtDyJ2AHV95dffrHOHRGdsKCPdc6zzz4b/L5RNRlJjhw5YicjRIikwP7Bs3QinP3XX3894TFYwxEyxYkNoVPEByxekU1EgJcHoju/L1y4MMnnYNHBczxRYsuWLW7KlClmWZJSVyLdRt4FiyghhMhskEnnCcCMFa6++mpftsN5GuGZ8UfLli2tGCGpYqtwFtnQhdewYUMrdhAiPVBQ4+X0cZETgBBCiOTA3YLcYArL6VwNN7hQ0EGxdOlSO1/RzRqpDsDevXtbFgYZFIzD4qr4OSCCtGrVihLpwOWXXx44duxYio8dM2ZM4NFHHw38999/gUjAdp944gnb35deeiki+yDSTocOHQKVK1cO/r569epA3rx5A+eee25E90ukjqFDh9p37uGHHw78+++/EduPgQMH2n7kyJEjcPDgwSQf8/fffwfKli1rj2vUqFGSj9m0aVPg9ddfDxw/ftznPRbhYteuXfZ/vmDBggS3P/XUU4Hrr78+2ee99tprgbPOOitw5pln2vPbtGmT4nY4R/7+++/By86dO+15XBdCiMzE/v37A4MHD/ZlTsBrPvvss3Z85dKpU6eIzT0Y9zBuFbEP5+pIn7N79eoVyJYtWyBfvnyBIkWKBO67777A9u3bk328xh1CCJH5WL9+fVSsVXCuufHGG+28kzNnzsDKlSsjuj+HDx+2+fratWsD8Tb2yBQiBYPq77//PsXHfP3118EJwDfffBOIZpicsNjNvrLAKIQIHyNGjAicdtppgZYtW0ZMqECAYDI3d+7cFB+3bNmywOmnn27HikmTJoVt/0RsiRRz5swxsXT48OGBVatWBSZMmBAoWLBg4LnnnoupBQ8hhIgnGO937tw5OD/p06dPxAQKFogpeGBReenSpRHZB5FxRMM5e8qUKYFPPvnEFnqmTZsWKF++fOCSSy4J/PHHH8mKGt53IfSicYcQQsQnU6dODWTPnt3WXSI1/gHOSxUrVrRzzgUXXBBYvnx5xPYlM4w9MoXdE9kSZcuWTdan69ixY+Y5D/irEj6dGNqryaEg1yKSICx16NDB2r5pK/fsqYQQ4aFFixZmrYa9A5YLkbB+oj2e49rNN9+c4uM47nle0W3btk3x+IVN0MqVKzN8X0V4ofUUi7LEFl/8jpVCUvTo0cM98MADlrty1VVXWSst+StYOkXa2kwIIaIRrGOHDx/uW04Vr4u9JNayQI5U9+7dI9bOz3kFH2bGCtjeCnGq1KpVy7JVsEjDPgObST5jn3zySZKPx4oZqw3vsnPnzrDvsxBCiPAGZWNzjRUxa7aRgPNNzZo13fz5812OHDksg6JMmTIR2ZcJEyaY/Xi8z8/jXqQ4fPiwDWoguUATFmM2bNhgCzgvvvhiko9BoCA5HV/vSH0omLB06tTJDR482IJQWXQUQoSfpk2buvfff9+99957JnBG+kSxd+9e84ZOCrI0OPbt2LHDFqOTghM/4YXVqlWzCaKIXfAoL1eunJs1a1bwNj6f/F6+fPkkn8Pgj9yKxAtSEKmgeCGEiFZmzJjhevbsGQyOzmg4ZjO2eP311+13xvwIFpGE4ggWj+fMmeMaN24c0X0R8QmLP5dddpnbvHlzkvdnzZrV/e9//0twEUIIEb/ccccd7quvvnLTpk1z55xzTti3T2bxbbfdZmM9zlGM/ygCjQSLFi1yTZo0sbVr1qHimbgXKQYOHOh27dpli3RJDfDXrFnj+vfvb9dZ/OfDl1wQbf78+V3r1q1PWMwJBywUIZK8+uqr1kHhdX4IISLD/fff70aNGuVGjBjh2rVrF7HFXAQKqtDYn2+++eaE+88991w3dOhQu86Cx5IlS054zCWXXOLOOusst3//fqsOFbENYjYVvoho69atc4888ogJ9oSueiKbJ95DnTp17DPy8ccfu61bt9oADEGL2z2xQgghxP91pdF5xjmfsXjFihUzvGqwefPmdgxnvkHnZqTG/PPmzbM5hweLwpUqVYrIvoj4h27fH3/80eXLly/SuyKEECICHD161D3xxBPut99+C95GkThFeOFm3759rmrVqrZ2kitXLivSuPbaa10k2LJli83L6SapXbu2rfvENYE45rfffgucd9555ns1duzYE+7HT75ChQp2f506dU7qc4Z3VqS80LzQPMJNhRDRlVHBd5Mg+0jRvHnzQKlSpSxPIDnIsGA/S5cunWT4FN7A3J81a9bA7t27fd5j4TeEuOLtnCVLFsui+O6774L3Va5cOdCsWbMEGSe9e/cOFCtWLHD22WdbHkXbtm0DBw4ciCl/ayGE8BPmDdWrV7dj3ZVXXhk4cuRIhr4+x+LGjRvb659xxhmBjz/+OBDJoErOH+wLeQEivoiGczbjZjIht27dGpg/f37g1ltvDeTOnTuwZ8+emHkPQgghMo6GDRvacZ2xViQzKH755Rcb57EvefLkCfzwww8R25fdu3cHihcvbvtyzTXXBA4dOhSIVRScHQhY6Cd/hKuuuirJgNs333zT7ieMZceOHcmmpkeat956y/azb9++kd4VIUQSEGDPd/Sll16KyPY5WZ1sseTXX38N5MyZ0/bzxRdfPOF+BgKEFnI/IctCpAUtFggh4h3OnRznzjnnnMCaNWsy9LUpHrj77rvt9c8666zAxIkTA5GEMUH79u0DDRo0iIq5kIi/czZB7Pny5TMxrECBAvb75s2bY+o9CCGEyDhWrlwZKFy4cOCbb76J2D7s3LkzcPnll9v5hXPUunXrIrYve/bsCZQsWdL2hb/Lrl27ArFMas/bp/GPi9OW0UKFClmr0JgxY07wT8UCqmTJku6PP/4wC5SkAqgnTpzoHnvsMfP8qlKliotUOAqhYtjJEJYdqcA8IUTKEGLkeQRiBRFJCLZMqi0S2wgsf/B0/OGHH1yxYsUS3D958mTzfsyePbvbvn27y5kzZxj3WsQynEvPP/98CxeTT7QQIt7ACxirI+yYsGJq1apVhr3233//7e677z43fvx4s1789NNPra0/3LAfwD7Av//+a/OOSNjcCn+Jh3N2PLwHIYTI7JCNmC1btgRjEW8cEm42bdpkGRSsgxQsWNDNnj3bFS9ePCL78u+//7obb7zRLV261BUoUMBsvYsWLepimdSet+N21Ll+/Xr7cPOhYpE/MYgP/JFuuOGGJAOo0W4Iy/7pp58sqCUSzJ071yYtDRs2tCwKCRRCRC9kObRo0cIuU6dOjdh+IMpy3MO7MDHNmjUzb0X8HskpSKxR33777a506dIm8nqBnUIIIURmB09iJoyNGjVyLVu2zLDXZTJOIRUCBcUFFCdFQqA4ePCgq1WrlmvTpk1wbEAmkQQKIYQQQvgBxZ2sWyAOeERKoFi1apW76aabTKC49NJLLZcrUgKFNwYjnwOBYubMmTEvUKSFuB15EmpCAOgXX3xxQvAni/9MArj97bffTjIYFEGA8NA+ffrYJdysXLnS1a1b16q2+PJqkiBEdMMxY9iwYTbJR1ik6jLc/PfffxaAvHPnTvfyyy8nu49Zs2a149uUKVNOuL9bt252ffXq1WHbbyGEECKaad++vc0fOIdmVNEQAgWiB3MSBAo6uOlmjARU6hEK+cknn1h4sRBCCCGEX9CZOmTIEPfzzz/bmmwkWbhwoatcubL79ddfrWDz22+/dZdccomLNI0bN3YbN250l19+uctMxK3dU3LwdumeoCKKSuI333zTRRuIKxUqVHD58+e3CYNaWIWIrZbF6tWrWzcXCny4Tyqo/x988IF7+umn3ZlnnpnkY7p06eIGDBhglncIoqGPo1J02bJl7vrrrw/jXotYR7YLQgiRNoHi3nvvNWsnCgc+++wzV7NmzYjuE5aQZcqUsYuIb+LhnB0P70EIITIziAKMPZ566qmIFWVTuHnnnXe6w4cP2xos9tc5cuSIyL4cOnTIXH6wEMduKt5I7Xk77kQKBv1UB9MqndQHnQohqpbOPfdcqxTKmzdvgvuXL19ui3z169d3kfqPK1++vPvrr7/c/PnzT9g/IUT0c+DAAWsXxFZp8eLFLleuXC7a9o88Cn6+8847GWpdITInWiwQQsQb2CaSPUGHYokSJTK0evD+++93Y8eOtQ4KBAq6MMMNdrYUJCh/KvMRD+fseHgPQgiRmSAvGLeJSIx5krPJxg6bNWSKTOlsZZ04ErAuw99l0aJF7rrrrrOf8Wb3n2kzKfigITDgu55UmKxnZYJal1gAOHbsmGvSpIkpaZFoOaKCme2TgzFp0iQJFELEKBdccIF9hzkQk4njhVGGGzTokSNHmiqfeP+6d+9u13v27GndH0mxd+9e991334VlX4UQQohowRMS6Ggmxy4jx/pMiBEovJDsSEzWR4wYYTlUDRo0sMIoIYQQQgi/YF2BToV69erZ2CrSDBo0yPJ/PetNYgIiJVDwt2H9GmEiZ86cVhwTbwJFWogrkQI/9n79+tn1pFqm8ZH1uicIIUnq+QzYL774Yhu0h5sePXpYe9HHH3+c6XzHhIg3ChcubEGYeBp26tQpIvtAuyBdEr169Trhvnbt2tk+7t6927366qsn3I9VVaFCheykHSmRRQghhIgEzz//vHkUU+nF/CGjBIoWLVq40aNHm83iuHHjIpZBQQdF9uzZ3RVXXJFkNp8QQgghREaBswR5DxdddJHLnTt3xPaDIk6sr731GQpRGJdhvRkJyOS45ZZb3IoVK2yd+uuvv3blypVzmZm4EikInMMHnhYSFudCoaL5ueees+u9e/e2gXlismXL5gYOHOg2bNgQ9i8OHSAILPjER0v7kxDi1CCA6Y033rBLJLqzqFQ455xzLN8mMZyI+/bta9f79+9vCn4onBxZnNmxY4f76KOPwrbPQgghRCRZsGBBcM7w1ltvmaB/qlAI1aZNG/f++++bKEBBEufoSHHVVVe5VatWWTZfcvlVQgghhBAZAVb85E9ghc0YJBLgrNO8eXNbcwXWXynWjFQexqZNm1ylSpXc2rVrXYECBdzcuXMj9reJJuJGpEARo+oJHn300RM8rvgg7tu3zzxlT+a/jlgRTpYuXWqVVQ888ECSHR5CiNjl4YcfNtGUzoVvvvkmrNumo4yMnSeffDLJ+wntvOaaa8wOyhMsPBA3vOMRJ3AqQIUQQoh4hqImbJ4QFfjJeTIj5igdO3a0DCgmwgj/d911lwsndE3edtttbuPGjcHbEF8ys52AEEIIIfyBsQ9rsM8880yC9QU6KSIBOQi1a9cOFotgif30009HdBzE+hD5Z0WLFjX3jYzMP4tl4iY4m1R2wk4QGFiUC+2EYGBevHhxC7ElDIXMiVA++OADC9vGlyzcXxraewhG8ZSzs88+O6zbF0L4jxfGtHr1ahMlsVGKFmbOnGkLF3hjr1u3zgK1PRAv2FeCnPDNjoQNnogNFGAphIgHKBoaNWqULeDTes9x7VRgmtW1a1f34osv2u/vvfeea9q0qQs3iCLMgfCDxs5R4kTmJh7O2fHwHoQQIl7BMpMxB8yfPz94PRKQ+Yut/w8//GC5E5988on9HmlYC6bAfsiQIZkij/iPzBac7fnFPvjggydYNeHHjkDBF4NQ7VAIi+vcubO1XSNWhDuUD793qrWwqpJAIUR8ggCA9/R5550XsZBK2gnZNifDUG699VZXo0YNE1JCKx2A/cWeAjLKk1sIIYSIRo4cOeLWrFljC/hU2p2qQAF0KXoCBdZRkRAoAFsn7GQ//PBDCRRCCCGE8JXy5cubzT52SpEUKFauXOluuOEGEygoSMfZIpICBfvhkS9fPsswzQwCRVqIC5GCxX580z1rlVDw96KVB1566aUTBub4sk+aNMk1adLEWrHDybPPPmuq4tixY5P0jBdCxA+IpwgVnJgIawo3rVq1MjEUUTYxLKBwbORYtGTJkhOeB9OnT3dbt24N2/4KIYQQ4YRubMblnO9uuummU369l19+2fXs2dOuv/LKKyfMUfxm8+bNwetMgOkaL1KkSFj3QQghhBCZg127dlnBR2ixeIcOHSK2P1999ZWN53DWKVmypPvuu+9c2bJlI7IvFKZ3797dXX311cr7zAwiBYFvixYtssW/xEEjVAbzgcDiKTkFj4BYKouodg6nxQoZGgTzZcRESAgR/XCsGThwoHvttdfcZ599FtZtU8VA1QAVDYkpXbq0ZeIA3oyh4JHo2UFxnBVCCCHiFeYUdBieKm+//XYwD4puiscff9yFC+Y9FEMwIZ8zZ07YtiuEEEKIzMny5cvd9ddfb2sKjEMiDR2kZFBgX33LLbdYEUqkLLcPHz7s7r777mCGMg4XIs5FCqAK+Morrzyhi4KFQO7zPhAeWJvs2bPHRYJffvnFwviqVat2woKgECK+wXewXr16Zk1Hfk64ICB78uTJCTInQunTp48tzsyePdstXrw4wX2DBw+2yojGjRuHaW+FEEKI8EBOBIv6GWXFiIWsZ5XIOD+xlWI4YHzBXGfZsmVh37YQQgghMhd//vmn27dvn9uwYYP77bffIuqyQ/cGodT//vuva9asmZs2bZrLkSNHxPIwbr75ZssFy5Ili405kyoaFXEkUvCfjjqWFNg7AV0UV1xxRYL7aLsmPT3crTZ8URAogAwMkuWFEJkHRFMs6AgLuvfee20RIVLBRaFccsklZnsHAwYMSHAfx8oLL7wwrPsnhBBC+M22bduseIDzHhPHU4ViAKoICcx+5JFH3AsvvODCzemnn+7effdd9+WXXwa7OYQQQggh/AJ3GMZAdCwkzggO5/pG3bp13euvv26/9+vXz40aNcos/iMBNtp0l3z//fe2lkIxaKSyyWKJmBcpnnjiCQscSSw2IF54tyX2YKf9iByKgwcPmmgQTvr3728fTuylCG4RQmQ+cubMaZWWdCz06NEjrNvm+MeiScGCBd26desS3PfUU0/ZT5T+5NoQObYKIYQQsQ7nQ7oaKXaqWLGia9my5Sm9HmGMDRs2tCq+++67z73xxhthC6mmcnHQoEHB388++2x3xx13hGXbQgghhMhcsI6KE8PPP/8cvA27zPPPPz9iRSeVKlVyU6dOdeecc44FUtPNGq5xWGJ27txpHRT8fXD8Yd2HsaaIc5ECuyaCYPH4KlWq1An+61QoV65c2dLcE1cY4dE6ZsyYoA97OFi4cKEF6NH2nRF+t0KI2KV8+fImFhBaTUZNuOBEzbGISgMqC0LhOMqiBhWgZGeEgg0Gx1O8HHfs2BG2/RVCCCH88iv++uuvLTCbLopT6W7GVonz57Fjx+wnnQzMN8LB3r17bUzRqVMnhTEKIYQQwncobmRtk84FijMiydy5c911111nGcUUglM0ctddd0V0nygIfeyxx1ydOnWsu6Rw4cIR3Z9Y4rQAq1ExCnZOdEnwgQz1UKdDgg8Fvmi0HBEWG2mOHj3qypQpY15ofEjxfhdCZG6o4kSw/PHHH+2kigVUuCou2R4n78TVBd9++62p/rRFUpEQ2vHFvs6aNcsGJM8++2xY9lXEBoheVM78/vvvYfscCyFEetm8ebMrXbq0O3LkiBsyZIhr27btKZ1Tqd7Di5lwxilTplgVXzjp1auXmz59uvviiy9kzygyxTk7Ht6DEELEKqxfMOZhTTaSuZXDhg1z7du3N6GkXLlylkl88cUXR2Rfdu/ebT/z588f7DZhrSVcRSvxct6O2b8W2srw4cPt+kMPPZTgvrfeessECtpqatWqleA+VLVI6DJYuhBiR2WVBAohBHDCGjFihNu/f3/QaikckDGBJUVS7Y8stFCRSecEgdmheMda9jnSFRNCCCHEqdg8IVBUrVo1GHKdHrBArF69ugkUTI4///zzsAgUzGVCg74JYaQrRAKFEEIIIfwgdNxRrFgxs4eOlECBaw7iBGM41iXYD4otIyVQsM7MOJAiUO/vRIeuBIq0E7N/MVp6+FJkz549wReDNmusnoAui9BFOD442JXgBRbOBbYFCxZYUPdzzz13QoC3ECJzU6RIEatAePvtt92MGTPCvn2OhXgmenDM9HJ8sMLAq9ujfv36tgCya9cu83sUQgghYo01a9a45cuX2xwC0T29E8jffvvN1ahRwywQL7vsMjsvhqOi+/jx46558+bu3nvvNcHFO3dHKhhSCCGEEPENuboIE4yfQvOvIgE2lxSI0AnL+AcL7dGjR4e9ixUYhxHQXaVKFffLL79YsTwFqCITihQs6EGTJk1skuHxwQcfuF9//dXsnhKrelu3bnXnnnuutXeHq5sBmyeqtUh1J+RbCCES8/DDD1s1J6GdtMGFi1WrVrmrr77a1a5d29oRPfCWpNsC6zyvYw2yZMliCyOhx2AhhBAilrjqqqvM8pBsuvR6BJOHx7lz7dq11taP1VK4uhhWr17tPv74Y7N2WrRoUVi2KYQQQojMiZdXSaEiC/KRhAwwOhboHmUdGHunrl27RiQgG7GEaIFu3bqZWNG0aVP33XffBe2eRCbKpGBikCtXLmujWbp0qX1IgUU2OhXosBg0aJDr2LFjkmHbfIDDNZFAmEDhW7Fihbv88svDsk0hROxB/gMLJ1RGhksAoAqUigiqSMnKCT1GUV3aqlUrV6BAAbdlyxYTKGDjxo0mYPCcn3/+2eXJkycs+yqiG3lDCyEyC1gMIOZPmzbNXXDBBWYvUKpUqbDuw9ixY+2YW7NmzbBuV8QH8XDOjof3IIQQsQLFiy+++KJlYEWqg4KCdOyncc+hgxWBIlJONfPmzbOieIQbOjhY86U4XWTSTAq6IdatW2chKWXLlg3ejg8sAgUTBhbXkoIFtXAJFNg8IZb06dNHAoUQIkWo5sT2ic4FKjLDQc6cOe24iQiR+Bh1//33u3z58tmJl2pTDwYECMNUC/BcIYQQIhYgFw67glOB2i66HhEomJROnjw5LALF4sWLg4GM0KhRIwkUQgghhPAFCsIZ63jkyJHDuigiIVBQHPL4449bpwICxR133GHjokgJFIwFO3XqZOskrKGwLxIoMnknRXIQ9kp7Tffu3U0Y8Jg1a5ZVA4dTKOCLhICSLVs2EysITRFCiJTgcHzrrbeaNR2e2ZHwVQxlwIABrkuXLrYAgzWG10ZJ1QKe2LVq1XLnnXdeRPdRRAeqaBRCRDMUMWFvyOSWjLqbbropXa/z9NNPWyUh43rslmjz9xuyLho0aOBKlixp+06xlhCZ/ZwdD+9BCCGikSNHjljmFk4LEydOdPXq1YvYvuDcQGEGXavQo0cP17t374gHUm/YsMEssChKD40fEJm0kyI5b3UEirPOOstS3kMzIZo1a+auvPLKsFUnwxtvvGE+tUOHDpVAIYRIFYgAtAr+9NNPJhBEwuMxNBODrAyEVgSThQsXJgjQvueeeyRQCCGEiHro/KP7AYGiWrVqrlKlSul6nddee80ECnjnnXfCIlAAFoucb+lujKPaMiGEEEJEIRRKUqTI2COShREIExR+85NFbQST5557LiICBVlg3hjQG5vhgCGBIuOJOZGCaiJ8YPmAhjJy5Ej7yX158+YN3o5Kc+2111onxc033xw2tQ+vtjZt2iSwoxJCiJNBxxftg/3797eOinBBdSjHSioCPFC6ESO8jAohhBAi1qBgiAkuE20mlOkJVyQDAqsBeP75513z5s1duChatKh1ZdPFqMmwEEIIIfyEcRJF199//725PIQbCjLoUKhSpYr75ZdfrOB8yZIlVigZiSwObKbIDSUgm/0Q/hJzIgWThC+//NLNnTs3gV/ahx9+aNeplArloosuskE9wdXh8k976qmnXNasWV3fvn3Dsj0hRHyBZV3u3Lldx44dw7bN6667zgYkO3fuTHC7d0zl2Pvnn38Gb8cbm2McdlBCCCFENLJt27bgeQrxv0iRIml+jTlz5tgElUlzu3btXNeuXZ2fHDp0yN199922OOBRvHhxd+aZZ/q6XSGEEEJkTpjrP/bYY8GOTcYcxYoVC/t+4OqAvRNFm//++6+77777zDGHXMxwQ2wAVqEEdtO9gUhxzTXXhH0/MhsxlUlBzgNdEgcOHDCRwuuMGDdunFX70i2xffv2iNor4RVbuXJl6+xQeIoQIr2MHz/eFikmTZrkateu7fv2OBWwmJN4AYfb6e7YuHGjdVO0aNHCbl++fLl1itEOunfvXnlkZ3LkDS2EiDY4f1WvXt3NnDnTLJ6YO6TVIoA8Jp7LMe6uu+6ySbzf8wxsa7F+RJhYt26dxAmR4cTDOTse3oMQQkQDmzdvtvk+ogBrEIx3IsHKlStt/YMcMcY+dFNQHJKeDthTgcgAClKw+QTGY++//75lIIv0E5eZFF9//bUJFBdeeKGrWLFi8HbPhoTWa2/iwBds2LBhVo0UThGFL9GNN95oORhCCJFeGBzQXklFAz7afsPJP6kKU273hIlQy6cyZcq4woUL20n8q6++8n3/hBBCiLRAFh0CBZ3UnL/SKlCQD0XuBJMqhAq6tsNRCEWXItkZH330kQQKIYQQQvgKi/BYPuPiEAlLJYpKGKexjopAUbBgQbPppGgj3AIF+3LLLbcEBQos/CnOlEARPmJKpJgwYYL95IvjTRKwJvECsUM7F8is4APFQhqBeeHgzTfftLBsqp8inTYvhIhtOCEPHjzYjnGhORHh8l5ctWpV8HdsLjjm4om9fv364P55VRbesVkIIYSIFuiiIOiQSry02gRQ5YVAgVBBdeHnn3/uq23sjh07gtdz5Mhh4sr111/v2/aEEEIIkXlhnMOc3wOBgvFSuF1pDh8+bOu4rVq1ssLMWrVqmSiAYBEJWOPA7prYgClTpliumfLAwkvMrKTTGeGFZYe2H7377rtBtSvUMy1Lliw2IcHDLByCAV9ykub5ciksWwiREbAwQifFiy++6Pbs2ROWbeK9fckll1g4lOcGmC9fPlusAazsPBo0aGA/yQk6fvx4WPZPCCGESO1EE19jipbSAucz5hpYPTFJnTp1qsuZM6dv+8kEmCpGMvSEEEIIIfwEi3ycaRo2bBjROfyaNWusIOO9996zNdvnn3/erK5z5coV1v1YuHCh2fZ7tG7d2gozEUxE+IkZkYKwlF9//dU8rEh5BzokvAWzxIHZdevWNR9Xwk3CwUsvvWS2J7169QrL9oQQmQOOYVQ0cNIOB57IykDhl19+Cd7uHWMZRGBtB1Q4sICDFcbs2bPDsn9CCCFESixevNjt378/Xc9FnKfgiLBEspYmT55s1oZ+Quci59UZM2b4uh0hhBBCCCz0yaLEBQbXhkjZO1133XW2DxREMu5i3SOcjjR0cRDQjWBz//3325qGV+TCurOIDDHVSXHTTTe5evXqWZeEl1HBl4vQDa+iNxQ+4IS6+s3PP/9srVEdOnRw+fPn9317QojMA9WbnTt3tkrLrVu3+r49TshLly61RRMGDB50UuTNm9c6Omh99I6xd955p13/9NNPfd83IYQQIiWwLsAW9oorrrAAxrRCsdEHH3xgxQGER4ajOxprR/In3njjDd+3JYQQQojMDZb4OCEsWrQogRtNOCAzGEGAghCKvGvWrOlWrFhhzjjhhMiAK6+80tZxEU0ohPdcJERkiRmR4uabb7YWnFGjRgVv80JcsXTKli1bMJmetuxwfsD69OnjsmbN6rp06RK2bQohMg8IoLQ99uzZMyzbwyovcUjVWWedZdkUiQO0EYjxzw53qJUQQgiRGER9iocuuOACV6JEiTQ9FwtZxvTw1ltv2cTZD+gMpwPbm6sQjs1cRudRIYQQQvgB45off/wx+DuL8gRUh5Nly5a5cuXKudGjR1sxSP/+/a1jNU+ePGHbBzptmzVr5mrUqGEF79hcs36MW4S6J6KDmBEpPLz2H1qUvMrdFi1aBO/ng07F7+OPPx6W/UEUGT58uOvatast1AkhREaD5QTVnVRahgZa+w2WekuWLAn+7h1r6aRgEcgb4Ozbt8+9/fbbYdsvIYQQIjF0WDMmB36mJegamwE8iAG7ASr8/ICqQWwFEFNee+01X7YhhBBCCOHx6quvukceecTWSf/888+wb581hZdfftmVL1/ebdq0ycQRCtAp8g6nvRNW1nTavv/++1YYQvYnuRh+FaWIOBYpdu3a5X777bcEt33++efur7/+shada6+9Nng7Khzp6/fcc09Y9q179+7myd6+ffuwbE8IkTkhE4JgTQTRcMAAplSpUpY7sWXLlmCQN4ML7PewwQCqILgIIYQQkYLFf09kICibDuzUwgSVoOx//vnH3XvvvcFuCj/AhpZJMedzFguEEEIIIfykUaNGrlChQraeQPFjOKF7tHbt2u7JJ5+0/C3GW9hxVqhQwYUb1m0ZH7LGsWDBAisWYe1YRBcxIVL07dvX5c6d27344osJRAogkT60PfqFF15wu3fvDsuHfvny5W7s2LGud+/eYcm+EEJkXrBb4lhIF8O3337r+/Y4YTOYOe+882wBx4NjbugxOJTEYrIQQggRDhAW6G4mG46u6rRU1SEW/P77765SpUpmK+tHVR8CiAciBXMIrBWFEEIIIfwcd5AzuXr1auviDKe15LRp01zp0qXtJ92tw4YNc+PGjTNLznBAUfvzzz9vYz0POm2///57K8QU0cnpsdK+jW8rVbxw5MgR99VXX9l1wvESw6JaOEAQKVq0qHmaCSGE3yAQXHXVVXayDZd35c6dO12dOnWCt9WrVy94XMZ2D9atW2eCxtVXX63AKSGEEGHlhx9+sIwHGDJkSKo9hZlPcH7bsWOHu/TSS91nn31mGXMZCedE7BqxEjh+/HjwdlXuCSGEEMIPECRKliyZoLAxnOOOY8eOuY4dO7patWpZJwXuN0uXLnUPPfRQ2EQS1ovZLs43nTp1Ct6OQJIlS5aw7IOIU5GCD/X69evtw3zTTTfZbTNmzLC2bm9RzFsk27p1a9j2a8OGDZaJgY8agXdCCOE3VHdi98RJlwoAvylcuPAJom+xYsXshI/lE0FXwLGYjAqs+UIDuYQQQgi/KVCggBUM3XnnnUkWLyXnj/zAAw/YpDlXrlzWpcjPjIZQxldeecUyLyZNmpThry+EEEIIEcrAgQMt+4G1ynAXECKQXHfddcHcrUcffdQtXrzYLJbCAQWWFHZSHEKHLV0kqR0biugg6kWKuXPn2k/EiJw5c9p1Kp2AD5unxLFwR1fD0KFDw7JfAwYMME8zdVEIIcLJ3Xffbce6tNhZZAR79uwJXvdO9N6xOFu2bO6GG25IcMwWQgghwgHzg3feecd98sknqX4O4dgTJkywarqJEydaRoQfFClSxPYLe4EGDRr4sg0hhBBCCI8333zTxAGKI8LVuUDxx+DBgy0vGKGCrGAKGl9//fWwWONj7UQ8AO47FJOTmfn4449bwXu48opFJhMpKleuHPRW+/LLLxMslFHRSws1X0DvcX6rcyTC0zaU0W3hQgiREnRu4SdJcDUdXX5DwFWNGjWsCsHrVvOOvfhL0tUG3rEXGyghhBDCbzj/hFYIprazeeTIkcGcuxEjRgQ7tTMKOgpDuwqxO2jVqlWGbkMIIYQQwhMIZs6cGfydAkLEAa/I229wU2CsQ+YWYgFZX1hx8jNcvPzyy+7pp582K0/GdWR/0cn6v//9L2z7IDKJSOEteN1yyy32c/78+W7//v32hSPgDlDJaNPmy4H3Wji+AFigPPzww75vSwghEkMHV968ea2jKxyB3SwCMfiZPXu23Va2bFl38cUXu8OHD5uFRegxGmFZuRRCCCH8pmnTpjYB3r59e6qfM2fOnOD4vUePHu7+++/P0H1atmyZhTGyX8xXhBBCCCH8gjn6fffd52677Tb37rvvhn37BGGTmTl9+nQLx37jjTesg4NOinC8d4/27du7a665xr333nu2HsE+idgkqkUK7EXWrl1r12+++eYE9iIE3SWumKLS12/27dtnLdt8CcIV0C2EEKEwAKCT64MPPnA//fRTWHwtt2zZ4lq2bGm/07WW2PKpfPnyJmjQaRbOfCAhhBCZD7qq6Sgkp+7gwYOpes7GjRvNcomu7MaNG7tnn302w/crf/78VsHIHIFORCGEEEIIPzMrsYJmHs71cPH7779bsQhWSgcOHHDlypWz7oV27dr5bjF16NAhs/tHmPGKI+mYoFCEfQqXxZXIhCIFC3G0YdO2Q5gdH8DQPArYu3dv0G4kHOCzBrQyCSFEpGjTpo0799xzrbPLb8gEwlc7FO8Y/MUXX5jlHvtCSBbI8kkIIYRf/Pnnn1YsBAj2pUuXPulzfvvtN3fHHXeYoEGnw6hRo3yZxFIwRYchVXxk1wkhhBBC+Enfvn2DC/ThAHcFOhUomEQYeeaZZ9yCBQssD8LvzgnGb5dddpnlc7IfFKt4SJyID6JapEANa9GihevXr5/9vmrVKrdt2zYLXqlevbrdxheCSUA4WpuOHTtmwdzsU+7cuX3fnhBCJAdVmo888ogJuVQThAsECa+7LUeOHCYUL1y40G5r0qSJhXSpvVIIIYRf0AGxY8cOV6hQIderV6+TPp6Ohrvvvttt2rTJXXLJJVbwRCFURsBrI5h88803wdsI4Ua4F0IIIYTIaL799lsrWPTsjhAKwjH/Ju+hQ4cOrlq1auaeUKxYMRv/IJJkyZLF123PmzfPXX/99bYW+8svv9hY6/PPP7duChFfRLVIkRivi4IPIq3UdFYsXrzY/fHHH65w4cJh8VtjQc6r3hJCiEiCSMFggSoGvyEEi/ZNsiho6aSltHbt2gmOzW3btrWQLq+jQgghhMhIKFgaNGiQXR8yZMhJxQDmCozbqbbLnj272USR6ZRR0M3Iftx1111hLRgQQgghROaDzlDm4MOGDXNvvvlm2LbLuiu5lMz1AZFkxYoVrmLFir5ulw7Yhg0bWhg23SIUsmNFvXr1ale3bl11T8QhUStS4BdL9sN3330XVAixFQm1GeED+f3335u1iJdZ4SeEwNDBUaJECd+3JYQQJ6NgwYJ2POTY5HdYNdURVDBQufDpp5+eYPkkhBBC+AnzASbFdPSRLeEJ5SnBZPrtt9+2OcPo0aPNvjAj8SoK6WpUVp0QQggh/CRnzpw292ccRFdBOAoVca+pUKGC27Bhg9laTpkyxRxmKP7wG8ZWmzdvtm6Rhx56yLpin3jiCZc1a1bfty0iw2kBv1e20sm6detcyZIlrUKKTgkufCHZ3d27d4clJDuUJUuWWHsRi3GEdgshRDSA7/Utt9xiHthVq1b1dVvTpk1zZ555pm2HgQKBWRyXWTgiwLtAgQJ2rP7hhx+s/VN+3JkH/t/PP/98+0xQ4SKEEBkN5xnOPz///LPNE+jsS4mpU6daDgXnKKrumNRmBIj1oec35iaq5BOxRDycs+PhPQghRGo4fvy4dWuS0xvOsQedEuRcMLeHxo0bW/co838/3+vIkSNtu7jnwNKlS02UkKV0bJPa8/bp0dzODXwQWQybP3++fREvvfRSEyjCra3QToWP7e233x7W7QohRErQRXbFFVe4t956y/dt1axZ09166612TAZOMmXKlAl6YwLtmJUqVXKTJk3yfX+EEEJkHhAlmB9Mnz79pAIFIgaTaQQKKg0J2M4IOLfhgxyahSeBQgghhBB+2R3VqlXLLtg8h2PsQd5Wnz59zMIZgYI83vHjx7sxY8b4JlCwvou9PoXqWFq/8sorwfuuvfZaCRSZiKgVKTy1zvsweoF0nq0TbdUsjvEzHAcGvpCtW7d2Z5xxhu/bE0KI1MIA5eGHH3YTJ050v/76a9i37x2TvWO0d8z2juFCCCFERkHgdfny5VN8zP79+63rmYotPIyxJMioyTw2tIcPH7aJdJQ2owshhBAiTti3b59buXKlFV+Qw+A3FIPceOONrmfPnmbBj63UmjVrLHvLLyh2ZGx3zz33uB9//NG6VbG1FpmTqO+k8LxjvQUwJhtAkjtfVlqu/ebDDz80L7aWLVv6vi0hhEgrtENiwxQO0ZaBErYZjz32WIJjsneM9o7Z3jFcCCGEOFVbw1dffdUmy6mp/vMmuYULF7YMJTKVMornnnvOMvM+++wzdVAIIYQQwlfo3sRynoV87Of97p6ga4Hc3wsuuMB99NFH1kGRJ08eX7aJ6EJRCUWPixYtMqv/Z5991nInmjVr5ss2RfQTtZkUTCy2b99uE5Ny5cq5HDly2ORky5YtrkiRIrZQNnnyZFsgK1q0qK/7wvaxeqJSWQghohFO5AsWLHAbN270deGE4zLHZyyf6NzgFOINXPbu3et27tzpypYta62gHKe1iJM5kDe0EMIvb+LSpUu79evXu759+1p4Y0q0a9fOvfnmmxbmyDnxVO0B6JogeJuAbM/qUIhYJx7O2fHwHoQQIikoyGbN0yv+8xuKv5s3b24ZFFCvXj2zkvY7XxJbzrFjx5pbTatWrVzv3r2VaRnHxHQmBTvNQhgwuaC1GoEC/1kWxwBfNBbl/BYoaKtCSaRSWQghopUHHnjAbd682S1ZssTX7RQqVMi1adPGvf766+6ss85yF154oWViwLx58+w6A43ffvvNwk2FEEKI9IInMQIFYnjbtm1TfCy2TggUiONU/52qQEGeRY0aNSzPokePHqf0WkKI5Onfv799bzt27BjpXRFCiIhC58Kdd97pateu7buVM24x2DrRPYFAQZHh6NGjrTjbD7GAAsZQJxw6N+h+Xbt2bVhEEREbRKVI4XmtIUrQZhSaRxHuqlwmOXRxKDBbCBHNVKlSxeXLl8/s6fyGhSCqVVHCE+dS4Bd+2WWX2e+yfBJCCJFeKFjCXgmwGWROkBxff/110Ibw+eefd3Xr1j3l7dM5QeYThVGaBwjhDxTXDBs2LGwVw0IIEc1Uq1bN5tLYIOXKlcu37SxevNgcYxAKKAhHGEEsuPfeezN8zfXQoUNm40SBeefOnYO3X3rppdZJ4a0dCBG1IgVt3bNmzbJKXQgVKfgCtWjRwn388cfmm+YnVFAhUtx9990ua9asvm5LCCFOBboXGFSE49iYGIVnCyGEyGioqj569KidY+6///5kH7d161bXsGFDmyPcd9997umnnz7l8X9olyLeyBUrVjyl1xRCnMiff/7pmjRpYjkvKYmQQggRz4SOOzgW4iQzZMgQy5zMaBhXIRQQVE0gNq4In3zyiWV45c2bN0O3dezYMTdo0CATJ7ByQqzAqYYODiFiSqTAR7Zq1aqm5vEB5ksKTFIIjBk1apR79NFHffeGxct227ZtNngSQohoh2MVuRAzZ870fVsMcCZNmuSWL18eDM/mOl6DWPENHjzY2lSFEEKItML5hXBqJuiehVNyi5x4J+/fv9/sCt55551TqgAcOXKkndOOHDkSvI2OaiFExkNXLmPFW2+99aSPZU2AMWboRQghYp3du3e7G264wcY9oeMOPxxk6Dqla+2ll14yYYTCDronKMrOyO2RJ0aHHKHfWGZi80S3BGIIAdkqABcxJ1KEsnTpUlPgaLW+/PLLLcC6S5cu5ktL5bCf0EVRsGDB4AKcEEJEM9dcc41lQoTD8onwUtpQESM4ThLuxWAHcRdbjPbt27uSJUv6vh9CCCHiC84lTGqBn6VKlUr2cYjidO1R/YeH8jnnnJPu7R44cMCqCzmPIXYIIfyDzl9yH/v165eqx/M4bEa9C2NPIYSIdXCPYc0Ty0q/3BDI/CVTEntoMizz589v4dysd7LOmtGwPsD2du3aZcdqxlR0bSCG+F1oLmKfqPyEMAihkunw4cMn5FEUK1bMwrXwNPMT1D/80ahM1hdJCBELcIzEEoPqU6pL/QSBgtwgLklZPgkhhBDpgXE3tgOEKaYUWN23b183YcIElyVLFvvpnY/SCxYLTNp79eplHdtCCH/YuXOn69Chgy2QkWWWGrp27WoLbd6F1xBCiFiHTAgW9LG7P+usszL89b/88ksr9qCzAR566CHrnsiI7K7QopHQQOxWrVpZsSICDJaZLVu29MW6SsQnpwUCgYCLIvAp+9///mfXaeNEJOCLhZcZ3rThgnYrFuGozrryyivDtl0hhDgVsKijq4GJHy2cfsFgBFHEaw0dMWKEDUgqV65sraRUou7YscO6KrxjuohfOF9T2cjCgf6/hRB+Q9dEgwYNgucf8urSAxYE2CTShShEZiHS52yKabB1DnVF+Pfff21MiUiJtdPJHBMi/R6EECK9zJs3z7Ku/LB08kA0oDtj3Lhx9jvWS3Q0MFfPyPUAxmPkTdDJipWT955YZvbz/YnYI7Xn7ahrEaAlCNjp8847Lxi8io3JsmXL3KpVqxIEy/gFlVSkzUugEELEEoULF3Zly5Z1X3zxha/bYRIZOvDgGA2rV6+2QUmjRo0syHvDhg2+7ocQQoj4gHPHjz/+eNLHcZ4h0BqYgKdXoCBwm+DI6tWrmye0ECI8VKtWzeb4K1asCF7IlKE4ket+WzoLIUSkoCsMO/lXX33Vt7EUxRsUXyBQcDzFypJ11IwSKNgG66XlypVzDRs2tHHZxo0bE4zhJFCI9BJ1IsVPP/1kP/Euo6uCqmBALOjevbsrXbq0Bej5CSIInRQZ2QIlhBDhgmPXtGnTzLYuHPz22282EEK4ILyUyg3PdsM7pgshhBApQTVeiRIlbAKf0vmmfv36ZglbtWpV9/LLL6d7ewRTYj/ABF4hvEKEDwoRmduHXs4991yXK1cuFQgKIeIaLwPCD2tmrJUYG+FucPDgQRMRlixZ4l588cVTyuwKFScohOR1GYshKnM8x5qTwg+6NYSIW5GCBS7CVSBfvnw2aMmePbsNYCpVquTrPhBcwyKbRAohRCzCsYs2um+//dbX7SBIXHbZZXaMBm9gQjWFJ1LIM1gIIcTJQHTA1hXLl+R8i7mPDj0q9egaJDvuVDyOyaCYOnWq++6779zll19+CnsvhBBCCHFyOnXqZOOOlDK30gqFieR0XXXVVWa7jCAxcOBA247ndpARMGaqV6+eW758ua3NUlSCOPHcc8/ZmEqIjCDq0ku8BS0WuDyrJ75sQLvSP//843uQNRkYfMkqVKjg63aEEMIPypQpY8dQjmW01PtFzpw5bWHp77//thZSjtW0enLsVieFEEKI1PL888/bHKBQoULJdlJw+/Tp0122bNnM096rRkxLBWD//v2tUpvcOUDsEEKkD7IjsmbNmiGvxcKaEELEG1gf0/U5ZMgQC8bGBumGG27IsNefP39+MAwbsLAcOnSoK1q0aIY4zOBs471WzZo13Y033uiqVKliYktax2FCxHwnBdW4ENr2ScWU3yIFLUy1a9dWAr0QIiZh8MMCDMcyFmX83A7WeNhvMNjyjtWhnRQSKYQQQqQE4jYVf/Daa6+ZCJGYMWPGuJdeesmujxo1yuxf08qHH37ounXrZt0YOjcJkb4q2mbNmtmCFYttfFfJkcTnHKFR2S5CCJFQyL3tttvc8OHD3bPPPpuhr42d0yOPPGIuMwgUF154ofvoo4/M8vlUBQrEiU8//dS6MMjuOnLkiN3OOuyCBQvcCy+8IIFCZE6RIrSTIhxh2bB9+3arCPYqrIQQIhbhGEb7pWeb5xcMXvD1Du16UyeFEEKI1ICQ/uijj1pH3u23356k1Sq2Ai1btrTrTz/9tLvnnnvSta3GjRu7WrVqmTezd44SQqQuLwZ7T0LqKeLr0qWLmzBhgvvqq6/cO++8YyLFzJkzbWGsTZs2bu/evZHeZSGEiDh0mtFBUbFiRdehQ4cMGzd9/PHHZlP51ltv2W0cm9evX+/uu+++UwqsxlaTopCrr77aArFZFz169KiNwzwUiC385rSAn2W26YBFtS1bttiXjsUvBjmLFi2yLwl+51RB5c+f37ftv/HGG9a6xHbPP/9837YjhBB+cuzYMatwoGqUS7jaWTl244PJxPXmm292RYoUsWO6iG8IneWcSRYKVZVCCJEaqNRjjM9EHlG9WLFiCe7ft2+fu/baa62ICIEBG0OCrtOSnYQ1oTeppujJ745sIeLtnE0lbffu3e07mNL3Z9euXW7w4MEub9687vHHH3d+onGHECIaYXn1wIEDNvbwyKixB3Pqtm3b2jwbSpQoYULFLbfcckqvS6HI6NGjrUOC7lbguIqwQl5Y6HsRwu/zdtSN0lnQwkOdKg2EAiYVfKHxqUWsoI3JT/C6pWVKAoUQIpY5++yz7Vg6Y8YM37f1wQcfmH0GJx62S8UFP998800TfkX4oWoHr3X+H7DiWrx48Ulbhtu1a2ch6CwWUjE5ZcqUsO2vECJz8ueff9pEpXPnzicIFOTQNWrUyAQKCpWYQKdFoFi6dKnZEA4aNCh4mwQKIdLOwoULzQr5ZN+fAgUKWO6L3wKFEEJEIwRYN2/e3NYTESoyauzB6/br18+VKlXKBIosWbKYfdTKlStPWaAAhAn2m58IEgRhM/bipwQKEW6iNnTBs3piUlKuXDm3bt06t2nTJvO/9Avam7755hv3xBNP+LYNIYQIF4RaYY1BVwWL1X5Byz8hpnS/lSxZ0n3//fdm84RPpgg/Y8eOtY5AKmsQKF599VVXo0YN63TJkydPkgNf/FK5b/z48bbIwMDUs/ESQgi/wN+e41NSFVWcv2bPnu3OPfdcs5tJ6zFp3rx57pdffjEhvX379japF0IIIYTwA7o3Z82aZWMPxiAZYSHP+iQ2eqyHQtWqVS0Ym4Ky9HL48GEL3CZkGxA/Hn74YbPsY/5+3nnnnfJ+CxEXIgVf5mHDhlklFe3dQAUU3RRYiHDxE5RIWk8yQo0UQohIw7GMwC660PAL9osHHnjAlS1b1tWsWdPsOhApCM++8847fdumSJ5XXnnFtW7d2j344IP2O2LF5MmT3ciRI23RLzHcTvg5QWheIQBdGEIIEQ4uuuiiE27DE/nll1+26++9957NB9IKNgV0hjVp0kQChRCnAIUPaRmDCCFEZoSOdOZcP//8s82LTwXWQ5966in37rvv2u84yjAuuv/++9OdC0HnPE4HFLDR6bF582ZXqFAhu8/LtxAi0kSVSEHYS+/evc1bjXCZ0CDWcPD1119btfH1118ftm0KIYRfEHp1wQUX2LHNT5GiQYMGdkkcnk3IFsf16667zrrihP/QFbFs2TLXtWvXBC3Gt956q9k1JMUXX3xhftPYPX3++ec2CCZ4jWDM5KxVEL+4eGD1JYQQqYWwbOxjkprEr1ixIhiUzbHsrrvuSnVH9Ntvv+1atWplgiuTeHX0CXHqhIamAsUo2LExZwcsQhgv4H4ghBCZie+++84yJypUqGC/ly5d2i7phdeigIx5GEVkQJcDdk/M69PDnj17TJjADtibs2Gzj6W+J1IIES1ElTErXQzAlw9rJ2Cx5MknnwyLNzYLeYgjVF0JIUSsw+I04gTHtnCB3ZM3YWVwxWI3gzcRHqi6YaGO0MpQ+J1uxeRC2LB54nmca3v06GGVOn379k12OwyUyW7yLgULFszw9yKEiE8mTZpkeUV169Y1a8DEVgl04ZFthA1Unz59Uv26VBcSKIm1kxAi45gzZ07wgn0JY0u+u4gVXFjowmIU4VEIITILWDpx7GM8w3wqI5xdyLOgIx6BgoJDOt3pckiPQMG88LHHHjMhgrkbAgXWTthgMldnW0JEG6dHW3ge4D3rTVr4IrFY0rNnT1+37eVRyOpJCBFPcEyjgp5cCj/B25JwZqo/YNeuXXYsDz22i+iE/zPyKKhApgqSoNpnnnkmxbZfqpspLPAuLFAIIcTJ4FyEDRMQrnvxxRcnGIsjbG/bts18kdMalM1zOe+QsSOE8Afm5YkrerlOYYNn0SaEEJkB8hixo7zxxhuTzP1LLYcOHTJbPeZhzNuzZ89u1nl0x9Ptnl4YQ40aNcrGXrjFkCG5atUqK+o488yoMtURIkhUfTJZ5IJs2bLZAheg9D300EO++2PTWq48CiFEvOZS0M3g5/GtW7du7vXXXw9aa1C54YV1e8d24T+5c+e2Aemvv/6a4HZ+T8r33fNPxRoldDHwiiuusM4L7KOS8nKn41Bdh0KItMIiJtWG+fPnd927d09wH11c06dPd+ecc44FZefMmfOkrxcIBILezFR4b9261bqwhRD+QAHh3r17T7id21hoE0KIeCZ03EFhxFdffeX+97//pWvRn9f65JNPTKDYvXu33dawYUM3aNCgBEUcqYX5PuOn/v372z4iIL/22mvukksucdWqVUt3loUQmbaTwlvI4gvOwghfolq1almYdqi/th/MnTvXFtTwThdCiHiBjAgGKBzj/N4OlkLnnXeeLTCFIpEifCAoUIUza9asBJ0S/J5cJQ42hwSneV0wQAsw4oXCZoUQGcWOHTvc888/b9cHDhxo5wuPCRMmWHU2jBgxwiwOTgaCBsc1wh89JFAI4S/YsT344IP2ncX5gMunn35qOTJePpkQQsQjCLHY2n344YfB2yioSI9AsWHDBle9enXXuHFjEyiKFSvmpk6d6saNG5cmgQKhg+dhw8eYaMCAAQnm/S1atLBsQgkUIlaISpHCgwWvcC2QLFmyxJUtW1aVoUKIuMuloL2TY5yfMACi8v7FF18MDqyw7gCJFOGFapzhw4e79957z61bt866W/g/YFEBmjZtmkD45358T7FgQZyYPHmye+GFFyxIWwghMoonnnjCsiZuuukmm5R7cJxq1qxZ0ALq3nvvPelr0SFIkOSiRYusYlAIER6wgqSIEHs1fM65cL1mzZruzTffjPTuCSGEb7zzzjsmCDz66KPu4MGD6XqNI0eOmK0uBX4zZ8609cfevXu71atX23E0tfzzzz9mi1mmTBl3++23m3U9nfHM95QVKGKZqLR74gsHtIJjUZE4ANQP8HtLy0FBCCFiBSrrR44c6bsY4lGgQAG3adOm4LFcIkV4IVMC2wWynBCOGLxOmzYteC6lmjn0/4uBLK3KLA5Svcz/H4IFwedCCJFR4+zx48fbsWfw4MHBij6sY6jMJruIKkCE7tTApP7zzz93Q4cOTVO4thDi1MCWGTHipZdecj/++KPdRgWwl0MmhBDxCvMj5rgIATly5EjTc+l4IBOiY8eONhcDxAXskjmGpgVsM6tWreq2b99uv3P8pXAjcdaXELFIVIkUVHMiFMyZM8d9+eWX1gaOhza5FCiLfkEWBQcbFE0hhIhHkYLKeFpJEX/9xhsceWHdEinCT/v27e2SFF9//fUJt9EejI+pEEL4Ad3KTM7XrFnjSpcubbdhMUcHBZYHnDfwZaYKMDnowmBizrwAEFURKYQQ4YdFsdTYsgkhRCzz/fffW0A2xRUUWqSnYwxb3ccee8y6MICMCLIi6tWrl2obpr///js4RqKDDccZLC553bZt26Yqx0uIWCCqRAq+rFxmzJhhv5MRwZfW706K5cuXBxfyhBAi3vCObVSy+ilSsFiExRAZGMBP2mIvv/xy37YphBAi+mE8z2SciwddEwgXTLTxtM+TJ0+yz9+/f78FY2NJh6BavHjxMO25ECIxS5cuNVGRamByJEMhq0IIIeLF3g77227duqWraxNrJ/K2yIngWMl456mnnrLXoysttQLHK6+8Yl3va9eutU7SM844w8ZPRYoUOSELUohYJ6oyKTwI4IJbbrnF2r9Z9PITFu74cmshTQgRjyD+5sqVy451fvLzzz+bPzjdaV4nBUGKBDMLIYTIfCAucEkMBUndu3e369g/kZ2UEhQuUUVI1hE2dkKIyPDxxx+7ChUqWJbMxIkT7XtJh9Ts2bPd+eefH+ndE0KIDANBgK7PXbt2mV1TauGxHB9Llizp+vbtawJFjRo1zB2G31MjUCxevNjdfffdrkSJElYISCcpbjMevLYEChGPRFUnBVVULHJRJQX4YvMFTq3KmF5YuMOz+8wzo+rPIYQQGVbBSjeF3yLFPffc46688koLYV64cGFQcBZCCJE5IduGyurhw4e7u+66y27DQ5lwbCb+LVq0cK1bt06VtQyT8wMHDrgrrrgiDHsuhEgK7EMHDRpk1cVYM2NZQjUvfuj58uWL9O4JIUSGQfYExzcys1Jry8RaJsHa06dPDxYLcswkf+tkr8G4aPLkyZb58+233wZvJ7uCDgz2Q4h4J6o6KYYMGWJf6G3bttnv4Qp9YeFOVk9CiHgmHCIFAgVCxbXXXmu/YwNAYDPVdUIIITIXS5YscSNHjjRhwVu8pMMOsYLuCs4VjP2Tm7R/9NFHdvEgp04ChRCRhbDs2rVr23WsS8gd4ztMYOvbb78d6d0TQoh08+uvv1pOLhlYHri7pEagwAHm6aeftvkwAgXHRzpG6Tpr0KBBql5j/fr1rm7duiZQkD9BbtcPP/xgwkVq90OIWCeqRAovXJUqXEBBpFojLa1V6fGJIzSbMBwhhIhXOMbRqbZnzx7ft+UJzAz0atWqlWyAsxBCiPiEakDCHBnD33///WYPw3WqrxHMsSAcP3682TglxaxZs+x5VDGuWrUq7PsvhEga8sYOHToUdD3AvgQOHjxo82ohhIhFGKMgwJJDwfglLc/DBg/reLK2sMCj8wEbPHIsUnKF2bdvn/v8888TWDg1atTIde7c2W3dutW9++67JnoIkZmIKpHC46+//rKfU6dOtdBVPxVDgmg4sCiPQsQSVKhzEuWkR9Ak7X///PNPpHdLRDHeMQ5R1k9YTPr666/tup8CsxBCiOjlww8/tIDr7Nmz26QdGNPTWXH66afbhL5QoULJPr9KlSquYcOGrkOHDpqgCxFF3HzzzZYpA/il8x3Fsg0Lt2rVqkV694QQIl2w5vjyyy+bUMDaSmpApGW8wvGP3Aqsob744gs3adIkV7x48WSfx3y8bdu2ZgXFcXT37t3B+xgfMW5CBBYiMxJVIQy0RIVCqAwetH7i5V9cdtllvm5HiIyC0EgECmwPFixYYNXxTZs2tZZAOo+ESApvoMQxz88g6x49etjgjM8jlSRJHduFEELEL3/88YdlUQBWB/nz5zfrJ6+rjvH9rbfeesLzqM5m3I+I4QkZZ5xxRtj3XwiRPG+88YbZtsEzzzxj4z3mI9i48X0XQohYG7P873//s+tkPlBwd7KxB51jPXv2dG+++aatzRBg3bVrVxM3kusQpXhv3rx5JoQwV/aK+cqWLWvuA4yVhBBR1knBIMeDRS0GPh07dvR1myzY0bZK27kQfsIJ74YbbrAT14UXXuh69+6drtfB43Dt2rVWpUjgO3Y6tBLi63z8+PEM328RHzB4olrDE2b9tJWqVKlSggGaRAohhMg8IEL88ssvJo4zjsfOgAVMxij169c3z+bEYGvAGIlJv4cECiGiC7q2qRD2vpuIiXyfWXBj4Y05tRBCxAKIBIw5rr76ahuzpGbsgZUlXaGXXnqpGzx4sAkU5E2QO0GhXnICBdZP119/vXWiYe/EtrGEmjNnjlu6dKms54WIVpEidCHL7w4KDxbs6KJQCE1sQ54Jl1B7GSbD3ObZhyV+LCcZDyq+uc2rDDrZY9MK7X+0ApYvX96tXLnSvfrqq5a5gu0BtGnTxiwRUrp4LFy40F111VUub968wdtq1KhhVQCcAIVIDo51fosUiG+EfYVOVEMFaCGEEPEL4zDGXYyrGeuceeaZZoOwc+dOm9Tjr5zUmHv+/Pk2yed+graFENEH32fmLInnS0IIEWvQvTl27Fi3fft299lnn5308YsWLXI33nij2dtRfHHFFVeY9d2nn36apH1l6LpUvnz5rMgUEeOhhx6y6wrDFiLGRAq+wHz5/fY090QKEdt4C/l8ZjwQAbgtcWgvGQ7cTq6DB10I3NayZcsEjy1cuLDdzsTZgwl0WkFxR1QYNGiQK1GihGvSpIl79NFH3SuvvGL3P/fcc27FihUpXjxQ+kMFCvB+D60CECISIkVSQrM6KYQQInPAZPu1115zGzZsMGtKqhRnzpxpGVoTJkxw559/fpLPIyR76NChtgigamwhoheqgUPnJUIIEYtg8YRQMGrUKBNfk4P1lQcffNAECqwrzzvvPOsco/A0KetKOkMff/xxc7vwyJkzpxs3bpytPw0bNswEDiFEDGRSMJG56aabLM3+t99+M0ucL7/80t1xxx2+bZMFO1qthPATTmKc2EKVcroqECloE0Q44SKE3yLFiBEjrDOIFn0/kUghhBCZF7omsIDxsrIo1ggNwKYI6aOPPjIbKOwIIaVFAiFEdEDYa6dOnaw7qly5cie4H2CdIoQQ0ciPP/5onRNVq1a137GlTC7gGlcOLJ2effZZ67qA5s2bu379+lk2aCiMaXC7YG1n4sSJQReOZcuW2XEStOYoRAyKFNdee63bs2ePXfcWcy+++GLftrd//367qJMi9vnzzz/tJ5V6HgQX4YVMa3Io3mfMmxRDu3btrHUvsQfhtm3bTngsJ6e0gnVBjhw5Trjd6xRiYk7GRGreIyfFxYsXJ7iPsCXvPiGSg2MdNhxMLJNqS80I+H7VrVvXrV692n5v0aKF/S6EECJ+4dxC5+oTTzzhLr/8crd582b3wAMP2H10jmL5FAq5c0z0sVj45JNPfBfOhRAZQ+PGje3nY489FryNeTtzGn5SfCWEENHG+vXrrSAauzoCrEuXLp3sY7/66itbR+I5cN1115lgQXZW4pwe7J4QJ0LXZ2677TYbDxGKLYSIYZEC8P/3Wkk5OPjpZY6KCkWKFPFtGyI8JJVhQvV2UhXcST2Wz1lSn7XkHptWGLhjYRDKd999Z5WGCCPYPT355JOpei06MJ5//nlbDPa6L/BDpGWxZMmSad43kXkoWrRosA3VL5GCz2HoZ71ixYquXr16vmxLCCFEdIDFE90SjN0RqemQICurQoUKbuDAgSc8vmbNmmaByf3yYxYidmAMKYQQsTgPJteTsUlyDhYUWNAphpsL4OzSv39/K1JNqpiCx3nCbdasWc3SG3GD7Qgh4kCkoEVqypQpwcVhcin8ZPfu3fazQIECvm5HCMCDkJPeww8/7L7//ntT4/EzhLTYPVWvXt3ECCoUBwwYYD6J3bt3t24QTo5CJEf+/Pnt588//+zbNjhuM2BjwQofcq8DSAghRHzCOaVPnz52HVsEOipWrVpl4xq6JLyCEa/SGm6++WazXfDOS0KI2MCvIhchhMhoQscdjEXIxqLgNHEhKvNV7ClZm8HmCScOusWwow/N0tq0aZMJtazHQJ06dazLggyuRx55RPbdQmQAUdVbjd2NF0qcVAW7H5MqDlo6mIhw0LRpU3f06FHrEkJQ6NChg3vooYfS/Dp0XkyaNMl+0lVB2CSvTTeGEClB0BfHVj9FCiBHqGDBgnadhapwhXULIYQIP127drUJPuObI0eOuA8++MDGKGPHjg0WApHNhc0ChRUeEiiEiA3o/k4tHAPWrFnj6/4IIcTJ+Pvvv604lMJQD+y3Q9cZyY5gzIIlMhaUCBQIEMxfESwQKBA6Zs+ebfbFJUqUsBBtXhsQM3AQ6NWrl9YUhYhHkSLURodK85EjR/q6PRbqOJgkziwQwq/P99ChQ93vv/9uwfBYNqXX4oAqJrqOmAjs3bvXrBT0ORapIV++fL6LFOANAAnqfvHFF33fnhBCiPDD5Py9996z6xRePP7443adyf4tt9xi15ngt2rVys2fP988moUQsQXd2zVq1HDjxo0LWjMnZu3ata5bt26uWLFiFhYrhBCRhKyI4cOH27jDs3kPZcmSJWZLTLEnc2OOXZ9//rmbNm2au+KKKyy7gvVIsiuqVatmTgGMZ6655hrLtfWQZaUQGUtUrWqG5gds2bLFzZ0710JX/YKDEQt2QgiRWQiHSIGFB+HcHn5mCwkhhIgMVCDSFQr33HOPWT1RXdigQYMEOVtM4MeMGWMLmG+88UYE91gIkR4QICi0wl72vvvus6pjOqGw+Dxw4ICFy9JNdeedd7rp06fLj10IEXEaNWpkdvIIDKE2dXR0Mh4ZNWpUsLCOYxtFFp519sSJE60Lg2JQyJYtm3VQYAHF8U8IkUlEilC/N2xs7r33Xt8zKdRqLoTITHDM8/J4/OKjjz6ySpTQ1lohhBDxxfjx462TInv27DbpR5y+9NJLbeJPteG6dessQwuKFy9u+RRCiNiDYhMW57gsXbrUzZs3zyqTsbGlypjFvSpVqricOXNGeleFEJkYBFPGGzhMUCBBRqLHX3/95V5//XXL0Dp06FCwS4xgbObHWD15IGogUFxyySXu0UcfdS1btnQXXHBBRN6TEJmNqBIp8ubNG7x+9dVXu5o1a/q6PaqJ2Y4QfvP1119HeheECHZS4A3uJwwOyaTwuilCj+1CCCHig3r16rkBAwa4WbNmua+++soqDb1QSjoruI3FTBYxhRDxwbXXXmsXIYSIJsjsbNy4sdk3DRkyJGjDRNEE93Xq1Mlt3rzZbiPsGsGCYxmFda+++qq7/PLLzR4KypYt62bMmGG2lbLUFiITZ1KEhs14YTR+IrsnIURmIxx2T1gBYPfhIZFCCCHiD2wR6JRAjIC3337bXXnllRaajQUMVYmbNm2K9G4KIYQQIs5h/ZC8ToQIryuCjs5atWpZ6DW3X3TRRe7dd9+13AmKKMihaNiwoV0fO3ZsgsydW2+9VQKFEBEgqr51oQtZhAtzcAnNqchoCC/OlSuXb68vhBDRBsc8jq///vuvLST5RWjLbKgALYQQIrYhMPJ///uf++mnn9z9999vt7Vr1841adLErjN2J7ASH/sKFSpEeG+FEEIIEe+QiUPRBN0PZOR06dLFcrCY89LhiS0dORXvvPOOa9u2rQka3ty4TZs27pFHHrF8CiFEZImqTgparJo1a2bXmdzgdesXHKw4MOGjK4QQmQXvmBdaKeIHod1w6qRIHlqSPV9UwIorHJ2EQgiRXlq0aGEWTtiyHjx40N1www1WpThs2LAEWUQSKIQQQgjhB8xlsXCi+M6DbJwRI0ZYPhZ5FKz5YU1J0cSLL77ovvzySzd06FBbB7zqqqtMsMCeuG/fvq5AgQIRfT9CiCgNzmai895779nvfgoI3gLdeeed59s2hBAi2vCOeSyMUwnrB8uXLzehGWrUqGGhYyL5kPGBAwcG/19uuukmt2LFCle0aNFI75oQQpzA9OnT3RdffGFez/g8U4HI5P722293//zzj7vssstskUAIIYQQwk97YcYj2Djxc86cOa5Dhw7uhx9+CBZAY9lEhwV5iUDHBAVhhGHTceHlVgghooeoEimAViyoU6eOu+OOO3zbDi1goE4KIURmwlsM946BfkDVCn7knkiBAC2ShkW+lH4XQohogS6vjh07Bo9VTO7HjBnjqlWr5po3b25dFTfeeGOkd1MIESaOHTvmzj777EjvhhAiE9KrVy8THB544AF31113uQkTJtjtFOERiL1s2TKze1qzZo2rWrVqsLvfe5wQIjqJKrsn2LBhg/2kbev00/3bPc9eQ50UQojMhCfMhloMZTRU0laqVCmB8CyEECK2wSKBEEqP3r17u9tuu83EijfffNN9/PHH7pxzzonoPgoh/OW///5zffr0MWsUxpRbtmyx23v06GE2K0II4RdejoQ332zcuLGJFAgPrB3SiU4h3uzZs209kQ6KBg0aqAhMiBgi6kSKzz//PBhq7ScSKYQQmd3uyS+oYPGCx/w+lscD+KSuWrXKLgyi169fH/zduwghRCTZt2+f69mzZ/D3nDlzut27dwcn/meeeaavxUVCiOgAe7d3333XDRgwwGXJkiV4+5VXXmn+7kII4QcjR460rIkff/zR7OERKciZ+Ouvv9xFF11kAiqiKT8poJg0aZIVQLdv3162TkLEEFE3myBoDwiwCQ3ByWhk9yRimR07drjatWu7bNmyuTx58rinnnrKvKCTY9u2ba5ly5auSJEiVuVYrFgxa5E8fvx4gsdwAk98+e6778L0rkS82D3BL7/8Yj+prBUpg1VKmTJl7EKFEFaHXL/mmmuCP4UQIpJ07949OC5n3IGl3+jRo9327dsjvWtCiDDy/vvvu7fffts1adLEnXHGGcHbS5cubUUWQgjhh93kkCFDrDiC/D4sJn/++Wdb05g4caKJFayLkDmBvRP5WayVqHhCiNgj6r61nnc5EyFU0HgQKWiPv/rqq626mEv58uXd1KlT0/w6zz77rLv//vutMpmwnxIlStiCM6G0jz32mK+ijsh4CGuiEik9fv+cdBEYFixYYJUEvE5ohWNimDTwfRo2bJiduAcNGuTeeust161btxMeO3PmTDvpe5dy5cqleR8zO3PnznUFCxa06/369XPXXXediQMs7NSvXz9oaxevnRSwd+9e++lXOHe8sHXrVqv64Wfii3e7Z6UghBCRgCKIWbNmBS38GMOySDl//nxXuHDhSO+eECKM7Nq1KxhCGwrzDBYShRAio/n1119tzQtYnwCKuljXYG6N7dNPP/1k624lS5aM8N4KIeIqOJv2cWDx3U8rJm8QFdqm6hcXX3yx69+/v7Wn0RbPonK9evXc8uXLXalSpdJkhfX000+bgsxl4MCBdhCmig3VmNvGjx/v63sR6QfLltatW1vAE59tzw4nrVAZgD0MYgLhT1Ra4w3bpUsX84dO6jNds2ZNu3jg18hCOSdyPkeh5MqVy1omRfrhu1qnTp2gYNGuXTsTKljoQRiqXr26/R+m9zNwKngZESl13mQEHI9A/uQpU6hQoUjvghBCpMg333zjNm/ebNcZN5QtW9YuQojMB3PPb7/99oTxC3NQdX4KITLSZpKCzKVLl1qnRKgDhLdumDVrVrvO+kc41vWEEJlQpPAqM1jMx9/WL7wujXC0gHmLlR7PP/+8TfKw0WHxkkXMpMCOh0Vnz/4KpZiFZiqTP/300+DjaHPjNemyYOHRz79btMHnJDRAKZzQUphaf0OqjqpUqWLBTrRJc7Jt2rSpTfxpV0Rk+vDDD1PV/bNw4UJ31VVXmUDhUaNGDffII4/YZyS1EwQ6bzxRMJS6deu6Y8eOmc9j586d7Xfxf/B9pKMpKSpXruy+/vpru/7FF1+4N954w65PmzYtwePoeqGjYtmyZe7mm2924cY75vnZqQZYAND141W9iJTZtGmTiVue7RrWbFQGISgKIUSkYPxCYQ3kz5/fxi5CiMwLndvNmjWzYwNjSQJrKXxifoMHvBBCnCp0S1AM4dkHeyBEYDWHiwiFmkKI+CPqVrO9gw0BOH7iLdCFemmGAxbtxo0b5w4fPmy2T3feeactVCI+PPnkk/aYBg0aWPiY97u36Ik9UHLWKSw4c19mEigAgSJSuSKIBqmthCdIDlEBmyUWILHq6tq1q3VFwHPPPZfg/zslOFmHChTg/Z74RJ4cVEQOHjw4QRcFf8eXX37ZVaxY0RayEcJYJP3ss88kVPw/+D+iQ2D16tU2KQP+hggR3u8IRXv27HFVq1ZN8jU8W7akBKJ4Eik8brjhhrBsJ5bBEoxJP/8nCFiIr9hl0Tn3wgsvpPrYIIQQGQnnK47hjHc4dzAWkL+zEJkbRMsvv/zS5i7Mgxi/sJjIbYTVCiHEqUAhX4cOHRKsa1xwwQWuU6dO7uGHH3YXXnhhRPdPCOEvUbeijSUKsEjDgckv2xlvgS61lfCnyg8//GCiBBXqLAYT8OP55SEscJv3XlGIqdIPXXynwtarZEsMrXDY/Tz00ENheS8i7WDxlNjCDIGFzzkDfO9ziAWQ35XnVD4hit19991mP+WRO3duO/mHfhdZkH/ppZckUvw/+E7y3eQ76n1fuY3vsCc68F2lsyWpllOOOx07djQhCCEyEnifNQRTv6Ad13t9ZZqkzJw5cyyQtkePHjYgZxAOZA+9+uqrJlRcf/31Eem6EUJkbhgrMGZAmMBiko5QIYQguHbGjBmR3g0hRJyAFfvIkSNN9KTYD1g7Yb2iWrVq7t577w1aFgsh4puoEyloJfdgYuSXSOEt1LFIHA6onF+xYoVVpeHZSZssNk+pCfb5448/7LEjRoxI8j5ClHkdzxoqM8GCsWeDFIltp5YDBw64yy+/3I0dOzZ42+233+5+/PFH9/3339v/Hd0yKX0evPfJd2Lx4sUnhEl596UEogOLDBUqVLDQy5NBBaUmIWkDkaJ9+/ZJ3oe9G10Y8+bNc5HCO+b5WQ2LKOdRunRp37YTDxBg36pVqxOO34heVCki1mMPKJFCCBEuCJ+89dZbzcIFHn/8cQkUQgghhMhQ6Bz3MjIPHToUvB1LJzJdyXYVQmQuok6kCLUrokMgXixPqKr28jaoLF6yZIl77bXX3LBhw0763KlTp9ridcGCBRPczoGcKjeq8+nMyIzqMmJTJMKH07MwjEjlfQaArhpEBQQsPgt0w6QGOnLIIKHKAGsYQEjA7islkcPLxeDzN2rUqFQtUrPP+fLlS9V+if/zz1y+fLkJh4lBuMCrlxySSA64wiFS8Nn2vp9+dmzEAwiOH3zwQbL3k2MjD3ghRDjhuOMJFJyv6KgUQmRe6PJMrfsAnaBCCJESq1atso5xMjnpogjllVdeseIIIUTmJOpEChbOCP5loY8QaD+3E06RIjFsN7ncjcSDwKSsnuigwFIma9asVoF/9tln+7q/4tTZsWNH0EuR7glEA8LOAbHBExxORvXq1U2MYBFhwIABVmmNXQxV+nwevIVPFjZnzZrlChQoYNsi06RQoUJWqUDVgofXffHee++ZmOYFb5OxQNsleRoieUK/r/jx0qUSmjeBKPDoo4+akEiwNoHIkcQ75vkpUnhh9rz3cFnqxSp0QRUuXDjZ+/m8pDZrRgghThW6Njdt2hT8nXwqHceFyNywmCiEEBkBa2CVK1d2Bw8eDN52/vnnmx1yrVq1knUkEEJkDqJOpADPt59FvaQqkjMCLzDbTyHEg4BkDrhkDdD9MHr0aFus/Oqrr5J9/+vXr7dKeRY76aQIDU5FoGChmoVA1Gd+5wIECYU7DFykDkSDo0ePmr88/0dUJyIcpBWeS0X+I488Yl0VdJJgH4Y1jAefDaogvcoEOi0Iy+aSuIo/1PKMbo7t27dbR5NnT9WwYcNTet/xDt9XFpE3btxogmHi/A7EI77ziI3eY73BGF6b4cbrbPBTpPAGnVdccUVQOBPJd50klV/iQYccGR9CCOEnjA+KFStm9nMUNnh2C4xZhBCZG+YZQgiRHrC9HjdunI0v6LTq1atXcK7ImsNTTz3lunXrliCPVQiReYlKkcJbZGdx3u88Aa/i108QG1igxgqGhcmrr77aBIrbbrstyccTENSmTRvXokULa3XjgF22bNng/VThL1q0yK6H2gfB1q1bU6zKFZGDxUYqkfBdPFXoiJgyZUqy9yN+hIoPzZs3t8vJJiCahKQdOproaMG2i46mxNVm3v93YkEKy62T/Z/4weHDh+2nnzZpBKwCC14STU8O3UrJDcxD/VmFEMKP7joKYYYMGWLFD152FueIl19+OdK7J4SIAiiGw1bWu54S3uOEEJkbim5ff/11c2tgzQ2nlI8//jgoUFDIxnpY3759fS2eE0LEFlEpUnhelizuM3ny46DldWuEYwEoqcDrxL7/oWDjwwUee+wxV6dOnRQXoIUQ4SOxCFGqVCnrjsAeC9utxMJhtH1XvWOedwz0gzFjxtjPzJiTk1bosBs+fPhJHyOEEH7AOWrbtm3WsTV48GC77cYbb3SNGjVyefPmjfTuCSGiJJOCYjusaXPkyJGkBZxn8ZnaLDKKeLhw/PHG0z179jT3ASFEbMLa3bRp0yxvc/r06cHbESTeeustu166dGkr4O3SpYvZYSNahFolCyEyN1EpUnhhfVgx0XKeODA6I/CqVvHejWauvPJKs/QRQkQ3HFNefPFFF+14IoVfLbUMNL1uDYkUJ8ebnAshRCSg223QoEHum2++cfv373f33HOPVToqh0II4TF79uzgIuKcOXMy5DWxn+3fv7+79NJLTeCg2poMRqqtESyEELHF7t27XZUqVcwCGRhHIGySv0cOBbbkdE20bNnSxh6sc1EUoe4rIUTUixTYp+Df7gkWfogU4eykOBUeeuihSO+CyADIIBHxDTkxsYAnzPrVSeGJzF6ukDj5xJ+AuO++++6EQfrvv/9uQexUHt10000R20chRHyxdu1as+WjW5eqZxYMECjIosJ+TgKFECIUQm49ihQpYnPzxMcJhIadO3em+jUTOwU8//zz1lnBeCgpkYJFTi4eJ7OdEkKE1wouX758VqDG74iPK1euNIGC3AnmOtgi169fP2gFHCtzZyFEeIlK87eHH344eP2HH37wZRux0kkhhBCx1EmxevXq4HUGq+Lk9mGtW7dOsoqIDCPOh6+88kpE9k0IEX9g2YL42aFDBwuyxF5l1qxZtmiAvdO+ffsivYtCiCgGkWLv3r1J2jVzX3pALKWDi07c5BwE+vXrZ+Mi7+JHEaMQ4uQgSNJRheBQtGjRYAc9Vk90Y2bJksUtW7bMXFFq165tc8O///7bOqd4Do8TQoiYEikIW/XwAqIzayeFEELEUiYFFXAe5HSIlKHKqGbNmsneT5URA30hhMgIEI8JyK5UqZLlULzwwgvBRcIFCxbYQoIQQiSHlz2RGAr/qJROCxQjUjSDX32bNm2sA7dkyZJJPrZr167WYepd0tK1IYQ4dY4dO+ZGjhzpypQp46pWrWrOJ3RhUujw7bffuuuuu8716tXLih1KlCjhpkyZ4iZNmmTX6dwsUKCA69Spk0KyhRCxZ/dUuHBhO3ihsi5cuNCXbaDw0o6mTgohRGbCO+b51Ukxf/784HVafUXK0AadUnYHLdJJVSwKIURaFhURHxj7erYqWPN5FcuE4h44cMC6Ky677LII760QIhphcREQKHr06OGyZcsWvA+Rk8JCFi/TAouXK1asMNFh/PjxrlmzZm7u3LlJChUIGVyEEOGFeQhB2MOGDQt2W/L9J/y6YcOGbvjw4W7s2LF2O11OvXv3du3atUvQMcHYYvPmzWkWMoUQmY+oFCkefPDB4EFtyJAhvm2HgyiDIiGEyCxwzGOhyo+JHq+9fv16u044moLQTg5VRbRBFy9ePMn7V61aJdssIUS6wcO9RYsWtog4evRoKwLitvvuu8+O2YUKFXLbt2+3cMvu3btHeneFEFEKgdae6EkHhCd6AtdLly7tnnzyyTS9Js/zxj/lypVzS5YsCS6GCiGiA8YKdF3y3b/kkkssX4IxBBlWZMscPXrUxhb/X3v3Aa9z/f9//N1QUcqK7CRFmRmFSsieDSRlt4lEGZUZCSmjrKI0FCFRRmYlUpKkgUiyIklWqut/e7y+/8/1uxznHGdc+zzvt9vVOedyznV9rqtzPuP9WrSvHThwoF0DLly40OZdffjhhzYgGwpQiEjMBinI6PLs2LEjZM9D793du3eH7PFFRKIN+7xLLrkkJI9NdcagQYNcnz59bBGMeQtdu3YNyXPFi/r161tGIi2fEp68c9JP2XTDhg0jtn0iEvst5d555x37fO3atbYQ+OCDD1r2cs6cOa2PfGC/dxGRxNCD3ksmJJAQikQUkhQDh2OLSHgxR4K2a99++61VRIBAYu/evV25cuVc48aNrZ0vlZhey7Vq1arZNZ9XSUUw49lnn7V1POZQvP766xF9TSISW6IySEEZOtHY0aNHux9//DFkz0N26s6dO0P2+CIi0YZ9Xqgy8xm86l1c/vnnn+oXnAJkLnOyTxk0mUm0PgAVKVQSkv1M0EdEJC0qVarkpkyZYok5FSpUsLYMfM15Nv9GliOBi7Zt20Z6U0UkBkyePDkoj8OMiXr16llmNvPSqPRatmyZW7BgQVAeX0RSjpaPVEaw/sb1G+cIBCSptgRJaFRT1axZ0+ZPgL/d4cOHW8unwDk1fE5yxLBhw/yBDhGRmA5SkMl19dVX2+ezZ8+2Ra9QtH3Kly+f9cYTEckodu3aZfu+UKHPOehTetddd4XseeIFC4cMq2WQLRfsZB95J/h16tSxYx/fIyKSUqtWrXJFihTx7ztatWplH7/44gsLhuKpp57yZzeOGjVKgyxFJEUOHz5s2dEMy927d+9Jfefx008/pehx+FnOFTkv5dq/dOnSFqCoVatWiLZcRBIiIZjKKJIXjhw5YvflypXLrkvOP/98/0wKkqpIcuA6JXPmzK5nz56uR48e9rlX/U3wonbt2vZ1jhw5rEJTRCQughTwBvdt3brVMjYoIUtuuGhakE3sRYJFYsn27dvt5IHSa1rsMGiOEwGG7CY3kJ6+04H4GU4yJOPgYvD6668P+uNy0koLERbccdttt1lZsJweWUoffPCBZTEROOe9ZOh4YOtDEZGUeP/9912zZs2sPzznCN5w2/3791u2499//23tGmgz9/jjj9uiYJUqVSK92SISIzp27GjDre+++267lg7MoE6Nl19+OejbJiIpRzLwLbfc4v+6VKlS1qaXeRO0oD1x4oQFMKiG+OOPP+x7WrRoYa2cqKLw/PXXXxacWL16tZ2D0MpWRCSughT0r3vvvff8XxOZZXgo5ejBxIkVC3YsCKX1BEsk3Gj/0qBBA5srwIIwv8NkIhHEY6hVcgYMGGBDrTxZs2YNwxZLNOH3JRTtnjZt2uTGjRvn/9prWyQpR1CiYsWKkd4MEYlh7HvJfmQ/71Vmcd5ANQWJCkWLFnWvvvqqVU6wCNGkSZNIb7KIxBBaxM2bN89VrVo10psiIqlw7Ngx9+uvv9p5AGrUqGFVTDfeeKMFJ6pXr+5fE1u0aJHdt3HjRvuaeRNUXd5www2nPC7nHJx7fPfdd/7ECBGRtIrK2m6G+BG1DQwcULoebLQ8YWftRYZFQolA27XXXmuLAhdffHGaezQuXLjQThho08AJA/1cBw4caG1hyJBMDkEJghvezSvjlIyB3w9KdkPR7ilwH83iF7MvvLJhEREJXyUy++N3333Xf4znHIGKCdoyTJ061U2fPt2GY4qIpCWhglYuIhIb9uzZY+sOVG5TaeklMFx44YXWtWTOnDkWsGDtjXZtVFdQGcF6Q86cOS0JjXaRiQUowM+NHz/evuemm24K86sTkXgTlUGK/PnzW9sQFlFDGaTwsonJLJbY74+a1I1AVEq/l6qdlHxvapG1QHZC5cqV3ddff23tyxgm9corr9i/33///da2Kbmb57PPPrNyzMA+9fSuZ1Dxt99+m+x20EOWkw3a8PD8WqTIeCepCEUlRcJ9NCe7GpwtIhJaBw8etDZO33zzjf8+2sWdddZZ/qxnqijBQgMZ0Pfee6+15BMRSS2Cnsy0USKKSHTjvKB9+/bWmql///42B2bfvn0nrX15rWVZ36AN5FVXXWVtoDiHePjhh61S/r777vOfU3jeeOMN1717d//X55xzjr9CQ0Qk7to9sYhKVjj9c99++227z+tzHkwFChTw9/dnhyyxK3ARPyH6InJR7smdO3eSJ9bVqlVzy5YtO2mOAwfzhLwMhJSaNGmSBRVGjhxp2QaURHLi8Nxzz9nJAwsIgQf65OzevfuUQbre1/xbUjjRuOaaayz7ib8nhvRyksI2SMbgBQ0IBAdb4D6azBz24wxeExGR0HnsscesaoKMR84rAhcSyJCkzRPnLCRDMI+IAAXatWsXwa0WkVg1YsQIt2XLFrv24Dop4czItWvXRmzbROR/iWMEHD766CP/fXRzeOSRR9ytt9560t8s5wfvvPOOrUPQch01a9a0riZXX311oo///fff20wafpa1k0aNGoXhVYlIRhGVQQqPt2P0Ss8YKHr55ZcH7fELFixoUV8ixHXr1g3a44okRPXEddddd1ILM6oqCBDQK5rACbdQ6tatm//z0qVL2+8+mREMzz733HND+twSHX788Uf7GMz9qBcc43c8cKgilToiIhJaHMM5j2WfGxigoDKUaokDBw64SpUqWQXnHXfc4Y4fP+5q1aqlWRQikiZNmzaN9CaISDJo7UuAgva7BCVYA2DdISGu3UhiXLFihX1N0JEgJO2ekpvXWrx4cTd06FB7HuZkiohkmCBFiRIl7CMLqGR/M/AvmItrXMzxeN7CncSuv/76K8l/S1ieSKljUjiYB9q2bVsQts7ZIkG2bNmSrMggw5EZEyl5jbRB+/zzzxNt4xPYIu10yKig3ROvUUOOMwb2dQRngz3UbP78+faRfucsjPG7JSIioauKY18Ozo+XLFlyyrkFbVO/+uorq2hjBsXy5cv9LRwIWCS3ACEikpS+fftGehNEJGAN4MUXX7S2TQy6BoEDujRQ7UDgIbH5r7Rse+mll9x///1n1290WKCags8TwwxXzh+Yb4kePXqE+JWJSEYVtUGKe+65x1rkgJkCRHpD0TqEAYMKUsS+1AyADtX3JocFg9WrV59Siun1jU5NuycyIZ5++mkLtnjVF4sWLbIWO6lpW7Zu3ToLyoS6gkOiB/s69nnBRpUbv0ve/BcFKUREQmP06NHu0UcftYAD7SwTM3HiRDdlyhTbL0+bNs3mEDG7Cp07d1aLUxERkRhGi0c6MpDkSIXkxRdfbEmP5513nh37afeUEN0bXn75Zde7d29rqw5mWg0fPtyGaieFhEbON/ie999/3519dtQuIYpIHIjKwdnIly/fScN81qxZE5LnUZBCwoXZJ5Rb/vDDD+6tt96yhYYuXbrYvxEooKonuZundu3atsBAdgTBuwULFrgnnnjCPfTQQ/62TVRaUIrJwG5v2DaZk3w/rdMYdkVfyrvuusv/NybxL1RBikGDBrk5c+ZYMI75MJzw8jsmIiLBwz6WBIMTJ064hQsXJvo9HP8JRICEBnpLjxkzxnpIs4ihLGgRSQ8WOlnUpI0cFdxUcwXeRCR05wCLFy+2gAFt0Qk4EKAgOYzjfHLBA9YC+Jul1TMBCn6ex6LSMrkABZjPSaCCuVfe3AoRkQwXpGAxl/Y2DRs2tK/JQuek6M8//wzq87BgRxspLwNYJFRat25trXA4QSCgQIDCG2CZGlRezJ071z5SVUGggcemGsPDYHCCISxkgOAF2ZQMt+KkhIULghQTJkwI6muU6EU5L33LQxGkAAtgXvURi2SHDh0KyfOIiGRUtGgaN26cBYFHjhx5yr/TH5og8d9//2194x9//HG7v0aNGu6GG25wgwcPTrT1pIhISvXv398yuFu0aOEOHjxo1+z0vSd7u1+/fpHePJG4/tu7+eab3YcffmjnA/zdffLJJxaAaN68eaJBCuYGtmnTxlWpUsWG2l900UWWuEg7SM4NUqJChQqWjMZ6XGLto0REgukMn9cUP0qNHTvWderUyZUsWdJ2spwQESkOlo8//tjdeOONbsOGDf5B3SLBdtNNN7myZcvaSYFIpCp5yJSZN29eki1C0oK5JpwUc3JMNg4Xq5wIX3PNNa5IkSJBex6JbiQQcOHDggWt50QkOHbt2mVJBiQWJIdEnrp169qwTFpJUoHM36SH031uCWdviUjGk55jdtGiRd2oUaOs7z396anu8u6jle2bb77pwkHnHRLv+N0+fPiwv8MILZ5Idmzbtq2dE/B3lxQSFVkzo3rSSxxr3769GzJkyGlbPXOuwJwLkoVPV2UhIhLs43bUN5TzeptTYkZlBZFjdpzBGvjnZRWTda4ghYjEK6+tXbArKdhHM4ibuRTghLZ69epBfQ4RkYyIxQmCvpwDUxHJMOyk0PaRAAX745kzZ9pFAIELqi7BebOGZYtIepE0WKpUKfucFp8sNnjnf4n1wReR1CeWvfDCCzZfqkmTJm7q1Kl2P+2e+fvj7y45S5cutSRfghpeJQQBi5TODBw2bJhVYjJYm+p4zitERMIlqtOpKGWnnPScc86xAEWmTJmsn34wZ0gQSc6ZM6f12BMRiVfr1693mTNnDmqZLjNPKB3+9NNP7aSZBbDy5csH7fFFRDIy2ucRmCC47A2+TsysWbPcM888Y5+/8sorVn1Miz8CxgzZDnarVBHJuAoUKGAVXiCT25uPQ/WWNxtPRFKPqqRWrVq5yy67zNbAqICg24fXvhnJBSiYF3HHHXdYGycCFKxxEeigTVNKAxS488477e+cyguuHUVEwimqgxSUtzNg2FtUu/LKK+3jBx98ELTnYFGNtiRffvll0B5TJKFly5ap1ZNEFPu4MmXKJDtULbWobAuszmDAO+2kOKEWEZG0t9HzdO/e3fbfSbV1YB4Q/aZB+wfaouK1116zlqbMniLRR0QkGG655RYbuIvOnTtb9QQt5piPx6KmiKTOihUrXO3atV25cuWsXRpVkAQaWPMiGYxE3eQwh+rZZ591xYsXd2+//ba1dSTBgcTejh07pqjNY+B5BwGK7777zlr4qgJTRMItqoMU7FQZ8udFfr1hf8EMUoDMXwUpRCSesY8LdpWDty/2epvmypXLsm/69OkT1OcREckIqH7o3bu3a9SokX/BgAWCpDInybJkcCYfma82dOhQu5/2Kz179rTPWUD0+lmLiKQXVVvsp0BQlAXWBx54wM2YMcNf0SUiKbdy5Uq3aNEia89IJcQXX3xhgcB69eqdNkhAm0eS0GjP5LWI5OeZ65ojR44UPf/XX3/tSpQoYTNlPKdrKSUiEipRPZPinnvusY9UU9CL748//rCvORnigoxhXcHAwh0nVbQrueSSS4LymCIi0YL9Jdk0nMAGC1k7nBjj6NGj/l6pnGBXrFgxaM8jIpJRbNmyxfpQHzlyxCrVCFYkhflsZC2T7UgQ4p133vFnWw4YMMDt2bPHqty6du0axlcgIhlN5cqV7SYip0cg4eWXX7YOIV4bx/vvv9/99ttvVpmU0ra8tHainSPHfi9hjGqKu+++O0WVE4FIcGC2IMkNzLNQ9YSIRFJUByk81113nb+knXJ3LuLmzJljPfuCwcsuJtO4QYMGQXlMEZFo8dVXX9mCVjArKebPn2/Bj7x589oiGTi5JptHRERSj5YptHo4cOBAsgEKDB8+3DKXCUzwMU+ePHY/++NRo0bZ5wQ8mOsmIhIstJJLDm2fRORkBCEYXs3t999/d5UqVbIWTwQE6BYyYsSIFCeJcWzv37+/BTwISDAkm6+9riOpRVtI5leQ4KAAhYhEWtQHKdj5/vLLLzZAiKHZN998s2vevHmqhv+cDhHr7NmzK0ghInGJfdt5551nlQ7B8vrrr9vH66+/3k2fPt0yeEqVKhW0xxcRyQg2bdpkgYTChQvb102aNDntz9AGwmvnxLwrL4uZYHSXLl2sVVTjxo1d3bp1Q7z1IpLRsI8JxFBfqr/Yj2XJkkVBCpEA27ZtswAE1RNe5Tkz/KiE5JidmqAAMy6ZNeElh9Ha6cUXX0x1ghitJamYqFmzpr+10+jRo1P1GCIiGXImBTtQStirVatm0WbQSoQ5Fezcg4WDg+ZSiEi8CsXQ7GbNmlmv1PPPP9++rlWrVtAeW0QkI/j888+tWrh+/fr+lqan8/PPP1sfeM6R27Zta73gPVu3bnWfffaZO/fcc93IkSNDuOUiklFR6RV4++uvv9wPP/xgSSu0aBaR/xk4cKCtWVE9QYCiQoUKlthFd5D77rsvxW2Zdu3aZR1EqlevbgGKiy++2E2ePNl9/PHHqQ5QMJSbhF8Sf/X3KiLRKKqDFOy4y5Yta4GKq6++2u6jRy9R52DjoLFmzZqQPLaISCQxQC3YQ7MJUjA4m1ZS3tBsSoUfeuihoD6PiEi84vyWKjeyGGnhcDoscjAoe//+/bZPf+mll07KwqTqmPlDtIzicxGRcLWqY75jwioLkYyGIICHCna+pq0TFZAkJtx+++2WdJsSVEXSvrF48eJ2XOd4T2ICQUGSFFI7ewI8N11EqHzSupeIRKOoDlKARbBff/3VBv/Rd5csMSLI8+bNc7179w7a85D9QZSallIiIvGC4amczN5www1Bf+ydO3e6r7/+2k6aOdElE5gTaom8sWPH2kUIC6C0R+TCKCWmTZtm/z+bNm0a8m0UyegKFChgLRe40TIvOexjafOwdu1aCwrPnDnT/r4TYk4QgQwRkXCiWpfzQpGMhuMza1OsJzEvysO59Lp169yCBQtcjRo1UtXaadWqVa5ixYoW+Pvzzz/tc87lae9Em/L0YMA2CWx33nlnuh5HRCRDBim8ViJkmXmLbLNnz7aevUOGDLGMsWDgoEI0ml5/IiLxYvny5faRtnnBQNB46NChNito4cKF/ko0TspZPHvkkUeC8jySdm+//bbr1q2b69u3r/0/oRS8Tp06bu/evaftm9u9e/eQBLRE5H+928mCpCWT54orrrA+7qczbtw4N2XKFDtX5W+8UKFC/n8jgcfbH4uIhNKcOXNOur333nu2f7rrrrtc1apVI715ImFDlQTJPXT+aNiwofv0008tiOBVU1C1kNp2TAzVphUU8yYIcDAMm6pJzhu43koL1reodPcqJziP0BxBEYlWUR+kCOQNAOQAwIIL3njjjaA89kUXXeSuueYaBSlEJK6wT7vyyistuzYYKDdmYCu9UefPn+/fN1PpVq5cOStJlsh67rnn3D333OPatWtnpeYsHrAI+sorryT5M1xQ8f+0f//+KWoTc/z4ccvsCryJSPJIruHvkUqHw4cPp/jnOO/12qgQJCYjMxDBYc6LBw0aFPRtFhEJRHZ44I39Wb9+/Vzp0qWTPc8QiRecA0+cONGueVq2bOnWr19vCbU9evSwCoiUtnMKRACBRASu2SZMmGBft2nTxqrh77///jQ9JkhQatCggQVPJk2alKbHEBEJp5gIUrAgxuJXwYIF7WvK4umHjtdffz1o/fRuuukme2z15xOReME+jX1bsHiBYU7KvcxdL4AskUdfewalMxDPQ8YUXwdmbyc0YMAAazfToUOHFC+2Etz3bt7xWUSSRoUTVW0vv/yyv1I4JdVrt912m1VhMOzy0UcfPenfmdVGJjOtVtTmSURC7b///jvpRpLD7t27LYklWAkxItGMxIB7773Xbd682eXIkcPOobdv325tlNLyN7Bx40a7ViO5aN++fZZgRCU8QYvTtYI8HX7+hRdesPOHu+++O12PJSISDjERpCA6TbkbO22GDDI4kAMCF3jMkCBiHQwcHLgY3LJlS1AeT0Qkkrho/P7774MWpNiwYYPNoKBqgmz7AwcOWBnyX3/95Z588knL9pXI4jjJgkGePHlOup+v+X1IzCeffGKLpmSFpVSvXr3cwYMH/Tfaf4lI4nOBPGRaEjiuX79+irM1GbLJY9CagSzlwJ7W/PvDDz9sn1NpwcKGiEi4zjdURSkZAee5gcdy2jbmz5/fKpd//vlnuwZKy5yII0eO2IxVWkKtWLHCZc6c2QbQs+514403pnl7OTfgGs3TsWNHa0uV2BwrEZFoc2asZJ7NmDHDqie8jF2iy7fccktQWz5pLoWIxJNgz6Pw9rUssHlZ+bVq1bKexLQZYZCrxJZDhw5ZZhUBCobxptS5557rLrzwwpNuInIyZqgR0CXD2JOawZmdO3e2RBwWP2bNmnVK9QULJGRyXnLJJe6pp54K6raLiCT0xx9/WG97zhdIfmDfxP6HxAUWXEXiyf79++3YWrhwYQsmeEgaYI4bFRUkH6QFLXNLlixplcn//POPzbSgouLxxx+3ZLC0YqYF7R95vGPHjqXp3ENEJJLOdjEgsG0FQQoyydixc3FGuyciwyNGjLBFk2DNpSDiLCISy4I5j4LsfC9IwXBEBmV7+2SqKeivTsBCIouFA/rWBmZ8ga9ZSEiIykEutBo1auS/j/YNoH0MvXCLFi0ahi0XiT8rV660hbvp06dbi7zULBKMHz/egof8zFtvvXXK3yHVS94MimHDhilQKCIhxeJn5cqVresAM6xKlChh97OwOnr0aLdo0SKrzKQDAsFVr8pLJNYwx4G1JeY4UC0OWqnSdtELIHCOnBa7du2y4Mbbb79tX9MuddSoUa5JkyZBCST89ttvVvXOdRt/m6xtiYjEkpgIUiQMWFDtwE63SJEiVmrHosyOHTuCspDCMEL6/7FIw/OIiMQiZuswM4JsmmB4//33bVEsZ86crmLFiu7zzz+3+3l89sPqhR4dzjnnHFe+fHm3ePFiG2gJjmd83alTp1O+n6F/33zzzUn3PfHEE1ZhQQ9bzZoQSTvaNhQrVsz6TKdm8YHgBlUUGDx4cKL7cWZTEACpWrWqLRiKiIQSffc5xyC5IWFLSf6tdu3aVpnJuSeLriKxhgACcyVIEqC9OGjFxHkx1znpWRviXJyB2MxapX0Uj9W1a1fXv3//NFdjJIbkNOZUUeVExYeISKyJmVV4FscmTZrktm7daoEE0AKKhbKvvvoqaJmelMYRPV+zZk1QHk9EJBK+++47m9nDPi0YGAhHr1QGxdHeiSDItddeawEKib4WiWRgv/rqq/Z7QO9cKl1YKEXr1q2tNQPoT0u5eeCNypisWbPa5yxIiEjKkHH5/PPP2/4RLELcc889qcq4DByUzTwKWj8khsoMknXGjh2rNg4iEpb2dVTRJgxQgEpNFnffffddOwdp06ZNRLZRJD0ITnAMJ0BBQhbXO6wzcSxOT4CCmX60Fed8nAAFj/3FF19YtUYwAhT83ZHA62GehQIUIhKrYiZIMXDgQLvQmzp1qrvzzjvtPlqP0MYkmBdnlLGSKcxBSUQkVrEPy5Iliz+om16U7VOx1r17d39/dfbFZOET2JXo0aJFC1tIoI9u2bJlbQAfLRK9hQUCTmSLiUjw0FqhZs2a1saBrOK0oH802ZoMuWeBYfLkyUme4zKXbdOmTZblKSISapw3XH311Un+O4kNLOT27ds3rNslklZc1xBACLzWoXKRc+bVq1dbK9T0rDMR7GCWRbly5WyWHwlAtEbjc+4LBtpBEkRp0KCBDbMXEYl1MROkqFevngUQaE3BhRnZnUSMvTYVtKbggJJeZLsxFFZBChGJZezDKL0nUz5YcuTIYUMT6TXMhWjz5s1tfg+L3wx1lehBa6eff/7ZHT9+3C60qHoJnFVCW8Ok8G9kTIpIyjELhkqziy++OE1t9qi+IMuSCmHaNPA3mFiGJQM2A59TRCQcaK/MDKuk0O0gd+7cYd0mkbQGJxgATyeO++67z1/9yHUO60kcw9ObBEubVZINvMHYrF9R3cz5eTCP3cwDvPzyy61ynnMHEZFYFzNBCnbs9OjlQEIrCqLFXvSYgaAFChSwaDdl8unVuHFji6pzsiUiEmuobCCQwL4sGIMSA9vfTZs2zT5SocHJvLdgVqlSpXQ/l4hIrPEGzaNDhw7uxx9/dNddd12qH2fMmDEWICQAzEDNyy677JTvoQqK++lrHfi8IiKhxsJtnz593N9//33Kv5EQ8eSTT7q6detGZNtEUhqcIEhAcIKh2PwuMwj7zz//DNpz7N+/39qdMUeV+S20xSWRa+bMmUFrkRt4/Cd4yHUaFRpKXBCReBAzQYqEvJZPBCnIWqOlBYtl48aNC8pJGJUaDIoVEYk18+bNs49eMDc9mG1AAILFNzKNaLPn7YPZT3755Zfut99+02wKEclw2D9Wr17dP2ATJNKk1tKlS61NFOjrTmZkYhiWzYw2Wp9qDoWIhBNt7H744QdXrFgx209RscuA3meeecbuI0u8X79+kd5MkURbldHKieAEc5wITjC3gWMv1cUXXXRRup+DayTa4dL147XXXrNjNAEROn80bdrUBTPQwnXZggUL0nXeISISrc7wefVtMdTzlwoHFsRoMUKbp08++cT699KPj4AFmWbpbXFCoIIo9aJFi4K27SIi4eD1NKf6LD0I/JK1y6IYvdGvueYa639OcIIKNp0Ui4csNC7yGAh44YUXRnpzREKO3s8szNEC76WXXnL3339/mh6H9ikM0eTxWrVqlWQAYuHChXZuSqbk2rVrXenSpYPwKkQkI0rrMZtr8AcffND2R94SAvsrAqtUg9F2Jlx03iEpRYLVXXfdZZ/fcMMNrn///pZgECy0V+UcwGs9znwWkhjSUlV5OgymHzlypLviiivct99+a63KRURiQUqP2zFVSbF582YLQnAxR2keLaBA1LpJkyauYMGCltHrtSNJD9qkEFk/cOBAELZcRCQ8jhw5YhePtL9LLzLkCFBQSnzHHXf4B2ZTocEBJsZi3CIiQcN+kRYOZBfTijQt/vrrLzt/JUBBEJhFjcQCFLRS6dy5s31OZqYCFCISCUWKFHEffvih7bNoK8qNa28WZ8MZoBA5XcslhlN7uIZp3bq1++ijj9zy5cuDFqAgeXbUqFE2UJ6/AZK4Bg4caFXmoQhQgMol5l9xracAhYjEozNj7cSIRTFuP/30k7/l0/Tp0+0+BiCBg0V6F88IgFBJ8e677wZl20VEwoE2dYcPH3bNmjVL92OxLwULcJx4ewFg9r2UL+fLl88GvYqIZAQsxtHuxHPTTTdZH/a0tF7iPLVt27Zu/fr1VhnMoOzMmTMn+r3Dhw+3WRd8HxmgIiKRxIBeWs5wYz6ZSDQgO5eWY6wZ0WHDa8VIBeKrr77qatasGbRWiVwHXX/99a5Lly523UWFxtdff+2eeOIJu2YKpk8//dT/OY89fvx4V7hw4aA+h4hItIipIAUHmM8//9yyNyhx40BDZQUXjYsXL3YdO3a0C7yvvvrKWkClB4tvDIb1+q+LiMQC9lnXXnttujPa1q1b51asWGH7XQIRZCRRzpw1a1arpCCDh5ZSlP6LiMQ7qnnJjKTlEu3u0mvQoEGWCENlMB+pBk4M+1i+F88991xQemeLiIjEUxX50KFDrUUtgXzagbNGtHPnzqA/F/MsqJYoV66cVRJxXUTLRzpwMI8imEhm6N69uwVDmKUhIpIRxFSQAvT/9Urb+Ni8eXP7nDYkOXPmtH6DZ555pgUq0ovH4oBDuxMRkWhHAJcyfK/vanrLiXHbbbfZDCCv1RNVZgSD6UlM2XSfPn3S/VwiItGOGTycXxK4padqelA18dRTT9nnLG5UrVo1ye9lNhrtnmhP0bJly3Q9r4iISLwgYPDiiy/aQOyePXu633//3QIF77zzjs1u4v5goo1ThQoV7PjNczds2NAqKphHwflBsFH14VUq0R5SRCQjiLnB2QkxGJaLu/PPP9/9+uuvVuZ37Ngxq7RILy5CL7nkEisbfOyxx4KyvSIiocJiF33LyRzKnTt3ujKSyBCivQgVFexPCxQoYCf/BEHq1q0b1O2W2KcBlpIRbNmyxbIm07N/3bBhg6tcubItOLC/9trqJWfNmjX29xWMc1sRkXg4ZsfDa5D04dhIyzFceumlVkXRqlUrSyYIJtaWeOxhw4bZHApmUnHsZtZFsNpHJYWlOjqJUCUvIhLL4nJwtofBgpS9zZgxwy70rrrqKusFSK/BQoUKBe0ijjeOAdqvv/56UB5PRCSU2FfRiiQ9C2jIkiWL+/bbb61SokyZMjaLggAF/U9r1aoVtO0VEYlWLAzQ0mHBggX++8jKTM/+lWo3zisJUNBSdMSIESn6uYoVKypAISIiLqMflwPnQnFsZG7emDFj7H6GYwc7QEFCbNmyZa3CnABFixYtrHqCysZQBCh4bNrs8lzgORSgEJGMJCaDFPTnZYAQ7UfYcXfq1Mnup1cfw6493333ne3o04O2Kd98840NNhQRiVY//fSTnUiTQRQMtNNj7g8XBKNHj7b7aPHEyT8LdwxyDUZfdhGRaPTKK69YS4dmzZrZ/J30ojUEgzw5h6VvNu0omEeRFBJvqGYTERHJ6JiNV61aNUueCmzFPW7cOPfQQw8FfVg1VeWPPvqoJcYSAKG7xqxZsyxxi3kXocCg75tvvtle0+DBg0PyHCIi0S4mgxRt2rSxiDmtTXD33Xdb1QMXc2T+YtKkSe7qq692Xbt2TddzkZXMrAtVU4hINCNoS9u7Jk2apOtxaOdE/3MPQ+GY8XPeeee5Dh062An0s88+63r06GGDZEVE4hHnliwWEJBlcSI9CPbS2mn58uXWLur999+3c8ukkGRzzz33uFKlSilQISIiGRbHQ+bhValSxX388ceWoLp69eqQPifJsFRPPPfcc3b8Zu2JxNemTZuG9HmZ+Udi2I033miJYSIiGVFMBimuvPJKi5jnyZPHvr7gggtc27Zt7XOCF+DCkoxfBg5+8sknaX4ustwo55s6dao7ceJEkF6BiEjwUEE2efJkG3JNoCKtmD9Rv359GzpHC73AfSr7QRbVOFknSEFGMO32RETiBW3tPGRl0urp3nvvTffjUuk7YcIEW1x56623rE1pUtjH0uqBc87atWurzZOIiGQ4VDAykJpg/ezZs20wNclSmzZtsmuQUKB6olu3bu6GG26w58mXL5+bN2+emzJlisuePXtInpNj/oEDB/xfcy23dOnSZBMZRETiWUwGKRLjRZvnzp1rpfQMT2rfvr3d17dv33Q9NheoHCjnzJkTlG0VEQkmKsho90Rf1vTo16+ffST4QLCD/d706dPtPq+tHvMqWEDjfi4YRETiAZmZJUqUsICCJxj7OPbPXlXv0KFDXYMGDZL9/tdee80qLtjXekFiERGRjIKq7dKlS7vx48fbbAZmOW3YsME6ZRQoUCBk7aTKlSvnRo4caYGDdu3a2Xw+krdChcp1WovTxoqBsh5dX4lIRhaze0AOHkS2Kcffu3evVVeQccb9XhuoPn36WCXEkiVL7IIvrYjgU2JIf0ARkWjDvon9VHoqG7788kv33nvv2YkxfdgxceJEy+blca+55pogbrGISHRZtmyZnU+SMfnPP/8E5TFp1dS8eXNbZOF8tXv37sl+//79+/3fQ4JN4cKFg7IdIiIi0Sxwrihtjzp27GgDo1esWGHXJyQRhMKxY8fc448/brMnOGZ71RPMpcqWLZsLpd9++83WqWhpxVxBERGJ4SAFJfNk/TIrYsaMGSdl+hJlp1yvUKFCdoALRjUF5YZkw1H6JyISLXbu3GlVXuyj2C+mt4rizjvvtHZPBCe8wKy3b6V1Hr3UA2dWiIjEg8cee8yqKGizcPbZZ6f78Wjf0LBhQ/t43XXX+ds9Jadnz55u3759NlPtkUceSfc2iIiIRLuFCxdaFUPgQj3XJVQ30HopVEjQKl++vLWxJUhCMgEVG6GsnghEVQhdQJgHWLdu3bA8p4hItIvZIAVYlGMQIZFvcEChzRMXhNOmTbP7evfubX2FqaTgwjOtmjVrZr0BX3zxxaBtv4hIehFIIOOIcuG0WrNmjZ0kU0Xx5JNP2n30fyUAwuwfr/frkCFDrOSak3kRkVhGtQSVt17VBAEEWocy5yy9CPKy3ySxhYQZ9qfnnXfeadtNkWQDWlxQCSwiIhKvGEbN+k2dOnXc+vXr3YABA/z/xvpNepKvTneM7t+/v1VqsA25c+e24zTtFkM1eyJwKPfnn3/u/5ogCbNURUQkDoIUDE8aNWqU9SwEg7K92RSjR4+21k9EqJkpkSNHjpOGEqUWF5f33HOPDaf966+/gvYaRETSiooGFrPatGnjLrzwwjQ9BvtJMohBBpE3pNXrhc7+kwsFvo/s3rx581r7EhGRWHbHHXfYOWOwKxbYV5JAQwsHZvtQfUaw93TIIiUQzM9WrVo1qNskIiISLWhtyLGONRyqCKhe7NKli3vjjTdC/ty0VqKNN5UatGIkEZXZE02aNAn5c5MwW7NmTdeoUSP3888/h/z5RERi0Rk+rqbi7KBHYIL+gh9//LFVWXAfkXgCFenBweSyyy6zdgBUcYiIRBIn81RQkAWU1l6tBF1p8bRo0SL3/fffWw/0r7/+2pUtW9YCv+z38ufP7/9+yqE10E0SYuDfRRdd5A4ePJjmgJlIOL377rsW4KVtaNOmTYP2uCTPsNjCeSd9tFmMEBGJJvFwzI6H15ARUa3QtWtXf/IowYFhw4a5YsWKhfR5uX7h+NyrVy9bJ6Jigg4ZJCyEy6FDh6x9FZ0/uIYjkUFEJKP4M4XH7bhYaaKcnmxi0JLJa3syePBg/33pDVCAxTsOpM8//7xF3kVEIoX48siRIy0jJz3D5GhtwkwLsoi8Ia3evvO22247KUABBShEJFYF5uWwf/vpp5+CGqAgI9SrzKAtXkoCFMyg+Pvvv4O2DSIiItGKYAEBilKlSrnFixdbm6VQByh++eUXV6tWLTs+E6CgvdQ333wTlgBF4HlH1qxZ7TWTJKEAhYhI4mJ+temPP/5wV111lVU2UL7nDR4kA5iLxcCefxwkOBCmp586bVF++OEHexwRkUih8oGBb48//nhQHo8qMRCsmD59un3+xBNP2Mfdu3dbr1gRkVj1wQcfWHUtWTwe+lAHCwseLVq0sAWYdu3auUcfffS0P8N5KW32rrnmGvfVV18FbVtERESiwbZt26y7had169burbfecmvXrnU1atQI+fPzXLSVogVjlixZbBYVa0QJk7BCgWzhevXquXfeecd/H8mzrFOJiEicBimyZctmmWpExL1MtKJFi/qrKRiK5CFgccstt7g+ffpYe5S0uO6669xNN91kfYPjrFOWiMQQ9kHpGba2detWmzexZ8+ek+4fOHCg7dtuvfVWy3LyZvyUKVPGdevWLSjbLiISTkePHnX33XefW7lyZboSVZJCILdhw4bWyqFatWpu3LhxKRr4+fbbb7v58+dbRTCLJyIiGek8tmLFipZdTsCYqjYSASU+HDlyxPXt29eqvVu2bOkOHz7sr8imgoE5FKFEtQbPS0tbkloZkr1u3TpLbA3VQO6EOBdYsGCBzb/i/EBERDJAkCLwIo9FNA8ZwESpyZxbs2aN3cfBqXHjxu6ff/6xfsFpDTLQy5AM5o8++ihor0FEJKVWrVrlli1bZvuitJ5od+/e3U2cONECFR6Ct162z1NPPeW/n5N79qdkIYuIxJrMmTNbBewDDzxw0r4tWAEQWoFu377dWlbMnDnTnXPOOaf9ud9//93ORUHyzJVXXhnU7RIRiWbLly93Dz30kJ3TUh184sQJV7t2bf9itsQm1leYx0SniwEDBlh7pSuuuMI/gyIcuEaiemLatGl2/cKQ7E8++STkbaUSu9biOmvhwoUWjBMRkQw4ODsQAxEZztSgQQM3d+5cu2/Lli120KTqYtasWWnqRcxbVqFCBRv6QemgiEg4sSBGthlBhbTMiCDASm9WTtxpMeJVTJBxxAk9FWcstAX69ddfXZ48eUKe+SSxSQMsJRqzOGkzwTlfqNDaiYxQWuQx+4zFtpQugtxzzz1u0qRJrnjx4pbdee6554ZsO0VEov2Y/dtvv1lFBcGLG2+8MSZfQ0bHnKeHH37YzZs3z74uWLCge+6552wGVDiqF1jfoXpj6NChtl5z+eWXu9dff90SVcOFNlblypULW7WGiEisyFCDsz1kXtB30Iu7UE3BAh4Hyi+++MLfCoqoNmhdQnQ/tTjokMG8dOlSt3r16iC/ChGRpG3YsMEGXTOLIi0BCjLVvOxdyo+9AAUzfahKQ2KZxvRuVYBCRGIBi13Vq1e3G63tQuXJJ5+0AEWmTJkssJvSAAX9uQlQYMKECQpQiEiGx6IFCPgm5vjx47bAEXiT6EE14dVXX23rLhwTWSvh2uL2228Py4L9jz/+6KpUqeKeeeYZWwvq0KGDJWKFM0AxZswYS2QdNGhQ2J5TRCTexE2QghZOZKPRd5AMDHCx2KpVK/ucckMPB00W3LhwHTFiRJqej0xjSvPppykiEi5kB5GZ5O3bUouBcVRgMLgtcGYPJ9Sc1FNdVrZsWbtv586d1pJERCSWnHfeeZZRybkh8yJC4ZVXXnGDBw+2z2mdxyyKlGChzWuz17FjR3fDDTeEZPtERGIFVWldu3Z1VatWdSVLlkz0e7jmJgPTu3EuLNGjUKFCdg1Rs2ZNt379ejs+nn/++SF/Xq5dXn75ZateoB139uzZ3YwZMywR4IILLnDhRDIX27Njxw7NLhURyehBCg4KtHW67LLL3F9//eW/36umeP/99638Dhywhg0b5j/hSUuPRNqkkMlMz0XK9EVEwpElRLUY1WAp6Xme0N69e/1VElw8cCKP77//3to8JayiIEu4QIEC/oxfEZFYQO9n2nx+9tlnrnLlykF/fFrmMYjbmydBe9GUYsZPvnz5rK1JKIZ4i4jEGmZTUCnsnYsmhiRDqi282y+//BLWbZRTryloW0g7WA/BAuaLkDgaDhxPaVVLwJ8WjzVq1LAACe2lIoGh3LQCZ2C22j2JiGTwIAUIPGzatMk1bNjQfx+DmqiuQGDWMD2EuZ/yfG+hLrXuvvtue3xOmkREQo2gK4tbgcOuU4PBcVzYkW1EGXRgFQVZbMy64N/A11RcMBS2RIkSQXsNIiKh8Oqrr7p33nnH/zUVs5yjBRsLaSyAUKXBeeTAgQNT9fPM9iHIQbvQtJ5/iojEi06dOllQmTbKJMYkhbZ49LAOvEn4eZULBCJIYnrkkUf8/5YlS5awLc6ThMA1C61qSValzRMBkuR+h4Jt165dFmCjQtJDm0kFKERE0i6uB2d7GDDL4EQW3SgDvOaaa4L22JQTNmvWzE6sbrrppqA9rohIIObqVKxY0VqMtGvXLk2PQf/exx57zDJ9vJZOVGcQhEhs/8jhgeelv6pOuCU5GmApkfThhx+6+vXr2yIWVbOhGpbNggT9rcngpU0TCyKaJyEisSYajtmcY3bu3NnNmjXLLVu2LMUzfaLpNWQ0mzdvtkQp1j3AtcT48eNdpUqVwrYN//77r7W+pfKbz4sUKWJV5uGcPQGumwiSULnBjL+xY8eG9flFRGJNSo/bcRmk4CWtWLHCSvy9lih33XWXe+ONN6xPIheVCRfcGPbEfantb8lzcWCm/RMRfS3kiUgo1KpVy0qqORkO5gBr5uvMnj3bNWrUyAZyi6SFFgskkliooLqB4ASVYbT5DDZaiTJ3giAIFRorV6602T6pmQf0zTffWLan/kZEJKMfs1nYffPNN611MnMePWxX5syZY+I1ZBRUDjLHk4rsY8eO2f8fqgi7dOkS1GuS02HGFJ0sqEYErZ44tvJ7EAlsB7NU+B0uWrRoRLZBRCRWZOggRZ06ddzChQstqk5bJzAkm2xhyvFYkKOtiYcSU0r2icDzc6kNNCxevNjdfPPN1jqKBT8RkWCfBBOkINuMoXSpwS5+/vz5rm7duqfs27x9F0FWgh9e9vFvv/3mcuTIYfeLpIQWCyTcDh06ZDPGvP0agYpQ7bNYoOH8jvPFXLlyuVWrVqVqQYLKC/avBDoYsk3/bBGRjHzMTup6e/Lkya5t27Yx8RoyClpqU4kNrhuonmAOaDhxzdKqVSu3Z88eays1ZswY+z0Jd4Iov3eBv2+hPPcQEYknKT1ux9VMCg8VFBy8fv/9d/99lAI++uij9nm3bt1O6h1IRhwXoCwETpgwIdXPR3UGC4i9e/e2xxERCWY5cc+ePW2/FhhcTSmCtbRBYVZPYEyafRXZP142W2B7FIK7l19+ub+cW0QkmmzZssXa3wXOgwjVIgH7Ta9n+nnnnWcVZ6kJUPDzDzzwgAUoqlSp4tq3bx+S7RQRiSXsGxO7pSRAIeHFdQLtYAkgkdAZzgAF1yu0dmKthQBFyZIl3Zo1a6z1bTgDFFyPsdZDiyeSuTwKUIiIBFdcBikoPaRyggNqIAZc582b1/3000/u+eefPylIMWTIEPucQAY/m1qU73///fc2uFFEJJhzb5gVwT4mtSfj9E9ncQ0EOQJ/noAsA2CpmKB828MFAPfTWircWVIiIimxfPlymzfG8E6yckKJfS9Zo+w/aU3CvjQ1GOo5b948az/KkNFQtKISEREJlnXr1llwnYV5nH/++TajLtyVC1zHULlBQgIBrHvuucetXr06ZHOnkkPmL8dz1pHUHldEJHTist1TcqZOnepat25tLQIYGEvQAhyEGXz98ccfu+rVq1tVRWovJOmLyIUzwQqVnYpIeh09etRdffXV1qqORa7UYNdO5cX777/vypcvbzNzMmXKZP9GlRkDCvnIoLeEAd0jR464Tz/91LKWRFJCbRck3Nh33Xrrrf7zuFB4/fXXrf81Ro0aZUNeU2Pfvn22mELW5YABA9yTTz4Zoi0VEclYx+x4eA3R5sSJE+7pp5+2GxUML774ogUrIoFqbtZWSJ5i3YbkKr6OJNZ4qOLwzgtERCTlMnS7p4QtAb7++mv/1/QyZNA1ZfeU7HkISLzyyivWJoqD4rhx41L9XEOHDrU3nAtREZH0evbZZ92OHTvcyJEj07S4RoCC7N0pU6b4AxSgcoIABSXT99577yk/y35QAQoRiRYEXdmnBbbqfOihh0IaoFiyZIm/NVP37t1THaDwKnsJUBBsfvzxx0OwlSIiIsFZgKclYf/+/S1Acdttt9kt3EgcHTRokFVQEKAoVaqUVXFEIkCxadMmt2LFCv/XxYsXV4BCRCTE4jpIQS/2K6+80rKEvYIRghEvvPCCfc7CHdFwDz3YCTSgR48ebtu2bal6vkKFCrknnnjCWkl9++23QX0tIpKxUE5MGzoWx2hJlxq0anr44Yf9AQmCEZ6NGzdaZhTYV5199tknXaCIiEQbzslYGCBoEI4C4PXr19ugbLJKW7Ro4T83TI3du3e7BQsW2HknfbwJGIuIiEQTggKsjTBrgWBA9uzZrbXh9OnTXe7cucO6Lfv373cNGjSwqkO2i7kTq1atsvWccGMt57rrrnONGze2aycREQmPuA5S0L6J7GFKSaic8HDA8aLgZLkFXvAS0KDdExl6+fPnT/VzMpSbgYr0gc9gnbREJIgYas3FQZ8+fVL9syzk/fHHHzZYlsU9D/skHvfff/91TZs2dTVr1vT/Gz1eaSvFybjXg1ZEJBrUq1fPnXvuue7aa68NeT/sn3/+2dWtW9dKkm+88UZLaEnLHIlLLrnEFjloM8q+WEREJNqw5sG1wbFjx1ydOnXcN998Y1UL4Zw9AQIktKedP3++y5w5s3W48LpcRALJq7RrJECSM2fOiGyDiEhGFPczKWiVUqBAgUQzjTnoHD582L3xxhvuzjvv9P8b7QS4GE6rhQsX2kGeLIRI904Ukdgzd+5c16hRI8tiuv3221P98wza7tChg3vnnXdOqsKg/RNBCDJ6yQoioOqh3zpBVmb2cFEgkhrqDS3Bxulp4CIJ521pSR5JbRZn1apVbSg3FWjMKcuWLVtIn1NEJNzi4ZgdD68hGqxdu9bVqFHDqrfvv//+sAcnMGnSJAuW/P333xYcePfdd13p0qUjft5Ba9zzzjsvYoESEZF4ktLjdtwHKZLDUCjaM3HRS5sThjIlxMGSjAIi+6nBwuLKlSvtQjdr1qxB3GoRyQjDsjlJp1VIWi8WEp5oE3xl0W3z5s3WG/2ZZ55JtMUUAYzEArsiydFigQR70YRK15kzZ7qLL744LM955MgRqy6jtUTBggXtHC4t+0JmWfB3QLsoEZFoFA/H7Hh4DZFAgibHt8DZc7yXkXgPueah+4SXHEUi1auvvhqR5ADaOxKkoWIzsXl9IiKSPhqcncjFJ5UNgcgavvTSSy07r1evXolm1FWrVs3aRhFsSI3nnnvO3nz6wYuIpHZY9ujRo1MVoKBFCRUUnoQ/yyA8AhS0IEmqhdRll12mAIWIRJTXh/qTTz5xjz32WFiekyGhzJ4gQEE/btpNpGVfeOjQIdv2W2+91eZQiIiIRIt169a5ChUq2NyHr776yn9/JAIU27dvdzfccIMFKGipOHjwYDdr1qyIVS8yy5RtYaYfa0MiIhIZGSJIQQZx8eLFXatWrdyyZcv899PvcMKECfb5mDFj3PLly0/6OaI8lPgxz4LKCAIdqRmi/dRTT9lg2s8//zyIr0ZE4tWGDRuswoth2akZEkfFV7NmzVyVKlUs8zixPq8EP8DQ7MDqrq1bt7q9e/cG6RWIiKQPixW0qmvevLmdQ4UaVWf33XeftdnjnI+2ePShTguq1Fh4KVKkiG2/iIhIpHGc4/yfKgG6R1ChSEVFpLAeQ5cKkquY90DlOOTS6pgAAHgMSURBVAmjaZn/FCzMK2U2KddRoW4tKSIiGTxIwXyJhg0b2kUjZYWBKHXs2LGjfU4P98BAxNlnn23VF3ny5LHFQ3olpsajjz7qrrnmGte2bVsbRiUiklyZMfuKYsWKWYAzNQhqrFmzxp1//vmntKYjSEtmL8OyyRRO2IKEjCH2jW+//XZQXoeISGqxf2LhxEOQln0SySKhxsKIl8k5bdo0m0mRFh999JF76aWX/P212R+LiIhEur3GHXfc4Z/5QEul9evXu+uvvz4iwZIXXnjB3XzzzW7fvn2uXLlyFqjg60jgvIPzD68CfezYsa5+/foR2RYREclAQQrQf52WTfXq1Tvl34YPH25l/Vu2bDmlDUrevHntopWL1ylTpqRqoCxBDn6Gx1XbJxFJDpUOlGGzzyCbN6UYrk1rKEydOtUVLlz4pH+nMoMgK1lT3vd5yKJiKByBDC4URETCjeQQqlXJ8Pz222/D+twjRoxwQ4cOtc+prG3SpEmaF4FIdAGZmAwhFRERiSSuK0heojqRdQmOebNnz7bqhXAjUbRNmzaua9euFhigwwVtHRNet4QL7wPJpCR6ZeARrSIiUSfDBCnotZgpU6ZE/41MvYkTJ9rnRPc//fTTk/6dmRQDBw60z8lC+Prrr1P8vAzAJUAxbNgwt3r16nS9BhGJT998843NjKD/esWKFVP8cz/++KN/Yaxnz57WYzYQ/Wbp8QqygxIOoCXTlwsE9k1XXHFFUF6LiEhqnHXWWZZRSbB006ZNYXve1157zRYnvEQWb1+aFjwObZ6Y6+MFPURERCJp4cKFNo+ONtQff/yxzeNMzby7YNm5c6fN+SSZimM+szv5PEuWLC5SOOcgcEISK9XsIiISHc7wZcDQ8Ycffuh2795tLVACtW/f3gYd0m6FQAQzKwIHOTZq1Mh98MEHrnLlyhbISOlBnoGM9IpnoCKLhqnJkhaR+MaJ8XXXXWcny5Q8054uJZiVw36FAMeNN97oFi9ebFlSHkq6K1WqZPsyspSpuBAJFTLJCfgfPHgwIgMYJbbt37/fAhTsC8OBuRO0viObk9acJJKkdeGG6o+SJUva58w2Y38sIhLN4uGYHQ+vIdRYvxgyZIh74IEHXI4cOSKyDczmbNq0qdu1a5dtA1UdNWvWdNGAWRhsS+D1k4iIRPa4nWEqKTyLFi2yXoP0YedgGYiofr58+exC+cknnzzp32j3RNYdPRP5mJqLWa/t008//eT69u0btNciIrGPrFsCCewjUhqgANVfBChy587t3nrrrVNOsLko4XEp6aaKIhAtnsaNG2cBVBGRcCOoGtg+k/1UuAIUK1assKHWBChat25trfbSk1lKxSzJL4MGDVKAQkREIubXX389acYm6xe0so5UgOKNN96w4yJrLldddZUFLCIVoCC5i6QEkkY9derUUYBCRCTKZLhKCjIKaN9E72MCEQkjOPPmzbMh2xzUaYNC1USw0E6AE4Vly5a5G264IWiPKyKxicoJ9jE9evSw2RGp3ZfRIoo5OwkX9whOVKhQwYIQBDAYmBeoS5cubtSoUbZQp4HZEgzKaJTU9MimrR2nn5wPhXN4J/vc6tWr2yIF53ozZ85MshWoiEi8iodjdjy8hmAH4Js1a+b27t3r7rvvPktGihSuUVjzYO0DHG8JWETy/xPXS/Pnz3e33XabmzFjRsS2Q0Qko/ozhcftDBekANlz9ENMCkOdqJYoXrx4su2ZONBR5k9UPiVYMCR7gEHaXKTnypUrza9BRGJ/J83AtmzZsln7uNRUUZyufRRBWPZdtDN59913T8kSHj9+vOvdu3dUlVxLbNNigaQUp52022RfRTVFsPZ9p/Pdd99ZRifzL0hWoX1nYFvP1CKRhT7f3EREYkk8HLPj4TUEC9XVDz74oK01lC5d2gLwRYsWjci2UMVx99132zZ4M/OoNExu7SUcmL9H0ta0adPsOklERMJLQYp0OHDggJXvU5pIWyiGaSe0ceNGOwkg4JFYpnJyZZhlypSxzGd6IkdieJWIRBa73ZYtW1qLkLVr16b4QoJ9BplIzM5JanHtiSeesKoMSrsJol5yySVJlj1fcMEF6XodIh4tFkhymLlDSwVvkYIABV+H6xxo27ZtVrHBORhVHLSbypo1a5of77fffrM5FMeOHbPHonJNRCRWxMMxOx5eQ3qxDkE19siRI+3rFi1auJdfftmdf/75EdkeBmQ3btzYqhbPOeccN2nSJAtYRAoBk8Dh3MzrY7tERCT8NJMiBXbs2OFatWrl3nzzzZPuz549ux1UQUsUMpEToq8iLVPQtm1by4ROifz581uVBm2lvBMKEclY2L/QZonMp5QGKAhmEAzl59gvJTUAbvDgwfb5Sy+9lGSAAgpQiEi4hmIzzyuw6pQWS+EKUJBwwvMToODcjeBwegIUBJnvvfdea6lBFYU3NFtERCSciz0EBLz1BFrAkjgZqQAFXSKoUCBAwZwpAviRDFBMmDDBumJs377df58CFCIi0S9DBymmTp1qAQrKEMnqC8Rw7ccee8w+b9++vbVoSohhi02bNrUMwSZNmrjNmzen6Hl57O7du7vHH3/cBkiJSMbBsGsqtOgXy0yIlPjll1+snysZQbVq1XLdunVLNOh611132QLaAw88cMpjs58iKPvFF18E7bWIiJwOSRy0RpoyZYrtp8KJ1k61a9e2c7giRYq4RYsW2eJJerz66qtu9uzZFmjhPDKplqAiIiKh8vvvv7s1a9bYMYgEpqeeeipiHRpIvqRakWM8gQFaK4Vz3lRCXPOMGTPGrp9oKykiIrEjQ7d7okyfAAQBA3rDJ0TgggGLXGDz73xMeDF6+PBh623Mwl+xYsXcZ599lqILYMoN6Y28Z88e6x1PX3oRiW/sL2gLwuIWJ/Ap6YdOphQn+gQ3aEPHfogyuUD0oGVfxUJguXLl3MqVK0/ZVz333HOWyZw3b15rfaJsIgkmtV2Q5DDA84YbbrB9WLj88ccfNnOHKrR8+fK5jz/+2F122WXpesyff/7ZlSpVygZvU7XWq1evoG2viEi4xMMxOx5eQ3pxvs81BW0MI3l8f+ihh2xYNlWL06dPj4p1DSoomL3HtY/aa4uIRJ5mUgQJGQEs+pGNx0CqsWPHnvI9u3fvtvJGDoZchJOpl5JBkCwUli1b1tWoUcPNmDHDnXlmhi5sEYlr7GrbtGlj7eMohSbT6HQIlFLKPX/+fJcnTx4LbBQuXPiU76MabOjQobazT2rGBT3UO3Xq5OrVq2ct6kSCSYsFEmju3LmuWrVq6WqrlB7M3KGCgsSRiy++2K1YsSJF+9zksABD0GPZsmWuSpUq9piRHgQqIpJRj9nx8BpSizUG5lDUrVs30ptix8TevXvb9QfatWvnxo8fb0GTSOA6Z/369XacFhGR6KOZFGkc9pSw7VOBAgWsnB8vvviilVMmRN93yhx5o8kSTOnB+dJLL7W2AbNmzXKDBg0K0qsQkWj0/PPP277E65GaEgRGCVBQccHQ7MQCFCwGehcIlDQnNeOChTr2XwRKRERCZfTo0a5Ro0Y2wJMqr3A7evSoPT8BCmaMffTRR+kOUIB2VQQo6PfNbDEFKEREJFxef/11axl9++23uw0bNkR0W7wWst71x4ABA2xgd6QCFMycuu6666w1LgldIiISuxSk+P8YNMVAReZMJES2ApkC6Nixo/vxxx9P+R4GJ9IXkkBGaioimGUxcOBA17dvXzdz5sx0vgoRiUYMtKatHHNuOKlPqQ4dOlhwgXLlxEq5qd7ygg6dO3d2t9122ynfQxVYIJU8i0goUVlKYJXAQLj3Nyyc3HrrrRZMoIqDfW/p0qWD8th33nmne+SRR2xIaVLBYBERkWBjfYIh1AT+CcLTYjpSaKVYp04dN23aNHf22WdbwuWTTz4Z0esLqs1LlChhrR2jodWUiIikndo9/X9vvPGGDZ2lXdPSpUtPyZDjpIA+i8uXL7cL3lWrViXbT56KjIkTJ9pw3NNl2/G/gIxDqjHoLVmmTJmgvS4RiSyCmpUqVXJVq1Z1c+bMSXX2LW1LLrjggkTn2tBOhX0RAQz6rSdsM7d582ZrV3f//fe7p59+WnMoJGQyYtsFSdrWrVttUHU4sU8kw5SqsyxZsliAIpKDO0VEolU8HLPj4TWcDmsETzzxhM1AQrdu3dywYcMi1iKarhMkbzInj/ecBMtoaa/E9dKRI0dc7ty5I70pIiKSCLV7SkOGHIOelixZkugiIpkCb775ph346HfYpUuXZE8oyJZmiBRBCno2JofMg8mTJ7srr7zSKivoqSgisY9sI2ZKMKya/UdKApZcjHzxxRf++xILUICBrQQoyBiijVNic3C4eOCknTkV7MNERIKNYdK1atWyj55wByhIDLnjjjssQHHeeedZQDhYAQpa7tEDXEREJFy4JqB6zwtQUE0xYsSIiAUofvjhB5vHRICCVtfMZYpUgIL3pn///m7IkCEnXS8pQCEiEvsUpAgIFJCBl9xCHiWELDTyvVRJ0Fs+qcdq1qyZnUTQn5E2LKcrWKHH8ezZs62XMttBRqCIxC4WtVq2bOn27NljC2ZEjZPDPoIB2FQ8sOC3f//+ZNvTPffcc/4+6UktCNJeiudmPxSpixoRiW/33nuvzX3gYyRQ6UpiCPO9CNa+9957QVs4+eCDD1y9evXcTTfdpPMyEREJG87vX3jhBft87NixrkePHhHbFuY8UBFOMgKtpiLd+YFzjn79+lk77q+//jpi2yEiIsGnVatEUPnw0ksvWaZAQlz4MhzKG2q7aNGiRB+DIAU9GglYMKfi0UcfPW2golChQpb5zLBHqjDUiUskdnExwf6BeRIp6R1LRpA3E4fMoJw5cyb6fZ9++qlr27atPwhB9VVy6F176aWXpuk1iIiczqRJk6z9A8HQSAQo6NNNJSzt7DiHql27dlAemwBzu3bt7PPy5curXZ6IiIQNbaiZNffKK6/YmkOk0DqxRo0aljxFe1muQ8JdLZkQyVzM+hs3bpzaZIuIxBtmUsjJ+vbtS3TAV758ed/ff/99yr//999/vrvuusu+58ILL/Rt2LAhyceaOHGifR+3Xr162c+ezpQpU+z7+/Xrl+7XIiLhN3z4cPsbHj16dIq+f/Dgwf79xMiRI5P8vs2bN/ty5cpl39e0aVPfP//8c8r3/Pvvv/YYf/31V7peg0hqHDx40H4v+Sjxj31RpLH/a9Wqlf3eZcqUyTdnzpygPTbnag0aNLDHLlWqlO/o0aNBe2wRkUiLh2N2PLyGxI5rgWsFKVk3CKXp06fb8ZX3uU6dOr5Dhw5FbFt+/vln3/HjxyP2/CIiEp7jtiopEsEcifz587vWrVsn2kOe6ggyBxmyzfCPBg0aWMZdYjp27OjGjBnjz44eOnToaZ+/TZs29r2UMZIhICKx4/XXX7fsHkqQO3XqdNrvHz58uH0vnnnmGde1a9dEv+/AgQO2r9m3b59l9fI8ie2fKAmnhy19Y9VHXUSCiX3Kww8/7EqWLGntHyKFCgrO0d544w1r08lcHqrGgmX06NFu3rx51j6KNp/MuRAREQllJwfaJlI14c2zZM0hUqjgaNGihc18at68ubWPTWpOXqhxvlGhQgV3zz33qNOEiEicU5AiEQy53bJli12IJ9XHnQtX+h9ffvnl1p+RlivMk0gMrZsYdMVFLv0cU+Lxxx+34dycqLz77rvpej0iEh4MWKU9SPv27d2gQYNO+/3MlvB6zBKU5O8+MfRCv/XWW21oXcGCBW04LHNsElOiRAn7HoKtpxvULSKSGiwO/PTTT+7YsWPuiy++iMg2eC2eCB4QoKCl3i233BK0x1+7dq1/v0wQmYCMiIhIKI+tXPcTGGDm5Zo1ayK6Pcy969ChgwVLCAxwvI1ky8M//vjD/f7779aKmwRRERGJX2dQThHpjYh2LBBySyx74Mcff3SVK1e2AycDr8nmSyqwsW3btlT1hufEgGGQ9FimHySDG0UkOpHlQ89W5tbwN8vi2emw0Fe/fn138803u169eiWaMcUumqAHA/SyZs3qPvnkE1e6dOlkH/fQoUMWxNCwbAkXLhoZDn/w4EF34YUXRnpzJIT++usv9/HHH9tA6XAjo5PzImZQZMqUyT6ebi5ParC/LVeunA3ibNq0qe3LI5nJKiISCvFwzI6H1+Add3r27Glz6TjevPbaazaPIlLbQtKUN3+TgD1dIKLhOPjhhx9aF4tIVXOIiEh4jttawTqN7du3uxtvvNGyoxOL51xxxRVWUcHF8owZM1yfPn2SfKzAAMX69evdnXfe6Y4cOZLk97PAyMIkz89FOBfNIhJ9qHCgFVPZsmXdtGnTkg1QEPD09iVUVy1cuNDaPSV1AUDrN/YD7A8IgiYVoGBn7yGYoQCFiAQDmYsvvvii/2sWCCIVoOC8yQtQcM4VzAAF2A+TMcrrYxB4NCzMiIhI/KLymgAFaPMcyQAFFd1egGLw4MERC1BQMUmwhBa3Ho7LClCIiMQ/rWKdxq5du6z0/6OPPnJbt25N9HsIIjCjwuspT6nm6S60aU1Aq5datWpZr/mk0FaKTL5ixYq5unXrWuWGiEQP2r3Vrl3b5cmTx9owZcmSJdkKByonAts6JRfQICjhBT7pkZ7UwuDkyZNd8eLF3fLly9P1WkREAu3YscPaVNK28r333ovYdhw/ftw1a9bMAhO0nOC8qHHjxiF5rquuusp98MEHLkeOHCF5fBEREdDa6amnnrLPR44caTMpIhWgYJ7dsGHD7OsXXnghyQrvcOCco3///u62227TDAoRkQxGQYrTuPbaa21ALYGKyy67LMnvY4Djk08+aZ/TC56gRlLIAKSUM1u2bG7lypUW5Ni5c2eS309WNBfM2bNnd9WrV3ebN29O56sSkWD45Zdf7G+S2Q+0ZEtuUYtsINpBLV682L300ksW3EgO+4Y2bdrY5wzTZj5NUm3heLzdu3dbKygRkWApUKCA69ixo6tWrZq1WYgEKk6pmCBI4s0Da9iwYVCfgwQQ9rkiIiLhSgLo3LmzfU6ggnP9SOA6gmsMAhNeNQdzOSOJ+RzMCCVwoopGEZGMRTMpgoi3kl7JVEiQTc2i5fXXX59sC4U6depYtQatoBYtWmSDuJPC9zGXggt2MqaTC5qISGj9+uuvtnBHSTJ/j4ULF062bRzVFrSFypUrlwUdK1asmOT3f/nllzbbghZOjRo1skW55IZgHz582I0fP94ucNTmSSIhXnpDy/8WLP79919LqACfs58jQBCJ+RfsA5ctW2bnVXPmzLF9YzAdPXrUZott2LDBTZ061bVs2TKojy8iEm3i4ZgdD6+BCmxmLYwdOzYii/Ec36neoAsEz0+bQ1pcR6piMvA8g2Nz5syZI7ItIiISfJpJESLMhaAEkYv4hDi403aFxUgCCbR1+fzzz5N8rFKlSrlPP/3UFS1a1IZq01Lhq6++SvL7yShYsmSJ9bEne/unn34K2usSkdRlP/E3yHyJpUuXJhug2Lhxo/1tE6AoWLCgDZxNLkDBvBr2Iey8CXIS9EwuQAGGZHfr1k0BCvHjgpfgN8cLKgKTOxZNnDjRsuSp1uPGIPfkvl/iF4sCLNJ36NDB32KB/U8kAhTsA0nkIEBBRen8+fODHqDwMjY5t6MSjsCziIhIOBCEZ+ZTJAIUrGVQKUmAgusHujxEKkBB8hatrb///nv/fQpQiIhkTFrRSgX6ybMwyckE/eET47UioOKB7+cCe926dUk+ZpEiRSxQUaZMGbd3716baZGc/Pnz26Ioz8PFtFo/iYQXVRH87ZHxw98if8NJITuKDF2CGsyM4G+dj0n57rvvbIH4999/t4XlefPmWQAiqYVlZlaIJMTvBUGrvn37WqtCji8cizjGJIZFYBam+X3+7LPPLJhGoIxqIclY+H1599133bRp02zhPlJoj0dAghZMtMak0jQU7aaonGBf6g3MzpcvX9CfQ0REBKwN3HHHHUnOuQxngOKee+5xU6ZMsUQEjn+RHNjN+gctdL0B4iIikoHR7klSbtKkSb569er59u3bl+z3HTp0yFelShXSEH05c+b0bdiwIdnv/+OPP3z333+/7+DBgynajl9//dV35ZVX+vLly+f7/vvvU/UaJPLGjBnjK1y4sO/cc8/1VapUybd69epIb5KkwNatW31FihTxXXrppfb56cyaNcv2Addff73vt99+S/Z7N23a5MubN699f7ly5XwHDhxI8nvXr1/vy5Qpk33vkiVL0vRaJH6xT3nooYf8X//77792rBgyZEiKfv6ff/7xZc2a1ffqq6+m+Dk5dvH7mNJjmESvKVOm+JYuXRqx59+xY4fvqquu8p8/rV27NiTPw3lZlixZ7Hn69esXkucQEYlG8XDMjrXXwLlY48aNbZtLly5tX0dqO+655x7bjjPPPNM3bdo0X6Tt3bvX16tXL9/x48cjvSkiIhLh47YqKVKpffv2bu7cuS5nzpzJft8FF1xgpYsVKlRw+/fvt4xABjMmhd5cDL/1enORVUDFBhkXiSHbj+xXMgzJLvziiy/S+cokWrOcJTrQr5y2TWTcMoOCVjqn07RpU9tfMCybWRRJYYg2+wjmzpQsWdItXLjQ/raTUqJECdejRw93++23W9WWiIcWZMw0oSLHQxk/X1MlkRK0Kzxx4kSyg+CpJKKvZOBNYhMVXlQueNq0aROx/QptLDmnoU0elaO0xytXrlxIZl00a9bMftf523jiiSeC/hwiIiKeYcOG2VwluiFQwReJFq2sL9C22nt+qglbtGgR9u3g2EuFpOfiiy92gwcPduecc07Yt0VERKKLghSpxAJl4EkFB1iG1iYVeGB4dunSpd2ePXtcjRo1UjxH4oUXXrCTiCpVqiT5M5dccol/gDZtqAIP9hK9nnvuOSuxpe/nVVdd5caNG2cDQekJKtHpk08+sYUzTqJZ0CtUqFCi30dbp4YNG1pLKE+DBg2SPemmpQ77Bn7myiuvdB999FGyAQ2cffbZ7umnn7aAVyT62Er0YrGZQYh58uQ56X6+3r17d4oe4/HHH7dAeGCgI6EhQ4bYMc670SJKYs/MmTNt/0NA9dixYxEPBDOHhzYYzOpiv0tANhReffVVa6/H7/kbb7xx2rk/IiIiaUViYe/eve1zWkZXqlQpIgGKzp0723Un1w4cB++8886wbwdJLaxbMLtTaxciIpKQghTpwEGeDHgO8CwKJYZMVBYdudBmMZJsaXouns51111nQQgu2hmyS6/wxLCYSZY2C6gshtJHWuI7y1nCi6ynWrVqubJly1pQkL/LxKxatcr+VpkjwSC6lCB4yT6BQCTBRv6WEy4uB/aPJSjBR48GZUuw0ReY4wizlRi6nZRevXrZYGPvlpLjmkQfZuQwnJL9mjcoOxIY1M6sH6+ajAqKlFSrpdWDDz5oC0X8rufOnTtkzyMiIhkbxzXmUHD+3rp16xRfIwQTx/eePXu6sWPHWoBi8uTJEZtBkTVrVnf55Zdb94jkzjNFRCRj0gpXOtCmhwxpWhIkd3FP9jWLjxyQt23bZlmLpxtISpCCFk60i2KILouktH9K7HkYrPvee+/Z4FNuVGFI/GY5S/hMmjTJ3XLLLVYdwRBsMsYTw+A5Ftj4f1iqVCk3fvz40z72b7/9ZsGpH374wSozlixZYvuSpDz11FN2kdO2bduILiZKdCNwTVY4AbBAfJ1UgM0zfPhwC1LQbowKwOTQroALzMCbxB6q+VavXu3eeecdC1ZEAhWnZFVyrkN2KcHgvHnzhvQ5WaTp1KlTSIZxi4iI4J9//rFzd87BCMBzLR+JCmiqX72h1CRZ0tYxUnj9dA9Ys2aNjsEiInIKBSnSoXLlym79+vWWlUD7leRwwc0iJJmBmzdvtt72yc2oAAuWK1as8Fdq0P7p3nvvdUePHj3lezNlymQLpY899pjr2rWrZblqIVMkbfjboZ0Sbbnuv/9+y7ZNLNuHyhj+3mjdxecENFauXOmKFCmS7OMzg4K2JlRKsW8giFm4cOFkf6ZYsWL2d85inlo8SVIInJcvX95+pzxk7/E1x6ykcPE6cOBAN3/+fAuOS3z6448/3G233Watjjy0mYtUVdabb75pQWD6U9euXdt+T5ObhZIeLBLdd999mp8iIiJhceDAATu+UT0wY8YMSywMN6oG+/Tp409GYS0h3Ggt5bW78hJdqCAXERE5Ragmd2dE//33n++HH35I9nu2bt3qK1asmE01v/jii31ffPFFih536NChvjPOOMN31lln+dasWZPs948YMcIe/8477/QdOXIk1a9DQuf48eP2/3DWrFkn3d+6dWtf48aNI7ZdcvL/o44dO9rf0IABA+zvLzE7d+70lS9f3r6P21NPPeX7999/T/v4GzZs8OXLl89+plChQr7vv/8+xdvG/kPkdKZNm+Y799xzfVOmTPFt3LjRd++99/qyZcvm2717t/373Xff7evZs6f/+5955hnfOeec45sxY4Zv165d/tuhQ4dS/JwHDx6032k+SvRq27at/X8qXbp0ivZXofT888/7958tW7a0fW+o/P33374bb7zRnqtp06Yhex4RkVgQD8fsWHkNx44d833++ecReW7OAwOvUyJh/fr1/m2YP39+RLZBRERi57itIEUQL4BZ2MycObNv9erVyX7vnj17fNdcc439D8qaNatvyZIlKXqOhQsX+saMGZOi733nnXdsWypUqODbsWNHin5GwqNSpUq+Tp06+b9moSh//vy+IUOGRHS75H9/m9dff70t2E6ePPm0Fx3lypXz5ciRwzd79uwUPf7KlSt92bNnt7/9q6666rR/m5s2bfIdPnw4Va9BBKNHj7YgGL/L7HNWrVrl/7dq1ar52rRp4/+6cOHC/gvIwFvfvn3jbrEgo9u7d6/9/1+3bl3EtoHAb69evfy/Zw8//HDIAyZdu3b1n3OlJjAsIhKP4uGYHQ+vIZRmzpzpO/PMM+094hiYVNJVOAwcONCO+5FOjhARkeg/bp/Bf06tr5C09Jxs3Lix9VaeMGGC69ChQ7LfT7uBpk2b2kBs2nO89dZb7tZbb03Vc9IqZvDgwW7MmDGJtkf46quvXJMmTdyJEyfc7Nmz3bXXXpvq1yXBx/BjeoEyt4D+288//7z1A//++++THJosobdu3Tr7ezl+/LgNDU6sNc6hQ4esb7vX3o2B1/z9FihQ4LSPTxsd2qxQ9s3MGQZsJ9fWZOfOnfZ9tIN6//33NdxVohrHNGa2MERb8ymiC0PNCxYs6KIBbfEYGjp16lT7mrZ6tKcMZQs7zq9omwn27Zx7iYhkZPFwzI7m1/Doo4+6LFmyuCeeeMJaG4Ubs53q1Klj1zTt27e3GXvhbBXLjCledyTaW4mISGwftzWTIkhYtGTxmSDF6QIU4H/KBx98YIEJLtqbNWvmJk6cmOLnI7bEQjcX32XLlnUff/zxKd9Trlw5G0pFz0eG+r722mupfl0SfC1atLCeoAxC5v8di+MsYCtAETnTp0+3OTEMuWdgfWIBCv6W+Juib7+Hv62UBCjou96oUSMLUNStW9d99NFHp+27vmPHDnf48GHbiTOLQkQkNThPeO6559zll1/uFi1aFBUnpg0aNLAABcPdX375ZetRHcqFk7Vr1/rPyQiGKEAhIiKhxDU5x95Bgwa5VatWhf35mZdJ4iQBCo55JMWFM0CxZcsWu45q2bKlzdQUERFJDQUpgoihWDfffLP/axYYExty7WEQLxn0DOdlsCmDrKiMSElxCycbVGyw+ECW5E033eT69+9vFR2BWPhmYHerVq0sqNG9e3edMESBTp062fBkTiBXr16tKpcI4e+ub9++rnnz5nZCz6D6hEEHvoehwlWqVLET79dff92CDSk1atQo+/vjb5Ns3vfeey9FmUVU2Xz22WcWzMyePXuaXp+IZGws0pMIEekgxa+//upuuOEGC9Cy/5s7d65ld4YSg7KpjuM8jOBwYIBZREQk2DjeeIFxPpIkGE7btm2z4x1JARxzSZLyqr/D5bfffnPbt293X3/9tVWFi4iIpIaCFCFCW5j69etbpcSxY8eS/D6yCclwIJsQffr0cd26dbOF0dMpX768LUAQfOD7+/Xr52rUqGGL34Eot6TMk7ZCI0eOdLVr13a7du0KwqsUiV379u2z6oYBAwZYyxFO5CnNDsTJNSf7jz/+uAUZqHj68ssvT/m+xBBsfPLJJ12XLl3s64cfftgyiGkPlRRasxF09FxxxRVWrSEiklokM1CtwL5t6NChEdsOWlOSVUl2J4kTtKFgvxpqe/futf3wlVdeaVWnnG+JiIiEColPmzZtcvny5bOq+XAHB2jxxDV+yZIlLSmKFrXhRqta2kxTRRItrSZFRCR2KEgRIswXoG3MypUr3ebNm0+7kMAiKQEEEEygRJJKjJRUb0yZMsWyu/mcEtOrr77affPNN6c8B4ulZDFu3LjR2gxFOrNSJFKomOBvgCoWZkMkbDlC0I9KpRIlStjfCSf5BPpo6ZYtW7bTPr7XA5ZSb5DBy9/1mWcmvcslCELFBSf3P/74Y5BeqYhkJFQsUL0VmKTA+UQ4Wz0EWrhwobXSI/hKsIDqMBIswqFUqVJ2HsY+PiX7bRERkbT6/PPP3YgRI+xzEhDDedyhwrthw4Z2/VCoUCFrIxyuKmySAUaPHm1taj0ES5ipJyIikloKUoRIxYoV7cKYBU6yGVKia9eulmlNWSZtoK6//vpTqiKSwuImg7Ip7WTxlUBFYqpXr27ll3wPJxBUbiRsESUSr2h1RuCAv4OiRYva3wIVTwnt3r3bKpool6btEtUTlG2nZKGPDCbarxE8JCjx0ksv2eC80/0ssycIIJIJRVspEZHUVnBSsUBCAkHVSGORhv2r13bi008/dUWKFAn58+7fv9//+SWXXGL7ehERkVAhuemBBx6wj1yTEzAI57XNXXfdZUES5t0xHzN//vxhe35aVVMtzsyp5LpHiIiIpISCFCHEQiULnIGLl7RzSQ4nGcyQYIAvA5UrVKhgrRFSggvxZcuWWXmnl7FNNQblpmR2e3Lnzu0+/PBDO6mgBQTbGdhiRiQeEXggMMfAcoIGixcvPukkPrDFGmXaZENR3UQ1FBUVKUFlBn+zlDiTwUQm0/3335+in82ZM6dbunSpBTfr1auXhlcoIhkZ1ZT33Xef7a9q1qwZse1gX8r8K/Z93uIJCRvs48JRuXHppZdaiysREYnuqmbarnLOTSIPLYJiFR0Mvv32WzsOe50RwoWWtLNmzbJ2sqwBFC9ePKzPT1CG/4ckczFvU0REJD0UpAjjICsG7zI493SVC2Qc0qLgmmuusb75DOMmGzslA7UJTgQuBNATv0ePHq5cuXK22Br4fT179rQACMOtqKzgxEYkHrFwVaZMGbuAYLGMIfOBg+SolCC4QIDQw2If1U0p7WP+6quvuhtvvNHmWFx11VWW0VSrVq3TLubRr91DcPJ0PyMiEijwnILWdex7wlGxkJi//vrL3X777f6WF+xrX3vtNWs7FWrsS5kbxDaonaWISHQjkY5z87Fjx7pYx+ug1dIbb7xh5/LhwvqAd7ylgpsuDOE+7yAx4IcffrBqChERkfRSkCJMGKLF4iXVEYGtCJJCP0nmS9BLmhOBBx980BZN//7771Q9L4ERKie+++47O3Hp3LmztYTw0CuabSIw0rRpUxvCfeDAgTS9RpFow+86fzdUUBCI43c9MMOYHq6PPfaYVTzRLo3AXUqCgYH4+3zkkUdc27Zt7e+TvyMqKS6//PLTBijuvfdeaw1HEEVEJDXYh7D/uvXWW61iAWSjXnDBBRHZHhIeOM/wMjpZrKFyLRzzMPbs2WPtNWgtRbB43LhxIX9OERFJO6qGacF6yy23uHjAtTuVIeFCV4ROnTrZ57yPrBmEw9q1a61ik4RKT6TOO0REJP4oSBEmZEe///77VrmQJ0+eFP1MlixZ7CL/2WeftYv8iRMnuho1atjFeEqR0UiAggVUFl/HjBlj8ypmzJjhX4ylfyWLCpMnT7ZqCmZo0HJGJJYxJJ7fZf6GXnzxRTuZ9/72+N3n77F06dJu2LBhtth3xx13uLlz56ZqQY2AY926dW0oNvr27eveffddK/dOSXBj7969FthQYFBEUovMRYZVsi9jfxdJVGoScGXOD4kRtK6jcjQcCDY3btzYZngVK1bMzZw5MyyVGyIiEj60LiYQHXiLtKNHj7o1a9aE/XnXr1/vmjdvbtcvXONTRRkutIvevHlzWJ9TREQyEJ9EzHfffef7559/UvS9H3zwge+iiy4iquArUKCAb82aNal+vkWLFvmKFClij8Ht6aefPuV7duzY4atXr579e5s2bXy///57qp9HJJL+/PNP3/3332+/wzVq1PBt3br1pH//5ptvfDVr1vT/HfD39P7776f6edavX+//ezr//PN97777bqof4/jx474lS5ak+udEos3Bgwftb4GPEj7Tp0/3vf766xHdhilTpvjOOecc+/9fpkwZ388//xy25/733399t99+uz13jhw5fD/++GPYnltEJFZF2zGbbZk1a1ay39O3b1//uXvgLZKvYfjw4bYNnTt3Dttz7tmzx1eoUCH/dQ7XEuHE+92pUyffH3/8EdbnFRGRjHHuoUqKCKGVEz3wW7Ro4Y4dO5aiklj6TDMMa8eOHdaeKaVzKjzMtmCwF9ne9Msk8yIhBglTRfHKK6/YADNVVUgsYRh2qVKl3NSpU63HLX3J6ZUaaMuWLfZ9tCNh2BxzKmgTklL8zTF/onLlym7r1q3W+/2zzz6zliunc+LEiZMGA7IN1atXT+WrFJGM6vvvv7dzgMBqSYZWRgLVYAzI9lrd0bLjk08+sZYX4fLOO+9YZWimTJmsIpRKChERiT+9evVyBw8e9N9++eWXiG4P20BVAZj9GA4caznu016RtrIc/7iWCCXaSVId6bnwwgutivOiiy4K6fOKiEjGpCBFhNDmhQVLBjymdDDvFVdcYb3u6XdJYIM5FfS/Z7h2Sp1//vmuX79+1hYhX758/vvvuusuG3BJ2wTa3bRr186GUDIIjAVcgimBCyMi0YQWaMxTIRBH0IBgHH8fDIjnb4XB2B7agvC7Thu0Z555xk62U+qPP/6wnq8syjHwj/kWlHkTGEnJgh5/uyzkTZgwIc2vVUQyJloqERxt0KBBxNtceK3uvIGdTzzxhC2WhLsvNe0uevTo4SZNmmSzKEREJD7Rxo9z9sBbJA0fPtz9/vvvlkB49913h/z5SJJitiSJjrz2OXPmuOzZs4f0OVmruO2226zdNMd4ERGRUFOQIkI44C9btsyfAZhSZC2QiT1y5EjLnOAEhb76qe1HnTlzZv/nLLLSt5/gBYEQstDpcVmgQAGrouBrZmlwEsZ8jNQO7xYJFRb+R40aZb+3/K6y+E+VBIEKTubJsmW4GzNhuJAAQTiGuV522WWpei4uCgjavf322xZYfPrpp92CBQtczpw5U/TzZ599tg3oZtYMf1siIqlBpSOLNOxDInkcZu4ElaDsa0l8mD59uhs4cKAFhcON5+S8pHXr1mF/bhERybjJhlyLg+sBzvFDjQ4KXOdwHfPWW2/Z9U2o8boKFixo5x6sDYiIiISaghQRREZkYNYhg7FpPZOSi/KuXbu61atX2wnKrl27bBGWbMK0LFyw2MDCa+HChd2vv/5qF/vXXnutP/BBlQUDOu+55x4bksVCLYsTIpFEW5Hy5cvb3wIDWr3fUf4+VqxYYS3RqADatm2bLeox5C2tgRCCGjfddJOVVxctWtQymvlbSGkVlIcKDobd1a9fP03bIiIZF8dokhuWLFnicuXKFZFtmDZtmp27sF8l0Et1J60nwomAMVmrKWmVKSIi0YluAuvWrbMbaKHK55xrR7vJkydbRfU111xjFdKhxnH/4Ycfts+HDh0atusIAiLPP/+8JTRSuSgiIhJy4RqSIcmbPXu2DRHJli2bb/v27Sn+ucOHD/seeOAB//CwcuXK2UDutDh69KhvyJAhvqxZs/ofr0qVKidtD8OCb7jhBvu35s2b+3755Zc0PZdIWu3evdvXunVr+x2sVKnSSUPkly5d6rvpppv8v79ZsmTx9evXz/fXX3+l6bm2bNniu+666/yPxzB5BnOn1Oeff25DvBnuKhLPom0IZzw4duyY79577z1pHxcpf//9t69Lly7+fWGdOnV8+/fvD/t2bNiwwc6T2AaGqIqISGweszlnT2wQNufa0fwa/vvvP1/x4sXtuSdOnBjy59u2bZsvZ86c9nx33XWXPX8oLVq0yI73oX4eERHJWA6m8LitIEWU4GKfgEBaTwoIcngnMJkzZ/ZNmDAhzScXLAJ37tzZd+655/oKFSrkO378+En/zuNOnTrVlydPHlsE7t27t++PP/5I03OJpNShQ4d8AwYMsCAav+tcGAQu/hMwO+uss+xvIFOmTL777rsvXUE0fse9gN1FF13kmzZtWqp+np1v9uzZ7eeHDRuW5u0QiQXRsOARb/r06WPvaYECBSyJIFJ27Njhq1q1qn8BqWfPnr5//vkn7NtBwgTvhZdAceTIkbBvg4hIPIiHY3akXgPXFrly5bLr7VA/N8f+8uXL2+usUKFCyI97O3futOt/nm/KlCkhfS4REclYDqbwuH0G/wl9vYakBK0LmDPh9XXmfw1llim1c+dOGx7stWm69dZbrX9l7ty507Q9tJH66aefXNWqVf1tb2irQzsob3AnJaeUgTLjgvY3Dz30kDvvvPPS9HwiiaGFGT1Y6XnO4OpOnTq5Pn362LA4BmQzk8Vz//33Wwumnj17Wg/VtGB2BSXVzGnB9ddf715//XVrtZKW1iivvvqqzcbImjVrmrZHJBZwPGBm0sGDByM+zDKe3tOGDRvaUOratWtHZBuWLl3q7rjjDuu/zf/X1157zTVp0iTs2/Hbb79ZCz/a+jEf69NPP3U5cuQI+3aIiMSDeDhmR/I1cG3CNQhtZ0Pp3nvvtXbQHO/Wrl2bpmuR1HrxxRftGPvKK6/YLAoREZFwHrcVpIhS/G+hv/7FF19sA7lSOpCSoVbPPfecBQxOnDhhJzXDhg1z7dq1S1XAIzEstrZt29Y+56SMPv2NGjWyYMaAAQPcpEmTXN68ea3vPoGMcAwRk/jF7zKD4Z588kn3888/2+8Uv1sEHxYuXGif0w99w4YN7qqrrkpTYC8QP8vzPfLII7YgR7Cjb9++rlevXin+XeYxCKQQQAm8L71/eyLRLh4WPKLBnj17XJ48eSK+/2D/y0BqAsJ8TjD43XffdZdffnnYt4XfqerVq7uvvvrK9v/MIypUqFDYt0NEJF7EwzE7Hl7D6eZetG/f3s4B5s+fH7JkBZIkuWXLls1/n65dREQkUsdtDc6OUgz+ffnlly3AwKDdlCKY0b17dxuqXbZsWcsK79Chg13gk4GYHvXq1bPh3Awh/vLLLy2bkoWLefPmWWBk48aNNlCT5+P+mTNn2uKGSGpwYszvFMPoGNpeqlQp+xugKojBcQx6r1u3rvvss88sw4fMIk9aT6ipGOL3u1WrVhagIOjBQhgBkpQGKA4dOuSaNWtmf2tHjhxJ9zaJSMYyY8YMG0bNx0juP6haoFqSAC3HcIZUs7+NRIACLVq0sAAFVaFUiipAISIikcDxMRzXthzzHnzwQfucpKxQBSj27dvnatWqZdf0x48f99+vaxcREYkUBSmiVLVq1aytAq2UCDakVrly5dyaNWssyEFQYfny5RY44EQn8CQkNVggILNy27Zt1k7nggsusCx2SlHJbiQDg7Y2PG++fPncbbfdZgvMU6dOtaoOkeT8+++/7u2337bgBC1OaI9EoIBWS1Q48DtGRRBBCdqLUfFAcIFARlrxe0nLspIlS7oFCxZY0IO2UlwcXHfddamODH/88ccWrGNBT0QkNdh/EODkOBrJbeD8gaxNWjfSZoIqSs4jIoV2V5deeqlV0F1xxRUR2w4REcnYSGYqUqSIJU2FyoEDB+wamuoGEgaoaAyV3bt3u6+//tpu6U1mFBERCQa1e4ohZHgTbCBbOzUIKpCN8eGHH9rX9HMeP368u/HGG9O1PbS1oV/lmDFjbAGZbfN8//33lp3xzDPPWFY8PTSpwqBslQVmEQ9BMwJyBMA2b95sGT1k8N50002WycO/kznL7z+/Z8w96dixo8uZM2e6npdqIwJsXqUSFRDjxo1L1yIYC3xUXlBRJJKRxHvbhXAFaqmgpBqRdnPhRGYoAVuqx9gOzhMIlpBoEA3o/83MLhERSb94OGaH+zVs377dAuYsnZAkRbAi2Hjspk2bujlz5tjj07kgsIVsKBBwoc3k1VdfHdLnERGRjO1PtXuKLwytpuVB8+bNrToiNTihIlDAEF9OQgggUKnBQi/toNKKyolu3bq5TZs2WQZ8YCks1R8PPPCAa9y4sc0NqFKlig0jZluGDBliv5iSsf3111/WJoz2Jvfdd58rU6aMVU4wnH306NF2og6qGwhg0A+di4LHH388XQEKdo4M3yaQQICCx5oyZYpbvHhxqgIULOSR3USww8NgVwUoRCSl+6JRo0b593UEJgichjtA8euvv1pwmFlW7Ndo70RFZKQCFJzvcP5ARZtHAQoREYkkOgNwvCaJKhQBCnD9Q4CCYx6tH0MRoJg+fbr78ccf/V/XqFFDAQoREYkaClLECDLKr7/+eos4Maw6LT9PkOO7776zRRCQsVmiRAlr5ZCe/posqFxyySX+r8n6IJucVlAsPjM/gIgZQRKyQ/r162cZ8QQtAk+SJGMg0MDcFH4HCDjQZ5UgFy3C6IlKS6dZs2b5K3/Qpk0bd+utt6ZrGDsXFjwP8ybGjh1rX7MYx98Ej5/a/qsE2wYPHuxuv/12d/jw4TRvl4hkPCzEU73VpUsXq2CIFBZDCBCTSXn++edbdSTnBLRzjASCJOyPqWpjTpD2rSIiEmlcM5DQhLZt24bkOWhnS9cBDB8+3NrfBhuV6yQ80kaKtlIiIiLRRu2eYgwtb5gNEZiJmZYSVzLWCVawQAsWKajQIJsyGGgFNXnyZGsFxaK0p2jRopYl8umnn7oJEyZY1UWdOnWshU/9+vXDnkEq4UEQjH7iBAeo6qEK54477rCFMBbJAvug0tqJ9mTBaOkUOIiewAjZwd7vIYtgN998c5ofk789so94XF6LSEYWD60jwu2ll16yOVFz5851FSpUCOtzHz161PZdL774on3NYgizfyI584EABYs/zCEiIE0WKYFrEREJrng4ZofzNXDdTLU01y3McSCoH0yHDh2y4zBtb0nomzlzZkiGV+/Zs8dm7pH4RZW6rrtFRCTqjtsEKSQ2fffdd74cOXL4Ro0a5fvvv/9S/fPHjh3zDR061HfRRRcRqLJbnTp1fOvWrQvaNv7zzz++RYsW+Vq3bu07//zzfZkyZfLt27fP/u3o0aO+IUOG+MqVK2fPXaBAAV///v19O3bsCNrzS2Tt3r3bN3jwYN+ll15q/4/LlCnjmzRpku/w4cO+1atX+3/vMmfO7GvZsqXvgw8+8J04cSJoz79x40Zf48aN/c/D7yC/Y0eOHEnT43355Zcnff3vv/8GaUtFYtvBgwftb4yPkrSE+4zff/897Nuwdu1a31VXXeXfLz766KN2PhDp96VNmza2PWeddZbv3Xffjej2iIjEs3g4ZofzNXTo0MGeq127dkF/bK7hW7VqZY9fsGBB3/79++PuvENERORgCo/bavcUw2jJwEwJMtHTUhBDr//HHnvMsja6du3qMmXK5BYsWODKlStn2Yw7duxI9zaSoUG2OttK9gbZ9F52/Hnnnefef/999+2331rbCwZ10vaCTHpaRJFNydwCiS1Hjhyxtkq0JStQoIAbMGCAzZ3g96Bq1ao2FDZLliyuYsWK1taD9iJkJb355pvW3iM9LZ08PN79999vPdX5++D3kB7nW7ZscU899VSqh7dTCcKsjPLly7vZs2f77z/zTO1CRSRlqFpgP3j8+HH/faEeiJmwUoE2dddee63buHGjtWmcP3++tZXgfCCSra845+A8gX01FR1keYqIiESDZcuW2cdQVE5z7HvjjTf8x78cOXIE7bF//vlnq9SkpWMkzjtERERSS+2eYhj/62indMstt9hisHdfWstDWcBlELA3BJsgwiOPPGJzAyjLCTZ6TbNo/fXXX/vvY1AY7SZoRcH2sJhN2etdd91lraiCsYAtoVn84gSYk2wGXBNcIjDB/z+CYMeOHbPvo6yLAEJqgwQpxfOOGDHCWpd5vcxpF/LMM89YECw96BM7cuRIe2z+LkQkvlpHhBL7vSuvvNLeJ+ZBtW/fPqzPT9vF1q1bW6tFEAQYP368y5Url4s09s+9evWyBRqOIczPEhGR0ImHY3Y4XwPtB1nw5zh68cUXB+1xmc1IciAJXk8//bTr3bu3CybaKZMgwWBsrrfV3klERKL9uK0gRZwhS5L+/i+88EKaAwurV6+2BdmPP/7YvmYRg+xzZliEItty/fr1burUqdZ/M3B+BdUUN954o/0bszPYjpYtW9oCBv00daIVWVQXMOPhnXfescyfXbt2uWLFilmf1nXr1p30vYULF7ZgE4Oq6bka7D6rJ06csBkoffv2tcVAkC1MQIEesmkNeJDhy/wMEGjh95CLCRGJvwWPUKOS8IsvvrAF+VD0mk4Mp3jMf2L+BPu0rFmz2lwoFlrCtQ2nw+IMwWQWUzhOiIhIaMXDMTvWXwPXLiTrcS3FjLtFixYFvUKba5fOnTvbdXzBggWD+tgiIiKpoSBFBh2qzWIwJyRkI9KeJq34taAVE1UU33//vd2XL18+161bN3fffffZ4LBg4zlZBKY9DzeGJ1NBwf202KE1EBn7LGhQCks7IW61a9e2hRcJPaoTPvroI/vd4P8Rg8+piuD/DZnBlBQzCJZbpUqV7P9P48aNre1SKBbE+F2gXRTBiO3bt/uHYhOsu/3229P8nJ9//rn9/RBQobIoWhbzRKJVrC8WhAItDhmGefnll0fk+dkn0l6PfTYI2L722mvu0ksvdZFGyysqJ719a3qqQEVEJOMds2P9NZBYRUtckqG++eYbf1eE9Fq5cqWrUqVKUB5LREQkWBSkyKBo5TB9+nRrSxOMC34yyWlNMXDgQPfrr7/afQQIyMrg5s2XCDV6ZlPdEYh2VARkaAFVrVo1a1/BorgyRYJr586dbu7cudbGaenSpZb5Q0XN33//7Z+FQhUMbce8hTmqLPLmzRuybfrjjz+sfPn555+3QAny5MljGcrMnmDxKz3IdqZah8Acn+fOnTtIWy4Sn2J9sSDYqGisU6eOHZ9WrVoV1rZK7JcJ3tKWjiAJx0oCtw8//HBUzNE5cOCAHavJHGWBRkREwisejtnheg3MaPzqq6+sjS1tk4KB84Lrr7/eku+oRg/GrAuO/V26dLFqyYkTJ7qOHTsGZVtFRETCedyO/NWqBBVloyzcegEKshVpj8RCa1qwwELlBG2YCFbQzodh3WTKU7VBZYUXvAgl2kCwUM4wZPp6w5tzQCBl//79dmLG0G1OIqnAYBAzC+ySOgQZaOHEe12iRAmXP39++5xWJQQovN8rTobJEOYkmPfdQ7AgVAEKto1ABL97zE8hQEFWMAGLbdu22e9AWgMUVGV4qAghKEMrMgUoRCS1GExJQIBjMSdk4cJ+kFaJ7JcJUJBNSR/qrl27RkWAgsUeKjpIqBg1apSO0SIiEvVDs6kK5zgaDLRepP0tAQqqtoM1jJvzDW/oNgtAIiIisUiVFHFu0KBB7sknn7RFYwINZFSmBydUZM0PHjzYP3cgU6ZM1u7nsccesyBGODB3YMWKFW758uW22MGNBXT6eTJ4LHAYN9Ue5cuXdw0bNrSTTBbU1Vbif/jzJ8hE+yZu9EXdt2+f/RuL81RH3HTTTdZCifZNBIj4msoV5oUQwAjXwhstncgO9oJTZDMRsCAIl56B6gS5eGwyj7788suQVoCIxKt4yMoMtk2bNlmwIhxVFBybCdayT6QtH9VuHAtZVImW+U20c6S65JdffrEqtfnz51srQBERCa94OGaH6zU8++yz1v6YwAItE9OL5D9mRdHeiTZP3uy7YF3XMVuSanAREZFoonZPYqgwYLYDWRpeO55g4NdmwYIF1kKCYAHI0mQOAC0lyN6MVCDAq6JI6leboAWZ8gQuCKqwrXyM98AF7wdZrGvXrrXFeAI7n3zyibVtSgzts6gm8H6WmSdUSYRzewmajBkzxv5/sgjnDcTu3bu3BZ2CkRlMa6rKlSvbHAqCelRoiEjGW/BI7/6qX79+FsCljVG4F/+ZPfHZZ5/Z11QqTJo0yV1xxRUuWrBt7LOpxCTYzfkDFXEiIhJ+8XDMDtdrINj/wgsvWKDimWeeSddj0RWAdodYvHhxus8XCHKMHz/eti9aEhJEREQSoyCFJFu2OmLECDuhoTVSerHYTbBi3rx5/vvIcidThKyTYGaIpGZmAdUU9BCl4oOPGzdutIHfBFFYpOdGRQZY7OYPhsoA3hOyO8lCqVevXsyd9BGYYsGdfqe0K9qyZYtVS/CesCCPiy++2JUtW9YGqrIL4DXS2on7ypUrZx+5eWXD4USLEga/c9LtVeugVq1aliVMJUd6A0q8H5dccon//y2/C/x+EOCK92CVSCjEw4JHerz00kuWEMDxjgqKcFRPUFXGggnHX4LNWbNmdUOHDrVjbzS0dvLMmTPHEiWOHj1qQWYWacI5o0NEROLvmB2u19C8eXOb98h1M9eQaUWQnutjrj1pl8y1eHrbRnHNSutbzgUIooiIiEQrBSkkUfzvpoKARXvmPJClHiwEBegxzQAwFiOQOXNma8fDTAPaBUVyAZg5CrSZYI6ChwqKzZs3J/kzWbJkse8hI5Wf5f2jmoDh3GSBcnJI2wpaI9ESKRR4ThbuOQnltmvXLgs8/Pzzz1YZQVsPXhOv4/vvvz+p1VVCBCKYLUEwhv8XzJ7wBsHx/yqSqPAgMEHVBCfe4LU1a9bMLgoqVqwYlOfhd54TeYbL33vvvUF5TJGMLh4WPNIbMCCoTWC+ffv2IX++pUuX2nH1xx9/tK/r16/vxo0bZ8emaMM5AX23eX9Y6Dn//PMjvUkiIhlaPByzw/UaGHBNQh7XTFyTpFXr1q3d1KlTXfHixe06PL0tmL3jK62jqHyPRGKZiIhISilIIcm2hnjqqadsQdg7oSELk9kSwQgikLH/+uuv2+Nv2LDBf3+ZMmUsw7NVq1ZRc0LMrz8L/yz6M7ODjyz28x6RiUr2J4tA3GhrxfyCxDATgRkNZLJyo1qFP0LeU24stnuf06OcKo3Zs2fb9zJLgxv/D7wbWf48HsEJbmSiJvenSl9TAhUEUziJ5v9jkSJFLCjB/QRQCEbweThbNp0OvdM5weZ3JXC4O+1A+F3hhJ72XMFEII0B202aNLH/ByKSfvGw4JGWrMjARQEq1UJdwcDxqkePHu7VV1+1rzlWsE+j1WI0V4FRaVm7dm07BoqISGTFwzE7XK+BayiuEWmRW7Vq1XS1eeIcgYBHWmdGcJ7B6w7sUhCOcw8REZH0UpBCUuWee+5xO3futOHBwWgBBX616ENNdicL51QygCzKli1b2rBt5kHEyokVGf5e9QJVFZTrMmSaoAxBCHqRe0EFZil4A57TgqoGFuoJYtCiiqxZAiR8zokprTJYnCI4QXumwIoAghznnHOOi1beUDeyiQhmsbMCi1e33XabBSd4L4O14LZ9+3b73fOGuvM+MiS8adOmUb2oJxJL4mHBIzVWrlxpgc7Bgwfb8TPUmMkzceJEm8dz4MAB23c98MAD9vy879GEYyKBYNpP5M2bN9KbIyIicXjMDsdr4JqFqnqu6QhUkACWWhyzS5YsadfZ3bt3d8OGDUvTttCloG3btpZMt3z5crsmFBERiRUKUkiKcdJEYIKF3PRkiZwu4/S1116zjHlaEnlolUTpLP0+ySqJlYDF6fAa+SPkPSVowIklLYw4yWUxnrkK06ZNs4AN5b7c+JwTYQIMVA9cddVV/sfjcQiExCpvCDbBKtp9EDjwUN1BkIUTb2ZlBNMHH3xgv1/XXHONVcIoKCESGvGw4JEaAwcOtIrEypUru48//jiks4uYMcS8C2bneFWJHEuZ7xBtfvjhBwsAcwzkOLdkyRLtd0VEokw8HLPD8RpIEODahVa7tElOy7VYu3bt3JQpU6zanVl7aW2vS6IcrW9JBPjwww9dzZo10/Q4IiIikaAghaR6YYEF3UceecR/H9nuzCoIZqYGv24s6Lz88svWasfLogdVAV7AgsUXLWzENv5fs6jmBSa2bdvm/zcCMo0bN7be7TVq1AhZcIoB2QRBOKnn9039WkVCIx4WPFK7fxs7dqwtPoRqxgKtnfr06eMmTZpkz8f7OmjQIKugoMVgtKEtITM5+F1g7hEVa1T6iYhIdImHY3YsvAaurRs0aGDXtCQC0kEgPVatWmUJbyQBiIiIxBIFKSRdaFlESSuLx8xXCMzqDxaqAxjizCL2e++9Z8/pKVSokD9gwQKzAhaxgd0Jw+D4f8pt69at/n9jIY9+rPw/rVu3btAHdVOxwmIeC3t9+/b1388g8dKlS+t3SCSDLxakB3ODCK7T2imUVRPec7344ouuX79+ljEJ5vM8++yzUTVTKLAfNttKdQluuOEGC0xH47aKiEh8HLOj/TWwXST7kTBFEuBzzz2X6segCpzWvwr4i4hIrFOQQtJl/fr17tZbb7XFmG+//TbkWZtkhSxYsMAWtsnGpDVSYIVFrVq1bOgmpa3Bbgkk6W/ltXjxYrdo0SK7BVZM0L6qYcOGFpioV6+efR0qnMgzy4J2Wps2bXKFCxcO2XOJSGwtFqQHp0nMn6Ay4NFHH3XDhw8P2XMRuO/atav77rvv7OuyZcvaYGwW/qP1//udd95pg7HRuXNnN2LECA3IFhGJYvFwzA7Ha/jxxx+tfSFzArmlBm0aX3rpJavoJmEqtddAXFNxDUULYNo+cj0sIiISq1J63I6+fgESFcg8Z5GEAdFegIKFmhYtWthiMy0dghm4YCYDi0DcmN8QGLBgUPXkyZPtBuYLeEEL5mfE8qyGWETFAgPROXlmQe2LL76w3w0PFRKUNhOYqF+/fshaodAnloBI0aJF7esbb7zR3XXXXdYjnqHiIiLBQBUWC/FLly4NWYsFFkF69Ojh5s6da1/nypXLPf30065Dhw4hr9xID4IRzBjiGD5hwgQ7NxAREYkHM2fOdL169bJqxldffTXFP/fpp59agAIcG9OSpFWpUiVXrFgxV7x4cQtUiIiIZASqpJAUY/GEdj2caNHGJ3fu3CF/TgIWzLDwFsSp8AjEgjiL0wQsCFxQVhsvw7ejBbsIFtC8/we0/zp8+PBJ38P77gWO+P8RqsCEZ/PmzTaclSgsVRMskIlI5MRDVmZi+77ANnF79+4N+nFv3759rn///raYQeCV4H+nTp1sKHf27NldNKK9E7xjLceHI0eOWAKBiIhEv3g4ZofjNXTp0sWqGXv27OmGDBmS4mQu2jNt3LjR5la98soraT7v4ByBeXq6thURkVinSgoJOgYc0+aChZTAhRrmSZBdyi9csBGEYOGb27Bhw9zu3bvdRx995F8w52uqLriBbahQoYJlnzDLgo8M8JSU27Vrl1uzZo3dKC/m44EDB076Hv7/33zzzfb/hY/hfo8peWbnRluwb775xv5fi4gEC62dOOYw9PKCCy6w+4IZoGAm0+jRo20QNvsy0NaBuRMlSpRw0YqZP23atLEqRoZ6gyxPERGReLNz5077mC9fvhT/DMdxAhS0J+Y8IqWYQcU8xoceesgSsbyqShERkYxElRSSLj/99JP12mSoF5+HsxyVX13mZXgBi+XLl1vlRUJ58+a1YIUXuCCIEa0ZquHG4tiXX37pD0bwkfZaCdFSi57oXsUK7cDCldXDohgn/Py/ZsHQw/ZSBp0tW7awbIeIxHdWpodKMY5rBMEZCN23b9+gViG88cYb7sknn3Q///yzf+4EcxxIBIhm8+fPd+3bt7dANoEbKiq1gCIiEnvi4ZgdjtdAQH7lypVu+vTp7vbbb0/RDAuukUhE4FhPq8iUGjhwoFVRkhDB8TWUc/xERETCTZUUEhYs4pBFyZDiwAAFswK4L7BkNdh47JIlS9rtkUcecSdOnLCF7MAFd75mQYVqD24eFqDY7iuuuMIWuvnIjYqAUG5zJBDM4T3gxJkb7ZG8QXB8TIjXT/smrxKFj6VKlXLnnHNORLafyh1KrSmf5v+rVzWh6gkRCQXa1c2ePdtNnTrV9e7dO2j7YYLpjz/+uA3Q9DIzqaSg13U0z52gYq179+5u/Pjx9jXHTmZGKUAhIiLxLDWVFBzn77vvPgtQ1KlTx7Vs2TJVz8XsC66fH374YQUoREQkw1IlhaQbv0K0A6JnppeFWrBgQVeoUCE3b968iLZbYlu++uqrk1oXbdmyJcnv56QwMGjB7bLLLnN58uSxGxUj0RbE4P1nEWnPnj12I/vGC0h4t4QzJAJdeumlJ7XHoq+4194k3AhEzJgxw07SAxcHyTK+8sorbRC3+rKKRJ9Yz8pkH/nLL7+EpHXR6tWrbX+2ZMkS+5r3if7WsbAQwfBPgihUSnr9uenLTStGERGJTbF+zA7Ha+D6ipl3XJtwbcX1UnImT55s1YYcH0mSK1KkyGmfY+3atTa/ItquLUVERCJ13FaQQoJuxYoVrl69etZmiQVyb1GZRaBQD1ROif3791sma+AiPtUFLML8888/yf4sJ6uU4XpBi4SfE6ihNRLfl9hH73OGo4LnI+Pm2LFjJ31MeB99Sr0gBDcGuAZ+nlibq0Bk6XKyHBiA4XPajNAzNVoQRCJQQtUGrVAuueSSSG+SiMT5ggf70QYNGljGJAEFguzBwLwc2jp5VXzs1xiKTcAinK0R0/P/lPk/hw4dsqQDFmCivSWViIjE9zE7XK+B60WvYpBrMa7hksKAa5Kpfv/9d2tR26NHj9M+/vPPP++6devmnnnmGffYY48FddtFRESijdo9ScTceOONlpFK1okXoCAWVr58eTvZe+WVV2yRPFJYHGKhJeFiC+2iyOBPWIXAfQQCqFbgJHX79u12izYEgAiU0GYrsBKEGwGKSLVrSm4nRdUEPdo7duxo91HNccstt1g1B8EcEZFQY1/Dvp1jAC0M0xukIOjdv39/9+abb9qxj+Ng27Ztrdc0++dYwckjMzkItrCYwkmliIhIRkBFxLRp02w2XnIBCq9VEwEK5lHQgjglODfgHIFrSj6qmkJERESVFBImzD9gzgEneWSt0jYJzEogaBBtC+iJOXLkyCkVDAk/p+IhsBIisBqC2QqnO1llscy7BVZgsDiUWOVG4MdoqFJJjZkzZ7rbbrvN2oFRNRHNPdlFJL6zMlkkIEhRtGjRND8G1XjMmHjttdf8+/tmzZq5AQMGhKSNVLBxDOvatau79957XfXq1e0+LZyIiMSfWD9mR9Nr+Oyzz1yVKlXs808++cSGbafU0qVL3U033aTjrIiIxL0/VUkh0YQFGqorvvzyS3+AAiyGcHJHdUXjxo1dNKN3OP1IT9eTNCleayduGzdutPsoDeZxCUR4LaDi0YYNG9ykSZNc5cqVXYsWLew+2qvwdcOGDa3fq3qci0i4vPzyyxYgb9q0qX1NO6O0Isj69NNPWzskr2Ug+zeCE1SFRTuCMy+99JLr27evBdpph8g+m8C5Fk5EREQSxzH/wQcftM/btWuXbIDi119/tdZOzNnzkvO8hAARERH5n/hdFZWoky9fPrt5WKxnMYSen4HtnxhsTQ/sMmXKxNUCCUEIblQ8XH/99S6ekX3rtTnB3Llz3QsvvGBDzL0gBYGZlStXRnhLRSSjmTNnjrWYIzDKMYj5PGlBS0OGSE+ZMsUW+lGnTh1r9XTttde6WLBo0SKrnvAC5wRVJkyY4N93i4iIZEQMtSbBrlSpUu6yyy5L9HtefPFFt27dOpc9e3Y3dOjQJB+L6spatWq57777zq4FR44cGcItFxERiV26CpWIYZGaRR5KYwNbYYwZM8aVK1cuxT09JbrQw5xqExa/PK1atXLNmzfXYDgRibj69eu7evXque7du7vLL788TTMnyJgkuDFx4kQLUNSsWdOOZfPnz4+JAAXJAFSR1K5d2wIUzIsaP368+/zzz21+lIiISEZGdSTHSSrBE0PL4ieeeMI+J2Hh4osvTvKxaGlLBQUBj4cffjhk2ywiIhLrFKSQiOKkLWFpLKWztEBiALdn586drm7dum7s2LGWoS/R08f9rbfeOqWcmfs/+OAD/30Mon377betBYqISLhRnecdO8hipJqCdkypqdb79ttv3V133WVBdaonyIykcoLgxEcffZSqPtSRxmt577337BjcpUsX9+OPP1r7Rc0GEhER+d+1JwK7AAQi0YFzi4oVK1p1ZmL4dw/JEVRnFClSJERbLCIiEvsUpJCoM3r0aGsBxawCz7x589yCBQvc1KlTT1pUYiA3Q6klPAIDRAcOHLAT7TvvvNPKoT30Zn3//fctq0hEJNKofKCN0bPPPuu/LzUzgL744gt36623upIlS7o33njD/ffff1aNsWrVKquciIXgxO+//+6WL1/u/7pRo0auR48ebv369e7555+3VhUiIiLyf5USSQUpli1b5t588027JmWmU8IAP+cJHGMrVKhg17SeeJ4/KCIiEgwKUkhUOu+88/xDxUAfz2HDhrlOnTr57yOLldkOTIb/4YcfTrpfgovFLd5rAhIeFrVYnOO2b98+//206iLARDWMiEikLV682G3evNnaGR0+fDjFAdmlS5dapQRZkrNmzbLFiNtuu819+eWXFjiPhbZOv/32m7WjoJ/2LbfcYoOxwWshaHPVVVdFehNFRERippKCiv/OnTvb5/fff3+iLRJJ5HrnnXesSjGwslxERESSp3C+xARmHFBWG2jbtm2WkUIwo2jRoifNRKDiomfPnnbyKKlDZtCHH35oJ+CVKlWy+zJlyuQ+/fRTlzt3blu886pZlixZoqwgEYlqHAf+/vtv16JFC3f++ecn+71kP86ePdsGYDKfAWRIEqDlmBIri/q03Rs+fLgNwT5y5IjdRy9sFl2yZcsW6c0TERGJWlzrJFVJwbDsDRs2uJw5c7pBgwYl+vP8G8GJr7/++qQELxEREUmeKikkZhGY4ASSVh6BC+WfffaZ+/nnn09qC0U2afXq1f0DzuR/fVJfffVVN3jw4JPup0/566+/btnHHlql0IOd3uuBFKAQkWhcXCBQTWDCw6DKPHnyJPkztA1kOCZBCKolCFBQ0Uf7Oo4xr732WkwEKDj2tW/f3ionaONEgIIsz5kzZ7p169bFxGsQERGJdItE7xzikksu8d+/d+9e99RTT9nnTz/9tMuRI4f/37777jtL6PJcffXVClCIiIikklYYJaYRiMibN+9J99GWgwWmwMUYAhf0DyVYEZj1wqCzn376yfXt29dVq1bNn0nL46ZmoGq0W7hwoc2JuOmmm2wBDpx8t23b1r+Ad8EFF9jnLVu2dCVKlHC1a9f2/zyLdW3atInQ1ouIpFzXrl3dqFGjLNA6efLkZPfltGQYN26ce+GFF9yePXvsPioNHnroIdsvUj0WSzh+EVAmUHPDDTe4Pn362L48no5nIiIi4Wj1lCtXrpPaD/fu3dsdPHjQkrcCh2WTBEAyHMdarjmvvPLKiGy3iIhIrFOQQuJO1qxZXc2aNU+6j8FlEydOPGWhZsWKFZYlG1hhQR9yhqTSv5vFHg89yPn566677qTMmUihtzgtr2hfUqxYMf88DoIMtPpggY7gAqiAGDNmjDt69Kg/SEEpMq+RMmayiL0gRdOmTe0mIhKL6tata4EH2tUltTjPvpPABMcFb05FgQIFLMBx77332nEkFqomOEaR2Tl27Fi7r0iRIja/qXLlyq5KlSqR3kQREZGYw/nAtGnT3PHjx/33rVmzxr3yyiv2+ejRo08alk1QgtuZZ54ZFdeIIiIiseoMH+l2IhkUJ5wbN250jRs3tkHQYDGfeQwMf6b6wFO8eHEb0E1Fhld1sWjRItejRw/7mgUvz8iRIy2I0K5dO5ungV9++cXKgKn8uPHGG626geAAC2rnnnuufc/q1astSFKyZEl7fs8999xjgQfmRXj9xCkzJrjSoUMHa1Pi4d/J8lm/fr31IPeCMXPnzrVKivr164f4XRWRjObPP/90F110ke17LrzwwrA/f+CsHOzYscMWGRKiym7EiBFuxowZVnUA9pOPPfaYzaxg/k4045hBS76XX37ZffTRR/7XvWXLFgtQiIiIRPsxO9ZeA+cLBP85h7j77rutBWTC8479+/e7LFmyuMyZM4d0W0REROL5uK1KCsnQKlasaLdABARYzA/sZ44yZcrYiWfgwtfWrVttKFrBggVPGaq2efNma7PhBSlWrVplVQ4EKJYvX+4aNGhglQ8EH7yhbNzfq1cva60UGKSYPn26/TEzg8MLUvAz9Fj3qiU8BEs4SQ7cTp6Tm4hIPAabu3fvbnMXqBBD4P6P/eycOXPcc889d9JcnVq1arlHH300JtohEcCmWoIABSd4nho1aligOrBntoiIiAQPM/wIUFBlOXToUKuwoOqS60US0uCdf4iIiEjaKUghkgBVDVQyJPT222+fcl+jRo1coUKFTmkN0rp1a7d7926XP39+/32cvNKvtHTp0vY1rUgSFjLxb5zsVq1a9aT7qZogQBLYH53v806MA2l2hIhkFAQg2OcxsJJe0ePHj/f/26FDh2wmBYFbZg+BSgkGWXbr1s2/L45GtKDitXlZJt9++60NAwdBceYJsf9X9YSIiEhwffzxx1YZUb58eTsO9+zZ0+5naDYV8VSwU01BEhkV6iSNiYiISPqp3ZOIiIjEbOsIFvAHDhxo8yUIGDOrgX7RLCKwPaBH9H333ec6derkr1yLJpyKUZk3f/58a823ZMkSN2jQIKsQ8QZ89+3b191xxx02F4m+1yIiImmhdk/JYzbhrFmzrIKRJAfaRF5xxRXum2++sUHatH964IEHbM4f1ZgiIiKSPLV7EhERkbjzzz//WDs95gTh6quvdm+99ZbN/Hn++edtYcGbN8EgS4ZhU91GG7xomy/BbAwCEtwIrgT64osv/J8zM2nUqFER2EoREZGMZefOnf4EAm/mIBWYZ5/9v6UTEgUCKzdFREQkOBSkEBERkZhAGySqCQhIfPbZZzbz55133rFFhC+//NL/fTfffLMFJ+rVqxcVVQcEJJhfROaIl3XJdtHT+ujRo/Y1ix8M5mQeEbcSJUpEeKtFREQybpDizTfftMSIcuXK2TkFVRXMpBAREZHQUJBCREREYgIL+/v27bOF/QEDBrjFixe7PXv22L+dd9557u6773YPP/xwonOFwmXHjh1u48aNFpTwbszMYMYE1R98DlpG3HPPPbbdDMBmFtEFF1wQse0WERHJ6KjEZK4gVq5cabOsWrZs6R577DE7fhO08CoqREREJLh0hBUREYkz9FEeNmyYXWiXKVPGZjRUqlQpye9n+OOTTz7ptm3b5ooVK2aZggyDjDYsEDA4mlZIZDiCGRMPPfSQVSXkypUrLFUR27dvt/eKFk1UR3izI9C0adOTqjo8bBvvbeACh9dGQkREJCNK7flKqDEw+8SJE/6vu3Tp4nr06OFKlSrlatWq5c4666yIbZuIiEi8U5BCREQkjrz99tvWO3ncuHHu2muvtTkNderUcT/88IPLnTv3Kd9PpiBZgkOGDLE2Qyz+s9C+du3aiFYkeD744AP34YcfunXr1rlPPvnEfz8DpFk8YHAlmY5pyZakfdShQ4f8NwIOv//+u/vrr79cu3bt/N/L+7lw4UK3a9cu+/dAPDf/7rWV4j3j50uXLm0LLtzKli3r8ufP784444x0vRciIiIZ9XwlnK2ecPHFF7snnnjCPq9bt25EtkdERCQjOcPHRCgRERGJC1zoV6xY0Y0ZM8a/GE/1QefOnV3Pnj1P+f4WLVrYYv3cuXNPCgCwsM7CQWKOHz9uN8+ff/5pz8Ei/4UXXhiU1/H333+7Rx55xL344ov++1jkp3KiSJEiLlu2bNYeiaHZHrIdqbKgtRKZkIE3qhfWr1/v/17mVcyfPz/R5ybgwM94gYfmzZtbtYnn/PPPt3kYhQsXthtZoNwHTqsUjBARkWjFMfuiiy4K6jE71Ocr4TjvAOcUd955p3/7Vq1aFbTHFhERyaj+TOG5hyopRERE4gQL+7Qa6tWrl/8+FtoZJM2g6cRwP5mMgchknD17dpLPQ9VF//79XSgRVPjoo49Ouo8AwK+//mo3EKgIRLXFsmXLEn08WjQEBhAyZ87sf384UcqaNat9zJEjh8uZM6cthnjfQ/CDdlJ58+a1W/bs2ZMMRChAISIiEtzzlXCcd3jVpd45yKhRo0L+fCIiIvJ/FKQQERGJEwyVpoogT548J93P199//32iP0Mf6MS+3xscmRgWFQIDG15GYzCxWDF48GC3dOlSV6JECRs0HRgI4Hbuueeesl0dOnSwgARtmLjxc97HQFOmTHGvv/66BSJOF1gg01NEREQic74SjvMODB8+3BUqVMiqKCI5G0NERCQjUpBCREREUoXgQMIAQSgwb4JbStWoUSPF3xvJFhciIiISfecdPAfVkyIiIhJ+/2u2LCIiIjEvV65cVkWwZ8+ek+7n60suuSTRn+H+1Hy/iIiISLjPV0RERCS+KUghIiISJ2hpVL58ebd48WL/fQyi5OvKlSsn+jPcH/j9WLRoUZLfLyIiIhLu8xURERGJb2r3JCIiEkfo2dymTRtXoUIF66f8/PPPu8OHD7t27drZv7du3drlz5/fhlCiS5curlq1am7EiBGuQYMGbtq0ae6LL75wEyZMiPArERERkYx6viIiIiIZi4IUIiIicaRFixbut99+c0899ZQNvy5btqybP3++fzjl9u3bbSi1p0qVKu7NN990TzzxhOvdu7crVqyYmz17titZsmQEX4WIiIhk5PMVERERyVjO8Pl8vkhvhIiIiMSuP//801100UXu4MGDGkgtIiISxeLhmB0Pr0FERCSj+DOFx23NpBARERERERERERERkYhQkEJERERERERERERERCJCQQoREREREREREREREYkIBSlERERERERERERERCQiFKQQEREREREREREREZGIUJBCREREREREREREREQiQkEKERERERERERERERGJCAUpREREREREREREREQkIhSkEBERERERERERERGRiFCQQkREREREREREREREIkJBChERERERERERERERiYizI/O0IiIiEi98Pp99/PPPPyO9KSIiIpIM71jtHbtjkc47RERE4u/cQ0EKERERSZdDhw7Zx4IFC0Z6U0RERCSFx+6LLrrIxSKdd4iIiMTfuccZvlhOoRAREZGI+++//9zOnTtd1qxZ3RlnnBHUjAsWIH755Rd34YUXBu1x44Xen6TpvUma3pvk6f1Jmt6b+Hh/uPxnkSBfvnzuzDNjs/tzqM47Yun/YyzTexweep/DQ+9zeOh9ju33OKXnHqqkEBERkXThRKNAgQIhe3xOknQymjS9P0nTe5M0vTfJ0/uTNL03sf/+xGoFRbjOO2Ll/2Os03scHnqfw0Pvc3jofY7d9zgl5x6xmTohIiIiIiIiIiIiIiIxT0EKERERERERERERERGJCAUpREREJCqde+65rm/fvvZRTqX3J2l6b5Km9yZ5en+SpvcmeXp/4oP+P4ae3uPw0PscHnqfw0Pvc8Z4jzU4W0REREREREREREREIkKVFCIiIiIiIiIiIiIiEhEKUoiIiIiIiIiIiIiISEQoSCEiIiIiIiIiIiIiIhGhIIWIiIiIiIiIiIiIiESEghQiIiISlcaOHesuvfRSd95557lrr73Wff7555HepKiwYsUK16hRI5cvXz53xhlnuNmzZ0d6k6LGkCFDXMWKFV3WrFld7ty5XdOmTd0PP/wQ6c2KCi+99JIrXbq0u/DCC+1WuXJl9+GHH0Z6s6LSM888Y39bXbt2jfSmRIV+/frZ+xF4K168eKQ3K2r8+uuv7q677nI5c+Z0mTNndqVKlXJffPFFpDdLgnh+MX36dPud5/v5//vBBx+EbVszwns8ceJEd8MNN7js2bPb7eabb9Y5X4jPladNm2b7cs6TJPjv8x9//OEeeughlzdvXnfuuee6K664QvuNELzPzz//vLvyyivt2FuwYEH3yCOPuGPHjoVtezPCNeSyZcvcNddcY7/Hl19+uZsyZUpIt1FBChEREYk6b7/9tuvWrZvr27evW7t2rStTpoyrU6eO27t3r8voDh8+bO8HJ/JysuXLl9tF4apVq9yiRYvciRMnXO3ate09y+gKFChgi+9ffvmlLaDWqFHDNWnSxH377beR3rSosmbNGjd+/HgL6Mj/ufrqq92uXbv8t08++STSmxQVDhw44KpWreoyZcpkQb+NGze6ESNG2EKrxMf5xcqVK13Lli1dhw4d3FdffWWLutw2bNgQ9m2P1/eYRTDe46VLl7rPPvvMFhs5dhMAlOCfK2/bts11797dAkMS/Pf577//drVq1bL3ecaMGZYsQyAuf/78Yd/2eH6f33zzTdezZ0/7/u+++869/PLL9hi9e/cO+7bH6zXk1q1bXYMGDVz16tXdunXrLHmnY8eObsGCBaHbSJ+IiIhIlKlUqZLvoYce8n/977//+vLly+cbMmRIRLcr2nAqN2vWrEhvRtTau3evvUfLly+P9KZEpezZs/smTZoU6c2IGocOHfIVK1bMt2jRIl+1atV8Xbp0ifQmRYW+ffv6ypQpE+nNiEqPP/647/rrr4/0ZkgIzy+aN2/ua9CgwUn3XXvttb777rsv5NuaUc/h/vnnH1/WrFl9r776agi3MmO+z7y3VapUsWN/mzZtfE2aNAnT1mac9/mll17yXXbZZb6///47jFuZ8d5nvrdGjRon3detWzdf1apVQ76tGeUa8rHHHvNdffXVJ93XokULX506dUK2XaqkEBERkahCBhLZ3pT7e84880z7mgw7kZQ6ePCgfcyRI0ekNyWq/Pvvv9bqgYwq2j7J/1CFQ8ZY4L5H/mfTpk3WHuCyyy5zrVq1ctu3b4/0JkWFOXPmuAoVKrhmzZpZi7ly5cpZxqzEz/kF9yfcJ5Ddq/OR0J3DHTlyxCohdewO/vs8YMAA21dRGSSheZ85LnBuxTlFnjx5XMmSJd3gwYPt3EuC9z5XqVLFfsZrCfXTTz9ZS6369euHbbvj3WcROP6dHbJHFhEREUmDffv22Yk8J/aB+Pr777+P2HZJbPnvv/+sLJlWLFwginPffPONXTjTr/eCCy5ws2bNcldddVWkNysqELShvQDtnuRk9IWmBzF9n2n11L9/f2sTQrsb5r9kZCyKMO+FFhW0mOD35+GHH3bnnHOOa9OmTaQ3T4JwfrF79+5Ev5/7JTTncI8//rgFRRUwDu77TJs+WuLQtkVC9z5zXFiyZIkF9Fk037x5s3vwwQct8EZrIgnO+3znnXfaz11//fV0CHL//POPu//++9XuKYiSOv79+eef7ujRozYLJNgUpBARERGRuEMGG4uo6p3/f1hkZnGCChP6JLOIyhyPjB6o+OWXX1yXLl1sjgnDGuVk9erV83/OrA6CFoULF3bvvPNOhs/GJRhKJQVZsqCSgv3OuHHjFKQQSQNmJxE0Zk6F9sfBc+jQIXf33XdbpVeuXLkivTlxf1ygWmXChAnurLPOcuXLl7f5KsOGDVOQIojYR3DsffHFF+28hGAQ53IDBw50Tz75ZKQ3T9JIQQoRERGJKlw8cVK/Z8+ek+7n60suuSRi2yWxo1OnTm7u3LluxYoVNjBa/ofs7ssvv9w+56KZrO8XXnjBBkVnZLQLYDDjNddc47+PjD5+f8aMGeOOHz9u+yT5n2zZsrkrrrjCFgQyurx5854S5CtRooR79913I7ZNEtzzC+7X+Uh4zuGGDx9uQYqPPvrIAqISvPd5y5YtNsi5UaNGJy2m4+yzz7bhzkWLFg3Dlsf/7zPHhUyZMp103sBxgax02hpxLibpf58JRBB4Y5AzSpUqZW1M7733XtenTx9rFyXpk9Tx78ILLwxJFQX0f01ERESiCifvLKAuXrz4pAspvlb/fEkO5d4EKGhjRKl9kSJFIr1JUY2/KxbgM7qaNWtaKyyqTLwb2fG0auBzBShO9tdff9mCFwsxGR3t5FjcC/Tjjz9apYnEx/kF9wd+P6i60vlIcM/hnn32WcuAnj9/vu1/Jbjvc/HixU85zjVu3NhVr17dPi9YsGCYX0H8/j5zXCCI7wWBvOMCx0wFKIL3PjO7JmEgwjtf+99caEmviBz/QjaSW0RERCSNpk2b5jv33HN9U6ZM8W3cuNF37733+rJly+bbvXu3L6M7dOiQ76uvvrIbp3LPPfecff7zzz/7MroHHnjAd9FFF/mWLVvm27Vrl/925MgRX0bXs2dP3/Lly31bt271rV+/3r4+44wzfAsXLoz0pkWlatWq+bp06RLpzYgKjz76qP1N8bvz6aef+m6++WZfrly5fHv37vVldJ9//rnv7LPP9j399NO+TZs2+d544w1flixZfK+//nqkN03SeH5x99132/7Rw+88/4+HDx/u++6773x9+/b1ZcqUyffNN99E8FXE13v8zDPP+M455xzfjBkzTjp2c74jwXufE2rTpo2vSZMmYdzijPE+b9++3Zc1a1Zfp06dfD/88INv7ty5vty5c/sGDRoUwVcRf+8z+2Le57feesv3008/2fls0aJFfc2bN4/gq4jta8iePXva++zhfeWcpkePHnb8Gzt2rO+ss87yzZ8/P2TbqCCFiIiIRKXRo0f7ChUqZBeulSpV8q1atSrSmxQVli5daieWCW9cbGZ0ib0v3CZPnuzL6Nq3b+8rXLiw/T1dfPHFvpo1aypAkQwFKf5PixYtfHnz5rXfnfz589vXmzdvjvRmRY3333/fV7JkSVtcKV68uG/ChAmR3iRJx/kFf/sJj6fvvPOO74orrrDvv/rqq33z5s2LwFbH73vMsSmxYzeLkBLc3+VAClKE7n1euXKl79prr7XjwmWXXWaB7H/++ScCWx6/7/OJEyd8/fr1s8DEeeed5ytYsKDvwQcf9B04cCBCWx/715Bt2rSx9znhz5QtW9b+n/C7HOprqjP4T+jqNERERERERERERERERBKnmRQiIiIiIiIiIiIiIhIRClKIiIiIiIiIiIiIiEhEKEghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIiIiIiIiIiIiIhIRChIISIiIiIiIiIiIiIiEaEghYiIiIiIiIiIiIiIRISCFCIiIiIiMe6ll15yhQoVcueff7679dZb3W+//Xban/nhhx/cJZdc4g4dOhSSbTrjjDPc7Nmz7fN9+/a53Llzux07doTkuURERCRyAo/50fA4kbBt2zbb/nXr1kV6U0RikoIUIiIiIiIxbObMma5Hjx5u9OjR7osvvrCgw+23337an+vVq5fr3Lmzy5o1a8i3MVeuXK5169aub9++IX8uERGReLN79247Zl922WXu3HPPdQULFnSNGjVyixcvdrGoX79+rmzZsqfcv2vXLlevXr2IbJOIRJaCFCIiIiIiMezpp592nTp1ck2aNHElSpRwr776qvvkk0/slpTt27e7uXPnurZt2yb5Pf/++6/777//grad7dq1c2+88Yb7/fffg/aYIiIi8Y4M/fLly7slS5a4YcOGuW+++cbNnz/fVa9e3T300EMunlDhSRAm2pw4cSLSmyAS9xSkEBERERGJUQcOHHBr1651DRo08N+XL18+V7JkSffRRx8l+XPvvPOOK1OmjMufP7//vilTprhs2bK5OXPmuKuuusoWCQhmrFmzxtWqVcuqIS666CJXrVo1e85AmzZtcjfeeKM777zz7GcXLVp0ynNeffXVtm2zZs0K2usXERGJdw8++KC1Efr888/dbbfd5q644go7pnbr1s2tWrUqyVZDf/zxh923bNky+5qPfL1gwQJXrlw5lzlzZlejRg23d+9e9+GHH1qiw4UXXujuvPNOd+TIEf/jXHrppe75558/aZuogqAaIimPP/64bWeWLFms+uPJJ5/0L/RzvtG/f3/39ddf2/Zw476E7Z6qVKlijxOIdpaZMmVyK1assK+PHz/uunfvbucztLy89tpr/a83KTwHbTKp2OA9YPtmzJjh/3fvvXz77bftnIdzG5IsSNwYMGCAK1CggJ0j8R4QLEro+++/t23n5zgfW758ebLbIyL/oyCFiIiIiEiM+umnn+zj5ZdfftL9xYoV8/9bYj7++GNXoUKFU+5nUWLo0KFu0qRJ7ttvv7U5ErSPatOmjVVmsBjCY9evX98/y4KLduZgnHPOOW716tVu3LhxpywqeCpVqmTPLSIiIqdH9SEL4VRMsAifEMkFqUVwYcyYMW7lypXul19+cc2bN7cgxJtvvunmzZvnFi5caC0k04NWkgQeNm7c6F544QU3ceJEN3LkSPu3Fi1auEcffdQCLbR34sZ9CbVq1cpNmzbN+Xw+/30EDkh4uOGGG+xrKkk/++wz+77169e7Zs2aubp161ryRHIImhDwIVDC89xxxx3uu+++O+l7evbs6bp06WL316lTx17HiBEj3PDhw+25uK9x48anPBctOHl9X331latcubK15dq/f3+63k+RjEBBChERERGRGOVlOhI4uOCCC/y3995776QsyIR+/vlnu8hPiCzHF1980TIAr7zySsuAJMvyrrvucsWLF7csywkTJthje5mBVGyQNfjaa69ZdQYVFYMHD070eXlOnltEREROb/PmzbZIzzE4WAYNGuSqVq1q1RQdOnSw4zmVBXzN4j9zrZYuXZqu53jiiSfsXIIqDBbpqXagihNUL3CucvbZZ1t7J27clxDBk507d57UvpJASsuWLa3SgWrPyZMnu+nTp9t2Fy1a1J7n+uuvt/uTQzCjY8eOVu0xcOBAS9xIGJjp2rWrJWEUKVLE5c2b14ITJGEQ0OAciaQOqikSVpkQOCEAwjkT7ytVqC+//HK63k+RjODsSG+AiIiIiIikDUEE0NogMJuSzD/v3xJz9OhRa0OQENUQpUuXPum+PXv22GIDz0FLCGZVEKRgcQBkGDLAMzDoQeZgYliESC54IiIiIv8nsIogWAKP83ny5PG3ZAq8j9ZS6UHFw6hRo9yWLVvcX3/95f755x9rJZUaF198satdu7a1WiIIsXXrVquaGD9+vP07szk4JyHQEIgWUDlz5kz2sROep/B1YKssBFac/vnnnxYwIbgTiK+pxkjqsQnE8DgJqzRE5FQKUoiIiIiIxChvUYEL/8CWT8eOHTtpwSEh5kswzyKxIALZiYFo9USbAtocFC5c2PowcwH+999/p6ltBYsOIiIicnpUSnJcpmIxOWeeeeYpQY2khj0z08HDYwd+7d1HK8fAx04YLElukDSBBFooMXeClkhUEtCOiVZJqcXjPPzww1blQBVFqVKl7AaCH2eddZb78ssv7WMgKjXSK7H2WiISOmr3JCIiIiISo7Jnz+7Kly9/0pwHLtpZIGDYdVJo6UCf6JT49NNPbYGAORT0jyZIsW/fPv+/086Antb0lPZ4gzwT2rBhgz23iIiInF6OHDlsoX/s2LHu8OHDp/w7w7HhJQAEHosTVgakFY8d+LhUFVDVkBRmXZDU0KdPH6siINCSsNUjlZtUQZxOkyZNLPGCuRwEKQhaeDif4DGo8iRRI/BGC6nkJDxP4WvOZ5JCMggVo5wTBeLrq666KsnHpoKEIEpyjy0i/6MghYiIiIhIDGMRgBuDLhneSH/pa6+99pSWBIFY8CCQkZIFAhYXpk6daq0KGIzNAkFg7+ibb77ZWi1QcUHLAwImbE9CtHniQp3WDSIiIpIyBCg4XleqVMm9++67dqznmEw7Ja+1EMfl6667zj3zzDP2b8yZoFVjMDCbivMAju+0WOJ4n7ByIeF5Ay0hqZ6g3RPbOWvWrJO+h1kVBDoIpJD4QIumpKoZmjZtaoOueV3Mo/Bw7sE5SevWrd3MmTPt8WhTNWTIEBsAnhzmWLzyyivuxx9/dH379rWfY5ZEchiIzRwKWln98MMPNlib7afFZsL/X7xeql8YeE7lavv27f3/znyRhO+HiChIISIiIiIS02655RbXr18/C04wuJoWDN5wyqTUq1fP+iQz9Pp0GPbIBfY111zj7r77bquqyJ0790ltILjYZs4FCygMonz66adPeRyGeRcqVMj6SouIiEjK0L5x7dq1rnr16u7RRx91JUuWtGrJxYsX22BmD4vuZO5TYcnQZwZkB0OvXr1ctWrVXMOGDV2DBg0saMCQ6qQ0btzYPfLII7boz2BpKisIMgRisHTdunXtNVGp8dZbbyX5eAQiSILg/IHziEAMyCZIwfvCMGu2bc2aNad8X0K0oiKIwnyO1157zZ4/YUVEQpz/dOvWzZ6LllNUd8yZM8eCMoEIFHHjnIyh33wPbTY9BDgOHjyY7HOJZERn+EIxhUdERERERKIamX5cOC9YsCAsz0eGJxf4d955Z1ieT0RERCQhZm6QXEFAQ0SihwZni4iIiIhkQPfdd5/1sj506JDLmjVrSJ+LVg633nrrSW0aREREREREoEoKERERERERERERiXuqpBCJTqqkEBERERERERERkbinXG2R6KTB2SIiIiIiIiIiIiIiEhEKUoiIiIiIiIiIiIiISEQoSCEiIiIiIiIiIiIiIhGhIIWIiIiIiIiIiIiIiESEghQiIiIiIiIiIiIiIhIRClKIiIiIiIiIiIiIiEhEKEghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIi4SPh/NGh86+ERgTYAAAAASUVORK5CYII=", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm8jOX//3+1UdInIUKylkIRbaiEsiRLUpRCqKyRipStKJJSqYTQXiJabFlTlmzZd1mjspcsaZn/4/n+/u75zznOOc45zj3beT0fj2HOnJm575kzc9/Xdb3e79frtEAgEHBCCCGEEEIIIYQQQgghhBBh5vRwb1AIIYQQQgghhBBCCCGEEAIkUgghhBBCCCGEEEIIIYQQIiJIpBBCCCGEEEIIIYQQQgghRESQSCGEEEIIIYQQQgghhBBCiIggkUIIIYQQQgghhBBCCCGEEBFBIoUQQgghhBBCCCGEEEIIISKCRAohhBBCCCGEEEIIIYQQQkQEiRRCCCGEEEIIIYQQQgghhIgIEimEEEIIIYQQQgghhBBCCBERJFIIcRK+/fZbd9ppp9n/Hs2bN3eFCxdO13vH43j8yXj33Xdtu1u3bk3XdpLaR56vd+/e6Xo+IYQQQgghhBBCCCGEyGgkUoio56effnKPPPKIK1q0qDv77LPd//73P1epUiX32muvuaNHj0Z69+Kejz/+2L366quR3g0hhBBCCCGEEEIIIUQccmakd0CIlJg4caK7++67XdasWV3Tpk1d6dKl3fHjx92cOXPck08+6VavXu2GDRsW9jdx+PDh7r///kvXY9evX+9OPz0y+iCizplnnplmkWLVqlWuU6dOvu2XEEIIIYQQQgghhBAicyKRQkQtW7ZscY0bN3aFChVyM2fOdPny5Qv+rl27dm7Tpk0mYpwqgUDAHTt2zJ1zzjmpfsxZZ52V7u0huEQKOlH8hPcxS5YsERNhhBBCCCGEEEIIIYQQsYVWEkXUMmDAAPfnn3+6ESNGJBAoPIoXL+46duwY/HnUqFGuatWqLk+ePCYElCxZ0g0ZMuSEx5HTcMcdd7hvvvnGXXPNNSZODB061H73888/u/r167tzzz3Xnuexxx5zf/31V6ryHg4fPuwef/xxV7BgQdt+iRIl3MCBA00EOVkmBR0h7Dv7cvHFF7u+ffumqVPjiy++sC4TRAj+Hz9+fJL3S5xJcejQIeuQYJ/YZ17zbbfd5n788Uf7/S233GJC0LZt2+yxXLzX7WV1fPrpp6579+6uQIECLlu2bO6PP/5I9X4LIYQQQgghhBBCCCEyN+qkEFHL119/bTkUFStWTNX9ESRKlSrl6tata5ZGPL5t27a22E/nRWLLpXvvvdeyLh566CETFLBCqlatmtu+fbt79NFHXf78+d0HH3xgXRwnAyGC7c6aNcu1bNnSlS1b1kQQLKl27tzpBg0alOxjf/31V1elShX3zz//uKeeesoEEiysUtvZMXXqVHfXXXeZKNOvXz+3b98+9+CDD5rYcTJat27txo4d69q3b2+P57FYaa1du9aVK1fOPfPMM+7333838cZ7DdmzZ0/wHH369LHuiSeeeMIEHa4LIYQQQgghhBBCCCFEapBIIaISqvFZ3K9Xr16qHzN79uwEC/ssvNesWdO98sorJ4gUWEVNmTLF1ahRI3gbQdwbNmxwn332meVgAAJGmTJlTrrtr776ysQMOiBY2Ae2yfPwvOxLsWLFknzsiy++6Pbs2eMWLFjgrrvuOrutWbNm7tJLL03V6+7atavLmzeviQvnn3++3Va5cmVXvXp1s8pKCbokeI0vv/xy8LYuXboEr9NVQYfEgQMH3P3335+sxdPixYvTZJclhBBCCCGEEEIIIYQQILsnEZV4lkHnnXdeqh8TukhO9f/evXttsX7z5s32cyhFihRJIFDApEmTzFaqYcOGwduwL3r44YdPum0ee8YZZ1gHRijYP9FlMXny5BQfe8MNNwQFCrjwwgtdkyZNTrrdX375xS1btsxEDU+g8MQFOiNORo4cOUwc2bVrl0svbFsChRBCCCGEEEIIIYQQIj1IpBBRyf/+979gZkJqmTt3rrv11lvNLonFdxb6n376aftdUiJFYshdIOeCnIVQsII6GTwWe6jEosoVV1wR/H1Kj02qayK124X0Pp7cj1WrVlmOBiIJeRWIOmkhqfdSCCGEEEIIIYQQQgghUoNEChG1IgWL/iygp4affvrJ8iTonsDeCRujadOmWfA1JA6hVuX//3HPPfeYKDF48GB7v1966SXL9Uip8yMxei+FEEIIIYQQQgghhBDpRSKFiFruuOMOEx/mz59/0vsSkk1oM9kQhGHffvvt1lWRlgV08hvYHvZMiUO2U/NYLJMSd36sW7cu+PuUHrtx48YTbk/tdiG9jwcsrggY/+KLL9yWLVtcrly53PPPPx/8feLOEiGEEEIIIYQQQgghhMgoJFKIqIUAZ6ybWrVq5X777bcTfo+gQCg1kAcBoQIDFk+jRo1K9fYQNhAaxo4dG7ztyJEjbtiwYal67L///uveeOONBLcPGjTIFvlr1aqV4mN/+OEHt3DhwuBtBGl/9NFHqRIYypYt6957770EllZ0kaxZsybFx7K/iW2w8uTJYx0VCD4e/A0S3+9kORmIM3///XeqHyOEEEIIIYQQQgghhMicnBnpHRAiOYoVK+Y+/vhj16hRI8t2aNq0qStdurQ7fvy4mzdvnhszZoxr3ry53bd69eouS5Ysrk6dOtZJ8eeff7rhw4fbojuL5qnhoYceMpGB7SxZssQEgA8++MDCs08G261SpYp75pln3NatW12ZMmXc1KlT3Zdffuk6depkryUlMYbt1KxZ03Xs2NFEAYQRuiRWrFhx0m3369fP1a5d2914442uRYsWbv/+/WbfhG0T70Ny0PVx8cUXW1A4+5s9e3Y3ffp0t2jRIvfyyy8H71e+fHk3evRo17lzZ3fttdfa/Xi9ydGtWzcTTejKKFy48En3XwghhBBCCCGEEEIIkXmRSCGimrp169pCPVkJLPgPGTLEZc2a1V111VW2kI6w4IVE0wHRvXt398QTT7iLLrrItWnTxsKzWbhPDYgRM2bMcB06dLBFfn5u0qSJdUEgIKTE6aefblZTPXv2tAV9OjhYoGe/H3/88RQfixgya9Ys227//v3Nbql169bW0dCyZcuT7jf7hmDDa0cgQBBh+7xf3377bYqvF5snxJRx48ZZbgfB4W+99Za9dx7cZ9myZfacdIYgnqQkUgghhBBCCCGEEEIIIURqOS2Q2IBfCCGEEEIIIYQQQgghhBAiDCiTQgghhBBCCCGEEEIIIYQQEUEihRBCCCGEEEIIIYQQQgghIoJECiGEEEIIIYQQQgghhBBCRASJFEIIIYQQQgghhBBCCCGEiAgSKYQQQgghhBBCCCGEEEIIEREkUgghhBBCCCGEEEIIIYQQIiKcGZnNCiGEECJe+O+//9yuXbvceeed50477bRI744QQgghkiEQCLhDhw65/Pnzu9NPj82aRY07hBBCiPgbe0ikEEIIIcQpgUBRsGBBvYtCCCFEjLBjxw538cUXu1hE4w4hhBAi/sYeEimESAfHjh1z+/fvD17+/vtvV61ateDve/Xq5VavXu3++OOPEx5LpfHnn38e/LlLly5u2bJlJ9wnZ86cLleuXO755593Z5xxht2+bt06d/z48eDvzjnnHP39hBARh2OWN+j43//+F+ndEUIIIUQyMD+hsMA7d8ciGncIIYQQ8Tf2kEghRCIQHLZu3eoOHDjgrrvuuuDt9evXd0uWLHH79u1zR48eTfAYlEAW5zymTZvm5s+fn+R7e8EFFyT4meecOXNmkvc9++yzXf/+/YM/d+3a1X311VcJfu8JFvny5TPxI3v27PY79pMDQJYsWfQ3FkL4imfxhEAhkUIIIYSIfmLZnlHjDiGEECL+xh4SKUSmZtasWW7lypVu06ZNbuPGjfb/li1b3L///usuueQSt23btuB9d+/e7X7++efgz/ioeQJBgQIFEjxvhw4dXJMmTWyxLrHfWmLRoFu3bq5FixYJvNpQGb0OjVAQIPLkyWO/++eff6yjg3ZnLuz3ueeeG7zvQw895L788ktXuHBhV7x4cXfppZfaJfR6LE9OhBBCCCGEEEIIIYQQsc9pAVZEhYhjWOhHiPjhhx9sMb9v377B3914441u7ty5JzwGG6XLLrvMLV682J155v9peUuXLrWQNoQJLnQpRCpszgudQaygY4LLn3/+6Ro0aBC8D10gixYtSvLxvD7u7+0/Yg0CSJkyZdR5IYRIMwir559/vvv999/VSSGEEEJEMfFwzo6H1yCEEEJkFv5I5XlbnRQi7ti5c6ebN2+eW7BggQkT2CnRcQBkO9C54HUckCNBZ0LiDgOskxILEFdffbWLFuiA8GxV6JRICl7/L7/8EuwS8TpF+D9btmwJXt9jjz3mli9f7rJmzerKlSvnrr/+enfDDTfY/4UKFVLHhRBCCCGEEEIIIYQQwhckUoiY5vDhw9btcNNNNwUX3Qmi/vjjjxPcL0eOHNZZwMI7wdOeSPHss8+6eAUhI3/+/Ha5+eabk70f3SFYW5GpQWcGWRqheRq8Z6E///XXXyZmCCGEEEIIIYQQQgghxKkikULEFNgcbdiwwU2cONEu33//vdk5rV692pUsWTJo4bR27doE3QBYN0XKmina4X0hjJv3lk4LrwOF/5ctW+aKFi2aQNAgf6NUqVKudu3aduF9V7aFEEIIIYQQQgghhBAiPSiTQsQEiBDDhg0zYeKnn35K8DsWzd9//31XtWrViO1fvHL06FHzjsubN6/9vH79enf55ZcnuA92UIgVt99+u/0NyLsQQmQu5A0thBBCxAbxcM6Oh9cghBBCZBb+SOV5W6XlIir5+eefLeTaY8uWLe711183geKss85yt956qxs0aJAtmnNfCRT+gODgCRRQokQJ+xsMHjzY1axZ02yftm3b5t566y13xx13uOeeey54XzozhBBCCCGEEEIIIYQQIiUkUoiogAXthQsXuqefftqVKVPGFSxY0BbCPRAhHnroITdu3Di3b98+N23aNNepUyezcRLhBfun9u3bu8mTJ9vfAquo1q1b29+MbgoPfl+6dGnLCJk7d65ECyGEEEIIIYQQQgghxAkok0JEFMKaP/jgA7NroivCg4yDX375JfhztmzZzO5JRBcEkNepU8cuiTsnsObCpovLSy+95IoVK+aaNm1ql8KFC0dsn4UQQgghhBBCCCGEENGDMilExPjnn3/cRRddZNX4nrVQ3bp1zTYIK6HcuXPrrxPD7N+/302dOtVNmDDBffnll+7PP/8M/q5y5crWFZMzZ86I7qMQImOQN7QQQggRG8TDOTseXoMQQgiRWfgjledtdVKIsPDff/+57777zqrrBwwYYJ0SZ555pmvUqJFV2jdr1szdddddcTfI/Pvvv02MSQtnnHGGy5Ili4t1ECAaN25sl8OHD5so8d5777mZM2da3sgFF1wQvO+6devcpZdeaq9dCCGEEEIIIYQQQgiReVAnhfAVQpaxcuKydetWu23OnDmuUqVKdv3ff/+NiYVprIywnyKkmw6BAwcO2CW5697PR44cSdf26CphkZ+FfC6h1xP/zPUCBQq4/Pnzu9NPPz0mLL62b98e/AwcPXrU5cuXz5133nnugQceMMGKgG4hROygikYhhBAiNoiHc3Y8vAYhhBAis/CHOilEpKBzgKp5gq8RJDwYQN5zzz0uV65cwduiSaD466+/TEjZvHmziSuhly1btthierhgWzt37rRLajn77LNdkSJFLNia/IfQCxkQ/D4aIGCbi8fatWtNXEEA6tevn12uv/56C+em0+ass86K6P4KEWvQtUYOzJIlS0xcHT9+vKtfv36Kj/n2229d586drbON72f37t1d8+bNw7bPQgghhBBCCCGEyLzI7klkODNmzLDFZWDx+bbbbrPqeBbJ6BCINFTcsHjHZcOGDUEhggr/xOHPoSCo0K3gdTGkptMhR44cabZuwiLq4MGDyXZnJL7O/4gZx44dswV/LonBXotuC0+0uOyyy1z58uXtEmq7FAnKlStnC6lff/212UFNnjzZLViwwC7dunVzI0eOtM+QECJ1YK9WpkwZ16JFC9egQYOT3h8Rtnbt2q5169buo48+smN4q1atrMOpRo0aetuFEEIIIYQQQgjhK7J7EqcMC8xr1qxx1apVC+ZPVKlSxS4PP/ywLexHCuyWli5d6hYvXuwWLVpkF4SJ5Dj33HOT7ETgtkKFCkVtVT/dK1goIbYk1QkSGlqdmOLFi7trrrnGXXvttfY/okH27NldpPjtt9/ciBEjrBOH6+RVIKoAIhKCixAidfB9OVknRdeuXS0vaNWqVcHbyJJBLJ0yZUqqtiPbBSGEECJjYLzLhfH9tm3bLLctI4mHc3Y8vAYhhBAimvjr/7nL+GG/Lrsn4TsIEy+//LL78MMPLU+ARfJs2bJZ9wTWIeFeTOYLtXLlShMiPFEC6xJEk8Rgf8SCfKlSpRKIEXny5InJRXBCyBFSuCSGSc7evXsTiBa8L7xHCBqbNm2yy6effmr35+93xRVXJBAuqMoOl11U3rx53dNPP+0ef/xxs63xBApo2rSp/c/vypYtG5b9ESLemT9/vrv11lsT3EYHRadOnVI83nIJHXQIIYQQ8QLjZ4p8KJjZt2+fdS7zf/Xq1W2+ANOnT3fvvvuuO3TokFm1hl6OHz/uhg4d6qpWrWr3/eSTT9xDDz1keXzexRMjvN9TIABk+XmWi5dccomN3RnrCyGEEEL4AeumdevWtbHNc88955555hkXCTTaEWmCgTQCxMCBA92kSZOCt19++eXu119/DS6Sh2Ohn31ZsWKF++abb+xC/gUTgsRcdNFFttjuXbA4uvDCC11mgb8Fr5fLDTfckOB3TLgQKzxRh//JhkDE4IL9EtBBUqFCBVu45HL11Vf7HtKdNWvWBDZPdOwwgWNShzDGouqTTz5p94lFYUmIaIFjN+JgKPyM8MBCS1I2fWTHPPvss2HcSyGEECJju60p1qFisFKlSkH7U8a+ffr0sXEn90nMtGnTgsI+j8cmMTlCBXzGr9gxpjSvoaPx9ddfN+EjdKy+ceNGKyASQgghhPCDjh07uqlTp9p1xh2RQiKFSDVkBLRr186yHICFYfzOqWpnATsc7NmzxyYHiBJ8gVhcC4UsCK8DwOsCIItBJA3vFxVhXDyYlIUKF1zoxKCrgQuKKoIH4gCCBY9FCPIb/PH5DNK989lnn5nCy+XKK690TzzxhLv33nuj1o5LiHiDvBiCtkMXYgjcFkIIIaINrF6ZN2Ahun79eruQRefBeNKzrcViic4FD7rEc+fObWPmXLly2c8eFStWtHEpNqkI+qEXOpAp4vKoV6+edS6TceddKPihcpEsqGHDhlkhmAfdGjwHY28sZ4UQQggh/CJ0bbVmzZouUkikEKkG308ECgbeDz74oHvssccsz8BP6IzAisTrlvjxxx8T/J6JAtkX3kI73mmqqj91MaBOnTp28Sq7mKwxueNvMHPmTBOLPv74Y7sAdlBelwXVaHRB+AFdMGzzhRdecK+99pobPny4WXwRzM4+IZgJIdIGIiN2FqHwMx7PSXVRAN9xv77nQgghRHpAMF+4cKH74YcfXMOGDYMiAYv/HTp0OOH+dE9gAetZLsHtt9/uvv/+ezs3ckkpp6106dJ2SQ1Y43IJ3deRI0daBhsdGaEFYFQzMp5mHhQuu1UhhBBCZC7++usvm9NTmDx27Njg7RdffHHE9kkihUgWxAEG+gyUgYE+Lc2IAVQU+QWD9i+++MKNGzfOKosShz6Ha0FcuOCECTGKS9u2bW3CxOTPE44QrpYvX26XAQMGmHB0yy23uLvuussmWjly5Mjwt5IJ5aBBg1zPnj2t8ozPJSHtHngDh04EhRDJQydcqH0f0LEWrg45IYQQIj3s2rXLzZo1y0QI5i3k5XmCA50Inkhx3XXXuTvuuMOVLFnSCpq4nf/pjEiqWIeLX1D4gzCBQMF41SsEI3uCfR49erR1WYAECiGEEEL4wezZs12TJk1s3dVb8yX/io5SP8dBJ+O0QGjpiBDOWQs0wcV8WBkkk03gR7p7YgVv8uTJViX/9ddfu2PHjgV/FwlrIZExFlxZsmSxirT77rvPJofJVWWfKhzGvA4arl9//fUmpL344otmByVEZgJhF0sJID/mlVdesY4zrCpYBMGqaefOnRbMCVu2bLFKUOz8WrRoYd1Sjz76qJs4caIdd1MrLrPI8vvvv1sHhhBCCOEnnKs8i6ZQihQpYhlsrVq1CoZWRxrGpiwGvPrqq+6rr74KCinkTHC+5VxNgQ+FQIguN998s6/7Ew/n7Hh4DUIIIUSkqF+/vvvyyy/NrYTC43PPPTeYncX/ofaW4TxvS6QQCbIICEJ95513LNwNn1RsnQiP80NJYxtUPiFMfP755/Zh9UAUIWMAy6GyZcv6HtIsMjbMfMKECe7TTz+1AEAPOhvuvPNOEyyYVKLS+sHSpUutYg4FGOGiadOm7rnnnrPFWSEyAxxXESUSgy0aYZzNmze3oNBQ72uuY+FHFSrtnT169LD7pRYtFgghhPCDbdu22biSIiYW7ymkAroQKEihGIVz3o033mjiRN68eaPmD0ERFuNhun/pOPaoVauW69SpkxVheUU248ePt2w1inr8Jh7O2fHwGoQQQohIcejQIde7d29bj6XQuEuXLtbNefTo0ROsoDMCiRQiTVW3VJxTbXvkyBG7rW7duq5fv37WFp2RsIiN39knn3xig/bQqnsCrhEmWMRGmFC2ROxDXgR/aw58TDJDu2Puuece+1tjKZPRf+uNGzdawPeYMWPsZyzBqFSjghz/YSFExqLFAiGEEBnF9u3b3WeffWaT5cWLFwdvp+MgNJ8uWu099+7d695++2335ptvBuc6VCRSLMB4FLspXheCSsGCBcO+f/Fwzo6H1yCEEEKEi+PHj7vp06eb04kHhR+s+xYrVswcdFg3C3UpyUgkUohUs2/fPvtQMsijAolcgZtuuinDJxt0aLBYjRerB/Yjd999ty1WUwEVyx0TfJkRfOgQCc1hoEuEqn6sqrwFcuxVyPugQyW0pRt7FR5fsWLFYO7Hf//9ZweJWBZteG/wCubvz6QTiyiPQoUKmTj10EMPuaJFi2bodnmPUYRpsQfe/3nz5gU9ioUQGYMWC4QQQmTEeJHJ85QpU4K3MTdgjkCHARcskqLZMpeuiffeey9oXUsRFqHdjHOZ9wA2qdgsMP+aM2dO2BfZ4+GcHQ+vQQghhAgHx44dsy5O3BNYj2MNlnVZitIRL7B9olA9Gs7bsbsiLE4JLHk8CI1jQM1iOgu4GSVQMNH47rvvXMOGDW3xGdsovghUErEoTds2FlNUGrFQH40CBQIB3u07duxIcDsBM7Roh3aC4DPLl41w6VD4uXHjxgk6CVg057b+/fsnuC92K/Xq1TPLFQ+8a7FGSuwNT1cAE57Q9nHEEESOaAOBBeHljTfesPeT/BFsmLJnz27vC+8Dwdy8dtTdjIrKwfYJb1/EHzz38Sm+7LLLMuS5hRBCCCHEqY2z586dm2C8SJEO/1euXNkNGTLExtqMm5988smoFCgYszLpx6KWIpihQ4faYgAezx999JEVJnXt2jUoUABjUeYM+fPnj+i+CyGEECL+Ofvss91VV11l3adeByprjwgUFFMzhokWom9VWPjeNYHPeJkyZWzh1oPsiQYNGmRItT4eZiNHjrSWbCYYiB8snOMXy2B99+7dVlFPNRTBytEywaClHNsrFD6Pl156yfzZsQ4KhYV0LqEdAV73ROjjgS89r50FeQ/Cv7mNA0UodLIQ+hzqp3vw4EGbxCUWcfCupTuF33sQXk04dWIVlIX6H374IRiEE0nw261Zs6ZVmfFZQMlFgOFvgCCD+IOggHiVEfvLZ5qqvGXLlpkw5r2PfE47duzoi9+eEEIIIYRI3g4JewGKR+iSCC24IR/v559/toX/1q1bm0VoNEJhEHOHa6+91sb05GYw5mQMjqiCvS2d4ox7E0MXMR0UjEvVBSCEEEIIv3nllVfMMpO1uEmTJtkYhGLo1157zcYvFJVjxf7BBx9E9o8REJmC//77L/DRRx8FLrzwQkrUA6eddlqgT58+GbqNbdu2BZ566qlArly5bBtczjnnnMDDDz8cWLlyZSBaWLVqVaB3796BoUOHJrg9T548ts9LliwJ3vbpp58GzjjjjEDDhg0T3Pf9998PfPDBB4F9+/YFbzt69Gjg8OHD9l5nJH/99Vdg586dgZ9//jnB7aNGjQo8++yzgd27dwdvGzx4sL2G+vXrJ7hv8eLF7fZZs2YFb9u6dWtg3Lhxge3btweigXXr1gXat28fyJ49e/DzkyNHjkDnzp0DP/30U4Zvj88q27jgggsCI0aMyPC/mxCZid9//92+T/wvhBBCJMXy5csDLVq0CGTNmjXBWG/MmDEx84b9+eefgddffz1QpEiR4Gs4++yzA61btw6sX78+ycccOnQo0KhRo8CCBQsC0UA8nLPj4TUIIYQQfjF27NhAmzZtTljnOnbsWHB98Iknngjefvfdd9ttr776akTP2xIpMgFbtmwJ1KxZMziQLlWqVGDevHkZ8tx84GfPnh246667bDHf20ahQoUCL730UoJF/EjAInyXLl1sQd4DsYZ9rFChQoL7PvLII4H7778/sHr16gQCwd9//x2IFf755x8Ti0IX9fkb3XrrrYGCBQsmeB/eeOMNex9uv/32BM8xceLEwJo1a+y5IsHBgwftwOgdOD1RrW7duoFp06ZlmJjw448/BsqVKxfcRpUqVQIbNmzIkOcWIrOhxQIhhBDJQUEM4yxvzMWFMdh7770XOHLkSEy8cXv27An06tUrkDNnzuBryJ07txU+8buUoODGmx8xt4g08XDOjofXIIQQQvjB1q1bA2eeeaadJz/++OMEv+vXr5/dftFFFyU4h1aqVMlu/+yzz3zZJ4kUwhg5cmQgW7Zs9mHLkiWLdU9kxOCYhXu6CcqUKZNgwlG1atXA+PHjw77Azf5QncS2Q7n++uttvz755JPgbZs2bQo0a9Ys8PbbbwcyM3RilC1b1roxPI4fP26fE94z3qfQA0q4xZp///3XBJMaNWok+IyVLFkyMHz4cNvXU4XXNHDgQOv44bmp7HvhhRcy5LmFyExosUAIIURy0G2cL18+K2i65557AnPmzImZDlaKfzp27BicT3EpWrRo4M0337QO6tTwxx9/BG677bYMKxI7VeLhnB0Pr0EIIYTwi7feesucSkLXZnFnOffcc+38yXpuKIxtuJ0xWiTP26fxT2QNp4Sf4PFPGDHB1MOGDXMlSpQ4pecjW4IMAfxi169fb7eRgfDAAw+4Dh06WJZAOOBj+9dff1kADODrSuA3vrUE7Hm5AwMHDrSwbnI4yHoQKUOQ+V133WVh1oSFe+9jly5dLCMCnzpyHMINnzVCt9999133559/2m34GPfs2dPdf//95qV3KhBqiO/x1KlT7edHH33UvPmEEKmDLJ7zzz/f/f777/LXFkKITAxjdPLoyKEbO3asO+OMM4L5aMWKFXOXXHKJiwXWrVvn+vfvb6+D/AkoV66ce+qppyzHz3tdybF9+/aofa3xcM6Oh9cghBBCZBSHDh1yf//9t8uZM2ey9yEr65NPPnEVK1a0NVQvk5ixW7Zs2dyxY8ds/bRo0aIRO28rODvOIAyYoDYPwtsIU2ZicCoCBcHNTDQI3OaDzaIxH/4XXnjBwu2GDh0aNoFi0KBBFjzN/x7XXXedK1CggH3ZQoOrn3jiCTdkyBAJFKkkX758bt68efY3DQ3qXrx4sR30cufOnUDQuOeee9zw4cOd3/DZHTx4sO3Xyy+/7PLkyWPCAoHvpUqVsiB2BLT0guAxZcoUCwni+uOPP56h+y+EEEIIEe9Mnz7dxuR33323++KLL2zu4EG4dLQu2oeydOlS2/+SJUu69957zwSKqlWrWiEL42F+dzKBgrFx8eLFrbBLJM/OnTut2ChXrlxW9HbllVfaeyyEEEKI1MM6GUXb9evXt2LupPjuu+9MoECYYG3NEyjg4MGDJlB4a4KRRCJFHLFw4UJ31VVXuRo1alg3gUf16tUTLDinBRQ1ujGoHGJQvnr1apcjRw6rqGeRuFu3bikqdacC2+Y1sQ3vCwNnnXWW2717t/v++++Dt2XJksUq/5kQsX/i1Ag9YHmTzh9//NHVrl07eNvMmTPdmDFjTKAKhS4MRC0/QHnt3Lmz27x5sxswYIBNajZs2OCaNGlin332J73b5jUzUeL5QifRTz/9dILPmhBCCCGE+P9hvF6tWjV322232SJz9uzZrduVOUms8MMPP9g4lzkP4grzELrRFyxY4GbMmGGvLfH4ODlWrVpl1YzTpk3zfb9jlQMHDrhKlSrZvG7y5MluzZo1Voh0wQUXRHrXhBBCiJji4MGDtj5LMfnWrVtP+D1jknbt2tn1hx9+2MY6oVCADJyDKRqIJLJ7igMYRNNV0LVrV6v2oaOANutTsTfiOaksZ4LhVbScd9557rHHHrNLOIQAFptZLKbKBqGkTp06djsCDAvJvL6sWbP6vh8iaTgAUiGWN29eO9B5f7OLL77YJnFUnNHl4Cd0d7z++utm68WBGej2wY6MLqLUTiaTgw4kqucQ+XhOBLOTVc8JkRmR7YIQQmQ+Dh8+bHaZH374YbBoqE2bNlbgQddrLDB37lz33HPPBS0/GfM1atTIxnxU9qcHuntHjx7t7r333lMei8brORvbLN771BYCURkaWh3KayhYsKDsnoQQQgj3f50SrJ8WLlz4hPfjlVdeMbcQinxZx+P/UHDjwSWFAvQlS5ZEdOwhkSLG2bt3r+UtTJw40X4mT+Cdd95Jt4iAOEGFfI8ePdz8+fPttnPPPdc8+r0PtR+g3OH7unHjRjdp0qTg7c8884x5olE9T/u4iG74+11zzTV2nW4XT0SaPXu2TdjIRjnV/Iik4ECHUMfFs/sqX768TTpr1aqV7gki+Rdt27Y1GyigSpCJOHZjQojoWvAQQggRXihOoRqeLoSmTZvauKtQoUIxM5mnAIV5D1CEwmtAnLj00kvT9Fx79uxxI0eOtAy3aBQlovGcjZ0WnTZYVDBPoMiOMfdDDz2U5P179+5tf6/EaNwhhBAiMzJ8+HBXuXJld9lll6V4P4q+L7/8clvbYq24ZcuWLqrHHr7Edouw8N133wUKFChgCelZs2a19Pb//vsv3c+3atWqQNWqVe35uJx99tmBxx9/PPDbb78FMpp///03sHfv3uDP+/btC5x55pm23fXr12f49kT4OHbsWGDp0qUJbrvlllvsb/vaa6/5um0+R08//XTg3HPPDX6OK1WqFFiyZMkpPe+7774byJYtmz1fnjx5AlOnTs2wfRYiHvj999/t+8H/Qggh4pdJkyYF/vjjj+DPy5cvDyxcuDAQK8ydOzdQrVq14DjxrLPOCjz00EOBzZs3p3vce9lll9lz9e/fPxALRMM5m7krl27dugV+/PHHwNChQ23uyZg7ufeZ/fUuO3bsiPhrEEIIISLBm2++aefAokWLBg4ePJjife+55x67b4UKFWwdNtrHHsqkiGEIC0YVQznDL5X26vRU76Bo0SWBTQ7VRLRq0zmB7z82Ohndrk2QN/vM/nrQVtSvXz/39ddfx0wFlkgauifKli2boMqOvzddOHj7epBx0bdvX7dr164Meyv5HD3//PPmx/fkk0+anx6t5Ndee6158OF/mx6aNWtmtme0/dMhQuUXn1chhBBCiMwAXc9YAdx+++3uhRdeCN5OJhjjrFjIzaC7ls4PMibIQnjkkUesC3jYsGGuSJEi6R73YoXL47EaFamD+QGe2HyWrr76arOOpYvi7bffTvZ9pvIy9CKEEEJkRho2bOiKFi3qWrRokeL5kGwsLNqxsnzrrbfSnVUcTqJ/D0Wy4CuGHRKeYQgM6bF2+uijj1yJEiXsubDjufPOO82j7LXXXsuwVHcGoaHB17lz5zYLpzlz5tg2PZ544gl3xx13KGcizuBASLj2b7/9lkCAeuONN8xWjLb6jObCCy+0YG0mnvgB8xnkoIxYMmLEiHSFa19xxRUmBuK9zHfnZG11QgghhBCxDmMmLAUYB40ZM8ZskWIpn2vlypVWJEOWHXl72I6yGM4YkQXx9BZHkQPowdhwxYoV9h6J1ME8E8unUHj/tm/frrdQCCGESGHcQSH58uXLbT04uUJ1cpy8sOz27dsnKCRODL+/4YYbgjECkUQiRQwxffp0d//99wcX9qkSpxI9e/bs6Rqw33LLLfZ8BFHjvcrAfdy4cUkGraQXVDsWc8mb8CArYOzYsTY5iKVJjjg1Ev+ta9as6W688cZg6DbwWczI7gr8bek4IgCbEG8yXFq1auUqVqyYrkAgvnNDhgyxx5L/4rF///4M2V8hhBBCiGiBoiLmC4zV8BBmDE+4ImO1aGfTpk2uSZMmVsj11VdfWdEMnbEUY9E5kV5xgkIVXj85ZaFBzumZj2Vm6GjhbxHKhg0b1FEvhBBCJGLt2rW2nuXlaKVm3IErDmuu5KmSGZYSy5Yts4Lc0OLySCGRIkYUs+7du7vq1atb5wMD6/TCBKNTp07WVktgXLZs2azNFtECC5uMqLYK7Y7gZyY4VF4xqPdggZdAbpF5wTLg+++/t0mKx7vvvmvdFfwuI2GCvXTpUvfyyy+78847zw7AWBNQ+bZv3740Px/t6R4IKlR+Ee5+/PjxDN1vIYQQQohIMGHCBFvgZ6zGmH3QoEE2fmIOEe22VIzvCImkUIX5B+PK1atX2zgTe4RTgaDnl156yeZR48ePz7D9zmxgkUXgOvNQBCX+VsxxvapPIYQQQvwfr776qgn5Xbt2TbCumhxY93sFJayBEVidEl6RcEa56ZwKEimiHCq0ESfw2efDiHdq8+bN0/w8PPaDDz4wayesnBASEApQ5LDbwefzVGFwyYRg9OjRwduwjxo5cqT5wKYnL0NkLlCH6a6g28GDz+qoUaPc0aNHT+m58R5GSKBqi8o6vhPYUPGdwMYgPRZQ3iSenAom75UrVzZbKyGEEEKIWIasCbpgKfRYtWqVFTlFcwc0GXsUuhQvXtzGd4wfyc8gA425CXOUjKBgwYLu888/t87axo0bZ8hzZkYoFkLk+eSTT1zp0qVdnz59bBGGMboQQggh/n9Yw+3YsaObPHnySddVWeci/5euiCpVqpj9+cnu74kU+fPnd5HmNNKzI70TImmoKqldu7YpZlR/v/POO+mqMKdyiIoiMiAA+yXyAG677bYMfet79eplbUTY+PDlESK9cFjyDr5YhjVq1Mi6FZgkZ1TYDxVwVGvxnN5kCW/i0C6J1ELgOxYCBHNjl4aXX2KfXSHiGRaHqNCgW09hlkIIEZuQq4A44bFmzRpb3I/moEW6WBElmINg6wn4KpNNdtNNN2XINrZs2eL+/vvvuMkji4dzdjy8BiGEECK59bDp06ena80W9x1s/SlEZ1x3srELhfG5cuWy6wgbGVHAfirn7egdcWZy5s2bZwNsBIpLLrnEzZ07N80CBZXhBGKz6IpAgbVTv3797IN6qgIFi7FUvCCAeDz66KO2PaydhDgVQtVhqvbwDebzHzpJPnTo0Clt4+abb7bqOjogOEjisUyoIl1LoaFEqaFOnTrWsk713tatW12FChXctGnTTmn/hBBCCCHCAd2qdGtj7xRaaETBRbQKFEzgv/jiC+vCZQ6CQMFEnC4H5lEZJVAQTMmcrFatWm7Pnj0Z8pxCCCGEEMmNb5o2bWqOOmm1+sfKnM5XoLs0NcUVXhdFzpw5fRMo0kJ0jjqFWdMcOXLEXXPNNeb/euWVV6bpXdm2bZsFuj3++ONWYURHxrp169xTTz2VIR+8Dh06uJ49e5ro4YH6hr+oguNERoItGYE/Xbp0Cd5Ghgp+edg3nUozGN8zDuJYQDVs2DCY/8LElk6mtMAJAKGCx6ISM5lVR5EQQgghohm6Ja677jqbCFMkwhgr2lmyZInZUGEry3gtT548Zr9Ed2yDBg0y1GKW8SaZHHS1K3tMCCGEEH5y2mmnWfErxbpptdl84oknrGgDG8Unn3wyVY+JJqsnkEgRpWA9QyX27NmzLY09tbBg+/7771ur9rfffmuDaiYd2NHgoXoqbc605XiwOMw26tatm+7nFCItYgKdQB6ffvqpO3z4sNu5c2eGTET5jmErRW4LXRWIDVQTYh+QFhEEoY7vLe11CIsZVcUnhBBCCJHRkPnFnIPF/bx587qpU6cmKAqJNphIY69JERe2nWeffbZ75plnTKjA2pbxYkaDAILlAgHiBQoUyPDnF0IIIYQIpWfPnub60bJly1S/MTNnznTvvvuurY+xBpwlS5ZUPY5C3SJFitglGlAmRZTw119/WXfCww8/bAPv9IBiRqv2uHHj7GcsZ1h0LVas2Cl/QV544QXzen366aeTzA0QIhIefRdffLFlVXgWZKjFtLVhD5Vetm/fbuH0s2bNsp8JXSQPhkq6tOwfol6OHDmCP1N9Fw3tc0L4gbyhhRAituYd7du3t/ENYAPLnAGhIhrBI5lQ5b59+1qRClAQwvzkVIqwkpus04lOIRZd6fFIPJyz4+E1CCGEEIBN5ciRI61INq3dE55tJ0XkFG2Qu0oGcbShTIoYAt8w/MaGDx9ubcsMxNPKpEmTrKUHgeLMM880X30qjE5VoAAC8/79998E+RMggUJECj57TKg9gQLefPNNN2LECJtUnooFFBkwCCDkqyAq8N2iKwKP47TsnydQwIsvvmhdFb/++mu690sIIYQQIiNgbINAQd4EC/9TpkyJSoGC8dyXX35puRPdunUzgYJ8iIULF5qoktECBbz++ut2ufvuu93Bgwcz/PmFEEIIITwQ2ymMZS3rtddeS9cbw1gOgYKOTwo4Yhl1UkQYvPbJi+B/qkAInUawSC1//vmn+Y6huHkBdx9++KG7+uqr07U/iBG0CBUtWtRVqVIlGMC9bNkyC+AWIlpZunSpVb4Rnli/fv3g5JbPNMJdekCYe+CBB+y5gQAjJq5UbqUWOjzIq6DTCQFk4sSJJigKEU+oolEIIWILFv0Z66dl3hFOmBvRZf7NN98EvZIp+rjvvvt8DfOmWKxevXrWnU6+RTwSD+fseHgNQgghhGdnzuWjjz4yy/60gC0U2WKse1G0TuF7LJ+3JVJEkDlz5tggeP/+/WZPM2HChDQtXuKbT6vzTz/9ZD8TWo1qhj9reiEIG0snKsdZmE1Pq5EQkcLroPC6fKi+69q1q3v55ZdNDEwP2DQ9++yzrn///ibYITSQ+1K5cuVUPweqNuq4J0aOHTvWOkGEiBe0WCCEENGfP1GnTh2XO3duF80cOXLE5jMvvfSSjcHwVKYIhflJ9uzZfdnmL7/8ksDWM94tbePhnB0Pr0EIIUTm5O+//7bzV+iYLD1jj+PHj1tcwMqVK12jRo1M6EgrFGSQ+YWtJt2qfiG7pyhnxowZVrmEQIHqtWDBglQLFHx4hwwZ4m6++WYTKGh15vmwp0mPQBFqjUPVEF0UDz74oC3IChFLcFAPPbAPHDjQrV+/3s2fPz/dz8nkGPs0AhP5bpBZUbVqVRM+UmsrVbx4cdsHvrMcnO+44w4TJYUQQggh/ISMBToSWrRo4Ro3bmyVdtHKF198YVaejLuYeNeoUcNCvREt/BIoJk+ebB2vhEx6xLNAIYQQQojI4a0HUbSKM86pjD2ef/55EyguvPBCN3jw4HTtD50YrEdHC+nzQBGnDJYxhJvUqlXLqqqzZcuW6hZkglAIVQH8UhlUh/rfpxb88QkZRozA/wxy5szpNmzYoA6KVMJ7t2fPHqvA4v9Dhw7ZhYNN6P9cCCnk/t6FBW7a1bnQsUL+AROw8847zy7ede9/DjxUefG/OlxSB0IAijBdRh4///yzvfdp9TGuWLGiW758uQVNvvfee2aztnjxYvN0Tk1LXq5cudzUqVNdkyZNLN8CxZrvPhkaQgghhBB+TIQRJliIZ/JLgZSfVknphQIQhJSvvvrKfqZrlfEb9p1+CwaLFi2y8Tpjs1atWkXl+yOEEEKI+IBCdVxryNlasWKFrTOlh2XLlgXzJ8hnZZ0wrbAuRheFZ6sZDcjuKYKtzAMGDDA/WBanUwOLqyxsMphmAI39DAul6R28o5bRzsPj6cgoUqRIup4nnqEFC4sehBsse/gCc0GU4PLbb79ZhVpS1feJBQe6XBAXPGECPMGCqjZEjMTCBlVkieE5CDdEsPAuHFCo1qcS7NJLL3UXXHBBWN6fWIQ2uK+//tqEuXvvvTfNj/c6mTp27Gh/+6uuusqNHz/euixS29qHTdtnn31mYiWTciFiHdkuCCFEdLFt2zar1KMT4ZxzzjGf42jzKWYcReUfRVNM1skQY27TvXv3NHsypxfGdRR/kUHG+D0zEA/n7Hh4DUIIITInrMUy5ilfvny6Hv/333+7a6+91opo77rrLit+TQ/kpnriBuuRfo6DlEkRhaxbt86VKFEiXaLCd999Z10Tu3fvtgXo0aNHp8vTng9eqCjSp08fV61atXSrd/EAkxMEINqc+BshSHBBnECE8MiTJ48rUKBAUBRILBLwe0+UyKgvNyIFogVfaK9jg0uoUMKF/Q/dVw40iBWIFlwuv/xyCz6nMi0zt7DTiYR1wNy5c60LomzZsul+LuyfGjZsGPxO4v+X2vBJJuUEQaY3J0OIaEOLBUIIET0sWbLExhiMDRmn0qGAZ3G07eNDDz1k1YRQqVIlN3ToUFeqVClft0sn+1tvveU6deqUaTuT4+GcHQ+vQQghROZx+GA8ll5RIjHPPfec69Wrl7l1rF692oqY0wNWURTdko3BeqOfSKSIMpgcsKDZpUsXEwZSu1DMAjqtO9jVpKdqO3Sxm84NqsdZjM+slfa8nzt27LCJUejF+0IiMCAkeYv73oUF/2gfANN5QbeHJ7J4FzIZGMADBzEOjKEXQtszk3DBZ4C/eehkne4kwuLTmumCOIRyvXDhQuuOod2O73ha388DBw64efPmSbQQMYsWC4QQIjqgO5f5wpo1a1yZMmVsYnzxxRe7aAGRoHfv3pYbRjcxlrWEZJOZ4bfVEmNAcsW+/fZb69hgu5mReDhnx8NrEEIIEf98+eWX5oiDkECh7KnaKi1btsy6KFgf/uSTT8zWM71QOFuzZk0bN9KVEQ3nbWVShAFEhXvuucc+RFTnMyBPTeUOg/g2bdqY/z1gTTN8+PB0tT+zzQ8//NBt3brVvf/++2ZVk1kmanzZmIxwIbyYlibgIMEifevWre1/Og2YxMXqgj0Cy9VXX22XxBMyui0QpzxRhs9Uv379gjkk119/vbvllltclSpV7PG0nsUr/H1DBQq6UuhK4vMwbdo06zZJLXxeZs+eHcyJeeqpp+z95XpqAx4Rl+jA4O/D3wUrKCGEEEKI9MAcg7Z/hABysxgfRguMxemeoKgGmFiTPZHeCsD0jAEZ91M5WKdOnbBsUwghhBCZF9bZSpYsaVb76cmNSOwMwnoRa8tYeGJlfipEWx4FKJPCZ8aMGWPiAovl/I9AkJoFYALkUNtY8KSqiEofuinSsoDOBxhrJ+8xWNzgT8t+xOpCfFpFCWyyUOqokKeNnIvXQcAXMV7fh9QGp3uiBZ+NOXPmWFYKk9mbbrrJDqZc4l20oIOBLicEB0Ss9LT+IwRhUfDoo4+aP2Dp0qVNnCQnJDUC4iOPPGILCXweR40a5Zo1a5bOVyNEZFBFoxBCRBYKoej8jdZzBJ2mjJWAMTj5XnXr1g3b/CB0fHfw4EHr4MisxMM5Ox5egxBCiPgk8bjDO1ed6vrjY489FizuoODiVEUPimSxjsISHStMP5HdUxSARz0qFx9QwthYfEzNAiiLxQgUWBBhz0P+BLkRaWHq1Km28Im4wQJsPINVzuTJky0MecqUKTbx8EQJb6GddqjUBpRnVlhcp/3ME3g80YKDKZ0GTCRvv/1286uLN/jM7N+/P2ijhnCAwMVnJy0g9vB9QwBi8ks4dmqyY9ge3Rhvv/22nbjomGrZsmW6X48Q4UaLBUIIERkolOjWrZt75ZVXbDyc1jmD38yYMcOsnCjAAuYnL774oi0wh4MPPvjAvfHGG2769OlR1VUSSeLhnB0Pr0EIIUT8wVpQvXr1zGWDboeMYvr06cG1Jaw8Yy3fNNXn7YDwhQ8//DBw+umnB3iLmzdvHvjnn39S9bgvv/wycPbZZ9vjypYtG9iyZUu6tt+zZ097juuvvz7w33//BeKNjRs3Bl555ZXALbfcEjjjjDPstZYvXz7Qq1evwPfffx84duxYpHcx5jl+/Hhg3rx5gT59+tjniPeYz/SNN94YGDBgQGDt2rVx+dmCoUOH2ut94IEH0vwad+7cGbjhhhvs8WeddVbgk08+SdXj2E67du3scVzYByFihd9//90+t/wvhBAiPPz777+Btm3bBscOjI2jhUOHDgXatGkT3LfChQsHZs6cGdZ94JyUN29e2/5LL70U1m1HM/Fwzo6H1yCEECL+6NGjh52fChYsmGHrkvv27QsUKFDAnrd169aBeD5vx6+HS4ShKpvKJqqhhw0blqogODot8Gml8+KOO+6wDops2bKleptsz2sfevrpp91ZZ53lOnXqFDeWRgQAfvTRR2ajs3btWuuMoFqMYHHerwIFCkR6F+MKPj8VKlSwS/fu3U0RnjhxooXA9+rVy9r2sRVAHW7SpImF7cQLu3fvtq4nrK7S+v3BwoBOFCyb+A7fd9991hXVoUOHFB/HdgYPHmzWWq+99ppVGhJwf/fdd5/iqxFCCCFEvMF8oVWrVu7dd9+1MQRWSswjogG6UZs3b+62bNliP5OxN2DAgFTndWUUVOoRWEm3defOncO6bSGEEEJkPnr27On27dtn1kwZ5ebSrl07t3PnTlt/GzhwoItnlEnhIwsXLrSA3pMJFIgL2DJ17drVfmZQj91LanMAeDxtzAsWLLCW5ngRJbwgFxLrESeWLl1qFjr169e39qlbb7017JMd8X9gAzVz5kyb+CEacRAmhwF7MzJP0hI+Ha0ghF1++eXB7xNtadgEpEZw9CycCKjnuwk9evRwzz777Em/n3yfETR4bydNmuSuvPLKDHg1QviLbBeEECK8Fp1YyVIMQVEFQgVjsEjz119/2XiHCTTjGcaDI0eODKsFFTawzB9KlSoVtm3GGvFwzo6H1yCEECI+wCodu3k/1mI//vhjKwpmvEee6nXXXZdhz01BMkUvH374obvsssucnyiTIgIQSs0giern1MJCJhXpL7/8sv3M9f79+6fpw71+/XpbyGTCEoveZEl9eMeNG2dfFBbCqeivU6eOfTHJRFC2RHTB5+6bb76xvxcL6wS2V65c2f5e5DOk5fsQrXDgrlq1qjvnnHMsXIigotTABL1v376mpgPdEXT+nCybhu3t3bs31dsRItJosUAIIcInBDRq1MjGXIyRKea56667Iv72E+CIULJixQr7mRyKQYMGhXUBmdyL6tWr2zmJ4q2CBQuGbduxRDycs+PhNQghhIh9WOvp06ePreN6hecZxebNm13ZsmXdoUOHrODVW1fKCFiLJsuX9TzGT36PmVJ73k5dSbA4KSwoEmJy0003uR07dqTqHePDQNeEJ1DQTUGQXFrVtxIlSthzYBHDIn4swmIuk4kHH3zQXXTRRfY/C7V0lPz2229u7NixZiskgSL6YIKM3RZB8fytqObLkiWLa926tf0tmbCiLPM3jlWWLVvmFi1aZMHYHFxTC99lKgqHDBkStGJgYQEhJyUQMUIFCt4/qgKFEEIIkblhjHDuuefamPiLL76IuEDBJJfQbrrHESguvPBC268RI0aEffGYyS/jUrrR0zJeE0IIIYRID4x74PDhwxn6Bh4/ftzWjhAobrzxRrP0z+g1bNakgXW7aEF2TxlkfUMb8w8//OAKFSrk5s+f7/Lly3fSx+A1j50Lkw1aoZs2bZqq7bF4z2QAr/tYz2Hgi0wF/ttvv20Lwbx/+OnyXqj6Kbb55Zdf7G9LJsumTZtcyZIlzZOYv20sVjytXr3avJURZNIDQhvdJZxsqlSpYhP41LwPdEexAHHFFVeYx3Msvnci/lFFoxBChA/mAoxLIp0HRl4ZGVxTp061nxkjvfPOOxHtBKVYjLkVGWEifs/Z8fAahBBCxAcUXF9//fUZ+pxPPPGEFaPjTLJ8+fIMXx/FUp+CYnIuNmzY4PxGnRRhnCSw8IhAwYdn8uTJJxUoCNWm6wKBAvsY2rVTK1AAwW/YQrFdqpdiERateR2ILG3btjXPWt6Pn376yT3zzDMSKOIAvgdPPvmk2ZFNmzbNRAqC3Pmbt2/f3jIfYgm8jUMFCva/Ro0a1hqXGrC+4vhAjsqsWbPcLbfcYp0nqdkuWSycmHgOT+0WQgghROaAcz9dmcw7gEX4SAsUEydOtH1AoGA+Q8HRV199FVaBgi5dArmxifVgEi+BQgghhBB+sHHjRteyZUsrPvXIaIFi4sSJQccdnEr8KOAeNWqU/R8NmWYJCIh0899//wXatWuHh00ga9asge+///6kj/n5558DpUqVssfkyJEjMGfOnDRvd8OGDYG8efMGRo0aZfsQSyxYsCBQv379wGmnnRbImTNnoGvXroGtW7dGerdEmODz371790CePHnsO3D77ben6nsTjdx44432Gho2bJimxy1evDhw4YUX2mOLFy8e2Lx580kfs2jRokC2bNnsMc2aNYu5772If37//Xf7fPK/EEKIjOP48eM21uAY+9BDD0X8rT169Gjg0Ucftf3hUqZMmcCaNWsisi+ffvqp7cM555wT2LJlS0T2IRaJh3N2PLwGIYQQsTcmK1y4sJ1/nnzySd/WzHLnzm3bYLzlB6zBsibLNsI1fkrteVuZFKfAwIEDLQQXr3lsbfAJO5n9DdXTtGdT4fP9999bAnxq2LlzZ/A67TjYzpBn4Ud6vB9VTtOnTzdLLBRGXj8WQD///LOFy2DxJDIHdFEQKkT3AQHUhM2T48KFTppYyq1g/+msGDx4cJoeV758ecu2KFy4sHUUETLO+5AS+DyPGTPGKifZbq9evU5x74UQQggR7dA58cADD5hlJHlf5LNFunqwQoUK7vXXX7efO3bsaN3kWFJGAuww69at6/r162fjKiGEEEIIvyD3is7WihUruscff9yXcd/9999veRFXX321dYv6wfvvv29rb9iQR9v4SSJFOvnzzz9NoADyIbBhSYk9e/a4W2+91RYl+RCwSFm6dOlUfUixzGHwv3LlyuDttFVHO1hRjR8/3oQJ7K0OHDjgPvvsM7PJadWqVUy8BuEPhD1icUbAInZn//zzj6tdu7YdiAng9uwMopmiRYu6r7/+OkHIEMJjauyYEBo5Blx++eXmnVy1atUEQmRS3H777XZCBIQeQuWFEEIIEZ8weXzkkUfc6NGjbVL8+eefu1q1akVsfxiflStXzjLkcufObVYEr776qjv77LPDuh/79u0LFrUQkE3GF2KJEEIIIURGw5iDsYdHzZo13Zw5c3yxt+zdu7f79ttvzSKc8R/rZn5AgX2DBg0sDzjakEiRTvjQzJs3zw0aNMh89lOCxfnq1au7NWvWWCX5zJkzU61WsdC/ZMkSS3THxz4WYJ+ZyCDC8MHPli2b++abb+x1EBZONbgQcPrpp1sFHN8lPt8c6O+9915bvKdjIBbECg/2H7EBMeHIkSMnvT/dVHQYIXZs3rzZRMzdu3en+BhOIj169LDrs2fPjqnOEyGEEEKkDs7vFCmNGDHCxkqffPJJglyscHL06FHXunVrG59RpHXzzTebUMF4J9wsXbrUcjBefPHF4G2x0FUuhBBCiNiDAlQKrOkiDRUq/Bh7UADbt29fu47zDIWtfkEHBcUvjO2iDYkUaSR0UZBFxpMJFIgLVD0xmM+TJ4+bMWOGK1KkSKq3R+UULd50JDz66KMu2t8bxAisafiws/jK4jNKICKNJhEiOfhsYIXG52fx4sU2AcXOrEyZMhbCGAuL8QgTKN18z1PbJYRoyTHh4osvduvWrbPvyf79+1N8zLPPPmsiIC16+k4JIYQQ8Qf2RV5g4jvvvGO2RpGADnAm5kOHDrUxR/fu3W3cwvglEmAttWvXLvfRRx+5Y8eORWQfhBBCCJE5oOCccc9PP/1kRaJ+wfNj7wkdOnSISvEgXEikSKOKhuDw8ccfp3rRsk6dOm7BggUuZ86cbtq0aa5EiRInfdz8+fNtQuLBY+vXr++imYULF1rmBK1PdE5gezNhwgSb2AiR1swGVF0+U3RW1KtXzzIraKmLZrCrYp+pekyLeEBXFSc+Xuvy5cvtGPPHH38ke3+eu1GjRlZZCQg42GUJIYQQIj4oVaqUFT7Qsf3ggw9GZB+w42RMxtjkwgsvtEIS7CaxWIoUbdq0McGEeUa4baaEEEIIkbmgABV7SwpncYnxA9aNKUb5/fffbf2U7GO/oCO2Z8+eljEWrUikSANPP/20DdAZIJMxkRJ//fWXfYhR2/73v//Z46gOPxnkNdB6gwctHQjRzvr16y2Pg9wJrGr48jJxOFmIuBAn49prrzU7JL47HLgRKhD9QrNZoo2SJUsmmDRzzEhNdsRll11mrzVXrlwmdGDpkBrLKE4yTZo0ce3btz/lfRdCCCFEdECBBnOCk3Vs+wGFD0899ZQVSFE0UalSJesIJ18u3GD7+dZbb7njx48Hb3v44Yddjhw5wr4vQgghhIh/cPZgTTO0cISCVD+g4LRt27ZWEIIgMmbMGJclSxbnFxQDU3DC64lWtxKJFKkEuyVP0Ro1apRVFKXUcUGlM4urdBVMmjTJLJBSA178LDqyGJvax0SCgwcPmv0UX9hFixa5d999175Y7LcsaERGwWcJCyROFPgxM2HHAooJ6t69e6P6jSZ7BrsG9pXJ/ckgw2Xq1Knu/PPPt5MiiwMnszLgfcH6iarCDz74IAP3XgghhBDhhMKmbdu2BX9Oiz1sRkHBEeMuL/MBkYTMLSxuI0HLli1du3btrHhLCCGEEMJvW8nKlStbsciGDRt8f7PJniCLFZcM1nUK+GynyVo2NGvWLGrXbSVSpNIfDH98ePzxx1Ns86Hip2nTptYiTZs2nQVUIKUEjyFsGvigvP3226ZwEc4dbbCffImwreID3r9/f+um4EOuQGzhFxy0GzdubCLF66+/bgozn0G+K9Eark1H1HPPPWcZEmXLlk3VY8qVK+cmT57szj33XLOHu+eee0z0TA5yPHr16mXXCbVctWpVhu2/EEIIIcLDjz/+aF2UFStWtHlHJKDoiHEIogTjkNGjR5vdFPl4kYKxH/tSo0aNiO2DEEIIITIHFMTigINTzEUXXeTrtrAzJ38CKG5l/chPNm/ebAUxrDmzZh2tnBaI1h6PKOHo0aM2YaASGrGBgXtyg3UW8B966CE3cuRIuw/dFydrC2IBkoAU/OhfffXVqFWzgPeAaibCsAlyobMkUpVVInNDpR9WBAhl+CW/+eabdiKJdrCB45B7Mh9ljjO33367dVIgVJCDk5wIiEjDfenCQLhhkeG8887z6RUIkTRYgtAFhJcmFodCCCFSP2lkrvHbb7+5qlWrWgc2hU7hhI5oih0YpzCWYA5zxRVXuEjAOCl0PkTnbO7cuSOyL/FKPJyz4+E1CCGEiDyJxx2EZbOe4mcG1/bt2805hxgB7PM/++wz39eCe/bsaVZP2HeydhSt5211UpwELI1YnMfeiYqilKqJevfubQIFVd9Y06TGtwwli+cdMmSIW716tYtG+JLiec9iMDZPLKCyaCqBQkQK/Pr4riGYsUh/ww03uFatWp00KyaSeDZwVEoePnw4xfuioo8bN86ON5ywnnjiiWTvi3jx4Ycfuosvvti6mngfpD0LIYQQ0Q8L8DVr1jSBguo9xIFwChSMTZjrEM6NQFG3bl3LxoqUQIFVJkUn+/btC94mgUIIIYQQfkDGJ9ZOrC15XHDBBb4KFKwFsU3WrnDcoFDEb4HiwIEDbvDgwXad9aJoRiJFCtAZwcCYRUBEh5T8wVi0R5UCgnJJZ08Nt956q1nWfPHFF+ZJH22MHTvWcjKweHrppZdMsMFiRohooEKFCpbLQCcFFmlU/73//vtRuUi/bt06N2PGDGvrW7FixUnvX6tWLRMfgC4r/AqTAxEVMYOTKf+/8cYbGbrvQgghhMhYjhw5YoULGzdudIUKFbIOinBWhDM5pprOm7RSbIVIEqmqdAQTsifoCPXmVEIIIYQQfsE659dff20ZXKEFEn7BOhWFIV4hPDEB2Fr6zYABA6zg/Morr0z1WnWkkEiR0ptz+unmDcbiYrVq1VIMV2nRooVd79KlS/B6ctDeElpJzYAcu5ZogokLVd9333232VxRod25c+eI+tIKkRSIiG3btrXPKAv75KOgTP/yyy9R9YZxQpg+fbqJKYgrqQGrJ2+ijtUaXUzJwXNiwYZ1HNsSQgghRPQWQuEHvGDBApczZ043ZcqUsHYor1y50l177bXW0Y2lAZNkMq6Y+0QK5hgUbWGdS+adEEIIIYSfsI6Eawz2R7ly5fL9zX7++ectX5UxD84Zl1xyiQsHF1xwgY332H60ZwkrkyKZlp8sWbLYJTVeYtddd521adMizQctpT+619bNhATFLtyes6mBRdQ2bdqYjQ4V6ogV0ZyVIUQoTHDxVT5+/LiFbDdp0iRqP78cN1ioyJcvX4pq+/3332/dWpxcWNC49NJLk73v/v37w3KCFSIUeUMLIUTq4VxN/sSaNWusgOHmm28O29v31Vdf2diI+U7x4sXt50jZO2ExtWHDBhVXhJl4OGfHw2sQQggRfn788UezWQp3YQZrxV4XAy4ZFGWEe+x5wQUXRGxtTJkUpwAJ60wWECBSgsE9woTnI/vRRx+dVJXasmWLdWbQ3rNt2zYXTSCgNG7c2IJbbrzxRps48XO0LvAKkRT169e3fBfEQELp+fnXX3+NujeLk0T16tVPeqzh+zdixAjzaMZLEGsI/k/uvqECBd/paLS+EkIIITIzFCt9//33ZvEULoGC8cCLL75o4yLmMIgkFD5ESqBgLIPdFK+fuZEQQgghhJ+wrkKR+VNPPRXWN5rxFgUiQOdGuAUKb+wZC2u7sntKxOTJky24hNC4HTt2JPvGUf3Mh2z58uVmr0IVUvbs2U/6htNaPWHCBGuvvuyyy1y0wP6XKlXKTZs2zcQWuil4XULEIizU03mAWo0dW8mSJS2gPppASebCQgFdHylx9tlnW4dIwYIFreIQGza8m0/mr1isWDFrJxRCCCFE5An1O6btnmy6cHUsNG/e3CbliBXYG2AxxYQ1UjC2+eeff2xOFY3FJEIIIYSILxh74BjDuIPxRzigUJ3i9mPHjpnN/6BBg1y46NOnj63xxlLhqkSKEGgX9RStjh07WhZDcnTr1s0W9rFrYvEwJS+xXbt2ud27dwd/Jng6UlVLSU1aCInBw59KbSrQ77vvvphQ2IQ4GXfeead9pqnUoyvo4YcftqDKaKBw4cJWRUmYNnYLJ+Oiiy4yiziClXgMx6iUTjabN282EYQsCzJmhBBCCBE56BbArpG8hXBOFhFGGAe9//771vGNlSuXSOfMnXPOOZaFMW/ePJsbCSGEEEL4CYXm3377rRV0hsPuibDq2rVr23owFlOffvqpO/PMM104WL58ueWN4d5BoWusIJEihCeeeMLt3LnTqo8JFEkOOi1IR4eRI0e6G2644aSWLtgnRZu906ZNm1zFihXdkCFDzLufiQILoULEE7lz57aTwTvvvOM+/PBDE+OwMosGLr74Yuvy8ODkgX1ccmArR4cIIiLfWxYZkuOZZ54xj2csn2gpFEIIIYSLmLVRnTp17H8KDk7WDZlRbNy40VWoUMGKIvDtp2OcLopIQVfrqFGjgj9feOGF1skthBBCCJHRUKxJXunhw4eDt1WuXDksRdm4ZZBBsXbtWlegQAFz1KGLNlw888wzVhRDxnCJEiVcrCCR4v9BmjuLmJ7wkC1btiTfMAb5VGNDjx49rOsgJZiMYOfClyJc7USpnSSUK1fOKq3nz59vORzqnhDxCp/tli1bukWLFtn3ENs1xMZoantbunSpdW+RpUFXV3LQKoinNNBN8c033yR5vyxZsthCAFWTn332mVlfCSGEECK8YGnEBJHioEKFCrnx48fbOdpvmLNQSIVQwXbpWKCjIlJ89913wa7WJUuWRGw/hBBCCBH/sNZDgcjQoUNdmzZtwr7tRx55xM2cOdNiARAoECrCxTfffOMmTpxoa0FYPsUSEimcc4cOHQraPHmh2UlBRkWDBg2s+olw6d69e5/0DaYrY+7cueYDVqRIERdpjh49al8WJgm0HTFJQKwQIjNAtR5Cxb333usefPBB17RpU/v+RwOo6pxEuJyswpKuL/YfweWee+6xBYikKF++vOvatatd58Qc6oUthBBCCP/p0qWLzQMogKJrOU+ePL5v85NPPrG8Czq6CYgksDHSHQs33XSTFXfR3YnlgRBCCCGEn4Wqr7zyilntY9cfTrp3725FsVhKUSAeznHPH3/8EVzfZsyF1WgscVogmkqJIwRBJogOdD2sXLnSPN+TqoKqWrWqVSWxqM//yXVbEMSCtVPRokVdtL3O+vXrm6XM4MGDrbJc3RMis0JAPK1/KNosGkRDCxytgFhApaYNkPbBatWquTlz5pgYQYVkUpWZ5M5wzMLiisUBXrcQfgyGzj//fOsCwlJECCHE/1nEUlQAY8eOtbZ/P2FaN3DgQBNGgO2RRZHcnMVvKARhXuX5PjNHohhDRJZ4OGfHw2sQQgjhz/kh9LwQ7rEHa62PPvqoXR8+fLhr1aqVCydt27Y1a3CK5JNb347m87Y6KZyzP94PP/zgpk+fnuwfsG/fviZMsHiIdUpyg30mB6hVLBrSQREtEA6DxQ3WUwsXLrQvigQKkdlDk+gkYuJMTsWUKVMivUum8ocKFIQdJWcThyBBpWTOnDntdSRXHZA1a1ZbJCEgM2/evHaSFkIIIYT/xUF0L0PPnj19Fyg4vzMp9gSKxx57LMU5i99s377dsu+eeuqp4G0SKIQQQgjhB6zFYm1E5yhZw5EYezDuwpIb2JdwCxSrV682gcITSKJFoEgLEin+HyzgJdf5MHv27KCP19tvv20WTinZKaFWoQ6FfjEiCfuMBy2huwgUhOkKIZy77LLLLJOFYHvsz2gHjJbmsjFjxpiw2Llz52T3ia4LL4CSfZ80aVKS9+N5Nm/ebPfRAoEQQggRniIoqumwZezVq5ev22L+QVf4G2+8EbQ34OJ1MEQCCsBWrVrlPvzwQ7d3796I7YcQQggh4h9ygD/99FP3888/u88//zzs2yd/4oEHHrC1m3bt2llwdbgpVaqUvXYKWHHdiEUytd0TFUaEmOAXRrVxUuDhzuI+gkPz5s2DC4IpceTIETdr1ixb9Iwk+Np36tTJvfXWW5a18fLLL5sYI4Q4sfqQkwiB1M2aNTNh7+yzz47o24Qt0/3332+LG1w/88wzk70vlZMshOTOndu6L/Lnz5/ic3PYVyeVyEhkuyCEEJE555I7QTAkto/MZz744AN39913R8Wfgyq+GjVquEsuuSTSuyLi7JwdD69BCCFExrJ161YTC1q0aBHWt3bp0qWucuXKZnNJ0QhiiYpDEyK7p5Pw3XffuVdffdVsnAiTS25SgY8sAgV+9SwCJseuXbuC12mrjrRAQcVS9erVbXIwbNgw9/rrr0ugiDAErTNJTepyyy23RHr3MjWcQPr372/VfpxQqlSp4n755ZeI21Fxgv34449TFChgwIABJqbyvUe9T8nSaf369dY5klzXhRBCCCHSz9ChQ0048PBToKBakEBqBIocOXJYQHckBQqKKqhk9CC4UQKFEEIIIfyy1mTs41G4cOGwCxTkirL2ikDBuh7FIuEWKNasWeN2797t4oFMaffEAh6dBd7g+eabb07yfrRMf/311+b9zsIlXRdJQXBt8eLF3XvvveeigY0bN5rHPi3WM2bMCCa7i8jyxBNP2N+iQoUKtgDO5fHHH7eWrHHjxunPEwUgDJA9g4/yddddZ9+hSIJYEnqC27NnT5L3o+tj9OjRJpAibNARkhwjRoywxQy6LwjVFkIIIUTGQEh169atzWYxdLHeD9atW2eZD0xM6aBk/IJgESmwtKID9N5771X+lRBCCCF8ZdOmTe6GG25w9evXt4zOSIkkt956qxWLXnPNNe7LL78MuyPH77//7urVq+dKliwZVbnI6SVTihQjR450K1ascBdccIHr169fkvdZtmyZLSrDwIEDXdmyZZN9PsJr8YKdOHFixP3s+XJWqlTJuiYWLVoU0cmKSAgiF4vIiF4XXXSRXbiNKnnCj0V0wMIC351cuXLZ9wcRMtIQno0dFR1dnIyTgt+9+eabwYBOhIik6NGjh332fvrpJxNihRBCCJExrf5eUDZdjX6GFdIFTlfkjh077PzPOb906dIukmDrdM4559g8JJJZGEIIIYSIfwoVKmTrtOSMsr4RbnDcIfcBVx0Kj6dMmRJ2+8HA/3P/YY2ItcUrrrjCxTqnZ0YfLDIovIU8FiIT8+eff7pGjRq548ePu7p167r27dun+Jws9NHaTV5FJH3eaXOivYgAcBZWaXUSQqQdKhJnz55tJz1C57/66quI58vQIXHgwAHr7koO8jTuu+8+q2CkkpH7J+a8885zzz//vF3v06dPst0ZIrZBsOIcQCUHnXULFy5M8f7YH7LQxQJTwYIFLbPp2LFjYdtfIYSIZciwa9CggR03b7/9dptj+DneZ1LMNimsYMzPRD0ShBZn0dXBJLlr167KvRJCCCGEL+MOb+xBYfaYMWPMyr9AgQJhfbfpnGCdiE6KYsWK2dgsqbVlvxk0aJAbP368FUKPHTs2LoqfM51IQecEXl2XXnqpa9u2bZL3wQpqw4YN9kGn6+JkwgO/f/jhh32tmDoZ2FGRg0HlNxZPBOgKIdIPYXyTJ0+279Wdd95pNkmRgiBMLMH4nrN4nNKxaMiQIXaixLIKe7GkursQMxBgaA0kK0XEF1h/de7c2aw3fvzxR8srocI1OZ9Kck+eeuopuz+emnzWeY6nn3467PsuhBCxBt2O2BwR1sj5l3wrvzoJGAvccccdZiWF/zEFDJEa82OJSTcHuRihRR5CpDer7/LLL9ebJ4QQIkn++ecf165dO/fKK68Eb6NzgSLMcEIhKHNr5s2sGU+fPt3ly5fPhZs5c+a4Ll26BAsOsZuKBzKVSEGHBAt4noUTalNiUOLeffddm1wQ/pacGvbSSy9ZpVBKAbXh4rXXXrOqaS54oEVSLBFpI5KdN+LkeFkP2De0atXKvfDCCxGzdOPER4fXyeBEjQUdNmKff/65dXglhpwLVHegCww/axE/MHBDoKL1E2/Kt99+26zmEN2TApsQ7DnowqH7goUvzicpdV+QZ0JnYuhFCCEyI/3797cWf8YMiAjYyfoB8xNCsen05n86K5PLy/MbxkIUaHH+SKl4QoiUwB7Dy+njEg0Wq0IIIaIT3C1Yz2UdFuvqSHDw4EGbK1MIeOGFF5pAEQkHm927d9vaEOvRzOHJQ4sXMpVIwUCerIm+ffu6OnXqJKmIeYHa3bp1c5UrV042mJqq0wEDBrgJEya4SMEEAZ/6Tp06uSeffNImL7Q8idgB1ffXX3+1zh0RnbCgj3XOs88+G/y+UTUZSY4cOWInI0SIpMD+wbN0Ipz9t99+O+E+WMMRMsWJDaFTxAcsXpFNRICXB6I7P8+fPz/Jx2DRwWM8UWLz5s1u0qRJZlmSUlci3UbeBYsoIYTIbJBJ5wnAjBWuuuoqX7bDeRrhmfFHy5YtrRghqWKrcBbZ0IXXsGFDK3YQIj1QUOPl9HGRE4AQQojkwN2C3GAKy+lcDTe4UNBBsXjxYjtf0c0aqQ7A3r17WxYGGRSMw+Kq+DkggrRq1YoS6cDll18eOHbsWIrvzCeffBLo0KFD4L///ovIO8h2H3/8cdvfl156KSL7INJOx44dA5UrVw7+vGrVqkDevHkD5557rt7OGGDIkCH2nXvkkUcC//77b8T2Y+DAgbYfOXLkCBw8eDDJ+/z999+BcuXK2f0aNWqU5H02btwYeP311wPHjx/3eY9FuNi5c6f9zefNm5fg9ieffDJw3XXXJfu41157LXDWWWcFzjzzTHt869atU9wO58jff/89eNmxY4c9jutCCJGZ2LdvX2Dw4MG+zAl4zmeffdaOr1w6d+4csbkH4x7GrSL24Vwd6XN2r169AtmyZQvky5cvUKRIkcB9990X2LZtW7L317hDCCEyH+vWrYuKtQrOlzfccIOdO3PmzBlYvnx5RPfn8OHDNl9fs2ZNIN7GHplCpGBQ/eOPP6Z4n2+//TY4Afjuu+8C0QyTExa72VcWGIUQ4WPEiBGB0047LdCyZcuICRUIEEzmZs+eneL9lixZEjj99NPtWDFhwoSw7Z+ILZFi1qxZJpYOHz48sGLFisC4ceMCBQsWDDz33HMxteAhhBDxBOP9Ll26BOcnffr0iZhAwQIxBQ8sKi9evDgi+yAyjmg4Z0+aNCnw2Wef2ULPlClTAhUqVAhccsklgT/++CNZUcP7LoReNO4QQoj4ZPLkyYHs2bPbukukxj/AealSpUp2zrngggsCS5cujdi+ZIaxR6aweyJboly5csn6dB07dsw85wF/VcKnE0N7NTkU5FpEEoSljh07Wts3beWePZUQIjy0aNHCrNWwd8ByIRLWT7THc1y7+eabU7wfxz3PK7pt27YpHr+wCVq+fHmG76sIL7SeYlGW2OKLn7FSSIoePXq4Bx54wHJXrrzySmulJX8FS6dIW5sJIUQ0gnXs8OHDfcup4nmxl8RaFsiR6t69e8Ta+Tmv4MPMWAHbWyFOlVq1alm2ChZp2GdgM8ln7LPPPkvy/lgxY7XhXXbs2KE/ghBCxHlQNjbXWBGzZhsJON/UrFnTzZ071+XIkcMyKMqWLRuRfRk3bpzZj8f7/DzuRYrDhw/boAaSCzRhMWb9+vW2gPPiiy8meR8ECpLT8fWO1IeCCUvnzp3d4MGDLQiVRUchRPhp2rSpe//99917771nAmekTxR79uwxb+ikIEuDY9/27dttMTopOPETXlitWjWbIIrYBY/y8uXLuxkzZgRv4/PJzxUqVEjyMQz+yK1IvCAFkQqKF0KIaGXatGmuZ8+eweDojIZjNmOL119/3X5mzI9gEUkojmDxeNasWa5x48YR3RcRn7D4c9lll7lNmzYl+fusWbO6//3vfwkuQggh4pc77rjDffPNN27KlCnunHPOCfv2ySy+7bbbbKzHOYrxH0WgkWDBggWuSZMmtnbNOlQ8E/cixcCBA93OnTttkS6pAf7q1atd//797TqL/3z4kguizZ8/v3vooYdOWMwJBywUIZK8+uqr1kHhdX4IISLD/fff70aNGuVGjBjh2rVrF7HFXAQKqtDYn+++++6E35977rluyJAhdp0Fj0WLFp1wn0suucSdddZZbt++fVYdKmIbxGwqfBHR1q5d69q0aWOCPaGrnsjmifdQp04d+4x8+umnbsuWLTYAQ9Didk+sEEII8X9daXSecc5nLF6pUqUMrxps3ry5HcOZb9C5Gakx/5w5c2zO4cGi8I033hiRfRHxD92+P/30k8uXL1+kd0UIIUQEOHr0qHv88cfd/v37g7dRJE4RXrjZu3evq1q1qq2d5MqVy4o0rrnmGhcJNm/ebPNyuklq165t6z5xTSCO2b9/f+C8884z36vRo0ef8Hv85CtWrGi/r1Onzkl9zvDOipQXmheaR7ipECK6Mir4bhJkHymaN28eKFWqlOUJJAcZFuxnmTJlkgyfwhuY32fNmjWwa9cun/dY+A0hrng7Z8mSxbIofvjhh+DvKleuHGjWrFmCjJPevXsHihUrFjj77LMtj6Jt27aBAwcOxJS/tRBC+AnzhurVq9uxrnTp0oEjR45k6PNzLG7cuLE9/xlnnBH49NNPA5EMquT8wb6QFyDii2g4ZzNuJhNyy5Ytgblz5wZuvfXWQO7cuQO7d++OmdcghBAi42jYsKEd1xlrRTKD4tdff7VxHvuSJ0+ewMqVKyO2L7t27QoUL17c9uXqq68OHDp0KBCrKDg7ELDQT/6YV155ZZIBt2+99Zb9njCW7du3J5uaHmnefvtt28++fftGeleEEElAgD3f0Zdeeiki7w8nq5Mtlvz222+BnDlz2n6++OKLJ/yegQChhfyekGUh0oIWC4QQ8Q7nTs6R55xzTmD16tUZ+twUD9x99932/GeddVZg/PjxgUjCmKB9+/aBBg0aRMVcSMTfOZsg9nz58pkYVqBAAft506ZNMfUahBBCZBzLly8PFC5cOPDdd99F7G3dsWNH4PLLL7fzC+eotWvXRmxfdu/eHShZsqTtC+/Lzp07A7FMas/bp/GPi9OW0UKFClmr0CeffHKCfyoWUCVLlnR//PGHWaAkFUA9fvx49+ijj5rnV5UqVVykwlEIFcNOhrDsSAXmCSFShhAjzyMQK4hIQrBlUm2R2EZg+YOn48qVK12xYsUS/H7ixInm/Zg9e3a3bds2lzNnzjDutYhlOJeef/75Fi4mn2ghRLyBFzBWR9gxYcXUqlWrDHvuv//+2913331u7NixZr34+eefW1t/uGE/gH2Af//91+YdkbC5Ff4SD+fseHgNQgiR2SEbMVu2bAnGIt44JNxs3LjRMihYBylYsKCbOXOmK168eET25d9//3U33HCDW7x4sStQoIDZehctWtTFMqk9b8ftqHPdunX24eZDxSJ/YhAfeJOuv/76JAOo0W4Iy/75558tqCUSzJ492yYtDRs2tCwKCRRCRC9kObRo0cIukydPjth+IMpy3MO7MDHNmjUzb0X8HskpSKxR33777a5MmTIm8nqBnUIIIURmB09iJoyNGjVyLVu2zLDnZTJOIRUCBcUFFCdFQqA4ePCgq1WrlmvdunVwbEAmkQQKIYQQQvgBxZ2sWyAOeERKoFixYoW76aabTKC49NJLLZcrUgKFNwYjnwOBYvr06TEvUKSFuBUpCDUhAPSrr746IfiTxX8mAdw+bNiwJINBEQQID+3Tp49dws3y5ctd3bp1rWqLL68mCUJENxwzhg4dapN8hEWqLsPNf//9ZwHIO3bscC+//HKy+5g1a1Y7vk2aNOmE3z/99NN2fdWqVWHbbyGEECKaad++vc0fOIdmVNEQAgWiB3MSBAo6uOlmjARU6hEK+dlnn1l4sRBCCCGEX9CZ+uabb7pffvnF1mQjyfz5813lypXdb7/9ZgWb33//vbvkkktcpGncuLHbsGGDu/zyy11mIm7tnpKDl0v3BBVRVBK/9dZbLtpAXKlYsaLLnz+/TRjUwipEbLUsVq9e3bq5UODDfVJB/f/ggw/cU0895c4888wk79O1a1c3YMAAs7xDEA29H5WiS5Yscdddd10Y91rEOrJdEEKItAkU9957r1k7UTjwxRdfuJo1a0b0LcQSsmzZsnYR8U08nLPj4TUIIURmBlGAsceTTz4ZsaJsCjfvvPNOd/jwYVuDxf46R44cEdmXQ4cOmcsPFuLYTcUbqT1vx51IwaCf6mBapZP6oFMhRNXSueeea5VCefPmTfD7pUuX2iJf/fr1XaT+cBUqVHB//fWXmzt37gn7J4SIfg4cOGDtgtgqLVy40OXKlctF2/6RR8H/77zzToZaV4jMiRYLhBDxBraJZE/QoViiRIkMrR68//773ejRo62DAoGCLsxwg50tBQnKn8p8xMM5Ox5egxBCZCbIC8ZtIhJjnuRssrHDZg2ZIlM6W1knjgSsy/C+LFiwwF177bX2f7zZ/WfaTAo+aAgM+K4nFSbrWZmg1iUWAI4dO+aaNGliSlokWo6oYGb75GBMmDBBAoUQMcoFF1xg32EOxGTieGGU4QYNeuTIkabKJ96/7t272/WePXta90dS7Nmzx/3www9h2VchhBAiWvCEBDqaybHLyLE+E2IECi8kOxKT9REjRlgOVYMGDawwSgghhBDCL1hXoFOhXr16NraKNIMGDbL8X896k5iASAkUvDesXyNM5MyZ04pj4k2gSAtxJVLgx96vXz+7nlTLND6yXvcEISRJPZ4B+8UXX2yD9nDTo0cPay/69NNPM53vmBDxRuHChS0IE0/Dzp07R2QfaBekS6JXr14n/K5du3a2j7t27XKvvvrqCb/HqqpQoUJ20o6UyCKEEEJEgueff948iqn0Yv6QUQJFixYt3Mcff2w2i2PGjIlYBgUdFNmzZ3dXXHFFktl8QgghhBAZBc4S5D1cdNFFLnfu3BF7YynixPraW5+hEIVxGdabkYBMjltuucUtW7bM1qm//fZbV758eZeZiSuRgsA5fOBpIWFxLhQqmp977jm73rt3bxuYJyZbtmxu4MCBbv369WH/4tABgsCCT3y0tD8JIU4NApjeeOMNu0SiO4tKhXPOOcfybRLDibhv3752vX///qbgh8LJkcWZ7du3u48++ihs+yyEEEJEknnz5gXnDG+//bYJ+qcKhVCtW7d277//vokCFCRxjo4UV155pVuxYoVl8yWXXyWEEEIIkRFgxU/+BFbYjEEiAc46zZs3tzVXYP2VYs1I5WFs3LjR3XjjjW7NmjWuQIECbvbs2RF7b6KJuBEpUMSoeoIOHTqc4HHFB3Hv3r3mKXsy/3XEinCyePFiq6x64IEHkuzwEELELo888oiJpnQufPfdd2HdNh1lZOw88cQTSf6e0M6rr77a7KA8wcIDccM7HnECpwJUCCGEiGcoasLmCVGB/zlPZsQcpVOnTpYBxUQY4f+uu+5y4YSuydtuu81t2LAheBviS2a2ExBCCCGEPzD2YQ32mWeeSbC+QCdFJCAHoXbt2sFiESyxn3rqqYiOg1gfIv+saNGi5r6RkflnsUzcBGeTyk7YCQIDi3KhnRAMzIsXL24htoShkDkRygcffGBh2/iShftLQ3sPwSiecnb22WeHdftCCP/xwphWrVploiQ2StHC9OnTbeECb+y1a9daoLYH4gX7SpATvtmRsMETsYECLIUQ8QBFQ6NGjbIFfFrv6c4+FZhmdevWzb344ov283vvveeaNm3qwg2iCHMg/KCxc5Q4kbmJh3N2PLwGIYSIV7DMZMwBc+fODV6PBGT+Yuu/cuVKy5347LPP7OdIw1pw+/btras1cV5yPJLpgrM9v9gHH3zwBKsm/NgRKPhiEKodCmFxXbp0sbZrxIpwh/Lh9061FlZVEiiEiE8QAPCePu+88yIWUkk7IdvmZBjKrbfe6mrUqGFCSmilA7C/2FNARnlyCyGEENHIkSNH3OrVq20Bn0q7UxUogC5FT6DAOioSAgUwAcZO9sMPP5RAIYQQQghfqVChgtnsY6cUSYFi+fLl7vrrrzeBgoJ0nC0iKVBQtOqRL18+KwTNDAJFWogLkYLFfnzTPWuVUPD3opUHXnrppRMG5viyT5gwwTVp0sRascPJs88+a6ri6NGjk/SMF0LED4inCBWcIAlrCjetWrUyMRRRNjEsoHBs5Fi0aNGiEx4HU6dOdVu2bAnb/gohhBDhhG5sxuWc72666aZTfr6XX37Z9ezZ066/8sorJ8xR/GbTpk3B60yA6RovUqRIWPdBCCGEEJmDnTt3WsFHaLF4x44dI7Y/33zzjY3ncNYpWbKk++GHH1y5cuUisi8Upnfv3t1dddVVFtQt4lykIPBtwYIFtviXOGiEymA+EFg8JafgERBLZRHVzuG0WCFDg2C+jJgICSGiH441AwcOdK+99pr74osvwrptqhioGqCiITFlypSxTBzAmzEUPBI9OyiOs0IIIUS8wpyCDsNTZdiwYcE8KLopHnvsMRcumPdQDMGEfNasWWHbrhBCCCEyJ0uXLnXXXXedrSkwDok0dJCSQYF99S233GJFKJGy3D58+LC7++67bf0XG9DQfDARpyIFUAVcunTpE7ooWAjkd16otgfWJrt373aR4Ndff7UwvmrVqp2wICiEiG86dOjg6tWrZ9Z05OeECwKyJ06cmCBzIpQ+ffrY4szMmTPdwoULE/xu8ODBVhnRuHHjMO2tEEIIER7IiWBRP6OsGLGQ9awSGecntlIMB4wvmOssWbIk7NsWQgghRObizz//dHv37nXr1693+/fvj6jLDt0bhFL/+++/rlmzZm7KlCkuR44cEcvDuPnmmy0XLEuWLDbmTKpoVMSRSMEfHXUsKbB3AroorrjiigS/o+2a9PSPPvrIhRO+KAgUQAYGyfJCiMwDoikWdIQF3XvvvbaIEKngolAuueQSs72DAQMGJPgdx8oLL7wwrPsnhBBC+M3WrVuteIDzHhPHU4ViAKoIqZRr06aNe+GFF1y4Of300927777rvv7662A3hxBCCCGEX+AOwxiIjoXEGcHhXN+oW7eue/311+3nfv36uVGjRpnFfyTARpvukh9//NHWUigGjVQ2WSwR8yLF448/boEjicUGxAvvtsQe7LQfkUNx8OBBEw3CSf/+/e3Dib0UwS1CiMxHzpw5rdKSjoUePXqEddsc/1g0KViwoFu7dm2C3z355JP2P0o/QdtJwbFVCCGEiHU4H9LVSLFTpUqVXMuWLU/p+QhjbNiwoVXx3Xfffe6NN94IW0g1lYuDBg0K/nz22We7O+64IyzbFkIIIUTmgnVUnBh++eWX4G3YZZ5//vkRKzq58cYb3eTJk90555zjxo4da92s4RqHJWbHjh3WQcH7g+MP6z6MNUWcixTYNREEi8dXqVKlTvBfp0K5cuXKluaeuMIIj9ZPPvkk6MMeDubPn28BerR9Z4TfrRAidqlQoYKJBYRWk1ETLjhRcyyi0oDKglA4jrKoQQUo2RmhYIPB8RQvx+3bt4dtf4UQQgi//Iq//fZbC8ymi+JUupuxVeL8eezYMfufTgbmG+Fgz549Nqbo3Llz2DvEhRBCCJH5oLiRtU06FyjOiCSzZ8921157rWUUUwhO0chdd90V0X2iIPTRRx91derUse6SwoULR3R/YonTAqxGxSjYOdElwQcy1EOdDgk+FPii0XJEWGykOXr0qCtbtqx5ofEhxftdCJG5oYoTwfKnn36ykyoWUOGquGR7nLwTVxd8//33pvrTFklFQmjHF/s6Y8YMG5A8++yzYdlXERsgelE58/vvv4ftcyyEEOll06ZNrkyZMu7IkSPuzTffdG3btj2lcyrVe3gxE844adIkq+ILJ7169XJTp051X331lewZRaY4Z8fDaxBCiFiF9QvGPKzJRjK3cujQoa59+/YmlJQvX94yiS+++OKI7MuuXbvs//z58we7TVhrCVfRSryct2P23UJbGT58uF1/+OGHE/zu7bffNoGCtppatWol+B2qWiR0GSxdCLGjskoChRACOGGNGDHC7du3L2i1FA7ImMCSIqn2RxZaqMikc4LA7FC8Yy37HOmKCSGEEOJUbJ4QKKpWrRoMuU4PWCBWr17dBAomx19++WVYBArmMqFB34Qw0hWi/CghhBBC+EHouKNYsWJmDx0pgQLXHMQJxnCsS7AfFFtGSqBgnZlxIGssx48ft9vo0JVAkXZiVqSgpYcvRfbs2RN8MWizxuoJ6LIIXYTjg4NdCV5g4VxgmzdvngV1P/fccycEeAshMjdFihSxCoRhw4a5adOmhX37HAvxTPTgmOnl+GCFgVe3R/369W0BZOfOneb3KIQQQsQaq1evdkuXLrU5BKJ7eieQ+/fvdzVq1DALxMsuu8zOi+Go6Gby27x5c3fvvfea4OKduyMVDCmEEEKI+IZcXYQJxk+h+VeRAJtLCkTohGX8g4X2xx9/HPYuVmAcRkB3lSpV3K+//mprJxSuiEwoUrCgB02aNLFJhscHH3zgfvvtN7N7SqzqbdmyxZ177rnW3h2ubgZsnqjWItWdkG8hhEjMI488YtWchHbSBhcuVqxY4a666ipXu3Zta0f0wFuSbgus87yONciSJYstjIQeg4UQQohY4sorrzTLQ7Lp0usRTB4e5841a9ZYWz9WS+HqYli1apX79NNPzdppwYIFYdmmEEIIITInXl4lhYosyEcSMsDoWKB7lHVg7J26desWkYBsxBKiBZ5++mkTK5o2bep++OGHoN2TyESZFEwMcuXKZe1Gixcvtg8psMhGpwIdFoMGDXKdOnVKMmybD3C4JhIIEyh8y5Ytc5dffnlYtimEiD3If2DhhMrIcAkAVIFSEUEVKVk5occoqktbtWrlChQo4DZv3mwCBWzYsMEEDB7zyy+/uDx58oRlX0V0I29oIURmAYsBxPwpU6a4Cy64wOwFSpUqFdZ9GD16tPn61qxZM6zbFfFBPJyz4+E1CCFErEDx4osvvmgZWJHqoKAgHftp3HPoYEWgiJRTzZw5c6woHuGGDg7WfClOF5k0k4JuiLVr11pISrly5YK34wOLQMGEgcW1pGBBLVwCBTZPiCV9+vSRQCGESBGqObF9onOBisxwkDNnTjtuIkIkFlHvv/9+ly9fPjvxUm3qwYAAYZhqAR4rhBBCxALkwmFXcCpQ20XXIwIFk9KJEyeGRaBYuHBhMJARGjVqJIFCCCGEEL5AQThjHY8cOXJYF0UkBAqKQx577DHrVECguOOOO2xcFCmBgrFg586dbZ2ENRT2RQJFJu+kSA7CXmmv6d69uwkDHjNmzLBq4HB2MvBFQkDJli2biRWEpgghREpwOL711lvNmg7P7Ej4KoYyYMAA17VrV1uAwRrDa6OkagFP7Fq1arnzzjsvovsoogNVNAohohmKmLA3ZHJLRt1NN92Urud56qmnrJKQcT12S7T5+w1ZFw0aNHAlS5a0fadYS4jMfs6Oh9cghBDRyJEjRyxzC6eF8ePHu3r16kVsX3BuoDCDrlXo0aOH6927d8QDqdevX28WWBSlh8YPiEzaSZGctzoCxVlnnWUp76GZEM2aNXOlS5cOW3UyvPHGG+ZTO2TIEAkUQohUgQhAq+DPP/9sAkEkPB5DMzHIykBoRTCZP39+ggDte+65RwKFEEKIqIfOP7ofECiqVavmbrzxxnQ9z2uvvWYCBbzzzjthESgAi0UKAuhujKPaMiGEEEJEIRRKUqTI2COShREIExR+8z+L2ggmzz33XEQECrLAvDGgNzbDAUMCRcYTcyIF1UT4wPIBDWXkyJH2P7/Lmzdv8HZUmmuuucY6KW6++eawqX14tbVu3TqBHZUQQpwMOr5oH+zfv791VIQLqkM5VlIR4IHSjRjhZVQIIYQQsQYFQ0xwmWgzoUxPuCIZEFgNwPPPP++aN2/uwkXRokWtK5suRk2GhRBCCOEnjJMouv7xxx/N5SHcUJBBh0KVKlXcr7/+agXnixYtskLJSGRxYDNFbigB2eyH8JeYEymYJHz99ddu9uzZCfzSPvzwQ7tOpVQoF110kQ3qCa4Ol3/ak08+6bJmzer69u0blu0JIeILLOty587tOnXqFLZtXnvttTYg2bFjR4LbvWMqx94///wzeDve2BzjsIMSQgghopGtW7cGz1OI/0WKFEnzc8yaNcsmqEya27Vr57p16+b85NChQ+7uu++2xQGP4sWLuzPPPNPX7QohhBAic8Jc/9FHHw12bDLmKFasWNj3A1cH7J0o2vz333/dfffdZ4455GKGG2IDsAolsJvuDUSKq6++Ouz7kdmIqUwKch7okjhw4ICJFF5nxJgxY6zal26Jbdu2RdReCa/YypUrW2eHwlOEEOll7NixtkgxYcIEV7t2bd/fSE4FLOYkXsDhdro7NmzYYN0ULVq0sNuXLl1qnWK0g+7Zs0ce2ZkceUMLIaINzl/Vq1d306dPN4sn5g5ptQggj4nHcoy76667bBLv9zwD21qsHxEm1q5dK3FCZDjxcM6Oh9cghBDRwKZNm2y+jyjAGgTjnUiwfPlyW/8gRwyRhG4KikPS0wF7KhAZQEEKNp/AeOz999+3DGSRfuIyk+Lbb781geLCCy90lSpVCt7u2ZDQeu1NHPiCDR061KqRwimi8CW64YYbLAdDCCHSC4MD2iupaMBH2284+SdVYcrtnjARavlUtmxZV7hwYTuJf/PNN77vnxBCCJEWyKJDoKCTmvNXWgUK8qHInWBShVBB13Y4CqHoUiQ746OPPpJAIYQQQghfYREey2dcHCJhqURRCeM01lERKAoWLGg2nRRthFugYF9uueWWoECBhT/FmRIowkdMiRTjxo2z//nieJMErEm8QOzQzgUyK/hAsZBGYF44eOuttywsm+qnSKfNCyFiG07IgwcPtmNcaE5EuLwXV6xYEfwZmwuOuXhir1u3Lrh/XpWFd2wWQgghogW6KAg6pBIvrTYBVHkhUCBUUF345Zdf+mobu3379uD1HDlymLhy3XXX+bY9IYQQQmReGOcw5/dAoGC8FG5XmsOHD9s6bqtWrawws1atWiYKIFhEAtY4sLsmNmDSpEmWa6Y8sPASMyvpdEZ4Ydmh7UfvvvtuUO0K9UzLkiWLTUjwMAuHYMCXnKR5vlwKyxZCZAQsjNBJ8eKLL7rdu3eH5U3Fe/uSSy6xcCjPDTBfvny2WANY2Xk0aNDA/icn6Pjx42HZPyGEECK1E018jSlaSgucz5hrYPXEJHXy5MkuZ86cvr3pTICpYiRDTwghhBDCT7DIx5mmYcOGEZ3Dr1692goy3nvvPVuzff75583qOleuXGHdDwoxse33eOihh6wwE8FEhJ+YESkIS/ntt9/Mw4qUd6BDwlswSxyYXbduXfNxJdwkHLz00ktme9KrV6+wbE8IkTngGEZFAyftcOCJrAwUfv311+Dt3jGWQQTWdkCFAws4WGHMnDkzLPsnhBBCpMTChQvdvn370vUmIc5TcERY4rnnnusmTpxo1oZ+Quci59Vp06b5uh0hhBBCCCz0yaLEBQbXhkjZO1177bW2DxREMu5i3SOcjjR0cRDQjaXnAw88YGsaXpEL684iMsRUJ8VNN93k6tWrZ10SXkYFXy5CN7yK3lD4gBPq6je//PKLtUZ17NjR5c+f3/ftCSEyD1RvdunSxSott2zZ4vv2OCEvXrzYFk0YMHjQSZE3b17r6KD10TvG3nnnnXb9888/933fhBBCiJTAugBb2CuuuMICGNMKxUYffPCBFQcQHhmO7misHcmfeOONN3zflhBCCCEyN1ji44SwYMGCBG404YDM4Pvvv98KQijyrlmzplu2bJk544QTIgNKly5t67ieM0+4YgJEnIgUN998s7XgjBo1KnibF+KKpVO2bNmCyfS0ZXs2JeGgT58+LmvWrK5r165h26YQIvOAAErbY8+ePcOyPazyEodUnXXWWZZNkThAG4EY/+xwh1oJIYQQiUHUp3joggsucCVKlEjTG4SFLGN6ePvtt23i7Ad0htOB7c1VzjzzTJvL6DwqhBBCCD9gXPPTTz8Ff8adhoDqcLJkyRJXvnx59/HHH1sxSP/+/a1jNU+ePGHbBzptmzVr5mrUqGEF79hcs36MWwRrGiLyxIxI4eG1/9Ci5FXutmjRIvh7PuhU/D722GNh2R9EkeHDh7tu3brpQy2E8AUsJ6jupNIyNNDab6gmWLRoUfBn71hLJwWLQN4AZ+/evW7YsGFh2y8hhBAiMXRYMyYH/k9L0DU2A3gQA3YDVPj5AVWD+EAjprz22mu+bEMIIYQQwuPVV191bdq0sXXSP//8M+xvDGsKL7/8sqtQoYLbuHGjiSMUoFPkHU57J6ys6bR9//33rTCE7E9yMfwqShFxLFLs3LnT7d+/P8FtX375pfvrr7+sReeaa64J3o4KR/r6PffcE5Z96969u3myt2/fPizbE0JkTsiEIFgTQTQcMIApVaqU5U5s3rw5GOTN4AL7PWwwgCoILkIIIUSkYPHfExkIyqYDO7UwQSUo+59//nH33ntvsJvCD7ChZVLM+ZzFAiGEEEIIP2nUqJErVKiQrSdQ/BhO6B6tXbu2e+KJJyx/i/EWdpwVK1Z04YZ1WyIEWOMgLJtiEdaORXQREyJF3759Xe7cud2LL76YQKQAEulD26NfeOEFt2vXrrB86JcuXepGjx7tevfuHZbsCyFE5gW7JY6FdDF8//33vm+PEzaDmfPOO88WcDw45oYeg0NJLCYLIYQQ4QBhge5msuHoqk5LVR1iwe+//27BidjK+lHVhwDigUjBHAJrRSGEEEIIP8cd5EyuWrXKujjDaS05ZcoUV6ZMGfuf7tahQ4e6MWPGmCVnOKCo/fnnn7exnsc777zjfvzxRyvEFNHJ6bHSvo1vK1W8cOTIEffNN9/YdcLxEsOiWjhAEClatKh5mgkhhN8gEFx55ZV2sg2Xd+WOHTtcnTp1grfVq1cveFzGdg/Wrl1rgsZVV10V1jwgIYQQYuXKlZbxAG+++aY7//zzU/WmMJ/g/LZ9+3Z36aWXui+++MIy5jISzonYNWIlcPz48eDtqtwTQgghhB8gSJQsWTJBYWM4xx3Hjh1znTp1crVq1bJOCtxvFi9e7B5++OGwiSSsF7NdnG86d+4cvB2BJEuWLGHZBxGnIgUf6nXr1tmHmdYcmDZtmrV1e4ti3iLZli1bwrZf69evt0wMfNQIvBNCCL+huhO7J066VAD4TeHChU8QfYsVK2YnfCyfCLoCjsVkVGDNFxrIJYQQQvhNgQIFrGDozjvvTLJ4KTl/5AceeMAmzbly5bIuRf7PaAhlfOWVVyzzYsKECRn+/EIIIYQQoQwcONCyH1irDHcBIQLJtddeG8zd6tChg1u4cKFZLIUDCiwp7KQ4hA5bukhSOzYU0UHUixSzZ8+2/xEjcubMadepdAI+bJ4Sx8IdXQ1DhgwJy34NGDDAPM3URSGECCd33323HevSYmeREezevTt43TvRe8fibNmyueuvvz7BMVsIIYQIB8wPaN//7LPPUv0YwrHHjRtn1XTjx4+3jAg/KFKkiO0XQd4NGjTwZRtCCCGEEB5vvfWWiQMUR4Src4Hij8GDB1teMEIFWcEUNL7++uthscbH2ol4ANx3KCYnM/Oxxx6zgvdw5RWLTCZSVK5cOeit9vXXXydYKKOilxZqvoDe/fxW50iEp20oo9vChRAiJejcwk+S4Go6uvyGgKsaNWpYFYLXreYde/GXpKsNvGMvNlBCCCGE33D+Ca0QTG1n88iRI4M5dyNGjAh2amcUdBSGdhVid9CqVasM3YYQQgghhCcQTJ8+PfhmUECIOOAVefsNbgqMdcjcQiwg6wsrTv4PFy+//LJ76qmnzMqTcR3ZX3Sy/u9//wvbPohMIlJ4C1633HKL/T937ly3b98++8IRcAeoZLRp8+XAey0cXwAsUB555BHftyWEEImhgytv3rzW0RWOwG4WgRj8zJw5024rV66cu/jii93hw4fNwiL0GI2wrFwKIYQQftO0aVObAG/bti3Vj5k1a1Zw/N6jRw93//33Z+g+LVmyxMIY2S/mK0IIIYQQfsEc/b777nO33Xabe/fdd8P+RhOETWbm1KlTLRz7jTfesA4OOinC8do92rdv766++mr33nvv2XoE+yRik6gWKbAXWbNmjV2/+eabE9iLEHSXuGKKSl+/2bt3r7Vs8yUIV0C3EEKEwgCATq4PPvjA/fzzz2Hxtdy8ebNr2bKl/UzXWmLLpwoVKpigQadZOPOBhBBCZD7oqqajkJy6gwcPpuoxGzZsMMslurIbN27snn322Qzfr/z581sFI3MEOhGFEEIIIfzMrMQKmnk418PF77//bsUiWCkdOHDAlS9f3roX2rVr57vF1KFDh8zuH2HGK46kY4JCEfYpXBZXIhOKFCzE0YZN2w5hdnwAQ/MoYM+ePUG7kXCAzxrQyiSEEJGidevW7txzz7XOLr8hEwhf7VC8Y/BXX31llnvsCyFZIMsnIYQQfvHnn39asRAg2JcpU+akj9m/f7+74447TNCg02HUqFG+TGIpmKLDkCo+suuEEEIIIfykb9++wQX6cIC7Ap0KFEwijDzzzDNu3rx5lgfhd+cE47fLLrvM8jnZD4pVPCROxAdRLVKghrVo0cL169fPfl6xYoXbunWrBa9Ur17dbuMLwSQgHK1Nx44ds2Bu9il37ty+b08IIZKDKs02bdqYkEs1QbhAkPC623LkyGFC8fz58+22Jk2aWEiX2iuFEEL4BR0Q27dvd4UKFXK9evU66f3paLj77rvdxo0b3SWXXGIFTxRCZQQ8N4LJd999F7yNEG6EeyGEEEKIjOb777+3gkXP7gihIBzzb/IeOnbs6KpVq2buCcWKFbPxDyJJlixZfN32nDlz3HXXXWdrsb/++quNtb788kvrphDxRVSLFInxuij4INJKTWfFwoUL3R9//OEKFy4cFr81FuS86i0hhIgkiBQMFqhi8BtCsGjfJIuClk5aSmvXrp3g2Ny2bVsL6fI6KoQQQoiMhIKlQYMG2fU333zzpGIAcwXG7VTbZc+e3WyiyHTKKOhmZD/uuuuusBYMCCGEECLzQWcoc/ChQ4e6t956K2zbZd2VXErm+oBIsmzZMlepUiVft0sHbMOGDS0Mm24RCtmxol61apWrW7euuifikKgVKfCLJfvhhx9+CCqE2IqE2ozQzvPjjz+atYiXWeEnhMDQwVGiRAnftyWEECejYMGCdjzk2OR3WDXVEVQwULnw+eefn2D5JIQQQvgJ8wEmxXT0kS3hCeUpwWR62LBhNmf4+OOPzb4wI/EqCulqVFadEEIIIfwkZ86cNvdnHERXQTgKFXGvqVixolu/fr3ZWk6aNMkcZij+8BvGVps2bbJukYcffti6Yh9//HGXNWtW37ctIsNpAb9XttLJ2rVrXcmSJa1Cik4JLnwh2d1du3aFJSQ7lEWLFll7EYtxhHYLIUQ0gO/1LbfcYh7YVatW9XVbU6ZMcWeeeaZth4ECgVkcl1k4IsC7QIECdqxeuXKltX/KjzvzwN/9/PPPt88EFS5CCJHRcJ7h/PPLL7/YPIHOvpSYPHmy5VBwjqLqjkltRoBYH3p+Y24iH2QRS8TDOTseXoMQQqSG48ePW7cmOb3hHHvQKUHOBXN7aNy4sXWPMv/387WSO/HAAw+Yew4sXrzYRAlZSsc2qT1vnx7N7dzAB5HFsLlz59oX8dJLLzWBItzaCu1U+NjefvvtYd2uEEKkBF1kV1xxhXv77bd9f6Nq1qzpbr31VjsmAyeZsmXLBr0xgXbMG2+80U2YMEF/OCGEEBkGogTzg6lTp55UoEDEYDKNQEGlIQHbGQHnNnyQQ7PwJFAIIYQQwi+7o1q1atkFm+dwjD3I2+rTp49ZOCNQkMc7duxY98knn/gmULC+i70+hep0zXrWnnDNNddIoMhERK1I4al1nlrmBdJ5tk60VbM4xv/hODDwhXzooYfcGWec4fv2hBAitTBAeeSRR9z48ePdb7/9FvY3zjsme8do75jtHcOFEEKIjILA6woVKqR4n3379lnXMxVbeBhjSZBRk3lsaA8fPmwT6ShtRhdCCCFEnLB37163fPlyK74gh8FvKAa54YYbXM+ePc2CH1up1atXW/aWX1DsyNjunnvucT/99JN1q56sGEXEL1HfSeF5x3oLYEw2gCR3vqy0XPvNhx9+aF5sLVu29H1bQgiRVmjDxIYpHKItAyVsMx599NEEx2TvGO0ds71juBBCCHGqtoavvvqqTZZTU/3nTXILFy5sGUpkKmUUzz33nGXmffHFF+qgEEIIIYSv0L2J5TwL+djP+909QdcCub8XXHCB++ijj6yDIk+ePL5sE9GFohKKHhcsWGBW/88++6zlTjRr1syXbYroJ2ozKZhYbNu2zSYm5cuXdzly5LDJyebNm12RIkVsoWzixIm2QFa0aFFf94XtY/VEpbIQQkQjnMjnzZvnNmzY4OvCCcdljs9YPtG5wSnEG7js2bPH7dixw5UrV85aQTlOywYjcyBvaCGEX97EZcqUcevWrXN9+/a18MaUaNeunXvrrbcszJFz4qn6F9M1QfA2Adme1aEQsU48nLPj4TUIIURSUJDNmqdX/Oc3FH83b97cMiigXr16ZiXtd75ko0aN3GeffWZuNa1atXK9e/dWpmUcE9OZFOw0C2HA5ILWagQKWn5YHAN80ViU81ugoK0KJZFKZSGEiFYIl9q0aZNbtGiRr9spVKiQ+US+/vrr7qyzznIXXnihZWLAnDlz7DoDjf3791u4qRBCCJFeXnnlFRMoEMPbtm2b4n2xdUKgQByn+u9UBQryLGrUqGF5Fj169Dil5xJCJE///v3te9upUye9TUKITA2dC3feeaerXbu271bOuMVg60T3BAIFRYYff/yxFWf7IVBQwBjqhEPxCd2va9asCYsoImKDqBQpPK81RAnajELzKMJdlcskhy4OBWYLIaKZKlWquHz58pk9nd+wEES1Kkp44lwK/MIvu+wy+1mWT0IIIdILBUvYKwE2g8wJkuPbb78N2hA+//zzrm7duqf8xtM5QeYThVGaBwjhDxTXDB06NGwVw0IIEc1Uq1bN5tLYIOXKlcu37SxcuNAcY7B4oiAcYQSx4N57783wNddDhw6ZjRMF5l27dg3efumll7rRo0cH1w6EiFqRgrbuGTNmWKUuhIoUfIFatGjhPv30U/NN8xMqqBAp7r77bpc1a1ZftyWEEKcC3QsMKsJxbEyMwrOFEEJkNFRVHz161M4x999/f7L327Jli2vYsKHNEe677z731FNPnfL4P7RLEW/kSpUqndJzCiFO5M8//3RNmjSxnJeUREghhIhnQscdHAtxknnzzTctczKjYVzVpUsXC6omEBtXBCyXyPDKmzdvhm7r2LFjbtCgQSZOYOWEWIFTDR0cQsSUSIGPbNWqVU3N4wPMlxSYpBAYM2rUKNehQwffvWHxst26dasNnoQQItrhWEUuxPTp033fFgOcCRMmuKVLlwbDs7mO1yBWfIMHD7Y2VSGEECKtcH4hnJoJumfhlNwiJ97J+/btM7uCd95555QqAEeOHGnntCNHjgRvo6NaCJHx0JXLWPHWW2896X1ZE2CMGXoRQohYZ9euXe7666+3cU/ouMMPBxm6Tulae+mll0wYobCD7gmKsjNye+SJ0SFH6DeWmdg80S2BGMLargrARcyJFKEsXrzYFDharS+//HILsKZFCF9aKof9hC6KggULBhfghBAimrn66qstEyIclk+El9KGihjBcZJwLwY7iLvYYrRv396VLFnS9/0QQggRX3AuYVIL/F+qVKlk74covnLlSqv+w0P5nHPOSfd2Dxw4YNWFnMcQO4QQ/kHnL7mP/fr1S9X9uR82o96FsacQQsQ6uMew5ollpV9uCGT+kimJPTQZlvnz57dwbtY7WWfNaFgfYHs7d+60YzVjKro2EEP8LjQXsU9UfkIYhFDJdPjw4RPyKIoVK2bhWnia+QnqH/5oVCbriySEiAU4RmKJQfUp1aV+gkBBbhCXpCyfhBBCiPTAuBvbAcIUUwqsJnBx3LhxLkuWLPa/dz5KL1gsMGnv1auXdWwLIfxhx44drmPHjrZARpZZaujWrZsttHkXnkMIIWIdMiFY0Mfu/qyzzsrw5//666+t2IPOBnj44YeteyIjsrtCi0ZCA7FbtWplxYoIMFhmtmzZ0hfrKhGfnBYIBAIuisCn7H//+59dp40TkYAvFl5meNOGC9qtWISjOqt06dJh264QQpwKWNTR1cDEjxZOv2AwgijitYaOGDHCBiSVK1e2VlIqUbdv325dFd4xXcQvnK+pbGThQH9vIYTf0DXRoEGD4PmHvLr0gAUBNol0IQqRWYj0OZtiGmydQ10R/v33XxtTIlJi7XQyx4RIvwYhhEgvc+bMsawrPyydPBAN6M4YM2aM/Yz1Eh0NzNUzcj2A8Rh5E3SyLliwIPiaWGb28/WJ2CO15+2o66SgJQjY6fPOO89EAs/GZMmSJW7FihUJgmX8gkoq0uYlUAghYonChQu7cuXKua+++srX7TCJDB14cIyGVatW2aCkUaNGFuS9fv16X/dDCCFEfMC546effjrp/TjPEGgNTMDTK1AQuE1wZPXq1c0TWggRHqpVq2Zz/GXLlgUvZMpQnMh1vy2dhRAiUtAVhp38q6++6ttYiuINii8QKDieYmXJOmpGCRRsg/XS8uXLu4YNG9q4bMOGDQnGcBIoRHqJOpHi559/tv/xLqOrgqpgQCzo3r27K1OmjAXo+QkiCJ0UGdkCJYQQ4YJj15QpU8y2Lhzs37/fBkIIF4SXUrnh2W54x3QhhBAiJajGK1GihE3gUzrf1K9f3yxhq1at6l5++eV0v6kEU2I/wAReIbxChA8KEZnbh17OPfdclytXLhUICiHiGi8Dwg9rZqyVGBvhbnDw4EETERYtWuRefPHFU8rsChUnKITkeRmLISpzPMeak8IPujWEiFuRggUuwlUgX758NmjJnj27DWBuvPFGX/eB4BoW2SRSCCFiEY5dtNF9//33vm4HQeKyyy6zYzR4AxOqKTyRQp7BQgghTgaiA7auWL4k51vM7+jQo1KPrkGy407F45gMismTJ7sffvjBXX755fojCSGEEMJXOnfubOOOlDK30gqFieR0XXnllWa7jCAxcOBA247ndpARMGaqV6+eW7p0qa3NUlSCOPHcc8/ZmEqIjCDq0ku8BS0WuDyrJ75sQLvSP//843uQNRkYfMkqVqzo63aEEMIPypYta8dQjmW01PtFzpw5bWHp77//thZSjtW0enLsVieFEEKI1PL888/bHKBQoULJdlJw+9SpU122bNnM096rRkxLBWD//v2tUpvcOUDsEEKkD7IjsmbNmiFvHwtrQggRb6xbt8698sor7s0337RgbGyQrr/++gx7/rlz5wbDsAELyyFDhriiRYtmiMMMzjbec9WsWdPdcMMNrkqVKia2pHUcJkTMd1JQjQuhuRBUTPktUtDCVLt2bSXQCyFiEgY/LMBwLGNRxs/tYI2H/QaDLe9YHdpJIbsnIYQQKYG4TcUfvPbaayZCJOaTTz5xL730kl0fNWqU2b+mlQ8//NA9/fTT1o2hc5MQ6auibdasmS1YsdjGd5UcSXzOERqV7SKEEAmF3Ntuu80NHz7cPfvssxn61mDn1KZNG3OZQaC48MIL3UcffWSWz6cqUCBOfP7559aFQXbXkSNH7HbWYefNm+deeOEFCRQic4oUoZ0U4QjLhm3btllFsFdhJYQQsQjHMNovPds8v2Dwgq93aNebOimEEEKkBoT0Dh06WEfe7bffnqTVKrYCLVu2tOtPPfWUu+eee9L15jZu3NjVqlXLvJk9IV0Ikbq8GOw9CamnYLBr165u3Lhx7ptvvnHvvPOOiRTTp0+3hbHWrVu7PXv26G0VQmR66DQjT7dSpUquY8eOGTZu+vTTT82m8u2337bbODbTsXHfffedUmA1tpoUhVx11VUWiM266NGjR20c5qFAbOE3pwX8LLNNByyqbd682b50LH4xyFmwYIF9SfA7pwoqf/78vm3/jTfesNYltnv++ef7th0hhPCTY8eOWYUDVaNcwsH69evt2I0PJhPXm2++2RUpUsSO6SK+IXSWcyZZKFRVCiFEaqBSjzE+E3lE9WLFiiX4/d69e90111xjRUQIDNgYEnSdluwkrAm9STVFT353ZAsRb+dsKmm7d+9u38GUvj87d+50gwcPdnnz5nWPPfaY8xONO4QQ0QjLqwcOHLCxh0dGjT2YU7dt29bm2VCiRAkTKm655ZZTel4KRT7++GPrkKC7FTg3IKyQFxb6WoTw+7wddaN0FrTwUKdKA6GASQVfaHxqEStoY/ITvG5pmZJAIYSIZc4++2w7lk6bNs33bX3wwQdmn8GJh+1SccH/VI4g/Irwg+8pXuv8HbDiWrhw4Ulbhtu1a2ch6CwWUjE5adKksO2vECJz8ueff9pEpUuXLicIFOTQNWrUyAQKCpWYQKdFoFi8eLHZEA4aNCh4mwQKIdLO/PnzzQr5ZN+fAgUKWO6L3wKFEEJEIwRYN2/e3NYTESoyauzB8/br18+VKlXKBIosWbKYfdTy5ctPWaAAhAn2m//J5iUIm7EX/0ugEC6zB2d7eFZPTErKly/v1q5d6zZu3Gj+l35Be9N3333nHn/8cd+2IYQQ4YJQK6wx6KpgsdovaPknxJTut5IlS7off/zRrPvwyRThZ/To0dYRSGUNAsWrr77qatSoYZ0uefLkSXLgi18qvxs7dqwtMjAw9Wy8hBDCL/C35/iUVEUV56+ZM2e6c8891+xm0npMmjNnjvv1119NSG/fvr1N6oUQQggh/IDuzRkzZtjYgzFIRljIsz6JjR7roVC1alULxqagLL0cPnzYArcJ2QbEj4ceesiKRejUOO+88055v4WIC5GCL/PQoUPty0F7N1ABRTcFFiJc/AQlktaTjFAjhRAi0nAsI7CLLjT8gv3igQcecOXKlXM1a9Y0uw5ECsKz77zzTt+2KZLnlVdesYHmgw8+aD8jVkycONGNHDnSFv0Sw+2EnxOE5hUC0IUhhBDh4KKLLjrhNjyRX375Zbv+3nvv2XwgrWBTQGdYkyZNJFAIcQpQ+JCWMYgQQmRG6EhnzvXLL7/YvPhUYD30ySefdO+++679jKMM46L7778/3bkQdM7jdEABG50emzZtcoUKFbLfDRs27JT2V4i4FCkIe+ndu7d5qxEuExrEGg6+/fZbqza+7rrrwrZNIYTwC0KvaNnk2OanSNGgQQO7JA7PJmSL4/q1115rXXHCf+iKWLJkievWrVuCFuNbb73V7BqS4quvvjK/aeyevvzySxsEE7xGMGZy1iqIX1w8sPoSQojUQlg29jFJTeKXLVsWDMrmWHbXXXeluiOaSXarVq1McGUSr44+IU6d0NBUoBgFOzbm7IBFCOMF3A+EECIz8cMPP1jmRMWKFe3nMmXK2CW98FwUkDEPo4gMHnnkEbN7Yl6fHnbv3m3CBHbA3pwNm30s9T2RQohoIaoyKehiAL58WDsBiyVPPPFEWLyxWchDHKHqSgghYh0WpxEnOLaFC+yevAkrgysWuxm8ifBA1Q0LdYRWhsLPdCsmF8KGzROP41zbo0cPq9Tp27dvstthoEx2k3cpWLBghr8WIUR8MmHCBMsrqlu3rlkDJrZKoAuPbCNsoPr06ZPq56W6EJsCrJ2EEBnHrFmzghfsSxhb8t1FrODCQhcWowiPQgiRWcDSiWMf4xnmUxnh7EKeBR3xCBQUHNLpTld8egQK5oWPPvqoCRHM3RAosHbCBpO5OtsSIto4PdrC8wDvWW/SwheJxZKePXv6um0vj0JWT0KIeIJjGhX05FL4Cd6WhDNT/QE7d+60Y3nosV1EJ/zNyKOgApkqSIJqn3nmGRsQJwfVzRQWeBcWKIQQ4mRwLsKGCQjXvfjiixOMxRG2t27d6ooWLZrmoGwey3mHjB0hhD8wL09c0ct1Chs8izYhhMgMkMeIHeUNN9yQZO5fajl06JDZ6jEPY96ePXt2s86jO55u9/TCGGrUqFE29sIthgzJFStWWFHHmWdGlamOEEGi6pPJIhdky5bNFrgApe/hhx/23R+b1nLlUQgh4jWXgm4GP0XYp59+2r3++utBaw0qN7ywbu/YLvwnd+7cNiD97bffEtzOz0n5vnv+qVijhC4GXnHFFdZ5gX1UUmGzdByq61AIkVZYxKTaMH/+/K579+4JfkcX19SpU90555xjQdk5c+Y86fMFAoGgNzMV3lu2bLEubCGEP1BAuGfPnhNu5zYW2oQQIp4JHXdQGPHNN9+4//3vf+la9Oe5PvvsMxModu3aZbc1bNjQDRo0KEERR2phvs/4qX///raPCMjYPLGWSuB2erMshMi0nRTeQhZfcBZG+BLVqlXLwrRD/bX9YPbs2baghne6EELEC2REMEDhGOf3drAUOu+882yBKRSJFOEDQYEqnBkzZiTolODn5CpxsDkkOM3rggFagBEvkhIohBAiPWzfvt09//zzdn3gwIF2vvAYN26cVWfDiBEjzOLgZCBocFwj/NFDAoUQ/oId24MPPmjfWZwPuHz++eeWI+PlkwkhRDyCEIut3Ycffhi8jYKK9AgU69evd9WrV3eNGzc2gaJYsWJu8uTJbsyYMWkSKBA6eBw2fIyJBgwYYA4xHhybq1WrJoFCxAxRKVJ4sOAVrgWSRYsWuXLlyqkyVAgRd7kUtHdyjPOTFi1aWOX9iy++GBxYYd0BEinCC9U4w4cPd++9955bu3atdbfwN2BRAZo2bZpA+Of3+J5iwYI4MXHiRPfCCy9YkLYQQmQUjz/+uGVN3HTTTTYp9+A41axZs6AF1L333nvS56JDkCDJBQsWWMWgECI8YAVJESH2avicc+F6zZo13VtvvaU/gxAibnnnnXdMEOjQoYM7ePBgup7jyJEjZqtLgd/06dNt/bF3795u1apVdhxNLf/884/ZYpYtW9bdfvvtJkzQGc98Lz1dGEJEC1Fp98QXDmgFx6IicQCoH+D3lpaDghBCxApU1o8cOdJ3McSjQIECbuPGjcFjuUSK8EKmBLYLZDkhHDF4nTJlSvBcSjVz6N+L0GtalVkcpHqZvx+CBcHnQgiRUePssWPH2rFn8ODBwYo+rGOozCa7iCpAhO7UwKT+yy+/dEOGDElTuLYQ4tTAlhkx4qWXXnI//fST3UYFsJdDJoQQ8QrzI+a4CAE5cuRI02PpeCATolOnTjYXA8QF7JI5hqYFbDOxb9q2bZv9zPGXwo3EWV9CxCJRJVJQzYlQMGvWLPf1119bGzge2uRSoCz6BVkUHGxQNIUQIh5FCirjaSVF/PUbb3DkhXVLpAg/7du3t0tSfPvttyfcRnswPqZCCOEHdCszOV+9erUrU6aM3YbFHB0UWB5w3sCXmSrA5KALg4k58wJAVEWkEEKEHxbFUmPLJoQQscyPP/5oAdkUV1BokZ6OMWx1H330UevCgEsuucS99tprrl69eqm2Yfr777+DYyQ62HCcweKS523btm2qcryEiAWiSqTgy8pl2rRp9jMZEXxp/e6kWLp0aXAhTwgh4g3v2EYlq58iBYtFWAyRgQH8T1vs5Zdf7ts2hRBCRD+M55mMc/GgawLhgok2nvZ58uRJ9vH79u2zYGws6RBUixcvHqY9F0IkZvHixSYqUg1MjmQoZFUIIUS82Nthf/v000+nq2sTayfytsiJ4FjJeOfJJ5+056MrLbUCxyuvvGJd72vWrLFO0jPOOMPGT0WKFDkhC1KIWCeqMik8COCCW265xdq/WfTyExbu+HJrIU0IEY8g/ubKlcuOdX7yyy+/mD843WleJwVhXQQzCyGEyHwgLnBJDAVJ3bt3t+vYP5GdlBIULlFFSNYRNnZCiMjw6aefuooVK1qWzPjx4+17SYfUzJkz3fnnn68/ixAibkAQoOtz586dZteUWrgvx8eSJUu6vn37mkBRo0YNc4fh59QIFAsXLnR33323K1GihBUC0kmK24wHzy2BQsQjUdVJQRUVi1xUSQG+2HyBU6syphcW7vDsPvPMqHo7hBAiwypY6abwW6S45557XOnSpS2Eef78+UHBWQghROaEbBsqq4cPH+7uuusuuw0PZcKxmfi3aNHCPfTQQ6mylmFyfuDAAXfFFVeEYc+FEEmBfeigQYOsuhhrZixLqObFDz1fvnx604QQcQPZExzfyMxKrS0Ta5kEa0+dOjVYLMgxk/ytkz0H46KJEyda5s/3338fvJ3sCjow2A8h4p2o6qR488037Qu9detW+zlcoS8s3MnqSQgRz4RDpECgQKi45ppr7GdsAAhsprpOCCFE5mLRokVu5MiRJix4i5d02CFW0F3BuYKxf3KT9o8++sguHuTUSaAQIrIQll27dm27jnUJuWN8hwlsHTZsmP48QoiY5bfffrOcXDKwPHB3SY1AgQPMU089ZfNhBAqOj3SM0nXWoEGDVD3HunXrXN26dU2gIH+C3K6VK1eacJHa/RAi1okqkcILV6UKF1AQqdZIS2tVenziCM0mDEcIIeIVjnF0qu3evdv3bXkCMwO9WrVqJRvgLIQQIj6hGpAwR8bw999/v9nDcJ3qawRzLAjHjh1rNk5JMWPGDHscVYwrVqwI+/4LIZKGvLFDhw4FXQ+wL4GDBw/avFoIIWIRxigIsORQMH5Jy+OwwcM6nqwtLPDofMAGjxyLlFxh9u7d67788ssEFk6NGjVyXbp0cVu2bHHvvvuuiR5CZCaiSqTw+Ouvv+z/yZMnW+iqn4ohQTQcWJRHIWIJKtQ5iXLSI2iS9r9//vkn0rslohjvGIco6ycsJn377bd23U+BWQghRPTy4YcfWsB19uzZbdIOjOnprDj99NNtQl+oUKFkH1+lShXXsGFD17FjR03QhYgibr75ZsuUAfzS+Y5i2YaFW7Vq1SK9e0IIkS5Yc3z55ZdNKGBtJTUg0jJe4fhHbgXWUF999ZWbMGGCK168eLKPYz7etm1bs4LiOLpr167g7xgfMW5CBBYiMxJVIQy0RIVCqAwetH7i5V9cdtllvm5HiIyC0EgECmwP5s2bZ9XxTZs2tZZAOo+ESApvoMQxz88g6x49etjgjM8jlSRJHduFEELEL3/88YdlUQBWB/nz5zfrJ6+rjvH9rbfeesLjqM5m3I+I4QkZZ5xxRtj3XwiRPG+88YbZtsEzzzxj4z3mI9i48X0XQohYG7P873//s+tkPlBwd7KxB51jPXv2dG+99ZatzRBg3a1bNxM3kusQpXhvzpw5JoQwV/aK+cqVK2dOB4yVhBBR1knBIMeDRS0GPp06dfJ1myzY0bZK27kQfsIJ7/rrr7cT14UXXuh69+6drufB43DNmjVWpUjgO3Y6tBLi63z8+PEM328RHzB4olrDE2b9tJW68cYbEwzQJFIIIUTmARHi119/NXGccTx2BixgMkapX7++eTYnBlsDxkhM+j0kUAgRXdC1TYWw991ETOT7zIIbC2/MqYUQIhZAJGDMcdVVV9mYJTVjD6ws6Qq99NJL3eDBg02gIG+C3AkK9ZITKLB+uu6666wTDXsnto0l1KxZs9zixYttTUcIEYUiRehClt8dFB4s2NFFoRCa2IY8Ey6h9jJMhrnNsw9LfF9OMh5UfHObVxl0svumFdr/aAWsUKGCW758uXv11VctcwXbA2jdurVZIqR08Zg/f7678sorXd68eYO31ahRw6oAOAEKkRwc6/wWKRDfCPsKnaiGCtBCCCHiF8ZhjLsYVzPWOfPMM80GYceOHTapx185qTH33LlzbZLP7wnaFkJEH3yfmbMkni8JIUSsQffm6NGj3bZt29wXX3xx0vsvWLDA3XDDDWZvR/HFFVdcYdZ3n3/+eZL2laHrUjhgsE6TNWtWezwFpwrDFiLGRApUSL78fnuaeyKFiG28hXw+Mx6IANyWOLSXDAduJ9fBgy4EbmvZsmWC+xYuXNhuZ+LswQQ6raC4IyoMGjTIlShRwjVp0sR16NDBvfLKK/b75557zi1btizFiwdKf6hAAd7PoVUAQkRCpEhKaFYnhRBCZA4QIF577TW3fv16s6akSnH69OmWoTVu3Dh3/vnnJ/k4QrKHDBliiwCqxhYieqEaOHReIoQQsQgWTwgFo0aNMvE1OVhfefDBB02gwLryvPPOs84xCk+Tsq6kM/Sxxx4ztwsPXFvGjh1r60/Dhg0zgUMIEQOZFExkbrrpJkuz379/v1nifP311+6OO+7wbZss2NFqJYSfcBLjxBZaPUhXBSIFbYIIJ1yE8FukGDFihHUG0aLvJxIphBAi80LXBBYwXlYWxRqlS5cO/p4ipI8++shsoLAjhJQWCYQQ0QFhr507d7buqPLly5/gfoB1ihBCRCM//fSTdU5UrVrVfsaWMrmAa1w5sHR69tlnresCmjdv7vr162edEaEwpsHtgrWd8ePHB104lixZYsdJ0JqjEDEoUlxzzTUWGgPeYu7FF1/s2/b27dtnF3VSxD5//vmn/U+lngfBRXgh05ocivcZ8ybF0K5dO2u9S+xBuHXr1hPuy8kprWBdkCNHjhNu9zqFmJiTMZGa18hJceHChQl+99tvvwV/J0RycKzDhoOJZVJtqRkB36+6deu6VatW2c8tWrSwn4UQQsQvnFvoXH388cfd5Zdf7jZt2uQeeOAB+x2do1g+hULuHBN9LBY+++wz34VzIUTG0LhxY/v/0UcfDd7GvJ05Df9TfCWEENHGunXrrCAauzoCrMuUKZPsfb/55htbR+IxcO2115pgQXZW4pwe7J4QJ0LXZ2677TYbDxGKLYSIYZEC8P/3Wkk5OPjpZY6KCkWKFPFtGyI8JJVhgsVMUjYzSd2Xz1lSn7Xk7ptWGLhjYRDKDz/8YJWGCCPYPT3xxBOpei46MJ5//nlbDPa6L/BDpGWxZMmSad43kXkoWrRosA3VL5GCz2HoZ71SpUquXr16vmxLCCFEdIDFE90SjN0RqemQICurYsWKbuDAgSfcv2bNmmaBye+VCydE7MAYUgghYnEeTK4nY5PkHCwosKBTDDcXwNmlf//+VqSaVDEF9/OEW/ImsPRG3GA7Qog4EClokZo0aVJwcZhcCj/ZtWuX/V+gQAFftyME4EHISe+RRx5xP/74o6nx+BlCWuyeqlevbmIEFYoDBgwwn8Tu3btbNwgnRyGSI3/+/Pb/L7/84tubxHGbARsLVviQex1AQggh4hPOKX369LHr2CLQUbFixQob19Al4RWMeJXWcPPNN5vtgndeEkLEBn4VuQghREYTOu5gLEI2FgWniQtRma9iT8naDDZPOHHQLYYdfWiW1saNG81pg04JqFOnjnVZkMHVpk0b2XcLkQFEVW81djdeKHFSFex+TKo4aCkLQISDpk2buqNHj1qXEIJCx44d3cMPP5zm56HzYsKECfY/XRWETfLcdGMIkRIEfXFs9VOkAHKEChYsaNdZqApXWLcQQojw061bN5vgM745cuSI++CDD2yMMnr06GAhENlc2CxQWOEhgUKI2IDu79TCMWD16tW+7o8QQpyMv//+24pDKQz1wH47dJ2R7AjGLFgiY0GJQEFBKPNXBAsECoSOmTNnmn1xiRIlLESb5wbEDBwEevXqpTVFIeJRpAi10aHSfOTIkb5uj4U6BIrEmQVC+PX5HjJkiPv9998tGB7LpvRaHFDFRNcRE4E9e/aYlYI+xyI15MuXz3eRArwBIEHdL774ou/bE0IIEX6YnL/33nt2ncKLxx57zK4z2b/lllvsOhP8Vq1aublz55pHsxAitqB7u0aNGm7MmDFBa+bErFmzxj399NOuWLFiFhYrhBCRhKyI4cOH27jDs3kPZdGiRWZLTLEnc2OOXV9++aWbMmWKu+KKKyy7gvVIsiuqVatmTgGMZ8qWLWu5th6yrBQiY4mq1fnQ/IDNmze72bNnW+iqX3AwYsFOCCEyC+EQKbDwIJzbw89sISGEEJGBCkS6QuGee+4xqyeqCxs0aJAgZ4sJ/CeffGILmG+88Yb+XELEGAgQFFphL3vfffdZ1TGdUFh8HjhwwMJl6aa688473dSpU+XHLoSIOI0aNTI7eQSGUJs6OjoZj4waNSpYWMexjSILzzp7/Pjx1oVBMShky5bNOiiwgOL4J4TIJCJFqN8bNjb33nuv75kUajUXQmQmOOZ5eTx+8dFHH1klSmhrrRBCiPhi7Nix1kmRPXt2m/QjTl966aU28afacO3atZahBcWLF7d8CiFE7EGxCYtzXBYvXuzmzJljlcnY2FJlzOJelSpVXM6cOSO9q0KITAyCKeMNHCYokCAj0eOvv/5yr7/+umVoHTp0KNglRjA282OsnjwQNRAoLrnkEtehQwfXsmVLd8EFF0TkNQmR2YgqkSJv3rzB61dddZWrWbOmr9ujmpjtCOE33377rd5kETWdFHiD+wmDQzIpvG6K0GO7EEKI+KBevXpuwIABbsaMGe6bb76xSkMvlJLOCm5jMZNFTCFEfHDNNdfYRQghogkyOxs3bmz2TW+++WbQhomiCX7XuXNnt2nTJruNsGsEC45lFNa9+uqr7vLLLzd7KChXrpybNm2a2VbKUluITJxJERpg7YXR+InsnoQQmY1w2D1hBYDdh4dECiGEiD+wRaBTAjEChg0b5kqXLm2h2VjAUJW4cePGSO+mEEIIIeIc1g/J60SI8Loi6OisVauWhV5z+0UXXeTeffddy52giIIcioYNG9r10aNHJ8jcufXWWyVQCBEBoraTgnBhDi6hORUZDeHFuXLl8u35hRAi2uCYx/H133//tYUkvwhtmQ0VoIUQQsQ2BEb+73//cz///LO7//777bZ27dq5Jk2a2HXG7gRW4mNfsWLFCO+tEEIIIeIdMnEomqD7gYycrl27Wg4Wc146PLGlI6finXfecW3btjVBw5sbt27d2rVp08byKYQQkSWqOilosWrWrJldZ3KD161fcLDiwISPrhBCZBa8Y15opYgfhHbDqZMieWhJ9nxRASuucHQSCiFEemnRooVZOGHLevDgQXf99ddbleLQoUMTZBFJoBBCCCGEHzCXxcKJ4jsPsnFGjBhh+VjkUbDmhzUlRRMvvvii+/rrr92QIUNsHfDKK680wQJ74r59+7oCBQroDyVEFBB1wdlMdN577z372U8BwVugO++883zbhhBCRBveMY+FcSph/WDp0qUmNEONGjUsdEwkHzI+cODA4N/lpptucsuWLXNFixbVWyaEiDqmTp3qvvrqK/N6xueZCkQm97fffrv7559/3GWXXWaLBEIIIYQQftoLMx7Bxon/Z82a5Tp27OhWrlwZLIDGsokOC/ISgY4JCsIIw6bjwsutEEJED1ElUgCtWFCnTh13xx13+LYdWsBAnRRCiMyEtxjuHQP9gKoV/Mg9kQIBWiQNi3wp/SyEENECXV6dOnUKHquY3H/yySeuWrVqrnnz5tZVccMNN0R6N4UQYeLYsWPu7LPP1vsthAg7vXr1MsHhgQcecHfddZcbN26c3U4RHoHYS5YsMbun1atXu6pVqwa7+737CSGik6iye4L169fb/7RtnX66f7vn2Wuok0IIkZnwhNlQi6GMhkraG2+8MYHwLIQQIrbBIoEQSo/evXu72267zcSKt956y3366afunHPOieg+CiH85b///nN9+vQxaxTGlJs3b7bbe/ToYTYrQgjhF16OhDffbNy4sYkUCA+sHdKJTiHezJkzbT2RDooGDRqoCEyIGCLqRIovv/wyGGrtJxIphBCZ3e7JL6hg8YLH/D6WxwP4pK5YscIuVCevW7cu+LN3EUKISLJ3717Xs2fP4M85c+Z0u3btCk78zzzzTF+Li4QQ0QH2bu+++64bMGCAy5IlS/D20qVLm7+7EEL4wciRI02Y+Omnn8wenuvkTPz111/uoosuMgEV0ZT/KaCYMGGCFUC3b99etk5CxBBRN5sgaA8IsAkNwcloZPckYpnt27e72rVru2zZsrk8efK4J5980rygk2Pr1q2uZcuWrkiRIlblWKxYMWuRPH78eIL7UA2Z+PLDDz+E6VWJeLF7gl9//dX+p7JWpAxWKWXLlrULFUJYHXL96quvDv4vhBCRpHv37sFxOeMOLP0+/vhjt23bNv1hhMhEvP/++27YsGGuSZMm7owzzgjeXqZMGSuyEEIIP+wm33zzTbdz507L78Ni8pdffrE1jfHjx5tYwboImRPYO5GfxVqJiieEiD2iTqTwvMuZCKGCxoNIQXv8VVddZdXFXCpUqOAmT56c5ud59tln3f3332+VyYT9lChRwhacCaV99NFHfRV1RMZDWBOVSOnx++eki8Awb948qyTgeUIrHBPDpIHv09ChQ+3EPWjQIPf222+7p59++oT7Tp8+3U763qV8+fJp3sfMzuzZs13BggXter9+/dy1115r4gALO/Xr1w/a2sVrJwXs2bPH/vcrnDte2LJli1X98H/ii3e7Z6UghBCRgCKIGTNmBC38GMOySDl37lxXuHBh/VGEyESwSOiF0IbCPIOFRCGEyGh+++03W/MC1ieAoi7WNZhbY/v0888/27pbyZIl9QcQIoaJuuBs2seBxXc/8yK8QVRom6pfXHzxxa5///7u0ksvtbZ4FpXr1avnli5d6kqVKpUmK6ynnnrK2uu5DBw40A7CVLGhGnPb2LFjfX0tIv1g2fLQQw9ZwBOfbc8OJ61QGYA9DGIC4U9UWuMN27VrV/OHTuozXbNmTbt44NfIQjkncj5HoeTKlctaJkX64btap06doGDRrl07EypY6EEYql69uv0N0/sZOBW8jIiUOm8yAo5HIH/ylClUqJCvfwchhDhVvvvuO7dp0ya7zrihXLlydhFCZD6Ye37//fcnjF+Yg6rzUwiRkTaTFGQuXrzYOiVCHSC8dcOsWbPaddY/wrGuJ4TIhCKFV5nBYj7+tn7hdWmEowXMW6z0eP75522Sh40Oi5csYiYFdjwsOnv2VyjFLDRTmfz5558H70ebG89JlwULj36+b9EGn5PQAKVwQkshdkiprTqqUqWKBTvRJs3JtmnTpjbxp10RkenDDz9MVffP/Pnz3ZVXXmkChUeNGjVcmzZt7DOS2gkCnTeeKBhK3bp13bFjx8znsUuXLvaz+D/4PtLRlBSVK1d23377rV3/6quv3BtvvGHXp0yZkuB+dL3QUbFkyRJ38803h/2t9Y55fnaqARYAdP14VS8iZTZu3Gjilme7hjUblUEIikIIESkYv1BYA/nz57exixAi80LndrNmzezYwFiSwFoKn5jf4AEvhBCnCt0SFEN49sEeCBFYzeEiQqGmECL+iLrVbO9gQwCOn3gLdKFemuGARbsxY8a4w4cPm+3TnXfeaQuViA9PPPGE3adBgwYWPub97C16Yg+UnHUKC878LjMJFIBAEQ7LruREg9RWwhMkh6iAzRILkFh1devWzboi4Lnnnkvw904JTtahAgV4Pyc+kScHFZGDBw9O0EXB+/jyyy+7SpUq2UI2QhiLpF988YWEiv8HfyM6BFatWmWTMuA9RIjwfkYo2r17t6tatWqS771ny5aUQBRPIoXH9ddfH5btxDJYgjHp52+CgIX4il0WnXMvvPBCqo8NQgiRkXC+4hjOeIdzB0UL8ncWInODaPn111/b3IV5EOMXFhO5jbBaIYQ4FSjk69ixY4J1jQsuuMA9/vjj7uGHH3YXXnih3mAh4pioW9HGEgVYpOHA5JftjLdAl9pK+FNl5cqVJkpQoc5iMAE/nl8ewgK3ea8VhZgq/dDFdypsvUq2xNAKh90PB20RnWDxlNjCDIGFzzkDfO9ziAWQ35XnVD4hit19991mP+WRO3du17lz5wTfRRbkX3rpJYkU/w++k3w3+Y5631du4zvsiQ58V+lsSarllONOp06dTAhCiIwE3mcNwdQvaMf1nl+ZJikza9YsC6Tt0aOHDcgZhAPZQ6+++qoJFdddd11Eum6EEJkbxgqMGRAmsJikI1QIIQiunTZtmt4IIUSGWbGPHDnSRE+K/YC1E9Yrbr31Vsuc8CyLhRDxTdSJFLSSezAx8kuk8BbqWCQOB1TOL1u2zKrS8OykTRabp9QE+/zxxx923xEjRiT5O0KUeR7PGiozwYKxZ4MUiW2nlgMHDrjLL7/cjR49Onjb7bff7n766Sf3448/2t+ObpmUPg/e6+Q7sXDhwhPCpLzfpQSiA4sMFStWtNDLk0EFpSYhaQORon379kn+Dns3ujDmzJnjIoV3zPOzGhZRzqNMmTK+bSceIMC+VatWJxy/Eb2oUkSsxx5QIoUQIlwQPsmiABYu8Nhjj0mgEEIIIUSGQue4l5F56NCh4O1YOpHpSrarECJzEXUiRahdER0C8WJ5QlW1l7dBZfGiRYvca6+95oYOHXrSx06ePNkWrwsWLJjgdg7kVLlRnU9nRmZUlxGbIhE+nJ6FYUQq7zMAdNUgKiBg8VmgGyY10JFDBglVBljDAEICdl8piRxeLgafv1GjRqVqkZp9zpcvX6r2S/yff+bSpUtNOEwMwgVeveSQRHLAFQ6Rgs+29/30s2MjHkBw/OCDD5L9PTk28oAXQoQTjjueQMH5io5KIUTmhS7P1LoP0AkqhBApsWLFCusYJ5OTLopQXnnlFSuOEEJkTqJOpGDhjOBfFvoIgfZzO+EUKRLDdpPL3Ug8CEzK6okOCixlsmbNahX4Z599tq/7K06d7du3m53SI488Yt0TiAaEnQNigyc4nIzq1aubGMEiwoABA6zSGrsYqvT5PHgLnyxszpgxwxUoUMC2RaZJoUKFrFKBqgUPr/vivffeMzHNC94mY4G2S/I0RPKEfl/x46VLJTRvAlGgQ4cOJiQSrE0gciTxjnl+ihRemD2vPVyWerEKXVCFCxdO9vd8XlKbNSOEEKcKXZsbN24M/kw+lY7jQmRuWEwUQoiMgDUwOsS9nEY4//zzzQ65Vq1ayToSCCEyB1EnUoDn28+iXlIVyRmBF5jtpxDiQUAyB1yyBuh++Pjjj22x8ptvvkn29a9bt84q5VnspJMiNDgVgYKFahYCUZ/5mQsQJBTuMHCROhANjh49av7y/I2oTkQ4SCs8lor8Nm3aWFcFnSTYh2EN48FngypIrzKBTgvCsrkkruIPtTyjm2Pbtm3W0eTZUzVs2FB/4hTg+8oi8oYNG0wwJFg0FMQjvvOIjd59vcEYXpvhxuts8FOkOHjwoP1/xRVXBIUzkXzXSVL5JR50yJHxIYQQfsL4oFixYmY/R2GDZ7fAmEUIkblhniGEEOkB2+sxY8ZYFua+fftcr169ggIFaw5PPvmke/rppxPksQohMi9RKVJ4i+wszvudJ+BV/PoJYgML1FjBsDB51VVXmUBx2223JXl/AoJat27tWrRoYa1uHLDLlSsX/D1V+AsWLLDrofZBsGXLlhSrckXkYLGRSiR8F08VOiImTZqU7O8RP0LFh+bNm9vlZBMQTULSDh1NdLRg20VHU+JqM+/vnViQwnLrZH8TPzh8+LD976dNGgGrwIKXRNOTQ7dScgPzUH9WIYTwo7uOQpg333zTih+87CzOES+//LLecCGEFcNhKwteYVxyePcTQmRuKLp9/fXXza2BNTecUj799NNgMRuFbKyH9e3b19fiOSFEbBGVIoXnZcniPpMnPw5aXrdGOBaAkgq8Tuz7Hwo2Plzg0UcfdXXq1ElxAVoIET4SixClSpWy7gjssbDdSiwcRtt31TvmecdAP/jkk0/s/8yYk5NW6LAbPnz4Se8jhBB+wDlq69at1rE1ePBgu+2GG25wjRo1cnnz5tWbLoSwTAqK7bCmzZEjR5IWcJ7FZ2qzyCji4cLxxxtP9+zZ09wHhBCxCWt3U6ZMsbzNqVOnBm9HkHj77bftepkyZayAt2vXrmaHjWgRapUshMjcRKVI4YX1YcVEy3niwOiMwKtaxXs3mildurRZ+gghohuOKS+++KKLdjyRwq+WWgaaXreGRIqT403OhRAiEtDtNmjQIPfdd9+ZDcM999xjlY7KoRBCeMycOTO4iDhr1qwMeWOwn+3fv7+79NJLTeCg2poMRqqtESyEELHFrl27XJUqVcwCGRhHIGySv0cOBbbkdE20bNnSxh6sc1EUoe4rIUTUixTYp+Df7gkWfogU4eykOBUefvjhSO+CyADIIBHxDTkxsYAnzPrVSeGJzF6ukDj5xJ+AuB9++OGEQTp+rQSxU3l000036a0UQmQIa9asMVs+unWpembBAIGCLCrs5yRQCCFCqVy5cvB6kSJFbG6e+DiB0LBjx45Uv3GJnQKef/5566xgPJSUSMEiJxePk9lOCSH8h7U0b06ZL18+K1BjPoP4uHz5chMoyJ1groMtcv369YNWwLEydxZChJeoNH975JFHgtdXrlzpyzZipZNCCCFiqZNi1apVwesMVsXJ7cMIkkuqiogMI86Hr7zyit5GIUSGgGUL4mfHjh0tyBJ7lRkzZtiiAfZOe/fu1TsthEgWRIo9e/YkadfM79IDYikdXHTiJucg0K9fPxsXeRc/ihiFECcHQZKOKgQHvvNeBz1WT3RjZsmSxS1ZssRcUWrXrm1zw7///ts6p3gM9xNCiJgSKQhb9fACojNrJ4UQQsRSJgUVcB7kdIiUocqoZs2ayf6eKiMG+kIIkREgHhOQfeONN1oOxQsvvBBcJJw3b54tJAghRHJ42ROJofCPSum0QDEiRTP41bdu3do6cEuWLJnkfbt162Ydpt4lLV0bQohT59ixY27kyJGubNmyrmrVquZ8QhcmXeHff/+9u/baa12vXr2s2KFEiRJu0qRJbsKECXadzs0CBQq4zp07KyRbCBF7dk+FCxe2gxcq6/z5833ZBgov7WjqpBBCZCa8Y55fnRRz584NXqfVV6QMbdApZXfQIp1UxaIQQqRlURHxgbGvZ6uCNZ9XsUwo7oEDB6y74rLLLtMbK4Q4ARYXAYGiR48eLlu2bMHfIXJSWMjiZVpg8XLZsmUmOowdO9Y1a9bMzZ49O0mhAiGDixAivDAPef31193QoUODcxK+/3xf77rrLjd8+HA3evRou50up969e7t27dol6JhgbLFp06Y0C5lCiMxHVIoUDz74YPCg9uabb/q2HQ6iDIqEECKzwDGPhSo/Jno897p16+w64WgKQjs5VBXRBl28ePEkf79ixQrZZgkh0g0e7i1atLBFxI8//tiKgLjtvvvus2N2oUKF3LZt2yzcsnv37nqnhRBJQqC1J3rSAeGJnsD1MmXKuCeeeCJN7x6P88Y/5cuXd4sWLXKvvfaaLYYKIaIDxgoUN/Ddv+SSSyxfgjEEGVZkyxw9etTGFtjX9unTx+aAU6dOtbyryZMnW0A2SKAQQsSsSEFF1//X3p3A2Vj+/x+/WlSUskX2JLIvWSotimxZW1CUJdJGJIo2W5GQspStKC1CSJQlayUiSUIhkmyRJFuq83+8Pt//fX7HmBmznH3ez8djMnOaOefMmZn7vu7rs3l27NgRsseh9+7u3btDdv8iItGGY94ll1wSkvumOuO5555zTz31lG2CMW+hS5cuIXmseHHLLbdYRiItnxIu3ln0UzbdoEGDiD0/EYn9lnKTJ0+291evXm0bgQ899JBlL+fMmdP6yAf2excRSQw96L1kQgIJoUhEIUkxcDi2iIQXcyRou/b9999bRQQIJD755JOuYsWKrlGjRtbOl0pMr+Va9erV7ZrPq6QimPHiiy/aPh5zKN5++239GEUktoMURGqJxg4fPtz9+OOPIe3Lu3PnzpDdv4hItOGYF6qB1gxe9S4u//zzT/ULTgEyl1nsUwZNZhKtD0BFCpWEZD8T9BERSYuqVau6CRMmWGJO5cqVrS0DH7PO5v+R5Ujgok2bNnqBReS0xo8fH5RXiRkT9erVs8xs5qVR6bV48WI3d+5c/RREwoyWj1RGsP9G8IE1AgFJqi1BEhrVVDVr1rT5E+Bvd/Dgwe6OO+44aU4N75McMWjQIH+gQ0QkpoMUZHKVLl3a3p8xY4ZteoWi7VO+fPmsN56ISEaxa9cuO/aFCn3O0apVK3f33XeH7HHiBRuHDKtlkC0X7GQfeQv8OnXq2LmPzxERSanly5e7IkWK+I8dLVu2tH9XrVplwVA8++yz/uxGek2zISEicjqHDx+27OgFCxa4vXv3ntR3Hj/99FOKXkS+lrUi61Ku/cuVK2cBilq1aumHIBImJARTGUXywpEjR+y2XLly2XXJ+eefbx8zh4KkKpIcuE7JnDmz69Gjh+vevbu971V/E7yoXbu2fZwjRw6r0BQRiYsgBbzBfVu3brWMDUrIkhsumhZkE3uRYJFYsn37dls8UHpNix0GV7EQYMhucgPp6TsdiK9hkSEZBxeD1113XdDvl0UrLUTYcAeD1CgLltMjS+njjz+2LCYC57yWDB0PbH0oIpISH330kWvatKn1h2eN4A233b9/v2U7/v3339augTZzTzzxhG0KVqtWTS+uiKRI+/btbbj1PffcY9fSgRnUqfH666/rFReJIJKBb731Vv/HZcuWtTa9zJugBe2JEycsgEE1xB9//GGf07x5c2vlRBWF56+//rLgxIoVK2wNQitbEZG4ClLQv+7DDz/0f0xkluGhlKMHEwsrNuzYEErrAksk3Gj/Ur9+fZsrwIYwv8NkIhHE69+/f7Jf27dvXxtq5cmaNWsYnrFEE35fQtHuadOmTW7UqFH+j722RZJyBCWqVKmil0xE0oxjL9mPHOe9yizWDVRTkKhQtGhR9+abb1rlBJsQjRs31qstIilGi7jZs2e7a6+9Vq+aSAw5duyY+/XXX20dgBo1algV0w033GDBiZtuusm/JzZ//ny7bf369fYx8yaourz++utPuV/WHKw9NmzY4E+MEBFJq6is7WaIH1HbwMABpevBRssTDtZeZFgklAi0XXXVVbYpcPHFF6e5R+O8efNswUCbBhYM9HPt16+ftYUhQzI5BCUIbnhvXhmnZAz8flCyG4p2T4HHaDa/mH3hlQ2LiEj4KpE5Hn/wwQf+czxrBComaMswceJEN2XKFBuOKSKSloQKWrmISGzYs2eP7TtQ/UClpZfAcOGFF1rXkpkzZ1rAgr032rVRXUFlBPsNOXPmtCQ02kUmFqAAXzd69Gj7nBtvvDHM352IxJuoDFLkz5/f2oawiRrKIIWXTUxmscR+f9Sk3ghEpfRzqdpJyeemFlkLZCdcc8017ttvv7X2ZQyTeuONN+z/P/DAA9a2Kbk3z5dffmnlmIF96uldz6Di77//PtnnQQ9ZFhu04eHxtUmR8RapCEUlRcJjNItdBq+JiEjoHDx40No4fffdd/7baBd31lln+bOeqaIEGw1kQHfo0MFa8omIpBZBT2baKBFFJLqxLrj33nstONGnTx9LVNu3b5/bvXu3/3O81rLsb9AGslSpUtYGijXEI488YpXy999/v39N4XnnnXdct27d/B+fc845/goNEZG4a/fEJipZ4fTPff/99+02r895MBUoUMDf358DssSuwE38hOiLyEW5J3fu3EkurKtXr+4WL1580hwHTuYJeRkIKTVu3DgLKgwdOtSyDSiJZOHw0ksv2eKBDYTAE31yWFgkHKTrfRy46EiIhcaVV15p2U/8PTGklwAdz0EyBi9oQCA42AKP0WTmcBxn8JqIiITO448/blUTZDyyrgjcSCBDkjZPrFlIhmAeEQEKtG3bVj8WEUm1IUOGuC1btti1B9dJCWdGrl69Wq+qSASROEbA4dNPP/XfRjeHRx991BIUAmdYsj6YPHmy7UPQch01a9a0rialS5dO9P43btxoM2n4WvZOGjZsGIbvSkQyiqgMUni8A6NXesZA0csvvzxo91+wYEGL+hIhrlu3btDuVyQhqieuvvrqk1qYUVVBgIBe0QROeAulrl27+t8vV66c/e6TGcHw7HPPPVc/tAzgxx9/tH+DeRz1gmP8jgcOVaRSR0REQotzOOtYjrmBAQoqQ9mMOHDggKtatapVcN55553u+PHjrlatWppFISJp0qRJE71yIlGMigkCFLTfve2222wPgH2HhLh2I4lx6dKl9jFBR4KQtHtKbl5riRIl3MCBA+1xmJMpIpJhghQlS5a0f9lAJfubgX/B3FzjYo778zbuJHb99ddfSf6/hOWJe/fuTfJzOZkH2rZtWxCenbNNgmzZsiVZkUGGIzMmUvI90gbtq6++SrSNT2CLtNMho4J2T3yPGnKcMXCsIzgb7KFmc+bMsX/pd87GGL9bIiISuqo4juVgfbxw4cJT1ha0Tf3mm2+soo0ZFEuWLPG3cCBgkdwGhIhIUnr16qUXRyRKsAfw6quvWtsmBl2DwAFdGqh2IPCQ2PxXWra99tpr7r///rPrNzosUE3B+4lhhivrB+Zbonv37iH+zkQko4raIMV9991nLXLATAEivaFoHcKAQQUpYl9qBkCH6nOTw4bBihUrTinF9PpGp6bdE5kQzz//vAVbvOqL+fPnW4ud1LQtW7NmjQVlQl3BIdGDYx3HvGCjyo3fJW/+i4IUIiKhMXz4cPfYY49ZwIF2lokZO3asmzBhgh2XJ02aZHOImF2FTp06qcWpiIhIDKPFIx0ZSHKkQvLiiy+2pMfzzjvPzv20e0qI7g2vv/66e/LJJ62tOphpNXjwYFe4cOEkH4uERtYbfM5HH310UrsoEZEMMTgb+fLlO2mYz8qVK0PyOApSSLgw+4Ryyx9++MG99957ttHQuXNn+38ECqjqSe7NU7t2bdtgIDuC4N3cuXPd008/7R5++GF/2yYqLSjFZGC3N2ybzEk+n9ZpDLuiL+Xdd9/t/xuT+BeqIMVzzz3nZs6cacE45sOw4OV3TEREgodjLAkGJ06ccPPmzUv0czj/E4gACQ30lh4xYoT1kGYTQ1nQIpIebHSyqUkbOSq4qeYKfBOR0K0BFixYYAED2qITcCBAQXIY5/nkggfsBfA3S6tnAhR8PfdFpWVyAQown5NABXOvvLkVIiIZLkjBZi7tbRo0aGAfk4XOoujPP/8M6uOwYUcbKS8DWCRUWrVqZa1wWCAQUCBA4Q2wTA0qL2bNmmX/UlVBoIH7phrDw2BwgiFsZIDgBdmUDLdiUcLGBUGKMWPGBPV7lOhFOS99y0MRpAAbYF71EZtkhw4dCsnjiIhkVLRoGjVqlAWBhw4desr/pz80QeK///7b+sY/8cQTdnuNGjXc9ddf7/r3759o60kRkZTq06ePZXA3b97cHTx40K7Z6XtP9nbv3r31QoqE8G/v5ptvdp988omtB/i7+/zzzy0A0axZs0SDFMwNbN26tatWrZoNtb/ooosscZF2kKwNUqJy5cqWjMZ+XGLto0REgukMn9cUP0qNHDnSdezY0ZUpU8YOsiyIiBQHy2effeZuuOEGt27dOv+gbpFgu/HGG12FChVsUSASqUoeMmVmz56dZIuQtGCuCYtiFsdk43CxykL4yiuvdEWKFAna40h0I4GACx82LGg9JyLBsWvXLksyILEgOSTy1K1b14Zl0kqSCmT+Jj0s93lLOHtLRDKe9JyzixYt6oYNG2Z97+lPT3WXdxutbN99910XDlp3SLzj7/Pw4cP+DiO0eCLZsU2bNrYm4O8uKSQqsmdG9aSXOHbvvfe6AQMGnLbVM2sF5lyQLHy6KgsRkWCft6O+oZzX25wSMyoriBxz4AzWwD8vq5iscwUpRCReebN3gl1JwTGaQdzMpQAL2ptuuimojyEikhGxOUHQlzUwFZEMw04KbR8JUHA8njZtml0EELig6hKsmzUsW0TSi6TBsmXL2vu0+GSzwVv/JdYHX0RSn1j2yiuv2Hypxo0bu4kTJ9rttHvm74+/u+QsWrTIknwJaniVEAQsUjozcNCgQVaJyWBtquNZV4iIhEtUp1NRyk456TnnnGMBikyZMlk//WAOuiaSnDNnTuuxJyISr9auXesyZ84c1DJdZp5QOvzFF1/YopkNsEqVKgXt/kVEMjLa5xGYILjsDb5OzPTp090LL7xg77/xxhtWfUyLPwLGDNkOdqtUEcm4ChQoYBVeIJPbm49D9ZY3G09EUo+qpJYtW7rLLrvM9sCogGCPymvfjOQCFMyLuPPOO62NEwEK9rgIdNCmKaUBCrRo0cL+zqm84NpRRCScojpIQXk7A4a9TbUrrrjC/v3444+D9hhsqtGW5Ouvvw7afYoktHjxYrV6kojiGFe+fPlkh6qlFpVtgdUZDHinnRTt80REJO1t9DzdunWz43dSbR2YB0S/adD+gbaoeOutt6ylKbOnSPQREQmGW2+91QbuolOnTlY9QYs55uOxqSkiqbN06VJXu3ZtV7FiRWuXRhUkSQZcU5EMRqJucphD9eKLL7oSJUq4999/39o6kuBAYm/79u1T1OYxcN1BgGLDhg3WwlcVmCISblEdpOCgypA/L/LrDfsLZpACZP4qSCEi8YxjXLCrHLxjsdfbNFeuXJZ989RTTwX1cUREMgKqH5588knXsGFD/4YBGwRJZU6SZcngTP5lvtrAgQPtdtqv9OjRw95nA9HrZy0ikl5UbXGcAkFRNlgffPBBN3XqVH9Fl4ik3LJly9z8+fMtmEAlxKpVq9zChQtthuDpAgy0eSQJjfZMXotIvp65rjly5EjR43/77beuZMmSNlPGc7qWUiIioRLVMynuu+8++5dqCnrx/fHHH/YxiyEuyBjWFQxs3LGool3JJZdcEpT7FBGJFhwvyaZhARssZO2wMMbRo0f9vVLpf16lSpWgPY6ISEaxZcsW60N95MgRq1QjWJEU5rORtUy2I0GIyZMn+7Mt+/bt6/bs2WNVbl26dAnjdyAiGc0111xjbyJyegQSXn/9desQ4rVxfOCBB9zevXutMqlIkSIpehlp7UQ7R879XsIY1RT33HNPiionApHgwGxBkhuYZ6HqCRGJpKgOUniuvvpqf0k75e5cxM2cOdN69gWDl11MpnH9+vWDcp8iItHim2++sQ2tYFZSzJkzx4IfefPmtU0ysLgmm0dERFKPlim0ejhw4ECyAQoMHjzYMpcJTPBvnjx57HaOx8OGDbP3CXgw101EJFhoJZcc2j6JyMl+++03G17N2++//+6qVq1qLZ4ICNAthBkUKU0S49zep08fC3gQkGBINh97XUdSi7aQzK8gwUEBChGJtKgPUnDw/eWXX2yAEEOzb775ZtesWbNUDf85HWZeZM+eXUEKEYlLBGDPO+88q3QIlrffftv+ve6669yUKVMsg6ds2bJBu38RkYxg06ZNFkgoXLiwfdy4cePTfg394L12Ti+//LI/i5lgdOfOna1VVKNGjVzdunVD/OxFJKPhGBOIob5Uf3Ecy5Ili4IUIgG2bdvmhgwZYtUTXuU5Sbdt27a1c3ZqggLMuGTWhJccRmunV199NdUJYrSWpGKiZs2a/tZOw4cP189NRKJCVM+k4ABKCXv16tUt2gxaiTCnggGtwcLJQXMpRCRehWJodtOmTV29evXc+eefbx/XqlUraPctIpIRfPXVV1YtTN9pr6Xp6fz888/WB541cps2bawXvGfr1q3uyy+/dOeee64bOnRoCJ+5iGRUVHoFvv3111/uhx9+sKQVWjSLyP/069fP9qyoniBAUblyZUvs4u+FFk8pbcu0a9cu6yDCMG0CFBdffLEbP368++yzz1IdoGAoNwm/JP7q71VEolFUByk4cFeoUMECFaVLl7bb6NFL1DnYOGmsXLkyJPctIhJJDFAL9tBsghQMzqaVlDc0m1Lhhx9+OKiPIyISr1jfUuVGFiMtHE6HTQ4GZe/fv9+O6a+99tpJWZhUHTN/iJZRvC8iEq5Wdcx3TFhlIZLREATwUMHOx7R1ogKSxIQ77rjDkm5TgqpI2jeWKFHCzuuc70lMIMhBkkJqZ0+Ax6aLCJVP2vcSkWgU1UEKsAn266+/2uA/+u6SJUYEefbs2e7JJ58M2uOQ/UGUmpZSIiLxguGpLGavv/76oN/3zp073bfffmuLZha6ZAKzoJbIGzlypF2EsAFKe0QujFJi0qRJ9vNs0qRJyJ+jSEZXoEABa7nAGy3zksMxljYPq1evtqDwtGnT7O87IeYEEcgQEQknqnVZF4pkNJyf2ZtiP4l5UR7W0mvWrHFz5851NWrUSFVrp+XLl7sqVapY4O/PP/+091nL096JNuXpwYBtEthatGiRrvsREcmQQQqvlQhZZt4m24wZM6xn74ABAyxjLBg4qRCNptefiEi8WLJkif1L27xgIGg8cOBAmxU0b948fyUai3I2zx599NGgPI6k3fvvv++6du3qevXqZT8TSsHr1Knj9u7de9q+ud26dQtJQEtE/te7nSxIWjJ5ihcvbn3cT2fUqFFuwoQJtlblb7xQoUL+/0cCj3c8FhEJpZkzZ5709uGHH9rx6e6773bXXnutXnzJMKiSILmHzh8NGjRwX3zxhQURvGoKqhZS246Jodr333+/zZsgwMEwbKomWTdwvZUW7G9R6e5VTrCO0BxBEYlWUR+kCOQNAOQEwIYL3nnnnaDc90UXXeSuvPJKBSlEJK6wML3iiissuzYYKDdmYCu9UefMmeM/NlPpVrFiRStJlsh66aWX3H333WdD+Sg1Z/OATdA33ngjya/hgoqfaZ8+fVLUJub48eOW2RX4JiLJI7mGv0cqHQ4fPpzil4t1r9dGhSAxGZmBCA6zLn7uuef0IxCRkCI7PPCN41nv3r1duXLlkl1niMQL1sBjx461a5677rrLrV271hJqu3fvbhUQKW3nFIgAAokIXLONGTPGPm7durV/fkVa7hMkKNWvX9+CJ+PGjUvTfYiIhFNMBCnYEGPzq2DBgvYxZfH0Q8fbb78dtH56N954o923+vOJSLzgmMaxLVi8wDCLci9z1wsgS+TR155B6QzE85AxxceB2dsJ9e3b19rNtGvXLsWbrQT3vTfv/CwiSaPCiaq2119/3V8pnJLqtdtvv92qMBh2+dhjj530/5nVRiYzrVbU5klEQu2///476Y0kh927d1sSS7ASYkSiGYkBHTp0cJs3b3Y5cuSwNfT27dutjVJa/gbWr19v12okF+3bt88SjKiEJ2hxulaQp8PXv/LKK7Z+uOeee9J1XyIi4RATQQqi05S7cdBmyCCDAzkhcIHHDAki1sHAyYGLwS1btgTl/kREIomLxo0bNwYtSLFu3TqbQUHVBNn2Bw4csDLkv/76yz3zzDOW7SuRxXmSDYM8efKcdDsf8/uQmM8//9w2TckKS6mePXu6gwcP+t9o/yUiic8F8pBpSeD4lltuSXG2JkM2uQ9aM5ClHNjTmv//yCOP2PtUWrCxISISrvWGqiglI2CdG3gup21j/vz5rXL5559/tmugtMyJOHLkiM1YpSXU0qVLXebMmW0APfteN9xwQ5qfL2sDrtE87du3t7ZUic2xEhGJNmfGSubZ1KlTrXrCy9glunzrrbcGteWT5lKISDwJ9jwK71jLBpuXlV+rVi3rSUybEQa5Smw5dOiQZVYRoGAYb0qde+657sILLzzpTUROxgw1ArpkGHtSMzizU6dOlojD5sf06dNPqb5gg4RMzksuucQ9++yzevlFJKT++OMP623PeoHkB45NHH9IXGDDVSSe7N+/386thQsXtmCCh6QB5rhRUUHyQVrQMrdMmTJWmfzPP//YTAsqKp544glLBksrZlrQ/pH7O3bsWJrWHiIikXS2iwGBbSsIUpBJxoGdizPaPREZHjJkiG2aBGsuBRFnEZFYFsx5FGTne0EKhiMyKNs7JlNNQX91AhYSWWwc0Lc2MOMLfMxGQkJUDnKh1bBhQ/9ttG8A7WPohVu0aNEwPHOR+LNs2TLbuJsyZYq1yEvNJsHo0aMteMjXvPfee6f8HVK95M2gGDRokAKFIhJSbH5ec8011nWAGVYlS5a029lYHT58uJs/f75VZtIBgeCqV+UlEmuY48DeEnMcqBYHrVRpu+gFEFgjp8WuXbssuPH+++/bx7RLHTZsmGvcuHFQAgm//fabVb1z3cbfJntbIiKxJCaCFAkDFvTX5qBbpEgRK7VjU2bHjh1B2UhhGCH9/9ik4XFERGIRs3WYGUE2TTB89NFHtimWM2dOV6VKFffVV1/Z7dw/x2H1Qo8O55xzjqtUqZJbsGCBDbQE5zM+7tix4ymfz9C/77777qTbnn76aauwoIetZk2IpB1tG4oVK2Z9plOz+UBwgyoK9O/fP9HjOLMpCIBce+21tmEoIhJK9N1njUFyQ8KWkvy/2rVrW2Uma082XUViDQEE5kqQJEB7cdCKiXUx1znp2RtiLc5AbGat0j6K++rSpYvr06dPmqsxEkNyGnOqqHKi4kNEJNbEzC48m2Pjxo1zW7dutUACaAHFRtk333wTtExPSuOInq9cuTIo9yciEgkbNmywmT0c04KBgXD0SmVQHO2dCIJcddVVFqCQ6GuRSAb2m2++ab8H9M6l0oWNUrRq1cpaM4D+tJSbB75RGZM1a1Z7nw0JEUkZMi5ffvllOz6CTYj77rsvVRmXgYOymUdB64fEUJlBss7IkSPVxkFEwtK+jirahAEKUKnJ5u4HH3xga5DWrVvrJyIxZ9SoUXYOJ0BBQhbXO+wzcS5OT4CCmX60FWc9ToCC+161apVVawQjQMHfHQm8HuZZKEAhIrEqZoIU/fr1swu9iRMnuhYtWthttB6hjUkwe+xRxkqmMCclEZFYxTEsS5Ys/qBuelG2T8Vat27d/P3VORaThU9gV6JH8+bNbSOBProVKlSwAXy0SPQ2Fgg4kS0mIsFDa4WaNWtaGweyitOC/tFkazLkng2G8ePHJ7nGZS7bpk2bLMtTRCTUWDeULl06yf9PYgMbub169dIPQ2IC1zUEEDydO3e2ykXWzCtWrLBWqOnZZyLYwSyLihUr2iw/EoBojcb73BYMtIMkiFK/fn0bZi8iEutiJkhRr149CyDQmoILM7I7iRh7bSpoTcEJJb3IdmMorIIUIhLLOIZRek+mfLDkyJHDhibSa5gL0WbNmtn8Hja/Geoq0YPWTj///LM7fvy4XWhR9RI4q4S2hknh/5ExKSIpxywYKs0uvvjiNLXZo/qCLEsqhGnTwN9gYhmWDNgMfEwRkXCgvTIzrJJCt4PcuXPrhyExEZxgADydOO6//35/9SPXOewncQ5PbxIsbVZJNvAGY7N/RXUz6/NgnruZB3j55Zdb5TxrBxGRWBczQQoO7PTo5URCKwqixV70mIGgBQoUsGg3ZfLp1ahRI4uqs9gSEYk1VDYQSOBYFoxBiYHt7yZNmmT/UqHBYt7bMKtatWq6H0tEJNZ4g+bRrl079+OPP7qrr7461fczYsQICxASAGag5mWXXXbK51AFxe30tQ58XBGRUGPj9qmnnnJ///33Kf+PhIhnnnnG1a1bVz8IiergBEECghMMxeZ3mUHYf/75Z9AeY//+/dbujDmqzG+hLS6JXNOmTQtai9zA8z/BQ67TqNBQ4oKIxIOYCVIk5LV8IkhB1hotLdgso5dgMBZhVGowKFZEJNbMnj3b/vWCuenBbAMCEGy+kWlEmz3vGMxx8uuvv3a//fabZlOISIbD8fGmm27yD9gEiTSptWjRImsTBfq6kxmZGIZlM6ON1qfBbHUqInI6tLH74YcfXLFixew4RcUuA3pfeOEFu40s8d69e+uFlKhsVUbbWoITzHEiOMHcBs69VBdfdNFF6X4MrpFoh0vXj7feesvO0QRE6PzRpEkTF8xAC9dlc+fOTde6Q0QkWp3h8+rbYqjnLxUORKJpMUKbp88//9z699KPj4AFmWbpbXFCoIIo9fz584P23EVEwsHraU71WXoQ+CVrl00xeqNfeeWV1v+c4AQVbFoUi4csNC7yGAh44YUX6oWRuEfvZzbmaIH32muvuQceeCBN90P7FIZocn8tW7ZMMgAxb948W5uSKbl69WpXrly5IHwXIpIRpfWczTX4Qw89ZMcjbwuB4xWBVarBaDsTLlp3SEqRYHX33Xfb+9dff73r06ePJRgEC+1VWQN4rceZz0ISQ1qqKk+HwfRDhw51xYsXd99//721KhcRiQUpPW/HVCXF5s2bLQjBxRylebSAAlHrxo0bu4IFC1pGr9eOJD1ok0Jk/cCBA0F45iIi4XHkyBG7eKT9XXqRIUeAglLiO++80z8wmwoNTjAxFuMWEQkajou0cCC7mFakafHXX3/Z+pUABUFgNjUSC1DQSqVTp072PpmZClCISCQUKVLEffLJJ3bMoq0ob1x7szkbzgCFyOlaLvG76eEaplWrVu7TTz91S5YsCVqAguTZYcOG2UB5/gZI4urXr59VmYciQAEql5h/xbWeAhQiEo/OjLWFEZtivP3000/+lk9Tpkyx2xiABE4W6d08IwBCJcUHH3wQlOcuIhIOtKk7fPiwa9q0abrvi2Mp2IBj4e0FgDn2Ur6cL18+G/QqIpIRsBlHuxPPjTfeaH3Y09J6iXVqmzZt3Nq1a60ymEHZmTNnTvRzBw8ebLMu+DwyQEVEIokBvbSc4Y35ZCLRkqXLOZIq8Ntvv93fipEKxDfffNPVrFkzaK0SuQ667rrrXOfOne26iwqNb7/91j399NN2zRRMX3zxhf997nv06NGucOHCQX0MEZFoEVNBCk4wX331lWVvUOLGiYbKCi4aFyxY4Nq3b28XeN988421gEoPNt8YDOv1XxcRiQUcs6666qp0Z7StWbPGLV261I67BCK+/PJLK2fOmjWrVVKQwUNLKUr/RUTiHdW8ZEbScol2d+n13HPPWSIMlcH8SzVwYjjG8rl46aWXgtI7W0REJJ6qyAcOHGgJrcxFIVjBHtHOnTuD/ljMs6BaomLFilatwXURLR/pwME8imAimaFbt24WDGGWhohIRhBTQQrQ/9crbePfZs2a2fu0IcmZM6f1GzzzzDMtUJFe3BcnHNqdiIhEOwK4lOF7fVfTW04MMpGYAeS1eqLKjGAwPYkpm37qqafS/VgiItGOGTysLwncsgGSHlRNPPvss/Y+mxvXXnttkp/LbDTaPdGe4q677krX44qIiMQLAgavvvqqDcTu0aOH+/333y1QMHnyZJvdxO3BRBunypUr2/mbx27QoIFVVDCPgvVBsFH14VUq0R5SRCQjiLnB2QkxGJaLu/PPP9/9+uuvNoTj2LFjVmmRXlyEXnLJJRaRf/zxx4PyfEVEQoXNLvqWkzmUO3fudGUkkSFEexEqKjieFihQwBb/BEHq1q0b1OctsU8DLCUj2LJli2VNpuf4um7dOnfNNdfYhgPHa6+tXnJWrlxpFRTBWNuKiMTDOTsevgdJH86NtBzDpZdeaq2eWrZsackEwcTeEvc9aNAgm0PBTCrO3cy6CFb7qKSwVUcnEarkRURiWVwOzvYwWJCyt6lTp9qFXqlSpawXIL0GCxUqFLSLOF44Bmi//fbbQbk/EZFQ4lhFK5L0bKAhS5Ys7vvvv7dKifLly9ssCgIU9D+tVatW0J6viEi0YmOAlg5z587130ZWZnqOr1S7sa4kQEFL0SFDhqTo66pUqaIAhYiIuIx+Xg6cC8W5kbl5I0aMsNsZjh3sAAUJsRUqVLAKcwIUzZs3t+oJKhtDEaDgvmmzy2OBx1CAQkQykpgMUtCflwFCtB/hwN2xY0e7nV59DLv2bNiwwQ706UHblO+++84GG4qIRKuffvrJFtJkEAUD7fSY+8MFwfDhw+02Wjyx+GfjjkGuwejLLiISjd544w1r6dC0aVObv5NetIa44447bA3LUE/aUTCPIikk3lDNJiIiktFxjXPDDTdY8lRgK+5Ro0a5hx9+OOjDqqkqf+yxxywxlgAI3TWmT59uiVvMuwgFBn3ffPPN9j31798/JI8hIhLtYjJI0bp1a4uY09oE99xzj1U9cDFH5i/GjRvnSpcu7bp06ZKuxyIrmVkXqqYQkWhG0Ja2d40bN07X/dDOif7nHobCMePnvPPOc+3atbMF9Isvvui6d+9ug2RFROIRa0s2CwjIsjmRHgR7ae20ZMkSaxf10Ucf2doyKSTZ3Hfffa5s2bIKVIiISIbF+ZB5eLT3/vzzzy1BdcWKFSF9TJJhqZ546aWX7PzN3hOJr02aNAnp4zLzj8QwgjEkhomIZEQxGaS44oorLGKeJ08e+/iCCy5wbdq0sfcJXoALSzJ+GTjICS2tyHKjnG/ixInuxIkTQfoORESChwqy8ePH25BrAhVpxfyJW265xYbO0UIv8JjKcZBNNRbrBCnICKbdnohIvKCtnYesTFo9dejQId33S6XvmDFjbHPlvffeszalSeEYS6sH1py1a9dWmycREclwqGBkIDXB+hkzZthgapKlNm3aZNcgoUD1RNeuXd31119vj5MvXz43e/ZsN2HCBJc9e/aQPCbn/AMHDvg/5lpu0aJFySYyiIjEs5gMUiTGizbPmjXLSukZnnTvvffabb169UrXfXOByoly5syZQXmuIiLBRAUZ7Z7oy5oevXv3tn8JPhDs4Lg3ZcoUu81rq8e8CjbQuJ0LBhGReEBmZsmSJS2g4AnGMY7js1fVO3DgQFe/fv1kP/+tt96yiguOtV6QWEREJKOgartcuXJu9OjRNpuBWU7r1q2zThkFChQIyWN++eWXrmLFim7o0KEWOGjbtq3N5yN5K1SoXKe1ePXq1W2grEfXVyKSkcXsDhMnDyLblOPv3bvXqivIOON2rw3UU089ZZUQCxcutAu+tCKCX61aNesPKCISbTg2cZxKT2XD119/7T788ENbGNOHHWPHjrVsXu73yiuvDOIzFhGJLosXL7b1JBmT//zzT1DukzakzZo1s00W1qvdunVL9vP379/v/xwSbAoXLhyU5yEiIhLNAueK0vaoffv2NjB66dKldn1CEkEoHDt2zD3xxBM2e4Jztlc9wVyqbNmyuVD67bffbJ+KllbM3BARkRgOUlAyT9YvsyKmTp16UqYvUXbK9QoVKmQnuGBUU1BuSDYcpX8iItFi586dVuXFMYrjYnqrKFq0aGHtnghOeIFZ79hK6zx6qQfOrBARiQePP/64VVHQZuHss89O9/3RvqFBgwb279VXX+1v95ScHj16uH379tlMtUcffTTdz0FERCTazZs3z6oYAjfquS6huoHWS6FCglalSpWsjS1BEpIJqNgIZfVEIKpC6ALCPMC6deuG5TFFRKJdzAYpwKYcgwiJfIMTCm2euCCcNGmS3fbkk09aX2EqKbjwTKumTZtab8BXX301aM9fRCS9CCSQcUS5cFqtXLnSFslUUTzzzDN2G/1fCYAw+8fr/TpgwAAruWYxLyISy6iWoPLWq5oggEDrUOacpRdBXo6bJLaQMMPx9LzzzjttuymSbECLCyqBRURE4hXDqNm/qVOnjlu7dq3r27ev//+xf5Oe5KvTnaP79OljlRo8h9y5c9t5mnaLoZo9ETiU+6uvvvJ/TJCEWaoiIhIHQQqGJw0bNsx6FoJB2d5siuHDh1vrJyLUzJTIkSPHSUOJUouLy/vuu8+G0/71119B+x5ERNKKigY2s1q3bu0uvPDCNN0Hx0kyiEEGUfHixe19rxc6x08uFPg8snvz5s1r7UtERGLZnXfeaWvGYFcscKwkgYYWDsz2ofqMYO/pkEVKIJivvfbaa4P6nERERKLF77//7h555BHbw6GKgOrFzp07u3feeSfkj01rJdp4U6lBK0YSUZk90bhx45A/NgmzNWvWdA0bNnQ///xzyB9PRCQWneHjaiqO0M+XwAT9BT/77DOrsuA2IvEEKtKDk8lll11m7QCo4hARiSQW81RQkAWU1l6tBF1p8TR//ny3ceNG64H+7bffugoVKljgl+Ne/vz5/Z9PObQGuklCDPy76KKL3MGDB9McMBMJpw8++MACvLQNbdKkSdDul+QZNltYd9JHm80IEZFoEg/n7Hj4HjIiqhVIDiBQAYIDgwYNcsWKFQvp43L9wvm5Z8+etk9ExQQdMkhYCJdDhw5Z+yo6f3ANRyKDiEhG8WcKz9sxXUnhoZyebGLQkslre9K/f3//bekNUIDNO06kL7/8skXeRUQihfjy0KFDLSMnPcPkaG3CTAuyiLwhrd6x8/bbbz8pQAEFKEQkVgXm5XB8++mnn4IaoCAj1KvMoC1eSgIUzKD4+++/g/YcREREohXBAgIUZcuWdQsWLLA2S6EOUPzyyy+uVq1adn4mQEF7qe+++y4sAYrAdUfWrFnteyZJQgEKEZE4DVL88ccfrlSpUlbZQPmeN3iQDGAuFgN7/nGS4ESYnn7qtEX54Ycf7H5ERCKFygcGvj3xxBNBuT+qxECwYsqUKfb+008/bf/u3r3besWKiMSqjz/+2KpryeLx0Ic6WNjwaN68uW3AtG3b1j322GOn/RrWpbTZu/LKK90333wTtOciIiISDbZt22bdLTytWrVy7733nlu9erWrUaNGyB+fx6KtFC0Ys2TJYrOo2CNKmIQVCmQL16tXz02ePNl/G8mz7FOJiEicBimyZctmmWpExL1MtKJFi/qrKRiK5CFgceutt7qnnnrK2qOkxdVXX+1uvPFG6xscZ52yRCSGcAxKz7C1rVu32ryJPXv2nHR7v3797Nh22223WZaTN+OnfPnyrmvXrkF57iIi4XT06FF3//33u2XLlqUrUSUpBHIbNGhgrRyqV6/uRo0alaKBn++//76bM2eOVQSzeSIikpHWsVWqVLHscgLGVLWRCCjx4ciRI65Xr15W7X3XXXe5w4cP+yuyqWBgDkUoMYuUx6WlLUmtDMles2aNJbaGaiB3QqwF5s6da/OvWB+IiEgGCFIEXuSxieYhA5goNZlzK1eutNs4OTVq1Mj9888/1i84rUEGehmSwfzpp58G7XsQEUmp5cuXu8WLF9uxKK0L7W7durmxY8daoMJD8NbL9nn22Wf9t7O453hKFrKISKzJnDmzVcA++OCDJx3bghUAoRXo9u3brWXFtGnT3DnnnHPar6PdBWtRkDxzxRVXBPV5iYhEsyVLlriHH37Y1rRUB584ccLVrl3bv5ktsYn9FeYx0emib9++1l6pePHiFjQIF66RqJ6YNGmSXb8wJPvzzz8PeVupxK61uM6aN2+eBeNERCQDDs4OxEBEhjPVr1/fzZo1y27bsmWLnTSpupg+fXqaehHzklWuXNmGflA6KCISTmyIkW1GUCEtMyIIsNKblYU7LUa8igkyjljQU3HGRlugX3/91eXJkyfkmU8SmzTAUqIxi5M2E6z5QoXWTmSE0iKP2WdstqV0E+S+++5z48aNcyVKlLDsznPPPTdkz1NEJNrP2b/99ptVVBC8uOGGG2Lye8jomPP0yCOPuNmzZ9vHBQsWdC+99JLNgApH9QL7O1RvDBw40PZrLr/8cvf2229bomq40MaqYsWKYavWEBGJFRlqcLaHzAv6DnpxF6op2MDjRLlq1Sp/Kyii2qB1CdH91OKkQwbzokWL3IoVK4L8XYiIJG3dunU26JpZFGkJUJCp5mXvUn7sBSiY6UNVGhLLNKZ3qwIUIhIL2Oy66aab7I3WdqHyzDPPWIAiU6ZMFthNaYCC/twEKDBmzBgFKEQkw2PTAgR8E3P8+HHb4Ah8k+hBNWHp0qVt34VzInslXFvccccdYdmw//HHH121atXcCy+8YHtB7dq1s0SscAYoRowYYYmszz33XNgeU0Qk3sRNkIIWTmSj0XeQDAxwsdiyZUt7n3JDDydNNty4cB0yZEiaHo9MY0rz6acpIhIuZAeRmeQd21KLgXFUYDC4LXBmDwtqFvVUl1WoUMFu27lzp7UkERGJJeedd55lVLI2ZF5EKLzxxhuuf//+9j6t85hFkRJstHlt9tq3b++uv/76kDw/EZFYQVValy5d3LXXXuvKlCmT6OdwzU0GpvfGWliiR6FChazSu2bNmm7t2rV2fjz//PND/rhcu7z++utWvUA77uzZs7upU6daIsAFF1zgwolkLp7Pjh07NLtURCSjByk4KdDW6bLLLnN//fWX/3avmuKjjz6y8jtwwho0aJB/wZOWHom0SSGTmZ6LlOmLiIQjS4hqMarBUtLzPKG9e/f6qyS4eGAhj40bN1qbp4RVFGQJFyhQwJ/xKyISC+j9TJvPL7/80l1zzTVBv39a5jGI25snQXvRlGLGT758+aytSSiGeIuIxBpmU1Ap7K1FE0OSIdUW3tsvv/wS1ucop15T0LaQdrCBwXvmi5A4Gg6cT2lVS8CfFo81atSwAAntpSKBody0Amdgtto9iYhk8CAFCDxs2rTJNWjQwH8bg5qorkBg1jA9hLmd8nxvoy617rnnHrt/Fk0iIqFG0JXNrcBh16nB4Dgu7Mg2ogw6sIqCLDYyoPh/4GMqLhgKW7JkyaB9DyIiofDmm2+6yZMn+z+mYpY1WrCxkcYGCFUarCP79euXqq9ntg9BDtqFpnX9KSISLzp27GhBZdookxiTFOb20MM68E3Cz6tcIBBBEtOjjz7q/39ZsmQJ2+Y8SQhcs9CqlmRV2jwRIEnudyjYdu3aZQE2KiQ9tJlUgEJEJO3ienC2hwGzDE5k040ywCuvvDJo9005YdOmTW1hdeONNwbtfkVEAjFXp0qVKpal1LZt2zS9OPTvffzxxy3Tx2vpRHUGQYjEjo+cHnhc+qtqwS2n+93SAEuJlE8++cTdcssttolF1WyohmWzIUF/azJ4adPEhogGXotIrImGczZrzE6dOrnp06e7xYsXp3imTzR9DxnN5s2bLVGKfQ9wLTF69GhXtWrVsD2Hf//911rfUvnN+0WKFLEq83DOngDXTQRJqNxgxt/IkSPD+vgiIrEmpeftuAxS8C0tXbrUSvy9lih33323e+edd6xPIheVCTfcGPbEbantb8ljcWKm/RMRfW3kiUgo1KpVy0qqWQwHc4A183VmzJjhGjZsaAO5RdJCmwUSSWxUUN1AcILKMNp8BhutRJk7QRCECo1ly5bZbJ/UzAP67rvvLNtTG2oiktHP2Wzsvvvuu9Y6mTmPHp5X5syZY+J7yCioHGSOJxXZx44ds58PVYSdO3cO6jXJ6TBjik4WVCOCVk+cW/k9iASeB7NU+B0uWrRoRJ6DiEisyNBBijp16rh58+ZZVJ22TmBINtnClOOxIUdbEw8lppTsE4Hn61IbaFiwYIG7+eabrXUUG34iIsFeBBOkINuMwdapwSF+zpw5rm7duqcc27xjF0FWgh9e9vFvv/3mcuTIYbeLpIQ2CyTcDh06ZDPGvOMagYpQHbPYoGF9x3oxV65cbvny5anakKDyguMrgQ6GbNM/W0QkI5+zk7reHj9+vGvTpk1MfA8ZBfOTmMUJrhuonmAOaDhxzdKyZUu3Z88eays1YsQI+z0Jd4Iov3eBv2+hXHuIiMSTlJ6342omhYcKCk5ev//+u/82SgEfe+wxe79r164n9Q4kI44LUDYCx4wZk+rHozqDDcQnn3zS7kdEJJjlxD169LDjWmBwNaUI1tIGhVk9gTFpjlVk/3jZbIHtUQjuXn755f5ybhGRaLJlyxZrfxc4DyJUmwQcN72e6eedd55VnKUmQMHXP/jggxagqFatmrv33ntD8jxFRGIJx8bE3lISoJDw4jqBdrATJkywhM5wBii4XqG1E3stBCjKlCnjVq5caa1vwxmg4HqMvR5aPJHM5VGAQkQkuOIySEHpIZUTnFADMeA6b9687qeffnIvv/zySUGKAQMG2PsEMvja1KJ8f+PGjTa4UUQkmHNvmBXBMSa1i3H6p7O5BoIcgV9PQJYBsFRMUL7t4QKA22ktFe4sKRGRlFiyZInNG2N4J1k5ocSxl6xRjp+0JuFYmhoM9Zw9e7a1H2XIaChaUYmIiATLmjVrLLjOxjyoWmRGXevWrcMaGOA6hsoNEhIIYN13331uxYoVIZs7lRwyfzmfs4+k9rgiIqETl+2ekjNx4kTXqlUrO9kyMJagBTgJM/j6s88+czfddJNVVaT2QpK+iFw4E6xQ2amIpNfRo0dd6dKlrVUdm1ypwaGdyouPPvrIVapUyWbmZMqUyf4fVWYMKORfBr0lDOgeOXLEffHFF5a1JJISarsg4cax67bbbvOv40Lh7bfftv7XGDZsmA15TY19+/bZZgpZl3379nXPPPNMiJ6piEjGOmfHw/cQbU6cOOGef/55e6OC4dVXX7VgRSRQzc3eCslT7NuQXMXHkcQeD1Uc3rpARERSLkO3e0rYEuDbb7/1f0wvQwZdU3ZPyZ6HgMQbb7xhbaI4KY4aNSrVjzVw4EB7wbkQFREJRg/YHTt2uKFDh6Zpc40ABdm7lGd7AQpQOUGAgpLpDh06nPK1HAcVoBCRaEHQlWNaYKvOhx9+OKQBioULF/pbM3Xr1i3VAQqvspcABcFmr5+3iIhItNmwYYNVCvbp08cCFLfffru9hRuJo88995xVUBCgKFu2rFVxRCJAsWnTJrd06VL/xyVKlFCAQkQkxOI6SEEv9iuuuMKyhL2CEYIRr7zyir3Pxh3RcA892Ak0oHv37m7btm2perxChQq5p59+2lpJff/990H9XkQkY6GcmDZ0bI7Rki41aNX0yCOP+AMSBCM869evt8wocKw6++yzT8oQEhGJNqzJyFwkaBCOAuC1a9faoGyySps3b+5fG6bG7t273dy5c23dySBYAsYiIiLRhKAAeyPMnKC9bPbs2a214ZQpU1zu3LnD+lz279/v6tevb1WHPC/mTixfvtz2c8KNvZyrr77aNWrUyK6dREQkPOI6SEH7JrKHKSWhcsLDCccr0yPLLfCCl4AG7Z7I0MufP3+qH5Oh3AxUpA98BuukJSJBxFBrLg6eeuqpVH8tG3l//PGHDZZlc8/DMYn7/ffff12TJk1czZo1/f+PHq+0lWIx7vWgFRGJBvXq1XPnnnuuu+qqq0LeD/vnn392devWtZLkG264wRJa0jJH4pJLLrFNDtqMciwWERGJNux9cG1w7NgxV6dOHffdd99Z1UI4Z0+Aagna086ZM8dlzpzZOlx4XS4igeRV2jUSIMmZM2dEnoOISEYU9zMpaJVSoECBRDONOekcPnzYvfPOO65Fixb+/0c7AS6G02revHl2kicLIdK9E0Uk9syaNcs1bNjQspjuuOOOVH89mVDt2rVzkydPPqkKg/ZPBCHI6CUriICqh37rBFmZ2cNFgUhqqDe0BBvL08BNEtZtaUkeSW0W57XXXmtDualAY05ZtmzZQvqYIiLhFg/n7Hj4HqIB1wwkLVG9/cADD4Q9OIFx48ZZgujff/9twYEPPvjAlStXzkUarXHPO++8iAVKRETiSUrP23EfpEgOQ6Foz8RFL21OGMqUECdLMgqI7KcGG4vLli2zC92sWbMG8VmLSEYYls0inVYhab1YSLjBR/CVTbfNmzdbb/QXXngh0RZTBDASC+yKJEebBRJMq1evtkrXadOmuYsvvjgsL+6RI0dso4bWEgULFrQ1XFqOhcyyYPFNuygRkWgUD+fsePgeIoEETc5vgbPneC0j8RpyzUP3CS85ikSqN998MyLJAbR3vP/++63jRmLz+kREJH00ODuRi08qGwKRNXzppZdadl7Pnj0TzairXr26tY0i2JAaL730ki2a6AcvIpLaYdnDhw9PVYCCFiVkQ3kSfi2D8AhQ0IIkqRZSl112mQIUIhJRXh/qzz//3D3++ONheUyGhDJ7ggAF/bhpN5GWAMWhQ4fsud922202h0JERCRarFmzxlWuXNnmPnzzzTf+2yMRoNi+fbu7/vrrLUBBS8X+/fu76dOnR6x6kVmmnLeZ6cfekIiIREZcz6QIzCAuUaKEa9mypVu8eLH/dvodjhkzxt4fMWKEW7JkyUlfR3YGJX7Ms6AygkBHaoZoP/vsszaY9quvvgridyMi8WrdunVW4cWw7NQMiaPiq2nTpq5atWqWeZxYn1eCH2BodmB119atW93evXuD9B2IiKQPmxW0qmvWrJmtoUKNqjOyJ2mzx5qPtnj0oU4LqtTYeClSpIg9fxERkUjjPMf6n7lOdI+gQpGKikhhP4YuFSRXMe+BynESRtMy/9U2FhQAAHf8SURBVClYmFfKfA6uo0LdWlJERDJ4kIL5Eg0aNLCLRsoKA1Hq2L59e3ufHu6BgYizzz7bqi/y5Mljm4f0SkyNxx57zF155ZWuTZs2NoxKRCS5MmOOFcWKFbMAZ2oQ1Fi5cqU7//zzT2lNR5CWzF6GZZMpnLAFCRlDHBvff/99/XBEJCI4PrFx4iFIyzGJZJFQY2PEy+ScNGmSzaRIi08//dS99tpr/v7aHI9FREQi3V7jzjvv9M98oKXS2rVr3XXXXReRYMkrr7zibr75Zrdv3z5XsWJFC1TwcSSw7mD94VWgjxw50t1yyy0ReS4iIpKBghSg/zotm+rVq3fK/xs8eLCV9W/ZsuWUNih58+a1i1YuXidMmJCqgbIEOfga7ldtn0QkOVQ6UIbNMYNs3pRiuDatoTBx4kRXuHDhk/4/lRkEWcma8j7PQxYVQ+EIZHChICISbiSHUK1Khuf3338f1sceMmSIGzhwoL1PZW3jxo3TvAlEogvIxKxRo0ZQn6eIiEhqcV1B8hLViexLcM6bMWOGVS+EG4mirVu3dl26dLHAAB0uaOuY8LolXHgdSCYl0UtERKJHhglS0GsxU6ZMif4/MvXGjh1r7xPd/+KLL076/8yk6Nevn71PFsK3336b4sdlAC4BikGDBrkVK1ak63sQkfj03Xff2cwI+q9XqVIlxV/3448/+jfGevToYT1mA9Fvlh6vIDso4QBaMn25QODYVLx48aB8LyIiqXHWWWdZRiXB0k2bNoXtxXvrrbf8mxMksnjH0rTgfmjzxFwfL+ghIiISSfPmzbN5dLSh/uyzz2weZ2rm3QXLzp07bc4nyVSc85ndyftZsmRxkcKag8AJ1RRUmIiISHQ4w0fdXQbzySefuN27d1sLlED33nuvDUyi3QqBCGZWBA5ybNiwofv444/dNddcY4GMlJ7kGchIr3gGKrJpmJosaRGJ/zZPV199tS2WKXmmPV1KMCuH4woBjhtuuMEtWLDAsqQ8LLirVq1qxzKylKm4EAkVMskJ+B88eDAiAxgltu3fv98CFBwLw4G5E7S+I5uT1pwkkqR144bqjzJlytj7zDbjeCwiEs3i4ZwdD99DqLF/MWDAAPfggw+6HDlyROQ5MJuzSZMmbteuXfYcqOqoWbOmiwbMwuC5BF4/iYhIZM/bGaaSwjN//nzrNUgfdk6WgYjq58uXzy6Un3nmmZP+H+2eyLqjZyL/puZi1mv79NNPP7levXoF7XsRkdhH1i2BBI4RKQ1QgOovAhS5c+d277333ikLbC5KuF9KuqmiCESLp1GjRlkAVUQk3AiqBrbP5DgVrgDF0qVLbag1AYpWrVpZq730ZJZSMUvyy3PPPacAhYiIRMyvv/560oxN9i9oZR2pAMU777xj50X2XEqVKmUBi0gFKEjuIimBpFFPnTp1FKAQEYkyGa6SgowC2jfR+5hARMIIzuzZs23INid12qBQNREstBNgobB48WJ3/fXXB+1+RSQ2UTnBMaZ79+42OyK1xzJaRDFnJ+HmHsGJypUrWxCCAAYD8wJ17tzZDRs2zDbqNDBbgkEZjZKaHtm0tWP5yXoonMM7OebedNNNtknBWm/atGlJtgIVEYlX8XDOjofvIdgB+KZNm7q9e/e6+++/35KRIoVrFPY82PsA51sCFpH8OXG9NGfOHHf77be7qVOnRux5iIhkVH+m8Lyd4YIUIHuOfohJYagT1RIlSpRItj0TJzrK/InKpwQbhmQPMEibi/RcuXKl+XsQkdg/SDOwLVu2bNY+LjVVFKdrH0UQlmMX7Uw++OCDU7KER48e7Z588smoKrmW2KbNAkkplp202+RYRTVFsI59p7NhwwbL6GT+BckqtO8MbOuZWiSy0OebNxGRWBIP5+x4+B6Cherqhx56yPYaypUrZwH4okWLRuS5UMVxzz332HPwZuZRaZjc3ks4MH+PpK1JkybZdZKIiISXghTpcODAASvfpzSRtlAM005o/fr1tggg4JFYpnJyZZjly5e3zGd6IkdieJWIRH6T7q677rIWIatXr07xhQTHDDKRmJ2T1Oba008/bVUZlHYTRL3kkkuSLHu+4IIL0vV9iHi0WSDJYeYOLem8TQoCFHwcrjXQtm3brGKDNRhVHLSbypo1a5rv77fffrM5FMeOHbP7onJNRCRWxMM5Ox6+h/RiH4Jq7KFDh9rHzZs3d6+//ro7//zzI/J8GJDdqFEjq1o855xz3Lhx4yxgESkETAKHczOvj+clIiLhp5kUKbBjxw7XsmVL9+677550e/bs2e2kClqikImcEH0VaZmCNm3aWCZ0SuTPn9+qNGgr5S0oRCRj4fhCmyUyn1IaoCCYQTCUr+O4lNQAuP79+9v7r732WpIBCihAISLhGorNPK/AqlNaLIUrQEHCCY9PgIK1G8Hh9AQoCDJ36NDBWmpQReENzRYREQnnZg8BAW8/gRawJE5GKkBBlwgqFAhQMGeKAH4kAxRjxoyxrhjbt2/336YAhYhI9Mtwg7MDTZw40QIUlCGS1ReI4dqPP/64vX/vvfdai6aEGLbYpEkTyxBs3Lix27x5c4oel/vu1q2be+KJJ2yAlIhkHAy7pkKLfrHMhEiJX375xfq5khFUq1Yt17Vr10SDrnfffbdtoD344IOn3DfHKYKyq1atCtr3IiJyOiRx0BppwoQJdpwKJ1o71a5d29ZwRYoUcfPnz7fNk/R488033YwZMyzQwjoyqZagIiIiofL777+7lStX2jmIBKZnn302Yh0aSL6kWpFzPIEBWiuFc95UQlzzjBgxwq6faCspIiKxI0POpPBQpk8AgoABveETInDBgEUusPn//JvwYvTw4cPW25iNv2LFirkvv/wyRRfAlBvSG3nPnj3WO56+9CIS3zhe0BaEzS0W8Cnph06mFAt9ghu0oeM4RHl7IHrQcqxiI7BixYpu2bJlpxyrXnrpJctkzps3r7U+UTaRBJPaLkhyGOB5/fXX2zEsXP744w+buUMVWr58+dxnn33mLrvssnTd588//+zKli1rg7epWuvZs2fQnq+ISLjEwzk7Hr6H9GK9zzUFbQwjeX5/+OGHbVg2VYtTpkyJin0NKiiYvce1j9pri4hEnmZSBAkZAWz6kY3HQKqRI0ee8jm7d++28kZOhlyEk6mXkkGQbBRWqFDB1ahRw02dOtWdeWaGLmwRiWvEg1u3bm3t4yiFJtPodAiUUso9Z84clydPHgtsFC5c+JTPoxps4MCBdpGW1IwLeqh37NjR1atXz1rUiQSTNgsk0KxZs1z16tXT1VYpPZi5QwUFiSMXX3yxW7p0aYqOuclhA4agx+LFi121atXsPiM9CFREJKOes+Phe0gt9hiYQ1G3bt1IPxU7Jz755JN2/YG2bdu60aNHW9AkErjOWbt2rZ2nRUQk+mgmRRqHPSVs+1SgQAEr58err75q5ZQJ0fedMkcWSGQJpvTkfOmll1rbgOnTp7vnnnsuLU9ZRGLEyy+/bMcSr0dqShAYJUBBxQVDsxMLULAZ6F0gUNKc1IwLNuo4fhEoEREJleHDh7uGDRvaAE+qvMLt6NGj9vgEKJgx9umnn6Y7QAHaVRGgoN83s8UUoBARkXB5++23rWX0HXfc4datWxfRF95rIetdf/Tt29cGdkcqQMHMqauvvtpa45LQJSIisUup+/8fg6YYqMiciYTIViBTAO3bt3c//vjjKZ/D4ET6QhLISE1FBLMs+vXr53r16uWmTZuW9p+kiEQtBlrTVo45NyzqU6pdu3YWXKBcObFSbqq3vKBDp06d3O23337K51AFFkglzyISSlSWElglMBDu4w0bJ7fddpsFE6ji4Nhbrly5oNx3ixYt3KOPPmpDSpMKBouIiAQb+xMMoSbwTxCeFtORQivFOnXquEmTJrmzzz7bEi6feeaZiF5fUG1esmRJa+0YDa2mREQk7TL0TIpA77zzjg2dpV3TokWLTsmQY1FAn8UlS5bYBe/y5cuT7SdPRcbYsWNtOO7psu34EZBxSDUGvSXLly8ftO9LRCKLoGbVqlXdtdde62bOnJnq7FvallxwwQWJzrWhnQrHIgIY9FtP2GZu8+bN1q7ugQcecM8//7zmUEjIZMS2C5K0rVu32qDqcOKYSIYpVWdZsmSxAEUkB3eKiESreDhnx8P3cDrsETz99NM2Awldu3Z1gwYNiliLaLpOkLzJnDxecxIso6W9EtdLR44ccblz5470UxERkUSo3VMaMuQY9LRw4cJENxHJFHj33XftxEe/w86dOye7oCBbmiFSBCno2ZgcMg/Gjx/vrrjiCqusoKeiiMQ+so2YKcGwao4fKQlYcjGyatUq/22JBSjAwFYCFGQM0cYpsTk4XDywaGdOBccwEZFgY5h0rVq17F9PuAMUJIbceeedFqA477zzLCAcrAAFLffoAS4iIhIuXBNQvecFKKimGDJkSMQCFD/88IPNYyJAQatr5jJFKkDBa9OnTx83YMCAk66XFKAQEYl9avcUECggAy+5jTxKCNlo5HOpkqC3fGL4/02bNrVFBP0ZacNyuoIVehzPmDHDeinzPMgIFJHYxabWXXfd5fbs2WMbZmR7JYdjBAOwqXhgw2///v3Jtqd76aWX/H3Sk9oQpL0Uj81xKFIXNSIS3zp06GBzH/g3Eqh0JTGE+V4Eaz/88MOgbZx8/PHHrl69eu7GG2/UukxERMKG9f0rr7xi748cOdJ17949Yq8+cx6oCCcZgVZTke78wJqjd+/e1o7722+/jdjzEBGR4NOuVSKofHjttdcsUyAhLnwZDuUNtZ0/f36iLyxBCno0ErBgTsVjjz122kBFoUKFLPOZYY9UYagTl0js4mKC4wPzJFLSO5aMIG8mDplBOXPmTPTzvvjiC9emTRt/EILqq+TQu/bSSy9N0/cgInI648aNs/YPBEMjEaCgTzeVsOecc46toWrXrh2U+ybA3LZtW3u/UqVKapcnIiJhQxtqZs298cYbtucQKbROrFGjhiVP0V6W65BwV0smRDIXs/5GjRqlNtkiIvGGmRRysl69ehFN8FWqVMn3999/n/Ly/Pfff767777bPufCCy/0rVu3LsmXcOzYsfZ5vPXs2dO+9nQmTJhgn9+7d2/9aERi0ODBg+1vePjw4Sn6/P79+/uPE0OHDk3y8zZv3uzLlSuXfV6TJk18//zzzymf8++//9p9/PXXX+n6HkRS4+DBg/Z7yb8S/zgWRRrHv5YtW9rvXaZMmXwzZ84M2n2zVqtfv77dd9myZX1Hjx4N2n2LiERaPJyz4+F7SOy8FrhXkJJ9g1CaMmWKnV95nevUqeM7dOhQxJ7Lzz//7Dt+/HjEHl9ERMJz3lYlRSKYI5E/f37XqlWrRHvIUx1B5iBDthn+Ub9+fcu4S0z79u3diBEj/NnRAwcOPG3gqHXr1va5lDGSISAisePtt9+27B5KkDt27Hjazx88eLB9Ll544QXXpUuXRD/vwIEDdqzZt2+fZfXyOIkdnygJp4ctfWPVR11EgoljyiOPPOLKlClj7R8ihQoK1mjvvPOOtelkLg9VY8EyfPhwN3v2bGsfRZtP5lyIiIiEspMDbROpmvDmWbLnEClUcDRv3txmPjVr1szaxyY1Jy/UWG9UrlzZ3Xfffeo0ISIS5xSkSARDbrds2WIX4kn1cefClf7Hl19+ufVnpOUK8yQSQ+smBl1xkUs/x5R44oknbDg3C5UPPvggNT9TEYkQBqzSHuTee+91zz333Gk/n9kSXo9ZgpL83SeGGTW33XabDa0rWLCgDYdljk1iSpYsaZ9DsPV0g7pFRFKDNpQ//fSTO3bsmFu1alVEXjyvxRPBAwIUtNS79dZbg3b/q1ev9h+XCSITkBEREQnluZXrfgIDzLxcuXJlRF9s5t61a9fOgiUEBjjf0lIxUv744w/3+++/WytuEkRFRCR+nUE5RaSfRLRjg5C3xLIHfvzxR3fNNdfYiZOB12TzJRXY2LZtW6p6w7MwYBgkPZbpB8ngRhGJTmT50LOVuTX8zbJ5djps9N1yyy3u5ptvdj179kw0Y4pDNEEPBuhlzZrVff75565cuXLJ3u+hQ4csiKFh2RIuXDQyHP7gwYPuwgsv1Asfx/766y/32Wef2UDpcCOjk3URMygyZcpk/55uLk9qcLytWLGiDeJs0qSJHcsjmckqIhIK8XDOjofvwTvv9OjRw+bScb556623bB5FpJ4LSVPe/E0C9nSBiIbz4CeffGJdLCJVzSEiIuE5b6uS4jS2b9/ubrjhBsuOTiyeU7x4cauo4GJ56tSp7qmnnkryvgIDFGvXrnUtWrRwR44cSfqHc+aZtjHJ43MRzkWziEQfKhxoxVShQgU3adKkZAMUBDy9YwnVVfPmzbN2T0ldAND6jeMAxwOCoEkFKDjYewhmKEAhIsFA5uKrr77q/5gNgkgFKFg3eQEK1lzBDFCA4zAZo3x/DAKPho0ZERGJX1ReE6AAbZ4jGaCgotsLUPTv3z9iAQoqJgmW0OLWw3lZAQoRkfinIMVp7Nq1y0r/P/30U7d169ZEP4cgAjMqvJ7ylGqe7kKb1gS0eqlVq5b1mk8KbaXI5CtWrJirW7euVW6ISPSg3Vvt2rVdnjx5rA1TlixZkq1woHIisK1TcgENghJe4JMe6UltDI4fP96VKFHCLVmyJF3fi4hIoB07dlibStpWfvjhhxF7cY4fP+6aNm1qgQlaTrAuatSoUUgeq1SpUu7jjz92OXLkCMn9i4iIgNZOzz77rL0/dOhQm0kRqQAF8+wGDRpkH7/yyitJVniHA2uOPn36uNtvv10zKEREMhgFKU7jqquusgG1BCouu+yyJD+PAY7PPPOMvU8veIIaSSEDkFLObNmyuWXLllmQY+fOnUl+PlnRXDBnz57d3XTTTW7z5s2n/8mKSMj98ssv9jfJ7AdasiW3qUU2EO2gFixY4F577TULbiSHY0Pr1q3tfYZpM58mqbZw3N/u3butFZSISLAUKFDAtW/f3lWvXt3aLEQCFadUTBAk8eaBNWjQIKiPQQIIx1wREZFwJQF06tTJ3idQwVo/EriO4BqDwIRXzcFczkhiPgczQgmcqKJRRCRj0UyKIGch0CuZCgmyqdm0vO6665JtoVCnTh2r1qAV1Pz5820Qd1L4POZScMFOxnRyQRMRCa1ff/3VNu4oSebvsXDhwsm2jaPagrZQuXLlsqBjlSpVkvz8r7/+2mZb0MKpYcOGtimX3BDsw4cPu9GjR9sFjto8SSTES29o+d+Gxb///msJFeB9jnMECCIx/4Jj4OLFi21dNXPmTDs2BtPRo0dttti6devcxIkT3V133RXU+xcRiTbxcM6Oh++BCmxmLYwcOTIim/Gc36neoAsEj0+bQ1pcR6piMnCdwbk5c+bMEXkuIiISfJpJESLMhaAEkYv4hDi503aFzUgCCbR1+eqrr5K8r7Jly7ovvvjCFS1a1IZq01Lhm2++SfLzyShYuHCh9bEne/unn34K2vclIqnLfuJvkPkSixYtSjZAsX79evvbJkBRsGBBGzibXICCeTUcQ7joIshJ0DO5AAUYkt21a1cFKMSPC16C35wvqAhM7lw0duxYy5KnWo83Brkn9/kSv9gUYJO+Xbt2/hYLHH8iEaDgGEgiBwEKKkrnzJkT9ACFl7HJ2o5KOALPIiIi4UAQnplPkQhQsJdBpSQBChKc6PIQqQAFyVu0tt64caP/NgUoREQyJrV7SgX6ybMxyWKC/vCJ8VoRUPHA53OBvWbNmiTvs0iRIhaoKF++vNu7d6/NtEhO/vz5bVOUx+FiWq2fRMKLqgj+9sj44W+Rv+GkkB1Fhi5BDWZG8LfOv0nZsGGDbRD//vvvtrE8e/ZsC0AktbHMzAqRhPi9IGjVq1cva1XI+YVzEeeYxLAJzMY0v89ffvmlBdMIlFEtJBkLvy8ffPCBmzRpkm3cRwrt8QhI0IKJ1phUmoai3RSVExxLvYHZ+fLlC/pjiIiIgL2BO++8M8k5l+EMUNx3331uwoQJlojA+S+SA7vZ/6CFrjdAXEREMjCfpMq4ceN89erV8+3bty/Zzzt06JCvWrVqpCH6cubM6Vu3bl2yn//HH3/4HnjgAd/BgwdT9Dx+/fVX3xVXXOHLly+fb+PGjan6HiTyRowY4StcuLDv3HPP9VWtWtW3YsWKSD8lSYGtW7f6ihQp4rv00kvt/dOZPn26HQOuu+4632+//Zbs527atMmXN29e+/yKFSv6Dhw4kOTnrl271pcpUyb73IULF+pnJyfhmPLwww/7P/7333/tXDFgwIAUvVL//POPL2vWrL4333wzxa8s5y5+H1N6DpPoNWHCBN+iRYsi9vg7duzwlSpVyr9+Wr16dUgeh3VZlixZ7HF69+4dkscQEYlG8XDOjrXvgbVYo0aN7DmXL1/ePo7U87jvvvvseZx55pm+SZMm+SJt7969vp49e/qOHz8e6aciIiIRPm+rkiKV7r33Xjdr1iyXM2fOZD/vggsusNLFypUru/3791tGIIMZk0JPTYbfej01ySqgYoOMi8SQ7Uf2KxmGZBeuWrUqtd+KxEiWs0QH+pXTtomMW2ZQ0ErndJo0aWLHC4ZlM4siKQzR5hjB3JkyZcq4efPm2d92UkqWLOm6d+/u7rjjDqvaEvHQgoyZJlTkeCjj52OqJFKCdoUnTpxIdhA8lUT0lQx8k9hEhReVC57WrVtH7LhCG0vWNLTJo3KU9ngVK1YMyayLpk2b2u86fxtPP/100B9DRETEM2jQIJurRDeEMWPGRKRFK/sLtK2mgpDHp5qwefPmYX8enHupkPRcfPHFrn///u6cc84J+3MREZHooiBFKrFBGbio4ATL0NqkAg8Mzy5Xrpzbs2ePq1GjRornSLzyyiu2iKhWrVqSX3PJJZf4B2jThirwZC/R66WXXrISW/p+lipVyo0aNcoGgtITVKLT559/bhtnLKLZ0CtUqFCin0dbpwYNGlhLKE/9+vWTXXTTUodjA19zxRVXuE8//TTZgAbOPvts9/zzz1vAKxJ9bCV6sdnMIMQ8efKcdDsf7969O0X38cQTT1ggPDDQkdCAAQPsHOe90SJKYs+0adPs+ENA9dixYxEPBDOHhzYYzOriuEtANhTefPNNa6/H7/k777xz2rk/IiIiaUVi4ZNPPmnv0zK6atWqEQlQdOrUya47uXbgPNiiRYuwPw+SWti3YHan9i5ERCQhBSnSgZM8GfCc4NkUSgyZqGw6cqHNZiTZ0vRcPJ2rr77aghBctDNkl17hiWEzkyxtNlDZDKWPtMR3lrOEF1lPtWrVchUqVLCgIH+XiVm+fLn9rTJHgkF0KUHwkmMCgUiCjfwtJ9xcDuwfS1CCfz2RyMKS+EZfYM4jzFZi6HZSevbsaYONvbeUnNck+jAjh+GUHNe8QdmRwKB2Zv141WRUUKSkWi2tHnroIdso4nc9d+7cIXscERHJ2DivMYeC9XurVq1SfI0QTJzfe/To4UaOHGkBivHjx0dsBkXWrFnd5Zdfbt0jkltniohIxqQdrnSgTQ8Z0rQkSO7inuxrNh85IW/bts2yFk83kJQgBS2caBfFEF02SWn/lNjjMFj3ww8/tMGnvFGFIfGb5SzhM27cOHfrrbdadQRDsMkYTwyD59hg42dYtmxZN3r06NPe92+//WbBqR9++MEqMxYuXGjHkqQ8++yzdpHTpk2biG4mSnQjcE1WOAGwQHycVIDNM3jwYAtS0G6MCsDk0K6AC8zAN4k9VPOtWLHCTZ482YIVkUDFKVmVrHXILiUYnDdv3pA+Jps0HTt2DMkwbhEREfzzzz+2dmcNRgCea/lIVEBT/eoNpSbJkraOkcL3T/eAlStX6hwsIiKnUJAiHa655hq3du1ay0qg/UpyuOBmE5LMwM2bN1tv++RmVIANy6VLl/orNWj/1KFDB3f06NFTPjdTpky2Ufr444+7Ll26WJarNjJF0oa/Hdop0ZbrgQcesGzbxLJ9qIzh743WXbxPQGPZsmWuSJEiyd4/Myhoa0KlFMcGgpiFCxdO9muKFStmf+ds5qnFkySFwHmlSpXsd8pD9h4fc85KChev/fr1c3PmzLHguMSnP/74w91+++3W6shDm7lIVWW9++67FgSmP3Xt2rXt9zS5WSjpwSbR/fffr/kpIiISFgcOHLDzG9UDU6dOtcTCcKNq8KmnnvIno7CXEG60lvLaXXmJLlSQi4iInCJUk7szov/++8/3ww8/JPs5W7du9RUrVsymml988cW+VatWpeh+Bw4c6DvjjDN8Z511lm/lypXJfv6QIUPs/lu0aOE7cuRIqr8PCZ3jx4/bz3D69Okn3d6qVStfo0aN9NJHyc+offv29jfUt29f+/tLzM6dO32VKlWyz+Pt2Wef9f3777+nvf9169b58uXLZ19TqFAh38aNG1P83Dh+iJzOpEmTfOeee65vwoQJvvXr1/s6dOjgy5Ytm2/37t32/++55x5fjx49/J//wgsv+M455xzf1KlTfbt27fK/HTp0KMUv9sGDB+13mn8lerVp08Z+TuXKlUvR8SqUXn75Zf/x86677rJjb6j8/fffvhtuuMEeq0mTJiF7HBGRWBAP5+xY+R6OHTvm++qrryLy2KwDA69TImHt2rX+5zBnzpyIPAcREYmd87aCFEG8AGZjM3PmzL4VK1Yk+7l79uzxXXnllfYDypo1q2/hwoUpeox58+b5RowYkaLPnTx5sj2XypUr+3bs2JGir5HwqFq1qq9jx47+j9koyp8/v2/AgAH6EUQYf5vXXXedbdiOHz/+tBcdFStW9OXIkcM3Y8aMFN3/smXLfNmzZ7e//VKlSp32b3PTpk2+w4cPp+p7EMHw4cMtCMbvMsec5cuX+1+Y6tWr+1q3bu3/uHDhwv4LyMC3Xr16xd1mQUa3d+9e+/mvWbMmYs+BwG/Pnj39v2ePPPJIyAMmXbp08a+5UhMYFhGJR/Fwzo6H7yGUpk2b5jvzzDPtNeIcmFTSVTj069fPzvuRTo4QEZHoP2+fwX9Ora+QtPScbNSokfVWHjNmjGvXrl2yn//nn3+6Jk2a2EBs2nO899577rbbbkvVY9Iqpn///m7EiBGJtkf45ptvXOPGjd2JEyfcjBkz3FVXXZXq70uCj+HH9AJlbgH9t19++WXrB75x48YkhyZL6K1Zs8b+Xo4fP25DgxNrjXPo0CHr2+61d2PgNX+/BQoUOO3900aHNiuUfTNzhgHbybU12blzp30e7aA++ugjDXeVqMY5jZktDNHWfIrowlDzggULumhAWzyGhk6cONE+pq0e7SlD2cKO9RVtM8GxnbWXiEhGFg/n7Gj+Hrp27eouuOACa7NEa6NwY7ZTnTp17Jrm3nvvtRl74WwVy4wpvu9ItLcSEZHYPm9rJkWQsGnJ5jNBitMFKMAP5eOPP7bABBftTZs2dWPHjk3x4xFbYqObi+8KFSq4zz777JTPqVixog2loucjQ33feuutVH9fEnzNmze3nqAMQuZnx+Y4G9gKUETOlClTbE4MQ+4ZWJ9YgIK/Jf6m6Nvv4W8rJQEK+q43bNjQAhR169Z1n3766Wn7ru/YscMdPnzYDuLMohARSQ3WCS+99JK7/PLL3fz586NiYVq/fn0LUDDc/fXXX7ce1aHcOFm9erV/TUYwRAEKEREJJa7Jhw4datcLy5cvD/uLzbxMEicJUHDOIykunAGKLVu22HXUXXfdZTM1RUREUkNBiiBiKNbNN9/s/5gNxsSGXHsYxEsGPcN5GWzKICsqI1JS3MJig4oNNh/Ikrzxxhtdnz59rKIjEBvfDOxu2bKlBTW6deumBUMU6Nixow1PZgG5YsUKVblECH93vXr1cs2aNbMFPYPqEwYd+ByGClerVs0W3m+//bYFG1Jq2LBh9vfH3ybZvB9++GGKMouosvnyyy8tmJk9e/Y0fX8ikrGxSU8iRKSDFL/++qu7/vrrLUDL8W/WrFmW3RlKDMqmOo51GMHhwACziIhIsHG+8QLj/EuSYDht27bNznckBXDOJUnKq/4Ol99++81t377dffvtt1YVLiIikhoKUoQIbWFuueUWq5Q4duxYkp9HNiEZDmQTgrJQSkTZGD2dSpUq2QYEwQc+v3fv3q5GjRq2+R2IckvKPGkrRGZH7dq13a5du4LwXYrErn379ll1Q9++fa3lCAv5LFmynPQ5LK5Z7D/xxBMWZKDi6euvvz7l8xJDsPGZZ55xnTt3to8feeQRyyCmPVRSaM1G0NFTvHhxq9YQEUktkhmoVuDYNnDgwIi9gLSmJKuS7E4SJ2hDwXE11Pbu3WvH4SuuuMKqTllviYiIhAqJT5s2bXL58uWzqvlwBwdo8cQ1fpkyZSwpiha14UarWtpMU0USLa0mRUQkdihIESLMF6BtzLJly9zmzZtPu5HAJikBBBBMoESSSoyUVG9MmDDBsrt5nxLT0qVLu+++++6Ux2CzlCzG9evXW5uhSGdWikQKFRP8DVDFwmyIhC1HCPpRqVSyZEn7O2GRT6CPlm7ZsmU77f17PWCfe+45+5gMXv6uzzwz6UMuQRAqLljc//jjj0H6TkUkI6FigeqtwCQF1hPhbPUQaN68edZKj+ArwQKqw0iwCIeyZcvaOoxjfEqO2yIiImn11VdfuSFDhtj7JCCG87xDhXeDBg3s+qFQoULWRjhcVdgkAwwfPtza1HoIljBTT0REJLUUpAiRKlWq2IUxG5xkM6REly5dLNOaskzaQF133XWnVEUkhc1NBmVT2snmK4GKxNx0001WfsnnsICgciNhiyiReEVvVAIH/B0ULVrU/haoeEpo9+7dVtFEuTRtl6ieoGw7JRt9ZDDRfo3gIUGJ1157zT399NOn/VpmTxBAJBOKtlIiIqmt4KRigYQEgqqRxiYNx1ev7cQXX3zhihQpEvLH3b9/v//9Sy65xI71IiIioUJy04MPPmj/ck1OwCCc1zZ33323BUmYd8d8zPz584ft8WlVTbU4M6eS6x4hIiKSEgpShBAblWxwBm5e0s4lOSwymCHBAF8GKleuXNlaI6QEF+KLFy+28k4vY5tqDMpNyez25M6d233yySe2qKAFBM8zsMWMSDwi8EBgjoHlBA0WLFhw0iI+sMUaZdpkQ1HdRDUUFRUpQWUGf7OUOJPBRCbTAw88kKKvzZkzp1u0aJEFN+vVq5eG71BEMjKqKe+//347XtWsWTNiz4NjKfOvOPZ5myckbHCMC0flxqWXXmotrkREJLqrmmm7ypqbRB5aBMUqOhjQ2pDzsNcZIVxoSTt9+nRrJ8seQIkSJcL6+ARl+BmSzMW8TRERkfRQkCKMg6wYvMvg3NNVLpBxSIuCK6+80vrmM4ybbOyUDNQmOBG4EUBP/O7du7uKFSvaZmvg5/Xo0cMCIAy3orKChY1IPGLjqnz58u7777+3zTKGzAcOkqNSguACAUIPm31UN6W0j/mbb77pbrjhBptjUapUKctoqlWr1mk387io8RCcPN3XiIgEClxT0LqOY084KhYS89dff7k77rjD3/KCY+1bb71lbadCjWMpc4N4DmpnKSIS3UikY20+cuRIF+v4PphF8c4779haPlzYH/DOt1Rw04Uh3OsOEgN++OEHq6YQERFJLwUpwoSFC5uXVEcEtiJICv0kmS9BL2kWAg899JBtmv7999+pelwCI1RObNiwwRYunTp1spYQHnpF85wIjDRp0sSGcB84cCBN36NItOF3nb8bKigIxPG7HphhTA/Xxx9/3CqeaJdG4C4lwcBA/H0++uijrk2bNvb3yd8RlRSXX375aQMUHTp0sNZwBFFERFKDYwjHr9tuu80qFkA26gUXXBCRF5KEB9YZXkYnmzVUroVjHsaePXusvQatpQgWjxo1KuSPKSIiaUfVMC1Yb7311rh4Gbl2pzIkXOiK0LFjR3uf15E9g3BYvXq1VWySUOmJ1LpDRETij4IUYUJ29EcffWSVC3ny5EnR12TJksUu8l988UW7yB87dqyrUaOGXYynFBmNBCjYQGXzdcSIETavYurUqf7NWPpXsqkwfvx4q6ZghgYtZ0RiGUPi+V3mb+jVV1+1xbz3t8fvPn+P5cqVc4MGDbLNvjvvvNPNmjUrVRtqBBzr1q1rQ7HRq1cv98EHH1i5d0qCG3v37rXAhgKDIpJaZC4yrJJjGce7SKJSk4Arc35IjKB1HZWj4UCwuVGjRjbDq1ixYm7atGlhqdwQEZHwoXUxgejAt0g7evSoW7lyZdgfd+3ata5Zs2Z2/cI1PlWU4UK76M2bN7uePXuG7TFFRCQD8UnEbNiwwffPP/+k6HM//vhj30UXXURUwVegQAHfypUrU/148+fP9xUpUsTug7fnn3/+lM/ZsWOHr169evb/W7du7fv9999T/TgikfTnn3/6HnjgAfsdrlGjhm/r1q0n/f/vvvvOV7NmTf/fAX9PH330UaofZ+3atf6/p/PPP9/3wQcfpPo+jh8/7lu4cGGqv04k2hw8eND+FvhXwmfKlCm+t99+O6Iv+YQJE3znnHOO/fzLly/v+/nnn8P22P/++6/vjjvusMfOkSOH78cffwzbY4uIxKpoO2fzXKZPn57s5/Tq1cu/dg98i+T3MHjwYHsOnTp1Cttj7tmzx1eoUCH/dQ7XEuHE692xY0ffH3/8EdbHFRGRjLH2UCVFhNDKiR74zZs3d8eOHUtRSSx9phmGtWPHDmvPlNI5FR5mWzDYi2xv+mWSeZEQg4SponjjjTdsgJmqKiSWMAy7bNmybuLEidbjlr7k9EoNtGXLFvs82pEwbI45FbQJSSn+5pg/cc0117itW7da7/cvv/zSWq6czokTJ04aDMhzuOmmm1L5XYpIRrVx40ZbAwRWSzK0MhKoBmNAttfqjpYdn3/+ubW8CJfJkydbZWimTJmsIpRKChERiT9k7h88eND/9ssvv0T0+fAcqCoAsx/DgXMt533aK9JWlvMf1xKhRDtJqiM9F154oVVxXnTRRSF9XBERyZgUpIgQ2rywYcmAx5QO5i1evLj1uqffJYEN5lTQ/57h2il1/vnnu969e1tbhHz58vlvv/vuu23AJW0TaHfTtm1bG0LJIDA2cAmmBG6MiEQTWqAxT4VAHEEDgnH8fTAgnr8VBmN7aAvC7zpt0F544QVbbKfUH3/8YT1f2ZRj4B/zLSjzJjCSkg09/nbZyBszZkyav1cRyZhoqURwtH79+hFvc+G1uvMGdj799NO2WRLuvtS0u+jevbsbN26czaIQEZH4RBs/1uyBb5E0ePBg9/vvv1sC4T333BPyxyNJitmSJDryvc+cOdNlz549pI/JXsXtt99u7aY5x4uIiISaghQRwgl/8eLF/gzAlCJrgUzsoUOHWuYECxT66qe2H3XmzJn977PJSt9+ghcEQshCp8dlgQIFrKqCj5mlwSKM+RipHd4tEips/A8bNsx+b/ldZfOfKgkCFSzmybJluBszYbiQAEE4hrledtllqXosLgoI2r3//vsWWHz++efd3LlzXc6cOVP09WeffbYN6GbWDH9bIiKpQaUjmzQcQyJ5HmbuBJWgHGtJfJgyZYrr16+fBYXDjcdkXdKqVauwP7aIiGTcZEOuxcH1AGv8UKODAtc5XMe89957dn0TanxfBQsWtLUHewMiIiKhpiBFBJERGZh1yGBsWs+k5KK8S5cubsWKFbZA2bVrl23Ckk2Ylo0LNhvYeC1cuLD79ddf7WL/qquu8gc+qLJgQOd9991ng7nYqGVzQiSSaCtSqVIl+1tgQKv3O8rfx9KlS60lGhVA27Zts009hrylNRBCUOPGG2+08uqiRYtaRjN/CymtgvJQwcGwu1tuuSVNz0VEMi7O0SQ3LFy40OXKlSsiz2HSpEm2duG4SqCX6k5aT4QTAWOyVlPSKlNERKIT3QTWrFljb6CFKu+z1o5248ePt4rqK6+80iqkQ43z/iOPPGLvDxw4MGzXEQREXn75ZUtopHJRREQk5MI1JEOSN2PGDBsiki1bNt/27dtT/HIdPnzY9+CDD/qHh1WsWNEGcqfF0aNHfQMGDPBlzZrVf3/VqlU76fkwLPj666+3/9esWTPfL7/8oh+thNXu3bt9rVq1st/BqlWrnjREftGiRb4bb7zR//ubJUsWX+/evX1//fVXmh5ry5Ytvquvvtp/fwyTZzB3Sn311Vc2xJvhriLxLNqGcMaDY8eO+Tp06HDSMS5S/v77b1/nzp39x8I6der49u/fH/bnsW7dOlsn8RwYoioiIrF5zmbNntggbNba0fw9/Pfff74SJUrYY48dOzbkj7dt2zZfzpw57fHuvvtue/xQmj9/vp3vQ/04IiKSsRxM4XlbQYoowcU+AYG0LgoIcngLmMyZM/vGjBmT5sUFm8CdOnXynXvuub5ChQr5jh8/ftL/534nTpzoy5Mnj20CP/nkk74//vgjTY8lklKHDh3y9e3b14Jo/K5zYRC4+U/A7KyzzrK/gUyZMvnuv//+dAXR+B33AnYXXXSRb9KkSan6eg6+2bNnt68fNGhQmp+HSCyIhg2PePPUU0/Za1qgQAFLIoiUHTt2+K699lr/BlKPHj18//zzT9ifBwkTvBZeAsWRI0fC/hxEROJBPJyzI/U9cG2RK1cuu94O9WNz7q9UqZJ9n5UrVw75eW/nzp12/c/jTZgwIaSPJSIiGcvBFJ63z+A/oa/XkJSgdQFzJry+zvxoKLNMqZ07d9rwYK9N02233Wb9K3Pnzp2mHwBtpH766Sd37bXX+tve0FaHdlDe4E5KTikDZcYF7W8efvhhd95556Xp8UQSQwszerDS85zB1R07dnRPPfWUDYtjQDYzWTwPPPCAtWDq0aOH9VBNC2ZXUFLNnBZcd9117u2337ZWK2lpjfLmm2/abIysWbPqByxxi/MBM5MOHjwY8WGW8fSaNmjQwIZS165dOyLPYdGiRe7OO++0/tv8XN966y3XuHHjsD+P3377zVr40daP+VhffPGFy5EjR9ifh4hIPIiHc3YkvweuTbgGoe1sKHXo0MHaQXO+W716dZquRVLr1VdftXPsG2+8YbMoREREwnneVpAiShGgoL/+xRdfbAO5UjqQkqFWL730kgUMTpw4YYuaQYMGubZt26Yq4JEYNlvbtGlj77Moo09/w4YNLZjRt29fN27cOJc3b17ru08gIxxDxCR+8bvMYLhnnnnG/fzzz/Y7xe8WwYd58+bZ+/RDX7dunStVqlSaAnuB+Foe79FHH7UNOYIdvXr1cj179kzx7zL3QSCFAErgben92xOJdvGw4REN9uzZ4/LkyRPx4wfHXwZSExDmfYLBH3zwgbv88svD/lz4nbrpppvcN998Y8d/5hEVKlQo7M9DRCRexMM5Ox6+h9PNvbj33nttDTBnzpyQJSuQJMlbtmzZ/Lfp2kVERCJ13tbg7CjF4N/XX3/dAgwM2k0pghndunWzodoVKlSwrPB27drZBT4ZiOlRr149G87NEOKvv/7asinZuJg9e7YFRtavX28DNXk8bp82bZptboikBgtjfqcYRsfQ9rJly9rfAFVBDI5j0HvdunXdl19+aRk+ZBZ50rqZR8UQv98tW7a0AAVBDzbCCJCkNEBx6NAh17RpU/tbO3LkSLqfk4hkLFOnTrVh1PwbyeMHVQtUSxKg5RzOkGqOt5EIUKB58+YWoKAqlEpRBShERCQSOD+G49qWc95DDz1k75OUFaoAxf79+93NN99s1/THjx/3365rFxERiRQFKaJU9erVra0CrZQINqRWxYoV3cqVKy3IQVBhyZIlFjhgoRO4CEkNNgjIrNy2bZu107ngggssi51SVLIbycCgrQ2Pmy9fPnf77bfbBvPEiROtqkMkOf/++697//33LThBixPaIxEooNUSFQ78jlERRFCC9mJUPBBcIJCRVvxe0rKsTJkybu7cuRb0oK0UFwdXX311qiPDn332mQXr2NATEUkNjh8EODmPRvI5sH4ga5PWjbSZoIqSdUSk0O7q0ksvtQq64sWLR+x5iIhIxkYyU5EiRSxpKlQOHDhg19BUN5AwQEVjqNANgUSwb7/9Nt3JjCIiIsGgdk8xhAxvgg1ka6cGQQWyMT755BP7mH7Oo0ePdjfccEO6ng9tbehXOWLECNtA5rl5Nm7c6Pbt2+deeOEFy4qnhyZVGJStssEs4iFoRkCOANjmzZtdrVq1LIP3xhtvtEwe/j+Zs/z+83vG3JP27du7nDlzputFpNqIAJtXqUQFxKhRo9K1CcYGH5UXVBSJZCTx3nYhXIFaKiipRqTdXDiRGUrAluoxngfrBIIlJBpEA/p/M7NLRETSLx7O2eH+HrZv324Bcyq+SZIiWBFs3HeTJk3czJkz7f7pXBDYQjYUCLjQZrJ06dIhfRwREcnY/lS7p/jC0GpaHjRr1syqI1KDBRWBAob4sgghgEClBhu9tINKKyonunbt6jZt2mQZ8IGlsFR/PPjgg65Ro0Y2N6BatWo2jJjnMmDAAFtQSsb2119/WZsw2pvcf//9rnz58lY5wXD24cOH20IdVDcQwKAfOhcFTzzxRLoCFBwcGb5NIIEABfc1YcIEt2DBglQFKNjII7uJYIeHwa4KUIhISo9Fw4YN8x/rCEwQOA13gOLXX3+14DCzrDiu0d6JishIBShY77B+oKLNowCFiIhEEp0BOF+TRBWKAAW4/iFAwTmP1o+hCFBMmTLF/fjjj/6Pa9SooQCFiIhEDbV7ihFklF933XWWKcKw6rR8PUGODRs22CYIyNgsWbKktXJIT39NNlQuueQS/8dkfZBNTisoNp+ZH0CmC0ESskN69+5tGfEELQIXSZIxEGhgbgq/AwQc6LNKkIsWYfREpaXT9OnT/ZU/aN26tbvtttvSNYydCwseh3kTI0eOtI/ZjONvgvtPbf9Vgm39+/d3d9xxhzt8+HCan5eIZDxsxFO91blzZ6tgiBQ2QwgQk0l5/vnnW3UkawLaOUYCQRKOx1S1MSdIx1YREYk0rhlIaEKbNm1C8hi0s6XrAAYPHmztb4ONynUSHmkjRVspERGRaKN2TzGGljfMhgjMxExLiSsZ6wQr2KAFmxRUaJBNGQy0gho/fry1gmJT2lO0aFHLEvniiy/cmDFjrOqiTp061sLnlltuCXsGqYQHQTD6iRMcoKqHKpw777zTNsLYJAvsg0prJ9qTBaOlU+AgegIjZAd7v4dsgjEsLq342yP7iPvlexHJyOKhdUS4vfbaazYnatasWa5y5cphfeyjR4/asevVV1+1j9kMYfZPJGc+EKBg84c5RASkySIlcC0iIsEVD+fscH4PXDdTLc11y+7duy2oH0yHDh2y8zBtb0nomzZtWkiGV+/Zs8dm7pH4RZW6rrtFRCTqzts+iVkbNmzw5ciRwzds2DDff//9l+qvP3bsmG/gwIG+iy66iF4T9lanTh3fmjVrgvYc//nnH9/8+fN9rVq18p1//vm+TJky+fbt22f/7+jRo74BAwb4KlasaI9doEABX58+fXw7duwI2uNLZO3evdvXv39/36WXXmo/4/Lly/vGjRvnO3z4sG/FihX+37vMmTP77rrrLt/HH3/sO3HiRNAef/369b5GjRr5H4ffQX7Hjhw5kqb7+/rrr0/6+N9//w3SMxWJbQcPHrS/Mf6VpCU8Zvz+++9hf7lWr17tK1WqlP+4+Nhjj9l6INKvS+vWre35nHXWWb4PPvggos9HRCSexcM5O5zfQ7t27eyx2rZtG/T75hq+ZcuWdv8FCxb07d+/P+7WHSIiIgdTeN5Wu6cYRksGZkqQie71tE4Nev0//vjjlrXRpUsXlylTJjd37lxXsWJFy2bcsWNHup8jGRpkq/Ncyd4gm97Ljj/vvPPcRx995L7//ntre8GgTtpekElPiyiyKZlbILHlyJEj1laJtmQFChRwffv2tbkT/B5ce+21NhQ2S5YsrkqVKtbWg/YiZCW9++671t4jPS2dPNzfAw88YD3V+fvg95Ae51u2bHHPPvtsqoe3UwnCrIxKlSq5GTNm+G8/80wdQkUkZaha4Dh4/Phx/22hHoiZsFKBNnVXXXWVW79+vbVpnDNnjrWVYD0QydZXrDlYJ3CspqKDLE8REZFosHjxYvs3FJXTnPveeecd//kvR44cQbvvn3/+2So1aekYiXWHiIhIaqndUwwjMEE7pVtvvdU2g73b0loeygYug4C9IdgEER599FGbG0BZTrDRa5pN62+//dZ/G4PCaDdBKwqeD5vZlL3efffd1ooqGBvYEprNLxbALLIZcE1wicAEPz+CYMeOHbPPo6yLAEJqgwQpxeMOGTLEWpd5vcxpF/LCCy9YECw96BM7dOhQu2/+LkQkvlpHhBLHvSuuuMJeJ+ZB3XvvvWF9fNoutmrVylotgiDA6NGjXa5cuVykcXzu2bOnbdBwDmF+loiIhE48nLPD+T3QfpANf86jF198cdDul9mMJAeS4PX888+7J5980gUT7ZRJkChdurRdb6u9k4iIRPt5W0GKOEOWJP39X3nllTQHFlasWGEbsp999pl9zCYG2efMsAhFtuXatWvdxIkTrf9m4PwKqiluuOEG+3/MzuB53HXXXbaBQT9NLbQii+oCZjxMnjzZMn927drlihUrZn1a16xZc9LnFi5c2IJNDKqm52qw+6yeOHHCZqD06tXLNgNBtjABBXrIpjXgQYYv8zNAoIXfQy4mRCT+NjxCjUrCVatW2YZ8KHpNJ4bEBeY/MX+CY1rWrFltLhQbLeF6DqfD5gzBZDZTOE+IiEhoxcM5O9a/B65dSNbjWooZd/Pnzw96hTbXLp06dbLr+IIFCwb1vkVERFJDQYoMOlSbzWAWJGQj0p4mPRsbtGKiimLjxo12W758+VzXrl3d/fffb4PDgo3HZBOY9jy8MTyZCgpup8UOrYHI2GdDg1JY2gnxVrt2bdt4kdCjOuHTTz+13w1+Rgw+pyqCnw2ZwZQUMwiWt6pVq9rPp1GjRtZ2KRQbYvwu0C6KYMT27dv9Q7EJ1t1xxx1pfsyvvvrK/n4IqFBZFC2beSLRKtY3C0KBFocMw7z88ssj8vgcE2mvxzEbBGzfeustd+mll7pIo+UVlZPesTU9VaAiIpLxztmx/j2QWEVLXJKhvvvuO39XhPRatmyZq1atWlDuS0REJFgUpMigaOUwZcoUa0sTjAt+MslpTdGvXz/366+/2m0ECMjK4M2bLxFq9MymuiMQ7agIyNACqnr16ta+gk1xZYoE186dO92sWbOsjdOiRYss84eKmr///ts/C4UqGNqOeRtzVFnkzZvXhcoff/xh5csvv/yyBUqQJ08ey1Bm9gSbX+lBtjPVOgTmeD937txBeuYi8SnWNwuCjYrGOnXq2Plp+fLlYW2rxHGZ4C1t6QiScK4kcPvII49ExRydAwcO2LmazFE2aEREJLzi4Zwdru+B69/Vq1dbG1vaJgUD64LrrrvOku+oRg/GrAvO/Z07d7ZqybFjx7r27dsH5bmKiIiE87wd+atVCSrKRtm49QIUZCvSHomN1rRgg4XKCdowEaygnQ/DusmUp2qDygoveBFKtIFgo5xhyPT1hjfngEDK/v37bWHG0G0WkVRgMIiZDXZJHYIMtHDitS5ZsqTLnz+/vU+rEgIU3u8Vi2EyhFkE87p7CBaEKkDBcyMQwe8e81MIUJAVTMBi27Zt9juQ1gAFVRkeKkIIytCKTAEKEUktBlMSEOBczIIsXDgO0iqR4zIBCrIp6UPdpUuXqAhQ7Nixwyo6SKgYNmyYztEiIhLVSNCiKpzzaDDQepH2twQoqNoO1jBu1hve0G02gERERGKRZlLEueeee84988wztmlMoIGMyvRgQUXWfP/+/f1zBzJlymTtfh5//HELYoQDcweWLl3qlixZYpsdvLGBTj9PBo8FDuOm2qNSpUquQYMGtshkQ11tJf6HQANBJto38UZf1H379tn/Y3Oe6ogbb7zRWijRvokAER9TucK8EAIY4dp4o6UT2cFecIpsJgIWBOHSM1CdIBf3TebR119/HdIKEJF4FQ9ZmcG2adMmC1aEo4qCczPBWo6JtOWj2o1zIZsq0TK/iXaOVJf88ssvVqU2Z84cawUoIiLhFQ/n7HB9Dy+++KK1PyawQMvE9CL5j1lRtHeizZM3+y5Y13XMlqQaXEREJJqo3ZMYKgyY7UCWhteOJ1iLoLlz51oLCYIFIEuTOQC0lCB7M1KBAK+KwmtFlBBBCzLlCVwQVOG58m+8By54PchipWSZzXgCO59//rm1bUoM7bOoJvC+lpknVEmE8/kSNBkxYoT9PNmE8wZiP/nkkxZ0CkZmMK2prrnmGptDQVCPCg0RyXgbHuk9XvXu3dsCuLQxCvfmP7MnvvzyS/uYSoVx48a54sWLu2jBc+OYTSUmwW7WD1TEiYhI+MXDOTtc3wPB/ldeecUCFS+88EK67ouuALQ7xIIFC9K9XiDIMXr0aHt+0ZKQICIikhgFKSRJixcvdkOGDLEFDa2R0ovNboIVs2fP9t9GljuZImSdBDNDJDUzC6im+Oabb6zig3/Xr19vA78JorBJzxsVGWCzm4UulQG8JmR3koVSr169mFv0EZhiw51+p7Qr2rJli1VL8JqwIY+LL77YVahQwQaqsrnG90hrJ26rWLGi/cubVzYcTrQoYfA7i26vWge1atWyLGEqOdIbUOL1uOSSS/w/W34X+P0gwBXvwSqRUIiHDY/0eO211ywhgPMdFRThqJ6gqowNE86/BJuzZs3qBg4caOfeaGjt5Jk5c6YlShw9etSCzGzShHNGh4iIxN85O1zfQ7NmzWzeI9fNXEOmFUF6ro+59qRdMtfi6W0bxTUrrW9ZCxBEERERiVYKUkii2JCmgoBNe+Y8kKUeLAQF6DHNADA2I5A5c2Zrx8NMA9oFRXIDmDkKtJlgjoKHCorNmzcn+TVZsmSxzyEjla/l9aOagOHcZIGyOKRtBa2RaIkUCjwmG/csQnnbtWuXBR5+/vlnq4ygrQffE9/Hxo0bT2p1lRCBCGZLEIzhZ8HsCW8QHD+rSKLCg8AEVRMsvMH31rRpU7soqFKlSlAeh995FvIMl+/QoUNQ7lMko4uHDY/0BgwIahOYv/fee8PSI5vz6o8//mgf33LLLW7UqFF2boo2rAnou83rw0bP+eefH+mnJCKSocXDOTtc3wPViVSec83ENUlatWrVyk2cONGVKFHCrsPT24LZO7/SOorK90gklomIiKSUghSSbGuIZ5991jaEvQUNWZjMlghGEIGM/bffftvuf926df7by5cvbxmeLVu2jJoFMQEANv7Z9GdmB/+y2c9rRCYq2Z9sAvFGWyvmFySGmQjMaCCTlTeqVfgj5DXljc127316lFOlMWPGDPtcZmnwxs/AeyPLn/sjOMEbmahJta8CfU0JVBBMYRHNz7FIkSIWlOB2AigEI3g/nC2bTofe6Syw+V0JHO5OOxB+V1jQ054rmAikMWC7cePG9jMQkfSLhw2PtGRFBm4KUKkW6goGzlfdu3d3b775pn3MuYJjGq0Wo7kKjErL2rVr2zlQREQiKx7O2eH6HriG4hqRQMW1116brjZPrBHoQJDWmRGsM/i+A7sUhGPtISIikl4KUkiq3HfffW7nzp02PDgYLaDApjp9qMnuZOOcSgaQRXnXXXfZsG3mQcTKwooMf696gaoKynUZMk1QhiAEvci9oAKzFLwBz2lBVQMb9QQxaFFF1iwBEt5nYUqrDDanCE7QnimwIoAgxznnnOOilTfUjWwiglkcrMDm1e23327BCV7LYG24bd++3X73vKHuvI4MCW/SpElUb+qJxJJ42PBIjWXLllmgs3///nb+DDVm8owdO9bm8Rw4cMCOXQ8++KA9Pq97NOGcSCCY9hN58+aN9NMREZE4PGeH43vgmoWqeq7pCFSQAJZanLPLlClj19ndunVzgwYNStNzoUtBmzZtLJluyZIldk0oIiISKxSkkBRj0URggo3c9GSJnC7j9K233rKMeVoSeWiVROks/T7JKomVgMXp8D3yR8hrStCAhSUtjFjkshnPXIVJkyZZwIZyX954n4UwAQaqB0qVKuW/P+6HQEis8oZgE6yi3QeBAw/VHQRZWHgzKyOYPv74Y/v9uvLKK60SRkEJkdCIhw2P1OjXr59VJF5zzTXus88+C+nsImYMMe+C2TleVSLnUuY7RJsffvjBAsCcAznPLVy4UMddEZEoEw/n7HB8DyQIcO1Cq13aJKflWqxt27ZuwoQJVu3OrL20ttclUY7WtyQCfPLJJ65mzZppuh8REZFIUJBCUr2xwIbuo48+6r+NbHdmFQQzU4PNajZ0Xn/9dWu142XRg6oAL2DB5os2lGMbP2s21bzAxLZt2/z/j4BMo0aNrHd7jRo1QhacYkA2QRAW9fy+qV+rSGjEw4ZHao9vI0eOtM2HUM1YoLXTU0895caNG2ePx+v63HPPWQUFLQajDW0JmcnB7wJzj6hYo9JPRESiSzycs2Phe+Daun79+nZNSyIgHQTSY/ny5ZbwRhKAiIhILFGQQtKFlkWUtLJ5zHyFwKz+YKE6gCHObGJ/+OGH9pieQoUK+QMWbDArYBEb2EhjGBw/U962bt3q/39s5NGPlZ9p3bp1gz6om4oVNvPY2OvVq5f/dgaJlytXTr9DIhl8syA9mBtEcJ3WTqGsmvAe69VXX3W9e/e2jEkwn+fFF1+MqplCgf2wea5Ul3hDRglMR+NzFRGR+DhnR/v3wPMi2Y+EKZIAX3rppVTfB1XgtP5VwF9ERGKdghSSLmvXrnW33XabbcZ8//33Ic/aJCtk7ty5trFNNiatkQIrLGrVqmVDNyltDXZLIEl/K68FCxa4+fPn21tgxQTtqxo0aGCBiXr16tnHocJCnlkWtNPatGmTK1y4cMgeS0Ria7MgvcFX5k9QGfDYY4+5wYMHh+yxCNx36dLFbdiwwT6uUKGCDcZm4z9af+4tWrSwwdjo1KmTGzJkiAZki4hEsXg4Z4fje/jxxx+tfSFzAnlLDdo0vvbaa1bRTcJUaq+BuKbiGooWwLR95HpYREQkVqX0vB19/QIkKpB5ziYJA6K9AAUbNc2bN7fNZlo6BDNwwUwGNoF4Y35DYMCCQdXjx4+3NzBfwAtaMD8jlmc1xCIqFhiIzuKZDbVVq1bZ74aHCglKmwlM3HLLLSFrhUKfWAIiRYsWtY9vuOEGd/fdd1uPeIaKi4gEA5V8bMQvWrQoZC0W2ATp3r27mzVrln2cK1cu9/zzz7t27dqFvHIjPQgKM2OIc/iYMWNsbSAiIhIPpk2b5nr27Olat25tcyVS6osvvrAABTg3piVJq2rVqq5YsWKuRIkSFqgQERHJCM7wBe4uiiSDzRPa9bDQoo1P7ty5Q/56EbBghoW3IU6FRyA2xNmcJmBB4IKy2ngZvh0tOESwgeb9DGj/dfjw4ZM+h9fdCxzx8whVYMKzefNmG85KFJaqCTbIRCRy4iErM7FjX2Crwb179wb9vLdv3z7Xp08f28wg8Erwv2PHjjaUO3v27C4a0d4J3rmW88ORI0csgUBERKJfPJyzw/E9dO7c2aoZCVT0798/xclctGdav369za1644030rzuYI3APD1d24qISKxTJYUEHQOOaXPBRkrgRg3zJMguZaEYbAQh2PjmbdCgQW737t3u008/9W+Y8zFVF7yB51C5cmXLPmGWBf8ywFNSbteuXW7lypX2Rnkx/x44cOCkz+Hnf/PNN9vPhX/D/RpT8sxFCW3BvvvuO/tZi4gEC62dOOcw9PKCCy6w24IZoGAm0/Dhw20QNscy0NaBuRMlS5Z00YqZP2SUUsXIUG+Q5SkiIhJvdu7caf/mzZs3xV/DeZwABe2JWUekFDOomMf48MMPWyKWV1UpIiKSkaiSQtLlp59+sl6bDPXi/XCWo5JtwrwML2CxZMkSq7xIiIUlwQovcEEQI1ozVMONzbGvv/7aH4zgX9prJURLLXqiexUrtAMLV1YPm2Is+PlZs2Ho4flSBp0tW7awPA8Rie+sTA+VYpzXCIIzELpXr15BrUJ455133DPPPON+/vln/9wJ5jiQCBDN5syZ4+69914LZBO4oaJSGygiIrEnHs7Z4fgeCMgvW7bMTZ061d1+++0pmmHBNRKJCJzraRWZUv369bMqShIiOL+Gco6fiIhIuGlwtoQFC7f27dvbkOJPPvnEfzuzArgtsGQ11E6cOGEb2YEb7nxM5UdCbECR/Vm8eHHb6OZf3qgICOdzDlcwh00lFs680R7JGwTHvwnx/dO+yatE4d+yZcu6c845JyLPn41Cfpcon+ZnqqoJkegTDxsegVasWOEmTpzohg4dGpQh0ByHCaY/8cQTNkAT+fLls0qKVq1aRfXcCSrWunXr5kaPHm0fc+5kZhTnBRERiT3xcM4Ox/dQpEgRu6blepeZd6c7z5NsQFvcOnXq2HVxaq4p//nnH3f//fe7Rx55xJUvXz4Iz15ERCR6KEghYcOijHZA9Mz0slALFizoChUq5GbPnh3Rdks8l2+++eak1kVbtmxJ8vPJWgkMWvB22WWXuTx58tgbFSPRFsTg9WcTac+ePfZG9o0XkPDeEs6QCHTppZee1B6LvuJee5NwIxBBthIXBE8++aT/drKMr7jiChvErb6sItEn1jc8OEb+8ssvIWldRMCD49nChQvtY16nHj162EZEtGdKMvyTIAqVkl5/7gEDBlgrRhERiU2xfs4Ox/fA9RUz77g24dqK66XkjB8/3qoNOT+SJEeA43RWr15t8yui7dpSREQk2BSkkIhZunSpq1evnrVZYoPc21RmEyjUA5VTYv/+/ZbJGriJT3UBmzBksSSHxSpluF7QIuH7BGpojcTnJfav9z7DUcHjURJ87Nixk/5NeBt9Sr0gBG8McA18P7E2V4HI0mWxHBiA4X3ajNAzNVoQRCJQQtUGrVAuueSSSD8lEYnzDQ+Oo/Xr17fe0wQUCLIHA/NyaOvE3CZwXGMoNgGLcLZGTM/PlPk/hw4dsqQDNmCivSWViIjE9zk7XN/D77//7j9Xcy3GNVxSGHBNMhVfQ4va7t27n/b+X375Zde1a1f3wgsvuMcffzyoz11ERCTaaHC2RMwNN9xgGalknXgBCrJRKlWqZP2r33jjDdskjxQWnGy0JNxsoV0UGfwJqxC4jUAA1QosUrdv325v0YYAEIESWiMFVoLwRoAiUu2akjtIUTVBj3ZahoFqjltvvdWqOQjmiIiEGscaju2cA2gvl94gBUHvPn36uHfffdfOfZwH27RpY72mOT7HCjZ9mMlBsIXNFDaDREREMsra4L333rMARHIBCvTs2dMCFMyjePTRR1N0/6wNWCNwTcm/qqYQERHR4GwJE+YfMOeARR5Zq7RNArMSCBpE2wZ6Yo4cOXJKBUPC96l4CKyECKyGSGw2RsLFKgti7y2wAoPNocQqNwL/jYYqldSYNm2aDaGjHRhVE9Hck11E4jsrk00CghRFixZN831QjceMibfeest/vG/atKnr27dvSNpIBRvnsC5durgOHTq4m266yW7TxomISPyJ9XN2NH0PX375patWrZq9//nnn9uw7ZRatGiRu/HGGxWgEBGRuPdnCs/b/+s5IxJibNBQXfH111/7AxRgM4TFHdUVjRo1iuqfA73D6Ud6up6kSfFaO/G2fv16u43SYO6XQITXAioerVu3zo0bN86GzjVv3txuo70KHzdo0MD6varHuYiEy+uvv24B8iZNmtjHtDNKK4Kszz//vLVD8loGcnwjOEFVWLQjOPPaa6+5Xr16WaCddogcswmcK7NTREQkcZzzH3roIXu/bdu2yQYofv31V2vtxJw9LznPSwgQERGR/4nfXVGJOvny5bM3D5v1bIYwIyKw/RODremBXb58+bjaICEIwRsVD9ddd52LZ2Tfem1OMGvWLPfKK6/YEHMvSEFgZtmyZRF+piKS0cycOdNazBEY5RzEfJ60oKUhQ6QnTJhgG/2oU6eOtXq66qqrXCyYP3++VU94gXOCKmPGjPEfu0VERDIirlmosixbtqy77LLLEv2cV1991a1Zs8Zlz57dDRw4MMn7orqyVq1absOGDXYtOHTo0BA+cxERkdilq1CJGDap2eShNDawFcaIESNcxYoVU9zTU6ILPcypNmHzy9OyZUvXrFkzDYYTkYi75ZZbXL169Vy3bt3c5ZdfnqaZE2RMEtwYO3asBShq1qxp57I5c+bERICCZACqSGrXrm0BCuZFjR492n311Vc2P0pERCQjo8qf8ySV4ImhZfHTTz9t75OwcPHFFyd5X7S0pYKCgMcjjzwSsucsIiIS6xSkkIhi0ZawNJbSWVogMYDbs3PnTle3bl03cuRIy9CX6ECGEUPlEpYzc/vHH3/sv41BtO+//761QBERCTeq87xzB1mMVFPQjik11Xrff/+9u/vuuy2oTvUEmZFUThCc+PTTT1PVhzrS+F4+/PBDOwd37tzZ/fjjj9Z+UbOBRERE/nfticAuAIFIdGBtUaVKFavOTAz/30NyxOrVq12RIkX08oqIiCRBQQqJOsOHD7cWUMwq8MyePdvNnTvXTZw48aRNJQZyM5RawiMwQHTgwAFbaLdo0cLmjXjozfrRRx9ZVpGISKRR+UAboxdffNF/W2pmAK1atcrddtttrkyZMu6dd95x//33n1VjLF++3ConYiE48fvvv7slS5b4P27YsKHr3r27W7t2rXv55ZetVYWIiIj8X6VEUkGKxYsXu3fffdeuSZnplDDAzzqBc2zlypXtmtYTz/MHRUREgkFBColK5513nn+oGOjjOWjQINexY0f/bWSxMtuByfA//PDDSbdLcLG5xWtNQMLDphabc7zt27fPfzutuggwUQ0jIhJpCxYscJs3b7Z2RocPH05xQHbRokVWKUGW5PTp020z4vbbb3dff/21Bc5joa3Tb7/9Zu0o6Kd966232mBs8L0QtClVqlSkn6KIiEjMVFJQ8d+pUyd7/4EHHki0RSKJXJMnT7YqxcDKchEREUmewvkSE5hxQFltoG3btllGCsGMokWLnjQTgYqLHj162OJRUofMoE8++cQW4FWrVrXbMmXK5L744guXO3du27zzqlkWLlyorCARiWqcB/7++2/XvHlzd/755yf7uWQ/zpgxwwZgMp8BZEgSoOWcEiub+rTdGzx4sA3BPnLkiN1GL2w2XbJlyxbppyciIhK1uNZJqpKCYdnr1q1zOXPmdM8991yiX8//Izjx7bffnpTgJSIiIslTJYXELAITLCBp5RFYPvvll1+6n3/++aS2UGST3nTTTf4BZ/K/Pqlvvvmm69+//0kvB33K3377bcs+9tAqhR7s9F4PpLJlEYnGzQUC1QQmPAyqzJMnT5JfQ9tAhmMShKBaggAFFX20r+Mc89Zbb8VEgIJz37333muVE7RxIkBBlue0adPcmjVrYuJ7EBERiXSLRG8Ncckll/hv37t3r3v22Wft/eeff97lyJHjpBbEJHR5SpcurQCFiIhIKqmSQmIagYi8efOedBttOdhgCtyMIXBB/1CCFYFZLww6++mnn1yvXr1c9erV/Zm03G9qBqpGu3nz5tmciBtvvNE24MDiu02bNv4NvAsuuMDev+uuu1zJkiVd7dq1/V/PZl3r1q0j9OxFRFKuS5cubtiwYRZoHT9+fLLHcloyjBo1yr3yyituz549dhuVBg8//LAdF6keiyWcvwgoE6i5/vrr3VNPPWXH8ng6n4mIiISj1VOuXLlOaj/85JNPuoMHD1ryVuCwbComuMbiXMs15xVXXKEfkIiISBooSCFxJ2vWrK5mzZon3cbgsrFjx56yUbN06VLLkg2ssKAPOUNS6d/NZo+HHuR8/dVXX31S5kyk0Fuclle0LylWrJh/HgdBBlp9sEFHcAFUQIwYMcIdPXrUH6SgFJnvkTJmsoi9IEWTJk3sTUQkFtWtW9cCD7SrS2pznmMngQnOC96cigIFCliAo0OHDnYeiYWqCc5RZHaOHDnSbitSpIjNb7rmmmtctWrVIv0URUREYg7rgUmTJrnjx4/7b1u5cqV744037P3hw4efNCy7ePHiFpg488wzo+IaUUREJFad4SPdTiSDYsG5fv1616hRIxsEDTbzmcfA8GeqDzwlSpSwAd1UZHhVF/Pnz3fdu3e3j9nw8gwdOtSCCG3btrV5Gvjll1+sDJjKjxtuuMGqGwgOsKF27rnn2uesWLHCgiRlypSxx/fcd999FnhgXoTXT5wyY4Ir7dq1szYlHv4/WT5r1661HuReMGbWrFmW5XPLLbeE+FUVkYzmzz//dBdddJEdey688MKwP37grBzs2LHDNhkSospuyJAhburUqVZ1AI6Tjz/+uM2sYP5ONOOcQUu+119/3X366af+73vLli0WoBAREYn2c3asfQ+sFwj+s4a45557rAVkwnXH/v37XZYsWVzmzJlD+lxERETi+bytSgrJ0KpUqWJvgQgIsJkf2M8c5cuXt4Vn4MbX1q1brcS3YMGCpwxV27x5s7XZ8IIUy5cvtyoHAhRLlixx9evXt8oHgg/eUDZu79mzp7VWCgxSTJkyxf6YmcHhBSn4Gnqse9USHoIlLJIDnyePyZuISDwGm7t162ZzF6gQQ+Dxj+PszJkz3UsvvXTSXJ1atWq5xx57LCbaIRHAplqCAAULPE+NGjUsUB3YM1tERESChxl+BCioshw4cKBVWFB1yfUiCWnw1h8iIiKSdgpSiCRAVQOVDAm9//77p9zWsGFDV6hQoVNag7Rq1crt3r3b5c+f338bi1eGd5crV84+phVJwkIm/h+L3Wuvvfak26maIEAS2B+dz/MWxoE0O0JEMgoCEBzzNmzYYL2iR48e7f9/hw4dspkUBG6ZPQQqJVq0aOG6du3qPxZHI1pQ8b15WSbff/+9DQMHQXHmCXH8V/WEiIhIcH322WdWGVGpUiU7D/fo0cNuZ2g2FfFUsFNNQRIZFeokjYmIiEj6qd2TiIiIxGzrCDbw+/XrZ/MlCBgzq4F+0Wwi8HxAj+j777/fdezY0V+5Fk0IWFOZN2fOHGvNt3DhQvfcc89ZhYg34LtXr17uzjvvtLlI9L0WERFJC7V7Sh6zCadPn24VjCQ50CaSuRPfffedDdKm/dODDz5oc/6oxhQREZHkqd2TiIiIxJ1//vnH2ukxJwilS5d27733ns38efnll21jwZs3wSBLhmFT3UYbvGibL8FsDAISvBFcCbRq1Sr/+8xMGjZsWASepYiISMayc+dOfwKBN3OQCsyzz/5fEwoSBQIrN0VERCQ41O5JREREYgJtkKgmICDx5Zdf2syfyZMn2ybC119/7f+8m2++2YIT9erVi4qqAwISzC+issPLuuR50dP66NGj9jGbHwzmZB4RbyVLlozwsxYREcm4QYp3333XEiMqVqxoawqqKphJISIiIqGhIIWIiIjEBDb29+3bZxv7ffv2dQsWLHB79uyx/3feeee5e+65xz3yyCOJzhUKlx07drj169dbUMJ7Y2YGMyao/uB90DLivvvus+fNAGxmEV1wwQURe94iIiIZHZWYzBXEsmXLbJbVXXfd5R5//HE7fxO08CoqREREJLh0hhUREYkz9FEeNGiQXWiXL1/eZjRUrVo1yc9n+OMzzzzjtm3b5ooVK2aZggyDjDZsEDA4mlZIZDiCGRMPP/ywVSXkypUrLFUR27dvt9eKFk1UR3izI9CkSZOTqjo8PDde28ANDq+NhIiISEaU2vVKqDEw+8SJE/6PO3fu7Lp3727JD1RCnnXWWRF7biIiIvFOQQoREZE48v7771vv5FGjRrmrrrrK5jTUqVPH/fDDDy537tynfD6ZgmQJDhgwwNoMsfnPRvvq1asjWpHg+fjjj90nn3zi1qxZ4z7//HP/7QyQZvOAwZVkOqYlW5L2UYcOHfK/EXD4/fff3V9//eXatm3r/1xez3nz5rldu3bZ/w/EY/P/vbZSvGZ8fbly5WzDhbcKFSq4/PnzuzPOOCNdr4WIiEhGXa+Es9UTLr74Yvf000/b+7SPFBERkdA6w8dEKBEREYkLXOhXqVLFjRgxwr8ZT/VBp06dXI8ePU75/ObNm9tm/axZs04KALCxzsZBYo4fP25vnj///NMeg03+Cy+8MCjfx99//+0effRR9+qrr/pvY5OfyokiRYq4bNmyWXskhmZ7yHakyoLWSmRCBr5RvbB27Vr/57LhMGfOnEQfm4ADX+MFHpo1a2bVJp7zzz/f5mEULlzY3sgC5TawrFIwQkREohXn7Isuuiio5+xQr1fCse4Aa4oWLVr4n9/y5cuDdt8iIiIZ1Z8pXHuokkJERCROsLFPq6GePXv6b2OjnUHSDJpODLeTyRiITMYZM2Yk+ThUXfTp08eFEkGFTz/99KTbCAD8+uuv9gYCFYGotli8eHGi90eLhsAAQubMmf2vDwulrFmz2r85cuRwOXPmtM0Q73MIftBOKm/evPaWPXv2JAMRClCIiIgEd70SjnWHV13qrUGGDRsW8scTERGR/6MghYiISJxgqDRVBHny5Dnpdj7euHFjol9DH+jEPt8bHJkYNhUCAxteRmMwsVnRv39/t2jRIleyZEkbNB0YCODt3HPPPeV5tWvXzgIStGHija/z/g00YcIE9/bbb1sg4nSBBTI9RUREJDLrlXCsOzB48GBXqFAhq6KI5GwMERGRjEhBChEREUkVggMJAwShwLwJ3lKqRo0aKf7cSLa4EBERkehbd/AYVE+KiIhI+P2v2bKIiIjEvFy5clkVwZ49e066nY8vueSSRL+G21Pz+SIiIiLhXq+IiIhIfFOQQkREJE7Q0qhSpUpuwYIF/tsYRMnH11xzTaJfw+2Bn4/58+cn+fkiIiIi4V6viIiISHxTuycREZE4Qs/m1q1bu8qVK1s/5ZdfftkdPnzYtW3b1v5/q1atXP78+W0IJTp37uyqV6/uhgwZ4urXr+8mTZrkVq1a5caMGRPh70REREQy6npFREREMhYFKUREROJI8+bN3W+//eaeffZZG35doUIFN2fOHP9wyu3bt9tQak+1atXcu+++655++mn35JNPumLFirkZM2a4MmXKRPC7EBERkYy8XhEREZGM5Qyfz+eL9JMQERGR2PXnn3+6iy66yB08eFADqUVERKJYPJyz4+F7EBERySj+TOF5WzMpREREREREREREREQkIhSkEBERERERERERERGRiFCQQkREREREREREREREIkJBChERERERERERERERiQgFKUREREREREREREREJCIUpBARERERERERERERkYhQkEJERERERERERERERCJCQQoREREREREREREREYkIBSlERERERERERERERCQiFKQQEREREREREREREZGIUJBCREREREREREREREQi4uzIPKyIiIjEC5/PZ//++eefkX4qIiIikgzvXO2du2OR1h0iIiLxt/ZQkEJERETS5dChQ/ZvwYIF9UqKiIjEyLn7oosucrFI6w4REZH4W3uc4YvlFAoRERGJuP/++8/t3LnTZc2a1Z1xxhlBzbgg8PHLL7+4Cy+8MGj3Gy/0+ui10e+N/q50zIkesXJM5vKfTYJ8+fK5M8+Mze7PoVp3xNLPMZbpNdbrHE/0+6zXOV78GcLzX0rXHqqkEBERkXRhoVGgQIGQvYoskrRRoNdHvzv6uwonHXf02sTz706sVlCEa90RKz/HWKfXWK9zPNHvs17neHFhiM5/KVl7xGbqhIiIiIiIiIiIiIiIxDwFKUREREREREREREREJCIUpBAREZGodO6557pevXrZv6LXR787+rvScSeydEzW65MR6Pdcr3G80O+yXud4ot/njPEaa3C2iIiIiIiIiIiIiIhEhCopREREREREREREREQkIhSkEBERERERERERERGRiFCQQkREREREREREREREIkJBChERERERERERERERiQgFKURERCQqjRw50l166aXuvPPOc1dddZX76quvIv2UosLSpUtdw4YNXb58+dwZZ5zhZsyYEemnFDUGDBjgqlSp4rJmzepy587tmjRp4n744YdIP62o8Nprr7ly5cq5Cy+80N6uueYa98knn0T6aUWlF154wf62unTpEumnEhV69+5tr0fgW4kSJSL9tKLGr7/+6u6++26XM2dOlzlzZle2bFm3atWqSD8tCeL6YsqUKfY7z+fz8/3444/1+gbxNR47dqy7/vrrXfbs2e3t5ptv1povxGvlSZMm2bGcdZIE/3X+448/3MMPP+zy5s3rzj33XFe8eHEdN0LwOr/88svuiiuusHNvwYIF3aOPPuqOHTumX+kgXkMuXrzYXXnllfZ7fPnll7sJEya4UFKQQkRERKLO+++/77p27ep69erlVq9e7cqXL+/q1Knj9u7d6zK6w4cP2+vBQl5OtmTJErsoXL58uZs/f747ceKEq127tr1mGV2BAgVs8/3rr7+2DdQaNWq4xo0bu++//z7STy2qrFy50o0ePdoCOvJ/Spcu7Xbt2uV/+/zzz/XyOOcOHDjgrr32WpcpUyYL+q1fv94NGTLENlolPtYXy5Ytc3fddZdr166d++abb2xTl7d169aF/bnH62vMJhiv8aJFi9yXX35pm42cuwkASvBeZ8+2bdtct27dLDAkwf99/vvvv12tWrXsdZ46daolyxCIy58/v17uIL7O7777ruvRo4d9/oYNG9zrr79u9/Hkk0/qdQ7SNeTWrVtd/fr13U033eTWrFljyTvt27d3c+fOdSHjExEREYkyVatW9T388MP+j//9919fvnz5fAMGDIjo84o2LOWmT58e6acRtfbu3Wuv0ZIlSyL9VKJS9uzZfePGjYv004gahw4d8hUrVsw3f/58X/Xq1X2dO3eO9FOKCr169fKVL18+0k8jKj3xxBO+6667LtJPQ0K4vmjWrJmvfv36J9121VVX+e6//3697kF6jRP6559/fFmzZvW9+eabeo2D+LvsvbbVqlWzc3/r1q19jRs31msc5Nf5tdde81122WW+v//+W69tCF9nPrdGjRon3da1a1fftddeq9c9SNeQjz/+uK906dIn3da8eXNfnTp1fKGiSgoRERGJKmQgke1Nub/nzDPPtI/JsBNJqYMHD9q/OXLk0IsW4N9//7VWD2RU0fZJ/ocqHDLGAo898j+bNm2y9gCXXXaZa9mypdu+fbteGufczJkzXeXKlV3Tpk2txVzFihUtY1biZ33B7QmPCWT3aj0SvNc4oSNHjlglpM7dwf1dRt++fe1YRWWQhOZ15rzA2oo1RZ48eVyZMmVc//79be0lwXudq1WrZl/jtYT66aefrKXWLbfcopc5SCJx/js7ZPcsIiIikgb79u2zhTwL+0B8vHHjRr2mkiL//feflSXTioULRHHuu+++swtn+vVecMEFbvr06a5UqVJ6af5/f27aC9DuSU5GX2h6ENP3mVZPffr0sTYhtLth/ktGxqYI815oUUGLCX5/HnnkEXfOOee41q1bR/rpSRDWF7t3707087ldQrOGe+KJJywoqoBxcF9n2vTREoe2LRK615nzwsKFCy2gz6b55s2b3UMPPWSBN1oTSXBe5xYtWtjXXXfddXQIcv/884974IEH1O4piJI6//3555/u6NGjNgsk2BSkEBEREZG4QwYbm6jqnf9/2GRmc4IKE/oks4nKHI+MHqj45ZdfXOfOnW2OCcMa5WT16tXzv8+sDoIWhQsXdpMnT87w2bgEQ6mkIEsWVFJw3Bk1apSCFCJpwOwkgsbMqdDxOHgOHTrk7rnnHqv0ypUrl343Q3xeoFplzJgx7qyzznKVKlWy+SqDBg1SkCKIOEZw7n311VdtXUIwiLVcv3793DPPPBPMh5IwUpBCREREogoXTyzq9+zZc9LtfHzJJZdE7HlJ7OjYsaObNWuWW7p0qQ2Mlv8hu/vyyy+397loJuv7lVdesUHRGRntAhjMeOWVV/pvI6OP358RI0a448eP2zFJ/idbtmyuePHitiGQ0eXNm/eUIF/JkiXdBx98ELHnJMFdX3C71iPhWcMNHjzYghSffvqpBUQleK/zli1bbJBzw4YNT9pMx9lnn23DnYsWLaqXPAi/z5wXMmXKdNK6gfMCWem0NWItJul/nQlEEHhjkDPKli1rbUw7dOjgnnrqKWsXJemT1PnvwgsvDEkVBfRTExERkajC4p0N1AULFpx0IcXH6p8vyaHcmwAFbYwotS9SpIhesGTwd8UGfEZXs2ZNa4VFlYn3RnY8rRp4XwGKk/3111+24cVGTEZHOzk29wL9+OOPVmki8bG+4PbAzwdVV1qPBO81xosvvmgZ0HPmzLHjrwT3d7lEiRKnnOcaNWrkbrrpJnu/YMGCesmD9PvMeYEgvhcE8s4LnDMVoAjO77M3uyZhIMJbr/1vLrSkV0TOfyEbyS0iIiKSRpMmTfKde+65vgkTJvjWr1/v69Chgy9btmy+3bt3Z/jX9NChQ75vvvnG3ljKvfTSS/b+zz//nOFfmwcffNB30UUX+RYvXuzbtWuX/+3IkSMZ/rXp0aOHb8mSJb6tW7f61q5dax+fccYZvnnz5mX41yYx1atX93Xu3Fmvjc/ne+yxx+xvit+dL774wnfzzTf7cuXK5du7d2+Gf32++uor39lnn+17/vnnfZs2bfK98847vixZsvjefvvtDP/axOr64p577rHjo4ffeX7GgwcP9m3YsMHXq1cvX6ZMmXzfffddBL+L+HqNX3jhBd8555zjmzp16knnbtY7ErzXOaHWrVv7GjdurJc4yL/P27dv92XNmtXXsWNH3w8//OCbNWuWL3fu3L7nnntOr3UQX2eOxbzO7733nu+nn36y9WzRokV9zZo10+ucxmtIXl9eZw+vK2ua7t272/lv5MiRvrPOOss3Z84cX6goSCEiIiJRafjw4b5ChQrZhWvVqlV9y5cvj/RTigqLFi2yhWXCNy42M7rEXhfexo8f78vo7r33Xl/hwoXt7+niiy/21axZUwGKZChI8X+aN2/uy5s3r/3u5M+f3z7evHlz6H9pY8RHH33kK1OmjG2ulChRwjdmzJhIPyVJx/qCv/2E59PJkyf7ihcvbp9funRp3+zZs/UaB/E15tyU2LmbTUgJ7u9yIAUpQvc6L1u2zHfVVVfZeeGyyy6zQPY///yjX+cgvs4nTpzw9e7d2wIT5513nq9gwYK+hx56yHfgwAG9zmm8huRfXueEX1OhQgX7mfC7HOprqjP4T+jqNERERERERERERERERBKnmRQiIiIiIiIiIiIiIhIRClKIiIiIiIiIiIiIiEhEKEghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIiIiIiIiIiIiIhIRChIISIiIiIiIiIiIiIiEaEghYiIiIiIiIiIiIiIRISCFCIiIiIiMe61115zhQoVcueff7677bbb3G+//Xbar/nhhx/cJZdc4g4dOhSS53TGGWe4GTNm2Pv79u1zuXPndjt27AjJY4mIiEjkBJ7zo+F+ImHbtm32/NesWRPppyISkxSkEBERERGJYdOmTXPdu3d3w4cPd6tWrbKgwx133HHar+vZs6fr1KmTy5o1a8ifY65cuVyrVq1cr169Qv5YIiIi8Wb37t12zr7sssvcueee6woWLOgaNmzoFixY4GJR7969XYUKFU65fdeuXa5evXoReU4iElkKUoiIiIiIxLDnn3/edezY0TVu3NiVLFnSvfnmm+7zzz+3t6Rs377dzZo1y7Vp0ybJz/n333/df//9F7Tn2bZtW/fOO++433//PWj3KSIiEu/I0K9UqZJbuHChGzRokPvuu+/cnDlz3E033eQefvhhF0+o8CQIE21OnDgR6acgEvcUpBARERERiVEHDhxwq1evdvXr1/ffli9fPlemTBn36aefJvl1kydPduXLl3f58+f33zZhwgSXLVs2N3PmTFeqVCnbJCCYsXLlSlerVi2rhrjoootc9erV7TEDbdq0yd1www3uvPPOs6+dP3/+KY9ZunRpe27Tp08P2vcvIiIS7x566CFrI/TVV1+522+/3RUvXtzOqV27dnXLly9PstXQH3/8YbctXrzYPuZfPp47d66rWLGiy5w5s6tRo4bbu3ev++STTyzR4cILL3QtWrRwR44c8d/PpZde6l5++eWTnhNVEFRDJOWJJ56w55klSxar/njmmWf8G/2sN/r06eO+/fZbez68cVvCdk/VqlWz+wlEO8tMmTK5pUuX2sfHjx933bp1s/UMLS+vuuoq//ebFB6DNplUbPAa8PymTp3q///ea/n+++/bmoe1DUkWJG707dvXFShQwNZIvAYEixLauHGjPXe+jvXYkiVLkn0+IvI/ClKIiIiIiMSon376yf69/PLLT7q9WLFi/v+XmM8++8xVrlz5lNvZlBg4cKAbN26c+/77722OBO2jWrdubZUZbIZw37fccot/lgUX7czBOOecc9yKFSvcqFGjTtlU8FStWtUeW0RERE6P6kM2wqmYYBM+IZILUovgwogRI9yyZcvcL7/84po1a2ZBiHfffdfNnj3bzZs3z1pIpgetJAk8rF+/3r3yyitu7NixbujQofb/mjdv7h577DELtNDeiTduS6hly5Zu0qRJzufz+W8jcEDCw/XXX28fU0n65Zdf2uetXbvWNW3a1NWtW9eSJ5JD0ISAD4ESHufOO+90GzZsOOlzevTo4Tp37my316lTx76PIUOGuMGDB9tjcVujRo1OeSxacPL9ffPNN+6aa66xtlz79+9P1+spkhEoSCEiIiIiEqO8TEcCBxdccIH/7cMPPzwpCzKhn3/+2S7yEyLL8dVXX7UMwCuuuMIyIMmyvPvuu12JEiUsy3LMmDF2315mIBUbZA2+9dZbVp1BRUX//v0TfVwek8cWERGR09u8ebNt0nMODpbnnnvOXXvttVZN0a5dOzufU1nAx2z+M9dq0aJF6XqMp59+2tYSVGGwSU+1A1WcoHqBtcrZZ59t7Z1447aECJ7s3LnzpPaVBFLuuusuq3Sg2nP8+PFuypQp9ryLFi1qj3PdddfZ7ckhmNG+fXur9ujXr58lbiQMzHTp0sWSMIoUKeLy5s1rwQmSMAhosEYiqYNqioRVJgROCICwZuJ1pQr19ddfT9frKZIRnB3pJyAiIiIiImlDEAG0NgjMpiTzz/t/iTl69Ki1IUiIaohy5cqddNuePXtss4HHoCUEsyoIUrA5ADIMGeAZGPQgczAxbEIkFzwRERGR/xNYRRAsgef5PHny+FsyBd5Ga6n0oOJh2LBhbsuWLe6vv/5y//zzj7WSSo2LL77Y1a5d21otEYTYunWrVU2MHj3a/j+zOViTEGgIRAuonDlzJnvfCdcpfBzYKguBFad//vmnBUwI7gTiY6oxkrpvAjHcT8IqDRE5lYIUIiIiIiIxyttU4MI/sOXTsWPHTtpwSIj5EsyzSCyIQHZiIFo90aaANgeFCxe2PsxcgP/9999palvBpoOIiIicHpWSnJepWEzOmWeeeUpQI6lhz8x08HDfgR97t9HKMfC+EwZLkhskTSCBFkrMnaAlEpUEtGOiVVJqcT+PPPKIVTlQRVG2bFl7A8GPs846y3399df2byAqNdIrsfZaIhI6avckIiIiIhKjsmfP7ipVqnTSnAcu2tkgYNh1UmjpQJ/olPjiiy9sg4A5FPSPJkixb98+//+nnQE9rekp7fEGeSa0bt06e2wRERE5vRw5cthG/8iRI93hw4dP+f8Mx4aXABB4Lk5YGZBW3Hfg/VJVQFVDUph1QVLDU089ZVUEBFoStnqkcpMqiNNp3LixJV4wl4MgBUELD+sJ7oMqTxI1At9oIZWchOsUPmY9kxSSQagYZU0UiI9LlSqV5H1TQUIQJbn7FpH/UZBCRERERCSGsQnAG4MuGd5If+mrrrrqlJYEgdjwIJCRkg0CNhcmTpxorQoYjM0GQWDv6JtvvtlaLVBxQcsDAiY8n4Ro88SFOq0bREREJGUIUHC+rlq1qvvggw/sXM85mXZKXmshzstXX321e+GFF+z/MWeCVo3BwGwq1gGc32mxxPk+YeVCwnUDLSGpnqDdE89z+vTpJ30OsyoIdBBIIfGBFk1JVTM0adLEBl3zfTGPwsPagzVJq1at3LRp0+z+aFM1YMAAGwCeHOZYvPHGG+7HH390vXr1sq9jlkRyGIjNHApaWf3www82WJvnT4vNhD8vvl+qXxh4TuXqvffe6///zBdJ+HqIiIIUIiIiIiIx7dZbb3W9e/e24ASDq2nB4A2nTEq9evWsTzJDr0+HYY9cYF955ZXunnvusaqK3Llzn9QGgott5lywgcIgyueff/6U+2GYd6FChayvtIiIiKQM7RtXr17tbrrpJvfYY4+5MmXKWLXkggULbDCzh013MvepsGToMwOyg6Fnz56uevXqrkGDBq5+/foWNGBIdVIaNWrkHn30Udv0Z7A0lRUEGQIxWLpu3br2PVGp8d577yV5fwQiSIJg/cA6IhADsglS8LowzJrntnLlylM+LyFaURFEYT7HW2+9ZY+fsCIiIdY/Xbt2tcei5RTVHTNnzrSgTCACRbyxJmPoN59Dm00PAY6DBw8m+1giGdEZvlBM4RERERERkahGph8XznPnzg3L45HhyQV+ixYtwvJ4IiIiIgkxc4PkCgIaIhI9NDhbRERERCQDuv/++62X9aFDh1zWrFlD+li0crjttttOatMgIiIiIiICVVKIiIiIiIiIiIhI3FMlhUh0UiWFiIiIiIiIiIiIxD11vReJTmdG+gmIiIiIiIiIiIiIiEjGpCCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIiIiIiIiIiIiIhIRChIISIiIiIiIiIiIiIiEaEghYiIiIiIiIiIiIiIRISCFCIiIiIiIiIiIiIiEhEKUoiIiIiIiIiIiIiIiIuE/wc/05PslbIoTwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -339,7 +362,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-cardioid.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-cardioid.png\")" ] }, { @@ -356,7 +379,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmcjfX////3p/qklE+Syla2kL3IXhKVZEkoiZA1yRqlKKJkyVrZQvYQypIlhWzZK0kR2VLZohDt/9vj9f1f53dmzDDLmbnOOfO8327nNjPHOHPNcs71vt6v7T///vvvv05ERERERERERERERCSVXZTaX1BERERERERERERERAQKUoiIiIiIiIiIiIiIiC8UpBAREREREREREREREV8oSCEiIiIiIiIiIiIiIr5QkEJERERERERERERERHyhIIWIiIiIiIiIiIiIiPhCQQoREREREREREREREfGFghQiIiIiIiIiIiIiIuILBSlERERERERERERERMQXClKIhFiuXLlc06ZNk/x/a9So4VILx8nXDPaf//zH9erVK9WOQURERERERERERNIuBSnEN7t373atW7d2efLkcZdddpn73//+5ypUqOCGDRvmzpw5E9Kv1bdvX/f++++7aLF9+3YLJOzdu9eFg2nTprmhQ4f6fRgiIiIiIiIiIiISYS7x+wAkbfrggw/cQw895NKlS+caN27sihQp4v744w+3evVq17VrV/fVV1+5MWPGhDRIUa9ePVe7dm2X0nbs2OEuuuiiFA9SvPTSS65SpUrnVEIkFwGiSy65JNFBim3btrmOHTuG9FhEREREREREREQkuilIIaluz5497pFHHnE5c+Z0y5Ytc1mzZg38W9u2bd2uXbssiJFc//77rzt79qy7/PLLk/1YiflaBF4iGVUtKYmf06WXXprigRwREREREREREREJf9ollFQ3YMAAd+rUKTdu3LgYAQrPTTfd5Dp06BD4+O2333aVK1d21113nQUAChUq5EaOHBnvPIclS5a42267zQIGo0ePthkLp0+fdhMnTrT3uTGLYevWrfb+vHnzAo+xefNmu69EiRIxHrtatWquTJkyF/xa8c2k4Gvdeeed9nk5cuRwL7/8sn1ffK24WjZRUVK6dGkLGNAOa9KkSYF/mzBhglWh4K677gp8TytWrDjvz512V1Ss8Ji8fe+99+L8vNgzKU6ePGkVEnxf/Pz5Pdxzzz1uy5Yt9u9UcxBU2rdvX+BYvOoOjomPp0+f7nr06OGyZ8/u0qdP73799dfzHquIiIiIiIiIiIikDaqkkFQ3f/5823gvX758gj6fgEThwoVdrVq1rA0R///JJ590//zzj1VexG611KBBA5t10bJlS1egQAE3efJk16JFC9v0b9WqlX1e3rx5baM+Y8aMbuXKlfbYWLVqlWX4f/HFF7aRzpwMvs7atWsD//d8XysuBw8eDAQTnnvuOXfFFVe4sWPHxltxQSUJramaN2/umjRp4saPH29Bj5IlS9rPoWLFiq59+/Zu+PDh7vnnn3cFCxa0/+e9jcuHH37o6tatawGeV1991R07dsw9/vjjFjC5kCeeeMLNmjXLPfXUU/b/+b8EUb7++msL5nTv3t398ssv7vvvv3dDhgyx/3PllVfGeIw+ffpY9USXLl3c77//bu+LiIiIiIiIiIiIKEghqYqNfzbtH3jggQT/n08++SRGyyY2y++77z43ePDgc4IUbPAvXrzYVa1a9ZyNdgIjjRo1inE/g7oJTHh4n7kVc+fOtcAEX8cLWNxxxx0J+lqx9e/f3x0/ftwqD2655Ra7jwBBvnz54vx8gh8ETryv9/DDD7sbbrjBKi9ee+01+z74N4IUVDRQyXAhzz77rLv++ustuHDVVVfZfVR23HvvvdZ263yokiAIM2jQoMB9zzzzTOB9joEKCb7H2D/f4BZPmzZtSpXWWyIiIiIiIiIiIhI51O5JUpXX5idDhgwJ/j/BG9tk7B89etQ22L/77jv7OFju3LkvGDQIxmY/wQPaQYFN/Pvvv9+CCV7wgrdUQdx+++1J+loEMsqVKxcIUCBTpkyuYcOGcX4+1QrBAZFrr73WqjT4fpPixx9/dJ9//rlVZXgBCi+4wNe6EKpN1q9f73744QeXVHxtBShEREREREREREQkNgUpJFXRPsmbc5BQa9ascXfffbe1SWLDnE172hwhriBFYhAM+Ouvv9ynn35qFQyHDx+2+2ipFBykYDOfwEJSvhazGpizEVtc9+HGG288576rr77aKhWSgq+PuCo34mtRFXuGyLZt26yag5ZZzKtIbMAksb8XERERERERERERSRsUpJBUD1Jky5bNNr0TYvfu3a5KlSpWPUF7J1oPLV261HXq1Mn+nXkRwRKbrc/QawZJ016JYARDofPnz2+Big0bNtj8BO6P3eopKV8roS6++OI47//333+dH2g3RVDi9ddft9/dwIEDbTbGokWLEvwYqqIQERERERERERGRuChIIamuRo0aFnygeuFCGJJNoGDevHk2oJpWTFRVJHbTm3ZNcWGAM9UBBCKCgxG85etOnTrVHTp0yCorkoqZD8yviC2u+5L7/cT39fHtt9+e829UjyRE1qxZbVj5+++/7/bs2eOuueYa98orryTpeEREREREREREREQ8ClJIqmPoMq2bWrRoYQGA2AhgDBs2LEZVQXAVAS2eGCKdGHy9EydOxPlvBCSYubB8+fJAkCJz5syuYMGCNvTa+5ykYm4FARnmQnh+/vlnC4AkFd8P4vueYgcYmIcxceLEGO2xqEjZvn37ef/v33//fU5LLapNqKggiBN8PLE/70JzMr755hv3559/Jvj/iIiIiIiIiIiISPS5xO8DkLQnb968btq0aa5+/foWCGjcuLErUqSI++OPP9zatWvdu+++65o2bWqfe++991q1Q82aNa2S4tSpU+6tt96yjXI2uhOqZMmS7qOPPrKWUWywMyOhTJkygQAEVQEHDhyIEYygemL06NEuV65cLkeOHMkKykyZMsUGVbdr18429MeOHWuzJwhWJKUKgaADARyCKAQH0qVL5ypXrmw/l7i8+uqrrnr16jb8u1mzZvZ1ad9E2yZ+pvFhdgjfe7169Vzx4sXdlVdeaT/HjRs3ukGDBsX4+c6YMcN17tzZlSpVyj6P31l8nnvuOQuaUJXBz1dERERERERERETSJlVSiC9q1arltm7dapvfc+fOdW3btnXdunVze/futc3v4cOHBwY7z5o1yzbyu3Tp4kaNGuVatWrlOnTokKivR3CCjfQePXq4Bg0auJEjRwb+rXz58rbhnyFDBtuI9wS3fkoOBk5TpUFApm/fvm7o0KGuSZMmFiwAMzESK0uWLPazYNB38+bN7Xs6X1XEfffdZ8EfKiMIEMyZM8eqUZjJcT7p06e3Nk9UgfTs2dNmgdAiasSIERaQ8PA5jz76qD0mbwnGiIiIiIiIiIiIiFzIf/71axqvSBrXsWNHq9SgkiG+YdkiIiIiIiIiIiIi0UyVFCKp4MyZMzE+PnbsmJs8ebK1X1KAQkRERERERERERNIqzaQQSQXlypVzlSpVspZPDAsfN26c+/XXX90LL7zg96GJiIiIiIiIiIiI+EZBCpFUcP/999tsjTFjxth8jRIlSligguHcIiIiIiIiIiIiImmVZlKIiIiIiIiIiIiIiIgvNJNCRERERERERERERER8oSCFiIiIiIiIiIiIiIj4QjMpREREJFn++ecf98MPP7gMGTLY3B0REREJT3R7PnnypMuWLZu76KLIzFnUukNERCT61h4KUoiIiEiysFFwww03+H0YIiIikkAHDhxwOXLkcJFI6w4REZHoW3soSCEiIiLJQiajt+j43//+5/fhiIiISDx+/fVX2+D3zt2RSOsOERGR6Ft7KEghIiIiyeK1WmCjQJsFIiIi4S+S2yRp3SEiIhJ9aw8FKURSqE/q119/bbe///7bZc6c2VWpUiXw73PnznVnz56N8/9efPHFrm7duhF94SAiIiIiIiIiIiKSEApSiIQoKLFgwQK3fv16t27dOrdx40YbCuO5/fbbYwQpWrdu7Q4dOhTnY+XPn9/Vq1cv8PHo0aPddddd58qUKWNDZkRERERERERERESihYIUIol05swZt2XLFnfkyBFXu3Ztu4+qBwIPP/30U+Dz0qdP74oVK+Yuu+wyV7Ro0RiPUb58eXf8+PE4H79SpUqB96nC6NKlizt16pR9zIAZghXerWTJku6KK65Ioe9UREREREREREREJGUpSCFyAf/++69bu3atmzZtmlVJbN261f3111/u+uuvdw888IAFKLg98sgjNgzGCyAULlzYXXJJ3E+xOXPmJOhrnz592jVo0MAqNLZt2+a+//57u82ePdv+vVq1am7hwoUh/X5FREREREREREREUouCFCLnQTDh1VdfdZs2bYpxPwEKAhG//fZboJJhyJAhIf/6DIIbM2aMvU81BcdBwMK7lS5dOvC5v/zyi6tevbpr3ry5BTao4BAREREREREREREJZwpSiJzHp59+aoGBdOnSuYYNG7qqVatacOLGG29M9cHWV155pbWCCm4H9eeffwbeHzdunFuzZo3dunXr5tq0aWM3AioiIiIiIiIiIiIi4egivw9AJFxs377d5kqsWLEicN9TTz3l+vTp4w4cOGBBgIcfftjlzJkz1QMU8fnvf/8beL9p06auf//+Nrfi8OHD7qWXXrJgyuOPP+6++OILX49TREREREREREREJC7/+ZeG+yJpFH/+S5YscUOHDrW3qFmzpps3b56LVFRX0KaK9lO0hAKzMQ4ePOiuu+46vw9PRKIQ83iuuuoqaztHmzoREREJT9Fwzo6G70FERCSt+DWB5221e5I0iVkSkydPdsOGDXNff/213Ud1RO3atV3Hjh1dJKO6on79+nZj0DcBGIIUwQGKuXPnusqVK7sMGTL4eqwiIiIiIiIiIiKStilIIWnOP//848qVK+e2bt1qH7NRz7Dpdu3auTx58rhoUrZsWTd9+nT7nj07duywYAxBC4ZyP/DAA74eo4iIiIiIiIiIiKRdmkkhac5FF11kg6WZLUGVwffff2+tkaItQBH7e/YcOnTI3XTTTTa3gmBFkyZN3IkTJ3w9PvEH1UOxb7ly5fL7sEREREREREREJA1RkELShJUrV7oPP/ww8PEjjzzivvnmG9ehQ4c018e0YsWK7ssvv3TPPPOMbUpPmjTJFS1aNMbPR9KGH3/80W60BcuXL58F7oYPH57ox/nqq69c3bp1LcDB3xTBPxERERERERERkYRQkEKi2pkzZ9zTTz/tKlWq5Bo3buyOHj1q97ORetlll7m0iu+9f//+bvXq1VZVQTVJ1apVXZcuXfw+NElFWbJkcfv373fVqlVzt9xyi7VAq1WrVpJmvFCJ1K9fP3tM8T8oW7NmTZctWzZ7rXv//fcv+H9WrFjhSpQo4dKlS2evCRMmTEiVYxURERERERERUZBCotbGjRtdyZIl3eDBg92///7ratSo4S699FK/DyuslC9f3n3++efuqaeeso/V6ie0Tp8+bTf+/jx//PGH3ff777/H+bnB80P+/PNPu+/s2bMX/NykOHDggAUl6tSp42bMmJHkqqJSpUq5gQMHWoUSm9ziL/42ihcv7t58880Eff6ePXtc9erV3V133WWvBx07dnQtWrRwS5YsSfFjFRERERERERFRkEKiDpvAL774og3H/vrrry2ze8GCBW7s2LFprrVTQlxxxRXu9ddfd+vXr3dPPvlk4P5vv/32nM1xSZwrr7zSbl4FD9jM5z4vMORhkDn3U9ngYZOZ+xjsHoxgEvfz950cvXr1sq87cuRIy7iP69jjuz3xxBPJ+tqScqiMefnll92DDz6YoM8fNWqUy507txs0aJArWLCg/W3Wq1fPZvWIiEjaQmKFdwu+j8QIbsH3e/fFTpqI63ODH0Ofe+7n/v333+6vv/6yt96/e+8H/38RERGRaKUghURdBnGZMmVcnz59bGHfoEEDt23bNssSlvMrXbp0YMD2qVOnrP0T7V82bdrk96FJCrVCmzJlig2R/+9//3vOv5NRf75b7969fTluCb1PP/3U3X333THu4/nP/fGhEujXX3+NcRMRkYQn1JAM8tlnn8W4n4Satm3bujVr1gTu27lzpyXe8LocjMSSrFmz2v/x7N2715JPrr322hif26pVK3fxxRe7V199NXDf4cOHLUEhdpJCp06dbD3Yo0ePGG0d+f/ceN/zwgsv2H2dO3eO8Rje5wYnafTt29fua926dYzPzZAhg92/b9++wH3Dhg2z+x577LEYn3v99dfb/du3b4/xM+M+qkKD0YaS+4PXsdOmTbP7Yv8smc3G/Z988kngPlolch/Vohs2bHCLFi1yU6dOtaA+9xPMb9OmjWvUqJFVJnMfyVC33XabK1y4sM36Sp8+feD+q666ypI8aLnq/Xz4OXu/g0suucTWY7z1/t17n78XERERkWh3id8HIBJKXJjdeuut1saG7PCHHnrI70OKSLt27bJNbNrAlC1b1nXv3t0uVuPazJb4EewBF6merl27WjsdLjyDsVmAyy+/PHAfGxUtW7a0C9RgbELE/tyk/I656GWQelyYSyBpw08//WQbP8H4mMADrwNx/Z2x0fXSSy+l4lGKiEQmNrsJ+pI4w/wnsOl9xx132Eb67t27A5/7wQcf2OcXK1bMVahQwe4j6WbdunXummuuifG4v/zyi71+nzx5Msb9wUGE82X0p3X8nL777jtbU/3888+BClOqGfi5ci2BLVu2WAJUbHPmzIkzWWrz5s3xrgdj0+9DREREwsVLL73kPvzwQ9euXTtr5e2H//yr1ZFEOPr2cwHnDcLmoo2NNQ3wTZ5jx45Z25fp06fbxw888IDNLdDMgehAey8CUASi4ppFQrbf+ZA5SJug2HgsgjDcxH9kZ7733nuudu3a8X5O/vz53eOPP+6ee+65wH0LFy60CjQ2ceIKUlBJETxXhYDGDTfcYK+/aqsnImkRr3/z5s1zBw8etCpFD633CDzQWtNr9cjmOIGIvHnzui+++CLwuWTq79ixw9WsWdMy+L2N748++sgScYKr3thc52tmy5YtUDnBBvv3339vGfo33nhj4HNPnDhha2OqFrzzO0EL1noIrrxgQ512n7z28zXB5aK3kZ8pU6ZA9QXnCB6XNbj3ufAe9+qrrw5U6XqfyzoyeI3hfW7GjBkDSRl8Hp/PLDmO2cMxcCxUJXjJHhwrPyMSaYLPP8ePHw+0VKLygp/zV199Ze8TGOL3lBD8HPj58H0TKOLY+Tp8zDHzvncNws8gc+bM9n+4j/Mk3z/Hy7/x/XFMfG8cv/ezXLVqlVWBb926NfB1mQ1F68bgzwsVztkcUySfs6PhexAREQknDRo0sP2/oUOHug4dOvhy3lYlhUQ0Fv/169e3izIymriY4Q+fmyQPF2LvvPOOBSeaNm3q5s6daxfNbHgGX4hKZCpQoIBdLC9fvtw2qGOjpdP56IIwehDQPXToUIz7+JjfcXzVOmwyKWApImkZm+VUJHqvhWy2N27c2DbLubDzXj9ZO+XIkcNaCnloGRRXdn3Dhg3PuY81F2ux2OJKMGBDO6772UznFozN89htoeDNngrGBnnsSg6vUjS4WtST3M/lZxfX+YfN+tgIBnhBAi6AqVKh8oSKBtYyXvVpXAii8PPKmTNn4MbvivMirbR4e6GkjeTYuHGjJQh8/PHHgd81a25aYgX/vYiIiIiktC5duriHH37Y1zWIghQSsciaIjtt6dKldoFIhpSXdSahQ5kXw5Vr1aplP+tnnnnGBjpLZGOzgiw9TkRUIt15552B/s2JbffEJo3XH5r3yU5kY4ALe7WNCn/0OqdyIhjPde4XEZFzTZw40dre1ahRw7322muBwAMVaDfffHOMVnnNmjU75/+HMis+Lfvhhx8s2WLFihXWUou1SFxNAqgqoXKlUKFClqTB74i3cQVIUgvHSTsFKltJsmK+xfPPP29rbhEREZHUVrJkSbv5Se2eJCJRIsSFIIMFyTqaP3++u+uuu/w+rKjGxd+zzz5rlRR+XtRJ6FCB1L9/fzdp0iRr+0SG4+zZs12VKlUS9ThkKbI5ExuBDzYOJHWRncvMETCjZ/Dgwfb6SAYqGzVkbRJI4vcOfvdFihSxGShspi1btsy1b9/eeqPHHi4aH7VdEJG0hOrdunXr2kb3N9984/fhpKnzG62vCKRzrorrZ896hHaWpUuXthkgBCfiqsDwA22eqGDxKj8IsBDwYhZGXBUwKSUaztnR8D2IiIikFb8m8LytIIVEnKNHj9rGGYPsyAZftGiRXYxIyuPlIjj7j4utuEr3JTKRwbd27VoFFiIcv7+4grZNmjRxEyZMsFYSBJaCf8+836lTJ8tCpdXFCy+8YJ+XUNosEJFoxUY4m8jM9vGGCFKBSKCC9ahe81LWvn373IIFCywhiU19KjY9rElLlChh57zbb7/drgeuv/56F47rZ5JAnn76aUsG6Nmzp6/HEw3n7Gj4HkRERMLJunXrrKU+CR60xAwlBSkkKlHWfc8999hGGn10mTxPlpSkPlo+DRkyxDLaUjP7S1IGASdaeZGBv3jxYr8PRyKMNgtEJFrRFnHQoEF2wUYrQ7VqSp3AxMyZM92MGTNstkQwWlPef//9VvVJxWaoL6JDjSHdTz75pF2zgOqbbdu2BQZ/+yEaztnR8D2IiIiEk+LFi7utW7e6JUuWuHvvvTekj63B2RK1QYr9+/e77Nmz2+Y4PWUl9dFrmQAFF1533HGH/S646JLItXr1amudMHnyZL8PRURExFf//POPteXBSy+95E6cOGHzAxSgSDkMHp82bZp75513rMWoh98DVRLM/+DG2j8Sfg9//vmnBbf4+zl79qzNzyMZpFu3br4GKERERETiQstMKinoWOMXVVJIxFm1apW1I4mrB76kHnra33333dYGgSF/9Acmy1BE0h5lNIpINGAzmcqJ48ePu6lTp/p9OGkiGPTxxx+7cePG2cwzr5UTQYiKFSu6+vXr2+yPSBsmTRZio0aN3JdffmkfV65c2Y0cOdLlz5/fhYNoOGdHw/cgIiKSVvyqdk8SLVjok43k95R5OdeRI0esDIz2B5Tb0yaIQYUikrZos0BEogHzeWgjxOb5F198oeSLFJwv99Zbb7nRo0dba6fgNgOPP/64e+ihh1y2bNlcpKLSuEiRIu6KK65wgwcPdo899lhYVX9Ewzk7Gr4HERGRtOJXtXuSaMBwbLL1WdjTjqZgwYJ+H5IEYS4IQwzpDUxpPhf2BCoqVKjg96GJiIiIJEqlSpVs5hbVugpQpEzi0bBhw6xKhXYCoKVAw4YNbaA0Q7Aj1d69ewMz2vLmzetmzZrlypQp4zJnzuz3oYmIiIhEhP9rtioShg4dOuRq1aplJffMO8iaNavfhyRx4OKSYYCUsp86dUpDl0VERCRifPLJJ7bW9DzxxBOuatWqvh5TNKFon5agrBOplBg/frwFKAhITJw40ebNvfHGGxEboDh9+rRr3769u+mmm9yaNWsC91evXl0BChEREYkYVapUsTUwc8L8oiCFhCXaOz388MM294AABRvffg5vkfO78sor3fz5893s2bNdnz59/D4cERERkQuaNGmSXZDVq1fP1p4SOrTMmjt3rlUT0BqUytuLL77Y1vdUR2/atMk1btzYXX755S5SrV271gIvr7/+uvv777/dRx995PchiYiIiCQa65hly5ZZAjLrGr+o3ZOEpa5du7qVK1e6DBkyuPfff1+9RiNA+vTpXZ06dWK8yF100UVh1YNXRERExENbHtaYzD9gU11CUzlB0spLL73ktm3bZvcRiGjZsqV7+umn3Y033ugiHZUgvXr1cgMGDLC/mxtuuMGNHTvWgjEiIiIikShLlizup59+cn/99Zdvx6AghYSdKVOmWL9aL8Pt5ptv9vuQJAkDtevXr2/ZcrRNEBEREQk3zNBiTkL27NmVVBECVBI899xzViUBko3atm3rOnXq5K677joXDfh7YRA2b0E1CNctqvgWERGRSHXxxRe7/PnzW5CicOHCvh2HghQSdtlXEyZMsPe7d+/uateu7fchSRLMmDHDyvop52fwZPny5f0+JIlDXBsyOXPmtOGPIiIi0ejrr7+26gkCE8iRI4ffhxTxNmzYYMEJ2gR4bUA7d+7sOnbs6K6++moXTTZu3GgBCuZNjB49OkYVsYiIiEikOnjwoO9rY82kkLDbNF24cKEN0KNMXCITWXNef+e6deu6H3/80e9Dkjjwe+G2bt06ly9fPgtQDB8+PNGP89VXX9nvOVeuXPYcHjp0aJyf9+abb9rnXHbZZdajmk0NERGR1HLgwAF3zz33uHLlyrlvv/3W78OJeAy9pqqAczoBiksvvdR16NDB7d6929bx0RKgIInK06xZM9e3b1/35ZdfKkAhIiIiEe3nn392LVq0sLUb62R4iTx+UJBCwm7xzwUOm9yUG0lkYqP67bfftjIxysUIWPzxxx9+H5bE0XNw//79rlq1au6WW26xzMBatWol+nF+++03lydPHtevXz97zPiqa8iq7Nmzp9uyZYsNmqxatao7fPhwCL4TERGRC2N+wBVXXGGZ/tdcc43fhxOxzp4961599VVrC0CbVq/t0c6dOy1RIVpaO4HZeLfddps7ceJEYI1L1Uh86x0RERGRSNGlSxc3btw462Lj7dkxq80v//k3eHdYxCcs9hm0TGbSJZeoC1m0IEuxVKlS7pdffnFPPvmkZdKnBbyssnHvx/DyxPTUJlLO76dGjRrurbfeCkk/biolaO/ALRhZlnwtqqTgDZps166d69atW7K/rvjr119/dVdddZU912mjIiISro4ePerOnDlj5yBJvA8++MC1b9/efffdd/YxVSnMZOAcH034G2GWBi2dvGsVrlOiQTScs6PhexAREfF7ltg999xj+0CscVjrkCyeEoOzE3re1m6w+G7WrFmWgY17773X3X333X4fkoQILYSmTp3qatas6UaMGGEXsE2bNnXRjgAFWZqp7dSpU5YhmlC9evWybMeRI0eeE6C40PE3atTIjRo1KkFfh4j85s2b7aTnueiii+y5/umnnyb4eEVERJKC9pP//e9/7X1mCUji0R6SVk7vvvtuIMuuf//+rmHDhlE3dJw2lvXr17e36Nq1q1WCioiIiESDX375xbVq1crep5NNiRIl7P1ChQr5elwKUoivWPx7m9aUGSlAEX2qV69um+G0A4i2LLtIzxDkd0JbLm/jJtjnn39+3v+fmKw1slaplLr++utj3M/H33zzTSKOWkREJHH27t3rKlWq5AYMGOAefvhhvw8n4lD5SBsANuq5oCXDjgoDNu39SMhI6UrYMWPGWDUoLa1o6TR58mRdn4iIiEjU+Pvvv92jjz7q9uzZ42688UaroiB53O95FFCQQnzDhc6DDz7oTp8+7apUqWK9bSU69ejRwy740ko5Nm2XqGrw4+sm1K5du6zCoWLFinH++0033RTCIxMREfHHwIED3b59+6wlETOyqOSThGGI4uOPP+5WrVplH5csWdLaQ956660uGg0ePNiSpsDcrEmTJkXVfA0RERGR559/3i1cuNBddtllbs6cOS5Dhgzu4MGDvs+jgIIU4htavzCzIGfOnG769OmaRRHF2BAIDlAcOnTonKz6aELbg8S0XfKDNzMjvn6DoWz3RGsNMi/5vQfjYw2eFBGRlMQg52uvvdYGOytAkfCKAmYxsGFPMhFrmpdfftnmSHE+j1ZUdzM/jTlqnTt31t+LiIiIRJXffvvNLVq0yN6fMGGCJaBg06ZN9nbnzp2+Hp92hcUX69evD2xw8sRQf+C0o0+fPu6VV16xyG3lypX9Ppw0q0CBArbRsHz5csuSTMl2T5deeqmd/D7++GNXu3btQPsIPn7qqaeScPQiIiIJQ0tD2k5KwpBJ16JFC7d48WL7mFZZtIbMlSuXi8ZgzNKlSwNDI6+55hq3fft2yywUERERiTbp06d3a9ascQsWLLD5W579+/fb22PHjvl4dApSiI/9gcnUZsOSix9JO8ie//33312bNm3c1q1bXbp06fw+pDQpY8aMtglBliQ9Ce+8806XJ0+eQIZkYto90TaKi3rvfTY4CHLwHPceh4zEJk2auNtuu82VLl3aMlvJzowrQCIiIpLcQdlLliyxuVjRNtQ5Jc2cOdM98cQT7vjx47ZRTyvW9u3bR2VFAW1nmzdv7mbPnu3Gjx8fWI8oQCEiIiLRuDb+7/8/i5T2Tg0aNIjx7+zjwO/5bdG34pSIQMTu66+/doMGDfL7UCSVUUVBix/KyOgTLf554403LHjA76Fw4cKWQUh1Q2L98MMP1p+a248//uhee+01e58gSPBznvtffPFFd8stt1gQgyzNaG77JSIi/qBVUc2aNX2/0IoUZ86cca1bt7ZzNQEKEgq2bNli88SiMUDx2WefuRIlSliAggt2hmSLiIiIRKNff/3VlS1b1g0YMMCqSOPy888/29tatWo5P0XfqlMiBlPj6REsactVV11lgwlBf2MGOIs/mAPTvXt3t2PHDouc04OZdlyJRQsITnaxbytWrIjxebR2YngplTS0fCtTpkwIvxsREZH/w3mGjHi1lbwwKiGpcBwzZoxVnTBMce3ata5gwYIu2rA2GTt2rCtXrpz77rvvbP1CywOqeyX1UXnLjDOSZC6//HJXtGjRQE9sERERCc2auE6dOpZ8QpL44cOHz/kc5pR680P9HpytIIWkqq5du7oPP/zQ78MQnz3yyCPu7rvvthdMNq7ji+ZK6g5QIsKuNgciIhLpnn76afftt9+6li1b+n0oYY1ZE6VKlXLbtm2zykbW6FS8eu0Aom2dQ0sn/iZYf9aoUcNt3rzZvn9JfVTsVKhQwf7WGOBJsIzNk6uvvtrvQxMREYkK//zzj2vatKl1y6AVN+fbuDpZ/PTTT/a5tP72e29OQQpJNTwhaPdy//33Wza1pF1k6o0YMcLmUdAzetasWX4fUpq3evVqt2zZMtucEBERiXQ5cuSwikE5F5v0bNY3a9bMNu9JHKENI2+j1YYNG9ykSZOsfRWzNubOnesyZcrk92GlWf3793c33HCDBcqo5MmdO7e79957Xd68ef0+NBERkYj377//WtLO9OnTbT08Z84ca3UZX/tuMKuUllB+UpBCUq3XLRnz6NChg8uZM6ffhyQ+y5cvn+vWrZtl7h89etTvw0nzuDAki61kyZJ+H4qIiEiScGG1e/duvw8jrH3//ffuzjvvtLZHJI3QepOEEeaFRbNKlSpZpv5HH31k689onLURSebNm2ezTx566CF33XXX2Syzt95667yBNSp+g28iIiISN9Y8Q4cOtfcnTJjg7rnnnvO2XwTVjX5XNGp1Jqmib9++1vuVrLZevXr5fTgSJrhIZGNcvYBFREQkOShlf/bZZ13x4sUDw/8kppUrV1oyAnOhuAhdvHixzaaKxg17sgF79+5t1x+eTp06ubvuusvX45L/w+9l5MiRlrREkIxrgfbt27uJEyfG+flUvzDXzrtRhSEiIiLn+vLLL63VPgYOHOgaNmzozscLUtSsWdO9+OKLzk+qgZYU980331hJL4YNG+YyZMjg9yFJmKCKgvJuERERkeTInj27VQUWKFBAbXzi8Oabb7qOHTvacEQCOZT958mTx0UjKnQfffRRt3TpUvfee+9Zq6donLMRyeh9TSUFiWygkoLZKKNGjXJNmjQ55/Ofe+4517lz58DHVFIoUCEiInKuokWLuuHDh7v9+/dby6cL8do9sZb2m4IUkuJ90MiM+fPPP1316tXdgw8+6PchSRjPRKDMe/z48TawR0RERCShbr75ZqsMYBNe/h9+HlQQvPHGG/Yxm/est9KnT++i0ZYtW+x6gwtzvsdnnnlGAYowlDVrVleoUKEY9xUsWNDNnj07zs9njh03ERERiX//lVaeaNeunUsor5IiW7Zszm/RV9srYVd6v2LFCnf55Ze7119/PfCEEQl28uRJV6NGDRtoOHr0aL8PR0RERCIQ60xtSLsY2ea1atWyAAU/Gyqbp0yZErUBCtaRFSpUsADFTTfd5NatW+caNGjg92FJHPg97dixI8Z9O3fu1NxCERGRJFi2bJm1tExKy1MvSEH1Kfu3flKQQlJUlSpVLCNm8ODBausj8aIFGIMb8dJLL7nffvvN70MSERGRCEBLH9aZJDzI/7Nv3z7bCF60aJElC7Eep6ogGhOGqNhmngFtgs6ePevuv/9+t3HjRmt3IOGJ6h6CSLR72rVrl5s2bZobM2aMa9u2rd+HJiIiElE+/fRTS0r55JNPAm0UE8Nr90R7TBI9/KQghaQoLoTq1KnjnnjiCb8PRcJc69atLZB1+PBha0MgIiIicqGydgb80W93wIABfh9O2Ni8ebMrU6aM9finrQ4Ds6O55SpDsrlAB38P8+fPdxkzZvT7sOQ8SpUqZRmb77zzjitSpIjr06ePGzp06AWHe4qIiMj/Q2Dhvvvuc6dPn3Z33313IPk3KZUUzz//vCtdurTz03/+ZXUvkgL9b3///Xd3xRVX+H0oEkHIoCJYQS+83bt322BtSTlxZVNSZr93715fjkciu6XIVVdd5X755Rf3v//9z+/DEZE0NHz37bfftuGAS5YscVmyZHFpHZUlBCS4WGVA9oIFC1yOHDlctDtw4ID7/PPPXc2aNf0+lLAXDefsaPgeREREkmPTpk0WmOBcWLFiRbdw4cJE78GeOnXKOpt451bvfb/O26qkkBQxY8YMlytXLvfmm2/6fSgSQSjT50KacrMJEyb4fThR78cff7Qb5fb58uWzAAUbPUnx7rvv2tBSAku0V+AEeaGvzfDO/Pnzu4suush17Ngxid+FiIikVZw/mjdvbpvTClA4a5lTvXr1QDbdqlWrojZAwWyNV155JfDxDTfcoACFiIiIpAlbtmxx99xzj23633777e6DDz5IUpK41+rpyiuvTLEARWIoSCEpktXGRcPRo0ftCSOSUOnSpbN+yejXr5/1GJaUw4YOPQerVavmbrnlFrd161brZZhYa9eutcGUbBR99tlnrnbt2najzUR8qLS69tprXY8ePSzTU0REJKmicc5CYg0ZMsRa5bB2euSRR+xiNRwuNlOiWpv2Xo899pitIQjEiIiIiKSlPdcmTZq4EydOuPLly1uCKEGGpPBaPbE3QzcT9mn8pCCFhNycOXPc119/bb1gn3rqKb8PRyJMixYt3J133ul69+4d8ZsOZDLGd2OwY0I/98yZMxf83KS2RiAowdwYqp+SWi4/bNgw64PYtWtXV7BgQesrXKJECffGG2/E+3+otOL/NW7c2Mr+REREEqN///52UZbWO9fy/Xfr1s117tzZPu7QoYObOnWqu/TSS120+fnnn20oNoPSQZCC4eAiIiIiaamSePbs2baPs2jRomQlpXhBCioqbrrpJktc9dMlvn51icoLJW9QS/v27dUjVBLt8ssvdytWrHDR4HzRbC6yyXL0XHfdde63336L83MJ2gT/TNjgp1IpWFI2aXr16mVfd+TIkecEhC4UiW/UqJEbNWqUvc+wSm9zxFO1alX3/vvvJ/qYRERELoTZSd27d7eByV988YUrVqyYS6uZdO3atXMjRowIVKFSkRrpSR5xIQGKxIpdu3a59OnTu4kTJ7p69er5fVgiIiIiqeL06dOBlk60zSZQkVxeuyfadv/3v/+1/Tg/KUghIcVwPi4W2eAkk0tEwhPVGfRzZuAoJ6PY6O99PsEByJ9++sldf/31Mf6dj7lfREQk1NikZpbRd999l2YDFARoqD5lhhdBidGjR7uWLVu6aETFDC2sTp48afOz5s2bl2Z/7yIiIpL2rFu3zj3wwANu0qRJlhAaKl4lxRNPPGHJLn5TkEJSpIqibdu2LlOmTH4fkkQweuGNGzfOAl/cKGmLNKdOnYr33y6++OIYHx8+fDjez439vZNBmlxkIv7xxx+uYsWKcf47pX4iIiLhiCrA1157Lc22emLuBDMZaNXIeoJABRWO0erIkSMWoGDNMmvWLOubLCIiIpIWrF692jpxsBZiBtm9994bsqpZL0iRPXt2Fw4UpJCQoXfZxo0brTwodusXkcRiZsPzzz9vw9dpG0S/vUjjleL5+bnx8VpLMYAyLolp98QA7kOHDsX4dz7mfhERkZQSjW2NEpLEUb9+fTd37lyrhHznnXdc3bp1XTRjOCT9lmvUqBGVszZERERE4kLbb9Y/tHqqXLmytXgK5frXa/eULVs2Fw4iLzVZwlbx4sXdtm3b3FtvvWUZbiLJwTBl+iyDCp20mi2ZUgoUKGDZl8uXL4/z32n3dL4bg8095cqVcx9//HGM/7906VK7X0REJJSGDh3qvvnmG5cWEaAgIEGAIl26dJbEEY0BCtpFPvzwwzGqTElWUYBCRERE0orFixe7atWqWYCC6on58+eHJGE1rkoK9nFpI0q3DT/951/t/IlImDp27Jj1HuZFmZZP1atX9/uQogp9B999913Xv39/G86dJ0+ec9pQJcTatWvt/9PDkN/R9OnTXd++fd2WLVtckSJF7HOee+45OwHSQzH23AtOhgRNunbtahsQhQoVCuF3Kanh119/tcAilU/B80pEREJdtUtSDBUEVOxdffXVLq3govGhhx6yeQwMN2RdVKVKFRdtPvvsMxuQ/f3337uaNWva9yuhFQ3n7Gj4HkREROIze/Zs16BBA2vxSSUF+zas/0Lpn3/+scfka3h4/5JLLvHtvK1KCgkJeqOJhNo111zjnnzySXs/HIb4RJs33njDWrMNHDjQFS5c2H7esSsiEqJ8+fJu2rRpbsyYMbZ5RL9osju9AAV+/PFHt3///hj/79Zbb7Xb5s2b7f/zPr0WRURE4kJuFRvXZNWnpQAFF4wMjvYCFGTSRWOAggvy22+/3QIUJC8MGjTI70MSERERSXULFy609R+VpXPmzAl5gAJHjx4NBCjYEyLRNCUCFImhSgpJNjYeuZDgonHq1KmW3SYSKmxu33DDDe7vv/9227dvdwULFvT7kKIWM0CoiqDvoUhiKKNRRFITmV8XXZQ2cq24eCSTjg18WjzR6qlq1aoumnA5yoVxjx497GNaGjAUPGPGjH4fWlSKhnN2NHwPIiIi8fnrr7/c2LFjXcuWLZPU7SKh1aslSpRw119/vbXaTEmqpJBUM2HCBBtyTBQurQcoGEa8Zs0at2zZshj309+N+QrBWerHjx+3+zp16hTjc1evXm0/0y+//DLGxZvfveH8kjVr1kCbp3Hjxvl9OFH9t8uJIyUi9CIiIqGUVgIUJGg89thjFqCgHeJ7770XdQEKriEaN24cCFCwNv7ggw8UoBAREZE05b333rPgBKhooD13SgUownFoNtLGCl9SNJNt/Pjx9n7z5s1dtCJIQBAmGBdTRYsWdVOmTAnct2fPHitTpyQr2KpVq6y1jteDH6dOnbL7Ro4cGeNzebzHH3/cSro8bB6TPZchQwYLbgT3ZiYgEjxYMBrx4ly/fn3rUSwpg+AYf0uvvPKK34ciIiJyDioIWA+lFaw9W7dubRUFJAERqGB4YrQ5c+aM27Bhg12EsyYePny4760GRERERFJzzffss89aO1PWfqnV8Mgbmp0lSxa3b9++c/Y8/aAVoCQLlQH8MZPtxBMqGpw4ccJeFLxex7QYuu222yxAwJDG4Cf0tm3brB2RJ3PmzC5v3rzu2muvtcf4z3/+Y/cTtMiVK5crW7Zs4HMpcXrhhRfOuRBjaPB9990Xo63Rzz//bG+5gAvOLBsxYoQbPXq0BUz69OkTCBy9/PLLdsyUy0fDhR4X5dF4YR5O+Fvhb11ERCTcfPvtt6527dq2Fjtw4ICVi0cz1pBdunSxClKqRt555x0bmhiNWG8zBJzribvvvtvvwxERERFJ1arZNm3aWPcV3HzzzYF9xNQKUpAMw35lvnz53M6dO52fIn/3UnxFjzQ0bNjQXX755S4SXxCCy6coMae6YcCAAa5r1652X44cOSzLi3ZLVD9ceeWVdn/btm0t+EAPNw+93Hbt2nXO1+HCMvbFJRfYvXv3Pudz27dvb7dgOXPmdMeOHbMB5cEvWAw6zp8/v72Qeb755hvXs2dPlz59euv35lm/fr0FLIoVK5bm23KJiIhI5KBPLmud3LlzR32AAlQ1Dh48OLDWrlu3rosmS5YssWBTixYt7GMuirmJiIiIpBXsMTZq1Mi9++67lpQyevTowNooNXjtnjJlymRtv8NhT1ftniTJKAV6//337f3UfCKFAhv+FStWtOyt06dPB+6/8cYb7e13330Xo+KBDD4CFV6AAlQqkN1PYCKl8YLFCwfBitgXsTt27LAgkYcgBv2L69WrF6OKonv37nbMXnsuL0jDLVJ8/fXXllnIha2IiIikDXfccYdV+02bNs1Fu9dff90qbTFkyBBrARpNaOnErDFaeTLHTURERCStIQG6Zs2aFqAgiZj2ni1SeV/Vq6SgZT37ncHt6f2iIIUkGbMTiPxRSXDLLbe4cEX/Yp74M2fODNzHhj/zI6hM2Lx5c+D+Zs2a2XyH2HMibrrppoipPqBN1KRJk9zEiRNj3E/VBUGZMmXKBO776KOPrP8cG/+R4Mknn3SDBg2yweIiIiKSdpCEEe3DlFlbe9W0VMV27NjRRQuSYjp16mRrOd4nc7BUqVJ+H5aIiIhIqrf1ZN7qhx9+aB1QPvjgA0syTm1ekCJ79uz2NrXaTJ2P2j1JknFx4bVDCjfB8yAWLlzoGjRo4AoXLhwYaM2/0d+XjfsCBQoE/h8fRysis7EH8CxdutQqYoLbQmHMmDGuXLlyrkiRImHxQuVhOPuKFSusRzOVIVSYiIiISPTavXu3y5MnT1itR1ICF6pe1QSBCoIU0ZQt+Oijj7r58+cHKoGfe+65qP+dioiIiMTG+of28nQKmTt3ritdurQvx/HD/9/uKVu2bC5c/Off1BobLpIKqCCgNJ4LHy8gcfz4cStfYhh1//79o2KQdKj8+eefbu3atVZZUrRoUbuPVkq0veKFk/e9qGo4oAQta9asFlThYv6ee+7x+5BE5P+vWKNPPM9NWuSJiITCb7/95q699lq7sV4Jp4uoUNqyZYu78847bTP/kUcecVOnTo2aRAyy9Ghn8Nlnn1m/Yyp9vTW6+CMaztnR8D2IiEjaEnsmLutcKin88Pvvv9u6DLTxX7RokVW4khjs53k7Ola/kmbRbio4zsZ8BvqoUS7vocXRV199ZW2CFKCIiRZWXBR7AQrQAotewffff3+MAAUDxak+IVDgFwb5eBU8VFOIiIhI9Nq6daslTXAjSSEaMQeNNRcBirvuustaWkZLgALvvfeeBSgINC1fvlwBChEREUlzSLahU8muXbsC9/kVoABzd0GgYu/evTa0m04rfoueFbCkGi6i7r33Xvf222+7v/76y7fj6Ny5s81TCB7uwkyJN998UzMLkqFQoUJuwYIFgZJ8EJjo0aOHleqvW7fO1+Pzhglx0UurKhEREYlOZcuWtVlhrEmisTUQ6xgqfQ8dOuSKFStma5t06dK5aNK2bVvXu3dvt379evt9ioiIiKQltHSqUqWK++abb9yLL77owsHkyZPtLcdFq3fWan7MxYhNQQpJNAZQE2F79dVXY5QqpbTYncm+//57a+U0a9aswH158+a1gXy0L5LkCd4MoGKF/sgVK1a0ygvP7NmzLeKamtUVDGlnWDvHFFwxIyIiItGHLDMyz6INJf41atSwTLacOXNamT1l8NGAylsqc7315AsvvOBy587t92GJiIiIpCr2y+rUqePOnj1r7S/Hjh0bFm3fJ/z/id0kATMTg7WaghQSkaZPn25vmzZtmipZbWxGExBhwDVBCU+3bt1sLgERP0lZXDTzc/7kk08CLQj++ecfG179xBNPpPoLLYMlM2fObH8bIiIiEn1YZ0Tz99akSROrLiCxZvHixVExb4Pvi0GQVN7Wr1/fei+LiIiIpDUkWVM1wX4Z66OWLVu6OXPm+NriyUPnFCqVr7/+emv1Hk4UpJBEIUhAP1mkVpSNuQlkZJFpFtzGiWx6BienZjWH/D+0+mrTpo1VNhCw8lDC5vW3SylEe3/88Uf3zDPPpOjXEREREX+w0V21alW3ceNGF21I8qASmDUuLZ5uvvlmF+moqiUw8dprr9nH5cuXj6rZGiIiIiIJrVQgKNGnTx/7uFevXlZRES4zcsf+/0nG7OOxFmWY9bFjx8IiCVgrR0mUDz74wDanmVuQP3/+FPkamzZtch06dAhkX1GtQSXFxIkTra+thIdLL73Ufk9btmxxGTJkCNxP4ICql1GjRqXY12a4T7i8wIuIiEjoN7znzZtnFbPRdr4fP36869evn70/btw4a6UZDbM17r777kDghT7HzDKLxjkiIiIiIhcKUnz11VeWrDFmzBjXs2fPsFkTHThwwCp40bx580CXGjqVsO/qt+ha9UuKI9sLDz74YIo8Pv1rGdzy66+/urvuusvVrl3b7g+3EiT5f4JfbHkxpqyN+/j9ebz7Qo2yuZ07d0ZFBqKIiIj8n8svv9xt3brV5jRQsRktPv74Y9e6dWt7n96/jz32mIt0u3btctWqVbO3GTNmdO+//36M+WUiIiIiaQktnUi2IaGXquBwMmHCBNtHY62WL18+u8+roCAZ2G//+Tf2NGKR82S1EV1j0B/VDiVLlgzJ4546dcpdeeWVgY/JLiPq+Pzzz7uCBQu6SEHlB8EVWmKdOHHinLcXKp0i84yLu6uvvvqct8yEiKS2Vgw1z5EjR+Bjytv27t1r5W433HBDSL7Gzz//7IoVK+YOHTpk/fT4OYmIP3jt43WKUtH//e9/fh+OiEjYoR1m2bJl7XWyQYMGburUqWGTVZdUXOQSRPryyy9drly53MKFCyNq7Z5WRcM5Oxq+BxERiR5ff/21W7JkievYsaML53Vb3rx5bW+OqtdGjRoF/o2OOYQH2Jf087ytSgpJMDaC6S+7Z88emwcRiicIm9dDhw5169atsxZSXqlRuAZpeDJz42cQfOM+Ns1TEpvwOXPmdLlz5z7nxoVhOAzg8QQHKAjQ0J/49OnT7oEHHghZkIJBkwRxDh48aG3Igl9gRURERMIFCSs1a9a0CzPW0rR8ivQABWhjQEZely5dbH4cAxhFRERE0pJVq1bZXhfrveuuu87mqoWjZcuW2d4lwYK6devG+Ldwaa8aHkchEYEN8qVLl1pFQCgurLiw2bZtm7V4Yt5E//79XTggerhv3z4rzfJuX3zxhfvhhx8S9P8JFgRXQni3C5VO/f7777ahH1x9wY3NfXAft88//zzO/58lSxZXvHhxCyDdeuut9jZPnjy+XwTzvdPeYNq0aYH2XaBN04033piskjLajlF1QxsyBSlEREQi3/z582292bhxY3fbbbe5SEdmGgOlaYfEWpo1SziU0yfH7t27LRMPrDdZ5/m93hQRERFJbexzPf7447ZPWq5cOXfvvfe6cDX2/x+Y3bBhQ2utGo7U7klS1fLly+2J612c7dixwzaZ2Wz26+KG4MMnn3wSCEh89tlnFgyICwOi46tkIHuMiGS6dOlCeny82JF5RyVLXFUc3Pj3uHA8lOFzAcmNvnOhqmRI7gV7kSJFrDplzpw5SW4dxu+L/0tgiKGN4fpCKxLt1HZBREKFNSFzDRi8TJvISNe5c2c3ZMgQW6usXbvWEkoiFVXQVE2MHDnS1vS0r5LIEw3n7Gj4HkREJHKxlc6g6e7du9vHderUcVOmTAnbPamjR4+67Nmz2/4i+2gkNnvobkPL9qZNm9o+XUpQuycJKf5gmYmQNWvWJD8GFzWDBg2KcdFZoEABu6UmAhArVqywrC9u9AiO7dJLL7Unp7e5zxM4f/78Vh2R2sEUjuXaa6+1W+HCheP9nr799lsLsHDjRYeBk7wAEIDh5mE4DsPJK1eubMOtmTOS2r777jurEOEFkiBPUvF7ISuRypcPP/zQSuxEREQkcrVp08YuYqg+iHS0QiJAgUmTJkV0gOLs2bNW3fLuu+/axxs3blSQQkRERNKcP//809ar48aNs4+ffvppN2DAAOsWE64mT55s+2/e/maw6dOnu/Xr11tSc0oFKRJKQQpJEFoxvfnmmxZc8CKFicWFDBv8ZM+n9gsIm/QfffSRBSXYwCcTzMMx8UTl+LygBPMxCA5ECoInpUuXtlvw983wHi9owdwPBp4TzOA2atQo+965YCZocffdd1vQItSVIHEh4EMVDS2fmC3hWb16tfVqTuiLO8dPxiWRX9onKEghIiIS2SiTD+dS+YT69NNPXevWre39F1988Zzev5GEuWu07KTnMgMVCb6Ea79lERERkZRENSkBCvathg8f7tq2bevC2W+//WZzYtGyZctz/r1JkyYWoCCh2W9q9yQXxIY+swMYUEyf4Bo1aiTo/9GGiAx/b8g2f2psTN98880pfMT/1yKJoATZXnPnzj2nfRPHwMY8t0qVKtkmf1rgVVZ4VSS02gpG2VWtWrXcQw89ZBsEqdkzec2aNe7222+3F8clS5YkOFiycuVK+z/8Dg8dOmQXzyKSutR2QUQkZitR2lH+9NNPlkwxa9assM6uOx+qVatVq2aJL7y+04qLpBaJXNFwzo6G70FERCIXlRMFCxZ0NWvWdOGub9++lmxOm3o6yaRGYnJSz9sKUsgFbdiwwZUpU8ZdeeWV7siRIwnauGbgIRlXOXLksKHTqbHZzeDp4MAEQ6c91113nV1geW2O6MUmzi6ely1bZgGLxYsXxxgOzvwNAhb16tVz9913X4r/DunfR8bhI488EiibS4i///7bXnDvv/9+C3JE6iaASCTTZoGIJBeXJBMnTnT33HNPRK/TSJQhAYZKCkrmecsaOlIDFMyS+/HHH+13smjRIle0aFG/D0uSKRrO2dHwPYiISOTYvHmzy5YtW7Ja4PvhyJEjLm/evO7kyZNu6tSpvlXCaiaFhAwXJKhatWqCN6pLlSplf4A8iQkWZMmSJcUuaLn4e+utt6zdT/AAab4mpfVUBbB5zUwNiYmfES9S3KiY4WdJkIeMPypneBHjxsU1rZQoDatYsWKKzOVo1KiRq1Chgv3deGgNxjyU85Wd8Xvt169fyI9HREREUg9JLY8//rgNmKa9kB9ZXqEalM16ivUMa9NIDVCAZCPaodImlOsBPhYRERFJS1jPNWzY0GbEMt/2iiuucJGiT58+FqCgww0JwXHh31l305UktWfwxqaUY7kgqhNwof7AlIF7MmbM6NauXWtZ+ikRoCAYwYyMYsWK2cY2vXG5j6hmu3btrKURm9tvvPGGtQJSgOLCqEDgZ8l8h/3799vvr1OnTu6GG25wp06dsmAFmYHM62AIJBsIocYQ7eAZFR07drShPt6QRhEREYlOp0+ftg1x1puRGqCgEoT1KVg33XTTTS4SeYX2rJ/5PpgZpgCFiIiIpCWsh5jlQPIzCbSZM2eOMd823H377bdu5MiR9v7AgQPj7TpCtSxr7927dzu/KUgh58XmNAOXwWDluPAkfeqppyyqSNsgD/3OQhmF4wVi48aNrnnz5lahwdfctm2bu/zyyy3zjtkEBCYYXEO2vwITSceLF+X9gwcPdnv37g0MfyRiTA87sgT5HTRu3NhmSaRE1zjadzFYmyE/CZkZsnDhQguqHD58OOTHIiIiIimLRAnWG1RzRqLPPvvMPfHEE/Z+z549XfXq1V2kYT1Hj2XW1d7ajnV2cJWriIiISLT7888/XatWrVzXrl1tTdSmTRub0Utb9Ejx/PPPu7/++stao9P2Pj5nz54NrPn8piCFnBcb//xRk+GeJ0+eeDe06b/rBRFS4sWBzDQGEJYuXdqNHz/eNq4JihCQYI4C991xxx2aR5AC+JmS2Thq1Cj7WROJveWWWyyIMHnyZGulRUXLmDFj7L5QIZJLFQ+34AAZfw9xee6556wKhOodkbSOTF4CxbToY6YQs4XOh+dOgQIFbGFC9RQBP2+xIiKSmiIxyeTYsWOuTp069rrJheCLL77oIg1JR7z2P/vss7bu9tq9ioiIiKQlx48ft7msY8eOtf2wYcOG2fX1JZdEzsSEdevWWeIPx9+/f/8Lzovgew6HeRva0ZXzYnOLjei4LrYYWBy8wUUVRbdu3UL2tbnQGzFihM0jaNq0qWWosXHN7IJVq1a5L7/80lo70VpKUgcDbsgS3LJli1u/fr1l2rGpSUULlRYM5OFvgZYNodqoCI740mKKgY3MIIldveEFMrz2ZCJp1YwZM6zaiUxenqvFixe3mULxVRlNmzbNXrv5fNr2MbiexyDzQkQktTb5g9eVkba5z9qUylPWQVOmTIm4pBmSTBo0aGAX4Rg0aJAFW0RERETSGrq3kPzKXLF58+a59u3b+z6rITHYK6MCBOylFilS5LyfT2Ij+6rhsH79z78p0adFohoXMk8++aT9AbNZnBItpsja5wLpp59+svuuv/56y+5q0aKFu+aaa0L+NSXpGIzOTBB69TFsG/Tq4/fVtm3bkLYIeOWVV1yPHj2sxzMDNhmu6Vm8eLGrVq2au/HGG22jIJJOIiKhDi6XKlXKZvJ4G2hURxDUjSuQTOs8ghPB7fqefvppC0TShzy+80Bw5RTZF3wNZgMRzBQRSQwG+S1dutSqNR9++GEXSfr27eu6d+9uF3i8blJdGkl43X7wwQfd8uXLbWDipEmT4h2sKNGBczbr80g+Z0fD9yAiIuFpz549th4leS/S1nWgIpbgBAnFtFAPh7liCT1v+x8mkYjDDIK3337bWix99dVXIXtcsuR79+7tcubMaVE/AhRsOLPRxosE5ecKUIQfIq4MuGbIDi2faAt29OhRu2Dn98fbI0eOhORr0dKJXskzZ86MEaAA7b64uGbodzgM/BHxA633Nm/eHKNFGgFlPqbXe1zKly9v/8drCfXdd9/ZjJfzZdG++uqrtsjwbgQoRESSwmsXyjowHC6iEmPFihXuhRdesPep/o20C9kff/zR3XnnnRagoMcyLZ4UoBAREZG0hu4gHtrdc20caes6HDhwwCo/wBr1Qmtrko7Za2UvNhwoSCHxoryJCfBk2Aaj/Q6zILiQYS5EKNo6sfHMCwHtRrhIzZ8/vwVBmEZPNn44DHCR86MVV8uWLd2OHTvc1KlT7W+DaCkZhvxu+/TpY7NEkoPNVgJYt956a+C+Tz75xFp/MdSbzVao5ZOkVQQIaZlC9VkwPvYq02J79NFHbVHCfBkCfbQrqVSp0nnbPREwJAvCu7EYEhFJCiofWTswB41KsEjBayob+lSrka1GC8xI880337jt27fbOYL1VJUqVfw+JBEREZFUw7UzXQQISCxYsCBwfyR25vj333+tVRX7cKypvZZPF2q5yn4se7/hQEEKiRezKJ555hlr5UMGLhtRwe1B7r333mQ/gciIL1iwoEXueCIxb2D69Ol2wcTF3qWXXhqC70RSE8OE2PTcunWre++992zgOTMqmGtC8Im/Ky7oQ3Vx/cADD7gKFSpY733NpRBJWiYwwUSygHkezZkzx33wwQcWWDxfUJIyzeCbiEhy1g5UREbK0GwuaJnhcOjQIevzyzDFSHTXXXfZWpx1fnACiIiIiEi0O3nypKtdu7YbPHiw7U8GV1NEotGjR1v7VFqQ0vIpIYO+qaRlnmWbNm1cOFCQQuLEE9Tb6CWzllJwerL9+eefIZs0z8Zy/fr1bX5A9uzZ7Un0+eef232RcpEq56964AWfFg4EnnLlymUzKxo3buxKly5tGXvJdd1119lFNcGtQoUKBYIUVOBo3I6kRcyD4fWTjbNgfJwlS5Y4/w9loI899pjN/OG5RG9ygha0dApVQFFEJJr06tXLArwMVJw1a9Y5LSjD2ZIlS6xyxcNajYpXERERkbSClvJ04qB6gk39d955J875jZFi9+7drkuXLvZ+v379XIECBRK8p8Y8YKopwoGCFBInhqt8//33li3LMGICFfQdJ3MsOQhIkHlWrlw5y9rioo42I3w9Nq/DYZq8hBZlcgSeaBvWv39/y7im/z3tZOrUqWMBhaTKlCmTXWzPnz/fTiy33XabVVd89tlnEVmeJ5JcVJ9RvRQ8BJtAAx/zuhsX2rDFfu31AsUK9olISmJdSNJKuJSYJwQZaq+88oq9zyyuhF4EhgOGYteoUcNVrVr1nGC2iIiISFqwatUqS5ylcoJEPhJoI3km199//22daOhgQoJ5u3btXKTSjrDEO48CRBa5eGRoDNnwbAQnBRUYRPNuvvlmexw2kJs1a2Yb1GTxRlIGmiQNfzu0D+N3TikZm6C0g2J2BRmJv//+e5I3ZQlWgHI2elrXq1cvyY8nEuko13zrrbesOo3gIM83Fixev3QCwsyU8NSsWdONHDnSXpvJKGEDjtdl7ldVm4ikJFrLrV27NkYP4HDGxj6VZwRwW7dubYk3keK1115zTZo0cX/99ZfNILr66qv9PiQRERGRVEVSKzO4mOVIch+dPwhYRLIhQ4ZY4IU5rW+//Xaikr9JaExuMnooXbhBlaQ5BBSGDRtm7xOFQ3IGZJPVzvAW3nr9b+n5dsstt7hoxIUrw79//PFHu3FBy3Bwfq5cGHo3Po8KFTbWvRsb+ZRbZcuWzWXNmtVdc801UVcRwPdH73vmmlCOxgD2l156ydoljBs3LllDMznRsEF76tQp26Bt1apVSI9dJBJQuXTkyBGbA8NgV15rFy9eHBimvX///hgLlx49etjrDG9pyXbttddagMLLFBYRSSm1atWy9U987ejCCRdxBHm9ORRcEEYCjpvZbwQpwHBISvpVvSwiIiJpDYnTLVu2tL0jNvQjPWF65cqVgTZVtG1KbAtPEoZYj5OgvmbNGue3//yrXg4SS6dOndzQoUPtfVrpJHVANhvzDF6lxQ+RObLduaAjAy2SN94ZIM7sDHq+/fDDD4FgRPDtjz/+OOf/eYEILzABL2DhBTBi43O5cCdg4QUuvFuePHlsHkMkZ8Lx8kNwgoDF4cOH7e+iY8eO9ndDFDgp3n33XcsSp1XZl19+qYtwkVTw66+/WktAXh81RFtEohEb+2z2X3755W7Tpk02Cyvcsb5k3hBtnrzvoWvXrn4flvgsGs7Z0fA9iIhI6jhx4oQlbXgdONh7o2NAJO9Lghb9VIOwl/boo4+6KVOmJPp7Yv+M+cMVK1YMydzY5J63FaSQc3zxxRe2+c0fN39ADAVMrNWrV9tFkTeY76GHHnKvv/56IJM3UvD9b9myxWYoeLfgGQpkHAcHDmIHErgRZKBC4kIvFjwVaVFEhh6BjtgBkOCPyZL2nroEK3hh8m4lSpQIvPhGimPHjlkFhHcRTfSXdjWU4SXlgpwXvzNnzrjt27dbpJygEUELEUkZ2iwQkWi2fv16a5HERS3rE9a4keD55593r776ql2IU61KuyeRaDhnR8P3ICIiKY89SSoFbrjhBuviQSJwNPj999+t8w1r1GLFigVm/iZl/4xzKTJnzuxSioIUkiy0y2EznmBFYrAxTJbZG2+8YZvobNDT2ufBBx904Y7KD/oiBwckdu3aZf/Gk52fRXAwIF++fDYPwQ+8kFDJEXysBFP4vXmb/N5xMkya0q1IKGOjJQ09nmlHA9qEUdWT2EAZLcVWrFjhRo8ebT35t27dasO1I+FnIBKJtFkgIon14Ycf2rqxUqVK9voRztl3rAEZ8k2mmTdbLRLQfpQh2T179rSB2SLhcs5mHh3tXoMxhJ5e4ZHyPYiISHijMwytkDlXEKSgNVKuXLlcNGjVqpUlztBZhQpfkpfDmYIUkqjNeTKr2rdvb0Oyk4pFJRdvtNjxNpgHDhwY1u2IqEigB9u8efPsYpnhsrQZih2QYNEc7gNkKV8jsBQ7cHHy5ElrTXD33XdbBJmL1HDu/czx0q7pzTfftI/z58/vZs6c6YoXL57gx2Do78svv+zq1q1rJyaCN3PnzrXvX0RCT5sFIpJYlStXdsuXL7fElrZt27pwxGUSw7FnzJhhF7W0+wzngIq3jsqQIUOM9aFaX0o4Bilo+frRRx8F7qMdbkKzOMPhexARERe26zeSXZmByjqIpN05c+ZEXGeX+BCcIEhB0szChQvdfffd58JdQs/bGpwtrm/fvrYJTP+x7777LknZ5rTpadOmjfvtt99sMDIfk7kVji9WZNaTVU9ggpIolC1b1nXv3t1Vr17dhoSHe0AiLlyAEkzhRj868IJM8IgXLr5fqhS4r3Tp0rZhz3DcokWLhlVGIBfWbFjQIqxhw4Zu586dNkybYe7eC/GFeME2NhMIPn311VcKUIiIiISRW265xR08eDBJrR1Ty+TJky1AwbqQCopwD1DQ0oBZcsydYN4XFKCQcEVQIpwTp0REJDKTsNn38lqJN2vWzLq7REv775UrVwbWeCTmJjdAsWrVKutCQgeWatWqOb+pkkIssPDII4/YTADmGVB2X65cOYs8XqhfG5UHPEEmTJgQyIqbOnVqWC046R/ME49NeoITtEkiEMNFHBvXBCYIrKQFR48etT58/CxorUSFQc6cOS1Ywc+CnnZ+tbCK73ibNm1q1S6gUoeo8YUypojOUsHDyxszPIL/Hr0B5d7wchFJPmU0iki0Yb1IIIW1EheBJLOEM0r9ubhk7cQ8rs8++8xmoomEayUFFfccB3+nXHsyP+XGG2+Mt/c2t+DvgdYdWneIiEgw9ja9BJPBgwe7du3ahVVSbnJs27bNZqRx7qNrCEOvk/u90XqRczKBnVGjRrmUonZPkiRknVMBwUwDqiou9ARh05jKBLK0+MNmQF+4VCHs2bPHjR071r399tu2Uc1Qa28znpkFtEBKy1joUz3jBW+YA8EgcIICDISkzVI4oPJjyJAhrlu3bhZgyJs3r510aMN1PmwsMASeUnJewL2gGj0J+VtgXkW0nKxE/BYOGx4iIqHCeuOOO+5w69ats4tBMszCZX0bl48//tjVrl3bAipkwlFBy5pOJFzP2SRN8fdKBTjXaWySUFnF9WVwu7LzzbCA1h0iIhKM9vO0OB8/fnxYV+sm1oEDByygz7mSziFLly4NyZ4me4HcKlas6Bo1auRSioIUcl6vv/66y5Qpk7XTCfbiiy+6Pn36uMceeyxQHhUX/o1IG6VUbPhOmzbNsvD99scff7j333/fsu3pccofP080Nt65aNOmdNx4GaA10sSJE+13e/z4cft9tmzZ0jb4wyETj40CouL79u2zCh/aP9FiLD5UBvF/CG54rZ64iKeChmoRMgzJNBSR6NjwEJHI8cMPP9j6MVx5G6K8nm3dutWqTsMVyRis51kDczH+3nvvxbnJKxLO52wG1PM8I+uVuYaxqZJCRETis2vXLnfTTTcFPmZNFE4dQpLr559/tuSZ7du3u4IFC7rVq1fbfm40rj3UpDQNWrt2revQoYNt3rOJG4w/dsQ3QJusdoYaM2ibAAX9z9jc9jtAcfjwYde7d29b3JIpTwsrKii4CGYAc6lSpRSgOA9+NgwLp8UXPzNadoG/ES4AevToYff7ibkhBBbIFPzzzz/dk08+acPevfZNsXGRw9968CwKLt4JYC1btkwBChERER+QCJEjRw6XJ08ey6QON6wdSNgBZe/hHKAYM2aMVTVzMU5SCe0xFaCQSJQxY0ar4majKS70EmdTI/gmIiJpG3tBHTt2dIUKFXJr1qwJ3B9NAYozZ864Bx54wAIU2bNnt7btkRagSAwFKdIgNnuffvpp17ZtWxtIHPwE37BhQ7xBCjb+uRDq16+ffUxvXi6G/CwnZ9OaKgk20jkunryUd/ECxf1XXHGFb8cWqaiaYPA2rQ0Yut2gQQOrWuAinUw972/ED8yZmDNnjvWs9SqCCEIQlU0oBidRJudRMZmIiEjqIbmFNqGsN6688koXTlhPkKBBUg5vWQOFM7LPWce0atXKWmFGy1BISXsIWDIHJmvWrH4fioiIRABmcNGqnr0qkljXr1/vos0ff/xh3URIJqcKgQBFfLObooXaPaVh/OqDqwvo308ffzKwyHIL7r1Lr1A2gxnKR1SSWQ+0hPIzOMH8C+9JyvBuSoOjOaLoJ0qyqEwhKMCsEmZ6ECgIDnKlttmzZ9vfIJHlIkWKuAULFsSZ7chFz99//20v6nH19aPyhmobKklEJHpaR4hI+Dp58qSdg8l8CyckMrDeyZUrlwVT4lo7hBvWwlykq2JYIumc3aVLF5sVyNqdau2ePXvac45M0YQkwIXD9yAiIv6gFScJynv37rXE5MmTJ7sHH3zQRZM///zTksRpZ08SypIlS1Kkgw0JynwNOpE88cQTLqWo3ZOcE2UcMGBAjKzx2BczXuSxdOnSMQIUBC+4jwDFNddcY7Me/ApQkGHDk6hEiRK2WT59+nS7r2vXrgpQpCBeTCij27lzp/U6PnLkiFXk0FqAags/8LUZ/J0lSxYbskfAJHb0nGPm2AmqxYXWZZ9++qlr3LixZU2KiIhIyiMhJtwCFHPnzrUABetj5nOFY4CCqmdaUQVXkNJ6VQEKiTTff/+9VSoxOJtNGK4xaUOsge8iInI+M2fOtM4YBChoHcq5IxoDFI888kggQMEaNaVa7NMxh8RfqpzDQXgchaQor2T92WefteqD88mdO3eM7HjaOd1+++22kGQRySYwA1tS26FDh6xagjkCbEzTg/err76yLPhLLrkk1Y8nrSJ4xUwIb8g2gavChQvbgO2DBw+m+vEwa4T2U8WKFbO/kUqVKrl333038O8EMPj7j6/0jwoKAhT8nYfLi7KIiIik/mwz1jJehrcfa90LYRZcvXr13IsvvmiJGiqGl0hGohkVFAzD5jqTj/Pmzev3YYmISBijJbk3g/aee+5xGzdutK4a0RagePTRR63NOV1sCFRQMZtSxo8fbwEffq7hQO2e0gB+xQwL7tatm23wFy1a9LyfT2scNqPfeecdq5jg48qVK7tZs2bZTIDURKbYa6+9ZqVH//3vf+17aNeunUufPn2qHofEjQuLkSNHupdfftmdPn3aBlnzO0rtvxPaRpCNRbCBbEKCWC1atLCTGK2pmFmyf//+VD0mkbREbRdEJCFYS06dOtXWl3Xq1HHhsk4mA48sNdbIXPCG22wHXmNJElm+fLkdG1mEtGEVSavn7Gj4HkREJPFrNioMaMvZt2/fGB1gosFff/1lc2BZ5xGgoIvJ/fff76KB2j1JAJu2DNQjOnahAAV4olPuzpODAAUXkvS7Tc2NZza/hwwZYuVbAwcOtCHftHeiGkQBivDBhTItlfjd0HKLygR+ZwwxJ7qdmm0j2Fyghx4nLrIh33jjDXfbbbdZhQR9r8nWupAtW7a4RYsWpcoxi4iIpDXz5s2zjDAqMcMFlaGsIUiGoadxuAUoaLFJshABCtY7rMkVoBAREZG0gFlFzBn19janTZvm+vfvH3UBClou1alTxwIUrEmZwRotAYrEUJAiinFRwzR4z/miVZSQez35yYxncCCbvQQ3JkyYYE+S1LJs2TJXsGBBK7cns+3bb7+1F6HUzs6XhONvq3fv3jYfhODWCy+84PLnz+8WLlyYasfASWrEiBGuc+fO9jEVN/wte+V/8bV88jCbonz58haZ37VrV6ocs4iISFrCOZrMN9oVhQMSeKgCBeuY4sWLu3BCkkXFihXd5s2bXebMmS1QQWtLERERkWhHK2/m4z7++OOBNpfRFpzwqgyqVavm5s+f7y677DJr9VSjRo1U+drjxo1zQ4cOtdaL4UBBiihFcIJp91zYJKTNzaBBg2zwdPXq1d2TTz5p93HRNmrUqFTr1U90lK9dpUoVd+ONN9rMCdpU5ciRI1W+viTf9ddfbxUMDNMmOMDfEyeUEydOpMrXJ7JOe7Du3bvbx88880wgwHahIAVVF9y4+Gd4n4iIiITWLbfc4p577jlXsmRJvw/FknNYo9AyskKFClYRGk64GGegMGsq2lauWrUqLH5uIiIiIimJji60EWcdRFvx48ePp2qnjtSei0aLclrz/+9//3NLlixJtQAFSAjv1KmT27NnjwsHClJEqR07drivv/7aLmzoa3Yh69ats95gXuY7LwhE09j0TQ1khtGKipL7119/3aopGJItkYnBd7RNGjt2rEWBCVikVhsl/maZkcENZB96f+PnQzCDmRb0/VPVjoiISHSj+pLZVbQRZf0Zbpl5rGdI1ilXrpxbvXq11sUiIiIS9X7++Wdrc8TmOUgiodXlFVdc4aINCeV33HGHtR2/9tprbV+URPPURHI7812zZs3qwoEGZ0cxImHMCqAy4Xz4E7jyyisDkcmXXnrJ2vWkRoCC6gnmTHChyJORyfJscEv0oFUBQ6w//PBDy1hkCHrGjBlT5WvztZ5++ml7/5577rGodGL+rgncMdxHRM5PAyxF5EIoYef8X6pUKStl9xNtHWntxNqXeVpeFXG4vJ4Gv46yTk+tpCFJG6LhnB0N34OIiMT0xRdfWMt39jJJImF/sH79+i4affbZZ1YxwexUOsksXbrUWqZHKw3OFpc7d+4LBijQq1evQICC7PMXX3wxVS6GyF4rVqyYzbwYPny4RQ0VoIg+tCgg8k024KxZs6yqgo9Tq/c1mw/gRZ8+2Altl0Y7Cv4eDx48mMJHKSIiEv06dOhgCSmUs4dDmyfWvgykfuKJJ1y4oOo0V65cMX5GClCIiIhItKMDDDPLCFDkyZPHZoZGa4CCDh5UUBCgKFSokFXMRnOAIjEUpIgyPXv2dJ9//nmCP/+dd96xQYHInj17oJd/SldPPPXUU9Z3jQ3srVu32pDj1Jp9IamPC2yqKbZt22YvwgwFat68uUVRUxrZkbQuQ48ePSxYciH8LdJy7NixY27GjBkpfowiIiLR7Pfff7e5T9myZbP2RX4iMYaLQaqIGRYYLutP1hu1atWyvsvMhBMRERFJKy655BJrv8laaOPGjZbQHI1IouV7ZNYGSeVr1qyxfVH5P2r3FEXmzp3rateubSX0e/futSHG50P7HcqL/vzzT/u4bdu2NvQ4JTEng55nTI7v16+fBSvC5eJQUgcvOcyqoA0Tsx/4u2WQZkoPXiJTkq/L3xsVHZQRns/27dvdzp077TklIuentgsikhB+ty7ivE6bp7Nnz7rRo0e7Vq1auXBAAkXr1q3t50NfYC7SmZUlkhKi4ZwdDd+DiEhad+jQIUtkTUgHmEjHnhTzNYYMGWIfN2vWzI0cOdJdeumlvh7T1VdfbXvIzDPOlClTin0ttXtKg8qWLevq1Kljk9kvFKDYsGGDfS4BimuuuSbw/1PSggULXJkyZexJSK+59u3bK0CRBrE50bJlS/fll1/acKAKFSq4d999N8XL6QhQ8AJMmwc2AC7UboKKDwUoREREQsfPAAUXYk2bNrUABXOqWIuEg4EDB1qwhAAFCRWTJ09WgEJERESi2rp161zJkiUtiZlARTQ7ceKEVU94AQrakLM/5WeAAqyJT5486Y4cOeLSpUvnwoF2iKMIgQkyxPv06XPez9uxY4e7//77rbyIizSqGe6+++4UK7/noqt///72pKTFE73l8uXLlyJfSyJHzpw53cqVK+3v4uGHH7ZWZQQQUkLp0qUDJ4fq1atb2wm+bkJbo9G3mpYQKjwTERFJPNacfqP1I2tQsrc4p/s964E1BW1Wn3nmGfu4W7dubsSIEe7iiy/29bhEREREUnL9QzUrc8qY/0mro2hOzqCbDMnaCxcutIoFWu4z/9TvdSguv/xyt2vXLgsS8X44UJAiCnhDr8Ef+vkubn788Ud37733Wq99egPPnj3bBmczVDglhlafOXPGNWrUyC68uBB77733XIYMGVxaxM+Z309ct0qVKrm0KH369G7atGkWSSa4Vq9ePZtZEmpZsmRxN954o50QCcoxpIhys/vuu88GM50P1UalSpWymRrTp08P+bGJiIhEM9aclHeTLUfGlh++/fZbm0uFQYMGhUXvXxIzuDAELVBfffXVsLhgFREREUkJrAPZV6FylH0WBmXT5aVAgQIuGs2fP98CFLQbZe3J/IlHHnnEhYuLLrrI9oELFy4cNl1uwuMoJMnIDL/55pstCHChCz+yx2nxtH//fpscTyQvJQMGREWJjhKYYHOXTehw+cP3Q5cuXay1ABUrBIu4MZeBF4Q5c+a4tIoLciLJzKYgWFa+fHmbqRJqnBxA9cS8efNsEBM9EGnpdL4MT6L6nEgYLO+1RhMREZGEYfghrZZIXCGDzI9gABfErJOpHG7evLkLByQV0dqJC9hnn33W78MRERERSTHs8dx+++1u/Pjxti9ItxXafkdjEjNrT/Y/aWVFOyX2RTdt2uRKlCjh96GFvbS7YxwlyEI/cOCABQIu1IqmXbt21vctY8aM1qOfeQDMhjh69GjIj2v9+vWWff7TTz+51atXu/r167u07sorr7TKAfrOkdnPjfsuueSSFB1QEylq1qxpf58EDPjbudDMiKQGKfjb9J4D1113ndu6dattWJzv+UMQ8KuvvrIqJBEREUk4qha///57Gwbth1GjRll7ySuuuMIGVPtZrUCg5I033gi0t2RNWKNGDd+OR0RERCQ1vP32227z5s2W+Pnhhx9au8torCClgpi13Ysvvmh7TE8++aT76KOPbO8p3Bw5csTWpVOnTnXhQkGKCNemTRvbbKW37vl6iNHzzbswowfaTTfdZPcTPCBY8fHHH4fsmMgKu/POO13u3LkVLZREoaqEcj+qHMh25O82JYIUnCxy5MhhM1wIEs2YMcO99tpr562moFWFiIiIJB7ViCQg+JG15818IGMvV65czi+0s+SilaShrl27+nYcIiIiIqnthRdecB06dHBbtmxxVapUcdGIvSb2PxctWmTVw+zTvvnmm2E7c2Pfvn22Ln3++edduFCQIsIRdGAINmVT8aHvGX94oPc/GW34+eefbYg2ihcvHpLj4QKwcePG7tFHH3XLli2zYd4iiUFkffHixRaAo1chJ7NQDKzmZEFrBdpsUX0EZlMwSNOrlqDd1IUsWbLEtW7dWkO0RUREwhjn6VatWlmFJud71hV+OX78uFVjkhREFa2qJ0RERCTaW9Oz+f3HH3/YxySHsvfCrNBoXHNSkcB6k/b6JIXTJaRZs2YunP3vf/9zDz30kKtWrZoLF5f4fQCSNN99953Lli3bBXv7/vDDDzaMmKE0/PEF97zlSYN8+fK5zJkzJ/tJ2bt3bxsOTVmTNyRazk8/o7gRaR4+fLidwMg2pD3CgAEDkvXzotUWj0mFD9VDHsrvKDuk/JDZE1T/8DlxOXz4sM2w4Hh4Ied9ERERidunn35q51c25WvVqpWqX5uvS/KBl8nm11w01g4EKGixevXVV1t2nVfdKSIiIhJtaKnNPNzdu3dbssiwYcNctCIRhdmzs2fPto8ZBs66MxI6ceTPn9/NnDnThRMFKSIQwwfZHGUAC+1qSpYsGe+gbJ4gzIUoWrSoDagJ3uTlwhEMck5ugIIIab9+/axSgyHIkjAMCeL3s3PnTnuBkHOHjbO5QCUQgQFObsnZZCAgERvPiREjRtjMCVpN8dxau3at9a6OjT6C/H2TFUBLMxEREYkfG/K0G2VodmoGKaia7Ny5s73P4EIScvxA5SbtK1nnUV1M0IQ1uYiIiEg0ov07nSdY++XMmdM6rUQr5u/SRYb1Hom2JNbS0krJyEmnIEWEVlHQqum3336LN+MbVE1QLUHWFoO1KS8PFoogBQEKLgIp2xoyZIjr2LFjkh8rLapataq9kNGKiF7Fcq6nnnrKpUuXzk50BCqYUxHqbEgCIUS+CfgR9ScoQlAvLlQKiYiIyIXRYpSLVMrfU3vt8Msvv7jbbrvNt7UpVcz0XP7222+tMpShiX4FS0RERERSEknSnTp1ciNHjgzsdTGQmXbe0Zg4/sorr7iXXnrJ/fPPP9beafr06fEmkEvC/edfNVaPSJRMffnll65s2bJx/juZWpSWY8GCBa569ernPKkyZsxoG+OUnzOoOLH40yHTffDgwZaJ7mevX4l+kyZNco8//rhr0aKFGzVqVJKi05xAeD4QvGPWRexh85988om766677G+boAUligl5TL9aSIiEi19//dVKWtkUpLeliIhf5syZY5XE9D6mhWOo5q4lBWsJ1hvM2orGHswSmaLhnB0N34OISLT4/vvvrc08g6O9xE5uzASNNnv37rXqkFWrVtnHTZo0ca+//rp1SYk0M2fOtMoP9o4nTpwYFudt7axFKFrRxBegoMqiadOmgfY2sQMUoLUNAQqeSIULF07SMXDRRYCCATEKUEhK40RAdcOYMWMsKzIp8VUCGwzRfPXVV92WLVvO+XdaOD3zzDP2Pp9Hu4j4HDx40I5J1UMiIiLhgXaMVFGA87kfAQoSgTwES0gGUoBCREREohUdL7755htLhCYplAqDaAtQsP80YcIES/AmQEGnmilTpth9kRigAAED2s/zNlwoSBFBCD54LZrO98ShLQ4DswsUKOAGDhwY5+dlz57dBgoy4DopLx4vv/yylTe99tprrm3bton+/yJJQZSaKgoGYHfr1i3RgQqCFF57s/ieSwyAv+WWW9yxY8dcs2bN4v0aO3bssH6LBE2OHj2ahO9GREQken3++eeWFEPFYWohMEGCAXO+SKZJbStXrrTAyL59+wL30aNYREREJFrR7ojq0c2bN8eZJB3pjhw5YokndPZgNnCFChUsCaVhw4YuktWtW9d99tln8e4b+0FBigjCxmz58uXPGxRg05Rh2pS4E9VLnz59nJ9HXziqLbyhgolB9QQXfgQqnn766UT/f5HkIAjHDBRmeRBQSKwLBSkuvfRS653InAraM9DKLC60hWKINi2iMmfOnOjjEBERiWaU+RcpUsS9+eabqfL1VqxYYUO6wVvO46lpyZIlNoODwExS1iciIiIikeD48eOudu3a1mbewxyuPHnyuGgzf/58V7RoUZvzS+IJXTnYA4qG7zVTpkyWoBtOM9M0ODuC0J6J4AMtaeLrjeaVuFMhwbDAUJs7d64FJshi7969e8gfXyQh6JvH4Pjnn3/eovaJiWB7QYq1a9dalURcsy0KFSrk+vfvb1+HuSuVK1d2BQsWjPE5/L++ffuG4LsRERGJPgT9SZYpXbp0in8thnO3bNnS3n/iiSdcxYoVXWriwrV+/fo2LJsMQlqhioiIiEQbMu/JwN+zZ49VTuzatculS5fORWMnG/aDSP4GbfJ5n019STkanB1hDhw44LJly3ZOiyb635LZTW80qi2I7BHQiAutaXhy3XHHHYmaPs+gbh67atWqNmBFw4LFT7x0UW43ffp0+7svVapUgjcyGNjDRgIn1Lx588b5ebSnICOS7IASJUpY5QUbLuc7nqQM8xaJBhpgKSJx+euvv+zcmNJ9iUlaILONNfL27dvt9Si1sKamOpm1+MMPP2xVzedbL4j4LRrO2dHwPYiIRJpx48ZZZ5fff//d5c6d27q4sFcSjdUTzChlXgP7niSuMmcjtat0UxqDzr/++mubs5HSv0cNzo5SN9xwQ5wXepS1e8NbuDiKL0ABAhidOnWyDd6EIrDxwAMP2IYuU98VoBC/senBfIpbb73VSg2Zw5IQl19+eSCgwXMmPvyNMwSJEjiGbNNiKi5//PGH9fCj+oIXXhEREfk/rEdTOkBBEo3XS5fWUqkZoGAd0rhxYwtQsK6eNm2aAhQiIiISVUj0ZF5nixYtLEBRo0YNq6KItgAF+56PPfaYq1WrlgUobr75ZrdmzRrrshFtAQqQ8Mv69d1333XhQjvNEYAMbp4g8Tl8+LD1xgftZy7UG2316tX2lkqKhCDj/KGHHrJ2U7R7uuKKKxJ1/CIphRPFnDlzLGDx4IMPurNnzybo/91+++32lhPr+ZCROWjQIHufyPn+/fvj3IAZP368++abb2wYvYiIiKQOqh6ZVUXFBgkL3FILSQojR460Ssp27dq5sWPHpnhARkRERCQ1kYhJRxX2OkjkfOWVV2xf8Oqrr3bRgrUciSa0+KZClu/zmWeesdZWZcuWddHq5ptvdtWqVbO34ULtnsIcAQKGmBw6dMiG+MY1j4ISc6obyCjfsGHDeasowKwKNmd5EjZo0OCCx0A5F5Uay5YtC2zuioQT/p752ySYxnPhQm2X9u3bZ9kABQoUuODnsgHC847gXp06ddzs2bPjLAck6t6oUSMbpiSS1qjtgogEIxGG/sSvv/76OTOdQokgwZNPPukyZMhgbZ5y5MjhUhPr86lTp1qFslo+SqSIhnN2NHwPIiKRgC1jqig++OAD984779iA7GhCImqbNm3cwoUL7eMiRYpY4kmZMmX8PrSoktDztoIUETCDgv62DKXhRquaYCtXrrQNVC6MqLi40BPp5MmTLmPGjLbxymNf6GKOMnaesAQpKO0SCedSNYJutHygZ2CoW0kQBKSdAyfn+++/P6SPLxLptFkgInGtNWnFmDVr1hT5Ojw2ARBef4YPH27VDCmNy6a1a9e6ChUqpPjXEkkp0XDOjobvQUQkXFGh+ttvvwVeX3n/+PHjLnv27C6avkfahHbv3t2dPn3a2nW++OKLrmvXrmrdmQI0kyKKZlBwMUSmeOwABVUWZI+hZcuWCYr0rVu3zi4ac+XKdcEABbMruODjpgCFhLtHHnnEBmdSludFwUOlaNGirmPHjvY+zweqMERERORctAWlPJ65TikVoECHDh3sgqd06dKB9XBKYv3M16FyU+0dRUREJBr9+OOPrnLlypYAytoH6dOnj6oAxcaNG23/lD0eAhSs7b744gsLWChA4S8FKSIAVRJxvSAMGzbMffXVVy5z5sw2iyIhvEHBF2rbRNVG3bp1rUpj8ODBSTxykdTVp08fG+LECZUZERcKwtWvX9+9/PLLCXrsnj172vPwu+++c/369Yvzc5iPwQmdYKCIiEhaRB/fYsWKuSZNmqTY16DN4qxZs2wGxJgxY1J8FgTZdrRXpcKYdbl30S4iIiISLZYvX24dJNg35LZjxw4XTcjiJ+mUAMWWLVus8nf06NG2NxROcxlSS+PGjV3+/PndvHnzXLhQkCKM0WKGaom4fP/9965Xr172/oABA9w111yToMekJdSFhmZzIUZWOqU4M2bMuOCMC5Fw2hhh0BFVQvXq1XO///77edtEzJw507333nsJemz6XQ8dOtTeJ0jx7bffnvM5DJDixM6GiYiIiITeqVOnbF4aOnfu7IoXL57iA7JJfpg8ebIFQ5hB0bx58xT9miIiIiKpheSLV1991d199902b4tOEps2bUrRuWKpiXadzNPg+3njjTfsY+aJktjaqlUr20dKi/bt22f7WufbN0ttafM3EQFoJ1OxYkWXM2dOt2vXrnP+nV5plCWVL18+UZlqRMjYRK1Vq1a8n/Paa6/ZCxIXYQkNfoiEC/rbcQLauXOn6927d7yfx/MLn3/+uTtx4kSCHpvqoqpVq9qGBa2lYnvqqafsuekFEEVERNLaRS7nQCod4ku0Sa6XXnrJ5qqxRqbKMaXX4w8++KBVbVD+P3v2bAtYiIiIiESDn3/+2dWsWdP2N1jHUTlKZwgy7KMB3WfodvHoo49aK6t8+fK5pUuXWvLJ9ddf79KyUaNGWcVMpUqVXLjQ4OwwRS/f++67z+ZQ7N69O0YZO9G+woUL2wsIlRFly5YN6RO4RIkS1ueXCg2RSG79xEYGJ9jbbrstzs/hxEvkmM0U2kQlxLZt26yNBS+dBPNKliwZ4iMXiTwaYCki3hqVLDXWr7we/Pe//w3p42/dutXWqX///bdbsGCBq169ukspJCRUq1bNLVu2zL4fKi9JVBCJdNFwzo6G70FEJBywgU8i82WXXWaDpJs1a+aiwcmTJy1plW4YdIthLcfMiS5durh06dL5fXhpzq8anB3Z6ANHltjixYvP6bNLpjYBCqohQhmg8Prt5smT57wZ6CKRoFu3btYCgr/p+MrXvIgxJ+WEKlKkiGvYsKG936NHjxAdrYiISOSjXJ6L24ceeijkAQrWvk888YQFKKhsTMkABaicYJ195ZVX2npcAQoRERGJNgMHDnSFChWyBOhoCFCwXpw0aZIlpNIlhn3O2rVru+3bt1uQQgGK8KZKigjDcBcytxnax/R5esUlVOvWrS16SJVE7ty5z/l3etCx6bp27VobJCMSDXNdeL4QLY9ruPy0adMs4EBW5ubNmxP8uFQ3MViJEx5DlrzWUcHPU+ZStGjRIt4qDpFoooxGEUlpnFdZyxI0+Prrr23+VErjMol+vbly5UrxryWSWqLhnB0N34OIiF8VBuvXr7f5E8Eb+9Ewl2Hjxo2uffv21k0DefPmdcOGDUvxxJZINWfOHPvd87fAEPGUpEqKCMasifgQ+QP91BIToDh79qybOHGiPUHj6hFMCxt6CLOZqwCFRAueI1Qe9e/f305Y8VVS0F4toXMpvJMdAQjQuzF2rHfIkCFu9OjRdhMREZHkOXz4sHv22WcD7RxTKkDx008/WSDkt99+s49JClKAQkRERKIliZMkSjbtg5M0Iz1AwawJqkBKly5tAYorrrjC9evXz9rZK0ARPyqUqX7+/vvvXbiI7L/EKMRmJ/MmKC+PPTB75cqVVm5+ySWXJHowL09UWt5kzZrVBsUEIxv88ccft41XeviLRBM2NW655RZr+0SwLli2bNmsd3apUqXsxJYYL7zwgvVtXLNmjVu0aFGMf2ODg+dU/fr1Q/I9iIiIhDvOsYcOHUqRxyaJhmQCzudPPfVUinwN2qxSGUnFxpNPPpkiX0NERETEDxMmTLCE5J07d7rrrrvO9gEj3ZkzZ6xjBnucb7/9tt332GOP2ffIPpBaO51fhQoVbO1LhUO4UJAiDAcO7t+/3yKc2bNnjxG88Koomjdv7m666aZEPa7Xc5/McbLCgjEgm/Y0vGix6SoSTeiJzd82A7LjCsLRNo1yR4IViUGAo127dvY+z03K5Dy33367Gz9+fIwSShERkWhG+8MsWbLYAMZQYg07efJkW79SoUiyTqjt2bPHLtJYK+TMmdMSEUREREQiHdWhVBmQRMmmPjO22P+L5A4q7I/OmDHDWnCzF0M3GqooaF3PPAr2auTC3nvvPVu/33DDDS5cKEgRZtgoPXjwoPUGY35E8AXa6tWrLYiQlAun4CBFXG2eunbtak9qkWht+9SzZ08LyG3YsCHGvyVnsCfRefrpff75527evHkhOFIREZHIxAY/gYRQXhj+8ccfgaoGStJTYq26Y8cOd8cdd7i9e/daEhCVy1QXi4iIiEQy1jh0aaHKgJZOtMxcuHChu/baa12kYsA3FQCPPPKIJXjTAnTKlCl2f7ly5fw+PEkmBSnCEC2ZiG4GGzx4sL0lAhpcYZEQRBW9wTFVqlSJEX2kZJ4LscS2jxKJ1LZPbHYEVz0ED/IhsyAxrrnmGte2bdvAHIrYfvjhBzd27Ng4v56IiEg0YU15/Phx6wEcKqx/qTKmLcErr7ziQo1knTvvvNMShAoVKmQBihtvvDHkX0dEREQktb3//vvWpeX66693S5cudT169IjY+RO7d++2+Qnly5e3gET69Old7969LRDTsGHDiP2+JCb9FiMAF2cffPCBZad17Ngx0f+fCgyGZXPRlSdPnsD9zLegtGfgwIFq8yRRj/YQbHYwIGrWrFkx/q1x48YuU6ZM9jxLyqYM1RhsbGzatClwP885Njxatmx5TvWGiIhINKKnbaiGWu/bt88uPvHaa6+5q6++2oUSvZjr1q1rczRIYlixYoUlComIiIhEAzqm0A7ps88+C3k7ztRy9OhR16lTJ+s6wz4OwYgWLVpYBS9dZghWSOKRWMR+VYkSJcIqqVZBijAyfPhwG+7rVT14hg4dam9r1ap1ztDrhPjll1/sgpEXJW8eBX+Ezz33nPXO17R7SSvIlqxWrZqdqAkieDJmzOj+/vtvt2zZskQ/Jm0tKDWMXU1B4OL++++3kkOG1ouIiEjCdejQwSocmRXRqFGjFElemDZtmrv33nvt/B/JrQ9EREREvvvuOxsczRwKsKH/8ssvR2QSBt/Dq6++ap1f2BNl/+a+++6zVttvvfWW5k4kEx13vv76a6sqDqcqlP/8S88fCQtEsIhwjhs3zto6eVFDhpicPXvWqh64UEsKfs08hjfnYurUqXbBt2bNGiuXEkkrGJR96623uhEjRlh/a8ydO9fVrl3bFShQwCqXEovnLc9fNjxYGHiDh8jSTIkBnyLhhnZpZFATFGdOi4ikvcF7M2fOdPXq1bPqhORasGCBq1mzpp1DuRgtXLiwC+VFr7LuJC2LhnN2NHwPIiKhXosxHJvXxfbt27thw4a5SMQeyoQJE2ymKO2zQcVr//79LbFEQoP9YRLkCf7cc889LlzO2+ETLhGLDvJiQsWEZ9SoUfbHU7JkSRvql1RUUHgBCoYQUhbF11GAQtKa4sWLu0cffdS99NJLgQwDKiyIHtPPkL7UiUXQg6H0nFDfeOONwP0KUIiISFqwZMkSN336dLd+/fpkPxbn5nbt2tn7nTt3DmmAguPMnTt3SI5TRERExG/s79EWvk6dOrYBzB5fly5dXKQhsXr27NmuaNGi1jKbAEWuXLlsKDYtuxWgCC1a/rOHlRoBisRQkCKMUCVBtDNz5sz2MS1ivA1PLtK8Vk2JcfLkyXP6i40ZM8b6/Pbt2zdERy4SWfr06eOOHTsWyC6g3ROBQCSl5ZP3HMXo0aPdqVOnYvwbz0G+noiISDQic4/B1g888ECyH4vS/r1791pVIkk1oTJv3jxL0Dl8+LB7/fXXQ/a4IiIiIn5gvUQys7evwQwKZmx5nR0ixUcffeRKly5tFbl0trjmmmuslTbvayh26INBW7ZsceFKv+kwRkYaw/yyZ89uU+yTgt779NglMAE2T9mgZVBwKDPTRCIJWZS0eqJk8Oeff7b7vEFSH3/8cZIek9kuzIwhe4HyxOCyS06yzJsRERGJRmXKlHHPP/+8q1ChQrIehyGIAwYMCFQYX3nllSE5vnfffdfaUJFtyNvx48eH5HFFRERE/LBy5UprOb1hwwZ39dVXWzIGayhmY0YKKlvvvvtuy+bftGmTu+KKKyxBZffu3VYdki5dOr8PMepMnDjREnQZRh6OFKQIk0gW2df0yg+uemA2Bdq2bZvkFxqywtmEZZMUgwcPdidOnHC9evUK0dGLRCYCeLRnImMzOEixfPlye04mFtF92rUFP3dBFgPPOZ7fGgEkIiISN86RtHkikMBgxAcffDAkjzt58mT3yCOP2DmfbDySgC699NKQPLaIiIiIH/LkyeMuvvhiq0BgRiazvCLF1q1brbq1bNmyliTKfid7Kcz37N27t80ukJRBi3NkyZLFhSMNzg4DZI3lz5/fLpjYzGR2BE9Optiz8bl//36rpkgsqjC8PzwGcBMA4YWM/m4EK0TSOoYxUU3BczBTpkxW7XDXXXe5Vq1aJWmeBAHBrFmz2gYLQYlixYrZpgjldN5gbZFopAGWImkXF8bMT2M+E/1tk4rKQ/opsx7+6quv3E033ZTsY3vrrbdc69atLQDSvHlzSwrigl4kLQu3c3a/fv3cc8895zp06GAVVJH4PYiIpAZe84I38Ldt2xbYS4wEO3futD0YEkbAfmeTJk3ciy++aPMnJHV8+umnrlSpUqm6P6XB2RGEAYFkjFHm5A23njRpkr3lvqQEKEAvOtxyyy1WScECkBcByvFFxLmnn37aZciQwaL1lBbSDuLJJ59M8os1gQ4vg4EyOvBYZDcoQCEiItGIYD9DGgcNGpTkxzh9+rSV9eOZZ54JSYCCwAStD3jLuZ3WpwpQiISXjRs3WvCQxB4REYnfBx98YInM77//fuC+IkWKRESAgvZNJIQWLFgwEKCoX7++2759u7XgVIAi5f3999+B98uVKxe2+1MKUoSB4sWLu0WLFtmLDqh48IIUzI5IKm8AMG1siFqRTfbUU08FBnOLpHVEcAlU0AriyJEjIXlM7zk7depUq6IQERGJZhkzZrT5Z8ylSKq+ffta5XDOnDktozoU/vOf/1jyARugb7zxhoYuioTY77//nqz/z6xEWrBxjUo/dREROdeff/7punXr5mrUqOGOHTvm3nzzzYhpI81g7xYtWrgCBQpYEid7nbR5+vzzzy1Ywf2S8kaOHOmqVKliCfLhTqv1MLR69Wq3Z88ey/BOTj/e4CDF22+/7c6cOWOZZCLy/9D+jI0LNjE42dP6iZkSST3xV6tWzTZraLe2ZMmSwEUYc2AYrh0cwRYREYl0o0aNsnOeN9spKaX/AwcOtPeHDRvm0qdPn6zj+fDDDwPncNpP0cKRgIWIJA9JdbTloH0w/cN5rpLwc+edd7pXXnnF/fDDD4l6POYusjamc0BCAiIk3QXfRESi3YEDB6wdNVWrYHbXggULwn5ds2/fPvfEE09YKyr2VtgDYZ+E6rm5c+daorakjiNHjlgC0CeffGLJueFOQQqfETiInYXitYl56KGHknyhRjbarl27rKydEvzXX3/dHi+praNEohWt0B577DE3YsQICyZwwiTaT+lhUnDR9uijj8Z4LrNJwhyYhQsXui+//DKkxy8iIuI3LpaTUqngDcsmS/D++++37Lqk4rG6d+/uqlatahmHIhIazItho6lZs2bWHuLZZ591c+bMsWScsWPHWpDio48+suAFm1IJqU4mg5aZba+++mqCjoHPo5e1d7vhhhtC8J2JiIQv9g6Y97VmzRoLCM+aNcsNHz7cpUuXzoV7cCJfvnyWBMr6jkD02rVr7fu57bbb/D7ENOfaa6+1nz2zQEjcCXfh2YQqDWGBx4Yo2dy84FB+Q2k6yFRJKhaQXKhRDkZlBj3gaD8jIudq37699aqeP3++q1Chgl1oLV++3BUuXDhJj8dzl2xQsgSOHz9uJex9+vSxfpHXXXddyI9fRETEDwQGkpPNxzqYygcuuFkHJ/WxOI4uXbpYQgB0rhUJnQEDBrghQ4ZYFmxcwciHH37Y3h48eNAS46ZMmeI6dep03sxghmQvXbrUEnkSgizQzp07Bz6mkkKBChGJVgzEptIMJUuWdDNnzrRAcDi3dSKYTAcXAhOgvRAb43fccYffh5fm/PPPP+7nn38OtPoncZ1bJFAlRRi8+Jw9ezbQAoZN0pMnT7rcuXO722+/PcmPmy1bNvfyyy9b7zEWi/QJTk6vYJFoRjCCCD8bJGSDYeXKlUl+PIbVFy1a1P3xxx9u9uzZdh8XY23atLHnpkhKo1cpA8i4+Oe1f8OGDef9/BMnTljbhaxZs9pmIRmTZFyIiJzPAw884EqVKuVWrVqV6P9LYo63kcmwbIZBJgUXYrx+eQEK5k8wb0pEQuPTTz+1zbILVUtRsd+vX7/zBiiwefNmd/jwYVeiRAlLrONGGwrW4bwfV2tU1iZkEgffRESiFQOxWdtQbUolRbgGKEiGbt68uVVOkPRJgILgBHspJH4qQJH6jh49akkFrM+///57F2lUSeEzAgmPP/54YLI6QQrQmikUA/540SBLxWs7IyJxYxHADBjKE8GJNakZovwfsspo7cRzmmopkdQyY8YMyzakTzwBiqFDh1r7kx07dsSZXUww7Z577rF/o4yYTQZKdRmGKyISH86RVOtSMZiU9qRk3JFRzbDspLZnYjOzdevW1u+Ycy8XyDrnioQ3NrBitz/levjmm2+2VlK0KxYRSavtnUgaA4HbUOwJpgSuK/v27WvdWrzA8r333uteeOGFZCVbS/KxJmd9zbw4EhVz5MjhIsl//o2UsfBpwF9//WWbRFzskZGW1Cc3LZ7o+cb/ZxAh1RQMMrv88stDfswi0YKo/4033uhq165tZYrMiuHkS0Z5UnzxxRdWUcHzjuckGe0//fSTXZSxIRzuw64kchGYIHOCbGIvy5iWCGTixLURSDCDc8U333xjM1WSgrYL9Ij+5ZdflN0okkZwCUF5//r1612dOnWspWFCMTeNKkaCpLR8IkkgKZo2bWqJOFzET5gwwWZMiUhoz9nBbZYuxKtoSqxKlSrZupnEioTQukNEomkf4vnnn3evvfaavRZSgRCuwVr2Ml555RVrP+VtJTNTjOBE2bJl/T68NOvvv/+O8TdDxx7WxoUKFXLhIqHnbVVShFkpLQGKTJkyJesJTuVEgwYNLApLcKJRo0YKUIhcAJuzZHExQLt06dIWKKT0PKlBimLFitnGMFFs5lsQmCBblEUImzq8LxJqbPjRRoHezR4WKLQz4xwTl3nz5rly5cpZNRFzVBiuxfD382UzEsTjFrzoEJG0hWA77Um5JRbtYHi9IuuO5IDkZGS/8847bvLkyYG++CISWp999lmMjxl4TXJdgQIF7OOdO3faeoG+6SIiknD79+93jzzySOA6jT2E2BvO4WDTpk3WBYZrRU+tWrVcjx49LDlO/LN8+XL31FNPuV69ellHHq9dWKQKz9qhNIJM665duwae6F6rJyKRXvunpPB66dOygxIfhnKLyIXRT5HILoFCEKRIzuZNjRo1As9tgiCcLChlp0+gSErgb4uF7fXXXx/jfj6mkicu3333nbV54v9RZkwmzKBBg2wher42LWRCeDcNrxSRhFqwYIHdOC8mZ1g2qJygKkMBCpGU3QDxbjVr1rT5bfS5JljBjYScu+66KzDkNSlWrFiR4CoKEZFoQKIYFWQEKLieYpblsGHDElWZmpKolGA/hLbBBCLYt/TaWn/++ef2sQIU/lu/fr3bvn276969uyUQRDoFKXxEMIGSrvHjx9vHXLDB29hMKm9j9ccff7SMcKKxInJhDO0kK5MLLwILDJ1PDu+5zHObk/zGjRvd119/rUwzCSu0g6LVIL3c+dusX7++LXJoAxUfKjUI6Hk3NihEJG0hmEkvYl4DEurs2bOuY8eOgWoKLxM7Mf+fqi/WuB4FSUVS93lPosLVV18duI/3SWzg30RE5PyoJKWN3gMPPGCdVNjop2KN1pnhgH0LEtdoH0/7qQ8//NAqO0gMYTOc+YfFixf3+zDTrNOnT8e49mY9TRUF8yeSk+weLhSk8BFPbMpyeHFiwDWbl/xREalMqp9//tleOLB161Zr2SEiCdewYUPLCiPAF3wBlhSVK1e2wUUEPaicCreyTYk+mTNntr8zquiC8XGWLFni/D8MZ6OtWfDfZ8GCBa3ygkV0XNKlS2e9JINvIpJ20O6N/sm0FE1MdSCbmKx5s2XLZi0CEntRRhY3bRlZO2usnkjqo73jkSNHzrmf+06ePOnLMYmIRBLaPy9atCiwwbx69eoktc4MNbLwaaFJdQeVccy55ZqvTZs27ttvv3WTJk2yrhDin6VLl7o8efJYBxAPv6OePXu6jBkzumigIIWPKlasaJnazZo1C1RR3HHHHcn64yJ65m068eJHnzgRSTivVJ3sgeRiWDazAOA9x0VSEuXBVEN8/PHHMSol+Ji5E3GpUKGCtUvh8zz0l+Y8Ei7lxiISXn777Tf35JNPWmINF0sJ7bvMsEVQSZwhQ4YEfz02P2mHyjDJK6+80v5/ctpEiUjSMOSeGW4MvCcJhxstStgwCZcsYBGRcHbFFVe4d999173//vtu8ODBvl9vUaU6evRoq24lyZlkZ46xS5cubs+ePZYcEg5BFHEuX758lphOu2beRqPIrwWJEkuWLAlJq6d169bZWwZl0/9eLyYiiUPbGwbXM4STjVvaSLRu3TrJj8dzmn6Tixcvdq1atXItWrSwEwoZEyIpgfLhJk2auNtuu80qgujxTAYymwpo3LixzSyiXQPIjnnjjTdchw4dXLt27SxTpm/fvq59+/Y+fyciEq6oNBwyZEii/g8Xu2fOnLGEHIZEJhTtpO677z5b41K1xfk0vqCriKQsWkHyXGYji4Q40AmAIMXAgQP9PjwRkbCsPmUW7Y033mivn2Cvzu/hxqyvRo4caXMwvNmF11xzjV0T0lrTm9Mp/jh69KgFiDjX9unTx+7LlSuXzXDiGp/ZbtHoP/+qVtoXZKweO3bMWnPwK+AFgBeJzZs3uxIlSiT5cbmII+BB5JMXFy9jTUQSrl+/flYyR6sbNkIodUwqNnxppUMZ3sGDB+05D57vapEjKYWgA5sFLDgp2WU4bZkyZezf6C3KAmfChAmBz2dgG+XGDEEjgMFmw7PPPpvgFmW0f2Dgm/6uRSQuy5Yts5lPF110kbVUTGgvY4L69957r62PCYzQF5kArIgkXSjO2SQ/0LrNm+nGtWdq0rpDRCIBr5PM+2Mdw6YyH/s9S4u5XiSxEXTmtRQcEwEUrgFT+/Vc4rZixQp31113WQI6MygIIEWyhJ63FaTwCaWxvBBQsk5GNZtIvBicOHEiWcNOvvnmGzdx4kTbZGXTiYxwEUmcr776KpDZQHCBF9SklmHyEnv99ddbr941a9bY7Bna6LBZw2OLRANtFoikLbRuYh2bkJZLZIDdeuutdm4lM48gakI99NBDbtasWRbgpw8v62URSZ5oOGdHw/cgItFt5syZ1kWBlpVsMLNP57WW9sOOHTusXSazJby5g4ULF3bPPPOMa9CgQdRm5kdKtQ3tv0BQy9tHYjQArVXr1q0b8b+fhJ631e7Jx+gleLHysrQJKCR3GjuDbP7++29rWUMJkIgkXqFChaxV2g8//GAnDIZelypVKkmPxQYOPf856RCQZBEgIiISyRcZVGNR2UCv4gttENJKgAAFa97evXsn6mvRq5kqxLfeessupEXEf5s2bbLNN4KV3kaXh1kVIiJpGa0tqVBnzgNuv/12G0idI0cOX46H/cYBAwZYC2ovR539CarmCZpQ5Sr+mjFjhrVrzpMnjyXo8DthH+ntt992aY3+Gn3Chiebn1Q7kF3tvVCEwvz5860Pvl5sRJKGE0Lw0Hlv1ktSec9t77kuIiISqXbu3GnZXFQDXyhAcfjwYffiiy/a+7QgTUh/4+BNT6o1OHcqQCESHqZPn+7Kly9vlcHvvfeeVUoRhKSlGxmSIiJpGQnDd955pwUo2FN4/vnn3fLly1M9QEF7+blz51qAhL0I3idA8cADD1jiJLeaNWtqz9CnWRNvvvmmtTD11KtXz9a6jRo1sn3itEx/kT6ifQxtX0IVpCA6+8ILL1jLp+ANVhFJPJ5D3gmCjLHk8J7bZDFQRUV/wS+//DIkxykiIpKamAlBNQUX3RfCxTll3cxbo+XBhZCZXaxYMcvS9iSkpZSIpI6+ffu6IUOGWFIc17IMXOXa8+GHH7ahsCIiaRnz/Bo2bOiuvfZat3jxYkvQSG63lMRWcRAgKViwoKtdu7btNfJazRqM4DLdHUKVHC1JQ9vTp556yqqFPenTp7f9oZdeeslmUKRlmknhM9rJMKSUCObx48eT1VOzYsWKbtWqVZbdxmNp4I1I0pEZljFjRvfbb7/ZgE8GCicVwQ6yy3jLCYkTU8uWLd2YMWNCeswiflFvaBGJbePGja5MmTKWuUfG3oUuimkdVblyZbd3716XP39+u1hL6jwoEUmZczbXl1RO0PKNFm4k3hQtWtQ2v3j+ei2NU5rWHSISLk6fPm2vfTfddJN9zLrn2LFjNk8rNbPzR4wYYfsMzMIEexlt2rRx7dq1s+RoSX202GIGSNeuXW1NDIanE9hv2rSp/W7Sil81kyK88eLB8GxvQjuLu+QssHgh3Lp1a2C2hQIUIslDsI+LrQULFthzldJNMiOSggHZtHhjk4ZARYECBQLPfRERkWhDm4H27dvb+pTS9QsFKL799ls753K+zZcvn/v4448VoBAJQ8yiYQgsSLTbtm2bXceeOHHCEntERNISXgPZcCbBccuWLS5DhgxWAZpaAQpacFLdNmHCBHf27Fm7L2fOnDYTo3nz5taaU1J3Iz54X5fK4NmzZ1v7Ui9IkTdvXrd582YfjzK8qd2TTyiz6t+/v2WfgN6eybFv3z6LSIGyLhFJvgcffNDe7tq1K8kBCo/3HKdqirL4V199NSTHKCIikpqZegxZZAD2+Yqxp0yZYvOcuDhmvXs+ZGDTv5kAxc033+w++eQT34ZLisiFK/eXLl1q7zPcs0OHDlYd3KBBA1elShW/D09EJFWwBnrrrbcsEZF1DNUUVISm1tdeuXKlzZdg3TRq1CgLUNCOkxbw7F3w2qwAReohSMU5kODUoUOHAvcTKGJA+eOPP+7r8UUSVVL4pH79+tZCZsOGDfYx/XeT44svvgi8TyWFiCQfiw7v+cUGSnJ4z/Ht27eH5NhERET8aOG0cOFCK1X3BmLHRpY1F2To0aOHy5Yt23kzELmoY8B2kSJF3EcffeSuv/76FDt+EUl+NwAvW7d79+5WeczMtbp169rzXUQkLWTLt27d2k2fPt0+vu+++9zEiRPdddddl+Ib4e+++67NMgjOxGcAdpcuXdwdd9yhOV6pgHMgQSLaajF/BJwL+bvgd0SyDdU1uOuuu+wmCacghU/IOEGePHnsbaFChZL1eF6rJ9xyyy3JPDoRAQOnGFxE6WZygxTec5xMCxERkUhUuHBhN3z4cLsYi8/LL7/sfvrpJ+vN3LFjx/M+Hhl/BChYu5KdnZr9m0Ukcf766y9rg1q1atVAdXC3bt38PiwRkVTDvgAb0CRr0GmBwdjMG+D1MKUwb5aqDdZfBw8etPsuu+wy16RJE2vrRCtpSdnKFc5/3tp3/fr1dh5kODpVhN7vniA+garcuXP7fMSRTYOzfURJGD3r+BUQhUvOhVm9evWs1xnZZ1wYikhoUAFBKzVORMkZdE2fXkoueb4T8GBuzAcffBDSYxXxiwZYiojXG5mKCDLJ2MykNdT5cE4cOHCgJe/Q615EwvucnT59eku4oee5n7TuEBE/1KpVy82fP9/deOONVklRrly5FPtatG0aNmyYe/vtt23vEOz3PfXUU+6JJ55QYkcqeP31161tKT9zLyj/xx9/WHINv3uqWjgXSejO25pJ4RNK4Wn7wsUZEbjkvsB42dlcGIpI6DDAc//+/W7x4sXJehwu6ryoOiWA3jwaERGRaEFGHwGKatWqxRug+PLLL+0CD7QleOaZZxSgEIkQpUuXdp9//rnfhyEi4ouxY8e6Fi1auM8++yxFAhTsD7JXwJzZ/PnzW3Y+AYqiRYu68ePHu71791prPQUoQv9zp5VW27ZtbTPdQ5UE1Ssff/xx4L5LL73U9nLHjRunAEUKULsnn9Cf99SpUyFp9QSeNERz77333hAcnYgEDwicM2eODfSk/yCllUnFc/27775zTZs21YB7ERGJKLQbYCYFgxkzZcp0zr9THci8CsrhhwwZEudjrFq1yt1///3u7rvvdjNnzjxv2ygRCT9PPvmk69y5sztw4IArWbKkVQYHS+6cRRGRcMLMnUWLFrk+ffrYx7TzofVSqP3+++9WmTF06NAYgWDWTCSAML9L8yZC54cffrD9HQLv4GdLpQR7NSTZ8HNHnTp1rJ1WhQoVfD7itENBCp+idF65ltf3Prlo8UTmmp48IqFVqVKlwPN2z549yXq+8n9pf0HbpwceeCCERykiIpKyqADkYo1NyC+++OKci2suosEcirj6Iy9btsyGO9L+0BsuqCCFSGR55JFH7G379u0D97G5wzqZt3///bePRyciEhr//POPtaPs3r27va7deuuttgYKtUOHDrnRo0e7ESNG2PtgJibzJnidDcVeYVrH+Yk1JxUQYAYayd1UquzYsSPweSSSHj161N1www2B+7JmzWo3ST0KUviEIEXdunUtKhuKSorNmzdbKZKGZouEfkiod/FFX8jkLBS85zrlgSIiIpGEQETevHkDWWfB6Jn87bffWq9k2hDE9uGHH1pwnopEZjy99957dhEuIpGFhB0RkWh2+PBh17hxY7dkyRL7mOHIVICGEu2iWDu98847gRaY2bNnd+3atbM5XXFVrEri9erVy1pm9e7d2yoBQUXwJZdcYomjZ86cCaxHX3jhBZ+PVqAghQ/Y8OSJQD853Hzzzcl6PCKBvMDxoha75FZEkocTWMaMGa3Nxe7du5P1WF6Ag37c69atcyVKlAhE9EVERMI9g5pb7EzpH3/8MdAGoV+/fucMw6MNFNmHXIRTSUHP33Tp0qXqsYtIaPg9MFtEJCVR9dmwYUPrVMKeHYOTmzVrFpJWS6yf5s6da3t3K1euDNxftmxZ16FDB0tiVoVp0lCl++yzz1ryNpW/3h4Lv7djx465Tz/9NBCkYA4aezsEKST8aHC2z33QEFxOlNQXUjY9lZEmkjJy5cplb5MbpMiRI4e9PXLkiA3a+vnnn0NyfCIiIqnl4osvjvHxc889Z3PWqLAg8zAYF+MPPvigBSh4O2vWLAUoRCIMiTWJ2Sj66quvUvR4RERSwmuvvWYVEwQo6IDAHK7mzZsnO0DBhjiPTTUqgQgCFCRCUqHB6ysb6CSBKECRMJxjqIxgiLmHvdBp06bZzzK4JSlts7iPIdfBFKAIXwpS+NTfjt52v/zyi32c3B5ntKCB+tWJpIyiRYvaW2/YfVLRBsNb5DDoXhs1IiISyTZs2OAmTpxo7w8fPtxajwajXQEX3fXr13czZsxQ9aBIBHrsscesTRtVUMFzFYPRyvT555+3TTgyWUVEIg2BCVo8t2jRwgIUtH1ODl4X27RpY4mKXbt2dfv27XPXXHONvVbSOo9N9TJlyoTs+KPRqlWrLMDjJXh7rbJ69uzpxo8fH7iPPZa+ffta+6ybbropRrIplSpaf0YOtXvygfcE8iJ+scviE8trGxXXkEIRST6yHCZNmhRnn+3EIGPi2muvtT6XZJdSaigiIhLuCDBwQUgLBK9nL0k33vBcMtXiutC+4447LEuQRBrOgSISedhoGzlypK2DH330URs2mi1bNnfZZZdZhvA333xjiTxUSzF/xkvuEREJdwxKzpw5s71///332wZ4cua8sjZauHChJW7Qlt3D6yItnXgNVQeUuKvwCAzRmil4QPnTTz9t95Pg+fDDD9t95cuXd40aNXK33357jMdo3bp1qh+3hJ4qKXwKUnhPvODM6qSiHA1krohI6HFS9PpuJ5dXORWKxxIREUkN69evdzt27LAgu2fKlCl2PyXzr776auD+qVOnuq1bt8a4MFeAQiRyUQ1FQJLXANpmMNS1SJEiNg+xUqVKbvTo0ZblSgarAhQiEgloQ9m5c2cLulLh4ElqgIIuKUOHDrXHY/4WAQqqS2vXrm3t2WlBROsoBSj+LzBEQNvrCAPa13M+ofKEahYPgSNaZHmBJOTJk8dNnjxZQYkopSsGn1D2PmfOnECP+uQ+yUMxgFtEUj6wQOYZi5TgkkUREZFwRmsC+jSzKYmTJ0/agEJQWeGdJ+kP3KpVK2tnQDZiKNa5IhI+brvtNruJiEQq5kwyA2LTpk328fz5891TTz2VpMeikozh2rS+9NrhZcyY0VpGMag5d+7cLq2iqoS2VvyMqlevHrifihJaXb388svWBh/FihWz4EPx4sXdmTNnXPr06e3+Xr16+Xb84g8FKXzibXYmdx4FL4Rnz54N9NATkdC76qqrLBPimWeesQg/LZuSymvxNGjQIMumEBERCXdksJHN5nnllVeskpe+v1xsYsSIEa5t27b2Phf/XkBDREREJFzaV5JM8euvv9p1+YQJE1ytWrUS9Rh///23tXQiOBHc0okZFu3atbNWRFdccYVLS9iX3LZtmwUXvIq6EydOBOZD8D57KihZsqS1cPICEaDChOCRiNo9+RykyJIlS7IeJ7jsnqw1EQk9bxAo81+SW03hBSm+/fbbkBybiIhIaqI8f8iQIfb+4MGDXbp06azFgReg6NSpk/ViTm47UxEREZFQzTwgOEESBQGKChUquM8//zxRAQpm8JBomC9fPvt/wS2dPv74Y2tZRAuiaA5Q0IqJYMJ7770XSJYGw60ZUM3Px5MpUyYLUhCUCN63ZJ24c+dOeysSmyopfEK2Gf76669kPU7OnDld06ZN3Zo1a3QxKJKCGA7I4ib4BJsUuXLlsrfJGcgl0aNx48buzTffdBkyZLCPaQVGVRz9n0VEwgFrTGZMUEnIAGyGGNLLuWrVqq5GjRpu4MCBVmkIWkAxn0JrUhEREQkXJFW89dZbtj6hhSVthBI6L4s10BtvvGGzuGhF5CUeei2dvOv7aMOcjc2bN9vP7K677grcX7p0affzzz/bv5UoUcLuo00T83ZjB2iYZeQlfHq0RpTzUSWFTy6++OJAn7bk4AlPJDgt97oTSQ3eCffQoUPJehxv6FNyWkZJ9GDArLfYxR133OEOHDjg6zGJiASjbzAX4ePGjbNBh/PmzbMLe6opuGD3AhTMplCAQkRERMJNly5dLLmCdQyzEC4UoCCZeNasWe7OO++0DXgCHFyzMTuB97///ns3YMCAqAlQ0H5pzJgx7uDBg4H7PvjgA1elShVb33lY4xGkuPXWWy2B0/PAAw9YG1CS74LFDlCIXIgqKXzCwLGPPvrISp+Si/Yz+fPnD8lxiUjc/ve//7kjR45YRkFy0G8RwRvTknZRMnu+j0VE/EblHxf25cuXD5TmM2CSqgoGY3N/tWrVXI8ePfw+VBFJRbT6oNJYRCTckMhL9QMVniQI81q1ePHiC/4/uiYQhBg1apQFIsD/r1Onjq19SCiL5GQMvj+CD7///rt74oknAvczS2P9+vU2s+Phhx+2+wjI0K4pb968MR6DeRyxfwaR/DOR8KIghc+8DcukWr16tfvqq68C2dkikjK8djzJDS54QQ4WTiIiIuGuZcuWdmPOxPbt220GWs+ePQPnxuXLl7tLL73U78MUkVRAF4BXXnnFNvCoLqaveJ48eSzTlozi5s2b+32IIpLG0Yaofv36NjuBiogXX3zxvJ9PktiGDRssqDFz5kxraYnrrrvO5liwmZ89e3YXaah8/eSTT9xDDz1k8yKwb98+16xZM2vNFBykoKVnxowZLTHTU6RIkTjnaCogISlJQQqfeENmkhuk4AWYzc7gsiwRCT3vhH3q1KlkPc7KlSsDCwQRsOlHeay3SP7mm2/O+Tsjk0VExC9Hjx4NBCboP0w5f/fu3e1jBShE0g7apEycONHanBC8DN7MGjp0qIIUIuIbrqOGDRtmbSj//PNPd+ONN7p77rkn3s8n+ZDKAdY0mzZtCtzPhj5VE/Xq1XPp0qVLpaNPOgLGBI/p+vDOO+8E7ifgQmthEpq9IAVVsLRwKly4sAVwvLZX/fr18+34RYIpSOETBs1g7dq1rm7dusnOyr7yyitDdmwici4yCxDcezEp0qdPb2+VgSAeForBbZ4YROv9jXA/b//++28fj1BE0qrjx4/bGpMs6RMnTtiF7tKlS+12//33W09iEUk7Jk2aZH3LWbsEZ+HSs50kCxERPxw7dsw9/vjjbv78+fbxgw8+aLO0GHAd2969e60abOzYsfb/QDDikUceseAErdnDqXoteK4Dr7+8Djdq1CjwGkyg4fXXX7f3aVXl7Q1yTcm6rUyZMoH/z7/Rdl4kXGmKiU+84MKKFSuS9TinT59OckXGyJEjLTuXDHFu5cqVc4sWLUr047z00kv2IknghV52BQoUsOMhct2+fftk9/CPVpTUTZgwwe/DiHiUMN5www32PgM7S5UqZe0nKM+sXbu227FjR0i+Ttu2bWO8TSov68wLVkjatmfPHvfdd9/Z29g3737eioj4gV7OnFO5mPcqKjB69GgFKETSIKr36VEe10YamcsiIqmNWQrMzyJAQXUnbZtmz54dI0DBaxRDsxnwTIu6/v37W4CCPSv2EA4cOGB7M34FKKjq8AImOHnypH1P7NN5XVjwww8/uDVr1sSo/KANJy2txo8fHyMRkqALFW6VK1dOxe9EJHlUSeET78XjzjvvTNbjeP3xk1KGxrBDyrry5ctn2bqU7vKi/dlnn1n5V0LNnTvXdevWzV4wub322muuUKFC1s6G6C73zZo1K9HHJ5LQv7+aNWsGAhYEEQhUUL74/PPPu3vvvdfa6VxxxRXJ+jr//e9/7S2PmxwanC3BcubM6fchiIjE6+uvv7bhisHrVzITyVYUkbSHa7xVq1ads37hWk+BSxHxA9f5JFHkz5/f2jexue8hYZbgw4gRI2yGjodqMBJsqTZgMHZqYM+NFr8kUVaoUCGwv0DA5LnnnnOtW7e2RGKv4oH9NJKSOW6v9S9dWEgKLlmy5DmJwyLRQEEKnxDJBRUIyeG1nrnssssS/X+9jV0Pfex4UVy3bp1t9LLhGxd6Evfq1cveJ+LM4O777rvPorxErD158+a1x+R7DO53J5IQ/I3Fd7IluOdVITEQimwJLF68OMbnsSChooLZLRUrVkzW8Xh/v8kNUnjP1eCMCBGGkhFwo/yYTcDcuXNbJRCZPiIifnnyySfd6tWr7X3aDZDQkty1q4hELrJ1mzRpYhUVXM/OmTPHNtxoP7JgwQK/D09E0giupb3rambiLFy40BIVvVZHX375pc2amDJlSqD7CJWhTZs2tbXNzTffnKLHx2skrd35muyVeQikMHuQJErmQyBr1qwWwGBvzcP1IPsc/BvXhZ6iRYvaTSRaqd2TT7yoaXL7jHvBjuRGfzmO6dOn2ws4bZ9YcFJN8fTTT7sff/zRbtxPq5ouXboE/h8vnLQt8oYKx0bkmn9TgEISi78z/t74u/P+Bvl75O+Sv08QIDt8+HC8JYxeq7FMmTIl+3iWL19ub5PTouuPP/6w/pjBrwEilBiTmUhbFQK97777ruvatastnqlMExHxAxV/HTt2DFwsT5s2TQEKkTSOqntaqtDTnOxlghZUXHHf+QbUioiEComJJMSSXOu56667rLsIw6JJTqTygNaU7G+xf0AlBYGD4cOHhzxAQYUpbc6DgwxLlixxDz/8sBs8eHDgPtZSXPNx7Mz88rA/wPBrb56G54477rD2eqlV6SESDrRz7BMv6sscB144k9qKxhuik9RgBxFmNoGJRBN1fu+99+yFEwQWuC9Lliz2Mf396KMfPKSbzF8Wq3Gh5K5Pnz6uVatWSTq2aNO3b1+7BV/8c2JlOJOHiDp9EeX/Shz5e+Pvzvsb5D7+Lr2gA39/VatWtc+JK4DH5gqllGRXJBdty7yM96TavXu327ZtW5JbtEn0IfjVo0cPG0rboUOHQO9Uzg30EKWVXunSpZNdCSQiklgESUkEuOqqq2wmRf369f0+JBEJA2ycLV261O/DEJE0hoQ/rpsGDhxoH9O6/P3337fgAwOludFOCWzss/lPhxC6MATPakgMKhy8/8scCL729ddfb8EOD+9v3brV2kx7szKpdmBgdfHixWM83qeffhpjEDaotuAmIqqk8I23QUnpV3CLpMSibx2I0iYF/ew+//xzGzbUpk0bK99lozwhfv31V2sJVatWrTj/rXr16hbw8FpDpXXM5+Bn7d0YytS7d+8Y92XLls3vw4woBCni+vsDCxICAlQIhWpRhLgCIgmVPXt2W0wltUWbRB82/lq0aGGvk8HD3QjE8frQrFmzQG9SEZHUwAwKklh4DQLznRi+KCIiIuKHPXv2WNKWF6DgWp+2TQ899JDNyGHNQoCCAALJX8xzoDqdrh8XClCw7vn+++9j3MfsLR6LYdsekoup1Pjggw9ifG7Dhg2tC0TwrB5aT5GQ6h2vJ3aAQkRiUiWFT4I3KPfv35/kx/E2tZNaicGGKyVkYPjOxo0b3bBhw6w07kIWLVpkQQgvWuw5efKkBV+IBlOZobY2/2/TMbjtEAOUmZfg/fwlcWj/xJB3gmGxUZ1CX9yVK1fagPhQ8AaHJqcCgtZnZFRAQQrBhg0b3OTJk+P998cee8w1btw4VY9JRNIuKmsZykimnzeDyeuZLCJpE0kUCc1CphJURCSUCDaQ1EUibMaMGS0wwXxKZk4EV3gRuKB6Ir6kQgIRJOTS7snrXsHcLSot8uXL57755psYbaOpJmXmDp0bvOoIqkxjr4ueeeaZFPrORdIeBSl84m1Q0t+e6oWk8mY9/PnnnyE5LlrkeJuxscVenMbV6okTBy/ibOQyr0IbsRJKwX+D9GwsX758jMAP5Zjt2rWz4BgLl+AhU6GqpEhumybv+aXnhoD+o7ly5Yr33/kb9sqWRURS0m+//eZq164do40LLZ5oOSciaRftJ0VE/LBs2bJA1xAqG0iIfeuttwKJuszKoqKCGRQe5j0ww5K3wfNU+Tz2EAhu8D6ofmAPjFbltFD35j/07NnTde/ePcb8CvYdmJEpIilHQQqfeBudyR2CQ4sgsCFbs2bNRP3f5557zlWrVs2iyLzYMxCRx2HIT1yojCC6TESZF2gqKYJf9AlQ0IePi9wpU6bYx9xw7bXXauCPJBt/g2zY7ty504JgsVs9kT3B3zEBNO9zQT9tKlf8rqRYuHChDftO7uNIdGUtn6+FGJVoXoBMRCSl0MKAdSRzcmhFwAU7WYveRoCIpF3JSagTEUkqEnGPHTvmMmfObEEEkru8luUEGXhtovUS7ZQJZJBo4VVBsIbhGqtTp06BfSjmVO7atSvGtRftmOnQQAAkOCEy9iwJEUkdClL4xMuiZoMqORjQA8ryE4tgA21EeFFmE5foMwGKe+65J87Pp6yOuQr0SOfFniHGJUqUCPz7li1bbLYFYrcwoofg+bKF0yICQpI4VOkMGDDAFiY8h2Jndnm9++k9Geztt992TZs29bWSgioPMj3I6IAqKcQzduxYez2NCwFkEZGUxOsMrRNXrVpl5ziC8rQnfPnll/0+NBEJAySd8ZrgvX8+3ueJiCT1mnnEiBFu7969lvjqJR0SQKD1HJ1ESPrzAg+0K3/nnXesDboXpKAdOcm4efPmdWfOnAlcZ/Xt29duwUjMyJIlS6p/nyISNwUpfOJtUFKNsHbtWisnCx60k1DXXHNNIFqcWOPGjUtQlUZwb3RuaN++/TmVG2wMc1IRCZXYQYjChQvbQoXyzR49epwTDEvJvz8voEgmR1Kw6UPLDPpekrGqSgoBlWwXylT2eqaKiIQa60cu5El2YXORi37OVwyM5LzHeTWhvehFJDqxMUhSG7P06Acf12uC91pBuxQRkYSgapPKhm+//dbWIosXL3Zt2rSJMbOVCoeWLVtaomz+/PltXtYPP/wQmItK+/GsWbPaUG0Paxk6GIhI5FGQwideH30qDw4ePOiqVKmSpCCFF/X1srNTC6Vy5cqVS9WvKeIhG6J///6p+jXJzOD5ysyLpAYmWXgNHDjQhmt5AUZJ28gSEhHxC20U9u3bZxuPVFNMnTrVqhVpnzBs2DD34YcfxlthKyJppye8d+1KSzgRkcT6+uuvrZMEyVesN0DAoVChQhbcZC+M9Ugw9pv4P157JhIVqZggcBGcKBu7i4KIRC4FKXxCtBd58uRxrVu3drfeemuSHoeMloSU3oZaq1atUvXriQRj9klqI4OMRVFy2zR5vTS91wBJ27jwf+qpp9y6devOaZFAhjPD4UeNGuXuuOMO345RRKIX61Beh7Zv3x4YTElbxZdeeslaKiR1fSoi0ePOO+8MvJ87d27LYI5dTUElxYEDB3w4OhEJJ7wW0PGAWaZcwzCbFCTrde7c2dWrV8+CFAQtaOvkdULwAhReMiJrEpL6gl9rEjuDVUQiz0V+H0Ba5VVAkLn2wgsvWAQ5KbwXfXrtqdWSSMoGKZITWKCc1XscqPeleC3NKGGOq4czs4IIYg8ePNiXYxOR6MRMsuBsaConmI1DRuP999/vatWq5TZv3uxOnTqV5BaHIhKdCFIcOXLknPt//vln+zcRie4ZVgyz9lB1STvj4ARWggpUZVL1sGPHjsD9JUuWdDVq1HBXXHGFq1y5su1/vfHGG4FrZPDvtHpiKDbrD7WbFEl7VEnhE2+D0hsElFRekIIXd04aGlYmEnqUoLIIY1HFpk18Q47jw8YPVRhsBHmLLQUpBF988cV5W5dRNfTaa6+l6jGJSPRi3UmL0d27d7sFCxa4u+++2/o2c/vvf//rhgwZEvhczU4Skdjim1PD+ji51cYi4r8//vjDfffdd+63335zJUqUCNxfqlQpt2nTJpun6rX95hqZwdWxZ9E8/fTTtj/ltTMnSY+2TZ999pm1OvcGVletWtXaKTOvkaQs5lEoMCGStilI4RMvI5uLRU4EvGBnz57d5ciRI1GPkz59eruoJKJNVouCFCIp07ObDDFuSbkA++qrr+z5yTBS7zmudk/itf/iNTw+tFuJK2NRRCSxvBloZDay5qQvNGtQ2i+gQ4cONpRSRCQ273WCDUS6AHAN6mGDko3GW265xccjFJHEIuBAwhRVlF5AgQSGunXrWoUEz2uPt8+0Z8+eQJCCt7Nnz3YFCxaM8bjMcCSguXr1ate1a1f7HJL2QIUElRdUi7MOWbVqlcuQIYNeP0TEqN1TGFRSPProo65s2bJu+vTpSXqsjh072kYW/UFFJPS8ORJckPFcS6xixYrZptDMmTPV7kliYKNw27Zt8f771q1bFdASkWSjfQJ95TkXsSnwySefWECCVgvcx4wzekiDWTi1a9e2/yMiAhLquLHx+OWXXwY+5kbv+eLFi7sJEyYk+PFGjhxp62M2Prmx2blo0aIU/R5E0irmPbz44osWYAz23HPPWWslggkeKv/pGkAHgWBvv/22O378uO1dBXf1qFOnTowgBVURo0ePtqBDxYoV3YwZMyxAwdqCNQdtnooUKWJrETB3TwEKEfGoksIn119/vb2lAqJw4cJW/kY2W1IQ4OCFn+HZ6h0sEnpeP02vvVpikXXGZhAZKizuoCCFgMwlLhjuu+++c6p0mDXUs2dP688qIpJUe/fudXfddZe9pWc88yg4HxGAZ0A2Xn31VZuDQ+XWp59+avdNnDjR5yMXkXDhzbF5/PHH3bBhw5JdvU9lcb9+/Vy+fPks8MHrzQMPPGBBD66NRSRpLdhoE0ubYlouedcQXH/26dPHBlHz1lOpUiV7LnO/hyAC+0qx2y55QYXzXS8zCJtgJf8fl19+uWvYsKFr27atJeo1btzYHT161H377bfuwQcfVIs4ETmHghQ+oc9vpkyZrH0MC7JevXoluf+el2XLC7+CFCKht2XLFnubK1euZD2ON4OG9j48/0XIXGawHEGsp556yrKXQFbim2++aS0Uunfv7vdhikiE+uGHHyyT8cCBA7YZuGzZskDbQV5b2EhgmGXTpk3tPgIVtF5gs4H3RURiZ1OHQs2aNWN8/Morr1h1xbp16xSkEInDiRMnLCBx9dVX28fMlqpVq5bNg6FSwrN9+3ZLgCU5wQtScJ3RokULu87g2uLiiy+2+71EhWCJ2ZPisWgPxTXL0qVLA/ffdNNNVqHB2oKKjOeff94NGjTI/o2qCaorFKAQkbgoSOEjstkIUnBSCR5KlFgMzMaoUaPsBCEiocViDzfffHOi/y8LSAaBsYj0FoQ89zUUTLyqOvrBMiiOkmsuPsDfB8PkeE33Ku9ERBKL1w9aKRBs//jjj122bNns/s2bN7vx48fb+8OHD7cBlrj00kvd7bffbjcRkdho5UIFBK8nhw8ftuG4wRi4m1hsdL777rv22F6v+9iY68bN42Vqi0QTnk8kFXD9WLly5cD9bPgTxOvbt69dL3gV/t416i+//BJILKDaiQBF8HOJlsVvvfVWyI6Tqstx48bZ/pMXIOHapXr16pZ0dc8999i6gtcDrmcYru3NqhgwYIACFCISLwUpfETvPi4Sv/76ayt389o/nW+Ialw4KWHhwoUpcpwiad2uXbvsLb1zE4vsEkpfyUqlagqxh4tJ2kbbFV6/KcXmb41ABRnPXqaUiEhSERynjQprRa+dA68x7du3t7e0YaBPtIhIQpCNzUybxx57zKr5k5N0w2wLNlLPnj1rPfDfe+89azUTF1rSxZX1LRKpaMHI5j3VjV5AgWoJr3KfRFSeF94MO6860kObpo8++sjlzZvXBk97SEzglhI4XuZKUAnhBQ1ZWzRv3tw98cQTlogXHMggEZf1B9c0JEYw70pE5HwUpPCRt1FJBJwMNyLkDOUNHlyUEN5ijpNW7J6EIpJ8XiDw1ltvTfT/LVOmjGXJly5d2q1fv97uU5BC4sICvlSpUn4fhohEuK1bt1qGI1V8BClYWwb3m542bZpVcNGCoX///oH7WUPSa56APBsciU2aEZHox3Br+t1XqFAh2Y9F65nPP//c1tmzZs1yTZo0sQBIXIEKssc7d+4co5LihhtuSPYxiKQ0KoUmT55siakE2rwqAlqn9e7d2zb4vSAF7YAJWhCAoFLJC1Iw04EqhNizYKpUqZLix08QcebMmVbdvWHDhsD9t912m1VNPPzwwzZ7IjYqPQhqMufqnXfeueBMCxERKEjhI2+jkhPWddddZxuYlMURQc+YMWOCH4foORi8TcSaxxKR0ClevLg9X5Oygcxge25gkBgUpBARkZRA0gttFmgnSqsn+kAHo3f1M888Y+/zb152Jr7//nvXqVMnC2yQwakghYjElVARqrlqtJejdz2YjUOWNoHS0aNHxznPkZtIOGMTn0QA/q7ZwAf7O5xb2eOhetGrzKfKgGtEby/HQ/skrwWjJzF7Q6Gyf/9+a+dEmyiGXXvPWYISBExIwIuN5FsSIKgS9yqgoPWEiCRUzFc/SVXeRiUDUukRTNkcJ4PEnoSIxnv/h4CHiIQWbdlYiJGNmhze81NBChERSYnNEbIqCVBQxUeFbmz0kqfyNk+ePDGykr1syYceeshVq1YtzqxIEZE+ffq4F1980f32228p0o8/eO6ESDjr1q2bnXO9tsCgvS+BttmzZwfuo8sF7dE4JzMbwkMbYKoMvBkTntgBitREReWyZctcnTp1rHUTQQYCFFQtMQ+DeRlUhcQOUPD/qOCkuqJBgwbWwtwLTihAISKJoUoKHxE150WbRR4v+ESlk4qyWEr3lyxZ4u68886QHqdIWsZmzk8//WQZXolFyTqZJPQWZdOIst2kDuAWERGJD2vA++67zyogaMPCnJvYbSEYYPnaa6/Z+4MGDTpncCWzcGjpICISH147GOpLpRbr29gbkFRzJQQbswREaQHD6xbZ5ytWrLBrWZFwQiChR48eNoNlypQpgfsZHr9p0yabreJVBJEg8PTTT59TfT98+HAXzqiynDRpks2bCE56ZXg3FSE1a9aMN1mP1mvMo6ClE2hRxeNptp6IJIWCFD5iUccFIWVxnAy8srikqFSpkl2gsrgTkdBhngQo0U0MMkrorUvJLkPNvM0gMlGCh5uJiIgkBwHx6tWru9OnT1uiyoIFCwJ9rIOxcUKWMu2gyOAUEUmsUA2+JXGncePG7scff3RXXXWVtcAhQMHrk0hqzougxaGH2Q/z58+3lmME0YKrC4LbI6JLly5WgRgckMifP38gGSAS7Ny502ZN0JKYYANo18Q1LD+L+AbZB3cbqF+/vgUu+Tm+/PLL1lLSz2oQEYlsClL4jLYvBCm4kQG3fPlyN378eNeyZUtXsWLFRAUpKMELLjcUkeTzBoRxAZUYDAEkq+bYsWM2DG3q1Kl2v1o9iYhIqHCuefDBBy1Acffdd7u5c+fGaCfh+fDDD937779vmwhDhw619hPB2IThMeIKboiIeHr27BmSx6E1jEhqoZXYX3/9ZTMVsG3bNmtviODKAa7b6HDBv3tBCgJo7M8ULlw4xmOyOR+pP4tFixa5119/PUblEgEWAhMEKC503cuagbZWBCRo7URFFJUU5cuXT4XvQESimUKcPrv11lvtLUOzMX36dCsjnDhxYqIeh9L+qlWragNUJIRoxXbo0CF7P67hYOfDnBgqKBhEyoaR9xy/5ZZbUuRYRUQk7WEjgRYNVEaQ/RlXgIINhI4dO9r7DLuMKzOSJBcei37SbD6IiIhEotjzUp599lk7v40ZMyZwH+3KmAvKDAkC9B423VevXu1at24duI/g/eOPP57oa8FwQ1eAwYMHWyePGjVqWICChAXvfYI17du3T1Bi3h9//GH7VawvqK767LPPFKAQkZBQJYXPvBdzWjWBEyBtoIhgJwYXpV41BdFxldiJJB8LLjZrWJzGLvFNKG+h5z3HCSiKiIgkB22b0qVLZ++zwUC7p9jVER5aObD5cO2118abBb1161ZbP9JzOr7HERGhPc6QIUNsfs3+/fttszIYM9hEUgPXaJwLvZa6DHguW7asJYjRusirmuAtMxKYHeHhfEgyGQmewcH9EiVKuGhDxw6qJkho8AI4JNM1a9bMhnkzJzWxWH/MmDHDLV261B5D6wYRCRXtZPuMiDyl95xMKS3kxMrAotjDlhKCwb4MHlPLJ5HQYPEKFrCJWXwxaPvMmTMxLti8UmJlmYiISHLMnj3bzksMwvbEd46i77sXmCCRhY2JuNStW9f98MMPbuzYsSl01CISDV566SXLxqbVDe3mOnfu7OrUqWMJcr169fL78CSKg2PBVX4jRoywQEO3bt0C911zzTXuyJEjFrhg1oKHNtq0b2KPJViVKlVctmzZonKDnZ/XvHnzrA0kbapGjRplAYoiRYrYvA32ngYNGpTgAAWPx7yJV1555Zz2UNH48xMR/yhI4TMGE3ntX7xM66SiAgPB5YkiknRkh4AqpcTo2rWry5IlS2AOxbp16wKLucyZM6fAkYqISFpAz2c2B/fs2WMVEhfy/PPPW0YpiSxU655P1qxZbQNDRCQ+rG3feust9/TTT1vlVYMGDSy4+eKLLwbWuyLJERyM4P277rrL/e9//7PzXvAeCvMjvvjii8B9bJZ//PHHFqgIPpcxL4GNem+vJJodP37cgg+0dKINJD8PAogEEpl9StVkq1at7OeXUAy3p634Cy+8YM/z4BkeIiKhpiBFGLZ8Atlxffr0sZNvQpFNgFWrVsXI4haRxGO42qZNm+x9hpImFO0ytmzZYptCXnaK99xWFYWIiCQV/Z8bNWpkGY20BR0wYMB5P59zGMM+MXz4cKvcFRFJDqqFixYtau/TDpVqCq/t3AcffODz0UkkYxO9TJky7uGHH44ReKBTBFUAtOH10OJw8+bNNgA6GHOV0mJCGC2d2rRp43LkyOG6dOliAZ1MmTLZPA72lajAJOkusVUPH374oSXUEuygLRZrCs1AFZGUpCBFmAYpKLsnUv3uu+8m+HEYhEhUnIvXlStXpsixiqQVDBejh2mGDBkSNSiNbBV6njJ0jYU2FKQQEZHkIFOZSggC4bSuYKPgfEEHPo8h2WShNmzY8LznH9pi8JhTpkxJoaMXkWjBJiiZ1SAZh01MbNy4MTAnR+RC+vXr526//Xa3YsWKwH1cd23YsOGc7hK0diJ7nwHNHgIRzI/w5lGkRZznFyxY4O69994YLZ0IIjIknFbi/Jxz5syZ6MdmIPZzzz1nFRS0jSxWrJgFhRI7N1VEJLEUpAgD3iBdsgNOnz5t73NBSWnjzTffnODHITJ+xx132Pu60BRJfrksmTtkriY2+5RABc9rnpNUZKxfv97u19BsERFJLNo6EUQg4ED/ZzYiOM+cz+TJk631CpnOF6q4IKhOEGTcuHEhPnIRiTZUF5NVDQKhtIChtUzjxo1tEK9IMDa4mWNCln8w9j3WrFkTo0UYQQdaGhK4CG75RLIYeyKqBvw/VOtTHVmgQAFXs2ZNa0/MmoDnJtUotMBizRA8EDwx+NlXq1bNAhx44okn7PeUmH0pEZGk+s+/wWcA8c0NN9xgA4wY1MsQJyLjF7oAjcu0adMswEHrJxYFIpI0DAWklzct1xLat5MgIwvC4FJaMstYXDOslMdKyvNaJBIumK666ipr+0DfYBEJjT/++MOVLVvWNnQ6depkvaYv1K6B5yGbF4cOHXL9+/d3zzzzzHk/n8eeOXOmZUW3aNEixN+BiETzOfvTTz+1G4EKNkxTi9Yd4Wf37t1u2bJldv6pWLFioD0Y8444b1Gl7v2u+LyDBw+6O++802ZGSMJ+vq+//rpVUpJIB64vOW+TwJArV66QfS2Ga7N2IIHhoYceCtnjikja9WsCz9uXpOpRSbwITJCxTV9F3k/qRuZ9991niwAGRhH0oCRXRBLn1KlTbsaMGa5y5cqJGixGD9BPPvnEDRkyxMpjsXDhQnvLYylAISIiiUH7C9qpkIRC1nJC+kn37t3bAhT58+d3HTt2vODn33rrrXYTEUmscuXK2U3SFhKzSMQiGOFd37ChTfZ98+bNA0GKLFmy2LmL81EwrovkwsgnprJk6NChbv78+YEKE6oa2rdvbxVMiblW/f/auxM4G8v//+NXJSTKElJZsqVsla0sWRIhWRKl0CIVSpYKJXtkyy5bCYUIibImWhCRkCWpJEIhSkLN//H+fP/3/MZkmOGs93k9H4/TzBzTmXvOnJn7uq/PlpS///7b2kPlz5/fPtZwbQ3e1s8PAEKJIEWE0LAxBSnUV3DAgAHx9x87dsxNnTrVNjyVhXA2GpCUN29ei7Tr/9OmKYCU0SwY9UTVnJeU9O6cPXu2ZQwl7Mmr32nvdxwAgLPRJoRXhef13tZmRHKob7faQMiQIUMsyAEAgTJx4sQz/rs2TeE/al+bKtX/to40/1KJkKqM+Prrr+MHqWsws1rcatByQt45CcmnPSC1vlJwQs+xR22Y2rRp4+64446AJb99++237r777rOKf1VWZsqUyRIiCFAACAeCFBFCA4904t+6daudKFQyKw0aNHDz5s1zXbt2dd26dUvWY+n/UXm/HgdAyo0dO9beaqBbcl188cX2+ztz5kwrXRYNFlyzZo29X7NmzSAdLQDATwGKF154wfXp08dmTzz++OMp+n+1eaHNJLVdUXXt2ag1qG7XX389/b4BnJX+xiRO0tGwXgVE1fKUIIW/fPLJJ65169YuW7ZsNvtAdK4oWbKk27Jli13reEEKJVV6leQ4N0p2GzVqlN3UGUP0e/XQQw9ZsoJaaQWSqjS1zlAXgSxZstj+kZcgAQDhQO+RCKGeXN7GpoISniZNmti8iuRUUXh69eplmQxq9wQg5eXLqqIQlSun9PdYi0ivHYfX6qlUqVIue/bsQThaAIBfKMigClgFKLzzUUqomk+bSKrmU9vB5NAsCm0w3XPPPed0zABiy8GDB0+5aXNTSTpK7FHmN6KXWta2a9fOffrpp6d0aVAm/+eff24BqYTnG7UHUqIlzp+GXesaUvM51LJRAQrtAfXr18/2dEaMGBHQAIUCi5ploVmm+h1We66vvvqKAAWAsCNIEUG8djBeexjRReOOHTtSlEmnigxl0C1ZsiTFF7hArJs1a5aVMavUVcGF5Ei4aE+IVk8AgOT4999/rW/3oEGD7OPhw4fbZlFy/fXXX/Gfr0CHhmAnd4hd+vTp/9OeAwCSSx0ANIsgcZUFIpeuddTaJ3ErLwW458yZE3+fWt/OmDHD9iNUNe4JxByEWKfzvuZMaD6HzsFq/a1rSs14UQKBnvNnn33WrkkDadOmTRaMGD9+vCXWvfTSS7ZvxCxTAJGAIEUE8TYylcWgi0Yv4OD1f0wJBSk0AKl///4BP07Az1ReK/Xq1UvWgFJRabOGiymTLGEvUa8smiAFQk0ZV3ny5HFp06Z1ZcqUia8OOhvNMtLrvm7dukE/RgD/t1GhZBT93ur3Ty0HW7VqlaLHUJvPH374wTYZOnXqlOz/r3PnztZX/LnnnjuHIweA/9H16u7du8N9GEhmFr0qvG+++eZTfmb169d3jz322CnVETonKWmSivDAPv+63lSbxbvvvtstXbrUWmg1atTIrVy50qpW7r333nPaA0qOnj17WqBCMycWL17sunfvHrSvBQApdUGcassRMQoVKmQbnRrcq9kSCSl4oRNYcvrkHzhwwAYt6serxUdK2kUBsUobNerHqQ2jhIPgzjaktEiRIra42759u5XmyoIFC6wf+FVXXWVluskNeADna9q0adYTWv3sFaDQ0D2dU3RuUU/hpGiDU+eXvHnzWnm/SvmTS4H1yy+/3P3+++/W9gxA8midphYPymDVEMwJEyZYq8+UULalsl2VnKLsS21uAEAwztkJs+y9v2GaS6DqL62BP/zwQxcKrDuSf354/fXXrQpCMy49yqTX/AHN0qtcuXJYjzFW6PdEyQgKUGivRvQabtGihc39UKunUNDXVuWlkhsIPgEIleSetwmZRhhlXGsj6d133z0lSDFmzBjLsrvpppvcl19+edYNT20waaG4c+dOu+BNSVYdEMubuwpQZM2aNVkBClEWzDfffGOZL16AQrTo9wZmE6BAKKldjDLhHn74YftYwQrNOtJFaseOHZMs+1dfWmVTaUiiAnZnos1Q3Txe9R+AlNH5Qa2ZlITy1ltvWSZlSmmzQb+PahmROMEFAAIpcaWl/oZp3ay/PwMHDgzbceH/Wv+dPHnSZciQwT7W3IjevXtb8uKLL75o5xqvva02qMmgD76NGzfa74aGVB8/ftzuU0LQM888Y0kK3s8qWNTWS8lKeh3o91X7RNofAoBIRLunCHPffffZW2WwJtz0UZmlMrxvueUWW3wkh6Ly3gYVgLPzFupaxKWEBpk1a9bslFZPCnjI/fffH+CjBJKmix8FsqtWrRp/n7Kz9fGKFSuS/P80pE9VFskdFq/BvsqE8G4JA3QAUqZLly42NPNcAhTKWn7vvffs/DVs2LAUBcXVe1wbi2rzBgDJoWSehDclOfzyyy+2AUvlfnh5wQivda2ULVvWqmuVwKKflefqq68mQBFEqjBS219V1SvxTUEBrdHLlStnyajbtm2zOVTBDFDoGFS5of0jrduVCAEAkY4gRYQpUaKEZWZrk1MRb48CFD/++KMbOXKkS5cuXbKDFNqcUjVFcvuRA7HsjTfesM1cZaEnZ+GXVLa5SuFVxqaN20qVKgXhSIHT+/XXX+0iNHH5tj7WJsLpfPrppzY8T33wk0vVeXqNezdl6gFIHq3xNAvijz/+sI8VWChcuHCKH0fVE96gWr1Vy6eU+Oijj6wX9t69e1P8tQHENq03qKIMH50/FGDW+cSjDHnNO9BMA4/aPGkgs9oIpk6dOkxHGzsUiJg0aZINwtZsD7X/1X6M2jCq6l5rbs3+8CpagkXXqKqsVBspHZPmldaoUSOoXxMAAoEgRYTRhaqXka3+xAldeumlKXosld56G6TKkgWQNA0Q++yzz5IVoBBlxygI0atXr//8m/e7qwsCLUyBSHXkyBF7nSpAoey75EqTJo31kkx4A3B22kDSZoGyGr3q2XOlzFj1FNfwy5deeinF/3+/fv3sd19tCQEgORufrVq1svWCkh8yZcpkf3+UuKC/bQgNJUppE1zV2gsXLoy/v2HDhlZNq1ZOCC0l7PTv39/aOKlyRbMNtXfz9NNP28xCzYvSnLhQUHKqWoSr9bCCVKqaVMWlkl4BINJR4xeB1Bdci73ly5e777//3l177bWn/LsGYSvr9YUXXjjrBmjPnj0tU27+/PmW8ZKSTSggljZqVX57ySWXWNZLcih7SVlM3uAzjzJS9fsmKR1+Cpwv/Y1XdlbizGh9rI2ExL777jsbmK1NU4/aN4jaAGhGkvrlAwjMuUazx7S+0+bFs88+e86PpeolL0iujZFzCRSqclc3ADgbrXdvvfVW9/PPP9u1qve3Q3PZ1GpOyTvKEtfmrDLGtTmLwFA7QD2/HTp0iE9q1GwQbTwnnA+mTWg2okNr165dbsiQIW706NF2jhett/X61zxRVbeEkhIPWrZsaXNJFDBR++GSJUuG9BgA4HwQpIhA11xzjbv99tvd4sWL3eTJk61XsefEiRPWEkptO/LkyXPWTVAtJtVzUgtKtaB55JFHQvAdANFFg+mVAaOFZHI3ehQo1Mauer0mNGXKFGu3U7p0aVeoUKEgHTFweirl1zliyZIl8cMtFXTQxyr5Tkyv0Q0bNpxynwYr6kJLF13MmgACl4GsVgvavNN5RrMkEp8/UqJ9+/aWuawAuzYMASCYVJWvNYaSGxK3lNS/KclH16XK7B86dGjYjtNv9u/fb+s6XVvUqlUrPjikILUC1CmZQ4TAVuAPGDDA5jxof0bUclGBpMaNG1vFcTgoMKHXilo9jRs3zubGAUA0IUgRoVQmqCCF2sZow8hbgKhkT5F5ZU4kp/ew/j8NalLm3p49e0Jw5ED0lUxrken19E5ueyb9btWrV+8/96vvqyQcpA2EUrt27ez1p8wpBcsGDx7s/vzzT/fwww/Hn18UvFa7mbRp07oiRYqc8v9nzJjR3ia+H8C5+e2332wDb+3atdYeRZt455PZqIxazS3T+UpDMc9lk0pBEvWpLl++PJm3AM5q9uzZli2eOEDhZY6rfZxax3Xt2pU18HlQZYrOFQ8++GB8++Z77rnHEk50zeLR+g2hpedf1UJ6rc+dOzf+/ooVK1plpBIRwtHmV0kQ3tpdia6rVq2yNQYBLADR6IK4hGc7RAy1kdGCTxtLn3zyiV1EehStVzuPlJwENUR73rx51tZDgQ4A/6MMcw3LVmsbtUQ7W8bJmjVrrA+sPj8xlbgXL17cfscUFGTjB+EyfPhwy7BT1Z1er8pq9HrhalaRKvEUwD6dhx56yC54tCGRXBqeqd8dVSQxnwI4lc4xOtdos0kBBp0nzpVaexQrVsxt27bNklZU8XQuKlSoYJst+jvAhiIQW87lnK3McFVRqOI/qbY3WluozUwo+HHdsW7dOnfzzTdb+1m1d/Y2nrVdw4Zz+ChA9P7777tXXnnFrVixwu7Tz0MDsBWcCNWsidMdl45J633NocifP39YjgMAAnneZqJrhEqfPr0NvxL1+UxIG6ApjdI/9dRTttjRYxGXAv6P199VrZvOFqDQBZiyZbTpm7jnv3jl7XXq1CFAgbBSa6cff/zRNjSVUZXwAurjjz9OMkAh+reUBCgAnJmq9VT9qt+98wlQiAZgKkChbObu3buf8+NoI6xo0aJh21wBEH0zr5TslhTNUcyWLVtIjynaKaCjv+ceXV/ob3P16tVtM8dDgCI8VG2oNbEqi9VCVQEKtTxT8qdmts2YMSNs59B9+/ZZ5Ubnzp3dwYMHre0UAPgBlRQRPiRLixVVTezYscPlypXrlH9Xv0ENR9IG1BtvvHHGx9KP+aqrrrKs2g8++MBOakCs++yzz6xKSYt/ZYclHlKfmDJhGzVqZH38VeGU8KJBi0X9jmpTWNmp6hMOxAo/ZjQC50NrNK3fkvr4XOzcudP6kWsWhdqBnm0uGQAE6pytuYZaK6saTBu1CWntq4119cN//fXXXShE+7pj48aN1jZW2fAKVHjnBz2X4ZpngP9RJwvNcxg4cKD76aef7D69xjSQWq2B1e0inJTwoLkXqtpX1Y2qp9XSlWAWgEhGJYUPKNtOfQV1YZu4msLLWFGFhCL8H3300RkfSyctlfaLTq7EpgDnnnnmGXt7xx13nDVAIfp91IWENocSLwRfe+01u7DQDIDzGYYKAIhu2sjTGk6BcM/5BigSDstWcN3rVw4AoaDh2MoeL1CggPXknzNnjs1I7Nu3r923efNm161bt3AfZtTInTu3tdbUpo2SET0EKMJHFQk9e/a0n42uERWgUEBCr3ElCWiWWzgDFNoT0u+hrkcVoFCF5urVqy2ASIACgF9QSRHhNEdCQ68VaVKrmQwZMpzy7zqRagjjE088cdoe+QnpZKY+osrYoJoCsU4LPS3udHGgyod8+fKd82MdO3bMFrSqppgyZYq77777AnqsQKSL9oxGIFC2bNliGwhqsVmqVCmrdg3E5oGGbStTWcEODVXVXIrzyRK99NJLz/uYAMTWOVsJcsom198jbwtBf9+U7KNs7lD2xI+2dYdaBS1evNh16dIl/j6dHwoXLmxtnhE+6jShVoojR460uaCiqqDnnnvOZjZFypByJcQ9+eST9r4qJ5TEyrkcQLRI7nmbIEWEU0BBG6nKXNFwRA1JPB8PPPCAe/vtt21D9ttvvyXqjpg1adIk17RpU7touOWWW874uapWUounpD5P7daUxZIzZ07LoGU4PWJNtG0WAMGwYcMGG5KtgLU2nrQhFYisy4TDslUNO3jw4PN6PM2i0O+s+mkrkAIgtpzvOVsZ57qOFAUmMmfO7EItmtYdmhGma28lSC1fvjy+uwHC/3NRVdD48ePtPCs613bq1Mk1aNDgrAmg4ZiRoSRTBU50DQsA0YQghY94UXO1o9GCMKmWAVr46MI4R44cST6WMvu0kargx/vvv29VGkCsURapNpBuuukmN2vWrDN+rsrX9XknTpxwK1eu/M+Gjv6Eqq2HNqe00H322WeDfPRA5ImmzQIgGL788ktXrVo1d+DAATtnKNNYg2YDoXfv3u7FF1+0YdlKWtHv2rlSuyj9/xrYqjXhmdaMAPzJD+fsaPse1PVA1xJqGcSA8fDSfop+DkpY07lQlIj2wgsvuFq1akVMEqf2djTj5aGHHopPgNN1Z6QcHwCkBDMpfESRcmWoqMRWvT+TygS47bbb7ALZywQ4HQ3P9voYP/744xasAGKJFncaSK/fGa9k9kyUBduwYUNrs1GyZMnTDtNWgELlto899liQjhoAEKlUkacWTwpQlClTxs4LgQpQaO3Xq1cve3/QoEHnFaCQdOnSud9++82yeQlQAEDgKQCs63dVnHjUSkgZ+wQowmfTpk3WVULV8aqCV4BC527N9vz8888teTNSAgBq0602ai1atDilRVikHB8ABAtBiiigC0pvM1UXqqcLLOhzlBWgjdf169ef8fGU7Z06dWo7+a1ZsyZoxw1EImXNbN++3SqStEg9G8180aBsVVwkXhgq4KEBZqJ2TxkzZgzacQMAIpM2n5QVpBYeixYtsvNGIOgc89RTT9nco8qVK7v7778/II+r7CXajQBA4Onv9j333GPXG2rP57nwQrZdwkV7I2rfVKRIEWt7rb0UBSS8OSE6v0bS5r/WEUqoW7p0qSXBqUUjAMQKzpZR4plnnrGhWuvWrXMzZ878z79nzZrVTZ8+3TK6S5cufcbHUrsA9SHWSW/atGlBPGogsvz111/xc1208ZMrV64kPzdxRVKaNGn+8zlq5/HJJ5/Yv2m4GgAg9owbN8699NJL7sMPP3QZMmQI2OPOmTPHzZs3z9o8jBgxIqI2UQAA/6W/00OHDrXrcbUPQnjbMNatW9c2/N999127TwGktWvXWtvrs80kDDVVdqhqQtX7auGt4IS+B1V/AECsIEgRJdQ2oH379va+Tl5e/8SEKlas6HLnzp2sx6tdu7b1zh8+fLjbuXNnwI8XiETdu3e3bFdtIqnHd1L0+6UsUwUyNL8iqUypzp072/utWrVy11xzTdCOGwAQWb766is7D4gC1Tq/KPkjUHTu8YLqHTp0cNdff/15P6aOV20J1TZKfWEBAOdP1xZqJeTR/DrNsbvuuuvCelyxSp0itNehNr1qla3AkSoRN27caImamhsVadThomrVqtY1Q+dqtXlatWoVryEAMYcgRRRp166dzabYsmWLmzx58hk/1xvie7bHU29jRefV/gbws59//tkNHDjQ3tdbtUhLyscff+xWr15tv2e68DgdVTQpE0cVTh07dgzacQMAIouqULUJpXWUF6gING1UKIlEyScamh0IejxVfTz//PMuVapUAXlMAIhlmvGjuQaVKlVy33zzTfz9VL6FLzih8/PcuXOtxVaTJk3s56I2T4ULF3aRStebOn5dV+pYR48e7S655JJwHxYAhBxXKFFEPYQ7depkFRDdunWzjIDTtaDRsC6VLx49etQVKFDA1atX77SPp5Ogyh/V91AncPVlBPxKMyNUIZEnTx7XvHnzM36uMlnUYkPtoTRsPrF//vknftNIm1RqtwYA8L8333zTzifqaf3rr7/aW804CqTNmzfHB9XVNuRMQfWU0IZHnz59rI1EoB4TAGKZAr5eQOL48ePhPpyYpJZI2htRYEK84ITabWkvJFIpycF77WhO4tSpU+14qZ4AEMsuiAtWChiCQpum+fPnt0DEsGHDXOvWrU/7ecqS+/rrr21ol1pFJUWZBRoipZeBLrybNm0axKMHwuOXX35xOXPmtCCFyq/LlClzXo+n35WHHnrIKpt27NhhFUlALFPrGP0eKBNMAXXAj1577TX35JNP2vtqm6SPAz0MVesxDfFctmyZDfZU32wACCQ/nLMj6Xs4cOCABX+10YzQtl1UcEItnaIpOCHay9G+i+ZZ3XbbbeE+HACImPM27Z6ijLLgNJPCawWQVL989dtXJviZAhRyww03WD99efzxxy0rEPAbtT7TwnXw4MFJBiiU/aTqiEOHDp3xsTRQu2vXrva+2jwRoAAA/3v11VfjAxSaFaFWDIEOUMjEiRMtQKFKB80NAwBEXvKTl7UvSloiQBE6mv/RoEEDmy2hAIXOxQ8++KC1xJ4wYULEByjUxULdLJYsWWKzJ1ShDwD4H4IUUUhtBvLmzev27t3r+vbtm2TpacKLZ520kzJgwABraXPs2DE74QN+8umnn1pw4uWXX3Zt2rRJ8vM0BFvBPbV6OlOBmVpv/Pjjjy5HjhzxAT4AgH/p/KHWfl5wWueUYPQbV29zDckWBcM1jyJQtMbT+VAVuQCAc+MNNa5fv75tNiN0NENTszSLFi3q3n33XTsP33fffRa0UPeISA9OKBihyonq1au7/fv3u2LFirk5c+YEvGUkAEQzghRRKHXq1PFDsfV227ZtZ/x89R/WoCi1qDkdzbWYPXu2neiVvaeTPOAHynLSRYRmtDzzzDNn/NxGjRrZvAotHpPafPrpp5+srFgU0KCnNwD4nxJDlPihClatqYI1EFUBEFW0as3Wtm3bgD726tWrXYUKFdz1118f0McFgFiigK+SAUUJSwi+nTt3WotFVatoqLQCRffcc4+1tp4yZUpUVLGo+uaOO+5wPXv2jA90qQVxwYIFw31oABBRCFJEKW283nnnndaiRtncZ8r8PnHihA121Ik8KaVKlXItW7aMb/ukBRgQ7T3vNFxemSpVqlQ5a5aKfgc0rPTuu+9O8nMU6NBA+vLly7tmzZoF4agBAJFGmZpaQ6nPdbCoymHcuHH2vmZdXHzxxQF9fAU/smfP7kqUKBHQxwWAWGu9rCz+9evX21xHBI/mfOjaSxUSOj+qEqFmzZo2KHvGjBlR8/z//PPP1t5p6dKl7tJLL3WTJ0+2lpF6LQEATsXg7CgvedTJWT3yp02b5ho2bHjaz1OAQv0a69ate8bsPz1O2bJl3dq1a90HH3zgatSoEcSjB4Krdu3aVkmRJUsWa8+kRWFie/bssbkuGkZ/NvqdqFWrlgU71q1bZ6XGACJvgCVwvrQRonZLTzzxhLvmmmuC/vWUTKLe2mpZ8eijj8YHKwJNS34F2k93PgQQO/xwzvbD94Ckf7aDBg1yAwcOdH/88YfdV6lSJatmLFeunIs2OvcqcU7n+OnTp0dF5QcABBqDs2OANlY7depk7yvLQD/001GLgnr16sUHKHSiPF1PYrV9WrNmjatWrZqVVJ5tgDAQqd544434gXbvvPPOaTdkFJxQIEOtoFRueyb6fXnqqafif9cIUACAPylg0KRJE2vpp77R+jjYtBmjzYsrrrjCvfLKK0H7OloHEqAAgJSbOHGiXXcrqQ/Boef21VdftRaL3bt3twCFqv8WLFjgPvroo6gKUKgKRBtx3rl37NixbtWqVQQoAOAsCFJEueeff97ly5fPMsK9XvlnoottBSDU0uZ0F97eSVQBDw2mUsY4EE3Uskl9PkUtzNTq6XSUTaoAnl7zWbNmPeNjakD9jh073NVXX23ZtQAAf26Q3HvvvdbjWj3HtUkS6LZLiX3//ff2dWTAgAFW/QcAiBwHDhxwTz/9tF0PKBEKgaWuD5qJed1117l27dq53377zd5X1YHmKSmBMlizoIJh+fLlVh35yCOPxLfkzpAhA7MMASAZCFJEubRp07rhw4fb+0OHDrX+mGfy3XffualTp1o2wieffHLaz8mVK5d78sknrb2NBjxRUYFooeqIqlWrupMnT9riVr8TSVFg4uOPP7b+oAr0JeXbb7+1ixIZPHiwLTIBAP6iwLUSONQeU5Wls2fPdg0aNAjq19TmhdZbqtarWLGia9q0aVC+jtZ9ykZVhioAIGUyZ87sJkyYYOeI5s2bh/twfEPnwPnz57ubb77Zzn9qz3vVVVdZwuTGjRvtHBxNwQkFW3TNWLlyZbd7925LnFPABQCQfAQpfEADtHUSVw/lhx566IxlqCoxVPubOXPmJJlhLh07drQ+YTqxqg8/o0sQDTSETItCZaooAHG6Ydm//PJL/Pv6vDMNXVOwQ79TGlCvth/33HNP0I4dABAeqh7VWmrhwoXWDsmbQRRsCh6ojUXq1Knt/BWszRglpWje2M6dO4Py+ADgd5rtqCC2quxw/r766iurkNAMTCVZqk95nz59LDlMgaBoe561Z6I2wmoJpmCF2kaqCkRtHAEAyUeQwieGDRtmJ0Gd8F966aUzfm7NmjVPufhWcCOxTJkyuUWLFtkF8+eff+46d+4clOMGAkWbL+rlfeONN7p58+a5K6+88j+f8+abb7o8efJYSXFyKBtGr38F7F577bWoyuYBACRP69atbSNfmyQKVJwpiSOQ7UM040heeOEFq/4LFj3+tGnTglapAQBAcuzatcsSwFQ9sXjxYgvSq8WTuj0oSTIaWyKtWLHC2jspwUFdLsaNG2fXnMyAAoCUI0jhE9qQVWmk9O/f3y1btixZ/58GOt12221u/Pjx//m30qVL22N5m7UzZ84M8FEDgaHBanXq1HGXXHKJbTBVqlTptJ+n6gpVGimz5Wz0Od6clxEjRlhwAwDgP1rjlClTxlphli1bNmQzxTRYUxWuej+Y1D6jYcOGtokCAEgZtf/78MMPrTUfzv1a7cUXX3QFCxa0DXx1abj//vvdli1b3MCBA6N2HpNmfGqO508//eQKFChgw7EfffRREtsA4BxdEEcfH19ReaQCDporodLJjBkznvHz1WO/bdu2VoWxfft2yyJMSC+P+vXr2+JMZZdffPEFF7mIKNu2bbPNJQUfVq5c6YoVK5bk56r89u2333aNGze2odlnmm2hDB89tjZ21JKDxSZw5nY5On8o8K3KIyDSHTt2zDIeE653QvV3XlUbShDxBmxWqFAhJF8XAPxyzg7V96Bzw8UXX2ydB1QFcPXVVwfta/mRnjcFJVTR57XcLV++vAUmlBDpB6q6V0LbqFGjovb3CQAi5bxNJYXPKOigIcBqfaP2BWfTpk0bK61UuWXiAIXogl0btEWLFrX+/AwLQyTZv3+/u/XWW224uzJzThegUPDNo8DEgw8+eMYAhXTo0MECFLoQ0YKTAAUA+IfOCzfccIN766234u8L1d95BdRbtGhh7z/22GNBD1Bo5sXEiRNtcw0AIoXmD5QqVcplyJDBZcuWzWY+bN261UXiJruuNZSkp2NF8qmCvWTJklZZoACF9ijUmUHB+WgOUGjG07vvvhv/sSowtZ4gQAEA548ghc+kT5/eTZ482QYG62Q5ZcqUM36+Lsq1SCxevPgpZYsJpUmTxtpH3XXXXXZS1uMD4aaSa23uqK+3Koa0EZOYgm8ajK3y4uQWjc2dO9fmT4gyfzJnzhzwYwcAhMemTZvs3PH999+73r17u+PHj4f062t2ktpbZM+e3d4PtuHDh7tmzZq5GTNmBP1rAUBy6dqyVatWVgWtOYi6/tQgZVUzRxJ1ElD1m66B2YROnh9++MHdc889rnLlyjYvU4mQAwYMsPNvvXr1ojb5S9eSukZU0EqDsTdu3BjuQwIA3yFI4UO33HKLbcrKk08+aYOokuvbb791119/vXvnnXf+M0h7zpw5NuhK1RRaUJ5u4DYQCmrb5GVcqQT7008/tQ2fxPTaV9aqFpHJeb3+/PPPlu0jGuJ2++23B+X4AQCh9+WXX7qKFStaRqcC2JpBoaGdofLNN9+4Xr16xVe+am0VbGqHqCxPtdcAgEgxf/58u64sXLiwJctNmDDBOgHo7zSikwJML730ks1aUsWEKte1F6H9hfbt21viYzTP1FBgQt+PkhuqVq1K6y8ACAJmUviUslHU71jBBLVqUq9EVVmczdNPP+2GDRtmJa2aP6HskYS04ausiDVr1rhatWpZqePZWucAgaQ/WcoKnTRpkmXizJs3z9WoUSPJz1fATUO1z7YwVn9ybV7pda+2URp8lrBfOQB/97eGvymYrXWLXqtqMaINslBWyim4rkDBihUrrDJViR/Rmk0KILpF4jlbbfg0eHjDhg0WRE5M16C6JfwecubMGVHfQyxfm+l6S+1yvdaCVapUcUOGDDntzzLaKMGgQYMGbvPmzdatQl0o9L1yDgeA5GMmRYxTdrlK+6+88kpb7D388MPJanfz6quvWgbEBx988J8AhWijt1OnThYE0TDt++67zy68gVDp0aOHBSi8NhaJAxR63Se8iNHg67MFKPS7ocwYBSi0aTVr1iwCFADgE2olojYiWhwrgUOtAEPdyk/zjRSgUE/zkSNHsrkBAP+friWfeeYZV65cuSQ3tbUxrM0N76YARSioGrtEiRLu3nvvDcnXi8YNfAUktCegAEXu3LntWsxruRvt3n77bUtsUIAiR44cbunSpe7ZZ5/lHA4AQUKQwsdUgqhKBy9g0bdv37P+P8oO6N69uwU3POvXrz8lEFG7dm272Jbp06db6SMFOQgFlYGPHz/eXXLJJa5fv36uZcuWp/y72mjoIuKBBx5IUfBsxIgRVmauqqBp06a5vHnzBuHoAQDhGt6pOUZ33nmn+/DDD0OedatzV8eOHe19rcVCtbm2Z88eEkkARDzNplAwYOrUqUl+jpLklH3p3X766aeQHNuvv/5q8yiYP3CqI0eO2Ga9WnXpHKvkLu0haDNf8yj8somvIMzRo0etBbDma2imFQAgeAhS+Jz6ECvbXF544QWrkEgJLTrUz1iBiIQDtZ944glrC+VlGCS3UgP/tymeJ08eW9Dp+VUGP84+L0KZOqrw0QJYC+PENMhMVRPKeEru4livcWVviQIf6jEKAPAPBbDHjRvn3nvvPZcuXbqQfm2vUk/9rLUm0/opVFQ1kjVrVmvRCQCRqHXr1m7u3LmWoX7NNdck+Xla3yvAnPAWCmqbrNay3nVvrNM5TUmKmjuhYdgnT560trq6NlM3BiWSRbuEexoKvGj9sGDBApctW7awHhcAxAKCFDGgRYsW7vHHH7cTbuPGjd22bduS/f9quKQGDiuDIPGmrxaVgwYNsvfffPNN98gjjxCoSAZl6msoc9euXS0zRxko1atXd/v27Qv3oUUsBRF0kaBAmQadqpT4dJTlomHayrZKTpBC2a2qvNBrXL8b+rkAAKKfWlJq1pDofPDoo4+GdEh2wnO+EkT0tceOHRuyOV4HDx50u3fvtrf58+cPydcEgOTSNaOuJdViVWv7a6+91kWiLFmyuJo1a5LE5JzbsWOHPRdqpavziyrPFWDS+VbJd37w/vvvW9Wl1zpYXSa0ftBbAEDwEaSIEUOHDrU+nyqPrVu3rl20Jof6SyqzZcqUKaedUdG2bVvXv3//+ECF+k/izBTYeeyxx6z65IYbbnCvvfaaZXa+/vrr4T60iLyAUdapBq/pNTt48OBTFsEKuN1xxx0WTPMkFcBITFmt+l1QGbcGxWvzyC+lyQAQy1555RVXr149C0IryzNcdH55+umn46tZdc4PlUyZMrlDhw65devWuYwZM4bs6wJAcls8TZ482SryNatHa3nd1JoPkeX48ePu5ZdfdoULF3bz58+3oLuS7TZt2uRq1arl/EBrBSW53X333W7hwoW2dwIACD2CFDFCiwnNpdCcCpVjaq6EqiOSo3z58qcMEVbbBGVMeDp06GCBCm0OKxtd/RqR9CLvyy+/PCUbR1mV+lgDNfF/VDWhTabRo0fbxy+++KJ9nDCA8dBDD1lgzNsESi5lx9SvX982b6644grL4gp1CxAAQGDpvKBggDf/4cYbbwxr9mObNm3c/v37bWPHO6ZQ0kwyVWsCQKTRfEMlz1WqVMkGEns3VZ9FWvWAWv1s2bLFxaLPP//ckrl0blV1olrvbtiwwXXr1u2U/YFopuCYkt68+Z26rtT5GwAQegQpYoiGYavlwOWXX+4+++wzK9VMOGciORYtWuS6dOliG7zKnkgYqNDmuwIVWryoKkAZfPhvVqVaC2XPnv2U+/VxwmqAWKcqB/XSVv9wefXVV13Pnj1P+RxVPWjYtcqOU9InVs9/06ZN7bV86aWXWp/Z5FZfAAAikwZEP/XUU5bt6VVT6LwRrgq5OXPmWIawEhHeeOONsLSaAoBIDiqf7qYEpEii+Qtq/+NtYMeKw4cPWzsuJStqeLTmG02aNMmSwwoWLOj8Yvny5RaE0YzC9OnTW5BMFfycswEgPAhSxJhixYpZ70hlPmhzVj0WdWGfXMp20SbAc889Z5mBCWXOnNktWbLEBmnpcfXvu3btCsJ3AT/bu3evzZ9YuXKlbe5ok8cbbP3nn3+61atXx3+uFsl6HScO+iRFFz96/b7zzjuWYaoKitKlSwftewEAhKZNgza2RowYYUEJZehqnRIuStLwBmQriaNUqVIh/fpqj6is0B49eqRojQcA+O9MClWkRerMjGDQXoGu43VO1bWT5k6qkuTBBx/0VWtctRtTcqUSBfX9rlmzxpI4AQDhQ5AiBikjQq2f1AJBGRG6gE7uwGtt7KpHY58+feLvU6muTuqiKo3hw4dbhroGailgoZY6+B+1FtLzro34hPSxKl1inaocmjdv7n744QcLpC1btszdf//99m979uxxJUuWtMVkwiqelFBpsjavtMDWwlSbOACA6NaiRQtbz+j8qr/tXoAgXNq3b2/nLAXSdd4JNVXLKtv1rbfeCtmgbgDwI12XqJWxZjDEQsW/WjerLbQSDTUYW+eS8ePHWzKi35QtW9bmoSj4smrVKnfdddeF+5AAIOZx5RKjNORK7Qe8VjopLWH1sigU3Hj88cfdrbfeaoOH5eabb7ZNZG26K/NdG8ta3OB/s0FKlChhFSceZTnqYz2HsUyZp3fddZe1JNOw0/Xr11tAzZMtWzbrVXvZZZcle/B7QmoJpaxSUWYQmTIA4J8ghbJdVR2nDZZw0sBNtbzUOklvL7nkkpAfg1pXjBw50pJQAAA4G50/VU0wZcoUC24/++yzNnvi9ttvd34LxHgUhFEAauLEiZZgCQAIv1ThPgCET5MmTexE3a5dO9e5c2fLJFDvyZTQTAuvh6ha9HjU43/jxo2uevXqNqtCWSiffPKJGzdunEuVKrZfdnq+mzVrZsEbtRoaPHiwBXMefvhhF6vVE2rLoWHsBw4ccPPnz4+vcNDHGTNmtMWyMmTV+kmvH1WkpIRmV3jDtbt37+6efPLJoHwvAIDQ0LrDS5i45ZZb3Pfff2/rmHA6cuSIe+yxx+x9tRYsV65cWI7j6quv5jwHADgr7QXofDV16lT7WIEKXTfpOtVv3nzzTdeqVSvrKKE5I8JcQgCILFRSxLi2bdtagEK0QOnfv3+KKwO0qFm7dq1tEnh+++03y2rUXAFVWngLA82qiHWNGjVyAwYMcC+99JK78cYbLYNDG/PJnavgJwpC6HUzaNAgaw/2+eefxwcoli5d6ooUKeIGDhwY//mqzklpgELZpF4ASK9xDX4HAEQv9Y+uWLGiJUF4wh2gkOeff97t3LnTepd7A7wBANFLiVSayahKb7+ZM2eOBSV0La9kMO0J6LzqtwDFsWPHbD9Cs6uUGKi2kACAyESQAq5Xr17xgQotxNRzM7kzKkSZjBrI7VEf5uuvv941bdrU/fXXX+61116zxYA2l1VOqa+Xksf3I1Ws/Pjjj+7vv/+2HphlypRxsUazSgoUKGDzTFQpMWTIEHvdeLTRo9eSXjuq2DkXCgYpY0ZUSaGqFT8NfAOAWKNzZ4UKFaw6UwHoSBkMrb7dmnkkqhoNV+uIb7/91oaenktbRADAqZRMphl5SsDzC1X9qctBnTp13L59+yxQocTC3r17uzRp0jg/0ZxDtQ8eM2aMXQNqTpT2IwAAkYkgBeyErUWJbqK+/epDea6BBGWaqHRU7Z68XswPPPCAZT6q1Y4y2WvUqGEZ8idPngzo94LIpw2lnj17WpaOKik0bP2LL76wnuKHDx+O/zwFuRS4UHWFBranhF67eq3pdSydOnWyAAUDRAEgem3evNlaKG3fvt3lyZPHzZw5MyL+ruvc5VWKtmzZ0lWpUiVsx6K2iBp66gXoAQDnTpvaqjRQcNwPPv30U1e8eHGbF6k9AF0r+bF6QtSpQLMg9f1p8PeHH35oyZiRsG4AAJxebA8HwClUTaHMv2eeecYCCEePHnXDhw9P8YlcF+rKyFCAwps/oU3j/fv3W4sjLRbuv/9+t2DBAss6VFCjYMGCQfquEEn0GqhcubINVveGrC9atMjmUmhYtjJAV69ebUEJLZy9ORIpodeaWm54rcsUfPMqhQAA0UmbDOohrSQIVd3p3KHZC5FAA6q9Nk+vvPJKWI9Fba9UpeiXDTUACKeyZcs6P1BVujbo+/bta9dKmsWgVsxqnejXCpiaNWva96oAjOZQMH8CACIfYWScok2bNtamQBvECiColcK5VDtozoCyNDxvvPGGXTS//vrrrlatWq5fv362Ef3dd9+5G264wfXp0yfmW0D5ncqJ1Q9UAQr1PVUQQa2elNnizaBQ9Y0yfM6nSkOttLwAhaonCFAAQHRTqw0FuBWg0GbD8uXLIyZAoUzNsWPHxq910qdPH9bjadeundu2bZt74oknwnocAIDIsGPHDmt55F1vazbD119/7dsAhWjuoxIndS7UtSUBCgCIDgQp8B86ob/11lu2kayejQoqHDp06LweUy0Z/vjjj/h2PlowqF1D0aJFLYteG8maa7Fr164AfReIpOoJtZ9QdY16iGtI9pYtW6wdhTcfImvWrPZaU9BCG1HnQq+v+vXr26BsPa42jRR0AwBEN7X+Uw9tbagsWbLEZlxFAq2N1NdbdL6JpA0f5i8BwPlTUHzFihU2ZzEaTZkyxTbs1Vo3Y8aMbvr06RZQv+yyy5wf5x0mnB2iuZhKuvTbnA0A8DOCFDgttWOaNWuWS5cunVu4cKG79dZbLahwrubMmWMLIvVq9qidlHp8vvzyyxYQURa9WiWoRyain4JPanuhbFfNJNHmjaoo1MJJQalChQrZgtmjklwtos+F2mwoQ+i9996zhaiCIt7GEQAguk2ePNm98MIL1k86kjZW2rZt637++WeXP39+W8uE299//x3uQwAAX7nrrrus5VO0JdL9+eef7pFHHnGNGze2IL/mOakFUoMGDZwfqVuD9it0zalrUNH+AgAguhCkQJKU6a7yyGuuucYy38uUKWMtec6F5lqotDR16tT2sUpNn3zySaue0Cb2hg0bbC6FWkvpon/SpEm0f4piK1eutPZeHTt2tB6oefPmtcBBtmzZbMGo4JdeExqKfb6U3VS6dGm3fv16lz17dvfxxx+7++67LyDfBwAgfNmr3jpA54xevXrZrKtIoaD4hAkTrGJBb3WM4abZTgqYqAUVAOD85cuXz5LoNO8nWmzevNmujZQgqOstzYTU9ZEfWx4dO3bMtWjRwjpBKFCvdtLRWvUCACBIgbO46aabLNtdC50DBw64atWqxfdePt/sDmVDaiGhDHsNwdSCavHixe7uu+92TZs2dZUqVXJdunRxu3fvDsj3gtDMnahTp45lsnz//ff289WQtscee8wdPHgw/vPUE1XZPBrSfj7Ulkztofbu3WszUPRa1TwUAEB0UmCiR48etjbo1q2bi9Rznc5r0r59e8tQDTfNZFLgX7O+smTJEu7DAQDftBDSTIcrr7zSRUt7p1KlSrlvvvnG5ciRw3300Ueue/fuLlWqVM5vVElfoUIF25tQwoCSGZRAEO7ZUACAc0eQAmelBY6Xna5KB2UrqNrhXAZqe7R40CJCgQkvq0OZHvo6qqh45513LDihxYb+XYMgFdhA5HrzzTet6katvaRKlSrup59+ssBBp06d3IABA055TWkeyflsxrz44ovuwQcftKwZBbZU9ZMrV66AfC8AgNDT33YFrxXcFm06RFpVpY7n8ccft3lLRYoUcT179nSRQGsobaS9//777uabbw734QAAQkjXQ61atbL2Trpm1nWYAiyRNCspkJTYqHOd5hkqMK8KQrWF1LkQABC9+CuOZFGLBbXrUXajDB48OH4T+nzkyZMn/v09e/a4/v372+ZE5syZbbCXSmwVDHn11VdtuLIyQVTWicihn5tad6nMVq2dFKhQWzANN1X7pdatW1v7iUBtmvzyyy/uzjvvdL1797aPn3/+eZufQtYMAEQvnT/UFnLo0KHxw7JVSRFpA6AVkJ89e7ZVCqo1Zdq0aV2kUIWq+qfThxsAYofmZaiiYOTIkfaxErk0U1LXYX5dL2jOpYZklyhRwn355ZfW7QEAEP0IUiDZtFGg9ksKHmhD+JNPPrEWO7pYDwTNK5g4caIN+VIAREOUt23b5p599lmXKVMm6y+pDQsFKwYNGmQLFISHAkdaCKucWAGIadOmWQunp556yv3xxx/uxx9/jP/cGjVqWMWMhrGfrwULFthrbtGiRRY4Ux/wvn37kjUDAFFM53cN89SmvzbYtRZ4+umnXaTRuc07LiVNaJ0CAPAnta7VNakqtyPVZ5995kqWLOlWr15tSX4ffPCBVfj5OVitJAF1XVCSnCrp/ThrAwBiFTt7SDFtJKh8VAsizRmoV6+elZee75AqLaYaNmzoxo8fH585qdYPU6dOdYcOHbKMCWUJahO8Q4cO1gqKFlChdfz4cRvCdtVVV9nPXCW2ej2oB7aCSWq3pJ/VjBkz4v8f/SzPtw+qvq4eXxUU6gWuVlH62s2aNQvAdwUACBed52vXrm2tAtOkSWOVcU2aNHGReJyq9Dhy5IgrW7ase+6551yk0PqrUaNGljxwPq04AQD/59dff7Xq8OXLl7tINGbMmPjZfMWKFbNrIyWH+ZFmbCgpzqMkAZ3zIqmaEQBw/ghS4Jwoe16ZGwoWiBYJZcqUsQVEoBeH1113nbviiivcwIEDbRGm4ISGI7/88svu2muvtZJWVXjo3xAc+jl07tzZfg6qdFEvbmWxaIicsotU6SJq+aQARaCqa2T79u02lNSbaaFg1apVq9wNN9wQsK8BAAgPVcI98MADloSgajkFLCKR2lxqbtall15qlR6RlKWqgdnKKtW6KJKOCwCima4z1e5Y16CRRMlbqiLQfCR1Frj33nvtPKDj9aN3333X9hmUwKBZhwAA/7ogLtImEiLqaFCVMtqV4a4WPFrIadEUyBY8qtjwNsJFWSNr1651t912m7X+0bAwfT1lj6jE9aabbgrY14516r+t4MM///xjH+tn/MQTT7gDBw7Yv2mg+pQpUwL+dfWnSY/vtZDSz//11193devWDfjXAnB+Dh8+7C6//HL3+++/22YzcC7BcAXCI9H69etd6dKlbWNo9OjRrkWLFi6S/PDDD+6tt96yqkXNaQIAv5+z/fA9nOs1cf369S1ormp1zejr2LFjxM1vCgRVBmoYdr9+/eKv/9VhQS2iAQD+PG8TpEDAhhk3bdrUAgaizHeVoAYj210vag1hVp/QnTt3Wusp9YjWRbqnYMGCrn379jYHIUOGDAE/Bj87evSo27hxo9u6dasbO3aszR7RwlfZmRpqrhYXqVOndps2bXJz5851zZs3d1myZAnoMah6QoEQDd8WDYPTBkzOnDkD+nUABEasbhbg3Oj80bp1a2vdEOmbDWqlpPaWqhS9++67rVLQj5tBAGKHH87ZfvgeUmrHjh2uVq1absuWLTYfUklid911l/Nr4oKu4xcvXmwfq3uD5h+ebwthAEBkn7dp94SAUNsfVVSoHYJaIagVlHpFvvTSS+7YsWMB/Vp6YWugtgaEXXPNNdYaQgGLhC0i9O+q5tAAMbWPwNl7bX/00UeuTp06LmPGjNZOS0EnbzCZ+m97fa4VoJDChQtbxmYgAxQqWdYCVDMnFKBQn1F9rH6wBCgAIPqtWLHCAs/KAm3btq2LdArMK0Chdc64ceMIUABAjNizZ4+1mE2YCBcuK1eutOszBSiuvvpqGxjt1wCFuiUoOUABinTp0ln1RP/+/QlQAEAM4C89Akbtltq0aWODtDU3YN68edZ6SZmSqqqoWLFiwL6WsvpLlChxyn1qQ6Rj0EJGmyBqFaRonYYta4aGsjH0/+njUqVKBbQdVTRSEZWqUIYNG+Zmzpxpz1VCCxcudHfccYe9r8DF7t27rbw4mIvvxx57zKo4pGrVqu61115z+fLlC9rXBACEzocffujuueceq07QZovOP5Hsgw8+cMOHD7f3J0yY4LJmzeoizebNm639otpRKbEAABC4WQhqO9ugQQM3ffr0sB6HZgAq8U8tjd9//30LVPiVEgx//PFHuwZU9WKRIkXCfUgAgBCJ7V1aBEWuXLls8aQMfGUeqqqhUqVKNtdApZvBomDIrl27bANk0KBB9rU6depk//bnn3/aZki3bt1sY0TVHtoE1zC0xJvzfqf5Hap6UcssBXq08aLnQJsbCkpkz57dPi9NmjTx/4/u19yRYLTOOnTokLX9ULWGAhSqzNBQUgVJCFAAgD+oZZ/aJSlAoWQBZUiq2jFS7d271z388MP2/jPPPOOqV6/uIpGCKOXLl7dWGACAwFECXO7cuV2OHDnCdgyjRo2ywdgKUKjV0/Lly30doBBV6vft29etWbOGAAUAxBiCFAgKtUPQgkoZfmq7JBp6rE3nl19+2eYeBIMWkV6FhI5BF+7KfunVq5f78ssvLViizXgt9NRO6IEHHrAqgeuvv96NHz/e+Y1aNH311Vc2VK1QoUIWCNBgUg0YV4ssbwGu6hMFKhQYUMaKNmc0lDyY9DPQkPW8efO6ESNGWGWHAiEqY27SpAktNQDAJ4YMGWJZoDonNW7c2M2ZM8eSBSKVzkdKrNi3b5+1H1TbwUilc7iC+xooCgAIHJ0H1Opp6NChYTkP6fpN3Qn0vmb1vffeezaLwm903anvT0mFomt5BSp0jQ4AiC0MzkZIqG+msuXXr18fH0zo3r27ZSmGur+kBkFrA149LnVLWN2RKVMmC2TceuutNjhacy4U6Aj0YOhgUfBHsyVUFvzFF1+4b7/91uY8eDSgRos+ZbPqe1I1ib7fV199NX7WRLD9888/llHbpUsXG3wuGrCuTSwdD4DoE4sDLJE82nRQewqdj55++mk730R6u0VtSKl9pSoKoyGTU3OldKNfN4BYOWf74XtIiv6eqzpO50vRNZOum/2YwKXrVbUT/vnnn13z5s3d2LFjw31IAIAwnrcJUiCkC64pU6a4F198MX4AmbL7laGogc2hXHipf7MqCdTuaPv27dYqauTIkTZ3QQEUDUpLSAOcVW2hjRYFLdSqIpylv9r00SBPBX8UhFBbLVWKaMD0hg0bTvlcVY7oj4GCMapq0ZyHcNCfGrWZ6tixo/v666/tPpUr9+jRw4Z0s7kCRC18TwcAAEZESURBVC8/bxbg/Omcryo9bfxH+iaLBnYqUeH48ePWJlIJFgDgJ344Z/vhezgdVRxqRp/a8YoCFWo56EdvvPGGVVDofKs9gVmzZtlbAID/EKRARM9E0Ea5hmr/9ttvdp/aEL300kuuWrVqYdvAUH9sbfSr1ZA20bU5oSDA6WZWqL2CNtVVkaD31aJIVRii1hC33367BQ5UraCyXG+ot0ctJBRc8HqK6tdQHx85csQdPHjQ7tOwb7VE0uAwtcfYv3+/BUtUEnu6YypQoIAFUTTYTY+neRwaFq4qBf2/ygj1jjGUdCzLli2zYISCKKI/Tp07d7ZhdHpuAEQ3v24W4Nzo3KWqRc0ziiY6Byt5QVUfdevWdTNnzozooIo2dkJVBQnAP/xwzg7F96C5CCtWrLAkr5o1a7pg07WgWhHrWu6iiy6yVslK5PIbfZ9t27a1dr+iZEXNI4zW1yIA4OwIUiDi6cXZv39/G3KtQZpSrFgxK29t1KhRRFx4q9pCrZNUhaABn59//rnbtGmTtSnS5oCqKRRwUAujpKjvtiofFNBQUGb16tX2/3q0CE38/ysAouCGhkonRZ+jbJuCBQtaqax+4UUBlmuvvTYoQ65TQsc2Y8YMN2DAAAv+iAIlCkwogBLJA1MBxN6GBwJD5y1tOCjIr/OnNvujhTaDJk2a5HLmzGnznCL5PKXle548eSwhQnOldN4HgFg5Z4fie9D5S3MglFznzVgM5nWTAhTvvPOOXQPrrc6lfqPrZs2t1ABwURsrdVmI9DaQAIDzQ5ACUUMtlvr16+fGjRsXPzBLFQZqC9GiRYv4zfdI8tNPP7kdO3a40qVL20bGokWLLGtUm/FaZCnwoF8+VY1ooemVsapKQpUQZ6Pqgq5du1oQRLd27drZfVq8KstTj6UghAIV+lqR5I8//rAh5CpPVhWI6Ngfeughm4eRO3fucB8igADzw4YHAnM+r1GjhgXL9TrQgOyKFSu6aKAszmbNmtk5XNV/au0YydSqUhWUCv5rbUFVIoBYOmeH4nvQnD/9ra1QoYK1/Q1mgEKV/Ao4q02vqvjuuusu50e6hi5ZsqQlKE6ePNmS+AAA/neYIAWijS6yR48ebQOUf/nlF7tPG/EKVLRq1SoqswT166X2EQpWZMyY0fqL6vtJSG2QdJ9aOWlzRIEHvR/JLSaSWnSOGjXKbl4FSNasWa2fd8uWLd0VV1wR7kMEECR+2PDA+dm6daurXr26BaeV3a8ZRMWLF3fRYNu2be7mm2+2RAm1olRWZ7Scdzdu3GiBIQCIpXO2H74HUTW9qvjefvttC1CoCt3vG/dqoaUWxMyfAIDYcZggBaKVNvS1UFObIA2H9igbU1mODRo0CHsro3Ohgda33HKLO3r0qHvhhRfse9AQaVVaqApDVRnRRhs6GnL25ptvuiVLllhQRpTd2b59e1t0k90J+J9fNgtwbtRyUP261dJQf/8XLFgQNYkFyubUoOz169e7ypUrW2VkpFUoAkAg+eGc7Yfv4d9//7VrW1UUKElNsyiiqUVicqtEVEmv6sR69eqF+3AAABF+3qb5HyKOWhc8/PDDtqk/b948G7ypqgK1X3jkkUcsQ1Ob39oU1+IuGqiyQAszBSg0HFz9N5977jm7T62g7rnnHuvRGQ0UiFAf0UcffdR+FipP1tBx3V+pUiULWmiQuHq3EqAAwkPDCNWvXlVZZcqUsU3kpIwdO9ZaGSirTbeqVaue8fOBhNQKQ5v7ClCohcNnn30WNQEKUWtJBShU+aeNIgIUAADRtagS5o4dOxbwx9Z1k4ZHewEKzaDwW4DiwIEDVumn+ZMKxuzfvz/chwQAiHAEKRCx1PpImZkLFy609hEvv/yyDYnWRr8GW2ojTRshGsKsgdZnGl4dTgqkaCP/u+++s3kMqhLRJogCL2r/dN1117ldu3a5++67z7JNIvV7WLVqlevSpYvLnz+/VbW8/vrrNn8ib968FnTRjI6lS5faApvhZ0D4TJs2zebYaK7N2rVrreWO2vAkFQj9+OOP3f3332+/vyrB19BgBVN//vnnkB87ok++fPls5pBeM3oNabM/WmgtoSCdzsc6N1911VUuGqjaQ4kCShAAAASHzmuFCxe25KtA69+/vxs6dGj8TCS/VRmoFWGpUqXsPHXppZfadWM0rQ8AAOFBuydEFb1ctVmuzX0NF1OpkCdLlizuzjvvdLVq1bINucyZM7tI0KtXL9vcV4WIginqe52QMnTU6kmtk1Rd8corr7hIoOdWASJVs3z44YenbHCmT5/eNWzY0DamVL4bbfMzAD9T5YQuDIcPHx4fZFTg4amnnrIWc2ejgK8qKvT/q2otVtouIGXn4hMnTli7Qu81o5v3cTTYtGmTnXuV+NCtWzcL6kWLxx57zI0bN849/fTTNscLAFLCD+fsUHwPClBoTqKuPZWkFSgKSqiyQFRloIoKP1FVvRL0dG2rhML33nvPFS1aNNyHBQAII2ZSwPfUR3rOnDm2EFL/a29YsyiTv2zZshawUNb/jTfeGJbWQxocqmoQ/Zopg0RtrE5HPUi16S8amKb2T+GYBfLVV1/ZfAwFJj799NNTKjs0Q0MZRaqUULaPsmIARBa1j0uXLp39HUnYNkAXw/obqQvFszly5IjLli2b/V266667kvx7oVvCRYcCIdG84YHkUdBLM4c2b97s3n//fRv0GW1UBagAhb4HtZRUID6a2jzp/Kzf8XvvvdeVK1cu3IcDIMoQpAgfXRvWrl3brrE6dOhgFRV+oevdHj16WOBfqlSpYm2slEgIAIhth5N53k4V0qMCAkhBh0aNGtlNCz1VKWhzXTdlSOoiXjdRr0+1PNGmhLKM9VZtloLZluj77793jRs3tgWb5jMkFaAQbTRooaph4apOuOGGG9z1118f1E0m9RFXZpB6z+utAhTKjE1Iz5ECPbqpYiKasmSBWPTrr79aRnv27NlPuV8fJ7ddgQYcqu2NWuolpU+fPtbmDbFFgSkFvNRSTDQbShWM0UTn5CeffNICFHqdR+McCp2PdQMARI81a9a4Bg0a2HXrAw88EDHV84GiynrNoRBV+g0cONCuwQEASC4qKeBLmmGhYIUqLLQBv3fv3v98jqJ3N910k/XT1lwFlaN6N23onWsLI2Vo7t6922ZMrFu3zgIiGjStdk9nogWrMjrVH75QoUJu5syZ7uqrr7YKhnM5Fv1qa0CZgiW6aWaE91Z96hNWnniuuOIKC+KoYkKBCT03AKKH/vbo74aCtrfeemv8/Wolt2zZMvt7eCZ9+/Z1/fr1s79DxYoVS/LzqKSIPfrZ1q9f33300UdWPaG2iwrER5tRo0a5li1bWmBCMzQ0NB4AYkm0ViFE8/egtlElSpSwdZqu9+bOnevL5C9dz6paJKlKXABAbDpMuyfgf/QS37lzZ3zFgN5++eWX1of6TFUaefLksWCF3k94S5s2bfxbbfTv2bPHFp666X313/RoQJi+ljbvkkNzHzSzIuHAWrVuufLKK12OHDnsrW6at6ENQrW8Ot1NwYkffvjhlGNJTMevr+VVluitvmfmSwCx2e5JlVyaoaMhhyVLlvT1ZgFSRpsqNWrUcF9//bXNJFKbxTNV2kQqDYZXC0hVDarFhioYo40qP3TOLliwYLgPBUCU8sM5O9jfgxLcVHWnay7NADofOufcfvvt1lJXlfIrV66M2uc9MSXAaIbZ22+/HZXtHwEAoUGQAjhLlodaQmnDJXGlwa5duyywcT40r0ED1kaMGJHiftEKaqg91LZt26w3/PlQwEFZ1QmrRHTT8DLdWEwC/uMFHocNGxbf3i1XrlyudevWSQ7OVvVE7969rfrslltuickND5ye2iKppZOC/Qrcf/DBBxbgjjYJs1jVYlEtq6ItKK9EBiUqaI2i70PJCwAQi+fsYH8P33zzjQ3OVpDit99+O6/HUusjrcl0nEqWUztdPxg9erStLXVdrTagSa0xAQA4zEwKIGnejArdTpeJrM0YBSy0KE1cpXDs2LH4t/olS1jl4L1Vpum50iaKepaKKiG8Co2Ebw8ePBhf0XG6W6ZMmSwYkTt37rO2mQLgL+3atbPKCVVDKFgxePBg+1vizcVp2rSpBS91QSnqifzSSy9ZFpyqqfQ3RvR37Hz+lsEfdK7TOUeZ+2rhoHNLtFEWq+ZXaWNfWazjx4+PugCFaE2ibFy1lSRAAQDBo6D8yJEjz3t+4aRJk+KTRvS+HwIUOqe2bdvWkvFELY4ViAEA4HxRSQEAgM+o9F7tbBRwuPHGG93QoUOtwkIqVapkwQjNFBC9rzk+iXXt2tV169YtZrIykTTNOFGQQnOLopE2UxSs04yn1atXR/0mkaqjznfjDEDs8sM5Oxq+B80AVEW9gv1KBunevbuLdhqMrWpEzacStQnt3LlzVAb+AQChQ7snAAAQEtGwWYDkU3bkTTfd5MqWLeui3ZQpU+IHfM+cOdPVq1cv3IcEAGHlh3N2pH8PqkDUeVRJILVq1XJz5syJ+uDyli1bbCD2d999Z62N33rrLVenTp1wHxYAIArQ7gkAAAApytBXT2lV4agPt2Y3qYVhtFIW66OPPmrvd+rUKaoDFMpeTZcunbV6BAAEP8ig4dk6F2bLli3F/7/aHylAkS9fPjd58uSoD1DIP//8Y7OR1E5YQZdixYqF+5AAAD4T/WdLAAAAnJe///7bPfDAAxagkA4dOlhP7milzSVleGqGlAZ/9+zZ00Wzl19+2WXJksUNGTIk3IcCAL43a9Ysm2HkzfNKCVXteYEJVRtkzJjR+YEGic+bN8/aJhKgAAAEA0EKAACAGM8Y1Ub+1KlTXapUqdzEiROt8iBae0wr4FK/fn23a9cumz+hlk8XXXSRi2Zff/21O3r0qLvqqqvCfSgAEBMUXEhpgGH//v3uiSeesPeff/75+Hlg0Togu1WrVm7ZsmXx91WoUMFlzZo1rMcFAPAvZlIAAABf94ZG0tSOombNmu6bb76xwdLKAK1ataqLVlrWNm/e3L3++uv2mvziiy9s6He00/e1Zs0aV6hQIfs5AUAsn7Mj8XvQ3+kGDRrYebRo0aJWcZAmTRoXrS0G77nnHvfxxx9bUGLHjh0uffr04T4sAECUYiYFAAAAzqhv374WoFCG/gcffOCKFy/uotmwYcMsQKE2G9OmTfNFgEJU1VKqVKlwHwYAIAmq2lOAwqtIjNYAxdatW21A9vbt2y0w8cYbbxCgAACEBEEKAACAGDVo0CBr6dC1a1eXM2dOF80WLlzo2rVrZ+9rtkb16tVdtPMKnqO19RYAxILdu3dbayR56aWX3I033uii0eLFi60aRJmuGpD9/vvvW1UIAAChwEwKAACAGPLRRx+5f//9196/5JJL3Lhx46I+QLFx40Z37733un/++cc1a9bMtW3b1vnBhg0bbFipKl4AAKExevRoO5d8+OGHyfr81q1bu0OHDrmSJUu6jh07umj02muv2XwqBSjKli1r7RIJUAAAQokgBQAAQAxQYOKFF15wt99+u+vSpYvzi71791prCvU6ve2222xzyS+VB++8847bvHmzbRYBgF8sX77c1a5d21oN6u/17NmzXaQdn1o26e/v2XzyySdu1qxZ7qKLLnITJkxwF198sYvGqj19zwr0P/jgg27JkiUuW7Zs4T4sAECMod0TAACAz/3999/u4Ycftp7Zok0UbUpE+2b+0aNH3d13320DwAsUKGD9wKO1D/jpPPfcc+7666+P+koXAEjozz//tBlIjzzyiKtfv76LNNqo1/Ep8H0mOo926NDB3n/ssces8i0aaS2geU5KYtDPJNrXBgCA6HRBnNfsFgAA4Bwog/3yyy+3FgGXXXZZuA8Hifz222+uXr16lu2pgZ5jx451Dz30kPNDZUijRo3cjBkzXObMmd3KlSstUAEAiJ5ztjbEVYlQt27dqPsepk+f7ho2bOguvfRSGzR95ZVXumixa9cuN3LkSNerVy934YU02AAABE9yz9tUUgAAAPjUd99952rWrOm2bdtmC0JVGihT0g86d+5sAQpVhWiDiwAFAPi3GlC3hJsd4Xb8+HHXqVOn+Kq3aApQrF271tok7tmzxwIsagUJAEC4ETIHAADwob/++stVrFjRAhRqF/TZZ5/5JkAxfPhw98orr9j7Gvx9tpYc0UaFzo8//rh7++233bFjx8J9OAAQVn369LEMTO8W7BZ4O3fudLt373YnTpw446BpJQIoONGuXTsXLebMmeMqVKhgAQq1p1JrKwAAIgFBCgAAAB+65JJLbCO/ZMmSbtWqVa5IkSLOD95991339NNP2/s9evRwTZs2dX6zbt06N2bMGNe8eXMbZAoAsUwVC2oR4d1++umnoH69KlWquKuvvtp98cUXp/13HYPOP9K9e3eXPn16Fw3B7yFDhlhbLc1zqlatmiUv5M6dO9yHBgCAod0TAACAT2gTYv/+/S5btmz28QMPPGBzGzSLwg80V0Pfk1dp8OKLLzo/0s+vS5cutpGkVhwAEMvSpEljt1DRjAbdkvr7qwQAzXsqVKiQDZqOdCdPnnTPPPOMGzFihH2s8+ewYcOsXSIAAJHCH1esAAAAMU79sZ988km3ePFiGyKdI0cOu98vAYpNmza5u+++2/qS16lTxzZbNHDVj6655pr4LF0AQGipTaKC4afz888/u1dffTU+WBEN59hvvvnGjR071s6Z/fr1c+3bt/ft+RMAEL0i/4wKAACAMzp48KC755573NKlSy37UxUHDRs2dH6h1h533nmnO3TokCtbtqybMmWKu+iii8J9WACAc/DHH3+47du3x3/8/fffu6+++splzpzZ5cqVy0WCpDbxNQdJs4J0Lqpdu7aLBsWKFXMTJ060gIrWCgAARCKCFAAAAFFMGz21atWyzE/1xZ42bZqrWbOm8wu1r7rjjjvcrl27rLXG+++/b/M2/Gr69OkuX7587uabbw73oQBAUKxZs8ZVrlw5/mNv8HSzZs3chAkTXKTSjKDXX3/d3m/dunVEVyOo+vDff/91RYsWtY/V+hEAgEhGkAIAACBKqWJCQzAPHDjgcubM6ebOnWsZk36h4aTVq1d3W7dute9vwYIFlmnrV8rOVa9wVcYsW7bM3XbbbeE+JAAIuEqVKiXZTikSzjua36Cg/9ChQ08JRKid4s6dO12mTJlcvXr1XKT66KOP7Pguu+wya/+oIeAAAES6C8N9AAAAAEi5hQsXuqpVq1qAolSpUu6LL77wVYBCQ6Pvuusut27dOhskrc2hSGkDEixqZ6W2VgULFnTlypUL9+EAQMxRkFjVHGrrlLhSQvdJkyZNXNq0aV0kmjx5sp1HDh8+7K699tqIPU4AABKjkgIAACAKlS5d2uXNm9cVKVLEvfnmmy5dunTOT0PA1Tf7008/dZdffrkFZLRx73dXXnmle/vtt93JkyeZuQEAYaDqg759+1prp4T27dvn3nvvPXv/0UcfdZFGlSk67s6dO9vHmkultQFBCgBAtCBIAQAAECX+/vtvlzp1asvuzJgxo1u+fLnLkiWLDcv2C23QP/DAA27+/PkWePnggw9c8eLFXSzRcFMAQOippeDzzz//n/snTZrkTpw4YQkCkVa1qPOmZmSMHj3aPu7QoYN75ZVXfLU2AAD4H2ctAACAKKDB0WXLlnXDhg2Lvy9r1qy+2oTQRsuDDz7oZsyY4S6++GI3a9Ys+55jgapGfv3113AfBgDgNFUKXqun5s2bu0jTs2dPC1AogUFzNPr37++rtQEAIDZw5gIAAIhwmjeh7M21a9e6Pn36uCNHjji/UWuNZs2auWnTplmA4t1333XVqlVzsUDZuffee68NN121alW4DwcAYpbmIf3yyy/uzz//jL/v888/d1u2bLHqvkaNGrlI065dO1emTBk7bz711FPhPhwAAM4JQQoAAIAINmXKFFexYkW3Z88emz+xYsUKlyFDBue3AMVDDz1k8xjU6mj69Omudu3aLlbs3r3bAhRq4XXTTTeF+3AAIGa9//77LkeOHK5WrVrx93lVFApQaGZFJDhw4ED8+5rdpEBKvXr1wnpMAACcD4IUAAAAEejff/91Xbp0cY0bN3bHjh1zd911l21C5MmTx/nt+9QQ0smTJ9uwaFVS1KlTx8WS3LlzuzVr1rivv/7aZo4AAMI3+0ltky699FL7+Pfff3fvvPNORLV6+uqrr1zhwoXdoEGD4u+jvRMAINpxJgMAAIjA/tf333+/69Wrl3387LPPutmzZ/uugkIzKFRB8eabb1qAQlUj9evXd7Eqe/bs4T4EAIhpTZs2teo+zUSSqVOnWguo66+/3t16663hPjz30Ucfudtuu81aUk2cONEdP3483IcEAEBAEKQAAACIMMri1MBoZdW/8cYbrl+/fraJ7yfaWFEgZtKkSfa9vfXWWzaXIdZ89913FqwBAEQGnYO9qjZV+XlVFLo/nNQKsUaNGjaXqlKlSm7ZsmVU3wEAfIMgBQAAQIRIuFn99NNPuw0bNlilgd+ofZUqJmbMmGEbLHobicNIQ/Hzrlq1qrXwWr9+fbgPBwCQyLZt2+xtlSpVwnoco0aNsvOkAvwNGjRw8+fPt1kUAAD4BUEKAACACDB27FhXokQJ638tytgsWLCg85s///zThmLPmzfPpU2b1s2ZM8fVrVvXxSJVUfz1118WtClQoEC4DwcAYp7mIrVp08YtWLDAAgL79u2z+6+++uqwHVOPHj1cy5YtrRXkk08+aS2o0qRJE7bjAQAgGAhSAAAAhNGJEydc69atXYsWLWxw8pgxY5xfHTx40FWvXt0tXrzYhpJ++OGH9nGsuu6669wPP/xgm2Hp0qUL9+EAQMxbsmSJGzp0qPviiy/cnj177L6LL77YXXHFFWE7Jq9iolu3bm7EiBG+a/8IAICk4mkAAAAIj/3799scBvWVFg3K7tChg/OjXbt2uTvvvNNt2rTJNlwUoIiEIaThpmoSVdAAAMLvrrvuclmzZnUVKlRwu3fvtvuuuuqqsM6jUGXHLbfc4sqUKRO2YwAAINiopAAAAAiDdevWuZIlS1qAIn369G727NnuhRdeCPtgzmDYvHmzDQJXgEKbPZ988knMByj0nAAAIsvdd9/tevfubYOpf/7557C0ejp69Khr27atO3ToUPx9BCgAAH5HkAIAACDEFi5c6MqVK+d27txpswhWrVrl6tSp4/xoxYoVrnz58u6nn36y9kaff/65K1q0qItlq1evdjfccIO1uvrnn3/CfTgAgNPwghQKroeKAhPVqlVzgwcPtkHZmkMBAEAsoN0TAABAiBUvXtxlyZLFFSlSxE2ZMsVlzJjR+ZGGYt933302HFpZoHPnzg1rX+9IClKkSpXKXXnllfQWB4AIoiCBZlBoTpDX7ilUlRR79+614PX69ettXdC1a1dfVlcCAHA6BCkAAABC1L7BG46cPXt29+mnn7prrrnGl5vUyvx89dVXbb6G3q9Ro4abPn26DcuGcy1btrS+5wCAyHLbbbe5DRs2WMVjKNs9qbKyatWq7ttvv7U1gr5+sWLFgv51AQCIFLR7AgAACMH8CbX3mTx5cvx9uXPn9mWA4sSJE+6JJ55w7du3twDF448/7t577z0CFInkypXLbgCAyEooEJ2zEg7ODqbt27fboG4FKHReUBIDAQoAQKwhSAEAABBEkyZNsqHRP/74o+vXr5+vZxCoTUbNmjXdmDFjrEXFoEGD3KhRo6x1Bpz77bff3L59+8J9GACAJGzbts0dOXLElS5dOiSVFArmN27c2CopChYsaAGK/PnzB+3rAQAQqQhSAAAABMHx48dd69atXdOmTd2xY8ds837ZsmW+rJ6QrVu3ultvvdUtXrzYMlBnz57t2rZtSz/tBLp3724VNEOHDg33oQAATuPCCy906dOnt3N1KIIUOkdOnDjRWj0tX77c5cyZM2hfCwCASMZMCgAAgADbtWuXu/fee93KlSvt4y5durhu3brZ5odfB2Q3adLEHT582DZz3n//fXfTTTeF+7AiiipotmzZYgErDUwHAEQuVVP8+eefQWv3pMf22iAWKlTILVq0KOBfAwCAaOLPK2UAAIAwtjwqWbKkBSgyZsxoG/Y9evTwZYDi33//dS+99JKrU6eOBSjUU/vLL78kQHEayspdsGCB++yzz1yVKlXCfTgAgET+/vtvqwB88cUX3Q8//GD3XX755QGfqaSWTtdeey2BCQAAEqCSAgAAIIAUmGjevLkFJ2bOnOny5cvn/BqMefDBB928efPs46eeesoNHDiQ+RNnaeuh+SQAgMijYPvgwYPtfQXdg9Hq6eOPP3a1atWyAd1q/XfHHXcE9PEBAIhW/kvpAwAACMOGvVo8JZw9sGLFCt8GKFatWmXVEgpQpE2b1vppa7OFAMV/nTx50o0fP95mlAAAIlfq1Kldx44d3TPPPOP27t0b8FZPqpzQfCoFKKpVq+beeeedgD02AADRjiAFAADAeVi3bp0rUaKEq1evnrWK8Fr7pEuXzvmxvdOAAQNc+fLlrRVG3rx5rX2R5lHg9MaMGWOVNZUrV3ZxcXHhPhwAQBLU2qlPnz7u1VdfDfjQ7Pnz57vatWu7v/76yyop3nvvPXfJJZcE5LEBAPADghQAAADnQBvOY8eOdbfeeqvbsWOH+/XXX0+ppvCb/fv3u7vuuss9++yzVh3QsGFDt3btWnfzzTeH+9Aivv1XtmzZXOPGja3dEwAg8nlBikBUUmgeUd26dS2RQW/VClJViAAA4P8wkwIAACCF/vjjD/fEE0+4t956yz7W5r1aHmXKlMn5kTJAH3nkEbdnzx7bWBkyZIh77LHH2HRPBgUn9PrwY2UNAPjJiRMn3D///OPSpEnjdu/eHbBKiilTpliAQhWX06ZNozUiAACnQZACAAAgBb7++murIti6dau1derdu7dVF1x44YW+DMZ06NDBjR492j4uVKiQ9dAuWrRouA8tqlx22WXhPgQAQDIqHtSSqXTp0vH3BSJIMW7cOHfjjTe6li1bEqAAACAJ/ruaBgAACGKLp9atW1uAQhsXy5Ytc88//7wvAxSaNVG8ePH4AEWbNm2svRMBirP7888/rXpCA8YBANHzt1s0K+J82z198803NsdJUqVKZcO4NZgbAACcnv+uqAEAAIJE7Y0mTJjgGjVq5L766itXrlw558fqifbt27sKFSrYrI1cuXK5JUuWuMGDBzPkM5l69erl5s2bZxU3x48fD/fhAACSoUGDBu73339306dPd7/88ss5V1J8+umnrlSpUq558+bxgQoAAHBmtHsCAAA4g9WrV1tVgbIgJW/evG7q1KnOjz744ANrR/Hjjz/axw899JAFJy6//PJwH1pUUXXNTz/9ZM8fmbMAEB3UwlHt+TR/SbMpVCWZPXv2FD3Gl19+6WrVquWOHj1qcy0050IzLgAAwJkRpAAAADgNZT8OGjTIderUyTYrihUr5qpUqeL8aO/evRaE8YIvuXPndqNGjXI1atQI96FFpYwZM7rJkyeH+zAAAOfAG5qtAIVaNSXXpk2bXPXq1d3hw4fdbbfd5mbOnEmAAgCAZKLdEwAAQCJq86BMSA3EPnnypLvnnnvczTff7PxGGZ5Dhw61gdgKUChrVK2etNFCgCLl80q++OKLcB8GAOA8efMoUtLqafv27a5q1arut99+s1ZP77//vkuXLl0QjxIAAH8hSAEAAJDA3LlzrWpi/vz5Lm3atDY4+p133rHseD9ZtGiRu/HGG20g9qFDhywIo032AQMGuEsvvTTchxd19LyVKVPGdezYMdyHAgA4Dykdmq32frfffrslOBQtWtTWD2obBQAAko8gBQAAwP+nDebatWu7/fv3W6BizZo1rkWLFjYw2y++/fZbV7duXVetWjX3zTffuCuuuMICMQpQlChRItyHF9UDxyVnzpzhPhQAQADaPSW3kmLt2rU2x6JAgQKWAJA5c+YgHyEAAP7DTAoAAID/74YbbrC3bdu2dS+//LJVUvhp06VHjx5u3LhxNmNDA0Jbt27tunbt6jJlyhTuw4t63bt3d3fccYcrV65cuA8FABDCdk916tSx6on8+fOneNA2AAD4H4IUAAAgZmnexPfff2/Zj9KkSROroFAbJL84cOCAe+WVV2z2xLFjx+y+mjVruv79+8cHZXBufvjhB5crVy6b5SHly5cP9yEBAELQ7knrB51fs2XLZh9XqVIlZMcHAIAf0e4JAADEJLU9qlChgqtYsaJtNIjaOvklQKGWVS+++KLLmzev69evnwUolOW/fPlyN2/ePAIU5+m7776zGRT333+/+/vvv8N9OACAELV7iouLc61atbIB2Vu2bAnx0QEA4E8EKQAAQEz5999/3ciRIy0YsXLlSvfnn3+6DRs2OD9lgKpdVZ48eVzv3r3d77//boM8NRD8k08+scAMzt/GjRvdwYMHLdhFkAIAYqfdk1onjhkzxu3atctt3bo1xEcHAIA/0e4JAADEDLV2evTRR93SpUvj2zO88cYb1rIn2q1fv94NGTLEvfXWW+748eN2nwZhv/DCC9Yv22tJhMDQc7pw4UJXqFAhd9lll4X7cAAAAfDXX39ZADqpdk+TJk1y3bp1s/dHjBhh5wIAAHD+uFoFAAC+p9YM2kxQRYECFJdccolt6C9atCiqAxTqiT1z5kxXqVIlqwxRwEUBClVLaIjn6tWrXb169QhQBMiUKVPcL7/8Ev+xnvcrr7wyrMcEAAh8qyetEzJmzHjKv6n6snnz5vZ+586d3RNPPBGWYwQAwI+opAAAAL6nWROrVq2y1k6aQTF+/HiXL18+F61+/PFHN2HCBPf666+7nTt32n0XXXSRa9CggXv66add2bJlw32IvqPB423atLEe5JrrkTZt2nAfEgAgiK2etHbwqLWTgv5KBKhbt67r2bNnGI8SAAD/IUgBAAB8SRsJR44ccVmyZLGPBw8e7MqXL29ZkNFYWaDB1++9954FWBYvXmzVIaLv7/HHH3dPPvmku+aaa8J9mL5Vs2ZN60NevXp1lzp16nAfDgAgiJUUiVs9tW/f3irpVJGplk/RuI4AACCSEaQAAAC+89lnn9nG/bXXXuvmzJlj2ZCZM2d2LVq0cNEWaFFLqmnTplmA4vDhw/H/pnkamq+hzE61pUDgW2mp+qZcuXL2cf78+d3mzZtd1qxZw31oAIAQD80eNWqUrSX69Onj0qdPH6ajAwDAvwhSAAAA3/jtt99sUPTo0aPt43379tmGQzRVGKgl1ZIlSywoMWvWrPgBnpIzZ0730EMPuYcfftgCMAiOQ4cOWRBo48aNbt26da5w4cJ2PwEKAIiNIEXiSgolOkydOjVMRwUAgP8RpAAAAFHvn3/+cWPHjrUAxYEDB+y+Rx55xPXv3982FiKZ2jZ9//33Nuh67ty57qOPPnJ///13/L9rMPO9997r7rvvPnfLLbfQYiIELr/8cgts/fDDD3bzghQAgNho96RKig0bNrivv/7aNW7c+JT5FAAAIPAIUgAAgKimTWS1PPrqq6/s4yJFirjhw4fbgOxIztRcunSpBSR00yDshPLkyeNq165t39dtt91mQ7ERvCCRgkMjR460tlqXXXaZbUapGkcBoezZs4f7EAEAIa6kyJEjh82w+uKLL+wc3blz53AfGgAAvkaQAgAARDVtJGhAdsaMGV3Pnj3dE0884VKlShVRA6/Xr1/vVqxY4VauXGm3xEEJHe+tt97q7rrrLrtdf/31ZG2GMEjx3HPPuS1btlhg4tlnn41/XQEAYjNI8fnnn1uAQoFrtVkEAADBFTlX8AAAAMncQFClRI8ePdzFF1/s0qRJ46ZPn27tecI5M+Dff/+1Y9NwZQUlvJs+VjuqhBSAKFGihM090E3DmRnEGZp5HwpIKGCkzScFh1Qt8dJLL1klzoMPPhjuQwQAhDFo7bV7GjdunL1V28jE8ykAAEDgXRCnMzEAAPCNESNG2EX1L7/84ooXL+6GDRvmSpcuneTna4O/S5cu1japQIEC7pVXXnE1a9ZM9tc7fPiw9fD//fffLeMwWFR9oO9F35+qE0aNGmVVE6Gkr7tz5047Fj1fert9+3a3detWt23bNnf06NHT/n9XXHGFzZPQTRUTpUqVchkyZAjpsccaVUZo+LiCVw888IDdp2WvAlkasK7h5AoQAUAsCdU5OxjrlWB/Dzo36HztUdtItWRkFhQAAOcuuedtKikAAPAR9dRv166de+2111yZMmXc4MGDXfXq1W0TPVu2bP/5fLUzuP/++12fPn2szdDbb7/t6tat69auXWuzHcJNFQgaKK2AxAcffGCbzFK+fHl34403nlfVg7Lq1SbKu2nRpKHb2qTw3u7bt8/t2bPHbtpE8YZyJ0WZ+fny5XPFihWzDRfddJwawEn7ppTzft7ec3fw4EG3adMmq6DR69vTtm1bt27dOnu9e68LVbF07NjRAkNekEKP8/LLL1tWrKpXAADRsV4JZasnSZs2rRs7diwBCgAAQoRKCgAAfEQX+srSVzskbzM+Z86c7qmnnrIN28QaNWpkm/UaHOzRpq42erVxcDp///233RJmRuhrBDqjsVWrVm7MmDHu5MmT8fcpw/HKK690+/fvtw2EwoUL2/eo27fffmvHooBAunTp3IkTJ9wff/xhmw7anFY7pb/++stuCY8/pS699FLLzj906JA9pqo5rrvuOrspoKKsS7UNatCggX2+Ps/rZz179uz4x1ErCT3v+jyvzZAqNe677774DRy1spJJkya5d99914ZpP/roo3aflnAarC1vvvmmZad4lTFvvfWWq1atmmvZsmX812vYsKE7fvy4PafeBtCcOXPc66+/bsO5tVnkadq0qT2XymrVz1YWLFhgw6X1+ujUqVP85+p4FMwZNGiQVeKInoN+/fpZS6vevXvHf26zZs2sAmXo0KEWwJHFixdbkOGmm25yEydOjP9cVZyoJdPChQvd7bffbvepMkJBNGXarlq1Kv5zy5Ytay2c9BzVr1/f7tNGl1qC6bXszZkAgFgXKZUUKVmvhGrdoXO0d17t27eve/755wP22AAAxKrDVFIAABBbtAH95ZdfnrKBrAzAqlWr2gbu6ej+hJvTokzGhJvpianqonv37i7YPv3001MCFPLrr7/azZN4ALWoAuJ0VC2RmIIXWjCp9VLq1Kndd999Z28VNMicObO1Bpo1a5YNu9ZmheYZZMqUyTba8+bNa4/ZoUOH+MdT2wptpCdsV6Gfi+5LbMOGDXa/Ai0JK0e8z004x0JzLXT/tddee8pjeJ+rr+FR2yndnzgTVQERBWiGDBkSf5++X32uAi8Jffjhh/Y8q+og4XOtoEbirFIFGdQCq2vXrvH3qae3ghradEpo9erV9r2oIsKjQNLGjRv/0/5KQRiv4sWTPXt2lz9//vjAiUcbWvq8hM+7gkYK1gAAonu9Eqp1h7d+UDJE4rURAAAILoIUAAD4hDaVtbGtjdyE9LH685+OWhid7vN1f1K0qZDw4t3LaAw0DTPWBroqItQ+yesTrQyMr7/+2jbWtSmtQMNFF11k96lqQZ+r41FLIG1cK+NeGRt33323u+SSS+ymoIOqMTST4IYbbrDHVSunGTNmWIWGKgk8qgbQZr4y+xW4kCxZsrjRo0dbe6eEmjRpYpmhunm0+a7PPV0ViwIUqiDwKEDifa7e96h6IE+ePK5o0aKnPIb3uQmHbteoUcOCK4UKFTrlc1UVodeH9z2IKhT0GNr4T0hVEarqyJEjR/x9FSpUsNYXuXPnPuVzVTGh5znh/apsUHVH4mGjelwFJbzn3PvcRYsW2XOakKoi9LNNeL+qOFQxk5h+tgAAf65XQrXu0AyK8ePH2zlUawgAABA6tHsCAMAnlL2uVkeaM6ENdY+y/5ctW3ZKexyPNsK1may5FB619FHG4t69e6OqdQQAAIj8c/a5rFci7XsAAADJk9zzNlOgAADwCVUaqKIgcXBBH6t1weno/pR8PgAAQKjXKwAAwN8IUgAA4BOqilBroiVLlsTfp57++jhhpmJCuj/h54ta7yT1+QAAAKFerwAAAH9jJgUAAD6ins3NmjVzJUuWtHkNgwcPtnkBDz/8sP27Zi2oxYKGUEqbNm2sB/PAgQNdrVq13NSpU92aNWvcmDFjwvydAACAWF2vAACA2EKQAgAAH9EwZg2E1tBpDb++8cYb3fz58+OHU+7cudNdeOGFpwwtfvvtt92LL77oOnfu7AoUKOBmz57tihQpEsbvAgAAxPJ6BQAAxBYGZwMAgPPCAEsAAKKDH87ZfvgeAACIFYcZnA0AAAAAAAAAACIZQQoAAAAAAAAAABAWBCkAAAAAAAAAAEBYEKQAAAAAAAAAAABhQZACAAAAAAAAAACEBUEKAAAAAAAAAAAQFgQpAAAAAAAAAABAWBCkAAAAAAAAAAAAYUGQAgAAAAAAAAAAhAVBCgAAAAAAAAAAEBYEKQAAAAAAAAAAQFikCs+XBQAAfhEXF2dvDx8+HO5DAQAAZ+Cdq71zdzRi3QEAgP/WHgQpAADAeTly5Ii9zZkzZ7gPBQAAJPPcffnll7toxLoDAAD/rT0uiIvmFAoAABB2//77r9u9e7fLkCGDu+CCCwKacaENiJ9++slddtllAXtcv+D5SRrPTdJ4bs6M5ydpPDf+eH50+a9NgquuuspdeGF0dn8O1rojmn6O0YznODR4nkOD5zk0eJ6j+zlO7tqDSgoAAHBetNC45pprgvb4WiSxGE0az0/SeG6SxnNzZjw/SeO5if7nJ1orKEK17oiWn2O04zkODZ7n0OB5Dg2e5+h9jpOz9ojO1AkAAAAAAAAAABD1CFIAAAAAAAAAAICwIEgBAAAiUpo0aVzXrl3tLf6L5ydpPDdJ47k5M56fpPHcnBnPjz/wcww+nuPQ4HkODZ7n0OB5jo3nmMHZAAAAAAAAAAAgLKikAAAAAAAAAAAAYUGQAgAAAAAAAAAAhAVBCgAAAAAAAAAAEBYEKQAAAAAAAAAAQFgQpAAAABFpxIgRLk+ePC5t2rSuTJky7osvvgj3IUWE5cuXu9q1a7urrrrKXXDBBW727NnhPqSI0adPH1eqVCmXIUMGly1bNle3bl23devWcB9WRBg1apQrVqyYu+yyy+x26623ug8//DDchxWR+vbta79bzzzzTLgPJSJ069bNno+Et0KFCoX7sCLGzz//7B588EGXJUsWd8kll7iiRYu6NWvWhPuwEMD1xfTp0+01r8/Xz/eDDz4I2bHGwnM8duxYV6FCBZcpUya7Va1alTVfkNfKU6dOtb/lWich8M/zoUOHXKtWrVyOHDlcmjRpXMGCBfm7EYTnefDgwe66666zc2/OnDld27Zt3bFjx0J2vLFwDfnxxx+7m2++2V7H+fPndxMmTAjqMRKkAAAAEWfatGmuXbt2rmvXrm7t2rWuePHirnr16m7fvn0u1v3555/2fGghj1MtW7bMLgpXrlzpFi1a5E6cOOGqVatmz1msu+aaa2zz/csvv7QN1CpVqrg6deq4TZs2hfvQIsrq1avd6NGjLaCD/1O4cGG3Z8+e+Nunn34a7kOKCAcPHnTlypVzF198sQX9vvnmGzdw4EDbaIU/1heff/65u//++92jjz7q1q1bZ5u6um3cuDHkx+7X51ibYHqOly5d6lasWGGbjTp3KwCIwK+Vf/jhB9ehQwcLDCHwz/Px48fdHXfcYc/zjBkzLFlGgbirr7465Mfu5+f57bffdh07drTP37x5sxs/frw9RufOnUN+7H69hvz+++9drVq1XOXKld1XX31lyTvNmzd3CxYsCN5BxgEAAESY0qVLx7Vq1Sr+43/++SfuqquuiuvTp09YjyvSaCk3a9ascB9GxNq3b589R8uWLQv3oUSkTJkyxY0bNy7chxExjhw5ElegQIG4RYsWxVWsWDGuTZs24T6kiNC1a9e44sWLh/swItLzzz8fV758+XAfBoK4vmjYsGFcrVq1TrmvTJkycY8//njQjzVW13AnT56My5AhQ9ybb74ZxKOMzedZz23ZsmXt3N+sWbO4OnXqhOhoY+d5HjVqVFzevHnjjh8/HsKjjL3nWZ9bpUqVU+5r165dXLly5YJ+rLFyDfncc8/FFS5c+JT7GjVqFFe9evWgHReVFAAAIKIoA0nZ3ir391x44YX2sTLsgOT6/fff7W3mzJnDfSgR5Z9//rFWD8qoUtsn/I+qcJQxlvBvD/7n22+/tfYAefPmdQ888IDbuXNnuA8pIsyZM8eVLFnS3XvvvdZi7qabbrKMWfhnfaH7E/9NUHYv65HgreGOHj1qlZCcuwP/PPfo0cP+VqkyCMF5nnVe0NpKa4rs2bO7IkWKuJdfftnWXgjc81y2bFn7f7yWUDt27LCWWjVr1gzZcfvdijCc/1IF7ZEBAADOwa+//moLeS3sE9LHW7ZsCdtxIbr8+++/VpasViy6QIRzGzZssAtn9etNnz69mzVrlrvhhhvCfVgRQUEbtRdQuyecSn2h1YNYfZ/V6ql79+7WJkTtbjT/JZZpU0TzXtSiQi0m9Pp5+umnXerUqV2zZs3CfXgIwPril19+Oe3n634EZw33/PPPW1CUgHFgn2e16VNLHLVtQfCeZ50XPvroIwvoa9N8+/btrmXLlhZ4U2siBOZ5bty4sf1/5cuXV4cgd/LkSffEE0/Q7imAkjr/HT582P311182CyTQCFIAAADAd5TBpk1Ueuf/H20ya3NCFSbqk6xNVM3xiPVAxU8//eTatGljc0w0rBGnqlGjRvz7mtWhoEXu3LndO++8E/PZuAqGqpJCWbKiSgr93XnttdcIUgDnQLOTFDTWnAr+HgfOkSNHXJMmTazS64orrgj34fj+vKBqlTFjxriLLrrIlShRwuar9O/fnyBFAOlvhM69I0eOtHWJgkFay/Xs2dN16dIl3IeHc0SQAgAARBRdPGlRv3fv3lPu18dXXnll2I4L0aN169Zu7ty5bvny5TYwGv+j7O78+fPb+7poVtb3kCFDbFB0LFO7AA1mvPnmm+PvU0afXj/Dhw93f//9t/1Nwv9kzJjRFSxY0DYEYl2OHDn+E+S7/vrr3bvvvhu2Y0Jg1xe6n/VIaNZwAwYMsCDF4sWLLSCKwD3P3333nQ1yrl279imb6ZIqVSob7pwvX74QHLn/X886L1x88cWnrBt0XlBWutoaaS2G83+eFYhQ4E2DnKVo0aLWxrRFixbuhRdesHZROD9Jnf8uu+yyoFRRCD81AAAQUbR41wbqkiVLTrmQ0sf0z8eZqNxbAQq1MVKp/bXXXhvuQ4po+r3SBnysu/32260VlqpMvJuy49WqQe8ToDjVH3/8YRte2oiJdWonp829hLZt22aVJvDH+kL3J/x8UdUV65HAruH69etnGdDz58+3v78I7PNcqFCh/5zn7r77ble5cmV7P2fOnCH+Dvz7etZ5QUF8LwjknRd0ziRAEbjnWbNrEgcivPXa/+ZC43yF5fwXtJHcAAAA52jq1KlxadKkiZswYULcN998E9eiRYu4jBkzxv3yyy9xse7IkSNx69ats5uWcoMGDbL3f/zxx7hY9+STT8ZdfvnlcR9//HHcnj174m9Hjx6Ni3UdO3aMW7ZsWdz3338f9/XXX9vHF1xwQdzChQvDfWgRqWLFinFt2rQJ92FEhPbt29vvlF47n332WVzVqlXjrrjiirh9+/bFxbovvvgiLlWqVHG9e/eO+/bbb+PeeuutuHTp0sVNnjw53IeGc1xfNGnSxP4+evSa1894wIABcZs3b47r2rVr3MUXXxy3YcOGMH4X/nqO+/btG5c6deq4GTNmnHLu1noHgXueE2vWrFlcnTp1QnjEsfE879y5My5DhgxxrVu3jtu6dWvc3Llz47JlyxbXq1evMH4X/nue9bdYz/OUKVPiduzYYevZfPnyxTVs2DCM30V0X0N27NjRnmePnletaZ599lk7/40YMSLuoosuips/f37QjpEgBQAAiEjDhg2Ly5Url124li5dOm7lypXhPqSIsHTpUltYJr7pYjPWne550e2NN96Ii3WPPPJIXO7cue33KWvWrHG33347AYozIEjxfxo1ahSXI0cOe+1cffXV9vH27dvDfVgR4/33348rUqSIba4UKlQobsyYMeE+JJzH+kK/+4nPp++8805cwYIF7fMLFy4cN2/evDActX+fY52bTnfu1iYkAvtaToggRfCe588//zyuTJkydl7ImzevBbJPnjwZhiP37/N84sSJuG7dullgIm3atHE5c+aMa9myZdzBgwfDdPTRfw3ZrFkze54T/z833nij/Uz0Wg72NdUF+k/w6jQAAAAAAAAAAABOj5kUAAAAAAAAAAAgLAhSAAAAAAAAAACAsCBIAQAAAAAAAAAAwoIgBQAAAAAAAAAACAuCFAAAAAAAAAAAICwIUgAAAAAAAAAAgLAgSAEAAAAAAAAAAMKCIAUAAAAAAAAAAAgLghQAAABAlBs1apTLlSuXu/TSS139+vXd/v37z/r/bN261V155ZXuyJEjQTmmCy64wM2ePdve//XXX122bNncrl27gvK1AABA+CQ850fC44TDDz/8YMf/1VdfhftQgKhEkAIAAACIYjNnznTPPvusGzZsmFuzZo0FHRo0aHDW/69Tp07uqaeechkyZAj6MV5xxRWuadOmrmvXrkH/WgAA+M0vv/xi5+y8efO6NGnSuJw5c7ratWu7JUuWuGjUrVs3d+ONN/7n/j179rgaNWqE5ZgAhBdBCgAAACCK9e7d27Vu3drVqVPHXX/99e7NN990n376qd2SsnPnTjd37lz30EMPJfk5//zzj/v3338DdpwPP/ywe+utt9yBAwcC9pgAAPidMvRLlCjhPvroI9e/f3+3YcMGN3/+fFe5cmXXqlUr5yeq8FQQJtKcOHEi3IcA+B5BCgAAACBKHTx40K1du9bVqlUr/r6rrrrKFSlSxC1evDjJ/++dd95xxYsXd1dffXX8fRMmTHAZM2Z0c+bMcTfccINtEiiYsXr1anfHHXdYNcTll1/uKlasaF8zoW+//dbddtttLm3atPb/Llq06D9fs3DhwnZss2bNCtj3DwCA37Vs2dLaCH3xxRfunnvucQULFrRzart27dzKlSuTbDV06NAhu+/jjz+2j/VWHy9YsMDddNNN7pJLLnFVqlRx+/btcx9++KElOlx22WWucePG7ujRo/GPkydPHjd48OBTjklVEKqGSMrzzz9vx5kuXTqr/ujSpUv8Rr/WG927d3fr16+349FN9yVu91S2bFl7nITUzvLiiy92y5cvt4///vtv16FDB1vPqOVlmTJl4r/fpOhrqE2mKjb0HOj4ZsyYEf/v3nM5bdo0W/NobaMkCyVu9OjRw11zzTW2RtJzoGBRYlu2bLFj1/+n9diyZcvOeDwA/ocgBQAAABClduzYYW/z589/yv0FChSI/7fT+eSTT1zJkiX/c782JV555RU3btw4t2nTJpsjofZRzZo1s8oMbYbosWvWrBk/y0IX7ZqDkTp1ardq1Sr32muv/WdTwVO6dGn72gAA4OxUfaiNcFVMaBM+MSUXpJSCC8OHD3eff/65++mnn1zDhg0tCPH222+7efPmuYULF1oLyfOhVpIKPHzzzTduyJAhbuzYse7VV1+1f2vUqJFr3769BVrU3kk33ZfYAw884KZOneri4uLi71PgQAkPFSpUsI9VSbpixQr7vK+//trde++97s4777TkiTNR0EQBHwVK9HXuu+8+t3nz5lM+p2PHjq5NmzZ2f/Xq1e37GDhwoBswYIB9Ld139913/+drqQWnvr9169a5W2+91dpy/fbbb+f1fAKxgCAFAAAAEKW8TEcFDtKnTx9/e++9907Jgkzsxx9/tIv8xJTlOHLkSMsAvO666ywDUlmWDz74oCtUqJBlWY4ZM8Ye28sMVMWGsgYnTpxo1RmqqHj55ZdP+3X1NfW1AQDA2W3fvt026XUODpRevXq5cuXKWTXFo48+audzVRboY23+a67V0qVLz+trvPjii7aWUBWGNulV7aAqTlH1gtYqqVKlsvZOuum+xBQ82b179yntKxVIuf/++63SQdWeb7zxhps+fbodd758+ezrlC9f3u4/EwUzmjdvbtUePXv2tMSNxIGZZ555xpIwrr32WpcjRw4LTigJQwENrZGU1KFqisRVJgqcKACiNZOeV1Whjh8//ryeTyAWpAr3AQAAAAA4NwoiiFobJMymVOaf92+n89dff1kbgsRUDVGsWLFT7tu7d69tNuhrqCWEZlUoSKHNAVGGoQZ4Jgx6KHPwdLQJcabgCQAA+D8JqwgCJeF5Pnv27PEtmRLep9ZS50MVD0OHDnXfffed++OPP9zJkyetlVRKZM2a1VWrVs1aLSkI8f3331vVxOjRo+3fNZtDaxIFGhJSC6gsWbKc8bETr1P0ccJWWZKw4vTw4cMWMFFwJyF9rGqMpB5bgRg9TuIqDQD/RZACAAAAiFLepoIu/BO2fDp27NgpGw6Jab6E5lmcLoig7MSE1OpJbQrU5iB37tzWh1kX4MePHz+nthXadAAAAGenSkmdl1WxeCYXXnjhf4IaSQ171kwHjx474cfefWrlmPCxEwdLzjRIWoEEtVDS3Am1RFIlgdoxqVVSSulxnn76aatyUBVF0aJF7SYKflx00UXuyy+/tLcJqVLjfJ2uvRaA4KHdEwAAABClMmXK5EqUKHHKnAddtGuDQMOuk6KWDuoTnRyfffaZbRBoDoX6RytI8euvv8b/u9oZqKe1ekp7vEGeiW3cuNG+NgAAOLvMmTPbRv+IESPcn3/++Z9/13Bs8RIAEp6LE1cGnCs9dsLHVVWBqhqSolkXSmp44YUXrIpAgZbErR5VuakqiLOpU6eOJV5oLoeCFApaeLSe0GOoylOJGglvaiF1JonXKfpY65mkKBlEFaNaEyWkj2+44YYkH1sVJAqinOmxAfwPQQoAAAAgimkTQDcNutTwRvWXLlOmzH9aEiSkDQ8FMpKzQaDNhUmTJlmrAg3G1gZBwt7RVatWtVYLqrhQywMFTHQ8ianNky7U1boBAAAkjwIUOl+XLl3avfvuu3au1zlZ7ZS81kI6L99yyy2ub9++9m+aM6FWjYGg2VRaB+j8rhZLOt8nrlxIvG5QS0hVT6jdk45z1qxZp3yOZlUo0KFAihIf1KIpqWqGunXr2qBrfV+aR+HR2kNrkqZNm7qZM2fa46lNVZ8+fWwA+JlojsXrr7/utm3b5rp27Wr/n2ZJnIkGYmsOhVpZbd261QZr6/jVYjPxz0vfr6pfNPBclauPPPJI/L9rvkji5wMAQQoAAAAgqtWrV89169bNghMaXK0WDN5wyqTUqFHD+iRr6PXZaNijLrBvvvlm16RJE6uqyJYt2yltIHSxrTkX2kDRIMrevXv/53E0zDtXrlzWVxoAACSP2jeuXbvWVa5c2bVv394VKVLEqiWXLFlig5k92nRX5r4qLDX0WQOyA6FTp06uYsWK7q677nK1atWyoIGGVCfl7rvvdm3btrVNfw2WVmWFggwJabD0nXfead+TKjWmTJmS5OMpEKEkCK0ftI5ISAOyFaTQ86Jh1jq21atX/+fzElMrKgVRNJ9j4sSJ9vUTV0QkpvVPu3bt7Gup5ZSqO+bMmWNBmYQUKNJNazIN/dbnqM2mRwGO33///YxfC4hFF8QFYwoPAAAAgIimTD9dOC9YsCAkX08ZnrrAb9y4cUi+HgAAQGKauaHkCgU0AEQOBmcDAAAAMejxxx+3XtZHjhxxGTJkCOrXUiuH+vXrn9KmAQAAAACESgoAAAAAAAAAvkclBRCZqKQAAAAAAAAA4HvkagORicHZAAAAAAAAAAAgLAhSAAAAAAAAAACAsCBIAQAAAAAAAAAAwoIgBQAAAAAAAAAACAuCFAAAAAAAAAAAICwIUgAAAAAAAAAAgLAgSAEAAAAAAAAAAMKCIAUAAAAAAAAAAHDh8P8A4/I1Vp+LMOcAAAAASUVORK5CYII=", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmYzfX////Xp/q0iFKUPUIS0aKIokTJGpEle4js2UkqImSJVkL2KPtOJWUPkVRKtlBIUSmtH//r/vz93+d7Zswwc5Y5yzxu13WumTnGmTNnzjnv1/v13P5z+vTp005ERERERERERERERCSNnZfWP1BERERERERERERERAQKUoiIiIiIiIiIiIiISEQoSCEiIiIiIiIiIiIiIhGhIIWIiIiIiIiIiIiIiESEghQiIiIiIiIiIiIiIhIRClKIiIiIiIiIiIiIiEhEKEghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIRYvnz5XLNmzQL+v9WqVUuzvwn3k5/p7z//+Y975pln0uw+iIiIiIiIiIiISPqlIIVEzO7du13r1q1d/vz53cUXX+wuu+wyd+edd7pRo0a5U6dOhfRnDRo0yM2bN8/Fiy+++MICCfv27XPRYPr06e7FF1+M9N0QERERERERERGRGHNBpO+ApE+LFy92Dz/8sLvoootckyZN3I033uj++usvt2bNGte9e3f3+eefu7Fjx4Y0SFGnTh1Xs2ZNF25fffWVO++888IepHj22WfdPffcc0YlRLAIEF1wwQWpDlLs2LHDde7cOaT3RUREREREREREROKbghSS5vbu3evq16/v8ubN61auXOly5Mjh+7d27dq5b775xoIYwTp9+rT7448/3CWXXBL0baXmZxF4iWVUtYQTj9OFF14Y9kCOiIiIiIiIiIiIRD/tEkqaGzp0qDt58qQbP358ggCFp2DBgq5Tp06+r99880137733uquvvtoCAEWKFHGvvfZasvMcli9f7m677TYLGIwZM8ZmLPz2229u0qRJ9jkXZjFs377dPl+wYIHvNrZs2WLX3XrrrQluu3Llyq5UqVLn/FnJzaTgZ9199932fblz53bPPfec/V78rKRaNlFRUrJkSQsY0A5r8uTJvn+bOHGiVaGgfPnyvt9p1apVZ33caXdFxQq3yce5c+cm+X2JZ1L8+uuvViHB78Xjz9/hvvvuc5988on9O9UcBJX279/vuy9edQf3ia9nzJjh+vbt63LlyuUyZMjgfvnll7PeVxEREREREREREUkfVEkhaW7hwoW28V6mTJkUfT8BiaJFi7oaNWpYGyL+f9u2bd3//vc/q7xI3GqpQYMGNuuiVatW7vrrr3dTpkxxLVu2tE3/xx57zL6vQIECtlGfOXNm99FHH9ltY/Xq1Zbh/+mnn9pGOnMy+Dnr1q3z/d+z/aykHDp0yBdM6N27t7v00kvduHHjkq24oJKE1lQtWrRwTZs2dRMmTLCgR4kSJexxKFeunOvYsaMbPXq069Onj7vhhhvs/3kfk7JixQpXu3ZtC/A8//zz7scff3TNmze3gMm5tGnTxs2aNcu1b9/e/j//lyDKl19+acGcJ5980v3888/u4MGDbuTIkfZ/MmbMmOA2BgwYYNUT3bp1c3/++ad9LiIiIiIiIiIiIqIghaQpNv7ZtH/wwQdT/H8+/PDDBC2b2Cx/4IEH3IgRI84IUrDBv2zZMlepUqUzNtoJjDRq1CjB9QzqJjDh4XPmVsyfP98CE/wcL2BRtmzZFP2sxIYMGeKOHz9ulQc333yzXUeA4Lrrrkvy+wl+EDjxfl7dunVdnjx5rPJi2LBh9nvwbwQpqGigkuFcevbs6bJly2bBhcsvv9yuo7Lj/vvvt7ZbZ0OVBEGY4cOH+67r0aOH73PuAxUS/I6JH1//Fk+bN29Ok9ZbIiIiIiIiIiIiEjvU7knSlNfmJ1OmTCn+P/4b22TsHzt2zDbY9+zZY1/7u/baa88ZNPDHZj/BA9pBgU38KlWqWDDBC17wkSqIu+66K6CfRSCjdOnSvgAFrrzyStewYcMkv59qBf+AyFVXXWVVGvy+gfj+++/dtm3brCrDC1B4wQV+1rlQbbJx40b33XffuUDxsxWgEBERERERERERkcQUpJA0Rfskb85BSq1du9ZVrFjR2iSxYc6mPW2OkFSQIjUIBvzzzz9u/fr1VsFw9OhRu46WSv5BCjbzCSwE8rOY1cCcjcSSug7XXHPNGdddccUVVqkQCH4+kqrcSK5FVeIZIjt27LBqDlpmMa8itQGT1P5dREREREREREREJH1QkELSPEiRM2dO2/ROid27d7sKFSpY9QTtnWg99O6777onnnjC/p15Ef5Sm63P0GsGSdNeiWAEQ6ELFSpkgYqPP/7Y5idwfeJWT4H8rJQ6//zzk7z+9OnTLhJoN0VQ4qWXXrK/3QsvvGCzMZYuXZri21AVhYiIiIiIiIiIiCRFQQpJc9WqVbPgA9UL58KQbAIFCxYssAHVtGKiqiK1m960a0oKA5ypDiAQ4R+M4CM/d9q0ae7IkSNWWREoZj4wvyKxpK4L9vdJ7udj165dZ/wb1SMpkSNHDhtWPm/ePLd3716XJUsWN3DgwIDuj4iIiIiIiIiIiIhHQQpJcwxdpnVTy5YtLQCQGAGMUaNGJagq8K8ioMUTQ6RTg5934sSJJP+NgAQzFz744ANfkCJr1qzuhhtusKHX3vcEirkVBGSYC+H56aefLAASKH4fJPc7JQ4wMA9j0qRJCdpjUZHyxRdfnPX//vvvv2e01KLahIoKgjj+9yfx951rTsbOnTvd33//neL/IyIiIiIiIiIiIvHngkjfAUl/ChQo4KZPn+7q1atngYAmTZq4G2+80f31119u3bp17p133nHNmjWz773//vut2qF69epWSXHy5En3xhtv2EY5G90pVaJECffee+9Zyyg22JmRUKpUKV8AgqqAAwcOJAhGUD0xZswYly9fPpc7d+6ggjJTp061QdUdOnSwDf1x48bZ7AmCFYFUIRB0IIBDEIXgwEUXXeTuvfdee1yS8vzzz7uqVava8O9HH33Ufi7tm2jbxGOaHGaH8LvXqVPH3XTTTS5jxoz2OG7atMkNHz48weM7c+ZM16VLF3f77bfb9/E3S07v3r0taEJVBo+viIiIiIiIiIiIpE+qpJCIqFGjhtu+fbttfs+fP9+1a9fO9erVy+3bt882v0ePHu0b7Dxr1izbyO/WrZt7/fXX3WOPPeY6deqUqp9HcIKN9L59+7oGDRq41157zfdvZcqUsQ3/TJky2Ua8x7/1UzAYOE2VBgGZQYMGuRdffNE1bdrUggVgJkZqZc+e3R4LBn23aNHCfqezVUU88MADFvyhMoIAwZw5c6wahZkcZ5MhQwZr80QVyNNPP22zQGgR9eqrr1pAwsP3PPLII3abfCQYIyIiIiIiIiIiInIu/zkdqWm8Iulc586drVKDSobkhmWLiIiIiIiIiIiIxDNVUoikgVOnTiX4+scff3RTpkyx9ksKUIiIiIiIiIiIiEh6pZkUImmgdOnS7p577rGWTwwLHz9+vPvll1/cU089pcdfRERERERERERE0i0FKUTSQJUqVWy2xtixY22+xq233mqBCoZzi4iIiIiIiIiIiKRXmkkhIiIiIiIiIiIiIiIRoZkUIiIiIiIiIiIiIiISEQpSiIiIiIiIiIiIiIhIRGgmhYiIiATlf//7n/vuu+9cpkyZbO6OiIiIRKfTp0+7X3/91eXMmdOdd15s5ixq3SEiIhJ/aw8FKURERCQoBCjy5MmjR1FERCRGHDhwwOXOndvFIq07RERE4m/toSCFiIiIBIUKCm/Rcdlll+nRFBERiVK//PKLJRZ4x+5YpHWHiIhI/K09FKQQERGRoHgtnghQKEghIiIS/WK5PaPWHSIiIvG39lCQQiRMfVK//PJLu/z7778ua9asrkKFCr5/nz9/vvvjjz+S/L/nn3++q127dkyfOIiIiIiIiIiIiIikhIIUIiEKSixatMht3LjRbdiwwW3atMmGwnjuuuuuBEGK1q1buyNHjiR5W4UKFXJ16tTxfT1mzBh39dVXu1KlStmQGREREREREREREZF4oSCFSCqdOnXKffLJJ+6HH35wNWvWtOuoeiDwcPjwYd/3ZciQwRUvXtxdfPHFrlixYgluo0yZMu748eNJ3v4999zj+5wqjG7durmTJ0/a1wyYIVjhXUqUKOEuvfRS/Q1FREREREREREQkJilIIXIOp0+fduvWrXPTp0+3Kont27e7f/75x2XLls09+OCDFqDgUr9+fRsG4wUQihYt6i64IOmX2Jw5c1L0uP/222+uQYMGVqGxY8cOd/DgQbvMnj3b/r1y5cpuyZIl+huKiIiIiIiIiIhITFKQQuQsCCY8//zzbvPmzQmuJ0BBIOL333/3VTKMHDky5I8lA2jHjh1rn1NNwf0gYOFdSpYs6fven3/+2VWtWtW1aNHCAhtUcIiIiIiIiIiIiIhEMwUpRM5i/fr1Fhi46KKLXMOGDV2lSpUsOHHNNdek+WDrjBkzWiso/3ZQf//9t+/z8ePHu7Vr19qlV69e7vHHH7cLARURERERERERERGRaHRepO+ASLT44osvbK7EqlWrfNe1b9/eDRgwwB04cMCCAHXr1nV58+ZN8wBFcv773//6Pm/WrJkbMmSIza04evSoe/bZZy2Y0rx5c/fpp59G9H6KiIiIiIiIiIiIJOU/p2m4L5JO8fRfvny5e/HFF+0jqlev7hYsWOBiFdUVtKmi/RQtocBsjEOHDrmrr7460ndPROIQ83guv/xyaztHmzoRERGJTvFwzI6H30FERCS9+CWFx221e5J0iVkSU6ZMcaNGjXJffvmlXUd1RM2aNV3nzp1dLKO6ol69enZh0DcBGIIU/gGK+fPnu3vvvddlypQpovdVRERERERERERE0jcFKSTd+d///udKly7ttm/fbl+zUc+w6Q4dOrj8+fO7eHLHHXe4GTNm2O/s+eqrrywYQ9CCodwPPvhgRO+jiIiIiIiIiIiIpF+aSSHpznnnnWeDpZktQZXBwYMHrTVSvAUoEv/OniNHjriCBQva3AqCFU2bNnUnTpyI6P2TyKB6KPElX758+nOIiIiIiIiIiEiaUZBC0oWPPvrIrVixwvd1/fr13c6dO12nTp3SXR/TcuXKuc8++8z16NHDNqUnT57sihUrluDxkfTh+++/twttwa677joL3I0ePTrVt/P555+72rVrW4CD5xTBPxERERERERERkZRQkELi2qlTp1zXrl3dPffc45o0aeKOHTtm17ORevHFF7v0it99yJAhbs2aNVZVQTVJpUqVXLdu3SJ91yQNZc+e3X377beucuXK7uabb7YWaDVq1AhoxguVSIMHD7bblMgHZatXr+5y5sxp73Xz5s075/9ZtWqVu/XWW91FF11k7wkTJ05Mk/sqIiIiIiIiIqIghcStTZs2uRIlSrgRI0a406dPu2rVqrkLL7ww0ncrqpQpU8Zt27bNtW/f3r5Wq5/Q+u233+zC88/z119/2XV//vlnkt/rPz/k77//tuv++OOPc35vIA4cOGBBiYceesjNnDkz4Kqi22+/3b3wwgtWocQmt0QWz42bbrrJvfLKKyn6/r1797qqVau68uXL2/tB586dXcuWLd3y5cvDfl9FRERERERERBSkkLjDJnC/fv1sOPaXX35pmd2LFi1y48aNS3etnVLi0ksvdS+99JLbuHGja9u2re/6Xbt2nbE5LqmTMWNGu3gVPGAzn+u8wJCHQeZcT2WDh01mrmOwuz+CSVzP8zsYzzzzjP3c1157zTLuk7rvyV3atGkT1M+W8KEy5rnnnnO1atVK0fe//vrr7tprr3XDhw93N9xwgz0369SpY7N6REQkfSGxwrv4X0diBBf/673rEidNJPW9/reh7z3zcfj333/dP//8Yx+9x8n73P9xFBEREQlXsiOJspGkIIXE3YuqVKlSbsCAAbawb9CggduxY4dlCcvZlSxZ0jdg++TJk9b+ifYvmzdv1kMXp63Qpk6dakPk//vf/57x72TUn+3Sv3//iNxvCb3169e7ihUrJriO1z/XJ4dKoF9++SXBRUREUp5QQzLI1q1bE1xPQk27du3c2rVrfdd9/fXXlnjD+7I/Ekty5Mhh/8ezb98+Sz656qqrEnzvY4895s4//3z3/PPP+647evSoJSgkTlJ44oknbD3Yt2/fBG0d+f9c+Nzz1FNP2XVdunRJcBve9/onaQwaNMiua926dYLvzZQpk12/f/9+33WjRo2y6xo3bpzge7Nly2bXf/HFFwkeM66jKtQfbSi53n8dO336dLsu8WPJbDau//DDD33X0SqR66gW/fjjj93SpUvdtGnTLKjP9QTzH3/8cdeoUSOrTOY6kqFuu+02V7RoUZv1lSFDBt/1l19+uSV50HLVe3x4nL2/wQUXXGDrMT56/+59zvNFREREJJxY+9EZ49lnn3WRckHEfrJIGHBidsstt1gbG7LDH374YT3OAfjmm29sE5s2MHfccYd78skn7Q0rqc1sSR7BHnCS6unevbu10+HE0x+bBbjkkkt817FR0apVKztB9ccmROLvDeRvzEkvg9STwlwCSR8OHz5sGz/++JrAA+8DST3P2OiK5OJFRCRWsNlN0JfEGeY/gU3vsmXL2kb67t27fd+7ePFi+/7ixYu7O++8064j6WbDhg0uS5YsCW73559/tvfvX3/9NcH1/kGEs1U2pHc8Tnv27LE11U8//eSrMKWagceVcwl88sknlgCV2Jw5c5JMltqyZUuy68HE9PcQERGRaHD69Glr98zHzz//PGL34z+ntTqSGEc5Eidw3iBsTtrYWNMA3+D8+OOP1vZlxowZ9vWDDz5ocws0cyA+0N6LABSBqKRmkZDtdzZkDtImKDFuiyAMF4k8sjPnzp3ratasmez3FCpUyDVv3tz17t3bd92SJUusAo1NnKSCFFRS+M9VIaCRJ08ee/9VWz0RSY94/1uwYIE7dOiQVSl6aL1H4IHWml6rRzbHCUQUKFDAffrpp77vJVP/q6++ctWrV7cMfm/j+7333rNEHP+qNzbX+Zk5c+b0VU6wwX7w4EHL0L/mmmt833vixAlbG1O14B3fCVqw1oN/5QUb6rT75L2fnwlOF72N/CuvvNJXfcExgttlDe59L7zbveKKK3xVut73so70X2N435s5c2ZfUgbfx/czS4777OE+cF+oSvCSPbivPEYk0vgff44fP+5rqUTlBY8zJ918TmCIv1NK8Djw+PB7EyjivvNz+Jr7zOfeOQiPQdasWe3/cB3HSX5/7i//xu/HfeJ34/57j+Xq1autCnz79u2+n8tsKFo3+n9fqHDM5j7F8jE7Hn4HERGRaHD69GlL8GauL+3H2ferW7duRI7bqqSQmMbiv169enZSRkYTJzM88blIcDgRe+uttyw40axZMzd//nw7aWbD0/9EVGLT9ddfbyfLH3zwgW1QJ0ZLp7PRCWH8IKB75MiRBNfxNX/j5Kp12GRSwFJE0vsJHRWJ3nshm+1NmjSxzfJOnTr53j9ZO+XOndtaCnloGZRUdn3Dhg3PuI41F2uxxJJKMGBDO6nr2Uzn4o/N88RtoeDNnvLHBnniSg6vUtS/WtQT7Pfy2CV1/GGzPjGCAV6QgBNgqlSoPKGigbWMV32aFIIoPF558+b1XfhbcVyklRYfz5W0EQw2A0gQeP/9931/a9bctMTyf76IiIiIhAt7qbNnz/Z9TQJMpChIITGLrCmy09599107QSRDyss6k9CpX7++DVeuUaOGPdY9evSwgc4S29isIEuvW7duVol09913+/o3p7bdE5s0Xn9oPic7kY0BTuzVNir60eucygl/vNa5XkREzjRp0iRre1etWjU3bNgwX+CBCrTChQsnaJX36KOPnvH/Q5kVn5599913lmyxatUqa6nFWiSpJgFUlVC5UqRIEUvS4G/Ex6QCJGmF+9mhQwerbCXJivkWffr0sTW3iIiISFogwaNjx46+ZBcSwCMZpFC7J4lJlAhxIshgQbKOFi5c6MqXLx/puxXXOPnr2bOnVVJE8qROQocD0JAhQ9zkyZOt7RMZjkTQK1SokKrbIUuRzZnECHywcSBpi+xcZo6AGT0jRoyw90cyUNmoIWuTQBJ/d/C3v/HGG20GCptpK1eutIUKvdETDxdNjtouiEh6yzirXbu2bXTv3Lkz0ncnXR3faH1FIJ1jVVKPPesR2lmWLFnSZoAQnEiqAiMSaPNEBYtX+UGAhYAXszCSqoAJl3g4ZsfD7yAiIhJpnTp1cqNHj7b1E/sC+PDDD5OdXRru47aCFBJzjh07ZhtnDLIjG3zp0qV2MiJpk/Xln/3HyVZSpfsSm8jgW7dunQILMY7AUFJB26ZNm7qJEydaKwkCS/4BJD5/4oknLAuVVhdPPfWUfV9KabNAROIVG+FsIjPbh+pSUIFIoIL1qDZIw2v//v1u0aJFlpDEpj4Vmx7WpLfeeqsd8+666y47H8iWLZuLxvUzSSBdu3a1ZICnn346ovcnHo7Z8fA7iIiIRNKWLVssqYN5WePGjbNOG2DdRVJ4KGkmhcQlyrrvu+8+20ijj+6KFSssS0rShn+AgpZPI0eOtIy2tMz+kvAg4MSBw8vuk9h1zz33JNnuwkOgIqn/s3Xr1jDfMxGR2MNJGwMEv/zyS5uDxlqI1ogMGJTwBSbefvtte9w5gfZHa8oqVapY1ScVm8yViGYM6W7btq2ds4B5b08++aRv8LeIiIhIWvv7779tBhYBigYNGvg6YzCPK5JzsbQ6kpgLUjBtPleuXLY5Tk9ZSXv0WiZAwYlX2bJl7W9BywOJXWvWrLHWCVOmTIn0XREREYkoTthoy4Nnn33WnThxwuYHaJZE+DB4fPr06baJT4tRD38HqiSY/8GFtX8s/B04+R8+fLg9f/744w+bn8dct169eilAISIiIhG1Y8cOqxamKpH20OzpgTbQtIiOFAUpJKbcdtttNuCVdiRJ9cCXtMEwSPrUVaxY0d7Y6FdHf2D6/kpsuv/++33Dr0VERNIjNpO7devmjh8/7qZNm2bXMfuMagoJTzDo/fffd+PHj7eZZ14rJ4IQrC2pXGH2R6wNk96+fbtr1KiR++yzz+zre++917322muuUKFCkb5rIiIiIo7ZlR9//LElgVM9QUI4cuTIEdFHR0EKiYmFPtlIJUqUsK/J3JfIo5rlo48+ss3tbdu2WbuYZcuWWU87ERERkVizYcMG20xm87xnz55KvgjjfLk33njDjRkzxlo7eW666SbXvHlza6WVM2dOF6sIbO3atctlyZLFshMbN24cE9UfIiIikn7mzBYpUsQu8IIUVH6y//rf//43Ivfv/9Uxi0QphmOz+c1GOL2AJbowF4QhhqVLl7asQ/oDr127NtJ3S0RERCTVWHMyc4ukC1WHhifxqEWLFlYR3adPHwtQZM6c2bVr185mT5D00qlTp5gMUOzbt8/3eYECBdysWbOs2rhJkyYKUIiIiEhUtNYsU6aMW7169Rn/9v3339tHqoe9zyNBQQqJWkeOHHE1atSwzW/mHUS67EiSxsklwwApZT958qSd2IuIiIjEAtpXstb0tGnTxlWqVCmi9yneMvZoCco6kUqJCRMmuD///NPdeuutbtKkSZa59/LLL9vXsei3335zHTt2dAULFkyQqFO1alWXNWvWiN43EREREfzzzz+ufv36VjX82GOP2df+Dh065KsGpb17pKjdk0Qlyovq1q1rLxQCFGx8X3bZZZG+W5KMjBkzuoULF9rf6aGHHtLjJCIiIlFv8uTJ7tFHH3V33323rWEiVdoej2iZxdpw4MCBbtOmTXbd+eefbzMm2NQnky/WWyCtW7fOKiV2795tXzN08s4774z03RIRERFJgDamrFMyZMjg3nnnHXfBBQnDAV71xPLly61jSqQoSCFRqXv37jbvIFOmTG7evHkKUMQA3uz8AxT//vuvO++882L+BFRERETiE215SIKhvRCb6hKayonZs2e7Z5991u3YscOuIyOvVatWrmvXru6aa66J+YeZSpBnnnnGDR061J43efLksfYItKcVERERiSavvfaazcgCFa033njjGWs3byZFpFtuqt2TRJ2pU6e6UaNG+TLcChcuHOm7JKn0ww8/uPvuu88GIoqIiIhEI7LemZPAepNBgRIcMvRKlixpg68JUJBs1KtXL5vXwNo+HgIUPF/4HQcPHmwBCiopuE4BitSjYr5Ro0Y2YJxAVrFixdzmzZvD8FcTERFJn5YsWeLat29vnw8YMMDVq1fvjO/5+eef3R9//GGfR7rNvoIUElWI4E2cONE+f/LJJ13NmjUjfZckADNnzrSB2pTzUwov0Ykql8SXfPnyRfpuiYiIhM2XX37p67sLhjir6jM4H3/8satQoYIlqLDJTBvQfv362WDs559/3l199dUuXtC6iqAE8yaoGGGuBvPZJHWYA0OQkBZrS5cudV988YUbPny4u+KKK/RQioiIhMDnn39ubfRJqmjevLntsSbFq6LgmNypUycXSQpSSFThJJFIHwP0KBOX2NSuXTtXp04dmy1C72Gvv51EF/4uXBiedN1117m8efO60aNHB3Tw4+9MgIPX8Isvvpjk973yyiv2PRdffLErVaqUbWqIiIiklQMHDthGeunSpd2uXbv0wAeJk9rGjRvbMX3lypXuwgsvtJNbZjSwjo+XDWeSqDzMMBk0aJD77LPPNIctCEOGDLE2WW+++aZVplx77bVWjUILtuRabP3yyy8JLiIiIpI8jqnVqlVzFStWtC4nySXleEEK9u/mzp3rIklBCom6xT8nOGxyM1xPYhNvfpx0FC1a1B0+fNgCFn/99Vek75Ykkj17dvftt9+6ypUru5tvvtkyA2vUqJHqx+n33393+fPnt9YH3GZy1TVdunRxTz/9tPvkk0/cTTfd5CpVquSOHj2qv4uIiKQJMskuvfRSy/SnxYwEhpYAVEgUKlTI2rSCtkdff/21JSrEU+UEs/Fuu+02d+LECd8at3fv3smudyRlFixYYI8rrcF4vtxyyy3ujTfeSPb7eb5dfvnlvgsBDhEREUkeyaHTp0+3tQxVEsnxghTXX3+969+/v4uk/5z23x0WiRAW+wxaJjMp8ZR5iV1kKd5+++3W465t27aWSZ8e8LbKxn0khpenpmUFGaX8fYiuc2IYinYXVEp07tzZLv7IsuRnUSUFb9Bkhw4drF+1xDYyGtk04LXOEFoRkWh17Ngxd+rUKW1yBmjx4sXWznPPnj32NVUpzJvgGB9PeI488cQTvvlqnKtwnhIPouGYzcYJSGAhUEEbLapwXn/9dde0adMkKym4+P8OrCO17hAREUm4fhk/frztv5133nkprm5kT4bjr9d+P1JrD+0GS8TNmjXLMrBBmS+lSBIfaCE0bdo0V716dffqq6/aCWyzZs1cvCNAQZZmWjt58qRliKbUM888Y9lrr7322hkBinPdfwYdciKZElTRbNmyxU7wPRwwea2vX78+xfdXREQkEJSvexlkzBKQ1KM9JJvI77zzjn2dM2dOO6lt2LBh3M30oI0lgyX5iO7du1slqIQOySpUUniBHyopGLaeXJCCwfYabi8iIpK8f/75x9WvX9+qFZn1xB5cSniVFJEemg0FKSSiWPx7m9bdunVTgCIOVa1a1TbDaQcQb1l2sR5h529CW66kSv+2bdt21v+fmsw7slaplMqWLVuC6/l6586dqbjXIiIiqbNv3z53zz33uKFDh9rwQEn9ZjIZeWzUk/1GO1YqDNi0j0RCRrgrYceOHWvVoLS0oqXTlClTdH4SBmyEFClSJMF1N9xwgw0jFxERkdSvYVq1amUBCqoVGzRokOL/6z84+4cffnBXXXWVixQFKSRiONGpVauW++2331yFChWs16jEp759+9oJX3ppA0PbJaoaIvFzU+qbb76xCody5col+e8FCxYM4T0TERGJjBdeeMHt37/fWhIxIyulpe/ibAB28+bN3erVq+3hKFGihLWHJOs9Ho0YMcKSpsDcrMmTJ8fVfI1ocuedd7qvvvoqwXXMNMmbN2/E7pOIiEis6tmzp7VqIpnk7bffdmXLlk11kGLAgAFuzZo1buXKlS5SFKSQiKH1CzMLWIzOmDFDsyjiGBsC/gGKI0eOnJFVH09oe5CatkuR4M3MoCQwKaFs90RrDQ6W/N398bUGT4qISDgxyJmMMAY7K0CR8mw8ZjGwYU8yEWua5557zuZIcTyPV1R3Mz+NPs7MStDzJXyoxilTpoy1e6LC6eOPP7YqFi4iIiKSclQLk5SDcePGWbv11Lb09JJeM2XK5CJJQQqJiI0bN/o2OIn2qT9w+kF0duDAgW7JkiXu3nvvjfTdSbeuv/5622j44IMPLEsynO2eLrzwQsu+fP/9913NmjV97SP4un379gHcexERkZShdJ22k5Iyhw4dci1btnTLli2zr2mVRWvIfPnyxWUw5t1333X33XefJZhkyZLFejh7Q50lfGgBO3fuXEta69+/v7v22mstoMiMExEREUkZ5k5QRQECFamdActayKukoB1/pNd7ClJIxPoDk6nNhiUnP5J+kD3/559/uscff9xt375dQ/AiJHPmzLYJQZYk8yLuvvtulz9/fl+GZGraPdE2ipN673M2OAhy8Br3boeMRAYhMiSxZMmSdiJKdmZSARIREZFgB2UvX77c5mLF21DncKI9QJs2bdzx48dto55WrB07dozLigLazrZo0cJmIEyYMMG3HlGAIu1Uq1bNLiIiIhIYZjyRFNqjRw9fy8rUYM3H/px3W5H2n9OETUQigI1MXkyRHMoikTkpLFy4sDt8+LBVVTCvQiKDVk9Dhgyxnst79+618j5O1pkRk9qgIxlwiRH4WLVqle/rl19+2aL7/O1vvvlmN3r0aFeqVKmQ/C4SWb/88ou7/PLL7fWdXmbPiEj04nhDayJmULzzzjuRvjtR79SpUzY7zGu1Q0IBawMGGcejrVu32nNjz549VmnDvBKSZ9KLeDhmx8PvICIiEgpffvml7bEFkpizY8cOV6xYMasmPXbsWMSP2/GXFiMxI1euXApQpEO8MTGYEPQ3ZoCzRMYFF1zgnnzySRtcSAUEPZgJHKUWJYHEuxNf/AMUoLUTw0uJ1NPyTQEKEREJB44zZMSrreS5UQlJhSMBCk5u+/Tp49atWxeXAQrWJvRqLl26tAUoWL+sXbs2XQUoREREJLYtX77cEkU9rNkCrRz2n0fx6KOPRjy5R0EKSVPdu3d3K1as0KOeztWvX99VrFjRNhHYuFZBV3QM0ia6rTYHIiIS67p27ep27drlWrVqFem7EtWYNcFsALLosmXLZmt05oZRXRCP6xxaOvGcYP1Jm6EtW7bY7y8iIiISKwGKGjVquHLlyrmDBw8GfXvePApae7Iu3Lx5s4skBSkkzSxdutQNGzbMValSxbKpJf0iysuAn4suusjeZGfNmhXpu5TurVmzxq1cudI2J0RERGJd7ty5rWJQzsQmPZv1ZMyxeU/iCLOk+BivPv74Y2thxUk4szbmz5/vrrzyykjfLREREZEUeffdd92DDz5oXTBIssiePXvIghS0ixo0aJB74IEHIvrXUJBC0qzXLRnz6NSpk8ubN68e+XTuuuuuc7169bLM/XD2vpOUuf/++63lQ4kSJfSQiYhITBo6dKjbvXt3pO9GVCPrjplRtD0iaYTWmySMhOJEN5rdc889bvjw4e69996z9Wc8DgMXERGR+PT+++9bBQWJJgQq3nrrrZAk43hBCvaBevfu7cqXL+8iSaszSRNE5Oj9SlbbM888o0ddDCeJbIyrF7CIiIgEe/LWs2dPd9NNN7mffvpJD2YSPvroIzsJZS7UFVdc4ZYtW2azqeJxw/7ff/91/fv3t/MPzxNPPBHxk28RERGR1Pjggw9c9erV3R9//GHtKt9++2134YUXhuRB9GZS5MyZMyr+KKqBlrDbuXOnGzJkiH0+atQolylTJj3qYqiiuPbaa/VoiIiISFBy5cplVYHXX3+92vgk4ZVXXnGdO3d2//zzjwVy5syZ4/Lnzx+XzzoqdB955BFrizB37lxr9RSPczZEREQkvm3YsMECE3SnoXU+rdJDFaDwr6RgcPaRI0dc5syZrS17pMRf2oxEFQYikyX/999/u6pVq7patWpF+i5JFM9EaNq0qWW+iYiIiKQGvXSpDKClj/wfghIdOnSwtqt8zub9unXr4jZA8cknn1i1CAEKTrh79OihAIWIiIjEbJv0ggUL2qyI2bNnhzyA4AUpxowZY60/qdKIJFVSSNhL71etWuUuueQS99JLL1nvW5HEfv31V4sO//zzz65UqVKubdu2epBEREQkVVhnKmP+//zyyy+ufv36bunSpfbYDB482HXv3j1u1+MMxm7durW1Q+CEnmqRYsWKRfpuiYiIiAQkS5Ystq+aMWNG60QS6qRyr92Tt35m7zaSVEkhYVWhQgWL9o0YMUJtfSRZtABjcCOeffZZ9/vvv+vREhERkXMiY551JgkP8n/279/v7rzzTgtQcMLJepyqgngMUFCx3bFjR6vIJUBBO4RNmzYpQCEiIiIxZ8WKFW7s2LG+r7NmzRryAAWY4fbXX3/Z5wRC/ve//7mHHnrIRZKCFBJWnAjxJG/Tpo0eaTkrMt+YT3H06FH3xhtv6NESERGRc2aA9evXz3Xt2tUNHTpUj9b/b8uWLVaZumPHDpcjRw4bmB3PLVdpFbp+/Xr7nOfDwoULraeyiIiISCxZunSpq1Gjhu2P0cY0nLxWTwRBmHPB/u1550U2TKAghYQFPW9/++03PbqSYpSX9erVyz5no4FMOAkvDkKJL/ny5dPDLiIiMROkaNmypStevLhr165dpO9O1FSW3H333Tb8kAHZDI2+7bbbXDwju5DWTgsWLLCK3EifYIuIiIik1oIFC1zNmjXdn3/+aR/vvffeNAlS5MyZ00ULreAkLGbOnGmbna+88ooeYUkxyvRz585tb5YTJ07UIxdm9B/ksmHDBhvIlDdvXjd69OiAbuudd96xoaVsFND/ecmSJef82QzvLFSokG0mdO7cOcDfQkRE0iuOHy1atHDbtm2zYX/p3fTp013VqlUtUahixYpu9erVtq6KR1OnTnUDBw70fZ0nTx5XvXr1iN4nERERkUAwsLp27drWfqlOnTr2NdUNaRWkoCUorTO96yJFQQoJOfqYcdJw7NgxG4QsklIXXXSRvTmC4Y70GJbwYUPn22+/dZUrV3Y333yz2759u5UWpta6detcgwYNbKNo69atFvXnQpuJ5JAdcNVVV7m+fftapqeIiEig4nHOQmqNHDnSNWzY0NZODMtevHixzfyKx2pt2ns1btzY1hAEYkRERERi1eTJk20/5Z9//rG13FtvveUbZB1O3tBsWoOOGzfOvfTSS+6XX35xkXRBRH+6xCXKrb/88kvrBdu+fftI3x2JMbRtYLjjo48+GvObDmdreXb++ecnGH50tu8lU5Shl2f73ksvvTTV9+/AgQMWlGBuDHNAAn28R40a5R544AHXvXt3+3rAgAHWbuLll192r7/+epL/h0or/h8mTJgQ0M8VEZH0a8iQIVa5R6A91tcLwba86t27tz0e6NSpkw0Sj8eWRwx4JADDGgMEKRgOLiIiIhKLSPJs1qyZr4Xp66+/bntFacG/kqJnz54WoLj66qtdJClIISHFC+u5556zzykVuuyyy/QIS6qwGb9q1aq4eNQyZsyY7L9VqVLFshw9HAx+//33JL+X3tL+jwkb/FQqJX7tpdYzzzxjP/e11147Y4PnbPcdjRo18gUgGFbZpUuXBP9eqVIlN2/evFTfJxERkXPZt2+fe/LJJ21g8qeffmozKdJr9XKHDh3cq6++6qtCpSI1HoM2JECRWPHNN9+4DBkyuEmTJlk7BBEREZFYdcstt7g+ffpYgODFF19M0yQT/yBF27ZtXTRQkEJCatGiRXayyAYnmVwiEp1OnTpl/ZzffPPNJEsJ6e99Nv4ByMOHD7ts2bIl+He+5noREZFQY5OaWUZ79uxJtwEKAjRk3DHDi6DEmDFjXKtWrVw8Ys4VFRS//vqrzc9isGR6/buLiIhIbCPBlNkTtDv3OlHgP2mcZBKNg7MVpJCwVFG0a9fOXXnllXp0JWDMLBg/frwFvrjEYtuCkydPJvtviUv4jh49muz3Jv7dySANFpmIHBjLlSuX5L8XLFgw6J8hIiISDlQBDhs2LKAqwnjA3AlmMsycOdPWEwQqqHCMVz/88IMFKFizzJo1y2ZaiYiIiMQa1q60yd60aZNbunSpJd5EqgL2+/9/JgUJpnTqoKtJJO8PFKSQkGHoLi80ntiJW7+IpNYff/xhZW8MX6dtEHMTYk1q5kSE63uT47WWYjhTUlLT7okB3EeOHEnw73zN9SIiIuESj22NUpLEUa9ePTd//nyrhGS4Yu3atV08a9q0qQ0Br1atmrvwwgsjfXdEREREAqqCffzxx20eKJYvX+5q1aoVsZah3///QYoLLrjAEkBIfElufyitxF5qskStm266ye3YscNecJEetiKx7/LLL7c+y6BCJ71mS4bL9ddfbwehDz74IMl/p93T2S79+/f3fW/p0qXd+++/n+D/M9SS60VEREKJfr07d+5Mlw8qAQoCEgQoaBFAEkc8BihoF1m3bt0EVaYkqyhAISIiIrFaBduwYUPbL6VTBl1DIhWgAJUT3Cf/Vt4XX3yxizRVUkhIFSlSxC4ioUC/6ZEjR7qtW7daP+KqVavqgQ2RzJkzWy/rbt26WUSf4dz58+f3taFKTbsn5s/w/4cPH25/oxkzZrjNmze7sWPH+r6nd+/e7tChQ27y5MlnzL2gLRatHPiaDQi9h4iISHJVu0888YQNh6Zi74orrkg3DxQtGtm4X7x4sZ1E0gqzQoUKLt6w5mNA9sGDB62qlvkTIiIiIrGKLhYPP/yw7WlRtTBt2jRb00XSu+++ax+vu+46S2ClgoJkmEhTJYWEBH1iRUItS5Ysrm3btvb54MGD9QCH2Msvv2yt2V544QVXtGhRe7wTV0SkRJkyZdz06dMtKEFFFf2iye688cYbfd9DKeG3336b4P/dcsstdtmyZYv9fz6vUqVKSH43ERGJP1RVVq9e3bLq01OAgkw3BkezYU+AYuHChXEZoJg9e7a76667LEDBCTPJDyIiIiKx6sSJE65SpUoWoKA1PtWwkQ5Q4M0337SP3kwzklWZRxFp/zmtHioSJDYeOZHgpJGIIP1xRUKFze08efJYtv8XX3zhbrjhBj24YcIMkHXr1rlVq1bpMZZU+eWXX6xFGzNkvHJREZFw9tGlVD69BCgaNGhgG/i0eOLklpPdeMLp6KBBg1zfvn3t6/vvv9+GglP1KaEXD8fsePgdREQk/tGi9M4777T9LKpgScaItP3797trr73W1l979+51+fLli5rjdvpY3UtYTZw40cqx6WmW3gMUlHGtXbvWrVy5MsH19J1jvoJ/lvrx48ftOtoW+FuzZo09pp999pnvOt48KPNPj3LkyOFr80TfPgnfc5cDRzT0IRQRETmb9BKg4IS2cePGFqCgHeLcuXPjLkDBOUSTJk18AQrWxrS0UoBCREREYl3hwoXd0qVL3YcffhgVAQrQgps9xnvvvdcCFCQD02GDThuRlj5W+BLWTLYJEybY5y1atIjbR5oXMEEYf5xMFStWzE2dOtV3HVFI3ngSl2+tXr3aXvBeD36vDz/Xvfbaawm+l9tr3ry5mzNnju86No/JnsuUKZMFN/x7MxMQ8R8sGI/atGnj6tWrZz2KJTwIjvFcGjhwoB5iERGJOlQQsB5KL1h7tm7d2ioKSAIiUFG5cmUXb06dOuU+/vhjazPAmnj06NHWr1lEREQkFpFw/MEHH/i+LlmypLXFjpb15cSJE+3zZs2a2cddu3bZLFg640SaVoASFCoDKBUi24n+wPHSM44XrtfrmKjibbfdZgEChjR6GAK8Y8cOa0fkyZo1qytQoIC76qqr7Db+85//2PUELYhQ3nHHHb7vpcTpqaeeOuNEjKHBDzzwQIK2Rj/99JN95ATOP7Ps1VdfdWPGjLGAyYABA3yBo+eee87uM+Xy8XCix0l5PJ6YRxOeKzzXRUREog0nTzVr1rS12IEDB6xcPJ6xhuzWrZtVkFI18tZbb7lq1aq5eMR6m/YHnE9UrFgx0ndHREREJKjkT1rhM4iaZOWbb7456u7fnj17bE3t7eGyh9mzZ0+XO3fuSN89BSkkOOPGjbOPDRs2tCEwsVhGz8a/hxJzqhuGDh3qunfvbtfxQiXLi3ZLVD9kzJjRrm/Xrp0FH2699Vbf/8+WLZv75ptvzvg5nFgmPrnkBLt///5nfG/Hjh3t4i9v3rzuxx9/tAHlXuADDDouVKiQlZD597x7+umnbegN/d48GzdutIBF8eLF031bLhEREYkdhw8ftrUO/XPjPUABqhpHjBjhW2vXrl3bxZPly5dbsKlly5b29XXXXWcXERERkVi1cOFC2yOklSVzKNjHizZv/v8Ds7mfl156qX1+4403usGDB7tooHZPEjDaH82bN88+904yYgUb/uXKlbPsrd9++813/TXXXGMfiSz6VzyQwUegwgtQgEoFsvsJTIQbWXRXXnnlGW9ynMR+9dVXFiTyEMSgf3GdOnUSVFE8+eSTdp+99lxekIZLrPjyyy8ts5ATWxEREUkfypYta9V+06dPd/HupZdeskpbUHpPC9B4QksnZo3RypM5biIiIiKxjs3/WrVqWYCCBOUVK1b4urNEi5MnT7q33347QaunaKMghQSM2QlUF1BJEG0lTP7oX/zOO+/4Xoxgw5/5EVQmbNmyxXf9o48+avMdEs+JKFiwYMxUH9AmikE4kyZNSnA9VRe8SZYqVcp33XvvveeyZ89uG/+xoG3btm748OG+HnoiIiKSPpCEEe/DlFlbe9W0VMV27tzZxQuSYp544glby/F5o0aN3O233x7puyUiIiISVItOOrGwl8j6hs3/uXPnWmeTaDN79mxL0mZ/k0oPz59//mnBFX6XSFOQQgLGyQUZXr179466R9H/xbVkyRIrZfJvrcSJLv19ycpj0LX/Rj7zJOIRgxepIPEf2PPuu+9aRYx/WyiMHTvWhv1Ew5uUP284Oz2amb0hIiIi8W337t1Rtx4JBzLuvKoJAhUEKeIFmXtkF7744ou+SmAyDi+88MJI3zURERGRgM2YMcPmOYCW8XQuida5sBP9Bmb7t5EfNmyYte9v1aqVizQFKSRgDIkmw4u2QtGCCoJbbrnFKic8lSpVsmHUfGR4jYfgBFUHtFJKL3gj8n8zev75592qVasSzMCglVLr1q0tmPHdd9+5aEJPZnpRM1yRoe0iIiISv37//XebpcUsimhbk4TSJ598Ymsc1qn169e3JCD/9VosO3TokLVYpU/zxRdfbEkzffr0iZvfT0RERNIv9kOrVKlis8SoqIjW9c2ePXts74/716RJkwT/RhUFomHOcHSGd0RSiHZTtGHy3giYz7Bt2zYrl6d6ArQ4+vzzz/WYJoHH7u67705wHS2w6BWMXLly+a5noDiVJjVr1ozYmxc/lwqeV155xaop7rvvvojcDxEREQm/7du3+xIscuTIEZcPOSeNnNxSbVC+fHnLcounBBpaHmzdutUqlRcsWODuuOOOSN8lERERkYCxZ0Y7p/PPP9/21EjEiPa128T/v4qiYsWKLk+ePAn+rV+/ftYCnt8n0v5zOj3UT0tIcRL10EMPuQYNGtiA5kiVMnXp0sVeaGTUUz3htQRYvny5ZaExd0ICx1uDF/xhaDibA7SFWrlypZ1ERwpBKP7etAggO4+KHhGJ/Owfqpx4j7jsssv05xCRkFZTsJF/4403xt2jSsvNMmXKuF27dlnFyEcffWTvpfG2nnzuuecsyYSKGIm8eDhmx8PvICIisYfKXpJLmOlAIm+0Vk74O378uMufP787ceKEVbR6Cd3ReNyO7lCPRCUGUDPLgFZBaRlpSxxPO3jwoL3YZs2a5buuQIECNpBPAYrg+b/ZUrFCSyjK9f0rLxi8M2bMGAtipBWGtDOsnftExYyIiIjELzLV4jFAQfClWrVqFqDImzevW7p0adwEKJj7Rpaht5586qmnFKAQERGRmMZM29KlS7tPP/3U9sIOHz7sYsHQoUMtQMF6mvai0UxBCgloMExSw1bChc1oAiLXX3+9BSU8vXr1siGD/gOxJTw4aeZx/vDDD31lbAyufvLJJ12bNm3cuHHj0vShZ7AkFRQ8N0RERCT+sM6I59+tadOmbuPGjZZYs2zZMpczZ04XD78XQyMfeeQRV69ePffvv/9G+i6JiIiIBG316tVWPfHtt9+6QoUKufXr18dEK9Lvv//ejRo1yj4fNGhQkonm06dPt5ZPmzZtcpGmIIWkCkGCDz74wD5Pq4HZ9HgjI4tMM6+PGsimZyZBNPRNS48Y7vj4449bZQMBK8/OnTvtbxVOLVu2tDfbHj16hPXniIiISGSw0V2pUqWoOGEKNZI8qARmjcvMhsKFC7tYR1UtgYlhw4bZ17Sxivb+zCIiIiLnwpqNvUeqEaikWLt2bcxUiA4YMMDWaNxvKniT65bD9zFDLNK0cpRUWbx4sW1OFylSxKKH4bB582bXqVMnX/YV1RpUUkyaNMm1a9dOf7EowUwI/k6ffPKJy5Qpk+96AgdUvbz++uth+9kXX3xxxGahiIiISHhxMsWQZSpm4+14P2HCBDd48GD7fPz48dZKMx5mazCI0Qu8TJkyxfXt2zcm+jSLiIiIJOeVV16xGQ5//vmnq1mzps3EjZW5qLt373ZvvPGGfc6eanLrsqpVq9peazS0V42vVb+EHdleqFWrVlhun/61FSpUsKEqDGfmTcB70Uh08n+j+/vvv30Dt/2Ha/sP4Q51W4Gvv/46LjIQRURE5P+55JJL3Pbt221OAxWb8YIT29atW9vnzGlo3Lixi3XffPONq1y5sn3MnDmzmzdvXoL5ZSIiIiKx6pprrrG9LLqIjB49OqY6ufTr18+SzB944IGzrs1atWrlosV/TieeRixylqw2IoYM+qPaoUSJEiF5rE6ePOkyZszo+5rsss8//9z16dPH3XDDDTHz96Dyg+AKLbEoA0v88VzzE8g84+TuiiuuOOMjMyFi6c2Qoea5c+f2ff3MM8+4ffv2WQlZnjx5QvIzfvrpJ1e8eHF35MgRd/ToUXucRCQyeO/jfernn392l112mf4MIiKJ0A7zjjvusPfJBg0auGnTpsV8pQHJIgSRPvvsM5cvXz63ZMmSmFq7p1fxcMyOh99BRERiA22QWO/E0rrt008/9SX60P3klltuiYnjtiopJMXYCKa/7N69e20eRChObNi8fvHFF92GDRushZQ3EDtagzRstHPhMfC/cB2b5uHEJnzevHmt913iCyeGGTJkcNHCP0BBgIb+xL/99pt78MEHQxakYNAkQZxDhw5ZG7JGjRqF5HZFREREQomElerVq9uJGWtpWj7F0olucpg5wby4bt262fy4bNmyRfouiYiIiATVwpLKguHDh7v8+fPbdZHe4A90/hmYF3au+0/CdbQkRStIISnGBvm7775rFQGhOLHixGbHjh3W4ol5E0OGDImKvwbFRfv377doo3chCvndd9+l6P8TLPCvhPAuzFE4G3rcsaHvX33Bhc19cB2Xbdu2Jfn/s2fP7m666SYLIPEmxEfeVCN9EszvTnuD6dOn+9p3gTZNlM6d63E5G9qOUXVDGzIFKURERGLfwoULbb3ZpEkTd9ttt7lYR5k9J4i0Q2ItzZolmLVPtPQ4LlCggH3OepN1XqTXmyIiIiLBYK1WpUoVt2vXLnf48GG3bt26mFzfLF++3BJ5CTzQzeRcmCnLHuhHH31kA7YjSUEKCWhgcqA++OADe9J7J2cMb2FzOVwzLlKC4MOHH37oC0hQykUwICkMiE6ukoHsMcqXLrroopDeP4JCZN5RyZJUFQcX/p03US68IXm4P5R4cQLJhT50oapkSI1SpUrZxf+EvUaNGladMmfOnIBbh/G8ee6559yyZcvstuhhLSIiIrGLKgPmGrCGiYcgRY8ePSzoQhLL/Pnz3dVXX+1iFVXQVE289tprtqanfRVi8QReRERExENAgj2qH3/80ZJpx48fH5Prm19++cU3Y6J9+/buuuuuO+f/YS+NPbpQ72UGQkEKSfGMAaJwOXLkCPgR46SGkqm+ffv6onlE7LikJQIQq1atsqwvLvQITioQw2R7b3OfyoRChQpZdURav1FxX6666iq7FC1aNNnfiWgvARYuBFsYOEnwggAMFw9vUgwnv/fee224NXNG0tqePXusQoQADEGeQPF3ISuRqO+KFSusnZSIiIjELgYTEqCg+iDW0Qpp5MiR9vnkyZOt4jVW/fHHH1bd8s4779jXmzZt8gUpRERERGIVa5vGjRtbdxMSZKjqpVNJLOrVq5c7cOCA7bMNHDgwRf+HDjfMHmbPMdIUpJAUoRXTK6+8YsEFr7dZanEiwwY/Ubq09Pfff9sm/XvvvWdBCTbwyQTzcJ8IRHD/vKAE8zGCqRhJawRPSpYsaRf/3/vLL7/0BS2Y+8HAc4IZXF5//XX73TlhJmhRsWJFC1qkRfSUgM9XX31lLZ+YLeFZs2aN9WqmFVhKcP+ppmCuCe0TFKQQERGJbffff79dYt369etd69at7fN+/fq52rVru1jF3DVadq5evdr997//teDLI488Eum7JSIiIhJUq3fmp1L1CiopaFN+6aWXxuSj+uGHH1q1K8aNG5fi34P9RC7R4D+n+auInAUb+pQ7MaCYiGK1atVS9HjRhogMf2/INk81NqYLFy4c9sebDH2CEkREKa1P3L6J+8DGPJd77rknal6Q4eZVVnhVJMxz8HfZZZfZG/PDDz9sGwRp2TN57dq17q677rKWVLSsSmmwhL55/B/+hkeOHLGTZxFJ+7JSMp95j+F9REQkPaOVKK0sacNJMsWsWbNSnIARbahWrVy5siW+8P5OKy6SWiR2xcMxOx5+BxERiSwqJ8qWLWvVoR06dLDq12gZIJ1aVEIUL17c5oY99thjbsyYMS4Wj9uqpJBzIvueAEXGjBkt2z4l6L1LxlXu3Llt6DSb3WS9hzNAwRuMf2CCodMe+v9yguW1OcqVK5dLj3hTIAjBBZw8r1y50gIWzHXgpHrq1Kl2Yf4G31enTh33wAMPhD1gQVCLfs0MYkxNNcedd97pevbsaQOOYvWAIiIikt6RzDJp0iR33333xfQ6jUQZ1k6ssWgdSpunWA5QMEvu+++/t7/J0qVLXbFixSJ9t0RERESCxr4TidgLFizwzXGIVU899ZQFKNiDHTp0aIr/Hx1YmBXMfl/nzp0j3lFGlRRyTs8++6x75plnrEydTLCUIEBAyyTmTbz11lth6+fGCS3l9G+88Ya1+yEq5+Fncp+pCiBDXxvY566Y4bEkyMPfmcCUhwAVrZR44y5XrlzY5nIQqCCQ4rWAojUY81BSMuxHRCJHGY0iEqxt27bZrCkSFmgvFA3D+wLBkEJapLKeIdGnYMGCLlb9+++/to6mTSgBCk58JfbFwzE7Hn4HERFJe8xrWLJkia8lZzzYsGGDJe+yp7d48WJL4E0pus54+28kfocrSKFKCgkZqhNwrv7AlIHfcMMN9nnmzJndunXrbKhxODa0WZCS7c9cBYa8eBjsTfYaF16kCkykHFl+PGZcRowY4TZu3OgLWPBGPm3aNLtQDUP5WNOmTRPMkwiFxEO0ieTyM9988007SRYREZH49Ntvv9l8MJJMYjVAQSUIAQqwfonVAAVJQKzfWUfze1AdwoawiIiISKzasmWLq169ulWIEuBu0KCBi3U///yzDf0mQNGkSZNUBSjAWo+AzR9//BEVrdNVSSFndfLkSev1/88//1jpUP78+c/4Hl4MHTt2dK+++qq1eaKlUrhOmMhIIzAxY8YM67mGSy65xNWvX981b97cNthjtaQ+WvH3/fjjj21IIoEhNhHABkLdunXtDY1h16EORhHFpc0UMzRWrFhxzlZjRMN5/vXu3dvae4lI2lFGo4iEMns/FpNMtm7daushTvKefvppq0KONay1X3jhBffFF19Ygki4KmclsuLhmB0Pv4OIiKQdZmo1bNjQ9hFpx0nFAbN3Y9np06etewxdZUgQ/+STT0KeSJzWx23t5so5hxIToCDDPakAhT2JzjvPMqx4gTBwJtTokUZmGgMIS5Ys6SZMmGBvLEWLFnWjR4+2OQpcx8AbBShCj8eUzEaCQzzWr732mrv55pstiDBlyhRrpcWAnrFjx9p1oUIQhCoeLv4BCp4PSSE48eKLL9qMDZH0jkzefPnyWW/JUqVKWaDxbHjt0J6PoG+ePHncE088YRttIiJpLRYDFD/++KN76KGH7H2TDLZ+/fq5WExK4b2fOV+su2nvJCIiIhLL2KccPny4rdPYR6RDzNq1a2M+QAE6oBCgoEUTHVCiNUCRGgpSyFmxucVGdFInW2S6+W9wMXy5V69eIXtEOdGjOoN5BM2aNbMMNTauGzVq5FavXu0+++wz16FDB2stJWmDiGebNm0sQks7KKpX2NSk5RYVFQy95rngVVuEYqOCQeceelQzsJEZJBxs/HmBDK89mUh6NXPmTNelSxfL5OW1etNNN7lKlSq5o0ePJvn906dPt/duvp+2fePHj7fb6NOnT5rfdxFJn9jk919XxtrmPmvTffv22TqIqtNYS5ohyYSWB6NGjbKvOZlPbbsAkdSg0ohKHf8LLWVFRERChQRX9qm6detm+0ePP/64VVDEQwXemjVrLLEE7MHddtttLh7E1gpa0lyWLFnsxIsggf+JTIsWLWyz2sOQQ//N5GBbTA0bNsyqN9q1a+f279/vsmXL5gYPHmzDnL3sfZWgRw6PvVfVQnXFyJEjXa5cuezvQxYeGdyDBg1KMMg8FKji+Oqrr9zQoUNtqLa/++67zz7S8ilxAEMkPSGjgiH3BBGLFCliVVC8R/N6TQrzg2iV98gjj9hrl+wSNqvOVn3BcYCSTf+LiEigWO/RqvHtt9+OuQeR9emyZcuscm3OnDnWJjWWsFarXLmyPfb0In7rrbcs0C0SblTF0xfcu7DhIiIiEiokUpPgyv4VG/l0G7jgggti/gE+cuSItV4nwYdzeP+92dTi2MsaNlqCHApSSKpRGkWfWja8Pv/885A9gmTJ9+/f33qpde/e3R0+fNhKsF5++WW3d+9eixISNJHoQiULA66ZWULLJ9qCHTt2zD355JP29+PjDz/8EJKfRUsnAhScSLPp6o92X5xcf/vtt3ZfRNIjWu8xEMy/RRoZvXy9fv36JP8PPdT5P15QYs+ePTbj5WxZtM8//7z1lPQutIgSEQmE1y6UdWDu3Llj6kFctWqVe+qpp+xzqn9pfxlL2Bi+++673QcffOAyZcpkLZ6Y8yaSFtgoyp49u++SNWtWPfAiIhIyzDh97rnn3Pz5812nTp3iItH5n3/+scAEazgSEseMGRPU70ULLBIQk2urntYUpJBk0duf4Xm0//BHxQSzIDiRIQMmFG2d2HimcoJ2I5ykFipUyIIgu3btsuw6WgpJdKMVF9nbVDpMmzbNnhtkV1NRwd92wIABvmHngWKzlQDWLbfc4ruOwdq0/rr00kttsxVq+STpFQFCMiqoPvPH1wR+k8IihwAxFWoE+mhXcs8995y13RMBQ7JvvcuBAwdC/ruISPrAiRVrB+ag0WY0VvCeyoY+7Z6oOKZ6Ldbs3LnThmRzjGA9VaFChUjfJUlHOM/LmTOnJTgxzJREo+SoglNERFKaVE2lgYek2erVq8dNYk+nTp1sr5b9L+ZQZMyYMajbLFeunLUsXbBggYsGClJIsmir1KNHDzdx4kTLwPVv3dO+fXtrCRLsC4yM+BtuuMGqJNjQZt7AjBkz7ISJkz0GwEjsZUWx6bl9+3Yb4sPAc2ZUMNeE4BPPK07oQ3Vy/eCDD1qrGnrvay6FSGCZwAQTyQLmdUS7Enp1Elg8W1CSXp7+FxGRYNYOVETGytBsgsG0xeMk+MYbb7T2AbGofPnythZnne+fACISbgQkOcekVRrtXKma5z3g119/TfL7VcEpIiLnMmnSJFvbsEeUuD14PBg5cqSds5PgM3nyZNtLDRatnuhmwyUaKEghyQYQvGx0MmspBafnWahKgDZs2GAby/Xq1bOoHfMMeEPZtm2bXRcrJ6ly9qqHmjVrWgsHAk/0umdmRZMmTWyeBRl7waJ/NSfVBLcodfOCFGRmaS6FpEe0SuD90z97BHxNK4Wk0KqkcePGrmXLlvZaqlWrlgUt2BAIVUBRRCTehv4S4CV7jSy2xC0oo9ny5cutcsXDWo2KV5G0xByUhx9+2FqkVapUydpMnjhxItm5NKrgFBGR5HDOShcAKlvZs6QVcbztB82ePdsGgIOONw899JCLRwpSSJK+/vprd/DgQcuWZRFJoIK+42SOBYOABJlnpUuXtqwtTupoM8LPY/OajW2JL0R5CTzRNmzIkCGWcU3/e9rJ8MZKQCFQV155pZ1sL1y40Dfsh+qKrVu3xkW/QZHUovqM6iWGhPkv2via992k0IYt8XuvFyiOt8WdiEQX1oUkrXCyFSveffddN3DgQPucWVzXX3+9ixVk3VWrVs02hRMHs0UiPeOOiutvvvkmyX9XBaeIiCSFrh116tSxBDv07dvXzZw5M6YSSM5l48aNrlGjRnZu3rZtW9elS5eQ3TadFEaMGGH7atFAO8KSJHqcgR7/nDwyUJVseDaCA0E0c/Dgwa5w4cJ2O2wgP/roo7ZBTRZvPL2BSNJ47tA+jL/5448/bpugtINidgUZifSaDXRTlmCF1y6CntYcpAK9PZFYx6LljTfesOo0goO83li8ef3SCQiTkeihRyetFnhvpt0CG3C8L3O9qtpEJJxoLbdu3Tq3aNGimHig2din8oyTxNatW1viTawYNmyYa9q0qQ1cZAbRFVdcEem7JOJz8uRJt3v3bpcjRw49KiIikiLMRWRNw74S+0IkY9CyOJ6Sn/fs2WPn5czyrVq1qhs1alRIE3LpcNK1a1d77KLBBZG+AxJ9CCjwxAdtnhDMgGyy2lu0aGEfQY84InU333yzi0ecuDL8+/vvv7cLJ7S8ofC4cmLoXfg+KlTYWPcubOTTwoghcizSs2TJEncVAfx+9NFjrgnlagxgf/bZZ61dwvjx44MamsnQYDZoOdFhg/axxx4L6X0XiQVULv3www82B4bBrrzX0vPZG6bNYEr/hRvZJrzP8JGWbFdddZUthLxMYRGRcKlRo4atf5JrRxdNqEojyOvNoaAvcCzgfjP7jSAFOBEdOnRoXJ3AS+zhHIC1Bj2wv/vuO/f0009bYkQsBf5ERCSyaO9Ey3jOX+fNm2dJ1vHk+++/t+pXzu1pc05SIevmUKIiuGHDhlHz2P3ntHo5SCJPPPGEe/HFF+1zSn4CHZDNxjxRTFr80CaKbHdO6MhAi+WNdwaI80ZItg+Lai8Y4X/566+/zvh/XiDCC0zAC1h4AYzE+F5O3AlYeIEL75I/f357o4rlTDjefghOELA4evSoPS86d+5sz5tLL700oNt85513LEucsvDPPvtMJ+EiaeCXX36xloC8P2qItojEIzb22ey/5JJL3ObNm20WVrRjfcm8IS87jt+he/fukb5bEmHRcMyuX7++VT//+OOPtrlEJizJEQUKFIiZ30FERCKLPblWrVq5N998M2oGP4fKsWPHLGn8iy++sPmua9eutT3BWJXS47aCFHKGTz/91Da/2TDmCcRQwNRas2aNnRR5g/kYjPbSSy/5MnljBb8/PdqYoeBd/GcosKj2DxwkDiRwIchAhcS5AjNs2NOiiAw9Ah2JAyD+XxNJ9eKLBCvoQe9dbr31Vl/7o1jBCQoVEN5JNAMcaVdToUKFgE7IefM7deqUvaHTYoygEUELEQkPbRaISDyjFzCbqCSUsD5hjRsLGCJJj2Yy1KlWpd2TSDwcs+PhdxARkdRXh27YsCFqsv7D5cSJE+7ee++1bjS5cuWyoD77frFMQQoJCu1y2IwnWJEabAyTZfbyyy/bJjob9LT2qVWrVtT/Raj8oC+yf0DCG97GzAweC/9gwHXXXWd97yKBjXiixv73lWAKfzdvk9+7nwyT5k08FuZ+0JKGHs+0owFtwqjqSW2gjJZiq1atcmPGjLGe/Nu3b7fh2rHwGIjEIm0WiEhqrVixwtaN99xzj202RvOJImtAhnzXrVvXN1stFtB+lDYBtNJhYLZIvByz4+F3EBGRlGPGIskWzJ9gllnlypXj8uH79ddfrZsNwRiSoglQkHgb6xSkkFRtzvNi79ixow3JDtTOnTvt5I0WO94G8wsvvBDV7YioSGBo44IFC+xkmTc+2gwlDkjQpy3aB8gSVSawlDhwwZscrQkqVqxovZ85SY3m3s/cX9o1vfLKK/Z1oUKF3Ntvv+1uuummFN8GQ3+fe+45V7t2bWtZRvBm/vz59vuLSOhps0BEUosMsQ8++MASW9q1axeVDyAJN/TInzlzppXa0+4zmgMq3joqU6ZMCdaHmj8h8XbMjoffQUREUubgwYO2l0NlAS3RJ0yY4Bo1ahR3D9/vv/9uw7FJuGUflY/FixcP689kDc5+GwkttGGP9HFbg7PFDRo0yJ6UTHVncnwg2ea06Xn88cftRcVgZL4mcysaTzbJrCernsDE+vXr7fo77rjDPfnkk/aGwJDwaA9IJIUTUIIpXB555BHfiSnBoyVLltjvS5UC15UsWdLe5BlYV6xYsajKCOTEmg0LWoQxwOfrr7+2YdoMc2cQdkruqxdsYzOB4NPnn3+uAIWIiEgUufnmm92hQ4cCau2YVqZMmWIBCtaFVFBEe4CCNqtk3zF3wjvRVIBCREREYhUVBXRmOXz4sFUWUEkRTHJ1NCeZVKtWzSon2BMj2TbcAQocP37c5l8kNSM3EjSTQiywwPAyZgIwz4Cy+9KlS1ubHaKUZ0PlASdBEydO9GXFTZs2Laoy9XmxrV692jbpCU7QJolADCdxbNQTmCCwkh7w5rN06VJ7LGitRIUBA4YIVvBYMJgnUi2skru/zZo1s2oXUKlDL+hzZUwRnSXyTFCKGR7+z0fvzdcbXi4iwVNGo4jEG9aLBFJYK1GdSTJLNGOYN60PWDvRFoBsQ2aiicTjMTsefgcRETl3sgiDsZndSnIt+1hUtsYbAgWs4TZu3GjHNPbs0mruBsEfZsSyJ0oQKFzU7kkCQtY5FRDMNKCq4mx27Nhhm8ZUJpCl9cwzz9iAvmipQti7d68bN26ce/PNN22jmqHW3mY8MwtogZSe8UZP9YwXvGEOBG9KBAUYCEmbpWhA5cfIkSNdr169LMBQoEABy2qkDdfZsLHAEPhZs2ZZ2ycvqFavXj17LjCvIpoqSERimTYLRCSesN4oW7asZe8xMJty+2hZ3ybl/fffdzVr1rSACrPIqKAN54mmxLZ4OGbHw+8gIiLJY16sVzHx4IMPWsDCv51lvKAFPQnUdAG58sorbU/2XHtd8XzcPi9N75VEjZdeeskqHhJbs2aNfeSE7Gxo53T77bdbgIIN35UrV9ocgEifwP3111/Wuuq+++5z+fPnt7ZBlIZ9/PHH1sfu9ddfd1WqVEn3AQpcdNFF9mbIY8QwSOZX0CaKwA4to6io4TnCzJJIIgDWtWtXq4ah6oPMRip9XnvttbP+P6p6+D7/aiA2G4hKc4CjJYKIiIikve+++y6qH3YqJ1gzcBI1derUiK9vz4ZkDNa2BChoncWaXAEKERERiWXs5dDum0rWOXPmxGWAgmRq9t0IUGTLls2SYuIxQJEaaveUTiOSBCFohcNMBuYxJB5iyGY+8wuSymrnTWLw4MH29QMPPGABi0ifDB09etTuMxvXlCtRGkVZGHMNGIQtKUdQgoPA2LFjrdIia9as9lxo27atBaQiXQb36KOPunnz5tnXHTp0cCNGjEhV6yaGLN1www120BOR0FBGo4ik5lieJUsWK9ffvn27y5gxY9Stk6miYM07ffp0G5wdrVirtWnTxtb0VI2SXEISiki8H7Pj4XcQEZGESEhljZg5c2b7mvVNvHa/2LVrl+2n0sEmV65cVhV7/fXXp/n9oEsJx1ISXnLnzh22n6NKCkkWQQky05nizkBi/9J2Kg6Q1CAaZlfQ3skLUBCsYFZAJAMU9NulPVGePHnsflEG9tlnn7m1a9fa9QpQpB79i6moIIrL0G1OzhlaTRUDg6y950gkMGeCAMrzzz/vqwiifRdveClFkMM/QMGBT0RERNIG2WJUSbLeiLYABeuJRo0aWYCCj9EcoMCJEydsHUOmISeZClCIiIhILGKTnm4tzMv9999/7bp4DVCwp0ZiNQEKOsDQNSQSAQoMHDjQkpLZ+4sGaveUDnFi+MILL9gGr/+L/vPPP7ee/ZRRkWmeuAyJocqzZ8+2wcpUT1AKz21FKjjBYBkGfVP5wX3x2jndeOONEblP8Yg3ytGjR9tjy3OG1gcEtqi4YahPJPCcZT4F7Q2YK0L7JoJq+/fvT/L7aX9AZDgpBw4csP/L80lERETCj7lgVFNwHI82nTt3tplmVHnQDjPa9ejRw9ZBrH+juSWViIiISFJItmBvktm4rA9JwEhu/yYekOjNWvjYsWM2R4wKXmYCR0qFChUs8Td79uwuGihIkU7wAhg6dGiCrPHEUUlv07lkyZIJTnQYPsx1mzdvttKr9957zzVu3NhFqvyLLH+CE0QdZ8yYYdd1797dhsxIeFBOzYn7119/7ebOnWvDfajIobVApCKu/GzaUfFmyhB3gieJAyfcZ+47czaS0rt3b2t51qRJE8uaFBERkfAjIaZIkSJR9VDPnz/fvfnmm7Y+JhmH9UO0oep5wIABCSpIaRUQr5mGIiIiEr+YKUs1aMeOHa16gn1GOnrE697e+PHjrfsLXWpYv5FwzSyKSBo5cqStgaMl2VtBinTAK1nv2bOn69Onz1m/lwiefwsoonzMryCTnqx6NoHp05vWjhw54tq3b+8KFy5sG9P04KXyo169eqmaRyDBIXhVs2ZNa9UwadIkC1wVLVrU5n8cOnQozR9eygEplStevLg9Rxg69M477/j+nQAGz//kqj5eeeUVC1DwPI9UVZCIiIi4iM82Yy2Dbt26RWStm5KZYXXq1HH9+vWzRA21qxQREZFYxf4NHTpIKGUvZtiwYbbHRDvQeMOeVN++fV3Lli0tGENr+gULFkRd29NooF25dIDsqoceesj6+VOFkBwimFQn9O/f375+6623LMpHuxzePMg4L1CgQJr3BuZkjJ/LMEDaOjFghhNJBSciG6xgc5/KiuHDh1t1RcGCBS0QRoleWmIeyZo1a1zVqlXtBJ7AlVc54Q2Fp01VUsiS5EB4zTXXpOl9FhERSY9o8VSrVi2bLxUtvJkOVIkWK1bMKhWiDethBhqS6cbciQ4dOqh6QkRERGISay8SL5gly57MokWLbG5uPFaG0lL/4YcfttkP3mzfCRMmuP/+97+RvmtRSUGKdIAXOidf+/bts5OvlGxAU+7OkGSv5GrZsmUW5Egrf/75p5UdMUSGWQgM+SaAwiZ4hgwZ0ux+yNlxokxLJf42tNyiMoG/GUPMKWFLy7YRnLi3adPGDngEseglTY8/ovLMnvjuu+/OeTuffPKJ9XYWERGR0CNrbN68eVaJGS1IVmANwcnilClTom74NMETkoVoCcB6hzU5vYNFREREYnWPkjkUtHGn6wXzZuMRHWnKlStnyTnM9mXNSeJ1tARjTp8+7XLmzGkddRgREA0UpIhjnNTQ481z2WWXJfu9ZKB7Pflfe+019+ijj/oyyyZOnJimUb6VK1fa4G7K7cm2o3JiyJAhaRokkdThuUUFDvNBCG499dRTrlChQm7JkiVp9lASXHv11Vddly5d7GuyDHkue731zjXom0qhMmXKuPr167tvvvkmTe6ziIhIesIxetCgQdauKBqQwEMfZLCOuemmm1w0IcmCk9stW7a4rFmzWqCC1pYiIiIisYQE6E2bNvm+vvnmmy1phbby8Yjfldm+JMJeddVVts9JN5Jo8tdff7nvv//e1sPRUtmhIEWc4slGqyZObL799ttzfj8texhOQ8uctm3b2nWctL3++utp1quftlL8bKbL036HmRNvvPGGy507d5r8fAkeQ3+oYGCYNsEBnk/Nmzd3J06cSJOHl4g0vQwpoUOPHj18b7bnClJQdcGFk38GxIuIiEhocULau3dvV6JEiYg/tCTnsEb59ddf3Z133mkVodGEZKG6devamorWlqtXr46Kx01EREQkNdgPql69us279W/FHS0VBaFGojfzzQgAsC/GHFXWmtHmv//9r82b5W8SLfMxFKSIU1999ZX78ssv7cTmn3/+Oef386T8+eeffZnvvXr1ci+++GKavWmQGUYrKsqfKPsiysiQbIlNzBChbRKzISht4405rdoo8ZylhI4LyD4821wK/zdoBmgzX0NVOyIiIvGN6stVq1ZZG1HWn1RkRhPWMyTrlC5d2mZvaV0sIiIisYZ9SSoK2A8iAfrQoUMunpPFaVVPEgwt7AnMMHcjX758Lhqdd955VkVcqlSpqFkHK0gRp9jwp6xo9uzZNiPgXJlaBAU8zz77rJXip0WAguoJXsT02qV6Yvv27a59+/ZpVr0h4cPzp0WLFm7Hjh2uaNGiNvCRNmJpVVVBNQUVQh56APJcPxuGNvk/9wjciYiISPAWLlxo1QC0GI002joy5wzMPiO5IpqGZHtI8uDkljWyiIiISKyt/dgAp4U7VaGsaaKl5WeoMQO1fPnylgTDXhhtRJnDdra2+3Im7QTHMYaf0DrpXJ555hnfkGOyz/v165cmAQqy14oXL26lUKNHj7Zqimg6SZTQ4GDEkEeyAWfNmmUn3HydVr2vGeaNd99914JvKY2A046C52M8R/pFRETSSqdOnawN6YcffhgVbZ5Y+5Ik06ZNGxctyDIk287/MYrXVggiIiISn0gOHThwoLWgp60mrY+YP8Gg7Hj00UcfWUvOdevWWeLrokWLbE5rtCdf//TTT27ChAnW/SRaRPcjJqn29NNPW0+xlHrrrbcswodcuXL5evmHu3qCagmijGxgUz3BkONofwFL4DjBbtmypVVVFClSxFWuXNmqLNKiUoE5J7QuQ9++fS1Yci48F6ku+vHHH93MmTPDfh9FRETiGSXvzH3KmTOntS+KJBJjaJ9E793x48dHzfqT9UaNGjXc8ePHbSaciIiISCwiOZW9F4IVJIO899577uqrr3bxhsSX559/3vY2Dx8+bAm5BGPoIhIL9u7da/tyJBJFi/+cPlf/E4kZ8+fPdzVr1nQXX3yxTWdniPHZrFixwlWrVs39/fff9jVtlxh6HO5+dERTDx486AYPHqzWTukQbznMqujatavNfuB5yyDNcPr333/t4MjPZTOCg2atWrXO+n+++OIL9/XXX9trSkTO3Z6ErBECjyppFZGzrQEiWRnAcZ3eu7ScGjNmjHvsscdcNCCBonXr1vb4NGjQwGZkMCtLJBzi4ZgdD7+DiEi8YvO+YcOGVrHaqlUrF49++OEH17hxY7d8+XL7ukmTJtbq6dJLL3WxYufOna5bt24uS5YstvaMhuO2ghRx5MiRI5Y1fv3115+zrQ3T5XnD+O233+wJScb4lClTXKNGjcJ2/yh5euSRR6yvLsOJr7vuurD9LIl++/fvt36EBK5o+fXwww+H7WctWLDAgmMERchQvOiii+xgcvfdd4ftZ4qkJ9osEJFoR8IC7QbWr1/v7rvvPlsHREMrJWZi9OjRwz4noYKEoWgZXijxKR6O2fHwO4iIxBPmjtHyKEOGDFGRmBLu35WkElqDX3LJJdZinFaiEvxxOzrqmyUkqJwgQ3zAgAFn/b6vvvrKyo8IUHCSRuulihUrhq38njenIUOGWAk7ZVCcHCpAIXnz5rXefTwv6tata63KiLiHQ8mSJe0jQ7urVq1qbSf4uSltjUbfalpCqPBMREQk9VhzRhqtH1mDcmLEMT3SJ86sKWiz6gUoevXqZRl4ClCIiIhIrGA9M2zYMHfPPfdYi29vzyTS66xw+Oeff2ymL78rAYrChQtbArgCFKGjIEUc8IZee28EZzu5+f777939999vlRP0Bp49e7a9yBgqHI6h1adOnbLqDE68OBGjgiJTpkwuPeJx5u+T1IU3ufSIKPv06dOt8ofgWp06dWxmSahlz57dKng4YBKUI5OSSO4DDzxgffjOhnZot99+ux1wZ8yYEfL7JiIiEs9Yc5I5RXYdbZYiYdeuXdYbGcOHD7eZaJFGYsY333xjn9MClZ7G8XhCLyIiIvG7F0lbp+7du9u6ho4VbOTHI1rq04nj2Weftd+VVk+bNm2yORQSOgpSxDgyw4neEQQ414kf2eMPPfSQ+/bbb12hQoXckiVLwhowILJYrlw5C0ywucsmdLQMJ4wEer3Rj4+KFYJFXJjLULRoUTdnzhyXXnFC3rt3b5tNQbCsTJkydgAItVKlStlHqido/1S8eHFrkcbMibNleNITun79+jZYntZoIiIiknKcwNFqicQV5qalNU4kSTRgnUzlMAMCowFJRbRaXbhwoevZs2ek746IiIhIirFnc+edd7q33nrLXXDBBdaucsKECXE5U4v9TGaarVu3zipyp02b5iZPnuwyZszoYhmdeOhy8/jjj7tokX53jOMEWegHDhywQMC5WtF06NDBbdiwwWXOnNktXrzYXXXVVe7TTz91x44dC/n92rhxo2WfM+F+zZo1rl69ei694w2MyoELL7zQMvu5cB1v6FdeeaVL76pXr27PTwIGPHc+/PDDsAQpeG56r4Grr77abd++3TYszvb6IQj4+eefWxWSiIiIpBxViwcPHgz7QL7kvP7669ZekkGGDKiOZLUCgRJO4r32lqwJq1WrFrH7IyIiIpJaK1eutM4sJICyp/L++++7du3axV1FKEnhDMRm/gSdOO644w77nZm1Gw+OHTtmVb0k70YLBSliHBEvNlvprcvAluSMGTPGd2JGpLNgwYJ2PcEDghW8qYQKWWGUQV177bVu8+bN7tZbbw3ZbUt8o6qEnn5UOZDtyPM2HEEKAhK5c+e2yDFBopkzZ1ofxeSQDUCrChEREUk9qhFJQIhElp8384H5aPny5XORQjtLAhIkDdEWQURERCTWeC3dvRby7PnRQSXesEfKvhT7m3SEoW0oA7PZ54wXtWrVsqTy/v37u2ihIEWMI+jAEOy77ror2e9Zu3atnRCB3v9ktOGnn36yIdqgdCkUOAEk0khkkegqw7xFUoOWSsuWLbMAXJs2bdxTTz0VkoHVBMtorUCbLaqPwGwKBml61RK0mzqX5cuXu9atW2uItoiISBRj7fDYY49ZhSbH+0iWsh8/ftyqMTnhpYpW1RMiIiISi0iOJvGZbhRUqkbDnK9QB2E6d+5sSbPsG5HgzUY+7etJcI0n2bJls5Zd0TRXQ0GKGLVnz54UDR/87rvvbBgxw38ffvjhBD1vaa0DepBlzZo16BNBBsiw0duvXz+r7GBojpxdvJXDhQqVC6NHj3YvvPCCe+655ywLMthABa22uE1msVA95Gnbtq1r3ry5tV5g9sTZBmkfPXrUZliMHTvWZmiIiIhI8tavX2+BAmZBpbU333zTkg+Yg8G6NFJz0Vg7lC9f3h6LK664wr333nv2tYiIiEgsYI/EP6GTzinjxo07azeXWMQeKcmto0aNsq9Jmt26davNlZW0EV9hoHSC4YNslP7666/WrqZEiRLJDsquXbu2zYUoVqyYDbHx3xTnZAnBvuDYPO7Tp48bPHiwVWowBFlShsHl/H2+/vprG2YuZw4bZ3OBSiCCchwsgtlkICCRGK+JV1991WZO0GqK1xYDkehdnRj9Fnl+05uQA7OIiIgkb+nSpdZulKy0GjVqpNlDRdVkly5d7HMy30jIiQQy8MjEY51Hthon+KzJRURERGIBaxeSOf/66y/bL7nhhhtcvGGdSrL1iBEjLHmV+bHsn1auXNnFsy1btrjdu3dbJUWRIkVcNFAlRYxWUdCq6eeffz5rPzSqJogEkrXFYO3Ek+dDEaQgQMFJIAGKkSNHKkCRSpUqVbKPmtuRvPbt21vlwiuvvGJtlrxhk6FEIGT27Nm+Qdpee7SkeAcvXlciIiKSPFqMknBANW9arx1YJ9MrmZL9SKCKuUKFChaguOaaa6yPsQIUIiIiEgvY6xs6dKit5dh/JDhBkm28YV/0lltusRml7DU1btzYEljjPUDhVR0zp5j2XdFClRQxiGwwZkl89tln7sorr0w22umVKDHopUCBAmdUYzBAGGXKlAn4TYsTT3r6k4keyV6/scKbf+A/KJpKCjm7Vq1aWfsw2jJRSfH6668H1CqLg86iRYsseMesC//yRAZpv/3229aCgTdr+kU/9NBDKbrNSLWQEBERiWasMQNdZwZqzpw5dqFvMK0IItU/mNaVzz//vK03mLVFoEJEREQk2p08edI9+uij7p133rGv+ZykUZI74wUzy1ijsUfH3maOHDncmDFjXPXq1V16UaBAAesQkni/OJL+czoUE2klqhDlJFOLeRS0t+HNJDGyxRmWTSSUYX4MFE4tptsPHDjQvfzyy65du3YhuvciyZs0aZJr1qyZ69ixox1MUhuo8A4+R44cseFHDAlKjLkqDIBngDeBQL4/KYcOHbLKocyZM9usC5H07JdffnGXX365ZS5fdtllkb47IpJO0Y6RcnXaPdGKlHVqWiMRyH9dTUUFAQuRaBEPx+x4+B1ERKLRN998Yy2wqSbwZoXS0SKe5qmuWLHCfqd9+/bZ102aNLH9JXXLiPxxW+m/MRZ88Fo0nW0TlhcbAYrrr7/eBg8nJVeuXJYt/swzzwQUoGCYMSd+lEQpQCFppWnTplZFwYGSYEJqY6wcWL32Zsm9lvr37+9uvvlm9+OPP1rGQHI/g2omqpRoRXXs2LEAfhsREZH4tW3bNjvBDUebxuT06NHDAhTM+SI7Lq199NFHlgS0f/9+33UKUIiIiEisoAqV9RvJmh9++KENj46XAAV7POwp0XadAAVVrsxPIxlWAYrooCBFDGFjlpL5swUF2DRlmDal7VOnTnUZMmRI8vvIEicj3RsqmBr04+fEj0BF165dU/3/RYJBEI4oN/0RCSik1rmCFBdeeKGbNm2alTLSnoFWZkmhLRSVFBy4s2bNmur7ISIiEs+Y4cQgvqQqesNh1apVNqQbfEzrlgTLly+3vs2c2AeyPhERERGJtAEDBtg8L4YqBzO/NpqQeMpeKXM1Jk+ebEEXunOwZmPtJtFDQYoY6wtH8IGeYUkhEsigQFAhwbDAUJs/f74FJshif/LJJ0N++yIp0alTJzdo0CB7nhNQSA3vQLtu3bpkqyRoFUHLJzB35csvvzzjeziwcR9KlSqlP5qIiEgSQX+SZUqWLBn2x+bUqVM2vwpk/JUrVy5N/x5z5861Hsbcj6pVq1orVBEREZFYaJVJEjLtKb0K0JEjRybb9jrWfP31165ixYrW0umHH36wubDsBTHDN2PGjC49a9q0qQ0Nf++991y0UJAihtBaac+ePa527dpJ9r/lRffrr79atUXPnj2TvR1a05CJTmQ0NejP36hRI/v5kejxK+KPQBlvqi1atHCbNm1K8YND8I4DLwPLeT0lh4Dffffd5/744w973v/1119nvV2N9xEREfk/VPbSdzYcSTNJZf3RQzlnzpxu8ODBafpnoHL54YcftpP7unXr2tDuSy65JE3vg4iIiEhq7dixw5JJ6JJCl4h48ueff7pnn33W5vWuXLnSKmxJMv3kk0/cHXfcEem7FxW++uora8/6+++/u2ihIEWMyZMnT5IzJChrX716tUUCKWOi4iI5tKd54oknXPPmzVP8cwlsPPjggzb1nX5t552np45EFpUMzKcg8stgJ+awpAQbB7fffrt9zmsmOTzHJ06c6K688ko7kBHYSwrBC2a/UH3BMCARERH5f1iPBjL7LLVJNN4MNlpLMZQvrbAOIUmIZCHW1dOnT7cKEhEREZFo9vbbb9tm/a5du2w2Q4MGDVy8oAUnLUfpvMF+jdeOk0CM1mn/h3UzLc6jKWijneYYQO98sr6Tc/ToUV/Uk8hg/vz5z3p7a9assY9ly5ZN0c8nM4wMMdpN0e7p0ksvTdX9FwkXouFkLBKwqFWrllU9pMRdd91lH89VTURG5vDhw+1zovDffvttkhswEyZMcDt37rRh9CIiIpI2GMrNrKp//vnHEha4pBVOel977TWrpOzQoYMNmgx3QEZEREQkGKyZaGldr14999tvv1krJPZFSpQoEfMP7IEDB1ydOnUsKEGFLS2rZs6c6ZYsWXLOfdL0qESJEjZE/Oqrr3bRQkGKKEeAgIjmtddeaxUQSenRo4f1kSOj/PHHHz/nbXrZ495G7bkwNGft2rW2GZw3b95U/gYi4cWBh+DZ9u3b3WOPPZaitktt27a1ORMMoz8XMiR5rVACRwVSUhUXDPEmUMHtioiIpHckwnDSm9RMp1AaM2aMJfNkypTJvfTSSy4tkYm3YsUKS2agr7GqjEVERCSakeB8//33+xIxaaFNJn3WrFldrLd2YqZo4cKF3ezZsy1phL0bEklpxUlSq8SG/5xWI/WojwTyotq7d69dEve4/eijj2yQNi86TtLONcSXmRWZM2e2zDNuO3fu3OcsYyfwQTupli1bhuR3EgmHGTNmWECPlg9kBoS6lQRBQNo5LF682FWpUiWkty8S62h1RosV+s9fdtllkb47IhJB/mtNWjGGa/Ait33DDTfY+w9JB1QzhBunTQxbvPPOO8P+s0TCJR6O2fHwO4iIpDU27ZlBwXqG1tZJzbuNNUuXLnWdOnWytlVeogxtjJhFIWe3aNEiC+iUK1cu7B1zUnrcViVFDMyg4GSI8qvEAQqqLLzM7VatWp0zQIENGzbYSWO+fPnOGaCgcoMTPi4KUEi0q1+/vuvTp49VFlHOF0oc4KgoAq+HU6dOhfT2RURE4gUnOVu3brWT33AFKMAJKSc8nGynRSUj62d+DtWVau8oIiIisYZKA2ZRbNy4MeYDFLRzql69uiWQEqDIli2bzc9lH1MBipSh5RePHxU20UJBihhAlUSuXLnOuJ7Scoa/UJrFLIqUSGmrJ6o2eNOiSmPEiBEB3nORtDVgwABXrVo1q6ggS+BsOHjxpvzcc8+l6Laffvppex3u2bPHDR48OMnvoSXavffea8FAERGR9Ii2R8WLF3dNmzYN289YuHChmzVrlmV/jR07NuyzIOjf3KxZM6swZl1OwEJEREQkmpFcSUvsVatW+a5jXkORIkVcLFfsMpO3aNGiVgnAjFA6aXz99dfWqlutnVLutttuc7feeqvLmDGjixYKUkQxWsxQLZGUgwcP2qR60A8/S5YsKbpNWkKda2g2J2JkpVOKw5AZXvQisbIxMnXqVKsSYmASvQnP1iaCLIK5c+em6Lbpd/3iiy/a5wQpvHJCf8zG+OCDD2zDRERERELv5MmTrl27dvZ5ly5d3E033RT2AdkkP0yZMsWCIdOmTXMtWrQI688UERERCca+ffts34/W7Y888ojN2IxlJIhQyVqoUCHbj2F9xnwN9k1p+a3Wf6lH4i5de6666ioXLRSkiOKIJ33BGFRNGVNi/fr1c7/99psrU6ZMqjLVFixYYJuoNWrUSPZ7hg0b5jZv3mwnYSkNfohECw5Ob731lkXS+/fvn+z38frCtm3bbPB8SlBdVKlSJTsg0loqsfbt29tr0wsgioiIpCecQHIMpNIhuUSbYD377LM2V401MlWO4V6P16pVy6o2GJTNMEYCFiIiIiLRasWKFa5EiRK2Ac2e3uTJk12GDBlcrFqzZo2193z00Ufd4cOHXcGCBS1BlKHftLCS+KHB2VGKXr6UYTGHYvfu3QnK2GljQ2kTJ4JURtxxxx0h+7m0j6Lchz6/VGiIxHLrJzYyaL1EGVtSiMJTEcFmCm2iUmLHjh3WxoJhUwTzOPiLpHcaYCki3hqVYdasXxmM99///jekD8z27dttnfrvv/9aiX/VqlXD9sCTkFC5cmW3cuVK+32ovCRRQSTWxcMxOx5+BxGRUGOP8Pnnn3dPPfWU7VewD0KiBYkdsYi90F69etnvAN7vSQolOfSiiy6K9N2TVNDg7Bh3yy23WJYYkcHEfXZ5UfLmQzVEKAMUXr/d/PnznzUDXSQWcDCjBQTP6eTaPt1zzz32keqilLrxxhtdw4YN7fO+ffuG6N6KiIjER9tFstwefvjhkAcoWPu2adPGAhRUNoYzQAEqJ1hn06eX9bgCFCIiIhKt/vjjD/fQQw/ZHgUBipYtW9pM2lgMUBw/ftzmTJD4QoCC9SWzNUgw7dq1qwIUIfDJJ59YEIuWWdFE7Z6iGCdHiUuXeCK98847NgwmpQN/Pa1bt3adO3e2odhJoY8btz9x4kR38cUXB3XfRSKNzRGey7R9oqLibEEK/0FSKUErC2a1sGnx0UcfnfHvvI7YSKHSQkREJL2gQnH8+PFu0qRJIb/tcePGWQUxQQNvRlS4sdam17HXIlJEREQkGlFZcOmll9pH5lBwibV9PapYR48ebe2chg8fbq1D2USnRfeYMWPc1VdfHem7GDcWL15s7cCirSJFQYooxKyJ5Dz55JP2kcE3xYoVS1VUlRPGUaNGJdkjmBY2bLwSrSxVqlSA91wkuvAaofJoyJAhbtOmTckGKWivltK5FChQoIBlJoDZFGQq+Bs5cqQdRLmIiIhIcI4ePep69uzpa+eYO3fusDyk9DkmqccbLklSUL58+cLys0RERERC0RHFW7OMHTvWEjq8vYpYwX4KydhFihSx1vM//fSTtbhfunSpW758ear2PiVlaAnGrLWXXnrJRRPNpIjCF+e1117rsmfP7qZOnWoRRA8Z23fffbdlcH/55ZcJ/u1cyBQvX768y5Ejhzt06JC9gfm/qZUuXdqCI2SAx1q0VeRsCMrRroFAHZHixM9vDoSZMmWyqgvKCVPqu+++s2AFt0sUukqVKgkGO02YMMGCiRUrVtQfSOKeekOLCMdD+sNny5Yt5A9GkyZN3JQpU9zNN99sSQeshUONNqsVKlSwVgJNmza1dYFIPIqHY3Y8/A4iIsFWHZBk/O2337o5c+ZYS6RYREuq7t27u40bN9rX7IWSQN2iRYuwrPckMjSTIoYHDvImQ2l5rly5EgQvvCoKXqypCVD499wnc9w/QAEGZKvNk8R72yc2HZJq+/Tpp5/aATE1AQrkzJnTdejQwT7ntUmvbM9dd91lQQoFKEREJL348MMP7cTy3nvvDentsoYlQMH6lQrFcJyw0gqVlk6sFejdTHaZiIiISDQiYZIkZLLg58+fbxv9sYZuLszZZf3FfgytqtivYS1GVasCFKHHvjJ7Y6dOnXLRKjZDbXGMjVIqHYiEXnLJJQlO0MjOJgs8kBMn/yBFUm2eiFyWLFkyBL+BSPShPPDpp5+2gNzHH3+c4N+CGexJ6wmyt+iRuGDBghDcUxERkdjESSWBBIL4ocwSbNu2rX3OrKdwrFW/+uorV7ZsWbdv3z5LAqJymUpJERERkWhMCrn11lvdunXrrKKMfQg6rsQKkrKbNWvmihcv7hYuXOjOP/98C0p888031qqb2WMSHjNnznTNmze39XRSYwCigYIUUYiWTJUqVUpw3YgRI+zjo48+mqDCIiVo47Rhwwb7nDJ2/yha+/bt7USMQIVIPCOgQJsINjv8qx78y89SG1HOkiWLa9eunW8ORVIZDgz6TOrniYiIxBPWlMePH3eDBw8O2W2y/qXKmEGJAwcOdKFGsg4n9iQI0f6RAMU111wT8p8jIsnjPYMAZ+fOnfUwiYgkg/27YcOG2Z7ekSNHbJN/8+bNrnr16jHxmB07dsx17drVFSpUyObl8vvUqVPHff755+7111+3alwJLxJs2W+uW7duUMm64aQgRQzg5Iye94Eu3qjAIErGSVf+/Pl91y9btsyisC+88ILmUEjco1yQzQ7mUsyaNeuMXtdXXnmlvc4C2ZThDZ6NDRYJHl5zbHi0atXqjOoNERGReERGX6iGWu/fv9/179/fPuek/IorrnChxEy22rVr24k+SQzMb+PETUTSDjNmaOPGZpuIiCSPgdJ0QPn3339d48aNbUB2atvAR8Kvv/5qbZzYi2Q/5s8//7QOLyRSMyz7+uuvj/RdTDeqVKnivvjiC0vgjVYKUkSR0aNHW9mTV/XgefHFF+0j/dquu+66VN8uA8U4YaRHsDePgszu3r17W+/8qlWrhug3EIluZEtWrlzZZkj4l7dlzpzZDvYrV65M9W3S1qJ+/fpnVFMQuOAgwFB6DsQiIiKSupNxKhzpVdyoUaOwJC9Mnz7d3X///Xb8v+qqq/TnEUlDJ0+edA0bNnRvvPFGyIOQIiLxhvdLWiG9+uqrVomQIUMGF83++OMP2x8hOEHnFoIVt9xyi1u6dKmtu0qVKhXpu5gu/P7779ba1H/v68ILL3TR6j+nqbGRqEBfua1bt7rx48dbWyevJCpPnjz2AqfqgRO1QPBn5ja8ORfTpk2zE761a9e6MmXKhPT3EIlmDMrm4MjBnf7WYNhUzZo1LYpP5VJq8brl9cuGx549e+w162VpauCTpAe0SyODmqA4ZaQikr7MnTvXvf3221a2T3VCsBYtWmTtCziGMvepaNGiLpQna9F+Yi+SHo7ZTZs2tUpmNrHIqqWiyUvOS4yEH/+kH34H1tuR/h1ERMI9v8G/DeWPP/5oLaejGcmgEyZMcAMGDLB2mqDF03PPPWdrxPPOU658Wvn9998t2Z09MOYU33jjjS7a1x56dkQRFmUdO3a0J5GH3mwEF0qUKGFD/QJFBYUXoGAIIcO3+TkKUEh6c9NNN7lHHnnESg550/YqLDhYEmH2DqSpQdCDkyuCEi+//LLvegUoREQkPVi+fLmbMWOG27hxY9C3xbG5Q4cO9nmXLl1CGqDgfl577bUhuZ8iEjjeLz755BP3/PPPp+j7+T42N7yLlxAkIhKP2LOj1TtJlCRreKI5QEFnismTJ7vChQtbMij7KrxXM6OTuRMPP/ywAhQReB79/PPPtqfMx1igIEUUoUpi1KhRLmvWrPY12SLehicnaV6rptSgpCrx0N6xY8dan99BgwaF6J6LxBai+mQh8HrzSt4IBCKQlk/eaxT01aV83R+vQX6eiIhIPGrevLkNtn7wwQeDvi02I/ft22cntiTVhMqCBQssQefo0aPupZdeCtntikjqHDhwwNq5Udl/8cUXp+j/0KaYDRbvwm2IiMQjNvdp1c5eBZvLzMyKZux1zJw507L0qZCjs0S2bNmsnf2uXbtcixYtlLwZIZkzZ3YrVqywKoo777zTxQIFKaI8w4Rhfrly5bKoYyDovU+PXQITYPOUDVoGBYcyM00klpBFSXR/yJAh7qeffrLrWAjg/fffD+g2me3CzBhOnCZOnJigBQYZD8ybERERiUf0Fe7Tp0/QJ0CczA4dOtRXYUzv5VBgMCMtBsgo4yNtCEQkMrZs2WLBQq9VKhfaGrOhxedk4yZ20UUXWXsI/4uISLxhM5n3RtqyUzVGW2oqKqI1ODF79mzrVMGMTtpm08KPPRYCFVTF8t4taWv9+vUJ1rnMfLrtttti5s+gIEUUYF4E2df0CfOvemA2Bdq1a2dDeANBVjibsF5Z2IgRI9yJEydscI1IekYAj/ZMXpm5F6RgYRDIqB7aRdGuzf+1CzJBec3x+tYIIBERkaRxjOSElkDCAw884GrVqhWSh2rKlCl28swxn6GTJAFF88BAkXhXoUIF99lnn1kLE+/CBgqvTz4///zzI30XRUTSfA3E5n7FihUtiFu8eHG3efPmBK3go+m+EjyhEwWzyHbs2GEBlf79+7u9e/e6Hj16aPZXhHz66afWoad169Zu06ZNLhZpcHYUIGuMQTKcMLGZyewIIo8FChSwjU+G5VBNkVpUYWTPnt03gJsASP78+V2rVq0sWCGS3j399NO2GOA1SNSfaofy5cu7xx57LKCSRAKCOXLksA0WDhAsLtgUoeeuly0mEo+iZQiniKS9rVu3WjsC5jOltHVLUqg8fOihh2w9TO/iggULBn3f3njjDTtR44SadgMkBWkDVNK7aDxmn2twdiz8DiIigaL9XaNGjexzWia9+uqrUbfRz1pq4cKFlvDM2g+ZMmWySg9aX9NaSCL/N6pXr57tI9NNJ5qOjxqcHUMYEEjGGFFTb7g1A2fAdYEEKOD1rmPBRyXF4MGD7clKOb6IONe1a1c7sBL1v/TSS60dRNu2bQMOJhDoqF69un0+adIk+8htlSxZUgEKERGJSwT7y5Qp44YPHx7wbfz222++dgZk4IUiQMGJGnMo+MixnZM1BShEREQk2lDxyT4Ca5U333wzqgIUXnCCijdmjxGgoB0ns4KonGAvRQGKyP1tZsyYYXvKYI4xFcRvvfVWVAUoUkPtnqIAPdyWLl3qFi9ebF9T8eAFKZgdEShvADBtbIhakU3Wvn1732BukfSON24CFbyR//DDDyG5Te81SzYEVRQiIiLxjBNT5p8xlyJQgwYNssrhvHnz2klvKHCiRvIB1RMvv/yyJeqISOj8+eefIbstkutSWkUhIhIPqCClEhUkUdBCia4nrF+iZQN83rx51taJtlN0hyCxs1evXhacYO3mtZWXyGjSpIlr0KCBe+6553zXMQckWp5DgdBqPQqtWbPGXvRkeAfTj9c/SEE09tSpU5ZJJiL/h4UAGxdsYnAgpvUTMyUCnR9RuXJl26yh3dry5ct9A+spi2S4dlLDAEVERGLV66+/bsc8b7ZTan399dfuhRdesM9HjRoVdPbgihUrfMdw2k/RwjGWT9ZEogVJdbQhoX0w8xJ5rZLwc/fdd7uBAwe67777LtJ3UUQk6hGYYG1Ci0tmcXmiZa3iDcSmjSf7kVROEJzo2bOn27dvn830VOJzdKhdu7Z144mnYJGCFBFG4CBxForXJubhhx8O+ESNbLRvvvnGIrKU4L/00kt2e4G2jhKJV7yhN27c2Po+Ekygsqlly5buiy++COj2OGl75JFHEryW2SRhDsySJUtsUKCIiEg84cQ6kEoFb1j233//7apUqRLUgEhu68knn3SVKlWyLD8RCV22L/MTH330UWtfykbVnDlzLBln3LhxFqR47733LHjRpk2bkFUni4jEGzb577rrLutywtopT548ASdHhhrJlLQJYq4mA7GZsUniNO3iud+0j1dwIrJ7xyNGjHCLFi3yXUf7LeYZ0x0kXmiKa4SxwGNDlGzu0aNHWy8xStNBpkqgWEByovbjjz9aZcbu3but/YyInKljx47W/5Fei3feeaedaH3wwQeuaNGiAT1cvHbJBqVk8/jx4+6KK65wAwYMsGGgV199tf4EIiISFzixDibzj3UwlQ+UprMODvS2uB/dunWzkzfoWCsSOkOHDnUjR460auGkgpF169a1j4cOHbLEuKlTp7onnnhCfwIRET8kLDIcm/0BEiWnT5/u7r///og/RiSKcF9o30R1K6iSY4+E93LmbkrkjR492pJwChcubDON2fNl3Zw9e3YXT1RJEWE7duywci+vBQybpL/++qu79tprLcIaqJw5c1pfstdee80Wi/QJDqZXsEg8IxjBkHre+MkGw0cffRTw7TGsvlixYu6vv/6yUkl06tTJPf744/baFAm3V155xeXLl8+qeHjv//jjj8/6/SdOnHDt2rVzOXLksM1CMiZZSIuInA0ZXLfffrtbvXp1qh8oEnO8jUyGZRcoUCCgB5u2BLx/eQEK5k/EU0aZSKStX7/eWpaeq1qKin0ybRWgEBH5P+z19evXz95HCVCULFnS5jtEOkBBRxdaXl9//fWuWbNmFqAgIMEg7P3791uSpQIUkfPbb79Z8N/DXhItuLp37x41rcHCQUGKCCOQ8NVXX/lOpghSgNZMoRjwRwXFu+++q1kUIufABsfGjRtd7ty5fUGKQEsvOWh4WWXea1okrcycOdN16dLFPf3007YApoUZ7U+OHj2a5PcTTLvvvvusjHfWrFl2TKIEWe0BReRsOEZSrbt58+aA2pPS0/jAgQM2LDvQ9kyc+NPXmaQcjr28d3E8FxEREYkGhw8ftgQKsEZhn+Gaa66J6Ob3iy++6GvRxzxcZmoOGTLEzgefeuoplzlz5ojdP3HWkYPniP/MEqpbtmzZYq0Xaesfr/5zOloaoIn7559/rDyd6CoZaYFWUtDiad26dfb/GUTIiRuDzBioIiLJlzlyIKhZs6YNmiezgM1aMsoDQQ9HKip43fGaJKOdBQozKdgQjufot0QWlRNkNnuLYbKM6XfKIiepjUCG3nKs2Llzp81UCcQvv/ziLr/8cvfzzz/bAkpE4h+nEJzMEuBn+CMtDVOKuWlUMRIkpeUTgxkDQeYf859I7Jk4caLNmBKR0B6zSXxIKa+iKdy07hCRWLJs2TL3008/+WZXRgKV88zhJEDhzQ4iKY1qVlrQBzoPV0K3H/Xf//9cnPmorJOvu+46t23btrj426T0uK2ZFFFWSkuAgpKqO+64I+DboXKiQYMGVgpEcIK+dwpQiJwdB4TmzZvbgZsSTAKFH374YcBBCgZOsTFMlijzLQhMkC3KwYdNHT4XCTU2/Miw6N27t+86Nu9oZ8YxJikLFixwpUuXtswesjbIpGEBzWDM5LI0COJx8V90iEj6QrCd9qRcUot2MLxf0eqA5IBAVahQwYY8TpkyxVfBKCKhtXXr1gRfU6VJch0tQkCLENYLJUqU0EMvIukeSRwki1GpQIsnMEMgUqimJzBBO2DvnI21G+eLTZo0sVa/EjnMQ2WeMG3Hhw4datcVKVLEKm7KlCkT11UTSVG7pwgi05p+YmwK+beFqVKlig1BCZTXS5+o6JEjR2wot4icW4sWLSyy6/VeJEgRzOZNtWrVfK9tgiA33nijDTo6duyY/hwSFjy3aH+SLVu2BNfzNZU8SdmzZ4+1eeL/MYeCEt/hw4dbO8KztWkhE8K7EJATEUmJRYsW2YXjYjDDskHlBFUZClCIhA/JNt6levXqtpFy8OBBC1ZwISGnfPnyvs04EZH0ivmyJAwzdJpk4eTOv9ICcyW4HyRHcu5GgILsfBI7CC6zT6gARWSCWN5MYpw6dcrmR06dOjXB9WXLlk13AQooSBFBBBOGDRvmJkyYYF9zwgZvYzNQ3sbq999/bxnhZHSLyLkxtJOsTE68CCwwdD4Y3muZ1zYHo02bNrkvv/xSmWYSVWgHRavBsWPH2nOzXr16ls1BG6jkkHlDQM+7sEEhIukLwcxp06bZe0BK/fHHH65z586+agovEzs1/5+qL9a4HgVJRdL2dc9m1xVXXOG7js9JbODfRETSq88//9z235gPSNLxs88+e0biWFrdj6ZNm7qCBQvafgZrJ+7XvHnz3Pbt2y14EkxStARu+vTplrjKebeHJPWRI0daW6fz02FQIjE9MyOIYabt27e3tkwMuGbzkjcLBpwGij539C8Db0D0GReRlGvYsKFVVHAg9z8BC8S9995r/QMJengzKkTCKWvWrLa4oYrOH19nz549yf+TI0cOy2j2XxTdcMMNlvlDO5ak+syTdaPMG5H0i3Zvffr0sfcIKhmoqEoJNjFZ8+bMmdP17ds31YMeaQ1FWTxBf2ZhaL6TSNoiE9frZe6P68ggFhFJr5vPVCb8/vvv1tHknXfesXa6aWnDhg1u8ODBvk4tIAGT5DL2JbRmSnvMJmWN7AWFOCdnv5ZWpY8//rhdxzm4l8AjqqSIqHLlyllkk+nsXhUFJT2ZM2cO+DYpE/I2neh9X6NGjZDdX5H0wCtVp+1NsBiWzSwAeK9xkXAioEA1xPvvv5+gUoKvk1so33nnnbbJyPd5KAHmOJKaQbgikn5wEt62bVtLrKHnckp8++23buDAgfY5lcSZMmVK8c9j85NMMwIUGTNmtP+vk22RtMeQe2a4MfCeJBwus2fPtgSfhx56SH8SEUlXOH9iPUSiI2sjzv2Z45NWAQq6NSxdutTa8PEzCVCwPuL9mL1B1k0EKrRmSnscK0kSpFWip379+m7MmDG+Vv9yJrV7ihLLly8PSasnoqdgUDZlRIEMMxRJz2h7w+B6ejWS5clBJBjea3rZsmU2tIrA4V133RWieytypi5durg33njDTZo0ySr0yNIgA5mFEhiQ5j9Ym3+nCq9Tp04WnFi8eLEbNGiQtVQREUkKlYaUpnNsS+mJb7du3azvLgk5nKSlFO2kGLBNm9TLLrvMrVixwhJ9RCTt0QqycuXK7pFHHrE+51z4nKGwr776qv4kIpKunHfeeb5EL+b6sS666qqrwv5z//nnH6veoFMDSRyskaiM53yPTH2Cx7fffnvY74f8P4cOHbI2X4kTVvk7rV692ncdSYCPPfZYiiuQ06P/nCb0JmmONzJKf2jNwZ+AQb2chG3ZssXdeuutAd8uC0QCHpdeeqltOHkZayKScpRJPv3009bGgoyEdevWBfzw7dq1yxUqVMha43Dw4jUPXu9stoiEw8svv2zt/mjZxOKV4bSlSpWyf7vnnntcvnz53MSJE33fv379eusPTy9MSpTJiOzZs2eK+2LS/oHFlp7XIpKUlStXWiYfJ/MM2qXlaUoQQCVAwfqYwAgBittuu00PskgQQnHMJvmB1m3eTDfOPdOS1h0iEkkMOPbOk5j5QLIw51jhxnsvM21pn8lgbPD+27p1azuXy507d9jvgyTEsZQ9HgISe/futfNscIxkP4k2yuJSfNxWkCJCKI1l0B8l62vWrLFNJN5cTpw4EdQQm507d1r2LJusbDqRES4iqR82RSUSCC7whhpo2xuCkAzMolfv2rVrLbOdCDqbNerpL/FCmwUi6Qutm1jHpqSKgvajzF/j2EqFFkHUlHr44YfdrFmz7OTv3Xff1WwnkRCIh2N2PPwOIhKbwQmSGWmlRJultBp0zF4C6ycuJHCAio2OHTtauymSniX82MsZNWqU7ePw0VO+fHkLVpEYqAqW4I7bGpwdId9//719zJIliy9Lm4BCMAEKFC5c2N44aVnD4F8RSb0iRYpYq7TvvvvOhoMy9DrQgw0bOPT8nzdvngUke/TooT+JiIjE9EkGWWJUNpAxdq4Nwtdee80CFKx5+/fvn6qfNWLECKtCpIVd0aJFg7znIhIKmzdvdm+//bYFK8kS9cesChGReETrZtrbebP/mGFZvXr1sP5M5gayFnrzzTdtE9yrXqOFZtOmTa3Nu4QHyaafffaZrXdJzAEb7LQDZ7Od+Wi02AKVvt7nEhzNpIgQNjzZ/KTagexqsJEZCgxhoQ8+JfUiElhgwX/ovDfrJVDea9t7rYuIiMQqZtdwIkY18LkCFJzQ9+vXzz6nBWlKMv38Nz05KeTYqQCFSHSYMWOGK1OmjGWTzp071yqlCELS0k09tkUkXrEWoSqUAEWGDBnctGnTwhqgoFKDatLrr7/ekj0IUNDu8p133nFfffWVa9OmjQIUYdayZUtrT0p7Lf993K5du7q33norQTWxAhSho13sCKJ9DG1fQhWk4IXCsB5aPvlvsIpI6vEaIpDoZYwFw3ttUzVFFdWqVassKi8iIhJrOEmmmuKDDz445/f26dPHss6Yt8bJ3rmQmV28eHHL0vakdDC3iITfoEGD3MiRIy0pjnNZ2l1w7lm3bl13zTXX6E8gInGXTU8lw913321dFuhcsmnTJquoCMfcWt5b+VnMEqTdJdcxGJs1F4GLOnXqpFmLqfSCWRLt27e3bhrHjx/3Xc9sUgJSzAHx8NhTQVG5cuWgu+BI0jSTIsJ4o2NIKVUPvCCC6alZrlw5mxxPFI/bSusBZiLxhMywzJkzu99//90i6AwUDhTBDrLL+MgBkF6SrVq1cmPHjg3pfRaJFPWGFpHEOInnJJsTfNodnisZh9ZR9957r9u3b58rVKiQBfMDnQclIuE5ZnN+SeUELd9o4UbiTbFixayygtev19I43LTuEJG00KVLFwvMon79+tZ+kkrSUKJKYurUqTYMm6Av2NMjEEJbJ29WpgSP4x6Vf6dOnUoQaGK4NY89LQtr1apl1/E97NNqjmhoaCZFlGOTkuHZLO7A4i6YAAUngNu3b/fNtlCAQiQ4LAw42Vq0aJG9Vpn1EmjWAgc2SgPZpCFQQdmm99oXERGJN2T+McyR9WmjRo3OGaDYtWuXHXM53l533XXWTkEBCpHoQ2/uX3/91T4n0W7Hjh12HnvixAlL7BERiSfNmjWzdj9UkT3++OMhre48duyYtXJib5D2mGBPkFZOrKF4j5XgsK5kboe390Ib74ceesgC7f5BCmamURnBWtSjeR+RofqUCGGILidglG6B3p7B2L9/v0UFUbNmzZDcR5H0jig6QQoGVgVbVslrnCAF0XgvQ0JERCSWcELNoEYqJGgxmtzJOhmBnAiSbThkyJCz3iYZ2BUqVLAMbNookOFGO1QRiT5U7r/77rsWmKBfeqdOnew1y3W8jkVEYh3rEjLrQQtKKjzpsBAqJGZQnTFx4kTL1vdmcHXu3NlaYwaTvJyekRjjvy5t3ry5PcYvvviiHau8PRkqUziWkTzqVUlwPJPooCBFhNSrV89ayNBXznvzC8ann37q+5xKChEJHtUP3uuL3pDB8F7jX3zxhf40IiISsy2clixZ4nbv3u0biJ0YWdY9e/a0z/v27ety5syZ7O2Rhc3GJhmEnDS+9957Llu2bGG7/yISHDJ+aU2CJ5980iqPmblWu3Zte72LiMQqqsFozTxlyhT30Ucf2UwChCJA4bW+pKXTggUL7Gsws4uWTsya0PDlwNsIEWRgz4aA0sUXX2zXU5lLgijVFJ5MmTJpNmiUU5AiQuhHj/z589tHhrQEw2v1hJtvvjnIeyciIIOCMr9PPvkk6CCF9xonM0NERCQWFS1a1I0ePfqsJ9LPPfecO3z4sCtYsKBlBZ7NW2+9ZQEK1q5kYmfNmjUM91pEQjVclArjSpUq2dds/vTq1UsProjEPKobCBSwr8Z729atW31BimDfNxmATXBi8+bNvuvpqNK9e3fbYwhlC6l4R1B83LhxNrvMO/4QeODv9cMPP7gtW7b4WozSnougkypTYosGZ0cQU+J5QRFF5QUVzIkZb6izZ8+27DNODEUkNKiAoJUaJ2TBDLomM4O2F7zeWYwwN2bx4sX6M0lc0ABLEcHXX39tFRF///23bWZWrVr1rA8Mx8QXXnjBknfodS8i0X3MzpAhgyXc5M2b10WS1h0iEirso9EaiErQq6++2hIo/GcTBIL3VzbTSez49ttv7TpaCzVp0sQ98cQTvnZSkrz58+db9QmBBu+YM2PGDNegQQN32223WXWvhypfWoXSipDZEhJ9NDg7yvEGSF96Ts6uuuqqoDPHvOxsTgxFJHQoE5wzZ45btmxZULfDSd21117r9uzZ4z788EP7WkREJJ5w4k2AonLlyskGKD777DN3/fXX22Bssgd79OiR5vdTRAJTsmRJt23btogHKUREgvXXX39Ze0pmFuCuu+5yM2fOPGubynPZu3evBSYIUJw8edKuY7+vXbt2ltlPEETO3Lxmf+Snn36yuWeeoUOHWuUE1bbeMads2bLWatCrlvB4s34l9inEFCG88XlvWsG2egJDuK+55hp3//33h+DeiYiHoUoEKehlSA9er8dhIHitE6Ro1qyZBtyLiEhMOX78uGWtkb125ZVXnvHvVAeSyUYrKAZCJmX16tV2IlmxYkX39ttvq/+ySIxp27at69Kliztw4IArUaKEVQb7C3bOoohIWiEg4QUoaL00cODAgNYlJB6vX7/ejRgxws2dO9f973//8537837ZsGHDoPYQ4gldX1hL0q6JhBWvCrdGjRq2tqTSxGt/xZwJ5vjSPtSTK1cuaysq8UtBigjgTYxWT55QlHrxYidzLXFEUUSCc8899/het2RGBPN65f/S/oK2Tw8++KD+NCIiEjNWrVrlHnroIduEZDihvz///NOqKMAcCu/E09/KlStd9erVrf0hWXOsWzUkUiS21K9f3z527NjRdx0bSqyT+fjvv/9G8N6JiKRco0aNLNm3Vq1aAZ2bM2+CVlEEJz7++GPf9ffdd5/r2rWrJRCn13kTHBMYYk3HF/8qBypXJk+e7J555hn39NNP23WsK6mW4MIa0Qt+n2uumcQnBSkihCBF7dq13dKlS0NSScGAGAb8aGi2SOiHhHonX998801QQQrvtf7FF1+E8B6KiIiEH4GIAgUKWLuXxEaNGmVDJ5mN1rdv3zP+fcWKFbYBQEUiM57INLzkkkv0ZxOJMSTsiIjEIoKoL7/8smvRooUlDXKOP3HixIAqS2nn9NJLL1lVmTdvgooJNtaZi5CekHRCMIJZEN5+B8ko+fPnt89//PFHXwXu7bffbnuXzEXy0P6TwdciUJAiAngz5MSMyCIKFy4c1O29++67dnJI6VPiklsRCQ4H28yZM9tiZPfu3UHdlhfgoB/3hg0b3K233moHZRERkVjIoOaSOFP6+++/dwMGDLDPBw8efMYgXtpAUYFB72cqKd555x07mReR2KNZFCISi44ePWpBhPfee89t3LjRTZs2LdVVDiRjsO9GYMPrjJLe5k0wN4Jq2tKlS/taWA0ZMsQ99dRTVpkyZcoUu44gBPuc7HseOXLEF6RgCDYXkeQoSBFB3333nX3MkydPULdD+TybnvR1E5HQy5cvX0iCFLlz57aPP/zwgx3Y2djJnj17iO6liIhI+J1//vkJvu7du7fNWaPCgl7C/ubPn289hcmyo53CjBkzFJwXiTEk1txxxx0p+l5adVBtQSWyiEg0WLt2ratbt67tv2XIkMHaD6U0QEE3hQ8++MBmV9C2ma9BtQRtLhs0aBCX8yZoZcWsCIIxVD/4J10S8CHQ41XW0s2FBJXELTw///xz6/Yikhp6xkQAg3SYSP/zzz/b1zly5Ajq9mhBE6rZFiJyJq9k0xt2HyjaYHgLIgbdK5NURERiGT2YJ02aZJ+PHj36jJNRMuc4aa1Xr54NqFT1oEjsady4sbVpowrKf66iP1qZ9unTx1rC0cpDRCTSCCgMHz7c3X333RagILOfdQsZ/+dCe8oJEybY4OYKFSq4hQsX2u1VrVrVqjGoJmjevHlcBCiYb0tbToIPHmZtEGzu0KFDgu/l8bj22mvdiRMnfNdVrlzZvubx8qcAhQRCQYoIYJNy0KBB9jnlT4nL4lPLaxuV1JBCEQkeGRJIqs92altHURLqZZdeccUV+vOIiEjUI8DAyb3X1slLuvGG5zZt2tSVKlXqjP9XtmxZy8KeOnWqhmSLxCgCEGzMsQ6mBSobVwyGpX3bXXfd5bJmzWotTKmgYKMrcUWViEhaIyGYGbDdunWzNpW0q9y0adM5q7zYsGegMwmFzK6gYwnVF7R0+uqrr6yagqBFLA7EPnXqlFu/fr0FXPzVqVPHAtEMEfcwzJpW8szu8LdkyRK3Z88eGwruX2Ebi4+HRCe1e4oAXsD05p0zZ06CzOpA8UYKMldEJPRYpID2TMG+zqicIkuB29KgexERiQWU9XNy7p9lR+CB6zmBff75533X0+eZCkROcJHeBkiKxBuqoQhIctm8ebNbs2aN279/v214kVVLy5Py5cv7eo6LiEQarefWrVtn71+0amJmxNn23T755BP7PtpS0qLS2wOgkoBgRawlFzLImqoRAsjeOozrypQp47JkyWLtp73Hgz0Jvib5xENiCsOvE1dDkHQpEk56hkUIZe8EKbwe9cE4duxYSAZwi0jSvJZsBBaClTNnTisP9WbSiIiIRDvauFSsWNHlypXLvv71119dz5497XOGJXrHyXHjxrnHHnvMToC3bt0aknWuiESP2267zS4iItGMdcmsWbOsvbL/TIXEcxfobkBwguCr584773SdO3d2NWvWjPpNeVrwzZ071wLHtJT3DB061AZ8P/vss74gBe3hCbzwkSAOlRJ46aWXzgjg8LWqIyQSovsVF8e8zc5g51HwpkS/PBQpUiQk901EErr88ssti6BHjx7unnvu8bVsCoSXhUF/TLIyREREoh3tXBg06Rk4cKBV8hYsWNB16tTJrnv11VetHQJoq+AFNERERETCiX2xtm3b2lqFhGDQji4pzE8gqYLN+W+//dauIxjBcG3WNN5A6GhDIGXx4sUWdKEzixdoYW4QWIPRkg+lS5e2tvD+ySK0mieYkZiCERJNFKSIcJAie/bsQd2Of9k9WWsiEnpemSMHel67oQhS7Nq1K2T3T0REJK188803buTIkfb5iBEjLEuRLERavoCPBOJ10isiIiLhtnPnTpur8Pnnn7sFCxbYIOek5r7yfaNHj3aTJk2ySgJvD61NmzbWDipakisIPPTu3dvmATETzJsL8eGHH7rBgwdbUMILUpBMyedXX321+/PPP323QVUrF5FYo8HZEUK2mfcGFIy8efO6Zs2aueuuu04ngyJhdPHFF58RGAxEvnz57KPmUQgYLknbFA+twLw+qCIi0WDt2rXutddes17G6Nq1q/vrr79syGK1atXcCy+84AtQ0AJKAQoRERFJC8yQoLKAAAUJwLRv8g9QMGdh2bJlFrigzRHrGQIUtECimuLAgQPuueeeS7MAxenTp+3iP4iadpq9evXyXUdVB4EU/o15YJ5y5cpZMKV69eoJbnP27Nn2ezHvViTWqZIiQs4//3z76D+cJtAMbwbaXHvttSG6ZyKSFHo2sqA5cuRI0C0zEEw1hsQPBswOGzbMZcqUyb4uW7as27Ztm8ufP3+k75qIiJk+fbol1xCcuP/++y1LkRNoqikYnk0rRG82Bb2PVUEhIiIi4UTVAOuSV155xb4uX768rVe8TiUnT550kydPtsoJb6Of9Qkb/MyboIVzONcr//77r7WV8u92UrVqVRvm/dFHH/nmRLCX9/7777tTp04l+P/Ml6BS1T94wnkiF5F4piBFhDBw7L333nMlSpQI+rZoP1OoUKGQ3C8RSRoZGT/88IP7+eefg3qI6AWJxAsRSZ/8M2mS+lpEJNKo/KNqokyZMr6Kifbt21tGIr2OuZ4Mxb59+0b6ropIGmIuoldpLCKSlgEKqgo+/vhj+7pPnz6WJEECBe2ZX375ZauS8M7bSQZjFiRrlwIFCoR8FsbXX39tScPePAiSOZhvwVyIDz74wPe9x48ft8AFlalekIK5GRMmTHDFixdPcLvevC+R9EZBigjzNiyDGZ5DaZuXnS0i4eFlugcbXPAWS2RNiIiIRLtWrVrZhWxE+iOTFfj000/7jo2cgF944YWRvpsikgboAjBw4ED3+uuvW3Uxm3NUf1JJRUtTNgJFRMKJCgMqCpiRNWXKFEuUYF4D6xTaPXndSgoWLOg6duxo7dG9c/lAUZmxefNma9Pr326JigyunzNnjqtVq5ZdlyNHDguk7N27N8FtML+L+3799df7riPZo3nz5kHdN5F4opkUEcw8CUWQYsuWLbbZeejQoRDdMxFJitfbkgVKMCjvxP79+/VAi2HTb/v27XahkoKhbt7X3kVEJJKOHTvmC0zceuutvvYKUIBCJP2gd/vEiRPd0KFDE7z2b7zxRstcFhEJB2a5/vjjj76vn3/+ebdhwwbrKkLFJ+2e5s6dawGK++67zy1atMjaPHXo0CHVAYqVK1e6QYMGua1bt/qu43yMn9GuXbsE31u4cGFL3vCfMUhVxO7du+3ir2TJku6mm25SBZrIWaiSIkJ++ukn+0hPutq1awedlZ0xY8aQ3TcROZNXvslcimBkyJDBPqpnt3gqVKiQoM0Tg2i95wjX85G+piIiaY3WBKwxyZKmRQGVu++++65dqlSp4m655Rb9UUTSEXq8jx071tYubdq08V3PxhtJFiIioUYgon79+haoWLVqlVVxMSh6zJgxvsAF59hNmjSxoESRIkVSdLuHDx+2gCvrG1oueXiPmzlzpgVivXUOwQhaRdHqkvMyb8YswVmqI/zxteYLigRGlRQR4gUXeJMNtgdeoBUZvLET5SVDnAs985YuXZrq26H/X6NGjSzwwkGB8jXuzzXXXGPldcH28I9XlAaSiSTBobQzT548voyK22+/3bIlrr76alezZk3foKxgeVkTibMnUouWGf7BCknfKAPes2ePfUx88a7no4hIJPTs2dOOqbR28SoqwMaAAhQi6Q/V+7RQSYzs5b///jsi90lE4hctJVlv0I1g27ZtNnya+Q9UOhCgYM+JQMPBgwdtf8sLUPz1118Jboc5FaVKlXJvvPGG7zoSwUaOHGl7Ml6nE1SsWNE1btzYAhKeK6+80tpLLVy40BegQOIAhYgER5UUEeJlUd99991B3Y7XHz+QN0f63w0ePNhdd911lq07adIk9+CDD1pZW9GiRVN8O/T969Wrl/vuu+/sMmzYMDs40M6GDBuumzVrVqrvn0hKn39eX0gCFgQRCFSQacEQrfvvv9/a6Vx66aVBPaD//e9/7SO3GwwNzhZ/efPm1QMiIlGL4Y70VfZfv44fP179k0XSKc7xVq9efcb6hXM9BS5FJFQIfLJXRSUnn3MOTUcDKjm9fTQSZDnvJ2hwxRVX2PUkzt52220WUKUFk9eWjj0pBm2XKFHC9zNIauzRo4dVPXhzLNCyZUu7iEjaU5AiQrw3QSoQguG1nrn44otT/X/9B/6AIWhEn+ntx0YvG75JoSfxM888Y58fOHDABnc/8MADVo0xe/Zs3/dRDsdt8juysXvBBXq6ScrxHKNKJyksSrwqpAULFlhmBJYtW5bg+8iKYPHB7JZy5coF9fB7z99ggxTea9U/W0Nk165dFnDbt2+fbQKSIUQlkEqFRSSS2rZt69asWWOfn3feeZbQEuzaVURiV79+/VzTpk1tA5DzWYbFUrVMGyh6wIuIBIsKiXr16rn3338/QXIu5+MNGzZ0nTt3tjkUJCTWqVPHghUMzQbBih9++MEqKahGp00TaBfFTC3/YCrnXEOGDNEfTCSKqN1ThHhZ2cH2GfeCHf4lZ4HgfsyYMcPaR9H2iQUn1RRdu3a1HoBcuJ5WNd26dfP9PzaIaVvkDRVOjFZP/JsCFJJaPM94vvG8856DPB95XvL8BAGyo0ePunvvvTfZ559XnhmKUlME06KLxVKtWrUSvAeI0KaMzETaqhDofeedd1z37t1tUU1lmohIJLAhwEaAdyI/ffp0BShE0jmq7ml38t5771mVMkELKq64jmG1IiLBoCqLZFf/AEWOHDlsP4lkQSorCFCA72Mf7JdffvF9L+sVztvZO6ANuYc25wQ0+D8iEr2U2h4hXjY15WgEBgJtRUNWWzDBjs8++8w2gcnqZjDi3LlzfX38OBBwXfbs2e1rSuXoo+8/pJvMXxarSaFv8YABA9xjjz0W0H2LN/RN5OJ/8k/VSvv27X3X0ZaIvory/4bB83zjeec9B7mO56UXdOD5V6lSJV8ZZ+IAHpsrd955p7vxxhuDfkgpEfUy3gO1e/dut2PHDvtc/SsFLKL79u1rC+5OnTolKFV+8cUXrZVeyZIlg64EEhFJLYKkJAJcfvnlNpOCrEYRkbJly/paroiIBKp///62H8VMCVoxjRo1yq1fv97378WKFbNqidq1a1sLZxL+vJmseOSRR2x2ROK9ANo9iUhsUpAiQrwNStokUTrfpEmTgG6ndevW1hu4bt26Af1/ossMICLjnKg15bu0efICFWdDxJrv5ecn9W8MNeJ2vNZQ6R3zOfz/TpQqcsB96KGHfNflzJkzQvcuNhGk8A/y+KNlGQEBr01FsLzhW0kFRFIqV65c1luTjedAWrRJ/GHjj56nid8nCcSxcD98+LC14VOQQkTSCjMovv76a3sPAhsEtEkQERERORevPbLXTYOkLM51ChYsmGDvaNq0abbeWLlypSVogcoI9kTYIyFhK3FXg6RmPYpI/FCQIkL8Nyi//fbbgG/H29QOtBKDDVcOFmCI0KZNmyyCPWbMmHP+36VLl1oQIk+ePAmuZ0ARwZdMmTJZZYba2vzfpqN/2yEOqsxL8B5/SR1KOBnyTjAsMQIX9MX96KOPbEB8KHiDQ4OpgKD1WalSpexzBSkEZA1NmTIl2QeD7KBAg9giIqlFZS0JFGQyepsMN9xwgx5IkXSMKk9aqKSEt9EoIuljdgTdM/zbKlWpUsXawTEr0mvJzHqC8/IjR47Y159++qnNkGBmhP/7Buc9zIigvZOIpE8KUkSIt0FJf3uqFwLlRaf//vvvkNwvWuR4m7GJJV6cJtXqiQoK2u+wkcu8Cm3ESij5PwfpfVumTJkEgZ/Tp0/b4CyCYwzWZvhwqHiVFMG2afJeX3ptCFis58uXL9kHg+cw1RQiIuH2+++/u5o1ayZo40KLJ1rOiUj65Z/NLCLpj9eymKHTXmvqFStW2L4PbZVp2eShEoK9qa+++soXpCAZdvLkyXbewzxTunH4n99zDk9iIZ0QFKAQSd8UpIgQb6Mz2IHXtGoCG7LVq1dP1f/t3bu3q1y5sh1oqH5gICK3s3z58iS/n8qInTt3Wn9iNoappPAfok2Agl6BnOROnTrVvvaGGF111VVB/64iPAfZsKUslCBYjRo1EjwoLGx4HhNA874X9NMOthw0FJUUS5YssWHfwd6OxFfW8tlaiFGJ5gXIRETChR7PrCNpp8C8M5JWaEX3xhtv6EEXSeeCSagTkdhBRcO8efOsFfgTTzyRoEsBlRFjx451rVq1suu8bhCcpxBk8JIJR4wY4V555RVfN4Pjx4+7CRMmuJdfftnt37/frmOdwR7Uvn377P+yJ0VleZYsWSLwW4tINFGQIkK8LGo2qIKxfft2++g/YCilCDbQRoS2OWziFi9e3AIU9913X5Lf//DDD9tchUcffdQOWgwxvvXWW33//sknn7iNGzfa54lbGO3du/es2cLpEQEhSR2yNRisRUkpr6HEmV307gcZGv7efPNN16xZs4hWUrAAa9SokS3UoEoK8YwbN87eT5NCAFlEJJx4n6F14urVq+0YR1Ce9oTPPfecHngRsaQz3hPgJaAlx/s+EYluzCNl74fZDwQJQOumFi1auAwZMrhOnTpZMAHs+bB3xPUe9nZOnjx5Rtvx6667zj6S3EpLJ+avksQKghC0lKT1E//O7TP/iuRZ72eJSPqmIEWEeBuUVCOsW7fOPf300y5v3rypvh0v2ky0O7WSGnidVJWGhx6BXNCxY8czKjfYGGYjViRUEgchihYtatURc+bMcX379j0jGBbO558XUMyaNWtA/59NH1pmMMibjFVVUgjIIjpXprJXVi0iEmqsH9mcINmFzUWqXjleNW/e3I57/tmRIpJ+Z1KQ1MYsvcyZMyf5nuC9V/z7778puk0Si7iQSe2t8fv16+fbLBWRwPkfuwk8kGh64MABt2HDBt/1VE6SKMV+kve6o80sSYGFChWyNYAXlBg4cKBd/BFUSBygoAqTigtmnNIOylOsWDELejzyyCNWMUFFBu8nM2bMcOXLl9efWkR8FKSIEK+PPpUHhw4dchUqVAgoSJE9e3b76GVnpxV6D5YuXTpNf6aIh6xzhmqlJfp083pl5kWggUkWbS+88ILr0aOHylnFeCfnIiKRGnpJ+wU2HqmmmDZtmlUrLl682LfJkFyFrYikDytXrvSdu7KxGQq0ghk8eLBlXbOhSrY1sw63bt1qAQsROTteN8x48PaDMHLkSGu3ROeLZ5991q6jBTLzGgkgkOznzXygbTLJd+xD+beZ5Xw1kIpMXsMvvfSStWUGwRBe0wQn7r77bl9whHZR7F3R0UPzJ0QkMQUpIsR7Q86fP79r3bq1DSEKBBHolJTehtpjjz2Wpj9PxB+zT9IaGWQ5c+YMuk0Ti0loUSbeiT99XslsStwigQxnhsO//vrrrmzZsnrARCTkWIfyPvTFF1+4unXr2nW0VWRz44ILLgh4fSoi8YMNRg+Z1nny5DmjmoINUzK1UypxRT5Z2lRWsB5KKkhBhZc3Hy4S574ikUJ1kje7wesiwGuBc0k2+3/44QdfpT/fc/DgQffll1/6/j/V+1QucB5Li28PFRNcgrFnzx6bNUGHDu81yc+gZRTnN7xffPvtt65+/fp2PkNVFu8dPXv2DOrnikj8UuO3CPEi3mSuPfXUU65IkSIB3Q4DqXHq1Cm1WhIJc5AimMAC2Sve7cA/60XSd0szMoqS6uHMIp8gNhlRIiKhQl9p/2xoKido+fDPP/+4KlWqWHblli1brNd0oC0ORSQ+senIpmhSA3f5t0A3YWn7QjvU5Cr1n3/+eVsXeRcCJSLxhoQBZkXwWvAMGzbMghO0Q/MPPHDuQMslAgX+M0RpJT5mzJgEt0vQgJZO/jMlAkUghDUEXQa4X1RvEKCgRRQBC4Ikw4cPt/cDWpuT7PD2229bRYWIyLmokiJCvA1KSu6C4QUp2AClzE7DykRCj5MnWl/Qd5NNm+SGHCeHjR+yV9gI8jLPFKQQfPrpp2dtXUbVECcnIiKhwLqT1g67d+92ixYtchUrVnRLliyxC20e2GzwaHaSiCSW3Jwa1seprTb+7LPPLChB73vW1rSkSS5xj8G6Xbp08X3NpqgCFRKrSFpbtWqVHWcZXO3hmMy/UVFUqlQpu+6GG26w70s874X/z/mk/+uO10S4Xhe8TqdPn26tILdv3+67nmoMAhB89IZfc+7LzNVBgwbZ17fddpuv/ZSIyNkoSBEhXkY2J4t//fWX9d/MlSuX9edMDaLhnFT+/fffltWiIIVIeHp2kyHGJZB2T59//rm9PinN9V7javckXvsv3sOTQ7uVpDIWRURSy5uB9tVXX9ma85prrrE1qLfxxyYDmZAiIol57xMEKOgC4J+RzeYpc9tuvvnmVD1wJO9s27bN2luSPd60aVP34YcfJhmoYJNWgVOJRfPmzXObN292zZs3dwUKFLDr1qxZY0OkS5YsmSBIQWDiu+++s2OzhwoIKivOP//8BLebL1++NLn/3B9asdGuiSHc4PXP67Vjx46ucOHCZ5zbNGjQwFex2bZtW6sK1+tXRFJCQYooqKTgADV79mwbqNutW7dU31bnzp0t803ZJCLh4c2RYEHGpnFqFS9e3DaF9u7da4s2qJJCwEbhjh07fD1mEyNTSQEtEQkWPaHvvfdeq6AgOMEcCjZL2Djg+MSMs759+9r3MguHr0ePHm3fKyJCQp1XSUEFxIUXXuh7UPj8pptuSvV5LP/PW/+UKFHCbdq0ybK0E7eqEYkFzI2YMGGCvUYGDBjgu57j7OrVqy345gUpODfkWOtVS3ioJkrsbMlM4eS9HmfOnGmVEWBNwKyJli1b2nyJpN4naBvJHhcdCGglyTwKEZGUUpAiQrJly2YfqYBgOBjlev4R89S444477MBB2at6B4uEHhs4/u3VUousM7JT8+bNawPOoCCFgIU8GYkPPPDAGVU6zBqiVLpatWp6sEQkqI2T8uXL20d6RJPdyPGIALzXfsHr907l1vr16+26SZMm6VEXEeNlRZMNzsZlOKr3aV/sPxxbJFpNnDjRLVu2zObKUaEIzvEITmTJksX179/f1xbtwQcftJZN/pUPVBGtXbvWRRv2lAiUMDOP2Raeu+66yxJj+V3OlrBHEIOgCvtbVEclrrIQETkXBSkihHK3K6+80trH8Gb/zDPPJNnfMyW8LFv6FypIIRJ6n3zySUjKar0ZNCzeeP2LkLk8Z84cC2KRmcRJC3bu3OleeeUVa6Hw5JNP6oESkYDbNJQrV84dOHDAXXfddVZB4bUd5L2FBBcymJs1a2bXEagg45PgPJ+LiPh78803Q/KAMGOCNjZsajJXkV73JO0tX75cD7hEDc7dOFYS1GeOk4e2ZFQYEHzwghRsyDOgulixYrZ+9zbzu3bt6qIdARaqHl566SVbL3jnq1RB0AqSdUJyaEVF1QQI0KxYscI6fHjXiYikhoIUEUQ2G0GK/fv3u1tvvTXg22FhB/oEsqklIqH1xRdf2MdAskForUGZb40aNXy9RHntBxqUlPirqiNT6fHHH7cTdkrEwfODAXS8p3uVdyIigbzHlC1b1oLt77//vsuZM6ddv2XLFmtLAdo6ecMuab9CxiQXEZGkNiQHDx5s7ydHjx616gd/e/bsSdGDxv9t0qSJJdkREKX9DQGK++67Tw+6RMTUqVPd5MmTbUZEmzZt7LpLLrnEd6xkI99rcVS3bt0EAQrve9nojyVff/21VUZRGfL777/7OgdwXsJjcK6Ws7SEevjhh12/fv3co48+atepekJEgqEgRQRxYOMk8csvv3S1atXytX9Kbd9Bho1hyZIlYbmfIundN998Yx85gUotsm5effVVy0qlasp77Yt4aLvC+zcnPzzXCFSQ8ZxUr1cRkdQgOE7bJtaKZDiC9xiGXfKxYcOG1hdbRCQl6EVPFnnjxo1tAzPQpJvx48frAZeI+OOPP6zigdkqGzZs8A2BJ3H03XfftZlMXpCCABpzQ6mm95/DQhUQl1jEsZ+qSmaaLl682Hc9FSC0dGJeauIWtEndBsO0n3jiCWtZTkIeQcdAZjeKiPjTu0gEeRuVZGmT4da2bVt7Y1+zZk2qbochTF5JPwcMZWiLhJYXCLzllltS/X8ZiEY2SsmSJd3GjRvtOgUpJCkEJW6//XY9OCISlO3bt9sGIJsGBClYW3oBCtBWhQouWjEMGTLEdz1rSDIqCchTfRGpYZ0iEr2WLl1qG5t33nlnpO+KyDlRncNmPF0rBg0a5Gu7TTCCGUyff/65b+1N1TvVh4mHWad2IHw0B2c4/jNvggAN2Ddi9h3BCWZXpWQf6eTJkzaLY8aMGfZ1zZo1rQ2cAhQiEgoKUkSQt1FJJQURezYwKbc/ceKEy5w5c4pvp0CBAvaRKDYHW25LRELnpptustdrIBvIDLbnAkppoSCFiIiEA0kvtEuhnSibLX369Dljc6FHjx72Of+WK1cu378dPHjQsiIJbNBKVEEKEUkqoUJz1SQade/e3ZI92TD3Wg6xr0Kggo8eNuLZqKdKwpsF51UScIk3zNOg6oHKfvaKQPVI8+bNbd4E1dspRXJt7dq1bXYea4WhQ4faukFJsiISKgpSRJC3UcmbPD2CGb5EVkpqAhSgHI//w8HXC3iISOjQlo2y4GAzRHh9QkEKEREJtY8//thm2bAeJBOUCt3E6CVP5W3+/Pldly5dzsiypLf0qVOnrLe2iEhiAwYMsP7ztJHz2uSIpCWqH4YPH257IGy8e6gQpH0T521ekIKqQOZ2Jh78TEujeEe1BFUk06ZNs2RWMNC6Q4cO1rYttW1lCXCwtiDZwdu70vwqEQm1/5z2pnRKmmP+BKX2fNy3b5/1JQ8UwQ0OzAxe9UoZRSR4bOaQaTpnzhzf7JiUomcvr2v6mJLV6rXb+OWXX1ymTJn055G4wXOajDRao1122WWRvjsi6Q5rwAceeMAqIFgTMucm8WuRgba0CP3zzz/d3LlzrUWDiKQ/wRyzaX26e/duaw/H+jZxxRXVXGlB64704e2333bLli1zzZo1c+XKlbPrCELcdtttdl7FxrmXxT9v3jwLst9zzz3nHPgcrxhkT+UI7R7fe+893/UEF6h4oAoimKS7Z555xqpVaBulxFgRCcdxW5UUEcSijvI6yubIsA4mSMHBmBPUVatWhfQ+iqR3zJOAf5lwSnDy1rRpUxvCxiLRG0BGBosCFCIiEioExKtWrep+++03d/fdd7tFixa5jBkznvF9Xbt2tQAF7aAefPBB/QFEJNUU3JRwIMD+zjvvuG+++SZBwiXzTyZPnmz7JF6Q4sYbb3R9+/a1ORNsytN2KL0/NwnOTJ061SonvMp92og/9NBDVjVZunTpgG5379699vHaa6+1j0899ZR99B5zEZFQU5Aiwmj7QpCCCxlwH3zwgZswYYINI/IOxCkNUnBA58AuIqFtnwGivqlBhLhgwYLuxx9/tIUhpbZQqycREQkVjjVU+RGgqFixops/f36SLVhWrFhhWaZsLNCLO3H/aALr3EZSwQ0REc/TTz+tB0OCcvjwYbd27VqXPXt23wB2OkvQWtcLqHvV53Xq1LEABfskHgZf03ZM/t+8CVpecTl27Jg9JCTD0c6pY8eOVu0UqIULF7omTZrYbZAMSxtIBSdEJNwUpIgwSmZnz55tQ7MxY8YMi4JfeOGFqQpScICnDzFRdBEJjd9//90WfyhZsmSq/i9zYqigYAOJDSPvNX7zzTfrzyMiIiFBAJ0s03Hjxtka0qva88fmT+fOne1zelHT8ikxklzo4c26dNOmTRqCKSIiQWPWES3Abr/9dl9rMGZEPPvss65Ro0a+IAXD2Bs2bGgtdv/55x/f/69evbpdJCESXGnpxL4RFZIgmMMgbII9wbRe5fF/8sknbSg2WFfQpkWzqkQkLShIEWFlypSxj0Sn0bx5czuA0yYmNdgE9aopKHukvE9EgrN161bLLiWzlEVzILwKDO817i3GRUREAsWmBNmkqFatmrV7Slwd4XnllVes/cNVV12VbBb09u3bbf1Ir+rkbkdE5N9//7WWMswK+Pbbb30DeT3MYJP0HZTwguWcQ+XPn999//33FvxmjoS3/3HTTTdZxbk/NtwleTyeK1eutKHhS5cuTTBvgpZOtHYKZt4E+FvVr1/fffTRR/Y1QQ+CFSTQioikBe1kRxjZ2ZTNHTx40B04cMDdcccd7uWXX7Zsg9QqUaKE9XNUyyeR0PAGjtGiKTWbNpQx+1c1ccLm9Qf1ApMiIiKBoAKX4xKDsD3JHaOOHj3qC0yQyEKVX1IYpvndd99ZRYaISHLIgCeDu169elYt7G2OkiDHUF1JnximzKxNZh75H5eoICdAzua35/7773fbtm1T67AUIhA4ZcoUq3SkrSMBCh5bXnc87uvXr3d169YNOkDBbFN+BgEKWkYxI4T2kApQiEhaUpAiwi699FJf+xcv0zpQXgll69atQ3LfRNK7d9991z5SpZQa3bt3tz6r3hyKDRs22MdChQq5rFmzhuGeiohIevDWW2/Z5iDDLKmQOJc+ffpYmwYSWajWPZscOXLYQFIRkeSwtn3jjTdsbgCbog0aNLDgZr9+/XzrXYlvVNGwKe6fzc95D4mSW7ZsSVBdQxtCWueqZVPqEQR84YUXrBqF2RCffvqpdc9o166d27VrlyUsUKEfiupHqjRYL/C3KlasmNu8ebPNAxERSWsKUkRhyyeQHcdAKIbuphRZCli9erVmU4gEiX6cLNDAUNKUol0GvVfZFCpQoECC17aqKEREJFCTJk2yHt60W6EtqNcvOjkcwyZMmGCfjx49WgMvRSRoVAuziQnaobKR6rWdW7x4sR7hOMLGNZXg3nHE8+GHH1qW/bJly3zXcc7D11Tk+WfeMxtBLQRThzZqBAHz5MnjevTo4Q4dOmRBoIEDB1rnDbpueOeYocLfiCSI9u3bW7CRxDoRkUhQkCJKgxSU3ZORwgIgpRiESGUGJ69eH0ERCcyJEydskU25a2qGZlPu/tlnn1n5LT1CoSCFiIgEg0xlKiEIhLdq1co2jWgXmhy+jyHZbDIxjPRsQfKvv/7ablP9wEXkXHLnzu1r3cNG6YoVK+xzZg54c3IkdnlDmPHbb7+54sWL2yBmqvc8VPORTEl2v/8md6VKlZJtKSjnRgssjtdUTtBSjTbe7O9wvN+3b59VOjBgPFRIZGC+jIfB2y+99JJVa4iIRIqCFFHAG6TLkF4WA+AAVb58eVe4cOEU3w6Lg7Jly9rnOtEUCc7x48dtcUjm6tk2gpILVHjlt1RkbNy40a7X0GwREUkt2joRRCDgQJuH119/3Y4zZ0P/arIhyXQ+V8UFQXWCIOPHj9cfR0TOiuri999/3z4nEPrUU0/ZLAI2rB999FE9ejGKYBOzjmjf5eH4cffdd7t7773XKsQ95cqVc3379rU2ghIcjus89szyYB7E9OnTLeGUfaAlS5a4HTt2WIJCKAOA/EzWEZyXMlNm+fLlIbttEZFgBTddR0KCUj6yUhiezQllhQoV7IDRrVu3VN9W48aNrdRSBxuR4CxcuNAWhAx3SymCjGSf+Jc1E3z8/fffLbMoNUFHERERent7wYMnnnjCDR8+/JytM2i/0rNnT/ucDcScOXOe9fvZGOnVq1fI20eISPwZPHhwgoz6a665xgb3EqjQ3IHYQPUcrbk4xylatKhdx3nKzp073dGjR60SzwuEM59P7ZpC7++//7bZHsycYNYESIp7+OGHbQ8oXAEgzlWZX+rNTaxZs6av8l9EJBqokiJKEJiAN4DqXBlyyXnggQdsIfHDDz9Y0ENEUu/kyZNu5syZljlEC7WUYlHJYt8/SEgWDLitQF/XIiKSPtF2kCzLUaNGpShAgf79+9vwS3pKd+7c+ZzfT5Di+eefdy1btgzRvRaR9KJ06dKWXKcARfQiM98fVRD8zdgk97ApPmvWLBt+7X++ogBF6IMEzIgiqMeMKW8YdseOHe2xZy5EuAIUBKFoYUyAgoAIAZI5c+aoRZeIRBVVUkQJho3RVmbRokVu2LBhvuv/+OMPN2PGDOvxmCNHjnPeDn0K6WO4e/du+3+BVGOIpHfMgvn444+tD2hqMmLmzZtnAwX9S3J5TXuvcRERkZS0YqC/uzcPKWvWrLaBkRIMOWUDBAQ2/AeYiogEa/LkyWf9d/85BRJZ7CM0bdrU2nOxAe7NiyB7ntl7/uc5bFozE1PCgwRSBl5z+emnn+y6q666yo7tjz/+uMuSJUvYz21pG0WQhCHcJOP9f+3dCZyN5f//8atC1rLLmixlK2skJCW7RETIUlKWEC0kodIilURli8q+luxLlmSPsiRrQvatCKHm/3h/vv8zv5lhmOHMnHPu83o+HqdZTDP33HNm7uu+PpvadgFAsCFIESRUbpkkSRK3ZcsWt23bNouuS/369a0cs2fPnq5Xr15x+lz6f9599137PADib+jQofayfPnycf5/kiZNar+/ykhR/1bRYEENJZMaNWrwowAAXDFA0b17d6tsUM9otWWIz//bsWNHm4WkrGZV116JWnvooV7k8Z2/BCD86G9MzCQdtTVVQFQZ4QQpAufIkSOWqOhr35M8eXK3YcMGd/ToUavIe+yxx+z9jRs3tgcSngaOqwpSw6/PnDlj71NrRSWSKoCUIkWKRBuIrgDF/fffb9UaClQAQDCi90iQuOmmmyI3NhWUiDpjQjMr4lJF4fPmm2/aBYh2T0D8aQGnKgp56qmn4v173KJFi8jSaF+rp7vvvttlyZKFHwcA4LJBBm1cKEDhux7Fh6r51D9c1XwffvhhnP4ftfu48847yaAFECfHjx+P9lCLVCXpKLFHm58IjEWLFtnGs+aE6Frio2uBZl4qiRGJZ/369a5JkyaWeDpo0CALUJQqVcoqGvT78uyzzyZ4gEKzRXzUWmrq1Km2RiBAASCYEaQIIr52ML72MKKyy507d8Yrk04VGcqgU2lnfG9wgXCnBZx6t6ZLl86CC3GhLLJLodUTACCumwnPPfec++CDD+xttYRQz/C40gaI7+MV6IjrEOy//vrLpU6d2hUrVowfFICroo1YDdSOWWWBhKG/9wowf/fdd5HvU/WENr11/6LWQj5qGa1/Yy5e4vj+++9dzZo1XdGiRd2YMWPsnlIdM7QvoyQ4BYsSo2pR8xFLlChhlZI+avOlfSIACGYEKYIwSLF48WK7aRRdSK7mYqIghcr6NBAJQNx9+umn9rJu3bpxHhanG4A6depYZkzUPrDKVhHmUSCxKWsrd+7cVuqvm1NfddCVaJaRnve6kQGQeAEKJaPo91a/f2o52K5du3h9DrX53LVrl8uRI4fr1q1bnP+/V155xXqTv/TSS1dx5ADwP7pf3bdvH6cjEah9kComFBjyUYBCrYXWrVvnMmfOzM8hEalyRZ0wVE2kOQ+qpFdQSO21fvzxRwsYPPDAA4kyhFxBkd69e7vq1avbUG512ACAUEIoNYjky5fP3XHHHbbRqb6RMcsyFbxQ5D0uffI1fEkXQl2kdOMbn3ZRQLjSRo1KoqVTp05xHlKq303dnCnz1UfvUyVTtmzZXPHixRPsmIGYNAxPGdXqZ68ARf/+/S2QpmvL5W5ctcGpDOwKFSpwUoFE3NzQMEsNo9WmxsiRI63VZ3yo4ta3WaVKjFSpUsXr/9faUr3kAeBKpk2bdtHfMM1g0xq4XLlynEA/0zwJXRceeughd9ddd9n71EZo2LBhrnTp0nb+fZvfGTNm5PwnIgUE1L5JLRrV3kk0m0Wtf1988UXb20nsmSR6bmgfSVq3bu369u2bqMcAANeKIEWQUca1NpImT54cLUgxZMgQCzZos1MR+StF4tOnT2+zLHbv3m0Lm/hk1QHhvLmrjNZMmTJZj+640LDRX375xYIb+p3z0QBt38DsxMicAXy0Sfn000/bxqcoWKEMLw3t69q1a6w3WrqxUWBbpeoK2F2OKvX08PFV/wGIH10f1JpJgYLRo0dbdmx8KSip30dlatJ3HEBCillpqb9hWjfr748y/OFf7du3tyrXNm3auE8++cTed9ttt1nVBPcXgaHr7VdffWUVjNu3b7f3qW2i5kw8//zzlqCW2FauXOkaNGjg9uzZY1U1WvszxB5AKKLdU5Bp1KhR5PDDqJs+mk2h6oh77rnH+lDGhaLnoosUgCvztVbr06dPvE6XKqCaN28erdWTAh7y+OOPc+qRaM6dO2eB7MqVK0e+T9nZenv58uWx/n+vv/66VVnEdVi8ssZuvvnmyEfUAB2A+OnRo4e1ZbiaAMWsWbPcN998Y9evjz/+OF6bVhqoqo1FbYABQFwomSfqQ0kOBw4csP77VO5fmwsXLth5jLoHoCRFzQy69957o30sAYrEd/r0aatOVmKBkoEUoFBiqNbQSgxVm+1ABChmz55tVdAKUGg+jAIWBCgAhCqCFEGmZMmSlpmtTU6VD/ooQPH7779bBkVcS/IVpNDmlC6ace1HDoSzESNG2GauFp5XovLq2LLNVQr/559/2sbt/fffnwBHCsRe6q0NgyxZskR7v97WJsKlLF261A0fPtz64MeVqvP0HPc9dGMEIG60xtMsiFOnTkVuNhUuXPiqsjl9g2r1slChQvH6/zV0deHChe7gwYPx/toAwpvWG1RR+r+jgqpa1UHBp2LFim7t2rWuadOmfv5qiCutc5Wco1lvqpT4448/LBihymXtzyjRQAPLA0UBLB1bvXr13Jo1a+LcDQAAghFBiiCjG1VfRrb6E0cV3x7DKr31bZAqwg8gdps2bXI//PBDnAIUoqHYCkJcaiCZ73dXfcUVKASC1cmTJ+15qgBFfHoZ33jjje6mm26K9gAQt0zM2rVr24aHr3r2ammDZNu2be6WW25xr732Wrz/f/Wq1u++2hICwJUoOaddu3a2XlDygzZm9fdHiQv624b4r8GU9OSjQcu6f496z6+9AaomAjcPRNfWW2+91RILDh8+bK22Bg8ebLOgFLBQm6dA2Lt3b+RzR2twJRxNmjSJ9TiAkMfuWRBSBoUWI0uWLLF+kzHt27fPvfHGG1ZieyX6OF8ZoDJeAFz6JkHD/tTDs0qVKnE6RWqPoSzYY8eORXu/MlL1+ybxHX4KXCttHKi3fczMaL2tjYSYduzYYQOztWmqdjF6KMimaiC9rn8H4L9rTfXq1d38+fNtE0qDNa+Wqpd8QXK1mLiaQKEqd1u1amXtIQDgcrTeLVOmjPviiy+sDbHmT+jx8MMPW6u5++67z6rEVL0/YMAATuYV6Bxp83vOnDmR71O1hDLzNX8CgXPo0CH38ssvW3WC9lJUSaHrpeZQbN261bpVKFknUNRtQ8ej3zsftWwlmAXACwhSBKEcOXK4Bx980F4fNWpUtH87f/68tYRSVF8DFq+kbNmyLnv27Nb+Q5tOAC6msmotQBWkiOtGj9rjaDi2FrFRjR071n7fSpcu7QoUKMDpRqJKliyZXSMWLFgQ+T4FtPW2rgcx6Tm6YcMG99NPP0U+tOFQqVIle51ZE4D/MpAVBFcCiq4zc+fOtTYeV6tLly6WuawAu5JbACAhqSpfawwlLyiTvFOnTvbQGlq9+TUTS8k5Dz30kM2qwuWpHfPx48fdyJEjI9+n86t7EQTG/v37rTpCwQlVGioZrWjRohYU2LhxowWRfPMLA0H7QDo+Vdzo2KZPnx6npFUACCUEKYKUb9iRMlqjloEmTZrUdejQwTJZ4tJ7WBF1LX4U7deFF0B0+v3q169fZE/vuLZn0u9W3bp1L+r9rwwziTpIG0hMnTt3thYuei5u3rzZMvL+/vtv17Jly8jri1ozSPLkyV2RIkWiPdKmTevSpEljr+uGGcC1t4xQ8smKFSusPYqChjGHoMaH2g1q00TXq0GDBl1V9qRv4LaODQCu5Ouvv7b1csx1r6hSU5u6kydPtjUIa+CLKUAdtcq1a9eudo8el6RDJCzNmND+ilo5aTD2mTNn3N13320JnuvWrXP169cPePteHaPaeOv4RElyM2fODPhxAYC/8VctSGnzU60AlJmiPvlRvfDCC27ZsmWWLRsXGgSsTSkN3VYEHkD0waEaKKzMGN8A0svRQLILFy5c8t/Wr19v2ecKJjZs2JDTjIDQc08bCaq4K1asmD0n1YLMt7Gg7D2C1kDi/k5q8Kl6jWtQdalSpa76c2lYdvv27e11vVSW59V466233COPPGKZmABwJVo3FC5cONZ/V2KDNkx79uzJybzE31tVzukePmp7TgVz1KITLmBzHXQdzZMnj7VO0vVVCQRaM69cudJaoQZDCyXdq5YoUcL2f1SlpIDhO++8E9CqDgBIKAQpgpSGMKmUT6L2GxRtgMY3av7cc8/ZLAt9rqiVGUC4890waCF6pfJ0LWZ1k6GN35g9/8XXg7dOnTouQ4YMCXTEwJXppkt9jXXDpRstVd/5LFq0KFp7gZj0b7oBAuAfChqq+lW/e1cbVPD58MMPrSe2go69e/e+6s+jDY8777wz2t8GAIiNNtU1wyo2mqOovvi4mFpgKRih+3u1hEVg6X5OA+Dz5s1r1YhqVVahQgWbF6UB1FWrVg2K4IRo/6ZGjRo2J+Ouu+6yZDndZwKAV10XwY510Pr5559tM1SLmp07d7pcuXJF+3ctctTSQxtQI0aMuOzn0o85W7ZsljGu0kANbgTCnaqUypcvbwtR9dhVme/lqEWHMmLVx//777+PtoDV4lG/o9oU1gJXfcKBcPHXX39ZkE+zXa5mgC/gNVqjRc2Qjfn21VAVlIZlahaF2oGq/zsAJMY1+8knn7S1strNxWwFqbWvNnaVkf7555+7cF93aAaRgsmaT+ejxBENykZggxOqQND+iQITouQzVf+olVKwBCZi0oB6zcRQQCVlypSBPhwASNDrNkGKIKdWTdoYVbb3e++9F+3f1ApKN6tqPaOPeeCBBy77uVSZoR7G+fPnd1u2bAnaCzGQWNRvVBkpGmY6Z86cOP0/x44ds5sP3YjFHCioRa5uSNR3nN8vhJNg3iwAEps28pTpqOGy/gxYN2jQwE2aNMmC6+pvznUGQGJds7XBq1Z1mnOoLHQl7CgJTrOv1FJYgYrVq1dflFQXbusO/f3X/fvJkyet3WaOHDkCfUhhT63K3n77bbsm+4IT9913n1UjKjgRbPS80e+Z9nnEl1PMNR9AKCNI4REzZsxwtWrVssWXFocaZhrVG2+8YUMYn3322Sv2JdQFWgul//77j2oKhD1ltar9hv5YqvJBJb9X6+zZs5YdpWqKsWPHukaNGoX9+UV4CdbNAiCx/frrrzYkWy0aFAhXtas/Nhbmzp1rmcqqxtB8C7V9uFp///23zT0DEJ6u9pqtlk5t27a1v0dRN07VzmjgwIEuX758LtzXHb65BsePH3fffPONtdVDYOi+7N1337Ugmu7VRG2dFJyoVKlSUP5Y1HK1TZs2Lnfu3G7VqlUX7f0AQKiK63WbaTtBTm2Z7rjjDqt8UEunDh06RPv3Hj16xPlzZc2a1TZPx4wZYzMqtm3bRkQeYUu/ByrFXr58+RUDFFowKmPsnnvuueS/KzChhXDOnDndo48+mkBHDAAIZhs2bLAMWl0PNGB22rRpfllnadNL6zbfvJlrCVCIrmW6UVBVhgIpABAXaos6a9Ys24DXfaQoMJE+fXpO4P+nDHjN9dLmctq0aTkvAXD06FHrQKFZnGqPKGXLlrXkTnWeCMaKBAVROnbs6IYMGRL5u6ZuGQAQbhicHeQ0ILtTp072ev/+/S87bEv/pmqJy9EFW59Tpaiq0gDCkbJIFeB75JFHYg08+KiMXZVKatmhMvaYlEmmQaaiTSQNtgcAhJcff/zR2kYoQFG8eHEbkn3LLbf4bfC2P4ZlizZsVO2h+Ra0IQFwNVTFr/ameoR7gEIbyZoPpIQlHyUtEaBIfAq+6xqplryqoND1ToH42bNn2xxCVTkGY4BC80rUxlEBCh2fWghPnz7dfs8AINwQpAgBzZo1swWgSmxVNhrbxU29FdVbXxl3sdHw7KZNm9rrzzzzjLV+AsKJggoaSK/fGZXTXok2mTTPRW021Is3Js2DUfasWmc8/fTTCXTUAIBgpYo8bX5oZlGZMmXsupAxY0a/fG6t/d588017/YMPPrAy6WuhoZvKMtVMC1XYAgCunjodjBo1ygaLXylZEAlDwQgFJVR90KtXLwtWFC1a1KoZ1XJR93DBGJwQzUQsUaKEJTpkyJDBAipKpFNSKQCEI/76hQDdUPo2U3WjeqnAgj5GZbfaeP35558v+/n69u3rkiVLZgspDQ0GwslXX31lQ+fV11stnK5EWSxffvmlmzp16kULXAU8lO0iujkhawoAwo/6Xau/qnpdz5s3z2/Zj7rGqEJPbSDUP/vxxx/3y+dVH1gdKwDg2jz11FOW+Ddu3DgCv4lMQ7B1/VXb3q5du1qigO7tJkyYYLObateuHbTBCd81/p133rHjVsWHAhVKOAWAcHZdhG/qFYLakSNHLDvg1KlTbuLEia5+/foXfczixYttyJIG+F7Jt99+6xo3buxat27t3n///QQ6aiC4nDlzxm4gtJmkNmq+Nk2Xoook9ZW9UvZLtWrV7OMU+KB1BsJVsA6wBBKDrhdvvfWWe+mll/w6kFrVs2pLqDaCSkApWLCg3z43gPDlhWu2F74HXB21uFZ7rddee82qDUV7IGr11KRJE0tECxUHDhyw+1ElvV3pvhMAQllcr9tUUoQItQ3o0qWLva4SwEsNUqpYsWKcAhSizIIXX3zRDRw40PoSA+FAi1f9UdQwuz59+sT6cfr9UpapMlg1v+JSFN995ZVX7PV27doRoACAMPLTTz/ZdUC0saDriz8DFLr2dOjQwV5/4YUX/BKg0PGqLaHaRulGAQAQf/obqgz48+fPc/oSka5hmtWguU+aA6IAhWY1aT9jy5Yt1iI72AMU69atc2+//Xa0tsJqVUWAAgD+hyBFCOncubPNptDAQ/W+vBz1yFdbpyt9PkWylHGgLHDAy/7444/IqiG9VIu02GjgqYZk6/dMQY1LmTJlipUSp06d2kqMAQDhYfz48daaQeuohCpIVntPJZEo+eTVV1/1y+fU5xs2bJh7+eWXXZIkSfzyOQEgnKi1spKUunXrZhvmSBzLli2z+ZtKtNQ+h1rsqoJxx44dliymVtahML+kbNmy9vzRfSQA4GLcoYQQlcRoQaQKCA2FUm/iS0Xd9+3b5+655x4bIpU/f35Xt27dS34+ba5qgLD6JysbQYMfAa/SzAhVSKgcuFWrVpf92MqVK7sZM2ZYeygNm79UmbFv00ibVJkyZUqw4wYABI8vvvjCrieaD6ZWnHrp78zNzZs3RwbVBwwYcNmgenykSJHCMjgPHTrkt88JAOEkV65cbvDgwW7u3LnWjg8JS9dDbep//fXX9nby5MmtylAJYv6a/5TQNFdKxzx06FB7u1atWjZnCgBwMWZShBhtmubLl88CER9//LFr3779JT9OWXLr16+3IcFqFRWbX375xRUpUsQyAXXjrTJJwGvU7zNnzpwWpFixYoUrU6bMNX0+/a60aNHCKpt27txpFUlAOKM3NMLBZ5995tq0aWOvq22S3r7+ev8WJWs9ps0LzRnTRoZmiAGAP3nhmu2F7wGXv3dTUqaq/5Qcpmtty5Yt7X2hNANQlTeaJbpmzRob4q3ZEwq6+HvtAADBjpkUHqUsOM2k8LUCiK1fvvrtKxP8cgEKKVSokJVIyjPPPGNZgYDXqPWZFoP9+/ePNUBx7tw5q444ceLEFQek9uzZ015XFg8BCgDwPg229AUolBGpTNqE2GT48ssvLUChSgf12QYABN7Ro0eZQZEITp06ZTOelJSp66wCFA8//LDbuHGjBSxCKUAxf/58V7JkSQtQKLFt1qxZdq9JgAIAYkcINwSpzUCePHncwYMHbWjXpajXcNQLoOZYxKZfv37W0kaliIr0A16ydOlSC06ob2nHjh1j/ThltSi4p1ZPl+sxrtYbyorJmjVrZIAPAOBdun6otZ8vOK1rijIiE2ITTEOyRcFwzaPwF63xdD1URS4AIO50X6DWyKVKlbJ5CPA/BSMUhFCralVLKBFTiWVLlixx33zzjStYsGBIZg3ruq5AxY8//uiqVq0a6EMCgKBHkCIEaTCUbyi2Xm7duvWyH6/+w4ULF7YWNZeiuRbq86gbbmXvqUUU4AUaaFevXj2b0dKpU6fLfmzDhg1tXsVrr70W6+bTnj17bOEsCmjQ0xsAvE+JIUr8UAWr1lQJEaDwBUBU0ao12/PPP+/Xz7169WpXoUKFkNzoAYBA2r17t1u1apUl/SVNmpQfhp9pPmbx4sWtjaLaPOXNm9dNmDDB5mXquhVKoia66R508uTJliCge0wAwJURpAhRuuhVq1bNWtQom/tymd/nz5+3wY6aURGbu+++27Vt2zay7ZMy7oBQpuwVDZc/fPiwe+CBB6442FS/AxrOppLi2CjQoYH05cuXd82bN0+AowYABJtGjRrZGqp79+4J9jW0iaEsUtGsC39vhCn4kSVLFsvoBADEnaraNMdRG+cFChTg1PmJzmmNGjVclSpVrEJFg7DVWlHvb9CgQYIlBCQUtaRSUGXv3r3R9mw07BsAEDcMzg5h27dvt6HX6pE/fvx499hjj13y4xSgUJnkI488ctmLvT7Pvffe69auXetmzpzpqlevnoBHDySs2rVrWyVFhgwZrD1TqlSpLvqY/fv3Wzmx+p5eiX4natasacGOdevWuTvvvDOBjhwIPQywhNfaTqjd0rPPPpso/a+VTKIs0k2bNrmnnnoqMljhb0poUaD9UtdDAOHDC9dsL3wP4erYsWN2jf3000/teqs21e3bt7e5m5rdEIrGjRtn129dY9U+e+LEiYE+JAAIKgzODgPaWO3WrVtkhrd+6JeiFgV169aNDFDoJvVSPYnV9kmDnZTNoHLLKw0QBoLViBEjLEAhynq61IaMghMKZKgV1IoVKy77+fT78txzz0X+rhGgAABvUsBAvcfV0k/9o/V2Qvvggw8sQJExY0b37rvvJtjX0TqQAAUAIBB0Pf34449tD2PgwIEWoKhTp45VTqiCIhQDFPqe1J5R1fsKUDz00EMWfAEAXB3aPYW4l19+2fo2KiPc1yv/ShdSBSDU0uZSN966gR06dKgFPJo0aWIZ40AoUcum1q1b2+tqYaZWT5eihaQCeHrOZ8qU6bKfUwPqd+7c6bJnz26ZPwAA71FFqVpMjB071jI7e/funeD9x3/77Tf7OtKvXz+r/gMABI9WrVq5J5980h08eDDQhxKy5s+f74oWLeo6dOjgjh8/bglfCxYssLmYGpYdijQ/48EHH3T9+/e3t1955RU3a9YsSzgAAFwd2j15wOzZs601k9rQ/Pjjj7YAiI0GfpUqVcoywzWkKrYNXAU/NJRbN8tqK5U2bdoE/A4A/1B1xO233+727dvn7rjjDstMvdwsCgUqFHxQ27TYbNu2zf5d819UuqsSXgDR0XYBoU7XA1Wdzp071ypLNexSLf4SkipbtX6bM2eOq1ixolu4cGGC9OBWG4r33nvPNW3a1O8DuQGEHi9csxPze9BMAQWx1T42V65cCfq1vGbXrl2uc+fOburUqfa2NvDffPNNa42kZIBQpeqPypUrW6Konn9ffPGFtdYGAFwa7Z7CiAZoa+NUJZMtWrSwRVRsNOxL7W+mTZsWa4BCunbtahfco0eP2k365QZzA8Fi8ODBFqBImTKlW7Ro0SUDFMp68dHHXS5AceHCBfudUoBCbT8effTRBDt2AEDgFs1aSylAoXZIvhlECU3BAwUokiVLZtevhBoS+v3339u8sd27dyfI5weA+Hr77bfd3Xff7dKkSeMyZ85sG7xbtmwJyhOpxD0dbyi2Iwpk4F/V5wULFrQAhe7JOnbsaMlfzzzzTEgHKHzD1BVwKVSokFu9ejUBCgDwEyopPEIbryqbPHLkiHvppZfi1dNYwY1LbeauWrXK+vUrQKGghRZnQLDS5otudrJly2Z9Te+///6LPkZZLloYq6WZeo5fiTJ9NMRNAbuff/7Z5c6dO4GOHghtXsjKRPhq1qyZ++qrr+w5rADFvffemyiDQ7V5c+jQIWv39NprryXY11LwfunSpdZSQwO6AYS3YLhmKzDcqFEjW7srKUitcjZu3GgZ6nGZnRMM3wMupn0DJUMqIKHKE6lUqZIbMGDAZRPDQsHZs2ctqUDtgn33ngpcpU6dOtCHBgBBj0qKMHPLLbfYxquopH/x4sVx+v+0sLvvvvvc8OHDL/q30qVL2+fy9eSfMmWKn48a8I9Tp07Z4LUUKVJYJuylAhSi6gpVGinj5Ur0Mb45L4MGDSJAAQAepTVOmTJl3HfffZcoAQpfW00FKFThqtcTkoL3jz32GAEKAEHVrljVyoULF7ZWxSNHjrRNX7UuRmhSC93atWtbVYECFDlz5rRWuZo9EeoBCs2PKlu2rK0XfNT6iwAFAPgXlRQeHOylgIMumsr8vtIsCQ16Un9ilStq9oQyUmJmQ9SrV8+GWqksU9UVZOEhmGzdutU2lxR8WLFihbvrrrti/dj//vvPjRkzxjVu3DgyCya22RYlSpSwz62NHbXkSKg2HIAXkNGIUMyIVJ/xqOudxPo7r/ZLShCRJUuWuAoVKiTK1wWAYL1m6z5U1V4bNmy45Ia21vlRWxrre9AmeEJ/D+fPn3d79uyxFrFKCsSlr6fq4qCuC/oZJU2a1L3wwguue/fucaqKCXZqy/j444/bwG89B9SWLFh+bwAgVFBJEaYUdMibN69lorRv3/6KH69STLVymj9//kUBCtENuzZo1UpKpbgKggDB4vDhw5bVcuLECRuYfakAhW56fBSY0ODQywUoRAtrBSiyZ8/uPv30UwIUAOAhui6oj/To0aMj35dYAQpt4LRu3dpef/rppxM8QKHNlS+//NLt3bs3Qb8OAFwtJRF16tTJlStXLtaMe22A617V91CAIjGoIkD31gqg4GKqktD9l6rPdX178MEH3fr1691bb70V8gEKPS/1fVSvXt0CFGpNpoRNAhQAkHAuv1OHkKOSw1GjRtmMCd18jx079rIfr5tyLfpUZhs1YySqG2+80dpH1apVywYv6vMDgXbmzBnb3FFfb1UMaSMmJgXfdLPz6quvxnn4+/Tp091nn30WOcOCIXkA4B2bNm2ya4daN/Tp08edO3cuUb++sk1//fVXlyVLlnjND7taAwcOdM2bN3eTJk1K8K8FAFejXbt2No9CiXGx6datm1VN+B6qbkgMukaoioK2PtGpXaHm+1WuXNmGYavCQD+/efPmWRtDL2T8Pvroo1YNontIJRWo8jGxgmMAEK4IUniQhl1rU1batGnjduzYEef/V4sMDXKcMGFCtPenS5fOhmCpd6iqKdRWRwO3gUBltqjfqcptVVKsgaDa8IlJz31l9ejGJy7P1z/++MM99dRT9nrnzp0tGwgA4A3qdV6xYkV34MABC2BrBoWGYCYWDYR98803IytftbZKaGqHqDkb5cuXT/CvBQDxpcp/JQgtXLjQ5ciRI9aPU9KcMtijPhKDqu7UBnbfvn2J8vWCnTbs1VpagQglLirhUUEmBd8bNmzoiepzdY9QMoPaXWuNMGTIEHtEbREJAEgYzKTwKFVDqN+xgglq1bRs2bI4ZYB06NDBffzxxzZ3QuWMmkMRlTZ8K1Wq5NasWeNq1qzpJk+efMXWOYC/F8fKCv3qq69sITxjxgwrw42NAm4aqq2bmyv1U9XmlZ73KlteuXIli1EghPtbA1EpmK11i56ratmgoa2JWSmn4LoCBcuXL7fKVCV+eGEzB0DoCYZrttbzzz33nJs6dapbtGhRvNspBcP3EI6tEtWuUAElKVasmBs8eLArXbq08xp9X2+88YbtdSjYDwC4NsykCHPKLldpv0ovNYCsZcuWcWp38+GHH7rXXnvNzZw586IAhWijV+W2CoIou6BRo0Z24w0kltdff90CFL42FjEDFHreRx2sp8HXVwpQ6HdDVUcKUGjTSjdMZMsAgDeo/USVKlVscawEDrUCTOxWfppvpABFmjRp3CeffEKAAkBYU/a9MvHHjBljfxdV4aaH2rki+CoL1J5QiY8KUKRIkcL169fPrV692jMBClXcq6LeR8EYVT8SoACAxEUKvIdp6K+i/76AxTvvvHPF/0ezLHr37m3BDZ+ff/45WiCidu3adrMtEydOtH6Uce33D1wLDYRXibEWx3379nVt27aN9u9qo9GgQQPXpEmTeAXPBg0a5EaOHGlVQePHj3d58uThBwUAHqEsXW18VatWzc2aNSvRs2517eratau9rrVYYvW03r9/P4kkAIKS7iVVBXH//fe7rFmzRj60Dg+2NoGaR6BEvnD0008/WSBC1zBVnWsGhdrodunS5ZIJjaFIQ7FV4eibdSiqdKRCBwASH0EKj1MfYmWbiwY/qUIivjf2yiBQICLqQO1nn33W2kKJMmDiWqmB/9sUz507t2Xr6/wqgx+Xp+yWBx54wBbEmzdvdi+++OJFH1O2bFmrmihZsmScs1T1HO/UqZO9rsCHFt8AAO9QAHvYsGHum2++sQGoiclXqXfq1Clbk2n9lFhUNZIpUyZr0QkAwUR/Gy/10PzDYLJ161a7fnz77bcunGhgeK9evaw94rp162yG0ogRI9zcuXM9lcy1fv16V6pUKWsBqUqetWvXBvqQACCsEaQIAypXfOaZZ2zh17hxY1tsxZUu1ip/PH369EWbvhp09sEHH9jrX3zxhXvyyScJVMSBMoQ0lLlnz562ECpatKirWrWqO3ToUHx/tGFDQQSVGCtQpkGnt9566yU/ToOuNUxbLcniEqRQdqsqL/Qc1++Gfi4AgNCnlpTK+hRdD5566qlEHZId9ZqvBBF97aFDhybaHC9lhmrQq17my5cvUb4mAHiN7j8U6A624EliVE+ou4JaPdWrV89aH+kceGmWkq7PSnDbuXOnJQ9qhifJagAQWAzODqNsCGWh//DDD65gwYL2UhkRcR02qQyD2Hr0qyelstq1aJkzZ4576KGH/Hz03qLKCWWl+Cpc1JZIrR80PM7XDgLRM1A1vEymTJni6tatG3l6FHBTT1vNqIjaoiwulNWqLFNlB2lQvJ7niZ1hC3gFAywRTNQ7W9dTtW/QjKFAtaQ4cuSIK1SokDt8+LBt9mjmV2JSYF8bS0qGAAAvXbO98D0EG10z+vTpYw8FJzJkyGDV/5rv56XghL43JbRpD0O0dzF27Fj7fgEACYPB2YhGGXyaS6E5FWqVo7kSqo6Ii/Lly0cLUCibRBmKPi+88IJ77733LLtd2ejKvkDswSL1No2apaGsSr2tgZqIvlBWQMIXoHj11VejBSh8JeEagNqhQ4d4nToN1lZWkAIUGTNmtE0sAhQAENp0XVBrS1/Av1ixYjZrK1A6duxoAYrChQsHJAlBM8kIUAAArkT7A6oq8FVPPProoxbkbtiwoacCFKI2Vr4AxUsvvWSzqghQAEBwoN1TGFGmuVoOKOtElRTKiog6ZyIu5s2b53r06GEbvJs2bYoWqNDmuwIVqtj4/PPP3YkTJxLguwhtyqpUa6EsWbJEe7/eVmstRK9yUP9w0bC6N954I9rp0YJZw65r1KgROR8lLnT+mzVrZs/lVKlSuRkzZsTaPgoAEBpUlaiKxLfeeiuymkLXjUBtrkybNs1mdikRQX28A9FqCgBw7ZmfCjafOXPGs9fOjz76yJUoUcLu5dVpQdeuiRMnusyZMzsvev75562Nl9o9aa0QyGQGAEB0BCnCzF133eWmT59ulRHanFWPZi1O4ur++++3TQBlHSgzMKr06dO7BQsWuAIFCtjn1b/v3bs3Ab4LeNnBgwdt4bhixQrb3NFC2TfY+u+//3arV6+O/Njbb7/dnscxgz6Xy7LV83fChAmWYaoKCvVcBQCELmV9qrJObSkUlPj0009tnRIoStLwDchWEodaPCYmzaFQ+4rXX389Xms8AEB02sTWZr0XW/Lu2bPHrhW6z9IMJ81I3LBhg3v88cc9Vz2xatWqyNdVNaFqeiVsAgCCC0GKMKT2TWr9pKwB9fLXDbQ2b+NCG7sDBgxwb7/9duT71At0zZo19rqqNDRrQRnqGtiogIUWAfgftRbSeddGfFR6O74zFbxIVQ6tWrVyu3btskDa4sWLbaEs+/fvt9koqtSJWsUT3/JebV5p4T1q1CjmpwCAB7Ru3drWM7q+6m+7L0AQKF26dLFrlgLpuu4kNlXLqhXi6NGjE21QNwB4ka/rQIoUKZyXTJ482doBfvfdd9byVvdHanuk1tBeS2LQXodmQg4dOjTy/VRPAEBw4s4lTNWsWdPaD/ha6bzzzjvx+v992RUKbjzzzDPWw9J34Ve5qDaRtemuzHdtLA8fPjwBvovQo3YPJUuWtIoTH2U56m2dw3CmzFMNOVVLsgYNGriff/7ZAmo+ymLKmjWrDcdTlmh8qSWUskrFNwQOAOCNIIUyI1Udp9lYgTR37lxreal1kl4GYmOrePHi7pNPPrGNGQDA1evbt68lUWkmoxfo3lzXzPr169v9lO7TNU9SwX2vVU8cPXrUVa9e3b3//vv2Nh0eACD4JQn0ASBwnnjiCZuR0LlzZ/fKK6+4NGnSuPbt28c7u0SBCj3UosdHPf43btxoZaPqb6ns+O+//94NGzbMJUkS3k87ne/mzZvbolCthvr3728LxpYtW7pwpIW/2nJoGPuxY8fc7NmzIysc9HbatGktE1QZL2r9pOePKlLiQ7MrfMO1NRCuTZs2CfK9AAASh9Ydvg2Ve+65x/3222+2jgmkkydPuqefftpeV2vBcuXKBeQ4lAnLdQ4A/EP3IV6oSlMwQhXqv/76q10/X375Zbsv8uLMpPXr17tHHnnE1gaqFNG9oJLgAADBLfSvtrjmwVEKUPhuqN977714/f9a1IwbN86tXbvWNgmiZi4oq1FzBVRpIV988YXNqgh3DRs2dP369XOvvfaaK1asmC0YtTEf17kKXqIghJ43H3zwgbUHW7ZsWWSAYuHCha5IkSKR2S+i6pz4BiiUTeoLAOk5rsHvAIDQdeDAAVexYkVLgvAJdIBCtOGze/dud9ttt0UO8AYAINBBfd0PqeWRAhTZsmWzloBq3+zFAIWGfqtDgQIUuh4vX76cAAUAhAiCFLDyVV+gQhntPXv2jPOMClEmhgZy+6gPc8GCBV2zZs3cmTNn3GeffWY9orW5/OWXX9rXi8/n9yJVrPz+++/un3/+cStXrrRFY7jRrJL8+fPbPBNlJ3300Uf2vPHRRo+eS3ru+PrBxpeCQe3atbPXVUmhqhWvlTIDQDjRtbNChQpWnakAdLAMhtaGj3p6i6pGNZsrELZt2+amT59+VW0RAQDR6T5WSX2rV68OyVPz119/WfWE7ofOnTvnateubVUGmvHnRVu3bnWNGjVyp0+ftsQ33WdG3acAAAQ3ghSwTds+ffrYQ9S3/8UXX7zqQIJmCqiNlNo9+XoxN2nSxDIfVVKqTHZff0gNs0J40YbSG2+8Ye2uVEmhYeurVq2y/qhaSPsoyKXAhaorNLA9PvTc1XNNz2Pp1q2bBSi8UKoNAOFq8+bN1kJp+/btLnfu3G7KlClB8Xdd1y5fpWjbtm0DuvmjtojahPIF6AEAV0+zjnQPoQqEUKNqfc1CHD9+vLXL1b33N998Y90OvOr222+3vQzNZNKeRPr06QN9SACAeAjv4QCIRtUUyvzr1KmTLWKUgTBw4MB4bwDoRr1w4cIWoPDNn9Cm8eHDh63FkRZLyuiYM2eOZR1qAaEFBbxPz4FKlSrZYHXfkPV58+bZXAr1CVUGqDKVFJRQ8Mw3RyI+9FxTyw1f6zIF33yVQgCA0KTWTtWqVbMkCFXd6dqh2QvBQJshvjZP7777bkCPRW2vVKWoahMAwLXRPWvx4sWjzV4MBZ9//rkFzVW1nytXLgtURG3N7LUEhuTJk9s1WHTfR+U8AISmwKefIah07NjR2hTowq4AglopXE21gxZBRYsWjXx7xIgRdtOsBVPNmjVd3759bSN6x44drlChQtYTM9xbQHndoUOHbD6JAhQagq0ggkpwfRkumkGh6pulS5deU5WGWmn5AhTKfCJAAQChbfHixRbgVoBCVXhLliwJmgCFZkoNHTo0cq2TOnXqgB5P586drd3Fs88+G9DjAAAvaNGihXvnnXdsjmAoUFBCf/+VNKjXa9WqZS12vRqg+Pbbb61tsoZk//333/Y+AhQAELoIUuAiWtSMHj3aNpI1Q0JBhRMnTlzTmVJLhlOnTkW289HiSe0alJWiLHptJKtf5N69e/mJeLB6Qu0nVF2jHuIakq2SabWj8C0iM2XKZM81BS20EXU19PyqV6+eDYbT59WmkYJuAIDQptZ/J0+etGHZCxYssBlXwUBro1atWtnrut7o+IIFmzQAEF50H63r0ODBg+0aoDmQau/kxZZHSm7U91enTh1bH6RLl86dPXs20IcFALhGBCkQa2mrenCmTJnSzZ0715UtW9aCCldr2rRplmGoslMftZMaN26ce+uttywgoix6lWkOHz6cn4oHKPikthfKdtVMEi2aVUWhFk4KShUoUMBmUfjUqFHjqrOU1GajfPnythC/8cYbLSji2zgCAIS2UaNGue7du7tZs2a5m266yQULDVP9448/XL58+WwtE2jKmgUA+M+ff/7pzpw5E/QV/6owVEvllStXurRp07oZM2bYdTMY5jb5mxLT1CZYcy71c1EVvVpAennWBgCEC+9dteA3ynRX650cOXJY5rtKKdWS52pogaRy2WTJktnbWlC0adPGqie0ib1hwwabS6HWUrrp/+qrr4J+MYjYrVixwtp7de3a1Z0/f97lyZPHAgeZM2e2gJSCX3pOaCj2tVq+fLkrXbq0+/nnn12WLFncokWLXKNGjfjxAEAI04aLbx2ga4YyJjXrKlgoKD5y5EjLVtVLHWOgadNGARO1oAIAXDvNQNLfd91nBCtVjz/44IPWWlf31qpMr169uvOi3377zd17771u8uTJ1jpabao//vhjex0AEPoIUuCyNChM2e7aBD527JirUqVKZO/la6GekcqG1IJCGfZaAGro1fz5893DDz/smjVr5u6//37LkNi3bx8/pRChxbHKblV5o0Wkfr49e/Z0Tz/9tDt+/Hjkx2kGyU8//WRD2q+F2pKpPdTBgwdtBoqeq17tuQoA4UCBiddff93WBr169XLBeq3TdU26dOniypUrF+hDsplMCvxr1hfZpADgH74WQhrMHIxV65pD1Lp1a0v0a9iwoV0H8ubN67xKSY5KbvQlpqlNNQDAOwhS4IqyZs0amZ2uBZAWQqp2uJqB2j4aLKksRAUmbr311v89Ga+/3r6OKiomTJhgwQllTurftQDzDcNCcPriiy+s6katveSBBx5we/bsscBBt27dXL9+/aI9pzSP5Fo2Y1599VXXtGlTa2+hwJaqfnLlyuWX7wUAkPj0t13BawW3RVUKwVZVqeN55plnbN5SkSJF3BtvvOGCgdZQO3futCGiJUqUCPThAIAnKBFKMxVVIR5MdEy6//nwww/tbQX3x44d61KlSuW8TJUTmpepahFVVAAAvIUgBeJELRbUrkcLIOnfv3/kJvS1yJ07d+Tr+/fvd++9955tTmjA18SJEy0TRMEQLcA0XLl3794MxQoy+rkpq0WZLGrtpECF2oJpuKmyXNQnVO0n/LVpcuDAAVetWjXXp08fe/vll1+2+SkKfAEAQpOuH2oLOWDAgMhh2aqkCLYB0ArIf/3111YpqNaUwZRdqwrVWrVqWVtFAMC109/6NGnSBNXf1V27dtkG/cyZM+0eXcl96j4QbNdLfzh37pwF3310nzl9+nR7CQDwHoIUiDMtfLQAUvBAG8Lff/+9tdjRzbo/aF7Bl19+6Z588kkLgGiI8tatW92LL77o0qVLZ0PLtGGhYMUHH3xgGxoIDAWOPvnkE3f33XdbAGL8+PHWwum5556zYWa///575MeqJ6oqZjSM/VrNmTPHnnMajqZFufqAv/POO54cCgcA4ULX9/r169umvzaCtBbo0KGDCza6tvmOS0kTWqcAAJBY1q1bZ211N23a5LJly2bzmzSPyIvUWlGzNlQxohkUAADvY2cP8aaNBC2QSpUqZXMG6tat69q1a2ebDNdCGxOPPfaYGz58eGQmiFo/jBs3zp04ccK1bdvWsgS1Cf7CCy9YKyhaQCV+NsuIESNsUayfuUpt9XxQD2wFk9RuST+rSZMmRf4/+lkmSZLkmr+uPr8qKLRgVasofe3mzZv74bsCAASKrvO1a9e2VoE33nijVcY98cQTQXmcqvQ4efKkZbC+9NJLLlho/aVe5EoeuJZWnACA/6P7TN1/vPbaa3YNCDQlad13331WVa4B2StXrrT7cS/S7EJ9b2rne/PNN9vwcgCA910XEWzNfhEytHHcvXv3yFkD2jhWQKFQoUJ++xpahGmz4ueff3a7d++2973//vtuxowZbvXq1VZhoRkZ2ghXWyG1F4L/HTlyxKpXBg4caBs0vvJnDedUxutDDz1k71PQ6rvvvnOPPPKI38qit2/fblUYCkqIglV6zqmSAkDw9EbWTeSff/5pwWQgPhT81iwKBSo0MDsY6RqoIdnq9601STANJlV7xcqVK7vs2bNbG04vtvwA4D9euGYnxvfwxx9/WFsh3dMEOgA8atQo17JlSzuOSpUqWUBf378XqWuDkgJOnz5tsyq1NrjjjjsCfVgAgES4bhOkwDWbPXu2ZbQrw10bxwoiaKikP1vwaPNbAQkfLc7Wrl1r2STKKtHwZH09tRbSEMvixYv77WuHO/Xf1ryJf//9197Wz/jZZ591x44ds3/TQHUNavM3xU/1+X0tpPTz//zzzy0AAiC4eGHDA4EPhmfMmDEofwwKSpQuXdqSMwYPHmzJEcFE/clHjx5tVYua0wQAXr9mJ8b3oHsdtbNVFYXubwOlb9++kX/bdd+ldreqPPQanWe1UvTNwFQFve4x06ZNG+hDAwBcI4IUSFSqeGjWrJkFDKRcuXJuyJAhfq2q8NFiVEOYf/vtN6uuUOsp9YjWTbqPsi6U8agMfA07Q9wpa2Xjxo1uy5YtbujQoTZ7RFmZyiLSUHO1uEiWLJn1QtXgslatWllFhT+pekKBEGWHSoUKFWwDJmfOnPwogSDkhQ0PJB5dP1T9qHlGmkcVzNRKSS0nfvnlF+uLrTlcVCoACGVeuGZ74XuIS8KWuhYoUCKdO3d27733nmdn8WkfoUqVKva6Wjtr7mAwDSwHACT8ddubVzgkultuucUqKvr372+tEH744QcbKKkenmfPnvXr19ITWwO11e5JJbjqZa2AhV766N9VzZE+fXobtowrZ66oTVOdOnUsW+Wee+6xoJNaOk2YMMH6b/vKnBWgkMKFC1tWjz8DFBqGroW4WocpQJE8eXJ7e+HChQQoAMADli9fboHnRYsWueeff94FOwXmFaDQOmfYsGEEKAAAiRKg0DXSF6BQNYWqObwaoBC1D+7atatViigYQ4ACAMIP7Z7gd6pu0NwAzY3wVTWoqiKh+0xraKQGNmsuhjZB1CpI0TptrufLl8+qKrTYUeno3Xff7elFXlwXv6pC+fjjj92UKVPsXEU1d+7cyFkTymzZt2+fq1evXoJVpqxYscI9/fTTVsUh6q/92WefBVXfbwDhm9GIazdr1iz36KOPWnWCguFaJyiZIFjNnDnT1axZ015XIkbVqlVdsNm8ebO1JFE7KiUWAEA4XLMT43tQq1slcqmVXmJW0OlrtmnTxu6fZdCgQXZv7UXLli1z+fPnd5kyZQr0oQAAEhCVFAiYXLlyuW+//dYy8JV5qKqG+++/3+YaqOd0QlHbiL1799oGiAZc6mt169bN/u3vv/+2zfhevXrZxoiqPbQJPmbMmIs2571O8zu02aKWWSVLlrRsFZ0DbW4oKOEbPh6116ner7kjCRGgOHHihLX9ULWGAhS+YdwKkhCgAABvUMs+tUtSgELJAvPnzw/qAMXBgwdtSKloqHcwBihk4MCBrnz58tYaAwDgP7pOqYJcLf8Si5LrdM+lAIUS6jSPz6sBCn1v2iPQvbtmPgEAEN6p5EgwyjZp0KCBZfip7ZJvIaJN57feesvmHiSErFmzRlZI6Bh0416/fn335ptvuh9//NEWQtqMVwsqtRNq0qSJtTcqWLCgGz58uPMaLXR/+ukn16dPH1egQAELBGgwqQaMq0WWbxC2qk8UqFBgQP22tTmjoeQJST8DlS3nyZPHMoRU2aFF+a+//uqeeOIJWmoAgEd89NFHrmnTpnZNaty4sZs2bZolCwQrXY+UWHHo0CFrP+hrtxGMdA1XcL9SpUqBPhQA8BRfy2Jfq9uEpsoNtdsdNWqUVf8ruO8LlnuJvk/NjtR1Vq1+ldToaysMAAhvtHtColi6dKlly//888+RwYTevXvbwksltIlJg6C1AZ8yZUp7RK3uSJcunQUyypYta4OjNedCgQ5/D4ZOKAr+aLbE5MmT3apVq9y2bdts8eejcmjNkVA2q74nVZPo+/3www8TdQGuRXePHj2sNZhowLo2sXQ8AEKPF1pHIGGokrF48eJ2PerQoYNdb4K93eKAAQNcx44draJwzZo1rkiRIi6YqTWIryUJAITDNTsxvgdtnJ88edL+vib0vaC+htreKqlPf8snTpzoHnnkEec1+nk1atTIqvpFXQ50Txjs6wIAQOJctwlSINFo8TV27Fj36quvul27dtn7lN2vDEUNbE7MXp/q36xKArU72r59u7WK+uSTT2zuggIo+/fvj/bxGuCsagtttChooVYV+i/E5G0AAEY5SURBVLhAbvpokKeCP74MFFWKaMD0hg0bon2sKkf0x0DBGFW1aM5DoDJTtSDVQLT169fb+7Jnz+5ef/11yxpicwUIXV7Y8EDC0TVfVXra+E/Ma/3VWLt2rSUqqPWE2kQqwQIAvMQL12wvfA9R75EUxFf7Pm3W675UnQC8RvfcSpRTpwVVAWp+pDovAAC87y+CFAjmmQjaKH/jjTfc0aNH7X1qQ/Taa6+5KlWqBGwDQ31HtdGvVkPaRNfmhIIAl5pZoYWVNtW10NLralGkKgxRa4gHH3zQAgfKukmdOrV9TNQMEbWQUHBBm/S+xaneVrbO8ePH7X0a9q0y499//93aYxw+fNiCJWrFdKlj0tAxBVGUeaPPp3kcGhauKgX9v8oI9R1jYtKxLF682IIRCqKIbipeeeUV99xzz9m5ARDavLRZgGuna5eqFjXPKJToGqzkBVV9KIN1ypQpQR1UUSAlsaogAXiHF67ZXvgefPdJSuDq27evXW+0ca97Ua/R96n7/RUrVtj97zfffGPXWwBAePiLIAWCnRaV7733ng251iBNueuuu2z4Y8OGDYPixlvVFmqdpCoEDfhctmyZ27Rpk7Up0uaAqikUcFALo9io77YqHxTQUFBm9erV0YaDqedozP9fARAFNzRUOjb6GJUh33777dbaSQt1UYDltttuS5Ah1/GhY5s0aZLr16+fBX9EgRIFJhRACeaBqQDCc7MA107XLVVHKsiv62cotatQVd9XX33lcubMafOcgvk6pQ2f3LlzW0KE5krpug8A4XLNTozvQcF2tdHVZnqtWrUS5GsoaU+JejJ48GDXunVr51VqpayKkZEjRwa0IwEAIPERpEDIUIslZY8MGzbMNvNFGRZqC6GFmm/zPZjs2bPH7dy505UuXdo2MubNm2cLWW3Gq2JCgQctmlU1omCLghJqbaUqCVVCXImqC3r27GkLOD06d+5s79Ogby2U9bkUhFCgQl8rmJw6dcqGkKvvuKpARMfeokULm4dx6623BvoQAfiZFzY84J/refXq1S1YrueBBmRXrFgxJE7tl19+6Zo3b27XcFX/qbVjsLfNUAWlgv9aW1CVCCCcrtmJ8T306dPH2hS3atXKDR061O+ff8iQIdaKV3Tf1KlTJ+clSsJbuXKlVVAAAMLbX1RSINToJlsZJBqgfODAAXufNuIVqGjXrl1IZgkq01HtIxSsSJs2rWWOxMyQURskvU+tnLQ5osCDXg/mFhOxBW4+/fRTe/gqQDJlymT9vNu2besyZswY6EMEkEC8sOGBa8+QrFq1qgWnld2vGURFixYNidO6detWV6JECUuUUFarNqVC5bq7ceNGCwwBQDhdsxPje5g5c6YF2xW0btq0qV8/t66Rqs7QRr4qKXr37u28RD8ftR2eM2eOmzt3rnvggQcCfUgAgAAiSIGQpQ39MWPGWJsgDYf2UTamshw1SCzQrYyuhgZa33PPPe706dOue/fu9j2oB6kqLVSFoaqMUKMNnalTp1r/1AULFlhQRpTd2aVLF2udQXYn4H1e2PDA1VPLwRo1alhLQ/3916ZEqCQWqN2kBmX//PPPrlKlSlYZGWwVigDgT164Zofy96DrjQIfqj7XvZKS2EItOe1ydu3a5WrXrm1BdCXejRo1yj366KOBPiwAQAhct/9vki8QJNS6oGXLlrapP2PGDBu8qYWb2i88+eSTlqGpBZ02xf/77z8XClRZULduXQtQaDi4smVeeukle59aQWnhptkWoUCBiCVLlrinnnrKfhYa7qah43r//fffb0ELDRJX+TIBCiAwBg0aZP3qdXNYpkwZ20SOjVoYVKhQwaVLl84elStXvuzHAzHbDmlzXwGKUqVKuR9++CFkAhSi1pLaMFLlnzZSCFAAABLKH3/84WrWrGkBCl07tQbzUoBi+fLllninAIXuE3XPSIACABBXBCkQtNT6SJmZKhFV+4i33nrLhkRro1+DLbWRpo0QDWHWQOvLDa8OJAVStJG/Y8cOm8egKhFtgmhBqsyZO+64w+3du9c1atTIhk0H6/egnqI9evRw+fLls6qWzz//3BbYefLksaCLZnQsXLjQhqTqZwcgMMaPH29zbDTXZu3atdZyR214YguELlq0yEry9furm0sNDVYwVTfSwJXkzZvXZg7pOaPnkDb7Q4XWEr4NIl2bs2XL5kKBqj2UKKAEAQBAwvBViPuLWgArQKH1VcGCBd2UKVOsot4rdB1V4OXw4cOuWLFibvXq1e7uu+8O9GEBAELIdRH+vvoCCUhPV22Wa3N/3LhxVirkkyFDBletWjVb/GlDLn369EHxs3jzzTdtc18VIgqmqO91VGpppYwTtU5SdcW7777rgoHOrQJEqmaZNWtWtA3O1KlTu8cee8w2plSu7KUMICDUqXJCN4UDBw6MDDIq8PDcc89Zi7krUcBXFRX6/1W15vW2C7i6a/H58+cjN1f0nNEjlDZbNm3aZNdeJT706tXLgnqh4umnn3bDhg1zHTp0sDleABAfXrhmJ8b3oAQOBRL69+/v2rRpc02fS2sxVdBrxkXmzJntflYVr16h1sX33Xefvf7www+70aNH2/0iAADxuW4nifVfgCCkzXDNddDjww8/tIWe2gup/7VaTWhBpIcy+e+9914LWCjrX9kcgWg9pKFoGoYmGigdM0AhhQoVciNGjLBN/759+9qmSSDKYjUL5KeffrJFpgITS5cujVbZoRkaypRVpYQW2alSpUr0YwRweWof9+OPP1qFmY/+HqryTFUScaFNW21AXy7Qq78XekRddCA8aKNFM4c2b97svv32W5c0aVKrDgylNkmqAmzQoIE919VSMlQGZftoPpeuwfoeAAAJN7NI6yp/XN/ee+89u29V0pqunV4KUIiS1nRtUgDm7bffDqk1AQAgeFBJAU/QZrqqFLS5rocyJKNKkiSJtTxRAEBZxnqpNksJ2Zbot99+cyVLlnTHjx+3+QyfffbZZT/+xRdftGHhyjpRP3iVASfkJpP6iCuLR19LLxWg0MZkVDpHCvToocVnKGXJAuFo3759Lnv27Pb3UMOAfVSlpbk++l2/krZt21rgV39HNdPiUpR5rjZvMYVyViauTIEpbUKopZioyk4VjKFWBaIKIc2fUHundevW2aYKAIQLKiniPlNQLZqU+Xktaxu11XzwwQft/mvIkCFWDecFqrJPmTJlZMWEvj9a/gIArmXtQZACnqQZFgpWaKNNm3IHDx686GP0i1G8eHHrp625Cppv4XtkyZLlqlsYKUNTG4WaMaHNDwVENDRMmTNXCrQoo1ML2QIFClh5sTYbVcFwNceijRj1BFWwRA/NjPC9VJ96LbxjypgxowVxVDGhwITODYDwCVK88847VtGlv0N33XVXvCop1FKKIIV36Wdbr149991331n1hNouNm7c2IUaVTUqEKcsT83Q0NB4AAgnBCkSz/79++1+U/eiCpDr2umFNrlqV1yrVi1XpEgR62pA5QQA4HJo94SwpgHV2oTQQ5v1u3fvjqwY0Eu1Q9EviTbt9IhJraFUhqtghV6P+lBmse+lNvq1+Dxw4IA99LpmS/hogOikSZOuGKDwVXsoO1UtoX799VdrAyXKULnllltc1qxZ7aUeasOiDUKVIV/qoeDErl27oh1LTDp+fS1fZYle6nv2wsIZCFcKNOpGMWZgVm/rb8flqJJLQQoN471cgEL0Ny0uf9fgneBX9erV3fr16y1jUhsSaiEWatTyrGPHjva6nuuhGKBQBYiu2bfffnugDwUAcIUENCWtaQ2mzXwFyb1wn6V1Yv369S15Qd+Pvj9VJgIAcK2opEDYLhrVykQbLjErDfbu3WuBjWuhXtH58uVzgwYNcuXKlYvX/6sAitpDbd261UqMr4UWjsqqjlolosedd95pD2XDAvAWX+Dx448/jiy/z5Url2vfvn2sg7NVPdGnTx+rPtPMn3DMysSlafaEWjop2K/A/cyZMy85XynYKZFALRgVcNEsByUFhNpmkVprKNioNYq+DyUvAEA4XrMT43sYPHiwVcg3bNjQ5ciRI97/v9Zc7777rlXFr1mzxhPB5WHDhtkQcd1LqxWwkhaUIAMAwOVQSQFchm9GhR4xaUCaNmMUsNAw7phVCmfPno18qcVx1CoH30tfb86roU0ULWRFlRC+Co2oLzXnwlfRcalHunTpLBihihKynYHw0rlzZ5sbUKpUKQtW9O/f3/6WtGzZ0v5d7QYUvNRgQ9EN9GuvvebGjBlj1VT6GyP6O3Ytf8vgDbrW6ZqjzZXZs2fbtSXUaN6SNpm0sa95T8OHDw+5AIVoTaK+5to0I0ABAAlLw6537Nhh7TPjG6RQtYHWV/L555+HfIBCCS+vvPJK5PfUpEkTu5ZynwkA8Kckfv1sgAdoOLSqIPQINFVkaC4EsyEAxJU2Y9XyTYEHBRyKFStmm8vKghcFYaMONlT7AQVnVbofVc+ePW1ANsKbemnr+aMNllDNltRMFs2GUjarsj71MhQpwDJv3jzbLAIAJCzNYVJw+0rtMmNSILlVq1b2uqoOYq6vQtFzzz3nPvnkk8j1oR6hGOwHAAQ32j0BAAAX7q0j8H/UqlDBiXvvvTfkT8vYsWMjB3xPmTLF1a1bN9CHBAAB5YVrdjB/D9rQHzhwoFW0b9y40RNVqatXr3ZVqlRxAwYMcE888USgDwcAEGJo9wQAAIA4U4a+emirxUX69OltdlN8M0iDydq1a91TTz1lr3fr1i2kAxTHjh1zKVOmtFaPAIDg9P3331uAwje/IZQDFP/8809kO6e7777bWiGnTZs20IcFAPCw/+v3AAAAgLCkzQj1mFaAQl544YXIFmGh6ODBg65OnTo2Q0qDv9944w0Xyt566y2XIUMG99FHHwX6UAAAl6DrjS8wrnZPlStXDtnzpBaJan3sm5MoBCgAAAmNIAUAAEAY02BsbeSPGzfOJUmSxH355ZdWeRCq/aYVcFEv8b1797o77rjDWj7dcMMNLpStX7/enT592mXLli3QhwIAnnf27FmbDajg8MmTJ+P0/2hOw7Zt2+zvdL9+/VyoGjNmjHvooYfsGvrmm28G+nAAAGGEwdkAAABh6vfff3c1atRwv/zyiw2U1tyGUM7+jIiIcG3btnXLli2zfuXTpk3zRPbnnDlzLKO1QIECgT4UAAiLqggFhvXwtTy6nFWrVrn333/fXh88eLBdf0Lx+vn222+77t2729uPPvqo++qrrwJ9WACAMEKQAgAAIEy98847FqBQ5ufMmTNd0aJFXSj7+OOP3eeff+6uv/56N378eHf77bc7L1BVi3qCAwASnoZx79y504IVSZMmveI8pzZt2thLtU2sVatWyP2ILly4YAH+oUOHRrZ8fPfdd+1aCgBAYuGqAwAAEKY++OAD66G9YsWKkA9QzJ0713Xu3Nle12yNqlWrulCnzFY9AMBLNPOgdu3aFiBXEPbrr792wUQtAm+77TZXqFChK7Y+nDRpklu7dq1VI3744Ycu1KhaRD8LBSgUlNDgb11DCVAAABIbQQoAAIAw8t1331nGp6RIkcINGzbM5cyZ04WyjRs3ugYNGrh///3XNW/e3D3//PPOCzZs2OAKFy5sFS8A4BV///23BcYHDRrkQtn58+fdq6++Gll9kClTJhdqkiVLZtUiWg9MnTrVtWvXLtCHBAAIU7R7AgAACAMKTPTo0cO99dZb7pVXXnF9+vRxXnDw4EFrr/HXX3+5++67z/qBh+rQ75gmTJjgNm/ebP3OAcArqlevbo9gtX//fmsZmDlzZte4ceNYP27kyJE2LFvBiVANjidJksSNHTvWvo9ixYoF+nAAAGGMIAUAAIDH/fPPP65ly5a2ESHKmlQboVDfzFebiocfftgGgOfPn98Gf8dlyGmoeOmll1zBggVDvtIFAK71GqaHj4LSCWn79u0WdNBco9iCFJpX0bt3b3tdgX+1ewoVS5cutaqJfv362TogVapUBCgAAAFHkAIAAMDDjh496urWreu+//57y5hU3+kWLVo4L1SGqLWTqgzSp0/vZsyY4TJkyOC8NrxVg1gBIJy9/fbbkQGBxKBrSsOGDV2WLFli/Ri1qvrjjz9crly53LPPPutCxeTJk+26oqCPguCtWrUK9CEBAGAIUgAAAHjUjh07XI0aNdzWrVttw1uVBg8++KDzAmWuamCpqkKUEapKCgCA93Tr1s117tw5WiVFQlaYaRbQuHHjYv33P//80wIn0qtXL5c8eXIXCgYMGOA6depklZSPPPLIZVtZAQCQ2BicDQAA4EFqRVGxYkULUGgz54cffvBMgGLgwIHu3Xfftdc1+FuzKLxEG0jPPPOMGzNmjDt79mygDwcAAkpt/BRoj/oIJLVJOnbsmCtQoIB74oknXChUHqp9YMeOHe360rZtWwvyp0yZMtCHBgBAJIIUAAAAHpQiRQrbyC9VqpRbuXKlK1KkiPMCtaro0KGDvf7666+7Zs2aOa9Zt26dGzJkiLXh+PfffwN9OACA/+/QoUPuww8/tNf79OljbRSD2blz5+w6+d5779nbqgBRoP+GG24I9KEBABANQQoAAACPUIakNlB81Hd6+fLlLmvWrM4LNFdD35Ov0uDVV191XpQ5c2bXo0cPy3bVQFMA8JJTp065n376yR7y22+/2eu7d+92weDzzz+3eRS6zsQ0YsQI9/fff7sSJUrYvKdgt2bNGmtdpWDKF1984bp27WrDsgEACDbBHfYHAABAnLMl27Rp4+bPn+9WrFgRGZgI9izPuNq0aZN7+OGHbdhnnTp1bGipVzdacuTIYVUiAOBF2jivVKlS5Nu+eRPNmzd3I0eOdIF24sQJC/grGBGVAuQKUoiut6FwDbr33nvtmDNlyuSqVasW6MMBACBW10XoSgsAAHCVNMDy5ptvtkGSge4THa6OHz/uHn30Ubdw4UJ3/fXXu7Fjx7rHHnvMecWePXtso2Xv3r32UoEYtbMCAITfNTuhv4ejR4+6ffv2udSpU7vbbrst8v1KAChbtqxdfw4cOBC052/Hjh0WUMmXL1+gDwUAABfX67Y3UusAAADC1Pbt213NmjVtQLY2VMaPH+9q1KjhvOLw4cPuoYcesgCFhpR+++23ng5QTJw40eXNm9daiQAAEl+GDBnsEZOviqJ+/fpBG6DQTCNVTGg9sGzZMmtbBQBAKGAmBQAAQAjPaChTpowFKHLmzOl++OEHTwUolG1TtWpVt2XLFvv+5syZ49KnT++86uzZs9YDvWTJkm7JkiWBPhwAwP935swZm+0gLVq0CMrzomrKihUrWquqNGnSWDUFAAChgiAFAABACJo7d66rXLmyO3bsmLv77rvdqlWr3F133eW84vTp065WrVqWFapB0mrxlCtXLudl6oOuDNjbb7/dlStXLtCHAwBhafHixW748OFu/fr1ke+bOnWqtau49dZb3f333++CzZQpU+z6cfLkSTs+fQ+33HJLoA8LAIA4I0gBAAAQgkqXLu3y5MljbScWLVrkqc0IDQHXjI2lS5da/1IFZLRx73X6GY4ZM8aGhN9www2BPhwACEtffPGFa9WqlZs5c2bk+3wDvTXcW7OfgsmQIUNcgwYN7NpZr149N2vWLLt2AgAQSphJAQAAECL++ecflyxZMnfddde5tGnTWksg9c0Otg2Ta3HhwgXXpEkTN3v2bJcyZUrbJCpatKgLJ0mSsEQHgEDRNUeznvLnz29v796926r5fEGKYKI5GWoTKK1bt3affPIJQW4AQEjyzh0tAACAh2lw9L333us+/vjjyPdlypTJcwGKpk2bukmTJrmkSZNaew19z+FAVSNHjhwJ9GEAQNjr2LGjmz59ulX0yVdffWXzHTTvQRWMwURtEe+44w7XvXt399lnnxGgAACELNK0AAAAgpzmTTzyyCNu//79bt++fa5ly5Y2FNNL/v33X8tQHT9+vAUoJk+e7KpUqeLCwfnz561Vh+aLqDpGw9ABAIGn4ISv1ZOuvcFyTKqo9CUrrF692nNrAgBA+PFO6h0AAIAHjR071rI3FaAoUqSIW758uScDFC1atLB5DGp1NHHiRFe7dm0XLhR4yp49u7XwKl68eKAPBwDw//3www9u+/btLnXq1DYDKtDOnj1rFR5Dhw6NfJ/X1gQAgPBEkAIAACAI/ffff65Hjx6ucePGtimhlg7Lli1zuXPndl77Pp966ik3atQoa1OhSoo6deq4cHLrrbe6NWvWuPXr19vMEQBA4Oh6mzdvXrdo0aLIKgpVu6VKlSqgP5ZTp07ZrAy1QuzUqZM7ePBgQI8HAAB/ot0TAABAkFErh8cff9xNmDDB3n7xxRfd22+/7ble05pB8eSTT1q/b31vqhqpV6+eC1dZsmQJ9CEAQNj7/fff3c6dO+0apUCFNGrUKKDn5fjx465GjRpuxYoVVtUxbdo0rhkAAE+hkgIAACDIqNe0BkYrq37EiBGub9++ngtQnDt3zgIxvgDF6NGjLVM13OzYscM2wgAAwUEVfapcLFmypLXjk3z58gXseFQxcf/991uAIl26dG7BggWuUqVKATseAAASApUUAAAAQUKb1ZrJIB06dHDVq1d3t99+u/Mata9Sb+8ZM2ZYIEYbQhoMHo4/78qVK9vgbJ2LokWLBvqQACDsFSpUyM7BiRMn3JkzZ+z1rFmzBuS87N692z300ENu69atVjkxb948d+edd4b9zwgA4D1UUgAAAAQBDcFU1uaff/4ZWU3hxQDF33//bUOxtSmfPHlya1kRjgEKXxWFNsAUtMmfP3+gDwcAEMX+/fvtZdq0aV2KFCkCcm4mT55sAQrNLlq6dCkBCgCAZ1FJAQAAEEDKon/++efdoEGD7O0hQ4bYDAovUk9tBSh++OEHG0A6ffp0a2ERru644w63a9cut2nTJpcyZcpAHw4AwDlrQ6gqP81+kGzZsgXsvGhAttYJao+YM2dOfj4AAM8iSAEAABAghw8ftjkMixcvtrfffPNN98ILL3jy57F3715XrVo125C/+eab3axZs1zZsmVduFM1iSpoAACBFxER4Zo3b24vBwwYEJAgxebNm61yQsFrVVW+9NJLifr1AQAIBNo9AQAABMC6detcqVKlLEChbM2vv/7ade/e3TYkvEYbLhoErgCFNnu+//77sA9Q6JwAAILLv//+66pWreoqVqxo1X+JPY9i9erVrly5ctYGUa0AAQAIFwQpAAAAEtncuXNtE0IDMTWLYOXKla5OnTqe/DksX77clS9f3u3Zs8faGy1btizse2prE0qDWbURpg0xAEBwSJIkiVX6LVq0yB07dixRKynUCvHBBx+04MipU6fcP//8kyhfFwCAYECQAgAAIJEVLVrUZciQwdofrVq1yjasvUhDsbXhoo2eMmXK2NBPtbAIdwpSaCPslltucTfccEOgDwcAcAn79u1LtCDFkiVLLHB98uRJm9WkZAa1RgQAIFwwkwIAACARnD59OnI4cpYsWWzDPkeOHJ7cpFYv7w8//NDma+j16tWru4kTJ9qwbDjXtm1bV6tWLU4FAASxxApSLFy40K4JWic89NBD1v7Rt14AACBcUEkBAACQCPMnVC0xatSoyPeposCLAYrz58+7Z5991nXp0sUCFM8884z75ptvCFDEkCtXLnsAAILH1q1brTWhqhn279+f4DMpFixY4GrWrGkBClVX6npJgAIAEI4IUgAAACSgr776yoZG//77765v376enkFw4sQJV6NGDTdkyBAbAP7BBx+4Tz/91CVNmjTQhxYUjh496g4dOhTowwAAxOKvv/6yQMWOHTsSpZJCLZ2SJUtmgYqpU6e6FClS8LMBAIQlghQAAAAJ4Ny5c659+/auWbNm7uzZs7Z5v3jxYk9WT8iWLVtc2bJl3fz5861qQu0qnn/+eQtW4H969+5tFTQDBgzglABAEFIVheZDKNiua3dCV1KUKlXKLVu2zE2ePNklT548wb4OAADBjiAFAACAn+3du9dVrFjRDRo0yN7u0aOH+/bbb126dOk8OyC7dOnS7tdff3XZs2d333//vXv44YcDfVhBRRU0Oj/a9CpSpEigDwcAcAlp0qRxFSpUiGzHp+u2v4MHCuavWrUq8m21g7zxxhv5eQAAwhqDswEAAPzc8kiZkQcPHnRp06a1dk9eHZL833//uV69erk33njD3tbGjgZkazA4olMFzZw5c9zy5cut/RcAIHj55lH4u9WTZlDUrl3bWjypgqJw4cJ+/fwAAIQqghQAAAB+pMBEq1atrHJiypQpLm/evJ4NxjRt2tTNmDHD3n7uuefc+++/z/yJy1DrKwIUABC8ND9qzZo1bv369X4PUixcuNACFKqoq1y5ssufP7/fPjcAAKGOdk8AAAB+2LBXi6eosweUMe/VAMXKlStd8eLFLUChNhhffvmlzVlgQPbFLly44IYPH24zSgAAwW3RokWufv36bty4cX4NUmjOhaoqz5w5YzOqJk2aZNUUAADgfwhSAAAAXIN169a5kiVLurp167p//vknsrVPypQpPdneqV+/fq58+fJu165dLk+ePO6HH35wTzzxRKAPLWhp+KoqaypVquQiIiICfTgAgMvIkCGDK1eunEuVKpXfhmYrsF+zZk13+vRpV7VqVRuSzQwKAACiI0gBAABwFbThPHToUFe2bFm3c+dOd+TIkWjVFF5z+PBhywJ98cUXrTrgsccec2vXrnUlSpQI9KEFffuvzJkzu8aNG1u7JwBA8NJ1bunSpZGVkNdaSbF582ZXrVo1d+rUKQtWT5061e+DuAEA8AJmUgAAAMSTNhueffZZN3r06MhNDbU8SpcunSfP5ezZs92TTz5pg0S1ufLRRx+5p59+mk33OFBwQs8PL1bWAIBX7du3zy9BiltvvdWVKVPGnTx50k2bNs2lSJHCT0cIAIC3EKQAAACIBw3TVBXBli1brK1Tnz59rLrg+uuv92Qw5oUXXnCDBw+2twsUKOAmTJjg7rzzzkAfWki56aabAn0IAIAABCkUoP7mm2+sHWTq1Kn5GQAAEAvv3U0DAAAkYIun9u3bW4Aie/bsbvHixe7ll1/2ZIBCsyaKFi0aGaDo2LGjtXciQHFlf//9t1VPqA85ACB0aO6S5kzt2bPnqmdSqPXj+++/HzmHSPMnCFYDAHB5VFIAAADEkWYKjBw50r3yyitu4MCBLmPGjJ6snujZs6f78MMPbYMlV65cbsSIEe6BBx4I9KGFjDfffNPNmDHDbdiwwW3bts0lS5Ys0IcEAIiDXbt2WUDeJ75BiqNHj9pw7F9++cWdP3/ede3alfMOAEAceC/tDwAAwI9Wr17t+vfvH/l2njx53Lhx4zwZoJg5c6YrUqSI++CDDyxA0aJFC2tvRYAiflRd06RJEzd8+HACFAAQQlQt+cknn9jrGTJksCqI+FbRKUChNlGPP/54Ah4pAADeQiUFAADAJfz333+2Wd+tWzf377//urvuusuzm/UHDx50nTp1suCLb9Dnp59+6qpXrx7oQwtJadOmdaNGjQr0YQAA4kmzl3bv3h3vKopz5865+vXruxUrVrh06dK5uXPn2rUUAADEDZUUAAAAMRw4cMDVrFnTBmJfuHDBPfroo65EiRKeO09qRTFgwADblFGAQrM1unTp4jZt2kSAIp5UebJq1aqE+UEBAIJ2aLaSGlR5OHv2bBuUrXZ/hQsXTuCjBADAWwhSAAAARDF9+nSrmtBmQ/LkyW1w9IQJEyw73kvmzZvnihUrZgOxT5w4YUEYbbJraGiqVKkCfXghR+etTJky9B8HgBC2fPlyt3jx4ngFKRTcHzt2rEuSJImbPHmyK1u2bAIfJQAA3kO7JwAAgP9PAy7fffdde12BijFjxnguG1KDnFUh8s0339jbmq3Rp08f99RTT7kbbrgh0IcX0gPHJWfOnIE+FADAVVKLx/gGKQoVKuSSJk3qRo4c6apVq8a5BwDgKlBJAQAAEGWjQZ5//nm3cuVKTwUo1L7i2WefdQULFrQAhQISqqLYunWra926NQGKa9S7d2/3/fffu7Zt2/rnBwYASHT58uVzN998c7xmUjz99NOWANC4ceMEPjoAALyLIAUAAAhbmjehjQWfJ554wq1bt84GZqvVkxccO3bMvfzyyy5v3rzWukpDwGvUqOHWr1/v+vfvbwM+cXV27dplvch9ypcv76677jpOJwCEqGHDhlkw/0qVFLqGHjlyJPJthmQDAHBtCFIAAICwpOBEhQoVXMWKFW0jX7TBrDkNXnD48GH36quvujx58ri+ffu6s2fPunLlyrklS5bYUE9f1Qiuzo4dO2wGxeOPP+7++ecfTiMAeMT+/fsvG6RQgLpKlSo2e0KvAwCAa0eQAgAAhBVlvn/yyScWjFixYoX7+++/3YYNG5xX/PHHH9auKnfu3DZr4s8//3R33nmnDQRXOyIFZnDtNm7c6I4fP27BLoIUAOANERER1h4xtiCFrqmqRjx48KBLlSqVy5AhQwCOEgAA72FwNgAACBu//fabDYheuHChvf3AAw+4ESNGuFy5crlQ9/PPP7uPPvrIjR492p07d87eV7JkSde9e3dXp04dd/315Kb4k87p3LlzXYECBdxNN93k188NAAgMrQvOnz9vr99yyy0XJTk0bdrUbd682WXPnt2qEtOkSROgIwUAwFu4WwUAAGGRGTlo0CCrKFCAIkWKFLahP2/evJAOUGimxpQpU9z9999vlSEKuChAoWqJ2bNnu9WrV7u6desSoPCTsWPHugMHDkS+rfMecxMLABC6VGEpmteULFmyaP/2+uuvW1WiZlZ98803FqgAAAD+QZACAAB4nmZNrFy50lo7aQaF2jt16NAhZDfvf//9d9e7d28bhv3oo4+6xYsXuxtuuME1bNjQ/fDDDzZ3omrVqgxx9qMBAwa4xo0bu4cfftjmewAAvKdbt272MmYA4ttvv7XrrgwePNgqFQEAgP/Q7gkAAHiSKgpOnjwZ2S+6f//+rnz58q5Vq1YhGZzQxrgyN4cPH+7mz59v1SGi7++ZZ55xbdq0cTly5Aj0YXqWepAri1bBn5jZtQAAb8iZM+dFQQq1eXr11Vft9fbt27tmzZoF7PgAAPAqghQAAMBzVE2gjfvbbrvNTZs2zSoK0qdP71q3bu1CLdCillTjx4+3AMVff/0VrW+25muonZPaV8H/rbRUfVOuXDl7O1++fNaHPFOmTJxqAPCoSw3NVmLDggULXN++fV2fPn0CeHQAAHgXQQoAAOAZR48etUHRasUghw4dcn/88UdIVRioJZU2QxSUmDp1qjt+/Hi0DM8WLVq4li1bWgAGCePEiRMWBNq4caNbt26dK1y4sL2fAAUAeJcqFletWnVRkEIyZsxoQQoAAJAwCFIAAICQ9++//7qhQ4dagOLYsWP2vieffNK99957VkERzNS26bfffrNB1xrI+d1337l//vkn8t81mLlBgwauUaNG7p577gnJVlWh5uabb7bA1q5du+zhC1IAALxr//79Vn3pC1KokvHIkSN2/VVFJgAASDgEKQAAQEjTJrJaHv3000/2dpEiRdzAgQNtQHawUnXHwoULLSChhwZhR5U7d25Xu3Zt+77uu+8+G4qNhAsSKTj0ySefWFutm266yTajVI2jgFCWLFk49QAQJtQ+8cyZMy5dunTu6aeftuuzWi2qhSQAAEg4BCkAAEBIy5o1qw3ITps2rXvjjTfcs88+65IkSRJU7SN+/vlnt3z5crdixQp7xAxK6HjLli3ratWqZY+CBQuStZmIQYqXXnrJ/frrrxaYePHFFyOfVwCA8KE2imrrtGfPHjdz5ky7VqvNYpMmTQJ9aAAAeF7w3MEDAADEsQpBlRKvv/66S5o0qbvxxhvdxIkTrT1PIGcG/Pfff3ZsGq6soITvobfVjioqZeqXLFnS5h7ooeHMqVOnDtixhwvN+1BAQgEj9R1XcEjVEq+99ppV4jRt2jTQhwgACOB1/MCBA/b6uHHj7KXWG1yfAQBIeAQpAADwmEGDBtksBt1oFy1a1H388ceudOnSsX68Nvh79OhhbZPy58/v3n33XVejRg0XbJTRqO9F35+qE2699VarmpDixYsnyjHo6+7evduORedLL7dv3+62bNnitm7d6k6fPn3J/0+ZmZonoYcqJu6++26XJk2aRDnmcKXKCA0fV/DKlwWbMmVKa+mkAetLliyxAJE8/vjj9gAABO96JaHp2nD+/Hl7/cKFC+6RRx5xDz/8cMCOBwCAcEKQAgAAD9EGbOfOnd1nn33mypQp4/r37++qVq1qm+iZM2e+6OOXLVtmm7Nvv/22tRkaM2aM3ZSvXbvWZjsEmioQNFD6008/tdYLas0j5cuXd8WKFbumbEll1atNlO/x559/2tBtbVL4Xh46dMgGaeqhTRTfUO7YKDM/b9687q677rINFz10nNmzZ6d901Xw/bx9A0uPHz/uNm3aZBU0en77PP/8827dunX2fPc9L1TF0rVrVwsM+YIU+jxvvfWWDURV9QoAIDTWK4lhxowZka+remLAgAEBOQ4AAMLRdRG+uz8AABDydKOvLH21J/Btxquf8nPPPWcbtjE1bNjQNus1ONhHm7ra6NXGwaX8888/9vDRQEl9DW3ya+iwv7Rr184NGTLEshmjViTccsst7vDhwy558uSucOHC9j3qsW3bNjsWBQSUMa9syFOnTlkLJm1Oa8NBwzD1iHr88ZUqVSrLzj9x4oR9TlVz3HHHHfZQQEWDsNU2qH79+vbx+rgWLVrY619//XXk5xk2bJidd32cr82QKjUaNWoUuYGjVlby1VdfucmTJ9sw7aeeesrepyWcBmvLF1984W6++ebIypjRo0e7KlWquLZt20Z+vccee8ydO3fOzqlvA2jatGnu888/t+Hc2izyadasmZ1LZbXqZytz5syx4dJ6fnTr1i3yY3U8CuZ88MEHVokjOgd9+/a1llZ9+vSJ/NjmzZtbBYo2fhTAkfnz51uQQdUwX375ZeTHquJELZnmzp3rHnzwQXufKiMURFOm7cqVKyM/9t5777UWTjpH9erVs/dpo0stwfRc9s2ZAIBwp7/tul74+5qdkOuVxFp3dOnSxa5lope6NgEAgMRZe1BJAQCAR2gD+scff4y2gax++5UrV7YN3EvR+6NuTosyGaNupsekqovevXu7hLZ06dJoAQo5cuSIPXxiDqAWVUBciqolYlLwQgsmtV5KliyZ27Fjh71U0CB9+vQ242Lq1Kk27Prll1+2eQbp0qWzjfY8efLY53zhhRciP5/aVmgjPWq7Cv1c9L6YNmzYYO9XoCVq5YjvY6POsdBcC71fQz2j8n2svoaP2k7p/TEzURUQUYDmo48+inyfvl99rAIvUc2aNcvOs6oOop5rBTX0nIpKQQa1wOrZs2fk+/bt22dBDW06RbV69Wr7XlQR4aNA0saNGy9qf6UgjK/ixSdLliwuX758kYETH21o6eOinncFjRSsAQCE9nolsdYdSoIQXf8VLAEAAImHIAUAAB6hTWVtbGsjNyq9rf78l6IWRpf6eN/gyEvRpkLUwIYvo9HfNMxYG+iqiFD7JFVRiDIw1q9fbxvr2pRWoOGGG26w96lqQR+r41FLIG1cK+NeGRvqK50iRQp7KOigagzNJChUqJB9XrVymjRpklVoqJLAR9UA2sxXZr82LiRDhgxu8ODB1t4pqieeeMIyQ/Xw0ea7PvZSVSwKUESdp6EAie9j9bqPqgdy587t7rzzzmifw/exUYd6Vq9e3YIrBQoUiPaxqorQ88P3PYgqFPQ5tPEflTJIVdWRNWvWyPdVqFDBDR061GaBRKWKCZ3nqO9XZYOqO9RWKebnVVDCd859Hztv3jw7p1GpKkI/26jvVxWHKmZiomc4AHh3vZJY6w5VJ+qaoyB/zOs7AABIWLR7AgDAI5S9rlZHmjOhDXUfZf8vXrw4WnscH22EazM56tBgtfRRxuLBgwdDqnUEAAAI/mv21axXgu17AAAAcRPX63b0en0AABCyVGmgioKYwQW97WthEJPeH5+PBwAASOz1CgAA8DaCFAAAeISqItSaaMGCBZHvU09/vR01UzEqvT/qx4ta78T28QAAAIm9XgEAAN5Go0UAADxEPZubN2/uSpUqZfMa+vfvb/MCWrZsaf+uWQtqsaAhlNKxY0dXsWJF9/7777uaNWu6cePGuTVr1rghQ4YE+DsBAADhul4BAADhhSAFAAAeomHMGgitodMafl2sWDE3e/bsyOGUu3fvdtdff320ocVjxoxxr776qnvllVdc/vz53ddff+2KFCkSwO8CAACE83oFAACEFwZnAwCAa8IASwAAQoMXrtle+B4AAAgXfzE4GwAAAAAAAAAABDMGZwMAAAAAAAAAgIAgSAEAAAAAAAAAAAKCIAUAAAAAAAAAAAgIghQAAAAAAAAAACAgCFIAAAAAAAAAAICAIEgBAAAAAAAAAAACgiAFAAAAAAAAAAAICIIUAAAAAAAAAAAgIAhSAAAAAAAAAACAgCBIAQAAAAAAAAAAAiJJYL4sAADwioiICHv5119/BfpQAADAZfiu1b5rdyhi3QEAgPfWHgQpAADANTl58qS9zJkzJ2cSAIAQuXbffPPNLhSx7gAAwHtrj+siQjmFAgAABNx///3n9u3b59KkSeOuu+46v2ZcKPCxZ88ed9NNN/nt83oF54dzw/OG3yv+5gSPUPmbrNt/bRJky5bNXX99aHZ/Tqh1Ryj9HEMZ55jz7CU8nznPXvFXAl7/4rr2oJICAABcEy00cuTIkWBnUYskNgo4Pzx3+L1KTPzd4dx4+bkTqhUUibXuCJWfY6jjHHOevYTnM+fZK25KoOtfXNYeoZk6AQAAAAAAAAAAQh5BCgAAAAAAAAAAEBAEKQAAQFC68cYbXc+ePe0lOD88d/i94u9OYPE3mfMTDniec469gucy59lLeD6HxzlmcDYAAAAAAAAAAAgIKikAAAAAAAAAAEBAEKQAAAAAAAAAAAABQZACAAAAAAAAAAAEBEEKAAAAAAAAAAAQEAQpAABAUBo0aJDLnTu3S548uStTpoxbtWpVoA8pKCxZssTVrl3bZcuWzV133XXu66+/DvQhBY23337b3X333S5NmjQuc+bM7pFHHnFbtmwJ9GEFhU8//dTddddd7qabbrJH2bJl3axZswJ9WEHpnXfesd+tTp06BfpQgkKvXr3sfER9FChQINCHFTT++OMP17RpU5chQwaXIkUKd+edd7o1a9YE+rDgx/XFxIkT7Tmvj9fPd+bMmZxfP57joUOHugoVKrh06dLZo3Llyqz5EnitPG7cOPtbrnUS/H+eT5w44dq1a+eyZs3qbrzxRnf77bfzdyMBznP//v3dHXfcYdfenDlzuueff96dPXuWp7Qf7yEXLVrkSpQoYc/jfPnyuZEjR7qERJACAAAEnfHjx7vOnTu7nj17urVr17qiRYu6qlWrukOHDrlw9/fff9v50EIe0S1evNhuClesWOHmzZvnzp8/76pUqWLnLNzlyJHDNt9//PFH20B94IEHXJ06ddymTZsCfWhBZfXq1W7w4MEW0MH/KVy4sNu/f3/kY+nSpZwe59zx48dduXLlXNKkSS3o98svv7j333/fNlrhjfXFsmXL3OOPP+6eeuopt27dOtvU1WPjxo2JfuxePcfaBNM5XrhwoVu+fLltNurarQAg/HeefXbt2uVeeOEFCwzB/8/nc+fOuYceesjO86RJkyxZRoG47Nmzc7r9eJ7HjBnjunbtah+/efNmN3z4cPscr7zyCufZT/eQv/32m6tZs6arVKmS++mnnyx5p1WrVm7OnDkuwUQAAAAEmdKlS0e0a9cu8u1///03Ilu2bBFvv/12QI8r2GgpN3Xq1EAfRtA6dOiQnaPFixcH+lCCUrp06SKGDRsW6MMIGidPnozInz9/xLx58yIqVqwY0bFjx0AfUlDo2bNnRNGiRQN9GEHp5ZdfjihfvnygDwMJuL547LHHImrWrBntfWXKlIl45plnOO9+OscxXbhwISJNmjQRX3zxBefYj89l37m999577drfvHnziDp16nCO/XyeP/3004g8efJEnDt3jnObgOdZH/vAAw9Ee1/nzp0jypUrx3n30z3kSy+9FFG4cOFo72vYsGFE1apVIxIKlRQAACCoKANJ2d4q9/e5/vrr7W1l2AFx9eeff9rL9OnTc9Ki+Pfff63VgzKq1PYJ/6MqHGWMRf3bg//Ztm2btQfIkyePa9Kkidu9ezenxjk3bdo0V6pUKdegQQNrMVe8eHHLmIV31hd6f8y/CcruZT3iv3Mc0+nTp60Skmu3f5/L8vrrr9vfKlUGIWHOs64LWltpTZElSxZXpEgR99Zbb9naC/47z/fee6/9P76WUDt37rSWWjVq1OA0+0kgrn9JEuwzAwAAXIUjR47YQl4L+6j09q+//so5RZz8999/VpasViy6QYRzGzZssBtn9etNnTq1mzp1qitUqBCn5v/351Z7AbV7QnTqC60exOr7rFZPvXv3tjYhanej+S/hTJsimveiFhVqMaHnT4cOHVyyZMlc8+bNA3148MP64sCBA5f8eL0fCbOGe/nlly0oSsDYv+dZbfrUEkdtW5Bw51nXhe+++84C+to03759u2vbtq0F3tSaCP45z40bN7b/r3z58uoQ5C5cuOCeffZZ2j35UWzXv7/++sudOXPGZoH4G0EKAAAAeI4y2LSJSu/8/6NNZm1OqMJEfZK1iao5HuEeqNizZ4/r2LGjzTHRsEZEV7169cjXNatDQYtbb73VTZgwIeyzcRUMVSWFsmRFlRT6u/PZZ58RpACugmYnKWisORX8PfafkydPuieeeMIqvTJmzMhzM4GvC6pWGTJkiLvhhhtcyZIlbb7Ke++9R5DCj/Q3QtfeTz75xNYlCgZpLffGG2+4Hj16+PNLIRERpAAAAEFFN09a1B88eDDa+/X2LbfcErDjQuho3769mz59uluyZIkNjMb/KLs7X7589rpumpX1/dFHH9mg6HCmdgEazFiiRInI9ymjT8+fgQMHun/++cf+JuF/0qZN626//XbbEAh3WbNmvSjIV7BgQTd58uSAHRP8u77Q+1mPJM4arl+/fhakmD9/vgVE4b/zvGPHDhvkXLt27Wib6ZIkSRIb7pw3b15OuR+ez7ouJE2aNNq6QdcFZaWrrZHWYrj286xAhAJvGuQsd955p7Uxbd26tevevbu1i8K1ie36d9NNNyVIFYXwUwMAAEFFi3dtoC5YsCDajZTepn8+Lkfl3gpQqI2RSu1vu+02Tthl6PdKG/Dh7sEHH7RWWKoy8T2UHa9WDXqdAEV0p06dsg0vbcSEO7WT0+ZeVFu3brVKE3hjfaH3R/14UdUV6xH/nWPp27evZUDPnj3b/v7Cv8/lAgUKXHSde/jhh12lSpXs9Zw5c3LK/fR81nVBQXxfEMh3XdA1kwCFf57Pvtk1MQMRvvXa/+ZC41oF5PqXYCO5AQAArtK4ceMibrzxxoiRI0dG/PLLLxGtW7eOSJs2bcSBAwfC/pyePHkyYt26dfbQUu6DDz6w13///fewPzdt2rSJuPnmmyMWLVoUsX///sjH6dOnw/7cdO3aNWLx4sURv/32W8T69evt7euuuy5i7ty5YX9uLqVixYoRHTt25NxERER06dLFfqf03Pnhhx8iKleuHJExY8aIQ4cOhf35WbVqVUSSJEki+vTpE7Ft27aI0aNHR6RMmTJi1KhRYX9uQnV98cQTT9jfRx895/Uz7tevX8TmzZsjevbsGZE0adKIDRs2BPC78NY5fueddyKSJUsWMWnSpGjXbq134L/zHFPz5s0j6tSpwyn28/N59+7dEWnSpIlo3759xJYtWyKmT58ekTlz5og333yTc+3H86y/xTrPY8eOjdi5c6etZ/PmzRvx2GOPcZ6v8h5S51fn2UfnVWuaF1980a5/gwYNirjhhhsiZs+eHZFQCFIAAICg9PHHH0fkypXLblxLly4dsWLFikAfUlBYuHChLSxjPnSzGe4udV70GDFiRES4e/LJJyNuvfVW+33KlClTxIMPPkiA4jIIUvyfhg0bRmTNmtWeO9mzZ7e3t2/fnvBP2hDx7bffRhQpUsQ2VwoUKBAxZMiQQB8SrmF9od/9mNfTCRMmRNx+++328YULF46YMWMG59iP51jXpktdu7UJCf8+l6MiSJFw53nZsmURZcqUsetCnjx5LJB94cIFns5+PM/nz5+P6NWrlwUmkidPHpEzZ86Itm3bRhw/fpzzfJX3kHqp8xzz/ylWrJj9TPRcTuh7quv0n4Sr0wAAAAAAAAAAALg0ZlIAAAAAAAAAAICAIEgBAAAAAAAAAAACgiAFAAAAAAAAAAAICIIUAAAAAAAAAAAgIAhSAAAAAAAAAACAgCBIAQAAAAAAAAAAAoIgBQAAAAAAAAAACAiCFAAAAAAAAAAAICAIUgAAAAAh7tNPP3W5cuVyqVKlcvXq1XOHDx++4v+zZcsWd8stt7iTJ08myDFdd9117uuvv7bXjxw54jJnzuz27t2bIF8LAAAETtRrfjB8nkDYtWuXHf9PP/0U6EMBQhJBCgAAACCETZkyxb344ovu448/dmvWrLGgQ/369a/4/3Xr1s0999xzLk2aNAl+jBkzZnTNmjVzPXv2TPCvBQCA1xw4cMCu2Xny5HE33nijy5kzp6tdu7ZbsGCBC0W9evVyxYoVu+j9+/fvd9WrVw/IMQEILIIUAAAAQAjr06ePa9++vatTp44rWLCg++KLL9zSpUvtEZvdu3e76dOnuxYtWsT6Mf/++6/777///HacLVu2dKNHj3bHjh3z2+cEAMDrlKFfsmRJ991337n33nvPbdiwwc2ePdtVqlTJtWvXznmJKjwVhAk258+fD/QhAJ5HkAIAAAAIUcePH3dr1651NWvWjHxftmzZXJEiRdz8+fNj/f8mTJjgihYt6rJnzx75vpEjR7q0adO6adOmuUKFCtkmgYIZq1evdg899JBVQ9x8882uYsWK9jWj2rZtm7vvvvtc8uTJ7f+dN2/eRV+zcOHCdmxTp0712/cPAIDXtW3b1toIrVq1yj366KPu9ttvt2tq586d3YoVK2JtNXTixAl736JFi+xtvdTbc+bMccWLF3cpUqRwDzzwgDt06JCbNWuWJTrcdNNNrnHjxu706dORnyd37tyuf//+0Y5JVRCqhojNyy+/bMeZMmVKq/7o0aNH5Ea/1hu9e/d2P//8sx2PHnpfzHZP9957r32eqNTOMmnSpG7JkiX29j///ONeeOEFW8+o5WWZMmUiv9/Y6GuoTaYqNnQOdHyTJk2K/HffuRw/frytebS2UZKFEjdef/11lyNHDlsj6RwoWBTTr7/+aseu/0/rscWLF1/2eAD8D0EKAAAAIETt3LnTXubLly/a+/Pnzx/5b5fy/fffu1KlSl30fm1KvPvuu27YsGFu06ZNNkdC7aOaN29ulRnaDNHnrlGjRuQsC920aw5GsmTJ3MqVK91nn3120aaCT+nSpe1rAwCAK1P1oTbCVTGhTfiYlFwQXwouDBw40C1btszt2bPHPfbYYxaEGDNmjJsxY4abO3eutZC8FmolqcDDL7/84j766CM3dOhQ9+GHH9q/NWzY0HXp0sUCLWrvpIfeF1OTJk3cuHHjXEREROT7FDhQwkOFChXsbVWSLl++3D5u/fr1rkGDBq5atWqWPHE5Cpoo4KNAib5Oo0aN3ObNm6N9TNeuXV3Hjh3t/VWrVrXv4/3333f9+vWzr6X3Pfzwwxd9LbXg1Pe3bt06V7ZsWWvLdfTo0Ws6n0A4IEgBAAAAhChfpqMCB6lTp458fPPNN9GyIGP6/fff7SY/JmU5fvLJJ5YBeMcdd1gGpLIsmzZt6goUKGBZlkOGDLHP7csMVMWGsga//PJLq85QRcVbb711ya+rr6mvDQAArmz79u22Sa9rsL+8+eabrly5clZN8dRTT9n1XJUFelub/5prtXDhwmv6Gq+++qqtJVSFoU16VTuoilNUvaC1SpIkSay9kx56X0wKnuzbty9a+0oFUh5//HGrdFC154gRI9zEiRPtuPPmzWtfp3z58vb+y1Ewo1WrVlbt8cYbb1jiRszATKdOnSwJ47bbbnNZs2a14ISSMBTQ0BpJSR2qpohZZaLAiQIgWjPpvKoKdfjw4dd0PoFwkCTQBwAAAADg6iiIIGptEDWbUpl/vn+7lDNnzlgbgphUDXHXXXdFe9/Bgwdts0FfQy0hNKtCQQptDogyDDXAM2rQQ5mDl6JNiMsFTwAAwP+JWkXgL1Gv81myZIlsyRT1fWotdS1U8TBgwAC3Y8cOd+rUKXfhwgVrJRUfmTJlclWqVLFWSwpC/Pbbb1Y1MXjwYPt3zebQmkSBhqjUAipDhgyX/dwx1yl6O2qrLIlacfrXX39ZwETBnaj0tqoxYvvcCsTo88Ss0gBwMYIUAAAAQIjybSroxj9qy6ezZ89G23CISfMlNM/iUkEEZSdGpVZPalOgNge33nqr9WHWDfi5c+euqm2FNh0AAMCVqVJS12VVLF7O9ddff1FQI7Zhz5rp4KPPHfVt3/vUyjHq544ZLLncIGkFEtRCSXMn1BJJlQRqx6RWSfGlz9OhQwerclAVxZ133mkPUfDjhhtucD/++KO9jEqVGtfqUu21ACQc2j0BAAAAISpdunSuZMmS0eY86KZdGwQadh0btXRQn+i4+OGHH2yDQHMo1D9aQYojR45E/rvaGaintXpK+/gGeca0ceNG+9oAAODK0qdPbxv9gwYNcn///fdF/67h2OJLAIh6LY5ZGXC19Lmjfl5VFaiqITaadaGkhu7du1sVgQItMVs9qnJTVRBXUqdOHUu80FwOBSkUtPDRekKfQ1WeStSI+lALqcuJuU7R21rPxEbJIKoY1ZooKr1dqFChWD+3KkgURLnc5wbwPwQpAAAAgBCmTQA9NOhSwxvVX7pMmTIXtSSIShseCmTEZYNAmwtfffWVtSrQYGxtEETtHV25cmVrtaCKC7U8UMBExxOT2jzpRl2tGwAAQNwoQKHrdenSpd3kyZPtWq9rstop+VoL6bp8zz33uHfeecf+TXMm1KrRHzSbSusAXd/VYknX+5iVCzHXDWoJqeoJtXvScU6dOjXax2hWhQIdCqQo8UEtmmKrZnjkkUds0LW+L82j8NHaQ2uSZs2auSlTptjnU5uqt99+2waAX47mWHz++edu69atrmfPnvb/aZbE5WggtuZQqJXVli1bbLC2jl8tNmP+vPT9qvpFA89Vufrkk09G/rvmi8Q8HwAIUgAAAAAhrW7duq5Xr14WnNDgarVg8A2njE316tWtT7KGXl+Jhj3qBrtEiRLuiSeesKqKzJkzR2sDoZttzbnQBooGUfbp0+eiz6Nh3rly5bK+0gAAIG7UvnHt2rWuUqVKrkuXLq5IkSJWLblgwQIbzOyjTXdl7qvCUkOfNSDbH7p16+YqVqzoatWq5WrWrGlBAw2pjs3DDz/snn/+edv012BpVVYoyBCVBktXq1bNvidVaowdOzbWz6dAhJIgtH7QOiIqDchWkELnRcOsdWyrV6++6ONiUisqBVE0n+PLL7+0rx+zIiImrX86d+5sX0stp1TdMW3aNAvKRKVAkR5ak2notz5GbTZ9FOD4888/L/u1gHB0XURCTOEBAAAAENSU6acb5zlz5iTK11OGp27wGzdunChfDwAAICbN3FByhQIaAIIHg7MBAACAMPTMM89YL+uTJ0+6NGnSJOjXUiuHevXqRWvTAAAAAABCJQUAAAAAAAAAz6OSAghOVFIAAAAAAAAA8Dy63gPB6fpAHwAAAAAAAAAAAAhPBCkAAAAAAAAAAEBAEKQAAAAAAAAAAAABQZACAAAAAAAAAAAEBEEKAAAAAAAAAAAQEAQpAAAAAAAAAABAQBCkAAAAAAAAAAAAAUGQAgAAAAAAAAAAuED4fyubb2fdaIHMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -444,7 +477,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-cartwright.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-cartwright.png\")" ] }, { @@ -462,7 +495,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmYjfX///HPt93SaknIFoWEJBUJSWQphLJky5I9QkWyJGsLWbJWsqRESrRYooVKkspOIiFZ+ipLWvyv5/v/vc/vzJgZs5z9vB7Xda6ZOTNzzn1mzrnPfX/e239OnTp1yomIiIiIiIiIiIiIiITYWaG+QxEREREREREREREREShIISIiIiIiIiIiIiIiYaEghYiIiIiIiIiIiIiIhIWCFCIiIiIiIiIiIiIiEhYKUoiIiIiIiIiIiIiISFgoSCEiIiIiIiIiIiIiImGhIIWIiIiIiIiIiIiIiISFghQiIiIiIiIiIiIiIhIWClKIiIiIiIiIiIiIiEhYKEghcgYDBgxw//nPf1y842/A3yI9li9fbr/PR0/Lli1dgQIFAriFIiIiIiIiIiIiEm0UpBDzxhtv2CLyW2+9ddr3SpUqZd/76KOPTvtevnz5XPny5UO0lZGNRXf+TiVLlnSnTp067ft8r3PnzmHZtlixYcMGC5T8+OOP4d4UERERERERERERCQAFKcTceuut9vHTTz9NcP2RI0fc999/78455xz32WefJfjeTz/9ZBfvd+X/++6779y8efPCvRkRb/LkyW7z5s1pDlIMHDhQQQoREREREREREZEYoSCFmNy5c7uCBQueFqRYtWqVVQU0bNjwtO95X6cUpDh27JiLJ5kyZXJXX321GzRoUJLVFIHy999/u5MnT7podu6557rzzz8/aLfP3//48eNBu30RERERERERERHJOAUpxIdgw9q1axMs7FI9ce2117q77rrLff755+7ff/9N8D1aGFWoUMG+rly5sitRooRbs2aNu+2221zmzJldnz597Htvv/22q1WrlgVDWJi+6qqr3FNPPeX++eefBNvgfxu0kWLRn+DJhAkTkpxx8Prrr9t95MqVy2XJksXdfffdVt2R2BdffOFq1KjhLr74YtuuSpUqnVYZ4gVebrzxRnfBBRfYNk6cODFNf8OzzjrLPfHEE+7bb79NsnVWYvv373cPPvigu/zyy+0+aa01bdq0BD9D1QCP9ZlnnnGjRo2y7eJv6LU+4ntbtmxxzZo1s8eXI0cO169fP1uk529xzz33uIsuusj+Rs8++2yC2ybQ8eSTT7obbrjBfpe/YcWKFZNs7ZVau3fvdnXr1rXbypkzp+vevbv7888/T/u5pGZSzJ4927blwgsvtG2+7rrr3OjRo+17r7zyigXLUKVKFXvc/nMuuK3atWu7Dz74wJUtW9aeO2n9/4mIiIiIiIiIiEhonRPi+5MID1JMnz7dFvQJFoCFfIIFXP773/9a6ydmLnjfK1q0qMuWLZvvNg4ePGgBjfvvv98WzVl89xaYs2bN6nr06GEfly1bZovjtJMaOXJkgu04fPiwq1mzpmvUqJFr3Lixzcvo0KGDO++881zr1q0T/OzTTz9tC9WPPvqoLfiziH/HHXe4b775xhapwX2xTSx+9+/f3wIJL7/8srv99tvdJ5984sqVK+dr03TnnXfaIj+L/1Qr8PPeY0itJk2aWACGaop69eolO3SbYBB/523bttmsCoIxc+bMscX73377zXXr1i3Bz7PNJ06ccO3atbMgxWWXXeb73n333eeKFSvmhg0b5hYuXOgGDx5s32eRnsc5fPhwN3PmTNezZ08LwhBEAn//KVOm2N+5bdu27vfff3dTp0511atXd19++aUrXbp0mh47j6lq1apu165drmvXrhaU4jnF/+BMFi9ebNvB77O92Lhxoz3P+FuwzdzmCy+8YIEpHi+8j6B9FLfRvn17ezzXXHNNmrZfREREREREREREQuyUyP+sX7+e/kSnnnrqKfv6r7/+OpUlS5ZT06ZNs68vv/zyU+PGjbPPjxw5curss88+1bZtW9/vV6pUyX5/woQJp932sWPHTruuffv2pzJnznzqxIkTp93Gs88+67vuzz//PFW6dOlTOXPmPHXy5Em77qOPPrKfy5Mnj22L54033rDrR48ebV//+++/p4oUKXKqevXq9rn/9hQsWPBUtWrVfNfVrVv31AUXXHBq586dvus2bNhgjzM1L5UWLVrY3wv8zfidefPm+b7P1506dfJ9PWrUKLtuxowZvut4fLfccsuprFmz+h7Xjh077OcuuuiiU/v3709wn/3797fvtWvXznfd33//fSpv3ryn/vOf/5waNmyY7/rDhw+fypQpk22n/8/y9/XHz/G/bt26dYLruR/uLyXeY+L/4Dl69OipwoUL2/X83/z/Xvnz5/d93a1bN3uMbFNy5syZc9rteLgtvvf++++nuI0iIiIiIiIiIiISOdTuSXzISKcqwps1sW7dOnf06FGrogAfvRZJzKqgVVPieRRk+Ldq1eq02/aqGkC2/oEDB6ytEDMrNm3alOBnGdJNJryHCgq+plKCNlD+mjdvbq2BPA0aNHBXXHGFW7RokX1NRcXWrVutuoEqD+6XC4+LjP2PP/7YWljxWGgTRJuifPnyJfibUFWQVk2bNnVFihRJcTYF20gLJjL//ec0UC3wxx9/uBUrViT4+XvvvdeqPJLSpk0b3+dnn322tTvifmkl5bnkkkussuCHH35I8LP8fcHf4dChQ1ZBwu9//fXXaX7cPCb+/vwfPLTXovrjTNg+/i9UVKQX1Sjp+X+JiIiIiIiIiIhIeChIIT60JSIQ4c2eICDBTIHChQufFqTwPiYOUuTJk8e36O1v/fr11vqIuQfMGmCxnXZQoI2UP1oEMc/AH8OovfkM/ggEJH4MbK/3cwQo0KJFC7tP/wttjpiVwP3/+uuv1qoo8e0hPS2DWPxnNgVBkvnz5yf5Mzt37rT7o/2UP699Ed9PvACfHP/ACvg7M+Mie/bsp11POy1/zMCghRc/T5CKvw0toxL/X1KDbebvn7jFVWr+hh07drT/M6258ubNa6293n///TTdf0p/IxEREREREREREYk8ClJIAgQdWJxmPoM3j8LD5yxC//zzz1ZtQTChUKFCyVZMeJivwKBqKjOoLFiwYIFly3tzB/yHcQead9vMveA+k7owIyMYqKZgwT6laoq0SOpv6x8USc118N+WGTNm2AwMhnEzi4KgAH8T5lgE8/+SFAJiBHXeeecdG4DO8G4CFgSYAvE3EhERERERERERkcijwdmSgFcZQRCCIMXDDz/s+x6Dp2nntHz5chuuzXDr1ODnabU0b94838Bm7NixI8mf37Nnj7X98a+m2LJli30sUKBAgp/1KiX8F+AZRO0N92bxHVRvMFA7OVQPsMCd+Pa8Yczp4VVTEAR4++23T/t+/vz53bfffmvBAP9qCq/9Fd8PtjfffNMCTfxv/KsfGBieHmwzw9X5P/jfXmr/hlTh1KlTxy78XaiuYPh3v379kqzQEBERERERERERkeimSgpJgFkEtP2ZOXOmVUz4V1IQoChTpowbN26cBRESt3pKjpfR75/Bf/LkSTd+/Pgkf56ZCCxM+/8sXxNIIFDi79VXX7UZF/6L7nv37rUMfPDzBCqeeeYZm/OQGG2evG1klgGtmXbt2uX7/saNG21WRXrR0orF9YEDB572PYI8+/btc6+//nqCxz5mzBir7qD6JNiS+t8QgGLmSHrwmAgy8X/wMHdk0qRJZ/xdAln+CNx4wSbacsELXFGdkxrezBPmkIiIiIiIiIiIiEjkUSWFnJbJfuONN7pPPvnEghKJgwIELZ599ln7PLVBCn7n0ksvtbY9DIUmG3769OnJtkCijRStoJgrwYwCFvFpA8RCN4Ol/V122WW2HQzr/uWXX9yoUaMsKNC2bVvfQjezJwhaXHvttfZzzM0gAEM7ISosaD8FAgm0O2KgNxn8XsCA36PiIb1BgL59+yY5TJxh0gRfqLRgIDhVIizuU8HC4/AfCB4stWvXtioK5oXUqlXLqlsmTJjgihcvnmRQ50z4u48dO9YGmvOYGKLN/5rh2WfC8G8Gd9NqipkUtBbj71+6dGnfnA4+52/K84O2ZDxH+XlaRSXlyy+/dFWqVLHKkAEDBqT58YiIiIiIiIiIiEhwqZJCTuMFH7z2Tv4qVKhgH1lAL1WqVKpuj2HM7777ri1Y0/6IqoZq1aq5ESNGJPnzBDQWLVrkvvrqK9erVy/3008/2cK3F3jw16dPH1tcHzp0qBs9erSrWrWqW7p0aYJF8cqVK1tlAFUi3E6XLl3cK6+84nLlyuW6d+/u+zmy9qmaoGLjySefdC+99JIFLljAzwiqKby2U/5oL0UrLGZXMLz6kUcesUX6l19+2XXr1s2FAgGSIUOG2LwQAkg8fuZU8LdKD/7u/P3vvPNOCzAMHjzYnk/J/a8T/52o4qHChiARf5P77rvPvffee752WPzPCKLs37/fPfjgg65x48Zuw4YN6dpWERERERERERERCb//nArERF+RACGgQGse5hqkhMV9MuTnzJnjGjRoELLtExEREREREREREZHAUSWFiIiIiIiIiIiIiIiEhYIUIiIiIiIiIiIiIiISFgpSiIiIiIiIiIiIiIhIWGgmhYiIiIiIiIiIiIiIhIUqKUREREREREREREREJCwUpBARERERERERERERkbA4Jzx3KyIiIrHi33//dXv27HEXXnih+89//hPuzREREZFk0O35999/d7lz53ZnnRWdOYs67hAREYm9Yw8FKURERCRDWCi48sorw70ZIiIikko//fSTy5s3r4tGOu4QERGJvWMPBSlEREQkQ8hk9A46LrroonBvjoiIiCTjyJEjtsDvvXdHIx13iIiIxN6xh4IUIgHw22+/2UFyzpw53eWXX27X7dy50/Xu3dudc845bubMmb6fnTx5slu8eLFr1KiRa9CggV1H2dODDz5on8+ePdtX/vT999+73bt3u2LFirn8+fOH5bGJiJyJ12qBhQItFoiIiES+aG6TpOMOERGR2Dv2iM4mlCJhsm/fPtetWzf30EMPJbier0uWLGkBBs/ZZ5/t3njjDTd37twEP7tmzRo3Z84ct3HjRt91J0+etOu4+Hv55ZfdXXfd5caNG+e77u+//3YVKlSwAMcff/yRIFBy4sSJgD5eERERERERERERkWBSkEIkGS+88IIrW7asmzZtmu+6f/75x66fMmWKDWzz5MmTx2XPnt2+78mVK5cbNWqUe/755xPc7n333efGjBnjatSo4bsuc+bMdh0X/8hijhw5XKlSpVyRIkV81/3yyy9u5cqVbv78+fZ7nuHDh1vp1MCBAxPc319//RWQv4eIiIiIiIiIiIhIoKndk8Q9Wi317dvXWivRhokKCG8gG1UPq1atci1atLDraOVECyeCElQ0nHfeeXb9M88845599tkEt0ubJ6ouEqtSpYpd/GXKlMl17tz5tJ997LHH7OLv4osvtuqMw4cP+9pCYcuWLbZNV1xxhe+6vXv3uoIFC7obbrjBffzxx77HJiIiIiIiIiIiIhIJ/nPq1KlT4d4IkVDZvHmze+2112yafJs2bew6qh9Y+D969Khbv369K168uF3/7bff2sL/TTfdZANeIh0vZeZiZM2a1V122WV23cKFC13t2rXdtddea0EYT6tWrdy2bdssAFKrVq0wbrWIxMogLPaj//3vf9UbWkREJILFwnt2LDwGERGReHEkle/bqqSQmEarI9onUdUAKiVoh1S1alVfkILqgiFDhrhs2bIlqEJgxgSXaMHjzJcvX4Lratas6bZu3eoOHjyY4Prly5e7H3/80So4PD///LMFaSpXruyrEBEREREREREREREJJs2kkJjVq1cva8/0wQcf+K675557XN26da2SwF/Xrl1d06ZN3aWXXupiCYGLwoULWzWIPyosGMpdsWJF33WzZs1y1atXdw0bNgzDloqIiIiIiIiIiEg8UpBCYgLDpN94440E1x07dszmNvgHKWjb9NZbb1lAIp7R0qply5bu3HPP9V3HfAuCOgQqPMePH7fAzoQJEzSAW0RERERERERERAJOMykkJgZf06qJRfTt27e7QoUK2fWbNm1yv/76qytfvrwGRqfSv//+a3/H888/375+9913XZ06dSy4s3PnTqvMALsN73MREfWGFhERiQ6x8J4dC49BREQkXhzRTAqJVcxSWLdunWX448ILL7S2RTzpCUp4QYqiRYvaRVKPagovQIFSpUq5YcOG2XX+QYkaNWpYNQaDt6m+EBEREREREREREUkPVVJIVPnmm29cmTJlXNasWW3QMwEK/PnnnwkW1yV41qxZ48qWLWvDtX/66SeXM2fOcG+SiISZMhpFRESiQyy8Z8fCYxAREYkXR1RJIbHyRN6xY4dl9IOPVEfkzZvXHThwwBekUIAidK6//nr33nvvuY0bNyYIUPTp08fabrVu3TrmBpCLiIiIiIiIiIhIcKiSQiLWxx9/7GrVquXy5MljC+Jeu6GjR4+6LFmyhHvzxM/+/fttbsXJkyfd6tWrrdJCROKHMhpFRESiQyy8Z8fCYxAREYkXR1L5vn1WSLdK5AyOHz+eIGOfwARzEvbu3eu7XgGKyENFy7hx41zLli0TBChmzJjhFi5caIO2RSR0AV4G3ufOndv2ofPnzz/j7yxfvtxa6VGVVrhwYffKK6+EZFtFRERERERERBSkkIiwadMmd+edd7oHHnggwcL3119/7davX2+LbRK5MmXK5Nq0aeNefvll33V//fWXe/TRR13t2rXdG2+8EdbtE4knVJvRGo/AYWrQUo+qtSpVqtjcn4cffthezx988EHQt1VERERERERERDMpJCL8/fffbunSpe6cc86xYcy0DgIZvRKdaP3UtGlTq6SoV6+e7/p//vnHnX322WHdNpFYdtddd9kltSZMmOAKFizonn32Wfu6WLFi7tNPP3XPP/+8q169ehC3VERERPwrjr32tvjzzz/drl27XJEiRcK0ZSIiIhJPa3g//PCDzQEOF1VSSFj8+uuv7sMPP/R9XaJECVsoY/aEF6CQ6EZbrhEjRrh169a58847z3cSxqJn+/btbY6FiITfqlWr3B133JHgOl6nXJ8cFk7oK+l/ERERSevJMOcEXPwtWrTIzZw50x06dMh33dq1a12fPn3clClTEvxs9+7dXf369a3y2rNixQpXoUIFO97017BhQ3fNNdfY9/1/lvl3VHT7o23ipZdemqBlIu+LmTNndiVLlkzws3fffbcd67766qu+66hMJCkn8XlNo0aNLBAxZswYt3PnTrdy5Ur7nPa2VCbze4cPH3YjR4603s3VqlWzZC4RERGRYBoyZIitzT799NMuXBSkkJDbsGGDK1SokJ0oHDhwwHd927Zt7XqJLVTHeL766iurmJk2bZo7ceJEWLdLRP6/ffv2ucsvvzzBdXxN4MF/TpC/oUOH2uKJd1FwWUREsHv3brdgwQKryPN37733uptvvtkW5j1Tp051OXPmPC2Y0KFDB9esWTO3fft233UkMvHeM3v27AQ/u3jxYvfWW28lSH757bffbPH/u+++S/Cz3PeWLVvc77//niBQsmfPntOSZ/gZbofve/799197X0z83kgQgTanfN+rGub2+JoWjLRV9HBf6Nq1qytQoIAFU7p16+ZLACDokjdvXte7d2/7mt/funVrin9zERERkYzg+GTQoEF2DMOxVbio3ZOEHKVDlC2TMUTmVPbs2cO9SRIiN954ow31JVCVL1++BFlsnLgytFdEIt/jjz/uevTo4fuagIYCFSIisctbcGdmnFcd27x5c7dt2zY3b948d8UVV9j1BAxYgCcoceutt/p+f/Xq1dbSlWP//Pnz23XebbHA74+F+6uvvtoqCzy0ImRmEpUQ/vr27WvBBH7eU65cOdumxOcYVG3zGK699lrfdTfddJPNwKNCwh9VEQQj/Ofi3XDDDdYGgQQctvncc8+163v27GmPhdlsnODzOL3qB6oiSNBh1hMIPtxzzz32OdUX3D7Vx/xdCGwsX77cvnfdddfZ73BJvG0iIiIigcTxidd+8oknnnDhoiCFBBVPck4SKNmeM2eOlT0TnHjvvfdcjhw57HOJLxUrVrSL58cff7QSe05uv/jii9MyukUkuHLlyuV++eWXBNfx9UUXXZRggcgfAUUFFUVEYvPYnWoIjse8dp0svnfs2NEW171KBloWUS3BcRyVAl6QgnlyZcuWPW2OAi2NcNVVV/muu//++13jxo1Pm1U2a9as07br+uuvt0ti/H5ibIv/PDRPmTJlTruO97qkbpfA+969e60KmEoG70JQhkDF2LFjXevWrX1/izfeeCPB7/OYqIggKeeSSy7xXV+lShW3Zs0aC6DQ+vaFF15IUPFRu3ZtC8bcfvvtCeZTiIiIiAQDx3Os2YJzfFo+hYuCFBJUZAS1bNnS/fHHH3ZSwyBlaCFaPJzccqLGSS0l/yISWrfccov1//ZHiSfXi4hIbPOvCCBAQaUCi/EkjlCRgGzZslmbTv/2Sxg2bJj9rn91w1133WWXxLzqgeRagoYLj5nh1N9//721naViA0uWLDltToU//79F8eLF3eDBg61ChBZOfKRCInHwBVRn0A5r/PjxvhZTVEq0atXKKlD8K0JEREREgon2Tl26dPG14KfqNJxJEuE/MpSYRjDi+eeftx6wDJUTSaxy5cp2MsxwRG9nyAkzgwobNGigLDKRNCIoTKanhwxXBnFedtllltFJq6aff/7ZN+DzoYcesoxQSjzJCl22bJllhC5cuDCMj0JERILps88+s1kQDIf+5JNP7DqOuUgaoVKAJBIvSEH2P8dqLMD7u++++1w0Yb7EunXrbAg3Fz4nOOHNqOjXr5+1awKBFyq+CVxQFeJ/4W/k37aU8x3aTqWE++GciExFZk141RosDNDSif+DiIiISChNnjzZ1gqo+iQhhQrVp556KmxJEwpSSEBRFk0W0MCBAy2rCF4PVpHkkEHm32935MiRdrLHyW/iAYkikjJaU7Cg5PFmR7Ro0cK98sortp8ma9RTsGBBC0gwrHP06NHWnmLKlCmuevXqYdl+EREJLIZFz50719ptenMiWFhfv369lfWzeO/f2okTVf+Wfsxb8OZHRAsSXnh8VDMw38EL2nuBl8QVHczM82/LRADh2LFjGWptSJUGlYnPPvustXbysA28NzO3IxKqSURERCT+HDx40JdkQWBiyJAhtlbw2GOPhW2bdFQkAfXII4+4N9980+3bt88GJCsLXtKDE+ELLrjA+vKKSNqrk7yhV0khUJHU75BVKiIisWfEiBFu6tSprnPnzr4gBbMh3n77bXfzzTf7AhTR3JKV4dkrV660vspcCNjTWomMQG/GBVUQVIPwkTkUpUuXtgAG2YL+fwNwDpPeAAWVEtznc889ZxUUoCqjfv36lhBAO0WdI4mIiEg49evXzzqacCy0atUqS+yg5RNtK8NFQQoJKDLg6a9KObMOviW9KH2vW7euZXR7NmzY4LJkyRLWHaaIiIhIpCJAPWrUKGvnx6whb5h1o0aNrM3fbbfd5vtZjtNjoRUrVSBUJnz77benBegvvvhiS3rxECigmiJYDh8+bL2cGYZNwhY4dqWqvFu3bla5KCIiIhJua9eudRMnTrTPx4wZ4zp16uR2797t6tWrZ22iw0VBCkk3TgRmzJhhQQkqKJAnTx4bNCf/9zdiEI1Xys3nnEwlh+GDKvv+vzJ7D3+z+++/304s582b56pVqxbWbRMRERGJNAQe5syZY72FOUbv1auXXc8A6JSGQEdL+yay/N577z1fMABUQJD5xzE3FRJUinApX768VUgQmAg25ncQHKJV4tGjR33nRLTAbdeuXYI2UiIiIiLh9O+//1pQgo+ss1WoUMFag8Jr2x8uWg2VdFuxYoVr3ry5LarXqFHDXXvttS7WUb7NQjml8N6AO8q4yVijn5t3OXDggH2kdOrFF1+0kiksXbo0xT7vVKA8/PDD9vmmTZss8ypbtmx2yZ49u+9zLqVKlbJhfvGAv+NFF13kMmXKZKX5IiIiIvGMBI5p06ZZm9V3333XEl3w+OOPW9UEJ53RjkQoHhuBCWY7/Pe//7Xreay0UvLmmTFHg2PzULeqIguRVlpvvPGGneijZMmSrmfPnjZXLXELKREREZFwe/XVVy3xI2vWrO6ZZ55x27dvt2QQqk9JrA4nBSkk3SpVquSaNGniSpQo4a655hoXS+hru2bNGosmbt682S58TqYUJyHTp093zZo1s58laEGbq0DjBPOzzz5L9vsMteFEFGxX+/bt7f9A1hgfudAuKRQZZMGWK1cuC4qx88yRI4fvesrR/FtCiYiIiMQDjkefeOIJW8gnUMHsBdSpU8fFAqq0Sd7xb+FEkg7JPiRH+beVJTAQKmzPsmXL3PDhwy1w4qHKl8qVO+64Qy1vRUREJGLXOnv37m2f9+/f3yo/58+fb1+fOHHCWmiSdB0uClJImg7KX3/9dRv6RmYQB+CUkkfzgTj9Yhmyt27dOlerVi17QWL58uXWiy0pRBv//vtv39dFixa1IXiJqx28z/nouf32293vv/+e7Pb4Z1wxvIaTzqQqNLgw8NCzfv169+GHH9rFH5UHlL736dPHMrq8/2M0/s8o5ScA4/nkk0/sRJBhP3379o3KxyQiIiKSGrQRoqKgQYMG9jXZbgMGDLDh0BzDRjOSbTjHaN26tS8ZheNcjllvuOEGV7t2bVezZk37nOPBcCCzkJajBCdIZALbwvE1wQlV+oqIiEik69evn/v1119dsWLFbF6WN//VO7YMdVVqYgpSSKp17tzZjR8/3nqXjR071q6LpoVhTi5YzKc6gcAEH/2H5/GC9IIUvGBZ3E9cmcDnZPX7P25+jpLz1KA1FkGO1MiZM6e79957U/WzZJBNnjzZV/HBR6oOOHFlkKB/UIXF/QceeMB69dJ7jo/8frTNwvjggw+s1QH/UxEREZFY9ccff9hx6J49e9yXX37pbrzxRru+Q4cOLlpxgjx79mz32muvWcsB0NrTe0xUa1MV4j+jLBw41qSCmrZOXr9mkoBoydqjRw9XoECBsG6fiIiISGows4w1XbCm67UK9YIUBDBIcA6n6FqVlLCitJqFcBbqoyEbn4oFTuquuOIK3wuybNmyCX6Gx8ACPdf7Z0BxIuidiEQDTuA4WfJHTzky0whYkHnmITiza9cuu3ByiCxZsribbrrJghatWrVyBQsWdJFu8ODB9r8jezDSn4siIiIi6UWCC+2ESDQ5cuSIi1Ykzbz//vs2Q+Kdd97xJdFwHFe5cuUEAQmGTYdz4PSxY8fcpEmTrFczLVjBPLouXbrYxb9SWkRERCSSnTp1yhLPaRfaqFEj6/LiyZcvn7XxD2X7zOT855R/o0+RRFjo9qJr+Omnn8Ke0ZQcnsoMsHv77bdtyB5BiZYtW7qpU6fa9zkRYtt58XkVBDfffLNlbcUTAjdk4XkVJWSveYMI8cUXX/gqSjZu3GjBHoI40TDbYuDAgRZsIaAmIqHDotnFF19s+5J426eKiAQax9v0CX722WdtYRyHDx+2YIX/cXm0+eWXX6z3sTeUkeNLZrw1bNjQ5c6d20XK+xlZhlRJU+0BEp6YkdGuXTt34YUXumgXKe/ZBH8effRRa2NGUKhw4cIWwEqcVBbJj0FERCRahmW3aNHCEpQ3bdoU8tmuqX3fViWFJLvgP27cOPfiiy/aYraXyRRpAQq2c8mSJRaYICOLkzp/VAt4aGdEmXy8Z91zgkvU1IucEkmlZRIBi88//9xdf/31vp/lBG3KlCl2cnb33Xe7e+65x37v/PPPd5Fm0aJF1puZYArBFf/5FSIiIiLRgGNb2n2uXr3aWpF6ZflesCJacHzJYGmOLQm4gD7HJBBxkkrlLolDkYIg0OjRo+3CUElQWfzYY4/ZSX0kHvtGM/7eJI1VqVLFghTMItm6dWvUPc9FREQi3aFDh1zPnj19LZ2SClCwnkoLTtb72rZt68JFlRSSbJSLEwcW/VmoZjB0pPjzzz99Jwo8fWnNxEEtMmfObFn0LKYzVDlSsrKiFeXs06ZNSzDsmyCH9zemX3CkVFjwvPDK74cMGRLuzRGJK8poFBEJnOXLl7snn3zSEoauu+46F20DvsmGZ7F/27Ztdh0tVJnhFqkn7s8//7x74YUXfK20ihYtaj2ZGzduHHUz26LlPZvgD4lwtDBL7XE+F//HQPKcjjtERERS9tBDD7mJEye64sWLW/eZ8847z/c93lup0mUNjQAGAQraXYbr2ENBCknWmjVr3IoVKyxAEe7qg4MHD7rXX3/dzZ8/33399ddWHuwFKoYOHep++OEHWzSvWrWqDbOTwGGnxcmyV63i9eXlZJN5F95z48SJE5bxF27+81JobXXgwAENNRSJgwUPEZFoxHELM99og8ScLf/rw338nRb79+93Y8aMscoPFv7B+wKVE2TvhbqtQGrOLUjEYpu9ZBwCQk888YRVspx99tkuVkXCezYLJdWrV3e7d++2802e/x07dkw2e5Nqadq6JqbjDhERkeTRzv2WW26x40rW9SpVqpTg+7QWJTGGYx9m2fL+zBy0QFOQQtLs+++/twVp/yHL4S4T/+ijj6zd0Lx589zJkyd93+N6BuxJaLG7IHhFwIKy7K5du9r1PG8oiWfOBwO82amF++SObaXHMTtihjSmpr+tiETvgoeISDRidhrHThxXbdiwISoHMrPIzIKzl+l+1VVX2QyH5s2bW+/jSGszRHBi1KhRlsyCUqVK2Ql63bp1I6ZCONbfs73Eph49etjxOu3NunXr5iZMmGDttRJTJYWIiEjaMJf3xhtvtHm9HJPRJSUxjkE5FuU4KKlkgEDRTApJc4DCi6hRdkv0LJyWLl1qw+mokPAwK4GyayomNG8gPMjoY7E/8YI/QaO9e/e6uXPn2iVfvnyudevW1m+Yz8OBneDOnTvtBNTrLSwiIiISSZo2bWol+BzjXnbZZS6aTny9VkicADNQmsX+3r1722J/uJNVkjouJDBBgIITZJQuXdrmZTB3LR6CE5GEZDTOJ7wWrZzncT6aXJCCCnrNBREREUk92oYSoGDe08iRI5P8GRJkEO41YI+OxsTkz5/fFS5c2C4MSQ7HiQ5l1x62gQAFEbYOHTpY9j5tnnr16qUARQRiRsW3335rlRXsABlYTlk2bZZq1qzp1q1bF/JtIkq7bNky9+GHH9p8EhEREZFIsHLlygQZ5atWrbL2qtGwUE4CCIlEN998sy00ezPh6HHMkOxIa5V07NgxN2LECKv4JSBBgIK5e1Rpc24RL9UTkYZzvcQLIsWKFbNzCBEREckY2rQzYwLDhg1zOXPmTLL7yMaNG+1z1l5//PFHd/z4cRdOOiITQ/YTLXEWL15si8yhsmPHDuv9SpCkU6dOvus5aGX+wZ49e6y3bZkyZUK2TZI+9PFlSCL/s1mzZrkqVarYTu+9995LMJjHO6EN1fP6tttuS9AvecmSJSG7fxEREREPx0WdO3d2FSpUsOHSnkha1E8OcyaYLUGyEDM0SCD6+OOPfd9n5kQkzdCgTeyLL75oCViPPvqobT8DsZlxR/JMvXr1Imp74w2vAWbb+WPAOueEIiIikjEkvzBzi6QSWjolZd++fdZ1hGQNZv2S0LFgwQIXTmr3FMcWLlzojh496ho1amRfhzI48d1331l57xtvvOFbtP7000/thMJb0K5Tp46LFv/8849lZnECRK9bLt7nvOhTuzDPzoEKAP4XlPzz0fv8kksuiYqTWDICaVnAZdu2bVbJQGaUh4F4/E369u0b0uAT93nnnXe69evXuzfffNPahomIiIiECoviZLLx8ddff3XRgIw6hktz8uq1zyQR5amnnrKF5kjDMfdrr71mvZW9trFU9tJnmdZa0XAsHS+LJ8yy43yQc9Evv/zSTZo0yS4iIiKSfiQKz5kzx9YXSdhIrmLUq6IoVKiQrcOylkeibzgpSBGnvvrqK8sgIqOLoWNMew/V/XJSQ5WEh1Y8lI2zaOyfcR9JZeKc5Gzfvt0ufM7ll19+8QUjvN62wUYJlhe84CSXnQnDCb2PXCJpQKHXQsxz4MABN2PGDAtGUWZPmyiCFbfeemvQt4W/CxU6RIsjpd+eiIiIxBcqiBkyfdNNN7lIR9k/Fak//fSTr2p2+PDhdvwWiVUIJMZQNUH/ZVx++eX29yZBRvMMIgtzTN566y33+OOPu0GDBln2JjNDCCSJiIhI+jCT9aGHHrLPH374YZu/lRz/eRRvv/22fc4acTgpSBGnGE5G1oo3tCxUaLVDgIITmwYNGrg+ffqk+KIJ5UwMMuy5eMEI78JA6NTKmjVrguoHPlIB4Q0WTM12EPDwr8TgIzsab+gfF04ak8MJmRew8C7XXnut9d8999xzXThlz57dehaTjUeWGy3GuFSsWNGCFVQ6BOukl8c+ffp0680XrmHeIiIiEl+oHiY7nAVYsvjJZouGAAU4XsqTJ499TpJRs2bNIrISgdkSBCe8lp4k9fB1t27dIip5RxKqXbu2XURERCQwmEPBfCeqSEkCONNxHsnilSpV8l0X7iSU/5wKd5hEwoYFcZ6AwTrZ8OYRcHLgPelZYO/du7eV+F5zzTUuHAjMbN261a1evdoqO/jIwnlKA2JowZR44T937tyntWMKViXIX3/9ZSX2/u2kCJ4kDqhwfXLIICMgROYSF4JT/A/CdbJJNQrZeK+88opVVoBSNC/qGwr0JKafcpcuXUJ2nyKxiH07+0mCrCwOiYiIs7aqHDNSffv0009bck4k4zhy5MiRtp0k3oAT3Rw5crhMmTK5SEOFB9tKla6XkMKMOxJfSIyR2H3PjoXHICIiEkirV6+2GRSseZIMTOVutL1vK0gRR5577jlb6D5TNC2jeEHMnTvXeoxSbn3DDTfYiyVcETlOruhz6gUluPACSYwXSqlSpaw9UeKABEGIaMDJpX9rKi7MhWAx3usj7I8TUP4/XtCiXLlyFnEN5f+KyoZnnnnGzZ4928rNvNkoXE9VSGqrUNKKXtBUmPBx6tSprnXr1kG5H5F4oMUCEZGkMX+NmQ5UEody/ltacDpI7+KuXbtaQOWxxx6zqtdIxSBIEl2effZZd+LECbuuSZMmbvDgwdY2SGL/PTsWHoOIiEggE5vLli3rvv32W2ud6CVwpPZ3W7RoYfMoqPwNRmKKghSSwMqVK33D7ZYvX56gnCeQPvnkE+t7Rtk1qKLo0KGDnTSEqhcsrZE++ugj98EHH9iFRfrEGAhDyyuvqoBLkSJFkh0oE+14mfN38CpHuPA/Yt5GYgQpiLjSb/j2228P2YH/n3/+6XuOsL08XzkJff75521uSTAQSCOgtnTpUquEEZH00WKBiMj/4TjGP+GDBJ5IPcbcvXu369ixo1uwYIF9TZXtuHHjXNWqVV2k+eeff9zLL79scyYIpoCZGQQrQtm+NtrFwnt2LDwGERGRQBk2bJjNecqWLZsNxKYK9kzrbwcPHnRXXHGFJTvze6DLSTDaxCtIIachi4t2Qf379w/4be/cudPaOJEtBp50BCvIyPKe7MHCU5hKAS8o8emnn1ok0EM7o5IlSyYISDAYJtzzGSKh3demTZt8QQsu/B39/3ZUMTBUnaAFlzJlyoTkJJsTZv5nXvuqu+++26otCCQFGhl4BK1EJP20WCAi8n/DmzlRZCgw+8VIReBkwoQJVjVBUgjHxZzc0j4pEodMkwjFjAlatILK5xEjRri6deuGvX9ytImF9+xYeAwiIiKBsHXrVls/Y21r2rRprnnz5mf8nYULF9pcKNb4VqxY4aZMmWJtSmmZGQwKUkhIvf766+7++++3k4S2bdvacL2cOXMG7f4ItjDvgqAEJ4NeNpWHUm9vYT2U1QDRjioUKm28gA87O3/0961WrZpVWdx1111njM5m9H88YMAAN378eMuc4+SZk1Oy54J10k/fPgIzwarcEIlVWiwQEfn/iQ8sntOyksV+5lBEKk5CqSgF/Ys5OaUNZiTOnSARirag4L3mySefdJ07dw7aLLhYFwvv2bHwGERERAKRdFK1alVbx2OtjnW81CRvPPLIIzYSgPXbSZMmBX07FaQQt3nzZvfCCy9Yu5xAH8TzQtixY4fNawBPox49eriWLVvaXIdgoDUR/XxnzZpli8n+Gf+0lapSpYovMMEJorKqMo7/MTs5/t7Lli2zTDv/CpU777zTegDfc8891r8uGChV47nFNoDACJHeYsWKBfR+aBHGTj1z5sw2w6Ro0aIBvX2RWKbFAhGR/495bBx7T548OaIX0Qmk3HTTTe7RRx+1dk8c10VawIcqWgIpx48fD1kiVDyIhffsWHgMIiIiGTVu3DhL3GAd67vvvnOFChVK1e9RQUF16muvvWYJ58GmIEWcYwGfbCgy4bt3724RskBZtWqVtXL68ccf7faDeWDI41iyZIkFJiibp/zIU6JECVezZk0LSjC/IBJL02MJ/wv+9wQtqGLxyu3BYB1aMhGwoMoiGCflixYtsmAFt808jUAP1KYnH9t+5ZVXWjZhJC8siEQaLRaIiES2X3/91c2bN8+1b98+yXlgkYTjTFrGenPlmDsxevRoV7p06XBvWkyIhffsWHgMIiIiGfHDDz9YmyfWSWnvT7AiNZhFQfIv4YB9+/ZZ0jfXMac1WF1LFKQQW0ymtywfA9GWZ+/eva5nz54WMEDWrFmtsoEKhkBXabAYzv0w4+LAgQMJ2jixEN64ceOILEmPJ1u2bLH/ERf/tlCXXnqpa9iwof2fKlasGNAZFgRK9uzZ4/Lnz+/LsiNwQT/lfPnyZfj22bkTgVYVjkjaaLFAROLVrl273AMPPGAJDsGYnRWoalGOyzgRZUA2PYgjEQlQJFfNnz/fvmaYI0OxvZayEhix8J4dC49BREQkEG2eKlWqZJ1PUrv2RtLKvffea2uq33//va99P7fD7YXzfTv4E3AlbKgw+OqrrzIcoCCONXPmTHsCsyDNSULr1q1tYTqQAQrKzukxS3nSrbfearMICFCw/UQEV65c6bZv3+4GDx6sAEUEuPrqq21mBG3FGLrNSSUnkwy7pqdd5cqVLXBAAIHB6oHAXAovQAEqhF588UWrqmFxIKMxVyLI/ifBBMkIhIiIiIgkhWPUjz/+2LVr185FGmZ6cazGSSwBClpl5s2b10UaklCGDx/uihcvbgEKqmXplcwxJolJClCIiIiI/J8JEyZYQIEk26lTp6YpOZiABpjf6x2HXXDBBUFr4Z4WqqSIIfwrOcBv06aNDTgOBJ6sRNSItHl9y1iAvuGGGwK2zZ9//rnNznjzzTfd33//7avSqF+/vmV9cWIV6NY+EryTYeZFENSaO3euRUnBDrNu3bpWuk/JfqBONon6sihA5Q0Y5k0P6Dx58mT4tjmpHzhwoGvQoIFFlgNZESISa5TRKCLx6pdffrEWShzLBqKqM5DJP02bNrXjMjz44IO2jZzMRhKSkPj7cUwHsvjor6yEpOCJhffsWHgMIiIi6Z0de91111knEI7tunTpkqbfJymE2a+01Gedzn89L1gzylRJEYcYLEd7Jw7uT548GbDMdbLLCRKwYEtAIRABCnrgTp8+3ZUrV86VL1/ezZ492wIUtAdicAsnfNOmTbNqEAUoogc7NKKxRHLJ2CPwRJCJUjQCXVRXXH/99e6ll16yIYgZRQXFJ5984kaOHGk9lelhzHU8tzIaf2VbuU2e78rgExERkaRcfvnllv0fSQEKMuSY30CAgsSfGTNmWMVpJAUoqLwlOMFcOQIUJFhx7E9rKgUoRERERE7H2hqJJwQoSADu1KmTSwvWyYYNG+a6detmv+8vWAGKtFAlRQwhEkYm+RNPPGHVFOnFwBQCBpx04bfffrMesYEYVsdcC8qSJk6caIEIsBBMxQTRPxawJfZw8skgH4IHXnAiW7ZsVgXRoUMHG1adURs2bHAtW7a01lNeJUT//v0z3Gc6khYdRCKVMhpFJJ6Q6U8WWqDnsgUK7Srvu+8+O3anGpQWnZGEalvaZJHQAtrIjhgxwo4NJfhi4T07Fh6DiIhIWr3wwgsWYCDx5Ntvv3VXXXWViwYanB2n/vjjD8uYSi8GYbNwXLZsWRusF6gM8q+//trmB3DSRAsp5M6d23Xs2NHuLxCDvSXyHTp0yKosxo4dawEAL1pLay8GYN98880Zun2Ca5zkMmSRYAXzTQIZsf7pp58SzMQQkf9PiwUiEi/I9PdakX7zzTcWrIhEc+bMsQHZmTJlcpFiz549FpygvQCKFi1qiUuJM/kkuGLhPTsWHoOIiEhaE3NvuOEGm5vKmlpaqyiSQ7Ut84wbNmxox7jBoHZPcYJ/MFUOnvQGKKiWIAv9nnvusQqHH374wYZWZ9R3333n6tWrZy8k5hQQoPDaO7Hdffv2VYAijlx22WWuV69eNgDda/9E3ztOpG+55RZXq1Ytt2bNmnTfPgsGffr0sR59/gGKV199NUPPZ4IrnOjz3P3111/TfTsiIiIS3WhVSgVwq1atbBB1JOC4vUaNGhYE8HCiGSkBCnLiOAEmoEOAguO1fv36ubVr1ypAISIiInIGJ0+edM2aNbMABcd8JHynB63SGbjtJY9jyZIlljSyfv16F24KUkQxDvgpj6ZF0vvvv5/u2yHjvGTJktYHlsoJFpGpfMhI8GDTpk02cLtUqVLWp5fbbdy4sd3XZ599ZiXozLuQ+MTJKcErshHXrVtnATIqKhYtWmRVPHyPAFd6+UdmuY8WLVrYYCHmV6THeeedZ4EPghUZCaKIiIhIdGNWG+0rafkUCTOrOLa58cYb3QcffBCwjLpAonKWGXNt27a15Cq2lfOMQYMGuQsuuCDcmyciIiIS8QYMGGDJHbTGZMZreo5BSRTv3bu3u+OOOyzY4WF9ltsncTjcFKSIYpTL/PzzzzYwhQz19CCr6dZbb7U2NoULF3affvqptctJ70kDGfIsCDPwjh64BFLI5GImwaxZs2wBWsQfAbKXX37ZZqoQGWZnS2CLABeBLgJeGXHJJZdY5h59jxnqTQ+/tHa5o0KJIeBffPGFRa1FREQkvrCw7uFYhYSLcGMgNieaJFFwjM38r0jBsdbkyZNdiRIl3OLFi+3cgnacq1atssQRERERETmzTz/91A0fPtw+nzRpkrviiivSdTsk8HpVwRdeeKHvepKEmedKIkm4KUgRxejn9fHHH1tpDk+ytCK48fTTT1vZUN26da0HGe1s0pslRYbUNddcY6116N9P6yh69TKHIlL79UrkKFKkiGUmUmLWqFEjO7kl0EXAi8AXAbD0oNLoyy+/tEoeZlYwZIhgCM//tGA7CKiIiIhIfKFlKa1Lu3fvnuZEh2BgG5588kn3wAMP2HH8vffe61asWOHy5s3rIgHJTyR1MHfu999/t/MLKmeZP0blrIiIiIikLjn9gQcesDVWOpAwzzW9li1bZh9J3o1UClJEIf+TI9rQpLeXK+Xqc+fOdUOHDrWPBD3Siv78DMBjgZmqDOYL3HXXXdbWycuGF0kL+jsTnCDARaCLnTGBLwJgBML27t2bruc6CwyjRo2yk2OqeihlS2/gg97PderUsfktIiIiEtu84wWyzsLd4ony/KZNm7qnnnrKvn7ssccsIShz5swuEs5RSDihUuLDDz+06onnnnvOkqquvvrqcG+eiIiISFTp2rWrtWkqUKCAGz16dIaO0ZILUjDTjDnFrL2Fm4IUUYYnFi1wJkyYkK5MLp6UlIZ7ypQpYyc3Z52VtqcCwYjx48fbCQc9ecni4onOvAlvroBIRnjzTAh4EfjiOUcgjGDF888/n2DQT2qwqEAVBa+Byy+/3GZepGdGBa87KjveffddC9CJiIhIbKNqgYV2SuHD7dixY9aTmHZTU6dOtWSjtB7HB8OBAwesxWvz5s1t9sTNN99s1RNUn6h6QkRERCRtZsyYYbODOc4jcdd/9mpabdmyxYIR559//mmzJ+gYcumll2a41XoghP+IVtLkrbfesmwpFlsZ5JuWhVVmTVSrVs09+OCDlqWeXp9//rm1l2I4H9G20qVL28Lv0qVL090uSiQ5BLwIfBEAu+mmm6xtAO0CaONEa4O0ovKIvtL0RaZcLq0IdtAHkNcStyEiIiKxr2LFihGx2M4cOoZkU6nQunVrFwk4TqN6gspsgieDBw+2RBBVT4iIiIik3datW12HDh18yTIch2aEN4+CAEWmTJkSfI+kc2QkCBIoClJEGQaajBw50gbjFSpUKFW/w6IumU2PPvqole80adLEstHT09qJAAdPahZ5GUg8duxYm2VRpUqVdDwakdQjALZy5UqrpsiWLZvNrqhcubLNl0hrC6jcuXNboMM/+69Nmzbu8OHDqW5JxeJAvnz50vw4REREJPKRgENbpdQeGwTTtm3bElRCc/wRCcfex48fd126dHG1atVy+/bts+Mjkpn69u0bEYPFRURERKLNn3/+aR10/vjjD1epUiX3xBNPZPg2vUT1pI4fmXvBfbJOFm7/ORUJ098kqIPraJXDgu65557rXnjhBde+ffs09dOlzQ6Z43369LHKCbRq1coNGzbM5cyZM4hbL5K0Q4cO2Y7aa3tGj+iBAwda+yWe52nF7It33nnHFS5c2L3//vvuqquuStPvr1mzxoZV0kZKJB5xYMNcI1p8REIGhohIRtBSkioAegD37t3bDR8+PGzbQmsnhlCTLEQbzLvvvttFgu+//941btzYPno9kzk3SJydJ5EnFt6zY+ExiIiIJKV79+42T5XkXIILrDVlFOtmq1atskAE8y0i9X1blRRRYsmSJRYsSIuNGzda9jkBiiuuuMJ66T700ENpClB4rZ06duzoa+1E252XXnpJAQoJa6sDZqJ8+eWX9vz0WkAxY4XneVoNGDDA5c+f3zIVK1SoYAsCqUX7NV5nnJyLiIhI9CPhYfbs2a5mzZquX79+YdsOKkipGt2/f7/N6uKYJ9w4yaWSmnacBCg4H3jvvfdsmKMCFCIiIiLpt2DBAgtQ4JVXXglIgAKsA7NuFY4ARVooSBEFmPVA/3vKfLxeYaldPN29e7e1diLYwAC7tAzlo3zba+1ExMtr7aS5ExIpOEEmGuy1gOJkmdcJrZsIXKQW8y24HRYAfvnlF7sNr2ffmZBpSQCRUrwTJ05k4NGIiIhIpGAO1sKFC13WrFnDcv/Lly93d955p2WeMU+Lr3PlyuXC6eDBg1Z9yjkCbQEI4nz77bdW6SEiIiIi6bd7927rWuNVU9SuXTsgt8sxW3KoGmb2xZAhQ1wkUJAiClDeTTsbFlDPO++8VP8ew1V4on366adp6p1PIIKMdIISYLgwk+AZlB0JAwNF/J111lk2K4XnqFcpNHXqVHu9UPWTWlQbMYibAAUBDk6433zzzTP+HtVFtHt699133QUXXJDBRyMiIiLhQsUCc6rCjblXtGs9evSoJSpRqUDCUDhxTMUxDxl+559/vrWQ5dhHrS5FREREMoaE9IYNG1pCyA033OCGDh0akNtdt26dJbl069bNqmET27Vrl7VRf/XVV10kUJAiCjAwhZZNqXmSchLjZXOzWPv444+77Nmzp+p+/v77bzd48GCrnti8ebMt2tKf/+WXX1ZrJ4mKFlAvvviiVUAQlNuxY4dlHjJLJbUVSCwA8JyvX7++/Q7D5lOKOnsIiKSljZqIiIhEHtqbMvyZ4+lw2bRpk6tTp44dzzOQmplZmTNnDtv2/Pvvv3YOQhIHGX5UkFKhTTWFjn1EREREMq5nz552fHXJJZdYVxwSQgJh2rRp1rqfY7ikjttoJ9W/f3+bXRwJFKSIEldeeeUZh4I9++yzVnbNELu0zq+gF3/FihWt7y7BCiJ43333natevXoGt1wktDiJpvVAixYtfCfWtGwg0JcaVEPwptCrVy9bpEjLmwOBDQZ4p2cuhoiIiIQPg/xI0uFELk+ePGHbDtq0EgCoV6+emzdvXlirNKnmpqKDhA/OLZo2bWoV11RUiIiIiEjGvfbaa27MmDH2+fTp012hQoUCcrt//fWXmzlzpq9DTlK4L2a00l4qEihIEaF4MtHChh77Z0LJTu/evS3y5j3JUpvZxO9OmjTJMsGJ2pFJPmPGDPf6669bj3+RaMTzmCFDtGviefzNN99YyRxDHQlcnAltzUaMGGHZgp4vvvjijMG/p59+2nbwzMRITQWGiIiIRM6xA+0babVUsmTJsG0Hx/AjR460hIm0tHkNxtBuZnbx92Ag9ksvvWQnzrSgFREREZGMI5mW9SP07ds3YHMoQJcQWpnSGSda5ocpSBGhnn/+eTsZoA9tSoudVD0wWIWTGbCwSkUFffrPhAHBd999t5X1MCi7SpUqloFOlpTKtyUW3HvvvVYRRBYgr6OHH37YhlBS6pYWH3zwgbv11lut9VpKr0eiz2QXPvXUU2FdWBAREZG0472b4+FQW7x4sR2z+LdsPeecc1w4kMA0atQoq0z9+eefrbJj9erVdr6h8wMRERGRwDhy5Ii1Gmc9tmrVqtaVI5BI3EWzZs3cueeem+TPMI+VKuK0duMJFgUpIhSBgnvuuceCDsm1m+FJREsbeoyR+c3sCFrUpPZkqESJEjbwjhMyAhtLlixJ04BtkWjAbJWFCxe68ePHWybg0qVL3XXXXWc9nlOLHTeBPyoz7rvvPqt0Sgr9A7/++mv7GZ3Ii4iIRL4vv/zSqoiTGiYYCitWrLBjflo7PfPMMy7cJ8uNGjWypAsSoTieIUBx7bXXhnW7RERERGIJx52tW7d2W7ZssbkQtHw6++yzA3b7DOBesGCBfc66cXJYc7700kttsHYkCE+KjpwRvXDfeuutFH+mR48ebtasWZZpxeIpJzipeSEQkGAgMG1vKGfnxIxFWwkcTuwoq2LHwII2Xye+8L8gmsn/L/GFIdCXX355stFOSRsCBh06dHC33367e+CBB+yEm9cLrZmYw3KmyqMGDRpYAILSu7ffftt28rQ8SOpNxD84QdUFPxOubEgRERFJHsdolNhTdblv3z5f69RQ+eyzz2w49vHjx+0j7VvDObCbORh85PiT84XOnTsr6UJEREQkwIYMGeLmzp1rx1y0+MyRI0dAb5+gB8e5tO5MqY3p0aNH7WOktPP8z6lwpQ1JshnbqX1yfPLJJ9auaeLEiZb1dCaUEHEixpMVlG2TXR7OgXzRhhc5J7F79uxxe/futYv/597XBCgy+tLipJAdFZUAuXPnto/exf/rXLlypWm4c7zjf0iAb+zYsfY1ryECDmcaTA8qMurWrWtBJmbGMM8luQDHqlWr7GeIjod60UMkHNm39HNn8GxqXksiIpFyTEDL1BdffNGtXbvWZc+ePWT3zf1VrlzZ9p+0oiQJIlzH5PPnz3fNmze38xASpUh+uvnmm8OyLRJ8sfCeHQuPQURE4hNdPbwkc9aU2rZtG/D72L59u40QKFq0qCXqpoTkWpLY6TwS7vdtBSkiyOHDh12xYsXsCUp2d2p62tM7jAzvM9mxY4dlR61bt86yuhkgTGa5sqOSdvLkScuqo3UPQxT5yN/wwIEDCX6OLHmCBMkFEhjazP/Rv2LC+xxeVYV/tQX3TQVGcgEQgiT8nD/up0CBAhYlZUA0F6pjFIBKuT/fQw89ZDtkdtycoNN3+UzmzJljsynYiXft2tX6Nif1Opo6daoFBSnd4w1CMyoklmmxQESiGbMgQnnMtHXrVpt1RVILsx8WLVrkMmfO7EKNYxmqSpmlhdtuu82y+ajmldgVC+/ZsfAYREQkPgdlkwjyxx9/uE6dOvmSZ2PdkVS+b6sHSQShwoFh1rR54oQhKWPGjLETiFKlStnXqQlQMGuCnrKHDh2yqe5kR1WsWDHg2x+tWKQmIEEwwrvwNYEDsuQJHLHoT6QzcRCCjLvUDCkP9AllUkGMbdu2WV9lZpMwr4RACHNHypQp4wtcUOYVzOhoNGnZsqX1WPZaG5QrV85an9WpUyfF32vYsKFVJfH7BAn5fyTV9okKCnbEtIZSgEJERCRyhTJAwXEDQxIJUJBcQjZdOAIUHMMwSJEqUdCLmKoStRoVERERCTzWZFlXJEBBNe3zzz8f7k2KOKqkiCD8KzhRoN0TWVVJBSjI3GaoCdE3FsrTMn/ixhtvtJ5nV155pYtX/B2++eYbW8z3AhLff/+9BSRYaC5evLhvQZ8LwaBwnDhmBH2Nv/32W18FiPcYqb7gMbIw7z0+FuYJYgRyQE+0ITBI4IH2aRg4cKB74oknzhh8YtAlwb5QB6lEIpEyGkUkmjALYtiwYe65555zRYoUCfn9f/HFF+7hhx+2Ks5wVC0wpJF2l5s3b7YAzeTJky1gIfEhFt6zY+ExiIhI/GA9rmbNmm7x4sUuf/787quvvgpKm9ENGzbYujFrWgRCzoQEFZKgSbK9+uqrXbCo3VOMoZcY/e1BK6hBgwalaf4EWd/0243H9j/8LZYuXWqT7bnQLokqA//FehbqCUjEapUBbQwSV4t4wRnmXjAQmpPVatWquSxZsrh4Q4st5lSMGzfOvia6/eqrr6b6pIfKlWXLltnfLzm0CytYsGDAtlkkkmixQESiyS233OI+//xz165dO5vtFg6cgoWj7eqHH35oFdZUUtCSklkYHAdL/IiF9+xYeAwiIhI/CByQeE4S9MqVK33dcQKtWbNmbubMmVa1S5L6mbAuSmCDNdPbb7/dBYuCFFGERfPLLrss2ZYws2fPdk2aNLGTGRZSn3nmmRRPapibQIRu9erVthhPz/yOHTvG1fwJ/qbvvvuuBSWIVFJdQKYcC/EsyNMDLh4DNonbXPEc4e9Eq4GNGzfaAO6qVav6/k4MT4wntMpiTgVBC2Z6fPDBB2esWCJA0bRpU/f666+7KVOm+IKJHl63XMcMjI8//th6UIvEGi0WiEg0oYKApB/6ANMKNRTZcxxfMA+O5Jhw4HiEmXSPPPKIVRaXL1/ezZs3T/Mn4lAsvGfHwmMQEZH44HXFAe3377333qDNPCtatKgd55GYnJokFFpO/fTTT65Lly5BTapVkCJK8Ocn+/rHH39006dPt8wufx999JG788477eSmffv2Vg2RUrBh165drnr16tZjn2HKnHwwwyIe/o5UBrDYTmCCMnra8HACxoI7l9QMRY5nzLTgb8ffkNZHLL5zIs2MBv5+pUuXjotAF63AqKQg0MVOmozDwoULp/jc69Wrl7VW4+/D348Ajz9eu5MmTbIKKBZFRGKNFgtERJI/TujcubMbP368lfVTWZk1a9aQbgPJFyQsTZ061b5u1aqVnVOQnCLxJxbes2PhMYiISOyjpT/raQQOhg8f7nr37h20+3rwwQetC0+tWrUsGTmSKEgRJRh4zNC8w4cPW2DBP3L1ww8/2BwJhqtQlj1r1qwU+9+TCU9AY/fu3TZ3gixwhj7HKl7kzAVg0DgLwzt37rSTPoI07ASoJglGj7d4wPPxvffes78rH9mh0BKAgEXdunWt2iKW51jw2uO1tH37dsswfP/99y1Ikxx2o23btrWTf2bKrFq1ysrmPAQ8iE7zehaJRVosEJFocPTo0ZC3taQCmmQGEhnmzJkTtOy55HAe0aBBA0t84jyC7WEeRjwknkjsvmfHwmMQEZHYxjxcOmlw/EkAgRlgwTr++vHHH617DAnurEfRPSaSKEgRRZjszgA/FtcTn1Q0atTI/pksxqc0L4HKARbl+R0CEwQoYnVANgu+tOWhtQ6LyTxOghIsoDMYRllhgc++o7LCq1IhAzBfvny2k2W4DsGLWB2oXaNGDXtjYSfK409qoL3/34nABq/VQoUK2WtSQTKJF1osEJFIx7BoTth69uzpHnvssRQTfwKFoATH8qDikratoUTZP9WdPHYSeWhNyfmCxLdYeM+OhccgIiKx6+eff3Y33XSTfSTJl+Tfc889N2j317FjR6uSveOOO6zlfWoTv1mP5hgx2MfFClLECAYb88+kdVNyaEfDUBSic+XKlXOLFi1K8eejEa2HeJxEHlkoZ9YGJ31kr1eoUEHZYCHC7oJ2SPwfmJXCrA9Odvk/8JH/SyxhB0rrJwIPBL94zFSSpDQPhtcggRwCGjxnE8+a4TYZTJS4tZtINNNigYhEOgITlNlzvELpfbCRgMRJKTPAaPf0wgsvhPR4lWMXzg9IYCK5hLJ/5m2JxMJ7diw8BhERiU2///67rQetXbvWksgZlH3JJZcE7f727NljXXlInOX4L7Ut/+nskzt3buuSwtpzMI9TU/u+HfwUIkkSi7s8UZPy+eef+z4n0pZSwIGMKDKkCFCQxc1E9lgKUHBixQklmemcVNJ+h0HgvJimTZtmpVMKUIQOf2uiwVSxsCMkUktlCwv5+fPnd0899ZTbv3+/ixXsRGn1xONjkYEWDfT4Sw6VEwTRiETzOuZNyd93333nrrrqKrs9dtIiIiISGkOGDLHj5pEjRwb9vkhW8I4dqPbl2DWUx6szZsywmXccR5M8QXWnAhQiIiIiwUWggCQR1oJy5MhhSSLBDFCA+5k4caJr0aJFmmYSE0wB61eRsq6qIEWYjB071ioAyKzy9+qrr1qGNdefqciFAXyNGze2iBczK7zF0Viwfv16GzZMK6H+/ftbJhonWLTe6dSpU9Bf5HJmRD/btWvnVq9e7b7++mtrtzV06FDL1mMgI/+rWHDBBRe4N99801pbUQ5Hm6sRI0Yk+/PMonjjjTfcxx9/bAEdf0WLFrUgIhdmVIiIiEhoUMZOFW7x4sWDfl+8z9Na6oYbbrCZcqGa48W5w9NPP+0eeOABOz9gFsXy5ctdrly5QnL/IiIiIvGK9SLWjZYsWWIz0OhyQ8J1sJ177rmuZcuW7pVXXknT7zHDggT6bdu2uUihIEWYkIXOCUvZsmV91zHchLY5uPTSS1OMZLFIymI9JyN85AQocVuZaHxBE2Uk86tEiRL2ed++fW0xl+x1MsEiJbonCTH8fcKECTa0fdCgQVbRw3WUuM2bN8/adUUz2lhRPfLoo4/a13zs169fsj9/11132fPV/7ntvXlQmUFFhf9gbREREQkOegGH+jiERI63337b2j6GalA3gxJJ8HniiSfsa4Z1UzmS0kw7EREREQkM1olmzpxp60ckuvqv9wbDqVOnrKtOerG+SlJuJM1SVZAiTJ5//nmLVjVt2tS+3rVrl/W6pzSoXr16buDAgSlWYXiLpVQZjBkzJiTD/4L5wmLhlmwzsvEpOSLoQqk8QQpKlyQ6XHbZZa5379420JxhkfxvaZFUsmRJO1mP5hE47MCHDRvmnnnmGft68ODBVjlyJmvWrHGlS5e24ZWgV2Csze4QERGJRCQJcGxZqlQp9+233wb9/qii9I51SEbiuCgUGHpIeylmhnFOwLkCCU3RfH4gIiIiEk1rvN5a0dSpU12NGjWCfp9z5851hQsXttmpsUJHrmFUoEABy6w+duyY9aullz8nUbR8Su6kgoqCLl262OdPPvmkGzBgQFRXF9DC6fbbb7fMc1pVcXJHL3/aWEV7ZUg8YxGeFgP8P/kfM4yHIBwzRD755BMXzR555BFfP+s+ffrYIMyUEFCkcoJFEoYEJQ7OEZgUERGRwCNB4Mcff7RkII5FgonjdypI27RpE9KkDM4fKleubC0FqJqggpUqaxEREREJPpKse/ToYZ+T2Nq8efOg3+fRo0ftPpkRu2nTpnTdxpdffukef/zxiApyKEgRhlkLBw8eTHBd9+7d3bp161zOnDkt2zy5uRI8cTjxAU9GAhTRihcRw2To13vgwAGbp8GCdsWKFcO9aRJgtD1avHixXRggySAfhr2HIqMxWHr27GlVTOjWrZtFylMaXslslc2bN7sOHTr4Fi4IzHHhDU1EREQC75prrnHbt2938+fPD2opu3/LVoIhoUogonKVGXdUbfL4PvroI6uoEBEREZHgYy3TC0qQUE5nkVAYOnSotcbPnz+/r9NOWn311VcWVKE1VaRQkCKEWJxkoDCDhRcuXGjXkWE9adIkO5lhsZInWFLeeecdG4LHbdBvljKiaKygYGYBgRb68TNsmawzBiyzaB2Nj0dS74477rBILf2RWbCnBRLPadp6RSOCFFRVgIWJ1157LcmfY1glra9o+8DPELQAw+AJSP72228h3W4REZF4wpw3qnaDZe/evdbaMjUtWwNp7dq1rnz58tY+llaSK1eudDfddFNI7ltEREQk3i1fvtw1bNjQZp81a9bMjRo1KiTrmtu2bfN196DNVHrnjzELmKTbmjVrukjxn1PR3CQ+yhw6dMgWajdu3Oh27txplROg5QsnGpTZJIUMdBbxOflhUZeJ7dHWY5bHToSO+RkszDLU76GHHnLnn39+uDdNwuCvv/6y6gNO5KksosKA+SPeayJasPvs2LGjDQ0nCEFPwOQyGJ966ilr0cbzn8Dc5ZdfbkMuL7nkkpBvt0igHTlyxF188cXW0oyBsSIi4XT8+HGroODkK5g4NicA8tlnn1kCDi1Lk6uIDqRly5ZZG03muNEq9r333nNXXHFF0O9XYkMsvGfHwmMQEZHotXr1ajsGZC4Y7fupRqCdfyjUrl3bEt/vvPNOW0+OhoTv1L5vR9dKd5RjeB7l2CxQ+i/GMlAluQAF/ftZ9OQkiPZIzKSIpgAF8zYoQypUqJAbP368lT5x0ki0TgGK+MXOmyAVEWDalhF4u+qqq+xzTrijBW8G48aNs+Ah0fNGjRq5Dz/8MMmfZX4F7cx4E2vatKk9/xWgkGDhecncowsuuMAya6liSglZH7RFIQvjyiuvtDaEJ06cCNn2iogEElXK1113nXv44YeDej9UVBKg4GTrrbfeCkmAgpNg2kVyvMQsihUrVihAISIiIhLCNv6s47K2U6VKFesWEqoAxZw5cyxAwf0xHzUaAhRpET2r3TGCJxALQcyXoJriTP3BatWqZdlgnIzQKoaBxNGCkygmzdMWh0VcghNkzivbRTxZsmSxxXt6KtPGjGobghXTp08P6dDJjCBoSPCQQeEEE8lsZL5KYlRa0OqJ6HG2bNls0JH/YE9aYIkEAgdJzC1i30tbPbJsq1evbsNVk0Krwccee8x+nko/qpy4DV6bIiLRiCQIFC9ePGj3sWHDBkvAAe/vRYoUccHG/vm+++6z4w1aTFFBwXGFSLQhMYnzYv9L0aJFw71ZIiIiKWLtplq1atYthvmrzBUmMTBUvv76a/vIHArWljOCmbH//vuviyi0e5LgW7Vq1am//vrLPl+9evWpc84559TFF198avv27Un+/I4dO05lz56dVdpTlStXPnXs2LFT0eLXX3891ahRI9v2unXrJvsYRRLbuXPnqfvvv9+eO3ffffepPXv2nIoWf/7556maNWvatvPa3rhxY5I/t2XLllP//vuv7+vx48ef+s9//nPqnnvuCeHWSiwrV67cqU6dOvm+/ueff07lzp371NChQ5P8eX729ttvT3Bdjx49TlWoUCHZ+zhx4sSp//73v77LTz/9ZM99PhcRiQTfffedvTcH05IlS06NHDnyVChwP+xnubRt2/bU33//HZL7ldjDe3W437P79+9/6tprrz21d+9e34VzyGh6DCIiEl9Y28ybN6+9/5QoUeLUwYMHw7Idy5YtO3Xy5MkM3069evVsLWry5Mmngi2179uqpAgBKiZuvfVWi3IxOLpJkybWi575FAy6S6pXV506ddyBAwdcmTJlbGh2egehhBo9+claW7JkiWXnzps3z1o9iaQGQ+WpGKJlAn2d6e88c+bMqKiqOO+886x6iNc6ffboE8i8jcTItPQvyePn+ZoINrM6RDKC7FraCvL+4l/tw9erVq1K8ncYvMrveC2hqGxatGhRigO0aONH9q53oUWUiEgkYR4F783BVLVqVdezZ8+g3gfHQMzt6tWrl31N69SJEydahaZINKNDQK5cuXyX7Nmzh3uTREREkl3XpbUTa7rFihVzS5cutZb+4VClSpWAtJdi7ZnjzMyZM7tIoSBFCDCDgkUcAhK006A8KG/evNYvN3H/MPraE8T4/vvvrb8sAYoLL7zQRToCKo0bN7aWNxUqVLAebXwda/3RJDRomUQbBfr8NWvWzNWrV8/t27fPRTqCiQTmmAVAezOvBVRS6CXdokULG6i9Y8cOe62Hqo+hxC72xbyPMJjdH18n9xriPWfQoEEWMOM5SMs1+pyn1O6JOUoE47zLTz/9FPDHIiKSVgRb2ScFCydyBAm2bNniQoEEhs6dO7shQ4bY17TFHD58uI6vJSZwTpw7d25LaGNe265du1JsScFiiv9FREQkFDjXJTDA+9TVV19tAQr/OcPBtnnzZkuCTel9Mj0WLFhgawTMQY4UClKEAP/wPXv22FBdetdzYkHv2qSibvQVYwgKPc3obZYnTx4X6ViUJeOdgcFkvfM12TAiGcHcBqpxqM4hA5wKnWioqsiRI4ft7BmeuXz5ctelS5ckt5kFDh4fg494kxMJF56nLIDRW50el+zDeR8igJYcBr8zX8j/IiISTidOnLCkhvz589tct2B47rnn3MiRIy2o6z9bKhioum7durXtmzl3oHqC8wSRWHDTTTe5V155xb3//vvuxRdftISdihUrWhJPUlTBKSIi4cBa7u23327vUyTzLVu2zBLKQ+Wvv/6yGb+cnzN3MtBJtiQzMis2YgS98ZQYepXlyJHDenA9/vjjSf7M1KlTfb1mZ8+efSrSHThwwDc/gH769BIVCQZ61HrPNeacRMNzbcGCBdbfj20ePXp0kj8zZMgQ+/5FF11kj+no0aOntm3bFvJtldhB//Wzzz771FtvvZXg+ubNm9ucl6Tceuutp3r27JnguunTp5/KlCmTzbNIDfWGFpFwY+ZT8eLFrVcwc3MC7bPPPrP9K/u6F1988VQw0WfYm+/Gfc6aNSuo9yfxJRLfsw8fPmzHw1OmTEny+5qFJSIiobZr165ThQsXtvebAgUK2AzVUOvXr5/d/6WXXnpq9+7dp6KVZlJEUNQNzzzzjPv111+td9mAAQNO+7mPP/7YPfTQQ/Y5LaHuu+8+F8mYGUBm+wcffGBVIXyt6gkJFnrUMquCqorPPvvMKnf4OpKrKijHI9sS3bt3t0yxxGgZccMNN1jJOu3RiMg3b948DFsrsYL+6zyn/KtzaBfC17fcckuSv3Ps2DGbW+HP63Ueya8xEZHEM5++++47t2LFCqv2CnQrPY7Naad3//33u/bt27tgVoTce++97o033rAWfMy74hhBJJZdcskl1kJj27ZtSX5fFZwiIhLqGRSVKlWy9yXaeX/00Uc2QzWUFi1a5AYPHmyfU1kb6E47rE3TSjSYrVLTSkGKIKJfGKWo9PZm2B39vSdMmHDaED+GlNavX9/KeGgJ9eSTT7pIdfjwYesZyvbefPPNNnuCr9UbV0KB5x2zKqpVq2Z99DmJ379/v4tUlOPRqoFFYhY3Nm7ceNpCMO0bWCCm5c4ff/xhPQEj6U1Cog/Pu8mTJ7tp06bZc65Dhw7WlqRVq1b2fQJhzJTw1KlTx1otzJ4928pYFy9e7Pr162fXazCriEQT3k/pbx9IvIez32RQIouoSc2UCxSCxnfffbe1jaT1K/OqmNMlEus4BmaeWyhbaIiIiCSFc2ICFF6LJxJgCFSE0rZt22ytlaRBEtpJkgn08e3AgQNtXYC5T5HinHBvQCyjOsI7Ybr00kvd008/fdrPkEHNQtDBgwdd2bJl3csvv3xaRmukYHGYEye2dfr06QpOSNiqKlhMZSh1x44d7XXD/Jbrr7/eRRpeHyz+Mhjwk08+seoKhnoyb8ND1nunTp3cmDFjXN68eS0LNHPmzGHdboluBMSo3CPgTdCrdOnSVsnjDdMmgO7/PvPEE0/Yc5WPP//8s81V4X0pqfcsEZFIQ3UDwdU777wzKMfQVEW+9957FjRgjtSFF17ogrVIy3ECJ8L0Bn733Xct0UkkFvXs2dOONZghQ+cBOgmQGKGqIRERCSeCA8ygYFg2VbpUUIR6VvDRo0ctQfe3336z5PDRo0cHZfZZt27dbE06kqoT/0PPp3BvRCxjmDRT31kkSow/PZngtErKnTu3LV5G6qBsTpTIXOdAkqyuggULhnuTRGxBlQxDKnrIGm/YsKGLRCwYMyCQSPwdd9xhbdL8F1KonKAVHAst7DNKlSoV1u0VSSsObhhkyXM5kg5yRCT20RaJ4CwZb5xIBjKBhvdlbpdWk1SotWnTxgUDw4Jr1qzpPv30U9uHElhOrkWfSCy8Z5MRSkIfyW8kRzCMnuQIMlaj5TGIiEhsoQsB6zUEz4sWLRryIdkeqnc5LqRryNdff23rxdEute/bkZmyHyOIvBH9atu2rS1SJkaGNQEK+s3Onz8/IgMUBFKGDx9uFRRVq1Z1K1euVIBCIgavGU5w6tWr52uVRtlapOHki9YNVEgsWbLEN6vCw86aapDNmzdbgILXHTtxERERSdmhQ4fsZKdKlSoBr/Als5vAx6xZs9yDDz7ogoH3+xo1aliAguMBqkIUoJBYR1U0i0C0mGAxhq9TG6AQEREJNIIBt912m703MQOVdtzhakGYN29et2rVKls7ioUARVooSBEkzJegdIYyHQZ9+bd3AS1d6BuOESNGuBtvvNFFmuPHj7tmzZq5xx57zNqAMLQ4WCXuIumVKVMmG97OwB+GClGdRMuESMMb3QsvvGCf83r64osvEnyffQBDA2kLVaJECZW7i4iIpAJ9emlj171796DcPslEvCcHo8Up2WS0qSIJiGMATkbLlSsX8PsRERERkaRRMUuyy4EDB6ydOK03vVbJofSrX3I7rT9ZFwoWqkQicd1MQYogoGyVvvlUSZCBRcWEf2sXhuJR4krmCCU8BDMisY0OUUQew+uvv+4GDRoUsbMyosWAAQPsBDepi3oOZwx/w0cffdRakS1dutSVL1/eWitFGoZoU/FB/z8WPJIakM2bIfNfeNNQNYWIiMiZUYEQyJYvzF7juOLkyZMuWOgzXK1aNUtaYHYdxy+cGIuIiIhIaHhzzVh7YQ2U47HESeah8M0337jChQtb141gT2UgGFO9enVbe/rll19cJNGqcxBQruotLj7yyCPuuuuuS/B9Mr1YhMyVK5cNyo604dOcLHGSxJOViCKLqhKYAXG0/qKEf+/evXbh+UGG/bx588K9eTGBgZOff/65BQKpTKBEL5LwWp84caLNdiGI0qFDh9PegNh+ULUUia2rREREIsHWrVutTWIwBiZ27NjRKp1feeUVFwwkKXByuHr1ajsRJjGhTJkyQbkvERERETkdSdmsIbF+ROvN9957Lyxzjnbu3GkJ7EeOHLFtYCZaMLEWxZoUczfCUTGSEgUpgoDFZzAwmx75/t588003adIkW6ykRQ0/E0leffVVGxBYqFAhO3G6/vrrw71JMSNr1qw2k+C8886zABUXrjvnnHPcZZddFu7NixnFixe3IfQMqydDccKECS6S0M7htddesyorPjLw2x/DP6+55hor9aP6RkRERE7Xp08fV6xYMV8rxUCgcoJKR8rfOR4OxhwKbwYFxyoc/5GxxzGLiIiIiITGlClTXIMGDezYj5bhzAhlvS7UDh8+7O666y5bRy5RooQlMLNGGEwk9JLs8/7777tIoyBFgFF9MGrUKPt8/Pjx1kfMPzpGJj0oIWcQdaQgUterVy/XokUL17RpU8voirSImkhqcdLPDpdMSKoV+MicmEhBNQ0t1NCpU6cEmaDMsBkzZox9Tqs49hsiIiKS8LjVyzKjh3CgDBw40H311Vd2HEEyEQkFgfT777/biShVk7R4YgZFqVKlAnofIiIiIpI0Olk8/fTTtjZL54o2bdpYNxySiUPtxIkTrm7dum7jxo0uT548btGiRZbUGgokzufIkcNFGgUpAuzQoUMW/SIyVb9+fd/19KBv0qSJ9Z+96aabfAuUkYDSpnvuucc999xzbvTo0RZRZKFUJJoRfeb5PHnyZHtO01aBxYFIQaDy9ttvTzCjxkMFCFVMRPWJ7ouIiMj/IXhAptmPP/54WlvV9KLF6bBhw+xzWjPmzZvXBRLVGZTye0Oy6YGsimURERGR0CAowUzgJ554wr7u27evdboJduVCUlgjfuCBB9zHH39sLaZo83TllVcG/X73798f9JkXGaEgRYBRRVGnTh1rm+Q/a4KgBCclPPlo8XLuuee6SMAJEz3YPvroI4vade3aNeJmZMQy/a2Dj8g4rRS+/vprG4hEoDBSFlgYzEkvaoYkPfbYYwm+X6tWLftIRieRdREREUkoX758AbkdkhiaN29uJ698DHSCwPHjx93dd9/tPv30UxvyTYDihhtuCOh9iIiIiEjSSAqlawxdK1iHo13o4MGDw7YmR+cPxgGwNkziTaCSblJCcKJy5crWXpw1qEikIEUA7du3z7K2icr5t3ninz9kyBD7nP74BQsWdJGAoX30xGUR9IMPPrBMcwkthiPzvNmyZUu4NyWmVaxY0QIV/J1ps3bw4EEXCXLnzu0bykmAk0Cmp3v37u7qq6+2z/v16xe2bRQREYkkzEwLdGUkx+q0bCXoEcgZF95Jcb169SwhiOM+jrnLli0b0PsQERERkaSRqMraJ22dCArMmjXLdenSJazbRLL4888/715//fWQjQL46aefrAp5165dEbMunZiCFAFCpjNPMNrLUD7klenQL7ddu3b2kWEsDOOLlLZUtJRZv3699cO99dZbw71JcckLDJUpUybcmxLzyFhkgYAdM/2rWYyIBLw5tWzZ0j5nX0GLJ9APe+7cua5cuXKuffv2Yd5KERGR8GPBn4oEWjGtXbs2oMkM69atc3PmzLFKh0BhHtZ9991ngQmGMVK1TNtXEREREQk+FuRZ71y+fLkli3AsRrvtcKCSgXbfnocfftgSWUIlX758tg7GcWkgj3cD6T+nIrkZVRQhAEGJDj3FaPXkIRuLoAVtnghkkDkdbr/++qu1vWGxVv1wJd7wOiRSzU6ZAB0DisKNyo6iRYu6AwcOWMkhvRE97KLVFkwi3ZEjR+w1RYUe73ciIsFARSRBCiopduzYEZYhh6lFghJtBciQY9bbwoULQ5YpJxLr79mx8BhERCS4qJSljfaePXtsLZYARalSpcKyLazrPPLII9Y9g1ZPoRqQHW3v26qkCFDZOQEKFhIZhushCOAtNg4fPjwiAhQsgjKsd+/evRZJVIBC4k2xYsXcihUr3NGjR60fH29Y4cZcCto94amnnnJbt271fW/NmjWuT58+tp2KKYuISDyjDeKGDRtstkNGAxS8p3bq1MktW7bMBRqzLR588EELUHi9hhWgEBEREQmNDz/80N122222jnLttde6zz//POwBCrrvfPHFF9aKPBzbEA0UpAgAFhDBC6BAgQIJTnwYTF2+fHlr4xIJfdiooKC8h7Y3JUqUCPcmiYRFkSJFLEjHIMs77rjD7d+/P9yb5Jo0aWKvT1pZ0N7JexNhmP3QoUNtH0IfxWh5cxEREQmGs846KyB9dGfOnOnGjx/vatasafPBAoX3ad67p02b5s4++2zrf8x9iIiIiEjwTZw40Y69qLwlMZXkFq8lf6h5IwAIUGDcuHHWiSfUWrduba3GCdZEMgUpMojsK1rGUEVBdvaIESPsejKmFixYYNlTkyZNshOqcOLFyQLnzp07bXvJJheJZ4UKFbLXrzefhY/hxD7kxRdfdJkyZbIgIosboFVEnTp17HVLNsA777wT1u0UEREJB2ZQBCpQT1YdgQT069fP5cqVKyC3690eJ6C8r7/yyiuufv36AbttEREREUk+IEDFwkMPPWSf044/nK2VmE3GNkyZMsXWhF966SXXsWPHkG/HL7/8YkkztB4955xzXCRTkCKD6B/vDeWlioKhJ/TY8ibF9+7d20qLwom2NvRh27Rpky1ylixZMqzbIxJJbSMotWOxgioGXrvhDpz079/fPufNlfkxVGQRmOjRo4evHZSqKUREJJ788MMPdqx93XXX2XFtRvAeSsXi4cOH7Tb9W7Vm1MiRI93TTz9tn1Ol0axZs4DdtoiIiIgkjeNDKhSee+4537oJiZ/MBQuHEydOuIYNG7rXXnvNAgN8bNWqVVi25fLLL3fr16+3mclly5Z1kUxBigwOYSHjmVJuKic4gaLH2eOPP24zH2gp88QTT4R1G2lnw4BBss+IIHIyJiL/hyAiVQq8fu+66y6rOgonghEEEqns8AIT6N69u7vgggtsRgXliiIiIvFi3bp1LkuWLC5v3rz2MSNeffVV9+6779pMC05eA5VRRmsBkpMwbNgwy+ITERERkeD6+eefrf3+22+/bUEJAgKsxVLVGi5ULzB/gu2ZP3++a9SokQt3QmyX/yXTRzIFKTKAieREwsiSor8ZLwCehBMmTLDv85FFxXAhU6xly5Zu1apVVtZz8803h21bRCIZwUWqjIgu33///VYaGC60iJs8ebLtT2bMmGEBFBAM9Xpae/0MRURE4gGVyrt377bqhIyexHbr1s0+HzRoUMCqnSmh79Chg31OslIgqzNEREREJGmswVId8PXXX7scOXJYIjlrOuGWP39+W8t57733rLNNuNpN/fTTTy6aKEiRwUgUPcUoI/KCAmQ787FFixbu9ttvD+v2DRkyxL3xxhs2GJCooogkjze2OXPmWMVRnz59wrot5cqVszZPoJqCeTfZs2d3X375pV1HJH779u1h3UYREZFQuvjii+3YOyOmT59urR15n6WtYiBw3EC/YY7/6TPstXsSERERkeBhrbNSpUpu3759rkSJEhawuOWWW8K2PSS9Uq3rIRmmSpUqYdueiRMnWovzZ555xkULBSkyiJ7x+fLls5MmsqiYlJ45c2Y3dOjQsG4XZU6UN5ElRvaZiJwZcymeffZZN2LECKtiCKeBAwfagKfvvvvO5snQjuLCCy90d9xxhy2E0E9QREQklvF+t2vXroDdHhUOnNAy0DoQbZ6oVqb/8d9//+0aN27sxowZE9bWAiIiIiKx7t9//7XEUrra/Pnnn9bifuXKla5gwYJh26bly5e7ChUq2BwK1oUjwUcffWSzMTLaKjWUFKRIh2PHjllJN/1xuXCSwz99wIABvsznK664Imzbx6Jm06ZN7cUR7pkYItGGNhC0cWvTpo2vciEcLrvsMmsZAbIyd+zY4TZs2GDXtW3b1oZ+ioiIxLKlS5faCWegBlATQGjSpIkrVqxYhm/r+++/t/J9zgtq1KhhgY+zztKplYiIiEiwHDlyxBKxvcTwxx57zL311luW0BkuJLhWr17dqnWZA8x84kjw5ptvukWLFtn6UbTQkXQ6S8WZN1G/fn1r6XT48GHLotqyZYu1ZOnVq1fYtu3AgQMWReRF8fLLLyubSySNeM28+OKLrkyZMq5u3bpuz549YdsWBhsxJJQ+grNmzbLr2OdMmjTJFS9ePGzbJSIiEgqfffaZZctRWZgRVDgcPHgwYNv1448/2sko5wC0FeAkkEHcIiIiIhIcmzdvdjfddJN75513bCA1a7MEK8KVJMIsU4IktP08efKkrQsvXrzYZcuWzUXK2tZdd90VkOrhUFGQIo04UfKG1nbt2tX3YvCGZT/55JM2UDtcQ1EaNGjgjh49au2eoqmkRySS8IY3b948G1ZNoOL48eNh2Y5MmTL5Zt4wY+bQoUO+9hciIiKxrn///tbysHfv3um+jblz59oxe6lSpazqIaP2799v7SFJYqDXML2HdcwtIiIiEjwcbzFTjOPCPHnyuE8++SRglbbp8fvvv1tFx/Dhw+1r2k8xE5g1nHA6duyYGzZsmAVNopGCFOkYjkf0jkBE69at7brnnnvO/fLLL+6qq64KawsW2tTQh43FVeZkiEj65cqVy4J9tHOgPC5cgQGi8tddd5377bffbB4FbS82btzovvnmG3tTJntTREQkVl1zzTXpPq4luN+pUyf7vGXLljY3LiP++OMPa/G0detWlz9/fvfBBx9Ye0YRERERCU6i+ODBg61jDK2ebr31VrdmzRp34403hnW7pk6d6hYsWGAJrsw7o0V3JLT97Nq1q7UIJ4E9GkVPzUeEICABFi0JWLz00ks2IAU8KcNV6k17Gi5TpkyxF62IZBwtn2ibdv/997uSJUtmKJMzvajmIBLOogiBCYIly5Yts7YVvBnSZo6yQrV2ExGRWEF1MMOoM5qN9sgjj1giUdGiRV2/fv0ydFtkpHHC99VXX1kZPwEKMvlEREREJPCY8dCiRQtLHkXHjh2ts00ktNgkGEDy6IMPPmgVHpHinnvusb/Xww8/7KJR+MM8UWTbtm02wI/oGL3iKTciUMG09LJly9qg6nAgSMILhAsvEBEJnPvuu8/17dvXeg0uXLgwLNtAH8HKlStbgIJqCrJBO3ToYFH71atXW/BCREQkVlAlSACAIH16ffjhhzbMmiA+2W68Z2Yki49jbAITVGNwPECFh4iIiIgEHh0tqJZgwZ2gxOTJk924cePCFqDgWHDixIm+VuCsC/N1JAUoUKdOHbdjxw6bZRqNFKRIA4aygEF5lHiTTeWV84wYMSIspT08+dgOFjCfffbZkN+/SDwYNGiQlRc2btzYouWhxgIL+xgQKP3hhx9czpw5bZv8900iIiKxYP78+TaUmkSg9GA+m9eClcSi8uXLZ2h7SFSYMWOGVTcSQGFoo4iIiIgE3uzZs+1Yi/aatPz89NNPXZs2bcK2PRyTUqHw0EMPWbJopM0IPXHihLXC8mTNmtVFKwUp0oCes1deeaX1iMdbb71l0bQaNWq4KlWqhOWJyAvlkksuca+//npUTWwXiSYEIAkE8AZJYIAhSaFGFkGjRo3sDdEbpt28eXP7SNsn2mKIiIjEglmzZlnFcnpnvTHE8Mcff7T3bdqxZsSoUaPcyJEj7XMqMqhuFBEREZHAorUmbYpIDmUANF0kwj1/Yu3atdY5h+NSqnJvu+22iGq1ferUKde5c2d3ww032LZGOwUp0jiYmhMe2jr9/PPPllGF/v37h2V7uF+GeBMs0dA+keC68MILLbNzz5497tFHHw3LNnj9tMniJDBJVVeOHDnc/v37ra2FiIhILKBigVlMV1xxRbp+nxNcMu5oC5CRbDLeb3v06GGfDx061Poii4iIiEhg/fTTT65SpUpu9OjR9jXDn2mvnz179rAt/o8dO9bdfPPN1smiQIECbuXKla5169Yukhw6dMitWLHCtpE5bNFOQYp0ZFRTsdCrVy8b6nfLLbfYkzbUPv/8c/fMM8+4AQMGuOuuuy7k9y8SjwoXLmzZmQypZ3h1qJUoUcLeHDF48GB37rnnuiZNmtjXr776asi3R0REJJD++eefgJTQk7xD7+LatWun+zZoLdCsWTPbnk6dOoUtQUFEREQklhGMuP76622dk04xzKEYMmSIJa2Eq73Tvffeay1Dqe6gmwYVHWXKlHGRJlu2bHbMShIrXX6inYIUqcBgFEp7CEp4E+bfeOMN+5wXUjjaPLVq1crKeQiWiEjodOzY0WbAEEEPR9snBndi06ZNFimn5RPBE/YHIiIi0WzKlCl2bO0dZ6fVtm3bAhLk4D2WE9I///zTWquS1RdJpf0iIiIisZCc8uSTT7qaNWu6gwcPWhDg66+/9s3eDBdaTX3yySeWFErbTzpqRFr3miN+Myguv/xym1UcCxSkSIUFCxbYhPQKFSrY10xw58XEE9brCR9KvIgp5XnllVc0h0IkDNVU9KQ+cOCA6927d8jvv2/fvq5cuXI2g4LyQxZztmzZooCliIhEvWnTprl169a53bt3p6tNAO+JzIz47bff0r0N+/bts0w0suiolmY+Rrgy+URERERi0d69e23mBPM2STBhKPVnn33mChYsGJbtYd6wJ0+ePDa8m/ZOtP2PtESV999/3zpsLF261MUaBSlSwWujcuedd1pGFZE0TJo0yRYLQ4nyp2effdYNGjTIFS9ePKT3LSL/X6FChdyIESPchAkTQv7GwBukFxyh1/bRo0cj7k1TREQkPahc5jg7PUlAlOT/8ccfVuV40UUXpev++X1mYezcudOqFN955x2XOXPmdN2WiIiIiJxu8eLFrnTp0m758uUuS5YsNu+XltoXXHBBWLaHJPCKFSu6uXPn+q6rWrWqDcyO1DXqw4cPu+nTp7tY859TgaiJjmG0UyGKRuUEpd9E9mi3kjt3brdjxw533nnnhbTtFBliF198sW2HqihEwodIO5F/3tC+++47G6wdKuyPrrnmGrd9+3ZbzCG6Txs4Fnduuukmd+WVV4ZsW0S8clPem2iHmN7FQRGR9KIMv169enZsvHbtWpvhlFZUKNatW9ctXLjQhjSuWrXKAhUisSYW3rNj4TGIiMQbjrWYq8u8CZaima9Li8+iRYuGZXvYBhb8SXQhyYUqDrpURPpa64kTJ+xv+MQTT4R0TToU79uqpDiD1157zRYEWfgrUqSIGzlypF3fvXv3kD8ZaPP0448/qs2TSIS1fQp1q6UxY8ZYlieee+45m5dz//33u4YNG9r+QUREJF5Q/dC1a1f7nPfj9AQoOEkl4E+Agiw+Wr0qQCEiIiISGLTlvP32293TTz9tx13t2rVzX3zxRdgCFPv377c5Di1btrQABZUUy5Yti9i11vXr1/s+51iV7jrREqBICwUpzoAJ6XjggQcsS5lqCvrS0jN3xYoVIdsOeqF5bZ6KFSsWsvsVkeQRaSdwyZwaShZDJVeuXJaFwFycXbt2WfZB/fr17Xv0ThQREYkmHFc3atTIjnfTimNjTnzpzUtGWXo8//zzbvz48dY+kZYDzKIQERERkcBUvJYqVcqGUWfNmtWSwVlDyZQpU1i2Z86cOe7aa6918+bNs6AEVQkfffSRHUtGotGjR1vVCSMHYp2CFCn49ddfLbIHyr+feeYZ+5yFwe+//z5kpaW0eWrVqpXNv3jkkUdCcp8ikjrt27e3jADawFHCFgoMBd22bZtVV4F9U+3atS2AumHDBqu4EhERiRbMWOKEMa1BCo7HCTB4VYbpmR/BCWrPnj3tcxIP7r333jTfhoiIiIic3paoU6dO1pKTGQrMeKAtJ10gwmXdunWWGENHjJIlS7qvvvrKPf7447aWEsljCE6dOuW2bt3qYp2CFClgIC5PBOZAUEpO1I8MKz4SCSTyFgpkhdHahTYukfzCEYnntk+86XqLHMFGL7+rrrrKdezY0Z1//vnum2++sRk55cuXt+/TrkJERCRaTJ482U5iW7RokabfO3r0qCtUqJAlExGsTyuSkZo2bWrH+7yn9ujRI823ISIiIiIJkTxJ23wqVcFaCbN1w91Ok4oOjjn79evnVq9ebV9HuqefftotWrTIjRgxwsU6Dc5OAX8aBuL+9ttv9oQYPny4q1WrlrV9ChWG9lWoUMHuO9R970Uk9SZMmOA6dOjgPvzwQ1etWrWQ3W/jxo2txROLK/nz53ePPvqoVVqwzxIJFQ2wFJFw+fPPPy2ZKFu2bGn6PaoOOXmmJzHH9yQgRWofYpFAioX37Fh4DCIisbqO+uKLL1oXGCopcubMaW09a9SoEZbt2bNnjwVIhg4dausl3jaSgB6pfvjhBzd27Fir8I2VRPXUvm8rSJEK9H6/8sor3b59+6wknFKlUOBfc8stt9hQ3C+//DJmnpwisYjXa+XKld2hQ4essiHYr9fly5e7t99+21pb0EPxkksucUuWLLESSqorDh486LJkyRLUbRDxaLFARKIJ+yqSgBhCWLp0aV+PZJF4EAvv2bHwGEREYrFlPm2wFyxYYF9Xr17dOsIwUzMc6zN0vCBAwXsFFbfedkWyEydOWLXJzz//bBUUffr0cbEgte/baveUCu+9954FKHLkyGEBgylTplhkK9jI6KIMnZIeBShEIhuReF6r9MeeOXNm0O/v888/d6NGjbJM0Hz58lnF16ZNmyw7gKxSSilFREQi2Ztvvun69u1rLQvTguy8Z5991o7L05N8dN9991mA4oorrrATVgUoRERERNLvgw8+sBkPHFedd955NjOM7g7hCFCwLsLc0LZt29qi+I033miJndHgggsusE46VPu2bNnSxRtVUiSDiBU91OhVRokNAQP61JIhvWzZMitXat68edDunxMoprfnzZvXLV68OGj3IyKBVb9+fff111+7zZs3W0VDMFvBzZ0719166622Xxo4cKCrWrWqLfZQ+RXuXo8SX5TRKCLpwXsYQXVK8B977LFU/Q7VxTfffLNlyPFeyOepxe9wbE8bAioRP/74Y3fDDTdk4BGIRJ9YeM+OhccgIhILjh8/bi2nx4wZY18XL17czZo1KyyzHqhC4Jhy2LBh7uTJky5Tpkxu8ODBrlu3bhGd+L1371537Ngxmzvq+eeffyJ6m4P1vq3Gq8kgE3rjxo3utttu882gaNWqlbV7IipIhDCYXn31VYv+zZgxI6j3IyKBD3CWKFHCZlTwZhgstILjAlpVEKRYunSpVXoVKFAgaPcrIiISCAQMeJ/kRCW1iT+csBFk4Hf5nbQEKPDCCy9YgILqR471FaAQERERSR+SM5s1a2Zrp/CSvAkOhMO4cePcoEGD7POaNWvaXIeCBQu6SLZy5Up3zz33WIL6qlWrrJICsRSgSAu1e0oCJee8yHhS0FONqoZy5crZwuOTTz5p7Z9YFAxmJLJ///6uUaNGOnkSiTLFihWzgCYRe6LFoUBQgioK0PNRREQk0hEoaNiwobUCyJ07d6p+h97CX331lQU2KIVPi4ULF7ru3bvb55xA161bN13bLSIiIhLPSBqhWoFkEdZOaenEOilBgVAHKPybAxEkqVSpkpszZ44lm0d6gAJegimP48CBAy7eKUiRzEkMGKj32muv2ecMfwll9I8ZGCxyikj0GTBggPvjjz+sX3awDw4IqjKs29tHvfzyy9YPkrZTo0ePDur9i4iIhMrBgwfd448/bp9TPZiWHsfMi7r//vvtBJD+xLRwFREREZG02b59uwUCOCZjNhjrDt99952rUaNGSLeD+37uuedsW0gsB1UIy5cvdw0aNLBkmEi1a9cu3+ck6tARg5mjefPmdfFOQYokEAEEMyGYS0EkkAF7DKMN9ggPht8y0KVNmzauSJEiQb0vEQkO3ly6dOliQYpffvklaPdDWWChQoWsDR0ZoZdccom94ZGV+tZbb9nMChERkUgsbWe+29GjR1P9O8xcIihPZXPnzp1T/Xv79+93tWvXtuSBypUrWzJQJJ+4ioiIiEQa1kInTZpksyaYJ3bhhRe6l156yb355psue/bsId2WFStWuDJlyrhHHnnEffLJJ+6NN95w0eDff/+1ql5mT3zxxRe+6xkn4LV5incKUiTxpOHECd7i4r333msDPkaMGOGyZs1qLZ+ChfsgGBLM+xCR4GMA6LnnnhvUiigCFMzIYdGGYGqTJk3s+p07d/qGizIwSkREJJIQxG/ZsqVVHqZ2oCCVgiDIcM45qRurxzF1vXr17H2xcOHCdiLNe7OIiIiIuFQfh5Hw0b59e0swoXrh22+/tTbXoUz84HiOtvgknVAlmy1bNpvJSbVsNDjrrLN8IwXofiGnU5AiEYZVU82QOXNmX7CicePG9nHLli02cZ3vBcOePXvcqFGj3MMPP+yuuOKKoNyHiITGZZdd5h599FE3ceJE98MPPwTlPqi6Yp/Uu3dv+9p7cyazgDdsFmfWrl0blPsWERFJL3oYk0XWokWLVP08x8W8nzGH4rbbbkt1xl+7du3seJ5kowULFth7o4iIiIik7lhq9uzZVsVKt4bzzz/fEk2WLVvmm6UQqtZOJLYULVrU5k2w2N+hQwdbo6XtNV9HcoDHf1YpLbnff/99JaYn4z+ngt2/KMpwIkMJORlaq1evtsoJIl2U3vDCoP87w/rS0gc3tXiRUabEgiYnUyIS3Qgg0LatSpUqbsaMGUG/P2ZUsG9i4BILQPQ1fP755y3wKRJMHHjxvvXf//7X3iNFRM6EU5BgZt8R0KCq8eyzz7ZWrtWqVQvafYlEk1h4z46FxyAiEslYB+3YsaNVoeL6669306dPd9dee21YjhlJUvn000+tioOFftpORbpZs2bZOi/Vw/E+L/RIKt+3IzfcFCbly5d3X3/9tbvjjjvsa4a/eL3BKA+/+uqrgxKg2Lp1q5s8ebLr06ePAhQiMYKqq/79+9ub07p164J+fyzE1KlTxz73Fn68ijAREZFIkpoABScytBNIq3feecc3ZJuTQgUoRERERFKH+ZZUTxCgIIGbKgZmKIQyQMH90eXGO2YcO3ase/31191HH30UFQEK5MiRwxbnSYAn6V3OTEGKZFASDobRhgKlPkx179SpU0juT0RCo3Xr1lZNQQAy0Jg30a1bN9ewYUNr7eS/z/JaTK1atSrg9ysiIpLepByC56kt5B40aJBl7g0bNizV9/Hdd9+5pk2b2n2QvaZjaxEREZEzO3jwoGvWrJmrX7++279/vwUlCBaQeBmqmV67du2yWZt0hvCf70lggnkUoZyBkVbbt2+31tsekmSYPcFwb81ESx0FKRIt+J04ccKeWAxhISu5Zs2a9j2iXwQSJkyYkOoTq9T68ccfrc0TGV+a6C4SW8g8YN9BD8cNGzYE9LZ5o2PmBRkO+/bts+uoAmOI9i+//GL7kzx58rjff/89oPcrIiKSHvQxrlChguvVq1eq5sS98MIL7t9//3WlS5dO1e3T7vDuu+92f/zxh7VajPfSehEREZHUmD9/vgUlZs6caTMeaJm5Zs0aV6ZMmZDcP1UTzPSke81rr71mwQiO56JlQgFzOooXL25BHtp+e+68805bW5bUUZDCz9KlS603VoMGDexrep1deumlvmjeU0895Z544omAR+7GjRtn99u8efOA3q6IRAYqHRj6yWJLILEvGjhwoN3uhRde6GsxxRshevbsaXMpvO+JiIiEEwMXeZ/ykoCSwwkplYJ///23q127trVfTU2yEcfwJP8wlJvBispaExEREUm5eoLKhXr16lmiY7Fixawbw9ChQ+24Ldg4fiOppHDhwm7EiBHWIaJy5cruq6++siTxSK6c8HfLLbfYmg9/P69NlaSdghR+eCHSJ2zPnj2ntXrKkiWLlYzz4g2ko0ePuilTpri2bdvafYhI7DnvvPNs//Hqq6+6Q4cOBfS2yTbo0qWLu+yyy3zXefuud999N6D3JSIikhGchO7du9dOPs/UdvXDDz+098/nn3/+jLdLUKNr165WYk9gnpkU2bJlC+CWi0iw0M6NRaiHH3443JsiIhJX5s6da9n/VC541RPM6C1XrlzItoFWUuz/CZawLaxhUJUQqgqO9CCJhnVcBmJ76GZBayzaO9HKX9JHQQo/3oBZptiDcnFPwYIF3fjx4wOeCc2iJa2k1C9XJLa1b9/e/fPPP/ZmFmxknXKQ8c0337idO3daGzsREZFIQPUw71HJ4T2re/fu9nmPHj0ss+5MXnzxRWt/yEInJ9qc5IpI5GOYKK/dkiVLhntTRETiBhUTVJ9yYfYEx010YKB6IhQt6P3bIZFwSQXspEmT3Lp161ytWrUivnpi9+7drmPHjm7atGkWUPFcfvnlEb/tkU5Biv9h8ZCol5eNxZC+/PnzB/U+6bFL0IOyqmDfl4iEV86cOa0Sa+zYsRZ5D2R5JIGIn376yXdd9uzZ3a233mqf85Eqi+PHjwfsPkVERNLi8OHDvtlJZ0LlxA8//GAl83369Dnjzy9fvtxaQ3kZ2Zzcikjko9c4Q+4nT57sa7EsIiLBw1rnjBkzLChBFQWzEmhpT/XEjTfeGPT7p4UTw6Tvv/9+33VUHWzZssW6yzDPM1LXi5nP4SlQoIAdo3LMyqw1CRwFKf5nx44ddqDkZXbdc889Cb5PX7RAD2xZvHixDQX0TqxEJLbxWieYwFCqQHnuuefsTbJfv34Jrvf2YWRJEKDYvHlzwO5TREQkLViEzJs3r3v88cfP+LME1i+55BLrS3ymmUrMn2DuE8F/EgFSM5BbRCIDnQQIKt5xxx1n/FnOxek+4H8REZHUY84uHRceeOABa0FdunRpq2Zj9m6wZ09s2LDB3XvvvRYIWbJkibVEItHSk1KFbSQk2pQoUcKCET///LPv+gEDBlibqlDM7YgnkftMCDGCBf4vjqpVqyb4Pic+WbNmtfZMgUJpOjsGL+NZRGIbr/eKFSvaaz9QyDygZ3fi6gxvH0bUHxs3bgzYfYqIiKTF+vXr7f2oUKFCqWqPuH37dsuwPtNcNwLyBw4csL7FtFNUib1IdJg9e7Zl7tJaJDX4uYsvvth3ufLKK4O+jSIisYAOLuPGjXPXXnutW7Roka0dEJj48ssvrYNMsJPBW7Ro4a677jo3b948O04jSEICZSR3k/FPUKfSL0eOHC5z5szu+++/D+t2xQMFKf7HW8BjoY9IWOJSJ0rU6ZvGEzMQGM7NQJh27drphEokjvCap2/htm3bAnJ7BFDp303Zpj+i/WSiclDiH4gVEREJNXr28j7kX95/pmqKlI6POXlkWOG3335r7RSpUGRgoYhEPqqKqS6eOXNmqnufU4X13//+13fxb3MqIiJJ49irUqVKrnPnztY5pnz58ja3khZP5557blDvm3ac11xzjSV6syZRv359991339nXdIKIRHSgGDlypLvpppusrbZn6tSpVr1bvXr1sG5fPFCQ4n+uvvpqV7ZsWfucJ2Tikp2FCxdaFLBGjRoBub+XX37Z7oMFRhGJH5Q5EjwI1ABt+jYmtZBDf0n/Ki1VUoiISDhxoppc+yaCDs2bN3cLFixIVXvVp59+2r355pt2gk1mnrKqRaIHfb0Z1EoFFMexXFasWGGzGvncqwL2x3nzRRddlOAiIiJJY4GdaolSpUq5Tz/91LrCjBkzxn3yySeuWLFiQbtf//33zTffbIOkaelH1QYzMKjmiGSsoYwePdraYFHx5ylSpIjed0JEQYr/oVzce7Hedtttp32fRUWifby4M4ooIpG4Ro0aWbmqiMQPMj0pcXzllVfcX3/9FdT7orWUR5UUIiISalQop+a9jhPB6dOnW6UF7ZtSQiDjySeftM9pX6CBhSLRhZakZNOSzetdSBakxRufs0gkIiLp8/nnn1sQmGMlghUkWtOmiGqKYM1+IPDMXDA60nhtqKmUo60fs3hDMZQ7Pdi+QYMG+b6mFRbtBVmvTW31rwSWghR+iComXtgLhqVLl1pVBtPrRST+8NpnoDULLRn1+++/W/9uTuwSZ5/6B1y3bNmSZGaaiIhIsPA+x8DsIUOGJPsztFN99NFHfS1d6PubHALuzZo1s/e7Dh066FhaJApRUUVbUv9LlixZXLZs2exzERFJ37pAly5drKUTs8A4nqKtHnMogjX/wQtOFCxY0D3zzDNu7dq1dn+elI7pImEg9i233OL69+/vVq1a5buehNLWrVtbwEJCT0GK//Ud++yzz6zHGJkbPFH9cSJEqdSoUaPsZzNq8uTJVuaU+H5EJD4wOIryR/YFGUWrp0mTJrlZs2adtn8ig8Lr9VulShU7cBEREQmVt956y05gf/vtt2R/hpNa+stzAv3II48k+3P0oa9bt647cuSIJRRxXC4iIiIS79555x1XvHhxN3bsWFu/ZFg17Z5pLx+MGbgc2/Xu3dsXnCDhhGoJ2uTXqVPHRaKDBw/a9vkPxObv1LhxY/tcIsM54d6ASEB/tMqVK9vnTLdP3C+XF5xXVt6mTZsM3RcnWAz3Gz58uAZmi8Qx9iVkgO7bt8/lypUr3bdD5tnAgQOtR2LifQrRfzIpGNRNSzva1omIiITKSy+95O677z5XtGjRJL+/e/duOybGiBEjkh1+TatUMts2b95slRlz5sxRhptImP3555+nzXHMyIBVERFJm59//tl17drV5nOhUKFCbsKECa5atWpBu0+6wpB07SVIEpwYMGCAu+uuuyJ2jZNkGOZKcDy5a9cu3/rLxIkTI3ab45UqKRINlE1qHgVP5Hbt2llPMhYEM+KDDz6w3rwMzxWR+EXQgDdE/2h+enAbBFEffvjhJBd3vH2a185OREQkVBiCW6tWLXfVVVcl+X3aO5EMdOutt7qGDRsmezsE42kdxYIoJ+IMYhSR0Hrvvfcs65RFMIbWZ86c2ZJkKlWqZMPs9+zZE+5NFBGJC7RxHj9+vFVPcFxER5jHHnvM5v0EI0DBsZqHWb3MESpXrpx799133RdffOFq1qwZUYv9bC/zJjxXXnmlJaQTXPF/r4qkbZb/T5UUiQbKJjWPgsoKImyBKsMqVaqUy5cvX0BuT0SiU/bs2a3KgX3Cgw8+GLT78fZpK1assBJH+v2KiIiE24YNG9yMGTPs8+effz7ZE0UqkL2hhrQ3jNThiyKx3LaNuTG0DWUhis9z585tyTGHDh2ygaxLliyx9sgtW7a0j5Hch1xEJJp98803NpOSjjC46aab7PioZMmSAb+vH374wSpe586da9WsrCVwvPb2229bl4ZIXOTn70OnHN6jqJogqA5mZUTqNsv/USVFokoKMrmChSn3vDDuvvvuoN2HiEQP9gWLFy/O8Kwb2sjt3LnTHT169LTvMfvirLPOslJQsllFRESCjRNZ3n84aU5OsWLFLAOvX79+lpGX3DF68+bN7XPaGXifi0jo0IqNQCLHklOnTrXFMXqO33HHHa5Ro0YWRPzoo4/c9u3bbQHICz6KiEjg/PHHHza7i2MmAhQkU48ZM8bm6wY6QOEdf1199dV2LEeyI4EKDzMcImWxn7/L1q1bfV9TXULlLdV+zB2OxG2W5ClI4ZzviUvGB9nNwcLOgwnykTpIRkRCi30BAYqlS5dm6HZq1KhhZZdksSXGmzPDSL3e3xIfxo0bZ88JBqeTXeNl2iSHobadOnVyV1xxhR3UcUBKUF1EJD2mT59u5f9UCyaHE0WC516VRFIB+Hr16ln2Nu1kGMwoIqG3atUqe62S9JKSPHnyuGHDhrnu3buHbNtEROJpMPZzzz1nrZ5okUlHmM6dO1urp0D56quvXIMGDawtEsdy3BdrDbSOpgV+pHn//fft/JVWhB5mlq1cudICF8yhkOiiIIVz7pdffrGPLMokt0NgoY/y1ozgdngB3XDDDRm6HRGJDddcc429caa0iJMaZK3xZuzfKzJxtioOHDiQofuR6PD666+7Hj16uP79+1svTloMVq9e3e3fvz/Jnz958qT1LiVg/+abb1oG9OTJk22xQUQkPThpJvO6W7duSQ7bJSMvJcyDI4PPG5T9xhtv+Mr1RUREROIB7Yrq1q1r8ywZ/kwSGjMtOS6i7V4g/frrr9aOmoqJU6dO2f2uXr3a5hEFs+NMWjBPwr86onTp0pb0yToHyS0eZqGdKbAukSnuZ1JwEnTkyBH7nIWcpDDomic+ZUTpxYuchUgyp/ViEREvi5SWTzNnzrR9UXr3DRw4pKRMmTKWFc/CEIEMgq4Su8iwadu2rWvVqpV9PWHCBDuYfemll2ygWmJcT09pMk68RUAOgEVE0itXrlzu4YcfTvJ7L7zwghsyZIh79tlnXevWrZP8GYbwctzsDcrOmTNnkLdYRJJD4kNajkFERCRjWIMcNWqUGzBggJ2/n3POOdbq6cknnwzYuTzrD1TKVahQwddZhuMy7o/ZQ1RTRBKOH6nUa9asmZs2bZrveHPdunVWZaJWTrEh7oMUZJASgaTHZnKD+Chv2rZtm50opReZYNwGWWUiIh4ClyzUrFmzJmjDQP17fVM5VrBgwaDcj0TGexrPpccff9x3HcEv+kZzEJoUFgJvueUWa/fEEDQOUJs0aWIHp8mVDxPw4uLxgv0iIimhomvw4MG2z0hu/8KcCirB8OKLL2pQtkiYrV27NsHXVGkya5GKYGzZssVez+oWICISmDbxHTp0cN999519XbFiRTseClTQgPNFkiSZN0TLKBb5vZkW3E8kLPaT5P3pp59aRYRXMcLxIIGVffv22fe97Yy0YIpkTNyn9BN48FqkUCqUlCxZstiLg3Lz9FqwYIFNl69atWq6b0NEYg+ZCwxxymjLp5Rcd911vs81lyK2UepK79DLL788wfV8zQFdUn744Qdr88TvUXHDEFsCZywkJmfo0KHu4osv9l2uvPLKgD8WEYk+BC/pWbx48WI7kUyMjEACFFT4PfDAA6d9n/7BZMhx8tmxY0dfRZiIhA9Dsb0LyTXMiOF4kmAFF1qQVKlSxeZWiIhI+tstUclAayUCFNmyZXMvv/yyW7FiRUAW4jn+4hyvUKFCdj8EKDiPI6HaEwkBCnCMeNttt1nFv+fmm2+2xO8PPvggYrZTAi/ugxT0NGOYNdkfRYsWDdr9sAB55513WqBCRMRD6SYndRkJUjA/gGyLjz/+OMnv07rHayX1zTffpPt+JDaxkEgrlUmTJlkW5H333ef69u1rbaKSQ6UGfT+9CwsUIiJUQfCelFQbpw0bNth+xmsJk7jF4dGjR139+vVtn0JPZFUfi0QeFrhIVCDBxsPnJDbwPRERSfu5GMdHVKcRlACtewketGzZMsML8r///rudu+XLl8/17NnTusgwK5dKCmZeMIQ7nNgejvlose+hC8CFF15oVXse/g4kj0tsi/t2T177i8KFC7sLLrggyZ/ZuHGjZYSx0Ef/+PRkttLr2zsxExHxR1bajBkz3M6dO13+/PnT/PtkEzDgijJNMg4SYyGITPq9e/e63377LUBbLZEoe/bsFnSnrZc/vqZnZ1I4SGUWhX/rFYatU3lBOTBD2ZOqQsxIC0QRiU0k/BA0p7oqcRCiV69eVrHFIEYysf1ROdGmTRv3/fff276K6q6k9j0iEl5k4pLtmxjXsRAmIiKpRzUalaNffPGFb04uLZdoxRsonOcR/CAJhEAIgQoqFSLhXI7jP44Jt2/f7vLkyeMaNWpk199///32uWZpxp+4r6R45ZVX7KN/1C4xJtp369bNjR8/Pl33QfsMXny1a9dO93aKSOyqXr26HTzQFi49eAMfOHBggtkTid1111320T8bQWIPi3pUQyxdujRBdg5fJ3ewS8sxSmf9W7PQX5rghRYJRSQtaEfA8bL/XBwsWbLEjoepHhw+fPhpv8dwyNmzZ9v358yZY/sfEYk89erVszZsDLSn5RMXEmUefPBBq4QSEZEzo5sL8wA5fydAQdUAx0JfffVVhgIUrDvSHorWmySGgGRsKljnz59vVa0khYQjQMGa66uvvurat29v2+lVR7CWwfnoRRdd5PtZtlkBivgU95UUO3bssI8pzZuggoL2F0Q104M2LuXKlTutR7iICOgFSQYB+4rOnTun+fe9jIOUlChRwj6SpSqxrUePHq5FixZ20Mt7Dwe8tFHxers3b97cMlVo1wCynseOHWvB+C5dulhP+CFDhriuXbuG+ZGISCxlClJZQbbg1VdfneB7y5cvtyoLUO5PL2YRiUy0giQLt0mTJu6vv/6y6wguEqQYOXJkuDdPRCSikRQ2ffp0O+7xqtIaN27snnnmGd+A6PRgf0zAmLZ7BDpQo0YNX/CYfXY4+A+4ZhsJnjC/jONBb32VdoGJq28lfsV9kMJriZFSbzPapyTVQiW1L0oyWLt3757ubRSR2MdcikcffTTZ9joZpSBF/CCozkHvk08+aS2bSpcu7d5//31foJzeo/4HgrRloWUY71O0DCOAQcCC56OISGpNnTrVVa1a1ZJ7Euvdu7dVFCdO2CELm0A72X60HiCrUEQiF5mtVEsRkKA9h3cenSVLlnBvmohIRFu3bp0d53z22We+Fpnjxo1zt99+e7pvkxZOU6ZMcaNHj/bNCKQKgeQ0zgHD+Vj79+9vFRuvv/66XUelBAmZVI3kyJHD97MKUIi/uA9S/PHHH75FmmDg4I0e8DfddFNQbl9EYgMZ7wQo1q9f766//vo0/S5Z8mQkZMqUyS5JobQTtPXxz2iQ2MQBYHJVOWQtJ0ZZ8eeffx6CLRORWMTxLu0DvJk42bJlO+1nihcvnuBr3rcaNGhgQVWy6cjQ1nuTSHQgKEFig4iIpIz1QJLHCEhQScH+s1+/fpYglpHkROZZXnfddb55QDlz5rQgCFUKzCkMpUOHDlmlhJeMQoXd22+/bY+PQAqdI0DFiEhK4jpkxYIgJ0hIbqBoRq1Zs8Y+0iNcRCQ5ZDqQReDtM9LioYcesgUhDnySw0ELODDS8GwREQkkTpCpoqhWrVqCAAXZcwTfk8LJOX2YL730Uutvr97DItGBViJURzHYlFYi/hcREXG+825m4DKsesyYMfY11aObNm2yivW0BihINKQi3pMvXz6rxiAJhGoKghYEQ0IdoBg2bJgFJ/wDEGwTraeY7+s/a0LkTOI6SLF3717f5ym9kOntxgC/hg0bpvk+WHBk5xHqHYWIRBcWZ4oVK5auIIXXEzilAVhe9gJ+/vnndG6liIhI0oF2hmMvWLAgwXE2ferJtvb6I3umTZvmXnzxRaucmDlzpitUqFAYtlpE0ooB9+XLl3cbN250b731lh2DEohctmxZgmNNEZF4n8XFjC3aLu3fv9+CCYsXL7bkjZTm4SaF/Sz73ptvvtkW/72EQ46h3n33XWvnzPEWbZ6C7YcffrDggzdPA0WKFHF///2327x5s+86to05iRwDqkpW0iKugxT0wfWklL1Fn1z6evu/EFOLBccyZcqkextFJH6wr0hPkOK1116zqjAqKpLjf9Div+8TEREJFMr7PWTz0Y7wxhtvTFBR/M033/jer+hXfNddd4VlW0Uk7YYMGWID7glIkgVMH3SygskOJjFPRCSe0faoQ4cOrmzZsm7VqlXW2mn48OE2o+GOO+5I020dPHjQqhQKFixow7W//PJLCwb4t+ilW0IogwAkbvfs2dO98847vus4jtuyZUuC60TSK66DFF42MaVJvPCTQ+n62rVrLesrreVYRFDV6klEUoN9xbfffuurjEgtDkw4UTz33HOT/RkFKUREJBh43zp+/HiC68isfumll+xzMu68E+jDhw9bS5gTJ064mjVrWk9mEYmu+TO1atWyzzn2JBDJ65v2bZMmTQr35omIhAWJzewDr776apuxxVoggQWqC2iPl5bWTqxTkszB3NzHH3/cvmbNcsCAAdbuqUaNGi7YOF7r1q2bzdblsfkHKapUqeKbPeElfFNNIRIIcR2k8BbqKleunOLgL3rlUsaeP3/+NJdCUYqlIIWIpAb7CioikuvfnRH+QQq1exIRkUDgxJWTZWa7USHh4YSc3ssEJCpUqGDX8XWzZs3cjh07rL3TjBkzbBaTiEQPzou9Ia158uSxNiPgnPfYsWNh3joRkdCjYqJcuXKuffv2Vv1QokQJt3z5cjdr1izbT6YVx0vMmCABhHVIkqWZN0H1qTdnMtCOHDli1RCerFmz2v1SvcH8MA+zNGjvV7t27aBsh0hcnxl4C3Vp7QmXWhqaLSJpwUEI2WhpbflEGWivXr3ctm3bkv0ZVVKIiEigcdJMFR9tnuiTjKVLl7pFixbZdbw/eQYPHmzX837EvDcWO0Ukutx2223WV93LqCXTtm3btpYxXLVq1XBvnohIyNASvkWLFjanhw4qzOUZNWqUfV6pUqVUBwdeeOEF17FjR991VFCMHDnSAh3cVvPmzVOcPZlR8+fPtxm6bdq08V3Hsd2IESPse6xReDRfQoLt/xrHxnGQ4rLLLrNoZXLZXJQ6vf322/aCZCeUWiw0EgAJVrRTRGILGQsM1WLfwfCr1HrllVeslJSMhsKFCyf5M5dccom79tprrUpDlRQiIhIIVERQGcGFVgYcTxM0B60KvPL/999/39oUYOLEiQlOeEUkeowdO9bataFv3762kLVy5Up37733uieeeCLcmyciEnQnT560wMKgQYN8lWWtW7d2Q4cOTfXaH+fu7E85j//jjz/sOoK+11xzjX1OC71gYJ2BRBHmSFSsWNGuu/76663dNPM0eGxea6p27doFZRtEUhLXQQovm5gDLA6svB1CYr/88otr1aqVZXylJUiheRQiklbsM9h3pAUHEHv37k2xJV3u3LndM888YwckqqQQEZFAIcnnqquu8rV/atq0qZ3oMjgbP/74o11Hf2ZaIZARKCLRh4Gt7777rqtevbrvtf/YY4+Fe7NERELmww8/dF27drUgA2688UY3ZswYm91wJiRykLTBz/PRU6xYMdelS5egdHihUuOiiy7yfc28sPHjx9txmhekYA2BVvUpzekVCZW4DlL4ZxOnVD5FBjILe3xMLU7EiFIGKwIqIrEbpHjzzTftRJBWGanRo0ePVP2c1xNTlRQiIpJRDMzNkiVLguvIqn7kkUcsG5D3MDKuGzRoYCfDnMiPHj06bNsrIhnDa5oKqY0bN4Z7U0REQopFfM656bCCHDlyWEvLli1bpnq+1muvvWazuUCXFrogEPCgVV6g2ygRECGgTMsoAipUvoLkbI7JatWqleDnFaCQSBHXQQoGfKUGwwDpoZsWZI3RJkqVFCKSFuwzWNTZsGGDK1myZEBvm9Z23r6PQKp6SoqISHpRHbF9+3ZrV5C497IXZOfkm6SdbNmyWQA+mD2VRST4GA77zTffpFi9KyISK2jFRBunZ5991v3555/u7LPPtmMbqkXPlMT8/fffuwMHDrjKlSvb1/Xr17fK03vuucdmUHhVqBl17NgxG2ZNZwVmBIHACS2cSHz8+OOPfUGK22+/3S4ikeqceM8A87DDCSRv8G2ZMmUCersiEj/Ds1MTpCDYcPDgQQtApJTFsWfPHl+GBJkV7PP8h2mLiIik1vHjx+2EmF7MDFvkJPzuu+92ffr0sew83sdefvllN3nyZPt81qxZLl++fOHebBHJIBbWyCb+6aefLLEmcTVVoBNsRETCgXNsKh969+7t60Jwxx132GBs5jwmh6AA1RYkcFDFQEt5qs84FsqUKZPbsmVLqisvUto27ofqVZDcWKdOHXfhhRdaZYd3/XPPPWeBFC9AIRIN4jZIQVSRi8cbABYo3377rVVgcBERSS0OLhg0um7dulT9POWalJuS1cGikXdQkhj7OP99HkFaBSlERCQ9ONHetWuXW7x4sZ2sP/zww27VqlU2OLdmzZqWac1iJhgseeedd4Z7k0UkAO6//377SCaxh8U3r0KXuTQiItGM+ZDs4z777DP7mkQ/FvypgEiuEwFzbEnMmDhxom/+I+fnHCP997//9VVdZDRAwaDtp556yqpZOb7yEqNpqVm2bFlLHvG6JyhhWqJR3AYp/KsoUhOk4OSKwMPChQtT1cKJHZPKYEUkPcg2Te3cCKookDVr1mQDFEnt49gH0n5DREQkPTjhbtiwobV8YggjRo4caSfjzKHgfYeqCqorRCQ27NixI9ybICISFPv373d9+/Z1U6dOtcBr5syZ7RiGWVspJfcxb6tXr16+hEASCNu1a+fat2/vrrzyynRvDxUYDNhu0aKFL/DgzccgScQLUhD4+PLLL9N9PyKRREGKVAYpKGMnOsqOKzXoB3fFFVdkaBtFJD6x7+DgIzWuvvpqd/LkyTPO2PH2cV62W+J9oIiISHpwQs+JOQk9DH+sW7euvYcVKFDATZ8+PcNZgyISOZSEJyKxhmMY2jMNHDjQEi3QuHFjN3z48CSDDMyA4NzaCxxcd911dhs333yz69SpkyVwpGcGF+f05513nu9rbmf9+vUud+7c7r777rPrGLY9f/58zZWQmBW3Zw3eAh07gebNm1s/3ZRMmTLFrV271lWsWDHVQQp2JiIiacW+gxkSqUUFBRkbqQlSeItFClKIiEh6vPDCC+7ee+91K1assMy9119/3QLgI0aMsBP6BQsW2Mn53Llz3aWXXhruzRWRDPr8889T/bMs3rGoJiISDahUIMjArB0CFLRI+uSTT2yWVuIABfMkunfvbufqQ4YM8V1fpUoVa3NJ28tmzZqlOUBBhdqtt97qihYtasmEHpI+SADxP5Zi3ZK2U7SIFolFcV9JwYt82rRpZ/z5tPZzY4FRlRQikh7sOwh0ev19A4FB2V5vTPoFK0ghIiLpwUBsTsarVavmZs+ebdeR8EPVMTMpMG7cOPVCFokRDzzwgA1ebdOmjc2cSTws2xvcOmPGDNs/EKxMabCsiEi4EXAgMEE7d5DwR+ChVatWdr7sYUD1u+++a8c1S5Ys8V3/8ccf+87VuZQqVSpV98s5/nvvvWfn+3fddZddxxzbNWvWWFLh1q1brVMCBg8eHOBHLRL54j5IkdRBVkZR6vXrr78qSCEi6cK+g4MU/yFbyeHAimxWSj5r1KhxxkoK76CLTDcREZH0DG0kwzBPnjz2/kPGIO0NmD/x77//utatW7sHH3ww3JspIgFCAOLFF1+0IGSTJk1sAY1MYnq0Hz582G3atMn98ccfrl69eu7DDz+0rGQRkUjE+TWDp6kKZd3unHPOcd26dXP9+vVzF1988WmzJp555hnfIGyCERzrcMxDhUNqkglZd6R7izc7kuOnnj17WoDCC1JkypTJzZkzx/adaqkn8S7ugxQMw2Gxjp2Tf/+3xLZt2+ZWrlxpUU52SClhdgUUpBCR9PD2HVRknSlIsXTpUvf888/bQVJKQQoOughkcKJ5/PhxVVKIiEi6kC3IhQzCd955x46ROcEnQYfr6essIrGDxbWuXbva5auvvnKffvqp27lzpx1P8pqn/QntTvwHu4qIRBI6CVDpxSBsjldAZdhzzz3nrrnmGvvaa7XkBR/YzxGgoPsKlWQMwmbeVmoR1KX15aJFi2xmF6pXr24Bidtuuy3BzzJrQkQUpHA//fSTVVNMnDjRtWvXLtmfp7SrQ4cO1v/tTEEKSrigmRQikh7evoN9SfHixVP8WU4KOZCqVKlSij9Xvnx5C2iQsUHvTQUpREQkI3jvqVOnjnv44YetDzPBcE7GyQgUkdhUtmxZu4iIRAtaM5FMQatKEJQgOEGQwquuePXVV61ijLZOnF+jc+fO1rryTIOwjxw5YoGHzZs323wuD0nQDMMm2dkLUpQoUSJNc35E4s058RxJBRUU3o4pJUWKFLHgRGr663oDb1VJISLp4e07vIBnSlgg4pJa3j6P/poiIiKp9fXXX9tJeP369V3hwoVtkOMbb7xh7RDACf5VV10V7s0UERERsUqI3r1727EKSKbo37+/tWsigMBxDYEJWjB5rZCnTJniC1Iwi4dLYqwd/v777y5v3ry+tspUWuCRRx5xl19+uX1O1Ubfvn3tmElEUidugxReTzivP7vXoik5RD696OeZsLDI7TJ8R0QkrWhDd9FFF/kCnoFAn/CzzjrLsjmQUns7ERGRpGZRjBkzxtoWUIncq1cvGzKJRx991N19993h3kQRERGJc3QMGDZsmM2TIIBA5SddU5hFQVu66dOnW3Diyy+/9P0O3Qs6duzoHnjggRRvm9/r0qWLa9y4sd0OcubM6Vq2bOny5cuX4Ge9AdgiknpnuTiV1iBFWhCkIHrKgqCISHqrKc5USUHfzJ9//tkCEGdCuSpZrz/88EOCfaCEV/PmzS0Tx7Nu3Tob4iYiEmmYe0RrhC1bttiwXFoiMCy3cuXKbvDgweHePBEREYljnBPPmDHD2jlxXEKAgmOUtWvXugkTJlgSMWt0Q4cOtQAF58P333+/W7Fihfv++++twoJEQc+kSZNsVsS3337ru65o0aLWlWXXrl0J7pt5FwMHDvRVUYhI+sTtKrqXRewNxdm3b1+qf9cbqJMcFhbV6klEgh2kOHTokJWZUnnBQVhK2Mf99ttvvv2XKikiw8yZM23wpKdixYqWoSwiEmkIUND2gPcbMhEJkvNeNXv2bF8rQREREZFQ++KLL2wGI5UQHJ8ULFjQjk+YK0uLJ+98i/U/WjBRCco512uvvWZDrPmd9957L8FtvvPOO27hwoXuww8/9F1XoUIF9+OPP1pgQ0QCL27PKBJnEaemkqJevXq2M5o3b55FZJNDixYNzRaRjGAfsnv37hR/hoMpqsEuueQSd8EFF6T4s94+zgvMqpIiMiQOep8pCC4iEi5bt261TEQvSM77z+uvv66sQZE4RcDyTMefIiLBxPnwY489ZhUUyJo1qwUmqJhgWLZ3DsxcihYtWvgq2Tnn8s6L6TTATC2S+KgUJQEQzJlg3c+/nSU/kz9//jA8UpH4oCDF/6SmkoLeduy0GMCTErKfy5Ytm+FtFJH4RXaqf5/MpJQsWdJOEA8cOHDG2/P2cQpSiIhIWpB9SDYiGYV///23vY9wcj98+HCr/hKR+Gqn8vTTT1vAksU/2r9RYdWvXz9XoEAB9+CDD4Z7E0UkTo5NmDnB7Alv6PUdd9xhH7neS/zKlSuX7Zduv/12+3r+/PlWRcHxy7PPPmvXUXXB/oukC9byCFigbt26YXp0IvEr7oMU7LyIjLIg6B9NTQo7OyKyHIilhP68F198ccC3WUTiB/sQ9iVnQosNDr7OJHG1mIIUkWPDhg2+IBLvQ5s2bTrtf09ASkQkHGh10Lp1a9/X7Kfq16/vevToEdbtEpHQo8/7tGnT3IgRI1zbtm1915coUcKNGjVKQQoRCSqOQaji7N27t69FLi2YevbsaZ1PPFWrVnXVqlWzWX+tWrVyefLksev5evXq1Qna7bIGuHnzZrVDFokAcRuk8HZADL15++23U/U7qV0kIstMvXlFJCPYh7AvCQQWvKkEg2ZSRB4Oov3bPDGgDV62Mh95rxIRCQf2QWQXesHuwoULu5deeinFxB4RiU2vvvqqDZPl2OWhhx7yXV+qVClLshARCZavvvrKPfzww+6zzz6zr2l5TFVXo0aN7GuSj4sUKeLatWvnrr76anfLLbe4zz//3AIUBCrAvotAKx/96dxYJDLE7eBsL4uYSGqgcZuBDlK8+OKLFiS56KKL7MION/Fgn9QYOHCga9asmfUS7tKli7vmmmtcpkyZXL58+VzXrl3df//734ButySP/oavvPJKuDdDksDsmSuvvNI+Hzp0qLvxxhvdhRde6HLmzGlln2RaREKQgiw2ski+//77FH/Oy9LPkiWLb7FblRSRYceOHdYHlY+JL971fBQRCZd7773XdezY0T4///zz3ZtvvqmKYZE47v9OoDKpNlDBOK8WEWHma8uWLe2cnACFlyTx+++/W9smzpUIRHz66ad2fkyAAlRWcO6eN29e321ddtllNpPCq6wQkcgSt+n+3gLdyZMnLVOVHRyLgt6QnKQcOXLEqi5Y4GcITygrKdix0m+PyDDbS/T3nnvucWvXrnXXXnttqm+H7WewEDt6LrSwKl68uM3ZIBuG6zj5FIlnvE7q1KnjC1h06tTJDop4bffp08fdeeed1qKHRf9wBilmzpzpvv32W+uxSZl9SmrUqGG3yT4DClJEBg1eE5FIt3jxYjdgwAD7nIxFMqZFJD5x3vjJJ5+cdvzC+eP1118ftu0SkdhDSybmRjAHhzmMHtbDSJqgvRyfsz+icwCB0u3bt9uaGUjmE5HoErdBCi8YQQsUIqwsSnLi1b59+2R/hx0fUdezzz7bFvTZMYYqSOEtmHrYUVNdQfkaC6gspCalf//+vhNLevatX7/eFiupxpg7d67v5xgOxG1SZaF2VRKreC1QTZSUSpUqueXLl9vnDAcdO3asff7+++8n+DmqX6ioWLNmjbvtttuCtq28Bs+Ukda9e3crey1WrFiKP0fGm1d5demll9rHlAKyEnpbt26196Eff/zRsoMY4Ebmz5lmIImIBBMJMlxYBGjTpo1lMopI/HryySddixYtrKKC6ol58+ZZhTFtoN59991wb56IxACOOebMmWNzJry5Ex66HXBd2bJl3bhx43zXU0VBBcUFF1wQhi0WkUCJ25XoHDly2Edan+TOnds+P1MLF4Zrk0HN4tGxY8eSDVIEo92TP7aZnTYBFto+EWRhsZTgAztyMNCQzGrva2/hlRZDBCiSQqsnvqcAhcQqXg9UC9EeiZMqUE1EIML7mkDe/v37rTohKV5LNEpFgyk1lRQsFqVlwYjKsd9++80+J9AikYGWYpz0c7LP/4UD819//dWq3oYMGZJgPy4iEiocFz/++OP2Oce+Y8aMCfcmiUiYUcm/YMECN2jQIKso5vilTJkydh1DakVE0otzIDoFjBw50roFeAg8NGnSxHXo0MFly5bNjRo1ylWvXj1d82NFJLLF7Wo0AQb66bLgyDDA1AQpyG794IMPznjbwapE+O677ywoQalb1qxZ3VtvvWUlt+D+uC5Xrly+wT9kSnOdhyxdDiyTcuDAAffUU0/ZkCEJDhYbufiXL1IJ07lzZ991tBBiPogEB68HXhe8PrzXCtfx+vGCDrxOOOhJangWi8gM66pQocIZ2ytlFNtEQNIbnJwRBDR53LzOQTWYV1Eh4fXRRx+5J554wvXr18/aCHr/F9oKcgBOoKJcuXJBrdoREUkKSTCehQsXKjtRRAw94GkDJyISCCQQMv+KVk3e/ETmprLWxfkrQVE6mnhGjx4dxq0VkWCK2yCFV01BkMJbFArUMFwWAFnMDDSGXH/zzTe2zfT9pNSWNk9eoCIlzNPgZ6dOnZrk92rVqmW347WGksCjRVijRo18Xzdt2tTejKl68XhVPRI+BCn8A0f+aK3GQRTlpMHGPuSss85KNkDBQGUCKTxnzhTEuPXWW23uDFUjyJ49u922hB9tBmmhknjfS9CMA3KGntPaT0EKEQmlKVOmuI0bN9rnrVq1OmNbQREREZEz4Zx00aJF1tKWTiXjx493L7/8slX8ewoUKGCBUFo7Jde9RERiU1wHKWirsW3bNl9vdhb9/vzzzzPuCL1B28m1TUpNm5b0YEGS3vK44YYb3OrVqy2KPHHixDP+Lv3oCUKwo/fH46BN1IUXXmiVGRqmGzwsOvq3CCI7gOeg9z+V8Nu7d68NliZolxiBC3rtfvzxxzbIPtjOVJFF5j3lsMOHD09xKBjBji1btliLOo9aPUWOL7/80k2fPj3Z7z/wwAMJModERIJt06ZNrmPHjvY51cYELEQkfpHQl9qqXipBRUQ8tFomOdhbZ+L8tW/fvrYGwlqcPzodkFRbs2bNMG2tiIRb3AcpQNSWgAMVBewor7322mR/5+uvv7a5FBysMeg0lEGKpBYfCaokJfGBZFKtnni8tLUhKMO8CpXxSzzyf63QT7d8+fIJgkkEJbt06WJBPAZr05c7FM4UpKBdGFVbVFilZPfu3Rag4La86gkFKSLHL7/8YtlCyeH5RjWFiEgo0B7w7rvvtvlqYBiuKu9E4hvtJ0VE0opK8E8++cS6EFDJzzk2s2s4r/YfiM2cieeff946TeiYQyS+KUjxv3kMLPRRmUDLp5SCFGRQHzx40FouMRsiqYV9osSBDlIwuPCuu+6yeQVUP8yaNcsWTJObkUFlBJlwDADmzYBKCv/hqwQoCLaweDljxgz7mguIdLP4KRIPeK2wCEy1AcE6FmcSt3ji9Uagz/tZMNOGaphwBSnmzp2bbJDSn9fGjmyVw4cP2+cKUkQO3keSmn/i/37iX/4sIhIsBOXbt2/vS8IhIYd2DCIS32gxLCKSUrXECy+8YGtPL730ku96zjlJCGzdurWda1P9z1ramjVr7JiDZNlHH33Urs+SJUtYH4OIRIa4DlKwGA92pg0aNLDhpGcaWsyOlmoKghrJVR6wsOhloAUK20jLD9rRsDhasmRJC1AQiU5Kw4YNbQYCbwjdu3e34cBlypTxfZ/H8MUXX9jnidsN0fYqpcxeCQyCTBJ+VBONGDHC95pOnC3GPABUrlw5wfX0zmzZsmXQtot9SEpBCqSmR6cXpODxsR/x3/dJZKCVCvvopBCUFhEJBdqH0obBv6pC7xciQiKb1+bYS2pLTnLtkEUkNpBIR5CBcxcvuZcOH7Qgpgriueeec7/99pubNGmSrXcQjCBAQbCCaglvnez++++33znT+puIxJe4DlJ42cQs3I0dOzbVv3f99den+P1gtHtKauC1PwZqJ+5jzgVdu3Z1derUSfB9Flx5wxCJN4mDEBxcUR0xb94898QTT5wWtAvX6+RMlRSpRUVV4iCFKikiBwfmkydPPuPPiIgE01dffeW6detmnxO4ZzbThg0bLDFGROIbVVUkynH8eMkllyQ5n4LjZa7/559/UnWbJAFx+fHHH33H408++aR1DhCRyOGdC3uve+ZJcJzQpk0b3zkM3UZ69eplr+NWrVpZBwLv99h/8DmBCwIUZcuWtbmqtFgWEUlMQQrn3K+//hrQ2yW7mRYekaJEiRLulltuCfdmiEQ0skHI5oiGNkCc1C1evNg1a9bM1a9fP1WVFEWLFrX+n1CQInJ4J+ciIuFC6wUqimktV7duXWsPymJE8eLFw71pIhIBli1b5pvX9tFHHwXkNlnUHDZsmCtSpIgtYE6bNs3mJ65duzbF1ssiEjq0gHz33Xfd0qVL7VwSlSpVsioJr6sIa2lUXRK4wMcff2yv6Ztvvtn98ccf7vvvv7frr7jiCjd06FBLpNXcCRFJTlwHKdhRwhvaw3wGStdY0E8pg5mee/TaY6fLwVVil19+uQ1DjRTt2rUL9yaIRDxmtEQS9iG5cuVK8nsM+GbOTJUqVc54O3fccYeV4JYqVcqNGTPGrkvudiU8J/6dO3d2n3/++WktEph9RJbRhAkTXMWKFcO2jSISu3h/oJ3ozp07rR/0fffdF+5NEpEIw6Kkp2DBgu7KK688rZqCRUn/QbhnkrjK/+mnn7YkHI6HkgpSMIfNfxbbmdpOiUjq0d6RQATrXLQM92zfvt2uW7JkiS9IwTkzgYkVK1ZYi/H58+fb6/aGG26w73fo0MHW1d544w07xiCB95FHHrEZq8m1txUR8cR1CJPMDS+TlYMeWmrcdtttbv369Sn+HgdF/fr1s+FASc2eIPjBzlxEJL3Yh3iB1MT69+/vRo4cafM0zoRhZBx00qaOfqC4+uqrA769kv72Y23btk2yhzNtVshgoreriEgwDBkyxC1atMiSc1ikoE0D+x2vVaCIiD+CFEl1ITh06JB9Lz1oETV79mzbByVX/U8GNsdF3oVAiYikD2tYJEP5ByOoZKKSkqpKD62QCVA8+OCDvtc5a2AEEkmEe/PNN61FMRX+/B7nLFzP65kABUGMjRs3WhBSAQoRSY24DlKwAEjWGAdGBCpKly5t1xMJTgkLfAzM5cQuuSAFfTtFRNKLfUhyQYqbbrrJDiLTEmzg9jj5O/vss9N9EimBt27dOlejRo1kv0+2EhV+IiKBxsIDPeBx4YUX2kdaMNBjevfu3WHeOhGJRN7sicToMOC1f0mt7777zhYuybQme5u2pMm1mSMLm0VV75KWqg0R+T8Mr6Z9m39HEK89OK2YeC37zzGtWrWqO378uGvRooXLnTu3VUWQ+MZxQ8eOHe1cht+/7rrr7Hu8PllXo9KCagqdd4pIWsR1uycOsFjko/clO1r65pFx/MUXX1gWWXI4gXv55ZeT/b6CFCKSUexDOBDMCDJhmT/BgahXRcGBYnKzLiQ8bb3OPffcZL9PdnOg5yaJiBCEaNy4sS04MsSSwdlkJo8bNy7V7QRFJH706NHDd/5MR4HMmTP7vkfCH+fPXsJfal1zzTXum2++sUVNMrJZBGVhM6lABYEMLiKSerNmzXIffPCBzYugJTmyZ89ugYjVq1cnWN9auXJlgt+lEsKbHUHFN+tkdB+hhTDBiSZNmliwsHv37nYf4LyTRF4SekmMExFJq7gOUsA/SEF2MjjIyggWFslY/v33332ZaSIiqUXZ7P79+5OspKCclkXtG2+80SrBUsIBIvszMtO4PajVU2TJkyePDZQrXLhwkt//9ttvk62oERFJD1oyNGrUyB04cMCyH70gNu0Y6BOfuFe8iAjnyyCwSQWEf8ILn7NwSZVvWvB73vEP/exZNB09erSbOHFigLdeJPZR7UDbJt7XPbQHJhBIi2CCCuA9/uuvv7bXbFI2bNhg82E++ugj+10SpriQxECggzWz3377zVpBjR071oKUnJsSrOjbt2+SLWxFRFJLQYr/LdhxgkZ5G+ibR0YH/S5Tws9wkHbrrbcmuN5bUKKnPBkiIiJpQUCB7JWkFqf79OljGa+vvfaau//++5O9DTJdvBNKym852ISCFJGlZs2alpFIy6fEbRI42WD+SO3atcO2fSISe3r37u1WrVplx7lUURAoZbGiadOm4d40EYlQLFiCuTUEEoKxEMmxr/9wbBFJHYIO5cuXt+r5n3/+2deSjVkSVDuULFnS97OXXHKJzSpMnLzAAOzx48dbNZOHColatWrZ58ysIJFuwoQJdu5y8OBB3/XPPPNMsglXIiJpoSDF/xbsNm/ebOVpBQoUsPkUZHIw9Cc5RI+zZctmB1MMELr00kt93/MWFmnXoiCFiKSV1y4ucbsnstfYZ9EiyKv8Sg79QTngpKS3UKFCto+DghSRhSykefPm2f+lc+fOvvcMWnWRsUR2EllJIiKBQH9oFhjx7LPPug4dOtjn9913nxszZox9zJUrV5i3UkQiVUotj9OCGRN33XWXy5cvn3UfoC3N8uXLfW1jRCRpy5Ytc6+88oq77bbbXJs2bew6WqTRmokWS/v27fOtR3FukRJ+lsAEs6j4HNwOgQeOD5hH4R+o7NatmyXpevc5atQoV61atSA+WhGJNwpS+FVSgIU/ghS0SEkpSEEEmt7uBCmITicXpBARSStv35G4koKsmJkzZ6bqNj7//HP7WK5cOfs9bx+nIEVkoWyaHrCcCHDCTiAK/M8ozfZKq0VEMopKYbIq8dhjj7nWrVu7HDly2KLgZ5995hYuXGiJNwMHDgz3popIhKKlMQN36U/vVf76++GHH1J1O/xu8+bN7ZiXqi4yvdkXacFT5P9QWcT7M0OtM2XK5GsFO336dEta84IUVGOTkJY3b94kB9snh6qLp556yj4nQaFt27Z2YUaVZ8eOHdbKjaQqsO41aNAgG3ZPGygRkUCK+71KkSJF7CMHSGRxMLCLN4E777zzjL9LpnJSPeGZQ8H1ClKISHqw7+AAk+qu9PJm6xB4/euvv3wnjQpSRJ78+fO7RYsWucOHD7tt27ZZoIL3Jv/gt4hIRjAk895777WPDMVmUYL3mbvvvtsutARkRgXDtEVEksOiKO1gaJNMMk1aFkT9TZ06NeDbJhJraMVI8IEAnrc+RfslAhRUIvnzDywk1wlk2rRp7siRI9auyZsFwxDsypUru7p169psCf+A5NChQ62VE8ESqjRIqhowYIB1FBERCYa4D1KwCEQW2a+//mqZxuzsE+/wk5PS0FratDCTQkQkrdh3EKBInJ3C4lLWrFlTdRv0G/evDqOHKBk4DGqWyH0/YiC6iEggEfgkM5JKCo5Paaty7NixBD3lWXjwWj+JiCTnvffes6qrChUqhHtTRGIGFQ1PP/202717t3vnnXd81/M6I7hAEoGHRCaCB6lFYi2V2VTj897P+SBtoLxkKL6X+JiB44RHH33Utgu0faK1k/9QbhGRYDgrKLcaZein55XOpZfXosNDZokqKUQkPdh3JJ5HQQYL+5UyZcpYiXxKtm/fbqW5BDmoDOPgFEWLFrU+oyIiEj/Gjh3rZs+ebe8JzKT46quvrGVp4oUJEZEzYWGT4bwikv51I+Y6rF+/3nfd+eefbwOpFyxYkCDRlcAAXzdp0iRN98FcQt73K1as6EqXLm0zJwhQXHvttTaPivtLypo1a9ytt97qmjVrZgEKjhXeeustt3jxYgUoRCQktFrlnC9z9csvv7SPDA166aWXEkSxk0O5PNFsMkr8KUghIunFviPxPAoCDVRScMBI9VdKGJbNYEOGMpMp6+3bmE8hIiLxg6q6Hj162Oe0bKC6rnfv3jZ7gplqvN+QGU1bQBGR1Jz7Pvnkk7bgKSJpRxUEM1iGDBmS4NyNr99+++0E7V5pI56eBLPnnnvO2jd++umnlqDQqFEja9NGcISqycyZMyf4eRLgaOXGuhiz8ugYQmXHhg0brA1Uetu6iYikVdy3ewInbP493OfMmeO6du1qPXvp05sSFgzpIb5kyRJXu3Zt3/UsMH7zzTdB3nIRiUVkzNCD1B8BBhaTqJI404EiAwhbtmyZ5HwKERGJDyw6NGzY0Nr9sUDBse2UKVOs7ROZ0AzPJnPz8ccfd/fcc4+bP39+uDdZRCIcWdgci15++eWuQIECCXrY4+uvvw7btolEGioW586d655//nnfud1tt91mg64Tn8/xnpzeygyCEVRHeAlpzFll1lSrVq1cu3btTqvQ95CgQLUlcyaYVQGqKIYNG6YWwSISFgpS+C3c0e6JrJAaNWrY1+zsz9QDvn379q5mzZo2bMjfNddc48aMGeOOHz9uff9ERFLjn3/+sawVFpQSy5Url13SgsUpWntAQQoRkfjAvp8sSpJpaPVHcIIhmGRAg6GZl1xyiWVYUp3nn2gjIpIcsqpF5HSsI7GedPPNN/uu+/DDD91HH31kXTe8IAWteKlmzOgaEffH7AjWnLjfatWq2f15CbO0/k2pCoOf7datm9u0aZNviPYLL7zgypcvn6HtEhHJCAUpnHN58+b1tWci+4MBRfTfY8e+fPnyFE/crr/+erskxk6exUbeMLQwKCL/r707gbOx/P8/frUXKYlsSZYsWVMpIiEkJUsJhTaUnVApkcpSKoqIKKJs2SuypxBlzZZ9CaFUCq3zf7w+3/99fmfGzJjl7PN+Ph6TmTNnztxzmjn3dV+fLaW2bt1qi05eQ9KCCq4FCxa4OnXq2MYU/U55PMqF+VhERGIfQYiFCxday4apU6faOeCFF16wlqYFCxZ0bdq0sft17drVNin++++/cB+yiESBXr16hfsQRCIOCQGFCxe2c+lPP/3kS3J9/PHH3e233+7uvvtu333POeecdAUo2KN6++233ahRo9yxY8fsNh6P/Sv2n3h8JBWg2Llzp7WBpLUUSFSgBRVVF5pdKCLhplch56zUziuNoy0KH9eqVcs+njNnTpoes1SpUpadxvAhEZGU8l4zGJDtoZ0cC8fZs2ef8esnTpxom070EfVv9USPUS08RURiHxsPtGoAM9aKFy9uwYlXX33VbmMz4vzzz/fdn3YtSQ3RFBERkfgJZbRJpIWTh3ZKvFHxTjs0T+3atV379u2tNVog0BKqUKFCNmOKAAWBCd4nSPLOO+/4AhSJoZqSeYXXXnutrRPYq+rUqZP7/vvv3aOPPqrrRBGJCHol+v+8agdvwKwXpJg7d+4Zv5YLP3r60nPQQ5/BkiVLqi+niKQKrxksPmnD4WEh+f7777tPP/30jF/vvWZ5r2Hea5oqukREYt+2bdtc8+bN7X02H7zWgQS7aUHKuYA5FWR7+m+kiIikBJnabIqS4MeGLPNt/N9EYg2zGtjg91ClTiIAMx88JLkuX77c7d69+7S5gunB9/UfUk9VPDMoaO00c+ZMO+c/+eST8YZtJ8T9SWLja0li+/PPP626Y926dRZo8b/mFBEJNwUpkhieXa1aNYsuMxSbkrjkfPfdd+6JJ55wL774Yrxyedq1qJJCRFKD14yErZ4Ygs0CtGHDhsl+7Y8//ujWrFlj79esWdP+1dBsEZGMgc0MzhNsqFSqVMm98sorvs8xCJMNCTIt2UxZunSptaZgDhsbGCIiKUHbuNdff93df//97tdff7W2MQ0aNLAsbIbvisQSgv3Zs2d3H330ke82AgQPPPCA/b777/1cccUVpw3DTqs9e/a47t27W1tyZkp5GjdubLMLmSdBC6nkKiewYcMG29fi6/bv328VHbSA5OupqBARiTQKUvx/N9xwg51UOCGw0XfJJZfY0CBu84bOJuXWW2+1F39OYkSmPbRrIYBx6tSpEPwEIhLtWOgSZPBv9QSCFmStVa9ePdmv94alMSeHhfLx48ct2wcKUoiIxC4CDfS+ZkMiZ86cbtKkSdbGyR8Vvl6GJ+caNhXz5s0bsE0VEYl948ePdyNHjrTkGRL6mjRpYpuozz//vFuxYkW4D08kzedQqtmpNKBayHP55Ze7v//+O95+EDOexo0b55o2bRrQFkkcwxdffOHuvfdemx1Fi8ZffvnFhm77d+ugheOZ8HXMm+KakBmrfB0BRgIc9evX13lfRCKWBmf/fwQliCazoccC65577rEWTmz0cXJKDn19GVSbEBuL//zzj10w0g9eRCQ59AT9/fff0zw0e/r06b7+p2BBzYL3qquuspJ8ERGJTQzRZNOErEraOuTOndsXjGCgJm0e/JFYQ2alf3KNiEhK2hwzexEMB6aaAnfddZfr2bNnmI9OJG3YsyHplN/nqlWrWrIqHnvsMWubWLRo0aAH/1577TVfRTxITiPQcOedd6Yq4Y0WwcyuOHLkiN1GhSWPnT9//qAcu4hIIKmSwg+l8fACDkSpzxSgSE7p0qXtYlEtn0QkrUOzCZYSPD1TOw7ae3iZNv49yP1f20REJPYsW7bMgg6gxVOVKlV8mxVssFBBQeAiIYLX2rQQkdSg/czBgwftfWaoeVW8q1atchdccEGYj07kzGjn3axZM1evXj3fbVQecv1ElYH/7zEB/2AHKEALJi+poFWrVtaNg+u4lLR08pCcRnCFIdgEKEhOmDdvnpsyZYrO9SISNRSk8OMNmp0zZ85pn/vrr7/O+PWUBi5ZssTt3bvXPuYkU6JECQUpRCRFeK0oUKCAb/Dgrl27bN4NAc+ff/452a9dv369ld2zIOX+/q9l3mubiIjEXlYzg7DJAuXfzp07+z734YcfWvuKTJkyWYaoh/uKiKQFm7heQl/79u2teuKaa65xzZs3d4888ki4D0/kNMeOHXMHDhyIF5Cg8nDWrFm+agOMGDHCggVprWhPKbpsEEjYsWOH7zbmT/Tr18/t27fPZkexh5RSR48eda1bt7Zh9swipMKJVlHMoWJAtohINFG7Jz/esOxt27bZsGx6Aa5du9Z16NDB+g3Szy85LM64IGSIUq9evew2Dc8WkbQOzWYIap06dSwAeqaqLqolDh8+7Hbv3m19RnmfzSn/IdoiIhI76JPN8Fo2X6j+HTVqlK/P9MmTJ12PHj3sfdo+5MiRw96nlQUbigzMplKPAIaISEr179/f9z6vP7QUXb58ub2ukPUtEkkGDx7sunbtagE0Nv9BVQGb+DfffLMvMSzYqGwkeeyNN97wVboTTOD4vNmBqZ0fyPUh82A413vJbA8++KBVVHotH0VEoo0qKfxceumlvv6Dc+fOtX/ZGFy6dKkNMdq/f3+yX0+kmhOd/yAiNhwp11PPXxFJydBs/yAFLTpmz57tPv300xQ9BptNzNZJOERb8yhERGLPM888Y+tTNjrI/mSYp2fQoEGWkZkvX7541RW0BSRzlLYQVPyKiKRHhQoVXJcuXRSgkIioLGQ+0w8//OC7jQA+1YMkofojcEGCV0pbKaUVCQNUaFAZQeIZAQqSXxmOzdD5tKJigqDG448/bgEKquhZD3zwwQcKUIhIVFMlRQJklvECT6SbNitc3N1yyy3uq6++cpMnT453oZdQ06ZNrb8h1RgeNhzJdCNQEezSQRGJ7v6ox48fT/R1wj/wmRi+zn9zyr/VE69pIiISWyZNmmSDMMGQTP/B2FTS0TYCffv2jReMYFPk6quvtjlGZzq3iIgkNHbs2DN2FhAJh8aNG1vrbZJDvT0bhmBv2bIlJHMlEktAK1OmjC9AwrVay5YtrU0a5+G0oLUTCQpUUOCSSy5xL730ku1b+e9BiYhEK72SJcCGHiVz9NpkDsX5559vJzyCFBMmTEg2SJHYsDBOTEToyVhTkEJEUjo0m7ZN2bNntwzZlPQHZoghmToEVVkUe9VgClKIiMQWEl+83u/dunVzDRs2jPd52o56QW8SaPwRmPCqhkVEUqtjx47xPiYZ78SJE3bNTEWvghQSbAQh3nvvPasM/Pjjj+13D1QnULngX0nA/IlQBiiYM0HLcM61VExwjTZx4kT7u2EOBUGFtODabuTIkRagYMYGWrRo4QYMGOBy5swZ4J9CRCR81O4pkaDCFVdcYb3gCUx4JzxOMitXrrRZFSnhtYYie42LxIULFwb1uEUkuhEYZRHtzZ5g4UkP8SlTpiT7dT/++KNbtGiR27Rpk29RziwKMm3I2KEMX0REYsMvv/ziGjRoYOvU6tWrW6VEQkWKFLEWplRasH4VEQkUNkj9337//Xe3detWa53z0UcfhfvwJEaxSe+hYuCFF16wlrjefAe0bdvW2iCRYBpKcXFx1omjbt26rnDhwvH2fRgsT7U8ia5pDVCQ7Mr8DFo78TdHa6cvv/zSqigVoBCRWKMrlwS4mKtVq1a8din0c6dUEETCz3QC5etpE7V+/Xq7jR6dn332mVVmiIgk9roxa9YsW9yCzSfadZApxKI0OQQx+Pry5ctb5o7/axcbWGQQiYhI9OO1nixlWkcwrJYNwcTaO3Tq1MnmUVSpUiXe7QQ3aAvhZWGKiAQCQ7MZqJ2wykIkvdjgr1evnrv11lt9t9Glonv37jYgumzZsr7bQ93CkMHVXIdxrcb5lms5joFB8h4q4tPaholzdZs2bewab9WqVZZ8xrwpqu+pnBcRiUUKUiTCa4/itUuBF5GnDyfR8uSCHJyMOEEtW7bMF6Sg7J4eiSIiCVGlRVDCGzqYOXNmq4zYuHGju/LKK5P9WrJocP/99/tuU6snGTp0qPW7vfDCC22wHr9jKUFbQ85fXBCKSGShaoJNENqL0uKCarukJJxTROLMtGnT3IsvvhiCIxWRjIaN2AMHDoT7MCTKMeT6p59+8n1MVSAVE3S48O9oQWUC7Q7z5MkT8mOkxdmwYcOsAv6+++6zNTbr7datW7vNmze75557Ll2Pz14Te048Pt+Hjx944AGrWCIQqNkTIhLL9AqXiBo1atgmzbp169yePXtc/vz5XaNGjdzUqVPdQw89ZCeK5CL1XEQS5aaaApTkkfHGhSWPLSLij9cG2jz5t2biNaZ48eJnLP/ljV6szZo1s9uOHDniy+DxqsIkY6Hir0uXLm748OEWoOB8xO8CFze0M0wKc1C6du3qKleuHNLjFZEzoyL3+eeft/fZtLjhhhtOy+h88MEH7e3OO+88bZ1KpR1BbSosLrvsspAeu4jEjpkzZ8b7mOti5qINGTJE2d2SLgTSqRyoVq2aGz9+vN1GMJ5ZDJzzChQo4CIBlRyDBw+2+RPZsmWzNlPt2rVLdo2dUiSo8RzQPgpcC7799tvutttuC8CRi4hEvrPikisLyMA4EVD5wDAiygnTixMXWQC7du0KeSmiiES2UqVK2cDsMWPGWG9fKilS8jrx2GOPuVGjRtlgVG8xz+YVi1sezxvGLRkLgYkbb7zRNgy8FjEEzdu3b++efvrpRL+GDU5K6RnGu3TpUut7P3369CS/B63IePP89ttv9j1+/fXXNPfcFZHEsRHCBg1/l/Sk5nU+IYaI8vdL1ikBx6xZs4blWEUk8nHO5rUiLefshHNuWK+ykczGMnNw/IcWR+rPIJGByhva0npVgVQksIYluZOqCYIBkYBZo5x3qZBg3iho80RwjvMu123pRavfPn36uNdff92qSRhC36tXL2vf6A0GFxGJZik9b6vdUxLY9MOHH36YrsfhJAN6zVOV8d133wXk+EQkNhC45HXBa/VEGS+9famuSA6bVd7r0xNPPOG73Rta6L2GScbC7COCU7fffnu8DQU+9u+RmxAXRmSAPfrooyn6Pv369bNFhvfmVQ6KSGCxcVG/fn17zafvNZVRCRHc7tGjh29IpwIUIhIsJD74v5HkcOjQIVuThipAIdGPDX/WjlQJeEiwYa4ecygiIUBBBTJBCCoR6ZRBMpnn3nvvteSfQAQoqE669tprbcYGe0ec82kbRaKsAhQiktEoSJGEhg0bWr8/Wj5xkvDQN57NmREjRiT79adOnXItW7Z0efPmtaFHDFNiVkXCElkRydgIRrAApR0PF3oszsmaZeM3OUSfZ8yYYUENr7x+7969lgVPVpv/jArJOI4ePWq/Rzlz5ox3Ox+ziZCYL7/80ipyKKdPqWeeecayILw3WsiISGBR7EzgcMOGDS5Xrlw2h4J5FAmxscHfd6FChaxyNyHaUkyaNMmdPHkyREcuIhlhvUFWpEhKzmUk0LA/4ilWrJgFuQhIeLh+4XqI6opwWr16tc2aoNUSVYrMoGAv50xteFOL6zZmwN1zzz32Pi3GuS6kxTjVJCIiGZGCFEmgP7w3dNbLTAYbiGSrvfzyy7YRlBQuIr1huLTM4GMeT0EKEfHHa0LVqlVtyClZQ99//73NFKhUqVKyX0d2PDNuyKr1WkPxdaBtz5kGbovg+PHjNs+EAEX27NlT/HWc0wiU+b+JSGDROoXXdZJmJk+enOiAUAKEAwcO9AUrEgYxqMR49tlnLXC9Zs2akB27iMQeKrrov896geQH5tsQQCVx4cSJE+E+PIlQbMLTstC/jWiDBg3smueDDz5wkYI2prVr13bXX3+9tXMiuEI3jGXLlrnFixdboCIQqJbg/E7Qg4QzzvG0Y2UexV133RWQ7yEiEq0UpEhGkyZN7F/KV73RHQzQZkAS0e5PP/00ya9l0/DVV191ixYtci1atLDbOMkRuEgqm1VEMhYy0Jl947V6AmXDvM4k7PmbEl77J++1SzIeNg4Idv3444/xbudjNhISomqH/vX8DnKRxNvYsWMteMb7fF5EQm/+/Pnuqaee8lVCJBW4JnGGCgmC07SISKwFHBV3BMMrVKgQ9OMWkdj0888/27wAWt7QcYBNVt64vn3rrbfsNYhMea5133zzzXAfroQJeyarVq2Kd9t1111nAXTWmx5mLtDeNpJwjKyheXvggQesipEgQiDPnV9//bUFbLp27WqBvcqVK7u1a9dap45AtI4SEYl2GpydDHr80qObiz8WXPRJBCcVFmVE2pMLVCT0008/2eO98847NvBWRDI2MmQbN25s82poDZfS/qsMxmZxzzA1r2Jiy5YtlpHDxjKBUKrBJGNiE6F8+fK2aQDK6Skbpw1MwsHZbCj4l9p7fYKpsGBjtEiRIinqh6sBliKBwzmBTE7WjQ899JAbPXq0r2LOH1mXJUuWtM+xKcTXiIgE45zNmnPBggUWQE3YUpJ1Z82aNV3RokXd559/bkEKL0kvWLTuiDx0mWADnk33b775xndOIsAFEj0jBVtgtFaiAnHChAm+6ymqO7iWYg5FIPF7SlIBA7j53jwXJLRyjk9LYpqISLTR4OwAYIYE5YkJWz61bt3a1/pp586dKXosTkZsGtI7/kwDcUUkY+C1oGzZsraB/Pjjj9sFHov65HAhSGseAqX0A/Z4r1H0clWAImPr0qWL/Y6Q7chMJQar0/Ll4Ycfts83b97cWjPgwgsvtE1O/zeG7tJ+jPc1sE8ktMispEc1AQo2e9jQSCxAAQZtkuVJYFEBChEJJlr10FouYYACVGqy2cvcHNYgwQ5QSOTwr44g2YqEKSoCNm3a5LudDflICVCQuMPvKdUd7PN89dVX7vXXX/d9nuScQAYo2AOidRTPC0PC+Zi/D5LLGMqtAIWISHx6VTwDr20KEXZvBgWliWwmcpKhH3xyvPtwYtq/f7+11Jg3b576dopkcAxh++STT+w1gQ1kggy8NtCaIzlkx9PL9Oabb7YAh/c6o1ZP4qH3PBsJzz//vP2OkNFGUN3bWKBd4cGDB8N9mCKSAK/lVNryN5sjRw4bnkkgMSkEL2i10qdPn0Q/Tw9tHktEJL1YN5QoUSLJz5PYwIZrr169QnpcEr75JFTtUj1z5MgR3+0Eqw4cOGDzziIJ+zhUsJcuXdrde++9bt26dZaQQ9JOwirjQGG9zTmaIdz8/bCHtHDhQvf+++/bOV5ERE6nIMUZMOyaoWCcWLjY83Tr1s3+JVuV4djJXUCS5bZ161Y3YsQIO1HRPopSWRHJuL788ktb4POaQMYRfU/ZWE6u7ymlcUOGDLH3u3fv7rudNh+07Lnooot81V+SsdHaiZYxDAGk/y0toDycy7hASgqf8x9uKCKhQYUcAWtaTZB5mS9fvkTvR5s2Ki3OhFkUZIt6QWwRkfTMvPLPmk9o165d1tZYYpd/IhVVt17X8OXLl/tup21SpLXfonqC5C5a7NImkXYjJPLw+9y3b9+A/94SECFJlWrH2bNnu/POO8/17NnTrV+/3uZDiYhI0hSkOANaXZCViuHDh/tur169uqtYsaKd7MiITg4nJeZQMACRbINSpUpZGw4Rybh4DShQoIArV66cfcz7Tz75ZJJtPTB06FDr5cei1z8Y4b02NWjQwNrUiYhIdKGPuzcom80NhtAmF8wgI/ODDz5I8j5U7LLmZLOIhBsRkfSgneizzz6baMUvCRFc7+q1JjaRkMkgaa4/qOb2jBo1yu3bt88SriINgQkPFT5VqlSxxFMqDwlOvPDCC0FpQUWFBgGRzp07W6V8pUqVrKKR75tcZaSIiPyPBmenABnOlAbSZ5GTmjdYiZM02W6pRbsW+nXS/imxvp4iEtuooMiTJ4/1EafMOLnAhP+GU/78+W0OBRtTDz74oN1ONi2vSWTWLlu2LNlKDJFg0QBLkbTbsWOHu/HGG92xY8esR/W7776b5HmBNhr0zGbzY/z48a5p06bJPjbVu1TZiYik55zNdStzci644ALXtm1bV6xYMcukZ/YVvfYJVFDZy5y1UNC6I3S4xuD/K22dCKjXqFHDRSpv5kTv3r2tiwXzQL1rL86r/M4EA+daAhEMw6aSgu9D6ytaOGruhIiI0+DsQKLygeg7JxxOdp60BCjA5iJfm1y7DRGJXbTeIBONQcZ16tRx7du3P+OMAFrLEaCg4oIKLs/o0aPt4oGKDDJ3REQkevz+++82KJsABW3ZqJhLLnDdo0cPC1AQkE7JDCIFKEQkEEiIoa0P2fQk2PC6Vb9+fauu4DYGEIcqQCHBwzUF+x2tWrXy3UYFAF0hvvnmm4gNUBAwo8U210ONGjWywd1UHfq3pwpWgGLRokWW0Nq/f3/bL2LmBcE7nkMFKEREUkeVFCk0efJkO+HRs5AhSGSReL777jv35ptvutdffz3ZVitkHnAfeskToCDr+fvvv9fJSyQD4SWXHuEEG1588UULghK0ZH4A1RVJoZyamRV87UMPPWS3sRAuXLiwVXhRck0Grkg4KKNRJG0Zn2xmTJs2zeXKlcs2gPLmzZvk/clSZlApVq5cadUXSfWG5+8xGK0sRCT6pfecTVB127Zt9j7r0HC81mjdERycP2gnyDXG6tWr7boj0q+r2GOhOp1zKBiITdcKWi4FKzDhVWcwp5TqR3D+pqooEttfiYiEW0rP22krBciAyBZhA5Eye0oIvfJ6Toz0gWehRtkrJ8SkzJo1y82dO9dO+gxromULA0yrVasWwp9ERMKJBTT9ShnUVqJECbdgwQL37bffJhugAANUBw8eHO+2Tz/91AIUXBymJKNWREQix0svvWQBCuafTZ06NdkABevNTp062fvNmzdPMkABNk1Yc5L56gW1RUQChd7+XsBUohttYwl6165dO96MPALnBKAiXbNmzaz1ITJlyuQ6dOjgunbt6i6//PKgfl/O3bQ98yrh27Rp4/r166eAmYhIOimFP4XOO+889/jjj9v7lOJ7KMmnMgJkOVMimRQGIrZr187aszBEiaAGLVxEJOPgb56AAwMIef0gSMmGUlp4r0WPPvqoWnqIiEQRNjh69epl7w8fPvyM84QmTpxoFbhswhDkTgqJMFTe0VIw0jNgRUQkfLZu3Wotuho2bGjzJjwDBgywKgQqEiLdbbfdZh0uOF6qQAgUBDNAcejQIXffffdZkioBiqJFi7qlS5faNZkCFCIi6acgRSq0bNnSghVcJK5Zs8Z3Oxlt9OnkREUAIinch6HZbFCyOUmfQqoyONmJSOyjLJh5FAQVUor733333Zbl5I9WcVRm8VryxBNPBOFoRUQkGDZs2GDZnyDrk/lEKdlMoj0oveCTq7g455xz3Ndff+02btzoypQpE9DjFhGR6G8z6ClSpIhVdZM4GQ37ETt27LBuFmPHjvXdRrXg9u3braU2bbmDhWrGcePG2fM1ZcoUO9cyI2rt2rWWfCoiIoGhIEUqUPZI7+CE1RSU6VMlgT59+rjjx4+n6PE4qfK1ZNCJSOxjbgTZrSxmKaE+UyUVlVksgGfPnm1tofwNGzbM/mXwNqXZIiISHa01aCHK8Gsq6fwHeyaHqgv6g9OGIyUYZCsiIgL2JxhyfsMNN7h//vnHbiPRidaxtJ1lRl6k+vHHH60bBcGUjz76yNpmez8Dc/1IBA2m/fv3W8IYyQU///yzVSnSvvfll1+2oeIiIhI4ClKkEr0HQe/Do0eP+m6nKoJNR06ir776aopOtGTOtWjRwjYb//zzz6Afu4iED4tpKqkaN25sC2xmSSQMPCQ0ZMgQG6hN1mzHjh3jXWi899578V6TREQksv3999+uUaNGbufOnRZcnjRpkm2wpBSVEcm19iPwQbsnERGRhJUAI0aMsG4QM2fO9N2ePXt2C1ZEot9//9317t3bFSpUyBJEuZa644473PTp01N17kzPc8ZQbKonPvnkE0supd0i1Yply5YN+vcXEcmIFKRIpYoVK7rrr7/eMpzfeOMN3+2ctPr372/vkxXHgO2knDhxwqonZsyYYX3pDx8+7CZMmBCS4xeR8OCCgIADwQaCFW+++aZlAiWXbUuGjjdclT7kHhbqv/76q5Vp16xZMyTHLyIi6UPP7IULF7qLL77Y1oAp6ZtNf+0tW7ak6PE5Z1x99dXWkkJERDIuNvTnz5/v+5h5CVx7sMFfv359F+lmzZrlrrnmGvfCCy9YAP7GG2+08+dnn30WkgDB3r17bZ+Gdt+//fabu/nmm621Ey0Xaf8tIiLBcVYcIWJJFe/kzjApsqGzZctmt/NUUgrIACcqJZIr/yOQUa5cObvvnXfeadUVlFpGaiaDiKRPlSpVLMP1yy+/TPFm1qBBgyxzltcGep96WUVsQhHEoCer19dcJJy4gLv00ksteKbBgSKnIzmF+UGs81hH1q1b94xfwwZTjRo1bD3JhkmOHDmSvT8bN+vWrXOTJ0/2tScVEYnFc3Ys/AzBcvLkSdtUX79+vVu1apW1eIo2DKO+9dZbXcGCBS1Yz7DqUOyTsJ9DO96uXbta5TrnX5LFOnXq5LsWExGR4J23VUmRBvfcc49tHHLi8q+m4MRJ1J+T2pn6E9JTuGrVqvY1ZFZTepnSzUsRiS5k3nzxxReudevWtvhNyWA4b+4N7eP8F8Vvv/22BShoL9ekSZOgHreIiKTf4sWLXfv27X3VDikJUNAaymvzRybnmQIUoAUFLaRImBERkYyJtoDMTSCRct++fS4abNiwwdppeypXrmwB/c2bN1ubxFAEKLzqCa7X2OehgwaBf/ZtFKAQEQkNVVKk0dSpU13Dhg0tAkQ1xWWXXXbafciaTskJjcxoShjpT8zwKhGJLcyhWLZsmbVn8gIN3vuJ6dChg7WEou8qZc0eyp15nThy5Ih7//33baaNSCRQRqNI4pg/wRqPYZtNmza1Vkwp2WyhLQdBClpCbdu2LdF1pohIRj1nx8LPEMjngmqD7t27+84VXCuwD+F1fIhUdJOg/S2zHy644AL3/fffB30QdkJsh40ePdqq2L3qCWZPcD2m4ISISGCokiLI6tWr50qVKmVPNC1ZEmJjsXTp0m7evHnJPg4DdIsWLWpRe76GbGsRiR20apo4caJl5VC6zNuZepkOHDjQNqheeeWVeLcPGzbMLjoofX7ggQeCfOQiIpIerBGpmiBAQaCCTZiUBCh4nfdmFlF5caYAhfKNREQy9r4EszH79Onju43qu0gOUPz55592ncPcCQZ6//fff+6uu+4K+XEwR5Tv+9hjj1mAokKFClY9QcBCAQoRkdBTkCKNzj77bNezZ097f/Dgwe6XX36J9/m5c+e6TZs2uW7dullFRVK2b99uJ0d6RjKQ+6mnntLFpkgMYcBasWLF7G+b4afvvfeeVUMk5/zzz7fWIARCPSdOnLDWT3j22WfdueeeG/RjFxGRtGHtR0u+jRs3uty5c7tp06ZZC46U6NGjh2UZMWOCjZMzGTJkiM04UzWuiEjGw3UBm/21a9d2kY59DtpjlyxZ0q6NCAwwM4MkLtoVhqqKguOgvRTHwbmTKg6CJhxHctXuIiISXApSpAPtnkqUKGEXkmQ9+yOAQSkLkXivt3xi6HFIkIOTIxkQK1ascDNmzAjB0YtIsC1YsMCqqSgZJqhAcIJ2H0lhNg2ZRYl555133OHDh+0xNCxbRCSykaTC2o62ETNnznR58+ZNcfXdqFGjfMGHlGRy0v5vyZIlbteuXek+bhERiVz//POPXVcwr8FTvXp1S46sWbOmi3QHDx509957ryVq5sqVy40ZM8bmKVWqVClkx3D06FGbc/Hggw+6Y8eOWZBk9erVdt5W9YSISHhpJkU60caFfvNZs2a12RQEJjzDhw93TzzxhLv44ott4ZAvX74zPl6NGjXcDz/8YJUVypQWiV68tJYvX97enzx5srv66qvP2N6DigvKs6nEyp8/v+9zJ0+etBZPhw4dciNHjkxRZq1IKKk3tMj/4XW6VatW9j6Zoffdd1+Kv/avv/6y5BXWlMklufhjMOrYsWNtzRnJ7T1EJDLEwjk7Fn6GtHj99dctyZHA99atW13mzJldpPv777/jtbp94YUX7NqGCpAsWbKE9Fhmz55t11HMwmCvhdaKVL1r30VEJLg0kyJEyAQoXry4tXt644034n2OC9SKFSvaYOx27dqdsY0Tn2/ZsqXbvHmzXWyKSPSaMmWK++abb6z8muADGbHJ6dKli/UtJ+s2T5488T7HoG0CFAQumjdvHuQjFxGRtFq0aJFr06aNvU9/8NQEKLx2f2RzpjRAAZJg2OxRgEJEJLYRjGZuAoOyM2XK5CIZexskahUuXNitXLnSd3uvXr2sg0QoAxS0lWKf5e6777YAxbXXXmsVHHS/UIBCRCRyKEiRTpQEkg0A+hiSzeY/t4JBUGQOUOpPP+KknDp1yoZn0wqGfzl5k2EgItGHjCE2jPhbJoBJC6fkKiloCTVu3DgbqEoGrn+2ERUWL774or1Ptg8bWCIiEnm2bdtmrUBpx0GV7XPPPZfiryWhhSoKERERz/fff2/7Ah5mG3311VfW+pXrhkg+bq6DaKu0d+9e2ycJl2XLltmMp3fffdeeMypRaK1Yrly5sB2TiIgkTkGKAFVTVK5c2YIKTz/9dLzPMbOie/fu9v4nn3yS5GOQPU25JkEP+krSr5HsaRGJPgzHZrOKLCH+7r/44gtXp06dRO/LQOzHH3/c3mdY9o033hjv82T4UBJ33XXXuRYtWoTk+EVEJHWohLvrrrusv/VNN93kRo8enaoNpK5du7oyZcrYZkpK0ZOczFA2W0REJPbOK7SOpSrv448/9t0eycEJErNI4CxVqpQlYTGQmiDLBx98EJakMRK82KfZuXOnu+qqq6zaceDAgbb3IiIikUczKQKEYUsMXeLp5AKTMkz/KonPPvvM1atXL9lFBVkGbFjSGoZNS8ojOaH6z7kQkcjG3zBlzVWrVnXjx48/4/3pg0ow48orr7TZNf6lz8ymITjx33//WaCDRbZIJMqovaFFQAUEGaOLFy+21ku0tWAgaErRGpCNKNaQDMC+9dZbU/R1DEllE4hNGK+qV0QkGs7ZtCuaOnWq27Jli1UH0CJ5wIABrmjRolHzM4RC79697bxAxTVzKCIZx0m7a6oowHmRdrdcF4Uax8Bg7FWrVtnHVJ689dZb2lcREQkTzaQIMcoFH374YXu/Y8eOtqnoIVJfv379M2Y9EN0nQAEuOKnMCGdppIik3ptvvmktmtioOlPrDoIQr776qr3PIt4/QMFmVadOney1hJ7mClCIiEQeXqvpEU6AgtdwqudSE6DgNb5t27b2OA888ECKAxSgnRRzih566KE0Hr2ISPg2tHntW7FihQVbyXon8PrHH3+4jGzt2rV2HeFfUT1//vyID1B4gQHeOAdOnDjRkjRDHaDgXErrXJK8CFBcdtlldizM+1SAQkQk8qmSIoAYbFukSBEbzDRmzJhEB9xStjlo0CC7sEyut/yePXvcI4884pYvX+527NjhcufOHeSjF5H04u+7YMGCdiFBVUSDBg3ilWcntHv3bte6dWt38cUXn3Y/Ztjw9ZRJk2WW3EwLkXDLKBmNIgmR+UurT+aQzZ4929WuXTtVX//OO+9Y9SwBDl7r8+TJE7RjFRGJ1HM2G/NXXHFFiqvJIvFnSC9mWDLPiGpszieR3NYJbCMdPnzY5cyZ0xd0f+2116wNYdasWUN+PD/99JN9b28OKC2033//fatWFxGR8FIlRRiQNeANSeSClSGI/jhxs+hiCG5ywxTpZ0xf4oULF9qMCvpQikjko20TA1OZLcGCvXPnzsnen8DDnDlzLLvHHy3iGOqGbt26KUAhIhKBCC57s8gGDx6c6gAFmzu0/ANrQwUoRCSjYtMC2bJlS3LWARsc/m+xxttMZ8+AjgqR7IcffrBW1rQqJEETBOu5bglHgGLBggWudOnSFqA477zzrFL9888/V4BCRCTKKEgRYLR6KlSokA2+ptemP07cL730kr3PiZOTaWIoSyQLgPYubdq0cSNGjHBff/11SI5fRNJmw4YNViXF8FOyYnft2uUqVaqU7IUYyJLKnDlzvM/zOHw9G1ZPPfVU0I9dRERSh7kT9LgGgel27dql+jG6d+9uiSlly5a1ticpRWsp2oES5BARiXZsytPi9JZbbnElS5ZM9D5cV5OB6b3RVjUW20d/9dVXVkWRKVMmF4m8dkrXXnutVX6w5/Hll1+G7XhoE0ayQI0aNdyBAwdspgktxLgeY+9FRESii9o9BcH06dNtBgVtWjZv3uwKFCgQ7/O0dyHwwAYkPekvv/zy0x6DXvbnnnuuLdoYwk1Vxpo1a2y+hYhEFhbIN998s2U98XfK335SyDaiT2q1atXcG2+8cVqAgsU+beP4m6fCwtsEE4lksdh2QSQpBJF5zSdIcOedd7oZM2bYmi01WOfddddd1mt82bJl9ngpVbduXTdr1izXpUsXa60hIhLN52zm+jC/gM3upDLfqaTgzf9nIFARKT9DWuzbt8/W+e+9995p+wWRaP/+/e6xxx5zc+fOtY+pohg1alSSgaVQnIubNGniS+ZkaDfXVpEa4BERych+U7un8LnnnnusByILKQISCeNAr7/+ukX5ifZTMZFYnIh5FUT/ueillyJzKXr16hXCn0JEUtOTnEF3BBVXr16d7H3JuOXvmRJkghv+eC0gG5cABQt/hqiKiEjkoPKBwAQBCiogGMiZ2gCFt85jo4fNldQEKNCwYUP7GtaQIiLRjHUvlQOLFi1KtjUPCUBsavi/RTv2CZjBQeeESMb1CfM2CUZw3uL/xcCBAy3AHq4AxYQJE+wczDmU9lJTpkyxGU8KUIiIRDcFKYKA9i1vv/22VT3MmzfPjR49Ot7nyZz+8MMPrV8ifRPJQEhuUUBbKCJOtIiifFFEIgfVUMyNueqqq9zWrVuTzWplM4tFPgHIcePGndazdfLkyW7q1Km24UW1lcqURUQiB9UPDRo0sAHXbKaxsXbxxRena7144403pvrrWrRo4ZYvX+6KFSuW5u8tIhJOXmIO18LMYYyGSoJAo21SrVq1bHM90lExSPYrSVQkZjE7j9mZoXbixAmr5qCCgqxcWoStW7fOgvciIhL9tAMWJLRrYQgiKMenPDJhz8mXX37Z3mdTk2G7ifnjjz9sGOPRo0ftgvjhhx+2oboiEn5UQjz00EP29042EbMokrrQ2LNnj2VM4dlnnz1tXsWRI0d8Pcl79OjhypQpE4KfQEREUrqhxsYI8yCyZMniPvnkE5c3b95UP87evXtdhw4drCJDRCSjYs1Lwg6Je7ymHjp0yN4ifWB0elEt7eEcMmfOHEt0ikT//vuvL6A+bNgwS5hkZka4AuSbNm2ywD4JnhxTz5497Zwcqc+fiIiknmZSBPnETnSfMkRaA5BxxwnVQ2uY/v37Wx9OhmUnheqJb7/91t12220W3GA4NwMTRSS8CES+8MIL9jd6ww03JPtaULVqVbd06VJr0cG/CduDNG7c2CotSpUq5b755htrBSISLSKtv7VIoPXu3dte78kcJUBB9mtqseSuV6+eDRtldhmVc6kd1v3DDz/YLAuqcUVEovWc7X9N7I/5DCQARcPPkFq0em3atKnNr0yYrBRJSJKkUoJ/P/jgAxcJaH9NWyyCWLly5bLgFtdWIiISHVJ63laQIgQRf4bk0iKANi/NmzdP1+MR1CALmyyG1PYwFpHAtnm6/vrr3X333WcL5ZRsbtEWhBLpQoUKxfs8pe60EGHzi6AmjysSTaJxs0AkpWjb+eijj9r7tOJL6ywIghK0pCDAsGbNGleiRIlUfT3nCc4XTz/9tOvXr1+ajkFEJBbO2dH2M7DlQoD5008/tUDF+PHjXSQiUYqZeN9//719zKw99jLChUAJwYmxY8faxzVq1LAKnCuuuCJsxyQiIqmnwdkR4tprr/UNvKYC4uDBg0kuXJhjcabNzk6dOllJI/2IY70cViSS2zzxN8jguI8++sgNHTo02ftXqFDBqqUolU4YoPj555+tmgrdunVTgEJEJILQiqNVq1b2PkkiaQ1QsCCn/zqeeuqpVAcoWCfyNTlz5nTNmjVL0zGIiIgLW+XIxx9/7Pr27WvVIpGGc8wbb7zhKlasaAEKWlHNnz8/rAEKr70TAQrm9NEqm3OyAhQiIrFLlRQh2tCk6oFMBMr8yaRLWOLqZVIzbJsqCdo6JYa2UZ999pmdqJl1QW9IEQktBmVTGcHf89y5c+1vm7kUyWGuTPbs2U+7neoqSqmLFy9uj8NrgEi0ibaMRpGU4DX51ltvtUxOXqtpN5FUi5KU9F8nGeWaa66xSry0vtYzwyxhu0ARkYx2zo6Wn4FuCpHewvWnn36yFlu0pgYVf1QNZsuWLWzHROImSQEMys6TJ48lhXE+FhGR6KRKighCWT8ZE/xLD8oJEyacdp+6deu6OnXq2FBsNj4PHz6c6GOxgOB/7P33328Dt5cvXx6Cn0BEPOvWrbNZFM8884xlRG3ZsiXRAMUvv/ziduzY4fs4sQAFfc0JUBB0pJ2IAhQiIpFh9+7dlhhCgOL22293I0eOTHOAgrUalXQYPnx4ul7rFaAQEYkOR44csUoEzh+RinzVO+64wwIUVIgTTJ88eXLYAhR//vmntXei5RQBiurVq1t7RAUoREQyBgUpQqR06dLWJgCceHft2hXv8/Sip78im5379u1zjRo1sgqMhLidjU/KHil/JGihtk8iocHfJG02ihYt6nr27Gm3XXnllYkOyqbfLMO0FyxYkOhj0frtkUcesfc7d+6sGTMiIhGUVcqmzY8//mjrNwLS6cmEZf3HRhBrtmrVqqUpOE71hYiIRA+SFGlZ9NJLL7nff//dRSKC78w4oqKbuXi0oE1rQD4QyQG33HKLBfU5Bq61qFhXeycRkYxDQYoQ6tGjh7vpppssw5pKCMo//WXNmtUqLbJkyeKWLFninnzyyUQf5/LLL7dMOtoOcDJv3bq1XfyKSHARTNiwYYMrUKBAsn9zzz//vLVlozKKWRSJteto0qSJVUyVKlXKKjNERCT8yNxkuOnWrVtdvnz5bMhpeluJTJo0yRJUBg4cmKavp3KvTJky7s0330zXcYiISOgwa445Cmy0X3zxxS5S0Gpj2bJlvo+pFiQQznkmXD7//HOby/ftt9/aXgfnXtrrksgpIiIZh4IUIUS7p4kTJ9qm5apVq2xwYkJkMVBRgbfeeivZwVq0iOEkTrsYXbiKBBftmBiQTWbPl19+aZUQiaFEmqF4ePfddxOdL8Oim0AkFyzc/6KLLgr68YuISPIIIJNEsmLFClurMaCT4aHpRbs/zh+s2VKLyjySV1hD0n5KRESiA9cMJCkWK1bMRYrvvvvOujHUrl3bBmSHu5Xgf//9Z4Ecqhd//vlnq0JnHhQfi4hIxqMgRYjlz5/fjRkzxt4fNGiQVU4kNp+id+/eFoSg6iK5Ppe8cfFKhve8efOCeuwiGRXD7B9//HHXqlUry4YiK5ZqioTWrl1r7TxAJRT9VBPi75SybzCUjtZRIiISXlTH8TpPX25mRsyaNctde+216dp4ITM0vZWuZJGS4HLo0CFXuHDhdD2WiIgEFxv/XMcT9I40zMWkq8O2bdtsxmW4W1BR0VG/fn333HPP2bmSQdlLly51V111VViPS0REwuesOPUJCouuXbva4GsWCAyDSrjhycUtWQRkEySHIEf58uXdo48+an0kebvmmmuCfPQiGcfevXst44hgwvz585PsS86cmYoVK9pGEmXTtHtKmJV04MABV7ZsWQsuEvB45513QvRTiATXb7/9ZuczLjjT2xpHJBzofU0AmQSRqVOnunvuuSddj8frO0EP5hONHz8+YMcpIpJesXDOjsSfgcAE1+7MESJZKa0t/gKNfQUCAcyeANcpH330kVX5hcvmzZtdvXr1LKjDwG6qDdnPEBGR2JTS87YqKcKERQKDcvkflNh8Ci6S/QMUlD+ywZkQJ/c8efLYQoOhUlRh8JgiEpje5LTXINOIqofkBqfyN02AgiGrtHBKGKDgwoXNKgIU9HylkkpERMLv7bff9lW4MbAzvQGK/fv3Wy9ykEiSVhs3bnTHjh1L17GIiEhosPZ/+umnXaFChVyXLl1cJDh+/Lhr0KCBL0DRvXt3a2UYzgDFzJkzraKDAAWzn2ijqwCFiIhAQYowz6fIli2bzadgwZDcxW7lypVdrVq1krxYZeg2GRKUb957773Ww1hE0o4is4cfftgyfQhWcNGRnCFDhljbNSoo+HtM6IUXXvDNoaBdlOZQiIhERvuLdu3a2fu06KDKLRBto9gYqlChgu+x04L2gczEYICoiIhEvsaNG7stW7ZYEmEkGDx4sJsxY4ZVKzDHcsCAAWEbRk1FB3P5SATgHFmlShX3zTffnLFzhIiIZBwKUoQR/Ra9+RQsID7++ONE70fAgeAEg644qZ88efK0+1CJ0atXL7svLWmeffbZoB+/SCxj+DXBBNqysXhOrPKBvzevYx5VFq+//nqiFyVkLDEUDiNHjnRFihQJwU8gIiLJYWZE8+bN7XW8TZs27vnnnw9I0OOTTz6xc8K7776b5s0g1n2s7TjP0HJQREQi06lTp+IlCIZrCHViSISka8PixYvdgw8+GLbjICjRsGFD269A+/btbU4fnSBEREQ8ClKE2V133eVrCcCF8rfffpvosG02OenfxTApWsYkrJTgYphhj2Td9e/f37Ik1ANZJG3IOKIyiazaTp06uZUrV7qrr776tGygFi1aWPUE7ydl06ZNdnHgZdeSYSUiIuHFDC8Gdv7999/2Gv3mm2+6s846K12PSTu/Dh06+GZcpGfw9mWXXebWrl1rCSo5cuRI13GJiEjw0C6wXLly1rYoEnz11Ve+vQL2CAie02Y6XHbv3u1uueUWm6XJ8YwePdrOuXSWEBER8afB2RGAXvV33323BSJy585tG6JXXnnlafejVQwtn/78809rRzB8+PBEL6j5X/rII4/YnAqCGsrAE0m59evXW+XEbbfdZn+TzIdJTNeuXa3KgmwpNru4OEno8OHD1nOVxTkt28gYotxaJNZE4gBLkeSCx7wmM++rZs2abtasWcnOHEqpJk2a2GYQs4lo5RmIxxQRCbRYOGdHys/AdXnBggVtduS0adNsXmQ4vfXWW65jx46ubdu2AQm+p9cXX3xhFRRHjx51uXLlskAF10YiIpKx/KbB2dGDTU7mU5QsWdIdPHjQqisY1JsQfRupjmCxwRBfWjolFmPi8wQw6GNcrVq1RAdui8jpWEDzN0Nm7erVq+2FNDEMnyNAgVGjRiUaoKAtG+3ZCFAULlzYLlwUoBARCa89e/ZYYIIABRslU6dODVgwoWXLlvZ6z3khPY+5fft2zRYTEYkCrO1JcKItLOv+cKGqm+4MVPOxP0ASZLhzUTkX3n777XZ9df3111vwXgEKERFJjoIUEYJIEu2a6Mu4bt06y8ZL7AKVTIS3337b3qdfPlGoxDBAe+fOnRbsICOcPpAikjSCCvx94brrrrPBbokNwKaku0ePHvb+K6+8Ym3aErtQYOj2ihUrrGUHf9uXX355CH4KERFJyqFDh2zD5IcffrBWTMyOyJw5c8AenyD35s2b0zUElCB51apVLdhBxYeIiEQ21vhUL4SraoH5RQ888IAbOHCgL5mK/YKkqsGDjT2MLl26uMcee8zOaY0aNbKKisQ6RYiIiPhTkCKCMHti5syZ7sILL7RNTdrJJIa+9vRyXLRoUaKbqKAqgw1UNkq5KKc648SJE0H+CUSiE6XaDRo0cN98843No6B9E0NUE3rhhReszzgYhO3Nk0mIWRZUR1El9fHHH7uiRYsG/WcQEZGkUTlRo0YNq1IoUKCADc0ORPCYTFXWWYEamLplyxZbr/FGCxEREYk8vPZv3bo1IpKsuIah1SAzHj744AP39NNPhy1gQoIk857eeOMN+5ikL44tU6ZMYTkeERGJLgpSRBhKIMeMGWPvUzbqVU0kRPAhX758vo/XrFlzWkknG6gEM+irz0BuSlBPnToV5J9AJLqQ4VOpUiU3f/58CxIy2C2xQW4bN250L774or3PcHqvmiKhsWPH+u5HWzYyYkVEJHyoJq1du7YNoWb2F6/3tMQMBKpaqXp45513AvJ4pUqVcvv27XOfffaZJa2IiEjkIampePHiNvshXLj2pwqcqsCLLrrIrmMefPDBsB3P/v37bd4Tc544f3F+JLkr3HMxREQkeihIEYEoiSRLG/SVJMiQnMmTJ9tw7M6dOyfae7JixYpWmUHlRfny5a0kVET+N7SeYfRUUPC3wyCfpJQoUcJmwlBK/dRTTyV6H0qZKW0GWUwEE0VEJHxIzmCQ6cqVK122bNncvHnzAlah8OOPP9oG1R9//GEzxQKFjNPEZh2JiEhkoKUr1w60dQ0XNv9btWplx8B+wR133BG2YyFhkmTLtWvXWvtq9h3uu+++sB2PiIhEp/TVpEvQPPPMM+7777+3qop7773X2hIQbEgMcyno/Th48GDbdH3rrbdOy1j46aef7D4bNmyw1k9kXCSWLS6SUfD3QBBhyZIlVklRpEgRm0Xhj4uPX375xXcBcv/99ye7OKdaicoMspq8QKOIiIQHSRlskixcuNBlyZLFNnEIOAcC54cnnnjC1ldly5ZNsrouNQ4cOODy5MkTkOMTEZHgoaqatkbMNwongvBUbSeXaBVs7CtwjUTA3pv3dPXVV4fteEREJHqpkiJCEWSgVQwDHjnh06aAlk2JIXN71KhR9jVDhw61i2YG9/qjVyUzLjp16uQWL15sw7XYTBXJqAGKli1bug8//NDeyPYZOXKkO+ecc+JtQHXv3t0GoFK+nMD4UJ8AAGYMSURBVBxaQdHrnIAGwURaPoVrWJ2IiPyvUo61DpWktJ2gDQZVp4FC3+9p06ZZwsf777/vzj///HQ9Hi2emE1Ws2ZN6zEuIiKRjcoBAuChRGCcwMTu3bt9t4UzQMF+Rd26dW2/gmuhZcuWKUAhIiJppl20CMYF7/Tp062342+//WYXrlRCJOaRRx5x7733ngUq6ItMNoP//Aluf/XVV22IFe2heFyyvRkYLKFHMIkFHBsnLHBpQyGh27iqUKGCbSoRTOBvhUGn/kEFsm+psqC1086dOy2IkRQqnqpXr24XDQQ0Pv30Uw2HExGJgEq5KVOm+NZSt912W8Aen82hdu3a2fu9e/d2ZcqUSfdjkkBCggnnKHqLi4hI5CGIHK7WySRDsR/APIzGjRsn2uY5VPjezz77rGvdurWduzjnUkERzoCJiIhEPwUpIlzmzJktC5BZEj///LNVVmzdujXR+7Zo0cJ99NFHdkHOhTn3TSwbj5Y0EyZMsMctXbq0O3HiRAh+EvFMnDjRdenSxfXq1cutXr3aNjeYi3D48OFwH1rM46KCfq2rVq2yxXXOnDlPuw8BwTp16lirNSorqFJq1qxZkhtVBCjoS87f0ty5c7U4FxEJIzZLHn/8cTdu3DgLQDO4k3NsIAMgrLcYxk3lXFIzilKL88yOHTusdaeIiESm0aNHu1y5crlXXnklpN+X6xOuYbh2zJEjhy85MVzXU5wH+/btax9zTcv1klpJi4hIeilIEQUuueQS66NMz2M2stkUJbs7MWSFM78ia9as7vrrr7dM/cQQmGCTlixwMjIo0ZTQeP31163VEBkn9O0cPny4Zd6z6JXgobKI6qGlS5faZhDtz/hb8vfDDz9Y5dL8+fMtQDhr1iyrUkoM961WrZq1gipWrJgNY2Uoq4iIhAfrGtpavvvuu1YdN378eEvMCPT3uPXWWy0gTcsn/zaB6UWFZalSpQL2eCIiElhcZx87diykG/Jcp5NA9fXXX9u1BtcpxYsXd+FAgJ5j8c5/nG+pKAxXwERERGLLWXHhrBOUVDly5Ii1K9i0aZP1LWazNV++fIned9euXe6qq65K9uLZy9Z77rnnLABCiSYBEQlu5gkBCSpd6CfqIRuFEl7KdyXwqEJq1KiR++qrr6ztB1m1vPT5L6ipUKL6iKADGVL8PZQrVy7Rx6NyokqVKvY1BQsWdF988YXLmzdvCH8ikchChh+btr/++qvOIxIWvKYTfCYRAFTDNW/ePKjnlUAEpqn84PyvILeIhEosnLPD9TNQTUd7PgLKV1xxRdC/H62ZCQosWLDAft6FCxcmeX0SbCRL3nnnnTYnk2Qurmep7hAREQnUeVuVFFGE0k4yJwoXLuz27NljWdwHDx5M9L4FChTwBSjYGGdDnF75/jp27GhvZIAz64J++mRoSPAcPXrUFrcJ2wzx8aFDh8J2XLGM320CdlxQUBnhtf1ImPHDhQbD78hMWr58eZIXAMyeYDAcAQqChFwsKEAhIhLeAAVtl7wABbO5Ah2gYKPIvw95oIIKDPTmXEK7DBERiWxcX1OJHYoABZ555hkLUFx88cXWVjZcAQoSICtVqmQBiuzZs9t1lQIUIiISaApSRJncuXPbQoVKiu3bt1trGhYNyRkyZIhl6NetW9cu3BO6+eab7fM8Dv2VGSYsEgsIulF9RJk0g0iTqjzCZZddZov/L7/80lpuJNXiiQoKAh/8LRKg4G9RRETCF6Do0aOHe/XVV+3jt99+27Vq1Srg34fvUaFCBbd58+aAPi5BClpwMjBbRETEX/fu3e3cQyX4TTfdFJZjWL9+vbvlllvctm3b7LqHynSSG0VERAJNQYooRFY4m6NspDJkkUUDm6ZJad++vXvooYcsg59hkq1bt7aMwISPyaLjggsusB78zEmQwCPzhAwc2gX542NaDEng0CuVgALzIhguR8CiaNGivs///fffNsB84MCBvtsIYiSVHcvCnL+1jRs3ujx58liwkKomEREJX4CiZ8+ern///r6kjCeeeCLg34e5YFRpMLCUc0EgMWyUAHmHDh0C+rgiIhI4a9ascdddd52dZ0KJ60OCAgnn6IUK35s5THRvKFmypFu2bJkrUqRIWI5FRERin4IUUYo++CwaWCywaGDxwKIhMQz2Yijziy++aC1uRowYYRUY+/bti9ceik3ctWvXujZt2thFPv+ykSuBc/7559tAcza4/ftR8zFZMpJ+BOOoGqLVxwMPPGABPYJ0DCn30FqL+RNvvPGGlVGfqRqJCxMCFLRZIzDB3164BtaJiMj/AhQM63z55Zd9c7batm0b8O9DEgFzo8Djc34JJNZlNWvWPK0NpIiIRI7x48fbdTJz6IJt2rRp8TobhGsoNS2hOT/RP5zrIH52ErVERESCRYOzoxyDG++++24LUNDOhgFWDLRKLhuwadOm7tixY5bVzyKI/pIJjRw50gIV3GflypVWaSGBMXHiRNvwoPVW+fLl3aBBg9ykSZPcli1btEmRTiyiaV/Gc3nllVdaWw56uPrjb+W+++5zBw4csBkUDFetX79+ko9Jz1U2pY4fP24ZVPwNhaoPrUi0iIUhnBJ9FRRegIIqh86dOwf8+5BEwMBSXvdJCmE9xForEFiH8bfizQ8TEQmVWDhnh/pnYCbd5MmTXYkSJSzZL1iYi8fcyVOnTtk8ydq1a7twYI+gcePGNouJ2RMff/yxy5QpU1iORUREop8GZ2cQtKb5/PPPbQFz8uRJd88997gPP/wwyfuzyGDgFZuttHxKarO1SZMmtrlLBmGZMmWSbSclqXP//fdbi6Hnn3/elS1b1rJy2ABRgCJ9vv/+e+vVSvCBFz/alvlvJrGpNXToUJtRwX2orFi1alWyAQpmtfA3Q4CC1lEELBSgEBEJH17LqYDzAhSvvfZaUAIUXnUG5+cLL7zQTZgwIWABCrRr185aEM6fPz9gjykiIsFx+eWXW9vkYAYouD5p0KCBBSjuuusuV6NGDRcO48aNs4QuAhQNGza06yEFKEREJBQUpIgBmTNntsUDFRIMXqTFzVtvvZXk/WntRLsaWgz595SkTY6HAAWPWatWLevTz0BtPpbAbU7QOohAEW22wjUILVZ89NFH9hxSDv3NN99Y+6YXXnghXoZqy5Yt7XmnhVmjRo1Om1GREHMsuFDg/1G9evVsoypas81ERGIlQMEQ0QEDBviCCMwWCgba/D311FO+Sg2yZwPljz/+sOAEc8WSmoMkIiIZBwGBe++911rSUrnHtc25554b8uMYNmyYa9asme0L0C6XAD3tikVEREJBQYoYwdwJBgWzCQsGMPbo0cNaFSSGbMAbb7zR9zF9+6mYYCikh8xxNmYpOyVYwUatl1UhEgkIytErlQAdG0grVqxw11xzjbvssstOuy+/3wQtyLplwZ2wDZT/JhgZulRi8Pfz8MMPW3k3mbQiIhIevDYTkKASEQwvDeaw6axZs9oMKdY+ZM8GOrlk586ddm4pV65cQB9bREQC691333XDhw93hw8fDtr3oCKQa26qwWm1lNR1SjAR+GcmJdq3b+9GjRoVlkCJiIhkXJpJEWP438mA7F69etnHzKugZDO5DHC+hgtxsgZZiJCBTqai/6KEzVpaSc2ePdva3WzatMnKXkXC2dOOoBzBOfTp08d6lPv/zlI2zWwK7/ecGRX+A7QTy24lOMGMEHTt2tW98sorYRtYJxItYqG/tUQuXs95vSfDE2wWtW7dOujfl8o7Wmnqd1pEYkksnLND+TMwLPrgwYOWzEfL5EB7//33LSmK641Zs2bZLKRQI4mL6x5QRdivXz9d/4iISMBoJkUGxWKCWQdjx451F1xwgS10GCS8ffv2ZL+GuRb0nCQz/dlnn7UqCtoQeM4++2z32GOPWT9KfrkoQ505c2aIfiqR/0Ow4bPPPrPfQTKNGEDOwHj/AMXevXutj+utt95q8yS83/PkAhR8DUPkCVAQoGMT7NVXX9UCXUQkjGg58eijj1qAgtdjMlqDGaAguO1fpRrozS9mfYmISPSoW7euzbAL1lw62tSid+/eYQlQ9O/f3xeg4HpKAQoREQkXBSliFL0kv/jiC8v8IHu8fPnybt68eUneP3v27NZ2gOAGF+TLli2z9jhsBnjFNlRSUEHBgOIbbrjBPqZn/8aNG0P4k0lGRnuMQoUKuTvvvNPmSXz33XeuVatWFmADv6tUDpUuXdpamLEZxKD4M1m6dKn9TjPEPEeOHPa1ocjSFRGR5CsZmLNFlint+qicI2ARLOvWrXOFCxe2LFKSNgLt559/tllgbEIdO3Ys4I8vIiKBR+LS1KlTXd68eYPy+HQx4Lr9ueeec6FGB4ZnnnnGdxxUpitAISIi4aIgRQwjMMEQYSopuBi+44473BtvvOELOiTEgoTgxvr16y0DndY3DBtevHix7z758+e3QdpUUTBYmEqNUqVK2YJGJJgIsjEcm2wjKh3GjBljv4/+mz/333+//Q5TQsZ9CTrcdtttyT7uiBEjXPXq1d2RI0dc2bJl3apVq1zlypVD8BOJBM/QoUPd1VdfbbNU+FtYuXJlkvcdOXKk/c4zy4W322+/Pdn7i4TCn3/+aXOwJk6caBUNVLkRsAgWqkT5frR3IvmCCtJAW7Rokfv999/d/v37rdxZREQyLv/ZkazDgnHeOVOAgg4MYB6f976IiEi4KEgR43Lnzm0XxQ899JAthBg6Sc/LU6dOJfk1bPySSU6rmxYtWriqVasmGtC46667bFgxCypmYDRv3lyZgRKUjSOqGhiQTXVPx44d3ddff21VQh6CZbR/ohqIAAZBsy+//NKGaCeXodu2bVt7bN5v1KiRfY1/4EMkGrGpy2s9r8v0T+bvplatWkkOfCQQ3aRJEztXMLSRQDR/bz/88EPIj10EJEnQXmPGjBkWaJs+fbpVbgYLyRskZWzbts1+/wmCB2OziKq/LVu2WGAw1JtRIiISOT766CNLpPJaPYWjxZMXlBgwYIDr0aNHWI5DREQkHgZnS+z777//4t544424s88+mzKKuPLly8ft3LkzRV/nOXjwYFzDhg3jtm3b5rvtr7/+ilu5cmXce++9F3fppZfG5c6dO+7NN9+M93UiacHv0PPPPx93wQUXxGXKlClu2LBhSf5eNWrUyH6vixYtGrdq1aozPvb+/fvjbr31Vvuas846K+7ll1/W76zEDF7f27Zt6/v433//jcuTJ09cv379UvT1//zzT1yWLFnixowZk+Lv+euvv9rfE/+KpMfPP/8cV6FCBft9ypw5c9yCBQuC/j2HDBli3+/cc8+NW758edC/n4hIOMXCOTtUP8PmzZvjLrvssrgyZcoE7DH37t0blzVrVjv+F198MS7UXnvtNfvevPXt2zfk319ERDKeX1N43lYaVwZB5UOnTp3c3LlzrZ0HrTxobUMWx5m+zkOP5o8//tgy1ulZSTUGLRhuvPFGq9SgPQKZ6x06dHC5cuWyQcQiacGwa7JaqYig5QfVDo8//rjv95HKB/+qHdqYMfCdrHFmSySHjFxmVtD7NUuWLJapS/aQ+q9KLPjrr79sDgstmzxkbPMxVRIpceLECfsby5YtW5L34e+SKif/N5H0OnTokKtSpYr9rrJWmT9/vqtWrVpQvyczuDp37uzLJqVFZqDx93H06NGAP66IiAQXLWS55uDfQKCzAV0NfvnlF2vNzPV1KL311lvuySeftPe5nvfmUYiIiEQCBSkyGDaq2MitWLGiXTQ3bdrUWjqxKXwmDPOqUaOGbU717t3bZlH4D+NmmBjtc84//3z3008/2YX+7Nmzg/wTSSxhc3TBggX2uzVhwgQLThBAoE+qh+ACATaCFh5aP7300ksuU6ZMyT42X1O/fn2bX3H99dfbzJa777476D+XSKiwEfrvv/+6nDlzxrudj9kATgkumPmb8g90JNSvXz/rqe+90SJHJD1oeVGpUiW3YcMGS3RYsmRJUAIG/pgPwRwKgnL33nuvL1gRaATSmRHDrBgREYketMzcvHmzzWMMhCFDhti1zkUXXeQ++OADS/gLlXfeeceSCUFyV8+ePUP2vUVERFJCQYoMiAtlLv7pV06G7dixY9111113xkGpVElQicHmMbMutm/fbn3LGzdu7A4cOGD3oa8/PZ2XLl1qizo2gNnoYjAXG2ciyfVGJXOb35cCBQrYRtXw4cMtQMFCnsHWVOyQZbtp0ybrn//jjz+m6LHXrVtnFRYsztGtWzfLni1SpEiQfyqR6Ps75DV+2rRpNgsgKWTekVXove3bty+kxymxhUpMAhQ7duyw1/+vvvrKgtXBdvHFF7uBAwdaRejo0aODUlHHvAvWRMzZyJEjR8AfX0REgoe1ULFixQJyTuL6xauceO2110J6HTJu3DhfghfXQVybq4pcREQiTsgaUElEWrp0adxVV13l68VMX0r6kZ8JfcQ6dOjgm3HRrVu30+5Dj/8pU6bEZc+e3e5DT/Tt27cH6SeRaLV79+64Fi1a+Hqjli1b1nroe06ePBn36quvWj9Yb4ZE69at43766aczPja/g4MGDYo7//zz7WuZmTJv3rwg/0Qi4fPnn3/GnXPOOXHTpk2Ld3vz5s3j6tatm+zX8nfGbKGUzHWJxf7WEr51iNebu0SJEnE//PBDyI/B/5wTDJyL5s6dG/TvIyKSUc7Z0fYz8PrvzVu64447QjoLb8aMGbY25Hu3a9dOc/hERCTkNJNCUoTMRbLMqYD4559/rLUOLZ3279+f7NddcsklbvDgwW7VqlXunnvusVZQnh9++MFaJ5Cd0bBhQ+t3SSb8yZMnLROFllApbTsisevLL790jz76qGURffbZZ+7VV191r7zyiluxYoVV+GD9+vVWwUPGD/1gafNEBQQVFsn1ywdVFnXq1LFZLPTpp6qH3/XkWtiIRDva7dHKjFYC/v2P+bhChQpJfh1/e2TVzZkz54xzXUQChfYZrDnozU0bStr50Wos2KgK9V+HeOecYGE9ROVpsL+PiIgEFm2SqcSmwi89uC6h8pQKvnfffTdkVQwLFy6063w6GtDimet3VVCIiEjEClnYRCIaGRWjR4+Oy5w5s0W3yKYdNmxYqrP+eByyRK655pq4iRMn+jI1jhw5EvfHH3/EDRgwwDImL7jggrhixYrFffXVV0H6iSRS/f7773G1a9f2Ve/06dMn7vjx44ne98SJE3F58+aNy5cvX9x7772Xoioffufef//9uGzZstn3uPDCC+OGDh2qrCHJMCZMmGCvsfwdbNq0Ka5Vq1b2unvo0CH7fLNmzeKefvpp3/379+9v1UZUvh08eND3ltTfZSxkNEr4jRw50leNedddd9kaIRS+/fbbuIsuusiqO3ft2hXU77Vy5cq4v//+O6jfQ0QktWLhnB2qn+HFF1+07/PYY4+l+7H++uuvNFWrptWKFSt81/b169fX+UhERMJGlRSSKmRUPPzww5YtUr58ecv0eOKJJ1zlypWtV3RK7d2713pKM5fi/vvvt8cigzd79uw21Lh79+5u586dlgW/ZcsWV716dff666+7U6dOBfXnk/Cjuubtt992hQoV8g1cp9KB6h2yirzqikceecQ3v4QKHKosvv/+e5tHcc455yT7PZiTQqUE92U4dunSpa3ap02bNsoakgyD11767D///PNWfbR27VqrkPCGafM6ffDgQd/9hw0bZtVGDA5m3pD3xmOIBGNGw0svveRatmxpVT685jMDhTVCsPF7T/UnlZ3MzQrmwHeqSm+99VbrY3748OGgfR8REQkeKro5b1Clml4MyQ5Vtep3333nateubfOQqFj86KOP3LnnnhuS7y0iIpJWZxGpSPNXS0xig3jo0KG2eczChgXV008/bR8nN0jVc/z4cffGG29Y+57ff//dbmNx9Oyzz9oFO5vFDA7r2bOny5w5s/vwww9d3rx5XceOHd0dd9zhrr322hD8lBIqBKVo68QgbAIHzZs3txZgvPQwxB3Lly93ffv2dbNnz7aP33//fStJTk0AhA3VPn36WMCL31O+R+fOne33V0SC67fffnOXXnqpBbhpByiSGNpKEjQeOXKkfcy6IFTDOzk33Hbbbe7rr7+21pO0FuR3Nljmz5/vGjdu7IoXL25trBQoF5FIEQvn7Gj5Gbj++fTTT+2ahJacobBv3z5r8UmwnH9JDuOaW0REJNLP2wpSSJLItmV+hLdxzOyAESNGuCpVqqTo68kcfPnlly1Ll01ksEhKOBNg69atNtNiypQp9nGDBg3cBx98EJKsSgmeP//8002YMMH16tXL7dmzx4IFzJPwMoh46WHRPmDAALd06VK7jUoJAhp8TUr7krPRREYuGUNeQIzfOSo2RCQ0omWzQMKHpAX6YlMdx2yGN99809YYocD5hgD5uHHj3GWXXeZWrlzpChcuHPTvy9/DTz/95AoWLBj07yUikpHO2dHwM3DuqVq1qluyZIlr166de+utt4L+PUkIY+bk5s2bLfGPa6wzzfETEREJNgUpJCD49fj4449d+/btfUMm2URmyGpKFzy7du3yDUT+9ttv4w1FLlq0qLvgggus5QPBi0WLFtnneOxWrVpZNj3tGJT9ER3IVKWl0zfffGNtvghUUR3D/18qG26++Wa7H0OwqarxAgsEMJo1a+aeeuopC4al9EWOLFyqfvg9paUYFTwPPPCAMlZFQiwaNgskfGizdNddd1lLSdr4EcCuW7duyL4/wXAqQgmEf/75565atWoh+94iIpEmFs7Z0fAzcK5r0qSJVXjT5jh//vxB/X60MiRZiyHfdCmgUj2YbQ1FREQCfd7WTApJFpu99CknG+Pxxx+320aNGmUbyWRB0sf8TAoUKGCZ7WxcewEKNrNr1qxpnyOAQYblwoUL3e7du22mBcEJNrvJACHrsUuXLrYRLZGL2Q+UFD/55JNu4sSJ7r777rMqGbJm586d62688Ubfffl/ygsUsyi6du1qgSzv9yol7UKo6OG+Q4YMsd8Lfl/4HX3wwQcVoBARiSC0d+TcQIAiR44cbvHixSENUFDVN378eHufLNZgByho7cF6R0REoh/zKLhe5VomNWiZzDUOaJkc7AAF7ZqbNm1qAQqusZhFpgCFiIhEGwUpJEWyZs1qgQZKRkuUKGHtC5ghwfu0aUpJAMF/6DGDkBneRXYl2fMsoiiD/eWXX6wtAsO09+/fby17aBVFhjxDkAmMUNHBpoOEFwEqhrCx8C5XrpwNSafEmE2o3r17u8GDB1sggQ0q+rCywOf3xjN69GjrmcrsErJ9zoTfMVqP8XvQunVr9+OPP9owO/p+M8OCSgoREYkcVC0QoKDlH+cDKio5V4QS1Zpffvmle+edd9wTTzwR1O/FeapDhw4WlGfNJCIi0Y1rFZLoqApPDc4BzIRg/l63bt1csM89dD2YPn26nfNmzJjhSpYsGdTvKSIiEgwKUkiq0ONy7dq1drGfM2dOt337dsuYv+WWW2zeQEqx0cxAZTaqGWBJ6Q9te8qWLetuuukm28jIkiWLlcay4Jo5c6a1hiJLn4AG5UEPPfSQqivCgOec8uHrrrvOMnb69+9v/09mzZpl/08JHvD/icxVfl8IZA0aNMgW+WPHjvU9DhtWBL9SgjZhZL/efffdVjFx+eWXWxCEdlHVq1cP4k8rIiJpwQbNnXfeaed32vuxRgjlbAb/ZAbWDLSQDMX3vOqqq6ylVZ06dYL+/UREJLgmTZpk16UE3FPTdmngwIH2/vPPP2/tnoLptddes3Mu1eRcf6V0fqSIiEik0UwKSTNaNLEAIxP+xIkTdlvDhg1t0zo1AynJTGF+wciRI920adOsnQ/Z98WLF7fP89jeEG02wNn0oG2Et9FNr082r2kdRCBDAo/KF6pZ+P9AufPGjRtdrly57HeAGSUEIUBlTN++fW3wOb3mvAoaepGzQVSrVq14FTVnQvYtcye8Vh1kB3Xq1Mk988wzVsosIpEhGnpDS2jQcoIWF955gXZ8JDbw+h0qVGVWrlzZvjdB81C3ATxy5IhVFYqIRKJIOGd/8cUXdg1JIhLXD1wD1qtXL6p+hqRQ+U/HAVo8bdu2zWbvBQvPG9ffbOlwrcZ1koiISKTR4GwJmQMHDrhevXpZVQQBB9o40VKBIZV58uRJ1WMxaJlNcIYoexo3bmyb5M2bN7dFGK2BlixZYpsAZO/z5m2I586d27377ruWdR/srJVYxssCbbZ4nqli4Tlljsj555/v6tevb4EJnmPux/9zbgf/T/j/w9dS3tyyZUureEnL7wEXLvQP97Jh+Z146aWXLEtVRCJLJG8WSGh/Dx544AFrzYeXX37ZgsqhDBLQivCOO+5wixYtsvMRMyKYgyQiIpFzzmZmHfMTrr/+etegQYOYClKsW7fO9enTx+Yv0qI2WJh/RKUilRtt2rSxWX2azSciIpFIQQoJOVrvMF/i008/tY/ZuGaDunv37jZbIi2ooiBj//jx477bbr75ZmsxxUBvNqzZECcgQtYmLRYYVJY5c2ZbGILNCtoSUWkhyaN3Ks+VN+ScSgmeYypUjh07ZlUNXEBwv48//tjmkfD80/7Jw/8HWjzRhskblJ5Se/futeocqmoIioBgCAEL5l6ISGSK5M0CCY0dO3bYgFEq7UgSGDNmjGvUqFFIj4ElLdUTVPPRMpI5WmXKlAn69z169KgbMGCAzWhSQEREIl2knbPZWI/EIAWVgaNGjbLHJ1EumBURqcU1Ey2SmdXItS5JeyQKioiIRCIFKSRsFi5caIOT2RwAG9VUQxBIKFWqVKofj2HLH374ofUEJePG/1eWTP0RI0b4svhp8cCmOdn/U6dOdatWrbLPscHNZkndunVtngF/FBm90oJsU+aLbN261SoXeM4YLuoNhiNYQdCJ/2dcPDDInKAEb/x/8PA5ghZUsaQVs0fY4Bk3bpy1+wLDVanQqV27trKCRCJcpG14SOjP+yQP/Pzzz3YuYJZUqAdkg3PWK6+8Ym0FSZjwkhWCjerR4cOHW3B+/vz5IfmeIiIZKUhBZbX/rCF+BmbiBfNnIEErW7ZsvuumSAlS8LMz949KQa7TuH6LhP+PIiIi6V17aHC2BByZ7/QZJUjB/Ag2vQkyMCybLEuGj6UGQYX27dvb47FRTgsgBoKxoPWfQUG2y3vvvWcZJZ07d7Z2E23btrUBz1QDUHZ77bXX2rwMKi3YUGGQJ5UXGQHzPGjNxfPPkHLmRJCBQxut5557zl4o2GShtRObLLTv4v8Zz/MLL7xgFwI8r16AgmHp9D5lbkRaAxTMFuH/A/9f3n//fQtQsMnDjBKOk98fBShERCITSQNvv/22BQMIUNx4441WiReOAAUVdwQoQDVeqAIUoLKTCkIGpIqISOD169fPNje8N65Lgo1rWK5dOZ+kJEDB9e7jjz/udu/eHdRjoq0iAQq6DXC9qwCFiIjEClVSSNCtWbPGhmlPnjzZVwVBIIPBmgxSTm1LIA/BCFpKeRkutHdgwx20fWJoZo0aNdztt99um+1kwJDt+dhjj9mANkpi2RTn+zM/gU18slHY6ChbtmzUtodi8cpzkzVrVuuJykA6WjDRioMNf/4fsNAuVqyYDXMrWbKkZZxmz57dWnYRoJg3b55dDHhtMqhw4Lkla4fNGG82SFqPj17htHWaM2eO73ayp+hdHo7NLRGJraxMCT4yWkkgICAANk14n/NvONYZXktAAhXdunUL+TFwbkvrekZEJCOfsyO1kiI1SJYj6Yo5ilSH0+44GGi927dvX3fBBRdYAh/JASIiIpFO7Z4k4tBWiM2DsWPH+lr6EBxo1aqVe+SRR1zOnDnT9fiUutL6iQ12Nun95ciRwxa/ZP/zK79z507rG00VAJv4BDio/vA28fmXTXwyQ2kb0bNnT1s48zgEO1gk8wcWzix/KkDI1CFQwx/59u3bbdA1LZJ4fv0DEgQgCMwQtGFhSzCGzZT169db1ivPHcEJ/+fNf4HNTBDeUjsAO2HPbqol+H9EcAQcQ5MmTawVGMESEYlOkbbhIcFFiz+C1V9//bWdawhqc74I5znxzTfftGpBkiJERCR6ztmROpMiNSZMmGDXNCTPcX3GXKRAmzhxorVQ9hLISA4QERGJBgpSSMRi0BeZ/bRmYoYEqGqoX7++lchWrVo1XRsd/Epv2rTJghVsvC9evNg29NmA9wIhL7/8si2GyT7hjcwXNuH5vmzoE7hg856sUDJjPGyq8wfFcV9xxRVWAkyrI94IcrAgZU4GFQgEB6jOYKFKcKNgwYK+x2EgNY9LsIN2VgRCQDsrKh64f5EiRezruY1WVQQZGIzGjA7e5xjZkPGCEeB7ks3Jx7Rool0Sm/8cL4EZvtc111xj96WdUoUKFeI9d2TA3nrrrRbMuPvuu+0Y0oPjIADyzjvvWCUNAR7wPDVr1sw9+eST8Z4XEYlOkbZZIMFD5iZt+jg/UbH30Ucf2bkpHLykgnBgXcHP3aZNG9s0UmtCEYkWkXbOjoUghdfukGs2ktsCjTmCFStWdCdPnrRqQa+9oYiISDRQkEIiHosshmEzB8F/TgUb41RXPPTQQ7apnl5sjNP2yL8cls37zz77LN79MmXKZPMrihcvbhmZDNYmYEC1Qf78+S1zlOAAWSy0K7ryyist6MFtbNb4BzNYbBNoIKjhtV6iMoNgDG8ETjy0N+J+VD9434PvTQAj4Z8nj0lpM0ERAg8shpkr0aVLFztGZnQwZ4PP7dq1yyoWNm/ebK0wCIww3JP+4Th16pR9DQEVjoFZECx+KR9OL74/FTMEJwgYea6//noLRLGhE63ttEQk8jcLJPA4HzHPiNlEnK+oyGNTqVChQmE5nuXLl9sMCALgnGNDjYoNWhQy82rLli1haXMlIhKt52yuS6gCB9dfr7/+uiWqUYnA62ok/AwzZsxwnTp1suNiVl9SaJfLOZFkMa7luF4LpCNHjrgbbrjBEv0IjjOHwktwExERiQYpPW+fG9KjEvHDBX2LFi3sjSACG9qUrtLLk3kV9NysU6eOu//+++1fhl2nBe2QEvbrHDZsmLWpYJN/1apVVpVAJQVDoTkWWhIRaGDINq2IuB/BE6oQGDhNFQDtoticYVHKhs1TTz1lgQFKffkDJNhAdQXZlrRJolqD+3mtrjwEO9hgIXjBHyvBAwZwMgOCryMgMXPmTPt+DG4jGEJQxHvjPlR0eAt+ZnAkhufPP5BCIIQASqCyPwk6Efgh8MTx8rEX/GnatKlr3bq1LbBFRCS6cG4heYCqCRBofvfdd9N8Xk4vzsls1HCuJVBBYkGoEazhfE2QXwEKEZHUv46z+e8h4QpcF9IeNhIQHKAinn+TM2bMGPuXa8RAByj+/vtvmwdIgILrUM7DClCIiEisUiWFRNxGCIsvqitWr17tu50NABZ+BCxq165tG9+BRIskgiN8T6oAaN/goV3Sxo0bE/06ggvHjh3zfUyVANULBBQIAlCV4P1L1JB5EWADf8iQIRawYPHJRgeVE96/VHPQCsk7NoZUHz582N5PiAoI2lp5qNhg44iFLIEV3shQ4vZAL2o53rlz5/oCE/z/8xC84fmgXyo/u4jErkjIypTgoBqP+RP8yzmEFhNs0IervREtL6pVq2bn3sqVK1twPFzBEhGRaBQL5+xQ/AzM06Pag3MM1zWJ4VqOhDMSx6ZPn+5LHAsUrgepMuFnJMGO6zkREZFoo3ZPEvXYiGDzm/ZKzFPwsFCsW7eua9SokWVSEgQIJoIDBB4IYvAv1RIsRLmdPy7aK3kIBnDciWHWhX8mDiXBCasqkgo8kJXDQplNIVpgMQ+DN9pNlStXzjfgOhRon/X555/b/xvKoHmx8VCezf8Xgkm0dlKPbpGMIRY2PCTxQaCPPfaYryKQ83GlSpXCdjy01CDzlvMhM5UIkgdjOGly2LCiilLnNxGJVrFwzo6Un4FKfGYdcj4iiEAFf6BMmTLFZkAhGAEQERGRUFGQQmIGv6JUOLA5wsb4nj17fJ9jc4L2RrRB4i3cQ5gZEk05Lhme/pUR/EswhWHWnocfftj+9a+28N7n56Cdhmfr1q32B02gg7ZQocZzziByghP86w08B1UeBCZ4Yz6GNm5EMp5I2SyQwOCcRfamN8OIwABVjgTGw4VKDo6DJAFaBxLID3WVHm0/aMdIJcf48eP1uy4iUSkWztmx8DMkh2s/znVUqdNSmDlIIiIi0UpBColJ/LquXLnSghW87d+/P97nyW70AhZsZqjNUNqzghjuTVCCN6pI/OXKlcsye6iYIJuVwd8iknHF+mZBRsLrPUFn5jOB4dB9+vQJS4Dc/9xPdd6aNWtc2bJl3YIFC2y4aqgRqKFfOue9RYsW6dwnIlEpFs7ZofgZli5d6g4cOGDnH+YUhgqBCRK/Nm3a5G677TZLEAvnOVhERCS9FKSQmMd8BoaueRvpy5cvj9c+id7ZLPAIWNCegmwUBS2SDkowPJxKEBbCtLBK7LmsUaOGPZ+8r6FtIhJLGx7irDqgdevW1t6Jyr0PPvjA2ipGSlYpg1XHjh1rbQ/DhU0j2jUy90lEJBrFwjk7FD8DVe1U8g8aNMh17NjxtM9z/fnvv//a9VGggghszTDPj6B47ty5LTgfzipGERGRQFCQQjKcM2X/g2Fj5cuXdzfeeKP9W6ZMGWuxlJEwU2LDhg1WkcLbqlWrbNMl4UsBVSleUIKqFIaEi4jE6oZHRkZQokOHDm706NH2cZUqVdyHH35ocyjCiWzSiy++OKzHICISa2LhnB2Kn4EqQqrmOnfubPMQE+Jakuuot956y7Vr1y4g33Po0KH2WCSDcV0bzjlQIiIigaIghWR43hwF+lYzyIxe0gmRDUnrCIIW/FukSBF7o51RtM9W4E+b4d4Ea3ijdQcLaTJymJORUL58+WyxzYwPghMEKUREMsqGR0ZFFV3Tpk3tPMF57/nnn3c9e/YMe7XcF1984Ro2bGjVHQTLw3ku5flo1aqVu+qqq8J2HCIigRIL5+xw/wwkeDGjiAqKH374wV1xxRXpfsy1a9datToJZa+99ppVD4qIiMQCBSlEEjhy5Iht0vtXEBw9ejTR+5K5SbCiaNGivsAFb2zcU1EQKQEM/nz5I9+5c6cvGEFLDO99XggSc9lll/mqSbzKEgIzIiLRuFkgaWuZyCbIs88+6/7++2+XN29ea+9E5Vy4zZw502YeMcD7rrvucrNmzQrbsTA8vG3btnaO5Fx70UUXhe1YREQCIRbO2eH+GRhm/corr1iFxYwZMwJSOcjsC67f7r77bnvMSLneFBERCdV5WxOYAmjv3r3uiSeesLJQNrkZrtivX78ke1SS2f/iiy+6hQsXukOHDllbhQcffNA2DM4//3zffQoUKHDa1zJ/4eabbw76zxRLcuTI4e6880578zb4eX69oMXmzZttYbhr1y5bKK5evdreEuL/Ddky9Af1/vXe+Jg3/v/TRurCCy887V/evN8J5j6wCUNlQ2L/0oKD4MqPP/7oe6M6wv/9xKoiPCxur776aguwFC9e3BeYINiiha+ISMbEINDmzZvbAGo0aNDAjRgxIqyzHjy0nKJqgT7fderUcZMmTQrr8VDFwXqLahMFKEREhPPTuHHj7H2u9wOBFk9ch5Iw8N577+k6TUREMiQFKQLEu5gm046hwwcPHrQNANoJ9e3bN9Gv2bJli2UyvvPOO65w4cLuu+++cy1btrSN6YEDB8a7Ly2LKCn1RMJGQrRj8UcAiDcyNj1s+vtXJvi/EUyiBHf//v32FikIjPhXfPhXfhAUERERAZv+JFT8/PPPLlOmTDYQ9LHHHgv7hgiJAwMGDHDPPPOMb+Nn5MiRto4KJ9ZnS5cudWeffXZYj0NEREKL5C4qDadNmxYvaZBZEQT7uR6n2i+9qGIcM2aMnWcYmK3rfBERyajODdaF5okTJ1yocbGd2ovs9evXW2CAfv1ZsmSxkv7evXun+nszqJnelAQTyKhnvgFVEpSC8nheZYS/O+64w948BQsWtFY9w4YNOy1IwWJF7XhCg4oHqg54S+jkyZNWveBfzZBYdQP3S1gVQdVEcqiuSFh1QdYmFSCJVW3436bsThERSc6xY8csU5OB2ChXrpzNeyhWrFi4D80SNp588kkLmKB79+6uf//+YQ2c/PLLL9beEUlVxIqISOxin4DktITnAK73QYJiYtf4qUESHIkDYM+gcuXK6Xo8ERGRaBaUqy4CFLS7CTVa9GTOnDnF92fIFb2XmzVr5saOHeu++eYb32DERx55xD3++OO+Us7kvqfXfqlUqVK2YeypVauWLTo2btzorrvuuhQdE/25smXLdtrt9Ltko5vseC7e+VhCj2BA/vz57S0t1TZewIIqGvD/k+AaQYlwDykVEZHYxIbKQw89ZOsezjU9evSwYdDhrlLwEIxg/YNIGBa6ZMkS6wlOy842bdqEvcpERERCi6RLKibooZ1wKDbdD1C9evV0fQ+uCxs3bmxdFG677TY7N4uIiGRkGTo17N1337WgwhtvvGEXoAxJ3rBhg3v99dctSNGnTx/XtWvXFD0WbYD8AxTwPuZzKbF9+3b31ltvxauiINjDBfstt9xiJaAff/yxq1evnps+fboCFVGGjSECErxVrFgx3IcjIiIx7vjx45bYMHz4cPv4mmuusbYSN910k4skrME4xkaNGsWrMA0XElR47phXRYWtiIhkLJyXKlSokOjnZs6c6Xbs2OGyZ8+eru9BssCaNWusYwLnHSWsiYhIRheUIAWbsF6FQSjxfVODFk8MQ/TPkGMxQpCCrHdvCHIokN3Ihfl9991n7ac8LH78MwrpjUkPzFdffVVBChEREUnUwoULLeFiz5499jEVAa+88kqqKk6DiUzUIUOGuKFDh9rGDC0zIiFAAWaF3XDDDe7BBx8M96GIiEiEYe+AeUXprdjzEhNHjRplA7NFREQyunODdeKOlIvgM/Vn9voNJyzvRGraPTEvgow7f8wn8D6XHIIOtJ0iu37EiBFnPG4yIOfNm3fG+4mIiEjGwrqE6gnmW4H2hKNHj3bVqlVzkWLu3LlWNUEbjXz58rlnn33WRRIqV1u3bh3uwxARkTA5evSoBfuZDch1eiDR3rB58+a25/Doo4+6e+65J6CPLyIiEq0ydLsnFgZff/11vNtWrFhh7RDI6ktNuycqMF5++WUbmuxVXxBIuOSSS9y11157xrkY119/vXvvvffswvhM1q5d63Lnzp2i4xIREZGMYc6cOba5vnfvXvuYuVgDBgxwWbJkcZGy7qIS9JlnnrFh2bfeeqslhESCadOmWduNXr16qeWGiEgGt2nTJnf//ffb/MCtW7f6bmcOBUmOnFvTWk3Rvn17O08XLFjQ2k6LiIjI/2ToIAVYINBOiYv61atX20wIZkAgNe2eatasacEIhnDTToE5FM8995z1MmYoMqi0IGtiwYIFVtJJgIIhWWQ5Uu555MgR3+N51RdjxoyxFgje4O2pU6daRiTzNERERETI+OzcubOv+vPqq6+2dUJ6h3oGEoNBaT81adIk+/jhhx+2ag9vjRROrL8YLE5lB+szVVGIiGRsF110kQXSqfZLWF0Br1oxtSZPnmyzoUhM5N9ISSIQERGJBBk+SEHQ4OTJk658+fKWOdexY0fXqlWrVD8OXzt79mzLWqSqgnZXLVq0sGoMz4kTJywT4++///ZVWjAsm7crr7wy0ZZTePHFF62n9LnnnuuKFSvmJk6c6O699950/dwiIiIS3VgrTJgwwXXo0ME2T2i3yTqGdcPFF1/sIgUDRuvVq2dzKFjLvPnmm1ZB4T8TLJxo58FsDII8BFJERCRjYw4kcyP8LV682P4tWbJkmuZWkqDoBcGpKKTVs4iIiPyfs+L8d8MzGKoYypYt6wYNGhTuQxEREYlaZKBfeuml1meZNocSmo1/hmF//vnnvk0TqieYWxVp1q1bZwkc/I6QRVqpUiUXiVgSR0rgREQkWGLhnB2On4FzLhUUJAYMHjw41eeX2rVr20wm2jwvX77cnXfeeUE7VhERkWg8b595AIKIiIiIRIS//vrLZmARlCBAQbskqja//fbbiApQ+OfAlClTxmY+cIyREqDg+Nhsog2VRwEKERFJitfqqVq1aqn+WmZPEqDgnE2bJwUoRERETqcghYiIiEgU+OKLL6wClJlXp06dspkTGzZscD179rT5VZFi586d7pZbbnFfffWV77ZatWq5PHnyuEjB/DCyYnkO//nnn3AfjoiIRBAqJZgJ6XVcOHDggLVtZpZElSpVUvVY+/bts7lRoB1j8eLFg3LMIiIi0S5DBynoK6lWTyIiIhLJDh486Jo1a2YbI5s3b7Ze2MxPYLbVNddc4yIJ7ZzY2KGVRdu2beNVVESSypUru+zZs9vzypwMERERz+7du93atWvdjz/+aB8vWrTI/uX8ljVr1hQ/DudA5l3S5uLmm292Xbp0Cdoxi4iIRDtdlYmIiIhEIDL8hwwZ4p5//nl3/Phxa0fUsmVL169fP5ctWzYXSX755Rfr000bCzAQ9KOPPorYFkoc35YtW9zll18e7kMREZEIQ6UdFYD58+e3jzNlymTnDWZaprbN05w5c6zNE++fc845QTpiERGR6JehB2eLiIhI+sXCEM5IrPZk0592Trjxxhvd22+/7W644QYXaRYsWOAeeught3//fmuF8fTTT7vevXtHXM/tFStWuJw5c7oCBQqE+1BERMImFs7Z4foZ2DpJafCdc2KJEiXsWGkx2K1bt6Afn4iISDSft1VJISIiIhJBLSbYyJgyZYp9TKY/lROPPvqoBQAizddff+1uv/12e79w4cJu7NixrkKFCi7SrF692rJiWRQz20OBChERSa2UBigIZlD5yKbMTTfdpDZPIiIiKaAghYiIiEiY/fHHH65///7u1VdfdX/++acFJB5//HHXp0+fiG5JVL58eVevXj2XO3duO/bMmTO7SJQrVy6XN29em+dBNYWIiEhSFi5c6P766y+rYjxx4oTLkiVLqmZR0PrQa/P0/vvvq82TiIhICkReSp6IiIhIBvHff//ZBkaRIkXcSy+9ZAGKqlWr2sDOoUOHRlyA4qeffnLt27e3f72sUoZl04oqUgMUyJMnj1uyZImbNWuW9RYXERFJCu0Wa9eu7datW2ctDDkXc55LiSNHjvgqJ2h9WKxYsSAfrYiISGxQJYWIiIhImDI1n3zySQtI4Oqrr3avvfaaq1+/fsQNnKZ1xYQJE1zHjh1tA4ZB3gRXcO65kbmc/Oabb9zPP//satasaR/nyJEj3IckIiJR4Nprr7W5StmzZ3fLly+3hIKiRYum6Gs7d+5sgfwyZcrYOV5ERERSJjKvKkVERERi1ObNm91TTz1lWf1giNhzzz1nFQq0hog069evt6xSKhHAINDWrVu7SMYxU5Hy77//uqVLl7rrr78+3IckIiJRYtKkSfYvrZ6YFYXSpUuf8eto8TR+/Hhr2Thy5EgLdIiIiEjKqN1TAO3du9fVqVPH2gjQ85jBl//880+yX0PWJNmS/m/0pBYREZHYcuDAAdeqVStXsmRJC1DQo7pdu3Zu+/btrmvXrhEXoDh27JgFTq677joLUFx00UXuxRdftCHUkTgc2x/tNSpVqmTHSSstERGR1Nq6datVEtLu6UzVeL///rvNkgKBfeZZiIiISMqpkiJAyNQjQMFgxmXLlrmDBw+65s2bW/ZE3759k/1ahmK2bNnS9zGDuURERCQ2/Pbbb+6VV15xr7/+ujt58qTdxrDpfv36RXSvatYvQ4YMsffvu+8+G4ydP39+Fw3OP/98N2XKFGtFFWnBHxERiQ6bNm3ytX86k+eff97t2bPHzpME9EVERCSCKin++OOPJN9OnTqV4vt6F/TJ3Tc97QBuuukmd+GFF1p2BMOt0uLzzz+3Rcy4ceNc2bJlbdAWixOGXv7111/Jfi1BCYIb3lskD54UERGRlGH9woyJggULupdfftk+rlixovvyyy/dtGnTIi5AQbYo1ROeZ555xlWpUsUtWLDAWl9EcoCCZBFaaBH48bCeUoBCRERSg7lL5cqVc9WqVfMFKYoXL57s16xatcoNHjzY3h82bJi7+OKLQ3KsIiIisSSoQQpOzkm9NWzYMN59aY+U1H3Z8E/YIinhfdLihx9+sH7FtAJYt26dGzRokGUJjh492j5PuWZyP4P/92WgVqlSpVzOnDl9t9WqVcuyJzdu3JjscdDeiRJS2inw/c/UIkpEREQi199//+1GjBjhrrnmGmvjxABNAhIEJghQ3HLLLS7SfPHFF7YeatCggQUrkC1bNrd48WLbqIl0n332mVWrMNuD9hwiIiJpQbB+zZo17ttvv7UZUmeqpODanTlNDNdu0qTJaXsXIiIikjIZut3Tu+++a0GFN954w2ZBFC1a1G3YsMHaMTzyyCPWhonNhZQ4dOhQvAAFvI/5XFLoV0mmBhsBtIkia5FWURyDiIiIRA+y+SdMmGBVmcyZwFVXXWUfN2vWzFoPRRqGSnN8Cxcu9FUf7Ny50xUqVMhFk7vuust17tzZqmNZz4mIiKRFnjx53KeffmoJB7/++qvLnj17snOY6JxAUCNr1qyW9CgiIiJpE9SrZYZHJYVhkf4OHz6c5H3PPjt+wcfu3bsDcHTOqiduvvlmC1B4WIAQIGCjgeoO3oKpS5cuvvdLly5tPZTJxKBdgVoUiIiIRD6yJ5l/wGa/l3VJC0my+jmnR+L5PGFwghlajz76qOvVq5e1nowGc+fOdbfddpvv+VWCh4iIpFfCTg4kGSTlwIEDrmfPnr7uCMHeOxAREYllQQ1SpGa2QrDue6ZSTjIeEvLaHNDuiRkTKQnEcEG/cuXKeJ/78ccffZ9LKTIAKRklEKNMQBERkcgOTsyYMcM29qnExGWXXea6devm2rdvH7E9qefPn+9q1KjhC05QPUolZyTPnEjo6aefdgMGDLDAysiRI+MlnIiIiIQCFXzHjx+3a/iWLVuG+3BERESiWuT1HQghghFff/11vNtWrFhhPaSp9EhNuycqMBiKSUWIl0Exb948d8kllyTbwzKhtWvXWuWIsjBEREQiNzjBfAnWCevXr7fbON8/+eSTrmPHju7SSy91keTPP/9033//vc3OAtUHJEIwl4vgBC2pok316tXdwIEDbb3Eek5BChERCYS9e/e6LVu2WItGWjJzvrzooosSreabNGmSXbsPHz78tO4PIiIikjoZOkjhLUJouUQ7htWrV7u33nrLvfbaa/a51LR7qlmzpgUjKAdlcCNzKGjz0LZtW18bAiotmjdv7hYsWODy5s1rw7YJkrBJkCVLFvuYbIwHH3zQMjFFREQksoITH3/8sQUnvvvuO7uN8zfzpQhQRNq5e//+/TbAmzeSL3bt2mVtJdl4IbjC+9Hir7/+sjVb4cKF7WMqQbZt2+YKFCgQ7kMTEZEYMnv2bLuG59p+06ZNdv0+ZsyYePc5efKk3QesAcqWLRumoxUREYkdGT5IwaKDRUb58uXtAp4MyFatWqX6cfhaFjRPPPGEVVXQkqpFixa2keE5ceKE27p1qw3hAsELb8AmWY5caBOk8J9TISIiIuFFG0bO13379vXNnKBygjVDp06dLNMyUlBVsHjxYhvkOX36dJuxhSuvvNKGeXvVndEUoNixY4e7++67rcUmwRWvVacCFCIiEmic38uUKWPBcSTWFYH5E5ybGLLtf70vIiIiaXdWnDeAIQOi3QFZD4MGDQr3oYiIiESt3377zVoc/frrr3ZxHytIIBg7dqxtRuzcudNu4+ckMEGAItIqJ5g1QWYnrZ08VapUcW3atHH169e3+RPR6NSpU65kyZLW95s2WxUrVgz3IYmIRK1YOGeH4mdgn2DdunVu5syZFij3UMXHOYkgxuTJk929994blO8vIiISK1J63s7wlRQiIiIi/v744w8bxkz7R1omIXv27FbpyIZ/pMycoBKUhV6uXLns4xw5cliAgmpOKkU5VjZSojE49Mknn7gGDRrYxxdeeKGbOnWqy5cvX8QFhkREJPZQhUgHBBQvXtx3O/mdtHciQFGrVi3XsGHDMB6liIhIbFGQQkRERMQ59/PPP9tsqjfffNPeR+7cuV337t1dy5YtbfM/3GgZScUE7aeoKqhbt64bN26cfY72FFOmTLGNk4svvthFa2stslcZWjpjxgz7+VC6dOlwH5qIiGQQe/bssSo+2jP7txbkvDRnzhxrmch64ayzzgrrcYqIiMSSDB2koGeziIiIZGz79u2z1o/vvPOOVVGgUKFCFpxgvhSbFOGuLFi4cKEFJXg7evSo73Nr1661gd5nn322fRyNWZ1kpnobPQz1JjBBayd+bhERkVDq1q2bmzt3rr1ftGhRmz3pzZek1SO6du3qrrnmmrAep4iISKzJ0EEKERERybg2btzoXn31VTd+/HjL4PeqEZ555hnrMe1tTITb7bff7r788kvfx7R1atSokWvSpImrUKGCL0ARjYYPH+7eeOMN6/nNZhCee+4517t3b3fRRReF+/BERCSDWbNmjduwYcNpQ7P79evn9u7da60He/ToEcYjFBERiU0KUoiIiEiGQdb+0qVLLTgxe/Zs3+1Vq1a17Mk77rgjLO0bqIagKuKzzz6zDM5Zs2b5Zl/UrFnT7dixw9WrV88GYHOsVBzEgk8//dTmaLz99ttu8ODBdluWLFnCfVgiIpJB9enTx5IDfvnlF0sEwPbt290rr7xi7xNYj4T2jyIiIrHmrDiu1kVERETS6LfffrMNdYY4X3LJJS4SUSnB8OWBAwe6VatW2W0EI2iPRHCifPnyIT0ell9setDGibdFixa5I0eO+D7PbAmvdRMDsmk5Fc0VE/y8tKoaO3ase++993wDsFesWOG++eYb99BDD0XtHA0RkWgSDefsSPoZOH/dddddFlSvUaOGJRJoFoWIiEjgz9uxkYYnIiIikojff//djR492mZO7Nq1y2678MILbVO8S5cuIesp/e+//9rQa743GHbdvHnzePdhk7569equdu3a7pZbbvHdHittj2jhRAuNjz76yLVp08Zuu/nmm+1NREQkElHZSIDivPPO07BsERGRIFKQQkRERGLO/v373ZAhQ2wYNi0bcPnll7t27dq5tm3b2lyHYPrxxx/dypUrfW9UDNBCwhu6SRDi/PPPdxUrVnTVqlWztxtvvNFui3bHjh2zuRLLli2zKglme7CpQ1Boy5Yt1r5KREQkEk2fPt3OVXXq1HGFCxf2nbc5h3mzk0RERCTwFKQQERGRmLF69WrrFz1hwgTfMGyqJTp37uxatGjhMmXKFLTvfejQIffEE0/YMTBcM6Gvv/7a936BAgUseBLtVRK0wWCmBKW7XsssKkI+/PBD+/kIVFSuXNlup3pFREQkUjEfitlPePfdd63icffu3S5v3rwWfBcREZHgUZBCREREon5TgSHYr7/+uluyZInv9ipVqljmI72kAzHPgQqBzZs3u++++87aFvFG9QNDuJE1a1ZrC0FrJyoHihcvbhv3vN10002udOnSvsfi89EYoKBlFc83MzL821ZREfLVV1/ZbbTEeO2111zu3LlDPutDREQkrU6dOuXy5MnjDhw44K6++mrXr18/u515VpqbJCIiElwKUgQQWZNkUDL8kkUMGZssbM49N/GnefHixa5q1aqJfo7WEGx8kLlBtmVCy5cvVw9nERFxGX3exJgxY9zgwYPdtm3b7DbOuY0aNbLKiRtuuCFNm/BUAHjtoAg43H777RacoIVTYhsaHuZNkHnJxka5cuWidiCp56+//orXfoo2WQy9ZsZH48aN7bZbb73V7sO6h+CFFwx65JFHwnbcIiIiaUG15d13322tImkbyTmehIf7778/3IcmIiIS8xSkCBA2MehbmStXLmttcPDgQcssJJuwb9++iX4NWYfcz1/Pnj3dggULTttYmT9/vitRooTvY/pqi4iIZNSkAOZNjBw50jdvgiqG1q1b28yJK6+88oyPsXbtWrdjxw63c+dO3xsfkxzA+fmLL76w+zFPgYHbXoCCxy5ZsqTvrWzZsvEeN9paGp08edLt2bPHggze88bzS/CBINCRI0d8Q0L5l/szZ8ILUuTPnz8m2laJiIiApARs3brVAu9vvvmmhmWLiIhEe5Dijz/+8GUkeCd2svLIUiTT0WsV4H9fLnK9LDzux/3ZICA7Mbn7ptX69etdy5Yt3bp161yWLFksS7B3796pfpzPP//cbdq0yYIJOXPmtE2LF1980T311FP2eIkNwuQ2ghoeft4ZM2a49u3bn7YQIijhf18REZGkDB061FoQMSOhTJky7q233kq27c7kyZMtSM4GPfMbBgwY4O68804XaRg+zbyJjz/+2JIDwPEy1JLqRTbaOZeyyb5v3z7713vjc/xcnnvuuSfRuRH44Ycf4n08atQod+mll9rATNYK0TAn4vjx4/Yvx40TJ05YOyx+J/h98NYZXbt2dW+//bbr0aOHe/nll+021jE8f1RG8Fx4wYtOnTrZOinh4FAFKEREJBTrlVAGKdCmTZt4rRpFREQkeNLfoDkZbAjwdvToUd9tLEK4jUxHf1dccYXd7r9hwKKF2x599NF496WNArf7LyDSggtv2i1VqFDBghSDBg2y46ONAR5//HHfz5DUm3/7pVKlStmFvadWrVrut99+cxs3bkzR8cycOdP99NNP7uGHHz7tc3Xr1rXnqFKlSnY/ERGRxEycONHmMPTq1csGOHPRz/no8OHDid6f6r8mTZrYuXbNmjWuXr169sbchUhA0IEh2LQ45Hw9adIkC1Bce+211tJpy5YttnHOOZn7kABBdj/ny6ZNm7qnn37aNuEZ5Ozv+uuvtzkR3IdhmJz7acNIe4ft27fHu2/16tWtwjHQAYo///zTqhAIIHgY9s3/N/6/EGTwD9Dwc3C7h6oGKhpq165tz5One/fuFpzwr+QkOYRAFGsr1hoenit+Lm/IOHgOWddQPeJflVK4cGGbsxGI+R4iIpKxpXa9EgokHlJB6CUJ9unTJ2zHIiIiktFk6KtM+kYTVCArk6zABx54wKoYyDQEixLaQST35iH7wz9AAe9jPpcSZGqyMPPfEGDTheGTZLl+8skntunC5pECFSIikhjOYVQIEvBmI3/48OFW0egF4BNinsMdd9zhunXrZhvQVAEyT4F2SsltrhOE938LNL4HlQ8cO0GUr7/+Ot7nqV4cMWJEvA1zBl2ysU8FZsGCBa2PNEH+QoUKuauuuire15MZycyIBx980H5mni/uw8cNGjSId182UGgBRYDEQzCDqsmE86EIipBMQUDBw2Y/3ythkIPNmcsuuyxehQfVogRQbrnllniBh6lTp1owhn89tJRkk2fOnDnx/h9ky5bN/vVaYXnVmx06dLCAjP9z9uSTT7pff/013jGATFaSI0RERMK9XgnFugMLFy70vc9sSc7RIiIiEgPtnuhlDBYbHjZBaBeQcJi0lzHh3zKAi3EWLmw2+KMdRcL7pgXVE2wu+LdWIkuTBRNZmlych+oCnc2OuXPnxtsAQfbs2W0Tw8MwbTZhqPhg40VERMRDi8Rvv/3WPfPMM77b2JBm8DOZ8Ynhdv/zDAiYT58+Pcnvw4X7Cy+84IKJDXiGNPtn+HtrCjYNqIbkPgQlvPN4vnz5rE3R+++/b8EGrFy50iomvPZQHqpG5s2b5+677754AQKqKbyh2R6GcvM8MZDbQwCBdYT/GgdUKTDj4dixY/H+H9B+Cf7H67WC5P+bh/aWJCvwr//gajJMGzZsGG8+FWspWmMQ/PBvi0kwghZYCY+NgFRCCddYIiIikbZeCcW6A14VBcmGjzzySNC/n4iIiIQoSJE5c+bTbuNiO7H5DIndl80H3lJy37RgA4FBmwl57RVo9zRu3LgUBWKYF8FGiD9vyGZKZkmwEUNJaUoCD2y2sLEiIiLij/aKbMYnVtlHW6TEJFUJmFwVIJsK/oENMhoJEAQSmxW0Kxo/frzLkyePnR/J7qci4eDBg+7TTz+1c7h/ogHtjAjkk3DgoaKCoIV/i0bQKoqgg3/va34GWkv5b/iDn/X++++3Qdkezu20hUiYdEElxWOPPRbv+aCy4fvvvz9tTUP1Am/+t9NqiUBLQlR78pZQwvaZgVwniYiIRMJ6JRTrDgwbNswVK1bMVa5cWUF8ERGRWApSRDqCEQnbR9DzmSGcLEpo98RAyZRgQ4SBk1SEeNUXBBLYTKF89UzHQZCiefPmiQZlEqLNVO7cuVN0XCIiIoHGRjpvwUbbpYStl0DQgkBAQrStSoiKRIZqJ3TbbbeddhtzHAhGJMQ8Ct78Uc1Zo0aN0+5Layne/LGmYG2RUGJJGyIiIhKedQfnZTo/iIiISOhl6CAFGNRNVkbr1q1tYBdtE5gBgdS0e6pZs6YFI5o1a+ZeeeUVy0Cl7zMtq7wFFZUWBCIWLFjg8ubNG6/35a5duxLdcBkzZowtlq677jr7mF7U9OlknoaIiEjCDXk2xL1KPg8fJ1XVx+2pub+IiIhIqNcrIiIiEtsy9OBsEDQ4efKktXsgoEAP51atWqX6cVhkzZ492/6lqoJe2Dw21RieEydOuK1bt8YbhOkNzGYgJ6WliWGgJ0M0afM0Y8YMG5LJgDERERF/BLU5XxAM9/z333/2sX8LJH/c7n9/rxIwqfuLiIiIhHq9IiIiIrHtrDhvAEMGRKuHsmXLukGDBoX7UERERAKCQDbtjd555x0LwHOOmzRpkvV4ptczAXSq+RhCiWXLlrkqVaq4/v37uzp16thMBmZBUF3oP4MhOfSGplXSr7/+am0ORUREJDJFyjn7TOuVaPgZRERE5MxSet7O8O2eREREYgkzFY4cOeKef/55az1IMH7OnDm+C37aHDKU2kMl34cffmgtCnv06GGzE6ZPn57iAIWIiIhIoNcrIiIikrGokkKVFCIiIumijEYREZHoEAvn7Fj4GURERDKK31RJcWaLFy8O9yGIiIiIiIiIiIiIiGRYGX5wtoiIiIiIiIiIiIiIhIeCFCIiIiIiIiIiIiIiEhYKUoiIiIiIiIiIiIiISFgoSCEiIiIiIiIiIiIiImGhIIWIiIiIiIiIiIiIiISFghQiIiIiIiIiIiIiIhIWClKIiIiIiIiIiIiIiEhYKEghIiIiIiIiIiIiIiJhoSCFiIiIiIiIiIiIiIiEhYIUIiIiIiIiIiIiIiISFueG59uKiIhIrIiLi7N/f/vtt3AfioiIiCTDO1d75+5opHWHiIhI7K09FKQQERGRdDl+/Lj9my9fvnAfioiIiKTw3H3ppZe6aKR1h4iISOytPc6Ki+YUChEREQm7//77zx04cMBlyZLFnXXWWQHNuGADYt++fe6SSy4J2OPGCj0/SdNzkzQ9N8nT85M0PTex8fxw+c8mQZ48edzZZ0dn9+dgrTui6f9jNNNzHBp6nkNDz3No6HmO7uc4pWsPVVKIiIhIurDQuPLKK4P2+CyStBhNmp6fpOm5SZqem+Tp+Umanpvof36itYIiVOuOaPn/GO30HIeGnufQ0PMcGnqeo/c5TsnaIzpTJ0REREREREREREREJOopSCEiIiIiIiIiIiIiImGhIIWIiIhEpAsuuMD16tXL/pXT6flJmp6bpOm5SZ6en6TpuUmenp/YoP+PwafnODT0PIeGnufQ0POcMZ5jDc4WEREREREREREREZGwUCWFiIiIiIiIiIiIiIiEhYIUIiIiIiIiIiIiIiISFgpSiIiIiIiIiIiIiIhIWChIISIiIiIiIiIiIiIiYaEghYiIiESkoUOHuquvvtpdeOGF7qabbnIrV64M9yFFhC+++MLdfffdLk+ePO6ss85y06dPD/chRYx+/fq5G2+80WXJksVdccUVrl69em7r1q3hPqyIMGzYMFe6dGl3ySWX2FuFChXcZ599Fu7Dikj9+/e3v61OnTqF+1AiQu/eve358H8rVqxYuA8rYvzwww/uwQcfdJdffrm76KKLXKlSpdw333wT7sOSAK4vJk+ebL/z3J//v59++mnIjjUjPMcjR450lStXdpdddpm93X777VrzBXmtPGHCBHstZ50kgX+ef/nlF9e2bVuXO3dud8EFF7giRYrodSMIz/OgQYNc0aJF7dybL18+17lzZ3fq1KmQHW9GuIZcvHixK1eunP0eFy5c2L3//vtBPUYFKURERCTiTJw40XXp0sX16tXLrV692pUpU8bVqlXLHT582GV0f/zxhz0fLOQlviVLlthF4YoVK9y8efPc33//7WrWrGnPWUZ35ZVX2ub7t99+axuo1apVc/fcc4/buHFjuA8toqxatcq98847FtCR/1OiRAl38OBB39uXX34Z7kOKCMeOHXO33HKLO++88yzot2nTJvfaa6/ZRqvExvpi2bJlrkmTJu7RRx91a9assU1d3r777ruQH3usPsdsgvEcL1q0yC1fvtw2Gzl3EwCUwK+Vd+/e7bp27WqBIQn88/zXX3+5GjVq2PM8ZcoUS5YhEJc3b96QH3ssP88ffvihe/rpp+3+mzdvdqNGjbLH6NGjR8iPPVavIXft2uXq1Knjqlat6tauXWvJO4899pibO3du8A4yTkRERCTClC9fPq5t27a+j//999+4PHnyxPXr1y+sxxVpWMpNmzYt3IcRsQ4fPmzP0ZIlS8J9KBHpsssui3v33XfDfRgR4/jx43HXXHNN3Lx58+KqVKkS17Fjx3AfUkTo1atXXJkyZcJ9GBHpqaeeiqtUqVK4D0OCuL5o1KhRXJ06deLddtNNN8W1bt066MeaUddw//zzT1yWLFnixowZE8SjzJjPM89txYoV7dzfokWLuHvuuSdER5txnudhw4bFFSxYMO6vv/4K4VFmvOeZ+1arVi3ebV26dIm75ZZbgn6sGeUasnv37nElSpSId9v9998fV6tWraAdlyopREREJKKQgUS2N+X+nrPPPts+JsNOJKV+/fVX+zdbtmzhPpSI8u+//1qrBzKqaPsk/0MVDhlj/q898j/btm2z9gAFCxZ0DzzwgNu7d2+4DykizJw5091www3uvvvusxZz1113nWXMSuysL7g94WsC2b1ajwRvDXfixAmrhNS5O/DPc58+fey1isogCc7zzHmBtRVripw5c7qSJUu6vn372tpLAvc8V6xY0b7Gawm1c+dOa6l15513huy4Y93yMJz/zg3aI4uIiIikwdGjR20hz8LeHx9v2bIlbMcl0eW///6zsmRasXCBKM5t2LDBLpzp13vxxRe7adOmuWuvvTbchxURCNrQXoB2TxIffaHpQUzfZ1o9vfDCC9YmhHY3zH/JyNgUYd4LLSpoMcHvT4cOHdz555/vWrRoEe7DkwCsLw4dOpTo/bldgrOGe+qppywoqoBxYJ9n2vTREoe2LRK855nzwsKFCy2gz6b59u3bXZs2bSzwRmsiCczz3LRpU/u6SpUq0SHI/fPPP+7xxx9Xu6cASur899tvv7mTJ0/aLJBAU5BCRERERGIOGWxsoqp3/v9hk5nNCSpM6JPMJipzPDJ6oGLfvn2uY8eONseEYY0SX+3atX3vM6uDoEX+/PndpEmTMnw2LsFQKinIkgWVFLzuDB8+XEEKkTRgdhJBY+ZU6PU4cI4fP+6aNWtmlV7Zs2cP9+HE/HmBapURI0a4c845x11//fU2X+XVV19VkCKAeI3g3Pv222/buoRgEGu5F1980fXs2TPchydppCCFiIiIRBQunljU//jjj/Fu5+NcuXKF7bgkerRr187Nnj3bffHFFzYwWv6H7O7ChQvb+1w0k/U9ePBgGxSdkdEugMGM5cqV891GRh+/P0OGDHF//vmnvSbJ/2TNmtUVKVLENgQyuty5c58W5CtevLj7+OOPw3ZMEtj1BbdrPRKaNdzAgQMtSDF//nwLiErgnucdO3bYIOe777473mY6zj33XBvuXKhQoRAceez/PnNeOO+88+KtGzgvkJVOWyPWYpL+55lABIE3BjmjVKlS1sa0VatW7tlnn7V2UZI+SZ3/LrnkkqBUUUD/10RERCSisHhnA3XBggXxLqT4WP3zJTmUexOgoI0RpfYFChQI9yFFNP6u2IDP6KpXr26tsKgy8d7IjqdVA+8rQBHf77//bhtebMRkdLSTY3PP3/fff2+VJhIb6wtu978/qLrSeiSwa7hXXnnFMqDnzJljr78S2Oe5WLFip53n6tat66pWrWrv58uXL8Q/Qez+PnNeIIjvBYG88wLnTAUoAvc8M7smYSDCW6/9by60pFdYzn9BG8ktIiIikkYTJkyIu+CCC+Lef//9uE2bNsW1atUqLmvWrHGHDh2Ky+iOHz8et2bNGntjKff666/b+3v27InL6J544om4Sy+9NG7x4sVxBw8e9L2dOHEiLqN7+umn45YsWRK3a9euuPXr19vHZ511Vtznn38e7kOLSFWqVInr2LFjuA8jIjz55JP2N8XvzldffRV3++23x2XPnj3u8OHDcRndypUr484999y4l19+OW7btm1x48ePj8uUKVPcuHHjwn1oksb1RbNmzez10cPvPP+PBw4cGLd58+a4Xr16xZ133nlxGzZsCONPEVvPcf/+/ePOP//8uClTpsQ7d7PekcA9zwm1aNEi7p577gnhEWeM53nv3r1xWbJkiWvXrl3c1q1b42bPnh13xRVXxL300kth/Cli73nmtZjn+aOPPorbuXOnrWcLFSoU16hRozD+FNF9Dfn000/b8+zheWVN061bNzv/DR06NO6cc86JmzNnTtCOUUEKERERiUhvvfVW3FVXXWUXruXLl49bsWJFuA8pIixatMgWlgnfuNjM6BJ7Xnh777334jK6Rx55JC5//vz295QjR4646tWrK0CRDAUp/s/9998flzt3bvvdyZs3r328ffv2cB9WxJg1a1ZcyZIlbXOlWLFicSNGjAj3IUk61hf87Sc8n06aNCmuSJEidv8SJUrEffLJJ2E46th9jjk3JXbuZhNSAvu77E9BiuA9z8uWLYu76aab7LxQsGBBC2T/888/YTjy2H2e//7777jevXtbYOLCCy+My5cvX1ybNm3ijh07Fqajj/5ryBYtWtjznPBrypYta/9P+F0O9jXVWfwneHUaIiIiIiIiIiIiIiIiidNMChERERERERERERERCQsFKUREREREREREREREJCwUpBARERERERERERERkbBQkEJERERERERERERERMJCQQoREREREREREREREQkLBSlERERERERERERERCQsFKQQEREREREREREREZGwUJBCRERERERERERERETCQkEKEREREZEoN2zYMHfVVVe5zJkzuwYNGrgjR46c8Wu2bt3qcuXK5Y4fPx6UYzrrrLPc9OnT7f2jR4+6K664wu3fvz8o30tERETCx/+cHwmPEw67d++241+7dm24D0UkKilIISIiIiISxaZOneq6devm3nrrLffNN99Y0OHee+8949c988wzrn379i5LlixBP8bs2bO75s2bu169egX9e4mIiMSaQ4cO2Tm7YMGC7oILLnD58uVzd999t1uwYIGLRr1793Zly5Y97faDBw+62rVrh+WYRCS8FKQQEREREYliL7/8smvXrp275557XPHixd2YMWPcl19+aW9J2bt3r5s9e7Z76KGHkrzPv//+6/7777+AHefDDz/sxo8f737++eeAPaaIiEisI0P/+uuvdwsXLnSvvvqq27Bhg5szZ46rWrWqa9u2rYslVHgShIk0f//9d7gPQSTmKUghIiIiIhKljh075lavXu3q1Knjuy1PnjyuZMmSbv78+Ul+3aRJk1yZMmVc3rx5fbe9//77LmvWrG7mzJnu2muvtU0CghmrVq1yNWrUsGqISy+91FWpUsW+p79t27a5W2+91V144YX2tfPmzTvte5YoUcKObdq0aQH7+UVERGJdmzZtrI3QypUrXcOGDV2RIkXsnNqlSxe3YsWKJFsN/fLLL3bb4sWL7WP+5eO5c+e66667zl100UWuWrVq7vDhw+6zzz6zRIdLLrnENW3a1J04ccL3OFdffbUbNGhQvGOiCoJqiKQ89dRTdpyZMmWy6o+ePXv6NvpZb7zwwgtu3bp1djy8cVvCdk8VK1a0x/FHO8vzzjvPffHFF/bxn3/+6bp27WrrGVpe3nTTTb6fNyl8D9pkUrHBc8DxTZkyxfd577mcOHGirXlY25BkQeJGnz593JVXXmlrJJ4DgkUJbdmyxY6dr2M9tmTJkmSPR0T+R0EKEREREZEotXPnTvu3cOHC8W6/5pprfJ9LzNKlS90NN9xw2u1sSgwYMMC9++67buPGjTZHgvZRLVq0sMoMNkN47DvvvNM3y4KLduZgnH/++e7rr792w4cPP21TwVO+fHn73iIiInJmVB+yEU7FBJvwCZFckFoEF4YMGeKWLVvm9u3b5xo1amRBiA8//NB98skn7vPPP7cWkulBK0kCD5s2bXKDBw92I0eOdG+88YZ97v7773dPPvmkBVpo78QbtyX0wAMPuAkTJri4uDjfbQQOSHioXLmyfUwl6fLly+1+69evd/fdd5+74447LHkiOQRNCPgQKOH7NG7c2G3evDnefZ5++mnXsWNHu71WrVr2c7z22mtu4MCB9r24rW7duqd9L1pw8vOtWbPGVahQwdpy/fTTT+l6PkUyAgUpRERERESilJfpSODg4osv9r3NmDEjXhZkQnv27LGL/ITIcnz77bctA7Bo0aKWAUmW5YMPPuiKFStmWZYjRoywx/YyA6nYIGtw7NixVp1BRUXfvn0T/b58T763iIiInNn27dttk55zcKC89NJL7pZbbrFqikcffdTO51QW8DGb/8y1WrRoUbq+x3PPPWdrCaow2KSn2oEqTlC9wFrl3HPPtfZOvHFbQgRPDhw4EK99JYGUJk2aWKUD1Z7vvfeemzx5sh13oUKF7PtUqlTJbk8OwYzHHnvMqj1efPFFS9xIGJjp1KmTJWEUKFDA5c6d24ITJGEQ0GCNRFIH1RQJq0wInBAAYc3E80oV6qhRo9L1fIpkBOeG+wBERERERCRtCCKA1gb+2ZRk/nmfS8zJkyetDUFCVEOULl063m0//vijbTbwPWgJwawKghRsDoAMQwZ4+gc9yBxMDJsQyQVPRERE5P/4VxEEiv95PmfOnL6WTP630VoqPah4ePPNN92OHTvc77//7v755x9rJZUaOXLkcDVr1rRWSwQhdu3aZVUT77zzjn2e2RysSQg0+KMF1OWXX57sYydcp/Cxf6ss+Fec/vbbbxYwIbjjj4+pxkjqsQnE8DgJqzRE5HQKUoiIiIiIRClvU4ELf/+WT6dOnYq34ZAQ8yWYZ5FYEIHsRH+0eqJNAW0O8ufPb32YuQD/66+/0tS2gk0HEREROTMqJTkvU7GYnLPPPvu0oEZSw56Z6eDhsf0/9m6jlaP/YycMliQ3SJpAAi2UmDtBSyQqCWjHRKuk1OJxOnToYFUOVFGUKlXK3kDw45xzznHffvut/euPSo30Sqy9logEj9o9iYiIiIhEqcsuu8xdf/318eY8cNHOBgHDrpNCSwf6RKfEV199ZRsEzKGgfzRBiqNHj/o+TzsDelrTU9rjDfJM6LvvvrPvLSIiImeWLVs22+gfOnSo++OPP077PMOx4SUA+J+LE1YGpBWP7f+4VBVQ1ZAUZl2Q1PDss89aFQGBloStHqncpAriTO655x5LvGAuB0EKghYe1hM8BlWeJGr4v9FCKjkJ1yl8zHomKSSDUDHKmsgfH1977bVJPjYVJARRkntsEfkfBSlERERERKIYmwC8MeiS4Y30l77ppptOa0ngjw0PAhkp2SBgc+GDDz6wVgUMxmaDwL939O23326tFqi4oOUBAROOJyHaPHGhTusGERERSRkCFJyvy5cv7z7++GM713NOpp2S11qI8/LNN9/s+vfvb59jzgStGgOB2VSsAzi/02KJ833CyoWE6wZaQlI9QbsnjnPatGnx7sOsCgIdBFJIfKBFU1LVDPXq1bNB1/xczKPwsPZgTdK8eXM3depUezzaVPXr188GgCeHORajR49233//vevVq5d9HbMkksNAbOZQ0Mpq69atNlib46fFZsL/X/y8VL8w8JzK1UceecT3eeaLJHw+RERBChERERGRqFa/fn3Xu3dvC04wuJoWDN5wyqTUrl3b+iQz9PpMGPbIBXa5cuVcs2bNrKriiiuuiNcGgott5lywgcIgypdffvm0x2GY91VXXWV9pUVERCRlaN+4evVqV7VqVffkk0+6kiVLWrXkggULbDCzh013MvepsGToMwOyA+GZZ55xVapUcXfddZerU6eOBQ0YUp2UunXrus6dO9umP4OlqawgyOCPwdJ33HGH/UxUanz00UdJPh6BCJIgWD+wjvDHgGyCFDwvDLPm2FatWnXa/RKiFRVBFOZzjB071r5/woqIhFj/dOnSxb4XLaeo7pg5c6YFZfwRKOKNNRlDv7kPbTY9BDh+/fXXZL+XSEZ0VlwwpvCIiIiIiEhEI9OPC+e5c+eG5PuR4ckFftOmTUPy/UREREQSYuYGyRUENEQkcmhwtoiIiIhIBtS6dWvrZX38+HGXJUuWoH4vWjk0aNAgXpsGERERERERqJJCREREREREREREYp4qKUQikyopREREREREREREJOYpV1skMmlwtoiIiIiIiIiIiIiIhIWCFCIiIiIiIiIiIiIiEhYKUoiIiIiIiIiIiIiISFgoSCEiIiIiIiIiIiIiImGhIIWIiIiIiIiIiIiIiISFghQiIiIiIiIiIiIiIhIWClKIiIiIiIiIiIiIiEhYKEghIiIiIiIiIiIiIiIuHP4fl352OJ/9DtQAAAAASUVORK5CYII=", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmYzXX///HP3W6plCUhWyokJEkkJJGlEMqSLUtkiVCRULKmyJK1kiUlUqLFEi1UtihEZElIlm4lWv2v5/t/f8/vzJgZs5z9vB7Xda6ZObOcM2fmfM/383lv/zl16tQpJyIiIiIiIiIiIiIiEmJnhfoGRUREREREREREREREoCCFiIiIiIiIiIiIiIiEhYIUIiIiIiIiIiIiIiISFgpSiIiIiIiIiIiIiIhIWChIISIiIiIiIiIiIiIiYaEghYiIiIiIiIiIiIiIhIWCFCIiIiIiIiIiIiIiEhYKUoiIiIiIiIiIiIiISFgoSCEiIiIiIiIiIiIiImGhIIXIGQwYMMD95z//ifvHiceAxyI9li9fbt/PW0+rVq1cwYIF4/5xFRERERERERERiWcKUoh54403bBP5rbfeOu0RKVWqlH3uo48+Ou1z+fPndxUqVNCj+L9Ndx6nkiVLulOnTp32mPC5zp0767HKgM2bN1ugZNeuXXocRUREREREREREYoCCFGJuueUWe/vpp58meESOHTvmvvnmG3fOOee4zz77LMHnfvjhB7t43yv/39dff+3mzZunh+MMJk+e7LZu3ZrmIMXAgQMVpBAREREREREREYkRClKIyZMnjytUqNBpQYpVq1ZZVUCjRo1O+5z3cUpBit9//z2uHuFMmTK5q6++2j311FNJVlMEyt9//+3+/PNPF83OPfdcd/755wft5/P4nzhxImg/X0RERERERERERDJOQQrxIdiwfv36BBu7VE9ce+217s4773Sff/65+/fffxN8jhZGFStWtI+rVKniSpQo4dauXetuvfVWlzlzZtenTx/73Ntvv+1q165twRA2pq+88kr39NNPu3/++SfBX8D/Z9BGik1/gicTJkxIcsbB66+/breRO3dulyVLFnfXXXdZdUdiX3zxhatZs6a7+OKL7X5Vrlz5tMoQL/By4403ugsuuMDu48SJE9P2hDrrLPfEE0+4jRs3Jtk6K7GDBw+6Bx54wF122WV2m7TWmjZtWoKvobURv+uzzz7rRo0aZfeLx9BrfcTntm3b5po3b26/X86cOV2/fv1sk57H4u6773YXXXSRPUYjR45M8LMJdDz55JPuhhtusO/lMaxUqVKSrb1Sa+/eva5evXr2s3LlyuW6d+/u/vjjj9O+LqmZFLNnz7b7cuGFF9p9vu6669zo0aPtc6+88ooFy1C1alX7vf3nXPCz6tSp4z744ANXtmxZ+99J699PREREREREREREQuucEN+eRHiQYvr06bahT7AAbOQTLODy3//+11o/MXPB+1zRokVd9uzZfT/j8OHDFtC47777bNOczXdvgzlr1qyuR48e9nbZsmW2OU47qREjRiS4H0ePHnW1atVyjRs3dk2aNLF5GR07dnTnnXeea9OmTYKvfeaZZ2yj+tFHH7UNfzbxb7/9dvfVV1/ZJjW4Le4Tm9/9+/e3QMLLL7/sbrvtNvfJJ5+4cuXK+do03XHHHbbJz+Y/1Qp8vfc7pFbTpk0tAEM1Rf369ZMduk0wiMd5+/btNquCYMycOXNs8/6XX35x3bp1S/D13OeTJ0+69u3bW5Di0ksv9X3u3nvvdcWKFXNDhw51CxcudIMGDbLPs0nP7zls2DA3c+ZM17NnTwvCEEQCj/+UKVPscW7Xrp379ddf3dSpU12NGjXcl19+6UqXLp2m353fqVq1am7Pnj2ua9euFpTif4q/wZksXrzY7gffz/3Fli1b7P+Mx4L7zM984YUXLDDF7wvvLWgfxc/o0KGD/T7XXHNNmu6/iIiIiIiIiIiIhNgpkf/ZtGkT/YlOPf300/bxX3/9dSpLliynpk2bZh9fdtllp8aNG2fvHzt27NTZZ599ql27dr7Hr3Llyvb9EyZMOO0x/f3330+7rkOHDqcyZ8586uTJk6f9jJEjR/qu++OPP06VLl36VK5cuU79+eefdt1HH31kX5c3b167L5433njDrh89erR9/O+//5666qqrTtWoUcPe978/hQoVOlW9enXfdfXq1Tt1wQUXnNq9e7fvus2bN9vvmZqnSsuWLe3xAo8Z3zNv3jzf5/n4oYce8n08atQou27GjBm+6/j9br755lNZs2b1/V47d+60r7voootOHTx4MMFt9u/f3z7Xvn1733V///33qXz58p36z3/+c2ro0KG+648ePXoqU6ZMdj/9v5bH1x9fx9+6TZs2Ca7ndri9lHi/E38Hz/Hjx08VKVLErufv5v94FShQwPdxt27d7HfkPiVnzpw5p/0cDz+Lz73//vsp3kcRERERERERERGJHGr3JD5kpFMV4c2a2LBhgzt+/LhVUYC3XoskZlXQqinxPAoy/Fu3bn3ao+pVNYBs/UOHDllbIWZWfPvttwm+liHdZMJ7qKDgYyolaAPlr0WLFtYayNOwYUN3+eWXu0WLFtnHVFR89913Vt1AlQe3y4Xfi4z9jz/+2FpY8bvQJog2Rfnz50/wmFBVkFbNmjVzV111VYqzKbiPtGAi899/TgPVAr/99ptbsWJFgq+/5557rMojKW3btvW9f/bZZ1u7I26XVlKebNmyWWXB999/n+BreXzB43DkyBGrIOH7161bl+bfm9+Jx5+/g4f2WlR/nAn3j78LFRXpRTVKev5eIiIiIiIiIiIiEh4KUogPbYkIRHizJwhIMFOgSJEipwUpvLeJgxR58+b1bXr727Rpk7U+Yu4BswbYbKcdFGgj5Y8WQcwz8Mcwam8+gz8CAYl/B+6v93UEKNCyZUu7Tf8LbY6YlcDt//zzz9aqKPHPQ3paBrH5z2wKgiTz589P8mt2795tt0f7KX9e+yI+n3gDPjn+gRXwODPjIkeOHKddTzstf8zAoIUXX0+QiseGllGJ/y6pwX3m8U/c4io1j2GnTp3s70xrrnz58llrr/fffz9Nt5/SYyQiIiIiIiIiIiKRR0EKSYCgA5vTzGfw5lF4eJ9N6B9//NGqLQgmFC5cONmKCQ/zFRhUTWUGlQULFiywbHlv7oD/MO5A8342cy+4zaQuzMgIBqop2LBPqZoiLZJ6bP2DIqm5Dv73ZcaMGTYDg2HczKIgKMBjwhyLYP5dkkJAjKDOO++8YwPQGd5NwIIAUyAeIxEREREREREREYk8GpwtCXiVEQQhCFI8/PDDvs8xeJp2TsuXL7fh2gy3Tg2+nlZL8+bN8w1sxs6dO5P8+n379lnbH/9qim3bttnbggULJvhar1LCfwOeQdTecG8230H1BgO1k0P1ABvciX+eN4w5PbxqCoIAb7/99mmfL1CggNu4caMFA/yrKbz2V3w+2N58800LNPG38a9+YGB4enCfGa7O38H/56X2MaQKp27dunbhcaG6guHf/fr1S7JCQ0RERERERERERKKbKikkAWYR0PZn5syZVjHhX0lBgKJMmTJu3LhxFkRI3OopOV5Gv38G/59//unGjx+f5NczE4GNaf+v5WMCCQRK/L366qs248J/033//v2WgQ++nkDFs88+a3MeEqPNk3cfmWVAa6Y9e/b4Pr9lyxabVZFetLRic33gwIGnfY4gz4EDB9zrr7+e4HcfM2aMVXdQfRJsSf1tCEAxcyQ9+J0IMvF38DB3ZNKkSWf8XgJZ/gjceMEm2nLBC1xRnZMa3swT5pCIiIiIiIiIiIhI5FElhZyWyX7jjTe6Tz75xIISiYMCBC1Gjhxp76c2SMH3XHLJJda2h6HQZMNPnz492RZItJGiFRRzJZhRwCY+bYDY6GawtL9LL73U7gfDun/66Sc3atQoCwq0a9fOt9HN7AmCFtdee619HXMzCMDQTogKC9pPgUAC7Y4Y6E0Gvxcw4PuoeEhvEKBv375JDhNnmDTBFyotGAhOlQib+1Sw8Hv4DwQPljp16lgVBfNCateubdUtEyZMcMWLF08yqHMmPO5jx461geb8TgzR5m/N8OwzYfg3g7tpNcVMClqL8fiXLl3aN6eD93lM+f+gLRn/o3w9raKS8uWXX7qqVataZciAAQPS/PuIiIiIiIiIiIhIcKmSQk7jBR+89k7+KlasaG/ZQC9VqlSqHj2GMb/77ru2YU37I6oaqlev7oYPH57k1xPQWLRokVuzZo3r1auX++GHH2zj2ws8+OvTp49trg8ZMsSNHj3aVatWzS1dujTBpniVKlWsMoAqEX5Oly5d3CuvvOJy587tunfv7vs6svapmqBi48knn3QvvfSSBS7YwM8Iqim8tlP+aC9FKyxmVzC8+pFHHrFN+pdfftl169bNhQIBksGDB9u8EAJI/P7MqeCxSg8edx7/O+64wwIMgwYNsv+n5P7WiR8nqniosCFIxGNy7733uvfee8/XDou/GUGUgwcPugceeMA1adLEbd68OV33VURERERERERERMLvP6cCMdFXJEAIKNCah7kGKWFznwz5OXPmuIYNG+rxFxEREREREREREYlCqqQQEREREREREREREZGwUJBCRERERERERERERETCQkEKEREREREREREREREJC82kEBERERERERERERGRsFAlhYiIiIiIiIiIiIiIhIWCFCIiIiIiIiIiIiIiEhbnhOdmRUREJFb8+++/bt++fe7CCy90//nPf8J9d0RERCQZp06dcr/++qvLkyePO+us6MxZ1HmHiIhI7J17KEghIiIiGUKA4oorrtCjKCIiEiV++OEHly9fPheNdN4hIiISe+ceClKIiIhIhlBB4Z10XHTRRXo0RUREItSxY8csscB77Y5GOu8QERGJvXMPBSlEAuCXX36xzblcuXK5yy67zK7bvXu36927tzvnnHPczJkzfV87efJkt3jxYte4cWPXsGFDu46ypwceeMDenz17tq/86ZtvvnF79+51xYoVcwUKFNDfSkQiktfiiQCFghQiIiKRL5rbM+q8Q0REJPbOPaKzCaVImBw4cMB169bNPfjggwmu5+OSJUtagMFz9tlnuzfeeMPNnTs3wdeuXbvWzZkzx23ZssV33Z9//mnXcfH38ssvuzvvvNONGzfOd93ff//tKlasaAGO3377LUGg5OTJkwH9fUVERERERERERESCSUEKkWS88MILrmzZsm7atGm+6/755x+7fsqUKTawzZM3b16XI0cO+7wnd+7cbtSoUe75559P8HPvvfdeN2bMGFezZk3fdZkzZ7bruPhHFnPmzOlKlSrlrrrqKt91P/30k1u5cqWbP3++fZ9n2LBhVjo1cODABLf3119/6W8sIiIiIiIiIiIiEUntniTu0Wqpb9++1lqJNkxUQHgD2ah6WLVqlWvZsqVdRysnWjgRlKCi4bzzzrPrn332WTdy5MiET65zzrGqi8SqVq1qF3+ZMmVynTt3Pu1rH3vsMbv4u/jii6064+jRo762UNi2bZvdp8svv9x33f79+12hQoXcDTfc4D7++GPf7yYiIiIiIiIiIiISCf5z6tSpU+G+EyKhsnXrVvfaa6/ZNPm2bdvadVQ/sPF//Phxt2nTJle8eHG7fuPGjbbxf9NNN9mAl0jHU5m5GFmzZnWXXnqpXbdw4UJXp04dd+2111oQxtO6dWu3fft2C4DUrl07jPdaRGJlEBbH0f/+97+aSSEiIhLBYuE1OxZ+BxERkXhxLJWv26qkkJhGqyPaJ1HVAColaIdUrVo1X5CC6oLBgwe77NmzJ6hCYMYEl2jB75k/f/4E19WqVct999137vDhwwmuX758udu1a5dVcHh+/PFHC9JUqVLFVyEiIiIiIiIiIiIiEkyaSSExq1evXtae6YMPPvBdd/fdd7t69epZJYG/rl27umbNmrlLLrnExRICF0WKFLFqEH9UWDCUu1KlSr7rZs2a5WrUqOEaNWoUhnsqIiIiIiIiIiIi8UhBCokJDJN+4403Elz3+++/29wG/yAFbZveeustC0jEM1patWrVyp177rm+65hvQVCHQIXnxIkTFtiZMGGCBnCLiIiIiIiIiIhIwGkmhcTE4GtaNdHaaceOHa5w4cJ2/bfffut+/vlnV6FCBQ2MTqV///3XHsfzzz/fPn733Xdd3bp1Lbize/duq8zw5l9474uIqDe0iIhIdIiF1+xY+B1ERETixTHNpJBYxSyFDRs2WIY/LrzwQmtbxD89QQkvSFG0aFG7SOpRTeEFKFCqVCk3dOhQu84/KFGzZk2rxmDwNtUXIiIiIiIiIiIiIumhSgqJKl999ZUrU6aMy5o1qw16JkCBP/74I8HmugTP2rVrXdmyZW249g8//OBy5cqlh1skzimjUUREJDrEwmt2LPwOIiIi8eKYKikkVv6Rd+7caRn94C3VEfny5XOHDh3yBSkUoAid66+/3r333ntuy5YtCQIUffr0sbZbbdq0ibkB5CIiIiIiIiIiIhIcqqSQiPXxxx+72rVru7x589qGuNdu6Pjx4y5Llizhvnvi5+DBgza34s8//3SrV6+2SgsRiR/KaBQREYkOsfCaHQu/g4iISLw4lsrX7bNCeq9EzuDEiRMJMvYJTDAnYf/+/b7rFaCIPFS0jBs3zrVq1SpBgGLGjBlu4cKFNmhbREIX4GXgfZ48eewYOn/+/DN+z/Lly62VHlVpRYoUca+88kpI7quIiIiIiIiIiIIUEhG+/fZbd8cdd7j7778/wcb3unXr3KZNm2yzTSJXpkyZXNu2bd3LL7/su+6vv/5yjz76qKtTp4574403wnr/ROIJ1Wa0xiNwmBq01KNqrWrVqjb35+GHH7bn8wcffBD0+yoiIiIiIiIico4eAokEf//9t1u6dKk755xzbBgzrYNARq9EJ1o/NWvWzCop6tev77v+n3/+cWeffXZY75tILLvzzjvtkloTJkxwhQoVciNHjrSPixUr5j799FP3/PPPuxo1agTxnoqIiIh/xbHX3hZ//PGH27Nnj7vqqqv0IImIiEjQ9/C+//57mwMcLqqkkLD4+eef3Ycffuj7uESJErZRxuwJL0Ah0Y22XMOHD3cbNmxw5513nm8RxqZnhw4dbI6FiITfqlWr3O23357gOp6nXJ8cNk7oK+l/ERERSetimDUBF3+LFi1yM2fOdEeOHPFdt379etenTx83ZcqUBF/bvXt316BBA6u89qxYscJVrFjRzjf9NWrUyF1zzTX2ef+vZf4dFd3+aJt4ySWXJGiZyOti5syZXcmSJRN87V133WXnuq+++qrvOioTScpJvK5p3LixBSLGjBnjdu/e7VauXGnv096WymS+7+jRo27EiBHWu7l69eqWzCUiIiISTIMHD7a92WeeecaFi4IUEnKbN292hQsXtoXCoUOHfNe3a9fOrpfYQnWMZ82aNVYxM23aNHfy5Mmw3i8R+f8OHDjgLrvssgQPBx8TePCfE+RvyJAhtnniXRRcFhER7N271y1YsMAq8vzdc889rnz58rYx75k6darLlSvXacGEjh07uubNm7sdO3b4riORidee2bNnJ/jaxYsXu7feeitB8ssvv/xim/9ff/11gq/ltrdt2+Z+/fXXBIGSffv2nZY8w9fwc/i8599//7XXxcSvjQQRaHPK572qYX4eH9OCkbaKHm4LXbt2dQULFrRgSrdu3XwJAARd8uXL53r37m0f8/3fffed/rlEREQkaDg/eeqpp+wchnOrcFG7Jwk5SocoWyZjiMypHDly6K8QJ2688UYb6kugKn/+/Amy2Fi4MrRXRCLf448/7nr06OH7mICGAhUiIrHL23BnZpxXHduiRQu3fft2N2/ePHf55Zfb9QQM2IAnKHHLLbf4vn/16tXW0pVz/wIFCth13s9ig98fG/dXX321VRZ4aEXIzCQqIfz17dvXggl8vadcuXJ2nxKvMaja5ne49tprfdfddNNNNgOPCgl/VEUQjPCfi3fDDTdYGwQScLjP5557rl3fs2dP+12YzcYCn9/Tq36gKoIEHWY9geDD3Xffbe9TfcHPp/qYx4XAxvLly+1z1113nX0Pl8T3TURERCSQOD/x2k8+8cQTLlwUpJCg4p+cRQIl23PmzLGyZ4IT7733nsuZM6e9L/GlUqVKdvHs2rXLSuxZ3H7xxRenZXSLSHDlzp3b/fTTTwmu4+OLLroowQaRPwKKCiqKiMTmuTvVEJyPee062Xzv1KmTba57lQy0LKJagvM4KgW8IAXz5MqWLXvaHAVaGuHKK6/0XXffffe5Jk2anDarbNasWafdr+uvv94uifH9iXFf/OehecqUKXPadbzWJfVzCbzv37/fqoCpZPAuBGUIVIwdO9a1adPG91i88cYbCb6f34mKCJJysmXL5ru+atWqbu3atRZAofXtCy+8kKDio06dOhaMue222xLMpxAREREJBs7n2LMFa3xaPoWLghQSVGQEtWrVyv3222+2qGGQMrQRLR4WtyzUWNRS8i8ioXXzzTdb/29/lHhyvYiIxDb/igACFFQqsBlP4ggVCciePbu16fRvv4ShQ4fa9/pXN9x55512ScyrHkiuJWi48DsznPqbb76xtrNUbGDJkiWnzanw5/9YFC9e3A0aNMgqRGjhxFsqJBIHX0B1Bu2wxo8f72sxRaVE69atrQLFvyJEREREJJho79SlSxdfC36qTsOZJBH+M0OJaQQjnn/+eesBy1A5kcSqVKlii2GGI3oHQxbMDCps2LChsshE0oigMJmeHjJcGcR56aWXWkYnrZp+/PFH34DPBx980DJCKfEkK3TZsmWWEbpw4UI99iIiMeqzzz6zWRAMh/7kk0/sOs7DSBqhUoAkEi9IQfY/52pswPu79957XTRhvsSGDRtsCDcX3ic44c2o6Nevn7VrAoEXKr4JXFAV4n/hMfJvW8p6h7ZTKeF2WBORqcisCa9ag40BWjrxdxAREREJpcmTJ9teAVWfJKRQofr000+HLWlCQQoJKMqiyQIaOHCgZRXB68EqkhwyyPz77Y4YMcIWeyx+Ew9IFJGU0ZqCDSWPNzuiZcuW7pVXXrHjNFmjnkKFCllAgmGdo0ePtvYUU6ZMcTVq1NBDLSISAxgWPXfuXGu36c2JYGN906ZNVtbP5r1/aycWqv4t/Zi34M2PiBYkvPD7Uc3AfAcvaO8FXhJXdDAzz78tEwGE33//PUOtDanSoDJx5MiR1trJw33gtZm5HZFQTSIiIiLx5/Dhw74kCwITgwcPtr2Cxx57LGz3SWdFElCPPPKIe/PNN92BAwdsQLJ6qUp6sBC+4IILrC+viKS9OskbepUUAhVJfQ9ZpSIiEnuGDx/upk6d6jp37uwLUjAb4u2333bly5f3BSiiuSUrw7NXrlxpfZW5ELCntRIZgd6MC6ogqAbhLXMoSpcubQEMsgX9HwOwhklvgIJKCW7zueeeswoKUJXRoEEDSwignaLWSCIiIhJO/fr1s44mnAutWrXKEjto+UTbynBRkEICigx4+qtSzqyTb0kvSt/r1atnGd2ezZs3uyxZsoT1gCkiIiISqQhQjxo1ytr5MWvIG2bduHFja/N36623+r6W8/RYaMVKFQiVCRs3bjwtQH/xxRdb0ouHQAHVFMFy9OhR6+XMMGwStsC5K1Xl3bp1s8pFERERkXBbv369mzhxor0/ZswY99BDD7m9e/e6+vXrW5vocFGQQtKNhcCMGTMsKEEFBfLmzWuD5uT/HiMG0Xil3LzPYio5DB9U2ff/ldl7eMzuu+8+W1jOmzfPVa9eXf9iIiIiIn4IPMyZM8d6C3OO3qtXL7ueAdApDYGOlvZNZPm99957vmAAqIAg849zbiokqBThUqFCBauQIDARbMzvIDhEq8Tjx4/71kS0wG3fvn2CNlIiIiIi4fTvv/9aUIK37LNVrFjRWoPCa9sfLgpSSLqtWLHCtWjRwjbVa9as6a699tqYfzQp32ajnFJ4b8AdZdxkrNHPzbscOnTI3lI69eKLL1rJFJYuXZpin3cqUB5++GF7/9tvv7XMq+zZs9slR44cvve5lCpVyob5xQMex4suushlypTJSvNFRERE4hkJHNOmTbM2q++++64luuDxxx+3qgkWndGORCh+NwITzHb473//a9fzu9JKyZtnxhwNzs1D3aqKLERaab3xxhu20EfJkiVdz549ba5a4hZSIiIiIuH26quvWuJH1qxZ3bPPPut27NhhySBUn5JYHU4KUki6Va5c2TVt2tSVKFHCXXPNNTH1SNLXdu3atRZN3Lp1q114n0wpFiHTp093zZs3t68laEGbq0BjgfnZZ58l+3mG2rAQBferQ4cO9ncga4y3XGiXFIoMsmDLnTu3BcU4eObMmdN3PeVo/i2hREREROIB56NPPPGEbeQTqGD2AurWretiAVXaJO/4t3AiSYdkH5Kj/NvKEhgIFe7PsmXL3LBhwyxw4qHKl8qV22+/XS1vRUREJGL3Onv37m3v9+/f3yo/58+fbx+fPHnSWmiSdB0uClJImk7KX3/9dRv6RmYQiwNKyaN59gT9Yhmyt2HDBle7dm17QmL58uXWiy0pRBv//vtv38dFixa1IXiJqx2893nrue2229yvv/6a7P3xz7hieA2LzqQqNLgw8NCzadMm9+GHH9rFH5UHlL736dPHMrq8v2M0/s0o5ScA4/nkk09sIciwn759+0bl7yQiIiKSGrQRoqKgYcOG9jHZbgMGDLDh0JzDRjOSbVhjtGnTxpeMwnku56w33HCDq1OnjqtVq5a9z/lgOJBZSMtRghMkMoH7wvk1wQlV+oqIiEik69evn/v5559dsWLFbF6WN//VO7cMdVVqYgpSSKp17tzZjR8/3nqXjR071q6Lpo1hFhds5lOdQGCCt/7D83hCekEKnrBs7ieuTOB9svr9f2++jpLz1KA1FkGO1MiVK5e75557UvW1ZJBNnjzZV/HBW6oOWLgySNA/qMLm/v3332+9euk9x1u+P9pmYXzwwQfW6oC/qYiIiEis+u233+w8dN++fe7LL790N954o13fsWNHF61YIM+ePdu99tpr1nIAtPb0fieqtakK8Z9RFg6ca1JBTVsnr18zSUC0ZO3Ro4crWLBgWO+fiIiISGows4w9XbCn67UK9YIUBDBIcA6n6NqVlLCitJqNcDbqoyEbn4oFFnWXX3657wlZtmzZBF/D78AGPdf7Z0CxEPQWItGABRyLJX/0lCMzjYAFmWcegjN79uyxC4tDZMmSxd10000WtGjdurUrVKiQi3SDBg2yvx3Zg5H+vygiIiKSXiS40E6IRJNjx45F7QNJ0sz7779vMyTeeecdXxIN53FVqlRJEJBg2HQ4B07//vvvbtKkSdarmRasYB5dly5d7OJfKS0iIiISyU6dOmWJ57QLbdy4sXV58eTPn9/a+IeyfWZy/nPKv9GnSCJsdHvRNfzwww9hz2hKDv/KDLB7++23bcgeQYlWrVq5qVOn2udZCHHfefJ5FQTly5e3rK14QuCGLDyvooTsNW8QIb744gtfRcmWLVss2EMQJxpmWwwcONCCLQTURCR02DS7+OKL7VgSb8dUEZFA43ybPsEjR460jXEcPXrUghX+5+XR5qeffrLex95QRs4vmfHWqFEjlydPHhcpr2dkGVIlTbUHSHhiRkb79u3dhRde6KJdpLxmE/x59NFHrY0ZQaEiRYpYACtxUlkk/w4iIiLRMiy7ZcuWlqD87bffhny2a2pft1VJIclu+I8bN869+OKLtpntZTJFWoCC+7lkyRILTJCRxaLOH9UCHtoZUSYf71n3LHCJmnqRUyKptEwiYPH555+766+/3ve1LNCmTJlii7O77rrL3X333fZ9559/vos0ixYtst7MBFMIrvjPrxARERGJBpzb0u5z9erV1orUK8v3ghXRgvNLBktzbknABfQ5JoGIRSqVuyQORQqCQKNHj7YLQyVBZfFjjz1mi/pIPPeNZjzeJI1VrVrVghTMIvnuu++i7v9cREQk0h05csT17NnT19IpqQAF+6m04GS/r127di5cVEkhyUa5WDiw6c9GNYOhI8Uff/zhWyiwkKM1Eye1yJw5s2XRs5nOUOVIycqKVpSzT5s2LcGwb4Ic3mNMv+BIqbDg/8Irvx88eHC4745IXFFGo4hI4Cxfvtw9+eSTljB03XXXRd2Ab7Lh2ezfvn27XUcLVWa4RerC/fnnn3cvvPCCr5VW0aJFrSdzkyZNom5mW7S8ZhP8IRGOFmapPc/n4v87kDynSgoREZGUPfjgg27ixImuePHi1n3mvPPO832O11aqdNlDI4BBgIJ2l+E691CQQpK1du1at2LFCgtQhLv64PDhw+7111938+fPd+vWrbPyYC9QMWTIEPf999/bpnm1atVsmJ0EDgctFstetYrXl5fFJvMuvP+NkydPWsZfuPnPS6G11aFDhzTUUCQONjxERKIR5y3MfKMNEnO2/K8P9/l3Whw8eNCNGTPGKj/Y+AevC1ROkL0X6rYCqVlbkIjFffaScQgIPfHEE1bJcvbZZ7tYFQmv2WyU1KhRw+3du9fWm/z/d+rUKdnsTaqlaeuamM47REREkkc795tvvtnOK9nXq1y5coLP01qUxBjOfZhly+szc9ACTUEKSbNvvvnGNqT9hyyHu0z8o48+snZD8+bNc3/++afvc1zPgD0JLQ5sBK8IWFCW3bVrV7ue/xtK4pnzwQBvDmrhXtxxX+lxzIGYIY2p6W8rItG74SEiEo2Ynca5E+dVmzdvjsqBzGwys+HsZbpfeeWVNsOhRYsW1vs40toMEZwYNWqUJbOgVKlStkCvV69exFQIx/prtpfY1KNHDztfp71Zt27d3IQJE6y9VmKqpBAREUkb5vLeeOONNq+XczK6pCTGOSjnopwHJZUMECiaSSFpDlB4ETXKbomehdPSpUttOB0VEh5mJVB2TcWE5g2EBxl9bPYn3vAnaLR//343d+5cu+TPn9+1adPG+g3zfjhwENy9e7ctQL3ewiIiIiKRpFmzZlaCzznupZde6qJp4eu1QmIBzEBpNvt79+5tm/3hTlZJ6ryQwAQBCjbnUbp0aZuXwdy1eAhORBKS0VhPeC1aWeexHk0uSEEFveaCiIiIpB5tQwlQMO9pxIgRSX4NCTII9x6wR2djYgoUKOCKFCliF4Ykh2OhQ9m1h/tAgILsno4dO1r2Pm2eevXqpQBFBGJGxcaNG62yggMgA8spyy5YsKCrVauW27BhQ8jvExliy5Ytcx9++KHNJxERERGJBCtXrkyQUb5q1SprrxoNG+UkgJBIVL58edto9mbC0eOYIdmR1irp999/d8OHD7eKXwISBCiYu0eVNmuLeKmeiDSs9RJviBQrVszWECIiIpIxtGlnxgSGDh3qcuXKlWT3kS1bttj77L3u2rXLnThxwoWTzsjEkP1ES5zFixfbJnOo7Ny503q/EiR56KGHfNdz0sr8g3379llv2zJlyugvFeHo48uQRP5ms2bNclWrVrWD3nvvvZdgMI+3oA3V//Wtt96aoF/ykiVLQnb7IiIiIh7Oizp37uwqVqxow6U9kbSpnxzmTDBbgmpmZmiQQPTxxx/7Ps/MiUiaoUGb2BdffNESsB599FG7/wzEZsYdyTP169ePqPsbb3gOMNvOHwPWWROKiIhIxpD8wswtkkpo6ZSUAwcOWNcRkjWY9UtCx4IFC1w4/f8aXYlLCxcudMePH3eNGze2j0MZnPj666+tvPeNN97wbVp/+umntqDwNrTr1q3rosU///xjmVksgOh1y8V7nyd9ajfmOThQAcDfgpJ/3nrvZ8uWLSoWsWQE0rKAy/bt262SgcwoDwPxeEz69u0b0uATt3nHHXe4TZs2uTfffNPahomIiIiECpviZLLx9ueff46KB56MOoZLs3j12meSiPL000/bRnOk4Zz7tddes97KXttYKnvps0xrrWg4l46XzRNm2bEeZC365ZdfukmTJtlFRERE0o9E4Tlz5tj+IgkbyVWMelUUhQsXtn1Y9vJI9A0nBSni1Jo1ayyDiIyuK664wqa9h+p2WdRQJeGhFQ9l42wa+2fcR1KZOIucHTt22IX3ufz000++YITX2zbYKMHyghcscjmYMJzQe8slkgYUei3EPIcOHXIzZsywYBRl9rSJIlhxyy23BP2+8LhQoUO0OFL67YmIiEh8oYKYIdM33XSTi3SU/VOR+sMPP/iqZocNG2bnb5FYhUBiDFUT9F/GZZddZo83CTKaZxBZmGPy1ltvuccff9w99dRTlr3JzBACSSIiIpI+zGR98MEH7f2HH37Y5m8lx38exdtvv23vs0ccTgpSxCmGk5G14g0tCxVa7RCgYGHTsGFD16dPnxSfNKGciUGGPRcvGOFdGAidWlmzZk1Q/cBbKiC8wYKpuR8EPPwrMXjLgcYb+seFRWNyWJB5AQvvcu2111r/3XPPPdeFU44cOaxnMdl4ZLnRYoxLpUqVLFhBpUOwFr387tOnT7fefOEa5i0iIiLxhephssPZgCWLn2y2aAhQgPOlvHnz2vskGTVv3jwiKxGYLUFwwmvpSVIPH3fr1i2iknckoTp16thFREREAoM5FMx3ooqUJIAzneeRLF65cmXfdeFOQvnPqXCHSSRs2BDnHzBYiw1vHgGLA++fng323r17W4nvNddc48KBwMx3333nVq9ebZUdvGXjPKUBMbRgSrzxnydPntPaMQWrEuSvv/6yEnv/dlIETxIHVLg+OWSQERAic4kLwSn+BuFabFKNQjbeK6+8YpUVoBTNi/qGAj2J6afcpUuXkN2mSCzi2M5xkiArm0MiIuKsrSrnjFTfPvPMM5acE8k4jxwxYoTdTxJvwEI3Z86cLlOmTC7SUOHBfaVK10tIYcYdiS8kxkjsvmbHwu8gIiISSKtXr7YZFOx5kgxM5W60vW4rSBFHnnvuOdvoPlM0LaN4QsydO9d6jFJufcMNN9iTJVwRORZX9Dn1ghJceIIkxhOlVKlS1p4ocUCCIEQ0YHHp35qKC3Mh2Iz3+gj7YwHK38cLWpQrV84irqH8W1HZ8Oyzz7rZs2dbuZk3G4XrqQpJbRVKWtELmgoT3k6dOtW1adMmKLcjEg+0WSAikjTmrzHTgUriUM5/S2tiEb2Lu3btagGVxx57zKpeIxWDIEl0GTlypDt58qRd17RpUzdo0CBrGySx/5odC7+DiIhIIBOby5Yt6zZu3GitE70EjtR+b8uWLW0eBZW/wUhMUZBCEli5cqVvuN3y5csTlPME0ieffGJ9zyi7BlUUHTt2tEVDqHrB0hrpo48+ch988IFd2KRPjIEwtLzyqgq4XHXVVckOlIl2LD55HLzKES78jZi3kRhBCiKu9Bu+7bbbQnbi/8cff/j+R7i//L+yCH3++edtbkkwEEgjoLZ06VKrhBGR9NFmgYjI/+E8xj/hgwSeSD3H3Lt3r+vUqZNbsGCBfUyV7bhx41y1atVcpPnnn3/cyy+/bHMmCKaAmRkEK0LZvjbaxcJrdiz8DiIiIoEydOhQm/OUPXt2G4hNFeyZ9t8OHz7sLr/8ckt25vtAl5NgtIlXkEJOQxYX7YL69+8f8Edn9+7d1saJbDFwskiwgows7589mAtBKgW8oMSnn35qkUAP7YxKliyZICDBYJhwz2eIhHZf3377rS9owYXH0f+xo4qBoeoELbiUKVMmJItsFsz8zbz2VXfddZdVWxBICjQy8AhaiUj6abNAROT/hjezUGQoMJuokYrAyYQJE6xqgqQQzotZ3NI+KRKHTJMIxYwJWrSCyufhw4e7evXqhb1/crSJhdfsWPgdREREAuG7776z/TP2tqZNm+ZatGhxxu9ZuHChzYVij2/FihVuypQp1qaUlpnBoCCFhNTrr7/u7rvvPlsktGvXzobr5cqVK2i3R7CFeRcEJVgMetlUHkq9vY31UFYDRDuqUKi08QI+HOz80d+3evXqVmVx5513njE6m9G/8YABA9z48eMtc47FM4tTsueCteinbx+BmWBVbojEKm0WiIj8/8QHNs9pWclmP3MoIhWLUCpKQf9iFqe0wYzEuRMkQtEWFJwDPvnkk65z585BmwUX62LhNTsWfgcREZFAJJ1Uq1bN9vHYq2MfLzXJG4888oiNBGD/dtKkSUH/QyhIIW7r1q3uhRdesHY5gT6J54mwc+dOm9fgVTP06NHDtWrVyuY6BAOtiejnO2vWLNtM9s/4p61U1apVfYEJFojKqso4/sYc5Hi8ly1bZpl2/hUqd9xxh/UAvvvuu61/XTBQqsb/FvcBBEaI9BYrViygt0OLMA7qmTNnthkmRYsWDejPF4ll2iwQEfn/mMfGuffkyZMjehOdQMpNN93kHn30UWv3xHldpAV8qKIlkHLixImQJULFg1h4zY6F30FERCSjxo0bZ4kb7GN9/fXXrnDhwqn6PiooqE597bXXLOE82BSkiHNs4JMNRSZ89+7dLUIWKKtWrbJWTrt27bKfH8wTQ36PJUuWWGCCsnnKjzwlSpRwtWrVsqAE8wsisTQ9lvC34G9P0IIqFq/cHgzWoSUTAQuqLIKxKF+0aJEFK/jZzNMI9EBtevJx36+44grLJozkjQWRSKPNAhGRyPbzzz+7efPmuQ4dOiQ5DyyScJ5Jy1hvrhxzJ0aPHu1Kly4d7rsWE2LhNTsWfgcREZGM+P77763NE/uktPcnWJEazKIg+Zdk8wMHDljSN9cxpzVYXUsUpBDbTKa3LG8D0ZZn//79rmfPnhYwQNasWa2ygQqGQFdpsBnO7TDj4tChQwnaOLER3qRJk4gsSY8n27Zts78RF/+2UJdccolr1KiR/Z0qVaoU0BkWBEr27dvnChQo4MuyI3BBP+X8+fNn+OdzcCcCrSockbTRZoGIxKs9e/a4+++/3xIcgjE7K1DVopyXsRBlQDY9iCMRCVAkV82fP98+ZpgjQ7G9lrISGLHwmh0Lv4OIiEgg2jxVrlzZOp+kdu+NpJV77rnH9lS/+eYbX/t+fg4/L5yv28GfgCthQ4XBmjVrMhygILo2c+ZM+wdmQ5pFQps2bWxjOpABCsrO6TFLedItt9xiswgIUHD/iQiuXLnS7dixww0aNEgBighw9dVX28wI2ooxdJtFJYtJhl3T065KlSoWOCCAwGD1QGAuhRegABVCL774olXVsDnA/2pGEEH2XwQTJCMQIiIiIpIUzlE//vhj1759+4h7gJjpxbkai1gCFLTKzJcvn4s0JKEMGzbMFS9e3AIUVMvSK5lzTBKTFKAQERER+T8TJkywgAJJtlOnTk1TcjABDTC/1zsPu+CCC4LWwj0t/nMqo7t6EjH4U3KC37ZtWxtwHAj8sxJRI9Lm9S1jA/qGG24I2H3+/PPPbXbGm2++6f7++29flUaDBg0s64uFVaBb+0jwFsPMiyCoNXfuXIuSggNmvXr1rHSfkv1ALTaJ+rIpQOUNGOZND+i8efNm+GezqB84cKBr2LChRZYDWREiEmuU0Sgi8eqnn36yFkqcywaiqjOQyT/NmjWz8zI88MADdh9ZzEYSkpB4/DinA1l89FdWxXTwxMJrdiz8DiIiIumdHXvddddZJxDO7bp06ZKm7ycphNmvtNRnn85/Py9YM8pUSRGHGCxHeydO7v/888+AZa6TXU6QgA1bAgqBCFDQA3f69OmuXLlyrkKFCm727NkWoKA9EINbWPBNmzbNqkEUoIgeHNCIxhLJJWOPwBNBJkrRCHRRXXH99de7l156yYYgZhQVFJ988okbMWKE9VSmhzHX8b+V0fgr95Wfyf+7MvhEREQkKZdddpll/0dSgIIMOeY3EKAg8WfGjBlWcRpJAQoqbwlOMFeOAAUJVpz705pKAQoRERGR07G3RuIJAQoSgB966CGXFuyTDR061HXr1s2+31+wAhRpoUqKGEIkjEzyJ554wqop0ouBKQQMWHThl19+sR6xgRhWx1wLypImTpxogQiwEUzFBNE/NrAl9rD4ZJAPwQMvOJE9e3argujYsaMNq86ozZs3u1atWlnrKa8Son///hnuMx1Jmw4ikUoZjSIST8j0Jwst0HPZAoV2lffee6+du1MNSovOSEK1LW2ySGgBbWSHDx9u54YSfLHwmh0Lv4OIiEhavfDCCxZgIPFk48aN7sorr4yKB1GDs+PUb7/9ZhlT6cUgbDaOy5Yta4P1ApVBvm7dOpsfwKKJFlLIkyeP69Spk91eIAZ7S+Q7cuSIVVmMHTvWAgBetJbWXgzALl++fIZ+PsE1FrkMWSRYwXyTQEasf/jhhwQzMUTk/9NmgYjECzL9vVakX331lQUrItGcOXNsQHamTJlcpNi3b58FJ2gvgKJFi1riUuJMPgmuWHjNjoXfQUREJK2JuTfccIPNTWVPLa1VFMmh2pZ5xo0aNbJz3GBQu6c4wYkZVQ6e9AYoqJYgC/3uu++2Cofvv//ehlZn1Ndff+3q169vTyTmFBCg8No7cb/79u2rAEUcufTSS12vXr1sALrX/om+dyykb775Zle7dm23du3adP98Ngz69OljPfr8AxSvvvpqhv6fCa6w0Od/9+eff073zxEREZHoRqtSKoBbt25tg6gjAeftNWvWtCCAh4VmpAQoaC3AApiADgEKztf69evn1q9frwCFiIiIyBn8+eefrnnz5hag4JyPhO/0oFU6A7e95HEsWbLEkkY2bdoU9r+DJsFGMU74KY+mRdL777+f7p9DxnnJkiWtDyyVE2wiU/mQkeqGb7/91gZulypVyvr08nObNGlit/XZZ59ZCTrzLiQ+sTgleEU24oYNGyxARkXFokWLrIqHzxHgSi//jCpuo2XLljZYiPkV6XHeeedZ4INgRUaCKCIiIhLdmNVG+0paPkXCzCrObW688Ub3wQcfBCyjLpConGXGXLt27Sy5ivvKOuOpp55yF1xwQbjvnoiIiEjEGzBggCV30BqTGa/pOQclUbx3797u9ttvt2CHh/1Zfj6Jw+GmIEUUo1zmxx9/tIEpZKinB1lNt9xyi7WxKVKkiPv000+tXU56Fw1kyLMhzMA7euASSCGTi5kEs2bNsg1oEX8EyF5++WWbqUJkmIMtgS0CXAS6CHhlRLZs2Sxzj77HDPWmh19ah2pTocQQ8C+++MKi1iIiIhJf2Fj3cK5CwkW4MRCbhSZJFJxjM/8rUnCuNXnyZFeiRAm3ePFiW1vQjnPVqlWWOCIiIiIiZ/bpp5+6YcOG2fuTJk1yl19+eboeNhJ4vargCy+80Hc9ScLMcyWRJNwUpIhi9OH8+OOPrTSHf7K0IrjxzDPPWNlQvXr1rAcZ7WzSmyVFhtQ111xjrXXo30/rKHr1MociUvv1SuS46qqrLDORErPGjRvb4pZAFwEvAl8EwNKDSqMvv/zSKnmYWcGQIYIh/P+nBfeDgIqIiIjEF1qW0rq0e/fuaU50CAbuw5NPPunuv/9+O4+/55573IoVK1y+fPlcJCD5iaQO5s79+uuvtr6gcpb5Y1TOioiIiEjqktPvv/9+22OlAwnzXNNr2bJl9pbk3UilIEUU8l8c0YYmvcPmKFefO3euGzJkiL0l6JFW9OdnAB4bzFRlMF/gzjvvtLZOXja8SFrQ35ngBAEuAl0cjAl8EQAjELZ///50/a+zwTBq1ChbHFPVQylbegMf9H6uW7euzW8RERGR2OadL5B1Fu4WT5TnN2vWzD399NP28WOPPWYJQZkzZ3aRsEYh4YRKiQ8//NCqJ5577jlLqrr66qvDffdEREREokrXrl2tTVPBggXd6NGjM3SOllyQgplmzClm7y3cFKSIMvxj0QJnwoQJ6crk4p+S0nBPmTJlbHFz1llp+1cgGDF+/HhbcNCTlywu/tGZN+HNFRDJCG+eCQEvAl/8zxEII1jx/PPPJxj0kxpsKlBFwXPgsssus5kX6ZlRwfOOyo53333XAnQiIiIS26haYKOdUvhw+/33360nMe2mpk6daslGaT2PD4ZDhw5Zi9cWLVrY7Iny5ctb9QTVJ6qeEBEREUmbGTNm2OxgzvNI3PWfvZpW27Zts2DE+eeff9rsCTqGXHLJJRlutR4I4T+jlTR56623LFuKzVYG+aZlY5VZE9WrV3cPPPCAZamn1+eff27tpRjOR7StdOnStvG7dOnSdLeLEkkOAS8CXwTAbrrpJmsbQLsA2jjR2iCtqDyirzR9kSmXSyuCHfQB5LnEzxAREZHYV6lSpYjYbGcOHUOyqVRo06aNiwScp1E9QWU2wZNBgwZZIoiqJ0RERETS7rvvvnMdO3b0JctwHpoR3jwKAhSZMmVK8DmSzpGRIEigKEgRZRhoMmLECBuMV7hw4VR9D5u6ZDY9+uijVr7TtGlTy0ZPT2snAhz8U7PJy0DisWPH2iyLqlWrpuO3EUk9AmArV660aors2bPb7IoqVarYfIm0toDKkyePBTr8s//atm3rjh49muqWVGwO5M+fX39CERGRGEQCDm2VUntuEEzbt29PUAnN+UcknHufOHHCdenSxdWuXdsdOHDAzo9IZurbt29EDBYXERERiTZ//PGHddD57bffXOXKld0TTzyR4Z/pJaondf7I3Atuk32ycPvPqUiY/iZBHVxHqxw2dM8991z3wgsvuA4dOqSpny5tdsgc79Onj1VOoHXr1m7o0KEuV65c+utJyB05csQO1F7bM3pEDxw40Nov8X+eVsy+eOedd1yRIkXc+++/76688so0ff/atWttWCVtpETiESc2zDWixUckZGCIiGQELSWpAqAHcO/evd2wYcPC9oDS2okh1CQL0QbzrrvucpHgm2++cU2aNLG3Xs9k1gaJs/Mk8sTCa3Ys/A4iIiJJ6d69u81TJTmX4AJ7TRnFvtmqVassEMF8i0h93VYlRZRYsmSJBQvSYsuWLZZ9ToDi8ssvt166Dz74YJoCFF5rp06dOvlaO9F256WXXlKAQsLa6oCZKF9++aX9f3otoJixwv95Wg0YMMAVKFDAMhUrVqxoGwKpRfs1nmcszkVERCT6kfAwe/ZsV6tWLdevX7+w3Q8qSKkaPXjwoM3q4pwn3FjkUklNO04CFCQsvffeezbMUQEKERERkfRbsGCBBSjwyiuvBCRAAfaB2bcKR4AiLRSkiALMeqD/PWU+Xq+w1G6e7t2711o7EWxggF1ahvJRvu21diLi5bV20twJiRQskIkGey2gWCzzPKF1E4GL1GK+BT+HDYCffvrJfobXs+9MyLQkgEgp3smTJzPw24iIiEikYA7WwoULXdasWcNy+8uXL3d33HGHZZ4xT4uPc+fO7cLp8OHDVn3KGoG2AARxNm7caJUeIiIiIpJ+e/futa41XjVFnTp1AvJwcs6WHKqGmX0xePBgFwkUpIgClHfTzoYN1PPOOy/V38dwFf7RPv300zT1zicQQUY6QQkwXJhJ8AzKjoSBgSL+zjrrLJuVwv+oVyk0depUe75Q9ZNaVBsxiJsABQEOFtxvvvnmGb+P6iLaPb377rvuggsu0B9HREQkSlGxwJyqcGPuFe1ajx8/bolKVCqQMBROnFNxzkOG3/nnn28tZDn3UatLERERkYwhIb1Ro0aWEHLDDTe4IUOGBOQh3bBhgyW5dOvWzaphE9uzZ4+1UX/11VddJFCQIgowMIWWTan5J2UR42Vzs1n7+OOPuxw5cqTqdv7++283aNAgq57YunWrbdrSn//ll19WayeJihZQL774olVAEJTbuXOnZR4ySyW1FUhsAPA/36BBA/sehs2nFHX2EBBJSxs1ERERiTy0N2X4M+fT4fLtt9+6unXr2vk8A6mZmZU5c+aw3Z9///3X1iAkcZDhRwUpFdpUU+jcR0RERCTjevbsaedX2bJls644JIQEwrRp06x1P+dwSZ230U6qf//+Nrs4EihIESWuuOKKMw4FGzlypJVdM8QurfMr6MVfqVIl67tLsIII3tdff+1q1KiRwXsuElosomk90LJlS9/CmpYNBPpSg2oIXhR69eplmxRpeXEgsMEA7/TMxRAREZHwYZAfSTos5PLmzRu2+0GbVgIA9evXd/PmzQtrlSbV3FR0kPDB2qJZs2ZWcU1FhYiIiIhk3GuvvebGjBlj70+fPt0VLlw4IA/rX3/95WbOnOnrkJMUbosZrbSXigQKUkQo/ploYUOP/TOhZKd3794WefP+yVKb2cT3Tpo0yTLBidqRST5jxgz3+uuvW49/kWjE/zFDhmjXxP/xV199ZSVzDHUkcHEmtDUbPny4ZQt6vvjiizMG/5555hk7wDMTIzUVGCIiIhI55w60b6TVUsmSJcN2PziHHzFihCVMpKXNazCGdjOzi8eDgdgvvfSSLZxpQSsiIiIiGUcyLftH6Nu3b8DmUIAuIbQyzZUrV9TMD1OQIkI9//zzthigD21Km51UPTBYhcUM2FilooI+/WfCgOC77rrLynoYlF21alXLQCdLSuXbEgvuueceqwgiC5Dn0cMPP2xDKCl1S4sPPvjA3XLLLdZ6LaXnI9FnsguffvrpsG4siIiISNrx2s35cKgtXrzYzln8W7aec845LhxIYBo1apRVpv74449W2bF69Wpbb2h9ICIiIhIYx44ds1bj7MdWq1bNunIEEom7aN68uTv33HOT/BrmsVJFnNZuPMGiIEWEIlBw9913W9AhuXYz/BPR0oYeY2R+MzuCFjWpXQyVKFHCBt6xICOwsWTJkjQN2BaJBsxWWbhwoRs/frxlAi5dutRdd9111uM5tThwE/ijMuPee++1Sqek0D9w3bp19jVayIuIiES+L7/80qqIkxomGAorVqywc35aOz377LMu3Ivlxo0bW9IFiVCczxCguPbaa8N6v0RERERiCeedbdq0cdu2bbO5ELR8OvvsswP28xnAvWDBAnuffePksOd8ySWX2GDtSBCeFB05I3rhvvXWWyl+TY8ePdysWbMs04rNUxY4qXkiEJBgIDBtbyhnZ2HGpq0EDgs7yqo4MLChzceJL/wtiGby90t8YQj0ZZddlmy0U9KGgEHHjh3dbbfd5u6//35bcPN8oTUTc1jOVHnUsGFDC0BQevf222/bQZ6WB0m9iPgHJ6i64GvClQ0pIiIiyeMcjRJ7qi4PHDjga50aKp999pkNxz5x4oS9pX1rOAd2MweDt5x/sl7o3Lmzki5EREREAmzw4MFu7ty5ds5Fi8+cOXMG9OcT9OA8l9adKbUxPX78uL2NlHae/zkVrrQhSTZjO7X/HJ988om1a5o4caJlPZ0JJUQsxPhnBWXbZJeHcyBftOFJziJ23759bv/+/Xbxf9/7mABFRp9abHZzoKISIE+ePPbWu/h/nDt37jQNd453/A0J8I0dO9Y+5jlEwOFMg+lBRUa9evUsyMTMGOa5JBfgWLVqlX0N0fFQb3qIhCP7ln7uDJ5NzXNJRCRSzglomfriiy+69evXuxw5coTstrm9KlWq2PGTVpQkQYTrnHz+/PmuRYsWtg4hUYrkp/Lly4flvkjwxcJrdiz8DiIiEp/o6uElmbOn1K5du4Dfxo4dO2yEQNGiRS1RNyUk15LETueRcL9uK0gRQY4ePeqKFStm/6Bkd6empz29w8jwPpOdO3dadtSGDRssq5sBwmSWqyVN0v7880/LqqN1D0MUectjeOjQoQRfR5Y8QYLkAgkMbebv6F8x4b0Pr6rCv9qC26YCI7kACEESvs4ft1OwYEGLkjIgmgvVMQpApdyf78EHH7QDMgduFuj0XT6TOXPm2GwKDuJdu3a1vs1JPY+mTp1qQUFK93iB0IwKiWXaLBCRaMYsiFCeM3333Xc264qkFmY/LFq0yGXOnNmFGucyVJUySwu33nqrZfNRzSuxKxZes2PhdxARkfgclE0iyG+//eYeeughX/JsrDuWytdt9SCJIFQ4MMyaNk8sGJIyZswYW0CUKlXKPk5NgIJZE/SUPXLkiE11JzuqUqVKAb//0YpNagISBCO8Cx8TOCBLnsARm/5EOhMHIci4S82Q8kAvKJMKYmzfvt36KjObhHklBEKYO1KmTBlf4IIyr2BGR6NJq1atrMey19qgXLly1vqsbt26KX5fo0aNrCqJ7ydIyN8jqbZPVFBwIKY1lAIUIiIikSuUAQrOGxiSSICC5BKy6cIRoOAchkGKVImCXsRUlajVqIiIiEjgsSfLviIBCqppn3/+eT3MiaiSIoLQHoiFAu2eyKpKKkBB5jZDTYi+sVGelvkTN954o/U8u+KKK1y84nH46quvbDPfC0h88803FpBgo7l48eK+DX0uBIPCsXDMCPoab9y40VcB4v2OVF/wO7Ix7/1+bMwTxAjkgJ5oQ2CQwAPt0zBw4ED3xBNPnDH4xKBLgn2hDlKJRCJlNIpINGEWxNChQ91zzz3nrrrqqpDf/hdffOEefvhhq+IMR9UCQxppd7l161YL0EyePNkCFhIfYuE1OxZ+BxERiR/sx9WqVcstXrzYFShQwK1ZsyYobUY3b95s+8bsaREIORMSVEiCJsn26quvdsGidk8xhl5i9LcHraCeeuqpNM2fIOubfrvx2P6Hx2Lp0qU22Z4L7ZKoMvDfrGejnoBErFYZ0MYgcbWIF5xh7gUDoVmsVq9e3WXJksXFG1psMadi3Lhx9jHR7VdffTXVix4qV5YtW2aPX3JoF1aoUKGA3WeRSKLNAhGJJjfffLP7/PPPXfv27W22WziQTBSOtqsffvihVVhTSUFLSmZhcB4s8SMWXrNj4XcQEZH4QeCAxHOSoFeuXOnrjhNozZs3dzNnzrSqXZLUz4R9UQIb7JnedtttLlgUpIgibJpfeumlybaEmT17tmvatKktZthIffbZZ1Nc1DA3gQjd6tWrbTOenvmdOnWKq/kTPKbvvvuuBSWIVFJdQKYcG/FsyNMDLh4DNonbXPE/wuNEq4EtW7bYAO5q1ar5HieGJ8YTWmUxp4KgBTM9PvjggzNWLBGgaNasmXv99dfdlClTfMFED89brmMGxscff2w9qEVijTYLRCSaUEFA0g99gGmFGorsOc4vmAdHckw4cD7CTLpHHnnEKosrVKjg5s2bp/kTcSgWXrNj4XcQEZH44HXFAe3377nnnqDNPCtatKid55GYnJokFFpO/fDDD65Lly5BTapVkCJKsGAg+3rXrl1u+vTpltnl76OPPnJ33HGHLW46dOhg1RApBRv27NnjatSoYT32GabM4oMZFvHwOFIZwGY7gQnK6GnDwwKMDXcuqRmKHM+YacFjx2NI6yM231lIM6OBx6906dJxEeiiFRiVFAS6OEiTcVikSJEU//d69eplrdV4fHj8CPD447k7adIkq4BiU0Qk1mizQEQk+fOEzp07u/Hjx1tZP5WVWbNmDenDRfIFCUtTp061j1u3bm1rCpJTJP7Ewmt2LPwOIiIS+2jpz34agYNhw4a53r17B+22HnjgAevCU7t2bUtGjiQKUkQJBh4zNO/o0aMWWPCPXH3//fc2R4LhKpRlz5o1K8X+92TCE9DYu3evzZ0gC5yhz7GKJzlzARg0zsbw7t27bdFHkIaDANUkwejxFg/4f3zvvffsceUtBxRaAhCwqFevnlVbxPIcC557PJd27NhhGYbvv/++BWlS2oBo166dLf6ZKbNq1Sorm/MQ8CA6zfNZJBZps0BEosHx48dD3taSCmiSGUhkmDNnTtCy55LDOqJhw4aW+MQ6gvvDPIx4SDyR2H3NjoXfQUREYhvzcOmkwfknAQRmgAXr/GvXrl3WPYYEd/aj6B4TSRSkiCJMdmeAH5vriRcVjRs3tj8mm/EpzUugcoBNeb6HwAQBilgdkM2GL215aK3DZjK/J0EJNtAZDKOssMBn31FZ4VWpkAGYP39+O8gyXIfgRawO1K5Zs6a9sLD44fdPaqC9/+NEYIPnauHChe05qSCZxAttFohIpGNYNAu2nj17usceeyzFxJ9AISjBuTyouKRtayhR9k91J787iTy0pmS9IPEtFl6zY+F3EBGR2PXjjz+6m266yd6S5Evy77nnnhu02+vUqZNVyd5+++3W8j61id/sR3OOGOzzYgUpYgSDjflj0ropObSjYSgK0bly5cq5RYsWpfj10YjWQ/yeRB7ZKGfWBos+stcrVqyobLAQoWKAdkj8HZiVwqwPFrv8HXjL3yWWsPCh9ROBB4Jf/M5UkqQ0D4bnIIEcAhr8zyaeNcPPZDBR4tZuItFMmwUiEukITFBmz/kKpffBRgISi1JmgNHu6YUXXgjp+SrnLqwPSGAiuYSyf+ZticTCa3Ys/A4iIhKbfv31V9sPWr9+vSWRMyg7W7ZsQbu9ffv2WVceEmc5/0tty386++TJk8e6pLD3HMzz1NS+bgc/hUiSxOYu/6hJ+fzzz33vE2lLKeBARhQZUgQoyOJmInssBShYWLGgJDOdRSXtdxgEzpNp2rRpVjqlcvXQ4bEmGkwVCwdCIrVUtrCRX6BAAff000+7gwcPuljBQZRWT/x+bDLQooEef8mhcoIgGpFonse8KPn7+uuv3ZVXXmk/j4O0iIiIhMbgwYPtvHnEiBFBvy2SFbxzB6p9OXcN5fnqjBkzbOYd59EkT1DdqQCFiIiISHARKCBJhL2gnDlzWpJIMAMU4HYmTpzoWrZsmaaZxARTwP5VpOyrKkgRJmPHjrUKADKr/L366quWYc31ZK2nhAF8TZo0sYgXMyu8zdFYsGnTJhs2TCuh/v37WyYaCyxa7zz00ENBf5LLmRH9bN++vVu9erVbt26dtdsaMmSIZesxkJG/VSy44IIL3JtvvmmtrSiHo83V8OHDk/16ZlG88cYb7uOPP7aAjr+iRYtaEJELMypEREQkNChjpwq3ePHiQb8tXudpLXXDDTfYTLlQzfFi7fDMM8+4+++/39YHzKJYvny5y507d0huX0RERCResV/EvtGSJUtsBhpdbki4DrZzzz3XtWrVyr3yyitp+j5mWJBAv337dhcpFKQIE7LQWbCULVvWdx3DTWibg0suuSTFSBabpGzWsxjhLQugxG1lovEJTZSRzK8SJUrY+3379rXNXLLXyQSLlOieJMTw9wkTJtjQ9qeeesoqeriOErd58+ZZu65oRhsrqkceffRR+5i3/fr1S/br77zzTvt/9f/f9l48qMygosJ/sLaIiIgEB72AQ30eQiLH22+/bW0fQzWom0GJJPg88cQT9jHDuqkcSWmmnYiIiIgEBvtEM2fOtP0jEl3993uD4dSpU9ZVJ73YXyUpN5JmqSpIESbPP/+8RauaNWtmH+/Zs8d63VMaVL9+fTdw4MAUqzC8zVKqDMaMGROS4X/BfGKxcUu2Gdn4lBwRdKFUniAFpUsSHS699FLXu3dvG2jOsEj+trRIKlmypC3Wz1QdFMk4gA8dOtQ9++yz9vGgQYOscuRM1q5d60qXLm3DK0GvwFib3SEiIhKJSBLg3LJUqVJu48aNQb89qii9cx2SkTgvCgWGHtJeiplhrAlYK5DQFM3rAxEREZFo2uP19oqmTp3qatasGfTbnDt3ritSpIjNTo0VOnMNo4IFC1pm9e+//279aunlzyKKlk/JLSqoKOjSpYu9/+STT7oBAwZEdXUBLZxuu+02yzynVRWLO3r508Yq2itD4hmb8LQY4O/J35hhPAThmCHyySefuGj2yCOP+PpZ9+nTxwZhpoSAIpUTbJIwJChxcI7ApIiIiAQeCQK7du2yZCDORYKJ83cqSNu2bRvSpAzWD1WqVLGWAlRNUMFKlbWIiIiIBB9J1j169LD3SWxt0aJF0G/z+PHjdpvMiP3222/T9TO+/PJL9/jjj0dUkENBijDMWjh8+HCC67p37+42bNjgcuXKZdnmyc2V4B+HhQ/4ZyRAEa14EjFMhn69hw4dsnkabGhXqlQp3HdNAoy2R4sXL7YLAyQZ5MOw91BkNAZLz549rYoJ3bp1s0h5SsMrma2ydetW17FjR9/GBYE5LrygiYiISOBdc801bseOHW7+/PlBLWX3b9lKMCRUCURUrjLjjqpNfr+PPvrIKipEREREJPjYy/SCEiSU01kkFIYMGWKt8QsUKODrtJNWa9assaAKrakihYIUIcTmJAOFGSy8cOFCu44M60mTJtlihs1K/sGS8s4779gQPH4G/WYpI4rGCgpmFhBooR8/w5bJOmPAMpvW0fj7SOrdfvvtFqmlPzIb9rRA4n+atl7RiCAFVRVgY+K1115L8usYVknrK9o+8DUELcAweAKSv/zyS0jvt4iISDxhzhtVu8Gyf/9+a22ZmpatgbR+/XpXoUIFax9LK8mVK1e6m266KSS3LSIiIhLvli9f7ho1amSzz5o3b+5GjRoVkn3N7du3+7p70GYqvfPHmAVM0m2tWrVcpPjPqWhuEh9ljhw5Yhu1W7Zscbt377bKCdDyhYUGZTZJIQOdTXwWP2zqMrE92nrM8rsToWN+BhuzDPV78MEH3fnnnx/uuyZh8Ndff1n1AQt5KouoMGD+iPeciBYcPjt16mRDwwlC0BMwuQzGp59+2lq08f9PYO6yyy6zIZfZsmUL+f0WCbRjx465iy++2FqaMTBWRCScTpw4YRUULL6CiXNzAiCfffaZJeDQsjS5iuhAWrZsmbXRZI4brWLfe+89d/nllwf9diU2xMJrdiz8DiIiEr1Wr15t54DMBaN9P9UItPMPhTp16lji+x133GH7ydGQ8J3a1+3o2umOcgzPoxybDUr/zVgGqiQXoKB/P5ueLIJoj8RMimgKUDBvgzKkwoULu/Hjx1vpE4tGonUKUMQvDt4EqYgA07aMwNuVV15p77Pgjha8GIwbN86Ch0TPGzdu7D788MMkv5b5FbQz40WsWbNm9v+vAIUEC/+XzD264IILLLOWKqaUkPVBWxSyMK644gprQ3jy5En9gUQkKlGlfN1117mHH344qLdDRSUBChZbb731VkgCFCyCaRfJ+RKzKFasWKEAhYiIiEgI2/izj8veTtWqVa1bSKgCFHPmzLEABbfHfNRoCFCkRfTsdscI/oHYCGK+BNUUZ+oPVrt2bcsGYzFCqxgGEkcLFlFMmqctDpu4BCfInFe2i3iyZMlim/f0VKaNGdU2BCumT58e0qGTGUHQkOAhg8IJJpLZyHyVxKi0oNUT0ePs2bPboCP/wZ60wBIJBE6SmFvEsZe2emTZ1qhRw4arJoVWg4899ph9PZV+VDnxM3huiohEI5IgULx48aDdxubNmy0BB7y+X3XVVS7YOD7fe++9dr5BiykqKDivEIk2JCaxLva/FC1aNNx3S0REJEXs3VSvXt26xTB/lbnCJAaGyrp16+wtcyjYW84IZsb++++/LqLQ7kmCb9WqVaf++usve3/16tWnzjnnnFMXX3zxqR07diT59Tt37jyVI0cOdmlPValS5dTvv/8eNX+mn3/++VTjxo3tvterVy/Z31Eksd27d5+677777H/nrrvuOrVv376oeZD++OOPU7Vq1bL7znN7y5YtSX7dtm3bTv3777++j8ePH3/qP//5z6m77747hPdWYlm5cuVOPfTQQ76P//nnn1N58uQ5NWTIkCS/nq+97bbbElzXo0ePUxUrVkz2Nk6ePHnqv//9r+/yww8/2P8+74uIRIKvv/7aXpuDacmSJadGjBhxKhS4HY6zXNq1a3fq77//DsntSuzhtTrcr9n9+/c/de21157av3+/78IaMpp+BxERiS/sbebLl89ef0qUKHHq8OHDYbkfy5YtO/Xnn39m+OfUr1/f9qImT558KthS+7qtSooQoGLilltusSgXg6ObNm1qveiZT8Ggu6R6ddWtW9cdOnTIlSlTxoZmp3cQSqjRk5+stSVLllh27rx586zVk0hqMFSeiiFaJtDXmf7OM2fOjIqqivPOO8+qh3iu02ePPoHM20iMTEv/kjy+no+JYDOrQyQjyK6lrSCvL/7VPny8atWqJL+Hwat8j9cSisqmRYsWpThAizZ+ZO96F1pEiYhEEuZR8NocTNWqVXM9e/YM6m1wDsTcrl69etnHtE6dOHGiVWiKRDM6BOTOndt3yZEjR7jvkoiISLL7urR2Yk+3WLFibunSpdbSPxyqVq0akPZS7D1znpk5c2YXKRSkCAFmULCJQ0CCdhqUB+XLl8/65SbuH0Zfe4IY33zzjfWXJUBx4YUXukhHQKVJkybW8qZixYrWo42PY60/moQGLZNoo0Cfv+bNm7v69eu7AwcORPzDTzCRwByzAGhv5rWASgq9pFu2bGkDtXfu3GnP9VD1MZTYxbGY1xEGs/vj4+SeQ7zmPPXUUxYw43+Qlmv0OU+p3RNzlAjGeZcffvgh4L+LiEhaEWzlmBQsLOQIEmzbts2FAgkMnTt3doMHD7aPaYs5bNgwnV9LTGBNnCdPHktoY17bnj17UmxJwWaK/0VERCQUWOsSGOB16uqrr7YAhf+c4WDbunWrJcGm9DqZHgsWLLA9AuYgRwoFKUKAP/i+fftsqC6969m4p3dtUlE3+ooxBIWeZvQ2y5s3r4t0bMqS8c7AYLLe+ZhsGJGMYG4D1ThU55ABToVONFRV5MyZ0w72DM9cvny569KlS5L3mQ0Ofj8GH/EiJxIu/J+yAUZvdXpccgzndYgAWnIY/M58If+LiEg4nTx50pIaChQoYHPdguG5555zI0aMsKCu/2ypYKDquk2bNnZsZu1A9QTrBJFYcNNNN7lXXnnFvf/+++7FF1+0hJ1KlSpZEk9SVMEpIiLhwF7ubbfdZq9TJPMtW7bMEspD5a+//rIZv6zPmTsZ6CRbkhmZFRsxgt54Sgy9ynLmzGk9uB5//PEkH5WpU6f6es3Onj074h+5Q4cO+eYH0E+fXqIiwUCPWu9/jTkn0fC/tmDBAuvvx30ePXp0kl8zePBg+/xFF11kv9Px48dPbd++PeT3VWIH/dfPPvvsU2+99VaC61u0aGFzXpJyyy23nOrZs2eC66ZPn34qU6ZMNs8iNdQbWkTCjZlPxYsXt17BzM0JtM8++8yOr7xuv/jii6eCiT7D3nw3bnPWrFlBvT2JL5H4mn306FE7H54yZUqSn9csLBERCbU9e/acKlKkiL1mFixY0Gaohlq/fv3s9i+55JJTe/fuPRWtNJMigqJuePbZZ93PP/9svcsGDBhw2td9/PHH7sEHH7T3aQl17733ukjGzAAy2z/44AOrCuFjVU9IsNCjllkVVFV89tlnVrnDx5FcVUE5HtmW6N69u2WKJUbLiBtuuMFK1mmPRkS+RYsWYbi3Eivov87/lH91Du1C+Pjmm29O8nt+//13m1vhz+t1HsnPMRGRxDOfvv76a7dixQqr9gp0Kz3OzWmnd99997kOHToEtSLknnvucW+88Ya14GPeFecIIrEsW7Zs1kJj+/btSX5eFZwiIhLqGRSVK1e21yXaeX/00Uc2QzWUFi1a5AYNGmTvU1kb6E477E3TSjSYrVLTSu2egoh+YQwTpbc3w+7o7z1hwoTThvgxpLRBgwZWxkNLqCeffNJFqqNHj1rPUO5v+fLlbfYEH2v2hIQC/3fMqqhevbr10WcRf/DgwYh98CnHo1UDm8RsbmzZsuW0jWDaN7BBTMud3377zXoCRtKLhEQf/u8mT57spk2bZv9zHTt2tLYkrVu3ts8TCGOmhKdu3brWamH27NlWxrp48WLXr18/u16DWUUkmvB6Sn/7QOI1nOMmgxLZRE1qplygEDS+6667rG0krV+ZV8WcLpFYxzkw89xC2UJDREQkKayJCVB4LZ5IgCFQEUrbt2+3vVaSBkloJ0km0Oe3AwcOtH0B5j5FinPCfQdiGdUR3oLpkksucc8888xpX0MGNRtBhw8fdmXLlnUvv/zyaRmtkYLNYRZO3Nfp06crOCFhq6pgM5Wh1J06dbLnDfNbrr/++oj7i7CJweYvgwE/+eQTq65gqCfzNjxkvT/00ENuzJgxLl++fJYFmjlz5rDeb4luBMSo3CPgTdCrdOnSVsnjDdMmgO7/OvPEE0/Y/ypvf/zxR5urwutSUq9ZIiKRhuoGgqt33HFHUM6hqYp87733LGjAHKkLL7zQBWuTlvMEFsL0Bn733Xct0UkkFvXs2dPONZghQ+cBOgmQGKGqIRERCSeCA8ygYFg2VbpUUIR6VvDx48ctQfeXX36x5PDRo0cHZfZZt27dbE86kuZL/ofeUOG+E7GMYdJMfWeTKDEeejLBaZWUJ08e27yM1EHZLJTIXOdEkqyuQoUKhfsuidiGKhmGVPSQNd6oUaOIfFTYMGZAIJH422+/3dqk+W+kUDlBKzg2WjhmlCpVKqz3VyStOLm5+OKL7X85kk5yRCT20RaJ4CwZbywkA1nlwOsyP5dWk1SotW3b1gUDw4Jr1arlPv30UzuGElhOrkWfSCy8ZpMRSkIfyW8kRzCMnuQIMlaj5XcQEZHYQhcC9msInhctWjTkQ7I9VO9yXkjXkHXr1tl+cbRL7et2ZKbsxwgib0S/2rVrZ5uUiZFhTYCCfrPz58+PyAAFgZRhw4ZZBUW1atXcypUrFaCQiMFzhgVO/fr1fa3SKFuLNCy+aN1AhcSSJUt8syo8HKypBtm6dasFKHjecRAXERGRlB05csQWO1WrVg14GyYyuwl8zJo1yz3wwANB+VPwel+zZk0LUHA+QFWIAhQS66iKZhOIFhNsxvBxagMUIiIigUYw4NZbb7XXJmag0o47XC0I8+XL51atWmV7R7EQoEgLBSmChPkSlM5QpsOgL//2LqClC33DMXz4cHfjjTe6SHPixAnXvHlz99hjj1kbEIYWB6vEXSS9MmXKZMPbGfjDUCGqk2iZEGl4oXvhhRfsfZ5PX3zxRYLPcwxgaCBtoUqUKKFydxERkVSgTy9t7Lp37x6Ux4tkIlrQBGMOBdlktKkiCYhzABaj5cqVC/jtiIiIiEjSqJgl2eXQoUPWTpzWm16r5FD62S+5ndaf7AsFC1UikbhvpiBFEFC2St98qiTIwKJiwr+1C0PxKHElc4QSHoIZkdhGhygiv8Prr7/unnrqqYidlREtBgwYYAvcpC7qOZwxPIaPPvqotSJbunSpq1ChgrVWijQM0abig/5/bHgkNSCbF0Pmv/CioWoKERGRM6MCIZAtX5i9xnnFn3/+GbSHnz7D1atXt6QFZtdx/sLCWERERERCw5trxt4Le6CcjyVOMg+Fr776yhUpUsS6bgR7KgPBmBo1atje008//eQiiXadg4ByVW9z8ZFHHnHXXXddgs+T6cUmZO7cuW1QdjAyszKCxRKLJP5ZiSiyqSqBGRBH6y9K+Pfv328X/j/IsJ83b54e4gBg4OTnn39ugUAqEyjRiyQ81ydOnGizXQiidOzY8bQXIO4/qFqKxNZVIiIikeC7776zNonBGJjYqVMnq3R+5ZVXXDCQpMDicPXq1bYQJjGhTJkyQbktERERETkdSdnsIbF/ROvN9957Lyxzjnbv3m0J7MeOHbP7wEy0YGIvij0p5m6Eo2IkJQpSBAGbz2BgNj3y/b355ptu0qRJtllJixq+JpK8+uqrNiCwcOHCtnC6/vrrw32XYkbWrFltJsF5551nASouXHfOOee4Sy+9NNx3L2YUL17chtAzrJ4MxQkTJrhIQjuH1157zaqseMvAb38M/7zmmmus1I/qGxERETldnz59XLFixXytFAOBygkqHSl/53w4GHMovBkUnKtw/kfGHucsIiIiIhIaU6ZMcQ0bNrRzP1qGMyOU/bpQO3r0qLvzzjttH7lEiRKWwMweYTCR0Euyz/vvv+8ijYIUAUb1wahRo+z98ePHWx8x/+gYmfSghJxB1JGCSF2vXr1cy5YtXbNmzSyjK9IiaiKpxaKfAy6ZkFQr8JY5MZGCahpaqOGhhx5KkAnKDJsxY8bY+7SK47ghIiIiCc9bvSwzeggHysCBA92aNWvsPIJkIhIKAunXX3+1hShVk7R4YgZFqVKlAnobIiIiIpI0Olk888wztjdL54q2bdtaNxySiUPt5MmTrl69em7Lli0ub968btGiRZbUGgokzufMmdNFGgUpAuzIkSMW/SIy1aBBA9/19KBv2rSp9Z+96aabfBuUkYDSprvvvts999xzbvTo0RZRZKNUJJoRfeb/efLkyfY/TVsFNgciBYHK2267LcGMGg8VIFQxEdUnui8iIiL/h+ABmWa7du06ra1qetHidOjQofY+rRnz5csX0Iec6gxK+b0h2fRAVsWyiIiISGgQlGAm8BNPPGEf9+3b1zrdBLtyISnsEd9///3u448/thZTtHm64oorgn67Bw8eDPrMi4xQkCLAqKKoW7eutU3ynzVBUIJFCf98tHg599xzXSRgwUQPto8++siidl27do24GRmxTI918BEZp5XCunXrbCASgcJI2WBhMCe9qBmS9NhjjyX4fO3ate0tGZ1E1kVERCSh/PnzB+QhIYmhRYsWtnjlbaATBE6cOOHuuusu9+mnn9qQbwIUN9xwQ0BvQ0RERESSRlIoXWPoWsE+HO1CBw0aFLY9OTp/MA6AvWESbwKVdJMSghNVqlSx9uLsQUUiBSkC6MCBA5a1TVTOv80Tf/zBgwfb+/THL1SokIsEDO2jJy6boB988IFlmktoMRyZ/5tt27bpoQ+iSpUqWaCCx5k2a4cPH46IxztPnjy+oZwEOAlkerp37+6uvvpqe79fv35hu48iIiKRhJlpga6M5Fydlq0EPQI548JbFNevX98Sgjjv45y7bNmyAb0NEREREUkaiarsfdLWiaDArFmzXJcuXcL6cJEs/vzzz7vXX389ZKMAfvjhB6tC3rNnT8TsSyemIEWAkOnMPxjtZSgf8sp06Jfbvn17e8swFobxRUpbKlrKbNq0yfrh3nLLLeG+S3HJCwyVKVMm3Hcl5pGxyAYBB2b6V7MZEQl4cWrVqpW9z7GCFk+gH/bcuXNduXLlXIcOHcJ8L0VERMKPDX8qEmjFtH79+oAmM2zYsMHNmTPHKh0ChXlY9957rwUmGMZI1TJtX0VEREQk+NiQZ79z+fLllizCuRjttsOBSgbafXsefvhhS2QJlfz589s+GOelgTzfDaT/nIrkZlRRhAAEJTr0FKPVk4dsLIIWtHkikEHmdLj9/PPP1vaGzVr1w5V4w/OQSDUHZQJ0DCgKNyo7ihYt6g4dOmQlh/RG9HCIVlswiXTHjh2z5xQVerzeiYgEAxWRBCmopNi5c2dYhhymFglKtBUgQ45ZbwsXLgxZppxIrL9mx8LvICIiwUWlLG209+3bZ3uxBChKlSoVloedfZ1HHnnEumfQ6ilUA7Kj7XVblRQBKjsnQMFGIsNwPQQBvM3GYcOGRUSAgk1QhvXu37/fIoka2CfxplixYm7FihXu+PHj1o+PF6xwYy4F7Z7w9NNPu++++873ubVr17o+ffrY/VRMWURE4hltEDdv3myzHTIaoOA19aGHHnLLli1zgcZsiwceeMACFF6vYQUoRERERELjww8/dLfeeqvto1x77bXu888/D3uAgu47X3zxhbUiD8d9iAYKUgQAG4jgCVCwYMEECx8GU1eoUMHauERCHzYqKCjvoe1NiRIlwn2XRMLiqquusiAdgyxvv/12d/DgwbD/JZo2bWrPT1pZ0N7JexFhmP2QIUPsGEIfxWh5cREREQmGs846KyB9dGfOnOnGjx/vatWqZfPBAoXXaV67p02b5s4++2zrf8xtiIiIiEjwTZw40c69qLwlMZXkFq8lf6h5IwAIUGDcuHHWiSfU2rRpY63GCdZEMgUpMojsK1rGUEVBdvbw4cPtejKmFixYYNlTkyZNsgVVOPHkZINz9+7ddn/JJheJZ4ULF7bnrzefhbfhxDHkxRdfdJkyZbIgIpsboFVE3bp17XlLNsA777wT1vspIiISDsygCFSgnqw6Agno16+fy507d0B+rvfzWIDyuv7KK6+4Bg0aBOxni4iIiEjyAQEqFh588EF7n3b84WytxGwy7sOUKVNsT/ill15ynTp1Cvn9+Omnnyxphtaj55xzjotkClJkEP3jvaG8VFEw9IQeW96k+N69e1tpUTjR1oY+bN9++61tcpYsWTKs90ckktpGUGrHZgVVDDx3wx046d+/v73PiyvzY6jIIjDRo0cPXzsoVVOIiEg8+f777+1c+7rrrrPz2ozgNZSKxaNHj9rP9G/VmlEjRoxwzzzzjL1PlUbz5s0D9rNFREREJGmcH1Kh8Nxzz/n2TUj8ZC5YOJw8edI1atTIvfbaaxYY4G3r1q3Dcl8uu+wyt2nTJpuZXLZsWRfJFKTI4BAWMp4p5aZyggUUPc4ef/xxm/lAS5knnnjChRPtbBgwSPYZEUQWYyLyfwgiUqXA8/fOO++0qqNwIhhBIJHKDi8wge7du7sLLrjAZlRQrigiIhIvNmzY4LJkyeLy5ctnbzPi1Vdfde+++67NtGDxGqiMMloLkJyEoUOHWhafiIiIiATXjz/+aO333377bQtKEBBgL5aq1nCheoH5E9yf+fPnu8aNG7twJ8R2+V8yfSRTkCIDmEhOJIwsKfqb8QTgn3DChAn2ed6yqRguZIq1atXKrVq1ysp6ypcvH7b7IhLJCC5SZUR0+b777rPSwHChRdzkyZPteDJjxgwLoIBgqNfT2utnKCIiEg+oVN67d69VJ2R0EdutWzd7/6mnngpYtTMl9B07drT3SVYKZHWGiIiIiCSNPViqA9atW+dy5sxpieTs6YRbgQIFbC/nvffes8424Wo39cMPP7hooiBFBiNR9BSjjMgLCpDtzNuWLVu62267zYXT4MGD3RtvvGGDAYkqikjyeGGbM2eOVRz16dMnrA9VuXLlrM0TqKZg3k2OHDncl19+adcRid+xY0dY76OIiEgoXXzxxXbunRHTp0+31o68ztJWMRA4b6DfMOf/9Bn22j2JiIiISPCw11m5cmV34MABV6JECQtY3HzzzWF7yEl6pVrXQzJM1apVw3Z/Jk6caC3On332WRctFKTIIHrG58+f3xZNZFExKT1z5sxuyJAhLpwoc6K8iSwxss9E5MyYSzFy5Eg3fPhwq2IIp4EDB9qAp6+//trmydCO4sILL3S33367bYTQT1BERCSW8Xq3Z8+egP08KhxY0DLQOhBtnqhWpv/x33//7Zo0aeLGjBkT1tYCIiIiIrHu33//tcRSutr88ccf1uJ+5cqVrlChQmG7T8uXL3cVK1a0ORTsC0eCjz76yGZjZLRVaigpSJEOv//+u5V00x+XC4sc/ugDBgzwZT5ffvnlLlzY1GzWrJk9OcI9E0Mk2tAGgjZubdu29VUuhMOll15qLSNAVubOnTvd5s2b7bp27drZ0E8REZFYtnTpUltwBmoANQGEpk2bumLFimX4Z33zzTdWvs+6oGbNmhb4OOssLa1EREREguXYsWOWiO0lhj/22GPurbfesoTOcCHBtUaNGlatyxxg5hNHgjfffNMtWrTI9o+ihc6k01kqzryJBg0aWEuno0ePWhbVtm3brCVLr169XLgcOnTIoog8KV5++WVlc4mkYwPjxRdfdGXKlHH16tVz+/btC9tjyGAjhoTSR3DWrFl2HcecSZMmueLFi4ftfomIiITCZ599ZtlyVBZmBBUOhw8fDtj92rVrly1GWQPQVoBFIIO4RURERCQ4tm7d6m666Sb3zjvv2EBq9mYJVoQrSYRZpgRJaPv5559/2r7w4sWLXfbs2V2k7G3deeedAakeDhUFKdKIhZI3tLZr166+J4M3LPvJJ5+0gdrhGorSsGFDd/z4cWv3FE0lPSKRhBe8efPm2bBqAhUnTpwIy/3IlCmTb+YNM2aOHDnia38hIiIS6/r3728tD3v37p3unzF37lw7Zy9VqpRVPWTUwYMHrT0kSQz0Gqb3sM65RURERIKH8y1minFemDdvXvfJJ58ErNI2PX799Ver6Bg2bJh9TPspZgKzhxNOv//+uxs6dKgFTaKRghTpGI5H9I5ARJs2bey65557zv3000/uyiuvDGsLFtrU0IeNzVXmZIhI+uXOnduCfbRzoDwuXIEBovLXXXed++WXX2weBW0vtmzZ4r766it7USZ7U0REJFZdc8016T6vJbj/0EMP2futWrWyuXEZ8dtvv1mLp++++84VKFDAffDBB9aeUURERESCkyg+aNAg6xhDq6dbbrnFrV271t14441hfbinTp3qFixYYAmuzDujRXcktP3s2rWrtQgngT0aRU/NR4QgIAE2LQlYvPTSSzYgBfxThqvUm/Y0XKZMmWJPWhHJOFo+0TbtvvvucyVLlsxQJmd6Uc1BJJxNEQITBEuWLVtmbSt4MaTNHGWFGtQpIiKxgupghlFnNBvtkUcesUSiokWLun79+mXoZ5GRxoJvzZo1VsZPgIJMPhEREREJPGY8tGzZ0pJH0alTJ+tsEwktNgkGkDz6wAMPWIVHpLj77rvt8Xr44YddNAp/mCeKbN++3Qb4ER2jVzzlRgQqmJZetmxZG1QdDgRJeIJw4QkiIoFz7733ur59+1qvwYULF4bloaWPYJUqVSxAQTUF2aAdO3a0qP3q1asteCEiIhIrqBIkAECQPr0+/PBDG2ZNEJ9sN14zM5LFxzk2gQmqMTgfoMJDRERERAKPjhZUS7DhTlBi8uTJbty4cWELUHAuOHHiRF8rcPaF+TiSAhSoW7eu27lzp80yjUYKUqQBQ1nAoDxKvMmm8sp5hg8fHpbSHv75uB9sYI4cOTLkty8SD5566ikrL2zSpIlFy0ONDRaOMSBQ+v3337tcuXLZffI/NomIiMSC+fPn21BqEoHSg/lsXgtWEosqVKiQoftDosKMGTOsupEACkMbRURERCTwZs+ebedatNek5eenn37q2rZtG7aHmnNSKhQefPBBSxaNtBmhJ0+etFZYnqxZs7popSBFGtBz9oorrrAe8XjrrbcsmlazZk1XtWpVF45/RJ4o2bJlc6+//npUTWwXiSYEIAkE8AJJYIAhSaFGFkHjxo3tBdEbpt2iRQt7S9sn2mKIiIjEglmzZlnFcnpnvTHEcNeuXfa6TTvWjBg1apQbMWKEvU9FBtWNIiIiIhJYtNakTRHJoQyApotEuOdPrF+/3jrncF5KVe6tt94aUa22T5065Tp37uxuuOEGu6/RTkGKNA6mZsFDW6cff/zRMqrQv39/Fw7cLkO8CZZoaJ9IcF144YWW2blv3z736KOPhuXh9vppk8VJYJKqrpw5c7qDBw9aWwsREZFYQMUCs5guv/zydH0/C1wy7mgLkJFsMl5ve/ToYe8PGTLE+iKLiIiISGD98MMPrnLlym706NH2McOfaa+fI0eOsG3+jx071pUvX946WRQsWNCtXLnStWnTxkWSI0eOuBUrVth9ZA5btFOQIq0P2FlnWcVCr169bKjfzTffbP+0ofb555+7Z5991g0YMMBdd911Ib99kXhUpEgRy85kSD3Dq0OtRIkS9uKIQYMGuXPPPdc1bdrUPn711VdDfn9EREQC6Z9//glICT3JO/QurlOnTrp/Bq0FmjdvbvfnoYceCluCgoiIiEgsIxhx/fXX2z4nnWKYQzF48GBLWglXe6d77rnHWoZS3UE3DSo6ypQp4yJN9uzZ7ZyVJFa6/EQ7BSlSgcEolPYQlPAmzL/xxhv2Pk+kcLR5at26tZXzECwRkdDp1KmTzYAhgh6Otk8M7sS3335rkXJaPhE84XggIiISzaZMmWLn1t55dlpt3749IEEOXmNZkP7xxx/WWpWsvkgq7RcRERGJheSUJ5980tWqVcsdPnzYggDr1q3zzd4MF1pNffLJJ5YUSttPOmpEWveaY34zKC677DKbVRwLFKRIhQULFtiE9IoVK9rHTHDnycQ/rNcTPpR4ElPK88orr2gOhUgYqqnoSX3o0CHXu3fvkD/+ffv2deXKlbMZFJQfspmzbds2BSxFRCTqTZs2zW3YsMHt3bs3XW0CeE1kZsQvv/yS7vtw4MABy0Qji45qaeZjhCuTT0RERCQW7d+/32ZOMG+TBBOGUn/22WeuUKFCYbk/zBv25M2b14Z3096Jtv+Rlqjy/vvvW4eNpUuXulijIEUqeG1U7rjjDsuoIpKGSZMm2WZhKFH+NHLkSPfUU0+54sWLh/S2ReT/K1y4sBs+fLibMGFCyF8YeIH0giP02j5+/HjEvWiKiIikB5XLnGenJwmIkvzffvvNqhwvuuiidN0+388sjN27d1uV4jvvvOMyZ86crp8lIiIiIqdbvHixK126tFu+fLnLkiWLzfulpfYFF1wQloeLJPBKlSq5uXPn+q6rVq2aDcyO1D3qo0ePuunTp7tY859TgaiJjmG0UyGKRuUEpd9E9mi3kidPHrdz50533nnnhbTtFBliF198sd0PZmOIiAtbpJ3IPy9oX3/9tQ3WDhWOR9dcc43bsWOHbeYQ3acNHJs7N910k7viiitCdl9EvHJTXptoh5jezUERkfSiDL9+/fp2brx+/Xqb4ZRWVCjWq1fPLVy40IY0rlq1ygIVIrEmFl6zY+F3EBGJN5xrMVeXeRNsRTNflxafRYsWDcv94T6w4U+iC0kuVHHQpSLS91pPnjxpj+ETTzwR0j3pULxuq5LiDF577TXbEGTj76qrrnIjRoyw67t37x7yfwbaPO3atUttnkQirO1TqGfDjBkzxrI88dxzz9m8nPvuu881atTIjg8iIiLxguqHrl272vu8HqcnQMEilYA/AQqy+Gj1qgCFiIiISGDQlvO2225zzzzzjJ13tW/f3n3xxRdhC1AcPHjQ5ji0atXKAhRUUixbtixiAxSbNm3yvc+5Kt11oiVAkRYKUpwBE9Jx//33W5Yy1RT0paVn7ooVK1yo0AvNa/NUrFixkN2uiCSPSDuBS+bUULIYKrlz57YsBObi7Nmzx7IPGjRoYJ+jd6KIiEg04by6cePGdr6bVpwbs/ClNy8ZZenx/PPPu/Hjx1v7RFoOMItCRERERAJT8VqqVCkbRp01a1ZLBmcPJVOmTGF5eOfMmeOuvfZaN2/ePAtKUJXw0Ucf2blkJBo9erRVnTByINYpSJGCn3/+2SJ7oPz72WeftffZGPzmm29CVlpKm6fWrVvb/ItHHnkkJLcpIqnToUMHywigDRwlbKHAUNDt27dbdRU4NtWpU8cCqJs3b7aKKxERkWjBjCUWjGkNUnA+ToDBqzJMz/wIFqg9e/a090k8uOeee9L8M0RERETk9LZEDz30kLXkZIYCMx5oy0kXiHDZsGGDJcbQEaNkyZJuzZo17vHHH7e9lEgeQ3Dq1Cn33XffuVinIEUKGIjLPwJzICglJ+pHhhVviQQSeQsFssJo7UIbl0h+4ojEc9snXnS9TY5go5fflVde6Tp16uTOP/9899VXX9mMnAoVKtjnaVchIiISLSZPnmyL2JYtW6bp+44fP+4KFy5syUQE69OKZKRmzZrZ+T6vqT169EjzzxARERGRhEiepG0+lapgr4TZuuFup0lFB+ec/fr1c6tXr7aPI90zzzzjFi1a5IYPH+5inQZnp4AFCwNxf/nlF/uHGDZsmKtdu7a1fQoVhvZVrFjRbjvUfe9FJPUmTJjgOnbs6D788ENXvXr1kD10TZo0sRZPbK4UKFDAPfroo1ZpwTFLJFQ0wFJEwuWPP/6wZKLs2bOn6fuoOmTxTE9izu9JQIrUPsQigRQLr9mx8DuIiMTqPuqLL75oXWCopMiVK5e19axZs2ZY7s++ffssQDJkyBDbL/HuIwnoker77793Y8eOtQrfWElUT+3rtoIUqUDv9yuuuMIdOHDASsIpVQoFnjg333yzDcX98ssvY+afUyQW8XytUqWKO3LkiFU2BPv5unz5cvf2229bawt6KGbLls0tWbLESiiprjh8+LDLkiVLUO+DiEebBSISTVggkQTEEMLSpUv7eiSLxINYeM2Ohd9BRCQWW+bTBnvBggX2cY0aNawjDDM1w7E/Q8cLAhS8VlBx692vSHby5EmrNvnxxx+tgqJPnz4uFqT2dVvtnlLhvffeswBFzpw5LWAwZcoUi2wFGxldlKFT0qMAhUhkIxLPc5X+2DNnzgz67X3++edu1KhRlgmaP39+q/j69ttvLTuArFJKKUVERCLZm2++6fr27WstC9OC7LyRI0faeXl6ko/uvfdeC1BcfvnltmBVgEJEREQk/T744AOb8cB51XnnnWczw+juEI4ABfsizA1t166dbYrfeOONltgZDS644ALrpEO1b6tWrVy8USVFMohY0UONXmWU2BAwoE8tGdLLli2zcqUWLVoE7Q/DAorp7fny5XOLFy8O2u2ISGA1aNDArVu3zm3dutUqGoLZCm7u3LnulltusePSwIEDXbVq1Wyzh8qvcPd6lPiijEYRSQ9ewwiqU4L/2GOPpep7qC4uX768ZcjxWsj7qcX3cG5PGwIqET/++GN3ww036I8ncSUWXrNj4XcQEYkFJ06csJbTY8aMsY+LFy/uZs2aFZZZD1QhcE45dOhQ9+eff7pMmTK5QYMGuW7dukV04vf+/fvd77//bnNHPf/8809E3+dgvW6r8WoyyITesmWLu/XWW30zKFq3bm3tnogKEiEMpldffdWifzNmzAjq7YhI4AOcJUqUsBkVvBgGC63guIBWFQQpli5dapVeBQsWDNrtioiIBAIBA14nWaikNvGHBRtBBr6X70lLgAIvvPCCBSiofuRcXwEKERERkfQhObN58+a2dwovyZvgQDiMGzfOPfXUU/Z+rVq1bK5DoUKFXCRbuXKlu/vuuy1BfdWqVVZJgVgKUKSF2j0lgZJznmT8U9BTjaqGcuXK2cbjk08+ae2f2BQMZiSyf//+rnHjxlo8iUSZYsWKWUCTiD3R4lAgKEEVBej5KCIiEukIFDRq1MhaAeTJkydV30Nv4TVr1lhgg1L4tFi4cKHr3r27vc8Cul69eum63yIiIiLxjKQRqhVIFmHvlJZO7JMSFAh1gILEFQ9BksqVK7s5c+ZYsnmkByjgJZjyexw6dMjFOwUpklnEgIF6r732mr3P8JdQRv+YgcEmp4hEnwEDBrjffvvN+mUH++SAoCrDur1j1Msvv2z9IGk7NXr06KDevoiISKgcPnzYPf744/Y+1YNp6XHMvKj77rvPFoD0J6aFq4iIiIikzY4dOywQwDkZs8HYd/j6669dzZo1Q/pQctvPPfec3RcSy0EVwvLly13Dhg0tGSZS7dmzx/c+iTp0xGDmaL58+Vy8U5AiCUQAwUwI5lIQCWTAHsNo/aN0wcDwWwa6tG3b1l111VVBvS0RCQ5eXLp06WJBip9++iloDzNlgYULF7Y2dGSEZsuWzV7wyEp96623bGaFiIhIJJa2M9/t+PHjqf4eZi4RlKeyuXPnzqn+voMHD7o6depY8kCVKlUsGSiSF64iIiIikYa90EmTJtmsCeaJXXjhhe6ll15yb775psuRI0dI78uKFStcmTJl3COPPOI++eQT98Ybb7ho8O+//1pVL7MnvvjiC9/1jBPw2jzFOwUpkvinYeEEb3PxnnvusQEfw4cPd1mzZrWWT8HCbRAMCeZtiEjwMQD03HPPDWpFFAEKZuSwaUMwtWnTpnb97t27fcNFGRglIiISSQjit2rVyioPUztQkEpBEGQ455zUjdXjnLp+/fr2ulikSBFbSPPaLCIiIiIu1edhJHx06NDBEkyoXti4caO1uQ5l4gfnc7TFJ+mEKtns2bPbTE6qZaPBWWed5RspQPcLOZ2CFIkwrJpqhsyZM/uCFU2aNLG327Zts4nrfC4Y9u3b50aNGuUefvhhd/nllwflNkQkNC699FL36KOPuokTJ7rvv/8+KLdB1RXHpN69e9vH3oszmQW8YLM5s379+qDctoiISHrRw5gsspYtW6bq6zkv5vWMORS33nprqjP+2rdvb+fzJBstWLDAXhtFREREJHXnUrNnz7YqVro1nH/++ZZosmzZMt8shVC1diKxpWjRojZvgs3+jh072h4tba/5OJIDPP6zSmnJ/f777ysxPRn/ORXs/kVRhoUMJeRkaK1evdoqJ4h0UXrDE4P+7wzrS0sf3NTiSUaZEhuaLKZEJLoRQKBtW9WqVd2MGTOCfnvMqODYxMAlNoDoa/j8889b4FMkmDjx4nXrv//9r71GioicCUuQYGbfEdCgqvHss8+2Vq7Vq1fXH0UkRl6zY+F3EBGJZOyDdurUyapQcf3117vp06e7a6+9NiznjCSpfPrpp1bFwUY/baci3axZs2yfl+rheJ8XeiyVr9uRG24KkwoVKrh169a522+/3T5m+IvXG4zy8KuvvjooAYrvvvvOTZ482fXp00cBCpEYQdVV//797cVpw4YNQb89NmLq1q1r73sbP15FmIiISCRJTYCChQztBNLqnXfe8Q3ZZlGoAIWIiIhI6jDfkuoJAhQkcFPFwAyFUAYouD263HjnjGPHjnWvv/66++ijj6IiQIGcOXPa5jwJ8CS9y5kpSJEMSsLBMNpQYAYFU90feuihkNyeiIRGmzZtrJqCAGSgMW+iW7durlGjRtbayf+Y5bWYWrVqVcBvV0REJL1JOQTPU1vI/dRTT1nm3tChQ1N9G19//bVr1qyZ3QbZazq3FhERETmzw4cPu+bNm7sGDRq4gwcPWlCCYAGJl6Ga6bVnzx6btUlnCP/5ngQmmEcRyhkYabVjxw5rve0hSYbZEwz31ky01FGQItGG38mTJ+0fiyEsZCXXqlXLPkf0i0DChAkTUr2wSq1du3ZZmycyvjTRXSS2kHnAsYMejps3bw7oz+aFjpkXZDgcOHDArqMKjCHaP/30kx1P8ubN63799deA3q6IiEh60Me4YsWKrlevXqmaE/fCCy+4f//915UuXTpVP592h3fddZf77bffrNVivJfWi4iIiKTG/PnzLSgxc+ZMm/FAy8y1a9e6MmXKhOQBpGqCmZ50r3nttdcsGMH5XLRMKGBOR/HixS3IQ9tvzx133GF7y5I6ClL4Wbp0qfXGatiwoX1Mr7NLLrnEF817+umn3RNPPBHwyN24cePsdlu0aBHQnysikYFKB4Z+stkSSByLBg4caD/3wgsv9LWY4oUQPXv2tLkU3udERETCiYGLvE55SUDJYUFKpeDff//t6tSpY+1XU5NsxDk8yT8M5WaworLWRERERFKunqByoX79+pboWKxYMevGMGTIEDtvCzbO30gqKVKkiBs+fLh1iKhSpYpbs2aNJYlHcuWEv5tvvtn2fHj8vDZVknYKUvjhiUifsH379p3W6ilLlixWMs6TN5COHz/upkyZ4tq1a2e3ISKx57zzzrPjx6uvvuqOHDkS0J9NtkGXLl3cpZde6rvOO3a9++67Ab0tERGRjGARun//flt8nqnt6ocffmivn88///wZfy5Bja5du1qJPYF5ZlJkz55dfyyRKEA7NzahHn744XDfFRGRuDJ37lzL/qdywaueYEZvuXLlQnYfaCXF8Z9gCfeFPQyqEkJVwZEeJNGwj8tAbA/dLGiNRXsnWvlL+ihI4ccbMMsUe1Au7ilUqJAbP358wDOh2bSklZT65YrEtg4dOrh//vnHXsyCjaxTTjK++uort3v3bmtjJyIiEgmoHuY1Kjm8ZnXv3t3e79Gjh2XWncmLL75o7Q/Z6GShzSJXRCIfw0R57pYsWTLcd0VEJG5QMUH1KRdmT3DeRAcGqidC0YLevx0SCZdUwE6aNMlt2LDB1a5dO+KrJ/bu3es6derkpk2bZgEVz2WXXRbx9z3SKUjxP2weEvXysrEY0legQIGgPvj02CXoQVlVsG9LRMIrV65cVok1duxYi7wHsjySQMQPP/zguy5Hjhzulltusfd5S5XFiRMnAnabIiIiaXH06FHf7KQzoXLi+++/t5L5Pn36nPHrly9fbq2hvIxsFrciEvnoNc6Q+8mTJ/taLIuISPCw1zljxgwLSlBFwawEWtpTPXHjjTcG/aGnhRPDpO+77z7fdVQdbNu2zbrLMM8zUveLmc/hKViwoJ2jcs7KrDUJHAUp/mfnzp12ouRldt19990JHij6ogV6YMvixYttKKC3sBKR2MZznWACQ6kC5bnnnrMXyX79+iW43juGkSVBgGLr1q0Bu00REZG0YBMyX7587vHHHz/j1xJYz5Ytm/UlPtNMJeZPMPeJ4D+JAKkZyC0ikYFOAgQVb7/99jN+LWtxug/4X0REJPWYs0vHhfvvv99aUJcuXdqq2Zi9G+zZE5s3b3b33HOPBUKWLFliLZFItPSkVGEbCYk2JUqUsGDEjz/+6Lt+wIAB1qYqFHM74knk/ieEGMEC/ydHtWrVEnyehU/WrFmtPVOgUJrOgcHLeBaR2MbzvVKlSvbcDxQyD+jZnbg6wzuGEfXHli1bAnabIiIiabFp0yZ7PSpcuHCq2iPu2LHDMqzPNNeNgPyhQ4esbzHtFFViLxIdZs+ebZm7tBZJDb7u4osv9l2uuOKKoN9HEZFYQAeXcePGuWuvvdYtWrTI9g4ITHz55ZfWQSbYyeAtW7Z01113nZs3b56dpxEkIYEykrvJ+CeoU+mXM2dOlzlzZvfNN9+E9X7FAwUp/sfbwGOjj0hY4lInStTpm8Y/ZiAwnJuBMO3bt9eCSiSO8Jynb+H27dsD8vMIoNK/m7JNf0T7yUTlpMQ/ECsiIhJq9Ozldci/vP9M1RQpBRxYPDKscOPGjdZOkQpFBhaKSOSjqpjq4pkzZ6a69zlVWP/97399F/82pyIikjTOvSpXruw6d+5snWMqVKhgcytp8XTuuecG9WGjHec111xjid7sSTRo0MB9/fXX9jGdICIRHShGjBjhbrrpJmur7Zk6dapV79aoUSOs9y8eKEjxP1dffbUrW7asvc8/ZOKSnYULF1oUsGbNmgF54F9++WW7DTYYRSR+UOZI8CBQA7Tp25jURg79Jf2rtFRJISIi4cRCNbn2TQQdWrRo4RYsWJCq9qrPPPOMe/PNN22BTWaesqpFogd9vRnUSgUU57FcVqxYYbMaed+rAvbHuvmiiy5KcBERkaSxwU61RKlSpdynn35qXWHGjBnjPvnkE1esWLGgPWz+x+/y5cvbIGla+lG1wQwMqjkiGXsoo0ePtjZYVPx5rrrqKr3uhIiCFP9Dubj3ZL311ltPe6DYVCTax5M7o4giEolr3LixlauKSPwg05MSx1deecX99ddfQb0tWkt5VEkhIiKhRoVyal7rWAhOnz7dKi1o35QSAhlPPvmkvU/7Ag0sFIkutCQlm5ZsXu9CsiAt3nifTSIREUmfzz//3ILAnCsRrCDRmjZFVFMEa/YDgWfmgtGRxmtDTaUcbf2YxRuKodzpwf176qmnfB/TCov2guzXprb6VwJLQQo/RBUTb+wFw9KlS60qg+n1IhJ/eO4z0JqNloz69ddfrX83C7vE2af+Addt27YlmZkmIiISLLzOMTB78ODByX4N7VQfffRRX0sX+v4mh4B78+bN7fWuY8eOOpcWiUJUVNGW1P+SJUsWlz17dntfRETSty/QpUsXa+nELDDOp2irxxyKYM1/8IIThQoVcs8++6xbv3693Z4npXO6SBiIffPNN7v+/fu7VatW+a4nobRNmzYWsJDQU5Dif33HPvvsM+sxRuYG/6j+WAhRKjVq1Cj72oyaPHmylTklvh0RiQ8MjqL8kWNBRtHqadKkSW7WrFmnHZ/IoPB6/VatWtVOXERERELlrbfesgXsL7/8kuzXsKilvzwL6EceeSTZr6MPfb169dyxY8csoYjzchEREZF4984777jixYu7sWPH2v4lw6pp90x7+ZRmfKUX53a9e/f2BSdIOKFagjb5devWdZHo8OHDdv/8B2LzODVp0sTel8hwTrjvQCSgP1qVKlXsfabbJ+6XyxPOKytv27Zthm6LBRbD/YYNG6aB2SJxjGMJFRUHDhxwuXPnTvfPIfNs4MCB1iMx8QkI0X8yKRjUTUs72taJiIiEyksvveTuvfdeV7Ro0SQ/v3fvXjsnxvDhw5Mdfk2rVDLbtm7dapUZc+bMUYabSJj98ccfp81xzMiAVRERSZsff/zRde3a1eZzoXDhwm7ChAmuevXqQXso6QpD0rWXIElwYsCAAe7OO++M2D1OkmGYK8H55J49e3z7LxMnTozY+xyvVEmRaKBsUvMo+Edu37699SRjQzAjPvjgA+vNy/BcEYlfBA14QfSP5qcHP4Mg6sMPP5zk5o53TPPa2YmIiIQKQ3Br167trrzyyiQ/T3snkoFuueUW16hRo2R/DsF4WkexIcpCnEGMIhJa7733nmWdsgnG0PrMmTNbkkzlypVtmP2+ffv0JxERCQHaOI8fP96qJzgvoiPMY489ZvN+ghGg4FzNw6xe5giVK1fOvfvuu+6LL75wtWrViqjNfu4v8yY8V1xxhSWkE1zxf62KpPss/58qKRINlE1qHgWVFUTYAlWGVapUKZc/f/6A/DwRiU45cuSwKgeOCQ888EDQbsc7pq1YscJKHOn3KyIiEm6bN292M2bMsPeff/75ZBeKVCB7Qw1pbxipwxdFYrltG3NjaBvKRhTv58mTx5Jjjhw5YgNZlyxZYu2RW7VqZW8juQ+5iEg0++qrr2wmJR1hcNNNN9n5UcmSJQN+W99//71VvM6dO9eqWdlL4Hzt7bffti4NkbjJz+NDpxxeo6iaIKgOZmVE6n2W/6NKikSVFGRyBQtT7nli3HXXXUG7DRGJHhwLFi9enOFZN7SR2717tzt+/Phpn2P2xVlnnWWloGSzioiIBBsLWV5/WDQnp1ixYpaB169fP8vIS+4cvUWLFvY+7Qy890UkdGjFRiCRc8mpU6fa5hg9x2+//XbXuHFjCyJ+9NFHbseOHbYB5AUfRUQkcH777Teb3cU5EwEKkqnHjBlj83UDHaDwzr+uvvpqO5cj2ZFAhYcZDpGy2c/j8t133/k+prqEyluq/Zg7HIn3WZKnIIVzvn9cMj7Ibg4WDh5MkI/UQTIiElocCwhQLF26NEM/p2bNmlZ2SRZbYrw4M4zU6/0t8WHcuHH2P8HgdLJrvEyb5DDU9qGHHnKXX365ndRxQkpQXUQkPaZPn27l/1QLJoeFIsFzr0oiqQB8/fr1LXubdjIMZhSR0Fu1apU9V0l6SUnevHnd0KFDXffu3UN230RE4mkw9nPPPWetnmiRSUeYzp07W6unQFmzZo1r2LChtUXiXI7bYq+B1tG0wI8077//vq1faUXoP5dz5cqVFrhgDoVEFwUpnHM//fSTPRhsyiR3QGCjj/LWjODn8AS64YYbMvRzRCQ2XHPNNfbCmdImTmqQtcaLsX+vyMTZqjh06FCGbkeiw+uvv+569Ojh+vfvb704aTFYo0YNd/DgwSS//s8//7TepQTs33zzTcuAnjx5sm02iIikB4tmMq+7deuW5LBdMvJSwjw4Mvi8QdlvvPGGr1xfREREJB7QrqhevXo2z5LhzyShMdOS8yLa7gXSzz//bO2oqZg4deqU3e7q1attHlEwO86kBfMk/KsjSpcubUmf7HOQ3OJhFtqZAusSmeJ+JgWLoGPHjtmDwUZOUhh0zT8+ZUTpxZOcjUgyp/VkEREvi5SWTzNnzrRjUXqPDZw4pKRMmTKWFc/GEIEMgq4Su8iwadeunWvdurV9PGHCBDuZfemll2ygWmJcT09pMk68TUBOgEVE0it37tzu4YcfTvJzL7zwghs8eLAbOXKka9OmTZJfwxBezpu9Qdm5cuXSH0MkTEh8SMs5iIiIZAx7kKNGjXIDBgyw9fs555xjrZ6efPLJgK3l2X+gUq5ixYq+zjKcl3F7zB6imiKScP5IpV7z5s3dtGnTfOebGzZssCoTtXKKDXEfpCCDlAgkPTaTG8RHedP27dttoZReZILxM8gqExHxELhko2bt2rVBGwbq3+ubyrFChQrpDxDDr2n8Lz3++OO+6wh+0Teak9CksBF48803W7snhqBxgtq0aVM7OU2ufJiAFxePF+wXEUkJFV2DBg2yY0ZyxxfmVFAJhhdffFGDskXCbP369Qk+pkqTWYtUBGPbtm32fFa3ABGRwLSJ79ixo/v666/t40qVKtn5UKCCBqwXSZJk3hAto9jk92ZacDuRsNlPkvenn35qFRFexQh7JQRWDhw4YJ/37mekBVMkY+K+/oXAg9cihVKhpGTJksWeHJSbp9eCBQtsuny1atXS/TNEJPaQucAQp4y2fErJdddd53tfcyliG6Wu9A697LLLElzPx5zQJeX777+3Nk98HxU3DLElcMZGYnKGDBniLr74Yt/liiuuCPjvIiLRh+AlPYsXL15sC8nEyAgkQEGF3/3333/a5+kfTIYci89OnTr5KsJEJHwYiu1dSK5hRgznkwQruNCCpGrVqja3QkRE0t9uiUoGWisRoMiePbt7+eWX3YoVKwKyEc/5F2u8woUL2+0QoGAdR0K1JxICFOAc8dZbb7WKf0/58uUt8fuDDz6ImPspgRf3QQp6mjHMmuyPokWLumBhA/KOO+6wQIWIiIfSTRZ1GQlSMD+AbIuPP/44yc/TusdrJfXVV1/pwZcE2EiklcqkSZMsC/Lee+91ffv2tTZRyaFSg76f3oUNChERqiB4TUqqjdPmzZvtOOO1hEnc4vD48eOuQYMGdkyhJ7Kqj0UiDxtcJCqQYOPhfRIb+JyIiKR9Lcb5EdVpBCVA616CB61atcrwhvyvv/5qa7f8+fO7nj17WhcZZuVSScHMC4ZwhxP3h3M+Wux76AJw4YUXWtWeh8eB5HGJbXHf7slrf1GkSBF3wQUXJPkgbdmyxTLC2Oijf3x6Mlvp9e0tzERE/JGVNmPGDLd7925XoECBND84ZBMw4IoyTTIOEmMjiEz6/fv3u19++UUPfgzLkSOHBd1p6+WPj+nZmRROUplF4d96hWHrVF5QDsxQ9qSqEDPSAlFEYhMJPwTNqa5KHITo1auXVWwxiJFMbH9UTrRt29Z98803dqyiuiupY4+IhBeZuGT7JsZ1bISJiEjqUY1G5egXX3zhm5NLyyVa8QYK6zyCHySBEAghUEGlQiSs5Tj/45xwx44dLm/evK5x48Z2/X333Wfva5Zm/In7SopXXnnFHgj/qF1iTLTv1q2bGz9+fLoeZNpn8OSrU6dOuv9QIhK7atSoYScPtIVLD17ABw4cmGD2RGJ33nmnvfXPRpDYw6Ye1RBLly5NkJ3Dx8md7NJyjNJZ/9Ys9JcmeKFNQhFJC9oRcL7sPxcHS5YssfNhqgeHDRt22vcxHHL27Nn2+Tlz5tjxR0QiT/369a0NGwPtafnEhUSZBx54wCqhRETkzOjmwjxA1u8EKKga4FxozZo1GQpQsO9Ieyhab5IYApKxqWCdP3++VbWSFBKOAAV7rq+++qrr0KGD3U+vOoK9DNajF110ke9ruc8KUMSnuK+k2Llzpz0QKc2boIKC9hdENdODNi7lypU7rUe4iAjoBUkGAceKzp07p/lB8TIOUlKiRAl7S5aqxLYePXq4li1b2kkvrz2c8NJGxevt3qJFC8tUoV0DyHoeO3asBeO7dOliPeEHDx7sunbtGubfRERiKVOQygqyBa+++uoEn1u+fLlVWYByf3oxi0hkohUkWbhNmzZ1f/31l11HcJEgxYgRI8J990REIhpJYdOnT7fzHq8qrUmTJu7ZZ5/1DYhOD47HBIxpu0egAzVr1vQFjzlmh4P/gGvuI8ET5pdxPujtr9IuMHH1rcSvuA9SeC0xUuptRvuUpFqopPZJSQZr9+7d0/1HEpHYx1yKRx99NNn2OhmlIEX8IKjOSe+TTz5pLZtKly7t3n//fV+gnN6j/ieCtGWhZRivU7QMI4BBwIL/RxGR1Jo6daqrVq2aJfck1rt3b6soTpywQxY2gXay/Wg9QFahiEQuMlupliIgQXsObx2dJUuWcN81EZGItmHDBjvP+eyzz3wtMseNG+duu+22dP9MWjhNmTLFjR492jcjkCoEktNYA4bzd+3fv79VbLz++ut2HZUSJGRSNZIzZ07f1ypAIf7iPkjx22+/+TZpgoGTN3rA33TTTUH5+SISG8h4J0CxadMmd/3116fpe8mSJyMhU6ZMdkkKpZ2grY9/RoPEJk4Ak6vKIWs5McqKP//88xDcMxGJRZzv0j7Am4mTPXv2076mePHiCT7mdathw4YWVCWbjgxtvTaJRAeCEiQ2iIhIytgPJHmMgASVFBw/+/XrZwliGUlOZJ7ldddd55sHlCtXLguCUKXAnMJQOnLkiFVKeMkoVNi9/fbb9vsRSKFzBKgYEUlJXNfUsCHIAgnJDRTNqLVr19pbeoSLiCSHTAeyCLxjRlo8+OCDtiHEiU9yOGkBJ0Yani0iIoHEApkqiurVqycIUJA9R/A9KSzO6cN8ySWXWH979R4WiQ60EqE6isGmtBLxv4iIiPOtu5mBy7DqMWPG2MdUj3777bdWsZ7WAAWJhlTEe/Lnz2/VGCSBUE1B0IJgSKgDFEOHDrXghH8AgvtE6ynm+/rPmhA5k7gOUuzfv9/3fkpPZHq7McCvUaNGab4NNhw5eIT6QCEi0YXNmWLFiqUrSOH1BE5pAJaXvYAff/wxnfdSREQk6UA7w7EXLFiQ4DybPvVkW3v9kT3Tpk1zL774olVOzJw50xUuXFgPq0gUYMB9hQoV3JYtW9xbb71l56AEIpctW5bgXFNEJN5ncTFji7ZLBw8etGDC4sWLLXkjpXm4SeE4y7G3fPnytvnvJRxyDvXuu+/azEnOt2jzFGzff/+9BR+8eRq46qqr3N9//+22bt3qu477xpxEzgFVJStpEddBCvrgelLK3qJPLn29/Z+IqcWGY5kyZdJ9H0UkfnCsSE+Q4rXXXrOqMCoqkuN/0uJ/7BMREQkUyvs9ZPPRjvDGG29MUFH81Vdf+V6v6Fd855136g8gEiUGDx5sA+4JSJIFTB90soLJDiYxT0QkntH2qGPHjq5s2bJu1apV1tpp2LBhNqPh9ttvT9PPOnz4sFUpFCpUyIZrf/nllxYM8G/RS7eEUAYBSNzu2bOne+edd3zXcR63bdu2BNeJpFdcBym8bGJKk3jiJ4fS9fXr11vWV1rLsYigqtWTiKQGx4qNGzf6KiNSixMTFornnntusl+jIIWIiAQDr1snTpxIcB2Z1S+99JK9T8adt4A+evSotYQ5efKkq1WrlvVkFpHomj9Tu3Zte59zTwKRPL9p3zZp0qRw3z0RkbAgsZlj4NVXX20zttgLJLBAdQHt8dLS2ol9SpI5mJv7+OOP28fsWQ4YMMDaPdWsWdMFG+dr3bp1s9m6/G7+QYqqVav6Zk94Cd9UU4gEQlwHKbxs4ipVqqQ4+IteuZSxFyhQIM2lUJRiKUghIqnBsYKKiOT6d2eEf5BC7Z5ERCQQWLiyWGa2GxUSHhbk9F4mIFGxYkW7jo+bN2/udu7cae2dZsyYYbOYRCR6sC72hrTmzZvX2oyANe/vv/8e5nsnIhJ6VEyUK1fOdejQwaofSpQo4ZYvX+5mzZplx8m04nyJGRMkgLAPSbI08yaoPvXmTAbasWPHrBrCkzVrVrtdqjeYH+Zhlgbt/erUqROU+yES1ysDb6MurT3hUktDs0UkLTgJIRstrS2fKAPt1auX2759e7Jfo0oKEREJNBbNVPHR5ok+yVi6dKlbtGiRXcfrk2fQoEF2Pa9HzHtjs1NEosutt95qfdW9jFoybdu1a2cZw9WqVQv33RMRCRlawrds2dLm9NBBhbk8o0aNsvcrV66c6uDACy+84Dp16uS7jgqKESNGWKCDn9WiRYsUZ09m1Pz5822Gbtu2bX3XcW43fPhw+xx7FB7Nl5Bg+7/GsXEcpLj00kstWplcNhelTm+//bY9ITkIpRYbjQRAghXtFJHYQsYCQ7U4djD8KrVeeeUVKyUlo6FIkSJJfk22bNnctddea1UaqqQQEZFAoCKCyggutDLgfJqgOWhV4JX/v//++9amABMnTkyw4BWR6DF27Fhr14a+ffvaRtbKlSvdPffc45544olw3z0RkaD7888/LbDw1FNP+SrL2rRp44YMGZLqvT/W7hxPWcf/9ttvdh1B32uuucbep4VeMLDPQKIIcyQqVapk111//fXWbpp5GvxuXmuq9u3bB+U+iKQkroMUXrsnTrA4sfIOCIn99NNPrnXr1pbxlZYgheZRiEh6Wj5x7EgLTiD279+fYku6PHnyuGeffdZOSDQ4W0REAoUknyuvvNLX/qlZs2a20GVwNnbt2mXX0Z+ZVghkBIpI9GFg67vvvutq1Kjhe+4/9thj4b5bIiIh8+GHH7quXbtakAE33nijGzNmjM1uOBMSOUja4Ot56ylWrJjr0qVLUDq8UKlx0UUX+T5mXtj48ePtPM0LUrCHQKv6lOb0ioRKXAcp/LOJUyqfIgOZjT3ephYLMaKUwYqAikjsBinefPNNWwjSKiM1evTokaqv83piqpJCREQyioG5WbJkSXAdWdWPPPKIZQPyGkbGdcOGDW0xzEJ+9OjReuBFohTPaSqktmzZEu67IiISUmzis+amwwpy5sxpLS1btWqV6vlar732ms3mAl1a6IJAwINWeYFuo0RAhIAyLaMIqFD5CpKzOSerXbt2gq9XgEIiRVwHKRjwlRoMA6SHblqQNUabKA3NFpG04JjBps7mzZtdyZIlA/rg0drOO/YRSFVPSRERSS+qI3bs2GHtChL3XvaC7Cy+SdrJnj27BeCD2VNZRIKP4bBfffVVitW7IiKxglZMtHEaOXKk++OPP9zZZ59t5zZUi54pifmbb75xhw4dclWqVLGPGzRoYJWnd999t82g8KpQM+r333+3YdZ0VmBGEAic0MKJxMePP/7YF6S47bbb7CISqc6J9wwwDwecQPIG35YpUyagP1dE4md4dmqCFAQbDh8+bAGIlLI49u3b58uQILOCY57/MG0REZHUOnHihC2I6cXMsEUW4XfddZfr06ePZefxOvbyyy+7yZMn2/uzZs1y+fPn1wMsEuXYWCOb+IcffrDEmsTVVIFOsBERCQfW2FQ+9O7d29eF4Pbbb7fB2Mx5TA5BAaotSOCgioGW8lSfcS6UKVMmt23btlRXXqR037gdqldBcmPdunXdhRdeaJUd3vXPPfecBVK8AIVINIjbIAVRRS4ebwBYoGzcuNEqMLiIiKQWJxcMGt2wYUOqvp5yTcpNyepg08g7KUmMY5z/MY8grYIUIiKSHiy09+zZ4xYvXmyL9YcfftitWrXKBufWqlXLMq3ZzASDJe+44w490CIx4L777rO3ZBJ72HzzKnSZSyMiEs2YD8kx7rPPPrOPSfRjw58KiOQ6ETDHlsSMiRMn+uY/sj7nHOm///2vr+oiowEKBm0//fTTVs3K+ZWXGE1LzbJly1ryiNc9QQnTEo3iNkjhX0WRmiAFiysCDwsXLkxVCycOTCqDFZH0INs0tXMjqKJA1qxZkw1QJHWM4xhI+w0REZH0YMHdqFEja/nEEEaMGDHCFuPMoeB1h6oKqitEJDbs3Lkz3HdBRCQoDh486Pr27eumTp1qgdfMmTPbOQyztlJK7mPeVq9evXwJgSQQtm/f3nXo0MFdccUV6b4/VGAwYLtly5a+wIM3H4MkES9IQeDjyy+/TPftiEQSBSlSGaSgjJ3oKAeu1KAf3OWXX57xv5CIxB2OHZx8pMbVV1/t/vzzzzPO2PGOcV62W+JArYiISHqwoGdhTkIPwx/r1atnr2EFCxZ006dPz3DWoIhEDiXhiUis4RyG9kwDBw60RAs0adLEDRs2LMkgAzMgWFt7gYPrrrvOfkb58uXdQw89ZAkc6ZnBxZr+vPPO833Mz9m0aZPLkyePu/fee+06hm3Pnz9fcyUkZsXtqsHboOMg0KJFC+unm5IpU6a49evXu0qVKqU6SMHBREQkrTh2MEMitaigIGMjNUEKb7NIQQoREUmPF154wd1zzz1uxYoVlrn3+uuvWwB8+PDhtqBfsGCBLc7nzp3rLrnkEj3IIlHu888/T/XXsnnHppqISDSgUoEgA7N2CFDQIumTTz6xWVqJAxTMk+jevbut1QcPHuy7vmrVqtbmkraXzZs3T3OAggq1W265xRUtWtSSCT0kfZAA4n8uxb4lbadoES0Si+K+koIn+bRp0874QKW1nxsbjKqkEJH04NhBoNPr7xsIDMr2emPSL1hBChERSQ8GYrMYr169ups9e7ZdR8IPVcfMpMC4cePUC1kkRtx///02eLVt27Y2cybxsGxvcOuMGTPs+ECwMqXBsiIi4UbAgcAE7dxBwh+Bh9atW9t62cOA6nfffdfOa5YsWeK7/uOPP/at1bmUKlUqVbfLGv+9996z9f6dd95p1zHHdu3atZZU+N1331mnBAwaNCjAv7VI5Iv7IEVSJ1kZRanXzz//rCCFiKQLJy2cpPgP2UoOJ1Zks952222uZs2aZ6yk8E66yHQTERFJz9BGMgzz5s1rrz9kDNLegPkT//77r2vTpo174IEH9MCKxAgCEC+++KIFIZs2bWobaGQS06P96NGj7ttvv3W//fabq1+/vvvwww8tK1lEJBKxvmbwNFWh7Nudc845rlu3bq5fv37u4osvPm3WxLPPPusbhE0wgnMdznmocEhNMiGJgXRv8WZHcv7Us2dPC1B4QYpMmTK5OXPm2LFTLfUk3sV9kIJhOGzWcXDy7/+W2Pbt293KlSstyskBKSXMroAqKUQkPbxjBxVZZwpSLF261D3//PN2kpRSkIKTLgIZLDRPnDihSgoREUkXsgW5kEH4zjvv2DkyC3wSdLievs4iEjvYXOvatatd1qxZ4z799FO3e/duO5/kOU/7E9qd+A92FRGJJHQSoNKLQdicr4DKsOeee85dc8019rHXaskLPnCcI0BB9xUqyRiEzbyt1CKoS+vLRYsW2cwu1KhRwwISt956a4KvZdaEiChI4X744Qerppg4caJr3759sv8TlHZ17NjR+r+dKUhBCRc0k0JE0sM7dnAsKV68eIpfy6KQE6nKlSun+HUVKlSwgAYZG/TeVLsnERHJCF576tat6x5++GHrw0wwnMU4GYEiEpvKli1rFxGRaEFrJpIpaFUJghIEJwhSeNUVr776qlWM0daJ9TU6d+5srSvPNAj72LFjFnjYunWrzefykATNMGySnb0gRYkSJdI050ck3pwTz5FUUEHhHZhSctVVV1lwIjWzKbyBt6qkEJH08I4dXsAzJWwQcUkt75hHf00REZHUWrdunS3CGzRo4IoUKWKDHN944w1rhwAW+FdeeaUeUBEREQk7KiF69+5t5yogmaJ///7WrokAAuc1BCZoweS1Qp4yZYovSMEsHi6JsXf466+/unz58vnaKlNpgUceecRddtll9j5VG3379rVzJhFJnbgNUng94bz+7F6LpuQQ+fSin2fCxiI/l+E7IiJpRRu6iy66yBfwDAT6hJ911lmWzYGU2tuJiIgkNYtizJgx1raASuRevXrZkEk8+uij7q677tKDJiIiImFFx4ChQ4faPAkCCFR+0jWFWRS0pZs+fboFJ7788kvf99C9oFOnTu7+++9P8WfzfV26dHFNmjSxn4NcuXK5Vq1aufz58yf4Wm8Atoik3lkuTqU1SJEWBCmInrIhKCKS3mqKM1VS0Dfzxx9/tADEmVCuStbr999/n+AYKOHVokULy8TxbNiwwYa4iYhEGuYe0Rph27ZtNiyXlggMy61SpYobNGhQuO+eiIiIxDHWxDNmzLB2TpyXEKDgHGX9+vVuwoQJlkTMHt2QIUMsQMF6+L777nMrVqxw33zzjVVYkCjomTRpks2K2Lhxo++6okWLWleWPXv2JLht5l0MHDjQV0UhIukTt7voXhaxNxTnwIEDqf5eb6BOcthYVKsnEQl2kOLIkSNWZkrlBSdhKeEY98svv/iOX6qkiAwzZ860wZOeSpUqWYayiEikIUBB2wNeb8hEJEjOa9Xs2bN9rQRFREREQu2LL76wGYxUQnB+UqhQITs/Ya4sLZ689Rb7f7RgohKUNddrr71mQ6z5nvfeey/Bz3znnXfcwoUL3Ycffui7rmLFim7Xrl0W2BCRwIvbFUXiLOLUVFLUr1/fDkbz5s2ziGxyaNGiodkikhEcQ/bu3Zvi13AyRTVYtmzZ3AUXXJDi13rHOC8wq0qKyJA46H2mILiISLh89913lonoBcl5/Xn99deVNSgSpwhYnun8U0QkmFgPP/bYY1ZBgaxZs1pggooJhmV7a2DmUrRs2dJXyc6ay1sX02mAmVok8VEpSgIgmDPBvp9/O0u+pkCBAvqjigSJghT/k5pKCnrbcdBiAE9KyH4uW7ZsYP5CIhKXyE7175OZlJIlS9oC8dChQ2f8ed4xTkEKERFJC7IPyUYko/Dvv/+21xEW98OGDbPqLxGJr3YqzzzzjAUs2fyj/RsVVv369XMFCxZ0DzzwQLjvoojEybkJMyeYPeENvb799tvtLdd7iV+5c+e249Jtt91mH8+fP9+qKDh/GTlypF1H1QXHL1o1sZdHwAL16tUL028nEr/iPkjBwYvIKBuC/tHUpHCwIyLLiVhK6M978cUXB+HPJSLxgmMIx5IzocUGJ19nkrhaTJUUkWPz5s2+IBKvQ99+++1pf3sCUiIi4UCrgzZt2vg+5jjVoEED16NHD/1BROIMfd6nTZvmhg8f7tq1a+e7vkSJEm7UqFEKUohIUHEOQhVn7969fS1yacHUs2dP63ziqVatmqtevbrN+mvdurXLmzevXc/Hq1evTtBulz3ArVu3qh2ySASI2yCF14+doTdvv/12qr4ntZtEZJmpN6+IZATHEI4lgcCGN5Vg0EyKyMNJtH+bJwa0wctW5i2vVSIi4cAxiOxCL9hdpEgR99JLL6WY2CMisenVV1+1YbKcuzz44IO+60uVKmVJFiIiwbJmzRr38MMPu88++8w+puUxVV2NGze2j0k+vuqqq1z79u3d1Vdf7W6++Wb3+eefW4CCQAU4dhFo5a0/zWsUiQxxOzjbyyImkhpo/MxABylefPFFC5JcdNFFduGAm3iwT2oMHDjQNW/e3HoJd+nSxV1zzTUuU6ZMLn/+/K5r167uv//9b0DvtySP/oavvPKKHqIIxOyZK664wt4fMmSIu/HGG92FF17ocuXKZWWfZFpEQpCCLDaySL755psUv87L0s+SJYtvs1uVFJFh586d1geVt4kv3vW8FREJl3vuucd16tTJ3j///PPdm2++qYphkTju/06gMqk2UMFYV4uIMPO1VatWtiYnQOElSfz666/Wtom1EoGITz/91NbHBChAZQVr93z58vkexEsvvdRmUniVFSISWeK2ksLboPvzzz8tU5UDHJuC3pCcpBw7dsyqLtjgZwhPKCspOLDSb4/IMPeX6O/dd9/t1q9f76699tpU/xzuP4OFONBzoYVV8eLFbc4G2TBcx+JTJJ7xPKlbt64vYPHQQw/ZSRHP7T59+rg77rjDWvSw6R/OIMXMmTPdxo0brccmZfYpqVmzpv1MjhlQkCIyaPCaiES6xYsXuwEDBtj7ZCySMS0i8Yl14yeffHLa+Qvrx+uvvz5s90tEYg8tmZgbwRwc5jB62A8jaYJZE7zP8YjOAQRKd+zYYXtmIJlPRKJL3AYpvGAELVCIsLIpycKrQ4cOyX4PBz6irmeffbZt6HNgDFWQwtsw9XCgprqC8jU2UNlITUr//v19C0t69m3atMk2K6nGmDt3ru/rGA7Ez6TKQu2qJFbxXKCaKCmVK1d2y5cvt/cZDjp27Fh7//3330/wdVS/UFGxdu1ad+uttwbtvnIMOVNGWvfu3a3stVixYil+HRlvXuXVJZdcYm9TCshK6H333Xf2OrRr1y7LDmKAG5k/Z5qBJCISTCTIcGEToG3btpbJKCLx68knn3QtW7a0igqqJ+bNm2cVxrSBevfdd8N990QkBnDOMWfOHJsz4c2d8NDtgOvKli3rxo0b57ueKgoqKC644IIw3GMRCZS4DVLkzJnT3tL6JE+ePPb+mVq4MFybDGo2j37//fdkgxTBaPfkj/vMQZsAC22fCLKwWUrwgQM5GGhIZrX3sbfxSoshAhRJodUTn9M8DYlVPB+oFqI9EosqUE1EIML7mEDewYMHrTohKV5LNEpFgyk1lRRsFqVlw4jKsV9++cXeJ9AikYGWYiz6Wezzd+HE/Oeff7aqt8GDByc4jouIhArnxY8//ri9z7nvmDFj9OCLxDkq+RcsWOCeeuopqyjm/KVMmTJ2HUNqRUTSizUQnQJGjBhh3QI8BB6aNm3qOnbs6LJnz+5GjRrlatSoka75sSIS2eI2SEGA4eKLL7YNR4YBpiZIQXbrBx98cMafHaxKhK+//tqCEpS6Zc2a1b311ltWcgtuj+ty587tG/xDpjTXecjS5cQyKYcOHXJPP/20DRmS4GCzkYt/+SKVMJ07d/ZdRwsh5oNIcPB84HnB88N7rnAdzx8v6MDzhJOepIZnsYnMsK6KFSuesb1SRnGfCEh6g5MzgoAmvzfPc1AN5lVUSHh99NFH7oknnnD9+vWzNoLe34W2gpyAE6goV65cUKt2RESSQhKMZ+HChcpOFBFDD3jawImIBAIJhMy/olWTNz+RuansdbF+JShKRxPP6NGj9cCLxKi4DVJ41RQEKbxNoUANw2UDkM3MQGPI9VdffWX3mb6flNrS5skLVKSEeRp87dSpU5P8XO3ate3neK2hJPBoEda4cWPfx82aNbMXY6pePF5Vj4QPQQr/wJE/WqtxEkU5abBxDDnrrLOSDVAwUJlACv8zZwpi3HLLLTZ3hqoR5MiRw362hB9tBmmhkvjYS9CME3KGntPaT0EKEQmlKVOmuC1bttj7rVu3PmNbQREREZEzYU26aNEia2lLp5Lx48e7l19+2Sr+PQULFrRAKK2dkuteIiKxKa6DFLTV2L59u683O5t+f/zxxxkPhN6g7eTaJqWmTUt6sCFJb3nccMMNbvXq1RZFnjhx4hm/l370BCE40Pvj96BN1IUXXmiVGRqmGzxsOvq3CCI7gP9B728q4bd//34bLE3QLjECF/Ta/fjjj22QfbCdqSKLzHvKYYcNG5biUDCCHdu2bbMWdR61eoocX375pZs+fXqyn7///vsTZA6JiATbt99+6zp16mTvU21MwEJE4hcJfamt6qUSVETEQ6tlkoO9fSbWr3379rU9EPbi/NHpgKTaWrVq6QEUiVNxH6QAUVsCDlQUcKC89tprk33A1q1bZ3MpOFlj0GkogxRJbT4SVElK4hPJpFo98fvS1oagDPMqNGRI4pH/c4V+uhUqVEgQTCIo2aVLFwviMVibvtyhcKYgBe3CqNqiwiole/futQAFP8urnlCQInL89NNPli2UHP7fqKYQEQkF2gPeddddNl8NDMNV5Z1IfKP9pIhIWlEJ/sknn1gXAir5WWMzu4Z1tf9AbOZMPP/889ZpQuccIvFNQYr/zWNgo4/KBFo+pRSkIIP68OHD1nKJ2RBJbewTJQ50kILBhXfeeafNK6D6YdasWbZhmtyMDCojyIRjADAvBlRS+A9fJUBBsIXNyxkzZtjHXECkm81PkXjAc4VNYKoNCNaxOZO4xRPPNwJ93teCmTZUw4QrSDF37txkg5T+vDZ2ZKscPXrU3leQInLwOpLU/BP/1xP/8mcRkWAhKN+hQwdfEg4JObRjEJH4RothEZGUqiVeeOEF23t66aWXfNez5iQhsE2bNrbWpvqfvbS1a9faOQfJso8++qhdnyVLFj3AIhLfQQo248HBtGHDhjac9ExDiznQUk1BUCO5ygM2Fr0MtEDhPtLyg3Y0bI6WLFnSAhREopPSqFEjm4HAC0L37t1tOHCZMmV8n+d3+OKLL+z9xO2GaHuVUmavBAZBJgk/qomGDx/ue04nzhZjHgCqVKmS4Hp6Z7Zq1Spo94tjSEpBCqSmR6cXpOD34zjif+yTyEArFY7RSSEoLSISCrQPpQ2Df1WFXi9EhEQ2r82xl9SWnOTaIYtIbCCRjiADaxcvuZcOH7Qgpgriueeec7/88oubNGmS7XcQjCBAQbCCaglvn+y+++6z7znT/puIxJe4DlJ42cRs3I0dOzbV33f99den+PlgtHtKauC1PwZqJ+5jzgVdu3Z1devWTfB5Nlx5wRCJN4mDEJxcUR0xb94898QTT5wWtAvX8+RMlRSpRUVV4iCFKikiByfmkydPPuPXiIgE05o1a1y3bt3sfQL3zGbavHmzJcaISHyjqopEOc4fs2XLluR8Cs6Xuf6ff/5J1c8kCYjLrl27fOfjTz75pHUOEJHI4a2Fvec98yQ4T2jbtq1vDUO3kV69etnzuHXr1taBwPs+jh+8T+CCAEXZsmVtriotlkVEElOQwjn3888/u0Aiu5kWHpGiRIkS7uabbw733RCJaGSDkM0RDW2AWNQtXrzYNW/e3DVo0CBVlRRFixa1/p9QkCJyeItzEZFwofUCFcW0lqtXr561B2Uzonjx4vqjiIhbtmyZb17bRx99FJBHhE3NoUOHuquuuso2MKdNm2bzE9evX59i62URCR1aQL777rtu6dKltpZE5cqVrUrC6yrCXhpVlwQu8PHHH9tzunz58u63335z33zzjV1/+eWXuyFDhlgireZOiEhy4jpIwYES3tAe5jNQusaGfkoZzPTco9ceB11OrhK77LLLbBhqpGjfvn2474JIxGNGSyThGJI7d+4kP8eAb+bMVK1a9Yw/5/bbb7cS3FKlSrkxY8bYdcn9XAnPwr9z587u888/P61FArOPyDKaMGGCq1Spkv48IhJwvD7QTnT37t3WD/ree+/VoywiCbAp6SlUqJC74oorTqumYFPSfxDumSSu8n/mmWcsCYfzoaSCFMxh85/Fdqa2UyKSerR3JBDBPhctwz07duyw65YsWeILUrBmJjCxYsUKazE+f/58e97ecMMN9vmOHTvavtobb7xh5xgk8D7yyCM2YzW59rYiIp6zXBwjc8PLZOWkh5Yat956q9u0aVOK38dJUb9+/Ww4UFKzJwh+cDAXEUkvjiFeIDWx/v37uxEjRtg8jTNhGBknnbSpox8orr76av1hIqj9WLt27ZLs4UybFTKY6O0qIhIMgwcPdosWLbLkHDYpaNPAccdrFSgi4o8gRVJdCI4cOWKfSw9aRM2ePduOQclV/5OBzXmRdyFQIiLpwx4WyVD+wQgqmaikpKrSQytkAhQPPPCA73nOHhiBRBLh3nzzTWtRTIU/38eahet5PhOgIIixZcsWC0IqQCEiqRHXQQo2AMka48SIQEXp0qXteiLBKWGDj4G5LOySC1LQt1NEJL04hiQXpLjpppvsJDItwQZ+Hou/s88+O92LSAm8DRs2uJo1ayb7ebKVqPATEQk0Nh7oAY8LL7zQ3tKCgR7Te/fu1QMuIsnOnkiMDgNe+5fU+vrrr23jkkxrsrdpS5pcmzmysNlU9S5pqdoQkf/D8Grat/l3BPHag9OKieey/xzTatWquRMnTriWLVu6PHnyWFUEiW+cN3Tq1MnWMnz/ddddZ5/j+cm+GpUWVFNo3SkiaRHX7Z44wWKTj96XHGjpm0fG8RdffGFZZMlhAffyyy8n+3kFKUQkowgqcCKYEWTCMn+CE1GvioITxeRmXUh42nqde+65yX6e7OZAz00SESEI0aRJE9twZIglg7PJTB43blyq2wmKSPzo0aOHb/1MR4HMmTP7PkfCH+tnL+Evta655hr31Vdf2aYmGdlsgrKxmVSggkAGFxFJvVmzZrkPPvjA5kXQkhw5cuSwQMTq1asT7G+tXLkywfdSCeHNjqDim30yuo/QQpjgRNOmTS1Y2L17d7sNsO4kkZeEXhLjRETSKq6DFPAPUpCdDE6yMoKNRTKWf/31V19mmohIalE2e/DgwSQrKSinZVP7xhtvtEqwlHCCyPGMzDR+HtTqKbLkzZvXBsoVKVIkyc9v3Lgx2YoaEZH0oCVD48aN3aFDhyz70Qti046BPvGJe8WLiLBeBoFNKiD8E154n41LqnzTgu/zzn/oZ8+m6ejRo93EiRP1gIukEdUOtG3idd1De2ACgbQIJqgAXuPXrVtnz9mkbN682ebDfPTRR/a9JExxIYmBQAd7Zr/88ou1gho7dqwFKVmbEqzo27dvki1sRURSS0GK/7VLYYFGeRvom0dGB/0uU8LXcJJ2yy23JLje21CipzwZIiIiaUFAgeyVpDan+/TpYxmvr732mrvvvvuS/RlkungLSspvOdmEghSRpVatWpaRSMunxG0SWGwwf6ROnTphu38iEnt69+7tVq1aZee5VFEQKGWzolmzZuG+ayISodiwBHNrCCQEYyOSc1//4dgikjoEHSpUqGDV8z/++KOvJRuzJKh2KFmypO9rs2XLZrMKEycvMAB7/PjxVs3koUKidu3a9j4zK0ikmzBhgq1dDh8+7Lv+2WefTTbhSkQkLRSk+F+QYuvWrVaeVrBgQZtPQSYHQ3+SQ/Q4e/bsdjLFAKFLLrnE9zlvY5F2LQpSiEhaeTNtErd7InuNYxYtgrzKr+TQH5QTTkp6CxcubMc4KEgRWchCmjdvnv1dOnfu7HvNoFUXGUtkJ5GVJCISCPSHZoMRI0eOdB07drT37733XjdmzBh7mzt3bj3YIpKklFoepwUzJu68806XP39+6z5AW5rly5f72saISNKWLVvmXnnlFXfrrbe6tm3b2nW0SKM1Ey2WDhw44NuPYm2REr6WwASzqHgf/BwCD5wfMI/CP1DZrVs3S9L1bnPUqFGuevXq+lOJSMAoSOFXSQE2/ghS0CIlpSAFEWh6uxOkIDqdXJBCRCStvGNH4koKsmJmzpyZqp/x+eef29ty5crZ93nHOAUpIgtl0/SAZSHAgp1AFPibUZrtlVaLiGQUlcJkVeKxxx5zbdq0cTlz5rRNwc8++8wtXLjQEm8GDhyoB1tEkkRLYwbu0p/eq/z19/3336fqkeN7W7RoYee8VHWR6c2xSBueIv+HyiJenxlqnSlTJl8r2OnTp1vSmhekoBqbhLR8+fIlOdg+OVRdPP300/Y+CQrt2rWzCzOqPDt37rRWbiRVgX2vp556yobd0wZKRCSQ4v6octVVV9kDwQkSWRwM7OJF4I477jjjg0emclI94ZlDwfUKUohIenDs4AST6q708mbrEHj966+/fItGBSkiT4ECBdyiRYvc0aNH3fbt2y1QwWuTf/BbRCQjGJJ5zz332FuGYrMpwevMXXfdZRdaAjKjgmHaIiLJYVOUdjC0SSaZJi0bov6mTp2qB1nkDGjFSPCBAJ63P0X7JQIUVCL58w8sJNcJZNq0ae7YsWPWrsmbBcMQ7CpVqrh69erZbAn/gOSQIUOslRPBEqo0SKoaMGCAdRQREQmGuA9SsAlEFtnPP/9smcYc7BMf8JOT0tBa2rQwk0JEJK04dhCgSJydwuZS1qxZU/Uz6DfuXx1GD1EycBjULJH7esRAdBGRQCLwSWYklRScn9JW5ffff0/QU56NB6/1k4hIct577z2ruqpYsaIeJJEAoaLhmWeecXv37nXvvPOO73qeZwQXSCLwkMhE8CC1SKylMptqfF77WQ/SBspLhuJzic8ZOE949NFH7X6Btk+0dvIfyi0iEgxnBeWnRhn66Xmlc+nltejwkFmiSgoRSQ+OHYnnUZDBwnGlTJkyViKfkh07dlhpLkEOKsM4OUXRokWtz6iIiMSPsWPHutmzZ9trAjMp1qxZYy1LE29MiIicCRubDOcVkfTvGzHXYdOmTb7rzj//fBtIvWDBggSJrgQG+Lhp06Zpug3mEvK6X6lSJVe6dGmbOUGA4tprr7V5VNxeUtauXetuueUW17x5cwtQcK7w1ltvucWLFytAISIhod0q53yZq19++aW9ZWjQSy+9lCCKnRzK5Ylmk1HiT0EKEclIkCLxPAoCDVRScMJI9VdKGJbNYEOGMpMp6x3bmE8hIiLxg6q6Hj162Pu0bKC6rnfv3jZ7gplqvN6QGU1bQBGR1Kx9n3zySdvwFJG0owqCGSyDBw9OsHbj47fffjtBu1faiKcnwey5556z9o2ffvqpJSg0btzY2rQRHKFqMnPmzAm+ngQ4WrmxL8asPDqGUNmxefNmawOV3rZuIiJpFfftnsCCzb+H+5w5c1zXrl2tZy99elPChiE9xJcsWeLq1Knju54Nxq+++irNfxARETJm6EHqjwADm0lUSZzpRJEBhK1atUpyPoWIiMQHNh0aNWpk7f7YoODcdsqUKdb2iUxohmeTufn444+7u+++282fPz/cd1lEIhxZ2JyLXnbZZa5gwYIJethj3bp1YbtvIpGGisW5c+e6559/3re2u/XWW23QdeL1HK/J6a3MIBhBdYSXkMacVWZNtW7d2rVv3/60Cn0PCQpUWzJnglkVoIpi6NChahEsImGhIIXfxh3tnsgKqVmzpn3Mwf5MPeA7dOjgatWqZcOG/F1zzTVuzJgx7sSJE9b3T0QkNf755x/LWmFDKbHcuXPbJS3YnKK1BxSkEBGJDxz7yaIkmYZWfwQnGIJJBjQYmpktWzbLsKQ6zz/RRkQkOWRVi8jp2EdiP6l8+fK+6z788EP30UcfWdcNL0hBK16qGTO6R8TtMTuCPSdut3r16nZ7XsIsrX9TqsLga7t16+a+/fZb3xDtF154wVWoUEF/XhEJGwUpnHP58uXztWci+4MBRfTf48C+fPnyFBdu119/vV0S4yDPZiMvGNoYFJHU2rp1q510cgxJDyq4li5d6mrXrm0bU/Q75edRLszHIiIS+whCLPt/7d0JnI3l///xq32RkpQtyZJdpFJEQkh2SlRoQ9kJlRKRKLKE7EJkzd4iaylEWbNlK4RQKoXW+T9en+//Pr8zY2bMctaZ9/PxOMycOXPmzJmZc1/39dmWLbOWDbNnz7ZjwCuvvGItTfPmzetatWplt+vcubNtUvz333/hfsgiEgV69OgR7ocgEnFICMifP78dS3/66SdfkuvTTz/t7r33XlerVi3fbS+44IJUBSjYo3r77bfduHHj3IkTJ+w67o/9K/afuH8kFKDYu3evtYGktRRIVKAFFVUXml0oIuGmmRTOWamdVxpHWxTer1atmr3/8ccfp+iJLV68uGWnMXxIRCSpvNcMBmR7aCfHwnHhwoXn/Pzp06fbphN9RP1bPdFjVAtPEZG0j40HWjWAGWuFCxe24ET//v3tOjYjLr74Yt/tadeS0BBNERERiZ1QRptEWjh5aKfEhYp32qF5qlev7tq2bWut0QKBllD58uWzGVMEKAhM8DZBklGjRvkCFPGhmpJ5hUWKFLF1AntVHTp0cN9++6178skndZ4oIhFBQYr/z6t28AbMekGKRYsWnfNJ5MSPnr70HPTQZ7BYsWLqyykiyUI1F4tP2nB4WEhOmDDBffjhh+f8fO81y3sN817TVNElIpL27dq1yzVt2tTeZvPBax1IsJsWpBwLmFNBtqf/RoqISFKQqc2mKAl+bMgy38b/IpLWMKuBDX4PVeokAjDzwUOS6+rVq91333131lzB1ODr+g+ppyqeGRS0dpo/f74d85999tlYw7bj4vYksfG5JLH9+eefVt2xadMmC7T4n3OKiISbghQJDM+uVKmSRZcZik1JXGK++eYb98wzz7jevXvHKpenXYsqKUQkOXjNiNvqiSHYLEAbNGiQ6Of++OOPbsOGDfZ21apVY72mKUghIpK2sZnBcYINlXLlyrk33njD9zEGYbIhQaYlmykrV6601hTMYWMDQ0QkKWgbN3DgQPfQQw+5X3/91drG1K9f37KwGb4rkpYQ7M+SJYubOnWq7zoCBI888oj9vvvv/Vx33XVnDcNOqe+//9517drV2pIzU8rTqFEjm13IPAlaSCVWOYEtW7bYvhafd/DgQavooAUkn09FhYhIpFGQ4v+77bbb7KDCAYGNviuvvNKGBnGdN3Q2IXfffbe9+HMQIzLtoV0LAYwzZ84E96coImkCC12CDP6tnkDQgqy1ypUrJ/r53rA05uSwUD558qRl+0BBChGRtItAA72v2ZDImjWrmzFjhrVx8keFr5fhybGGTcWcOXMGbFNFRNK+KVOmuDFjxljyDAl9jRs3tk3Ul19+2a1ZsybcD08kxcdQqtmpNKBayHPNNde4v//+O9Z+EDOeJk+e7B5++OGAtkjiMXz22WfugQcesNlRtGj85ZdfbOi2f7cOWjieC5/HvCnOCZmxyucRYCTAUa9ePR33RSRiaXD2/0dQgmgyG3ossOrUqWMtnNjo4+CUGPr6Mqg2LjYW//nnHzthpB+8iEhi6An6+++/p3ho9ty5c339T8GCmgXvDTfcYCX5IiKSNjFEk00Tsipp65A9e3ZfMIKBmrR58EdiDZmV/sk1IiJJaXPM7EUwHJhqCtSsWdN1795dT6BEJfZsSDrl97lixYqWrIqnnnrK2iYWLFgw6MG/N99801cRD5LTCDTcf//9yUp4o0UwsyuOHTtm11FhyX3nzp07KI9dRCSQVEnhh9J4eAEHotTnClAk5uabb7aTRbV8EpGUDs0mWErw9FztOGjv4WXa+Pcg939tExGRtGfVqlUWdAAtnipUqODbrGCDhQoKAhdxEbzWpoWIJAftZw4fPmxvM0PNq+Jdt26du+SSS/RkSsSjnXeTJk1c3bp1fddRecj5E1UG/r/HBPyDHaAALZi8pIIWLVpYNw7O45LS0slDchrBFYZgE6AgOWHx4sVu1qxZOtaLSNRQkMKPN2j2448/PuuJ+uuvv875ZFIa+Omnn7r9+/fb+xxkihYtqiCFiCQ5SJEnTx7f4MF9+/bZvBsCnj///HOin7t582Yru2dByu39X8u81zYREUl7Wc0MwiYLlP87duzo+9h7771n7Ssuv/xyyxD1cFsRkZRgE9dL6Gvbtq1VT9x0002uadOm7oknntCTKhHnxIkT7tChQ7ECElQeLliwwFdtgNGjR1uwIKUV7UlFlw0CCXv27PFdx/yJvn37ugMHDtjsKPaQkur48eOuZcuWNsyeWYRUONEqijlUDMgWEYkmavfkxxuWvWvXLhuWTS/AjRs3unbt2lm/Qfr5JYbFGSeEDFHq0aOHXafh2SKS0qHZDEGtUaOGBUDPVdVFtcTRo0fdd999Z31GeZvNKf8h2iIiknbQJ5vhtWy+UP07btw4X5/p06dPu27dutnbtH249tpr7W1aWbChyMBsKvUIYIiIJFW/fv18b/P6Q0vR1atX2+sKWd8ikWTIkCGuc+fOFkBj8x9UELKJf+edd/oSw4KNykaSxwYNGuSrdCeYwOPzZgcmd34g54fMg+FY7yWzPfroo1ZR6bV8FBGJNqqk8HPVVVf5+g8uWrTI/mdjcOXKlTbE6ODBg4k+mUSqOdD5DyBkw5FyPfX8FZGkDM32D1LQomPhwoXuww8/TNKTx2YTs3XiDtHWPAoRkbTnhRdesPUpGx1kfzLM0zN48GDLyMyVK1es6graApI5SlsIKn5FRFKjTJkyrlOnTgpQSERUFjKf6YcffvBdRwCf6kGSUP0RuCDBK6mtlFKKhAEqNKiMIPGMAAXJrwzHZuh8SlExQVDj6aeftgAFVfSsB959910FKEQkqqmSIg4yy3iBJ9JNmxVO7u666y73xRdfuJkzZ8Y60Yvr4Ycftv6GVGN42HAk041ARbBLB0Ukuvujnjx5Mt7XCf/AZ3z4PP/NKf9WT7ymiYhI2jJjxgwbhAmGZPoPxqaSjrYReO2112IFI9gUufHGG22O0bmOLSIicU2aNOmcnQVEwqFRo0bWepvkUG/PhiHYO3bsCMlcifgS0EqUKOELkHCu1rx5c2uTxnE4JWjtRIICFRS48sor3auvvmr7Vv57UCIi0UqvZHGwoUfJHL02mUNx8cUX2wGPIMW0adMSDVLENyyMAxMRejLWFKQQkaQOzaZtU5YsWSxDNin9gRliSKYOQVUWxV41mIIUIiJpC4kvXu/3Ll26uAYNGsT6OG1HvaA3CTT+CEx4VcMiIsnVvn37WO+TjHfq1Ck7Z6aiV0EKCTaCEO+8845VBr7//vv2uweqE6hc8G91xPyJUAYomDNBy3COtVRMcI42ffp0+7thDgVBhZTg3G7MmDEWoGDGBpo1a+Zef/11lzVr1gB/FyIi4aN2T/EEFa677jrrBU9gwjvgcZBZu3atzapICq81FNlrnCQuW7Ys0D87EUlDCIyyiPZmT7DwpIf4rFmzEv28H3/80S1fvtxt27bNtyhnFgWZNmTsUIYvIiJpwy+//OLq169v69TKlStbpURcBQoUsBamVFqwfhURCRQ2SP0vv//+u9u5c6e1zpk6daqeaAkKNuk9VAy88sor1hLXm++A1q1bWxskEkxDKSYmxjpx1K5d2+XPnz/Wvg+D5amWJ9E1pQEKkl2Zn0FrJ/7maO30+eefWxWlAhQiktbozCXuE3L++a5atWqx2qXQz51SQRAJP9cBlM+nTdTmzZvtOoaIffTRR1aZISIS3+vGggULbHELNp9o10GmEIvSxBDE4PNLly5tmTv+r11sYJFBJCIi0Y/XerKUaR3BsFo2BONr79ChQwebR1GhQoVY1xPcoC2El4UpIhIIDM1moHbcKguR1GKDv27duu7uu+/2XUeXiq5du9qA6JIlS/quD3ULQwZXcx7GuRrHW87leAwMkvdQEZ/SNkwcq1u1amXneOvWrbPkM+ZNUX1P5byISFqkIEU8vPYoXrsUeBF5+nASLU/wCT3/fDsYcYBatWqVL0hB2T09EkVE4qJKi6AErxXIkCGDVUZs3brVXX/99Yk+YWTR4KGHHvJdp1ZPMnz4cOt3e+mll9pgPX7HkoK2hhy/OCEUkchC1QSbILQXpcUF1XYJiTuniMSZOXPmuN69e4fgkYpIesNG7KFDh8L9MCTKMeT6p59+8r1PVSAVE3S48O9oQWUC7Q5z5MgR8sdIi7MRI0ZYBfyDDz5oa2zW2y1btnTbt293L730Uqrun70m9py4f74O7z/yyCNWsUQgULMnRCQt00yKeFSpUsU2aTZt2uS+//57lzt3btewYUM3e/Zs99hjj9mBIrFIPSeRRLmppgAleWS8cWLJfYuI+OO1gTZP/q2ZeI0pXLjwOct/udCLtUmTJnbdsWPHfBk8XlWYpC9U/HXq1MmNHDnSAhQcj/hd4OSGdoYJYQ5K586dXfny5UP6eEXk3KjIffnll+1tNi1uu+22szI6H330Ubvcf//9Z61TqbQjqE2FxdVXX62nXERSZP78+bHe57yYuWjDhg1TdrekCoF0KgcqVarkpkyZYtcRjGcWA8e8PHnyRMQzTCXHkCFDbP5E5syZrc1UmzZtEl1jJxUJajwHtI8C54Jvv/22u+eeewLwyEVEIt95MYmVBaRjHAiofGAYEeWEqcWBiyyAffv2hbwUUUQiW/HixW1g9sSJE623L5UUSXmdeOqpp9y4ceNsMKq3mGfzisUt9+cN45b0hcDE7bffbhsGXosYguZt27Z1zz//fLyfwwYnpfQM4125cqX1vZ87d26CX4NWZFw8v/32m32NX3/9NcU9d0UkfmyEsEHD3yU9qXmdj4shovz9knVKwDFTpkx6OkUkXhyzea1IyTE77pwb1qtsJLOxzBwc/6HFkfo9SGSg8oa2tF5VIBUJrGFJ7qRqgmBAJGDWKMddKiSYNwraPBGc47jLeVtq0eq3V69ebuDAgVZNwhD6Hj16WPtGbzC4iEg0S+pxW+2eEsCmH957771U/SA4yIBe81RlfPPNN6m6PxFJWwhc8rrgtXqijJfevlRXJIbNKu/16ZlnnvFd7w0t9F7DJH1h9hHBqXvvvTfWhgLv+/fIjYsTIzLAnnzyySR9nb59+9oiw7t4lYMiElhsXNSrV89e8+l7TWVUXAS3u3Xr5hvSqQCFiAQLiQ/+F5Icjhw5YmvSUAUoJPqx4c/akSoBDwk2zNVjDkUkBCioQCYIQSUinTJIJvM88MADlvwTiAAF1UlFihSxGRvsHXHMp20UibIKUIhIeqMgRQIaNGhg/f5o+cRBwkPfeDZnRo8enegTe+bMGde8eXOXM2dOG3rEMCVmVcQtkRWR9I1gBAtQ2vFwosfinKxZNn4TQ/R53rx5FtTwhqft37/fsuDJavOfUSHpx/Hjx+33KGvWrLGu5302EeLz+eefW0UO5fRJ9cILL1gWhHehhYyIBBbFzgQOt2zZ4rJly2ZzKJhHERcbG/x958uXzyp346ItxYwZM9zp06f1IxKRgK03yIoUScqxjAQa9kc8hQoVsiAXAQkP5y+cD1FdEU7r16+3WRO0WqJKkRkU7OWcqw1vcnHexgy4OnXq2Nu0GOe8kBbjVJOIiKRHClIkgP7w3gBtLzMZbCCSrdanTx/bCEoIJ5HeMFxaZvA+96cghYj44zWhYsWKNuSUrKFvv/3WZgqUK1cu8Rfv88+3GTdk1Xqtofg80LbnXAO3RXDy5EmbZ0KAIkuWLEl+UjimESjzv4hIYNE6hdd1kmZmzpwZ74BQAoQDBgzwBSviBjGoxHjxxRctcL1hwwb9iEQkxajoov8+6wWSH5hvQwCVxIVTp07pmZV4sQlPy0L/NqL169e3c5533303Yp412phWr17d3XrrrdbOieAK3TBWrVrlVqxYYYGKQKBaguM7QQ8SzjjG046VeRQ1a9YMyNcQEYlWClIkonHjxvY/5ave6A4GaDMgiWj3hx9+mODnsmnYv39/t3z5ctesWTO7joMcgYuEsllFJH0hA53ZN16rJ1A2zOtM3J6/SeG1f/JeuyT9YeOAYNePP/4Y63reZyMhLqp26F/P7yAnSVwmTZpkwTPe5uMiEnpLlixxzz33nK8SIqHANYkzVEgQnKZFRHwt4Ki4IxhepkyZoD9uEUmbfv75Z5sXQMsbOg6wycqF89uhQ4faaxCZ8pzrvvXWW+F+uBIm7JmsW7cu1nW33HKLBdBZb3qYuUB720jCY2QNzeWRRx6xKkaCCIE8dn755ZcWsOncubMF9sqXL+82btxonToC0TpKRCTaaXB2IujxS49uTv5YcNEnERxUWJQRaU8sUBHXTz/9ZPc3atQoG3grIukbGbKNGjWyeTW0hktq/1UGY7O4Z5iaVzGxY8cOy8hhY5lAKNVgkj6xiVC6dGnbNADl9JSN0wYm7uBsNhT8S+29PsFUWLAxWqBAgST1w9UAS5HA4ZhAJifrxscee8yNHz/eVzHnj6zLYsWK2cfYFOJzRESCccxmzbl06VILoMZtKcm6s2rVqq5gwYLuk08+sSCFl6QXLFp3RB66TLABz6b7V1995TsmEeACiZ6RFEyhtRIViNOmTfOdT1HdwbkUcygCib81kgoYwM3X5rkgoZVjfEoS00REoo0GZwcAMyQoT4zb8qlly5a+1k979+5N0n1xMGLTkN7x5xqIKyLpA68FJUuWtA3kp59+2k7wWNQnhhNBWvMQKKUfsMd7jaKXqwIU6VunTp3sd4RsR2YqMVidli+PP/64fbxp06bWmgGXXnqpbXL6Xxi6S/sx3tbAPpHQIrOSHtUEKNjsYUMjvgAFGLRJlieBRQUoRCSYaNVDa7m4AQpQqclmL3NzWIMEO0AhkcO/OoJkKxKmqAjYtm2b73o25CMlQEHiDr+nVHewz/PFF1+4gQMH+j5Ock4gAxTsAdE6iueFIeG8z98HyWUM5VaAQkQkNoVtz8Frm0KE3ZtBQWkim4kcZOgHnxjvNhyYDh48aC01Fi9erL6dIukcQ9g++OADe01gA5kgA68NtOZIDNnx9DK98847LcDhvc6o1ZN46D3PRsLLL79svyNktBFU9zYWaFd4+PBhPWEiEYbXcipt+Zu99tprbXgmgcSEELyg1UqvXr3i/Tg9tLkvEZHUYt1QtGjRBD9OYgMbrj169NCTnU7mk1C1S/XMsWPHfNcTrDp06JDNO4sk7ONQwX7zzTe7Bx54wG3atMkSckjaiVtlHCistzlGM4Sbvx/2kJYtW+YmTJhgx3gRETmbghTnwLBrhoJxYOFkz9OlSxf7n2xVhmMndgJJltvOnTvd6NGj7UBF+yhKZUUk/fr8889tgc9rAhlH9D1lYzmxvqeUCg8bNsze7tq1q+962nzQsueyyy7zVX9J+kZrJ1rGMASQ/re0gPJwLOMEKSF8zH+4oYiEBhVyBKxpNUHmZa5cueK9HW3aqLQ4F2ZRkC3qBbFFRFIz88o/az6uffv2WVtjSbv8E6mouvVmdq5evdp3PW2TktpCLJTVEyR30WKXNom0OiORh9/n1157LeC/twRESFKl2nHhwoXuoosuct27d3ebN2+2+VAiIpIwBSnOgVYXZKVi5MiRvusrV67sypYtawc7MqITw0GJORQMQCTboHjx4taGQ0TSL14D8uTJ40qVKmXv8/azzz6bYFsPDB8+3Hr5sej1D0Z4r03169e3NnUiIhJd6OPuDcpmc4MhtIkFM8jIfPfddxNtG8Wak80iEm5ERFKDdqIvvvhivBW/JERwvqvXmrSJhEwGSXP+QTW3Z9y4ce7AgQOWcBVpCEx4qPCpUKGCJZ5SeUhw4pVXXglKCyoqNAiIdOzY0Srly5UrZxWNfN3EKiNFROR/NDg7CchwpjSQPosc1LzBShykyXZLLtq10K+T9k/x9fUUkbSNCoocOXJYH3HKjBMLTPhvOOXOndvmULAx9eijj9r1ZNPymkRm7apVqxKtxBAJFg2wFEm5PXv2uNtvv92dOHHCelSPHTs2weMCbTTomc3mx5QpU9zDDz+c6H1TvUuVnYhIao7ZnLcyJ+eSSy5xrVu3doUKFbJMemZf0WufQAWVvcxZCwWtO0KHcwx+rrR1IqBepUoVF6m8mRM9e/a0LhbMA/XOvTiu8nsfDBxrCUQwDJtKCr4Ora9o4ai5EyIiToOzA4nKB6LvHHA42HlSEqAAm4t8bmLtNkQk7aL1BploDDKuUaOGa9u27TlnBNBajgAFFRdUcHnGjx9vJw9UZJC5IyIi0eP333+3QdkEKGjLRsVcYoHrbt26WYCCgLQ3Ny0xClCISCCQEENbH7LpSbDhdatevXpWXcF1DCAOVYBCgodzCvY7WrRo4buOCgC6Qnz11VcRG6AgYEaLbc6HGjZsaIO7qTr0b08VrADF8uXLLaG1X79+tl/EzAuCdzyHClCIiCSPKimSaObMmXbAo2chQ5DIIvF888037q233nIDBw5MtNUKmQfchl7yBCjIev7222918BJJR1hE0yOcYEPv3r0tCErQkvkBVFckhHJqZlbwuY899phdx0I4f/78VuFFyTUZuCLhoIxGkZRlfLKZMWfOHJctWzbbAMqZM2eCtydLmUGlWLt2rVVfJNQbns2YYLSyEJHol9pjNkHVXbt22dusQ8PxWqN1R3Bw/KCdIOcY69evt/OOSD+vYo+F6nSOoWAgNl0raLkUrMCEV53BnFKqH8Hxm6qiSGx/JSISbkk9bqesFCAdIluEDUTK7Ckh9MrrOTDSB56FGmWvHBATsmDBArdo0SI76DOsiZYtDDCtVKlSCL8TEQknFtD0K2VQW9GiRd3SpUvd119/nWiAAgxQHTJkSKzrPvzwQwtQcHKYlIxaERGJHK+++qoFKJh/Nnv27EQDFKw3O3ToYG83bdo0wQAF2DRhzUnmqxfUFhEJFHr7ewFTiW60jSXoXb169Vgz8gicE4CKdE2aNLHWh7j88stdu3btXOfOnd0111wT1K/LsZu2Z14lfKtWrVzfvn0jbmi4iEi00eDsJLrooovc008/bW9Tiu+hJJ/KCJDlTIlkQhiI2KZNG2vPwhAlghq0cBGR9IO/eQIODCDk9YMgJRtKKeG9Fj355JNq6SEiEkXY4OjRo4e9PXLkyHPOE5o+fbpV4LIJQ5A7ISTCUHlHS8FIz4AVEZHw2blzp7XoatCggc2b8Lz++utWhUBFQqS75557rMMFj5cqEAIFwQxQHDlyxD344IOWpEqAomDBgm7lypV2TqYAhYhI6ilIkQzNmze3YAUniRs2bPBdT0YbfTo5UBGASAi3YWg2G5RsTtKnkKoMDnYikvZRFsw8CoIKScXta9WqZVlO/mgVR2UWryXPPPNMEB6tiIgEw5YtWyz7E2R9Mp8oKZtJ9LamF3xiFRcXXHCB+/LLL93WrVtdiRIlAvq4RUQk+tsMegoUKGBV3SRORsN+xJ49e6ybxaRJk3zXUS24e/dua6lNW+5goZpx8uTJ9nzNmjXLjrXMiNq4caMln4qISGAoSJEMlD3SOzhuNQVl+lRJoFevXu7kyZNJuj8OqnwuGXQikvYxN4LsVhazlFCfq5KKyiwWwAsXLrS2UP5GjBhh/zN4m9JsERGJjtYatBBl+DWVdP6DPRND1QX9wWnDkRQMshUREQH7Eww5v+2229w///xj15HoROtY2s4yIy9S/fjjj9aNgmDK1KlTrW229z0w149E0GA6ePCgJYyRXPDzzz9blSLte/v06WNDxUVEJHAUpEgmeg+C3ofHjx/3XU9VBJuOHET79++fpAMtmXPNmjWzzcY///wzJT8/EYkSLKappGrUqJEtsJklETfwENewYcNsoDZZs+3bt491ovHOO+/Eek0SEZHI9vfff7uGDRu6vXv3WnB5xowZtsGSVFRGXHbZZQl+nMAH7Z5ERETiVgKMHj3aukHMnz/fd32WLFksWBGJfv/9d9ezZ0+XL18+SxDlXOq+++5zc+fOTdaxMzXPGUOxqZ744IMPLLmUdotUK5YsWTLoX19EJD1SkCKZypYt62699VbLcB40aJDveg5a/fr1s7fJimPAdkJOnTpl1RPz5s2zvvRHjx5106ZNS+nPUESiACcEBBwINhCseOuttywTKLFsWzJ0vOGq9CH3sFD/9ddfrUy7atWqIXn8IiKSOvTMXrZsmbviiitsDZiUvtn0196xY0eS7p9jxo033mgtKUREJP1iQ3/JkiW+95mXwLkHG/z16tVzkW7BggXupptucq+88ooF4G+//XY7fn700UchCRDs37/f9mlo9/3bb7+5O++801o70XKR9t8iIhIc58UQIpZk8Q7uDJMiGzpz5sx2PU8lpYAMcKJSIrHyPwIZpUqVstvef//9Vl1BqWWkZjKISOpUqFDBMlw///zzJG9mDR482DJneW2g96mXVcQmFEEMerJ6fc1FwokTuKuuusqCZxocKHI2klOYH8Q6j3Vk7dq1z/k0scFUpUoVW0+yYXLttdcmens2bjZt2uRmzpzpa08qIpIWj9lp4XsIltOnT9um+ubNm926deusxVO0YRj13Xff7fLmzWvBeoZVh2KfhP0c2vF27tzZKtc5/pIs1qFDB9+5mIiIBO+4rUqKFKhTp45tHHLg8q+m4MBJ1J+D2rn6E9JTuGLFivY5ZFZTepnUzUsRiS5k3nz22WeuZcuWtvhNymA4b+4N7eP8F8Vvv/22BShoL9e4ceOgPm4REUm9FStWuLZt2/qqHZISoKA1lNfmj0zOcwUoQAsKWkiRMCMiIukTbQGZm0Ai5YEDB1w02LJli7XT9pQvX94C+tu3b7c2iaEIUHjVE5yvsc9DBw0C/+zbKEAhIhIaqqRIodmzZ7sGDRpYBIhqiquvvvqs25A1nZQDGpnRlDDSn5jhVSKStjCHYtWqVdaeyQs0eG/Hp127dtYSir6rlDV7KHfmdeLYsWNuwoQJNtNGJBIoo1EkfsyfYI3HsM2HH37YWjElZbOFthwEKWgJtWvXrnjXmSIi6fWYnRa+h0A+F1QbdO3a1Xes4FyBfQiv40OkopsE7W+Z/XDJJZe4b7/9NuiDsOMigWz8+PFWxe5VTzB7gvMxBSdERAJDlRRBVrduXVe8eHF7omnJEhcbizfffLNbvHhxovfDAN2CBQta1J7PIdtaRNIOWjVNnz7dsnIoXeZyrl6mAwYMsA2qN954I9b1I0aMsJMOSp8feeSRID9yERFJDdaIVE0QoCBQwSZMUgIUvM57M4uovDhXgEKdW0VE0ve+BLMxe/Xq5buO6rtIDlD8+eefdp7D3AkGev/333+uZs2aIX8czBHl6z711FMWoChTpoxVTxCwUIBCRCT01O4ppU/c+ee77t2729tDhgxxv/zyS6yPL1q0yG3bts116dLFKioSsnv3bjs40jOSgdzPPfecTjZF0hAGrBUqVMj+thl++s4771g1RGIuvvhiaw1CINRz6tQpa/2EF1980V144YVBf+wiIpIyrP1oybd161aXPXt2N2fOHGvBkRTdunWz7GBmTLBxci7Dhg2zGWeqxhURSX84L2Czv3r16i7SEVSnPXaxYsXs3IjAADMzSOKiXWGoqih4HLSX4nFw7KSKg6AJjyOxancREQkuBSlSgXZPRYsWtRNJsp79EcCgBJVIvNdbPj70OCTIwcGRDIg1a9a4efPmpeZhiUiEWLp0qVVTUTJMUIHgBO0+EsJsGjKL4jNq1Ch39OhRuw8NyxYRiWwkqbC2o23E/PnzXc6cOZNcfTdu3Dhf8CEpmZy0//v000/dvn37Uv24RUQkcv3zzz92XsG8Bk/lypUtObJq1aou0h0+fNg98MADlqiZLVs2N3HiRJunVK5cuZA9huPHj9uci0cffdSdOHHCgiTr16+347aqJ0REwkszKVKJNi70m8+UKZPNpiAw4Rk5cqR75pln3BVXXGELh1y5cp3z/qpUqeJ++OEHq6xQprRI9CJDp3Tp0vb2zJkz3Y033njO9h5UXFCeTSVW7ty5fR87ffq0tXg6cuSIGzNmTJIya0VCSb2hRf4Pr9MtWrSwt8kMffDBB5P89Pz111+WvMKaMrEkF38MRp00aZKtOSO5vYeIRIa0cMxOC99DSgwcONCSHAl879y502XIkMFFur///jtWq9tXXnnFzm2oAMmYMWNIH8vChQvtPIpZGOy10FqRqnftu4iIBJdmUoQImQCFCxe2dk+DBg2K9TFOUMuWLWuDsdu0aXPONk58vHnz5m779u12siki0WvWrFnuq6++svJrgg9kxCamU6dO1recrNscOXLE+hiDtglQELho2rRpkB+5iIik1PLly12rVq3sbfqDJydA4bX7I5szqQEKkATDZo8CFCIiaRvBaOYmMCj78ssvd5GMvQ0StfLnz+/Wrl3ru75Hjx7WQSKUAQraSrHPUqtWLQtQFClSxCo46H6hAIWISORQu6dUoiSQbADQx5BsNt+Te/75NgiKzAFK/elHnJAzZ87Y8GxawfA/B28yDEQk+pAxxIYRf8sEMGnhlFglBS2hJk+ebANVycD1zzaiwqJ37972Ntk+bGCJiEjk2bVrl7UCpR0HVbYvvfRSkj+XhBaqKERERDzffvut7Qt4mG30xRdfWOtXzhsi+XFzHkRbpf3799s+SbisWrXKZjyNHTvWnjMqUWitWKpUqbA9JhERiZ+CFAGqpihfvrwFFZ5//vlYH2NmRdeuXe3tDz74IMH7IHuack2CHvSVpF8j2dMiEn0Yjs1mFVlC/N1/9tlnrkaNGvHeloHYTz/9tL3NsOzbb7891sfJ8KGU/ZZbbnHNmjULyeMXEZHkoRKuZs2a1t/6jjvucOPHj0/WBlLnzp1diRIlbDMlqehJTmYomy0iIpL2jiu0jqUq7/333/ddH8nBCRKzSOAsXry4JWExkJogy7vvvhuWpDESvNin2bt3r7vhhhus2nHAgAG29yIiIpFHMykChGFLDF2irJETTMow/askPvroI1e3bt1EFxVkGbBhSWsYNi0pj+SA6j/nQkQiG3/DlDVXrFjRTZky5Zy3pw8qwYzrr7/eZtf4lz4zm4bgxH///WeBDhbZIpEovfaGFgEVEGSMrlixwlov0daCgaBJRWtANqJYQzIA++67707S5zEklU0gNmG8ql4RkWg4ZtOuaPbs2W7Hjh1WHUCL5Ndff90VLFgwar6HUOjZs6cdF6i4Zg5FJONx0u6aKgpwXKTdLedFocZjYDD2unXr7H0qT4YOHap9FRGRMNFMihCjXPDxxx+3t9u3b2+bih4i9fXq1Ttn1gPRfQIU4ISTyoxwlkaKSPK99dZb1qKJjapzte4gCNG/f397m0W8f4CCzaoOHTrYawk9zRWgEBGJPLxW0yOcAAWv4VTPJSdAwWt869at7X4eeeSRJAcoQDsp5hQ99thjKXz0IiLh29DmtW/NmjUWbCXrncDrH3/8ka5/JBs3brTzCP+K6iVLlkR8gMILDHDhGDh9+nRL0gx1gIJjKa1zSfIiQHH11VfbY2HepxI/RUQinyopAojBtgUKFLDBTBMnTox3wC1lm4MHD7YTy8R6y3///ffuiSeecKtXr3Z79uxx2bNnD+RDFZEg4O87b968diJBVUT9+vVjlWfH9d1337mWLVu6K6644qzbMcOGz6dMmiyzxGZaiIRbesloFImLzF9afTKHbOHCha569erJepJGjRpl1bMEOHitz5Ejh55kEUl3x2w25q+77rokV5NF4veQWsywZJ4R1dgcTyK5rZMXEDh69KjLmjWrL+j+5ptvWhvCTJkyhfzx/PTTT/a1vTmgtNCeMGGCVauLiEh4qZIiDMga8IYkcsLKEER/HLhZdDEEN7FhivQzpi/xsmXLbEYFfShFJPLRtomBqcyWYMHesWPHRG9P4OHjjz+27B5/tIhjqBu6dOmiAIWISAQiuOzNIhsyZEiyAxRs7tDyD6wNFaAQkfSKYAMyZ86c4KwDNjj8L2mNt5nOngEdFSLZDz/8YK2saVVIgiYI1nPeEo4AxdKlS93NN99sAYqLLrrIKtU/+eQTBShERKKMBmcHGK2e8uXLZ4Ov6bUZ68k+/3z36quv2tscODmYxoeyRLIAaO/SqlUrN3r0aPfll18G+qGKSABt2bLFqqQYfkpW7L59+1y5cuUSPREDWVIZMmSI9XHuh89nw+q5557Tz0lEJMIwd4Ie1yAw3aZNm2TfR9euXS0xpWTJktb2JKloLUU7UIIcIiLRjk15WpzeddddrlixYvHehvNqKie8C21V02L76C+++MKqKC6//HIXibx2SkWKFLHKD/Y8Pv/887A9HtqEkSxQpUoVd+jQIZtpQgsxzsfYexERkeiidk9BMHfuXJtBQZuW7du3uzx58sT6OO1dCDywAUlP+muuueas+6CX/YUXXmiLNoZwU5WxYcMGm28hIpGFBfKdd95pWU/8nfK3nxCyjeiTWqlSJTdo0KCzAhQs9mkbx988FRbeJphIJEuLbRdEEkIQmdd8ggT333+/mzdvnq3ZkoN1Xs2aNa3X+KpVq+z+kqp27dpuwYIFrlOnTtZaQ0Qkmo/ZzPVhfgGb3Qm15qGSgov/90CgIlK+h5Q4cOCArfPfeeeds/YLItHBgwfdU0895RYtWmTvU0Uxbty4BANLoTgWN27c2JfMydBuzq0iNcAjIpKe/ZbEtYfCy0FQp04d64HIQoqABBkH/gYOHGhRfqL9VEzE/TiYV0H0n5Neeikyl6JHjx7BeLgiEoCe5Ay6I6i4fv36RG9Lxi1/z5QgE9zwx2sB2bgEKFj4M0RVREQiB5UPBCYIUFABwUDO5AYovHUeGz1sriQnQIEGDRrY57CGFBGJZqx7qRxYvnx5oq15SABiU8P/Eu3YJ2AGB50TIhnnJ8zbJBjBcYufxYABAyzAHq4AxbRp0+wYzDGU9lKzZs2yGU8KUIiIRDcFKYKA9i1vv/22VT0sXrzYjR8/PtbHyZx+7733rF8ifRPJQEhsUUBbKCJOtIiifFFEIgfVUMyNueGGG9zOnTsTzWplM4tFPgHIyZMnn9WzdebMmW727Nm24UW1lcqURUQiB9UP9evXtwHXbKaxsXbFFVekar14++23J/vzmjVr5lavXu0KFSqU4q8tIhJOXmIO58LMYYyGSoJAo21StWrVbHM90lExSPYrSVQkZjE7j9mZoXbq1Cmr5qCCgqxcWoRt2rTJgvciIhL9FKQIEtq1MAQRlONTHhm352SfPn3sbTY1GbYbnz/++MOGMR4/ftxOiB9//HEbqisi4UclxGOPPWZ/72QTMYsioRON77//3jKm8OKLL541r+LYsWO+nuTdunVzJUqUCMF3ICIiSd1QY2OEeRAZM2Z0H3zwgcuZM2eyn7z9+/e7du3aWUWGiEh6xZqXhB0S93hNPXLkiF0ifWB0alEt7eEY8vHHH1uiUyT6999/fQH1ESNGWMIkMzPCFSDftm2bBfZJ8OQxde/e3Y7Jkfr8iYhI8mkmRZAP7ET3KUOkNQAZdxxQPbSG6devn/XhZFh2Qqie+Prrr90999xjwQ2GczMwUUTCi0DkK6+8Yn+jt912W6KvBRUrVnQrV660Fh38H7c9SKNGjazSonjx4u6rr76yViAi0SLS+luLBFrPnj3t9Z7MUQIUZL+mJNBRt25dGzbK7DIq55I7rPuHH36wWRZU44qIROsx2/+c2B/zGUgAiobvIblo9frwww/b/Mq4yUqRhCRJKiX4/91333WRgPbXtMUiiJUtWzYLbnFuJSIi0SGpx20FKUIQ8WdILi0CaPPStGnTVN0fQQ2ysMliSG4PYxEJbJunW2+91T344IO2UE7K5hZtQSiRzpcvX6yPU+pOCxE2vwhqcr8i0SQaNwtEkoq2nU8++aS9TSu+lM6CIChBSwoCDBs2bHBFixZN1udznOB48fzzz7u+ffum6DGIiKSFY3a0fQ8EqQkwf/jhhxaomDJliotEJEoxE+/bb7+195m1x15GuBAoITgxadIke79KlSpWgXPdddeF7TGJiEjyaXB2hChSpIhv4DUVEIcPH05w4cIci3Ntdnbo0MFKGulHnNbLYUUiuc0Tf4MMjps6daobPnx4orcvU6aMVUtRKh03QPHzzz9bNRW6dOmiAIWISAShFUeLFi3sbZJEUhqgYCON/ut47rnnkh2gYJ3I52TNmtU1adIkRY9BRERc2CpH3n//fffaa69ZtUik4RgzaNAgV7ZsWQtQ0IpqyZIlYQ1QeO2dCFAwp49W2RyTFaAQEUm7VEkRog1Nqh7IRKDMn0y6uCWuXiY1w7apkqCtU3xoG/XRRx/ZgZpZF/SGFJHQYlA2lRH8PS9atMj+tplLkRjmymTJkuWs66muopS6cOHCdj+8BohEm2jLaBRJCl6T7777bsvk5LWadhMJtShJSv91klFuuukmq8RL6Ws9M8zitgsUEUlvx+xo+R7ophDpLVx/+ukna7FFa2pQ8UfVYObMmcP2mEjcJCmAQdk5cuSwpDCOxyIiEp1USRFBKOsnY4L/6UE5bdq0s25Tu3ZtV6NGDRuKzcbn0aNH470vFhAsyB566CEbuL169eoQfAci4tm0aZPNonjhhRcsI2rHjh3xBih++eUXt2fPHt/78QUo6GtOgIKgI+1EFKAQEYkM3333nSWGEKC499573ZgxY1IcoGCtRiUdRo4cmarXegUoRESiw7Fjx6wSgeNHpKKC4r777rMABRXiBNNnzpwZtgDFn3/+ae2daDlFgKJy5crWHlEBChGR9OH8cD+A9OLmm2+2NgHgwLtv375YH6cXPf0V2ew8cOCAa9iwoVVgxMX1bHxS9kj5I0ELtX0SCQ3+JmmzUbBgQde9e3e77vrrr493UDb9ZhmmvXTp0njvi9ZvTzzxhL3dsWNHzZgREYmgrFI2bX788UdbvxGQTk0mLOs/NoJYs1WqVClFwXGqL0REJHqQpEjLoldffdX9/vvvLhIRfGfGERXdzMWjBW1KA/KBSA646667LKjPY+Bci4p1tXcSEUk/FKQIoW7durk77rjDMqyphKD801+mTJms0iJjxozu008/dc8++2y893PNNddYJh1tBziYt2zZ0k5+RSS4CCZs2bLF5cmTJ9G/uZdfftnaslEZxSyK+Np1NG7c2CqmihcvbpUZIiISfmRuMtx0586dLleuXDbkNLWtRGbMmGEJKgMGDEjR51O5V6JECffWW2+l6nGIiEjoMGuOOQpstF9xxRUR89TTImvVqlW+96kWJBDOcSZcPvnkE5vL9/XXX9teB8de2uuSyCkiIumHghQhRLun6dOn26blunXrbHBiXGQxUFGBoUOHJjpYixYxHMRpF6MTV5Hgoh0TA7LJ7Pn888+tEiI+lEgzFA9jx46Nd74Mi24CkZywcPvLLrtMPz4RkTAjgEwSyZo1a2ytxoBOhoemFu3+OH6wZksuKvNIXmENSfspERGJDpwzkKRYqFAhFym++eYb68ZQvXp1G5Ad7laC//33nwVyqF78+eefrQqdeVC8LyIi6Y+CFCGWO3duN3HiRHt78ODBVjkR33yKnj17WhCCqovE+lxy4eSVDO/FixcH9bGLpFcMs3/66addixYtLBuKrFiqKeLauHGjtfMAlVD0U42Lv1PKvsFQOlpHiYhIeFEdx+s8fbmZGbFgwQJXpEiRVG28kBma2kpXskhJcDly5IjLnz9/qu5LRESCi41/zuMJekca5mLS1WHXrl024zLcLaio6KhXr5576aWX7FjJoOyVK1e6G264IayPS0REwue8GPUJCovOnTvb4GsWCAyDirvhycktWQRkEySGIEfp0qXdk08+aX0kudx0001BfvQi6cf+/fst44hgwpIlSxLsS86cmbJly9pGEmXTtHuKm5V06NAhV7JkSQsuEvAYNWpUiL4LkeD67bff7HjGCWdqW+OIhAO9rwkgkyAye/ZsV6dOnVTdH6/vBD2YTzRlypSAPU4RkdRKC8fsSPweCExw7s4cIZKVUtriL9DYVyAQwOwJcJ4ydepUq/ILl+3bt7u6detaUIeB3VQbsp8hIiJpU1KP26qkCBMWCXfeeaf9gOKbT8FJsn+AgvJHNjjj4uCeI0cOW2gwVIoqDO5TRALTm5z2GmQaUfWQ2OBU/qYJUDBklRZOcQMUnLiwWUWAgp6vVFKJiEj4vf32274KNwZ2pjZAcfDgQetFDhJJUmrr1q3uxIkTqXosIiISGqz9n3/+eZcvXz7XqVOniHjaT5486erXr+8LUHTt2tVaGYYzQDF//nyr6CBAwewn2ugqQCEiIlCQIszzKTJnzmzzKVgwJHayW758eVetWrUET1YZuk2GBOWbDzzwgPUwFpGUo8js8ccft0wfghWcdCRm2LBh1naNCgr+HuN65ZVXfHMoaBelORQiIpHR/qJNmzb2Ni06qHILRNsoNobKlCnju++UoH0gMzEYICoiIpGvUaNGbseOHZZEGAmGDBni5s2bZ9UKzLF8/fXXwzaMmooO5vKRCMAxskKFCu6rr746Z+cIERFJPxSkCCP6LXrzKVhAvP/++/HejoADwQkGXXFQP3369Fm3oRKjR48edlta0rz44otBf/wiaRnDrwkm0JaNxXN8lQ/8vXkd86iyGDhwYLwnJWQsMRQOY8aMcQUKFAjBdyAiIolhZkTTpk3tdbxVq1bu5ZdfDkjQ44MPPrBjwtixY1O8GcS6j7UdxxlaDoqISGQ6c+ZMrATBcA2hjg+JkHRtWLFihXv00UfD9jgISjRo0MD2K9C2bVub00cnCBEREY+CFGFWs2ZNX0sATpS//vrreIdts8lJ/y6GSdEyJm6lBCfDDHsk665fv36WJaEeyCIpQ8YRlUlk1Xbo0MGtXbvW3XjjjWdlAzVr1syqJ3g7Idu2bbOTAy+7lgwrEREJL2Z4MbDz77//ttfot956y5133nmpuk/a+bVr18434yI1g7evvvpqt3HjRktQufbaa1P1uEREJHhoF1iqVClrWxQJvvjiC99eAXsEBM9pMx0u3333nbvrrrtsliaPZ/z48XbMpbOEiIiIPw3OjgD0qq9Vq5YFIrJnz24botdff/1Zt6NVDC2f/vzzT2tHMHLkyHhPqNkMfeKJJ2xOBUENZeCJJN3mzZutcuKee+6xv0nmw8Snc+fOVmVBthSbXZycxHX06FHrucrinJZtZAxRbi2S1kTiAEuRxILHvCYz76tq1apuwYIFic4cSqrGjRvbZhCziWjlGYj7FBEJtLRwzI6U74Hz8rx589rsyDlz5ti8yHAaOnSoa9++vWvdunVAgu+p9dlnn1kFxfHjx122bNksUMG5kYiIpC+/aXB29GCTk/kUxYoVc4cPH7bqCgb1xkXfRqojWGwwxJeWTl6rGX98nAAGfYwrVaoU78BtETkbC2j+ZsisXb9+vb2QxofhcwQoMG7cuHgDFLRloz0bAYr8+fPbiYsCFCIi4fX9999bYIIABRsls2fPDlgwoXnz5vZ6z3EhNfe5e/duzRYTEYkCrO1JcKItLOv+cKGqm+4MVPOxP0ASZHz7BKHEsfDee++186tbb73VgvcKUIiISGLU7ilCkAFCuyb6Mm7atMmy8eIbfk0mwttvv21v0y+f7JH4MEB77969FuwgI5w+kCKSMIIK/H3hlltuscFu8Q3ApqS7W7du9vYbb7xhbdriO1Fg6PaaNWusZQd/29dcc42efhGRMDpy5IhtmPzwww/WionZERkyZAjY/RPk3r59e6qGgBIkr1ixogU7qPgQEZHIxhqf6oVwVS0wv+iRRx5xAwYM8CVTsV+QUDV4sLGH0alTJ/fUU0/ZMa1hw4ZWURFfpwgRERF/ClJEEGZPzJ8/31166aW2qUk7mfjQ155ejsuXL493ExVUZbCBykYpJ+VUZ5w6dSrI34FIdKJUu379+u6rr76yeRS0b2KIalyvvPKK9RkHg7C9eTJxMcuC6iiqpN5//31XsGDBoH8PIiKSMConqlSpYlUKefLksaHZgQgek6nKOitQA1N37Nhh6zUutBAREZHIw2v/zp07IyLJinMYWg0y4+Hdd991zz//fNgCJiRIMu9p0KBB9j5JXzy2yy+/PCyPR0REoouCFBGGEsiJEyfa25SNelUTcRF8yJUrl+/9DRs2nFXSyQYqwQz66jOQmxLUM2fOBPk7EIkuZPiUK1fOLVmyxIKEDHaLb5Db1q1bXe/eve1thtN71RRxTZo0yXc72rKRESsiIuFDNWn16tVtCDWzv3i9pyVmIFDVStXDqFGjAnJ/xYsXdwcOHHAfffSRJa2IiEjkIampcOHCNvshXDj3pwqcqsDLLrvMzmMeffTRsD2egwcP2rwn5jxx/OL4SHJXuOdiiIhI9FCQIgJREkmWNugrSZAhMTNnzrTh2B07doy392TZsmWtMoPKi9KlS1tJqIj8b2g9w+ipoOBvhwF8CSlatKjNhKGU+rnnnov3NpQyU9oMspgIJoqISPiQnMEg07Vr17rMmTO7xYsXB6xC4ccff7QNqj/++MNmigUKGafxzToSEZHIQEtXzh1o6xoubP63aNHCHgP7Bffdd1/YHgsJkyRbbty40dpXs+/w4IMPhu3xiIhIdEpdTboEzQsvvOC+/fZbq6p44IEHrC0BwYb4MJeC3o9DhgyxTdehQ4eelbHw008/2W22bNlirZ/IuIgvW1wkveDvgSDCp59+apUUBQoUsFkU/jj5+OWXX3wnIA899FCii3OqlajMIKvJCzSKiEh4kJTBJsmyZctcxowZbROHgHMgcHx45plnbH1VsmTJBKvrkuPQoUMuR44cAXl8IiISPFRV09aI+UbhRBCequ3EEq2CjX0FzpEI2Hvznm688cawPR4REYleqqSIUAQZaBXDgEcO+LQpoGVTfMjcHjdunH3O8OHD7aSZwb3+6FXJjIsOHTq4FStW2HAtNlNF0muAonnz5u69996zC9k+Y8aMcQdTG10AAGX4SURBVBdccEGsDaiuXbvaAFTKlxNDKyh6nRPQIJhIy6dwDasTEZH/Vcqx1qGSlLYTtMGg6jRQ6Ps9Z84cS/iYMGGCu/jii1N1f7R4YjZZ1apVrce4iIhENioHCICHEoFxAhPfffed77pwBijYr6hdu7btV3AutGrVKgUoREQkxbSLFsE44Z07d671dvztt9/sxJVKiPg88cQT7p133rFABX2RyWbwnz/B9f3797chVrSH4n7J9mZgsIQewSQyTNg4YYFLGwoJ3cZVmTJlbFOJYAJ/Kww69Q8qkH1LlQWtnfbu3WtBjIRQ8VS5cmU7aSCg8eGHH2o4nIhIBFTKzZo1y7eWuueeewJ2/2wOtWnTxt7u2bOnK1GiRKrvkwQSEkw4RtFbXEREIg9B5HC1TiYZiv0A5mE0atQo3jbPocLXfvHFF13Lli3t2MUxlwqKcAZMREQk+ilIEeEyZMhgWYDMkvj555+tsmLnzp3x3rZZs2Zu6tSpdkLOiTm3jS8bj5Y006ZNs/u9+eab3alTp0LwnYhn+vTprlOnTq5Hjx5u/fr1trnBXISjR4/qSQoyTiro17pu3TpbXGfNmvWs2xAQrFGjhrVao7KCKqUmTZokuFFFgIK+5PwtLVq0SItzEZEwYrPk6aefdpMnT7YANIM7OcYGMgDCeoth3FTOJTSjKLk4zuzZs8dad4qISGQaP368y5Ytm3vjjTdC+nU5P+EchnPHa6+91pecGK7zKY6Dr732mr3POS3nS2olLSIiqaUgRRS48sorrY8yPY/ZyGZTlOzu+JAVzvyKTJkyuVtvvdUy9eNDYIJNWrLAycigRFNCY+DAgdZqiIwT+naOHDnSMu9Z9ErwUFlE9dDKlSttM4j2Z/wt+fvhhx+scmnJkiUWIFywYIFVKcWH21aqVMlaQRUqVMiGsTKUVUREwoN1DW0tx44da9VxU6ZMscSMQH+Nu+++2wLStHzybxOYWlRYFi9ePGD3JyIigcV59okTJ0K6Ic95OglUX375pZ1rcJ5SuHBhFw4E6Hks3vGP4y0VheEKmIiISNpyXkw46wQlWY4dO2btCrZt22Z9i9lszZUrV7y33bdvn7vhhhsSPXn2svVeeuklC4BQoklARIKbeUJAgkoX+ol6yEahhJfyXQk8qpAaNmzovvjiC2v7QVYtL33+C2oqlKg+IuhAhhR/D6VKlYr3/qicqFChgn1O3rx53WeffeZy5sypH52kW2T4sWn766+/6jgiYcFrOsFnEgFANVzTpk2DelwJRGCayg+O/wpyi0iopIVjdri+B6rpaM9HQPm6664L+tejNTNBgaVLl9r3u2zZsgTPT4KNZMn777/f5mSSzMX5LNUdIiIigTpuq5IiilDaSeZE/vz53ffff29Z3IcPH473tnny5PEFKNgYZ0OcXvn+2rdvbxcywJl1QT99MjQkeI4fP26L27hthnj/yJEjeuqDgN9tAnacUFAZ4bX9iJvxw4kGw+/ITFq9enWCJwDMnmAwHAEKgoScLChAISIS3gAFbZe8AAWzuQIdoGCjyL8PeaCCCgz05lhCuwwREYlsnF9TiR2KAAVeeOEFC1BcccUV1lY2XAEKEiDLlStnAYosWbLYeZUCFCIiEmgKUkSZ7Nmz20KFSordu3dbaxoWDYkZNmyYZejXrl3bTtzjuvPOO+3j3A/9lRkmLJIWEHSj+ogyaQaRJlR5hKuvvtoW/59//rm13EioxRMVFAQ++FskQMHfooiIhC9A0a1bN9e/f397/+2333YtWrQI+Nfha5QpU8Zt3749oPdLkIIWnAzMFhER8de1a1c79lAJfscdd4Tlydm8ebO766673K5du+y8h8p0khtFREQCTUGKKERWOJujbKQyZJFFA5umCWnbtq177LHHLIOfYZItW7a0jMC498mi45JLLrEe/MxJkMAj84QMHNoF+eN9WgxJ4NArlYAC8yIYLkfAomDBgr6P//333zbAfMCAAb7rCGIklB3Lwpy/ta1bt7ocOXJYsJCqJhERCV+Aonv37q5fv36+pIxnnnkm4F+HuWBUaTCwlGNBIDFslAB5u3btAnq/IiISOBs2bHC33HKLHWdCifNDggJx5+iFCl+bOUx0byhWrJhbtWqVK1CgQFgei4iIpH0KUkQp+uCzaGCxwKKBxQOLhvgw2IuhzL1797YWN6NHj7YKjAMHDsRqD8Um7saNG12rVq3sJJ//2ciVwLn44ottoDkb3P79qHmfLBlJPYJxVA3R6uORRx6xgB5BOoaUe2itxfyJQYMGWRn1uaqRODEhQEGbNQIT/O2Fa2CdiIj8L0DBsM4+ffr45my1bt064E8NSQTMjQL3z/ElkFiXVa1a9aw2kCIiEjmmTJli58nMoQu2OXPmxOpsEK6h1LSE5vhE/3DOg/jeSdQSEREJFg3OjnIMbqxVq5YFKGhnwwArBlollg348MMPuxMnTlhWP4sg+kvGNWbMGAtUcJu1a9dapYUExvTp023Dg9ZbpUuXdoMHD3YzZsxwO3bs0CZFKrGIpn0Zz+X1119vbTno4eqPv5UHH3zQHTp0yGZQMFy1Xr16Cd4nPVfZlDp58qRlUPE3FKo+tCLRIi0M4ZToq6DwAhRUOXTs2DHgX4ckAgaW8rpPUgjrIdZagcA6jL8Vb36YiEiopIVjdqi/B2bSzZw50xUtWtSS/YKFuXjMnTxz5ozNk6xevboLB/YIGjVqZLOYmD3x/vvvu8svvzwsj0VERKKfBmenE7Sm+eSTT2wBc/r0aVenTh333nvvJXh7FhkMvGKzlZZPCW22Nm7c2DZ3ySAsUaJEou2kJHkeeughazH08ssvu5IlS1pWDhsgyqJMnW+//dZ6tRJ84KSFtmX+m0lsag0fPtxmVHAbKivWrVuXaICCWS38zRCgoHUUAQsFKEREwofXcirgvADFm2++GZQAhVedwfH50ksvddOmTQtYgAJt2rSxFoRLliwJ2H2KiEhwXHPNNdY2OZgBCs5P6tevbwGKmjVruipVqrhwmDx5siV0EaBo0KCBnQ8pQCEiIqGgdk9pQIYMGWzxQIUEgxdpcTN06NAEb09rJ9rV0GLIv6ckbXI8BCi4z2rVqlmffgZq874EbnOC1kEEimizFa5BaGnF1KlT7TmkHPqrr76y9k2vvPJKrAzV5s2b2/NOC7OGDRueNaMiLuZYcKLAz6hu3bq2URWt2WYiImklQMEQ0ddff90XRGC2UDDQ5u+5557zVWqQPRsof/zxhwUnmCuW0BwkERFJPwgIPPDAA9aSlso9zm0uvPDCkD+OESNGuCZNmti+AO1yCdDTrlhERCQUFKRII5g7waBgNmHBAMZu3bpZq4L4kA14++23+96nbz8VEwyF9JA5zsYsZacEK9io9bIqRCIBQTl6pRKgYwNpzZo17qabbnJXX331Wbfl95ugBVm3LLjjtoHy3wQjQ5dKDP5+Hn/8cSvvJpNWRETCg9dmAhJUIoLhpcEcNp0pUyabIcXah+zZQCeX7N27144tpUqVCuh9i4hIYI0dO9aNHDnSHT16NGhPLRWBnHNTDU6rpYTOU4KJwD8zKdG2bVs3bty4sARKREQk/dJMijR4Es+A7B49etj7zKugZDOxDHA+hxNxsgZZiJCBTqai/6KEzVpaSS1cuNDa3Wzbts3KXkXC2dOOoBzBOfTq1ct6lPv/zlI2zWwK7/ecGRX+A7Tjy24lOMGMEHTu3Nm98cYbYRtYJxIt0kJ/a4lcvJ7zek+GJ9gsatmyZdC/LpV3tNLU77SIpCVp4Zgdyu+BYdGHDx+2ZD5aJgfahAkTLCmK840FCxbYLKRQI4mL8x5QRdi3b1+d/4iISMBoJkU6xeKGWQeTJk1yl1xyiS10GCS8e/fuRD+HuRb0nCQz/cUXX7QqCtoQeM4//3z31FNPWT9KfrkoQ50/f36IviuR/0Ow4aOPPrLfQTKNGEDOwHj/AMX+/futj+vdd99t8yS83/PEAhR8DkPkCVAQoGMTrH///lqgi4iEES0nnnzySQtQ8DpORmswAxQEt/2rVAO9+cWsLxERiR61a9e2GXbBmktHm1r07NkzLAGKfv36+QIUnE8pQCEiIuGidk9pFL0kP/vsM8v8IHu8dOnSbvHixQnePkuWLNZ2gOAGJ+SrVq2y9jhsBrApDCopqKBgQPFtt91m79Ozf+vWrSH8ziQ9oz1Gvnz53P3332/zJL755hvXokULC7CB31Uqh26++WZrYcZmEIPiz2XlypX2O80Q82uvvdY+NxRZuiIiknglA3O2yDKlXR+VcwQsgmXTpk0uf/78lkVK0kag/fzzzzYLjE2oEydOBPz+RUQk8Ehcmj17tsuZM2dQnl66GHDe/tJLL7lQowPDCy+84HscVKarglxERMJFQYo0jMAEQ4SppOBk+L777nODBg3yBR3iYkFCcGPz5s2WgU7rG4YNr1ixwneb3Llz2yBtqigYLEylRvHixW1BIxJMBNkYjk22EZUOEydOtN9H/82fhx56yH6HKf3mtgQd7rnnnkTvd/To0a5y5cru2LFjrmTJkm7dunWufPny+mFKVBs+fLi78cYbbZYKfwtr165N8LZjxoyx33lmuXC59957E729SCj8+eefNgdr+vTpVtFAlRsBi2ChSpSvR3snki+oIA205cuXu99//90dPHjQ2pSIiEj65T87knVYMI475wpQ0IEBzOPz3hYREQkXBSnSuOzZs9tJ8WOPPWYLIYZO0vPyzJkzCX4OG79kktPqplmzZq5ixYrxBjRq1qxpw4pZUDEDo2nTpsoMlKBsHFHVwIBsqnvat2/vvvzyS6sS8hAso/0T1UAEMAiaff755zZEO7EM3datW9t983bDhg3tc/wDHyLRiE1dXut5XaZ/Mn831apVS3DgI4Hoxo0b27GCoY0Eovl7++GHH0L+2EVAkgTtNebNm2eBtrlz51rlZrCQvEFSxq5du+z3nyB4MDaLqPrbsWOHBQZDvRklIiKRY+rUqZZI5bV6CkeLJy8o8frrr7tu3bqF5XGIiIjEEiPpwn///RczaNCgmPPPP58yipjSpUvH7N27N0mf5zl8+HBMgwYNYnbt2uW77q+//opZu3ZtzDvvvBNz1VVXxWTPnj3mrbfeivV5Iin9nX355ZdjLrnkkpjLL788ZsSIEQn+XjVs2NB+rwsWLBizbt26c973wYMHY+6++277nPPOOy+mT58++p2VNIPX99atW/ve//fff2Ny5MgR07dv3yR9/j///BOTMWPGmIkTJyb5a/7666/298T/Iqnx888/x5QpU8Z+nzJkyBCzdOnSoD+hw4YNs6934YUXxqxevTroX09EJJzSwjE7VN/D9u3bY66++uqYEiVKBOw+9+/fH5MpUyZ7/L17944JtTfffNO+NpfXXnst5F9fRETSn1+TeNxWGlc6QeVDhw4d3KJFi6ydB608aG1DFse5Ps9Dj+b333/fMtbpWUk1Bi0Ybr/9dqvUoD0Cmevt2rVz2bJls0HEIinBsGuyWqmIoOUH1Q5PP/207/eRygf/ft60MWPgO1njzJZIDBm5zKyg92vGjBktU5fsIfVflbTgr7/+sjkstGzykLHN+1RJJMWpU6fsbyxz5swJ3oa/S6qc/C8iqXXkyBFXoUIF+11lrbJkyRJXqVKloD6xzODq2LGjL5uUFpmBxt/H8ePHA36/IiISXLSQ5ZyD/wOBzgZ0Nfjll1+sNTPn16E0dOhQ9+yzz9rbnM978yhEREQigYIU6QwbVWzkli1b1k6aH374YWvpxKbwuTDMq0qVKrY51bNnT5tF4T+Mm2FitM+5+OKL3U8//WQn+gsXLgzydyRpCZujS5cutd+tadOmWXCCAAJ9Uj0EFwiwEbTw0Prp1VdfdZdffnmi983n1KtXz+ZX3HrrrTazpVatWkH/vkRChY3Qf//912XNmjXW9bzPBnBScMLM35R/oCOuvn37Wk9970KLHJHUoOVFuXLl3JYtWyzR4dNPPw1KwMAf8yGYQ0FQ7oEHHvAFKwKNQDozYpgVIyIi0YOWmdu3b7d5jIEwbNgwO9e57LLL3LvvvmsJf6EyatQoSyYEyV3du3cP2dcWERFJCgUp0iFOlDn5p185GbaTJk1yt9xyyzkHpVIlQSUGm8fMuti9e7f1LW/UqJE7dOiQ3Ya+/vR0XrlypS3q2ABmo4vBXGyciSTWG5XMbX5f8uTJYxtVI0eOtAAFC3kGW1OxQ5bttm3brH/+jz/+mKQndNOmTVZhweIcXbp0sezZAgUK6AciEufvkNf4OXPm2CyAhJB5R1ahdzlw4ICeR0kxKjEJUOzZs8de/7/44gsLVgfbFVdc4QYMGGAVoePHjw9KRR3zLlgTMWfj2muvDfj9i4hI8LAWKlSoUECOSZy/eJUTb775ZkjPQyZPnuxL8OI8iHNzVZGLiEjECVkDKolIK1eujLnhhht8vZjpS0k/8nOhj1i7du18My66dOly1m2YHzBr1qyYLFmy2G3oib579+4gfScSrb777ruYZs2a+XqjlixZ0nroe06fPh3Tv39/6wfrzZBo2bJlzE8//XTO++Z3cPDgwTEXX3yxfS4zUxYvXhzk70gkfP7888+YCy64IGbOnDmxrm/atGlM7dq1E/1c/s6YLZSUuS5psb+1hG8d4vXmLlq0aMwPP/wQ8sfgf8wJBo5FixYtCvrXERFJL8fsaPseeP335i3dd999IZ2FN2/ePFsb8rXbtGmjOXwiIhJymkkhSULmIlnmVED8888/1lqHlk4HDx5M9POuvPJKN2TIELdu3TpXp04dawXl+eGHH6x1AtkZDRo0sH6XZMKfPn3aMlFoCZXUtiOSdn3++efuySeftCyijz76yPXv39+98cYbbs2aNVbhg82bN1sFDxk/9IOlzRMVEFRYJNYvH1RZ1KhRw2ax0Kefqh5+1xNrYSMS7Wi3RyszWgn49z/m/TJlyiT4efztkVX38ccfn3Oui0ig0D6DNQe9uWlDSTs/Wo0FG1Wh/usQ75gTLKyHqDwN9tcREZHAok0yldhU+KUG5yVUnlLBN3bs2JBVMSxbtszO8+loQItnzt9VQSEiIhEr9PETiURkc4wfPz4mQ4YMlmVBNu2IESOSnfXH/ZAlctNNN8VMnz7dl6lx7NixmD/++CPm9ddft4zJSy65JKZQoUIxX3zxRZC+I4lUv//+e0z16tV91Tu9evWKOXnyZLy3PXXqVEzOnDljcuXKFfPOO+8kqcqH37kJEybEZM6c2b7GpZdeGjN8+HBlDUm6MW3aNHuN5e9g27ZtMS1atLDX3SNHjtjHmzRpEvP888/7bt+vXz+rNqLy7fDhw75LQn+XaSGjUcJvzJgxvmrMmjVr2hohFL7++uuYyy67zKo79+3bF9SvtXbt2pi///47qF9DRCS50sIxO1TfQ+/eve3rPPXUU6m+r7/++itF1aoptWbNGt+5fb169XQ8EhGRsFElhSQLGRWPP/64ZYuULl3aMj2eeeYZV758eesVnVT79++3ntLMpXjooYfsvsjgzZIliw017tq1q9u7d69lwe/YscNVrlzZDRw40J05c0Y/sTSO6pq3337b5cuXzzdwnUoHqnfIKvKqK5544gnf/BIqcKiy+Pbbb20exQUXXJDo12BOCpUS3Jbh2DfffLNV+7Rq1UpZQ5Ju8NpLn/2XX37Zqo82btxoFRLeMG1epw8fPuy7/YgRI6zaiMHBzBvyLtyHSDBmNLz66quuefPmVuXDaz4zUFgjBBu/91R/UtnJ3KxgDnynqvTuu++2PuZHjx4N2tcREZHgoaKb4wZVqqnFkOxQVat+8803rnr16jYPiYrFqVOnugsvvDAkX1tERCSlziOikeLPljSJDeLhw4fb5jELGxZUzz//vL2f2CBVz8mTJ92gQYOsfc/vv/9u17E4evHFF+2EnYAIg8O6d+/uMmTI4N577z2XM2dO1759e3ffffe5IkWKhOC7lFAhKEVbJwZhEzho2rSptQDjpYch7li9erV77bXX3MKFC+39CRMmWElycgIgbKj26tXLAl78nvI1OnbsaL+/IhJcv/32m7vqqqsswE07QJH40FaSoPGYMWPsfdYFoRreybHhnnvucV9++aW1nqS1IL+zwbJkyRLXqFEjV7hwYWtjpfYaIhIp0sIxO1q+B85/PvzwQzsnoSVnKBw4cMBafBIs53+SwzjnFhERifTjtoIUkiCybZkf4W0cMztg9OjRrkKFCkl61sgc7NOnj2XpsokMFklxZwLs3LnTZlrMmjXL3q9fv7579913Q5JVKcHz559/umnTprkePXq477//3oIFzJPwMogIUrBof/31193KlSvtOiolCGjwOUntS85GExm5ZAx5ATF+56jYEJHQiJbNAgkfkhboi011HLMZ3nrrLVtjhALHGwLkkydPdldffbVbu3aty58/f9C/Ln8PP/30k8ubN2/Qv5aISHo6ZkfD98Cxp2LFiu7TTz91bdq0cUOHDg361yQhjJmT27dvt8Q/zrHONcdPREQk2BSkkIAtrt5//33Xtm1b35BJNpEZsprUBc++fft8A5G//vrrWEORCxYs6C655BJr+UDwYvny5fYx7rtFixaWTU87BmV/RAcyVWnp9NVXX1mbLwJVVMfw86Wy4c4777TbMQSbqhovsEAAo0mTJu65556zYFhSX+TIwqXqh99TWopRwfPII48oY1UkxKJhs0DChzZLNWvWtJaStPEjgF27du2QfX2C4VSEEgj/5JNPXKVKlUL2tUVEIk1aOGZHw/fAsa5x48ZW4U2b49y5cwf169HKkGQthnzTpYBK9WC2NRQREQn0cft/u8UiCaA9AX3KycZ4+umn7bpx48bZRjJZkPQxP5c8efJYZjsb116Ags3sqlWr2scIYJBhuWzZMvfdd9/ZTAuCE2x2kwFC1mOnTp1sI1oiF7MfKCl+9tln3fTp092DDz5oVTJkzS5atMjdfvvtvtvyM+UFilkUnTt3tkCW93uVlHYhVPRw22HDhtnvBb8v/I4++uijClCIiEQQ2jtybCBAce2117oVK1aENEBBVd+UKVPsbbJYgx2goLUH6x0REYl+zKPgfJVzmeSgZTLnOKBlcrADFLRrfvjhhy1AwTkWs8gUoBARkWijIIUkSaZMmSzQQMlo0aJFrX0BMyR4mzZNSQkg+A89ZhAyw7vIriR7nkUUZbC//PKLtUVgmPbBgwetZQ+tosiQZwgygREqOth0kPAiQMUQNhbepUqVsiHplBizCdWzZ083ZMgQCySwQUUfVhb4/N54xo8fbz1TmV1Cts+58DtG6zF+D1q2bOl+/PFHG2ZH329mWFBJISIikYOqBQIUtPzjeEBFJceKUKJa8/PPP3ejRo1yzzzzTFC/Fsepdu3aWVCeNZOIiEQ3zlVIoqMqPDk4BjATgvl7Xbp0ccE+9tD1YO7cuXbMmzdvnitWrFhQv6aIiEgwKEghyUKPy40bN9rJftasWd3u3bstY/6uu+6yeQNJxUYzA5XZqGaAJaU/tO0pWbKku+OOO2wjI2PGjFYay4Jr/vz51hqKLH0CGpQHPfbYY6quCAMWwpQP33LLLZax069fP/uZLFiwwH6mBA/4OZG5yu8LgazBgwfbIn/SpEm++2HDiuBXUtAmjOzXWrVqWcXENddcY0EQ2kVVrlw5iN+tiIikBBs0999/vx3fae/HGiGUsxn8kxlYM9BCMhRf84YbbrCWVjVq1Aj61xMRkeCaMWOGnZcScE9O26UBAwbY2y+//LK1ewqmN9980465dEDg/Cup8yNFREQijQZnS4rRookFGJnwp06dsusaNGhgm9bJGUhJZgrzC8aMGePmzJlj7XzIvi9cuLB9nPv2hmizAc6mB20jvI1uen2yeU3rIAIZEnhUvlDNws+BcuetW7e6bNmy2e8AM0oIQoDKmNdee80Gn9NrzqugoRc5G0TVqlWLVVFzLmTfMnfCa9VBdlCHDh3cCy+8YKXMIhIZoqE3tIQGLSdoceEdF2jHR2IDr9+hQlVm+fLl7WsTNGfjJpSOHTtmVYUiIpEoEo7Zn332mZ1DkojE+QPngHXr1o2q7yEhVP7TcYAWT7t27bLZe8HC88b5N0lknKtxniQiIhJpNDhbQubQoUOuR48eVhVBwIE2TrRUYEhljhw5knVfDFpmE5whyp5GjRrZJnnTpk1tEUZroE8//dQ2Acje5+JtiGfPnt2NHTvWsu6DnbWSlrHQpc0WzzNVLDynzBG5+OKLXb169SwwwXPM7fiZcz34mfDz4XMpb27evLlVvKTk94ATF/qHe9mw/E68+uqrlqUqIpElkjcLJLS/B4888oi15kOfPn0sqBzKIAGtCO+77z63fPlyOx4xI4I5SCIiEjnHbGbWMT/h1ltvdfXr109TQYpNmza5Xr162fxFWtQGC/OPqFSkcqNVq1Y2qy/UQXkREZGkUJBCQo7WO8yX+PDDD+19Nq7ZoO7atavNlkgJqijI2D958qTvujvvvNNaTDHQmw1rNsQJiJC1SYsFBpVlyJDBFoZgs4K2RFRaSOLoncpz5Q05p1KC55gKlRMnTlhVAycQ3O7999+3eSQ8/7R/8vBzoMUTbZi8QelJtX//fqvOoaqGoAgIhhCwYO6FiESmSN4skNDYs2ePDRil0o4kgYkTJ7qGDRuG9OkncE71BNV8tIxkjlaJEiWC/nWPHz/uXn/9dZvRpICIiES6SDtms7EeiUEKKgPHjRtn90+iXDArIpKLcyZaJDOrkXNdkvZIFBQREYlEClJI2CxbtswGJ7M5ADaqqYYgkFC8ePFk3x/Dlt977z3rCUrGjf+QbjL1R48e7cvip8UDm+Zk/8+ePdutW7fOPsYGN5sltWvXtnkGLDbTe6UF2abMF9m5c6dVLvCcMVzUGwxHsIKgEz8zTh4YZE5Qggs/Bw8fI2hBFUtKMXuEDZ7Jkydbuy8wXJUKnerVqysrSCTCRdqGh4T+uE/ywM8//2zHAmZJhXpANjhmvfHGG9ZWkIQJL1kh2KgeHTlypAXnlyxZEpKvKSKSnoIUVFb7zxrie2AmXjC/BxK0MmfO7DtvipQgBd87c/+oFOQ8jfO3SPg5ioiIpHbtocHZEnBkvtNnlCAF8yPY9CbIwLBssiwZPpYcBBXatm1r98dGOS2AGAjGgtZ/BgXZLu+8845llHTs2NHaTbRu3doGPFMNQNltkSJFbF4GlRZsqDDIk8qL9IB5HrTm4vlnSDlzIsjAoY3WSy+9ZC8UbLLQ2olNFtp38TPjeX7llVfsRIDn1QtQMCyd3qfMjUhpgILZIvwc+LlMmDDBAhRs8jCjhMfJ74/KlkVEIhNJA2+//bYFAwhQ3H777VaJF44ABRV3BChANV6oAhSgspMKQgakiohI4PXt29c2N7wL5yXBxjks564cT5ISoOB89+mnn3bfffddUB8TbRUJUNBtgPNdBShERCSt0OBsCboNGzbYMO2ZM2f6qiAIZDBYk0HKyW0J5CEYQUspL8OF9g5suIO2TwzNrFKlirv33ntts50MGLI9n3rqKRvQRkksm+J8feYnsIlPNgobHSVLloza9lAsXnluMmXKZD1RGUhHCyZacbDhz8+AhXahQoVsmFuxYsUs4zRLlizWsosAxeLFi+1kwGuTQYUDzy1ZO2zGeLNBUvr46BVOW6ePP/7Ydz3ZU/QuD8fmloikraxMCT4yWkkgICAANk14m+NvONYZXktAAhVdunQJ+WPg2JbS9YyISHo+ZkdqJUVykCxH0hVzFKkOp91xMNB697XXXnOXXHKJJfCRHCAiIhLp1O5JIg5thdg8mDRpkq+lD8GBFi1auCeeeMJlzZo1VfdPqSutn9hgZ5Pe37XXXmuLX7L/2aTfu3ev9Y2mCoBNfAIcVH94m/j8zyY+maG0jejevbstnLkfgh0sklnchzPLnwoQMnUI1LA43717tw26pkUSz69/QIIABIEZgjYsbAnGsJmyefNmy3rluSM44f+8+S+wmQnCJbkDsOP27KZagp8RwRHwGBo3bmytwAiWiEh0irQNDwkuWvwRrP7yyy/tWENQm+NFOI+Jb731llULkhQhIiLRc8yO1JkUyTFt2jQ7pyF5jvMz5iIF2vTp062FspdARnKAiIhINFCQQiIWg77I7Kc1EzMkQFVDvXr1rES2YsWKqdroYGN+27ZtFqxg433FihW2oc8GvBcI6dOnjy2GyT7hQuYLm/B8XTb0CVyweU9WKJkxHjbVWQjzuK+77jorAabVEReCHCxImZNBBQLBAaozWKgS3MibN6/vfhhIzf0S7KCdFYEQ0M6KigduX6BAAft8rqNVFUEGBqMxo4O3eYxsyHjBCPA1yebkfVo00S6JzX8eL4EZvtZNN91kt6WdUpkyZWI9d2TA3n333RbMqFWrlj2G1OBxEAAZNWqUVdIQ4AHPU5MmTdyzzz4b63kRkegUaZsFEjxkbtKmj+MTFXtTp061Y1M4eEkF4cC6gu+7VatWtmmk1oQiEi0i7ZidFoIUXrtDztlIbgs05giWLVvWnT592qoFvfaGIiIi0UBBCol4LLIYhs0cBP85FWyMU13x2GOP2aZ6arExTtsj/3JYNu8/+uijWLe7/PLLbX5F4cKFLSOTwdoEDKg2yJ07t2WOEhwgi4V2Rddff70FPbiOzRr/YAaLbQINBDW81ktUZhCM4ULgxEN7I25H9YP3NfjaBDD8h4SD+6S0maAIgQcWw8yV6NSpkz1GZnQwZ4OP7du3zyoWtm/fbq0wCIww3JP+4Thz5ox9DgEVHgOzIFj8Uj6cWnx9KmYIThAw8tx6660WiGJDJ1rbaYlI5G8WSOBxPGKeEbOJOF5RkcemUr58+cLydK9evdpmQBAA5xgbalRs0KKQmVc7duwIS5srEZFoPWZzXkIVODj/GjhwoCWqUYnA62okfA/z5s1zHTp0sMfFrL6E0C6XYyLJYpzLcb4WSMeOHXO33XabJfoRHGcOhZfgJiIiEg2Sety+MKSPSsQPJ/TNmjWzC0EENrQpXaWXJ/Mq6LlZo0YN99BDD9n/DLtOCdohxe3XOWLECGtTwSb/unXrrCqBSgqGQvNYaElEoIEh27Qi4nYET6hCYOA0VQC0i2JzhkUpGzbPPfecBQYo9eUPkGAD1RVkW9ImiWoNbue1uvIQ7GCDheAFf6wEDxjAyQwIPo+AxPz58+3rMbiNYAhBEe/Cbajo8Bb8zOCID8+ffyCFQAgBlEBlfxJ0IvBD4InHy/te8Ofhhx92LVu2tAW2iIhEF44tJA9QNQECzWPHjk3xcTm1OCazUcOxlkAFiQWhRrCG4zVBfgUoRESS/zrO5r+HhCtwXkh72EhAcICKeP5PzMSJE+1/zhEDHaD4+++/bR4gAQrOQzkOK0AhIiJplQZnS8RthLD4orpi/fr1vuvZAGDhR8CievXqtvEdSLRIIjjC16QKgPYNHtolbd26Nd7PI7hw4sQJ3/tUCVC9QECBIABVCd7/RA2ZFwE28IcNG2YBCxafbHRQOeH9TzUHrZC8x8aQ6qNHj9rbcVEBQVsrDxUbbByxkCWwwoUMJa4P9KKWx7to0SJfYIKfn4fgDc8H/VL53kUk7YqErEwJDqrxmD/B/xxDaDHBBn242hvR8qJSpUp27C1fvrwFx8MVLBERiUZp4Zgdiu+BeXpUe3CM4bwmPpzLkXBG4tjcuXN9iWOBwvkgVSZ8jyTYcT4nIiISbdTuSaIeGxFsftNeiXkKHhaKtWvXdg0bNrRMSoIAwURwgMADQQz+p1qChSjXs2CkvZKHYACPOz7MuvDPxKEkOG5VRUKBB7JyWCizKUQLLOZhcKHdVKlSpXwDrkOB9lmffPKJ/Wwog+bFxkN5Nj8Xgkm0dlKPbpH0IS1seEj8g0CfeuopX0Ugx+Ny5cqF7amipQaZtxwPmalEkDwYw0kTw4YVVZQ6volItEoLx+xI+R6oxGfWIccjgghU8AfKrFmzbAYUghEAERERCRUFKSRN9cGmwoHNETbGv//+e9/H2JygvRFtkLiEewgzQ6IpxyXD078ygv8JpjDM2vP444/b//7VFt7bfB+00/Ds3LnTFuIEOmgLFWo85wwiJzjB/97Ac1DlQWCCC/MxtHEjkv5EymaBBAbHLLI3vRlGBAaociQwHi5UcvA4SBKgdSCB/FBX6dH2g3aMVHJMmTJFv+siEpXSwjE7LXwPieHcj2MdVeq0FGYOkoiISLRSkELSbMBi7dq1FqzgcvDgwVgfJ7vRC1iwmaE2QynPCmK4N0EJLlSR+MuWLZtl9lAxQTYrg79FJP1K65sF6Qmv9wSdmc8EhkP36tUrLAFy/2M/1XkbNmxwJUuWdEuXLrXhqqFGoIZ+6Rz3li9frmOfiESltHDMDsX3sHLlSnfo0CE7/jCnMFQITJD4tW3bNnfPPfdYglg4j8EiIiKppSCFpHnMZ2DomreRvnr16ljtk+idzQKPgAXtKchGUdAi4aAEw8OpBGEhTAur+J7LKlWq2PPJ2xraJiJpacNDnFUHtGzZ0to7Ubn37rvvWlvFSMkqZbDqpEmTrO1huLBpRLtG5j6JiESjtHDMDsX3QFU7lfyDBw927du3P+vjnH/++++/dn4UqCACQXnm+REUz549uwXnw1nFKCIiEggKUki6c67sfzBsrHTp0u7222+3/0uUKGEtltITZkps2bLFKlK4rFu3zjZdWBTHrUrxghJUpTAkXEQkrW54pGcEJdq1a+fGjx9v71eoUMG99957NocinMgmveKKK8L6GERE0pq0cMwOxfdAFSFVcx07drR5iHFxLsl51NChQ12bNm0C8jWHDx9u90UyGOe14ZwDJSIiEigKUki6581RoG81g8zoJR0X2ZC0jiBowf8FChSwC+2Mon22AkEHhnsTrOFC6w4W0mTkMCcjrly5ctlimxkfBCcIUoiIpJcNj/SKKrqHH37YjhMc915++WXXvXv3sFfLffbZZ65BgwZW3UGwPJzHUp6PFi1auBtuuCFsj0NEJFDSwjE73N8DCV7MKKKC4ocffnDXXXddqu9z48aNVq1OQtmbb75p1YMiIiJpgYIUInEcO3bMNun9KwiOHz8e7/NE5ibBioIFC/oCF1zYuKeiIFICGGyesDjfu3evLxhBSwzvbV4I4nP11Vf7qkm8yhICMyIi0bhZIClrmcgmyIsvvuj+/vtvlzNnTmvvROVcuM2fP99mHjHAu2bNmm7BggVheywMD2/durUdIznWXnbZZWF7LCIigZAWjtnh/h4YZv3GG29YhcW8efMCUjnI7AvO32rVqmX3GSnnmyIiIqE6bmsCUwDt37/fPfPMM1YWyiY3wxX79u2bYI9KMvt79+7tli1b5o4cOWJtFR599FHbMLj44ot9t8mTJ89Zn8v8hTvvvDOQDz/Nu/baa939999vF2+Dn+fXC1ps377dFob79u2zheL69evtEhc/G7Jl6A/q/e9deJ8LP3/aSF166aVn/c/F+51g7gObMFQ2xPc/LTgIrvz444++C9UR/m/HVxXhYXF74403WoClcOHCvsAEwRYtfEVE0icGgTZt2tQGUKN+/fpu9OjRYZ314KHlFFUL9PmuUaOGmzFjRlgfD1UcrLeoNlGAQkREOD5NnjzZngjO9wOBFk+ch5Iw8M477+g8TURE0iUFKQLEO5km046hw4cPH7YNANoJvfbaa/F+zo4dOyyTcdSoUS5//vzum2++cc2bN7eN6QEDBsS6LS2LKCn1RMJGQrRjk54AEBcyNj1s+vtXJvhfCCZRgnvw4EG7RAoCI/4VH/6VHwRFREREwKY/CRU///yzu/zyy20g6FNPPRX2DRESB15//XX3wgsv+DZ+xowZY+uocGJ9tnLlSnf++eeH9XGIiEhokdxFpeGcOXNiJQ0yK4JgP+fjVPulFlWMEydOtOMMA7N1ni8iIunVhcE60Tx16pQLNU62k3uSvXnzZgsM0K8/Y8aMVtLfs2fPZH9tBjXTm5JgAhn1zDegSoJSUO7Pq4zwd99999nFkzdvXmvVM2LEiLOCFCxW1I4nNKh4oOqAS1ynT5+26gX/aob4qhu4XdyqCKomEkN1RdyqC7I2qQCJr2rD/zpld4qISGJOnDhhmZoMxEapUqVs3kOhQoXC/sSRsPHss89awARdu3Z1/fr1C2vg5JdffrH2jkioIlZERNIu9glITot7DOB8HyQoxneOnxwkwZE4APYMypcvn6r7ExERiWZBOesiQEG7m1CjRU+GDBmSfHuGXNF7uUmTJm7SpEnuq6++8g1GfOKJJ9zTTz/tK+VM7Gt67ZeKFy9uG8aeatWq2aJj69at7pZbbknSY6I/V+bMmc+6nn6XbHSTHc/JO+9L6BEMyJ07t11SUm3jBSyoogE/T4JrBCXCPaRURETSJjZUHnvsMVv3cKzp1q2bDYMOd5WCh2AE6x9EwrDQTz/91HqC07KzVatWYa8yERGR0CLpkooJemjHHYpN9wNUrlw5VV+D88JGjRpZF4V77rnHjs0iIiLpWbpODRs7dqwFFQYNGmQnoAxJ3rJlixs4cKAFKXr16uU6d+6cpPuiDZB/gALe+3wsKXbv3u2GDh0aq4qCYA8n7HfddZeVgL7//vuubt26bu7cuQpURBk2hghIcClbtmy4H46IiKRxJ0+etMSGkSNH2vs33XSTtZW44447XCRhDcZjbNiwYawK03AhQYXnjnlVVNiKiEj6wnGpTJky8X5s/vz5bs+ePS5Lliyp+hokC2zYsME6JnDcUcKaiIikd0EJUrAJ61UYhBJfNzlo8cQwRP8MORYjBCnIeveGIIcC2Y2cmD/44IPWfsrD4sc/o5DemPTA7N+/v4IUIiIiEq9ly5ZZwsX3339v71MR8MYbbySr4jSYyEQdNmyYGz58uG3M0DIjEgIUYFbYbbfd5h599NFwPxQREYkw7B0wryi1FXteYuK4ceNsYLaIiEh6d2GwDtyRchJ8rv7MXr/huOWdSE67J+ZFkHHnj/kE3scSQ9CBtlNk148ePfqcj5sMyMWLF5/zdiIiIpK+sC6heoL5VqA94fjx412lSpVcpFi0aJFVTdBGI1euXO7FF190kYTK1ZYtW4b7YYiISJgcP37cgv3MBuQ8PZBob9i0aVPbc3jyySddnTp1Anr/IiIi0Spdt3tiYfDll1/Gum7NmjXWDoGsvuS0e6ICo0+fPjY02au+IJBw5ZVXuiJFipxzLsatt97q3nnnHTsxPpeNGze67NmzJ+lxiYiISPrw8ccf2+b6/v377X3mYr3++usuY8aMLlLWXVSCvvDCCzYs++6777aEkEgwZ84ca7vRo0cPtdwQEUnntm3b5h566CGbH7hz507f9cyhIMmRY2tKqynatm1rx+m8efNa22kRERH5n3QdpAALBNopcVK/fv16mwnBDAgkp91T1apVLRjBEG7aKTCH4qWXXrJexgxFBpUWZE0sXbrUSjoJUDAkiyxHyj2PHTvmuz+v+mLixInWAsEbvD179mzLiGSehoiIiAgZnx07dvRVf9544422TkjtUM9AYjAo7admzJhh7z/++ONW7eGtkcKJ9ReDxansYH2mKgoRkfTtsssus0A61X5xqyvgVSsm18yZM202FImJ/B8pSQQiIiKRIN0HKQganD592pUuXdoy59q3b+9atGiR7CeSz124cKFlLVJVQburZs2aWTWG59SpU5aJ8ffff/sqLRiWzeX666+Pt+UUevfubT2lL7zwQleoUCE3ffp098ADD6TqBy8iIiLRjbXCtGnTXLt27WzzhHabrGNYN1xxxRUuUjBgtG7dujaHgrXMW2+9ZRUU/jPBwol2HszGIMhDIEVERNI35kAyN8LfihUr7P9ixYqlaG4lCYpeEJyKQlo9i4iIyP85L8Z/NzydoYqhZMmSbvDgweF+KCIiIlGLDPSrrrrK+izT5lBCs/HPMOxPPvnEt2lC9QRzqyLNpk2bLIGD3xGySMuVK+ciEUviSAmciIgES1o4Zofje+CYSwUFiQFDhgxJ9vGlevXqNpOJNs+rV692F110UdAeq4iISDQet889AEFEREREIsJff/1lM7AIShCgoF0SVZtff/11RAUo/HNgSpQoYTMfeIyREqDg8bHZRBsqjwIUIiKSEK/VU6VKlZL9JDF7kgAFx2zaPClAISIicjYFKURERESiwGeffWYVoMy8OnPmjM2c2LJli+vevbvNr4oUe/fudXfddZf74osvfNdVq1bN5ciRw0UK5oeRFctz+M8//4T74YiISAShUoKZkF7HhUOHDlnbZmZJVKhQIVn3deDAAZsbBdoxFi5cOCiPWUREJNql6yAFfSXV6klEREQi2eHDh12TJk1sY2T79u3WC5v5Ccy2uummm1wkoZ0TGzu0smjdunWsiopIUr58eZclSxZ7XpmTISIi4vnuu+/cxo0b3Y8//mjvL1++3P7n+JYpU6YkP1EcA5l3SZuLO++803Xq1ElPsoiISAJ0ViYiIiISgcjwHzZsmHv55ZfdyZMnrR1R8+bNXd++fV3mzJldJPnll1+sTzdtLMBA0KlTp0ZsCyUe344dO9w111wT7ociIiIRhko7KgBz585t719++eV23GCmZXLbPH388cfW5om3L7jggiA9YhERkeiXrgdni4iISOqlhSGckVjtyaY/7Zxw++23u7ffftvddtttLtIsXbrUPfbYY+7gwYPWCuP55593PXv2jLie22vWrHFZs2Z1efLkCfdDEREJm7RwzA7X98DWSVKD7xwTixYtao+VFoNdunQJ+uMTERGJ5uO2KilEREREIqjFBBsZs2bNsvfJ9Kdy4sknn7QAQKT58ssv3b333mtv58+f302aNMmVKVPGRZr169dbViyLYmZ7KFAhIiLJldQABcEMKh/ZlLnjjjvU5klERCQJFKQQERERCbM//vjD9evXz/Xv39/9+eefFpB4+umnXa9evSK6JVHp0qVd3bp1Xfbs2e2xZ8iQwUWibNmyuZw5c9o8D6opREREErJs2TL3119/WRXjqVOnXMaMGZM1i4LWh16bpwkTJqjNk4iISBJEXkqeiIiISDrx33//2QZGgQIF3KuvvmoBiooVK9rAzuHDh0dcgOKnn35ybdu2tf+9rFKGZdOKKlIDFMiRI4f79NNP3YIFC6y3uIiISEJot1i9enW3adMma2HIsZjjXFIcO3bMVzlB68NChQrpiRYREUkCVVKIiIiIhClT89lnn7WABG688Ub35ptvunr16kXcwGlaV0ybNs21b9/eNmAY5E1wBRdeGJnLya+++sr9/PPPrmrVqvb+tddeG+6HJCIiUaBIkSI2VylLlixu9erVllBQsGDBJH1ux44dLZBfokQJO8aLiIhI0kTmWaWIiIhIGrV9+3b33HPPWVY/GCL20ksvWYUCrSEizebNmy2rlEoEMAi0ZcuWLpLxmKlI+ffff93KlSvdrbfeGu6HJCIiUWLGjBn2P62emBWFm2+++ZyfR4unKVOmWMvGMWPGWKBDREREkkbtngJo//79rkaNGtZGgJ7HDL78559/Ev0csibJlvS/0JNaRERE0pZDhw65Fi1auGLFilmA4oILLnBt2rRxu3fvdp07d464AMWJEycscHLLLbdYgOKyyy5zvXv3tiHUkTgc2x/tNcqVK2ePk1ZaIiIiybVz506rJKTd07mq8X7//XebJQUC+8yzEBERkaRTJUWAkKlHgILBjKtWrXKHDx92TZs2teyJ1157LdHPZShm8+bNfe8zmEtERETSht9++8298cYbbuDAge706dN2HcOm+/btG9G9qlm/DBs2zN5+8MEHbTB27ty5XTS4+OKL3axZs6wVVaQFf0REJDps27bN1/7pXF5++WX3/fff23GSgL6IiIhEUCXFH3/8keDlzJkzSb6td0Kf2G1T0w7gjjvucJdeeqllRzDcKiU++eQTW8RMnjzZlSxZ0gZtsThh6OVff/2V6OcSlCC44V0iefCkiIiIJA3rF2ZM5M2b1/Xp08feL1u2rPv888/dnDlzIi5AQbYo1ROeF154wVWoUMEtXbrUWl9EcoCCZBFaaBH48bCeUoBCRESSg7lLpUqVcpUqVfIFKQoXLpzo56xbt84NGTLE3h4xYoS74oor9KSLiIhEUpCCg3NClwYNGsS6Le2RErotG/5xWyTFvU1K/PDDD9avmFYAmzZtcoMHD7YswfHjx9vHKddM7Hvw/7oM1CpevLjLmjWr77pq1apZ9uTWrVsTfRy0d6KElHYKfP1ztYgSERGRyPX333+70aNHu5tuusnaODFAk4AEgQkCFHfddZeLNJ999pmth+rXr2/BCmTOnNmtWLHCNmoi3UcffWTVKsz2oD2HiIhIShCs37Bhg/v6669thtS5Kik4d2dOE8O1GzdufNbehYiIiCRNum73NHbsWAsqDBo0yGZBFCxY0G3ZssXaMTzxxBPWhonNhaQ4cuRIrAAFvPf5WELoV0mmBhsBtIkia5FWUTwGERERiR5k80+bNs2qMpkzgRtuuMHeb9KkibUeijQMlebxLVu2zFd9sHfvXpcvXz4XTWrWrOk6duxo1bGs50RERFIiR44c7sMPP7SEg19//dVlyZIl0TlMdE4gqJEpUyZLehQREZGUCerZMsOjEsKwSH9Hjx5N8Lbnnx+74OO7774LwKNzVj1x5513WoDCwwKEAAEbDVR3cAmmTp06+d6++eabrYcymRi0K1CLAhERkchH9iTzD9js97IuaSFJVj/H9Eg8nscNTjBD68knn3Q9evSw1pPRYNGiRe6ee+7xPb9K8BARkdSK28mBJIOEHDp0yHXv3t3XHSHYewciIiJpWVCDFMmZrRCs256rlJOMh7i8Nge0e2LGRFICMZzQr127NtbHfvzxR9/HkooMQEpGCcQoE1BERCSygxPz5s2zjX0qMXH11Ve7Ll26uLZt20ZsT+olS5a4KlWq+IITVI9SyRnJMyfiev75593rr79ugZUxY8bESjgREREJBSr4Tp48aefwzZs315MuIiKSCpHXdyCECEZ8+eWXsa5bs2aN9ZCm0iM57Z6owGAoJhUhXgbF4sWL3ZVXXploD8u4Nm7caJUjysIQERGJ3OAE8yVYJ2zevNmu43j/7LPPuvbt27urrrrKRZI///zTffvttzY7C1QfkAjBXC6CE7SkijaVK1d2AwYMsPUS6zkFKUREJBD279/vduzYYS0aacnM8fKyyy6Lt5pvxowZdu4+cuTIs7o/iIiISPKk6yCFtwih5RLtGNavX++GDh3q3nzzTftYcto9Va1a1YIRlIMyuJE5FLR5aN26ta8NAZUWTZs2dUuXLnU5c+a0YdsESdgkyJgxo71PNsajjz5qmZgiIiISWcGJ999/34IT33zzjV3H8Zv5UgQoIu3YffDgQRvgzYXki3379llbSTZeCK7wdrT466+/bM2WP39+e59KkF27drk8efKE+6GJiEgasnDhQjuH59x+27Ztdv4+ceLEWLc5ffq03QasAUqWLBmmRysiIpJ2pPsgBYsOFhmlS5e2E3gyIFu0aJHsJ5LPZUHzzDPPWFUFLamaNWtmGxmeU6dOuZ07d9oQLhC88AZskuXIiTZBCv85FSIiIhJetGHkeP3aa6/5Zk5QOcGaoUOHDpZpGSmoKlixYoUN8pw7d67N2ML1119vw7y96s5oClDs2bPH1apVy1psElzxWnUqQCEiIoHG8b1EiRIWHEd8XRGYP8GxiSHb/uf7IiIiknLnxXgDGNIh2h2Q9TB48OBwPxQREZGo9dtvv1mLo19//dVO7tMKEggmTZpkmxF79+616/g+CUwQoIi0yglmTZDZSWsnT4UKFVyrVq1cvXr1bP5ENDpz5owrVqyY9f2mzVbZsmXD/ZBERKJWWjhmh+J7YJ9g06ZNbv78+RYo91DFxzGJIMbMmTPdAw88EJSvLyIiklYk9bid7ispRERERPz98ccfNoyZ9o+0TEKWLFms0pEN/0iZOUElKAu9bNmy2fvXXnutBSio5qRSlMfKRko0Boc++OADV79+fXv/0ksvdbNnz3a5cuWKuMCQiIikPVQh0gEBhQsX9l1PfiftnQhQVKtWzTVo0CCMj1JERCRtUZBCRERExDn3888/22yqt956y95G9uzZXdeuXV3z5s1t8z/caBlJxQTtp6gqqF27tps8ebJ9jPYUs2bNso2TK664wkVray2yVxlaOm/ePPv+cPPNN4f7oYmISDrx/fffWxUf7Zn9WwtyXPr444+tZSLrhfPOOy+sj1NERCQtSddBCno2i4iISPp24MABa/04atQoq6JAvnz5LDjBfCk2KcJdWbBs2TILSnA5fvy472MbN260gd7nn3++vR+NWZ1kpnobPQz1JjBBaye+bxERkVDq0qWLW7Rokb1dsGBBmz3pzZek1SM6d+7sbrrpJv1gREREAihdBylEREQk/dq6davr37+/mzJlimXwe9UIL7zwgvWY9jYmwu3ee+91n3/+ue992jo1bNjQNW7c2JUpU8YXoIhGI0eOdIMGDbKe32wG4aWXXnI9e/Z0l112WbgfnoiIpDMbNmxwW7ZsOWtodt++fd3+/fut9WC3bt3C+AhFRETSJgUpREREJN0ga3/lypUWnFi4cKHv+ooVK1r25H333ReW9g1UQ1AV8dFHH1kG54IFC3yzL6pWrer27Nnj6tatawOweaxUHKQFH374oc3RePvtt92QIUPsuowZM4b7YYmISDrVq1cvSw745ZdfLBEAu3fvdm+88Ya9TWA9Eto/ioiIpDXnxXC2LiIiIpJCv/32m22oM8T5yiuvjMjnkUoJhi8PGDDArVu3zq4jGEF7JIITpUuXDunjYfnFpgdtnLgsX77cHTt2zPdxZkt4rZsYkE3LqWiumOD7pVXVpEmT3DvvvOMbgL1mzRr31Vdfucceeyxq52iIiESTaDhmR9L3wPGrZs2aFlSvUqWKJRJoFoWIiEjgj9tpIw1PREREJB6///67Gz9+vM2c2Ldvn1136aWX2qZ4p06dQtZT+t9//7Wh13xtMOy6adOmsW7DJn3lypVd9erV3V133eW7Pq20PaKFEy00pk6d6lq1amXX3XnnnXYRERGJRFQ2EqC46KKLNCxbREQkiBSkEBERkTTn4MGDbtiwYTYMm5YNuOaaa1ybNm1c69atba5DMP34449u7dq1vgsVA7SQ8IZuEoS4+OKLXdmyZV2lSpXscvvtt9t10e7EiRM2V2LVqlVWJcFsD7JOCQrt2LHD2leJiIhEorlz59qxqkaNGi5//vy+4zbHMG92koiIiASeghQiIiKSZqxfv976RU+bNs03DJtqiY4dO7pmzZq5yy+/PGhf+8iRI+6ZZ56xx8Bwzbi+/PJL39t58uSx4Em0V0nQBoOZEpTuei2zqAh577337PsjUFG+fHm7nuoVERGRSMV8KGY/YezYsVbx+N1337mcOXNa8F1ERESCR0EKERERifpNBYZgDxw40H366ae+6ytUqGCZj/SSDsQ8ByoEtm/f7r755htrW8SF6geGcCNTpkzWFoLWTlQOFC5c2Dbuudxxxx3u5ptv9t0XH4/GAAUtq3i+mZHh37aKipAvvvjCrqMlxptvvumyZ88e8lkfIiIiKXXmzBmXI0cOd+jQIXfjjTe6vn372vXMs9LcJBERkeBSkCKAyJokg5LhlyxiyNhkYXPhhfE/zStWrHAVK1aM92O0hmDjg8wNsi3jWr16tXo4i4iIS+/zJiZOnOiGDBnidu3aZddxzG3YsKFVTtx2220p2oSnAsBrB0XA4d5777XgBC2c4tvQ8DBvgsxLNjZKlSoVtQNJPX/99Ves9lO0yWLoNTM+GjVqZNfdfffddhvWPQQvvGDQE088EbbHLSIikhJUW9aqVctaRdI2kmM8CQ8PPfSQnlAREZEgU5AiQNjEoG9ltmzZrLXB4cOHLbOQbMLXXnst3s8h65Db+evevbtbunTpWRsrS5YscUWLFvW9T19tERGR9JoUwLyJMWPG+OZNUMXQsmVLmzlx/fXXn/M+Nm7c6Pbs2eP27t3ru/A+yQEcnz/77DO7HfMUGLjtBSi472LFivkuJUuWjHW/0dbS6PTp0+7777+3IIP3vPH8EnwgCHTs2DGr+gD/c3vmTHhBity5c6eJtlUiIiIgKQE7d+60wPtbb73lOw6KiIhIlAYp/vjjD19GgndgJyuPLEUyHb1WAf635STXy8LjdtyeDQKyExO7bUpt3rzZNW/e3G3atMllzJjRsgR79uyZ7Pv55JNP3LZt2yyYkDVrVtu06N27t3vuuefs/uIbhMl1BDU8fL/z5s1zbdu2PWshRFDC/7YiIiIJGT58uLUgYkZCiRIl3NChQxNtuzNz5kwLkrNBz/yG119/3d1///0R9wQzfJp5E++//74lB4DHy1BLqhfZaOdYyib7gQMH7H/vwsf4vjx16tSJd24Efvjhh1jvjxs3zl111VU2MJO1QjTMiTh58qT9z+PGqVOnrB0WvxP8PnjrjM6dO7u3337bdevWzfXp08euYx3D80dlBM+FF7zo0KGDrZPiDg5VgEJEREKxXgllkAKtWrWK1apRREREgif1DZoTwYYAl+PHj/uuYxHCdWQ6+rvuuuvsev8NAxYtXPfkk0/Gui1tFLjefwGREpx4026pTJkyFqQYPHiwPT7aGODpp5/2fQ8JXfzbLxUvXtxO7D3VqlVzv/32m9u6dWuSHs/8+fPdTz/95B5//PGzPla7dm17jsqVK2e3ExERic/06dNtDkOPHj1sgDMn/RyPjh49Gu/tqf5r3LixHWs3bNjg6tataxfmLkQCgg4Mwb7zzjvteD1jxgwLUBQpUsRaOu3YscM2zjkmcxsSIMju53j58MMPu+eff9424Rnk7O/WW2+1ORHchmGYHPtpw0h7h927d8e6beXKla3CMdABij///NOqEAggeBj2zc+NnwtBBv8ADd8H13uoaqCioXr16vY8ebp27WrBCf9KTpJDCESxtmKt4eG54vvyhoyD55B1DdUj/lUp+fPntzkbgZjvISIi6Vty1yuhQOIhFYRekmCvXr3C9lhERETSm3R9lknfaIIKZGWSFfjII49YFQOZhmBRQjuIxC4esj/8AxTw3udjSUGmJgsz/w0BNl0YPkmW6wcffGCbLmweKVAhIiLx4RhGhSABbzbyR44caRWNXgA+LuY53Hfffa5Lly62AU0VIPMUaKeU2OY6QXj/S6DxNah84LETRPnyyy9jfZzqxdGjR8faMGfQJRv7VGDmzZvX+kgT5M+XL5+74YYbYn0+mZHMjHj00Ufte+b54ja8X79+/Vi3ZQOFFlAESDwEM6iaJDDij6AIyRQEFDxs9vO14gY52Jy5+uqrY1V4UC1KAOWuu+6KFXiYPXu2BWP430NLSTZ5Pv7441g/g8yZM9v/Xissr3qzXbt2FpDxf86effZZ9+uvv8Z6DCCTleQIERGRcK9XQrHuwLJly3xvM1uSY7SIiIikgXZP9DIGiw0PmyC0C4g7TNrLmPBvGcDJOAsXNhv80Y4i7m1TguoJNhf8WyuRpcmCiSxNTs5DdYLOZseiRYtibYAgS5YstonhYZg2mzBUfLDxIiIi4qFF4tdff+1eeOEF33VsSDP4mcz4+HC9/3EGBMznzp2b4BPLifsrr7wS1CeeDXiGNPtn+HtrCjYNqIbkNgQlvON4rly5rE3RhAkTLNiAtWvXWsWE1x7KQ9XI4sWL3YMPPhgrQEA1hTc028NQbp4nBnJ7CCCwjvBf44AqBWY8nDhxItbPgPZL8H+8XitIfm4e2luSrMD//oOryTBt0KBBrPlUrKVojUHww78tJsEIWmDFfWwEpOKKu8YSERGJtPVKKNYd8KooSDZ84okngv71REREJERBigwZMpx1HSfb8c1niO+2bD5wScptU4INBAZtxuW1V6Dd0+TJk5MUiGFeBBsh/rwhm0mZJcFGDCWlSQk8sNnCxoqIiIg/2iuyGR9fZR9tkeKTUCVgYlWAbCr4BzbIaCRAEEhsVtCuaMqUKS5Hjhx2fCS7n4qEw4cPuw8//NCO4f6JBrQzIpBPwoGHigqCFv4tGkGrKIIO/r2v+R5oLeW/4Q++14ceesgGZXs4ttMWIm7SBZUUTz31VKzng8qGb7/99qw1DdULXPyvp9USgZa4qPbkElfc9pmBXCeJiIhEwnolFOsOjBgxwhUqVMiVL19eQXwREZG0FKSIdAQj4raPoOczQzjJLKTdEwMlk4INEQZOUhHiVV8QSGAzhfLVcz0OghRNmzaNNygTF22msmfPnqTHJSIiEmhspHMJNtouxW29BIIWBALiom1VXFQkMlQ7rnvuuees65jjQDAiLuZRcPFHNWeVKlXOui2tpbj4Y03B2iKu+JI2REREJDzrDo7LdH4QERGR0EvXQQowqJusjJYtW9rALtomMAMCyWn3VLVqVQtGNGnSxL3xxhuWgUrfZ1pWeQsqKi0IRCxdutTlzJkzVu/Lffv2xbvhMnHiRFss3XLLLfY+vajp08k8DRERkbgb8myIe5V8Ht5PqKqP65NzexEREZFQr1dEREQkbUvXg7NB0OD06dPW7oGAAj2cW7Rokez7YZG1cOFC+5+qCnphc99UY3hOnTrldu7cGWsQpjcwm4GclJbGh4GeDNGkzdO8efNsSCYDxkRERPwR1OZ4QTDc899//9n7/i2Q/HG9/+29SsCEbi8iIiIS6vWKiIiIpG3nxXgDGNIhWj2ULFnSDR48ONwPRUREJCAIZNPeaNSoURaA5xg3Y8YM6/FMr2cC6FTzMYQSq1atchUqVHD9+vVzNWrUsJkMzIKgutB/BkNi6A1Nq6Rff/3V2hyKiIhIZIqUY/a51ivR8D2IiIjIuSX1uJ3u2z2JiIikJcxUOHbsmHv55Zet9SDB+I8//th3wk+bQ4ZSe6jke++996xFYbdu3Wx2wty5c5McoBAREREJ9HpFRERE0hdVUqiSQkREJFWU0SgiIhId0sIxOy18DyIiIunFb6qkOLcVK1aE4EchIiIiIiIiIiIiIiLxSfeDs0VEREREREREREREJDwUpBARERERERERERERkbBQkEJERERERERERERERMJCQQoREREREREREREREQkLBSlERERERERERERERCQsFKQQEREREREREREREZGwUJBCRERERERERERERETCQkEKEREREREREREREREJCwUpREREREREREREREQkLBSkEBERERERERERERGRsLgwPF9WRERE0oqYmBj7/7fffgv3QxEREZFEeMdq79gdjbTuEBERSXtrDwUpREREJFVOnjxp/+fKlUvPpIiISJQcu6+66ioXjbTuEBERSXtrj/NiojmFQkRERMLuv//+c4cOHXIZM2Z05513XkAzLgh8HDhwwF155ZUBu9+0Qs+Pnhv93ujvSq85kSNaXpM5/WeTIEeOHO7886Oz+3Ow1h3R9HOMZnqO9TynJfp91vOcVvwWxONfUtceqqQQERGRVGGhcf311wftWWSRpI0CPT/63dHfVSjpdUfPTVr+3YnWCopQrTui5ecY7fQc63lOS/T7rOc5rbgySMe/pKw9ojN1QkREREREREREREREop6CFCIiIiIiIiIiIiIiEhYKUoiIiEhEuuSSS1yPHj3sf9Hzo98d/V3pdSe89Jqs5yc90O+5nuO0Qr/Lep7TEv0+p4/nWIOzRUREREREREREREQkLFRJISIiIiIiIiIiIiIiYaEghYiIiIiIiIiIiIiIhIWCFCIiIiIiIiIiIiIiEhYKUoiIiIiIiIiIiIiISFgoSCEiIiIRafjw4e7GG290l156qbvjjjvc2rVrw/2QIsJnn33matWq5XLkyOHOO+88N3fu3HA/pIjRt29fd/vtt7uMGTO66667ztWtW9ft3Lkz3A8rIowYMcLdfPPN7sorr7RLmTJl3EcffRTuhxWR+vXrZ39bHTp0CPdDiQg9e/a058P/UqhQoXA/rIjxww8/uEcffdRdc8017rLLLnPFixd3X331VbgflgRwfTFz5kz7nef2/Hw//PBDPb8BfI7HjBnjypcv766++mq73HvvvVrzBXmtPG3aNHstZ50kgX+ef/nlF9e6dWuXPXt2d8kll7gCBQrodSMIz/PgwYNdwYIF7dibK1cu17FjR3fmzBn9SgfwHHLFihWuVKlS9nucP39+N2HCBBdMClKIiIhIxJk+fbrr1KmT69Gjh1u/fr0rUaKEq1atmjt69KhL7/744w97PljIS2yffvqpnRSuWbPGLV682P3999+uatWq9pyld9dff71tvn/99de2gVqpUiVXp04dt3Xr1nA/tIiybt06N2rUKAvoyP8pWrSoO3z4sO/y+eef6+lxzp04ccLddddd7qKLLrKg37Zt29ybb75pG62SNtYXq1atco0bN3ZPPvmk27Bhg23qcvnmm29C/tjT6nPMJhjP8fLly93q1atts5FjNwFACdzz7Pnuu+9c586dLTAkgf99/uuvv1yVKlXseZ41a5YlyxCIy5kzp57uAD7P7733nnv++eft9tu3b3fjxo2z++jWrZue5wCdQ+7bt8/VqFHDVaxY0W3cuNGSd5566im3aNEiFzQxIiIiIhGmdOnSMa1bt/a9/++//8bkyJEjpm/fvmF9XJGGpdycOXPC/TAi1tGjR+05+vTTT8P9UCLS1VdfHTN27NhwP4yIcfLkyZibbropZvHixTEVKlSIad++fbgfUkTo0aNHTIkSJcL9MCLSc889F1OuXLlwPwwJ4vqiYcOGMTVq1Ih13R133BHTsmVLPe8Beo7j+ueff2IyZswYM3HiRD3HAfxd9p7bsmXL2rG/WbNmMXXq1NFzHODnecSIETF58+aN+euvv/TcBvF55raVKlWKdV2nTp1i7rrrLj3vATqH7Nq1a0zRokVjXffQQw/FVKtWLSZYVEkhIiIiEYUMJLK9Kff3nH/++fY+GXYiSfXrr7/a/5kzZ9aT5ufff/+1Vg9kVNH2Sf6HKhwyxvxfe+R/du3aZe0B8ubN6x555BG3f/9+PTXOufnz57vbbrvNPfjgg9Zi7pZbbrGMWUk76wuuj/uaQHav1iOBe47jOnXqlFVC6tgd2N9l9OrVy16rqAyS4DzPHBdYW7GmyJo1qytWrJh77bXXbO0lgXuey5Yta5/jtYTau3evtdS6//779TQHSDiOfxcG7Z5FREREUuD48eO2kGdh74/3d+zYoedUkuS///6zsmRasXCCKM5t2bLFTpzp13vFFVe4OXPmuCJFiuip+f/9uWkvQLsniY2+0PQgpu8zrZ5eeeUVaxNCuxvmv6RnbIow74UWFbSY4PenXbt27uKLL3bNmjUL98OTAKwvjhw5Eu/tuV6Cs4Z77rnnLCiqgHFgn2fa9NESh7YtErznmePCsmXLLKDPpvnu3btdq1atLPBGayIJzPP88MMP2+eVK1eODkHun3/+cU8//bTaPQVQQse/3377zZ0+fdpmgQSaghQiIiIikuaQwcYmqnrn/x82mdmcoMKEPslsojLHI70HKg4cOODat29vc0wY1iixVa9e3fc2szoIWuTOndvNmDEj3WfjEgylkoIsWVBJwevOyJEjFaQQSQFmJxE0Zk6FXo8D5+TJk65JkyZW6ZUlSxb9bgb5uEC1yujRo90FF1zgbr31Vpuv0r9/fwUpAojXCI69b7/9tq1LCAaxluvdu7fr3r17IL+UhJCCFCIiIhJROHliUf/jjz/Gup73s2XLFrbHJdGjTZs2buHChe6zzz6zgdHyP2R358+f397mpJms7yFDhtig6PSMdgEMZixVqpTvOjL6+P0ZNmyY+/PPP+01Sf4nU6ZMrkCBArYhkN5lz579rCBf4cKF3fvvvx+2xySBXV9wvdYjoVnDDRgwwIIUS5YssYCoBO553rNnjw1yrlWrVqzNdFx44YU23Dlfvnx6ygPw+8xx4aKLLoq1buC4QFY6bY1Yi0nqn2cCEQTeGOSM4sWLWxvTFi1auBdffNHaRUnqJHT8u/LKK4NSRQH91ERERCSisHhnA3Xp0qWxTqR4X/3zJTGUexOgoI0RpfZ58uTRE5YI/q7YgE/vKleubK2wqDLxLmTH06qBtxWgiO3333+3DS82YtI72smxuefv22+/tUoTSRvrC673vz2outJ6JHDPMd544w3LgP7444/t9VcC+7tcqFChs45ztWvXdhUrVrS3c+XKpac8QL/PHBcI4ntBIO+4wDFTAYrA/D57s2viBiK89dr/5kJLaoXl+Be0kdwiIiIiKTRt2rSYSy65JGbChAkx27Zti2nRokVMpkyZYo4cOZLun9OTJ0/GbNiwwS4s5QYOHGhvf//99+n+uXnmmWdirrrqqpgVK1bEHD582Hc5depUun9unn/++ZhPP/00Zt++fTGbN2+2988777yYTz75JN0/N/GpUKFCTPv27fXcxMTEPPvss/Y3xe/OF198EXPvvffGZMmSJebo0aPp/vlZu3ZtzIUXXhjTp0+fmF27dsVMmTIl5vLLL4+ZPHlyun9uonV90aRJE3t99PA7z894wIABMdu3b4/p0aNHzEUXXRSzZcuWMH4Xaes57tevX8zFF18cM2vWrFjHbtY7ErjnOa5mzZrF1KlTR09xgH+f9+/fH5MxY8aYNm3axOzcuTNm4cKFMdddd13Mq6++quc6gM8zr8U8z1OnTo3Zu3evrWfz5csX07BhQz3PKTyH5PnlefbwvLKm6dKlix3/hg8fHnPBBRfEfPzxxzHBoiCFiIiIRKShQ4fG3HDDDXbiWrp06Zg1a9aE+yFFhOXLl9vCMu6Fk830Lr7nhcs777wTk9498cQTMblz57a/p2uvvTamcuXKClAkQkGK//PQQw/FZM+e3X53cubMae/v3r07+L+0UWLBggUxxYoVs82VQoUKxYwePTrcD0lSsb7gbz/u8XTGjBkxBQoUsNsXLVo05oMPPtBzHMDnmGNTfMduNiElsL/L/hSkCN7zvGrVqpg77rjDjgt58+a1QPY///yjX+cAPs9///13TM+ePS0wcemll8bkypUrplWrVjEnTpzQ85zCc0j+53mO+zklS5a0nwm/y8E+pzqPf4JXpyEiIiIiIiIiIiIiIhI/zaQQEREREREREREREZGwUJBCRERERERERERERETCQkEKEREREREREREREREJCwUpREREREREREREREQkLBSkEBERERERERERERGRsFCQQkREREREREREREREwkJBChERERERERERERERCQsFKUREREREREREREREJCwUpBARERERiXIjRoxwN9xwg8uQIYOrX7++O3bs2Dk/Z+fOnS5btmzu5MmTQXlM5513nps7d669ffz4cXfddde5gwcPBuVriYiISPj4H/Mj4X7C4bvvvrPHv3HjxnA/FJGopCCFiIiIiEgUmz17tuvSpYsbOnSo++qrryzo8MADD5zz81544QXXtm1blzFjxqA/xixZsrimTZu6Hj16BP1riYiIpDVHjhyxY3bevHndJZdc4nLlyuVq1arlli5d6qJRz549XcmSJc+6/vDhw6569epheUwiEl4KUoiIiIiIRLE+ffq4Nm3auDp16rjChQu7iRMnus8//9wuCdm/f79buHChe+yxxxK8zb///uv++++/gD3Oxx9/3E2ZMsX9/PPPAbtPERGRtI4M/VtvvdUtW7bM9e/f323ZssV9/PHHrmLFiq5169YuLaHCkyBMpPn777/D/RBE0jwFKUREREREotSJEyfc+vXrXY0aNXzX5ciRwxUrVswtWbIkwc+bMWOGK1GihMuZM6fvugkTJrhMmTK5+fPnuyJFitgmAcGMdevWuSpVqlg1xFVXXeUqVKhgX9Pfrl273N133+0uvfRS+9zFixef9TWLFi1qj23OnDkB+/5FRETSulatWlkbobVr17oGDRq4AgUK2DG1U6dObs2aNQm2Gvrll1/suhUrVtj7/M/7ixYtcrfccou77LLLXKVKldzRo0fdRx99ZIkOV155pXv44YfdqVOnfPdz4403usGDB8d6TFRBUA2RkOeee84e5+WXX27VH927d/dt9LPeeOWVV9ymTZvs8XDhurjtnsqWLWv34492lhdddJH77LPP7P0///zTde7c2dYztLy84447fN9vQvgatMmkYoPngMc3a9Ys38e953L69Om25mFtQ5IFiRu9evVy119/va2ReA4IFsW1Y8cOe+x8HuuxTz/9NNHHIyL/oyCFiIiIiEiU2rt3r/2fP3/+WNffdNNNvo/FZ+XKle62224763o2JV5//XU3duxYt3XrVpsjQfuoZs2aWWUGmyHc9/333++bZcFJO3MwLr74Yvfll1+6kSNHnrWp4CldurR9bRERETk3qg/ZCKdigk34uEguSC6CC8OGDXOrVq1yBw4ccA0bNrQgxHvvvec++OAD98knn1gLydSglSSBh23btrkhQ4a4MWPGuEGDBtnHHnroIffss89aoIX2Tly4Lq5HHnnETZs2zcXExPiuI3BAwkP58uXtfSpJV69ebbfbvHmze/DBB919991nyROJIWhCwIdACV+nUaNGbvv27bFu8/zzz7v27dvb9dWqVbPv480333QDBgywr8V1tWvXPutr0YKT72/Dhg2uTJky1pbrp59+StXzKZIeKEghIiIiIhKlvExHAgdXXHGF7zJv3rxYWZBxff/993aSHxdZjm+//bZlABYsWNAyIMmyfPTRR12hQoUsy3L06NF2315mIBUbZA1OmjTJqjOoqHjttdfi/bp8Tb62iIiInNvu3bttk55jcKC8+uqr7q677rJqiieffNKO51QW8D6b/8y1Wr58eaq+xksvvWRrCaow2KSn2oEqTlC9wFrlwgsvtPZOXLguLoInhw4ditW+kkBK48aNrdKBas933nnHzZw50x53vnz57OuUK1fOrk8MwYynnnrKqj169+5tiRtxAzMdOnSwJIw8efK47NmzW3CCJAwCGqyRSOqgmiJulQmBEwIgrJl4XqlCHTduXKqeT5H04MJwPwAREREREUkZggigtYF/NiWZf97H4nP69GlrQxAX1RA333xzrOt+/PFH22zga9ASglkVBCnYHAAZhgzw9A96kDkYHzYhEgueiIiIyP/xryIIFP/jfNasWX0tmfyvo7VUalDx8NZbb7k9e/a433//3f3zzz/WSio5rr32Wle1alVrtUQQYt++fVY1MWrUKPs4szlYkxBo8EcLqGuuuSbR+467TuF9/1ZZ8K84/e233yxgQnDHH+9TjZHQfROI4X7iVmmIyNkUpBARERERiVLepgIn/v4tn86cORNrwyEu5kswzyK+IALZif5o9USbAtoc5M6d2/owcwL+119/pahtBZsOIiIicm5USnJcpmIxMeeff/5ZQY2Ehj0z08HDffu/711HK0f/+44bLElskDSBBFooMXeClkhUEtCOiVZJycX9tGvXzqocqKIoXry4XUDw44ILLnBff/21/e+PSo3Uiq+9logEj9o9iYiIiIhEqauvvtrdeuutseY8cNLOBgHDrhNCSwf6RCfFF198YRsEzKGgfzRBiuPHj/s+TjsDelrTU9rjDfKM65tvvrGvLSIiIueWOXNm2+gfPny4++OPP876OMOx4SUA+B+L41YGpBT37X+/VBVQ1ZAQZl2Q1PDiiy9aFQGBlritHqncpAriXOrUqWOJF8zlIEhB0MLDeoL7oMqTRA3/Cy2kEhN3ncL7rGcSQjIIFaOsifzxfpEiRRK8bypICKIkdt8i8j8KUoiIiIiIRDE2Abgw6JLhjfSXvuOOO85qSeCPDQ8CGUnZIGBz4d1337VWBQzGZoPAv3f0vffea60WqLig5QEBEx5PXLR54kSd1g0iIiKSNAQoOF6XLl3avf/++3as55hMOyWvtRDH5TvvvNP169fPPsacCVo1BgKzqVgHcHynxRLH+7iVC3HXDbSEpHqCdk88zjlz5sS6DbMqCHQQSCHxgRZNCVUz1K1b1wZd830xj8LD2oM1SdOmTd3s2bPt/mhT1bdvXxsAnhjmWIwfP959++23rkePHvZ5zJJIDAOxmUNBK6udO3faYG0ePy024/68+H6pfmHgOZWrTzzxhO/jzBeJ+3yIiIIUIiIiIiJRrV69eq5nz54WnGBwNS0YvOGUCalevbr1SWbo9bkw7JET7FKlSrkmTZpYVcV1110Xqw0EJ9vMuWADhUGUffr0Oet+GOZ9ww03WF9pERERSRraN65fv95VrFjRPfvss65YsWJWLbl06VIbzOxh053MfSosGfrMgOxAeOGFF1yFChVczZo1XY0aNSxowJDqhNSuXdt17NjRNv0ZLE1lBUEGfwyWvu++++x7olJj6tSpCd4fgQiSIFg/sI7wx4BsghQ8Lwyz5rGtW7furNvFRSsqgijM55g0aZJ9/bgVEXGx/unUqZN9LVpOUd0xf/58C8r4I1DEhTUZQ7+5DW02PQQ4fv3110S/lkh6dF5MMKbwiIiIiIhIRCPTjxPnRYsWheTrkeHJCf7DDz8ckq8nIiIiEhczN0iuIKAhIpFDg7NFRERERNKhli1bWi/rkydPuowZMwb1a9HKoX79+rHaNIiIiIiIiECVFCIiIiIiIiIiIpLmqZJCJDKpkkJERERERERERETSPHW9F4lM54f7AYiIiIiIiIiIiIiISPqkIIWIiIiIiIiIiIiIiISFghQiIiIiIiIiIiIiIhIWClKIiIiIiIiIiIiIiEhYKEghIiIiIiIiIiIiIiJhoSCFiIiIiIiIiIiIiIiEhYIUIiIiIiIiIiIiIiISFgpSiIiIiIiIiIiIiIiIC4f/B5d+djig2OUyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -544,7 +587,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-wrapnorm.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-wrapnorm.png\")" ] }, { @@ -562,7 +605,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmYjfX///FPKylFqCyhSJayhZTshLRYIvu+pLKViNAiCZG17Eu2QqKdEiFCsmUr2cqSKJWoVP7X8/393+d3ZsyMWc6cbV6P6zqXmTNnZu4Zc879uT/v7YKzZ8+edSIiIiIiIiIiIiIiIkF2YbC/oYiIiIiIiIiIiIiICBSkEBERERERERERERGRkFCQQkREREREREREREREQkJBChERERERERERERERCQkFKUREREREREREREREJCQUpBARERERERERERERkZBQkEJEREREREREREREREJCQQoREREREREREREREQkJBSlERERERERERERERCQkFKQQScCzzz7rLrjgAhdNP8uxY8dC8v3z5s3rWrVq5Xt/+fLldjz8KyIiIiIiIiIiImmTghTi5s6da5vFb7/99jkfK1asmH1s2bJl53wsd+7c7s477wzSUUYGNtzr1avnrrvuOnfppZe6a665xt13331uwYIFoT60qPHiiy+6hQsXhvowREREREREREREJAAUpBB311132b+rVq2Kcf9vv/3mvv76a3fxxRe7zz//PMbHvv/+e7t5nyvOPfPMM65y5cr2O+vYsaMbN26ce/LJJ93Jkydd/fr13ezZs0N9iGGlQoUK7vTp0/ZvUihIISIiIiIiIiIiEj0uDvUBSOjlyJHD3XDDDecEKdasWePOnj3rGjRocM7HvPcTClKcOnXKZciQwaUF8+fPd88//7x78MEHLRhxySWX+D5GoGLx4sXuzJkzIT3GcHPhhRe69OnTp+r3+OOPP9zll1+eqt9DREREREREREREkk+VFOILNmzcuNEy2z1UTxQpUsTVqlXLffHFF+6///6L8THaQJUrV87er1Spkrvlllvchg0bLDOe4ESfPn3sY4sWLXK1a9e2YEi6dOlcvnz53IABA9y///4b4xj8vwZtpC677DILnlCR4M+bZfDmm2/a96C1EhvR999/v1V3xLZ27VpXs2ZNd9VVV9lxVaxY8ZzKEC/wUrp0ads45xjHjx+f6N9fv3793NVXX+2mTJkSI0DhqVGjhrv33nvt7b///tv179/f3XbbbXZMHHv58uXPaakV38yGffv22f3Tpk2Lcf/OnTtdw4YNXbZs2ex3d/PNN7unn376nGM5ceKEzYbIlCmTff/WrVtbQMnD74c2X3Hha/KzJITA1gsvvOBy5cplv2+qS7Zt23bO4+L6+b799lurOuH/lP8HvkajRo3cr7/+ah/n8QQepk+fbm9z8+ZceDM3tm/f7po0aeIyZ86sSh8REREREREREZEwp0oKMWzmzpgxwzb0CRaAjXyCBdzYJKaNUdGiRX0fK1iwoMuSJYvvaxw/ftwCGmwqN2vWzF177bV2P5vpV1xxhXv88cft308//dQ26WknNXTo0BjH8csvv7h77rnHNtsbN25s8zI6depk8x3atGkT47EDBw60TelevXq5o0ePuhEjRrhq1aq5TZs22SY9+F4cEwEB2jGRvT916lRXpUoVt3LlSlemTBl73NatW93dd99tG/xsdv/zzz/2eO9nSAgb6wQIOL6MGTOe9/H83JMmTbKfr3379u733393kydPts3/devWueLFi7uk2rJliwU6CJB06NDBhlR/99137t1337Xfkz9+twR/Bg0a5L766is7FmZnDB482D7evHlzOy7+vwkaedavX++++eYb17dv3wSPhf9bghT8P3Lje/C7JTiTED7O7+Cvv/5ynTt3tkDFwYMH3XvvvWeBFQIq/I22a9fO/t/4OUFAyR+VPzfddJO1hSJgIiIiIiIiIiIiImHsrMjZs2e3bdvGbu7ZAQMG2Ptnzpw5e/nll5+dPn26vX/ttdeeHTt2rL3922+/nb3ooovOtm/f3vf5FStWtM8fN27cOV/71KlT59zXsWPHsxkyZDj7559/nvM1hg0b5rvvr7/+Olu8ePGz11xzzdm///7b7lu2bJk9LmfOnHYsnrlz59r9I0eOtPf/+++/szfddNPZGjVq2Nv+x3PDDTecrV69uu++OnXqnE2fPv3Z/fv3++7bvn27/Zzne5osWrTIHvPKK6+cTYx//vnHfi5/v/zyi/2O27Rp47vP+zn519/evXvt/qlTp/ruq1ChwtmMGTPGOH7vd+B55pln7PP8vwfq1q17NkuWLL73T5w4Yb+LXr16xXhcly5d7G/i5MmT8f5sR48ePXvppZeerV27dozv3adPH/veLVu2jPfn27hxo70/b968swnhGPy/Tuyfr3Hjxgl+voiIiIiIiIiIiIQPtXsSU6hQIauK8GZNbN682drqUEUB/vVaJDGrglZNsVvp0MqJ1kGxeVUNoGrg2LFjlvVPiyEqEPwxpJuh0x4qKHifSgnaQPlr0aJFjMoF5kFkz57dffDBB/Y+FRVUOdD6hyoPvi83fq6qVau6FStWWAsrfhZmRtSpU8flzp07xu/kfK2NvMoIJKaKAhdddJH9XOD7//zzz1a5UapUKas6SKqffvrJfhYqOfyPH1SaxPbwww/HeJ//C34/3s9BxcIDDzzg5syZ46tE4HdEey1+RwnNePjkk0+sIoJKCP/v3a1bt/P+HHxf8H/h334qqWL/fCIiIiIiIiIiIhK+FKQQw4YygQhv9gQBCVoA5c+f/5wghfdv7CBFzpw5fZvv/phHULduXduEvvLKK62lEu2g4M0a8DC3IvYmeIECBXyzGPzR0if2z8Dxeo8jQIGWLVva9/S/0eKItkJ8fzb5mcUR++t5MxjOh5/JC8AkFjMVaJ3F3AWCQxzT+++/f87vIzH27Nlj//q3ZkpI7EAGsxu8Vlv+AaADBw5YSywv+PDjjz9aK6iE7N+/3/6N/bvk5/O+T3xoQUVLMP5vsmbNagGisWPHJvl3wtcRERERERERERGRyKAghfgQdGBDmPkM3jwKD2+zAc2MAKotCCbceOON8VZMeJglwCBmKjOef/55m5Hw8ccf++Yf+A/jDjTvazP3gu8Z140ZGSnFbA7we0uMmTNn2rBnZikwi+Kjjz6yY2FOhv/vI64qCMQeOJ5UVHLExX9+AwEC5nFwrN4xMyOCmR+padiwYTZfg4HoBI66dOliw9t/+OGHRH+NuP4ORUREREREREREJDxpcLb4eJURBCEIUvi36GHwNO2cli9fbsO1GYicGDyeVkILFixwFSpU8N2/d+/eOB9/6NAha8fkX03BsGYwDNqfVynhv8m+e/du33Bvb6AylQ4Jba6T5c/Gduyvh127dp33Z6TSg4qLRYsWuZEjR5438DF//nwL8PA78Q9EMKjbn1d5QKAnrmoFjxcsYtB1oBDIoE0WQ88JKC1cuNCGaccX4PDkyZPH/uV36R/EolrFv1IjIbfeeqvdGNC9evVqV65cOTdu3Dgbxp1Q8EZEREREREREREQijyopxIeZCLQfmjVrllVM+FdSEKAoWbKktd8hiBC71VN8vE1t/yx9Zha8+uqrcT6e2Qzjx4+P8VjeJ5BAoMTf66+/HqPFEpv/hw8fdrVq1bL3eTyBipdfftmdPHnynO/Fxrl3jFQOsBFPiyPPjh07bD5CYjz33HMWjGnXrp39DLEtWbLEvffee/H+Tgj8MOsj9oY/j2XehL/Yvzt+NwSApkyZEuP4Y3+PpKK1E4EFZoLw+/NadCWEYNAll1ziRo8eHeN7jxgx4ryfy0yM2L87ghUXXnihtebyEMCKHbhJyHfffWc3ERERERERERERCT+qpBAf5kmULl3a5hAQlIgdFCBoQTseJDZIwedQEcBcCFr3kAU/Y8aMeDfPaSNF5j5zJahQYFgzA7AnTJhgm9/+rr76ajsOhnUzL4GNcGZSkPEPNreZb0DQgpZBPI65GQRgli1bZhUWtJ/yggy0XWKI9COPPGKb5Wy083m0Hzqfhx56yNo9DRw40G3cuNE1btzYggwELvi6S5cudbNnz7bH3nvvvVZFwZyO2rVrW1UJlQKFCxeOEUxhhkeDBg3sOPi9EXAh0MEQ8dhGjRplvwsCSR06dLC5DPwOmXPB7y85SpQoYXMu5s2bZ0PE+drnQ8CkR48ebtCgQfZzUnHD7+PDDz+0ORMJ+fTTT91jjz1mPzP/9/wf8LdCoKZ+/fq+x/F3yYyM4cOH298LP+vtt98e79dlSHpcM01EREREREREREQk9BSkkBjY6CZI4bV38kfbHYIUGTNmdMWKFUvU12MoNBvrTzzxhLXvIWBBRj4bx1QvxMbHGSrduXNnN3HiRJuLMGbMGF/gwR9zCwggsCFORQVfkyqDDBky+B5TqVIlq1AYMGCAfR2CAMxWYFObCgEPLaKommBwc//+/V2uXLkscEFlRmKCFKAdEXMlCBi89tpr7ueff7afp2zZstYK6v7777fHMY/iyJEjViHC9yQ4wcwHggG0x/JHgOLMmTMWxOD/o2HDhjZjI/aQbP4/GHrer18/+95//vmnBUl4fEowQLtnz57nHZgd+/dARQ7HTDCI3zWVJARkEsLPwN8EgSMCSfw/ch8BDn6HHoITBGL4e2JuBQGwhIIUIiIiIiIiIiIiEr4uOJuSfjAiAURA4dixY+edrcBGfuXKlW1T/8EHHwza8aVFzNjo3r27VSHkzp071IcjIiIiIiIiIiIiUUYzKUQkTsQvJ0+e7CpWrKgAhYiIiIiIiIiIiKQKtXsSkRgYjP7OO+9YqybmbNCqSkRERERERERERCQ1KEghIjH89NNPrkmTJi5Tpkw298ObpSEiIiIiIiIiIiISaJpJISIiIiIiIiIiIiIiIaGZFCIiIiIiIiIiIiIiEhIKUoiIiIiIiIiIiIiISEhoJoWIiIikyH///ecOHTrkMmbM6C644IJQH46IiIjEg27Pv//+u8uRI4e78MLIzFnUukNERCT61h4KUoiIiEiKsFFw/fXXh/owREREJJG+//57lytXLheJtO4QERGJvrWHghQiIiKSImQyeouOK6+8MtSHIyIiIvH47bffbIPfO3dHIq07REREom/toSCFiIiIpIjXaoGNAm0WiIiIhL9IbpOkdYeIiEj0rT0iswmliIiIiIiIiIiIiIhEPAUpRFJZ/fr13VVXXeXmzJnju2/Tpk12X+HChWM8tnnz5i5btmzupZdeCsGRioiIiIiIiIiIiASXghQiqTC13t+pU6es/9qZM2d89/333392H9Pt/f3xxx/u2LFj7qabbgra8YqIiIiIiIiIiIiEioIUIgF09OhRV7lyZbd8+XLffZMmTXLffPONq1Onju8+Kii4b8WKFTE+f8yYMW7lypVWfSEiIiIiIiIiIiIS7RSkEAmgQYMGuc8++8y1a9fO/fPPP3Zfzpw5rTLCf6hb+vTp7b4bbrghxufnyJHD3XXXXb73qbaoUaOGW79+fRB/ChEREREREREREZHguDhI30ckTXjxxRetmqJ///7u4otT/vTq27evW7Jkidu9e7fbuXOnu+SSSwJynCIiIiIiIiIiIiLhQEEKkRTOn1i1apUrX768vX/ZZZe5WbNmBezrv/DCC+7QoUOuV69eClCIiIiIiIiIiIhI1FG7J5EUBCg6duzoKlSo4KZOnZoq34MWUfPnz3elS5f23bdjxw53+vTpVPl+IiIiIiIiIiIiIsGkIIVIMl1wwQUue/bs7sILL3S///57UL7n/v37XaVKlWw4N22lRERERERERERERCKZ2j2JpMCzzz7r7rvvPleqVKmgfL+DBw+6M2fOuD///NNlyJAhKN9TREREREREREREJLWokkIkCT7++GPXunVr999///mqKYIVoMCdd97p1q5d69555x13xRVXBO37ioiIiIiIiIiIiKQGBSlEEunYsWOubt26btq0aW78+PEhO46bbrrJ5c6d2/f+m2++6UaPHh2y45Hod+DAAVe7dm2r3rnmmmvck08+6f755594H79v3z7Xtm1bd8MNN9gw+Xz58rlnnnnG/f333zEeQ5Av9u2LL74I0k8lIiIiIiIiIiLhQEEKkUTKmjWrBSdatGjh2rRp48LB3r17XcuWLV23bt3cxo0bQ304EoX+/fdfC1AQYFi9erWbPn26Ber69+8f7+fs3LnTqo14vmzbts298sorbty4ca5Pnz7nPPaTTz5xhw8f9t1uu+22VP6Jot+KFSusDV2OHDks8LNw4cLzfs7y5ctdyZIlXbp06Vz+/Pnt/1hEREREREREJBg0k0IkCZo2bWq3cJE3b16r7siUKZNlrUvqOnv2rDt16lTQvy8VDGw2J8WWLVtc+/bt3ebNm13GjBndo48+ajNUkmrJkiVu+/btFky49tprXfHixd2AAQNcr1697Otdeuml53xOzZo17ea58cYb3a5du9xrr73mXn755RiPzZIli7vuuuuSfFwSvz/++MMVK1bMgqn16tVLVLCTQNTDDz/sZs2a5ZYuXeratWvnsmfP7mrUqBGUYxYRERERERGRtEtBCpHz+Pzzz90tt9zirrrqKhdu2LieOXOmu+iii0J9KGkCAYpQzAI5efKku/zyy5M0YL1y5cquefPm7vXXX3dffvml69Chg7UJY+OazWj+bs73PbFmzRp36623WoDCw8Z1p06drEqiRIkSiTqmX3/91V199dXn3H///ffbIPgCBQq4nj172vuSMrVq1bJbYlHlQpBz2LBh9n6hQoXcqlWrrAJGQQoREZHQoIqV9piskURERERSu4sGezxFixZ1oaIghUgCfvzxR3fvvfdaJvuyZcvC8iIhdoCCWQEXX6yndlo2adIkCyqwyUwg6+abb3Zbt251w4cPtyDF888/73r06JGor3XkyJEYAQp47/OxxNi9e7fNTfGvoiDYw6Z4uXLl3IUXXujeeustV6dOHWtNpEBFcBGIqlatWoz7CE7QRi4+f/31l908v/32W6oeo4iISDRW6DLzLlu2bL77aJXJWohqaRJNqDaljeYll1wS0mMVERGR6PbUU0/ZntGgQYMsgTQUtJMpkgA2YZlFwYYqLWvC2c8//2wvJD/99JNd3CS1PZCcH8Eqr8Ig2N83KWjxVLZs2Rh/A3fccYedcIiOM/yaWzBQ1UHrpwYNGlj7KQ/Pq8cff9z3funSpd2hQ4fc0KFDFaQIsvgCUQQeTp8+bcPPY2Ph8txzzwXxKEVERCLTjh07bHYcSSPe7K0ffvjBZkARqCBZ4KOPPnLr1q2zBADe9vz+++/um2++cUWKFAnhTyAiIiLRbPPmzZbkymzRUOx5eRSkEEkAfd3p7X/06NGwr05go5GMqzNnztiFEENwJbDY9E9K26VQ+eWXX2xOSWxcCCMp7Z7I4OOiOXaFkfexhBB0oO3UnXfe6SZMmHDe47799tvdxx9/fN7HSej17t07RpCJgMb1118f0mMSEREJJi7kacmUPn1637mQSlUCEO+9955VinrVESNHjrRkIoIUPI7ABJ/L2swLXPijzWzXrl1d9+7d41zTiYiIiAQC7bebNWtmCa0kRXTu3NmFSnjvuoqEAbKI8+TJ48Jd4cKF3ahRo2x+hgIUaRsXvGvXro1x3xdffOFuuukmaw+WlHZPVGAMHDjQAnVe9QWBhCuvvNL+5s43F4ML76lTp/ou1BOyadMmG9YswUWwyQs8eXif/+O4qiiQLl06u4mIiEQzLthJ/mE2RP369X1VqgMGDLD1Ea0RX3rpJbuPc+bkyZMteMG6yUvmKF68uKtQoYJdT7z66qsWfKA9q4c1Ep8DqrcJZvAYzsMiIiIiqalv377u66+/treZSRHKriwKUojEgZYzbOjSIz+SkCEvggMHDlime8eOHd1XX31lMyG8wchJafd09913WzCCIdxDhgyxih1OYo8++qhvk5pKixYtWrilS5e6nDlzWoCiUqVKdjHOHApakHm8C/bp06e7Sy+91Dd4e8GCBW7KlCk2T0OCi0DUBx98EOM+AlHcLyIiklasWLHCWqaS7ENGIQgeUOnJv4cPH/atYwgm0Jpp7969vs9nbgRrpauvvtref//99+3WtGlT99lnn9l9rJUIUFB9yNdkzcS/tPbs0qWLe/LJJ32fLyIiIpKamL3r7RPRopv1Da25Q0VBCpFYGDBMKxMypyjFprd/JKLlD1lc9L+VtIegAfMEypQpY9UTZOR16NAhyV+Hz6VlQadOnWzTmnZXLVu2tGoMz6lTp9yuXbus1Zi3wc2wbG65cuWKs+WUl4W4f/9+a6VWsGBB9+abb7oHH3wwRT+3/K9VF797DxsoVKmw6ZE7d257fWNThPZwXnBzzJgxlrnJYPVPP/3UzZ071zZWREREomE4NQEFb01CUKBKlSru22+/tUQOby7Tl19+af2YH3roIV+QgsADVaGsVfx7NJO8QTKT/zqHagtaP82bN8898sgj1j4BJHWUK1fO3s6YMaOrWLGiL2hBwgZrLIZVnq+NpoiIiEignDhxwvZ2PLSrXL16tQulC8767xiJiG3svvDCC27Pnj1uzpw5LhLR2ocLp2zZstnFFxdYknZQxUBrgREjRoT6UCQEli9fbq22YmMBMm3aNNeqVSvbSOFx/p9D3+vt27fbhku/fv3scYlFf236Z//6669qTyEiIiGrhCDw0LBhQwsGgLUQ57dGjRrFWNcTtP/+++9jJCTRKpMAA0kZtHZKLJKCOO9yDvXH97jnnnss6EEgpH///m7+/Pm+JBASAzjfBnumUzScs6PhZxAREQml5s2b26xSEiaYk0WiBm0sQ3neViWFSCz0k6XHbCTH72hVRSUINzKm8+bNG+pDEpEgBqkSev0iUBHX59BzW0REJNxt3rzZAg45cuSwFkmeJk2a2LqX+Wy0aII3V+7333+P8TVoMUkg49Zbb/Xdx+d4nxef48ePu48++sgusqmWAElBXHwTeKBionbt2hacYPgkSQHPPfecmzFjhlVw0OeZ43z22Wdd/vz5A/p7EREREUkMOicQoGBdQoCCitFw6GqhIIXI/0cZuP8g2FAOi0mpLFmyuE8++cRa6Gi4rYiIiIhEAuY1cKHseeyxx6xCmJlVVImCaonBgwdbQME/SEE1A3OwGETtIVhAW0qSkPxVq1YtUcdD0H/Hjh3u3XfftfaXtEEg2MBam7lfBCa4Znj77bddvnz5XObMme3zDh06ZMc+ceJEXzvMunXrWrtMgigiIiIioXDw4EHfPFtaWtLukmoKEjuoMKVleKgoSCHy/1EGzkXNqFGjbPhvpCtWrFioD0FCxL+Nj4iIiEg4YeOfFknMuWJAI5iHRJtBLpBXrlzpe+yWLVvchg0bLFDgBSlKlChhAQDvfQ/VCrGlJFln+PDhNrPJfzg2qL649957rUWsd/ylSpXyVVoQQBk9erRvJsXdd99trWRLly6d7GMRERERSSkSLVq3bm0zbFlPfffdd3Y/SRd8LNRVnv+XZiKShnHhQ3bUO++8437++WcXbReCDCR+6623Qn0oIiIiIpJGsAY9cuSIzUfzV6NGDRsSTdskDxUIzIhgTe6vT58+VqXAoGsPFQsEAdq2bRuwY+VifdasWe6PP/7w3cc1AQEKsgtr1qzpxo4d6/bv32+BkxdffNEXoPDaSQ0YMMDdeOONbujQoRaguPPOO92yZcvc4sWLFaAQERGRkBszZoz7+OOPrcK0adOmtv5hNhZrHqpAr7766pAenyopRJxzhQoVsgsoysn9e9NGAwIUjRs3dlmzZnUVK1a0f0VEREREAoUZDV9//bXLlSuXbw7EunXrbCh19uzZ7cLXw2NokUS7AU/hwoXd559/7m6++eYYX5fgQGohAEGC0qJFi2zoNrPcePv++++3j7ds2dIqJGgN5R+Q8Ecw4rXXXrOgxbFjx3zVzMy3o9VUJLePFRERkeixfft216tXL3ubhIoDBw7Y223atLFWm6zXQk1BCpH/j+BEtAUoUL9+feszd99999mAQBERERGR5KAVwJ49e9w333xjm/Aeehu/8cYb7qWXXvJdAJMERPsA1p/MhciQIYPdP2TIEKtK8J8TQVsmKg9SG8GS8ePHu4ULF1pFhD8GXTMTw3PTTTfZLS48bvr06TYA+4cffvA9nmqKBg0axJiLISIiIhJKf//9t2vWrJklV1DR+sgjj1giBfO14kvECAUFKSRNY7jeJZdc4jJlyuSiFT/f2rVr7SJRRERERCQx2Ign6452RwULFvStndmM58L2t99+813YFi1a1K1atSpG5cCVV15p7ZNiz4UIZlUvPwOtDLJly2bvnzx50oZXg0BC+fLl3QMPPGDVE7SRSkwLK1qo9u3b1+3atctXGUKwgsoL/6HfIiIiIuHg2WefdRs3brR2TlOmTPGt12hTSXIJbSsfffRRS9gIJaV4SJr2zDPPuNy5c7upU6e6aKYAhYiIiIgkVCFBQIKWR/7rZFoXDRs2zHfftddeaxe0JUuWtOHXHi5wmSnRs2fPgA2uTi6yBJk1R/sCZl906tTJ97ECBQrY0G2qIDj+5cuXu+7duycqQEEPZ2ZLUClBgIJgC8O1v/32W5uPoQCFiIiIhJuVK1dapSsmTJjgrrnmGnf48GHfx2fPnm2tK0+cOOFCTUEKSbO4CNuwYYNFDLnYSgsoa6fEix68IiIiIpI2sZHvXx3A0ESy5/wHV9MulFZNsVsX7d6923355Zcx1s+hbm9Exca8efNco0aNrGqCNqckIR0/ftytX78+RvCFodstWrRwWbJkSdTXZrZG1apV3d13323XDlSPEMD57rvvLMCRPn36VPzJohczSbgu4f+B1l+03eXvSkRERAI3M6x58+a21mvVqpW1g//ggw9s3de+fXu7nwDGU0895W655RYXakr3kDSL6gIGZTMor0KFCi4t6NGjh2WB0d5qzJgxoT4cEREREQmiTz/91LVr184CDJ988ondR8k/LZzIoNu3b5/vIpUWSNwXOwARjsOga9WqZZmCnpw5c7p69eq5unXrWkun5FQV79y50z399NNuwYIF9j5tr+jh3KdPH1/7KEkeWnCVK1fOVa5c2X344Yf2+6QiJXPmzKE+NBERkajRpUsXt3//fnfDDTe4kSNH2n0TJ0605A32BVnTNW3a1IULBSkkTeMJWbFiRZdW9O7d23rQUZIuklgHDhywVgnLli2z7EF6Lg8aNCjBtgZ58+a1k6E/PocIvYiIiKS+yZMn2wY72f7VqlWz+2hRREUtFQa0ePICEG+++aZltPuf28OxfRFzMN599137ufj5vLlytWvXtsx8MgS50ZYpudUdfB16N9Oz2fsdUXnBfXny5AnwT5Q2DR482LI4/VvusoESn7/++stu/n8HIiIiEr+5c+e6119/3dYxM2bMsFlhrHGopEA47guq3ZOkSZSpc9GR1pCt9MYbb7gSJUqE+lAkQhBh58L/77//dqtXr7YeztOmTXP9+/c/7+cymJJeh96tc+fOQTlmERGRtITh0FQH00/YH+dtLkS9ignQ0mnx4sWWgOC/ic+siXAMSnitnFi/UhlBH2VaBBGkeOedd3yPIRDD+n7IkCHu9ttvT1aAgux+kiny58/vJk2aZNcKVJPQLpXNdAUoAof/u1KlStl8D/5PuTYhszM+JLpcddVVvhsBDhEREYnbDz/84B5++GF7mwpQqhfBeob1DVWmBQsWtDUOlaOsJcPBBWdpQCWSxnrwkuVN5hVD9bgQEUnqxXJ8aCfg35s4ocdyAU0P3oQee/nllyfrGDnZ0GNw8+bN1k/60UcftQzApKIE/95773WHDh2yDQyMGzfOBmT+9NNP1vogLjzHunXrZjeJfmQ0smlAz0syNEREJPVw+Xb69GmXIUMGe5+qCNrlcD/n6+zZs9v9VECyDqhRo4YrVKiQizS0/+nbt69VTvDzem6++Wbb3KayMxDreK4NaIP64osvWqACd911l/Vo9i7qo0k4nLO9tfLjjz9u/5fMDenatautMfl/TUwlBYEKrTtERERiIgjBHK2lS5daQgBJK5dccondny9fPmvtSYUFsyp4HC3hSRSgHWio1x6qpJA0Z+vWrbbIPXXqlMudO7dLi7gAe+GFF9yECRNCfSgRiZZH8d1oMeCP7LD4Hkv/5Ngb+7EfkxyU8FE1c8cdd9jmxIgRI9zQoUOtbQGIqCf0M/h/3zVr1tggQy9AATY7OMls27YtwePg4p7WEWTH8f3DJTovIiISqd5++21ri0MigodzbfXq1W3+wsmTJ333sxYgWSBSAhSsE44cOeJ7nyAMw7AJUHBRTSYg6xqGew8YMCDFAQqqRblIL1CggHvyySdtfUylCVn+zKyLxgBFuGCjpGTJkhYYYp3YoUMH+5smSBGXdOnS2aaG/01ERETOxf4PAQrWUbNmzbIABaisJUBBsMDbt+L8yuPCYWg2wrOmVyQV0aOWEneys+LLAo92CxcudP369bNMO7KVeGGS6EGLAoIKr7zyis1dIeOQ4Nzw4cNdmzZtrA0TQ9QTg80C/wAFvPf9NxLiGtDExSczUIjcMw+Flk8cg4iIiJwf69VFixa5mjVr2mBrLyDBzCc22Kmc8IZY08IpEvEzbNiwwS6i58yZ44oVK+b7WRh+PXr0aFe2bFlbUwRqYDffk+9BVSiVp8iVK5etj5g9kZwh25I0XIMULlw4xn0E0956662QHZOIiEik27Rpk+29gL0XEjE83hwo2mZ61bhUq4ZTK3wFKSRNov0NFztpVdOmTS0zjfIuXYglnX+WYmyxf59Hjx6N97Gx+yUT1Q4Esgy5oPe/mKeqgpMUmxpUd3BLTZTve4oWLWoBwY4dO1pPYQXFREREzo/KR9oukm3uXXDeeeed7v3333cVK1YM2KZ9KLDmITAxc+ZM64Xsv4ahcsJrh0m7ykDauHGjVU2QYQiyCfndklzh34JTUhdVKrt27Ypx3zfffKO5HyIiIslEt5gmTZrYPNEHHnjAqhT9vfrqq9bOkkpbf8mZ45VaFKSQNIOsKaon/COJaRUbxgxSlORJypyI1HpsQmhXwMyV2LwRRGx6sCmQmEDMdddd59atWxfjYz/++KPvY4nFEEvaOLApQWWHiIiI/N9MBIL4BB9oM+Rlt1GKz/n4xhtv9D2W4db33HOPi2QMuaYVgf98Ai6myeyjpaTXliCQqD6hipj1D+sh1sIEQJ5++mmrTpHg/w0QcCMA17BhQ1tr0oZWrWhFRESSp2fPntYSk30aumvETmbJnDlzwJM/Ai18wiUiqWzJkiW2OUoVgebFSzTj73vt2rUx7vviiy+sVQSVHrQzoAwwoZt/BQatovwrQhisRC/g2GX6CeFrEqFP7QoOERGRSOA/CJoKQ2Yj0PbIP4mkbdu2FrR46KGHXKSihQADvL2B1GD9wIVzlSpVrPUAyQ9vvPGGu/feewMeoGBA41NPPWXXADNmzLA1UuPGja16gwpTBShC136X+Sq0+KIPNjNGCFxxnSYiIiJJQ6LL2LFj7e3p06e7rFmz+j4W3/4n+0IMzmYWV7hQJYWkGWzackFEP/1ILo8PJFr/MJ+CF7TJkyfr9xJlfaxpuUSLpa+++sp6Og8bNsw+lpR2T5y02EygNdiQIUNsDkXfvn0tAu+1bSL7jR7OtE6gfzTDtnm+UUZIazXeJ2OODEmi9yIiImkVLW44Nx8/ftzmIbD24vbcc89ZMJ/zbrSsQ7hIJgixd+9eW4c89thj9jGCBFRM5M6dO9W+/5kzZ9z48ePt93rs2DG7r1KlSm7o0KGuVKlSqfZ9JfEISnETERGR5CPZg9mjYN8l9lqSZBESNrp162btoDwkwrCHw7osXChIIWlG//79LRON3rPyP2S1sflMNh8vTNWrVw/1IUmAEDTg/7VMmTJWPdG1a9dzehImBp/73nvvuU6dOllVBS2pGLZO1N2/9yGbLmwIgOAFGZHPPvus++uvv9wNN9xgJ0v/ORUiIiJpAdlrf/zxh7viiivsfZJlqG6kX7B/G1LO25GOdQDZeBMnTrQKZi9zj+pLfgcefhfe7yPQ+J4MgWTuBDMOULBgQQtO1K5dWwk5IiIiEjXOnj1rAQo6XzALlDaKsY0bN86tX7/erVq1KkaQYvDgwdbxIvaMilC64Kz63oikac8884y9sHXu3Nlly5Yt1IcjAUCmYPHixWP0exZJTb/99psFgGmrwWaUiIj8L0ON6gECEfPnz/fdTxXrbbfd5q6//noXTXM18ufP7w4ePOi7j4teLpzr1avnm7ORmrjQJiGCjEGwrqWSon379jbLQ6LnnB0NP4OIiEhKjRo1yhJSme9FIIIWiv7ohMF6k/mgrJOKFSsW1udtrdYk6vGkvOyyy1RBEQ8u3kREREQk5Uj88LL1aXHIXCeGNjMA26seqFOnjot0XOzSzrF8+fL2PhfHVG9yX+vWrW2eRr58+YJyLIcOHbKh2LSW4vdPRScVnL1799YGtoiIiESlzZs3W+UoaO0dO0AB1kas2eiKEaoARVJocLZEPS5Q6Hk7a9asUB+KiIiIiEQhhl4/8MAD1urQc+utt1r7Q4IUqdXeKNgOHz5sLR/z5s3rKlSo4Hbv3h2jnQCzKGg1EIwABW0tX3jhBatUmTJligUoGjVqZC0oBw0apACFiIiIRKVTp05Zy3bah953333WnjuuGbQTJkywtx9++OEYH6PqgrbezLMIJwpSSFSjNy5PPkqLKEGX+H399dfWD9n/YlMi0/Lly9XqSUREJIgYDs08htdee803ownMQ8uUKZOLZGz+r1692i6GSfyhVShtnWinxFwNzzXXXOMuueSSoBzPm2++abMmqKBg3kXZsmXtGOfMmePy5MmT6scgIiIiEiqPP/6427Fjh8uePbslasQ1c4v5YPv27bPK3gYNGsT4GOtVghuvvvqqCydq9yRRjQulLVu2uHXr1rnbb7891IcT1nr27Ok+/PBDu+CkVExEREREzvXff/+5RYsWWaZ+1apVfS2cevXq5Vq1ahWUjfpgYfg0QxapFPGUK1fOPfLII65+/frWWimYOA56L3/++ef2fq5cudyQIUOsgkJDsUVERCTavf322278+PG27pkxY4bLmjVrnI+jwhWsTWmB7485FbSHYkZaOFGQQqLehRdeaNlVkrAuXbpYpl/Dhg1DfSgiIiIiYYtkDpI76O27ceNGu0hkMPNLL73koiUIw/oZOXPmdN99950FIwhWdO7c2ZUoUSLox0Q7gj59+vjmTjCIm6BQjx49gjKUW0RERCTUfvjhB9euXTt7m3kUXrJMXHjcX3/95Tp06BDnbNpwnE97wVlWeSJR6NixYy5LlizKqhIRSWW01Lvqqqvcr7/+qh7gIhKV6Ot70UUX2ds///yzK1mypGvWrJm1Gwp2NUFqVk288sor7quvvnJffPGFbw396aefuqJFi8abqZea6LU8evRom4PBuQZNmza1gBBVFJI2z9nR8DOIiIgkxT///OOqVKniVq5caRUQtLm89NJLXTSdt1VJIVGrXr167qeffnLTp093ZcqUCfXhiIiIiEiEYeh17969rYUTa0pcffXVVl3gBS0iHW1RBw8ebO0DvPy1VatWufLly9vbXBCHAr2UqfRlEDa4IB81apS78847Q3I8IiIiIqHywgsvWIDiiiuucG+88UayAxSs9cI1mVuDsyUqHTlyxMrvGQKtLKukV6BwocrAcREREZG0jAHRDGOeNWuWO3DggO/+SA9QcIG6ePFiV7lyZZvbtmDBAruPIYqfffaZu+uuu0I6hLxu3bquRo0aFqBgIPfkyZMtmKIAhYiIiKQ1n332mRswYIBv1kT+/PnjfSyzZp955hl36NChOD/+1FNPuRtvvNHmWoQbVVJIVLruuuvsopKhejly5Aj14UQU+v1OnDjRBhByUS4iIiKSltDOiWoJsCk+fPhwV6lSJZc7d24XLZYtW+Zq1qxpbzNPgxZKzNkoXLhwyI7p9OnTNgSbVk5//vmnBYKopOBCmxYBIiIiImnN8ePHbZ3GzDCGYPN2Qkg6JqhBe6iBAwee8/FNmzZZQkg40kwKEYmBChQG7HTr1s01b9481IcjIhFAvaFFJBrwGsam+EcffeR27tzpMmfO7KJppsa3337rChYsaO9zCUg7p9KlS7vHH3/cXX/99SE9vnfffdd+9/v27bP3qfBgFkWRIkVCelzRKBrO2dHwM4iIiJzP2bNn3QMPPGDrpJtvvtl9+eWX1u4pPlu3brU5YiR6sKaKq7MMyTibN2+2rxespO7EnrfV7kmiDplXknwlSpRwGzZsUIBCfGhvUbt2bZchQwZrufDkk09aVD4+y5cvtx6Hcd28NmKcMOP6OIM6RUREQoHevrQUYqYZgYpoQNbdvHnz7IKVFk4nT560+znn0teYQdmhDFCQyUeLqfvvv993Mf3mm2+6pUuXKkAhIiIiadro0aMtQMEalTkUCQUoMGbMGPuXtpnxtb6nWphkkHDsOqN2TxJVuBArXry4K1CggD05o6ksXyRUmZcEKGihtnr1anf48GHXokULGyD64osvxvk5tMbgcf769etnGw6lSpWKcf8nn3wSYxMiS5YsqfSTiIiInOvvv//2DR687LLL3OzZs91ff/3lypYt6yI98+6dd96xVklkyyFTpkxuy5YtvrkOoRyaSFIRrZ0GDRpkb9Ny6oknnnB9+/Y97wW4iIiISLTbsGGDJYji5Zdftr3OhPzyyy9u5syZ9nbnzp1dJFIlhUQVSp8YsLdixQpfL2FJHjLl3377betlJzH98ccfdvPvlscmB/exsRHXYwmgec6cOWP3xa76ieuxycUmBIMw06dP77Jly+aeffbZZH2dJUuWuO3bt9vJjpNirVq1bGDT2LFj7WeOC5s9BDW8G4GHRYsWudatW5+zIcLH/B9L8ENERCQYvvrqK6swoNLAv6I00gMUH3/8sStTpoyrU6eOBSgoqydYQaVCOAyeJkGB3zvHxFqoSpUqtm5hFoUCFCIiIpLW/frrr65hw4a250JVxGOPPXbez5k6dao7deqUu/XWW62lZ1yoFB4xYoT7+uuvXThSkEKiChdk9BDmyamLnJQhUluvXj27gJSY+NviduzYMd99Q4cOtftinzxoj8T9tEzysMHPfW3bto3x2Lx589r9O3bsSNHxMTSe8r077rjDNic4CXF8U6ZMsY8//PDDvp8hvptnzZo1dpK79tprfffVqFHDegpu27YtUcdDJifDnghSxEZ7B35HtKDgcSIiIsEyZ84cS255/vnnA5IgEA6YO3H33Xdb4s7ll1/u+vTpYy2VSFYI9fDpI0eO2LDH6tWr23Fmz57d/g8IWhQqVCikxyYiIiISDs6ePWtzYvfs2WN7RJMnTz5v9SsdMNhn8qoo4ns8yafdu3e3JNJwpHZPEnUY/sJNUoaZFCNHjrSMO17wGLwjkWHSpEkWVKDPNCcnng8MUBo+fLhr06aNbcb06NEj0RsK/gEKeO/zscTgpEpgw78nIoGQYcOGuXLlyrkLL7zQvfXWW5bxuXDhQgtciIiIpDbaFtLiqWvXrnYuilQnTpywVk646aabLCmAgAQBCqopQ40A0Pjx413v3r0tM5Df9aOPPupeeOEFDT0WERER8fPaa6+5+fPnW5cJ5nRlzpz5vJ9DR46qVataZw8SQuJDhQWPDYfK2rhccNa/X4lIBOMCKJIvMMORghNx40UdDJL2ItSU4dHGiZ7K6dKlO+exbIJ4f588jsfzu6UdU0KPTQ4qYNis8ConQKS8QYMG7vTp00n6P+3QoYPbv3+/W7x4se8+SgjJzvzggw+s/VNCfvjhB5cnTx43d+5cV79+/QQfy6wLsj0Z5CmRhcoaNsTYfNKGk4iEq0OHDrlp06bZZnko5zEECq+5bPRzMUvlZL58+ex+Lu/C5ecjSYK1xBdffGHv33bbbW7cuHHnzKiS4ImGc3Y0/AwiIiKxbdy40dqOsl9EkilVD0nBXlM4ttBO7HlbO7oSFdh4JVuc7PCTJ0+G+nCihgIUcWODnpv/BgBzGLjPP0Dh/1j/oAMnDe7zD1DE99jkYGBSXLyYdFLaPTEn4scff4zxdbz3+dj50HqNuROJqY5ghsbu3bvP+zgREZGk+v33360t6NNPP+3GjBnjIn1uGBv9+fPnt/acJDmQDOAJhwAFa3OCQSVLlrQARcaMGd2oUaPc2rVrFaAQERERiWMjv+H/n0PB/km3bt2S/DXCMUCRFGr3JFGBAc9sbtIyZvDgwaE+nKjD7IGjR4/anAMJfwQj2ATwxwYBLSAIPCWl3RNzLQYOHGj//8yO8AZyEv0uXLjweY+DIAUVEok5WW7atMn6U4uIiAQam+S0P6LqoGbNmi5SLVu2zHXp0sU38LBgwYKWaXe+ysZgYsZEx44drZcyGPhIgMK/7aOIiIiIxJxDsXv3bpc7d27bR0ls0smsWbNcgQIFXOnSpc/bHpSuHbETa8OJghQSFR566CErHfrzzz+V/Z8KASDaB7HBzVBytdSKDAzqfvzxx22T4KuvvnKjR4+2GRAg2OAFHM6H4ZsEI5hRMmTIEJtD0bdvX+sl7Z3c1q1bZ4GIpUuXupw5c/o+99NPP7X2TZxsY5s+fbpVn5QoUcLeX7BggbWnYp6GiIhIarQDfeSRR+ycxPknEnHszHnC1Vdf7Z577jk7z4dL1hyVnE888YRdWIM1AUMcH3jggVAfmoiIiEjYYr9m3rx5vjkUrPMSg8ADnTLoKLNq1Sqb+RmfZ5991tZlJK1S7RqOFKSQqEBgonbt2i4cy/Hp509f/tjjXypUqOC7aN6+fbv76aefXI4cOVzevHnD5mIT1atXtxfIokWLWv+4xAztkdAjaECrBVpb8PxgKCg9oZOKz33vvfdcp06drKqCdlQtW7a0E5v/jIpdu3ZZ/0N/bKQwkIksz7gMGDDAnh/M8eAxnIwffPDBZPy0IiIi55o4caINHnznnXd8gfVIDVCANSJrR87JnIcTewGb2ljjUs382GOPWUtIMv8ICDGYXPMCREREROJH1wuv08XLL79sMykSa8KECRaguOWWW847DPu7776zPcpw7l6hwdkiAcjQ+/777y1zvXz58r77mzRpYhfGsTduPfSZ84IRTZs2dbNnz7a32bDlIpRyLaoXuLVq1co2h0OFFz3/OQUS3ipVquSKFy/uRowYEepDkTRCAyxFJNywWc7MBtYwXMC1b9/eRRpaN7JWZK4DqBjesWOHrwoxHBw+fNiqK6m8BUkHXpKChKdoOGdHw88gIiJy/PhxW9exp9igQQNL3Exsmyf2FG+88UZ38OBB60rRunXrBB/P9j8J1LRAzZQpkwvH87YqKSSicWF07733Wqk7F5/BGBTIE3vLli3ugw8+sNv69evdX3/9ZZltZJR7mXoMRSZAwfv0lEuoOoJyeIISvDCR/U4fOv8Bwm3atPG9TQk9L0L33HOPbUQHo/2SAhQiIiISSa699lrbOF+xYkWcbQfDfci3N+CbzLgNGzbYOpK1ZbgEKFgPz5gxw4Y60uaJJBtaB3Dc4dzrWERERCRcEp6bNWtm+4AkJ0+aNClJe5pz5861vcHrrrvOkqTPh699/fXXu3CmIIVEfBk//fZff/31ZLWySaqRI0daX/5Dhw7FuJ8LRyKYtGzyhgI+88wz1vON988XSOBrcuNFiq/97bff+m4///yzDbfxvPrqq+7LL790/fr1swtwBiVyoy1Tardiot/d5s2bXcWKFVP1+4iIiIgkB2XsbJijWrVqdosk77//vrVz4oIVBCWooAinVqBk4ZEgRLIObrvtNsvgozWoiIiIiJwfbTE/+ugj2++jbeaVSagMJFnEmzlKu81oSRBRkEIiWufOna1UKb6e9ylB+yZKrYhsej3beCEgiJAhQwZXpUoVq2aoWrWqBSi8C2JPnjx5kvw9CWYQ1OBWuXLlcz7O9+eikI9/8skn1spg2rRpdvPmcixatMilhm3bttl8A3o5c3EayvZTkrDly5eH+hBERESCjsoJEkTYPKdKNZKQCNKlSxerTsANN9zgxo0b5+6++24XLliHUtHbvXt3K9tnTcjv+8knnzxnHSwiIiIicVuyZInr37+/LxH51ltvTdLnL1u2zG3atMn2JhmcfT4zZ8602Rf169ePc68xXGg1KRGNygEulAJ58fXZZ5+50aNHu4ULF1plA0MJ27Ztax9v2LChK1y4sA29puQ+2CjPomUBN/rPrVq1ytd2ih7F/hUXXi9jAguBaINVqFAhC9bwPQjg8L6IiIhIOGBdxGY5QwFpkzRo0CAXKfbt2+fuuusuK9knYYUWSgzGDqeEEJJ0aK3qVU/cfvvtVj3BulhEREREEr/ua9y4se0/srZiBm1S/fbbb9a66f7773dZsmQ57+NJZmZmLsnU4Ryk0OBsEedslgSRRS5qt27dGmMAcc+ePa2dUiS80DEb4+abb7b3mZtRrFgxqzKh/KtFixZWdZLSGSD0uwvG7A8RiRwaYCki4bIWojXn0KFDIyqzn6QYKnMJUkyfPt3dcccdLlxwqTh79myrXmb2BNUTAwYMcE888YRV8UrkiYZzdjT8DCIikvbQwrNcuXLWtr506dJu5cqVyW7VdObMGdvL5Hx4PiSZLF261DVt2tSVLFnShet5W0EKiUgMEKR/W9euXa2qIaXDCWnXdOzYMXufcik29NnYL1KkiItUtKoiKsvPB14IWrdubT9X/vz5Q314IhJFtFkgIpL0tSxVCF4V7JEjR+z1k3VouGDWGi0EFixY4Js9QRAlktfHEh3n7Gj4GUREJG1h+52uKFSiZs2a1daCuXPndmnBb4k8byc8zVckTFHxwAXT+PHjk/X5x48f971NdcGdd95pgQoGzzBv4bXXXov4C7CHHnrIMvJoXUV1BS8KZBfedNNN7t577/UNZExuxh8vqCIiIiKhHJJNYsn69etdpGAN9dJLL7myZcu6Hj16+O6nUjWcAhTvvfeeu+WWW2y9TVUK7afWrFkT8etjERERkVCYNGmSBSho7fnGG28kK0Bx9OhRN2fOHKuiiEYKUkhEosScAdIMGEzqE7pTp072YrB3717f/ZMnT3bffPONe/zxx23ORbQgAEPlxPbt291HH31kg7Vp1USAIbk/J5HPAgUKWC/ilAQ6RERERFKC5BIGTdOW8+TJky7cMdehevXqrnfv3hZgIWnm33//deGE3yNr7Pvuu8/WzVR7rFu3zvXr189dcskloT48ERERkYjDWoq9OQwcONDafCbHiBEjXJMmTWxebmJt3LjR9jsjoZGSghQSkcjsGjdunG2UJ7bv2+DBg63NEZ9H37a3337b93FKraK5ry6R2ho1alhW3K5du6y38BVXXOHL6ON38scffyTqa1GixYAeAiD+8ztEREREgonEkzp16lhlrbeuCVcffvihK1q0qPv000+tYoIEGTLhwmn9+cUXX7jixYu7CRMm2Psk75DYUqJEiVAfmoiIiEhEoqVnvXr13N9//23r1l69eiXr65w4ccKNHTvW3k7KsG2SvOmuMnXqVBfuFKSQqEakkNkMDI9+6qmnbD4DQ2KWL19uF15pEe2eKleu7HufC2Qu8nnRev311y1ocT6UqNEW65577knloxURERGJGz1taUdUv359F66olHjmmWesmpXKCTb8GZbYpk0bq24NB1R10M7prrvuct99950loxBMoVIlffr0oT48ERERkYhEYOLBBx+0VuyFChWy2V7JXf+NGTPG2rjTepOK18S69NJLbT3HoO5wpyCFRJR3333Xgg2UyycmQEFJfaNGjdz+/ftdzpw5bROevsUVK1YMyvFGAioj8ubNay+aLVu2tBeuzz77LMHPueGGG9zll18etGMUERERAdWwK1eu9L0fLhv98Tl8+LAbNWqUrUtJCmGuA4kh4WLfvn2uUqVKFkghoEILgS1btsRIaBERERGRpOvatav7/PPPbd9t4cKFCQ6NTgidT2j1hD59+li3lMSi9bsX3Ah3ClJIxODi7oUXXrC2TbQnOh8uWskIo6Se7DB6sDVv3jxJT+a0gCHaO3bssN8rL5hk93Gx2r59e6s8OZ+dO3cmqvpCREREJKW4MKtQoYKt7SJBrly53KxZsyxR5tVXX3Xp0qVz4YJq2mLFitnFM208me/BsWbKlCnUhyYiIiIS0Wifyd4le5O0XGe2a0q+1vHjx12+fPmSNI/Cw1yxSNgLDf8jFPHTt29fV61aNd/Amdiokvj666997z/55JPu22+/tWF/BCskbpR+9ezZ0+3evds9/PDD9iI6adKk8774kW1HyRp9lkVERERSO2GFsnmUKVPGhauZM2e6pUuX+t6nPSaJMuE0HLt169a2jiOz7o477nCbNm1yzZo1C/WhiYiIiEQ8EkD8B2WnpFX6X3/95V5++WV7m3kWF198sYtWClJIxGDjnL5rH3/8sbvmmmtifOzMmTPuueees4ssLrh4EoOWRDly5AjREUeebNmyuddee836EBOh5XeaEFpo8f/CUEURERGR1MSag2qEbdu2uZo1a7pwQ2UplR4EJOg/fODAARduNm/e7EqVKuWmTZtmGXX9+/d3K1ascDfeeGOoD01EREQk4n3//fc2L419StaDtKxPiaNHj7r8+fPb/luLFi2S9Ll0SWHNvGvXLhcJojf8ImkGTzYuBqmiAJn9f/75Z1iV00caXsho4+QfoaX8v2jRou7WW2/13dejRw/XsWNHe8EUERERCYbChQu7cEN1AutR+g2DylRaPYVTFQoBnieeeMKSebjQZW2nOW0iIiIigcHsiAceeMD9+OOPtnc2derUFM9Pu/76621uLMGKpOxzsjZljhtJNMmdhRFsqqSQiMAsCp7cXoUEeKIx3b5EiRIWoKB/Lhdbb7zxhg2lkZTxD1DQQqtNmzaWeTd06FAbrIhrr71WAQoRERFJVatWrXLt2rVzv/76qwvXjDnmoBGguPTSS23+xKBBg8Km9++JEycso4+2A6ylmUdGeycFKEREREQCgz3KVq1auY0bN7qsWbO6d955x11xxRUB+/rXxOoocz6XXXaZW7dunZs8ebLLnj27iwThsXIWScDhw4fdgAEDbJOcoc5goDOtnzp37uxOnz5tcyq2bt1qrZ5SGqWUuNtA1ahRw/pAM7uievXq7tixY+dcAP/0008hO0YRERGJPv/8848FKLjACsdh2aw/y5Yta22UuHhcvnx5WM2foCVnyZIl3dtvv21DE0eMGGEXzVw8i4iIiEhgsG85f/58W28tWLDA5c2bN0Vf799//3UvvfTSOXtviXXRRRe52267zfZSI4WCFBL2iDxSSUEvN2ZOgBInsukY+Dxq1Ci3ePHisCqpjzZUTCxatMiGaTPnY9myZa506dJ2QQ42DihBC8fNAxEREYnsys6JEydaK8p+/fq5cENV76FDh1yRIkWsstdbq4ZDe6exY8e6O++80+3du9culFevXu26du2qhB4RERGRAJo3b5579tln7W3mvJYvXz7FX3P27Nmud+/e1tHE62YS7S44ywpWJALR4+3gwYOWHSbBw7BKeux99913LkOGDNbSgFZbVLOUKVPGrVmzJmzaG4hIcPz222/WZo/gcaT0uxQRCQTaJxE84SIyc+bMLhxQcUz1ydy5c+191m20TQ2X45PQioZzdjT8DCIiEh3o+ELbT7q8dO/e3Q0fPjzFX/PMmTOuYMGCbs+ePVZN0atXryR9Plv9gwcPdsWKFXNVq1a1dqSRcN5WkEIiAn+mQ4YMcT///LM90SLhgvX48eN2ozSLf3nBSghVIVmyZLHye/7lxn3hiP+Hhx56yH3yyScWLe7fv78N8qG3sbLzRNIebRaISGoga4xS9XDz4YcfWhvMcEzK2LFjh6tXr57buXOnVaGwfu7WrZvWZxJV5+xo+BlERCTy/fDDD+7222+3qlrWhu+9916M+a7JNXHiRNehQwdrJUqggo4mSZ2Xljt3bltHc84kwTgSztsp/82JpBIih48++qhr3LixPUHnzJlj99epUyfkpfQEHnbt2uW7ffPNN+7AgQO+wMTJkycD8n14IfGCFrSzuvnmm2PcmBURiovOq6++2i7QZ8yY4Vq2bGnHQBsGERERkUD4+uuvbcAzrSRbtGjhwgUtSKmcYOOfTLlw2vyncoK+w3/88YfLmTOnvU+7JxEREREJLPb9mJVLgKJw4cLuzTffDEiA4s8///S1Uu/Tp0+SAxTefioz0lgThjpAkRQKUkjYIihBcILydIYm8mRn/gTDCYOF78vcBXr4MnjQC0hQSXA+RCzZzPeqI3hhSOhC9tSpU76qC25kD3IfwQ9uGzdudO+++26Mz6HNUoECBSxgQdsrLkRLlChhg3pSG/8frVu3jnH8RHqpquDnvOmmm1L9GERERCQ6DRs2zO3fv9+GPIdDkIKqXoITAwcOtPdZ44ULLkRpA/DKK6/Y+5UrV3ZvvPGGZd+JiIiISGCxX9ekSRO3adMmW2+9//77VikQCBMnTrQKDRJOOnbsmKyvceONN1pr9kijIIWELZ7ol112mbVJYpN//vz51k4oNZ04ccJmKhCU+Pzzz93atWtt8z0ulE55FQ0ECngR8Koe+JcSpuS2AeBCmHIoL2jBv/v27YtRvcGFO8e7bt06u1HVAH5nDLUuV66cBS2oOuGYUhsXx7NmzbKLYr4fxxeu7apEREQkvDF0sFChQq5u3bqhPhRbl/Xo0cPXY/jll192TzzxhAsHR48edQ0aNHArVqzwrceo9ghEJp+IiIiInOvJJ5+0JGL2vBYtWuTy5s0bkK976tQpX0IMyTFpbU9NMykkLK1fv97VqlXLNugpmyIqGagnfezoJ4EIXlQ++OADay0QG9FQNvvpM8exEJTInz9/yEumCN4wvJqABf2H+TkIrsRV5cHAHX6fDE4keJEaF66UuNWuXdsiyZgwYYJr3759wL+PiIQf9YYWkWj133//uc6dO7tXX33V3h8zZoy1Iw0HX375pQVxyLbLmDGjmz59elgEdSS8RcM5Oxp+BhERidxEmkceecTepsVTw4YNA/a1f/75Z/f000+7ZcuWuS1btiRr4DX7nCQ0ByNZObE0OFsiGhn5zZo1s4oAZh8E8slFZJKBzwQmGGpDBpo/AhBeFQL/ksUXjoMR47uQph0VVSBeNQhBDH/8Lgkm3H///TbY54orrgjoCw+zKWhNRcT3rbfecvfcc0/Avr6IhCdtFohIoPz00082cytccBHKxSitLCm/b9u2rQsHlPDTZvOvv/6yBJqFCxdaUopIWjhnR8PPICIikYc9RJJ/2Xuj4oGZEanh77//TlaAArSqL1WqlN1IAA8HClJIxJo9e7Zl4xMcePDBBy0zLBCBCTbMaRn18ccfWxWChycKG+ls2lepUiXq+vfSKmr58uVWisYLqn+lRbp06VzVqlVd/fr1LfobiIAFv1vaDlD9QsUGbagaNWqU4q8rIuFLmwUiEqjZCsy0YtOdmWQ5cuQI9SFZhlzLli3dpEmTLIEm1JiXRouBESNG2PsMF585c2bA+iBL9IuGc3Y0/AwiIhJZ2PAnKZf9ReazTp48OcG5s6EydepUS6ohOTn2XNtQUZBCIg5BBConGPa3Z8+eFPf75U/7q6++sotKAh88KTx58uSxoAQR0AoVKgRl0HQ44MKW6gqqSLjxe/ZcfvnlFkzgxYzh5Cl5sWWToVWrVvZ7Zz4Hbal0ASESPGPHjnVDhw51R44cccWKFXOjR492ZcqUiffxbHaRKXzgwAF7zhIgHjRoUKJ7YGqzQEQCgTUK88eo+ty7d2/IW2t6Dh48aMMLQ+2XX36xpBIqgtG/f3/3zDPPREzFr4SHaDhnR8PPICIikYO9M+a90omFjiRs/gdyH/H777+39qLMFbvllltS/PVonc+6kU4xkXTe1opWwgL9fdkUI9LHxljNmjXdww8/nKyvxRORr1eiRAkrbxo3bpw9IW644Qa7kKNKgwvfUaNGWRVBWglQgMoGLv4Z/Lh7926bwcGLIIO///jjD4sE0+aKF0UeQ8uF5OB36rXoatGihS4eRIKc9fv444/b6x2BWoIULKRit7bzEEx86qmn7PHMt+F1gK+RWqWrIiLxoc0m6xOqMEMZoBg/frzNefCEQ4Bi586dNh+NAAWJJQsWLHDPPfecAhQSkZ599llLiPK/qV2ZiIiEIzb8mfHK9XTx4sXdvHnzAr6PyByKRYsWWaAiENiPC5cARVJoVSshR7DAeyLSbolgBXMouABLCuYgUIafPXt2+3qbN2+2Hm6NGzd2S5cutYteFsRs2IVjSVaw8TsoUqSIvRhy4btixQoLKFx22WVu+/btVsXCRTkZewzlTioCHXwPqjc8ZHWLSOoiwMjQekpQCxcubIFaNvumTJkS5+OZX8PGYJMmTVzevHnd3Xffba+b69ati/d70AOd4K//TUQkELzXoVChsoxEGSptw+W1bcmSJVbl+u2337rcuXNbxYkGZEuk4zrk8OHDvtuqVatCfUgiIiLntDOnCwuzX1mD0dY8EC3p/ZFYSIIOhgwZ4tIyBSkkpMjY7dq1q73NZjkXhknNCFu5cqVFNUuWLGkDt9k8u/XWW93IkSPdoUOHLEuY4IcyzeJHMKF8+fJu+vTpdpFA25fbbrvN2jYRJebCmKoTsvcS2yGOdk9UavD/AC486DHt9VAWkdQZsMWgrGrVqvnu47WP99esWRPn51A9xed4QQlKWT/44IMEh95T8Ua5pne7/vrrU+GnEZG0hIrOUOMCsXv37vY2cyhCXQnKmotkHta5lMcTUKYfMgk3ItFQ4X3dddf5brSbFBERCRf//vuva9q0qSX1cc3LNXKg56Wx1vPa3Ddp0sRa4KfEK6+8Yl+HubSRSLu2EjJz5syxbF9wQchFF4P/eCFIzBOZF4i77rrLMt0++ugj24gj+5esf6oounTp4ms5JInHiy8ZhF9++aVFdLlI5yLi008/ddWrV7dWA2+//bb777//Evw6VLGQxe0fTCIjkf/riRMnBuEnEUl7jh07Zq+h1157bYz7eT++SiYWMc8//7y9nlK2mi9fPhsIllC7p969e9uGmXejh6aISHLt2rXLNilZu51vfZFaSMRo06aNvU3LPOY9hBKVqPw+SObhd0LyB5XB11xzTUiPSyRQqAxis+fGG2+0TSDmYsVHFZwiIhJM7Dl26tTJ9r7Y26IVExWAgcZsCwIK6dKlcy+++GKKvx5Jxuy1Mhc2EilIISFBiVTz5s3tic+G+E033WSl7D179rRFaHy4SKNXOvMmmF9BuTsvGB07drTyK6omGA6rdk6Bwe952rRp1iqLFlq0giKYVK9ePWvn9Prrr8do5xSfn3/+2SoznnzySXuf/y/+r0Qk9FgUsSB69dVXLTBJn3NeowcMGBDv57CIIsPY/yYiklys7U6ePOn2798fkspXkltY27CmadSokRs6dGhI15K///67e+CBB2zGGgYPHmwt+3jtFYkGJD1xjUGiGRXczAukqpu//bioglNERIKJeY0k17IuZdOf2a6BRucS9kBBMm+ePHlS/DVZM/br1y+krVNT4oKzie3dIhJALERpP0LZOgvUP//809oA5cqVy+YixLeRRmYbsydwxRVXWICDJ3OgS64kbgwKou0AF81kT4No8rBhw2wwb3zZkbSL4sKfYAdDHrkYueiii9z8+fNdnTp1gvxTiER3uyfmT8R+blERdeLECcsAiY1NAZ6jbMp5qGrr0KGDbRomZsOQjEY2DXhdUMBCRJKKyxEqNqmAZSBhMFEJxmsgLUK5AF28eHFIgwEM7L733nstcJI+fXp7Pa5fv37IjkeiTzies1mjsDnDXK22bdue83GS2PwT2fgZCFSE088gIiLRgf0ub24u8x1Jsk0NJKBwzsuWLZvtlV0ZxeezxK49Lg7qUYn8fzfccIP1R7/66qttA4xNtfhai1AKTHRx4cKF9j5/2AQreNHInDlzkI88baPFwAsvvGD/HwQa2NTctm2bq1mzpt0IVvi3eAJVMvnz57cLC4IcvODTd5oqjIceesi988478QY4RCRpqCyjaomWIF6Qggo03n/sscfi/JxTp06dE4ggiAjlMYhIMFC1wOyrUGE9mSlTJivpD2WAgkQcAhQETGjTxxqJCmGRaMfzr0CBArZJExeel6okEhGR1DZ37lxrtwkSbFMrQIFmzZrZ5j3r0GgOUCSF2j1J0GzatMkutvw3vBPqO0yLIKok2PQmQMGm2aOPPmpBC/oEK0AROryA9urVy/4vCBjRx55y7aJFi7pHHnnEghEeNj/5f+fCm4HmvM/A9AcffNCyvolMi0jg8JykNHX69Olux44d1kuTwGDr1q3t41SrMVPCc99991nQ8Y033rAqt48//thKRLnfC1aIiKQGytwTM4ssNZGNvWrVKqugCOXakranzFkjQEGVKjPWFKCQtILKTfpnZ8+ePdSHIiIiaRRrQQIHJOqxr8U1cWonGHbr1s26HgTCxIkT3YYNG0K+tk4JBSkkKA4ePGgzJOj3y0WYh8HZZIwxT8LDE4qWQmTf0wKKNkH33HOP27p1q2XhUwol4YGLeaontm/fbv+3/N+x2Un1xJAhQ2zzAVxw+G92Moh71qxZ1gefjVERCRwqlF5++WUL5tI2hQAxQURvmDaDKQ8fPux7fN++fd0TTzxh/xIUpuSU6qbx48eH8KcQkbSAqkqyp1kTBNvOnTtjZHHTcjRUaH3KOpmN2ipVqtjMtUD0JRYJVz169HCfffaZ27dvn1u9erWrW7euXSs0btw41IcmIiJpEAkrnIvYw2rQoIHtSabWfDJajZKwG0g//vijtWsuVaqUJXxHKs2kkFTHBRc9z9koK1SokC1EuRhkkyxv3rz25Fy3bp0rXbq0tQ5q06aNvQ+GM7MJHqlDX9IaLjbI4mb4LooVK+amTp1qA7hB5QxBCQJQcWUH0hJKpdwikScc+1uLSPijxROzKF566SWr0AwW1ibt2rWz4YJsloYKl2EDBw70Zeo1adLEjo3MOpFoPmczoH7FihXu+PHjloB211132XMhX758EfMziIhIdKDrR6VKlezcUqtWLevkklprMRJ72Quj08Gbb75pe2aB8M0337gnn3zSzovM8w03mkkhYYEnIItQAhS0d3r//fctQOFl12/ZssV9+OGHlu3LwvT555+3oAV/vFywcgFJ1r1EBgZOrl+/3jIjuehn6CPBp6eeesouwKmuILv7jjvusCxBLzLN3wkvqF7Gty7ORUREoh8zIBYsWBDUZJQvvvjCPfzww5Y4QSJNqLD2oY2pV7VGkIYK09gzgkSikSqpRUQkHFBZSxcBNtFJrp4/f36q7kfR7pykXvZFA9nisECBAm7RokUu0mkVLKmKmRIEJtKnT29zCRiY7e/mm2+2iOXtt99urUYIUND+iYoKLiAVoIg8XFy3atXK/g8pk+MinABUyZIl7XbdddfZ/zFtvDz0wad/3rJly2wwkQq8REREoh+ZVKwZcuTIEZTvx7wH2lOy3qSkn8SJUPjzzz9dw4YNLUBBwgbtTEnOUYBCREREJDj279/vqlev7n766Sfbq3r33XddhgwZUu370ZLp6aeftrfZIyORW2LSSlhSDT3cRo8ebW/PmDHDAhFgc5oZFVwgcnFIpj3lVVdffbWbOXOmBTNy5swZ4qOXlKL//dy5cy0SzYsvcyvuv/9+a2VA8Iph2x7aP/FYLs7pyzxo0KCQHruIiIhEFwIDBCZoN0o70enTp4ckKOC1EqCChEy9efPmWUWFiIiIiAQHe5LMAfvhhx9cwYIFraMHHV1SU8+ePa3d0W233WbJuYHyxx9/2C0aKEghqYJMeDLpQb/fBx980Pcxb7AyPUcHDBhgQQuy2nh806ZNU204jYRG/fr1LUDB/y2tFYYPH26BqR07dsR4HBfsZBKC6LLKwEVERKITrSFJXAhmWfoTTzxhM89IiuH7ZsyY0QUbGXRUENMrmO/PBTHrJBEREREJjiNHjliAYs+ePe7GG290H3/8sc1HSu35rbRFZ7/z1VdfdRdddFHAvvasWbNc5syZXZcuXVykU5BCUgVPPHqt0eqJWQP+qKo4ffq0RSyzZMliGfRvvfWWtQGS6MT/s1clw/8zASmix6VKlbK/A0+nTp1s8DYYoM7MEhEREYkuVDFQUk8VQTCsXr3aLgi9CzkuSION1pYMB6Z6mAthAhWVK1cO+nGIiIiIpFW0dqpWrZoNms6dO7f79NNPXa5cuVL1e546dcq1bdvW3u7QoYMNzg6kHTt2uDNnzti+W6S74Kyav0uAS+kpXY+rfJ4nTe/evd2wYcPsfYYnE6BI7RcECS9kEdLyiZOBN+CHAdvMLQEzLJhZQXYhbaC+/vprly5duhAftYicr30J5bGUr9JjXkTkfEMKySarWbOmq1ChQqp/Py53JkyYYK2enn32WRdsXDxyQcxMjLx587olS5ZYVbFIKETDOTsafgYREQmun3/+2VWtWtVt2rTJ5qGtWLHCOryktqNHj7rmzZtbhxH2t1KjrdTOnTttngaBl0g+bytIIQHDn1KzZs3sj49qCabVe8iWf+ihhyyTDWTLMyDQfy6BpB0EIhiMPmnSJHufIUVkU3qZjcePH7fsQmaW+LcKE5HwpM0CEZG4UTlx9913u2PHjrnChQtbS4FgDQoXidZzdjT8DCIiEjwnTpyw9RgtR5mfSvulm2++Oaj7pczBSKtJ2r8l8rytdk8SMMwTmD17tvvwww998yjAxVjx4sUtQEH/XQYFUk2hAEXaRf+9iRMn2t8KJWlfffWVBSpoBwXu46JeAQoRERFJrqlTp7pffvklZN+ftS9JFwQoaHPJBbECFCIiIiKhCVBkzZrVLV26NCgBCv+aAFrip9UARVIoSCEBuwjzZgkMHTrUlStXzt6mtJ6ByGTGg1KqBx54IKTHKuGDNg8EI8qWLWsR1Tp16rhXXnnFXsz9BwkRcV6zZk1Ij1VERERSfpHYo0cPK7NP7WJukmKYb0Vw4OTJky7YPvnkE1e9enVb3zCLggtiLoxFREREJDhIVmE9RoCCZFjWY0WKFAnK93766addu3btbC2YGv7++29XrFgx161bN/f777+7aHBxqA9AomPGQIMGDdw///zjGjZsaE+Q//77z/Xt29cNGjTIHsPFGf14eVxc8yoiHYNw6HPMjX7D3tvejRdGZnLwO/JuXJxTTXLxxRfbjbcpfyLDLnv27DFu3n2XX365izbXXHONnTS2bt3q/vjjDwt2MVySYAWBCqpyqlSpYn9TVFxcf/31oT5kERERSYb58+dbNS1zpzjvpxaSG7goBGvPK664wgXTBx984OrVq+f++usvy9x7++23rU+wiIiIiAQ3QLFhwwZfBUXRokWD8r2//PJLN2TIEGt1TqL2fffdF/Dv8emnn7otW7bYzAtv9m+kU5BCUoSNY4YgszFfqFAhmzFANK9169Zuzpw59hgGFDJbgBeISL9AIwLKRjkvctx4QWDeBv3V/DEE2j/IcMMNN8QISHCDf9CCIAa/IzboP//8cwtunD59OsbXpV1Wzpw57YWVzEButEnKnDmzi1QEIrh4J0DBwOz33nvPjR492h04cMDahzGngrI4fu9sNKxcuVKtwkRERCJQwYIFXf369S15hbL31EASSNu2bW1NVapUKffCCy+4YKJ1Je0qWddRIfrGG2+4dOnSBfUYRERERNKy2AEKNvRvvfXWoHxv9vFatWplAYpGjRqlSoAClSpVcosWLbJKZf9OJJFMg7MlRWjt1LNnTws+EClkAE3dunXdihUrbCOeoEXLli1dJOKJ7h+Q4LZ79277GD9viRIlbNZGnjx5zql6oCIipRffPDUJfsSuzmDznjYJtEny2hcQBPGCFt7t6quvdpHULuz777+3ShyyLJs3b27Zh2XKlHHvvvuuVarw++b/pF+/fu75558P9SGLiB8NsBSRcDFu3DjXqVMnSxhhHUcSTbC89dZbdjFK8gmJFbNmzVJihYSdaDhnR8PPICIiqeOnn36ySlb2zYIdoECXLl0s8ZauIV9//bXLli2bS+t+S+R5W0EKSfHmcrNmzVyfPn1ctWrVbP7Ezp077Y+OzeaFCxdaBLF06dIuEqpC1q1bZxlwbIzzYgJaLLFB7h8AYMhOqCOVHO8333wTI4hC4MLrRUe2IhHb+++/391xxx0hP96koJKEkjhmmRCAYcA2Jxgu/GkXRhDMm3siIqGnzQIRCQckk9Cbl+SGESNGuK5duwbte7/55puuadOmljVHlfH06dN9lbMi4SQaztnR8DOIiEjgkdjL3uT27dstSECLp1tuuSVo3//999+3DiFe+0/2SMUpSCHBQ5seMv0rV65sPYCZGcATk03lFi1aWB9gWiLxBxmOx85gQwITtBmilxvDdGrXrm0vbLQJKFCgQMRs8BO4+Pbbby1gwYtx7J+JgAURZdpGhSvahREg4hh5Qf/uu+8s8rxs2TI3ePBgN2PGDJc3b163efNmXZSIhAltFojI+ZBgwEVialZ6MgeCFpKsSVnfBWsOGu0pqQJlHcbad8qUKRGzdpS0JxrO2dHwM4iISGDRnaNq1aq2J0abdPbESDAOliNHjlhrdio5SJQhYSa1jB071taatBilWiRazttK75FkYeObqCT8AxSFCxd2H3/8sbU84uNcsBUpUiSsAhREVqmUIDDBi9aff/5pVQe0pYrEqgN/XIzzIsyNLL7Y1SGvv/66u/TSS+3/i5+VSotwGkRNMKtGjRr2t7Rr1y63Zs0aV7NmTWvXwDHzc6xatcrmdtBjmkFEIiIiEt5IQCBZggoHEhFSqwXThAkT7MLnueeeC1qAghlsXoCCWRgcQ7C+t4iIiIg4t2fPHgtQ7Nu3z5Ja2etjvmkw8b1p+06g4qWXXkq17/Pvv//afhhBEX5W9syihSopJMkoWSJax/R4qg0Y1kKggmAELwTMpfDHn1hqDUdMLHoDU90xceJEax3E8TC00duov+mmm1xawOa+F6D57LPP7MWNYULt27e33wUBjFDieG6//Xabu0Ff5/Lly7uff/7Zqj+oDqGiYvjw4Xbsr7zyilXpiEjoKaNRRM534Ugbx2PHjlkiQrRs4s+dO9c1btzYAhTt2rVz48ePj5qfTaJXNJyzo+FnEBGRwNixY4fta7HGzJ8/v82gCFUy7o8//mjnqNTcYzx9+rTNvFi8eLHtb4Z6Hy8x1O5JUq2CgoEz/Es5O6X0BCgo3ydAQfUEAYFw6cG7f/9+y2ibOnWqVVDQvokNeYIskTRYOjUwhJqWCARuqFggAMD8kI4dO7p8+fKF7LgozaNcLXPmzL77fvnlFwtUMJw9FIOPRCRh2iwQkcTgNSLQ1bUkOLAG5eI0mEkxJFM89NBD9v1bt27tJk2apACFRIRoOGdHw88gIiIpxx4RlQTMM6WzC3uU2bNnD+oxkKyiNWBgztv6LUqSPProoxagICq4ZMkSX4CCTWMCFFyoVahQwXXv3t3+CEOBuBt9j+vXr2/lXWPGjHF169a1odLr1693HTp0SPMBCmTKlMkuqhl+vnXrVmsPxQU2/7dUVXDBH4oYJt/fP0AB3qeNGEEmsjBp/bRlyxY7PipkFGsVEREJf6nR/nPcuHHWKpK2ncFCkkejRo1s3UvSDgkfujgVERERCZ7ly5fb3hABitKlS1vHjWAHKEj+ve2229y8efOC+n2jlVbTkmgLFy508+fPt3kNZLbT/4xsdgIUZOGDjWSy8hkYyFDqYOJCkaHKvEBUrFjRbd++3QIUBFIYKlO8ePGgHk8kIdDEUB/K47jQppcerbzopTd58mR35syZkBwXAZSZM2f6gir8fXHy4STEyYj/53vvvdf3GBEREQm/eRSplUzAuqV37972dtmyZV2w2p5SQUHlcNOmTTUkW0RERCTIaGFOBcXJkyddlSpVLMk22AOkqaAgWWXTpk2uZ8+e1oYpGK2tlixZYt87GilIIYmODj7yyCO+LDiy2QlQ8ELgBSjAiwR90V599dWgRTC58CWAwoY6LxDXXXed++ijj9y2bdtcp06d3OWXXx6U44gGl112mQ193Lx5swWfaPtEeyzK5t58882gvhB+/vnnrly5ctZ+6vvvv/cFKnhBJlDBrAoqQNCtWzer8BEREZHw8tprr1lfYJIhAq1z587u999/d3fccYd7+OGHXWpjbVSvXj1L3iBQMW3aNAUoRERERIKI5GTWY3/99ZerU6eOddfImDFj0I9j0KBBNvM1Xbp0ltDNflpqGzp0qFUQ9+jRw0UjBSkkUXr16mUzHdKnT2+bw7lz57ZAgH+AwsPsADLLgoG2Tmxk084pR44c1s6JDDeetCq7Tz56OlOpQPCHqPDNN99sbQ0IDlDNEAxsONA6jO+bIUMG3/0EKvg/pi0UwTNOBPxNEqgQERGR8MK6gYoHKl4DiTUKbZeYg8b8sdRe91EpTDtMLoj5lwvkcJnBJiIiIhLtSFBmk57kZNaVtPqkzRL7lMFG8my/fv3sbZK06egSDNmyZbOZDg0aNHDRSLu4kqgXAuZNcPH3559/2iYxE+QJCvgPOw5meycy/e+55x5r90MbAS6AvZkFElhUqLz33nvW348IMUEoWkEREEpN/L3xf0q7qSxZssT4GGV8BMn4u/RK6ubMmWMRdBEREQkfZJaxbqTyIFCYe/bYY4/Z25TX07YyNX311VeuVq1attZlQDfVpZdcckmqfk8RERER+R+6ejz++OO27sMTTzxhLTdDkTCyf/9+m+nKXmm7du1cmzZtgva9Bw8ebAnkwWpzGmwKUkiiLwZ5Ubj00kvdokWLrP2Ph5J3Khm4j4u41LR3717XrFkzV6JECQuMcJG4bt062zSX1EVVAy2YyFzkRbFMmTIWvf3mm29S7Xvy9xYfhqITPPGvsqC9F20fREREJDyQ3UY70Fy5cgXsaz799NNWnZE/f37Xt29fl5qYcUaCxq+//urKly9v66BQZOyJiIiIpEVUsdKtxWsd+vLLL9stFN1TSJJ98MEHbU4q1ROjR48O+jFkyJDBup9EIwUp5LxeeeUVN2rUKHv79ddft83q2IEDhtXwZL3hhhtS7UWpT58+1naIORiUU3HR2LBhQ7V1CiJeCB944AG3ZcsWi1qvXbvWglPdu3d3p06dSrXvy6B2MiYHDBgQ437aTxGo8l6gmV3hDdAUERGR6ERVA20fx40bl6r9f/ft22eVE1yIUq0bOzlCRERERFIPSSK1a9d2b7zxhlVNzJw506ooQoVEWlqj0+2DauFgJa589913bs+ePS7aaXdX4kWGPOXz3gsAkcq4SvULFChgAQNK+TNnzhzw46CtUMmSJe37kzm3e/duG46oMvvQYUhk69at7W9k4MCBtklQrFgxt2rVqlQbVDl27Fj34osvnjMg+95777WhnJ7YraFEREQk+CiBb9y4sRs5cqQlswQSLT9Ze1atWtWllh9//NECFIcOHXJFihSxNpP0ABYRERGR1EcSKlWsJCpfccUV1t47WPNvE9oLGzJkiNu2bZvLmzdv0L7vM8884/Lly2dJ5NFMQQqJV8eOHe2J57XRof9bfMgqC/SgGK96ggHKRCc3bNhgT8zLL788oN9Hko//F4aqM1ybAT5U2aRGVUW9evXcI488Yicl5lDE9bfKcWDYsGG2cSEiIiKhw/wwst5YywWqXzCtRz2p2YOYrD1aVJEYwwXo4sWLlQQhIiIiEiTsMTF3YevWre66665zy5cvt/abobJy5Urbo/Rce+21QU38+f3/tzW/6667XDRTkELi9Pbbb9uLAMiQp/db7J5na9assayy1PDll19a0IPqiWeffdZ98cUX7tZbb02V7yUpRxsuXrSHDh1qVRXFixe3+RWBwt8elRRVqlSJ9zFUdJBRyVBLghq0iBIREZHQ4IKSdRwVuYEohScBgplkVGYwDy210L70vvvus4tjEiOWLFnicubMmWrfT0RERET+D/uMVFBQzUp7cfYDA50UnRTsdbHXRIVtKGagXnDBBTYbmIHdtB+NZgpSyDmIDrZq1creps8v/XdjDzDm4rB9+/bWE5hN6UB+bwYgEjFNly6dBSt4X62dwh9lb2xEcFGfNWtWO6nwPhf7gcaJ4c8//zzn+8+ePdvlyJHD7dq1y+XJk8cCFiIiIhKaIAXrgOeffz4gX49ECGZiDR8+PNWCFHxdWptyMUprJyoomH0hIiIiIqlvwoQJ1tKbVqHMfiD5lb2dUKGqtm7durZGpHoilJ1dcufOHbUDsz0KUsg5mjVr5n777Td7e86cOS5XrlznPOaff/6xMnguQBleHai2AEQF6e/mVU8ULVo0IF9bgl9Vwf8j1Q9UVaxbty5gX/+dd95xBQsWtK8fGxmPs2bN8gUyqKgQERGRyHbgwAE3ePBge5vqjNQYXk0pPTPP3n33Xav8IEmHNYyIiIiIpK5///3Xklto5c3bzZs3t4qKTJkyheyYDh8+7GrUqOGOHz/uSpcu7aZPn+4uvDC42+iHDh1KU8m3ClJIDGSMMaEe9evXdw888ECcj6PCgotEoopXX311ir/vvHnzbPYE2fCqnoh8/D/26NHDqio4qVBVwQt6IFCZwQs1fa7jyqSsVKmSa9Omjb1Niwb+tkRERCR4fvjhB2sbGqhqyieffNK+VsWKFd2DDz7oUgNzz6ZMmWIXn2+++aatXUREREQkdZFgWqdOHauWxXPPPWf7R7E7ugTTiRMnLDF7z5497sYbb7Rk2dRIkjmfrl27WrcQ1qZpgYIU4kM5VaNGjextNpbZBD6flJY6MQCxf//+Vo1BCRVzLlQ9ET2oeKCqgig4LcSIjFOFkxL8rXDC+uqrr+INZE2cONE3YLtFixbu559/TtH3FBERkcQjQYAS/UBU27KOmDt3rgUPmEeRGmXu48ePdwMGDLC3aWN6//33B/x7iIiIiMi51bLlypWzClYqWdmMZ48wlG2NmIPGfDLajNI95uOPP7Z/g+3PP/+0VuZ0uilUqJBLCxSkkBhZakQLqYygmuLiiy8+5zEbN260Td+DBw8GJChCtcYLL7zgXnrpJTdz5kyr0IhWtLDihTauG9n/0YroN0GDUaNG2eYC/QX5O0sufl/8DSY0hJONDCLd3gs7LcxEREQkeBg2zUVnSlswsT4Fs9CKFSvmAm3hwoXukUce8VVT8H1EREREJHWRpFymTBm3detWm/fw2WefBaydfEpQPbF9+3Z31VVXWbcZKilCIX369NadZMWKFWkmmfuCs6z+Jc2jLQ691rB06VJXpUqVOB9HVhzl+2wSp6R9z969e62V1L59+2zYMRvX0Y6gzOOPP+6+/vprt2DBAruPlln02eNFJxBts8LdJ598YiedbNmyWRCB+RUpxd9jhQoV4uwNSHkeJxW89dZbmlEhkkrI7mAR9+uvv9qwWRERLjGonkxJ+84NGzZYD2CSWL777ruAZ7GtXr3aVa1a1RIa2rVrZ8Mao30goUg0nLOj4WcQEUnLpk6darPA/v77b9uAZyYYg6HDBUGKX375JcUJN5K087YqKcSy2mnFg8ceeyzeAAUYVszFnFcSn9xNZS44Gf5C5DQtBChwxRVXWA87Kgu4yObGfVSspIUABapVq2ZDtJlZcfvtt1uAJiUaN25sgbP4AmZjxozxBS/IjDx69GiKvp+IiIgkDpv9KZ0vdtttt1mpPRWZgQ5QfPvtt1bKT4CCtehrr72mAIWIiIhIKiKBpVu3bjZHlAAFiaSff/55yAMUtKKntZKncOHCIQ1QrF+/3o4prVGQQuwFgqn1bJbXqlUrwccSXCAbPrkvIPT5rV69upXrs1ldpEiRZB61RKr8+fNbcOquu+5ytWvXdsOGDbNsy+RuXrAB8uOPP8b7vciKpGKDuRSdOnVK9vcSERGR8wv0BdUtt9zimjRpEtCveezYMXfPPffY2oC1LXPY4mpzKiIiIiKBcfz4cet2QRtwryU6c8xI3g312pWkVvaXmIUWart27XJly5Z1JUqUsOTutERBijSOljteFjqbtwUKFEiVC06+9vPPP2+bxJR0kUGfJUuWFH1NiVyUeS1atMj6TPfo0cP16tUrWcGDLl26WBneU089Fe9j2rZt69t8oM3WnDlzUnj0IiIiEh9vdgRl+8l1+vTpGNlsgUTlBC1Hd+/e7fLmzWvHefnll6fK9xIRERER5zZv3mzzJ2gvz7qLObjMAourbXcwsdfZsWNHN2XKFFt/BmL+bkpt27bNfkesU9PaGlVBijSM/mr+wwHZzCXzPK5oZ8GCBd3o0aOtNCup2Hx++umn7QWIIdl8nZSW/0eLtNxWgJZPDEwfMWKEGzp0qOvatWuSg2G0zorrbza24sWLu/79+9vbDMc8cuRIso9bRERE4sfQQ1o0pWStx1qRalvWjoHEOqNly5Y2iyJTpkzugw8+sEGNIiIiIpI6mEN7xx132EBqNt5Zh9WvXz/Uh2XrQpKoJ02aZMGSGTNmuEaNGoX6sBwtsPbv32/r4bRGQYo0jE1br0d/unTpXL9+/eJ8HD166dtLZDGpUU4CFAyLHjRokA2JJlgh/ydjxoy2Yf7NN9+4tIrgBG3AeAHmBJHcqp3vv//evf766/F+nCHtYFBPQpUXIiIiknyUyVO6n9w+viTRsG78999/3Y033hjQY+vTp4+bO3euBVCorixUqFBAv76IiIiI/M+ZM2dc9+7dXdOmTa1K4e6773YbNmywQdmhRgI2SdvMPWOfk72kQLcXTYnMmTOHfE5HKKj5ahpFhturr77qe58nZ65cueJ8LK14smbNan39kxKkIEBBOx6GF3N79NFHA3Ls0aRGjRo2jLxkyZLu5MmTLq2ivI5AGdU8nMgmT56cpL+1H374wVqVMXiJEkIqf2LLnj27721anPE9ieaLiIhI4HC+ffDBB5P9+VRZnjhxwmZRNGvWLGDHxdpi8ODB9jYZc5UrVw7Y1xYRERGR/8PcUKoSli9f7ksUoQU8HTVC7a+//rKABAkr7DuxP0QgJdT27dtnwZy0nERzwVlNkU1z+C+vVKmSW7Fihb3Pi8R3333n8uTJE9DvwbwBhiKTJc+GsMj5zJo1yzVv3tx16NDBKniS0g6L/tJsahB8i2sgO1VD/I3TixoMRVq7dm1YnCRFIt1vv/1ms2aoVLryyitDfTgiEqGoLr3hhhvsXM2siHvvvTcgX5cL5OrVq1vWHC2kGNQoklZFwzk7Gn4GEZForqp96KGH3OHDh617CEGAunXrunDBepCEmg8//NDml4bDsbGHWqtWLbdkyRLrQkNHmmiS2PO22j2lQW+++aYFKBgkDCKIcQUofv/992QNM/ZaSRGgGDVqlAIUkmhEr8l0HD9+vJUFJuXvjwAHmxBxBShwzTXXuDZt2tjbBCYoM6SFmYiIiAQGAYCpU6faBUhyMKOKAEXZsmVd7dq1A3JMDMim7zEXpGT0BXrOhYiIiIj8b6OdfUCqVQlQFC5c2K1bty4sggD+2AslOMG+aLgcG+vfq6++2uau3nfffS6tUiVFGkNLIdo2HTp0yEqtiNTR6yxfvnznPJYnxs8//2yVELfeemuiv8eLL75osydoY0Q1hUhSUUXBgGtmR9CXOlD27t3rbrrpJutzjSxZstg8EE4GIpJ8ymgUEZ7/rCm5tGCd6d9mMbFtAaiioMydzLaaNWum+JiYb0Frx127dlk7SJIZLrvsshR/XZFIFg3n7Gj4GUREogmvx61bt3Zvv/22LwGV5NPLL7/chYMDBw5YRUffvn2T1LEj2Pbv3x/QLjeRdt7WTIo0ZuDAgXbhyCBCAgjp06ePdwjxxx9/bFlnzApIrDlz5liAgjJ6BSgkuTp16mSRZErc2LCg/VNS+guSxUkv67vuuivGx/haDRs2tL9TXhiPHz9uVT/MTBEREZHkYy4Uc8z27NmT5AAFNm/ebNljJMYwsyulmHHFOZ8ABXPXFi5cqACFiIiISIDRpYL2TrSRZy03cuRI66gSLsEAjo8WorQVZQYFe5bhKk8UBiiSQpUUaQiBh/z589tFJBHEFi1aJPh4yrPIOGvcuHGivv6XX37pypcvbxeE06ZNC5sXJIlcjz32mEXfly5d6ipUqJCoz+GEQzUPf4ufffbZOX+HmzZtciVKlLDqCSqFOEnt2LHDBm+LSPIoo1FEAoHZUlRUUPWbUo8++qjNqSKDb9WqVa548eIBOUaRSBcN5+xo+BlERCId28kkfPbo0cP2Gdlgnz9/vitVqpQLF8w4o93nqVOnLJH1/fffd7lz53bhYvv27ZZkS/JsxowZXbTSTAo5Bxu3vHBcf/31lplOdDMhZMElNkBBQKNOnTquWLFitqmsAIUEwiuvvGLBBnpJU/aWGLSJon0ZwbK4YrBsUlCCSNCOftf//feftT4TERGR0MqUKVNAAhSsRQlQsB5lZpUCFCIiIiKBQ0tN9mm6dOli+4zsB27cuDGsAhSjR4+24yJAUb16dUtaCacABftVJNUwKLtbt26hPpywoCBFGrFv3z4bSIw//vjDWuLkzJkzzsceO3YsSV+btjwMm+EJxuZvfC2kRJLqkksucfPmzbOI8v33328zVc6Hv2vmTFCFQZVEXDhRZciQwRecmD17tkWwRUREJOm4ON2yZYsF/pPqp59+ckuWLIkzsSA5GILIGgAvvPCCe+CBBwLydUVERETEuS+++MK6U7D/x54NCdALFiyw2WThgJafnTt3tgAKa9N27dpZBQWZ/OGEZBra5FPh0a9fv1AfTlhQkCKNGDBggD1R6fNLixuqJOK6aPvqq69sk5ds9MRcLPKYhx9+2PoI0+s3OT2IRRLCcOt33nnHely3atUqURsg8QUnYuPEes8999jfMXNUREREJOlYB1JNW7BgwSR/LtljzKBgPZlSVF0++OCDNlON3si9e/dO8dcUEREREef+/fdfm3PL7E/WXMy6Xb16tQUDwqmbCgmoEyZM8HWU4W2CKeGI/SgSffLmzRvqQwkLClKkAbt377YZFLj44v/NSieSGNeTdNGiRZYNR5+wxLzI0I6Hr02VRunSpVPh6EWcRZZp10B0noBbYq1cuTLeDQoCckWKFHF79+6196nY4OQgIiIiSUMLRSoUuVhNCqp3x44da28z0DAlqBSmUpLKDJIQpkyZElYXzCIiIiKR6uDBg65atWqub9++FqygNTx7KuHU3slD4gyBCRKp2Q8Kt/Ugibckj3vC7fhCSUGKNICWNryIEO2kR9xFF11kMyni8txzz9nGLv+ez0cffWSlSU899ZRr0qRJKhy5yP+h3RNtG6h4eOutt877+CNHjrgqVaq4l156ycoRY6MXIdUZDM2uWrWq3ffMM8+kyrGLiIhEs3r16tlAPBIKkmLEiBEWXChZsmSKghRURLZu3dpt2rTJXXPNNXZRStBERERERFKGZOaiRYu65cuXu8svv9xNmzbN1nzh1D6J46Gy19OyZcuwbfk5ZMgQ63LD71NiUpAiyu3atct3wZgjRw7797777nO5cuWK93MIZuTPnz/Br0tpV6NGjVytWrVs41gkGIiC076hRYsW9redkOuuu86CcbSP4O3YsmbNasO1wcwLotdsapANICIiIklDEgwtGhPr999/91VRkJWXkiyywYMHW0UkVcIkMoTTUEQRERGRSEQiCXsqVKqS+U9SCfslBADCJfufGbmdOnVyzZo1s1m5DPQOZ7ThZybqoUOHLGlWYlKQIsoNHz7cSolq167tPv30U7uPJ3BcLz60eUpstlrbtm3dlVdeaQEQLkpFgoETIe0bCLIxn4IKoYSw+fHaa6/F29+P2SteVRBZoF5vbBEREUldEydOdCdOnHAFChRIUabb4sWLXZ8+fezt0aNHW7KNiIiIiCTfunXrrH0m6zX2YXr06OHWrFlj67Zw8c0337iyZcu6cePG2TESqAin6o64kFDD75F2VFQBS0wKUkQxIp0zZsywt2nL9PXXX7uRI0daH7m4yo3oI0xE73zGjx/vli5d6iZNmhT2LwASfWjfMHXqVLd27VoLwqXE7bff7ooXL27R93z58tl9ZGLSb1FERETOj3lO1atXt8GEiUVijHcOZ4164YXJuyQhA42eyCTQMG+tY8eOyfo6IiIiIuLcP//8Y3NA77zzTvftt99agugnn3zihg4d6i699FIXLt544w132223WYunbNmyWeIpre6Tu6YMJlpmtW/fPmyqUcJJ+P/vSbIR8Tx9+rRtwlaoUMFde+21rkuXLuc8abmwo80NG7Pnm3i/b98+u5jkCXX33Xen8k8gEjdOmI8//rjr16+fzZRIzEBPWkUxEN4fJwVKFbFixQpXvnx5OylTfSEiIiLnR9IAF6/Lli1L9OccOHDAWi1mz57dNW/ePFnf99SpU1YFSVl/mTJl3JgxY5L1dUQktJgfx5q8W7duoT4UEZE0jcoEKlL79+9vXStotU0yCrM+wwWJLuxHkqRy8uRJV7FiRZtJFu77k1ROJGa2alqnIEWUos+Zd7FGYCKhCB0fo5SL1k30cIsPbaNo83T11VerJY6EHNF92jhRIne+tk8M4+QCaPLkyed8jBMvgTuGa/M2KBckwCciIiIJo4qCCy+vhWJiMPts27ZtbuXKlS5dunRJ/p4k2HCBSvYcg7K56EvO1xGR0Fq/fr1V6TOQVUREQoO9PvYPSXAm+YTW7q+//rqbM2eOy5w5swsnJFYfPnzY9jGZaUaijDd/N1yx30rb/QcffNB9/PHHoT6csKYgRZR6++233Q8//GAXbmSYVa1a1b3//vvxPp4LuyZNmriLL7443sewgGSuBW2eeNESCaXLLrvM2j5xcTNs2LAEH9u5c2dXuXJlV6xYsXM+RhYnAYwlS5ZYq4g8efK448ePJ6r1mYiISFpHwgABg4QSXeJCgoDXajGpaF/KeZq5aHPnzrVWBCISWciAbdq0qVX/h9smmIhIWkHXCaoQ2DMhUZP28LSKp9I1XNoR0e2CObrgmEg+pQU9iasJ7WGGi1KlSlknEPab4mq/L/9HQYooxcUbHn74YYt+ElzYu3dvnBUXicHn0uapQ4cOljEnEg7uuOMOX9un7du3x/s4KoB4DhCsiwt/2/xdE6x77LHHfM8hMjVFREQkcObPn5+iakWqLxjeCJIUKPMXkcjz6KOPutq1aydqw+avv/5yv/32W4ybiIgkH3sdU6ZMcbfccott+JMESjXF4sWL3fXXX+/Cxc6dO60FFecMD63sSUKNFCTmMNODxO9wCfyEKwUpotCGDRvc6tWrrQyKiOiXX35pmWYNGzaMc/OWeRVMl0+o9KtNmzYuS5Ys9sQSCScMR7rhhhtcq1atLMIel6ScCHhOMMho69atbvny5QE8UhERkehy6NAh9+6771rZfWKwPm3QoIG7+eabbdMxqY4cOWKtGWnzSC9iWpqKSORh4OlXX33lBg0alKjH87irrrrKdwunDTQRkUhD15V77rnH9j4I+pYtW9bmOhAICJfB0+ztDB482NeCypujGymYhzp69OgYia/h8rsNZ/oNRSFa4IB+Z7SwAcEKWj/FHji4YMECy0gjiBEf2juxWUtJldo8Sbgh4j9t2jQLzo0YMSLBx/I3T2/FuDZTvv32W/fEE0/Y0OxmzZrZfXxdERERidtHH33k7r//fmvZkhhDhgzxrUuTOkOCi9VGjRrZObxw4cI2B0PZaCKR2Vqka9euNg8xffr0ifqc3r1724aPd+NriIhI0rBhzn4h1ROs4ViLsTZbtWqVK1CggAsXJIzSNeOpp56ypJaaNWvafTlz5nSR8nsmSZxkGjp/SOIpSBFlmHRPZgpatmxpJfVg3kRsGTJksNIpSrpKly4db6/Q/v3726ateqdJuCLyT2uzgQMH2gyW+NSvX9+eF14gz9+OHTvc8OHDbWg2/RfBIE6v96GIiIjERB9gLnTLlClz3seSDLBo0SILLNBmMamefvpp99lnn7krrrjCzs/8KyKRh8Sio0ePupIlS9prCDee26NGjbK3qZSKjY00kuX8byIikngHDhywFnt0SSHYe/vtt7uNGzfamiyhpOVg+vPPP92zzz7rbrvtNusIkylTJksc/eCDDyKqgo61Lgk8GTNm9CXASuIoSBFlPvzwQxv6e91119kgQ/r084LDi1FcGDRISVd8mWhkprPpy0AakXDGXAqCdAzBjg8ZmLSGypYt2zkfYyYFVRlkZtHuiWGeBCgYQi8iIiLnatGihWW2JaZlCxuQuPfee63dU1JwLvaqMOifXLBgwWQesYiEGjPieN2gtYh3Y6goGzq8HS6bZSIi0YD27XSLKFKkiO0XEvRlz4TqiUKFCrlwwn4OlbLMzqVSd9u2bZZkGomVs6yR9+zZYwEXSTwFKaLMjBkz7F8WebwAoXz58i5z5sxJ/lrHjh2zC8JOnTpZwEMknBGYo5SOTRB6LMaF58Xu3btd+/btz/kYAQpvKPx7773nq6bwnlMiIiISt/NdPJ44ccJXxUibl6TgvM3cKXTv3t1mWohI5CKzlAos/xsJQsw/5G0REQkMqlgZMP3II49Yl5Q777zTgsG9evWyyrVwQJK1N7eBKjmCFG+++abNoMiRI4eLFPx+e/ToEaMTR9asWUN6TJFIQYooQsUDwwvBBuuNN97oatSoYbMp4iqZb9eunWWxxMfLiuOxIpGAUkUuchimHRdOxAkNK7rvvvvs33feecdXlvfJJ5/YYFARERH5P/6DAM+HuWZctLEBWaVKlSSV/ROUYKhjuXLlbICiiIiIiMSPSgSqJYoWLepWrFhhrd5Hjhxpb4dLNSqzxhgsnT9/fpsb6qHilnkOkVY9QdeOYcOGqb1TCilIEUXmzp1r5VG33nqrK1asmJVHMQyHdk6xXwwYhs0F48GDB+PtV8esCiKBcbXGEQlHRN4JqtEKYteuXQlurNAPl80Pf15btPXr19uJnEwDyiNnz56d6scuIiISSag0pIXiM888c97HfvPNN74qiqRcdHbr1s0y/liLklV3ySWXpOiYRSRwGGYaKMuXL7c2wyIikjLsZTBztnfv3rbfwWzZr7/+2oY4h0s7vU8//dSVKFHCjolq22jYb2EfKnfu3K5Pnz6hPpSIpiBFFJk5c6b967WpiQ+Z5AzX5gWBnqBx4YKTITWaRC+RhvZkOXPmTLACiBM1vW+9lmie7Nmz+4bIv//++77nkvfcEhERkf9hoOG+ffusyuF8xo8f73bs2GFtFxOLC1Y+j6AG52HO7SISOqyb6Q1OtT4BQxJ6SBCqWLGiGzhwoCqPRURC3G6Itphly5Z1mzdvdldffbUNnV6yZIkllYQD1o1UyLIPSeCENn/My2AwdiQiSdxzxx13WHstbz9JkkdBiijx008/uc8//9xXZrR06dJ4+/ITpKAvHeVecWWkMZyGcisGEV9xxRWpfuwigZQ+fXpr9/TWW2+5devWxfkYovbMoKBiKDYqkAhWUCLJCZTnCyd5TqgiIiLyP5xryYSjfWhi0F6Ac29i7Ny503Xo0MHe7tu3r7v77rtTdKwiknwMri9QoIBr06aNtU6ll/mCBQvc4sWLrTqfIAXtUQlePPzww3ZdKiIiwUPb98KFC1tFGp0gmjRpYskh4TR0euLEibYWnD9/vlV0dO7c2SptOW+ES4VHUvBzMHj8+++/99136aWXhvSYosEFZ5PSUFbCFkEFXoCKFy/uvvrqKxsifPToUdukTWok74EHHrCoJi9qepJJJPr333/tuUB7CAJ2sU/MDIUnmBFXEI6SSP7uvdkVFSpUcCtXrrT2Z7Fbp4nI/5BJfdVVV7lff/3VsipFRLB//3678MyVK1eiP+fUqVPu9ttvt7UoSTUff/xxRF68ikTLOZvsUIKFtWrVSnC2G22E6S9+7bXXWjZvatK6Q0TEWWIyrTQJHCNPnjxWmcDrdbhZs2aNtdNmNhnBFNrURypa6NOZg2RWznfDhw8P9SGFvcSet1VJESXee+8935AZss8IULAJy6Acf1RbDBkyxC4a48KTjKHBzz33nAIUErHYzKDsfNmyZb4KI39Zs2aNt0qI543/BRjPKf/nmEgkGDt2rMubN6/9PbPZF19VkYdeoAThqCJKly6dZUxGatmtiISP/v3722sRgf7EIrOOAAUbnbR8UoBCJPQbS8xtSyhAAVqyMag1tQMUIiJpHZvko0aNskx+AhSslahy2759e1gEKKjmoMU83Vv8A960CqXyLpIDFKCqkH1TAvhDhw4N9eFEFQUpogB90Ci39TZUP/vsM9+LAJtN/ijJ5cUrvicSLyLXX3+9tYwSiWQ8F26++eYYJ8b4TvDxnVh/+eUXX5CClhb0eRQJdwyXZZ4Qs4WorCtWrJirUaOGBa/jO4dUr17dWppRtsrQecpx1f9dROJDAsArr7xiQ63jc+TIEbtApbqxTJkyifq6zJ6YMmWKbYbOmTPHKoNFRERE5H/Wrl1r6yoqKNifYAYF13wEiZkVFEo06mG2Z8mSJV3jxo1t79G/xfZtt90WNu2nkmr58uW2NvUwJHvAgAFKpgmwiwP9BSX4Vq1aZaUz11xzjbV2onQK9AeNrXz58laKS6/92OgfSsYaVRREBkUiGRscDIfnxomRk0jslk/0aqR6iDJJ//ksRMXpu0sGOhUUDJrau3evtY6iHZpIOKPctH379q5169b2/rhx42yxyMbfU089dc7juf/nn392q1ev9j0PyHwWEYkPc58IUnCOjS8ZgKHXBEG5eE5MkMLrS+xVYNDqSURCj8SHxFLLCxGR1MH1Wu/evS2ZjGBApkyZ3KBBg2yG1/kq3YK1if/000/bNSVo6fPkk0/aAO9oSM5h2DdJ4CQAMv9DUod2oqOA14aGMlyikrw4oFKlSuc8lo1XbvFdTPLixuaWSDRo0aKF69Onj7W+GTx4cIyPcbIkA5TgHNkId911l+9j9M4+fvy4BQCpqLjvvvusnJLnmoIUEs7YENywYYMtYD28rlerVs3aNcSFoByVd7R7WrRokc1yIYBH5kt8mSF//fWX3TwEykUk7WDuU926deNca+LMmTO2rgSBjPNhHtRDDz3k/vjjD/ualM+LSHjYuHFjjPfJ2KUSmYplL8DIeoEMWRERCSz2I6ZPn+569uxpiZZgHi1t3ElUDjXazZNk4nV0ueyyy2ztx/FGQ4ACXCvTeSBHjhw290NSj4IUUTaP4ttvv7XyeiJ8ZIEnFheTr776qmvevHnUvJCIMHeiXbt2bsKECdb6xr/8kY1bTvZkjBcsWDDG5xEd94b6EMjgueUFKchaiNQSRYl+LFxprUIvd3+8zwIyLnv27LF2Zk2bNrU5FLt373aPPPKInRd43sSFrB2q7kQk7SYBcIsPAc/Dhw/bxXP9+vXP+/V69Ohh51tmRs2aNUul8yJhhBlv/pUSGTNmtDV05syZ7T7ao1K9ScW+iIgEDkFhEsm++OILe79IkSK2b1ehQgUXLtg3IemTmbYkPFNNwZzDSE/8o9sAe0l0mWHviLVt7Hb6EnihrwmSFDl06JAFJnjSUH7kRS8JUDAw1R8vbGSqxeXdd9+1i0leAEWiCZutDAWeN2/eOR9jqBTDpmIHHdgc8SoreE6xCOD5RACQbDGRaMvOYSORYB5ZkGQzs7ikTVR8qNQgiOfdvv/++6Aes4iENy6gwcUqF60JYeAjFY+YMWOGZamJSHgaNmyYJSp4AQrw9gsvvGAfExGRwLR2Yh+jVKlSto9H8iVzZalsC2WAgoRNEjefeOIJ330EJJgp9t1337kxY8ZEfICCn5F5jp06dYpxXlOAIjgUpIiC3mgoWrSoRTDJ+J47d65tMMV+kStXrpzLkiWLtbGJjb529Avm64hEkxtvvNECePyNJ4WXDcaigBMS8178n3Mi4YgsZIJsP/74Y4z7eT++AbQsJAsUKBAjc5ngHUE5skjiwnOCPqP+NxFJG2jJ5N/uLbajR49aRh0JNPRJTsi+fftc27Zt7W36FtesWTPgxysigUN7R1qlxsZ9v//+e0iOSUQkWlARz74F7fRee+012zBnADUV8VSd+s/RDPZxvfHGG9buk1bYVNWtX7/e93GqZmmZHQ1IYKWdFtfVzCaV4FKQIsLRMx8EILzNJoZi33333TEeR1STDSqeZAQq/O3fv98tXrxYsygkavG3TXBh+/bt53xs3bp1NhCQTE5/JUuWjNGH13uOec85kXBExjLVEAx596+U4H16acaFv21aPPE4DxVDnE/OlwEtImnPpEmTLKMvvlkTVGYdPHjQvf322y537tzxfh162jP/hmpHKoAHDhyYikctIoHALBpaO7Fu/uGHH+z21ltvWbCxXr16oT48EZGIxcBpEodJ8KCFL8OZabc3e/ZslzNnzpAc06lTp6w6lqAJwZItW7bYGpDEkoTWeJGEpDwqJryB3yBIsWvXLtewYcOQHltapCBFhPOyuv2H/saFLHAWkf4bVx56rV1++eWuUaNGqXacIqFUp04dC86xsRIbPfhfeeWVc9pBlShRwv5l85Z2Nt5zTJUUEu4IupGBQ7/oHTt2WKkqmc9sKoA+8v6Dtfk41XZdu3a14MT777/vXnzxRbX/E5E48TpBgMG/3UtsmTJlcvfff3+CX4e5NmvWrLFKrDlz5oQsO1BEEo9WkLRLJcDI8FBuvE0VlNfmTUREktbCndmwJI4xg4IOKSNGjLBZXZUqVQrZcRGQIBDBNSFJz8yuff75592BAwdsaHfsGYiRivUoVSqdO3f2Je1RTaFZvaFxwVnqhyQinTx50i4CKb3ihYIhp7R6Ilu2YsWKifoa/Pfnz5/fVa5cOc4NXJFo2rhlGCezV2hB4aElBYE6LrgIZvhjkPD1119vJy0+x6tCopVFtmzZgv4ziCQW/UDpW0rLJspyGfxOpjJY7DIwftq0ab7Hs1HYvXt3WwyTqUNGZK9evRI9vJb2D96webV+EolurB2plGCQYOw2clRFsDY9n+XLl7sqVarY16J9ALNwRCQ4AnHOJvmBTSvky5fPEt6CSesOEYl0zIslWZJKUl5T2RjnGoz3qUoNBf91HPuLtM6msp69lFatWgX9tT41sPbkd3/ZZZf59nZo9f3UU09ZBYX/XpEE/7ytIEUEoyqiWrVqFt2kZRMbrbyoEXD49NNPE/U1tm3b5m655RbLJmeTViRa0aaJkw+bsWXLlk3W1+C5wnOGFhaxAxoiaZk2C0SESwqqELmYZU3KOTMuzEYrVqyYBTratGnjJk+eHPRjFUnLouGcHQ0/g4ik3fXSwoULbfj03r177T72J0gq8+ZgBhPVA1TSjxw50qpl9+zZY4ko+Pbbby1QkdjEtXBHK+/HHnvM5i/6J2nzO1BwIjzO2/pfiGBe2xmvV77XO9/rpe9h3gT3DRo06Jyv8c4771g0lMCGSDSjwohKCP7mk8t7rqnlk4iISEwkAWzevNlt3brV5ciRI94LcxJqCFDQ35gLchGJLF9++aXr2bOntQpmDoX/TURE4sc6iURjXi8JULBemjlzpu0vBDtAQbtfZjEUKFDAWnSSBM36jJmdnptuuilqAhTe/AlmT9CBhqoRjwIU4UP/ExGMfnXwssK9971e+p4VK1ZYAIOoaGzvvvuuDdlOnz59UI5ZJFQ4udauXdv+5uPCzBYv0Bc749MbohT7uSYiIpKWcD4kA42hubF5/egZrBhfH9/XXnvNLVq0yKotmEMRDW0DRNIS2rPdeeedNvOKymLagVBlTBU/GZIiInKuH3/80QZis1fH62W6dOlc3759bTgzLaaDuUlOq7527dq5XLlyWVtr3qfFE8OwqaLgNT4a0NKJOY1Tp0713Uf7Y+Z98HtPTHtSCb7/1fBIRPr666/tX6+cfvv27fZv0aJFYzyOi0nK6umtH/uF8osvvrCSfJG0gAyB119/3U6+lC16KLesW7euVRxt2LDBdz+zXhgIyDDP06dP+55r3nNPREQkLVm2bJkbO3aslWr7Z03/9NNPbt68efY2AxbjwrmTnsZg4GLspBoRCX8vvvii9VDneZ4xY0ZrD3LDDTe4jh07uuzZs4f68EREwm6jnNdJ5kz8/vvvdl/Dhg3d4MGDbUZgKPzyyy++VpvsHfJ6TqAk2hJHSIohMMT8NBJovMTsrl27hvrQJAEKUkSoU6dO2UYr2DilVMsrV2J4mT8WjLwQxkbfOZBdLpIWUDVE9ibVFP4np1KlSlnfRYbQ//PPP74ejAwQJkBBltj333/vChcu7BuuxIaMhmeLiEhaUqFCBcu0K1OmTIz7p0+fbiX0nE9vu+22OC/SuUD866+/3D333OO6dOkSxKMWkUAh49a7dmRN7Q177d69u6tSpYp77rnnQn2IIiIhR3tLWgoxjHnfvn12H2skgrx33XVX0I6DBJEJEybY/sbw4cN9x/H000+7mjVrWjtrXsMjHTMlSKThvMQcUpCEynr1oYcesv8PiQwKUkQoSmx5omXNmtVdc801vr5x9LTLkCFDor4GG7X06ddGq6QVZHwxfyV2kIJSRy6yOKnFbhFFxQXlgFyUke1Athj9Iyltr1SpUgh+ChERkdDgws+7+POwHuUCGGRTx6VXr152ocyalbL7aLggFkmLMmfO7MsGJpmH5/Wtt95qyXIk0YmIpHXM6KJylK4l3h7dSy+9FLS2TrxG05qPaom1a9fafewRPvPMM762fC+88IKLJmPGjLH9HYIuq1atsvvY2/F+fokcmkkRodgghdd+hg3UuKootmzZYoN42GSNndG2ZMkSa38jkpbwN//ZZ59Zqwp/sQMUHu855T3HvOec9xwUERFJy5h99u2337orrrjCBunG9sEHH/gGZE+bNs0CFSISudVUH3/8sb3doEED2xRq3769VUpVrVo11IcnIhIydDoha5+ZDgQoaJ/0/PPP2xqpefPmqR6g+PLLL13btm2tkwptjtigp4KC9pzMECJhMxqQXDp79mzb6/TUr1/f5qHR5p4uGBK5VEkRobye+EWKFPFtvDLMl1Y1/ubPn+8GDBhgL1aTJk3y3c+wHrJd7rvvviAfuUho3XvvvdZ38aOPPrJFxPnkz5/f/t29e7fvOUclhuZSiIhIWkKmNO0OCd5TaejhYpyL30OHDlmgIvb8s9atW9vbtHiqVatW0I9bRAKbrUqyG2gXQlvU1atX2wYRQ2BFRNIaWq9TmcDrIxvkVIu2adPG9uGCOauH/Q1v3uzNN99se4AtWrRw1157rYsmtB197bXXbH3p/bxU9h05csTOSRLZVEkRobwsbi9IQZSWAYSlS5eO8TiGZZPxwhT72PMoaGNTqFChIB61SOjlzp3bIuzeTBYPQb46der4NlPiq6TwnnOqpBARkbSEiggueqtVqxbjfi4IOX8+8sgj57SB4pxKYIN2MAyJFJHIRTLce++95wtSkhVMv/V33nnHDRs2zFpBiYikFczZ4rWP/QJmTRCgqF69utu4caMlCKdWgOLkyZNuxowZ9r3eeust3/0EJFq1auVWrlxp7eHZzI/0AMXixYst2OLN4wWJpvzOWZP6U4AiOqiSIkJ988039u/5ggyU33KLjRkW9BRWT2BJi/jb90rV/S+8Fi1adM6J3Kuk8IIU3nMudgs1ERGRaHb8+HF32WWXnXNRGJ/Ro0e7Dz/80KVLl87K8tOnT5/qxygiqYe2IQ8//LBtfomIpFUMaWbmA9Vk3lBsWkK//PLLrkaNGqnyPf/991/rhvL666+7BQsW+GYAsTFPJZuXjMncr0j2999/x2jDPWTIEPu5CxYsaEEXkIRNCy3tZUYnBSkiEJlpP/zwg++FCJSX8WQmY+18g7B54tO/jUirSFp02223ubFjx9pQKa83IxUSI0eOtGxPnmPeSa9o0aI28DNPnjwxnnNkhsY+iYqIiESrzp07W7WEd2HMuZIsvrvuust169bNZcqUyfdYWiL27NnT3uai3ZvnJCKRrUyZMm7Tpk2+dbGISFrChjmb5XRh8IZi09apZcuWMVphBjI4wfebM2eOtTPyT6RkzgW3aGmZxVwz5mrQPtRLbKFtFkmilStX9j1WwYnodsFZrjAk4p7AWbJksbdPnz5tT+AMGTLY22R708YpIZSflSxZ0n3++efWR1gkrdm6dasFHxigTSQ+KXjJ5DlHgILMCV2kiTj322+/uauuusoG0l955ZWhPhwRCQLOoZUqVbI5FFxQekF/2h+wkUlCDDMoaK+oC0qR6Dhnz5071/Xu3dt1797dkn5oOeyP9XUwaN0hIsHEmob2dlSIgjUP75OkwV5cIB08eNBmLHjKlStns38YDM1GPoEJ2rlH6tqKfUvWkLTH8mbkssdCq3p+9k8++cRVrVo11IcpITpvq5IiAnlVFFmzZrXNUqbb80SHfxUFPUOJPFJyRs86z4YNG6yHaPHixUNw9CKhRzSelhU8F5IapGAxwKJh79699lxUkEJERNKiCRMm2L9NmjTxBShA+wMu5lmnMtAwUi+iReRcbJChS5cuvvt4jntVyGT9iohEC5IS+/fv72bOnGmvc7S969Spk+vXr995O5gk9fu8+eab1kaKalSqJrzE5GeeecYSQNjXi8QuDpwXuHnHTovtxo0bWwcLL0jB+YM1I3sriW0rKtFJQYoIDlLkypXL/v3pp5/sX3r+ks3m2b9/v32MIIY/NmbZpA10xFckUrC4YHg2zwV/hw8ftj67bKz4Z4J9//339jF6IRL15bnnBSlERESiHW0NCD4Q2CeLmvkU8+fPt4916NDB97ilS5faEElwsXndddeF7JhFJPBY/4qIRDvWOQMHDrQW0XRQ8AY202bdm1mZUuwxsJYiOLF27doYexW8f88999j7d999t4tUBHPGjBljg8UZ6g1ahRKMKFu2rM0F5eeN9J9TAkdBighECZR/kILe+LjmmmtiZKsxc4I+wbF747ExS7snkbSM5wA9Jf29+uqrtvBgKOBrr73mu79mzZpu+/bttvlSpUoV33PPey6KiIhEM3oEf/TRRzYskiAFgxu5aOdcSssXrx0pPZnRsWNHX3aciEQPVRCLSDQjwXfEiBE2sJn2NOD6f/Dgwa5UqVIB+z4EJxo0aOB7n3085i5QrVavXj1fFUWkoLMLwQjWi7Nnz/btQbJuPHHihFu5cqUvSMHPRsBblbYSFwUpIpCXve31qfMqKWKXm1F6T7a4P/q+UYLftGnToB2vSDhiU4VAhP/w7JtuusmqJWIvCrznlhcQ9J57qqQQEZG0gN7A48ePt/Mh7Q4mTZpk97dv397+5T4C/ATvCxQo4KumEJHI98UXX1jGa2KcOnXKNp+KFCmS6sclIhIo7JOxtnn++ed9A6rZSyM4QYZ/SjbUeU186623bHYsAQhQmUoFATNiGzZsaPdnz57dRUqVCUEH2mfTggq0cmKAOHsrJLN4reVpP3///ff7Elo8ClBIfBSkiEC0nUGOHDliBCmopDifbdu2WT+72C8SImkNzwE2VTZt2uTKly/vqz7iFpv33PKea16QgkGhIiIi0S5fvnx2w5o1a6y6kItTegqD2Wfz5s2zC24y6GIP0xWRyMWQVjbX2rVrZ+1H4np+85pAz/apU6fapp6CFCISCcj0nzt3rrUl2r17t93H6x0b7lQ1MMs1OXbu3OkWLFhgwQlaZqJSpUq+IAX7Cz/++KMNww73ypKNGzfaa3rmzJl9MyXatm3rKlas6AtSUDnxxBNPWPv5a6+9Ns71o0hiKEgRgbyys0yZMtm/TEf3f98zevRoe9EjcullitPqiailhmZLWle4cGGb48JzwgtSxMc7IVOqiKuuusr+JVNAREQkLaHakAoKsuY4H5Ih+Nhjj9nHnnvuOSXCiEQZAhBUH/ft29c1adLEqqVIlkufPr375ZdfbDPu5MmTrm7dum7JkiU2DFVEJJyRrEgbyz59+ljSohc4YEi2t8ZJDlpHk6zBnEsPgQ429KmY8BduAQpaNjEng9d4D/skBCkItngBljvuuMNe52N3bWHAt0hKKUgRgVgEwhuSzWKRFw8G+vp78sknrWpi3759viAFi8gbbrghxoBtkbTokksusQHyPCfOh2AGeD7Be/54z0UREZFoTo5ZtWqVXZBef/31dvE6YcIE+9i///5rFYgE7cuVK+d69eoV6sMVkVRYM3fp0sVu9Bvn9WD//v22ocUmVffu3a2XerhtuImIxGX16tXWkmjFihX2Pvto7J1169YtSftkDH2mSqJMmTIxvjYBCl43q1WrZhv7JA0nputJMDFHDN7rNombt99+u7vuuutitLQm8YSKD/99D/ZQaCEvkhoUpIiCIAX9gWPPo+CikWwWqiy8LHCvVZTXqkYkrSMLzGuf5mVU0HOSionFixf7TtoKUoiISFq1fv16V7t2bZc/f3737bffxvjY0KFDbcOSZBhaPnmDEkUkOjE4NpDDY0VEgoWN9aefftq99957vmt8KkGfeuoplzVr1kS3P2KfgJZHfB02+wna5s6d2z7++OOP2/xX1k2xO52EAvuCJC37t1x65JFHrDqO1nw9e/a0+0hAofUVszlITvESoBmG7e2FiASDghRREKSICxeJc+bMOed+NmQjZSCPSGrjueCfBUArNIYD8hxjweEFKShnh4IUIiKS1vz999/Wi5g2iS+++KKrXr26bVJS/k9bBIwaNcoqdUVERETCyXfffWfrFfbHSEpkr6xVq1bWnogK0fNhLiVBCW6ffPKJ+/PPP2O0wNy1a5cvSEH1RCjwc9GqiX/z5Mlj95F4yX4HexgEHrw9DO9nPnDggO/zSTZhr5CKD/+h1gpQSLApSBEFQQoiuZSZ3XXXXeftrc8Lj/qEivwPJ22eP/6mTZtmJ2NKHT30kCSzgP6L/s89zaQQEZFoV6tWLbsR1Ke1Cxf1e/bscc2aNbOMO1oZtGzZMtSHKSIiIuJz8OBBmxExadIka80E5kI8//zz7uabb47389joZ33jzaVYtmyZzanwMFj7gQcesButLi++OHjbqhwbs8BoKUVAxAsiMOib9Vm7du3cxIkT7T4qOZgdxp4F1RS33HKL3f/www+7Tp06nVPp4T/wWiRUFKSIgiDFu+++68aOHev69et33iDFoUOHrMWNiPyv3dORI0csAMFAK9SvX/+cx7EA8M+KUCWFBAq93Hn99uYGbd682bKV6WMqIhJOpkyZYv/SW5k2T1wgE+wfP358jKw7ERERkVA5duyYe+mll+way6t6INmCgEXJkiXj/ByqDT777DPbW+PWtm1b219DzZo1LVmRFk4EJqguDca6hyDLypUrbe/h3nvvjTEngioJrhuLFi1q9xF0IVhCOyp/JDMTfPBvx+nfDl4k3PxvV04iOkjhvfD6l2IR7SUTnAtJD8PNmFGhdk8i/8NzgawKFjJJ4R+kIJtBJLlmzZplr80eAs2U6oqIhBMu3pk5AS7wR48e7QtcJLaPs4iIiEhqoaXRs88+a5UOw4YNs30yuo0wIPuDDz44J0DBQOipU6e6Bx980NYyNWrUsBkMzJhYsmSJ73HMZ2AgNvMsqEZIjQAF1R6PPvqoVUn47+k1btzYvfzyy777+N4lSpSw7ij+CZN16tRxp06dcrNnzz4nKVPzwiSSqJIignkvjt4mqf+L5S+//GIvusePH/fd5w0IVpBCxMV4Lnj9F7F161Z73pCN4H2cIAY3ZlTE7tOo7FFJidhBLgW9RCScsJbkAp/zH7OauNglMxFcTJNdKCJpExuA3tw2EZFQYXOetQnVE6xVwEY+c7QIPMR1vc5A6YIFC1pFgodrfyoW7rvvPle1atWAHBvfh64NXpX8l19+ae2mCIp4FaqYMGGCW79+vXVv8GZ8EYignVTp0qVjfM2lS5ee8zNpdoREC1VSRCAvEur11fNekLyhvqhSpYrbsGFDjBc+BSlE4g9SeHr37u0qV67sPvzwwxhzKgoVKuSeeOKJGM89ZSWIiEg027Ztm9u9e7cF8EH/Ys6ZBPKHDBkS6sMTkSBjs43e5zlz5rTKYubTgLYokydPDvXhiUga8vfff7tXX33V5cuXz/Xs2dMCFAQe5s6da8EAEilof7Rw4UKbKUHFupcQxnU8AQxaJzHLYd26de6HH36wYAFBigwZMiTpOHbu3Om++OKLGPfTRvqyyy6Lsa/AY2knxQBuf02bNnVPPfWU/Swe5oCtWrXKWmz6U5KkRDNVUkQgb2OUqGx8QQouImOXs3kbsZpJIfI/3nBs/yBF7ty5bSaA/yAp77nlPde8556CFBII27dvt9koYOHMIjf2vBOv36iISDCVKlXKzZw504Zkc1HM6xU9j7kvKRfwIhId6Ok+ffp0C1L6D5KlBcqIESOsj7uISGoiYZAWlM8995y1ZkLevHmt1RPrFYKno0aNshZPzJkgMODZtWuXBTLAWiapQ69pA0XFwz333GPVGiDAQQAkT548NqDaw9dmADfJHh7mWRBYKVCgQIyv27Vr12T+NkSii4IUURCk8Mps/YMUcWEjlk1W/81XkbTs0ksvtVJLBsp7WDTEFl+QIqmLGpG4UE7s3+bJG4zGhiD386/3NyciEkz0YSagT+XhTz/9ZBsD/fv3t+CFiKQ9r7/+umUas3Z5+OGHY2T8kmQhIpKalVzz5s2zygeCDWB90rdvX9euXTu7tmeNQrWXP2ZUcH3F4GuvlVLsa3kqLrju8mZPEmzo1q2bBTgIdngmTpzo5s+fb4/zghRUP/B+lixZ7BgvvPB/DWsGDRpkVRBUnnmuuuoq16lTp1T7HYlEOrV7itJKCgbukOXiP/CHF15ePBNbHvbaa69Z9i4XqNzuuOOOGKVqiUWEm4g25XedO3e2FgGUvZGx3qVLFxvmnRZVqlTJ2ghJwsh+uP76630nenoyZsyY0WZDMCDKW6AkF88J+lgmRJUUklp4rSbbh39j37z7vVYKIiKhQAtEMv4IUJQtW9baIopI2nTw4EGXP3/+c+5nY46MYRGRQCN4QIskOoU0atTIrv9JvKWdEvcRLCBAgdtvv92CD7Q/Z3g2wVMqGUaOHGkztthbmDVrVoyv36ZNG9sT8G+VzgyJRYsW2X6a1+oZzIxo1aqVrxoDJHMwtJt2616AwguOsOelPQORxFMacBQEKXiRJJvFP0JLyRn3c2F599132328uCYl8ztXrlw2fOimm26yEwNBjwceeMBt3LjRytQSixd3+uuRrc7t5ZdftnY6lOaRgcN9RKNF4vv7oS8kWFQwqJNABX/Pffr0sb9v2k9cfvnlyfr6PCf8Fx5xUZBCUgtlwSIi4Yi13/jx493mzZvt/Et7J9orqIpQJO3iGm7lypXnrF+4lvOyikVEArUOYUg0lRJr1661+whGZM6c2f3444/urbfe8g2YZrYEH6tevbo7fvy4e//99917771nQQKSZEHSLHMoWMc89NBDvvUMFRBeENZDhQbDuKm88K9479ixo938aUaESODoKiMCeS+m3sYq/fe4+SOay6Ag/z7mSQ1SeBvDnoEDB1p1BQOB2CjmgjUulN/RDxDff/+9DV3kWKjG8E4kXlkcX5Mqi6Qem0Q+/kaosolLxYoV3fLly+3td955x40ZM8be/uijj2I8jkoUKirIWqhQoUJAghT8/a5evdp1797dek3GFaTQ4GwJtG+//dYCcpQWs9BlQUylEBk4IiKhcPTo0RgtCYYPHx5nBrWIpB20UmnZsqVt5lE9sWDBAstqpg0UG4IiIoHA9fjTTz/t2xPw0H6JAAUVC1R3sgdABQRrFDqHEKjgxv7A7Nmz3bXXXusefPBB32xWWtORjMv8P68NOgm1fC//tuh8/UceeSTIP7WIaFc4AnkZ47///nu8j2GTl5s/SnCTGwggc5z+f7zw0/apbt26dkIg+NCjRw97TL169Wxomve+t8FMWyMCFHGh1RMfU4Ai7eHvhCqar7/+2i5wQJUNgQjvfQJcbJJQrhkXr1XY1Vdfnezj8AZa+VchffLJJ65p06bnfB/v79h77nk9K0VSgjZmXPRzsU/QjWwder+zYH7xxRdjvKaKiASLf6s52ht06NAhpMcjIqFHVT1tV55//nm7JmX9QrsV7iODWUQkObgO4kbA84UXXrCWt17bJbpvEHCgRfPp06ddrVq1rLKTCgj2qWjrxPU8wVOvyouEWwIUd955Z4zAw6ZNm8753l4lhYiEnnaGI5D3IkoZG3gxfvvtty1inNAFZHKqFbZu3WpBiT///NM2ZPk+lPmCr8V9VG2A708rAP+NWzKDWczG5dixYzbUKK1c9LLZyM3DCZaqlMcee8x3H22LKElMC/g74e+Fvxvvb4j7+Lvygg78/VCS6fWY9McihmFW5cqVs+BYcsWupKCFVJMmTWIsaBi0lS1bNlemTJkYzz0taCSlli1bZiXM/fr1c127drXyZa8cecSIERao4O8uuZVCIiLJxWuTd55kM0DtDEQE5cuXdx9//HGoD0NEIgjX7iQgUjVOtwKvIwEBTxIVua5mXyv2bJsVK1ZYxQRdDnjdGT16tM2W8K7D+TpffvmlVUn4X5vHlbQrIuFPQYooCFIcOHDABlLTHiShDX9ewDk5JAX9+4g2k0lOr1HKe2nz5AUqEsLwIB47efLkOD9Wu3Zt+zpea6hoRwZAw4YNfe+Tqc+wJypQPJxc5f8QpPAP4vij5RhVGKtWrUrR9+A54d+2iQsvbv4IWnDzKEghgTJu3DjXrl27c14HCdSxaD9y5Ii12VOQQkSCiU2BTz/91DdQ0ksmEBEREUkIc2tIbqW1EvtHoFKcqiuSA9m/uv766+36es6cOed0CaEaokCBAladxXxUeHtdce13+bc4F5HIpiBFBPI2Rsm0BRneoD2Ihxd+yuBAxDqxA4JjI4Pd6z/MMKL169e7kSNH2iDF8/nwww8tCMEJyB8nINpEZcyY0U5elPClBWw6+rcluuyyy6y1i/o7x+3w4cM2pJ1gVmwELuh7yyYKPSVTIjkVRt5zT0EKSSnai5GhHJ/mzZu7Fi1aBPWYRCRtI5GkUaNG9jZB/MGDB4f6kEQkhKjyTGwllbdGFpHoQqul7777ztYFXsIqgQeqHJitt2XLFt91Odfwr7zyiiVkEqQgwW/JkiXuqquusq4RzIPwZpf6o/KBvSaCGyKSNilIEYG8jW4vm5uNbvBiz8mDFjps/NM6iL57nDxYWCYnSBFX1rk3RDi22IvXuFo9ceFL+x4GEDOvIn369Ck6Hoku/n9D9Lal5ZJ/YIe/ZaqGCG4xRIuMipSKHaQg84Meu7SQIkjH96Rig+cZN47Re+6lZBaGCBj8ljdv3ng/zt841RQiIsFCK0USBcD58MSJEzGGSYpI2kL7SRFJOyZNmmSBhyeffNJlzZrV7ps4caKtDwg80GEDXBeTKPvLL7+4/fv3+4IUBC5ItGLINa2ZaXHtdfQYO3asVZJz4+MguZY24CTFikjapiBFFLR7oiKBzVRe5DlJUB7HyWTp0qUWrfYQuEhKkKJ37952wiDaTfUDw4rYGF68eHGcj+c4du7caYOO2bylksJ/4CsBirvvvtsCKTNnzrT3uXnVIP4tdyRt4m+IDdlvvvnGglj333//OS2e+DskAOY9FvydU5mSHDwnvGoeAhJkcPAvGzS0t2DR5ZWQMpuFAJvaPUmg8DcV18wVD3+b3gJeRCS1kQQwdepU3/us/7xkGBFJm7x2LSISubi+Za+I62auZ0F1AzMzSc4bM2aM77EDBw602RFci3tBChKnqKqKnWQ6a9Ysuy732jKxB9S2bVtfsoOnUKFC9r1btWpl1z+oVKmSDckmkCEiAgUpoiBIQQSbC8gffvjBAgQEKdjYqlKlSozPYyPMOyEkBl+LNiOcYDihsFFLgILegHFp0KCBzV2gdzGDjRiCTN9Bz1dffeXWrl1rb8ducbR3794Es4mjEQEfiYkqmyFDhtgsFBZAsTO36M3vLWj8saHCgic5qAzyghQ8P/g7p13alVde6XsegPe9BZ2CFBLobCVeL+Pi359VRCQ1Efj37/VMu84pU6ZYha6IpF0klXnrYi/BLD7e40QkNGi5xiBp9oj8922KFCniduzY4T7//HPrVuBd+zJD9I8//ojxNZgVwTWIf9eA++6775x2biQWrlmzxtozEejw1g7sH7F2qFatmqtatapdW1OJwfdHmTJlLBDCxxLbSk5E0gYFKSKQN7zw4MGDvvs4GRCkIOJdunTpOD+PagVONqdPn05U1nlcA6/9MVDbHyV93NClSxc7kfljY5kIvogndhCCxRObJAsWLHB9+/Y9J5gV6L8fvh5BCC9LlOdF7L9rnlOgosjjPfc0SFRSir8rFu3ne4yISGrifNiuXTt37Ngx22xg9hhtnthgEJG0jexpNh1ZL9P6La5NRa+98L///puor0niETdvnc01QP/+/X0zFUXk/EjUIxH0kUcesUoFEHSoV6+e7Qn5BymuvfZa63px6NAh33233367VUIwpNofAYTYeH5T3c1MSGZDvv/++2737t32scaNG1vAwXsu09GDZFX2k2jjxNoCJANSOXHvvfcqOCEicVKQIgLdeOON9u+ePXt8C0LK64hi0zvQs2HDBrd161aLVDPcKHv27HY/m8CB6OWfECLpd9xxR6p+D4leZJUHY1AnFRFnzpzxPTfi4j2nvBJW77nn/1wUSS7v4lxEJJQmTJhgGw5UDNKS08uIFBH59NNPfRnVy5YtC8jXpHf9Sy+9ZOtrrmenT59uswwZuMsmp0haxvwGAn5etT9JdLTipq3S3LlzfY+bNm2aBQ2YAeEFKQg4sPdTsGDBGF/zzTffjNHqyQtcUDWRmPbIBCI++ugjm4Pq4fholezfwYNrayosSF71AiI8z59//nnXsGFDm5kqIhIfBSkiEG2RCExQlkdfQbJaHn/8cSvR905OePnll90bb7zhhg0bFiNIQSZMagcp/NsFiCQVs0uCweuVmVCQwssQ8ao6mKnizcLIly9fUI5TovvC/7HHHrOBcrFbJPz6669Wjs1gufLly4fsGEUkuhGMZx0JMhwJUIwePdo2Mtg0ZBNDRNIuNiE9XENSwR87C5pAw/fff5/orxm74p7MbSorWA/FFaSgPSs3z/naTolEAv6O2cj3DyjQbnvevHkWgHjooYfsPp5vBAhitxomcEBiqP8eEM+fbdu2nfO9Ejtfiufyli1b3Ndff+2aNm1q91188cXWnpsABWuC2rVr241KDQInIKjC7Mhnn33Wl9BHNfgzzzxjPxNfQ0TkfPRKEYG4aCT7hIXgd999ZyccSvNjo8SPvoE5cuSw9/2DFCJybpCCTRkGdrOQ8lqXxa6k8BZdlLtT/i6S0pZn7du3j7OHM9lOHTt2dMOHD1eQQkRSBdmRnO8IwNOW89VXX7WNCaoqaM9w2223KUghIjGCFF7rJ39cc/KxxLZ78sfnsClLAl58lfiDBg1yzz33XLKPWySUSCzl3MrsUK8Sn6ohWiLRPth/f4bNfGZFUI3goTqCikf+9TppgHmggUAAkHmZXAfTyokZElRJEEz0rlGGDh1q3Q5YF/hXQ3A8ixYtslbNXnCEdcPTTz9tiav+lRsiIuejWqsoaPkUH7LiGHTdqFEje58yXYZn+/chFEnLvOeCF6SgRdonn3xi813iq6RQqycJpM2bN7uaNWsmWFXE36WISGp48cUX3dq1ay0oSssHMiU//PBD16xZM1ejRo1z2kWISNrmv0Hqjwzr9OnTJ+lr0ZaYTU82Mdlsffvtt636Py60uqHC1LslpWpDJFjY7Kcl2pQpU2Lc3717d2uJRMslj39FPokCnn79+lkiKn/zHuYmktREVVMgZzlw3dugQQOXNWtWux4hUYEABd+P92mN7KlcubIlwfoHKPh8Wk3VrVvXAhQk8RFQ5Pg7d+6sAIWIJJkqKSIUG6QMRfI2TOlbyPBVsr4psWPBFxsnNDZjVUkh8j88FwjeeQuorl272gKyRIkSvscwBJ4hY14ZrYIUEkg//vijr99sXMimIvtKRCTQCE7QIxpsTDA8E61bt7Ze8SIiHq8lHNeTbKJmyJAhRiUEryfFixdP0te8+eabrdc+QYf58+e7li1b2vVtXIEK1ura8JRwQiLbypUrLdhQoUIFX7DOm8/A/AVvT+bWW2+1x/n/DVOhcOLECUsS8JeabblJRODa1/ueO3bssOce2CdioPX9999vP4P/czw2nu99+vSxtrW4/PLLXbdu3VyPHj0sUCEiklwKUkQoL/JOlBpEtCmxozSf3oSU4fkvHPm4ghQiMfFc8J9HQXDCP0AB5gX484IUmkchgZAzZ04r//YqdWKjJ2xCM1NERJKDtiq0eWKNyLqRDRavzWHbtm1DfXgiEmZoTeNVUlABQXW+h7dpPcwGZVLwed76h2vX9evXu5EjR7rx48cH+OhFko9kUCoGCKixEe/97b/++utuwIABrk2bNr4gBTMjqCygHRrBNy9I0bNnT9erV69zvnbsAEWg8Xzlubtw4UK78dylbRRVGWDu1NGjRy0wEbuNU1yolqCNE+2dwO+iU6dOVvWh1pAiEggKUkQo+hFi+/btvvtYHC5dutRORJxkOCnRx5z3iZIzuEhBCpH4gxSJ4fXa9GZUiKTEPffcYxmJlFTHbpNw+vRpGzZHVpOISCA98cQTVn3LjLOxY8fajY0YWknQ9oG3z7dZISJpBy1svEorAglxzdJKKV53/IdjiwQbCZ+rV6+2igdaHoJET6oiCDpwnzcLlGAELZCokvC3Zs2ac75uIFs0JWbW1KpVq6x9GoEJ2jd5LrroIrdv3z7f++wPEWg5Hz6Ha5IZM2bYHhPrg1atWrn+/fvbnA0RkUBRkCJCedneZNmeOXPG2oWUKlXKghRffvmla9eunZ0MOZnS45DHeUEKTloi8r8ghde2icUXGTI8t7zF1hdffGHPrVtuucUWqyzKvvrqK/sYg85EUooKuAULFljgmaodWh+AFmNsGpLlTMaSiEigvPvuu75M5enTp1sm5+TJk31VFPSWXrdunfXOZmimiIhn6tSpAfk6ZF7XqlXLrk9///13N3v2bBvcyzxFkWBg2DvVO+yhUAGB999/3zbfqYzwD1JQccAwa//gPYlG3MINLaSqVq1qQT/QtolkqDp16rjatWtbu6ektKUdOHCgGzdunO05oX79+u6FF17QzCoRSRUKUkQoWs1wUUkQgmoKIvpeiyf/IauTJk2yvoBeKW3evHmtNFEZcpLWEXCgl6jXN5RFKZvEZK2zgeNdQHHBxOYNpbz08WThR2lrkSJFQvwTSDSgNJqMLa9Umr9L74KIiyMCFSqfFpFAoa0DiSxej3nOgSS4EKhnXcnmA69FVHJRZSEiErtVHDNreN3g9cTbCI3dFvV8+NwWLVpYwhCvPUWLFrUARfXq1VPpyCUto7rghx9+sL0QD+e/zZs320wGzn1gP4XktNjVEQT0ww2JqDxnOP7ffvvNd/1KNWS9evWs1RRJBzynGISdFHy9l19+2Q0fPtye8+DrvPjiixbUERFJLQpSRCg2sMj4ZgOVzG6CFN4Jg6qJv//+2zZSb7/99hifR/Y3A52++eYbRb8lTTt06JBlh3gVEQz8YuCf9zziosurmvDu895n4erfi1ckJajc+eCDD9wvv/xigTMCFbQTy5w5c6gPTUSiCK8tBCjYHOQ8RnYkCLrzNh8n45KABTPPUnN4p4hEJl5DGG7NDBsq9JPbxsar3hJJbVTK33XXXZa4SaDCc8cdd9gGvFchAAIUzG0IVxwviXUEJviXQAV4Hh45csRdd9119v68efOS9fVpt/baa6/ZmoDWVyhdurQbNGiQVWeIiKQ2BSkiGJurXpCC/qBkBrCpxUYXg1jjakfjtYmi2kJBCknLvIoj73lCaS83D5vFZJEwJ6Bw4cJ2n1o9SWri9ZsLARGR1MCwTDItCbLPnDnTNweHTY0+ffr4HnfxxRf7Ws+JiPj78MMPbXO0XLlyoT4UkTjbkbHJ3qxZM9elSxe7j8QfWjXRVowWT167ozFjxtiMhkhBBdPzzz9vlY7+iU4PPvigVYIwrDu5aC87a9YsmzGxf/9+u491AMEKqjKCOVNDRNI29fuJYF57J2/jlJOHl/FNkMLLBieS3rVrV4u0c1ImM86/JZRIWsRzgHLY66+/Pt6Pg+oKNmz8n2vec09ERCQS7Nq1y3Xv3t230UFrFRGR5CRUJKWnvUhqYI9jyZIl1p6QAITnp59+sjkTn376qe8+quV37NgRI0CBcA5Q8DMx+Jp2aB4SCghQME+xV69e9nPSipi2TFSFJKeVNxWUVHOTyNqyZUsLUOTMmdNNnDjR9pMIfihAISLBpEqKCOZlc1PCSJ9FNlLJCKCU0Yukc1Lp1q2btbahJ2GlSpVsg1VBCknreA7wXOA5Qpkvzx//Rdjnn39u/3qBPw3NFhGRSEQL0KZNm9rmRrVq1SxxxTuvtW/f3ubfMFDzkksucSNGjLA1I4+nlaiIiL8BAwZYtjU9+mkPJxIMnK8IQPjvcVABzyb+3Xff7SpXrmz3k/WfI0cOV7FixRifTzVFuON6lFkvb7zxhgUovLkQTzzxhO9nI8GAgEIgAgdr1661YAft28Ae0lNPPWUVKEmdYSEiEigKUkQwTrbe8GwCFWymFihQIMZjOIERFae8MVu2bHYfG7MMPdLwbEnrQQqGYYPhxEOGDLGNGxZrYJEIb7A2c1xYHKdLl+6cYWoiIiLh6tlnn7VzHhmk06ZN8639Vq1aZX3h2RAhUEGQgjZQPLZs2bIKUojIOYYNG2Yza6699lprNczrhj8voUckUFavXm0Z/QQfvERL9jiaNGlicxPYXPfkz5/fbpEUfFmzZo2bPXu2mzt3rl1renLlymXXnZ4rr7wyIIlytDSmxaM3t4LvQWCCAIWqpEQk1BSkiGCUKJIl8M4779iGqpfxHRsBCX8EKQhacIKKHdQQSQvIumG4mNe2iaoJ7iNwh4MHD7qdO3faRg7VR/5BizvvvNPXx1tERCScrVixwto7eTMpaOPg4X00btzYNj/w6KOP+ioNRURio+pKJLXs27fPLVq0yNrtetUQ+fLls+u2kydPWnWBd76iyiDS8fOQEMfAapBU2rBhQ9eoUSO75gxkQunRo0etEmrcuHHWhYNAT4sWLWzORe7cuQP2fUREUkJBighXtWpVC1LQd9HLACcjbtKkSXZya9eu3Tmf40XguQhVkELSIi8Lx9uEef31191jjz1mGWGglJjS123btlnvXXi9TXnOiYiIhDsqbZs3b26Zmq1bt7ZMVA+9ub0syg4dOvju53HcRETi8swzz4T6ECSKjRo1yr3yyit27vKCFFTtUG1AmyP/yoJIQ5CAfRo6YEyZMsXuoysGiQIMrqbNIteZ3izEQGEuKb/TwYMHW6IqatWqpflUIhKWFKSIcF4rmpUrV1rP4UsvvdTt2bPHsr7JMvCCFFygMlgpY8aMFqFnM5aNWk6KImkNf/tZsmTxZY3Qd9O/dyml6xUqVLAbqLBYtmxZjOeciIhIuGLd16lTJ3fgwAEbsjly5MgYH58xY4ZlbpKtGl8lroiISGoZNGiQmzVrlgXMCxUqZPc1aNDAWoaVL18+xmNpQRiJ2J95//33rdUiA6qpYEDPnj1dwYIF7e2pU6emyvcm8EEiXt++fW3WlJegR4tjXc+KSLjSQIIIV6RIEcv6ZhjiF198ESPTm01VTk5gLgWlkpyovBPUunXrQnjkIqHD3743NDsxNm/ebFmnV1xxhTZzREQk7DFbYs6cOdYalE0gklT8AxheqyeqKLxzIUkutDvk4yIiceHakjY7ZcqUcdddd531sPe/icSHdk3+SLKkav2tt97y3XfHHXe45cuXu/bt27tIxixDZh0yR4OB13S+IEDBdSRJA1SHpKbFixdb5QnzFwlQkKDK3AuugRWgEJFwpiBFhOPC0jvReO1o2HyldPDEiRO+tjacpMgOp8zQC2QwhOqXX34J4dGLBB8BPQJ4XjCP7BIutuh1Cma10PqJrBeP99yi2iL2gEAREZFwQrCB2RJea5bYGais/7Zv3+4yZMhgg0c9DM1kUGfsqgsREc9zzz3nhg8f7h566CFrKff444/bJiy985999tlQH56EIfYb7rvvPpuJ9Mcff/ju79Gjh1UYcN0VbbZu3Wqtq44fP+6yZ89ulRMEZNavX29Dqr12woH29ddfu5o1a9qNY2CoONe5zFqkg0YgZ1yIiKQGvUpFAS9I8cknn/y/9u4Ezsby///4VWQpS/Zskez7UmRLhbJlyRZCRYuyRSGyZS0qsu9JCdmSilCo7NnarBFFWbIWSc7/8f58//f5zQgNM3O2eT0fj9PMnJk5c5/TmPu6r89mb9XH8P7777f3582bZ29btWrljhw5Yr0IRQsFZcIsWrQoaMcNBINaoSlQUbt2bXurC60XXnjBH6RQyfGoUaPciBEjon2PkHkCAAhlf//9t/W1Vt/pChUquO7du//ra9TCUAM5NbtMSS0enRNVeeG13QCAi6kya8KECa5z5852zamNT81C7NWrl7+qH9AcBI82yn/44QcbEq2Zfx5dV6nbgz4frlR5uHLlSpuhEXWQd61atey5qcWT2i5qD6ZgwYLxdhy6jlVlZLFixayKQkl1CiDu3r3b/q2G8ywPAAnLdT5qusPeTz/9ZCV8iowfPHjQ2j/NnDnTLj5z585t5YaXamujAdr58uWzdgBAQqEFnCop9O9CC2j1AdUwNrXG0L8TVSKpF6ouwDTTRQtqzXFRT1Flp6jFGoDo9O9Em53KqtQ8JADBoY3Cfv362b9HtSrMkSPHZb/Wm2UW1dmzZ209efH9ACJHbM7ZN910k204a66bMsRVeaxrSlVwqXJfjxkIrDtCkzbFn3nmGWsxtHXrVv8ehKrS1frIm8MQ7tQGWG20x40bZ1UKov0YPf9AVisouUBDsTXfw2un1aBBAxuKrVbfABAqYnreppIiAugCVP0NlRk3f/58u69GjRouWbJk1rpGpX5ReXMqlEn+ySefWNYdkBDo38jChQvtd1+LZl1oqcRYWWH6WBdYClBocVmnTh37Hl18aSNHAb34zIABACA21N97wIAB9v7YsWOvGKCQSwUitHYkQAHgctQSTklxok3QTz/91N5XGxuytZEuXTr35ZdfWmujqHsQqpqIhACFfs9VIaHWVc8995wFKHQ9qcQ2JYnGdN5hbCnPeMaMGfaa9ujRwwIUmhOjdYC6AhCgABCuCFJEiPr169vb2bNn21sNSNRGbM2aNW1Ik6gnYt26dS3zRZuu+ryiWDqZAQmBZrTowkq/+5fiDW675557rHoi6r8p/RsL1MITAICr7fn9yCOPWDC+RYsWVk17qU0NtWVRBigAXIt69er526C2a9fO9ezZ0+XJk8f+7mhILxKO3377zWYtRB1yrdZN06ZNs4qCokWLukijdsCqoFDVoVorjRkzxqpGVIGvIEEgrhXXrl3rypcvb63W1Eoqe/bslnCnzgBq8wgA4Yx2TxFi586dLm/evNYbVAuGtGnT2sVo1BOlKihUZqnh2QpM6OSmk1rDhg2tTBBICG0wRo4caf8G9u7d67Zv326ZPcmTJ7fPa7ioFn6jR492bdq0seFuClaolFYBDpWzA/g32i4AwaP1ntZyCrQre1IVgZf6d6he4ArCp0+f3v3yyy/RKiY0n+mrr76yTUYluACIXHF5ztbGqG4KVGjmYaCw7gg+tXPSRr0q0LUXkStXLhdJFADQnELNmyhcuLC/kkL36ToxUEEJj87b3bp1sxbFogoOfayZE961LACEKto9JTBaGBYpUsSqJhYsWGD3XXzS1DBEbdBu3rzZouz6vBaTH3zwgV3gApFO/zbUCk3BPGXCaKiZZlTI/v37LUChfxfKEhMNlleAQj1G1WcXAIBQo+oIBSh0btOcscst/BWA9yoDL27ppMzouXPn2qYMAMRU2bJlbUBvIAMUCN4cTF0beVQpoU1y7SXoWikSaE9EAXsF/hV0efXVVy0o4bnzzjvdW2+95cqUKROwAIWuRdXKUQmp3gzFxx57zOYrvvTSSwQoAESUxME+AMQdDUlS70e1p3n00Uf99ytjXNkNVatWtRNuVGp7o77F33//PQOBEfELaw0R7d69u32cKVMmd8stt1iprJedomCfhgDq/qitnvRvi1ZPAIBQo/Vbhw4d7P2BAwfaBsqlqNWhghCiDNCL6dxYpUoVqy4EgMtRq5srUdsnRB4lclWsWNGC4Jrh5wXDNbA5EijRU7McVFW4YcMG//2VK1f2zykMRsBE5+3nn3/e9nOkXLlybvjw4TaPFAAiEe2eIogGVKkUUdlx6o2owVUrV6600v6MGTNapvgNN9wQ7XvUT1Fl/xq49OKLLwbt2IH4pioiDTg7cuSIlZl5C1IFH1RlJPpzqM+rxZMGkClgobcqY1crKACXRtsFIPC0hlM2p1puKBFFGa5qu3Ep/fr1s5aHavWpoaYAEq7YnLPTpEkT7eO///7b/fnnn3b9eeONNwZs5g3rjsDSNZP2GTQ4XdV7kVI54V3/KcCv1r6SLFkym/HUvn1761QRDN9++60lIHz22Wf2sV73IUOGuMaNG5M4ByAs0e4pASpYsKArXry4DcX2ehVqY1UbrppTsXDhQn82nQISLVu2tJOwynOVFUO8CpFMv+P333+/P0Ahao3hBShEiz5vYPasWbMsQKH+3uo5CgBAKNHAUgUodN7SOe5yAQptLo0bN87ef+aZZwJ8lAAiybFjx6LdtFbWjDe1Ela7OYQ/7QlMnz7dPfzww/79AV0zrVq1yi1dujQiAhRKSvOem67/NItJ59KXX37Z2h5qEHYwAhT6N6XghPZ0FKDQXo0SDPRvTP8/CFAAiHQEKSKITlqtW7e293Vi1YlXWS1e6yfd52XeDR482E2bNs2qK/Q927Zts/6LQCRSmycNOnviiSfc8ePHreooKg2SV7/PqLx/L/r3cbmNHwAAgjVjSbOVZOrUqf42hZfy4YcfWktDbcBoHsWlMjY1VFubIwBwtdQuVdeWXus5hDclN+qaaebMmTbvyJM2bVoXCe1/27Vr57Jnz+4++eQT//1qqaTP9ezZ05+wFkgXLlywChXNnXjzzTfdP//84x566CH3ww8/uL59+1qVEgAkBOy8RZhmzZrZ8CRtwqp3pHiBC7UBUGbAbbfdZpUUyhRXG6h7773XBkN5m7JApNHvtjZwlCWj4JzKlb3g3eHDh63faNasWa3KyNuwWbNmjWUNRZ3vAoQLDflTppsysNQOZt26dTH6vhkzZljAu27duvF+jACujdZy3rlJA2urV69+xa9XBqbOZ1oPJk2a9F+f12wytQbVJiMAXAv9jVG7YYSnqB0VdM2kFoH9+/d3tWrVcpFAQ6Y1bDp37tzWAlhJmwrge1KmTBm0AdSagaEB9AoMqcKjQIECbsmSJRYgioSqFQC4GgQpIszNN9/sH47tBR2U3aKLTy0+Jk+e7B+uqGHAulhVlrguXBW0IIsOkUZ9ctX+TAtTzWT59ddf7ULKGzimFhnqp6tAnWZQiDJZRK3QrpSdCoQiZb5p47J3795u48aNrlixYu6BBx5whw4duuL3aSifMsk0GBFAaFLrpqZNm9p6TT20YzK0tFu3blY5q7lMl6I2iNoICVbvbQDhVcUV9fbBBx9YoFM9/DXzBuFHMyxLlCjhdu7c6b9P60jNrFSyS7gHJzTMXRv/b731lp1DlZy2bNkyN3r06KAe29GjR93TTz9tbYWVTKRAyWuvvWYdAKpUqRLUYwOAYGFwdgTSQERtMqksUJnhGkqivpKqssiSJYvbs2ePtYGKSl936623uqFDh1Kqi4gyZcoU9/jjj7tdu3bZfAn5+eefLaCnjJn8+fPb53SB9dRTT1lmjaoqNPjv448//s8MVSDUqHJCm5fKFPNKyFXWrvJ2bVZeisrK7777bvu3ovZnaos2f/78y/6Mv/76y25RB2HpZzDAEohf2jRSoon+nW3atMkC7HFFlwT0uwYiX2yGTl/cAtWb53bffffZBquX8BPfGJwdd5TI8umnn7pGjRpZokuk0DlNwRdt+ouqQl566SVbJweT1uW6Pu3atasFKkT7NBqMHah/PwAQaAzOTsCUxaJsAWWQewPM1INYJz3dp1Y2ogHbyiJXhrmyxfU12tTSiROIlMXp8OHDXY0aNfwBCsmWLZtLkSKFmzdvngUo0qRJY4tDmTt3rgUoFLTToG0gnOjv+tdffx0tA0sbCvp49erVl/0+DQpU+79WrVrF6Ocoe1uLDO+mAAWA+KX2D17lhKpl/ytAoTWf+lnHFAEKAP9F14lRb0pyUJWyEuLYYA1PStRq06aNGzdunIuEdohKOPPOaQrsKzih2YRq7xTsAIUCJhoyry4WClCoBbFmQqnqn38/AECQIiLphKyehjJs2DBbQKqtk8pxdeIuWbKkfU6Zsk8++aSVPq5atcoqKLRhq+xxIFLKl7UY1O+2hoZq/kTUAMYrr7xi7z/77LMWtNB9b7zxht2nzdpEiRIF7diBa6FettowyJQpU7T79bE2ES5XfTdp0qSrmkukuUbKgvBuaiUDIP7o36/aqeg8pao/Zbz+F216FCxY0CqkACCu1xvKikR40TlEwYiorY40r1Ifq8o8XKmlaceOHa3NtYIuHrXBVnDCa/MbLPq3opaLpUqVsqQhXXeq8khtWVXJDAD4H4IUEUobrMpu3bZtm38olNp/qNehR1mznTt3tqw8VV7cdddd9jXKPAcigX6X9btdtWpVK+9VdYS3Ebt8+XIbVKZeq2qDI59//rndpzZQyigCIt2pU6dc8+bN7d9F+vTpY/x9CnyrTDPqDUD8UOBR/061CaO5EV4wPSaVhHKlWROvvvqqK1q0aERk0AKIX0pwU2KP1gtKflAlsqrxlbigyi2EvkWLFtkcBG3oa58g3J0+fdr16dPHKgt1zlNF8ZUqhwNN52JV6et6VMmjOp8rcKIqR8390LxEAMD/SRzlfUQQbRg988wzFoBQtnjt2rX9Zfw6WerkXbZsWTdgwIBo36cFi9reqCWUyg+BcKXZK6oeUmaQqok0DE7lv95mjbLHvYCeAnbiVVYo61T9dYFwo40DVQD99ttv0e7Xx5caAr97924bmK0h8R6v5Z8GzG/fvj1aqzQAgde/f3+3dOlSmzWmfuEKpP8Xff33339v2ZpXqqRYs2aN++abb2yjBwAuR61Qde2oymRdK2rTVfR3ZsSIEdaOTmvrrVu32t+V9u3bB/uQcQnVqlVzjRs3tsTEvHnzunClAdia69CrVy9/pbCek2Y2aTB2KPjpp59c27Zt3cKFC+1jradHjRplM0AAAJfG4OwIpk2pHDly2HBTtb3RMG1F79UHUYtH776olH2QL18+GzKlqD8Qrlq2bOkWL17sfvzxR9vY0Z86ldSqzNajCytVHGlQtgaQqhWaNngV0FDpMxCO1G+3dOnStmngBR1URaQLpYsHZytwpzZ/UanqSBUWykjTBWySJEn+82cywBKIH8uWLbNqQJ3DNEdMFRUxUbNmTWvfqUrBN99887Jfd+DAAasgVGJKXA7hBhC6ruWcrUQ2/T1SAPTilpLaJNYcN11DagCz/uZoHR6fWHfE3ObNmy1Jy2tjq/NJuM8gUjLmmDFj/Jv/Ssxs0KBBSDwvBVBUNdG7d2+rMFK1hIZkd+/ePUZJBgAQiRicDVtAPvroo/b+4MGD7a0WJyrr9zLzPNqgVbWFNnQ1QFUDhRXIAMKRskKnTZtm2TUKUIgWrVEDFKJe3QpQRK2iUJ9vAhQIZyofV/umqVOnWjm5Wpf98ccf7rHHHrPPt2jRwloziNqdaXMy6k09idUaUO/HJEABIH4cPHjQNW3a1DaUVPUX0wDFjh07LECh857XzvBysmTJYus/AhQArmT+/Plu6NCh/wpQiCo11Tpuzpw5tgaJ7wAFYk5rQVUYaJPcEwob+XERpFDVu4IBSjpTC6VQeF5ff/21JQq98MILFqBQQqjmI/br148ABQDEAEGKCPf888+766+/3i5WtXErWqQooq9MF2XESN++fW12hXo66oJYm1PKuKXQBuFImSoKNLRu3dqtWLHC/f333/7PadP24sxxtbx5//337f0uXboE/HiBuKQyfm0kKEhXvHhxy6BTD2JvY2Hfvn22+QkgdCkTs0mTJjaHQsklXmVUTHiVE6qm0BBRAIgtrRsKFSp02c/r2lHXnMoeR+hQMorOJz///LN1VAhHqu7V/oVmaUb9fdN6tkOHDiGRUKNkIO27KECh5E/Na5k4caLNQPRaowEAYkDtnhDZGjVqpEiDr0GDBv772rVrZ/eVKlXK988///i2bNnia9KkiW/Hjh32+Q8//NA+//HHHwfxyIGr98UXX9jv7vTp0+33OVGiRL5cuXL5jh075rtw4YKvUqVKvsSJE/umTZvm/57HH3/cvqdatWpBPXYgXJ04ccL+DektgNjr0aOH/ZtKkSKFb/v27TH+vvPnz9s5T9+7dOnSK37t4sWLfRMmTPDt2rUrDo4YQCSfs7NkyWJr7MtZuXKlL3PmzL5AYd0Rc8uXL7fr/XCj67Z3333Xd8stt9j/6+uvv963e/duX6j59NNPfTlz5rRj1O3hhx/2/frrr8E+LAAIKTE9b1NJkQD07NnTyh9nz57t1q1b579P7TxUkqj7laU3ffp0f8adsu80u0ItQbwhqkCoU+WPKoA0U0XZ5GpfpkHCymBRCxtlk6uyQm3P7r77bvue7777zr311lv2vjLPAQAIJp2rBgwYYO+rddvVDDfV+U3ntVmzZrn77rvvil+rx37iiSesRQsAXImG/fbo0cPmF15M8w91bamhzAguVUuoha0y+z2VKlWyKpdwovmAmnOiIe2aeZI7d263YMGCkGpNeOzYMWulquPcu3evzX/76KOP3HvvvXfJtmgAgP8WXmcrXBOVQ3q9QdXKRhu56uGoXolea5yo7XBEgQktcNRDccaMGUE5buBqLVy40H311Vc2PE2LcV1QqZXTuHHjbNHu9WNVj24tJEVBDf2+P/TQQ65s2bJBfgYAgITsp59+sk0Zefrpp93DDz98Te09YtKfu0yZMq5y5cqc+wD8J80s3L59uyW0af6ENow/+OADm3uo+9ROVW2DEfxZDbq20XVNOLZtVsBLbag16FtD2nU+0xzNb7/91pIoQ4Xmd2q2oRLdvPlPShCoUaNGsA8NAMLadSqnCPZBIP7t37/fFpA68WsjVyf506dPW1aChp1pkZkjRw4b8DRw4ECbV7Fq1SpXv359WxRo4RkK/R6By1EQolixYi5jxow2a+XizRkN0tbA4NSpU1uFRdq0ad3KlSstu8jLPM2XL1/Qjh8IZydPnrR/WydOnHCpUqUK9uEAYUlrNFWxbtiwwd1xxx3uyy+/dEmTJo3x9//222+WhBJuGbMAwuOcvWfPHtsE13Wit4Wg9XbVqlXdyJEj7boyUFh3XNrq1atdrVq1bB5CvXr1XLhR1UT+/Pnt/6uSzUaNGuVuv/12Fyo0J6pt27b+WYa6dpw0aZIrX758sA8NAEJaTM/bBCkSEFVRDBkyxCorNEhVG7MaIKyySe+C9siRI3ay/f33360NlN5XKygNYdQJGQhVU6dOdY8++qhbs2aNbdSovZPX0kkD19Ty6ZdffrGML1VU6E+fskfXrl1r2apjxowJ9lMAwhabBUDstWnTxo0dO9aC6Bs3brTkkatRsWJF2+B5++23qY4AEG/nbLW5UTseUWBCf7MCjXXHlV+bcHpN1EIsajLkO++842644QbXqFGj/6wIDCQFJhSk036J9lG0t6JWwar2AABcGUEKXHJBqYDE8ePH3ZQpU2xD91LU3kmZe3Xr1rWFgXotfvjhh+7777+3LHUg1Oh3WsE3ta5Q5pCCa4cPH/ZXDT333HNu2LBh9vuvyqDkyZNbD+4GDRq4G2+80YJ1mTNnDvbTAMIWmwVA7CiwoNacWnd9/PHHV93bXdmz5cqVs40d9cbOkiXLf543NZtMGy0AEpZIOGdHwnOIK7rG0Yb+f/3dD0Wff/65a926tVXiVK9e3YUiXVM+++yz/uoJtaLSXkqpUqWCfWgAEHHnberBE5A0adLY/AnR4DNll3vOnDljA8/UWkD9j1Ue6mUuKPNcdHIGQlGnTp3sj94bb7xhH+v3V0ELDTKTnDlzuptuusmNHj3aAhT6fffmU3Tu3JkABQAgaLZu3WoVfdK7d+9rGj6rHvHSvHnzGG1U6efpQkHBEQBAeNLcPSVjqXpOrZzDhVpMq0vDfffdZ214BwwYEJIzNJTUVqhQIQtQKKiv/RK1ZCRAAQDxgyBFAqOhTurreODAATvJevr162dDqXTRqpLLqP2RtaGrfpBq/zRr1qwgHTlwaco4VTbL66+/bsOwFYzTgn3dunWWUSodOnSwYaTqbSqau6KB2trI8QbIAwAQaKpo0PwvrbUUnIi6Noupbdu22Wwxiek5TbPG/vjjD5tLBgAIT0rI0gwHtSFKkSKFCwdff/21K1mypO0viPYfPvnkk5Bq7aQOFI888ohV3auSQtUTurbUAHnmdAJA/KHdUwKkYWfarNUcCp1slQmgGRRa4OgkPGjQINetWzfL7NOJWdQbWe2hVqxYYQOGafuEUNncUXaLFo4KVlw8LFR/3i5e8GpjRgO2//77bwu8aXMIQOzQdgG4ehcuXHAPPvignb80f0IbN+nSpbvqx2nVqpWbPHmyq1Onjps/f36Mvueff/6x4IZXaQgg4YiEc3YkPIe4ooCz2teG0ib/5c47qvrTHIfz589bsthbb71lg9dDba/k8ccft1mGurbUvoiqHAlOAMC1o90Trphx0aRJE7s4fvLJJ22RoIFnr732mn1eGQIqu1RWukoxtfDZs2ePtcoRZWoQ20IoUHmzSpsnTJhgLcw0P0V/9ETVQppR8dlnn/m/Xr/zTz31lAUoatWq5R566KEgHj0AICHr27evBSg0dHPevHnXFKDQuW7atGn2vtfGMCbUtkJBfgIUABBe9u3bZwmEHv0dD/UAhSxbtsxaT2vvQYmQSogMpQCF9jzU3lrJnApQ5MmTx3311VfWiooABQAEBkGKBEqtcW6++WZb4HillippVF9ItRxo0aKFlYxqYLYGDStTXdUT+lr1ZqTtE4Lto48+suwb/S7L0KFD7eOVK1daMEIBi/Xr17sXX3zRH1TT57/44gvLNtKAtnBY0AMAIs+CBQssKUTGjx/vSpQocU2Poz7ZCrxXrFjRepIDACKX/t5rSPbdd99tm/7hliipZMepU6faXsK1BObji+ZMqAWVl5SpeRmbN292d911V7APDQASFNo9JWDq268ekApGqAVOtmzZrGJCrXA0VFtzKl566aV/fZ8WRspOV9unTJkyBeXYkbCpT6gGYxctWtSyUBVsUPBB/Uw1b2L48OGuY8eOlp2qQFyBAgWslZlamqm12ZAhQ9zzzz8f7KcBRAzaLgAxt337dle6dGn7d6NZYW+++eY1P5aW8Tr/Kcszppspr7zyip1HlZBSsGDBa/7ZAMJTJJyzI+E5XAtdxzRs2NCub7SJrlaBoRxQURtpBSbSp0/vQrUF1eDBg12fPn2swiNr1qyW1FalSpVgHxoARJSYnrcJUiRgyjavUKGCW716tQ1r9DZ71TZAF67KblDbJ+8X6PPPP3eLFi2yzV21CND3qqqCbHQEmuajqO+2qnwUXIvqm2++cXfeeacNfVflj9eerHHjxpZxqiCcKiy8odoAYi+hbhYAV0tJIGpFqOQQraOU9BHo85EC95pHocC+1n8AEpZIOGdHwnOIzcb6jh077G95qNq/f79de2mfoXr16lYBH2p7BkrObN68ubV08hIxx4wZY22wAQBxi5kU+E8aBDVx4kTLNlfwIWrbp/79+1vZo/fLo4WGSjQ17EoncpVCqn+yZgEAgTRjxgwrE37jjTfcrl273K+//ur/3NmzZ12zZs0sQFGzZk3Xpk0bu//tt9+2AEXixIntd54ABQAgGMkh2hBRgEIDQ3Veutbzkc5zx48fv6bv7dy5s81nKlWq1DV9PwAgsKLmlWqmUCgHKJYvX26tkxSg0IbUE088EXIBiunTp1vimvY1UqZMadeWusYkQAEAwUWQIoFTmb9a34gqJNTCSYsIDSHOmTOn/+uyZ89urZ/U51/DpDTsShvA6teoNgNAIHz99df2O6hAmnpv165d2xbBO3futM9rGJsqKTJkyOAmTZpkv8u7d++231NR/+877rgjyM8CAJBQB2V/8MEH1ppJlai33HLLNT+W2lFobabkkavVunVrN3bsWDtXAgBCP8Bdr149+3uv90M5kDJixAhrlXTkyBGbtbRp0yY79lCqZmzZsqUlten9cuXKuS1btlgXiVALpABAQkSQAu7ZZ591NWrUsKy8pk2bWjZ6VBqePXPmTNerVy/b+E2ePLndr77/5cuXd/Xr13c//fRTkI4eCYUqJurUqWNzKFTBo0ogbdDkyZPHAmpaGHtVFZMnT7Z5KeqFqkXo6dOnbcBcly5dgv00AAAJkIIS3qBszQSLzTDOc+fO2fwlndtUDQsAiFxqyawAd+/eva0VcyjS/oESydq3b2/tqHT99eWXX7rbbrvNhdpwbFXY6zpSexsrVqwIqWMEgISOmRQwv/32mytSpIgNF37uuefc66+/7p9DUblyZZc0aVK3atUqy4jwfPrpp6548eLWW1mlnCqXvOmmm4L4LBCpFEC75557LBimBabaZIg2aM6cOePPBtWfM/X31u+saDGvTSH9fm7dutXdeuutQX0eQKRKyL2hgf+i84+q//7880/XsWNHa1cYGwrUP/nkk1aJoQ0rL3kkJjRoNWPGjP7zKICEJxLO2ZHwHGJK1zdKwNJbVcKF6kBvzQTcu3evdWnQfkKoVCboddN5t1u3bpbApiS3d99911WsWDHYhwYACcZJZlLgaijrfMqUKfa+TuKLFy+295V9rqGKyo6oW7euBTG8fsZq+6R2AQsWLLDZACqdDOUSVIQnLSyffvppKxfWsOwUKVL4P6f3FRjzfu+0GPYCFMre0WwVL2uVAAUAINDU8kJVgApQVK1a1d9iMzZVFAMGDLD3u3btelUBCtEg06xZs/rXeQCA0Kbrm1atWoVsgEI0y0HXaTq3dOrUKWQCFEePHrX2wNq7UIBCHSDU3okABQCEJoIU8NOgYbV+ErV92rNnjw3m0mCp3Llzu3379tnF7fnz563ljhYfuqkC45133rFWBt6mMBBXhg0bZr23NfBaC80cOXLYsFFRcEK/kw0bNrS+op4DBw7Yfd6QUn0NAACBpICCzkXKLL399tttKGfixIlj9ZhqU6GqQiWXaPj11VDl4Y033mhru9KlS8fqOAAA8Wv79u123R2q1FVBewAe7QloHkWo8LpALFy40LpCjB492q4h06RJE+xDAwBcBkEKRDN06FAr1VTJpion/vjjD3fzzTf7M9jV/umFF16wqgm1L+jZs6d9n762X79+1l5n7ty5wX4aiBDKxtFAd82S0LBsBSuOHz/uPvroI/t8nz59bOGpXq2q5hFV/Tz00EM2n6JQoUJu1KhRQX4WAICEWAWoxI/ly5fb+kn9xJVpGhvKAvWqKHRevNoqCn29qhJ1HmWTBgBCuy3Gvffe60qVKmWJg6FGbQc101JzKNauXetCiZLUNGRcHSH2799v8wvXrFnj2rRpEzIVHgCASyNIgWg0gFFBBmXoKQihhYcutLXZq+w9L7NdWe2FCxf2f5+yPFq0aGEZg8pc10UwEBs//PCDVUCo3ZgGhIr6h6od2fjx422YuwJjoo+VKaPf1WeeecYWy9qA0aZQypQpg/xMAAAJjc5VWitpOKcqKLSOiq1169a5X375xWZKqA3itYraNhEAEHq+++47m8mnhMHMmTO7UKFrrR49ethcJA3IbtKkic2oDBXHjh2z5Em1Q9TxqTvE119/HVLHCAC4PIIU+Jds2bJZ66YbbrjBSiIHDx5s99erV8/16tXL3t+5c6f/67V40mJAvR21mVywYEF3//332+IKuBa7d++2cmH9Lk6dOtVaU4jaZGjo6MqVKy0YJhrM5r2vqgnNVtGmkIIYaq8BAEAgqcJPVYBeharaacaF8uXL2/pL7TXUtgkAwtWgQYOsel/JRAq86lpS7Y3wP2XLlrXXY/bs2ZZEGAq06a8AuZc8pop2XaeplVIoUDCiZMmS7sMPP7RjUhKbzpckrAFA+CBIgcteCI8cOdLeV7ZE1PY6aq3zyiuv+L9W7XV00Xzo0CErR120aJHLkiWLbTLv2LEjaM8B4Um9tu+77z7L9NRQdg07U8muMne8BagCZmp70ahRI/8QUrXUUABD9PUaUAoAQCCpClWZpTpnPfHEE/7zUlzRXKZrOb9pbpO+VxWKWrcBQDCtWLHCWuKpDc+SJUtsXa8kNyW/4X/Sp08fMhUAmrGkqgRt/Ktlkt6qzXMotE/S+XbcuHGuXLlyNgPqtttus3kUOgeHwvEBAGLuOp+38wdcgno3jh071jIQtJhUS52oVIb6888/W+a6ZgAo60MUsLjnnnvsolhZ71osAP9FbSzUP1T0e6PAg2ZRqHXT999/79KlS+fy5s1rC9DKlStb8EyZMmoNpUoeDdZu1qyZmzZtGotSIMC9k1OnTu1OnDjhUqVKFezDAYLit99+s4HU+/bts2C7kjZUlRpb2rz75ptvLEP0WmkTUBuAOXPmDMn+5gAS9jn78OHDVlGh603vWiDcnkNcUDJghgwZrMoklEyePNm1atXKzmlqv6sWz6HgzJkztl+hig5RcptmGDJ3CQBCS0zP21RS4IqGDx/uDzZoNoA3nNj7JatevbotJBWk8AIUotjXvHnzrDxV36/2Pfg/akukjQK9PmXKlLE+0wmdgl0aEKfNmM8++8xlzZrVAg6q2lEw4pZbbrGFsXp7a6NFs1MUoNBAtAceeMACFNoc0iA3AhQAgED6888/bXNEAQoN6VS7zLgIUIjOaxqe2rZt22t+jAoVKljgX7MyACDUaNNC0qZNe8nPKzFO155Rb5FG1QqaradrQwW5Q4nmVLZv395aKYVKgELV9zq3KUChvQhdM86fP58ABQCEMSopEKNFY6VKldyWLVtcrly53JdffmkDvDSYStnrmj2RO3du9/nnn9sMAWUSarNZ0TFlXajHqEp3tfGcL18+l9BpVoKGjKtCRYtQDSLXZob6jiqDKCFSZYSyTtXrVAGJ/Pnz2/wJj/5MXSrwoMCEfgdVSaHfLf1uqjQaQGBFakYjEBM6d2nTRskZ2mBbvXq1Vf3FhdOnT9t8JVWoKsFBG1gAEEnn7AsXLliQ9/jx47aWvxS1HO7bt++/7g+V5xAXdF3Trl07qyZRYmDy5MmD/nuihLokSZK4ULN06VL38MMP22umaz9dX+taEgAQmqikQJzRL5KyORSg+PHHH616QotIZSksXrzYKgK0kFIgQxkNClLopsx4La600Lr55pvt899++61L6F5//XXrkamMFA0ZV7BCAzAV0EmINM/Eq8bR75P60yqIc/78efv8wYMHrcfohg0bon2fAl8aRqoAhaouPv30UwIUAICA69KliwUotJGjLM64ClCIKh8UoFCgQmsHAIg0WvvrGlHV0pfz4osv2saGd1MldaRRW9vp06db4lqwAxR6jVW5rvl/qvAIFUpc0zxCr4peVYaaV0iAAgAiA0EKxIha7WgTOFOmTFZRUadOHesBqc1hBSF08awAhjabb7rpJquaUFsBzaJQ1YXe12Oo9ZMGpCVUWuRpIaWh4h5tzutjZV4mNJs3b7bglX5nNINCc0006EzVFGoRpkCXPq/fmdatW1umlfc61q9f361du9aCZfrdvPXWW4P9dAAACYyqG5R8IOqDreq+uOzRrs0Y6d+//zW3j1IwX4+j9QcAhBK1sVu4cKG/Iv9y1OJVmZdRb5EqRYoUQc92VZtnXWd98cUXVvEeKm0V1QpYiQG6JlTCnypvuAYEgMhBkAIxpkCEKiq0KNSGsjaJz549awsDBSqUOahezNpUVvaHWkBFzZYfP368teRRoOLtt992CdGRI0esLYSCPVHpY23QJySzZ8925cuX9wexsmTJYr8ban2loIMuRhT00u+OqnWUpaqAjmZWaIGqqgtVoCigoYoUAAACSRtr6tEtAwYMcE2aNInTxx84cKDNBCtRooRls8bmOLWp069fvzg9PgCITUa8AhRa3yu5TYltCZWubTRP4ffffw/2oViAQlUKShBTIpjaKsVldeC1UuKargvfe+89awmsBIFJkyZZOyoAQOQgSIGrUrx4cbdgwQILQnzyySfuwQcftLY7XkWFNouV5aCbZ9u2ba5WrVrWJurNN990TZs2dS1btnQvvPCCbdgjYVHmS+/eva1/t35/RowYEe3zmmGitk0Kdu3Zs8eCY/rd0sWLhuY1aNDAAhzKKNXbqAPbAQAIhPXr11s/bJ3TWrVqZa1I4pIyV0ePHm3va/NKQfprpQ0mVcBqHQYAodLi6Z133rH2RilTprRkLd1UqZ/QTJs2zXXr1s1mFXpV48Gg6/caNWr4AxTLli2zIHmwqcr+jjvusGpAtcRS4ETzmS41rxAAEN7+bzItEEPaPFaAQvMAtEjQYkZZemrnpIx4ZToomOHREElVVSRKlMgVKFDAsh6KFSvmOnXqZP1HlRGhmRUJgTbf9TpoZkdU+livX6TTAFAFqObOnWtZp6VLl7Z+p/q90O+O2j5pYazheWpzocobLZAVBNNFS7169ayCQlkzegw2XAAAgaY5XFoDKUmjatWqbsyYMXG+WaIWmtqMUfKHfkZsKEChGwCECv3dFFVRRzVlyhT36KOPuoREba6KFi3qmjdvHquAdGyrOZQI9tVXX9l1ua7xQyFAoTaKTz75pB2fXqMPPvjAKuwBAJGJIAWuOVChljzaJFbrJ200K3CRIUMGu3m0wayghfqMqjWU2vOI2iPkz5/fshDvuusuq84IhVLS+KahmhrwpddFFQOijBl9rJLnSKasUG2SaONFg0X1vlo5KeCgxbBXVTN8+HALUGhh/PHHH1vwRhtBqrrQ75F+h/T7Urly5WA/JQBAAqMh1urV7Z2n5syZc82zIq5EQ0B1jgyF9h8AEB/tnvA/uo7WfMJgdhhQ4qAq19UtQcmHJUuWdMGk62NVKL766qv2sdpMK2AR7HkdAID4RbsnXLNy5crZ5rrKQZX9rsXV0aNH/Z//6aefbEGhbBi1KlBFhWfChAlu8uTJ1oNU2YfKqFeGfEKgChI9/6lTp9owyzZt2tgmvIZ/RSoFsu68807rra2SXS+jM0+ePDbwTHMlvAF4EydOtN7Z+h4FKLzhbQpQqBxcc1EIUAAAglENqAqK3bt3WwtCBdJ1Xoovqi7Mnj17rB7j4MGDtsYAAIQuVVDER8A7phR0V/WEAu+aGRhMOmdpD8ELUPTs2dPNmjWLAAUAJAAEKRAr6g+pzWO1MVKfyAoVKlimvOjCWv1GRcMaH3nkEZspoKzAzp0722Jj7dq1FuDQYkhto7QYifQ5FY0bN3ZDhw51vXr1srZYmzdvto33i4dpR0qW1MiRIy2oUKRIETdz5kwr2d20aZP/azRzQv1ovYwqbcooqKWFqDckTYGM1KlTuyVLlriKFSsG8RkBABIirxXGhg0bbM2j83Z8tGlUVar6k8dVX3LN/1K14rhx4+Lk8QAAcUPXNwoK6PwSLMePH/e/rzl/wW6lq2s/Xeup6l4dCDS35OWXXw5aGywAQGDx1x6xpvkSKg9VP00NydbQL2XLazGhuQPKjE+cOLFtRKvvqDIR1SpKFQRPPfWUbT6rfY8upLt27Wpfo37PkUytnVRpoqCNAjV6zSKNnp/6aLdr187+X6tS5o033rCglIJXCkoow1MlzqoiUSArqo0bN1qFzZYtW1zGjBmt6iYSXycAQGjzhmPrPKaWg2qFER8tKjV7ScNAW7Ro4caOHRsnj7lnzx53/vx5SwgAAIQOXfso+K3r5WDQ/A/N/4uaPBZMOg5d6+mt2kcrEbJZs2bBPiwAQAARpECc0GBHbbarf+WRI0esl/KMGTPsc7qwV2agMvm0Qa1yUmVtjB49OtqgySxZstgGwIEDB2wwlmYTxFUmIQJHwQdlbBYuXNjt2LHD/p+++eabVsKsqoomTZq4999/3wZl63fBG5gdddi6glbKolEQI+rvFgAAgT6nqU2jqhsSJUpkVaDxFTB//fXXbX5T1qxZXcuWLeMsU1ePqUpXAEDonFvUkUAVeQpMB5oCAKpu15ylDz/80AWb2ifq2k/7AIUKFXLr1q2z1tIAgISFIAXijIIMmiNQu3ZtqxDQZrQyQ7QI07wKZcZraLTaPSkLMarevXu7Dh06WM9JZc63bt3adezYMUFUVUSSffv2uQceeMA9/fTTNhRdmzrfffed//OaS6KyXQ0+0+/Eb7/9ZsEMtQrT741+V4YNG2ZDxf/880+rxFBVTs6cOYP6vAAACdPAgQMtacLLOtVMivhqcaGfJWp9qeB9XFAySI4cOVyyZMni5PEAAHHzt1nXyfrbnytXroD+bCWRaeaDqux0vabr72BScpuuAzWLQteHX331Fdd+AJBAEaRAnNJF9dy5cy3rUF566SXLBtSGs4ZMatExePBgyxaMSpkTyhxs3769zSJQ5r0yPLRwU1WFPqaqInQpuKBh4Ao4aBi4enW/+OKLttDU/JEvvvjCvk5VNtrg0e+F/n9qqLqqJFRqrMCW2lw899xz9nhqBaaB2moHBgBAoKnlks5XogB68+bN4+1nqd2l1kqa0aUkDwBA5FOFXiAdPXrUrsWOHTvm7rrrLgu+R+1sEEi6FuzWrZslt2kmpa4LufYDgISNIAXiZbH12muvWTsnva9serVG0LyKpEmT2oW43ooWJMrg0JwKfb5p06bRsu6nTp1q7aJUZXHvvfe63bt3B/GZ4XLVE9WqVbOS4UaNGrlvv/3WqimUFaQAlTJ1ChQoYF+rlhPLli2zjM7Jkyfbwlj9vTVsXRsz2hDSQlmDxceMGWMtogAACLSZM2da4FyUZap1SHxRAofmdun8p6qNuNgw0iBWtUlU8sfJkyfj5DgBALGnCvJvvvkm4D/33Llzdl2mLgWqsNNw6mBV2Sk57ZFHHnGvvPKKfazh2Lo21LBsAEDCRZAC8UbDkpcsWeIyZcpkG9fqu6mL8KhGjRplGwEaGvbEE09Ydoe3cFHAQoGJu+++26oq9u/fb/MJVKWhjHwEl+aKqFoif/787vvvv7cKGlXDRK14UaDh3XffdenTp7eP9TugwISqJzQsW+bNm2cbKVqwKzClVmCqvghWVg8AIGFTb2xVTaiqT4GKvn37xtvP0s9Qe0t5/PHHrS1mXAU+NHz0vffei7PWUQCA2OvSpYt1ClByViD179/frVixwqVMmdKut3SNHgwKnKuaQ+enxIkTW1KikgG49gMAEKRAvFKQYfPmzfZWfSabNWtmbXzOnj1rn9f73bt3t4oLDdrWoCxtduvzel/lnhrCrdkUyjhR24WJEye622+/3RZaekwE1pkzZ9yQIUOsUkJtuBQ0UhBKAQllwWi+iEdBqjx58rgNGzb479PvgBbmyuZRa6eHHnrInThxwpUtW9Z+V2rUqBGkZwYASOiUFKFMU1UiqNJzxIgR8bpxosfWuVSDrdWfPK7ceeedliWrLNVAtxMBAFyazi3p0qWzrgKBvuZ54YUXXOPGjd2sWbOsRW8waB6hrutVWa8Wz0oKCMbgcABAaLrOpxQuIJ6prZMyERVY0K9csWLFLHvCawOkTWz1ofSGLGsBpYt2fV/mzJn9j6M2QEWKFLGZB2onlSZNGterVy+rwqA1UPzScDVluvTp08f9+uuv9por68X7/6PFpoJO6ttdrlw5q4bQgGzRIGxVTHjUtkvBClVUiL520KBB/D8EwpSy4hRUVsAxVapUwT4c4JqsXr3aVa1a1RIgNMRz9uzZnJcARJxIOGeH+3NQRfrNN9/sEpKdO3dai2C1+c2QIYP75JNP4qx6EAAQGedtKikQEMriU5a9ggtalGzZssWVKFHCMvy0+a02QGr341VVqAWUZlFEDVAokKHyWGWdKHt/+/btNvugbdu2FuxQJQbDteOegkoKMCg41Lp1a5sdsXTpUssE8gZiS+XKla3aRTMqVD2hAIUyRPX/Si2fRP9/1G9bj6UAhRbnH3zwgQWf2AgCAATLxo0bXfXq1S1AoUCF1iHxeV7SufWXX36Jt8cHAISuQAUoDh8+bNXuwc5L1TlW15AKUKgjwqpVqwhQAAD+hSAFAur+++/3t/TR3Ilu3bpZ1r3aBansVa0O1qxZ40qXLm1VFx4FMrJly2Y9ojW/Inv27C5nzpyW2a+v16yKJk2aWLBjzpw59vWIHQUUPvzwQ/v/o5ZMt956qwWKFAxav369td1SBYT+P4oCFhqQ/uyzz7rff//dyoh1n4aoazi2smcqVapkvbfVMkotwNQvW9mqAAAEi6o4tT5RZo/aLikwH9/DRLVW0UaN2ifGNbXPUK9zgiAAEDq2bdvmjh07FrCfp44Euj7WbKWuXbu6YFm5cqW1eFLARHMINTMpd+7cQTseAEDoIkiBgMuSJYsN61Kmvcp9tOGtTAoFKJSdr0CDAg9qCeVRBYWy+DWT4p133vHfrw2FBx980B5z8eLFVjakIIZ34R/IhWAklWGp2iFv3rz+AIIyStVey8t40WK3YcOGFrBQcEkUhFAlhVpwjRw50gIQypjRAvn111+3ORRffvml9R9VRo+qMRRoAgAgmJtGqgQ8evSorT8++uijeB80rTYf7dq1syD/6dOn4/zxdQ5u06aNv4oRABB8qv7XNauqyANBbXnVjlfntJYtW7pg0DlVnQ9OnTplyWqa+xSsgd0AgNBHkAJBoTZAWiwpe7FWrVo2RFkBCGXiqyd01CGVysofN26cLXJUMaFM/Z9++sk+p2zHQ4cOWca+NhmWL19ubaOUpa/HU/XF008/bSWmuDIFGLRpotfs+eeft2oWBYs03Fr/r/Q5jyoj3njjDQtAeDRTRHMlFKzQ/6PEiRPb/wtlpariQsPQq1SpYlUz+n9y/fX8+QEABI/aRmq9oEGeSoxQS8pA9DZXFalmOykZ4MUXX4zzx9e5VlWQNWvWjPPHBgBcPSXi6e++rofU9ja+qRpe12UyadIkV6hQIRdo06dPt7mEes5KKtQMinCcHwIACBwGZyPo9CuobL/27dv7Kx80VHnw4MG2Ye5tJGizXIsbUZ/oxx57zGZYaAaC2jtpo0G0cd6iRQt333332ee0MFPLA5WXathz06ZNWSD9f8rgVJXEhAkTbEaEMls0C0RBCW2eeEOuNWOibNmy7tNPP7XqFf2/GT9+vEuXLp19/uK2GFqE9+jRw02ZMsX+/6ZMmdLaPqkaJmoACkBkCPcBlkh4FFBX+4kDBw7YhtFnn33m0qdPH+8/VxWFFStWtPeVWKHMUgAIpEg4Z4fjc9A10a5du+y6Kj7pvKYKdlUIdujQwQ0bNswFmqrmlbSm5/zII4+4yZMnM38QABKwkzE8bxOkQMhQJqOCDt7GtrL1lWGoLPzkyZPb16hiom/fvla6KlrsqOWQZiZ41EpK2RoaSPbzzz9bOyIFN7QRr2oMbahrJoZaGemtNtoTErWZ0OuhDBu9VgpUqAxXARwFEF544QWrbom6oFWVRdq0ad2rr75qVS3eHApVSSjApHkVovvffPNN169fPyvrFQWFNCDdCzgBiDzhuFmAhEvBdQUHlMCg7FK1n8iQIUO8/1ydb4sXL24///HHH7ckCgAItEg4Z0fCc4ivmYKasaRr5RIlSlhVfJIkSQJ6DEpMU1W+qBJf15RU0ANAwnaSIAXClVoEKetDQ7UkR44ctjmuWRPeAscLVqg11N69e/2bC9qA//PPP21+goIcCnp4FOzQY6laQ0Ml161bZ4+nuQkKWCiwkS9fPheJtCGioMSCBQvstVPliSpLqlevbkEEtdESzfWoVq2avU76nkSJElm26csvv+xmzZplbblEr5lef1WrKLChPyN6fL3GyhAS9fbWbAu1nAAQ2dgsQLjQuU2Vl/v373cFChQIaH9szXNSdmn27Nnd1q1bLZkiLulcrA2pO++801ouAkCknrPD6Tmoyl/XnIGoJtc5QElkCkyo3XH+/PldoOgc1L9/f9erVy/7WMmGmjlJFT0A4GQMz9uEtBFyNJxZG+nvvfeeZd9r/kTjxo1tU33u3LmWIaJWCRq8/MMPP0TLflSgQVUAGpyt9lCeH3/80YY36z5VDKi1kUphx44da5sEGiymRZyCFKokWLlypW3khysthletWmWLQ2WJ5s6d23Xt2tWqSFTpoDZYGnyt99XCyaPMm2nTptmsEAUoRH1ENaxcAQotevW6ezNARNUpml9Rp04dC1DccsstNhRdrzEBCgBAqNixY4dVUChAoXO+WjwFKkChzZvbbrvNqjtVMRrXAQrRuVvnXSUahPMaBgAiiarOdW2q5K34dtddd1lbQZ1nAh2gUKtfL0ChYMXAgQMJUAAArgqVFAhpqooYMmSIlY167YPUY7N37942iCtq6ajaNmgzXpvqojZOmoGg+RR6XwEJtX9S2yePAhbq19mpUycb0K1qAN3UekotptSWQUET76asy1DLTlRAYtu2bVaB4t02b97s/vjjD+uvraCNggsa2KbXQhUmMmrUKNe2bVsL7KjCQlQ1oSCFvlevuUeLzKpVq1p2pujPhoITqqbYsGGD3afH1VwRVa9oBgWAhCOcMhqRMOk8qeq/gwcPWvWgWmEoqB5omtkUXz9X65dHH33UlSlTxipGASBSz9nh9BzUDWDOnDl2/dqnTx8XaXRdqGtpr1WwriH1MQAAHto9IaIogPDGG29YBooXrNCgS2Vr1KtXz5/1r4CDejxrA17VAh4FG7ShrrZOHmUZahNf/0jUNkqZJ6L2Udq0V+9oZSVq01/Zl/qnosBFsWLFLGChyg7dNI8hTZo08Z4pop+vdlbKAN20aVO0gISCOaIgjY5Nz1fVJnpOem1y5crl9uzZYzMoatas6X9N9fyU2fP+++9bls/69evtcyoR1s/JmDFjtGNQFYsXnNDP9oITCnao1dPFXw8gYQinzQIkPDrXKUBx6NAhWzuoIjCQ5ytVIgaqJ7jWNjq/cz4GEMnn7HB6Dkr+WrRokc2I0DVZfBg0aJBd56qCPpB0faq5E7r2FrVcbtOmTUCPAQAQ+ghSICLpwltZGgpW6JdccubMaX2eW7VqZcOdveoCZRROnjzZhkTrol0b8cpk8R5HmwaqrFC7I7VC8gIdmr+gTJdmzZpZmyNRYESb86rW8AIE27dvt4WZqH2DMiMzZ87ssmTJYm+j3lTJoSHfqsLQTcEUfa+CJDo23VTpoHkZyvJUKyq99W76WNmXXpWI5M2b1x8s0VstfFUBotZYCloosOJ59tlnrf2SsndUWSHKsoxk4LoAAE1ZSURBVNTrqM0aBR9Er4EqJh577DEL/uiYRX9I1MJJC1BVW8hNN91kj6vBaIEYOAogdIXTZgESFs1+UHvCI0eOWAB/yZIldu4NFM1z0ppCVYqa1QQAwRYJ5+xIeA5xRde6NWrUsMQxtTgOZBtDJaopMKFkvYkTJ7rHH388ID8bABCZ5+3Q6lsD/AcFIRRE0GwJVVZo01yVD126dLGqCgUWlM2hage1g9JNAYHZs2f7Kwhk5MiRtmGvzX0Nj1YFgVoZaZNeLaTUN7ps2bL+r1cAoUmTJtbG6PDhwxaUUOBClQkKHoju9wIKmmmh97Upci0U1PACHKqOuPvuuy0rUjM6smbN6goXLuxmzJhhras0D0JDQEXHrg0ZLRqVMeplUiqws2XLFnteHs3z8OZRqOJCr12jRo2iZV8q+1Sv8dtvv21ZQKI/KE8//TTBCQBASFu3bp2rVq2aJQDofK9znpfMEAiqSFRGqRIjVKEZn0EKVX+mSJEi3h4fABCamz5PPvmkva+3gQpQKMFNAYoxY8ZYgEKJgWo3CABAbFBJgbCmigFt1o8YMcLaHnk0g0HzKFQNcKkonaoNlN14cWBAg6OVcanZDV7AQtQOSq0iVC2htkkeBS708zWAWsERUdBCG/gaXKnsSVU3aINi48aNFrRQeyUFMtQfW0EDBRlUlaCfpxZVCgwoyKLgiajKQtUZCrYo6uhtQmhOhAaUNW/e3IIInsWLF1sQQxsWOm4NBtV9ClooqKHXRXQMao3VtGlTOyaPghEffPCBfU7f61H5sBajjzzyCBshAKIhoxGhZvny5TZzSedCJR2oejA+hlVfjpIb7rnnHrdq1SoLTnz11Vfx1vJJS3mdo/X8NCw1X7588fJzAESGSDhnh8Nz0HXqww8/bG2YtIEfH3MNn3rqKTd+/Hi7llOimjd7ML4DFKqm17xHBSh03mnZsmW8/1wAQPiK8XlbQQog3F24cMH35Zdf+ho3buxLnDixAm92S5Ysma9hw4a+efPm+c6ePRvtew4cOOCbPHmyfT516tT+70mXLp09nmfGjBm+jz/+2Pfrr7/6fv7552iP0bx5c1/KlCl9s2bN8t+3Zs0ae5wcOXJE+9ratWvb/ePHj7ePEyVKZB//8ssv/q955ZVX7L5HH3002vemTZvW7l+/fr3/vh9++ME3d+5c3+7du/33/fjjj77q1av70qRJ438+3i1FihT2+Jdy7tw538KFC31Nmzb13Xjjjf7vuf76630PPfSQ77PPPov2mgBAVCdOnLC/GXoLBNtHH31k53/9TlauXNl36tSpgB9Dly5d7OenSpUq2nk6Pmzfvt3O13rO/BsEkBDO2eHwHObMmWPHmDNnzni5jlq6dKn/mm358uW+QNDzePrpp+1nXnfddb633norID8XABDeYnrept0TIoKyOMqXL283VQio5FTzJDQ3QrModFOGYf369S2jRe2T1EpJsxd0U7WCqg401EwZiVGHYKsqQrMrRCW0+fPnt1uBAgWs7+bUqVNtBoZHVQ9Dhgzxz3Pw6HvUEkqfF1VLXFzIpExItV2K2mpKdGxqNaXMTPXTVhWGd9NzVgssURsL7zkkS5bMsjfLlStn7S70dVGzOPVYyuycOXOmvT6q1PAoG0fHoTkfGgwOAEA40PlMFYI6r6uSQlWTOh8Gkqo2Xn31VXtf65H4GpQadUaV1imalxWqGcUAkNDoOmzAgAF2DRf12jIuqErQq45XVUOlSpVcfNP1ZceOHf0VFJpXqO4DAADEFdo9IWLpV1stoN5991333nvvWfDCo3ZFauuklkq6XW4j/q+//nJPPPGEW7NmjX9gdFQVK1a0+RMetXbQZojaQumm+Q4qu9V9+hlqGeUdm1pR6PE1DDvqTaXBmj2h+RCijRZ9r9pGeQOuo9Lz0PBrj4ZzKoCiIMjFgRIN/lYQQwPWFOzwho97ARgFcLS5o/kccb2YBhC5wqHtAiKfhnaq9YXOlWrHqCSCi8+D8U3BAg3oVuBfG0eagQUAoSQSztmR8BxiQ4Hwrl27Wnvhb7/9Nt5b8eraVT9PiXheAF6JfgAAxOV5myAFEgRVOnzxxRcWsNDwSs1niKpgwYKuRo0aNoC6TJkyNp/iUv+oVJkRtYpBgQAN7PYqE67Ub1rVDAoOeNSXNGoFRlRVq1b1D7UWHY/mWuh7NEg7ajVH0aJFbUPkUo4fP26DQz///HPL7FSv0qj0uLVq1bKqCT33+OiVCiDyJfTNAgSXlrKDBg2yOU3e8NDRo0fbrKdA0/pCs5s0g0rzKAJdxQEACeGcHQnPITaUxPb666+7kiVLuipVqsT7z9OcRa9yX5UUSggAACCmCFIAl6EMy02bNlnAQDdVSVxcoaDWCXfddZf/VqRIkf/cwFeQQoOmNTjbu6m905kzZ6xColSpUv7FnVcC7LVluvim4EeXLl38X/v9999buypVZlzuOBTw0NBtPR/v9sMPP0T7GlVHqErCqyDRMQRjEwdAZEnomwUIHp2/O3fu7IYNG2Yfd+/e3fXv3z+o1YA6JlVSZMiQId5/lgIy586dswxXJS4AQEI4Z4f6c1CyWfLkyS357UpJbOFg4MCB/iSA4cOHu/bt2wf7kAAAYYYgBRBDqlBQ66PFixdb1qOqJS6mRaZXvaBbvnz57K2CGfpcICngodZTquSIWtmhgIRaRV1MlReacfHAAw+4+++/PyCbJgASllDfLEBkUnKA2k2oSlLeeOMN65cdDLt27bLzbaD/3alVo9YF69evt8QDAEgI5+xQfw6qcFBSnM5PaqUbV5SEVqJECZc0aVIXCApKeOdVtZh64YUXAvJzAQCRJabnbXq7IMHTsOnGjRvbzQtarF271l+NoPf1D0kLTd2iUqam5kdoGLY2CrxZFN77aqd0cZWEFpXXX3+9fb9ihJeaS6FjiFqRoXkUenvw4EG3b9++fw3c9mgwW+nSpa36Q4EJvU9QAgAQaTQ0tGHDhjZnSRWGU6ZMsTZLwaCB1RUqVHAtW7Z0I0aMCNgcDJ3zNZNKr4GqNQEAwafqdiWzaRagN48wrmYeqbVT1qxZrZWvrj/jk86rXoBC3QAIUAAA4htBCuASQQuvHZLXtkEZklFnUXi3Y8eOuf3799stkBSBjFrZ4d3y5MlD+yYAQERT0L5mzZpu48aNVs04e/ZsmysVDEoiqFu3riUYaAPJS0IIBCVKlC9f3m4AgNCga7Hp06dbUllcth587rnn3B9//GEJaEqGi086r7Zu3dref/75591LL70Urz8PAAAhSAH8B204qK2TbrVr1/bfr4WnBmMqgOFVOnhvvZsqIi6ulNDHUamy4uJKizRp0vyrKsN7P1euXPY2mP22AQAIBrU5rFatmtu7d69Lnz69++ijj6xqMBg0C6J+/foWnFAbSLX1IFEAACBxea2mGRcKHOgcM3r06HgNiKsFslpUKVFPgQq1eeK6EwAQCAQpgGukxZoyWa62nZKCG4cOHbL39b2BzLoEACBcaW7Ugw8+aAkAt99+u7U5CvQciKjn8rZt27qvvvrKqhs/+OADexsomr+hlldt2rSxYA0AIDSoTXBcng+U4KbzjbRr184VLVrUxZcvv/zS1atXz2Y+NWrUyI0dO5YABQAgYNgdBQJMCz1VQuhGgAIAgP82Z84cV7lyZQtQ3HnnnRawCFaAQoYMGeImTJhg5/T33nvPKikC5c8//3QDBgxwvXr1citWrAjYzwUAXJlmB6oiXvMBz58/H2fnm507d7rMmTO7vn37uviydetWV6tWLXfmzBlrezxt2jSqAwEAAcUOKQAAAEKSKhbUaqJBgwbWMlEbKBoYmjFjxqAd048//uh69Ohh77/++uv+GVaBkiRJEhvQrVkYugEAQsPatWv9sygSJ04cJ0EPBaXltddec6lSpXLxYc+ePdZKUVUgFSpUsNZSOtcAABBIBCkAAIgwo0aNcjlz5rQ5N2XKlHHr1q277NcqG7xixYqW+adblSpVrvj1QKCo3cSTTz7punbt6m9zMW/ePHfTTTcF9bg0G0rH8eKLL7qOHTsG/Odr46tJkyZ2DGS5AkDoaNiwofvll1/cmDFj4uTxVI1xzz33uEqVKrmHH37YxYfDhw+7Bx54wB08eNAVLlzYLViwwN14443x8rMAALiS63wK9QMAgIgwc+ZM16JFC+sjrADFsGHD3Pvvv28Dhy+Vfd6sWTNXvnx5V65cOQtqvPLKK7b5+d1337msWbPG6GeePHnS+i8rAy++svyQsBw/ftw2e5YuXWqtETWDoX379sE+LAAIe5Fwzo6E53A1NIMoRYoUcf64p06dcvfdd5/bsGGDy5Ejh81ZiunaDwCAuD5vU0kBAEAEUfuZJ554wj322GOuYMGCFqxQRtzkyZMv+fXvvvuue+aZZ1zx4sVd/vz53cSJE92FCxfcsmXLAn7sgOzevduCZgpQqGpi/vz5QQ9QKDNWVUZq9RRMGp46a9asOOt1DgAIffERoDh37pyrX7++BSjSpUvnFi9eTIACABBUBCkAAIgQuuD8+uuvbTPVoyx0fbx69eoYD+VVm520adNe9mv++usvy4aIegPiguZNlC5d2v3www8uS5Ys7osvvnAPPvhgUI9JrTCqVq1qgbtWrVoF7TjWr19vrdxU/fTbb78F7TgAAP/2zjvv2DlC57HYUsslJZAcOnTIxQc109CxLlmyxJIBPv74Y5cvX754+VkAAMQUQQoAACLEkSNH3D///OMyZcoU7X59/Ouvv8boMdT/X5vDUQMdFxs0aJCVa3q37Nmzx/rYgXHjxrn777/f/f777+7OO++0TfkSJUoE9ZiOHTtmx6SgSbZs2dxbb70VtGPRnJlevXpZNQXZrgAQWtRaU1WrOnfFNuHk+eeft7kWI0eOdPHhpZdesqCK5hppSLaSAwAACLbEwT4AAAAQGgYPHuxmzJjhli9fbvMpLkcDgzt16uT/WJUUBCpwrdS6SL9PI0aMsI+bNm1qbceSJ08e1ONSr+7q1au7zZs3W6BPlRTq2R0sGTJkcH379g3azwcAXF6HDh1c3rx5Xc2aNWP1OGrTuXPnTpsj9sILL7j4SAgYOHCgvT9hwgRXrVq1OP8ZAABcC4IUAABEiPTp01tW3MWtYPTxLbfccsXvHTp0qAUpNAegaNGiV/zapEmT2g2Ii+qfxo0bu88++8w+HjBggAXBrrvuuqAel9qeqc3U2rVrrfWZWmJo8wkAgEvRAGrdYuP48eP+YPTLL7/sUqZM6eLSwoULrY2U9O7d2+aXAQAQKmj3BABAhEiSJIkrVapUtKHX3hDssmXLXvb7Xn31VdevXz+3aNEid8cddwToaJHQqUJBv28KUKgn9ty5c1337t2DHqCQLl26uBUrVrhUqVLZMNEiRYoE7VjUqu3hhx9227dvD9oxAADin9ppquVhwYIF43wGktpQKSlA60IFJxSkAAAglBCkAAAggqhtjsr3p06dan3027Rp4/744w9/tlyLFi0sU93zyiuvuJ49e1ofZfW814aobqdPnw7is0CkU1uxcuXKuZ9++snlzp3bKhbq1avnQoU2bypUqGDDRIMduOvTp4+bOXOma926dVCPAwBwaR9++KH75ptvbC7YtTp48KC/7aHWZokTx13TC51rVR2oKkHNWVLLp1BICAAAICraPQEAEEGUJXf48GEbsKtgQ/Hixa1CwhumvW/fPnf99f+Xo6DBjBrS2KBBg39t0mpzFIjr+ROqlhgyZIh9rF7Y06dPd2nSpAmJY/M2hTT/YeXKlSGxiaM+5wcOHLDqDgBAaFFgQrOUlNyxdevWa668U1XrmTNnrPI1tnMtojpx4oQ9nlp/FitWzAZl33DDDXH2+AAAxJXrfD6fL84eDQAAJDganJ06dWq7EFZ7HOBStEGitkUazC7dunVz/fv3tzkqwaY+4DVq1HAtW7Z0Tz31VLAPBwDiTSScs0PpOSgxRAkiasmnRJBrPacdOnTIKihq1arl7r333jgLvuvx1LYwc+bMbt26dS5btmxx8tgAAMT1eZsgBQAAiJjNAoSmVatWuYYNG1pFQIoUKay9mD4OBUePHrX2Fxs3bnTp0qVzu3btcjfffHOwD8tpiR4KlRwAIksknLND8TmE2t9sHc+zzz5rFbM33nijVQdqbhkAAKF63mYmBQAAAOJtk0Q9titVqmQBigIFCtjwzlAJUCjrtWLFihagUIsnDfEOhQCFBptWrlzZKk3UQxwAENquNUDx119/ufgwfPhwC1DouN59910CFACAkEeQAgAAAHHu1KlTrkmTJq59+/bWckKBCQ3Izp8/vwsFGnKq4d0aMJ81a1a3YsUKV7RoURcKNLD7888/tx7lDLEHgNCloHJsPPHEE65q1ap2ToorCxcudJ06dbL3NQOqbt26cfbYAADEFwZnAwAAIE5peKiCEjt27LBh1Nps79ixY8i0wlBAok6dOlZyXLBgQRsunz17dhcqNB/jvffes9LojBkzBvtwAACXCcbr3FGiRAn30UcfWVulq/H999+7d955x6oOz507FyfH9O2331qCgB7zySef9AcrAAAIdQQpAAAAECe0KaJ5E23btnVnz561AZ2zZs1yZcuWdaFELacUoFCrpw8++MClSZPGhZLrr7/ehowDAELXhg0b7Fyye/fuqw5QSJ8+fey8Wa9evThpx6Qh3g8++KBV4Gn49siRI0MmOQAAgP9CuycAAADEmjZFHn30Ude6dWsLUFSvXt1t2rQp5AIU0rlzZzdlyhS3ePHikApQ/Pzzz/HWnxwAQoWGOGszPUuWLLaJPn/+fBeO7r77bmvTpOD8tVQcvv/++/b8X3755VgfiyoxGjRo4Pbu3etuv/12e+wbbrgh1o8LAECgEKQAAABArCgYoSzQt99+26oABg4caD2x06dP70KBNv579OhhGa+iTSEFVJInT+5Cxd9//20tqEqWLGktQAAgUv3xxx+uWLFibtSoUS6cJUqUyBUuXNhVqVLlqr930KBB9latEfUYsaFqDFUwKviTMmVKt2DBApcuXbpYPSYAAIFGuycAAABc88aI2kk8//zzlsWpAdTTp0+37NJQcejQIWulsWrVKstc1eZNKLa/2LVrl1VSKFgRStUdABDXVGmnW0K1c+dOa4Uo3bt3j/Xj6Tw8YcIEO7fNmDHDZi0BABBuCFIAAADgqh09etQ9/vjjtukvtWvXtpYXoZS9uWXLFjuuffv2uZtvvtm1b98+JAMUUqBAAaug+O6771zmzJmDfTgAEDJUDRe1Fd7JkyddsB08eNC9+eabrnz58q5WrVpX9b1jxoxxFy5csO9TRUlsLFu2zD333HP2/pAhQ1yNGjVi9XgAAAQLQQoAAABc9aZIixYt3IEDB1ySJEnc0KFDrdVEKAUApk2b5p566il35swZlzdvXvfhhx/a21CmAE8oVaEAQChQa6S+ffu6UPLVV1+5wYMHuxIlSlx1kELfpxZPRYsWjdUx7NmzxzVu3Nj9888/dk7u1KlTrB4PAIBgYiYFAAAAYkQtnbp06eKqVq1qAYp8+fK5NWvWuHbt2oVMgELZtm3atLENGwUoqlWrZscYqgGKiRMn2mYXAODSXnzxRZsp5N32798f7ENy2bNnd61bt7aZEldLwX1VIt5xxx2xmuuhVoaqatTjjBs3LmTOwwAAXAsqKQAAAPCftm/f7po2beo2btxoH6tK4bXXXnM33XSTCyWnT592H3/8sW3W9OrVy24a5h2K1q1bZwEVZcGuX7/eho8DAKJLmjSp3UJJmTJl7Ha1gQU9j8SJE8d6HlSrVq2spWHGjBnd3LlzXbJkyWL1mAAABBtBCgAAAFxxM2Ts2LGuc+fOVpmQNm1aN2nSJFe3bl0Xqi2T5syZ4w4fPhzyg1nV7uPhhx9258+fdyVLlgz24QAA4lG/fv3c+++/79544w2bl3StNHti5syZFuyYPXu2VXUAABDuCFIAAADgktTSSdmaixYtso+rVKnipk6d6rJkyeJCxdmzZ60FVaFChay6Q2LTQiOQbrzxRvf222+7v//+mzYdABIMVbzt2rUr2myFzZs3WxD81ltvdaHu+PHjFrTPnDlzjL/n2LFjbvTo0e7UqVOx+tmffvqptb+S4cOHu4oVK8bq8QAACBWhWfsOAACAoFK2Z5EiRSxAoTYS2gxZvHhxSAUofvjhB2u3MWLECPfcc8+5Q4cOuXCgGRkeBSfUnxwAEooNGzbYwGndRAOf9b7a84WDGTNm2LlQLRBjauTIkRag0Hn1agdte/bu3euaNGniLly4YAkEahcIAECkIEgBAACAaNmejzzyiGvUqJH7/fffrQ3R119/7dq3bx8ysx3UgkpDQjXDYevWrS5DhgzW8kK9uUPdhAkTXNmyZS2ooucBAAnNPffcY3//Lr699dZbLhxocLcCzLfffnuMvl5VFwqmi6ogruVcqseoX7++nZfvvPNON2rUKCrwAAARJTSuNAEAABB0GjittknvvvuubaJ0797drV692hUsWNCFil9++cVmTTz99NO2aaMWVBoeWqNGDRcOfv31V3urwAobTAAQfgYMGOBOnDjhOnbsGKOvf+edd2xOklpZNWzY8Kp/ngI4zz77rNu4caNLnz69BeVDbZA4AACxxUwKAACABO7kyZOW2T958mT7OF++fDZ7Qq2UQolaZRQvXtwdOXLENmgGDhxom0ShUuEREz179rTAyl133RXsQwEAXKOUKVPG6OvUmun111+39zt06GDDrq/WxIkT3ZQpU+xcp1ZT4TC3AwCAqxU+V3QAAACIcxrCqR7ZClAos1/Bik2bNoVcgMLbFHrmmWes1YWOUX3MwyFA8fPPP9twbI/aPVFFAQCR74svvnDbtm1zqVKlcq1bt77q71+3bp1r27atv4KjcuXK8XCUAAAEX+hf1QEAACDOHT9+3AZvPvDAA27fvn3utttuc8uXL7eMz+TJk7tQoBYXyiBViwvPSy+95FatWuUKFCjgwqV3efny5a2X+NmzZ4N9OACAWFCVYePGjd28efNi9PV33323+/LLL20mhQIVV0NVgw0aNHDnzp1zdevWdV27dr3GowYAIPQRpAAAAEhgPvroI1e4cGF/e6d27drZAGptpoSKnTt3uvvuu8898cQTln16/vx5u/+GG264pnYZwbJjxw536NAht337dmtXBQAIX0uXLnWzZs1y3333XYy+XlVzClS3aNHiqn6O2kQ98sgjFujOkyePDRWnAg8AEMnC5woPAAAAsaKsTLVz0hBPyZ07twUqKlas6ELFX3/95V577TX38ssv2/uq6mjWrJkLV2rNsWTJEushrmHZAIDw1aZNG2uRGJO2S6qeS5Ys2TX9HLV2Wrx4sZ0D58yZ41KnTn1NjwMAQLggSAEAABDh1DZJwzY1tPPw4cP+2RP9+vVzN954owul+Rjqva0qCrn//vvd2LFjrRVVONmzZ49LkiSJy5o1q31coUKFYB8SACAOlCtXzm4xmUVUtGhR17x5cwu8X00FoKo1evfube+PGTPGgiIAAEQ6ghQAAAARTK0iNGx64cKF9nGhQoXcpEmTQm4wtgIUmo8ht9xyixs6dKhr2rRp2LW3+Pbbby24kjZtWrdy5Up7CwBIWDSD4tixY27Lli1XFaD45Zdf7Nyn5ALNjWrZsmW8HicAAKGCIAUAAEAE+ueffywDs3v37jYLQbMcNHS6W7duluUfCrQJ4wUhqlSpYtmppUuXdn369Anb1hYpU6a056Sb2lUBACLDtm3b3NGjR61CQn/rL0fn3HHjxtn7nTt3jvHj//333zaUWxWPxYoVs0AHAAAJBYOzAQAAIoyGYGtQpwZia7OkbNmybvPmza5Xr14hEaBQcGL69OkWlDh9+rTdd/3117sVK1a4N954I2wDFJIjRw732WefWRVF5syZg304AIA4osCD2vf17Nnzil/39ttvuxMnTri8efO6mjVrxvjxlVTw1VdfuVSpUrnZs2fbPAoAABIKghQAAAAR4s8//7RKiZIlS7q1a9faRsfo0aPdl19+6QoWLOhCwZo1ayw4oWHYen/UqFH+z11NS4xQqljRxpKCEp58+fK5NGnSBPW4AABxSzOcNGtIVQ5XCsKPHDnS3leigALwMaGWjGpzKFOmTHG5c+eOo6MGACA8XOfTWRQAAOAanTx50jLflTWoTXEEx8cff+yeffZZt3fvXvu4fv367s0333RZsmRxodImo0ePHm7u3Ln28U033WSb+xrgHc7Zoq+++qrr2rWry5Qpk9uxYwf/BgCEtEg4Zwf7OURtVXipoddVq1Z1KVKksPkSMTk+zY4qXry4+/3331379u3d8OHD4+GoAQAI7fN2+KWrAQAAwO/nn392HTt2dHPmzLGPs2XLZtUJtWvXdqHgwoULNrh74sSJVnWgrNLHHnvM9evXLyLaISkwNH/+fMuYDdcNPwBAzF0uQCFedeCjjz4ao3OC5lA8/PDDFqAoVaqUBb4BAEiICFIAAACEofPnz1tLCfXG1lyHRIkSWVVC7969LYMzVCgooewZBSjq1KnjBg4cGDKtp6416LJ48WJXvXp1f0WI2mnFtKUHACByqQoif/78rmXLljH6ep3DV61aZQGNWbNmuaRJk8b7MQIAEIq4mgIAAAgzGqypjEsFJRSg0GDsjRs3uiFDhgQ9QHHs2DH30ksvuV27dvnvU2BCG/mqOAjnAIUCLQpO1KhRw73//vv++wlQAEBke+211+y8O378+Ct+3a233uoGDRpkgYr/8sknn7hXXnnF3p80aZLLlStXnB0vAADhhisqAACAMHHo0CFrIVGhQgW3detWlzZtWjdu3DgLABQtWjTowYm+ffu62267zQ0YMMC9/PLL/s/lzJnTlS9f3oU7VauULl3ahqdqSDkAIGFYt26dJQMcP348Th5P8yqaN2/ubxvYoEGDOHlcAADCFUEKAACAMGjtpD7X+fLlc1OnTrX7Wrdu7bZv3+6efPLJoGbyHzlyxAZiKxDRp08fG4hWpEgRG9wdCfbt22ebSZ5evXpZgCimrTwAAOFPsyI0+6levXqX/PzkyZNdrVq13BdffBGjqrxmzZq5o0ePuhIlSrihQ4fGwxEDABBemEkBAAAQwlQl0bZtW7dlyxb7WBsao0ePdnfddVewD83179/f2lp4VQUKTqjVkzJCI6EFkvqDa8h31apVrVWV3HDDDe72228P9qEBAAIoR44cdrsUn8/n3nzzTTtP33PPPa5ixYpXfCy1QFyxYoW1Z5w5c6ZLlixZPB01AADhI/yvHgEAACLQwYMHrRWENju08ZEmTRoblL1+/fqQCFB4GzMKUKhP97x589zmzZtdo0aNIiJAIYUKFXLnzp1zv//+u83+AADgUskEOk8nT57cPf7441f8WlVaqOpQlHCQJ0+eAB0lAAChLTKuIAEAACLEX3/9ZW0l8ubN69555x133XXXWUunHTt2WN9qzUUIVj9utXD68MMP/fe1a9fOffzxxxY4qVu3btgHJ9Q+a/bs2dGCFGvXrvVnvAIAEp7Vq1dbq8WdO3de8vNKIBC1cNKsqMtRwFtfc+HCBdeiRQv/TAoAAECQAgAAIGSqEhYuXOgKFy7sunbtapn7ZcqUseCAhmOnT58+4Mekvtlz5861Qd06Fr0/ePBg/+dvvvlmV716dQukhDsNRFVQQoPJf/vtN//9JUuWjIjnBwC4NkoY0LlhwoQJ//qczhc6N4oSCa50jm/VqpXbv3+/VU9ozhQAAPg/zKQAAAAIsm3btrnnnnvOLVq0yD6+5ZZbLBigLMtgVCecOnXKTZkyxQ0bNszt2bPHP4uhadOmrkuXLi5SKJvVe30160NtqzJlyuTOnj0b7EMDAISI/Pnzu0qVKl2y1aIGZp8/f94+V7x48cs+xpgxY2y2UZIkSdyMGTOozgMA4CLX+RTSBwAAuEYnT550qVOndidOnHCpUqUK9uGElWPHjrm+fftaRqU2ORQIULCiR48eQX0tNSh66dKl9r5aV7Rp08YyRDNnzuwigX5XBwwYYM9Rraq8FlqqXmHjCEAki4Rzdqg8B1Ub5s6d2+3du9e99dZbrmXLlpf8um+//dbdcccd1s5Rwf8OHToE/FgBAAj18zbtngAAAAJMAQkFJrS5MXz4cPu4Vq1a7rvvvnOvvPJKQDddtMmiuRIKmHg0+DNfvnyW+anWFP3794+YAIUoKKHs102bNrmPPvrIfz8BCgDA1Zw/1Z5RVRaNGjW65NecOXPGPfzwwxagqFGjhmvfvn3AjxMAgHBAJQUAAIiIjMZw8emnn7pOnTpZQEI0B+H11193999/f0CP49ChQ7ZRr3kXygIdMmSIe/755/0bL5rDEO6DsEVLXQ09XbZsmevZs2e0HuNp0qSxTSNmTgBIKCLhnB3I56Dgglo0Xet5om3btpaUoFaCW7dudRkzZozzYwQAIJRRSQEAABBCvv/+e9sQf+CBByxAkS5dOtu42Lx5c8ACFNqwX7lypc2WyJYtm3vxxRctQKEB2JrPELXSIBICFHLw4EFXsWJF16tXL9sg8jzyyCOuZs2aBCgAAJc1aNAgO0cOHDjwqr93wYIF/gHZb7/9NgEKAACugMHZAAAA8ejw4cOud+/ebvz48VahkDhxYteuXTv30ksv2byHQNHP1mDoLVu2+O+78847bd5E48aN3Y033ugiwfbt2y3wo+ckWbJkcc2aNbNM2JQpUwb78AAAYeSbb76xDNCLz5ETJ060Vo06v1zq3PLLL79Y60Tp3LlzwKslAQAINwQpAAAA4sHZs2dt3oSyL7XBIXXr1nWvvvqqy5MnT0CCEmvXrnXlypXzV0cUKFDA7dq1y/pjKzihoEWkbSYVLVrUJU+e3CpWlP0qU6dOpWICAHDV3nvvPbdt2zaXIUMG/30KTij54MCBA3ae0Tk1KlUmtmjRwh09etSVKFHCDRgwIAhHDgBAeCFIAQAAEIe0OTFjxgxrpbRv3z67T5sUmjtxzz33xPvP3717t3vrrbfs9vPPP1trqYIFC9rnNHdCFR2RUFGgIMxnn33mTp8+7erVq2f3FS5c2BUrVsxlz57dBoF7QQoCFACAa6EqPAW/o1q4cKEFKBS48M4/Ub322mt2flL1hYIcSZMmDeARAwAQnghSAAAAxJEVK1a4F154wa1fv94+1twHVVKoHUR8znhQpcb7779vPa81c8KjwdBqf+QFKXQ8kWL+/PmuQYMG7rbbbrMKFQUidFP1CBtCAID4MnbsWHurdk4Xn282btzoevToYe8PGzbM5cuXLyjHCABAuCFIAQAAEAdDsbt16+Y+/PBD+zhFihRWSdGxY8d4n/WggEilSpXcmTNn7GNt1FetWtU2T+rUqeOSJUvmwt3XX3/tpk2bZgOw69evb/dVq1bNKiaqV6/u/vjjD3vNhQAFACAuLF++3C1btszdd9997t5777X7fvzxR7d48WJ7/8knn4z29X/++aclJfz9999WYdG6deugHDcAAOGIIAUAAMA1+vXXX60vtQZoqs2T5j5o00L3ZcqUKc5/ns/nc5s2bXKHDh2yTXrxZjDkyJHDtWzZ0jZItHkfzrTRo2CDXk/RhpDme6gqxAtS3HTTTW7v3r3xWqECAEi4PvnkE5sjpfaBXpBC53vRIOxcuXJF+/rnn3/e5ldkyZLFTZgwgVaDAABcBYIUAAAAV+nUqVM230F9p7WhLmo5NHjw4Hhp7aA5E+prPX36dPfDDz9YiyPdpw0QbeZv3rzZWjlFwoZI8+bN3ezZs92SJUtchQoV7L6HHnrI7dixwzVs2DDa1xKgAADEl/Lly1s1ROXKlf0Ds6dMmWLvP/HEE9G+VpWUY8aMsfenTp3q0qVLF4QjBgAgfBGkAAAAiKFz587Z4OmXX37ZHT582O4rU6aMBSzUiiguHTx40M2aNcsCE+vWrfPfr/ZNd9xxh82hSJ06td0XjpUTZ8+etUCEWmV17do1WrWIPrd06VJ/kCJ//vw2CBwAgECpXbu23TxHjx61869aEEa9X1WVarEonTt3dlWqVAnK8QIAEM6u8+lKEAAA4Bp5m+UnTpxwqVKlcpFIrZw0mFrDMFXBIHny5HGDBg2yLP/4qGB4+umn3bhx4/wVA8rkbNKkif08LzgRTv766y/7XcmQIYN/Uydz5sz22v3222/++xW00PJUw74joTIEAEJJJJyzg/0cNAdJLQdF56saNWq4RYsWuWLFirm1a9cyGwkAgGs4b1MjDwAAcAXK6C9durR7+OGHLUChWRNq6fDdd9/ZfITYbqQrM3PSpEnugQcecKtXr/bfr5931113uTfffNMdOHDAffrpp+6xxx4LywCFeninSZPG+nV7brnlFvfggw/aDA8FMDwKThQqVIgABQAgqG0dvYrJi3kBChk9erQFKFTlqMpHAhQAAFwb2j0BAABcwsaNG123bt2sJZGkSJHCvfDCC65Tp072fmwcOXLEzZ8/36ozli1b5v755x9/W6OyZcva+/fcc0+0oEW4UHXJxx9/7EaMGOGKFy9u92mo95kzZyywE9WCBQuCdJQAAFzenDlzLDGgXr16bu7cuW7FihUuZ86cdj7zaEaUF3zXgG0F2QEAwLUhSAEAABDFzp07Xc+ePd3MmTPt4xtuuME988wz1urJa0kUm+CEKiSWL1/uD0yINvMbNGhgnwsXv//+u23iHDp0yF4bzxdffOG+/PJL29DxghSaLaEARYECBYJ4xAAAxMzPP/9sb7Nly2YtH1u2bOn27dvnFi9e7KpWrWozqpo1a2YzlFQJ+eyzzwb7kAEACGvMpAAAAGHdGzquqKWSBmKrNZECCGo31LRpU9evXz932223XdNj/vTTT27Hjh22oSHa6NCQa/2sEiVKuIYNG1pwQvMtQtkvv/zi1qxZ43LlymXHLbt27bLjTpIkif0OeC0uPvroI5sxoeccjgO9ASCSRcI5O1DPQbMnFITYsGGDq1atmrv55pvt/J08eXL34osvusGDB7t06dK5rVu3uixZssTbcQAAEM5iet6mkgIAACRox44dc6+88orNflBLIqlZs6YbMGCADcG8Gsr90ODnefPmWXuITZs2ufTp09uQ6ESJEtkA7KlTp9pmv26hRse/Z88et3nzZmtx4c2FUBsLvT4dO3b0Byluv/12mylRpEgR28TxghR67QAACHeaPaHbhAkT7ONHHnnEAhQrV660dYOMHz+eAAUAAHGAIAUAAEiQlCE5fPhw24BXVoeUK1fOMiMrVqx4VY+lYMR7771ncybULsqjoISGQKslUubMme2+KlWquFCgYdXqp63AhBd4OH/+vLVkUhsLDQn3Aika4K0WTlmzZvV/vwIYzJQAAEQynb8/+OADe/+JJ56w9ULz5s3t3Pn444+7hx56KNiHCABARCBIAQAAEhRtwCvzsX///taWSFQNoMqJWrVq+asHrkQVF4kTJ7Z5FaIB2EOGDLH31f5IrY5UiVC7du1Yz7GIq97aakdRvnx5K7WVSZMmWQ9tVT4sXLjQ7tPzKVWqlAUwVGHiadKkid0AAIh0Ol8OGjTIzpk63yuAX7p0aVe0aFHXokULm02hIP6wYcOCfagAAEQMghQAACBB0JyJd955x/Xp08ft3bvX7tMmg+ZQaANeVQ9XcvjwYZu3oIzKTz/91AZrK6gh9evXt/kTdevWtb7VKVOmdMHq96ne2dpUidp2SdUb27dvt4Gf999/v92nzRb1106RIkW0x/jqq69iFKgBACASrV+/3s2YMcMdOXLEAhJeFYUSEqZNm2brBa0ngnWuBwAgEhGkAAAAEU0tGTQj4qWXXrL2RqLWSz179nStWrWyyofLfZ++Xi2NPvzwQ7d69Wq7z/P555/7gxSqPnj33XddIH3xxRcWkKhevbrLnz+/3bdu3Tqr4siXL1+0IEXJkiWt8kNVJB61tvr999//FZAgQAEASMjU4lCtH1Vd2Lt3b5tLoTaQZcuWtc93797d/z4AAIgbBCkAAEBEUkBBFQ8KTmgzX9KmTeu6detmbY5uvPHGK36/ZjJonkRUmt1Qp04da+NUvHhxFwgauj127Fh3+vRpN3ToUP/9ai+l4IkGVntBioIFC7rcuXO7woUL2/P3Ag4KoFwcfPivyhEAABIinfu98/+TTz7pvv76a9euXTtrg3jHHXe4Xr16BfsQAQCIOAQpAABAxNGQ5x49eriVK1fax8qC7NSpk+vcubN/JkPUNk6ffPKJbfirdcPkyZPtfm32a1ZFtmzZ3IMPPmhVE9mzZ4/T4/z777/9cy1k5MiRbs6cObYp4s2AOHv2rOvbt69VfLzyyisuUaJEdv99991n9916663+78+SJUu0wd0eqiMAALh6aomoGRVLlixxyZMntzZPUc/bAAAgbhCkAAAAEWPjxo1WOaGgg6jK4JlnnrHqiYwZM9p9qjDYsmWLzZfQwOi1a9f62zhpM2LMmDH2fbJp0yZ/UOBaKciwZ88eC5R4AQVVR6hVhAIkmiPhVTWoemP58uXWPsoLUuh7FLRQ0ETtmrRJIh07drQbAACIG3/++acFJdQWUudftX3s0qWLv4JR7RQBAEDcI0gBAADCnjYR1H5h9uzZ9rECC5o3obkTqoSISsOtNWfi4jZOmuGgiomoGZJXE6BQAGH+/PkWkNCGhle90LVrV/fmm2/afaqEkPTp07uff/7ZnT9/3t56wQsFJhSgUDsJjwIY48aNu6bXBQAAxNzmzZtd+fLlrVIxb968dp5WskG1atUs6QEAAMQPghQAACBsKSCgVkjTpk1zFy5csMCANvr79Olj76t1kqoq3nvvPZcmTRr7ntKlS7ulS5e6KlWqWAunGjVquKxZs/5nWyYNnvYCDwpyqOXD3Xff7dq2bWv36XNNmzZ1//zzj2vevLm1XpLbb7/d2khpo8Ojx1q1apW1j8qUKZP/fh2bbgAAIPCOHz9ulZeHDh1y33//va0tNM9KrSBpnQgAQPwhSAEAAMLOL7/84vr37+8mTpzo3/z35kaoqkJVEVFnM2iAduPGje19Db/UbIpkyZJFe8zff//dvlcDtVVZIdqcUCalgiGqeFD7B/nxxx/d+++/b+97QQpVYNSrV88eN2pAQpmX+pkXb27ceeed8fTqAACAa6HEBSUcDBs2zNYAMn78eP/5HwAAxA+CFAAAIGwos3Hw4MFu9OjR7q+//rL77r//fgtKdO/e3YZfR61WUKWDNhw0/8GTKlUq99prr1kQo1+/fi5Dhgx2/9SpU224dqNGjdzMmTP9rZZUGaGNCgUmvE0KDa1+/fXXXcmSJaMdnxe4iErHAQAAQp/WFloPeFq0aOHq168f1GMCACAh+N+URgAAEDFGjRrlcubMaRn9ZcqUcevWrbvi12tjPX/+/Pb1RYoUcR9//LELNceOHbOB2Lfddpt74403bBNBwytXrFjhFi9e7B566CH3xx9/uHTp0tmGgmZTHD161KocJk2aZPMqohoxYoTNedi1a5f/Pg2m1uumx4hKgY8DBw5EC3QULVrUPffcc65SpUoBePYAAESeq12vBMIHH3xgaw5RS0bNlAIAAPGP1D4AACKIKgBUDTB27Fi74Fe7ggceeMBt377deixfTHMRNMNh0KBB1ipp+vTpNlh648aNrnDhwi7YTp8+bdUOCiqcOXMm2ufUXkmVEqLh2KpyOHjwoHv66aejBRTUwkkzIaJ64oknbBBm1NdE7aJ0u1govA4AACTk9UogKDjx2GOP+T/WvKvUqVMH5VgAAEhorvP5fL5gHwQAAIgbutDXrIORI0fax2pTpExAzUTo1q3bv75ecxpUgbBw4UL/fXfddZcrXry4bRxciqoYvFZLcvLkSfsZJ06csFZKceHcuXOWvdilSxd38VJFP0M/M0+ePG7Hjh3++++9916rjNBwy6pVq9p9hw8fdlu2bLHh1arCAAAgIdP5UxvvcXnOju/1SiDWHaLKy9atW9v7ejthwoQ4e2wAABKqkzFce9DuCQCACKGN/a+//tpVqVLFf59mKujj1atXX/J7dH/UrxdlMl7u60VVF1pkeDdtFMQ1DZlWkMQLUCirUi2b1ApizZo11tLpqaeeivY9y5Ytc/v37/cHKETzJvT8CFAAABCe65VArDtk06ZN9lYbKF7wBAAABAbtngAAiBBHjhyxIc+ZMmWKdr8+3rZt2yW/59dff73k1+v+y3nxxRetRcPFGY1xSa2cNJhavaGrV69ug6rTpk3r/3zUoZZRNzgAAEBkrVcCse4QzbxSckO9evVc0qRJ4/zxAQDA5RGkAAAAV0UX7oG4eK9du7bdAABAwhWodYcSJHr37h3vPwcAAPwbKYcAAESI9OnTu0SJErnffvst2v36+JZbbrnk9+j+q/l6AACAQK9XAABAZCNIAQBAhEiSJIkrVaqUzWbwaBClPi5btuwlv0f3R/16WbJkyWW/HgAAINDrFQAAENlo9wQAQARRz+aWLVu6O+64w5UuXdoNGzbM/fHHH+6xxx6zz2vgdNasWW0IpXTo0MFVqlTJvfbaa65mzZpuxowZbsOGDW78+PFBfiYAACChrlcAAEDCQpACAIAI0rhxY3f48GHXq1cvG35dvHhxt2jRIv9wyn379kUbMF2uXDk3ffp099JLL7nu3bu7PHnyuPnz57vChQsH8VkAAICEvF4BAAAJy3U+n88X7IMAAADh6+TJky516tTuxIkTLlWqVME+HAAAEMHn7Eh4DgAAJBQnY3jeZiYFAAAAAAAAAAAICoIUAAAAAAAAAAAgKAhSAAAAAAAAAACAoCBIAQAAAAAAAAAAgoIgBQAAAAAAAAAACAqCFAAAAAAAAAAAICgIUgAAAAAAAAAAgKAgSAEAAAAAAAAAAIKCIAUAAAAAAAAAAAgKghQAAAAAAAAAACAoCFIAAAAAAAAAAICgSBycHwsAACKFz+eztydPngz2oQAAgCvwztXeuTscse4AACDy1h4EKQAAQKycOnXK3mbPnj3YhwIAAGJ47k6dOrULR6w7AACIvLXHdb5wTqEAAABBd+HCBXfgwAGXMmVKd91118VpxoU2IPbv3+9SpUoVZ48bKXh9Lo/X5vJ4ba6M1+fyeG0i4/XR5b82CbJkyeKuvz48uz/H17ojnP4/hjNe48DgdQ4MXufA4HUO79c4pmsPKikAAECsaKGRLVu2eHt8LZJYjF4er8/l8dpcHq/NlfH6XB6vTfi/PuFaQRGodUe4/H8Md7zGgcHrHBi8zoHB6xy+r3FM1h7hmToBAAAAAAAAAADCHkEKAAAAAAAAAAAQFAQpAABASEqaNKnr3bu3vcW/8fpcHq/N5fHaXBmvz+Xx2lwZr09k4P9j/OM1Dgxe58DgdQ4MXueE8RozOBsAAAAAAAAAAAQFlRQAAAAAAAAAACAoCFIAAAAAAAAAAICgIEgBAAAAAAAAAACCgiAFAAAAAAAAAAAICoIUAAAgJI0aNcrlzJnTJUuWzJUpU8atW7cu2IcUElauXOkefPBBlyVLFnfddde5+fPnB/uQQsagQYPcnXfe6VKmTOkyZszo6tat67Zv3x7swwoJY8aMcUWLFnWpUqWyW9myZd0nn3wS7MMKSYMHD7Z/Wx07dgz2oYSEPn362OsR9ZY/f/5gH1bI+OWXX9wjjzzi0qVL55InT+6KFCniNmzYEOzDQhyuL95//337ndfX6//vxx9/HLBjTQiv8YQJE1zFihVdmjRp7FalShXWfPG8Vp4xY4b9Ldc6CXH/Oh8/ftw9++yzLnPmzC5p0qQub968/N2Ih9d52LBhLl++fHbuzZ49u3vuuefc2bNnA3a8CeEacvny5a5kyZL2e5w7d2731ltvxesxEqQAAAAhZ+bMma5Tp06ud+/ebuPGja5YsWLugQcecIcOHXIJ3R9//GGvhxbyiG7FihV2UbhmzRq3ZMkS9/fff7v777/fXrOELlu2bLb5/vXXX9sG6n333efq1Knjvvvuu2AfWkhZv369GzdunAV08H8KFSrkDh486L99+eWXwT6kkHDs2DFXvnx5d8MNN1jQ7/vvv3evvfaabbQiMtYXq1atck2aNHGtWrVymzZtsk1d3b799tuAH3ukvsbaBNNr/Pnnn7vVq1fbZqPO3QoAIu7Xynv37nXPP/+8BYYQ96/zuXPnXNWqVe11nj17tiXLKBCXNWvWgB97JL/O06dPd926dbOv/+GHH9ykSZPsMbp37x7wY4/Ua8g9e/a4mjVrunvvvddt3rzZkndat27tFi9eHH8H6QMAAAgxpUuX9j377LP+j//55x9flixZfIMGDQrqcYUaLeXmzZsX7MMIWYcOHbLXaMWKFcE+lJCUJk0a38SJE4N9GCHj1KlTvjx58viWLFniq1Spkq9Dhw7BPqSQ0Lt3b1+xYsWCfRghqWvXrr4KFSoE+zAQj+uLRo0a+WrWrBntvjJlyvieeuqpeD/WhLqGO3/+vC9lypS+qVOnxuNRJszXWa9tuXLl7NzfsmVLX506dQJ0tAnndR4zZowvV65cvnPnzgXwKBPe66yvve+++6Ld16lTJ1/58uXj/VgTyjVkly5dfIUKFYp2X+PGjX0PPPBAvB0XlRQAACCkKANJ2d4q9/dcf/319rEy7ICYOnHihL1NmzZtsA8lpPzzzz/W6kEZVWr7hP9RFY4yxqL+7cH/7Ny509oD5MqVyzVr1szt27cv2IcUEhYsWODuuOMO17BhQ2sxV6JECcuYReSsL3T/xX8TlN3LeiT+1nB//vmnVUJy7o771/nll1+2v1WqDEL8vM46L2htpTVFpkyZXOHChd3AgQNt7YW4e53LlStn3+O1hPrxxx+tpVaNGjUCdtyRbnUQzn+J4+2RAQAArsGRI0dsIa+FfVT6eNu2bUE7LoSXCxcuWFmyWrHoAhHOffPNN3bhrH69KVKkcPPmzXMFCxYM9mGFBAVt1F5A7Z4QnfpCqwex+j6r1VPfvn2tTYja3Wj+S0KmTRHNe1GLCrWY0O9P+/btXZIkSVzLli2DfXiIg/XFr7/+esmv1/2InzVc165dLShKwDhuX2e16VNLHLVtQfy9zjovfPbZZxbQ16b5rl273DPPPGOBN7UmQty8zk2bNrXvq1ChgjoEufPnz7unn36adk9x6HLnv5MnT7ozZ87YLJC4RpACAAAAEUcZbNpEpXf+/9EmszYnVGGiPsnaRNUcj4QeqNi/f7/r0KGDzTHRsEZEV716df/7mtWhoEWOHDncrFmzEnw2roKhqqRQlqyokkJ/d8aOHUuQArgGmp2koLHmVPD3OO6cOnXKNW/e3Cq90qdPH+zDifjzgqpVxo8f7xIlSuRKlSpl81WGDBlCkCIO6W+Ezr2jR4+2dYmCQVrL9evXz/Xs2TPYh4drRJACAACEFF08aVH/22+/RbtfH99yyy1BOy6Ej7Zt27qFCxe6lStX2sBo/I+yu3Pnzm3v66JZWd/Dhw+3QdEJmdoFaDBjyZIl/fcpo0+/PyNHjnR//fWX/U3C/9x8880ub968tiGQ0GXOnPlfQb4CBQq4OXPmBO2YELfrC93PeiQwa7ihQ4dakGLp0qUWEEXcvc67d++2Qc4PPvhgtM10SZw4sQ13vv322wNw5JH/+6zzwg033BBt3aDzgrLS1dZIazHE/nVWIEKBNw1yliJFilgb0yeffNL16NHD2kUhdi53/kuVKlW8VFEI/9cAAEBI0eJdG6jLli2LdiGlj+mfjytRubcCFGpjpFL72267LdiHFNL070ob8Ald5cqVrRWWqky8m7Lj1apB7xOgiO706dO24aWNmIRO7eS0uRfVjh07rNIEkbG+0P1Rv15UdcV6JG7XcK+++qplQC9atMj+/iJuX+f8+fP/6zxXu3Ztd++999r72bNnD/AziNzfZ50XFMT3gkDeeUHnTAIUcfc6a3bNxYEIb732v7nQiK2gnP/ibSQ3AADANZoxY4YvadKkvrfeesv3/fff+5588knfzTff7Pv11199Cd2pU6d8mzZtspuWcq+//rq9/9NPP/kSujZt2vhSp07tW758ue/gwYP+259//ulL6Lp16+ZbsWKFb8+ePb6tW7fax9ddd53v008/DfahhaRKlSr5OnToEOzDCAmdO3e2f1P63fnqq698VapU8aVPn9536NAhX0K3bt06X+LEiX0DBgzw7dy50/fuu+/6brzxRt8777wT7EPDNa4vmjdvbn8fPfqd1//joUOH+n744Qdf7969fTfccIPvm2++CeKziKzXePDgwb4kSZL4Zs+eHe3crfUO4u51vljLli19derUCeARJ4zXed++fb6UKVP62rZt69u+fbtv4cKFvowZM/r69+8fxGcRea+z/hbrdX7vvfd8P/74o61nb7/9dl+jRo2C+CzC+xqyW7du9jp79LpqTfPCCy/Y+W/UqFG+RIkS+RYtWhRvx0iQAgAAhKQRI0b4br31VrtwLV26tG/NmjXBPqSQ8Pnnn9vC8uKbLjYTuku9LrpNmTLFl9A9/vjjvhw5cti/pwwZMvgqV65MgOIKCFL8n8aNG/syZ85svztZs2a1j3ft2hXswwoZH374oa9w4cK2uZI/f37f+PHjg31IiMX6Qv/2Lz6fzpo1y5c3b177+kKFCvk++uijIBx15L7GOjdd6tytTUjE7e9yVAQp4u91XrVqla9MmTJ2XsiVK5cFss+fPx+EI4/c1/nvv//29enTxwITyZIl82XPnt33zDPP+I4dOxakow//a8iWLVva63zx9xQvXtz+n+h3Ob6vqa7Tf+KvTgMAAAAAAAAAAODSmEkBAAAAAAAAAACCgiAFAAAAAAAAAAAICoIUAAAAAAAAAAAgKAhSAAAAAAAAAACAoCBIAQAAAAAAAAAAgoIgBQAAAAAAAAAACAqCFAAAAAAAAAAAICgIUgAAAAAAAAAAgKAgSAEAAACEuTFjxrhbb73V3XTTTe6hhx5yhw8f/s/v2b59u7vlllvcqVOn4uWYrrvuOjd//nx7/8iRIy5jxozu559/jpefBQAAgifqOT8UHicY9u7da8e/efPmYB8KEJYIUgAAAABhbO7cue6FF15wI0aMcBs2bLCgQ4MGDf7z+1588UXXrl07lzJlyng/xvTp07sWLVq43r17x/vPAgAg0vz66692zs6VK5dLmjSpy549u3vwwQfdsmXLXDjq06ePK168+L/uP3jwoKtevXpQjglAcBGkAAAAAMLYgAEDXNu2bV2dOnVcgQIF3NSpU92XX35pt8vZt2+fW7hwoXv00Ucv+zX//POPu3DhQpwd52OPPebeffdd9/vvv8fZYwIAEOmUoV+qVCn32WefuSFDhrhvvvnGLVq0yN17773u2WefdZFEFZ4KwoSav//+O9iHAEQ8ghQAAABAmDp27JjbuHGjq1mzpv++LFmyuMKFC7ulS5de9vtmzZrlihUr5rJmzeq/76233nI333yzW7BggStYsKBtEiiYsX79ele1alWrhkidOrWrVKmS/cyodu7c6e6++26XLFky+94lS5b862cWKlTIjm3evHlx9vwBAIh0zzzzjLURWrdunatfv77LmzevnVM7derk1qxZc9lWQ8ePH7f7li9fbh/rrT5evHixK1GihEuePLm777773KFDh9wnn3xiiQ6pUqVyTZs2dX/++af/cXLmzOmGDRsW7ZhUBaFqiMvp2rWrHeeNN95o1R89e/b0b/RrvdG3b1+3ZcsWOx7ddN/F7Z7KlStnjxOV2lnecMMNbuXKlfbxX3/95Z5//nlbz6jlZZkyZfzP93L0M9QmUxUbeg10fLNnz/Z/3nstZ86caWserW2UZKHEjZdfftlly5bN1kh6DRQsuti2bdvs2PV9Wo+tWLHiiscD4H8IUgAAAABh6scff7S3uXPnjnZ/njx5/J+7lC+++MLdcccd/7pfmxKvvPKKmzhxovvuu+9sjoTaR7Vs2dIqM7QZoseuUaOGf5aFLto1ByNJkiRu7dq1buzYsf/aVPCULl3afjYAAPhvqj7URrgqJrQJfzElF1wtBRdGjhzpVq1a5fbv3+8aNWpkQYjp06e7jz76yH366afWQjI21EpSgYfvv//eDR8+3E2YMMG98cYb9rnGjRu7zp07W6BF7Z10030Xa9asmZsxY4bz+Xz++xQ4UMJDxYoV7WNVkq5evdq+buvWra5hw4auWrVqljxxJQqaKOCjQIl+zsMPP+x++OGHaF/TrVs316FDB7v/gQcesOfx2muvuaFDh9rP0n21a9f+189SC049v02bNrmyZctaW66jR4/G6vUEEgKCFAAAAECY8jIdFThIkSKF//bBBx9Ey4K82E8//WQX+RdTluPo0aMtAzBfvnyWAaksy0ceecTlz5/fsizHjx9vj+1lBqpiQ1mDb7/9tlVnqKJi4MCBl/y5+pn62QAA4L/t2rXLNul1Do4r/fv3d+XLl7dqilatWtn5XJUF+lib/5pr9fnnn8fqZ7z00ku2llAVhjbpVe2gKk5R9YLWKokTJ7b2TrrpvospeHLgwIFo7SsVSGnSpIlVOqjac8qUKe7999+347799tvt51SoUMHuvxIFM1q3bm3VHv369bPEjYsDMx07drQkjNtuu81lzpzZghNKwlBAQ2skJXWomuLiKhMFThQA0ZpJr6uqUCdNmhSr1xNICBIH+wAAAAAAXBsFEUStDaJmUyrzz/vcpZw5c8baEFxM1RBFixaNdt9vv/1mmw36GWoJoVkVClJoc0CUYagBnlGDHsocvBRtQlwpeAIAAP5P1CqCuBL1PJ8pUyZ/S6ao96m1VGyo4uHNN990u3fvdqdPn3bnz5+3VlJXI0OGDO7++++3VksKQuzZs8eqJsaNG2ef12wOrUkUaIhKLaDSpUt3xce+eJ2ij6O2ypKoFacnT560gImCO1HpY1VjXO6xFYjR41xcpQHg3whSAAAAAGHK21TQhX/Ulk9nz56NtuFwMc2X0DyLSwURlJ0YlVo9qU2B2hzkyJHD+jDrAvzcuXPX1LZCmw4AAOC/qVJS52VVLF7J9ddf/6+gxuWGPWumg0ePHfVj7z61coz62BcHS640SFqBBLVQ0twJtURSJYHaMalV0tXS47Rv396qHFRFUaRIEbuJgh+JEiVyX3/9tb2NSpUasXWp9loA4g/tngAAAIAwlSZNGleqVKlocx500a4NAg27vhy1dFCf6Jj46quvbINAcyjUP1pBiiNHjvg/r3YG6mmtntIeb5Dnxb799lv72QAA4L+lTZvWNvpHjRrl/vjjj399XsOxxUsAiHouvrgy4FrpsaM+rqoKVNVwOZp1oaSGHj16WBWBAi0Xt3pU5aaqIP5LnTp1LPFCczkUpFDQwqP1hB5DVZ5K1Ih6UwupK7l4naKPtZ65HCWDqGJUa6Ko9HHBggUv+9iqIFEQ5UqPDeB/CFIAAAAAYUybALpp0KWGN6q/dJkyZf7VkiAqbXgokBGTDQJtLkybNs1aFWgwtjYIovaOrlKlirVaUMWFWh4oYKLjuZjaPOlCXa0bAABAzChAofN16dKl3Zw5c+xcr3Oy2il5rYV0Xr7rrrvc4MGD7XOaM6FWjXFBs6m0DtD5XS2WdL6/uHLh4nWDWkKqekLtnnSc8+bNi/Y1mlWhQIcCKUp8UIumy1Uz1K1b1wZd63lpHoVHaw+tSVq0aOHmzp1rj6c2VYMGDbIB4FeiORaTJ092O3bscL1797bv0yyJK9FAbM2hUCur7du322BtHb9abF78/0vPV9UvGniuytXHH3/c/3nNF7n49QBAkAIAAAAIa/Xq1XN9+vSx4IQGV6sFgzec8nKqV69ufZI19Pq/aNijLrBLlizpmjdvblUVGTNmjNYGQhfbmnOhDRQNohwwYMC/HkfDvG+99VbrKw0AAGJG7Rs3btzo7r33Xte5c2dXuHBhq5ZctmyZDWb2aNNdmfuqsNTQZw3Ijgsvvviiq1SpkqtVq5arWbOmBQ00pPpyateu7Z577jnb9NdgaVVWKMgQlQZLV6tWzZ6TKjXee++9yz6eAhFKgtD6QeuIqDQgW0EKvS4aZq1jW79+/b++7mJqRaUgiuZzvP322/bzL66IuJjWP506dbKfpZZTqu5YsGCBBWWiUqBIN63JNPRbX6M2mx4FOE6cOHHFnwUkRNf54mMKDwAAAICQpkw/XTgvXrw4ID9PGZ66wG/atGlAfh4AAMDFNHNDyRUKaAAIHQzOBgAAABKgp556ynpZnzp1yqVMmTJef5ZaOTz00EPR2jQAAAAAgFBJAQAAAAAAACDiUUkBhCYqKQAAAAAAAABEPHK1gdDE4GwAAAAAAAAAABAUBCkAAAAAAAAAAEBQEKQAAAAAAAAAAABBQZACAAAAAAAAAAAEBUEKAAAAAAAAAAAQFAQpAAAAAAAAAABAUBCkAAAAAAAAAAAAQUGQAgAAAAAAAAAAuGD4f/UPFlEynOm+AAAAAElFTkSuQmCC", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QmYjfX///FPKylFqCyhSJayhZTse0qWyL4vqWwlIrRIQmQt+5KtkGinRIiQbNlKtrIkSiUqlf/1fH//9/mdGTPMcuZs83pc17nMnDlmzjkz59yf+/PeLjp79uxZJyIiIiIiIiIiIiIiEmQXB/sHioiIiIiIiIiIiIiIQEEKEREREREREREREREJCQUpREREREREREREREQkJBSkEBERERERERERERGRkFCQQkREREREREREREREQkJBChERERERERERERERCQkFKUREREREREREREREJCQUpBARERERERERERERkZBQkEJEREREREREREREREJCQQqR83j22WfdRRddFFWP5dixYyH5+blz53atWrXyfb58+XK7P/wrIiIiIiIiIiIiqZOCFOLmzp1rm8Vvv/32Oc9GkSJF7GvLli0752s5c+Z0d999t55BP2y416tXz91www3u8ssvd9ddd527//773YIFC/Q8BciLL77oFi5cqOdTREREREREREQkCihIIe6ee+6xZ2HVqlUxno3ffvvNff311+7SSy91n3/+eYyvff/993bx/q8498wzz7iKFSvac9axY0c3btw49+STT7qTJ0+6+vXru9mzZ+tp8lOuXDl3+vRp+zcxFKQQERERERERERGJHpeG+g5I6GXLls3ddNNN5wQp1qxZ486ePesaNGhwzte8z88XpDh16pRLly6dSw3mz5/vnn/+effggw9aMOKyyy7zfY1AxeLFi92ZM2dCeh/DzcUXX+zSpk2boj/jjz/+cFdeeWWK/gwRERERERERERFJOlVSiC/YsHHjRsts91A9UahQIVezZk33xRdfuP/++y/G12gDVaZMGfu8QoUK7rbbbnMbNmywzHiCE3369LGvLVq0yNWqVcuCIWnSpHF58uRxAwYMcP/++2+MZ9//e9BG6oorrrDgCRUJ/rxZBm+++ab9DForsRFdu3Ztq+6Ibe3ata5GjRrummuusftVvnz5cypDvMBLyZIlbeOc+zh+/PgE/3X069fPXXvttW7KlCkxAhSe6tWru/vuu88+/vvvv13//v3dHXfcYfeJ+162bNlzWmrFN7Nh3759dv20adNiXL9z507XsGFDlyVLFnvubr31Vvf000+fc19OnDhhsyEyZMhgP79169YWUPLw/NDmKy58Tx7L+RDYeuGFF1yOHDns+aa6ZNu2befcLq7H9+2331rVCb9Tfg98j0aNGrlff/3Vvs7tCTxMnz7dPubizbnwZm5s377dNWnSxGXMmFGVPiIiIiIiIiIiImFOlRTiC1LMmDHDNvQJFoCNfIIFXNgkpo1R4cKFfV/Lnz+/y5Qpk+8ZPH78uAU02FRu1qyZu/766+16NtOvuuoq9/jjj9u/n376qW3S005q6NChMX4Dv/zyi7v33ntts71x48Y2L6NTp04236FNmzYxbjtw4EDblO7Vq5c7evSoGzFihKtSpYrbtGmTbdKDn8V9IiBAOyay96dOneoqVarkVq5c6UqVKmW327p1q6tWrZpt8LPZ/c8//9jtvcdwPmysEyDg/qVPn/6Ct+dxT5o0yR5f+/bt3e+//+4mT55sm//r1q1zRYsWTfRf5ZYtWyzQQYCkQ4cONqT6u+++c++++649T/54bgn+DBo0yH311Vd2X5idMXjwYPt68+bN7X7x+yZo5Fm/fr375ptvXN++fc97X/jdEqTg98iFn8FzS3DmfPg6z8Fff/3lOnfubIGKgwcPuvfee88CKwRU+Btt166d/d54nCCg5I/Kn1tuucXaQhEwERERERERERERkTB2VuTs2bPbtm1jN/fsgAED7Pk4c+bM2SuvvPLs9OnT7fPrr7/+7NixY+3j33777ewll1xytn379r7nrnz58vb/x40bd87zeerUqXOu69ix49l06dKd/fPPP8/5HsOGDfNd99dff50tWrTo2euuu+7s33//bdctW7bMbpc9e3a7L565c+fa9SNHjrTP//vvv7O33HLL2erVq9vH/vfnpptuOlu1alXfdXXq1DmbNm3as/v37/ddt337dnucF3qZLFq0yG7zyiuvJOhv6Z9//rHH5e+XX36x57hNmza+67zHyb/+9u7da9dPnTrVd125cuXOpk+fPsb9954DzzPPPGP/z/9noG7dumczZcrk+/zEiRP2XPTq1SvG7bp06WJ/EydPnoz3sR09evTs5ZdffrZWrVoxfnafPn3sZ7ds2TLex7dx40b7fN68eWfPh/vg/31iP77GjRuf9/+LiIiIiIiIiIhI+FC7JzEFChSwqghv1sTmzZutrQ5VFOBfr0USsypo1RR7HgWtnGgdFJtX1QCqBo4dO2ZZ/7QYogLBH0O6GTrtoYKCz6mUoA2UvxYtWsSoXGAeRNasWd0HH3xgn1NRQZUDrX+o8uDncuFxVa5c2a1YscJaWPFYmBlRp04dlzNnzhjPyYVaG3mVEUhIFQUuueQSe1zg5//8889WuVGiRAmrOkisn376yR4LlRz+9x9UmsT28MMPx/ic3wXPj/c4qFh44IEH3Jw5c3yVCDxHtNfiOTrfjIdPPvnEKiKohPD/2d26dbvg4+Dngt+Ff/upxIr9+ERERERERERERCR8KUghhg1lAhHe7AkCErQAyps37zlBCu/f2EGK7Nmz+zbf/TGPoG7durYJffXVV1tLJdpBwZs14GFuRexN8Hz58vlmMfijpU/sx8D99W5HgAItW7a0n+l/ocURbYX4+WzyM4sj9vfzZjBcCI/JC8AkFDMVaJ3F3AWCQ9yn999//5znIyH27Nlj//q3Zjqf2IEMZjd4rbb8A0AHDhywllhe8OHHH3+0VlDns3//fvs39nPJ4/N+TnxoQUVLMH43mTNntgDR2LFjE/2c8H1EREREREREREQkMihIIT4EHdgQZj6DN4/Cw8dsQDMjgGoLggk333xzvBUTHmYJMIiZyoznn3/eZiR8/PHHvvkH/sO4A8373sy94GfGdWFGRnIxmwM8bwkxc+ZMG/bMLAVmUXz00Ud2X5iT4f98xFUFgdgDxxOLSo64+M9vIEDAPA7uq3efmRHBzI+UNGzYMJuvwUB0AkddunSx4e0//PBDgr9HXH+HIiIiIiIiIiIiEp40OFt8vMoIghAEKfxb9DB4mnZOy5cvt+HaDEROCG5PK6EFCxa4cuXK+a7fu3dvnLc/dOiQtWPyr6ZgWDMYBu3Pq5Tw32TfvXu3b7i3N1CZSofzba6T5c/Gduzvh127dl3wMVLpQcXFokWL3MiRIy8Y+Jg/f74FeHhO/AMRDOr251UeEOiJq1rB4wWLGHQdKAQyaJPF0HMCSgsXLrRh2vEFODy5cuWyf3ku/YNYVKv4V2qcz+23324XBnSvXr3alSlTxo0bN86GcZ8veCMiIiIiIiIiIiKRR5UU4sNMBNoPzZo1yyom/CspCFAUL17c2u8QRIjd6ik+3qa2f5Y+MwteffXVOG/PbIbx48fHuC2fE0ggUOLv9ddfj9Fiic3/w4cPu5o1a9rn3J5Axcsvv+xOnjx5zs9i49y7j1QOsBFPiyPPjh07bD5CQjz33HMWjGnXrp09htiWLFni3nvvvXifEwI/zPqIveHPbZk34S/2c8dzQwBoypQpMe5/7J+RWLR2IrDATBCeP69F1/kQDLrsssvc6NGjY/zsESNGXPD/MhMj9nNHsOLiiy+21lweAlixAzfn891339lFREREREREREREwo8qKcSHeRIlS5a0OQQEJWIHBQha0I4HCQ1S8H+oCGAuBK17yIKfMWNGvJvntJEic5+5ElQoMKyZAdgTJkywzW9/1157rd0PhnUzL4GNcGZSkPEPNreZb0DQgpZB3I65GQRgli1bZhUWtJ/yggy0XWKI9COPPGKb5Wy08/9oP3QhDz30kLV7GjhwoNu4caNr3LixBRkIXPB9ly5d6mbPnm23ve+++6yKgjkdtWrVsqoSKgUKFiwYI5jCDI8GDRrY/eB5I+BCoIMh4rGNGjXKngsCSR06dLC5DDyHzLng+UuKYsWK2ZyLefPm2RBxvveFEDDp0aOHGzRokD1OKm54Pj788EObM3E+n376qXvsscfsMfO753fA3wqBmvr16/tux98lMzKGDx9ufy881jvvvDPe78uQ9LhmmoiIiIiIiIiIiEjoKUghMbDRTZDCa+/kj7Y7BCnSp0/vihQpkqBnjqHQbKw/8cQT1r6HgAUZ+WwcU70QG19nqHTnzp3dxIkTbS7CmDFjfIEHf8wtIIDAhjgVFXxPqgzSpUvnu02FChWsQmHAgAH2fQgCMFuBTW0qBDy0iKJqgsHN/fv3dzly5LDABZUZCQlSgHZEzJUgYPDaa6+5n3/+2R5P6dKlrRVU7dq17XbMozhy5IhViPAzCU4w84FgAO2x/BGgOHPmjAUx+H00bNjQZmzEHpLN74Oh5/369bOf/eeff1qQhNsnBwO0e/bsecGB2bGfBypyuM8Eg3iuqSQhIHM+PAb+JggcEUji98h1BDh4Dj0EJwjE8PfE3AoCYOcLUoiIiIiIiIiIiEj4uuhscvrBiAQQAYVjx45dcLYCG/kVK1a0Tf0HH3xQv4MUxIyN7t27WxVCzpw59VyLiIiIiIiIiIhIQGkmhYjEifjl5MmTXfny5RWgEBERERERERERkRShdk8iEgOD0d955x1r1cScDVpViYiIiIiIiIiIiKQEBSlEJIaffvrJNWnSxGXIkMHmfnizNEREREREREREREQCTTMpREREREREREREREQkJDSTQkREREREREREREREQkJBChERERERERERERERCQnNpBAREZFk+e+//9yhQ4dc+vTp3UUXXaRnU0REJEydPXvW/f777y5btmzu4osjM2dR6w4REZHoW3soSCEiIiLJQoDixhtv1LMoIiISIb7//nuXI0cOF4m07hAREYm+tYeCFCIiIpIsVFB4i46rr75az6aIiEiY+u233yyxwDt2RyKtO0RERKJv7aEghYiIiCSL1+KJAIWCFCIiIuEvktszat0hIiISfWuPyGxCKSIiIiIiIiIiIiIiEU9BCpEUVr9+fXfNNde4OXPm+K7btGmTXVewYMEYt23evLnLkiWLe+mll/R7ERERERERERERkainIIVICkyt93fq1Cnrv3bmzBnfdf/9959dx3R7f3/88Yc7duyYu+WWW/R7ERERERERERERkainIIVIAB09etRVrFjRLV++3HfdpEmT3DfffOPq1Knju44KCq5bsWJFjP8/ZswYt3LlSqu+EBEREREREREREYl2ClKIBNCgQYPcZ5995tq1a+f++ecfuy579uxWGeE/TDZt2rR23U033RTj/2fLls3dc889vs+ptqhevbpbv369fk8iIiIiIiIiIiISdS4N9R0QiSYvvviiVVP079/fXXpp8l9effv2dUuWLHG7d+92O3fudJdddllA7qeIiIiIiIiIiIhIOFCQQiSZ8ydWrVrlypYta59fccUVbtasWQF7Tl944QV36NAh16tXLwUoREREREREREREJOqo3ZNIMgIUHTt2dOXKlXNTp05NkeeRFlHz5893JUuW9F23Y8cOd/r06RT5eSIiIiIiIiIiIiLBpCCFSBJddNFFLmvWrO7iiy92v//+e1Cex/3797sKFSrYcG7aSomIiIiIiIiIiIhEMrV7EkmGZ5991t1///2uRIkSQXkeDx486M6cOeP+/PNPly5duqD8TBEREREREREREZGUokoKkUT4+OOPXevWrd1///3nq6YIVoACd999t1u7dq1755133FVXXRW0nysiIiIiIiIiIiKSEhSkEEmgY8eOubp167pp06a58ePHh+x5u+WWW1zOnDl9n7/55ptu9OjRIbs/Ev0OHDjgatWqZdU71113nXvyySfdP//8E+/t9+3b59q2betuuukmGyafJ08e98wzz7i///47xm0I8sW+fPHFF0F6VCIiIiIiIiIiEg4UpBBJoMyZM1twokWLFq5NmzZh8bzt3bvXtWzZ0nXr1s1t3Lgx1HdHotC///5rAQoCDKtXr3bTp0+3QF3//v3j/T87d+60aiNeL9u2bXOvvPKKGzdunOvTp885t/3kk0/c4cOHfZc77rgjhR9R9FuxYoW1ocuWLZsFfhYuXHjB/7N8+XJXvHhxlyZNGpc3b177HYuIiIiIiIiIBINmUogkQtOmTe0SLnLnzm3VHRkyZLCsdUlZZ8+edadOnQr600wFA5vNibFlyxbXvn17t3nzZpc+fXr36KOP2gyVxFqyZInbvn27BROuv/56V7RoUTdgwADXq1cv+36XX375Of+nRo0advHcfPPNbteuXe61115zL7/8cozbZsqUyd1www2Jvl8Svz/++MMVKVLEgqn16tVLULCTQNTDDz/sZs2a5ZYuXeratWvnsmbN6qpXr66nWkRERERERERSlIIUIhfw+eefu9tuu81dc801YfdcsXE9c+ZMd8kll4T6rqQKBChCMQvk5MmT7sorr0zUgPWKFSu65s2bu9dff919+eWXrkOHDtYmjI1rNqP5u7nQz8SaNWvc7bffbgEKDxvXnTp1siqJYsWKJeg+/frrr+7aa6895/ratWvbIPh8+fK5nj172ueSPDVr1rRLQlHlQpBz2LBh9nmBAgXcqlWrrAJGQQoREZHQoIqV9piskURERERSuosGezyFCxd2oaIghch5/Pjjj+6+++6zTPZly5aF5UlC7AAFswIuvVQv7dRs0qRJFlRgk5lA1q233uq2bt3qhg8fbkGK559/3vXo0SNB3+vIkSMxAhTwPudrCbF7926bm+JfRUGwh03xMmXKuIsvvti99dZbrk6dOtaaSIGK4CIQVaVKlRjXEZygjVx8/vrrL7t4fvvttxS9jyIiItFYocvMuyxZsviuo1UmayGqpUk0odqUNpqXXXZZSO+riIiIRLennnrK9owGDRpkCaShoJ1MkfNgE5ZZFGyo0rImnP3888/2RvLTTz/ZyU1i2wPJhRGs8ioMgv1zE4MWT6VLl47xN3DXXXfZAYfoOMOvuQQDVR20fmrQoIG1n/Lwunr88cd9n5csWdIdOnTIDR06VEGKIIsvEEXg4fTp0zb8PDYWLs8991wQ76WIiEhk2rFjh82OI2nEm731ww8/2AwoAhUkC3z00Udu3bp1lgDAx57ff//dffPNN65QoUIhfAQiIiISzTZv3mxJrswWDcWel0dBCpHzoK87vf2PHj0a9tUJbDSScXXmzBk7EWIIrgQWm/6JabsUKr/88ovNKYmNE2Ekpt0TGXycNMeuMPK+dj4EHWg7dffdd7sJEyZc8H7feeed7uOPP77g7ST0evfuHSPIREDjxhtvDOl9EhERCSZO5GnJlDZtWt+xkEpVAhDvvfeeVYp61REjR460ZCKCFNyOwAT/l7WZF7jwR5vZrl27uu7du8e5phMREREJBNpvN2vWzBJaSYro3LmzC5Xw3nUVCQNkEefKlcuFu4IFC7pRo0bZ/AwFKFI3TnjXrl0b47ovvvjC3XLLLdYeLDHtnqjAGDhwoAXqvOoLAglXX321/c1daC4GJ95Tp071naifz6ZNm2xYswQXwSYv8OThc37HcVVRIE2aNHYRERGJZpywk/zDbIj69ev7qlQHDBhg6yNaI7700kt2HcfMyZMnW/CCdZOXzFG0aFFXrlw5O5949dVXLfhAe1YPayT+D6jeJpjBbTgOi4iIiKSkvn37uq+//to+ZiZFKLuyKEghEgdazrChS4/8SEKGvAgOHDhgme4dO3Z0X331lc2E8AYjJ6bdU7Vq1SwYwRDuIUOGWMUOB7FHH33Ut0lNpUWLFi3c0qVLXfbs2S1AUaFCBTsZZw4FLcg83gn79OnT3eWXX+4bvL1gwQI3ZcoUm6chwUUg6oMPPohxHYEorhcREUktVqxYYS1TSfYhoxAED6j05N/Dhw/71jEEE2jNtHfvXt//Z24Ea6Vrr73WPn///fft0rRpU/fZZ5/ZdayVCFBQfcj3ZM3Ev7T27NKli3vyySd9/19EREQkJTF719snokU36xtac4eKghQisTBgmFYmZE5Rik1v/0hEyx+yuOh/K6kPQQPmCZQqVcqqJ8jI69ChQ6K/D/+XlgWdOnWyTWvaXbVs2dKqMTynTp1yu3btslZj3gY3w7K55MiRI86WU14W4v79+62VWv78+d2bb77pHnzwwWQ9bvlfqy6eew8bKFSpsOmRM2dOe39jU4T2cF5wc8yYMZa5yWD1Tz/91M2dO9c2VkRERKJhODUBBW9NQlCgUqVK7ttvv7VEDm8u05dffmn9mB966CFfkILAA1WhrFX8ezSTvEEyk/86h2oLWj/NmzfPPfLII9Y+ASR1lClTxj5Onz69K1++vC9oQcIGayyGVV6ojaaIiIhIoJw4ccL2djy0q1y9erULpYvO+u8YiYht7L7wwgtuz549bs6cORH5jNDahxOnLFmy2MkXJ1iSelDFQGuBESNGhPquSAgsX77cWm3FxgJk2rRprlWrVraRwu38/w99r7dv324bLv369bPbJRT9temf/euvv6o9hYiIhKwSgsBDw4YNLRgA1kIc3xo1ahRjXU/Q/vvvv4+RkESrTAIMJGXQ2imhSAriuMsx1B8/495777WgB4GQ/v37u/nz5/uSQEgM4Hgb7JlO0XDMjobHICIiEkrNmze3WaUkTDAni0QN2liG8ritSgqRWOgnS4/ZSI7f0aqKShAuZEznzp071HdJRIIYpDrf+xeBirj+Dz23RUREwt3mzZst4JAtWzZrkeRp0qSJrXuZz0aLJnhz5X7//fcY34MWkwQybr/9dt91/B/v/8Xn+PHj7qOPPrKTbKolQFIQJ98EHqiYqFWrlgUnGD5JUsBzzz3nZsyYYRUc9Hnmfj777LMub968AX1eRERERBKCzgkEKFiXEKCgYjQculooSCHy/1EG7j8INpTDYpIrU6ZM7pNPPrEWOhpuKyIiIiKRgHkNnCh7HnvsMasQZmYVVaKgWmLw4MEWUPAPUlDNwBwsBlF7CBbQlpIkJH9VqlRJ0P0h6L9jxw737rvvWvtL2iAQbGCtzdwvAhOcM7z99tsuT548LmPGjPb/Dh06ZPd94sSJvnaYdevWtXaZBFFEREREQuHgwYO+eba0tKTdJdUUJHZQYUrL8FBRkELk/6MMnJOaUaNG2fDfSFekSJFQ3wUJEf82PiIiIiLhhI1/WiQx54oBjWAeEm0GOUFeuXKl77ZbtmxxGzZssECBF6QoVqyYBQC8zz1UK8SWnGSd4cOH28wm/+HYoPrivvvusxax3v0vUaKEr9KCAMro0aN9MymqVatmrWRLliyZ5PsiIiIiklwkWrRu3dpm2LKe+u677+x6ki74WqirPP8vzUQkFePEh+yod955x/38888u2k4EGUj81ltvhfquiIiIiEgqwRr0yJEjNh/NX/Xq1W1ING2TPFQgMCOCNbm/Pn36WJUCg649VCwQBGjbtm3A7isn67NmzXJ//PGH7zrOCQhQkF1Yo0YNN3bsWLd//34LnLz44ou+AIXXTmrAgAHu5ptvdkOHDrUAxd133+2WLVvmFi9erACFiIiIhNyYMWPcxx9/bBWmTZs2tfUPs7FY81AFeu2114b0/qmSQsQ5V6BAATuBopzcvzdtNCBA0bhxY5c5c2ZXvnx5+1dEREREJFCY0fD111+7HDly+OZArFu3zoZSZ82a1U58PdyGFkm0G/AULFjQff755+7WW2+N8X0JDqQUAhAkKC1atMiGbjPLjY9r165tX2/ZsqVVSNAayj8g4Y9gxGuvvWZBi2PHjvmqmZlvR6upSG4fKyIiItFj+/btrlevXvYxCRUHDhywj9u0aWOtNlmvhZqCFCL/H8GJaAtQoH79+tZn7v7777cBgSIiIiIiSUErgD179rhvvvnGNuE99DZ+44033EsvveQ7ASYJiPYBrD+ZC5EuXTq7fsiQIVaV4D8ngrZMVB6kNIIl48ePdwsXLrSKCH8MumYmhueWW26xS1y43fTp020A9g8//OC7PdUUDRo0iDEXQ0RERCSU/v77b9esWTNLrqCi9ZFHHrFECuZrxZeIEQoKUkiqxnC9yy67zGXIkMFFKx7f2rVr7SRRRERERCQh2Ign6452R/nz5/etndmM58T2t99+853YFi5c2K1atSpG5cDVV19t7ZNiz4UIZlUvj4FWBlmyZLHPT548acOrQSChbNmy7oEHHrDqCdpIJaSFFS1U+/bt63bt2uWrDCFYQeWF/9BvERERkXDw7LPPuo0bN1o7pylTpvjWa7SpJLmEtpWPPvqoJWyEklI8JFV75plnXM6cOd3UqVNdNFOAQkRERETOVyFBQIKWR/7rZFoXDRs2zHfd9ddfbye0xYsXt+HXHk5wmSnRs2fPgA2uTiqyBJk1R/sCZl906tTJ97V8+fLZ0G2qILj/y5cvd927d09QgIIezgy/plKCAAXBFoZrf/vttzYfQwEKERERCTcrV660SldMmDDBXXfdde7w4cO+r8+ePdtaV544ccKFmoIUkmpxErZhwwaLGHKylRpQ1k6JFz14RURERCR1YiPfvzqAoYlkz/kPrqZdKK2aYrcu2r17t/vyyy9jrJ9D3d6Iio158+a5Ro0aWdUEbU5JQjp+/Lhbv359jOALQ7dbtGjhMmXKlKDvzWyNypUru2rVqtm5A9UjBHC+++47C3CkTZs2BR9Z9GImCecl/B5o/UXbXf6uREREJHAzw5o3b25rvVatWlk7+A8++MDWfe3bt7frCWA89dRT7rbbbnOhpnpUSbWoLmBQNoPyypUr51KDHj16WBYY7a3GjBkT6rsjIiIiIkH06aefunbt2lmA4ZNPPrHrKPmnhRMZdPv27fOdpNICietiByDCcRh0zZo1LVPQkz17dlevXj1Xt25da+mUlKrinTt3uqefftotWLDAPqftFT2c+/Tp42sfJUlDC64yZcq4ihUrug8//NCeTypSMmbMqKdUREQkQLp06eL279/vbrrpJjdy5Ei7buLEiZa8wb4ga7qmTZu6cKEghaRqvCDLly/vUovevXtbDzpK0kUS6sCBA9YqYdmyZZY9SM/lQYMGnbetQe7cue1g6I//Q4ReREREUt7kyZNtg51s/ypVqth1tCiiopYKA1o8eQGIN9980zLa/Y/t4di+iDkY7777rj0uHp83V65WrVqWmU+GIBfaMiW1uoPvQ+9mejZ7zxGVF1yXK1euAD+i1Gnw4MGWxenfcpcNlPj89ddfdvH/OxAREZH4zZ07173++uu2jpkxY4bNCmONQyUFwnFfUO2eJFWiTJ2TjtSGbKU33njDFStWLNR3RSIEEXZO/P/++2+3evVq6+E8bdo0179//wv+XwZT0uvQu3Tu3Dko91lERCQ1YTg01cH0E/bHcZsTUa9iArR0Wrx4sSUg+G/iM2siHIMSXisn1q9URtBHmRZBBCneeecd320IxLC+HzJkiLvzzjuTFKAgu59kirx587pJkybZuQLVJLRLZTNdAYrA4XdXokQJm+/B75RzEzI740OiyzXXXOO7EOAQERGRuP3www/u4Ycfto+pAKV6EaxnWN9QZZo/f35b41A5yloyHFx0lgZUIqmsBy9Z3mReMVSPExGRxJ4sx4d2Av69ic93W06g6cF7vtteeeWVSfrlcLChx+DmzZutn/Sjjz5qGYCJRQn+fffd5w4dOmQbGBg3bpwNyPzpp5+s9UFceI1169bNLhL9yGhk04Cel2RoiIhIyuH07fTp0y5dunT2OVURtMvheo7XWbNmteupgGQdUL16dVegQIGI+5XQ/qdv375WOcHj9dx66622uU1lZyDW8Zwb0Ab1xRdftEAF7rnnHuvR7J3UR5NwOGZ7a+XHH3/cfpfMDenatautMfm9JqSSgkCF1h0iIiIxEYRgjtbSpUstIYCklcsuu8yuz5Mnj7X2pMKCWRXcjpbwJArQDjTUaw9VUkiqs3XrVlvknjp1yuXMmdOlRpyAvfDCC27ChAmhvisRiZZH8V1oMeCP7LD4bkv/5Ngb+7FvkxSU8FE1c9ddd9nmxIgRI9zQoUOtbQGIqJ/vMfj/3DVr1tggQy9AATY7OMhs27btvPeDk3taR5Adx88Pl+i8iIhIpHr77betLQ6JCB6OtVWrVrX5CydPnvRdz1qAZIFICVCwTjhy5Ijvc4IwDMMmQMFJNZmArGsY7j1gwIBkByioFuUkPV++fO7JJ5+09TGVJmT5M7MuGgMU4YKNkuLFi1tgiHVihw4d7G+aIEVc0qRJY5sa/hcRERE5F/s/BChYR82aNcsCFKCylgAFwQJv34rjK7cLh6HZCM+aXpEURI9aStzJzoovCzzaLVy40PXr188y7chW4o1JogctCggqvPLKKzZ3hYxDgnPDhw93bdq0sTZMDFFPCDYL/AMU8D7330iIa0ATJ5/MQCFyzzwUWj5xH0REROTCWK8uWrTI1ahRwwZbewEJZj6xwU7lhDfEmhZOkYjHsGHDBjuJnjNnjitSpIjvsTD8evTo0a506dK2pgjUwG5+Jj+DqlAqT5EjRw5bHzF7IilDtiVxOAcpWLBgjOsIpr311lt6KkVERJJo06ZNtvcC9l5IxPB4c6Bom+lV41KtGk6t8BWkkFSJ9jec7KRWTZs2tcw0yrt0IpZ4/lmKscV+Po8ePRrvbWP3SyaqHQhkGXJC738yT1UFByk2Naju4JKSKN/3FC5c2AKCHTt2tJ7CCoqJiIhcGJWPtF0k29w74bz77rvd+++/78qXLx+wTftQYM1DYGLmzJnWC9l/DUPlhNcOk3aVgbRx40armiDDEGQT8tySXOHfglNSFlUqu3btinHdN998o7kfIiIiSUS3mCZNmtg80QceeMCqFP29+uqr1s6SSlt/SZnjlVIUpJBUg6wpqif8I4mpFRvGDFKUpEnMnIiUuu350K6AmSuxeSOI2PRgUyAhgZgbbrjBrVu3LsbXfvzxR9/XEoohlrRxYFOCyg4RERH5v5kIBPEJPtBmyMtuoxSf4/HNN9/se6oYbn3vvfdG9FPHkGtaEfjPJ+Bkmsw+Wkp6bQkCieoTqohZ/7AeYi1MAOTpp5+26hQJ/t8AATcCcA0bNrS1Jm1o1YpWREQkaXr27GktMdmnobtG7GSWjBkzBjz5I9DCJ1wiksKWLFlim6NUEWhevEQz/r7Xrl0b47ovvvjCWkVQ6UE7A8oAz3fxr8CgVZR/RQiDlegFHLtM/3z4nkToU7qCQ0REJBL4D4KmwpDZCLQ98k8iadu2rQUtHnroIRepaCHAAG9vIDVYP3DiXKlSJWs9QPLDG2+84e67776ABygY0PjUU0/ZOcCMGTNsjdS4cWOr3qDCVAGK0LXfZb4KLb7og82MEQJXnKeJiIhI4pDoMnbsWPt4+vTpLnPmzL6vxbf/yb4Qg7OZxRUuVEkhqQabtpwQ0U8/ksvjA4nWP8yn4A1t8uTJel6irI81LZdosfTVV19ZT+dhw4bZ1xLT7omDFpsJtAYbMmSIzaHo27evReC9tk1kv9HDmdYJ9I9m2DavN8oIaa3G52TMkSFJ9F5ERCS1osUNx+bjx4/bPATWpFyee+45C+Zz3I2WdQgnyQQh9u7da+uQxx57zL5GkICKiZw5c6bYzz9z5owbP368Pa/Hjh2z6ypUqOCGDh3qSpQokWI/VxKOoBQXERERSTqSPZg9CvZdYq8lSRYhYaNbt27WDspDIgx7OKzLwoWCFJJq9O/f3zLR6D0r/0NWG5vPZPPxxlS1alU9NVGCoAG/11KlSln1RNeuXc/pSZgQ/N/33nvPderUyaoqaEnFsHWi7v69D9l0YUMABC/IiHz22WfdX3/95W666SY7WPrPqRAREUkNyF77448/3FVXXWWfkyxDdSP9gv3bkHLcjnSsA8jGmzhxolUwe5l7VF/yHHh4LrznI9D4mQyBZO4EMw6QP39+C07UqlVLCTkiIiISNc6ePWsBCjpfMAuUNoqxjRs3zq1fv96tWrUqRpBi8ODB1vEi9oyKULrorPreiKRqzzzzjL2xde7c2WXJkiXUd0cCgEzBokWLxuj3LJKSfvvtNwsA01aDzSgREflfhhrVAwQi5s+f73tKqGK944473I033hhVczXy5s3rDh486LuOk15OnOvVq+ebs5GSONEmIYKMQbCupZKiffv2NstDoueYHQ2PQUREJLlGjRplCanM9yIQQQtFf3TCYL3JfFDWSUWKFAnr47ZWaxL1eFFeccUVqqCIBydvIiIiIpJ8JH54bUVpcchcJ4Y2MwDbqx6oU6dOxD/VnOzSzrFs2bL2OSfHVG9yXevWrW2eRp48eYJyXw4dOmRDsWktxfNPRScVnL1799YGtoiIiESlzZs3W+UoaO0dO0AB1kas2eiKEaoARWJocLZEPU5Q6Hk7a9asUN8VEREREYlCDL1+4IEHrNWh5/bbb7f2hwQpUqq9UbAdPnzYWj7mzp3blStXzu3evTtGOwFmUdBqIBgBCtpavvDCC1apMmXKFAtQNGrUyFpQDho0SAEKERERiUqnTp2ylu20D73//vutPXdcM2gnTJhgHz/88MMxvkbVBW29mWcRThSkkKhGb1xefJQWUYIu8fv666+tH7L/yaZEpuXLl6vVk4iISBAxHJp5DK+99ppvRhOYh5YhQ4aI/l2w+b969Wo7GSbxh1ahtHWinRJzNTzXXXedu+yyy4Jyf958802bNUEFBfMuSpcubfdxzpw5LleuXCl+H0RERERC5fHHH3c7duxwWbNmtUQNr4rXH/PB9u3bZ5W9DRo0iPE11qsEN1599VUXTtTuSaIaJ0pbtmxx69atc3feeWeo705Y69mzp/vwww/thJNSMRERERE513///ecWLVpkmfqVK1f2tXDq1auXa9WqVVA26oOF4dMMWaRSxFOmTBn3yCOPuPr161trpWDiftB7+fPPP7fPc+TI4YYMGWIVFHGdoIuIiIhEk7ffftuNHz/e1j0zZsxwmTNnjvN2VLiCtSkt8P0xp4L2UMxICycKUkjUu/jiiy27Ss6vS5culunXsGFDPVUiIiIi8SCZg+QOevtu3LjRThIZzPzSSy9FTRCG9TOyZ8/uvvvuOwtGEKzo3LmzK1asWNDvE+0I+vTp45s7wSBugkI9evQIylBuERERkVD74YcfXLt27exj5lF4yTJx4XZ//fWX69ChQ5yzacNxPu1FZ1nliUShY8eOuUyZMimrSkQkhdFS75prrnG//vqreoCLSFSir+8ll1xiH//888+uePHirlmzZtZuKNjVBClZNfHKK6+4r776yn3xxRe+NfSnn37qChcuHG+mXkqi1/Lo0aNtDgbHGjRt2tQCQlRRSOo8ZkfDYxAREUmMf/75x1WqVMmtXLnSKiBoc3n55ZdH1XFblRQSterVq+d++uknN336dFeqVKlQ3x0RERERiTAMve7du7e1cGJNiWuvvdaqC7ygRaSjLergwYOtfYCXv7Zq1SpXtmxZ+5gT4lCglzKVvgzCBifko0aNcnfffXdI7o+IiIhIqLzwwgsWoLjqqqvcG2+8keQABWu9cG2RqcHZEpWOHDli5fcMgVaWVeIrUDhRZeC4iIiISGrGgGiGMc+aNcsdOHDAd32kByg4QV28eLGrWLGizW1bsGCBXccQxc8++8zdc889IR1CXrduXVe9enULUDCQe/LkyRZMUYBCREREUpvPPvvMDRgwwDdrIm/evPHellmzzzzzjDt06FCcX3/qqafczTffbHMtwo0qKSQq3XDDDXZSyVC9bNmyhfruRBT6/U6cONEGEHJSLiIiIpKa0M6JagmwKT58+HBXoUIFlzNnThctli1b5mrUqGEfM0+DFkrM2ShYsGDI7tPp06dtCDatnP78808LBFFJwYk2LQJEREREUpvjx4/bOo2ZYQzB5uPzIemYoAbtoQYOHHjO1zdt2mQJIeFIMylEJAYqUBiw061bN9e8eXM9OyJyQeoNLSLRgD65bIp/9NFHbufOnS5jxowummZqfPvtty5//vz2OVUTtHMqWbKke/zxx92NN94Y0vv37rvv2nO/b98++5wKD2ZRFCpUKKT3KxpFwzE7Gh6DiIjIhZw9e9Y98MADtk669dZb3ZdffmntnuKzdetWmyNGogdrqrg6y5CMs3nzZvt+wUrqTuhxW+2eJOqQeSVJV6xYMbdhwwYFKMSH9ha1atVy6dKls5YLTz75pEXl47N8+XLrcRjXxWsjxgEzrq8zqFNERCQU6O1LSyFmmhGoiAZk3c2bN89OWGnhdPLkSbueYy59jRmUHcoABZl8tJiqXbu272T6zTffdEuXLlWAQkRERFK10aNHW4CCNSpzKM4XoMCYMWPsX9pmxtf6nmphkkHCseuM2j1JVOFErGjRoi5fvnz24oymsnyRUGVeEqCghdrq1avd4cOHXYsWLWyA6Isvvhjn/6E1Brfz169fP9twKFGiRIzrP/nkkxibEJkyZUqhRyIiInKuv//+2zd48IorrnCzZ892f/31lytdunTEZ96988471iqJbDlkyJDBbdmyxTfXIZRDE0kqorXToEGD7GNaTj3xxBOub9++FzwBFxEREYl2GzZssARRvPzyy7bXeT6//PKLmzlzpn3cuXNnF4lUSSFRhdInBuytWLHC10tYkoZM+bffftt62UlMf/zxh13YAPDf5OA6Njbiui0BNM+ZM2fsuthVP3HdNqnYhGAQZtq0aV2WLFncs88+m6Tvs2TJErd9+3Y72HFQrFmzpg1sGjt2rD3muLDZQ1DDuxB4WLRokWvduvU5GyJ8zf+2BD9ERESC4auvvrIKAyoN/CtKIz1A8fHHH7tSpUq5OnXqWICCsnqCFVQqhMPgaRIUeN65T6yFKlWqZOsWZlEoQCEiIiKp3a+//uoaNmxoey5URTz22GMX/D9Tp051p06dcrfffru19IwLlcIjRoxwX3/9tQtHClJIVOGEjB7CvDh1kpM8RGrr1atnJ5ASE39bXI4dO+a7bujQoXZd7IMH7ZG4npZJHjb4ua5t27Yxbps7d267fseOHcl6yhkaT/neXXfdZZsTHIS4f1OmTLGvP/zww77HEN/Fs2bNGjvIXX/99b7rqlevbj0Ft23blqD7QyYnw54IUsRGeweeI1pQcDsREZFgmTNnjiW3PP/88wFJEAgHzJ2oVq2aJe5ceeWVrk+fPtZSiWSFUA+fPnLkiA17rFq1qt3PrFmz2u+AoEWBAgVCet9EREREwsHZs2dtTuyePXtsj2jy5MkXrH6lAwb7TF4VRXy3J/m0e/fulkQajtTuSaIOw1+4SPIwNHvkyJGWcccbHoN3JDJMmjTJggr0mebgxOuBAUrDhw93bdq0sc2YHj16JHhDwT9AAe9zvpYQHFQJbPj3RCQQMmzYMFemTBl38cUXu7feessyPhcuXGiBCxERkZRG20JaPHXt2tWORZHqxIkT1soJt9xyiyUFEJAgQEE1ZagRABo/frzr3bu3ZQbyXD/66KPuhRde0NBjERERET+vvfaamz9/vnWZYE5XxowZL/j80JGjcuXK1tmDhJD4UGHBbcOhsjYuF53171ciEsE4AYrkE8xwpOBE3HhTB4OkvQg1ZXi0caKncpo0ac65LZsg3t8nt+P2BH5ox3S+2yYFFTBsVniVEyBS3qBBA3f69OlEBZw6dOjg9u/f7xYvXuy7jhJCsjM/+OADa/90Pj/88IPLlSuXmzt3rqtfv/55b8usC7I9GeQpkYXKGjbE2HyirYiISDg6dOiQmzZtmm2Wh3IeQ6DwnstGPyezVE7myZPHruf0LlweH0kSrCW++OIL+/yOO+5w48aNO2dGlQRPNByzo+ExiIiIxLZx40ZrO8p+EUmmVD0kBntN4dhCO6HHbe3oSlRg45VscbLDT548Geq7EzVUPRE3Nui5+G8AMIeB6/wDFP639Q86cNDgOv8ARXy3TQoGJsXFi0knpt0TcyJ+/PHHGN/H+5yvXQit15g7kZDqCGZo7N69+4K3ExERSazff//d2oI+/fTTbsyYMRE/N4yN/rx581p7TpIcSAbwhEOAgrU5waDixYtbgCJ9+vRu1KhRbu3atQpQiIiIiMSxkd/w/8+hYP+kW7duiX6OwjFAkRhq9yRRgQHPbG7SMmbw4MGhvjtRh9kDR48etTkHEv4IRrAJ4I8NAlpAEHhKTLsn5loMHDjQfv/MjvAGchL9Lliw4AXvB0EKKiQScrDctGmT9acWEREJNDbJaX9E1UGNGjUi9gletmyZ69Kli2/gYf78+S3T7kKVjcHEjImOHTtaL2Uw8JEAhX/bRxERERGJOYdi9+7dLmfOnLaPktCkk1mzZrl8+fK5kiVLXrA9KF07YifWhhMFKSQqPPTQQ1Y69Oeffyr7PwUCQLQPYoOboeRqqRUZGNT9+OOP2ybBV1995UaPHm0zIECwwQs4XAjDNwlGMKNkyJAhNoeib9++1kvaO7itW7fOAhFLly512bNn9/3fTz/91No3cbCNbfr06VZ9UqxYMft8wYIF1p6KeRoiIiIp0Q70kUcesWMSx59IxH1nzhOuvfZa99xzz9lxPlyy5qjkfOKJJ+zEGqwJGOL4wAMPhPquiYiIiIQt9mvmzZvnm0PBOi8hCDzQKYOOMqtWrbKZn/F59tlnbV1G0irVruFIQQqJCmSH16pVy4VjOT79/OnLH3v8S7ly5Xwnzdu3b3c//fSTy5Ytm8udO3fYnGyiatWq9gZZuHBh6x+XkKE9EnoEDWi1QGsLXh8MBaUndGLxf9977z3XqVMnq6qgHVXLli3twOY/o2LXrl3W/9AfGykMZCLLMy4DBgyw1wdzPLgNB+MHH3wwCY9WRETkXBMnTrTBg++8844vsB6pAQqwRmTtyDGZ43BCT2BTGmtcqpkfe+wxawlJ5h8BIQaTa16AiIiISPzoeuF1unj55ZdtJkVCTZgwwQIUt9122wWHYX/33Xe2RxnO3Ss0OFskABl633//vWWuly1b1nd9kyZN7MQ49sathz5zXjCiadOmbvbs2fYxG7achFKuRfUCl1atWtnmcKjwpuc/p0DCW4UKFVzRokXdiBEjQn1XJJXQAEsRCTdsljOzgTUMJ3Dt27d3kYbWjawVmesAKoZ37Njhq0IMB4cPH7bqSipvQdKBl6Qg4SkajtnR8BhERESOHz9u6zr2FBs0aGCJmwlt88Se4s033+wOHjxoXSlat259waQSEqhpgZohQ4awPG6rkkIiGidG9913n5W6c/IZjEGBvLC3bNniPvjgA7usX7/e/fXXX5bZRka5l6nHUGQCFHxOT7nzVUdQDk9Qgjcmst/pQ+c/QLhNmza+jymh503o3nvvtY3oYLRfUoBCREREIsn1119vG+crVqyIs+1guA/59gZ8kxm3YcMGW0eytgyXAAXr4RkzZthQR9o8kWRD6wDudzj3OhYREREJl4TnZs2a2T4gycmTJk1K1J7m3LlzbW/whhtusCTpC+F733jjjS6cKUghEV/GT7/9119/PUmtbBJr5MiR1pf/0KFDMa7nxJEIJi2bvKGAzzzzjPV84/MLBRL4nlx4k+J7f/vtt77Lzz//bMNtPK+++qr78ssvXb9+/ewEnEGJXGjLlNKtmOh3t3nzZle+fPkU/TkiIiIiSUEZOxvmqFKlil0iyfvvv2/tnDhhBUEJKijCqRUoWXgkCJGsgzvuuMMy+GgNKiIiIiIXRlvMjz76yPb7aJt5dSIqA0kW8WaO0m4zWhJEFKSQiNa5c2crVYqv531y0L6JUisim17PNt4ICCKkS5fOVapUyaoZKleubAEK74TYkytXrkT/TIIZBDW4VKxY8Zyv8/M5KeTrn3zyibUymDZtml28uRyLFi1yKWHbtm0234BezpychrL9lJzf8uXL9RSJiEiqQ+UECSJsnlOlGklIBOnSpYtVJ+Cmm25y48aNc9WqVXPhgnUoFb3du3e3sn3WhDzfTz755DnrYBERERGJ25IlS1z//v19ici33357op6qZcuWuU2bNtneJIOzL2TmzJk2+6J+/fpx7jWGC60mJaJROcCJUiBPvj777DM3evRot3DhQqtsYChh27Zt7esNGzZ0BQsWtKHXlNwHG+VZtCzgQv+5VatW+dpO0aPYv+LC62VMYCEQbbAKFChgwRp+BgEcPhcREREJB6yL2CxnKCBtkgYNGuQixb59+9w999xjJfskrNBCicHY4ZQQQpIOrVW96ok777zTqidYF4uIiIhIwtd9jRs3tv1H1lbMoE2s3377zVo31a5d22XKlOmCtyeZmZm5JFOHc5BCg7NFnLNZEkQWOandunVrjAHEPXv2tHZKkfBGx2yMW2+91T5nbkaRIkWsyoTyrxYtWljVSXJngNDvLhizP0QkcmiApYiEy1qI1pxDhw6NqMx+kmKozCVIMX36dHfXXXe5cMEJ9OzZs616mdkTVE8MGDDAPfHEE1bFK5EnGo7Z0fAYREQk9aGFZ5kyZaxtfcmSJd3KlSuT3KrpzJkztpfJ8fBCSDJZunSpa9q0qStevLgL1+O2ghQSkRggSP+2rl27WlVDcocT0q7p2LFj9jnlUmzos7FfqFAhF6loVUVUlscH3ghat25tjytv3ryhvnsiEkW0WSAikvi1LFUIXhXskSNHbK3GOjRcMGuNFgILFizwzZ4giBLJ62OJjmN2NDwGERFJXUj8oCsKlaiZM2e2tWDOnDldavBbAo/b55/mKxKmqHjghGn8+PFJ+v/Hjx/3fUx1wd13322BCgbPMG/htddei/gTsIceesgy8mhdRXUFbwpkF95yyy3uvvvu8w1kTGrGH2+oIiIiIqEckk1iyfr16yPml8Aa6qWXXnKlS5d2PXr08F1PpWo4BSjee+89d9ttt9l6m6oU2k+tWbMm4tfHIiIiIqEwadIkC1DQ2vONN95IUoDi6NGjbs6cOVZFEY0UpJCIRIk5A6QZMJjYF3SnTp3szWDv3r2+6ydPnuy++eYb9/jjj9uci2hBAIbKie3bt7uPPvrIBmvTqokAQ1IfJ5HPfPnyWS/i5AQ6RERERJKD5BIGTdOW8+TJk2H/ZDLXoWrVqq53794WYCFp5t9//3XhhOeRNfb9999v62aqPdatW+f69evnLrvsslDfPREREZGIw1qKvTkMHDjQ2nwmxYgRI1yTJk1sXm5Cbdy40fY7qeQIdwpSSEQis2vcuHG2UZ7Qvm+DBw+2Nkf8P/q2vf32276vU2oVzX11idRWr17dsuJ27dplvYWvuuoqX0Yfz8kff/yRoO9FiRYDegiA+M/vEBEREQkmEk/q1KljlbXeuiZcffjhh65w4cLu008/tYoJEmTIhAun9ecXX3zhihYt6iZMmGCfk7xDYkuxYsVCfddEREREIhItPevVq+f+/vtvW7f26tUrSd/nxIkTbuzYsfZxYoZtk+RNd5WpU6e6cKcghUQ1IoXMZmB49FNPPWXzGRgSs3z5cjvxSo1o91SxYkXf55wgc5LPm9brr79uQYsLoUSNtlj33ntvCt9bERERkbjR05Z2RPXr1w/bp4hKiWeeecaqWamcYMOfYYlt2rSx6tZwQFUH7Zzuuece991331kyCsEUKlXSpk0b6rsnIiIiEpEITDz44IPWir1AgQI22yup678xY8ZYG3dab1LxmlCXX365recY1B3uFKSQiPLuu+9asIFy+YQEKCipb9Sokdu/f7/Lnj27bcLTt7h8+fJBub+RgMqI3Llz25tmy5Yt7Y3rs88+O+//uemmm9yVV14ZtPsoIiIiAqphV65c6XsywmWjPz6HDx92o0aNsnUpSSHMdSAxJFzs27fPVahQwQIpBFRoIbBly5YYCS0iIiIiknhdu3Z1n3/+ue27LVy48LxDo8+Hzie0ekKfPn2sW0pC0frdC26EOwUpJGJwcvfCCy9Y2ybaE10IJ61khFFST3YYPdiaN2+eqBdzasAQ7R07dtjzyhsm2X2crLZv394qTy5k586dCaq+EBEREUkuTszKlStna7tIkCNHDjdr1ixLlHn11VddmjRpXLigmrZIkSJ28kwbT+Z7cF8zZMgQ6rsmIiIiEtFon8neJXuTtFxntmtyvtfx48ddnjx5EjWPwsNcsUjYCw3/eyjip2/fvq5KlSq+gTOxUSXx9ddf+z5/8skn3bfffmvD/ghWSNwo/erZs6fbvXu3e/jhh+1NdNKkSRd88yPbjpI1+iyLiIiIpHTCCmXzKFWqVNg+2TNnznRLly71fU57TBJlwmk4duvWrW0dR2bdXXfd5TZt2uSaNWsW6rsmIiIiEvFIAPEflJ2cVul//fWXe/nll+1j5llceumlLlopSCERg41z+q59/PHH7rrrrovxtTNnzrjnnnvOTrI44eJFDFoSZcuWLUT3OPJkyZLFvfbaa9aHmAgtz+n50EKL3wtDFUVERERSEmsOqhG2bdvmatSoEXZPNpWlVHoQkKD/8IEDB1y42bx5sytRooSbNm2aZdT179/frVixwt18882hvmsiIiIiEe/777+3eWnsU7IepGV9chw9etTlzZvX9t9atGiRqP9LlxTWzLt27XKRIHrDL5Jq8GLjZJAqCpDZ/+eff4ZVOX2k4Y2MNk7+EVrK/wsXLuxuv/1233U9evRwHTt2tDdMERERkWAoWLBg2D3RVCewHqXfMKhMpdVTOFWhEOB54oknLJmHE13WdprTJiIiIhIYzI544IEH3I8//mh7Z1OnTk32/LQbb7zR5sYSrEjMPidrU+a4kUST1FkYwaZKCokIzKLgxe1VSIAXGtPtixUrZgEK+udysvXGG2/YUBpJHv8ABS202rRpY5l3Q4cOtcGKuP766xWgEBERkRS1atUq165dO/frr7+GbcYcc9AIUFx++eU2f2LQoEFh0/v3xIkTltFH2wHW0swjo72TAhQiIiIigcEeZatWrdzGjRtd5syZ3TvvvOOuuuqqgD2918XqKHMhV1xxhVu3bp2bPHmyy5o1q4sE4bFyFjmPw4cPuwEDBtgmOUOdwUBnWj917tzZnT592uZUbN261Vo9JTdKKXG3gapevbr1gWZ2RdWqVd2xY8fOOQH+6aef9PSJiIhIwPzzzz8WoOAEKxyHZbP+LF26tLVR4uRx+fLlYTV/gpacxYsXd2+//bYNTRwxYoSdNHPyLCIiIiKBwb7l/Pnzbb21YMEClzt37mR9v3///de99NJL5+y9JdQll1zi7rjjDttLjRQKUkjYI/JIJQW93Jg5AUqcyKZj4POoUaPc4sWLw6qkPtpQMbFo0SIbps2cj2XLlrmSJUvaCTnYOKAELRw3D0RERCSyKzsnTpxorSj79evnwg1VvYcOHXKFChWyyl5vrRoO7Z3Gjh3r7r77brd37147UV69erXr2rWrEnpEREREAmjevHnu2WeftY+Z81q2bNlkf8/Zs2e73r17W0cTr5tJtLvoLCtYkQhEj7eDBw9adpgED8Mq6bH33XffuXTp0llLA1ptUc1SqlQpt2bNmrBpbyAiwfHbb79Zmz2Cx5HS71JEJBBon0TwhJPIjBkzhsWTSsUx1Sdz5861z1m30TY1XO6fhFY0HLOj4TGIiEh0oOMLbT/p8tK9e3c3fPjwZH/PM2fOuPz587s9e/ZYNUWvXr0S9f/Z6h88eLArUqSIq1y5srUjjYTjtoIUEhF4gQ0ZMsT9/PPP9kKLhBPW48eP24XSLP7lDet8qArJlCmTld/zLxeuC0f8Hh566CH3ySefWLS4f//+NsiH3sZqtyWS+mizQERSAlljlKqHmw8//NDaYIZjUsaOHTtcvXr13M6dO60KhfVzt27dtD6TqDpmR8NjEBGRyPfDDz+4O++806pqWRu+9957Mea7JtXEiRNdhw4drJUogQo6miR2XlrOnDltHc0xkwTjSDhuJ/+ZE0khRA4fffRR17hxY3uBzpkzx66vU6dOyEvpCTzs2rXLd/nmm2/cgQMHfIGJkydPBuTn8EbiBS1oZ3XrrbfGuDArIhRBgWuvvdZO0GfMmOFatmxp94E2DCIiIiKB8PXXX9uAZ1pJtmjRImyeVFqQUjnBxj+ZcuGUnEHlBH2H//jjD5c9e3b7nHZPIiIiIhJY7PsxK5cARcGCBd2bb74ZkADFn3/+6Wul3qdPn0QHKLz9VGaksSYMdYAiMRSkkLBFUILgBOXpDE3kxc78CYYTBgs/l7kL9PBl8KAXkKCS4EKIWLKZ71VH8MZwvhPZU6dO+aouuJA9yHUEP7hs3LjRvfvuuzH+D22W8uXLZwEL2l5xIlqsWDEb1JPS+H20bt06xv0n0ktVBY/zlltuSfH7ICIiItFp2LBhbv/+/TbkORyCFFT1EpwYOHCgfc4aL1xwIkobgFdeecU+r1ixonvjjTcs+05EREREAov9uiZNmrhNmzbZeuv999+3SoFAmDhxolVokHDSsWPHJH2Pm2++2VqzRxoFKSRs8UK/4oorrE0Sm/zz58+3dkIp6cSJEzZTgaDE559/7tauXWub73GhdMqraCBQwJuAV/XAv5QwJbUNACfClEN5QQv+3bdvX4zqDU7cub/r1q2zC1UN4DljqHWZMmUsaEHVCfcppXFyPGvWLDsp5udx/8K1XZWIiIiEN4YOFihQwNWtWzfUd8XWZT169PD1GH755ZfdE0884cLB0aNHXYMGDdyKFSt86zGqPQKRySciIiIi53ryySctiZg9r0WLFrncuXMH5Gk6deqULyGG5JjUtqemmRQSltavX+9q1qxpG/SUTRGVDNSLPnb0k0AEbyoffPCBtRaIjWgom/30meO+EJTImzdvyEumCN4wvJqABf2HeRwEV+Kq8mDgDs8ngxMJXqTEiSslbrVq1bJIMiZMmODat28f8J8jIuFHvaFFJFr9999/rnPnzu7VV1+1z8eMGWPtSMPBl19+aUEcsu3Sp0/vpk+fHhZBHQlv0XDMjobHICIikZtI88gjj9jHtHhq2LBhwL73zz//7J5++mm3bNkyt2XLliQNvGafk4TmYCQrJ5QGZ0tEIyO/WbNmVhHA7INAvriITDLwmcAEQ23IQPNHAMKrQuBfsvjCcTBifCfStKOiCsSrBiGI4Y/nkmBC7dq1bbDPVVddFdA3HmZT0JqKiO9bb73l7r333oB9fxEJT9osEJFA+emnn2zmVrjgJJSTUVpZUn7ftm1bFw4o4afN5l9//WUJNAsXLrSkFJHUcMyOhscgIiKRhz1Ekn/Ze6PigZkRKeHvv/9OUoACtKovUaKEXUgADwcKUkjEmj17tmXjExx48MEHLTMsEIEJNsxpGfXxxx9bFYKHBS4b6WzaV6pUKer699Iqavny5VaKxhuqf6VFmjRpXOXKlV39+vUt+huIgAXPLW0HqH6hYoM2VI0aNUr29xWR8KXNAhEJ1GwFZlqx6c5MsmzZsoX8iSVDrmXLlm7SpEmWQBNqzEujxcCIESPsc4aLz5w5M2B9kCX6RcMxOxoeg4iIRBY2/EnKZX+R+ayTJ08+79zZUJk6daol1ZCcHHuubagoSCERhyAClRMM+9uzZ0+y+/3SP/irr76yk0oCH7woPLly5bKgBBHQcuXKBWXQdDjgxJbqCqpIuPA8e6688koLJvBmxnDy5LzZssnQqlUre96Zz0FbKp1AiATP2LFj3dChQ92RI0dckSJF3OjRo12pUqXivT2bXWQKHzhwwF6zBIgHDRqU4B6Y2iwQkUBgjcL8Mao+9+7dG/LWmp6DBw/a8MJQ++WXXyyphIpg9O/f3z3zzDMRU/Er4SEajtnR8BhERCRysHfGvFc6sdCRhM3/QO4jfv/999ZelLlit912W7K/H63zWTfSKSaSjtta0UpYoL8vm2JE+tgYq1Gjhnv44YeT9L14IfL9ihUrZuVN48aNsxfETTfdZCdyVGlw4jtq1CirIkgtAQpQ2cDJP4Mfd+/ebTM4eBNk8Pcff/xhkWDaXPGmyG1ouZAUPKdei64WLVro5EEkyFm/jz/+uL3fEaglSMFCKnZrOw/BxKeeespuz3wb3gf4HilVuioiEh/abLI+oQozlAGK8ePH25wHTzgEKHbu3Gnz0QhQkFiyYMEC99xzzylAIRHp2WeftYQo/4valYmISDhiw58Zr5xPFy1a1M2bNy/g+4jMoVi0aJEFKgKB/bhwCVAkhoIUEnIEC7wXIu2WCFYwh4ITsMRgDgJl+FmzZrXvt3nzZuvh1rhxY7d06VI76WVBzIZdOJZkBRvPQaFChezNkBPfFStWWEDhiiuucNu3b7cqFk7KydhjKHdiEejgZ1C94SGrW0RSFgFGhtZTglqwYEEL1LLZN2XKlDhvz/waNgabNGnicufO7apVq2bvm+vWrYv3Z9ADneCv/0VEJBC896FQobKMRBkqbcPlvW3JkiVW5frtt9+6nDlzWsWJBmRLpOM85PDhw77LqlWrQn2XREREzmlnThcWZr+yBqOteSBa0vsjsZAEHQwZMsSlZgpSSEiRsdu1a1f7mM1yTgwTW7K+cuVKi2oWL17cBm6zeXb77be7kSNHukOHDlmWMMEPlcLHj2BC2bJl3fTp0+0kgbYvd9xxh7VtIkrMiTFVJ2Tv0UYrIWj3RKUGvwdw4kGPaa+HsoikzIAtBmVVqVLFdx3vfXy+Zs2aOP8P1VP8Hy8oQSnrBx98cN6h91S8Ua7pXW688cYUeDQikppQ0RlqnCB2797dPmYORajbyLDmIpmHdS7l8QSU6YdMwo1INFR433DDDb4L7SZFRETCxb///uuaNm1qSX2c83KOHOh5aaz1vDb3TZo0sRb4yfHKK6/Y92EubSRSkEJCZs6cOZbtC04IOeli8B9vBAl5IfMGcc8991im20cffWQbcWT/kvVPFUWXLl18LYck4XjzJYPwyy+/tIguJ+mcRHz66aeuatWq1mrg7bffdv/99995vw9VLGRx+weTyEjkdz1x4kT9SkRSwLFjx+w99Prrr49xPZ/HV8nEIub555+391PKVvPkyWMDwc7X7ql37962YeZd6KEpIpJUu3btsk1K1m4XWl+kFBIx2rRpYx/TMo95D6FEJSrPB8k8PCckf1AZfN1114X0fokECpVBbPbcfPPNtgnEXKz4qIJTRESCiT3HTp062d4Xe1u0YqICMNCYbUFAIU2aNO7FF19M9vcjyZi9VubCRiIFKSQkKJFq3ry5vfDZEL/llluslL1nz562CI0PJ2n0SmfeBPMrKHfnDaNjx45WfkXVBMNh1c4pMHiep02bZq2yaKFFKyiCSfXq1bN2Tq+//nqMdk7x+fnnn60y48knn7TP+X3xuxKR0GNRxILo1VdftcAkfc55jx4wYEC8/4dFFBnG/hcRkaRibXfy5Em3f//+kFS+ktzC2oY1TaNGjdzQoUNDupb8/fff3QMPPGAz1jB48GBr2cd7r0g0IOmJcwwSzajgZl4gVd387cdFFZwiIhJMzGskuZZ1KZv+zHYNNDqXsAcKknlz5cqV7O/JmrFfv34hbZ2aHBedTWjvFpEAYiFK+xHK1lmg/vnnn9YGKEeOHDYXIb6NNDLbmD2Bq666ygIcvJgDXXIlcWNQEG0HOGkmexpEk4cNG2aDeePLjqRdFCf+BDsY8sjJyCWXXOLmz5/v6tSpo6dbJIDtnpg/Efu1RUXUiRMnLAMkNjYFeI2yKeehqq1Dhw62aZiQDUOqpKjC4n1BAQsRSSxOR6jYpAKWgYTBRCUY74G0COUEdPHixSENBjCw+7777rPASdq0ae39uH79+iG7PxJ9wvGYzRqFzRnmarVt2/acr5PE5p/IxmOg1WQ4PQYREYkO7Hd5c3OZ70iSbUogAYVjXpYsWWyv7OooPp4ldO1xaVDvlcj/d9NNN1l/9GuvvdY2wNhUi6+1CKXARBcXLlxon/OHTbCCN42MGTPqOQ0iWgy88MIL9vsg0MCm5rZt21yNGjXsQrDCv8UTqJLJmzevnVgQ5OANn77TVGE89NBD7p133ok3wCEiiUNlGVVLtATxghRUoPH5Y489Fuf/OXXq1DmBCIKIUB6DiAQDVQvMvgoV1pMZMmSwkv5QBihIxCFAQcCENn2skagQFol2vP7y5ctnmzRx4XWpSiIREUlpc+fOtXabIME2pQIUaNasmW3esw6N5gBFYqjdkwTNpk2b7GTLf8P7fH2HaRFElQSb3gQo2DR79NFHLWhBn2AFKEKHN9BevXrZ74KAEX3sKdcuXLiwe+SRRywY4WHzk987J94MNOdzBqY/+OCDlvVNZFpEAofXJKWp06dPdzt27LBemgQGW7dubV+nWo2ZEp7777/fgo5vvPGGVbl9/PHHViLK9V6wQkQkJVDmnpBZZCmJbOxVq1ZZBUUo15a0PWXOGgEKqlSZsaYAhaQWVG7SPztr1qyhvisiIpJKsRYkcECiHvtanBOndIJht27drOtBIEycONFt2LAh5Gvr5FCQQoLi4MGDNkOCfr+chHkYnE3GGPMkPLygaClE9j0toGgTdO+997qtW7daFj6lUBIeOJmnemL79u32u+V3x2Yn1RNDhgyxzQdwwuG/2ckg7lmzZlkffDZGRSRwqFB6+eWXLZhL2xQCxAQRvWHaDKY8fPiw7/Z9+/Z1TzzxhP1LUJiSU6qbxo8fr1+LiKQoqirJnmZNEGw7d+6MkcVNy9FQofUp62Q2aitVqmQz1wLRl1gkXPXo0cN99tlnbt++fW716tWubt26dq7QuHHjUN81ERFJhUhY4VjEHlaDBg1sTzKl5pPRapSE3UD68ccfrV1ziRIlLOE7UmkmhaQ4Trjoec5GWYECBWwhyskgm2S5c+e2F+e6detcyZIlrXVQmzZt7HMwnJlN8Egd+pLacLJBFjfDd1GkSBE3depUG8ANKmcIShCAiis7kJZQKuUWiTzh2N9aRMIfLZ6YRfHSSy9ZhWawsDZp166dDRdkszRUyNQbOHCgL1OvSZMmdt/IrBOJ5mM2A+pXrFjhjh8/bglo99xzj70W8uTJEzGPQUREogNdPypUqGDHlpo1a1onl5Rai5HYy14YnQ7efPNN2zMLhG+++cY9+eSTdlxknm+40UwKCQu8AFmEEqCgvdP7779vAQovu37Lli3uww8/tGxfFqbPP/+8BS1YdHLCygkkWfcSGRg4uX79esuM5KSfoY8En5566ik7Aae6guzuu+66y7IEvcg0fye8oXoZ3zo5FxERiX7MgFiwYEFQk1G++OIL9/DDD1viBIk0ocLahzamXtUaQRoqTGPPCBKJRqqkFhGRcEBlLV0E2EQnuXr+/Pkpuh9Fu3OSetkXDWSLw3z58rlFixa5SKdVsKQoZkoQmEibNq3NJWBgtr9bb73VIpZ33nmntRohQEH7JyoqOIFUgCLycHLdqlUr+x1SJsdJOAGo4sWL2+WGG26w3zFtvDz0wad/3rJly2wwkYb1ioiIRD8yoFkzZMuWLSg/j3kPtKdkvUlJP4kTofDnn3+6hg0bWoCChA3amZKcowCFiIiISHDs37/fVa1a1f3000+2V/Xuu++6dOnSpdjPoyXT008/bR+zR0Yit8SkIIWkGHq4jR492j6eMWOGBSLA5jQzKjhB5OSQTHvKq6699lo3c+ZMC2Zkz55dv5kIR//7uXPnWiSaN1/mVtSuXdtaGRC8Yti2h/ZP3JaTc/oyDxo0KKT3XURERKILgQECE7QbpZ3o9OnTQxIU8FoJUEFCpt68efOsokJEREREgoM9SeaA/fDDDy5//vzW0YOOLimpZ8+e1o7pjjvusOTcQPnjjz/sEg0UpJAUQSY8mfSg3++DDz7o+5o3WJmeowMGDLCgBVlt3L5p06YpNpxGQqN+/foWoOB3S2uF4cOHW2Bqx44dMW7HCTuZhCC6rDJwERGR6ERrSBIXglmW/sQTT9jMM5Ji+Lnp06d3wUYGHRXE9Arm53NCzDpJRERERILjyJEjFqDYs2ePu/nmm93HH39s85FSen4rbdHZ73z11VfdJZdcErDvPWvWLJcxY0bXpUsXF+kUpJAUwQuPXmu0emLWgD+qKk6fPm0Ry0yZMlkG/VtvvWVtgCQ68Xv2qmT4PROQInpcokQJ+zvwdOrUyQZvgwHqzCwRERGR6EIVAyX1VBEEw+rVq+2E0DuR44Q02GhtyXBgqoc5ESZQUbFixaDfDxEREZHUitZOVapUsUHTOXPmdJ9++qnLkSNHiv7MU6dOubZt29rHHTp0sMHZgbRjxw535swZ23eLdBedVfN3CXApPaXrcZXP86Lp3bu3GzZsmH3O8GQCFCn9hiDhhSxCWj5xMPAG/DBgm7klYIYFMyvILqQN1Ndff+3SpEkT4nstIhdqX0J5LOWr9JgXEbnQkEKyyWrUqOHKlSuX4k8WpzsTJkywVk/PPvts0H85nDxyQsxMjNy5c7slS5ZYVbFIKETDMTsaHoOIiATXzz//7CpXruw2bdpk89BWrFhhHV5S2tGjR13z5s2twwj7WynRVmrnzp02T4PASyQftxWkkICeADZr1sz++KiWYFq9h2z5hx56yDLZQLY8AwL95xJI6kEggsHokyZNss8ZUkQ2pZfZePz4ccsuZGaJf6swEQlP2iwQEYkblRPVqlVzx44dcwULFrSWAsEaFC4SrcfsaHgMIiISPCdOnLD1GC1HmZ9K+6Vbb701qPulzMFIrUnavyXwuK12TxIwzBOYPXu2+/DDD33zKMDJWNGiRS1AQf9dBgVSTaEARepF/72JEyfa3wolaV999ZUFKmgHBa7jpF4BChEREUmqqVOnul9++SVkTyBrX5IuCFDQ5pITYgUoREREREIToMicObNbunRpUAIU/o2LaImfWgMUiaEghQTsJMybJTB06FBXpkwZ+5jSegYikxkPSqkeeOABPetiaPNAMKJ06dIWUa1Tp4575ZVX7M3cf5AQEec1a9boWRMREYnwk8QePXpYmX1Kd5wlKYb5VgQHTp486YLtk08+cVWrVrX1DbMoOCHmxFhEREREgoNkFdZjBChIhmU9VqhQoaD87Kefftq1a9fO1oIp4e+//3ZFihRx3bp1c7///ruLBpeG+g5IdMwYaNCggfvnn39cw4YN7QXy33//ub59+7pBgwbZbTg5ox8vt4trXkWkYxAOfY650G/Y+9i78MbITA6eI+/CyTnVJJdeeqld+JjyJzLssmbNGuPiXXfllVe6aHPdddfZQWPr1q3ujz/+sGAXwyUJVhCooCqnUqVK9jdFxcWNN94Y6rssIiIiSTB//nyrpmXuFMf9lEJyAyeFYO151VVXuWD64IMPXL169dxff/1lmXtvv/229QkWERERkeAGKDZs2OCroChcuHBQfvaXX37phgwZYq3OSdS+//77A/4zPv30U7dlyxabeeHN/o10ClJIsrBxzBBkNuYLFChgMwaI5rVu3drNmTPHbsOAQmYL8AYR6SdoREDZKOdNjgtvCMzboL+aP4ZA+wcZbrrpphgBCS7wD1oQxOA5YoP+888/t+DG6dOnY3xf2mVlz57d3ljJDORCm6SMGTO6SEUggpN3AhQMzH7vvffc6NGj3YEDB6x9GHMqKIvjeWejYeXKlWoVJiIiEoHy58/v6tevb8krlL2nBJJA2rZta2uqEiVKuBdeeMEFE60raVfJuo4K0TfeeMOlSZMmqPdBREREJDWLHaBgQ//2228Pys9mH69Vq1YWoGjUqFGKBChQoUIFt2jRIqtU9u9EEsk0OFuShdZOPXv2tOADkUIG0NStW9etWLHCNuIJWrRs2TIin2Ve6P4BCS67d++2r/F4ixUrZrM2cuXKdU7VAxURyT355iSb4Efs6gw272mTQJskr30BQRAvaOFdrr32WhdJ7cK+//57q8Qhy7J58+aWfViqVCn37rvvWqUKzze/k379+rnnn38+1HdZRPxogKWIhItx48a5Tp06WcII6ziSaILlrbfespNRkk9IrJg1a5YSKyTsRMMxOxoeg4iIpIyffvrJKlnZNwt2gAJdunSxxFu6hnz99dcuS5YsLrX7LYHHbQUpJNmby82aNXN9+vRxVapUsfkTO3futD86NpsXLlxoEcSSJUtGRFXIunXrLAOOjXHeTECLJTbI/QMADNkJdaSS+/vNN9/ECKIQuPB60ZGtSMS2du3a7q677gr5/U0MKkkoiWOWCQEYBmxzgOHEn3ZhBMG8uSciEnraLBCRcEAyCb15SW4YMWKE69q1a9B+9ptvvumaNm1qWXNUGU+fPt1XOSsSTqLhmB0Nj0FERAKPxF72Jrdv325BAlo83XbbbUF7qt9//33rEOK1/2SPVJyCFBI8tOkh079ixYrWA5iZAbww2VRu0aKF9QGmJRILyXC87ww2JDBBmyF6uTFMp1atWvbGRpuAfPnyRcwGP4GLb7/91gIWvBnHfkwELIgo0zYqXNEujAAR95E39O+++84iz8uWLXODBw92M2bMcLlz53abN2/WSYlImNBmgYhcCAkGnCSmZKUncyBoIcmalPVdsOag0Z6SKlDWYax9p0yZEjFrR0l9ouGYHQ2PQUREAovuHJUrV7Y9MdqksydGgnGwHDlyxFqzU8lBogwJMyll7NixttakxSjVItFy3FZ6jyQJG99EJeEfoChYsKD7+OOPreURX+eErVChQmEVoCCySqUEgQnetP7880+rOqAtVSRWHfjjZJw3YS5k8cWuDnn99dfd5Zdfbr8vHiuVFuE0iJpgVvXq1e1vadeuXW7NmjWuRo0a1q6B+8zjWLVqlc3toMc0g4hEREQkvJGAQLIEFQ4kIqRUC6YJEybYic9zzz0XtAAFM9i8AAWzMLgPwfrZIiIiIuLcnj17LECxb98+S2plr4/5psHEz6btO4GKl156KcV+zr///mv7YQRFeKzsmUULtXuSRKNkiWgd0+OpNmBYC4EKghG8ETCXIvZshZQajphQ9AamumPixInWOoj7w9BGb6P+lltucakBm/tegOazzz6zNzeGCbVv396eCwIYocT9ufPOO23uBn2dy5Yt637++Wer/qA6hIqK4cOH231/5ZVXrEpHREJPGY0icqETR9o4Hjt2zBIRomUTf+7cua5x48YWoGjXrp0bP3581Dw2iV7RcMyOhscgIiKBsWPHDtvXYo2ZN29em0ERqmTcH3/80Y5RKbnHePr0aZt5sXjxYtvfDPU+XkJoJoWkWAUFA2f4l3J2SukJUFC+T4CC6gkCAuHSg3f//v2W0TZ16lSroKB9ExvyBFkiabB0SmAINS0RCNxQsUAAgPkhHTt2dHny5AnZ/aI0j3K1jBkz+q775ZdfLFDBcPZQDD4SkfPTZoGIJAQbioGuriXBgTUoJ6fBTIohmeKhhx6yn9+6dWs3adIkBSgkIkTDMTsaHoOIiCQfe0RUEjDPlM4u7FFmzZo1qE8tySpKUgnMcVupPpIojz76qAUoiAouWbLEF6Bg05gABSdq5cqVc927d7c/wlCgcoO+x/Xr17fyrjFjxri6devaUOn169e7Dh06pPoABTJkyGAn1Qw/37p1q7WH4gSb3y1VFZzw81wGGz/fP0ABPqeNGEEmsjBp/bRlyxa7f1TIhOJ+ioiISOKkRPvPcePGWatI2nYGC0kejRo1snUvSTskfOjkVERERCR4li9fbntDBChKlixpHTeCHaAg+feOO+5w8+bNC+rPjVYKUkiCLVy40M2fP9/mNZDZTv8zstkJUJCFDzaSycpnYCBDqYOJE0WGKvMGUb58ebd9+3YLUBBIYahM0aJFg3p/IgmBJob6UB7HiTa99GjlRS+9yZMnuzNnzoTkfhFAmTlzpi+owt8XBx8OQhyM+D3fd999vtuIiIhI+M2jSKlkAtYtvXv3to9Lly7tgtX2lAoKKoebNm2qIdkiIiIiQUYLcyooTp486SpVqmRJtsEeIE0FBckqmzZtcj179rQ2TMFobbVkyRL72dFIQQpJcHTwkUce8WXBkc1OgII3Ai9AAd4k6Iv26quvBi2CyYkvARQ21HmDuOGGG9xHH33ktm3b5jp16uSuvPLKoNyPaHDFFVfY0MfNmzdb8Im2T7THomzuzTffDOob4eeff+7KlClj7ae+//57X6CCN2QCFcyqoAIE3bp1swofERERCS+vvfaa9QUmGSLQOnfu7H7//Xd31113uYcfftilNNZG9erVs+QNAhXTpk2z5B0RERERCQ6Sk1mP/fXXX65OnTrWXSN9+vRBf/oHDRpkM1/TpEljCd3sp6W0oUOHWgVxjx49XDRSkEISpFevXjbTIW3atLY5nDNnTgsE+AcoPMwOILMsGGjrxEY27ZyyZctm7ZzIcONFq7L7pKOnM5UKBH+ICt96663W1oDgANUMwcCGA63D+Lnp0qXzXU+ggt8xbaEInnEg4G+SQIWIiIiEF9YNVDxQ8RpIrFFou8QcNOaPpfS6j0ph2mFyQsy/nCCHyww2ERERkWhHgjKb9CQns66k1SdtltinDDaSZ/v162cfk6RNR5dgyJIli810aNCggYtGClJIgt4ImDfByd+ff/5pm8RMkCco4D/sOJjtncj0v/fee63dD20EOAH2ZhZIYFGh8t5771l/PyLEBKFoBUVAKCXx98bvlHZTmTJlivE1yvgIkvF36ZXUzZkzxyLoIiIiEj7ILGPdSOVBoDD37LHHHrOPKa+nbWVK+uqrr1zNmjVtrcuAbqpLL7vsshT9mSIiIiLyP3T1ePzxx23dhyeeeMJaboYiYWT//v0205W90nbt2rk2bdoE7WcPHjzYEsiD1eY02BSkkASfDPKmcPnll7tFixZZ+x8PJe9UMnAdJ3Epae/eva5Zs2auWLFiFhjhJHHdunW2aS4pi6oGWjCRucibYqlSpSx6+80336TYz+TvLT4MRSd44l9lQXsv2j6IiIhIeCC7jXagOXLkCNj3fPrpp606I2/evK5v374uJTHjjASNX3/91ZUtW9bWQaHI2BMRERFJjahipVuL1zr05ZdftksouqeQJPvggw/anFSqJ0aPHh30+5AuXTrrfhKNFKSQC3rllVfcqFGj7OPXX3/dNqtjBw4YVsOL9aabbkqxN6U+ffpY2yHmYFBOxUljw4YN1dYpiHgjfOCBB9yWLVssar127VoLTnXv3t2dOnUqxX4ug9rJmBwwYECM62k/RaDKe4NmdoU3QFNERESiE1UNtH0cN25civb/3bdvn1VOcCJKtW7s5AgRERERSTkkidSqVcu98cYbVjUxc+ZMq6IIFRJpaY1Otw+qhYOVuPLdd9+5PXv2uGinIIXEiwx5yue9NwAilXGV6ufLl88CBpTyZ8yYMeDPKG2Fihcvbj+fzLndu3fbcESV2YcOQyJbt25tfyMDBw60TYIiRYq4VatWpdigyrFjx7oXX3zxnAHZ9913nw3l9MRuDSUiIiLBRwl848aN3ciRIy2ZJZBo+cnas3Llyi6l/PjjjxagOHTokCtUqJC1maQHsIiIiIikPJJQqWIlUfmqq66y9t7Bmn97vr2wIUOGuG3btrncuXMH7ec+88wzLk+ePJZEHs0UpJB4dezY0V54Xhsd+r/Fh6yyQA+K8aonGKBMdHLDhg32wrzyyiv1WwsT/F4Yqs5wbQb4UGWTElUV9erVc4888ogdlJhDEdffKvcDw4YNs40LERERCR3mh5H1xlouUP2CaT3qSckexGTt0aKKxBhOQBcvXqwkCBEREZEgYY+JuQtbt251N9xwg1u+fLm13wyVlStX2h6l5/rrrw9q4s/v/7+t+T333OOimYIUEqe3337b3gRAhjy932L3PFuzZo1llaWEL7/80oIeVE88++yz7osvvnC33367flthijZcvGkPHTrUqiqKFi1q8ysChb89KikqVaoU722o6CCjkqGWBDVoESUiIiKhwQkl6zgqcgNRCk8CBDPJqMxgHlpKoX3p/fffbyfHJEYsWbLEZc+ePcV+noiIiIj8H/YZqaCgmpX24uwHBjopOjHY62KviQrbUMxAveiii2w2MAO7aT8azRSkkHMQHWzVqpV9TJ9f+u/GHmDMyWH79u2tJzCb0oH82QxAJGKaJk0aC1bwuVo7hT/K3tiI4KQ+c+bMdlDhc072A40Dw59//nnOz589e7bLli2b27Vrl8uVK5cFLERERCQ0QQrWAc8//3xAvh+JEMzEGj58eIoFKfi+tDblZJTWTlRQMPtCRERERFLehAkTrKU3rUKZ/UDyK3s7oUJVbd26dW2NSPVEKDu75MyZM2oHZnsUpJBzNGvWzP3222/28Zw5c1yOHDnOuc0///xjZfCcgDK8OlBtAYgK0t/Nq54oXLiwfkMRWlXB75HqB6oq1q1bF7Dv/84777j8+fPb94+NjMdZs2b5AhlUVIiIiEhkO3DggBs8eLB9THVGSgyvppSemWfvvvuuVX6QpMMaRkRERERS1r///mvJLbTy5uPmzZtbRUWGDBlC9tQfPnzYVa9e3R0/ftyVLFnSTZ8+3V18cXC30Q8dOpSqkm8VpJAYyBhjQj3q16/vHnjggTifISosOEkkqnjttdcm+1mcN2+ezZ4gG17VE5GP32OPHj2sqoKDClUVvKEHApUZvFHT5zquTMoKFSq4Nm3a2Me0aOBvS0RERILnhx9+sLahgaqmfPLJJ+17lS9f3j344IMuJTD3bMqUKXby+eabb9raRURERERSFgmmderUsWpZPPfcc7Z/FLujSzCdOHHCErP37Nnjbr75ZkuWTYkkmQvp2rWrdQthbZoaKEghPpRTNWrUyD5mY5lN4AtJbqkTAxD79+9v1RiUUDHnQtUT0YOKB6oqiILTQozIOFU4ycHfCgesr776Kt42YBMnTvQN2G7RooX7+eefk/UzRUREJOFIEKBEPxDVtqwj5s6da8ED5lGkRJn7+PHj3YABA+xj2pjWrl074D9DRERERM6tli1TpoxVsFLJymY8e4ShbGvEHDTmk9FmlO4xH3/8sf0bbH/++ae1MqfTTYECBVxqoCCFxMhSI1pIZQTVFJdeeuk5z87GjRtt0/fgwYMBCYpQrfHCCy+4l156yc2cOdMqNKIVLax4o43rQvZ/tCL6TdBg1KhRtrlAf0H+zpKK54u/wfMN4WQjg0i398ZOCzMREREJHoZNc9KZ3BZMrE/BLLQiRYq4QFu4cKF75JFHfNUU/BwRERERSVkkKZcqVcpt3brV5j189tlnAWsnnxxUT2zfvt1dc8011m2GSopQSJs2rXUnWbFiRapJ5r7oLKt/SfVoi0OvNSxdutRVqlQpzueErDjK99kkTk77nr1791orqX379tmwYzauox1Bmccff9x9/fXXbsGCBXYdLbPos8ebTiDaZoW7Tz75xA46WbJksSAC8yuSi7/HcuXKxdkbkPI8Dip46623NKNCJIWQ3cEi7tdff7VhsyIinGJQPRlf1WNCbNiwwXoAk8Ty3XffBTyLbfXq1a5y5cqW0NCuXTsb1hjtAwlFouGYHQ2PQUQkNZs6darNAvv7779tA56ZYAyGDhcEKX755ZdkJ9xI4o7bqqQQy2qnFQ8ee+yxeAMUYFgxJ3NeSXxSN5U54WT4C5HT1BCgwFVXXWU97Kgs4CSbC9dRsZIaAhSoUqWKDdFmZsWdd95pAZrkaNy4sQXO4guYjRkzxhe8IDPy6NGjyfp5IiIikjBs9icnQIE77rjDSu2pyAx0gOLbb7+1Un4CFKxFX3vtNQUoRERERFIQCSzdunWzOaIEKOrVq+c+//zzkAcoaEVPayVPwYIFQxqgWL9+vd2n1EZBCrE3CKbWs1les2bN8z4jBBfIhk/qGwh9fqtWrWrl+mxWFypUSL+BVCZv3rwWnLrnnntcrVq13LBhwyzbMqmbF2yA/Pjjj/H+LLIiqdhgLkWnTp2S/LNERETkwgJ9QnXbbbe5Jk2aBPR7Hjt2zN177722NmBtyxy2uNqcioiIiEhgHD9+3Lpd0Abca4nOHDOSd0O9diWplf0lZqGF2q5du1zp0qVdsWLFLLk7NVGQIpWj5Y6Xhc7mbb58+VLkhJPv/fzzz9smMSVdZNBnypQpWd9TIhdlXosWLbI+0z169HC9evVKUvCgS5cuVob31FNPxXubtm3b+jYfaLM1Z86cZN57ERERiY83O4Ky/aQ6ffp0jGy2QKJygpaju3fvdrlz57b7eeWVV6bIzxIRERER5zZv3mzzJ2gvz7qLObjMAourbXcwsdfZsWNHN2XKFFt/BmL+bnJt27bNniPWqaltjaogRSpGfzX/4YBs5pJ5Hle0M3/+/G706NFWmpVYbD4//fTT9gbEkGy+T3LL/6NFau57TMsnBqaPGDHCDR061HXt2jXRwTBaZ8X1Nxtb0aJFXf/+/e1jhmMeOXIkyfdbRERE4sfQQ1o0JWetx1qRalvWjoHEOqNly5Y2iyJDhgzugw8+sEGNIiIiIpIymEN711132UBqNt5Zh9WvXz/kTzfrQpKoJ02aZMGSGTNmuEaNGoX6bjlaYO3fv9/Ww6mNghSpGJu2Xo/+NGnSuH79+sV5O3r00reXyGJio5wEKBgWPWjQIBsSTbBC/k/69Oltw/ybb75JtU8LwQnagPEGzAEiqVU733//vXv99dfj/TpD2sGgnvNVXoiIiEjSUSZP6X5S+/iSRMO68d9//3U333xzQH8Vffr0cXPnzrUACtWVBQoUCOj3FxEREZH/OXPmjOvevbtr2rSpVSlUq1bNbdiwwQZlhxoJ2CRtM/eMfU72kgLdXjQ5MmbMGPI5HaGg5qupFBlur776qu9zXpw5cuSI87a04smcObP19U9MkIIABe14GF7M5dFHHw3IfY8m1atXt2HkxYsXdydPnnSpFeV1BMqo5uFANnny5ET9rf3www/WqozBS5QQUvkTW9asWX0f0+KMn0k0X0RERAKH4+2DDz6Y5P9PleWJEydsFkWzZs0Cdr9YWwwePNg+JmOuYsWKAfveIiIiIvJ/mBtKVcLy5ct9iSK0gKejRqj99ddfFpAgYYV9J/aHCKSE2r59+yyYk5qTaC46qymyqQ6/8goVKrgVK1bY57xJfPfddy5XrlwB/RnMG2AoMlnybAiLXMisWbNc8+bNXYcOHayCJzHtsOgvzaYGwbe4BrJTNcTfOL2owVCktWvXhsVBUiTS/fbbbzZrhkqlq6++OtR3R0QiFNWlN910kx2rmRVx3333BeT7coJctWpVy5qjhRSDGkVSq2g4ZkfDYxARieaq2oceesgdPnzYuocQBKhbt64LF6wHSaj58MMPbX5pONw39lBr1qzplixZYl1o6EgTTRJ63Fa7p1TozTfftAAFg4RBBDGuAMXvv/+epGHGXispAhSjRo1SgEISjOg1mY7jx4+3ssDE/P0R4GATIq4ABa677jrXpk0b+5jABGWGtDATERGRwCAAMHXqVDsBSQpmVBGgKF26tKtVq1ZA7hMDsul7zAkpGX2BnnMhIiIiIv/baGcfkGpVAhQFCxZ069atC4sggD/2QglOsC8aLveN9e+1115rc1fvv/9+l1qpkiKVoaUQbZsOHTpkpVZE6uh1lidPnnNuywvj559/tkqI22+/PcE/48UXX7TZE7QxoppCJLGoomDANbMj6EsdKHv37nW33HKL9blGpkyZbB4IBwMRSTplNIoIgQnWlJygss70b7OY0LYAVFFQ5k5mW40aNZL9pDLfgtaOu3btsnaQJDNcccUV+mVJqhYNx+xoeAwiItGE9+PWrVu7t99+25eASvLplVde6cLBgQMHrKKjb9++ierYEWz79+8PaJebSDtuayZFKjNw4EA7cWQQIQGEtGnTxjuE+OOPP7asM2YFJNScOXMsQEEZvQIUklSdOnWySDIlbmxY0P4pMf0FyeKkl/U999wT42t8r4YNG9rfKW+Mx48ft6ofZqaIiIhI0jEXijlme/bsSXSAAps3b7bsMRJjmNmVXMy44phPgIK5awsXLlSAQkRERCTA6FJBeyfayLOWGzlypHVUCZdgAPePFqK0FWUGBXuW4SpXFAYoEkOVFKkIgYe8efPaSSQRxBYtWpz39pRnkXHWuHHjBH3/L7/80pUtW9ZOCKdNmxY2b0gSuR577DGLvi9dutSVK1cuQf+HAw7VPPwtfvbZZ+f8HW7atMkVK1bMqieoFOIgtWPHDhu8LSJJo4xGEQkEZktRUUHVb3I9+uijNqeKDL5Vq1a5okWLBuQ+ikS6aDhmR8NjEBGJdFTPkvDZo0cP22dkg33+/PmuRIkSLlww44x2n6dOnbJE1vfff9/lzJnThYvt27dbki3Js+nTp3fRSjMp5Bxs3PLGceONN1pmOtHN8yELLqEBCgIaderUcUWKFLFNZQUoJBBeeeUVCzbQS5qyt4SgTRTtywiWxTXTgk0KShAJ2tHv+r///rPWZyIiIhJaGTJkCEiAgrUoAQrWo8ysUoBCREREJHBoqck+TZcuXWyfkf3AjRs3hlWAYvTo0Xa/CFBUrVrVklbCKUDBfhVJNQzK7tatW6jvTljQ4OxUYt++fTaQGH/88Ye1xMmePXuctz127FiivjdteRg2wwuMzd/4WkiJJNZll13m5s2bZxHl2rVr20yVC+HvmjkTVGFQJREXDlTp0qXzBSdmz55tEWwRERFJPE5Ot2zZYoH/xPrpp5/ckiVL4kwsSAqGILIGwAsvvOAeeOCBgHxfEREREXHuiy++sO4U7P+xZ0MC9IIFC2w2WTig5Wfnzp0tgMLatF27dlZBQQVeOCGZhjb5VHj069cv1HcnLChIkUoMGDDAXqj0+aXFDVUScZ20ffXVV7bJSzZ6Qk4Wuc3DDz9sfYTp9ZuUHsQi58Nw63feecd6XLdq1SpBGyDxBSdi48B677332t8xc1REREQk8VgHUk2bP3/+RP9fsseYQcF6MrmounzwwQdtphq9kXv37p3s7ykiIiIizv37778255bZn6y5mHW7evVqCwaEUzcVElAnTJjg6yjDxwRTwhH7UST65M6dO9R3JSwoSJEK7N6922ZQ4NJL/zcrnUhiXC/SRYsWWTYc/T0T8iZDOx6+N1UaJUuWTIF7L+Issky7BqLzBNwSauXKlfFuUBCQK1SokNu7d699TsUGBwcRERFJHFooUqHIyWpiUL07duxY+5iBhslBpTCVklRmkIQwZcqUsDphFhEREYlUBw8edFWqVHF9+/a1YAWt4dlTCaf2Th4SZwhMkEjNflC4rQdJvCV53BNu9y+UFKRIBWhpw5sI0U56xF1yySU2kyIuzz33nG3s8u+FfPTRR1aa9NRTT7kmTZqkwD0X+T+0e6JtAxUPb7311gWfmiNHjrhKlSq5l156ycoRY6MXIdUZDM2uXLmyXffMM8/oKRcREUmkevXq2UA8EgoSY8SIERZcKF68eLKCFFREtm7d2m3atMldd911dlJK0EREREREkodk5sKFC7vly5e7K6+80k2bNs3WfOHUPon7Q2Wvp2XLlmHb8nPIkCHW5YbnU2JSkCLK7dq1y3fCmC1bNvv3/vvvdzly5Ij3/xDMyJs373m/L6VdjRo1cjVr1rSNY5FgIApO+4YWLVrY3/b53HDDDRaMo30EH8eWOXNmG64NZl4QvWZTg2wAERERSRySYGjRmFC///67r4qCrLzkZJENHjzYKiKpEiaRIZyGIoqIiIhEIhJJ2FOhUpXMf5JK2C8hABAu2f/MyO3UqZNr1qyZzcploHc4ow0/M1EPHTpkSbMSk4IUUW748OFWSlSrVi336aef2nW8gON686HNU0Kz1dq2beuuvvpqC4BwUioSDBwIad9AkI35FFQInQ+bH6+99lq8/f2YveJVBZEF6vXGFhERkZQ1ceJEd+LECZcvX75kZbotXrzY9enTxz4ePXq0JduIiIiISNKtW7fO2meyXmMfpkePHm7NmjW2bgsX33zzjStdurQbN26c3UcCFeFU3REXEmp4HmlHRRWwxKQgRRQj0jljxgz7mLZMX3/9tRs5cqT1kYur3Ig+wkT0LmT8+PFu6dKlbtKkSWH/BiDRh/YNU6dOdWvXrrUgXHLceeedrmjRohZ9z5Mnj11HJib9FkVEROTCmOdUtWpVG0yYUCTGeMdw1qgXX5y0UxIy0OiJTAIN89Y6duyoX5mIiIhIEv3zzz82B/Tuu+923377rSWIfvLJJ27o0KHu8ssvD5vn9Y033nB33HGHtXjKkiWLJZ7S6j6pa8pgomVW+/btw6YaJZyE/29PkoyI5+nTp20Ttly5cu766693Xbp0OedFy4kdbW7YmL3QxPt9+/bZySQvqGrVqum3IyHBAfPxxx93/fr1s5kSCRnoSasoBsL746BAqSJWrFjhypYtawdlqi9ERETkwkga4OR12bJlCX66Dhw4YK0Ws2bN6po3b56kp/nUqVNWBUlZf6lSpdyYMWP06xKJQMyPY03erVu3UN8VEZFUjcoEKlL79+9vXStotU0yCrM+wwWJLuxHkqRy8uRJV758eZtJFu77k1ROJGS2amqnIEWUos+Zd7JGYOJ8ETq+RikXrZvo4RYf2kbR5unaa69VSxwJOaL7tHGiRO5CbZ8YxskJ0OTJk8/5GgdeAncM1+ZjUC5IgE9ERETOjyoKTry8FooJweyzbdu2uZUrV7o0adIk+ikmwYYTVLLnGJTNSV9Svo+IhNb69eutSp+BrCIiEhrs9bF/SIIzySe0dn/99dfdnDlzXMaMGcPq10Ji9eHDh20fk5lmJMp483fDFfuttN1/8MEH3ccffxzquxPWFKSIUm+//bb74Ycf7MSNDLPKlSu7999/P97bc2LXpEkTd+mll8Z7GxaQzLWgzRNvWiKhdMUVV1jbJ05uhg0bdt7bdu7c2VWsWNEVKVLknK+RxUkAY8mSJdYqIleuXO748eMJan0mIiKS2pEwQMDgfIkucSFBwGu1mFi0L+U4zVy0uXPnWisCEYksZMA2bdrUqv/DbRNMRCS1oOsEVQjsmZCoSXt4WsVT6Rou7YjodsEcXXCfSD6lBT2Jq+fbwwwXJUqUsE4g7DfF1X5f/o+CFFGKkzc8/PDDFv0kuLB37944Ky4Sgv9Lm6cOHTpYxpxIOLjrrrt8bZ+2b98e7+2oAOI1QLAuLvxt83dNsO6xxx7zvYbI1BQREZHAmT9/frKqFam+YHgjSFKgzF9EIs+jjz7qatWqlaANm7/++sv99ttvMS4iIpJ07HVMmTLF3XbbbbbhTxIo1RSLFy92N954Y9g8tTt37rQWVBwzPLSyJwk1UpCYw0wPEr/DJfATrhSkiEIbNmxwq1evtjIoIqJffvmlZZo1bNgwzs1b5lUwXf58pV9t2rRxmTJlsheWSDhhONJNN93kWrVqZRH2uCTmQMBrgkFGW7dudcuXLw/gPRUREYkuhw4dcu+++66V3ScE69MGDRq4W2+91TYdE+vIkSPWmpE2j/QipqWpiEQeBp5+9dVXbtCgQQm6Pbe75pprfJdw2kATEYk0dF259957be+DoG/p0qVtrgOBgHAZPM3ezuDBg30tqLw5upGCeaijR4+OkfgaLs9tONMzFIVogQP6ndHCBgQraP0Ue+DgggULLCONIEZ8aO/EZi0lVWrzJOGGiP+0adMsODdixIjz3pa/eXorxrWZ8u2337onnnjChmY3a9bMruP7ioiISNw++ugjV7t2bWvZkhBDhgzxrUsTO0OCk9VGjRrZMbxgwYI2B0PZaCKR2Vqka9euNg8xbdq0Cfo/vXv3tg0f78L3EBGRxGHDnP1CqidYw7EWY222atUqly9fvrB5OkkYpWvGU089ZUktNWrUsOuyZ8/uIuV5JkmcZBo6f0jCKUgRZZh0T2YKWrZsaSX1YN5EbOnSpbPSKUq6SpYsGW+v0P79+9umrXqnSbgi8k9rs4EDB9oMlvjUr1/fXhdeIM/fjh073PDhw21oNv0XwSBOr/ehiIiIxEQfYE50S5UqdcGnhmSARYsWWWCBNouJ9fTTT7vPPvvMXXXVVXZ85l8RiTwkFh09etQVL17c3kO48NoeNWqUfUylVGxspJEs538REZGEO3DggLXYo0sKwd4777zTbdy40dZk50taDqY///zTPfvss+6OO+6wjjAZMmSwxNEPPvggoiroWOuSwJM+fXpfAqwkjIIUUebDDz+0ob833HCDDTKkTz9vOLwZxYVBg5R0xZeJRmY6m74MpBEJZ8ylIEjHEOz4kIFJa6gsWbKc8zVmUlCVQWYW7Z4Y5kmAgiH0IiIicq4WLVpYZltCWrawAYn77rvP2j0lBsdirwqD/sn58+fXr0MkQjEjjvcNWot4F4aKsqHDx+GyWSYiEg1o3063iEKFCtl+IUFf9kyonihQoIALJ+znUCnL7Fwqdbdt22ZJppFYOcsaec+ePRZwkYRTkCLKzJgxw/5lkccbEMqWLesyZsyY6O917NgxOyHs1KmTBTxEwhmBOUrp2AShx2JceF3s3r3btW/f/pyvEaDwhsK/9957vmoK7zUlIiIicbvQyeOJEyd8VYy0eUkMjtvMnUL37t1tpoWIRC4yS6nA8r+QIMT8Qz4WEZHAoIqVAdOPPPKIdUm5++67LRjcq1cvq1wLByRZe3MbqJIjSPHmm2/aDIps2bK5SMHz26NHjxidODJnzhzS+xSJFKSIIlQ8MLwQbLDefPPNrnr16jabIq6S+Xbt2lkWS3y8rDhuKxIJKFXkJIdh2nHhQHy+YUX333+//fvOO+/4yvI++eQTGwwqIiIi/8d/EOCFMNeMkzY2ICtVqpSosn+CEgx1LFOmjA1QFBEREZH4UYlAtUThwoXdihUrrNX7yJEj7eNwqUZl1hiDpfPmzWtzQz1U3DLPIdKqJ+jaMWzYMLV3SiYFKaLI3LlzrTzq9ttvd0WKFLHyKIbh0M4p9psBw7A5YTx48GC8/eqYVUEkMK7WOCLhiMg7QTVaQezateu8Gyv0w2Xzw5/XFm39+vV2ICfTgPLI2bNnp/h9FxERiSRUGtJC8Zlnnrngbb/55htfFUViTjq7detmGX+sRcmqu+yyy5J1n0UkcBhmGijLly+3NsMiIpI87GUwc7Z3796238Fs2a+//tqGOIdLO71PP/3UFStWzO4T1bbRsN/CPlTOnDldnz59Qn1XIpqCFFFk5syZ9q/XpiY+ZJIzXJs3BHqCxoUTTobUaBK9RBrak2XPnv28FUAcqOl967VE82TNmtU3RP7999/3vZa815aIiIj8DwMN9+3bZ1UOFzJ+/Hi3Y8cOa7uYUJyw8v8IanAc5tguIqHDupne4FTrEzAkoYcEofLly7uBAweq8lhEJMTthmiLWbp0abd582Z37bXX2tDpJUuWWFJJOGDdSIUs+5AETmjzx7wMBmNHIpLEPXfddZe11/L2kyRpFKSIEj/99JP7/PPPfWVGS5cujbcvP0EK+tJR7hVXRhrDaSi3YhDxVVddleL3XSSQ0qZNa+2e3nrrLbdu3bo4b0PUnhkUVAzFRgUSwQpKJDmA8nrhIM8BVURERP6HYy2ZcLQPTQjaC3DsTYidO3e6Dh062Md9+/Z11apV09MuEiIMrs+XL59r06aNtU6ll/mCBQvc4sWLrTqfIAXtUQlePPzww3ZeKiIiwUPb94IFC1pFGp0gmjRpYskh4TR0euLEibYWnD9/vlV0dO7c2SptOW6ES4VHYvA4GDz+/fff+667/PLLQ3qfosFFZxPTUFbCFkEF3oCKFi3qvvrqKxsifPToUdukTWwk74EHHrCoJm9qepFJJPr333/ttUB7CAJ2sQ/MDIUnmBFXEI6SSP7uvdkV5cqVcytXrrT2Z7Fbp4nI/5BJfc0117hff/3VsipFRLB//3478cyRI0eCn5BTp065O++809aiJNV8/PHHEXnyKhItx2yyQwkW1qxZ87yz3WgjTH/x66+/3rJ5U5LWHSIizhKTaaVJ4Bi5cuWyygTer8PNmjVrrJ02s8kIptCmPlLRQp/OHCSzcrwbPnx4qO9S2EvocVuVFFHivffe8w2ZIfuMAAWbsAzK8Ue1xZAhQ+ykMS68yBga/NxzzylAIRGLzQzKzpctW+arMPKXOXPmeKuEeN34n4DxmvJ/jYlEgrFjx7rcuXPb3zObffFVFXnoBUoQjiqiNGnSWMZkpJbdikj46N+/v70XEehPKDLrCFCw0UnLJwUoREK/scTctvMFKEBLNga1pnSAQkQktWOTfNSoUZbJT4CCtRJVbtu3bw+LAAXVHLSYp3uLf8CbVqFU3kVygAJUFbJvSgB/6NChob47UUVBiihAHzTKbb0N1c8++8z3JsBmkz9Kcnnziu+FxJvIjTfeaC2jRCIZr4Vbb701xoExvgN8fAfWX375xRekoKUFfR5Fwh3DZZknxGwhKuuKFCniqlevbsHr+I4hVatWtZZmlK0ydJ5yXPV/F5H4kADwyiuv2FDr+Bw5csROUKluLFWqVIKeTGZPTJkyxTZD58yZY5XBIiIiIvI/a9eutXUVFRTsTzCDgnM+gsTMCgolGvUw27N48eKucePGtvfo32L7jjvuCJv2U4m1fPlyW5t6GJI9YMAAJdME2KWB/oYSfKtWrbLSmeuuu85aO1E6BfqDxla2bFkrxaXXfmz0DyVjjSoKIoMikYwNDobDc+HAyEEkdssnejVSPUSZpP98FqLi9N0lA50KCgZN7d2711pH0Q5NJJxRbtq+fXvXunVr+3zcuHG2WGTj76mnnjrn9lz/888/u9WrV/teB2Q+i4jEh7lPBCk4xsaXDMDQa4KgnDwnJEjh9SX2KjBo9SQioUfiQ0Kp5YWISMrgfK13796WTEYwIEOGDG7QoEE2w+tClW7B2sR/+umn7ZwStPR58sknbYB3NCTnMOybJHASAJn/ISlDO9FRwGtDQxkuUUneHFChQoVzbsvGK5f4TiZ5c2NzSyQatGjRwvXp08da3wwePDjG1zhYkgFKcI5shHvuucf3NXpnHz9+3AKAVFTcf//9Vk7Ja01BCglnbAhu2LDBFrAe3terVKli7RriQlCOyjvaPS1atMhmuRDAI/MlvjYrf/31l108BMpFJPVg7lPdunXjXGvizJkztq4EgYwLYR7UQw895P744w/7npTPi0h42LhxY4zPydilEpmKZS/AyHqBDFkREQks9iOmT5/uevbsaYmWYB4tbdxJVA412s2TZOJ1dLniiits7cf9jYYABThXpvNAtmzZbO6HpBwFKaJsHsW3335r5fVE+MgCTyhOJl999VXXvHnzqHkjEWHuRLt27dyECROs9Y1/+SMbtxzsyRjPnz9/jCeL6Lg31IdABq8tL0hB1kKklihK9GPhSmsVern743MWkHHZs2ePtTNr2rSpzaHYvXu3e+SRR+y4wOsmLmTtUHUnIqk3CYBLfAh4Hj582E6e69evf8Hv16NHDzveMjNq1qxZKp0XCSPMePOvlEifPr2toTNmzGjX0R6V6k0q9kVEJHAICpNI9sUXX9jnhQoVsn27cuXKhc3TzL4JSZ+XX365JTxTTcGcw0hP/KPbAHtJdJlh74i1bex2+hJ4oa8JkmQ5dOiQBSZ40VB+5EUvCVAwMNUfb2xkqsXl3XfftZNJ3gBFogmbrQwFnjdv3jlfY6gUw6ZiBx3IBvMqK3hNsQjg9UQAkGwxkWjLzmEjkWAeWZBkM7O4pE1UfKjUIIjnXb7//vug3mcRCW+cQIOTVU5az4eBj1Q8YsaMGZalJiLhadiwYZao4AUowMcvvPCCfU1ERALT2ol9jBIlStg+HsmXzJWlsi2UAQoSNkncfOKJJ3zXEZBgpth3333nxowZE/EBCh4j8xw7deoU47imAEVwKEgRBb3RULhwYYtgkvE9d+5c22CK/SZXpkwZlylTJmtjExt97egXzPcRiSY333yzBfD4G08MLxuMRQEHJOa9+L/mRMIRWcgE2X788ccY1/N5fANoWUjmy5cvRuYywTuCcmSRxIXXBH1G/S8ikjrQksm/3VtsR48etYw6Emjok3w++/btc23btrWP6Vtco0aNgN9fEQkc2jvSKjU2rvv999/1VIuIJAMV8exb0E7vtddesw1zBlBTEU/Vqf8czWDfrzfeeMPafdIKm6q69evX+75O1Swts6MBCay00+K8mtmkElwKUkQ4euaDAIS32cRQ7GrVqsW4HVFNNqh4kRGo8Ld//363ePFizaKQqEUmJ8GF7du3n/O1devW2UBAMjn9FS9ePEYfXu815r3mRMIRGctUQzDk3b9Sgs/ppRkX/rZp8cTtPFQMcTy5UAa0iKQ+kyZNsoy++GZNUJl18OBB9/bbb7ucOXPG+33oac/8G6odqQAeOHBgCt5rEQkEZtHQ2ol18w8//GCXt956y4KN9erV05MsIpJEDJwmcZgED1r4MpyZdnuzZ8922bNnD8nzeurUKauOJWhCsGTLli22BiSx5HxrvEhCUh4VE97AbxCk2LVrl2vYsGFI71tqpCBFhPOyuv2H/saFLHAWkf4bVx56rV155ZWuUaNGKXY/RUKpTp06FpxjYyU2evC/8sor57SDKlasmP3L5i3tbLzXmCopJNwRdCMDh37RO3bssFJVMp/ZVAB95P0Ha/N1qu26du1qwYn333/fvfjii2r/JyJx4n2CAIN/u5fYMmTI4GrXrn3eZ5C5NmvWrLFKrDlz5oQsO1BEEo5WkLRLJcDI8FAufEwVlNfmTUREEtfCndmwJI4xg4IOKSNGjLBZXRUqVAjZU0lAgkAELeFJemZ27fPPP+8OHDhgQ7tjz0CMVKxHqVLp3LmzL2mPagrN6g2Ni85SPyQR6eTJk3YSSOkVbxQMOaXVE9my5cuXT9D34NefN29eV7FixTg3cEWiaeOWYZzMXqEFhYeWFATqOOEimOGPQcI33nijHbT4P14VEq0ssmTJEvTHIJJQ9AOlbyktmyjLZfA7mcpgscvA+GnTpvluz0Zh9+7dbTFMpg4Zkb169Urw8FraP3jD5tX6SSS6sXakUoJBgrHbyFEVwdr0QpYvX+4qVapk34v2AczCEZHgCMQxm+QHNq2QJ08eS3gLJq07RCTSMS+WZEkqSXlPZWOcczA+pyo1FPzXcewv0jqbynr2Ulq1ahX09/qUwNqT5/6KK67w7e3Q6vupp56yCgr/vSIJ/nFbQYoIRlVElSpVLLpJyyY2WnlTI+Dw6aefJuh7bNu2zd12222WTc4mrUi0ok0TBx82Y0uXLp2k78FrhdcMLSxiBzREUjNtFogIJ31UIXIyy5qUY2ZcmI1WpEgRC3S0adPGTZ48WU+eSBBFwzE7Gh6DiKTe9dLChQtt+PTevXvtOvYnSCrz5mAGE9UDVNKPHDnSqmX37NljiSj49ttvLVCR0MS1cEcr78cee8zmL/onafMcKDgRHsdthYgimNd2xuuV7/XO93rpe5g3wXWDBg0653u88847Fg0lsCESzagwohKCv/mk8l5ravkkIiISE0kAmzdvdlu3bnXZsmWL98SchBoCFPQ35oRcRCLLl19+6Xr27GmtgplD4X8REZH4sU4i0Zj3SwIUrJdmzpxp+wvBDlDQ7pdZDPny5bMWnSRBsz5jZqfnlltuiZoAhTd/gtkTdKChasSjAEX4UJAigtGvDl5WuPe510vfs2LFCgtgEBWN7d1337Uh22nTpg3KfRYJFQ6utWrVsr/5uDCzxQv0xc749IYoxX6tiYiIpCYcD8lAY2hubF4/egYrxtfH97XXXnOLFi2yagvmUERD2wCR1IT2bHfffbfNvKKymHYgVBlTxU+GpIiInOvHH3+0gdjs1fF+mSZNGte3b18bzkyL6WBuktOqr127di5HjhzW1prPafHEMGyqKHiPjwa0dGJO49SpU33X0f6YeR887wlpTyrB978aHolIX3/9tf3rldNv377d/i1cuHCM23EySVk9vfVjv1F+8cUXVpIvkhqQIfD666/bwZeyRQ/llnXr1rWKow0bNviuZ9YLAwEZ5nn69Gnfa8177YmIiKQmy5Ytc2PHjrVSbf+s6Z9++snNmzfPPmbAYlw4dtLTGAxcjJ1UIyLh78UXX7Qe6rzO06dPb+1BbrrpJtexY0eXNWvWUN89EZGw2yjnfZI5E7///rtd17BhQzd48GCbERgKv/zyi6/VJnuHvJ8TKIm2xBGSYggMMT+NBBovMbtr166hvmtyHgpSRKhTp07ZRivYOKVUyytXYniZPxaMvBHGRt85kF0ukhpQNUT2JtUU/genEiVKWN9FhtD/888/vh6MDBAmQEGW2Pfff+8KFizoG67EhoyGZ4uISGpSrlw5y7QrVapUjOunT59uJfQcT++44444T9I5Qfzrr7/cvffe67p06RLEey0igULGrXfuyJraG/bavXt3V6lSJffcc8/pyRaRVI/2lrQUYhjzvn377PlgjUSQ95577gna80OCyIQJE2x/Y/jw4b778fTTT7saNWpYO2vewyMdMyVIpOG4xBxSkITKevWhhx6y34dEBgUpIhQltrzQMmfO7K677jpf3zh62qVLly5B34ONWvr0a6NVUgsyvpi/EjtIQakjJ1kc1GK3iKLignJATsrIdiBbjP6RlLZXqFAhBI9CREQkNDjx807+PKxHOQEG2dRx6dWrl50os2al7D4aTohFUqOMGTP6soFJ5uF1ffvtt1uyHEl0IiKpHTO6qByla4m3R/fSSy8Fra0T79G05qNaYu3atXYde4TPPPOMry3fCy+84KLJmDFjbH+HoMuqVavsOvZ2vMcvkUMzKSIUG6Tw2s+wgRpXFcWWLVtsEA+brLEz2pYsWWLtb0RSE/7mP/vsM2tV4S92gMLjvaa815j3mvNegyIiIqkZs8++/fZbd9VVV9kg3dg++OAD34DsadOmWaBCRCK3murjjz+2jxs0aGCbQu3bt7dKqcqVK4f67omIhAydTsjaZ6YDAQraJz3//PO2RmrevHmKByi+/PJL17ZtW+ukQpsjNuipoKA9JzOESNiMBiSXzp492/Y6PfXr17d5aLS5pwuGRC5VUkQoryd+oUKFfBuvDPOlVY2/+fPnuwEDBtib1aRJk3zXM6yHbJf7778/yPdcJLTuu+8+67v40Ucf2SLiQvLmzWv/7t692/eaoxJDcylERCQ1IVOadocE76k09HAyzsnvoUOHLFARe/5Z69at7WNaPNWsWTPo91tEAputSrIbaBdCW9TVq1fbBhFDYEVEUhtar1OZwPsjG+RUi7Zp08b24YI5q4f9DW/e7K233mp7gC1atHDXX3+9iya0HX3ttddsfek9Xir7jhw5YsckiWyqpIhQXha3F6QgSssAwpIlS8a4HcOyyXhhin3seRS0sSlQoEAQ77VI6OXMmdMi7N5MFg9Bvjp16vg2U+KrpPBec6qkEBGR1ISKCE56q1SpEuN6Tgg5fj7yyCPntIHimEpgg3YwDIkUkchFMtx7773nC1KSFUy/9XfeeccNGzbMWkGJiKQWzNnivY/9AmZNEKCoWrWq27hxoyUIp1SA4uTJk27GjBn2s9566y3f9QQkWrVq5VauXGnt4dnMj/QAxeLFiy3Y4s3jBYmmPOesSf0pQBEdVEkRob755hv790JBBspvucTGDAt6CqsnsKRG/O17per+J16LFi0650DuVVJ4QQrvNRe7hZqIiEg0O378uLviiivOOSmMz+jRo92HH37o0qRJY2X5adOmTfH7KCIph7YhDz/8sG1+iYikVgxpZuYD1WTeUGxaQr/88suuevXqKfIz//33X+uG8vrrr7sFCxb4ZgCxMU8lm5eMydyvSPb333/HaMM9ZMgQe9z58+e3oAtIwqaFlvYyo5OCFBGIzLQffvjB90YEyst4MZOxdqFB2Lzw6d9GpFUkNbrjjjvc2LFjbaiU15uRComRI0datievMe+gV7hwYRv4mStXrhivOTJDYx9ERUREolXnzp2tWsI7MeZYSRbfPffc47p16+YyZMjguy0tEXv27Gkfc9LuzXMSkchWqlQpt2nTJt+6WEQkNWHDnM1yujB4Q7Fp69SyZcsYrTADGZzg582ZM8faGfknUjLngku0tMxirhlzNWgf6iW20DaLJNGKFSv6bqvgRHS76CxnGBJxL+BMmTLZx6dPn7YXcLp06exjsr1p43Q+lJ8VL17cff7559ZHWCS12bp1qwUfGKBNJD4xeMvkNUeAgswJnaSJOPfbb7+5a665xgbSX3311XpKRFIBjqEVKlSwORScUHpBf9ofsJFJQgwzKGivqBNKkeg4Zs+dO9f17t3bde/e3ZJ+aDnsj/V1MGjdISLBxJqG9nZUiII1D5+TpMFeXCAdPHjQZix4ypQpY7N/GAzNRj6BCdq5R+rain1L1pC0x/Jm5LLHQqt6Hvsnn3ziKleuHOq7KSE6bquSIgJ5VRSZM2e2zVKm2/NCh38VBT1DiTxSckbPOs+GDRush2jRokVDcO9FQo9oPC0reC0kNkjBYoBFw969e+21qCCFiIikRhMmTLB/mzRp4gtQgPYHnMyzTmWgYaSeRIvIudggQ5cuXXzX8Rr3qpDJ+hURiRYkJfbv39/NnDnT3udoe9epUyfXr1+/C3YwSezPefPNN62NFNWoVE14icnPPPOMJYCwrxeJXRw4LnDx7jstths3bmwdLLwgBccP1ozsrSS0rahEJwUpIjhIkSNHDvv3p59+sn/p+Us2m2f//v32NYIY/tiYZZM20BFfkUjB4oLh2bwW/B0+fNj67LKx4p8J9v3339vX6IVI1JfXnhekEBERiXa0NSD4QGCfLGrmU8yfP9++1qFDB9/tli5dakMkwcnmDTfcELL7LCKBx/pXRCTasc4ZOHCgtYimg4I3sJk2697MyuRij4G1FMGJtWvXxtir4PN7773XPq9WrZqLVARzxowZY4PFGeoNWoUSjChdurTNBeXxRvrjlMBRkCICUQLlH6SgNz6uu+66GNlqzJygT3Ds3nhszNLuSSQ14zVAT0l/r776qi08GAr42muv+a6vUaOG2759u22+VKpUyffa816LIiIi0YwewR999JENiyRIweBGTto5ltLyxWtHSk9mdOzY0ZcdJyLRQxXEIhLNSPAdMWKEDWymPQ04/x88eLArUaJEwH4OwYkGDRr4Pmcfj7kLVKvVq1fPV0URKejsQjCC9eLs2bN9e5CsG0+cOOFWrlzpC1Lw2Ah4q9JW4qIgRQTysre9PnVeJUXscjNK78kW90ffN0rwmzZtGrT7KxKO2FQhEOE/PPuWW26xaonYiwLvteUFBL3XniopREQkNaA38Pjx4+14SLuDSZMm2fXt27e3f7mOAD/B+3z58vmqKUQk8n3xxReW8ZoQp06dss2nQoUKpfj9EhEJFPbJWNs8//zzvgHV7KURnCDDPzkb6rwnvvXWWzY7lgAEqEylgoAZsQ0bNrTrs2bN6iKlyoSgA+2zaUEFWjkxQJy9FZJZvNbytJ+vXbu2L6HFowCFxEdBighE2xlky5YtRpCCSooL2bZtm/Wzi/0mIZLa8BpgU2XTpk2ubNmyvuojLrF5ry3vteYFKRgUKiIiEu3y5MljF6xZs8aqCzk5pacwmH02b948O+Emgy72MF0RiVwMaWVzrV27dtZ+JK7XN+8J9GyfOnWqbeopSCEikYBM/7lz51pbot27d9t1vN+x4U5VA7Nck2Lnzp1uwYIFFpygZSYqVKjgC1Kwv/Djjz/aMOxwryzZuHGjvadnzJjRN1Oibdu2rnz58r4gBZUTTzzxhLWfv/766+NcP4okhIIUEcgrO8uQIYP9y3R0/889o0ePtjc9Ipdepjitnohaami2pHYFCxa0OS68JrwgRXy8AzKlirjmmmvsXzIFREREUhOqDamgIGuO4yEZgo899ph97bnnnlMijEiUIQBB9XHfvn1dkyZNrFqKZLm0adO6X375xTbjTp486erWreuWLFliw1BFRMIZyYq0sezTp48lLXqBA4Zke2ucpKB1NMkazLn0EOhgQ5+KCX/hFqCgZRNzMniP97BPQpCCYIsXYLnrrrvsfT521xYGfIskl4IUEYhFILwh2SwWefNgoK+/J5980qom9u3b5wtSsIi86aabYgzYFkmNLrvsMhsgz2viQghmgNcTvNeP91oUERGJ5uSYVatW2QnpjTfeaCevEyZMsK/9+++/VoFI0L5MmTKuV69eob67IpICa+YuXbrYhX7jvB/s37/fNrTYpOrevbv1Ug+3DTcRkbisXr3aWhKtWLHCPmcfjb2zbt26JWqfjKHPVEmUKlUqxvcmQMH7ZpUqVWxjn6ThhHQ9CSbmiMF73yZx884773Q33HBDjJbWdJ+g4sN/34M9FFrIi6QEBSmiIEhBf+DY8yg4aSSbhSoLLwvcaxXltaoRSe3IAvPap3kZFfScpGJi8eLFvoO2ghQiIpJarV+/3tWqVcvlzZvXffvttzG+NnToUNuwJBmGlk/eoEQRiU4Mjg3k8FgRkWBhY/3pp5927733nu8cn0rQp556ymXOnDnB7Y/YJ6DlEd+HzX6Ctjlz5rSvP/744zb/lXVT7E4nocC+IEnL/i2XHnnkEauOozVfz5497ToSUGh9xWwOklO8BGiGYXt7ISLBoCBFFAQp4sJJ4pw5c865ng3ZSBnII5LSeC34ZwHQCo3hgLzGWHB4QQrK2aFKChERSW3+/vtv60VMm8QXX3zRVa1a1TYpKf+nLQJGjRpllboiIiIi4eS7776z9Qr7YyQlslfWqlUra09EheiFMJeSoASXTz75xP35558xWmDu2rXLF6SgeiIUeFy0auLfXLly2XUkXrLfwR4GgQdv/9B7zAcOHPD9f5JN2Cuk4sN/qLUCFBJsClJEQZCCSC5lZvfcc88Fe+vzxqM+oSL/w0Gb14+/adOm2cGYUkcPPSTJLKD/ov9rTzMpREQk2tWsWdMuBPVp7cJJ/Z49e1yzZs0s445WBi1btgz13RQRERHxOXjwoM2ImDRpkrVmAnMhnn/+eXfrrbfG+0yx0c/6xptLsWzZMptT4WGw9gMPPGAXWl1eemnwtlW5b8wCo6UUAREviMCgb9Zn7dq1cxMnTrTrqORgdhh7FlRT3HbbbXb9ww8/7Dp16nROpYf/wGuRUFGQIgqCFO+++64bO3as69ev3wWDFIcOHbIWNyLyv3ZPR44csQAEA61Qv379c54aFgD+WRGaSSGBQi933r+9uUGbN2+2bGX6mIqIhJMpU6bYv/RWps0TJ8gE+8ePHx8j605EREQkVI4dO+ZeeuklO8fyqh5ItiBgUbx48Tj/D9UGn332me2tcWnbtq3tr6FGjRqWrEgLJwITVJcGY91DkGXlypW293DffffFmBNBlQTnjYULF7brCLoQLKEdlT+SmQk++Lfj9G8HLxJu/rcrJxEdpPDeeP1LsYj2kgnOiaSH4WbMqFC7J5H/4bVAVgULmcTwD1KQzSCSVLNmzbL3Zg+BZkp1RUTCCSfvzJwAJ/ijR4/2BS4S2sdZREREJKXQ0ujZZ5+1Sodhw4bZPhndRhiQ/cEHH5wToGAg9NSpU92DDz5oa5nq1avbDAZmTCxZssR3O+YzMBCbeRZUI6REgIJqj0cffdSqJPz39Bo3buxefvll33X87GLFill3FP9h1nXq1HGnTp1ys2fPPicpU/PCJJKokiKCeW+O3iap/5vlL7/8Ym+6x48f913nDQhWkELExXgteP0XsXXrVnvdkI3gfZ0gBhdmVMTu06jsUUmO2EEuBb1EJJywluQEn+Mfs5o42SUzEZxMk10oIqkTG4De3DYRkVBhc561CdUTrFXARj5ztAg8xHW+zkDp/PnzW0WCh3N/Khbuv/9+V7ly5YDcN34OXRu8Kvkvv/zS2k0RFPEqVDFhwgS3fv16697gzfgiEEE7qZIlS8b4nkuXLj3nMWl2hEQLVVJEIC8S6vXV896QvKG+qFSpktuwYUOMNz4FKUTiD1J4evfu7SpWrOg+/PDDGHMqChQo4J544okYrz1lJYiISDTbtm2b2717twXwQf9ijpkE8ocMGRLquyciQcZmG73Ps2fPbpXFzKcBbVEmT56s34eIBM3ff//tXn31VZcnTx7Xs2dPC1AQeJg7d64FA0ikoP3RwoULbaYEFeteQhjn8QQwaJ3ELId169a5H374wYIFBCnSpUuXqPuxc+dO98UXX8S4njbSV1xxRYx9BW5LOykGcPtr2rSpe+qpp+yxeJgDtmrVKmux6U9JkhLNVEkRgbyNUaKy8QUpOImMXc7mbcRqJoXI/3jDsf2DFDlz5rSZAP6DpLzXlvda8157ClJIIGzfvt1mo4CFM4tc//JdeP1GRUSCqUSJEm7mzJk2JJuTYt6v6HnMdYk5gReR6EBP9+nTp1uQ0n+QLC1QRowYYX3cRURSEgmDtKB87rnnrDUTcufOba2eWK8QPB01apS1eGLOBIEBz65duyyQAdYyiR16TRsoKh7uvfdeq9YAAQ4CILly5bIB1R6+NwO4SfbwMM+CwEq+fPlifN+uXbsm8dkQiS4KUkRBkMIrs/UPUsSFjVg2Wf03X0VSs8svv9xKLRko72HREFt8QYrELmpE4kI5sX+bJ28wGhuCXM+/3t+ciEgw0YeZgD6Vhz/99JNtDPTv39+CFyKS+rz++uuWacza5eGHH46R8UuShYhISlZyzZs3zyofCDaA9Unfvn1du3bt7NyeNQrVXv6YUcH5FYOvvVZKsc/lqbjgvMubPUmwoVu3bhbgINjhmThxops/f77dzgtSUP3A55kyZbL7ePHF/2tYM2jQIKuCoPLMc80117hOnTql2HMkEunU7ilKKykYuEOWi//AH954efNMaHnYa6+9Ztm7nKByueuuu2KUqiUUEW4i2pTfde7c2VoEUPZGxnqXLl1smHdqVKFCBWsjJOdH9sONN97oO9DTkzF9+vQ2G4IBUd4CJal4TdDH8nxUSSEphfdqsn34N/bFu95rpSAiEgq0QCTjjwBF6dKlrS2iiKROBw8edHnz5j3nejbmyBgWEQk0gge0SKJTSKNGjez8n8Rb2ilxHcECAhS48847LfhA+3OGZxM8pZJh5MiRNmOLvYVZs2bF+P5t2rSxPQH/VunMkFi0aJHtp3mtnsHMiFatWvmqMUAyB0O7abfuBSi84Ah7Xuq+IJJwSgOOgiAFb5Jks/hHaCk543pOLKtVq2bX8eaamMzvHDly2PChW265xQ4MBD0eeOABt3HjRitTSyje3OmvR7Y6l5dfftna6VCaRwYO1xGNFonv74e+kGBRwaBOAhX8Pffp08f+vmk/ceWVVybpCeQ14b/wiIuCFJJSKAsWEQlHrP3Gjx/vNm/ebMdf2jvRXkFVhCKpF+dwK1euPGf9wrmcl1UsIhKodQhDoqmUWLt2rV1HMCJjxozuxx9/dG+99ZZvwDSzJfha1apV3fHjx93777/v3nvvPQsSkCQLkmaZQ8E65qGHHvKtZ6iA8IKwHio0GMZN5YV/xXvHjh3t4k8zIkQCR0GKCOS9mXobq/Tf4+KPaC6Dgvz7mCc2SOFtDHsGDhxo1RUMBGKjmBPWuFB+Rz9AfP/99zZ0kftCNYZ3IPHK4vieVFkk9r5J5ONvhCqbuJQvX94tX77cPn7nnXfcmDFj7OOPPvooxu2oRKGigqyFcuXKBSRIwd/v6tWrXffu3a3XZFxBCg3OlkD79ttvLSBHaTELXRbEVAqRgSMiEgpHjx6N0ZJg+PDhcWZQi0jqQSuVli1b2mYe1RMLFiywrGbaQLEhKCISCJyPP/300749AQ/tlwhQULFAdSd7AFRAsEahcwiBCi7sD8yePdtdf/317sEHH/TNZqU1Hcm4zP/z2qCTUMvP8m+Lzvd/5JFH9MsUCTLtCkcgL2P8999/j/c2bPJy8UcJblIDAVRt0P+PN37aPtWtW9cOCAQfevToYbepV6+eDU3zPvc2mGlrRIAiLrR64msKUKQ+/J1QRfP111/bCQ6osiEQ4X1OgItNEso14+K1Crv22muTfD+8gVb+VUiffPKJa9q06Tk/x/s79l57Xs9KkeSgjRkn/ZzsE3QjW4fe7yyYX3zxxRjvqSIiweLfao72Bh06dNCTL5LKUVVP25Xnn3/ezklZv9BuhevIYBYRSQrOg7gQ8HzhhRes5a3XdonuGwQcaNF8+vRpV7NmTavspAKCfSraOnE+T/DUq/Ii4ZYAxd133x0j8LBp06ZzfrZXSSEioacgRQTy3kQpYwNvxm+//bZFjM93ApmUaoWtW7daUOLPP/+0DVl+DmW+4HtxHVUb4OfTCsB/45bMYBazcTl27JgNNUotJ71sNnLxcIClKuWxxx7zXUfbIkoSUwP+Tvh74e/G+xviOv6uvKADfz+UZHo9Jv2xiGGYVZkyZSw4llSxKyloIdWkSZMYCxoGbWXJksWVKlUqxmtPCxpJrmXLllkJc79+/VzXrl2tfNkrRx4xYoQFKvi7S2qlkIhIUvHe5B0n2QxQOwMRQdmyZd3HH3+sJ0NEEoxzdxIQqRqnW4HXwpyAJ4mKnFezrxV7ts2KFSusYoIuB7zvjB492mZLeOfhfJ8vv/zSqiT8z83jStoVkfCnIEUUBCkOHDhgA6lpD3K+DX/ewDk4JAb9+4g2k0lOr1HKe2nz5AUqzofhQdx28uTJcX6tVq1a9n281lDRjgyAhg0b+j4nU59hT1SgeDi4yv8hSOEfxPFHyzGqMFatWpWsp4zXhP8wK068uPgjaMHFoyCFBMq4ceNcu3btznkfJFDHov3IkSPWZk9BChEJJjYFPv30U99ASS+ZQEREROR8mFtDciutldg/ApXiVF2RHMj+1Y033mjn13PmzDmnSwjVEPny5bPqLOajwtvrimu/y7/FuYhENgUpIjhIQaYtyPAG7UE8vPFTBgci1gkdEBwbGexe/2GGEa1fv96NHDnSBileyIcffmhBCA5A/jgA0SYqffr0dvCihC81YNPRvy3RFVdcYa1d1N85bocPH7Yh7QSzYiNwQd9bNlHoKZkcSakw8l57qqSQ5KK9GBnK8WnevLlr0aKFnmgRCRoSSRo1amQfE8QfPHiwnn2RVIwqz4RWUnlrZBGJLrRa+u6772xd4CWsEnigyoHZelu2bPGdl3MO/8orr1hCJkEKEvyWLFnirrnmGusawTwIb3apPyof2GsiuCEiqZOCFBHI2+j2srnZ6AZv9hw8aKHDxj+tg+i7x8GDhWVSghRxZZ17Q4Rji714javVEye+tO9hADHzKtKmTZus+yPRxf9viN62tFzyD+zwt0zVEMEthmiRUZFcsYMUZH7QY5cWUgTp+JlUbPA648J99F57yZmFIQIGv+XOnTveJ4O/caopRESChVaKJAqA4+GJEydiDJMUkdSF9pMiknpMmjTJAg9PPvmky5w5s103ceJEWx8QeKDDBjgvJlH2l19+cfv37/cFKQhckGjFkGtaM9Pi2uvoMXbsWKsk58LXQXItbcBJihWR1E1Biiho90RFApupvMlzkKA8joPJ0qVLLVrtIXCRmCBF79697YBBtJvqB4YVsTG8ePHiOG/P/di5c6cNOmbzlkoK/4GvBCiqVatmgZSZM2fa51y8ahD/ljuSOvE3xIbsN998Y0Gs2rVrn9Piib9DAmDebcHfOZUpScFrwqvmISBBBgf/skFDewsWXV4JKbNZCLCp3ZMECn9Tcc1c8fC36S3gRURSGkkAU6dO9X3O+s9LhhGR1Mlr1yIikYvzW/aKOG/mfBZUNzAzk+S8MWPG+G47cOBAmx3BubgXpCBxiqqq2Emms2bNsvNyry0Te0Bt27b1JTt4ChQoYD+7VatWdv6DChUq2JBsAhkiIlCQIgqCFESwOYH84YcfLEBAkIKNrUqVKsX4f2yEeQeEhOB70WaEAwwHFDZqCVDQGzAuDRo0sLkL9C5msBFDkOk76Pnqq6/c2rVr7ePYLY727t173mziaETAR2KiymbIkCE2C4UFUOzMLXrzewsaf2yosOBJCiqDvCAFrw/+zmmXdvXVV/teB+Bzb0GnIIUEOluJ98u4+PdnFRFJSQT+/Xs9065zypQpVqErIqkXSWXeuthLMIuPdzsRCQ1arjFImj0i/32bQoUKuR07drjPP//cuhV4577MEP3jjz9ifA9mRXAO4t814P777z+nnRuJhWvWrLH2TAQ6vLUD+0esHapUqeIqV65s59ZUYvDzUapUKQuE8LWEtpITkdRBQYoI5A0vPHjwoO86DgYEKYh4lyxZMs7/R7UCB5vTp08nKOs8roHX/hio7Y+SPi7o0qWLHcj8sbFMBF/EEzsIweKJTZIFCxa4vn37nhPMCvTfD9+PIISXJcrrIvbfNa8pUFHk8V57GiQqycXfFYv2C91GRCQlcTxs166dO3bsmG02MHuMNk9sMIhI6kb2NJuOrJdp/RbXpqLXXvjff/9N0Pck8YiLt87mHKB///6+mYoicmEk6pEI+sgjj1ilAgg61KtXz/aE/IMU119/vXW9OHTokO+6O++80yohGFLtjwBCbLy+qe5mJiSzId9//323e/du+1rjxo0t4OC9lunoQbIq+0m0cWJtAZIBqZy47777FJwQkTgpSBGBbr75Zvt3z549vgUh5XVEsekd6NmwYYPbunWrRaoZbpQ1a1a7nk3gQPTyPx8i6XfddVeK/gyJXmSVB2NQJxURZ86c8b024uK9prwSVu+15/9aFEkq7+RcRCSUJkyYYBsOVAzSktPLiBQR+fTTT30Z1cuWLQvIE0Lv+pdeesnW15zPTp8+3WYZMnCXTU6R1Iz5DQT8vGp/kuhoxU1bpblz5/puN23aNAsaMAPCC1IQcGDvJ3/+/DG+55tvvhmj1ZMXuKBqIiHtkQlEfPTRRzYH1cP9o1WyfwcPzq2psCB51QuI8Dp//vnnXcOGDW1mqohIfBSkiEC0RSIwQVkefQXJann88cetRN87OOHll192b7zxhhs2bFiMIAWZMCkdpPBvFyCSWMwuCQavV+b5ghRehohX1cFMFW8WRp48eYJyPyW6T/wfe+wxGygXu0XCr7/+auXYDJYrW7ZsyO6jiEQ3gvGsI0GGIwGK0aNH20YGm4ZsYohI6sUmpIdzSCr4Y1dTEGj4/vvvE/w9Y1fck7lNZQXrobiCFLRn5eK5UNspkUjA3zEb+f4BBdptz5s3zwIQDz30kF3H640Agdf220PggMRQ/z0gXj/btm0752cldL4Ur+UtW7a4r7/+2jVt2tSuu/TSS609NwEK1gS1atWyC5UaBE5AUIXZkc8++6wvoY9q8GeeecYeE99DRORC9E4RgThpJPuEheB3331nBxxK82OjxI++gdmyZbPP/YMUInJukIJNGQZ2s5DyWpfFrqTwFl2Uu1P+LpLclmft27ePs4cz2U4dO3Z0w4cPV5BCRFIE2ZEc7wjA05bz1VdftY0Jqipoz3DHHXcoSCEiMYIUXusnf5xz8rWEtnvyx/9hU5YEvPgq8QcNGuSee+45/SYkIpFYyrGV2aFeJT5VQ7REon2w//4Mm/nMiqAawUN1BBWP/Ot10gDzQAOBACDzMjkPppUTMySokiCY6J2jDB061LodsC7wr4bg/ixatMhaNXvBEQIZTz/9tCWu+lduiIhciGqtoqDlU3zIimPQdaNGjexzynQZnu3fh1AkNfNeC16QghZpn3zyic13ia+SQq2eJJA2b97satSocd6qIv4uRURSwosvvujWrl1rQVFaPpAp+eGHH7pmzZq56tWrn9MuQkRSN/8NUn9kWKdNmzZR34u2xGx6sonJZuvbb79t1f9xodUNFabeJTFVGyLBwmY/LdGmTJkS4/ru3btbSyRaLnn8K/JJFPD069fPElH5m/cwN5GkJqqaAjlomvPeBg0auMyZM9v5CIkKBCj4eXxOa2RPxYoVLQnWP0DB/6fVVN26dS1AQRIfAUXuf+fOnRWgEJFEUyVFBAcpGIrkbZjSt5Dhq2R9U2LHgi82DmhsxqqSQuR/eC0QvPMyPLp27WoLyGLFivmeIobAM2TMK6NVkEIC6ccff/T1m40L2VRkX4mIBBrBCXpEg40JhmeidevW1iteRMTjtYTjfJJN1HTp0sWohOD9pGjRool6wm699VbrtU/QYf78+a5ly5Z2fhtXoIK1ujKyJZyQyLZy5UoLNpQrV84XrPPmMzB/wduTuf322+12/n/DVCicOHHCkgT8pWRbbhIROPf1fuaOHTvstQf2iRhoXbt2bXsM/q/x2Hi99+nTx9rW4sorr3TdunVzPXr0sECFiEhSKUgRobzIO1FqENGmxI7SfHoTUobnv3Dk6wpSiJwbpPCfR0Fwwj9AAeYF+POCFJpHIYGQPXt2K//2KnVioyfs+WamiIgkBW1VaPPEGpF1IxssXpvDtm3b6kkVkRhoTeNVUlABQXW+h49pPcwGZWLw/7z1D+eu69evdyNHjnTjx4/Xsy9hg2RQKgYIqLER7/3tv/76627AgAGuTZs2viAFMyOoLKAdGsE3L0jRs2dP16tXr3O+d+wARaDxeuW1u3DhQrvw2qVtFFUZYO7U0aNHLTARu41TXKiWoI0T7Z3Ac9GpUyer+tD8KhEJBAUpIhT9CLF9+3bfdSwOly5dagciDjIclBi2yudEyRlcpEoKkfiDFAnh9dr0ZlSIJMe9995rGYmUVMduk3D69GkbNkdWk4hIID3xxBNWfcuMs7Fjx9qFjRhaSdD2gY8vtFkhIqkHLWy8SisCCXHN0kou3nf8h2OLBBsJn6tXr7aKB1oegkRPqiIIOnCdNwuUYAQtkKiS8LdmzZpzvm8gWzQlZNbUqlWrrH0agQnaN3kuueQSt2/fPt/n7A8RaLkQ/g/nJDNmzLA9JtYHrVq1cv3797c5GyIigaIgRYTysr3Jsj1z5oy1CylRooQFKb788kvXrl07OxhyMKXHIbfzghQctETkf0EKb74Liy8yZHhteYutL774wl5bt912my1WWZR99dVX9jUGnYkkFxVwCxYssMAzVTu0PgAtxtg0JMuZjCURkUB59913fZnK06dPt0zOyZMn+6oo6C29bt06653N0EwREc/UqVMD8mSQeV2zZk07P/3999/d7NmzbXAv8xRFgoFh71TvsIdCBQTef/9923ynMsI/SEHFAcOs/YP3JBpxCTe0kKpcubIF/UDbJpKh6tSp42rVqmXtnhLTlnbgwIFu3LhxtueE+vXruxdeeEEzq0QkRShIEaFoNcNJJUEIqimI6HstnvyHrE6aNMn6AnqltLlz57bSRGXISWpHwIFeol7fUBalbBKTtc4GjncCxQkTmzeU8tLHk4Ufpa2FChUK8SOQaEBpNBlbXqk0f5feCREnRwQqVD4tIoFCWwcSWbwe8xwDSXAhUM+6ks0H3ouo5KLKQkQkdqs4ZtbwvsH7ibcRGrstakLei1q0aGEJQ7z3FC5c2AIUVatW1RMuKVJd8MMPP9heiIfj3+bNm20mA8c+sJ9Cclrs6ggC+uGGRFReM9z/3377zXf+SjVkvXr1rNUUSQe8phiEnRh8v5dfftkNHz7cXvPg+7z44osW1BERSSkKUkQoNrDI+GYDlcxughTeAYOqib///ts2Uu+8884Y/4/sbwY6ffPNN4p+S6p26NAhyw7xKiIY+MXAP+91xEmXVzXhXed9zsLVvxevSHJQufPBBx+4X375xQJnBCpoJ5YxY0Y9sSISMLy3EKBgc5DjGNmRIOjOx3ydjEsCFsw8S8nhnSISmXgPYbg1M2yo0E9qGxuvekskpVEpf88991jiJoEKz1133WUb8F6FAAhQMLchXHF/SawjMMG/BCrA6/DIkSPuhhtusM/nzZuXpO9Pu7XXXnvN1gS0vkLJkiXdoEGDrDpDRCSlKUgRwdhc9YIU9AclM4BNLTa6GMQaVzsar00U1Rb58+cPwb0WCQ9exZH3OqG0l4uHzWKySJgTULBgQbtOrZ4kJfH+zYmAiEhKYFgmmZYE2WfOnOmbg8OmRp8+fXy3u/TSS32t50RE/H344Ye2OVqmTBk9MRKW7cjYZG/WrJnr0qWLXUfiD62aaCtGiyev3dGYMWNsRkOkoILp+eeft0pH/0SnBx980CpBGNadVLSXnTVrls2Y2L9/v13HOoBgBVUZwZypISKpmybiRTCvvZO3ccrBw8v4JkjhZYMTSe/atatF2jkokxnn3xJKJDXiNUA57I033hjv10F1BRs2/q8177UnIiISCXbt2uW6d+/u2+igtYqISFISKhLT014kJbDHsWTJEmtPSADC89NPP9mciU8//dR3HdXyO3bsiBGgQDgHKHhMDL6mHZqHhAICFMxT7NWrlz1OWhHTlomqEP95GQlFBSXV3CSytmzZ0gIU2bNndxMnTrT9JIIfClCISDCpkiKCeRnglDDSZ5GNVDICKGX0IukcVLp162atbehJWKFCBdtgVZBCUjteA7wWeI1Q5svrx38R9vnnn9u/XuBPQ7NFRCQS0QK0adOmtrlRpUoVS1zxjmvt27e3+TcM1LzsssvciBEjbM3I7WklKiLib8CAAZZtTY9+2sOJBAPHKwIQ/nscVMCziV+tWjVXsWJFu56s/2zZsrny5cvH+P9UU4Q7zkeZ9fLGG29YgMKbC/HEE0/4HhsJBgQUAhE4WLt2rQU7aN8G9pCeeuopq0BJ7AwLEZFAUZAignGw9YZnE6hgMzVfvnwxbsMBjKg45Y1ZsmSx69iYZeiRhmdLag9SMAwbDCceMmSIbdywWAOLRHiDtZnjwuI4TZo05wxTExERCVfPPvusHfPIIJ02bZov23LVqlXWF54NEQIVBCloA8VtS5curSCFiJxj2LBhNrPm+uuvt1bDvG/486qORQJl9erVltFP8MFLtGSPo0mTJjY3gc11T968ee0SScGXNWvWuNmzZ7u5c+fauaYnR44cdt7pufrqq+Ns551YtDSmxaM3t4KfQWCCAIWqpEQk1BSkiGCUKJIl8M4779iGqpfxHRsBCX8EKQhacICKHdQQSQ3IumG4mNe2iaoJriNwh4MHD7qdO3faRg7VR/5Bi7vvvtvXx1tERCScrVixwto7eTMpaOPg4XM0btzYNj/w6KOP+ioNRURio+pKJKXs27fPLVq0yNrtetUQefLksfO2kydPWnWBd7yiyiDS8XhIiGNgNUgqbdiwoWvUqJGdcyalhVN8jh49apVQ48aNsy4cBHpatGhhcy5y5swZsJ8jIpIcClJEuMqVK1uQgr6LXgY4GXGTJk2yg1u7du3O+T9eBJ6TUAUpJDXysnC8TZjXX3/dPfbYY5YRBkqJKX3dtm2b9d6F19uU15yIiEi4o9K2efPmlqnZunVry0T10Jvby6Ls0KGD73pux0VEJC7PPPOMnhhJMaNGjXKvvPKKHbu8IAVVO1Qb0ObIv7Ig0hAkYJ+GDhhTpkyx6+iKQaIAg6tps8h5pjcLMVCYS8pzOnjwYEtURc2aNTWfSkTCkoIUEc5rRbNy5UrrOXz55Ze7PXv2WNY3WQZekIITVAYrpU+f3iL0bMayUctBUSS14W8/U6ZMvqwR+m769y6ldL1cuXJ2ARUWy5Yti/GaExERCVes+zp16uQOHDhgQzZHjhwZ4+szZsywzE2yVeOrxBUREUkpgwYNcrNmzbKAeYECBey6Bg0aWMuwsmXLxrgtLQgjEfsz77//vrVaZEA1FQzo2bOny58/v308derUFPnZBD5IxOvbt6/NmvIS9GhxrPNZEQlXgasfk5AoVKiQZX0zDPGLL76IkenNpioHJzCXglJJDlTeAWrdunX6rUmqxN++NzQ7ITZv3mxZp1dddZU2c0REJOwxW2LOnDnWGpRNIJJU/AMYXqsnqii8YyFJLrQ75OsiInHh3JI2O6VKlXI33HCD9bD3v4jEh3ZN/kiypGr9rbfe8l131113ueXLl7v27dtH9BPJLENmHTJHg4HXdL4gQEFSAEkDVIekpMWLF1vlCfMXCVCQoMrcC86BFaAQkXCmIEWE48TSO9B47WjYfKV08MSJE762NhykyA6nzNALZDCE6pdffgnhvRcJPgJ6BPC8YB7ZJZxs0esUzGqh9RNZLx7vtUW1RewBgSIiIuGEYAOzJbzWLLEzUFn/bd++3aVLl84Gj3oYmsmgzthVFyIinueee84NHz7cPfTQQ9ZS7vHHH7dNWHrnP/vss3qi5BzsN9x///02E+mPP/7wXd+jRw+rMOC8K9ps3brVWlcdP37cZc2a1SonCMisX7/ehlR77YQD7euvv3Y1atSwC/eBoeKc5zJrkQ4agZxxISKSEvQuFQW8IMUnn3xi/9LHsFq1avbx22+/bf+2bdvWHTt2zHoRgoUCmTAfffRRyO63SCjQCo1ARe3ate1fTrSefPJJX5CCkuOxY8e60aNH/7/27gNe5/r///i7yCgjOyuSvUeRlQplZWSF0NBQVhSijMyiouyZlJCVNIRCZWe1zIiijMwiyfW/PV/f/+f6nSN0ONe51nncb7fLOec651znc31c53w+n/drxfoeIfMEABDO/v77b+trrb7TlSpVcj169PjX16iFoQZyanaZklo8Oiaq8sJruwEA51Nl1vjx412XLl3smlMLn5qF2KtXL39VP6A5CB4tlP/www82JFoz/zy6rlK3B30+UqnycPny5TZDI+Yg7zp16thzU4sntV3UGkzhwoUTbDt0HavKyBIlSlgVhZLqFEDcuXOn/a5G8iwPAInLVT5quiPeTz/9ZCV8iozv37/f2j/NmDHDLj7z5s1r5YYXamujAdoFChSwdgBAYqETOFVS6PdCJ9DqA6phbGqNod8TVSKpF6ouwDTTRSfUmuOinqLKTlGLNQCx6fdEi53KqtQ8JAChoYXCfv362e+jWhXmypXrol/rzTKL6fTp03Y+ef79AKJHfI7Z1113nS04a66bMsRVeaxrSlVwqXJfjxkMnHeEJy2KP/nkk9ZiaPPmzf41CFWlq/WRN4ch0qkNsNpojx071qoUROsxev7BrFZQcoGGYmu+h9dOq1GjRjYUW62+ASBcxPW4TSVFFNAFqPobKjNu3rx5dl+tWrVcihQprHWNSv1i8uZUKJP8448/tqw7IDHQ78iCBQvsta+TZl1oqcRYWWH6WBdYClDo5LJevXr2Pbr40kKOAnoJmQEDAEB8qL/3gAED7P0xY8ZcMkAhFwpE6NyRAAWAi1FLOCXFiRZBP/30U3tfbWzI1kaGDBncl19+aa2NYq5BqGoiGgIUep2rQkKtq55++mkLUOh6UoltShKN67zD+FKe8fTp022f9uzZ0wIUmhOj8wB1BSBAASBSEaSIEg0bNrS3s2bNsrcakKiF2Nq1a9uQJlFPxPr161vmixZd9XlFsXQwAxIDzWjRhZVe+xfiDW674447rHoi5u+UfseCdeIJAMDl9vx+4IEHLBjfqlUrq6a90KKG2rIoAxQArkSDBg38bVDbt2/vXnjhBZcvXz77u6MhvUg8fvvtN5u1EHPItVo3TZ061SoKihcv7qKN2gGrgkJVh2qtNHr0aKsaUQW+ggTBuFZcvXq1q1ixorVaUyupnDlzWsKdOgOozSMARDLaPUWJ7du3u/z581tvUJ0wpE+f3i5GYx4oVUGhMksNz1ZgQgc3HdQaN25sZYJAYmiDMWLECPsd2L17t9u6datl9qRMmdI+r+GiOvEbNWqUa9u2rQ13U7BCpbQKcKicHcC/0XYBCB2d7+lcToF2ZU+qIvBCZdTqBa4gfMaMGd0vv/wSq2JC85m++uorW2RUgguA6BXIY7YWRnVToEIzD4OF847QUzsnLdSrAl1rEXny5HHRRAEAzSnUvImiRYv6Kyl0n64TgxWU8Oi43b17d2tRLKrg0MeaOeFdywJAuKLdUyKjE8NixYpZ1cT8+fPtvvMPmhqGqAXajRs3WpRdn9fJ5Pvvv28XuEC00++GWqEpmKdMGA0104wK2bt3rwUo9HuhLDHRYHkFKNRjVH12AQAIN6qOUIBCxzbNGbvYoqMC8F5l4PktnZQZPWfOHFuUAYC4Kl++vA3oDWaAAqGbg6lrI48qJbRIrrUEXStFA62JKGCvwL+CLi+//LIFJTy33nqre/PNN125cuWCFqDQtahaOSoh1Zuh+NBDD9l8xeeff54ABYCokjTUG4DA0ZAk9X5Ue5oHH3zQf78yxpXdUL16dTvgxqS2N+pb/P333zMQGFF/Yq0hoj169LCPs2TJ4m644QYrlfWyUxTs0xBA3R+z1ZN+t2j1BAAINzp/69ixo70/cOBAW0C5ELU6VBBClAF6Ph0bq1WrZtWFAHAxanVzKWr7hOijRK7KlStbEFwz/LxguAY2RwMlemqWg6oK161b57+/atWq/jmFoQiY6Lj9zDPP2HqOVKhQwQ0fPtzmkQJANKLdUxTRgCqVIio7Tr0RNbhq+fLlVtqfOXNmyxS/5pprYn2P+imq7F8Dl5577rmQbTuQ0FRFpAFnhw4dshJ374RUwQdVGXkng/q8WjxpAJkCFnqrMna1ggJwYbRdAIJP53DK5lTLDSWiKMNVbTcupF+/ftbyUK0+NdQUQOIVn2N2unTpYn38999/uz///NOuP6+99tqgzbzhvCO4dM2kdQYNTlf1XrRUTnjXfwrwq7WvpEiRwmY8dejQwTpVhMK3335rCQifffaZfaz9PmTIENe0aVMS5wBEJNo9JUKFCxd2JUuWtKHYXq9CLaxqwVVzKhYsWODPplNAonXr1nYQVnmusmJo+YRoptf43Xff7Q9QiFpjeAEKUcDCG5g9c+ZMC1Cov7d6jgIAEE40sFQBCh23dIy7WIBCi0tjx46195988skgbyWAaHLkyJFYN50ra8abWgmr3Rwin9YEpk2b5u6//37/+oCumVasWOEWL14cFQEKJaV5z03Xf5rFpGPpiy++aG0PNQg7FAEK/U4pOKE1HQUotFajBAP9jun/g8p+ANHuwlcziEg6aLVp08be14FVB15ltXitn3Sfl3k3ePBgN3XqVKuu0Pds2bLF+i8C0UhtnjTo7NFHH3VHjx61qqOYNEhe/T5j8n5f9PtxsYUfAABCNWNJs5VkypQp/jaFF/LBBx9YS0MtwGgexYUyNjVUW4sjAHC51C5V15Ze6zlENiU36pppxowZNu/Ikz59ehcN7X/bt2/vcubM6T7++GP//WqppM+98MIL/oS1YDp37pxVqGjuxOuvv+7++ecfd99997kffvjB9e3b16qUACAxYOUtyrRo0cKGJ2kRVr0jxQtcqA2AMgNuuukmq6RQprjaQN155502GMpblAWijV7bWsBRloyCcypX9oJ3Bw8etH6j2bNntyojb8Fm1apVljUUc74LECk05E+ZbsrAUjuYNWvWxOn7pk+fbgHv+vXrJ/g2ArgyOpfzjk0aWFuzZs1Lfr0yMHU80/lg8uTJ//V5zSZTa1AtMgLAldDfGLUbRmSK2VFB10xqEdi/f39Xp04dFw00ZFrDpvPmzWstgJW0qQC+J3Xq1CEbQK0ZGBpAr8CQKjwKFSrkFi1aZAGiaKhaAYDLQZAiylx//fX+4dhe0EHZLbr41MnHpEmT/MMVNQxYF6vKEteFq4IWZNEh2qhPrtqf6cRUM1l+/fVXu5DyBo6pRYb66SpQpxkUokwWUSu0S2WnAuFImW9auOzdu7dbv369K1GihLvnnnvcgQMHLvl9GsqnTDINRgQQntS6qXnz5na+ph7acRla2r17d6uc1VymC1EbRC2EhKr3NoDIquKKeXv//fct0Kke/pp5g8ijGZalSpVy27dv99+n80jNrFSyS6QHJzTMXQv/b775ph1DlZy2ZMkSN2rUqJBu2+HDh90TTzxhbYWVTKRAySuvvGIdAKpVqxbSbQOAUGFwdhTSQEQtMqksUJnhGoimvpKqssiWLZvbtWuXtYGKSV934403uqFDh1Kqi6gyefJk9/DDD7sdO3bYfAn5+eefLaCnjJmCBQva53SB9fjjj1tmjaoqNPjvo48++s8MVSDcqHJCi5fKFPNKyFXWrvJ2LVZeiMrKb7/9dvtdUfsztUWbN2/eRX/GX3/9ZbeYg7D0M65kCCeAuNOikRJN9Hu2YcMGC7AHipJZ6HcNRL/4DJ0+vwWqN8/trrvusgVWL+EnoTE4O3CUyPLpp5+6Jk2aWKJLtNAxTcEXLfqLqkKef/55O08OJZ2X6/q0W7duFqgQrdNoMHawfn8AINgYnJ2IKYtF2QLKIPcGmKkHsQ56uk+tbEQDtpVFrgxzZYvra7SopQMnEC0np8OHD3e1atXyBygkR44cLlWqVG7u3LkWoEiXLp2dHMqcOXMsQKGgnQZtA5FEf9e//vrrWBlYWlDQxytXrrzo92lQoNr/PfLII3H6Ocre1gKHd1OAAkDCUvsHr3JC1bL/FaDQOZ/6WccVAQoA/0XXiTFvSnJQlbIS4lhgjUxK1Grbtq0bO3asi4Z2iEo4845pCuwrOKHZhGrvFOoAhQImGjKvLhYKUKgFsWZCqeqf3x8AoN1TVNIBWT0NZdiwYXYCqbZOKsfVgbt06dL2OWXKPvbYY1b6uGLFCqug0IKtsseBaClf1smgXtsaGqr5EzEDGC+99JK9/9RTT1nQQve99tprdp8Wa5MkSRKybQeuhHrZasEgS5Ysse7Xx1pEuFj13cSJEy9rLpHmGikD07uplQyAhKPfX7VT0XFKVX/KeP0vWvQoXLiwVUgBQKDPN5QViciiY4iCETFbHWlepT5WlXmkUkvTTp06WZtrBV08aoOt4ITX5jdU9LuilotlypSxpCFdd6rySG1ZVckMAPgfZlJEKS2wKrt1y5Yt/qFQav+hXoceZc126dLFsvJUeXHbbbfZ1yjzHIgGei3rtV29enUr71V1hLcQu3TpUhtUpl6raoMjn3/+ud2nNlDKKAKi3YkTJ1zLli3t9yJjxoxx/j4FvtUiIuYNQMJQ4FG/p1qE0dwIL5gel0pCudSsiZdfftkVL148KjJoASQsJbgpsUfnC0p+UCWyqvGVuKDKLYS/Tz75xOYgaEFf6wSR7uTJk65Pnz5WWahjniqKL1U5HGw6FqtKX9ejSh7V8VyBE1U5au6H5iUCAP5P0hjvI4powejJJ5+0AISyxevWresv49fBUgfv8uXLuwEDBsT6Pp2wqO2NWkKp/BCIVJq9ouohZQapmkjD4FT+6y3WKHvcC+gpYCdeZYWyTtVfF4g0WjhQBdBvv/0W6359fKEh8Dt37rSB2RoS7/Fa/mnA/NatW2O1SgMQfP3793eLFy+2WWPqF65A+n/R13///feWrXmpSopVq1a5b775xhZ6AOBi1ApV146qTNa1ohZdRX9n3njjDWtHp3PrzZs329+VDh06sDPDUI0aNVzTpk0tMTF//vwuUmkAtuY69OrVy18prOekmU0ajB0OfvrpJ9euXTu3YMEC+1jn0yNHjrQZIACAC2NwdhTTolSuXLlsuKna3miYtqL36oOok0fvvpiUfVCgQAEbMqWoPxCpWrdu7RYuXOh+/PFHW9hRcE4ltSqz9ejCShVHGpStAaRqhaYFXgU0VPoMRCL12y1btqwtGnhBB1UR6ULp/MHZCtypzV9MqjpShYUy0nQBmyxZsv/8mQywBBLGkiVLrBpQxzDNEVNFRVzUrl3b2neqUvD111+/6Nft27fPKgiVmBLIIdwAwteVHLOVyKa/RwqAnt9SUovEmuOma0gNYNbfHJ2HJyTOO+Ju48aNlqTltbHV8STSZxApGXP06NH+xX8lZjZq1CgsnpcCKKqa6N27t1UYqVpCQ7J79OgRpyQDAIhGDM6GnUA++OCDticGDx5sb3VyorJ+LzPPowVaVVtoQVcDVDVQWIEMIBIpK3Tq1KmWXaMAheikNWaAQtSrWwGKmFUU6vNNgAKRTOXjat80ZcoUKydX67I//vjDPfTQQ/b5Vq1aWWsGUbszLU7GvKknsVoD6v24BCgAJIz9+/e75s2b24KSqv7iGqDYtm2bBSh03PPaGV5MtmzZ7PyPAAWAS5k3b54bOnTovwIUokpNtY6bPXu2nYMkdIACcadzQVUYaJHcEw4L+YEIUqjqXcEAJZ2phVI4PK+vv/7aEoWeffZZC1AoIVTzEfv160eAAgDigJkUUe6ZZ55xV199tV2sauFWdJKiiL4yXZQRI3379rXZFerpqAtiLU4p41YXxkCkUaaKAg1t2rRxy5Ytc3///bf/c1q0PT9zXC1v3nvvPXu/a9euQd9eIJBUxq+FBAXpSpYsaRl06kHsLSzs2bPHFj8BhC9lYjZr1szmUCi5xKuMiguvckLVFBoiCgDxpfOGIkWKXPTzunbUNaeyxxE+lIyi48nPP/9sHRUikap7tX6hWZoxX286n+3YsWNYJNQoGUjrLgpQKPlT81omTJhgMxC91mgAgDjwIeo1adJEkQZfo0aN/Pe1b9/e7itTpozvn3/+8W3atMnXrFkz37Zt2+zzH3zwgX3+o48+CuGWA5fviy++sNfutGnT7PWcJEkSX548eXxHjhzxnTt3zlelShVf0qRJfVOnTvV/z8MPP2zfU6NGDXY5cAWOHTtmv0N6CyD+evbsab9TqVKl8m3dujXO33f27Fk75ul7Fy9efMmvXbhwoW/8+PG+HTt2BGCLAUTzMTtbtmx2jn0xy5cv92XNmtUXLJx3xN3SpUvtej/S6LrtnXfe8d1www32er366qt9O3fu9IWbTz/91Jc7d27bRt3uv/9+36+//hrqzQKAsBLX4zaVFInACy+8YOWPs2bNcmvWrPHfp3YeKknU/crSmzZtmj/jTtl3ml2hliDeEFUg3KnyRxVAmqmibHK1L9MgYWWwqIWNsslVWaG2Z7fffrt9z3fffefefPNNe1+Z5wAAhJKOVQMGDLD31brtcoab6vim49rMmTPdXXfddcmv1WM/+uij1qIFAC5Fw3579uxp8wvPp/mHurbUUGaElqol1MJWmf2eKlWqWJVLJNF8QM050ZB2zTzJmzevmz9/fli1Jjxy5Ii1UtV27t692+a/ffjhh+7dd9+9YFs0AMB/i6yjFa6IyiG93qBqZaOFXPVwVK9ErzVOzHY4osCETnDUQ3H69OnseUSEBQsWuK+++sqGp+lkXBdUauU0duxYO2n3+rGqR7dOJEVBDb3e77vvPle+fPkQPwMAQGL2008/2aKMPPHEE+7++++/ovYecenPXa5cOVe1alWOfQD+k2YWbt261RLaNH9CC8bvv/++zT3UfWqnqrbBCP2sBl3b6LomEts2K+ClNtQa9K0h7TqeaY7mt99+a0mU4ULzOzXbUIlu3vwnJQjUqlUr1JsGABHtKpVThHojkPD27t1rJ5A68GshVwf5kydPWlaChp3pJDNXrlw24GngwIE2r2LFihWuYcOGdlKgE89w6PcIXIyCECVKlHCZM2e2WSvnL85okLYGBqdNm9YqLNKnT++WL19u2UVe5mmBAgXYwcAVOH78uP1uHTt2zKVJk4Z9CFwBnaOpinXdunXulltucV9++aVLnjx5nL//t99+sySUSMuYBRAZx+xdu3bZIriuE70lBJ1vV69e3Y0YMcKuK4OF844LW7lypatTp47NQ2jQoIGLNKqaKFiwoL02lWw2cuRId/PNN7twoTlR7dq1888y1LXjxIkTXcWKFUO9aQAQ1uJ63CZIkYioimLIkCFWWaFBqlqY1QBhlU16F7SHDh2yg+3vv/9ubaD0vlpBaQijDshAuJoyZYp78MEH3apVq2yhRu2dvJZOGrimlk+//PKLZXypokIXV6qcWL16tWWrjh49OtRPAYhYLBYA8de2bVs3ZswYC6KvX7/ekkcuR+XKlW2B56233qI6AkCCHbPV5kbteESBCf3NCjbOOy69byIpYUQtxGImQ7799tvummuucU2aNPnPisBgUmBCQTqtl2gdRWsrahWsag8AwKURpMAFTygVkDh69KibPHmyLeheiNo7KXOvfv36dmKgXosffPCB+/777y1LHQg3ek0r+KbWFcocUnDt4MGD/qqhp59+2g0bNsxe/6oMSpkypfXgbtSokbv22mstWJc1a9ZQPw0gYrFYAMSPAgtqzanzro8++uiye7sre7ZChQq2sKPe2NmyZfvP46Zmk2mhBUDiEg3H7Gh4DoGiaxwt6P/X3/1w9Pnnn7s2bdpYJU7NmjVdONI15VNPPeWvnlArKq2llClTJtSbBgBRd9ymHjwRSZcunc2fEA0+U3a559SpUzbwTK0F1P9Y5aFe5oIyz0UHZyAcde7c2f7ovfbaa/axXr8KWmiQmeTOndtdd911btSoURag0Ovdm0/RpUsXAhQAgJDZvHmzVfRJ7969r2j4rHrES8uWLeO0UKWfpwsFBUcAAJFJc/eUjKXqcLVyjhRqMa0uDXfddZe14R0wYEBYztBQUluRIkUsQKGgvtZL1JKRAAUAJAyCFImMhjqpr+O+ffvsIOvp16+fDaXSRatKLmP2R9aCrvpBqv3TzJkzQ7TlwIUp41TZLK+++qoNw1YwTifsa9assYxS6dixow0jVW9T0dwVDdTWQo43QB4AgGBTRYPmf+lcS8GJmOdmcbVlyxabLSZxPaZp1tgff/xhc8kAAJFJCVma4aA2RKlSpXKR4Ouvv3alS5e29QXR+sPHH38cVq2d1IHigQcesKp7VVKoekLXlhogz5xOAEg4zKRIhDTsTIu1mkOhg60yATSDQic4OggPGjTIde/e3TL7dGAW9UZWe6hly5bZgGHaPiFcFneU3aITRwUrzh8Wqoyc8094tTCjAdt///23Bd60OAQgfmi7AFy+c+fOuXvvvdeOX5o/oYWbDBkyXPbjPPLII27SpEmuXr16bt68eXH6nn/++ceCG16lIYDEIxqO2dHwHAJFAWe1rw2nRf6LHXdU9ac5DmfPnrVksTfffNMGr4fbWsnDDz9sswx1bal1EVU5EpwAgCtHuydcMuOiWbNmdnH82GOP2UmCBp698sor9nllCKjsUlnpKsXUic+uXbusVY4oUyMcyzGR+Ki8WaXN48ePtxZmmp+iixVRtZBmVHz22Wf+r9dr/vHHH7cARZ06ddx9990Xwq0HACRmffv2tQCFhm7OnTv3igIUOtZNnTrV3vfaGMaF2lYoyE+AAgAiy549eyyB0KO/4+EeoJAlS5ZY62mtPSgRUgmR4RSg0JqH2lsrmVMBinz58rmvvvrKWlERoACA4KDdUyKl1jjXX3+9neB4pZYqaVRfSLUcaNWqlZWMamC2Bg0rU13VE/pa9Wak7RNC7cMPP7TsG72WZejQofbx8uXLLRihgMXatWvdc8895w+q6fNffPGFZRtpQFsknNADAKLP/PnzLSlExo0b50qVKnVFj6M+2Qq8V65c2XqSAwCil/7ea0j27bffbov+kZYoqWTHKVOm2FrClQTmE4rmTKgFlZeUqXkZGzdudLfddluoNw0AEhXaPSVi6tuvHpAKRqgFTo4cOaxiQq1wNFRbcyqef/75f32fToyUna62T1myZAnJtiNxU59QDcYuXry4ZaEq2KDgg/qZat7E8OHDXadOnSw7VYG4QoUKWSsztTRTa7MhQ4a4Z555JtRPA4gatF0A4m7r1q2ubNmy9nujWWGvv/76Fe8+BeF1/FOWZ1wXU1566SU7jiohpXDhwlf8swFEpmg4ZkfDc7gSuo5p3LixXd9oEV2tAsM5oKI20gpMZMyY0YVrC6rBgwe7Pn36WIVH9uzZLamtWrVqod40AIgqcT1uE6RIxJRtXqlSJbdy5Uob1ugt9qptgC5cld2gtk/eC+jzzz93n3zyiS3uqkWAvldVFWSjI9g0H0V9t1Xlo+BaTN9884279dZbbei7Kn+89mRNmza1jFMF4VRh4Q3VBhB/iXWxALhcSgJRK0Ilh+g8SkkfwT4eKXCveRQK7Ov8D0DiEg3H7Gh4DvFZWN+2bZv9LQ9Xe/futWsvrTPUrFnTKuDDbc1AyZktW7a0lk5eIubo0aOtDTYAILCYSYH/pEFQEyZMsGxzBR9itn3q37+/lT16J3060VCJpoZd6UCuUkj1T9YsACCYpk+fbmXCr732mtuxY4f79ddf/Z87ffq0a9GihQUoateu7dq2bWv3v/XWWxagSJo0qb3mCVAAAEKRHKIFEQUoNDBUx6UrPR7pOHf06NEr+t4uXbrYfKYyZcpc0fcDAIIr5jxIzRQK5wDF0qVLrXWSAhQKJD366KNhF6CYNm2aJa5pXSN16tR2balrTAIUABBazKRI5FTmr9Y3ogoJtXDSSYSGEOfOndv/dTlz5rTWT+rzr2FSGnalBWD1a1SbASAYvv76a3sNKpCm3tt169a1k+Dt27fb5zWMTZUUmTJlchMnTrTX8s6dO+11Kur/fcstt/CfBQAIyaDs999/31ozqRL1hhtuuOLHUjsKnZspeeRytWnTxo0ZM8aOlQCA8A9wN2jQwP7e6/1wDqS88cYb1irp0KFDNmtpw4YNtu3hVM3YunVrS2rT+xUqVHCbNm2yLhLhFkgBgMSIIAXcU0895WrVqmVZec2bN7ds9Jg0PHvGjBmuV69etvCbMmVKu199/ytWrOgaNmzofvrpJ/YkEpQqJurVq2dzKFTBo0ogLdDky5fPAmo6MfaqKiZNmmTzUtQLVSehJ0+etAFzXbt25X8JABB0Ckp4g7I1Eyw+wzjPnDlj85d0bFM1LAAgeqklswLcvXv3tlbM4UjrB0ok69Chg7Wj0vXXl19+6W666SYXbsOxVWGv60itbSxbtiysthEAEjtmUsD89ttvrlixYjZc+Omnn3avvvqqfw5F1apVXfLkyd2KFSssI8Lz6aefupIlS1pvZZVyqlzyuuuuY48i4BRAu+OOOywYphNMtckQLdCcOnXKnw2qQIX6e+s1KzqZ16KQXp+bN292N954I/87QAJIzL2hgf+i44+q//7880/XqVMna1cYHwrUP/bYY1aJoQUrL3kkLjRoNXPmzP7jKIDEJxqO2dHwHOJK1zdKwNJbVcKF60BvzQTcvXu3dWnQekK4VCZov+m42717d0tgU5LbO++84ypXrhzqTQOARON4HI/bVFLAKOt88uTJ9r4O4gsXLrT3lX2uoYrKjqhfv74FMbx+xmr7pHYB8+fPt9kAKp0M5xJURCadWD7xxBNWLqxh2alSpfJ/Tu8rMOa97nQy7AUolL2j2Spe1ioBCgBAsKnlhaoAFaCoXr26v8VmfKooBgwYYO9369btsgIUokGm2bNn95/nAQDCm65vHnnkkbANUIhmOeg6TceWzp07h02A4vDhw9YeWGsXClCoA4TaOxGgAIDwRJACfho0rNZPorZPu3btssFcGiyVN29et2fPHru4PXv2rLXc0cmHbqrAePvtt62VgbcoDATKsGHDrPe2Bl7rRDNXrlw2bFQUnNBrsnHjxtZX1LNv3z67zxtSqq8BACCYFFDQsUiZpTfffLMN5UyaNGm8HlNtKlRVqOQSDb++HKo8vPbaa+3crmzZsvHaDgBAwtq6datdd4crdVXQGoBHawKaRxEuvC4QCxYssK4Qo0aNsmvIdOnShXrTAAAXQZACsQwdOtRKNVWyqcqJP/74w11//fX+DHa1f3r22WetakLtC1544QX7Pn1tv379rL3OnDlz2KsICGXjaKC7ZkloWLaCFUePHnUffvihfb5Pnz524qlerarmEVX93HfffTafokiRIm7kyJH8bwAAgl4FqMSPpUuX2vmT+okr0zQ+lAXqVVHouHi5VRT6elUl6jjKIg0AhHdbjDvvvNOVKVPGEgfDjdoOaqal5lCsXr3ahRMlqWnIuDpC7N271+YXrlq1yrVt2zZsKjwAABdGkAKxaACjggzK0FMQQiceutDWYq+y97zMdmW1Fy1a1P99yvJo1aqVZQwqc10XwUB8/PDDD1YBoXZjGhAq6h+qdmTjxo2zYe4KjIk+VqaMXqtPPvmknSxrAUaLQqlTp+Y/AgAQVDpW6VxJwzlVQaHzqPhas2aN++WXX2ymhNogXqmYbRMBAOHnu+++s5l8ShjMmjWrCxe61urZs6fNRdKA7GbNmtmMynBx5MgRS55UO0Rtn7pDfP3112G1jQCAiyNIgX/JkSOHtW665pprrCRy8ODBdn+DBg1cr1697P3t27f7v14nTzoZUG9HLSYXLlzY3X333XZyBVyJnTt3WrmwXotTpkyx1hSiNhkaOrp8+XILhokGs3nvq2pCs1W0KKQghtprAAAQTKrwUxWgV6GqdpqBULFiRTv/UnsNtW0CgEg1aNAgq95XMpECr7qWVHsj/E/58uVtf8yaNcuSCMOBFv0VIPeSx1TRrus0tVIKBwpGlC5d2n3wwQe2TUpi0/GShDUAiBwEKXDRC+ERI0bY+8qWiNleR611XnrpJf/Xqr2OLpoPHDhg5aiffPKJy5Ytmy0yb9u2jT2My6Je23fddZdlemoou4adqWRXmTveCagCZmp70aRJE/8QUrXUUABD9PUaUAoAQDCpClWZpTpmPfroo/7jUqBoLtOVHN80t0nfqwpFnbcBQCgtW7bMWuKpDc+iRYvsvF5Jbkp+w/9kzJgxbCoANGNJVQla+FfLJL1Vm+dwaJ+k4+3YsWNdhQoVbAbUTTfdZPModAwOh+0DAMTdVT5v5Q+4APVuHDNmjGUg6GRSLXViUhnqzz//bJnrmgGgrA9RwOKOO+6wi2JlvetkAfgvamOh/qGi140CD5pFodZN33//vcuQIYPLnz+/nYBWrVrVgmfKlFFrKFXyaLB2ixYt3NSpUzkpBYLcOzlt2rTu2LFjLk2aNOx7JEq//fabDaTes2ePBduVtKGq1PjS4t0333xjGaJXSouAWgDMnTt3WPY3B5C4j9kHDx60igpdb3rXApH2HAJByYCZMmWyKpNwMmnSJPfII4/YMU3td9XiORycOnXK1itU0SFKbtMMQ+YuAUB4ietxm0oKXNLw4cP9wQbNBvCGE3svspo1a9qJpIIUXoBCFPuaO3eulafq+9W+B/9HbYm0UKD9U65cOeszndgp2KUBcVqM+eyzz1z27Nkt4KCqHQUjbrjhBjsxVm9vLbRodooCFBqIds8991iAQotDGuRG1gwAIJj+/PNPWxxRgEJDOtUuMxABCtFxTcNT27Vrd8WPUalSJQv8a1YGAIQbLVpI+vTpL/h5Jcbp2jPmLdqoWkGz9XRtqCB3ONGcyg4dOlgrpXAJUKj6Xsc2BSi0FqFrxnnz5hGgAIAIRiUF4nTSWKVKFbdp0yaXJ08e9+WXX9oALw2mUva6Zk/kzZvXff755zZDQJmEWmxWdExZF+oxqtJdLTwXKFAg0e9xzUrQkHFVqOgkVIPItZihvqPKIEqMVBmhrFP1OlVAomDBgjZ/ImbQ60KBBwUm9BpUJYVeW3ptqjQaQHBFa0YjEBc6dmnRRskZWmBbuXKlVf0FwsmTJ22+kipUleCgBSwAiKZj9rlz5yzIe/ToUTuXvxC1HO7bt++/7g+X5xAIuq5p3769VZMoMTBlypQhf50ooS5ZsmQu3CxevNjdf//9ts907afra11LAgDCE5UUCBidxCqbQwGKH3/80aondBKpMsqFCxdaRYBOpBTIUEaDghS6KTNeJ1c60br++uvt899++22i/5959dVXrUemMlI0ZFzBCg3AVEAnMdI8E68aR68n9adVEOfs2bP2+f3791uP0XXr1sX6PgW+NIxUAQpVXXz66acEKAAAQde1a1cLUGghR1mcgQpQiCofFKBQoELnDgAQbXTur2tEVUtfzHPPPWcBCe+mSupoo7a206ZNs8S1UAcotI9Vua75f6rwCBdKXNM8Qq+KXlWGmldIgAIAogPtnhAnarWjReAsWbJYRUW9evWsB6QWhxWE0MWzAhhabL7uuuusakJtBTSLQlUXel+PodZPGpCWWOkkTydSGiru0eK8PlbmZWKzceNGC17pNaMZFJprokFnqqZQizAFuvR5vWbatGljmVbefmzYsKFbvXq1Bcv02rzxxhtD/XQAAImMqhuUfCDqg63qvkD2aNdijPTv3/+K20cpmK/H0fkHAIQTtbFbsGCBvyL/YtTiVRUTMW/RKlWqVCHPdlWbZ11nffHFF1bxHi5tFdUKWIkBuiZUwp8qb7gGBIDoQZACcaZAhCoqdFKoBWUtEp8+fdpODBSoUOagejFrUVnZH2oBFTNbfty4cdaSR4GKt956K1Hu+UOHDllbCAV7YtLHWqBPTGbNmuUqVqzoD2Jly5bNXhtqfaWggy5GFPTSa0fVOspSVUBHMyt0gqqqC1WgKKChihQAAIJJC2vq0S0DBgxwzZo1C+jjDxw40GaClSpVyrJZ47OdWtTp169fQLcPAOKTEa8Ahc7vldymxLbEStc2mqfw+++/h3pTLEChKgUliCkRTG2VAlkdeKWUuKbrwnfffddaAitBYOLEidaOCgAQPQhS4LKULFnSzZ8/34IQH3/8sbv33nut7Y5XUaHFYmU56ObZsmWLq1OnjrWJev31113z5s1d69at3bPPPmsL9khclPnSu3dv69+t188bb7wR6/OaYaLeogp27dq1y4Jjem3p4kVD8xo1amQBDmWU6m3Mge0AAATD2rVrrR+2jmmPPPKItSIJJGWujho1yt7X4pWC9FdKC0yqgNV5GACES4unt99+29obpU6d2pK1dFOlfmIzdepU1717d5tV6FWNh4Ku32vVquUPUCxZssSC5KGmKvtbbrnFqgHVEkuBE81nutC8QgBAZPu/ybRAHGnxWAEKzQPQSYJOZpSlp3ZOyohXpoOCGR4NkVRVRZIkSVyhQoUs66FEiRKuc+fO1n9UGRGaWZEYaPFd+0EzO2LSx9p/0U4DQBWgmjNnjmWdli1b1vqd6nWh147aPunEWMPz1OZClTc6QVYQTBctDRo0sAoKZc3oMVhwAQAEm+Zw6RxISRrVq1d3o0ePDvhiiVpoajFGyR/6GfGhAIVuABAu9HdTVEUd0+TJk92DDz7oEhO1uSpevLhr2bJlvALS8a3mUCLYV199ZdflusYPhwCF2ig+9thjtn3aR++//75V2AMAohNBClxxoEItebRIrNZPWmhW4CJTpkx282iBWUEL9RlVayi15xG1RyhYsKBlId52221WnREOpaQJTUM1NeBL+0UVA6KMGX2skudopqxQLZJo4UWDRfW+Wjkp4KCTYa+qZvjw4Rag0InxRx99ZMEbLQSp6kKvI72G9HqpWrVqqJ8SACCR0RBr9er2jlOzZ8++4lkRl6IhoDpGhkP7DwBIiHZP+B9dR2s+YSg7DChxUJXr6pag5MPSpUuH9L9H18eqUHz55ZftY7WZVsAi1PM6AAAJi3ZPuGIVKlSwxXWVgyr7XSdXhw8f9n/+p59+shMKZcOoVYEqKjzjx493kyZNsh6kyj5URr0y5BMDVZDo+U+ZMsWGWbZt29YW4TX8K1opkHXrrbdab22V7HoZnfny5bOBZ5or4Q3AmzBhgvXO1vcoQOENb1OAQuXgmotCgAIAEIpqQFVQ7Ny501oQKpCu41JCUXVhzpw54/UY+/fvt3MMAED4UgVFQgS840pBd1VPKPCumYGhpGOW1hC8AMULL7zgZs6cSYACABIBghSIF/WH1OKx2hipT2SlSpUsU150Ya1+o6JhjQ888IDNFFBWYJcuXexkY/Xq1Rbg0MmQ2kbpZCTa51Q0bdrUDR061PXq1cvaYm3cuNEW3s8fph0tWVIjRoywoEKxYsXcjBkzrGR3w4YN/q/RzAn1o/UyqrQoo6CWMmW8IWkKZKRNm9YtWrTIVa5cOYTPCACQGHmtMNatW2fnPDpuJ0SbRlWlqj95oPqSa/6XqhXHjh0bkMcDAASGrm8UFNDxJVSOHj3qf19z/kLdSlfXfrrWU9W9OhBobsmLL74YsjZYAIDg4q894k3zJVQeqn6aGpKtoV/KltfJhOYOKDM+adKkthCtvqPKRFSrKFUQPP7447b4rPY9upDu1q2bfY36PUcztXZSpYmCNgrUaJ9FGz0/9dFu3769/V+rUua1116zoJSCVwpKKMNTJc6qIlEgK6b169dbhc2mTZtc5syZreomGvcTACC8ecOxdRxTy0G1wkiIFpWavaRhoK1atXJjxowJyGPu2rXLnT171hICAADhQ9c+Cn7rejkUNP9D8/9iJo+FkrZD13p6q/bRSoRs0aJFqDcLABBEBCkQEBrsqMV29a88dOiQ9VKePn26fU4X9soMVCafFqhVTqqsjVGjRsUaNJktWzZbANi3b58NxtJsgkBlEiJ4FHxQxmbRokXdtm3b7P/09ddftxJmVVU0a9bMvffeezYoW68Fb2B2zGHrClopi0ZBjJivLQAAgn1MU5tGVTckSZLEqkATKmD+6quv2vym7Nmzu9atWwcsU1ePqUpXAED4HFvUkUAVeQpMB5sCAKpu15ylDz74wIWa2ifq2k/rAEWKFHFr1qyx1tIAgMSFIAUCRkEGzRGoW7euVQhoMVqZIToJ07wKZcZraLTaPSkLMabevXu7jh07Ws9JZc63adPGderUKVFUVUSTPXv2uHvuucc98cQTNhRdizrfffed//OaS6KyXQ0+02vit99+s2CGWoXpdaPXyrBhw2yo+J9//mmVGKrKyZ07d0ifFwAgcRo4cKAlTXhZp5pJkVAtLvSzRK0vFbwPBCWD5MqVy6VIkSIgjwcACMzfZl0n629/njx5grpLlUSmmQ+qstP1mq6/Q0nJbboO1CwKXR9+9dVXXPsBQCJFkAIBpYvqOXPmWNahPP/885YNqAVnDZnUScfgwYMtWzAmZU4oc7BDhw42i0CZ98rw0Imbqir0MVUV4UvBBQ0DV8BBw8DVq/u5556zE03NH/niiy/s61RlowUevS70/6mh6qqSUKmxAltqc/H000/b46kVmAZqqx0YAADBppZLOl6JAugtW7ZMsJ+ldpc6V9KMLiV5AACinyr0gunw4cN2LXbkyBF32223WfA9ZmeDYNK1YPfu3S25TTMpdV3ItR8AJG4EKZAgJ1uvvPKKtXPS+8qmV2sEzatInjy5XYjrreiERBkcmlOhzzdv3jxW1v2UKVOsXZSqLO688063c+dO/sfCsHqiRo0aVjLcpEkT9+2331o1hbKCFKBSpk6hQoXsa9VyYsmSJZbROWnSJDsxVn9vDVvXwowWhHSirMHio0ePthZRAAAE24wZMyxwLsoy1XlIQlECh+Z26finqo1ALBhpEKvaJCr54/jx4wHZTgBA/KmC/Jtvvgn6rjxz5oxdl6lLgSrsNJw6VFV2Sk574IEH3EsvvWQfazi2rg01LBsAkHgRpECC0bDkRYsWuSxZstjCtfpu6iI8ppEjR9pCgIaGPfroo5bd4Z24KGChwMTtt99uVRV79+61+QSq0lBGPkJLc0VULVGwYEH3/fffWwWNqmFiVrwo0PDOO++4jBkz2sd6DSgwoeoJDcuWuXPn2kKKTtgVmFIrMFVfhCqrBwCQuKk3tqomVNWnQEXfvn0T7GfpZ6i9pTz88MPWFjNQgQ8NH3333XcD1joKABB/Xbt2tU4BSs4Kpv79+7tly5a51KlT2/WWrtFDQYFzVXPo+JQ0aVJLSlQyANd+AACCFEhQCjJs3LjR3qrPZIsWLayNz+nTp+3zer9Hjx5WcaFB2xqUpcVufV7vq9WPhnBrNoUyTtR2YcKECe7mm2+2Ey09JoLr1KlTbsiQIVYpoTZcChopCKWAhLJgNF/EoyBVvnz53Lp16/z36TWgE3Nl86i103333eeOHTvmypcvb6+VWrVq8V8KAAgJJUUo01SVCKr0fOONNxJ04USPrWOpBlurP3mg3HrrrZYlqyzVYLcTAQBcmI4tGTJksK4Cwb7mefbZZ13Tpk3dzJkzrUVvKGgeoa7rVVmvFs9KCgjF4HAAQHi6yqcULiCBqa2TMhEVWNBLrkSJEpY94bUB0iK2+lB6Q5Z1AqWLdn1f1qxZ/Y+jNkDFihWzmQdqJ5UuXTrXq1cvq8KgNVDC0nA1Zbr06dPH/frrr7bPlfXi/f/oZFNBJ/XtrlChglVDaEC2aBC2KiY8atulYIUqKkRfO2jQIP4PgQilrDgFlRVwTJMmTag3B7giK1eudNWrV7cECA3xnDVrFsclAFEnGo7Zkf4cVJF+/fXXu8Rk+/bt1iJYbX4zZcrkPv7444BVDwIAouO4TSUFgkJZfMqyV3BBJyWbNm1ypUqVsgw/LX6rDZDa/XhVFWoBpVkUMQMUCmSoPFZZJ8re37p1q80+aNeunQU7VInBcO3AU1BJAQYFh9q0aWOzIxYvXmyZQN5AbKlatapVu2hGhaonFKBQhqj+r9TySfT/o37beiwFKHRy/v7771vwiSATACBU1q9f72rWrGkBCgUqdB6SkMclHVt/+eWXBHt8AED4ClaA4uDBg1btHuq8VB1jdQ2pAIU6IqxYsYIABQDgXwhSIKjuvvtuf0sfzZ3o3r27Zd2rXZDKXtXqYNWqVa5s2bJWdeFRICNHjhzWI1rzK3LmzOly585tmf36es2qaNasmQU7Zs+ebV+P+FFA4YMPPrD/H7VkuvHGGy1QpGDQ2rVrre2WKiD0/ygKWGhA+lNPPeV+//13KyPWfRqiruHYyp6pUqWK9d5Wyyi1AFO/bGWrAgAQKqri1PmJMnvUdkmB+YQeJqpzFS3UqH1ioKl9hnqdEwQBgPCxZcsWd+TIkaD9PHUk0PWxZit169bNhcry5cutxZMCJppDqJlJefPmDdn2AADCF0EKBF22bNlsWJcy7VXuowVvlXoqQKHsfAUaFHhQSyiPKiiUxa+ZFG+//bb/fi0o3HvvvfaYCxcutLIhBTG8C/9gnghGUxmWqh3y58/vDyAoo1TttbySXJ3sNm7c2AIWCi6JghCqpFALrhEjRlgAQhkzOkF+9dVXbQ7Fl19+af1HldGjagwFmgAACOWikSoBDx8+bOcfH374YYIPmlabj/bt21uQ/+TJkwF/fB2D27Zt669iBACEnqr/dc2qKvJgUFtetePVMa1169YuFHRMVeeDEydOWLKa5j6FamA3ACD8EaRASKgNkE6WlL1Yp04dG6KsAIQy8dUTOuaQSmXljx071k5yVDGhTP2ffvrJPqdsxwMHDljGvhYZli5dam2jlKWvx1P1xRNPPGElprg0BRi0aKJ99swzz1g1i4JFGm6t/yt9zqPKiNdee80CEB7NFNFcCQUr9H+UNGlS+79QVqoqLjQMvVq1alY1o/+Tq6/mzw8AIHTUNlLnCxrkqcQItaQMRm9zVZFqtpOSAZ577rmAP76OtaqCrF27dsAfGwBw+ZSIp7/7uh5S29uEpmp4XZfJxIkTXZEiRVywTZs2zeYS6jkrqVAzKCJxfggAIHgYnI2QU49MZft16NDBX/mgocqDBw+2BXNvIUGL5Tq5EfWJfuihh2yGhWYgqL2TFhpEC+etWrVyd911l31OJ2ZqeaDyUg17bt68OSdI/58yOFUlMX78eJsRocwWzQJRUEKLJ96Qa82YKF++vPv000+tekX/N+PGjXMZMmSwz5/fFkMn4T179nSTJ0+2/9/UqVNb2ydVw8QMQAGIDpE+wBKJjwLqaj+xb98+WzD67LPPXMaMGRP856qisHLlyva+EiuUWQoAwRQNx+xIfA66JtqxY4ddVyUkHddUwa4KwY4dO7phw4a5YFPVvJLW9JwfeOABN2nSJOYPAkAidjyOx22CFAgbymRU0MFb2Fa2vjIMlYWfMmVK+xpVTPTt29dKV71ghVoOaWaCR62klK2hgWQ///yztSNScEML8arG0IK6ZmKolZHeaqE9MVGbCe0PZdhoXylQoTJcBXAUQHj22WetuiXmCa2qLNKnT+9efvllq2rx5lCoSkIBJs2rEN3/+uuvu379+llZrygopAHpXsAJQPSJxMUCJF4Kris4oAQGZZeq/USmTJkS/OfqeFuyZEn7+Q8//LAlUQBAsEXDMTsankNCzRTUjCVdK5cqVcqq4pMlSxbUbVBimqryRZX4uqakgh4AErfjBCkQqdQiSFkfGqoluXLlssVxzZrwTnC8YIVaQ+3evdu/uKAF+D///NPmJyjIoaCHR8EOPZaqNTRUcs2aNfZ4mpuggIUCGwUKFHDRSAsiCkrMnz/f9p0qT1RZUrNmTQsiqI2WaK5HjRo1bD/pe5IkSWLZpi+++KKbOXOmteUS7TPtf1WrKLChoJIeX/tYGUKi3t6abaGWEwCiG4sFiBQ6tqnycu/eva5QoUJB7Y+teU7KLs2ZM6fbvHmzJVMEko7FWpC69dZbreUiAETrMTuSnoOq/HXNGYxqch0DlESmwITaHRcsWNAFi45B/fv3d7169bKPlWyomZNU0QMAjsfxuE1TeIQdDWfWQvq7775r2feaP9G0aVNbVJ8zZ45liKhVggYv//DDD7GyHxVoUBWABmerPZTnxx9/tOHNuk8VA2ptpFLYMWPG2CKBBovpJE5BClUSLF++3BbyI5VOhlesWGEnh8oSzZs3r+vWrZtVkajSQW2wNPha76uFk0eZN1OnTrVZIQpQiPqIali5AhQ66dV+92aAiKpTNL+iXr16FqC44YYbbCi69jEBCgBAuNi2bZtVUChAoWO+WjwFK0ChxZubbrrJqjtVMRroAIXo2K3jrhINIvkcBgCiiarOdW2q5K2Edtttt1lbQR1ngh2gUKtfL0ChYMXAgQMJUAAALgvtnhDWVBUxZMgQKxv12gepx2bv3r1tEFfM0lG1bdBivBbVRW2cNANB8yn0vgISav+ktk8eBSzUr7Nz5842oFvVALqp9ZRaTKktg4Im3k1Zl+GWnaiAxJYtW6wCxbtt3LjR/fHHH9ZfW0EbBRc0sE37QhUmMnLkSNeuXTsL7KjCQlQ1oSCFvlf73KOTzOrVq1t2pnciquCEqinWrVtn9+lxNVdE1SuaQQEg8YikjEYkTjpOqvpv//79Vj2oVhgKqgebZjYl1M/V+cuDDz7oypUrZxWjABCtx+xIeg7qBjB79my7fu3Tp4+LNrou1LW01ypY15D6GAAAD+2eEFUUQHjttdcsA8ULVmjQpbI1GjRo4M/6V8BBPZ61AK9qAY+CDVpQV1snj7IMtYivk1u1jVLmiah9lBbt1TtaWYla9Ff2pU7AFLgoUaKEBSxU2aGb5jGkS5cuwTNF9PPVzkoZoBs2bIgVkFAwRxSk0bbp+araRM9J+yZPnjxu165dNoOidu3a/n2q56fMnvfee8+yfNauXWufU4mwfk7mzJljbYOqWLzghH62F5xQsEOtns7/egCJQyQtFiDx0bFOAYoDBw7YuYMqAoN5vFIlYrB6guvcRsd3jscAovmYHUnPQclfn3zyic2I0DVZQhg0aJBd56qCPph0faq5E7r2FrVcbtu2bVC3AQAQ/ghSICrpwltZGgpW6EUuuXPntj7PjzzyiA139qoLlFE4adIkGxKti3YtxCuTxXscLRqoskLtjtQKyQt0aP6CMl1atGhhbY5EgREtzqtawwsQbN261U7MRO0blBmZNWtWly1bNnsb86ZKDg35VhWGbgqm6HsVJNG26aZKB83LUJanWlHprXfTx8q+9KpEJH/+/P5gid7qxFcVIGqNpaCFAiuep556ytovKXtHldRLnIAAAE0zSURBVBWiLEvtRy3WKPgg2geqmHjooYcs+KNtFl0AqIWTTkBVbSHXXXedPa4GowVj4CiA8BVJiwVIXDT7Qe0JDx06ZAH8RYsW2bE3WDTPSecUqlLUrCYACLVoOGZHw3MIFF3r1qpVyxLH1OI4mG0MlaimwISS9SZMmOAefvjhoPxsAEB0HrfDq28N8B8UhFAQQbMlVFmhRXNVPnTt2tWqKhRYUDaHqh3UDko3BQRmzZrlryCQESNG2IK9Fvc1PFoVBGplpEV6tZBS3+jy5cv7v14BhGbNmlkbo4MHD1pQQoELVSYoeCC63wsoaKaF3teiyJVQUMMLcKg64vbbb7esSM3oyJ49uytatKibPn26ta7SPAgNARVtuxZkdNKojFEvk1KBnU2bNtnz8miehzePQhUX2ndNmjSJlX2p7FPt47feesuygER/UJ544gmCEwCAsLZmzRpXo0YNSwDQ8V7HPC+ZIRhUkaiMUiVGqEIzIYMUqv5MlSpVgj0+ACA8F30ee+wxe19vgxWgUIKbAhSjR4+2AIUSA9VuEACA+GAmBSKaKga0WP/GG29Y2yOPZjBoHoWqAS4UpVO1gbIbzw8MaHC0Mi41u8ELWIjaQalVhKol1DbJo8CFfr4GUCs4IgpaqLpAgyuVPanqBi1QrF+/3oIWaq+kQIb6YytooCCDqhL089SiSoEBBVkUPBFVWag6Q8EWRR29RQjNidCAspYtW1oQwbNw4UILYmjBQtutwaC6T0ELBTW0X0TboNZYzZs3t23yKBjx/vvv2+f0vR6VD+tk9IEHHmAhBEAsZDQi3CxdutRmLulYqKQDVQ8mxLDqi1Fywx133OFWrFhhwYmvvvoqwVo+KTFBx2g9Pw1LLVCgQIL8HADRIRqO2ZHwHHSdev/991sbJi3gJ8Rcw8cff9yNGzfOruWUqObNHkzoAIWq6TXvUQEKHXdat26d4D8XABC54nzc9gFR4Ny5c74vv/zS17RpU1/SpEnVg8luKVKk8DVu3Ng3d+5c3+nTp2N9z759+3yTJk2yz6dNm9b/PRkyZLDH80yfPt330Ucf+X799Vffzz//HOsxWrZs6UudOrVv5syZ/vtWrVplj5MrV65YX1u3bl27f9y4cfZxkiRJ7ONffvnF/zUvvfSS3ffggw/G+t706dPb/WvXrvXf98MPP/jmzJnj27lzp/++H3/80VezZk1funTp/M/Hu6VKlcoe/0LOnDnjW7Bgga958+a+a6+91v89V199te++++7zffbZZ7H2CQDEdOzYMfubobdAqH344Yd2/NdrsmrVqr4TJ04EfRu6du1qPz9NmjSxjtMJYevWrXa81nPmdxBAYjhmR8JzmD17tm1j7ty5E+Q6avHixf5rtqVLl/qCQc/jiSeesJ951VVX+d58882g/FwAQGSL63Gbdk+ICsriqFixot1UIaCSU82T0NwIzaLQTRmGDRs2tIwWtU9SKyXNXtBN1QqqOtBQM2UkxhyCraoIza4QldAWLFjQboUKFbK+m1OmTLEZGB5VPQwZMsQ/z8Gj71FLKH1eVC3hzbTwKBNSbZditpoSbZtaTSkzU/20VYXh3fSc1QJL1MbCew4pUqSw7M0KFSpYuwt9XcwsTj2WMjtnzJhh+0eVGh5l42g7NOdDg8EBAIgEOp6pQlDHdVVSqGpSx8NgUtXGyy+/bO/rfCShBqXGnFGl8xTNywrXjGIASGx0HTZgwAC7hot5bRkIqhL0quNV1VClShWX0HR92alTJ38FheYVqvsAAACBQrsnRC2dSKkF1DvvvOPeffddC1541DJJbZ3UUkm3iy3E//XXX+7RRx91q1at8g+Mjqly5co2f8Kj1g5aDFFbKN0030Flt7pPP0Mto7xtUysKPb6GYce8qTRYsyc0H0K00KLvVdsob8B1THoeGn7t0XBOBVAUBDk/UKLB3wpiaMCagh3e8HEvAKMAjhZ3NJ8j0CfTAKJXJLRdQPTT0E61vtCxUu0YlURw/nEwoSlYoAHdCvxr4UgzsAAgnETDMTsankN8KBDerVs3ay/87bffJngrXl276ucpEc8LwCvRDwCAQB63CVIgUVClwxdffGEBCw2v1HyGmAoXLuxq1aplA6jLlStn8yku9EulyoyYVQwKBGhgt1eZcKl+06pmUHDAo76kMSswYqpevbp/qLVoezTXQt+jQdoxqzmKFy9uCyIXcvToURsc+vnnn1tmp3qVxqTHrVOnjlVN6LknRK9UANEvsS8WILS0eDJo0CCb0+QNDx01apTNego2nV9odpNmUGkeRbCrOAAgMRyzo+E5xIeS2F599VVXunRpV61atQT/eZqz6FXuq5JCCQEAAMQVQQrgIpRhuWHDBgsY6KYqifMrFNQ64bbbbvPfihUr9p8L+ApSaNC0Bmd7N7V3OnXqlFVIlClTxn9y55UAe22Zzr8p+NG1a1f/137//ffWrkqVGRfbDgU8NHRbz8e7/fDDD7G+RtURqpLwKki0DaFYxAEQXRL7YgFCR8fvLl26uGHDhtnHPXr0cP379w9pNaC2SZUUmTJlSvCfpYDMmTNnLMNViQsAkBiO2eH+HJRsljJlSkt+u1QSWyQYOHCgPwlg+PDhrkOHDqHeJABAhCFIAcSRKhTU+mjhwoWW9ahqifPpJNOrXtCtQIEC9lbBDH0umBTwUOspVXLErOxQQEKtos6nygvNuLjnnnvc3XffHZRFEwCJS7gvFiA6KTlA7SZUJSmvvfaa9csOhR07dtjxNti/d2rVqPOCtWvXWuIBACSGY3a4PwdVOCgpTscntdINFCWhlSpVyiVPntwFg4IS3nFVLaaeffbZoPxcAEB0ietxm94uSPQ0bLpp06Z284IWq1ev9lcj6H39IulEU7eYlKmp+REahq2FAm8Whfe+2imdXyWhk8qrr77avl+VFBeaS6FtiFmRoXkUert//363Z8+efw3c9mgwW9myZa36Q4EJvU9QAgAQbTQ0tHHjxjZnSRWGkydPtjZLoaCB1ZUqVXKtW7d2b7zxRtDmYOiYr5lU2geq1gQAhJ6q25XMplmA3jzCQM08Umun7NmzWytfXX8mJB1XvQCFugEQoAAAJDSCFMAFghZeOySvbYMyJGPOovBuR44ccXv37rVbMCkCGbOyw7vly5eP9k0AgKimoH3t2rXd+vXrrZpx1qxZNlcqFJREUL9+fUsw0AKSl4QQDEqUqFixot0AAOFBrXSnTZtmSWWBbD349NNPuz/++MMS0JQMl5B0XG3Tpo29/8wzz7jnn38+QX8eAABCkAL4D1pwUFsn3erWreu/XyeeGoypAIZX6eC99W6qiDi/UkIfx6TKivMrLdKlS/evqgzv/Tx58tjbUPbbBgAgFNTmsEaNGm737t0uY8aM7sMPP7SqwVDQLIiGDRtacEJtINXWgzlPAAAJ5LWaZlwocKBjzKhRoxI0IK4WyGpRpUQ9BSrU5onrTgBAMBCkAK6QTtaUyXK57ZQU3Dhw4IC9r+8NZtYlAACRSnOj7r33XksAuPnmm63NUbDnQMQ8lrdr18599dVXVt34/vvv29tg0fwNtbxq27atBWsAAOFBbYIDeTxQgpuON9K+fXtXvHhxl1C+/PJL16BBA5v51KRJEzdmzBgCFACAoGF1FAhBcEOVELoRoAAA4L/Nnj3bVa1a1QIUt956qwUsQhWgkCFDhrjx48fbMf3dd9+1Sopg+fPPP92AAQNcr1693LJly4L2cwEAl6bZgaqI13zAs2fPBux4s337dpc1a1bXt2/fBPsv2Lx5s6tTp447deqUtT2eOnUq1YEAgKAiSAEAAICwpIoFtZpo1KiRtUzUAooGhmbOnDlk2/Tjjz+6nj172vuvvvqqf4ZVsCRLlswGdGsWhm4AgPCwevVq/yyKpEmTBiTooaC0vPLKKy5NmjQuIezatctaKaoKpFKlStZaSscaAACCiSAFAABRZuTIkS537tw256ZcuXJuzZo1F/1aZYNXrlzZMv90q1at2iW/HggWtZt47LHHXLdu3fxtLubOneuuu+66kP4naDaUtuO5555znTp1CvrP18JXs2bNbBuYgQEA4aNx48bul19+caNHjw7I46ka44477nBVqlRx999/v0sIBw8edPfcc4/bv3+/K1q0qJs/f7679tprE+RnAQBwKVf5FOoHAABRYcaMGa5Vq1bWR1gBimHDhrn33nvPBg5fKPu8RYsWrmLFiq5ChQoW1HjppZds8fO7775z2bNnj9PPPH78uPVfVgZeQmX5IXE5evSoLfYsXrzYWiNqBkOHDh1CvVkAEPGi4ZgdDc/hcmgGUapUqQL+uCdOnHB33XWXW7duncuVK5fNWYrruR8AAIE+blNJAQBAFFH7mUcffdQ99NBDrnDhwhasUEbcpEmTLvj177zzjnvyySddyZIlXcGCBd2ECRPcuXPn3JIlS4K+7YDs3LnTgmYKUKhqYt68eSEPUCgzVlVGavUUShqeOnPmzID1OgcAhL+ECFCcOXPGNWzY0AIUGTJkcAsXLiRAAQAIKYIUAABECV1wfv3117aY6lEWuj5euXJlnIfyqs1O+vTpL/o1f/31l2VDxLwBgaB5E2XLlnU//PCDy5Ytm/viiy/cvffeG9Kdq1YY1atXt8DdI488ErLtWLt2rbVyU/XTb7/9FrLtAAD829tvv23HCB3H4kstl5RAcuDAgQTZ1WqmoW1dtGiRJQN89NFHrkCBAgnyswAAiCuCFAAARIlDhw65f/75x2XJkiXW/fr4119/jdNjqP+/FodjBjrON2jQICvX9G45c+aM97YDY8eOdXfffbf7/fff3a233mqL8qVKlQrpjjly5Ihtk4ImOXLkcG+++WbItkVzZnr16mXVFLTjAIDwotaaqlrVsSu+CSfPPPOMzbUYMWKESwjPP/+8BVU010hDspUcAABAqCUN9QYAAIDwMHjwYDd9+nS3dOlSm09xMRoY3LlzZ//HqqQgUIErpdZFej298cYb9nHz5s2t7VjKlClDulPVq7tmzZpu48aNFuhTJYV6dodKpkyZXN++fUP28wEAF9exY0eXP39+V7t27XjtJrXp3L59u80Re/bZZxMkIWDgwIH2/vjx412NGjUC/jMAALgSBCkAAIgSGTNmtKy481vB6OMbbrjhkt87dOhQC1JoDkDx4sUv+bXJkye3GxCI6p+mTZu6zz77zD4eMGCABcGuuuqqkO5ctT1Tm6nVq1db6zO1xNDiEwAAF6IB1LrFx9GjR/3B6BdffNGlTp06oDt7wYIF1kZKevfubfPLAAAIF7R7AgAgSiRLlsyVKVMm1tBrbwh2+fLlL/p9L7/8suvXr5/75JNP3C233BKkrUVipwoFvd4UoFBP7Dlz5rgePXqEPEAhXbt2dcuWLXNp0qSxYaLFihUL2baoVdv999/vtm7dGrJtAAAkPLXTVMvDwoULB3wGktpQKSlA54UKTihIAQBAOCFIAQBAFFHbHJXvT5kyxfrot23b1v3xxx/+bLlWrVpZprrnpZdeci+88IL1UVbPey2I6nby5MkQPgtEO7UVq1Chgvvpp59c3rx5rWKhQYMGLlxo8aZSpUo2TDTUgbs+ffq4GTNmuDZt2oR0OwAAF/bBBx+4b775xuaCXan9+/f72x7q3Cxp0sA1vdCxVtWBqhLUnCW1fAqHhAAAAGKi3RMAAFFEWXIHDx60AbsKNpQsWdIqJLxh2nv27HFXX/1/OQoazKghjY0aNfrXIq0WR4FAz59QtcSQIUPsY/XCnjZtmkuXLl1YbJu3KKT5D8uXLw+LRRz1Od+3b59VdwAAwosCE5qlpOSOzZs3X3HlnapaT506ZZWv8Z1rEdOxY8fs8dT6s0SJEjYo+5prrgnY4wMAEChX+Xw+X8AeDQAAJDoanJ02bVq7EFZ7HOBCtECitkUazC7du3d3/fv3tzkqoaY+4LVq1XKtW7d2jz/+eKg3BwASTDQcs8PpOSgxRAkiasmnRJArPaYdOHDAKijq1Knj7rzzzoAF3/V4aluYNWtWt2bNGpcjR46APDYAAIE+bhOkAAAAUbNYgPC0YsUK17hxY6sISJUqlbUX08fh4PDhw9b+Yv369S5Dhgxux44d7vrrrw/1ZjnlEYVDJQeA6BINx+xwfA7h9jdb2/PUU09Zxey1115r1YGaWwYAQLget5lJAQAAgARbJFGP7SpVqliAolChQja8M1wCFMp6rVy5sgUo1OJJQ7zDIUChwaZVq1a1ShP1EAcAhLcrDVD89ddfLiEMHz7cAhTarnfeeYcABQAg7BGkAAAAQMCdOHHCNWvWzHXo0MFaTigwoQHZBQsWDIu9rSGnGt6tAfPZs2d3y5Ytc8WLF3fhQAO7P//8c+tRzhB7AAhfCirHx6OPPuqqV69ux6RAWbBggevcubO9rxlQ9evXD9hjAwCQUBicDQAAgIDS8FAFJbZt22bDqLXY3qlTp7BphaGARL169azkuHDhwjZcPmfOnC5caD7Gu+++a6XRmTNnDvXmAAAuEozXsaNUqVLuww8/tLZKl+P77793b7/9tlUdnjlzJiD7+Ntvv7UEAT3mY4895g9WAAAQ7ghSAAAAICC0KKJ5E+3atXOnT5+2AZ0zZ8505cuXD6s9rJZTClCo1dP777/v0qVL58LJ1VdfbUPGAQDha926dXYs2blz52UHKKRPnz523GzQoEFA2jFpiPe9995rFXgavj1ixIiwSQ4AAOC/0O4JAAAA8aZFkQcffNC1adPGAhQ1a9Z0GzZsCLsAhXTp0sVNnjzZLVy4MKwCFD///HOC9ScHgHChIc5aTM+WLZstos+bN89Fottvv93aNCk4fyUVh++99549/xdffDHe26JKjEaNGrndu3e7m2++2R77mmuuiffjAgAQLAQpAAAAEC8KRigL9K233rIqgIEDB1pP7IwZM4bFntXCf8+ePS3jVbQopIBKypQpXbj4+++/rQVV6dKlrQUIAESrP/74w5UoUcKNHDnSRbIkSZK4okWLumrVql329w4aNMjeqjWiHiM+VI2hCkYFf1KnTu3mz5/vMmTIEK/HBAAg2Gj3BAAAgCteGFE7iWeeecayODWAetq0aZZdGi4OHDhgrTRWrFhhmatavAnH9hc7duywSgoFK8KpugMAAk2VdrolVtu3b7dWiNKjR494P56Ow+PHj7dj2/Tp023WEgAAkYYgBQAAAC7b4cOH3cMPP2yL/lK3bl1reRFO2ZubNm2y7dqzZ4+7/vrrXYcOHcIyQCGFChWyCorvvvvOZc2aNdSbAwBhQ9VwMVvhHT9+3IXa/v373euvv+4qVqzo6tSpc1nfO3r0aHfu3Dn7PlWUxMeSJUvc008/be8PGTLE1apVK16PBwBAqBCkAAAAwGUvirRq1crt27fPJUuWzA0dOtRaTYRTAGDq1Knu8ccfd6dOnXL58+d3H3zwgb0NZwrwhFMVCgCEA7VG6tu3rwsnX331lRs8eLArVarUZQcp9H1q8VS8ePF4bcOuXbtc06ZN3T///GPH5M6dO8fr8QAACCVmUgAAACBO1NKpa9eurnr16hagKFCggFu1apVr37592AQolG3btm1bW7BRgKJGjRq2jeEaoJgwYYItdgEALuy5556zmULebe/evSHfVTlz5nRt2rSxmRKXS8F9VSLecsst8ZrroVaGqmrU44wdOzZsjsMAAFwJKikAAADwn7Zu3eqaN2/u1q9fbx+rSuGVV15x1113XVjtvZMnT7qPPvrIFmt69eplNw3zDkdr1qyxgIqyYNeuXWvDxwEAsSVPntxu4aRcuXJ2u9zAgp5H0qRJ4z0P6pFHHrGWhpkzZ3Zz5sxxKVKkiNdjAgAQagQpAAAAcMnFkDFjxrguXbpYZUL69OndxIkTXf369cO2ZdLs2bPdwYMHw34wq9p93H///e7s2bOudOnSod4cAEAC6tevn3vvvffca6+9ZvOSrpRmT8yYMcOCHbNmzbKqDgAAIh1BCgAAAFyQWjopW/OTTz6xj6tVq+amTJnismXLFjZ77PTp09aCqkiRIlbdIfFpoRFM1157rXvrrbfc33//TZsOAImGKt527NgRa7bCxo0bLQh+4403unB39OhRC9pnzZo1zt9z5MgRN2rUKHfixIl4/exPP/3U2l/J8OHDXeXKleP1eAAAhIvwrH0HAABASCnbs1ixYhagUBsJLYYsXLgwrAIUP/zwg7XbeOONN9zTTz/tDhw44CKBZmR41JZK/ckBILFYt26dDZzWTTTwWe+rPV8kmD59uh0L1QIxrkaMGGEBCh1XL3fQtmf37t2uWbNm7ty5c5ZAoHaBAABEC4IUAAAAiJXt+cADD7gmTZq433//3doQff31165Dhw5hM9tBLag0JFQzHDZv3uwyZcpkLS/UmzvcjR8/3pUvX96CKnoeAJDY3HHHHfb37/zbm2++6SKBBncrwHzzzTfH6etVdaFguqgK4kqOpXqMhg0b2nH51ltvdSNHjqQCDwAQVcLjShMAAAAhp4HTapv0zjvv2CJKjx493MqVK13hwoVduPjll19s1sQTTzxhizZqQaXhobVq1XKR4Ndff7W3CqxokQsAEFkGDBjgjh075jp16hSnr3/77bdtTpJaWTVu3Piyf54COE899ZRbv369y5gxowXlw22QOAAA8cVMCgAAgETu+PHjltk/adIk+7hAgQI2e0KtlMKJWmWULFnSHTp0yBZoBg4caItE4VLhERcvvPCCBVZuu+22UG8KAOAKpU6dOk5fp9ZMr776qr3fsWNHG3Z9uSZMmOAmT55sxzq1moqEuR0AAFyuyLmiAwAAQMBpCKd6ZCtAocx+BSs2bNgQdgEKb1HoySeftFYX2kb1MY+EAMXPP/9sw7E9avdEFQUARL8vvvjCbdmyxaVJk8a1adPmsr9/zZo1rl27dv4KjqpVqybAVgIAEHrhf1UHAACAgDt69KgN3rznnnvcnj173E033eSWLl1qGZ8pU6YMiz2uFhfKIFWLC8/zzz/vVqxY4QoVKuQipXd5xYoVrZf46dOnQ705AIB4UJVh06ZN3dy5c+P09bfffrv78ssvbSaFAhWXQ1WDjRo1cmfOnHH169d33bp1u8KtBgAg/BGkAAAASGQ+/PBDV7RoUX97p/bt29sAai2mhIvt27e7u+66yz366KOWfXr27Fm7/5prrrmidhmhsm3bNnfgwAG3detWa1cFAIhcixcvdjNnznTfffddnL5eVXMKVLdq1eqyfo7aRD3wwAMW6M6XL58NFacCDwAQzSLnCg8AAADxoqxMtXPSEE/JmzevBSoqV64cNnv2r7/+cq+88op78cUX7X1VdbRo0cJFKrXmWLRokfUQ17BsAEDkatu2rbVIjEvbJVXPpUiR4op+jlo7LVy40I6Bs2fPdmnTpr2ixwEAIFIQpAAAAIhyapukYZsa2nnw4EH/7Il+/fq5a6+91oXTfAz13lYVhdx9991uzJgx1ooqkuzatcslS5bMZc+e3T6uVKlSqDcJABAAFSpUsFtcZhEVL17ctWzZ0gLvl1MBqGqN3r172/ujR4+2oAgAANGOIAUAAEAUU6sIDZtesGCBfVykSBE3ceLEsBuMrQCF5mPIDTfc4IYOHeqaN28ece0tvv32WwuupE+f3i1fvtzeAgASF82gOHLkiNu0adNlBSh++eUXO/YpuUBzo1q3bp2g2wkAQLggSAEAABCF/vnnH8vA7NGjh81C0CwHDZ3u3r27ZfmHAy3CeEGIatWqWXZq2bJlXZ8+fSK2tUXq1KntOemmdlUAgOiwZcsWd/jwYauQ0N/6i9Exd+zYsfZ+ly5d4vz4f//9tw3lVsVjiRIlLNABAEBiweBsAACAKKMh2BrUqYHYWiwpX76827hxo+vVq1dYBCgUnJg2bZoFJU6ePGn3XX311W7ZsmXutddei9gAheTKlct99tlnVkWRNWvWUG8OACBAFHhQ+74XXnjhkl/31ltvuWPHjrn8+fO72rVrx/nxlVTw1VdfuTRp0rhZs2bZPAoAABILghQAAABR4s8//7RKidKlS7vVq1fbQseoUaPcl19+6QoXLuzCwapVqyw4oWHYen/kyJH+z11OS4xwqljRwpKCEp4CBQq4dOnShXS7AACBpRlOmjWkKodLBeFHjBhh7ytRQAH4uFBLRrU5lMmTJ7u8efMGaKsBAIgMV/l0FAUAALhCx48ft8x3ZQ1qURyh8dFHH7mnnnrK7d692z5u2LChe/311122bNnCpk1Gz5493Zw5c+zj6667zhb3NcA7krNFX375ZdetWzeXJUsWt23bNn4HAIS1aDhmh/o5xGxVeKGh19WrV3epUqWy+RJx2T7NjipZsqT7/fffXYcOHdzw4cMTYKsBAAjv43bkpasBAADA7+eff3adOnVys2fPto9z5Mhh1Ql169YNi7107tw5G9w9YcIEqzpQVulDDz3k+vXrFxXtkBQYmjdvnmXMRuqCHwAg7i4WoBCvOvDBBx+M0zFBcyjuv/9+C1CUKVPGAt8AACRGBCkAAAAi0NmzZ62lhHpja65DkiRJrCqhd+/elsEZLhSUUPaMAhT16tVzAwcODJvWU1cadFm4cKGrWbOmvyJE7bTi2tIDABC9VAVRsGBB17p16zh9vY7hK1assIDGzJkzXfLkyRN8GwEACEdcTQEAAEQYDdZUxqWCEgpQaDD2+vXr3ZAhQ0IeoDhy5Ih7/vnn3Y4dO/z3KTChhXxVHERygEKBFgUnatWq5d577z3//QQoACC6vfLKK3bcHTdu3CW/7sYbb3SDBg2yQMV/+fjjj91LL71k70+cONHlyZMnYNsLAECkIUgBAAAQIQ4cOGAtJCpVquQ2b97s0qdP78aOHWsBgOLFi4c8ONG3b1930003uQEDBrgXX3zR/7ncuXO7ihUrukinapWyZcva8FQNKQcAJA5r1qyxZICjR48G5PE0r6Jly5b+toGNGjUKyOMCABCpCFIAAABEQGsn9bkuUKCAmzJlit3Xpk0bt3XrVvfYY4+FNJP/0KFDNhBbgYg+ffrYQLRixYrZ4O5osGfPHltM8vTq1csCRHFt5QEAiHyaFaHZTw0aNLjg5ydNmuTq1KnjvvjiizhV5bVo0cIdPnzYlSpVyg0dOjQBthgAgMjCTAoAAIAwpiqJdu3auU2bNtnHWtAYNWqUu+2220K9aa5///7W1sKrKlBwQq2elBEaDS2Q1B9cQ76rV69urarkmmuucTfffHOoNw0AEES5cuWy24X4fD73+uuv23H6jjvucJUrV77kY6kF4rJly6w944wZM1yKFCkSaKsBAIgckX/1CAAAEIX2799vrSC02KGFj3Tp0tmg7LVr14ZFgMJbmFGAQn26586d6zZu3OiaNGkSFQEKKVKkiDtz5oz7/fffbfYHAAAXSibQcTplypTu4YcfvuQOUqWFqg5FCQf58uVjhwIAQJACAAAgvPz111/WViJ//vzu7bffdldddZW1dNq2bZv1rdZchFD141YLpw8++MB/X/v27d1HH31kgZP69etHfHBC7bNmzZoVK0ixevVqf8YrACDxWblypbVa3L59+wU/rwQCUQsnzYq6GAW89TXnzp1zrVq18s+kAAAAVFIAAACETVXCggULXNGiRV23bt0sc79cuXIWHNBw7IwZMwZ9m9Q3e86cOTaoW9ui9wcPHuz//PXXX+9q1qxpgZRIp4GoCkpoMPlvv/3mv7906dJR8fwAAFdGCQM6NowfP/5fn9PxQsdGUSLBpY7xjzzyiNu7d69VT2jOFAAA+D/MpAAAAAixLVu2uKefftp98skn9vENN9xgwQBlWYaiOuHEiRNu8uTJbtiwYW7Xrl3+WQzNmzd3Xbt2ddFC2aze/tWsD7WtypIlizt9+nSoNw0AECYKFizoqlSpcsFWixqYffbsWftcyZIlL/oYo0ePttlGyZIlc9OnT6c6DwCA81zlU0gfAADgCh0/ftylTZvWHTt2zKVJk4b9eBmOHDni+vbtaxmVWuRQIEDBip49e4Z0X2pQ9OLFi+19ta5o27atZYhmzZrVRQO9VgcMGGDPUa2qvBZaql6hrROAaBYNx+xweQ6qNsybN6/bvXu3e/PNN13r1q0v+HXffvutu+WWW6ydo4L/HTt2DPq2AgAQ7sftyG4cDAAAEIEUkFBgQosbw4cPt4/r1KnjvvvuO/fSSy8FddFFiyyaK6GAiUeDPwsUKGCZn2pN0b9//6gJUIiCEsp+3bBhg/vwww/99xOgAABczvFT7RlVZdGkSZMLfs2pU6fc/fffbwGKWrVquQ4dOrCDAQC4ACopAABAVGQ0RopPP/3Ude7c2QISojkIr776qrv77ruDuh0HDhywhXrNu1AW6JAhQ9wzzzzjX3jRHIZIH4QtKhrW0NMlS5a4F154IVaP8XTp0tmiETMnACQW0XDMDuZzUHBBLZqu9DjRrl07S0pQK8HNmze7zJkzB3wbAQAIZ1RSAAAAhJHvv//eFsTvueceC1BkyJDBFi42btwYtACFFuyXL19usyVy5MjhnnvuOQtQaAC25jPErDSIhgCF7N+/31WuXNn16tXLFog8DzzwgKtduzYBCgDARQ0aNMiOkQMHDrzsvTR//nz/gOy33nqLAAUAAJfA4GwAAIAEdPDgQde7d283btw4q1BImjSpa9++vXv++edt3kOw6GdrMPSmTZv899166602b6Jp06bu2muvddFg69atFvjRc5Js2bK5Fi1aWCZs6tSpQ715AIAI8s0331gG6PnHyAkTJlirRh1fLnRs+eWXX6x1onTp0iXo1ZIAAEQaghQAAAAJ4PTp0zZvQtmXWuCQ+vXru5dfftnly5cvKEGJ1atXuwoVKvirIwoVKuR27Nhh/bEVnFDQItoWk4oXL+5SpkxpFSvKfpUpU6ZQMQEAuGzvvvuu27Jli8uUKZP/PgUnlHywb98+O87omBqTKhNbtWrlDh8+7EqVKuUGDBjAngcA4D8QpAAAAAggLU5Mnz7dWint2bPH7tMiheZO3HHHHQm+r3fu3OnefPNNu/3888/WWqpw4cL2Oc2dUEVHNFQUKAjz2WefuZMnT7oGDRrYfUWLFnUlSpRwOXPmtEHgXpCCmRMAgCuhKjwFv2NasGCBBSgUuPCOPzG98sordnxS9YWCHMmTJ2fnAwDwHwhSAAAABMiyZcvcs88+69auXWsfa+6DKinUDiIhZzyoUuO9996znteaOeHRYGi1P/KCFNqeaDFv3jzXqFEjd9NNN1mFigIRuql6hAUhAEBCGTNmjL1VO6fzjzfr1693PXv2tPeHDRvmChQowH8EAABxQJACAAAgAEOxu3fv7j744AP7OFWqVFZJ0alTpwSf9aCASJUqVdypU6fsYy3UV69e3RZP6tWr51KkSOEi3ddff+2mTp1qA7AbNmxo99WoUcMqJmrWrOn++OMP2+dCgAIAEAhLly51S5YscXfddZe788477b4ff/zRLVy40N5/7LHHYn39n3/+aUkJf//9t1VYtGnThv8IAADiiCAFAADAFfr111+tL7UGaKrNk+Y+aNFC92XJkiXg+9Xn87kNGza4AwcO2CK9eDMYcuXK5Vq3bm0LJFq8j2Ra6FGwQftTtCCk+R6qCvGCFNddd53bvXt3glaoAAASr48//tjmSKl9oBek0PFeNAg7T548sb7+mWeesfkV2bJlc+PHj6fVIAAAl4EgBQAAwGU6ceKEzXdQ32ktqItaDg0ePDhBWjtozoT6Wk+bNs398MMP1uJI96lqQov5GzdutFZO0TB7oWXLlm7WrFlu0aJFrlKlSnbffffd57Zt2+YaN24c62sJUAAAEkrFihWtGqJq1ar+gdmTJ0+29x999NFYX6tKytGjR9v7U6ZMcRkyZOA/BgCAy0CQAgAAII7OnDljg6dffPFFd/DgQbuvXLlyFrBQK6JA2r9/v5s5c6YFJtasWeO/X+2bbrnlFptDkTZtWrsvEisnTp8+bYEItcrq1q1brGoRfW7x4sX+IEXBggVtEDgAAMFSt25du3kOHz5sx1+1IIx5v6oq1WJRunTp4qpVq8Z/EgAAl+kqn64EAQAArpC3WH7s2DGXJk2aqNyPauWkwdQahqkKBsmXL58bNGiQZfknRAXDE0884caOHeuvGFAmZ7NmzeznecGJSPLXX3/ZayVTpkz+RZ2sWbPavvvtt9/89ytoodNTDfuOhsoQAAgn0XDMDvVz0BwktRwUHa9q1arlPvnkE1eiRAm3evVqZiMBAHAFx22a+AIAAFyCMvrLli3r7r//fgtQaNaEWjp89913Nh8hvgvpysycOHGiu+eee9zKlSv99+vn3Xbbbe711193+/btc59++ql76KGHIjJAoR7e6dKls37dnhtuuMHde++9NsNDAQyPghNFihQhQAEACGlbR69i8nxegEJGjRplAQpVOaryUS0YAQDA5aPdEwAAwAWsX7/ede/e3VoSSapUqdyzzz7rOnfubO/Hx6FDh9y8efOsOmPJkiXun3/+8bc1Kl++vL1/xx13xApaRApVl3z00UfujTfecCVLlrT7NNT71KlTFtiJaf78+SHaSgAALm727NmWGNCgQQM3Z84ct2zZMpc7d247nnk0I8oLvmvAtoLsAADgyhCkAAAAiGH79u3uhRdecDNmzLCPr7nmGvfkk09aqyevJVF8ghOqkFi6dKk/MCFazG/UqJF9LlL8/vvvtohz4MAB2zeeL774wn355Ze2oOMFKTRbQgGKQoUKhXCLAQCIm59//tne5siRw1o+tm7d2u3Zs8ctXLjQVa9e3WZUtWjRwmYoqRLyqaeeYtcCABAPzKQAAAAR3Rs6UNRSSQOx1ZpIAQS1cWrevLnr16+fu+mmm67oMX/66Se3bds2W9AQLXRoyLV+VqlSpVzjxo0tOKH5FuHsl19+catWrXJ58uSx7ZYdO3bYdidLlsxeA16Liw8//NBmTOg5R+JAbwCIZtFwzA7Wc9DsCQUh1q1b52rUqOGuv/56O36nTJnSPffcc27w4MEuQ4YMbvPmzS5btmwJth0AAESyuB63qaQAAACJ2pEjR9xLL71ksx/Ukkhq167tBgwYYEMwL4cGaGrw89y5c609xIYNG1zGjBltSHSSJElsAPaUKVNssV+3cKPt37Vrl9u4caO1uPDmbaiNhfZPp06d/EGKm2++2WZKFCtWzBZxvCCF9h0AAJFOsyd0Gz9+vH38wAMPWIBi+fLldt4g48aNI0ABAEAAEKQAAACJkjIkhw8fbgvwyuqQChUqWGZk5cqVL+uxFIx49913bc6E2kV5FJTQEGi1RMqaNavdV61aNRcONKxa/bQVmPACD2fPnrWWTGpjoSHhXiBFA7zVwil79uz+71cAg5kSAIBopuP3+++/b+8/+uijdr7QsmVLO3Y+/PDD7r777gv1JgIAEBUIUgAAgERFC/DKfOzfv7+1JRJVA6hyok6dOv7qgUtRxUXSpEltXoVoAPaQIUPsfbU/UqsjVSLUrVs33nMsAtVbW+0oKlasaKW2MnHiROuhrcqHBQsW2H16PmXKlLEAhipMPM2aNbMbAADRTsfLQYMG2TFTx3sF8MuWLeuKFy/uWrVqZbMpFMQfNmxYqDcVAICoQZACAAAkCpoz8fbbb7s+ffq43bt3231aZNAcCi3Aq+rhUg4ePGjzFpRR+emnn9pgbQU1pGHDhjZ/on79+ta3OnXq1C5U/T7VO1uLKjHbLql6Y+vWrTbw8+6777b7tNii/tqpUqWK9RhfffVVnAI1AABEo7Vr17rp06e7Q4cOWUDCq6JQQsLUqVPtfEHnE6E61gMAEI0IUgAAgKimlgyaEfH8889beyNR66UXXnjBPfLII1b5cLHv09erpdEHH3zgVq5cafd5Pv/8c3+QQtUH77zzjgumL774wgISNWvWdAULFrT71qxZY1UcBQoUiBWkKF26tFV+qIrEo9ZWv//++78CEgQoAACJmVocqvWjqgt79+5tcynUBrJ8+fL2+R49evjfBwAAgUGQAgAARCUFFFTxoOCEFvMlffr0rnv37tbm6Nprr73k92smg+ZJxKTZDfXq1bM2TiVLlnTBoKHbY8aMcSdPnnRDhw7136/2UgqeaGC1F6QoXLiwy5s3rytatKg9fy/goADK+cGH/6ocAQAgMdKx3zv+P/bYY+7rr7927du3tzaIt9xyi+vVq1eoNxEAgKhDkAIAAEQdDXnu2bOnW758uX2sLMjOnTu7Ll26+GcyxGzj9PHHH9uCv1o3TJo0ye7XYr9mVeTIkcPde++9VjWRM2fOgG7n33//7Z9rISNGjHCzZ8+2RRFvBsTp06dd3759reLjpZdeckmSJLH777rrLrvvxhtv9H9/tmzZYg3u9lAdAQDA5VNLRM2oWLRokUuZMqW1eYp53AYAAIFBkAIAAESN9evXW+WEgg6iKoMnn3zSqicyZ85s96nCYNOmTTZfQgOjV69e7W/jpMWI0aNH2/fJhg0b/EGBK6Ugw65duyxQ4gUUVB2hVhEKkGiOhFfVoOqNpUuXWvsoL0ih71HQQkETtWvSIol06tTJbgAAIDD+/PNPC0qoLaSOv2r72LVrV38Fo9opAgCAwCNIAQAAIp4WEdR+YdasWfaxAguaN6G5E6qEiEnDrTVn4vw2TprhoIqJmBmSlxOgUABh3rx5FpDQgoZXvdCtWzf3+uuv232qhJCMGTO6n3/+2Z09e9beesELBSYUoFA7CY8CGGPHjr2i/QIAAOJu48aNrmLFilapmD9/fjtOK9mgRo0alvQAAAASBkEKAAAQsRQQUCukqVOnunPnzllgQAv9ffr0sffVOklVFe+++65Lly6dfU/ZsmXd4sWLXbVq1ayFU61atVz27Nn/sy2TBk97gQcFOdTy4fbbb3ft2rWz+/S55s2bu3/++ce1bNnSWi/JzTffbG2ktNDh0WOtWLHC2kdlyZLFf7+2TTcAABB8R48etcrLAwcOuO+//97OLTTPSq0gaZ0IAEDCIUgBAAAizi+//OL69+/vJkyY4F/89+ZGqKpCVRExZzNogHbTpk3tfQ2/1GyKFClSxHrM33//3b5XA7VVWSFanFAmpYIhqnhQ+wf58ccf3XvvvWfve0EKVWA0aNDAHjdmQEKZl/qZ5y9u3HrrrQm0dwAAwJVQ4oISDoYNG2bnADJu3Dj/8R8AACQMghQAACBiKLNx8ODBbtSoUe6vv/6y++6++24LSvTo0cOGX8esVlClgxYcNP/BkyZNGvfKK69YEKNfv34uU6ZMdv+UKVNsuHaTJk3cjBkz/K2WVBmhhQoFJrxFCg2tfvXVV13p0qVjbZ8XuIhJ2wEAAMKfzi10PuBp1aqVa9iwYUi3CQCAxOB/UxoBAEDUGDlypMudO7dl9JcrV86tWbPmkl+vhfWCBQva1xcrVsx99NFHLtwcOXLEBmLfdNNN7rXXXrNFBA2vXLZsmVu4cKG777773B9//OEyZMhgCwqaTXH48GGrcpg4caLNq4jpjTfesDkPO3bs8N+nwdTab3qMmBT42LdvX6xAR/Hixd3TTz/tqlSpEoRnDwBA9Lnc85VgeP/99+2cQ9SSUTOlAABAwiO1DwCAKKIKAFUDjBkzxi741a7gnnvucVu3brUey+fTXATNcBg0aJC1Spo2bZoNll6/fr0rWrSoC7WTJ09atYOCCqdOnYr1ObVXUqWEaDi2qhz279/vnnjiiVgBBbVw0kyImB599FEbhBlzn6hdlG7nC4f9AABAYj5fCQYFJx566CH/x5p3lTZt2pBsCwAAic1VPp/PF+qNAAAAgaELfc06GDFihH2sNkXKBNRMhO7du//r6zWnQRUICxYs8N932223uZIlS9rCwYWoisFrtSTHjx+3n3Hs2DFrpRQIZ86csezFrl27uvNPVfQz9DPz5cvntm3b5r//zjvvtMoIDbesXr263Xfw4EG3adMmG16tKgwAABIzHT+18B7IY3ZCn68E47xDVHnZpk0be19vx48fH7DHBgAgsToex3MP2j0BABAltLD/9ddfu2rVqvnv00wFfbxy5coLfo/uj/n1okzGi329qOpCJxneTQsFgaYh0wqSeAEKZVWqZZNaQaxatcpaOj3++OOxvmfJkiVu7969/gCFaN6Enh8BCgAAIvN8JRjnHbJhwwZ7qwUUL3gCAACCg3ZPAABEiUOHDtmQ5yxZssS6Xx9v2bLlgt/z66+/XvDrdf/FPPfcc9ai4fyMxkBSKycNplZv6Jo1a9qg6vTp0/s/H3OoZcwFDgAAEF3nK8E47xDNvFJyQ4MGDVzy5MkD/vgAAODiCFIAAIDLogv3YFy8161b124AACDxCtZ5hxIkevfuneA/BwAA/BsphwAARImMGTO6JEmSuN9++y3W/fr4hhtuuOD36P7L+XoAAIBgn68AAIDoRpACAIAokSxZMlemTBmbzeDRIEp9XL58+Qt+j+6P+fWyaNGii349AABAsM9XAABAdKPdEwAAUUQ9m1u3bu1uueUWV7ZsWTds2DD3xx9/uIceesg+r4HT2bNntyGU0rFjR1elShX3yiuvuNq1a7vp06e7devWuXHjxoX4mQAAgMR6vgIAABIXghQAAESRpk2buoMHD7pevXrZ8OuSJUu6Tz75xD+ccs+ePbEGTFeoUMFNmzbNPf/8865Hjx4uX758bt68ea5o0aIhfBYAACAxn68AAIDE5Sqfz+cL9UYAAIDIdfz4cZc2bVp37NgxlyZNmlBvDgAAiOJjdjQ8BwAAEovjcTxuM5MCAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIJA3NjwUAANHC5/PZ2+PHj4d6UwAAwCV4x2rv2B2JOO8AACD6zj0IUgAAgHg5ceKEvc2ZMyd7EgCACDl2p02b1kUizjsAAIi+c4+rfJGcQgEAAELu3Llzbt++fS516tTuqquuCmjGhQIfe/fudWnSpAnY40YL9g/7htcNv1f8zQkfkfI3WZf/WiTIli2bu/rqyOz+nFDnHZH0/xjJ2Mfs52jC65n9HC2OJ+DxL67nHlRSAACAeNGJRo4cORJsL+okiYUC9g+vHX6vgom/O+ybaH7tRGoFRbDOOyLl/zHSsY/Zz9GE1zP7OVqkSaDjX1zOPSIzdQIAAAAAAAAAAEQ8ghQAAAAAAAAAACAkCFIAAICwlDx5cte7d297C/YPrx1+r/i7E1r8TWb/JAa8ztnH0YLXMvs5mvB6Thz7mMHZAAAAAAAAAAAgJKikAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAGFp5MiRLnfu3C5FihSuXLlybs2aNaHepLCwfPlyd++997ps2bK5q666ys2bNy/UmxQ2Bg0a5G699VaXOnVqlzlzZle/fn23devWUG9WWBg9erQrXry4S5Mmjd3Kly/vPv7441BvVlgaPHiw/W516tQp1JsSFvr06WP7I+atYMGCod6ssPHLL7+4Bx54wGXIkMGlTJnSFStWzK1bty7Um4UAnl+899579prX1+v/96OPPmL/BnAfjx8/3lWuXNmlS5fObtWqVeOcL4HPladPn25/y3WehMDv56NHj7qnnnrKZc2a1SVPntzlz5+fvxsJsJ+HDRvmChQoYMfenDlzuqefftqdPn2al3QAryGXLl3qSpcuba/jvHnzujfffNMlJIIUAAAg7MyYMcN17tzZ9e7d261fv96VKFHC3XPPPe7AgQMusfvjjz9sf+hEHrEtW7bMLgpXrVrlFi1a5P7++29399132z5L7HLkyGGL719//bUtoN51112uXr167rvvvgv1poWVtWvXurFjx1pAB/+nSJEibv/+/f7bl19+ye5xzh05csRVrFjRXXPNNRb0+/77790rr7xiC62IjvOLFStWuGbNmrlHHnnEbdiwwRZ1dfv222+Dvu3Ruo+1CKZ9/Pnnn7uVK1faYqOO3QoAInD72bN79273zDPPWGAIgX89nzlzxlWvXt3286xZsyxZRoG47Nmzs7sDuJ+nTZvmunfvbl//ww8/uIkTJ9pj9OjRg/0coGvIXbt2udq1a7s777zTbdy40ZJ32rRp4xYuXOgSjA8AACDMlC1b1vfUU0/5P/7nn3982bJl8w0aNCik2xVudCo3d+7cUG9G2Dpw4IDto2XLloV6U8JSunTpfBMmTAj1ZoSNEydO+PLly+dbtGiRr0qVKr6OHTuGepPCQu/evX0lSpQI9WaEpW7duvkqVaoU6s1AAp5fNGnSxFe7du1Y95UrV873+OOPs98DtI/Pd/bsWV/q1Kl9U6ZMYR8H8LXs7dsKFSrYsb9169a+evXqsY8DvJ9Hjx7ty5Mnj+/MmTPs2wTcz/rau+66K9Z9nTt39lWsWJH9HqBryK5du/qKFCkS676mTZv67rnnHl9CoZICAACEFWUgKdtb5f6eq6++2j5Whh0QV8eOHbO36dOnZ6fF8M8//1irB2VUqe0T/kdVOMoYi/m3B/+zfft2aw+QJ08e16JFC7dnzx52jXNu/vz57pZbbnGNGze2FnOlSpWyjFlEz/mF7j//b4KyezkfCdw+Pt+ff/5plZAcuwP7WpYXX3zR/lapMggJs591XNC5lc4psmTJ4ooWLeoGDhxo514I3H6uUKGCfY/XEurHH3+0llq1atViNwdIKI5/SRPskQEAAK7AoUOH7EReJ/Yx6eMtW7awTxEn586ds7JktWLRBSKc++abb+zCWf16U6VK5ebOnesKFy7Mrvn//bnVXkDtnhCb+kKrB7H6PqvVU9++fa1NiNrdaP5LYqZFEc17UYsKtZjQ66dDhw4uWbJkrnXr1qHePATg/OLXX3+94NfrfiTMOVy3bt0sKErAOLD7WW361BJHbVuQcPtZx4XPPvvMAvpaNN+xY4d78sknLfCm1kQIzH5u3ry5fV+lSpXUIcidPXvWPfHEE7R7CqCLHf+OHz/uTp06ZbNAAo0gBQAAAKKOMti0iErv/P+jRWYtTqjCRH2StYiqOR6JPVCxd+9e17FjR5tjomGNiK1mzZr+9zWrQ0GLXLlyuZkzZyb6bFwFQ1VJoSxZUSWF/u6MGTOGIAVwBTQ7SUFjzang73HgnDhxwrVs2dIqvTJmzMhrM4GPC6pWGTdunEuSJIkrU6aMzVcZMmQIQYoA0t8IHXtHjRpl5yUKBulcrl+/fu6FF14I5I9CEBGkAAAAYUUXTzqp/+2332Ldr49vuOGGkG0XIke7du3cggUL3PLly21gNP5H2d158+a193XRrKzv4cOH26DoxEztAjSYsXTp0v77lNGn18+IESPcX3/9ZX+T8D/XX3+9y58/vy0IJHZZs2b9V5CvUKFCbvbs2SHbJgT2/EL3cz4SnHO4oUOHWpBi8eLFFhBF4Pbzzp07bZDzvffeG2sxXZImTWrDnW+++WZ2eQBezzouXHPNNbHOG3RcUFa62hrpXAzx388KRCjwpkHOUqxYMWtj+thjj7mePXtauyjEz8WOf2nSpEmQKgrhfw0AAIQVnbxrAXXJkiWxLqT0Mf3zcSkq91aAQm2MVGp/0003scMuQb9XWoBP7KpWrWqtsFRl4t2UHa9WDXqfAEVsJ0+etAUvLcQkdmonp8W9mLZt22aVJoiO8wvdH/PrRVVXnI8Ebh/Lyy+/bBnQn3zyif39RWBfywULFvzXca5u3bruzjvvtPdz5szJLg/Q61nHBQXxvSCQd1zQMZMARWBez97smvMDEd752v/mQiO+QnL8S7CR3AAAAFdo+vTpvuTJk/vefPNN3/fff+977LHHfNdff73v119/TfT79MSJE74NGzbYTadyr776qr3/008/Jfp907ZtW1/atGl9S5cu9e3fv99/+/PPPxP9vunevbtv2bJlvl27dvk2b95sH1911VW+Tz/9NNHvmwupUqWKr2PHjuwbn8/XpUsX+53Sa+err77yVatWzZcxY0bfgQMHEv3+WbNmjS9p0qS+AQMG+LZv3+575513fNdee63v7bffTvT7JlLPL1q2bGl/Hz16zev/eOjQob4ffvjB17t3b98111zj++abb0L4LKJrHw8ePNiXLFky36xZs2Idu3W+g8Dt5/O1bt3aV69ePXZxgF/Pe/bs8aVOndrXrl0739atW30LFizwZc6c2de/f3/2dQD3s/4Waz+/++67vh9//NHOZ2+++WZfkyZN2M9XeA2p/av97NF+1TnNs88+a8e/kSNH+pIkSeL75JNPfAmFIAUAAAhLb7zxhu/GG2+0C9eyZcv6Vq1aFepNCguff/65nVief9PFZmJ3of2i2+TJk32J3cMPP+zLlSuX/T5lypTJV7VqVQIUl0CQ4v80bdrUlzVrVnvtZM+e3T7esWNHwr9oI8QHH3zgK1q0qC2uFCxY0Ddu3LhQbxLicX6h3/3zj6czZ8705c+f376+SJEivg8//JB9HMB9rGPThY7dWoREYF/LMRGkSLj9vGLFCl+5cuXsuJAnTx4LZJ89e5aXcwD3899//+3r06ePBSZSpEjhy5kzp+/JJ5/0HTlyhP18hdeQeqv9fP73lCxZ0v5P9FpO6Guqq/RPwtVpAAAAAAAAAAAAXBgzKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAgAg3evRod+ONN7rrrrvO3Xfffe7gwYP/+T1bt251N9xwgztx4kSCbNNVV13l5s2bZ+8fOnTIZc6c2f38888J8rMAAEDoxDzmh8PjhMLu3btt+zdu3BjqTQEiEkEKAAAAIILNmTPHPfvss+6NN95w69ats6BDo0aN/vP7nnvuOde+fXuXOnXqBN/GjBkzulatWrnevXsn+M8CACDa/Prrr3bMzpMnj0uePLnLmTOnu/fee92SJUtcJOrTp48rWbLkv+7fv3+/q1mzZki2CUBoEaQAAAAAItiAAQNcu3btXL169VyhQoXclClT3Jdffmm3i9mzZ49bsGCBe/DBBy/6Nf/88487d+5cwLbzoYcecu+88477/fffA/aYAABEO2XolylTxn322WduyJAh7ptvvnGffPKJu/POO91TTz3lookqPBWECTd///13qDcBiHoEKQAAAIAIdeTIEbd+/XpXu3Zt/33ZsmVzRYsWdYsXL77o982cOdOVKFHCZc+e3X/fm2++6a6//no3f/58V7hwYVskUDBj7dq1rnr16lYNkTZtWlelShX7mTFt377d3X777S5FihT2vYsWLfrXzyxSpIht29y5cwP2/AEAiHZPPvmktRFas2aNa9iwocufP78dUzt37uxWrVp10VZDR48etfuWLl1qH+utPl64cKErVaqUS5kypbvrrrvcgQMH3Mcff2yJDmnSpHHNmzd3f/75p/9xcufO7YYNGxZrm1QFoWqIi+nWrZtt57XXXmvVHy+88IJ/oV/nG3379nWbNm2y7dFN953f7qlChQr2ODGpneU111zjli9fbh//9ddf7plnnrHzGbW8LFeunP/5Xox+htpkqmJD+0DbN2vWLP/nvX05Y8YMO+fRuY2SLJS48eKLL7ocOXLYOZL2gYJF59uyZYttu75P52PLli275PYA+B+CFAAAAECE+vHHH+1t3rx5Y92fL18+/+cu5IsvvnC33HLLv+7XosRLL73kJkyY4L777jubI6H2Ua1bt7bKDC2G6LFr1arln2Whi3bNwUiWLJlbvXq1GzNmzL8WFTxly5a1nw0AAP6bqg+1EK6KCS3Cn0/JBZdLwYURI0a4FStWuL1797omTZpYEGLatGnuww8/dJ9++qm1kIwPtZJU4OH77793w4cPd+PHj3evvfaafa5p06auS5cuFmhReyfddN/5WrRo4aZPn+58Pp//PgUOlPBQuXJl+1iVpCtXrrSv27x5s2vcuLGrUaOGJU9cioImCvgoUKKfc//997sffvgh1td0797ddezY0e6/55577Hm88sorbujQofazdF/dunX/9bPUglPPb8OGDa58+fLWluvw4cPx2p9AYkCQAgAAAIhQXqajAgepUqXy395///1YWZDn++mnn+wi/3zKchw1apRlABYoUMAyIJVl+cADD7iCBQtaluW4cePssb3MQFVsKGvwrbfesuoMVVQMHDjwgj9XP1M/GwAA/LcdO3bYIr2OwYHSv39/V7FiRaumeOSRR+x4rsoCfazFf821+vzzz+P1M55//nk7l1AVhhbpVe2gKk5R9YLOVZImTWrtnXTTfedT8GTfvn2x2lcqkNKsWTOrdFC15+TJk917771n233zzTfbz6lUqZLdfykKZrRp08aqPfr162eJG+cHZjp16mRJGDfddJPLmjWrBSeUhKGAhs6RlNShaorzq0wUOFEAROdM2q+qQp04cWK89ieQGCQN9QYAAAAAuDIKIohaG8TMplTmn/e5Czl16pS1ITifqiGKFy8e677ffvvNFhv0M9QSQrMqFKTQ4oAow1ADPGMGPZQ5eCFahLhU8AQAAPyfmFUEgRLzOJ8lSxZ/S6aY96m1VHyo4uH11193O3fudCdPnnRnz561VlKXI1OmTO7uu++2VksKQuzatcuqJsaOHWuf12wOnZMo0BCTWkBlyJDhko99/nmKPo7ZKktiVpweP37cAiYK7sSkj1WNcbHHViBGj3N+lQaAfyNIAQAAAEQob1FBF/4xWz6dPn061oLD+TRfQvMsLhREUHZiTGr1pDYFanOQK1cu68OsC/AzZ85cUdsKLToAAID/pkpJHZdVsXgpV1999b+CGhcb9qyZDh49dsyPvfvUyjHmY58fLLnUIGkFEtRCSXMn1BJJlQRqx6RWSZdLj9OhQwerclAVRbFixewmCn4kSZLEff311/Y2JlVqxNeF2msBSDi0ewIAAAAiVLp06VyZMmVizXnQRbsWCDTs+mLU0kF9ouPiq6++sgUCzaFQ/2gFKQ4dOuT/vNoZqKe1ekp7vEGe5/v222/tZwMAgP+WPn16W+gfOXKk++OPP/71eQ3HFi8BIOax+PzKgCulx475uKoqUFXDxWjWhZIaevbsaVUECrSc3+pRlZuqgvgv9erVs8QLzeVQkEJBC4/OJ/QYqvJUokbMm1pIXcr55yn6WOczF6NkEFWM6pwoJn1cuHDhiz62KkgURLnUYwP4H4IUAAAAQATTIoBuGnSp4Y3qL12uXLl/tSSISQseCmTEZYFAiwtTp061VgUajK0Fgpi9o6tVq2atFlRxoZYHCphoe86nNk+6UFfrBgAAEDcKUOh4XbZsWTd79mw71uuYrHZKXmshHZdvu+02N3jwYPuc5kyoVWMgaDaVzgN0fFeLJR3vz69cOP+8QS0hVT2hdk/azrlz58b6Gs2qUKBDgRQlPqhF08WqGerXr2+DrvW8NI/Co3MPnZO0atXKzZkzxx5PbaoGDRpkA8AvRXMsJk2a5LZt2+Z69+5t36dZEpeigdiaQ6FWVlu3brXB2tp+tdg8//9Lz1fVLxp4rsrVhx9+2P95zRc5f38AIEgBAAAARLQGDRq4Pn36WHBCg6vVgsEbTnkxNWvWtD7JGnr9XzTsURfYpUuXdi1btrSqisyZM8dqA6GLbc250AKKBlEOGDDgX4+jYd433nij9ZUGAABxo/aN69evd3feeafr0qWLK1q0qFVLLlmyxAYze7Torsx9VVhq6LMGZAfCc88956pUqeLq1KnjateubUEDDam+mLp167qnn37aFv01WFqVFQoyxKTB0jVq1LDnpEqNd99996KPp0CEkiB0/qDziJg0IFtBCu0XDbPWtq1du/ZfX3c+taJSEEXzOd566y37+edXRJxP5z+dO3e2n6WWU6rumD9/vgVlYlKgSDedk2not75GbTY9CnAcO3bskj8LSIyu8iXEFB4AAAAAYU2ZfrpwXrhwYVB+njI8dYHfvHnzoPw8AACA82nmhpIrFNAAED4YnA0AAAAkQo8//rj1sj5x4oRLnTp1gv4stXK47777YrVpAAAAAAChkgIAAAAAAABA1KOSAghPVFIAAAAAAAAAiHp0vQfC09Wh3gAAAAAAAAAAAJA4EaQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAA4ELh/wH1DxZR86EuMAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -647,7 +700,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-wrapcauchy.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-wrapcauchy.png\")" ] }, { @@ -665,7 +718,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm4VeP//v+Y+RgiMyUlTURJ0YRGShIhEVJJJZUQaVAyVCJpljQgRYOESkUZIkWJRJKUCilDhsrQ/3q9v79n/9c5nWHvc/Z87td1rWvvs88+e69zzl5rPc9zv9/3vc+ePXv2OCGEEEIIIYQQQgghhBBCiDizb7zfUAghhBBCCCGEEEIIIYQQAiRSCCGEEEIIIYQQQgghhBAiIUikEEIIIYQQQgghhBBCCCFEQpBIIYQQQgghhBBCCCGEEEKIhCCRQgghhBBCCCGEEEIIIYQQCUEihRBCCCGEEEIIIYQQQgghEoJECiGEEEIIIYQQQgghhBBCJASJFEIIIYQQQgghhBBCCCGESAgSKYQQQgghhBBCCCGEEEIIkRAkUggRBRYuXOj22Wcfu00FLrroIts869evt/0fP358QvdLCCGEEEIIIYQQQghRsJBIIUSAli1b2mL9EUcc4f7666+9vv/VV1/Z99kGDRrkCjojRoyQsCGEEEIIIYQQQgghhMgz++f9R4VIT/bff3/3559/ulmzZrlrrrkmw/eef/55d/DBB7udO3dmePyCCy4wUePAAw90qUixYsVs/w844ICIRYpjjjnGxB0hhBBCCCGEEEIIIYSIFHVSCJGJgw46yNWpU8e98MILe31v0qRJ7tJLL93r8X333dfEC25TETpD2P/99tsvZu/xxx9/xOy1hRBCCCGEEEIIIYQQqUlqrqiKtGDq1Km2OL5o0aK9vjd69Gj73meffRZ67M0333Q1a9Z0hx56qDvyyCPd5Zdf7lavXp3h5/r06WM/t3btWqvu53mFChVyN998s3VHhMt1113nZs+e7X755ZfQY0uXLjW7J74XTiYFz23atKk74YQTTAAoUqSIu/baa92vv/6a4Wefe+45V6lSJXfIIYe4woUL23M2btyY4TnhvlZWPPXUU+60006z169SpYp755139npOVpkU33//vf3deC+EmxNPPNH+5jwXTj31VLdq1Sr7/3kLLJ9zwev4/22HDh3ccccdZ68jhBBCCCGEEEIIIYQQQWT3JBIGHQmHHXaYe/HFF92FF16Y4XtTpkxxZ5xxhjvzzDPt6/nz57sGDRq4EiVKmBCBNdHQoUNd9erV3ccff2wL5kGwaSpevLh75JFH7PtPP/20LZQPGDAgrH278sorXbt27dz06dNdq1atQl0UZcqUceecc06uP79792538cUXu127drnbb7/dxIVNmza5V1991YQPhBN46KGHXK9evWx/27Rp47Zu3Wq/F/ZRy5cvN5El3NfKirFjx7pbb73VVatWzXXp0sWtW7fONW7c2MSQokWL5vg7IIogQvCe/H1//PFHN2/ePLdhwwb7+oknnrDv8T/s0aOH/czxxx+f4TUQKI499ljXu3dvdVIIIYQQQgghhBBCCCH2QiKFSBhU9l922WXWUfHkk0+GrIao4KcCHzHCc/fdd9vC+vvvv2+30KRJE1exYkV3//33uwkTJmR4bR5ngd6zbds2+zpckeLwww93jRo1MmECkeK///5zkydPdu3btw/r5z///HP3zTffuJdeesldddVVocdZrPd8++23tu8PPvigu++++zIIJOw/eQ88Hs5rZcXff/9tP1+hQgX31ltvhfIyypUr59q2bZujSIH4sXjxYvfoo4+6u+66K/R49+7dQ/f5+/fs2dMyKVq0aJHl6/C/WrBgQUxtpIQQQgghhBBCCCGEEKmL7J5EQmnWrJlV6AdtkhAtEAX4HmzZssWtWLHC7Ju8QAFnnXWWq1evnnv99df3el26IIJgE4VQ8dtvv4W9b9g6sV+IJlhNcZuV1VNW+O6GuXPnZmszRZcGvyddFD/99FNoo1Pi9NNPN2Eh3NfKimXLltnflr9FMNCbv2NO3RdeQOJn+P1//vlnl1duueUWCRRCCCGEEEIIIYQQQohskUghEsoll1xiC+bYO3m4T/V/qVKlQh0HULp06b1+vmzZsrawn9lK6JRTTsnw9VFHHWW3kSy4N2zY0Doq2J/nn3/eVa5c2ZUsWTKsn8VqqmvXrmYzRacBdk3Dhw/PkCFBzsSePXtMkMASKbiRtYHAEO5rZYX/u/H6QQ444ACzzcoJMijoOiGXAwsn7KcGDhxoQk0ksO9CCCGEEEIIIYQQQgiRHRIpREJhMRzboBkzZrh//vnHshbee++9UBdFXsmueh9RIJJ9w3oJKyn2L9wuCs9jjz3mVq5caZZLZGh06tTJcja+++47+z5dFIRLz5kzx7IeMm+Eh4f7WrGADIs1a9ZYrgdh3WRnIAqRlREudGQIIYQQQgghhBBCCCFEdkikEAkHQYJuCLILyF1ASAiKFMWKFbPbL7/8cq+f/eKLL6y74NBDD43JviFMsCi/Y8cOd+2110b88+XLl7fchrffftu98847JsKMGjXKvnfaaafZ70q3Qd26dffazj///LBfKyv8342OjcxZFWRchAP7eOedd7o33njDffbZZxbijWDiQWQRQgghhBBCCCGEEEKIvCKRQiQcFuTJmsBWia1KlSoZbIJOPPFEs3+io4FAZw+L5iyeY8sUK2rVquX69evnhg0bZlkR4UL2BZ0hmUWGfffd1+3atcu+pkuDjo++ffvu1eHB12RohPtaWXHuueeadRRCBuKCZ/z48Rn+jllB9sXOnTv3Eiywvwq+J+JQbq8VZMOGDSYsCSGEEEIIIYQQQgghBOyvP4NINGQksGA/efJky5YYNGjQXs959NFHXYMGDVzVqlVd69atzfJo6NChlmfRp0+fmO0bQgDdC5FC0HbHjh3d1VdfbdkaiAzPPvusiRJNmzYNLfo/+OCDrnv37m79+vVme4UIQJcD9lJt27Z1d911V1ivld3flde/9dZbXe3ata07hdceN25crpkU2DzVqVPHQr3LlSvn9t9/f9unH374IUNHSaVKldzIkSPtfcjrOO644+y9suPGG290ixYtish2SwghhBBCCCGEEEIIkb5IpBBJAQvoBENjH8TCeFbdFmQ33H///a537962AH/hhRdauHMyhjOfffbZFnA9a9Yss2X63//+Z48RRB20cbr33ntNeBg8eLB1VEDRokVd/fr1XePGjSN6raxA6Pj3339N5Ln77rutA+OVV16xfImcYB+aN29uFlwIIogUZcqUcS+++GIGYYT/BQHdhGpjicX/JCeRQgghhBBCCCGEEEIIIYLss0clzUIIIYQQQgghhBBCCCGESADKpBBCCCGEEEIIIYQQQgghREKQSCGEEEIIIYQQQgghhBBCiIQgkUIIIYQQQgghhBBCCCGEEAlBIoUQQgghhBBCCCGEEEIIIRKCRAohhBBCCCGEEEIIIYQQQiQEiRRCCCGEEEIIIYQQQgghhEgI+yfmbYUQQgiRLvz3339u8+bN7vDDD3f77LNPondHCCGEENmwZ88et2PHDnfSSSe5ffdNzZpFjTuEEEKI9Bt7SKQQQgghRL5goaBo0aKJ3g0hhBBChMnGjRtdkSJFXCqicYcQQgiRfmMPiRRCCCGEyBdUMvpBxxFHHJHo3RFCCCFENvz222+2wO+v3amIxh1CCCFE+o09JFIIIYQQIl94qwUWCrRYIIQQQiQ/qWyTpHGHEEIIkX5jD4kUQsSAn3/+2S1btsytXr3a/fvvvxH9LP5spUuXdpUrV3ZHH310zPZRCCGEEEIIIYQQQgghEo1ECiHyya5du9yKFSvchx9+GNrWrFkTldc+7bTTXJUqVWw777zzXIUKFdwhhxwSldcWQgghhBBCCCGEEEKIRCORQogI+O+//0yACAoSCBR///33Xs8tWbKkO/vss93BBx8c0Xvs3r3bffLJJ/Y+X3/9tW0vvPCCfW///fd3Z511Vki4YCtTpozbb7/9ovY7CiGEEEIIIYQQQgghRLyQSCFELvz5559u0qRJbsqUKSZKEPiSmWOOOcY6HbxwEA2rJm8ZxXsuWbLEth9//NF9/PHHto0aNcqed9hhh7lzzz3XXX311e7GG2+0r4UQQgghhBBCCCGEECIV2GfPnj17Er0TQiQjGzdudMOHD3djxoxx27dvDz1OZ0SlSpUyiBKnnnpqzMPnOFTZJy9acIuIgYjiKVSokGvdurW77bbbXIkSJWK6P0II4UG85fzz66+/KsBSCCGESGLS4ZqdDr+DEEIIUVD4LczrtkQKIQJwOLz77rvuySefdDNmzAiFXhcrVsx16NDB1a9f351xxhnugAMOcMnAP//8Y+Hc8+fPdyNGjHBr1661xxFMLrvsMte5c2dXq1atmAsoQoiCjRYLhBBCiNQgHa7Z6fA7CCGEEAWF3yRSCBE+O3fudJMnTzZxYvny5aHHWeDv1KmTLfgne+4DeRlz5sxxQ4YMcW+88UbocUQVfocWLVq4//3vfwndRyFEeqLFAiGEECI1SIdrdjr8DkIIIURB4TeJFELkzqZNm9zIkSPd6NGj3U8//RSyc7rhhhvc7bff7sqXL+9SEborhg0b5iZMmOD++OMPe+yoo45yt9xyi3WE0BkihBDRQosFQgghRGqQDtfsdPgdhBBCiILCbxIphMiejz76yA0aNMhNnTrVLJOgaNGiluXQpk2bfIdeJwu//PKLGzdunBs6dKj75ptv7LF9993XNWnSxN11112uatWqid5FIUQaoMUCIYQQIjVIh2t2OvwOQgghREHhtzCv2/vGda+ESDCETHft2tVVrlzZ7J0QKGrWrGlixbp169w999yTNgIFHHnkke6OO+5wX331lZs5c6arU6eO2UJNnz7dVatWzboqduzYkejdFEIIIYQQQgghhBBCFFAkUogCA4HYZ599ths8eLAFZF977bXu448/dm+//bZr2rSp23///V26Qp5G48aNLWD7008/dTfddJM9jtUVllYLFixI9C4KIYQQQgghhBBCCCEKIBIpRNpDJkOXLl3cBRdc4NauXetOPvlk99prr7kXXnjBVaxY0RU0zjzzTDd+/HgTJk499VT37bffurp167p27dpZC5YQkXLRRRe5ffbZJ8PG50kIIYQQQgghhBBCiNyQSCHSGrok6J4YMmSIdU+0atXKffbZZ65hw4auoFO7dm3rqiCHAwgPR8B44403Er1rIgUhlH3Lli2hbeDAgYnepQJ93rvsssvcSSedZILRyy+/nOvPLFy40J1zzjnuoIMOciVLljQhUwghhBBCCCGEECIeSKQQads90alTJ3fhhRe6r7/+2hUpUsTNnj3bjR071nIaxP9x2GGHuWHDhrm33nrLFS9e3G3cuNFdfPHFtuBMoI2IHMQwPn+J2HjvSLof6DACckpuuOEGd+6551rYel743//+50444YTQphDDxMFnAXF2+PDhYT3/m2++cZdeeqmrVauWW7FihX0u2rRp4+bOnRvzfRVCCCGEEEIIIYRIXxN+UWChIrh169YWhA0stg0aNMiS5EX2C9Z0VXTv3t0NHTrUPf30027OnDluzJgx7pJLLkn07qVcODviTyL4/fff3aGHHhrRzyBQ0GG0evVqN2/ePBPxnn/+eXfrrbfm+HOIfoTOe/iZ5557zgQKqvh79eplwoWIPw0aNLAtXEaNGmUi5WOPPWZfly1b1jJ8yO9BtBRCCCHE/xFJQUh+f46fCVppCiGEEELEit27d1ueLVuikEgh0gYWaO+55x43YsQI+7po0aK22F6/fv1E71pKwOL2k08+aSHiiDx0oLDQyQI2i5fqQEk/mPzSNYNARaj6UUcdZY8Tsn7eeefl+LNku3iuu+46V6xYMbMXWrlypR2HX375pZs+fXrMfweRf95//33LpQmCOOE7bbJi165dtnmUZyOEEPG7dnPOzbzt2LHDCiXopuOWbefOnRk2Jp9++/vvv+32n3/+2Wv7999/rYiBW3/ff+3vs7EvmW9z2vz+53Y/8+8bvM18P6uvs/u7pSr877BjFEIIIYSIFTfddJObPHmy69u3r+vdu7dLBBIpRFrw8ccf2+L6+vXr7WuqwPHEl+VM5GCR9cknn7gePXqYaPHMM8+Y7cuLL77oqlWrlujdS3roHkAwS9R7R8K4ceNsEQOrHy9QwOGHH25buLRt2zZ0v3z58u7EE090derUMaHrtNNOi2ifRPz5/vvv3fHHH5/hMb5m0euvv/5yhxxyyF4/88gjj9jgRQghRHRgkf+7776zTmBuN2/e7DZt2mS3P/zwg9u2bZv76aef3Pbt201IEEIIIYQQIlpMmzbNbhcsWCCRQoi8Qp7C5ZdfbhVkVHPTPZG5KlhE3lXxxBNPuKuuuso6Kb766iv7m7700ku2oC2yh3b8SC2XEgUWPwgVCFMcN1ijQV7snoL4Loy1a9dKpEhTsIbr2rVr6GsEDbrXhBBC5AzdCGvWrLEMoOXLl7svvvjCrpeIE8EOtdw44IADzMqUjaIcrCYZf1Cw4LeDDz7YNqrwuT3wwANDGz/vt/333z+00eLvb4PbvvvuG9oY62T1ddCaKLsNMt/P6ja7x8L5HtAlQs7WcccdF3rOokWL7G/+888/2/f8LTls3Oc28/+gXr16Ni7yMNdAwF+6dKndhwceeMAy3oLw96Dgg/+Lv+X/w+MUs1AksnXrVvfjjz/aeJsu1j59+tjngIIPvq5UqZI7//zz7f8lhBBCCBErsP+myxaw8E4UEilESoOdTPPmzW0iQujrjBkzlD0RRWrUqGGTuWbNmrnXXnvNxKDx48e7Fi1aJHrXRBTgmDnnnHPMzuuOO+5wtWvXdiVKlIjY7ikzLLwAHRUi+WEQQpVuEL5m0SurLgpgwUvWE0IIkTuIuO+8844V1ZD3gy0ii9xZgWBw6qmnmuiLhSIb11u624455pjQVrhw4WzPz+kMAsKWLVtsowswuLGw37FjR3sef1/fXYoI4ecGVAY+9dRTub4PQgI2p2z8L4499tjQ9+666y4TbRAo/OOI9jfccINdN3kvRAkECS+O0CXTsmVLe386Y4J4EYmfp0uGHL17773XrDSFEEIIIWLNkCFD3KRJk8Ja64k1EilEykLlN9XeDPyvvPJKq3JioC+iC5MsxB86KghGZhKF5UDnzp0TvWsiSmDXhOB34403WpVhJHZPWDpxQWvYsKE7+uijbfEFweOCCy5wZ511Vsz3XeSfqlWrutdffz3DY4So87gQQojIIPuAayHdp5xLP/roI+ueyDy2Ovvss12FChXcGWec4U4//XRXsmRJWxCni6GgQ07W4sWL3caNG21jYZ+N8Wd20OnrRQoEHDoX6FZg4d+LFIxN+F8g8jBm4ZYNy0t/y8bPIlRkBV0TWXWmsgECysyZM22/ERuA1yL/i9+Brgiur+zjkiVLbPx10UUX2fPatWtnm4oAhBBCCBEP6OrEJSFYQBMszog3GgWLlJz8DRgwwA4kwKJm1KhRCU2gT3eo7JswYYJV72EDRaAuJ7N+/fpl22YvUouxY8e6M888046t++67L+yfY7LNYgKfC8I6WWAhH6Znz54x3V+RPdhIYB3i+eabb6y7hQWYU045xc6d+JxPnDjRvs+CCDYV3bp1MzHyzTfftAwauqeEEEKEx2effWbnTrYvv/wyw/ewPqR7kcXoc8891wSJgjZuZfxOlx6TYL+gT2cEfxcy5bDAQhyAqVOnutGjR2f5Oizg06lJF6Df6DShkyIIIgGdDUGx4frrr7ctmtCpsXDhQuuSYMMuwY+POnXqFOroIMuJfce+CYHilltucXPmzLHxtRcpJE4IIYQQIp4gSFCUTGA2lt6M1dRJIUSY0DVx9913u8cff9y+ZrHtoYce0kJ5HGCSx9+dkxih2vzdCXAcPnx4gZtopwNMqINwIcKPOVIQJei+EMnDsmXLbNHH47MjbrrpJrNro8pzw4YNoe+zWIQgQQcMrZ5FihSxTrWLL744IfsvhBCpAgHWVMIzPqIq3sNiMx2G2GRipViQMnv4m5BltmrVKhNryNxg4z75cfxdvAjO34nvMf749ttvrasEWLSn44HrEX87xije+opOh3DG/Vg1xRqsnwYPHmzzEw/7hpUm/3dvO8XvjX3qzTffHLLpoiCkWrVqslAVQgghREK5+OKLbWP8gkhBnleikEghUgZCXOia8NW/+OgHg1tF7GHixaSKFvn27dtblRut99hAqfpLiOSAxR0qVrMDoSKrn2EBRQghRO4QsIyY++STT4ZEX7pOGzRo4K655hp32WWXWRV/Qfg7YGf18ccfm8UVlkZ0EmQXAE7By86dOzM8NmXKFOv0o9vEc+2119qWDHA95Xd64403zL5r5MiR1pUICCgIFKVLl3Z16tSxjespv08Qst2oTqS4h/lLZosoIYQQQoh4grOCt/lmPEdxBzaZkMjcM4kUIiWgEolJ36uvvmpV+88884z554vEQBYIQgUt87TkUwFHi1i4OQZCCCGEEKnG7t27rYO0b9++NqEDOkw7dOhgxRvYDqUriAsIEtgqeQGGLgL+Fpmhe4CuiHLlyrkyZcrYxkJ+iRIl9ipqqVevnks2yLHAynLu3Lm2MZH3IFS0bt3a7tMFQS5e5k4ZwtKZ4CNcATlu69atc+edd16cfxMhhBBCiIxQYMFaHrbQZG1hQUm2lx/beqvKRCCRQiQ9eL1Skfbuu+9aMDZev3wtEstVV11lLfdNmjQxD17a2gnfTWTIjhBCCCFELKASHls8nzdRtmxZ6+hlkpfIirNYQTVdcJJapUoV65R45ZVXQuPwSpUqWTcA9gAEgSNgsPFYdsHTyQ4dE3TEBC2cmH8Qul2/fv0MdooU7LAFIeOpd+/e1jGBvRPwc9hfyR5VCCGEEIlm8+bN1gmMK8rixYvNtYbHvv/+e/u+OimEyAYOErzRaCEvVKiQmzVrlqtZs2aid0v8P2hrJ2QXf2F88PnfMLnzbfBCCCGEEKnM119/bQHIFGIAPr0PP/ywa9myZVotOiNKkFdFB8Fbb71l1XXYE+2///9NFwn8/vHHH0NVdtCoUaOULRyiCIoxK//XypUru9tuuy0kvACdIN6jmfFtuBN2Ok7oMKbT2IsU2KWm02dFCCGEEKlLkSJFbI2VDlnGs0DByYcffpjwTop99uRkXC1EAiFkrnr16la1Rfs87dZUaYnkg9BDqsQ2btzoSpYsaeGRmf14hRDpC9YWCMksXhUEH3YhRMHghRdecG3btnW///67Wfdg29OzZ08736UDBFyzSE+XCAJF5iwJsiYqVqwYEjFYqA8ntDpZWbNmjRU8YR/7zjvvWDg3MN+gY9uDGBNOaCSfCzonsKzy4sYff/xh73H11VcnrTCRDtfsdPgdhBBCiESyZMkSd/7557tDDz3UArO5ntJJSlfFiSeemJDrtjopRFLCpIH2eS9QvPfeexkC9URygdcw/6MaNWq4tWvXWn4IE17vxSuEEEIIkSqwIN+lSxc3ZswY+xqrH+6XKlXKpTLUplE5N336dDdt2jSzIApCJ+wll1xiFp4XXnihO+GEE0LfS2RVXTR+bzpBEF2CYNmFBzMdIUHCESigW7duFqSN4PHaa6/ZY0z0kyX0WwghhBDCM3HiRCsm9uOeKVOm2G3jxo2tc9ZbXcruSYhMUKVGFRLhejNnzpRAkQIQGsj/rFq1apZRgW8z1WVCCCGEEKnC6tWrrdjis88+s66BXr162eZtj1K1+Of++++3ySjFJB5+JwQYbDvJYWDRPpU7JYBuECyr8Fh+6KGH7DF+p1NPPdWKnxBfsKhCnIh0fvHXX3+5f/75xx1++OH2NZkkdKA0b97chJBU/9sJIYQQIj355ptvXIcOHazjE7tLrNvJ+4VmzZrZGMcjuychAjz77LPuxhtvtPvPPfecdVSI1AFR6YorrrDJ2ogRI1z79u0TvUtCiBgj2wUhRDqAteiVV15pnRR0ETAOZRKXDsHXtPPT1k8INDkLTZs2tUq6o446yqU6TLjnzJlj3SFYOWEZC4Sc++6Xb7/91n7XvF6jeO3bb7/d5ij9+/cPPZ6K4kQ6XLPT4XcQQggh4sVff/3levfubV2l8+bNM5tLCje4hmL1xPjmpZdesjENxS3RHtuEe93eN6rvKkQ++eCDD1ybNm3sfvfu3SVQpCCXX355qHKNyRzB2kIIIYQQyQwWSFTYs7iPMLFixYqUFCjISWD8jMhCgLOHiSkZG1u3bnUvv/yyu+GGG1JeoEB0oesFe6arrrrKfj8EipNOOsmqBYO2o8WKFcvXYjbd3Vu2bHGvvPJKKMsCUk2gSCY2bdrkWrRo4Y4++mizlihfvrxbtmxZondLCCGESDsOOeQQ9+ijj1pBzr777uvOOOMMcz657777rIDFZ3Mx3knk2EadFCJp2LBhg6tSpYqpeE2aNLGKJQ4ekXpwWkGJpQKRCTCTyNNPPz3RuyWEiBGqaBRCpDITJkxwrVq1Mi9eAo8Zvxx44IEuVWC//ZiZMdhZZ51ldlWTJ0+2Fv50Yffu3W7nzp2h6wxiC927gJ0T3SFs5513Xr7mEIgQ/O24rnnfZv6u2GXxfkzgU5lkuGYjoBHKXqtWLeu6PvbYYy3IHQuucGy4kuF3EEIIIVKh2/TQQw/N8TmMcRjb/P3335ZZsW3btqjvhzopRModOFTgI1AwscLySQJF6oLySsAkk0QmIVQm/vLLL4neLREDtm/fbh0zpUuXNnWe0M1OnTrZxUcIIYRIdqgia9mypS30I1RQjZ8qAgXX4AceeMAKQeig8GOwoUOHWkV6OggU/F8WLVrk2rZta90hgwYNCn2PkG86r/ld161bZ9+rWrVqvucQo0ePtgp/8tWYsPu/K4HYqS5QJAsDBgywPLtx48ZZkVrx4sVd/fr1sxUoyBphgSO4CSGEECLnogssPhkP/vTTT9k+j2uqH+8kMo8CtAoskmLyQdU9bfW0a9NGfdhhhyV6t0Q+oWWMCrciRYqYJzATO8IGRXqxefNm21gYoGpz/Pjx5gvdunXrRO+aEEIIkSOPPfaYCe3QuXNnK7DYb7/9XLLDdfeuu+4yCyMCsVmgpwPZc9FFF7lKlSq5VIaxIxYEdEjw+/C/ofDlrbfeyjDWfPjhh+13za81ATZfHuYlZFncfPPNGaydRPRgvnfuueda5xLzP7oq+B9nxyOPPGIVmH5D4BBCCCFE9uBogqX+66+/boXhnn79+llBhi8kpljck+i1WNk9iYSDRy4HCVVrTDyqVauW6F0SUWT58uWuRo0aNvnr0qWLGzx4sCsIBC8C4UJ13v7772/3EXSoGqMakA6F3F43txa+zDDhr1ChgnviiSdMKLzpppvc6tWr3fz5892RRx7p8gOBS1Qgsq/+9xHpjWwXhBCpxtSpU22BFHr16uX69u2b9PkC5EmQ+zVy5EizPoKzzz7bugnIZEgFgSU3mJpS9Ueoo4frCzZOZG0Q8hjN3/Pzzz83oYpr14wZM7K00Eo3kuGajcAEXbt2teNw6dKlJhSOGjXKxqSZYUzMFvwdECo07hBCCCGy56OPPnLr16+3cZS/fh5//PFmn8n3zjnnHMujqFmzpn2fogHCtRM19tDqkUgo+L0iUMBTTz0lgSIN4SQ3ceJEmzyzIE5Ajw9HT2fyokC/+OKLoQUTJsqEQTIZX7hwYeg5VBRm1aqXV73Z21sgULAggEDx/PPPu1tvvTXHn5s9e3boQpYZf+GRQCGEECIZYUGUanlgYRTLpGQGKyeKPAg8JBgaKACh0wDLo2QXV3KC8QuVfliE8nuwYR2JENGgQQNbsCYXwi9qRxvej3EWY5aNGzeGKvTTVaBIFhh/0klBJ4yfL9CRm51IQSGPrLaEEEKIyKDbNNhdi9sJAgV23Vx7M3dSBAtkE4FWkETCwD+WNmq4++67sxyQivQA1ZYFALpmCMejhf6CCy5I9G4VeFgYuOWWW9ynn35qHRSEnEPjxo1tsSAnTj755CwfR0BBeMQ7WgghhEg2WIjmOvfXX3+5hg0bmuVTsoLVEBY4ffr0CU0gqXjr37+/q1evnktlfvzxR8sjePrpp93atWvdhx9+6CpXrmzfY7z44IMPWgZFLP7/WMySlwZly5a1v3GdOnVkIRRHTjzxRFeuXLkMj/G/CNqWCSGEECJv3cIUgJ900kl7fY+CVKA71Re5MCbzJDqTQiKFSAhY/zRv3twUPKqj8BkV6U3Pnj3dqlWr3JQpU+yEyP10bs/2AZaREKwQu+KKK+w1Mlfy0aoXLVgc4Fi89NJLQwIFHH744bblpYWP12LSyYKKEEIIkUxwXWVx+vvvv3fly5e3jt5ktUii24PCDlrxgUBhrJ7ouEzVKn+KI9577z03YsQIm0D7kEa6T8mg8CIFnRSxYOXKlVaEQdcEOR7HHnusPU5HqYgv1atXt/95kDVr1ljOihBCCCHyBoUY1113nY2tsF4PXlcZ/1KcCjzHo04KUeAh5I+qKaqxn3vuuaSdIIrogUr7zDPPWAfN119/7bp162Yt3elKpBkRmWECnZVdUn5fN0jx4sVNqMBSikpGb8OVF7sn7CewnEDcwKrqgAMOiNp+CiGEENHoSqBI4pNPPrGg3lmzZuVJkI8HvsuD7kT8e+lGbdeuneW3pSobNmywwiS6Nz0IBow3EF7iEdR45plnWiEFYynCIr1IIeLPHXfcYVWe2D1hb0onDda/bEIIIYTIG9hjUoiDOJG56IOCYewWzz//fCt+8aiTQhRoGIQ+/vjjdp9EeSZf6QSBxyiR3333nfm8+RBiPP/feOMNO1k0adIk9HyqyXwlGWINre1FihQxAYdW6HTy9eeEN3bsWAtt5n/frFkzV6tWrUTvVoGFvz22EVhdMFmsXbu2K1GiRMR2T3RQEHJJJ8grr7wSM99oIYQQIq9wreMaxbVq5syZSV2xTRUbXRMEGZJDQcBhKkLHtB8TYDmAMMDvhlhElwhjkFjBJHzSpEk2Icd/mTE2HSjkb9E9mso5HukAXTMUtRD6jghH4QzZdXw2hBBCCJE3ypQp4z744ANzzMg81glaPQVJpk6KffbkNW1ViDywa9cuC23B6qdFixbu2Wefdan4O1CFR0vypk2bTIzg1t+nhYqJka82p7oc+F0JaWQxd86cOaHXo4ovO2sgJlNMTFkQ9sIFG4vIBFCnKh06dHAjR460BXFa76PZHSDCA6GoQoUKNiEEPqd8DhctWhRRZxMCRf369e0iyGQz+L+kQlFdUgUDPgcIzj40XQghkgmq9wnp3b17t3UOtm7d2iUT27Ztc7fddpuNE+mgSJeCJAKxGS/77koeJ5fMF/DEkp9//tnGmQgjEydOdDfccEPM3zNVSIdrdjr8DkIIIUS0+O+//3K0A6VwhGLphQsXWncrXcUeHDIojAGKSCikTtR1O31KtEVKQFUYAgUHhF8cTRVhgnBvJlt4vDHJzQkWZumC4Oc8p556quVwnHXWWRmeS4s7JwzgdTdv3myCB7d0ZWzZssU2bJKCr+VFCvaHwL+6detajkEqQODjq6++an7AZFUMHjw40btU4KHDBRuEAQMGuPvuuy/sn/v444/tuICSJUtm+N4333xjn1UhhBAiUTC2YoGaW/IokjF/gHEQFf+LFy82O9RUtHWi7m3u3Lk2jmAC7OG+D/muUqVKTPeBQiEftk23BFZCiBRNmzaN6fsKIYQQQiSK33//3YQGCl4oxMmqW5TOVoqlEQkyu9kEOykSbfekTgoRN+g+oIqNhfeXXnrJXXXVVS4ZIZiYiisO7F69etljHCa0qTP5gWOOOcZ83oLdDcH7dD/kt4IcJRRvuGC3hr+98847Q2IHlWp8ffnll1s7u99fhICzzz7bJoTsb7LBCbJBgwb2dyZEsWrVqoneJSFEHlFFoxAiWaEYgiKZo48+2n322WehRexky6AgwJAiAR8enSowrn/xxRdNnKA7FrAq5ffp2rWrjUVjDWPmTp06WZ4B3Rp0ior0vmanw+8ghBBCRIPH/9+aYNGiRa0oPNLMNdYOyQrmZxk39+vXL+r7qE4KkXQTGCrXuL3yyiuTSqCg1YlFfe9NTAcDwd4IDRygLKKzcaBiZYNXP76psfaypVWLiTQbFlnZweI+k8Cgry+/U7AaHqGCvzmVZLS+JwPYC910001uwoQJ9tlYvny5sgyEEEIIETXo9HvkkUfs/qhRo5JGoKCTdOjQoW7QoEFW1IL/L5aJqQgdld7bmHFy27ZtLeeKiXK8YMyMZRYZb+SOSKQQQgghREGhc+fO7t9//7U1wawECt+lmzlI23Pvvfe6r776ykSKRHdSZG9YJUQUYRLGJIbW6+HDhyd6d9zXX3/tBg4caIv3iBOEEnoqVqxoeRk9evSwA93Tpk0bs2tikT+ZwvYQKQiDDIbfIAYhABDcDVSVdevWzZ122ml24qL9/csvv3TJoPgiBn3xxRcxUWuFEEIIUTAhK4mMB6rsqepPlgIZ7C4pPsH2lO6DVAPbLG/zCIylmzVrZuO4jRs32tgu1gIFxUV0D1OVF6wCxFqqd+/eMX1vIYQQQohkYr/99jN7+jp16mT5fYqwseF+8sknc+zqTYbgbIkUIuawAN2nTx+7z4QsUVVs7Aft/ogQeOffc889bunSpSY4bN26NfQ8DkpCrm+//XZrV09FECPGjx9vvzN5FgTfcMLi5EXHAgJMmTJlzLKK/w32B4lwfitcuLAFaAMTdYQsIYQQQoj8wliH0GbsOocNG5bo3bHCFzp0ycUgJ+H8889PqTBn9h87VMaPtWrVMktSz+TJk+13oxgpHtxyyy2Ww0bRjYeiowsvvDAu7y+EEEIIkUj27Nnjpk+fbsU4OfHzzz+7adOm2fOrVauWZZ4F42VsmEAihUhrmNBg5UOANPY+8Z6McaDRZUAgcNmyZW0CRdA0i/UETdP6zyI+YYXpCqJQ+/bt3fz58y1T4+mnn7b/BQIM4kTfvn1NrKhdu3ZC9o9JJuHh/rNCq74QQgghRF6hXd1Xi40dOzZui+fZwQSwSZMmViwDFMIsWrQorpZI+Z0Ek4VGl+4333xjXsKJ7Mglhw2LUOylhBBCCCEKGk8//bTZuV966aU5Fhy/8MILth7Lml9WNvJvv/22ObC888479nWi7Z5Ss0xcpAxUrr3//vvmizZ69Oi42SRh58Tk9JlnnrGJIRxwwAGuXr16diAzuSFAsaBBgHbr1q1tQ1GdNWuWmzp1qnvjjTfcGWecEXoeJzkmofHKr8CX+c0337RwdToqEJOEEEIIIfICLe9UlpGDRmFGIqEYplGjRtYtysI6Y1PsQ1OBt956y+xCly1bZl8j9tCJ3LFjx7gJBFiYModgTNqgQQN7jL8nuR4nnnhiXPZBCCGEECKZOOCAA0xQwDElp3VWxp3AGmBWz8MelfVa7yKT6E6KffYkwuNFFAi+/fZbV65cOfvQY+nTrl27uLwvkxbsnPxHm8V3gmSo1j/yyCPjsg+pBp6+eNCRDwFU91100UXm3/ziiy/GRVx6/vnnLQuEQB/ECuwEhBCpcw4pVKiQda9RYSuEEIli7ty5Jkwwefv8889tTJjIjo6GDRu6DRs2uGOPPdZCnbF5SgXovsVCiQwKBImuXbvaFu+xNBkXd955p4kU/D0RekT+SIdrdjr8DkIIIUR+WL9+vYVh77tv1iZJrKtVqFDBxsSbN2+2ouXsoMuCghqy0+jOSNR1W3ZPImYQXIdAUbNmTde2bdu4BfgxieE9maAyUf3000/Nu1YCRfZwkvACBdD9gjBBt0lQoOBvHSsItWQiz3vcd999MXsfIYQQQqQnVN2zoO0tlRIpUNAhWr16dRMoSpUqZWOrZBcofPextwu944473G233WYFQA888EBCxtLMIbAo4P+aqllxQgghhBDRYE+gz4Aw7OwEimAXBU4yOQkUsHPnzqSwe1InhYgJVDoxoeDj9eGHH7rKlSvHrIX+3HPPddu3b3cbN24MHXgcYKq0yh9fffWV/Q29XzL/R8IeO3ToYJ0psZio8rnB8xiLBoSnKlWqRP09hBDRRxWNQohk4KmnnnK33nqrK1y4sFu7dm3CsihmzpxpHbzkbNWoUcO9/PLLSW0zirgzYsQI16dPH7MAZWwNjOPjZdUK/L2wil29erX9Lz2MC3OahIuCd81Oh99BCCGEiIS3337bLE2fffZZK4DJCcZOxYsXt2KZ2bNn52p/ynPpzIhVUY06KURCIVOAiQ1ewLESKHyVF360LJh/8cUXocclUOSf008/PUOg44QJE9yPP/5oE1gqE4cPHx71kGusuXy4urophBBCCBHJ5KdXr152n7FKogSKadOmmV0mYyRu582bl9QCxcKFC13FihWtAIW8MoIYPfEUKIAw7rvuusuNGTPGLV68OPS4BAohhBBCFGT27NnjunTpYsXDWGHmBmOnzz77zNbxyObNDnLGcDRBPEiGTgqN+ETUoQKeijEOigcffDCqr71gwQJXv359m4j6ydNLL71k+RdUqonY8cQTT7jJkydbzsi2bdvsZEbXw2uvvZah5Sy/sLCAZx7/azYhhBBCiNx45JFHrJiCyrJ45aBlxcknn2zFMuRsvfDCC0lbOEM3MgHetWrVskks3SejRo2yIpR48u+//4bun3nmmVbohEiR7NZYQgghhBDxYp999rFss5YtW7pBgwaF9TMEYt94441uv/32y/Y577zzjnVa7Nq1KymCsyVSiKjjK+A5GMqWLRu1yqrGjRu7unXrWkVa8KCkLYmwZRFbEA6aNWtm4TtYAmCtRfdKo0aN3MUXX2zZH9EAXz2/uMBnSY50yQ+WDASt07bHxfOXX35J9C4JIYQoQFCsMnjwYLvPGJExS6JgcX3p0qVu/PjxSZuhQFUdY3SKTygqwsoTm0+ssnKayEYTbAjwSi5Tpoz74YcfQo/37dvXtWnTRt0TQgghhBABihQp4saNG+cOO+wwlxPY34e7jubHYBIpRFoyf/58CwpENKAiPr9Qsd+pUyerrJo1a5ZN9vialnSRGPgftG/f3ryeu3XrZv9rhKMKFSrY5DY40cwrPXr0cIceeqi1stGVI5KbP//80zwOZdElhBAiEQwYMMAmV3QFUDwRbyZOnOg+/vjj0NcsvMdrsT+v123a+rFkXbZsmXVP0EkRTxAphg4dauPJIUOGxPW9hRBCCCFSgS+//NJ99NFHEf0Ma7He9SS3sdjWrVszdLYm2u5JwdkiavBROu+886x6DCEhPxOO3bt324TpgQceCFVl00kxcOBAV7p06Sjutcgv69atc/fee6/ZbgGqLovVd9xxR74sDmj3f+ihh8xeauXKlUk92c+KP/74I9vv8bsE/zY5PZdKwqCand1zEXUigc4HhCVsvLg43XTTTRZUidCY11B0fK1ZIMLTOhbB6iJ5UYClECJRfP/999aFiUjBdejCCy+M6/vPmTPHXXrppXbdo9uUKrdkg3E1wYlkigHXfboo6JCN5/iK/aDLxWddIJDwP6P4KJHdLwWNdLhmp8PvIIQQQuTWEVG1alW3atUqN2nSJMs6y42//vrLxqLbt2+3gt/LL7882+ciUBx33HF7FbLEoptCwdki7syYMcMEChZLqYTPK/jiVqlSxXXt2tUEirPPPtsWTmfOnCmBIgkpUaKEe/HFF927775rFXm///67iRTYfeUHghMJvfz888/dc88951INxJrstqZNm2Z4LheG7J7boEGDDM9lISar5+UVFipatWplAgUdMSyyPP/88znuPxvehUIIIUSioSgGgYJJ3AUXXBD396dAh/fm2k4eRbKxfPlyG58RmsgYzRdAXHfddXEVKBgnMqbHaspz7rnn2nhPAoUQQgghREb+/vtvKzBhcb9atWouHBAzEChYN8qtu5gsN2DdzZPoLDWJFCIq0BpE5TtQQZ9ZjQv3NfARrlSpklWikXkwduxYa22qU6dODPZaRJPq1au7Dz74wAQFToj+85BXWCynQwPuv//+kEeeiG730y233GJ5IggU/uJE19KKFSty3FhYEEIIIRIJ1VjkZAFjBl+hH0+4dnINHTlyZELeP6eJLfkOFP7QkYpAQZZYoli8eLG9/6OPPmoFEkIIIYQQIufg6xdffNHWRE866aSw1new0gTyxnIrRvFW7d7ykw6KRI9lkzPNTaQczz77rFVi8+GmIipS1q9fb3Yzb7/9tn2N4vf000+7448/3qU6nChouQpCBVtQoeT7PI/HUjkokH2//vrrzT4gGBZJ1RzK7+mnnx7R63Xs2NHsiAjEJJz59ttvd6mCr1bMiswXC69gZ0XmzwPHSrQgdIl2Pmwqguo5F0M2IYQQIplBGKB9HGvIeGZR4A/81ltvuXbt2iVFyGBmsAVo0aKFFRUAXR6IOXkpIsoPFJgcdNBBdp8OaWwLGMul8lhXCCGEECLW9pgHHnig3Uc0OOWUU8L6OdwuKPhmXNq6detcn+/XoVjH/frrr5NiPKsRoojKBIRKd1/FRitSpLz66qsmUGAVNWbMGPfKK68ktUCBoIAH8qJFi8zTF7VyypQpGb5/zjnnuBNPPNFOLvxewQ3f/iAs3vM4zz3hhBMsKJznXH311a5Xr14Znksw4+bNm+09kpWgQIEFGCdI8g8IR4wEQnt69+5t9x988MEcF/6Tjcz/8+CWuYUup+dmvlBk97y8ULx4cQsnJ+weUdAjuychhBDJDgUeFDLAPffcE7eFb8Z/9evXd+3bt3ejR492yQRjQ8QIuh0RKJh0vvDCC5YbFk+BYtu2bWb7SRGEH68yNmRMFyyKEEIIIYQQGQWKCy64wNZW6YqNBN9FQaGK744Ip5PCr+EmOjQb1Ekh8g0V7oTx0X5E5Xu4MGnxrUS0IlEtT0Xaaaed5pIRWtNvvfVWy0iga4Rw4CCcSOggAH6vLVu22EQ2UssrThT+ZAHYX/Xr1y/09TXXXGMqJyeSMmXKWPVg2bJlbTvjjDNs4TmZQHQhxBL7rrz8bxE4sAHjd37yySct70JEB4QwxLTHHnvMbNpq165tGSPYPeGxnRPJ6LsthBCi4ECXJuMlqsuaN28el/ekE+CKK66wcW+pUqXclVde6ZKN2bNn235ecskl1jHJOCze4IU8depUK2SiGCK3MYUQQgghhHDutddec0uWLHFr1qyx9VVCsMNh06ZNlhMM4TqQ+E4KH2SdDJ0UEilEvmBR/fHHH7f7ZBCE+6HmwOvfv79NpKjKpvoNj9pEQ4cCHR1s5CuwEDtr1iz7Hvs4Z84c991334WECAQBJscswJ911lkZXmvatGn29zj22GNNUAh6u2Wu9sM2ABEEy4KtW7e6n376yTbuZ+5M4Wt+Hh9mTl5sHroVCEj0EDhO2HjRokVdouC98Wqm4tH/DfjdqMRnop8bhCniqYwajEhx5513hqwDRHRo27atmz59ulU90h0Uqd0TYhyb75Qh44Kf59gIR8EXQgghIuGff/5xAwcOtPvxCl6muIbrJeNDugHoAmaMlwz4wh+2Z555xgQCCmviaavEnMDbWdIhTGc0YY8SKIQQQgghwuOKK66wtUTGtuEKFICLC+usrOeUL18+rJ/xxdGsyYI6KUTKwwI+HvksRJIpEQ47duxwbdq0sUVNKuT79OnjEglt8CyiI0xQrR8kcycElkMskNO1QAVdTqIMGQzh4u16WNjNrUKd0Bwq5L766ivr6AhuFStWDD2P1rDLL7/cMgcIsqbTw29MGuMZiMMk2f+OTKTpmOHES/U+4lRugT50j2DlgDpMcNANN9wQpz0vOBBSj83YgAEDIu5WGTVqlAlJHj5jQAVny5Yto76vQgghCjbYF33zzTdWJBKO5240YLxCBhtjFt4/0pytWAkDXH8ZH3EdB4QTrKjiCTatjOko5vF/FzLKhBBCCCFEZFyZh05d1twuvvhi28LFd1L4tTp1UoiUZ8iQIXZLZVm4qhsL8bQhMcHDZy2e/PLLL9Z5EDxw8RNGbfQHNt0I2BPVqFFjLwUyXCEm1pBpwL7lpJAisGD/RIYFQhLbxIkT7Xu0/nfu3Dnuf3+gYwSBBwYPHmxdJAhFvsUsK1CRsQTr0aOHfeboqoinyJKOLFy4MMPXiGOZLczCBaEx0WKjEEKIggHFDr6LgrFMPKq+KMrxYybGIXXq1HGJhuo3hIAFCxbY161atXLVq1dPyP+DbJB169a5hx9+2AoUhBBCCCFEeFCE/NBDD1lhru9qiAe+k8JnpiaDSKHgbJFnVq5caQudVJSxgJwTWCTRreA5//zzzQc/c4BwLMBaiOqyhg0bWmggIX7YKHmwuGHi+frrr5uHLp0KWFihXiZDlVx+bJbwAWbhee7cubbAX7NmTQvnRsAIBm9jHYVYE8zCiBV8XpjE0hHBSZC/e9WqVW1ymxMIYXxe+P8sXrw45vsphBBCiOSDYhNCoRkT5Db+jAarVq1y1113XagTNB7vmRtYZtI9i0BB9dvzzz+fEIECKBoZP3686969uxs5cmRC9kEIIYQQIlXp2rWrubZceumlGdbpwoHn161b18Zh27Zti+hnKXZhbHv00Ucnjd2TRAqR7y6Kpk2b5ph5wEJ55cqVXZMmTTLkJcQS2pawoKlXr551DWAvRf4FFkiETW/cuDH0XCrPHnnkEdegQYO98h/SATpX6tevbyc9LK0QJOgcYcLtwVeZkxPh54QpDxs2zPI5YsnVV19tk2zekzDyKlWq2P5lB5YO3jrAf/aEEEIIUbB46qmn7LZZs2Yxzz3CohRv4N9//91ddNFFlo2VyE5O37XAWG3Lli2uXLlybunSpRnGdPGo9iMHhGIjDxlUFKDEo/hICCGEECKdYBxH/kSPHj0iHmeSQ0HRCmt4kf5sp06drMDEr4Oqk0KkLHQiULXlW+2zY/LkyWadROX+aaedZkGD8WDmzJnmx0twNH69WDixSE9uw2effebOOeccV1BhAklmQLFixUKPUYWHkIQVE90xt99+u50ksbzipMXkPBZUqlTJJtfnnnuuqb4owN5TOSv8Z42Q56DQJIQQQoj0h0ILxpa+wzLWggDh02SAMSbCpjQeAd050aVLF8t+YGxL4QaFQOSkxRMsWxEomEjHuqBFCCGEECLdYd2N8Wb9+vUjHqtiEwV0+ua1eOevv/6yW3VSiJSuYtu1a5ctbGPVkxkWu3v37u2aN29uFVeXXXaZe++99yzAOdqsWbPGJmx+0gp0bZx33nkWArx27Vrr4GAyRReF2Bv+Xkx0CaFk4knoNyc8/mec7DIHiEcTOino7CAcm04Xul7uvPNOm4BnhgyO2rVr2/eGDx8es30SQgghRPLx3HPP2USKzK2sxp/RZMyYMZaZhU3llClTrKMz0WBdim0nmV6EePugw3hy7bXXultuucVNnTrVxnBCCCGEECLywhu6Yj156UZduHCh++CDD9xBBx1ka6KR5vVin7p79+6QSKFOCpGSsJA8YsSIUGV75pYiPuC04Pfr18++7tatm1VdYTsULf755x/38ssvm9JYunRpa30Ptp0fe+yxdrDy3nRwiPBARMIPD3GCHBGyOehIKVmyZOg5DzzwgFUT8jmIFii2iEw+fJn3bdy4cZYdHL6bAqHszz//jNo+CCGEECJ5oXiC/CzfRRFL2yUyuuhaAGyMKN5IFMGxzsUXX+y+/vpr27d42U4xgWZs6Md9vC9jsEaNGsXl/YUQQggh0gmKum+44QZzFmHdMq88/PDDdkuhLzb3kYBFFPlmuKz4saZECpGSUDlFe/eJJ55ouQJB+HBffvnl9hwqvcaNG2fdDFShRWvSSDtTiRIlzCOYMG4mS0yUWDyPNGQmFtA5gqUUAc9ByH0YNGiQ+/jjjzOolzyWOWOBjoZPP/3UQq8Txcknn2xqrBekAOGCvzNdD9hFISps2rQpKu/H//H+++/PEKh9ySWXmB90EMKE+P/zt6GiUgghhBDpDx2fjI2oNGNiF0uOP/54K8ho0aKF5S8kCgo4KLahK9iD9VS8oCgI21Y6Nxj/CSGEEEKI/IHVOWt+27dvd/vvv3+ex8Xz58+3n7/77rsj/nnWIrHjx61Edk8ipfEL6lTYI0QEBQpsnRAOaD9/4403XMuWLaP63nRo9OzZ0/IISKC/5557rKJs1qxZFnwdy6oy1E5OJkGwkCLfgowEDyHQHOh0AgQhw4OTx7vvvht6jJMSj/E7BSHI+6yzzrLwm+BJhGwNgsr9ScT/3dm3eMDCwH333WeTdyrr+vbta2IF4eOcZKMBwhdta0ceeaRbv369++mnnzJ8H8GLzAwgwDIZhCkhhBBCxBbfRUGhRDwyziiKwFJp333jP11ibEN1HLapWG6SD5YImPgyJmX8yb4IIYQQQoj8gfPL+++/72bPnm35rHnhkUcesVsKaoJ5s+HSunVrW99kfVd2TyJlWbJkiW2IE4QJev744w+bzL355pvusMMOc3PnzrXKq/xCxwZebR4W888//3w3ceJEq+rv37+/K168uIs2TAgREDxkWvB70Q4VhIV5vse+eBBP8C3O7F1cs2ZNd+ONN2bIxeA1eey6667bSwzgxMXm4QTyySefmFoa9KtD5EDxpMotOLmNRZghvxOVdBs2bLDqPlrDyIegY6ZUqVImFkWDKlWq2O/51ltvZfn/vfnmm+1vt2rVKmtTE0IIIUT6Eq/AbMYewTFdIsBWicwHCmEAq6WBAwfG7f3p2mB85aE4ZunSpa5cuXJx2wchhBBCiHQjWFzMelatWrXy/FqPPfaYrclSuJ1XKPJmLVF2TyJloXIdWFQ/7rjj7D52PHQxUP1O7gQCRfXq1fMtEuC3i60P+QSeunXrmuJIm39egmWys2cKQvcHVlZBKyGsj1AX2S8Cwz1U9L/yyis2gfOgYm7dutUEhSAEUE+YMMFyNDz8DXnMVwcG/84//vija9euXegxPOawjKKaLtgxsm7dOtsnOg+C4gn7zN8vGECdVRh1XkCkoquFwGs89PBI5iSLaOHJb3cH/nynn3566Gs+X97+qlChQiZUQGarLCGEEEKkF3Sj+sDsWOVDIE5cddVV7swzz3QrV650iRJjKPoZO3asdXDQUcskNFq2qeH6EzOupQDJk1crAiGEEEII4SxvlTEs9ubRoESJEm7UqFEZiqDziuyeREqC3dC0adPsfseOHUOPc2C888477ogjjjCrp/xMHlncpzOAA47FZxbfly1bFhNLH+yKsFQqXLhwBuEB719EgGAlHR0NX331lU3YDjrooNDjVatWNYsrBIFYg4UWE9fMXRd0L2B51aRJk9Bjq1evtskt+x2c2JLjwQSftrJocd5557k5c+aYzRXiAfD/ql27tuvUqZP9nfMLr48QgkjF5zD4GSS7AvFICCGEEOlHvAKzd+/e7UqXLm2doYnoGqA45aKLLgrZplIEc9ttt8V1HxgXM5bD1pPJtBBCCCGEyD8UIuNKQ+5rfsZYf//9d773BQcc1ly9jbo6KURKQhg2i/lUmJHD4LnzzjttMZoWeRas86rcEZqMtQ9B0nzNa5FrQfdAfiekhDsPHz48Q3cEEzAmhLwXQYweFr+pZAu21vP+JUuWdAcccIBLNqhu4wQT9GdGzPjtt9/cCy+8kGGST9cDYgKWVB6+5oQZDGXMC3SfeN577z3rshg6dKjtGy1o+TkRIwIxaebzwcQdWERAJKJjI/h7ivhDNxILKXyu6KihApOQ+5ygY4njKrgRlC6EEEJkDgaks4EOWnx3YwXjFcYvFH8konOA8Q2TQ7ps3377bRvLxQPGix6KWyg8YvLKOFkIIYQQQuQf1sQoyKbwmzWTvNKiRQt35ZVXWqFyXsGyHvcVX1CsTgqRkpADAVgtYfH0zz//2NdU7NP1ULly5Ty/Nn67ZB3QqUBwDNXx2DrVq1cvTwIFtkZBayPa1xEfgrkN7DcTUQSMYFgNi/3YVqU6THaZcHv4OyLGvPzyy2al5JkyZYrr3Lmz6969e4afz0/3CnZfiFaICCxgI/iULVvWTsh5eV2CyBFYECOCQhGfxeBnUyQGqgE4ll566SUTp8hD4cKZG4gSXBj9JrFJCCFEZvw1Hismul+jjR/PAuJEohbnGbdRmLN48eIMxUCxhOv2qaeeapaaHgpC4mUvJYQQQghREGBsxboYGbt5ZenSpWYXxZpe0JYzUlasWGG3FSpUsFsFZ4uUA5WNyioWuqmSxuKIBeLgxC4/3HvvvdZizwFHxRwZF3ntnqATg1yImTNnZlgMJS/hmmuuybBIjrBy0kknuYICE+/LL788w+QTDzusmRo3bhx6DBEK2ysWnzNndoQD/7s6depYRSJ2BUyAvdcz/9uffvop4tdEcPECBd0TI0aMsCpDHuMkG+yGSQa4aLAFP29YSfBY0F4s+NxgjgdtfDyW+e+f3XMjBUsJcl+A1+J4RqzzdlrhQtcR3tlkx/A5QgAjSJ1FFoSlnMA6jawVvwW7gYQQQgjGmSykQyy6KLj+kRXGODTztTkevPvuu27AgAGhrxFhGH/FCwoMyPsi70wIIYQQQkSPjz76yMZ50bCv37Nnj41X/ZgYi85oiRSyexIph7dJYuF548aNtgBJt8O3334b8WuxUPvII49kCIVGVMB26Oqrr45YnMCyKXOuBd0R2FN5aJ2nwpsWq1h5GacqzZs3t04T35UAM2bMMGGK7IpgBodXWMOFvzWCFv/bXr16WeA2VfbBkO+8gHce9kLYjHk7hGeffdYlE7TwsQUFmUcffdQeC2a6+M8nj2/YsCH0GPZkPNa6desMz0Xw4XFyRzzjx4/P1wJNq1at7PXwweZ/Q0Cp3//sNkRLf+FFJCEvJCh8nXLKKdYNlRNUbvK7I1C2b9/ebdu2Lc+/hxBCiPQD2yHGdcccc4wJ4dEGu8u33nrLAqoZn8QTOk69QOKFmHhDrhxFBlz3hRBCCCFE9Ow0KRBmnPfEE0/k+/XmzZtn42LW1HChySsUwfq1pMydFMlg9xR/w1WRcqDY+QVgFrKpwPbBy5FWe7EYzuLyl19+aV/fcsstIesh7JciXVzloEcsQQnEEsiHKpJnES8v33Tk2muvtap2Khi9qMPnALW2aNGi7umnn85gJZUbKLKcSPn80AXgvZ6pWsR3GVuvSLj++uutep9umUaNGtljTLARv2RRED78TzkG6UJhscR3MtBVk1u+jA+LJ7ScC2Vm4YmunZwCzeluwhIKWwn8FO+77z7rskHY0P9QCCEETJ482W7pxIx2LhiFNj169Ah14XI9iheMXbkGMg5q2LBh3MasFBgwFu/Tp09oMkrXrBBCCCGEiB5HHHGEjTMpCMlceBop//33nxVcA+upFK7mlVWrVpk1Pnmifk0nmTopWKQSIkc++OADepP2HHLIIXt27NiRp9f49ddf99x44432OmzHH3/8nueee27Pf//9F9Hr/PXXXxm+btKkib3e0KFD87RfInxWrlxpf+tDDz10z++//x56PNL/YZB+/frZa1599dV7tm3bFtHPTpkyJfR54rPJ7bx58/YkC/yN2IJ/n127dtljO3fuzPK5//77b+ix3bt322OZP/PZPTdSLrzwwj2HH374nv32229P48aN9+SV559/fs+BBx641+OVK1fe061bt7Bf5+uvv7b/4fz58/O8LyJxcI7n/8etEEJEA66VhQoVsnPLokWLovraXJsvu+wye+0LLrggX2OZSHn55Zf3HHDAAfbejGMZG8SD9evXh953xowZcXlPkZykwzU7HX4HIYQQ6U9e1mqyWnPhmnfEEUfs2bp16578MHbsWHutOnXqhB478sgj7bEvvvhiT6Kv27J7EmEHFlLBRq5ApGANRRsRr0O3BFY3X3zxhVXDh2u99Pvvv7s2bdqYhQwe+J6HHnrIrV27di/7HBF96FRZv369mzRpkoU7esj5uPHGG926devyZP1FVwU2B3RpYLkQLrwvnRPgcxuSKUCbvxFb8DNOxwGPBS20gs8NdhNxvPHYwQcfHNZz8wJVo2TA0DZId4wnErsnsiT4P2bOsvjhhx/se+FCZw52HhzPQgghxJw5c2zMR5VXjRo1ovraBA6Sx8D1kzyGeFmBYkVKVwg2iVicksXG2CAeYK3arVs3d91110XcwSqEEEIIIcIb6wVzzqLRCTxq1Ci7ZRzHmkl+yJxHAQrOFikDi4/epxZPtUi91PiwE7RNvgEtSSxsDh06NOJMAhZlCeHFl5iJpadcuXJxDRgs6DDBDQZsk6Ewbdo0swPLS3gzFlD8X0uVKmU5ImSe4NnH5y4caHnDrsgHESF2IGiJ8KhVq5Y755xz3GOPPWZ2D15o4n/MxSunjZBtwK6NCy/2ER7s3PhsVK1aNex9QQAlk+LEE0+MwW8qhBAi1XjhhRfstlmzZhFbgubEjh07LNsK7r77bhtLxgOujdhpYqVJoQ5FH9G2sMoMOXKM34PjLnLmgsUmQgghhBAi/zzzzDNWhELmWLhrWuEwd+5cyxDr0qVLvl8rs0iB9ZMXVSRSiKQHgcJ3LlSvXt0NGTIkop/nQz569GibjHEwVKtWLSy/NSrLWCjlPlDhxnu/9957VrUvkgM6W5YsWWKB0IQfewYPHmzCBSe83GCR++OPPw6JDQMGDLDPSTgV9XwuCJjmIuA7KsaMGZPP36rgQY4LxzfHFv+zww8/3JUsWTLHzV/AChUqZB6LXbt2tU4YgrRvvvlmEyjOP//8DGHaBLIDQhILQwhUdOcgcJAvw+tefPHFCfs7CCGESA7Ir6LTAVjYjya9e/e2wgg6+Hr27OniBeMkigK4Rk6YMCGUzxUrGDMzxuLa7sfTiD3x6hoRQgghhCho62NkUVxwwQVR7ZQ95JBDrKg0v0UmjAczixTelSRZgrP3wfMp0TshkhPCU4oUKeJ+/vlnC9T96quvLFwlN7wdEIuOeWH79u3WdUGl2yuvvOIuu+yyPL2OSAwsQPO5Qdyi6yWSz8H06dNNrKADh8XusmXLhvVzVAnSjYHFEJ+9zZs328VBZM9FF11kFybfHcWCzZlnnmniASHWkcCF7c4777SqV1R4hIYRI0ZksHtiUWTcuHGuZcuW9v9t0qSJW758udlEnXTSSSY09evXzwK3RerBMYhgxXGvY08IEY3A7ObNm1u3LOPPaC2sUxRRuXJlm6RhJxUPYZypVnD/M38dK7BzrFmzpo2lKAYIZwwvCgbpcM1Oh99BCCFE+vHtt9+aWBGNsd6bb75pgke0CltwzmBsjf0466109OJWc9xxx9n3KViNZvdyXq7bsS3hESlNhw4dTKDwXv+5TW5YnG7Xrp11XyBqkBofrnXL119/HbJtKly4sLv//vvt9TggRWqx3377mWXTG2+8kUFgYjE6N5uvK6+80p133nm2iBAUKFhMyOlkyUkO7z8m41RfUjVI1b6qBbNn4cKFGb7G89sf75FCbgYdLWzZEdTDqQSgZVEIIYTIyeqJLopoXcuZeN166602psBCKh4Cxbx58yw/jTEJY2OI19ikSpUqdq3lNhkq44QQQggh0o0tW7bYGphf6MciPRosWbLE1a1b1wpL6Y6NhhWT76KgONVbjvo8CoSLWAkUkZD4PRBJOzmkFR2KFi3qGjVqlKtaiEUPAgUHKF5pxx57bK7vg08btk5UwX/++eehx6nKRqhAaROpBSdPRAqq9vxJjgUBBCeq5cknyQkWy4Pixvvvv+8qVqzo1qxZk+PPEarpfaVnzpyZIQhaCCGEEKkBgvns2bOjbvU0duxYt2zZMitswJYy1ixatMi6SbnFyjLWUAxyww03WMZTsGtSAoUQQgghRGy6Axo2bGhW1+HYlUdSWNOhQwcr9DzrrLOilhWR7KHZIJFC7AVt9XjUe1q0aJHj81H1aJ3/9NNPzaqFyRh+v+G0JOHTxvOoKiNUW6QPwUpBOiO++OILt3Tp0ohC0zkpd+7c2a1cudI6LObPn5/j84Of1bvuussm7EIIIYRIHeg6+Pvvv63Kiy0a0Fru8ycIjw630zevMN6hwIeJH5NX3jPWkA9FKPZ1112XoXtRCCGEEEJEn23btplQgQtMNLsQnnrqKVtDo2g7moUurPPiQNKmTZsMNv8gkUIkJfjJ0wIfPMiuuOKKbJ8/fvx4V6tWLfMxo9qdSRkBvDkpglSy+QMBBg0aZF0UtOCL9OTcc891X375pYVpe7sD77HHQkROQgfBmSjTCA6XXHJJjpZC/rPKZ5dFjkgEESGEEEIkRx5FtLsoyKwiL6tMmTJWmRZLGO8gTDCWrl27tps2bVpUwxOzg1BugrKffPJJ2V0KIYQQQsSY4sWLu8WLF5vVeYkSJaLymlu3bg1lhD744INRzexkLNy0aVN3/vnn79VJkSydtxIpRAYIzSXM9vDDDzeLHj7ELDDn1EXBIjMfdDohsIbKiauvvtpUO/x5PRzM2D2J9D+BB23DCMauV6+efb6YyGcHJ2XEDHImELk6duxoCwxZiRssPrDx2WVBQgghhBCpw/bt2+2aDxTNRAvGmRTSMIn0HryxYNOmTWZt+dNPP5lg8PLLL1tuU6zYvHlz6P6pp55qv2OwhV8IIYQQQkSX4FoT61Vnn3121F773nvvtQJdisDbt2/vYo06KUTSQuX50KFD7b5X1po0aZJjNRZV7Xj/v/jii+7QQw/N9T3wysULmLR7UbBhYk1XxRlnnOEOO+ywHJ/LBJ+uHVrd+DyOHDnSAi+zEjd8NwWfZ8AqikUCIYQQQiQ3r7/+uhUklC9f3pUsWTKqr01mWm7FNPkF28kNGzaYKEKuBkU/sQA7J7LbeB+KPjzqoBBCCCGEiB3kmjH+8kU10eTdd991zzzzTGitlbFrtMCe/5FHHnFvv/12hsfVSSGSlnHjxoVCq+mm8CJF5oDsTp062QQSaF/HAzcr/zUmUPidLVy4MPQYr0dwsqydBOHY5FQMGTIk9BiiAzYPWXkpM/Hu1q2bhWIjahQuXDjLE6n/zLI4QOtdlSpV3PXXX2/vJURBgUENVbUIfOS5fPjhhzk+/4knnnClS5e2CgoW8e644w63c+fOuO2vEELAK6+8YreNGzeOyusxBiUPImgzGktGjRrlqlWr5ubOneuOPfbYmL0P4/AlS5a4P/74w82bNy9m7yOEEEIIIf7/8Rd25ORQ5Da/zgvHHXecFYyzxorleTRhvIiNVHD9LRmDs3NPNhYFhunTp7vRo0e7smXLmq8tVe4XXHBBhkDtOnXquI0bN9oCcZ8+fXJdJLv99tvd6aefbtXsLJax0MzPCgHHHHNMhq/5TPHZw47BK8hZiRtMzIsVK5alOIZ91Mknn2yWC9gtkJHCZy/zewmRrkyZMsV17drVFssQKBAg6DzCJ52BT2YmTZpkbaUccyyurVmzxrVs2dLO148//nhCfgchRMHMRZszZ07oWh+NiWTnzp1tDIro+vDDD7tYg9hLFVysOxr2339/62KmICOatlhCxAvG/H379t3r+FFRkRBCiGSFzga6fplvY0cebUqVKmXjSMbE0YZrbPPmzd2FF16Y4XHZPYmkhQnPbbfdZsqgnyB6395Vq1aZYIFAgef/LbfcEpa1EwJFNIMPRXqDnx+CwjXXXJPj88qVKxeyF6Pr4q677grZHSBc+G4KKjKxeuIzLZFCFBQQFjhH33zzzXasIFbQdZSd8EfHEWLeddddZ90X+KkzgMmpOoSBExUkwU0IIfLDokWL3I4dO2wsULly5Xy/HuOBHj16WEYDXcKxgDFI9+7d3fz580OPxUqgYAw+ceLE0NfYp0qgEKkMlq9btmwJbSzMCCGEEMnGzz//HLrPetVNN90U1fGe72bwQkgsrJcuvfRSK07M7GojuyeRVFAx26tXr5CtB5Mt7+Xvvf0//vhjU9u+//57C4RhEkmlemYIMn7ttddCXxcqVMh8z2izj2VooEiv4HbswC655JIMHTw52c7Qrkb3Re3atS3IPfjZRaTgZBvsuIiX5YMQiWD37t0m2NWtWzf0GJ9/vn7//fez/Bm6J/gZL0qsW7fOKkQaNmyY7fvgZ8k53m+x9nkXQhQcqyeKZLLqlIwUJo8UPTCOPfroo10sYAzSv39/m/ghIsSKrVu3Wts/k2I6n4VIlwK5E044IbSpoEgIIUSygRX+aaed5p566qmYvD7Wnayzsha2MwF2y8lm9ySRogCDIIGK9uCDD1rOBHzyySeWO8EHlGpaFrVY/N22bZtVtREOk5VdCFW1NWrUcI0aNbLWc89BBx0U199JpD5MUjy//vqrq1evnlnWIF5kBX59dPlQyc1nls8oX2NXxqSeKnHgM0xLHoKbz1QRIt3A4ozPN5XIQfgaoTkr6KBATOYcTvccg7CLLrrIPCuzg8phjk+/xXJxTghRMMakvpM3GnkUwWyrWHU2UNSDtR489NBDMRVrWbylAIPuOGwthUgHKEQ66aSTXIkSJSw/jtD57FAHpxBCiETw0ksvWSfF888/H5N1JGyXuR5iIbV7924XC1599VX3+eefZ/k92T2JpIFJG5kRJUuWtAUnwBoH8C//77//bKLIAlTNmjWtlT27PAnECBaSjzzySOuoECIacLLmpIn9Q3ZVkIcffrgJYwgUPJfqb0KBEMyCn2lO+FRpLlu2zD355JNx/T2ESGYIlsWrfcSIEVZxTJUuXXH9+vXL9mc452M1EtyEECKvkBvBAiUTJPLP8sP27dvNRmbkyJHun3/+cbGAzjMWVRFD2rVrFzM7qeCYnXwhCi9OOeWUmL6XEPGAeeP48eMth4ZjlWIk5puM+bNCHZxCCCESAYUodM6yloQVUzR566233LBhw+w+1sxHxGBOzVgYG2jGxu+8885e35fdk0gqrrzySgsoK168uH3tuyBotT/ssMPM+5YWdh7PfMDQihRsRxowYIBNMqNRAScEUC3IZwqhIfj5Q0ALwgmViwafPSqtyKTwHT/+M33iiSe6QYMG2f2ePXtm25khRCpDtS2Dpx9++CHD43wd7FIKguUfGUJt2rRx5cuXt2pdRAsWBDIfa0IIEUurJ7on8ztJGjhwoFu9erUtfEbDNioziCmMk5nUNWjQwA0dOjQm3RrDhw937du3D3WFcG5ncVaIdIBj5+qrr3ZnnXWWFcdhM/nLL79YIHxWqINTCCFEvKDgxY+/GOPhPBPtMRjdGS1btrT7ONwE7ZqjCcIEbgsUnJ9//vlJ30mxf6J3QCQGBnf+IPNqIB/cpUuX2n2fCcAAkvuZJ1+EmyFwEIw9YcIE+z4f6oJc1cJJjNbjYADc5s2b3Y8//mgL5yiYwY3nY62CH6vfDjzwQFtcZ0GdjRZobvlfxcquINnxPrUeKq4QGaj2DlYTUtk9depUW2ylVY5FAxYnWKjAwqxYsWJmDUWbHpXjVD7yWgX17yrSE84hlSpVcgsWLAgFyCM08HXHjh2z/BkGJpkX8vx1IWiZIoQQsRYp8lvowtjLd0tS+RZtkQLf4Msvv9zGdvgHM95g/BZtGLswIeb8TYcooogQ6Qzd+KVKlXJr167N8vuM82UjLIQQItYwlsQ+nLVQulhjUfDCHLtVq1ZW+ILV8qOPPupixbRp0+yWtQHWH5O9k0IiRQFk5syZtlhLyxKt6p433njDDhZCroOttlkt4tJ9gaDBLQvAp556qisIoHZih7JixQo7oWQWJPwBHrQiwguev2lmQQIyCxd0plDxnNlnlZ8PihZsCEJMkFmQjFUgZLLB34hJOzZQXDAef/zxDN/nb4wIQRcQHUAEahOmjRiBOs1nmcAjqsX5vPPcFi1aJOz3ESIW4JFOuCqdSFWqVLFjhYU12jyBbJaTTz7ZOiWAxS+OpYoVK5r9AgsEdFfweLRbWoUQIjObNm0yK0au0d6qMa9gU8dYjJDp/L5WVjB+q1Chgo35EFYY58WCsmXLWicI7xOL30OIZOP33393X3/9tRUbCSGEEIli0aJFdj0ix6F3797mVBBtsHjCLYQCQzoIYzWe/O+//6y4F5o2bZoSwdkSKQpgB0WHDh0sRHjVqlV7BcIAC+UEpnrFLStq1aplHRQsgKWrQEGL10cffZRh8xZBhx56qFXmIxbw+zMZDgoIfmOxPC9Q2RwUPzLf990BDOiBfUGsYDvnnHPs9thjj3XpBosDZKNQHekXWDPDourTTz9t9wkHCooUQPfP/fffb5/xLl26WIt5Ov6tRMGlWbNmFhrPoIqwbBbUOAZ8mDYCa7AihM4kFge5ZbGQ4wGBguNMCCFiDZNAQCT156m8wIRyzJgxdp8xQiw6JankxjOY8RhibzQh043OWz92bNu2bVRfX4hk4q677rKxBnMYjifG5ozhmzdvnuhdE0IIUYC59tprbQzJWmcsBArAPYXxHhbLrN/Fivfff9/WD7FOzy7zLdnsnvbZIy+HAldhO3jwYAvLxuvffxD54FKZT1o97UYsyAc911DgqErHMy0dF3SZGBJGyOYFifXr19v3UDX9wr+/pR05Fm1fkcD/hAl5UEShywMhCvh/euECEYUwOpTadARBDfuFzJYL/E2oJmfS8+WXX9pn2/+/fd4FbXZjx45N0J4LkR7Q/cU1g/OPQrSFEJFA5yN+9EzU8J3PK3RG0iFJ8QHCbDRhvEDgYKy6y6hiw5+frjf+FskyURTpSTJcs1kEevvtt61wjrlljRo1rDjCj9VT4XcQQgiRHnAtwu4onuOv7777zgpeYmk/3vX/rf8yRn722WezfA4du6+99pqtibE2FivCvW5LpChAsKBN+zgLtHPnznX169e3x7F2QiXEuokDhG4BqlqCUHGOPRTebG+++WZaWIBwcDCJpV3fh7VxsHghwm8IOokWJMKFw5n/M2JFULzwvxv5Ivg9469HcE46gB0C3UEsSsyaNSuDzx5CDlZZfOb5TPN38b83qnK1atXsM//JJ5+YBZQQIm9osUAIkRfoCKVKjQ6Czz77zISAvPDpp5+aBSbjIMY90axKY4zAeKF27dpu8uTJ1k0bbfjdeQ9sLd966y3rKhEiVqTDNTsdfgchhBCJh2xexnh082KNH6tsBsaoXLPIYIoHe/bsMdcXXBRmzJgRyqvMDL87Y89JkybFtJsx3Ot2aqy8iqiAvQ2LtSzmeoGCSeEVV1xhAoX/gGYWKHzLOVUuKGupLFAgwBCoWLduXZsUU8WDJRA5B2RskDnBATpo0CA7QJOhYyISWHBHVLnmmmvcgAEDzBoJ2yoyNGirXrdunamotJdddNFF5kNPvkMqw+cSxRsBLXMQEP877+WMPRb3fTsb3SVXXXWVnby7deuWkH0XQgghCjLz5s2zsWjx4sVduXLl8pVFwfWc63o0BQrGUIyTGTuwn7EK7j3zzDPN9ooiIgkUQgghhBDxgTUy1gkpGMEqOVaMGDHCisYp+o4Hy5YtM4GC4hrWgLMj2YKzU2f1VeSLJUuWWCALi9gDBw4MPY7/54IFC0LCA63mnmCTDRNHDl7CWFMJfocPPvjABBoq5UuUKOHuvvtuswWiM4SF6+XLl7u+ffua/U8qCRLhwv+c6kKCcBFi8JznBIkHXo8ePUyI4WTJQv27775r3QepBAsSa9asydYigu8Dn3G6JxBwqFT0ntV8FuioQdARQgghRPyYPXu23eJNn9d2d4pNpk6dGhrXRgvGQxR2MHFl/DhlypS9bCXzww8//GCTRw/FFlhzCiGEEEKI+ICrDEUiFCsz3osFCxcuNHcaRBDcPeLB1P83NsZWNScbq2QLzk6/FVmR5UI9VfRApsRZZ50V+h4L00yIvCDhFTYWsqm09x0WkNcQ6ETw448/ukcffdSVLl3aKuafeuops27iQKWdi0VpLIJOOeUUV9Ag4JvOGCr2+Fu8/PLLrnr16haEzmeBTgw8YQmxSxWKFCkSWtxAgOAC4EPO69WrZ98jbwXrJ/z2EK2A37V9+/Z2H/Eq1QQaIYQQIlVh7PnGG2/Yfewo8wpjFl7ryiuvtI6EaEF3BiIKY4fp06e7o446KmqvzTj7wgsvdLVq1bL7QgghhBAiPpDJu3HjxtDXWG6WKVMmJu9F1i2Fs6xTXX/99e7OO+90sWbPnj2W2wpNmzbN8bnJFpwtkaIAgK8aFfJ86JhwBcGfH6sjFmc5KPEsAxZ5CTPD3ilVYkv4HZjs0g3CojWdA6iitFNRrTZ+/Hg7QAnCFv8HrV8ETj/99NN2on7nnXds0syEHwEH3zoW9VngTxV69+5tXTJYeu3evdvsoOiSgZtvvtluEbD8SZvn44mHByF2X0IIIYSIPdhN0tF64IEHWhdBXvjyyy8tJwIY90ULssrosoXRo0dbR2o0YWyNBSsT1p07d0b1tYUQQgghRPaB1ax5YXUf68JcstdYbyOYm6LpMWPGxDQoO+ikQ1YthTYNGzZ0OSG7JxFXmADdc889oWR30uP5sLJgH/QDhqBPGWHEBCy/8MILcTmI8gPB38OGDTPLIn6H1atX2yI0J5znnnvOqtRSOUcjXmB1VaNGDTdu3DgTLIYOHRrKcTj99NMtv4IA7mTn9ttvdxUqVLD9ZeEjWKGJCEHHBOKV93wmmwT/Qbprjj766ITuuxBCCFFQ8F0UjD3yGkb92GOPWZEKY1au/dEA0aBNmzYmJNBteeONN7poQzENRTSLFi1yp512WtRfXwghhBBCZF8owhbLQhHeByeblStXWkEsDibx6lYY+P8s/ps1a5arI06ydVJEz1hVJCXYHOHXTzU51k5//PGHBQB++umnFgaIcEEmBWDv5GHhlg6MZIaMDBbSn3nmGfu96JLgPq1ayS6sJDuFChWyiXm7du0scIew8Xvvvde6DjjRIgRgpZWMnHjiibbPQWGKrgq6iPiso5xzwQiGXxYtWjRBeyuEEEIUbJGifv36eX4NilLo/GzQoEHU9ouqs1mzZtkEb/DgwVF7Xcbj2GwyToVixYpF7bWFEEIIIUTusPZDoQjrRbG0f6cTF/eOAw44wGxDKVCJF4888ojZlHrb/1TqpNhnT6p4+Yg8dRhQnbV161Y3fPhwW3QmAHDSpEnuuOOOs8AW1MPixYvbAcriLgdSbu1AySBO0NJPlwcHHvkK5EtooTm20F0xatQo28j8QBTCFipZxQoPYlzz5s3Nvgyl/JNPPsmQy/Lee+9ZbgmdJPxenNB79uyprgohIuC3334zcfPXX381+zQhhMgJ7Bi5ztIGz3i0YsWKLp1h7ErHCL8vwYy0/AuRKNLhmp0Ov4MQQoj4wBoQYzCyWOMFhdTY51OM07p1a5eM7Nmzx9bBgFBvOj4Sfd2W3VMa8/nnn9stVj233HKLVcMjUCBIvPTSS2b95Lso6JygwpxF52QNDyZXggp+sjOY4GHxRNgNi8oSKGIPIhb+zFhAkWHx4YcfujPOOMNEomQOfaQDhGpN31nhP/PA78OiwcMPP2xfE2j0xBNP2LEihBBCiNjwwQcf2GSRTt+85D1Q9RXtOqtXX33VLV++3MUCJn0UddA9EcuqPSGEEEII8f+DiwyuMRRjY70UL7AyJTctngLFngjHxkG7q2Sxe5JIkcbguU+SPN5n77//fihFHv9eH1DoF2w5cLp3724WT15JSxZQ3O6//37rCnn22WdtYXnt2rXWPZEsLUkFCWwQ+LxgW4AVAi1sJUuWNDEgGYOnsYK49NJL3a233rqXSOHFLWysZs+ebSIYXRXxVNiFEEKIgmr1hB1jXsadd9xxhzv//PNtfBsNyGu77rrr7DURUGIxUUUEocgGYUYIIYQQQsQe1hFx0ihfvnzMC0UodmG90osF8bahv+OOO8xF5Msvvwzr+d7qKZlECtk9FQBYOOaApNqdCRhh0hwsWD3hi4bFzcKFCy3hPpnYtWuXBXjT3YF1VadOnWwhvHDhwoneNRGAdq1BgwaFgqoRu1jsT5aTnAc7CewVCA7CAgpvQCB3A5szuolQ2al2VKaJEJEh2wUhRCRUqVLFLV261I0bN86yriJtn6cbmPMNVo41a9bM93iTnAjGCXRXIiTsv3/+Y/uYIPKaTBaFSCbS4ZqdDr+DEEKI+F0zcNagaCRW4DhCsQu2SRTKhpMHEU1+/fVXcz9BeKAwt3bt2rn+DG46FO4y7mV9OJbI7qkA888//7jXX389ZNvEfQQKbJ8I0mYBlg8uFeMIFHQjcDAlC//++6+bOHGitcXT/XH55Zdb5wRV+xIokg9ONIRS+yrEHj16WGfFmDFj7LOYLFSoUME+P9hLULmJ8AVDhgwxZZ0wSwQLIYQQQsSObdu2uWXLltn9evXqRfzzTDARAChkya9AAXfffbeJCWRkkHcWDYFi8+bNrlatWu766693M2bMyPfrCSGEEEKI8KAIFYtyD4visRQoKIK95JJLTKCgQBy7/USsyy1evNjdd999NgaNpJMimQqMJVKkIVOnTjV7G5QzGmWYIJFeTweFPzCnTJniPvroo1A120EHHeSSAXIOzjnnHHfTTTfZ7WeffWYnFzo+RHJzwgknWED76tWrzU6MrApO0O+8845LBrCT8CdrKi+7du1q9/nsYyNGZwV2ZxMmTLCLzAMPPGAZLkIIIYSIHoxJGZ+Sa0VHRF6g6zEahQUICEOHDrX7XP+jNd5kTNSkSRN35plnWneGEEIIIYSIzziTMSJ237HKGgtCZ8DFF1/svvjiCxtHUiSOYJCowtyHHnoobGcQL1Ikk42+RIo0tXdCKaxTp07ow8niLGKEBxGgbNmydp8AmURDqz02QXR3sFiMx/D06dND+yhSB7ooqEREBKNzARuxLl26uD///DPRu2YdFHDkkUda4LqHTgpECcBWbMSIEZaDQlZFMnWDCCGEEOmSR1G/fv2If5YigmhBi7sPM6QlnwKfaBZGULhBoYYyKIQQQggh4gNrn4zvcPhg0T6WYEHK+JEOYezD586dm5AC6127duXp5/wanTopRExp3769+aFha7Nu3bosn8PC68aNG+0+YkYiwZOYrgkCvbENIrAwmeynRN7gf0rHAnkVtNudffbZ7t13303oPvnPOsdG5hMxdg9cYNhXRBVsH7CwojNJCCGEEPmHDoq8ihS7d++2ogI6hf0YNj8MGzbMCnvOPfdcqzrLL1irYk0aDEtMVCWdEEIIIURBYefOnWYb78dfWI9ThBrLrFHGe1dccYV77733rAiW8W25cuVcvNm8ebPlSmAx9csvv0T0s+qkEHGD9nUmSnRPeO99FowJNGaSR5U7C7VHHXVUzNXFnNQ+/NLonmDBGD9gvo6GF7BIDggnwlZpxYoVVkmIDdQdd9yRsK4Kujw4gSPS4dcHhMZzQWFfX331VQu4JFy7c+fO9v3+/fuHFhyEEEIIkXfWrFnjNmzY4A488EAbE0TC5MmTTQjAVvK4447L9748/PDDFmyItSP7k9/JMYUQ99xzT4ZOTSGEEEIIEdusMxwzyLP1xFKcCL7HzTffbGuqc+bMcRUrVnSJoEuXLm7r1q1u5cqV7vDDD4/oZ5VJIWIKk7ZFixa5b775JrTA2q1bN/ug0oZ0zTXXWNUY4sVbb71l37/ooousJT3e0A5VqVIlq7Lv27ev2Tvh2yvSE0LQsTxgMWDUqFEmjKE4xxsuJD6XgmMAv0IuaBwbhLMHQaxAUf7kk0/cvHnz4r6vQgghRLrhuygIvI6kaotiAcavwBg3GllqjH+xeTr99NPz/VoHH3ywTRJPPfVUy4ITQgghhBCxB7cO1pbGjx8flU7bSGDNCPea8847zyWC2bNnu5deeskKbnEE4TYSZPckYgoV34gOLMLSPVG9evWQmkhgNgHUfJ/Kdi9ShJv6Hs3uCbzhsHNigklHB1+TQyHSG06YfB7pqsCvjwUKPovx7qoIihSEWfJZvOyyyzKEd9JlwffIdgFO+EIIIYTIH3m1emIStmrVKut0zE9gNkU7ZE7FYuzBfrGPxYoVi/prCyGEEEKIvbn88sutEBahAteMWELnbIcOHSzXzIPVUyL4888/bV98AU9eHHJk9yRiBkGCL774ot0njwIBACUxqKQ1atTIKsexU/JV7IgW8eLLL78031+q6fv06WPZE+XLl4/b+4vk6qqgIpKAatriaE2LF/4zTxYKohmteRMnTsygHrPAwEn/+++/t69nzpxpXn9CCCGEyBt///13qEgmUpHCd1Hceuut+ZoMUiyBR3Hjxo1dfmGcgODBhNWTTJM8IYQQQoh0ZMGCBSFbez8+POOMM2L6noz7EERGjhxpa6v//fefSyT9+vVz69evN2EGd5q8oE4KETNYZGWS5DsS7r33XvPfJ/Q3GJ6C3Q2Ls3wYqWaP9YEcrICjBYowG6yeevbsqe6JAgziGRYLdFXQ5VOtWjU3ffr0uLw3VgxsfBYR66jKDHoWsk90VbDwAHxOee7YsWPjsn9CCCFEOsL4j06Go48+2gKww4VxK3amFNlgqZRXyJ3ynZHdu3d3+aVFixYmeHArhBBCCCFiDw4xFLtg2U0BTDwgz/fSSy+1jmDWr5544omE2OZ76NzFOh+GDh1qa1p5QZ0UIibg00t7E3CQsgBLcB85D82aNbPw7KBQEc88CvbtscceM6URex+6JyKZmIr0pkyZMuYhyAm/adOmNtmPhyIdtHwKflYJ9aazY/78+a5Tp06ubNmyoQvfmDFjTKwQQgghROQsXLgwT+PPxx9/3G6vu+46V6RIkTy9908//eTatGlj97GaJOQ6v9x+++0W4J0f4UQIIYQQQoTP2Wefbc4xsbZ28vz666/u4osvtnEseb9z586NqyNNZlgvw2L0n3/+sc5gujvyioKzRUx4++23zUoJRY8OhSFDhtiHjOpwDtzKlStnaI2PVx4FnR0tW7a0inlEk5dffjnk8S+EB9V28uTJ7sEHH7TuBYQ1Ki3jLVJwvHjLhg8//NA6KJ588snQ9wlhoiNICCGEEPkTKcJl06ZN1hUM+REDbrvtNvfDDz+4cuXKuYceeshFayzxzTffWIaVEEIIIYSIPaxv4n5Bd2ys3Vm2bNniLrzwQsssPeqoo8xmiuzfRPLYY49ZoS/rv3RR5AfZPYmY4LsoaDfHl8z77BII/Mknn5hnmgcPfg6wWIsUHMxMQsnJmDRpknv44YcjTppPN8jhYCE8qy2RSmwywN+AAPUZM2aYEMCJn2yVWOE/+wS3o4wHT/gIF/fdd599XbduXevw8ASPJSGEEEKEB12JTKiAyV64kF1FpdgFF1xgnY55gUIIxqOMQ7FHPfjgg11eYTLo86qSrT1eCCGEECLdoCCEdZng+lCpUqUyWHbHivbt29ua6vHHH2/rRAgkiS5Q7/7/LEtZuzrllFPy9XqyexJR58cffwxVmBEWA0G7nEKFCmXoXliyZIlVi59wwglmtRML8A4mIJvKcw6i5s2bx+R9Ug06Sm655RZXtWpVE3HYCHAkFyReeQzJTpMmTcymDOGAC4Bf0Ig22EWQ2cKxEnwPTs6ZBSNO/l5Zfv3112MqngghhBDpmkdBtRZ5FOHmoTFx8hkSnTt3ztP7InDQZQzcVqpUyeWV4cOHmxUk9qWx7vgUQgghhBD/t85JB4Nf74wnFKmSf0GhNzZTieT777831xEsyClQb9u2bb5fU50UIurgk88EjA8VYSnfffedK1++vJszZ06Wz/f2NlSxxUJ5pGuCajdsppiQJlppTCb4/7AIfuCBB5pIxMZjBEEWLlw40buXNPD5RejCkqF27doWjBQvy6cgP//8s7v55put+nPdunXmX03ey/r162OyP0IIIUS6Wz0x/gw3j4Ix5bZt21yxYsXy7LfLGIvQbTKn6NjMD/gRMw6g4IQWeyGEEEIIEVvGjh1rGabcxoMNGzaE7p944omWQVGiRAmXaNq3b29CBcU+uOlEYz1XnRQi6gwbNsxu/cI3dk+ff/65eftnFUDsJ4nRtnoidJj3vP76693VV19t78MBLUReOOaYY9y8efMs5JLFADpO+IxFE98x4Y+JzHTs2NGNHz/eclVo72Ox5Ouvv47IpkIIIYQQkedRcM33uVBcj/NjGXryySdb+HZ+fYvpwKTlv1u3bvl6HSGEEEIIkTUUiZIR6qEA+tVXX7XxXKyhg5fx3nPPPeeSjUGDBlk3L0460SqWUXC2iCocuN4Xt2/fvpY0/8QTT7iuXbvaQZW5Ug2bJ6x0IJoZCEwksTJ64IEHLHtiwoQJ+fL7FQJYTMCLGv9nFhdQjrMS3vKKFxuWL1/ufvnll72+379/f+sEwu4Jlfq4445za9euNeEkq+cLIYQQIuc8inDHn1x3KRRo3bq1bZGC5SgWjfnlvffeM2HCE7RQFUIIIYQQ0WPHjh3ukksuMXeWoFARa7BQYh21Xbt2Nm7Nzm0jkZx22mnWHRxN2/5ktHvaP9E7IPKOD/elNadDhw6hDxeLqllBHgXB2XRcEDQTDVg0vv3220OLyVS7ifCJR9hPqsNnClssFikQ2mjzi0YIO0r86aef7r766itbPGnUqFGG76PYc8z4/xFiHB6AK1assM4lPvNCCCGEiH4eBRCUnRfLR67X+BbPnj3bPfLII+7ee+91eWH16tU2NmCsSydIXoO7hRBCCCFE7tAh4C3Ryd+NB7///ru77rrr3KxZs+xriq99nlmi+eijjywT9corr4zJ+qHsnkTU+O2330Lq3g033GAf3tzwz6eKLRofbtRGJoGEyZCNIYEicuh+oRtmzZo1id6VpAbLJbqD2AgJQt2OBr6iMzulPHiccMxhZwZ4AMbroimEEEIUtDyK/PDss8+aQHHQQQe5Jk2a5Pl1sC0966yzTFgpXbp0VPdRCCGEEEL8H97am3Ei4zi6KDIXkcYCOm+xUEKgYNw4efJk16tXr6QoJt64caNr0KCBu+qqq9zMmTNj8h7J2EkhkSJFGT58uFV2UZVWtWpV21D/cvLtj2YeBe+N7c0zzzxj9k7cF3kLYYRzzjkn0buS9DRv3ty9+OKLbtq0afZZJzA+v/hjIbtcCs+UKVOs+wibB7o4fAaLEEIIIaKbR9G9e3frnsxLAceWLVtc586d7X6fPn3y1RJ/5JFHWljia6+9llQVZkIIIYQQ6QBrOljHM2bzsOZSrly5mL/39u3bzd4bpwysvRmv4pyRLJx00knuiiuusE7eaGcKe9RJIaLG22+/bbdDhgyxSnwWTrGuyU7xwybngw8+iEoeBQu05ANMnDjRKtvp5BDhQWZIcEGc6jz+f7SYidyhzY2goJdfftnddNNN1s0Ty1yKoIpN5wSfdx/kicK/devWfL2/EEIIkc5Emkfxxx9/mJ0iRTDr1q2LeHx622232fW8UqVKNunNy2Qt2F1JxtpRRx0V8esIIYQQQoicmT9/vtnV9+vXz2w240nhwoXdzTff7M4++2yz+T7//PNdMrHffvuZgwfrh7HKRFNwtogahAG+8cYb7tprr3X33HOPqX85ee4iUJBHQes6YkZeYQLYpUsX99RTT9kEkup2IeJJ48aN3QsvvGCteG3bts1XmDbqNB0SfK7feeedbJ9HVSa2ZlxEEehY/GAhZeDAgXl+byGEECLdiTSPgkouxriMNevXrx/Re1HEMGPGDPMxZozKbSQwnqDwpm7dum7cuHER/awQQgghhIgMQrJZz8Qxo2zZsjF/P4q3g7bdDz74oFu8eLE79dRTXTLw119/2RqTtzenCB2L+FghuycRFRAcqCjnA+UDhM8888wcP1jRyKNgIZcTCJXko0ePtkp2IRIBvnx08rCIQBZKTjZn+c2lgAMOOMC1a9fOArM5fghT8rZrdMIIIYQQIv95FFxjq1ev7gYPHhxRfgW5UXRRwH333WdZEpGCSFGoUCETN0qUKBHxzwshhBBCiOxh3QZ3Cr84Dv3797f1nVhDAPUFF1xgRa8UcAPrqclidbRjxw7XsGFDW3ON11qr7J5Evvn4448tAwK7m969e7vNmzdHPEnMK48++qhtWExRwS5EIiHE+umnn7YOB46F/IoUueVSBC+s2K0hWOB1za0QQggh8p9HkVdog6fLl4q8Hj165Ok1ECcYV3z00Uf5Gi8LIYQQQoi96dq1q3Wt4k6Rn0LTSHn11Vct22Hp0qXuq6++ylPuWSzBqpQO4oULF1rnRIcOHeLyvuqkEPkOlSE4BeWRBPqVK1e68847z+3evTtXdcznUeQ1cIWDGjupnj17uk6dOuXpNYSINq1atXIDBgywNj3CrfOCXzjBMu3nn3/O9fktWrSw9+S4QyQkWFMIIYQQ2edRhLPoTycE3ZHr16/P0/s1adLEzZ49O+LiASarfqJMJwfdyUIIIYQQIrpcfvnlNk4jByJeY1E6Ey677DJb66lSpYoVfpcvX94lC+Scsk7Lmu1RRx3lFixY4GrUqBHz92Xsq0wKkS9mzpzpNmzYYCF+BMvQDn/77bfnOhnjw86CKv77ecmj+Pzzz911111nJ5S+ffvm4zcQIvrcfffdJhwQekT1Y6SQ01K6dOlccyk8CIQcgxx3P/zwg4VuCyGEECLrPAqCCXNb+P/pp5+siwEbRSZr4cLkKugtHCn4EGMNRfbUv//+m+fXEUIIIYQQWY/xggWi33zzjXVU5NWGPlw2bdrkateuHcoRpdia9Z5ixYq5ZIGiVwp5KJg97rjjrJOicuXKcRNwfL6r7J5EniALAm699Vb7IHOAcXDnRn7yKLZv326ebQTJPPvssxH5AwsRD/hMjxkzxtRwqijzkhERTi6Fp3Xr1m7t2rWuQYMG9vVjjz1mx2Q82xWFEEKIdMqjIOiagppzzz03oskZRTsELRKanRcoNCBEkQmzruNCCCGEENGBQhJs4itUqJChAIXi6XjQpk0b6+jFPumll14y2/pksur+7LPPXLVq1dzq1atdkSJFbH33rDxkquWVYC6IOilExKCs4YPPJA/B4I8//rDFWfxzY+UHjL3UNddcY/5odHEcdthhed5/IWIJnQ0zZsywKkhC5X0QUixyKQjRPvnkky3UCLCZwgfbW1oIIYQQwoW6EwkpzAmu3aNGjbL7eBSHC7anZKVRUJPXSScWU3PmzHGTJ08Oa0wthBBCCCFyh/Eda5h0C8yfPz/u7z906FArlMFtIx7B3JHA2BOBgjDvkiVL2pi5VKlScd0Hb/XEGnMyiTcSKVKsi4Iqr1tuucUqucNVx5YsWZInkYIujUWLFll1WvHixfOw10LEDxR5AuXxGGzXrl1EFZHeK/uTTz6xxY5w8J0UvkXOH6NCCCFEQYdrI1ZK3iYxJ+bOnWudDGQ8XXvttWFPfBkPU1DTtGlT6/oNFzo2+DnPxRdf7A499NCwf14IIYQQQuQMRc4vvviie+ONN1zz5s1j/n6ffvqp2YZ6WPynCDUvlvexZNiwYe7SSy91O3bssHUo7PkpRI833333nd0yBo619VYkSKRIAWiNmjRpkt33C6+E/IXD+++/b5MxKr85SMMF+xyUR7ZIxQ0hEgVBSHhajx8/3j3xxBMR5VKUKVPGji/U/nDgohI8mdPJQWaMEEIIUdBZtWqV+/XXX23ik1s44siRI+22ZcuWYXvijhgxwn344YfuiCOOiKhIwBf7EKD422+/hf1zQgghhBAi5/WRG2+80U2bNi30GPZFdevWjXlhzODBg80ulMzecCy8EwEFMh07drR9ZJ9btWplAs7RRx+dkP0ZNGiQ3V5yySUumZBIkQJwkBFqcuyxx9rX+JVhaRMOQauncNUxWo1of6flnop0IVIJQrS7devm7rrrLqvOjEUuBeCB7f0UjznmGKvqZNFECCGEKOi89957dnv++efnaKO0fv1699prr9n9cMecBCH26NHD7g8YMCAib+Mvv/zSfInnzZtnnZdCCCGEECL/YN1Jji15nb///ntc3pNxJOHYuMBg+Y3bxRlnnOGSkR9//NHsRVmXJcyb4tpE2Sx9/vnnNh6GXr16uWRCIkUKQC4E9k544QMtTOEGWAdDC8OBSnDa5qtXr27BMkKkIg8//LApws2aNQu768iLFFichQMXl9GjR9t9upWADo6ghYQQQghREPE5TTVq1MjxeWQ60d1AlV3p0qXDem0molTrIYAQyBgJdE3SMTl27Fh1CgshhBBCRIkuXbrYWiIW3LHOs2XsOG7cOOvUYP2Gzl3WZl599VV33HHHuWSEohoccqZPn+7uvvvuhFosPfjgg/Y3pPi9fPnyLpnYZ08kxu0iYaAQkgtBNdrPP/8c1kFPHgX+vnRhsFCbm90TH4V69eq5NWvWWHUZ1eFCpCrYTNDyR/sciyX77bdfjs///vvvzfaJi8VPP/3kChcunOt7IE7wPILsjzrqKDs2CUHC31qIggS2KYUKFbLjDvsVIUTBBm9dwgBpY2dsmRWMT0855RS7/lLNFU6oIV2LtMojMmD3VKFChRjsvRDpTTpcs9PhdxBCiFSG8dszzzzjunfvHvcF95tuuslNnDjR7lNgPWHCBHfaaae5ZIIxK2IAtqdNmjRxycIXX3zhypUrZ+u/y5cvj9tYOtzrtjopkhwS16kW80GC55xzTtiqJHkUTADJowjngEV5XLBggU38JFCIVIcTIJ0NBMc//vjjuT7/hBNOiDiXgva8qlWr2n2OmXPPPTdXMUQIIYRIZwjiQ6Cg65duh+zA5okJLnam4QZfc40lw2LdunVhT6roEkYooeBHCCGEEELkj507d1oeKPabdMXGm1q1apnTTP/+/a2TItkECkA46dOnj2WukTOcLDz4/7ooLr/88qQs9pFIkcRQpU0l2nnnnWcLreG0zec1j4KJGy1HtM1nV/EmRKpRrVo1s4XAZ2/16tW5Pt9bP/hjJxz8MUm3Eif6WAdDCSGEEKmQR8HE5/DDD8/2eWPGjLHbm2++OWJPXvLZwoWsi/nz51tgthBCCCGEyB8HH3yw69y5s1kF1axZM+bvR8EJRdjBTgo6Au65556kLRK94YYbzHZ/6NChoXzhRLNmzRr3wgsv2P3evXu7ZEQiRRIze/ZsC1fBegYrGYjkBBAUKXKCZPnWrVubbc2jjz6az70WIrno16+fiX0o2LnlReRHpOBCXbRo0XzurRBCCJEeeRS032fHxo0bzR4R2rRpk+trUgjQqFEjm1xFChV+5FTRKSyEEEIIISIHS3jEAs8dd9xh1ptYB8XSMolM3jPPPNNsQX/55Rd7nCLsEiVKuGRi+/btZn3l80rp9HjrrbdMrEgWHnroIVv/veyyy8ylJxmRSJHEPPfcc6HgbLzuc5vwZc6j8N0XtELlxKhRo9ybb75pkzd5eop045BDDrFQpWXLlrnHHnssLJFi5cqVdpEJV6TYvHmz+/33303R5+cIbBJCCCEKcidFTt2/tL1jkch19/TTT8/x9WhJJ4cCe6g777wz4v2h64LCH/IvhBBCCCFEZFB9j4UnC+4IB4CtJ4WaseLTTz+1sSRjQCzwixUrZrkGyQhjVLpKsJ/C4smTyHDszKxdu9Y9//zzSd1FARIpkhQUwlmzZtn9UqVK2W3p0qXDbhPyeRRMzHJSGL/55hvXrVs3d+utt8qmRqQt5EZg+8TJ+PPPP8/2eccff7wrW7ZsRLkUBx10kAVu02b4ww8/2H1sn/DZFkIIIQoSTCI/+eSTXAtrqN6imMaPdXNi6tSpFsDN9TacjCl48cUXQ8U6QgghhBAi75A/gTXn0Ucfbbm5sc676Nmzp40VP/jgA7MOpZuCTt1kKzhh/Yf8YLp9KVxl7TaZQrI9dE+wHobA1LBhQysUSlYkUiQp06ZNc7t27bKTAF5rscij4IPaqlUrC/yVzZNIdx544AFXvHjxXG2f8mL55EFEJLSJY2vy5Mn52l8hhBAi1WAyyTUQm8WTTz451+cfdthhOX7/jz/+sEkV4DucW9cF0DnpfYCXL18ewd4LIYQQQgiKNoOZnqxxMKZinTK3sVt+oFMCaydsiVizueKKK2w/OnToYJ0byfT3eeaZZ6zAdcqUKbZvZPzyN0LQSUYL9FmzZpnQxN82mUme/7LIwEsvvWS327Ztc9OnT49YpCDhHpigZcfIkSNtIRabp5yCDYVIF9un8ePHu48++sgNGjQo2+f5Y8YfQ+HAhZPAebqW/MXcH8NCCCFEQcujyGnMSku89xTOjYcffth99913Jnrce++9Yf0MnccNGjSwSrGzzz47zD0XQgghhBAUiOAMQSdDUKigUCTW9kXYz5933nnupJNOsnVQtnCKXuLJqlWrXO3atS3XF1v+ihUruqVLl7qBAwe6//3vfy7ZePnll0MWVFj9V6hQwSUz+yd6B0TWJwVfxc2CKWHZBAVecMEFYbdH+Rb37ESKdevWWUVau3btXJ06daK490IkL/go4md9//33W1jQGWecsddz/HGGXQWLKEceeWSur0uw/fz58+0+lQXkU2C5hshIN5QQQghREMhNpNiyZYtNfKnkYix6wgkn5BiW7YsKnnjiCSs2CAcKb5jU0pGcTFV3QgghhBDJDgvthD/TGUtYNt0CsQKL+mHDhlkodtGiRe2xJ5980saJyVZI/euvv9pi/9ChQ802iXFp3759LUB8//2Tc2l91apVoeDuTp06uZtvvtklOxq5JyG0DhHwSwgvafC05tBCFG56PQIFJxUmfiVLlszyObQiFS5c2NQ+IQqa7RMVmVxMsoJMCaoEOA79YktucKwRQkSXBlkUZ511lv383Llzo7z3QgghRHLCRNMXyWSXR7Fp0yZXrlw5qzrLSaAAxsKMZy+55BLXuHHjHJ/LNXfx4sWhrxEnwhU1hBBCCCEKMtu3bw9ZYtMt8fTTT1t3wPXXXx+z96TIk45XbD2DazMUeSaTQIFYM2HCBMuboGgGgYLcCQQA1lWTVaDYvn27FQZRQFurVq0c3USSCYkUSQiV2LfddptZ0+SlnSpo9ZTVzzOBpMIM8SOZDn4h4sHBBx/sHnnkETdv3jy3YMGCqFk+XXfdddYSeeihh5rFhLe0EEIIIQoCdCDSDUwHIkJEVhDUx/NeffXVXF9vyJAhrn///nab23iY6zrCCGNbIURqwXHOMd6lS5dE74oQQhQ4Zs+ebeO2AQMGhB4rUqSIFV7GgvXr17umTZuaXTZ2UuR6sn5CwUkyMmnSJMs1/fHHH02omDNnjpsxY4blnSYru3fvds2bN3dff/21Fei++OKL7oADDnCpgESKJIT29nHjxrkdO3bYRI7gbNS6cHn77bftNit7KA58PH0Jo2nRokVU91uIVIEAJrwOORayuhj6Y8cfS5Fy6aWX2u3rr79uyrsQQgiR7vjuQ8SCnGyWWIzEJjE3DjroILMmZUIYTrUYHH/88RHtsxAisVCpO3r06JgthgkhhMh9DPXDDz9YpqbvpogFFLJgu419FEXT++23n+vcubNZ27dq1SrmeReRLvJ7rrnmGitGRVD/9NNP3cUXX+ySmR07drhGjRq5N954w6y7Zs6c6Y455hiXKiRnX0oBZu3atZZcT+sTiiYnDKq9abcimCWcg8m3u2eVR8EHlbyLV155xU4KQhREuABykaHtberUqe7qq6/O8H1/7GDfxEk+nI6jrVu3mkJNjgXHFu/BxUF+2EIIIQoC7733Xo5WTwj/TPLoGM6JDz74wFWqVCmiii9a2PEzJntKCJEaYEGBlciYMWPcgw8+mOjdEUKIAkNwjQNHCF95H0vrIrIcsN4G1mHInqB4OpkgCLtXr15mu798+XLLxmBDUE+FdZ2tW7daV8qyZcvM4QMxKNWKAJL/r1zAQL1EoOADxcmCKjLUL7zawoFF1b/++st83DIH3FDRTeU4k0cWT4UoyFx00UXmc92jRw/z0Q5yyimnuGLFilkHEwHY4YCg2LFjR/fQQw/Z4godGr/99luM9l4IIYRIHoI5TlmFZhM2yDWXHIpvvvkm29f59ttvbeJaoUIFm2jlxM6dOzN0Q0qgECK1wN6Y7uO6devm+txdu3bZuDq4CSGEiHwRHkeVatWq2XkVKK4kUBlb7Gjz559/hu7ffvvtNkZkzZNC7GQTKIACGfbv888/t6JxTyoIFOvXr7e1XgQK1oPffPNNV79+fZdqJP9fuoCBPQwQaE1IIJ72DMKoPAsHb09Ts2bNvQ4kwrdXrFhhXnPJ1EolRKLAwxp7tWeeeWav7/luinAtnwipJ6QTkfDkk082/z9a64QQQoh0B+Hh+++/t8kduROZodOQ6yNFAHjjZgcBhIgP+BPn1JpOEQF+xjfeeKO9rhAitZg8ebL7+OOPbSweDjyvUKFCoa1o0aIx30chhEg3GD/hrsIiPA4rsXSIwa2CNRVvf00h9jvvvGOdr8myHklHyciRI0P7SLfviBEjbIGf0OlUYcWKFSY8sbbFWJvu5ipVqrhURCJFEoEY4a2aaNHxIgPWMeEqd77VHpEiCO1bPXv2dJdddlm2bfhCFDSo1KRjqW/fvhlU/mAlqD+mcoPj1LfS4VVIkBItjARCsXAjhBBCpCu+65CiGgT7zPhiACr1spuYLlq0yKrXGPNy/cxpAvvhhx+6uXPnmmUjEzIhROqwceNG8yF//vnnw67c7d69u3Vk+Y3XEEIIEV4WhIcCkIkTJ9q6YyyyFbZt2+a6dOliQdyM0XB6CdeZIt5rr9gMUjiD3f60adNC36MIhq7eVGDPnj0mqtBNvGXLFutO4X9bunRpl6pIpEgiaJNHwcNmJqcqs+zgZ/2CauZWe7w+qXJ7+OGHo7a/QqQD/fr1cz/99JMtiATxx9CSJUv2soPKDm/LRuA9iytkyWDfRsWAEEIIka6QIwFVq1bd63urV6+27yPm33DDDdlW9rFoCbfeemuu/rm8D9dXJtqp5rUrREGHRasff/zRRE38z9kQKRmLc5/zQWawQD7iiCMybEIIIXKGcRLri74YGrDfPO+886L6PnS14gZz2mmnuSFDhtj6Ce/DukgyFUmTH0ouBn8Tsiew7C5VqpR1eaQa27dvd1deeaVZJ2LdRaE7LiC4eqQyEimSCOyYfMsRtGvXzp1xxhnWIh8OX375pX1QqWCrWLFihlAyFmJpiU9G3zchEkmJEiVsQYQgbY4fD+pz4cKF7YJLaFI4cLzCF198Ybc+eOq5556Lyb4LIYQQyYCvkssqF2LcuHF2i/c8mRRZgajPRPbII48MhSqGky2FlYAQIrWoU6eOdR1jT+E3bOII0eY+gqYQQoj8g6UT3Q2EVscK8sROP/10d88991inG4WbWEqR6VC+fHmXDPzwww/uvvvus2Lw+++/38SKMmXKWEcf1lcs8KcSb7/9tv2dX375ZbNaHTx4sHv11VfdUUcd5VIdiRRJBAEn4FtzPvvsMztggqGAOeEDC1FF+aB6qEohIAdLGyHE3mCF9s8//1heiwe7Ca/6+2MrN6gcAPIoAE/tYIWpEEIIkW5gl4jAkFUnBZV0VPF5q6esYIzao0cPu49AkV0WBRNKXoMKbCFE6nL44Ydb4Vxwo4qVoE8V1AkhRN6hEy2Y1TVo0CD32GOPuWeffTZm70kGwkknnWS348ePt245LK+TgXXr1pmdE50TZBsholBYSi4S661Yf6eSMP7LL79Y5wSFOt999511gbDWhMVWsuR85BeJFEkCVk18yOChhx7KsNDpFz5zw1s9BdupaPuh3ap169Z2YAoh9ub444+3k/2oUaNCnUzBYyncXIqgSIG4eNddd9nXdGgQBCqEEEKkY5ENQj8T1MxhtnPmzLHqteOOO846KbLzBabSDv9iuoizo3379jb5xSs43AIeIYQQQoiCAIvuFIv4NQjAGaJr164hh4dosGDBAus8YPwGLI7j/oKzy0033ZQUi/5Lly511157rXV4EIzNuijdvjNnznQrV650zZo1S4r9DJc9e/aYOwcF7WRQ8HWrVq1MEMI6MZ2QSJEkULWNykeLzgUXXGDhNj5sN1yRwld7B/MosJCi4sz7/AohsqZjx4523PmKz+CxxLEVzoIIYdlcpHkdjru6deuaAMLiDRcQIYQQIt3w3YJM/jJXcfnAbLIogl2+QSiiefPNN82SILvnAO352JlSfJMu1WJCpDIs+kQLjv8nnngiaq8nhBAFja1bt9ri/KRJk8ziKRbjPez6WOPAyonxmAcbpYMPPtglS7cBa6qshVIMTkA41xhyORo3bmxrr6nE559/bn93xtKsMWFTxbh57Nix7rDDDnPpRmr9d9IYDh5aXKkyQ9FDsAA8xcLxFaNKjeptJm2+1Z5FVU4cBNakcrq7EPGA6k+Ch7BH43iESpUquQMPPNAuBr6zKScI9fNVpP54rFatWkTdGEIIIUQq5lFktnri2knxTU5WTx6ul94iMTuYlNG1kW4VY0KkCixKUSVLnhuC4v/+9z8LsL7wwgvNCWDz5s2J3kUhhChQBDM1a9WqZV0Dq1atsrXFaEE+J4v7jPNYHGd9pFOnTu6WW25xyQAdHdg3ecg3a9OmjS3qs+909XKdSrUClw0bNli3BN3Gb731lolAXGuxWOV/na5IpEgS+JChSNKilRerpyVLltgtrfKFChUKLYp+/PHH6qIQIkw4VtasWePmzp1rX3MhQKgIHmOR5lJQ9Ul7ZSx9IIUQQohEQEFMdiIFbel0ElapUsX8fzPDtRYP3eAEOzNr1641+wBPqlW/CZEOzJgxw3yvWSxhTEs46vTp0+0YJvSexZ/58+ebeIFlG9W8QgghYtstcOONN9oCNjkLHs7B2G9GK9/immuuseKQWbNm2RiM6wDrJRRDn3DCCS7RkL/Btad58+ahjF+g8BSHjAoVKrhU46effjKLLqyqxo0bZwW0V1xxhXVUEP6NSJTOaKSfJB9C0tnxdvOWMpGKFB9++GEoNDt4YNJBUb9+/ZjstxDpBl0PiBLB1kUWV4LHWKQiBdWjHNcIkOvXr4/JfgshhBCJ4Ntvv7VuXqqqgx0OXPfIj8iuiwLx4o477rDr7aOPPprla//++++uSZMmrnLlylZBJoRIDAMHDnSDBw92mzZtMnuJW2+91V122WVWYMcCFoH3HKOMfalgRaAUQggROyimxH5py5Ytbt68eTF5DxxeWBCnA4GAaRbJuQYkMusW4cTb3MMhhxxizjF02wbFmlTrmgDs/u+9914TXbjm7t692wKyKQaiMABr8YKARIokAIsYj1cj8ypS+AVVJoxUvRAGrKozIcKDi9ntt99ulWHffPNNVESKIkWK2MUG0TAdPQNFcjJ8+PCQNyjidW6fX6pxuF6ceOKJdk2iYvL111+P2/4KIVIT30VBpRoTRQ+t6J9++qmdTwgnzMzo0aPd6tWrzY6AquzsquP4/qGHHmqTTyFE4o5zLIlzm1OefPLJrn///iZACiGEiH5hiC9qZo5HMQhCxVVXXRWV18cmio6EYAcr9kKM555//vmEWshjIfrII4/YWkvNmjVtXz0ESfvchlSEdacOHTrY3H3AgAFux44dNq7Gpgp7LTLfChLRi3gXecafBPDi9X68+I8BH9TcoP0ns0jBCYt23BYtWsRwz4VIP66++mqzfaJK4MEHHwx1J+FniJqdW3sdFxTs22jP8/A6QsQLQsJoER01apR9fgmiJDCMa81xxx231/P5XNerV8++N3XqVFtkYBBMNaQQQuREdlZPJUuWtLHoxo0b98pW+/nnny0EG6jAzu5cw5gYCxm6EBFQhRBCCCEKIn379rU1hRdffNGsf8BnX+YXHB/69evnXnrpJRNBglbVieyaYJ2TLr2nnnrKCrD//vtve7xw4cLuq6++ClmJko2UavB3RmAaOnSo/U/pEIHzzz/fde/e3TVq1KjAFptLpEgCUP0g6NdLqw+EMynjAKW1CTX1zDPPtIN5zJgxttgaTui2EOL/hxDA66+/3j3zzDOuT58+1m7HhRDP7JUrV7pzzz03x5+n3ZAtyKBBg8wTkS6NZAmYEunL448/bp8zb7GCWPHaa6/ZZ5qunszwOJ/vxYsXm2VLuAK5EEJkJ1LQOUjAblYwyd62bZvlqLVt23av7//55592LQbOSUHRXwgRfyh8iGQMIoQQIrqwQI9V5htvvBESKfILRZiIEwgAnqZNm7q7777bJRJcYSZMmGBrmmSTeSjIpvOfdc5g924qsWvXLisoRJwIZmhg0Y84cWEKBnxHG4kUCeaPP/4wWw4oW7ZshgMTjj/++Fxfw3dR4KXPZI6WIKxmCFkRQkQOC7y0DbKwe/nll9sFkXY7jrXcRIqsYDGGNslXXnnFvHt9uL0Q0YauiI8++sgGOR6qMPCN9ouJmeFzyQIjg76ZM2da9TK+o1iw4EWa3QCLzfPbb7/F4LcRQiQz2DGtWLHC7ofbik5hDRMzeOyxx6xaL8jmzZutA+yuu+5ynTp1KvATNSGSARaygnz88ce2WOatPwhRZbzAXFQIIUT+wVmFMZIPwe7Ro4fN17DeiwYUklBEGRQnevfu7c466yyXCLimzJ4924rnXn31Vfvad0ngDsP6TCqGYHu4Tj799NPWZbx161Z7DEtU5twUslasWDHRu5g0FMz+kSSCRU8vMvhOClp/vEjhMypyYsmSJRmsnlAc8e6tUaNGDPdciPSFCyBiBMcSeMsnf6yFAy173jOSalHggrto0aKY7LMQ8NNPP9lnL7PAzde+Qy8z69atM5snfo4cil69etniYU42ZXiCIrb5rWjRolH/XYQQyQ2CKJNIxqpBOwA6tjiHINBnhgkw1YBZdR0CBTbfffedWS4GhVAhROLAbsNvBGZT6clxiljBhq0bVqfRWjwTQoiCDPY/FDB37Ngx9BidA/k5x7Iu4dcmgC5VCtlYJMfuiblgogQKCuZOOeUU17hxY/fyyy/b2JL1F8aCFK9Q1J2KAgXFPNhmcc1E1H/00UdNoCCz9OGHH7ZrJ6KMBIqMqJMiwRAIePjhh1s4ihcp8Or1fmtZ+YdnhsEhUL2yc+dOO8h79uyp6jMh8kHLli1dly5dzErNd0/4Yy0nuPhzkd20aZOFILFw449tBgJcrIRIJrAI5FqD36evhOTzy0DK+8Znhk6NoP0DnRQSKoQouFZPfsyJddzgwYOtq4sOLsa5QcjIYdzL9TUr7rvvPsuooO0dG1MhRHKBAIndSNBSmPsUNnDc3nnnnQndPyGESHUocKRQg+IznFcOPfTQPL8WaxMUSrIozhgLoRmo3sfhoVSpUi7esN7J78ViPZCHuGXLFnfMMce4G2+80bVq1SqDFX6qzaspSkWcQPhhndevAzVs2NC1adPGbr3FstgbiRQJho4HH4jiD0TafvBgY6LH/dwOAnzyAXURqye8fLGoEULkHS7gVC9g8+RDqb744gsbMOR0XLJQw+Y7ohApOM798Vq7du24/Q6i4MHgDqHBd+N5+Dq7zjyyjxgoBa2dqN6h8yK7sHiOgdyuT0KI9IbAv8x5FJwvhgwZYt87++yz9/oZuroQRLOD6yfWc0KI5ISiBG9VEYTH/GKMEEKI8GGBnjW9iy++2L4mZ5ZxFIVjeS08phuBjowBAwaE1gsRmb1I4bvh4w1OFayx0MHh7enPOeccs3pinSSreWeyw7rPJ5984iZPnuyef/556zT0kPPYunVrK4D1oozIGdk9JRgOQpREPOfwAQeUUhTE7KrMMtt0oEKyWEQLEV0Up512WoZ8CyFE5NANgfDHMcUFhSoxLvY+6D4nFixYYAu83puXANDixYvb/XB+Xoj8XFP43PEZ9CCO8XXmYFtP9erVLZSM5wV9MxEvUnGgKISIz4TMd1IE8ygIzG7Xrp157gahGjA7KACgO8t3EQshkhcCW2+++WY3ffp0W4hhmzZtmi3CXHnllYnePSGESClWrVpl63iEQSNWeHByyItAQcEy9kjYOV1//fUmUNDBStYgi+jxHitil00emYd1SorgmGt6+yl+TyxAU2neyb5jk4VNMgWpWDYhCHFNRPwhQ+Ptt9+2rGBcbiRQhI86KRIIJ5Dff//dbDbyapOBYue7MKiCnTVrlmvWrJmsnoSIAvgiPvnkkyZOUBG6cOFCO+Zy8w1kUJAZWimxf0JYxJdQiFiBDRNhaAxuySrCXgUxm0UFQASnrZZcCWjfvr0bNmyY69y5s7X+MpCkJZjQWiGEyAqKa5hME+roLRFzGu9y3eQ6SmhgsKsLYYKwRgR87g8aNCgOey+EyCujRo2yYHuqYL2wyHkAkQKbSCGEEOHDor0vMKZTjSKx/ArJWPIBRdDM7zp06JDBoi/WUHwyadIk21ikZ645YsSIUHHcihUrLP8i1dYsESaWLVvmZsyYYRu/pweL0gYNGpgwRHaILEvzjkSKBDJv3jzXpEkTCxrDpslDRSuLRLQG5dYR4UUKKr7xyydYxrdwCSHyB8fSAw884N57770MIkVeQGFfvny5qe0EX1177bVR318hAKEa2wUCauno4fqAbZkP02Zx0dsMAiL53Llz3R133GEDRgQMBrRU3AghRFb4LgrOL1zTABsnRH2ub4ULFw49F6GUyjLOO+RNBMFqDi97fJLvvvvuOP8WQohIoTuYxSYECRafgC7+/HimCyFEQYHcv5EjR7q+fftakTFjIwqNsewNzs/C5dtvvzUB4ogjjrCvEYzpUmBMRYGaH6PFGuaX2Eu98MILGXI8uWYELYURJrKyA01W6PqgIwJ3DUK9Cbv20PlBBwhzb9aN6FgR+UciRQLhA85BiihBy6xvkSVghbZ3TiqkveeEXzDlQOfAYfJXo0aNuOy/EOkO/ognnXSSHVv+YhqOSEE4FSIkHRP+uGaRhoscgxKqByRSiFiC1ydbViC2ZQYrKO8vL4QQueHPF97q6d9//3X9+vUzMYLKPWwLfB6O79riNqvKMqr+6FwMTmKFEMkNogSFDUIIIcKD7jPGTYyVKBK79dZb7XGcVSIFIYCMiSlTptj4yhd60J3K+gMdbrGGYjjWLrGRoqjTw3uTr0HHHeM7rEBTCSxKX3/9dVvToZCPDpfgtY+OCf7GBGAnItcj3ZFIkUBYQHrnnXdMccQCxnP00UdbW3yJEiVyfY2gSEGGhZLihYgeVDOgiiNS0Lrnjzla/XJqT1y8eLHZREHQnxdvQl4vN7soIYQQIpVECsRPJt0UywQ7evv06WPWplhCBcV5WuTp2vJVZxIohEgdsLtg/krlLAU4QSi8E0IIsTes02GXh7BQuXLliH+eNQi647HGDDqxfPrpp6H7sR5P/fLLLyZKcA1YtGhRKNOQtZELLrjAxnpXXXWVdYakChTacF0jvJtt6dKlobwMwI0ACydccOrWrRu37pSCikSKBEOFGTBRCy5ksuUGkz7au4C2eqqzZc8hRHRhsWX06NGhdszt27db1UBOfpG+WoAcgCASJ4QQQqQ6u3btMvtCOO+88+z22Weftdtrrrkm1C1BzgQWUEC1n7cx2LZtm1XYMcl77bXXzCpGCJEasDhFthXHML7n9evXN2sR5rR0RQkhhPg/KERGlLj//vtDrgwUKpMBGKm108SJE93AgQMtaBtYm8Bm6M477zT3h1gv4nvxgy4DMiY8jAMRJuigDa5pJjsU1uB8wXVs/vz59nsF4f/FOlCjRo1MUMqLFZfIGxIpksCTDvJyQJNbAbTV05FBWxWeaEKI6FG7dm3zUqTVj5wYBhscezmJFN6XFyHRg28v6jt+3atXr47LvgshhBDRho5Cqqfp/EVgIBh72rRp9j0WLz3dunWzCjuufVTXBce+THjZUqnSTgjh3MMPP+wGDx7sbrvtNuuEGjJkiCtevLjZluQ38FUIIdIJsigJWP7111/dggUL8tXpQAcFAgXnXQqayQ885ZRTXCz58MMPrQiagmg/zitZsqSN9c4880zrmOD8nwrQAULnBx0oiBOZ12OwbapXr56tp7KlkuCSbkikSBAsWPbo0cOtX7/evs7LQUDVCpQqVcrsaJgAZg4kFELkDyo9uWBxjHGsIVJw7AUXXMLppGBA8dlnn9n94cOHmzVbqlzUhRBCCM+SJUtC1XO09xMkiCiPTWm1atXse3QdMplmMj5gwIAMP4+PPZ0YdFTIy1eI1JvDYnvhQ0MZ63IeuOOOO6ywhzBYIYQoiGARRO4E50YgK4I8g8zjoNygE5U8S86rZcuWDRV+0DGBQBGrsRNrkxShsObh10Gw86RDloIUCjdhwoQJLtlhXIoF91tvvWUC0UcffRSypgI6I+iQoBuQtR7sS2WbnxxIpEgQTM7wovMQzutp2bKldUZwMkOdzE2koIqN1tv+/fvHeK+FKJjQ6he0YfPHXm4iRbCTgmpRLnwMXGjzHDt2rEQKIYQQKS1SeAsCaNGiRSiviao7cifefffd0GQ3mOdEFzCbECK1OOqoo9yOHTtCRXYU4JQvX96qVFnEEkKIgsjKlSttjl+9enUTJ4BOh1mzZoX184yRcG5AnOAWGDNhOw0VKlSwLZrwnggiFJuQJ0QYN2HXzz//vH2fbolRo0aZvZ8XKJIVrkvvv/++dUsgTJArgYNFEMajiOl16tSxjeuZSD4kUiQIFNGuXbu6xx9/3JTQYPjKxo0brVo7cxBZZvxCKRXaPJcTohAi+lAZykX8oIMOCkuk8HZPwU4K1PoTTjjBju+qVavaAo4QQgiRyiLFli1brG3eixRBuGYyCQSe16BBA5t8X3TRRQnYayFENKCTmGMeYQIPcixHvH2GP96FEKKgQVYshcaEWHfv3t0dccQRYf0c6wXkej355JMhCyLWDbDKDFpoRgu6CbBxwoaKzVvI+/cNFlkikmDll4yQIfHee++5t99+2/7uCCzYiAZBJGLMybWpVq1armjRognbXxE+EikSxBlnnOGuv/56m6xlPoH5KpTcUuP9QimV2eRR0D4vhIg+qO4ID3/99VdYIoWvNMhcUYagCA899JBdKIUQQohUAoumtWvX2v0qVaq4cePG2YSXNvnTTz/d7dy507p7ESwYm3oIjSTLAusCWu4VQChEajJs2DA7zgHrYrqEsdRo2rSp69mzZ6J3Twgh4gJrcAgTZDQAAct0UNCJEK5AQRFkpUqV3JdffhlaK2jdurXr1KlTVB0XOGcjJs+cOdM6Oygc8WBNVbduXRNFLr/8cnfccce5ZIO/E1aDdOciTHBLt25myA9FSGedBXGCr0XqIZEigeApRwtSdh0TOU3gOFD9QikqIqIHXnFCiOiDp3bFihXd999/b1+zQINSn13wlbezCMcGSgghhEgVqL7z4j1t8lT/wQ033BDKXLrrrrvMKsB3WABBu1wzu3TpIoFCiBSFeeurr75q1h/AsXzvvfcmereEECKusEB+xRVX2Doedkl0jjL/z+18yBreBx98YJ2onD/5GTrSJk2a5G6//XbXqlWrsAWOcGBhn30idDu4/oAYQrYQwgRdrtF8z2hAoScFLQjgbNg4bd26NUt3GkSJmjVr2hbrIHERHyRSJAjaqgi5xqfeW8hEAoGEeH/6kw8KrBAidnCMMTHjeN21a5fZNkWqzvtOCokUQgghUt3qCS/6FStWWCV1s2bNbGz64IMP2vebN2+e4efoRhw5cmRC9lkIER3ojmrXrl3IkkQIIQoiRYoUcb/++qsJt5wPc8uKoJPhhRdeMEsnxk2sKSASANZQffr0ybb4MRIoYiabwa8NsvYwbdo0E0fIwKVTgo0ug7ysQcaySwLxxm903mbOk6Dj49xzz3U1atSwDTvuo48+OmH7LWKHRIoEgS8ai5xeSY2U7777zm4JHUS9bdu2bQz2Ugjh4WI/ZMgQEybWr19vx2B2IgUX26wg5J6f69atmw1IeB0hhBAiFUUK30XRsGFDmyjeeeedVkCDV/1NN93kNmzYYOPca665JsF7LYSIFti8schWrFixRO+KEELEhZ9//tnCpW+++eaQOwLWSXSVki+bHaz3UaAxZswYcz8B3E/In/VEK5Aa+006MRAgCI4GrJtGjBhh6xhsydDJyt+Brlw2xpTcUuSSGbI8ydxFjCDPExeaZBFWRGyRSJEAWMDEvxdQTWmZpf09EjZt2mS3hO/S+qROCiFiiz/GfDukPwYjYfTo0VZ1QReVD8ryIdtCCCFEso9fvd0TIsWoUaNCVk/ffPONedXDwIEDzRKR7gpECsT5rl27JnTfhRDRoUOHDnY8s/jG2DjzOFYZiUKIdAIHBGyFfvjhB1eiRAl34YUX2uOVK1fO8WdatmxpwoYPc8aK6LbbbrPMifx0ALDIj30T3RiNGze2DAxgv+hsJdc2aEtN91uioKuDQOulS5fa+JHbrIo0ER8QIcg38xsh19lZaIv0RiJFAuBgY8I2aNAgd/fdd5vQkPn74XZS0PbECUgDQiFiS+nSpa3SwVcg+GMwUhA55s+f704++WTlyAghhEgZyGOi2o3JJONOJpuvvfaaWRYw6cabmU5him+YIHMf6wF8m4UQ6cG1115rtwS7BueuiJjc+gU5IYRIB+iaaNq0qVu4cGGOlkxBYQDxFgsjHiPEuWPHjiYoYJkXKZxbV65c6V5//XUbc5HP4AuesZHyIgUCCmM0n4EZbxBm6LIjS2LZsmW2EQielcME6yoUu9CZxy1jStY1hQCJFAnkr7/+stu8nEh8FTdebeXKlTPFVAgROxh04Dfp2xFz6qSg7ZP2xOLFi+/1PSZwLNwIIYQQqWj1RLWbn0wycadKjtBH30XBdY6JOPkUd9xxhzyDhUgj6JoSQoh0hYX13r17W37E8ccfb48NGDDAiguzEhkoxsBSiewHbNjJgWAcNHToUHNPOPPMM/O04L9gwQITJRAnMq87sKjfqFEjy5cIEi+BAmcIBAnGf4gSbNkJEnRE0HXiNzrwvKuEEFkhkSLBqfV59aHzVdycIOrXrx/1fRNC7A0X1cmTJ+faScHz3n333b0exxqDXIurrrrK9evXL6b7KoQQQsRCpGCS6aumAcECD2RCGankC35PAoUQ6YWyKIQQ6Qy5E3QrsJCOVXNWi/90SCAgDB8+3L3xxhuhx6dOnRrKrSDcORKw0OPnESXefvtt6071UJBMkSOdq+SAYR0VL7C5Wr58eWhDmKBLJCtwiqCQhXEiIdesiZCLIUQkSKRIAPjzsljpFzkzK46+TSxzon0Qr6Zy0lAehRDxgWONqoi8ZlLwM1988YVVWRBuRXsjnVBCCCFEqogUcPrpp1uXBP7KVAm++eab7rfffnP16tWzSeozzzzjjjrqqITurxAienNXPMLDLcKj2+KMM86I+X4JIUR++fvvv83O2a/B0RFK50RWWVoEaCNcsJb37bff2mMUZSAeMB6KpHiYbEqECD9WYowVfE+KPho0aGCvTSFIrJ1TsJDC1pMOiU8++cQECe5v2bIlW8G6YsWKJkr4YG7feSJEfpBIkQBYpJwwYYKdeCCzd6cPIOPElR1+gZSfVR6FEPHh7LPPDt3Pi0jh/SM//fRTN336dGsjlUghhBAi2cH3mMkq0NJPFV1w4sokHc9kJrZMchEsJFIIkR7ccMMNNm9t06aNVfFmDssGCnCee+45K8JhgU8ihRAi2SGAunPnzq5bt26WreU7ILLrgiAIukePHjanJ1eWnyGY2q/rhQuOClhi3nfffe7++++3xyjyINPrkksuMXGiVKlSMQuOxk6K9QgvSLDxdVbrj+wDGRIIElhfI0pwX52yIlZIpEgAqIz9+/e3hPt169btJVL4djJOHtmBiuspUqRIDPdWCOGhOjSrYzAzWEIRKMggY+LEiaHH/bFOlUHJkiV17AohhEgJmMhSbXjssce6l156yb3yyivup59+cnfeeadNspms1qxZ0y1evNiym2QJI0T6gAAxcuRI17NnTwtpZfEMezc82hkPU4DHvPWKK64w65Py5csnepeFECKscxuZEhQOtmrVKoMowDmNvC0KMx577DF7DJslBI0yZcq4a665JtfuBqzZyZZADOHnmP8D50+6KHzxh8+05HnRBDGFzjaKSIIbhSZZ5UdwTqcAGjGC4kzECL7OSpgWIlZIpEgADNzYHnjgAaum9tXVnuuvv95sYKpWrZrjCc9z4oknxnR/hRD/B4swtIIiNlBJwbFLe2hmmLBt3bp1r2oEL1LQMv/oo4/Gbb+FEEKIaFg9MT4lFJLAbCrrNmzY4E444QR399132/dlQSpE+nHAAQdY8Q3bsmXLLHcNq5O//vrLFrKwfqtVq5ZVFgshRLLy/fff2/z8tNNOs687duzodu3a5Tp06BASKFatWmV2ThQa0hXK4zyvePHi9v1HHnkk29dnbYDMhrlz55rgQLaFn//TXUbXBlx55ZWuevXqNo6KFhSI0A3B5sWIzz77LFt3FoQSzt+IENyyIUBnFQ4uRDzRJzCB3HvvvTapY+AXhCqUnCCrwndZMFGMtT+dEOL/QJBgMQarJ6oPGLgQqpWZ5s2bW0Up1QhBvCDpPS+FEEKIVBMpgLBIBAo6DKkyJPCxaNGiCd5LIUSsIQyVTQghUgk6QCkGrlKlips/f76JDwceeKDr3r27dTXghEDHGKHVHjof2rdvn6MAi/UlHWQIE/PmzbMu0yAIEdg4VatWLfQYdph5tcREHF69erWJEYgQXpjYvHlzls8/6KCDzF46KEhQME1nrBDJiESKBLBt2zY7EbK4mReBgYXRrOxnhBCxh2OOKgyqIuhoykqk4LGsHveVFFl1XwghhBDJLlIQiI1IP3jwYPuaie7YsWPdO++8Y7YJEuGFEEIIkWywOI9tJcW+v/zySwaRgDwdn0nBOKZx48YmTtSpUyfLeTvWljNmzDBhAoEgCEXEdevWNWGC7dRTT83T/lKY/NVXX5kQQXeHFyTI/crsxOLhvRiXIUawcf/0009Xd4RIKfRpTQD4edJCRkhOnz599vo+NjHr1693RxxxRJYtYJxU/QmUNi0hRPzAXs1bPnEsRuK7TRUGraIc3wwYCMXCA1MIIYRIVqgKJEMN8DZGqMDWEOsCrmF41Pft21cChRBCCCGSAmzpWNy/9dZb7Wvm7BRc0FWAuID40LBhQ/se+RJYMXN7yy23ZMiNpDCD18EKic4LeOGFF9ywYcPsPh0ZWF16UQJb58xOKTnBmgJjK97DixHckvVDYXN2FtQIEGeeeaZtCBKMyVg/FCLVkUiRAHbu3GkTOSxjbrjhBjuR3XbbbaHvP//88+btiWUMYT05iRTKoxAivnDMec9KfyxmZtq0aTa4qF+/vh3fnt69e9tGKymDG84BomBz4403mm0KVTfwySef2OA5ksGtEELEkg8//NBuOS9RheivXf379zfBnUm/OgSFEEIIkQyQnYP1MqIC83GKBLFDwvLpsssuM4tKFvcpGGRef9hhh1k3aDA424MAsXz5crdw4UJ34YUX2mNNmjSxjgxECbomjjnmmLBDrHkfL0iwYd3E+mBWEFiN+MC+Ikpwn9vjjz8+y30VIh2QSJEAqEAbN26cGzNmjGvbtq0tdAZFCk5yqLcopDmFZqPqqpNCiPjCMedtm4IB9kGmTJniXnrpJbN8CooUHsKyKlSokKUllChYIEoPGjQoJFIwoF6xYoUrUaJEondNCCEyWD0hUGAZwC2T9ksvvdQel0AhhBBCiETC2phfuGeMgjhB98TSpUvdXXfd5WbOnBmaw7POhsBAaDYZkuQ80HlBtgSCBNkS/rXKli1rXQ10lHqRAhsotpw6IxAjvCDBLWIE75MV7EOZMmVMjPCiBLfsv8ZYoqAhkSIB+BOeD+ChZT5IixYtbMsO3/aFT506KYSILxxzHHuQXQsmAVr+uVlB9QObEAyoc/paCCGSpZMCqED0Hsl0+xJCKYQomFD9y+KaEEIkCubjI0aMsDEJ+VgERbPe9tprr7nbb7/dNWvWLPTcGjVquHbt2rkrrrjCffnll2ZZiSDBzyFYeBjj0LEAjz/+uGVvZT7XUbDx9ddfm/jgBQk2BI3sOiPYN8QIuuYRIfxGcZosM4X4PyRSJBAf1rN9+/aIfs4rwCxmSaQQIr4Ejzl/LGaGYG044YQTMjx+1VVXuW+//dYNGTLEVatWLcZ7KoQQQuQPxpq+kwJuvvlmWwxgAq9uQCEKHliWPPTQQ5av+MMPP7g1a9bYAluvXr0stNWHzwohRLxEigEDBtj8m+zXTp06uaJFi1rn5+WXX27iBRbr3Mfm6dVXXzVrdXJgg5x88smuXr161oFxyimnhB4vVKiQned8N4S/5TGEipw6IxAgECS8KIHtlEKshcgZHSEJ4OWXXzbF9rTTTsuykyI3ggujEimESB2RgryBtWvXWhUqgyS8vM8555wY77FIdhjs+s8MC4JU4OBzGoRANCGEiDdUCfpx6rHHHmv+zdg8LVq0yNWqVSvRuyeEiDMPPvigmzBhghs4cKAFzHqwJ3niiSckUgghYg5zaebRXqRAXGB9DQtdRIBHHnnEvoclEzmvfI8MwCDkUFx00UX2s2yIFMzBECD4eS9GYPOEOJtdZkRmMQJ7KMQIdUYIkTckUiSAxYsXWxWaH9jRSRH00OM+J0yCCd977729bGGCJ8nsciuEELEhGIyV1YCFxWW/wJxZpPALPVhncA6g3ZQQbVGwYQAdtHlq1KiR3XJN8NeG7AQxIYSIJcEuCibj3333nVVLS6AQomAyceJE99RTT9nYhXGs5+yzz7YFPiGEiBXMi1q2bGnnoWHDhtkYhRxIb690yCGHuE8//TT0/AMOOMCyJuh6INuhSpUqrmrVqjaOYX6F2DFr1iwTXVl7yw46RxEf2IKCBDmyyowQIrpIpEgAdevWtRawihUrWng26u+ff/5pkz/ghIlHHi20eNtnFimCi1UHHnhgxO/Poijb+vXr7WtOtL1797bquEjo27evndjx8rv//vstaGjDhg1WadekSRPXr18/a48TWYMQxUWWTeQPKjrJcaE7gcqH6dOn20SJgQq2SrSAli5dOirvxWDHk9XCMcct/O9//7MKjaCg4UWKkiVL2v8/WvskUheC1YQQIllhcu9BoAheA4UQBQ8W8hjHZoZxbnbWJ0IIEQ1YJ/PZEB07dswgkmLn9MADD7gFCxa4P/74w+bkdELgWkDh4I4dO2yN7YMPPsj29XmeFyP8hhjB476gWAgRWyRSJAB87thQgmkDY6GTxUsvUgAnQk6s3gIkSHBhNC+edii+/fv3txY59oGWXU7qy5cvN8EiXGbOnOnuvfdet3nzZttor+Mkjuc+lTU8NnXq1Ij3T4hI4bNImKcXLG677TZXuXJlC7i+77777HijZTN4jOWV4DGXlUgRtHoKDmYYGPnOC44PvDCFKFasWKJ3QQghsmXu3Lmh+1xTEVaxRBBCFEyY6xEym3n8wpyPAjwhhIgWCJ8U9SKMYslEAS+B1px/WHOiIwILOubnCBI+Kwu3kWAQdhDm5/xcZjGCzWfGCiESh0SKBMIJkqo0TqZeEfawwIl/PQv90RYp/GKuh/AzOitQlVncZZE3K+iW6NOnj92nYn3VqlXukksucUcccYSbNm1a6HlkbfCaVLYzoVU4kMgrfN7o2MmKCy+80C1cuNDuv/LKK9byCXPmzMnwvPHjx7vjjjvOffTRR+6CCy6IuUjB4Ckrqyds3YBjnQ4PIYLQlYbYRocb1wa8TOlII4xSCCESARN83+3FtQ9xvUaNGoneLSFEAqH7/qabbrKOCopv6F6mOhn7FQJphRAiGvz222/mPEAhrc+F9PNsD/Mm1pyyAscRXAvIjAgKEaVKldJcXIgkRqvHCYDuBTzr//rrr70WMj2ou9lZgQRb7fMrALDIio8fLXH4811xxRW2kIv4cNddd9lzrrzySgtD81/7RWEuGggUWfHrr7/a9yRQiPzAZw6h7rPPPrNJENCxgxDhv0Ys+/HHH13t2rWz/SxC4cKFo7JPwc90VrYXhGtB5gozrNB8J5MQQbAoY9LPZB9BjWvE1q1brVPt4YcfznDuFUKIePH666+H7t9zzz1WrSiEKNjQfY+HO7YqdCgzfsFOhceodBZCiLzAPIh5NIWHdGZlzojILFBkzovwYoS/VXi1EKmJVpATACfda665xtWsWdO9/fbbWT7He31SXZuZoGVNXk+8BAohShAyhG/+jBkzrH3XL8LymBdQUKEz++tT8csgNSt++ukny6No27ZtnvYtXWGxkc2DSEX3StBPEUuiU045JUF7mHzwmeOzx2fQfx55jM+oFx34LF588cVZ5rMw2OnSpYurXr26CW3RIHjMZWUftXbtWrvFTi1zRSrHNdUb5JCsWLHCFqcjzYIR6cVbb73levbs6Xr16uU6d+4cajOm8+aJJ54woYKQt2h0AQkhRCRw/gG6uzhHCSEEMIedN29eondDCJGCkMfKGhf5kVg0+VuKEvledmDhhNUTm++KQJAgv1V5EUKkDxIpEsAxxxwTamGjIvz55593559/vlktefwCp1/wDBJcGPUe95FC6xuLpFSZI5rQtovNkxcqcoL95rljx47N8nuXXnqpvY63hhIulEOAOOW5/vrrXdOmTa1TxXPSSSclaO9SF0SKoNAThGOKAU8w+DO/BI+5rEQKLyxmFinIxeB7VMmfd955ZuemgEExatQo16ZNm73Ol4hwVCmScYIdn0QKIUQ8oXhlzZo1dr9u3bruoIMOSvQuCSGEECJFYF0I8SEoRHD79ddfZ2mZHAQ7JsKwr7rqKrN4Zu3q8MMPj9u+CyESh0SKBICfL/ZKVIgPHTrUPffcc+7PP//MIFIEOylY1Ayqw8GFUTIf8gJV5/49KlWq5JYuXeqGDBniRo8enevPzp4920SIokWLZnicYGBsoriAMLnNygqnIMOiY9ByiIsv1i7+/yAih7ZPfCoRxjKDcIE3Lt1K0bRYCh5zOXVSZPd/5Vh+5plnLI+G9nhRsPnwww/ds88+m+33b7jhBnfjjTfGdZ+EEILr27777mvCPF1eQoiCC12e4VYq+ww2IUT6wzoVBVWZxQi2rLJVPbgi+Dk1Dhw4HpDD16FDB8tBlXWcEAUXiRQJgMV7v4DvsycI/QlC+DSDQRRo7JOOPfbYqIoUmWESih1NVmQelGZl9cR+YrlDpR15FZmDwIWIFsHPI/631apVyyD+MFi6/fbbTSgjWBs/ymiSk0jBcVS5cmVXqFChvTopgjAQi5b9lEhtfvjhh9B1ICv4/DL4F0KIeIJ9gu8cpPtPCFFwwX5SCFFwofOBrFQvQAQFCZ//mBWseTF3Zn7u7ZmxuiWf1c/ryTmliBei6X4ghEhNJFIkGL+Amjkgm0V+qr83btxo3RTRFCm6d+9uPvhkH9D9MGnSJFvMnTt3bpbPpzOCixDhxCwG00kRDHJFoMDKhm4QukL4mg3YbwUWiWjC55FFW2woEMQaN26c4ft0JPGZRkzzzwWEA7pXYilSUHXqA70zg3jB96maJ5dCCCAXKKs8leDgPid/ViGEiCYUrLz33ntmSQmMRb1NqRCiYIItsBCiYIwBmGMjPpCV6QUJHsupoBWHDebdZG4SeO2f662NKWQNrjVRoMU6F/Nz5XEKIYJIpEgQ/fv3d99++63r1KmTff3zzz+bCs2J2kMlNidv7GOoFs9qYRRhIFIQG7APwSqH9zvrrLPsopFdW93VV19teQqtWrVyd9xxhwUXB21qPv74Y7dkyZIsLW4QX3KqEi7IIAyJyKEKY+DAgeZNiZiXuboL/36gKiPIuHHjLLA6miIFlm3hwACN48RXpZJDQxB4nTp18r0/IvV5+umn7byaFQjJQggRD7BIbN++vdkR+q7FqlWrJnq3hBAJhuKzI444InQ/J/zzhBDJC50MFKF6IcLfkheRXeYpQgPzbwKrESUotGI9a9myZW7Dhg17hVyTZ8X6UrFixeyWwlXyOG+99VZXq1YtK3xljevII4+M028thEgFJFIkCDzp6ZBo1qyZVahh6bRu3TpXsWLF0HOotn7zzTftgpF58Od9gvH6I1QoErIKvA5CoHZmT3Q2QFS57LLLMnyfxWBa+ISIBZlFiDPOOMO6I+hY6Nmz517CWKw/i9jzBD16gyA0UkXC8RmEgRvHK4M7Fp1btGhhIgVCoSjYUD00ZsyYXJ8jhBCxhGtn3759TaAAf42qXr16ondNCJFgGO9yPiBLjwXFrPIpfIZiboG4waIiNm95zPi+d+/e1u0vhIgOv/zyiwkQfvOCRGZRIQhFrAgRwQ2hAYHCd3/fcsstVmTloXCQ8QIuGogfPHfy5Mn2PQpu+TnODxQa8lrQsGHDmP/+QojUQyJFgmjdurVZeHCSJoSacN9PP/00g0hRoUIFuyUYOAgqNBcAFku5CMRzMIePvqrqRDJA5fmAAQPi/r4M7HwXBYJE5uP6jTfecKNGjXLXXXdd6PGVK1faLcc6xy/2aNlVzouCReY8IiGESAQsHiD8N2nSxAItvVVDlSpVEr1rQogEQ9Gcz3/DTz4aYCWHswDOAQgcEyZMsMxD5r0IFkKI8Nm2bVsGMcJvOYVXIzoyN/VChL9/4oknZhAi6X6g05L1Kp9RhbMBxyrdEvwM97E03r59u30feyi6NZjvkrWKgMG4Ii8uIEKIgoVEigRxzz33hO7TCYH/b+aq6tq1a5vanJUocPLJJ5tIQUtePGnbtm1c30+I7GChPxEw6ILMAzhgMEinBIGjQT755JPQsY74mF3+iyiYE/+OHTu6Dz74YC+LBDpzaING9KpZs2bC9lEIkf7Q7devXz+7Tx4FC4aIFb5gRghRcLnwwgsz5Cli9ZJ5DIzQgE1xuGTuzH/ooYess4LxUFYiBQucQU/83GynhEhXMWLVqlU25+TWb9h55yQIegGCW38fS6YgdFdgwfTRRx+54cOHZzjGKa5lvcqLFFdddZXNWygYDBYNcm5gDYt1Kt91wevggECHRlZdWEIIEUQiRRJAez1iBG1yQagsufvuu7P8GRZIAR9AIUT88CH3CIWZQYygu4mKkcyPQ6TWbKJg2JnRMp2VhzODeXxbH3/8cYkUQoiYgGiOPQsCOwsTCBOvvfZa6Jp1yCGHJHoXhRBJBCKFt34KQgU13wvX7ikIP/PSSy+5P/74I9uO/UceecTmzEIUFJsmL0B89tlnoftB2+HMeIcOvyH2lSlTJkPmaRA6HcjIxAWA7csvvwx9jxxS1qLggQcesK6nzBbLOAVQbIXwgHUTGabYgPNzWDMjOnbu3Nmeq9wJIUS4SKRIIFwYNm3aZJ59kXLSSSfZrTzthYgv3q/bC4VBDjjgAFe+fPm9HvcihSpSRVafjZxsy+gYGjRoUFz3SQhRMGAMStcElZnBDkBy0kBWT0KI7LInsprXZi64yw2sjhElCODFFmbGjBm2uJoV3bt3d127ds3QSUHVthCpDMIcXREIEX5DjOD6nJMYgQDhhQgvRmS2Ic6qYxJbJgQJChQWL17s/v7779D3sSTmus/cA1tjD689Z84cO/6wM27evLk93rJlS+v6vvbaazN0PyEo8j5kMAohRKRIpEgQWMYgTnAx4eSeXesbF6h33nnHwrXx/PP4BVI/kRRCxAdfweKFwtz4559/LMuF27POOsvaa5nEUTGWuSJFFMzPE+JWdlDVvHXr1rjukxCiYMDYksUGxpl0c/3111+28Ef3BPe9rYMQQniBgDlrr169Mixi0gmxZMmSiItxmAuvWLHC5sJTp051N910k1u0aFGWQsVBBx1kmxCpCGIA6z8IcwgR/nbdunU52jQxh/RCBBvzyNzEiMzCxMSJE02YmDdv3l5rR3Q/kS+BMFGrVq0MHQ/MUcaOHeueeuqpkHvHzz//HBIpGEPwfPImyKyoUaNGSLxgE0KIvCCRIkGggDPIw6uPdr5hw4bZyf3BBx909erVCz2PhUza7QgSy0qk4GeFEPHDB4Jl7qRgwoYXb4cOHTJUn7LI/Morr4SqZbCDAh9AKAo22IYxSclOsKKVOquuHSGEyC8s+A0dOtQECcTzCy64wL377ruhykqJFEIID5XRvpOCBVbvNw/cxx7urrvuiug1+Tk//qlUqZJbunSpGzJkiBs9enSU916I+MDxQdc9xwhjeG7ZmP8FuxaCYJ2GGOEFCX+bnU1TTpDbgm0ThXGw7777Wt6UF0MQOMiMQJRgy2r+QUD2iBEjLEfC7/NRRx3lbr75ZrOhDYLwgsj4zDPPhEQKIYTIDxIpEjgxRIn2F5/Vq1e7Dz/80AZnQZGCxc7zzz9/r8qUU045JbToKYSIHz6ozx+DnmnTptlxTJBYdrAIxHMYKEqkEICHKwLXJZdcspdNAguH999/v2vUqFHC9k8IkX7QpRvMVaJzYvPmzRaKCXT+MT4tVapUAvdSCJFMvPXWW3bLQiVCQlZZWvmFqu9gOLYQyQzrMF6M8IIEt9kVkSIQeDECe2B//9hjj43K/nz11Ve2ZoRtEzaOvlO7ffv2tk90TLCulFMHN/Tu3ds6mnyxAj9/zTXX2FiBjik6vP0+k1dBJ4WsnYQQ0UIiRQIJquNcUF544QW3bNmyDM+pVq2ae//99/f6WbwB/URy9+7dGapZhBCxq47BNzd4DAKDNcSHrCpPf/zxRxvI0TnFoJGfC/6sKNj07NnTKpVYDOzYsWMoo4iKq+HDh5uFQo8ePRK9m0KINIGOP8aciJ8sRIwZM8bdc889NgblGnfaaae5r7/+2opkqMAUQogg48aNi8rrkDHRoEEDK/rZsWOHmzRpkoX44pUvRDLBtXHDhg2WI4c9GbeIEVwr+V5m6KJnPI8Q4Tc6G/isZ2fxHQnkvyAakhNB0RudElCiRAkTEhAh1q9fHwq+zqnDid+FgGtC6X02VZcuXWxegjhRsWLF0HN5Tp8+fexxOi2An7nxxhvz/TsJIYRHIkWS4Nvj8AXOLpAss10UwgQCxccff2yquBAitjDgA47PYIUpbbFAa27mahiOTSriGUjSCi9EEAb3BNcx4GfC7ic7fMaoeEKoCAbaCiFEfqA6kopKgjn79+/vnn76aVt08XlLXMNYeJHVkxAiu+pxzh0LFiywQhy6H4Lk5LEfhJ9lcXPLli1WuMciLgJF0FFAiHhDJw9B1l6M8LfZdUeccMIJ9tkNbhSjRTM/hbkBxXCzZ8+2jfUi1oB8RiLdDL4YDls2sixyWkvidyQDBqGBOYhfW2IeAk2aNLEtMxdddJG9LhZQ4axXCSFEXpBIkUCYBA4cONAuMnhvonwTZsRFKHNgGANCFHzCkoCLEGr82rVr/7/27gTOxvL///jVt30hSkRZEiJKISKSPbuUJULWkAgplUIRIRFJElKWUJYUskbJTgtlF5JQsvVN2/k/Xp/v/z6/M2OGWc46834+HqeZOc2cc88xM9d9X5/NrVq1SkEKkTDwTuQ4IeX31eOVxJYvX/6MjNXdu3fb7yvZLWw4Ux5Pi5+rr746zEcv0YoLg08++cRaAPI3nRN/sp/o/yoiEky0ZMiZM6dtMtBmDgzBZMgl2Ze0iICCFCKSkDZt2th5b7NmzWxmVko3KhnIKxJJzFIgAMHGvncjQEGnivhYH9mHIeHMuxGQYJ5EKFAtsWTJErs+IDDBPlD8gddUIrGOEyjkWhOs74nhMdhzooKSLgBe1Uf9+vVtaHYgKrnfeecda1HVoEED/3Uu1ylc04qIhIqCFBHEgjJmzBjrQ87b0qVL22JEVnZgkIKNURYFghIENjz0MGShiN8iSkRCw2u9Fr9dU2JBCq/ColixYu6KK66w2QNsRPM7qyCFxEdQ4o477oj0YYhIGsdaxaYEmxB16tSx9nIgg5kNEShIISIJYcP0448/tj70IrGCRFC6T3AjGMFb9lESOx+nLaJ3IyBBgCLU7bVJEpg4caKtw1xDetUSoDKDSgYCE9xIZkpOgJCgB9/D77//7q/AYAh227ZtLdgY34QJEywgyf/j+biOhQIUIhJqClJEEH1/6TVOrz8yZ++++24LUrDh2b59+zjBCAIalM/u37/fSvjAgjlr1izLABCR0Fu/fr29DRxk/+uvv9qgNPA7nFjwgpZPLVq0sBNjepOKiIiEww8//OB69OjhRo4caVmfDMieOXOmzZzo37+/Vfd5AXU2R8jQDNYgTxFJW9jApQ++SLSiSoBrNpLCCEbwfvxKBA+VB+zFeDeu8YI1O+JcmHNI8MTb2yGQ0K1bN///JyDA+kyQgADFZZddluTHPn78uAUUGzVqZB8TZHjggQdsL6ljx46WoBB/gHZgCyeqLplV0aRJE80+FZGwUpAigrg47Nevn/9jNjJZpGglE4j2MFw4stCy6dm0aVO732v9lNiiKyLB5VUyBVY6eXNkGJAW/3fXC1IQvODE8tVXXw3zEYuISHrXsmVLG7JJVibBiSeffNLub9WqlWVu0pqQc01vULaqKEQkMQzpff75560VTHI2TUVCgVkR7JEE3gjMJ4TqA/ZUvBtBiUhVtk+fPt3aLNJmae7cuf72r1QvMOOQ4ERyqyVAuyraC1OR4VVP0JYKzKCKH5jwAhrsSfG1H330kT0nlRtr167V3AkRCTsFKaIIQQoCDgktBvw/Ft1ly5b5gxRUWHgLC72FE1p0RCQ4CER4vbq9372ztXo6ePCg27Ztm/0+ly1bNsxHKyIi8j+vvfaatXUYNmyYmz17trURZa5S3759bbMR9Jwm4xQKUohIYl555RVL2smWLZvLkyfPGdef3t8RkVBUHjDIes2aNXZjE51rrYSQPFa8eHH/jQoJBrSHG90wqORg858WadWqVfO3Dqb10tatW+1zvCQB5kUkF60bCXSMGDHCBtp7CFBQ8e9JbK+Iao7hw4dbIgPnB14rNwUoRCQSFKSIMBYVegFv377d1atXL9HPq1Spkp0Uzp8/31+Kx8JDBgsLHPfXrl07rMcukp5wIsxJJAPGyLzxUEqLihUrJjiPguwVSuN//PFH6/+pEz4REQknAuuff/65PzuyXbt21meaNYmNElpK0NqhYcOG9vkKUohIYs52vSoSLOx3MDNi1apVdiMoQYtrEjPjo0UhM924lShRwq7TIhGQ8Jw6dcotWrTIAhPMbyFxDbRO8oIUrMsEXLhOTM21IftItIPas2ePfUywgz2hxx57zK5NE3tsKii9IducAwwePNhakZcpUybFxyIiEgzn+VgBJGJYIOh7eP7557tjx465yy+/3AIXZKgUKFAgTuYA5YgEJMhQ8TZJyd5mM5TSwJRE3kUkaWiPwQkcmTjMlQAnz5TiErggCyXwhPi7775zb7/9tmWaPf744xaooKcnX0s5r0haQkUfP/+sY7SNEZHIYo4ZgfV8+fIl+P8De0/z/u7du22DgkxLfp8vueSSMB+xiIRLWliz08L3IP/nxIkTFoj48ssv7bZ69Wp/BXsg5iURSCcgUbJkSQtKZMmSxUXaTz/9ZNUMc+bMsQAFezce5kEQnGA+BFWLqcXPvHfNSfUD15W8ZT+oQ4cOVuF0tgAKMxKZP0WAg30oEZFoWrdVSRFhzKCgHPG6665zhw4dsmAFiy7BCDY9yXgDF4tVqlSxMn2i8l6Qgl73BCnIMBCR0PEqIwKHY/O76N0XP2OHSqchQ4bY+/T4BL/fXtaKiIhIKLA5woBMEl6YQUE2ZWA7CQRmV/I+m0MoWrSoAhQiIhIyBMZpcU2FH+2FuH399de2TgViH4RWTQQlvBsb8tFQlc73QELarFmzbH/GW0M9HCfDqalq4DrR29NJKZJYqcqgLRNJBXTh4LqSBDgCDlRF0sbxXOjCwR7T6dOnrTUUM6tERKKJghQRxiK7efNmW2TgtZNh0BFDDu+9917/57LIeUEKr4dw6dKl/RlzIhI69AxFYBmsN+jsXK3WGLRNT1A2jAI3iUREREKRkcpGBJsXXlVu7969rVXGoEGDbDODTYoVK1bYcE42T8hahVo9ici5NktfffVVN23aNNtoJoM7UGAPfBFvf+Pbb7+1hK8vvvjCghP79+8/4/PY2Oc6684777Q9DoLmrGPR6P3333cPPvhgnPuo7CAwwY12TsEIppB5PH78eJs3wXUkuJZkVqm3Xge2IU7otf/www9d3bp1rVKSY3rjjTfc33//7W655ZZUH5+ISLApSBEFvACFt+iwsI0ePdoCEoFBipo1a9pbFqUDBw5YL2FvcaLygpJIWkKJSHD997//db/99pu9z4mzZ9KkSZbVUrVq1TifT1YN2Sz33HOPP3OGk2yqK0REREKJdhgkutCSkIpdzhmZa8ZaRpsHghRTpkxxnTt3tplntKZQkEJEkqJv375u7Nixrnv37q5Xr17u2WeftX74nPt6SXSSvrEBTnvqzz77zAITBCW86ygPSZnFihWzoASDmglK0FkiGrE+jhs3zq4BvcoD1k7vWo8AAAlr7M0EsyX40KFDrXUwiQfIlCmTa9u2rXv00UeT3Dr4vvvusxZUBBZpPwxdj4pINFOQIoqQiUK02wtSsKCMGjXKH4W/9tpr7eKRhZIMbgYfEpRgQeQClKBGq1atIv1tiKQ5bOB4J4eBvTv5nWzduvUZn9+zZ0+rvJg6dar1HxUREQnHxhAbPyBj0tuIYOOQAAWbQfXr17f7+DzOHznn5PyTDSUoSCEiZ0OCDnMQSZ7r06ePZZMzz4YBwLQfJvgp6W/tWb9+vVu2bJndCErQFSIQczcJRpQtW9ZuVB1wXzRibgP7L1Qkgp/rMWPG2AwHL0hBMgAJoklpsZTSIMWwYcPsfdZyfq+aNWuW7NesVq1absmSJf5zAxGRaKe+I1HiiSeecFdddZWVzlaoUMEWIAIP3kWjx2srQwDD4/XIp5RPREJT0gsyaM5VuktwghsbRFRCEVAk24ZSXRERkVBgQ4hNn5EjR1qvbA8tNrz1Z/Dgwf41jOGatGp55JFHrBc4/akzZ87s8ufPH7HvQUSi38GDB/1tYhgIzABMbzOU6mJJ+1hjWFuYj0Cgm6RJrpFI0po/f76tR6wn/D+q+NauXWuVFAsWLHDPPfecf68jmtBWafLkyRbIJwBBtWFgNUL79u3t2AMFK0Dx119/2XN7QQlQWdKlSxd7PWkNzvOf6zUj4YDX26uMBAmszK/o1KlTUI5VRCTUFKSIErSCIWpPn0YGFnptnqiOCEQ5IRYuXOjv+cnCCb5WREJXSXH//ff726tVrlzZKp04sQzkBRAp/2WYNsPMyGCJH3AUEREJlgkTJriNGze6l156KU5bjaeeesqqdFm/Amcqee1GA+dREOSIhoGkIhK9aCH3008/2ftUUHz66af2PhvRqR0OLNGLf/N3333XsvmzZ89ugSraBzErkw1+qs3r1atnG+2bNm2yuUfsY3Tr1s2VKFEiKjP5WSsnTpxowRQCE02bNnUzZ860ykOqQTxU0TPHgWu/YDp69KjNibrhhhvsuWmfxn1gLea1rFatWpLXZSqbSHwlIOENIWedp/JfRCRWRN9qkU7Ruqlhw4ZWKgsWyw8++MBu9P70FieGMBUvXtxK9FnEqL6oUqWK/X8W2t27d9tCJyLBcfjwYffzzz/b+9WrV7e3nHQvXrzYBtaTjRrIq2jidxicnDM4+4477gj7sYuISPpAj2pabnCOSAYrCJATKGdzaMCAAXYfGxesX2SyeptGmkchIklFchx/Q/h78dhjj7mHHnrI+uZTmdW1a9dIH54ECVn5JEDOmzfPsvm/+eabM6oIaNtEtTg3hjcHztmMVuyXkFBG9woCbIHJZjfddJN74IEH7MbQ7lBhv4YABL83JKkiW7ZsFlxIzWtI5cWMGTPOuDYVEYklClJEiTx58sT5mA1OFhqyFeKjL2JgNgIXo2QzUK5PlJ+IvIgEByeQIPjnDXSrWLGiDSCj7DYwu2Xbtm32+/mf//zHX3WRL18+ldiKiEhIsRZ5QzE9r732mr2lTYTXxons0KpVq7oCBQq47777ztYrL0hBuw4RkbMZOHCg/33mrpFl/uWXX9rfGK8tscRutQQtu7gRiPIGNntrDIOuSY5kDaEyL1YqZ/g+CEzQvpeWUwRgPIULF3YNGjSwwARJZaGuJnzvvfdcixYt/JUO7OGQ0MZsl+S8nlT187v4xx9/+Pd+CHQwN4N1XUQkVilIEaUomQzsSxgooXJJNkQJUsyaNUtBCpEQzKPwho16J4HxN4NAyTAozaUUWkREJFRo+zl69Gj35JNPJnhuOHXqVPf666/bhoiHdh0oV66cbWRQlUuA3Wv3JCKSHPTO5yaxOVuC1ky0bOK2bt26OP+fFki0oKaSnOBElixZXCwi6ELFj4dgBAE2ghMMpQ4lghFUb9D9wmsHTLUEraO6d+/u74iRXCQXvPjii7aO05GDpDgoQCEisU5BiijCAsawIzKxKT8814JFqSDDte+66y5Xs2ZN17t3b7dz507LDmDGhYik/sSSwXDeQMBz8eZOeBtC9BZlI4gy6GjsxSoiIrG7ucRaM3fuXAsyMJMiPmacsQnioc82LS7gVequWbPG3rLBwfBTEZGz8RJyEtO8efOwHYsk3z///GNtnJi9wO2HH36I8/8JVrOvUKNGDauciLVNb2ajEJyn9SHtyECFz2233WZvCU5QPRFq7McwfHvw4MFWbUTrRW+mC3s4XnV+cpw+fdpfbUHLRrpucJ3JbBgRkbRCu2ZRhMACLWToTcgCy0nCypUr3ZgxY1zjxo39w7RBtgMtoQoWLOi2bNlifSAZ0nvs2DHLnNMJokjqURJMj282eggGgtZNnPgyQ4Z2T/EzdRhcSlYOv5f9+/d3F154oc208HqEi4iIpBaJLAQpyKZkoyIQ6xAtJOIHx6m2ZcApLUbZ2ABtWqBWTyKSFPH/3tDTn9YzXMdedtllugaNQlzLLFu2zILUrAPM2wucLUH7JjbwCU7E2pBlAvYEXrz1js4S77zzjiWOeUEKrtdYF8Ph5MmT7q233rLE0x9//NHu27dvnw0S9ypRkhug4PfrhRdesHkTX331lf/6M7GuGyIisUxBiijCiR1le7SSoQwRDM5moWXBCwxSlC9f3hYoFjkuOAlQ1K1b17JbmEuhE0SR1CNo6LVvIthAtirZOZTpkmEUP0jh9WsFmS70ASdzVQEKEREJNnposxZx/ug5ePCgBSBy587tFi1aFKf1IOeT4BzRy471ghRq1yIiSUGLuPi2b99uw3p79OgRkWOSM7Fxv3z5cgtMsJ8QGJjguoSgBEPQCVAEriGxgmqESZMmWQvDRx991HXu3NnfApsARZMmTSyAEeoZEx5e3xEjRriRI0f6f0cI+NAe+JFHHrFW3qltP7xnzx7792zZsmWQjlpEJPqc5+Ovt0QtsgGKFi1q2SkMs/L6GYKqCYITniVLlvjbyhDUiJVhViLRenJ/xRVX2EAyso4IAtI2Y+jQoZZpRIuNwPJbspTiBy1E0gsvWM66lDFjxkgfjkiaRRCCtYlbQuhNTRZnqVKlLADhbdDQHjRnzpzWxnDHjh3WHoL3Oa/k95ZNHapyRSTtC8WazTwD+v4zuDccdN6RsG+++caGM7OB72Xyg3Z+bOAT3GYuAslXsYZ/8+nTp1vAfcWKFf77y5YtG+fjSHjzzTctOQ0MkWdWFG0VU7ofw79dYMXFwoUL7ZpUw+lFJFYldd2OrSaD6dCtt95qPRTpazh58uQ4/y8wQOFVV3Afm6VkTIhIynkng5RBMzCONmzjxo2z/0fGTiBarJEt8/zzz0foaEXiouKHli60KmOz0us7fy78LLOpWa9evZAfo4gkD+eCZL7SDtQbdh2IGUpvv/22vU+ricAMUjatCErQutDrX81mIhcKZNHSHkpEJKVIkiMYKuFHKyGqv9kzYO9g0KBBtslN9n6rVq2sfS3JjmykM6g5lgIUrFtUBRIA41qrTZs2FpBgfWP4NAELb95DOLEGBwZGaL/I9SJBlO+++86OM6UBij59+rgbbrghzvfFv5sCFCKSHqjdU5RGmObMmWPZ2a1bt7aTC0oYKR/s2LHjGQOs9u/fb0OvuPCkTz4ZdJQbUuYoIqlr9cTAbCqZGErKcHs2d2j/5KEYjd83qpfYEAYnrWSsskksEm6UhHfr1s2NHj3aAhT0rOVnduvWrS5r1qyJfh1l5E888YS/V72IRBd+R/fu3Wv9qePPmwC/v2zokC3rzVHy1imv1RMbKR6v1dMdd9yR4OOJiMTHNWog/r6wAc51auDfHQkt/tYvXrzYjR071gZgMxsEBCCo+CaLn7ex2lmB9W78+PF2/cW652HuH+sYQYuUDJ8ORpcLZg4SjKBighmEtAHmGjBYwRIS4/j3ZAYpLR1FRNIV2j1JdJk7dy4tuHxXX32177///a/v+PHjvowZM9p98+bNi/O5Cxcu9J1//vm+vHnz+v755x/funXr7PO4j68TkeT7448/fBdddJH9Li1ZssT377//+m655Rb7eOjQoXE+9/PPP7f7L7nkEt/hw4d9f/31l+/6669P8PdVJBxKlizpe/TRR/0fszbkyJHDN2DAgES/5u+///aVKVPGN3bsWF+LFi18devWPefvyLFjx/y3ffv22c8874tI6Bw8eNC3YsWKM+7/5JNP7Hfwwgsv9G3fvj3O/1u7dq1/nfrtt9/897du3dru79mzZ1iOXUSiA2t1Stfs8847L87tP//5jy9btmy+Bx980HfgwAFfLHwPsezIkSO+gQMH+vLkyWPfv3crUaKEb9SoUfb/Yxnnk5UrV7afLe97y5Qpk69jx46+1atX2zVZJLCOcm4c+JrXrl3brv1Sa8+ePba2e06cOOGbPXt2xL5XEZFIrttq9xSFGJBNJgqDlmjdlCFDBquoABmxgcqUKWP/f9euXW7evHk2tJdMWfrpk30gIsnHUDLaatArjzZqVEbQ45WWGA8//HCcz/V+J8noyZIli/vll19c4cKF3TXXXOMqVKgQoe9A0it+btevX28l8B6q7/jYy5pOyAsvvGBrh7fWnMuAAQOsvaB3o3JIREIjcHxctmzZrP92IDIumZmExx57zOXLly/O/584caK9pY1bYKtQDc0WkZRk8AfeuOZkVg5tibNnzx7pw0uzvvrqK2shdP3117uePXtapQF/z2lBu3HjRrd27VobXs7siVjsIuHh+onvh3WPc9cpU6ZYpQ5tTGl1GK5B2J5NmzZZGycqDmfPnm3P36hRI/v3oKqIa7/U4Pfm5ptvtn0fDzOn6tSpE/bvVUQkGihIEYUoGfz8889dr169/IMRO3XqZL0J6UcYeLHKpqm3qUSZLYuZ9/Hw4cMj9B2IxLbBgwfbW1qmscHL75YXiMicObP/82iz9uGHH9r7tGTzNpDmz59vg0ljtcRaYrsvMRsG/BwG4mM2ERLCekMfe1oFJtXTTz9tvey92759+1J97CJyJtoMesHyxPz666+2scPm1HPPPRfn/wXONAts9cTj0qYCd955Z8iOX0TS7vlG4OayBB/X/FxTMOiaeROcqzEv7/bbb7c5eV6bLf5fLNq5c6etbyRZEvAC107MUNq9e7fNB2zcuLG/nW4ksL7yb8D+TPPmzW3eBPPbmP0RDAULFrR/U/4t//vf/wblMUVEYpmCFDEib968tulJplz8qDpZE9zHAsoQxPbt29vHVFcwRFFEko7MJKom0KVLF9t89QIR8Qdmk9XDSXWlSpXOGDpKFYZItDtx4oT1LSZAkZxsMC4i+RkPvIlI8FHlRICiZcuW/p7j8RGEXLZsmVu3bp0NSg1Ej2wq/MhwJtHFs2bNGv/55dlm1YiIBAY3ORfmfIG/OyTuMMyYxAVm5UhwkGxCVXfx4sUti/+zzz6zTXIy+EksoWKWNeHSSy91sYaZmx5+dqhIICDB28CuEpGa68fr61Ufgqp4qocZlM1sp5tuuinVQY/ly5f7PyZAQ1Xj0qVLY/LfU0Qk2DQlL8qzJ7iI3L59u2Vwxx+Y7WGQb+3ata3kkEWUBZTBpyyAzzzzzBkDzkQkcc8//7y9JUuJ7BaqmLhY4CQ1MGuGzSKGucEr0eWigYFuVDiJRAIbB1zI/vzzz3Hu52MuBhPKYiMwxxri8bLZGKTLsG3WGBGJjBdffNEdPXrU1iIGoiaG5JSENnVo5UR1IIFF/jZ41OpJRJK7ucrfix9//NE1bdrUzndBRdaIESMs650NXgYLr1q1yl9hLEnH9QbtjQhOc/2Pyy+/3D3yyCOua9eu1uopVvc0GPL92muv2TknAQnWLL43qhKKFCkS8e+NNbF37972c0wr7Vq1armrrrrKjpP2WsFAFQaVI7TzJrHUSxCgjZWIiPzPeQym+P/vS5T54osvrO8wC+WBAwes9RMbozNmzLCTGAIXHvpQssBxAUqkn4wE+jjyMRl0gT2IRSRhlNmShUp7DKonaIFBmzWyfji5rlixYpzP379/v5UkP/nkk3bCyQk2X0uAMFhlwCLJVapUKVsP2DTwgg65cuWyTc74F1qUmFOlF4hWg1RY0DKwQIEC7qKLLjrnc9LygXWG1k+qqhAJDzax3nzzTfudjV9BcS5k51KBy98J/jaISPqRkjWbhBzOhRctWnRGS0naSVatWtWyzD/99FPbjA5sLxcKaem8g+2Yjz/+2JILvWpuNsgJ9PD3ORbnTODUqVPu3XfftXXGay8IZk5ES4sq9lAITjDb00vQadWqlSUIBLvKkGtFzs+5Vnz//fdthqGISHpxPKnrdkjGdktQ/PPPP75bbrnF17x5c9+BAwfsvilTpthE9CxZsvhOnDgR5/OrVatm/69Nmza+f//915c9e3b7+Pnnn4/QdyASW1599VX7ncmcObPv77//9nXt2tU+LlOmjP1Onc3333/vy5s3ry9Hjhy+P//8M2zHLBLf1KlTfRdffLFvwoQJvi1btvjatWvny5Qpk+/gwYP2/5s1a+br2bNnol/fokULX926dZP1nMeOHbPfFd6KSOrs3r3bN23atHN+Hr+n/N41btw42eeX/E3ga9etW5eKIxWRWJSSNTt37ty++fPnJ/r/582b5zvvvPN8ffr08YVDWjnv+Pzzz3133XWXfS/c+Ns8YMCAM67zY8m+fft8PXr08K8z3K644gpfp06dfN99950vGuzYscNXp04d//Gdf/75vtatW9v6GyynT5+2c/HAa0heG+4XEUlvjiVx3dZMiihGeycyDWjfRC9hPPDAAy5//vw2rMwb5uvxhiXy+fTRf+qpp+xjshe89h0ikngW08svv+yfRUEVEpFeSpH53QqcBUN1Unxkj5HVSu/ws7XkEAk1ehYPGTLEWpeRqbZp0ybLmPYyH/fu3WsD+kQkOiv67rvvPtewYcMzzvMCLVmyxM2ePdvWKq9NYXy0CCGLlYqpQLRxo7c8/a9V9SciScF5w9kyv2nZw7UrWelybocOHbJBzHRNoHsCf4+pdmWmJG/poBBr2Leg0wNV6LQZZJ3Jly+fVebSJow9CVrpRgOu65jZxM8s/w60Xxo7dmzQZmGw93L33Xe7hx9+2I0fP95/P1X3SalQFhFJrxSkiHKB/YO9EkTv5I/Fn5IZz1133WV982kJxWZr69atbRGkl/GsWbPCfuwisYSBZZSr8zvntb7gd42AX7Vq1eJsIDEku0aNGvb5gTjRZQipSKTxM/zDDz9Yq7LVq1dbCygPA3a9eSoJ4f9pzRCJDM7baMVEm4m6desm2jKCYDo6dOjg7w0ff7NozJgxrk2bNmcMtPXmUdxxxx0KqotIkmdeMU8gMbQaDnZ7nLSIls2jR4+25CaCyGyWt23b1lpvMluSYeSxluS1YMECa4nLEOhJkybZGnXPPfe4jz76yILitK2KdEsugiQEITxcr9EucfPmzZbgSTAlmLgmJLmU3xtad4uISNIoSBEjGHpKf09OBBo3bmxZCAww476EqinefvttC2A0a9bMPu7Ro4d9rYgkjIF0qFevXpzer1wsBFZRcEJLNhkntd6FBBs++v0SEZHUIlD+0ksv2YDNnDlzJvg5BB++/fZb61net2/fBD8nR44c1lP7scces88LxFBbMHdJRCQpSNh59tlnrZ9+fCREcA167733RuTYYgVDxcuUKWPBZaoM2NTn7zF/0/mbHYtIjOTfnWQvkikZqr5+/Xr7mOHTbNZHEsmadJcgCEEwiKHdHmZPBLOyg7ki3sBzb44LFRoNGjQI2nOIiKR1GpwdA8jcpjSQoMTChQttIPbUqVPdgw8+aIMSyVzxBibyz1muXDkrG6XMnxYAXORSckhJI9l5IhLXypUrrRKJYAQnl2QE3XzzzZYFFIhsVDJvCBpyQcHJLhcXpUuXtkFo/N5xgi6S3qSlAZYikUCGcu7cueMExRPCuSBtP3n7+uuvu44dOyb7uagGJMgxc+ZMC8yLSPqSkjV7//79rkSJEu7iiy92jz76qG3uct1JQHXUqFEWqGAIca5cuVw4xNJ5B68Tf6+feOIJe5043n79+tnf7/hdE6IdQSoCLF7VDFW7tBZt2bKlJXwlFlyPxP4J7aWoTuF4QWst2igWLVo06M9Hh4snn3zSrh1px3iutVxEJL05nsR1W5UUMYAelfR3pF0H74OIPJuoLLrDhg3zfy4LIosxvvnmG3fNNddYMANk0ykmJXImMppQs2ZNy/jhJJvWaVxsBXrjjTcsQEG/UnqMYtu2bTa3gj69ClCIiEhyMSeGQDfndidPnjzr57KxRYCCQEO7du2S/VxcGFAJCFVSiEhSkTBH5TDXn08//bQFOJmfQ3UF95GoE64ARSxhjh2vFdfhBCioLiC7no9jLUDB5jtB8sC1h+D6gQMH3NChQ6MiQEE7Ldo3FShQwCoo2CthXsrcuXPd8uXLQxKgAK2daOtUvHhxa70tIiIpox21GDFo0CDrU+xF5Tmp6dOnjwUo4md7U0lBz3HesuHK106ZMsXt3LnTyhA5ORKR/2HQNeXX/G7x+8QJJj28qVAiYyww8usN1qak3evjzbA1ghsJlb+LiIicy7p162wjhYGp52qNQaYmgQZaaiQWGOf8kE2Z2rVrW9ZzoDVr1ljCCsH2a6+9Nqjfh4ikbQxEnjdvnrXQ8dra0EYnfks5+R+ux0k0ZB4C1/FDhgyxmWGxmmVPSypm9bEJz5rldXLwkiijwalTp6zN9eHDhy1oRttD1stgB4SoLGI9rV+/vv93g2vHwJbBIiKSfGr3FMO8f7qknOhQgskwVBZrWgrE6smRSLCR/UWpOllOtL4IzMQJPKHlhJeLCzJzaJOhYaMisdl2QSQakaGcPXt2Cx6kduOEcz3OEdlEjD8MlA0bWoFSZTt58uRUHrWIxKK0sGZH+/fw1ltvufbt21vLZVpj0ao5VFn8ocDw6/fee88GelPB5yFIRYJkNAUmOMYbb7zRv7/BngdBCqpVLrnkkpA8HxUTVMYw44Ih6CIicnZq95RGsXE6duxYy7pjIQ4MNiQUbzpx4oRlhzNYkQ1XWgp8+OGHYT5qkejEUDcCFPweUXEUKDBAQcYQM13w6quvWoCCE1S+VkREJCUCz9uYbXS2AAUtnpJi4sSJ9rh33333GQEKLxjiPZ+IiAQXf3/Z1KclEgEKKq65bo+VAAXHPH36dGspSJIjbaRpT+VhvmW0BCiOHDli81EIEnzwwQf++2nJS3JZKAIUICDCAHRmcSjxU0QkuBSkiDFkvzGsl5753sUtZY20n6lWrVqcC15OMphjwed++umndqIBhnTx/0TSM35XvLkS999/v9uwYYO79957rUoiPoIS/H+yoGrUqGH3de7c2U7gCRqKiIgkx8KFC22IJ728kzIAlPaDdevWdQcPHjzrujZ+/Hh7v1WrVmf8f879Vq5cae8rSCEiEvxkQrL3uS5Hr169LKuf2XWx0p6K+UgNGza0wARtvGh1G22zRmixS9IYgXiGtrO20b43VHh8Wmd7syYITFCJyBwWKuxFRCR4FKSIMQQYGFzGpqoXaCC77pVXXrEL3vfff9//ufQ1JouDBfy6665z/fv3t97Ehw4dss8XSc8ILlBZRE9v2l8wXG3BggVxWj4F4nenUaNG/g0jesvyOxZ/JoyIiMi52mhwPkfAgDaC5zJ48GDrdb1+/Xp3xRVXJPp5n3/+uVX58TkM8YyPgdmUWLNhRgaoiIgEB61/mjRp4l5//XXbxH7ttdfs+iIWMu0JSNSpU8dVqFDBv8707t3b1p0nnnjCXXbZZS5a0G6KJLFu3brZesZaRmX88OHDQ/acjRs3tn/bgQMH+u/LnDlzzA0+FxGJBQpSxBiCDQxWfPzxx/0LY86cOV3Pnj3tfUobqazwUALJRSmlmVmzZrUTDq8ig4VdJD36/fffXffu3e193tI39ocffrBMIe9+L1Pn7bfftg2lQJQ5z5o1y23dujXBdhoiIiKJITg+f/58q+Z76aWXzvq5zBGj3QZIMDlbkGLcuHH2loB6Qpm7ZH3izjvvTHTotoiIJL+CguqDadOmWfU1WfdUVEQ7r11SkSJF3EcffWR7CwTQd+7c6fr06RN1sz7oDkFF+7Zt21y2bNn8LbBDnTDG3EKu/TQgXkQk9BSkiEEJDewlOJE7d24bmEhZZuDnkvEduLizqP/xxx8W6BBJj5599lmb18Lgnlq1atncFowePTpOthBZUG3atLE2UAm54YYbwnbMIiKSdtDTmtZM5+qZTbYo52xkuLIJdrZhdGyQwWvvmVClBWgzJSIiwUHy35w5c6zqmhl2XuV1NAdVaJNEqyLe8jHtBGl5SyUIiY3RqGbNmhZgp7qDQEXr1q1DUs3AfsqWLVv8Hz/44INu+/btFtAREZHQUpAihtEj/7777nNHjx616L7XMoAgRfyBvpx8jBw50pUrV87e4p133rEFXiQ9ocXTiBEj7H36mZLpROs0TkCpOArMXiWLCE2bNrW3VCnx+xVYrSQiIpIUBMS/+uqrJH++14KQTRjWrbO1DaE/NlWChQoVsoGeZwtS3HXXXSk4ehERiY8h015FHJn9lStXdtHs8OHDNuOIDXf2EBjozSwKKsQLFizoogUzllj/vApB8NrSgooWiKGq8vjss8+ssoSkAFp4gbWXbhYiIhJ6ClLEKBZuMuU4ofBOjJhTQcY3LWoYmEhgwnPy5En7PEoiuUC+/fbb7THYmBVJT5o3b26/G2QPMZ9l06ZNVr7rVVOA3w0qKAhGkHHaokULf6sNWqslVlkhIiKSEM7XqGYlQECW5rmwOeK1C+ncubMrXLjwWT9/zJgx9rZt27YJBjN4TtoaMkuJdk8iIpI6XFPTtg+0i33ooYdctMuSJYu1DcyUKZNVTbA3UL58eRdNaG1NpXv9+vVdly5d4qyZzOYMJdZaKmKorKcdloiIhJeCFDGKC1Ayusnw7tSpk/8+LlLJLPjmm2/c119/7f982tp42eMMferbt699PtUYgRkKImnZhx9+aBkyGDRokL9SguBDYGkzMyoWL15sbTj4/WBTB7feequ1eGLDSEREJKnYBCILtEOHDknaZCGgwDwkWnR688QSw6DTjRs3WntPAvEJ8eZRMGQ0Q4YMKfwuREQEbGAzq4AKtipVqsQZqhxNSLyiFSAJi+D63+umwPyJaJpPRHCeYeMECmibRdtqghShngXBjMHAIA7XiitXrlT1hIhIBJznY+WSNGXevHlWrhm/Xz7/1LSHmj17titZsqRl0tFzn2yBffv2uWuuuSZixywSagyK52ST6giyntgAWrp0qatUqZJbuHChP/OUdlCU+TKzYujQoZb5Gv8Emo2gs7XdEElv6IdPMJzfs2gbtCgSLQg6sHYktYf2f//7X9s8IbBwNu3bt3dvvvmmVcfS9ikhBNdJVqE6g3M/EUm/0sKaHcnvgb/lVatWtesI5gutWbMmaocqt2vXzpKvmEVJm9toRSCdSkCvZXXFihWt0iOULaiorGf9JCFt+fLlaoUoIhIF67YqKdIQ/rFBX/2EBvpyYcw8Cn4wOJlijkXOnDlt07VOnToROGKR8KG3KAEKgnF58+a1CwtKeRmWHRhwYAOHAEXp0qX9FROBsVyCegpQiIjIuTDw2qveAxmryRnyyXnauQIUZMd6gQk2eBKjodkiIsHx9ttv23UEbZNI/ovWAIXXDpprF6ryotVPP/3kKlSoYAEKrtPee+89t2jRopDPyGA9/uuvv+w678svvwzpc4mISNIoSJEGMIPi6aeftsAEFRGBOIGaOHGi/2NaDHh9i2l38+yzz9qG66pVq2zYl0haNGPGDPfpp5/a+5QRv/DCC/Y+2aT58uWL87m0USN7Z/z48XbyyoA5Ko8YYCoiIpIUbHowH4yNF7JBk4qNGT4/cK7Y2dBPnPNA1rJ77rknwc8h8O4N7FamqIhIyvH31psH2a9fv3POCwq3AwcOWIW4p1q1am7Pnj02Uy9aZc+e3T3xxBOudevW7vvvv7d21qFKCKMKhgQCz/Dhwy2ZgOcXEZHIU5AiDWAjddmyZe7o0aPu/fff99+/YsUK22yljHHLli1xMsoZus0FNCdX/H8w24INWZG0VmHkDb5u1qyZGzJkiJ2gPvDAA7aBFB9ZO8yjuOmmm+zj/v372ybQk08+meRNIxERSd9YL5j9wDnazTffnOT2TpyTcT6W1LYcBCbYlJoyZUqimzokovz7778uT5486rEtIpIKJP/RGvbaa6+1VkrRhNkTtKyleoK2th6ONZqw30AgghmaHq63SJgMZVXKjh07rJowMCBBh4ly5cqF7DlFRCR5FKRIA7gAZlGfNWtWnEWXRZh+mVz0EphgsJeHDPL8+fO7/fv3W4ml1/apdu3acVrbiMS6Bg0a2M8+5cNs+jDcLleuXFZR5G3okBXlDRWNj0AeQ9v4HUtOmw4REUm/aO1EO0EGWlNNkRQMXt25c6fLkSOHe+SRR5L8XGzqlChRItH/r1ZPIiKpR2sgNtNB8hIt+aIBbf9IxGrUqJElLRYoUMCubaINewwkVBK4p00hLQq9fYdwtNLdtWuXW716tZs0aZL7+eefQ/58IiKSfApSpBGUmtatWzfOfSz2ZHuQPbF582brte+hhyZZdxdeeKEFN5o3b26fz8IdzUO1RJLbM9Yreabl09VXX+1GjRplbS8yZ87s/zwuNMiiGTx48BmPwe/KsGHD3B133BHWYxcRkdjDxkfgpgtZrUmxfft2C1KANYcqjHM5dOhQkh7bC1Ko1ZOISMoxK4HWSVmzZk1WIDmUvv32W7tG4dhIpnr++edtvgLJiNGE9Yoq9saNG7sjR464W265xVobhnPOH8mbb7zxhl0HRvOMDhGR9ExBijSIrHGy97hIZgEmU+E///mPGzdunHv33Xf9n1e8eHF/T82hQ4daH0j06NHDbdiwIWLHLxIM9DT1WpnR7olB2J5MmTL53585c6b1I+X3JXBAG+0xREREkorq1Ntvv9116NDBMm6TivXn0UcftcxX+oezkXMuVMmyZt15553W7ikxHAcJKFAlhYhIytAq1qui4Fr5sssui/QhWTIic/O45qGVH7MV+vbta0mI0YSESAL2H374oVUZ9u7d21rpshcRSitXrrRKxt9++81/H9eGVNSLiEh0UpAiDZ5AkSnHBfKbb75p97E4k1XhLczfffed//O7devm7r33XrvYZch2sWLFrG8xmQb08heJRadOnXKVKlWy3wcyicgoYuOHzJ1Au3fv9s+loFUa7c5AGTBBDXrNqv2ZiIgkxfLly93BgwetfWDgYM6k9BGn6u/iiy92I0eOTFJm6dq1a20gNs93toxQMkZZEwnOJ3U2hohIqA0YMMAqAKgaozKhXr16buvWrS5acW1AOz7ax3KdHUlct7dp08aSsHif63ZaC0ZjtdzcuXPdfffdZ3MoqJ5g7erTp4+76KKLQvq8XAMyg5O5nTyfiIjEBgUp0hiyE+hJmT179jhlnr169bIh2lRZBA7XpsKCSgsy8d566y27SM6YMaP75ZdfXI0aNbRBKzGHn9n69etbZilZTrRw4n2GpRGA85CxSu9Wsmv4+feqirBv3z7bJCIrKZxlyCIiEruaNGni5syZ4z766KMktWvyKh3IysUzzzzj8uXLl6Svu/vuu22t8lp8nKvVU5kyZeycT0QkGpD1TwUZlctcf/K3kM12gqrRXEVBUtPll18esWMhMH3PPfdYS1uuUaic+OSTTyx4Eo2qV69uLXWfeuopC1DcdtttYdsTodKEltYvvPBCWJ5TRERS7zyfdqHTHDZi2XhlkGL8kxpOAglixMePgbcZy8kiF7PcxwmF1yNZJBbw8/r000/b+4sWLbKKCmaycPETeGLcqVMn64XKbIpNmzadUfq7Zs0aqyziJFdEzu748ePuyiuvtAo8At0i6QXnSpx3nS1QcC6sQaxdEyZMcJdccklQj69BgwY2k4lAvLc2ikj6Fo1rNpn2VFQQvCAIG03fA8Fgrp+ZbcdMCubVRQKVcVR9E6DmOp/Ew8qVK7towvUW8/+Y2eGtZwR5wnE99emnn9pbgl0iIhJdkrpuK6UqDSJTLjBAQfUEGKAdGKAIjE8FZovTEqBp06b2/ssvv+w+/vjjMB25SOpwYUMmKnhLgMIbLB8YoKAVBwEKkGWTUG9SerwqQCEiImfDTCPaCQb2vE4u1qepU6cmOUARv3VhYjjP09BsEYkFXpvh+El2ntOnT9sGR+AtXBi27LVJjlSA4ocffrC5QgQoChQoYEmF0Rag2LVrl1VNPP7445bo6AnH9RQVjKzF7GGcbU6TiIhENwUp0kF/5Jtuusl98MEHce4/evSoZRkwwCrQ9u3bXalSpSwzw7ugpUfoli1bwnrcIik5MebklE0ZKiDoHbtixYoEP5ef7TFjxlgrqFq1atl9CxYssJ/1pG7+iIhI+kZrTAaALl682KoVkoOWg1T5pWQjL0+ePNbCk3O5c62LVNEyRJXe7yIi0YhqNDa2OT9nwHJiMyzIwPRuOXPmDNvx8XcUtFmKlNy5c9scPf72E6AIbOscDWgfTcB99erVlvBIQCWcqlSpYs/fsGHDRANdIiIS/RSkSOPoUbl//37L9AusnCCLnFY4Dz30kFu3bp3/fnohM0ibLHIGORYqVMhKNGn/dOjQoQh9FyJnRwYrwTWyrK6//nr7mSfjaOjQoYl+Tdu2ba2vrFeazFD52bNnu1deeSWMRy4iIrGK1h9U8D377LOudevWyfraQYMG2YYKb5OD6j96tnNOxkbQ2XiB+uLFi7tLL700Wc8jIhIuzKb49ttvraIsMbSrI0jr3agoCBeGU4NZd+HEtTvXNh6uUebPn2+taqOFN8SbCoYTJ05YcIK2VLQaDDV+ZjxUIlI5yB5HsNsmiohI+ChIkca9+OKL7rnnnrNgRWBLp549e1owghOLOnXq2KYu+Jzx48dbT8ccOXK4ZcuW2UU4J4OlS5f2t44SiRZko1JaTAUEJdi0O2Pzhs0f+nt7uI92ZwlVSpBlOmvWLKukeP7558P8HYiISKxirenXr1+cc6xz2bp1q52fkQSSnGxgNqy8tiMdOnQ453NyDhfp7F8RkbNhRtzcuXPd0qVLLdEoMRdffLH1sA68hTtIEc5gL3/vu3btajMovEAFbZO4ZokWO3bscHfeead/iDeVhfw7JtRGN9gYhn3rrbfGudaL5EBzEREJDgUp0jhOZFjE4/fP5CSHbBV69f/00092AnTy5El/loiXKcIAs+7du7uLLrrI2gbUqFHD/fPPPxH5XkQSOoGvX7++ZdIwtDR79uxu79697sYbb7RMI8rB8ccff7j77rvPBt9RPZSQokWLupkzZyrbVEREEvXrr79acsfOnTtTvG4xUJQAO8kijRs3TvLXUrXx3Xff2UZM4IyxxChIISLRijnZUQIAAGqpSURBVL+FBCg4916yZIm74YYbXLTykvTCeY3AGjN27Fi3cOFC634Qjbj2onKd/QKOs0+fPmGb50dQhJ+hTZs2heX5REQkPBSkSGdo4eQNsmIDlyFT11xzjS3wlGUGlpTi1VdftQHE9D/2LpBpaRDYOkokUuhf6w12Z4gcM1UYEE8lULZs2ex+MlUpQV65cqX9zA8bNsz/9ZQEp3SjSURE0p/HHnvMzp0ILqTkXGjcuHF2LkUyyKhRo5JVgeFVURBsP1cW8Z49e2zziE0kDc0WkWhs8UTyELMMMmTIYHMfuHlVC9GC5DyCyuFu90QLZtYaKgVq1qzpokXgukdgiVa5GzdudJUqVQrrc9NmkXmCgdd1IiIS+xSkSEe+//57u6im/7G3seudXJAZQuY5F9+BqJzIkiWL27Ztmw3gxjvvvOM6d+4cke9BJPDk9LXXXrP3mZ1CdilBCE5Y8+bN6x/Ex5A5BsRTDcQA+YIFC9r/Y8gpGVzMX9G8FRERSYohQ4bY4FI2jpITYMCPP/5o1amgyjU5mcNUvbKWea2ezoVACBiYHb+aVkQk0gi60k6YSi8qob3b+++/76JJYNAk1JUUXLewTngqVKjgWrRo4aIF10sEI0gG85QvX95aRIeS1+rw/vvvt9cItPetWrVqSJ9XRETCLzz1eBIV2Jzlovjo0aPWYsDDrAkCFQwO7tatW5yvITAxb948O0mihzLZ6gQsRo4caZu+GjIskUA58UsvvWTv8zNJgIIhaWQc0Z80sIz83XfftUxSLnoCs3wYBs/mDRdHlCmLiIicC5toixcvTvbXsSZxnsWmHMFxKgGTg57fVAZSFUF7wnNRqycRiWaxUpUfriCFN4OCdsxcexcrVsxFk3Xr1lnrXOZY7t692/YDwjUfg6pA9iho3zt9+nTXqFGjsDyviIiEn4IU6TD7PKHMvypVqthGL4GH+EqUKGFBDEpNOSEh84+Tk6FDh1rfyZdffjlMRy/iLDjRt29fe5+fRe8kmVZmDND2DBgwwLJu+HmfOHGiDcUORNbP8uXLo2oAnYiIRB8SM4oUKZLqDX/Otb744gtr+UTwPKn++usv9+abbya5igIKUoiIBC9IweBusvdDZeDAgf4Kca5toilIQRcFZinRFpoExlmzZoX1+om206yBVHI0bNgwbM8rIiLhp3ZP6UxggIKMDTZyCTggMEDBgK7nnnvOn+VCawOyOhjWyOfnzJnT7qd1FDMrJHmYhcAJF9n/pUqVcmvWrIn0IcUETuAJtCFXrlz2s8hFAyfLDH8PRGszghic1DZp0sTuO3DggA3n8/D6J2ejSERE0hfOfWiFWa1aNds4Ss35F60y9+7d6woXLpysr2WwLNmrVP098MAD5/x85lFw0zwKEZHoH5pNpZx3PT18+HC7homWeRxPPPGEe/jhhy1AwbXW6tWr/a1zQ2np0qVWQeFp3ry5HUty2yyKiEhsUZAiHSNAwQkRmX2BpaxcCNeqVcv169fP9e7d2x+oIBuPfv8MN9u3b5+1PPAex9s4lnOj7RAlq7y2GzZssLYNbH5oLsLZUbHz9NNP+6t72OjhgmHu3Lk2OyU+5lJ8++23rm3btvbxr7/+aj/rtDrja0RERM6Fcx9aXDDkNX/+/Cl6DDZ3PCmZD+ENBqWKgsD8uWgehYhIcHjXyKEamk23gnbt2tn7XOdEy9xH1i1mQHitnZ9//nlLCmP+X6hNmTLFrtlYe70gkYiIpA8KUqRjZEXky5fPPfXUU3GyQ66//nrLWMeLL75oG+rekCoy8ujFnDlzZhvimC1bNn8LHspAvc+TxNEmi43zli1buptvvtmNHj3aTnxp/yBnIkhG5kzPnj3tYwZh0y6DjBqGvVeuXNn/ecyq8AaLxr+gYKOG7NVrrrnG2naIiIicC+dH9MBmYHZKMjhZk1h7vPZLybV27Vr35ZdfWmsNZlokhVo9iYhEfyXFxo0brWqC62eub/r37++iBR0WrrrqKguMEzSg1W4o210FYr+BvYZbbrlFlRMiIumMZlKkY/Tk/+abb6zlTXwMdOREpEuXLpbBx6DHMWPG2AwKMvNomUOGw88//+yyZMnijhw5Yv+fwMWMGTMSnG0hzv35559u/fr1/ooA8Dqz0c4mhJxZZkwwYvLkyfYxgTBvzgT9UT2c3PMzO2LECPvZY8g77bQCcT8n2bR88tqViYiIxLdjxw63cuVKW3+Q0raAnBt17NjRzpVoo5mSoAGtP8BG1rXXXpukr1GQQkQkuJUUwQ5S/Pbbb9a+j2HQ1atXt/a00bQhz7GQSEdlx2233Rby5/v7779tn8Fr6Uu3ARIno+k1ERGR0FMlRToXGKDgJOyFF16wkyVwUjJhwgTbRB8/frxr1KiRv2UBJytcBF933XV2Ee6Vfn700UeuTJky7sSJExH6jqIbrxUb714FioePDx48GLHjikZkLlWoUMEfoMiYMaO9dgmd1FIVRIACr776qj9AwbDROXPm+D+XjSYFKEREJDFHjx61JIwWLVpYn/DUoEUUAQqqJpnzlRJdu3Z1zZo1s6SRpNA8ChGR6G73RPU3a8yuXbvsmmXSpEn+DfpI+vTTTy04711vkeAVjgAFFYOFChVy69at89/H9ZoCFCIi6Y+CFOLXsGFDm5Pw0EMP+e/jBMqrjKBlAVnsHtoXrFq1yk5eBg8e7KZNm2YXxVQK8P+oqhBJiV9++cXdeuutbsWKFf5hoydPnnSff/65ZR55CKiRhfTuu+/az957771nWatedQX/r27dulFVPi0iItErU6ZMdh5EO0zmc6XU1KlT7byIjaeJEycmaZZEQooXL25fz9uk0DwKEZHobvdE+0CSqLi+5jqb1kaRRqCkZs2adk01atSosM8dpIJRMy5FRCTyIXuJGvT9X7NmjbXNCcTQqk8++cROWh577LE4/48yzNWrV/vbO/FxxYoVbbD2TTfdZBfLt99+e1i/j2hGayw208msDMTHSW3jkNZ99913lv1JNis/V/PmzbOfKdpWcPNO5GlBVr9+fWs9xuYPPcNr167tfxwqgO68807LCtLPoIiIJAWBceZx9ejRwyr4UoK2gl7AvFevXkkOMASDWj2JiERvJcXy5cv9bX9fe+21sK4PZ5uX2L17d3v/wQcftPa64cRcRtpQ9+vXL6zPKyIi0UeVFOJXvnx5t3v3ble2bNkz/l+lSpWs9ZPXl5m2T9u2bbP3A+dP5M+f31oX0UaKlk8lSpSwHpvi/K8VJ6MMH/eQ8c/HpUuXdukdrZ2ooCBAQeBh9uzZFqDwgmWBmUb8PBKgIFOUQEZggMLDRcDmzZtdjRo1wvp9iIhIbM2Lovc267EnpQEK2ni0bdvW1rFixYq5Z555JsXrIY+zZcuWZH2dghQiItE5k4LWvrRPpp0SFXvt2rVzkcSaR0DeC1CQqEhVeqhnS/KaBrbjZb0lYJPSdVdERNIOBSkkjsAskR9//NFaHZARGP8CvH379haA+Pjjj+P8v6VLl7q9e/daVQBtoDj54XM5EWM+gDjXrVs399Zbb9ngZ6oGOnTo4E6dOuVatmzp0itO1vk5adq0qc2Y4OeQQBgnzWweJYSqHvp9syHD7AocPnzYAhM8hidv3rxh+z5ERCT2sP6yFgcje5TWICR0EGinTdOFF16Y7MfgPGvQoEFu7NixNusrqX744QfNoxARidJ2T5dffrm7++67rS0ygfFIzlzg2osgCa2nwJpDRQWV6OGYOVivXj1rJS0iIhJIQQo560U7QYhWrVqdkf3AoC8qJchef+WVV+yCGg0aNLAL6g8++MCGX7GJ7PW5JGgRv81RekQGDSeEzz//vL0mmzZtcvPnzz9jmHZ6mj9RsmRJf8UNVTicwGbIkMH17ds3TjYPLZ28jCZOokeOHOkvk+Zku1q1am7gwIH+jCAREZFz4VyG4DhzjIKxCUUVoDefK6VY3xo3bmzVFEmleRQiItHb7olrG+YV0fKJtSKSqNLj+pzrqfHjx1tFRTiCJryOrFHMf7r66qtD/nwiIhJbFKSQRLFpTLuA+O2aOLlYuHCha9OmjQUnmGXRunVry3wHQ7docUAmHxfZBDk46eFkiHZQDENO7zp16mQZj7xmzPQoVaqUS4/YxOFnYsOGDfYzwo1h2LR8IsjlbRhRGUHlBMPd+VnzgmKB+Hnr06ePu+GGG/y9wEVERM6FYADtLgl0p1TgusRalpoABV9P680pU6a4q666Kslfp1ZPIiLRV0lBIlXg3/fk/F0PlVtuucXNmjXL1pmHH344rM/96quvuo0bN1qraRERkUAKUkii2OylfVPu3Lnj9NIE2e1jxoxxw4YN82dgMDtg//79cR6DAdr0tuTinZYHVF9Q5somcmJtfCTtI+jw5JNPWiYNfbsvuOAC+xnhRvBr1apVrkCBAva5VN/ce++9FvDyTqoDBf4c1alTx1poMbRdREQkMcw14pzEkzVr1lQ93ksvvWQtC3/77TcXCayfzGmCNn5ERKKnkoJZD3QbiN9COdxIBNu5c6f/YwLzJICFGi2Oufb3gvlc9wXuL4iIiHgUpJAkI7M9X758diHOSQaZIF26dHGffPKJu/LKK93KlStd1apV4wyezJkzp5WSUt7KTAqvN/Mbb7xhswK+/vrrCH5HEgkMXCcAMXjwYH/wyptDwUks8zq8bCUqdooWLWqDxSmLnjlzps2c4GePryVIRtVO4KYQfcBFREQSw9pBS8sqVaoEJWFizZo1rnfv3jbsmvaNqUHVYOfOnc9I+jiX7du3W4UmSSTlypVL1TGIiEhwBmcTmCCxb8aMGdZVIJIBCuZAMK+Ia7Fw2bFjh1XBc+3PdZyIiMjZKEghSUYwggHPn3/+eZxABFkYBDDIiqd8M/7ALVr20M6HzWRveDafw2BuZjL07NkzThmspE0EFfr16+cKFSpkbTW8vqf8TNx88822ydO8eXP/ffxcEPSikqJIkSL2/zm59hw7dsxme2zevNmGk4qIiCQFrZRot8GaEjj3KCVOnjzpmjRpYucxtI1i7lRKcV5Ei80RI0bY+8nx6aef+r+3SPc6FxFJK1Lb7ilHjhx2DcM1UOXKlV0kcF1FxcSCBQusgvCnn34K23OT4MiaxnVd4HWciIhIQi5I8F6RBDDo+cYbb7QBk/T/j38CQouewAAFJ0J58uSx1jve/x8wYIB78cUXLXOeUk/evvzyy5ZdMm/ePJtPIGnP3r17XfXq1f0ZRN6/PT8vtH0iA5WB2R5aQNFCDO3bt3dDhw494+KAgWsMaacHN5mnIiIiSVGiRAlbj7Jly5bqx6KilPYZuXLlskzR1AweHT58uG0m0RYzubOqqDwEwX0REYmedk9UhXOLBK63aEXINRPXWrwNdUtAgvcE7um0gA4dOoT0+UREJO1QJYUkCyc5GTNm9H/M5vGXX35p7wcGKMiUJ2OjePHi1sLHa+tDoIOqCyooOGkCF/Rc4BPMoMWBdzIosY82GmTOMN+EDSGCW5wY829P9YQXuPICFF6vUnqD0yaM4BWbPl6AgkHbXs9t3H777a5r166p2hQSEZG0b9q0aW7Xrl3+j4MRoGCNGjdunK1B7777rgXPU4rqwNGjR9v7BO+Tg8CGtzYqSCEiEvl2T1SCf/PNNy6S6HxAq6Xp06fbdfiHH35oMyRD6ciRI65SpUpWNUGLKRERkeRQkEJSjAvi7t27W8YfvZADselMgIL2UA8//LBVXzBEG2SSUPbat29f/8BkNq95SzkocyxmzZoVoe9KgoW+3GSWUinDSTJBiW+//dbuHzRokAUcaBEGyo7vv/9+2+TxUBLNfR4qJsqUKWOtNCI9eE5ERGLH7Nmz3YMPPmhB8oMHDwatQrBdu3b2PrOSOBdKDXqW04ajcOHCVnmYHAT8yVy95pprIpatKyKSFqW03dMrr7xirY5JtooErqsZVk1LXK6z33///WSvLSnBNdp3331ncycDEwNERESSQkEKSVW7BPovt2nT5ow2TdmzZ7fWA/3797d+zx9//LFdeI8aNco2rAOrKghmeDMpOIn65Zdf3H333edKlixpw7YktrBxw2YNJ8JkEZFhmjt3bjtZLViwoAWwevToYW85gSYLlQAG2T3cn1jWzZ133mmfx8C3wNZQIiIiZ8P5BOsP6xKVesHA+samFcH2Pn36pOqxTp8+bcO88cQTT5wx2yup8ygI7if3a0VEJLjtnmhbS3CCynEStiLh+PHjbu3atf5KP66tw+HWW291c+fOdV988YVdt4mIiCSHrmQkxWj7NHnyZKt+8FA5wUmJF3B45pln3MaNGy0DngzBRx991MpMvVZPZPytXr3aMgjJAKRPZrNmzeyEihOrAgUK2Me//vprxL5PSXqrCrJKae20YsUKu69WrVouQ4YMdqK8bdu2OJ9Pdg1tKShD/u233yzbiDkmgQGIwCAV9y9evNjNnDnTBp6KiIgkBYkTn3/+ubVTCtYmPsGJTZs2WcsnEi9Sg3Mpsk8ZsMoQ7uTyghRq9SQiEvlKipEjR1p1Gxv2NWrUcJHAPAiq0AkYUEkYSrR+ptWzh2Q1EgNERESSS0EKSRWCCbRs8jDAmBMThj96yKJg05pgxhVXXGGVE4FfQzCjbdu2bs+ePZblSFkq8wu4WCfT/r333rPe0Z06dbLNbokuBKbI/CQ79a233vK3dvrqq68s6ESFBO3AChUqZJ9PgOrVV191t9xyi1u0aJEFH2j/RLCKWSUePocTXGaaeAhOaP6EiIicCwHtpUuX+j/OnDlzUAIUzH/wkFyR2ixZ1szBgwfb+8xYovo0OUjiIKkDVapUSdWxiIhI6iopuC7yroOZyxfu65b9+/f73ydRLNRBkuXLl1sVH7dgtVMUEZH0S0EKCRo2n70Tsfg9kdkYIMjATIIXXnjBfz9ZiMyfIBgRePJ39dVXW2Y+smTJYo/9+uuv20Y4vZ85AZTIoi0T/5Zs0tB3lSHZ3r//kCFDLHsIDE/j39NDAIpZJmQm3XPPPdYGijZPgYErr/0FbcA4+RUREUkq1o2GDRu6mjVrBnVwKZs/VHiSPBEsBPLp303WqzfjIjmoMOQcipaa1113XdCOS0REkj84e+zYsda6OG/evK5BgwYunKgYpAXzgAEDbF0Ih3z58rlrr73W1ka6LIiIiKSGghQSNGwyv/322xZ4YPPZQ2CCDWcwm+Dyyy+39zl56ty5s/XIpAUUbaE8BCYY8PXQQw9ZVgatEKim4HEGDhxowYoXX3xRlRURQPkylQ/8G/Tu3dtO3r3ghLdREj/gcPjwYf/7BC/IFqXFF5sr3jwTslOPHDni/zyqM6ZPn24n+yIiIsmZQUFVwf333x+0ntgkS9CKiarPoUOHxqmoSE0VBecyePzxx1O0waNWTyIi0dHuiYQtErXw5JNPnnE9FEoEu+vUqWNJZLRfYn0JBzofkBgwe/bsZM3tEBERSch5vnCF2SVdog0BGwS06aEnJlklHi7wGTZJFj7BBza6W7RoYcO2OeGJj8qK66+/3jbJPfSBps8mQ7hvvPHGsH1f6XUgdr9+/awdlxd0CsS/M0GLBx54wN9S49ChQ/ZvQ8smKibiD1j3bN682TVt2tSCUwxcV0snkdhCwJhMcP5OK5NOogHrFBtEtJQMhmeffda99NJL1rZyw4YNia5nycGmTr169awlxw8//GAtqZKDU3jmQPG18+bNc/fee2+qj0lE0r60sGaH63tg452ELGYu5MmT56yfO378eNeqVSurLODzA+fshRLJYMxJYi0oVaqUW7JkSUgDBszcIOmMFs8iIiLBXLdVSSEh5Q0+5kI6fhsCAgwEJLZu3WrZiXzOhAkT7MKfje34w7KpqIgfiCDQwaY5paYM56b/tOJuwcNrySB0KmM4MWfmRPwABbMmpk6dai01aK9BgII/QPzb8u/y5ptvWlYPmzGJufjii22wNlU4DNQWERFJDlow0RYycF0JVoBizpw5FqAA62AwAhSsr177S+Z5JTdAAeY9sSnFHAttFomIBBd/p5Pa7okWtS+//LK9361bt7AFKLgWJkGMtYDrZOYBhjJAMW3aNFuzatWq5fbt2xey5xERkfRJQQoJecsFZhDQc5kNA++E7+OPP/aXodICatKkSW7VqlUWaKCslvYHVF4Euummmyx7kcciWyQ+SltpG0W1BSeJga2DJHmOHj1qg6sJTJQtW9Z99tlnZwR/GHI9ZcoUC040atTIghMElqim4N+0V69e7sSJEzYona+nfZOHxwrsE04wg9ZO/KyoIkZERJJj3bp1rnnz5jb7ivUmmAgENGvWzN5nY6Zx48ZBeVzWQYaqli5d2logpoTX6qlcuXJqsyEiEmQkWXnO9TeWGYsk3mXKlMm1b9/ehUuXLl2s3RIVeQQomBUYSrVr13YVKlSwdYtrbhERkWBSuycJOzajybgnO59y1MDWPvw4EoR499133YwZM/y9PBkExuZ19uzZ/Z+7evVqN2LECMvoSKg3NI9755132kkUPTq9IIkk3kf1k08+ccOGDXMrVqzwB5EC502QlUqPbzZq7rrrrjj/dmQQ8W9EJo9XYUGggg0dr/0TCFzUqFHDrVmzxvqnBrYAE5HYlBZaR0jsYn0iEM6GEucFgWtOapA0wXkEQXWvWpOqhWjBuQ2bUszqeuqppyJ9OCISI9LCmh2O74Hkq6uvvtre51rzbDMmqGbj+olrH2/WUKitXLnSfz1GxToBhHDgtaAjgoiISFKp3ZNELX4o6elMkCL+7AE+ZhOcbBTvRJDNc9pB0XeZLEmvHRA9N2nvwKwEZlvQ/zP+pgXVFQRE+GXgYp4NBoZfyv8FFjih5jUn84ch5mShEqDg9Xzuuefczz//7B555BHrx83AUAaaU13BvxWvPY8BAhj0YaVHKYEjBqbz7xZ/s4h/e7KR+Pz169dH6DsXEZFY5+XZsB4xrJQ+2cEKUICARM2aNW09JMEimgIUnBtxTgMNzRYRCd3QbK5JzxagOHDggCXUgWumcCF4/vbbb1sHgVAFKFhnGQI+btw4/30KUIiISKiokkIigvkSlKVefvnl/nYKzKPgJIiAQiD6XZKNT7aItxlRvXp117FjRxsS6fWc5oL9gw8+sMdZtGiRbbQTyGCz/NSpU/7HY5OBdlEtW7a0TXmGeqcnv/32m2XbMNyNFluBMybon+qVNhOQoG1TfLyuvL6jRo2yDM6ZM2daAAg8FieugZtEDDofM2aM/Xt5/VkJNPHvoDJhkbQhLWRlSuzg1LVv377uxx9/tPUlfsJDKNZNAvnBOvYGDRrY5hItQVLapon2HuXLl7fWHpxTBTM4IyJpW1pYs8PxPXB9WqBAAXt8nicxzN/j7zmVdyTIpSV0OCCZjTWGCnheDxERkeRSJYVENbISvQAFevToYUMp6asZX86cOS07hdZQ1apVswt82hIxsItZBvPmzbPPY9P7wQcfdAsWLLCMluHDh7v58+fbL8PChQvdzTff7A9mMAy6TZs2VsJLiyKCI2T1p8UqCyodvvrqKys/5sSS4ZwPP/ywVUwQVGBzhyxM5oTQiolgAhmpBJESmlNRsGBB+3cg0EHAIvBknJZa8TdKKlWq5Lp37+5ee+01/320eFKAQkREUuLrr7+2dhpjx451ixcvDvrjMx8psBd5sAIUoHqRhIpnnnnmrJte58KaDdZvBShERIIvqUOzuaZctmyZ69+/f1haLXHdGq7ZiyT0de7c2b3xxhsKUIiISMglXrcoEkZUNezYscM2sz0EFwgoZMmSxTbSGdLFjc8bPXq0lZ2S7Z81a9Y4vUOJzmXLls1OqDyVK1d2hQsXto0HAiE8LpvsBDPI6h88eLDdKOXNnz+/DaGkxQNtjWKt0oKMT6pO2MAg05IhbgnN7PCwuUF7Jq+C5fXXX4/z/wncULrMkGzvZJ3IZ4sWLVyHDh1s9kQgLzLqZba2bdvWAhy8riIiIqlVtGhRC1BQqcf6HkzMVaIdJcH0OXPmxDnHCAYqKDj2n376Kc6creTi2OBVMoqISGjaPZ0rSEFVP5Vt4UD7Xa5ZSdIjCS0UQerAVorcSPwTEREJB7V7kqjBj2Jgy4YXXnjBDRo0yA0YMMAGNcfHhjlVE/Xq1fPfx8Y59zGHghZRpUuXjvOYlO1SSUDgA/Tw7Nmz51mPi8+neqBEiRIWvCDYQQVHpHtTEzzYuXOn27x5s1WarF271spwf/nll3N+LS2ZOJmmbRZDrG+66aY4A7J5XL5HD+2x1q1bZ/MmHn30UZs1wWyJ+Mgg4t+M3t1ej2yvOuVsvVxFJLalhdYREt1ILqD6L36VXzDRGpIhpGz83H777ba2prQdUyht27bN1m3W8sOHD5/RJlNEJK2v2eH4Hpj7U7FiRavG53or0ugkQBKd14aJKodg4zqQa2PWWyroQ91OUURE0ofjSVy3tWsoUSPwJIgTJFoisGEQmMUYGMggqyUwQEHrIb6GQc8jRoywGzMVCFZwI/MyfjY/rYjYdCewQYVGQqgCoKURNx4TZK3QKorHZ6B3njx57LF5S2YkNyowUnpix/fJ89JnmmzL3bt32/HxluoRMj3ZmOB7TiqOjTZNBCU44Q4MMvB8zO6YOnWq3ZgDcujQIf/GB8EHPj9+0Cc+So/540PVhRekUHBCRERSg4qJ+vXrWwsm2jiGInDAekqiAwEKzjuotgzm89B6kaA9bRFTi3lQoOJDAQoRkchVUtBCl+B5t27d7JowVPbv3++aN29u75O8F4oABUh6I+EMzKIgQU9ERCRcVEkhUYsfTWZJEEjwhmO/99571hOTDI/atWuf8TW0NeJr2GhnoDMbGx5mWHgX9gkhuLF69Wp/QIKTNO/kNCUIZLAZQcUFNzIevaHSBBvAXAa+N46bG5miXrZoUgMQnDjTPoJhbcWKFXMPPfSQvXZUP3AfgQXexm8rQTCBOR9s+BCkIfjhYWOGdlFsgCSGDJ6RI0faAG0qTUD7LF7DunXrqke2SDqSFrIyJXrRqpF1jk1+1q2SJUsG/TkYxN2nTx9bp+ktzvMFE+cvzIaigrNRo0apeiwqIWnnSOJEp06dgnaMIpI+pIU1Oxzfw4wZM1yDBg1so56/ufHRZpgWw6xNtNcN1cwGHp/rYY6Baz3a+gYj4J0YWhJyLUoin4iISDCokkJinjfQOdCbb75pJ2ZkOiYUpGBzgUoBbrSDoiyWrH423DmpC/wFoVy2SpUqVl1QvHhxO8mkt7PX35kTwm+++cY23dkg+f777+3G5gAtqGitxLBthl8SFODElMdlJgTZngQZOAZvjkNiWTHJwUwOXhOqQqh2YFYEx+MND8fGjRutlzavxdmyOAnk8PUeAin33nuvDR/ntQ0cbJ6QCRMmWBk0QQpvKHaOHDlCltkjIiLpE602SDJgnQpFgIJB1gQovPOMYAcoSD54/vnnrQrSS1JIKVo60oYKCZ0HiYhIeAZnU2U+a9YsuzYN5VDpF1980QIUVGy8//77IQlQcN3qJZgxCFxERCQiqKQQiRUHDhzw9e3b13fw4EH/fWvWrPFVq1bNN23atES/7vfff/cdPXrU//HMmTOpIPLfLrvsMl+5cuV8TzzxhG/69Om+Q4cOJfpYf//9d5zHbdWqla9GjRq+P//8039/o0aN4jx+Sm/nn3++L0eOHL7bb7/dV716dd/ixYvjPPfx48fP+lrxfT711FO+e+65x3fFFVf4RowY4f//e/bs8eXPn9/32GOP+T7++GPfyZMnE3ycf//91zdp0iRfnTp1fL/88ov//mXLlvl69erl27t3b6LHICKRMXLkSF/u3Ll9F198sa9kyZK+1atXJ/q5Y8aM8ZUtW9aXKVMmu1WqVOmsn5+QY8eO2d8s3ooEw+bNm33btm0L+fP88ccfvpw5c9rPb9euXUPyHK+//ro9/rXXXus7depUqh5r4sSJ9li33npr0I5PRNKXtLBmh+N7GD16tD1H3bp1fZHC9VmePHnsOKZMmRKS5xg1apRdZ3JtKSIiEsl1W+2eJObRQ3rixImudevWVp4amLmY2HBrWjvNmTPH2hwtWrTISo4CjRs3zrVs2dI/bJvqBIZUMnciKT2qmSfx448/uhMnTlhVRfwbmTlUOtDq6ZJLLjnjRqbMtddea3MvztU2KXBOB2XHVEdQ/UGlRXz09CZjNLlDzG+77TarXhkzZoxr27btOb9eRCKHLDv6Fo8ePdqVKlXKDRs2zIbZ04ogcMaPp2nTpjYsmOxx/v7QjoZ2eQyJvO6665L0nGmhdYRED9otUjWYKVMm98UXX1iVXigx82n48OE2JDTYc5SYrZUvXz6bMfX666+7jh07purxGjZsaL/PtI4iu1ZEJLnSwpodju+B86euXbtalfnkyZNdJL9X2uwy/yLYuCa+8cYbba166623VEUhIiIRXbcVpJCYRxCB1kW0bmL2gtdGqXDhwtZ66O233/bPtEisvJU2TmzsezdORAsVKhTnBNWTK1cuC1hwY+OBDQNv3gPtlHiulA7MTuz4+B45ieTGRgcbKmw4cmMINt8j6B9KmyZaOxHc4DVgk5LXhbd8T2d7LWhV1b17d7dmzRoLSngBEoI2tKggIMT3LCLRi991ZtIwM8b7G5IzZ04btMg8n3Ph70fmzJnt670hjelhw0Oix+HDhy1ods0117i5c+e6q666ysWqgQMHuqefftoGqnKukVjyRFKwxvOakADBOs3vuYhIcqWFNTsc38NLL73knn32WdeqVSv/tZaHlsK0YGrSpIm79dZbXSyjhSCtkfl+g3kNKyIi4tFMCkk3qG547rnn4txHlQS/BDt37oyzKU/fULJFihQp4j8JYyOeftfcvOqJQGyOMHyazQUqJPbu3Ws3BnSDYWpekIIsTI6F+RZkLNOrlL6hXoVEv379bJOf2CCBj8DqCjYfvPfZnOnfv7//GAg2sHGYEGZjeHguMjUJoJQoUcKePzEcA1/LZgebmuDzqbTgDwcnrHfffbfdz8m5iEQ/KsiYlcOmqIe/cZUrV3Zffvllkh7j999/d3/99ddZN4b5e8XNw99bkWBhI37x4sX2NrFe4KnBzy7DUDt06OCqV6/uQoX5EVQm4YUXXkhVgAKfffaZrdmcczBLS0REQj+TIqEqeoIWVDdQfReKIMWKFSvsOo0K9lAEDgKr5suWLWs3ERGRSFOQQtKk9u3bW4uiwI19Nt2oBGAzjVYSbOJ798cfMh2ITGJunMwdOXLEX8HAjeqC66+/3v+5VDqw+eEFMuJ76qmn7C0nhQyc5rkTQuZz4AYjgRXuowUUAZA8efL4qzkKFiwY52sDh2Gf7YSUwdcEHwiykAkETrQHDx5sw990sioSe/gbxd89/k4E4mMCrUnB3yna6xDYSMyAAQNc3759U328ImB9o8qHikhuXtViKLAO0s6CQdwE41nHyeoJBYZxU6FYtGhRaxeSWiRgeAOzz9UKUkREQjM4m9ZI8+bNs/fvv//+oD8vj09rp127dtn7gRX9wcB1MNW1JKYlta2niIhIOChIIWkSF+9UI8TPaGRD/ptvvnHFihXz30/lw7vvvmv9ncmqTAyb+2R1cktsA59KCU76aMl06NAhy0gOrJCg5YqH8mEe06uyCKy4iN83noBIavBcfI9Dhgyx9lQoX768PSelVmwQeRsemjkhkn7Rmob2ecuWLbO/RYmhUqNbt27+jwn+Bv59E0mON954wwLkb775plVAZsmSJWTPRTDkvffes6A881tCFaDYsmWLfV9eleXZWi0mNbjiBSnq1KkTlGMUEZHEcR2XUJBi6dKlFsCgjR9JccHGORYBCs6rgl3NzlrSrl07t2nTJrv2HT9+fFAfX0REJDUUpJB0gyoEelsHbsiDvs4HDhywDXsPH9eoUcOGydI+KbGB0vGxqZc7d267nUvv3r1dsNGOqkePHu6HH35wn376qf9Yad/EIO1Vq1b5gxR58+a1zw9FKw0RiQw2d9kMpaorEB/zN/BsCGISpFi0aNE5Wxfw9zLwb6ZIalDZMHv2bKt2DGWAgp/xQYMG2ftjxozxV22EAvOdqGpiNlaFChVS/XjMiWIdp+0Is6hERCQy7Z42btxob0laC3YrJtr6jRgxwt4fO3Zs0APpHC/tj5955hn/84iIiEQL1YpLuhO/RQItH2h3VLNmTf99bOazIUAriED16tWzGRheia9XobFkyRK3bdu2kBwvQRV6kpK1w2BuDxmatHoKbLnCSTRtnNhkDGw3Rfsrvp6e2IEUoBBJW+h5T696+vkH/g3hY2brJIaN2xdffNHNnz/f3wpPJJQCA2kEvBYsWOCaNm0asud75513LIgP5kQkNIMqWDhH4HeJVpJUiASDV0VRtWpVrd0iIhFs90QVAoJdRUH1PVUOXmU7f+9DgWS6SZMmnXV2oYiISCQoSCHp3uWXX25toAJ7uNMKiT6d8Qdyf/vtt27Hjh1xMmoIaFSqVOmMftNkhrIpyP/3fP3119ZjlLZQtJZik4QqBw8tKGhTxWZhoFtuucUyJwM3dWgfRRsojilwo+eVV15x06dPjzP0lkHh99xzj05GRdIB2jC99dZbtilLgJO/NfQ09jZlmbETOFibDVv+1o0bN87m3dCujtvJkycj+F1IWkYgndlHzGbyhGIwqGf16tWudevW9v4TTzzhnnzyyZA9F7OmvFZojz/+uM2UCgYqTaBWTyIikW33FKogBa0BSXrjmjRYAW4v2EJVH90DREREopnaPYkk4Oqrr3b169c/4/4VK1bY8NnAmRZsrBQqVMg2XAJRhUEQgc1BD22Y2DgsVaqUlQr/+eefFpDwSnkJQnz55ZdxNjWo/GBANm0jAh+Lk02CFzfffHOc5+3SpUuQXgURiUWNGjVyhw8fds8//7wFG7iIJqvbC8RSZRVYUUZVFn+LHnjggTNa0jH4VyTY1q1bZ3NMCKhT6RfqIdBUFxGkI4BAUC6UNm/ebL93zK9iHlQwkByxYcMGa+VWq1atoDymiIgkv90TyWXMi0DRokWD9ly//fab69+/v781YTDbPFF1T4snBmYz90ntOkVEJFopSCGSDDly5LBbIGZXcIuPjT82YQJ7u9OeiQ0SNgt/+uknC3AEVjeQIUmAIv5MCzY94iPjmZuISHydOnWyW0IYih1oz549YToqkf956qmnrNqPGRShDlCAIdnMoCDYH+rnIyi4fft2q2IK1iYTA75B1SbBDxERiUwlBVXxYKg1SW3BkilTJrdw4UI3ceLEoLc+JGBOkh1VfgpQiIhINFOQQiREEhqUyTyLs7WZ4P9zExERSSt+/fVXN2zYMKvuIWBAgN7rux0qtOOg7dnw4cP9z8nbcGD4N20kg2XKlCn2tnHjxkF7TBERSX4lRahaPeHOO++0W7BlyJDBKilERESinYIUIiIiIhISVC8wU+mrr76yoaChbrfkVR9WqVLFHTlyxCoPwtG2jBZW+/fvd/Xq1Qvq4zJ3iu/noosusjaPIiISucHZwQ5SsC7++OOPLm/evC6YJk+ebJWDCm6LiEgs0eBsEREREQkJ5ij06tXL2hMGu4VFQhg6SlskAhQlSpRwXbt2Dflz/v33365NmzYWRKByI5i8Korq1atbOxAREYlcuycC7sEMUjB/gvmCwVw7aEnFHKYHH3zwjBafIiIi0UyVFCIiIiISNP/++6+1eKLtERjKXrNmzTgbPaHAgGmqNn7++WebB7VgwYKgDh89W7UIs6kYmN2kSZOgPa7P53NTp06199lsEhGRyLV7+uuvv6y6LVhBin379tmwbKopsmbN6oKlcOHCrkOHDlbdd/fddwftcUVEREJNQQoRERERCYoTJ07YQGwqGlatWuWuuOIKuz/UAQqGghKg+Omnn1yhQoXcokWLbDh3ODCI9KWXXrLhpJdffnlQW0jt2rXLNshq1aoVtMcVEZHkt3v6888/bbbSli1brDowtXr37m3PQSAhmG2ZqGBkDhRVfrR8EhERiRVatUREREQkaEEKghPbt2+3t+HAxhHtkAhQFClSxC1dutRmUYSrasQTzABFYKunOnXqBP2xRUQiafny5a527douR44c7rzzzou6wc5UssVv98Tf4Weeeca99957qd78Z9bQO++8Y+8PGjTIXoPUroM8HsftueAC5aOKiEhsUZBCRERERIKCDaeZM2e6zz77zFWuXDksz8lQ6TfffNPdeeedFqDIli1bWJ6XTbVSpUq5jRs3hiT48f7779v7avUkImnNqVOnXNGiRd3rr7/uohGtnbwgtNfuKZgIdvD49evXt3UkNQhMtGvXzj388MPuscceC9oxioiIhJuCFCIiIiKSIrSTePrpp93nn3/uv48NFwIG4XhuT9WqVd3KlSv9czBC7fjx47YZREum6dOnB/3xV6xY4Q4cOGDDsqtVqxb0xxcRiSSq3/r16+fuu+8+F428KorASgr+Lu/evTtOtUJKsF7OmTPH2jLRKjC1qMIoWbKku+SSS6w6RUREJFYpSCEiIiIiKTJ48GA3cOBA17BhQ3fy5MmwPe+yZctcwYIFbfaFJ7XtMpKjW7duNpQ0b968rlevXkF/fG9gNlm2zLwQEUnPGC5NcDjwFo55FLR1olqPwAQBFf7mb9iwIVWPvXXrVgt8tGrVyt10001BOd6OHTvaDCMFtUVEJJYpSCEiIiIiKUI1AVUTw4cP9w/JDkebpXvvvdft3LnTMnHD7eOPP3Zvv/22BUUmTJgQ9FYgtBnxqjOCOUxVRCRWDRgwwF155ZX+W86cOcM2NJu/9QRFcufObXMpChcunKrHbt26tduxY0eq16+9e/faLApP9uzZU/V4IiIikaYghYiIiIgkCT20Fy5c6P+YwARtlho0aBCW5yc4cP/991tWLVmtY8aMceH0yy+/uDZt2tj7Xbt2deXKlQv6cyxatMieJ2vWrK5ChQpBf3wRkVhDW8Fjx475b/v27Qvp88Ufmk1gZP369e63336ztkrBmN/E3/iU+vXXX13FihVdpUqV3OHDh1N9PCIiItFAQQoREREROad//vnH1alTx+Y/zJgxI6xtlmi18fLLL1uAgEAJmajTpk0LymZRcitHDh48aK2mQlXFMW7cOHtLC60LLrggJM8hIhJLaHuXMWPGOLdwVFLEr5RLzd/kTz75JM78ptT4/vvvLThB20EREZG0QkEKERERETknhnwWKVLEAgOBQ0XDMSC7c+fOrmfPnvYxb996662wb+DTgmnKlCn2Orzzzjv+DNtg+vnnn62dFdq1axf0xxcRkeRXUhAcT+069uijj1r13Ycffpjq4ytTpoxbvXq1++ijj9w111yT6scTERGJBkrPEhEREZFEqyfIKPXmTVA98PDDD1slQbiwubNx40ar2BgyZIgNrQ43ggcdOnTwtx0pWbJkSJ6HGRd8v8z5uOWWW0LyHCIikXby5Emby+DZvXu327Rpk7vqqqtcrly5XKTFr6S49dZb3YUXXugmT57sChUqlOzHI8C9Z88eCygwUymlCJYwzBvhXIdFRETCQZUUIiIiInKGH3/80fpdt2jRwtotgeqFcG+MULlBdcGcOXMiEqBgU6hly5Y2J6Jo0aLuueeeC9nzeDM2VEUhImnZunXr3O2332438Led959//nkXDQIHZ584ccJt3rzZgigpqVrgbzuDv71ZRvFbSCXVhg0bXLFixdyWLVtS9PUiIiLRTkEKERERETkDsxcYir1gwQK3ffv2sD73119/7QYNGuT/OEuWLK5WrVouEgYPHuzmzZtnwZJ3333XXXTRRSF5niVLlrhdu3bZgNZGjRqF5DlERKLBPffcY8Hv+DeqyaKt3RPrEa6//npbi5KLIPt3331nf9s7duyY4mMiwPHVV1+5vn37pvgxREREopnaPYmIiIiIYZPIG4RdvHhx2zAqUaKEK1CgQNiOYebMma5Zs2bu1KlTtinUpEkTFynr1693zz77rL3/2muvhbQFk1dF8dBDD6U401ZERILb7okKClBJl5I19aWXXrL3O3XqZIGKlJoxY4Z76qmn3NChQ1P8GCIiItFMlRQiIiIiYnMfypYt6/bv3++/jwBBuAIUtMTo06ePq1+/vgUoKlas6KpXr+4iiT7kZK82bdrUtWnTJqQzLwjOoG3btiF7HhERSV67Jy9IcdtttyX7cRYuXGjBboIdjz/+eKqOiVZT48aNc5kyZUrV44iIiEQrVVKIiIiIpHNke3bu3NnaO/Xo0cOGfIYTPb+bN29ubTHAZg5tlpiBEUkMSuU4CKB4FSahHJhdqlSpFGXriohIaNo90WIJKfnbfPr0aZcnTx5Xr169FLWK+uijj1yGDBmsPZaIiEhap0oKERERkXSODXgyNKmcGDlyZFifm3kXpUuXtgAF8x7Gjx/vXn311YgGKJYtW+b++usv/8f/+U/oTpkJgLz11lv2/iOPPBKy5xERkeS3e/rxxx/t/RtvvDHZj1O7dm23bds298ILLyT7a3fu3Gnt/ypVqmQzi0RERNI6VVKIiIiIpMPKCYIBaNWqlb3Nnz+/mzRpUtiP5fvvv3ebN2922bNnt5ZHVBNE0tKlS13VqlVtFsenn35qWayhfj42ozJmzOgaNmwY0ucSEZGkV1Jccskl7tChQ/Z+1qxZU1yRxy25WBOpwNi1a5crV65cip5bREQklihIISIiIpLOzJ4927Vu3dqyRCtUqOBuuOGGiB0LmaZUEtSsWdM2ZSKNCgpel7x587orrrgi5M/35ptv2lsyZi+//PKQP5+IiCStkoIqOlrxJTdIQeB9zZo19nc9JQEKsA7RCpCASUofQ0REJJao3ZOIiIhIOlOnTh0bSt27d2+XK1eusD733r17LSDBWw9DqaMhQAGqKNatW+fGjh0b0jkU4DXwBma3a9cupM8lIiLJC1J4AQqGVdOOMKmGDh1qVYrMekquPXv2+N9nDVLwWkRE0gsFKURERETSONpV9OrVy/3zzz/+7NCPP/7YPfnkk+78888P23HMmDHD3Xbbbe6TTz5x7du3d9GC12Xfvn3+j2l9xcDUUHvllVdsE6xixYoamC0iEmXtnrzZRNmyZUvy1x45csRNnjzZ3qeSIjk2bdrkChUq5Dp16hRnLpKIiEh6oCCFiIiISBrGJniZMmVc//79LbvTE+oqgUAnT5609lINGjRwR48edXfccYcbNWqUixZPP/20BU/COZyUjSxvYHbPnj3D9rwiIpK0Soo///wz2a2eqML7448/XLFixWztTY5ly5bZ11JNEc4EAhERkWigmRQiIiIiadgFF1xgm+AjR450VapUCfvz0zqpSZMmbvv27RYY4Vj69u0bNT22GSA+ePBge//w4cNhe94RI0bYRljx4sVd5cqVw/a8IiKStEoKAgbJqaQgKcALwD/22GPJTgZ4/PHHXeHChW1doOJRREQkPVGQQkRERCQN8fl8tvHOJofXQogqhhYtWoQ9MLB06VKb8cDGzfXXX+/effddd88997ho8dFHH7m2bdva+7TDatSoUVie98SJExakAEGbcFa1iIjI2XmVFCVLlnT33ntvkmcmzZkzx1oHZsmSxTVu3DhFzx2JZAIREZFooPC8iIiISBpCWyeCEty8oZ9sgkeicoFWFwULFnQPPPCA++qrr6IqQLF8+XLXsGFDm0fRvHlzq+4IF9o80faqQIEC7r777gvb84qISNKDFHnz5nVNmza1uUFJ8dprr9lbgt+XXHJJkr7m22+/tef47bffUnHEIiIisU9BChEREZE0pE2bNi5HjhwpzuJMDYIi9OP2giMXX3yx++yzz9y0adPcVVdd5aIFw0lr165trTx4yzGHq7XG6dOnbWA2wj24XEREkt7u6dJLL01WYIN1hBaLHTp0SNLX/Pvvv65Zs2Y2aLt79+4pPl4REZG0QEEKERERkRjGzIfAIdTXXnut27lzp3viiSdssyScG/+lS5e2DNJBgwb57yc4EU3tjHhtaN9x/PhxV65cOff++++Htcpk0qRJ7sCBAxZIeuihh8L2vCIikrxKivXr11tbwF9//fWcX0NAY8mSJW737t0uZ86cSXoeghpU1pUtW9YNGDAg1cctIiISyzSTQkRERCRGff/9965UqVIWBKC10m233Wb3J7XNRDCcOnXK9enTx7366qvWOunKK690uXLlctGIXuH0+/75559tXgebT8nJlE0tXp+XX37Z3idrlkoTERGJziAF7Zv279/vvvjiC1tjk4L5S8lRokQJt2LFihQdp4iISFqiIIWIiIhIjPLmPVAxQWZ+uM2fP9/aWuzZs8c+5liGDx8ekWM5F46RvuJkud5444127ARUwunDDz9027Ztc5kzZ/YP7BYRkehs91SkSBGrTjzX4Owvv/zS5ldky5YtSY+/d+/eiK3bIiIi0UrtnkRERERiBBvszJygesHz3nvvWQuhrFmzhvVYqAioXr26bf7T2oKqhOnTp0flpgstnu6++257/fLly+eWLl1qG0/h9Oeff7pnnnnG3u/cubPLkCFDWJ9fRESSV0lBK6a1a9e6G2644ZxzJaggXLZs2Tkfm5lNzIy69dZbk/T5IiIi6YWCFCIiIiIxgI2QmjVrurffftv169fPf3845ykEqlevnrWVevzxx92WLVtcrVq1XLQaNmyYtXq66aabbJB3UvuFBxNzQ3bs2GHBEeaFiIhI9CGI8Ndff9n7SWkHuHz5cguEX3TRRe6OO+445+f/8ssv7vTp0/YcefLkCcoxi4iIpAVq9yQiIiISAxiwOXDgQNtwb9GiRVif2+fzWaXEV1995Z577jm7jw1/WlZcc801LtoNHTrU5j/06NEjye04gomhqy+88IK9T4DpiiuuCPsxiIhI0qsocNlll53z88eNG2dvqY64/PLLz/n5rEErV650mzdvVpBCREQkgCopRERERKLQDz/84OrXr+/mzZvnv69OnTpu8eLFNosiXDZs2OAqVark6tat63r37m0fe6I5QLFp0ybLiPWqTYYMGRKRAAUIUBw9etTaezz88MMROQYREUlekII17r777kv0c48dO+ZmzJhh77du3TrJz0HQvFixYqk8UhERkbRFQQoRERGRKPT666+7mTNnum7dulmrJ895550XluenPVLz5s1d8eLFbYYDmypPPfWUK1CggIt2U6ZMcSVLlnRdunSxKpBIYlA2/5Z45ZVX3Pnnnx/R4xERkXMPzWawNfOfvNZPCZk6daoFNQoVKuRKlSqV6OexDhHEoOoi0muSiIhItFKQQkRERCQKsHERmMFJW6UGDRrYMGpaPYXL8ePH/cGId9991+5r0qSJ27p1qxswYEBMtCqiNzhVFIcPH3b//PNPRI/lySeftGNhZkflypUjeiwiInJ23jrszXs6WwUeM6JAAOJsCQRURBKgaNeunc0mEhERkTNpJoWIiIhIhJFt37FjR5c1a1Y3efJkuy9Dhgxu2rRpETkeNl7++OMPd/fdd1ubpKQMA40m999/v1u2bJkrW7ZsWAM88VGBMnv2bKueGDx4cMSOQ0REkldJ4a0drMsJ2b9/v81pouKiWbNmZ33MatWq2UwpkhHy588fgqMWERGJfQpSiIiIiEQYLSWWLFliLZXY+Lj++uvD+txUazCMm0zQjBkzutdee82CJGT/h6u9VGrwmrVv397aKuXOndvuI8ASSVRP0KoLHTp0COscERERSV0lhbf2JVZJwTp94MABG4KdWCDDQ6CaCkURERFJnNo9iYiIiIQZPa4Z7Oy5/fbb3RtvvOG2bNkStgDFyZMn3aBBg9wNN9zgWrZsaRn/Hto71a5dOyYCFIsWLbLX7+OPP3Zt27Z10YKsWf6NM2XKZAPHRUQkdoIU3uyIswUgrr76alsrE7Nu3bo4M6VEREQkcQpSiIiIiIQRA6lvueUWV6FCBXfkyBH//Y888ogFDELt2LFj7qWXXnJ58uSxzE7mNvC8sRCQCMTGT//+/V3VqlXtdSRQMXr0aBcNNm7c6Pr27Wvvjxw50mXJkiXShyQiIslo9+QFFxKqpKAdYlLWgTJlytgaRVKAiIiInJ2CFCIiIiJhlCNHDmvrxHDn77//PmzPe/r0aQtK5MqVyz377LPul19+sd7YEyZMsKHYdevWdbGCFhs1a9Z0vXr1smxXhpZ+8cUXLm/evJE+NNu8oj857Z6YjUFVioiIxFYlBX/DE6ukqF+/vgUg1q5dm+jjbN++3eZV0ELx8ssvD+ERi4iIpA2aSSEiIiISQj/++KN766233PPPP2+DOOlN/f7777vs2bO7K6+8MmzHQVBk4cKF7vjx465QoUIWqGjUqJFtosSSqVOn2pDxo0ePWrCHORQEKaIF/86bN2+2jS1aeMVahYqISHrmBSloy5hQJQVr+oIFC6zSgnZ+iWnYsKG77bbb3FVXXaV1QEREJAli66pUREREJIb8+eefrkSJEu7gwYMuX7587qGHHrL7Qz1EmeqCxYsX2yb5uHHjLBjCJsmQIUNsUDZVCARMYgmVH48++qgFeFC8eHE3ceJEd/PNN7to8fnnn9trDAJT11xzTaQPSUREUtDuCayTzJ0INGnSJAtQlCtXzqoRz6ZAgQIhO04REZG0JrauTkVERESiXOCQTKoXOnfu7O66666QBya8DNCxY8fazIsqVaq4Dz/80IIUnooVK9qQz1gKUBBwmT59un1PBCioRGEQ9ZdffhlVAQp6jrdo0cKOl0HkderUifQhiYhICispwDwh1pz4QQp4SQeBqFSkgmLbtm1hOFIREZG0JXauUEVERESi3IwZM1zhwoWt3Y+nR48ebsWKFVZRESr0vu7evbu77rrrXNu2be356YH92GOPWVAiVv3zzz9W9cGmz08//WSBHoITffr0cRdeeKGLFgQmGHy+a9cum/kxbNiwSB+SiIikspIi/jyKb7/91n399de2/jzwwANnfO0zzzxjQXVmVgQmLIiIiMi5qd2TiIiISJCQ6c8w7AEDBrj33nvP7gv1zIdff/3VAiNe/+w8efJYcKJVq1Zn7ZcdC8hg5fth9kTPnj1t8Pell17qok2/fv3c5MmT7d+aFlQMShURkdiupIg/j8KroqhRo4bNmojvySeftKSBXr16xVTFooiISDRQkEJEREQkhTZt2uTy5s3r35Tu37+/BQyoagiVnTt3ukWLFlnmPtgoue+++6zdEAOl77333jPaU8RS5QSb/MybuPXWW/2vabdu3WymR7QGphiWjVGjRrny5ctH+pBERCSVQQpa9rVv395/P5URU6ZMsfebNm2a4NdSScdQbREREUk+hfdFREREUoC2Drfffrt75ZVX4gzJpBVRhgwZgt5+ggzOSpUq2WY9Gydka3rI4v/444+tNVKsBihApQQVIFRNeDJnzhy1AYpVq1bZHAoQmKLVloiIxH67J1o0Vq9ePU6QYuDAge7+++93tWrVitPu74cffojIsYqIiKQlClKIiIiIpECxYsXsLbMSQoGNj88//9y1adPGXXvttTakc8mSJe68885z1apVi9OSIlYDE3yPVIB4CL7QXoMB39Hez5tNqbp167rTp09bxu3LL78c6UMSEZFU8tbWyy67LM79tPNr3LixzZ4KbDs4bdo0lz9/fjd48OCwH6uIiEhaonZPIiIiIudw5MgR24QuV66cbUiDbEoGVN98880hec6ZM2fac3iYzdC8eXPXsmVLez+W0daJ74/ZHVRJ0DIJvL9371530UUXuWh2+PBhy6Q9dOiQK1q0qFW5xGqgSEREzgxSbNu2zf38889nzKWIb/78+TYT6tSpU2E6QhERkbRJQQoRERGRcxg5cqQbMmRInJZKVDQEK0Dx448/2kY98yUefvhhu482E9ddd52rWrWqtRQiQBLrgzi9tlW8lmwAgbZVR48etbZOiPYAxf79+12VKlVsQHr27NndRx995K644opIH5aIiASx3dOYMWMsKYE1f/ny5VbZ2KRJkzOSBMaNG+dq165tNxEREUk5BSlERERE4iEjkjZEXgZl165d3YoVK2zuQLACBQcPHrS2EbSKYPOD1kcFCxa0gAQBENpJ0FIoLWToE5B444033IQJE9xvv/1m9xGUeOyxx+zmBSiiHUPLK1eu7Pbs2eOuv/56G2CeM2fOSB+WiIgEuZLixhtvtL/zYP2aOnWqVdG9+uqrcT6f9bp+/foROVYREZG0REEKERERkQBUSzC8+Z577vG3Ibryyivd4sWLg/L477zzjm3Wf/bZZxaY8Nx1112WpUkrJHpfI5YDFGz0zJkzx7399ttu4cKF/vvZ+OnYsaMNmQ72gPFQorUXFRTMIKEtFQGK3LlzR/qwREQkBJUUQ4cOtXZ+J06ccLNnz7b7mjZt6q9+ZG3r2bNn1Ff/iYiIxAoFKUREREQCkBnPrIH169dbNUVqW/lQDZErVy7LtgTDr5ctW2bvlypVyjVs2NA1aNAgzWTkf/HFFxaEoULk+PHjdh/fOy0zHn30UWtfFWttq7788kubQfHrr7+6W265xX366ac2zFxERNL24OxZs2bZfQUKFHDFixe35AKC7PPmzXO7du2y9U5ERERST0EKERERSbcYdkllw99//+3at29v9916662W+V++fHl34YUXJvsx2cDYtGmTbWyQffnVV19ZwKNYsWL2/9ncYKP7gQceiPkB2Pj3338tCOEFYYYPH+6mT59u71Np8NBDD7nWrVu7G264wcXi90Y27dNPP20/IyVLlrSNKWaHiIhI2q2koOUiJk+ebG+pdPTWuZYtW7pvvvnGPfnkkxE8UhERkbTlPF9gnwERERGRZCJbnnZIx44dcxkzZnSx5IMPPrBgQaZMmdzu3bvtbUqcPn3aLV261M2dO9cGKe/du9f//2jZRD9rghNpDRs07777rlUWEHgB79Mmq3nz5jE97PvIkSM2H+STTz6xj6l4GTt2bEy1qBIRSUtrdji+hyxZsrhffvnFqibmz59vVXO0Ydy6datVU3j+/PNPtXoSEREJ4rqtSgoRERFJN8iGZ6aA11qpXr16rmLFitbK5+KLL07WY7Fp4c2MoB1Q9erV/f+PNhHVqlWzx6fN0dVXX+1iGTkt33//vX2fzOvwsGnDAHCqRrwgBe2cuMUyhqQ/+OCD1necnwuqQ9q1a+fPohURkbTpjz/+8FfSffjhh7bW33777S5//vyWkOCdKyhAISIiElwKUoiIiEi6sHHjRteoUSMLIGzYsMEy/AkyJHUgNgGO1atXW2Y9t7Jly7oRI0b4h14XKVLE3hKUqFy5sr9VRKwGJbZv327VIczP4EYwAgwUz5s3r73fvXt316FDBwv0pAV8j88++6wbP368vQY33XSTzdagBZiIiKR9BCKQNWtWq6jgnIFzB1pDvvzyy27cuHGudOnSkT5MERGRNEdBChEREUkXmI/AJjTZjzt37rSsyHPZv3+/W7BggbV8WLRokfvtt9/8/+/EiRP+95ldQX/qWHXq1Cm3du1aq5TwbrQ7CkT2KIEZbxg27r77bpdWNqWolujXr5//35We46+99lqqB6eLiEhsoHqChARky5bN5hF16dLF1giSEKgopNJOQQoREZHgU5BCRERE0hw2GaZOneq2bNniXnrpJbuPYcfMjKBtQ2JzBfi6Cy74v9Mjhmfv2rXL/3HmzJmtjVONGjXsbSyjhQUb8evWrbONl/hjyghKsBFD5QS3UqVKuUsuucSltcHpVEr07t3bAle44447LGChTSgRkfTZ6gk5cuSwt1RScPv888+terJbt24RPEIREZG0S0EKERERSXMITjRr1sxmCDDAuWDBgglm/rNRv2nTJquSWLhwoVVDUD1BZQQIRlBhcO+999qNDWxvDkW0I+jgzVCg1dUzzzxjwRk25cH3sXLlSv/m/PXXX28b896NYE5y53TEil9//dWNGTPGjRw50uZOgOGoAwcOtJ+bWB32LSIiKff777/734+//pHoQEBbREREQkNBChEREYl5VEB89913/uHNzBCgSoCWTtddd12cz927d6+bN2+ezaLgxoZ1ICoLvCx62v1E87Bk2jRR6bFjxw7/jVkSVEb06NHDde3a1T6PTXdaVlEJEhi8YFOeDNFixYrZJn1ab+NBUGbSpElu4sSJ/s0oWnp06tTJWnokVmEjIiJp33//+1//+y+88IJVZHIeULVq1Ygel4iISHqgIIWIiIjEtN27d9ugauZF7Nmzx7/RzHBLHDhwwDbpL7/8cvuYDernnnvO//V8foUKFewx2IgoUKCA//9FS4CCAdabN2+2AAvfo3c7fPhwol9DoMJDJckbb7xhQZzAIMUDDzzg0npggmHn77//vps+fbr9LHiKFi1qQZzGjRun2YoRERFJWZCCtfLQoUPW2vHVV191jz/+eESPTUREJK1TkEJERERiWq5cuWyOBO2L2MjPly+fW7ZsmVuyZIndtm7dapvUDRs2tM8nEEFrp0qVKrkqVapYC6fAORThqPpgKDVDvLllz57dNsxB66FGjRpZhQQtmjwDBgywY04ILSj4nm+88UZ7y+2mm27yt7gCm/Dt27d3aR2bSrT6IqjD7bPPPnO//PKL//9feeWVrl69eq5FixY2ZyNaglAiIhJd7Z7AOrp+/XpLYhAREZHQUpBCREREYsbp06fdhAkT3IIFC9wHH3xgm8wEJ15//XX34Ycfunbt2tlciUB8zrZt2/wflyxZ0javgyGwKgGrVq2yGQ8EIQJvVDyQkcktcNMcHTp0cKNGjbL3qfb44osv/Bmdl156qX+ANxUfOXPmdDfccIPLkyeP3XLnzu0yZcrk0iOCPbS3YqYIAR3ebtiwwV7vQLxuderUseAPASpVTYiISEKoyPSwts+YMcPWGpIhREREJLQUpBAREUlj2LAfPHiwZemToT9ixAjbmE8MbXBof0T7IGY4vPzyyzYwOhqdOHHCde/e3SoNOM6ePXva/VQO0M7IU7hwYauUoI0TG/zMYkgsyEDm5LFjx/w3Nim8t4E3hm4/+OCD9nX79u2zwdJ//fWXfa7nxRdfdJ988sk5vw82P6655hqrogicBUGmP/8eOXLkiFPd8eyzz7r0GJD66aefrEUTFSbcAudv0OaLzaP4LrnkEnfXXXfZvz03KmW8QegiIhK75yuhFtgSkDWftVhERETCQ0EKERGRNIS2Rt26dXOjR492pUqVcsOGDbN+yrQ8ypo16xmfzyBhNt5pJ1SrVi03efJka4dDRnqRIkVcpBFAYOAz2e+0cOLmtWOg/VGTJk0scHH8+HH7Ptjwr127tm1Og03up59+2mZSeNUKoPXTokWL7Ov++eefJM838IIUV1xxhb8i4s8//3QXXXSRvV+8eHH3xx9/WAAiS5YscW68/t7t6quvtgqQhIIXsTYngkAPryGvA0EbggvceB28t/ybcSO4xNuTJ0/aa0+Ax3vLAHOqIHhduQVmtCaGod8MSSdgdNttt9mNjS5VS4iIpK3zlXD4+eef/e9TgSciIiLhc56PK0sRERFJE7jQJ3N85MiR/o11WgQ99thj/qqDQN78g7lz5/rvu/POO22zl42DhHib0B42mXkONpozZswYtO/lkUcecWPGjEn21zGT4eabb7b3+d4WL15sAYGaNWvGactE66VAZNtTvcDb+O9zo62St3HC6RMb7dzPhnhgy6eETq3i35eczwm8P/59gW/jv5/YjZ+JxN56N4IO3tv4N6oXAm8EJkJ1OslrSybrddddZ29pdeXN3eDGfQSgREQkaVizqdoL9podyvOVcJ13tG7d2o0bN87ef/75513fvn2D9tgiIiLp1fEknnuokkJERCSNIJOdAY9UDnjYwGXg45dffpng13A/mYyByGScNWtWos9D1UU4LtwJJKSE1w4oEJvrc+bMOevXsdnOjVkQkjpUltB2iSADN2ZtUPXAjfe5caLKSap3YwA4FSdUmfCWahTu03BrEZH0fb4SrvMOL8GBdSs9tlkUERGJJAUpRERE0gha5bAZny1btjj38/H333+f4NfQBzqhz+f+xLCpEBjY8DIag405GbSfYrOADWs2vbkxTJr7eD85swZSstmd1K9JyufF/5yEvsa7L7G35/qc+O+f7caGkHfzBpAndB83qkq8t4E37iMgwb+D95abqhtERCRY5yvhOu+gxRMBdOZFeW0cRUREJDwUpBAREZFk8bLjQ43ZDLE2n0FERERi87wjf/78dhMREZHwU5qbiIhIGkGLHDLbAwc/go8ZKJ0Q7k/O54uIiIiE+3xFRERE0jYFKURERNIIWhMUL17cBkV7GETJx6VLl07wa7g/8POxcOHCRD9fREREJNznKyIiIpK2qd2TiIhIGkLP5hYtWrgSJUq4kiVLumHDhrlTp065li1b2v9v3ry5u+6662wIJbp06eLKly/vXnnlFVezZk03depUt27dOjdmzJgIfyciIiKSXs9XREREJH1RkEJERCQNadSokTt8+LB7/vnnbfj1bbfd5ubPn+8fTrl37944Q43LlCljw6l79erlnnnmGevFPGvWLFekSJEIfhciIiKSns9XREREJH05z+fz+SJ9ECIiIhK7jh8/7q688kp37NgxlzFjxkgfjoiIiKThNTstfA8iIiLpxfEkrtuaSSEiIiIiIiIiIiIiIhGhIIWIiIiIiIiIiIiIiESEghQiIiIiIiIiIiIiIhIRClKIiIiIiIiIiIiIiEhEKEghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIiIiIiIiIiIiIhIRChIISIiIiIiIiIiIiIiEaEghYiIiIiIiIiIiIiIRISCFCIiIiIiIiIiIiIiEhEXROZpRUREJK3w+Xz29vjx45E+FBERETkLb6321u5YpPMOERGRtHfuoSCFiIiIpMqJEyfsbc6cOSN9KCIiIpLEtfvKK690sUjnHSIiImnv3OM8XyynUIiIiEjE/fvvv+7AgQMuQ4YM7rzzzgtqxgUbEPv27XMZM2YM2uOmFXp9EqfXJnF6bc5Or0/i9NqkjdeHy382CXLkyOH+85/Y7P4cqvOOWPp3jGV6jcNDr3N46HUOD73Osf0aJ/XcQ5UUIiIikiqcaFx//fUhe3xOknQymji9PonTa5M4vTZnp9cncXptYv/1idUKinCdd8TKv2Os02scHnqdw0Ovc3jodY7d1zgp5x6xmTohIiIiIiIiIiIiIiIxT0EKERERERERERERERGJCAUpREREJCpdfPHFrnfv3vZWzqTXJ3F6bRKn1+bs9PokTq/N2en1SRv07xh6eo3DQ69zeOh1Dg+9zunjNdbgbBERERERERERERERiQhVUoiIiIiIiIiIiIiISEQoSCEiIiIiIiIiIiIiIhGhIIWIiIiIiIiIiIiIiESEghQiIiIiIiIiIiIiIhIRClKIiIhIVHr99dddnjx53CWXXOJKlSrl1qxZE+lDigrLly93tWvXdjly5HDnnXeemzVrVqQPKWoMGDDA3XHHHS5Dhgwua9asrl69em7r1q2RPqyo8MYbb7hbb73VZcyY0W6lS5d28+bNi/RhRaWBAwfa79bjjz8e6UOJCn369LHXI/BWsGDBSB9W1Pjxxx/dQw895K6++mp36aWXultuucWtW7cu0oclQTy/mD59uv3M8/n8+37yySdhO9b08Bq/9dZbrly5ci5z5sx2q1y5ss75QnyuPHXqVPtbznmSBP91/u2339yjjz7qsmfP7i6++GJXoEAB/d0Iwes8bNgwd9NNN9namzNnTte1a1f3xx9/hO1408M15LJly1yxYsXs5zhfvnxuwoQJIT1GBSlEREQk6rz//vuuW7durnfv3m7Dhg2uaNGirlq1au7QoUMuvTt16pS9HpzIS1yfffaZXRSuWrXKLVy40P3111+uatWq9pqld9dff71tvq9fv942UCtWrOjq1q3rNm/eHOlDiypr1651b775pgV05P8ULlzY/fTTT/7b559/HulDigpHjx51d911l7vwwgst6Ldlyxb3yiuv2EarpI3zi5UrV7oHH3zQtW7d2m3cuNE2dbl9++23YT/2tPoaswnGa7x06VL35Zdf2mYjazcBQAn+ufKePXvcE088YYEhCf7r/Oeff7oqVarY6zxjxgxLliEQd91114X92NPy6zx58mTXs2dP+/zvvvvOvf322/YYzzzzTNiPPa1eQ+7evdvVrFnTVahQwW3atMmSd9q0aeMWLFgQuoP0iYiIiESZkiVL+h599FH/x//8848vR44cvgEDBkT0uKINp3IzZ86M9GFErUOHDtlr9Nlnn0X6UKJS5syZfWPHjo30YUSNEydO+PLnz+9buHChr3z58r4uXbpE+pCiQu/evX1FixaN9GFEpaeeespXtmzZSB+GhPD8omHDhr6aNWvGua9UqVK+Rx55JOTHml7P4f7++29fhgwZfO+8804IjzJ9vs68tmXKlLG1v0WLFr66deuG6WjTz+v8xhtv+PLmzev7888/w3iU6e915nMrVqwY575u3br57rrrrpAfa3q5hnzyySd9hQsXjnNfo0aNfNWqVQvZcamSQkRERKIKGUhke1Pu7/nPf/5jH5NhJ5JUx44ds7dXXXVVpA8lqvzzzz/W6oGMKto+yf9QhUPGWODfHvmf7du3W3uAvHnzuqZNm7q9e/dG+pCiwpw5c1yJEiVcgwYNrMXc7bffbhmzknbOL7g//t8Esnt1PhK6c7jff//dKiG1dgf/dX7hhRfsbxWVQRKa15l1gXMrzimyZcvmihQp4l566SU795Lgvc5lypSxr/FaQu3atctaatWoUSNsx53WfRmB9e+CkD2yiIiISAocOXLETuQ5sQ/Ex99//33Ejktiy7///mtlybRi4QJRnPvmm2/swpl+vVdccYWbOXOmu/nmmyN9WFGBoA3tBWj3JHHRF5oexPR9ptVT3759rU0I7W6Y/5KesSnCvBdaVNBigp+fzp07u4suusi1aNEi0ocnQTi/OHjwYIKfz/0SmnO4p556yoKiChgH93WmTR8tcWjbIqF7nVkXlixZYgF9Ns137NjhOnbsaIE3WhNJcF7nJk2a2NeVLVuWDkHu77//du3bt1e7pyBKbP07fvy4++9//2uzQIJNQQoRERERSXPIYGMTVb3z/w+bzGxOUGFCn2Q2UZnjkd4DFfv27XNdunSxOSYMa5S4qlev7n+fWR0ELXLnzu2mTZuW7rNxCYZSSUGWLKik4O/O6NGjFaQQSQFmJxE0Zk6F/h4Hz4kTJ1yzZs2s0itLliyRPpw0vy5QrTJmzBh3/vnnu+LFi9t8lcGDBytIEUT8jWDtHTVqlJ2XEAziXO7FF190zz33XKQPT1JIQQoRERGJKlw8cVL/888/x7mfj6+99tqIHZfEjk6dOrm5c+e65cuX28Bo+R+yu/Ply2fvc9FM1vfw4cNtUHR6RrsABjMWK1bMfx8Zffz8jBw50p0+fdr+Jsn/ZMqUyRUoUMA2BNK77NmznxHkK1SokPvggw8idkwS3PML7tf5SHjO4YYMGWJBikWLFllAVIL3Ou/cudMGOdeuXTvOZjouuOACG+584403huHI0/7PM+vChRdeGOe8gXWBrHTaGnEuJql/nQlEEHhjkDNuueUWa2Parl079+yzz1q7KEmdxNa/jBkzhqSKAvpXExERkajCyTsbqIsXL45zIcXH6p8vZ0O5NwEK2hhRan/DDTdE+pCiGr9XbMCnd5UqVbJWWFSZeDey42nVwPsKUMR18uRJ2/BiIya9o50cm3uBtm3bZpUmkjbOL7g/8PNB1ZXOR4J7Djdo0CDLgJ4/f779/ZXgvs4FCxY8Y52rU6eOq1Chgr2fM2fOMH8HaffnmXWBIL4XBPLWBdZMBSiC9zozuyZ+IMI7X/vfXGhJrYisfyEbyS0iIiKSQlOnTvVdfPHFvgkTJvi2bNnia9eunS9Tpky+gwcP+tK7EydO+DZu3Gg3TuWGDh1q7//www++9K5Dhw6+K6+80rds2TLfTz/95L/9/vvvvvSuZ8+evs8++8y3e/du39dff20fn3feeb5PP/000ocWlcqXL+/r0qVLpA8jKnTv3t1+p/jZ+eKLL3yVK1f2ZcmSxXfo0CFferdmzRrfBRdc4Ovfv79v+/btvkmTJvkuu+wy33vvvRfpQ5MUnl80a9bM/j56+Jnn33jIkCG+7777zte7d2/fhRde6Pvmm28i+F2krdd44MCBvosuusg3Y8aMOGs35zsSvNc5vhYtWvjq1q0bxiNOH6/z3r17fRkyZPB16tTJt3XrVt/cuXN9WbNm9fXr1y+C30Xae535W8zrPGXKFN+uXbvsfPbGG2/0NWzYMILfRWxfQ/bs2dNeZw+vK+c0PXr0sPXv9ddf951//vm++fPnh+wYFaQQERGRqDRixAhfrly57MK1ZMmSvlWrVkX6kKLC0qVL7cQy/o2LzfQuodeF2/jx433pXatWrXy5c+e236drrrnGV6lSJQUozkJBiv/TqFEjX/bs2e1n57rrrrOPd+zYEenDihofffSRr0iRIra5UrBgQd+YMWMifUiSivMLfvfjr6fTpk3zFShQwD6/cOHCvo8//jgCR512X2PWpoTWbjYhJbg/y4EUpAjd67xy5UpfqVKlbF3ImzevBbL//vvvCBx52n2d//rrL1+fPn0sMHHJJZf4cubM6evYsaPv6NGjETr62L+GbNGihb3O8b/mtttus38TfpZDfU11Hv8JXZ2GiIiIiIiIiIiIiIhIwjSTQkREREREREREREREIkJBChERERERERERERERiQgFKUREREREREREREREJCIUpBARERERERERERERkYhQkEJERERERERERERERCJCQQoREREREREREREREYkIBSlERERERERERERERCQiFKQQEREREREREREREZGIUJBCRERERCTGvfHGGy5Xrlzu8ssvd/Xr13eHDx8+59ds3brVXXvtte7EiRMhOabzzjvPzZo1y94/cuSIy5o1q9u/f39InktEREQiJ3DNj4bHiYQ9e/bY8W/atCnShyISkxSkEBERERGJYR9++KHr0aOHGzFihFu3bp0FHR544IFzft3TTz/tHnvsMZchQ4aQH2OWLFlc8+bNXe/evUP+XCIiImnNwYMHbc3Omzevu/jii13OnDld7dq13eLFi10s6tOnj7vtttvOuP+nn35y1atXj8gxiUhkKUghIiIiIhLD+vfv7zp16uTq1q3rChUq5N555x33+eef2y0xe/fudXPnznUPP/xwop/zzz//uH///Tdox9myZUs3adIk9+uvvwbtMUVERNI6MvSLFy/ulixZ4gYPHuy++eYbN3/+fFehQgX36KOPurSECk+CMNHmr7/+ivQhiKR5ClKIiIiIiMSoo0ePug0bNriaNWv678uRI4crUqSIW7RoUaJfN23aNFe0aFF33XXX+e+bMGGCy5Qpk5szZ467+eabbZOAYMbatWtdlSpVrBriyiuvdOXLl7fnDLR9+3Z39913u0suucS+duHChWc8Z+HChe3YZs6cGbTvX0REJK3r2LGjtRFas2aNu//++12BAgVsTe3WrZtbtWpVoq2GfvvtN7tv2bJl9jFv+XjBggXu9ttvd5deeqmrWLGiO3TokJs3b54lOmTMmNE1adLE/f777/7HyZMnjxs2bFicY6IKgmqIxDz11FN2nJdddplVfzz33HP+jX7ON/r27eu++uorOx5u3Be/3VOZMmXscQLRzvLCCy90y5cvt49Pnz7tnnjiCTufoeVlqVKl/N9vYngO2mRSscFrwPHNmDHD//+91/L999+3cx7ObUiyIHHjhRdecNdff72dI/EaECyK7/vvv7dj5+s4H/vss8/Oejwi8j8KUoiIiIiIxKhdu3bZ23z58sW5P3/+/P7/l5AVK1a4EiVKnHE/mxIvv/yyGzt2rNu8ebPNkaB9VIsWLawyg80QHrtGjRr+WRZctDMH46KLLnKrV692o0ePPmNTwVOyZEl7bhERETk3qg/ZCKdigk34+EguSC6CCyNHjnQrV650+/btcw0bNrQgxOTJk93HH3/sPv30U2shmRq0kiTwsGXLFjd8+HD31ltvuVdffdX+X6NGjVz37t0t0EJ7J27cF1/Tpk3d1KlTnc/n899H4ICEh3LlytnHVJJ++eWX9nlff/21a9Cggbv33nsteeJsCJoQ8CFQwvM0btzYfffdd3E+p2fPnq5Lly52f7Vq1ez7eOWVV9yQIUPsubivTp06ZzwXLTj5/jZu3OhKly5tbbl++eWXVL2eIumBghQiIiIiIjHKy3QkcHDFFVf4b7Nnz46TBRnfDz/8YBf58ZHlOGrUKMsAvOmmmywDkizLhx56yBUsWNCyLMeMGWOP7WUGUrFB1uDEiROtOoOKipdeeinB5+U5eW4RERE5tx07dtgmPWtwsPTr18/dddddVk3RunVrW8+pLOBjNv+Za7V06dJUPUevXr3sXIIqDDbpqXagihNUL3CucsEFF1h7J27cFx/BkwMHDsRpX0kg5cEHH7RKB6o9x48f76ZPn27HfeONN9rzlC1b1u4/G4IZbdq0sWqPF1980RI34gdmHn/8cUvCuOGGG1z27NktOEESBgENzpFI6qCaIn6VCYETAiCcM/G6UoX69ttvp+r1FEkPLoj0AYiIiIiISMoQRACtDQKzKcn88/5fQv773/9aG4L4qIa49dZb49z3888/22YDz0FLCGZVEKRgcwBkGDLAMzDoQeZgQtiEOFvwRERERP5PYBVBsASu89myZfO3ZAq8j9ZSqUHFw2uvveZ27tzpTp486f7++29rJZUc11xzjatataq1WiIIsXv3bquaePPNN+3/M5uDcxICDYFoAXX11Vef9bHjn6fwcWCrLARWnB4/ftwCJgR3AvEx1RiJPTaBGB4nfpWGiJxJQQoRERERkRjlbSpw4R/Y8umPP/6Is+EQH/MlmGeRUBCB7MRAtHqiTQFtDnLnzm19mLkA//PPP1PUtoJNBxERETk3KiVZl6lYPJv//Oc/ZwQ1Ehv2zEwHD48d+LF3H60cAx87frDkbIOkCSTQQom5E7REopKAdky0SkouHqdz585W5UAVxS233GI3EPw4//zz3fr16+1tICo1Uiuh9loiEjpq9yQiIiIiEqMyZ87sihcvHmfOAxftbBAw7DoxtHSgT3RSfPHFF7ZBwBwK+kcTpDhy5Ij//9POgJ7W9JT2eIM84/v222/tuUVEROTcrrrqKtvof/31192pU6fO+P8Mx4aXABC4FsevDEgpHjvwcakqoKohMcy6IKnh2WeftSoCAi3xWz1SuUkVxLnUrVvXEi+Yy0GQgqCFh/MJHoMqTxI1Am+0kDqb+OcpfMz5TGJIBqFilHOiQHx88803J/rYVJAQRDnbY4vI/yhIISIiIiISw9gE4MagS4Y30l+6VKlSZ7QkCMSGB4GMpGwQsLnw7rvvWqsCBmOzQRDYO7py5crWaoGKC1oeEDDheOKjzRMX6rRuEBERkaQhQMF6XbJkSffBBx/YWs+aTDslr7UQ6/Kdd97pBg4caP+PORO0agwGZlNxHsD6Tosl1vv4lQvxzxtoCUn1BO2eOM6ZM2fG+RxmVRDoIJBC4gMtmhKrZqhXr54Nuub7Yh6Fh3MPzkmaN2/uPvzwQ3s82lQNGDDABoCfDXMsxo0b57Zt2+Z69+5tX8csibNhIDZzKGhltXXrVhuszfHTYjP+vxffL9UvDDyncrVVq1b+/898kfivh4goSCEiIiIiEtPuu+8+16dPHwtOMLiaFgzecMrEVK9e3fokM/T6XBj2yAV2sWLFXLNmzayqImvWrHHaQHCxzZwLNlAYRNm/f/8zHodh3rly5bK+0iIiIpI0tG/csGGDq1ChguvevbsrUqSIVUsuXrzYBjN72HQnc58KS4Y+MyA7GJ5++mlXvnx5V6tWLVezZk0LGjCkOjF16tRxXbt2tU1/BktTWUGQIRCDpe+99177nqjUmDJlSqKPRyCCJAjOHziPCMSAbIIUvC4Ms+bY1q5de8bnxUcrKoIozOeYOHGiPX/8ioj4OP/p1q2bPRctp6jumDNnjgVlAhEo4sY5GUO/+RzabHoIcBw7duyszyWSHp3nC8UUHhERERERiWpk+nHhvGDBgrA8HxmeXOA3adIkLM8nIiIiEh8zN0iuIKAhItFDg7NFRERERNKhRx55xHpZnzhxwmXIkCGkz0Urh/r168dp0yAiIiIiIgJVUoiIiIiIiIiIiEiap0oKkeikSgoRERERERERERFJ85SrLRKdNDhbREREREREREREREQiQkEKERERERERERERERGJCAUpREREREREREREREQkIhSkEBERERERERERERGRiFCQQkREREREREREREREIkJBChERERERERERERERiQgFKUREREREREREREREJCIUpBARERERERERERERERcJ/w/6Bo0tI5DPigAAAABJRU5ErkJggg==", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm8lOP//3997PsSsiYttJAiRalopSQpSclaUtG+kJJIiEjSJq2o0CJbu0pkKSElkqQopCwhsvR/PN/f3zX/+5zOMnPO7Of1fDzux8yZM2fmPjNzz31d1+v9fr3+t2fPnj1OCCGEEEIIIYQQQgghhBAizuwT7ycUQgghhBBCCCGEEEIIIYQAiRRCCCGEEEIIIYQQQgghhEgIEimEEEIIIYQQQgghhBBCCJEQJFIIIYQQQgghhBBCCCGEECIhSKQQQgghhBBCCCGEEEIIIURCkEghhBBCCCGEEEIIIYQQQoiEIJFCCCGEEEIIIYQQQgghhBAJQSKFEEIIIYQQQgghhBBCCCESgkQKIYQQQgghhBBCCCGEEEIkBIkUQkSBxYsXu//97392mQpcfPHFtnk2btxo+z9hwoSE7pcQQgghhBBCCCGEEKJgIZFCiAA33nijLdYfccQRbteuXXu9Nl988YX9nm3w4MEF/rUbMWKEhA0hhBBCCCGEEEIIIUSe2S/vfypEerLffvu5P/74w73yyivu6quvzvC75557zh100EHuzz//zHB7jRo1TNQ44IADXCpStGhR2//9998/YpHi2GOPNXFHCCGEEEIIIYQQQgghIkWdFEJk4sADD3S1a9d2U6ZM2eu1mTx5srvsssv2PpD22cfECy5TETpD2P999903Zs/x+++/x+yxhRBCCCGEEEIIIYQQqUlqrqiKtGDatGm2OL5kyZK9fjd69Gj73erVq0O3vfHGG6569eru0EMPdUcddZS74oor3Nq1azP8Xf/+/e3v1q9fb9X93O/II490N910k3VHhEvLli3d7Nmz3c8//xy6bfny5Wb3xO/CyaTgvk2bNnUnnHCCCQCnnHKKu+aaa9wvv/yS4W+fffZZV7FiRXfwwQe7QoUK2X02b96c4T7hPlZWPPXUU65EiRL2+JUrV3ZLly7d6z5ZZVJ899139rrxXAg3J554or3m3BdOO+00t2bNGnv/vAWWz7ngcfx726FDB1e4cGF7HCGEEEIIIYQQQgghhAgiuyeRMOhIOOyww9wLL7zgLrroogy/e/75592ZZ57pzjrrLPt5wYIFrn79+q548eImRGBNNGzYMHfhhRe6lStX2oJ5EGyaihUr5h588EH7/dNPP20L5YMGDQpr35o0aeLatWvnZsyY4W6++eZQF0Xp0qXdueeem+vf7969211yySXur7/+ch07djRx4dtvv3WvvvqqCR8IJzBw4EB399132/62adPGbdu2zf4v7KM+/PBDE1nCfaysGDt2rLv11ltd1apVXZcuXdyGDRtco0aNTAwpUqRIjv8DoggiBM/J6/vDDz+4+fPnu02bNtnPjz/+uP2O97BPnz72N8cff3yGx0CgOO6441y/fv3USSGEEEIIIYQQQgghhNgLiRQiYVDZf/nll1tHxRNPPBGyGqKCnwp8xAhPz549bWH9nXfesUto3LixO+ecc9w999zjJk6cmOGxuZ0Fes/27dvt53BFisMPP9w1bNjQhAlEiv/++89NnTrVtW/fPqy///TTT91XX33lXnzxRXfVVVeFbmex3vP111/bvt9///3urrvuyiCQsP/kPXB7OI+VFX///bf9fYUKFdyiRYtCeRlly5Z1bdu2zVGkQPxYtmyZe+SRR1yPHj1Ct/fu3Tt0nde/b9++lknRqlWrLB+H92rhwoUxtZESQgghhBBCCCGEEEKkLrJ7EgmlefPmVqEftElCtEAU4HewdetW99FHH5l9kxco4Oyzz3Z169Z1r7/++l6PSxdEEGyiECp+/fXXsPcNWyf2C9EEqykus7J6ygrf3TB37txsbabo0uD/pIvixx9/DG10Spx++ukmLIT7WFmxYsUKe215LYKB3ryOOXVfeAGJv+H//+mnn1xeueWWWyRQCCGEEEIIIYQQQgghskUihUgol156qS2YY+/k4TrV/2eccUao4wBKlSq119+XKVPGFvYzhzKfeuqpGX4++uij7TKSBfcGDRpYRwX789xzz7lKlSq5kiVLhvW3WE1169bNbKboNMCuafjw4RkyJMiZ2LNnjwkSWCIFN7I2EBjCfays8K8bjx9k//33N9usnCCDgq4TcjmwcMJ+6uGHHzahJhLYdyGEEEIIIYQQQgghhMgOiRQiobAYjm3QzJkz3T///GNZC2+//XaoiyKvZGcvhCgQyb5hvYSVFPsXbheF59FHH3WrVq0yyyUyNDp16mQ5G9988439ni4KwqXnzJljWQ+ZN8LDw32sWECGxbp16yzXg7BusjMQhcjKCBc6MoQQQgghhBBCCCGEECI7JFKIhIMgQTcE2QXkLiAkBEWKokWL2uXnn3++199+9tln1l1w6KGHxmTfECZYlN+5c6e75pprIv77cuXKWW7Dm2++6ZYuXWoizKhRo+x3JUqUsP+VboM6derstV1wwQVhP1ZW+NeNjo3MWRVkXIQD+9i9e3c3b948t3r1agvxRjDxILIIIYQQQgghhBBCCCFEXpFIIRIOC/JkTWCrxFa5cuUMNkEnnnii2T/R0UCgs4dFcxbPsWWKFTVr1nQDBgxwTz75pGVFhAvZF3SGZBYZ9tlnH/fXX3/Zz3Rp0PFx77337tXhwc9kaIT7WFlx3nnnmXUUQgbigmfChAkZXsesIPvizz//3EuwwP4q+JyIQ7k9VpBNmzaZsCSEEEIIIYQQQgghhBCwn14GkWjISGDBfurUqZYtMXjw4L3u88gjj7j69eu7KlWquNatW5vl0bBhwyzPon///jHbN4QAuhcihaDt22+/3TVr1syyNRAZnnnmGRMlmjZtGlr0v//++13v3r3dxo0bzfYKEYAuB+yl2rZt63r06BHWY2X3uvL4t956q6tVq5Z1p/DY48ePzzWTApun2rVrW6h32bJl3X777Wf79P3332foKKlYsaIbOXKkPQ95HYULF7bnyo7rr7/eLVmyJCLbLSGEEEIIIYQQQgghRPoikUIkBSygEwyNfRAL41l1W5DdcM8997h+/frZAvxFF11k4c7JGM5cvnx5C7h+5ZVXzJbpkEMOsdsIog7aON15550mPAwZMsQ6KqBIkSKuXr16rlGjRhE9VlYgdPz7778m8vTs2dM6MF5++WXLl8gJ9qFFixZmwYUggkhRunRp98ILL2QQRngvCOgmVBtLLN6TnEQKIYQQQgghhBBCCCGECPK/PSppFkIIIYQQQgghhBBCCCFEAlAmhRBCCCGEEEIIIYQQQgghEoJECiGEEEIIIYQQQgghhBBCJASJFEIIIYQQQgghhBBCCCGESAgSKYQQQgghhBBCCCGEEEIIkRAkUgghhBBCCCGEEEIIIYQQIiFIpBBCCCGEEEIIIYQQQgghRELYLzFPK4QQQoh04b///nNbtmxxhx9+uPvf//6X6N0RQgghRDbs2bPH7dy505100klun31Ss2ZR4w4hhBAi/cYeEimEEEIIkS8QKIoUKaJXUQghhEgRNm/e7E455RSXimjcIYQQQqTf2EMihRBCCCHyBR0UftBxxBFH6NUUQgghkpRff/3VCgv8uTsV0bhDCCGESL+xh0QKIYQQQuQLb/GEQCGRQgghhEh+UtmeUeMOIYQQIv3GHhIphIgBP/30k1uxYoVbu3at+/fffyP6W/zZSpUq5SpVquSOOeYYvT9CCCGEEEIIIYQQQoi0RSKFEPnkr7/+ch999JF7//33Q9u6deui8rqWKFHCVa5c2bbzzz/fVahQwR188MF6z4QQQgghhBBCCCGEEGmBRAohIuC///4zASIoSCBQ/P3333vdt2TJkq58+fLuoIMOiug13r17t/v444/teb788kvbpkyZ8n8H7H77ubPPPjskXLCVLl3a7bvvvnofhRBCCCGEEEIIIYQQKYdECiFy4Y8//nCTJ092zz//vIkSBL5k5thjj7VOBy8cRMOqyVtG8ZzvvfeebT/88INbuXKlbaNGjbL7HXbYYe68885zzZo1c9dff739LIQQQgghhBBCCCGEEKnA//bs2bMn0TshRDKyefNmN3z4cDdmzBi3Y8eO0O10RlSsWDGDKHHaaafFPHyOQ5V98qIFl4gYiCieI4880rVu3drddtttrnjx4jHdHyGE8CDe8v3zyy+/KDhbCCGESGLS4ZydDv+DEEIIUVD4NczztkQKITIJAW+99ZZ74okn3MyZM0Oh10WLFnUdOnRw9erVc2eeeabbf//9k+J1++effyyce8GCBW7EiBFu/fr1djuCyeWXX+46d+7satasGXMBRQhRsNFigRBCCJEapMM5Ox3+ByGEEKKg8KtECiHC588//3RTp041ceLDDz8M3c4Cf6dOnWzBP9lzH8jLmDNnjhs6dKibN29e6HZEFf6HVq1auUMOOSSh+yiESE+0WCCEEEKkBulwzk6H/0EIIYQoKPwqkUKI3Pn222/dyJEj3ejRo92PP/4YsnO67rrrXMeOHV25cuVS8mWku+LJJ590EydOdL///rvddvTRR7tbbrnFOkLoDBFCiGihxQIhhBAiNUiHc3Y6/A9CCCFEQeFXiRRCZM8HH3zgBg8e7KZNm2aWSVCkSBHLcmjTpk2+Q6+ThZ9//tmNHz/eDRs2zH311Vd22z777OMaN27sevTo4apUqZLoXRRCpAFaLBBCCCFSg3Q4Z6fD/yCEEEIUFH4N87y9T1z3SogEQ8h0t27dXKVKlczeCYGievXqJlZs2LDB3XHHHWkjUMBRRx3lunbt6r744gs3a9YsV7t2bbOFmjFjhqtatap1VezcuTPRuymEEEIIIYQQQgghhCigSKQQBQYCscuXL++GDBliAdnXXHONW7lypXvzzTdd06ZN3X777efSFfI0GjVqZAHbn3zyibvhhhvsdqyusLRauHBhondRCCGEEEIIIYQQQghRAJFIIdIeMhm6dOniatSo4davX+9OPvlk99prr7kpU6a4c845xxU0zjrrLDdhwgQTJk477TT39ddfuzp16rh27dpZC5YQkXLxxRe7//3vfxk2Pk9CCCGEEEIIIYQQQuSGRAqR1tAlQffE0KFDrXvi5ptvdqtXr3YNGjRwBZ1atWpZVwU5HEB4OALGvHnzEr1rIgUhlH3r1q2h7eGHH070LhXo773LL7/cnXTSSSYYvfTSS7n+zeLFi925557rDjzwQFeyZEkTMoUQQgghhBBCCCHigUQKkbbdE506dXIXXXSR+/LLL90pp5ziZs+e7caOHWs5DeL/OOyww9yTTz7pFi1a5IoVK+Y2b97sLrnkEltwJtBGRA5iGJ+/RGw8dyTdD3QYATkl1113nTvvvPMsbD0vHHLIIe6EE04IbQoxTBx8FhBnhw8fHtb9v/rqK3fZZZe5mjVruo8++sg+F23atHFz586N+b4KIYQQQgghhBBCpK8JvyiwUBHcunVrC8IGFtsGDx5sSfIi+wVruip69+7thg0b5p5++mk3Z84cN2bMGHfppZfqZYswnB3xJxH89ttv7tBDD43obxAo6DBau3atmz9/vol4zz33nLv11ltz/DtEP0LnPfzNs88+awIFVfx33323CRci/tSvX9+2cBk1apSJlI8++qj9XKZMGcvwIb8H0VIIIYQQ/0ckBSH5/Tv+JmilKYQQQggRK3bv3m15tmyJQiKFSBtYoL3jjjvciBEj7OciRYrYYnu9evUSvWspAYvbTzzxhIWII/LQgcJCJwvYLF6qAyX9YPJL1wwCFaHqRx99tN1OyPr555+f49+S7eJp2bKlK1q0qNkLrVq1yo7Dzz//3M2YMSPm/4PIP++8847l0gRBnPCdNlnx119/2eZRno0QQsTv3M13buZt586dVihBNx2XbH/++WeGjcmn3/7++2+7/Oeff/ba/v33Xyti4NJf9z/762zsS+bLnDa//7ldz/z/Bi8zX8/q5+xet1SF9w47RiGEEEKIWHHDDTe4qVOnunvvvdf169fPJQKJFCItWLlypS2ub9y40X6mChxPfFnORA4WWR9//LHr06ePiRbjxo0z25cXXnjBVa1aNervXbpB9wCCWaKeOxLGjx9vixhY/XiBAg4//HDbwqVt27ah6+XKlXMnnniiq127tgldJUqUiGifRPz57rvv3PHHH5/hNn5m0WvXrl3u4IMP3utvHnzwQRu8CCGEiA4s8n/zzTfWCczlli1b3LfffmuX33//vdu+fbv78ccf3Y4dO0xIEEIIIYQQIlpMnz7dLhcuXCiRQoi8Qp7CFVdcYRVkVHPTPZG5KlhE3lXx+OOPu6uuuso6Kb744gt7TV988UVb0BbZQzt+pJZLiQKLH4QKhCmOG6zRIC92T0F8F8b69eslUqQpWMN169Yt9DOCBt1rQgghcoZuhHXr1lkG0Icffug+++wzO18iTgQ71HJj//33NytTNopysJpk/EHBgt8OOugg26jC5/KAAw4Ibfy93/bbb7/QRou/vwxu++yzT2hjrJPVz0Frouw2yHw9q8vsbgvnd0CXCDlbhQsXDt1nyZIl9pr/9NNP9jt/SQ4b17nM/B7UrVvXxkUe5hoI+MuXL7frcN9991nGWxBeDwo+eF/8Je8Pt1PMQpHItm3b3A8//GDjbbpY+/fvb58DCj74uWLFiu6CCy6w90sIIYQQIlZg/02XLWDhnSjUSSFSGuxkWrRoYRMRQl9nzpyp7IkoUq1aNZvMNW/e3L322msmBk2YMMG1atUqmk8jEgTHzLnnnmt2Xl27dnW1atVyxYsXj9juKTMsvAAdFSL5YRBClW4QfmbRK6suCmDBS9YTQgiRO4i4S5cutaIa8n6wRWSROysQDE477TQTfbFQZON8S3fbscceG9oKFSqU7fdzOoOAsHXrVtvoAgxuLOzffvvtdj9eX99digjhc+moDHzqqadyfR6EBGxO2XgvjjvuuNDvevToYaINAoW/HdH+uuuus/Mmz4UogSDhxRG6ZG688UZ7fjpjgngRib+nS4YcvTvvvNOsNIUQQgghYg0FylOmTAlrrSfWSKQQKQuV31R7M/Bv0qSJVTkx0BfRhUkW4g8dFQQjM4nCcqBz5856qdME7JoQ/K6//nqrMozE7glLp8mTJ7sGDRq4Y445xhZfEDxq1Kjhzj777Jjvu8g/VapUca+//nqG2whR53YhhBCRQfYB50K6T/ku/eCDD6x7IvPYqnz58q5ChQruzDPPdKeffrorWbKkLYjTxVDQISdr2bJlbvPmzbaxsM/G+DM76PT1IgUCDp0LdCuw8O9FCsYmvBeIPIxZuGTD8tJfsvG3CBVZQddEVp2pbICAMmvWLNtvxAbgscj/4n+gK4LzK/v43nvv2fjr4osvtvu1a9fONhUBCCGEECIe0NV51113ZSigCRZnxBuNgkVKTv4GDRpkdiOARc2oUaMSmkCf7lDZN3HiRKveQ2UlUJcvswEDBmTbZi9Si7Fjx7qzzjrLji1OUuHCZJvFBD4XhHWywEI+TN++fWO6vyJ7sJHAOsTz1VdfWXcLCzCnnnqqfXficz5p0iT7PQsi2FT06tXLxMg33njDMmjonhJCCBEeq1evtu9Ots8//zzD78hnonuRxejzzjvPBImCNm5l/E6XHpNgv6BPZwSvC5lyWGAhDsC0adPc6NGjs3wcFvDp1KQL0G90mtBJEQSRgM6GoNhw7bXX2hZN6NRYvHixdUmwYZfgx0edOnUKdXSQ5cS+Y9+EQHHLLbe4OXPm2PjaixQSJ4QQQggRTxAkKEp+/vnnrXCRsZo6KYQIE7omevbs6R577DH7mcW2gQMHaqE8DjDJ43XnS4xQbV53AhyHDx9e4Cba6QAT6iCciPBjjhRECbovRPKwYsUKW/Tx+OyIG264wezaqPLctGlT6PcsFiFI0AEzdOhQd8opp1in2iWXXJKQ/RdCiFSBAGsq4RkfURXvYbGZDkNsMrFSLEiZPbwmZJmtWbPGxBoyN9i4Tn4cr4sXwXmd+B3jj6+//tq6SoBFezoeOB/x2jFG8dZXdDqEUyCDVVOswfppyJAhNj/xsG9YafK+e9sp/m/sU2+66aaQTRcFIVWrVpWFqhBCCCESyiWXXGIb4xdECvK8EoU6KUTKQIgLXRO++hcf/WBwq4g9TLyYVNEi3759e6tyo/UeGyhVfwmRHLC4Q8VqdiBUZPU3LKAIIYTIHQKWEXOfeOKJkOhL12n9+vXd1Vdf7S6//HKr4i8IrwN2VitXrjSLKyyN6CTILgCcgpc///wzw21U7tHpR7eJ55prrrEtGeB8yv80b948s+8aOXKkdSUCAgoCRalSpVzt2rVt43zK/xOEbLfZs2dbcQ/zl8wWUUIIIYQQ8QRnBW/zzXiO4g5sMiGRuWcSKURKQCUSk75XX33VqvbHjRtn/vkiMZAFglBByzwt+VTA0SIWbo6BEEIIIUSqsXv3busgvffee21CB3SYdujQwYo3sB1KVxAXECSwVfICDF0EvBaZoXuAroiyZcu60qVL28ZCfvHixfcqaqlbt65LNsixwMpy7ty5tjGR9yBUtG7d2q63atXKcvEyd8oQls4EH+EKyHHbsGGDO//88+P8nwghhBBCZIQCi5YtW5rdJllbWFCS7eXHtt6qMhFIpBBJD16vVKS99dZbFoyN1y8/i8Ry1VVXWct948aNzYOXtnY87BIZsiOEEEIIEQuohMcWz+dNlClTxjp6KdhIZMVZrKCaLjhJrVy5snVKvPzyy6FxeMWKFa0bAHsAgsARMNi4Lbvg6WSHjgk6YoIWTsw/CN2uV69eBjtFCnbYgpDx1K9fP+uYwN4J+Dvsr2SPKoQQQohEs2XLFvfNN9+YK8rbb79trjXc9t1339nv1UkhRDZwkOCNRgv5kUce6V555RVXvXp1vV5JAm3thOziL4wPPu8NkzvfBi+EEEIIkcp8+eWXFoBMIQbg0/vAAw+4G2+8Ma0WnRElyKuig2DRokXuq6++Mnui/fb7v5o2Ar9/+OGHUJUdNGzYMGULhyiCYszK+1qpUiV32223hYQXoBPEezQzvg13wk7HCR3GdBp7kQK71HT6rAghhBAidTnllFNsjZU1PHIrgYKT999/P+GdFP/bk5NxtRAJhJC5Cy+80Kq2aJ+n3ZoqLZF8EHpIldjmzZtdyZIlLTwysx+vECJ9wdoCIZnFq4Lgwy6EKBhMmTLFtW3b1v32229m3YNtT9++fe37Lh0g4JpFerpEECgyZ0mQNXHOOeeERAwW6sMJrU5W1q1bZwVP2McuXbrUwrmB+QYd2x7EmHBCI/lc0DmBZZUXN37//Xd7jmbNmiWtMJEO5+x0+B+EEEKIRPLuu++6KlWquEMPPdQCszmf0klKV8WJJ56YkPO27J5EUsKkgfZ5L1DQghQM1BPJBV7DvEfVqlVz69evt/wQJrzei1cIIYQQIlVgQb5Lly5uzJgx9jNWP1w/44wzXCpDbRqVczNmzHDTp083C6IgdMJeeumlZuF50UUXuRNOOCH0u0RW1UXj/6YTBNElCJZdeDDTERIkHIECevXqZUHaCB6vvfaa3cZEP1lCv4UQQgghPJMmTTLLdt8F+/zzz9tlo0aNrHPWW13K7kmITFClRhUS4XqzZs2SQJECEBrIe1a1alXLqMC3meoyIYQQQohUYe3atVZssXr1ausauPvuu23ztkepWvxzzz332GSUYhIP/xMCDLad5DCwaJ/KnRJANwiWVcuWLXMDBw602/ifTjvtNCt+Qnxhco44EWkB1K5du9w///zjDj/8cPuZTBI6UFq0aGFCSKq/dkIIIYRIT7766ivXoUMH6/jEpaZOnTruxRdftN81b97cxjge2T0JEeCZZ55x119/vV1/9tlnraNCpA6ISldeeaVN1kaMGOHat2+f6F0SQsQY2S4IIdIBJm1NmjSxTgq6CBiHkr+VDsHXF1xwgdlxEgJNzkLTpk2tg4CKulSHCfecOXOsOwQrJyxjgZBz3/3y9ddf2/+aV2sgHrtjx442R3nooYdCt6eiOJEO5+x0+B+EEEKIeLFr1y4rWKGrlEwubC4p3OAcitUT4xtEC8Y0FLdEe2wT7nl7n6g+qxBR8ERr06aNXe/du7cEihTkiiuuCFWuMZkjWFsIIYQQIpnBAokKexb3ESY++uijlBQoyEmgwAeRhQBnT79+/SxjY9u2be6ll15y1113XcoLFIgudL1gz3TVVVfZ/4dAcdJJJ1m1YNB2tGjRovlazKa7e+vWre7ll18OZVlAqgkUycS3337rWrVq5Y455hizlihXrpyFeAohhBAiunCeffjhh62oY5999nFnnnmmGzZsmLvrrrusgMVnczHeSeTYRsHZImnYtGmTq1y5sql4jRs3toolDh6RelBVhhJLBSITYCaRp59+eqJ3SwgRI1TRKIRIZSZOnOhuvvlm8+Il8JjxywEHHOBSBfbbj5kZg5199tlmVzV16lRr4U8Xdu/e7f7888+Q2IDYQvcuYOdEdwjb+eefn685BCIErx0Vfz6vgtcVuyyejwl8KpMM52wENELZa9asaV3Xxx13nAW5Y8EVjg1XMvwPQgghRCp0mx566KE53ocxDmObv//+2xUqVMht37496vuhTgqRcgcOFfgIFEyssHySQJG6oLwSMMkkkUkIlYk///xzondLxIAdO3ZYx0ypUqVMnSd0s1OnTjZpFEIIIZId8rNuvPFGW+hHqKAaP1UECs7B9913nxWC0EHhx2BUxlGRng4CBe/LkiVLXNu2ba07ZPDgwaHfEfJN5zX/64YNG+x3VapUyfccYvTo0VbhT74aE3b/uhKIneoCRbIwaNAgy7MbP368FakVK1bM1atXL1uBgqwRFjiCmxBCCCFyLrrA4pPx4I8//pjt/Tin+vFOIvMoQGXqIikmH1Td01ZPuzZt1Icddliid0vkE1rGqHA75ZRTzBOYiR1hgyK92LJli20sDFC1OWHCBGshbN26daJ3TQghhMiRRx991IR26Ny5sxVY7Lvvvkn/qnHe7dGjh1kY4S/MAj0dyJ6LL77YVaxY0aUyjB2xIKBDgv+H94bCl0WLFmUYaz7wwAP2v+bXmgCbLw/zErIsbrrppgzWTiJ6MN8777zzrHOJ+R9dFbzH2fHggw9a54TfEDiEEEIIkT04mmCpP3v2bCsM9wwYMMAKMnwhMcXinkSvxcruSSQcPHI5SKhaY+JRtWrVRO+SiCIffvihq1atmk3+unTp4oYMGVIgXt/gSSBcqM7bb7/97DqCDlVjVAPSoZDb4+bWwpcZJvwVKlRwjz/+uAmFN9xwg1u7dq1bsGCBO+qoo1x+IHCJCkT21f8/Ir2R7YIQItWYNm2aLZDC3Xff7e69996kzxcgT4Lcr5EjR5r1EZQvX966CchkSAWBJTewHKDqb/78+aHbWJTGxomsDUIeo/l/fvrppyZUYRk0c+bMLC200o1kOGcjMEG3bt3sOFy+fLkJhaNGjbIxaWYYE7MF/weECtk9CSGEENnzwQcfuK+//to1adIkdP48/vjjzT6T35177rmWR1G9enX7PUUDhGsnauyh1SORUPB7RaCAp556SgJFGsKX3KRJk2zyzII4AT0+HD2dyYsC/cILL4QWTJgoEwbJZHzx4sWh+1BRmFWrHpP6vODtLRAoWBBAoHjuuefcrbfemuPfocb7E1lm/IlHAoUQQohkhAVRquWBhVEsk5IZrJwo8njkkUcsGBooAKHTAMujZBdXcoLxC5V+WITyf7BhHYkQUb9+fVuwJhfCL2pHG56PcRZjls2bN4cq9NNVoEgWGH/SSUEnjJ8v0JGbnUhBIY+stoQQQojIoNs02F07Y8YMEyiw6+bcm7mTIlggmwgkUoiEgX8sbdTQs2fPLAekIj2g+o0FALpmCMejhb5GjRqJ3q0CDwsDt9xyi/vkk0+sg4KQc2jUqJEtFuTEySefnOXtCCgIj3hHCyGEEMkGC9Gc53bt2uUaNGhglk/JClZDWOD0798/NIGk4u2hhx5ydevWdanMDz/8YHkETz/9tFu/fr17//33XaVKlex3jBfvv/9+y6CIxfuPxSx5aVCmTBl7jWvXri0LoThy4oknurJly2a4jfciaFsmhBBCiLw5W1x44YXupJNO2ut3kydPtku6U32RC2MyT6IzKSRSiISA9U+LFi1MwaM6Cp9Rkd707dvXrVmzxj3//PP2hcj1RLWYxwMfYBkJwQqxK6+80h4jcyXfxo0bXbRgcYBj8bLLLgsJFHD44YfblpcWPh6LSScLKkIIIUQywXmVxenvvvvOlStXzjp6k9UiiW4PCjtoxQcChbF6ouMyVav8KY54++233YgRI8xuy4c00n1KBoUXKeikiAWrVq2yIgy6JsjxOO644+x2OkpFfGHxhPc8yLp16yxnRQghhBB5g0IM1tsYW2G9HjyvMv5duHChXW/ZsmXodnVSiAIPIX9UTVGN/eyzzybtBFFED1TacePGWQfNl19+6Xr16mUt3elKpBkRmWECnZVdUn4fN0ixYsVMqMBSikpGb8OVF7sn7CewnEDcwKpq//33j9p+CiGEENHoSmDS9vHHH1tQ7yuvvJInQT4e+C4PuhPx76UbtV27dpbflqps2rTJCpPo3vQgGDDeQHiJR1DjWWedZYUUjKUIi/QihYg/Xbt2NZtf7J6wN6WTButfNiGEEELkDewxKcRBnMhc9EFxDnaLF1xwgRW/eNRJIQo0DEIfe+wxu06iPJOvdILAY5TIb775xnzefAgxnv/z5s2zL4vGjRuH7k81ma8kQ6yhtf2UU04xAYdW6HTy9ad1bOzYsRbazHvfvHlzV7NmzUTvVoGF1x7bCKwumCzWqlXLFS9ePGK7JzooCLmkE+Tll1+OmW+0EEIIkVc413GO4lw1a9aspK7Yxg+YrgmCDMmhIOAwFaFj2o8JsBxAGOB/QyyiS4QxSKxgEo6lAR28L730ko2x6UAhf4vu0VTO8UgH6JqhqIXQd0Q4CmfIruOzIYQQQoi8Ubp0affuu++aY0bmsQ7FqJD5XJtMnRT/25PXtFUh8sBff/1loS1Y/bRq1co988wzKfk/UIVHS/K3335rYgSX/jotVEyMfLU51eXA/0pII4u5c+bMCT0eVXzZWQMxmWJiyoKwFy7YWEQmgDpV6dChgxs5cqQtiNN6H83uABEeCEUVKlSwCSHwOeVzuGTJkog6mxAo6tWrZydBJpvB95IKRXVJFQz4HCA4+9B0IYRIJqjeJ6R39+7d1jnYunVrl0xs377d3XbbbTZOpIMiXQqSCMRmvOy7K7mdXDJfwBNLfvrpJxtnIoxMmjTJXXfddTF/zlQhHc7Z6fA/CCGEENHiv//+y9EOlC7dJk2auEWLFll3K13FHhwyKIwBikgopE7UeTt9SrRFSkBVGAIFB4RfHE0VYYJwbyZbeLwxyc0JFmbpguDvPKeddprlcJx99tkZ7kuLO5VmwONu2bLFBA8u6crYunWrbdgkBR/LixTsD4F/derUsRyDVIDAx1dffdX8gMmqGDJkSKJ3qcBDhws2CIMGDXJ33XVX2K/HypUr7biAkiVLZvjdV199ZZ9VIYQQIlEwtmKBmkvyKJIxf4BxEBX/y5YtMzvUVLR1ou5t7ty5No5YvHhx6Hau+5DvypUrx3QfKBTyYdt0S2AlhEjRtGnTmD6vEEIIIUSi+O2330xooOCFQpysukXpkKCIGpEgs5tNsJMi0cHZ6qQQcYPuA6rYWHgnbf6qq65KylefYGIqrjiw77777tDEizZ1Jj9w7LHHms9bsLsheJ3uh/xWkKOE4g0X7Nbwl927dw+JHVSq8fMVV1xh7ex+fxECypcvbxNC9jfZoJukfv369joTolilSpVE75IQIo+oolEIkaxQDEGRzDHHHONWr14dWsROJqhuI8CQIgEfHp0qMK5/4YUXTJygOxawKuX/6datm41FYw1j5k6dOlmeAd0adIqK9D5np8P/IIQQQkTL0rRHjx6WQUFReKQ5X6wdkhXM3zJuHjBgQNTfGHVSiKSbwFC5xiUtRskkUNDqxKK+9yamg4Fgb4QGDlAW0dk4ULGywasf39RYe9nSqsVEmg2LrOxgcZ9JYNDXl/8pWA2PUMFrTiUZre/JAPZCN9xwg5s4caJ9Nj788ENlGQghhBAiatDp9+CDD9r1UaNGJY1AQSfpsGHD3ODBg62oheo2LBNTEToqvbcx4+S2bdtazlWRIkXitg+MmbHMIuON3BGJFEIIIYQoKHTp0sUKNlg3zEqg8F26mYO0PXfeeaf74osvTKRIdCdF9oZVQkQRJmFMYmi9Hj58eMJf2y+//NI9/PDDtniPOEEooeecc86xvIw+ffq4f//9N3R7mzZtzK6JRf5kCttDpEA5DYbfIAYhABDcDVSV9erVy5UoUcLEDNrfP//8c5do6AJBDPrss89iotYKIYQQomBCVhIZD0zaqOpPlgIZ7C6ZRGJ7SvdBqoFtlrd5BMbSzZs3t3Hc5s2bbWwXa4GC4iK6h6nKC1YBYi3Vr1+/mD63EEIIIUQyse+++5o9fa1atbL8PUXY2HA/8cQTOXb1JkNwtkQKEXNYgO7fv79dZ0KWqCo29oN2f0QIvPPvuOMOt3z5chMctm3bFrofByUh1x07drR29VQEMWLChAn2P5NnQfBN7dq17cuLjgUEmNKlS5tlFe8N9gdM+OJNoUKFLEAbmKgjZAkhhBBC5BfGOoQ2Y9f55JNPJvwFpfCFDl1yMchJuOCCC1IqzJn9xw6V8WPNmjXNktQzdepU+98oRooHt9xyi+WwUXTjoejooosuisvzCyGEEEIkkj179rgZM2ZYMU5O/PTTT2769Ol2/6pVq2aZZ8F4GftEkEgh0homNFj5ECCNvU+8J2McaHQZEAhcpkwZm0ARNM1iPUHTtP6ziE9YYbqCKNS+fXu3YMECy9R4+umn7b1AgEGcuPfee02syE51jTVMMgkP958VWvWFEEIIIfIK7eq+Wmzs2LFxWzzPDiaAjRs3tmIZoBBmyZIlcbVEyu8kmCw0unS/+uorywBIZEcuOWwHHXSQ2UsJIYQQQhQ0nn76abNzv+yyy3IsOJ4yZYqtx7Lml5WN/JtvvmkOLEuXLrWfE233lJpl4iJloHLtnXfecYcffrgbPXp03GySsHNicjpu3DibGML+++/v6tatawcykxsCFAsaBGi3bt3aNhTVV155xU2bNs3NmzfPnXnmmaH78SXHJDRe+RX4Mr/xxhsWrk5HBWKSEEIIIUReoOWdyjJy0CjMSCQUwzRs2NC6RVlYZ2yKfWgqsGjRIrMLXbFihf2M2EMn8u233x43gQALU+YQjEnr169vt/F6kutx4oknxmUfhBBCCCGSif33398EBYqvc1pnpVgHWAPM6n7Yo7Je611kEt1J8b89ifB4EQWCr7/+2pUtW9Y+9Fj6tGvXLi7Py6QFOyf/0WbxvXPnzlatf9RRR8VlH1INPH3xoCMfAqjuu/jii82/+YUXXoiLuPTcc89ZFgiBPogV2AkIIVLnO+TII4+07jUqbIUQIlHMnTvXhAkmb59++qmNCRPZ0dGgQQO3adMmd9xxx1moMzZPqQDdt1gokUGBINGtWzfb4j2WJuOie/fuJlLweiL0iPyRDufsdPgfhBBCiPywceNGC8PeZ5+skxxwkcHunjW2LVu25FioTZcFBTVkp9GdkajztjIpRMwguA6Bonr16q5t27ZxC/BjEsNzMkFlovrJJ5+Yd60EiuzhS8ILFED3C8IEX2JBgYLXOlYQaslEnue46667YvY8QgghhEhPqLpnQdtbKiVSoKBD9MILLzSB4owzzrCxVbILFL772NuFdu3a1d12221WAHTfffclZCzNHAKLAt7XVM2KE0IIIYSIBnsCfQaEYWcnUADduxCOk8yff/6ZFHZP6qQQMYFKJyYUHEDvv/++q1SpUsxa6M877zy3Y8cOt3nzZrMz8geYKq3yxxdffGGvofdL5n0k7LFDhw7WmRKLiSqfGzyPsWhAeKpcuXLUn0MIEX1U0SiESAaeeuopd+utt7pChQq59evXJyyLYtasWdbBS85WtWrV3EsvvZTUNqOIOyNGjHD9+/c3C1DG1sA4Pl5WrcDrhVXs2rVr7b30MC7MaRIuCt45Ox3+ByGEECISlixZYpamzz77rBXA5ARjp2LFilmxzJw5c9wll1yS4/25L50ZsSqqUSeFSChkCjCxwQs4VgKFr/LCj5YF888++yx0uwSK/HP66adnCHScOHGi++GHH2wCS2Xi8OHDox5yjTWXD1dXN4UQQgghIpn83H333XadsUqiBIrp06ebXSZjJC7nz5+f1ALF4sWLzQqAAhTyyghi9MRToADCuHv06OHGjBnjli1bFrpdAoUQQgghCjJ79uxxXbp0ccuXLzcrzNxg7EQR8KRJkyy3IjvIGcPRBNE/GTopVJIiog4V8FSMcVDcf//9UX3shQsXunr16tlE1E+eXnzxRcu/oFJNxI7HH3/cTZ061XJGtm/fbl9mdD289tprGVrO8gsLC/hI816zCSGEEELkxoMPPmjFFFSWxSsHLStOPvlkK5YhZ2vKlClJWzhDNzIB3jVr1nSrV6+27pNRo0ZZEUo8+ffff0PXzzrrLCt0QqRIdmssIYQQQoh48b///c/yIm666SY3ePDgsP7msMMOsyLgfffdN9v7LF261M2ePdv99ddfSRGcLZFCRB1fAX/99de7MmXKRK2yqlGjRqYAUpEWPChpSyIIRsQWhIPmzZtbqDWWAFhr0b3SsGFDax0j+yMa4KvnFxf4LEVTABGxAUsGgtZpt+fk+fPPP+ulFkIIETcoVhkyZIhdZ4zImCVRsLhOlduECROSNkOB7ljG6BSfUFSElSc2n1hl5TSRjSbYEOCVXLp0aff999+Hbr/33ntdmzZt1D0hhBBCCJGpEIaxE+JDTmB/H+46mh+DSaQQacmCBQssKBDRgIr4/ELFfqdOnayy6pVXXrHJHj/Tki4SA+9B+/btzeu5V69e9l4jHFWoUMEmt8GJZl7p06ePO/TQQy0Hg64ckdz88ccfFlQviy4hhBCJYNCgQTa5oiuA4ol4Qyv9ypUrQz+z8B6vxf68nrdp68eSdcWKFdY9QSdFPEGkGDZsmI0nhw4dGtfnFkIIIYRIBT7//HP3wQcfRPQ3rMXievL666/nOhbbtm1bhs7WRNs9KThbRA2UuvPPP9+qxxAS8jPh2L17t02Y7rvvvlBVNp0UDz/8sCtVqpTetSRiw4YN7s477zTbLUDVZbG6a9eu+bI4oN1/4MCBZi+1atWqpJ7sZ8Xvv/+e7e/4X4KvTU73pcIx2HKX3X0RdSKBzgeEJWy8ODndcMMNFlSJ0JjXUHR8rVkgwtM6FsHqInlRgKUQIlF899131oWJSMF56KKLLorr8xNGeNlll9l5j27TU045xSUbjKsJTiRTDDjv00VBh2w8x1fsB10uPusCgYT3jOKjRHa/FDTS4ZydDv+DEEIIkVtHxAUXXOA+/fRTN3nyZMs6y41du3bZWHTHjh1W8HvFFVdke18EisKFC+9VyBILyycFZ4u4M3PmTBMoWCylEj6v4ItbuXJl161bNxMoypcvbwuns2bNkkCRhBQvXty98MIL7q233rKKvN9++81ECuy+8gPBiYRe8oX87LPPulQDsSa7rWnTphnuy4khu/vWr18/w31ZiMnqfnmFhYqbb77ZBAo6Ylhkee6553Lcfza8C4UQQohEQ1EMAkWVKlVcjRo14v78FOjw3JzbacNPNj788EMbn9WtW9fGaL4AomXLlnEVKBgnMqbHaspz3nnn2XhPAoUQQgghxN7FHRSYIMpXrVrVhQNiBgIF60a5dReT5Qasu3kSnaWmTAoRFWgNovIdqKDPrMaF+xj4CFesWNEq0cg8GDt2rLU21a5dW+9UknPhhRe6d9991wQFvhD95yGvsFhOhwbcc889IY88Ed3up1tuucXyRBAo/MmJrqWPPvoox42FBSGEECKRUEVNThYwZvAV+vGEcyfn0JEjRybk+bPj77//tnwHCn/oSEWgIEssUSxbtsye/5FHHrECCSGEEEIIkT1HHHGEOZawJnrSSSeFtb6DlSbcdtttuRajeKt2b/lJB0Wix7LJmeYmUo5nnnnGKrH5cFMRFSkbN240u5k333zTfkbxe/rpp93xxx/vUh2+KGi5CkIFW1Ch5Pfcj9v4XarCvl977bVmHxAMi6RqDuX39NNPj+jxbr/9drMjIhCTcOaOHTu6VMFXK2ZF5pOFV7CzIvPngWMlWowfP97a+bCpCKrnhx9+uG1CCCFEMoMwQPs41pDxzKLAH3jRokWuXbt29nMs2uLzw5o1a1yrVq2sqADo8kDMyUsRUX6gwOTAAw+063RIY1vAWC6Vx7pCCCGEELHuoDjggAPsOqLBqaeeGtbf4XZBwTfjUtwycsOvQ7GO++WXXybFeFYjRBGVCQiV7r6KjVakSHn11VdNoMAqasyYMe7ll19OaoECQQEP5CVLlpinL2rl888/n+H35557rjvxxBPty4X/K7jh2x+ExXtu574nnHCCBYVzn2bNmrm77747w30JZtyyZYs9R7ISFCiwAGvdurXlHxCOGAmE9vTr18+u33///Tku/Ccbmd/z4Ja5hS6n+2Y+UWR3v7xQrFgxCycn7B5R0CO7JyGEEMkOBR4UMsAdd9wRt4Vvxn/16tVz7du3d6NHj3bJBGNDxAi6HREomHROmTLFqvDiKVBs377dbD8pgvDjVcaGjOmCRRFCCCGEECKjQFGjRg1bW6UrNhJ8FwWFKr47IpxOCr+Gm+jQbFAnhcg3VLgTxkf7EZXv4cKkxbcSdejQwarlqUgrUaJEUr4rtKbfeuutlpFA1wjhwEH4IqGDAPi/tm7dahPZSC2v+KLwXxaA/dWAAQNCP1999dWmcvJFUrp0aaseLFOmjG1nnnmmLTwnE4guhFhi35WX9xaBAxsw/ucnnnjC8i5EdEAIQ0x79NFHzaatVq1aljGC3RMe2zmRjL7bQgghCg50aTJeorqsRYsWcXlOOgGuvPJKG/eeccYZrkmTJi7ZmD17tu3npZdeah2TjMPiDV7I06ZNs0ImiiFyG1MIIYQQQgjnXnvtNffee++5devW2foqIdjh8M0331hOMITrQOI7KbCVgmTopJBIIfIFi+qPPfaYXSeDINwPNQfeQw89ZBMpQnipfsOjNtHQoUBHBxv5CizEvvLKK/Y79nHOnDl28HshAkGAyTEL8GeffXaGx5o+fbq9Hscdd5wJCkFvt8zVftgGIIJgWbBt2zb3448/2sb1zJ0p/Mzf48PMlxebh24FAhI9BI6XKlXKFSlSxCUKnhuvZioe/WvA/0YrGhP93CBMEU9l1GBEiu7du4esA0R0aNu2rZsxY4ZVPdIdFKndE2Icm++UIeOCv+fYCEfBF0IIISLhn3/+cQ8//LBdj1fwMsU1nC8ZH9INQBcwY7xkwBf+sI0bN84EAgpr4mmrxJzA21nSIUxnNGGPEiiEEEIIIcLjyiuvtHEca17hChRA0fjrr7/uFi9e7MqVKxfW3/jiaNZkQZ0UIuVhAR+PfBYiyZQIh507d7o2bdrYoiYV8v3793eJhDZ4FtERJqjWD5K5EwLLIb4s6Fqggi4nUYYMhnDxdj0s7OZWoU5oDhVyX3zxhXV0BLdzzjkndD9aw6644grLHCDImk4PvzFpjGcgDpNk/z8ykaZjBhGH6n3EqdwCfegewcrh22+/dS+88IK77rrr4rTnBQdC6rEZGzRoUMTdKqNGjTIhycNnDKjgvPHGG6O+r0IIIQo22Bd99dVXViRCx2U8YLxCBhtjFp4/0pytWAkDnH8ZH3EeB4QTrKjiCTatjOko5vGvCxllQgghhBAiMpo2bZqnNTfsSNnCxXdS+LU6dVKIlGfo0KF2SWVZuKobC/G0ITHBw2ctnvz888/WeXDJJZeEbsNPmOpxf2DTjYA9UbVq1fZSIMMVYmINmQbsW04KKQIL9k9kWCAksU2aNMl+R+t/586d4/76Ax0jCDwwZMgQ6yJBKPItZllBhSSWYH369LHPHF0V8RRZ0hEU9iCIY5ktzMIFoTHRYqMQQoiCAcUOvouCsUw8qr4oyvFjJsYhtWvXdomG6jeEgIULF9rPBCReeOGFCXk/yAbZsGGDe+CBB6xAQQghhBBChAdFyAMHDrTCXN/VEA98J4XPTE0GkULB2SLPrFq1yhY6qShjATknsEiiW8FzwQUXmA9+5gDhWIC1ENVlDRo0sNBAQvywUfJgccPEk9YoPHTpVMDCCp/hZKiSy4/NEj7ALDzPnTvXFvirV69u4dwIGMHgbayjEGuCWRixgs8Lk1g6IvgS5HWvUqWKTW5zAiGMzwvvz7Jly2K+n0IIIYRIPig2IRSaMUFu489osGbNGteyZctQJ2g8njM3sMykexaBguq35557LiECBVA0MmHCBNe7d283cuTIhOyDEEIIIUSqQjcqri2XXXZZhnW6cOD+FM8wDtu+fXtEf0uxC2PbY445JmnsniRSiHx3UdCKlFPmAQvllSpVco0bN86QlxBLaFvCgqZu3brWNYC9FPkXWCARNr158+bQfak8e/DBB139+vX3yn9IB+hcoeWLLz0srRAk6Bxhwu3BV5kvJ3zsCFN+8sknLZ8jljRr1swm2TwnYeSVK1e2/csOLB28dYD/7AkhhBCiYPHUU0/ZZfPmzWOee4RFKd7Av/32m7v44ostGyuRnZy+a4Gx2tatW13ZsmXd8uXLM4zp4lHtRw4IxUYeMqgoQIlH8ZEQQgghRDrBOhf5E3369Il4nEne7xtvvGFreJH+badOnazAxK+DqpNCpCx0IlC15Vvts2Pq1KlmnUTlfokSJSxoMB7MmjXL/HgJjsavFwsnFunJbVi9erU799xzXUGFCSSZAUWLFg3dRhUeQhJWTHTHdOzY0b4ksbziS4vJeSyoWLGiTa7PO+88U33r1KkT8lTOCv9ZI+Q5KDQJIYQQIv2h0IKxpe+wjLUgQPg0GWCMibApjUdAd0506dLFqu0Y2zKhpRCInLR4gmUrAgUT6VgXtAghhBBCpDusuzHerBdBnoQfq2ITBXT65rV4Z9euXXapTgqR0lVsf/31ly1sY9WTGRa7+/Xr51q0aGEVV5dffrl7++23LcA52qxbt84mbH7SCnRtnH/++RYCvH79euvgYDJFF4XYG14vJrqEUDLxJPSbLzzeM77sMgeIRxM6KejsIBybThe6Xrp3724T8MyQwVGrVi373fDhw/VWCiGEEAWIZ5991iZSZG5lNf6MJmPGjLHMLGwqn3/+eevoTDRYl2LbSaYXId4+6DCeXHPNNe6WW25x06ZNszGcEEIIIYSIvPCGrlhPXrpRFy9e7N5991134IEH2ppopHm9rJOyrutFCnVSiJSEheQRI0aEKtsztxTxAacFf8CAAfZzr169rOoK26Fo8c8//7iXXnrJlMZSpUpZ63uw7fy4446zg5XnpoNDhAciUrdu3UycIEeEbA46UkqWLBm6z3333WfVhHwOogWKLSKTD1/meRs1apRlB4fvpkAo++OPP6K2D0IIIYRIXiieID/Ld1HE0naJjC66FgAbI4o3EkVwrHPJJZe4L7/80vYtXrZTTKAZG/pxH8/LGKxhw4ZxeX4hhBBCiHSCou7rrrvOHF5Yt8wrA/9fFwWFvtjcRwKuMzw/zjd+rCmRQqQkVE7R3n3iiSdarkAQPtxXXHGF3YdKr/Hjx1s3A1Vo0Zo0ciAWL17cPIIJ42ayxESJxfNIQ2ZiAZ0jWEoR8ByE3IfBgwe7lStXZlAvuS1zxgIdDZ988omFXieKk08+2dRYL0gBwgWvM10P2EUhKnz77bdReT7ex3vuuSdDoPall15qftBBCBPi/ee1oaJSCCGEEOkPHZ+Mjag0Y2IXS44//ngryGjVqpXlLyQKCjgotqEr2IP1VLygKIjJK50bjP+EEEIIIUT+wOqcNT/WtPJqJfree++5hQsXuv3228/17NkzT50c2PHjViK7J5HS+AV1KuwRIoICBbZOCAe0n8+bN8/deOONUX1uOjT69u1reQQk0N9xxx1WUfbKK69Y8HUsq8pQO/kyCYKFFOojGQkeQqA50OkECEKGB18eb731Vui2HTt22G38T0EI8j777LMt/CYoaJCtQVC5/xLxrzv7Fg9YGLjrrrts8k5l3b333mtiBeHjfMlGA4Qv2taOOuoot3HjRvfjjz9m+D2CF5kZQIBlMghTQgghhIgtvouCQol4ZJxRFIGl0j777OPiDWMbOjiwTcVyk3ywRMDElzEp40/2RQghhBBC5A+cX9555x03e/Zsy2nNCw899JBdUlATzJsNl9atW9v6Juu7snsSKQtqHRviBGGCnt9//90mc6TKH3bYYW7u3LlWeZVf6NhA4fOwmH/BBRe4SZMmWVU/B2axYsVctGFCiIDgwauN/+ucc87JcD8W5vkd++JBPMG3OLN3cfXq1d3111+fIReDx+S2li1b7iUG8MXF5uEL5OOPP7a2rKBfHSIHdklUuQUnt7EIM+R/opJu06ZNVt1HADf5EHTMnHHGGSYWRYPKlSvb/7lo0aIs39+bbrrJXrs1a9aYeiyEEEKI9CVegdmMPYJjukSArRKZDxTCAFZLDz/8cNyen64NxlceimOWL1/uypYtG7d9EEIIIYRIN4LFxaxn1axZM8+P9dhjj7l27dq5O++8M8+PQZE3a4myexIpC5XrwKJ64cKF7Tp2PHQxUP1O7gQCxYUXXphvkQC/XWx9OPg8derUMcWRNv+8BMtkZ88UhO4PrKyCVkJYH6Eusl8Ey3io6H/55ZdtAudBxdy2bZsJCkEIoJ44caLlaHh4DbnNVwcGX+cffvjBvnQ8eMxhGUU1XbBjZMOGDbZPdB4ExRP2mdcvGECdVRh1XkCkoquFwGs89PBI5ksW0cKT3+4OFOXTTz899DOfL29/deSRR5pQAZmtsoQQQgiRXtCN6gOzY5UPgThx1VVXubPOOsutWrXKJUqMoehn7Nix1sFBRy2Za9GyTc0NCj8oyGFcSwFSsKNCCCGEEELkDdZNq1SpYnai0aBYsWK2NkhGb36R3ZNISbAbmj59ul2//fbbQ7ePGjXKLV261B1xxBFm9ZSfySOL+3QGsLjO4jOL7ytWrIiJpQ92RVgqFSpUKIPwgPcvIkCwko6Ohi+++MImbAceeGDodr5ksLhCEIg1WGgxcc3cdUH3ApZXjRs3Dt22du1am9yy38GJLTkeTPBpK4sW559/vpszZ47ZXCEeAO9XrVq1XKdOnex1zi88PkIIIhWfw+BnkOwKxCMhhBBCpB/xCszevXu3TfToDE1E1wDFKRdffHHINpUimNtuuy2u+8C4mLEctp6//fZbXJ9bCCGEECJdGTZsmOWrUYwdLATJS8dtfsEBB5HD26irk0KkJIRhs5hPhRk5DJ7u3bvbYjQt8ixY51W5IzSZA4UgaX7msci1oHsgvxNSwp2HDx+eoTuCCRgTQp6LIEYPi99UsgVb63n+kiVL5jnUJpZQ3YaoE/RnRsz49ddf3ZQpUzJM8ul6QEzAksrDz3RuBEMZ8wLdJ563337buiz4ImbfyA7Jz2QXEYhJM58PJu7AIgIiER0bwf9TxB+6kVhI4XNFRw0VmITc5wQdSxxXwY2gdCGEECIIEzo6G+igxXc3VjBeYfxC8UciOgcY3xx88MHWZfvmm2/aWC4eMF70UNxC4RGTV8bJQgghhBAi/7AmRkE2hd9+TSsvtGrVyjVp0sQKlfMKlvXkv/piX3VSiJSEHAjAaolWpX/++cd+pmKfrodKlSrl+bHx2yXrAEXxvPPOs+p4bJ3q1q2bJ4ECW6OgtRHt64gPwdwG9puJKAIGz+lhsR/bqlSHLz4m3B5eR8SYl156KUM4z/PPP+86d+7sevfuneHv89O9gt0XohUiAgvYCD5lypSxL+S8PC5B5AgsiBFBoYjPYvCzKRJD165d7ViidRFxijwUTpy5gShBp43fJDYJIYTIjD/HY8VE92u08eNZQJxI1OI84zYKc5YtW5ahGCiWcN4+7bTTzFLTQ0FIvOylhBBCCCEKAoytWBcjYzevLF++3L3wwgu2pue7H/LCRx99ZJcVKlSwSwVni5SDjAMqq1jopkoaiyMWiIMTu/xA2Ast9hxwVMyRcZHX7gk6MciFmDVrVobFUPISrr766gyL5AgrJ510kisoMPG+4oorMkw+CfLGmqlRo0ah2xChsL1i8TlzZkc48N7Vrl3bKhKxK2AC7L2eeW9//PHHiB8TwcULFHRPjBgxwqoMuY0v2WA3TDKA4MYW/LxhJcFtQXux4H2DOR608XFb5tc/u/tGCpYStBoCj8XxjFjn7bTCha4jvLPJjuFzhABGkDqLLAhLOYF1Glkrfgt2AwkhhBCMM713byy6KDj/kRXGODTzuTkevPXWW27QoEGhnxFhGH/FCwoMyPvC01gIIYQQQkQPrOsRJqJhX79nz55QSDZrNxTy5lekKF++vF3K7kmkHN4miYXnzZs32wIk3Q5ff/11xI/FQu2DDz6YIRQaUQHboWbNmkUsTmDZlDnXgu4I7Kk8tM5T4U2LVay8jFOVFi1aWKeJ70qAmTNnmjBFdkUwg8MrrOHCa42gxXt79913W+A2VfbBkO+8gHce9kLYjHk7hGeeecYlE9gesQUFmUceecRuC2a6+M8nt2/atCl0G/Zk3Na6desM90Xw4XZyRzwTJkzI1wLNzTffbI+HDzbvDQGlfv+z2xAt4YMPPjCRhLyQoPB16qmnWjdUTlC5yf+OQNm+fXu3ffv2PP8fQggh0g9shxjXHXvssSaERxvsLhctWmQB1YxP4gkdp14giVaIYqSQK0eRAed9IYQQQggRHSjmJDeWNcjHH3883483f/58GxezpoYLTV6hCNavJWXupDjkkENcoom/4apIOVDs/AIwC9lUYPvg5UirvVgMZ3H5888/t59vueWWkPUQ9kuRLq7SFYBYghLolURCFcmziJeXbzpyzTXXWFU7FYxe1OFzQKBikSJF3NNPP53BSio38Fjmi5TPD10A3uuZqkV8l7H1ioRrr73WqvfplmnYsKHdxgQb8UsWBeHDe8oxSBcKiyW+k4GumtzyZXxYPD6GnCgzC0907eQUaE53E5ZQ2Ergp3jXXXdZlw3Cht5DIYQQMHXqVLukEzPauWAU2vTp0yfUhcv5KF4wduUcyDioQYMGcRuzUmDAWLx///6hyShds0IIIYQQInqQqco4k4KQzIWnkfLff/+Z2AGsp1LknVfWrFlj1vjkifo1nWTqpGCRSogceffdd+lN2nPwwQfv2blzZ55erV9++WXP9ddfb4/Ddvzxx+959tln9/z3338RPc6uXbsy/Ny4cWN7vGHDhuVpv0T4rFq1yl7rQw89dM9vv/0Wuj3S9zDIgAED7DGbNWu2Z/v27RH97fPPPx/6PPHZ5HL+/Pl7kgVeI7bg6/PXX3/ZbX/++WeW9/33339Dt+3evdtuy/yZz+6+kXLRRRftOfzww/fsu+++exo1arQnrzz33HN7DjjggL1ur1Sp0p5evXqF/ThffvmlvYcLFizI876IxMF3PO8fl0IIEQ04Vx555JH23bJkyZKovqicmy+//HJ77Bo1auRrLBMpL7300p7999/fnptxLGODeLBx48bQ886cOTMuzymSk3Q4Z6fD/yCEECL9yctaTVZrLpzzjjjiiD3btm3bkx+efvppe6zatWuHbjvqqKPsts8++2xPos/bkZWuiwIdWEgFG7kCkYI1FG1EPA7dEljdfPbZZ1YNH6710m+//ebatGljFjK0TXkGDhzo1q9fv5d9jog+dKps3LjRTZ482cIdPeR8XH/99W7Dhg15sv6iqwKbA7o0sFwIF56XzgnwuQ3JFKDNa8QW/IzTccBtQQut4H2D3UQcb9x20EEHhXXfvEDVKBkwtA3SHeOJxO6JLAnex8xZFt9//739LlzozMHOg+NZCCGEmDNnjo35qPKqVq1aVF8QAgfJY+D8SR5DvKxAsSKlKwSbRCxOyWJjbBAPqLrr1auXa9myZcQdrEIIIYQQIryxXjDnLBqdwKNGjbJLuilYM8kPmUOzQcHZImVg8dH71P76668Re6nxYSdom3wDvPRZ2Bw2bFjEmQQsyhLCiy8xE0tP2bJl4xowWNBhghsM2CZDYfr06WYHlpfwZiygeF/POOMMyxEh8wRvZj534cCXNHZFPogIsQNBS4RHzZo13bnnnuseffRRs3vwQhPvMSevnDZCtgG7Nk682Ed4sHPjs1GlSpWw3woEUDIpTjzxRL19Qggh3JQpU+xVaN68ecSWoDmxc+dOy7aCnj172lgyHnBuxE4TK00KdSj6iLaFVWbIkWP8Hhx3kTMXLDYRQgghhBD5Z9y4cVaEQuZYXtbHsmPu3LluyJAhrnPnzi6/fPzxxxlECqyfvKiSDHZP6qQQOYJA4TsXLrzwQjd06NCIXjE+5KNHj7bJGAubVatWDctvjcoyFkq5DlS48dxvv/22Ve2L5IDOlvfee88CoQk/9vAFinDBF15usMi9cuXKkNgwaNAg+5yEU1HP54KAaU4CvqNizJgx+fyvCh7kuHB8c2zxnh1++OGuZMmSOW7+BIbXIh6L3bp1s04YgrRvuukmEyguuOCCDGHaBLIDQhILQwhUdOcgcJAvw+NecsklCXsdhBBCJAfkV9HpACzsR5N+/fpZYQQdfH379nXxgnESRQGcIydOnBjK54oVjJkZY3Fu9+NpxJ54dY0IIYQQQhS09bEjjjjCXXTRRVEtRDn44INdly5d8l1kwngwcyeFdyVJluDs/+H5lOidEMkJ4SmnnHKK++mnnyxQ94svvrBwldzwdkAsOuaFHTt2WNcFlW4vv/yyu/zyy/P0OCIxsADN5wZxi66XSD4HM2bMMLGCDhwWu8uUKRPW31ElSDcGFkN89rZs2WInB5E9F198sZ2YfHcUCzZnnXWWiQeEWEcCJ7bu3btb1SsqPELDiBEjMtg9sSgyfvx4d+ONN9r727hxY/fhhx+aTdRJJ51kQtOAAQMscFukHhyDCFYc9zr2hBDRCMxu0aKFdcsy/ozWwjpFEZUqVbJJGnZS8RDGmWoF9z/zz7ECO8fq1avbWIpigHDG8KJgkA7n7HT4H4QQQqQfX3/9tYkV0RjrvfHGG65GjRpRK2zBOYOxNfbjrLcipOBWU7hwYfs9BavR7F7Oy3k7tiU8IqXp0KGDCRTe6z+3yQ2L0+3atbPuC0QNUuPDtW758ssvQ7ZNhQoVcvfcc489HgekSC323Xdfs2yaN29eBoGJxejcbL6aNGnizj//fFtECAoULCbk9GXJlxzef0zGqb6kapCqfVULZs/ixYsz/Izntz/eI4XcDDpa2LIjqIdTCUDLohBCCJGT1RNdFNE6lzPxuvXWW21MgYVUPASK+fPnW34aYxLGxhCvsUnlypXtXMtlMlTGCSGEEEKkG1u3brW1Kl9siUV6NHjvvfdcnTp1rLCU7thoWDH5LgqKU32nh8+jQLiIlUARCYnfA5G0k0Na0aFIkSKuYcOGuaqFWPQgULBITSvScccdl+vzkD2ArRNV8J9++mnodqqyESpQ2kRqwZcnIgVVe/5LjgUBBCeq5cknyQkWy4PixjvvvOPOOecct27duhz/jlBN7ys9a9asDEHQQgghhEgNEMxnz54ddaunsWPHuhUrVlhhA7aUsWbJkiXWTcolVpaxhmKQ6667zjKegl2TEiiEEEIIIWLTHVC/fn1bC6XzN1r8+++/VjROoefZZ58dtayIZA/NBokUYi84uPCo97Rq1SrHVwlVj9b5Tz75xNRDJmP4/YbTknTAAQfY/agqI1RbpA/BSkE6Iz777DO3fPnyiELT+VImHGjVqlXWYbFgwYIc7x/8rPbo0cMm7EIIIYRIHeg6IGyQKi+2aEBruc+fIDw63E7fvMJ4hwIfJn4NGjSw54w15EMRit2yZcsM3YtCCCGEECL6bN++3WyTcIGhWDtaPPXUU7aGRtF2NAtdWOfFgaRNmzYZbP5BIoVISvCTpwWeg8xXwV955ZXZ3n/ChAmuZs2a5mNGtTuTMgJ4c1IEqWTzBwIMHjzYuihowRfpyXnnnec+//xzC9P2dgfeY4+FiJyEDoIzCWFGcLj00ktztBTyn1U+uyxyRCKICCGEECI58iii3UVBZhV5WaVLl7bKtFjCeAdhgrF0rVq13PTp060oJ9YQyk1Q9hNPPCG7SyGEEEKIGFOsWDG3bNkyszovXrx4VB5z27ZtoYxQLEOjmdnJWLhp06buggsu2KuTIlk6b9VJITJAaC5htocffrhZ9PAhZoE5py4KFpn5oNMJgTVUTjRr1sxUOw42Dwczdk8i/b/Ag7ZhBGPXrVvXPl9M5LODL2XEDHImELluv/12W2DIStxg8YGNzy4LEkIIIYRIHXbs2GHnfKBoJlowzqSQhkmk9+CNBd9++61ZW/74448mGLz00kuW2xQrtmzZErp+2mmn2f8YbOEXQgghhBDR5bvvvsuwXlW+fPmoPfYdd9xhBboUgZP5G2vUSSGSFirPhw0bZte9sta4ceMcq7Goasf7/4UXXnCHHnpors+BVy5ewKTdi4INE2u6Ks4880x32GGH5XhfJvh07dDqxudx5MiRFniZlbjhuyn4PANWUSwSCCGEECK5ef31160goVy5cq5kyZJRfWza8HMrpskv2E5u2rTJRBFyNSj6iQXYOZHdxvNQ9OGJVyi3EEIIIURBhFyzUqVKhYpqosnSpUvd+PHjQ2ut0bSQwp7/wQcfdG+++WaG29VJIZIWfzAQWk03hRcpMgdkd+rUySaQQPs6HrhZpcAzgcLvbPHixaHbeDyCk2XtJAjHJqdi6NChoRcD0QGbh6y8lJl49+rVy0KxETUKFSqUZUua/8yyOEDrXeXKld21115rzyVEQYFBDVW1CHzkubz//vs53v/xxx+3wRZelCzide3a1f35559x218hhICXX37ZLhs1ahSVF4QxKHkQQZvRWDJq1CgLT5w7d6477rjjYvY8jMPfe+899/vvv7v58+fH7HmEEEIIIcT/P/7CjpzA7Nzm13mhcOHCNnfHfQbL82jCeBEbqeD6WzIGZ+eebCwKDDNmzHCjR492ZcqUMV9bqtxr1KiRIVC7du3abvPmzbZA3L9//1wXyTp27OhOP/10q2ZnsYyFZv5WCDj22GMzvBB8pvjsYccwbty4bMUNJuZFixbNUhzDPurkk082ywXsFshI4bOX+bmESFeef/55161bN1ssY5CDAEHnET7pDHwyM3nyZHfnnXfaMcfi2rp169yNN95o39ePPfZYQv4HIUTBzEWbM2dO6FwfjYlk586dbQyK6PrAAw+4WIPY+9Zbb8W8o2G//fazLmYKMqJpiyVEvGDMf++99+51/KioSAghRLJCZwNdv8y3sSOPNqVKlTJLfcbE0QZb9BYtWriLLroow+2yexJJCxOe2267zZRBP0H0vr1r1qwxwQKBgg/3LbfcEpa1EwJFNIMPRXqDnx+CwtVXX53j/cqWLRuyF6ProkePHiG7A4QL301BRSZWT3ymJVKIggLCAt/RN910kx0riBV0HWUn/NFxhJjXsmVL677AT50BTE7VIQycqCAJbkIIkR+WLFnidu7caWOBSpUq5fvFZDzQp08fy2igSzgWMAbp3bu3W7BgQei2WAkUjMEnTZoU+hn7VAkUIpXB8nXr1q2hDYFPCCGESDZ++umn0HXWq2644Yaojvd8N4MXQmIRYt2gQQMrTszsaiO7J5FUUDF79913h2w9mGx5L3/v7b9y5UpT2wiHIRCGSSSV6pkhyPi1114L/XzkkUea7xlt9rEMDRTpFdyOHdill16aoYMnJ9sZ2tXovqhVq5apzsHPLiIFX/DBjot4WT4IkQh2795tgl2dOnVCt/H55+d33nkny7+he4K/8aLEhg0brEKEgUx24GfJd7zfYu3zLoQoOFZPFMlk1SkZKUweKXpgHHvMMce4WMAY5KGHHnKXXXaZiQixYtu2bdb2z6SYzmch0qVA7oQTTghtKigSQgiRbGCFX6JECTdmzJiYPD6W52effbYV3u4KiBXxItnsnvI/AxApC4IEKtr9999vORPw8ccfW+4EH1CqaVnUYvF3+/btVtVGOExWdiFU1VarVs01bNjQWs89Bx54YFz/J5H6MEnx/PLLL65u3bpmWYN4kRVkotDlQyU3n1k+o/yMXRmTeqrEgc8wLXkIbj5TRYh0A4szPt9UIgfhZ4TmrKCDAjGZ73C65xiEXXzxxeZZmR1UDnN8+i2Wi3NCiIIxJvWdvNHIowhmW8Wqs4GiHqz1YODAgTEVa1m8pQCD7jhsLYVIByhEOumkk1zx4sUtP47Q+exQB6cQQohE8OKLL1onxXPPPReTdSRsl9evX2/P8/fff7tY8Oqrr7pPP/00y9/J7kkkDUzayIwoWbKkLTgB1jiAf/l///1nE0UWoKpXr26t7NnlSSBGsJB81FFHxezAEgVz8sKXJvYP2VVBHn744SaMIVBwX6q/CQVCMAt+pqkwp0pzxYoV7oknnojr/yFEMkOwLF7tI0aMsIpjqnTpihswYEC2f8N3PlYjwU0IIfIKuREsUFIkQ/5ZftixY4fZyIwcOdL9888/MXlT6DxjURUxpF27djGzkwqO2ckXovDi1FNPjelzCREPmDdOmDDBcmg4VilGYr7JmD8r1MEphBAiEVCIQufsrFmzzIopmlBgS5YvjB07NiZzasbC2EAzNl66dOlev5fdk0gqmjRpYgFlxYoVs599FwSt9ocddph539LCzu2ZDxgseII2PIMGDbJJZjQq4IQAqgX5TCE0BD9/CGhBsHRCgOCzR6UVmRS+48d/pk888UQ3ePBgu963b99sOzOESGWotmXw9P3332e4nZ+DXUpBsPwjQ6hNmzauXLlyVq2LaMGCQOZjTQghYmn1RPdkfn14H374Ybd27Vpb+IyGbVRmEFMYJzOpq1+/vhs2bFhMujWYtLZv3z7UFcJ3O/Z6QqQDHDvNmjUziwuK47CZ/Pnnny0QPivUwSmEECJeUPDix1+M8XCeifYYjOdAPAAKXoJ2zdEEYQK3BYp+L7jggqTvpNgv0TsgEgPdEf4g82ogH9zly5fbdZ8JwACS65knX4SbIXAQjD1x4kT7PR/qguxLzpcYlkPBALgtW7a4H374wRbOUTCDG/fHWgU/Vr8dcMABtrjOgjobLdBc8l7Fyq4g2fE+tR4qrhAZqPYOVhNS2T1t2jRbbH3++edt0YDFCRYqsDArWrSoWUPRpkflOCcCHqugvq4iPeE7pGLFim7hwoWhAHmEBn6+/fbbs/wbBiaZF/L8eSFomSKEELEWKfJb6MLYy3dLUvkWbZHi999/d1dccYWN7chpY7zB+C3aMHZhQsz3Nx2iiCJCpDN0459xxhlmeZEVjPNlIyyEECLWMJbEPpy1ULpYY1Hwwhz75ptvtsIXrJYpsIkV06dPt0vGr6w/JnsnhUSKAghtSizW0rJEq7pn3rx5drAQch1stc1qEZfuCwQNLlkAPu2001xBAC867FA++ugj+0LJLEhkDrrBiggveF7TzIIEZBYu6Eyh4hmxIwh/HxQt2BCEmCCzIBmrQMhkg9eISTs2UJwwHnvssQy/5zVGhKALiA4gArUJ00aMIH+Fz/JTTz1l1eJ83rlvq1atEvb/CBEL8EgnXJVOpMqVK9uxwsKar9Qgm+Xkk0+2Tglg8Ytj6ZxzzjH7BRYI6K7g9mi3tAohRGa+/fZbs2LkHO2tGvMKNnWMxQiZzu9jZQXjtwoVKtiYD2GFcV4sKFOmjHWC8Dyx+D+ESDYIDv3yyy+t2EgIIYRIFEuWLLHzETkO/fr1M6eCaENBLeuyFBjSQRir8eR///1nxb3QtGnTlAjOlkhRADsoOnToYCHCa9asyfA7glqAhXICU73ilhU1a9a0DgoWwNJVoKD96oMPPsiweYugQw891CrzEQv4/5kMBwUEv7FYnheobA6KH5mv++4ABvTAviBWsJ177rl2edxxx7l0g8UBslGojvQLrJlhUfXpp5+264QDBUUKoPvnnnvusc94ly5drMU8HV8rUXBp3ry5hcYzqCIsmwU1jgEfpo3AGqwIoTOJxUEuWSzkeECg4DgTQohYwyQQEEn991ReYEI5ZswYu84YIRadklRyjxs3zsZjiL3RhEw3Om/92LFt27ZRfXwhkokePXrYWIM5DMcTY3PG8C1atEj0rgkhhCjAXHPNNTaGZK0zFgIF4J7CeA+LZdbvYsU777xj64c4s2SX+ZZsdk//2yMvhwJXYTtkyBALy8br338Q+eBSmU9aPe1GLMgHPddQ4KhKv/HGG9NyQZeJIWGEbF6Q2Lhxo/0OVdMv/PtL2pFj0fYVCbwnTMiDIgpdHghRwPvphQtEFMLoUGrTEQQ12tcyWy7wmlBNzqTn888/t8+2f7993gVtdoQUCSHyDt1fnDP4/lGIthAiEuh8xI+eiRq+83mFzkg6JCk+QJiNJowXCByMVXcZVWz489P1xmuRLBNFkZ4kwzmbRaA333zTCueYW1arVs2KI/xYPRX+ByGEEOkB1vfYHcXT8uibb76xgpdY2o93+3/rv4yRn3nmmSzvQ8fua6+9ZmtirI3FinDP2xIpChAsaNM+zgLt3LlzXb169ex2rJ1QCbFu4gChW4CqliBUnGMPhTcbCfTpYAHCwcEklnZ9H9bGweKFCL8h6CRakAgXNEfeZ8SKoHjh/zfyRfB7xl+vUKFCLh3ADoHuIBYlXnnllQw+ewg5WGXxmeczzevi/29U5apVq9pn/uOPPzYLKCFE3tBigRAiL9ARSpUaHQSrV682ISAvfPLJJ2aByTiIcU80q9IYIzBeqFWrlps6dap100Yb/neeA1vLRYsWWVeJELEiHc7Z6fA/CCGESA6BgjEe3Q2sDcZKqGCMyjmLDKZ4sGfPHnN9wUVh5syZobzKzPC/M/acPHlyTLsZwz1vp8bKq4gK2NuwWMtirhcomBReeeWVJlD4D2hmgcK3nFPlgrKWygIFAgyBinXq1LFJMVU8WAKRc0DGBpkTHKCDBw+2AzQZOiYigQV3RJWrr77aDRo0yKyRsK0iQ4O26g0bNpiKyhfwxRdfbD705DukMnwuqThEQMscBMR7572cscfium9no7vkqquusi/vXr16JWTfhRBCiILM/PnzbSxarFgxV7Zs2XxlUXA+57weTYGCMRTjZMYO7GesgnvPOusss72iiEgChRBCCCFEfGCNjHVC1gWxSo4VI0aMsKJxir7jwYoVK0ygoLiGNeDsSLbg7NRZfRX54r333rNAFhaxg8nx+H8uXLgwJDzQau4JOoExceTgJYw1leB/ePfdd02goVK+ePHirmfPnmYLRGcIC9cffvihu/fee83+J5UEiXDhPae6kCBchBg85/mCxAOvT58+JsTwZclC/VtvvWXdB6kECxLr1q3L1iKC3wOfcbonEHCoVPSe1XwW6KhB0BFCCCFE/Jg9e7Zd4k2f13Z3JpXTpk0LjWujBeMhCjuYuDJ+fP755/eylcwP33//vU0ePRRbYM0phBBCCCHiA64yFIkgHjDeiwWLFy92nTt3NhGE9cd4MO3/jY2xVc3JRjTZgrPTb0VWZLlQTxU9kClx9tlnh37HwjQTIi9IeIWNhWwq7X2HBeQ1BDoR/PDDD+6RRx5xpUqVsor5p556yqybOFBp52JRGougU0891RU0CPimM4aKPV6Ll156yV144YUWhM5ngU4MPGEJsUsVTjnllNDiBgIE9mQ+5Lxu3br2O/JWsH7Cbw/RCvhf27dvb9cRr1JNoBFCCCFSFcae8+bNs+vYUeYVxiw8VpMmTawjIVrQnYGIwthhxowZ7uijj47aYzPOvuiii1zNmjXtuhBCCCGEiA9k8m7evDn0M5abpUuXjslzsS5F4SzrUddee63lRMSaPXv2WG5rsGg3O5ItOFsiRQFg1qxZViHPh44JVxD8+bE6YnGWgxLPMmCRlzAz7J1SJVud/4HJLt0gLFrTOYAqiiJKtdqECRNc06ZNLQhb/B+0fhE4/fTTT9sX9dKlS23SzIQfAQffOhb1+UJNFfr162ddMlh67d692+yg6JKBm266yS4RsPyXNvfHE+/44483uy8hhBBCxB7sJuloPeCAA6yLIC98/vnnlhMBjPuiBVlldNnC6NGjrSM1mjC2xoKVwoo///wzqo8thBBCCCGyD6xmzQur+1gX5pK9xpra9u3brWh6zJgxMQ3KDjrpkFVLoQ15tDkhuycRV5gA3XHHHXYdxY70eD6sLNgH/YAh6FNGGDEBy1OmTInLQZQfCP5+8sknzbKI/2Ht2rW2CM0XzrPPPmtVaqmcoxEvsLqqVq2aGz9+vAkWw4YNC+U4nH766ZZfQQB3stOxY0dXoUIF218WPoIVmogQdEwgXnnPZ7JJCKyku+aYY45J6L4LIYQQBQXfRcHYI69h1I8++qgVqTBm5dwfDRAN2rRpY0IC3ZbXX3+9izYU01BEs2TJEleiRImoP74QQgghhNgbxncUibCRNxYrGJ/iZLNq1SoriMXBJF7dCg//P4t/Mnhzc8RJtk6K6BmriqQEmyP8+qkmx9rp999/twDATz75xMIAES7IpADsnTws3NKBkcyQkcFC+rhx4+z/okuC67RqJbuwkuwceeSRNjFv166dBe4QNn7nnXda1wFftAgBWGklIyeeeKLtc1CYoquCLiI+6yjnnJiC4ZdFihRJ0N4KIYQQBVukqFevXp4fg6IUOj9zqxKLBKrOXnnlFZvgDRkyJGqPy3gcm03GqVC0aNGoPbYQQgghhMgd1n4oFKFIN5b276zF4t6x//77m20oBSrx4sEHHzSbUm/7n0qdFP/bkypePiJPHQZUZ23bts0NHz7cFp0JAJw8ebIrXLiwW7lypXVaFCtWzBZ0Wdylpb1BgwZJL07Q0k+XBwce+QrkS2ihObbQXTFq1CjbyPxAFMIWKlnFCg9iXIsWLcy+jOrIjz/+OEMuy9tvv225JZyk+L/4Qu/bt6+6KoSIgF9//dXEzV9++cXs04QQIiewY6R7kTZ4xqPnnHNOWr9gjF3pGOH/XbRokbX8C5Eo0uGcnQ7/gxBCiPjAGhBjMLJY4wWF1NjnU4zTunVrl4zs2bPH1sGAUG86PhJ93lYmRRrz6aef2iVWPbfccotVwyNQIEi8+OKLZv3kuyjonKDCnEXnZA0PJleCCn6yM5jgYfFE2A2LyhIoYg8iFv7MWECRYfH++++7M88800SiZA59pAOEak3fWeE/88D/w6LBAw88EAoVevzxx+1YEUIIIURsePfdd22ySKdvXvIeqPqKdp3Vq6++6j788EMXC5j0UdRB90Qsq/aEEEIIIcT/D3ZLZFBQjI2jTLzAypTctHgKFHsiHBsHc9GSxe5JIkUag+f+xo0bzfvsnXfecd27dw/59/qAQr9gy4HTu3dvs3jySlqygOJ2zz33WFfIM888YwvL69evt+6JZGlJKkhgg8DnBdsCrBBoYStZsqSJAckYPI0VxGWXXeZuvfXWvUQKL25hYzV79mwTweiqiKfCLoQQQhRUqyfsGPMy7uzatau74IILbHwbDchra9mypT0mAkosJqqIIBTZIMwIIYQQQojYw1oVThpssS4UodiF9UovFsTbhr5r167mIvL555+HdX9v9ZRMIoXsngoALByXK1fOqt2ZgBEmzcGC1RO+aFjcLF682NTFZIIQGwK86e7AuqpTp062EF6oUKFE75oIQLvW4MGDQ0HViF0s9ifLl5wHOwnsFQgOwgIKb0AgdwObM7qJUNapdlSmiRCRIdsFIUQkVK5c2S1fvtyNHz/esq4ibZ+nG5jxB1aO1atXz/d4k5wIxgl0VyIk7Ldf/mP7mCDymEwWhUgm0uGcnQ7/gxBCiPidMxjbxbLImQJxCl6xTaJQNpw8iGjyyy+/mPsJwgOFubVq1cr1b3DToXCX14b14Vgiu6cCDCn1r7/+esi2iesIFNg+Ed7CAiwfXA4gBAoOVCrHkoV///3XTZo0ydri6f644oorrHOCqn0JFMkHEwRCqX0VYp8+fUytHjNmjH0Wk4UKFSrY5wd7CSo3Eb5g6NChpqoTZolgIYQQQojYsX37drdixQq7Xrdu3Tx1JSAAUMiSX4ECevbsaWICGRnknUVDoNiyZYurWbOmu/baa93MmTPz/XhCCCGEECI8yFHFotyDmB1LgYKxbf369U2goEAcu/1ErMstW7bM3XXXXTYGDYdkC82G5PL1EVFh2rRpZm+DckabERMk0uvpoGBiB88//7z74IMPQtVsBx54YFK8+uQcnHvuue6GG26wy9WrV9uXCx0fIrk54YQTLKB97dq1ZidGVgVf0EuXLnXJAHYS/suaystu3brZdT772IjRWYHd2cSJE63T4r777rMMFyGEEEJED8akjE/JtaIjIi/Q9RiNwgIEhGHDhtl1zv/RGm8yJmrcuLE766yzrDtDCCGEEELEHroI2rdvb3bfscoay9zBcOmll7rPPvvMuhKwEUcwSFRh7sCBA8N2BvEiRTK5oEikSFN7J5TC2rVrhz6cLM4iRngQAcqUKWPXCZBJNLTaYxNEdweLxXgMz5gxI7SPInWgi4JKREQwOhewEevSpYv7448/Er1r1kEBRx11lAWue+ikQJQAbMVGjBhhOShkVSRTN4gQQgiRLnkU9erVi/hvKSKIFrS4+zBDWvIp8IlmYQSFGxRqKINCCCGEECI+UKzN+K5v3762aB9LcOlgPZUOYezD58yZk+cCnPzwUx6zYf0anUQKEVNQDb/++ms7YDZs2JDlfVh43bx5s11HzEgkeBLTNUGgN7ZBBBYmk/2UyBu8p3QskFdB5kP58uXdW2+9ldCX03/WOTYyfxFj98ACBfuKqILtAxZWdCYJIYQQIv/QQZFXkWL37t1WVMDk049h88OTTz5pk7rzzjvPqs7yC9aqWJMGwxITVUknhBBCCFFQ+PPPP8023o+/sB4nwDqWWaOM95o0aWIWSxTBzp8/35UtW9bFmy1btrjixYtbLmwwCDscZPck4gbt60yU6J7w3vssGPPBZZJHlTsLtUcffXTM1cWcuifwS6N7ggVj/ID5ORpewCI52Hfffc1W6aOPPrJKQmygunbtmrCuCro8aMFDpONkAoTGs2DCvr766qsWcEm4dufOne33Dz30UGjBQQghhBB5Z926dW7Tpk3ugAMOsDFBJEydOtWEAGwlCxcunO+34YEHHrBgQ6wd2Z/8To4phLjjjjsydGoKIYQQQggX0zwIHDNYdwoWisQanuPmm2+2NVU6KBK1rtqlSxf3888/m3V+pONZ2T2JmMKkbcmSJe6rr74KLbD26tXLHX744e733393V199tVWNIV4sWrTIfn/xxRdbS3q8oR2qYsWKVmWPwom9E769Ij0hBB3LAxYDCDHiC/ztt9+O+35wIvG5FBwD+GJzQuPYIJw9CGIFAUIff/yxqeJCCCGEyB++i4LA60hC+ph0Mn4FxrjRyFJj/IvN0+mnn57vxzrooINsknjaaadZFpwQQgghhIg9rCuxkS2GlWc8ueaaa8y95vzzz3eJYPbs2e7FF1+0glscQbiMBNk9iZhCxTeiA4uwdE9ceOGFrnv37vY7ArMJoOb3KIxepAg39T2a3RN9+vQxOycmmHR08DM5FCK94QuTzyNdFfj1sUDBZzHeXRVBkYIwSz6Ll19+eQbvQLos+B3ZLsAXvhBCCCHyR16tnpiErVmzxjod8xOYTdEOmVOxGHuwX+xj0aJFo/7YQgghhBBibxo1amTrNQgVuGbEEjpnsdcPiiFYPSWCP/74w3Xo0CFUwJOXTg7ZPYmYQZDgCy+8YNfJo0AAmDBhQgYlrWHDhlY5jp2Sr2JHtIgXn3/+ufn+Uk3fv39/y54oV65c3J5fJFdXBRWRBFSfc845btWqVXF7fv+ZJwsF0YzWvEmTJmXIqGCBgS/97777zn6eNWuWef0JIYQQIm/8/fffoSKZSEUK30Vx66235msySLHEfffdZxPa/MI4AcGDCasnku4QIYQQQggROQsWLAjZ2kPbtm3dmWeeGdOXknEf40ecQVhb/e+//1wiGTBggNu4caMJM7jT5AV1UoiYwSIrkyTfkXDnnXea/z6hv/iTBe1uWJzlw0g1e6wP5GAFHC1QhNlg9dS3b191TxRgEM+wWKCrgi6fqlWruhkzZsTlubFiYOOziFhHVWbQs5B9oquChQfgmOK+Y8eOjcv+CSGEEOkI4z86GY455hgLwA4Xxq3YmVJkg6VSXiF3yndG9u7d2+WXVq1ameDBpRBCCCGEiD2EYlPsgmU3WaPxAEGkQYMGZgPO+tXjjz+eENt8z+rVq806H4YNG2ZrWnlBnRQiJuDTi5rnq9RYgCW4j5yH5s2bW3h2UKiIZx4F+/boo4+a0oi9D90TkUxMRXpTunRp99Zbb7nLLrvMNW3a1Cb78VCkg5ZPwc8qod50dqDMd+rUyZUpU8aOKX8yRKwQQgghROQsXrw4T+PPxx57zC5btmzpTjnllDy99D/++KNr06aNXcdqkpDr/NKxY0cL8M6PcCKEEEIIIcIHWyOywOgg8EHZseSXX35xl1xyiRXMkPc7d+7cuDrSZIb1MixGEWjo7LjiiitcXlFwtogJb775plkpoejRoTB06FCzrqE6nAO3UqVKGVrj45VHQWfHjTfeaBXziCYvvfRSyONfiKA1wtSpU939999v3QsIa1Raxluk4Hjxlg3vv/++dVA88cQTod9v3rzZOoKEEEIIkT+RIly+/fZb6wqG/IgBt912m/v+++9d2bJl3cCBA120xhJfffWVZVgJIYQQQojYw/om7hd0x8Y62xbL7xo1algB+NFHH+0WLlxo2b+J5NFHHzVHENZ/6aLID7J7EjHBd1HQbo4vmffZJRD4448/diNHjgzdFw9+QoFjLVJs3brVJqHkZEyePNk98MADESfNpxvkcLAQntWWSCU2GeA1IEB95syZJgTwxU+2Sqzwn32C21HGg1/4CBd33XWX/VynTh3r8PAEjyUhhBBChAddiXROwkUXXRT2y0Z2FZViTBDpdMwLFEIwHmUcij0q1Xd5hcmgz6sCZVAIIYQQQsSODRs2WAdscH3ojDPOyGDZHSsIpiY/9fjjj7d1IgSSRBeo9/5/lqWsXZ166qn5ejzZPYmo88MPP4QqzAgThKBdzpFHHpmhe+G9996zavETTjjBrHZiAd7BBGRTec5B1KJFi5g8T6pBR8ktt9ziqlSpYiIOGwGO5ILEK48h2WncuLGp1AgHnAD8gka0wS6CzBaOleBzsNiQWTDiy9+Har/++usxFU+EEEKIdM2joFqLPIpw89CYOPkMic6dO+fpeRE46DIGLitWrOjyyvDhw80KEvvSWHd8CiGEEEIIZ9ZGb7zxRmi9M55QpEr+BYXe5cuXT+jb8d1335nrCBbkFKgTFp5f1Ekhog4++UzAWEQlLOWbb75x5cqVc3PmzMny/t7ehiq2WCiPdE1Q7YbNFBPSRCuNyQTvD4vgBxxwgIlEbNxGEGShQoUSvXtJA59fhC4sGWrVquWefvrpuFk+Bfnpp5/cTTfdZNWfXr0n72Xjxo0x2R8hhBAi3a2eGH+Gm0fBmHL79u2uaNGiefbbZYyFhzCZU3Rs5gf8iBkHUHBCi70QQgghhIgtY8eOtYxbLuPBpk2bQtdPPPFEy6AoXry4SzTt27c3oYJiH9x0orGeq04KEXWefPJJu/QL39g9ffrpp+btn1UAsZ8kRtvqicAanvPaa691zZo1s+fhgBYiLxx77LFu/vz5FnLJYgAdJ9EORfIdE/6YyMztt9/uJkyYYLkqtPexWPLll19GZFMhhBBCiMjzKDjn+1wozsf5sQw9+eSTLXw7v77FdGBio9qrV698PY4QQgghhMgaikTJCPVQAP3KK6/YeC7W0MHLeO/ZZ59Nurdn8ODBVhA+ffr0qBXLKDhbRBUOXO+Le++991rS/OOPP+66detmB1XmSjVsnrDSgWhmIDCRxMrovvvus+yJiRMn5svvVwhgMQEvavyfWVxAOc5KeMsrXmz48MMP3c8//7zX7x966CHrBMLuCZW6cOHCbv369SacZHV/IYQQQuScRxHu+JPzLoUCrVu3ti1SsBzFojG/EEyIMOEJWqgKIYQQQojosXPnTutcZTE+KFTEGiyUWEfFWopxa3ZuG4mkRIkSVvRTqlSpqD1mMto97ZfoHRB5x4f7YiFEoIv/cLGomhXkURCcTccFQTPRgEXjjh07hhaTqXYT4ROPsJ9Uh88UtlgsUiC00eYXjRB2lPjTTz/dffHFF7Z4QgthEBR7jhn/HiHG4QH40UcfWecSn3khhBBCRD+PAgjKzovlI+drfItnz57tHnzwQXfnnXfm6S1au3atjQ0Y6zIpzGtwtxBCCCGEyB06BCi+xq5z27ZtcXnJfvvtN9eyZUvr1gDcafJrERotPvjgA8tEbdKkSUzWD2X3JKLGr7/+GlL3rrvuOvvw5oa/P1Vs0fhwozYyCSRMhmwMCRSRwxcw3TDr1q3L9/uRzmC5RHcQGyFBqNvRwFd0ZqeUB48TjjnszAAPQELrhRBCCBH9PIr88Mwzz5hAceCBB7rGjRvn+XGwLT377LNNWIlm1ZoQQgghhPj/8dbejBMZx9FFcdlll8X8JaLztnr16iZQ4Abz/PPPu759+yZFMfHmzZtd/fr13VVXXeVefvnlmDxHMnZSxH6mIGLC8OHDrbKLqrQqVarYhvqXk29/NPMoeG5sb8aNG2f2TlwXkUMrG5x77rl6+XKhRYsW7oUXXjAPPj7rBMbnF38sZJdL4eFkRfcRNg90cfgMFiGEEEJEN4+id+/e1j2ZlwKOrVu3us6dO9v1/v37u9KlS+f57TnqqKMsLPG1116zrmUhhBBCCBE9WNPBOp4xm4c1l7Jly8b8Zd6xY4fZe+OUgbU349Wrr77aJQsnnXSSu/LKK62TN5p2/UHUSSGixptvvmmXQ4cOtUp8Fk6xrslO8cMm591337Xr+f2As0BLPsCkSZOssp1ODhEeZIYEF8SpzuP9o8VM5A5tbtOmTXMvvfSSu+GGG6ybJ5a5FEEVm84JPu8+yBOFP14tiEIIIURByKP4/fffzU6RIpgNGzZEPD697bbb7HxesWJFm/TmZbIW7K6kqu7oo4+O+HGEEEIIIUTOLFiwwOzqsVj67LPP4vpyFSpUyN10002uQoUK1rlx/vnnu2Ri3333NQcP1g9jlYmm4GwRNQgDnDdvnrvmmmvcHXfcYepfTp67CBTkUdC6jpiRV5gAdunSxT311FM2gaS6XYh40qhRIzdlyhQ3depU17Zt23yFaaNO0yHB53rp0qXZ3o+qTGzNOIki0LH4wULKww8/nOfnFkIIIdKdSPMo6FhgjMtYs169ehE9F0UMM2fONB9jxqhcRgLjCQpv6tSp48aPHx/R3wohhBBCiMi49NJLbR3zxRdfzFf3a7hQvB207b7//vvd22+/7YoWLeqSgV27drlBgwaF7M0pQsciPlbI7klEBQQHKsr5QPkA4bPOOitHH7Fo5FGwkIsgQiX56NGjrZJdiESALx+dPCwikIWSk81ZfnMpYP/993ft2rWzwGyOn/vuuy9ku0YnjBBCCCHyn0fBOfbCCy90Q4YMiSi/gtwouijgrrvusiyJSEGkOPLII03cKF68eMR/L4QQQgghsod1G9wp/OI4PPjgg65p06Yxf9kIoK5Ro4a7/PLLrYAbWE9NFkvPnTt3ugYNGphoE6+1Vtk9iXyzcuVKy4DA7qZfv35uy5YtEU8S88ojjzxiGxZTVLALkUgIsX766aetw4FjIb8iRW65FMETK3ZrCBao/VwKIYQQIv95FHmFNni6fKnI69OnT54eA3GCccUHH3yQr/GyEEIIIYTYm27dulnXaocOHfJVaBopr776qmU7LF++3K1fvz5PuWexBKtSOogXL15snRO8PvFAnRQi36EyBKegPJJAv2rVKvNN2717d67qmM+jyGtoNgc1ih5J9506dcrTYwgRbW6++WZrh6NNj3DrvOAXTrBM++mnn3K9f6tWrew5Oe4QCQnWFEIIIUT2eRThLPrTCUF35MaNG/P0UjZu3NjNnj074uKBL774IjRRppOD7mQhhBBCCBFdrrjiCnfggQfmqeM1r2NR3GDonmCtp3Llylb4Xa5cOZcskHPKOi1rtoUKFXJvvPGGq1atWsyfl7GvOilEvpg1a5bbtGmThfgRLEM7fMeOHXOdjPFhZ0EV//285FF8+umnrmXLlvaFcu+99+bjPxAi+vTs2dOEA0KPqH6MFHJaSpUqlWsuhQeBkGOQ4+7777+30G0hhBBCZJ1HwYQrt4X/H3/80boYsFFkshYuTK6C3sKRsmzZMpsokz3177//5vlxhBBCCCFE1mO8YIHohg0brKMirzb04fLtt9+6WrVqhXJEKbZmvSdZ8ieAolcKeSiYLVy4sHVSnHfeeXETcHy+a07RAfEmfLNXkXDIgoBbb73VPsgcYBzcuZGfPIodO3ZYUPFpp53mnnnmmYj8gYWIB3ymx4wZY2o4VZR5yYgIJ5fC07p1a2sRrF+/vv386KOP2jEZz3ZFIYQQIp3yKAi6pqCGiVmlSpXCfg6KdsqUKWOh2XmBQgNCFL/66iudx4UQQgghogSFJG3atHEVKlTIUIBC8XQ84Lnp6MU+iWBubOuTyap79erVrmrVqm7t2rXulFNOsfXdcnHs8AjmgkikEBGDsoYPPpM8BIPff//dFmfxz42VHzD2UldffbX5o9HFcdhhh+mdE0kJnQ0zZ860KkhC5X0QUixyKQjRPvnkky3UCLCZwgfbW1oIIYQQwoW6EwkpzAnO3aNGjbLr7du3D/ulw/aUrDQKavI66cRias6cOW7q1KlhjamFEEIIIUTuML5jjYRugQULFsT9JRs2bJgVyuC2cdVVV7lkAntSBArCvEuWLGlj5jPOOCOu++CtnlhjTibxRmXxKdZFQbX2LbfcYpXc4apj7733Xp5ECro0lixZYtVpxYoVy8NeCxE/UOQJlMdjsF27dhFVRHqv7I8//tgWO8LBd1L4Fjl/jAohhBAFHc6NWCl5m8ScmDt3rnUykPF0zTXXhD3xZTxMQU3Tpk2t6zdc6Njg7zyXXHKJO/TQQ8P+eyGEEEIIkTMUOb/wwgtu3rx5rkWLFjF/uT755BP35JNPhn5m8Z8i1LxY3sdaPGnYsKHbuXOnrUNhz08herz55ptv7JIxcKyttyJBIkUKQGvU5MmT7bpfeCXkLxzeeecdm4xR+c1BGi7Y53DwsEUqbgiRKAhCwtN6woQJ7vHHH48ol6J06dJ2fNGxFA6cVIJf5nRykBkjhBBCFHTWrFnjfvnlF5v4lC9fPsf7jhw50i5vvPFGd8ghh4T1+CNGjHDvv/++O+KIIyIqEvDFPgQo/vrrr2H/nRBCCCGEyHl95Prrr3fTp08P3UbuV506dWJeGPPYY4+ZXSi5E+FYeCcCMiBuv/1220f2+eabbzYB55hjjknI/gwePNguL730UpdMSKRIATjI+EAfd9xx9jN+ZVjahEPQ6ilcdYxWI9rfabmnIl2IVIIQ7V69erkePXpYdWYscikAD2zvp3jsscdaVSeLJkIIIURB5+2337bLCy64IEcbpY0bN7rXXnvNroc75iQIsU+fPnZ90KBBEXkbf/755+ZLPH/+fOu8FEIIIYQQ+QfrTnJsyev87bff4vKSMo4kHLt79+5m+Y0l95lnnumStfgce1HWZQnzprg2UTZLn376qY2H4e6773bJhESKFIBcCOyd8MKH4cOHhx1gHQwtDAcqwWmbv/DCCy1YRohU5IEHHjBFuHnz5mF3HXmRAouzcODkMnr0aLtOtxLQwRG0kBBCCCEKIj6nqVq1ajnej0wnuhuositVqlTYdqRU6yGAtG3bNqL9omuSjsmxY8eqU1gIIYQQIkp06dLF1hKx4I51ni1jx3HjxlmnBus3dO4ypnzllVdc4cKFXTJCUc2UKVPcjBkzXM+ePRNqsXT//ffba0jxezzDusPhf3siMW4XCQOFkFwIqtF++umnsA568ijw96ULg4Xa3Oye+CjUrVvXrVu3zqrLqA4XIlXBZoKWP9rnWCzZd999c7z/d999Z7ZPnCx+/PFHV6hQoVyfA3GC+xFkf/TRR9uxSQAn/tZCFCSwTTnyyCPtuMN+RQhRsMFblzBA2tgZW2YF49NTTz3Vzr9Uc4UTakjXIq3yiAzYPVWoUCEGey9EepMO5+x0+B+EECKVYfyGUNC7d++4L7hjK0XXBlBgPXHiRFeiRAmXTDBmRQzA9rRx48YuWfjss89c2bJlbf33ww8/jNtYOtzztjopkhwS16kW80GC5557btiqJHkUTADJowjngKUqfOHChTbxk0AhUh2+AOlsIDgej8LcOOGEEyLOpaA9r0qVKnadY+a8887LVQwRQggh0hmC+BAo6Pql2yE7sHligoudabjB15xjybDYsGFD2JMquoQRSij4EUIIIYQQ+ePPP/+0glDsN727RDzB4gmnmYceesg6KZJNoACEk/79+1vmGlZPycL9/6+L4oorrkjKYh+JFEkMVdpUop1//vm20BpO23xe8yiYuNFyRNt8dhVvQqQaVatWNVsIfPbWrl0btuWTP3bCwR+TdCvxRR/rYCghhBAiFfIomPgcfvjh2d5vzJgxdnnTTTdF7MlLPlu4kHWxYMECC8wWQgghhBD546CDDjJ7J+yWatSoEfOXk4KTZcuWhX6+4YYbrCPgjjvuSNoi0euuu85s94cNGxbKF04069atM8sp6Nevn0tGJFIkMbNnz3Y//PCDWc9gJQPVq1fPk0iREyTLt27d2mxrHnnkkXzutRDJxYABA0zsQ8HOLS8iPyIFJ+oiRYrkc2+FEEKI9MijoP0+OzZv3mz2iNCmTZtcH5NCgIYNG9rkKlLwKCanik5hIYQQQggROVjCIxZ4unbtasXUWAfF0jLpySeftDDsZs2auZ9//tlupwi7ePHiLpnYsWOHWV/5vFI6PRYtWmRiRbIwcOBAW/+9/PLLzaUnGZFIkcQ8++yzoeBsvO5zm/BlzqPw3Rc1a9bM8b6jRo1yb7zxhk3e5Okp0o2DDz7YjR8/3q1YscI9+uijYYkUq1atspNMuCLFli1b3G+//WaKPn/36quvRmXfhRBCiFTtpMip+5e2dywSOe+efvrpOT4eLenkUGAP1b1794j3h64LCn/IvxBCCCGEEJFB9T0WnmRBIBwAtp4UasaKTz75xMaSHTt2tLUWCk/JM0hGWP8hgBr7KSyePIkMx87M+vXr3XPPPZfUXRQgkSJJQSEkmR7OOOMMuyxVqlTYbUI+j4KJWU4K41dffeV69erlbr31VtnUiLSF3Ahsn/gy/vTTT7O93/HHH+/KlCkTUS7FgQceaIHbtBl+//33dh3bJ3y2hRBCiIIEOWoff/xxroU1VG9RTOPHujkxbdo0C+DmfBtOxhS88MILoWIdIYQQQgiRdypXrmzWnMccc4zl5sY674KsC8aK7777rlmHjhgxwi1dutQVLVrUJROs/zRv3tw6EyhcZc22SZMmLtn477//bD0MgalBgwZWKJSsSKRIUqZPn+7++usv+xLAay0WeRR8UG+++WYL/JXNk0h37rvvPlesWLFcbZ/yYvnkQUQktIlja+rUqfnaXyGEECLVYDLJOZBqt5NPPjnX+x922GE5/v7333+3SRXgO5xb1wXQOel9gD/88MMI9l4IIYQQQlC0Gcz0ZI0DuycKR3Ibu+WHX3/91Z111lnugQcesDWbK6+80vajffv21rmRTK/PuHHjrMCVwhgKVin+5jVKRgFgwIABVhiE0ITlUzKTPO+yyMCLL75ol9u3b3czZsyIWKQg4R6YoGXHyJEjbSEWm6ecgg2FSBfbpwkTJrgPPvjADR48ONv7+WPGH0PhwImTwHm6lvzJ3B/DQgghREHLo8hpzIptk/cUzg0mqd98842JHnfeeWdYf0MVW/369a1SrHz58mHuuRBCCCGEoEAEZwg6GXzBtHd4ibV9Efbz559/vjvppJNsHZQtnKKXeLJmzRpXq1Yty/XFlp/Xafny5W7QoEHukEMOccnGSy+9FLKgwuq/QoUKLpnZL9E7ILL+UvBV3CyYEpZNUGCNGjXCbo/yLe7ZiRQbNmywirR27dq52rVr620QBQJ8FPGzvueee6wljwCmzPjjDLsKFlGOOuqoXB+XYPsFCxbYdSoL8EzEcg2RkW4oIYQQoiCQm0ixdetWm/hSycVY9IQTTsgxLNsXFTz++ONWbBAOFN4wqaUjOZmq7oQQQgghkh0W2hlD0RlLgWfp0qVj9lxY1D/xxBOWw1ukSBG7jZ8ZJyZbITV5GCz2Dxs2zGyTGJfSodC5c2e3337JubS+Zs2aUHB3p06d3E033eSSHY3ckxBahwj4JYSXNHg++M8//3zY6fUIFCTKM/ErWbJklvfp2bOnK1SokHv44YejvPdCJL/tExWZXbt2zfL3ZEpgJ8Fx6BdbcoNjjRAiTuJkUZx99tn293Pnzo3y3gshhBDJCRNNXySTXR7Ft99+68qWLevOOeecHAUKYCzMePbSSy91jRo1yvG+nHOXLVsW+hlxIlxRQwghhBCiILNjx46QJTbdErit0B1w7bXXxuw558+fb+smPXr0yLA2Q5FnMgkUiDUTJ060ThKKZhAosKEi65QC2GQVKHbs2GGFQRTQ1qxZM0c3kWRCIkUSQiX2bbfdZtY0eWmnClo9ZfX3TCCpMEP8SKaDX4h4cNBBB7kHH3zQTooLFy6MmuVTy5YtrdXv0EMPNYsJb2khhBBCFAToQKQbmA5EhIiswKeX+7366qu5Pt7QoUPdQw89ZJe5jYc5ryOMMLYVQqQWHOcc4126dEn0rgghRIHj9ddft3EbdkWeU045xQSEWPDVV19ZuHS9evXMTopcT9ZPKDhJRiZPnmy5pj/88IMJFXPmzLH1VApfk5Xdu3e7a665xn355Ze2n+Rm7L///i4VkEiRhNDePn78eLdz506byHHgotaFy5tvvmmXWdlDceDj6UsYTatWraK630KkCijfeB1yLGR1MvTHjj+WIuWyyy4LnfBR3oUQQoh0x3cfIhbkZLPEYiQ2iblx4IEHmjUpE8JwqsXg+OOPj2ifhRCJhUrd0aNHx2wxTAghRM6Qq/D9999bpiZdsbGCiv5+/fqZIDJz5kwLm8YqCWv7m2++OeZ5F5Eu8nuwoqIYFUH9k08+cZdccolLZnbu3OkaNmxoRblYd82aNcsde+yxLlVIzr6UAsz69etdhw4dzN9+9uzZNumi2vvpp5+2YJZwDibf7p5VHsW8efMs7+Lll1+2LwUhCiKcADnJ0PY2bdo016xZswy/98cO9k18yYfTcbRt2zZTqMmx4NjiOTg5yA9bCCFEQeDtt9/O0eoJ4Z9JHh3DOfHuu++6ihUrRlTxRQv7VVddZdlTQojUgAUrrETGjBnj7r///kTvjhBCFBh+/fVXC6n2jhCsI7Zo0SKm1fZPPvlkqOOVdRiyJyieTjbBpm/fvrZm+tFHH9nrQT4GgnoqrOts27bNulJWrFhhDh+IQalWBJD8r3IBA/USgYIPFF8WVJGhfpUvXz6sv2dRddeuXebjVqZMmQy/o6KbynEmjyyeClGQufjii83nuk+fPntVDJx66qmuaNGi1sFEAHY4ICjefvvtbuDAgba4QocGJ38hhBAi3QnmOGUVmk3YIOdcciho88+Or7/+2iauFSpUsIlWTvz5558ZuiElUAiRWmBvTPdxnTp1cr0vIa6Mq4ObEEKIyBfhEYdZE+R7FSiuJFAZW+xo88cff4Sud+zY0caIrHlSiJ1sAgUgSFDESt4ErhieVBAoNm7caO8rAgWdE+Qb161b16Uayf9KFzD8gUCgNSGBeNozCKPyLBy8PU316tX3OpAI30YNxGsumVqphEgUeFhjrzZu3Li9fue7KcK1fCKknpBORMKTTz7Z/P9orRNCCCHSHYSH7777zirOyJ3IDJ2GnB8pAsjJw7dnz54mPuBPnFNrOkUETZs2dddff709rhAitZg6dapbuXKljcXDgfsdeeSRoa1IkSIx30chhEg3GD9hA8QifCT5m3lxiKHDlTUVb39NIfbSpUvt9mRZj8Q1Y8SIERn2kZ/feOMNC51OFT766CNXtWpVW9ui2JbCoUqVKrlURCJFEoEY4a2aaNHxIgPWMeEqd77VHpEiCO1btC1dfvnl2bbhC1HQoFKTjqV77703g8ofrAT1x1RucJz6Vjq8CosVK2YtjKjXLNwIIYQQ6YrvOqSoBsE+M74YgEq97CamTJaprmPMy/kzpwns+++/7+bOnWvVbkzIhBCpw+bNm82H/Lnnngu7crd3797WkeU3HkMIIUTu/P7776HrFIBMmjTJ1h0Jro4227dvd126dLHcienTp5vTS7jOFPGE8wg2gxTO0NXHeNJDEQxdvanAnj17TFShm3jr1q2uXLly9t6WKlXKpSoSKZII1C4UPJSvvCTF87d+QTVzqz1en1S5PfDAA1HbXyHSAXwRf/zxR1sQCeKPoffeey/sAClvy0bgPYsrZMlg30bFgBBCCJGukCMBVapU2et3a9eutd8j5l933XXZVvaxaAm33nprrv65PA/nVybaqea1K0RBh0WrH374wUTN/fbbzzZESsbiXOf7IDNYIOOfHtyEEELkDOMk1hd9MTRgv3n++edH9aWjqxU3mBIlSrihQ4fa+gnPw7pIMhVJkx9KgSrrrXfffbdZdp9xxhm55qUlIzt27HBNmjQxkQXrLgrdOZeedNJJLpWRSJFEYMfkW46gXbt27swzz7QW+XD4/PPP7YNKBds555yTIZSMhVha4pPR902IRFK8eHFbECFIm+PHg/pcqFAhO+F++OGHYT0Wxyt89tlndslEC5599tmY7LsQQgiRDPgquaxyIcaPH2+XeM+TSZEViPpMZI866ih33333hZ0t1axZs3zttxAi/tSuXdu6jrGn8Bs2cfikcx1BUwghRP4hAJruBkKrYwV5Yqeffrq74447rEOBws158+a52bNnW2V/MoCzBR15CDb9+/c3sYIM38mTJ5v1FQv8qcSbb75pr/NLL71kVqtDhgxxr776qjv66KNdqiORIokg4AR8a87q1avtgAmGAuaEDyxEFeWD6qEqhYAcFEMhxN5ghfbPP/9YXosHuwmv+vtjKzeoHADyKABP7WCFqRBCCJFuYJeIwJBVJwWVdFTxeaunrGCM2qdPH7uOQJFdFgUTSh6DCmwhROpy+OGHW+FccMMH/JhjjlFBnRBC5AM60YJZXYMHD3aPPfZYaCwWC8gbo3qfywkTJli3XLIENm/YsMF16NDBOicoSsVin8JScpEQy1u0aJFSwvjPP/9snRMU6nzzzTfWBcJaExZbyZLzkV8kUiQJWDXxIYOBAwdmWOj0C5+54a2egu1UtP3QbtW6dWtTDYUQe3P88cfbl/2oUaNCnUzBYyncXIqgSIG42KNHD/uZDg2CQIUQQoh0LLJB6GeCmjnMds6cOe777793hQsXtk6KrGDCSKUd/sV0EWdH+/btbfKLV3C4BTxCCCGEEAUBFt0pFvFrEIAzRNeuXUMOD9Fg4cKF1nnA+A1YHMf9BWeXG264ISkW/ZcvX+6uueYa6/AYOXKkrYvS7Ttr1iy3atUq17x586TYz3DZs2ePuXNQ0E4GBT/ffPPNJghhnZhOSKRIEqjaRuWjRadGjRoWbuPDdsMVKXy1dzCPAgspKs68z68QImtuv/12O+6CVQb+WOLYCmdBhLBsTtI8DsddnTp1TABh8YYTiBBCCJFu+G5BJn+Zq7h8YDZZFMEu3yAU0bzxxhtmSZDdfeCee+4xO1OKb9KlWkyIVIZFn2jB8f/4449H7fGEEKKgQc4mi/NTpkwxi6dYWHvWqlXL1jiwcmI85qFT4aCDDnLJ0m3AmiproRSDk43BOYZcjkaNGtnaayrx6aefmk0iY2nWmEqXLm3j5rFjx6ZklkZupNa7k8Zw8NDiSpUZih6CBeApFo6vGFVqVG8zafOt9iyq8sXBQZnK6e5CxAOqPwkewh6N4xEqVqzoDjjgADsZ+M6mnCDUz1eR+uOxatWqEXVjCCGEEKmYR5HZ6olzJ8U3OVk9eThfeovE7GBSRtdGulWMCZEqsChFlSx5bgiKhxxyiAVYX3TRReYEsGXLlkTvohBCFCiCmZo1a9a0rgFs41lbjBbkc15++eW2rrFo0SJbH+nUqZO75ZZbXDJARwf2TR7yzdg3MnnJOeLcxXkq1QpcNm3aZN0SdBvzuiMCca7FYpX3Ol2RSJEk8CFDkeQLJS9WT++9955d0ip/5JFHhhZFV65cqS4KIcKEjqN169a5uXPn2s+cCBAqgsdYpLkUVH3SXvnMM8/ofRBCCJFWUBCTnUhBWzqdhJUrVzb/38xwrsVDNzjBzsz69evNPsCTatVvQqQDM2fONN9rFksY0xKOOmPGDDuGCb1n8WfBggUmXmDZtm3btkTvshBCpDV0C1BZzwI2YdUevoOx34xWvsXVV19txSEUnTAGw0b+iy++sGLoE044wSVDLhrnHrIlgs4V7N/EiRMtXDoVO2K6detmVlXjx4+3Atorr7zSOiruuusuE4nSGY30k+RDSDo73m7eUiZSkeL9998PhWZ7qAing6JevXox2W8h0g2qAxAlgq2LLK4Ej7FIRQqqRzmuESA3btwYk/0WQgghEsHXX39t3bxUVQc7HDjvkR+RXRcF4gUeyZxvH3nkkSwf+7fffnONGzd2lSpVsgoyIURiePjhh92QIUPct99+a/YSt956q1XVUmDHAhaB9xyjjH2pYEWgFEIIETsopqSIcuvWrW7+/PkxeQ4cXlgQpwOhZcuWbu3atSZME5CdKBBOli5dGvqZjj6cY+i2RbjxpFrXBGD3f+edd5rowjl39+7dFpCNrSqFAViLFwQkUiQBWMR4vBqZV5HCL6gyYaTqhTBgVZ0JER6czDp27GiVYV999VVURIpTTjnFTjaIhunoGSiSk+HDh4e8QRGvc/v8MqjjfHHiiSfaOYmKyddffz1u+yuESE18F0WFChXcwQcfHLqdVnQCHPk+IZwwM6NHj7bJLnYEVGVnxa5du+z3hx56qE0+hRCJO86xJM5tTnnyySe7hx56yARIIYQQ0YWCR1/UzByPYhAWsK+66qqoPP6aNWssbDrYwYq9EOO55557zuaHiYL1zQceeMAW8MmbYF89BEn73IZUhHWnDh062Nx90KBBbufOnTaunjNnjmVPBAvRCwLRi3gXecZ/CeDF6/148R8DPqi5QftPZpGCLyzacVu1aqV3RogIaNasmdk+USl2//33h04KeDGiZufWXscJBfs22vM8PI4Q8YKQMFpER40aZZ9fgigvueQSO9cULlx4r/vzua5bt679btq0abbIQHU01ZBCCJET2Vk9lSxZ0saimzdv3itb7aeffrIQbKACO7vvGsbEWMgwKUdAFUIIIYQoiPTv398EgxdeeMGsf8BnX+YXHB8GDBjgXnzxRRNB6I71VtVFixZ1iYJ1Trr0nnrqKSvA/vvvv+32QoUKmeWUtxIlGynV4HVGYKKQldedDhG44IILXO/evV3Dhg0LbLG5RIokANUPgn69tPpAOJMyDlB86FBTzzrrLDuYx4wZY4ut4YRuCyFchpbBa6+91o0bN84GA6j1nAjxzF61apU777zzcny5aDdkCzJ48GA3adIk69JIloApkb489thj9jnzFiuIFa+99pp9punqyQy38/letmyZDUrDFciFECI7kYLOQQJ2swLhfvv27Zaj1rZt2yz9hTkXA99JQdFfCBF/KHyIZAwihBAiumCTyYa1kxcp8gtFmIgTCACepk2bup49e7pEQtcEhS6saXp3Cl+QTec/65zB7t1U4q+//rKCQsSJYIYGFv2IExelYMB3tJFIkWB+//13s+WAMmXKZDgw4fjjj8/1MXwXBV76TOZoCeJgJmRFCBE5LPDSNsjC7hVXXGEnRNrtONZyEymygsUY2iRffvll8+714fZCRBu6IhjwMMjxUIWBb7RfTMwMn0sWGBn0zZo1y6qX8R3FggUv0uwGWGyeX3/9VW+mEAUM7Jg++uijUOVXOFBYM2zYMLv+6KOPWtdvkC1btlgHWI8ePVynTp0K/ERNiGSAhawgK1eutMUysg9h3bp1Nl5gLiqEECL/0NXO2p4PwSYwmfka1nvRgEISiiiBRXHEibvvvtudffbZLhFwTpk9e7a5WRDS7TsL6JLAHYb1GRwrUhUcDfjfEF+2bdtmt2GJypybQtZzzjkn0buYNBTM/pEkgkVPLzL4Tgpaf7xI4TMqcoLAnKDVE4oj3r3VqlWL4Z4Lkb5wAkSM4FgCb/nkj7Vw4MTqPSOpFgVOuEuWLInJPgsBP/74o332Mgvc/Ow79DKzYcMGs3ni78ihYIDK4mFONmUPPvigiW1+K1KkiN4AIQoYCKJMKhmrBu0A6NjiOwSBPjP9+vWzdv2sug6BAptvvvnGJnJBIVQIkTiw2/AbgdlUenKcIlawYeuG1Wm0Fs+EEKIgQ6U96we333576DY6TPPzHcu6hF+bALpUKWTDQQK7JyyHEiVQUCTHXLJRo0Z2nTkp6y+MBSleoag7FQUKOoOxzSJDg/XZRx55xAQKMkvJ1+A8iqOBBIqMqJMiwRAIePjhh1s4ihcp8Or1fmtZ+YdnhsEhUL3y559/WlVs3759VX0mRD648cYbXZcuXcxKzXdP+GMtJzj5n3rqqe7bb7+1ECQWbvyxzUCAylMhkgksAjnX4PfpKyH5/DKQ8r7xmaFTI2j/QCeFhAohCq7Vk29NxzpuyJAh1tVFBxfj3CBk5DDu5fyaFVQKklFB2zs2pkKI5AIBct68eRkshblOYQPHbffu3RO6f0IIkeqwdkChBsVnOK8ceuih+Zrn4Q7BojhjLIRmoHq/efPmCbHUZL2T/4vFemAOSTEd3fzXX3+9WRYHrfBTCQQWilIRJ6ZPn27rvH4dCJGpTZs2rkGDBnt1Eov/H70yCQZFzQei+AORtp+JEyfaRI/ruX3p4JMPqItYPaHYYVEjhMg7nMCpXsDmyYdSffbZZzZgyOm4ZKGGzXdEIVJwnPvjtVatWnpbRMw49thjTWjw3Xgefs6uM4/sI9qJg9ZO2A8yWMwuLJ5jILfzkxAivSHwL3MeBd8XQ4cOtd+VL19+r7+hqwtBNDs4f2I9J4RITihK8FYVQbjNL8YIIYQIn61bt7qPP/441GFKziwODueee26eC4/pdKUjY9CgQWY77UVmL1L4bvh4wxgQgQSbI29PTycBay505GU170x2WPfB/nTq1Knuueees2I/T7FixVzr1q2tAPbkk09O6H6mCrJ7SjAchCiJmzZtMuUQUEpRELOrMsts04EKyWIRvqB0UZQoUSJDvoUQInLohkD445hC5adKjJO9D7rPiYULF9oCr/fmpT2TExSE8/dC5OecwueOz6AHcYyfMwfbei688EK3fv16u58Hf2nEi1QcKAoh4jMh850UwTwKArPbtWtnnrtBqAbMDgoA6M7yXcRCiOSFwFaqXGfMmGFWFWxUi7II06RJk0TvnhBCpBRr1qyxdTxyK7E28jCfy4tAQcEy9kh0SJDlgEBBBytZgyyix3usSNEKeWQebKwogmOu6e2n+D8vueSSlJp3su+8ttgk8/4hKD388MMmUNAR3LZtW7d06VKbY/fp00cCRQSokyKB8AXy22+/mc1GXm0yUFx9FwZVsK+88oq1bRX0RHghogG+iE888YSJE1SELl682I653HwDs2qbPOOMM8z+CWERL18hYgU2TIShYVNGVhH2KojZLCoAIjiVHORKQPv27d2TTz7pOnfubJUtDCRpCSa0VgghsoLiGir/aFf3log5jXc5b3IeffrppzN0dSFMENaIgM/1wYMH6wUXIokZNWqUBdtTBeuFRb4HECmwiRRCCBE+FBf7AuNodKMhJGPJBxRBU/jMXC9o0Rdr1q5d6yZPnmwbax88/4gRI0LFcXQdkH+RamuWCBMrVqxwM2fOtI0iGw8WpfXr17eMD2ydZFmadyRSJJD58+e7xo0bW1sTNk0e1DYWiU477bRcOyK8SEHFN375qK++hUsIkT84lu677z739ttvZxAp8gKWTx9++KGp7QcffLC75ppr9PaImIBQje0CAbV09HB+oIXWh2mzuOhtBgGRfO7cua5r1642YETAQLCg4kYIIbLCd1Hw/cI5zbfwI+pzfitUqFDovgilVFvzvUN1WRCs5vCyxye5Z8+eerGFSHLoDmaxCUHiyy+/tNvo4s+PZ7oQQhQUqLQfOXKku/fee63ImLERhcZY9gbnZ+GycePGUM4tIBjTpcCYigI1P0aLNcwvsZeaMmWKrXkEzxnB/AWEiazsQJMVuj7efPNNc9d46aWX3ObNm0O/o/MDiy7m3qwb+fdA5A+JFAmEDzgHKaIELbO+RXbatGnW9s6XCmnvOeEXTDnQOXCY/FWrVi0u+y9EukPb3kknnWTHlj+ZhiNSvPrqqyZC0jHhj2sWaTjJMSihekAihYgl5KmwZQViW2awgvL+8kIIkRv++8JbPREUOGDAABMjqNxr1qxZKA/Hd21xmVVlGVV/dC4Gc3GEEMkNogSFDUIIIcKD7rPzzz/fhAqKxG699Va7HWeVSKFAmYwJhIGHHnrIOtyA7lTWH+IRzEwx3Isvvmg2UsuWLQvdznOzeE/HHeO7VBOxsSh9/fXXbU2HQj6ymDz8LwRfM3blMhG5HumORIoEwgISPmUvvPCCtUF5UEJpiy9evHiujxEUKWjl4kChKk0IkX+oZkAVR6Sgdc8fc7T65dSeyEkamygI+vPecsst9ni52UUJIYQQqSRSIH4iUFAsE+zo7d+/v1mbYgkVFOdpkadry1edSaAQInXA7oL5K5WzFOAEofBOCCHE3rBOR4cDwkKlSpUifonID6Q7HnEi6MTig7HjMZ76+eefTZTgHLBkyZJQpiFrIzVq1LCxHoUqrGmmChTacF6bPXu2bcuXLw/lZQBuBA0bNjQXnDp16sjKKcZIpEgwVJhBMOmdhUy23GDS9/XXX9t12uqpzpY9hxDRhcWW0aNHh9oxd+zYYVUDhApnB8GhQA5AEIkTQgghUp2//vor1MpPRSA888wzdknwo++WIGcCCyhgQu1tDLZv324BiVgQvPbaa2YVI4RIDVicItuKYxjf83r16pm1CHNaKkuFEEL8HxQi0+Fwzz33hFwZKFQmAzBSa6dJkya5QYMG2dgKWJtAEOjevXvM1xhYxPfiB10GZEx4KFbxwgQOFKnkaoPzhd8YmwbBzpR1IMQJCm3yYsUl8oZEigRDq1dmkSJcyK0A2urpyPBtVUKI6FGrVi3zUqTVj5wYBhscezmJFL6lESHRg28v6jt+3YRJCSGEEKkIHYVUT1Mlh8BAMPb06dPtdyxeenr16mUVdpz7qK4Ljn2Z8LLhwSyESB0eeOABN2TIEHfbbbdZJ9TQoUNdsWLFzLYkp7GxEEIUNMiiJGCZ7gPf+ZDXTgc6KBAo+N5t27at69Spkzv11FNdLHnvvffcnXfeaeM9LOmhZMmSNtY766yzTJhgfSQV4D2g84P3AVEi83oMtk1169a18GvWVFNJcEk3JFIkCBYs+/TpY0E3eRUpqFqBM844w+xomABmDiQUQuQPKj05YXGMcawhUnDsBRdcwumkYECxevVquz58+HCzZmNSJ4QQQqQSTFp9FwXt/QQJIspjU1q1alX7HV2Ha9assck4lX9B8LGnE4OqNXn5CpF6c9jLLrssFBrKWJfvga5du1phD2GwQghREMEiiNwJvht9Fhd5BpnHQbnB+AkBmO/VMmXK2G3YRJGXieNKrMZOrE1ShMKah18Hwc6TDlkKUijchIkTJ7pkh3EpFtyLFi1yCxcudB988EHImgrojKhcubKt87DRESLb/ORAIkWCYHKGF50nqNTdeOON1hnBl9lVV12Vq0hBFRuttwTmCCGiD61+QRs2f+zlJlIEOymoFuXEx8CFNs+xY8dKpBBCCJHSIoW3IIBWrVqF8pqwISV34q233gpNdoN5TnQBswkhUoujjz7a7dy5M1RkRwFOuXLlrEqVRSwhhCiIrFq1yub4F154oYkTQKfDK6+8Etbfs4COhR6dalwCYyZspwFLp2jbOjEuozuDYhPyhAjjJofz2Weftd/z3T5q1Ciz9/MCRbLCeemdd96xbgmECXIlcLAIwni0du3atiGqcz4TyYdEigSBItqtWzf32GOPmRKKShn0R6NaO3MQWWb8QikV2tyXL0QhRPShMpST+IEHHpjh2MvN7inYSYFaf8IJJ9jxXaVKFVvAEUIIIVJZpNi6dau1zXuRIgjnTCaCwP1ooX/88cfdxRdfnIC9FkJEAzqJOeZZvMLqo3PnziH7DH+8CyFEQYOsWAqNCbG+6667bI0uHFgvINeLzgmKO/y6AVaZQQvNaIEYwjgOYQIrKm8h7583WGSJSIKVXzJCNsbbb7/t3nzzTXvdEViwEQ2CSMSY04sSp5xySsL2V4SPRIoEceaZZ5pKyWTtiCOOyPA7X4USFC6ywi+UUplNHgXt80KI6IPqjvCwa9euDMdedvhKg8wVZX6wMnDgQFezZk29VUIIIVIKLJrWr19v12mTHz9+vE14aZM//fTT3Z9//mndvQgWjE09hEaSZYF1AS33CiAUIjV58skn7TgHrIvpEsZSo2nTpq5v376J3j0hhIgLrMEhTJDRAAQs42zSsmXLsAUKiiArVqzoPv/8c/uZv2vdurXlTUTTFprvbCyPZs2aZZ0d3333Xeh3WFPVqVPHXXnlle6KK65Iyi5XXifGnogSdOhy6QWdIORjIKSzzoI4kSp5GSIjEikSCJ5ytCBl1zGR0wSOA9UvlKIiInrgFSeEiD54atNe6U/onCRR6rMLvvJ2FuHYQAkhhBCpwvvvvx8S72mTp/oPrrvuulDmUo8ePdxzzz0X6rAA7As4Z3bp0kUChRApCvPWV1991aw//FyVUFUhhChIELrcpEkTW8fDLonOUeb/d9xxR45/xxreu+++a52ofH/yN3SkTZ482XXs2NHdfPPNexUw5wfWLPiOJnQ7c1Ym2UIIE3S5hiuqxAsKPSloQQD3G2ueWbnTIEpUr17dtlgHiYv4IJEiQdBWRcg1PvXeQiYSCCTE+9MHmKHACiFiB8cYEzOO17/++stsmyJV5/0AQCKFEEKIVLd6wov+o48+skrq5s2b29j0/vvvt9+3aNEiw9/RjThy5MiE7LMQIjrQHdWuXTtboBNCiIJKkSJF3C+//GLCLd+HFSpUyLWTYcqUKe6JJ56wcdNrr73mGjRoYL/r3bu369+/f7bFj5FARwbrDH5tEMGDrAnEETKEGjVqZN0SdBnkZQ0yFrBvrGci3viNztvMeRLs73nnneeqVatmNvfYcR9zzDEJ228ROyRSJAh80Vjk9EpqpHzzzTd2STsW6m3btm1jsJdCCA8ne7wiESY2btxox2B2IgUn26wg5J6/69Wrlw1IeBwhhBAiFUUK30XBRJuJYvfu3a2ABq/6G264wW3atMnGuVdffXWC91oIES2weWORrWjRonpRhRAFgp9++snyG+h08O4IWCfRVUq+bHaw3keBxpgxY0KdAFi6syjviVYg9dixY12bNm1MgCA4GgoXLmzPzzoGW3ZuD/GE14GuXDbGlFxS5JKZE0880cQIsjwRJHC1SBZhRcQWiRQJgAVM/HsB1ZSWWdrfI+Hbb7+1S8J3t23bpk4KIWJMsCIheAxGwujRo63qgi4qoO3Sh2wLIYQQyT5+9XZPiBSjRo0KWT199dVX5lUPDz/8sFki0l2BSIE4361bt4TuuxAiOnTo0MGOZxbfGBtnHscqI1EIkU7QmYCt0Pfff++KFy9uIgBUqlQpx7+hWINwar/uhxXRbbfdZpkT+ekAYJEf+yYcHuiMIAMDyGGgsxURhOf01vGJDL7+9ddfLdB6+fLloS2rIk3EB6zwyTdDlOCSkOtkEFVE/JFIkQA42JiwDR482PXs2dOEhsy/D7eTgqAbWsM0IBQitpQqVcoqHfwJ3x+DkYLIsWDBAmu5VI6MEEKIVAFvY6rdmEwy7mSyiWUBvsZMuvFmplOY4htECq6Tn4bnsRAiPbjmmmvskmDX4NwVEZNLjn0hhEgX6Jogf+LNN980ESA7gnmViLd0SyAWIB7cfvvtJihgmRcpfLeuWrXKvf766zbmeuedd0LCBzZSXqRAQGGM5jMw483OnTuty44siRUrVtjmA8GzWleh2IXOPC4ZU7KuKQRIpEggu3btssu8fJH4Km682sqWLWuKqRAidjDowG/StyPm1ElB2yfticWKFdvrd0zgWLgRQgghUtHqiWo3P5ls2rSpVckR+ui7KDjPMREnn6Jr167yDBYijaBrSggh0pXPPvvM9evXzw0bNswdf/zxobENxYVZiQwUY4wYMcJNnz7dbNjJoGQcNHz4cFsTOOussyLeBzoxFi5caKIE4kTmdYfy5cu7hg0bmvARJF4CBdaeCBKM/xAl2HgdsrK8Jr+DrhO/0YHnXSWEyAqJFAlOrc+rD52v4sY6pl69elHfNyHE3nBSnTp1aoZjMLv7vfXWW3vdjjUGuRZXXXWVGzBggF5iIYQQKSdSMMn0VdOAYIH9wUknnWSVfMHfKdRQiPRCWRRCiHSG3Am6FY4++mizas5q8Z+uCeyWECLmz58fun3atGnupptususULEYCFnovvviiiRJ0bfz999+h37FeSJEjnavkgLHwHy++++479+GHH4Y2hIkNGzZkeV+cIlgH8WIEG7kYQkSCRIoEgD8vi5V+kTOz4ujbxDIn2gfxaireeN4rXwgRWzjWqKoIHoORwN9QnUGVxfjx4629kU4oIYQQIlVECjj99NOtSwJ/ZaoE33jjDfMerlu3rk1Sx40bZxN8IUR6zF3xCA+3CI9uizPPPDPm+yWEEPkFMQA7Z78GR9cEW1ZZWgRoE0SNeLFp0ya7jaIMxAMsnRgDRdItwXP7sRKZX927dw/9nqIPBAkem0KQWNtEI7xgUUWHBBuCBJeIFNkJ1oRZ013rBQnfeSJEfpBIkQBYpJw4caJ98UBm704fQEaobnb4BVL+VnkUQsQHWiszH4OR4P0jP/nkEzdjxgz3xBNPSKQQQgiR9OB7zGQV8BhmIrt169bQ75mk45n88ccfW3YFgoVECiHSg+uuu87mrW3atLFFs8xh2UABzrPPPmtFOIMGDZJIIYRIegig7ty5s+vVq5dla0G1atVsyy534e6777Y5PZ2i/E27du2ytHjOifvuu88NHDjQ3XXXXe6ee+6x2+rUqWOZXpdeeql9z1IMEqvgaP4P1iMYs/mNn7Naf2QfyJBAkMD6GlGC6+qUFbFCIkUCQGV86KGHTC2lVSqzSOHbyVBXswMV10PyvRAi9lAdmtUxmBksoQgUZJAxadKk0O3+WKfKoGTJkjp2hRBCpAQIFFT8HXfccWZH8PLLL7sff/zRqv6YZDNZrV69ulu2bJllN8kSRoj0AQGC6uG+fftaSOsZZ5xh9m5U9jIepgCPeeuVV17p5s2b58qVK5foXRZCiLC+28hSoHAQm6egKMB32nPPPWeFGY899pjdduqpp5qgUbp0aXf11VfnmgtLdgPZEnPnzrW/Y/7v1xR2795txR0e8isQTaIJYgqdbTyPLyThkkKTrOD/oQAaMYLiTMQIvs+zEqaFiBUSKRIABzobCirV1L662nPttdeaDUyVKlWyfQyyKDwnnnhiTPdXCPF/sAhDKyhiAxUIHLu0h2aGCdu2bdv2qkbwIgUt84888oheViGEECll9cT4lFBIArOprMPu4IQTTnA9e/a038uCVIj0Y//997fiG7YVK1ZY7trXX3/tdu3aZQtZWL/VrFnTFSpUKNG7KoQQ2YJ1EfPzEiVK2M9YNCEWdOjQISRQrFmzxkRZCg2Z73N7x44dQ90SDz74YLaPz9oAIdKIEggOWOX5+T/WmHyHQpMmTaxbA8E3WlAgQjcEmxclVq9ena07C0Iz39/Bjf3xtldCJAqJFAnkzjvvtEkdA78gVKHkBFkVvsuCiWJuCq4QIjogSLAYg9UTWTLYWRx11FF73a9FixZWUZrZO9ILkjr5CyGESFWRAgiLRKCgGpAqQwIf4xnkKIRIDOedd55tQgiRSsyaNStUDLxgwQITHw444ABbk0OowAkBcYLQag+WS+3bt89RgN2yZYt1kCFMEKK9ffv2DL+noAMbp2ABMnaYebXERBxeu3atiRGIEF6YYD+y4sADDzR7aUQIuiS4pGCazlghkhGJFAmALy6+CFnczIvAwMJoVvYzQojYwzFHFQZVEXQ0ZSVScFtWt/tKiqy6L4QQQohkFykIxEakHzJkiP3MRHfs2LFu6dKlZpsgEV4IIYQQyQaL877YFxumoEhAno7PpGAcc8UVV5g4UatWrSzn7Vhb4oiCMIFQEIQiYp8vwXbaaaflaX+x2Pziiy/s8enu8IIEVk2ZnVg8PBfjMsQINq4jtOy3n5Z9ReqgT2sCwM9z1KhRFpLTv3//vX6PTczGjRvdEUccYcprZvhS9V+gtGkJIeIH9mre8oljMRLfbaowaBXl+GbAUL9+ffPAFEIIIZIVsifIUAO8jREqsDU888wz7RyGR/29994rgUIIIYQQSQHFEyzuE2ztF/ApuKCrACsmxIfLLrvMfke+xODBg+3ylltuyVAITGEGAgHrcnRewOTJk62jFOjIoLvMixJ0amR2SskJ1hQYY7GvXozgkqwfhIrsLKi9hTw2UlwyJmP9UIhURyJFAvjzzz9tIodlzHXXXWf+9Lfddlvo9wT04O2JZQxfgDmJFMqjECK+cMx5z0p/LGZm+vTpNrioV6+eHd+efv362UYr6ZQpU+w7QBRsrr/+ehvkUnUDBJoxeI5kcCuEELHk/ffft0u+l5gw+3PXQw89ZII7k351CAohhBAiGVi+fLmrUaOGiQqXXnqpCRTYIb388svu8ssvN4tKFvYbNGhg8/rDDjvM5u7B4GwP4dHMzxYvXuwuuuiiUKbEH3/8YaJE7dq13bHHHhuWGEGhohcj/IYYwfpgVrBfiA8IEWxcZ7+PP/74LPdViHRAIkUCoAJt/PjxbsyYMa5t27a20BkUKfiSO+WUU0whzSk0G1VXnRRCxBeOOW/bFAywD/L888+7F1980SyfgiKFh4FNhQoVsrSEEgULRGkqd7xIQZbJRx995IoXL57oXRNCiAxWTwgUWAZwSUC2r0CUQCGEEEKIRMLamF+4p7OBYkHECQSL7t27WyaFn8OzzobAgAU7mQ3kPLz11luWLcE8jEv/WAgD69ats05SL1JgA8WWFTwH90WAwAaTzYsRPE9WkGNZpkyZkBDhL0899VSNsUSBQyJFAvBfeD6Ah5b5IK1atbItO/gyBTz11EkhRHzhmOPYCx6Lmdm6dWvovllB9QObEAyoc/pZCCGSpZMCqED0Hsl0+xJCKYQomFD9y+KaEEIkCubjI0aMsDEJFk+IDqy3vf7661YIjIWTp1q1apY10bhxY/f555+7oUOHWtg1f/fXX3+F7scYh44FeOyxx6zImMcNQsEG+RBeiPAbYkTwsYLwGKVLl7au+aAYgR20Mr2E+D8kUiQQH9azY8eOiP7OK8AsZkmkECK+BI85fyxmhmBtOOGEEzLcftVVV7mvv/7aBkRVq1aN8Z4KIYQQ+YOxpu+kgJtuuskWA5jAqxtQiIIHga0DBw60fMXvv//eKozp/rz77rutatmHzwohRLxEikGDBtn8m+zXTp06uSJFioQCsLFYxl6X65s2bXKvvPKK69Kli+XABiGHgu4LtmDm5JFHHmmCBgLE2rVrQ5d892WXGYF4ixiBAIEg4UUJxAiFWAuRMxIpEsBLL71kim2JEiWy7KTIjeDCqEQKIVJHpMDPcv369VaFihcmXt7nnntujPdYJDsMdv1nhgVBKnB+++23DPc5++yzE7R3QoiCDFWCfpx63HHHufr165vN05IlS1zNmjUTvXtCiDhz//33u4kTJ7qHH37YAmY9VAQ//vjjEimEEDGHuTTzaC9S1K1b19bXsNBFnCAzC8iLIOcV+6Ynn3xyr7yHiy++2P4WYQJLZ+ZgCBAPPPBASIwg1BpxNisOPfTQvcQIbJvUGSFE3pFIkQCWLVtmVWh+YEcnRdBDj+t8YRJM+Pbbb+9lCxP8kswut0IIERuCwVhZDVhYXPYLzJlFCr/Qg3UG3wHt2rWzEG1RsGEAHbR5atiwoV1yTvDnhuwEMSGEiCXBLgom4998841VS0ugEKJgMmnSJPfUU0/Z2IVxrKd8+fK2wCeEELGCedENN9zgnnnmGRMdGKOQA+mDpw8++GDLf/AQnE3WBF0P5GdVrlzZValSxcYxzK8QO+isQHRl7S076Bz1AoQXI9jIkVUulxDRRSJFAqhTp461gJ1zzjkWno36+8cff9jkD/jCpKWMFlq87TOLFMHFKr54I4VFUbaNGzfazyi//fr1s+q4SLj33nvti/2JJ55w99xzjynUtNBRaYfP34ABA6w9TmQNQtSNN95om8gfVHSS40J3woMPPuhmzJhhEyUGKtgq0QJaqlSpqLzM+++/f+h6VgvHHLdwyCGHWIVGUNDwIkXJkiXt/Y/WPonUhWA1IYRIVpjcexAogudAIUTBg4U8xrGZYZybnfWJEEJEA9bJmN/D7bffnkEkbdSoka0/LVy40P3+++82J6cTAtcCCgd37txpa2zvvvtujo4JCBHBDTGC9ThfUCyEiC0SKRKA97pDCaYdjYVOFi+9SAF8kfLF6i1AggQXRvPiaYfiSwscLXLsAy27ePR9+OGHJliEy6xZs9ydd97ptmzZYhvtdXyJ47lPZQ23TZs2LeL9EyJS+CwS5ukFC0KyKlWqZAHXd911lx1vtGwGj7G8EjzmshIpglZPwcEMAyPfecHx0bVr13zvi0h9gp6nQgiRbMydOzd0nXMqwiq+zUKIgglzPUJmM49fmPNRgCeEENEC4ZPOLdatsGVifQlrOb5/WHOiIwJhggIKBAmflYXbSHbh1czPsWPKLEawKWtLiMQjkSKB8AVJVRpfhnRWBGGBE/96voijLVL4xVwP4Wd0VqAqs7jLIm9W0C3Rv39/u07FOq10l156qTviiCPc9OnTQ/cja4PHpLKdCa3CgURe4fNGx05WXHTRRW7x4sV2/eWXXw75TM6ZMyfD/SZMmOAKFy7sPvjgA1ejRo2YixR0P2Vl9YStG3Cs+woQITx0pSG20eHmB890pBFGKYQQiYAJvu/24tyHuF6tWjW9GUIUYOi+x26FjgqKb+hepjoZG6hXX3010bsnhEgTfv31V5vvf/TRR/Yz3QzescDDvOm6667L8u9xHMG1gMyIoBBxxhlnaC4uRBIjkSIB0L2AZ/2uXbv2Wsj0oApnZwUSbLXPrwDAIis+frTE4c935ZVX2kIu4kOPHj3sPk2aNDHF2v/sF4Wxq0GgyIpffvnFfieBQuQHPnMIdatXr7ZJENCxgxDhf0Ys++GHH1ytWrWy/SxCoUKFovJmBD/TWdleEK4FmSvMsELznUxCBMGijEk/k30ENc4R27Zts041gtuC371CCBEvXn/99dD1O+64wwJzhRAFG7rv8XC/7777rEOZ8Qt2KtxGpbMQQuQF5kFffvmlFR5SAJs5IyKzQOGh4BfxwYsR/lLh1UKkJhIpEgDtsFdffbWrXr26e/PNN7O8j/f6pLo2M0HLGuyi8sInn3xiogQhQ/jmz5w509p3/SIst3kBBRU6s78+Fb8MUrPixx9/tLa7tm3b5mnf0hUWG9k8iFR0rwT9FLEkOvXUUxO0h8kHnzk+e3wG/eeR2/iMetGBz+Ill1ySZT4Lg50uXbq4Cy+80IS2aBA85rKyj1q/fr1d0paauSKV45rqDXJIqAphcTrSLBiRXixatMj17dvX3X333a5z587u6KOPDnXePP744yZUEPIWjS4gIYSIBL5/gO4uvqOEEAKYw86fP18vhhAiYshjZY2L/EgsmvwlRYn8LjuwcCpXrpxtvisCQUJ5EUKkFxIpEsCxxx4bamGjIvy5555zF1xwgVktefwCp1/wDBJcGPUe95FC6xuLpFSZI5rQtovNkxcqcoL95r5jx47N8neXXXaZPY63hhIulEOAOOW59tprXdOmTa1TxXPSSSfp5YoQRIqg0BOEY4oBTzD4M78Ej7msRAovLGYWKcjF4HdUyZ9//vlm56aAQTFq1CjXpk2bvb4vEeGoUiTjBDs+iRRCiHhC8cq6devsep06ddyBBx6oN0AIIYQQYcE6U2Yhgku6JbKyTA6CNTJh2FdddZVZPrF2dfjhh+uVF6IAIJEiAeDni70SFeLDhg1zzz77rPvjjz8yiBTBTgoWNYMBvMGFUTIf8gJV5/45Klas6JYvX+6GDh3qRo8enevfzp4920SIIkWKZLidYGBsojiBMLnNygqnIMOiY9ByiJMv1i7+fRCRQ/4Dge8IY5lBuMAbl26laFosBY+5nDopsntfOZbHjRtneTS0x4uCzfvvv++eeeaZbH+Pz+r1118f130SQgjOb/vss48J83R5CSEKLnR5BueiOeEz2IQQ6Q/rVMzHESCCYgSbz2nMClwR/JwaBw4cD8jh69Chg+WgyjpOiIKLRIoEwOK9X8D32ROE/gQhfJrBIJ0J2Ccdd9xxURUpMsMkFDuarMg8KM3K6on9xHKHSjvyKjIHgQsRLYKfR/xvq1atmkH8YbDUsWNHE8oI1saPMprkJFJwHFWqVMkdeeSRe3VSBGEgFi37KZHa4K/qzwNZweeXbgohhIgn2Cf4zkG6/4QQBRfsJ4UQBRc6H8hK9QJEcGMdKDtY82LuzPyctSJ+Zn5OPquf15NzShEvRNP9QAiRmkikSDB+ATVzQDaL/FR/b9682bopoilS9O7d23zwyT6g+2Hy5Ml2spg7d26W96czAlWccGIWg+mkCAa5cmLCyoZuELpC+NmfrNjvvOZmCJHd55FFW2woEMQaNWqU4fd0JPGZRkzz9wWEA7pXYilSUHXqA70zg3jB76maJ5dCCCAXKKs8FQ+D+Zz8WYUQIppQsPL222+bJSUwFvU2pUKIggm2wEKIgjEGYI6N+EBWphciuC2nglYcNph3k7lJ4LW/r7c2ppA1uNZEgRauAkcccYQrWrRonP47IUQqIJEiQTz00EPu66+/dp06dbKff/rpJ/PtYyHVQyU2IgX2MVSLZ7UwijAQKYgN2IfQgsfznX322XbSyK6trlmzZpancPPNN7uuXbtacHHQpmblypXuvffey9LiBvElpyrhggzCkIgcqjAefvhh86ZEzMtc3YV/P1CVEWT8+PEWWB1NkQLLtnBggMZx4qtSyaEhCLx27dr53h+R+jz99NP2vZoVCMlCCBEPsEhs3769LRz4rsUqVaroxReigEPxGYuJ/npO+PsJIZIXOhkoQvVChL8kLyK7zFPm3QRVs1HAQKEV61krVqxwmzZt2ivkmrUlNkQIsq0oXCWP89Zbb3U1a9a0wlfWuI466qg4/ddCiFRAIkWCwJOeDonmzZtbhRqWThs2bHDnnHNO6D5UW7/xxht2wsg8+PM+wVu2bLFQoUjIKvA6CIHamT3R2QBR5fLLL8/wexaDaeETIhZkFiHOPPNM646gY6Fv3757CWOx/ixizxP06A2C0EgVCcdnEAZuHK9UkbDo3KpVKxMpcvLqFAUDOtrGjBmT632EECKWcO689957TaAAf4668MIL9cILUcBhvMv3AVl6LChmlU/hMxRzC8QNFhWxectjxvf9+vWzbn8hRHSgENaLEEFBIrOoEIRjvEyZMhk2hAbWpnz39y233GJFVkEBg/ECLhqff/65FRNOmTLFfseaF3/H9wOFhr5zokGDBnqbhRB7IZEiQbRu3dosPPiSJoSacN9PPvkkg0hRoUIFuyQYOAgqNCcAFktRwOM5mMNHX1V1Ihmg8nzQoEFxf14Gdr6LAkEi83E9b948N2rUKNeyZcvQ7atWrbJLjnWOX+zRsqucFwWLzHlEQgiRCFg8QPhv3LixBVp6q4bKlSvrDRGigEPRnM9/W7RoUVQek0psnAVwDkDgmDhxomUeMu9FsBBChM/27dttjrpmzZqQIMGWU0Ec2VPMTb0Q4a9TpBAUIul+oNNy6dKloTEBzgYcq3RI8Ddcx9J4x44d9nuECro1mO9SUEjHBGtfeXEBEUIULCRSJIg77rgjdJ1OCPx/M59EatWqZWpzVqLAySefbCIFLXnxpG3btnF9PiGyg4X+RIAnJ5x44ol7VZIxGKRTgkFfkI8//jh0rCM+Zpf/IgrmxP/2229377777l4WCXTmMKhH9KpevXrC9lEIkf7Q7TdgwAC7Th4FC4aIFb5gRghRcLnooosy5CniP595DIzQgE1xuGTuzB84cKB1VjAeykqkQDgNeuLnZjslRDqC+4YXI7wgwSV23jkJgggQwQ1hwQuPHrorXn/9dffBBx+44cOHZzjGERhYr/IixVVXXWXzFgoGg0WDfDdgZ8y6lu+64HFmzpxpNuNZdWEJIUQQiRRJAO31iBG0yQWhsqRnz55Z/g0LpIAPoBAifviQe4TCzCBG0N1UokSJvW6HSK3ZRMGwM6NlOisPZwbz+LY+9thjEimEEDEB0Rx7FgR2FiYQJl577bXQOevggw/WKy+EyCBSeOunIFRQ87tw7Z6C8Dcvvvii+/3337Pt2H/wwQdtzixEQeDnn38OCRGrV68OXQ/aDmeGHNCgCIHYx2V2OTGc98nInD9/vjkB0P3gIYeUtSi47777rOsps8UyTgEUWyE8YN1EphWCJvdjPymy8vmryp0QQoSLRIoEQgvct99+a559kXLSSSfZpTzthYgv3q/bC4VB9t9/f1euXLm9bvcihSpSRVafjZxsy+gYGjx4sF44IUTUYQxK1wQ2EcEOQCo1QVZPQojssieymtdmLrjLDayOESUI4MUWhmprFlizonfv3q5bt24ZOimo2hYilUGYoxsCIcJviBGcn3MSIxAgOFa4ZCPMOjcrYTomV65caYIEBQrLli1z//zzT+j3WBJz3mfuceihh4Zu57EJuUa4YMzQokULu/3GG2+0rm8yVrEE9yBokHHKfYUQIlIkUiQILGMQJ/C058s9u9Y3TlD4/xGujeefxy+Q+omkECI++AoWLxTmBoM/Bm5cnn322VbRwiSOirHMFSmiYH6eELeyg6rmbdu2xXWfhBAFA8aWLDYwzqTScteuXbbwR/cE188///xE76IQIknwAgFz1rvvvtuy2YKdEO+9917ExTjMhVnMZC48bdo0d8MNN7glS5ZkKVQceOCBtgmRivz999+2/oMwhxDhLzds2JCjTRNzSC9EcJ15ZCS5hggTkyZNMlGCjgmKEoLQ/US+BMJEzZo1M3Q8fPfdd27cuHHuqaeeCrl30OHhRQrGEHR9E5hNZoW3pkW8EEKIvCKRIkEQmM0gD68+vuyffPJJ+3K///77Xd26dUP3YyET1ZogsaxECv5WCBE/fCBY5k4KJmx48Xbo0CFD9SmLzC+//HKoWgY7KMjsAyoKJtiGMUnJTrCilTqrrh0hhMgvLPgNGzbMBAnE8xo1ari33nrLFlNAIoUQwkMwru+kYIHV+80D17GH69GjR0QvGH/nxz8VK1Z0y5cvd0OHDnWjR4/WCy9SEo4Puu45RhjDc8nG/M+fWzODdRoChBck/CUCQKSQ24JtE4VxsM8++1jelBdDKJAl9xRRgi2r+QdC4YgRI9yMGTNCnRZHH320u+mmm8yGNsgXX3xhxQ0TJkyQNa0QIipIpEjgxPCnn34KnXzWrl3r3n//fRucBUUKFjsvuOCCvSpTTj311NCipxAifvigPn8MeqZPn27HMUFi2cEiEPdhoCiRQgAerghcl1566V42CSwc3nPPPa5hw4Z6sYQQUYMu3WCuEp0TW7ZssVBMYFGC8ekZZ5yhV10IYSxatMguWahESMjO5z4/UPUdDMcWIplhHcaLEV6Q4DK7IlIEAi9GYA/srx933HFR2R8EA9aMKJDDbcN3alNAxz4hSrCulFMHNzD3QKgA7k/WRLNmzWysQMcUHd5+n8mroJOiVatWUfkfhBBCIkUCCarjnFCmTJniVqxYkeE+VatWde+8885ef4s3oJ9I7t69O0M1ixAidtUx+OYGj0FgsIb4kFXl6Q8//GADOTqn8Prk74J/Kwo2ffv2tUolFgNvv/32UEYRFVfDhw83C4U+ffokejeFEGkCHX+MORE/+/Xr58aMGePuuOMOG4NyjitRooT78ssvrUiGCkwhhAgyfvz4qLwgZEzUr1/fin4I8J08ebKF+GJLI0Qywblx06ZNliOHPRmXiBGcK/ldZhAJGM8jRPiNzgY+69lZfEcC+S+IhnPmzHHHHHOMCQVQvHhxExJYF9q4cWMo+Lp79+7ZPhb/y8iRIy2U3mdTdenSxfYfcSJYKMt9+vfvb6IHcxTgb66//vp8/09CCOGRSJEkVKtWzS7xBc4ukCyzXRQnIAQKApBQuYUQ/197dwJnY/n/f/zq2/qtiJI1S5KIyBIlkp1kSaEIZStRQqIVZQtZIsmWlCUUSZasUbLTQmUPIZRslbbzf7w+3/99fmfGDLOcdeb9fDyOmTlm5py5Z7nu+/psocUJH/j9DMwwXb58ub2kNDd+Ngy/m2TEcyJJKbxIIE7uGVzHhQAX7N7FDj9j9IjlIiBwoK2ISGqQHUlGJYM5GW45duxY23Tx5i2xhrHxolZPIpJY9jh/OxYvXmyJOFQ/BDpbj/1AfCybmwcOHLDEPTZxCVAEdhQQCTcqeRhk7QUjvJeJVUdkz57dfnYDbySjBXN+CtcGPCeGV3M9yX4Re0CgKpLggZcMR1s2ZlmcbS+Jr5EZMLR04hrE21viOgT169e3W3x33nmnfV4eOyn7VSIiKaEgRQRxEThgwAD7Q0/vTSLflOaRkR1/YBgnhETwGZYEFiGi8du3b3erVq1SkEIkDLwTOU5I+X31eCWxFStWPCNjddeuXfb7SnYLG86Ux9Pih8wXEe/CYO7cudYCkL/pnPiT/UT/VxGRYKIlQ+7cua03Nm3mwBBMBl3SAsIbqqkghYgkpHXr1nbe26xZM5uZldKNynHjxukAS0QxsJ0ABBv73o1ggDeHIRDrI/swJJx5NwISzJMIBaolCARyfUBwgmvK+AOvqURiHSdQyLUmWN8Tw17SqFGjLDmBLgBe1UeDBg1saHYgKrnffvtta1FFqyfvOpfrFK5pRURCRUGKCGJBGT16tPUh5+Vtt93mlixZYlnZgUEKNkZZFAhKENjw0MOQhSJ+iygRCQ2v9Vr8dk2JBSm8CouSJUu6yy+/3GYPsBHN76yCFBIfQYlbbrlFB0ZEQoq1ik0JNiHq1q1r7eVABjMbIlCQQkQSwobpxx9/bH3oRWIFiaDr16+3QARdKLgF7qvEPx+nzZF3IyBBgCLU7bVJEpg4caKtw1xDetUSoDKDSgYCE9xIZkpOgJCgB1/Db7/95q/AYAh2mzZtLPkuPgZhE5AkEMnjcR0LBShEJNQUpIgg+v7Sa7xEiRKWOXvHHXdYkIINz0cffTROMIKABuWz+/btsxI+sGDOmjXLMgBEJPQ4uUVgf85ffvnFBqWB3+HEghe0fGrRooWdHNObVEREJBx++OEH17VrVzdixAjL+mRA9syZM23mRJ8+fay6zwuoszlChmawBnmKSNrCBu6VV14Z6achkiiqBLhmIymMl9ziVyJ4qDxgL8a7cY0XrNkR58KcQ4In3t4OgYTOnTv7/5+AAOszQQICFJdeemmSP/fx48etNVSjRo3sbYIM9913n+0ltW/f3hIUqKIIFNjCiapLZlU0adJEs09FJKwUpIggLg579+7tf5uNTBap+NFs2sNw4chCy6Zn06ZN7X6v9ROleyISel7GTWClkzdHhgFj8X93vSAFwQtOLIcMGaJvk4iIhNXDDz9sQzbJyiQ48fTTT9v9LVu2tMxNNm841/QGZauKQkQS8/LLL7sXX3zRWsEkZ9NUJBS8CvXAW2J7I1QfsKfi3QhKRKqyffr06dZmkTZLc+bM8bd/pXqBGYcEJ5JbLQHaVdFemIoMgh5U/9OWCrR5om1VQgEN9qRoOT579mx7TCo31q5dq7kTIhJ2ClJEEYIULKoJLUb8H4vusmXL/EEKKiy8hYXewgktOiISHAQivF7d3u/e2Vo9HTx40G3dutV+n8uXL69vg4iIRMRrr71mbR2GDh3qPvzwQ2sjylwlhm2y2Qh6TtP+AgpSiEhiXn31VUvayZYtm8uXL98Z15/e3xGRUFQeUJG+Zs0au7GJvm3btgTfl+SxUqVK+W9USDCgPdzohkElx0cffWQt0mrUqGH3Ezyg9RLXiryPlyQwZsyYZD8GrRsJdAwfPtzmWHhIaKXi35PYXhGVJ8OGDbNEBloblytXzu7XYGwRiQQFKSKMRYVewCyw9evXT/T9qlSpYieFlO15pXgsPGSwsMBxf506dcL63EXSE06EOYmkNJbMm8DevKhcuXKC8yjIXqE0/scff3Q5c+bUCZ+IiIQVgfXPPvvMnx3Ztm1b6zPNmsRGCS0laO3gtYVQkEJEEnO261WRYGG/g9mbq1atstvq1autxXVCQ61Zw0qXLm1z3XjJdVokAhKeU6dOuUWLFllggvktJK6B1klekIJ1ma+HFsCpCQawj0Q7qN27d9vbBDvq1avnOnToYFUaiX1uKii9Idu0IB8wYIArUKCAzUgVEYmk83ysABIxLBD0PTz//PPdsWPH3GWXXWaBCzJUChYsGCdzgHJEAhJkqHibpGRvsxlKaWBKIu8ikjS0xxg4cKBl4pDFA06eKcUlcEFP0cATYkpmx40bZ5lmTz75pAUqGLjGx1LOK5KWUNHHzz/rGG1jRCSymGNGYJ1Nh4QE9p7m9V27dtlGBZmW/D5fcsklYX7GIhIuaWHNTgtfg/yfEydOWHUElX5eYCKwCsDDXCUC6QQkypQpY0GJSLVsCnTgwAGrZqBdEgEK9m48zIMgONG4cWOrWkwtfua9a06qH7iu5CVDsNu1a3fW60wCKMxIJHhCgEPXpCISbeu2KikijBkUlCPmypXLHTp0yIIVLLoEI9j0JOMNXCxWq1bNyvSJyntBCnrdE6RgIReR0PEqIwKHY/O76N0XP2OHSqdBgwb5+4OC328va0VERCQU2BxhQCYJL8ygoNIvsJ0EArMreZ3NIRQvXlwBChERCRkC47S4psKPoAS3r776ytapQOyD0Krp1ltvtcAEt3ANtU7K10BC2qxZs2x/xltDPWz+M5yaThdcJ3p7OilFEiuBBdoykVRAFw6uK0mAo6qf/STaOJ4LXTjYYyKosWTJEptZJSISTRSkiDAW2c2bN9siA6+dDIOOGHJYs2ZN//uyyHlBCq+HsFeSR8aciITO999/by+9Pp3wBp2dq9Uag7bJBmLDKHCTSEREJBQZqWxEsHnhVeX26NHDWkvQ0oEWT2xSrFixwoZzsnlCKw2o1ZOInGuzdMiQIW7atGm20cxmZ6CEst8lfeNn5ptvvrGEr88//9yCE7TBjY+Nfa6zCEqwx0HQnHUsGr333nvugQceiHMflR0EJrjRzikYwRQyj8ePH2/zJrz9Hq4lmVXqrddU+SeGvaUPPvjAWkBRKclzeuONN6xtFq2mRESijYIUUcALUHiLDgvbqFGjLCARGKSoXbu2vWRR2r9/v/US9hYnKi8Y6hsN5Y4iac3vv//ufv31V3udE2fPpEmTLKulevXqcd6frBqyWe68805/5gwn2VRXiIiIhNLVV19tiS60JKRil3NG5pqxltHmgSDFlClT3BNPPGEzz2hNoSCFiCRFr1693NixY12XLl3c888/75577jnrh8+5r5dEJ+nbX3/9Ze2pP/30U39gwruO8pCUWbJkSRsmzY2gBHsb0YiOFW+99ZY9x4ceesjuo0LRu9YjAEDCWjCfPy3BWbcJUJB4gEyZMllLp/bt2ye5TdM999xjLagILNJ+GLoeFZFopiBFFCEThWi3F6RgQRk5cqQ/Cp89e3YLSnAhSQY3gw8JSrAgcgFKUKNly5aR/jJE0hw2cLyTQ8qMPfxOtmrV6oz37969u1VeTJ061fqPioiIhBqZkWz8gIxJbyOCjUMCFGSoNmjQwO7j/Th/5JyT8082lKBKChE5GxJ0mINI8lzPnj0tm5x5NsWKFbPNXIKfkv7WnvXr17tly5bZjUoJukIEYi4DwYjy5cvbjaoDKv6iEXMb2H/xnh8/16NHj7ZrOy9IwWwMEkST0mIppUEKWjuBtZzfq2bNmtn80uS4++67ra2Td24gIhLt1HckSjz11FPuyiuvtNLZSpUq2QJE4MG7aPR4bWUIYHi8HvmU8olIaEp6vSqKc5XucgLLjQ0iKqEIKJKpSgaOiIhIKLAhxKbPiBEjrFe2hxYb3vozcOBA/xrGcE1atTzyyCPWC/z06dMuc+bM7vrrr9c3SEQSdfDgQX+bGDaeGYDpbYZSXSxpH2sMawub6AS6SZrkGokkrfnz59t6xHpChcHgwYOtC8TRo0ft/6i+ofog2gIU/BwTgKPyIEuWLJZo5uG+Rx991J57oGAFKKg8mTx5shs6dKj/Pqo2qHzgmNEanMc/V4CChAOqLwJnlZLAyvyKDh06BOW5ioiEmoIUUYJWMETtKYdkSLbX5onqiEAs9li4cKG/5ycLJ/hYEQldJcW9997rb69WtWpVq3TixDKQF0DkBJxh2nPnzrUMlvgBRxERkWCZMGGC27hxo+vbt2+cthrdunWzKl3Wr8CZSl670cB5FAQ5omEgqYhEL1rIHThwwF6nguKTTz6x19euXZvq4cASvfiev/POO5bNnyNHDgtUsYnOrEzmJlBtXr9+fdto37Rpk809ogVYp06dbPh1NGbys1ZOnDjRkkCpjHjwwQftOf/xxx9WDeKhtRJzHLj2CyYCN8yJuvbaa13Tpk0tCMJ9YC2mRVONGjWSvC4ze4rEV6ouvCHkrPNU/ouIxIroWy3SKVo3NWrUyEplQVbC+++/bzd6f3qLE0OYWOgp0WcRo/qiWrVq9v8stLt27bKFTkSC4/Dhw+6nn36y12vVquUPHi5evNgGmJGNGsiraOJ3GJ07d7bB2bfccou+JSIiEhL0qKblBueIZLCCADmBcjaH+vXrZ/exccH6RdWut2mkeRQiklQkx/E3hNZwjz/+uG3sjhs3ziqz2JCWtIGsfBIg582bZ9n8X3/99RlVBBUqVLBqcW4Mbw6csxmt2C8hoYzuFQTYApPNmNd033332c3bkwkF9msI5vB7Q5IqsmXLZtUOqTmGBI3YO4p/bSoiEksUpIgS+fLli/M2G5wdO3a0bIX4KOELzEbgYpRsBsr1ifITkReR4OAEEgT/cuXK5R+WRnYLZbeB2S1bt26138///Oc//qqLAgUKqMRWRERCirXIG4rpee211+wlbSK8Nk5kh1avXt0VLFjQffvtt7ZeeUEK2nWIiJxN//79/a8zd41ZbV988YX9jfHaEkvsVkvQppa2XQSiAudKsMYw6Jr1gxvtiGKlcobB0wQmaN+7YMECC8B4ihQp4ho2bGg3kspC7d1333UtWrTwVzqwh0NCG7NdknM8qernd5GqD2/vh0DHd999Z+u6iEisUpAiSlEyGdiXMFBC5ZJsiBKkoERRQQqR4M+j8IaNeieB8TeDQMkwKM2lFFpERCRUaPs5atQo9/TTTyd4bkhP7ddff902RDy06wAZsGxkUJVLgN1r9yQikhxsVnOT2JwtQWsmWjZxY3ZEIFogcU1DJTmdG5jVEIsIulDx4yEYQYCNwARDqUOJYATVG3S/8NoBUy1B66guXbr4O2IkF8kFL7/8sq3jdOQgKQ4KUIhIrFOQIoqwgHnDjig/PNeCRakgw7Vvv/12V7t2betDuGPHDssOYMaFiKT+xJLBcN5AwHPx5k54G0L0FvVKoaOxF6uIiMTu5hJrDVmvBBmYSREfM87YBPH8/vvv1uICXqXumjVr7CUbHAw/FRE5Gy8hJzHNmzfXAYxi//zzj1XUzZw505Ibf/jhB///sfdAsJp9hbvuusuVKFEi5ja9WdMIztP6kNkMoMKHdlS8JDhB9USosR8zZcoUN3DgQJtp4Q2VZ6YLezhedX5ynD592l9tQctGum5wnclsGBGRtEK7ZlGEwAItZOhNyPAxThJWrlzpRo8e7e6//37/MG2Q7UBLKHonbtmyxU4iGNJ77Ngxy5zTCaJI6lESTI9vNnoIBoJ+oZz4MkOGdk+BOAFlcClZOfxe9unTx1144YU208LrES4iIpJabCYRpCCbko2KQKxDtJCIHxxnQ4oBp7QYZWMDtGmBWj2JSFLE/3tDT39az3Ade+mll+oaNApxLbN06VILUrMOMNTaw/eM9k1s4BOcoFo81gL2fH1cb4HZGQTSWAe9IAXXa7wdrtZSY8aMcYMHD3Y//vij3bd371475l4lSnIDFPx+MaN0xowZ7ssvv3SXX3653Z9Y1w0RkVimIEUU4SSBsj1ODryeiAw/evvtt60nZGCQomLFirbgsshxwUmAol69erYoM5dCQQqR1CNoCEqdOfklW5XsHMp0yTCKH6Tw+rWCTBf6gJO5qgCFiIgEG8M9WYs4f/QcPHjQAhBkbi5atChO60HOJ8E5opcd6wUp1K5FRJKCFnHxbdu2zYb1du3aVQcxiiomli9fbm1r2U8IDEzQeoigBEPQCVAwBDvWUI3AfAdu7du39wckaM9LZXuTJk0sgJGSVkopcfjwYZsDxXWi9zvC+kt74EceecT2alKKr4EA0+7du9306dPdww8/HMRnLiISXc7z8ddbohZzJooXL27ZKQyz8voZgqqJwAVvyZIl/rYyBDViZZiVSLSe3JOpwkAyso4IAtI2g8wYMo1osRFYfksWT/yghUh64QXLWZcyZswY6acjkmYRhGBt8jIp46M3NVmcZcuWtQCEt0FDe9DcuXNbG8Pt27dbewhe57yS31s2dajKFZG0LxRrNvMM6PvP4N5w0HlHwqgkYON+0qRJ/kx+0M6PGZbMYSDZ0as8iCX8vLJJT8CdllUeAvMEZCLpzTfftOQ0FCxY0GZF8fuQ0v0YvneBFRcLFy60a1INpxeRWJXUdTu2mgymQ8WKFbMeivQ1nDx5cpz/ix+R54SD+9gsJWNCRFLOOxkku4iBcbRhGz9+vP0fGTuBaLGWPXt29+KLL+qQS1Qgk4uWLrQqY7PS6zt/Lvwss6lZv379kD9HEUkezgXJfKUdqDfsOhAzlMaNG2evM+MsMIOUTSuCErQu9PpXs5nIhQKVGLSHEhFJKZLkCIZK+FElQfU3ewbsHQwYMMA2uTNlyuRatmxp7WtJdmQjnYHNsRSgIGmMa7KmTZtaZUKbNm0sQMH6xtdCwMKb9xBOrMErVqzwv037RSob2YOh5W+rVq1SHKDo2bOnu/baa93cuXP99zFgWwEKEUkP1O4pSiNMs2fPtuxsFjhOLihhHDFihHvsscfOGGC1b98+G3rFhSd98smgGz58uJU5ikjqWj0xMJtKJoaSMtyezR3aP3koRuP3jeolNoTBSSsZq2wSi4Qbpf2dO3d2o0aNsgAFPWv5mf3+++9d1qxZE/04ysifeuopf696EYku/I7u2bPH+lPHnzcBfn8JRJAt681R8tYpr9UTGyker9XTLbfckuDnExGJj2vUQPx9YQOc69TAvzsSWvytX7x4sRs7dqwNwWY2CAhAUPHdrFkzexmrnRVo5/TWW2/Z9RczHTzM/WMdo0ohJcOnU4uZEH379rWKjuuvv94CErQB5howWMESEuP4fjKDlMCHiEi6QrsniS5z5syhBZfvqquu8v3+++++48eP+zJmzGj3zZs3L877Lly40Hf++ef78ufP7/vnn39869ats/fjPj5ORJLvjz/+8F100UX2u7RkyRLfv//+67vpppvs7cGDB8d5388++8zuv+SSS3yHDx/2/fXXX75rrrkmwd9XkXAoU6aMr3379v63WRty5szp69evX6If8/fff/vKlSvnGzt2rK9Fixa+evXqnfN35NixY/7b3r177Wee10UkdA4ePOhbsWLFGffPnTvXfgcvvPBC37Zt2+L839q1a/3r1K+//uq/v1WrVnZ/9+7d9S0TSUdYq1O6Zp933nlxbv/5z3982bJl8z3wwAO+/fv3+2Lha4hlR44c8fXv39+XL18++/q9W+nSpX0jR460/49lnE9Wrlw5zteWKVMm32OPPeZbvXq1XZNFwpo1a3x169aN87zq1KkTlOO9e/duW9s97OF8+OGHEftaRUQiuW6r3VMUYkA2mSgMWqJ1U4YMGayiAmTEBipXrpz9/86dO928efNsaC+ZspRGkn0gIsnHcDLaatArjzZqVEbQ45WWGA899FCc9/V+J8noyZIli/v5559dkSJF3NVXX+0qVaqkwy9hxc/t+vXrrQTeQ/Udb3tZ0wl56aWXbO3w1ppz6devn7UX9G5UDolIaASOj8uWLZsrX758nP8n45KZSXj88cddgQIF4vz/xIkT7SVt3AJbhWpotoikJIM/8MY1J7NyaEtMOx4JjU2bNtk52jXXXOO6d+9ulXW0c+rQoYPbuHGjW7t2rQ0vZ/ZELHaR8HAuykxOcO46ZcoUq9ShjSmtDsM1CDvwuLM3w2NTRcTjN27c2CoqeDu1x5vfmxtvvNH2fTzs7dStWzfsX6uISDRQkCIKUTJIr8Xnn3/ePxiRExB6E9KPMPBilU1Tb1OJMlsWM+/tYcOGRegrEIltAwcOtJe0TGODl98tLxCROXNm//vRZu2DDz6w12nJ5m0gzZ8/3waTxmqJtcR2X2I2DPg5DMTbbCIkhPWGPva0CkyqZ555xnrZe7fAUnwRCR7aDHrB8sT88ssvFhhns+SFF16I83+BM80CWz3xeWlTgVtvvVXfMhFJ9vlG4OayBB/X/CQhsgaUKFHCZuMxL4+kRJIRmQFCy1lmUcSiHTt22NfG10PAC7TYfeedd6zdE7Mo7r//fn873Ugg+YyZHuzPNG/e3H377bc2v43ZH8FQqFAh+54SiPn999+D8jlFRGKZghQxIn/+/LbpSaZc/Kg6WRPcx8YoQxAfffRRe5vqCoYoikjSkZlE1QQ6duxom69eICL+wGyyejiprlKlyhlDR6nCEIl2J06csL7FBCioBEoqAnD8jAfeRCT4qHIiQPHwww/7e47HRxBy2bJlbt26dZZZG4jBm2yykOFMootnzZo1/vPLs82qEREJDG5yLsz5An93SNzJnj27JS4wK0eCg2QT5ouxec9MguXLl9smORn8n3/+uf2tp7L7v//9b8wdcmZuevjZoSKBgAQvPVQuRGquH+utV32IypUrW/Uwg7KZ7XTDDTek6vOzHvP99PA9pqpx6dKlMfn9FBEJNk3Ji/LsCS4it23bZhnc8QdmexjkW6dOHSs5ZBFlAWXwKQvgs88+e8aAMxFJ3IsvvmgvyVgiu4UqJi4WaN0UmDXDZhHD3OCV6NJmh4FuVDiJRAIbB1zI/vTTT3Hu520uBhPKYiMwxxri8bLZGKTLsG3WGBGJjJdfftkdPXrU1iIGoiaG5JSENnVuu+02qw4ksMjfBo9aPYlIclCxxd+TH3/80TVt2tTOd0FFFtn8ZL1TmUmrnlWrVvkrjCXpuN6g8o3gNMmJuOyyy9wjjzziOnXqZK2eYnVPgyHfr732mlWh00KJNYuvjaoEEr0iMQQ7EGsi14CLFi2ydkt33323u/LKK+150l4rGKjCuOOOO+z7TGKplyBAKykREfmf8xhM8f9flyhDpgR9h1koKeek9RMbozNmzLDFjcCFhz6ULHBcgBLpJyOBPo68TcQ+sAexiCSMMluyUGmPQfUELTBos0bWDyfXZNME2rdvn3v33Xfd008/bfNjuHjgYwkQBqsMWCS5ypYta+sBmwZe0CFPnjy2yRn/QosSc+9C2EOrQSosaBlYsGBBK70/F1o+sM7Q+klVFSLhQRLLm2++ab+z8SsozqVWrVpWgcvfCf42iEj6kZI1m4QczoXZxI3fUpJ2ktWrV7cs808++cQ2owPby4VCWjrvYDtmzpw5llzodUFgg5xAD3+fY3HOBE6dOmWtm1hnvPaCYIZGtLSoYg+lR48e1lbLS9Bp2bKlJQgEu8qQa0XOz7lWpFKGGYYiIunF8aSu2yEZ2y1B8c8///huuukmX/PmzX379++3+6ZMmWIT0bNkyeI7ceJEnPevUaOG/V/r1q19//77ry9Hjhz29osvvqjviEgSDBkyxH5nMmfO7Pv77799nTp1srfLlStnv1Nn89133/ny58/vy5kzp+/PP//U8ZaImTp1qu/iiy/2TZgwwbdlyxZf27ZtfZkyZfIdPHjQ/r9Zs2a+7t27J/rxLVq08NWrVy9Zj3ns2DH7XeGliKTOrl27fNOmTTvn+/F7yu/d/fffn+zzS/4m8LHr1q1LxTMVkViUkjU7b968vvnz5yf6//PmzfOdd955vp49e/rCIa2cd3z22We+22+/3b4Wbvxt7tev3xnX+bFk7969vq5du/rXGW6XX365r0OHDr5vv/3WFw22b9/uq1u3rv/5nX/++b5WrVrZ+hssp0+ftnPxwGtIjg33i4ikN8eSuG5rJkUUo70TmQa0b6KXMO677z53/fXX27Ayb5ivxxuWyPvTR79bt272NtkLXvsOEUk8i+mVV17xz6KgColIL6XI/G4FzoKhOik+ssfIaqWX6dlacoiEGj2LBw0aZGXrZKpRVk/GtJf5uGfPHhvQJyLRWdF3zz33uEaNGp1xnhdoyZIl7sMPP7S1ymtTGB8tQshipWIqEG3c6C1P/2tV/YlIUnDecLbM76JFi9q1K1npcm604WQmGF0T6J7A32OqXZkpyUs6KMQa9i3o9EAVOm0GWWcKFChglbm0CWNPgla60YDrOmY28TPLQGzaL40dOzZoszDYe6G1E7NDGHLuoeo+KRXKIiLplYIUUS6wf7BXguid/LH4UzLjuf32261vPi2h2Gxt1aqVLYL0Mp41a1bYn7tILGFgGeXq/M55rS/4XSPgV6NGjTgbSPROZZAd7x+IE12GkIpEGj/D9P2lVdnq1autBZSHAbvePJWE8H9aM0Qig/M2WjHRZqJevXqJtowgmI527dr5e8PH3ywaPXq0a9269RkDbb15FLfccouC6iKS5JlXzLBKDK2Gg90eJy2iZfMbb7xhm/W0jGWzvE2bNtZ6k9mSDCOPtSSvBQsWWEtchkBPmjTJ1qg777zTffTRRxYUp21VpFty0aJ3zJgx/re5XqNd4ubNmy3Bk2BKMHFNSHIpvze07hYRkaRRkCKGsi3o78mJwP33328nNgww476EqinGjRtnAQwyNNC1a1f7WBFJGAPpUL9+/Ti9X7lYCKyi4ISWbDJOar0LCTZ89PslIiKpRaC8b9++NmAzd+7cCb4PwQf6ltOzvFevXgm+T86cOa2n9uOPP27vF4ihtmDukohIUpCw89xzz1k//fhIiOAatGbNmjqYZ8FQcYaPP/bYY1ZlwKY+f4/5m87f7FjUv39/+76T7EUyJUPV169fb28zfJrN+kgiWZPuEnSiaNu2rfvyyy/9/8fsiWBWdnz88cdWVR84x4UKjYYNGwbtMURE0joNzo4BZG5TGkhQYuHChTYQe+rUqe6BBx6wQYlkrngDE9korVChgpWNUuZPCwAucik5pKSR7DwRiWvlypVWiUQwgpNLMoJuvPFGywIKRDYqmTcEDbmgIPOJiwsuOBiExu8dJ+gi6U1aGmApEglkKOfNmzdOUDwhnAuy2cLL119/3Ta7kotqQIIcM2fOtMC8iKQvKVmzyUQvXbq0u/jii1379u1tc5frTgKqI0eOtEAFQ4jz5MnjwiGWzjs4TrTve+qppyzIw/Pt3bu3/f2O3zUh2vH8CbB4VTNU7dJa9OGHH7aEr8SC65HYP6G9FNUpPF/QWovvQ/HixYP+eHS4ePrpp13FihWtHWOkgzMiItEmqeu2/nrGAHpU0t+Rdh28DiLybKKy6A4dOtT/vlzcshjj66+/dldffbUFM0A2nbK9Rc5EuwzUrl3bTio5yaZ1GhdbgSjPJkBBv1J6jGLr1q02t4I+vQpQiIhIcjEnhkA353YnT5486/uysUWAgkADWaHJxYUBlYBQJYWIJBUJc1QOc/35zDPPWICT+TlUV3AfiTrhClDEEuZI0rqPlkds8FNdQHY91+WxFqBg892rSPAQXN+/f78bPHhwVAQoaKdF+6aCBQtaBQV7JcxLmTNnjlu+fHlIAhSgtRNtnVjLaXclIiIpo5TfGDFgwADrU+xl2HFS07NnTwtQxM/2ppKCnuO8ZMOVj50yZYrbsWOHlSFyciQi/8Oga8qv+d3i94kTTHp4U6FExlhg5NcbrE1Juzccm2FrBDcSKn8XERE5l3Xr1tlGCgNTz5V9SaYmgQZaaiQWGOf8kE2ZOnXqWNZzoDVr1ljCCsH27Nmz65sjIknGQOR58+ZZCx2vrQ29/OO3lJP/oeURiYZs4nMdP2jQIJsZdq6KuWhFSypm9TH/kjXL6+TgJVFGg1OnTlmb68OHD1vQjLaHrJfBDghRWcR62qBBA//vBhWR+l0QEUkdtXuKYV5VRFJOdCjBZBgqizULaKyeHIkEG9lflKqTEUbri8BMnMATWk54ubggM4c2GV6QQkRiq+2CSDQiQzlHjhwWPEjtxgnnepwjsokYfxgoGza0AqXKdvLkyal81iISi9LCmh3tXwNtYanUpuUyrbFo1RyqLP5QoBqAwd4M9KaCz0OQigTJaApM8Byvu+46//7GW2+9ZRUsVKtccsklIXm8UqVKWYszZlzccMMNQX8MEZG0Ru2e0ig2TseOHWtZdyzEgcGGhFo5nThxwrLDGazIhistBT744IMwP2uR6M1wIkDB7xEVR4ECAxRkDDHTBUOGDLEABSeofKyIiEhKBJ63MdvobAEKWjwlxcSJE+3z3nHHHWcEKLxgiPd4IiISXPz9JRjMbEgCFFRcc90eKwEKnvP06dOtpSBJjrSRpj2Vh/mW0RKgoFqCuR4ECd5//33//TxvkstCEaAAAZFy5crZLA4lfoqIBJdmUsQYst8Y1kvPfO/ilrJG2s/UqFEjzgUvJxnMseB9P/nkE1uwwWLO/4mkZ/yueHMl7r33XrdhwwZXs2ZNq5KIj6AE/08W1F133WX30VuWE3iChiIiIsmxcOFCG+JJG5CkDACl/SB9zQ8ePHjWdY0MUrRs2fKM/+fcb+XKlfa6ghQiIsFPJiR7n+t1PP/889bJgNl1sYB20cxUaNSokQUmaF1Eq9tomzVCi11mYDAfg3mBrG207w0VPj+ts0laA4EJKhGZw0KFvYiIBI+CFDGGAAODy9hU9QINZNe9+uqrdsH73nvv+d+XvsYMtiKTLleuXK5Pnz7Wm/jQoUP2/iLpGcEFKovo6U3GE8PVFixYEKflUyB+dxo3buzfMKK3LL9j8WfCiIiInKuNBudzBAxoI3guAwcOtDlJ69evd5dffnmi7/fZZ59ZlR/vwxDP+BiYTWsUNszIABURkeCg9U+TJk3c66+/bpvYr732ml1fxEKmPZXhdevWdZUqVbJ1hvl8zDZi3XnqqafcpZde6qIFle3MXOrSpYutZ6xlVMYPGzYsZI95//332/e2f//+/vsyZ84cc4PPRURigYIUMYZgA4MVn3zySf/CmDt3bte9e3d7ndJGKis87du3t4tSSjOzZs3qevToYfeT4cHCLpIe/fbbb3ZyC16OGTPG/fDDD5Yp5N3vZeqMGzfONpQCUeY8a9Ys9/333yfYTkNERCQxBMfnz59v1Xx9+/Y964FijhjtNkCCydmCFOPHj7eXBNQTytwl6xO33nprokO3RUQk+RUUVB9MmzbNqq/JuqeiItoxt4GAOZXhH330ke0tsHewY8cO2zOItlkfdIeoXbu2zVvKli2bvwV2qBPGmFvItd9VV10V0scREREFKWJSQgN7CU7kzZvXBiZSlhn4vmR8By7uLOp//PGHBTpE0qPnnnvO5rUwcO/uu++2uS0YNWpUnGwhsqBat25tbaAScu2114btOYuISNpBT2taM52rZ3bnzp3tnI0MVzbBzjaMjg0yeO09E6q0AG2mREQkOEj+mz17tlVdk+nvVV5Hc1Bl5MiR1qqIdkm8TTtBEhtHjBjhrr76aheNCFAQYKe6Y+vWra5Vq1YhqWZgP2XLli3+tx944AGrUiSgIyIioaVKihhGj/x77rnHHT161KL7XssAghTxB/py8sFJR4UKFewl3n77bVvgRdITWjwNHz7cPwSbTCdap3ECSsVRYPYqpc5o2rSpvaRKid+vwGolERGRpCAg/uWXXyb5YHktCNmEYd06W9sQ+mNTJVi4cGEb6Hm2IMXtt9+ub5iISBAwZNqriCOzv2rVqlF9XGn7zIwjKibYQ2CgN7MoqBBnAHW0YMYS659XIQiOLS2oaIEYqiqPTz/91NpJkRRACy+w9ubMmTMkjyciInEpSBGjWLjJlOOEwjsxYk4FGd+0qGFgIoEJz8mTJ+39KInkArlEiRL2OdiYFUlPmjdvbr8bZA9xor5p0yYbDOdVU4DfDSooCEaQcdqiRQt/qw1aqyVWWSEiIpIQzteoZiVAQJbmubA54rULeeKJJ1yRIkXO+v6jR4+2l23atEkwmMFj0taQWUq0exIRkdThmpq2faBd7IMPPhj1h5QqCdoGZsqUyeZnsDdQsWJFF01obU2le4MGDVzHjh3jrJnM5gwl1loqYmiZ+PPPP4f0sURE5EwKUsQoLkDJ6CbDu0OHDv77uEgls+Drr792X331lf/9aWvjZY8z9KlXr172/lRjBGYoiKRlH3zwgWXIYMCAAf5KCYIPzGzxMKNi8eLF1oaD3w82dVCsWDFr8cSGkYiISFKxCUQWaLt27ZK0yUJAgXlItOj05oklhkGnGzdutPaeBOIT4s2jYMgoQ1FFRCR18xxokUQFW7Vq1eIMVY4mJF7RCpCERXD9P2HCBOumQPuiaJpPRHCeYeMECmibRdtqghQkk4USMwY9WbJksWtF1kxVT4iIhN95PlYuSVPmzZvnChUqdEa/fL7VtIf68MMPXZkyZSyTjp77ZAvs3bs3avtPigQDg+IZPE91BFlPbAAtXbrUValSxS1cuNCfeUo7KMp8mVkxePBgy3yNfwLNRtDZ2m6IpDf0wycYzu9ZtA1aFIkWBB1YO5LaQ/v333+3zRMCC2fz6KOPujfffNOqY2n7lBCC6ySrUJ3BuZ+IpF9pYc2O5NfA3/Lq1avbdQTzhdasWRPyjfSUatu2rSVfMYuSNrfRinaEPFevZTXXZ7SoZk8jVKisf+SRR2w+1PLly9UKUUQkCtZtVVKkIXyzQV/9hAb6cmHMYs8PBidTzLHInTu3bbrWrVs3As9YJHzoLUqAgmBc/vz57cKCIdkMyw4MOLCBQ4Ditttu81dMBMZyCeopQCEiIufCwGuveg9krCZnyCfnaecKUJAd6wUmaPWUGA3NFhEJjnHjxtl1BG2TSP6L1gCF1w6aaxeq8qLVgQMHLChBgILK9kmTJlkCWSgDFGA9JuDEdd6qVatC+lgiIpI0ClKkAcygeOaZZywwQUVEIE6gJk6c6H+bFgNe32La3Tz33HO24crCzLAvkbRoxowZ7pNPPrHXKSN+6aWX7HWySQsUKBDnfWmjVrlyZcuq4eT18OHDVnnEAFMREZGkYNOD+WCVKlWyvt9JtWjRInv/wLliZ0M/cc4DWcvuvPPOBN+HwLs3sFtDs0VEUo6/t948yN69e59zXlC47d+/3zb4PTVq1HC7d++2mXrRKkeOHO6pp55yrVq1skBFkyZNQpYQRlCCBALPsGHDLJmAmSIiIhJ5ClKkAWykLlu2zB09etS99957/vtXrFhhm620AdiyZUucjHKGbnMBzckV/w9mW7AhK5LWKoy8wdfNmjVzgwYNshPU++67zzaQ4iNrh3kUN9xwg73dp08f2wR6+umnk7xpJCIi6RvrBbMfOEe78cYbk9zeiXMyzseS2paDwASbUlOmTEl0U4dElH///dfly5fP2h6KiEjKkPxHa9js2bNbe6Jowj4ALWupnqCtrYfnGk3Yb2CuJjM0PexJkDAZyqqU7du3u/Lly1tAxEOHiQoVKoTsMUVEJHkUpEgDuABmUZ81a1acRZdFmH6ZXPQSmGCwl4cM8uuvv97t27fPSiy9tk916tSJ09pGJNY1bNjQfvZp88SmD8Pt8uTJYxVF3oYOWVHeUNH4OGlmaBu/Y8lp0yEiIukXrZ1oJ8hAa6opkoLBqzt27LBhnfTJTio2dUqXLp3o/6vVk4hI6v3111+WvASSl2jJFw2olnvwwQfd/fffb0mLBQsWtGubaMMew9SpUy1wT5tCWhR6+w7haKW7c+dOt3r1anvsQ4cOhfzxREQk+RSkSCMoNa1Xr16c+1jsyfYge2Lz5s3Wa99DD02y7i688EILbjRv3tzen4U7modqiSS3Z6xX8kzLp6uuusqNHDnS2l5kzpzZ/35caJBFM3DgwDM+B78rQ4cOdbfccosOvoiInNVPP/0UZ9OFrNak2LZtmwUpwJpDFca5JHWTxQtSqNWTiEjKvfvuu9Y6ibkJyQkkh9I333xj1yjMcSCZ6sUXX3RffPGFJSNGE9YrKjweeOABd+TIEXfTTTdZa8NwzvkjefONN96w60C+hyIiEn0UpEiDyBone4+LZIZkkS3wn//8x40fP9698847/vcrVaqUv6fm4MGDrQ8kunbt6jZs2BCx5y8SDN99952/lRntnhiE7cmUKZP/9ZkzZ1o/Un5fAge0aYCaiIgkB9WpJUqUcO3atbOM26Ri/Wnfvr1lvtI/nHaE50KVLGvWrbfeau2eEsPzIAHFq7AVEZHko1WsV0XBtfKll14a8cP49ttv29y877//3lr5MVuhV69eloQYTUiIJGDPNRdVhj169LBWuuxFhNLKlSutkvHXX3/138e1IR0kREQkOilIkQZPoMiU4wL5zTfftPtYnMmq8BZmBlJ5Onfu7GrWrGkXuwzZLlmypPUtJtOAXv4isejUqVOuSpUq9vtAJhEZRWz8kLkTaNeuXf65FLRKo90ZyEYiqEGvWbU/ExGRpFi+fLk7ePCgtQ8MHMx5LtOmTbOqv4svvtiNGDEiSZmla9eutRYfPB4JKYkhY5Q1keB8UmdjiIiEWr9+/awCgKoxstrr169vm+3RimsD2vHRPpbr7Ejiur1169buoYceste5bqe1YDRWy82ZM8fdc889NoeiWLFiFpzo2bOnu+iii0L6uFwDMoOTuZ08noiIxAYFKdIYshMYDpwjR444ZZ7PP/+8DdGmyiJwuDYVFlRakIk3ZswYu0jOmDGj+/nnn91dd92lDVqJOQQVGjRoYJmlZDnRwonXGZZGAM5Dxmrjxo0tu4aff6+qCHv37rVNIrKSwlmGLCIisatJkyZu9uzZ7qOPPkpSuyav0oGsXDz77LOuQIECSfq4O+64w9Yq2o+cbV6S1+qpXLlyds4nIhINyPqngozKZa4/+VvIZjtB1WiuoiCp6bLLLovYc2GWZMWKFa2lLdcoVE7MnTvXgifRqFatWtZSt3v37m7NmjWuePHiYdsToe01La1feumlsDymiIik3nk+pQmnOWzEsvHKIMVAZNtxEkgQIz5+DLzNWE4WuZjlvm7duvl7JIvEAn5en3nmGXt90aJFVlHBTBYufm6++Wb/+3Xo0MF6oTKbYtOmTTZMOxAn0lQWcZIrImd3/Phxd8UVV1gFHoFukfSCcyXOu84WKDgX1iDWrgkTJrhLLrkkqM+vYcOGNpOJQLy3NopI+haNazaZ9lRUELwgCBtNXwPBYK6fmW3HTArm1UUClXFUfROg5jqfxMOqVau6aML1FvP/mNnhrWcEecJxPfXJJ5/YS4JdIiISXZK6biulKg0iUy4wQEH1BBigHRigCIxPBWaL0xKgadOm9vorr7ziPv744zA9c5HU4cKGTFTwkgCFN1g+MEBBKw4CFCDLJn6AAvR4VYBCRETOhplGtBMM7HmdXKxPU6dOTXKAIn7rwsRwnqeh2SISC7w2w/GT7DynT5+2DY7AW7gwbBldunSJWIDihx9+sHZOBCgKFixoSYXRFqDYuXOnVU08+eSTlujoCcf1FBWMrMXsYZxtTpOIiEQ3BSnSQX/kG264wb3//vtx7j969KhlGXzwwQdx7t+2bZsrW7asZWZ4fS3pEbply5awPm+RlJwYc3LKpgwVEPSOXbFiRYLvy8/26NGjrRXU3XffbfctWLDAftaTuvkjIiLpG60xGQC6ePFiq1ZIDloOUuWXko28fPnyWQtPzuXOtS5SRcsQVXq/i4hEI6rR2Njm/JwBy4nNsCAD07uFc/gxf0dBm6VIyZs3r83R428/AYrAts7RgOsuAu6rV6+2hMfy5cuH9fGrVatmj9+oUaNEA10iIhL9FKRI4+hRuW/fPsv0C6ycIIucVjgPPvigDbDy0AuZQdpkkTPIsXDhwlaiSfunQ4cOReirEDk7MlgJrpFldc0119jPPBlHgwcPTvRj2rRpY31lvdJkhsp/+OGH7tVXX9XhFhGRc6L1BxV8zz33nGvVqlWyjtiAAQNsQ4WXyUH1Hz3bOSdjI+hsvEB9qVKl3H//+99kPY6ISLgwm+Kbb76xirLE0K6OIK13o6IgXBhODWbdhRPX7lzbeLiumT9/vrWqjRZ0bGD9Y0/hxIkTFpygLRWtBkONnxkPlYhUDrLHEey2iSIiEj4KUqRxL7/8snvhhRcsWBHY0onhVQQjOOmqW7eubeqC93nrrbesp2POnDndsmXL7CKck8HbbrvN3zpKJFqQjUppMRUQlGDT7ozNGzZ/6O/t4T7anSVUKUGW6axZs6yS4sUXXwzzVyAiIrGKtaZ3795xzrHO5fvvv7fzM5JAkpMNzIaV13akXbt253xMzuFw5513JvkxRETCiRlxc+bMcUuXLrVEo8RcfPHF1sM68BbuIEU4g738ve/UqZPNoPACFbRN4polWmzfvt3deuutbvz48bYeUVnI9zGhNrrBxjDsYsWKxbnWi+RAcxERCQ4FKdI4TmRYxOP3z+Qkh2wVevUfOHDAToBOnjzpzxLxMkUYYEb/zYsuusjaBtx1113un3/+icjXIpLQCXyDBi/N7/YAAGsJSURBVA0sk4ahpTly5HB79uxx1113nWUaUQ6OP/74w91zzz02+I5Mn4QUL17czZw5U9mmIiKSqF9++cWSO3bs2JHidYuBogTYSRa5//77k/yxVG18++23thETOGMsMQpSiEi04m8hAQrOvZcsWeKuvfZaF628JL1wBikIAIwdO9YtXLjQuh9EIxLDuO5iv4Dn2bNnz7DN8yMows/Qpk2bwvJ4IiISHgpSpDO0cPIGWbGBy5Cpq6++2hZ4yjIDS0oxZMgQG0BM/2PvApmSzsDWUSKRQv9ab7A7Q+SYqcKAeCqBsmXLZveTqcoQtZUrV9rP/NChQ/0fT0lwSjeaREQk/Xn88cft3IngQkrOhcg45VyKZJCRI0cmqwLDq6Ig2H6uLOLdu3db20MC+N6MMRGRaGrxRPLQ5MmTXYYMGWzuAzevaiFakJxHUDnc7Z6YOTF79myrFKhdu7aLFoHrXv78+a1V7saNG12VKlXC+ti0WWSeYOB1nYiIxD4FKdKR7777zi6q6X/sbeyStcLJBZkhZJ5z8R2IyoksWbK4rVu32gBuvP322+6JJ56IyNcgEnhy+tprr9nrzE4hu5QgBCesnDR7g/gYMseAeKqBGCBfqFAh+z+GnJLBxfwVzVsREZGkGDRokA0uZeMoOQEG/Pjjj1adCqpck5M5TNUra5nX6ulcCISAgdnxq2lFRCKNoCvthGlHRyW0d3vvvfdcNAkMmoS6koLrlv379/vfZq1p0aKFixZcLxGMIBnMwzBxWkSHktfqkOp5jpFXxVG9evWQPq6IiIRfeOrxJCqwOctF8dGjR63FgIdZEwQqGBzcuXPnOB9DYGLevHmuUqVK1kOZbHUCFiNGjLBNXw0ZlkignLhv3772Oj+TBCgYkkZ2K/1JA8vI33nnHcsk5aInMMuHYfBs3nBxRJmyiIjIubCJtnjx4mQfKNYkzrPYlCM4TiVgcowbN84qA6mKoD3huajVk4hEs1ipyg9XkILjwbrA9QrX3iVLlnTRZN26ddY6lzmWu3btsv2AcM3HoCqQPQra906fPt01btw4LI8rIiLhpyBFOsw+Tyjzr1q1arbRS+AhvtKlS1sQg1JTTkjI/OPkZPDgwdZ38pVXXgnTsxdxFpzo1auXHQp+Fr2TZFqZMUDb069fP8u64ed94sSJNhQ7EFk/y5cvj6oBdCIiEn1IzChatGiqB1BzrvX5559byyeC50n1119/uTfffDPJVRRQkEJEJHhBCgZ3k70fKly3DB8+3F7n2iaaghR0UWCWEm2hSXqcNWtWWK+faDvNGkglR6NGjcL2uCIiEn5q95TOBAYoyNjghIiAAwIDFAzoeuGFF/xZLpSbktXBsEbeP3fu3HY/raOYWSHJwywETrjI/i9btqxbs2aNDmES9O/f3wJtyJMnj/0sctHAyTLD3wPR2owgBie1TZo0sfsooWY4n4fjn5yNIhERSV8496EVZo0aNWzjKDXnX7TKZMhokSJFkvWxDJYle5Wqv/vuu++c7888Cm6aRyEiEv1DsxmQ7V3fDBs2zK5homUex1NPPeUeeughC1DUrVvXrV692t8COpSWLl1qFRSe5s2b23NJbptFERGJLQpSpGMEKAgwkNkXWMrKhfDdd9/tevfu7Xr06OEPVJBBSL9/hpvt3bvXWh54n8c7sZJzo4yXklWO7YYNG6xtA5sfmotwdlTsPPPMM/7qHjZ6uGCYM2eOzU6Jj7kU33zzjWvTpo29/csvv9jPOq3O+BgREZFz4dyHFhcMeWWQaUqwueNJyXwIbzAoVRQE5s9F8yhERILDu0YO1dBsEq2oUgDXOdEy95F1ixkQXmtnrlsJmGfMmDHkj80w9apVq9ra6wWJREQkfVCQIh0jK6JAgQKuW7ducbJDrrnmGstYx8svv2wb6t6QKnoh04s5c+bMNsQxW7Zs/hY8nGB57yeJo00WG+cPP/ywu/HGG92oUaPsxJf2D3ImgmRkznTv3t3eZhA27TLIqGHYOyex3vsxq8IbLBr/goKNIbJXr776amvbISIici6cH9EDm4HZKcngZE1i7fHaLyXX2rVr3RdffGGtNZhpkRRq9SQiEv2VFCSrPfDAA3b9zPVNnz59XLSgwwLX+wTGp0yZYtdYoWx3Fah8+fLuyiuvdDfddJMqJ0RE0hnNpEjH6Mn/9ddfW8ub+BjcxYlIx44dLYOPQY+jR4+2GRQMG6ZlDlnpP/30k8uSJYs7cuSI/T+BixkzZiQ420Kc+/PPP9369ev9FQHgOLPRziaEnFlmTDCCjBoQCPPmTNAf1cPJPT+z9HLlZ48h77TTCsT9nGTT8slrVyYiIhLf9u3b3cqVK239QUrbAnJu9Nhjj9m5Em00UzLTgtYfoP1H9uzZk/QxClKIiER3JcXRo0etfR/DoGvVqmXtaaOplRHPhWt7rq9uvvnmkD/e33//bfsMXktfAjgkTkbTMRERkdBTJUU6Fxig4CTspZdespMlUG46YcIE20R/6623XOPGjf0tCzhZ4SI4V65cdhF+xRVX2P0fffSRK1eunDtx4kSEvqLoxrFi492rQPHw9sGDByP2vKIRmUuVKlXyBygoL+bYJXRSS1WQN2xuyJAh/gAFw0Znz57tf182mhSgEBGRs20ckYTRokULN27cuFQdKFpEEaCgapI5XynRqVMn16xZM0saSQrNoxARCX6QIpiVFFR/c+3CbD2uWSZNmuTfoI+kTz75xILz3vUWCV7hCFBQMVi4cGFL5PNwvaYAhYhI+qMghfg1atTI+k0++OCD/vu4SPcqI2hZQBa7h/YFq1atspOXgQMHumnTptkmMCcY/B9VFSIp8fPPP7tixYq5FStW+IeNnjx50n322Wfu119/9b8fATWykN555x372Xv33Xcta9WrruD/6tWrF1Xl0yIiEr0yZcpk50G0w2Q+V0pNnTrVzovYeJo4cWKSZkkkpFSpUvbxvEwKzaMQEYnudk9cN5NExfU119m0VYo0AiW1a9e2a6qRI0eGfe4gFYyacSkiIpEP2UvUoO//mjVrrKwzEEOr5s6dayctjz/+eJz/owxz9erV/vZOvF25cmUbrH3DDTfYxXKJEiXC+nVEM1pjsZlOZmUg3k5qG4e07ttvv7XZJ2Sz8nM1b948+5miTQY370SeFmQMdKP1GJs/9AyvU6eO//NQAXTrrbdaVpB+BkVEJCkIjDOPq2vXrikeEEpbQS9g/vzzzyc5wBAMavUkIhK97Z64Nn722Wft9ddeey2s68PZ5iV26dLFXm/SpIl/kHe4MJeRNtS9e/cO6+OKiEj0USWF+FWsWNHKThlWFV+VKlWs9ZPXl5m2T1u3brXXA+dPXH/99da6iDZStHwqXbq09dgU5z9WnIwyfNxDxj9v33bbben+MNHaiQoKAhQEHj788EMLUHjBssBMI34eCVAwEJtARmCAwsPsj82bN7u77ror3R9bERFJfF7UqFGjbD32pDRAQRuPNm3a2DpWsmRJ/2ZUStZDPs+WLVuS9XEKUoiIRGe7J1r7Ml+IdkpU7LVt29ZFEmseAXkvQEF7QZISQz1bkmMa2I6X9ZaATUrXXRERSTsUpJA4ArNEfvzxR2t1QEZg/AvwRx991AIQH3/8cZz/W7p0qduzZ49VBdAGipMf3pcTMeYDiHOdO3d2Y8aMscHPVA20a9fOnTp1yj388MPp9vBwss7PSdOmTW3GBD+HBMI4aWbzKCFU9dDvmw0ZZlfg8OHDFpjgc3jy588ftq9DRERiD+sva3EwskdpDUJCB4F22jRdeOGFyf4cnGcNGDDAjR071mZ9JdUPP/xgMyl4fCoSRUQketo9XXbZZe6OO+6wtsgExiM5c4FrL4IkgwYNsrdZc1599VWrRA/HzMH69etbK2kREZFAClLIWS/aCUK0bNnyjOyHnTt3WqUE2euc0HBBjYYNG9oF9fvvv+/WrVtnm8hen0uCFvHbHKVHDCDnhPDFF1+0Y7Jp0yY3f/78M4Zpp6f5E2XKlPFX3FCFwwlshgwZXK9eveJk89DSycto4iR6xIgR/jJpTrZr1Kjh+vfv788IEhERORfOZQiOM8coGJtQVAF687lSivWNjFuqKZJK8yhERKK33RPXNswrWr58ua0VkUSVHtfnXE+99dZbVlERjqAJx/GWW26x6virrroq5I8nIiKxRUEKSRSbxswAiN+uiZOLhQsXutatW1twglkWrVq1ssx3MHSLFgdk8nGRTZCDkx5OhmgHxTDk9K5Dhw6W8cgxY6ZH2bJlXXrEJg4/Exs2bLCfEW4Mw6blE0Eub8OIyggqJxjuzs+aFxQLxM9bz5493bXXXuvvBS4iInIuBANod0mgO6UC1yXWstQEKPh4Wm9OmTLFXXnllUn+OLV6EhGJvkoKEqkC/74n5+96qNx0001u1qxZts489NBDYX3sIUOG2LUfraZFREQCKUghiWKzl/ZNefPmjdNLE2S3jx492g0dOtSfgcHsgH379sX5HAzQfvfdd+3inZYHVF9Q5somcmJtfCTtI+jw9NNPWyYNfbsvuOAC+xnhRvBr1apVrmDBgva+VN/UrFnTAl7eSXWgwJ+junXrWgsthraLiIgkhrlGnJN4smbNmqqD1bdvX2tZ+Ouvv0bkoLN+MqcJ2vgREYmeSoonn3zSug3Eb6EcbiSC7dixw/82gXkSwMKx3nLt7wXzue4L3F8QERHxKEghSUZme4ECBexCnJMMMkE6duzo5s6d66644gq3cuVKV7169TiDJ3Pnzm2lpJS3MpPC6838xhtv2KyAr776St+BdIaB6wQgBg4c6A9eeXMomNPBvA4vW4mKneLFi9tgccqiZ86caTMn+NnjYwmSUbUTuClEH3AREZHEsHbQ0rJatWpBSZhYs2aN69Gjhw27pn1jalA1+MQTT5yR9HEu27ZtswpNkkgqVKiQqucgIiLBGZxNYILEvhkzZlhXgUgGKJgDwbwirsXChbWJBDSu/bmOExERORsFKSTJCEYw4Pmzzz6LE4ggC4MABlnxlG/GH7hFyx5KOtlM9oZn8z4M5mYmQ/fu3eOUwUraRFChd+/ernDhwtZWw+t7ys/EjTfeaJs8zZs399/HzwVBLyopihYtav/PybXn2LFjNttj8+bNNpxUREQkKWilRLsN1pTAuUcpcfLkSdekSRM7j6FtFHOnUorzIlpsDh8+3F5Pjk8++cT/tUW617mISFqR2nZPOXPmtGsYroGqVq3qIoHrKiomFixYYBWEBw4cCNtj09aXNY3rusDrOBERkYRckOC9Iglg0PN1111nAybp/x+ICgta9AQGKDgRypcvn7Xe8f6/X79+7uWXX7bMeUo9efnKK69Ydsm8efPsREbSnj179rhatWr5M4i87z0/L7R9IgOVgdkeWkDRQgyPPvqoGzx48BkXB5kyZbIh7fTgJvNUREQkKUqXLm3rUbZs2VJ9wKgopX1Gnjx5LFM0NYNHhw0bZptJtMVM7qwqKg9BcF9ERKKn3RNV4dwigestWhFyzcS1Fi9D3RKQ4D2BezotoF27diF9PBERSTtUSSHJwklOxowZ/W+zefzFF1/874cpIEBBpjwZG6VKlbIWPl5bHwIdVF1QQcFJE7ig5wKfYAYtDryTQYl9tNEgc4b5JmwIEdzixJjvPdUTXuDKC1B4vUrpDU6bMIJXbPp4AQoGbXs9t1GiRAnXqVOnVG0KiYhI2jdt2jS3c+dO/9vBCFCwRo0fP97WoHfeeceC5ylFdeCoUaPsdYL3yUFgw1sbFaQQEYl8uycqwb/++uuIfivofNCqVSs3ffp0uw7/4IMPbIZkKB05csRVqVLFqiZoMSUiIpIcClJIinFB3KVLF8v4o99kIDadCVDQHuqhhx6y6guGaINMEspee/Xq5R+YzOY1LykHZY7FrFmz9J2JcfTlJrOUShlOkglKfPPNN3b/gAEDLOBAizBQdnzvvffaJo+Hkmju81AxUa5cOWulEenBcyIiEjs+/PBD98ADD1iQ/ODBg0GrEGzbtq29zqwkzoVSg57ltOEoUqSIVR4mBwF/MlevvvrqiGXrioikRSlt9/Tqq69aq2Mv+BxuXFczrJqWuFxnv/fee8leW1KCa7Rvv/3W5k4GJgaIiIgkhYIUkqp2CfRfZhhW/DZNOXLksNYDffr0sX7PH3/8sV14jxw50jasA6sqCGZ4Myk4ifr555/dPffc48qUKeO2b9+u71CMYeOGzRpOhMkiIsM0b968drJaqFAhC2B17drVXnICTRYqAQyye7g/saybW2+91d6PgW+BraFERETOhvMJ1h/WJSr1goH1jU0rgu09e/ZM1ec6ffq0DfPGU089dcZsr6TOoyC4n9yPFRGR4LZ7om0tleBUjpOwFQnHjx93a9eu9Vf6cW0dDsWKFXNz5sxxn3/+uV23iYiIJIeuZCTFaPs0efJkq37wUDnBSYkXcHj22Wfdxo0bLQOeDMH27dtbmanX6omMv9WrV1sGIRmA9Mls1qyZnVBxYlWwYEF7+5dfftF3KsrRqoKsUlo7rVixwu67++67XYYMGexEeevWrXHen+wa2lJQhvzrr79athFzTAIDEIFBKu5fvHixmzlzpg08FRERSQoSJz777DPLaA3WJj7BiU2bNlnLJxIvUoNzKbJPGbDKEO7k8oIUavUkIhL5SooRI0ZYdRsb9uGoXkgI8yCoQidgQCVhKNH6mVbPHpLVSAwQERFJLgUpJFUIJtCyycMAY05MGP7oIYuCTWuCGZdffrlVTgR+DMGMNm3auN27d9uJHGWpzC/gYp1M+3fffdd6R3fo0ME2uyW6EJgi85Ps1DFjxvhbO3355ZcWdKJCgnZghQsXtvcnQDVkyBB30003uUWLFlnwgfZPBKuYVeLhfTjBZaaJh+CE5k+IiMi5ENBeunSp/+3MmTMHJUDB/AcPyRWpzZJlzRw4cKC9zowlqk+TgyQOkjpQrVq1VD0XERFJXSUF10XedTBz+cJ93bJv3z7/6ySK3XXXXSF9vOXLl1sVH7dgtVMUEZH0S0EKCRo2n70Tsfg9kdkYIMjATIKXXnrJfz9ZiMyfIBgRePJ31VVXWWY+smTJYp/79ddft41wej9zAiiRRVsmvpds0tB3lSHZ3vd/0KBBlj0Ehqfx/fQQgGKWCZlJd955p7WBos1TYODKa39BGzBOfkVERJKKdaNRo0audu3aQR1cyuYPFZ4kTwQLgXz6d5P16s24SA4qDDmHoqVmrly5gva8REQk+YOzx44da62L8+fP7xo2bBjWQ0jFIC2Y+/XrZ+tCOBQoUMBlz57d1ka6LIiIiKSGghQSNGwyjxs3zgIPbD57CEyw4QxmE1x22WX2OidPTzzxhPXIpAUUbaE8BCYY8PXggw9aVgatEKim4PP079/fghUvv/yyKisigPJlKh/4HvTo0cNO3r3ghLdREj/gcPjwYf/rBC/IFqXFF5sr3jwTslOPHDnifz+qM6ZPn24n+yIiIsmZQUFVwb333hu0ntgkS9CKiarPwYMHx6moSE0VBecyePLJJ1O0waNWTyIi0dHuiYQtErXw9NNPn3E9FEoEu+vWrWtJZLRfYn0JBzofkBjw4YcfJmtuh4iISELO84UrzC7pEm0I2CCgTQ89Mckq8XCBz7BJsvAJPrDR3aJFCxu2zQlPfFRWXHPNNbZJ7qEPNH02GcJ93XXXhe3rSq8DsXv37m3tuLygUyC+zwQt7rvvPn9LjUOHDtn3hpZNVEzEH7Du2bx5s2vatKkFpxi4rpZOIrGFVnxkgvN3Wpl0Eg1Yp9ggoqVkMDz33HOub9++1rZyw4YNia5nycGmTv369a0lxw8//GAtqZKDU3jmQPGx8+bNczVr1kz1cxKRtC8trNnh+hrYeCchi5kL+fLlO+v7vvXWW65ly5ZWWcD7B87ZCyWSwZiTxFpQtmxZt2TJkpAGDJi5QdIZLZ5FRESCuW6rkkJCyht8zIV0/DYEBBgISHz//feWncj7TJgwwS782diOPyybior4gQgCHWyaU2rKcG76TyvuFjwcSwahUxnDiTkzJ+IHKJg1MXXqVGupQXsNAhT8AeJ7y/flzTfftKweNmMSc/HFF9tgbapwGKgtIiKSHLRgoi1k4LoSrADF7NmzLUAB1sFgBChYX732l8zzSm6AAsx7YlOKORbaLBIRCS7+Tie13RMtal955RV7vXPnzmELUHAtTIIYawHXycwDDGWAYtq0abZm3X333W7v3r0hexwREUmfFKSQkLdcYAYBPZfZMPBO+D7++GN/GSotoCZNmuRWrVplgQbKaml/QOVFoBtuuMGyF/lcZIvER2krbaOotuAkMbB1kCTP0aNHbXA1gYny5cu7Tz/99IzgD0Oup0yZYsGJxo0bW3CCwBLVFHxPn3/+eXfixAkblM7H077Jw+cK7BNOMIPWTvysqCJGRESSY926da558+Y2+4r1JpgIBDRr1sxeZ2Pm/vvvD8rnZR1kqOptt91mLRBTwmv1VKFCBbXZEBEJMpKsPOfa+GfGIol3mTJlco8++mjYvhcdO3a0dktU5BGgYFZgKNWpU8dVqlTJ1i2uuUVERIJJ7Z4k7NiMJuOe7HzKUQNb+3DRThDinXfecTNmzPD38mQQGJvXOXLk8L/v6tWr3fDhwy2jI6He0HzeW2+91U6i6NHpBUkk8T6qc+fOdUOHDnUrVqzwB5EC502QlUqPbzZqbr/99jjfOzKI+B6RyeNVWBCoYEPHa/8EAhd33XWXW7NmjfVPDWwBJiKxKS20jpDYxfpEIJwNJc4LAtec1CBpgvMIgupetSZVC9GCcxs2pZjV1a1bt0g/HRGJEWlhzQ7H10Dy1VVXXWWvc615thkTVLNx/cS1jzdrKNRWrlzpvx6jYp0AQjhwLOiIICIiklRq9yRRi5NJejoTpIg/e4C32QQnG8U7EWTznHZQ9F0mS9JrB0TPTdo7MCuB2Rb0/4y/aUF1BQERTmK5mGeDgeGX8n+BBU6oOeZk/jDEnCxUAhQczxdeeMH99NNP7pFHHrF+3AwMZaA51RV8rzj2fA4QwKAPKz1KCRwxMJ3vW/zNIr73ZCPx/uvXr9e3QkREUsSr8GM9YlgpfbKDFaAAAYnatWvbekiCRTQFKDg34pwG1atXj/TTERFJs0OzuSY9W4Bi//79llAHrpnCheD5uHHjrINAqAIUrLMMAR8/frz/PgUoREQkVFRJIRHBfAnKUi+77DJ/OwXmUXASREAhEP0uycYnW8TbjKhVq5Z77LHHbEik13OaC/b333/fPs+iRYtso51ABpvlp06d8n8+NhloF/Xwww/bpjxDvdOTX3/91bJtGO5Gi63AGRP0T/VKmwlI0LYpPo4rx3fkyJGWwTlz5kwLAIHPxYlr4CYRg85Hjx5t3y+vPyuBJr4PKhMWSRvSQlamxA42TXr16uV+/PFHW1/iJzyEYt0kkB+s596wYUPbXKIlSEp7h9Peo2LFitbag3OqYAZnRCRtSwtrdji+Bq5PCxYsaJ+fx0kM8/f4e07lHQlyaQkdDkhmY42hAp7jISIiklyqpJCoRlaiF6BA165dbSglfTXjy507t2Wn0BqqRo0adoFPWyIGdjHLYN68efZ+bHo/8MADbsGCBZbRMmzYMDd//nz7ZVi4cKG78cYb/cEMhkG3bt3aSnhpUURwhKz+tFhlQaXDl19+aeXHnFgynPOhhx6yigmCCmzukIXJnBBaMRFMICOVIFJCcyoKFSpk3wcCHQQsAk/GaakVf6OkSpUqrkuXLu61117z30eLJwUoREQkJb766itrpzF27Fi3ePHioB9E5iMF9iIPVoACVC+SUPHss8+eddPrXFizwfqtAIWISPAldWg215TLli1zffr0CUurJa5bwzV7kYS+J554wr3xxhsKUIiISMglXrcoEkZUNWzfvt02sz0EFwgoZMmSxTbSGdLFjfcbNWqUlZ2S7Z81a9Y4vUPJqsmWLZudUHmqVq3qihQpYhsPBEL4vGyyE8wgq3/gwIF2o5T3+uuvtyGUtHigrVGsVVqQ8UnVCRsYZFoyxC2hmR0eNjdoz+RVsLz++utx/p/ADaXLDMn2TtbJKGrRooVr166dzZ4I5GU0eZmtbdq0sQAHx1VERCS1ihcvbgEKKvVY34OJuUq0oySYPnv27DjnGMFABQXP/cCBA3HmbCUXzw1eJaOIiISm3dO5ghRU9VPZFg603+WalSQ9ktBCEaQObKXIjcQ/ERGRcFC7J4kanBAFtmx46aWX3IABA1y/fv1sUHN8bJhTNVG/fn3/fWyccx9zKGgRddttt8X5nJTtUklA4AP08OzevftZnxfvT/VA6dKlLXhBsIMKjkj3piZ4sGPHDrd582arNFm7dq2V4f7888/n/FhaMnEyTdsshljfcMMNcQZk83n5Gj20x1q3bp3Nm2jfvr3NmmC2RHxkEPE9o3e31yPbq045Wy9XEYltaaF1hEQ3kguo/otf5RdMtIZkCCkbPyVKlLC1NaXtmEJp69attm6zlh8+fPiMNpkiIml9zQ7H18Dcn8qVK1s1PtdbkUYnAZLovDZMVDkEG9eB3bp1swS3wYMHh7ydooiIpA/Hk7hua9dQokbgSRAnSLREYMMgMIsxMJBBVktggILWQ3wMg56HDx9uN2YqEKzgRuZl/Gx+WhGx6U5ggwqNhFAFQEsjbnxOkLVCqyg+PwO98+XLZ5+bl2RGcqMCI6UndnydPC59psm23LVrlz0/XlI9QqYnGxN8zUnFc6NNE0EJTrgDgww8HrM7pk6dajfmgBw6dMi/8UHwgfePH/SJj9Jj/vhQdeEFKRScEBGR1KBiokGDBtaCiTaOoQgcsJ6S6ECAgvMOqi2D+Ti0XiRoT1vE1GIeFKj4UIBCRCRylRS00CV43rlzZ7smDJV9+/a55s2b2+sk74UiQAGS3qjUAOsuCXoiIiLhokoKiVpsnDNLgkCCNxz73XfftZ6YVD/UqVPnjI8h64OPYaOdgc5sbHiYYeFd2CeE4Mbq1av9AQlO0ryT05QgkMFmBBUX3Mh49IZKE2wAcxn42nje3MgU9bJFkxqA4MSZ9hEMaytZsqR78MEH7dhR/cB9BBZ4Gb+tBMEE5nyw4UOQhuCHh40Z2kWxAZIYMnhGjBhhA7SpNAHtsziG9erVU49skXQkLWRlSvSiVSPrHJv8rFtlypQJ+mMwiLtnz562TtNbnMcLJs5fmA1FBWfjxo1T9bmohKSdI4kTHTp0CNpzFJH0IS2s2eH4GmbMmOEaNmxoG/X8zY2PNsO0GGZtor1uqIZK8/m5HuY5cK1HW99gBLwTQ0tCrkVJ5BMREQkGVVJIzPMGOgd688037cSMTMeEghRsLlApwI12UJTFktXPhjsndYG/IJTLVqtWzaoLSpUqZSeZ9Hb2+jtzQvj111/bpjsbJN99953d2BygBRWtlRi2zfBLggKcmPJ5mQlBtidBBp6DN8chsayY5GAmB8eEqhCqHZgVwfPxhodj48aN1kubY3G2LE4COXy8h0BKzZo1bfg4xzZwsHlCJkyYYGXQBCm8odg5c+YMWWaPiIikT7TaIMmAdSoUAQoGWROg8M4zgh2gIPngxRdftCpIL0khpWjpSBsqJHQeJCIi4RmcTZX5rFmz7No0VAEKvPzyyxagoGLjvffeC0mAgutWb74Fg8BFREQiwicSQ/bv3+/r1auX7+DBg/771qxZ46tRo4Zv2rRpiX7cb7/95jt69Kj/7ZkzZzIRzH+79NJLfRUqVPA99dRTvunTp/sOHTqU6Of6+++/43zeli1b+u666y7fn3/+6b+/cePGcT5/Sm/nn3++L2fOnL4SJUr4atWq5Vu8eHGcxz5+/PhZjxVfZ7du3Xx33nmn7/LLL/cNHz7c//+7d+/2XX/99b7HH3/c9/HHH/tOnjyZ4Of5999/fZMmTfLVrVvX9/PPP/vvX7Zsme/555/37dmzJ9HnICKRMWLECF/evHl9F198sa9MmTK+1atXJ/q+o0eP9pUvX96XKVMmu1WpUuWs75+QY8eO2d8sXooEw+bNm31bt24N+cH8448/fLlz57af306dOoXkMV5//XX7/NmzZ/edOnUqVZ9r4sSJ9rmKFSsWtOcnIulLWlizw/E1jBo1yh6jXr16vkjh+ixfvnz2PKZMmRKSxxg5cqRdZ3JtKSIiEsl1W+2eJObRQ3rixImuVatWVp4amLmY2HBrWjvNnj3b2hwtWrTISoUDjR8/3j388MP+YdtUJzCkkrkTSelRzTyJH3/80Z04ccKqKuLfyMyh0oFWT5dccskZNzJlsmfPbnMvvKyWxATO6aDsmOoIqj+otIiP3qJkjCZ3iPnNN99s1SujR492bdq0OefHi0jkkGVH3+JRo0a5smXLuqFDh9owe1oRBM748TRt2tSGBZM9zt8f2tHQLo8hkbly5UrSY6aF1hESPWi3SNVgpkyZ3Oeff25VeqHEzKdhw4a5IUOGBH2OErO1ChQoYDOmXn/9dffYY4+l6vM1atTIfp9pHUV2rYhIcqWFNTscXwPnT506dbIq88mTJ7tIfq202WX+RbBxTXzdddfZWjVmzBhVUYiISETXbQUpJOYRRKB1Ea2bmL3gtVEqUqSItR4aN26cf6ZFYuWttHFiY9+7cSJauHDhOCeonjx58ljAghsbD2wYePMeaKfEY6V0YHZiz4+vkZNIbmx0sKHChiM3hmDzNYL+obRporUTwQ2OAZuUHBde8jWd7VjQqqpLly5uzZo1FpTwAiQEbWhRQUCIr1lEohe/68ykYWaM9zckd+7cNmiReT7nwt+PzJkz28d7QxrTw4aHRI/Dhw9b0Ozqq692c+bMcVdeeaWLVf3793fPPPOMDVTlXCOx5ImkYI3nmJAAwTrN77mISHKlhTU7HF9D37593XPPPedatmzpv9by0FKYFkxNmjRxxYoVc7GMFoK0RubrDeY1rIiIiEczKSTdoLrhhRdeiHMfVRL8EuzYsSPOpjx9Q8kWKVq0qP8kjI14+l1z86onArE5wvBpNheokNizZ4/dGNANhql5QQqyMHkuzLcgY5lepfQN9SokevfubZv8VCoQ+AisrmDzwXudzZk+ffr4nwPBBjYOE8JsDA+PRaYmAZTSpUvb4yeG58DHstnBpiZ4fyotOOHnhPWOO+6w+zk5F5HoRwUZs3LYFPXwN65q1aruiy++SNLn+O2339xff/111o1h/l5x8/D3ViRY2IhfvHixvUysF3hq8LPLMNR27dq5WrVquVBhfgSVSXjppZdSFaDAp59+ams25xzM0hIRkdDPpEioip6gBdUNVN+FIkixYsUKu06jgj0UgYPAqvny5cvbTUREJNKCW9MuEiUeffRRa1EUuLHPphuVAGym0UqCTXzv/vhDpgORScyNk7kjR474Kxi4UV1wzTXX+N+XSgc2P7xARnzdunWzl5wUMnCax04Imc+BG4wEVriPFlAEQPLly+ev5ihUqFCcjw0chn22E1IGXxN8IMhCJhA40R44cKANf9PJqkjs4W8Uf/f4OxGItwm0JgV/p2ivQ2AjMf369XO9evVK9fMVAesbVT5URHLzqhZDgXWQoaAM4iYYzzpONm4oMIybCsXixYtbu5DUIgHDG5h9rlaQIiISmsHZJ0+etEoK3HvvvUE/zLReorXTzp077fXAiv5goBLviSeesMS0pLb1FBERCQcFKSRN4uKdaoT4GY1syH/99deuZMmS/vupfHjnnXesvzNZlYlhc5+sTm6JbeBTKUFLFVoyHTp0yDKSAyskaLnioXyYz+lVWQRWXMTvG09AJDV4LL7GQYMGWXsqVKxY0R6TEmk2iLwND82cEEm/aE1D+7xly5bZ36LEUKnRuXNn/9sEfwP/vokkxxtvvGEB8jfffNMqILNkyRKyA0gw5N1337WgPPNbQhWg2LJli31dXpXl2VotJjW44gUp6tatG5TnKCIiieM6LqEgBedIXNfRxo+kuGDjHIsABedVwa5m55qvbdu21taXa9+33norqJ9fREQkNRSkkHSDKgR6WwduyHvZJPv377cNew9v33XXXTZMlvZJiQ2Ujo9Nvbx589rtXHr06OGCjXZUXbt2dT/88IP75JNP/M+V9k0M0l61apU/SJE/f357/1C00hCRyGBzl81QqroC8TZ/A8+GICZBikWLFp2zdQF/LwP/ZoqkBpUNH374oVU7hjJAwc/4gAED7PXRo0f7qzZCgflOVDUxG6tSpUqp/nxsKLGO03aEWVQiIhKZdk8bN260lyStBbsVE239hg8fbq+PHTs26IF0roFZb5999ln/44iIiEQL1YpLuhO/RQItH2h3VLt2bf99bOazIUAriED169e3GRjz5s2LU6GxZMkSt3Xr1pA8X4Iq9CRdunSpDeb2kKFJq6fAliucRNPGiU3GwHZTtL/i4+mJHUgBCpG0hZ739Kqnn3/g3xDeZrZOYti4ffnll938+fP9rfBEQikwkEbAa8GCBa5p06Yhe7y3337bgvhgTkRCM6iChXMEfpdoJUmFSDB4VRTVq1fX2i0iEsF2T5s2bbKXwa6ioPqeKgevsp2/96FAMt2kSZPOOrtQREQkEhSkkHTvsssuszZQgT3caYVEn874A7m/+eYbt3379jgZNQQ0qlSpcka/aTJD2RTk/z1fffWV9RilLRStpdgkocrBQwsK2lSxWRjopptusszJwE0dyoxpA8VzCtzoefXVV9306dPjDL1lUPidd96pk1GRdIA2TGPGjLFNWQKc/K2hp7G3KcuMncDB2mzY8rdu/PjxNu+GdnXc6LksEgoE0pl9xGwmTygGg3pWr17tWrVqZa8/9dRT7umnnw7ZYzFrymuF9uSTT9pMqWAg8xVq9SQiEtl2T6EKUtAakKQ3rkmDFeD2gi1U9dE9QEREJJqp3ZNIAq666irXoEGDM+5fsWKFDZ8NnGnBxkrhwoVtwyUQVRgEEdgc9NCGiY3DsmXLWqnwn3/+aQEJr5SXIMQXX3wRZ1ODyg8GZNM2IvBzcbJJ8OLGG2+M87gdO3bU91QkHWvcuLE7fPiwe/HFFy3YwEU0Wd1eIJYqq8CKMqqy+Ft03333ndGSjsG/IsG2bt06m2NCQJ1Kv1APgaa6iCAdAQSCcqG0efNm+71jfhXzoIKB5IgNGzZYK7e77747KJ9TRESS3+6J5DLmRaB48eJBO4S//vqr69Onj781YTDbPFF1P2vWLLd27Vqb+6R2nSIiEq0UpBBJhpw5c9otELMruMXHxh+bMIG93WnPxAYJm4UHDhywAEdgqS0ZkgQo4s+0YNMjPjKeuYmIxNehQwe7JYSBj4F2796tAyhh1a1bN6v2YwZFqAMUYEg2MygI9of68QgKbtu2zaqYgrXJxIBvULVJ8ENERCJTSUFVPBhqTVJbsGTKlMktXLjQTZw4MeitDwmYk2RHlZ8CFCIiEs0UpBAJkYQGZTLP4mxtJvh/biIiImnFL7/84oYOHWrVPQQMCNB7fbdDhXYctD0bNmyY/zF5GQ4M/6aNZLBMmTLFXt5///1B+5wiIpL8SopQtXrCrbfeardgy5Ahg1VSiIiIRDsFKUREREQkJKheYKbSl19+aUNBQ91uyas+rFatmjty5IhVHoSjbRktrPbt2+fq168f1M/L3Cm+nosuusjaPIqISOQGZwc7SMG6+OOPP7r8+fO7YJo8ebJVDiq4LSIisUSDs0VEREQkJJij8Pzzz1t7wmC3sEgIQ0dpi0SAonTp0q5Tp04hf8y///7btW7d2oIIVG4Ek1dFUatWLWsHIiIikWv3RMA9mEEK5k8wXzCYawctqZjD9MADD5zR4lNERCSaqZJCRERERILm33//tRZPtD0CQ9lr164dZ6MnFBgwTdXGTz/9ZPOgFixYENTho2erFmE2FQOzmzRpErTP6/P53NSpU+11NptERCRy7Z7++usvq24LVpBi7969NiybaoqsWbO6YClSpIhr166dVffdcccdQfu8IiIioaYghYiIiIgExYkTJ2wgNhUNq1atcpdffrndH+oABUNBCVAcOHDAFS5c2C1atMiGc4cDg0j79u1rw0kvu+yyoLaQ2rlzp22Q3X333UH7vCIikvx2T3/++afNVtqyZYtVB6ZWjx497DEIJASzLRMVjMyBosqPlk8iIiKxQquWiIiIiAQtSEFwYtu2bfYyHNg4oh0SAYqiRYu6pUuX2iyKcFWNeIIZoAhs9VS3bt2gf24RkUhavny5q1OnjsuZM6c777zzom6wM5VsXrsnr5KCv8PPPvuse/fdd1O9+c+sobffftteHzBggB2D1K6DfD6et+eCC5SPKiIisUVBChEREREJCjacZs6c6T799FNXtWrVsBxVhkq/+eab7tZbb7UARbZs2cLyuGyqlS1b1m3cuDEkwY/33nvPXlerJxFJa06dOuWKFy/uXn/9dReNaO3kBaFDUQlIsIPP36BBA1tHUoPARNu2bd1DDz3kHn/88aA9RxERkXBTkEJEREREUoR2Es8884z77LPP/Pex4ULAIByP7alevbpbuXKlfw5GqB0/ftw2g2jJNH369KB//hUrVrj9+/fbsOwaNWoE/fOLiEQS1W+9e/d299xzT1R+I7wqisAgBX+Xd+3aFadaISVYL2fPnm1tmWgVmFpUYZQpU8ZdcsklVp0iIiISqxSkEBEREZEUGThwoOvfv79r1KiRO3nyZNiO4rJly1yhQoVs9oUnte0ykqNz5842lDR//vzu+eefD/rn9wZmk2XLzAsRkfSM4dIEhwNv4ZhHQVsnqvUITBBQ4W/+hg0bUvW5v//+ewt8tGzZ0t1www1Beb6PPfaYzTBSUFtERGKZghQiIiIikiJUE1A1MWzYMP+Q7HC0WapZs6bbsWOHZeKG28cff+zGjRtnQZEJEyb4+5UHs82IV50RzGGqIiKxql+/fu6KK67w33Lnzh22odn8rScokjdvXptLUaRIkVR97latWrnt27enev3as2ePzaLw5MiRI1WfT0REJNIUpBARERGRJKGH9sKFC/1vE5igzVLDhg3DcgQJDtx7772WVUtW6+jRo104/fzzz65169b2eqdOnVyFChWC/hiLFi2yx8maNaurVKlS0D+/iEisoa3gsWPH/Le9e/eGpd2T1+qJwMj69evdr7/+am2VgjG/ib/xKfXLL7+4ypUruypVqrjDhw+n+vmIiIhEAwUpREREROSc/vnnH1e3bl2b/zBjxoywtlmi1cYrr7xiAQICJWSiTps2LSibRcmtHDl48KC1mgpVFcf48ePtJS20LrjggpA8hohILKHtXcaMGePcwlFJEb9SLjV/k+fOnRtnflNqfPfddxacoO2giIhIWqEghYiIiIicE0M+ixYtaoGBwKGi4RiQ/cQTT7ju3bvb27wcM2ZM2DfwacE0ZcoUOw5vv/22P8M2mH766SdrZ4W2bdsG/fOLiEjyKykIjqd2HWvfvr1V333wwQep/haUK1fOrV692n300Ufu6quvTvXnExERiQZKzxIRERGRRKsnyCj15k1QPfDQQw9ZJUG4sLmzceNGq9gYNGiQDa0ON4IH7dq187cdKVOmTEgehxkXfL3M+bjppptC8hgiIpF28uRJm8vg2bVrl9u0aZO78sorXZ48eVykxa+kKFasmLvwwgvd5MmTXeHChZP9+Qhw79692wIKzFRKKYIlDPNGONdhERGRcFAlhYiIiIic4ccff7R+1y1atLB2S6B6IdwbI1RuUF0we/bsiAQo2BR6+OGHbU5E8eLF3QsvvBCyx/FmbKiKQkTSsnXr1rkSJUrYDfxt5/UXX3zRRYPAwdknTpxwmzdvtiBKSqoW+NvO4G9vllH8FlJJtWHDBleyZEm3ZcuWFH28iIhItFOQQkRERETOwOwFhmIvWLDAbdu2LaxH6KuvvnIDBgzwv50lSxZ39913R+S7NHDgQDdv3jwLlrzzzjvuoosuCsnjLFmyxO3cudMGtDZu3DgkjyEiEg3uvPNOC37Hv1FNFm3tnliPcM0119halFwE2b/99lv72/7YY4+l+Dk9+eST7ssvv3S9evVK8ecQERGJZmr3JCIiIiKGTSJvEHapUqVsw6h06dKuYMGCYTtCM2fOdM2aNXOnTp2yTaEmTZpE7Luzfv1699xzz9nrr732WkhbMHlVFA8++GCKM21FRCS47Z6ooACVdClZU/v27Wuvd+jQwQIVKfX++++7bt26ucGDB6f4c4iIiEQzVVKIiIiIiM19KF++vNu3b5//aBAgCFeAgpYYPXv2dA0aNLAAReXKlV2tWrUi+p2hDzntOZo2bepat24d0pkXBGfQpk2bkD2OiIgkr92TF6S4+eabk33oFi5caMFugh1UQqQGrabGjx/vMmXKlKrPIyIiEq1USSEiIiKSzpHt+cQTT1h7p65du9qQz3Ci53fz5s2tLQbYzKHNEjMwIolBqTwPAihehUkoB2aXLVs2Rdm6IiIS/HZPBBdosYSU/G0+ffq0y5cvn6tfv36KWkV99NFHLkOGDNYeS0REJK1TJYWIiIhIOscGPBmaVE6MGDEirI/NvIvbbrvNAhTMe3jrrbfckCFDIhqgWLZsmfvrr7/8b//nP6E7ZSYAMmbMGHv9kUceCdnjiIhI8ispfvzxR3v9uuuuS/bhq1Onjtu6dat76aWXkv2xO3bssPZ/VapUsZlFIiIiaZ0qKURERETSYeUEwQC0bNnSXl5//fVu0qRJYX8u3333ndu8ebPLkSOHtTyimiCSli5d6qpXr26zOD755BPLYg3147EZlTFjRteoUaOQPpaIiCS9kuKSSy5xhw4dstezZs2a4oo8bsnFmkgFxs6dO12FChVS9NgiIiKxREEKERERkXTmww8/dK1atbJWFpUqVXLXXnttxJ4LmaZUEtSuXds2ZSKNCgqOS/78+d3ll18e8sd788037SUZs5dddlnIH09ERJJWSUEVHa34khukIPC+Zs0a+7uekgAFWIdoBUjAJKWfQ0REJJao3ZOIiIhIOlO3bl0bSt2jRw+XJ0+esD72nj17LCDBSw9DqaMhQAGqKNatW+fGjh0b0jkU4Bh4A7Pbtm0b0scSEZHkBSm8AAXDqmlHmFSDBw+2KkVmPSXX7t27/a+zBil4LSIi6YWCFCIiIiJpHO0qnn/+effPP//4s0M//vhj9/TTT7vzzz8/bM9jxowZ7uabb3Zz5851jz76qIsWHJe9e/f636b1Fb3IQ+3VV1+1TbDKlStrYLaISJS1e/JmE2XLli3JH3vkyBE3efJke51KiuTYtGmTK1y4sOvQoUOcuUgiIiLpgYIUIiIiImkYm+DlypVzffr0sexOT6irBAKdPHnS2ks1bNjQHT161N1yyy1u5MiRLlo888wzFjwJ53BSNrK8gdndu3cP2+OKiEjSKin+/PPPZLd6ogrvjz/+cCVLlrS1NzmWLVtmH0s1RTgTCERERKKBZlKIiIiIpGEXXHCBbYKPGDHCVatWLeyPT+ukJk2auG3btllghOfSq1evqOmxzQDxgQMH2uuHDx8O2+MOHz7cNsJKlSrlqlatGrbHFRGRpFVSEDBITiUFSQFeAP7xxx9PdjLAk08+6YoUKWLrAhWPIiIi6YmCFCIiIiJpiM/ns413NjmKFy9u91HF0KJFi7AHBpYuXWozHti4ueaaa9w777zj7rzzThctPvroI9emTRt7nXZYjRs3DsvjnjhxwoIUIGgTzqoWERE5O6+SokyZMq5mzZpJnpk0e/Zsax2YJUsWd//996foMEcimUBERCQaKDwvIiIikobQ1omgBDdv6Ceb4JGoXKDVRaFChdx9993nvvzyy6gKUCxfvtw1atTI5lE0b97cqjvChTZPtL0qWLCgu+eee8L2uCIikvQgRf78+V3Tpk1tblBSvPbaa/aS4Pcll1ySpI/55ptv7DF+/fVXfWtERCRdU5BCREREJA1p3bq1y5kzZ4qzOFODoAj9uL3gyMUXX+w+/fRTN23aNHfllVe6aMFw0jp16lgrD17ynMPVWuP06dM2MBvhHlwuIiJJb/f03//+N1mBDdYRWiy2a9cuSR/z77//umbNmtmg7S5duuhbIyIi6ZqCFCIiIiIxjJkPgUOos2fP7nbs2OGeeuop2ywJ58b/bbfdZhmkAwYM8N9PcCKa2hlxbGjfcfz4cVehQgX33nvvhbXKZNKkSW7//v0WSHrwwQfD9rgiIpK8Sor169dbW8BffvnlnB9DQGPJkiVu165dLnfu3El6HIIaVNaVL1/e9evXT98eERFJ1zSTQkRERCRGfffdd65s2bIWBKC10s0332z3J7XNRDCcOnXK9ezZ0w0ZMsRaJ11xxRUuT548LhrRK5x+3z/99JPN62DzKTmZsqnF8XnllVfsdbJmqTQREZHoDFLQvmnfvn3u888/tzU2KZi/lBylS5d2K1asSNHzFBERSUsUpBARERGJUd68ByomyMwPt/nz51tbi927d9vbPJdhw4ZF5LmcC8+RvuJkuV533XX23AmohNMHH3zgtm7d6jJnzuwf2C0iItHZ7qlo0aJWnXiuwdlffPGFza/Ili1bkj7/nj17IrZui4iIRCu1exIRERGJEWywM3OC6gXPu+++ay2EsmbNGtbnQkVArVq1bPOf1hZUJUyfPj0qN11o8XTHHXfY8StQoIBbunSpbTyF059//umeffZZe/2JJ55wGTJkCOvji4hI8iopaMW0du1ad+21155zrgQVhMuWLTvn52ZmEzOjihUrlqT3FxERSS8UpBARERGJAWyE1K5d240bN8717t3bf3845ykEql+/vrWVevLJJ92WLVvc3Xff7aLV0KFDrdXTDTfcYIO8k9ovPJiYG7J9+3YLjjAvREREog9BhL/++steT0o7wOXLl1sg/KKLLnK33HLLOd//559/dqdPn7bHyJcvX1Ces4iISFqgdk8iIiIiMYABm/3797cN9xYtWoT1sX0+n1VKfPnll+6FF16w+9jwp2XF1Vdf7aLd4MGDbf5D165dk9yOI5gYuvrSSy/Z6wSYLr/88rA/BxERSXoVBS699NJzvv/48ePtJdURl1122TnfnzVo5cqVbvPmzQpSiIiIBFAlhYiIiEgU+uGHH1yDBg3cvHnz/PfVrVvXLV682GZRhMuGDRtclSpVXL169VyPHj3sbU80Byg2bdpkGbFetcmgQYMiEqAAAYqjR49ae4+HHnooIs9BRESSF6RgjbvnnnsSfd9jx465GTNm2OutWrVK8uElaF6yZEl9O0RERAIoSCEiIiIShV5//XU3c+ZM17lzZ2v15DnvvPPC8vi0R2revLkrVaqUzXBgU6Vbt26uYMGCLtpNmTLFlSlTxnXs2NGqQCKJQdl8L/Hqq6+6888/P6LPR0REzj00m8HWzH/yWj8lZOrUqRbUKFy4sCtbtmyi78c6RBCDqotIr0kiIiLRSkEKERERkSjAxkVgBidtlRo2bGjDqGn1FC7Hjx/3ByPeeecdu69Jkybu+++/d/369YuJVkX0BqeK4vDhw+6ff/6J6HN5+umn7bkws6Nq1aoRfS4iInJ23jrszXs6WwUeM6JAAOJsCQRz5861AMUjjzxis4lERETkTJpJISIiIhJhZNs/9thjLmvWrG7y5Ml2X4YMGdy0adMi8nzYePnjjz/cHXfcYW2SkjIMNJrce++9btmyZa58+fJhDfDERwXKhx9+aNUTAwcOjNjzEBGR5FVSeGsH63JC9u3bZ3OaqLho1qzZWT9nzZo1baYUrr/+en0rREREEqAghYiIiEiE0VJiyZIl1lKJjY9rrrkmrI9NtQbDuMkEzZgxo3vttdcsSEL2f7jaS6UGx+zRRx+1tkp58+a1+wiwRBLVE7TqQrt27cI6R0RERFJXSeGtfYlVUrBO79+/34ZgJxbI8BCopkJRREREEqd2TyIiIiJhRo9rBjt7SpQo4d544w23ZcuWsAUoTp486QYMGOCuvfZa9/DDD1vGv4f2TnXq1ImJAMWiRYvs+H388ceuTZs2LlqQNcv3OFOmTDZwXEREYidI4c2OOFsA4qqrrrK1MjHr1q2LM1NKREREEqcghYiIiEgYMZD6pptucpUqVXJHjhzx30+vagIGoXbs2DHXt29fly9fPsvsZG4DjxsLAYlAbPz06dPHVa9e3Y4jgYpRo0a5aLBx40bXq1cve33EiBEuS5YskX5KIiKSjHZPXnAhoUoK2iEmZR0oV66crVEkBYiIiMjZKUghIiIiEkY5c+a0tk4Md/7uu+/C9rinT5+2oESePHncc889537++WfrjT1hwgQbil2vXj0XK2ixUbt2bff8889btitDSz///HOXP3/+SD8127yiPzntnpiNQVWKiIjEViUFf8MTq6Ro0KCBBSDWrl2b6OfZtm2bzaugheJll10WwmcsIiKSNmgmhYiIiEgI/fjjj27MmDHuxRdftEGc9KZ+7733XI4cOdwVV1wRtmNPUGThwoXu+PHjrnDhwhaoaNy4sW2ixJKpU6fakPGjR49asIc5FAQpogXf582bN9vGFi28Yq1CRUQkPfOCFLRlTKiSgjV9wYIFVmlBO7/ENGrUyN18883uyiuv1DogIiKSBLF1VSoiIiISQ/78809XunRpd/DgQVegQAH34IMP2v2hHqJMdcHixYttk3z8+PEWDGGzfNCgQTYomyoEAiaxhMqP9u3bW4AHpUqVchMnTnQ33nijixafffaZHWMQmLr66qsj/ZRERCQF7Z7AOsnciUCTJk2yAEWFChWsGvFsChYsqGMvIiKSRLF1dSoiIiIS5QKHZFK98MQTT7jbb7895IEJLwN07NixNvOiWrVq7oMPPrAghady5co25DOWAhQEXKZPn25fEwEKKlEYRP3FF19EVYCCnuMtWrSw58sg8rp160b6KYmISAorKcA8Idac+EEKeEkHgahUpIJi69atOu4iIiLJFDtXqCIiIiJRbsaMGa5IkSLW7sfTtWtXt2LFCquoCBV6X3fp0sXlypXLtWnTxh6fHtiPP/64BSVi1T///GNVH2z6HDhwwAI9BCd69uzpLrzwQhctCEww+Hznzp0282Po0KGRfkoiIpLKSor48yi++eYb99VXX9n6c999953xsc8++6wF1ZlZEZiwICIiIuemdk8iIiIiQUKmP8Ow+/Xr5959993/nWyFeObDL7/8YoERr392vnz5LDjRsmXLs/bLjgVksPL1MHuie/fuNvj7v//9r4s2vXv3dpMnT7bvNS2oGJQqIiKxXUkRfx6FV0Vx11132ayJ+J5++mlLGnj++edjqmJRREQkGihIISIiIpJCmzZtcvnz5/dvSvfp08cCBlQ1hMqOHTvcokWLLHMfbJTcc8891m6IgdI1a9Y8oz1FLFVOsMnPvIlixYr5j2nnzp1tpke0BqYYlo2RI0e6ihUrRvopiYhIKoMUtOx79NFH/fdTGTFlyhR7vWnTpgl+LJV0DNUWERGR5FN4X0RERCQFaOtQokQJ9+qrr8YZkkkrogwZMgS9/QQZnFWqVLHNejZOyNb0kMX/8ccfW2ukWA1QgEoJKkComvBkzpw5agMUq1atsjkUIDBFqy0REYn9dk+0aKxVq1acIEX//v3dvffe6+6+++447f5++OGHiDxXERGRtERBChEREZEUKFmypL1kVkIosPHx2WefudatW7vs2bPbkM4lS5a48847z9WoUSNOS4pYDUzwNVIB4iH4QnsNBnxHez9vNqXq1avnTp8+bRm3r7zySqSfkoiIpJK3tl566aVx7qed3/3332+zpwLbDk6bNs1df/31buDAgTr2IiIiqaB2TyIiIiLncOTIEduErlChgm1Ig2xKBlTfeOONITl+M2fOtMfwMJuhefPm7uGHH7bXYxltnfj6mN1BlQQtk8Dre/bscRdddJGLZocPH7ZM2kOHDrnixYtblUusBopEROTMIMXWrVvdTz/9dMZcivjmz59vM6FOnTqlwygiIpIKClKIiIiInMOIESPcoEGD4rRUoqIhWAGKH3/80TbqmS/x0EMP2X20mciVK5erXr26tRQiQBLrgzi9tlUcSzaAQNuqo0ePWlsnRHuAYt++fa5atWo2ID1Hjhzuo48+cpdffnmkn5aIiASx3dPo0aMtKYE1f/ny5VbZ2KRJkzOSBMaPH+/q1KljNxEREUk5BSlERERE4iEjkjZEXgZlp06d3IoVK2zuQLACBQcPHrS2EbSKYPOD1keFChWygAQBENpJ0FIoLWToE5B444033IQJE9yvv/5q9xGUePzxx+3mBSiiHUPLq1at6nbv3u2uueYaG2CeO3fuSD8tEREJciXFddddZ3/nwfo1depUq6IbMmRInPdnvW7QoIGOv4iISCopSCEiIiISgGoJhjffeeed/jZEV1xxhVu8eHFQjtPbb79tm/WffvqpBSY8t99+u2Vp0gqJ3teI5QAFGz2zZ89248aNcwsXLvTfz8bPY489ZkOmgz1gPJRo7UUFBTNIaEtFgCJv3ryRfloiIhKCSorBgwdbO78TJ064Dz/80O5r2rSpv/qRta179+5RX/0nIiISKxSkEBEREQlAZjyzBtavX2/VFKlt5UM1RJ48eSzbEgy/XrZsmb1etmxZ16hRI9ewYcM0k5H/+eefWxCGCpHjx4/bfXzttMxo3769ta+KtbZVX3zxhc2g+OWXX9xNN93kPvnkExtmLiIiaXtw9qxZs+y+ggULulKlSllyAUH2efPmuZ07d9p6JyIiIqmnIIWIiIikWwy7pLLh77//do8++qjdV6xYMcv8r1ixorvwwguT/TnZwNi0aZNtbJB9+eWXX1rAo2TJkvb/bG6w0X3ffffF/ABs/PvvvxaE8IIww4YNc9OnT7fXqTR48MEHXatWrdy1117rYvFrI5v2mWeesZ+RMmXK2MYUs0NERCTtVlLQchGTJ0+2l1Q6euvcww8/7L7++mv39NNPR/CZioiIpC3n+QL7DIiIiIgkE9nytEM6duyYy5gxY0wdv/fff9+CBZkyZXK7du2ylylx+vRpt3TpUjdnzhwbpLxnzx7//9GyiX7WBCfSGjZo3nnnHassIPACXqdNVvPmzWN62PeRI0dsPsjcuXPtbSpexo4dG1MtqkRE0tKaHY6vIUuWLO7nn3+2qon58+db1RxtGL///nurpvD8+eefavUkIiISxHVblRQiIiKSbpANz0wBr7VS/fr1XeXKla2Vz8UXX5ysz8WmhTczgnZAtWrV8v8fbSJq1Khhn582R1dddZWLZeS0fPfdd/Z1Mq/Dw6YNA8CpGvGCFLRz4hbLGJL+wAMPWN9xfi6oDmnbtq0/i1ZERNKmP/74w19J98EHH9haX6JECXf99ddbQoJ3rqBZFCIiIsGlIIWIiIikCxs3bnSNGze2AMKGDRssw58gQ1IHYhPgWL16tWXWcytfvrwbPny4f+h10aJF7SVBiapVq/pbRcRqUGLbtm1WHcL8DG4EI8BA8fz589vrXbp0ce3atbNAT1rA1/jcc8+5t956y47BDTfcYLM1aAEmIiJpH4EIZM2a1SoqOGfg3IHWkK+88oobP368u+222yL9NEVERNIcBSlEREQkXWA+ApvQZD/u2LHDsiLPZd++fW7BggXW8mHRokXu119/9f/fiRMn/K8zu4L+1LHq1KlTbu3atVYp4d1odxSI7FECM94wbNxxxx0urWxKUS3Ru3dv//eVnuOvvfZaqgeni4hIbKB6goQEZMuWzeYRdezY0dYIkhCoKKTSTkEKERGR4FOQQkRERNIcNhmmTp3qtmzZ4vr27Wv3MeyYmRG0bUhsrgAfd8EF/3d6xPDsnTt3+t/OnDmztXG666677GUso4UFG/Hr1q2zjZf4Y8oISrARQ+UEt7Jly7pLLrnEpbXB6VRK9OjRwwJXuOWWWyxgoU0oEZH02eoJOXPmtJdUUnD77LPPrHqyc+fOEXyGIiIiaZeCFCIiIpLmEJxo1qyZzRBggHOhQoUSzPxno37Tpk1WJbFw4UKrhqB6gsoIEIygwqBmzZp2YwPbm0MR7Qg6eDMUaHX17LPPWnCGTXnwdaxcudK/OX/NNdfYxrx3I5iT3DkdseKXX35xo0ePdiNGjLC5E2A4av/+/e3nJlaHfYuISMr99ttv/tfjr38kOhDQFhERkdBQkEJERERiHhUQ3377rX94MzMEqBKgpVOuXLnivO+ePXvcvHnzbBYFNzasA1FZ4GXR0+4nmocl06aJSo/t27f7b8ySoDKia9eurlOnTvZ+bLrTsopKkMDgBZvyZIiWLFnSNunTehsPgjKTJk1yEydO9G9G0dKjQ4cO1tIjsQobERFJ+37//Xf/6y+99JJVZHIeUL169Yg+LxERkfRAQQoRERGJabt27bJB1cyL2L17t3+jmeGW2L9/v23SX3bZZfY2G9QvvPCC/+N5/0qVKtnnYCOiYMGC/v+LlgAFA6w3b95sARa+Ru92+PDhRD+GQIWHSpI33njDgjiBQYr77rvPpfXABMPO33vvPTd9+nT7WfAUL17cgjj3339/mq0YERGRlAUpWCsPHTpkrR2HDBninnzySR1KERGREFKQQkRERGJanjx5bI4E7YvYyC9QoIBbtmyZW7Jkid2+//5726Ru1KiRvT+BCFo7ValSxVWrVs1aOAXOoQhH1QdDqRnizS1Hjhy2YQ5aDzVu3NgqJGjR5OnXr58954TQgoKv+brrrrOX3G644QZ/iyuwCf/oo4+6tI5NJVp9EdTh9umnn7qff/7Z//9XXHGFq1+/vmvRooXN2YiWIJSIiERXuyewjq5fv96SGERERCS0FKQQERGRmHH69Gk3YcIEt2DBAvf+++/bJjPBiddff9198MEHrm3btjZXIhDvs3XrVv/bZcqUsc3rYAisSsCqVatsxgNBiMAbFQ9kZHIL3DRHu3bt3MiRI+11qj0+//xzf0bnf//7X/8Abyo+cufO7a699lqXL18+u+XNm9dlypTJpUcEe2hvxUwRAjq83LBhgx3vQBy3unXrWvCHAJWqJkREJCFUZHpY22fMmGFrDckQIiIiEloKUoiIiKQxbNgPHDjQsvTJ0B8+fLhtzCeGNji0P6J9EDMcXnnlFRsYHY1OnDjhunTpYpUGPM/u3bvb/VQO0M7IU6RIEauUoI0TG/zMYkgsyEDm5LFjx/w3Nim8l4E3hm4/8MAD9nF79+61wdJ//fWXva/n5ZdfdnPnzj3n18Hmx9VXX21VFIGzIMj05/uRM2fOONUdzz33nEuPAakDBw5YiyYqTLgFzt+gzRebR/Fdcskl7vbbb7fvPTcqZbxB6CIiErvnK6EW2BKQNZ+1WERERMJDQQoREZE0hLZGnTt3dqNGjXJly5Z1Q4cOtX7KtDzKmjXrGe/PIGE23mkndPfdd7vJkydbOxwy0osWLeoijQACA5/JfqeFEzevHQPtj5o0aWKBi+PHj9vXwYZ/nTp1bHMabHI/88wzNpPCq1YArZ8WLVpkH/fPP/8keb6BF6S4/PLL/RURf/75p7vooovs9VKlSrk//vjDAhBZsmSJc+P4e7errrrKKkASCl7E2pwIAj0cQ44DQRuCC9w4Dt5LvmfcCC7x8uTJk3bsCfB4LxlgThUEx5VbYEZrYhj6zZB0AkY333yz3djoUrWEiEjaOl8Jh59++sn/OhV4IiIiEj7n+biyFBERkTSBC30yx0eMGOHfWKdF0OOPP+6vOgjkzT+YM2eO/75bb73VNnvZOEiItwntYZOZx2CjOWPGjEH7Wh555BE3evToZH8cMxluvPFGe52vbfHixRYQqF27dpy2TLReCkS2PdULvIz/OjfaKnkbJ5w+sdHO/WyIB7Z8SujUKv59yXmfwPvj3xf4Mv7rid34mUjspXcj6OC9jH+jeiHwRmAiVKeTHFsyWXPlymUvaXXlzd3gxn0EoEREJGlYs6naC/aaHcrzlXCdd7Rq1cqNHz/eXn/xxRddr169gva5RURE0qvjSTz3UCWFiIhIGkEmOwMeqRzwsIHLwMcvvvgiwY/hfjIZA5HJOGvWrEQfh6qLcFy4E0hICa8dUCA212fPnn3Wj2OznRuzICR1qCyh7RJBBm7M2qDqgRuvc+NElZNU78YAcCpOqDLhJdUo3Kfh1iIi6ft8JVznHV6CA+tWemyzKCIiEkkKUoiIiKQRtMphMz5btmxx7uft7777LsGPoQ90Qu/P/YlhUyEwsOFlNAYbczJoP8VmARvWbHpzY5g09/F6cmYNpGSzO6kfk5T3i/8+CX2Md19iL8/1PvFfP9uNDSHv5g0gT+g+blSVeC8Db9xHQILvg/eSm6obREQkWOcr4TrvoMUTAXTmRXltHEVERCQ8FKQQERGRZPGy40ON2QyxNp9BREREYvO84/rrr7ebiIiIhJ+a+IqIiKQRtMghsz1w8CN4m4HSCeH+5Ly/iIiISLjPV0RERCRtU5BCREQkjaA1QalSpWxQtIdBlLx92223Jfgx3B/4/li4cGGi7y8iIiIS7vMVERERSdvU7klERCQNoWdzixYtXOnSpV2ZMmXc0KFD3alTp9zDDz9s/9+8eXOXK1cuG0KJjh07uooVK7pXX33V1a5d202dOtWtW7fOjR49OsJfiYiIiKTX8xURERFJXxSkEBERSUMaN27sDh8+7F588UUbfn3zzTe7+fPn+4dT7tmzJ85Q43Llytlw6ueff949++yz1ot51qxZrmjRohH8KkRERCQ9n6+IiIhI+nKez+fzRfpJiIiISOw6fvy4u+KKK9yxY8dcxowZI/10REREJA2v2WnhaxAREUkvjidx3dZMChERERERERERERERiQgFKUREREREREREREREJCIUpBARERERERERERERkYhQkEJERERERERERERERCJCQQoREREREREREREREYkIBSlERERERERERERERCQiFKQQEREREREREREREZGIUJBCREREREREREREREQiQkEKERERERERERERERGJCAUpREREREREREREREQkIhSkEBERERERERERERGRiLggMg8rIiIiaYXP57OXx48fj/RTERERkbPw1mpv7Y5FOu8QERFJe+ceClKIiIhIqpw4ccJe5s6dW0dSREQkRtbuK664wsUinXeIiIikvXOP83yxnEIhIiIiEffvv/+6/fv3uwwZMrjzzjsvqBkXBD727t3rMmbMGLTPm1bo+OjY6OdGv1f6mxM9YuVvMpf/bBLkzJnT/ec/sdn9OVTnHbH0fYxlOsY6zmmJfp51nNOK4yFc/5J67qFKChEREUkVTjSuueaakB1FTpK0UaDjo58d/V6Fk/7u6Nik5Z+dWK2gCNd5R6x8H2OdjrGOc1qin2cd57QiY4jWv6Sce8Rm6oSIiIiIiIiIiIiIiMQ8BSlERERERERERERERCQiFKQQERGRqHTxxRe7Hj162EvR8dHPjn6v9HcnsvQ3WccnPdDPuY5xWqGfZR3ntEQ/z+njGGtwtoiIiIiIiIiIiIiIRIQqKUREREREREREREREJCIUpBARERERERERERERkYhQkEJERERERERERERERCJCQQoREREREREREREREYkIBSlEREQkKr3++usuX7587pJLLnFly5Z1a9asifRTigrLly93derUcTlz5nTnnXeemzVrVqSfUtTo16+fu+WWW1yGDBlc1qxZXf369d33338f6acVFd544w1XrFgxlzFjRrvddtttbt68eZF+WlGpf//+9rv15JNPRvqpRIWePXva8Qi8FSpUKNJPK2r8+OOP7sEHH3RXXXWV++9//+tuuukmt27dukg/LQni+cX06dPtZ5735/s7d+5cHd8gHuMxY8a4ChUquMyZM9utatWqOucL8bny1KlT7W8550kS/OP866+/uvbt27scOXK4iy++2BUsWFB/N0JwnIcOHepuuOEGW3tz587tOnXq5P744w/9SAfxGnLZsmWuZMmS9nNcoEABN2HCBBdKClKIiIhI1Hnvvfdc586dXY8ePdyGDRtc8eLFXY0aNdyhQ4dcenfq1Ck7HpzIS1yffvqpXRSuWrXKLVy40P3111+uevXqdszSu2uuucY239evX28bqJUrV3b16tVzmzdvjvRTiypr1651b775pgV05P8UKVLEHThwwH/77LPPdHicc0ePHnW33367u/DCCy3ot2XLFvfqq6/aRqukjfOLlStXugceeMC1atXKbdy40TZ1uX3zzTdhf+5p9RizCcYxXrp0qfviiy9ss5G1mwCgBO84e3bv3u2eeuopCwxJ8H+e//zzT1etWjU7zjNmzLBkGQJxuXLl0uEO4nGePHmy6969u73/t99+68aNG2ef49lnn9VxDtI15K5du1zt2rVdpUqV3KZNmyx5p3Xr1m7BggUuZHwiIiIiUaZMmTK+9u3b+9/+559/fDlz5vT169cvos8r2nAqN3PmzEg/jah16NAhO0affvpppJ9KVMqcObNv7NixkX4aUePEiRO+66+/3rdw4UJfxYoVfR07doz0U4oKPXr08BUvXjzSTyMqdevWzVe+fPlIPw0J4flFo0aNfLVr145zX9myZX2PPPKIjnuQjnF8f//9ty9Dhgy+t99+W8c4iD/L3rEtV66crf0tWrTw1atXT8c4yMf5jTfe8OXPn9/3559/6tiG8DjzvpUrV45zX+fOnX233367jnuQriGffvppX5EiReLc17hxY1+NGjV8oaJKChEREYkqZCCR7U25v+c///mPvU2GnUhSHTt2zF5eeeWVOmgB/vnnH2v1QEYVbZ/kf6jCIWMs8G+P/M+2bdusPUD+/Pld06ZN3Z49e3RonHOzZ892pUuXdg0bNrQWcyVKlLCMWUk75xfcH/9vAtm9Oh8J3jGO77fffrNKSK3dwf1ZxksvvWR/q6gMktAcZ9YFzq04p8iWLZsrWrSo69u3r517SfCOc7ly5exjvJZQO3futJZad911lw5zkERi/bsgZJ9ZREREJAWOHDliJ/Kc2Afi7e+++07HVJLk33//tbJkWrFwgSjOff3113bhTL/eyy+/3M2cOdPdeOONOjT/vz837QVo9yRx0ReaHsT0fabVU69evaxNCO1umP+SnrEpwrwXWlTQYoKfnyeeeMJddNFFrkWLFpF+ehKE84uDBw8m+P7cL6E5h+vWrZsFRRUwDu5xpk0fLXFo2yKhO86sC0uWLLGAPpvm27dvd4899pgF3mhNJME5zk2aNLGPK1++PB2C3N9//+0effRRtXsKosTWv+PHj7vff//dZoEEm4IUIiIiIpLmkMHGJqp65/8fNpnZnKDChD7JbKIyxyO9Byr27t3rOnbsaHNMGNYocdWqVcv/OrM6CFrkzZvXTZs2Ld1n4xIMpZKCLFlQScHfnVGjRilIIZICzE4iaMycCv09Dp4TJ064Zs2aWaVXlixZ9LMZ4nWBapXRo0e7888/35UqVcrmqwwcOFBBiiDibwRr78iRI+28hGAQ53Ivv/yye+GFF4L5UBJGClKIiIhIVOHiiZP6n376Kc79vJ09e/aIPS+JHR06dHBz5sxxy5cvt4HR8j9kdxcoUMBe56KZrO9hw4bZoOj0jHYBDGYsWbKk/z4y+vj5GTFihDt9+rT9TZL/yZQpkytYsKBtCKR3OXLkOCPIV7hwYff+++9H7DlJcM8vuF/nI+E5hxs0aJAFKRYtWmQBUQnecd6xY4cNcq5Tp06czXRccMEFNtz5uuuu0yEPws8z68KFF14Y57yBdYGsdNoacS4mqT/OBCIIvDHIGTfddJO1MW3btq177rnnrF2UpE5i61/GjBlDUkUBfddEREQkqnDyzgbq4sWL41xI8bb658vZUO5NgII2RpTaX3vttTpgZ8HvFRvw6V2VKlWsFRZVJt6N7HhaNfC6AhRxnTx50ja82IhJ72gnx+ZeoK1bt1qliaSN8wvuD3x/UHWl85HgHWMMGDDAMqDnz59vf38luD/LhQoVOmOdq1u3rqtUqZK9njt3bh3yIP08sy4QxPeCQN66wJqpAEVwfp692TXxAxHe+dr/5kJLakVk/QvZSG4RERGRFJo6darv4osv9k2YMMG3ZcsWX9u2bX2ZMmXyHTx4MN0f0xMnTvg2btxoN07lBg8ebK//8MMP6f7YtGvXznfFFVf4li1b5jtw4ID/9ttvv6X7Y9O9e3ffp59+6tu1a5fvq6++srfPO+883yeffJLuj01CKlas6OvYsaOOjc/n69Kli/1O8bPz+eef+6pWrerLkiWL79ChQ+n++KxZs8Z3wQUX+Pr06ePbtm2bb9KkSb5LL73U9+6776b7YxOr5xfNmjWzv48efub5Hg8aNMj37bff+nr06OG78MILfV9//XUEv4q0dYz79+/vu+iii3wzZsyIs3ZzviPBO87xtWjRwlevXj0d4iD/PO/Zs8eXIUMGX4cOHXzff/+9b86cOb6sWbP6evfurWMdxOPM32KO85QpU3w7d+6089nrrrvO16hRIx3nFF5Dcnw5zh6OK+c0Xbt2tfXv9ddf951//vm++fPn+0JFQQoRERGJSsOHD/flyZPHLlzLlCnjW7VqVaSfUlRYunSpnVjGv3Gxmd4ldFy4vfXWW770rmXLlr68efPa79PVV1/tq1KligIUZ6Egxf9p3LixL0eOHPazkytXLnt7+/btof+hjREfffSRr2jRora5UqhQId/o0aMj/ZQkFecX/O7HX0+nTZvmK1iwoL1/kSJFfB9//LGOcRCPMWtTQms3m5AS3J/lQApShO44r1y50le2bFlbF/Lnz2+B7L///ls/zkE8zn/99ZevZ8+eFpi45JJLfLlz5/Y99thjvqNHj+o4p/Aakpcc5/gfc/PNN9v3hJ/lUF9Tncc/oavTEBERERERERERERERSZhmUoiIiIiIiIiIiIiISEQoSCEiIiIiIiIiIiIiIhGhIIWIiIiIiIiIiIiIiESEghQiIiIiIiIiIiIiIhIRClKIiIiIiIiIiIiIiEhEKEghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIiIiIjEuDfeeMPlyZPHXXbZZa5Bgwbu8OHD5/yY77//3mXPnt2dOHEiJM/pvPPOc7NmzbLXjxw54rJmzer27dsXkscSERGRyAlc86Ph80TC7t277flv2rQp0k9FJCYpSCEiIiIiEsM++OAD17VrVzd8+HC3bt06Czrcd9995/y4Z555xj3++OMuQ4YMIX+OWbJkcc2bN3c9evQI+WOJiIikNQcPHrQ1O3/+/O7iiy92uXPndnXq1HGLFy92sahnz57u5ptvPuP+AwcOuFq1akXkOYlIZClIISIiIiISw/r06eM6dOjg6tWr5woXLuzefvtt99lnn9ktMXv27HFz5sxxDz30UKLv888//7h///03aM/z4YcfdpMmTXK//PJL0D6niIhIWkeGfqlSpdySJUvcwIED3ddff+3mz5/vKlWq5Nq3b+/SEio8CcJEm7/++ivST0EkzVOQQkREREQkRh09etRt2LDB1a5d239fzpw5XdGiRd2iRYsS/bhp06a54sWLu1y5cvnvmzBhgsuUKZObPXu2u/HGG22TgGDG2rVrXbVq1awa4oorrnAVK1a0xwy0bds2d8cdd7hLLrnEPnbhwoVnPGaRIkXsuc2cOTNoX7+IiEha99hjj1kboTVr1rh7773XFSxY0NbUzp07u1WrViXaaujXX3+1+5YtW2Zv85K3FyxY4EqUKOH++9//usqVK7tDhw65efPmWaJDxowZXZMmTdxvv/3m/zz58uVzQ4cOjfOcqIKgGiIx3bp1s+d56aWXWvXHCy+84N/o53yjV69e7ssvv7Tnw4374rd7KleunH2eQLSzvPDCC93y5cvt7dOnT7unnnrKzmdoeVm2bFn/15sYHoM2mVRscAx4fjNmzPD/v3cs33vvPTvn4dyGJAsSN1566SV3zTXX2DkSx4BgUXzfffedPXc+jvOxTz/99KzPR0T+R0EKEREREZEYtXPnTntZoECBOPdff/31/v9LyIoVK1zp0qXPuJ9NiVdeecWNHTvWbd682eZI0D6qRYsWVpnBZgif+6677vLPsuCinTkYF110kVu9erUbNWrUGZsKnjJlythji4iIyLlRfchGOBUTbMLHR3JBchFcGDFihFu5cqXbu3eva9SokQUhJk+e7D7++GP3ySefWAvJ1KCVJIGHLVu2uGHDhrkxY8a4IUOG2P81btzYdenSxQIttHfixn3xNW3a1E2dOtX5fD7/fQQOSHioUKGCvU0l6RdffGHv99VXX7mGDRu6mjVrWvLE2RA0IeBDoITHuf/++923334b5326d+/uOnbsaPfXqFHDvo5XX33VDRo0yB6L++rWrXvGY9GCk69v48aN7rbbbrO2XD///HOqjqdIeqAghYiIiIhIjPIyHQkcXH755f7bhx9+GCcLMr4ffvjBLvLjI8tx5MiRlgF4ww03WAYkWZYPPvigK1SokGVZjh492j63lxlIxQZZgxMnTrTqDCoq+vbtm+Dj8pg8toiIiJzb9u3bbZOeNThYevfu7W6//XarpmjVqpWt51QW8Dab/8y1Wrp0aaoe4/nnn7dzCaow2KSn2oEqTlC9wLnKBRdcYO2duHFffARP9u/fH6d9JYGUBx54wCodqPZ866233PTp0+15X3fddfY45cuXt/vPhmBG69atrdrj5ZdftsSN+IGZJ5980pIwrr32WpcjRw4LTpCEQUCDcySSOqimiF9lQuCEAAjnTBxXqlDHjRuXquMpkh5cEOknICIiIiIiKUMQAbQ2CMymJPPP+7+E/P7779aGID6qIYoVKxbnvp9++sk2G3gMWkIwq4IgBZsDIMOQAZ6BQQ8yBxPCJsTZgiciIiLyfwKrCIIlcJ3Pli2bvyVT4H20lkoNKh5ee+01t2PHDnfy5En3999/Wyup5Lj66qtd9erVrdUSQYhdu3ZZ1cSbb75p/89sDs5JCDQEogXUVVddddbPHf88hbcDW2UhsOL0+PHjFjAhuBOIt6nGSOxzE4jh88Sv0hCRMylIISIiIiISo7xNBS78A1s+/fHHH3E2HOJjvgTzLBIKIpCdGIhWT7QpoM1B3rx5rQ8zF+B//vlnitpWsOkgIiIi50alJOsyFYtn85///OeMoEZiw56Z6eDhcwe+7d1HK8fAzx0/WHK2QdIEEmihxNwJWiJRSUA7JlolJRef54knnrAqB6oobrrpJruB4Mf555/v1q9fby8DUamRWgm11xKR0FG7JxERERGRGJU5c2ZXqlSpOHMeuGhng4Bh14mhpQN9opPi888/tw0C5lDQP5ogxZEjR/z/TzsDelrTU9rjDfKM75tvvrHHFhERkXO78sorbaP/9ddfd6dOnTrj/xmODS8BIHAtjl8ZkFJ87sDPS1UBVQ2JYdYFSQ3PPfecVREQaInf6pHKTaogzqVevXqWeMFcDoIUBC08nE/wOajyJFEj8EYLqbOJf57C25zPJIZkECpGOScKxNs33nhjop+bChKCKGf73CLyPwpSiIiIiIjEMDYBuDHokuGN9JcuW7bsGS0JArHhQSAjKRsEbC6888471qqAwdhsEAT2jq5ataq1WqDigpYHBEx4PvHR5okLdVo3iIiISNIQoGC9LlOmjHv//fdtrWdNpp2S11qIdfnWW291/fv3t/9jzgStGoOB2VScB7C+02KJ9T5+5UL88wZaQlI9QbsnnufMmTPjvA+zKgh0EEgh8YEWTYlVM9SvX98GXfN1MY/Cw7kH5yTNmzd3H3zwgX0+2lT169fPBoCfDXMsxo8f77Zu3ep69OhhH8csibNhIDZzKGhl9f3339tgbZ4/LTbjf7/4eql+YeA5lastW7b0/z/zReIfDxFRkEJEREREJKbdc889rmfPnhacYHA1LRi84ZSJqVWrlvVJZuj1uTDskQvskiVLumbNmllVRdasWeO0geBimzkXbKAwiLJPnz5nfB6GeefJk8f6SouIiEjS0L5xw4YNrlKlSq5Lly6uaNGiVi25ePFiG8zsYdOdzH0qLBn6zIDsYHjmmWdcxYoV3d133+1q165tQQOGVCembt26rlOnTrbpz2BpKisIMgRisHTNmjXta6JSY8qUKYl+PgIRJEFw/sB5RCAGZBOk4LgwzJrntnbt2jPeLz5aURFEYT7HxIkT7fHjV0TEx/lP586d7bFoOUV1x+zZsy0oE4hAETfOyRj6zfvQZtNDgOPYsWNnfSyR9Og8Xyim8IiIiIiISFQj048L5wULFoTl8cjw5AK/SZMmYXk8ERERkfiYuUFyBQENEYkeGpwtIiIiIpIOPfLII9bL+sSJEy5DhgwhfSxaOTRo0CBOmwYRERERERGokkJERERERERERETSPFVSiEQnVVKIiIiIiIiIiIhImqeu9yLR6T+RfgIiIiIiIiIiIiIiIpI+KUghIiIiIiIiIiIiIiIRoSCFiIiIiIiIiIiIiIhEhIIUIiIiIiIiIiIiIiISEQpSiIiIiIiIiIiIiIhIRChIISIiIiIiIiIiIiIiEaEghYiIiIiIiIiIiIiIRISCFCIiIiIiIiIiIiIi4iLh/wGXHYZ8yFm0ygAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -746,7 +809,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-vonmises.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-vonmises.png\")" ] }, { @@ -763,7 +826,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAH/CAYAAABKNb6SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwF5JREFUeJzs3Qm81OP7//HbmhZtUmnRQps2RatKqxJSKVshWwpZki27EilkiayFhFJaUCrtJEJaRbQolUpFssX8H6/r973n/zlzls4yc87MOe/n4zHOaWbOnJk5H3N/rvu+7us6JBQKhZyIiIiIiIiIRN2h0X9IEREREREREYGCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLZIHTZs2zfXr18+ddtpprmDBgu6QQw5x999/f04/LREREcmAXbt2uRdeeMF16tTJVa5c2eXLl8+VKFHCnXnmme7DDz/M6acnIv9zuP9GRPKOxx57zM2fP98VLlzYlSlTxq1bty6nn5KIiIhk0IQJE1zfvn1tLG/Tpo0rW7as27x5s5s4caKbMWOGe/TRR92tt96a009TJM87JBQKhXL6SYhI9lq4cKErXbq0O/HEE93bb7/tLrroInffffdptVtERCSBzJkzx/3+++/urLPOcoce+v8TWNeuXesaNWrk9u/f7zZs2GBBuYjkHKWXi8QBBkRSvDt06JDk+k8++cRWo6tXr+5++umnqP2+5s2buypVqtjvFBERkcQc01u3bu3OOeecJAE3qlWr5i644AL3zz//2O8VkZyloFskTi1atMi1b9/elStXzs2bN0+z1CIiIgkqJ8b0I444wr4efrh2k4rkNP1fKBKHFixY4Dp27OgqVarkPvroI1eyZMkkM+hjxozJ0OMpbVxERCTvjOm//vqre+edd9xRRx1l2W0ikrMUdIvEGWbAzz77bHfCCSfY4EwV0iAG6AceeCBDj6mgW0REJO+M6X369HHbt293Dz74oDvmmGMy/LxFJLoUdIvEkTVr1lgxFAqfMEhHDs5o2bKlU/1DERGR+JZTY/qdd97p3nzzTdtTPnDgwKg+tohkjvZ0i8SRTZs2uVq1arnatWu7oUOHusWLF+f0UxIREZEEGdPvuece98gjj1iBtUmTJrnDDjss5r9TRA5OK90icaRq1apu9uzZbv369a5BgwauZ8+ebtmyZe7oo48O30d7ukVEROJfdo/pBNyDBw+21fNp06a5/PnzZ/k1iEh0KOgWiSMUWWEwrlOnjhs0aJC7/fbbXb9+/ZIMyNrTLSIiEv+yc0z3Affpp5/u3n//fVegQIGovAYRiQ6ll4vEqQEDBljF0VdffdVNmDAh2f6vjFxEREQkd47p9957rwXcPL4CbpH4pJVukTh16KGHutdee81myK+55hrXpEkT6+8ZDZMnT7YLSHvz1zHjjurVq7s77rgjKr9LREQkr4vVmM6qOavo9OJu2LChGzZsWLL7ENhzEZGco6BbJI5VrFjRPfnkk+6KK65wl156qe0NY+DOKvaUMdse9PXXX9sFpKcp6BYREYnvMd1Plh84cMA99thjqd5PQbdIzjokpNxTERERERERkZjQnm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoj7dIiIiIiI5bNOmTW7VqlWuXLlybuvWre7XX3+1Pt7ly5d39erVc4cfrtN2kUSlPt0iIiIiInFg//797sgjj3T//vuvGzRokHvkkUdco0aN3IIFC9xhhx2W009PRDJJQbeIiIiISBz64osvXOHChV2VKlXCQTkB+dFHH53TT01EMkBBt4iIiIhIDnnxxRctsO7evbulk6eGU/YBAwZYmvnQoUOz9TmKSNYo6BYRERERyQG7d+92lSpVcnv37nVTp05155xzTqr3/fjjj13z5s3t/uvWrXOHHHJItj5XEck8VS8XEREREckBjz/+uAXctWvXdmeddVaa9z355JNdvnz53A8//OCWL1+ebc9RRLJOQbeIiIiISDbbuXOnGzFihH3/wAMPpJlajoIFC7r27dvb9++++262PEcRiQ4F3SIiIiIi2WzYsGFu37591g6sc+fO6fqZLl262FcF3SKJRXu6RURERESy0fbt213lypWtGvm0adPc2Wefna6f++WXX1zJkiWtgjn7uk844YSYP1cRyTqtdIuIiIiIZCOqjxNwN2zY8KB7uYOKFy/uWrZsad9rtVskcSjoFhERERHJRh07dnQNGjRwDz74YIarkHft2tUVLVrU/f333zF7fiISXUovFxERERHJZv4UPKNB9x9//GG9uo844ogYPTMRiTYF3SIiIiIiIiIxovRyEREREZFssGHDBmsTtmzZsiw/Futm33//fVSel4jEloJuEREREZFsMGPGDHfzzTe7/v37Z+lxdu/ebdXPq1evbt+LSHxT0C0iIiIikg0WLlxoX1u0aJGlxylWrJgrWLCgO3DggHvvvfei9Owkr3jooYdc06ZNXYECBawoX3r06tXL6g8ELx06dMjw7161apU777zzXMWKFe0xyPzIrBtuuMGdcsopLl++fO7kk09O189Q/T/ydfTp08fFmoJuEREREZEYIx18wYIFUQm60aVLF/uq1mGSUVS+7969u+vbt2+Gfo4ge+vWreHLm2++meHfvX//fsvSeOSRR1zp0qVdVl1xxRXuggsuyNDPXH311Ulex6OPPupi7fCY/wYRERERkTxu48aNbvPmzVZ5vHHjxll+PFqHDR482FLWCWRYtZS0/f7776nedthhh7mjjjoqXfc99NBDXf78+Q96X7IRMmLevHmuVatWtmVgz549rlKlSu6rr76yVVxWpFkVZsU5qx544AH7OmbMmAz9HCvKWQ2UGzRoYBfccccdWXqsp556yr7u2LHDLV++PN0/x/8r0Qj4M0Ir3SIiIiIiMeZXuU899dSoBMgEYhUqVLAWYjNnzozCM8z9ChUqlOqFlOegkiVLpnrfM888M8l9SZVO6X6x8MYbb6T5Orj4bQzRxqQA70u1atVslXzXrl3JUrejMSkwZsyYDLfSy+h7WKJECVerVi1355132qRVrGmlW0REREQkQfZzewQlpJiz+jlp0iTXuXPnqDyuxLdOnTq5Ro0apXmfsmXLRv33klpOdgWr71TNHzhwoE0+LF682LIEcPzxx7vjjjsuy7+rSJEiFtjHwsUXX2yTVWXKlLHV8dtvv92tXbvW/h+KJQXdIiIiIiIxRnCC5s2bR+0xCYIIuqdNm+b++ecfd8QRR0TtsXOjffv2pXqbDxy9n3/+Oc308shWcNnl6KOPtkt6UCBs7Nix6Xr9B3PhhReGv69du7arU6eOO+GEE2z1u02bNnb9a6+9Fr7Ppk2b3EknnRT+98CBA+2SHkwm+ZoFILj3k1YEzBRjy6zevXsneR1MEvD8mUjg9cSKgm4RERERkRj7/PPP3ZIlS6zacrRQgfqWW26xVcjIQFCytsc6VvdNiw/8//vvv2S3/fvvv/Y3JjX6mmuuSfNxpk+fbpM7Dz74oBswYICLBYqhkaK9bt26cNAdxEpysB998eLFM/27XnrpJdtGgWhPLPmsAV6Hgm4RERERkQRG4S32vEYTQdrw4cOj+piSc0jP9ivnwSB1+/bttkp97LHHumbNmqU7vZz911xigaKA7OlOLZ2cgoEnnnhiVH5X2Riky3t+YiAaafFpUdAtIiIiIiISB0E3lb1vvfVWd++994aD20GDBtmqMqvXFEpLb3p5akj9/uWXX+wrK+g+8CRI9gXgqlev7h5++GFL8ybgp+I5xeao+k0q9m233Wb3b9++fYbbla1evTr8/ZYtW+z383szGqSzOs1z27Ztm62E+9dBWvuRRx5pj80qPGnvDRs2tOc9btw417FjR3fMMcfYnu6bb77Z6iyQLh9Lh4RoGigiIiIiIjEr3sSKI8FUtFftOJVnT/fSpUstEIpV1WzJHqxyX3fddVaR/sCBA5bNcPrpp9veffYgRwMVxl999dVk18+dOzecjUGhvtGjR9t9CWgp1Ef7MlqZkTp+xhln2GRAqVKlwj/Pz1LJPa1WZBs2bLBibJF4jewPBz9/+eWX27GdFn7f/Pnzk12/fv16ex7+d/nX9eOPP7qePXu6lStXWpu38uXL26TC3Xff7QoXLuxiSUG3iIiIiEiMEKSQKswp99atW2PSH5gVUgIK2pJFs1Cb5Jw1a9bYiu0nn3zimjRpktNPJ10ocsaKeFbbht13330WTPsgPDdQxQURERERkRj5+OOPLeCuUqVKTAJu3/vbF2uT3FMDIPg13lFRnFZfl156aZYfa/r06e7RRx91uYmCbhERERGRBOnPnVbQTYq5SE6oWbOm7ZGORhX9zz77zPZg5yYqpCYiIiIiEiOkfCOWad8KunMf9iRrF3DuoT3dIiIiIiIxsH//fku5pSDWDz/8kGIBqWigdRPVrbF7925XtGjRmPweEckcpZeLiIiIiMTAkiVLLOCmYjkrl7FC+yMf0H/55Zcx+z0ikjkKukVEREREYoBeyOXKlbP93LRgiiWfYv7FF1/E9PeISMYpvVxEREREJEY41f7zzz9jXoV69erVVsSqatWqUSlmJSLRo6BbREREREREJEY0DSYiIiIiEmX//vuvqk+LiFHQLSIiIiISZS+88IIrWbKku+uuu7Ltd7722muuR48ebtGiRdn2O0Xk4BR0i4iIiIhE2ddff+127tzp/vvvv2z7nTNmzHDjxo1z8+fPz7bfKfGNegLXXXedVbgvVKiQO++889z27dtz+mnlOQq6RURERERiEHSjbt262fY7fQXzpUuXZtvvlPh28803u2nTprkJEybYZMxPP/3kunbtmtNPK89RITURERERkShidbtw4cLu999/t6riNWrUyJbfu2DBAnf66adbm7Iff/wxW35nIiDc2b9/f4787gIFCqS7Xdy8efNcq1at3O7du92ePXus9/pXX33lTj75ZFe0aFE3YsQI16tXr3T/7r1797pjjz3Wsh+6detm133zzTd2PC5evNg1btw4069LMubwDN5fRERERETS8P3331vAnS9fPlelSpVs+7316tWzAG/z5s1u27ZtrnTp0tn2u+MZATep1Tlh3759rmDBglF7vDfeeMNdc801ad5n+vTprnnz5taz/Z9//nFt27YN31a9enV3/PHHK+jOZgq6RURERERikFpeq1Ytd/jh2Xe6ffTRR1tQtWbNGgu4zjrrrGz73ZI9OnXq5Bo1apTmfcqWLWtfmXg58sgjbZU8qFSpUnabZB8F3SIiIiIiCb6fO7ivm6Cbfd0Kuv9/ijcrzjn1u6M9scJFEouCbhERERGRKGIvbuvWrd1pp52WI0E3e3ipnC7/h5T7aKZ4x8phhx1mX1OqeE/f90MPPTRD6eVsL/j7779tf3hwtZvq5dp6kL1USE1EREREJJdgRZfgLX/+/Dn9VCSDNm7c6CpWrGhbA4oXLx4upHbcccdZkPzBBx+4Zs2aHbTlF+nl/P19IbU333zTWoVh7dq1tgVBe7qzl4JuERERERGRHEZYxn5t0sfvvfde17JlS2v3NXr0aKtMv379+gwXhOvbt68F62PGjLGK+v369bPrP/nkkxi9CkmJ+nSLiIiIiEQJq4uk84pkJg1+/Pjx7qijjgpXHO/cubMdT3PmzMlUBfYnnnjCnX322bbS3aJFC1sxnzRpUgyevaRFK90iIiIiIlHy9NNPuxtuuMFdccUV7uWXX86R5zB27Fh7HgRsd955Z448B8kaiuGddNJJtiLdpEmTnH46kkUqpCYiIiIiEuXK5WXKlMmx50ARtc8++yzcOkoSj9+Tr735uYOCbhERERGROGgXtnnzZksjptJ0hQoVrOBVvnz5Mvw4derUsa/Lly/P8M+KSPQpvVxEREREJAoOHDhgRbD+/PNP9+2337oqVaoc9Gd+++0322P7+uuvW8AdPDWncvXJJ59s32/bts2CclqCHcyOHTtcyZIlw4+fmb3AIhI9KqQmIiIiIhIF3333nQXc9IQ+4YQTDnr/1157zZUqVcr16tXLffTRRxZwN2zY0NWvX98dc8wxttrtDRgwwG6jGvUvv/yS5uPSJoo2U1i5cmUUXpmIZIWCbhERERGRKKaW165d2x166MFPs2vUqOH++OMPV7VqVTdo0CD3ww8/uCVLllifZvZlFytWLLyCTmVrgvJRo0a5atWquVdeecX9999/qT62UsxF4oeCbhERERGRbNjP/euvv7qpU6eG/02qOAH2N9984+6++25XqVKlFH/u8MMPt/TzuXPnWkVrAvIrr7zSNW/ePPw7IxH4Y8WKFVF4ZSKSFQq6RURERESioFmzZq53796uffv2yW5bv369a9q0qevSpYubMWOGXcfqNankfE2Pli1bumXLlrlhw4ZZCjvtpBo3buwWLVqU7L4E/gTxhQsXjsIrE5GsUCE1EREREZEY+vjjj61nNivU7LVmtTs9BdHSQlE1eoFv2rTJzZo1y5UvXz7J7ZzipzeYF5HYUtAtIiIiIhIj77zzjuvRo4f7+++/Xb169SzgLleuXFQem/3gv//+uytRokRUHk9EYkPp5SIiIiIiWfTTTz/Z/myql3ukgl9yySUWcLPSvXDhwqgF3MifP3+SgHvy5Mm28h3E+to///wTtd8pIhmnoFtEREREJIvefvttSxnv2bOn/Xvv3r2uW7duFoSfeeaZbuLEibYPO1bGjx/vzjvvPNeuXTv3888/23WDBw+2oHz48OEx+70S3zj+rrvuOmtBR792jpHt27en+TO0sGNrQvDSoUOHNH9m69at7uKLL7ZK/FTuv+mmm9L1/F544QWrVUDtAX7Pnj17Dvoz999/f7LnV716dRfPFHSLiIiIiGSRryLuW3UVKFDAiqZVrFjRjR07Nl0txLKiSZMmtor+7bffWiG33377zR1xxBHW01ttw/Kum2++2U2bNs1NmDDBzZ8/3zIyunbtetCfI8gmkPaXN998M837//XXX9Yfnir8qVXvT8n+/fvtdw0cONBlRM2aNZM8v5SKCcYTBd0iIiIiIlEOugl4qTLO9cWLF4/576eQGgXVSpYsaWntt956q3p1R2D/O5dgSStS/7mOoDGl+wZ7oZOmz3XBLQRp3Tej5s2bF17t3bBhg33P3xJFixZ1Y8aMydDjkW3x8ssvu8cff9y1bt3anXLKKW706NFW9f7TTz9N82fz5cvnSpcuHb74nvGpYXLpySefdJdeeqkrUqRIup/jTTfd5O644w6rwp8RtNELPr94r2ugoFtEREREJAsIsFavXm3fk8JLIOdlZ8suUnvfeust+/7555+3vuBYu3ZtskAxL+Jvw4Uq8h4TI1x3/fXXJ7kvkxdcH9wjP3LkSLuOHumRASfXr1mzJnxdRgPk9HrjjTfCryO1C7UDQI0Bjs22bduGf5407OOPP94tXrz4oBMAvAfVqlVzffv2dbt27UpyOynhpKFnZlJhw4YNLqu+++47V6ZMGVe5cmUrVBhZyyDeHJ7TT0BEREREJJF98803FmgT8BAAnHDCCe7dd991pUqVyvbn0qpVK3fttde6Z5991t1+++22Qrl7924LCKmeLomtU6dOrlGjRmnep2zZsvZ127Zt7sgjj7RV8iCOS25LDenepKDT5/3777+31G/qEhCoH3bYYXYfAnfa32VEgQIFLIgnCyQreP1MavBYpJY/8MADrnnz5m7lypXu6KOPdvFIQbeIiIiISBRSy0l5pYgZ6a45efI/dOhQ98EHH9iKIqvfBN0rVqzI80H3vn37wsGfRxo+Kc787YJ8MToqxHsUJLv66qvDgafnV26D983oKnB6cVzF+ti68MILw9/Xrl3btikwkcRKdZs2bez61157LcOP27BhQ5ugyiomADyeG0F4hQoVrJhgZBZCvFB6uYiIiIhIFIJu9uKyF5aiVcHALrux4s7eXSqqU1QN2tftrHo8F1KcPVaCuY6/W0r3DRbAY4WW64466qh03TejfDAf3Bvu/fvvv/b4GUkvZ/KHDIzIiuBUL+e29CKFmz3T69atc/GoaNGiNrkUr88PWukWEREREcmCc8891wpWsaLMyikBQE5jz60P4FhdJBVX4hsp237lPFh8jyCZVXqqgzdr1izd6eUUTiP4/+ijj6xVmN/fz/5nqt2n1+bNm21Pd0bTybPLvn37LA3+kksucfFKQbeIiIiISBbMnTvXAm5adlGJOZ6QKkwhLdLNJf6D7gYNGtjEzb333hsOeAcNGmQrzexbZiU7venlVBEn3bp///4WxFPUr1+/fhZwB6uFU1zt4YcfthZ3BLDskSZIZzWcYPa2225zJ554YjhrIjW+0jqPsWPHDvs3mQQnnXRSqj/D3nIufpWabRC8Pt4LP/FASjvPzRe7GzBggDvnnHMspZwWaPfdd59lCVx00UUuXim9XEREREQkk3788UcLWHwlbNKM4wkrlPQ0Zo8xAY3EL9Le2ZdM+rqvON65c2dLD58zZ44F3Bn1xBNPuLPPPtuC6BYtWlggPWnSpCT3YfWb9mIgeGUrAgXbyNggaGfFnJT1YAp+StXLqRnAharp48aNs+87duyYZvXyUaNG2f3YKw+eI/+eOnVq+D4E/sGK80xEEGCTvXH++ee7Y445xlqgkQkQrw4JBRvViYiIiIhIuk2fPt3dcMMNViV8yZIlSfYLx4sLLrjAgjmqUvN8Jf5RbZ4VYnpqZyQVPLuwysyKeEYKxo0ePdoNGTLE2utltYJ5otFKt4iIiIhIJrF6TGos+13jMeAOFuiaMWOGBXES/3wl9GBF9HixatUqS12/9NJLM/RzH3zwgQXdeS3ghoJuEREREZEsVi6nHVK8oq2SR89lJbpKVrBdgRT0YLX29JgwYYLr3r27y4tUSE1EREREJIMmTpxoq9zsX0XdunVdvDr55JPtKyvx8+fPdzNnzjxoUSzJWRUrVtTkSC6iPd0iIiIiIhlAGy5W+2jFRSDL6TRtmMqXL+/iEdWhg+2e6tev7z7//PMMr1SKSObo/zQRERERkQyg+jMBN62NCLgpoka7sHhFxepSpUrZ97SNoi3Vn3/+mdNPSyTPUNAtIiIiIpJOBNmDBw+271u3bh1OLY/XImoebZhAxWnaNBUoUCCnn5JInqGgW0REREQknd577z0rnkbPZJ+yHc/7uSP3dbNCLyLZS4XUREREREQyuMp93XXXWX/udu3aWc/ieNe2bVu3Z8+ecAG1r776ynp308Ip3lfpRRKdCqmJiIiIiKTDrFmz3BlnnGG9kzds2OBKlizpEtFvv/1m+7z379/vZs+e7dq0aZPTT0kkV1N6uYiIiIhIOpxwwgnuiiuusFXuRA24QQE4XgeGDx+e009HJNfTSreIiIiISAZw+rxgwQK3cOFCS9tu3LixSwR//PGHW7lypVVbJ6W8atWq1v6MfuO1atXK6acnkmtppVtEREREJAMIWCdPnuzuuece9+abb7pEccstt7iGDRu6F154wVbtu3btatc//vjjOf3URHI1Bd0iIiIiImn46aef3OWXX+6WLl0avs5/f+qpp7pE4SuYL1u2LByEY+zYsW7r1q05+txEcjMF3SIiIiIiaXj++efdmDFj3E033WT//vfff636N0455RSXiEE3KfKkxZ922mnun3/+cU8//XROPz2RXEtBt4iIiIhIKv766y83atQo+54WYVi7dq37/fffXcGCBV21atVcoqhdu7Y77LDD3I4dO9zmzZvtugEDBrhy5coldGE4kXinoFtEREREJBUTJkxwP//8sytbtqzr0qWLXffFF1/Y13r16lkQGw2071q/fr1bsmSJ27t3b/j6X3/91W3bts0KnmUVrc7q1Klj3/N70KlTJ/u9fhVfRKJPQbeIiIiISCqeeuop+3rttde6I444Iir7uT///HN37733ug4dOrgTTzzRWnixal65cmVL+V6zZk34vi+99JI77rjj7HYC5m7durmBAwfaPuwtW7Zk+Hc3atTIvn766af29dBDD3WHH354pl6HiKSP/g8TEREREUkBq8EEyPny5XNXX311+Prly5enez83+6Xnzp1re6cJnDFz5kw3aNCgZPfl95DmXbhw4fB1Bw4csGrpf/75p7X24hLEY7Vr1y7dr4mgnnR5v9Id/D1Tp051NWrUsIuIRI/6dIuIiIiIpOCSSy6xFeVevXq50aNHJwmkWY1mL3Tx4sWT/Ryp4LNmzXJvv/22tRbbvXu3e+edd9x5551nty9evNjadjVo0MD2WZcuXdqVKlXKVrwJsCMREG/cuNF9++234QuTAV9//bWlvhcpUsTu9+yzz1rq+1VXXWXBdUqPtWnTJnteTAI0bdo0fH3fvn0tGOdnX3zxxai9hyKioFtEREREJEVDhw61QJZ93fS3Ts++7Ndee8098cQTFhh7rF4PGTLEXXnllVF9fvv27XOFChWy7zmlr1mzZjg1ndVqfh9BtA/K07Jw4ULXokULV6BAAWuRlp6fEZH0UdAtIiIiIpIK2oOx7zmlVeOg7du3W9C7a9cu+zdBa8+ePV337t1ds2bNolZwLTWc0i9atMi9/PLLNknABACKFStmFcr79etnK+lp/Tyr7qtWrbJ97NxfRKJDQbeIiIiISDrdf//9bsOGDVZYLXL1u3nz5lbcjErgl19+eZpBbixR8fytt96yFfdvvvnGrjv//PMtrRy0DCP9nQkFUui9kSNHuuuvv95WyQm+DzbRICLpo6BbRERERCSAFO3Vq1dbOy1fsdw76aST7PY77rjDffTRR2769OnumGOOsdu2bt1qqeSxXtVOL4Jqgu8HH3zQvf766+FJgg8++MCdddZZVjn9u+++SxKslylTxnqQz58/39LNRSTr1DJMRERERCTgySeftNZcrPoGsULs90w/8sgjVsxs2LBh4dtp7RUvATd4Lj169LDnHFyV//DDD+3runXr3M6dO8PXUzX9wgsvtO9JUxeR6FDQLSIiIiLyP6zyjhs3zr6/6KKLwteTHBps83XUUUe5u+66yy7xjj3pwYkDKqd79AsPJr5SeA1US1dCrEh0KL1cREREROR/xowZY/uxSb2mAjn7mmnLdc0111j7L9Dei2rfVapUcYmIPuNt27a1ABxdunSxlW2KrhEasDJOGr2IRIdWukVERERE/uell16yr7Tb8oXEbrvtNgu4/b9JKU/UgBt16tSxgnDgNb377ruufv36bsmSJfZvBdwi0aWVbhERERER56x4Gm2/2Av9448/2h5t7Nmzx6p8U4Dsv//+c5s2bXLly5d3iYzq5LVq1XJHHnmkK1u2rFu/fr21OSOt3Pfo5nX//fffVhxORDJPK90iIiIiIoHiYR07dnSzZ88O72kuWrSorW7TSqtSpUoJH3CD1ezSpUtbUP38889bP/ERI0aEA+5nnnnGJh2GDBmS009VJOEdntNPQEREREQkHqxdu9a+sup76aWXur1794YrmFevXt2tXLnS/fnnny43II38nXfesUkE2oSxxzvYlztfvnz2Wmk1NnToUPu3iGSOVrpFRERERP630u2D66OPPtoC0khULc8tTjvtNAu4EQy4f/rpJ+vtTY/yX375xU2ZMiUHn6VI4lPQLSIiIiJ53oYNG1yzZs3cN998Y3uYFyxY4M466yy77Z9//rFWYnnF9u3bLe2c142RI0fm9FMSSWgKukVEREQkT1u8eLFr2rSpW7dunatQoYJbtGiRO/nkk8O3z5s3zx1zzDGuV69eLrcZPXq0a9++vZsxY0b4unr16lkl84oVK9q/mYDgPRGRzFHQLSIiIiJ51q+//urOOOMMt3XrVlvh/vjjj5O1A3v//ffdX3/95Q4/PPeVQ/rss8/czJkz3fTp05NcT8DNe1GgQAH7N6v+TEqISMYp6BYRERGRPKtgwYK2dxmDBg2y9lmRaBXmq5rnNm3atLGvH330UbLb2O/96KOPhicnTj/9dPf9999n+3MUSXTq0y0iIiIieRZp1Weeeaa1BWO1O7JQ2nfffeeqVq1qgfnOnTtd4cKFXW6ya9cud+yxx1p7NAqo+d7k3h9//OEefvhhN2HCBKtgzop45H1EJG25L0dGRERERCQNu3fvdv369XNPPvlkuDc3LcJSqkzu066bN28e9YD733//tUCeVeT9+/dbsTa+cv1hhx1m6ex8zZ8/vytWrJhd6KPNddHCXvX69eu7L774wl7rFVdckeR2fjeVzK+77jp7f3wfbxFJPwXdIiIiIpJnUJX7vPPOc3PnzrWVXV8g7Morr0zx/llJLferx2vWrLEV82+//da+btmyxW3bts39/PPP7r///stUoEzBt+OPP96+Vq5c2dWqVcsu7EvPqE6dOlnQ/e677yYLur1SpUqFXxPtxQjQW7durf7dIumg9HIRERERyRM47aUC+WuvvWZ9uHv37u0ee+wx16BBAysoFomVZwJciqitXr3a1ahRI83H37t3r1u4cKE9FkHs0qVLLbBOCwEsK+gULPMXVrJZ7eZy4MABW/1mdT49bcsIuuvUqWPV2Lk0btz4oKvT9CWvXbu2BdA7duyw9ybSrFmzbH93586d7XndeOON7sILL3Tjxo1L0uNbRJLTSrdIAiEFbd++feEWHsyOM1vP9X/++ac78sgjwxcGzFNPPdXdcccd4Z/3s9MiIiJ5EYXSCLgJatmjfNttt6W5ys04+8gjj1jwXL169RRXzWknNnv2bFs5//LLL5OtXPO7TjjhBNsXzoXK6KxOly5d2i7sp05vVXR+3549e2yVfNOmTW7jxo12YQV91apVVuSMIJ/nwwWM+wThtAVj7zqBOOcJQTVr1rQLK+ecU6QUdK9du9Yek6B8+PDh9pzfeustC9YHDhyYrucvkldppVskTvG/JrPqVBPlQr/M7du3u3POOcdNnTo1fD9mx3/77bcUH6NVq1Zuzpw54X+zZ4tCMcx6N2vWzNLCUtq/JiIiktu88847rnv37vb9888/b6vcFE4jCO/Tp0+69yqz/5qU88mTJ1uKNf8OIqg+7bTTbOL7lFNOcXXr1rV90dmBlXDOHVhl/+STT+wSWW28UKFC1iLt/PPPd2effbZVb4ffR54aVtopoMaqP5MQXHjfwHtx7rnnxvjViSQuBd0icYZBj2IlU6ZMsZnsSLTrYFbdGzt2rKWDMWgyA+4vDI6kmF1wwQV2P2aumU0P4mcYeBkoCeaLFy+eDa9QREQkexGINmzY0ILSW265xVZqM4IUb3pZE6AzPpNdFtzrzAoyE9lMdpcrV87FE84lWIVnguDDDz9Mku7OZACBd48ePawP98FW3C+++GL35ptvur59+7pnn33WXX/99W7kyJEWyC9evNj2lItIcgq6ReLAL7/8kiTgJfWLwYvBkBXptm3bWrBN6hcDW2aDeVLPWDH/9NNPbeClkIvH7P/48eOj8npERETiCXuW2YtMWjfjHyu6B9tuRYE19mcTtL799tuWbeaRJt6lSxd7TIL5Qw891CUCUt+/+uorN3HiRHtNP/zwQ/g2VrEpotahQwfrVV6pUqVkP096ebt27SwrgAJxtFEjbZ2gnhR6VthV3VwkOQXdIjmE//VI/aZdCV/Zk0WxFpBOzsDYokWLNKuCktJG0Rb2eZPuxQy1v1CIhb1iqZ0I8PvZe8aMPdVKhw0bZgMtSEUjde6qq67KtpQ4ERGRWGIvNCvWJUqUcK+88op744033IABA2yVOnJ8JIikhVhwcpqfY6WX69muleg1UnidBMnsy2YFn73aXvny5S2TjjZpwdfJuQnB9YYNG9yYMWPcZZddZn2+SaPnPObFF1+0cwcRSUpBt0g243859j7df//9bvny5eHrGfR8Kri/H7PrzM6zQk27EYJs0ro82pf4/qEpISD3PUVJ/2L/FYPliSeeaIVPKArDbL//GPADK8XXhg4daunpN998s6WRaeZaREQSDVut6G0dqUmTJpb1RTXuW2+9NRxQMhE9ePBgm5T2WMm+8847Lf2ald3ciG1pvHbeD84VPKq6MzFB0Va/33vIkCHurrvuco0aNbL3EGTRrVu3ztLURSQFBN0iEnv//fdf6IMPPgidcsopRLh2KViwYOi6664LrV27Nny/l19+OXTOOeeESpQoEb5f8PLnn3+G79u9e/fQkUceGSpevHiodOnSoWOPPTZUrFix0NFHHx3Knz+//U6Px4x8LH5/s2bNQjfddFNoz5494fu+/vrroYoVK4bvV6RIkdAjjzwS+uOPP7LxHRMREcm8L774wsbDESNGJBkPV6xYYWPb4YcfHtq2bVvo33//Db355puhmjVrhsc9xla+VqhQIcnP5na8F+XKlbPXfsQRR4TfD96biRMn2nvBe9a8efPQq6++mqfeG5GsSIwNKCK5APumKFZGKhf7su+++27bt02KGpVOPfaPTZs2zQqfkRperVo117VrV7v/Sy+9FF6VBqvepJWT2kUFVoqjsD+cFXGKxQRTwq699lqbvac/KXvGKaLGfdizRpqdr14Knh99N0k3O+mkk2zFnNVvngsr8iIiIvGMbVcXXXSRdfcIFh/1lcvBmLxixQqrMs59ySojO4xVXNKqwZiZ6GnkGcF5B1Xd/Qr/vffea11PeG9Y7SaNnCyABQsWWJp9Su8N5yKcc/A3EJH/o/RykRgiIA7uySY9jQCWAiWkcX3++ed2PYE4wbffz/31119buxHajKSnpRf/G7NPjcGSS3pOECisRl9P0sgIvn3bD1SuXNmtX7/e+nVSKIYBl4CfvW1UVn/mmWcy+Y6IiIjEHgXBRo8ebeMtY6qvmUIQznV8Jdj2qdQE26RR9+vXz26rWLGipZvTm5qiaXkJ/b95/ZxbUOOFQq9PPPGEXXyLUvbBP/7448l6l/MzBOu8rwTvfoJDJM/L0jq5iKSIdKtx48ZZyvfXX38d+vvvv0MTJkwInXHGGaFDDz00nK7F902bNg0tXLgw2WPs378/tHz58tCUKVMsNY4U8E8//TR8+8yZMy2V/KijjkqWNs7jPvbYY+H7fv/996Fzzz03dO2114Yeeuih0GuvvRZavHhx6Jdffkn2e0khJ22d1PPgY9aoUSPUsWPH0MqVK8P3/emnn0K//fZbTN5DERGRzJg0aZKNW4ccckho3rx5SW5jbAyObaRQ33jjjaEdO3aE73P33Xfbba1atYrq82JMHzNmTGjJkiXh63799dfQqaeeGqpSpUro999/D1/PWE1q/C233JLkMVq0aBFq3bp16Mcffwxf98MPP4Q++uij0ObNm6P2XNu1a2fvwb333hu+bufOnfZ8fNo56fk8n5deeinJz86ZM8fee+4zderUqD0nkUSmoFskyrZs2RLq1KlTeEC/4oorQu+9916SQb5x48ahp59+2vZFBS1dujTUtWtXG3z9gBW8PPfcc+H7zpo1K8U93/4yatSoJAF6avdjH/gzzzwTvu+BAwds0oCgf/LkyaEePXrY/vDg6wH3YRLh+OOPt+ciIiKS037++Wcb1xiv7rjjjvD1jFnjx4+3QNGPZ4y3TEpH6tOnT+iwww6zyfLM2Lt3b+jOO+8MdenSxfZIewSs/N5gIM2Y65/Prl27wtffc889dt31118fvo7H8vfldXrUXOG6nj17Jnkejz76aOiNN96w55NR7HHnMWvVqpXstm+//TZJnRje03fffTfJffxrLVmyZGj79u0Z/v0iuY2CbpEoogBZ0aJFbaBhwH7wwQdDf/31lw2qDRs2DN11112hdevW2Yz6W2+9FbryyistIPcWLVqUJCBmJZvCa926dQsNGDAgyUo3K8xr1qwJbdiwwQa03bt32yw030euQG/cuDE0cuRI+/29evWy2fuyZcuGf8/YsWPD9507d64VceNk5Mknn7SZeR77+eefDzVq1MieI/gdZcqUCT9Gv379kszSi4iIZLfzzz8/XPjLFx4lQGUc9eMVE8kHC6g3bdpkWWoH8+WXX9rKONltHuO+Xw3mcTyyzFhBDk6ggyKrZLwFfx8B+HfffZckYOVcYtq0aTZmB4P5p556KlS1atXQoEGDwtcxHvvJe8Zr76uvvgp9+OGHB81SI+uN57tv3740MwqCCwS8x1u3bg3/fO3atcPXi+R12tMtEgXs02avMz0/g/08f/zxR9uTzf9my5Yts1Zh7733nvvqq6/CBdEoNkI7L7BXir3TtPPiUqpUqfDjse/aF0rjQhuU/fv3277xP//80/3zzz+2n5uWHnylv/bRRx9tF/aqHXvssfZ4tP7ye74pcsK+bvZusWcL7NG65ZZbkry+cuXKWXuys88+27Vp08Z6gAf3zHnse6MAG4VWREREshN7sB955BH30EMPWaEvxqKJEyda20t6UB9++OFWW2XgwIHpqpcSidoptMbicf3Pjxgxwlpr0k6M8d0bNGiQjasUaPPja3aiGCsFWCmySg0Z75prrnEvvPCC69+/v3vssceSvHecO2TUlVdeacVYOa/gvIa985zHdO7c2c57aDnG+8bfgaKwInmVgm6RKHjwwQfdfffdl+Q6glQGNgZmBh0KkwURVLdr184GJqqk8r8ihcpWr15tgTAXel4SuG/evNnt2bMnKs/1yCOPdGXKlHGVKlUKXyiEUrNmTauizsBLYTeqvc6fP99OXP7444/wz8+ePdsCb9BrfPjw4TYh4BH0E7hTjCYvVXwVEZH4QEcPxl7GIT8xzJj76quvunr16qXZZYR+1ZHFwcAYzTi5Zs0aN2vWLNe2bVu7fvny5Ra8Mp737NnTxTsCcRYInnrqKaveju+++866mjCx/vLLLycLvjkvoCsKRVUjEVjznjKhwfu2cuVKu/6qq66ywmt+EoTiavT01nmB5FUKukWygJXiIUOG2MDCajPOOOMM16lTJ1v59hiIqAbaoUMHC7K5D//rffzxxzZrzso3AxcnCmnhJIJZZGbNixUrZivOXEeF9COOOMIGRi5UJidQZuWc58hKPKvkDJoHC8hr1Khhg6O/UMmcNmbM4FNtnTZnBNY+6GZCgN85fvz4cPBN+zF+Jq2TGxERkWgJrtTSBuyCCy6wAJnrWN1m3OQ+ZGiltvLMqvTbb79tk8mMhVTgvueee5Ks6r777rvu6aefdj169HCJjHMQHwDzem644QbXunVr66DiEUBv377dXX/99a5OnTr23qSkSZMmFlBzTkAG3rBhw+zxmcgn++3999+3lXUy70TyKgXdIplAIMvsLTPdrVq1susYkEjfZoWYIJiByqdhs3pNcEzAOnPmTAtII1e+QTDLIEU/bC58T9suVqb5Spo4s/AEuKx8kyZGsA0GSi6NGjVy5557bvgxx44da7+7ffv2NhNN8E2gzO/nQjsQnh+X4Iq1Rzp6ixYtXMuWLW1Apo0ZAzWBffny5S11DbQ8YxZ87ty5NtjedtttbujQoTH7G4iIiIBx96abbrLsMsYy0smZCD/uuOMs6GvcuLGNV6Rcp5bmTGswAm3GL8Zpxky+37Bhg6tQoYLdh61djMOMpRnBeOknqwlKWfll7Bw1apRNduPhhx+2VHX6ggfHTiba2T7GijpbwTB16lRL6eYchIDYY5KhdOnSNimfETy+n1CnXSl4/3gsXisLAkxecL7gn0PQ66+/bj27acXGecWiRYvs35xrsNWNv0siZAGIxFQO7ykXSTi0zDrppJOsOEjv3r2tFVflypWTFECjaBrVPalGToGVk08+OVnVcIqP1K1b16qkvvDCC6EZM2ZYlfEgCp/RMoQqph7FSfxjUODMu+++++y6vn37JnmMI4880q6n4Jr34osvhipVqmSP71GUZf78+VbdlYqvtCThd0c+b4qnXXXVVaGJEydaOzMKpPiCMVwowkbxFArGgVYiFGMRERGJNsZEiogx/vjCXVw6dOgQrvDNGMR15cqVC/3zzz9Jfp7iZVTqplAo96Eqty/IRuVwCpGmV3BM9m2/ihcvbpXMg7/PFx8LViDnvv68IshXWw92O/H39d1EPIqvcv2yZcvC1zEW004sWBk9PSi4RhV4OpS0bdvWHveaa64JrV+/PlmBOQrWUZz1wgsvDLde4ysdTvzfg5alFJijiCxfRfIaBd0i6cRAfd1114UHy2OOOSZJ9W76ZVMZnMGdntrly5dPFrDWr1/fAlpaeFAVPDhQ+/sEW3v4gZUq58HguH379hbs+vuuWLHCeo8SwBM0g5ZfVD5lsDzttNOSVBbnOfiK48HHLVCgQChfvnz2c/41U1F16NCh1qOb24Ovh39fcMEFoZdffjn0wAMPJKmIznNm4PcnDJwUBSuoioiIZBUVuxlj/AQzl/vvvz9c3ZtWYfTB5nrG1EjTp09PMq4Fu4RkJPA/4YQTkrX9evzxx+06xsmg2267LTR48OAk4z1B9ddff21tR4Powc0kPpXLPcZWKqDPnj07yXMoVaqUnaMEK5P79yeynRjnDZETEJEIjr/55pvQggULwl1Zqlevbuc+vpOJxzlHJJ4zfb79e0v7sNT+DiK5nYJukXRg0AmuZjOwffzxx6FDDz3Ugu/+/fvbTHa1atWSBaXnnXeetRLzM9p+AIycoWY2mcB07dq14RViZpUZVP0A+s4779iAevrppyf5WdqK8Zi0EvHmzJlj19WoUSPJfW+++WYL2mkxsnr1aruOWWtmwwsVKmRBd3AWm1X2IkWKWL9PBnVW5AnWK1SokOS1sipOoM3Jjl/pZ0C/9NJLw/fhpIj3QkREJKt+/PFHm/D2YwxjWGS/aMZQPzHOOEwLri+++CJ8O8H5cccdZ/ehnebB0FaTSegbb7wxyfU+6J43b174OtpnEUj7MZwxMRg8M8FNa85guzGQhXbxxRfbanPwvrfeemvomWeeSXJf+owzoe0nGSJbdw4bNswy25iY9/bs2WPnEoULF7ZWo+nBeYN/HwsWLJihlXPOTfjbBM8FmEwQyUsUdIukgRlyZpP9ai2XevXq2QDKwEmAyeBL8B3s/0mK1eTJk0O333679Qr1gTTef/99my32fSsXL14c6t69u6VeBdWpU8cej/6dfjV81KhRdh3p6uB5PPvss5amzoDPyQBIE+eEgAC6QYMG4cdkBp1/8xg8P++TTz4JP26wpyiDMSl63BbsK8pz6dGjh81W33LLLTZhEAzAmQnnRIKBPfha/IWUfH+biIhIZgTTlytWrGjbvyL51GhSxdnCxRjNZLQPUvkZP4ZHrt4SJDOBHUwDf++99+y+J554YrKV419++cUel0A4mM2Gxo0b29jPmO8xkc5jkY2W0kS6H/+DK/KcgwS1bNnSrn/11VfD1xGEM1HOcw2ez3hMOhQtWjTZaxgyZEjohhtuSPF9/Oyzz8Jb495+++0kt7FAwOID79OaNWvsvCQSkw/BDMDIxQOR3E5Bt0gqmMXt1KlTshRxAlRWiSP3cbdo0cLSxX799dfwY7Rp08ZuGzFihP2btPKLLrrIUrYjV6R5PJ9iRvo3AzSr0n7w4+e4H6la7J/yAyvXccIQxMkF1w8cODA80Ab3gjPzzQoBCNQvueQSu75du3ZJHocTAfaIMYCyOuCxksD9CfR5fE4yeBzS14Ip6Mxsk/Ke0p52UtGXLFkS9b+biIjkfgSVwYleVpUjff755+G0aOqaMNlLsEk2lt/uxCosGWtdunRJ9vNnnnmm/XxwdXnfvn32uwlcGf8IsIPp3H7/eLNmzZI8VtOmTe364Er8l19+aXvHmcAP4lyB1HT2T3urVq2ywJbfHcR5BucAnEtETgzUqlUryX3HjBljj81+axYOgpPsvBZWxPk56rV4nG/41fnOnTvb7QTnHq/fT1rwe/33KQXuvOc8J/93i3wtIrmZgm6RVAwYMCBJkMhqN0EoA7a/joCUQZDZc/YqkWLtA2JWiRmYKNDi07B8EO8HmldeecUGTPZ7kbbtV6P9SUJwvxW/h983fPjw8HXsB+vatautrPtZe5+aTjEYBtfgYMdjsvodnPFmnzq/j5VxPwAzwDJz7QNoUsU9BlXeB1b4g8+Fx2RFm+vZ3+2LzfmZcSYRSpcuneQ9ZZY9+LxFREQOhtolvr4KxdGCQa/H+Mn2qCpVqli9FY+05uAYCIJxMsQoSBpM/2aCmkJowbEuiIKjPIdJkyYlWfFmnGUFOoiMt82bNyd5/GjhtQbPF1gc4LyAifcgH1TPmjUrfB2r0zw3nhcTAhRKZWLBo9Ark+RPP/20Bf7B1XPwXrIK74vFsaWO33HWWWeluGecv5Vf8eZvyDmSSF6goFskAgPIyJEjkwTXpKIFV3BZ4aUquR+YCBxJsabSJyllDOoEuFT15j7ssWKmnHQqfo7ZbV9Mxae9eTwWe6YZ5IOFSSJPEjKDx46srkoRNGb4g7PvDMB+7xZFZfzvJvWO+6ZUJZ1q5v5n+B38DBVTCcIjA22frs+A6wu/iYiIHAx1QfxqKpO5BLIpYZz1405wD3dqBcN85e9gFxHGbgJHJq3J2ooMpJmcZpx/4oknkoyzBytQlhMIqjm3YJU/uL2LrWC8brLpUsJ2MG5/+OGHw9cxvkdWME/pfWfCg5XwSPzNfNcTzgNU60XyAgXdIv/DCjUDJ1VB/YBO4B0s0sI+K1ZxSZumNQkDD7PEzACTWu4HIVagCcK5D0XYeGwftAdTrtgjxT5tZo/jCannpLiztyul/XOs2Pt9abwHpMD5lPHI9mCkzpFWx6w3ExH+vWR1gpVvUgIpdMNsd3Dvu4iISNDo0aPDK9yXX355slXjyMwpao4wiR4ZBLNdynf78JPKbOc6++yzbVwm2PZbsECQ6ieLg0Ek439KVbsTCdkAFDYLpnpzLnPZZZfZ3m22zE2YMCFJ9xFW0llkCHZWSSmVniKsPvsvEr+PtH6/RU6Bt+R2CrpF/reP2g8SvsKmH9h9sE0BNAZnCqVQiIU9ZAzcBIt+Tza3M4gzgJF2FkTq1YMPPpjqrHwiYIClcruveg72clPAhtccuQrA6rc/USEDgJMVqpn7SQ2+BtPMeF+DFdhFRETAWOvH5auvvjpJgM3YS0DOtia2c7FVivukNJHLRG9wMt0XFfXBN5XEqc7N1q0garNwHkB9lNyGlO/g6jfp57w3BMUp9dRmMt1XIQ/We/GYlPfb5IL70nlc/z77lHj+Tv58YOzYsTF7jSI5TUG35Hm0/iLYiyz0xYW2WAziDDBgppc9X1TyZuBgNpz90wTlrJL7npb8LD8XjylmWcXrDqa6k67G66UYW3Bw3bhxo7UjYVBm1TyIFPvIiubBS+Q+NBERybvY/uQzpQjOyJJistxjNZWJcG5njL7pppvsez/5Hbmtiqwsv3WMdpnBImy06fK3xWL/dSLgPaH7Chl8QbQxY2Wc8d23DfVp6RRnY+8850DBqvF+Kxqr5j5TLjhhwvc+8OZvPHXq1Gx9rSLZRUG35GlUIQ+uaPsLs7sE1kuXLrV/kxrOCjer1fybwQS+B3VkGjaFx6KxBzsRsKpARdRgJXImJ1jhJmuAgTk4wLJKTmEaX4ndtzCLvLD/Pa+e8IiIyP+hKjeTtz6jLDgGB1FzZOjQoZYW7ifSKXDGhDBjuu8sQhsuH7wT7HEOEJzoZez2lckllKzWC+8bmQRUhg9WLWdyne99m1L6lTPWP/LII/ZvuqBQYI5xP4jFC66j3ouvC0NRO5HcRkG35EkMpszYphTssW+ZAJv7MNhTgZyUcAYG9iA1adIk3KOSiuOcBBC8y//31ltv2YkMKfvB1DPeQ9qFcAJEARyCagJy+osGC9X5C6nnKaWuiYhI7se2JDKmGA98C04ubGuiOjd9riP5jhyMMexNrlatmv2b+7Kifdxxx9m/WQ33fbKZQJe0kU3AuQ8r3ZFdXihCR20WVrGDK9VMdPjuLT5wD6ar0+WFyRK/+MFkO1/5m5NxIJKbKOiWPIe9SxRLiQzwmBnng5+ZWVLRfHoaM+Eg2A723AYBo1pepYyeqL5KOxhoy5QpYysWBNjBgZj3sH79+raPLvLvQrEWDb4iInkLq6k+Dbx58+ahDh062Pfdu3cPDRo0yL6nxkiwkBmpzT4NncDcr7iyKkvrK78CTlVtX5ncp0NLxrEg4QPm9u3bJ7udtqUUUwv2OfdY2KDAKgsX/m/LY7Ro0SJcmDWRa+CIRDrUieQhe/fudY0aNXLvvfde+LqCBQu64cOHu02bNrlatWq5Nm3auD/++MOdfvrpLl++fK5QoUJ2v169erlKlSq5YsWKhX/20EMPtYskV6FCBVevXr3wv+fOnet++ukne/9mzJjhihcvHr6td+/ebuXKlfb9RRddlOQ93blzp/vxxx+z+dmLiEhO2bdvnzv77LPdli1b3EknneTuuOMOGzcOO+wwN3jwYHfbbbe57t27u8mTJ7v8+fPbzxw4cMA1adLE/fvvv65u3bquZcuWdj1j+amnnupWrVplYztGjx7tChQo4A4//HBXrVq1HH2tiaxIkSKub9++9v2HH37opk+fbt9/88039l6PHz/ezrsWL17shgwZkuRnOR9YsWKFfe3Tp4/9bXkM/tY1atSwv/0555xjx4JIrpAsDBfJxdhrTSsvv4rKyis9tSka0q1bN+tXCfpmsyeZNhkeaWraY5w1X3/9dbLq5D169Aj/PXwWAX8nirj4GfRKlSqFFixYEO6LLiIiuROZT126dAmvZJM1Rap4MPMsJbTj9GPJQw89FHrxxReTdNqglWf//v2t7adE12233Ra69tprw9kDZBKwUk2GAX8Lvxecv8eWLVus1RrYykdFc/Tu3Tuc1UCnE7Lc+Dd9wpVRKLmBgm7JEwiWr7rqqnDRj+CFNiP02eZ7KqKSBk2/Tv7NfiWJHXp9+sGYPfZBFGYjTdAX0CEAZxC/5pprwv3QRUQkd6H6uG9HxRhBsOwDMAK4YHoyLaZ8CjL3u+uuu2ws8V012GMssRcsOse+beqx8Dfzxev8JAoBdMeOHa2uCzVxgiiA58d76sLwt6fwGv/WRInkBgq6Jdejmikf8D7I9oE3M+jnnXeetblikKcoCyuxoBUJrcQktiiSduONN9oliOrn/M3INvD784IX9nz5wVxERHKHKVOmhD/n6YrhDRs2zIpr0Sfbo+I49yOIi6w0vmbNmlDJkiWtlScr3mSzSfYtcrB6Hazpwgq3z1yjSjnBdTALAfwN/R5+CrOBRRE/6U6FdJFEpqBbci0+wP2Ktb/4WVQKeVEYjfsQeHPd5ZdfntNPWf4XcPuCamwF8H+fyCwFKtL6FDUREUlsbPUqWrRouA1nMJDm+8iiWqtWrQodffTRVk2bdp4E5pHVtulAQsBGwE5hNomtP/74w6rMM15TwC4yq43LqaeeatvFgvzflkrmTJYEbydtnZ+jIJsmTySRqQKU5EoUUrnwwgvdE088keT6v//+25UsWdL9999/7ssvv7TiXbfffrurWLGiO/PMM3Ps+cr/9+abb7rff//dVa1a1b366qvurbfecp07d7a/WbDA2tq1a61QG0VYREQkcf35559WGG3Pnj2ucePGrmnTpq5Lly5u4MCB7ocffnCHHHKIFd/89NNPwz9DgbWNGze6/fv3u4cfftjdc8897ueffw7fTgGvHj16sLjkunXr5sqXL59Dry7vOOqoo1y5cuVsvOYcbPv27XY9510UtKNY2tKlS+3v7G3YsMEKp1177bVW8G7btm2uefPm4dvvvvtuOx74e/KYnMeJJKScjvpFYpHadOaZZyZZFWXm1LcFo4cnl2CbEAp/SHxgRYNia8E2YbSEqVq1avjv6dPUuNDijS0CIiKSmFjZ9p/nfPYH20ey1YjP+Nq1a9vKdnC1k9VsWk5xP/YN+9VxzgN8G6oaNWqoCGc24r2uWbNmuLe6L0DL38b39a5evbplqlEw9amnnrLrmjZtmqxey/z58+1v/uijj1rKOfe75ZZbcuiViWSNgm7JVQiefY9Hf+GDnJQ1Am4ql/r9QsE+0RLfRo0alWRvN/vxg4E31c1VWV5EJPFQUMt/lvt9u0y8EoBz3b333mvBGFWt+ewfOXJk6IILLrDxnpRyXwQ1WOeDgmpcf9RRR4WWL1+eg68ub2K/tp844e/n7d69287J+Pv26tUrHJhzDATT/6lwftFFF4UL6LVr1y40adKk8HES3NsvkigUdEuucvfddydZDeVD3Qfhl1xyiQ3SZ599dmjcuHHJCq9IfOLv1L59e/sbnnHGGRZgM0i/9NJLocsuuyz89+7atavtJxMRkcTAaicBM5/hffr0CV//zjvv2HXsxaatlK/3QYaaX/GkojW38/0rr7yS7Ge5UN1ccsbrr7+eZhG02bNnh0444QTb7x2JAni+Bg8dS2hFBl+VnmNm586d2fI6RKLlEP6T0ynuItHw6KOP2v5slChRwv32229uyJAhbv369e64445zt956qzviiCNy+mlKJvfos7eb/Vzs4S5durQ7cOCAa9Kkifv666/D92PP2LvvvuuKFSuWo89XREQOjr3WEydOdKVKlbJ9vx999JE75phjXJ06ddyqVatchw4d3PTp05P8zNtvv+0+/PBD26s9ZswYd8opp7jPPvvMan5wHT8zc+ZM179/f/fYY4/l2GsT5/r27etGjRrlypQp477//nvb8x3066+/usKFC4f/zZ599oO3bNnS/fPPP3YdtVu++OIL29fP3v9atWrZY3E+QA0YkYQRtfBdJAdXQn3aOJc6derY/jDaTfmK188880xOP02JIlLJ/Z4xLldeeWU43ZyUNlWpFRGJbxMmTLDPbLYOlShRwr4fMWJEkjRiOo28+eab1gIsaNmyZeHxfeHChUluY583K6Wq1ZLz/vrrr1CPHj3C7ViD523s5Wa//hdffBFOKaf+Dtc9+OCD9nP8/fkbk44O2r9xvPjx/u23386R1yWSGQq6JaHxwd22bdtkfZyDAXizZs1CGzduzOmnKlFEcRUGXX/Sxd84+HcvVKiQDeAiIhJ/duzYES5wSssvgupBgwaF/v3331CDBg3s+oYNG9p+YD7rKYYW3LPt24GytxvaLpZ42LPN3/C0006zv9+GDRtC9evXD9WtW9eKp4JCa77NGOdx/u/Ov/nKnm/V55FEofRySVgcuuedd56lE3ukl+XLl8/98ccf7uSTT3YLFy60dKbDDz/c5Xb/m0RL0lYrNyN98IUXXrDURNqQnHDCCe7bb78N306KOa1mihYtmqPPU0REkrr00kvd66+/7mrWrGmpw4zbtPDkc5xtYa+88or76quvbEyrX7++O+ecc9yTTz5p9wPX8/NsKapQoYK1FmPLEa3DGA9yA9KskZvG9MWLF7slS5a4m266yW3evNlVq1bNWr698cYb7uKLL7b08V27drmyZcva/WkBR0tXzukKFSpk4/6WLVvseGBbAVsQrrjiCvfyyy/n9EsTOSgF3ZKwevfu7V588cUk1zHYsv+XPb+ff/659YtMRPxvSa/KTZs2ua1btya5sKfZf8++dU402PvkB2j2PTHJwP51JhzYK8eedn9hb1Xw+0qVKiXspATv00UXXWR7/IoUKWL7w4Ifafz916xZY4O1iIjkvHnz5rlWrVrZ9wTOPXv2dLNmzXLnnnuuu/LKK93w4cNtLPfj0o4dO9yxxx6b6uNNmDDBnX/++fY9j9O2bVsXbxiXGM8JNFMbzxnzf//9dxvTuQSDbt4LLgULFrTzm5TGcy6Meccff7ydB8SbdevWWW91zldYLOncubMbPHiw9VfnuTNWM44HjRs3zt14441u586d9m/28F922WX2/SeffOJOO+00+37OnDnhY0okXinoloTkP6iDmA3/8ssvbbB5//333ZlnnukSAf8LMhAz2x+8MMPrcQLCQBs5wDJAEVz7AZnXzqQDgxqDNjPIDOSRgzzXe/nz53d169a1WWN/YWBMlECck5TGjRvbKklKatSoYSsmfoVERERyxt9//21ZaARY6NSpk5syZYoFVwTfFMdkJZNgvHnz5sl+nsymM844wx199NH27xUrVtjnP2PagAED3LBhw1xOI1gmwOR8xI/nfL93797wfY488shk4zkXJoj9pLkfg/3EOl/37duXYtDO++pxXsD5UHBMJ4MgHlbMCaCfeuope50UTeN5UTTvu+++c/369bPbPF4TK+EbNmxwrVu3tmCbDAmPcx2OJZ8hsXr1antfReKVgm5JOMx0Xn755UmuK1CggFU8/fHHHy3l+Oqrr3bxioGCFCuqry5dutQGZGbywaq0HyQZNFmFZiCmGnu0Bkz+l2eFnIGaYH/58uX2HHgupGdzOyvkPhCnimj79u2TVBiNN6SR165d2068CLL9CZ3HygfvdzycdIiI5PUuI4zXHTt2dE888YR9D8Z1AixWwhl3WL0MrtgyRjVs2NDGRIJtnHrqqdahhM94qpznxGQxKdFz5861yus8RyZ5yboCqe9+TKcKN6vQPH+2P0VrNZoxe/fu3Tams5rO7/fB/saNG+0+jN/8ft6vNm3a2KpwZCXx7MDkAecTvF8EylSdZ0KiXbt2Nj6Toci5j8fzf+aZZ9zQoUOTjN+85xwfBPFMcIBK9VSsF4lXCrolofAhy+DqD1tmQUk7+vjjjy0wHT9+vLWoiDcEuexFmjp1qvvggw/sOfN8GzVqlGQ2mpnvnEwL43kyYPsZegbAtWvX2qw7J0GsSrCXihOJeMP7S6sYjg3SFBmgeS2cxOGaa65xzz33XFym3YmI5Hbbt293VapUsXGGyXOCLgIsJs0JnBjPWSXu1auXGzFiRJJUYyarWdEmqO3Ro4f9PEE76eRMTjNW+eA9OzBRTkYdYzpjDxlX5cuXt0mB4MQ543xO4lwjuOJOkMviBGnqBL+M52eddVaa6fuxeE4E/wTUZC3wPl5yySV2/sa+/euvvz7Vn+X4WLRoke3dnz17tnv66adtpXvkyJGW/cDCAVmBInEpZ+u4iaTfqlWrQkWKFLGKlUWLFg2dfPLJ9n3FihWtRUi8oW3VyJEjQx06dAgdeeSR9lxr1aoVuvPOO0OLFy+2Kq2JYP369aGnn3461K5du9ARRxwRrgp/9913h5YsWRJXr+PJJ58Mvffee9Yq5sMPP7TWIsGq5twuIiLZr0WLFuHK09OnT7dxsWXLltYy6pprrrHbOnbsmOLPPvfcc3Z74cKFQ1u3bg3dcsst4ZZike2oYmX16tWhRx55JNS0aVOrqM6lSZMmoSFDhoRWrlyZEBXUeY4rVqyw59y4cePw66CCOK+N15gdaPnm24ENGDAg9NNPP4W++uqrNH9m3rx5odKlS9vzbdSokf38rFmz7BzEVzOnfahIvFLQLQnTXqRChQr2oUqbqFatWoV+/PFHaxdx3XXXheIFwT89RVu3bm3PlV7hbdq0sd6j33//fSjR7d27NzR+/PhQz549Q8WKFbPXWLlyZRvAGTTj6cSCkwjft/uKK64IHzsffPBBTj89EZE8Zdy4ceHJz2effdbaPhJA16tXzz6XGSu5jesjbd++3SbauZ3eznjrrbcs6GI8iqU9e/bY8+V5+iC/c+fOoZdffjm0bdu2UKLjNfBazj333HAQzGvlNfPaY4ke2/y+8847L3TgwIGD3v+jjz4KH0O0l2Oiw/v444/Dt3EOJhKPFHRL3Pv7779D1atXtw9T+noyy8ngMHjw4HAglV2zs6lZt25dqH///qFjjjnGnlPz5s1Dr776amj37t2h3IrV5Llz54Yuu+yyUP78+W1VmZMRVpjjYcaf1RNmvzmZ4Bgh+OZvw+pKcLAWEZHYOuuss+zzt1y5cuHx4Ztvvgn3XebCqnFKYwdjjA8GGXe8WAa9S5cuDV1++eV2rsHY1qlTp9DkyZPD/aNzI14br5HXymvmtfMe8F7Eypw5c5L9zRmfhw4dmuy+3M+vaNPbPWjnzp2h448/PjzRnp4gXiS7KeiWuNenT5/woOxnw0uVKhUOou6///4ceV4MAMy8nnPOOTYRQMBNytuaNWtCeQ2TC6TSk3bO3+Skk04KjRo1KvT777/nyPP57bffLAvCpzLytVChQuHjiFUTVu1FRCS2Pv/8c/vcZZxcuHBhkttYTWXSltunTJmS7GcXLFgQ/llS0rds2RKz50lAz8q5z5Iiu47J/Vj+znjFa+a1+wxD3pMJEyYkmfSIxTnVd999F8qXL5/9TgLySDwHbiPTjnH+r7/+Co0dOzZUtWrVUJkyZcJjPMeNSLxR0C0Jk5IWvFSrVs2+NmvWLKaDQGoDw7Rp00J169a151C7du3QSy+9lKtnwDPy3pAe2KVLF1tdZmAk9Twngu9hw4bZ34cBPDgY+0vXrl3jYkVeRCS32rBhg+3T5jOXielKlSqF3n333fBn7xNPPGG3kc2WUn0Qti1dfPHFoauuuip0+umn255eaolEE+cQjOF+pZTfM2nSJK2WhkL2HvBe8J7w3vAekY4e7fOuffv2hS644AI7p/P7+zkmCKojn8+JJ55otz/22GN2bHGuwUIMz+3888+326gVIBJvFHRL3GLF2M+A+5QhvtaoUcO+UlRt48aN2fqcFi1aZIOC/1BnpVuBW+oF2K6//norvnbcccdZIRy2CmQXTuDOPPPM8IpFSpM3DNoiIhKbbVdHHXVUeKW6fPnyoaOPPtrGhN69e1sANXHiRJu4JjMqLdRu4XH4+WhtJ2Ps5vf77WsEfQcr5pWX8d7wHvnzMILxaJ3/fPvtt7bHn8cmpZ0gmu8feuihZPflWPETABRO4zyRiQBW5ylg6wvXkrXwww8/ROX5iUSDgm6JS6QN+f3Rft82X4MrlhThyC5U+ySNnN9L1fQZM2Yo2E4nBj0Kr3HSVaVKFfu7ZVfFcwrwEPD7iuv+pC24XSGlwj0iIpI1rB77z9pevXpZQVS6XjCeE7z5cYCxNHLlNNiR5JVXXgk/DnuOo4F6JFTA5jHPOOOMmO5bzm14r+hmwntHBXSqikcDnUc4T/BVyPnKpE1kEVqyCkuUKGG3kzURWaPFT9AwvpMWH08dViRvU9AtcYkPcj/I+rZPfBiTdsSATTXq7EqNo4gLv5sq3aS76wM8c2jr4tMMTznlFGv1kR0o7OaPpbJly4ZrAvjrmBUnOBcRkejxFaUZw4OBEwHvwdp8skWJqtYEYn7lMhr1W1itpY0nj9egQQPLVpPMmT17drhmCllltAHLKla2/bjM34fvKcIXucgxevRoqwEQuQXgl19+sfoyfnxnop8WcyLxQEG3xB1aOgVTgAl4qQZOlVOwn4uV8FgiDfrBBx+0D34CND7EI/cWSeawskyVWv62Z599dmjz5s0x/52kMvpZefq6k4pWvHjx8DFGCzoREYl+X27aZkaOn6xO0paKvbyRCLT9SqXPVKILRVYmvCmc6ccBim5RkEvZalnHe8h7yXvqF0Z+/fXXTD8ef2POC3yle7Yi8D3ZhelZJCHtPTi201FFJF4o6Ja4smvXrnA/TtKCGjZsaIVW+GDPrv3Ay5cvD9WvX99m5++8886YB/h5kd9LxwkVe/PHjBkT0xMgTgKYQWd1heOIlPdgmjkXiuOJiEjm8TlOEUvqn/jPVvbqMrHJ+O6RrcZtZJIFUXSTiVHfIoyvZJllpWf0zJkzbf8vHSyefvrpbC++mhcwrvLeUnuH9zormWysVvtjgE4o1F5J6/zPT8awn5stiFzY0uYXbagtIBIPFHRL3CBNiIrSfqCmCBcIetn/FetWXHyoDxo0yGZWa9asaW1OJLYYXC+55JJwCll2tmahHcmLL75obd74/VTFpdeniIhkDsWr+DylxzNfKZ7G9+zN9fumf/7553BbqE8++STJz991113hn2M8YHz44osvMj3Z6le3W7dubcU9JbZ4j3mvec9p95rZVW+OFQLvtGqucM7GlgMq4lMvAKS4U/EevpAqe7xfffXV0Pvvv5/JVyUSHQq6JW74whlc+vbtG2ratKkVX/HXp9ZSJNqr2wMHDjzofjOJrqlTp1rQS5YDg2MsV71Z5WDm/NFHHw2VLFkyvL/PH2PZWWFdRCQ3YfsXxUZJDfe9lkklDxZAY3Lb76kOftZ/88034XRiKmNnBSutrLiy8koau2qxZB/ea7bk8d7TOSSz++Yjx2LOy7Zt2xb+N8cO520cLw8//HCKe86DdYGYyElpO4NIdlHQLXGBlLJgezCKX/A1eF0sCm8RgA0ePFir23GA1EOfEsaeLj9bHW2+j6dPX/Nf/YWsChERyVz2En21fceIyAlU9nYzwcrtY8eODV/P/fwKaa1atTIdJJMZxwqrr9WhllE5h/ee1qp+1TsrW/XYjkZ/birNB48ptqb5/d+R2wYo2OcnfyjAS+X8P/74I0uvSSQrFHRLXAimlXNh7xVfWYnk61VXXRWTkwM+wPkwZu92bljdpnUHgw+GDBlilUV5L4899lgrRMNKQryjIiknZVw+/fTTqD8+KWZ+EPYDsl9d4UIRFlqSiIhIxlx44YXhz9KUeizTAYTbqOcRLK5GKjkr0749qC+cmtEgj4CdFVZWWnPD6naij+nBVW/6sWdmEuSdd96xBRh/bFC4zSOI5r2IvJ7AnAK8wXNKFndEctKhTiSHzZ49202aNCn878qVK7t9+/a5UqVKuZ9//tmVKFHCPfroo1H9nd98841r1KiR+/zzz93MmTPdkCFDXL58+VyimzJlijvnnHPs+/nz57vrrrvOffrpp27WrFnun3/+cWeccYb7/fffXTzr1KmTW7ZsmR0Hp59+unv99dej+vgdO3Z0Xbt2df/9958rWbKkXVekSJHw7b/88ot74oknovo7RURys4EDB7qXXnrJ/fvvv+Hrnn/+eRt3grgO11xzjTvyyCPD15cpU8Yeg8/lww8/3PXo0SNDv3/evHmuQYMG7o8//nCfffaZu/baa92hhyb+KW6ij+n8DfhbLFmyxO3fv9/+RryOjChXrpz7+++/7djATTfdZOeIOOqoo+xYwpNPPhn+mUMOOcS98cYbrk+fPu6YY46x+8+ZMyeqr00kw3I05Jc8j97NzG772cjg6iOFV/j60ksvRb0lGRWzqYqZKFUt77vvviSZAMHL6aefHr7fCSecEJo+fXqKj0HxGu6fVmGSeELmweWXX27P+dZbb03WjzMrqHLKzLuvrMtX9p4FZ8U3btwYtd8nIpJbsWfbr0LSlpGvjOvU6oj8TGfrEK04f/zxxyS3MRb7DLeU9uemhT3bnDfQmixYIT2e5cUxnb8NfyP+VqNGjcpU/26qkfP19ttvT5Il4c8bORYj9e/fP9w+jPo9nTp1SvF+IrGmoFtyNO2oWrVqSQYbv5fb77Nt1KhR1FLESDcaPny4nRww8NO3M1GwF+rqq6+2/tZbt261C1W32YfuTzIYRGiDlVo/8e+++87e0xUrVoQSBX+zESNG2N+MSqRZaRsTiWOB98MH3/6rv1B8JdYV80VEEh0pvhSn7NGjRzj4/vbbb1O9f7BLxPfffx96/vnnw8E6vb3TO8FKoS2/f/uGG25IqFZgeXVM52/Wr18/e97XXnttuguXckz4/eFcmLjh2PG6dOli1994443Jfpb30S/qlChRwr7v1q1bVF+XSHokfu6NJKzdu3dbKq+XP3/+8L/Hjx/vhg8f7kaOHBmVFLE///zT9erVyw0YMMDdfvvtbvLkya5w4cIuURQqVMgVKFDA0vFKly5tF64jDa948eLhNLT27dsnSdnzSMsiJeu0005ztWrVcomCFLEbb7zRTZ8+3S1evNi2BHz77bdReewbbrjB1a5d21LzSD8jLbF+/frh44I0yQsvvDAqv0tEJLdasWKFfT6zTYexhnGmSpUqqd6fz1uPMZn0YFKm+Xm2Ex122GEH/Z07d+507dq1cy+//LJ78cUXLbWY8TBR5NUx/YgjjnBPPfWUe+GFF+zvRno8f8uD4Zjg2PDjM+nmt912W/h20u45ji677LJkP1uzZk1XtmxZe8/4XTwW479IdlPQLTmCLIsWLVq4HTt22F5qBhqC4e+//969/fbbtu/nlltucaecckqWf9evv/5qgzOB/Lhx42z/dnoG9UTDAM1+6JQwIK1cudK99dZbLhExMLNPjyCcwJv9YdEa/Nu0aWN7uDlxfP/9992HH36Y7FgVEZGU3Xzzze6dd95xzz77rP07pcCHOh0bN25Mct1HH33k3n333fC/mWQ//vjjD/r7eJzGjRu71atX2z7dq666yuVGuXlMv/rqq+3vv2rVKvtbRh4bqe3tDu7b3rp1qy2ogHF81KhRrl69ein+bM+ePcOLOxyLzZs3j9prEUm3dK2Hi0TZZ599Fk4Toi82e2xJt6ISZzT7JFOhvGHDhtb/efHixaFERtpUcK8Xe8Lq1q1r39NeiwrcKe1nu+6666z6aW5onUJ6+WmnnWYpdwsXLozZ76GVDelrHJ/B/rIiIvJ/2B/Ltp/XX3893AaMbTkpbQNq1qyZ7cf1bcJIF6aaNT/TvXt3q1Ye2V4stZRq+i2z13n9+vWhRKYxPWR/w8qVK1sNgPTU2OEYOeecc6yjTUbaf7Gd0NcJWrRoURaftUjmaKVbst2PP/4YrsZ57LHHunvuucdmOVl9ZkWaVCCqi2cVaUStW7e21XNmw5lNzU1Y9fWmTZvmmjZtGk5L8yu0119/va0k8PorVarkEh3phzNmzHCnnnqqpd1FuxopKeVr1651zZo1s2MR9913n9u0aVNUf4+ISKIbNmyYbf1h/OnWrZtd17lz5yTdIMCK9KJFi2yrWKtWrey61157zbKLihUrZiuUjz/+eJIxLSWcF5AhR1o2FbArVqzocpO8OKbzN1ywYIFVIedve7BzP94jtgeSms7PRGKbwhVXXJFsGxpp6eeff759Tzblrl27XP/+/a2yukh2UdAt2Y59ONu3b7fvCWw++eQTS/U56aSTLCCnrUSFChWy9Dv4QCXgJv2IViKppRwlsqOPPtpt27bNBpepU6cmS0Mj/Wzs2LGWUu/vy4W9y4mMfW+kgTNAn3XWWVEJvKkvwN5x9iEy6cN7ye/A119/bSc36dl3JiKSl8by3r17W/Di05yvvPLKZPdj/y6YbKc1GGPQXXfdZdfxNRhYpoZgjBaS7Acn4GaPbm6TV8d0/pb8TZmAadmypU18pyVY54fXT10A/x4MHjzYjR492trXRerevbt9nTBhgv0etpUx4bN58+aovyaRFGVyhVwkU6jQScXOYJXoGjVq2Nd8+fJFpUXY7t27Q/Xr1w8de+yxodWrV4dyi8hUNCpylipVKtxejbS7oNTakYwePTqUG9B+pkOHDqECBQpkOdV827Zt4XY1XHz7keDlmmuuidpzFxFJZNu3b7c0byqW09KKz8jixYsnqyBOCnCxYsXsdt/6ipZg/nP1tddeO+jvIu24TJkyVtmbNlm5hcb0pPjb0sqVv3V6Us2p2p4/f357D4YOHWrXsR2Mf3P+F1n1nXMGtqYF3zuOqdSqw4tEm4JuyVYM0MEPPP+B6duMEIBnpe3Hr7/+am3GGPzpAZ4XTJw40d63vGj//v2hVq1a2UD66aefZumxHnjgATsGCeL5yp7B4LEa2XNWRCSvGjRoUPizkfGWr5dddlmy+40fP95uI0D3rcAGDx5s17Fn+WDB1YYNG2y/b9WqVW3SPi/Iy2M6f2P+1vzN+dunhRpA1BDgWGLSnAUXzh+PO+44u27ChAnJfubiiy8OH4+PP/54uuoIiESL0ssl2/z111/hqtNUjgapZsG9TFQWz2zbj3/++cd17drV0tBmzpzp6tSp4/IC0q2HDh3q8iIqkbL3jb91hw4dstROjPTyokWL2vYG/PTTT0lS2dhzKCKS11Gp/LfffnOXX365pYYfOHDArj/33HOT3Ze927jkkkusbgstGp9//nm77s4773QnnHBCmtt+2ILGz1HpmrZaeUFeHtP5G/O35m9O1xKOgdRUq1bN3Xrrrfb9vn373EMPPWTnjxyXIM080nnnnWdfeXxarh2sjoBIVEUtfBc5CKqXMrOdWgovKeFZmXXs16+fPebcuXOj+rwl/lEtt3r16qFq1aqlWDk3ve6///4kWx2YDQ9mYkyZMsVS0UVE8io6gvB5SJr4J598Ek6H3rdvX5L78e8iRYrY7axK4u6777Z/V6hQwTKVUsOKZbt27Sw1PTLNWnI//ub87du3b59m9uPvv/9uqeT+nJKq7xxrvpI+2yAi7++z2ZYuXWrbH0jPv+CCC7LhVUlep6BbsoX/EAwGMLSJ4KtPBXrnnXcy/fgvvPCCPcZzzz0X1ectiWPt2rXWGo4WNj6NMaNITytcuHD4WPUnjD4I58KeMxGRvIj9r2+//ba1bSKg8dtyOnXqlOL9aQXKZCWuv/76cDowKdRpuemmm+y+s2fPjsnrkPjH355joH///mne79133w2Pz5dccold16BBA/v3k08+mez+3bp1s9vuvPPO0B133BH+WbUSk1hTerlkC9p2lS9fPkm6rk/rmThxolUw79KlS6Yee+HChVbVs2/fvq5Pnz5RfNaSSKpWrWqtQD788ENLW8wM0stJM8eRRx5pLcTYAkFFc2/NmjWWIikiktc8/PDDbuDAgdYdpGTJkta+ybcKSy1VmircVJl+9tln7TOVbiJpjfevvPKKGzFihF3atGkTs9ci8Y2/PRXG2do1ZsyYVO/HtoYGDRrY91R251hjOwPtyNiCFomuJ5g1a5Z788037XvS0v2WMpGYiXlYL3meTz/zq9xUpmS1kNXIBQsWZCmlnEIbpBa1bNky9Pfff0f1eUtieuKJJ9JdFTclu3btCt12222hjz76yFZp9u7da9fXqVPHHrdXr15RfsYiIvGPMbts2bLh8Xzs2LHh7yPTeCOzjVi59im/VOlODauNbEOjy4mKXAnHwFVXXRU68sgj7VwyNcuWLQtXLV+/fr1lZKR2/GzevDl8Pkq3HLaV7dy5M4avQuT/HMJ/YhfSi/zfSjazjvRRpNAZq5Fbtmyx2cgTTzzR+m5mBquNp512mtu7d6/7/PPPXYkSJaL+3CXx8JF21VVXuTfeeMN6fzZq1Cgqj/v666+7Sy+91B1//PHuhx9+sEIsIiJ5xZdffmmrg/Q5Zvy9++67Xc+ePd3JJ5/svvrqqyT3vffee63X9D333GPjdOXKle0cgJXxlAquYdOmTbZiSYGs2bNnW7aRyN9//22r3t99951bunSpK1euXIr3I2OycePGSfp4p4bstdWrV9ux3K1btxg8a5HklF4uMUXlSSpJUlkcBEME2wTIBOIVKlRwixYtylRgxeOuW7fOBnYF3OKxbYE0xlNOOcVSGLdu3Zqlx6My7/r1613Lli1dkSJF7MSQY45jT0Qkr6Dq+B133OFOPfVUt3z5cpvUBKnmkePz+PHj3ddff+3+/PNPSxEm4GYClFTzlHA/UtRJB2aiXgG3eBwLHBP58uWzCRuOlZQ0bdo0WcBNwM4ETuT6IlXxwSQSuJ2gnVR2rUVKrCjolpi6/fbbrbUIgQv7vxicr7nmGnfcccfZrCWrhcySZxRtSJihZJ9P7dq1Y/LcJXExOE+aNMkGz969e2dqEGVGnUC7VKlSrkaNGtbaxk8e0XaEPeS+vZiISG7GZ2j16tVthZCMNdp+zpkzJ8Wge8WKFW7t2rX2OXz66afb3mywFzy1Fk2sjK9atcpWwo899thseEWSSDh/nDJlilu5cqW77777Dlrnh4mhn3/+2RZ2CLA5JoNoRwbay3JsP/3005aRccstt9jPi8SCgm6JGVa0mbn2Ayhp4GXLlnUffPCBBeLo1auXFVrJCFLTKXZFWpvSgiQ1BMuszLz33nuWGp5RBNSs5JCtQY/5o446Khxk/6/zg3vsscdi8MxFROILWWqvvvqqGzVqlAUxZPxQIJWJ8+bNmye5L6vc6Nixo6Wgs9pIsB15P+/TTz+1z9IHHnggU5PwkjdwbNx///1u+PDhdsykhEJ9bdu2dV988YVlZfjtZfSWD2IyiImjDRs22HHse81j7ty5MX4lkmf9b2+3SNQ9+OCD4SIrhxxyiH0NtmMK9u5MLwpjdOzYMVS6dGkreCVyMD179rRWYlu2bMnwsVa3bt3wsep7gRYvXty+0j/0zz//jNnzFhGJBxSTpJAVn3slSpSwImljxoyxfzdu3DjZ52aVKlXstnHjxoW/P/fcc1N8bHp1V6tWzXp/p9WPWQQcI7QDq169uvXYTgnniBxzHLP+OK1Ro0ay+zVr1sxuo0/3nj17Qr1797biviKxopVuiZkdO3aE99f41e7gPi1mIymYkhHMtLNS/sILL7jixYtH+RlLbvTkk0/aKnVG08xZmfHtw/zxjH379tlX9iiSPikikpuRjUbaLUUke/ToYavb8+bNs9tatWqV5L7s9WbrGJ+5rCTy/dFHH51qyyfSyqmZMXr0aGvbJJIWjhGOJYqZcuyk5LnnnrOvZFiwZYHjkFafFE4LatKkiX1l1Zx6LWTGpZaNIRINCrolJqhk+u6779rebezZs8e+7ty5M3yf66+/PsNp5TfddJMVYDvnnHOi/Iwlt2Jyhkma999/32oBZMQFF1zgChcuHP433zOQg31f9PUknU1EJLdiPyz9uSlyNmzYMLtuyZIl9pV9sEEUmfR7Zp966in7njouRYsWTfa4ixcvtrTyBx980J100knZ8EokN+BYYSsCx05KaeZMDvm+3Yz9fv82dYCCqHSOyMdggt1PsotEk4JuiQn23WzevNkCZRCoMJPolSlTxp199tnpfjxWKK+++mpXoEABW7kUyQgmaZisYeXaH5PpwfFG4O35IkBkbnBMUkyN+/zyyy8xed4iIjnt22+/tYCbtl+sGlKT5ZtvvrHbfHATXD1kNZz6LUxMsirOZHkkMoWo6cLPs4oukhEDBgywYmkcQxxLkehg4msJ+UzLadOmpRh0M6nkM9guu+wyK9rG8ct+b5FoUtAtUUf/zvPPPz/cS9H34fYrgi+//LJ78803M9TnmBXK6dOn26xlsWLFYvTMJTdjsoYAuU+fPhn6OQZ1jwHcH+P+KxNKd911V5SfrYhIzqMoGu2aaKfE2A2KVDHpyIoiAUoQ28bGjh3rZsyYYf8uX768BTCRqEC9ceNGSxVWWrlkFMcMWxLYmsAiTyQCcjqOgJZh/rilwG9w8Yfj87///nOff/65XefPS+lUQramSDQp6JaoY981q9J+IPUBCvtlqGTKLHiLFi3S/XhUjL7zzjvdhRdemKHVcZEgJmueeeYZq2buB+H0YOXmoosuchdffLGdfL700ktJ0tGogtq3b98YPWsRkZzz0EMPubfffttSdEuXLm3X+QCFwCa1MdsHN4z5kQiUaCPGbbRjFMlsmjnHEH3gU1qV9pPhLPywYEPfeLqapJVizjYKJo6GDBmicV2iTtOLEnUUWCHdh1lsjBs3zgpY0NuT4ioZxb4w9oLzISiSFV26dLEgmkmcNm3apNozNoj7cAxHqlevntUuYIKpTp06MXrGIiI5h89L0svPOuus8OelD7ojU8sJzunl/eWXX9o5QKVKldzll1+e7DEpgFWiRAnXv3//bHoVkltxDJFKzjEVWbOFLDXa1kUG2kG0FGOvtz+mue+sWbNi/rwlb9JKt0QVxSeo6MxAS/pZzZo1LdBhxvHMM890rVu3tuqm6cVe2UceecRSghnARbKCk0aOp6VLlybr25lRvjjLzJkzo/TsRETiS/369V2zZs1s7PZSCrr/+usvd8UVV1gvZV93hQlJ38HEY/x/4403LL2c7T4iWVGwYEELuNnSEHluyXifVsCNunXr2leqnIvE2iH0DYv5b5E8g5Sxm2++Ofzvfv36WfGqW2+91fbH8CG4adOm8H7vg7nttttsFpP2EJF7x0Qyi1UbWtn4diLpQaXyp59+2n6OrROs/rDSTYFACqox+M+dOzfmz11EJLswaT558mSbrLz99tutiJrv6LBr165w68758+e7li1b2m2//vqr7Y398ccfwx1MsvLZK5IW9l+zTYEsC7aPRWJCiPTyn3/+2c4lr7322nDV/a1bt9rebiaH2ApJNibjOtXROUbZPsaWMpFoUHq5RBUpY1wYjJnPIa188ODB4YIUTZs2TXfATfVzghwCbwXcEk1sVSA9/JVXXrF2Nunx+uuv24kn6DvLySd95ymu5ld+ON7V+kZEckMgQxE1JtE7dOgQXuleu3atfWVM9gE3PvrooyQFUytWrJgs4F6wYIH74IMPLA1dAbdEC8cS55nUXqFifmSvbWoIffbZZ5ZZQb0BsiZ90E2dAo5jsiqpyE+mBt9PmTLFbmevOAs/jPUiWaX0cokaZgkff/xxK3hGwM2qNgNxMI23U6dO6X48KlIWKlRI7UQk6kgpozAas9kMwuld8fEIuOFPOln5ZiD3bUdERBIZfbh79uxpwTZBd5UqVez6NWvW2NfIAmg+6PaFU1lNDOKcgJXyU045xXXr1i2bXoXkFXTMYSKdYywygZd2ofBjfTAjjfPUWrVq2fcrV64M7/Pm2Of8k2P1wIED2fhKJDdT0C1Rw95W0nKYHQcr3sFB2PdLTg8GdtpBUJnSp7KJRNOgQYOsQF96+76TQk6NgiDSKEFRNtLWGjZsGJPnKiKSnWiv5CcUg9lpKQXdTEKykugRpLOtLIiVQypEky0Uuc9bJKs4pji2Fi9e7KZOnZos6A4WTeVYDZ6XRgbdBNtktnFc095WtQckWvTJJ1FtycS+GfbVBPlZR3omRt6WVvovA31GeyqLpBcr06SWDxs2LFOr3ZyM+p8jvVzlMUQktyBoprXigw8+aNvFIoPu4FhO2jirgT5lnCwi3+8YfDbyOKya045JJBbatWvnWrVqZcdacDym7orvMEJwzrH68ccfh2/3k+kqpiaxpqBbooJCFRRI6d27d3h/K5XMg1jlTk+LJgpbsOeLQZ9K6CKxbDfCnmwqn6bHueeeG/7e96HnK3vASK+kZcmKFSti9nxFRLILn2ek644aNSp8HfteI1e6Cbr9PnD2vgY/J7Fo0SLLgqM+i0iscH5J0V5a1gWDavgFnP/++y9ZirnfOkH/eO/PP/+0Y/bDDz+049/XKhDJCgXdEhUUm8ifP799T39OzwfNzDIGVwnTwgccAzftR0RivdpNnQFSzNOzUs2esaJFi4YH5eC+bmbZL7vsMqvYLyKSqHxgQrYZq4C0DfPXf//99/Z9tWrVwve/55573Nlnnx3+tz8X8Ph8ZWXct1kUiZX27dvbVrDIbWPUGgou+sybNy/8PUX//HmsPw+gCjrHPVsl+vbtG55YEskKBd0SFex9oYjaQw89FN4TA78XhurlVJBMz4r5c889Z32+fXAjEks33XSTVR0nlfJgSJkkfQ20FuHk8thjj01yn23btsXsuYqIxBrbbujQQIsl9rn6gHr79u22mk2KbtmyZcP3Z7ynPoYPxoOVyTdu3Gjj/w033JCuTDeRrODYJEty0qRJdux5nE9SmTx4rukD7PLly9tX9nn7rRR0ITnmmGNszOcxly1blu2vRXIfBd0SFa+++qqt8pGKAwZsX6yKgZsVxfSYOHGipaVff/31MX2+Ih6TQWRiMNmT3l70pKGRls5kE+mXOPXUU20VyKdfiogkItou0YkhcqsMbTxBKzC/vcbzYz5Vn4Oo80JQfumll8b8eYuAY41j7sUXX0xyPWM8bWjpH08Kup8EYgLdt7djtdtvn2AiiRZ5TDTROk8kqxR0S1SceOKJVrnZD8RXXXWVzYpXqFAhXOE5PRigW7ZsmSR1TSSWGHipRUDFU+oJHMzxxx9v6WhsgWAW3FcsZ0WI20REEtlTTz1lFZ9ZnQ4iWEGwmjkrikyS+z2ywbagBCuvvPKKBeIFCxbMtucveRsBd48ePawDTrDdF63AOFaDx29kirlfHfcBOQWAVW1fokVHkmQZRVKeffZZC0BomwT2wpB2SzBDQM7M+cF8++23bv78+e7qq6/Ohmct8v8xQBNEjxkzJsM/SxEWZsrZ4x1MZxMRSUTsvSZ4fuCBB6wwVWTQ7dNxfdA9cuRIC27IaAtOmL///vu23UZjumQ3jrmffvrJffDBB6neJ1jHxQfdwWJqItGmoFuiEnQTMNMf0Qcd7J1hTwwrh+zvatCgwUEf56WXXrKiVF27ds2GZy3ikuz36t69ux2DvohQWgjOS5Ysaas3DNZ+FYeWONQxqF27djY8axGR2Fi3bp2N62wPSyvo9v28/edfcN826b2M/cG9tCLZgaKnp5xySrIUc7qMVK5c2Yr8+iw1lClTxr6SoemxmMT2M8Z4Vs/feuutbHwFkhsp6JaorBIOHjzYZseZOSTFnFlGv7eVVe/IaqaR+DnahFFhklVDkezWq1cvy9QInkSmhr1e1B6gTzcnoj79bNOmTVa9n36fvrq5iEiieOONN6y1V926dS1lPLiXlZVD+CJqFKMiMPeC1cl3795tNV74XBXJCRx7M2bMcHv27AlfR6E0VrP//vtv29ftu+2UKFHCvvqCgGBsJ0uTxSOKrPmaRSKZlbQShkgmPProo+7NN9+0fVszZ860GcFgJegmTZoc9DGWL19uAUvnzp1j/GxFUta8eXNXrFgx29t9sMwMiqYF+YGbn2PSiFVz7QMTkUTz8MMP26QhLZU+++yzJLf5ys4+QGFi3WcG8flJPRZv+vTp1ts4uMdbJDvRL54WngTeLOjg9NNPD9/OsUuhNDIxUgq6L7jgAlsxJ/BmMUnFACWrFHRLljFAMxj7gmmRwUZ6UsumTZtm1U+DH4gi2YlBtWPHjnYsUnU/LQzEQVT6ReHChdPVekxEJB6VKlXKUsubNWuW7DZWr8HkJILVzVkRZ8uNx+coWW4pFa0SyQ5sg2Cs5lj0QTfHN8ep3zZBu9DUgm6u53L++efn0CuQ3EZLMZIl3333nX2YsW/GtwwhbSejQTerix06dLBiViI5hVWZr7/++qAF0YoUKWKV+RHcw8isuYhIomLPK1tjCLonT56cJDU3MuheunRpihltVC1npVur3JLTzjnnHCumxjHpNW7cOPz9V199ZV9TCrpFok1Bt2QJe1yuueYa28M9atQou469Lx4Vzel3mBb2y3z++ef24SiSk9q3b28r3u+9995B70v7kcgKqPSxff75590tt9xiX0VEEtG1117runTpYtu+DhZ0U0gy2LebdNy9e/dqTJccx8QPE0cff/xxkoJ/HgWAUwu6mXziWGYC6fXXX3d33XWXgnLJEgXdkiW0BSOFLJhWHgxCSDk72Oo1AQ4/S2qvSE5iBZt9iWReHIw/7j2/4t2nTx/3+OOPu/79+8fseYqIRBtjtx+/WQ1k9fqYY44J3+ZXvX3Q7QunMdEeDM75/KTYWuQ2HJHsxjhNZfLgmB5c6fYFf+lgAiaL/P8DpKBTvZxaQ+znHjJkiPvkk0+y/TVI7qGgW7KEHtzMhk+ZMiU8UwiKSZF+e+eddx70MfgwJJXND+4iOT0zTtVeX6MgNdWrV7cVHgoH0puWr+D/AyaRjjvuuGRbLURE4tXw4cNtxZrPLvpvE2D4SuXUraAwWjBACW6x8RltBCyM6XyOBrfeiOQEjkEyLjgmfTDNlkffUYdxm+t91xy+96no3FalShU7ttk+yb+DaeoiGaWgW7JkwYIF7p577nHjxo0Lz4ITiFDFecOGDdZ3Oy20XKLwlNLQJF5wLDKwHqw9CJVRORH97bffbLbcn4DScoeTU4oRqUaBiCQK2iVS0ZnPtciCqLQH83yAQnCOqlWrhoMYClPRkkljusQLJoC+//57t2bNGvs3PbqZVCfA5jyVwDzY1tZ3I+H8lZZ4y5Yts/sz1p933nk59jok8Snoliw56aST3BVXXGEpOL6CM70N2efNzKLfA5YaWpKwb4a9tCLxoGLFirZyPX/+/Az9HFVRsX379hg9MxGR2Ln33nvdyJEjU6xH4Vf4CMap1ULBSWpXoHbt2uH70WrsiCOOcK1atcrGZy6SOo5FMjg4Nr1gDQIEJ8g5JxWJBbUMk0xjhpB9LqTc+JlvBmP2xZJWTvBNkYrg/pmUZtYLFChgwbtIvKAPN8dmerE6VLp0afteQbeIJCLGYS5btmxxdevWtXF9yZIldpvfKuODE1LPV65cmSzo5nOzVq1a4XMCkZzGKjbHZEpjuq9jwGQSxywBt1/pFok2rXRLpm3bts0KTVB9/Nlnnw2n4zBbTsCNSpUqpfkYfAiyv4ZgXSRenHLKKbaSc+DAgTTv17NnTxusORFlDySeeOIJG7yZTLr99tuz6RmLiEQHq9rLly9P0ofbB92sYmPGjBnh2whogmM6n58i8YRjMhh0L1q0yLZCMn53797drvMp5sGVbrZJUDCQjE72dR+sG49IWhR0S6YxE06PQyqUd+vWLbzi9/LLL4cH55IlS6b5GBqgJR5xTDLb7feApYZ9jsySs4fbz44zCcX1/HvVqlXZ9IxFRDKPz7DHHnvMxnPqUcycOTNJ60SfXu5XuoPVyk844QT76j/zNKZLvOGY5Nj0ATUBNDWF8N133yVJOQ8WS6Oo6qxZsyz7gy2U3DfYoUckI5ReLpnGrCCzgOzbHjp0qHvnnXfsw2rXrl12O9XI06peSmEKilQMHDgwG5+1yMHR6oZjl0mhYOpkJF/ZN4hZcfaEFy5c2Aq4iIjEO1olDRgwwL6nYNRLL72U5HYfiPjAxG+jYb8sn3dgdZzgXUG3xBuOSTLXyN6g0K+fKAIZm/DV+YP7vceMGWOBOtvHOC8gq4OgW5X5JTMUdEuWMDjTo9N/APkPLRyscjmr5NAALfGGWXAq8hJ09+rVK9X7HX/88SkWVHvyySdj/AxFRKKHgIT2SAQg1LSI5AMRP8b7biWNGjUK79/m85L7pTVRKZIT6tSpY8cmxyhBN7WIyNpg2wTnscFjO7jd0Wdxom3btjnwzCU3UdAtmcaemEGDBtm+bT8Ak17uHazvNh9+rJbT71gk3veApcQXTwtS5VMRSTRsBSPzzH+GkVrOZPpZZ52VJK2cIIWVPv85d+KJJ4YfQ0XUJF5xTNasWTPJmM7CELWJ2BbBMe1ruKjGkMSKgm7JNPZuk3pD4Oz3swaD7vTs56aIWmTrBpF4CbrfffddG4hTO0Z9m7AgBnEKC/KVPrZ9+/bNhmcrIhIdjOe+zzb1KQi4g0E3qeh+X6tPzfVjekqr5CLxOJHO+Mw4zbHMMR2ZXs6/qd5PfaISJUq4Dz/80K6jV3dKE+4iB6NoRzKNGW36a9M6JCUXXHBBmj9PUYu02omJ5HShQE4+169fb2mXKUlpYoltEwsWLAj/u3fv3po5F5GEQT0K0nGLFi1qn4EE3Pny5QsH4RSV8ii6BgIXCk9S5VkkXsf0sWPHhvdkly9fPrzNkY47kenlpJ2fdtpp9j1tcB9++GH7vnLlyu7MM8/MsdchiUvVyyXTrr76ateyZUt39913u5EjRya5jSClWbNmaf78Tz/95MqVKxfjZymSOb5IGtXIU8PsNylqDNI+AGevGNdxkkqxlmD2h4hIPJo9e7bVqKCexeDBg61l4vz5812RIkXsdr/STcDCZ5yfMOczEBRQZRVcY7rE85jOMfrLL7+EV759y09qE/ligX6Cierm9K2vUKGCrWzz/0KZMmXs/xGRzFDQLZnGBxKzf3fccUe4vyGzh3yIjR8/3lJ3UsOH244dO9K8j0hO8sdmWkE39+FkkxT0+++/365r0qSJXceeR1aBfF9bEZF4RTcRVvtoi7Rz585kt/tAxNdrIRgBq+F+Eh0EJSLxPKb7Y/Xee++11W2yN3wFfviJJo5lMjI3bNjgbrjhBqtdRJbHwRaURFKj9HLJtIIFC7qLL77YZgl90E0l0/vuu88KsrDal1J152C7EQXdEs8plhzXaQXdQQzcwRUhEZFEwcr1iy++aJk5HTp0SHZ7gQIFLKOHIIWgnD7e8GO//5zUmC6JMJEeWWGfPd2+4JrGcIkVrXRLpl111VVWlIIZ8MmTJ4dXvx966CHbz/3xxx+n+rOaFZd4R9YGx6c/Vg+GtLXIFSERkUTAZx1jOjUomCynZzfpt++//37489C3AV29erXbvHmzfV+sWLEkQbcKTEkiZq/5oNuvcovEgla6JdNYrV67dq19WFEB0qeosRcMvnd3SjQrLomA4/NgK90M0hz3rARhzpw5VqCF/y/4unjxYls1FxFJFJs2bXJffvlluFCaTytnWxhdS4LXgc9Jvteko8QrVrGZJPJj+owZM6wlHnUKLr300iTbJUDRNS7nnnuubb149dVX7efJCGEbmUhGKeiWTHviiSessunUqVPdxo0b3VtvvWWrgn7FLy186JGqduyxx2bLcxWJVdDNHkif5QEmoHxBFlaE/PciIvGK/apMGLKHlf3aN910k7v88sutrafnV7qZZPR8zQrGfk2iS7zjGPXZawTbvtCpvy640r1ixQprE1a9enWrzM99uOzevTuHnr0kOgXdkmn16tWzlDSCjokTJ1rQ7ft1HwyBDD2OKbomEg1U0B82bJgFvbQGefrpp13Dhg2zPEBzEpoR9PCkajnVUCtWrKhVbhGJe2So8dkFgu6UPvd80O0nGkEKuh/TFXRLPI/nkRPpwawMP5HkMzdw2WWXuRo1alg3HhaJ6EFPlxLOfUUyQ0G3ZAkVmull6Pk+h0hrxZvUdO39ij5auPXq1csuecnbb7/t+vfv70aNGmXF/EaMGGE95Nn+kFIv7YwM0H7rREqCM+Ve06ZNXb9+/TL9O0VEshuTg+zlZrLQ9yaO5AOSYNDti04xpleqVCmbnm3ekRfH9FiN535Mpxq5P3+NLIQabHnH5JOv0g/fJk8ks7TMKJm2fPlyaxn2wQcf2AejD0K8YDAeiQ87vwc2q2jVxP7xlC4MWJL7Pf7449Y3nnRIBkkGa46vV155JUuPS2VePxinhFZhkbRlQkQSDat3bBOjMvkLL7xgk+Zz5851b7zxRvg+PiAJZrT57TPRGtM1nkusxvPIMT14HPvv6eUtEita6ZZM4wPwySeftIFw/vz5NuMdXN1OK+hmoD788OgcflRZZZ/NypUr3aRJk+y64cOHW5EM/2/JvTjmqKLPBJDHtoW2bdtaEbOs4BhNa092StkcnLhS74C9jqx6169fP0vPQUQkuxFEt27d2r6nkFShQoXCLUCDwcoPP/xgK+DRGtM1nudtsRzPwTHqJ8t9HZbg9z7oJuNj3rx57sQTT7RtlExA0aOb8Zw097QKBYukRkG3ZFrlypVdixYt7EOKFW72xwSDEPbCpIYPvWgF3ZwMMAtK0O9T1rmOx/d70CT3YmWGbQ3UCAji3998802WHpvAOaXVbC+lVfA77rgj/D170ZYtW5al5yAikt2OPvpoV6dOHVvdJp08GHQHgxW/FzZaY7rG87wtluN55JgeTC+nOrn/PWDS5+yzz7bzWyZ7mHjyP59W9ptIWpReLpl2ww03WBpQzZo13bhx46zIhMfgmFaaDh96FKaQrBkyZIidkPjLwoULXZ8+fZJcR+sXyZwpU6bYnu3UVruD2yk8TkypgMokVLVq1bLhWYqIZB19ugl0WbmeMGGCFVejT7cPfoMr3T448QG4xvTo0JgeW0899ZRVJQ9OGAVXrX1lcqqV+8UjJgGoYM5EVO3atbXKLZmmlW7JEvZz33vvvTZYk4LjtWnTJkkQHkkfWtHBYHz++eeH/92jRw+rQNu1a9fwdcG/S25UokQJO9mjkE+0i/X5k8zUquwzCEf69ttvbWWIlZlg+xERkXhGX27/OcrnWKTgSjcpttzXbyPTmB4deX1Mj+V4DibCKcgWXOkms4J0cpx++un2lSwPirlVqFDBenL7IFwkKxR0S5bUqlXLBoTmzZuHW4xccsklrlu3brb/hg+rg+2riYW8cgJARkEw5Y4iIVT3ZB9SXkEaIm1rPvroI9e5c2e7jtVp/n399ddn6bFJD+cEILUVnMjK5hRRo78t1VeZMWdfGisXIiLxbvDgwe67776zVT3qUXh8njLxyCorQREpwL6v8dKlS93FF18c0zE9r4znyOtjeizHc7Rr1y7cKsxPIpUvX95S13mfCbLB3u1gPRb2dH/22Wd2rhv8f0MkIxR0S6bt2bPHPfzwwxZ4dOzY0WbJsWTJEvf666+7Cy+8MNWg+2B7ZbOKFUieF7P1VatWjdnvkfjAjDQ9NcmuYAWGFiPMXFP9NCs4RjlWUzN58uQk/yZdjUqrnvrWikiiYByPLArZpUsXt2PHDktpJvilmvSCBQss8AZBeqzHdI3neUusxvPI2gN+Nd3vFacfd0poV8YebyaabrnlFgXdkmkKuiVLAyGBNvtdnnvuOZvxxtatW+0rA3Nmq0JnFR+Sjz76qM1UBnuKSu50wQUX2IkhWx04OTv55JOt2m1kMZaMOlhF3tWrVyf5N6sRxYoVs3oH/G5VLheRRMXKH/u6WWlkXCet2Qfdv/zyS5I9sLEc0zWe5y2xGs8jx/TIFHbqE/nJc2474YQT7N+LFi2yLRWdOnVKtYe9SHoo6JZMI+X2vffes3QzPhAbNGhgwbff47Vr1640A/a9e/dG7bkwExr54RmZ+psX0OIiryL1LBrpZ0Ecoynt2/Y2bNiQ5N99+/Z11113XVSfg4hIdmCP61dffeWmT59u/+bzlLotTCb6/bQ+MPEIjqI9pms8///y6pgei/E8ckyfOXNmktvYx41Zs2bZFslmzZpZO9xPPvnEtk+y1z5aXXckb9LRI1nSoUMH+3AizXb8+PF28cF2Wm0VSLv1K+Ii8YpjNK0Ucb+vkQkoMj6ocSAikqifd6TOkkZOZwb21vpWSV5k0E2lc/A5qarakgjHeKVKlex7+m6nFHSTxcFeemobUMuA2i5cRLJKLcMky/hwIuDwBViC/L6vSAzQfLCp36EkctDtV184/kFq+X333WfpkGR9iIgkCgpLkVJbsWJFS/FNKZ03Muj2/Y1JPfeTkCLxym+T8OeuQbQDw9VXX23bJh566KFwi7xoZmZK3qWVbskSVrUbN25sM+KkAvl93R5pOeyDieQ/9AhafLVIkXgcoOvVq5fq7aSp+fRKqq6ySuRbj1CwhXRzEZFEQMbOunXrklzHfm66MbCPe9iwYbbPO5ipxmohaen+OlbI81K1cUkcHJt+Ip3vfV0CP+FUtGjR8L+pcM6xzuT5+vXr7djnXHbKlCk59OwlN9BKt2QJ1UQJtocPH27ByTvvvJPk9o8//jjFn/Orh5oZl3jG8ZnaSjer236VxyPgpugLvT6pvioikshIr6X1IV0ZaAOKYFcSgheqP/M5SbEpX9NFJN6wWs2qNccqC0Ycr15K6eNMnN96660WcPuWoCJZoZVuyRJSzVjpZi8rH2LMkjPr7fl+iJF8IKN93RKvCKqpYJpa0E36WZEiRcJbKCig1qNHD9sXllabMRGReMcKNyuBZPDQqomKzmXLlrXbGPMnTZoUvi8r2z57jYnKwoUL59jzFkmNP9/kWCULE76/vG8Ddv/999ttN910k1Uqv/TSS62CP3WLtB1Sskor3ZIlDK7Mfp999tkWgLz//vuuQIECBw26Kb5CYKKgW+IVwTSBd2pB99q1a5O0yGnRooVts1DALSKJiuwdVrLZOsPK3ltvvWV1Kh577DFrF+aDbr8K7lsnaiJd4p0/NjlW33zzzfDkEnwrMDryUL3cT6o/++yzlrHJ/wvlypXLwWcvuYGCbomKd999140ZM8baWxB4gP0xjRo1SvH+zIzTgkQDtCTCAJ2S2bNnJymuQnoaNQqWLFmSJG1NRCRRsI/1yy+/DH+GUSA1EmM8+799wLJixQoF3ZJQYzr7tMExTDYHLW/x6quvuqeeesq1bds2R5+r5E4KuiUqunTp4q699lp3xhlnhANt0nWWL18eHpgjUbjCf/CJxBt/bJYvXz7F2z/88MPw96wK9evXz2bCWQViT7eISKIhO41J9E8//dS21/j9rOzdZkWbMZ1stuAe2FdeecUVKlTIJto1pku84tikw0jBggXdzz//HL6eekRHHXVUeMskYznZmNQqmDZtmuvZs6d9Fckq7emWLNuwYYMF3BSRIkVnxowZdv306dPdBx984Jo3bx6eRQyi4NRHH32UA89Y5OBY7aFlDhkZkTgB5aTUo3gQWyvAgK6gW0QSVceOHZNdN2LECNe/f3/r283+1tatW9tnJAjO9+zZY2O6v04k3nBsEmCzdSw4OeRbhQWxbZItY6SV06GEc4Fzzjknm5+x5DZa6ZYsY3WPIiuko3311Vdu5cqV4cAE7AVLCSlq7ItVtVOJR1988YUdoym1v2EG3B/foIDagAEDLBWTiv4PPvhgNj9bEZHYadmypaXhUniKz7527doluZ3iU3xe8rkpEs9jemRrW1qBsWh0ww032EKQr8jP8V6/fn131113uW7duuXY85bcQyvdkmUMwosWLXInnnii7ekmnZwPLio+Yv78+Sn+HB9+fLgtW7bMVsNF4gXHJQP0Nddck+Ltr7/+epJ/E2RXrlw5m56diEhskbnzxhtvWIslLmSu0aGENHIwZlNIzW8fmzp1qmX4MMnO/UjPFYkXrG5v2rTJzjvpO+9xDLdp08aO76efftoKqX3//ffu6quvdhdeeKHVbVEBNYkWrXRLVLC/i1RyqpgTcJOC5pF6FlwV9KiEyj4azYxLvNmyZYvt+fJFASPNmTMn/H316tUt4E7pGBcRSUTs5abCM6nk1K/YvHlzOOBG/vz5k9S7IFDxn5ca0yXe+GOSY9S3C0OFChWsRkGlSpXclVde6a644opwdhu1WhRwSzQp6JaoadWqlX14URmSVDSPYCQyncevkBOsa4CWeB6gU7Jx48bw91WrVrXUM/aF0aObyScRkUR2ySWXuOuvv976FZPJ5nt0g/3brH43a9YsfB1tlSiOSqCiMV3iDcckLW6ZIA9mYVCbAKSRv/TSS+7uu++2VqGgoCD7wFMrBiySUUovl6ihgBoVyxmk9+3bZ/2KfR9j0nZee+21ZD9DUDN37twceLYiaQ/QtM4Jnmh6HNPBVmGkVQapT7eIJDpW/VJy66232nj+wgsvuF69elkKOgjC+dwkeFHQLfHGH5sE1Gxp9C6//PJk96WAGoE5GW3s9f7ss89SLAYsklEKuiVqFixYYL2LmUlkz6sPuCPbK0UG3c8995wF6cHUNZF4LaLG9glOMEGhFaqbs9LNfWvUqKHK5SKSa7Fa+Ndff7mFCxda4O0n1+nbzaogn5usEIrEE47N8847z33++efh8ZtsSxaKxo4da5maTLKzTYL0c47n9u3b279PPfXUnH76kkso6JaoYda7SpUq1rP7wIED1krM732lsAozjHyQBfFhRvo5M4k+zUckJ3Gccjz27ds3xduDqzi01pk0aZKln0Ue2yIiie6HH36wcZzaLMWLF7cCU7ROYmsYE41sqeEzkc9NghnG9Mcff9xt27YtxXaLItmNY5HzUY7Ne+65J3x9586dbasYWykIwH/66Sd3wgknWAcegnPOaTmuU5p8F8mMQ0Kq/iNRduedd7onnnjCCrHcdttt7s8//7TZcD74GLSDCFYoVEGVSAZqkZzGLDf95tnHyNfI45W6Baz0gEJDHLsiIrnN8uXLLbjOly+ffeaRxbZu3bokQQirhAQtaNKkiZsyZYr1NH7xxRdTTVEXyU7s1aYTCe086bLj0WGHoJpWYRzjZGqKxJIKqUnUFStWzAZoiqfR/xCNGjWymcRItGtg1px9sZr/kXgwbdo0V6JECde4ceNkty1ZsiQccDNIE4QzyUR6OS12RERyC4pDkr3G5CNpuIMGDUpSVIq0ciYdqfyMxYsX24o49+VzVCQecCxyDLMlwmNFm+O7Xr16dj2twjxWxSkWKBJtCrolqgic2dfao0cP9/LLL4f3t3711VfulltuSfFnCMzZN/PNN99k87MVSY4JIFrfpZQuPnDgwPD3BN+kWj7yyCNu4sSJtuIjIpJbsKLNajd1LKhOfvHFF4c/F5955hkLtmkpdtFFF4V/5tJLL7UxfebMmeG9syI5Zf/+/W7WrFl2TL7zzjtJiqUFMzZoX3vjjTdadiZby8jWePXVV3PoWUtupaBboopA5LLLLrOKps8//7y77rrr7HoqQI4ePTrF1mHs5abnp2bGJacx+bN69WrLvkhpQoligR5bJmrVqmWTTATfPsVSRCS3IBhJCdvFtmzZYmM9dVw8KkMzphNw+5ouIjnFFz5lAShY0Ldo0aK2uu0z1+hDP3LkSNsWyXH9999/u5NPPjkHn7nkRiqkJlEfoAlAduzY4Zo3b257wPjA27p1a3jvDHtmgwi4zzjjDFthZJZRJKcw8UNFco7HSKSP+9RKetF+9913VjAwpbZiIiK5CR1G1q5da3u6+Z7VQCYc2Vrz448/JpmcJGuNvbOM6WeddVaOPm/J2zgGq1atavu3Ga896g8wuV6+fHnb612mTBmrus/E+qOPPupWrFhhRQJFokmF1CRmRowYYR9e9PXs37+/XUc6T0rVIF955RV31VVX2X6wY489NoeeseR1rNAwcfTBBx8ku410NL8n7Prrr7detSIiud2nn37qOnToYJ+NjNHUvCDQDq6CH3/88eHgm/ZL7JWl0CQriNRuEcluTJIzKd6zZ083d+7ccOcRivfSqrZPnz6uZcuW2hom2UafhBIzmzZtshVu2i9VrFjRrmOOZ8yYMcnu62fDUwp2RLLD7t27bZY7pdRyJoooouZxQslAffvtt9vKj4hIbkXBKQJnenSTcsu2MYqoeYzr7OX25s2bZ4UoGf/pjyySE9jOyDYIWnsGx2kqmVO3Zf369e7JJ58MX//zzz/bWC8SKwq6JWYuuOACK7zCXm4KVHh33313svtStIJBOljoQiS709AYcBmMI/k9Xh7ZG+zhJpOD2XIRkdyqYMGCVpmctHGKot5///22xcavglMZmgAmGISz/YZOJhrTJadw7NGmlvTyX3/9NXy9r79CXRb2dlOTgMK/XE9xQPaBi8SC0sslJihOQVrPrl27bEWQdNxgCwZS1EqWLJnkZ0aNGmUz6KyQa5+sZDdqEKTWq5PigK+99lqSlR9SKU899VTXu3dv171792x+tiIiOW/+/PmWolukSBHbF7tmzRq7nu8JZgh8+KwkwBHJLkySs1+blnZMGj388MN2fc2aNa1gmu+s8/bbb9t9OH65H9kZTBjRUkwk2rTSLTFB8MKsIf062etFwRU+0Lw77rgj2c+wKs4eMVbGRbITJ4qLFi2yIoCR9u7d615//XX7nvRKVnyoesrEEa1IFHCLSF7hC6VRmIpJcla5n3rqKfsMHTBgQJJWTXye8jkZ7IEskl1FUUkXpxbBs88+a9cx8XPMMcfYJBHZamA7GRlrgwcPtu4lZLwp4JZY0Uq3xHSmkUrQBDOklxOA09sTxx13nPvpp5+S/cwVV1xhBS/48FPxFcku9JCnJydp5EwYBZ133nlu0qRJ4T7dDz30UA49SxGRnLNz504LWFgJLFSokPvll1/sc9Pv56Y1KFvF+AqC7QcffNBSfKdPn57Dz17yEoJtJszpK0+PeTCOc35JViUT5n61WyS7KKqRmCHgBsE1xVQmTpzo2rZta9cx1+P7IwaRqrthwwY3Y8aMbH++kjexIkNxv169eiULuP/88083efJk+/7www+3k0cyMZg5pxWeiEheQdVyuovwOdmpUyer29KgQYPw7WSzseeb1UTQApSuJPRH/uGHH3LwmUtewqLNzJkzXefOncMBN+nj/JusDLYw0o3E07Ep2UVBt8QcgzMpuFOmTHFDhgyx60g5Y4Y8UqNGjWyfbLCipEgsvfHGG1a5/Nprr012G+mSvjc3M+b8m2wM0iqfeOKJHHi2IiI558UXX7SiabT5fOutt2zrGChCyedirVq1rEUTVq9ebSuKFFTzWW4isUY7TybI6b/tPfDAA+FWtaVLl7aJc7rm0DGnWrVqrk2bNjYBLxJLh8f00UWcc1deeaWbMGGCzYL71W1Wuglg+KAL7p/hQ5FUdPaDs0fMD+giscBxyAQPE0OVK1dOchsnkfTy9Dh2GzZsaNsmuNB2REQkLznxxBNTvJ5JSdLP+WykIjSZbnxPhlu/fv2sOjSBj696LhILVClnQujyyy8P7+X2k0XdunWzIr0HDhywfdyseJO5AbYzFihQIAefueQFWumWmCOI5oOtfv361o7Jp53/9ttv7swzz0x2//PPP99mIkkDEomlOXPmuFWrViVpaefddddd4VVu9n6RqUGvblrkrFy5MpxCKSKSFzExzmo2n5Wkkg8dOtT2zFK13LdY5DOUPd5cUspuE4kmtoqxYk23HIJrj3G+Tp06dhyyVYyxn+y2F154wXp463xTsoMKqUm2YG8sh9rNN9/sxo0bZ1UkKcICCq1RATWISpJcKNhC2weRaON4bNWqlQ3O7EP0qWf+NiqV79u3z/69ceNGq8IvIiLOjRgxwgpQMnYvXLjQVrpJ5yVjiM9PAhwmJ8F4T5Xozz//3O5DlxKRaKPOCj25Gzdu7N59913LVgO9tyney+S53+IokhO00i3ZgkGWy4oVK2yFm76IHik/kVh5JOghHU0kFijuQ49ZqpEHA26wqu0DbvZ7MXvO6g0TRCIieV3r1q3tc5N+3Ozlph83wQ24vn///uH7/vPPP1btnKKqwS07ItFEOjl9tk855ZRwwA16dDN233fffW7z5s12HcV9SS8XyU5a6ZZsNXbsWOuD+Pbbb1t6LgWsQDGLyFRz0n1YGWe2XHu7JZpIeWS7AxM7BN6RQTftRgjKkT9//nClcrIuSEXzWyRERPIqPgtT2uNN68UmTZpYgONPMUnpZbKd1mFUl6aatEi00B6MLAuK9rIFjD7yYOWbLRBkYlA0lRpD9957r3v99dctg40V8fbt2+f005c8Qivdkm0IsGkJRlG1559/PkmlyODKt0ehKlJ62S8mEk1U3WVQfuSRR5IF3EwM0W4EFFc544wzrCIvhVmYMVfALSKSclE1xnWy2qpXr56k7gX7a/3e7uHDh2fzM5XcjsJoTI6zZcwH3GjatGl4jGcfNwVRybYsWbKkFfelY45IdtFKt2QrUnkpvvLYY4+5u+++27322mvhgiu0FCFNLYjZyEsvvdQtXrzY9umIZBXHG5kTBNKkkQdxQkjRPwZvZsYZvJn4ITUyMjgXEZH/K4rKhCQBzk033eROPvlkG8+pBs2KNyuNoEAq4zm3sdrNv0WyipRyuuDQqo5FHeq0MH6TYk6m2jfffGPjOOHO+PHjrV83k+esdFesWDGnn77kIQq6JVtxuBG8UEmyXbt2VmCND0iup6/ijh07bHXR40OzXr16dhtVURX4SFZxwkfNgOXLl7uaNWsmua1ly5aWbg4mhe688061ERERSUPXrl0tTZesIFYTCaa/+OILW01k6xi3+3ahZK6NHDnSXXzxxfZVJKv69u1rWxZLlChhxXdBcO23MXC7SDxQ0C05gsIq9DymWBX7ZwmE2PNFMM4enKD333/fWo2ltO9bJCM43pgR79ixoxs9enSS21jVZoUG7PVm/zY9P6m6Sxq6+suKiCRHUSoKotILmfRyqkTzGQpOMd98801rz8S+WyqZX3311daqiay31Pp+i6QHQTaZaxx/BN5gbzcBNyjeR99uWtpR7I86AxT543xTJLsp6JYcS0cjDY3B+uOPP7YK0XwY8uHpU9E8DlEG8V27dtn98+XLl2PPWxLbwIEDbWsDA3VkCzDSynfu3Gnf+9Q0lC1b1iaDVPhHRCT1iXQC6kjbt2+3qua+GCUYw8leY+KdFXJlsElmcG5Iqjit6JjQYcKHtHFa2HFscbtfsLnooousiB+ZlS+99JIVVBPJbiqkJjmCtHIG22XLltksOAMzmPmm+mQQAzIr4QRKgwYNyqFnLIlu6dKlVmzlnnvuSRZwc1z5gJv92/fff7+7/fbbbZBmRVwBt4hI6oIBNxlCBDwzZsywPbaPP/64rS62bdvWbifVnEwiampQ1FIkM8aNG2fdcDiWfGFearbQ3pMgnHNHsipKlSpl2xqYcG/Tpo277LLLcvqpSx6llW7JMRMnTrQZb2YiST1j9pHZcgwbNswNGDAgWWBE327aQZx66qk59KwlEXGSR+9OjjeOn+AJIoNzsWLFwq1tSEujuEqwtoCIiBzc7NmzrdPDJZdcYsXVyBr65JNPrHBlhQoVwpObIINtxYoVlkmkomqS0eJp1GRhSxj1foLYssjqts+gICD3tVl8XSGRnKCgW3Lc+vXrXZUqVcLpvOBDkTQgvy8MBORUMCeAokiL0swlI2nltKnhuKldu3aS2yjoQ7YFWInp0aOHpawVLVo0h56tiEhiYlX7lltusVZM7Nfmc5TPXtqI0SeZCtMedTK4nqrnSjOXjKaVM5nDtgW6jnhks3Xq1Mkdd9xxdv74ww8/uDJlythxJpLTFHRLXHjwwQftA5TZSAZfUPBq3bp1Se7HrDgrlqyCDxkyJIeerSQS9nsxWcMxFtnznQkfiq6AEz7/cchKN9XNVTxNRCT9/vvvPwt8+vXrZ4EOK93B29jas2XLlvB1jOdMho4dO9YmPEUOhmOFTIo+ffq4UaNGha+nQOrkyZNt8nzbtm3WkpZjinGc68m0EMlJyp+UHMdMJR+iH374oWvfvn14tps0XwKlIFYp7733Xjd06FALpkQOVjugV69e1naOPdpBtKcjDc1jZrxgwYJ2Unjeeecp4BYRySC25dxxxx32WRoMuJnQnDdvngVLQQTcrIoTpJMyLJIWjpEbbrjBtiW+/PLL4es53p5//nkryMvqNlXL+Z7tY7/88ovGc4kLWumWuEBP5FdffdVWuQmqKWDlffvtt5Z+HplmTkDFgK20IUkNfbZJd+Q4YU+hx8de9erV7djy/bknTZpkaWqkpHFMUQVVREQyjzZOBEBr1661oOipp56yVchgphrpv4zrTZo0sRVJpZlLShi3zz33XLd48WKryxKcpDnttNPcokWLwhPq1AlgXCergjoCdevWzcFnLvJ/tNItceG+++6zdmCkmkVWima/V3C/Nx+2BOhUM2fvmEhqBX1Ic+TYCgbcoH2ID7jLlStnaWgUU+N7gm4F3CIiWUNwdOGFF9p2MPoiE0yTYj548GALnjyCcvZ/U4n6ueeey9HnLPHr2WefddOmTbPzQR9wM5ZTWJdK+B5jOQG3b/mpgFvihYJuiQsE0vRJZlDmA5QUtWbNmtltzFJS2TyIIOrpp5+2D2Fmz0WCqAVw/vnnu3bt2rnbbrstyW3vvPOOrb6AE0HajbBtYdasWTn0bEVEch8y0qhkfuutt7onnnjCJtZvvPFGG+dJDX7yySdd/vz5wwE6k+7cHlmNWmTOnDl2bFBvZffu3XYdW8HGjBljEzVUMZ8/f777+uuv3UknnWQtQkXijdLLJe6w76tr167uqquuct98843NbLI3jBThyBnL6667zr3wwgvuo48+ci1atMix5yzxgx6xnOwxG75kyZIkVchJaySVMfixRxV8KuKz+hJZaE1ERDKPle2U2i+yPYw6LkyO0lvZo7Al+3A/++yzcJFLydvYo92gQQNbwabWDxjHOVdk6yHni2xNZJ834z7bE8855xzLnBCJJ1rplrjz888/20wmgTSr3+CDlEDKf+B6I0aMcM2bN7fCVxs2bMihZyzxguOEFmCkKzLgBgNu9gxWq1YtHHCTzsg+7gULFli2BG3FREQkeoIBN5+9rG5T4Oqss86yglisUlIYNRhgsb2H9PPffvsth561xAuOAVqAMTkePP9jjP/444/te1rRkdHG17feestde+21tmVMJN5opVvi0oQJE2xQprAV6UT79++361nxZi+PD8axa9cumwWlOiUfwoUKFcrBZy45iaq5w4YNcx988IFVwg+i0Apt6cAAToGVY445JoeeqYhI3sLe7scee8zqtFDsirF8xowZFig988wz4fsxzvMZzfYgJkZTWimXvJEl0aVLF6vPQjZasLZPjRo13MqVK+3YIIxR8T1JBPokk7jUvXt369lNmhmDr8eHLiuUBw4cCF9H4MSqJjPkl156qX1QS97DLDcrJgTdkQE3+/99wA0mctjbLSIi2aNnz56WInzllVdaJhv7dJkMfeihhyyICo7zjOMUx6KbieRN99xzj53bUXslGHCfcMIJ9u/Ro0dbME5WxPjx43P0uYqkh1a6Je5RfZo0cla7fbDNhy7Vy4Ozm3w4d+7c2dKE2Z8reQdFeFq1amWVchmIg8cF+75at26dZB83yJaggnkwBV1ERGJnz549KX7mss3njDPOsCAq2HuZbLexY8e6Hj16ZPMzlZyeRGeShnO9YFp58eLFrTgfGRMVKlSwuj6klpPpuH79emWvSVw7PKefgEhamO2mIiXFsQio6eEJPoRPP/10G6g99v2w0skHMG2fIqtWS+5ERdwzzzzTthiMGjUqScBNlfJLLrkkHHBTHZfgnC0IHC8KuEVEsk/wM5eAmraOBFFXXHGFBVQUu/Sf19xeokQJy2Aj841UY8n9KIrGuE0Lz2DAzbYDFlfYnsA5HhMxZK0RbHfr1k0Bt8Q9rXRLQsyM0zKsf//+Vnhl5MiRSdLQI9OKSEcbNGiQFWzh/pJ7rVixwvpxsuWAll8MxB4VTKkL4D/i2rZta9eRqiYiIjmHz2WqTVN/g0rTq1atsusZs2+66aYk96VSNQVWSTfv2LFjDj1jyQ4cD0yIH3XUUTbp4oNt0slfffVVm4AhG4Jie9rHLYlGe7olIWbGKcBCwQzSz4IftBRcY6Y86IEHHrC+oPR0ZOUzEVHRtU6dOhZEcmnSpIkFjBnFe0GK1i+//OL69etn1bvpi0p/S05u2DOfqNasWWOBNClmFOMJBtwLFy60kzMfcJcqVcr6cTN4i4hIzmIcv/nmm+2zmS1hixYtsolTxm0mzFnh9hOkVKpmFZNsN+6TiDSmHxx/W/7GwYD7iCOOcM8++6xlp9E2ls42nAeqvackJFa6RRLFf//9F+rSpUuocOHCoUqVKhFR2WXkyJHJ7nfjjTfabU899VQo0UydOjX0/vvvh7799tvQ2rVrQwMHDgwdccQRoZUrV2bocerVqxd6++23QytWrAh17drVHnfdunWhjz76KFSlSpXQeeedF0pEy5YtCx177LGh2rVrh3bs2JHktkWLFoWPi+DlqKOOCq1evTrHnrOIiCT1+++/Jxu7MWnSpNDpp5+e5DM8f/78Ng6+9957oUSjMT1t06ZNs/eDv7H/excpUiQ0a9as0Lhx4+zfzZo1C73xxhv2PeeAmzdvzumnLZIhCrolofzxxx+hxo0b24fu4MGDQ4ccckj4A/rpp59ONnjfeuutdtvQoUNDia5YsWKhl156KdmJSPBy3333he+/adOm0JFHHhnau3dvio83fvx4u/2ff/4JJZLPP//c3otTTjkltHPnziS3zZ8/P3TooYeG3w/eqzvuuMPetwULFuTYcxYRkbRt2LAh1LBhw9D06dMt4OIzvHv37knG+Xz58oUOO+wwC8oTncb0/zNx4kT7m/K3Db72E088MfTbb7/ZfaZMmRLav3+/ff/kk0/axLtIolHQLQnn119/tZleAvDq1asn+ZC+5JJLkgXe99xzj93GzPK///4bSjQHDhwIvfnmmzaYrlq1KrRr165QzZo1Q7fcckto69atdmnSpEno6quvDg9QeOaZZ0JnnHFGqo/74osvhkqUKBFKJHPmzLEZbiZedu/enSwYDx4LzJpHroKLiEh8YuWWz+7TTjst1L9/f/vKii6f5cHP9sMPP9wC8TFjxoQSkcb0/4+/IX/LyL8xlz59+tg53Lx58+y8TyTRaU+3JBxaQ5x//vm27+fll1+2vd7e66+/bn0//V5e9o09+OCDtu/74YcftsJr+/btc4lSJIx9TPQp79Onj1X0POmkk6zCK3vduK106dJ2oagI1V25zqPoDAVJUrJz504rNte7d2+XKNjX1a5dO9ewYUM3c+bMJFVw2RtH9fIg9s/RckZEROLfiy++aG0f33zzTWsJRS/vmjVrWk2XIFqHMrb36tXL6rcEezjHM43p/x9/M/6u/A3Zt/3PP/+k+Jqef/55a/nJ/VT3WRKdgm5JaBQj4QM56JNPPrHejsF+nwzMtBsjWCMo37Bhg4t3FEhZtmyZW7Jkievbt6+77LLL3OrVq9P1s7RYo9VaSgM0t1HVm8H+/vvvd/Hu77//ttdPP87rr7/eAmwmXrxx48ZZFdwgTmo4MaPyvYiIxD+CTwJuil76z3EC7zvuuMMKbEW2EyXwHj58uH3+J8Jnvcb0/8Pfir/ZE088YZMNjPFBjPWVK1d2t9xyizv55JOtACqT7IzpIolMQbckNAZdVr1Z0axevXr4evo2Us2TSpceg9Wnn35qK92sigZ7fMcjZrpphUVvaVbp69ata1Vd04PAlAHYn7x4v/32m+vQoYMFrcyyM8Mcz3bs2GGVSslooG3ciBEjwhVtmfVm9ptenZyA+ZM0Vks4Ofn444/dcccdl8OvQEREMuPLL7+04IzxmmrdkWO/X/mcO3euZUCtXbvWxTON6c7+Rvyt5syZY+N2ZCDNOE+WwzfffOMaN25sl6+//tquj/fXJnIwCrol4V199dUWZDODzAe0R19PBqivvvoqfB2pap999pmrXbu2a9OmjXvhhRdcomCACq7eB0X2qyQN7dxzz002G04Ay8A/depUS8+PZ8uXL7fBmZUABugrr7wyfNuff/7pqlSpYn07PVLy+FtfddVVrlGjRkotFxFJYKQglyxZ0ibUaSfF5/348eNt7AqmGjMubtmyxYLzDz/80CWKvDam09qTvxGZhsHVbd9zm8Ca65mY4PzNq1GjhnpyS66goFtyhWOPPdZWOen1SWqS/4Cm1yOBWzC4pt8nA/M111xjF+5PEBdP7rzzTluJZ3BiHxj/njdvnq3qpoRZbmaGGaiYOWZWPJiG5gdn3g9Wjfn3tm3b7BKP++Heeecd17RpU0spW7p0qWvWrFn4tu+//96u52sQfV2D2Q4iIpK4CNBY7R4zZowFZpdeeqkFngSgpGbzme/t37/fxjdWfYcNGxbOfooXeXlM52/B3+TMM8+0TMPg/m1eP0E1k+as5PNaNm/ebDVcRHKdnK7kJhJt9OXm0K5YsWKoYMGC4UqYd955p1UNDRo1apRVzTzppJNCn332WSheXHHFFaEKFSpYdVP6Ubdp0yY0c+bM8O1169ZN0krktddeCxUoUCB01llnhWbPnh0qV65cksebO3duqi1J1q9fH4oXtAC7+OKLw61i9u3bl+R2qtbTWsQ/d76/7rrrQq1bt7YqtyIiknvdddddoeLFi4duu+22cAuxYEuxYLvI77//PhQv8uqYzt+gRYsWKT5PzsmoTs59fPvPNWvWhEaMGJGQnWZEDuYQ/pPTgb9ItFGMpVatWjYTzMyvV6FCBbd48eIke31Xrlxpe4NJTb7tttusEAmr5onqhhtusJnxRJspJj2OzAOyDp566inXs2fPcMYCr4e08WA6OSsfmzZtcqVKlcrBZy0iItmBFVKyntgiNmHCBPs3q7qTJk2y/cxBjB2MEewPpmhZsMtJoknEMZ3V7eeee86KofF3SinzgDGdomrt27e370VyvYOG5SIJbOnSpaFChQolmV099NBDQ3fffXeS+/3999+hwYMH26o3/TLp+Zyonn/++dDy5ctDiYIepT179rS/zdlnnx3asmVLktu//PJLW9mInCVnhZtZchERyRsYqydMmJDkuoceeshWvFNb+W3ZsmVcrf7m9jH9hx9+sPec9z6lLASfifDss8/a90WKFAnt2bMnp5+2SMxppVtyPYqsUXQrcp8TfZzZAx5sP8VeK1a9qZZ5++23u3vvvTehV73j3bRp02x1+48//rAqrpdcckl4dZuPJlYpHnjggSS91VmxqFevnq1sRFZyFRGRvINCZBRIZbxg/3NwrPDoeEHbKVpUMd4k8qp3PGM1m77a/fv3t+8jW4GB/dv0577iiivsnIw2oGQicD4mktvpk0dyvUqVKlk6GgNzZHVsKqNSoMSjqjltxUgxp/AHrT24XXNT0fXDDz+4iy66yArD1K9f31L8KZLjA+7vvvvOeq3TXz14EkWhtDVr1rjPP/9cAbeISB7HeLB3716buGUcoXCqF9yeRHB+7bXXuhYtWlhxToku3tPmzZvbe8wWsZQCbqqSs8jBwgaYCCEFXQG35BUKuiVP8IHd+++/7woUKBC+nsGhY8eOdrvv8UkvyLvvvtsGkeLFi9vtrVq1smBcsmb79u2uX79+FjxTyZU92qx2ly1b1m5n5pu+rFWrVrUMhSACcNrCcZvah4iIyMknn+y+/fZbN3nyZKvZsmTJEpsop8MFY3nkWPHJJ59YVfRu3brZz0nW8B7yXvKe8t4Gsaeev0G1atXc2LFjrb4O51WR9xPJKxR0S55CAM0q6yuvvJLkeoqokfY0ePDgcMEPZl/nz59vgfru3btdkyZNXJcuXWxmXTKGdiak6rN6zeA7aNAgW80Orm5T4K5ixYr2fntMkJQpU8YNHTrUPfroo0r1FxGRJIoVK5ZkhZvVVAp0Mbaw+hrks9YmTpxowSDp5j/99FO2P+dEx3vWu3dvm0CnkF0QgTZ/jyFDhlixU1qf0RqM8y628AVbgIrkJdrTLXkWATWr208//bStgnsEefSJJsj2CMTHjRvn7rnnHhtESI8iBV0pzmkjpY/0sYceesjSxKnCescdd9hJkseKN/u6GIyDWPGmPysnUMyYi4iIHAxbx8iMYuX7hRdesNXv9957zybVU0KQyD5kxiZWyCV1TGY88sgjVm+FtP3U+H3zq1atssBcRBR0Sx73+++/W2rUjBkzkt1WuHBhC8hZjQ0GkQzirNSyekvwTSB50kknZfMzj/+B+eWXX7bWX1u2bLGiKax0lytXLl3vfenSpW1yg5MhERGRjKJVlR9DmPxlv3FqWBU/6qijbDxnC5Tf8iT/h3Gc8yEu+/fvT/V+ZKc9/PDDNq6zfe/xxx+3LQAioqBbxNLN6OtNn0iKsUQiJXrOnDnu+OOPD1/322+/WUD5zDPP2D4l+oEzWJ955pl5ujKqzxxghZpCKhdeeKEbOHBgkpluit6wqvDWW2+lOHhTwXzkyJFJqsqLiIhkFn29Kd5ZqlQpqy3iu5lQ2TylFduuXbvaanmjRo3ybA0Rzo3IEiBNnNorB8M5EJPrxxxzjAXcTGKIyP+noFvkf3755Rd344032p7jlFBpm4E4uA+ZwHL8+PHW7ooCIaSzXXnllbaym1dmyhlc2R/34osvWso+FeFpAdKnTx9bsfZIM+O9+/LLL1N8HGbDCdbr1q2bjc9eRETygs2bN7tdu3a5IkWK2GQwk+0HQ52Rm2++2cauvJJ6Tg0bzoNGjBhhNXBSw/jOooOfIP/ggw+0X1skDQq6RSKwt5gZW6qVE1BGKliwoPWOZiD2q9p+RpjAkxVcfo5Vb9KnzzrrLHfssce63IQ0ewJsKsbyehmkqfB+9dVX28REsOAZwfbw4cNtEE9pRYGUc9L1OanJy1kCIiKSfRiTyKxiKxkF10iJ9ivgkZhoP/fcc13Pnj0tsy23ZWKRvffhhx9aGv68efPCBWWDaPHF+0NNFs6TGK8Z+zn/oTVrsDOMiCSnoFskFcyIs4+JvckUWlu4cKHtEfNIoaKqNgXXgnu62evNDDrtsHybMe7DSvk555xjVdITMV1t586dNpNNmhknJxRGY2X/ggsusNT8KlWqJNnTfd9999l7QDp5JIrVzZw50/3888/23igNTUREstuGDRvcunXrXNu2bS3wvOyyy9y7776b5s8wfteuXdsmmQnEE7Wg6o8//mjjOecrtPFKKdCORKDNuP/xxx+74447Lluep0huoaBbJB1oiXHeeeelejuz3qyOk7IWnO1l7xgtsBjYCDLZw8wecQJwqnPTVqNQoUIuHrEqvXr1apv95vkzyDIo85x5/lxq1aoVnkBg9ZsUe1LEec1bt25N8XGpenrTTTdpVVtEROLKs88+a+NTcILdr/CmpnLlyjb5zJhYr169uG1tSQbesmXLLEONxQQm0tOLAPu6665zHTp0cPXr10/IhQORnKagWyQdCDZpOULLMNqRpIbB1lczZ1Wb1XCPIm0UZCOA5UKfSwYueoWecsop4QuDdnanrhFg03/8iy++sMCZr19//bU95/z589sqACcUpMpHzm4vWrTI3XnnndZnO60TE/bRDRgwwAbuYMswERGReME4xuovxdcY99OzAhzESjB7m0877TQb0+vUqZPt2VwE2JyrfP7557YFjHTwlLLOUsJz9VvrqLFCy8/27dtb0TkRyTwF3SIZwP8u9JVmT/fcuXPTvC8BNUE3M+Ds/2aF22MQZ6+zD3C5MAPNQMfPVa1a1WaT2SdFkOsvpGVTvCSjAzgnETt27LDVZ4J9vnIhfZ7g2gfY/ncHJwEaNGiQZPWe4Jw+5qxmk5bHnq60TkooRHP33Xe7Hj16KI1cREQSqvjauHHjwh05mID2k9MZUaJECRvTSUsvXry4paQz4c6YTkX1jLbHZCWeTLrgeE5WGs+NNHm2eKUHv5fHYuynHgtb5qjXwrjOfncKo4pIdCjoFsmkb7/91j3//PNWdITVYP5N72lS0Rj0gqh6ysDKAEaVblbCCcaDK77B1WYuX331le25ojoog30QP0cQzuoxgyYz0FwYOHkcfyGQZjBm73RwFZr7UdyNxyBFPLVVdgbjWbNmuY0bN9pzoJUXgXZqHxu89jfeeMNWs5s2bequueaaPN9GTUREEh9j4JFHHmnfE3QzIR10sDT0tPhVZB6DAJ2aKT4Q53smvhm3OcfgdwTT36OBOi2sZotI7CjoFokSH+QSWKdU9TwSAyppWwygtCujxRiDODPhwcCX/0W53c9mB2e2Ce75vQzAfGXF2QfhfCXdnZXxyNVynmPkzDoz4+xdZ0X81FNPda+88ort/Uqpl3ZKaBFGERr6mvI+qJKpiIjkRhRMpeDa7Nmz7cLkeDwj647isB6LAC1btrSVe7bC8W8RiS0F3SJRRBD80ksv2R6qzz77LFOPwSoxM9sUJmNWnTSvFi1a2H5ogmsCcAJv/tclZZ3Vbj8Lz23MhgcHUFLHOSFghZ3rWZknDY1+2RSAOf744+35sv+LFWkCdx4jpY8GAunIIJxZ+e7du7thw4ZZOzUREZG8grGSLLWPPvrIOpYwtjIJzfhMMVKup5Cqx/jKhDhjLZPumV0dPxiKtfbu3duKnzJJcP/991ugffrpp1u3ERVDE8leCrpFYoT90syEsx+MHt4MsD79jOCUAJdAmeD6YAisCY5J82bw9I/DXum1a9dakRQqkXKpXr26O//8821fFm1A+F+cVfDOnTtbChm/M6OFYRigCa4plgZOJi688ELXpUsXVTIVERFJBe1GGau///57Oy+IxFYsstDIEGMPeVrFWhl7KW5GBhv3Hz16dJLbmVinFgzF2y6++GILsEUkPijoFsmmFXAKsBEQk8ZNijc9r+lvHQ9S24tWs2ZNSz2joAor7hR/a9OmTZKicCIiInJwbD1j8pwAnAw0stNow0VtFTBBTzcQJsaDF8ZoJt9ZuaaTCPjZKVOm2IQ8F4qzqVipSPxS0C2SQ0j7piUJq8cUTkutnQf7r1kZ98XQDrZfnBV09nQfLG2NQZp95H712mOvNxXMSUmj6jp7zEVEREREJHMUdIvEAf43pDAawTerycyCs7pMKjipZFRJp0d4avxebAqZsQ/8xRdfTPW+tAUh5YwVawqrPPXUU7YCTzoalxNPPFH9OEVEREREokRBt0gCoB/nhg0bLJ2MNG+++u/Zr3399dfbvmuCbwqlsY+8cOHCyS5UMCWIp0+oiIiIiIjEnoJuERERERERkRg5NFYPLCIiIiIiIpLXKegWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIj/6/9OiYAAABAGGT/1KbYBy2QbgAAAIhINwAAAESkGwAAACLSDQAAABHpBgAAgIh0AwAAQES6AQAAICLdAAAAEJFuAAAAiEg3AAAARKQbAAAAItINAAAAEekGAACAiHQDAABARLoBAAAgIt0AAAAQkW4AAACISDcAAABEpBsAAAAi0g0AAAAR6QYAAICIdAMAAEBEugEAACAi3QAAABCRbgAAAIhINwAAAESkGwAAACLSDQAAABHpBgAAgIh0AwAAQES6AQAAICLdAAAAEJFuAAAAiEg3AAAARKQbAAAAItINAAAAEekGAACAiHQDAABARLoBAAAgIt0AAAAQkW4AAACISDcAAABEpBsAAAAi0g0AAAAR6QYAAICIdAMAAEBEugEAACAi3QAAABCRbgAAAIhINwAAAESkGwAAACLSDQAAABHpBgAAgIh0AwAAQES6AQAAICLdAAAAsMYB7fGAZmWW6o4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAH/CAYAAABKNb6SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwElJREFUeJzs3Qm81OP7//HbmhZtUmnRQps2RatKqxJSKVshWwqRypZdiRSyRNZCQikSSqWdREiriBalUqlItpj/43V9f/f8P2fO0llmzpk55/18PMY5zcyZM2fmY+7Pdd/XfV2HhEKhkBMRERERERGRqDs0+g8pIiIiIiIiIgq6RURERERERGJIK90iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdInnQtGnTXL9+/dxpp53mChYs6A455BB377335vTTEhERkQzYtWuXe+6551ynTp1c5cqVXb58+VyJEiXcmWee6T788EO9liJx4vCcfgIikv0eeeQRN3/+fFe4cGFXpkwZt27dOr0NIiIiCWbSpEmub9++Npa3adPGlS1b1m3evNlNnjzZzZgxwz388MPu5ptvzumnKZLnHRIKhUJ5/lUQyWMWLlzoSpcu7U488UT35ptvuosuusjdc889Wu0WERFJIHPmzHG///67O+uss9yhh/7/BNa1a9e6Ro0auf3797sNGzZYUC4iOUfp5SJxgAGRFO8OHTokuf6TTz6x1ejq1au7n376KWq/r3nz5q5KlSr2O0VERCQxx/TWrVu7c845J0nAjWrVqrkLLrjA/fPPP/Z7RSRnKegWiVOLFi1y7du3d+XKlXPz5s3TLLWIiEiCyokx/YgjjrCvhx+u3aQiOU3/F4rEoQULFriOHTu6SpUquY8++siVLFkyyQz6uHHjMvR4KpImIiKSd8b0X3/91b311lvuqKOOsuw2EclZCrpF4gwz4GeffbY74YQTbHCmCmkQA/R9992XocdU0C0iIpJ3xvQ+ffq47du3u/vvv98dc8wxGX7eIhJdCrpF4siaNWusGAqFTxikIwdntGzZ0qn+oYiISHzLqTH99ttvd6+//rrtKR88eHBUH1tEMkd7ukXiyKZNm1ytWrVc7dq13fDhw93ixYtz+imJiIhIgozpd911l3vooYeswNqUKVPcYYcdFvPfKSIHp5VukThStWpVN3v2bLd+/XrXoEED17NnT7ds2TJ39NFHh++jPd0iIiLxL7vHdALuoUOH2ur5tGnTXP78+bP8N4hIdCjoFokjFFlhMK5Tp44bMmSIu/XWW12/fv2SDMja0y0iIhL/snNM9wH36aef7t5//31XoECBqPwNIhIdSi8XiVODBg2yiqMvv/yymzRpUrL9Xxm5iIiISO4c0++++24LuHl8Bdwi8Ukr3SJx6tBDD3WvvPKKzZBfc801rkmTJtbfMxreeecdu4C0N38dM+6oXr26u+2226Lyu0RERPK6WI3prJqzik4v7oYNG7oRI0Ykuw+BPRcRyTkKukXiWMWKFd3jjz/urrjiCnfppZfa3jAG7qxiTxmz7UFff/21XUB6moJuERGR+B7T/WT5gQMH3COPPJLq/RR0i+SsQ0LKPRURERERERGJCe3pFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiPq0y0iIiIiksM2bdrkVq1a5cqVK+e2bt3qfv31V+vjXb58eVevXj13+OE6bRdJVOrTLSIiIiISB/bv3++OPPJI9++//7ohQ4a4hx56yDVq1MgtWLDAHXbYYTn99EQkkxR0i4iIiIjEoS+++MIVLlzYValSJRyUE5AfffTROf3URCQDFHSLiIiIiOSQ559/3gLr7t27Wzp5akKhkBs0aJClmQ8fPjxbn6OIZI2CbhERERGRHLB7925XqVIlt3fvXvfuu++6c845J9X7fvzxx6558+Z2/3Xr1rlDDjkkW5+riGSeqpeLiIiIiOSARx991ALu2rVru7POOivN+5588skuX7587ocffnDLly/PtucoIlmnoFtEREREJJvt3LnTjRo1yr6/77770kwtR8GCBV379u3t+7fffjtbnqOIRIeCbhERERGRbDZixAi3b98+awfWuXPndP1Mly5d7KuCbpHEoj3dIiIiIiLZaPv27a5y5cpWjXzatGnu7LPPTtfP/fLLL65kyZJWwZx93SeccELMn6uIZJ1WukVEREREshHVxwm4GzZseNC93EHFixd3LVu2tO+12i2SOBR0i4iIiIhko44dO7oGDRq4+++/P8NVyLt27eqKFi3q/v7775g9PxGJLqWXi4iIiIhkM/puI6NB9x9//GG9uo844ogYPTMRiTYF3SIiIiIiIiIxovRyEREREZFssGHDBmsTtmzZsqislH///fdReV4iElsKukVEREREssGMGTPcTTfd5AYMGJClx9m9e7dVP69evbp9LyLxTUG3iIiIiEg2WLhwoX1t0aJFlh6nWLFirmDBgu7AgQPuvffei9Kzk7zigQcecE2bNnUFChSwonzp0atXL6s/ELx06NAhw7971apV7rzzznMVK1a0xyDzI7NuuOEGd8opp7h8+fK5k08+OV0/Q/X/yL+jT58+LtYUdIuIiIiIxBjp4AsWLIhK0I0uXbrYV7UOk4yi8n337t1d3759M/RzBNlbt24NX15//fUM/+79+/dblsZDDz3kSpcu7bLqiiuucBdccEGGfubqq69O8nc8/PDDLtYOj/lvEBERERHJ4zZu3Og2b95slccbN26c5cejddjQoUMtZZ1AhlVLSdvvv/+e6m2HHXaYO+qoo9J130MPPdTlz5//oPclGyEj5s2b51q1amVbBvbs2eMqVarkvvrqK1vFZUWaVWFWnLPqvvvus6/jxo3L0M+xopzVQLlBgwZ2wW233Zalx3riiSfs644dO9zy5cvT/XP8vxKNgD8jtNItIiIiIhJjfpX71FNPjUqATCBWoUIFayE2c+bMKDzD3K9QoUKpXkh5DipZsmSq9z3zzDOT3JdU6ZTuFwuvvfZamn8HF7+NIdqYFOB1qVatmq2S79q1K1nqdjQmBcaNG5fhVnoZfQ1LlCjhatWq5W6//XabtIo1rXSLiIiIiCTIfm6PoIQUc1Y/p0yZ4jp37hyVx5X41qlTJ9eoUaM071O2bNmo/15Sy8muYPWdqvmDBw+2yYfFixdblgCOP/54d9xxx2X5dxUpUsQC+1i4+OKLbbKqTJkytjp+6623urVr19r/Q7GkoFtEREREJMYITtC8efOoPSZBEEH3tGnT3D///OOOOOKIqD12brRv375Ub/OBo/fzzz+nmV4e2Qouuxx99NF2SQ8KhI0fPz5df//BXHjhheHva9eu7erUqeNOOOEEW/1u06aNXf/KK6+E77Np0yZ30kknhf89ePBgu6QHk0m+ZgEI7v2kFQEzxdgyq3fv3kn+DiYJeP5MJPD3xIqCbhERERGRGPv888/dkiVLrNpytFCBeuDAgbYKGRkIStb2WMfqvmnxgf9///2X7LZ///3X3mNSo6+55po0H2f69Ok2uXP//fe7QYMGuVigGBop2uvWrQsH3UGsJAf70RcvXjzTv+uFF16wbRSI9sSSzxrg71DQLSIiIiKSwCi8xZ7XaCJIGzlyZFQfU3IO6dl+5TwYpG7fvt1WqY899ljXrFmzdKeXs/+aSyxQFJA93amlk1Mw8MQTT4zK7yobg3R5z08MRCMtPi1a6RYREREREYmDoJvK3jfffLO7++67w8HtkCFDbFWZ1WsKpaU3vTw1pH7/8ssv9pUVdB94EiT7AnDVq1d3Dz74oKV5E/BT8Zxic1T9JhX7lltusfu3b98+w+3KVq9eHf5+y5Yt9vv5vRkN0lmd5rlt27bNVsL930Fa+5FHHmmPzSo8ae8NGza05z1hwgTXsWNHd8wxx9ie7ptuusnqLJAuH0uHhGgaKCIiIiIiMSvexIojwVS0V+04lWdP99KlSy0QilXVbMkerHJfd911VpH+wIEDls1w+umn29599iBHAxXGX3755WTXz507N5yNQaG+sWPH2n0JaCnUR/syWpmROn7GGWfYZECpUqXCP8/PUsk9rVZkGzZssGJskfgb2R8Ofv7yyy+3Yzst/L758+cnu379+vX2PPzv8n/Xjz/+6Hr27OlWrlxpbd7Kly9vkwp33nmnK1y4sIslBd0iIiIiIjFCkEKqMAHE1q1bY9IfmBVSAgrakkWzUJvknDVr1tiK7SeffOKaNGmSEG8FRc5YEc9q27B77rnHgmkfhOcGqrggIiIiIhIjH3/8sQXcVapUiUnA7Xt/+2JtkntqAAS/xjsqitPq69JLL83yY02fPt09/PDDLjdR0C0iIiIikiD9udMKukkxF8kJNWvWtD3S0aii/9lnn9ke7NxEhdRERERERGKElG/EMu1bQXfuw55kld7KPbSnW0REREQkBvbv328ptxTE+uGHH1IsIBUNtG6iujV2797tihYtGpPfIyKZo/RyEREREZEYWLJkiQXcVCxn5TJWaH/kA/ovv/wyZr9HRDJHQbeIiIiISAzQC7lcuXK2n5sWTLHkU8y/+OKLmP4eEck4pZeLiIiIiMQI+3L//PPPmFehXr16tRWxqlq1alSKWYlI9CjoFhEREREREYkRTYOJiIiIiETZv//+q+rTImIUdIuIiIiIRNlzzz3nSpYs6e64445se21feeUV16NHD7do0aJs+50icnAKukVEREREouzrr792O3fudP/991+2vbYzZsxwEyZMcPPnz8+23ynxjXoC1113nVW4L1SokDvvvPPc9u3bc/pp5TkKukVEREREYhB0o27dutn22voK5kuXLs223ynx7aabbnLTpk1zkyZNssmYn376yXXt2jWnn1aeo0JqIiIiIiJRxOp24cKF3e+//25VxWvUqJEtr++CBQvc6aefbm3Kfvzxx2z5nYlSQX7//v058rsLFCiQ7nZx8+bNc61atXK7d+92e/bssd7rX331lTv55JNd0aJF3ahRo1yvXr3S/bv37t3rjj32WMt+6Natm133zTff2PG4ePFi17hx40z/XZIxh2fw/iIiIiIikobvv//eAu58+fK5KlWqZNtrVa9ePQvwNm/e7LZt2+ZKly6t98k5C7hJrc4J+/btcwULFoza47322mvummuuSfM+06dPd82bN7ee7f/8849r27Zt+Lbq1au7448/XkF3NlPQLSIiIiISg9TyWrVqucMPz77T7aOPPtqCqjVr1ljAddZZZ2Xb75bs0alTJ9eoUaM071O2bFn7ysTLkUceaavkQaVKlbLbJPso6BYRERERSfD93MF93QTd7OtW0P3/U7xZcc6p3x3tiRUuklgUdIuIiIiIRBF7cVu3bu1OO+20HAm62cNL5XT5H1Luo5niHSuHHXaYfU2p4j193w899NAMpZezveDvv/+2/eHB1W6ql2vrQfZSITURERERkVyCFV2Ct/z58+f0U5EM2rhxo6tYsaJtDShevHi4kNpxxx1nQfIHH3zgmjVrdtCWX6SX8/77Qmqvv/66tQrD2rVrbQuCCqllLwXdIiIiIiIicVBlnf3apI/ffffdrmXLltbua+zYsVaZfv369RkuCNe3b18L1seNG2cV9fv162fXf/LJJzH6KyQl6tMtIiIiIhIlrC6SziuSmTT4iRMnuqOOOipccbxz5852PM2ZMydTFdgfe+wxd/bZZ9tKd4sWLWzFfMqUKXpzsplWukVEREREouTJJ590N9xwg7viiivciy++mCOv6/jx4+15ELDdfvvtOfIcJGsohnfSSSfZinSTJk30ciY4FVITEREREYly5fIyZcrk2GtKEbXPPvss3DpKEo/fk6+9+bmDgm4RERERkThoF7Z582ZLI6bSdIUKFazgVb58+TL8OHXq1LGvy5cvz/DPikj0Kb1cRERERCQKDhw4YEWw/vzzT/ftt9+6KlWqHPRnfvvtN9tj++qrr1rATTEtj8rVJ598sn2/bds2C8ppCXYwO3bscCVLlgw/fmb2AotI9KiQmoiIiIhIFHz33XcWcNMT+oQTTjjo/V955RVXqlQp16tXL/fRRx9ZwN2wYUNXv359d8wxx9hqtzdo0CC7jWrUv/zyS5qPS5so2kxh5cqVUfjLRCQrFHSLiIiIiEQxtbx27dru0EMPfppdo0YN98cff7iqVau6IUOGuB9++MEtWbLE+jSzL7tYsWLhFXQqWxOUjxkzxlWrVs299NJL7r///kv1sZViLhI/FHSLiIiIiGTDfu5ff/3Vvfvuu+F/kypOgP3NN9+4O++801WqVCnFnzv88MMt/Xzu3LlW0ZqA/Morr3TNmzcP/85IBP5YsWJFFP4yEckKBd0iIiIiIlHQrFkz17t3b9e+fftkt61fv941bdrUdenSxc2YMcOuY/WaVHK+pkfLli3dsmXL3IgRIyyFnXZSjRs3dosWLUp2XwJ/gvjChQtH4S8TkaxQITURERERkRj6+OOPrWc2K9TstWa1Oz0F0dJCUTV6gW/atMnNmjXLlS9fPsntpKKnN5gXkdhS0C0iIiIiEiNvvfWW69Gjh/v7779dvXr1LOAuV65cVB6b/eC///67K1GiRFQeT0RiQ+nlIiIiIiJZ9NNPP9n+bKqXe6SCX3LJJRZws9K9cOHCqAXcyJ8/f5KA+5133rGV78gV73/++Sdqv1NEMk5Bt4iIiIhIFr355puWMt6zZ0/79969e123bt0sCD/zzDPd5MmTbR92rEycONGdd955rl27du7nn3+264YOHWpB+ciRI2P2eyW+cfxdd9111oKOfu0cI9u3b0/zZ2hhx9aE4KVDhw5p/szWrVvdxRdfbJX4qdzfv3//dD2/5557zmoVUHuA37Nnz56D/sy9996b7PlVr17dxTMF3SIiIiIiWeSriPtWXQUKFLCiaRUrVnTjx49PVwuxrGjSpImton/77bdWyO23335zRxxxhPX0Xr58eUx/t8Svm266yU2bNs1NmjTJzZ8/3zIyunbtetCfI8gmkPaX119/Pc37//XXX9Yfnir8qVXvT8n+/fvtdw0ePNhlRM2aNZM8v5SKCcYTBd0iIiIiIlEOugl4qTLO9cWLF4/560shNQqqlSxZ0tLab775ZvXqjsD+dy6k3Huk/nMdQWNK9w32QidNn+uCWwjSum9GzZs3L7zau2HDBvue9xJFixZ148aNy9DjkW3x4osvukcffdS1bt3anXLKKW7s2LFW9f7TTz9N82fz5cvnSpcuHb74nvGpYXLp8ccfd5deeqkrUqRIup9j//793W233WZV+DOCNnrB5xfvdQ0UdIuIiIiIZAEB1urVq+17UngJ5LzsbNlFau8bb7xh3z/77LPWFxxr165NFijmRbw3XKgi7zExwnXXX399kvsyecH1wT3yo0ePtuvokR4ZcHL9mjVrwtdlNEBOr9deey38d6R2oXYAqDHAsdm2bdvwz5OGffzxx7vFixcfdAKA16BatWqub9++bteuXUluJyWcNPTMTCps2LDBZdV3333nypQp4ypXrmyFCiNrGcSbw3P6CYiIiIiIJLJvvvnGAm0CHgKAE044wb399tuuVKlS2f5cWrVq5a699lr39NNPu1tvvdVWKHfv3m0BIdXTJbF16tTJNWrUKM37lC1b1r5u27bNHXnkkbZKHsRxyW2pId2bFHT6vH///feW+k1dAgL1ww47zO5D4E77u4woUKCABfFkgWQFfz+TGjwWqeX33Xefa968uVu5cqU7+uijXTxS0C0iIiIiEoXUclJeKWJGumtOnvwPHz7cffDBB7aiyOo3QfeKFSvyfNC9b9++cPDnkYZPijPvXZAvRkeFeI+CZFdffXU48PT8ym3wvhldBU4vjqtYH1sXXnhh+PvatWvbNgUmklipbtOmjV3/yiuvZPhxGzZsaBNUWcUEgMdzIwivUKGCFROMzEKIF0ovFxERERGJQtDNXlz2wlK0KhjYZTdW3Nm7S0V1iqpBxdScVY/nQoqzx0ow1/G+pXTfYAE8Vmi57qijjkrXfTPKB/PBveHev//+a4+fkfRyJn/IwIisCE71cm5LL1K42TO9bt06F4+KFi1qk0vx+vyglW4RERERkSw499xzrWAVK8qsnBIA5DT23PoAjtVFUnElvpGy7VfOg8X3CJJZpac6eLNmzdKdXk7hNIL/jz76yFqF+f397H+m2n16bd682fZ0ZzSdPLvs27fP0uAvueQSF68UdIuIiIiIZMHcuXMt4KZlF5WY4wmpwhTSIt1c4j/obtCggU3c3H333eGAd8iQIbbSzL5lVrLTm15OFXHSrQcMGGBBPEX9+vXrZwF3sFo4xdUefPBBa3FHAMseaYJ0VsMJZm+55RZ34oknhrMmUuMrrfMYO3bssH+TSXDSSSel+jPsLefiV6nZBsHfx2vhJx5Iaee5+WJ3gwYNcuecc46llNMC7Z577rEsgYsuusjFK6WXi4iIiIhk0o8//mgBi6+ETZpxPGGFkp7G7DEmoJH4Rdo7+5JJX/cVxzt37mzp4XPmzLGAO6Mee+wxd/bZZ1sQ3aJFCwukp0yZkuQ+rH7TXgwEr2xFoGAbGRsE7ayYk7IeTMFPqXo5hfq4UDV9woQJ9n3Hjh3TrF4+ZswYux975cFz5N/vvvtu+D4E/sGK80xEEGCTvXH++ee7Y445xlqgkQkQrw4JBRvViYiIiIhIuk2fPt3dcMMNViV8yZIlSfYLx4sLLrjAgjmqUvN8Jf5RbZ4VYnpqZyQVPLuwysyKeEYKxo0dO9YNGzbM2utltYJ5otFKt4iIiIhIJrF6TGos+13jMeAOFuiaMWOGBXES/3wl9GBF9HixatUqS12/9NJLM/RzH3zwgQXdeS3ghoJuEREREZEsVi6nHVK8oq2SR89lJbpKVrBdgRT0YLX29Jg0aZLr3r17nnzxVUhNRERERCSDJk+ebKvc7F9F3bp14/Y1PPnkk+0rK/Hz5893M2fOPGhRLMlZFStW1ORILqI93SIiIiIiGUAbLlb7aMVFIMvKMW2YypcvH5evI9Whg+2e6tev7z7//PMMr1SKSObo/zQRERERkQyg+jMBN62NCLgpoka7sHhFxepSpUrZ97SNoi3Vn3/+mdNPSyTPUNAtIiIiIpJOBNlDhw6171u3bh1OLY/XImoebZhAxWnaNBUoUCCnn5JInqGgW0REREQknd577z0rnkbPZJ+yHc/7uSP3dbNCLyLZS4XUREREREQyuMp93XXXWX/udu3aWc/ieNe2bVu3Z8+ecAG1r776ynp308Ip3lfpRRKdCqmJiIiIiKTDrFmz3BlnnGG9kzds2OBKliyZkK/bb7/9Zvu89+/f72bPnu3atGmT009JJFdTermIiIiISDqccMIJ7oorrrBV7kQNuEEBOP4OjBw5Mqefjkiup5VuEREREZEMppkvWLDALVy40NK2GzdunBCv3x9//OFWrlxp1dZJKa9ataq1P6PfeK1atXL66YnkWlrpFhERERHJAALWd955x911113u9ddfT5jXbuDAga5hw4buueees1X7rl272vWPPvpoTj81kVxNQbeIiIiISBp++uknd/nll7ulS5eGr/Pfn3rqqQnz2vkK5suWLQsH4Rg/frzbunVrjj43kdxMQbeIiIiISBqeffZZN27cONe/f3/797///mvVv3HKKackZNBNijxp8aeddpr7559/3JNPPpnTT08k11LQLSIiIiKSir/++suNGTPGvqdFGNauXet+//13V7BgQVetWrWEee1q167tDjvsMLdjxw63efNmu27QoEGuXLlyCV0YTiTeKegWEREREUnFpEmT3M8//+zKli3runTpYtd98cUX9rVevXoWxEYD7bvWr1/vlixZ4vbu3Ru+/tdff3Xbtm2zgmdZRauzOnXq2Pf8HnTq1Ml+r1/FF5HoU9AtIiIiIpKKJ554wr5ee+217ogjjojKfu7PP//c3X333a5Dhw7uxBNPtBZerJpXrlzZUr7XrFkTvu8LL7zgjjvuOLudgLlbt25u8ODBtg97y5YtGf7djRo1sq+ffvqpfT300EPd4Ycfnqm/Q0TSR/+HiYiIiIikgNVgAuR8+fK5q6++Onz98uXL072fm/3Sc+fOtb3TBM6YOXOmGzJkSLL78ntI8y5cuHD4ugMHDli19D///NNae3EJ4rHatWuX7vePoJ50eb/SHfw97777rqtRo4ZdRCR61KdbRERERCQFl1xyia0o9+rVy40dOzZJIM1qNHuhixcvnuznSAWfNWuWe/PNN6212O7du91bb73lzjvvPLt98eLF1rarQYMGts+6dOnSrlSpUrbiTYAdiYB448aN7ttvvw1fmAz4+uuvLfW9SJEidr+nn37aUt+vuuoqC65TeqxNmzbZ82ISoGnTpuHr+/bta8E4P/v888/reBCJIgXdIiIiIiIpGD58uAWy7Oumv3V69mW/8sor7rHHHrPA2GP1etiwYe7KK6+M6uu8b98+V6hQIfueauQ1a9YMp6azWs3vI4j2QXlaFi5c6Fq0aOEKFChgLdLS8zMikj4KukVEREREUkF7MPY9p7RqHLR9+3YLenft2mX/Jmjt2bOn6969u2vWrFnUCq6lhqB70aJF7sUXX7RJAiYAUKxYMatQ3q9fP1tJT+vnWXVftWqV7WPn/iISHQq6RURERETS6d5773UbNmywwmqRq9/Nmze34mZUAr/88svTDHJjiYrnb7zxhq24f/PNN3bd+eefb2nloGUY6e9MKJBC740ePdpdf/31tkpO8H2wiQYRSR8F3SIiIiIiAaRor1692tpp+Yrl3kknnWS333bbbe6jjz5y06dPd8ccc4zdtnXrVkslj/WqdnoRVBN833///e7VV18NTxJ88MEH7qyzzrLK6d99912SYL1MmTLWg3z+/PmWbi4iWaeWYSIiIiIiAY8//ri15mLVN4gVYr9n+qGHHrJiZiNGjAjfTmuveAm4wXPp0aOHPefgqvyHH35oX9etW+d27twZvp6q6RdeeKF9T5q6iESHgm4RERERkf/DKu+ECRPs+4suuijJnudgm6+jjjrK3XHHHXaJd+xJD04cUDndo184f5tH4TVQLT14vYhkntLLRURERET+z7hx42w/NqnXVCBnXzNtua655hpr/wXae1Htu0qVKgn5utFnvG3bthaAo0uXLrayTdE1Am1WxkmjF5Ho0Eq3iIiIiMj/eeGFF+wr7bZ8IbFbbrnFAm7/b1LKEzXgRp06dawgHPib3n77bVe/fn23ZMkS+7cCbpHo0kq3iIiIiIhzVjyNtl/shf7xxx9tjzb27NljVb4pQPbff/+5TZs2ufLlyyf0a0Z18lq1arkjjzzSlS1b1q1fv97anJFW7nt083f//fffVhxORDJPK90iIiIiIoHiYR07dnSzZ88O72kuWrSorW7TSqtSpUoJH3CD1ezSpUtbUP3ss89aP/FRo0aFA+6nnnrKJh2GDRuW009VJOEdntNPQEREREQkHqxdu9a+sup76aWXur1794YrmFevXt2tXLnS/fnnny43II38rbfeskkE2oSxxzvYlztfvnz2t9JqbPjw4fZvEckcrXSLiIiIiPzfSrcPro8++mgLSCNRtTy3OO200yzgRjDg/umnn6y3Nz3Kf/nlFzd16tQcfJYiiU9Bt4iIiIjkeRs2bHDNmjVz33zzje1hXrBggTvrrLPsdfnnn3+slVhesX37dks75+/G6NGjc/opiSQ0Bd0iIiIikqctXrzYNW3a1K1bt85VqFDBLVq0yJ188snh2+fNm+eOOeYY16tXL5fbjB071rVv397NmDEjfF29evWsknnFihXt30xA8JqISOYo6BYRERGRPOvXX391Z5xxhtu6dautcH/88cfJ2oG9//777q+//nKHH577yiF99tlnbubMmW769OlJrifg5rUoUKCA/ZtVfyYlRCTjFHSLiIiISJ5VsGBB27uMIUOGWPusSLQK81XNc5s2bdrY148++ijZbez3fvjhh8OTE6effrr7/vvvs/05iiQ69ekWERERkTyLtOozzzzT2oKx2h1ZKO27775zVatWtcB8586drnDhwi432bVrlzv22GOtPRoF1Hxvcu+PP/5wDz74oJs0aZJVMGdFPPI+IpK23JcjIyIiIiKSht27d7t+/fq5xx9/PNybmxZhKVUm92nXzZs3j3rA/e+//1ogzyry/v37rVgbX7n+sMMOs3R2vubPn98VK1bMLvTR5rpoYa96/fr13RdffGF/6xVXXJHkdn43lcyvu+46e318H28RST8F3SIiIiKSZ1CV+7zzznNz5861lV1fIOzKK69M8f5ZSS33q8dr1qyxFfNvv/3Wvm7ZssVt27bN/fzzz+6///7LVKBMwbfjjz/evlauXNnVqlXLLuxLz6hOnTpZ0P32228nC7q9UqVKhf8m2osRoLdu3Vr9u0XSQenlIiIiIpInEDBSgfyVV16xPty9e/d2jzzyiGvQoIEVFIvEyjMBLkXUVq9e7WrUqJHm4+/du9ctXLjQHosgdunSpRZYp4UAlhV0Cpb5CyvZrHZzOXDggK1+szqfnrZlBN116tSxauxcGjdufNDVafqS165d2wLoHTt22GsTadasWba/u3Pnzva8brzxRnfhhRe6CRMmJOnxLSLJaaVbJIGQgrZv375wCw9mx5mt5/o///zTHXnkkeELA+app57qbrvttvDP+9lpERGRvIhCaQTcBLXsUb7lllvSXOVmnH3ooYcseK5evXqKq+a0E5s9e7atnH/55ZfJVq75XSeccILtC+dCZXRWp0uXLm0X9lOntyo6v2/Pnj22Sr5p0ya3ceNGu7CCvmrVKityRpDP8+ECxn2CcNqCsXedQJzzhKCaNWvahZVzzilSCrrXrl1rj0lQPnLkSHvOb7zxhgXrgwcPTtfzF8mrtNItEqcIkJlVp5ooF/plbt++3Z1zzjnu3XffDd+P2fHffvstxcdo1aqVmzNnTvjf7NmiUAyz3s2aNbO0sJT2r4mIiOQ2b731luvevbt9/+yzz9oqN4XTCML79OmT7r3K7L8m5fydd96xFGv+HURQfdppp9nE9ymnnOLq1q1r+6KzAyvhnDuwyv7JJ5/YJbLaeKFChaxF2vnnn+/OPvtsq94Ov488Nay0U0CNVX8mIbjwuoHX4txzz43xXyeSuBR0i8QZBj2KlUydOtVmsiPRroNZdW/8+PGWDsagyQy4vzA4kmJ2wQUX2P2YuWY2PYifYeBloCSYL168eDb8hSIiItmLQLRhw4YWlA4cONBWajOCFG96WROgMz6TXRbc68wKMhPZTHaXK1fOxRPOJViFZ4Lgww8/TJLuzmQAgXePHj2sD/fBVtwvvvhi9/rrr7u+ffu6p59+2l1//fVu9OjRFsgvXrzY9pSLSHIKukXiwC+//JIk4CX1i8GLwZAV6bZt21qwTeoXA1tmg3lSz1gx//TTT23gpZCLx+z/xIkTo/L3iIiIxBP2LLMXmbRuxj9WdA+23YoCa+zPJmh98803LdvMI028S5cu9pgE84ceeqhLBKS+f/XVV27y5Mn2N/3www/h21jFpohahw4drFd5pUqVkv086eXt2rWzrAAKxNFGjbR1gnpS6FlhV3VzkeQUdIvkYPo4qd+0K+Ere7Io1gLSyRkYW7RokWZVUFLaKNrCPm/SvZih9hcKsbBXLLUTAX4/e8+Ysada6YgRI2ygBalopM5dddVV2ZYSJyIiEkvshWbFukSJEu6ll15yr732mhs0aJCtUkeOjwSRtBALTk7zc6z0cj3btRK9Rgp/J0Ey+7JZwWevtle+fHnLpKNNWvDv5NyE4HrDhg1u3Lhx7rLLLrM+36TRcx7z/PPP27mDiCSloFskBwY59j7de++9bvny5eHrGfR8Kri/H7PrzM6zQk27EYJs0ro82pf4/qEpISD3PUVJ/2L/FYPliSeeaIVPKArDbD+/C35gpfja8OHDLT39pptusjQyzVyLiEiiYasVva0jNWnSxLK+qMZ98803hwNKJqKHDh1qk9IeK9m33367pV+zspsbsS2Nv53Xg3MFj6ruTExQtNXv9x42bJi74447XKNGjew1BFl069atszR1EUlBSESyxX///Rf64IMPQqeccgoRrl0KFiwYuu6660Jr164N3+/FF18MnXPOOaESJUqE7xe8/Pnnn+H7du/ePXTkkUeGihcvHipdunTo2GOPDRUrVix09NFHh/Lnz2+/0+MxIx+L39+sWbNQ//79Q3v27Anf99VXXw1VrFgxfL8iRYqEHnroodAff/yho0VERBLCF198YePhqFGjkoyHK1assLHt8MMPD23bti3077//hl5//fVQzZo1w+MeYytfK1SokORncztei3LlytnffsQRR4RfD16byZMn22vBa9a8efPQyy+/nKdeG5GsSIwNKCK5APumKFZGKhf7su+8807bt02KGpVOPfaPTZs2zQqfkRperVo117VrV7v/Cy+8EF6VBqvepJWT2kUFVoqjsD+cFXGKxQRTwq699lqbvac/KXvGKaLGfdizRpqdr14Knh99N0k3O+mkk2zFnNVvngsr8iIiIvGMbVcXXXSRdfcIFh/1lcvBmLxixQqrMs59ySojO4xVXNKqwZiZ6GnkGcF5B1Xd/Qr/3XffbV1PeG1Y7SaNnCyABQsWWJp9Sq8N5yKcc/AeiMj/KL1cJIYIiIN7sklPI4ClQAlpXJ9//rldTyBO8O33c3/99dfWboQ2I+lp6UUgzj41Bksu6TlBoLAafT1JIyP49m0/ULlyZbd+/Xrr10mhGAZcAn72tlFZ/amnnsrkKyIiIhJ7FAQbO3asjbeMqb5mCkE41/GVYNunUhNsk0bdr18/u61ixYqWbk5vaoqm5SX0/+bv59yCGi8Uen3sscfs4luUsg/+0UcfTda7nJ8hWOd1JXj3ExwieV6W1slFJEWkW02YMMFSvr/++uvQ33//HZo0aVLojDPOCB166KHhdC2+b9q0aWjhwoXJHmP//v2h5cuXh6ZOnWqpcaSAf/rpp+HbZ86caankRx11VLK0cR73kUceCd/3+++/D5177rmha6+9NvTAAw+EXnnlldDixYtDv/zyS7LfSwo5aeukngcfs0aNGqGOHTuGVq5cGb7vTz/9FPrtt990FIiISNyYMmWKjVuHHHJIaN68eUluY2wMjm2kUN94442hHTt2hO9z55132m2tWrWK6vNiTB83blxoyZIl4et+/fXX0KmnnhqqUqVK6Pfffw9fz1hNavzAgQOTPEaLFi1CrVu3Dv3444/h63744YfQRx99FNq8eXPUnmu7du3sNbj77rvD1+3cudOej087Jz2f5/PCCy8k+dk5c+bYa8993n333ag9J5FEpqBbJMq2bNkS6tSpU3hAv+KKK0LvvfdekkG+cePGoSeffNL2RQUtXbo01LVrVxt8/YAVvDzzzDPh+86aNSvFPd/+MmbMmCQBemr3Yx/4U089Fb7vgQMHbNKAoP+dd94J9ejRw/aHB/8ecB8mEY4//nh7LiIiIjnt559/tnGN8eq2224LX8+YNXHiRAsU/XjGeMukdKQ+ffqEDjvsMJssz4y9e/eGbr/99lCXLl1sj7RHwMrvDQbSjLn++ezatSt8/V133WXXXX/99eHreCx/X/5Oj5orXNezZ88kz+Phhx8Ovfbaa/Z8Moo97jxmrVq1kt327bffJqkTw2v69ttvJ7mP/1tLliwZ2r59e4Z/v0huo6BbJIooQFa0aFEbaBiw77///tBff/1lg2rDhg1Dd9xxR2jdunU2o/7GG2+ErrzySgvIvUWLFiUJiFnJpvBat27dQoMGDUqy0s0K85o1a0IbNmywAW337t02C833kSvQGzduDI0ePdp+f69evWz2vmzZsuHfM378+PB9586da0XcOBl5/PHHbWaex3722WdDjRo1sucIfkeZMmXCj9GvX78ks/QiIiLZ7fzzzw8X/vKFRwlQGUf9eMVE8sEC6k2bNlmW2sF8+eWXtjJOdpvHuO9Xg3kcjywzVpCDE+igyCoZb8HfRwD+3XffJQlYOZeYNm2ajdnBYP6JJ54IVa1aNTRkyJDwdYzHfvKe8dr76quvQh9++OFBs9TIeuP57tu3L82MguACAa/x1q1bwz9fu3bt8PUieZ32dItEAfu02etMz89gP88ff/zR9mQzwbVs2TJrFfbee++5r776KlwQjWIjtPMCe6XYO007Ly6lSpUKPx77rn2hNC60Qdm/f7/tG//zzz/dP//8Y/u5aenBV/prH3300XZhr9qxxx5rj0frL7/nmyIn7Otm7xZ7tsAerYEDByb5+8qVK2ftyc4++2zXpk0b6wEe3DPnse+NAmwUWhEREclO7MF+6KGH3AMPPGCFvhiLJk+ebG0v6UF9+OGHW22VwYMHp6teSiRqp9Aai8f1Pz9q1ChrrUk7McZ3b8iQITauUqDNj6/ZiWKsFGClyCo1ZLxrrrnGPffcc27AgAHukUceSfLace6QUVdeeaUVY+W8gvMa9s5zHtO5c2c776HlGK8b7wNFYUXyKgXdIlFw//33u3vuuSfJdQSpDGwMzAw6FCYLIqhu166dDUxUSWWwolDZ6tWrLRDmQs9LAvfNmze7PXv2ROW9OvLII12ZMmVcpUqVwhcKodSsWdOqqDPwUtiNaq/z58+3E5c//vgj/POzZ8+2wBv0Gh85cqRNCHgE/QTuFKPJSxVfRUQkPtDRg7GXcchPDDPmvvzyy65evXppdhmhX3VkcTAwRjNOrlmzxs2aNcu1bdvWrl++fLkFr4znPXv2dPGOQJwFgieeeMKqt+O7776zriZMrL/44ovJgm/OC+iKQlHVSATWvKZMaPC6rVy50q6/6qqrrPCanwShuBo9vXVeIHmVgm6RLGCleNiwYTawsNqMM844w3Xq1MlWvj0GIqqBdujQwYJs7sMA/vHHH9usOSvfDFycKKSFkwhmkZk1L1asmK04cx0V0o844ggbGLlQmZxAmZVzniMr8aySM2geLCCvUaOGDY7+QiVz2pgxg0+1ddqcEVj7oJsJAX7nxIkTw8E37cf4mbRObkRERKIluFJLG7ALLrjAAmSuY3WbcZP7kKGV2sozq9JvvvmmTSYzFlKB+6677kqyqvv222+7J5980vXo0SOh3zzOQXwAzN9zww03uNatW1sHFY8Aevv27e766693derUsdcmJU2aNLGAmnMCMvBGjBhhj89EPtlv77//vq2sk3knklcp6BbJBAJZZm+Z6W7VqpVdx4BE+jYrxATBDFQ+DZvVa4JjAtaZM2daQBq58g2CWQYp+mFz4XvadrEyzVfSxJmFJ8Bl5Zs0MYJtMFByadSokTv33HPDjzl+/Hj73e3bt7eZaIJvAmV+PxfagfD8uARXrD3S0Vu0aOFatmxpAzJtzBioCezLly9vqWug5Rmz4HPnzrXB9pZbbnHDhw/X8SUiIjHFuNu/f3/LLmMsI52cifDjjjvOgr7GjRvbeEXKdWppzrQGI9Bm/GKcZszk+w0bNrgKFSrYfdjaxTjMWJoRjJd+spqglJVfxs4xY8bYZDcefPBBS1WnL3hw7GSine1jrKizFQzvvvuupXRzDkJA7DHJULp0aZuUzwge30+o064UvH48Fn8rCwJMXnC+4J9D0Kuvvmo9u2nFxnnFokWL7N+ca7DVjfclEbIARGIqpzeViyQaWmaddNJJVhykd+/e1oqrcuXKSQqgUTSN6p5UI6fAysknn5ysajjFR+rWrWtVUp977rnQjBkzrMp4EIXPaBlCFVOP4iT+MShw5t1zzz12Xd++fZM8xpFHHmnXU3DNe/7550OVKlWyx/coyjJ//nyr7krFV1qS8LsjnzfF06666qrQ5MmTrZ0ZBVJ8wRguFGGjeAoF40ArEYqxiIiIRBtjIkXEGH984S4uHTp0CFf4ZgziunLlyoX++eefJD9P8TIqdVMolPtQldsXZKNyOIVI0ys4Jvu2X8WLF7dK5sHf54uPBSuQc19/XhHkq60Hu534+/puIh7FV7l+2bJl4esYi2knFqyMnh4UXKMKPB1K2rZta497zTXXhNavX5+swBwF6yjOeuGFF4Zbr/GVDif+/aBlKQXmKCLLV5G8RkG3SDoxUF933XXhwfKYY45JUr2bftlUBmdwp6d2+fLlkwWs9evXt4CWFh5UBQ8O1P4+wdYefmClynkwOG7fvr0Fu/6+K1assN6jBPAEzaDlF5VPGSxPO+20JJXFeQ6+4njwcQsUKBDKly+f/Zz/m6moOnz4cOvRze3Bv4d/X3DBBaEXX3wxdN999yWpiM5zZuD3JwycFAUrqIqIiGQVFbsZY/wEM5d77703XN2bVmH0weZ6xtRI06dPTzKuBbuEZCTwP+GEE5K1/Xr00UftOsbJoFtuuSU0dOjQJOM9QfXXX39tbUeD6MHNJD6Vyz3GViqgz549O8lzKFWqlJ2jBCuT+9cnsp0Y5w2RExCRCI6/+eab0IIFC8JdWapXr27nPr6Ticc5RySeM32+/WtL+7DU3geR3E5Bt0g6MOgEV7MZ2D7++OPQoYceasH3gAEDbCa7WrVqyYLS8847z1qJ+RltPwBGzlAzm0xgunbt2vAKMbPKDKp+AH3rrbdsQD399NOT/CxtxXhMWol4c+bMsetq1KiR5L433XSTBe20GFm9erVdx6w1s+GFChWyoDs4i80qe5EiRazfJ4M6K/IE6xUqVEjyt7IqTqDNyY5f6WdAv/TSS8P34aSI10JERCSrfvzxR5vw9mMMY1hkv2jGUD8xzjhMC64vvvgifDvB+XHHHWf3oZ3mwdBWk0noG2+8Mcn1PuieN29e+DraZxFI+zGcMTEYPDPBTWvOYLsxkIV28cUX22pz8L4333xz6KmnnkpyX/qMM6HtJxkiW3eOGDHCMtuYmPf27Nlj5xKFCxe2VqPpwXmDfx0LFiyYoZVzzk14b4LnAkwmiOQlCrpF0sAMObPJfrWWS7169WwAZeAkwGTwJfgO9v8kxeqdd94J3XrrrdYr1AfSeP/992222PetXLx4cah79+6WehVUp04dezz6d/rV8DFjxth1pKuD5/H0009bmjoDPicDIE2cEwIC6AYNGoQfkxl0/s1j8Py8Tz75JPy4wZ6iDMak6HFbsK8oz6VHjx42Wz1w4ECbMAgG4MyEcyLBwB78W/yFlHx/m4iISGYE05crVqxo278i+dRoUsXZwsUYzWS0D1L5GT+GR67eEiQzgR1MA3/vvffsvieeeGKyleNffvnFHpdAOJjNhsaNG9vYz5jvMZHOY5GNltJEuh//gyvynIMEtWzZ0q5/+eWXw9cRhDNRznMNns94TDoULVo02d8wbNiw0A033JDi6/jZZ5+Ft8a9+eabSW5jgYDFB16nNWvW2HlJJCYfghmAkYsHIrmdgm6RVDCL26lTp2Qp4gSorBJH7uNu0aKFpYv9+uuv4cdo06aN3TZq1Cj7N2nlF110kaVsR65I83g+xYz0bwZoVqX94MfPcT9Stdg/5QdWruOEIYiTC64fPHhweKAN7gVn5psVAhCoX3LJJXZ9u3btkjwOJwLsEWMAZXXAYyWB+xPo8/icZPA4pK8FU9CZ2SblPaU97aSiL1myRMefiIhkGEFlcKKXVeVIn3/+eTgtmromTPYSbJKN5bc7sQpLxlqXLl2S/fyZZ55pPx9cXd63b5/9bgJXxj8C7GA6t98/3qxZsySP1bRpU7s+uBL/5Zdf2t5xJvCDOFcgNZ39096qVasssOV3B3GewTkA5xKREwO1atVKct9x48bZY7PfmoWD4CQ7fwsr4vwc9Vo8zjf86nznzp3tdoJzj7/fT1rwe/33KQXuvOY8J/++Rf4tIrmZgm6RVAwaNChJkMhqN0EoA7a/joCUQZDZc/YqkWLtA2JWiRmYKNDi07B8EO8HmpdeeskGTPZ7kbbtV6P9SUJwvxW/h983cuTI8HXsB+vatautrPtZe5+aTjEYBtfgYMdjsvodnPFmnzq/j5VxPwAzwDJz7QNoUsU9BlVeB1b4g8+Fx2RFm+vZ3+2LzfmZcSYRSpcuneQ1ZZY9+LxFREQOhtolvr4KxdGCQa/H+Mn2qCpVqli9FY+05uAYCIJxMsQoSBpM/2aCmkJowbEuiIKjPIcpU6YkWfFmnGUFOoiMt82bNyd5/Gjhbw2eL7A4wHkBE+9BPqieNWtW+DpWp3luPC8mBCiUysSCR6FXJsmffPJJC/yDq+fgtWQV3heLY0sdv+Oss85Kcc8475Vf8eY95BxJJC9Q0C0SgQFk9OjRSYJrUtGCK7is8FKV3A9MBI6kWFPpk5QyBnUCXKp6cx/2WDFTTjoVP8fsti+m4tPePB6LPdMM8sHCJJEnCZnBY0dWV6UIGjP8wdl3BmC/d4uiMv53k3rHfVOqkk41c/8z/A5+hoqpBOGRgbZP12fA9YXfREREDoa6IH41lclcAtmUMM76cSe4hzu1gmG+8newiwhjN4Ejk9ZkbUUG0kxOM84/9thjScbZgxUoywkE1ZxbsMof3N7FVjD+brLpUsJ2MG5/8MEHw9cxvkdWME/pdWfCg5XwSLxnvusJ5wGq9SJ5gYJukf/DCjUDJ1VB/YBO4B0s0sI+K1ZxSZumNQkDD7PEzACTWu4HIVagCcK5D0XYeGwftAdTrtgjxT5tZo/jCannpLiztyul/XOs2Pt9abwGpMD5lPHI9mCkzpFWx6w3ExH+tWR1gpVvUgIpdMNsd3Dvu4iISNDYsWPDK9yXX355slXjyMwpao4wiR4ZBLNdynf78JPKbOc6++yzbVwm2PZbsECQ6ieLg0Ek439KVbsTCdkAFDYLpnpzLnPZZZfZ3m22zE2aNClJ9xFW0llkCHZWSSmVniKsPvsvEr+PtH6/RU6Bt+R2CrpF/m8ftR8kfIVNP7D7YJsCaAzOFEqhEAt7yBi4CRb9nmxuZxBnACPtLIjUq/vvvz/VWflEwABL5XZf9Rzs5aaADX9z5CoAq9/+RIUMAE5WqGbuJzX4Gkwz43UNVmAXEREBY60fl6+++uokATZjLwE525rYzsVWKe6T0kQuE73ByXRfVNQH31QSpzo3W7eCqM3CeQD1UXIbUr6Dq9+kn/PaEBSn1FObyXRfhTxY78VjUt5vkwvuS+dx/evsU+J5n/z5wPjx42P2N4rkNAXdkufR+otgL7LQFxfaYjGIM8CAmV72fFHJm4GD2XD2TxOUs0rue1rys/xcPKaYZRV/dzDVnXQ1/l6KsQUH140bN1o7EgZlVs2DSLGPrGgevETuQxMRkbyL7U8+U4rgjCwpJss9VlOZCOd2xuj+/fvb937yO3JbFVlZfusY7TKDRdho0+Vvi8X+60TAa0L3FTL4gmhjxso447tvG+rT0inOxt55zoGCVeP9VjRWzX2mXHDChO994M17/O6772br3yqSXRR0S55GFfLgira/MLtLYL106VL7N6nhrHCzWs2/GUzge1BHpmFTeCwae7ATAasKVEQNViJncoIVbrIGGJiDAyyr5BSm8ZXYfQuzyAv73/PqCY+IiPwPVbmZvPUZZcExOIiaI8OHD7e0cD+RToEzJoQZ031nEdpw+eCdYI9zgOBEL2O3r0wuoWS1XnjdyCSgMnywajmT63zv25TSr5yx/qGHHrJ/0wWFAnOM+0EsXnAd9V58XRiK2onkNgq6JU9iMGXGNqVgj33LBNjch8GeCuSkhDMwsAepSZMm4R6VVBznJIDgXf6/N954w05kSNkPpp7xGtIuhBMgCuAQVBOQ0180WKjOX0g9Tyl1TUREcj+2JZExxXjgW3ByYVsT1bnpcx3Jd+RgjGFvcrVq1ezf3JcV7eOOO87+zWq475PNBLqkjWwCzn1Y6Y7s8kIROmqzsIodXKlmosN3b/GBezBdnS4vTJb4xQ8m2/nKe07GgUhuoqBb8hz2LlEsJTLAY2acD35mZklF8+lpzISDYDvYcxsEjGp5lTJ6ovoq7WCgLVOmjK1YEGAHB2Jew/r169s+usj3hWItGnxFRPIWVlN9Gnjz5s1DHTp0sO+7d+8eGjJkiH1PjZFgITNSm30aOoG5X3FlVZbWV34FnKravjK5T4eWjGNBwgfM7du3T3Y7bUspphbsc+6xsEGBVRYu/HvLY7Ro0SJcmDWRa+CIRDrUieQhe/fudY0aNXLvvfde+LqCBQu6kSNHuk2bNrlatWq5Nm3auD/++MOdfvrpLl++fK5QoUJ2v169erlKlSq5YsWKhX/20EMPtYskV6FCBVevXr3wv+fOnet++ukne/1mzJjhihcvHr6td+/ebuXKlfb9RRddlOQ13blzp/vxxx/1EouI5BH79u1zZ599ttuyZYs76aST3G233WbjxmGHHeaGDh3qbrnlFte9e3f3zjvvuPz589vPHDhwwDVp0sT9+++/rm7duq5ly5Z2PWP5qaee6latWmVjO8aOHesKFCjgDj/8cFetWrUc/VsTWZEiRVzfvn3t+w8//NBNnz7dvv/mm2/stZ44caKddy1evNgNGzYsyc9yPrBixQr72qdPH3tveQze6xo1ath7f84559ixIJIrJAvDRXIx9lrTysuvorLySk9tioZ069bN+lWCvtnsSaZNhkeamvYYZ83XX3+drDp5jx49wu+HzyLgfaKIi59Br1SpUmjBggXhvugiIpI7kfnUpUuX8Eo2WVOkigczz1JCO04/ljzwwAOh559/PkmnDVp5DhgwwNp+SnTdcsstoWuvvTacPUAmASvVZBjwXvi94LwfW7ZssVZrYCsfFc3Ru3fvcFYDnU7IcuPf9AlXRqHkBgq6JU8gWL7qqqvCRT+CF9qM0Geb76mISho0/Tr5N/uVJHbo9ekHY/bYB1GYjTRBX0CHAJxB/Jprrgn3QxcRkdyF6uO+HRVjBMGyD8AI4ILpybSY8inI3O+OO+6wscR31WCPscResOgc+7apx8J75ovX+UkUAuiOHTtaXRdq4gRRAM+P99SF4b2n8Br/1kSJ5AYKuiXXo5opH/A+yPaBNzPo5513nrW5YpCnKAsrsaAVCa3EJLYoknbjjTfaJYjq57xnZBv4/XnBC3u+/GAuIiK5w9SpU8Of83TF8EaMGGHFteiT7VFxnPsRxEVWGl+zZk2oZMmS1sqTFW+y2ST7FjlYvQ7WdGGF22euUaWc4DqYhQDeQ7+Hn8JsYFHET7pTIV0kkSnollyLD3C/Yu0vfhaVQl4URuM+BN5cd/nll+f0U5b/C7h9QTW2Avj3JzJLgYq0PkVNREQSG1u9ihYtGm7DGQyk+T6yqNaqVatCRx99tFXTpp0ngXlktW06kBCwEbBTmE1i648//rAq84zXFLCLzGrjcuqpp9p2sSD/3lLJnMmS4O2krfNzFGTT5IkkMlWAklyJQioXXnihe+yxx5Jc//fff7uSJUu6//77z3355ZdWvOvWW291FStWdGeeeWaOPV/5/15//XX3+++/u6pVq7qXX37ZvfHGG65z5872ngULrK1du9YKtVGERUREEteff/5phdH27NnjGjdu7Jo2beq6dOniBg8e7H744Qd3yCGHWPHNTz/9NPwzFFjbuHGj279/v3vwwQfdXXfd5X7++efw7RTw6tGjB4tLrlu3bq58+fI59NflHUcddZQrV66cjdecg23fvt2u57yLgnYUS1u6dKm9z96GDRuscNq1115rBe+2bdvmmjdvHr79zjvvtOOB95PH5DxOJCHldNQvEovUpjPPPDPJqigzp74tGD08uQTbhFD4Q+IDKxoUWwu2CaMlTNWqVcPvp09T40KLN7YIiIhIYmJl23+e89kfbB/JViM+42vXrm0r28HVTlazaTnF/dg37FfHOQ/wbahq1KihIpzZiIKnNWvWDPdW9wVoeW98X+/q1atbphoFU5944gm7rmnTpsnqtcyfP9/e84cffthSzrnfwIEDs/PPEYkaBd2SqxA8+x6P/sIHOSlrBNxULvX7hYJ9oiW+jRkzJsnebvbjBwNvqpursryISOKhoJb/LPf7dpl4JQDnurvvvtuCMapa89k/evTo0AUXXGDjPSnlvghqsM4HBdW4/qijjgotX748B/+6vIn92n7ihPfP2717t52T8f726tUrHJhzDATT/6lwftFFF4UL6LVr1y40ZcqU8HES3NsvkigUdEuucueddyZZDeVD3Qfhl1xyiQ3SZ599dmjChAnJCq9IfOJ9at++vb2HZ5xxhgXYDNIvvPBC6LLLLgu/3127drX9ZCIikhhY7SRg5jO8T58+4evfeustu4692LSV8vU+yFDzK55UtOZ2vn/ppZeS/SwXqptLznj11VfTLII2e/bs0AknnGD7vSNRAM/X4KFjCa3I4KvSc8zs3LkzW/4OkWg5hP/kdIq7SDQ8/PDDtj8bJUqUcL/99psbNmyYW79+vTvuuOPczTff7I444gi92Am6R5+93eznYg936dKl3YEDB1yTJk3c119/Hb4fe8befvttV6xYsRx9viIicnDstZ48ebIrVaqU7fv96KOP3DHHHOPq1KnjVq1a5Tp06OCmT5+e5GfefPNN9+GHH9pe7XHjxrlTTjnFffbZZ1bzg+v4mZkzZ7oBAwa4Rx55RG9DDurbt68bM2aMK1OmjPv+++9tz3fQr7/+6goXLhz+N3v22Q/esmVL988//9h11G754osvbF8/e/9r1aplj8X5ADVgRBJG1MJ3kRxcCfVp41zq1Klj+8NoN+UrXj/11FN6f3IRUsn9njEuV155ZTjdnJQ2VakVEYlvkyZNss9stg6VKFHCvh81alSSNGI6jbz++uvWAixo2bJl4fF94cKFSW5jnzcrparVkvP++uuvUI8ePcLtWIPnbezlZr/+F198EU4pp/4O191///32c7z/vMeko4P2bxwvfrx/8803c+TvEskMBd2S0Pjgbtu2bbI+zsEAvFmzZqGNGzfm9FOVKKK4CoOuP+niPQ6+74UKFbIBXERE4s+OHTvCBU5p+UVQPWTIkNC///4batCggV3fsGFD2w/MZz3F0IJ7tn07UPZ2Q9vFEg97tnkPTzvtNHv/NmzYEKpfv36obt26VjwVFFrzbcY4j/PvO//mK3u+VZ9HEoXSyyVhMWl03nnnWTqxR3pZvnz53B9//OFOPvlkt3DhQktnOvzww11u93+TaEnaauVmpA8+99xzlppIG5ITTjjBffvtt+HbSTGn1UzRokVz9HmKiEhSl156qXv11VddzZo1LXWYcZsWnnyOsy3spZdecl999ZWNafXr13fnnHOOe/zxx+1+4Hp+ni1FFSpUsNZibDmidRjjQW5AmjVy05i+ePFit2TJEte/f3+3efNmV61aNWv59tprr7mLL77Y0sd37drlypYta/enBRwtXTmnK1SokI37W7ZsseOBbQVsQbjiiivciy++mNN/mshBKeiWhNW7d2/3/PPPJ7mOwZb9v+z5/fzzz61fZCLihIJelZs2bXJbt25NcmFPs/+efeucaLD3yQ/Q7HtikoH960w4sFeOPe3+wt6q4PeVKlVK2EkJXqeLLrrI9vgVKVLE9ocFy1Tw/q9Zs8YGaxERyXnz5s1zrVq1su8JnHv27OlmzZrlzj33XHfllVe6kSNH2ljux6UdO3a4Y489NtXHmzRpkjv//PPtex6nbdu2Lt4wLjGeE2imNp4z5v/+++82pnMJBt28FlwKFixo5zcpjedcGPOOP/54Ow+IN+vWrbPe6pyvsFjSuXNnN3ToUOuvznNnrGYcD5owYYK78cYb3c6dO+3f7OG/7LLL7PtPPvnEnXbaafb9nDlzwseUSLxS0C0JyX9QBzEb/uWXX9pg8/7777szzzzTJQIGYwZiZvuDF2Z4PU5AGGgjB1gGKIJrPyDztzPpwKDGoM0MMgN55CDP9V7+/Pld3bp1bdbYXxgYEyUQ5ySlcePGtkqSkho1atiKiV8hERGRnPH3339bFhoBFjp16uSmTp1qwRXBN8UxWckkGG/evHmynyez6YwzznBHH320/XvFihX2+c+YNmjQIDdixAiX0wiWCTA5H/HjOd/v3bs3fJ8jjzwy2XjOhQliP2nux2A/sc7Xffv2pRi087p6nBdwPhQc08kgiIcVcwLoJ554wv5OiqbxvCia991337l+/frZbR5/EyvhGzZscK1bt7ZgmwwJj3MdjiWfIbF69Wp7XUXilYJuSTjMdF5++eVJritQoIBVPP3xxx8t5fjqq6928YqBghQrqq8uXbrUBmRm8sGqtB8kGTRZhWYgphp7tAZMgnxWyBmoCfaXL19uz4HnQno2t7NC7gNxqoi2b98+SYXReEMaee3ate3EiyDbn9B5rHzwesfDSYeISF7vMsJ43bFjR/fYY4/Z92BcJ8BiJZxxh9XL4IotY1TDhg1tTCTYxqmnnmodSviMp8p5TkwWkxI9d+5cq7zOc2SSl6wrkPrux3SqcLMKzfNn+1O0VqMZs3fv3m1jOqvp/H4f7G/cuNHuw/jN7+f1atOmja0KR1YSzw5MHnA+wetFoEzVeSYk2rVrZ+MzGYqc+3g8/6eeesoNHz48yfjNa87xQRDPBAeoVE/FepF4paBbEgofsgyuPoWYWVDSjj7++GMLTCdOnGgtKuINQS57kd599133wQcf2HPm+TZq1CjJbDQz3zmZFsbzZMD2M/QMgGvXrrVZd06CWJVgLxUnEvGG15dWMRwbpCkyQPO3cBKHa665xj3zzDNxmXYnIpLbbd++3VWpUsXGGSbPCboIsJg0J3BiPGeVuFevXm7UqFFJUo2ZrGZFm6C2R48e9vME7aSTMznNWOWD9+zARDkZdYzpjD1kXJUvX94mBYIT54zzOYlzjeCKO0EuixOkqRP8Mp6fddZZaabvx+I5EfwTUJO1wOt4ySWX2Pkb+/avv/76VH+W42PRokW2d3/27NnuySeftJXu0aNHW/YDCwdkBYrEpZyu5CaSXqtWrQoVKVLEKlYWLVo0dPLJJ9v3FStWtBYh8Ya2VaNHjw516NAhdOSRR9pzrVWrVuj2228PLV682Kq0JoL169eHnnzyyVC7du1CRxxxRLgq/J133hlasmRJXP0djz/+eOi9996zVjEffvihtRYJVjXndhERyX4tWrQIV56ePn26jYstW7a0llHXXHON3daxY8cUf/aZZ56x2wsXLhzaunVraODAgeGWYpHtqGJl9erVoYceeijUtGlTq6jOpUmTJqFhw4aFVq5cmRAV1HmOK1assOfcuHHj8N9BBXH+Nv7G7EDLN98ObNCgQaGffvop9NVXX6X5M/PmzQuVLl3anm+jRo3s52fNmmXnIL6aOe1DReKVgm5JmPYiFSpUsA9V2kS1atUq9OOPP1q7iOuuuy4ULwj+6SnaunVre670Cm/Tpo31Hv3+++9DiW7v3r2hiRMnhnr27BkqVqyY/Y2VK1e2AZxBM55OLDiJ8H27r7jiivCx88EHH+T00xMRyVMmTJgQnvx8+umnre0jAXS9evXsc5mxktu4PtL27dttop3b6e2MN954w4IuxqNY2rNnjz1fnqcP8jt37hx68cUXQ9u2bQslOv4G/pZzzz03HATzt/I387fHEj22+X3nnXde6MCBAwe9/0cffRQ+hmgvx0SH9/HHH4dv4xxMJB4p6Ja49/fff4eqV69uH6b09WSWk8Fh6NCh4UAqu2ZnU7Nu3brQgAEDQsccc4w9p+bNm4defvnl0O7du0O5FavJc+fODV122WWh/Pnz26oyJyOsMMfDjD+rJ8x+czLBMULwzXvD6kpwsBYRkdg666yz7PO3XLly4fHhm2++Cfdd5sKqcUpjB2OMDwYZd7xYBr1Lly4NXX755XauwdjWqVOn0DvvvBPuH50b8bfxN/K38jfzt/Ma8FrEypw5c5K954zPw4cPT3Zf7udXtOntHrRz587Q8ccfH55oT08QL5LdFHRL3OvTp094UPaz4aVKlQoHUffee2+OPC8GAGZezznnHJsIIOAm5W3NmjWhvIbJBVLpSTvnPTnppJNCY8aMCf3+++858nx+++03y4LwqYx8LVSoUPg4YtWEVXsREYmtzz//3D53GScXLlyY5DZWU5m05fapU6cm+9kFCxaEf5aU9C1btsTseRLQs3Lus6TIrmNyP5a/M17xN/O3+wxDXpNJkyYlmfSIxTnVd999F8qXL5/9TgLySDwHbiPTjnH+r7/+Co0fPz5UtWrVUJkyZcJjPMeNSLxR0C0Jk5IWvFSrVs2+NmvWLKaDQGoDw7Rp00J169a151C7du3QCy+8kKtnwDPy2pAe2KVLF1tdZmAk9Twngu8RI0bY+8MAHhyM/aVr165xsSIvIpJbbdiwwfZp85nLxHSlSpVCb7/9dviz97HHHrPbyGZLqT4I25Yuvvji0FVXXRU6/fTTbU8vtUSiiXMIxnC/UsrvmTJlilZLQyF7DXgteE14bXiNSEeP9nnXvn37QhdccIGd0/n9/RwTBNWRz+fEE0+02x955BE7tjjXYCGG53b++efbbdQKEIk3CrolbrFi7GfAfcoQX2vUqGFfKaq2cePGbH1OixYtskHBf6iz0q3ALfUCbNdff70VXzvuuOOsEA5bBbILJ3BnnnlmeMUipckbBm0REYnNtqujjjoqvFJdvnz50NFHH21jQu/evS2Amjx5sk1ckxmVFmq38Dj8fLS2kzF28/v99jWCvoMV88rLeG14jfx5GMF4tM5/vv32W9vjz2OT0k4QzfcPPPBAsvtyrPgJAAqncZ7IRACr8xSw9YVryVr44YcfovL8RKJBQbfEJdKG/P5ov2+br8EVS4pwZBeqfZJGzu+lavqMGTMUbKcTgx6F1zjpqlKlir1v2VXxnAI8BPy+4ro/aQtuV0ipcI+IiGQNq8f+s7ZXr15WEJWuF4znBG9+HCBwi1w5DXYkeemll8KPw57jaKAeCRWwecwzzjgjpvuWcxteK7qZ8NpRAZ2q4tFA5xHOE3wVcr4yaRNZhJaswhIlStjtZE1E1mjxEzSM76TFx1OHFcnbFHRLXOKD3A+yvu0TH8akHTFgU406u1LjKOLC76ZKN+nu+gDPHNq6+DTDU045xVp9ZAcKu/ljqWzZsuGaAP46ZsUJzkVEJHp8RWnG8GDgRMB7sDafbFGiqjWBmF+5jEb9FlZraePJ4zVo0MCy1SRzZs+eHa6ZQlYZbcCyipVtPy7z/vA9RfgiV9THjh1rNQAiC6b98ssvVl/Gj+9M9NNiTiQeKOiWuENLp2AKMAEv1cCpcgr2c7ESHkukQd9///32wU+Axod45N4iyRxWlqlSy3t79tlnhzZv3hzzl5JURj8rT193UtGKFy8ePsZoQSciItHvy03bzMjxk9VJ2lKxlzcSgbZfqfSZSnShyMqEN4Uz/ThA0S0KcmlrWNbxGvJa8pr6hZFff/0104/He8x5ga90z1YEvie7MD2LJKS9B8d2OqqIxAsF3RJXdu3aFe7HSVpQw4YNrdAKH+zZtR94+fLlofr169vs/O233x7zAD8v8nvpOKFib/64ceNiegLESQAz6KyucByR8h5MM+dCcTwREck8PscpYkn9E//Zyl5dJjYZ3z2y1biNTLIgim4yMepbhPGVLLOs9IyeOXOm7f+lg8WTTz6Z7cVX8wLGVV5bau/wWmclk43Van8M0AmF2itpnf/5yRj2c7MFkQtb2vyiDbUFROKBgm6JG6QJUVHaD9QU4QJBL/u/Yt2Kiw/1IUOG2MxqzZo1rc2JxBaD6yWXXBJOIcvO1iy0I3n++eetzRu/n6q49PoUEZHMoXgVn6f0eOYrxdP4nr25ft/0zz//HG4L9cknnyT5+TvuuCP8c4wHjA9ffPFFpidb/ep269atrbinxBavMa81rzntXjO76s2xQuCdVs0VztnYckBFfOoFgBR3Kt7DF1Jlj/fLL78cev/99zP5V4lEh4JuiRu+cAaXvn37hpo2bWrFV/z1qbUUifbq9uDBgw+630yi691337WglywHBsdYrnqzysHM+cMPPxwqWbJkeH+fP8ays8K6iEhuwvYvio2SGu57LZNKHiyAxuS231Md/Kz/5ptvwunEVMbOClZaWXFl5ZU0dtViyT681mzJ47Wnc0hm981HjsWcl23bti38b44dzts4Xh588MEU95wH6wIxkZPSdgaR7KKgW+ICKWXB9mAUv+Br8LpYFN4iABs6dKhWt+MAqYc+JYw9XX62Otp8H0+fvua/+gtZFSIikrnsJfpq+44RkROo7O1mgpXbx48fH76e+/kV0lq1amU6SCYzjhVWX6tDLaNyDq89rVX9qndWtuqxHY3+3FSaDx5TbE3z+78jtw1QsM9P/lCAl8r5f/zxR5b+JpGsUNAtcSGYVs6FvVd8ZSWSr1dddVVMTg74AOfDmL3buWF1m9YdDD4YNmyYVRbltTz22GOtEA0rCfGOiqSclHH59NNPo/74pJj5QdgPyH51hQtFWGhJIiIiGXPhhReGP0tT6rFMBxBuo55HsLgaqeSsTPv2oL5wakaDPAJ2VlhZac0Nq9uJPqYHV73px56ZSZC33nrLFmD8sUHhNo8gmtci8noCcwrwBs8pWdwRyUmHOpEcNnv2bDdlypTwvytXruz27dvnSpUq5X7++WdXokQJ9/DDD0f1d37zzTeuUaNG7vPPP3czZ850w4YNc/ny5XOJburUqe6cc86x7+fPn++uu+469+mnn7pZs2a5f/75x51xxhnu999/d/GsU6dObtmyZXYcnH766e7VV1+N6uN37NjRde3a1f3333+uZMmSdl2RIkXCt//yyy/usccei+rvFBHJzQYPHuxeeOEF9++//4ave/bZZ23cCeI6XHPNNe7II48MX1+mTBl7DD6XDz/8cNejR48M/f558+a5Bg0auD/++MN99tln7tprr3WHHpr4p7iJPqbzHvBeLFmyxO3fv9/eI/6OjChXrpz7+++/7dhA//797RwRRx11lB1LePzxx8M/c8ghh7jXXnvN9enTxx1zzDF2/zlz5kT1bxPJsBwN+SXPo3czs9t+NjK4+kjhFb6+8MILUW9JRsVsqmImSlXLe+65J0kmQPBy+umnh+93wgknhKZPn57iY1C8hvunVZgknpB5cPnll9tzvvnmm5P148wKqpwy8+4r6/KVvWfBWfGNGzdG7feJiORW7Nn2q5C0ZeQr4zq1OiI/09k6RCvOH3/8McltjMU+wy2l/blpYc825w20JgtWSI9neXFM573hPeK9GjNmTKb6d1ONnK+33nprkiwJf97IsRhpwIAB4fZh1O/p1KlTivcTiTUF3ZKjaUfVqlVLMtj4vdx+n22jRo2iliJGutHIkSPt5ICBn76diYK9UFdffbX1t966datdqLpNlXV/ksEgQhus1PqJf/fdd/aarlixIpQoeM9GjRpl7xmVSLPSNiYSxwKvhw++/Vd/ofhKrCvmi4gkOlJ8KU7Zo0ePcPD97bffpnr/YJeI77//PvTss8+Gg3V6e6d3gpVCW37/9g033JBQrcDy6pjOe9avXz973tdee226C5dyTPj94VyYuOHY8bp06WLX33jjjcl+ltfRL+qUKFHCvu/WrVtU/y6R9Ej83BtJWLt377ZUXi9//vzhf0+cONGNHDnSjR49OiopYn/++afr1auXGzRokLv11lvdO++84woXLuwSRaFChVyBAgUsHa906dJ24TrS8IoXLx5OQ2vfvn2SlD2PtCxSsk477TRXq1YtlyhIEbvxxhvd9OnT3eLFi21LwLfffhuVx77hhhtc7dq1LTWP9DPSEuvXrx8+LkiTvPDCC6Pyu0REcqsVK1bY5zPbdBhrGGeqVKmS6v35vPUYk0kPJmWan2c70WGHHXbQ37lz507Xrl079+KLL7rnn3/eUosZDxNFXh3TjzjiCPfEE0+45557zt430uN5Lw+GY4Jjw4/PpJvfcsst4dtJu+c4uuyyy5L9bM2aNV3ZsmXtNeN38ViM/yLZTUG35AiyLFq0aOF27Nhhe6kZaAiGv//+e/fmm2/avp+BAwe6U045Jcu/69dff7XBmUB+woQJtn87PYN6omGAZj90ShiQVq5c6d544w2XiBiY2adHEE7gzf6waA3+bdq0sT3cnDi+//777sMPP0x2rIqISMpuuukm99Zbb7mnn37a/p1S4EOdjo0bNya57qOPPnJvv/12+N9Msh9//PEHfZl5nMaNG7vVq1fbPt2rrroqV741uXlMv/rqq+39X7Vqlb2XkcdGanu7g/u2t27dagsqYBwfM2aMq1evXoo/27Nnz/DiDsdi8+bNo/a3iKRbutbDRaLss88+C6cJ0RebPbakW1GJM5p9kqlQ3rBhQ+v/vHjx4lAiI20quNeLPWF169a172mvRQXulPazXXfddVb9NDe0TiG9/LTTTrOUu4ULF8bs99DKhvQ1js9gf1kREfkf9sey7efVV18NtwFjW05K24CaNWtm+3F9mzDShalmzc90797dqpVHthdLLaWafsvsdV6/fn1CvxUa00P2HlauXNlqAKSnxg7HyDnnnGMdbTLS/ovthL5O0KJFi7L4zolkjla6Jdv9+OOP4Wqcxx57rLvrrrtslpPVZ1akSQWiunhWkUbUunVrWz1nNpzZ1NyEVV9v2rRprmnTpuG0NL9Ce/3119tKAn9/pUqVXKIj/XDGjBnu1FNPtbS7aFcjJaV87dq1rlmzZnYs4p577nGbNm2K6u8REUl0I0aMsK0/jD/dunWz6zp37pykGwRYkV60aJFtFWvVqpVd98orr1h2UbFixWyF8tFHH00ypqWE8wIy5EjLpgJ2xYoVXW6SF8d03sMFCxZYFXLe24Od+/EasT2Q1HR+JhLbFK644opk29BISz///PPte7Ipd+3a5QYMGGCV1UWyi4JuyXbsw9m+fbt9T2DzySefWKrPSSedZAE5bSUqVKiQpd/BByoBN+lHtBJJLeUokR199NFu27ZtNri8++67ydLQSD8bP368pdT7+3Jh73IiY98baeAM0GeddVZUAm/qC7B3nH2ITPrwWvI78PXXX9vJTXr2nYmI5KWxvHfv3ha8+DTnK6+8Mtn92L8LJttpDcYYdMcdd9h1fA0GlqkhGKOFJPvBCbjZo5vb5NUxnfeS95QJmJYtW9rEd1qCdX74+6kL4F+DoUOHurFjx1r7ukjdu3e3r5MmTbLfw7YyJnw2b94c9b9JJEWZXCEXyRQqdFKxM1glukaNGvY1X758UWkRtnv37lD9+vVDxx57bGj16tW55p2KTEWjImepUqXC7dVIuwtKrR3J2LFjQ7kB7Wc6dOgQKlCgQJZTzbdt2xZuV8PFtx8JXq655pqoPXcRkUS2fft2S/OmYjktrfiMLF68eLIK4qQAFytWzG73ra9oCeY/V1955ZWD/i7SjsuUKWOVvWmTlVtoTE+K95ZWrrzX6Uk1p2p7/vz57TgaPny4Xcd2MP7N+V9k1XfOGdiaFhzXOaZSqw4vEm0KuiVbMUAHP/D8B6ZvM0IAnpW2H7/++qu1GWPwpwd4XjB58mR73fKi/fv3h1q1amUD6aeffpqlx7rvvvvsGCSI5yt7BoPHamTPWRGRvGrIkCHhz0bGW75edtllye43ceJEu40A3bcCGzp0qF1HHZKDBVcbNmyw/b5Vq1a1Sfu8IC+P6bzHvNe857z3aaEGEDUEOJaYNGfBhfPH4447zq6bNGlSsp+5+OKLw8fjo48+mq46AiLRovRyyTZ//fVXuOo0laNBqllwLxOVxTPb9uOff/5xXbt2tTS0mTNnujp16ri8gHTr4cOHu7yISqTsfeO97tChQ5baiZFeXrRoUdvegJ9++ilJKht7DkVE8joqlf/222/u8ssvt9TwAwcO2PXnnntusvuydxuXXHKJ1W2hReOzzz5r191+++3uhBNOSHPbD1vQ+DkqXdNWKy/Iy2M67zHvNe85XUs4BlJTrVo1d/PNN9v3+/btcw888ICdP3JcgjTzSOedd5595fFpuXawOgIiURW18F3kIKheysx2aim8pIRnZdaxX79+9phz587Ve5HHUC23evXqoWrVqqVYOTe97r333iRbHZgND2ZiTJ061VLRRUTyKjqC8HlImvgnn3wS3uK0b9++JPfj30WKFLHbWZXEnXfeaf+uUKGCZSqlhhXLdu3aWWp65NYpyf14z3nv27dvn2b24++//26p5P6ckk4uHGu+kj7bICLv77PZli5datsf2HJ3wQUXZMNfJXmdgm7JFv5DMBjA0CaCrz4V6K233sr04z/33HP2GM8880xUn7ckjrVr11prOFrY+DTGjCI9rXDhwuFj1Z8w+iCcC3vORETyIva/vvnmm9a2iYDGb8vp1KlTivenFSiTlbj++uvD6cCkUKelf//+dt/Zs2fH5O+Q+Md7zzEwYMCANO/39ttvh8fnSy65xK5r0KCB/fvxxx9Pdv9u3brZbbfffnvotttuC/+sWolJrCm9XLIFbbvKly+fJF3Xp/VMnjzZKph36dIlU4+9cOFCq+rZt29f16dPnyg+a0kkVatWtVYgH374oaUtZgbp5aSZ48gjj7QWYmyBoKK5t2bNGkuRFBHJax588EE3ePBg6w5SsmRJa9/kW4WllipNFW6qTD/99NP2mUo3kbTG+5deesmNGjXKLm3atInZ3yLxjfeeCuNs7Ro3blyq92NbQ4MGDex7KrtzrLGdgXZkbEGLRNcTzJo1y73++uv2PWnpfkuZSMzEPKyXPM+nn/lVbipTslrIauSCBQuylFJOoQ1Si1q2bBn6+++/8/xrLaHQY489lu6quCnZtWtX6JZbbgl99NFHtkqzd+9eu75OnTr2uL169dLLLCJ5DmN22bJlw+P5+PHjw99HpvFGZhuxcu1Tfum8kRpWG9mGRpcTFbkSjoGrrroqdOSRR9q5ZGqWLVsWrlq+fv16y8hI7fjZvHlz+HyUbjlsK9u5c6debIm5Q/hP7EJ6kf+tZDPrSB9FCp2xGrllyxabjTzxxBOt72ZmsNp42mmnub1797rPP//clShRQi+3MJHorrrqKvfaa69Z789GjRpF5VV59dVX3aWXXuqOP/5498MPP1ghFhGRvOLLL7+01UH6HDP+3nnnna5nz57u5JNPdl999VWS+959993Wa/quu+6ycbpy5cp2DsDKeEoF17Bp0yZbsaRA1uzZsy3bSOTvv/+2Ve/vvvvOLV261JUrVy7FF4WMycaNGyfp450astdWr15tx3K3bt30Iku2UHq5xBSVJ6kkSWVxEAwRbBMgE4hXqFDBLVq0KFOBFY+7bt06G9gVcIvHtgXSGE855RRLYdy6dWuWXhwq865fv961bNnSFSlSxE4MOeY49kRE8gqqjt92223u1FNPdcuXL7dJTZBqHjk+T5w40X399dfuzz//tBRhAm4mQEk1Twn3I0WddGAm6hVwi8exwDGRL18+m7DhWElJ06ZNkwXcBOxM4ESuL1IVH0wi+WOWoJ1Udq1FSqwo6JaYuvXWW621CIEL+78YnK+55hp33HHH2awlq4XMkmcUbUiYoWSfT+3atWPy3CVxMThPmTLFBs/evXtnahBlRp1Au1SpUq5GjRrW2sZPHtF2hD3kvr2YiEhuxmdo9erVbYWQjDXafs6ZMyfFoHvFihVu7dq19jl8+umn295ssBc8tRZNrIyvWrXKVsKPPfbYbPiLJJFw/jh16lS3cuVKd8899xy0zg8TQz///LMt7BBgc0wG0Y4MtJfl2H7yySctI2PgwIH28yKxoKBbYoYVbWau/QBKGnjZsmXdBx98YIE4evXqZYVWMoLUdIpdkdamtCBJDcEyKzPvvfeepYZnFAE1Kzlka9Bj/qijjgoH2f/X+cE98sgjegNEJNcjS+3ll192Y8aMsSCGjB8KpDJx3rx58yT3ZZUbHTt2tBR0VhsJtiPv53366af2WXrfffdlahJe8gaOjXvvvdeNHDnSjpmUUKivbdu27osvvrCsDL+9jN7yQUwGMXG0YcMGO459r3nMnTs3xn+J5Fmx3zYuedX9998fLrJyyCGH2NdgO6Zg7870ojBGx44dQ6VLl7aCVyIH07NnT2sltmXLlgwfa3Xr1g0fq74XaPHixe0r/UP//PNPvQEikqtRTJJCVnzulShRwoqkjRs3zv7duHHjZJ+bVapUsdsmTJgQ/v7cc89N8bHp1V2tWjXr/Z1WP2YRcIzQDqx69erWYzslnCNyzHHM+uO0Ro0aye7XrFkzu40+3Xv27An17t3bivuKxIpWuiVmduzYEd5f41e7g/u0mI2kYEpGMNPOSvlzzz3nihcvHuVnLLnR448/bqvUGU0zZ2XGtw/zxzP27dtnX9mjSPqkiEhuRjYaabcUkezRo4etbs+bN89ua9WqVZL7stebrWN85rKSyPdHH310qi2fSCunZsbYsWOtbZNIWjhGOJYoZsqxk5JnnnnGvpJhwZYFjkNafVI4LahJkyb2lVVz6rWQGZdaNoZINCjolpigkunbb79te7exZ88e+7pz587wfa6//voMp5X379/fCrCdc845UX7GklsxOcMkzfvvv2+1ADLiggsucIULFw7/m+8ZyMG+L/p6ks4mIpJbsR+W/twUORsxYoRdt2TJEvvKPtggikz6PbNPPPGEfU8dl6JFiyZ73MWLF1ta+f333+9OOumkbPhLJDfgWGErAsdOSmnmTA75vt2M/X7/NnWAgqh0jsjHYILdT7KLRJOCbokJ9t1s3rzZAmUQqDCT6JUpU8adffbZ6X48ViivvvpqV6BAAVu5FMkIJmmYrGHl2h+T6cHxRuDt+SJAZG5wTFJMjfv88ssvekNEJFf69ttvLeCm7RerhtRk+eabb+w2H9wEVw9ZDad+CxOTrIozWR6JTCFquvDzrKKLZMSgQYOsWBrHEMdSJDqY+FpCPtNy2rRpKQbdTCr5DLbLLrvMirZx/LLfWySaFHRL1NG/8/zzzw/3UvR9uP2K4Isvvuhef/31DPU5ZoVy+vTpNmtZrFgxvWuSYUzWECD36dMnQz/HoO4xgPtj3H9lQumOO+7QOyIiuQ5F0WjXRDslxm5QpIpJR1YUCVCC2DY2fvx4N2PGDPt3+fLlLYCJRAXqjRs3Wqqw0solozhm2JLA1gQWeSIRkNNxBLQM88ctBX6Diz8cn//995/7/PPP7Tp/XkqnErI1RaJJQbdEHfuuWZX2A6kPUNgvQyVTZsFbtGiR7sejYvTtt9/uLrzwwgytjosEMVnz1FNPWTVzPwinBys3F110kbv44ovt5POFF15Iko5GFdS+ffvqxRaRXOeBBx5wb775pqXoli5d2q7zAQqBTWpjtg9uGPMjESjRRozbaMcoktk0c44h+sCntCrtJ8NZ+GHBhr7xdDVJK8WcbRRMHA0bNkzjukSdqlZI1FFghXQfZrExYcIEK2BBb0+Kq2QU+8LYC86HoEhWdOnSxYJoJnHatGmTas/YIO7DMRypXr16VruACaY6derojRGRXIfPS9LLzzrrrPDnpQ+6I1PLCc7p5f3ll1/aOUClSpXc5ZdfnuwxKYBVokQJN2DAgGz6KyS34hgilZxjKrJmC1lqtK2LDLSDaCnGXm9/THPfWbNmxfx5S96klW6JKopPUNGZgZb0s5o1a1qgw4zjmWee6Vq3bm3VTdOLvbIPPfSQpQQzgItkBSeNHE9Lly5N1rczo3xxlpkzZ+pNEZFcqX79+q5Zs2Y2dnspBd1//fWXu+KKK6yXsq+7woSk72DiMf6/9tprll7Odh+RrChYsKAF3GxpiDy3ZLxPK+BG3bp17StVzkVi7RD6hsX8t0ieQcrYTTfdFP53v379rHjVzTffbPtj+BDctGlTeL/3wdxyyy02i0l7iMi9YyKZxaoNrWx8O5H0oFL5k08+aT/H1glWf1jppkAgBdUY/OfOnas3RURyDSbN33nnHZusvPXWW62Imu/osGvXrnDrzvnz57uWLVvabb/++qvtjf3xxx/DHUyy8tkrkhb2X7NNgSwLto9FYkKI9PKff/7ZziWvvfbacNX9rVu32t5uJofYCkk2JuM61dE5Rtk+xpYykWhQerlEFSljXBiMmc8hrXzo0KHhghRNmzZNd8BN9XOCHAJvBdwSTWxVID38pZdesnY26fHqq6/aiSfoO8vJJ33nKa7mV3443tX6RkRyQyBDETUm0Tt06BBe6V67dq19ZUz2ATc++uijJAVTK1asmCzgXrBggfvggw8sDV0Bt0QLxxLnmdReoWJ+ZK9tagh99tlnlllBvQGyJn3QTZ0CjmOyKqnIT6YG30+dOtVuZ684Cz+M9SJZpfRyiRpmCR999FEreEbAzao2A3EwjbdTp07pfjwqUhYqVEjtRCTqSCmjMBqz2QzC6V3x8Qi44U86WflmIPdtR0REEhl9uHv27GnBNkF3lSpV7Po1a9bY18gCaD7o9oVTWU0M4pyAlfJTTjnFdevWLZv+Cskr6JjDRDrHWGQCL+1C4cf6YEYa56m1atWy71euXBne582xz/knx+qBAwey8S+R3ExBt0QNe1tJy2F2HKx4Bwdh3y85PRjYaQdBZUqfyiYSTUOGDLECfent+04KOTUKgkijBEXZSFtr2LCh3iQRSXi0V/ITisHstJSCbiYhWUn0CNLZVhbEyiEVoskWitznLZJVHFMcW4sXL3bvvvtusqA7WDSVYzV4XhoZdBNsk9nGcU17W9UekGjRJ59EtSUT+2bYVxPkZx3pmRh5W1rpvwz0Ge2pLJJerEyTWj5ixIhMrXZzMup/jvRylccQkdyCoJnWivfff79tF4sMuoNjOWnjrAb6lHGyiHy/Y/DZyOOwak47JpFYaNeunWvVqpUda8HxmLorvsMIwTnH6scffxy+3U+mq5iaxJqCbokKClVQIKV3797h/a1UMg9ilTs9LZoobMGeLwZ9KqGLxLLdCHuyqXyaHueee274e9+Hnq/sASO9kpYlK1asiNnzFRHJLnyeka47ZsyY8HXse41c6Sbo9vvA2fsa/JzEokWLLAuO+iwiscL5JUV7aVkXDKrhF3D++++/ZCnmfusE/eO9P//8047ZDz/80I5/X6tAJCsUdEtUUGwif/789j39OT0fNDPLGFwlTAsfcAzctB8RifVqN3UGSDFPz0o1e8aKFi0aHpSD+7qZZb/sssusYr+ISKLygQnZZqwC0jbMX//999/b99WqVQvf/6677nJnn312+N/+XMDj85WVcd9mUSRW2rdvb1vBIreNUWsouOgzb9688PcU/fPnsf48gCroHPdslejbt294YkkkKxR0S1Sw94Uiag888EB4Twz8Xhiql1NBMj0r5s8884z1+fbBjUgs9e/f36qOk0p5MKRMkr4GWotwcnnssccmuc+2bdti9lxFRGKNbTd0aKDFEvtcfUC9fft2W80mRbds2bLh+zPeUx/DB+PByuQbN2608f+GG25IV6abSFZwbJIlOWXKFDv2PM4nqUwePNf0AXb58uXtK/u8/VYKupAcc8wxNubzmMuWLdMbI1mmoFui4uWXX7ZVPlJxwIDti1UxcLOimB6TJ0+2tPTrr79e74xkCyaDyMRgsie9vehJQyMtnckm0i9x6qmn2iqQT78UEUlEtF2iE0PkVhnaeIJWYH57jefHfKo+B1HnhaD80ksvjfnzFgHHGsfc888/n+QFYYynDS3940lB95NATKD79nasdvvtE0wk0SKPiSZa54lklYJuiYoTTzzRKjf7gfiqq66yWfEKFSqEKzynBwN0y5Ytk6SuicQSAy+1CKh4Sj2Bgzn++OMtHY0tEMyC+4rlrAhxm4hIInviiSes4jOr00EEKwhWM2dFkUlyv0c22BaUYOWll16yQLxgwYLZ9vwlbyPg7tGjh3XACbb7ohUYx2rw+I1MMfer4z4gpwCwqu1LtCjoliyjSMrTTz9tAQhtk8BeGNJuCWYIyJk5P5hvv/3WzZ8/31199dV6VyRbMUATRI8bNy7DP0sRFmbK2eMdTGcTEUlE7L0meL7vvvusMFVk0O3TcX3QPXr0aAtuyGgLTpi///77tt1GY7pkN465n376yX3wwQep3idYx8UH3cFiaiLRpqBbohJ0EzDTH9EHHeydYU8MK4fs72rQoMFBH+eFF16wolRdu3bVuyLZiv1e3bt3t2PQFxFKC8F5yZIlbfWGwdqv4tAShzoGtWvXzoZnLSISG+vWrbNxne1haQXdvp+3//wL7tsmvZexP7iXViQ7UPT0lFNOSZZiTpeRypUrW5Ffn6WGMmXK2FcyND0Wk9h+xhjP6vkbb7yhN0+yREG3RGWVcOjQoTY7zswhKebMMvq9rax6R1YzjcTP0SaMCpOsGopkt169elmmRvAkMjXs9aL2AH26ORH16WebNm2y6v30+/TVzUVEEsVrr71mrb3q1q1rKePBvaysHMIXUaMYFYG5F6xOvnv3bqvxwueqSE7g2JsxY4bbs2dP+DoKpbGa/ffff9u+bt9tp0SJEvbVFwQEYztZmiweUWTN1ywSyayklTBEMuHhhx92r7/+uu3bmjlzps0IBitBN2nS5KCPsXz5cgtYOnfurPdAckTz5s1dsWLFbG/3wTIzKJoW5Adufo5JI1bNtQ9MRBLNgw8+aJOGtFT67LPPktzmKzv7AIWJdZ8ZxOcn9Vi86dOnW2/j4B5vkexEv3haeBJ4s6CD008/PXw7xy6F0sjESCnovuCCC2zFnMCbxSQVA5SsUtAtWcYAzWDsC6ZFBhvpSS2bNm2aVT8NfiCKZCcG1Y4dO9qxSNX9tDAQB1HpF4ULF05X6zERkXhUqlQpSy1v1qxZsttYvQaTkwhWN2dFnC03Hp+jZLmlVLRKJDuwDYKxmmPRB90c3xynftsE7UJTC7q5nsv555+vN0yiQunlkiXfffedfZixb8a3DCFtJ6NBN6uLHTp0sGJWIjmFVZmvv/76oAXRihQpYpX5EdzDyKy5iEiiYs8rW2MIut95550kqbmRQffSpUtTzGijajkr3Vrllpx2zjnnWDE1jkmvcePG4e+/+uor+5pS0C0SbQq6JUvY43LNNdfYHu4xY8bYdex98ahoTr/DtLBf5vPPP7cPR5Gc1L59e1vxfu+99w56X9qPRFZApY/ts88+6wYOHGhfRUQS0bXXXuu6dOli274OFnRTSDLYt5t03L1792pMlxzHxA8TRx9//HGSgn8eBYBTC7qZfOJYZgLp1VdfdXfccYeCcskSBd2SJbQFI4UsmFYeDEJIOTvY6jUBDj9Laq9ITmIFm32JZF4cjD/uPb/i3adPH/foo4+6AQMGxOx5iohEG2O3H79ZDWT1+phjjgnf5le9fdDtC6cx0R4Mzvn8pNha5DYckezGOE1l8uCYHlzp9gV/6WACJov8/wOkoFO9nFpD7OceNmyY++STT7L9b5DcQ0G3ZAk9uJkNnzp1animEBSTIv329ttvP+hj8GFIKpsf3EVyemacqr2+RkFqqlevbis8FA6kNy1fwf8HTCIdd9xxybZaiIjEq5EjR9qKNZ9d9N8mwPCVyqlbQWG0YIAS3GLjM9oIWBjT+RwNbr0RyQkcg2RRckz6YJotj76jDuM21/uuOXzvU9G5rUqVKnZss32SfwfT1EUySkG3ZMmCBQvcXXfd5SZMmBCeBScQoYrzhg0brO92Wmi5ROEppZZLvOBYZGA9WHsQKqNyIvrbb7/ZbLk/AaXlDienFCNSjQIRSRS0S6SiM59rkQVRaQ/m+QCF4BxVq1YNBzEUpqIlk8Z0iRdMAH3//fduzZo19m96dDOpToDNeSqBebCtre9GwvkrLfGWLVtm92esP++883Ls75DEp6BbsuSkk05yV1xxhaXg+ArO9DZknzczi34PWGpoScK+GfbSisSDihUr2sr1/PnzM/RzVEXF9u3bY/TMRERi5+6773ajR49OsR6FX+EjGKdWCwUnqV2B2rVrh+9Hq7EjjjjCtWrVSm+VxAWORTI4ODa9YA0CBCfIOScViQW1DJNMY4aQfS6k3PiZbwZj9sWSVk7wTZGK4P6ZlGbWCxQoYMG7SLygDzfHZnqxOlS6dGn7XkG3iCQixmEuW7ZscXXr1rVxfcmSJXab3yrjgxNSz1euXJks6OZzs1atWuFzApGcxio2x2RKY7qvY8BkEscsAbdf6RaJNq10S6Zt27bNCk1Qffzpp58Op+MwW07AjUqVKqX5GHwIsr+GYF0kXpxyyim2knPgwIE079ezZ08brDkRZQ8kHnvsMRu8mUy69dZbs+kZi4hEB6vay5cvT9KH2wfdrGJjxowZ4dsIaIJjOp+fIvGEYzIYdC9atMi2QjJ+d+/e3a7zKebBlW62SVAwkIxO9nUfrBuPSFoUdEumMRNOj0MqlHfr1i284vfiiy+GB+eSJUum+RgaoCVeB2hmu/0esNSwz5FZcvZw+9lxJqG4nn+vWrUqm56xiEjm8Rn2yCOP2HhOPYqZM2cmaZ3o08v9SnewWvkJJ5xgX/1nnoJuiTcckxybPqAmgKamEL777rskKefBYmkUVZ01a5Zlf7CFkvsGO/SIZITSyyXTmBVkFpB928OHD3dvvfWWfVjt2rXLbqcaeVrVSylMQZGKwYMH612QuEKrG45dJoWCqZORfGXfIGbF2RNeuHBhK+AiIhLvaJU0aNAg+56CUS+88EKS230g4gMTv42G/bJ83oHVcYJ3Bd0SbzgmyVwje4NCv36iCGRswlfnD+73HjdunAXqbB/jvICsDoJuVeaXzFDQLVnC4EyPTv8B5D+0cLDK5aySQwO0xBtmwanIS9Ddq1evVO93/PHHp1hQ7fHHH4/xMxQRiR4CEtojEYBQ0yKSD0T8GO+7lTRq1Ci8f5vPS+6X1kSlSE6oU6eOHZscowTd1CIia4NtE5zHBo/t4HZHn8WJtm3b5sAzl9xEQbdkGntihgwZYvu2/QBMerl3sL7bfPixWk6/Y5F43wOWEl88LUiVT0Uk0bAVjMwz/xlGajmT6WeddVaStHKCFFb6/OfciSeeGH4MFVGTeMXEUM2aNZOM6SwMUZuIbREc076Gi2oMSawo6JZMY+82qTcEzn4/azDoTs9+boqoRbZuEImXoPvtt9+2gTi1Y9S3CQtiEKewIF/pY9u3b99seLYiItHBeO77bFOfgoA7GHSTiu73tfrUXD+mp7RKLhKPE+mMz4zTHMsc05Hp5fyb6v3UJypRooT78MMP7Tp6dac04S5yMIp2JNPY20J/bVqHpOSCCy5I8+cpapFWOzGRnC4UyMnn+vXrLe0yJSlNLLFtYsGCBeF/9+7dWzPnIpIwqEdBOm7RokXtM5CAO1++fOEgnKJSHkXXQOBC4UmqPIvE65g+fvz48J7s8uXLh7c50nEnMr2ctPPTTjvNvqcN7oMPPmjfV65c2Z155pk59ndI4lL1csm0q6++2rVs2dLdeeedbvTo0UluI0hp1qxZmj//008/uXLlyukdkLjki6RRjTw1zH6TosYg7QNw9opxHSepFGsJZn+IiMSj2bNnW40K6lkMHTrUWibOnz/fFSlSxG73K90ELHzG+QlzPgNBAVVWwTWmSzyP6Ryjv/zyS3jl27f8pDaRLxboJ5iobk7f+goVKtjKNv8vlClTxv4fEckMBd2SaXwgMft32223hfsbMnvIh9jEiRMtdSc1fLjt2LEjzfuI5CR/bKYVdHMfTjZJQb/33nvtuiZNmth17HlkFcj3tRURiVd0E2G1j7ZIO3fuTHa7D0R8vRaCEbAa7ifRQVAiEs9juj9W7777blvdJnvDV+CHn2jiWCYjc8OGDe6GG26w2kVkeRxsQUkkNUovl0wrWLCgu/jii22W0AfdVDK95557rCALq30pVXcOthtR0C3xnGLJcZ1W0B3EwB1cERIRSRSsXD///POWmdOhQ4dktxcoUMAyeghSCMrp4w0/9vvPSY3pkggT6ZEV9tnT7QuuaQyXWNFKt2TaVVddZUUpmAF/5513wqvfDzzwgO3n/vjjj1P9Wc2KS7wja4OZbn+sHgxpa5ErQiIiiYDPOsZ0alAwWU7PbtJv33///fDnoW8Dunr1ard582b7vlixYkmCbhWYkkTMXvNBt1/lFokFrXRLprFavXbtWvuwogKkT1FjLxh87+6UaFZcEmWQPthKN4M0xz0rQZgzZ44VaOH/C74uXrzYVs1FRBLFpk2b3JdffhkulObTytkWRteS4HXgc5LvNeko8YpVbCaJ/Jg+Y8YMa4lHnYJLL700yXYJUHSNy7nnnmtbL15++WX7eTJC2EYmklEKuiXTHnvsMats+u6777qNGze6N954w1YF/YpfWvjQI1Xt2GOP1TsgCR10swfSZ3mACShfkIUVIf+9iEi8Yr8qE4bsYWW/dv/+/d3ll19ubT09v9LNJKPna1Yw9iu1XOIdx6jPXiPY9oVO/XXBle4VK1ZYm7Dq1atbZX7uw2X37t059Owl0SnolkyrV6+epaQRdEyePNmCbt+v+2AIZOhxTNE1kWiggv6IESMs6KU1yJNPPukaNmyY5QGak9CMoIcnVcuphlqxYkWtcotI3CNDjc8uEHSn9Lnng24/0QhS0P2YrqBb4nk8j5xID2Zl+Ikkn7mByy67zNWoUcO68bBIRA96upRw7iuSGQq6JUuo0EwvQ8/3OURaK96kpmvvV/TRwq1Xr152yUvefPNNN2DAADdmzBgr5jdq1CjrIc/2h5R6aWdkgPZbJ1ISnCn3mjZt6vr165fp3ykikt3YAsNebiYLfW/iSD4gCQbdvugUY3qlSpWy6dnmHXlxTI/VeO7HdKqR+/PXyEKowZZ3TD75Kv3wbfJEMkvLjJJpy5cvt5ZhH3zwgX0w+iDECwbjkfiw83tgs4pWTewfT+nCgCW536OPPmp940mHZJBksOb4eumll7L0uFTm9YNxSmgVFklbJkQk0bB6xzYxKpM/99xzNmk+d+5c99prr4Xv4wOSYEab3z4TrTFd47nEajyPHNODx7H/nl7eIrGilW7JND4AH3/8cQts58+fbzPewdXttIJuBurDD4/O4UeVVfbZrFy50k2ZMsWuGzlypBXJ8P+W3Itjjir6TAB5bFto27atFTHLCo7RtPZkp5TNwYkr9Q7Y68iqd/369bP0HEREshtBdOvWre17CkkVKlQo3AI0GKz88MMPtgIerTFd43neFsvxHByjfrLc12EJfu+DbjI+5s2b50488UTbRskEFD26Gc9Jc0+rULBIahR0S6ZVrlzZtWjRwj6kWOFmf0wwCGEvTGr40ItW0M3JALOgBP0+ZZ3reHy/B01yL1Zm2NZAjYAg/v3NN99k6bEJnFNazfZSWgW/7bbbwt+zF23ZsmVZeg4iItnt6KOPdnXq1LHVbdLJg0F3MFjxe2GjNaZrPM/bYjmeR47pwfRyqpP73wMWcc4++2w7v2Xxhokn//NpZb+JpEXp5ZJpN9xwg6UB1axZ002YMMGKTHgEu2ml6fChR2EKyZphw4bZSYq/LFy40PXp0yfJdbR+kcyZOnWq7dlObbU7uJ3C48SUCqhMQlWrVk0vvYgkBPp0M3HNyvWkSZOsuBp9uv1kdnCl2wcnPgDXmB4dGtNj64knnrCq5MEJo+Cqta9MTrVyv3jEJAAVzJmIql27tla5JdO00i1Zwn7uu+++2wZrUnC8Nm3aJAnCIyk1JzoIsM8///zwv3v06GEVaLt27Rq+Lvi+5EYlSpSwCRwK+US7WJ8/yUytyj6DcKRvv/3WVoZY9Qm2HxERiWf05fafo3yORQqudJNiy339NjKN6dGR18f0WI7nYCKcgmzBlW4yJUknx+mnn25fyfKgmFuFChWsJ7cPwkWyQkG3ZEmtWrVsQGjevHm4xcgll1ziunXrZvtv+LA62L6aWMgrJwBkFART6CkSQnVP9iHlFWwroG3NRx995Dp37mzXsTrNv6+//vosPTbp4ZwApJaVEVnZnCJq9Lel+ioz5uxLY+VCRCTeDR061H333Xe2qkc9Co/PUyYeyZwiKCIF2Pc1Xrp0qbv44otjOqbnlfEceX1Mj+V4jnbt2oVbhflJpPLly1vqOq8zQTbYux2sx8Ke7s8++8zOdYP/b4hkhIJuybQ9e/a4Bx980AKPjh072iw5lixZ4l599VV34YUXphp0H2yvbFaxAsnzYra+atWqMfs9Eh+YkaanJtkVrMDQYoSZa6qfZgXHKMdqat55550k/yZdjUqrnvrWikiiYByPLArZpUsXt2PHDtumRPBLNekFCxZY4A2C9FiP6RrP85ZYjeeRtQf8arrfK04/7pTQrow93kw0DRw4UEG3ZJqCbsnSQEigzX6XZ555xma8sXXrVvvKwJzZqtBZxYfkww8/bDOVwZ6ikjtdcMEFdmLIVgcmW04++WSrXh9ZjCWjDlaRd/Xq1Un+zWpEsWLFrN4Bv1uVy0UkUbHyx75uVhoZ10lr9kH3L7/8kmQPbCzHdI3neUusxvPIMT0yhZ36RH7ynNtOOOEE+/eiRYtsS0WnTp1S7WEvkh4KuiXTSLl97733LN2MD8QGDRpY8O33eO3atSvNgH3v3r1Re/WZCY388IxM/c0LaHGRV5F6Fo30syCO0ZT2bXsbNmxI8u++ffu66667LqrPQUQkO7DH9auvvnLTp0+3f/N5St0WJhP9flofmHgER9Ee0zWe/395dUyPxXgeOabPnDkzyW3s48asWbNsi2SzZs2sHe4nn3xi2yfZax+trjuSN+nokSzp0KGDfTiRZjtx4kS7+GA7rbYKpN36FXGReMUxmlaKuN/XyAQUGR/UOBARSdTPO/arkkZOZwb21vpWSV5k0E2lc/A5qU4ZkgjHeKVKlex7+m6nFHSTxcFeemobUMuA2i5cRLJKLcMky/hwIuDwBViC/L6vSAzQfLCp36EkctDtsyk4/kFq+T333GPpkGR9iIgkCgpLkVJbsWJFS/FNKZ03Muj2/Y1JPfeTkCLxym+T8OeuQbQDw9VXX23bJh544IFwi7xoZmZK3qWVbskSVrUbN25sM+KkAvl93R5pOeyDieQ/9AhafLVIkXgcoOvVq5fq7aSp+fRKqq6ySuRbj1CwhXRzEZFEQMbOunXrklzHfm66MbCPe8SIEbbPO5ipxmohaen+OlbI81K1cUkcHJt+Ip3vfV0CP+FUtGjR8L+pcM6xzuT5+vXr7djnXHbq1Kk59OwlN9BKt2QJ1cEJtkeOHGnByVtvvZXk9o8//jjFn/Orh5oZl3jG8ZnaSjer236VxyPgpugLvT6pvioikshIr6X1IV0ZaAOKYFcSgheqP/M5SbEpX9NFJN6wWs2qNccqC0Ycr15K6eNMnN98880WcPuWoCJZoZVuyRJSzVjpZi8rH2LMkjPr7fl+iJF8IKN93RKvCKqpYJpa0E36WZEiRcJbKCig1qNHD9sXllabMRGReMcKNyuBZPDQqomKzmXLlrXbGPOnTJkSvi8r2z57jYnKwoUL59jzFkmNP9/kWCULE76/vO+9fe+999pt/fv3t0rll156qVXwp26RtkNKVmmlW7KEwZXZ77PPPtsCkPfff98VKFDgoEE3xVcITBR0S7wimCbwTi3oXrt2bZIWOS1atLBtFgq4RSRRkb3DSjZbZ1jZe+ONN6xOxSOPPGLtwnzQ7VfBfetETaRLvPPnmxyrr7/+enhyCb4VGB15qF7uJ9Wffvppy9jk/4Vy5crl4LOX3EBBt0TF22+/7caNG2ftLQg8wP6YRo0apXh/ZsZpQaKgWxJhgE7J7NmzkxRXIT2NGgVLlixJkrYmIpIo2Mf65Zdfhj/DKJAaiTGe/d8+YFmxYoWCbkmoMZ192uAYJpuDlrd4+eWX3RNPPOHatm2bo89VcicF3RIVXbp0cddee60744wzwoE26TrLly8PD8yRKFzhP/hE4o0/NsuXL5/i7R9++GH4e1aF+vXrZzPhrAKxp1tEJNGQncYk+qeffmrba/x+VvZus6LNmE42W3AP7EsvveQKFSpkE+0a0yVecWzSYaRgwYLu559/Dl9PPaKjjjoqvGWSsZxsTGoVTJs2zfXs2dO+imSV9nRLlm3YsMECbopIkaIzY8YMu3769Onugw8+cM2bNw/PIgZRcOqjjz7SOyBxidUeWuaQkRGJE1BOSj2KB7G1AgzoCrpFJFF17Ngx2XWjRo1yAwYMsL7d7G9t3bq1fUaC4HzPnj02pvvrROINxyYBNlvHgpNDvlVYENsm2TJGWjkdSjgXOOecc7L5GUtuo5VuyTJW9yiyQjraV1995VauXBkOTMBesJSQosa+WFU7lXj0xRdf2DGaUvsbZsD98Q0KqA0aNMhSManof//992fzsxURiZ2WLVtaGi6Fp/jsa9euXZLbKT7F5yWfmyLxPKZHtralFRiLRjfccIMtBPmK/Bzv9evXd3fccYfr1q1bjj1vyT200i1ZP4gOP9wtWrTInXjiibanm3RyPrio+Ij58+en+HN8+PHhtmzZMlsNF4kXHJcM0Ndcc02Kt7/66qtJ/k2QXbly5Wx6diIisUXmzmuvvWYtlriQuUaHEtLIwZhNITW/fezdd9+1DB8m2bkf6bki8YLV7U2bNtl5J33nPY7hNm3a2PH95JNPWiG177//3l199dXuwgsvtLotKqAm0aKVbokK9neRSk4VcwJuUtA8Us+Cq4IelVDZR6OZcYk3W7ZssT1fvihgpDlz5oS/r169ugXcKR3jIiKJiL3cVHgmlZz6FZs3bw4H3MifP3+SehcEKv7zUmO6xBt/THKM+nZhqFChgtUoqFSpkrvyyivdFVdcEc5uo1aLAm6JJgXdEjWtWrWyDy8qQ5KK5hGMRKbz+BVygnUN0BLPA3RKNm7cGP6+atWqlnrGvjB6dDP5JCKSyC655BJ3/fXXW79iMtl8j26wf5vV72bNmoWvo60SxVEJVDSmS7zhmKTFLRPkwSwMahOANPIXXnjB3XnnndYqFBQUZB94asWARTJK6eUSNRRQo2I5g/S+ffusX7HvY0zaziuvvJLsZwhq5s6dq3dB4m6ApnVO8ETT45gOtgojrTJIfbpFJNGx6peSm2++2cbz5557zvXq1ctS0EEQzucmwYuCbok3/tgkoGZLo3f55Zcnuy8F1AjMyWhjr/dnn32WYjFgkYxS0C1Rs2DBAutdzEwie159wB3ZXiky6H7mmWcsSA+mronEaxE1tk9wggkKrVDdnJVu7lujRg1VLheRXIvVwr/++sstXLjQAm8/uU7fblYF+dxkhVAknnBsnnfeee7zzz8Pj99kW7JQNH78eMvUZJKdbRKkn3M8t2/f3v596qmn5vTTl1xCQbdEDbPeVapUsZ7dBw4csFZifu8rhVWYYeSDLIgPM9LPmUn0aT4iOYnjlOOxb9++Kd4eXMWhtc6UKVMs/Szy2BYRSXQ//PCDjePUZilevLgVmKJ1ElvDmGhkSw2fiXxuEswwpj/66KNu27ZtKbZbFMluHIucj3Js3nXXXeHrO3fubFvF2EpBAP7TTz+5E044wTrwEJxzTstxndLku0hmHBJS9R+Jsttvv9099thjVojllltucX/++afNhvPBx6AdRLBCoQqqRDJQi+Q0ZrnpN88+Rr5GHq/ULWClBxQa4tgVEcltli9fbsF1vnz57DOPLLZ169YlCUJYJSRoQZMmTdzUqVOtp/Hzzz+faoq6SHZirzadSGjnSZcdjw47BNW0CuMYJ1NTJJZUSE2irlixYjZAUzyN/odo1KiRzSQmOwAPPdRmzdkXq/kfiQfTpk1zJUqUcI0bN05225IlS8IBN4M0QTiTTKSX02JHRCS3oDgk2WtMPpKGO2TIkCRFpUgrZ9KRys9YvHixrYhzXz5HReIBxyLHMFsiPFa0Ob7r1atn19MqzGNVnGKBItGmoFuiisCZfa09evRwL774Ynh/61dffeUGDhyY4s8QmLNv5ptvvtG7ITmOCSBa36WULj548ODw9wTfpFo+9NBDbvLkybbiIyKSW7CizWo3dSyoTn7xxReHPxefeuopC7ZpKXbRRReFf+bSSy+1MX3mzJnhvbMiOWX//v1u1qxZdky+9dZbSYqlBTM2aF974403WnYmW8vI1nj55Zdz6FlLbqWgW6KKQOSyyy6ziqbPPvusu+666+x6KkCOHTs2xdZh7OWm56dmxiWnMfmzevVqy75IaUKJYoEeWyZq1aplk0wE3z7FUkQktyAYSQnbxbZs2WJjPXVcPCpDM6YTcPuaLiI5xRc+ZQEoWNC3aNGitrrtM9foQz969GjbFslx/ffff7uTTz5Zb5xElQqpSdQHaAKQHTt2uObNm9seMD7wtm7dGt47w57ZIALuM844w1YYmWUUySlM/FCRnOMxEunjPrWSXrTfffedFQxMqa2YiEhuQoeRtWvX2p5uvmc1kAlHttb8+OOPSSYnyVpj7yxj+llnnZWjz1vyNo7BqlWr2v5txmuP+gNMrpcvX972epcpU8aq7jOx/vDDD7sVK1ZYkUCRaFIhNYmZUaNG2YcXfT0HDBjwvwPukENSrAb50ksvuauuusr2gx177LF6VyRHsELDxNEHH3yQ7DbS0fyesOuvv9561YqI5Haffvqp69Chg302MkZT84JAO7gKfvzxx4eDb9ovsVeWQpOsIFK7RSS7MUnOpHjPnj3d3Llzw51HKN5Lq9o+ffq4li1bamuYZBt9EkrMbNq0yVa4ab9UsWLF8Cz4uHHjkt3Xz4anFOyIZIfdu3fbLHdKqeVMFFFEzeOEkj3ct956q638iIjkVhScInCmRzcpt2wbo4iax7jOXm5v3rx5VoiS8Z/+yCI5ge2MbIOgtWdwnKaSOXVb1q9f7x5//PHw9T///LON9SKxoqBbYuaCCy6wwivs5aZAhXfnnXcmuy9FKxikg4UuRLI7DY0Bl8E4kt/j5ZG9wR5uMjmYLRcRya0KFixolclJG6co6r333mtbbPwqOJWhCWCCQTjbb+hkojFdcgrHHm1qSS//9ddfw9f7+ivUZWFvNzUJKPzL9RQHZB+4SCwovVxiguIUpPXs2rXLVgRJxw22YCBFrWTJkkl+ZsyYMTaDzgq59slKdqMGQWq9OikO+MorryRZ+SGV8tRTT3W9e/d23bt3z+ZnKyKS8+bPn28pukWKFLF9sWvWrLHr+Z5ghsCHz0oCHJHswiQ5+7Vpacek0YMPPmjX16xZ0wqm+c46b775pt2H45f7kZ3BhBEtxUSiTSvdEhMEL8wa0q+TvV4UXOEDzbvtttuS/Qyr4uwRY2VcJDtxorho0SIrAhhp79697tVXX7XvSa9kxYeqp0wc0YpEAbeI5BW+UBqFqZgkZ5X7iSeesM/QQYMGJWnVxOcpn5PBHsgi2VUUlXRxahE8/fTTdh0TP8ccc4xNEpGtBraTkbE2dOhQ615CxpsCbokVrXRLTGcaqQRNMEN6OQE4vT1x3HHHuZ9++inZz1xxxRVW8IIPPxVfkexCD3l6cpJGzoRR0HnnneemTJkS7tP9wAMP6I0RkTxn586dFrCwElioUCH3yy+/2Oem389Na1C2ivEVBNv333+/pfhOnz49h5+95CUE20yY01eeHvNgHOf8kqxKJsz9ardIdtFKt8QMATcIrimmMnnyZNe2bdvwbLnvjxhEqu6GDRvcjBkz9M5ItmBFhuJ+vXr1ShZw//nnn+6dd96x7w8//HA7eSQTg5lzWuGJiOQVVC2nuwifk506dbK6LQ0aNAjfTjYbe75ZTQQtQOlKQn/kH374IQefueQlLNrMnDnTde7cORxwkz7Ov8nKYAsj3Ug8HZuSXRR0S8wxOJOCO3XqVDds2DC7jpQzZsgjNWrUyPbJBitKisTSa6+9ZpXLr7322mS3kS7pe3MzY86/ycYgrfKxxx7TGyMiecrzzz9vRdNo8/nGG2/Y1jFQhJLPxVq1almLJqxevdpWFCmo5rPcRGKNdp5MkNN/27vvvvvCrWpLly5tE+d0zaFjTrVq1VybNm1sAl4klg6P6aOLOOeuvPJKN2nSJJsF96vbrHQTwPBBF9w/w4ciqejsB2ePmB/QRWKB45AJHiaGKleunOQ2TiLp5elx7DZs2NC2TXCh7YiISF5y4oknpng9k5Kkn/PZSEVoMt34ngy3fv36WXVoAh9f9VwkFqhSzoTQ5ZdfHt7L7SeLunXrZkV6Dxw4YPu4WfEmcwNsZyxQoIDeFIkprXRLzBFE88FWv359a8fk085/++03d+aZZya7//nnn28zkaQBicTSnDlz3KpVq5K0tPPuuOOO8Co3e7/I1KBXNy1yVq5cGU6hFBHJi5gYZzWbz0pSyYcPH257Zqla7lss8hnKHm8uKWW3iUQTW8VYsaZbDsG1xzhfp04dOw7ZKsbYT3bbc889Zz28db4p2UGF1CRbsDeWVcWbbrrJTZgwwapIUoQFFFqjAmoQlSS5ULCFtg8i0cbx2KpVKxuc2YfoU8/8bVQq37dvn/1748aNVoVfREScGzVqlBWgZOxeuHChrXSTzkvGEJ+fBDhMToLxnirRn3/+ud2HLiUi0UadFXpyN27c2L399tuWrQZ6b1O8l8lzv8VRJCdopVuyBYMslxUrVtgKN30RPVJ+IrHySNBDOppILFDchx6zVCMPBtxgVdsH3Oz3Yvac1RsmiERE8rrWrVvb5yb9uNnLTT9ughtw/YABA8L3/eeff6zaOUVVg1t2RKKJdHL6bJ9yyinhgBv06Gbsvueee9zmzZvtOor7kl4ukp200i3Zavz48dYH8c0337T0XApYgWIWkanmpPuwMs5sufZ2SzSR8sh2ByZ2CLwjg27ajRCUI3/+/OFK5WRdkIrmt0iIiORVfBamtMeb1otNmjSxAIdVb5DSy2Q7rcOoLk01aZFooT0YWRYU7WULGH3kwco3WyDIxKBoKjWG7r77bvfqq69aBhsr4u3bt9cbIdlCK92SbQiwaQlGUbVnn302SaXI4Mq3R6EqUnrZLyYSTVTdZVB+6KGHkgXcTAzRbgQUVznjjDOsIi+FWZgxV8AtIpJyUTXGdbLaqlevnqTuBftr/d7ukSNH6uWTqKIwGpPjbBnzATeaNm0aHuPZx01BVLItS5YsacV96Zgjkl200i3ZilReiq888sgj7s4773SvvPJKuOAKLUVIUwtiNvLSSy91ixcvtn06IlnF8UbmBIE0aeRBnBBS9I/Bm5lxBm8mfkiNjAzORUTkf0VRmZAkwOnfv787+eSTbTynGjQr3qw0ggKpjOfcxmo3/xbJKlLK6YJDqzoWdajTwvhNijmZat98842N42RdTJw40fp1M3nOSnfFihX1Bki2UdAt2YoPPYIXKkm2a9fOCqzxAcn19FXcsWOHrS56fGjWq1fPbqMqqgIfySpO+KgZsHz5clezZs0kt7Vs2dLSzcGk0O233642IiIiaejataul6ZIVxGoiwfQXX3xhq4lsHeN23y6UzLXRo0e7iy++2L6KZFXfvn1ty2KJEiWs+C4Irv02Bm4XiQcKuiVHUFiFnscUq2L/LIEQe74IxtmDE/T+++9bq7GU9n2LZATHGzPiHTt2dGPHjk1yG6varNCAvd7s36bnJ1V3SUNXf1kRkeQoSkVBVHohk15OlWg+Q8GE+uuvv27tmdh3SyXzq6++2lo1kfWWWt9vkfQgyCZzjeOPwBvs7SbgBsX76NtNSzuK/VFngCJ/nG+KZDcF3ZJj6WikoTFYf/zxx1Yhmg9DPjx9KprHoM0gvmvXLrt/vnz59K5JpgwePNi2NjBQR7YAI618586d9r1PTUPZsmVtMkiFf0REUp9IJ6COtH37dqtq7otRgjGc7DUm3lkhVwabZAbnhqSK04qOCR0mfEgbp4Udxxa3+wWbiy66yIr4kVn5wgsvWEE1keymQmqSI0grZ7BdtmyZzYIzMIOZb6pPBjEgsxJOoDRkyBC9Y5IpS5cutWIrd911V7KAm+PKB9zs37733nvdrbfeaoM0K+IKuEVEUhcMuMkQIuCZMWOG7bF99NFHbXWxbdu2djup5mQSUVODopYimTFhwgTrhsOx5AvzUrOF9p4E4Zw7klVRqlQp29bAhHubNm3cZZddphdccoRWuiXHTJ482Wa8mYkk9YzZR2bLMWLECDdo0KBkgRF9u2kHceqpp+bQs5ZExEkevTs53jh+gieIDM7FihULt7YhLY3iKsHaAiIicnCzZ8+2Tg+XXHKJFVcja+iTTz6xwpUVKlQIT26CDLYVK1ZYJpGKqklGi6dRk4UtYdT7CWLLIqvbPoOCgJyifsG6QiI5QUG35Lj169e7KlWqhNN5wYciaUB+XxgIyKlgTgBFkRalmUtG0sppU8NxU7t27SS3UdCHbAuwEtOjRw9LWStatKheYBGRDGBVe+DAgdaKif3afI7y2UsbMfokU2Hao04G11P1XGnmktG0ciZz2LZA1xGPbLZOnTq54447zs4ff/jhB1emTBk7zkRymoJuiQv333+/fYAyG8ngCwperVu3Lsn9mBVnxZJV8GHDhuXQs5VEwn4vJms4xiJ7vjPhQ9EVP9HjV7tZ6aa6uYqniYik33///WeBT79+/SzQYaU7eBtbe7Zs2RK+jvGcydDx48fbhKfIwXCskEnRp08fN2bMmPD1FEh95513bPJ827Zt1pKWY4pxnOvJtBDJScqflBzHTCUfoh9++KFr3759OPWHNF8CpSBWKe+++243fPhwC6ZEDlY7oFevXtZ2jj3aQbSnIw3NY2a8YMGCdlJ43nnnKeAWEckgtuXcdttt9lkaDLiZ0Jw3b54FS0EE3KyKE6STMiySFo6RG264wbYlvvjii+HrOd6effZZK8jL6jZVy/me7WO//PKLxnOJC1rplrhAT+SXX37ZVrkJqilg5X377beWfh6ZZk5AxYCttCFJDX22SXfkOGFPYfAEsHr16nZs+f7cU6ZMsTQ1UtI4pqiCKiIimUcbJwKgtWvXWlD0xBNP2CpkMFON9F/G9SZNmtiKpPbcSkoYt88991y3ePFiq8sSnKQ57bTT3KJFi8IT6tQJYFwnq4I6AnXr1tWLKjlOK90SF+655x5rB0aqWWSlaPZ7Bfd782FLgE41c/aOiaRW0Ic0R46tYMAN2of4gLtcuXKWhkYxNb4n6FbALSKSNQRHF154oW0Hoy8ywTQp5kOHDrXgySMoZ/83laifeeYZveySoqefftpNmzbNzgd9wM1YTmFdKuF7jOUE3L7lpwJuiRcKuiUuEEjTJ5lBmQ9QUtSaNWtmtzFLSWXzIIKoJ5980j6EmT0XCaIWwPnnn+/atWvnbrnlliS3vfXWW7b6Ak4EaTfCtoVZs2bpRRQRiRIy0qhkfvPNN7vHHnvMJtZvvPFGG+dJDX788cdd/vz5wwE6k+7cHlmNWmTOnDl2bFBvZffu3faCsBVs3LhxNlFDFfP58+e7r7/+2p100knWIlQk3ii9XOIO+766du3qrrrqKvfNN9/YzCZ7w0gRjpyxvO6669xzzz3nPvroI9eiRYsce84SP+gRy8kes+FLlixJUoWctEZSGX3BNFAFn4r4rL5EFloTEZHMY2U7pfaLbA+jjguTo/RW9ihsyT7czz77LFzkUvI29mg3aNDAVrCp9QPGcc4V2XrI+SJbE9nnzbjP9sRzzjnHMidE4olWuiXu/PzzzzaTSSDN6jf4ICWQ8h+43qhRo1zz5s2t8NWGDRty6BlLvOA4oQUY6YoMuMGAmz2D1apVCwfcpDOyj3vBggWWLUFbMRERiZ5gwM1nL6vbFLg666yzrCAWq5QURg0GWGzvIf38t99+01uRx3EM0AKMyfHg+R9j/Mcff2zf04qOjDa+vvHGG+7aa6+1LWMi8UYr3RKXJk2aZIMyha1IJ9q/f79dz4o3e3l8MI5du3bZLChtIfgQLlSoUA4+c8lJVM0dMWKE++CDD6wSfhCFVmhLBwZwCqwcc8wxOfRMRUTyFvZ2P/LII1anhWJXjOUzZsywQOmpp54K349xns9otgcxMZrSSrnkjSyJLl26WH0WstGCtX1q1KjhVq5caccGkzkqvieJQJ9kEpe6d+9uPbtJM2Pw9fjQZYXywIED4esInFjVZIb80ksvtQ9qyXuY5WbFhKA7MuBm/78PuMFEDnu7RUQke/Ts2dNShK+88krLZGOfLpOhDzzwgAVRwXGecZziWHQzkbzprrvusnM7aq8EA+4TTjjB/j127FgLxsmKmDhxYo4+V5H00Eq3xD2qT5NGzmq3D7b50KV6eXB2kw/nzp07W5ow+3Ml76AIT6tWraxSLgNx8Lhg31fr1q2T7OMG2RJUMA+moIuISOzs2bMnxc9ctvmcccYZFkQFey+T7TZ+/HjXo0cPvS15bBKdSRrO9YJp5cWLF7fifGRMVKhQwer6kFpOpuP69euVvSZx7fCcfgIiaWG2m4qUFMcioKaHJ/gQPv30022g9tj3w0onH8C0fYqsWi25ExVxzzzzTNtiMGbMmCQBN1XKL7nkknDATXVcgnO2IHC8KOAWEck+wc9cAmraOhJEXXHFFRZQUezSf15ze4kSJSyDjcw3Uo0l96MoGuM2LTyDATfbDlhcYXsC53hMxJC1RrDdrVs3BdwS97TSLQkxM07LsAEDBljhldGjRydJQ49MKyIdbciQIVawhftL7rVixQrrx8mWA1p+MRB7VDClLoA/gWvbtq1dR6qaiIjkHD6XqTZN/Q0qTa9atcquZ8zu379/kvtSqZoCq6Sbd+zYMYeesWQHjgcmxI866iibdPHBNunkL7/8sk3AkA1BsT3t45ZEoz3dkhAz4xRgoWAG6WfBD1oKrjFTHnTfffdZX1B6OrLymYio6FqnTh0LIrk0adLEAsaM4rUgReuXX35x/fr1s+rd9EWlvyUnN+yZT1Rr1qyxQJoUM4rxBAPuhQsX2smZD7hLlSpl/bgZvEVEJGcxjt9000322cyWsEWLFtnEKeM2E+ascPsJUipVU7uFbDfuk4g0ph8c7y3vcTDgPuKII9zTTz9t2Wm0jaWzDeeBau8pCSkkkkD++++/UJcuXUKFCxcOVapUiYjKLqNHj052vxtvvNFue+KJJ0KJ5t133w29//77oW+//Ta0du3a0ODBg0NHHHFEaOXKlRl6nHr16oXefPPN0IoVK0Jdu3a1x123bl3oo48+ClWpUiV03nnnhRLRsmXLQscee2yodu3aoR07diS5bdGiReHjIng56qijQqtXr86x5ywiIkn9/vvvycZuTJkyJXT66acn+QzPnz+/jYPvvfdewr2MGtPTNm3aNHtveY/9+12kSJHQrFmzQhMmTLB/N2vWLPTaa6/Z95wDbt68OZvePZHoUNAtCeWPP/4INW7c2D50hw4dGjrkkEPCH9BPPvlkssH75ptvttuGDx8eSnTFihULvfDCC8lORIKXe+65J3z/TZs2hY488sjQ3r17U3y8iRMn2u3//PNPKJF8/vnn9lqccsopoZ07dya5bf78+aFDDz00/HrwWt122232ui1YsCDHnrOIiKRtw4YNoYYNG4amT59uARef4d27d08yzufLly902GGHWVCe6DSm/8/kyZPtPeW9DZ7PnHjiiaHffvvN7jN16tTQ/v377fvHH3/cJt5FEo2Cbkk4v/76q63eEoBXr149yYf0JZdckizwvuuuu+w2Vov//fffUKI5cOBA6PXXX7cAedWqVaFdu3aFatasGRo4cGBo69atdmnSpEno6quvDg9QeOqpp0JnnHFGqo/7/PPPh0qUKBFKJHPmzLEZbiZedu/enSwYDx4LzJpHroKLiEh8IhuLz+7TTjstNGDAAPtKlhaf5cHP9sMPP9wC8XHjxoUSkcb0/4/3kPcy8j3m0qdPHzuHmzdvnp33iSQ67emWhENriPPPP9/2/bz44ou219t79dVXre+n38vLvrH777/f9n0/+OCDVnht3759LlGKhLGPiT7lffr0sYqeJ510klV4Za8bt5UuXdouFBWhuivXeRSdoSBJSnbu3GnF5nr37u0SBfu62rVr5xo2bOhmzpyZpAou+92pXh7EnnhazoiISPx7/vnnre3j66+/bi2h6OVds2ZNq+kSROtQxvZevXpZ/ZZgD+d4pjH9/+M9433lPWTf9j///JPiecqzzz5rLT+5X2TbT5FEo6BbEhoFxvhADvrkk0+st2Ow3ycDM+3GCNYIyjds2ODiHUXPli1b5pYsWeL69u3rLrvsMrd69ep0/Swt1mi1llLQzW1U9SaAv/fee128+/vvv+3vpx/n9ddfbwE2Ey/ehAkTrApuEBMVnJhR+V5EROIfE8oE3BS99J/jBN633XabFdiKbCdK4D1y5Ej7/E+Ez3qN6f/De8V79thjj9kCAmN8EGN95cqV3cCBA93JJ59sBVCZZGdMF0lkCroloTHosurNimb16tXD19O3kQrdVLr0CEA//fRTW+lmVTTY4zsesXpNKyx6S7NKX7duXavqmh4EpgTV/uTF++2331yHDh0saGXlnBnmeLZjxw6rVEpGA23jRo0aFa5oy6w3s9/06uQEzJ+ksVrChMPHH3/sjjvuuBz+C0REJDO+/PJLC84Yr+nAETn2+5XPuXPnWgbU2rVr4/qF1pju7D3ivZozZ46N25GBNOM8WQ7ffPONa9y4sV2+/vpruz7ez1dEDkZBtyS8q6++2oJsVoX5gPbo60nQ+dVXX4WvI1Xts88+c7Vr13Zt2rRxzz33nEsUDFDB1fugyH6VpJafe+65yVa4CWAZ+N99911Lz49ny5cvt8GZ1X0G6CuvvDJ8259//umqVKlifTs90ux5r6+66irXqFEjpZaLiCQwUpBLlixpE+q0k+LzfuLEiTZ2BVONGRe3bNliwfmHH37oEkVeG9Np7cl7RKZhcHXb99wmsOZ6Fhs4f/Nq1KihntySKyjollzh2GOPtVVOen2SmuQHLHo9ErgFg2v6fTIwX3PNNXbh/gRx8eT222+3lXgGJ/aB8e958+bZqm5KWLlmZpiBipljVrqDqeV+cOb1YNWYf2/bts0u8bgf7q233nJNmza1lLKlS5e6Zs2ahW/7/vvv7Xq+BtHXNZjtICIiiYsAjdXucePGWWB26aWXWuBJAMp2Kz7zvf3799v4RibXiBEjwtlP8SIvj+m8F7wnZ555pmUaBvdv8/cTVDNpTnYef8vmzZuthotIrpPTldxEoo2+3BzaFStWDBUsWDBcCfP222+3qqFBY8aMsaqZJ510Uuizzz6LmzfjiiuuCFWoUMEqltOPuk2bNqGZM2eGb69bt26S9mCvvPJKqECBAqGzzjorNHv27FC5cuWSPN7cuXNTbTO2fv36ULygBdjFF18cbhWzb9++JLdTtZ7WIv658/11110Xat26tVW5FRGR3OuOO+4IFS9ePHTLLbeEW4gFW4oF20V+//33oXiRV8d03oMWLVqk+Dw5J6M6Offx7T/XrFkTGjVqVEJ2mhE5mEP4T04H/iLRRjGWWrVq2UwwM79ehQoV3OLFi5Ps9V25cqXtDSY1+ZZbbrHiYqyaJ6obbrjBZsYTbaaY9DgyD8g6eOKJJ1zPnj3DGQv8PaSNB9PJWfnYtGmTK1WqVA4+axERyQ6skJL1xBaxSZMm2b9Z1Z0yZYrVKAli7GCMYH8whTiDXU4STSKO6axuP/PMM1YMjfcppcwDxnSKqrVv396+F8n1DhqWiySwpUuXhgoVKpRkdvXQQw8N3XnnnUnu9/fff4eGDh1qq970wKbnc6J69tlnQ8uXLw8lCvqO9+zZ096bs88+O7Rly5Ykt3/55Ze2shE5S84KN7PkIiKSNzBWT5o0Kcl1DzzwgK14p7by27Jly7ha/c3tY/oPP/xgrzmvfUpZCD4T4emnn7bvixQpEtqzZ09OP22RmNNKt+R6FFmj6FbkPif6OLMHPNh+ir1WrHpTLfPWW291d999d0Kvese7adOm2er2H3/8YZXZL7nkkvDqNkk4rFLcd999SXqrs2JRr149W9mIrM4uIiJ5B4XIKJDKeMH+5+BY4dHxgrZTtKhivEnkVe94xmo2fbUHDBhg30e2AgP7t+nPfcUVV9g5GW1AyUTgfEwkt9Mnj+R6lSpVsnQ0BubI6thURqVAiUdVc9qKkWJO4Q/adXG7dmFE1w8//OAuuugiKwxTv359S/GnSI4PuL/77jvrtU5/9eBJFIXS1qxZ4z7//HMF3CIieRzjwd69e23ilnGEwqlecHsSwfm1117rWrRoYcU5Jbp4TZs3b26vMVvEUgq4qUrOIgcLG2AihBR0BdySVyjoljzBB3bvv/++K1CgQPh6BoeOHTva7b7HJ70g77zzThtEihcvbre3atXKgnHJmu3bt7t+/fpZ8EwlV/Zos9pdtmxZu52Zb/qyVq1a1TIUggjAaQvHbZHtVEREJO85+eST3bfffuveeecdq9myZMkSmyinwwVjeeRY8cknn1hV9G7dutnPSdbwGvJa8pry2gaxp573oFq1am78+PFWX4fzqsj7ieQVCrolTyGAZpX1pZdeSnI9RdRIexo6dGi44Aezr/Pnz7dAfffu3a5JkyauS5cuNrMuGUM7E1L1Wb1m8B0yZIitZgdXtylwV7FiRXu9PSZIypQp44YPH+4efvhhpfqLiEgSxYoVS7LCzWoqBboYW1h9DfJZa5MnT7ZgkHTzn376Sa9oBvGa9e7d2ybQKWQXRKDN+zFs2DArdkrrM1qDcd7FFr5gC1CRvER7uiXPIqBmdfvJJ5+0VXCPII8+0QTZHoH4hAkT3F133WWDCOlRpKBrT3HaSOkjfeyBBx6wNHGqsN522212kuSx4s2+LgbjIFa86c/KCRQz5iIiIgfD1jEyo1j5fu6552z1+7333rNJ9ZQQJLIPmbGJFXJJHZMZDz30kNVbIW0/NX7f/KpVqywwFxEF3ZLH/f7775YaNWPGjGS3FS5c2AJyVmODQSSDOCu1rN4SfBNInnTSSdn8zON/YH7xxRet9deWLVusaAor3eXKlUvXa1+6dGmb3OBkSEREJKNoVeXHECZ/2W+cGlbFjzrqKBvP2QLltzzJ/zCOcz7EZf/+/am+LGSnPfjggzaus33v0UcftS0AIqKgW8TSzejrTZ9IirFEIiV6zpw57vjjjw9f99tvv1lA+dRTT9k+JfqBM1ifeeaZeboyqs8cYIWaQioXXnihGzx4cJKZboresKrwxhtvpDh4U8F89OjRSarKi4iIZBZ9vSneWapUKast4ruZUNk8pRXbrl272mp5o0aN8mwNEc6NyBIgTZzaKwfDORCT68ccc4wF3ExiiMj/p/Rykf/zyy+/uBtvvNH2HKeEStsMxMF9yASWEydOtHZXFAghne3KK6+0ld28MlPO4Mr+uOeff95S9qkITwuQPn362Iq1R5oZr92XX36Z4uMwG06wXrdu3Wx89iIikhds3rzZ7dq1yxUpUsQmg5lsPxjqjNx00002duWV1HNq2HAeNGrUKKuBkxrGdxYd/AT5Bx98oP3aImlQ0C0Sgb3FzNhSrZyAMlLBggWtdzQDsV/V9jPCBJ6s4PJzrHqTPn3WWWe5Y489Nle9zqTZE2BTMZa/l0GaCu9XX321TUwEe5sTbI8cOdIG8ZRWFEg5J12fk5q8nCUgIiLZhzGJzCq2klFwjZRovwIeiYn2c8891/Xs2dMy23JbJhbZex9++KGl4c+bNy9cUDaIFl+8PtRk4TyJ8Zqxn/MfWrMGO8OISHIKukVSwYw4+5jYm0yhtYULF9oeMY8UKqpqU3AtuKebvd7MoNMOy7cZ4z6slJ9zzjlWJT0R09V27txpM9mkmXFyQmE0VvYvuOACS82vUqVKkj3d99xzj70GpJNHoljdzJkz3c8//2yvjdLQREQku23YsMGtW7fOtW3b1gLPyy67zL399ttp/gzjd+3atW2SmUA8UQuq/vjjjzaec75CG6+UAu1IBNqM+x9//LE77rjjsuV5iuQWCrpF0oGWGOedd16qtzPrzeo4KWvB2V72jtECi4GNIJM9zOwRJwCnOjdtNQoVKhSX7wGr0qtXr7bZb54/gyyDMs+Z58+lVq1a4QkEVr9JsSdFnL9569atKT4uVU/79++vVW0REYkrTz/9tI1PwQl2v8KbmsqVK9vkM2NivXr14ra1JRl4y5Ytsww1FhOYSE8vAuzrrrvOdejQwdWvXz8hFw5EcpqCbpF0INik5Qgtw2hHkhoGW1/NnFVtVsM9irRRkI0Algt9Lhm46BV6yimnhC8M2tmdukaATf/xL774wgJnvn799df2nPPnz2+rAJxQkCofObu9aNEid/vtt1uf7bROTNhHN2jQIBu4gy3DRERE4gXjGKu/FF9j3E/PCnAQK8H0oj7ttNNsTK9Tp062Z3MRYHOu8vnnn9sWMNLBU8o6SwnP1W+to8YKLT/bt29vRedEJPMUdItkAHuX6CvNnu65c+em/T/XIYdY0M0MOPu/WeH2GMTZ6+wDXC7MQDPQ8XNVq1a12WT2SRHk+gtp2RQvyegAzknEjh07bPWZYJ+vXEifJ7j2Abb/3cFJgAYNGiRZvSc4p485q9mk5bGnK62TEgrR3Hnnna5Hjx5KIxcRkYQqvjZhwoRwRw4moP3kdEaUKFHCxnTS0osXL24p6Uy4M6ZTUT2j7TFZiSeTLjiek5XGcyNNni1e6cHv5bEY+6nHwpY56rUwrrPfncKoIhIdCrpFMunbb791zz77rBUdYTWYf9N7mlQ0Br0gqp4ysDKAUaWblXCC8eCKb3C1mctXX31le66oDspgH8TPEYSzesygyQw0FwZOHsdfCKQZjNk7HVyF5n4Ud+MxSBFPbZWdwXjWrFlu48aN9hxo5UWgzeRDSvjbX3vtNVvNbtq0qbvmmmvyfBs1ERFJfIyBRx55pH1P0M2EdNDB0tDT4leReQwCdGqm+ECc75n4ZtzmHIPfEUx/jwbqtLCaLSKxo6BbJEp8kEtgnVLV80gMqKRtMYDSrowWYwzizIQHA18CXG73s9nBmW2Ce34vAzBfWXH2QThfSXdnZTxytZznGDmzzsw4e9dZET/11FPdSy+9ZHu/UuqlnRJahFGEhr6mvA6qZCoiIrkRBVMpuDZ79my7MDkez8i6ozisxyJAy5YtbeWerXD8W0RiS0G3SBQRBL/wwgu2h+qzzz7L1GOwSszMNoXJmFUnzatFixa2H5rgmgCcwJtgnJR1Vrv9LDy3MRseHEBJHeeEgBV2rmdlnjQ0+mVTAOb444+358v+LyqTErjzGCmtZhNIRwbhzMp3797djRgxwtqpiYiI5BWMlWSpffTRR9axhLGVSWjGZ4qRcj2FVD3GVybEGWuZdM/s6vjBUKy1d+/eVvyUSYJ7773XAu3TTz/duo2oGJpI9lLQLRIj7JdmJpz9YPTwZoD16WcEpwS4BMoE1wdDYE1wTJo3g6d/HPZKr1271oqkUImUS/Xq1d35559v+7JoA8IJAavgnTt3thQyfmdGC8MwQBNcUywNnExceOGFrkuXLqpkKiIikgrajTJWf//993ZeEImtWGShkSHGHvK0irUy9lLcjAw27j927NgktzOxTi0YirddfPHFFmCLSHxQ0C2STSvgFGAjICaNmxRvel7T3zoepLYXrWbNmpZ6RkEVVtwp/tamTZskReFERETk4Nh6xuQ5ATgZaGSn0YaL2ipggp5uIEyMBy+M0Uy+s3JNJxHws1OnTrUJeS4UZ8vuKukikn4KukVyCGnftCRh9ZjCaam182D/NSvjvhjawfaLs4LOnu6Dpa0xSLOP3K9ee+z1poI5KWlUXWePuYiIiIiIZI6CbpE4QAo4hdEIvllNZhac1WVSwUklo0o6PcJT4/diU8iMfeDPP/98qvelLQgpZ6xYU1jliSeesBV40tG4nHjiierHKSIiIiISJQq6RRIA/Tg3bNhg6WSkefPVf89+7euvv972XRN8UyiNfeSFCxdOdqGCKUE8fUJFRERERCT2FHSLiIiIiIiIxMihsXpgERERERERkbxOQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhEREREREYkRBd0iIiIiIiIiMaKgW0RERERERCRGFHSLiIiIiIiIxIiCbhEREREREZEYUdAtIiIiIiIiEiMKukVERERERERiREG3iIiIiIiISIwo6BYRERERERGJEQXdIiIiIiIiIjGioFtEREREREQkRhR0i4iIiIiIiMSIgm4RERERERGRGFHQLSIiIiIiIhIjCrpFREREREREYkRBt4iIiIiIiEiMKOgWERERERERiREF3SIiIiIiIiIxoqBbREREREREJEYUdIuIiIiIiIjEiIJuERERERERkRhR0C0iIiIiIiISIwq6RURERERERGJEQbeIiIiIiIhIjCjoFhER+X/t2UENAAAMhLD5Vz0VPC5pXRAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAACKiGwAAAEQ3AAAAbHG6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAAICK6AQAA4BoP7fGAZt7y2GkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -893,7 +956,7 @@ " if j == 1:\n", " ax[j].legend(frameon=False)\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-jonespewsey.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-jonespewsey.png\")" ] }, { @@ -910,7 +973,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQm8VPP//z9ISCW00I4WVAohRSWylApZIq1ahKQsLZYWW5ZEIi0oSclSFKloUSlKWmiRSkop2hfKMv/H8/39feZ/7m3m3rnr3OX1fDzmMTPnnpk5Z+6Zcz6f9/J6HREKhUJOCCGEEEIIIYQQQgghhBAikzkysz9QCCGEEEIIIYQQQgghhBAClKQQQgghhBBCCCGEEEIIIURcUJJCCCGEEEIIIYQQQgghhBBxQUkKIYQQQgghhBBCCCGEEELEBSUphBBCCCGEEEIIIYQQQggRF5SkEEIIIYQQQgghhBBCCCFEXFCSQgghhBBCCCGEEEIIIYQQcUFJCiGEEEIIIYQQQgghhBBCxAUlKYQQQgghhBBCCCGEEEIIEReUpMjhlC1b1rVu3Trem5GtOeKII1yfPn1cbiE77S/byfYG0TEvhBBCCCGEEEIIIUT2QUmKbMrIkSMtOBvp1qNHjzS//+bNmy0AvGTJkphf8+qrr9p2iax1fMydO/ewv4dCIVeqVCn7+7XXXutyO59++mm2ScwIIYQQQgghhBBCCJGTyBPvDRBpo1+/fu60005LsKxy5crpkqTo27evVaVXq1Yt5iRF4cKFVcWehTj22GPdO++84y655JIEy2fPnu02bdrkjjnmmMNe8+eff7o8ebLvqWH16tXuyCOPTHGS4pVXXlGiQgghhBBCCCGEEEKITCb7RiKFcc0117jq1avHezNEFqVBgwbuvffec4MGDUqQeCBxcf7557s//vgjYmIjOxMp8ZKe/PPPP+6///5zefPmzdDPEUIIIYQQQgghhBAiNyC5p1zGjh073AMPPOCqVKni8ufP7woWLGiJjqVLl4bXmTVrlrvgggvscZs2bcKyQUlJOdFx8cMPP1iFvl+/bt264b+vW7fO3XTTTe6kk05y+fLlczVq1HCffPJJgvfgc3ndu+++63r16uVOOeUUd/zxx7vGjRu7jRs3JliX96Zj5Ntvv3U1a9Z0xx13nHWUvPbaa4dt28GDB13v3r1duXLlLICNzNFDDz1kyxOv17VrV1ekSBFXoEAB+1y6DZJj69atlgCg8yRSVT/7NHjw4FR9F+PHj3dPPvmkK1mypCUPLr/8cvfTTz+5WLn11lvd9u3b3fTp08PLDh065N5//3132223xeRJsXfvXnfffffZ/5jvr2jRoq5+/fpu8eLFCV739ddfu6uvvtqdcMIJtl916tRx8+bNS7BOrO8VCWSrOC75Hs444ww3dOjQiOsl9qT4+++/7X9Tvnx5e+3JJ59snSX+O2Fduij8vvsb/Pzzz/b4+eefdy+++KJ9Ltu9YsWKZLdXCCGEEEIIIYQQQgiRPOqkyObs3r37sGp4JJeiQYB84sSJFiQnqE+AnWAvAWUCr8WLF3dnnXWWyUg99thjrkOHDu7SSy+115IMiAYB3M6dO1vi4+GHH7ZlxYoVs3s+g9ceOHDA3XvvvRYkHjVqlCUBCJZff/31Cd6LoDyB4e7du7tt27bZe19xxRXmj0EywrNz507rFLj55pstGE9Av1OnTlbh3rZtW1uHinc+hwA3+8K+LV++3A0cOND9+OOP9l142rVr595++20L3rO9M2bMcA0bNkz2f8B+8v3x+SRDgpBwOeqoo+z7Ts130b9/f5MuIrHE//rZZ591zZs3t4RALBCwv/jii93YsWMtGQVTpkyx92rWrJl1WCTHnXfeadt2zz33uLPPPtuSHnyfK1eudOedd56tw3fF+9OdwXfANr/55puuXr16bs6cOe7CCy+M+b0iwf/syiuvtAQSCRS6Gfgcf4wlBes//fTT9v9lO/bs2eMWLVpkiRESJB07djR5M5IWo0ePjvge7Mtff/1lxxBJChJMQgghhBBCCCGEEEKIdCAksiVvvvlmiH9fpFuQMmXKhFq1ahV+/tdff4X+/fffBOusX78+dMwxx4T69esXXrZw4UJ7Lz4nVipVqhSqU6fOYcvvu+8+e685c+aEl+3duzd02mmnhcqWLRvenpkzZ9p6JUqUCO3Zsye87vjx4235Sy+9FF7G57BswIAB4WUHDx4MVatWLVS0aNHQoUOHbNno0aNDRx55ZILPhtdee81eP2/ePHu+ZMkSe37XXXclWO+2226z5b17905y34cOHWrrLV++PMHys88+O1SvXr1UfxdnnXWW7ZeH7yDS50Q7Pvg/Dh48OFSgQIHQgQMH7G833XRT6LLLLgsfHw0bNkzw2sT7e8IJJ4TuvvvuqJ/133//hcqXLx+66qqr7LGHz2O/6tevH/N7ReO6664LHXvssaENGzaEl61YsSJ01FFHJXvMV61a9bB9TAzbFOl0yG+D5QULFgxt27YtxdsthBBCCCGEEEIIIYRIGsk9ZXOQqaECPHhLCqrAvanwv//+a5XsdD9UrFgxJsmd1IApMRXsQfNmPpOqdOR0EkvntGzZ0uSWPDfeeKM79dRT7X2CILFEFbyHDgqe032BDBTgx0D3xJlnnmkdJ/5GhT/MnDkzvI1Ad0MQpIli4YYbbrDtoXPC8/3339u+3XLLLan+LpDbCnof+K4WOmJihU4TzLAnT55sckvcR5N6ikShQoWsc4Nug0jQ4bJmzRp7T44n/x3v37/f5Km+/PJL62iJ5b0iwXE6depUd91117nSpUuHl/N/veqqq2LafqTI2MbU0rRpU+viEEIIIYQQQgghhBBCpC9KUmRzCHgjhRS8JQXBYqSO0OcnYYE0FMHXZcuWmQRQcuzbt8/99ttv4dvvv/+e7Gs2bNhgSZDEEGT2fw/CtgVB+gk/CYL4QZCmwrMiSIUKFezer0tgmgA1+xi8+fVIaPhtIHmD50CQSNsdCb5HAvJIPnlIWJC4IIGR2u8iGJSHE088MSx1FSvsL8cFZtkffvihBf1J/MQKElMkXPDy4HhDPimYJPHB/1atWh32PY8YMcK8Pvyxldx7RYJjjCRL4uMi1v8P0mW7du2y/zleLA8++KAd7ykBaTQhhBBCCCGEEEIIIUT6I0+KXMZTTz3lHn30UfNsePzxx01bn+A8HQO+2j0pMBAOGkSXKVPmsORBVoJ9IjD9wgsvRPw7wfL0Ao8HOh/oLKhWrZolLEhcJOURkhz4WUTif6pMsUOXQ/v27S2xhHcE3QUp6cSgg2PChAlu2rRp7rnnnnPPPPOMJTx4L3/csJz9jgTdIrG8V0ZQu3Ztt3btWvfRRx/ZZ5I4IVGHyTo+FbEQ9EIRQgghhBBCCCGEEEKkH0pS5DIwLb7sssvc66+/nmA5lebBYDrdC5FAiikoVRQM3kZ7DYmM1atXH7Z81apV4b8HSSzLQ0D+p59+cuecc06C5UgGISkU7KbADNsbRgOdEUuXLrVkQbTt89tAsJ1gdrA6P9J2RwM5IuSmvOQT29KzZ880fRfpBYbcbNuCBQsSSFLFCnJbd911l93oPsHkGoNzEgu++6RgwYLJdvIk916RoCOD4yySXFOs/x+ScSSQuNENROKCLg6fpEjq2BBCCCGEEEIIIYQQQmQcknvKZVCZn7gKH9+GX3/9NcEyH/gneRHk9NNPTyAtVatWrQSvSbw+NGjQwH3zzTdu/vz54WUkF4YNG2bJhLPPPjvB+m+99ZZ5JwQTK1u2bDksiP3PP/+4oUOHhp8fOnTInhPUPv/888OV++zb8OHDD9suJITYDvDvPWjQoATrvPjiiy5W6E7AI4EOinHjxpmXBImLtHwX6QWdDEOGDLHAfKNGjWJ+HdJQiWXAihYtalJbyDgB3zWJCrpsSAAkxkuCxfJe0Y5ZvteJEye6X375Jbx85cqV5lWRHPhkJP4ukA8Lfma04z0aeG6QWDpw4EBM6wshhBBCCCGEEEIIISKjTopcxrXXXmsa/VSU16xZ0y1fvtyNGTPGkg9BCDoTdEcSBxNrgrgXXXRRktr8BKsJhD/xxBMWBCYAjUF1jx493NixYy0RgDE1Ve2jRo1y69evdx988EHYyNvD3+nWYBu3bt1qiQLeD7miIAS3kQpCbgq/AToEkFoi4H/00UfbOi1atLCkwZ133mkm2SRVCJYTYGY5Qe7q1aubTNGtt97qXn31VQuk89188cUX1sGREjDJvv322+19CKwnllVK6XeRnuAZkVJIFpUsWdI8LKpWrWoB/s8//9wtXLjQDRgwwNZhm5FQYp8qVapk/7cSJUpYcojvnA6LSZMmxfRe0UBi7LPPPjOpKDowSFC9/PLL9nnJ+UuQ+Klbt64dn3zfixYtssTXPffcE17HJ7X4n/B/IzGCfFc0Bg8ebNvE/vHeQgghhBBCCCGEEEKI1KEkRS6jV69eVrmPiTJBfaR2PvnkEwueByHIT/AcuSIC/ASF33zzzSSTFI899pgZP2OOTEC6Tp06lqQoVqyY++qrr1z37t0tsPzXX3+ZdBOB64YNG0bcRgLPTz/9tL0PUk0E/fPly3eYiTTb2LlzZ+uU4HMIHgeTGQTQqcDHg4AODbwQeB+SMl26dAkbaMMbb7xhXRgkbXgN2853kxLfisaNG5s0EdtNwiIxKf0u4g3fFUkBvBzwjUASi4QR/49OnTqF1yNQT3cIPif8D+ioOOWUUyyxhcxUSt4rEnxHJJS6detmxxnJDpIEdNgkl6Qg8fDxxx/b59I9gaQWiTQMtD2Ym3Mc0QHz9ttvW7dRUkkKIYQQQgghhBBCCCFE+nBEKKUOvEJkELNmzTK/DOSnqLZPCoLiSO58//33mbZ9QgghhBBCCCGEEEIIIdIXeVIIIYQQQgghhBBCCCGEECIuKEkhhBBCCCGEEEIIIYQQQoi4oCSFEEIIIYQQQgghhBBCCCHigjwphBBCCCGEEEIIIYQQQggRF9RJIYQQQgghhBBCCCGEEEKIuKAkhRBCCCGEEEIIIYQQQggh4kKe+HysEEIIIXIK//33n9u8ebMrUKCAO+KII+K9OUIIIYSIAmrPe/fudcWLF3dHHpk9axY17hBCCCFy3thDSQohhBBCpAkCBaVKlYr3ZgghhBAiRjZu3OhKlizpsiMadwghhBA5b+yhJIUQQggh0gSVjH7QUbBgwXhvjhBCCCGisGfPHgvw+2t3dkTjDiGEECLnjT2UpBBCCCFEmvBSCwQKFCwQQgghsj7ZWSZJ4w4hhBAi5409sqcIpRBCCCGEEEIIIYQQQgghsj3qpBAig/j+++/dhx9+6P7++2973qpVK1euXDl7vGjRIvfRRx9FfF2ePHncdddd56pWrZqp2yuEEEIIIYQQQgghhBCZjZIUQqQzS5YscY8//rglKIJceuml4STFd99955544omo71G0aFElKYQQQgghhBBCCCGEEDkeJSmESCc2bNjgunTpEu6QQGutUaNGrkyZMva8dOnS4XUrVarkOnfuHNVQpm3btuHnX3zxhcuXL5+7+OKLM3wfhBBCCCGEEEIIIYQQIjNRkkKIdOL44493n3/+uSUnmjVr5h5++GFLRkSiZs2adkuOf//913Xq1MmtWbPG1a9f3z322GPukksuyYCtF0IIIYQQQgghhBBCiMxHxtlCpJKvvvrK9ejRI/y8cOHC7vXXX3crVqxw77zzTtQERUrYv3+/q127tvlUTJ8+3SSj6tWr52bNmpXm9xZCCCGEEEIIIYQQQoh4oySFECnkyy+/dFdccYWrVauWe+aZZ9zs2bPDf7vlllvcmWeemW6fVbBgQTdixAj3448/ug4dOrijjz7azZw501122WWWvPjmm2/S7bOEEEIIIYQQQgghhBAis1GSQogUJCfq1q3r6tSpYz4RdDe0a9fOlS1bNsM/+7TTTnNDhw51P/30k7vrrrtc3rx53Zw5c6zTQgghhBBCCCGEEEIIIbIrSlIIEQPIOJGcoGuCboY777zTEgbDhw8PG2NnBphvv/LKK27dunVuwIABljTx7Nq1K9O2QwghhBBCCCGEEEIIIdIDJSmESIZ9+/aZYTW0aNHCrV271g0ZMiRTkxOJKVGihOvWrZuZdMOyZctcxYoVbbuEEEIIIYQQQgghhBAiu5An3hsgRFYnf/785gMxZswY16dPn3BiICsxceJEt23btrAU1B133BHvTRJCCCGEEEIIIYQQQohkUSeFEFHYuXNn+HGFChVc3759s2SCAh599FHXpUsXe9y+fXs3evToeG+SEEIIIYQQQgghhBBCJIuSFEJEYPLkyWaIPXXqVJcdIHkycOBA16lTJxcKhVzr1q3du+++G+/NEkLEgS+//NI1atTIFS9e3M4NdFolx6xZs9x5553njjnmGFeuXDk3cuTITNlWIYQQQgghhBBCCCUphEgEiYmmTZu6PXv2uLFjx7rsAsHIwYMHu3bt2rn//vvPNW/e3E2YMCHemyWEyGT279/vqlat6l555ZWY1l+/fr1r2LChu+yyy9ySJUvcfffdZ+eR7JKkFUIIIYQQQgghRPZGnhRCBJgxY4a77rrr3KFDh9wNN9zghg8f7rITRx55pBs6dKg7ePCgST4NGjTI9ierylQJIdKfa665xm6x8tprr7nTTjvNDRgwwJ6fddZZbu7cudadddVVV2XglgohhBAiMXRFwz///GNje24aywshhBAiIyGOmCdPHnfUUUe5eKEkhRD/x5w5c0wi5a+//rJ7uiiOPvroNL0nZtZbt251JUuWdCeeeKIto0Njw4YNUV9TpEgRd8opp6T6M5nIvPnmm+7MM890nTt31qRGCJEk8+fPd1dccUWCZSQn6KhIagDDzcN5TQghhEgL//77r9u3b5895hrDmPzXX3+18fT27dvdxo0b7e8FCxa0+927d9vfdu3a5S6//HK3fPlyt3btWvsbr0PC8OSTT3Z//PFHOOjP7ZJLLnE//vijjdHhwIEDNn4+9thj7TMZO5Mo4Hb66ae733//3e3du9eW060MrO8fe0444QR7ffD6GA2CALw+8XtEguKptM5JhBBCCCGSgvghhdp9+vRxvXv3dvFASQohnHMLFixwDRo0sEkKwbn33nvP5c2bN1XvxXsgszRq1Cj3+eef2wSHxy1btrS/z5492zVu3Djq6wkMUsGcFsh89urVK8EyJnalSpVK0/sKIXIev/32mytWrFiCZTwn8fDnn3+644477rDXPP30065v376ZuJVCCCFSC2PRv//+2wLdBLyRBdy8ebMF6Qm+E+TnRnC/evXq9pratWtbwc53331nY0jW9Qlq3ov3vPbaay3IjmTgs88+a0kCrhusw999AJ7HhQsXtud4vq1atcq2IT2ZOXPmYcvYN5+gCBJJzpBtYwyfGJIeiTsc/PqJIWkSKyRLYiWWRIYQQgghRFoYMWKE3b/wwgtKUggRT9544w2bmNWrV88SDFRepQQmLXRikIwgwcGkKNgZQWWWh+RH0aJFo05CfDLDG+ByosAIu27dula1lRqeeOIJ179/f/fZZ59Z9ZgQQqSFnj17um7duoWfk9BQElQIIVIOlfecQ4O3OnXqWNU+CYV3333XffvttxYA58YYkzErXbq8dty4ce7VV181yVKSBFT905HAmDIYVAcSEzVr1nQ///xzstvFBPWxxx4LdzZE4qWXXrL7l19+Odn3Y7uAjohYidStEA2SHyRSSJIkVcTDe9aqVcvWxZMJSKrwfdPdwHfGY7oimA/Ur1/fvnf+B2zLjh07bL3jjz/envOep556qitQoIB5O7GMDkUguePH/SR2eL8yZcq4QoUKufPOO8+e8z/jPTZt2mTvyX7wHvny5bM5BP+v1BZOCSGEEELECmMkxpCMU+KFkhRCOGeTO9q5aW+KVDWcHGvWrLEJpQd9d5INLVq0cGeccUaCdenU8O3lyfH666+btwS30qVL2/u1atXKlS9fPkWVWujLU7FGt8i0adNcjRo1UrB3QoicDPJyic9JPEdOI9r5kMBKSpO5QgiRGyCoT8AZuSE61bwcke8+IyDetm1bKxwhIRGpop5AO+O98ePHJ/t5VP/z3rF0JvB5sVb7BxPRSUFAH0lTAu3sC/vHNrGcrjwC7AT1161bZ+szPl62bJn7/vvvLWBPp0Lx4sXdlVde6UaOHOlOOukkK6hhgkxXMF0Pv/zyiyULSAYg38R78z3TncG1is/OrvKmTZo0ifcmCCGEEEI4xmskKapUqRK/bYjbJwsRZ5hI8SME7nv06BHT66hgo1uCyeejjz5qyypUqGCa7iQSmFQyuUpt10OQu+++24KEVMkxQXvyySftdvHFF9vn3HHHHeF9iAZ/pzuEVnxa4a+++mqr8MIcVwghOJ98+umnCZZNnz7dlgshhEgIlfaMAanCv/TSS8PL27RpY+OtaEkAAu50xjKmSypp7H0NPvnkk6jrEfh//PHHLWBP9T1dFWwTnbvc8ufPH/YwYHt5XzwY8CtLDjoCSAZw43XcSEr/8MMPNrZ96KGH7HNJJtx+++0mbfrUU0+5jh07hmVL6bBggkuCYdCgQdZRQIcAyQzkAnmPJUuWWPHNww8/bGNVkizNmzd3FStWTNCZx3MhhBBCCJGxEHuk2IT4ZrxQkkLkSpiwXXfdddZ+/cwzz1g7dXIweWJShSk1FW5M2O65556wITYdCuldxXXhhRfaDY+Kjz/+2OSkmPCRZEBjt0OHDjGfbCZNmmRdHPPmzXN33nmnmzVrVratOhNCRIfq0p9++in8nEAawSACSiRSkWoimPXWW2/Z3zkfDB482M5vVPciGUL1blIBMiGEyC0QYGfshDeDv3mfAzoGKHr5+uuvTbYnUoKiadOmlkRA7scbKhPs950HXpKJczSJBJIEQDEJiQG6DQja023gbyxr1KiRrcfrJ06caNuwaNEit3DhQjvnB82b6VrwkMCgI7dcuXLW7UvygGsDn8GNBAgduDz2SQ08JNgexpMffPCBJUD43JUrV9rf6WgAqu8wsGYbbrzxRhtnkpSALVu2WMIDSEw88sgjNgn2RT0kWyj4EUIIIYQQmY+XrUduNF4oSSFyJR999JEF4Jhkde/ePdkkxerVq22y5Sd5VHXRyRAM8mdkwJ9J4S233GI3Jnljxoyxyaz/TCaK6AsjMxUNJn+8jkkmXhdvv/22VbAJIXIWBKnQxU4s2cE5CykNziF0Znk4b3A+7Nq1q1W/EkzDC4ekphBC5GZI4g4dOvSw5QTWCfLjs4CxIOfWxFDEwvl0wIABllQAn0DGc8B7LSBXxLiS8RkJBA8JY54nHl8y5iNpMGTIEDd79my7ISuVGDoyzjnnHFepUqXw7eyzz7YCnaTGrO3atTO50fvvv989//zz4evENddcY2NJEiuMn3mP888/3xI2JERIXtx77722HkkdD4nxxPumbl4hhBBCiKzFv//+a/e+GCceKEkhch10RHTp0sUeP/DAA8m2kVNRjKwS1clUgNHNgC5uvLoQaL9nu4MQWERGgAkrgchoMEnGBJEJI++BDi6TYyFEzqFu3bqHmaUGiRRM4zVUBwshRG4ErwakmsaOHWvjPLwUgKA+CQmkixgvYZpMtwNdC+eee66tgwkzcppI5DFG27lzp3VVLF682MaOJAU8N910kyU3qlWrFr7RsRBpTOk7KgD5J5IRdMVOnjzZbdiwIcG6dPdecMEF1n1bvXp1e0yXRFJjVSaiJCNILlC44gt26ITALyP4+SRXpkyZYskJtoXiGZIsdPoyNsbkmQIYjLlJrvA33yGBFJQQQgghhMi6/PXXX+HH6qQQIhPB04EqYgL2tJonBRlEKsqYZBLEY/LqW9WzCgQjmRAiQYXW8Zw5c9zLL78c1fCWqmr0g9u3b59gAiqEEEIIkVvw4yc6JQj++8nZu+++ax0BdAdQ/U/yIdgZADz3SQp8yG6++WZ7XbBLDSiEQV6PxAR4L7NYYIJIYoAEAvdBY2ySEiRH6tSpY+NTkhN4UaQEkgivvPKKmVjTYcx418tTkXRAyspDFwYFOnRA8L2Q0EGyidf4bj2+B75H1ksPXzYhhBBCCJE5bNu2Lfz49NNPd/FCSQqRq6A93reu033AJCwp0NilyowK4379+iVrUh0PqJJDi5hKNbok2F7kXt5///3wpDgIWsMkKYQQQgghcmNygk4BjKfx+AomFDBubty4sY37rrzyynC7O2MtkhX8jVvQgPrDDz90zz33nD2mQARfhWuvvdY1bNjQlShRIsXb9tVXX1ligk5eOjc8eFHwvtzq1atn0kuxQiEL40OSCJ9++qn5YbBPdOEiF0piwUPCgqQLXSFInXoDbrzXPNu3bzc/CjrzkArkvUhMsG1CCCGEECJ7cSBQnMIYMF4cEUpKE0KIHASHOpOwL774wiaOTNQitcFTrcYkk8q07AbJh9tuu800kpElwOT7hhtuSPI1u3btsnVV9SaESItUCvrnmMZKQk4IkZVBkgizaIys6T5A0rNt27bm3+CLUeiqwE+Cv9MtwDrIMvFaPCbwXfAmz5s2bXL33HOPyW3i5ZNcAUy0iSG+YYMGDUpgcs0kkXFds2bNzP8htVKjnKMxx+YcPXXqVEvAePgeGDeSBPEdHHSJYMxNtwTdJCQoKNxhG/z3M2zYMOvg1Tk/+5ETrtk5YR+EEEKIrMLWrVvDqjF0B1OwEo/rtpIUIteAfi8avTjW//DDD4e1MKHN26dPH/fEE0+YfvCSJUvimkFMLcgKYLCNFAGTbXSEvWFjYsaNG2eSBkhgIf8khBCpQcECIURWBokiJJI8VP/TTYA/F/d0ozJuorOC57BixQpXoUIFG0utX7/ePfPMM1b8QRAfaSPkNdPKxo0bTXJp+PDh4a4Jkhx4V9x+++3usssuC29PSlv28a4g+eIhAcK+8L7+PL1gwQJ7zngXTwmfBGF66B+/8MILZqJds2ZNN3fu3Lh5son0Iydcs3PCPgghhBBZhb59+1o8FOjqpYM4HtftrKddI0QGQaB+9erVNiFLnKAga0ilGtrEQHv7SSed5LIjSAtg4Ig5No+jJSjgt99+s+q5Hj16uOuvv96q5IQQQgghcgrIX3bp0sVkjqpWrWrLMHz2xs9MyihgAToG6JLwptmYYNNNQNcAxSxAgoJlwUB+SqEjg8QI70snA5x22mnWkUFioVChQqneX8a0JFeYDDLBxEcCKEpJDN0hdIKw/9zzHIL7RRcHBTwXXXSRJWiCyR4hhBBCCJH9WbNmTQIvsnghfReRqzjxxBPDk08PWULa2klQoO9Luz1Vbdl5EoZ+MN4bVAp6kA/wSRgPk2HkDajeI1EhhBBCCJETYGxDAQpdCSQFnn322QQdDMg10UlBgP68886zBMXVV1+dILmBT8WQIUMsQYGU0+zZs62DgvVSk6CgMOTBBx90Z5xxho01SVBgfo23GJNDTKjTkqCAYsWK2bayT3SQBKF6jWSNh2KWTz75xK1bty6coFi6dKl1dniQgcIQnI6K7Dw2FkIIIYQQkQnKvyP1GS+UpBA5nuXLl5umWiRlM2SfmGhu2bLFKs0WLlxoE9qcBhNwukMwNPz222/Dy2n7f/XVV+0xhopBA0khhBBCiOwI8kxIfI4dO9bkkh555BGTagLGhBRo0HWKtNLQoUNt/IdvWTDxgNk0SQXGh6yL2Xbt2rVTtT10ICAXRScvRSR4OiCfRPHIrFmzXJMmTVIl6wTIk1KAQ+eEZ8SIEbZP1apVCy8jUYPhN52zP/74Y3j55ZdfHjbhxjC8evXqrlOnTva+WWGyKoQQQgghMhYKWXyMMJ5+tUpSiBwNrfxMtGhVx3chMf3797cA/qWXXuq++eabcEt8WqAqjiq7xx57zNWoUcNMF5EMCMIEMG/evIfdqFDjb0yM0xNONJhE8r6NGze2iaqnVq1ark2bNvb4rrvucv/880+6frYQQgghRGaBlwSSTHQHIKFEAcbjjz9u4yw6IkgS7Nq1y5IYBOI7dOhgkzGKWZDB9ODV8NZbb9k6devWTfX24PVAxy4dq/v27bMOB7oZ8HfAcyItsD8YG5JAodPBg9Zv4gkmvhNsB+NB9j8SJDXoPCFpQkeGEBnto8fv7OSTT3bHHXecq1Klilu0aFG8N0sIIYTIdVSvXt3uiV/GE3lSiBwNk0uMEKkQa9269WF/p9KMVnfa/dNaJUaFHu36VNt5bWOP1xv2kAhIvCxYbcdA3fPoo4+aV8SVV15pFXCpkRfg/agcRJt45cqV7rrrrjPJAv85VPex7UzEkTXo3Llzij9DCCGEECKeIJlEt8P27dtNTxcJJ+SKPHQrIOvJje4K5DFh//79rn379pY4WLx4sY27GG+1aNEi1dtCF8ZDDz3kRo4cac+LFCliCRLeM73Mp9mfwYMH23j2zjvvPOzvBHzx4WA/+cxRo0ZZAiMo20THBeuQxPHr+O9FiIwCvxcKpUjUTZkyxX4f/H6R5hVCCCFE5kLRNqR3wXRKOSIUSQNHiBwy+EVLmEkiOsRoAKenzjFeFsgneehQmDRpkj2mIgjZABILVPMVKFDAnXLKKQlMDSMlKdAOprrt/PPPD58gGKx7TeGSJUuG3xct5ZQaXa9du9ZdeOGFtv233HKLySD4ifJrr71mXSf33XefGUkKIUSsIDNywgknWJsoATAhhIgHjK2aNm1qHREEPhmPMQ6kgISOg0isXr3aXoMEKEH/8ePHuxtuuCFN2zF58mTrUv3jjz/seceOHc0o+6STTkrT+1LI0rNnT9ewYUNXr169JNelAKVXr15W7NKnT5+I67z88svmX4apdrATQ+RsssI1m84iCsnoPo8F5kJBjxX2AR8VjTuEEEKItMO4gGsr8UEUaeI19lAnhcixPPzwwzYxRWqJwLvnxRdftPZipJ5Sqv+Lhi+TQ7oO+OF6KQG44447TF+YBALt8knpuMXaQk/HxRNPPGGVgMgFbNq0yTo2uHHyoDvkjTfeiHn7MWr88MMPLcFBZwXfDbJUQAUh0gc+QSKEEEIIkZ2gA4AkA8kKCkQwyKa4w3swJE5UfPzxxyY3QwcsckiMjZAATS0EUbt37+5eeukle458DZ4XdLKmB88995wlEygyoerce0lEokyZMjZWZexITVqk7g3WQTKKZArrxlODWOQu+O1h8I68GN3ddLYjO8t8JBJPP/2069u3b6ZvpxBCCJEb+O//EhPx7mNQJ4XIkdCqj6YahzeGhHXq1LHlVNXR/cAPkGA95oGxwOQNPWNMpr1nAwH+4cOHW2IiM6CrAhkCEhbcli1bZttD90NKQRaASQDyURhpYxwphBDZuSpTCJE7oTuVoD3dAMEgO4kJEhS//PKLVVx//vnnrkKFCuG/k5Bo3ry5BekZJ44bNy5B12tK4fPwQMN8GiiQoSAmKK2UVg4cOOCuvvpqkymlgzcxiZMRCxYsMH+0pPj666+tyza9JKhE1icrXLO95nW3bt0sUYHsWJcuXayzu1WrVoetr04KIYQQIuNA9tOrvWREmiDWsYeSFCJHcuutt9pkk/t33nnHltHGTyUb1XLt2rVzw4YNS3ZCxmB40KBBZrrt3e5psaeFHq3jePLTTz9ZBZzXDaa74/vvv7fBfixJBxIsTAoKFSoUcaJNVVO0aiYhhMhqAQ8hRO6DwhESERSkIFvkJYu2bdtm3aEkKEhMTJ8+3ZUuXTr8OuQ58eeiaKVly5bu9ddfd3nypL7BnIQHHbV4WyDFiQ8F48W0wmSRohokOj3RuiLoIEG+aerUqVHHgch+IrPD/upcnXvJCtdsgiEUlCGf6yHRSLICs/vssA9CCCFETuHYY4+1+Ge85Z7U0ytyJLTzUxXnfSjohGjUqJElKFj+yiuvxFQxRvcCVXD8kJBwogoPneF4JyigXLly4QQFJ5P777/fdIfLly9vk2MqA5OCBEQwQeHXRwrrrLPOMv3k9evXZ/BeCCGEEEKkXtqTBEX+/Pldhw4dwr4NN954oyUoGBOheR9MUABdsIzlSCwgoZnaBAUJAwpZ6KAgQYEJ8NKlS9MtQdGgQQN7bxIQnkjjVyZ+nTt3to5bjLQjwYQTr433338/gQyqEPEAeTW60oMw/+B3K4QQQojMxScO4i39qSSFyJEg48Sk9dxzz7XJKoaIBNxPP/10m5xRvZOUVJRvMCKIj4k0QX9kkS6//HKXFWF/mCTTWbF582Yza8RbgqRKcrCvVN5h8E1SBk1YPCtYTsu1EEIIIURWY8KECe7ZZ5+1xyQakLD01dgkJphs0TFRtGjRw16LoTZeX3TVpnYyxviSJMcjjzxiz+lkpWOjePHiLj2gEAUZJnwnkvKeAPb1vffes+IctiMS7CcdFLVr17YxoxDxpFatWmZaH4RObuYyQgghhMhc8PPNCkjuSeR4qKxD2ogJHO3Diat2PBgQYnbIpDclfhVZib/++ssq6DDb9vJU11xzjckf+Ml7pJMRlUvbt283OQF0nTGzQwaBSTyGi143VgghIiHZBSFEZsKYDakYzj0E5QcMGBDuFnjooYds3EPnK50IHroRduzY4e688840f/6uXbusAGbGjBkW/KfYA9Pf9CAo58T+UGRzxhlnHLYehSVbtmyxApzkkinB4pxoclEi95AVrtnIOtHRhBk2HfDffPONdXmTOMQrJjvsgxBCCJET+Pvvv8NjxZNOOslig+mN5J5ErgRD6aeeesq0iD1oFSMDgEdFtAQFf6tSpYolKJhs4l+RHSGZgJkimsNUEiJfgFk4iYZoFClSxH3wwQe2LprKGIRjLo40AienoMSAEEIIIUQ8QZ6SogomO3SBIsvpYQz3/PPPm0dXMEGxZMkS17p1a9epUyfrskgLJAaoAidBwfiSbo30SlBQKNKiRYuwFjD7EylBQZLkqquuMgnTpORxPvnkEytEYVzoUYJCZAXwjGHexTFfuXJlm3+8+OKLMSUohBBCCJF+rFy5Mjw+ZGwbT5SkEDkK2v7RJ2aQ68Ec+ueff7aOgmhawhhs4+uAzNHy5cvDrfvZFTogXnrpJbdixQpL2rBfScEkd8iQIfa4d+/epmnsKw3x7xBCCCGEyArQFYvvA5KcFFcgi0TCImjyFyxKoWO0SZMm1nlw9dVXW/V2avntt9/Md4LxFfKYJDyCyZC0QEEJiZQxY8bYfiWXqGG/2O9ohSisg1fZunXrwobiQmQlKIpi3kUnOAESOimEEEIIkbls3bo1LHlPkXc8UZJC5BhWrVrlvvjiC6s6Y5B74MCBBEH7SO3vbdu2DSckMJ7+7LPPonZbZEcwjOzZs2eCyXWXLl1sop6Ydu3ambYyYL7YqlUra/mi/XrRokWZut1CCCGEEJGge4IkBX5h+D8wqaL6um7duiYDlbh9PWii/c4777ijjjoq1RM4EhTo6JcqVco8LapVq5ZOe+VcyZIl3ahRo9zdd99tnSJJwbh26tSptg3Rki7s56effmo+FcHiHSGEEEIIITyoyngJphNPPNHFEyUpRI7h1VdfDVflUNlWsWJF85aIBhM7JrgkNXgt8gCpnbhmB5jEM1EfNGiQGYBHMsZ55pln7KREVRMt2HShoElHFZ4QQgghRFYAeRi6I4CxHv4TCxYssKREkPvuu8/GewUKFHAfffRRqideJCjq1atnBTEkE2bOnJmsF0SsYzOqyD3NmjUzb7FIZt5//PGHdZF4kOWsWrXqYesFC1FOOeUU6zKm20QIIYQQQohIY8z9+/dnCQNtJSlEjmDfvn1WfQa0ymOaSPt74oq6IEggkZhgYotGcU4HjTmkrZigM8m96KKLrLU6cWUe6xxzzDHWiYIRJd8jhnZCCCGEEPFiw4YNh3mGYb5H9yd07949QTfs8OHDrQiF8Q8SSngzpAZ8ziju8BJPJCgi+USkJkHRq1cv687Yu3dvkuti+M24le2YNWtW1PW+/vprd9ppp7nPP/88zdsnhBBCCCFyPp988onJhAIy+PFESQqRI3j77bdNl5dWfvwUqHjjMRV0Qaiy27x5c/g5Ek+RvCpyKnhPkKCg+m/9+vUmEcBkO0iHDh2sUhB5gGLFirnjjjsubtsrhBBCCAHdunWzzgHvoQVIdmJkXa5cOfMkC4IsEzzxxBOuUaNGqfpMqsrwnCA5grQUYyY+Kz2gCOS1116zsSmyTEmRL18+d+qpp1orPvfRQNaJMfDAgQPD2sJCCCGEEEJEI9iJ/OOPP7p4oiSFyPYwCfNSTzfccIPJGQHG0XQEeMaPH296xchB0XmRW0EGiwkxCYpdu3a5K6+80mSvPEhelS1b9rDvmMq9oCmlEEIIIURmwBgEWSfGI7Vr17ZleGa98sor9phg/7HHHpvgNXTLfvvttwm8uVICY57bb7/d3qNw4cKWoKAAJr3A14L9Gjp0aLIeFOzbxIkT3VdffWXjuGgwnsMsG+NtOkiEEEIIIYRIip9++in8OH/+/C6eKEkhsj3IEp133nkmY8SE9Z9//rGKOd8hwYS2f//+NgGkdQkt4dxOkSJFzGSc74TvC73iSG1dJDPuvPNOd/HFF5scAcbiQgghhBCZBe3nXbt2tceMSSpVqmRjFzo/GeO1aNHCZJAiwfgwtcH6Hj16WGIgb968dl+hQgWXHgTHW3SGsB/RqtqCsk0U3kTywfDt+X6dfv36xX2CKYQQQgghsgfHBgp9vIF2vFCSQmR7jj/+eKsco4qOKjcmaLS5e6go81V0Xbp0MUNoTd7+dyJ65513TAYBDbpg14nXeabLggq/QoUK2TLfsSKEEEIIkRkwVlmyZIk74YQTXN++fW3Zb7/9ZgmKk046yfyzPBs3bnTXXXedW7duXZo+Ez+L5557zh4zxqxVq5ZLD95//33zzUjKMw3Yt3bt2rn69etbZ3A0MN0mQeM7SoQQQgghhEgJxEk9PvYXL5SkEDkGqv7hgQceCBsavvXWW2YEDUzy0OpFzkj8jyOPPNI0nDFZ9KBlDAQDvL7z4sWL7R7NZLwshBBCCCEyGoL1vvDkoYceMtkloCt20aJFVpxCd6hft2PHju6jjz6y+9RC90KnTp3sMUmRW2+9NV32he4P3o8ECkmQpPAJGMasSUlMYQg+e/ZsG6+RuBFCCCGEECIlIG/qIQ4YT44IyVVNZGMImjNRPeecc+w52r4XXHCBdVfMmzfP1atXzx06dMj16tUrnKwQ0Xn99ddd586dbYJP9R6SBFWqVLGKvzJlyrgNGzaYoTbyUEII4dmzZ48NaOjAineLqBAi58BY7pJLLrHuT7okfJIiEqNHj3YtW7a0zlA6L84888xUafJWr17dzmVM2Ch2SU9vBwpBXn75ZUtWJFc0wxQNw+7KlSsnuQ5jsvPPP99dccUV6badImeTE67ZOWEfhBBCiKxA8eLF3ZYtW+wxHnDXX3993K7b6qQQ2RavR4ye75QpU2wZxtgkKODkk082U8KmTZu6xx9/PM5bm/Vhovvll1+6P//80910001u1apVNtGn+wQ2bdoUTmSwjhBCCCFERvLLL79YR8Ftt91mCQomOAT58SNLHPy/77777HHv3r1TlaCgMAOvLiZPNWvWdCNGjEh38+lixYqZzGa0BAVFIb5+jM9OKkHh1+nevbsSFEIIIYQQIlUUKFAg/DipgqDMQEkKka27KH799VdLSlSsWPGwvzNB/frrr92oUaNM1ki4ZCe6w4YNM91lJujXXnut2759u2vQoIE9xpiRSsYdO3a4Dz74IN6bK4QQQogcDlJLdFA8/fTT9nzw4MHu3nvvdQ0bNkywHp0JjE/OPfdck/1MDchJIW9Jkcv48eMP8+pKDRR1XHPNNe6LL75Idt1ly5bZ9rdu3TqBuXZi5syZYwkZinWEEEIIIYRILX///bf78ccf7XG+fPncWWed5eKJIrci24IBNuzfv9+dd955bufOnTZh+/bbb8PrMNH0nRUieZiQ872WLVvWrV271rpQkMtCDzpv3rxm0Oj1moUQQgghMhomTEWLFnX79u1zL7zwgi3DVDoo0eQ9Huj+PProo1P8GchcDho0yB5T3FKiRIl02XbMtz/77DPrBGG8mhTfffedjbM2b94ctdOC74BuV3zW/HchhBBCCCFEakGhxndUxFs1RUkKkS2hqn/SpEnh5y1atHAnnnii+SXUqFHDJIlE6sCAcvLkyXaCwozxrrvuMiNy5AnQPUYf+o033oj3ZgohhBAih0InAQURQeu81157zTo8y5UrZ7JMHgopKFKhY6F27dqpkpRq06aNPe7WrdthXRppge4MOiPefffdZItmWrVqZfvMunny5Im4Tv78+d2rr75qXa933313um2nEEIIIYTIfRx99NFu5cqVYflUX5gcL2ScLbK1kaKvsGOCiQRRx44dbdl7773nbrzxxjhvZfYGnw9knv777z9LCPFYCCEiIQNLIUR6gmE1Qfv69eu7adOmWVXXaaedZpMnCiV8UgGYTBG4r1evnqtWrVqKPofkBn5mjCsvuOACN3fuXOsczSyYhlF4Ey0pkdTr0tsvQ+QecsI1OyfsgxBCCBFvDh06lEDilNgq3r7pjYyzRY7m448/Dj9mErt06dJwRRkm2UpQpB0qEqlO5PtMXFVI4kIIIYQQIr0hAO+lly677DK7R86JBEWZMmXc7bffnmB9/LLogEhpgsJ7WZCgYLI0bty4dElQrF692pIssYDHBqbXf/zxR5LrIRm1d+/e8HMlKIQQQgghRFrB+y1YLEMReDxJWdmOEFkEJmuexo0bW1KCajg0fx9++GGXFbKRP//8s/k6oJX8+++/x/Q6PDSQMUBeiYrB9DBtTAuYUyamf//+7qmnnrLs6vfff6+JshBCCCHSjQULFpi/GGOg9u3bm/QTcpPQo0ePsOfEb7/9ZhKV0fwbkgMPCG/IPWzYMHf66aenedsPHDhgfl4//PCDeaV16dIl6rr8/bHHHnO7du2yDuBOnTpFNcpu1KiRK1++vD1mrCiEEEIIIUR6jLuJpXqUpBAiFaDFu2zZMpMBICnBRM97UWRW0JxKv1WrVlnFHIkIn5DgRotUWrsN2I/SpUtbwsInLrivUKGCO/vss92RR2ZuIxRmjVQ2Ejigmm/FihU2wce0XAghhBAiPXj55ZftnsKTwoULWwcFUkyMi7zME2MwkgEE+EePHp3isQiTMcy3kVrCiDrocZEW6Oq4+eabLemR3HvipfbVV1+5MWPGuDvvvDPqenR3YBxetWpVd9JJJ6XLdgohhBBCCHHUUUdZAdDff/8dHsvGE3lSiGxJr169bBJ7zz33WGV/oUKFLGh+6qmnZujnYtiIqSGdHFOnTnVbtmyJui4ZSJ9YYLuSSyrwU6Qq0Cc8SApEg8rBq666yl199dXuyiuvtOcZCdtWs2ZNy7LecccdYWNy5BUGDBiQoZ8thMj6SBtaCJEekHQgIM9EiaKIYPKB84w/v+CVRSftcccdZ+Om4sWLp+hz6Mzo3r27JQowCyxWrFi67gfFHAUKFEi392N8yPslZ74tRG65ZueEfRBCCCHiTSgUsm5dYpD+eTyv20pSiGwLBzmTNXSKmbg1b9483T+DCruFCxdaUoIbj4MdEiQi6GoIdjr4+1NOOSXVXR38LLdt23ZYhwaPkRDYv39/eF0+4/zzzw8nLegoSakBYyy8//77Vm1IlpWkC90iTOqZOAshcjcKFggh0tMwu1KlSiYpGW2MhP8EHbXIP3nJplhZs2aNO+ecc8xw+80333StW7dO83YzJipZsmRMXa5Dhgxxl19+uXXGJgVm4SRhhEhvcsI1OyfsgxBCCBFvRo8e7Vq2bBl+Hu8kheSeRLaCToaLL77YNWjQwD3//PPWmpRUi3xqExOTJ092Y8eOddOmTTMpqSCVK1e2ZAC3Sy65JEN8I0g8kADghrRVYr+L+fPnhxMnS5YscYsWLbLbk08+aT98TBiRGbj++uvTLWGBrEKTJk3cRx99FH5PJBiY7JN5FUIIIYRICzNmzLB7vMaAcU7FihXNp8vzxRdfWIKCQpUHH3wwRe/PxKtDhw6WoEAylIRIenR/1K5d2xIrSDfR3RsN9ueuu+6y4ho6gElsRIJuXTpXeb86deqkeRuFEEIIIYRIzI8//phl/Cggc0XthUgjAwcOtKA4SQQmmOkJyQgSH3RBXHfdde7dd9+1ZUw26SBA4mjjxo1u+fLl7rnnnrMquHgYW6NNzISVykE8ITZv3uxGjhzpmjVrZlrFZCY/+OAD00RmUo/JdazG3cklTl555RXLeq5bty6cqOjdu3c67JUQQgghcjtvvPFGWFoSw+wWLVqYoTXFGZ6XXnrJ7vGnSKlHw4gRI9ysWbNsEjZ06NB08TH75ptvrKsUn7LkOinwlWAMR8VatAQFiRSkTH/99VcbiwohhBBCCJERECv041dijfFGck8i28ChevLJJ1viAMkh9IeppkNeKS0gJ4C/BW1OtNYDk962bdtaJ8KFF16YIfJJGQFdIGg4T5w40SbiPjlBMuXWW291nTt3TrPR9WuvveY6depkXSx8HpWMtG5ltpG3ECLrINkFIUR6895771nBBeO9DRs22FiMQhUvk0TlV0o6OfERO+uss+w89cILL7iuXbum27YyliSpgvxmLKbdSIcmNRFE1hPfjJ49e8bdwFDkPHLCNTsn7IMQQggRby655BI3b948e0yx9oQJE+J63VZUUWQbqHzz0ksYKpKwKFOmTKrei+A6P7569eq5KlWquGHDhlmCggo3gvubNm2ybgnMorNLggJIHJBUoXuCrg+0natXr24TZ7otmDxzEqIyj+8wNSCTcOmll9p3yHeDDFR6VCIKIYQQIveSuG6KDlbAM8KPxXxnQcOGDVMsNdmrVy+bGF1wwQXu3nvvdekJUqBJJSjwGfOwL8lVqlEA0rdvXyUohBBCCCFEhvHII4+Ex5sUBsUbJSlEtuGxxx5LEIwnmZDSBAKBdV5H98UNN9zgZs6cae+F9vHs2bNNPgmJgZxgVEj3BDIJyBAgk0AnBd8XWVKkocqWLesGDx5sFX0pgY4JzMrxvKCycdSoUUpSCCGEECLV7Nu3zwpPKIQ4cOCAGVHjCwZ0tnoefvhh863o169fit6fLlPGK8DYh7FfWqDQ45577nHr169Pdt05c+bYviEpmlQDO8U4dI8IIYQQQgiRGfzxxx9W1OzHy/FGSQqRLWASOHfu3PDzBx54wJ177rkpeg+C83QZtG/f3oLrdGLQRs97MynE9DAnBtvZpxo1arh33nnHJv14SGDIjZcF8k98j96oMlYwsRw3blyWyLQKIYQQInvz6aefWgcoxSMUitD9SUC/bt26CWQ9GdNcdtllKZKu5H2QduK+efPmNhZMK3hG4NPF9iXXmcoYEx81JKGijTN37Njhbr/9dpO3ogtWCCGEEEKIjIbCH19EQ1F3vFGSQmQLBg0aFH586qmnpsisGekmJqXIHC1evNh00NAiZjKMLFKpUqVcboHvrk+fPpakefXVV817g0kzJuDINv38888pfk/0oZmkp7d0ghBCCCFyB++//77d09nKRAkDbaC71U+a6LZIDR9++KF1M5D8ePrpp9Nle+lUrVWrlvlG4JOWFBh9k3jA/ywaBQoUcK1atTLPDMZjQgghhBBCZCSoquTLly/8PDXxwPRGxtkiy3Po0CFXuHBht3fvXns+ZcoUd/XVVyf7OqrWBgwYYIkIpAOoXmvXrp174oknXNGiRTNhy7M+VO6R8BkyZIgFAJCIeuihh1z37t1NDzk5MH5kPb5rJul4hsTyOiFEzkIGlkKI1MIYrUiRIna/aNEiG0fQ7YC8JGbXJBdINCD79OCDD5rkU6wwPjn77LOtaxbZUHwe0gvGQGxjesL2yodCZDQ54ZqdE/ZBCCGEiCe//vqrK1myZIKiZhRXMgIZZ4scAxNLKsyYtFFRl1yCgrwbpthMSjGBYdKLAfbChQvNIFsJiv8PnRRU9i1ZssRMxNGie/zxx92ZZ55pck7J5TCZnHvzcuQOJk6cmElbLoQQQoicwGeffWZjNbyykHFiDEJyguXeI+zFF1+0Sc2ff/6Z4k5cxpHIU1KEkVYoxvAklaBYu3atjUEptEmuWCQ41lKCQgghhBBCZAaMq0lMeChajjdKUogsD/4HSDatWrXKkgxJsXXrVtewYUMzxWZSWqJECTdmzBjzszj//PMzbZuzG5UrV3aff/65++CDDyxIwPeN0TaJCx4nxd133x1+PHDgwEzYWiGEEELkRKkn79lANwV+WoBUJ3JNefLkcXfddVfM78uYkO5ZQOYprZ2eX3/9tStdurRJhiZVxEGHRevWrd2TTz7punXrlmTXBP4ajFm3b9+epm0TQgghhBAiJZQrV84KvD2+OCieKEkhsjzIENEFQRVcUlVrmC1Wq1bN5KDIACIHQGLjtttuy5GG2OkN3xET5RUrVlg3Bdp0s2bNCn+n0bjmmmvCj7/99lv3+++/Z9IWCyGEECK7V3BNmjQpnKSgozMxI0aMCP+dsWCsIO+EVGj16tXNlDqtjBo1ynwxvvvuuyTHlYxV8ek67bTT3AMPPBB1vfnz57uVK1e6efPmJWu+LYQQQgghRHrCuBt/Wo+SFEIkA10QTZo0cRdddJFV+EeqXCOJgSP9FVdc4X777TeTeaLqjuq5/Pnzx2W7szOcmJAoWLp0qTv33HOtuq9BgwauZ8+eZqyTmDPOOCOBhFavXr0yeYuFEEIIkR2hm6Bz586ubt265kOB7wTdnUg9+ckT8pNBE+1YQG7p9ddft8d0PqSHd8Qrr7xiht4YYSfHTTfd5H788Ucbu0aDLopvvvnGjR071p1yyilp3j4hhBBCCCFiZdeuXW7//v3h58GERbxQkkJkWUhIICX0ySef2PNzzjnnsMo1WvmvuuoqM3+mvb5NmzY24SNRIdLe+vXVV1+F5Zz69+9vQYSNGzcmWI//Ccs977zzTsRkhhBCCCFEkBNPPNE99dRT1g1LNwFjvh9++CFsqMdzfCCQ7ySoHysUqlDEgo/ZpZdemi7byniHcSZ+XpFg+4OeGchTJQfdqllhQiiEEEIIIXIX06dPD3vMwsknn+zijZIUIsvy9ttvm0mip3bt2gn+PmPGDJvcffHFFyZNRBs+FW5p1RwWLoGB4+DBg917771nAQMkCeiu+PTTTxOsFwwAUK1IBaMQQgghRKwgMcm4r1ixYmE/itGjR9s9ck1HHXVUTO+zZs0a99Zbb9njvn37pmmbSDzQkRFL8QXJFsZIFMskBZ0diQs+hBBCCCGEyExWr17tNmzYYI+JqdapU8fFGyUpRJaErgjkhcB3T/hAOJVxTDq9vFOlSpXcokWLXMuWLeO6zTkZdKCR0DrvvPNM/glz8u7du4c1lPGlYNKNPBeeFJidCyGEEEJEg/HC1KlTw23mEydOtHtkPr08E4bXyEi2atUq5vfFV4txJFKVSEilhRdffNG1a9fOOjKSMsumg4JCGSZ769ati7rehx9+6O6//35LZtBiL4QQQgghRDy47rrr3PXXX2+PTz31VBs/xxslKUSWhMr9X3/91R4zKcQI+4ILLrBJID+iPn362HL0ialYO+uss+K9yTkevCeQf0I7Gp599llLTmBKyd+6du1qJuV0XwghhBBCJMXkyZMt+M+NSdFHH30UnjB5zjzzTPfkk0/GPM4jSUDBBDBWTCt4RSDv1Lx58yTNsvHzwlD75ZdfdrfcckvU9fDbIHHSsWNHV6hQoTRvnxBCCCGEEKkBeSff3Ysayvr16128SV4sVYhMhk4JjJuDYJyNuWLjxo3dl19+aYHwYcOGuRYtWsRtO3MjJIsGDRpkbWCtW7c2qS20lKdMmRLWr0MSAW07TnBUH+bNmzfemy2EEEKILAZjCGBMsXDhQrd582ZXoEABV69evVS/p++iaNSokRW3pBXGmXRkRPOhCMI699xzT5LrVKhQwaQzk+rKEEIIIYQQIqMZN26cqdJ41EkhRJQfyk8//WSP/aQQmSEME0lQ4I0wbdq0LJmg+Oyzz0w/2UsX+NZ+jKWRKwhCpWDNmjXdqlWrwsuYpHfo0MENGTIkwborVqywoH9WMaRu2rSpeYKQmGCbkeJatmyZGzlypFUIMqHHcBsdZyGEEEKIIATpGUcAxQ5e6onxAwURdETcfPPNh3lgJQXjqbFjx6ZbF4WHsU60LgrGZ3PmzEn2PQ4ePJjAUPvoo49Ot+0TQgghhBAipezcuTMssQoo18QbJSlEluPaa691JUqUsMdt2rRxDzzwgAX6aaMvUqSIGSsGjZrjAUmSm266yT3zzDMJlt96663mjfHLL7+El+HhMHv2bJtwB/n222/d/PnzEyQ0li9f7oYPH24SCEFuuOEGd/rpp1uHgoekBebivCYeUKHIxJz/1cqVK92VV15p/y+fYAIkGuiAEUIIIYQIJhS2bNlinbEXX3yxq1+/vvlOIBsJFHwg/fnqq6/G/J79+vWzCjA8LShuSS3IWNKJQRFGcp2/jHtq167tRowYEXU92ugZw7EvWaFCTQghhBBCiIkTJyYYm55wwgku3ihJIbIc/DConMM4m4kmnRUE/UuXLu3mzp1rZoOZBT9YKvn47GDwfdOmTe79998PSxV4kCxgoh3MRlIhyD5gNB2ECS0nBfwcPOwbk2ySHYm1jqksRJvZw2fTTfLggw8mWJdJPT4d3tQ6I0EjGtmC8uXLu61bt4Yn91QJAr4i48ePz/DtEEIIIUT2wY+fatWqZYkKJJ7oxkTWk7EXSQqItWuWjgbGWunRRYFkFMUit99+uyUikuqOqFKlio1b8eiKBskJpKzeeustJSmEEEIIIUSW4Pjjj08Qu8wKfmnypBBZknPOOccdOnTIJn1//PGHBefpIihZsmSGfebPP/9snQlHHXWUJUiAH+yaNWusCo6qv3LlytlyOjkGDBhwWKWelysIQvUct8RcddVVhy0jSREpCUMXCRPboNwAJxCSIjVq1AgvQw6qbdu2bt++fW7p0qX2PcKOHTssycFJKL0pU6aMdVRgfLlkyRJbVrZs2XBSZ/DgwdZdIoQQQggBXuopkv8EYwqKU5D3JGkRC88//7xJSCGlWa1atTRt2/33329JBTo7GBNGI1++fFZwQtdosWLFoq7H30899VQb9/kiDiGEEEIIIeLJ4sWLXdWqVU26Pat0UhwRknObyCIgGXTXXXe5e++91/R/kQ+iSo3JJgmKwoULp+vnITNA4N77XiDJhHcEE0k6AHxCgM9mPRIS+fPnd1mZ33//3d1xxx1WUfjjjz+Gs6IkXZjA9+jRwyoEM4Ldu3dbRSEJHb47Ti3+/uuvvzavCiFEzmTPnj02qOE8QGBRCCGiQXcCY7pdu3a5BQsWmPzlRRddZOMsxg2MY9544w27T0pGKTieo2CCDlLej/cSQuTsa3ZO2AchhBAinlxzzTXmq+uhMLtixYpxvW5L7klkGV555RXzmyBRQVW+NxnEkyK9ExT33XefeSkwCfYQRG/WrJkZXAfb+5FvQm84qycoAM+Ojz/+2Lo/gm1b+GHQZRE84XCSeO6559zatWvT5bM54fA/BJ/79Pd+uRBCCCFyN4xP6JYYNGiQO+WUU9zdd99tPlfIRjL2Q04zJVJPL7/8siUoLrnkkjQlKGI1C0SWirEqSZZo0P2KiXdSclFCCCGEEELEg4MHD1pxs4dCoaAUfbxQkkJkCQiYjxo1yh7/9ttvCSaKJAnSwoYNG1z//v0TGDjjoUAAnW6DoO8DE8p77rkn27fjB2WhAONxkhHIIHjQW37ooYfMqDy9uOyyyyJKI/A/kA6zEEIIIRijVK5c2XXu3Nk8yADpShIWM2fOtDEhj5HWTA58sIYMGRIuakktyGTis0URC4+jsX//fvscPtOPWyMxdOhQMwFv0KBBuGBDCCGEEEKIrEC3bt1c3rx5w7FP4nhZIQ6qJIXIEmAmyKTQV//79h8yeUWLFk31+9I9QFUdckeff/55eHnz5s1N73jYsGEuvcA7g6RHMMHyww8/mBZx4onsU089ZZWDtFN51q9f75544gk3ZsyYBOuii4yMU1qD/PhiBLtB6E654oor3C233BJexkSa6sCPPvrIvruUwvt7H4zixYvbPR0r7777boLODiGEEEKIadOm2b0vmKDzAG+uJk2axDRuoCOWjgaKTxo1apTq7ZgwYYIVVNCNmtQEDW8vOj1uuukmGy8l5VdRoEAB26/EhSNCCCGEEELEiz///NONGzfOfGT9eJuu5qyAooYi7hAYx1wZfCAebTRIads+iQLMrz1MNNu0aWPGjEwWg6bTpUqVStX2koh46aWXDksmVKpUyeSUvOkMLF++3D3yyCMmDRCEoP2rr77qNm3aFF72/fffu0cffdTeO8jNN99siZrg5/G6F154IYF+XErB8wO/jd69e4eXffXVV1YdeOutt1p1YmoTTtu2bTMTHhIj+Hs0bNgwycpEIYQQQuR8Dh06ZIbUr7/+unW4IvMJFE0A4wXGD35cmBQUUwwcODBsdp2WYgikpUiYDB8+3B177LFJrot/2fjx493RRx8ddR32kUIUClKEEEIIIYTIKhx33HHmCYz0KmNzOPvss7NE92/8ezlErodAOZ4JHpIJPqCdkmwe8gBly5a1Vnyq8EgaAJ0MqZ24kkiYN2+evQfvDUyekQNAhoCODA9dH2QkDxw4EF525plnmvGj3xZPx44dTXv5tNNOCy+j84B1MX8M4k8aQX04TCaZkJ9//vnm3+EZMGCAnVhIbJQuXTqmfQxW+PHZSEBRyXjiiSeGl7/44otmaMk+J1cRiISDhyRKzZo1bXuvv/56S8Bw8hNCCCFE7uPrr7+2YoYpU6a4KlWqWBcE3bOMMYLE0m7+wQcfWPcDnaEtW7ZM87YlJS9KQgXtXvy3YsV3lAohhBBCCJGVOOmkkxL4q1EUPWLECBdvlKQQcYWAeqdOnRIsI+j+5Zdfhs2skwIpJD8JZJJLdwAyTjjGe2JJUGzZssV8G5iEEvz30AGxcOFC17hx43CSgiD8jTfeaAmCIHPnzj3ss6pVqxbxhx5JIoD3i7TuN998Y9WCweTAySefbImIxMY2JBPosuB780kKJKeQumLynVyCoGTJku6ZZ5457DtGf5nEBcmGxIGEpNi5c6clmqZOnWrbQKUknRWSPhBCCCFyH1988YXd0+GK/4TvTCApwXiFYomgNGVS48fnnnvOHuMlRkVYaqBIhs5a5JmSAplOxmjIhEbz8mL81bp1axuLBQs2hBBCCCGEyAocPHjQHXPMMaZC89hjj4WXJ9UhnJlI7knEFSr/161bF/Yu8OaJdBlg3EJHRCR27NjhrrrqKjM55LFn9OjRbtGiRVa9nxS8Zvv27eHnaLExyX322WcTtDi1a9fOfCK8zwIw8Xzvvfdcjx49ErxnRnouMHkPGlJfcsklJhnFpNlDEoHkxw033JDge8OUks6P7t27H9Z5EgtIcNHhgT50MEGBpFM02C4SRgsWLLBqSaocfTJI0gdCCCFE7iSYpKC4Ay6//HK7pwCE8cLs2bOTfR+KWSicQJopKW+IpPj777/dddddZ12vdMkmtR6FLIxhmNhF48EHH7T90zhHCCGEEEJkNQ4dOmQxVGRJGdcWK1Ys/LegIkw8UZJCxI0ZM2aYtBD079/ffCKosEdC6eeff3affPJJ1Mo41v3tt9/sh+S7LryhYXIwiWQSHDTNJjFCZRwTXSajng4dOriHH37YfshJQafD2rVr3ZIlSw4zYiSZEZxw0+WB9nFiaQLMqkkkeBNJIGFCoH/NmjWWhEgKkhgYhCN/EPTfoNuChA7dIB4ksTgh0b1Bt0Ny3RVDhw61ffEga1W1alXrzqDTIjF0TiDjRTaWGwkN/x3ieYExpRBCCCFyD4zZkHvySQrGK3PmzDETavwbuFEYQRdqcjz//PN2T+dCkSJFUrU9jDXZJsY0iTtTgzCOoQAGmSoKQZIqvCHR8tprr6Vqe4QQQgghhMgoiNGtX7/eVE5QWSFulxlF1ykha2yFyHXQKUEygiA8VfoE5zGOplWe4Dnt/gTWPUgAdOnSJWyszQ8I00VMrKmCiwavo4UJGScPPhB8Lq8NTkAnTZpkJtJ58+ZNctv5IfOeeFV4MJ0pV66cq1OnToJ1J0+ebPJJGFJ72BbMvYMG3/6EQScHE/ZgMuHiiy92FSpUSCBhxftiyB1LtSETarwh2rdvH17GZJvtoJuEhI+HkxWJlkiGOUGJJvaH15I88V0SQbxMF8bh+FhA8Lshc4sslxAiY3jllVdMoo4q44suushk45ICeZKKFStaYhjpk65duyY4bwohRFr57rvvrBDklFNOsaQA4y06Q0899VQr1PDJi+R8H+jApZAFOFellvLly1tihDFScp/JuZQCk6TkKpEfpdM2ucIWIYQQQgghMpuGDRtawRCFw0g+eS9gCCq3xBMlKUSmQ6KBiR6dEExUCbYnZTLID4dJLM7zTP481atXT2A8Helz8Ld4/PHHTXLIc+utt1oy5M0330xyOwnCP/roo1alF2T8+PH2nnSCeAgGomeM+YxPpACdBkgtBQ3A0Vqm2s5XAXqQO2CyXatWrQRJCt6bCXzQyJokBWbeXjYBmPg3atTIOj+oCkwKEga0d40bNy484SYxgUQBUlHIGiQF20qCAnmtYFIHvWaSKT5JQWC0QYMGYUkt///FoIf/Q7BrRQiRPiAF161bN0u6ImFC1xNJ32gSbe+88451fLE+CVcSwLxHr169Mn3bhRA5F99FwRghcbB/4sSJdp9U4YmH7k7GLMhKUsSRFkjMJvYY8zCeoYAlUuFG4o4MIUTK6NOnj50Hgjek14QQQgiRcTAOpyicWNzevXuzXJKCgbcQmcpTTz3FbC901FFH2X2HDh1CBw8etL/9888/oZtvvtnW2b9/f/g1zz33XKhJkyah1atXR3zPv/76K/TWW2+FWrVqlWB5r169Qo0bNw7NnTs3yW1atmxZ6PHHHw998skn4WW7du2y7eP2xx9/hJePGTPGtjm4Lvz333+hzGL8+PGhO++8MzR16tTwsqVLl9q2FixYMPTvv/+Glw8ZMiTUp0+f0A8//JDke+7ZsyfUtGnT0IknnmiPPdOnTw+9/vrroQMHDiT5+kmTJtnnly5dOrRq1Sp7nCdPntCSJUvscd68eUP33ntveDn3PXv2TNP3IIQ4nAsvvDB09913h59zPihevHjo6aefjrg+69arVy/Bsm7duoVq1aoV9TM45+7evTt827hxo/2meSyEEJHo2rVr6Igjjgg9+eSTodtuu83GMevXrw9t3rzZlnMO+fXXX5N8D849hQsXtnUnTJiQqu345ZdfQtOmTUt2vc6dO9vncB+NDz/80MY0vXv3TtW2CBEPuFbH+5rNb6ZSpUqhLVu2hG+///57ttoHIYQQIjuwd+9em68Dsb4CBQqETj311NBxxx0XjnkWKlQoQ7ch1uu2khQiU5kzZ044OXHMMcfY/eDBg0P58uULtWjRIvT999+HExjLly+POQHABNcHvnmPpCBgR0D/77//TjBQ5rXNmjVLsO6DDz5o27dz585QVmfr1q2WkHj22WcTLK9Tp47t2/Dhw8PLODF9++23lhSKFAAI0qhRI3t99+7dk/z82bNnh8qXL2/fGf+vIkWK2Ovmz58fOu200+zxyy+/HE5Y+JPhZ599luZ9F0L8DxK+nD8TB+9atmxpCdtIkHg94YQTQl9//bU9X7t2bejMM8+0QGI0/Dkz8U3BAiFEUlAA8vPPP4fHgjweOnSoPSbBmhxvv/22rVuyZMkE47iUwHgzlkKJRx99NHT00UdbsUY07rrrLhVdiGxHVgjwM46oWrVqtt4HIYQQIjvQpk0bK0aePHmyzfmLFi0aOuOMMxLM4+vXr5+h2xDrdVtyTyLT+OOPP1yzZs3MABr5poMHD5qUEf4UGBfSbrRw4UJbl3Xuv//+8GuDsgAk1+bPn5/A+Bo5pHvvvdckkJCQigbve/rpp5v8CdrInmuuuca8G7w0kQePCCSQgr4NWZWiRYu6O++804zBg+D5cfPNN5tEU9B7AnkDJLMSgzZdEF7Hdxb0tNiwYYMZlgclEGrXru2WLVsWbt/2kk/9+vUzjelzzjnHtO6HDx9uetKYlAPSX5HMt4UQqTvPcp7D2ycIz5HYi8Rtt91mv1POy/jzoBVft27dJOWeevbsaVIo/rZx48Z03xchRM4D7wf8qjhPca6h3TwlUk9o6EKHDh1cnjx5Uvz5jFvw0kKqMikTbOC8iJTTFVdckaT/DxKceJUJIVIG0rFIwTLPwKswKb865o179uxJcBNCCCFE0iAhj/8vkusFChSwOB3X248//jiB9H4kr9l4oCSFyBSYFOLt8Ouvv5p+MP4NcPvtt4e9HZgEenNXkhcYuUYCY+eaNWtaUuL3338PL8fngaDaySefbM8xfcWI8bnnnkugs4Y/xPHHH2+Bcg/Gsh988IEFzHMa7BP68kH/DhJDnKAuu+yyBOuSGOJ7YCLgwbAcPwmCCZ4XXnjBfC34HyQ2lvT/W05+BDzxA9m5c6dbunSpa9KkiWvXrp0rUaKE/b9IFvE/ZGJCwEIIkfnMmjXLPfXUU+7VV181Dws8aTClxXsnGiQzCxYsmOAmhBCx4P20fPEEgf6BAwdaQUVSUAgxb948S04wlkgNFFEwhiGxGqlQIzGRvNIimRAy/hFCxA5zr5EjR5pxPcnH9evXu0svvTSBPnaQp59+2pKc/kbhkxBCCCGShtgn42eutxQW+7n82Wefbd5s/nlSRTmZSob2cwjxf3iZHySeZsyYEW7zX7RoUejII48Mt/yff/759vjdd98NvxbpoKBGMc8vueSSUOvWrcO6apEI+iJs3749vBy900OHDoVyO8gkBL0nVqxYYd8X0gbJyVs98MADpl8X9MRAOirohfHnn3+Gxo0bFypbtqzJa0X7Hx1//PH2uUlJywghMk7uifMpv+kgo0ePtt948DedFJJdEEIkBZ44l156qY0LqlSpcthYLxbwsOB1N910U4ZtJ+NFWuLxrYjGvn37zDstOa8uIbIqWfGazdwDX70RI0ZE/Lu8sIQQQoi0kTh+ilwp19Jzzz3XfNYyEsk9iSwD1WpIg8Dzzz8fbvOno4Eq+//++8/+tn37dquSA/4GVNVcfPHF1jlx6NChcBXc7Nmz3ZtvvulKlixpy5AL6tu3r1XieSpWrGgyTvfcc0/4tb6NiQr/3A6ViHRTBDOsSEW1bds2gbzVAw88YG1gQUkmulPoiglmW9944w2rSpw+fbo9p6rwlltucT/++KNJPcGff/7pJk2aZJXaV155pZswYYJVb3tZBdq+hRCpBwkTpNx8pTJwjuU559JIILd35JEJhwN0nUFQ0k0IIVLLzJkz3Zw5c0wuknEgJO7mTAqqq99++2173KlTpxR/PuPO3r17u02bNiW53qOPPmrjy5tuuinqOrwPnbuNGzdO8XYIISLD3INue7q3I6EOTiGEECJ2iI0ike/n81u2bDF5RboWWY7KycqVK+1vSOF7hZt4oySFyFD4QZAk2Ldvn6tVq5b5EPDjIEmA1BP66T4pQQAbX4oiRYqY3JPXUWdCu23bNpMh8SQOqOFRgRfCM888Y+/h+fTTT+3HmZRPhfgfpUuXNg+O1157Lbxsx44dbvDgweb1QVIiyIknnhj+P/B/fumll+zktmLFigTr8b8mSMr7MgFp2rSp+VuQzBg1apQdByQskJjq2LGjgqJCpJFu3bqZ9wu/LwYeBPTQomzTpo39vWXLluHEMTRq1MikFsaNG2eJYX6bBOpY7pMVQgiRWriuezlPL+1I8QJFI8g2MVEiWZoUJCgYS5555pnmmZNSxo4da8UQjDeDhSuJweuCVvj+/ftHXYfJHTJQXbt2TfF2CCEiw+977dq15jMohBBCiNSzevVq99BDD1l8zRcRz50718bkxObGjBljnhRBL6isEodLueOcECmASnkOfgLVQ4cOtS6Is846y7or8C6gQwKo4Ke6jSoZkhTeKJt1xo8fb5U13ggWk1YC3iy7/vrrbRnVbBguJlX5JlIOnRYEBqjCDmo3ox9N5wsJqJNOOsn+X+jas5wTYbDakA4LDL2p7iYwQAcH/hgEJFatWmXJJwKklStXtkrLt956y7Vq1SpOeyxE9ocOJrxeMHLFLLtatWqmQenPoQxGgoleOqX4DXNPMpJzMAkKkpNCCJFW6JLErI8xHgFIPK7wo6Co4fXXX7eJEsnTaDBp8l2XJF39GDEl0F1LcqFBgwbWcRYNvLIYzyT1GVSeUVzhdXyFECmHTm3GGmXKlLFubeYMFEbceuut8d40IYQQIltToUIF85fEMLt+/fq2jFgpheMUihOTI+7mlWwgcVFy3MhQ0SmRq9m1a1eoePHipjv28MMP27L27dvb8+7du5u3RP/+/UOXX365+UT88ccfYX+Czz//POr79unTx9apUaNGJu6NCHpPlCpVyv4H0XRjgf9vuXLlbL3zzjvPNJzxu+D53LlzQ7fccos97tatm3mEcCzw/OSTT7bjQQiRfciK+tZCiKwBHjecHy6++OLwMq77AwcOtOVXXnllkq+fM2eOrZcvX75kPbOSgnEJflyRiMV/h9cLkRPICtds5gGnnnpqKG/evKESJUrY859++ilb7YMQQgiRlfk3mfEtsViupdxatGiRodsiTwoRdx5++GGrjClXrpw9Bqrp6aqgaoYqte7du7vPP//cWv5PPvlkkyOpU6eOtdF76LoItiHdfffd1q5PdX5WaUnKTfCdI6uF30eLFi3Cy8nCIhUTbNvmfwpIdtEV4zXx0aO++eab7fHIkSMto9u8eXOTf6BD4/7778/0/RJCCCFE+vP111/b/UUXXRRexlhw2rRp9piuhKSg2wKaNWuWwDMrpTDupHIsMYxXGH8gW/nPP/9E7Qahy4KOTyFE2kFiknkicq900/OcLishhBBCpByupT169EgwlkU9YfLkyVG9X/fs2RN+fMIJJ7isgJIUIkNYsGBBuDUfaSZa4jFQJrHARBDNX9qJ7rjjDvOb8GCszQQQSShAIooBq09yAAkNtI2RBEpNy79IG0zwacXG7yMomYD0U/ny5d0777wTlorCfIf1STyQaPJG25hnX3311Za4wPdi4cKF7v333zddav6ntJ4FjX+FEEIIkT3xfhRVqlQJe1IQmJw9e7Y99m3okSCB8N5779ljxowpBRlKbkn5UIwYMcL98MMPbtCgQVGTFMjnUWDx9NNPq0BGCCGEEEJkGf755x/XsGFDKyZGTtFDzNUXA3/77bc2JkdqHxko2Lt3b3jdggULuqyAkhQi3cG4GmNkJnFU2zOh4+D/4IMPwkkGAtF0TOBXQLZv6tSpNnl96qmnEiQe8EHg/dBVjzZxFPGHIAKJKLRkg4aWJCGoPPSVlBheAgmOn376yY4PwJukS5cuVmVJpwzgbYGZuhBCCCGyJ4wFS5UqZV438+bNcyeeeKIlA7766ivzpsIrh/FfNChg2L9/vxVB+G7MWKFAolevXlZEQXFENDp37mxFMYMHD3bHHntsxHUouGE97lUgI4QQQgghsgp58uQxDwpUbLp27RpeTnEQKjTE5PCppDCHwvAXXnghHMfLakkKGWeLdAcTZDJzGCpzj1xT3759zYgQmjZt6tauXWs3Jnp0VZCkYF0C3aVLlw5XyyEPxfJKlSrFea9EUuTPn9/+h/yvg1JdmOD5bguytvxfSWRwsiT5hMEvZpocA37S369fPzd27Fg7Pjh5BrtohBBCCJF94NpOooFkBUkGilYYH06fPj3cRZFU0P/NN9+0+9atW6c4OUBHZ//+/S1Bcf3110ddj3EJ45CkoAWe5IoQQgghhBBZjcaNG1sRMJKqHmKrjLl37txp490bbrjBjLMZVydOUlx11VUuK3AExhTx3giRc0DTDHkmDnyqzc477zz34osvWqCZRAOaaHRF0FXRqVMn66YgedGgQQM3ZcoUew+q7KiyZxIrsi/r1q1zFStWDHfAXHLJJW7OnDmWsCJxgf/IKaecYn+fP3++u/TSS229bt26uYEDB4azuSQr6L4RQmTtcz9BvN27d2eZKgwhRNbhr7/+snMDBQqM8eicxZOKJETLli0jvobrPxVhJCeQjCxZsmS6bhN6+IxDGJtGg0KZypUrp+vnChFvcsI1OyfsgxBCCJFafvjhB5N2Qm6dGGoQZE6D0uzRYB3G5rBlyxYbF8f7ui25J5GuDBgwwBIUFSpUcG3btrXWojFjxoSDzkwE+cF4v4F69epZdZ3XK2Z9Jq4abGZ/MEfHY4LOmXPPPdf+t9CzZ0+7+RPgk08+6WrXrm2JLI6F448/3gISZH05kXE8CCGEECL7wUSEa/vixYttElS0aFF3+umnmxk240XGCNEYNWpUuNsivRMUbAs+WXR3kDSJBNKUSFF5CVMhhBBCCCHizX///Wc+sZ999pm7//77E/wNmdRatWol66NGsbBPUFBoXqhQIZcVUJJCpBtbt261tnpA/zfYZuSNWS688EJrv8ccG3Cap1IO3WCyeFTaY66NpprI3tBORrcEMg8EJ5BuQn8aPbxHHnnEqiqBRAQg+0RyAi29ZcuWWYIDMLzcsGFDXPdFCCGEECmHcV+JEiVsLAAkBbxsE1VfFCZEm3z5JAVjiZSwadMma1lnTBkNTLBZj67PaN2aGAyyrVR9yYdCCCGEEEJkBY488kjroEDeCY+JIO+9955btGiRFZATowUKx0laHDx4MEEyw4MM+44dO1xWQEkKkW706dPHuiQAzbOVK1eGHeUXLFgQ/sH4pAQsXLjQPCyAavtjjjkmbtsvMh7+/6tWrbIKSiQeVqxYEZZ/evXVV92PP/5o69GJc+WVV7rLLrvMjqlWrVrFe9OFEEIIkQIYC3Jdp33cdyuQpPBjxaSgmAWJJxIETZo0SdHnMgmbNm2aFUREAzlSto1xSbTKsUcffdQMvhmnCCGEEEIIES/+++8/t2bNmvBz5Ejp+k0sk4/fBLG1iRMnmnoJRcGYaffq1Svs9Qb4xHlQL6HDOSugJIVIF0g84BQPHTt2tEklPxoSEFTKjRs3zn4UmCp7qadzzjnHjR49OpzBY+Iqci50TtSoUcOqKc8880x31113uXfffddMt/EmAf7G8VCzZk0LMtBVAbNnz04y2CCEEEKIrIWX8qSFnK4EYBzAGIDrPF0M0cCvApo1a+aOO+64FH1u9+7dbSzqxxDRYOJWt27dJNdhe6N1ewghhBBCCJHR7Nu3z0yvL7rooqgypUHw/8UTFlCyQdUEqX0k+ROr3XhSOt7OKJSkEGnm999/t2ozNM1or8cwG1kfMn3fffedy5cvnytVqpT7+OOPrYreJynI8N1+++02SWQC6wPVIudBcIJKRfSfObk2b97clnMsfP755yYHBR999JFVNbI+huscF5hvAwbrQgghhMheSQoknzp06OCuvvpqK2JZv369XeejmfNR8fXBBx+kSuoJ8LRiLIrfVWLonsBoMBqMZXv37h3u+BVCCCGEECKe5MmTx/32229W0ItkaWKQOMVDLSjn5EGylLgrsbegmfYnn3ySYD3itlmBI0JyghNpYMqUKe7GG2+0pAQQbEa2icOK1qMGDRrYcpIX06dPN4PEQYMGuRkzZlhmr2zZsuH34jXS/M2ZcHyQpMCYh64b/s8YZ3KypZryyy+/DK+LPNikSZNcpUqV7BhZvXq1O/vssy3pRUdFpKCDECK+EFQk+IhJbsGCBeO9OUKILABFCRMmTLDqLdrM4eWXX3b33nuvu/zyy61IIRJ05jLRouMCWchYx4bJjSP5O1KSSEkNHz48YgIEXd8HH3zQPptkBpq/QuQ0csI1OyfsgxBCCBErW7ZsMSlUuimCkLg47bTTrHgcidLHHnssPO79999/I/r98jficT///HN4GQU6iaWj4nHd1shbpImhQ4eGExRUvSPhBEwSGzZsaBNQZHuQ6qHlCC8CJJ/I5AUTFP41ImdCVvaCCy6wxyQaOIlyo2KRYAVVi/7vmKkj0+Db0+ikuO666+wx0g2Y/2CsLYQQQoisy9KlS+2+atWq4WUUrED9+vWTlXoiiZCSseGdd97punTpYpVmkWC8Sss7k7Vo3bsUTlAY8dBDDylBIYQQQgghMp0DBw5YTOyVV14JLzv11FMPS1AAsqRvvfWWmWg/8MAD4eUolODBRpdFYvAPJkERHGdL7knkCIJ6v1TIP/PMM+FANFVqJCUefvhh99lnn5l5C5mzIJs2bbJAtcj5+IAAxwZQRQmYUmK67hMRSD7hXzJ16tRwxph1gKRXtWrVTDKCY0cIIYQQWQ/M+LznBJVTFBjQTUkXA9DREAleM2/evHBreqww0aIDg27daOMDJnEffvihdWhSPRYtSYFUKZKkQgghhBBCZDbvvvuuGzZsmHX3btu2LeI6QVEk4mPIN3nJJv6GGTbSUKjYJIbCYMA/2HPssce6rICSFCLFBH8MtO1D9erVrfKdKjYknzBloXPCH/yNGze2+/vuu89a6WlFAuSgaCmKlN0TOTtJgT8FTJs2ze6bNGli95xE6b7h2CDxRVDhrLPOCie4/vzzT6uExIhbCCGEEFkPrtGdO3e28d9NN91k/hMUrGD8x7gv2F0RZNy4cXbPOJLO21gpU6aMjSfo3GVMmty6SY1t0etVd68QQgghhIgHrVu3du3atTNf36JFix72d2JmtWrVcn/88Ud4WXDsymMKfHv06GHdwYnxfhRB2aWsMvaVJ4VIERwuOMLjO4EXBZI9hw4dsiQD1We0xrNOs2bN3M6dO62tn4kpPgNojxUuXNi8Bah4y58/vz0HKuwi/fhEzqqqJFOLLt6GDRss+VCkSBE7GSLNwLGAUSbH0RNPPGHrPvnkk+HExPz58637gvUx3OQYFEJkDaQNLYSIBONDvKRoUceXgokSRQkTJ06MuH6VKlXc999/b10Rd9xxR7psA+NRunkplGHsEenvFFL07NnTxq9ZZZImREaRE67ZOWEfhBBCCMBrAg+3559/PqKHRBDiaZUrV3arVq2yse3AgQNT9FmMe4nD8T7I9SOljhT/+vXrXUYiTwqRIZBxQyuYiSb6ZiQoLr74YvOj8PkuJndvv/22q1Chgj1v1KiRJS9wkydBQVU8VWy+ewJzwtySoOA7Qu6AoDs6czzmO8kN0P1w/vnnh7spTj75ZDNXp33NJytIfFE5STCBRIWHEygnTuQh+A7xsCChAdHa34QQQggRXygwAMaKjP+4zl977bUR16UlnQQFnQyYbsdKcvVW/fr1sw6LaO/J5I7PZj3GZUIIIYQQQmQGjD0p6HnppZfcs88+m+z6Rx11lPlN3HbbbaZAEmTWrFnWuZwUyKoTX8ODzY+hg7JP8SbpFI0QicAMG20zvCfofgAmfSQsbr31Vsv+Adk/WpOCUk/+x3LVVVfZ/Zdffmn30cwLswu0WKF/jHeCv23evDnBYwLpJHSiJSRI4jApJ1hPtSGBeu79zT8vUaJEOKCfHbnrrrtM9oFuCa+dFw2/j5xAObYIdDz66KMm5zBp0iRLmHEs0m3x5ptvuqZNm2bafgghhBAiOlRl0W3rPaVIUpCciJaggLFjx9o9xn+xTpbwsGBciWZv+/btI46PLr30UvO7uv/++yO+B95pjMEYj3IvhBBCCCFEZnD00UdbgS6FujfddFPEdfDx/emnn6zAG+ikGDNmTIJ1UK+5+eabLT5Jx7KPw0aTemJMjg8b74vMalZBSQqRIpj80Q6/fft2N2DAAFe+fHlXsmRJk+tB8wytYWSclixZ4jZu3GjGLUj0kKHzSQofmKazIjslKdgHEg5IDQVv7HsQn2jgRtUgP3g6RTCi4QREAse3cHGy8Tf0m0lm+OQGE3vu8e8IVgnyXnQkBG/8D7JD4qJVq1bJrjNkyBDrxOnfv78FFmgL4zvev3+/u+iii0zmiZMpxx7fDTJSyEIoSSGEEELEHwoy8Cnj+kzXJPjihGgwzvFJCirDYgWjbCZXGGJ36NAh4joU09DVyxgsEsccc4x1WgghhBBCCJHR4+TXXnvNXXDBBXaD5s2bW2HuUUcdddj6xFiRIyU+SOFuxYoVI74v8umMeb/++mtXv379iOtQADxlypRwkoICn3feeSeiX1u8UJJCJIufOJLVY4JHOxJu80DlmtfvpfKNBAWsWbPGHmOOfNxxx7kffvjBMnsE6mllwpOAKjs6CKL9gOINQXHapfiR+4SE7x7hBEByoE2bNhY050dNUqJYsWLpXoXH983nkrBAq44EENsybNiwsNQRiRGfsOBER2IEeaXswODBg61djdY2khALFiywEzBVjyQpqKZEHgpD9ho1apieNSdwMsQEFZCB6tixY7x3QwghhBDO2RiPBAVjRopauKdohbFhuXLlIhZVcO33fmVJdVskhjb3008/3cYPSREpQbFy5UqrSMsORR5CCCGEECL7Q9cE8uX4QSxatMjGqIxFIyUogOXEvpCMpzAnWpKCohuSHyQ1iMFGgtgmY3NibHQ5k7BgWy688MKYCoozA3lSiGQZOnSoZfaohluxYoVJ7SBvRGC8RYsWts4tt9ySwPzEtxnRsgS+i6Ju3br2g5k8eXK4ss6bZ2cF6JQg+M8Eme3inh862c527dpZpR6Tb5ID7BNyQyRv+FGXKlUqQ2QCOGnRKUHygW6Bxx9/3Lwc6C7g/0Awv1OnTnbyev311911111n207HCt8/HS1ZCY6LUaNGhU0zkf3i5jO6VDsC++U7SAhuUJUJ6Fkje8XJlfe455573FtvvWV60kIIIYSIL0uXLrV7ijcASVCSCXiV0YUbCd9Fgak21/xYYUx57733HpakYNxGQQPjpUieFSRMKDJp0KCBTeaEEEIIIYTIaIjdIYlKB3C0xETisS5S+sTMkN8PwhiX2GpwrOsLxyPh47DEClF38WbZFI9nFdRJIZLlpJNOsgOYqrhu3bq5H3/80ZYff/zxSQblyeT5CSoO8vy4vB8FHRZ9+vSxirp4wo+ZyTSJF374ZDL5gVLBT4aTgDmyQlmxyo5tIljPLag3hz4z+8OtS5cu7u6773bVqlWzddgfggXxPAnRNYE3BQkqEiqcIFlG0odjgmOE44os8erVq8O6e4nNx8HLM5BA4ljj+KSLhH0UQgghROZDpyyQOKCwwicS/LLEIHk5fvz4FEk98RovnRkJdHrHjRtnSQqKSwoVKpTg7wsXLrTxBMkMxrNCCCGEEEKkNyQGiDnigQYUexPniiZD+vfff5vEPp3CxM285Du3xDz22GMWt2ScjfF2cng/Cp/s6Nevn92j2pJlCAkRA8uXLw81a9YstHDhQlJ0dnvyyScjrrt3796Iy//888+of8tsVqxYEerWrVuoVKlSti8FChQI3XzzzaHRo0eH/vjjj1BOYefOnaGxY8eGbrvttlChQoVsX4sXLx7q3LlzaOnSpXHZpl9++cW244gjjght27YttGnTpvBz/91fddVVtuzZZ5+N+B6DBw8OH4fz5s0LVapUKXT55Zfb84oVK4b279+fyXslRO5m9+7d9vvjXgiRu7nhhhvsfDBgwAB7/uOPP9rzY445xsaCiZk2bZr9/eSTTw4dOnQops9gHHPllVeGFi9eHHX889BDD4UGDhwY9T1WrVoVWr9+fcz7JUROISdcs3PCPgghhMjZLFmyJBzrWrRoUUyvGTNmjL0mb968FjtLitdee83em/hYcmzYsMHe98gjjwzH3XjMsvLly4eyynU76/R0iCxHsGUI93ha8ek2ADoNevXqFfF1yB/R0j9jxowEy/GjSKr1KKM5cOCAyQIhG3T22WfbY2QFpk+fbhJE+GzcfvvtYZPHnACVg3iGUFGIRNXMmTNNiouKxapVq1pFIxJRmSl1gCwWnR0cX1Q40gmCHp9/Dr4zxB9viaE7xMtC0YXxzTff2P/Pt81xrAkhhBAifp0UjDOA9nRAGjPS9dlLPXnvs+Sgs/fNN99006ZNczt27Ig6/nnmmWfcfffdF/V90PTF10oIIYQQQoj0jqMyFsbrAV/VxAoh0bj11lvN+5bxMbGzpMCb9fvvv7f4WHL4WBteFMQ8fUcxRPOwiAdKUoiIoO9funRp98orr5gDPO1G6JUR0AZ8ACJBsJvkBFq/p5xyii1LPIEcMWKEe//99zMtME6bPycFfB04QTBBRgIAP4eXX37ZpKcywksiq8HEH0+QgQMHmk8F/hpIebVv394VL17cJvJr167NlG1JnIRA9gm8T4VPQGCg/fvvv0fV8gP8LTDVxsSdwAj74dvYhBBCCJF5MLbzY4n58+ebIbZPUtSuXfuw9f/66y8bj/hJWSwUKFDArvf4XCDxGMRPtqIxePBgM+gWQgghhBAivSDoT+FsjRo1rKDGQ2FN//79o8qLsi6STV7S/IgjjnBvvPGGu+GGGyKu//bbb7v9+/eHn1OAHcu2jRw5MoHU06FDh8J/z1LSpxne0yGyJRdccEFYTqdNmzZ2X7JkSbsvXLhw6K+//or4ug8++MDWOeOMM0L//fdf6O+//w6ddNJJoSpVqlh70T///GOvZ50vvvgiQ/dh7ty5oaZNm1oL0wknnBC6//77Qz/99FOGfmZ25Oeffw717NnTZBZoFWvUqJH9b/j/ZRReNix//vx2LCHXwPN8+fKFDhw4YOtccskloeuvvz60Zs2aiO/BsVS6dGl7Hf9f7pF2aNy4sT0eMWJE6N9//82wfRBC/H8kuyCEgD179oQGDRpkUkycEy699NJQ2bJl7fHUqVMPW//DDz8MjzHT45rdqVMnk7hkzJmYWbNmhcceW7duTfNnCZFdyQnX7JywD0IIIXIOBw8eDJUrV86uTY8//nhMryHmVr16dXvNo48+muz6ffr0sXUbNGhg8bBYmTRpkr3uuOOOC23ZssWW7dixIxzzrV+/fiijkdyTSBNkADGMplodMxbknooVK2Z/a926tZliR8JXxlMpTwZw7ty51kmBEQvV+lTGI610wgknmGRURvDdd9+Z+TKyTrQ+0S1B18Tzzz/vzjjjjAz5zOxMmTJl3FNPPWXdFcOGDbOOmcsvv9xddtll7uuvv86Qz8TYGqNrKi6/+OILk38666yz3JVXXum2b99u61B5SXVlNHP1o446yt1xxx32mDa4a6+91syIkLCiM+aFF16w/RFCCCFE5kCXQ+fOne2aDlzD6Vzgmk17eWKQbIRbbrnFHXlk8tMSX2UWCcaaw4cPd++8807Ebgk6fOnmaN68eUTzQSGEEEIIIWJl69atYXknYlCDBg1yffv2dffff39Mrydm+sADD1hMrn79+smuT7wsX758FqtjbB0LdBk/+uij9hiDba94E+zGaNq0qcsyZHi6RGRrfFUbFWneVGX16tUR16Vrgmp81pkxY4Yt69KlS7gbA9q3b2/PW7Vqle7bSpcE5t68f4UKFULvvfeeKulTAdlcMq2VK1e275JuhpUrV6b752B6SefGU089Zc9T87/auHHjYccl7/PII4+ETcLJaAshMhZVNAohgtANyTlh+PDhoY8++ij0wgsvHLYOJtp0NbDeggULkn3PvXv3WgflfffdZ48jgSkhVWZJjXEimXcLkZvICdfsnLAPQgghsi9PP/20dSZMmDAhRa/78ssvDzPR3r9/f8yv//XXX1P0eePHj7frZcGCBcOG2TB79uxwJ8X06dNDGY06KUSq8Fr+dEQsWrQoXNX2wQcfWAauVq1aZoodCbokqII/8cQTrUuCjKL3GMBz4M8//zTDZsAbIr347bffzCgGIxqq76me/+GHH9yNN94YU1WeODybS1fCkiVLwn4PlSpVcu3atbOOlPQCnxC6N/A7gWj/K/xNonll4DNCNhnwGfHvU6VKFeummTNnzmHmRUIIIYTIGKZMmWLjBrpaoWbNmtZd27Vr18PWxfiajkq6ITHVTg78zH755Rc3efLkqAZ/559/vuvdu3eCZcExAGOcSObdQgghhBBCxApjWGKcEyZMiPk1+EnQ1duyZUt38ODB8HK6IyKxfv1682sNxuFQqIkV/IVRxoFu3bqZYbZn27ZtrmDBgqaaE029JB4ogivCPP744xacRuaJAD8myxgTBgPASZkafvTRR3bPe+TJk8ctXbrUTKv5wdG6ROJj9+7dZshdp06dNG/vnj17rG2JHxSt/ZjNENDGCJrPF2mD9jFOnqtXr3YDBgywhBPHBsmFxGboqYEEQ4kSJQ5b/tNPP1kQAmiVIyn2zDPPRH0ff0yOHTvWAhFIjDVr1sxkpEhWkVhD8ksIIYQQGQfXYGSbSBTQQs74r2LFikkmHXyLOcmD5KDA5bPPPnMvvfRSghZ3imh27doVdZuaNGliEpD//PNPqvZLCCGEEELkXhhPEu8MFs92797dirm9IXUsXHPNNSajT4wqKQlTT8eOHa04J7VF3mPGjHGrVq1yJ510krvvvvsS/I2YL6bet912WwKj73ijJIVIUP0GTPxIUOBLQAX9unXr3DfffGMV6hzI0aBSjgSBDxr7jCKV7lS8vfXWW/a8RYsWae5wQMOY5AQ+E3RRsI2cJKJlIEXqwX+EExrf8YMPPuheffVV++75f6ZXhwI+JdCjRw9LhAwcONCee/1qElwEISJB8IFt5OS7fPlyq9okSMKxiCY1HUF9+vSxpJYQQgghMgauuUxyfAKBMSTX388///ywdQ8dOhT2MYtVB5dEBl2SDRo0SLCcQho8x4YOHRqxQ3jSpEnmWZWe3aBCCCGEECJ3gPoH6jC9evVK4MN2ww03JFlow9j4tddeCz+nk2HFihWm/pI/f/5kP3fYsGHu6quvTlEiJDjWZhwOFBrjC5wY3pd9WrBggcsqKEkhEsg1cZBSpUa2jkkfE01MtKFevXph8+xI0B3Bj4jsIMFrKtv95JPqNboofJIitfz+++/u5ptvthuSUnROUGWPxJTIWGgF69evn2WPCRCQzSUxtXnz5lS/J8cFxwvmPSRBSDAAsmC0ppEs43MxJIpm4s3J1gcsOGZJgI0ePdq98sor7p577jFTIdrwvPSTEEIIIdIf331LtRYULlzYulxpL08M3Y6MC0899dTwtT8ajAeS6oKgm5YOTyRHE8P4YMSIEe65555zZcuWTcVeCSGEEEKI3EawIJdug+OPP96KdWMt1N2yZYsV7HTq1MnNnz8/vNyPk6NJSM0JxK0Yu1JMjjRqSqFLArkoYrjExYLQ8cx+EGfzpt9ZBSUphEGVOhrCBJ75IXCQer1fL/WEhE6scMAjEXT77bdbxhH5JWR4+JEk1fqfFMgC8COfMWOGJUB4jmSQyFw4yaGlh/zTwoUL7X9CUiA1XRUcFwQfuPEeZIlJOJH4wF+E49AnILycWCT8scmxynbwvmS0uSE78ddff6VIK1AIIYQQKQOZT7jiiivcvHnzXJEiRew5RSXRpJ6oQEuuu5ZrO75jvvglMYxHKLJJ3MYOvPcdd9xx2ORMCCGEEEKIxBCzRPacAhfPOeec43799Vf35JNPxiRRChTiUFxNMXdSiYmg1+55551nSjTEZtPCgQMHTM4f6JQgwRIEhRS2D8WcrObhqiRFLofsHlnBRx55xFWvXt31798/wd9pRaIy7uijj3bXX3991PcZNGiQtQh5SR4mhRi8EHgOtjGlpooNKSDke2666SZ3ySWXmM8AQelYTw4iY0Bmif8FSQRO4jzneEopXl8Pk246d7zsgw9G8L7JJSkaNmxoJ14uKCROgvjsMMkVthefFCGEEEJkTCcFxQF0R+BpBejuBkGDl8QCJCUj6qETgi7OoA5wEAoTGEsEJT83btxoBRBCCCGEEEKkRGGGOCaxUYL9nkhySUF+/PFH17x58wQ+aUilz5w5M6ZCbeJVFSpUsE5kimzTAl3MJFXowMDXIjHTp08Px8mgUKFCLqugJEUup0uXLhYMfvbZZy17ljjD56We0ACOlv1D45f3YUKKQ3xiCBwj05QaMKI5++yzTc+Ydn6eJyU5JTIXNPUw46FLATkmuiroskhJJpbkF90THCeffvqpJc18leXBgwdNDookGZ4T3CJBggLpqWDnj4fuDJIfvP+5557rOnTokKUyxUIIIURO6qSoWrWqTa58FZj3l/LMmjXL5JnotIjUZZEYJEgxy8aDLPHnRbqeM3agCu2iiy5yP/30Uxr3SgghhBBC5FSIVX7//ffh5xREE9gnkB+r5y3jUbx5iVl6HwhAnSap4mrip17SlPVGjhxp49vkpFCTgpgpPm283xtvvGH+rYl9Mhgfew+5WBIwmYmSFLkczIUJAHMAE9zleaR2fDoZouGr4ZiE4i1ARwUGhXRhwP33328ZPLKRscIEk22hwo4KPCrg+dGreyJrgqQX/28SAniOkGgIZp2TghN/u3bt7DFBiNq1a7vixYu7nTt3uqlTp9oJEz+U4LEWCX+Mcswm1g+kmpOLBccP3T5o8AkhhBAifeC66jsdKH4ZPHiwdUwULVr0sC5aJk++SCE4QYoGhQj33ntvAv8xCg8uvPBCS0QEK9aAMSOdnRTRUEwhhBBCCCFEYkhEnH766RbD8qowjE0xu6YzOCkY5/q4E3Gmp556yuJheFDEArEtCrKRkPIULlw4JmmoaKAa4mNrmGUjwZoYCsChWrVq4WWxJmMyAyUpcjH8oOrXr+/27NljP06CvMEkAEbGBJ75kSKnEw2v9Y+uMLz++uv2A33xxRctS4dMD0mH5H7kHtqOLr/8cvfWW29Z5u/DDz+05IfI2hAIIHNMsuvjjz+26kjkFmKB6kgkwjDSXLlyZdhjwifJunfvbidxOnaiQdUkmWo+c/ny5Qn+dsYZZ1jSg+MIMyISc0IIIYRIHxgrcu2nqICxmx8b1qhRI8HYEgkmxnWxSD0x+YsGVWb4VhUsWPCw6i/0fOm8ZAwRTGwIIYQQQggRHDMyTiUWFUkVJhqYWVepUiWsPOPVZ1geqwcvMdLt27fb+PnQoUMurfzzzz9huSmKeLwnRWKI/UKZMmXCy7wfcVZASYpcCllCDlqkb6Bu3bqHrfPJJ5/YPT4Q0SZ5+EXMnj07XBFHe78PLFPBTiUdn0UyhCxhcnz33XfuggsusGo83rdNmzY5pnvCV/JHukX6/rMrJLswzOTY4H85f/78ZF/DCZJuDKA1jfY6Ki2HDRtmyy677DLzpkjq5MnffKYYaYhIn8GFZ9GiRYdJRgghhBAi9Rx77LHu2muvDT/3fhCJpZ7mzJljbfVUiSU39mE8ge8VnRGJYcxAq7pvZ08MRQmMX4UQQgghhNi7d68VU9OdGyy0xTyaGFFKCqORNEWt44UXXohZSpz1kDv1YKpN9zHxMgpv0kq/fv0sDkcBD+8bqTCX2CyFwfDnn3/aPd6/dJNkGUIi17F58+ZQ2bJlQ0ceeSS/ptDEiRMjrle/fn37+/PPPx/1vd544w1bp1q1avZ87Nix9rxUqVKhXbt2hU444QR7Pnny5GS3a/z48aHjjjsuVL169dCmTZtCOY29e/eG2rdvH7r44otDW7Zssdv9998fqlSpUmj79u2hnMbWrVtDtWrVCuXNmzf05ptvJrv+N998Exo6dGho//79qf5MXs/xVqNGjYh/f+655+zv+fLlCz3yyCOh9evXp/qzhBD/n927d9tvi3shRO7kv//+CxUqVMjOBQsXLgwtX778sPHc3XffbX9v06ZNsmPVPHny2LorVqyI6fOnTJkS+u6779K0D0LkBnLCNTsn7IMQQojM49tvv7XrxhFHHBFatWpVil7LWHTNmjXh5/v27Qv17ds35msQ49oGDRqEzjrrrNCff/4ZSm9mzpxp+8X+EZNN7jsoUKBA6NRTT7XH06dPD2Wl63aeeCdJROZDdwMyTFSeYUIdqdKMLCPGhhCsjEuMb9kPSj0BHRBI/+zevduVK1fOzI+jQTavd+/e7oknnrDuixEjRmSpdqP0In/+/Kb1RpbUZ2lZlidPnjTpzmVV0KGeMWOGu+uuu+x4WLZsmRm0s7+RoOuCW6SMM8fqb7/95l555RXTmeYYiYSXJcPEm64JtiHIAw88YG1wZJg53tDsQ1ZMCCGEEKmHdnc6JGgxZ5xzzjnnHFYVxngvVqmnU0891eQfp02b5s4666zw8m+//dY8Ks4888wE61OZ1qpVK2ub/+yzzyJq8AohhBBCiNwBMU0MsX1XL9JOyIdXr17dYpSxgroHPhPEmpBmAsaijz32WMzvQXyT7gvGqcSikLdPL77//nuLxxI3a9u2bVg6PRKFChVyDz74oMXE8M9A+imrdR4rSZELISHAZG748OEWxI0UIGdSiBZw+fLlo2qqcWATeAZ+FCQ+vAkLxjNosgHtVGi8RQJ/ANbFt6J///5m7pJT5J2EswAFx1nVqlVd165dTbIBz4rkNKKRiSCYMXDgQJNy4GJAQofEAscSbXqJExBQokQJu/hwAfj0009d69atD1unR48e1s6HbwU+FkIIIYRIG0zUfvzxR3uMRm+ktnXa6Sk0oA09lskZE8jgJJJxAWaAXL9pY6c9PThuQBqScWnt2rXTbb+EEEIIIUT2grgT40Fii+vXr3cFChSw5fjmphT/PsSh8JE45phjYnrdmjVrLJ7qkwNvv/22xasSF9qkhfXr11tMC/9VfCgGDRqU5PrIOlE4DOwLHm6jR4+25Ab+clkBeVLkMjZt2mTaY0OGDHG//vqre/PNNyMmBbymf1JdFFTEY66Nhhp+EyNHjrTlTDyppNu8ebO503PAR4IfEuuS2CBJgTmyEhQ5D/6nnTt3tsrGhQsXmgZ1UqZEVFlyPNEtwbHFMYYJJ54SmK8TpOB4iUajRo2i+lLAL7/84nr27GkXmQsvvNAqNYUQQgiROjD7w0ssOD6kAMV7lnkmTpxo9/hMJDXBi2aYTXdu6dKlrWiBhESQIkWKWBFEeun6CiGEEEKI7EPQG4JCa4qxuVFMHSv4qhKXpCjWQ1KBhAPj2FgSFMSrGAezDXixeYh9pmeCYsuWLdY5zH3lypWtSJcOj1ghZktnCT7F0YrK40HW2RKR4TC5o/WHA5hJHFJPBH0j/ag4wJNLUgDZtho1alggGmMWMoR33HGHtVBxMqD9P9IPhR8/P1JMD5GV8oHl3EZuSspwAuUkvXXrVktUcDKNBMkzqjHJ8CLdAEgyEQRp2rSpPcdUOxr+mJ06dWrEQAeBDOQiOD6Ro2jevHnUgIgQQgghkoaJG50MXs4R2SeqxZBUDOILDJo0aZLkWLVs2bKuW7duYUM/D12YvAfFBRTBROKEE05Ihz0SQgghhBDZAcaOqMXQUeATFYxJUYdhzEiHb6zMnTvX4lAkKZBm8px22mkxvwcBfx8DDSYp0pOdO3eacg0FvXRHEPtKTkKergkKh3ktiRheA8cee2yWiksqSZGLQJKJ4Cw/tuLFiyepaUalO/4J0fTJkHoimRHk4YcftsCzDySTBKlXr95hryVITQUcXR0zZ86MmCjJLdB2hteCl0jI6VSqVMl9+eWXbs+ePdY2t3HjxsPWQcoBKSeSCJxA0aUmqTVp0qTwsfXFF1+YZFkkkHsiEYGUGNISkfQAaWnDt4LHBFbat2+fAXsrhBBC5HxWrFhh94zn6Fak2AAoYvGsXr3aJkcUtCTlU0Y3BJ24TCyZNEWCcYHn+eefN6nQ/fv3p+MeCSGEEEKI7ADFrIwHUWghThRMLCQnYURMyUvY+0Kali1b2ng0Vt9YEiOsT5zT8/jjj5vEeK9evVx6s2fPHvPHQP6UMTG+EknFdz3IsDMGp0iXRAxdFIBiSVZCSYpcAskDgsN//fWXZckeffTRwyrUPJgdA0HkaC3ztDqVLFnSPfnkkwmW0/6UlHwOyQ8SFCRKkAGgkj034307CKznFipUqGDHIomuOnXqWLIqCIkDKigh2E2BYRGv5ZjhtdEkn8hcexkIfywnhpM6Jt1kkjleR40aZRcRIYQQQqQMP+5DqpHxJhq3TOy8Di/4azbX56S6HWg5p5t3wIAB4aou2tGfeeaZwxIRTAYZzz733HNhI0MhhBBCCJFzYaw5ZsyY8HMKVBknvvfeexGLpKNBPJLu3VtuucUKV4GxJ7Eh1Dli7S7o2LGju/XWW13fvn0TbFNGxPg2b95scVqUcegwpqiHTorkoMuZJAX4IiDflexjklkFJSlyCWTYaAXiB3TgwAG3ZMmSqBVqPvuY1A/8/ffft5MDrVVMEpFsIoPIj6RatWqWgQxqwgGJCSR/qI5n/bPOOsvlNjDqYd+DnQV0UlD1n5vgRMr3wMUA2S++gyCdOnUy6TCqLkmGcYHg2ELz2htlcgxGwx+7wUx6JDAX4jdx//33J6jMFEIIIUTKkhSM6xYsWGCPvRRoSqSegNdQ5RWcMFGw0KNHj8NeS8cuE1KKGZAzFUIIIYQQORe6demQoNsh6Id2zz33uBtvvDFZb4VgjPLcc8+1Tgu6fAn+p5bbb7/d/NJKlSrlMpJVq1a5mjVruqVLl5ryCJ0jSPnHQr9+/dzevXstceI9OojLgpIUItNBUge9MX40r776qsncDBw4MGJmkAp1b3QYLUlBB4Y3JSZgTIU7lXGcKHz2kCB08P2pguPgJ7FB4JiKeJG7oa2MTgcSNCQqyO56ChYs6O699157PHToUNMX9I+5+JA15nhOnAjz+GOXDDNJuUisX7/e3Xnnndbdg+Yght25RXZLCCGESG+5J1rd8SKDiy++OPx3ilm4HkPjxo0jvgfX88Qyoh4mVExI/bggCJVuI0eOzFJaukIIIYQQIn0guO4pUaKExXoohklJoS9FscgbkVAIxpyIjVLAHWuCAb+1tm3buhEjRoSXeRnznj17uoxi3rx5rlatWvb5dCozro61UwPvuNdeey0s0c/++iJylHNQN8lShESOp3nz5kRyQ927d0923QULFti6J554Yuiff/6JuM6ECRNsndKlS4cOHToUKlmypD1/6KGH7P7YY48Nbd68Obz+n3/+GapZs6a955IlS9J130T2Z+XKlaGiRYuGzj333NDevXvDy7dv3x4qWLCgHVNPPPFEqGXLlqFvvvnG/sZxlxT//fdf+LicPn16xHXWr19vfz/yyCPtvXl8/fXXp/PeCZE72L17t/2GuBdC5C5Wr14dqlWrVnj8mPjaO3z4cFtWvXr1qO8xZcqUUIUKFUJvvfVWxL8fPHjQru2wZ8+e0P79+zNgT4TIHeSEa3ZO2AchhBDRIR50yy23hIoVKxbat29feDkxIz8mjJUVK1aEjjjiCLtuMG5NLS+++KK9R4kSJZKNSaUX77//vsVY+dyLLroo9Pvvv6fo9U2bNrXXNmjQIDR27Fh7XKpUKbu//PLLQ1ntuq1OihwOnRHo7tP2RLV6cnh5nLp160Y1maG1HqhonzJlinkKnHzyyeEODKrTvXQOlXHoCy9evNjWrVq1ajruncgJnHnmmWb2Q4aXbhxfSYme9aBBg+yYxHAIbUB8JICWvKSgojI5ySf0B2l747jEA4OWObLx+LYIIYQQIjbojqUaC5BqzJMnj7vwwgtTJPVEhRfdjN99913Ev1Pp5bslkH6ivT0onymEEEIIIXIOdDosXLjQOnKR/vYgrZRcBy2SSL6710uSEvsh7hT0TEsO1D6IU3mIdWI8/cEHHyQbk0orf//9t8mSE3clRtWoUSNTIvFeErFAxwXbSjwY3w7/PeLD8csvv5jCTpYj09ImIi5MnTrVslUnnXRS6IEHHgg9+uijoQ0bNkRdn0wa67/88ssR/05XRIECBWyd+fPnh6655hp7fNNNN4W7KLZs2RJe//nnn7flY8aMyZD9EzmHjz76yLLbvXv3jml9sucLFy60ispIjBw50o69Cy+8MNn3+vfff8PZ5FGjRqV424XI7aiiUYjcy4EDB6wrkXPAr7/+eli12zHHHGN/W7ZsWdT34Fo+cODABGNUOoA/+eSTBNVyvF+ZMmXs/WbMmJGBeyVEziUnXLNzwj4IIYT4H4z1vvjii9Ddd9+dYNz3+eefp1iNZd68eXZ9QJVj165dqd6mDz/8MJQvX75QvXr1QpnNpk2bwl3K3O6///7Q33//neL34bu79NJLQ23btrXnF1xwgb3ftGnTQln1uq0kRQ6HH/js2bMt8OqTC0g6RYKD/vjjj09yIjlx4kT7O1I6a9asCbdMVatWze67du0aXvfTTz+1SWuPHj0ybP9EzuLJJ5+04+i9996L2O7HSfbOO+8MLV++PHT11VfbuqNHj05SzilPnjwWQEmO/v37hxo1amTJNyFEylCwQIjcCUmEe+65x37/hQsXPqz9/oMPPrC/nX766Slqzeda7CUZ165de1hCQ8UvQuTua3ZO2AchhBD/P9Zz3HHHpSqATsHpxo0bEzw/55xzQs2aNbNgf2r5+eefQ0cffXTo/PPPT1OyI6VMnz49VKRIkXCihWRJWmD87eNhPCbWS/F5Vr1u54l3J4fIOIYPH26Gwxi50HZPS9TMmTPDkjmJ+f77793+/futrerss8+OKs2DNE6RIkXMMJtEF9JQ69atc8cee6x76KGHws7zzZo1cw0aNHBPPPFEhu6nyDlgNrRs2TLXqlUrV65cOVetWjVbTmvak08+6SpVquQWLFhgxzLHMVJmyI8FDZCCxtzIjmHWvmjRInfppZdG/Eza3DDNrl69uh2/yJYhL4WZthBCCCGiwzUY42qoUqXKYe33EydODEs9RWrNR+KRFvRIElIPPvigjUtPP/30BH8rUKCAu+2229J5T4QQQgghRGbJ0n/zzTeuZs2aYalvjK2R3ybmGCvEjm6++WYbSxLP5J4b733MMcfE/D6//vqre/bZZ+013Pt40rfffmsSo8nJS6UHf/75p3v00UfdCy+8YHFWYmHvv/++O+OMM1L8Xv/++699D2w3t+OOO86W85j35Pvp2rWrxYuzHJmWNhGZCsYw/Hvz5s0b2rp1a0yveeWVV+w19evXT3ZdMnCYYbM+Mj0YGvoK9B07dpj54VlnnaXqFpFiMMM877zzzJjdH7uPPfaYHWunnXaa3efPnz/01Vdf2WNkJKIdZzfccIOtQ5dENLzhe5s2bUyqjM4LnnuTbiFE8qiiUYjcCQZ+vhUdyU/Ghtu2bQt36CI3yt9mzZoV8fW0r9PFuHjx4iQ/BxmooBm3ECJ3X7Nzwj4IIURuZOfOnRbXOeqoo0Lr1q1L03vR4UC3wQknnBBatWpVqt8HqSkfW/Lj2MwEtZuKFSuGx9Tt27ePSQ0kWqyW2BbvQZwWMPn233WVKlXsM955551QZiLj7FzOoUOHXPHixa0aPVKFWjRTFbj44ouTXZcM3Ny5c824pWHDhmZoWKNGDcuI3nrrrWYw8/HHH1tXhhApIV++fFZ5efDgQde0aVM7lu+77z47ltavX+9KlixpGXay2hUrVrT1Jk2aFPG9/LHsj+1IXHXVVZZBvuiii9wpp5ziWrRoYc8x0hZCCCFEZKjyWrFihT2mQgtTP6rYTj75ZFvGOHHHjh32vFatWhErxkaMGGHX8N9++y3Jz+rcubOrX7++e/rppzNob4QQ8aJ///42t2S8L4QQIudB56ynUKFCFqeke+LHH3+M+T02b95s1wniNZ4TTjjBTZ482W3cuNFiQ7FCLAlVDs9ll11mY03GpCkxpk4rxLJQE6GjZPXq1aYEwjagWuO7H1IKZthvvvmme/31101RBAYPHmzm4X369HHLly+3ay7j6qyIkhQ5FCaE/IiZPG7fvt3kbEgcpCVJwYE+ffp0S0R49u7da5NUzyOPPOI+//xza//nxCNEaihVqpSbMGFCuA3txBNPtPa/4AVuyJAh7sYbb7THHG/JJSmCx2mQevXqualTp7qOHTu6AwcOuPHjx7tp06ZZ8EQIIYQQkWGcyTjwqKOOcs8//7wtQzrRF8d89NFHdn/ttde6PHkOV5hl8sV1/rHHHnNXX321LXv77bddy5Yt3c8//xxej3Fn2bJlTVa0cePGmbR3QojMYOHChW7o0KHunHPOifemCCGESGeQ7Xz44YctQE6sxUORCmM9CkZjZffu3e6ll15yY8aMcWvXrg0vR9YbKdBYoSCW8eqdd97p/v77b1tG0H7QoEEWuM8MaSf44osvTNKJRD0xLiTMv//+exs3p5ZPP/3U5FIB2SiSH4zXe/fubQkRpM6B/c/MZExKUJIih0JGEU8K/CP4AVOR7vXeIrFt27bwD52K8sRwQHvNMjKOBHD5UaExzA+LCeRXX31l+m14UFx++eUZun8i50OCgSzwq6++askxsuZcfDjJEqggAXfaaafZuhyTBEoSc/7557ujjz7ajm+6MGLp4qhTp47pDvIaIYQQQkTGd1FQlLJ06VJ77H3PKAzwXY6NGjWK+h54T/Tt29cmhOjnosU7evRo9+6774bXIcHBpJTrON5UQoicAZ3RzZs3tzkrBUlCCCFyFiiukFSgY4JiUE/p0qUt9hINxoQUrXJ98PhOAApME/uVJQXKHHhOeEiMoDpDciNSDCmjYVtuueUWd8UVV5iXb7FixayonPHvSSedlKZxOb7AJDzatWvn7r33XltO0oL9JM7rE0UpSQ5lNkpS5DA46MhKMqHjwBwwYIBlBwm6EnyNBmbE/ocfaZBIQoLMJe1HZB6R3Ln77rvtbyQk+Iw2bdqYQbfP3AmRVshu0+lwxx132DHtT7T+gkbHQ/ny5S2JNmXKlMNeTzLj3HPPTVbyyV+8yOZz8aQFjgRI9+7d3a5duzJk34QQQojszMqVK8NjR6qhg0kKWtYpfqFQIJIpX6TuRjoy6IxENpSW+8QgySiEyDkwl0Q2mEBNcjDW37NnT4KbEEKIrAWdAHTI+nEe40Aq+gnC0ykbKxSp3nDDDRZbJKHtoSMgJd0OyNMT12nVqlWCTt41a9akOSmQUog30XmMLBUxJzqPiW+RqLj++uvT9N5//PGHFQWRjKhdu7Z75ZVX7DuaNWuWe+edd8KdIqjegJIUItNgcte+fXvTVPPQ7UDQlVbapDTZgCRDJHCAB1qPxo0bZxrDZEOPOeYYC+Qi87RhwwY3cuRIm2QKkR5w4kZLb+fOne6BBx6wzqD8+fNb4gBJMyoqOdGTROMiFgnfGeSP8UjMnj3buo+QkTj++OPDvxs6g7h4CSGEECJykoIJkO+koH0c0AeGunXrHtaCz8SVxAUTTyZVQXg9kymKERYvXuxat26drFypECL7wXyS33isPjOsx1jd35CGFUIIkXUgeUzs5fHHH3czZ84MLydOQxA+Ka9cikV94TQwTkRZg2R2UG4+pf4XdPtu3brVxqzEMD1JdXGkN4x7SUpQ1MPYFwksVG6IT9EpjEdHWt//lltucevWrbOEzAcffGAdLBSS33PPPeHiXxIVWAHg9RpJPSercLhArMjW8MOndYn2J36EwcxgUsmD7777zu7PO++8w/7Gwe11hfkx86MikMs93RO03yPL88wzz7gzzzwzQ/ZL5F7QoX7uuedcp06dzIOCpAESY3TzRNK4TozvpPDHeCS4YGD4yQUMKTOy623btrWuITo1hBBCCJEQxn5o26J/C0WKFLH2/WCSIpLUE5NQKrkw1n7ooYfCbf3BcSoTrrvuust9/fXXdq2nS1gIkTPA4BSvOSpl6XqOBYxFKVYKBsOUqBBCiPjBWG3ZsmWuatWq9pzgN2ouyBkhYRQrH3/8sSUxiMl4U2fimvPmzUuRPwRBf2RDCdTTSQCMS+mmqFGjhgXuM5s5c+ZYsS0ebL4r+KmnnrLOjqSSNimB74hrJB0ZQePvl19+2f3www/2HEl+upxRwWG8TodLliUkchy33347vVWhRx55JPTff//F9JqSJUvaa2bPnn3Y36ZNm2Z/K1KkSKhy5cr2mNuRRx4Z+v7770Ply5cP1ahRI/TPP/9kwN4IEbLj+PLLLw+VKlUqtGvXrhS9dvHixXa8FipUKMnfw5o1a8J/nzRpUqhEiRKhJk2apHnbhcgN7N69235n3Ashcg9+XHjRRReF2rRpY8t27NgROuqoo2z52rVrD3vNv//+G5o8eXLoxRdftOe//fZbqEyZMqEBAwaE/v777/B6CxYsCNWpUye0efPmTNwjIXI+8b5mT5gwwT6f84S/8fyII46wx7HMKeO9D0IIkZvZs2dP6JxzzgnlyZMn9PPPP4eXxxJ//Ouvv0JbtmwJPye+kz9//lD9+vVD27dvT/U2zZgxw64LBQoUCO3fvz8UT7799tvQtddeG46dHn/88aG+ffuG9u7dm26fcejQoQTPDxw4kOA54+pjjz029PrrrydYHmuMOL2J9botuaccCF0UZCFpscdohkwiBjPRoNV+06ZN9pgK9cTQLgS0JKEx5yvd0AxGiocqujfffFMyTyLDIDsclH3y0NL2ySefmMYhFVn333//Ya9FEopMMRJRSJJFg1ZAn6knu0wFABWckXSzhRBCiNwOGvFUbXm50TfeeMMeY2hIZ8TZZ58d0diQyjF06Lluw2uvvWbXZ+RfgmNJWtGRksIPTQiRc6CSk2rZJUuWhG9IvWGizWPNKYUQIusRjIsg5UmFPt1wnLc9yXU+ELspU6aMdct6kPDDxwy/0Vg9IvCUwL8sKGlP/PPJJ580BY3MlHMKwndx3XXXufPPP9+6irmeIbX0008/mVcH0uXpwYwZM8zbwo/DATWQIHQfItGPdGqQlHSnxAMlKXIQtPJw4ujbt685uzMAJKmAvhvSTNHwJ5UzzjjDWrQSwyASvGFN0aJFw2YrL774orUOSeZJZDRczPCfQPIBk+ybbrrJjll8UtDywwiIRAbyZEFo6yNRkZzkUxAuKvhccLHEjH7ChAlKVgghhBD/Bx4UzZo1M51gtHSRYPR4qSeuz7Hw8MMP27V9wIABNnHC9E8IkXMhuFW5cuUEN6SE8ZvjsRBCiKwDctjE/JB1QiLbQ4KAgmW8PJMiGJ+hgBqJbaSZiLN4fIwxVvC8GDx4sMmCew8KxpC9evWyGFFmw/7gvYHUOFL5FOSQeCdGO2TIEJN5Sg9CoZDFYK+++mqT3ScpE4TvFklFD7KIFPTefvvt5keRHVCSIodAhoxBXZUqVRKcBOigoArtjjvuiPpaH7j12v2JQTMY/eCvvvoq3FlB8oPJJEbbXbt2Tff9ESISHTp0sOTbvffem0BHD71Cuh92795tJtip8aXgJE82nqw++tf16tWzz+BCygUnKeNtIYQQIjdBpyG+TVChQoXwcpIWFBJESlLglca4kYQEnRYerrmMUy+99FLzt+C6i/+UEEIIIYSIL4zTUGiheHns2LEJlChOPPHEqK+j6BMvCHwiPHTZ4ktGZ0Gs3Q4oXPTr189e5yEBgFk0CYB4dQaQMGAf69evb92AFLayLSjOkJx4++23rdshvdi2bZuNrYm/EvO9+eab7f/iQTmEQvJLLrnE4sPw+++/W3xrzJgx1rmcHVCSIodANwTtPbTEB4O3tEvVqVMnyU4H30kRLUnBD42We4K0/fv3txMNr6GKDtNEteSKzIJj8YUXXrAOh6CEBMEO/9wHTYL4YzvYihhJtoJs/KhRo8LZeH5LJCt4b07wQgghhHBu5cqV4ceYATI5A4paSEYwab344osTvIbkxMKFC+1aS4UZhQWJuxSZQFHpxRhTCJG1YeycXlBUR3WoEEKI+I/xHn/88fAYjZgIHQsE3Vu0aBHz+9AZS1ELhSfB4hSKTlNi3IxqRu/eva1I2kP3HTKhJAgyO0lBQQ4ypxTeXHHFFZY8ISZKtwLF3O+88066K81Mnz7dOlko5jnmmGPMGJz9R24L6EohgcH4mWuzN+WmuJc4FgXtQdn0rEyeeG+ASB/IotHygxcFFWi02nuJm+RAGgrowoj0AyRzCvgBUOlG1o5sKG1diSegQmQ055xzjmXOkXai6nLOnDm2fMuWLXZPe93LL7+c4GLlj21/rEeCSoAHH3zQsvtcRGlrJDPP8U4mWsk4IYQQ4n94DVyknqjcKlu2bAKpp2uuuSY8fvR07NjRlpH45xrNtZyJ07Bhw2zi5bt1ufa2bds20/dJCJE0dEkRFGHsjZwERT0EiigGuvLKK12bNm1c8eLF472ZQgghUsmePXus8ISgd+3ata3g2ccbk4IiFJIIDRo0cC1btrRljRo1smWM92KNpfz2229u5MiR5uvgA/2oaVAE06pVKxdPGO9ScEOsCZkroFCcGCneqH4snN7MmTPHrrFArIrrcDB2y3d24403mroI43K8PYht0dnh/d7wECa5kS3INCtvkeFs27bN3NKPOOIIc41ftWpV6IUXXgjNmTMn6mv+/fff0HHHHWev+/HHHxP8bfXq1aFChQqFWrduHTp48GCoePHi5g7ftWvX0JFHHhn6/vvvM2GvhDicdevWhY4++uhQ8+bN7dj1N38sL1q0KMH6W7ZsseUct3/++WdMn3Ho0CE73iP9NoQQCdm9e7f9VrgXQuR8Tj/9dPvNX3bZZXb/9NNP2/Kzzz7bno8dOzbJ12/cuDF0/PHHh4466ihdY4XI4tfsDz/8MFS+fPnQKaecEmrbtm3otddeC3388ceh6dOnh959993Qo48+Gqpbt27omGOOCXXs2NHmpFltH4QQQhzOf//9F1q6dGmCZXfddVfouuuuCy1btizm93n22WftnFytWjV7z9TStGlTe5977703lFVYuXJl6J577rFxq487FS5c2K59mXG9++eff0LVq1cP3XnnnaH9+/cn+Nv8+fMtTss2FSxYMDRv3jxb/vPPP4eKFStmy3v27BnKCsR63VaSIoexa9eu0LfffmuPhwwZYgdBgwYNoq6/fv16Wydv3ryhv//+O+KJholojRo17DEHOj9IEhdCxJPOnTuHChQoECpTpkz4YuGDJlwwgnChJOHG31JysX344YdD/fv3tyQHxJrgECK3oWCBELmHv/76y5L+/OZLly5t9wQr165da49JPOzYsSPZ9+HaSjKDgplJkyalaVIrhMi4azbzwMmTJ9tvNSk2bdoU6t69uxXJZTQadwghRNpjh1WqVAnlyZMn9Msvv4SXJ3euX7NmTahbt26hr776Krzsjz/+CHXo0CG0ePHimD+fz3z88cdDO3fuDC+bMmWKXXOSK3bJaChYfe+998LFOP5WuXLl0IgRI0IHDhzIsM9evXq1xVuDCQmK0BPz+eefW+Eu23XWWWfZ64Din1KlStnySpUqZZkYVqzXbXlS5AAw+6WtijagE044wZ133nm2vESJEmb4i+Zbcu365cuXP6wtH70z+OOPP6y9yrcXoS3Xt2/fDNwjIZLnkUceMZ1E5M08aO+VLl3a5c+fP8G6yEr4dkF/zEcCiSeknTBygieeeMJ1797dLV682H4j6AwKkR1Ap5KWU3Qq8RRCMz659tW7777bfI1oBcUI118DhBAiCL5QXubFt7sjDfDJJ5/YYwz7gkaKX331lbv++uvd3LlzE7zPKaec4po1a2byjUgCMGZN7FEhhIg/8+fPdw0bNgxrXEeDuSf+hZh6CiGEyHoEx1nEDvGwZb743XffhZcnd65/9tlnzScUrwjPySef7IYOHRrV5zYSjP2QkcfDwYPxM9ccxofx4Oeff3aPPfaYK1OmjLvpppvczJkz7fto3LixeU8sW7bM5J2QeUpvtm7dah4S+EcgecX11JM4vgV4BRPjYvyM9wfzd2DbkHjib1OnTg37VmQX5EmRA04yaPCjC3rfffcd9qPnFovxIV4WibXo/GSSx0ASg4OfQBaBYCHiSdGiRU377+mnn3bPPPOMaSYSJOGEHMk8iWOcZFvQ7DMxaAxyYWjatKl7//33w8sJtpC44LfAby6zzZmESAnvvvuu69atmxnQkqDAiJIB3+rVq+13k5hDhw6Z6Rh/47gnyLBhwwbTtBRCiMSsX7/e7vfv32/3JPE5X3g/Coz7gjCRnThxok1g8TJjAnjGGWeE//7XX3/ZBArdY11fhRBCCCHSF8ZsmF/j/YV/hA9cDx8+3BUpUiTqvA/vsDfeeMN8JUqWLGnL7rrrLvfrr7+aD1Gs/PDDD2Y2TQLAJ0HwH/vwww8TFJ3GYxyI0TQxVWJBJCJ8IqdYsWKuXbt25omRkfFPigX53zBnP3DgQNjbLZIHB0kTioEwHqdYiOckmoLfG/+nGTNm2N8jzf2zOkpS5AAmTZrkvvjiC0sgLFmyxN16662uVKlSMb3WB2wTu8/zfphmk13dvXu3LaMqd9u2ba5Xr14ZsBdCpBySFK+++qp1Rzz00ENJruuP8aSSFJj9cTIPGjuRmCAb/fHHHyuAIrIFBATbt28fHjiSrKDCmQFmjx49Dluf5Tt27LBqZwY8kFHGX0KI7A8V1Yw1x44da88vuOACt2/fPjdr1qyISYp+/fpZgoLOX6rlODdx/abAAFhOUY2f/AohshYUPqRkDCKEECJrwRyPztVNmzZZsqBFixbhQpOkuO222yxwT5KD8RxUq1Yt3D0baxKAwDrBeO6vuOKK8PiPAtF4QCKC7pFRo0a5MWPGuO3bt4f/xvaRnKALOG/evBm6HYyFue3cudOeX3jhhe6pp546TA2HLgu6FBl702GB2gcwvobZs2dbrJbuDwgmfrIbSlJkcwiYVq1a1W60zXPwXnbZZZakiKXiG2mbSEmKKVOmhKvbPFTW0o7lfwhCxJsCBQpY0oxgR58+fey45wLKcb958+YEF11/jFNNHg1a5eiiCP4+KlasaIkLkhXJtT4KEW/oivj2229dz549w8s4bhls0TobCRJwVDfTJUcVCdU0DEgZ/AQTdokHm9w8vuNOCJE78NfSJk2a2LWT4hbOP6effrpdN4MgFYoEgJei+/fff63qK4gSo0JkXYIyIIAMKsVs/rfOeJnxwvnnnx+nLRRCCBFk6dKlbsKECa53794WGyHY/vzzz9u8kHFbJCg4oSOfrgnfaUHhG0XL55xzTkyfyxiPKn4KqJHnBqSE6QpI3Kkfj+LP3377zb399tuWnPj+++8TFKvS2UEhDWPZzAL5KBIUlSpVMqnxJk2aJPhe/v77b0suEfNiPf5/vogcGHsjxU/igr/ROUFhbbYm01wyRIaCuQ2mM7feemtoz549tqxEiRJmKvzTTz9FfZ03PAya3mBcWLJkyQQGMTjFH3vssWaII0RWAhOhE044IXTttdeGihQpYuZBxx9/fOjEE08M/fPPP+H1li9fbscyy1NimMT7nXrqqaGtW7dm0B4IkX78+uuvh53T4cEHHwxdeOGFEV9TsWLF0DHHHBNq27ZtaNGiRaFx48aFTjrppFCfPn2ifk7v3r0TXCP8TQaWQuR8uLYed9xx9pvHnA8wS+R5586dk339nDlzQtu3bw+1a9cuyTGqECLrmU4PGDAg1KhRo9COHTvCy3jcpEmT0PPPPx/KLGScLYQQkeGczNyOcyRjrlggBoiJNq8ZPXp0guUpATPsI444wt5n3bp1qX6f9ITrxMiRI0P169cPHXnkkeF5K9/RzTffHPrkk09Cf//9d4Zvx3fffRdq06ZNaMWKFeFlP/zwQ2jMmDEJ4lY+vot5eLly5cLbW61atdDChQtDnpUrV4bOP//88N9btmyZwGw7qxHrdVudFNkcKtPQD6d7wmcqgQpXdOIgmr4cWTnavRJXsJGNI4s4ZMgQ06Ajm4ik1C233KIuCpHlwEQI8yKOV4yvPXRUYBZMhXjwGCcDTfYZKbNY2iJp/aNjg9fQwo7/y8CBAzNwj4TIXDDApepi2LBh4UpIrh9oY1J9Ewk6NYLyD3RSxCozKITI3lx99dV2vaXKjmozOnc//fRT+1uDBg3C61H5tWbNGnfPPfckkHKi1Z/uR7R/0dKlKyNa15YQImsxYMAAN23aNPNr8/CYCtArr7zSupuFEEJkHnQvIPvuu9k4JxPPI+5RuHDhiK8h5jd9+nQbt1G5z+3mm2+28V1Q4iipbgfkm8aNG2cdGA888IAtYz6I5BCfGxzbZXbXBIowqMMgj0QsM6gQQ3yIzg72N3gtywiIy+IDQicx0spBuWXfbcwtMT169LC5OKBygKJNp06dzCeYuTtyznzn/L/YB+bxN954o8sRZFraRKQ7f/31V+ioo46ybNSmTZsOy7z9/PPPVk0bLWu5du1aey0dEpHWGThwYOiCCy6walrWoxJdiKwIWXoy9j5r7++feOKJBOsVLlzYli9ZsiTqe91///3WlbFmzZqImV9uweoxIbISBw8etOvChAkTEiynsqJx48YRX1O7du3Q5ZdfnmDZp59+asc67xcLqmgUIndAB4S/Fp5++umhXbt2hZYtWxYeTx44cMDWoyKMv7N8yJAhoXnz5iWo7qIDg/PO+PHj47g3QuRO0nLNzp8/f2jmzJmHLZ8xY4b9LbPQuEMIIf43LitfvrypPwRjgkl1LqAWgeIK59AFCxaEl//5558WR4wVrgVedcWP/+IdH/34449DzZs3DxUoUCBBt/+ZZ55pyjPEQDOD1atXh3r27BkqWrRoeBvy5MkTuuWWW0Lz58+P+D/hf+lZtWqVKYD069cvrJTj/6/16tULvyfdIYljwVmVWK/bEljPxuzdu9eyfzVr1rRuiWB2ED2yMmXKWJYwWtby559/tnvWi7TOXXfdZZXoVMvUq1fPVa5cOQP3RojUgzEQ+n14RwBVneBNPD2+m8If+5FAk3/y5MmmVxikYMGCpslIZTnZayGyIlS+UEWDPryH45XnvqsoMbVq1XI//fRTguMafelTTz01w83ChBDZC+9lBuvWrbOOKt9FwVjxuOOOs8eMK+k+xBCbKr1rrrnGnXHGGW7t2rX2dzyjqODLMVVfQuQSMBKly/7DDz+0jnxuVInS1RxN51wIIUT6EZyz4fGFNy3qEkGPhWB8j04LPAuDahH4FuDDEIx50CEbzYOT98bo2nuMQe3atW2M99hjj9lnxANioPgrtmzZ0hUrVsw1btzYjLCJldLVQXcf+75ixQpTnskMvwn+P4yJn376aTOz5nvGN+KXX36xzpMaNWqE12U7X3zxRVeuXDnXpUuX8HI8n1A2oIMCVY/g/5UxNbGpQYMGuc8++8yUdXIUmZY2ERnK008/bVkpNIFjZcSIEfaaq6++OryMzOnkyZOtMq5mzZphjTNVuomszpQpUw7Tx0czm4y656abbrLldAlFA73CV1991bT9gYp0qtBZLkR2AE8JNDY5ZtG85LpQqFCh0G+//WZ/b9GiRahHjx4JtEOpNrnnnnus6oNrAFUfiTuRkkIVjULkDkaNGmW/9bx589o910u6sXg8ePDgiK9BP7ds2bKhqlWrWpWeECK+pOWaTUdUp06dbJyBtjc3zgcs27dvXyiz0LhDCJHboKIen0G6AoIxDvy98OmMBJ6ypUqVsk4LPxcEqvap3o+VYcOG2Tm3cuXKcfWXAPaV+GSzZs2sgy8Y/8FL9N5777UO3pR0haQWvkM8Ldq3b5/g+3zkkUdC11xzTei9996L+D0vXrw41LFjxwTbj6fwgUQdKXRU3HHHHaZy4OF/v23btlB2Q54UuYw//vjD7r3OPlm6Tz75xLJ2VJhHwleTB/0ocJe/9tprrRLO6/uTnY32HkJkFerXr2/Zciq66KQgy8wxTDfQpZdemuBYX79+fdT3QZ8wyPLly91bb71lFeWJ/yZEVgT/IPyEqGqhOqZatWpWZUF1ib8+BKtk+N1MnTrVde3a1Z1zzjlWjUElR/fu3eO4F0KIrAj+EeDPIVR6zZs3zx5T2RWJ6tWr2+uowjvzzDNNU5cODCr5hBDZi3z58rlXX33VtLJ9ZxRdUr6bWQghRMZwzDHHWJfA5s2b3cSJE23O58/BwSr+DRs2mNIE4CnL3O7AgQPuhx9+CM8HifFFAx8HPBTwPLjuuutsGT4Ts2fPdrfffruLB8xt6ZiYMGGC+/zzz83rwYPvWdOmTa07F+WAjPY5o2tk7ty57t1333Xjx483D1PfaejHwv369YuoVsM+4OG0cOHC8DLG0oyL6QY59thjbdnXX3/tnnnmGfs/E9uaP3+++T6xbxwH+FTkVJSkyMZgfO0neAwUg8bZBFaRa2JiGC3B4I21g2anXh7HJyj4EdC+K8kPkdXhWPVyTIkln3ySwh/rXNhj5YorrrDjn9+SbynktxMcDAiR1cCollskEsugAQO6BQsWZMKWCSFygtwT10LM+0iEMlkj+eBb6J988kkrkrn11lvDky2uo8jOMXEePXq0TcaEENkXkhIUNgghhMgYCEwjQ824yo+lkAYiWYzMUmLWrFnjrr76aktIUJTmY4XvvPOOyfj6MVliGNMF/7Z48WIrQCGh4ZMUyMu//fbbGbSnh0MshwIXgvrcMJ328R1AHoltIzFxwQUXRJWpSk/4fgcMGGCJEmScPHxPJIyCUlI+QUHMlu328VQklklQ8L9BIrFjx46ubt26tj5m5uPHj7dCABJCHiSsKB7M6ORLVkFJimwMLvBkSsmuValSxU4cHjJrHPRJBVK9/hwnLE/wxwBMPNu1a5ch2y9EetO2bVtLUhAcOeuss2zyhB62xx/rif0mgnDB2blzp/2GqDAgeOu1/KkCrVq1qi0nmy+EEELkJtD09VSqVMmq2cBPlrmGPv7441bhhj4yOrpXXXWVTb6oyEM3mYmluiiEyL4sWrTIAikEwQiqBMGrQgghRNog1kDwmnMsSic+HkFHg4fgN4oqvqoe1Yj9+/dbwTHjNeIW4LsqEsPrO3ToYB0BJEQY1/mYCuM1ik0yE/aVDgUSM9xICgQ577zzrFuB5ATbGs17N73AL2L37t3WqeGTOd6Tg9gr23Hbbbe5yy67zAp3EndavP/++/bdPvvss65169b2N75TEhd4OxUtWjTB59Gl8t5779ljxsnNmzd3Dz74oMV9cxNKUmRTOKEg1/TPP/8kSE54LrzwQjMxSwofqOUE5N8zcSUtyY8KFSqk67YLkVHQyoiBE4ERLmyJ8cd6UkkKOpD47dDiyOMgXKBIDO7Zs+ewigMhhBAiJ8M4MZigP/fcc92UKVMSJCm4LpKkYDzJRIvbww8/bK3tTCZbtGgRt+0XQqQdTD+RpCD5OG3aNJOfoMNq69atFjwSQgiRugA9Bs8+GUHigWJhYg5eoikIktaciymepMvAB7aRfKe7NZIEH+M4Av8+vse4jHEdwfiPPvoonKSg2JNbZkBcBllithv5YbbFQ/cBBtR0EpCoCSrAZBTr1q2zse2kSZPczJkzTUaKThSoXLmy69mzp5mOk5gIqs2QePjyyy8tMUGyPthpQSeIT1JQNEtXxI4dO9zw4cPtGlqmTBn7G90Y8+bNMyUbkkc+OZLbUJIiG0OrEJlTDnSc3fkhkPWM1bE+cZICLf9g8JaTFt0YQmQn6JxA+owqgsQX51iSFPi6eG8XP2DYsmWLtdeRBOHCyftmdOZeCCGEyEpw3bvzzjstCQFMmrmeck285JJLbFnBggWt6ouE/kMPPWQeZ0yWgxKlQojsy1NPPeUGDhzo7r77buuUeumll6xKF8mKYHe+EEKI2CCOd/7559s9hcj+XDp48OBwzIEEA/ENijGhdOnS5guEDDWxCv8a3ifaZ1DIzLiNpLKPdzz66KM2XvPJkYyGLgP8FkgEfPrppyYtFYTuAgpfGjZsaMlwrjMZDXKkFLiyPV7WNBhz9X6n3LgGJoZEEgkU7xMc7LSg8wXvVNi3b58lY0h6sP+MjRlTe9l+ZPqbNGmSoCsjN5K79z4bww+EjJvPug0bNsyMcMg0xpKk4OTgs3s+cEs2Ngg/RrKWQmQnOGaRlHjhhRfsok1whOAJnhL+WOcCwc1f5IO8/vrrdguayaNzyIWHtvZIrxFCCCFyA8geAhrA3rQQ7yZM/IKgDfz8889bG3ytWrXMO41JYOHCheOy3UKI9IGgGMEjoIqUoBnz0q5du9o8tG/fvvHeRCGEyPIEizcIzJN0QCUFHwafcPAJCrrWunTpYkmGUaNG2TLiGgS8SS5ECuQTXCd2wXnZd2ZQOMJnEt/wnp3RkhrpCTEZuiTomEAmFGntIGwDiQm6JYjZZKS/BEU0dEsgPeqhO8IbWVOYyriV7SFhgKl1MFHEd8d+8N2ivOG7iOlCIR7rfTJ8pwUJDLzY8LGYPn16AsNvpMmD3RK5PTnh0beQQ0CvjAyqP8jRCaWSDR07fyILggM9iQp+cF7Djoymh6o4TmK08guRnShfvrzpMT722GPhZVR+csEjwcCxzYSKCoJYEg5cJLnwJA7ACCGEELk1SUHVtL/OMpFj4sYkj0IBJsx+QkdVGQaPjDVPPvnkuG67ECLtnHjiiWE5DjqMOScgD7xr1y4zaxVCCBEdZH569eplhRsEtb1kENX1dKgSd2BMRRLD/40u1VWrVtmYiiC3j0sgFRQJEgIYaBMTISDvuwCQIaLImXFZRsK1AOkjgvIkWPzYMdhlQJfENddcY9sZSc4qveC7JLk+Y8YMuyHhxP+Am0/u4BNBwoDtofAmqKpBjJX/FckVvlevyMH3SVLeF9/gPcFjYkfEmfz/jvXuu+++8HUTz2BknfhM5KPE4ShJkU3hJMUPnsweP3AmhkHI2JHd4wcSCd9FwYTRZ+zat29vemlkbzk5kgGUpI3IjnDsUsHpCXYJcRHkYs1vIylj+aBBE+ZTHpJ+vB8XFi9vIYQQQuR0SEp4E8PixYuHfcyY1KGH/Mwzz7gXX3zRdevWzZIYTISZQDNm5TqqMaUQ2R+83wg8kZhAxoLqXgI/LLv88svjvXlCCJGlIUGA/wPBbuSFqLwHr5CCNyYSTHSiehmgiy66yI0ZM8Y6DRIXThLTwAcBNRXGY0CXBIkAYoV0LeBbARnlM0Hx85IlSyyQz7Vgzpw5JpntYfxHFwhxS248zuiuAZIRb775pps1a5bbuHHjYf8DEkQ1atSw53QCRgJ1jgEDBhz2WrpT2A+/D/h68DnsO10WxFLpZAH+X1wnSVrg25QZht/ZHSUpsinz58+3g50TET+QxFDVRiCVapdIUO0Cwb9TgY4WGyfAPn36SOpJZFtozQsmKWjL81UH3mh+9+7dEV+LTBTrY1jk2yCD0FaJESiGU0pSCCGEyC0w+QQmWhTKUJ1GoBI5RIpj8EVj0v3000+7IUOGWHu/76IQQuQM0Ejn9w4PP/ywSYeQpMRc1AfUhBBC/K+Kn8A1N2QvgQA2MkEUC5P0ZR0kiJAZ8l0IK1eudOPGjbNzrO+CIGkRCcyXSWpQFOKTFIy98JuNZJ6dnt0JvsOARDWdCUEYG7JN+DHQnZBR3bQkSEg4zJ0712KgdI8ABTLILPlxKwkJkgvcSJL4ZA9JHpIqs2fPthuxUMa2PqnDd0/RKkl44q5IQfFaPu+JJ56w/V+6dGmCbeL7D/qEeC83ERtKUmRT+NHffPPNUeWYaDVKSvfXB2iDrUyAUQ8JDH5Y6KgJkR1BasLLOgH6jpggccHxx3y0JAUXGoyMOP4jJSkwk8fngoubEEIIkVvwXRRUxzGJAz8hptAFP6fvvvsuHMBk0oinkxAiZ8B4moI2XyCHrEWPHj3ivVlCCJEloXCD7gekm1B6oCPCxxOASn+6UPv162exPWA9EhWoNiSuuCdxMXLkSNe7d++w0TXSQZMmTbLPCZLeCQoKT0hGkJjgPnF3AtJJxE9ISJCcoKAzIzoGiO9QjE1yfN68eXbv4zoUyCDzDWwDSZ46depYYsFLXJGUIHnBa0k0+I4HDx0RPknB/4TuBxIhfI5PUPj/hfekAOSiSGQgX0XyiWSUSB1KUmRT+PFz85x99tmWLeRHxY8iORInKdCJI4OIPh5JCn7M+mGJ7AqVCFwkkC/zECwJJil8N1Fi6KDAy8WbSHEBJktOBwaDiGbNmmXSXgghhBBZAxIPaCF7/KSOqrUgFM889dRTVrHGDQnRoDmhECL7grQFASCqfIUQQiSE5AIBdGIJQCU98pecO/GOpQMhGLhfv369jZPeeuutcJICX1he498v6B+BPBS+CMg4+SQFRSJBb9n0gmA+kkn+5gtVPHTRsQ0+LklRSnpLOPF9Mf7kOwESBcQ6SRoEwWeUbQl6WyDrff/995shNoXYxEt93BOZew//D7wheF/+b9yvWLEiQRKEYlfAZ8MXsTZq1Mi2jX2nOwPzc5E+KEmRQ+CE4H/EPmtLlpMfLNI3ySUpOOF17949/HcyskJkZ0gmJE5SQHKdFLSrJ64aGDZsmOlEkqQQQgghchvBSjOqp0n0UzVXrVo1Mw5kwodPBdBq37x5cxubKkEhRM6CTmK0x71+uhBCiP/FDKpWrer27dvnNmzYEA6Yv/zyy3b/0ksvWeU9FfjIB0G7du1ciRIlDpNyomMVzx9kovDSPOWUU2w5Yy06FDKiaJKkBHJHFD1zS5yMZuznZY8IyiN7nd4G3EhGkVQg0UPiBe8zpESfffZZ+zt+DkhjoSpTs2ZNS0yQNKCLgU4/ZJeQJOS1vIdPLuCV5r0luIb57gr2ge4W79mBsThJnz179hy2bUg/efNr8P4aIv1RkiKHgDwNGUavt49G3O23324ZxFiSFD6A6+FHK0R2xhshpTRJkRgGDv379w93FmH+ScsmrX6JjauEEEKInIif6AG6wpgEUj02fvx48zF77bXXrNilU6dONjF/++23bcIohMhZ3HXXXRbwodOYruPEkiIEi4QQIjdAgbCPEVCoQYB727Zt1iFBZX2wawJPWboRkHjySYrSpUtb1wRBcYLqXk4aDwWKjok74AHWsmVLW05APpIcdWrYvHlz2IeBDoFIHXIkXZBw4kaHgY81pid0i5CsITmRWHoJFi1aFH5MHIftZjsolvHJG74rEheRxp0Yivvt5n+zePFi88ngfelgodCGRIiP+/C/IPlSvXp1i4lyIxniExki41GSIpsycOBAyyi2aNHC7vlBBeEkSbuSN46JRe4pmCX17VBCZFc49pk4kXGnO+K6666LKUnB4IELGUEYfgtc8IJdRmhAYnxF+2DQnFsIIYTIqSxfvvywZejucq1l8sY4smvXrtbBy2QT0rvtXwgRf3wF77333hteRiDOy5gkluEQQoicBsFuxjxU+iO5jvQR57/333/fYggvvPCCa9Omjcmpe59YkrsExxMrltCZRnFlwYIFLQDvx068B3ELpIjSCudnJI9IRnAjMUFRc2JIMhND9LJH6WV2jY8E+/ntt9/ajYA/8Uyg0BpPUIpfgEQP0lEkbPheTjvtNPse8TzjRpIBOSbkRj/66CN7DcUxvCddFryW7ghez2OSDl26dLF4Kd9vYkiO+CQFkqV8Bt+5xrDxQ998NoUfOhnDaIFWfsxox0Xj4MGDdk/ml5NWMHPKhFM/SpHdYaBA4IRM+EMPPRRe7qsd/G8gCL8FLs5URdBaye8oMVz8gASGEEIIkRsITuy8NwVJCqoAmcy+8cYbZlC4bNkya4dHCkoIkfOgQlgIIXIzJBQIrJOswETay/74wuEPPvjAkhd0ld533322jKA5XhITJ0601zdu3NiWExCnwIMg+/9j70zgZar///9pT6WSSpQUJYWUdi32JFGpqOyFCqFE9qRQshSyEymklZAiCW3K0p4WijaVFrQodf+P5/v7/8zv3DEzd+69c+/cO/N6Ph7HzJw5M3PmmHvO5/N+vd+v99dffx1KMs6NswnxCgL5BPdZECawowqPlWDZifURCxUaiRIlYOzYsdbPAVGBY0GcxUN/Di9SsB8PPvigfX9cYBApgO3ZP8aVkcBSCxAhSJQh3oPwwva8Z/369UPbzp8/P/RZ2GVRyYKAQbUEwoSHChY+UyQXRaILKWSp0azFn0hQcelBwUkukr1TOPjc+T9EvN8oJfP4MjMhCjuUoTM4CMJvPvg3EMQ3ZuLWZz2g6pMVxt8aWRJYPw0aNEgihRBCiLSBsSH9mfzEkYpbBArg2sgkb+vWrWb7RGNdVeQKkZqoF4UQIp0gDkCvAoL9o0aNCiU9MiYisE4MDssghACf6IvzAnZEV199dab3Ii7RqVMnqxDwIgWvoVoV66KgPVR2IPmSCoWVK1faftLw+Zdffsm0DZ9DYN5bRtGPITf2TYwFN23aZBUSLMRM6AcR/K5YXAWdXojNIBAg1lDNgbiAqMD35z4ij0+e5lh4O0HGmySS8nrGm7weVwsSSqkQCQfRx0NMZ9KkSdZTAvuq4HOiYCKRopDCScx7sAEnxb59+5pfXXZECiaWXoX04DknRCrAhYxm1wRLWIYMGWK/+WgiBQIFoh1+hnvttZetY9BBkyv+vu655x67wKvSSAghRDrhbUGZKDIppWEhE9AmTZqY+I+IsWjRIrd+/XoJFEKkGCTDhfd6i+UvTrUFdqtCCJEKlaQ0tiY+gNU6gX4g5oY4cOWVV1qSBmOgyy67zJ5DgKCaApECqyFfadG4cWM3btw4e0y1g096LFmyZLb2iXgFVQqIESz0swh3icBNwjeWZuEcnttG19grIcrQoBpxASHGw3fBht5/BhZK9C4jZsn39rFLvjvxlUgQl6Ral2sIYgUJ2FSd0KuCsSY90LxAwvf2rjKIG5UrV7YFMYMKiSDehlQUDhRpSxFQJG+88UZTRD348OOx9vjjj+/WYCdYScFkMwgebkKkikgBXORYGEz4SgqaX0cjKEJwwUfJV7MkIYQQ6YoXKfyElAkyk/U77rjDPfHEE2YVwMTTT8SFEKkDf+s0HyXQgw94eLNswFoE4ZKmsCQISaQQQhRGqEB46623zNIS6E/ZsWNHS2DkHEdvyjlz5thz++23nxs8eLBZXPpm2J5ly5a5F154wfol+LERYkSwF2w8EJAnSO9FCaolIjW5PuKIIywWiE0UsT8qDnxyZrwgnCAQsI++uoHv7GMjCC8zZswIbc96zvUkp/D5nP+xzOZ68OGHH7rNmzfbMWrfvn3oNTQU95ZPXFfYXy8wEL/kfSIRdLEgNjNlyhSrkuB1itOkFhIpCil4yqFiUmpGFhsqJUsQPPI4MdC7IhwfoOXExcSSEwsnE040yoATqQIlgAwofBM/BDkGCtEqKSJBeSD2Ff49qKrAL5KmV/IsFEIIkeqQoef7nOH9S4CSSooXX3zRbdmyxYQKtsmpTYEQomDDHJHsX6qKySjG0xvrDuahBPTwG9+xY4dlFL/00ksWNBJCiMIGAXrOX8z7yer3AXV6JjD/x+6OQD7nvAoVKthzJAoj3iLmsv6EE06w9Tic8HpiddkBG3asmxAl/OKbSgfhPEyA34sS9HLIyThs4cKFZmeFKIGwQO/bIP3797f4IGIJIgjVcrhP0AgcgYIEUL6jt8IKB3sl4idUSHz66af2Gbye40ljcESe4LZAvAZ7Ju+G4ZcgCBoiNZFIUUjhJNKqVSsrZ4p24kPlRYTwJ9Bodk/FihUzRbZZs2YmaGRXcRWioMKFmkkUYh3gWUg2RDSRYsGCBZYRSrYDfw8ehA5v/zRr1izLYiBbQiKFEEKIVOedd94JCfVQq1Yt8wKmfB+bJybyVO6qp5kQqQlzw86dO9vC+YB5I3/3BNPw+L7tttvMLljZrEKIwsb27dutEgJoWk0wnHUE4YkjYGHkM//pNYFtEcF2H2MjRoBwwTiJPgtepMAWyltDxYJgPb0bWHyj6XDHB6oRsDAiQQRRgttoFQfhYEWFMEBVBLcs06ZNCzXoRhChKiH4WQgECAV8rz59+liiJ3aeQQHj3nvvDfW3RWzg/E9ckYXKCY4j78O1wTcPD+IttBE/vLhCHIY+oLyHSF8kUhTiDHEqJ/jDD0KGG1ktnDDi8Q71JwROqJxs4zmRClGYQOH3IgXlh976LFKmAQMDShgZqARFiiBkRWAjhUeiEEIIkQ5+9EG8BYJvakgmtU8AEEKkNgTKwv2+hRCiMDqT3HzzzRa0Jw5GwJxxDUmL2CnhNsIYp1+/fiERg+QMKi1YT3UDFQEwbNgw651AjC4W2EjTZDooSiBShINAgBhBTwluSY5EPIhFMNg/f/58N2LECPtuuKuEwz7QY4PvjYhBbIN9o+IBAYRj0bt3b+vnGYT1iDAIMvTf4BgGG3QjWHBMqC7x9ky8HwIGlR8sNL2m6gOrp/DkaC/wiPRGIkUhhT/uxYsXZ1rHgBEllOwWTmax8L5yqLRkhqMUU0WhfhQi1Qhe7BhM+MyESM2vudgGPSU/++wzyx7A07FXr162LuipKIQQQqQ64RNc3/yQLDwmwDRPzG7TRyGEEEKIZEHgnN4TxAdocF23bl3rPUGFAr0OmjdvbtvNnDnT3XTTTaHkR8Y+JGYQO/OiBBVlkUQDBAgSPRAkuCVWF+7mQCUG7igIEgT0WfiMSAmVvCeNvBFRsOHztyz0ob344otDicvephN4P/adyoi1a9fa9w1WyHqWL19ulRwkdrK/VEhQPcE+8rpy5cpZMjTWfs8991zodVScEHPxC/EWL6pgFShEdpBIkUIceuihdkv5LSIF3e7xC6bJYXhg1auWnEDwgfN9K7JSf4UobHAx9aD0kzUAkWzNGBywBG3VnnzySbOJ8iKFEEIIkU7QsNFzwAEHmA8wk2gaKCJYBK+bQgghhBAFCaoECOJjTemD5mT8Y3tEVQFJidghIUb4igpEC+zVCc57kYL1CAK+giIIwXxECIQPAvwsCArhIID4mAMLTiZUZgQhXoFQgJDC9kCFBz2BECAiMXHiRLdo0SIbs7GPvi8nPSew6cSyaezYsdbMG3ge4YLqBiobeC1VI5FAHEG8QaAA7Js4NsRZqIgI338hcoNEihSCkyxlZixAcxqa+2L/1K5du0xqrA/QcgIMNuKhQkOIVCLYkwXhLtg0PivIaqBU0guADHAYGOCV6EsYhcgN2IdRWuvLiN99913z8FRvICFEQYCJKRNbD6IEE2eyAhH+fVWFEEIIIURBhIRcknYJ2lPdgOiAgwINry+66CL37LPPmnXRnDlzTAiAhg0bugYNGpjFExUIfu6PQMFjrJIQJLwoQVVpeHUCQgBVFtiwe1GCoL6Py9HXh4pUGm6zUBnBLW4OxCyYI7Zp08bGXawnDsFraeDN+zJn5Ls98sgjljgSDp+PhTVJy4zngrCvS5YsCfW2YO7Jd2T/SFxmQYRgOfbYYzO5UGCFJUReIZGiEEMJGpUSkydPdpdffrk18wnCyeSCCy6w8i5OgGS/RbJ7CqqxqKhCpBL8HUDr1q3dddddZwOBSHZPCBBkUHBh9s2aKFekGaCHhtm1a9c2L0oGIkLkFrJ68DH1IgU9U8jo4XcohBDJ5rvvvsvUwHH48OE2uccCatWqVbv1RhNCCCGESPbYhaqJRo0a2WOC+mT/UxVBvwaSdBEgCPgfdNBBZpOEu8jcuXNDIgXxALYFtmfM40UJ7hP4DwfbIwQJv9DrgYRh+mMiMlANga00MTqg8sL3ywwHwaBnz55mQRUEsYGxF3ZKS5cuNUEjyP3332+fQRyDZMvRo0fbemKBCA/EBlmYawbjIXfffbctQiQbiRSFGBRcqiUo50KkCAc1dMWKFRFfG7R7QsAInliFSCW8TzaZEgxAyFSH8Ex1Mhfo68KAhKZP0QY8XMwZ6AiRCMKzWsIfCyFEMsFC1MN1k8l0ixYtLOsQ2ychRPry119/WQBOCCEKCogBvkcE8/977rnHVapUyZLC1q9fb/N9hAaSwug76ZMZTzvtNNue8xpiRlCUoJIhHM59iBD0dKVCAlGCpGGSOBAGWPg8RIRgvA3rJT6X96QaA6GE+R/r2E/GWlSwUuWwfft2ew3JbIgOVDVs3LgxZNkUBMslYhT0i/CJx7feequN2VhPxUSkPhdCFDQkUhRi+vbt63r37h2yaEK0GDlypJ1QJ02aFLJ9ioT30cP+JojK9kWqgVUTgwgEBvjjjz/sNtxLEsEPQcM32qap1auvvmo+kd7uiXJJGk1hcSGEEEKkOn6CDEzssTtkos+kP5InsxAitWG+OWjQIDd+/Hi3ZcsWC7KRkYuXOdm5N954Y7J3UQiRZpBgSP8GIDZGsJ+ekjR3pgpi5cqVoedIWly2bJmJBIgZiAhejBg6dKglNAYrSD28lrgA5ztiA8QK6P/wzjvv2NgIoYLPQeC49957M72WJEcSIdkXqh9YwuF1LJFge8ZgMG/ePHuMWwTiA+ddbtmHcBFCLimiMCKRohCDB114SRiKLVlvN998s6tZs2bUTJdDDjnEboNlapzUfDMcIVIFftcEUgYMGGAZCd7+yf8NeOrUqWPNrXymA3ZODGJoVkVGhL/oU1opMU8kEqrh8BMFMmnIANqxY8du/VGEECKZTbPpQ3HnnXealYAECiHSE4Jv06dPt2AePQ89BAUffPBBiRRCiHwDIYL+foiliARTp041MeDll1+2is8bbrjBxAdiXggLzLdwIKFZ9IQJE+x8FZ60CwgeVFbUqFHDKiWoYKhXr56bNWvWbn0nAPcSmm+HgzhBD9jwPrBwxx13WLwO0QMbqFGjRpnYwEK8onTp0qHHfL4HCytvYyVEKiKRIsXo1KmTnQRRVIFMcHz1OLm9/vrroe18ZnhQpAgP2gqRKpDp8Pvvv7vnn3/eKiGCfwPh+MALGRkMGhjEqDRS5CX0OQnaPNHIDXz5L7eRBsRCCJHXhGf1hQuoQoj04tFHH3UTJ060sQtJcR4ykkmyEEKI/OLII4+0fpPM26maYIyyePFim+dfc801JkSQhEsvVxIQ6Q0RDvZKJUqUsBgAMQMqxHg/En+XL1/unnzySbNY8uMf5mUkLTI38xUXfh6HdToVF8QQaMS9aNEiW0+Vgxce/C0xOt9TtkKFCq5bt275eOSEKLhIpCjkLFy40MQHTnJUVqDIBsF7juxwyvV9sCsoSGB9g0JMyZsvkYvFuHHjbEG1hooVK7r+/fu7+vXrZ2u/acpDaR2K8V133eVeeukl895jf6+44gqzEUh10YTjjv8hi3AhUY1BBAOIIUOGuGeeecYmPAwaqlWrZtmb3t4sOzA4QaQA3yg+q98XVRRffPGFDVaADA0ySNmP7t275+j7CREOg14hhCioPPbYY5ke+wm1ECI9IfDmrVHDbaAiWaQIIUQiQCRAdKCZNfP4Rx55xKomZs+e7R5//HGr8KJZNtUT3FKpznkpHJJ3sXimYTa2SZy3vv766922Iw7AEt73gZgCLiUe3EoYG9GUmliF73OB2EFCMIIETauFEPEhkaKQg70TCi0nxnD7JyAL/LXXXrMS3GA2uM8iJ2CL6szJPHiyjQafc99995m/HaIHFwNK5si0Q7CIl7lz57qePXuagMKCvzH7762qWPfUU0/F/X4iNeB30bBhw5Bg0bFjR/N+pDqI/isIBww4GCBkB0otPV6kCFZSUH5JoyzKOhn8YJ3m8RZoDHa8r6VECpEo1IRdCFFQIUvQjw2rVq1qtnO6/gmR3jBfw9okfPzCvM0H54QQItFgv8wYxFctXHfddVaBgJ2Tr/rEugnxIhbEm1jigSoLEmobN25sTiVYYGJ9ifDgl2iJj1RnsAghsodEikIOAV2EA07QHjz1OVEziCQQS+Z3OP5kyomcEz6NgOPpR+EDyB4ap1FZ8eabb1pAmcByJDi50xMAyJKnLO+SSy6x5t5PP/10aDv89nhPsukJTAeDy6Lwwv891TORqF69ulXy+EZQY8aMsfu+PNIzbdo0K+lcvXq1u+iii7L1+QwwPJEqKWiQRdMrsh0QKIJVR56zzz7bGtNTrilEoqGyDJGOKjV+e2TjUFVGubAQQiQDklw8eM8HrV2EEOkJFfStWrWyigqylKl6Xr9+vdlAkeEshBCJ4P333zd3DarOESdw3qByAismePHFF23JCfSZoIcF8y0qNIgDEDtDdCC25m/5vGBMoHLlyrYIIfIORYALOR06dIhoI7Rq1SobLLZo0SLi63ygFYGiX79+tj0n6exm2OHRR8kbJ/krr7zSgseID952CtWZKo6gDRWBaPYRgSISCCc8J4EideD/n+qYDz74wCYzQPUMQoR/jHDF77FWrVoR38M3tYrHliycvfbaK3QfQQ6CYsOZZ55pYpn3miRYzD5jxdW3b19bR/VQ165ds/3ZQmQF1mZM+pnsI8QhklGxQ7XZ4MGDd7PxE0KI/GDmzJmh+5GqdYUQ6QcV9PR4GzhwoFU2M36h0op1devWTfbuCSEKIcx9sEdasmSJOXUQF/juu+9Czzdt2jSu9yGGRJIucSSSD6kAJeHr6KOPtrk/LiOIDyTGyoJJiIKJosApCI3MKGHzHvzff/+9mzFjhp2oqVIATtTAOp/1QgVGvKo2ogQWAHj5Pfvss6HJKxcE1h111FH2mOoMLgCs8xAAZoAbiZ9++skU8/bt27tUg2Aji4fjTQUKzc49WBnRTCnV4P+f3wG/B//bYB2/Fy868LuoV69exIoegrcIBOeff76JXtkl6EeJEBL8GwAGMwhqHjI18KDkb0eIvOSVV14xIQyxuEuXLpaxA2QJPfjggyZUUMWT3eohIYRIpEhB1qEQQsCFF15ozWmFECKeeTjzb6rG161bZ3N/kg8XLFhgVk0kEEbqHREN4gfMl3xMARGiSpUq7qqrrjJRQghRuJFIkSJQcosogTpMwOvee+8N+eojRPTo0cOa+mC7RBAYqxuCxjTO9sQrUtC4mAsMFxf8Ryn5xeYpniw7rHbYdsqUKRGfa9Cggb2Pt4ZKJbBJaNKkSehxs2bN7GIaDI6XKlXKpSuIFEHBJghWYlRhrFy5MkfvjXVYsAKIsk0/sIkETa+oCPJ+u2vWrLHBFYFiZV2IRDJ+/HjXtm3b3c55DODJUkQow1JPIoUQIj/hWumTXYoWLer222+/ZO+SEEIIIQrYWIG5CrElYk8kylJVxbye2A5OCogQvo9EvPBeRxxxhAmixEqYk+P6QaVEdntTCiEKFxIpUgA8/G+99VZ39dVXm/1SeBAVUYGAOE2B//nnHxMpCNJS6vbpp59GDOTGgtefcMIJdv+MM86whsIPPfSQNRzOihdeeCHk9xdk+/btFhRmIkxlRrCHQKpA0DFoVVSkSBGzdvHHMp2hnJM+KohU4SBcUO2zfPly+83mBLIqPvnkE6vUmDx5sgkU/jdGjxQqJxgEIfIBv8NGjRpl+hujCRe2Ow888ECOv6cQ4WC1R6VbNLDsa9myZb7ukxBCMF70mY01a9ZM9u4IIZJIuC97LLxfvBAidSBmhGU3osPXX3/tNm3aZAmEPpkBkcJbM2fXkpn4CEIGsShiAY899pi5HAgh0hOJFCkAfvoMHAn0R5pkEozlZB8OdjdccFCqmYhmp8wuCK/buXNnxOfCB7SRrJ5Q2Qkek6XHxY+KD5H6BH8bZFzQ4D0o4pBxgfiGaEVj7ez2TAlC1gXiGI3fESmCVk803KIhaLCBdziIGggkF198cY73QYhI4L963HHHRX2e371sx4QQ+Qk9cYIVr4j4Qoj0BftJIURqgaiA1TQJewgP3JLU9+WXX9rcAwtx4kgff/yxWTUFHTgivZef30ermuC9SJrlc3h/El95T4QK5uA0pA72jBRCpCcSKVKAs846y3o5BAO8b7zxhlnksI4GRJHwgVofLI5HpOjVq5erX7++9U1AFMGvmIsKgd5IkJHOxQ6rHPaFSopgE1gECgK/XKAQUnjMApT4BRsei9SC3wYDFJ+ZEaxcAH6//L4Qtvy2PlODKpTsQGYG/pXYokFQpCA7DCsdBmK+iTHZG1Qm8RsEeonQzyW7papCZAW9fSL1YQkO6P/+++983SchRPqydetWE/TxifZ06NAhqfskhEguWPsKIQpXDwjEgOCCFdM111zjSpQoYUIEPSFw4YjG008/neVn+WRXj58rE19CdGA/mMNjcT179mz73BNPPDEUV/LUqFEjl99aCJEqSKRIAXyZXJDDDz/c7HMI5iIAYAFFz4kVK1a4OnXq2AXF++1zHz/BeOyeuNBgPYI9D8FibHQQKOrWrRtxey6E9GK44YYb3G233WbNkqtWrRp6Hq9/PxEOtz3auHFjzAzjwk60rP10geqZoUOHmh0Z1TPhWVr48EcatGC71Lp162xb6lCO6kvQg83JGTSxAH8jiBFsS5NQL1L4wVa8pe5CZAeqezg3RiJShZwQQuQV9DALChQEM9SLSYj0hgQyqpL9/Vj47YQQeQNVC9gtITxwS7VjxYoVTSBACCBWEy2uQz/ReKDiAVtvKhuw9n7vvfdCvU6JG3m8QEFciSQ/4k5jx4515513nvWOOPfcc02k+OKLLyxhkHgP/VMrVapk828lpAohwpFIkYJZudgmoVA//vjjJh4wueQCwsWDEn6EgdNPP92Cw8DFAVuoeAKwkRpeB6GhdrifOgt07tzZsvOCEIBWdnp6EC5CMJhi0PLMM8/YYCVcpErk7wJLHf4G3nnnHXtcoUKFiNsxoOvfv7+JefyNwIYNG1zZsmUTti9CBEEwmzRpUpbbCCFEXsN1F2tExo3e1oEghRAivaHqmAQ1eukRiIw0Z+T8wfpgADMWJCOxkFnt5wWMwanYFyJdYS5K5T/JS976iNgNc2UvTIQLhVQskHTKnNUnN/G3yHtQrR0UFhAKiAnx/Oeffx56D6775cqVsyRUnuP9sFyO1GOG5Nizzz7bPhe7ZFw9SOwrVaqUze15X5JiSXhgIdZEHMhzzz335NnxE0IUfiRSpBD49z/66KPu5Zdftj4V119/feg5LjQo2VRXMMgkAOsDtV7B5qLoB5h5AYo5qroQQRhA3X///Xn6GeFWZv63723IGLABtlJkkbIAVmUnn3yyDcRee+210HZCJAo/ORdCiGTD+K9bt242Zrz99tttHXaiQoj0ZunSpaGq/VdeeSUh70mvt/vuu88S65h/Tp8+3foWMldFsBAilSEeg6UxFkyID/6W3hD8PXTt2tWC/1QgEOjHMjuazdL777+/2/vzHuHV2BMmTHA33nijxX5I3MPqiYQEPpNKiUjvg8iBCwZzYVwGuEUkadasmb0OV4Sgkwciha+6YFsqMkiMjea6IYQQ4SjilkIwkeSi8dxzz5lIEQ49HwjCehHCV1JgbUPmysCBA82LmAtMXtC+ffs8eV9RuMnrZtRUF3moGAr+9mmY/eqrr1qFkLd8CkJ5K8IE2SESKEReTfw7derk3nzzzd0sEijnpqH8+PHj1bhWCJHnEDAhKMJ10RNuJyqESD/IlvYcf/zxrnTp0rsltREUJcs7XsKr67FbpbKC8VAkkWLnzp22eLKynRIiGfC7JAHJL4gP/v4tt9zi2rZta1UNCA88jteBAFHiggsusAQ73hOLYrjiiiusaoG/S/o8Yq9NLIe5rl/Kly9v1ksIIyQg8DeG+0Wknnds78UIbkkypZIDa2Zv2f3LL79YtQQiyfr16+01CBxUXfA5/m+bcwTfM1bvPSGECEdRtxSiZ8+edrHjAhbsezBx4kS7WFx33XWZticgVrJkSbtgIVQAan1eiRRCJAMGcuGVG5SjMpl69913LRDMwG716tWWcUIw2FcXYVVG2TmDMSHyAiYhiGWRPJwpub7pppvciBEjJFIIIfIMxn5c7954442QzYOHKlwhhPAwZvbWT0EIUPJcvHZPQXgNWd3MR6NV3Q8ZMsTdfffdOd5vIRLBjh07rG8mogO3uFP4MTrJbQT3o4EQR+UBryVxjmstvTt9D8RZs2aZ0OArjbBfYr66fPlyEwS49eyzzz5mlUxTe4QKb6NNPwrmsewLYgQWxg888EDEqkhiPggRfiFJAWu3IFgzkcx69dVXh5psY/lGDAlRkqQGRAr6iFKVgSAR7CkqgUIIkV0kUqQQVapU2W3dypUr7YJHkDUoUmDtRGY4tjcMNEeNGmXrCdpykRIiVfjwww8zPeY377O/CMwgTlCK2rRpU2smxkAsOAliACfhTuQVnHNj2Z1RaTRs2LB83SchRHpxxx13mEDh7SOCQcaaNWsmdd+EEAWLaNbABG/Jts4OZF8jSlD1TBIRHvj0xYlEr169QjZ0PmOdig4hEgniARU7/B6BQHz37t2t3wOiRHiwv3Xr1vZbpLKAMT3QS4JAPQvrfO+HoMUr11v6iPo4TRBEBa7L/m8EIQP7YeawLIgCCILEcrhmM9dFkOA6zu1HH320W29HxALmuyQesBDv4T2Cf8tLliyxxttdunSxfhNAsh7zFMQT/7dPNQcCCfdPPfVU2w63jgULFthjf+yEECInSKRIca699lq78BGAhaefftrdddddVrb78MMPWzkt3qLeBocLm2yZRCpBL4kgwckPmSY+4+Woo46y7JFGjRplEvKEyEto6k42VDT4Df7444/5uk9CiPSCai2CDwMGDHCDBw8OZUuCvOGFEOAFAgKT/fr1s0a7Hm9fQxA0OxBsxXaGqmYShcgKJzM7klBBQJdFiNxC3IPAPslqLAgQ/pYKfPpB+AQh5opPPPFEptcjxnHNxC5p2rRptgSZP3++jd0RC+gzwfwSYYCKB4L7CHr0X8GyiYW/KQQNBAjEiGAFI2JBcC5LXIe/NWy8ESW4H8n6jPdDAESM4P342wz/+wmf644dO9aEQqokvEjhk/voM8HfJtUa/L3i1sExCFZeYFErhBC5RRG4FIOLJZNNxIhFixbZhXD48OGh5xlQclHm4jhmzJjdeleQVS5EKkG5axBKWSMxevRo+1shYMzfBxOniy66yP5OyIgRIi84+uij3QcffGDn6kgwKWCyIIQQeQXZlPQzA281AXhL6/onhAAaWgOBSbK7gzYu3Kei32d/xwuv8+OfM844w8bsDz30kDX4FSI3EMz/7LPPrIqBhWB7kyZN7DkEBGyaokFFAGIF/RZ4D3jkkUcs0M/1EgskH18htkLz9xIlSljVBJ8bybIM6yafCIq9cN++fU2QQJCjZ0RQ9PNQJfHxxx+bGMHy+uuvu08++WS37Xgt81s+11dKsD/RQBihAoTKCYQZ7GUBkZDPxLrNQ1VEgwYNrEm2t3hjf0l65TO5L4QQiUQiRYpBgHXOnDk2kKQZcI8ePTI9X7t2bVPeudigiocHbLPT8EyIwgBNvhg0+oZ7/OaZXDE4u/766123bt1C2/oJF4PTb7/91kS7cG9OIRLJpZdeahmJl1xyyW42CUwimARcdtllSds/IUTqsnXrVktcIauUClssHLxdBUggFUJ4qLyHNm3amJAQqZdWbiFAGmyOLUQsqODxfQRJMKM3J6ICSzDQDldddZX1VSDWQYUDfRUQDkhK4xYRgKA9IAQExQCqDeiXsnTpUksseuedd2zMTv+H8ePHW0yF66m3B6ZiAVEEAcIvvum0t0ZC6AgH8YLKCC9IcEvVQjiIIl6Q4Jbm1rGq/3kPKkX8PhQpUiTU6JqkVu+4QfXE3Llz7fvceeed7thjj7U+GFSSsM/0dPQwPxFCiLxAIkWKwUVl4MCBFmBt3rx5aD0qOaIFpYXNmjULrefCjELOhd1fHIVIJei5wu+c7CwGcGR63XfffW7NmjXWlIysGga5wSZfDNbIlPn1118zNRAVItGQSfXMM89YJlKnTp3stwpMjrDk47fZp0+fZO+mECLFIBCCbQOBB7JKqZggiBNEVk9CiHDIKE8E9JjA755AKPPPmTNnmoXMiy++mJD3F6kB42Bf1cDC+Jhbqv5oWE0PBV9NgGUY/U08iAZUBPpG0lzvaO7soVreWyuNGzfOAvfM/6iYYFyOUI/wwXyQMXo4VBf4ng5cQ59//nkbx5ctWzYknkSDiiS+F2IEdk7cUj2NUBeE74U1MVZKXpjITq9E3pfeUnwXemr4/aUShGOI+OJhvxs2bGjHzHPBBReYuEGlkwREIUR+IJEiBYmUdTto0CA3depU980334Q8+IELKBcdPAa9N2G0hmhCFEaohvCBX5p5kfnSsWNHEygQJoYOHWrBYDJagsHg4N+JEHkF5dhMIJgEMWH3je44B9erV89+m7FKtoUQIifQrJNgDtdC7CnIAsUbHnwD7UiZnkKI9IagJsk+L7/8slVfhQdVSYyLB15LJjrJRNjNMEZHoKhbt24e7bkoyBAAJ2iOiEAfBS9QHHbYYRF7LoAXLKhuoCoQYZ0kTYLy2IiRoEkT6HDXCZ6j6TpVAgsXLjRxgIU+cYgACBbAmLxDhw52TUS0oGKBz2Ch6iDcqjVW5TMxFq6xCBJ+Iak0nDJlyrjzzz/fBAmECf4u4u2RSFNvrBu5rlOhDdha8Z2pnuD70YMReE96b+AYgLMA82OEHKpE+HvkPYDvvmrVqixFFyGESBQSKdKEdu3amdrfuHFje0zPCjJWsBnB/saLFMDFnhJFIQo7ZIdS3sqgDLy92RFHHOHatm1r9ydOnGiDUP+cGmaL/IYJCZMkAoX45vJ7pJRbVmNCiLxi5MiRFgQhmEPwYd68ee62226z5wg6ch30Ar8QQngYPzNvbNGihWVn5zSxjQCySE8QFaha4BbrJRbGv1x76Jfp+wlybSJYzlyOcbF3gMDOiTke/RrCYxZcx6iaBwSH6667zvq/URFADwgqJXjMa1966aXd9o339fDbpuoQQSPckjUrcKl488033cqVK23hfrBqAbjOIiIgSrAgSgQtlbLLpEmTXO/evd3FF18cEikQJxBwsAIncQ/Lb6hVq5Z9NtUoCEN8P44v9/neX375pVVWgAQKIUR+okhcCsOFd9iwYeYZyIUvWD5LBh0WI2QAcEEMf51ECpEKTJs2zW69nVn4bx3o4UL5K4FivLgpPSfrBi9OIfITRIlojd2FECKREITwPtRAlii+1d4ClMfBxrhCCAEvvPCC9W5jbilENBAcCHQjRmCXRFNmzxVXXGHCQzhk8NPrhIA+lQ3My7BoYq7WqFEj24bfXrBiATskX91AhTwVGQ888IDZ+lK5QHUGPSFY52E7LMaojKBSAVGDW6ojsG0KgjgSb2UQYsSKFSvsFlGASpDw78dclL8dRBPG/JEaZsfDo48+avPcu+++24QGoOfGk08+aT1Iw/9mqdjmO9ILj+s/VRy4aXz//fdWrQIceyqkOC701RBCiGQgkSKF4YK+ePFiuyCGDySprOCiS/PgI4880i5W3maEi2vnzp2TtNdCJA7EuCBkjWD1RCk5mSSUvwJZNX7AR9k5A1shhBAiFceGXAOHDBnibr31VssQBZpnAlYQZLRSVYsdVHazR4UQqZ9Q4YOaQngQBKiAQFjgPiKD73XJbwZrL191Q6Cea40XFxDHsSniukODdqr8gjAv8yIFlRbYWDN3o1KCJDMsiQjM++S0cBBJgpXy9I5AjMhN5fymTZvMLoqF2Emw0baHfUOM8AtiSU57HVJtHaywRkzgWCEoeJGC2A4CD82v+b/wiU8kJHDNx0b277//NgGCqg6qmYj/8JyvmkC4EEKIZCKRIoW544477CJE2Z+HCedjjz3mypUrZxckDxckPAipoPjzzz+TtMdCJJbggJES1s2bN7uxY8faIJbBG836GBh77r//fhvs0TBNCCGESCUIAhGswKIFQR5rCOweuPaRaQkIFEB2pwQKIUQ49Krp37+/mz59eo6zwEXhhUo7RAjskkh69PTo0cOSI4NQjYfFEnMrLJqwdUJw+Pnnn62ywr8eceLGG28MvQ4Bg+oGX+FAfAJHCGIVLMzhEB6o/vNBf99rgRgH1zWaPTOf475/zpPdXm8E8qn8wOaMBWGCptfh8D0RIxANWHwSQG6gMgRxgR4WCCNcv6F9+/ZW+UH1RBD6K+Kk4asq4NBDD7Ued1R7+AoJjungwYNtf71AIYQQBQGJFCkMFx8uSEEQJgYOHOiqV69uPsSeOnXq2EUfVX3ZsmVJ2FshEk9QcOM3zsAO8Y7BJnZOlOMiWFx++eW2DRk1bdq0SeIeCyGEEHlnv0FPJjJOCTBhw0EmJgEjvKrDM0CFECKc4cOHW8CWQC+2Ob4q2aNq5NSBrHsqI+jL4AUCrh2+WTq9Lr09ko8rICwgDlDpQL81bI8QLx5//PFM7421kBcpsJ8eOnRo6LW4PADrEMQiNWOnKgO7Xt+8mm1JRMNBIrcwT0RUISbCgjAR3uSaPg0keV500UUmSOBaEW4VlROwXyLJrkaNGvYYUYEkUypBEEe8TSOfx+dj382x8NdsKlboO4qA4eH4N2zY0I4N4gXHHnr27Jnr/RVCiEQjkSKNYEDBYIBBAiWTPKZh1YwZM0xFBzLNgQwJZZOLwgw+qEEIyjCZwpMUMY6BHRk4lN5u27bNPE9z2vxPCCGEKOgQUCLwQSNNqiTIBJ0/f75lVwIChm8aes455yR5b4UQBRH6CYjU5Ouvv7aqA2+DRI++8ePH77YdjaeZRzF/OvDAA03kpmqCJtU+2YtEMZIiCa77oD6VBlQ48FosnxADqN7Dooh52+zZs03Y8NDE2QsU9EnC6skvxCmYuwX3Kaf4/UC098IE1YZB+H5nn322fScWLKmC1fiJgAoRLKywU+Pz/f8DSadcn3EACNK8eXP39NNPu169ellVBCBOICTxfxlM1GPfiff4/w8hhCioSKRIA5h80lSJiy+ew2QG+B4UqPGo9ZT5cfElYwLuvfde99RTTyV714XIMffdd1+mxz4jBRhQU3LMYBD/TioptmzZ4saNG2dlwUIIIUQqEvSSR7jv1KmTa9asmT1GvPAQTBJCiHDuuuuuZO+CSAA+WZHsfKyEWEhWXLVqVaiXAbf0MUK05j5LqVKlLKbA9tdee61VSvzzzz+h7b1IwfWE4DkVN4gK2DaxDmunZ5991n5Hr7/+utu6dWum/aJqw/ef4NpEYJ3XY1mUSLBOWrp0qS2IE8Ggvq9gQDBg/ogowf3gNTK3/PTTT1YFcfjhh1sCATAH5RqNZRUihbeLQtRB9CGxlG2ZxwKiEP9f3gIKcAlgXovYRLUkdlgsCEFKxhNCFAYkUqQBlAhOnjzZBAgyHbjQAxeqG264wQYIZDWQae49ifF9FKIw89JLL4XuUxJLBRGZJNigAQM2Bt0MApcsWWJ/J/LWFUIIkUr8+++/5vV900032XWRbFO8wL1FC8/7MV8wWEQfJyGEEKkFwWrsn2n2TDPmIFQ7ICJ4kYJMffohBKsUjjnmGPfNN99keh1CBJUFvoGz59ZbbzUxg+d9gB8RAvEiKAYQm0AEYKHCwkMiGUuiRAEECRpOc+v7L3lI1uTzsa1iYY6Yl32ZqBrh+PA5XqSgcoL9imRZha0UdltUQnghiKomlqD4QCUF2xD34f/JCx0SKIQQhQWJFGkApYEjRoxwFStWDAkUXmnn4ks2A3CB9CIFTbHIsPDNqIQobOC3SdYNjdUYNDMQ5PfM4JSBnv9tk32Cty4DVgVlhBBCpBITJ060BrdkbJKJSfBizJgxFlAikxXLJ8QJMjOxQvRgrSGEEOEgbI4cOdIy7MlG91X4HnrciIIBVkkkYpGh74UHkrLmzZtn9znvk8hFtQK3bMP/KdcI3yCaeACuDD7ITVUBdkJsz3WEhao8nqdvw6xZs0INpnFrAOIQt912m91nTnbNNdeYGMGCbRMCQaLBKopYB9+fhYqPcEGG71urVi1b+B55law2d+5cSxilchHRB+gNQV/EK6+80twt/PFFoGDfFyxYYNv49VdddZXZMXoLKP//269fP3v9E088EXo9whANy/mOQghR2Ngjg7OaSDso/6Pskkw67J9otsSFzzeqgkmTJrm2bdsmdT+FyAkEXfyAmVMc2aP4eTKRwmeU4AtNxPD3FELkHnyJmRjR58U35BNCJB+yR3v06GGBIIKLXA+x/iRJBWsPglFYguJXjW0EkNRCs1QFOIRITXJzzaaRMQHXbt26ub59+7o+ffpYP4HnnnvOnuvcubPLDzTu2B2EaMQBkg7p7eCrBUjUGjVqVEik4D5iA04KxALoTYS4QMIWjZuDcK1AlGBeBZGSGKm+oDEzMYVwuJ7w+VTz5SXsF9ct5ndc5xAodu7cmWkbbAypqsc9goS1vPrd8LlUiHj4mxg9erRr0aKFe/TRR2O+lkQC4jIIPnwHxCD//4aYEzz2WBdzfFnH3JcqFyGEKKjEe91WJUUasn37dnf88ce7Sy+91EoAueDxQ2FwQkYD9k/e018ihSiMUB1EcIWADD6edevWtYWsFF9BRLbMhx9+aIM7IYQQIhXB73rq1Kmhx127drXsWIIbPOeblF522WUWaCRjlvGfBAohRCSwTyWRrUGDBm7AgAHmi4+HPslvWAnll0gh/g/m8VgzUS2OUOEh654KgWCPIZK3+L/CFsjb/jE3mjlzpt3HlonAuO/FQLWBD7hTbYcIghBADOH2228PuTYQJCc5DEHcN5emaqJ48eJ59r3pJ4gggWUhtyRcBiFoz/wPYYJqCfo05CUcW6yYaGZN5cYJJ5xg61u3bu2KFStmPTzCoWrijTfeMOHE/59dcskl1icjaMfF+ieffNL+r9u3b2/rTjnlFDd8+HB7rQQKIUSqoEqKNOP555+3TIbrr7/eDR06NKTGM4jwjZYoSQQmqKj5QhQ2GHT73+6gQYNc7969Q89ha8EglrLYe+65xzJIyQITQuQcZTQKUbAgmOSba8YK8PigDQEmAio0QN24cWMoa1YIkXrk5prNeYXMegLTWKaSAERGPtYz2ArxnvlBOo87yLKn6fXFF19sjwnnkIDIeZz+ESQi1q9f34LXHBuaQhMDwOaJinKy8hGo2QaoouN5tkfU8KIE77tu3TqrzEAEIJHRN8muUqWKPefBYojEr0Q3uA7C3I6APvuOMBFu4XTQQQeZuMJxYaFyPi97MZAM9+mnn5q1kgc7J45V0OIqVqUjPTdIIMVmi6bk/rfNdwlWTVDtQrUKx5dtixYtmmffSwgh8gJVUoiowVsaBTOgHDx4cMgDEoUftZ4LuhcpuPCSVaeJqihMMHALimsMTjkh+hMhGT2HHXaYlSTzG5fvthBCiFSCzEwCSARLaKpJUgpjPu9J7vENswksImoQfCIA6RttCiFEOGRsM5dEpKCCgoAsIsXbb7+dyeJGJBbm6fQWouKBLHsCPVS+MbdnrjNhwgQTjaiQ4DFNkwmUI0yEB/P5P6Rnnwe7P5ZwqEYPfy1WRF4ECOJtiRIN9lPevooKjnARjN8e1zoWBJa86G8RCewSaXqNwIDg7/tZkPxGhRFNuMOhyoUqRo4rUM1IlQv/VyQHeJGCOSu9XRCXqHoBhCeOMZUhQgiRykikSDMoH5w9e7ZVTPiLOBfWd955xwY+BGxphEYpJ1CuiOeoEIUFBDcPWUVUUTz00EM2uGUgCwzeH3vsMStJDw/aCCGEEIUZMi6/+OILy4wlIELmLNm19CPDEqRjx442BvRWT2Seep9sxAruY1khhBDh0OgXWyECtPQa4JwyZcoUSxLKKnNcZL/PAoH5iRMn2nk92KScqgXm8N7mB9Fgx44docoBRA0C5kBGPgF8MvGx9sMmKFhhQICc6wWuCsQJfAY/AXIqBaiwQAQgQE7FXV5WJ/Cd16xZY9+XpEpiFEFINmNfiGnwnUuUKOHyA/puIJhgYwUcd0Q5qlK4zp555pm2PpI4AVgM06Ac2ybEBy/oPfXUU9YjMVg1wf85f2dly5a1Phscb55fsWJFnh57IYQoCMjuSbhrrrnGLpCNGzc2UYLeFNhBMYFlMMIgQYjCaPXE5ImBHgNCBpAPPPBAyD9VCJE40tl2QYiCCA1QCfYQUMLaEEuJXr16WeYzQSeeIzBCNi3P9+vXL/RaAiEEU4QQqUkir9nY77BwjiEInl+kw7jDZ+V7qJJgjk5vA+90QHNsEq9YqIbwvSUI8SBIIyaRhc/53sNz2EUx/6ePHwK2h4oYH3DHHpdjm9cVMlQYIHxR9YFYEt68m/3hO7BwP797JnGMiJNUqFDB5pNeKPjkk09MSIhUvUHzbCokeB6Ym/J/xjyVBIGgRRRQyeh7hCAw+UqlRYsW5XkvDSGEyA9k9ySyhAEKokSXLl1M0SernHVcaCn3J5uODAYuxmRcCFHQIXPUCxQMYAm80FCMpn4MxmnmxmC/e/fuWXp1CyGEEIUVmoR6yHLGAgqrQyYFZGQSVESgYB12FUFOOumkJOyxEKIwQoY+i8g9ZM3vv//+oXNw06ZNrRq8RYsW7sYbbwxZ/xDEHjt2rJsxY4Y1K/dQSYGVLXMgAulsEw4iAC4J2N562J7+lI0aNcpk9xcUNhIN/RhIhMRmGsswrlEe+jFQJUHVB30z8jNIT/AMdwnEBV81wfWUfWIdx9j3g0C0iATVi1dffbVV9CP6AAlzy5cvN6EiWDXB/PTOO++096dfItBkm2qSvK5aEUKIgohEijSGCyKZ5c2aNbNGWFwE77//ftezZ0/ztESkAMp4uVAKUdBhMO9p0qSJKbVAphCZoyNHjnTjx4+33zsDYiGEECJV4NqGvzVChA9UefDLbt++feixt3rCNiPoOc51E59sIYSIhLeGi0bLli3zbV9SARIECWozB6dPEA4HWC/7IDj9P4KVDH369LFeE9gMAQFvnA8QMrBzDq8yQIwgQ99XXhBgZx3vyfn/qquuMjEAwTqvwRLsueees8oEAvZU9HkQRxBJWBAHktXfhP+HIUOG2LH0IgXXRao7oiW4UQWB6O9FHay4fK8KqlH8el9VEf7/z/WY/yO29/ZVVCYJIUQ6IpEijUHhHz16tJUSehjgDBs2zLIXpk+fbuuYvHIBlZIvCjpBMY2SaAa/PluFfisMfBkIYnkhhBBCpAo0UCXQVKRIERPhqSAkAIWNU6SSai9SkKXatWvX0HoyeDXeE0JEgwr88AAtWfBU4iOGSqSIH6z1evToEaqGYM5CsDooMnM/+JiMewQKqiroHYT1U3ilAU2XsX1iLk9Ph06dOtmcH6iYQAShp4OvCMhLsKPCuYHFVxV4qHC/4oorTBCoUqVKvl97Vq1aZaLbzTffbAI/YKeFiFKtWrVM20YTKBBdeD3VFt5qC1GCakW+U1A0wgKK6hf+Zm655ZbQfJX/G/4/8qu/hhBCFGjoSSHSly1btoTu79q1K2Py5MkZ559/fsZff/2VUbZsWfqV2NKjR4+k7qcQWfH555+Hfq/77ruv3daoUSNj27Ztmbbjty2ESCy//fab/c1xK4TIf9auXZtRrly5jNNOOy1jzpw59vd4xBFHZLz99tsZdevWzVi4cGFo26+//tqe32OPPTLeeecdu7/XXnvZbYsWLZL6PYQQhe+a/emnn2bUrl07Y9GiRRn5RWEed3C8rrzyytC8Zf/998/o0KFDxhdffBHa5ocffsjo379/RvHixTOeeuqpTOvfeOONjP/++y/TezKP5/g3adIkNA/y5/b8Pq9/9tlnGYMGDbLrkd8Pf8258MILM0aMGJGxYcOGjGTTuHFj26/u3btnWh9+bMOP8++//x567K+hZcqUydi5c2fMz3vmmWds22LFimVs3749Ad9ACCEKD/Fet1VJkeYceeSRoftkwZBxR1nppEmT3KBBgywTDx588EErfxSioDJx4kTLwKHqh7JnGrBRPk0TOSosyC6FZJUPCyGEEHkFGak0P8UuokyZMlYpgd0E/SgWL15sGc5UTQCNOOGss85yGzduzPQ+VB0KIUR2wJrmvvvuM4tgmgmL2PiG1VROtGvXzvrl+WqIL7/80ubc06ZNC1k6zZ4922yZfJZ+eK8I5j40yF69enWma4KvtDaowhAAAJaJSURBVAjO9/MK9psKDfoqBCvbqSSoWbOmOThQNZGMagEq6x955BE3a9YsO/aHHnqorafPB/PDBg0aZNo+WkUHlRJU43NcfUPzM844w66pVFL4xteeb7/91q7Jp59+uj2mop9jQdVjsC+FEEKI/0MihTAQJrjgYveEF/FNN91k5ZlcbClJ/Pvvv91rr73mzj///GTvqhC7wSB+3LhxNkhnIM4AFLuL22+/3ewu8HSl5LlGjRrJ3lUh8oWHH37Yeg7hoUu5OaXkCHZZwUQYcZrSe0rYhRCFB4It3nfcCxL83WNTwd90uNXTpZdeGrLfwE6Ec4Wuk0KInEBjYIKyIjJY/fhEKSz26JV3xx13WP8CIJhNgiC985h7w5lnnml2UI0bN870Xsx3sHEiQE6wm6A6CVqIzvSaZE7vA+N5Cc2vESYef/xx64kUFCYI2tMrEGGiePHiLplwfEi4pEn1k08+acKQvwayRIPjjMDhLZt4H/pq0Fj7rrvuCokZzDXDoSk4wtLJJ59s1tlsy/ssXbo0z76nEEKkAntQTpHsnRDJp3///u6ee+6xplWIE7t27XJHH320NYHykOGBmCFEQQM/TwaecPfdd9vv2YsXBGqoqMAvFCFDiFSHLDY8oZnoklnHxIxJ2fr162Nm05EFd8EFF1hjPxooZkek2LZtmzUW/O233yL63wsh8oYxY8bY2A0RgopYAoV4w0eDpBOSUaiywI+b+wTA1q1bZ+Jmhw4d8nX/hRD5T26u2fPmzcv0mFAC80N/LnrhhRdcflBYxh1//vmnZd8TxCfhLzzb3sP4i+ehTp06rm/fvu6iiy7KlNVPwJzjT6UFfSzI4PcBco4DIsj++++f59+HfaC3Ao2+iRkA+0mjaYQJgvPh1R75BbELjg+Nuen54SsW2N9vvvnGEjKJcWTFY4895gYPHmz/D/Sp8EIT42m+n6/QD8K80x9/+oIce+yxVtEyd+7cpAs1QgiRbOK+bueX/5Qo2ODT37Jly4yPPvootK5Pnz7m6b/nnnuGvCTl5y8KGn///Xcmv9M333wz0/N4fvbt2zeTf6gQqczZZ5+d0bFjx9Djf//9N6NUqVIZQ4YMiemxW61aNetL1KpVq4zLL7885mdwLcBP0i+bN28utN7QQhRW1q9fH/IeX758eUbv3r2tn9iCBQuivmbp0qWhfhWcG+C4446zdcuWLcvHvRdCJIvc9HOgr0BwYZ5YokSJjOuuuy7j22+/zcgvCkNPinXr1mVUrFgxNEeZN29epr4H/hwM8+fPzzjrrLMylixZstv70OtgypQpGRUqVAi913777ZcxatSofPke7OvKlSsz2rVrl3HIIYdkmndVrVo1Y/jw4dbrKFkEe0j88ccfGQcffLDtG9e7nDJgwAB7jzp16mS57erVqzOqV6+e0bRp00zrv/rqqxx/vhBCpBrxXrdlhicMMi+ww6EkEcg0IOODzNrWrVuHtqNXhRAFiYsvvni3TCRKj32R2EEHHWRVQvhxC5HqkCWNJzFZeB6yyHj8xhtvRH3dwIEDrcoCf954GDJkiGVC+IXsSSFE/nLMMce4bt26WRXFueeea3ZtGzZsMKsQ7Cg6depk1bFBfJYzVYacG3bs2GFjPfCe6EIIEQ2y+YMLVnFYS+LXX7JkyWTvXoGBalTs9j788EPrw7BgwQLXsGFDe47zNBUQDz30UGh7bIfeeustV7t27dA6ju3kyZNduXLlbHxGvw/GXFRmcN6+9dZb8/Q7UCHDeO+kk06y+RVxADJgqRDo06eP+/jjj23Mib1uPNUJiYbrG5URWEp5qHCgPwrWv9WqVYvrfZg3YmmNhZYHSyisUnmfrMDG6dVXX7WKia1bt4bWc5yEEEJkk3yTTUSh4t1338046qijMooUKZLx3HPP2S0/F7LtyFwXoiBWUZxwwgl2W6xYsYyZM2cme/eEyHe++eYb+xt4/fXXM63v3r27VVhEYsWKFRlHH310xo8//miPVUkhROHCZ+Pu2LHDqqF4TEYuf5N33313pm1POeUUWz9r1izLjO3atWvoGhpPxqgQovCTiCoExgzJvOYX5EoK5iB77bWX7d+ll16a8cMPP9j6f/75J+P+++8PzauLFy8es9Kb7X31RMmSJTMeeOCBPP++fCYVH40aNQp9B5YDDzzQxodUJwQrQJJZNbFhwwbbNyp6Nm3alOP3bNasmb1PmzZtstyW6+xDDz2U8fDDD2daP2HCBBsLCyGEiIwqKUSOWbJkiWUT4GuMN+Yll1xiGXpA1kbz5s2TvYtCGMFso2uuuca9++67rnPnzq5o0aLmHxrMUBJC7A6+9GShkR2HN312qu/wkgwuQoj8wTdV9XjPbRpkk22LNzjZr1RY0I/JQ/buRx99ZFmfZPHirU3PGk/58uXz8VsIIQob+P137NjRxgtUBxQrVswqsMjspyeOcNZEmubVVEEwviK7nv4MVCXUqFHD3XnnndbXgcbSVLiGV3qvXLkydI5nLj5s2DA3YsQIO3/TaDuvxls0Paeq9rjjjnONGjWyvhN8B2ICjzzyiFXLTJs2zdWsWTN0zclPqDJp0KCB69KlS2jd8ccf74YPH279OagszAqq7F966SXrKfHDDz+E1vOefHd6UGQFFTFsT//D33//PbS+ffv2ce2DEEKI2OydxfMiDaHBE4NOmqdSusmg4JVXXslUEjlx4kQrNxUiWTCApyGah4afDPQZrHLLgBrhQoh0gsABAcgtW7ZkWs/jSFYuX3zxhYnP3oIAsG/wk2OabWMzIIQoOCA8YLmBEM847bPPPnMnnnhi6HlECkT8oJDvgytw4YUX2jjv7bffDomONATF0kMIISJBI+DzzjvPLIEJwnuLYIRPbHEWL15sAfb33nvPgsYkDaUjZ5xxho3FCIQzNyGgjxjBY4QKRAbO3a1atcrUFJvnsO+bNWuWiRK33XabrScwz5IXELRftmyZGzt2rHv22WdNlABEFfYP0btChQp58tnx7p8/RiTVLFy40B166KEm3Oy77762HqupeOG9aITNte+ss85yPXv2tPXcZ4nEV1995X766Sf7f4XGjRub1fCVV15p42QhhBCJRWdWsRsMrPBVxGOciy8+5WSCMOgkUx3w2CR4JUSywBvVw0TJZxbxmyWDtEePHhaEESKdYNLGROrll18OefQiOvAYf/pwmHy+//77mdYxgWMyyCRavSaEKFhs2rTJPfroo27Xrl0WxPrxxx9d1apVLfMV7+xYQZP58+fb7WWXXWavX7t2rT3m7xxvb1VSCCGiQaY5YwySG6iiCH+OwC3zRTLVR40a5dIVxlVr1qwxAZmgOEkiCMZUT5xyyinWqyIoKnMuRiTo16+f27Ztm4ka4YkmiYZ9oYcIlXQffPBBprlVhw4dLBCPeJ0s+A3RVwIhwPfdoPLk3nvvdU2aNAkJFFnB+JbrJfNCf22kGgUxjffOCno78XlVqlSxfhX8f/I+L774Yi6/oRBCiGhIpBARoXzSQ5YtE1+y7Bg4EfD69NNPbdGEViQDfos0a/Nwn4Zzzz//fKhsWgKFSFfIKiMD7swzzzRBmUkoJelt2rSx51u2bGmTZyZt+++/v6tUqVKm15OlBuHrhRDJh0acNColaxkbDp+pS7NQgidUExLA4e/9oIMOCr0O4ZGMWS9SkP1MoAqBH+EDVEkhhIgGwfUJEybsJlAAlZpDhw61sfhdd91lY5B0gvMpFd4EsyFo+8Pxuueee6y6hCrv4HmZ+Qs2yogaQDb/uHHjQln7iYZqDQSR8ePHW3WAtwlEXEKcqFy5sisIUB2IiwP76EUKrnM0644X/j/q1Kljtk7YVlPJAogOLNEqN/766y+7nkL16tVNrDnssMOsetGPj4UQQuQdEilETLhYk0XAwKBatWp2sR40aJA9R/ALb1Ih8hvKfAm4wDnnnONWrVplg38G2VOnTpUVmUhrmjZtatnV+OXiIYyF36JFi0KBBQKSyfATFkIkhlNPPdUWwB+eQAyCI9dFMprJxsWmjYChB1Hj77//dieccIIlmHCtBDJ7uX4ibCCACCFEtAB3xYoVoz5PYgNjC0SKdIJguHccoB8FAXAS+kgOoUde0JIoaO9EAiBJI4jFJFaRONK2bVuz7MyLoP8DDzzgpk+fbtcBKFOmjAkAWDolM/iODSHJNFhd0QcTsBNjHHvDDTfE/T5s/8ILL9gxhX322cfdcsst7sMPP8yUfBkN5pL0msDumv9HKF68uB27UqVK5fj7CSGEyB4SKURMaIJG/wkGWmTeUcrLIIrBFxkFvjmYEPkFAVaCMHD66adbc3e8cLF3ohSXsmkh0h2snSLZO4HPpo4GjRGFEAWLzZs3W6VEyZIld3vOV0AQ7GKMRqDGB3siWT0RKPP9KLhuAuJFXgTHhBCpYwdMdX205sAbN240i+B0g+A/lRAIDfT7IcEPKz4qAbAtosokKE54sHxiPl23bl0TDyKd23MLVXf333+/CSLsF5B0iGhy+eWXF4ieCgjoS5YssYoOf91CNBkwYEDc74Ewj7iwY8cOS8zxIj6CWaRjHwlEDQR7LKJIwvTCjQQKIYTIX5RKKWLCgIHyXrzJCQJzofeDHPD2IULkFwRSfBYQNhcEVbp27WqB17lz51rWixBCCJEqMO5q3769eZ1jawj0CAv3LceiAssOtglWSxEI802zESl88AoQ9rEYyU7zUSFE+lGvXj2z2/Fj8HAbVnoqhIujqQ5Z+nfffbfdZ66M0MBjenIQ7CaRKghBdA/WUDTUptI10QIFIjTNtrH9fPLJJ+0awrl/xYoVtk9YHyVDoGCudvXVV1tfE8/NN9/sevfubdUU2ale8dcwwLaQykG+b/AYRxMo2GbkyJFmreUh8W3SpEnWn0m2TkIIkTz2yAhGnIXIAia6rVu3tmZb//77r61jUEF5pBB5TefOna1qAgjAMNDGZ1QIkVzIYsNmjQo738ReCJEYyOqkkhVhgsAXVk5kin711VeWSILdU1Y2FlgjYj2CxzfWTlTI0mx76dKl1qD0zjvvzLfvI4QofNfsr7/+2oLAePRjM4doShiBvgr0OUCoIDieX7ZxyR53IPBSlcB3RgCYN2+eiRMkTsGYMWPsOAWr2UjuQ0TOq7kLgXsqEHzlHIlc1113nSUaFoR+E4hYNJ2meTUVKDnhm2++seO3detW+03SL8K7P/i+hFkxa9Ysd/3111t1ENfReF8nhBAi76/bqqQQ2YJmUpRlIlB4WwBKKVkvRF7CYNQLFF4wY7D77bffJnW/hBBCiLyErE4ybleuXGn9JKigoNIVsYGgIRD0wVokUu6RD1iRCc1rgNfjMQ/eGkMIIaKBzRPnIfrY9OrVy11xxRXuyiuvtOoK1pE4lE59bUaMGGECBQEXGlGTwOcFChplBwUKegBxvBCJqQJPNJ988on9X3A94HxPIhe9GVg/Y8aMpAgUVEsgfiOIe6jYo3Iiu43VCWx5sF+iah7RHYHME0toQIhYu3Zt6PE111wTsrAuCJZXQggh/g9VUohsMXToUBtwHHTQQVYm2a5dO1tPJkl4SasQiYRJgB+k0hiY7FGytmgyR3muECJ5JDujUYh0g+E7thT4muOjfd5555mnNr0rSpQokWnbqlWrWoCGfjM+OERyCUIFgj+ZvYj+CtYIkR7k9pr9yy+/WENhb8Pqs9nTZdxBbw4qSZiHPPLIIyYA85h9oh/F8OHDQxbJgwcPdn379rXX4UZAr0fO1Yng+++/t8qJyZMnWwIh4gQVAlhvIWgnC743vZL4jUyYMMHsCnMC4gLzvA0bNrhPP/00lCCJAIJoRlVPVtCP49prrzU7J6oK4+1RIYQQIjnXbc1GRLbtdvDOxN4p2Bzt9ddftyy+YcOGJXX/RGrCgN8LFJTmUqbLgBXBjEwmIYQQItUgoIK4QEJIsMcEEGhBoICjjz7axmUEqcIFCuwweA+2x7MbBg0aZLZRCBTQsGFDs8qQSCGEiAeaRJ999tkuXSE4PnDgQBOFEX5vuOEGm6fQ3wcbI863nF85L2P7BFSfcO5NRJCc6gTm3HyWr1SgETaVASeffLLLbxBrELvpdcH3Y+nUqZN74YUXcrU/RxxxhDUlx/LwnXfeMdtCwPIwq/3xAkb16tWtgpCKRAJj6jchhBAFG1VSiGzDT8YPviiVfPnll0PPkdlQtmzZpO6fSC0ojWaQ6sGe4qijjkrqPgkhMqNKCiES73eOdQd9KAiGkRnL39ezzz7rmjdvHregQBYr9hpUWpBQAhUrVnQfffRRaBsCPlRlCCHSg1S4Zhek70DiFFZP/fv3D1nwYYfMuZs5M/0bSfRLxBycawCfhUACiEWIFRdddJFL1rWKqgmOAT2OatasGdrX7AgyP/74o7k0bNy40ZLRPAgd2ImVKVMmy/dAyMBS6vjjj3fTp0/P1McCMV8IIUTyUE8KkWf4AQdZfQxKgjCIECKRUKIbZM6cOUnbFyGEECK/xlo0WT3uuONMZAAyZ1mHn3a8+H4UNHaF7du3h3y8vR1IMjJvhRAiVSBBj8bZXqAgcE//DsDeKRECBdZJ9evXt2oFBAqC9k888YTZ/eW3QEECmQfBHLsrRAAqHjzZrRjZsWOHu//++93s2bMzieh853gECs+KFSvM4im4LxIohBCi8CCRQuQYKil8Vh6+xr688sILL0zynolUYdmyZaFKHT/YJUsJ9VUIIYRIVfDexioEH25fTViyZEnzfqchKnAt7Natm2WwRgILpyVLlmQSKbDOIMMVP2+qYUEihRBCxAf2eY899pj74YcfMgXrgxC4X7hwoVU90FMhNzC3Zu5TqVIl9+KLL5p1ET0uCOQ3adIkX3sssC/0BeT6sWnTptB6+m5wHaJ5dzxwDaJCgobjHqofqD6h52B4EmQk6KtEpeCUKVNC6xCJxo0bZ9dN2ToJIUThRCKFyDFUUmA/gPUOk2A/SFq5cqUNGoTIDdg6NWjQwO77MmLsKh566CErExNCCCFSkaATa7DBaocOHcwK44orrrDHkyZNsr5MBIYiubdivUEgp3Tp0q5y5cohOwzAO91XVEikEEKI+Jg2bZpr0aKF2QrRNPzGG28M9YXwt16o8OfqnIKoTOD9nnvucX///bdVLHzwwQf2+IADDnD5DX0eEGYQKxBhPAgCiCfxsnz5cuuRRD9LmrB7EGPoreEbZMfimWeesSrD3r17uz///DO0nnWqnBBCiMKLRAqRKxo3bmzlpzSyqlWrVqYBws8//5zUfROFF7JDS5UqZVmgDIjJRMLyAgGMBnVCCCFEKkIWKdYdQbuLIHi4+qQQxl4Erai4iJRNO3fuXLtt1KhR6Pm3337bbitUqBD6DFl1CiFEfFDNAFguMV9BNChSpIjNWWrUqGFi8j///JOrz0CQGDBggJ3jeX+q6bC7pfrgxBNPdPkBwjcWVg0bNjSx2zN8+HDrleRtCOMB6yUqUDxc484//3x30003uX///TfunhUffvhh6DG2h7g39OnTJ1+rSYQQQuQtapwtEsb3339vGSU+i6REiRK2TojswmDfD4ip1KGqQghRcClIDSyFKMw2mjS1/uSTTyw7dNCgQbZ+6NChrk6dOq5q1aoRXxepQSmBH8R+LEleeuklV7du3ZClxpdffrlbAEkVikKkD6lwzU7Gd/jqq68saQo3Ac7XnHdXrVpl1Q7YOmE9VLx4cauAOPbYY3P0GQTimzdv7tatW2ePr776ajd27NiQ7V9+gVDCvB4xhs+/5ZZbcvQ+9IigagK7Qqr3fJVEdhpr01sJaysqAunBIVFCCCEKH2qcLfIdmoQxYPNs2bLF9ezZM6n7JAofZHQGM3YQul577bWk7pMQQgiR1xD4IkuX7FI8x70905133mn2TEEP8CCRAjZvvfWWCRRMAqpXrx5qmu0Da8B6PMElUAghRPxVFN5OCEcBBAqqBKZOnWrrnnzyyRwLFDNmzLBzPQIFYgeNsXm//BAoELYXLVoUeox9Ez0imMvTrDu7MQHP6aefbraFvN+3334bWp+V0BCMKXBMEDXYx6A9lBBCiNRj72TvgEgdGLDRzJGAMt6UWPPcf//9lomBZ7IQWUG2kPfIZkDLwJ+sT3pRCCGEEKkOwa1gM9EjjzzSsmoRMHzg6/XXX7cgVuvWraP6knurJ3o7ea/wokWLWiYw19qnn37aGmcjiAghhIhfpPBGFFQIcL979+52e/3117uaNWtm+31JzurcubP1GQLOzdOnT7dq8vwAUeGMM85w7733nlu2bFlI2KbfRnagYTWiOmICVlFw0EEHmWhOVUY8FRC8B70puF7544E7A9e88uXLq4pCCCFSHIkUImEwaKAcFLsnmjUiUsDIkSOteRh2BUJEA0GLoImH5qBYVTDQJTgjhBBCpCJc57jmEcQJB2GC7NqgbzdNU8l4/eKLL8wfPFpvC6AJaaQgEJx66qkJ/BZCCJG6EMh/+eWX7b6vCMBGD+GC9YjB9957b7bfl/M4/RWoxmAuTfUClXTxNI9OFMzTL7jgAvf1119nqnbILuw/Ajm3VP55YT07fTSolKCChGS1wYMHh6pITjrppBzvlxBCiMKDIn8ioRBMJvOBSfGtt94aWv/AAw9Ywy8hIoH/dtAa7JVXXrHKHAa5DJyFEEKIVIUED6wOYyVzBH28L7vsMhM0aNAa7ZqKEEGQp379+qH1vJbqVl+xuGHDBrOEEkIIERuqDPDRpjIAK6KTTz7ZkqmoooBOnTpZ9Xd2oGqBCgYEisMPP9wED0SKvBQouA4sXLjQGlcHBYmBAweaWH7dddfF9T4cA6olJkyYEFqHGDFmzBhr9h2P5RX7QmLjU089FVpHs3DEnrfffjvf+3AIIYRIPhIpRJ5BVkiQpk2bmreyEEF27twZaujpIXAihBBCpANvvPGG++effyzJw0PQBtuMcP9txPuOHTuaCFGuXLmYVk+1atUKNaYjC7hMmTKudu3adp+kki5duriPPvooT7+bEEKkAlWrVnXfffede+yxx9wjjzxiyVXr16+3QD82x3369MnW+5G8V69ePRM+zj33XBMqwudDeQUVCtgGUsXuoQdGdhqQIy6QlHjHHXe4n3/+ObQe8RwBJx64VnFNIrEx2I+QY1mlSpW490UIIUTqoBTlBEFJ4y233GIZ4GRYtGrVyg0ZMiSts8DJ0OA4MAj67LPPQo2vGISddtppyd49UQAgo5OBLOXFZA3RXK106dL2uxFCCCHSgccff9yuez5AhWCBQIFgT/CrV69eu70mli93JKun999/323evNlt3bo1U1NSKjiEEEJkDT0iwi30sGt699133WGHHRb3+zz44IPutttuCzXfRvgoUqSIyysQtcuWLWtxCa4dxCioguA6Ey+I28zXjjvuOHuMuHDhhRfafD/ePhFcd3788UfrMeF7JmHjxLXvzz//dPvvv38Ov6EQQohUQZUUCQCfYC6yBFwJyNPoatq0adb0KZ0hS49Mkw8//NBVrlw5tJ5ANAO6dObhhx+2QR6DMcpaV61a5dJR2OP7U1rMb2XWrFlW2ktfivz0YRVCCCGSCQEeMmp9/yUCSaNGjXJ16tSxZqoexpd4n/umrZH4/vvvrUkpNGrUKFO1BjAe83YeBNVkpyGEEDkHIdk3mo4nSE/lgRcosIiioiIvBQqqEhCjp0yZElqHuIAVMxZT8VpdkVSGfaDvj8R169VXXzXBo1ixYlm+x+rVq+36c+WVV4auYVgSYg01evTouN5DCCFE6pO2IgXlhTS42rZtmz1GYOACTjZbdnnppZesXJ4sCCoEuIDT1JBANO+bzjCAYQCybt06sxnwkDVBJkU6QjOw22+/3TxH16xZY+WsBCfSyReaTBx+D36QyuDU24PFm40jhBBCFFZ+//13a3qN5WE4XAdJflm8eLE78MADbR3jVQQLhAtsNqLx/PPP27WVylV6O3nefPNNu73kkkuspwUQdNI1VwghYkMCFedeBIaRI0dachkVa7EE40gCRdu2be28D1gtIUbndWIWVQsIC7mxXCaxjio85u7eHQGyc/2gfwdJisRMSFTzpLPrhBBCiHwSKbhgM/nK7yU7AwUGGmSsMQEEBAsCx3fffbc9vvnmm822KdYSzE4jM8CXLgJBZyaUVBGI/1VVPPnkk6HHDJYqVapk/2/pxogRI1y7du1cmzZtTBgbP368O+CAA9zUqVNdOsDAFEunIMqeEUIIkU7QpJSAV7DaAaKNZUl6admypTVZrVmzZpZWT1dccUWm9V6kwPvcN86O1zdcCCHSmfnz51sVGxZJxAvo6UBFwE033RTX6zmvd+vWzRwGECUeffRR16NHj4SLxHwOiZjYT3mIaaxcudJNmjQprvdgjk7iJfvroVcFx+DLL790FSpUyPI9uF7xeT6uAiVLlrTr01dffZUpcVEIIYQIkifS9R9//JEpiJ9f7NixI5RxlhVsd9FFF7mFCxe6q666ytadd955lh2A/YyfPMYDpfVBgQL8Y54T/4OsPqoIJk+ebAM9KgdoEkmpKGWn6QCDNspdg/7SCDiIZt6KIZVhkBz8vyYzp3fv3iHrCSGEECIdOPPMM83fnIahHpqyUunAdbFJkyaZAljYclB1SDaut4WKNA5mfAVB3/SffvoplP1KEIv+FKB+FEKIZIFN0DPPPOM++eQTszuqVq2aVRdQbV/QwI4WvvnmG7vdvn273R5zzDFxvX7QoEHWhwJISmvRokWe7Od9991n148LLrjALV++3K4hJGLSNyJeaAaOIM61gv30fST5/4kXqjbat29vbgok5R177LG2nuubEEIIEYu0tXsCSulfeOGFUNbar7/+arcILEceeaQ74YQTYi4i+zDpxh7rxhtvtMcce8QiBqXpAIECMlQiiVqpLmiNGzcuk0BBtRGCIFUlQgghRDqBxeHnn38esl6CYcOGmfe3D2ZFIppAAS+++KLZR5UrVy6TAOF7VGD/dOmll9p2oEoKIUSyIEmtY8eOVuWFs8E///zjLr744gJZZe/3iURMqr/Xrl1rj2n4nBXYP/fr18/uc25HAMgrmjdvbvvHfIvjGQ/MxZmPebh2dOjQwapFuJbEA9cdL357QeP666+3+X28fS+EEEKIPKukwLqGbK78hs/NDkzUunbtagONqlWrWgkmTZ1pIkhpJKWOsfDfkUy48MbHW7ZsCT0ndmfixIl2jCibhZ49e9rgJqtjLgony5YtswGvh8wcSp2FEEKIdCW8+hdrDJqwYufkqyionCBYxHUzK4uMoNVTsAqDTNoaNWrYuJVMYIQRAmXnnHNOnnwvIYTIikWLFmV6PG3aNEsSpOKcBLaCxJ9//hm6j+XekiVL3CGHHGIuAbGg1yXNsYFehF26dEnofuEIgdhNvyLAThdb3XgdLZiL4yhB82qECm+/O2bMmLj3AWtrKiS4VtFzYv/997f1OenzKYQQQuSJSMHEKF7bpWRy4okn2rJgwQKz4Zk+fbpl+UN27J6wiaKME/siBldARgj+jSqlj86cOXPs+G/evDk0mGFg6r2SUxGySfAi9SKWh8epKmiNHTs2NEAHBvUPPfRQUvdJCCGEyG+omCQghM1JpCAcgSWfcRsMQrGODFwEhv322y/iezOOxTM83OrJZ/uyUEEMCBYNGzZM4DcTQojc8dtvv9ntYYcdFjVbn8VD78f8ggoKjxcAEJNjNX1+7bXXXOvWre0+tn6IFIkEm2DO6VgqcX73lXHZsdxmXspx5LhS0VK/fv1s7wfuEsR+WLAVpE+nEEIIkVPS2u7JV1MQLMeGCA9H34wwO3ZPlKYiRpDlRqMqyuj79u1rJazRJpPC2bGhARc9Kjz4krI+OAhNJchmJAPHe0YDmSc8RuxKJXbt2mUepPwdUEpcpUoVq6jYunWrGmULIYRIOwYMGOBef/11S4IJNsgOBsDCobq3du3aZpMZa0y5dOlSsy0l4SGSdzifRyIIMA4RQoiCAnMh3A3onVCpUqWI2yDukujkF6oG8ovgOdonmtFPMBq//PKL2R0xFyLGgMic6CbZ5557rjXvpjoj3mPx9ddf23WI4w0kzs2YMcMqIOIRKBDDcUMI9tTguoR9Nu8hgUIIIURu2SMjOEtKQ6h4QGSgcS+Z/DkdQHz11VfulltusSAsVSStWrWy5lWxMizE/7Fu3Tqz3Ar+HGncVb58eZdq0Dyc38eECRPc2WefbQNXhDIEmvBeFYUVGszx3TyNGze2SqXsZPcIIQoPZOIRNCATkipCIUTkwFWvXr2soShjnmBvruLFi1uVYTRLJ/pZEVCKRtu2bd2UKVNsLEoFY/Bvk0DZX3/9ZT0p6GlBUg6VFMHrtBAifSho12zOWwS6V65cGbUZdaRKCoLzef0dOPcyt+ezy5Yta4F+gvXR5qmc0+k59PTTT1tS45o1a1zRokVzvR/ffvutxRYeeOCBkGCN2BCrT1EQ9p/kMZwfZs2a5a699tps7wPuB3wnvv8rr7xiVXlCCCFEIsceaR9BpzwyEToNk0pK8kXOOO200+xHS4mvb/RVsWJFy+7IySCqINO0aVP3448/uv79+5v1A98dX9ZUESgIfpDt5EH4e+qppxKeQSSEEEIUJqgiHD9+fKZ1VOBi20GlZazEllgCBSKE70dx9dVX75YYgShSq1Yte0yw7N5777U+bhIphBDJBktYrOqWL18eVaAAAvPJcCjg3IvIS/PsDRs2uJ9//tkq4rAsjgSVBggU2DAhBiRCoECM4ByOMEJgh3M4ZCVQEOPw8y+OHVUXzDmj7XskgYZrlBfVEYWY53Eto5JDCCGESDRpX0khChZkeTAIo7LCl9aS9UEJqapSCjYMZBHr8Mz2IDqRdZPdpvZCiMJFQcvKFKIgQeZtrOAbvbgY91DV66G6kupcKi+LFCkS8/2xjMR6BH/x7777LtN46YYbbnCPPPKIu/DCC92KFSssuERFx7PPPmsNtoUQ6UdBuGYTgqBXA+ciznXxBs4L0ncIhwbUNNNG1Bg2bJjr1q1bwt6b40QSGOdzEvmyAgtArAVxivD9KhC0EV3iSRzDnrd69erWmJsl1jVMCCGESNR1O+17UoiCBVkeNBr76KOPQoHtTZs2WTbK8OHDk717IgpYVBAUCQoUZG8ywJVAIYQQIl358MMPXbly5ayawVeKhkMAKShQALYeWKB06NAhy8+gWhHwJw9P6KAZKlCVOnLkSLd9+3Z7fOqpp+b4OwkhRG6hZ91jjz3mZs6cadUGVJez/Pnnn64wwn5znkWgqFevnrvtttty9X5Ua2AV5eH8TtVdPAIFYCe8du1aN3DgwNA6rg/xVraTaIYNISL5+++/n4NvIIQQQmQfiRSiQEJGPpZIDI48ZINQZkrGvig4YFtFszsPogTqKI3ihBBCiHTmxRdfNP9ufMBJuPDs2LEj1IA1ElhpMBZCqIgFY6JnnnkmotUTFRNUaQAe6VRbkElLQPC4447L5TcTQoicM27cOJsv0NegZMmSoYUkp4IEyXKlSpWyOWjr1q3d888/H3E7+g0hSmPfSx++eHtFRIJzOr2KsAj2wnJWtn+IJAgknhEjRlilysMPPxzXZyJoN2/e3K5XgJgxdepUt3HjxriaagshhBCJQCKFKLAQ7EaoYJAWtEwgC2TQoEFJ3Tfxv8EszdPuueee0DoayBF4KShl10IIIUQyuf32281rffTo0ZnW0/yUayj+5ZG4+eabzeoyq74RNJpFAMHGqWbNmpmee+utt+yWzzniiCPce++9Z48rV66cqwCaEEIkwu4p0oIQUJCgKhwbPeagiA8kZ4VDrwovBkybNi3XfQY5lyOMcP6Px5l78eLF7pRTTnFDhw4NreO8P2rUKKuIyAqEicaNG5s1VPCaRBXgoYcemotvIoQQQmQPzVBEgYYsjldffdXEiqBtUN++fd2BBx5oGTgifyEYglB03nnnWQCFQAf/H/QToaGbGmQLIYQQ/wf9IMjC9RB0QrhA1A9WjIYTK2vWQ4NWuPzyyzNVagA9KAB7EAJnr7zyij2uUqVKjr+LEEKkE+H2U3Xr1t1tm7vvvtuq1LB5uuSSS3L0OTTk9iA6v/POO2aHFU/iF0LKl19+aSID+xEPvMaz7777ugEDBlgPo0aNGuVo/4UQQohEIJFCFApoBvn777+bXYGHxtqs7969e1L3LZ1o0KCBZQcFLbdWrVpl1RQMcIUQQgjhrLnpr7/+GvE5xHyaXS9cuNCyV4PMmDHDmsjGkz3733//hUSKcKsnQAjxn9emTRv3wgsv2GP1oxBCiPgbfcYSKbDUQ0yAe++9N0efMXv2bLPgoyLCc+SRR0ZN/EKI2Lx5c+gxtlDjx493q1ev3q0vUThcW0guoxE2fSA99E2aMmWKO/bYY3P0HYQQQohEIJFCFCrmzJljmSZHHXVUaJA2bNgwy+Zv27ZtsncvZSGIwjEmoOJhEPzVV1+5M844I6n7JoQQQhQkCDSRkUoFQ9BPPAjXVHy+g0EoqkPxEMfqY+nSpXHZLn777beWaUu/iXBuuukms04hyQPoH/XRRx+5q666KlffTwgh0oWg2Lzffvu5Cy64INPzd911lwnGV1xxhTvzzDNz9BmI1lwrELezAmupatWqWcVGsH8E5/uDDjooy9ezLf2Q6F9R0Pp/CCGEEBIpRKGDEli8QZnM+4EiWSFkfzDwUr+KxLF27Vo7ps8++2woqxM7ifnz57t//vlH2TZCCCFEGNhRnnTSSSYG0KQ6CNUMwWrEIFxXmzVr5qpWrbpbf4lIPPXUU3bbsGFDC56FQxNUgl6ffPKJPcbf/OSTT7b+FEIIIbJXScG8s0iRIqHH69atc08++aTNlQYOHJjjzxgzZoz1LaKSLisQpbF2+uabb6xRd1Ywf2Meh3Vy0J5q7ty57qGHHsrxPgshhBB5gUQKUWhhkIbfcs+ePTOtp4SVwSKZLSJn0FvinHPOsUBJEKpVyNrB9kkIIYQQu0OW67vvvuuGDBmSaf2SJUvcpZde6s466ywTJMLBwpLmq9goZtXYmsBTLKsnD4Epbwty2mmn5fAbCSFEehLsfxhu9dSvXz+7vfbaa13lypWz9Z6TJ08OPUZk7tSpU9Q+RN9//32m6wTnfgSK008/PcvP6tixo1XEI0x4aMpN7wn1ERRCCFHQkEghCj0EAZish1sdkNHC4ItmkpThiqwhcMIxq1ChggVJoFKlSvaYYzhp0qRk76IQQghR4CHoREVFkJ9++smqQcnGDW9ynd2G2TRV3bRpk30GzVrDIYi1Zs0a9/bbb9vjkiVLWhBs3rx5Ofo+QgiRjni7PF+NFrTbo7Kc8zVNp+Nl586drkaNGq5du3ZWPREL5rf333+/9at4/fXXQ+svvPBCd/TRR8f1efRz3H///VVBJ4QQolAgkSIPee+992wQwcCgdOnSbujQoXF5UpKBhz0AfRfuvPNO67sQ3peBbLgDDjjAlSlTxj3wwAO7vQ+ZeJT0U5KK5cCjjz7q0sEDmkB67dq1M61nQk5QAK/QX375JWn7V1D5888/rWoCcYKgh4ffIQPi999/35rCKdtGCCGEiAzjjyZNmpj1R7Sm12TbfvHFF5kyWoEKRapAg41Q42m0Cpdddlkm+xGgSqNly5bWM+rFF1+0dYxFsRLBxlEIIUR8IEDQv+Hrr7+2eb2Hcza0atXKlS9fPlsCNo2uS5QosVt/i3CYe33wwQcmbPjKuVhwLSEuQKzAg3Ug1xY5DAghhCgUZIg84bfffssoUaJERrNmzTI++OCDjFmzZmUUKVIkY8KECVFfs27duox999034+6778747LPPMpYtW5ZRoUKFjG7duoW2WbhwYcbee++dMW7cuIwvvvgiY/78+RklS5bMGD16dGibsWPHZhQtWjRj9uzZtg2ffdBBB2XMmzcvI134999/M2rVqpWx5557EinItLCuXbt2Gf/9919GOnPttddm7LHHHrsdH5aKFSsme/eEEIXsmse5g1sh0pHHHnvM/gYOPPDAjO+//z5br506daq99thjj7XxS1awzdFHH22vee6553Z7/q233rLnihUrltG4cWO777d/5plnsrVvQojUIxWu2cn8Dm+88YZ99j777JOxcePGbL+eOegPP/wQ9fldu3aF7v/66692fYln3ko8gP0iNrB9+/Zs75cQQgiR7Ot22lZS0Cxq3333DTXDIvPglFNOcY8//nhC3p/34T2nTp3qKlasaNlznTt3diNGjIj6mieeeMKdeuqprn///u6EE05w1atXt+oLqiK2b99u25AFR0XAzTff7MqWLWu9AXr16mWloD5zj21uuukmy9JgGz67ffv2tk26gJczVSk0p6SxGL6bHm9bxDaHHnqo/RbSBbypyfzBi5QszGC2J5mYI0eOtHVk7QghhBAiPmiSzfgNC0oyZINwvY1VwXDiiSea/cett96aZS8KoB8XYxvGMJdccsluzy9fvtxuyfodN26ce/7550NNU6tUqZKDbyeEEMJDI2rfDwgrpqygCqN79+4hdwQqJCLZL1HdfuONN7rbbrsttO6QQw5xzZo1i1rRHpzL0Tvw/PPPd4MHDzbHBSGEEKKwsWdeeziyBC+eBO5ZR9lipG2DvQMoV2cdJZZZbZtd6F/ARBCLIECwuP3220Ml+IgABx10UMwlFm+88Ya76KKL7H09eAbTkDia5RDHhHL8IASO+f6rV6+OuQ2Dn6+++irmNvQYiNSoMdUhII8Q8emnn+7m30njMkQfBn6HHXaYCRupxoIFC+x3yHc88sgj3aBBg9x3330Xep5BLL+NP/74w3Xt2jWp+yqEEEIURhh3MYZEaAiyZcsW8x7HeomxYSSw/HjllVdsHBoPM2fODAkjWIdEEykYh3LdJ2GF8Tdj13gCakIIIf5Hz549ba50/PHHh/pT0IsCgklw0UCYuPTSS92wYcNct27dshSgSXAcO3asWQPGgnP6fffdZzaDPtbCdYj3aN26dVyCtxBCCFHQyNOrlw/m0yjQg08i62jeF4RJFOtpAuihgoB1ZBQEYYLFenzycwqNBpm8LVy4MLTuvPPOc5999pnbuHGjNV1et25dzCUW33///W6ZdP4xz0UCEYMeALNmzQpVALAf4IPKbPPMM89YMB2RhsD78OHDd9tm8uTJJmwwaKHPAI8RKIL/F+kGmYqIORyThx56aDehCfEI8YoGaGQncn/Dhg2usMFvolatWu7ggw82YQK/6qA4RZUOFTqIWvyGGHDTMFsIIYQQ2YMKhWg9KIDrLIEsGq7S/ykW8QSVCEw99dRTdv+6666L+HkEqYBxLrz77rt2S7WuAldCCBE/NMimwuHLL7+08ydxgo8++sjmi8y5s2Lvvfe2BDHmoVkJ0RdffLFtu2jRIleuXLmY2zKPo3qP6wEit0c9BIUQQhRm0nqmglXSCy+8EJpc/vrrr3ZL8BrRhGBurMWDnZMXZOrXr5/j/WFggohDFQeZcTThIvMC/KSSbDwEHgLPZMefe+65ZucU3KZfv362Hzy3zz77uMsvv9yaegW3SXew3sJCi8k+x4fMEz+oY4JPhQVCEANE1iNq0ayc8l4EpIIC+0KmzSOPPGIlx/xuaJTOYNVbhHn4HvzmEeIoOT722GM1kBVCCCFyCIErxlqMI6iYiETJkiXNAnTZsmW7jcEYg06YMGG36uJYUAH8888/u6OOOsososLBrpHxLOMWknn69OkTap6NSCGEECJ+duzYEbrPfJEKdcBWqVixYnG9R8OGDd2HH37oypQpk2k9c06SDb39NPTu3dsS5SIRdJFA9MDW6dFHH7Xm2EIIIUQqsGdeX9RZDj/88NA6gqOsGzNmTKZtf/jhB1tP4NTTsWNHWzdlypRM25LJwPqTTz45V/uHAED1gfcJJtB7+umnm0dkduyeqMbw1RVULACTx/AJq3/Mc9Egw4LJJRUlVD0w8QVK9YGgMr0l+P5kUFCVQXZecBusnSgVxb6HY8V7UX1StGjRiP6X6QwiznPPPWeBBgZ+VK9cc801lh0ThGNJJmLjxo0tI4albt26Nui866673MqVK/NUvOC98ZSm/LdatWpW6cFvgf1AMLvhhhvc008/baJLEOytEL54Pd/PlycLIYQQIndw7d+8ebNbs2ZNlv7f4TacXJN79Ohh402qO+PFWz3Rdyx8rAK+ioIAGr0wCGJRYYlAIpFCCCGyB3NA4BzK3MuLFCR+RYMEyFGjRoUSIP2cMxzO/3fccYe5RsSqyAMS5Yh9BF0neG2LFi2UdCaEECJl2IPu2S6NoVqBizsBZxoMvvTSS5aNgGgSzGqIRLCaIhwaFZK9hjDhByVkRmDV9Mknn8S9f5RxTps2zUpLI01GoWXLlu7zzz83q6ho0ISbgLWf3IqsoUIB0QgPaQSj7PypMFjk/4vKBgIFiBv8H1GhgTUEA10EMnxK8aImi3Lr1q3WG4KAB1UyCGb8DvkNZfVb5P+W96ldu7aJFQ8++KCrUKFCAo6CEEJkDecomjtyjsNqToh0AdsPruuMs4IwnlyyZImNBfnbCAcbxvHjx9t48bXXXosrI5dgGZW+2DRiQRLJPopt3nrrLRuHMPbAyvLtt992p5xyio1jqLAQQqQ3qXDNzq/vQBIg83Dm85xPixcvbvM2KiM4r0aCZEz6EyEqkMQY7FEZhPP4JZdcYhbXNMeOBqI2cQrm+ggbXDeEEEKIVLxup71IQaNgbH04UG3atAk1zs4tvB+2O1g43XnnnVZ+T7b7yJEjXfv27UMZEb169cokWpD1zmCFIDaCxj333OPmzJljzZ2BYDnek5T401Cb6o+JEye6V199NVRRQcYcwW4mrwymRowYYfYA9KhQw8ScQ5UC/39PPvmkZUwy0V+6dOlu1Qv5Ab8PBrxU9HTo0CFhv1shhEjXgIcQiYLqRaoWEDAY51HNEA2G4fFmwT7xxBNm8UnQjMSHWK9jbEmAjOpa/i4jZfEKIdKTVLhm59d3KFWqlCWWUQ3HORiXA+bT9C2Mdg5mzn3VVVdZnIEl/PoQTDyk2oIK+ayuD9j3YR3Yt2/f3SrzhBBCiFS5bqd9gwJKNREQyEIfMGBAwt6Xg08WHZkXZ5xxhuvWrZtVRXiBAvjPWb9+/W7+xGRKnHnmmVZOOnfu3JBA4Zk+fbo9T4Y+WRz4HHuBwg9+8LesUqWKVYggZpB5IYEidyAKIDjRiHz58uX2f0UmDYNLxCT+T6iuQTjAhsnDfQa42ekHwoCU3wtZlthRVa1a1T7722+/tQEr/8dYVJG9KYFCCCGEyD9oavr1119HfZ7rPUknjC2xOY1Fdmw6fDUsDbOzeh1VoMDYRAKFEELkDJ+MxnnU2+bSGzLWOZi5PzbBXbp0ybSenoEI2MHrRySBgiRDnB6CFROIzvfee68ECiGEEClN2ldSCJHfYPHkm1p7QUNeokKIwkwqZGUKEQ8kCxAswn6DnhQkhGQHht0Erpo0aWIiRrwQtCpRooTZRJFcU7Fixd22mTdvngXBrrzySjdjxgzrk0ZFL2OOVq1auZtuuilb+yqESE1S4ZqdX9+Bz+CzDjvsMBMIuAYgVNerVy/TdpybsenFgjcSJJhh5fv+++9b0uKECROifibPYetEP0lsgCNZBgohhBCFCVVSCFFAQZTAe5qFrBwJFEIIIUThgCrGSpUqmRc5t+FklftDFebo0aMtwBVsqpoVWIASBKtcuXJEgQJ8TyoqeX0lBYkR3CewJoQQInt88803Zp+HkwHnUSx/w3sQATZMp512mtlIRwKLJ1wSsOmlqXYs2rVr59q2bWvncgkUQggh0gmJFEIIIYQQQsRBuXLl3IoVK8z2I+grDniUIyDQOyyaWIHIQACKaopoPuSxrJ6uv/76iM/zedh/Aj3Jvv/++1AvM8huxYcQQoj/Vb3TZ5IG2ICVcrjlEpZQCBCcb8kQDeKr56F06dLWJHu//fbLtM2mTZvMGppqC28ZOGnSJHfuuefm4TcTQgghCh4SKYQQQgghhIgTAkhHHHHEbuvvv/9+a24ay8aDINXEiRPdoEGD4v48AljYOAGNsyPx6aef2nb0z6pVq5bZjtC3zPc+wwddCCFEzvD9KOhnGQ7n3TVr1lg1W+PGjUPrn3/+eXf88cdbb8hoIHBg/TdixAg3dOjQPNp7IYQQonDwf919hRBCCCGEELvRv39/Eyaw6givoPAQZKJvxDXXXJOllWN2rB7pL0GlRM2aNd1xxx0XcZvFixfbLcGuAw88MPQZO3futMdly5aN+/OEEEL8jxNOOMFEX18Rcemll0bcDqEiKFDQt2jYsGFu69at1h+oWrVqUV9HQ+wxY8a4pk2b5tG3EEIIIQoHqqQQQgghhBAiCjQ6pfKhc+fOMTNiEQMGDhxolk7hzJ071yyevA1TvCBOTJs2ze63bt066nZ4l3srEs/atWvtlv2h+kMIIUT2+OKLL0ICBY2vg42xf//9dzu3R7L345z74osvuoceesiq58Kbh3799dehxy1btrRri8RkIYQQ6Y4qKYQQQgghhIgCfSbIckWsuPDCC3d7nizbI488Murryajt06eP2S/Rh+Luu++O+7Nfe+019/nnn5sv+lVXXRVxGxpqezuoOnXqWP8JGnsXLVrU1p199tlxf54QQoj/sWvXrkyPL7vsskyPhwwZYgL2DTfc4KZMmWLrECx8pRy9KxC3w0WPhg0bWl+KlStXhirf9t5bYRkhhBBCaVVCCCGEEEJEgYzYW265xY0dO3a353799VdXqVIld+WVV5qtRyQIWD344IOuXr16rmvXrtn67EceecRumzRpEgpmhfPVV1+5YsWKucMPP9wCX++99555oRcvXtyyfmmkLYQQInv8+eefmR5Xr1490+MiRYrYOdeLFwjG9evXd1OnTo36ntg7ca348ccf3ebNm/Noz4UQQojCyR4ZkeoThRBCCCHiBOuCQw45xP3222/u4IMPTvbuCJEQfvnlF/s9R+tBAc8++6z1oDjxxBNNHNhnn30S9vlYiRx11FFux44dbsWKFdZvIhoM57ds2WLNXdu1a+dq1KgRqq6gkkN2T0KIVLpm58d3oEqOPkMemmNj+RTkm2++caVKlTIxmt4TnH+pYvvss88yvTbIO++844455hg7vwshhBDpwLY4r9uqKxRCCCGEECIs6E8TUwbU06dPdyeddFLE7aigePfdd82zPJECBTz99NMmUJQrV86df/75MbclQEbA64033rDHwSatEiiEECL3lRTY7oUT7FGB7RPVEVjsBQWKSZMmubPOOsuddtpp9vjMM8/M0/0WQgghCisSKYQQQgghhAhAH4g333zT7DtiVVL4nhWR8NYf1157rWvVqlW2RYxgw2zvcR7pMxAh/D76xt5Vq1bN5I0uhBAidyKF7/PzzDPPuMqVK1sFXRDOxeE9h2bMmOHat29vfYuototWXSGEEEII9aTIUxiI0GCRplmlS5d2Q4cOzXIyymQy0kK5KSxbtizi899//30+fSshhBBCiNSG4NPHH3/sZs6c6U444YTdnl+7dq377rvvYr4HwamXX37Z9e7d2+3cuTNbn79x40aza2KM17Jly6jb0XviiCOOcN27d3c///yz++STT2z9nDlzLBj22GOPZetzhRBC/J/lXnglBesQncuXL+/WrVtndnqzZ892//77b8T3aNSokVVQ3HzzzSZUCCGEECI6qqTII7AHuPjii12dOnXc+PHj3fvvv28loIceeqhlU0QCW4FLLrkk0zqy5/7666/dBjXr16/P5OOlQY8QQgghROLAxgM7p3D+/vtvq45ApJg3b571f4jE9ddfb421GftFsgmJxaOPPmq3tWvXdscee2zU7V566SXrncE+vfXWW7aO4BmJMjRmPeyww7L1uUIIIf5HlSpVTGjmPAwHHHCA2TmRhLhhwwZ7fuzYsa5Tp06WbPjCCy/sVr2G/zYVbjTZFkIIIURs0raSYu7cuW7fffc1MQGY3J1yyinu8ccfT8j78z6859SpU80GgMls586d3YgRI6K+hsELfsJ+oXR/6dKl7sYbb9xtW0SJ4LbyGxZCCCGEyB2vvfaaBfhjQXUrgScCVuFNVINQSXv77bdbkkp2IDPXWz21adMm5raLFy+2WxJjyOTF5umcc84JVVTgjS6EECL77L333iGRGKGZ+XaZMmXcwoULrRcRggTXAWygqJjwAsWDDz7oFixYEHofCRRCCCFEfORpZJtySBY8cT0E7lkXXvbut2ViFvTZZR2VBFltm12ocGCg4Sd3CBZMJL2PJCWZDEZiLbGgceFFF11k7+upV6+eVUCQ8RZvFh0Dn6uvvnq35ygbLVmypKtbt65NqIUQQgghRM5hbNm8eXN3xhlnWBAqGsccc4z1q1i5cqWJFeFEs/2Il+XLl7svv/zSKmavuOKKqNt98cUXls1Lr4vq1au7yy67zK1evdq1aNHCni9btqw7/PDDc7UvQgiRzuzYsSNTPwrPfvvtFxKSEYWJHfjqtttuu81dfvnl7sMPP0zCHgshhBCFlzwVKXww/6effgqte+CBB2wdZZHhlQGs37RpU2jdww8/bOvCKwmOO+44W49XcE458MADTUQITkLPO+8899lnn5kP8MCBA81nMtYSC3pEhDfG8o/j7R8xZcoUswoIZl8gTGAf9fTTT9tCrwtsBtasWZPNIyCEEEIIIYJNUqmMKFWqlI0RY0GiS6ReFdC3b19LTMmqIiMaEyZMsFuqcElWiYZPtKlWrVqm5JlVq1bZLRUVQgghcsb8+fND1wIq4xAdwvtUANcM72pQs2ZNE4pJfsRNQQghhBDxk9Y9KRo0aODuv/9+q/SgPBPfYGCiRxPCePs8MAD56quv7D4elfhR5hYqMRBhaLoY5KSTTrLFw8SUTLqRI0futq0QQgghhIgPqg6eeeYZs3OKVDFL9QTCA8kzWHJGggDWuHHj3G+//WYJOaeeemq29mHLli2WhAI+MzcaZOwCVbVU6VK9SxKOFylk9SSEEDmHJMDt27fbfZIGcTegJ8XMmTPtPE/yZaVKlTK9hso27PrCe1MIIYQQIskihS+PDGaBde/e3XXt2tU8HoMwIYRg1UDHjh1du3btdpsIUgIfvm1OuPTSS21f1q5dax6+jzzyiGXQIVAwMXzsscfi+n5UY2BNFdwn+kQw0QziH/NcVkyePNksnbAcyAomoVgOCCGEEEKI3BEpSQULpw4dOtiYkYrY/v37R3wtIgHbkDiC/VJ2oZcZY0qqIGL1u9i1a5f1LfP9KEhWue+++1yfPn1CDbRVSSGEEDnH9670lRSIz9hNI1gvWrTIbd261c63P/74ozXYpvoNcUK9IoUQQogCKFIwUQuHLK9gn4ZY25KJwBLPtjnhxBNPtIXGVvTKmD59eigrDbunO+64I673oYFWOFhHMVFkoum/A2X5VEEUK1YsS/Fjzpw5bsiQIXF9PtZT2EAJIYQQQojsMWzYMPfzzz+7fv36RU2Aoeq2VatWtl1WFQ7HH398VBEjFgghWHoCgkgs6NfWpUsXq7wl0QYPdMacCCwtW7Z0b7/9tiW7CCGEyBmIEsFKu3feecd9/vnndv5FoKCKDaiuwxoKO6h77703iXsshBBCFG7S2u7JV1MgCEyaNMn17t3bfCSBSV68dk+RoJcETbgZtNx5553ugw8+cA899JBlunmeffZZ16tXL2u2FeSJJ56wDDmaN4bz4IMP2uQXiykGSFRckEnnxRUhhBCCnk7YEJDxXaVKFTd69Oio1i9c/x599FG7TgEVfIMHD5ZVjEgLvvnmG+shsXPnTgvqN2nSJOJ2VAAjClDlG14N7CFoVbx48RzvC3ah9GY77LDDou6HBzsqxpk+ucVXT1xyySU2ThRCCJE4keKQQw6xKgkSHIO9g6isoGrtlVdeyfK8LYQQQojYpH0tIn0pCMxccMEFbsCAAQl7XwYyCAc04Sbg061bN8uqa9++faaBz/r16yM2zG7cuLE79NBDd3uOig/eq3Llyq569eru3XffdUuWLHG1a9dO2L4LIYQovCB007DxrrvuMj9lRAqa+HpbxXCWLVvmrrvuOptgk5VdunRps48heCtEqnP00Ue7WbNmWZXENddcE7WKwhNNoOBv55hjjrEq2uD22QGPc2jTpo1Zi8TL8uXLLbkFcUIChRBCJN7uqWjRohG3wdoJoRs76uz2IBJCCCFEZvbIyOlMSgghhBAFDjL6zjrrLDdmzJhQlh/Cw6233up69uwZl+UMtoS8HtuYeCfyiPOI7wcffHCuv4MQBQXEBypi+XuIFYDCbolq1xtuuMGSTbILSS3lypUzgeOzzz5zJ5xwQtRtadxK5QRVE1RUkLwyYsQI17ZtW0uGIdM3UqKLEEKkyjU7P74DSYyvvfaa3WdcxHn2iy++cDfddJMrUaKE9c1U/wkhhBAicddtXVWFEEKIFIFqu9WrV7s6deqE1jGB5jHB1nj4448/zNsey5loYI3DQCO4CFGYoNHpn3/+meV2PXr0cCtWrDDLzlgQvJo3b571NMsJWIcgUFDFFEug8NVSVH34yg8atkKNGjVsIZiG0CGEECLnMB7y/PLLL27u3LnWc6Jz586W9IFt9HfffZfUfRRCCCFSCYkUQgghRIrw008/WSUEGX5BeEx/ingga7xUqVKZhI5whgwZYpkQfqFSQ4jCgm+CTWUEDaZjMXPmTNv2vvvui7kdXuUNGzY0+6jsgujnqy9uueWWLLd/7rnn7Payyy4zsQXrT+DvlqAa2UlUZQghhMg5nGsRfoF+RE2bNrXHjRo1ssq5F1980Ww1hRBCCJEY0r5xthBCCCH+B4HY2bNnW5+KWJ74vXr1sr4XHiopJFSIwsK3335rgX1EvWg+4x5+19OmTYv6/Nq1a13FihXdvvvum+P9efrpp21f6GmB8BCLLVu2uNdff93uEyjbZ599rMrj888/D1VPYPcmCxIhhMgdxx57bKiq9JRTTnHXXnutLXDeeee5lStXWn9LIYQQQiQGiRRCCCFEinD44YebRzKBzCA8Puqoo2K+dtiwYSZSLFmyJMvmj/vtt58tQhRGqHb46KOPLNhfoUKFiNtQeZTV3wz2H7Vr13bFixd3ixcvdscdd1yuGmbTTyJaY27P888/b5UgZ555ZkgYxHoE6EkBZ599do72QwghRGZ27Nhht+GC9kknnWSLEEIIIRKH0qyEEEKIFIFs7jPOOCPkUe8bZ/OYrL9oDB061N1zzz1u0aJFFvwUItXBpqx+/foRn6OSqEyZMq5v374mCETjk08+sb85qo5yWkmE3RTZuIgTXmSIx+rpiiuu2O25N998024lUgghRO6hsm3p0qUh67+//vrLen8JIYQQIm+QSCGEEEKkENgwTZo0yU2fPt19/PHH5nH/+++/uzZt2tjzLVu2NLsmz/333+/69evnpk6dapngZJCz+OxBIVKFhQsXZhLwYgkBBKK2bt1qvSaigfCHxdKTTz5pFUw5Yfjw4XZ7/fXXu5IlS8bcdvv27VbpBJdffrn9nU6ePNl9+eWXVi314Ycf2nMXXHBBjvZFCCHE/7F8+XK3a9cuu08SB+Mpev/Qu4v+X0IIIYRILLJ7EkIIIVIIGjvSTLd///4WxDzttNNscu2baW/atCmTXz1WMwRkr7766kzvc9ddd7kBAwbk+/4LkRfQ8wGh7ocffjARgiB/NEaOHGnNUX3D1FhgARLNMiorEBcQOKBbt25Zbv/aa69Zk22aYtMHg14Z7dq1c+eee67r0qWLbcPfO7ZvQgghcocXKODQQw81m0vEayrgcipMCyGEECI6EimEEEKIFKNTp062RLOyCQ+UCpHqEFxCiCMz9pJLLom5LdUTkeyUPLwHXHTRRbnapwcffNDs2C6++OIs+8AA+71hwwa3efNm20dfFUJfDPZlwoQJrkiRIrnaJyGEEP8jWC2BLd/JJ59sjbKPOOKIpO6XEEIIkarskRHLbFcIIYQQIgu2bdtmHv+//fabO/jgg5O9O0JE5c8//4wYyGc4PGXKFNe8eXPrMRENqo4qV67sPv30U/fYY4+5Zs2a5Wg/aLpNHwus2F566SVXt27dbL2e/cV2hGopPNNr1qyZo/0QQqQfqXDNzo/vQK8gL1SQ0EGvIiGEEELk3XVbPSmEEEIIIURKEu4bHq3SgB4uWCfRZyKW1zh2SwgCCAQNGzbM8X5R9YBAQQVFnTp1sv16+s0gUCCosM9CCCESSzCX84ADDkjqvgghhBDpgESKPOS9995zF154oU0gyZYbOnRolq+hfD98mT17dr7srxBCCCFEKtG2bVvrRUHlQiwOO+wwa1xNA+tYXuP0oBg/frz75JNPcpy9i9AxatQou3/HHXfEbM7t6dGjh4kiK1assMf0mfFNsulV8fDDD5sVlBBCiMSAHZ+H6wP9jIQQQgiRd0ikyMNSFjyGKQtdvXq1e+CBB6wB6cSJE7N87SOPPOK+++670BLLF1kIIYQQQuwOQsKjjz5qVRJUHsSiUaNGtk3Xrl3jem/Eipwya9YsG98dffTR1ug+nkAZr5k/f76VSIMPliFcTJ061XrQ0EhbCCFE4qHC7uuvv072bgghhBApTdqKFHPnznX77ruviQneY/iUU05xjz/+eELen/fhPZk4VqxY0V177bWuc+fObsSIEVm+9tBDD3VHHXVUaInljSyEEEIIIXanQoUK1uR62LBhrlq1alluj0/qPvvsE/G5N9980918883up59+yrV9CPsDXbp0sbFoVtDsnuAY40OsoRi7rlq1yp67/PLLrSeFb6AthBAiMVCh5ntTdO/e3V133XXJ3iUhhBAipclTkQKvXZagnyOBe9ZR6h5p22BZ5T///GPr/vrrryy3zS5M8vbcc0+3ePFie8wk8fbbb3d33323PWYietBBB8VcYvHGG2+4iy66KNPks169em79+vVZWg507NjRHX744e7ss882kUO9zYUQQgghss/5559v47tIbN++3caDr776asz3YBzG2Iw+Ev3798/V/mDT9OGHH1olRvv27eN6zYwZM+y2SZMmlriCzRT9KJ5//nkbD/veFOeee26u9k0IIfILBGQqwejvg+VdQbRSOvPMM+2WfcS2uXjx4sneJSGEECKlyVORwgfzg1ln2B6xjrL0IEceeaSt37RpU6bsBdbdeOONmbY97rjjbH1WpfuxOPDAA01EWLhwYWgdjQc/++wzt3HjRjdw4EC3bt26mEssmDCWKFEi0zr/mOeiwefOmTPHxJOrrrrKdejQwY0ePTrH31MIIYQQIp0gUSSeiofBgwe7l19+2d1www2WGBMNAmgPPfSQ9RnDujOnIHbcc889dp8m3VRuZAUixFNPPWX3W7ZsGVpPVcVll11m++97U+y333453jchhMhPOLdVqVIlVK1QENmxY0eu7f2EEEIIET97uzSmQYMG7v7777dJIxPQX3/91dYjgBxxxBEmnMQDdk5fffWV3WcC+8ILL+R4n/r16xe6f/rpp9sADmEHqyghhBBCCBGdH3/80SyQGNcRwK9UqVLUbXv27Ol+/vlnq1CIZvPkQQQg8zc3vPjiiyagFClSxKxD4oHsYgJlZcuWjWhZJasnIURhpH79+rYUVBC6fc8g5vlDhgxxvXr1SvZuCSGEEClNnlZSMKliwbrIw6SMdWPGjMm07Q8//GDrjz322NA6SutZN2XKlEzbfvnll7b+5JNPztX+XXrppda4cO3ataGG1QgDCBTZsXuiGsNXV0yePNnW0Utiy5YtmT7PP+a5eDnnnHPMhzjcHksIIYQQQmRm69atlmRC9eqJJ54Yc1sqGbBwihXg95m0uYWEmLvuusvu33LLLXGPBb3VU4sWLUx4eeaZZ2xsyHiTRq70q4BatWolZD+FEKIgwlyYfjzBJS/55ptvQhV5XAdya/UnhBBCiCRXUmCpFA49GiI1CYy0LVltkTLbIm2bE5i8sixYsMB6ZUyfPt299NJLIdulO+64I673KVOmzG7rsI7q06eP2Qf474CF00knneSKFSsW9z4ifLC9SviFEEIIIbJulr169Wqz1ow2dsLW8/jjj8/yvebOnWt9I7B6uvbaa3O1X1TZ0uyaKooePXrE/TqsPwnGNW/e3B4jUvA+VO5++umnFjxDbKlatWqu9k8IIQoyVDL43pH5gXdY8JQuXTrfPlsIIYRIV/K0kqIwQDUFPSAo9e/du7erWbOmrScL74QTToi5xOL66683MYZ+GjRIfOKJJ2ySG2ze+Oyzz9pk2kMDRDLjPvjgA/f555+7cePGmV/yrbfemodHQAghhBAidUCciJRAAm+//bYrX7689YTYtWtXzPcZO3asVfq+++67CauioCdbeM+yWLCfr7/+uo07SXyZP3++rb/yyiutohi7qiVLlri9905rB1chRIqD1dJvv/0WWjZv3pxvIgX9fzZs2JCnnyeEEEKINO9J4ftSIB5cd911uWqGGA5ZbVRlYFl1xhlnmOUVZaJk5HkYYK1fvz70mIoLmofddtttNqFlQjpixAiboAohhBBCiN3577//zDu8cePGNp6LxauvvmriBBUIWQX2SR5BqAiO3XICwsI777xjlcDx9qKItu+MHUmkOffcc0MNXc8888xc7Z8QQhQG8Tk/nQU413oOPfTQfPtcIYQQIp1Je5Gibt26JgjkBaeeeqpbsWJF1Odbt25ti+eSSy6xRQghhBBCxMfMmTPdU089ZT3Cqlev7kqVKhV1W6w8CeozRssKKmK7du2aq31jjOmTYKiioO9ZPHzyySfulVdeMfHlsMMOC1XgAo3B99prr1ztlxBCiOj88ssvmZIPhRBCCJH3pL3dkxBCCCGEKLwQyEcIGDlyZEyBwlOjRo1Q4D8cepTR9yFRCSzz5s1za9ascQcddFDcvc4A+88OHTpYk21fLUKPDLjiiissCebss892Q4cOTch+CiFEfkI1G70XWXyvIO5v2rTJFQS2bt0auo/TQefOnZO6P0IIIUQ6IJFCCCGEEEIUWrDLpOdDNFum7du3m5VmMDM2Gvfee681q6anWG5BWPC9KAhwYf0ZD9hRPf7443a/WbNmdksz8G+++cbEjlq1arnnnnvO+mu89957ud5PIYTIb7DAO/30020B+jZyH3vkgkD49SJo/ySEEEKIvCHt7Z6EEEIIIUThgyA91k177LFHzO3oAzFhwgTbngqEWNsjAiB6XHrppbnevxkzZljT7YMPPtgCcPGyePFi9/3337vixYuHbEDpn4F4wnvhy469FbBOCCEKG1S05ZXlciKg8m3JkiVmvXf++edbn0khhBBC5C2qpBBCCCGEEIUKmkifc8457rLLLnM7d+6MuW2bNm1chQoVrEoiK0GjR48e7vPPP3dXX311rq1Mevfubff79u1rgkO8YC0C119/vfXFADKMESamTp1qGchYotCIW73MhBAi8ZQpU8YdddRRoX5C2OsJIYQQIm9RJYUQQgghhChUfPXVVxbAL1GihFUWxAIx4/3337dqhHg49thjc71/9Ir49ttvXdmyZbPlZf7pp5+6BQsW2P1bb7014ja+iqJBgwauSJEiud5XIYQQkcVmKFq0aLJ3RQghhEgLVEkhhBBCCCEKFS1btrSKglGjRkV8HhuRH3/8MfQ4lkBBs1YC/olq2Lp582Y3bNgwu//AAw9kKaIE8d+HCpETTzwxJEqsX78+9L28SJHbag8hhBCRoTfG2rVr7f7kyZPdtm3bkr1LQgghRMojkUIIIYQQQhQ6KlWqZD0kIjFu3Dh38sknu3nz5sV8D4L+HTp0cAsXLnR9+vRJyH716tXL/fnnn6569eruyiuvzNZred1ee+3lunbtGmr63bp1a7OrImCGoLJhwwaroKhfv35C9lcIIURmnnvuOffvv/+G7lO9J4QQQoi8RSKFEEIIIYQo8Hz88ceubt267ssvv4y53X///edmzpzptm7dmuW29KiYPn26VVIMHz481/v41ltvuccff9zed8SIEVn2wAhnypQpts+1atWyx3PmzHG///67K1++vDvttNOsqXezZs1c06ZNowo0QgghcgeCsQdrwcMPPzyp+yOEEEKkA+pJIYQQQgghCjy33HKLNcy+4447QpZHkdhzzz3dyy+/7GbMmOFuvPHGLN8XW6X58+fnev+oyvAVEFQ/VK1aNUfvc8wxx2QSLeCGG24wwYPqkcceeyzX+yqEECI6f/31V+j+xo0bXcmSJZO6P0IIIUQ6oEoKIYQQQghR4Jk2bZpr1KiRGzNmTJbb0geibdu2USsZtmzZ4j755JOE7t+sWbPcm2++6Q488EA3aNCgbL0WKyeaZodXjrzxxhtm/9SqVauE7qsQQojo7Ny5M3RfjbOFEEKI/EEiRYKg2SJWAQcccIA78sgjXffu3d2uXbtivmbNmjVmW3DooYe64sWLu/bt27sdO3Zk2oZMwGrVqtng6KijjnJ33nnnbu+LFQAWAHx2mTJlrEmjEEIIIUQqcdxxx7m5c+faeCgS9J+YOnWqVTTEgufbtGljlQ5PP/10QvYNa6nbbrst1JMiu1m3Xbp0cSeddJJZT4VXUTC+5DsvXbrUvffee1l+PyGEELnj77//Dt1HeBZCCCFE3iORIgHQVIsJJIOZ119/3SaYZPv1798/6mu+/fZbV6dOHXfCCSeYf/GiRYvchx9+aPYAnnfffdddeuml7pJLLrEMuyeeeMIm4D179gxt88ILL5g38c033+w++OADN3bsWDdy5Mi4sgyFEEIIIQoyn332mY2HsuLrr792LVq0MHunrOyQSAj5559/rHcFwkAiuP32290PP/zgTjnlFLOjyg6rV692K1ascHvvvbclrwBjSi9YeMuqW2+91VWpUiVhwooQQojIBJMCE3WdEEIIIURs9sjIw3QsGv1Fg9L1/fffP65t8RYuUqRIzG2zm+FAJt4111zjfvrpJ3fwwQfbZJBqhD59+ljQPzsgFFx22WUmPJQoUcLWjR8/3qoefvzxR2u2Fc7EiRNdv3793HfffWffD95//3136qmn2oQc8aJ3795u8eLF7u233w697vnnn3dNmjSxiTDVFddff71NtJ988snQNqNHj3ZDhw616o7sNmwUQgghssu2bdvcIYcc4n777Te7pgqRqMal5557rlu/fr2Ncxo2bBh1WwSHYcOGuQULFrglS5ZYg+lYsD3ix+mnn57r/XzxxRctoYQx12uvvebOO++8bL2+ZcuW1j+D8acXWNi3mjVrmm3V5s2bzQqqYsWK9r0YW/L3JoQQ6XrNzuvvwLnXV1MUK1bM/fzzzwn/DCGEECJd2BbndTtPKykOOuigqMtVV12VaVsskqJtW79+/d3K/cO3yS5UMSAOIAIAQgJZcHfffbc9pjIh1v4HPxO/4MqVK4cECqhXr579J1AdEc3nks/0AgV4IWblypWhbYJCjt+GRl5k3cXahozCr776KtvHRQghhBCiIMAY59hjj7WB7BlnnBFzW8ZTPXr0MEukaAIFwkRw+0QIFFRl3HTTTaFKh+wKFF988YX1svCWTx4qJkh+QQChwsJXT1x88cUSKIQQIo/Bts+LFQMGDEj27gghhBBpQdraPVF5cdFFF7mFCxeG1jGxpIph48aNbuDAgW7dunUxF8/333+fSaAA/5jnIlGrVi17jv4RZGn88ssvIRsnqiu80IF9FJNXLKW++eYb26/wbZ555hnrXcHkm0y74cOHZ9pGCCGEEKKwQc8uKl9pRl2qVKmI22CHyRgpWKkbCcZIjRs3doMHD84kVuSWvn37WlIIPcGy2ywbsAbFVoRKjLPOOivTcyShUGFL0TOWn3D11VcnbN+FEEJEhio+OPnkk13nzp2TvTtCCCFEWrB3Xr55eBPoIOGTSOyLohGsNoAvv/wyAXv3v0aE999/v03+KNH/9ddfbT1VEkcccYRVd+QVlOzjNUz1BpkaHA8GQIgb/vuSLYeIQVUHPstkcmARhW+x36Zdu3aWhYfdFLZPZBuSiUfGR/hxE0IIIYQo6GDr6W08GcuULVs24nbYZJ5//vm2UGkQq3SYpBQED3qAEegvX758rvcT8WTUqFF2f8KECdmu7MXSaebMmXYf8cRDFW6FChVCY2XGfayjUvaKK67I9X4LIYSIL46BvbIQQggh8oc8jWIzwYy2hFsUxdo22I8i2rY5gabUVBuQhQePPPKIlf4jUGTH7umoo45yW7ZsyfTe/jHPRYN+ElRTUCGxdetWExbwGQ5OxhExEE/oL0H/jMsvv9zW+20QVxBaGEiRycf7nX322Zm2EUIIIYQoDOD7jdUR9ptZVTzQq4FxEMH8rAQCkjkmT55sYkIiBAqsN9u2bWuJLiSSUNmaXUi6KV68uGvatGnIeorKWip7K1WqZOND32sM+ByqS4QQQuQt3uHggw8+yOSgIIQQQohCWklR0DnxxBNtockilktUNrz00kv2HLZKd9xxR1zvw2SSEn+qQXz1Bb0uyOg75ZRTsny9t4aaOnWqiTd169bN9DwTcG9zgPVT6dKlXdWqVTNtwwT96KOPDm3DPiG2CCGEEEIUFmiQTYXoo48+6rp27Rqz/wLJJthiMv6Jp3r0xhtvTNh+duvWzaobGGuNHDkyR+9B4gnNsf/444/QOgSJ7du3W1+NkiVLmhjy9ttv23OdOnVK2P4LIYSIDtchLxwjcI8ZMybZuySEEEKkPGktUvgJ7pw5c9ykSZNc7969bbIIiA3x2j1hy4QYQYbb0KFDrZoBj+KOHTuaRROsWrXKtWzZ0npHeDGBwU61atUs+w9Ro3v37u6+++7LlCWH3RM+xUy+6T3B8+yvtwCguuKpp55yNWrUsIks1SBM8F999dU8OFpCCCGEEHkHTahJ2KCyIJpAQUNtP76i6iKWbRTjKGw1/faJAGupsWPH2n3EFKohcgoJLd6matu2be7BBx+0+3369LGxH8eCfmnLly93lStXTtA3EEIIES/0pRBCCCFE3pP2TQvoS0EZ5wUXXGB2SzkBwWD+/Pl2SwVD8+bNTZDwTa6BLLn169db3wgPwgVVE0w6J06caBYE4Y25XnjhBXfhhRe6M8880yo+8FMO9yOmAoTn8WQmq2/ZsmUhyychhBBCiMJEq1atrGF0JEgqYcyzcePGLN/nhhtuMNuo6667LmH7hkWTr8gguYREkuzCOI3EE6yigiB8kLV70kknZWqQTVVF7dq1E7D3QgghsmLXrl2h+xdddJElHgohhBAi79kjI3yGJIQQQgiRDcgAJ+v9t99+i9m8WIhoDaTHjRtntknhfciCUDFKQ2l6cFG5ikgQiyVLlljiCJUPJHLkFhJNCFjRMPucc86xhtYICNmBPhunnXaaNf2maqJLly6hqo/jjjvOKmSpzqA6l35k2H3uvXfaFz4LIRJIKlyz8/I7YLnn35PkwGeffTah7y+EEEKkG9vivG5r1iOEEEIIIZICPcGuvPJKq4xAoIjV3wHro9dee82qT+PpG1anTh23YcMGd8ABByRkX7HyRKBggD179uxsCxQwY8YMEyiw9qTq1kM1LQJFuXLlrPKDHCJ6VmzdutVsPs8999yEfAchhBCx2bFjR+h+buz8hBBCCJE90t7uSQghhBBCJId9993XmpJil9m/f/8st6evFxZOe+yxR8TnERF+/PHH0ONECRTYb1K9AVOmTLGqh+yyZcsWd/vtt9t9+mQUK1Ys9BxVGX49lROIMevWrTPhonz58gn5DkIIIbIG2z3PtGnTLOtTCCGEEHmPRAohhBBCCJE0atWqZUH5YNDegw3SpZde6l5//fUs34ceY/SIwIqJ3hGJ4qOPPnLXXnut3b/lllvcVVddlaP3ufXWW93PP/9sdk+33XZbpufoUYE9FTZPMGrUKLtt1qyZO+yww3L9HYQQQsQH52nPv//+G9OGUAghhBCJQyKFEEIIIYTIV0aPHu1++OGH0ONolRH33HOPVTE0bdrU7dy5M+Z7HnjggRbQL1mypDvqqKMSsp/sY4MGDcxH9YILLohpRxULPM2ffPJJt9dee7mpU6fuZhXF96c5NpUlX3/9tYkWXtgQQgiRf1SsWDFk80QfIs7LQgghhMh7JFIIIYQQQoh8Y9KkSa5z585m8USlRCywgGrSpIn1Zdhvv/1ibnv88ce7lStXuueff976V+SWP//80/pCUJVBrwiEhqz2IVrD744dO9r9O++8051++umh55544gnrOxFkyJAhlr1bvXp1d+qpp+b6ewghhIgfqvqwFoQ+ffoke3eEEEKItEEihRBCCCGEyFd7JwSFtm3bWvVDLOgpQSAfQSMS9Gygd4OnVKlSCbFH+u+//1ybNm2sxwUBqwULFrjDDz88R++FYDJr1izXsGFD169fv9D6NWvWuOuvv95VqFDB+lV4y6rx48fb/QEDBuT6ewghhMh58+yiRYsme1eEEEKItEEihRBCCCGEyDeoSli9erXr2bNnxOcHDx5slkhZQTPTevXqWcUBPS0SCQIB4ghNrLFeOumkk3L1fuzjvHnzQhUeVEq0b9/exJA6deq4EiVK2HrEENY1btzY1ahRIyHfRQghRPzMnz/fbdy40e6/+uqryd4dIYQQIm2QSCGEEEIIIfIUGl+vXbs29JjqhEh9KBYvXmz2GjfeeKN77733Yr7nnnvuaVmuWDDltMohEg8++KD1woCJEyfmWCz48ccfM1V5BHn44YdNqDnkkEMy9bnADmrFihVu2LBhOdx7IYQQuQFrv4yMDLuvc7EQQgiRf+ydj58lhBBCCCHSDCyMLr30Ugv6kJV62mmnRd2WqoIuXbpYZUFW/RgQKGiqvWnTplxXOnhGjRrlbrvttlA1BZZPOeGff/5x11xzjVu1apVVZGD15Nm8eXPI5/z+++/frck3DbqFEEIkB6r0PCVLlkzqvgghhBDphEQKIYQQQgiRZxx77LGuSpUqZmNUvnz5mNtSXUFlQaQqC/juu++sOTYCABQpUiRhAsWYMWNMIIG+ffta0+6cgtCBIIOQgr1VEJqG43derVo1165dO1v34osvulNOOcWVLl06l99CCCFEbvj1119D999+++2k7osQQgiRTsjuKUGQxdegQQNr8HjkkUe67t27u127dkXdftmyZTYBj7T4wdCXX34Z8XmaOAohhBBCFAYOPvhgt2jRIvP5ZpwUzgMPPGDigLfXiCZQbN261V144YWuadOm7qmnnkroPmK/dOutt9r93r17u4EDB0bdj6yYNGmSvR+vf/zxx0188CxcuNA999xz1utiwoQJZlnF97r22mtNbMECSgghRMGopMBOUAghhBD5gyopEgDNDxEoKNfHc5ksv5YtW7p99tnHmj9Gguw5tgvSr18/9/LLL7szzzwz0/olS5a4ihUrhh4XL148j76JEEIIIUTuoZ/Ehx9+6K677rpQxQNLpO3ow4BAgdVT0BYpnMMOO8zVrVvXqg6qVq2asH196KGHXNeuXe0+zbzvvffeHAsUNPDu2LGj3aevRfj3qVmzpmvWrJk77rjjXKVKlWzdXXfdZZm72FvFssISQgiR91Dp5snptUAIIYQQBUyk+P3336M+t9dee7n9998/rm3JMgtObCNte+CBB2Zr3+bOnWtWAT/99JNl+P399982McQjmMljdnjppZfcRx99ZGICHsq8DxNTJt34Ge+77767vYZ1QQ9ivIvZJ7L4wgdDiBLhfsVCCCGEEAURKkEJxhN4pzE0/SiiQWB+7Nixbvv27TEFCmB8RIUClQdHHHFEQpJMbr/9dutDAVTBklyS06AUvSauuuqqUD8KKjLCYTw7Y8YMs74CKkz4/oDNFeNjIYQQyeOPP/4I3Z84caJr3759UvdHCCGESBfy1O7poIMOirowiQuCRVK0bevXr59pW7LPwrfJLmTrIX4sXrw4JBowUb377rvt8c033xxz/4Of+cYbb7jKlSubQOGpV6+e27Ztm2URxsO8efNs0h2pQWOjRo3s+NBIke2EEEIIIQpyD4rGjRu7s88+2ypHIwWAGCN5GHMhEERi3Lhx9ry3gmLslgiBgkzZK6+8MiRQ3HfffdbEOjdZs9g3bdmyxYSXRx55JPReiBZTp04NCROsR4z46quvLDGG73bTTTe5WrVq5fp7CSGEyB1//fVX6D6JjEIIIYTIH9LW7onKi4suusi8gb1gct5557nPPvvMbdy40byI77jjjrje6/vvv88kUIB/zHPxMGXKFBM2jjnmmNA6hJDhw4e7888/3yblTz/9tLviiivMyxjhQgghhBCioMGYhYD9n3/+uVulK1aXCBhUFDAGC1bVhkOVaqdOnSy4z7gnVkVGdvj222+tamPNmjXmN05lg2/EnRtIdEGQwO4p+L27devmRo8ebf3IHn30UVu3c+dOd/XVV7uff/7ZbD6xnBJCCJF8sCnknMz1ITxZUgghhBCFVKQI+jmGE17O/sMPP8Sc7IbbCCQC+kiQNUcGG1lt2BJ4cYAsPaoX8oOvv/7a/JXnzJmTaf3hhx9u1R2es846yybWNJiUSCGEEEKIggIVD5988ol78MEHbUzF2C2SFSdjLapMGQd+/vnnob4MkaDhNO/HeDJRgSJ6h9F4m7EXYz2sNklSySnffPONJabQCJvvxLgyPAkFgQIQZzzYVr3zzjvWZ4Mm4GrOKoQQBQOqAIFEwXLlyiV7d4QQQoi0IU9Fiuz0icirbWNBRh6NEteuXWsNGCnNP/30023SirXAY489FpcIQ7+IVatWZXqOcn//XFbwufSdiEd4OOecc0IWVUIIIYQQyeaDDz6w6gGSPhATLrnkkqjbnnzyyVYZinXniSeeuNvzVBtUqFAhNH6iV1cioP8Elk40qeb+SSedZJUcZcuWzfF7Un1L740aNWq46dOn75aAwzgSGydfZUE1rKdz585WbYvFU5kyZXLxzYQQQiQSP8fPiaW0EEIIIXJO2to9AZNjlgULFpjfJBNMmmBDduyeyMAbNGiQVYP46guEBBpykwUYCyb0iBQtW7Z0++yzT5aftW7dOleyZMm49ksIIYQQIq+hGmLYsGFm74R1ZZBdu3a5vn37utatW5v4AHXr1o34PpMmTbIkEQL/VJgmqok0VajNmzd3r7zyij2mDwTNqhmn5ZSVK1eaXRNJKSS7UCFCwkmwUgKrKmjVqpUdgyBUXgwdOjTHny+EECJv8NVvWAIKIYQQIv9Ia5HCV1Ngs8TEuHfv3jYxBsSGeO2eLr74YhMjWrRoYRNOMuOYjJJV6Mv3qbRAiHj55Zfd0UcfHXrt0qVLrQdG27Ztd3tfRBMaelPdAc8884w1Xpw8eXKCvr0QQgghRM6qCA499NBQE+ugPWUQxkNYINFP67333rNxTTQuuOAC61FBZQG9HRIhUjz77LOuffv27qeffrJKXMQDxmM5bZBNcgkWVDT6piKjSpUqluASFCiw5ezRo0eoEoTtsb9C2Bg/frwlp8STmCKEECL/wZIQsAUUQgghRP6RudlDGkJfCmwKmBgPGDAgR+/BJHr+/Pl2S1UF2XpMgKnG8Pzxxx9u/fr1NukO9yquVq1aKLswnHvuucedccYZZvOEb/ITTzzh2rRpk6P9FEIIIYTILdgkMTZhvEOgPhaIF1grDRkyZDeBgtdShRC0giI4xNgoVkPteKB/GTaa9IFAoCDhY/Xq1VbVkFOBYvv27a5Jkyb2ndj366+/3r322mu7JbWcdtpp9l379+9vzVcRKBYtWmRJLY8//riJGEIIIQomiNFCCCGEyH/2yNBVWAghhBC5YNu2be6QQw5xv/32W64sdEThACHhrLPOsoUECioqPFu3brWqUYL5HgL64VURP//8syWKvPvuu+79999PWHNS7DtHjhxpPSCwn6JiAftOelHkpjk1w2WqbV999VV7Tz6jQ4cOIcEDWyssnDw0BT/hhBPs/pNPPmkWUySqUMFLo+wiRYok4NsKIUR6XrPz8jsgLHPOL1++vCUZCiGEECJ/rttpX0khhBBCCCFiw4DSU7FiRbdixQoTI8IFCp677rrrrMLAE8m2qVixYhaoJ7D/8ccf53r/CCghmFAx0bNnTxMoqlevbiLI4MGDcyVQAGIEwgcNv5cvX26Wnl6goH8GPc4QWzxeoMBO9NprrzWBomnTpmY/JYFCCCEKLj6HU42zhRBCiPxFIoUQQgghhIgIFQJUIdAn4osvvgitx+4pWDkA9GWoXbu22TvR/yH8faZNm+Z27txpjwnw05sBgeKyyy7LVTCJnhDYYl5xxRXuo48+cocffrj19aJRNhZSOX3f2bNnZ+oDhuhBVu25555rj//66y/XpUsXd8kll5i9FBadHiymqCahH8Z///3n2rVrZ1ZPsXpyCCGEKDgULVo02bsghBBCpBUSKYQQQgghRESogqDhM5UUM2fO3K1sl+oCejV4aEy9bt0668sQpH79+tZTi+c9CB9HH310jkWEJUuWmHBQr1499/bbb7sDDjjA9erVy3366ae5ao5NlQhiCxUhXbt2zdQ8FZGBz543b55VbYwaNcrWU1mBCONBwEA8QchBvJgwYUJCGoELIYTIH+hbKYQQQoj8I3MKnBBCCCGESGu+++478wwl6E+gf+LEiW7NmjXu6quvzrTdlVde6ZYuXWpixfDhw22dt3+iDwW+3l4owPKIJtm8b274/fff3WOPPeZGjx5tvTEAKyf6Q2DzFN7EOrsVGYMGDTKRwr/vnXfeaZUZnjfeeMN169bNboHPoyKEXhNUT9Dwm+99zDHHuEcffdREGKpOhBBCFC7ocSSEEEKI/EOVFEIIIYQQwiD4Tz+Fhx56KLSOptbXXHONWTVhXeTB6ojGorVq1cr0HogIp5xyigX9Pa1bt7Zm0jfeeGOO9gsbp+7du7vSpUu7m2++2QQKLKVuvfVWs6EaMWJEjgUK3wgc2yYECqolsGnCiqpfv34mPAS3RaCgrwRVG9g/UVGBcEFlyHPPPRfatlGjRhIohBCikOF7GDVs2DDZuyKEEEKkFRIphBBCCCGEcdhhh7k//vjDmkP75qEwduxYV7ZsWTdnzpzQOgI4BO0bNGiQ6T2ousByKWjthNVRsMl2vBUdiA9Vq1a1htzDhg1zv/zyi+3HyJEj3TfffGN2S9m1jOJ78T7BJt5UeSA8YO+0YcMGs2dif3n/oI0TYkvfvn1NcLnllltc//793fHHH2/7yXHDBkoIIUTh5YgjjrDb2267Ldm7IoQQQqQVsnsSQgghhEhDEAEQEs4++2zL+gf6MNAAmz4PwZ4O9KRg+0mTJpl1E/D8s88+a+/BgpAAt99+u9kdUY2QXRA3nn/+eTd//nwTSnzlBr0dsFSiEgNRJLv9Hf755x/32muv2fvOnTvXqh7oaQGlSpVyM2bMcHXr1jWhggoQvtdTTz1lvSUQIehxgY0T+3HiiSfaYxpz+/0777zzrOqCagwhhBCFlx07dtjtQQcdlOxdEUIIIdIKiRRCCCGEEGkIvSbowYDVEVURiA4E4jdu3GgWRuPGjbPgO7Rr184C++FVE08++aR79dVX3eTJk626ARAoECri4ddffzWLJXpbLFiwwH322WeZnq9WrZpr3ry52U0Fe0PEA9UO7BtixKJFi+yzPN9//7099tUdfPdWrVq5l19+OZMPeeXKlV3Tpk3drl27zAYKpk+fbvsLNWrUsMoKLK9y2qhbCCFEwQAx3l8rEOeFEEIIkX9IpBBCCCGESHGwMHr88cetWuDcc8+1ddgVEcSneiLcrundd9+16ggvUtDwml4TVEd89dVXVm0BN9xwgwXy27RpE5fN0qZNm9zbb79tVQ189rp16zLZSu2zzz4W+L/ssstMOKGKIR5+/vln2+eLLrooVGXRu3dvE1E8iBxUiNAvA0Eh2GuCfXnhhRfsPn0vKlWqZPvywQcfmAhB5QTroXPnzq527dpWUYL1lBBCiNRg1apVofuvv/66O+ecc5K6P0IIIUQ6IZFCCCGEECLFwIaIQLzP7r///vutcoIqCS9S0H/ixx9/NOEB8eK4446z9VdffbX1Vwg2fSZg//XXX7vff//dqg2aNGli67E3imRxhL0S1k30rHj//ffd6tWr3TvvvGOfFw72SdWrV7f3YT8OPvjgqN+LzFaaaPPeNK3m/RE6ED+A504++WS7Ty8LRAb8xakQ2bx5s5s5c2ZIFKFKg88FxBBEiB9++MG2Y/EgevAZXqS4/PLLbRFCCJFafPnll6H7VBQKIYQQIv+QSJEgmByTkYg/Mf6VWAYMGTLEvIujQTCAbMQgvKZnz575sMdCCCGESEU6depkFQT0dDjppJNsXc2aNc3yiCC8hzEKFkYIGTR8pkIAqDAgmE91AY2kvdAxevRoC/hTiQD//vuvNa/+4osvbMFeieXjjz82EQGLpHD4zFNPPdX6YCAQUPlATwjAZgkbJoQGLDcQChgn3XrrrSEBZcyYMVbZEIkDDzzQMl+9SIEYwb6wBEF0QMQhY9aLFOXKlQsJEwcccICrUqWKiTlUTFx44YUxhRMhhBCpwZYtW0L3qeoTQgghRP4hkSIBMEnHo/moo46yyTETa2wByDocPHhwzNcOHDjQfJ49RYsWzYc9FkIIIURhh8qG8ePHu507d7oHHnggtJ4eD4gR2DWNGjXK1pUsWdISKlhPgJ7KAjjyyCMtmM97BLNHCc4Q7F+8eLHbunWriQeMbxAleB8W7jMGigaiAXZIVCCwlChRwgQArJmwh6pQoYJtRy+Lu+66y23fvj3i+/Cae+65x+6/9957UT+PKo+1a9eGHvum1uH4fQ4230YsQZjhu1PZkd3G3EIIIQo/QSFfCCGEECkkUjBZjAaTv6AXcKxtmUgXKVIk5rZMhLPD3LlzrQnjTz/9ZNlxZO+ddtpprk+fPq5Zs2bZeq+XXnrJsv5ozMgEnPdhMn3nnXe6AQMGhBotRgJRAnFDCCGESBQEpwlaE1gmI5wMeDLXo0HWfb9+/czmgAAt1kCXXnppvu6z+D/++usvEwaOPvro0Lphw4bZ2OXGG290rVu3tnVULdD4mkoHX72J4PDnn3/a8wTs33zzTWsC6htS896MTdj2l19+MfsnxmO8ngWbJy9YLFu2zJpnZ4WvtMC7mz4N5cuXd0OHDrXXY/XEEg4ix6xZs+z+/PnzowoUgK2T54QTToi5L75XBtSvX9+qRxib0czbLxxX7J18BYcXa8J7cwghhChY45W8hmuvEEIIIZLDHhnBboWJfvP/P2mNBMGPBQsWZBIZmBhHglJ8JroerAYQF4Jk92sgdDCRpYnkVVddZesmT55sk2osCm6++WZrEBmLHTt22G3//v3NJgG/Yg+TfrIHaT4Zzc8S6wKCBfg2H3vsse766693t912W0yLKCGEECIWTzzxhFXzkWFP0PjBBx80EYJAL4HYcKgAJIucADXNiskmR6Tg+kXz4HjYtm2bNVamX0BBtcVhnBAclxC4Z7+5DjMmYAxCcJ/7rGvatGkoG3/27NlmGcTzLATxuWU7bhEQ9ttvP7M36t69u/VBIMGCJAWu8WxP9QDvRWVDsWLFbFtsItkPEjeovmQfyfLnNb43BAF2Xs8YJRaMo/hMvkes6obswv8ryRdUYtCLIlJPCQ8ChRceGLthNxUNji/HFThmHEPwx4Jjx8L3IumDY+UrKaZNm2ZjOH5rLPTW4JhyiwhRUH+DQghRECgo1+zsjlfy4zsE7ZjzMEwihBBCpBXb4rxup61IARdffLHZD0yZMsUe03yRgMyGDRtsfziIsfDZfDScZDDz4osvhp7ju/AeCxcutEy+SIwYMcKaOjKpJkjUq1cvsz9gvRBCCJETmOifddZZ5t0PBMa51uHrH6nnEcFiAvNks3vw4icwTeAgEgTNg/ZAXC/5jEQHC+iH8NBDD2UaV4Rf7y+44AL7jgTm33rrrZjvR/Y827IEGyOnG9gsIUwR2CdZA9uo8LEbt4ge2DD5HhD8hmbMmGEigu9nwX2qXanG4PflEz8QKKj8YCzEwu+Cgemhhx5qC/vA+AcQbPg/4b1ijR2FEEKkjkiRnfFKfo07uC6SPAASKYQQQoj8HXvkacq+rzSIRLjXbyz/R++b7MGOIhHQR4JsUZ9d6QckNL5GCMkqgyO33H777aH7NJFksn/TTTdZNisZmUIIIUR2wLpw9erVJnoHr6F16tRxb7zxRsTXsD54PYJ69eq55557LurncJ26++67XV7zyiuvZHocKWCwcuXKuN+PKse8gIA9QXpu/VjC44Puft8Jzh9++OG27WuvvWZVE/wf8Xq2ZXxEogO3jRs3toQIxgRYSrL/9GdgnMI6XoNAwOPmzZubzRLPk4WK8MBAEFtJnmcwiFjAfdb5cdh9990X9/fEhoMlHhBBWOI9fkIIIdKH7I5X8mvcceGFF7rnn38+ky21EEIIIfKHPJ0VZqdPRF5tGwuqOcjSxLOZioZHHnnErJkQKLJj90RPiVWrVmV6bsuWLaHnspNNQjYhIsxJJ52Uo+8khBAifaHKkIoCLIKC8PiTTz6J+Bp8oCNtz/poEFQIChs+ozHR0CejXbt2ZqtE1j0LQQwsltg/AvVUe7COoDuZl/RZoK8GAXuCDIgG77zzjo0dyNZkO7bHdon3IJBOxSbbcvyeeeYZC+R369bNgudsv3TpUtv2zDPPdGeccYatI8Dy7rvvmihA1UleQ8+seAn2WhBCCCEK+3glv8Ydw4cPd5dffrl6RgohhBBJIK1T1whisGA7RbBh+vTp1gQbBg4c6O6444643ue8886zxpVUg/jqi8WLF1vW4imnnBL3/tDTgsBJXldwCCGEELkBcSA/Kv7oycASL40aNYp720cffTTi+kgWjb4/RRCsiapVqxb35wkhhBCiYI87fHxACCGEEPlPWosUvppizpw5btKkSa53796uZs2ath6hIF6xgN4WiBEtWrSwxttkW+Lf3LFjx9BgikoLGoPRdPLoo4+2Mla8s/k8bBd4TNNs7BrwwhRCCCGyCzZCZPn7aj4Pj6NlBbI+O9sLIYQQQuT3eEUIIYQQqU3mZg9pCH0pPvjgA2u8OWDAgBy9BwMsGo5yS1UFQgOCBNUYHvyl8YjGexoQL2bPnm0WExUrVrRKDESKiRMnJuy7CSGESC/obYQdEYK4h0aUPOb6FAnWB7f31YDRthdCCCGEyO/xihBCCCFSm7SvpKhbt27ERpzZpUyZMm7hwoVRn69Ro0amz6EHxptvvpnrzxVCCCGC4NncqlUr659w9tlnuwcffND9/vvvrk2bNvY8IjoVfTShhC5duphgjg8zwj0COj0cJJoLIYQQIlnjFSGEEEKkF2kvUgghhBCpBP0TfvzxR9e/f3+zH6Sp86JFi0LNKTdt2mT9jzz0VZg5c6bZFGJ7iBfzc8895ypVqpTEbyGEEEKIdB6vCCGEECK92CMjEWUEQgghhEhbtm3b5g455BD322+/uYMPPjjZuyOEEEKIFL5mp8J3EEIIIdKFbXFet9O+J4UQQgghhBBCCCGEEEIIIZKDRAohhBBCCCGEEEIIIYQQQiQFiRRCCCGEEEIIIYQQQgghhEgKEimEEEIIIYQQQgghhBBCCJEUJFIIIYQQQgghhBBCCCGEECIpSKQQQgghhBBCCCGEEEIIIURSkEghhBBCCCGEEEIIIYQQQoikIJFCCCGEEEIIIYQQQgghhBBJQSKFEEIIIYQQQgghhBBCCCGSgkQKIYQQQgghhBBCCCGEEEIkBYkUQgghhBBCCCGEEEIIIYRICnsn52OFEEIIkSpkZGTY7bZt25K9K0IIIYSIgb9W+2t3YUTjDiGEECL1xh4SKYQQQgiRK7Zv3263pUuXTvauCCGEECLOa/chhxziCiMadwghhBCpN/bYI6Mwp1AIIYQQIun8999/7ttvv3VFixZ1e+yxR0IzLghAbN682R188MEJe99UQccnOjo20dGxiY2OT3R0bFLj+DD9J0hQqlQpt+eehdP9Oa/GHYXp/7Ewo2OcP+g45w86zvmDjnPhPsbxjj1USSGEEEKIXMFA45hjjsmz92eQpMFodHR8oqNjEx0dm9jo+ERHx6bwH5/CWkGRX+OOwvL/WNjRMc4fdJzzBx3n/EHHufAe43jGHoUzdUIIIYQQQgghhBBCCCGEEIUeiRRCCCGEEEIIIYQQQgghhEgKEimEEEIIUSDZb7/93F133WW3Ynd0fKKjYxMdHZvY6PhER8cmNjo+qYH+H/MeHeP8Qcc5f9Bxzh90nNPjGKtxthBCCCGEEEIIIYQQQgghkoIqKYQQQgghhBBCCCGEEEIIkRQkUgghhBBCCCGEEEIIIYQQIilIpBBCCCGEEEIIIYQQQgghRFKQSCGEEEIIIYQQQgghhBBCiKQgkUIIIYQQBZKHH37YHXfccW7//fd355xzjlu1alWyd6lAsHz5ctewYUNXqlQpt8cee7jnnnsu2btUYBgyZIg766yzXNGiRd2RRx7prrjiCrd+/fpk71aBYNy4ce7UU091Bx98sC3nnXeee+GFF5K9WwWS++67z/62unbtmuxdKRAMGDDAjkdwqVChQrJ3q8DwzTffuObNm7vixYu7IkWKuMqVK7t33nkn2bslEji+ePLJJ+03z/b8/y5cuDDf9jUdjvGkSZPchRde6IoVK2ZLnTp1NObL47Hy7Nmz7VzOOEkk/jj/+uuvrmPHjq5kyZJuv/32c+XLl9d5Iw+O84MPPuhOOukku/aWLl3a3Xbbbe6vv/7Kt/1NhznksmXLXNWqVe13fMIJJ7hp06bl6T5KpBBCCCFEgeOJJ55wt99+u7vrrrvcmjVrXJUqVVy9evXcDz/84NKd33//3Y4HA3mRmVdffdUmhW+++aZbvHix++eff9zFF19sxyzdOeaYYyz4vnr1agug1qpVy11++eXuww8/TPauFSjefvttN2HCBBN0xP9RsWJF991334WWlStXJnuXCgS//PKLO//8890+++xjot9HH33khg8fboFWkRrji9dff91dd9117sYbb3Rr1661oC7LBx98kO/7nqrHmCAYx/iVV15xb7zxhgUbuXYjAIrEj5W//PJLd8cdd5gwJBJ/nP/++29Xt25dO85PPfWUJcsgxB199NH5vu+pfJxnzpzpevbsadt//PHHbsqUKfYevXv3zvd9T9U55MaNG12DBg1czZo13bp16yx5p23btu7FF1/Mu53MEEIIIYQoYJx99tkZHTt2DD3+999/M0qVKpUxZMiQpO5XQYOh3LPPPpvs3Siw/PDDD3aMXn311WTvSoGkWLFiGZMnT072bhQYtm/fnnHiiSdmLF68OKN69eoZXbp0SfYuFQjuuuuujCpVqiR7Nwokd955Z8YFF1yQ7N0QeTi+aNKkSUaDBg0yrTvnnHMybrrppjzf13Qdw+3atSujaNGiGdOnT8/DvUzP48yxrVatml37W7VqlXH55Zfn096mz3EeN25cRtmyZTP+/vvvfNzL9DvObFurVq1M626//faM888/P8/3NV3mkD169MioWLFipnVNmzbNqFevXp7tlyophBBCCFGgIAOJbG/K/T177rmnPSbDToh4+e233+z2sMMOS/auFCj+/fdfs3ogowrbJ/E/qMIhYyx47hH/47PPPjN7gLJly7pmzZq5TZs2JXuXCgTz5s1zZ555prvmmmvMYu7000+3jFmROuML1oefE8ju1Xgk78Zwf/zxh1VC6tqd+OM8cOBAO1dRGSTy5jhzXWBsxZiiRIkSrlKlSm7w4ME29hKJO87VqlWz13hLqA0bNpil1qWXXppv+53qvJGE69/eefbOQgghhBA54KeffrKBPAP7IDz+5JNPkrZfonDx33//WVkyVixMEIVz77//vk2c8es96KCD3LPPPutOOeWUZO9WgQDRBnsB7J5EZvCFxoMY32esnu6++26zCcHuhv4v6QxBEfq9YFGBxQS/n86dO7t9993XtWrVKtm7JxIwvvj+++8jbs96kTdjuDvvvNNEUQnGiT3O2PRhiYNti8i748x1YenSpSboEzT//PPPXYcOHUx4w5pIJOY4X3/99fa6Cy64AIcgt2vXLnfzzTfL7imBRLv+bdu2zf3555/WCyTRSKQQQgghhBApBxlsBFHlnf9/EGQmOEGFCT7JBFHp45HuQsXmzZtdly5drI8JzRpFZurXrx+6T68ORIsyZcq4OXPmpH02LmIolRRkyQKVFJx3xo8fL5FCiBxA7yREY/pU6HycOLZv3+5atGhhlV6HH354sncn5a8LVKtMnDjR7bXXXu6MM86w/ioPPPCARIoEwjmCa+/YsWNtXIIYxFjunnvucf369Uv27okcIpFCCCGEEAUKJk8M6rds2ZJpPY+POuqopO2XKDx06tTJzZ8/3y1fvtwaRov/QXb3CSecYPeZNJP1/dBDD1mj6HQGuwAaM1atWjW0jow+fj9jxoxxO3futHOS+B+HHnqoK1++vAUE0p2SJUvuJvKdfPLJ7umnn07aPonEji9Yr/FI/ozhhg0bZiLFkiVLTBAViTvOX3zxhTVybtiwYaZgOuy9997W3LlcuXL5sOep/3vmurDPPvtkGjdwXSArHVsjxmIi98cZIQLhjUbOULlyZbMxbd++vevTp4/ZRYncEe36d/DBB+dJFQXof00IIYQQBQoG7wRQX3755UwTKR7LP1/EgnJvBApsjCi1P/7445O9SwUa/q4IwKc7tWvXNissqkz8QnY8Vg3cl0CRmR07dljAi0BMuoOdHMG9IJ9++qlVmojUGF+wPrg9UHWl8Uhix3BDhw61DOhFixbZ+Vck9jhXqFBht+tco0aNXM2aNe1+6dKl8/kbpO7vmesCIr4Xgfx1gWumBIrEHWd614QLEX689r++0CK3JOX6l2ctuYUQQgghcsjs2bMz9ttvv4xp06ZlfPTRRxnt27fPOPTQQzO+//77jHRn+/btGWvXrrWFodyIESPs/ldffZWR7txyyy0ZhxxySMayZcsyvvvuu9Dyxx9/ZKQ7PXv2zHj11VczNm7cmPHee+/Z4z322CPjpZdeSvauFUiqV6+e0aVLl2TvRoGgW7du9jfFb+e1117LqFOnTsbhhx+e8cMPP2SkO6tWrcrYe++9MwYNGpTx2WefZTz++OMZBxxwQMZjjz2W7F0TORxftGjRws6PHn7z/B8PGzYs4+OPP8646667MvbZZ5+M999/P4nfIrWO8X333Zex7777Zjz11FOZrt2Md0TijnM4rVq1yrj88svzcY/T4zhv2rQpo2jRohmdOnXKWL9+fcb8+fMzjjzyyIx77703id8i9Y4z52KO86xZszI2bNhg49ly5cplNGnSJInfonDPIXv27GnH2cNxZUzTvXt3u/49/PDDGXvttVfGokWL8mwfJVIIIYQQokAyevTojGOPPdYmrmeffXbGm2++mexdKhC88sorNrAMX5hspjuRjgvLI488kpHu3HDDDRllypSxv6cjjjgio3bt2hIoYiCR4v9o2rRpRsmSJe23c/TRR9vjzz//PNm7VWB4/vnnMypVqmTBlQoVKmRMnDgx2bskcjG+4G8//Ho6Z86cjPLly9v2FStWzFiwYEES9jp1jzHXpkjXboKQIrG/5SASKfLuOL/++usZ55xzjl0XypYta0L2rl27krDnqXuc//nnn4wBAwaYMLH//vtnlC5dOqNDhw4Zv/zyS5L2vvDPIVu1amXHOfw1p512mv2f8FvO6znVHvyTd3UaQgghhBBCCCGEEEIIIYQQkVFPCiGEEP+vvfuOkars4jh+KEqTKqBIU0DpIELoQiCoSxGQIh0USEgEpBohQOggAUKTolQhgICCEoz03lGKgkqVFjoqvcOb32Nm3rt3mV3KrsMu308ywbkze5874x/3mec85xwDAAAAAAAAwoEgBQAAAAAAAAAACAuCFAAAAAAAAAAAICwIUgAAAAAAAAAAgLAgSAEAAAAAAAAAAMKCIAUAAAAAAAAAAAgLghQAAAAAAAAAACAsCFIAAAAAAAAAAICwIEgBAAAAxHPjx4+3HDlyWKpUqaxOnTp29uzZGP9m79699uKLL9qlS5fi5JoSJUpk3333nfvvc+fOWebMme348eNxMhYAAAgf7z3/SThPOBw+fNhd/86dO8N9KUC8RJACAAAAiMfmz59vn3zyiY0ZM8Z++uknF3SoV69ejH/XvXt3a9++vaVOnTrOrzFjxozWvHlz6927d5yPBQBAQnPq1Cl3z86VK5clS5bMsmfPbu+++66tWLHC4qM+ffrY66+/HuX4yZMnrWrVqmG5JgDhRZACAAAAiMcGDhxo7dq1s1q1aln+/Pntq6++svXr17tHKEePHrVFixbZBx98EPI9d+7csbt378badX744Yc2c+ZM++uvv2LtnAAAJHTaoV+8eHFbuXKlDR061H799VdbvHixVapUydq2bWsJiTI8FYR50ty6dSvclwAkeAQpAAAAgHjq77//tu3bt1v16tWDx1566SUrVKiQLV++POTfzZ0714oWLWpZs2YNHps2bZqlS5fOFi5caAUKFHCLBApmbNu2zd566y2XDZE2bVqrWLGiG9Nr//79VqFCBUuePLn722XLlkUZs2DBgu7aFixYEGufHwCAhO6jjz5yZYS2bt1qdevWtddee83dUzt37mybN28OWWron3/+ccdWr17tnutfPV+yZIkVK1bMUqRIYZUrV7YzZ87Yjz/+6DY6pEmTxho3bmxXr14Nnufll1+2kSNHRromZUEoGyKUTz/91F1nypQpXfZHr169ggv9mm/07dvXdu3a5a5HDx3zl3sqW7asO4+Xylk+88wztnbtWvf8xo0b1rVrVzefUcnLUqVKBT9vKBpDZTKVsaHvQNf3zTffBF8PfJdz5sxxcx7NbbTJQhs3+vXrZ9myZXNzJH0HChb5/fHHH+7a9Xeaj61Zsyba6wHwL4IUAAAAQDx16NAh92+ePHkiHX/11VeDr93PunXrrESJElGOa1FiyJAhNmnSJNuzZ4/rI6HyUS1atHCZGVoM0bmrVasW7GWhH+3qg/Hss8/ali1bbMKECVEWFQJKlizpxgYAADFT9qEWwpUxoUV4P20ueFgKLnz++ee2ceNGO3bsmL3//vsuCDFr1iz74YcfbOnSpa6E5ONQKUkFHn777TcbNWqUTZw40UaMGOFea9CggXXp0sUFWlTeSQ8d82vSpIl9/fXXdu/eveAxBQ604eHNN990z5VJumnTJve+X375xerXr28RERFu80R0FDRRwEeBEo3TsGFD+/333yO9p1u3btahQwd3/J133nGfY/jw4TZs2DA3lo7VrFkzylgqwanPt2PHDitTpowry3X+/PnH+j6BpwFBCgAAACCeCux0VODgueeeCz6+//77SLsg/Y4cOeJ+5Ptpl+O4cePcDsC8efO6HZDaZdm0aVPLly+f22X55ZdfunMHdgYqY0O7BqdPn+6yM5RRMWjQoPuOqzE1NgAAiNmBAwfcIr3uwbFlwIABVq5cOZdN0apVK3c/V2aBnmvxX32tVq1a9Vhj9OzZ080llIWhRXplOyiLU5S9oLlK0qRJXXknPXTMT8GTEydORCpfqUBKo0aNXKaDsj2nTp1q8+bNc9edO3duN0758uXd8egomNG6dWuX7dG/f3+3ccMfmOnYsaPbhPHKK69YlixZXHBCmzAU0NAcSZs6lE3hzzJR4EQBEM2Z9L0qC3Xy5MmP9X0CT4Ok4b4AAAAAAI9GQQRRaQPvbkrt/Au8dj/Xrl1zZQj8lA1RpEiRSMdOnz7tFhs0hkpCqFeFghRaHBDtMFQDT2/QQzsH70eLENEFTwAAwP95swhii/c+/8ILLwRLMnmPqbTU41DGw+jRo+3gwYN2+fJlu337tisl9TAyZcpkb7/9tiu1pCDEn3/+6bImvvjiC/e6enNoTqJAg5dKQD3//PPRnts/T9Fzb6ks8WacXrx40QVMFNzx0nNlY4Q6twIxOo8/SwNAVAQpAAAAgHgqsKigH/7ekk/Xr1+PtODgp/4S6mdxvyCCdid6qdSTyhSozEHOnDldHWb9AL958+Yjla3QogMAAIiZMiV1X1bGYnQSJ04cJagRqtmzejoE6Nze54FjKuXoPbc/WBJdI2kFElRCSX0nVBJJmQQqx6RSSQ9L5/n4449dloOyKAoXLuweouBHkiRJ7Oeff3b/eilT43Hdr7wWgLhDuScAAAAgnkqfPr0VL148Up8H/WjXAoGaXYeikg6qE/0gNmzY4BYI1IdC9aMVpDh37lzwdZUzUE1r1ZQOCDTy9Nu9e7cbGwAAxCxDhgxuoX/s2LF25cqVKK+rObYENgB478X+zIBHpXN7z6usAmU1hKJeF9rU0KNHD5dFoECLv9SjMjeVBRGTWrVquY0X6suhIIWCFgGaT+gcyvLURg3vQyWkouOfp+i55jOhaDOIMkY1J/LS8wIFCoQ8tzJIFESJ7twA/kWQAgAAAIjHtAighxpdqnmj6kuXKlUqSkkCLy14KJDxIAsEWlyYMWOGK1WgxthaIPDWjq5SpYortaCMC5U8UMBE1+OnMk/6oa7SDQAA4MEoQKH7dcmSJe3bb79193rdk1VOKVBaSPfl0qVL22effeZeU58JlWqMDepNpXmA7u8qsaT7vT9zwT9vUElIZU+o3JOuc8GCBZHeo14VCnQokKKNDyrRFCqboXbt2q7RtT6X+lEEaO6hOUnz5s1t/vz57nwqUzV48GDXADw66mMxZcoU27dvn/Xu3dv9nXpJREcNsdWHQqWs9u7d6xpr6/pVYtP//0ufV9kvaniuzNWWLVsGX1d/Ef/3AYAgBQAAABCvvffee9anTx8XnFDjapVgCDSnDKVq1aquTrKaXsdEzR71A/uNN96wZs2auayKzJkzRyoDoR/b6nOhBRQ1ohw4cGCU86iZd44cOVxdaQAA8GBUvnH79u1WqVIl69KlixUqVMhlS65YscI1Zg7Qort27ivDUk2f1SA7NnTv3t0qVqxoNWrUsOrVq7uggZpUh1KzZk3r1KmTW/RXY2llVijI4KXG0hEREe4zKVNj9uzZIc+nQIQ2QWj+oHmElxpkK0ih70XNrHVt27Zti/I+P5WiUhBF/TmmT5/uxvdnRPhp/tO5c2c3lkpOKbtj4cKFLijjpUCRHpqTqem33qMymwEKcFy4cCHasYCnUaJ7cdGFBwAAAMATTTv99MN5yZIl/8l42uGpH/iNGzf+T8YDAADwU88Nba5QQAPAk4PG2QAAAMBTqE2bNq6W9aVLlyx16tRxOpZKOdSpUydSmQYAAAAAEDIpAAAAAAAAACR4ZFIATyYyKQAAAAAAAAAkeOzVBp5MNM4GAAAAAAAAAABhQZACAAAAAAAAAACEBUEKAAAAAAAAAAAQFgQpAAAAAAAAAABAWBCkAAAAAAAAAAAAYUGQAgAAAAAAAAAAhAVBCgAAAAAAAAAAEBYEKQAAAAAAAAAAgIXD/wALiEBL6PyBGwAAAABJRU5ErkJggg==", + "text/plain": [ + "Text(0, 0.5, 'Quantile (rad)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABikAAAH/CAYAAAAixT4zAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQncVOP//38hS1TaaS9K0YoQEUWkRGSJpCKSpVQo9UlFSFpIWlRaSEkJSRKRCqlo076ItFHao2L+j+f7+7/md+67mfuee+veXs/HYx4zc+bMmTMzZ+Zc13t5vU4IhUIhJ4QQQgghhBBCCCGEEEIIcZw58Xi/oBBCCCGEEEIIIYQQQgghBChJIYQQQgghhBBCCCGEEEKIdEFJCiGEEEIIIYQQQgghhBBCpAtKUgghhBBCCCGEEEIIIYQQIl1QkkIIIYQQQgghhBBCCCGEEOmCkhRCCCGEEEIIIYQQQgghhEgXlKQQQgghhBBCCCGEEEIIIUS6oCSFEEIIIYQQQgghhBBCCCHSBSUphBBCCCGEEEIIIYQQQgiRLihJkcUpXbq0a9GiRXrvRqbmhBNOcD169HDZhcz0ftlP9jeIjnkhhBBCCCGEEEIIITIPSlJkUkaPHm3B2UiXzp07p3j7W7ZssQDw4sWLY37O4MGDbb9Exjo+5s6de8zjoVDIlShRwh6/6aabXHbn008/zTSJGSGEEEIIIYQQQgghshI50nsHRMp47rnnXJkyZeIsq1SpUqokKXr27GlV6dWqVYs5SVGwYEF1bmQgTjvtNPfuu++6K6+8Ms7y2bNnu82bN7tTTz31mOccOnTI5ciRef8aVq9e7U488cQkJyneeOMNJSqEEEIIIYQQQgghhDjOZN5IpDBuvPFGV716dX0aIiL169d377//vhs4cGCcxAOJi4svvtj9+eefERMbmZlIiZfU5OjRo+6///5zp5xySpq+jhBCCCGEEEIIIYQQ2QHJPWUzdu3a5Z588klXuXJllytXLpcnTx5LdCxZsiS8ztdff+0uueQSu92yZcuwbFBCUk50XPz8889Woe/Xv+aaa8KPb9iwwd1xxx0uf/787vTTT3c1atRw06ZNi7MNXpfnvffee65Lly7u7LPPdmeccYa7+eab3W+//RZnXbZNx8iiRYvcFVdc4XLmzGkdJUOHDj1m3/755x/XvXt3V7ZsWQtgI3P09NNP2/L467Vv394VKlTI5c6d216XboPE2L59uyUA6DyJVNXPexo0aFCyPouJEye6F154wRUvXtySB9dee61bt26di5W7777b7dy5082cOTO87PDhw27SpEnunnvuicmTYt++fe6JJ56w75jPr3Dhwq5u3bruxx9/jPO8+fPnu3r16rkzzzzT3tfVV1/t5s2bF2edWLcVCWSrOC75HM4991w3bNiwiOvF96Q4cuSIfTflypWz5xYoUMA6S/xnwrp0Ufj37i/wyy+/2O2+ffu6V1991V6X/V6xYkWi+yuEEEIIIYQQQgghhEgcdVJkcvbs2XNMNTySS9EgQP7hhx9akJygPgF2gr0ElAm8Fi1a1J1//vkmI/Xss8+6hx56yF111VX2XJIB0SCA+/jjj1vio2vXrrbsrLPOsmteg+cePHjQtW3b1oLEY8aMsSQAwfJbb701zrYIyhMY7tSpk9uxY4dt+7rrrjN/DJIRnr/++ss6Be68804LxhPQb9OmjVW433///bYOFe+8DgFu3gvvbdmyZW7AgAFuzZo19ll4WrVq5d555x0L3rO/s2bNcg0aNEj0O+B98vnx+iRDgpBwOemkk+zzTs5n0bt3b5MuIrHEd92nTx/XtGlTSwjEAgH7yy+/3I0fP96SUTB9+nTbVpMmTazDIjEefvhh27fHHnvMXXDBBZb04PNcuXKlu+iii2wdPiu2T3cGnwH7PGrUKFenTh03Z84cd+mll8a8rUjwnV1//fWWQCKBQjcDr+OPsYRg/Zdeesm+X/Zj7969buHChZYYIUHSunVrkzcjafH2229H3Abv5e+//7ZjiCQFCSYhhBBCCCGEEEIIIUQqEBKZklGjRoX4+iJdgpQqVSrUvHnz8P2///479O+//8ZZZ+PGjaFTTz019Nxzz4WXLViwwLbF68RKxYoVQ1dfffUxy5944gnb1pw5c8LL9u3bFypTpkyodOnS4f356quvbL1ixYqF9u7dG1534sSJtvy1114LL+N1WNavX7/wsn/++SdUrVq1UOHChUOHDx+2ZW+//XboxBNPjPPaMHToUHv+vHnz7P7ixYvt/iOPPBJnvXvuuceWd+/ePcH3PmzYMFtv2bJlcZZfcMEFoTp16iT7szj//PPtfXn4DCK9TrTjg+9x0KBBody5c4cOHjxoj91xxx2h2rVrh4+PBg0axHlu/Pd75plnhh599NGor/Xff/+FypUrF7rhhhvstofX433VrVs35m1Fo1GjRqHTTjsttGnTpvCyFStWhE466aREj/mqVase8x7jwz5F+jvkt8HyPHnyhHbs2JHk/RZCCCGEEEIIIYQQQiSM5J4yOcjUUAEevCQEVeDeVPjff/+1Sna6H8qXLx+T5E5ywJSYCvageTOvSVU6cjrxpXPuu+8+k1vy3H777a5IkSK2nSBILFEF76GDgvt0XyADBfgx0D1RoUIF6zjxFyr84auvvgrvI9DdEARpoli47bbbbH/onPAsX77c3ttdd92V7M8Cua2g94HvaqEjJlboNMEM+5NPPjG5Ja6jST1FIm/evNa5QbdBJOhwWbt2rW2T48l/xgcOHDB5qm+++cY6WmLZViQ4TmfMmOEaNWrkSpYsGV7O93rDDTfEtP9IkbGPyaVx48bWxSGEEEIIIYQQQgghhEhdlKTI5BDwRgopeEkIgsVIHaHPT8ICaSiCr0uXLjUJoMTYv3+/27ZtW/jyxx9/JPqcTZs2WRIkPgSZ/eNB2LcgSD/hJ0EQPwjSVHhWBDnvvPPs2q9LYJoANe8xePHrkdDw+0DyBs+BIJH2OxJ8jgTkkXzykLAgcUECI7mfRTAoD/ny5QtLXcUK75fjArPsDz74wIL+JH5iBYkpEi54eXC8IZ8UTJL44H/z5s2P+ZxHjBhhXh/+2EpsW5HgGCPJEv+4iPX7Qbps9+7d9p3jxfLUU0/Z8Z4UkEYTQgghhBBCCCGEEEKkPvKkyGa8+OKLrlu3bubZ8Pzzz5u2PsF5OgZ8tXtCYCAcNIguVarUMcmDjATvicB0//79Iz5OsDy1wOOBzgc6C6pVq2YJCxIXCXmEJAZ+FpH4P1Wm2KHL4cEHH7TEEt4RdBckpRODDo4pU6a4zz//3L3yyivu5ZdftoQH2/LHDct535GgWySWbaUFtWrVcuvXr3cfffSRvSaJExJ1mKzjUxELQS8UIYQQQgghhBBCCCFE6qEkRTYD0+LatWu7kSNHxllOpXkwmE73QiSQYgpKFQWDt9GeQyJj9erVxyxftWpV+PEg8WV5CMivW7fOValSJc5yJIOQFAp2U2CG7Q2jgc6IJUuWWLIg2v75fSDYTjA7WJ0fab+jgRwRclNe8ol9eeaZZ1L0WaQWGHKzb99//30cSapYQW7rkUcesQvdJ5hcY3BOYsF3n+TJkyfRTp7EthUJOjI4ziLJNcX6/ZCMI4HEhW4gEhd0cfgkRULHhhBCCCGEEEIIIYQQIu2Q3FM2g8r8+FX4+Db8/vvvcZb5wD/JiyDnnHNOHGmpmjVrxnlO/PWhfv367ocffnDfffddeBnJhTfffNOSCRdccEGc9ceOHWveCcHEytatW48JYh89etQNGzYsfP/w4cN2n6D2xRdfHK7c570NHz78mP1CQoj9AL/tgQMHxlnn1VdfdbFCdwIeCXRQTJgwwbwkSFyk5LNILehkGDJkiAXmGzZsGPPzkIaKLwNWuHBhk9pCxgn4rElU0GVDAiA+XhIslm1FO2b5XD/88EP366+/hpevXLnSvCoSA5+M+J8F8mHB14x2vEcDzw0SSwcPHoxpfSGEEEIIIYQQQgghRGTUSZHNuOmmm0yjn4ryK664wi1btsyNGzfOkg9BCDoTdEcSBxNrgriXXXZZgtr8BKsJhPfq1cuCwASgMaju3LmzGz9+vCUCMKamqn3MmDFu48aNbvLkyWEjbw+P063BPm7fvt0SBWwPuaIgBLeRCkJuCr8BOgSQWiLgf/LJJ9s6zZo1s6TBww8/bCbZJFUIlhNgZjlB7urVq5tM0d133+0GDx5sgXQ+my+//NI6OJICJtn33nuvbYfAenxZpaR+FqkJnhFJhWRR8eLFzcOiatWqFuD/4osv3IIFC1y/fv1sHfYZCSXeU8WKFe17K1asmCWH+MzpsJg6dWpM24oGEmOfffaZSUXRgUGC6vXXX7fXS8xfgsTPNddcY8cnn/fChQst8fXYY4+F1/FJLb4TvjcSI8h3RWPQoEG2T7w/ti2EEEIIIYQQQgghhEgeSlJkM7p06WKV+5goE9RHamfatGkWPA9CkJ/gOXJFBPgJCo8aNSrBJMWzzz5rxs+YIxOQvvrqqy1JcdZZZ7lvv/3WderUyQLLf//9t0k3Ebhu0KBBxH0k8PzSSy/ZdpBqIuh/+umnH2MizT4+/vjj1inB6xA8DiYzCKBTgY8HAR0aeCGwHZIy7dq1Cxtow1tvvWVdGCRteA77zmeTFN+Km2++2aSJ2G8SFvFJ6meR3vBZkRTAywHfCCSxSBjxfbRp0ya8HoF6ukPwOeE7oKPi7LPPtsQWMlNJ2VYk+IxIKHXo0MGOM5IdJAnosEksSUHi4eOPP7bXpXsCSS0SaRhoezA35ziiA+add96xbqOEkhRCCCGEEEIIIYQQQojU4YRQUh14hUgjvv76a/PLQH6KavuEICiO5M7y5cv1fQghhBBCCCGEEEIIIUQmRZ4UQgghhBBCCCGEEEIIIYRIF5SkEEIIIYQQQgghhBBCCCFEuqAkhRBCCCGEEEIIIYQQQggh0gV5UgghhBBCCCGEEEIIIYQQIl1QJ4UQQgghhBBCCCGEEEIIIdIFJSmEEEIIIYQQQgghhBBCCJEu5EiflxVCCCFEVuG///5zW7Zscblz53YnnHBCeu+OEEIIIaIQCoXcvn37XNGiRd2JJ2bOmkWNO4QQQoisN/ZQkkIIIYQQKYIERYkSJfQpCiGEEJmE3377zRUvXtxlRjTuEEIIIbLe2ENJCiGEEEKkCDoo/KAjT548+jSFEEKIDMrevXutsMCfuzMjGncIIYQQWW/soSSFEEIIIVKEl3giQaEkhRBCCJHxyczyjBp3CCGEEFlv7JE5RSiFEEIIIYQQQgghhBBCCJHpUSeFEGnE8uXL3QcffOCOHDli95s3b+7Kli1rtxcuXOg++uijyD/KHDlco0aNXNWqVfXdCCGEEEIIIYQQQgghsjRKUgiRyixevNg9//zzlqAIctVVV4WTFD/99JPr1atX1G0ULlxYSQohhBBCCCGEEEIIIUSWR0kKIVKJTZs2uXbt2oU7JNBaa9iwoStVqpTdL1myZHjdihUruscffzyqocz9998fvv/ll1+6008/3V1++eX6roQQQgghhBBCCCGEEFkKJSmESCXOOOMM98UXX1hyokmTJq5r166WjIjEFVdcYZfE+Pfff12bNm3c2rVrXd26dd2zzz7rrrzySn1nQgghhBBCCCGEEEKILIGMs4VIJt9++63r3Llz+H7BggXdyJEj3YoVK9y7774bNUGRFA4cOOBq1aplPhUzZ840yag6deq4r7/+Wt+bEEIIIYQQQgghhBAi06MkhRBJ5JtvvnHXXXedq1mzpnv55Zfd7Nmzw4/dddddrkKFCqn2mebJk8eNGDHCrVmzxj300EPu5JNPdl999ZWrXbu2JS9++OEHfX9CCCGEEEIIIYQQQohMi5IUQiQhOXHNNde4q6++2nwi6G5o1aqVK126dJp/hmXKlHHDhg1z69atc4888og75ZRT3Jw5c6zTQgghhBBCCCGEEEIIITIrSlIIEQPIOJGcoGuCboaHH37YEgbDhw8PG2MfDzDffuONN9yGDRtcv379LGni2b1793HbDyGEEEIIIYQQQgghhEgNlKQQIhH2799vhtXQrFkzt379ejdkyJDjmpyIT7FixVyHDh3MpBuWLl3qypcvb/slhBBCCCGEEEIIIYQQmYUc6b0DQmR0cuXKZT4Q48aNcz169AgnBjISH374oduxY0dYCuqBBx5I710SQgghhBBCCCGEEEKIRFEnhRBR+Ouvv8K3zzvvPNezZ88MmaCAbt26uXbt2tntBx980L399tvpvUtCCCGEEEIIIYQQQgiRKEpSCBGBTz75xAyxZ8yYkSk+H5InAwYMcG3atHGhUMi1aNHCvffee+m9W0KIdOCbb75xDRs2dEWLFrX/BjqtEuPrr792F110kTv11FNd2bJl3ejRo4/LvgohhBBCCCGEEEIoSSFEPEhMNG7c2O3du9eNHz8+03w+BCMHDRrkWrVq5f777z/XtGlTN2XKlPTeLSHEcebAgQOuatWq7o033ohp/Y0bN7oGDRq42rVru8WLF7snnnjC/kcyS5JWCCGEEEIIIYQQmRt5UggRYNasWa5Ro0bu8OHD7rbbbnPDhw/PVJ/PiSee6IYNG+b++ecfk3waOHCgvZ+MKlMlhEh9brzxRrvEytChQ12ZMmVcv3797P7555/v5s6da91ZN9xwg74iIYQQ4jhCVzQcPXrUxvZcNJYXQgghRFpCHDFHjhzupJNOcumFkhRC/P/MmTPHJFL+/vtvu6aL4uSTT07R54OZ9fbt213x4sVdvnz5bBkdGps2bYr6nEKFCrmzzz472a/JRGbUqFGuQoUK7vHHH9ekRgiRIN9995277rrr4iwjOUFHRUIDGC4e/teEEEKIlPDvv/+6/fv3h88zjMk3b95s4+ldu3a53377zR7PkyePXe/Zs8ce2717t7v22mvdsmXL3Pr16+2x33//3SQMCxQo4P78889w0J/LlVde6dasWWNjdDh48KCNn0877TR7TRICJAq4nHPOOe6PP/5w+/bts+V0KwPr+9ueM888054fPD9GgwAA24+/jUhQPJXSOYkQQgghREIQP6RQu0ePHq579+4uPVCSQgjn3Pfff+/q169vkxSCc++//7475ZRTkvXZsA1klsaMGeO++OILm4Bw+7777rPHZ8+e7W6++eaozycwSAVzSmDi06VLlzjLmNiVKFEiRdsVQmQ9tm3b5s4666w4y7hP4uHQoUMuZ86cxzznpZdecj179jyOeymEECK5MBY9cuSIBboJeBPE37p1qwXpCb4T5OfC8urVq9tzrrrqKjdhwgT3008/2RiSdX2Cmm0RXKeoh2skA/v06WNJAs4brBMMwHO7YMGCdh/Pt1WrVpk0YWry1VdfHbOM9+YTFEEiyRmyb4zh40PSI36Hg18/PiRNkpKQiZVYEhlCCCGEEClhxIgRdt2/f38lKYRIT9566y2bmNWpU8cSDFReJQUmLXRikIwgwcGkKNgZQWWWh+RH4cKFo05CfDLDG+DyR4ER9jXXXGNVW8mhV69ernfv3u6zzz6z6jEhhEgJzzzzjOvQoUP4PgkNJUGFECLpUHnPf2jwcvXVV1vVPgmFiRMnuoULF1oAnAtjTMasdOnyXBIJQ4YMcV9++aVbvny5dRYQAGdMGQyqA10JJB/wIkoMJACppAuOaePz2muv2fXrr7+e6PboRoCdO3e6WInUrRANkh+890iJhmARD9u84oorbF3/OZBU4fNG4oDPjNt0RTAfoNOQz4DvgMfYf9Y744wzbN/YZpEiRVzu3LltrM46dCgCyR0/7iexw/ZKlSrl8ubN6y688EIrAli6dKltg++GbfI+2O7pp59ucwj2NbmFU0IIIYQQscIYiTEk45T0Qp0UQjjnBg8ebO3ctDdFqhpOjLVr19qE0oO+O8mGZs2auXPPPTfOunRq+PbyxBg5cqR5S3ApWbKkba958+auXLlyMe8bbe3oy1OxRrfI559/7mrUqJGEdyeEyMogLxf/P4n7yGlE+z8k0JLUZK4QQmQHGG8RcOZCp5qXKnr++efDAfFWrVq5Tz/91BISjNMibeP+++937733XkyvR2ebl0lKCF6PjolY6NixY0zrEdBH0pRAO++F90eigOV05RFgJ6i/YcMGW5+xLB0XJFQI2NOpULRoUXf99de70aNHu/z581tBDRNkuoLpevj1119d3bp1LRmAfBOTaBIHdGdwruK1M6tnQ0Ld1UIIIYQQxwvGayQpKleunH77kG6vLEQ6w0SKHyFw3blz55iex6SIbgm0brt162bLzjvvPKu0IpFAEoHJVXK7HoI8+uijFiSkSo4J2gsvvGCXyy+/3F7ngQceCL+HaPA43SG04tMKX69ePavwwhxXCCH4PyFYFmTmzJm2XAghRFyolGcMSBU+XQkexmQffPBB1CQAAXeSE++++26CSWMq+An0f/LJJ1HXQ7aJpAdBeqrv6aogKULnLpdcuXKFPQzYX7ZLQc0FF1yQ6NfJc0kakBDgeVxISv/88882tn366actUUAy4d577zVp0xdffNG1bt06LFtKhwUTXBIMAwcOtI4COgRIZiAX2KlTJ7d48WJ7/v/+9z8bq5LYaNq0qStfvnyczjzuR4L9E0IIIYQQqQNdnIxBiW+mF0pSiGwJE7ZGjRpZ+/XLL79s7dSxVKoxMcOUGr1dJmyPPfZY2BCbDoXUruK69NJL7YJHxccff2xyUkz4SDKgsfvQQw/FtB0SHVOnTrUujnnz5rmHH37Yff3115m26kwIER2qadetWxe+TyCNYBABJRKpSDURYBs7dqw9zv/BoEGD7P+Nyt1Zs2aZvMi0adP0MQshsj0E2Bk74c3gL97ngLEh0jx4myHbEylBcdttt1nQ3XcZAMF+33ngJZkYT65evdo6A4CEgu824Pk+ccA1y3wFPs+nGGX+/PkmSbRgwQL7zw+aN7OdYBKibNmydqHbl+QB5wYuvA6dD3TgcrtChQr2HDwkKG5hPDl58mRLgPC6K1eutMdJlgDVdxhYsw+33367jTNJSgAeGCQ8oGvXrpacYBLsi3qYGFPwI4QQQgghjj903AJyo+mFkhQiW/LRRx9ZAI5JFtVciSUpmDQy2fKTPKq66GQIBvnTMuDPpPCuu+6yC5O8cePGWcDRvyYTxV9++cVkpqJBpR3PY5KJ18U777xjLfdCiKwFQaratWuH73vvCP6zkNLgP4TOLA//G/wftm/f3qpfqcjFC4ekphBCZGceeeQR83uID4F1gvz4LCC1RAFLfEg68H+KtwOJAKCbAUhseK8FkhKMK0kI4GvgwWOChEL88SVjPpIG7Nfs2bPtgqxUfOjIqFKliqtYsWL4QuKDAp2ExqwPPvignQOQe+rbt2/4PHHjjTfaWJLECuNntnHxxRdbwoaECMmLtm3bWscuSR0PiXHGnrwXj7p5hRBCCCEyFv/++69d+2Kc9EBJCpHtoOqtXbt2dvvJJ5+M2kbuoaKYFn6qk6kAo5sBXdz06kKgio79DkJgERkBJqwEIqNB5d2zzz5rE0a2ccstt4Qr9oQQWQNv3BkNEhWRnkN1sBBCZNfKMboRxo8fbwkHLyVEUJ+EBNJFBP0xTV6zZo379ttvXfXq1W0dJD5JKCCRR5fDX3/9ZZ4LP/74o40d8WXw3HHHHda9UK1atfCFjoVIY8pgwgKDbJIRdMUiA7Vp06Y469Lde8kll1j3LfvFbV4nobEqE1G8z0gu4H1G8gLohJg+fXqc16c7j2UkJ9gXimdIsvTv398+K7ogKIDZsmWLdePxmO+QQApKCCGEEEJkXP7+++/wbXVSCHEcwdOBKmIC9rSaJwQZRPSDmWQSxGPy6lvVMwoEI5kQIkHVokULN2fOHPf6669HNbylqhr9YCrlghNQIYQQQojsAuMnvLqGDh1qwX8/OcOsGl8FugMIvpN8CHYGQDBJccUVV7gmTZrY8+InDyiEQV6PrgtIbNwZhAkiiQE6X7mmyCaYlKhZs6a7+uqrbXxKcgIviqRAEuGNN94wmSo6jBkXenkqxpB4RHjowqBAhw4IPhcSOkg2UcTjDbZJ1vA5sl5q+LIJIYQQQojjw44dO8K3zznnHJdeqJNCZCtoj/et63QfMPlMCDR2qTKjwvi5555L1KQ6PaBK7sMPP7RKNbok2F/kXiZNmhSeFAdBa5gkhRBCCCFEdkxO4O+F8TTJBg9ySxg341mGpwPBdt/uzliLZAU+EFy8VwMwBuvTp4/dJriPr8JNN93kGjRo4IoVK5bkfWOfSEzQybtr167wY3RpsF0uderUMemlWKGQhfEhSYRPP/3U/DB4T3ThIhd6/fXXh9fFA42ODzokkDr1Btx4r3noKMGPgs48il/YFokJ9k0IIYQQQmQuDgaKU3xHcXpwQighTQghshAc6kw4acln4shELVIbPNVqTDKpTMtskHy45557TCMZGSckC6iISwhMHllXVW9CiJRIpSCFsmfPHknICSEyNPjy0E175MgR60igG4AL/g2+GIVuARIMdCfQUcvjyDIhZ4THBL4LjCmBTolHH33U5Dbx8kmsACbaxBDfsIEDB8YxuWaSyLiOTg38H5IrNcp/NMbY/Ed/9tlncTyH+BwYN5IE8R0cF154oSUc6JZgjEiCokCBArYPQNfJm2++aR28kg3NfGSFc3ZWeA9CCCFERmH79u1h1Ri6g++88850OW8rSSGyDbTgo9G7b98+9/PPPx/TwoQ2b48ePVyvXr1Ml5cquvTMICYXJssYbCNNwGQbHWEm45GYMGGCmRwigeXb/IUQIqkoWCCEyMiQdCAh4fHV//hzMVaiGxW5zPnz51uXAaxYscKdd9559jjdBi+//LJ76623LIiP1BLrp9Sf7LfffjPJpeHDh4e7Jkhy0MHQrFkzV7t27fD+JLVlH++K+++/P7yMBAjv5d577w1PDnm/dI8w3sVTwr8fCnv87QEDBtjnhazV3Llz082TTaQeWeGcnRXegxBCCJFR6Nmzp8VDga5eOojT47yd8bRrhEgjCNSvXr3aff/998ckKMgaUqmGtwMwOcyfP3+m/C6o/ENjGXNsbkdLUMC2bduseq5z587u1ltvNXkrIYQQQoisAvKX7dq1c9OmTTOjasDwGXPnV1991SZkFLAAMlD169cPm2Zjgo2PxLBhw6yYBUhQ0GGQEujIIDFCNwKdDFC6dGn3+OOPW2Ihb968yd42CYpy5crZZJAJJj4SQFFKfOgOobiF979582a7D8FEBIUvSJ5edtlllqAJJnuEEEIIIUTmZ+3ateHbjIHTC7maiWxFvnz53I033hhnGVlC2tpJUKDvS7s9VW2ZeRKGfjDeG+3btw8vQz7AJ2E8jz32mMkbUL1HokIIIYQQIivA2IYuAfwVSArQCeEhII9cE6bPBOgZB5KgCI4RJ0+ebN4TgwcPtgQF63/99dfWQcF6yekooDDkqaeecueee66NNUlQYH6NrwWdr3QspCRBAXQDI+d00UUXWQdJEKrX8KTwIPFEx8X69evDCQqMtOnsCK7z66+/WmInM4+NhRBCCCFEZILy77lz53bphZIUIsuzbNky01SLZL+C7BO6wugTU2m2YMEC66jIajABpzsEfeFFixaFl9P2z+QbMFT87rvv0nEvhRBCCCFSDvJMl156qXv33Xdt0oVBNCbP8P7771uBBoUbSCvRJbFw4UIzjw4mHvBdoCuB8SHr4stAQiE5yQk6EEiS0MlLEQnbRj6J7ZL4uOWWW5Il6wTIk5I0oXPCM2LECBvT+s4RIFFD0oXOWTqLPddee63LlSuX3f7pp5/Md+KRRx6x7WaEyaoQQgghhEhb/DiSGGF6+tUqSSGyNLTyt2nTxgwH8V2IT+/evS2Af9VVV7kffvgh3BKfEqiKo8ru2WefdTVq1DDTxfjtUtWrV3ennHLKMRcq1Hjs0KFDLjXhjwYZAbZ7880320TVg2xBy5Yt7TaT0qNHj6bqawshhBBCHC9WrlzprrzySusOKFOmjBVgMAZkjEVHxCuvvGIyToy3CMo/9NBDNhmjmAUZTA9FK2PHjrVgPd4QyQWvBzo16Fjdv3+/dTjQzYC/Q0q2C7wfjA0xw8bQ24PWb/wJJr4T7AcyoHRURIKkBp0nDRs2dGeddVaK9k2IxEBqDI8UTNlz5szpKleubAlDIYQQQhxfGBcD8cv0RJ4UIkvD5BIDaWScWrRocczjVJrh24Bxoq8iSy6jRo2ydn38ILy2scfrDXtIBMRfFqy2Y6Du6datm3lFUOFHBVxyKvjYHt0kaBMzeW/UqJGbPXt2+HWo7mPfmYgPGTLENJGFEEIIITKbni6FJzt37rQCkZkzZ5pckYduBWQ933nnHfOaQB4TDhw4YMkKEgo//vijK1SokI23MK9OLkg7Pf300+EODrZJFwXbTC3zad4PslF4W1CUEx8CvlWrVrX3yWuyL5gWBmWb6LhgHYplWGfMmDHhz0WItIJEIYVSJOqmT59uvw9+v0jzCiGEEOL4gncvHDx40KUnJ4QiaeAIkUUGv+XLl7dJYp8+fUwDODV1jvGyQD7JQ4fC1KlT7TYVQWgXk1igmo82+bPPPjuOUXekJAXawbt377ZWe6DzgcG61xQuXrx4eLvXXXddko2uqSpE/oD9xwhx/Pjx4Yny0KFDbYL7xBNPuAEDBiTzkxFCZNf2UAJfVOdSwSuEEOkBYyvkLekYpbuA8RjjQGSVGPdEYs2aNe62224zCVCC/hR1NG7cOEX7gc8DXap//vmn3ScB8tJLL7n8+fOnaLsUsiBdhbwTMk0JQQEK65KM6dmzZ8R1Bg0aZOM+ilM09ss+ZIRzNp1FFJLRfR4LzIWCHiu8B3xUNO4QQgghUg7jAs6txAdRpEmvsYc6KUSWpWvXrjYxpZKOCZjn1VdftfZipJ6Sqv/LRPaZZ56xrgN+uBs2bDApAXjggQdMX5gEAu3yCem4xdpCT8dFr169TAeZ6j6MHunY4MKfB90hb731Vsz7j1HjBx98YAkOJuF8NshSwYMPPuguueSScIJECCGEECIzQQcA4xuC+UyAvEH2qlWrTM4J+c8gFJdgrk0HLMUkEydOtE6M5EIQtVOnTu61116z+8jX4HlBJ2tqQCcGsk54bVB1TqdwNJD5ZKzKZ8B7j9S9UbJkSZOMIpnCuumpQSyyFx9//LEZvCMvRnc3ne3IzjIfiQRJvmjJNiGEEEKkDJ+YSO8+BnVSiCwJrfpoqvEDw5AQo0OgnZjuB36ABOsxD4wFJm/PP/+8mUx7zwYC/MOHD7fExPGArgr0i0lYcFm6dKntT6T2/sRA5opJAPJRGGljHCmEEJm5KlMIkT2hO5Wgfbt27eIE2detW2dFGZs2bbKKa6Sf6LD1kJDAd4IgPYkJkhv4NiQXCllIguBzAewP3QxBaaWUQgt+vXr1TKaUDt74xE9G0LqPP1pCzJ8/37psU0uCSmR8MsI522ted+jQwRIVyI7xm6Gzu3nz5sesr04KIYQQIu1A9tOrvaRFoiLWsYeSFCJLcvfdd7sJEybYNRNXoI2fSjaq5Vq1amX6vYlNyBgQDxw40AwXvclggwYNbNJZsWJFl54w+cb80OsG092xfPlyG+zHknQgwcKkIG/evBEn2lQ1RatmEkKIjBbwEEJkPygcoYMVP7CgXOWOHTusO/TXX3915513niUo6BoIyjHdcsstVrSCR8TIkSNT5MNAgoOOWrwtkOKk4zUoCZpcmCxSVBOUqorWFfH+++9bBweFLNHGgXQA0+nB+9V/dfYlI5yzCYZQUIZ8rqdt27aWrMDsPjO8ByGEECKrcNppp1n8M73lntTTK7Ikd955p3VPeB8KOiEaNmxoCQqWYzIYS8UY3QvIQvFDQsLpiy++sIlteicooGzZsuEJNX8mHTt2NJPtcuXKmTEilYEJQQIimKDw6yOFdf7557vWrVu7jRs3pvG7EEIIIYRIHvgtkKDIlSuXjVsAqSd8KUhQMCZCLjOYoACKVipVquTuv/9+SygkN0FBwuDFF1+0DgoSFJgAL1myJNUSFPXr17dt0/XhiTR+ZXz72GOPmcb/66+/HnVf8d6YNGmSVawLkZ7QtURXehDmH/xuhRBCCHF88YmD9Jb+VJJCZEmQcULm6cILL7TJKgaIBNzPOeccm5xRvZOQVJRvbyKIT1UeQX9kkRIzKUwveD90e9BZgVkkZo14S5BUSQzeKxNaDL5JyqAJizwCy2m5FkIIIYTIaNBBSmcr0BmAhCUQgMeMl8kWuveRfMAw1CZ5QVdpUv3JPIwv6Z7AAw3oZKVjo2jRoi41IHGCDBO+E4l1yObOndvGtxTnULQSCZIbfE61atWyMaMQ6UnNmjXd6tWr4yyjk5u5jBBCCCGOL/j5ZgQk9ySyPA899JBNQpms0j4cv2rHgwEhLfBTpkxJkl9FRuLvv/92gwYNMrNtL0914403uv79+4cn75H+jKhc2rlzp8kJjB8/3ib1jRo1skk8hoteN1YIISIh2QUhxPGWvKQYg/+eoMwT7emdO3c2g2nGMsGOBuSQ6KxNjpdXfHbv3m0FMLNmzbKKM4o9MP1NDYJyTrwfimzOPffcY9ajsGTr1q1WgJNYMiVYnBNNLkpkHzLCORtZJ3z9MMOmA/6HH36wLm/keDGzzwzvQQghhMgKHDlyJDxWzJ8/v8UGUxvJPYlsCTq8tN2jReypW7euyQDgUREtQcFjlStXtgQFk038KzIjJBMwU1y/fr3puubIkcPMwkk0RKNQoUJu8uTJti6ayhiEM6lHGoE/p6DEgBBCCCFEeoI8JUUVTHaoxu7Tp0/4McZw3MejK5igWLx4sWvRooUlEuigSAkkBnhdEhSML6dOnZpqCQrGo/fee29YC5j3EylBQWAWA20kTBOSx5k2bZoVojAu9ChBITICeMYw76I4Cuk15h+vvvpqTAkKIYQQQqQeK1euDI8PGdumJ5J7ElkKJqa03TPI9WAO/csvv1hHQXyoJqPlHYNtfB2QOVq2bJlpHGdm6IDAPHHFihWWtOF9JQST3CFDhtjt7t27u7lz57qHH37Y7uPfIYQQQgiREZg/f775PiDJSSEFskgkLIImf8GiFDpG6Q49ePCgmWyTYEgu27Ztc3Xq1LHxFfKYyErhG5EaUFDSvHlz9+6771rRSGKG4bwv3ne0QhSSOXiVYZZNR60QGQ0Sicy76AQnQEInhRBCCCGOL9u3bw9L3lPknZ4oSSGyDKtWrXJffvmlVZ0xyGUyGgzaR2p/xzDRJyTQ8P3ss8+idltkRjCMfOaZZ+JMrtFqRiIgPq1atTJtZXj88cdtokzLF+3XCxcuPK77LYQQQggRCSRili5dan5h+D8wqaL74JprrjFN+/jt6xSrbNq0yZUtW9Y6FZLrQcEEjgQF480SJUpYR0a1atVS7UsqXry4Gzt2rHv00UetUyQhGNfOmDHD9oHPIxK8z08//dR8KoLFO0IIIYQQQnhQlfHSiRQBpSdKUogsw+DBg8NVOVS2lS9f3rwlosHEjgkuSQ2ei35xcieumQEm8bfffrsbOHCgGYBHMsbBgDJfvnxW1UQLNhN7NOmowhNCCCGEyAhQUHLLLbfYbcYrSC59//331mEQpH379m727NlmLP3RRx/ZGCc5ICNKgoJqb5IJX331VaJeELGOzagi95CcwFuMsWl88NP49ttvw/dJlFStWvWY9YKFKGeffbZ1GdNtIoQQQgghRKQx5oEDB8K30xMlKUSWYP/+/W7MmDF2G83hp59+2trfMcOOBhJIJCY++eSTVDFRzOigMYe0FRN0DMQvu+wym2zHr8xjnVNPPdU6Ufr162efI4Z2QgghhBDpBd0QeE0EQe6I7k/o1KlTnG7YESNGmGQl459x48Ylu1OWoo6gxBMJikg+EclJUCBRWrt2bbdv374E1/3rr79s3MqF148G3a9lypRxM2fOTPH+CSGEEEKIrM+0adNMJhSQwU9PlKQQWYJ33nnHJqrIG+GnQEs+t5944ok461Flt2XLlvB9JJ4ieVVkVfCeIEFB9d/GjRtNIiD+ZPehhx4yKQPkAc466yyXM2fOdNtfIYQQQgg/ZqNzwHfOApKdjOuQcurSpUucD2r16tV2jSFvw4YNk/UhUlWG58TPP/9s0lKMmXit1IAiEPzAGJsiy5QQjMV4fVrxixQpEnW9AQMG2BgYeSevLSyEEEIIIUQ0kEf1xJdOPd4oSSEyPUzC/IT1tttuMzkjwDiajgAP5oroFSMHRedFdgUZLCbEJCh2795tJpLIXnmQvCpduvQxn/HXX38dx5RSCCGEEOJ4gGTT5MmT7XatWrXCXQNII8HQoUOPKap45ZVX3I8//nhM8iJWGPM0a9bMfLkKFizoZs2aZQUwqQVyTYyt2PfEPChOO+00k7VC7qlChQpR12M8h1k2xtt0kAghhBBCCJEQ69atC9/OlSuXS0+UpBCZHmSJLrroIpMxYsKKHjEVc75DggB77969bQJI6xJawtmdQoUKmck4nwmfF3rFkdq6SGY8/PDD7vLLLzc5AozFhRBCCCGOF7Sf4y0BrVu3dpUqVbKxC52fjPFIJOC1FYkLL7ww2cH6zp07W2LglFNOcR9++KEVeaQGwfEWnSG8p2hVbV988UX4PoU3kXwwfHu+X+e5555L9wmmEEIIIYTIHJx22mnh295AO71QkkJkes444wyrHKMSjTZ8Jmi0u3uoKHvmmWfsdrt27WzCqcnb//0Rvfvuu65Xr16mQRfsOoE9e/ZYl8WwYcNc3rx5bVlQYkEIIYQQIq0ZP368++mnn9yZZ57pevbsacuQNIL8+fObf5bnt99+czfffLNbv359il5z+PDh1okBo0aNcjVr1nSpwaRJk8wbIyHPNCD50qpVK1e3bl3rDI4GptskaHxHiRBCCCGEEEmBOKnHx/7SCyUpRJaBqn948sknw4aGY8eONSNoYJKHRi9yRuL/OPHEE820EZNFj5/4EwzgMUAuAdBMxstCCCGEECKtIVjvC0/wyqITFDCwXrBggckl+WWsS/fn1KlTo3YnxALdC4888ojd7tGjh7vnnntS5b3Q/UGSZcOGDe7NN99McF3eS4ECBWzMmpAHBobgSGHhzbFt27ZU2U8hhBBCCJF9uPfee8O3iQOmJyeE5KomMjEEzZFvqlKlit1nsnrJJZdYd8W8efNcnTp13OHDh02P2CcrRHRGjhzpHn/8cffRRx9Z9R6SBJUrV7aKv1KlSrlNmzZZkAB5KCGE8Ozdu9cGNHRgpXeLqBAi64AHA10MdHtiNI03RDTeeecdk35Cnmnx4sXu/PPPT5Ymb/Xq1e2/jAkbxS6p6e2wY8cO804jWRFL0czy5ctN3ioaTOMYk7HP0SSvhMiK5+ys8B6EEEKIjEDRokXd1q1b7TbKM40aNUq387Y6KUSmxesRo+c7ffp0W4YxNgkKoAINU8LGjRu7559/Pp33NuPDRPebb75xhw4dcnfccYdbtWqVBQXoPgGCAz6RwTpCCCGEEGkJ8k2M55o2bWoJCiY4BPnxI4sf/Pet6t27d09WgoLCDLy6mDxdccUVbsSIEaluPl24cGGT2YyWoKAoJFg/llCCAti/Tp06KUEhhBBCCCGSRe7cucO3GXenJ0pSiEzdRfH7779bUiKSmWGFChXc/Pnz3ZgxY0zWSLhEJ7rID1CxyAT9pptucjt37nT169e32xgz4mOxa9cuN3nyZH2cQgghhEhTSBqQqOjdu7fdf+ONNywZceONN8ZZj84ExifVqlWzjs/kQLAfeUsmZxMnTjzGqys5UNTBvgYNsKOxdOlSM/pu0aJFHHPt+MydO9c98cQTVqwjhBBCCCFEcjly5Ihbs2aN3T799NPNOy09UeRWZFpoQ4IDBw64iy66yP311182YVu0aFF4HSaavrNCJA4Tcj7X0qVLm+kkXSjIZaEHjXwCBo0Qy2RbCCGEECKl5MyZ03wnGO/179/flj344IPhxxmveI8H/MdOPvnkJL/Gxx9/HDaoprgFz4vUoG/fvu6zzz6zThD2PyEwB2ecRQFOtE6L/fv3u9tvv932NWgYLoQQQgghRHJAocZ3VCQ2Xk1rlKQQmRKq+jFG9KBBnC9fPqueq1GjhkkSieRBIOCTTz6xPyjMGDGPxIgceQJ0j/H6eOutt/TxCiGEECJNoJNg5syZ7r///gsvGzp0qPvzzz9tTNKkSZPwcgopKFKpV6+eq1WrVpJfi06Nli1b2u0OHTq4Bg0apNK7+D+zbzoj3nvvvUSLZpo3b25FIHRx5MiRI+I6uXLlcoMHD7au18ceeyzV9lMIIYQQQmQ/Tj75ZLdixQq7vX37ditSTk9knC0yJQTKr7zyynBL0q+//moSRK1bt7Zl77//vlWaieSDzwcyTwQISAhxWwghIiEDSyFEavL222+7++67z7wWCNwjm1SmTBmbPFGIcv/994fXpftgyJAhrnbt2ib3lBRIbuBnxrgS82mu6Rw9XuA/QeFNtKREQs9Lbb8MkX3ICufsrPAehBBCiPTm8OHDcSROia3i7ZvayDhbZGloyw9Wni1ZssQ9+uijdh+TbCUoUg4aylQn8nnGryoMVjYKIYQQQqQWBOAxxwYSD4CJNQmKkiVLWvdsEPyy2rdvn+QEBTz33HOWmKB7dMKECamSoEDXF8moWMBjg0QMHSKJFY7s27cvfF8JCiGEEEIIkVLoKA4Wy1AEnp4krWxHiAwC+r6em2++2ZISVMPdc889rmvXri4jZCN/+eUX00let26d++OPP2J6Hh4aZcuWNSkDKgZTw7QxJbRt2/aYZZhXvvjii5ZdXb58uSbKQgghhEg15s+f7xYuXGhjIDRykX5CbhI6d+4c9pzYtm2bK1iwYJK7EIIeEIxnAE8Lxl4p5eDBg+62225zP//8s3mlYXAdjd27d7tu3brZNR3Abdq0ibjenDlzbKxbrlw5u81YUQghhBBCiJTy/fffWyzVoySFEMkALd6lS5e6unXrWlKCiaD3ojhe1WVU+q1atcqtXr3aEhE+IcGFFqmUdhvwPqgYZNLsExdcn3feee6CCy5wJ554fC1lMGukshFjcqr50K1jgo9puRBCCCFEauC7KPCdwCdrx44d7tJLL7Vl3juCMRgFKrt27TJpqIsvvjhJr8FkrFWrVia1xHaCHhcpga6OO++805IeiW0zb9687ttvv3Xjxo1zDz/8cNT1SNYULlzYVa1a1eXPnz9V9lMIIYQQQoiTTjrJCoCOHDkSHsumJ/KkEJmSLl26uNdff91MA6nsZ6JH0LxIkSJp+ro7d+40bWQ6OWbMmOG2bt0adV0ykD6xwH4lllRgwk1VoE94kBSIBpP2G264wUwir7/+eruflrBvV1xxhWVZH3jggbAxOQaT/fr1S9PXFkJkfKQNLYRIDegqICDPRIluimDygf8Zrz3/ySefuIYNG9pEijFT0aJFk/Q6dGZ06tTJ5cuXz8aPZ599dqp+gRRzICGVWjA+ZHuJmW8LkV3O2VnhPQghhBDpTSgUskJo4pD+fnqet5WkEJkWDnIma8OHD7eJW9OmTVP9NaiwW7BggSUluHA72CFBIoKuhmCng79mwpvcrg7+GKgcjN+hwW0kBA4cOBBel9dgEu+TFnSUJFf6ICEmTZrk7rjjDsuyknShW+Sss86yibMQInujYIEQIjUNsxlbMd6JNka68MILzY+MRAPFKklh7dq1rkqVKma4/dZbb4W7M1ICY6LixYvH1OU6dOhQV6dOHZsQJgRm4Tlz5kzxvgmRFc/ZWeE9CCGEEBll7O1J7ySFPClEpoJOhssvv9zVr1/f9e3b11qTEmqRT25iggq98ePHu88//9ykpIJUqlTJkgFcrrzyyjTxjSDxQAKAC9JW8f0uvvvuu3DiZPHixVZtyOWFF16wH/51113n7rrrLnfrrbemWsKicePG7pZbbnEfffRReJuYWDLZRydZCCGEECIlzJo1y66RYALGOeXLlzefruA6JCgoVHn66aeTtH0mXvhckKBgrNSiRYtU6f6oVauWq1ixokk30d0bDd4P3hMU19DBQWIjEow/SZ6wvWuuuSbF+yiEEEIIIUR81qxZE76dETp2j6+ovRApZMCAARYUJ4nABDM1IRlB4oMuiEaNGrn33nvPljHZpIMAiaPffvvNLVu2zL3yyivu2muvTRdj61NOOcVdffXV7qWXXjJPiC1btrjRo0eb9jFaxWQmJ0+ebJrITOoxhYzVuDuxxMkbb7xhWc8NGzaEExXdu3dPhXclhBBCiOwOYy2kJfGLoCijWbNm7pxzzjHvBs9rr71m1yQYkurRMGLECPf1119bJ+ywYcNSxcfshx9+sK5SfMoS66TAV4IxHBVr0RIUJFLoDmF8x1hUCCGEEEKItIBYoR+/opqS3kjuSWQamLQVKFDAEgf8eNAf/vLLL01eKSUsX77c/C1oc6K1Hpj03n///daJgFljWsgnpQV0gWBs/eGHH9pE3CcnSKbcfffd7vHHH0+x0TUyBVQB0sXC65FtpXXreBt5CyEyDpJdEEKklcykl5hkLEahCp0VjAlXr16dqGRSEHzEzj//fCvm6N+/v2vfvn2q7StjyX/++ScmA29Mu5EOpegkGsh6UhDTuXPndDcwFFmPrHDOzgrvQQghhEhvrrzySjdv3jy7Tfzzgw8+SNfztqKKItNA5ZuXXsJQkYRFqVKlkrUtgutTpkwxTeDKlSu7N9980xIUVLgR3N+8ebNNDjGLziwJCiBxQFKF7gm6PsaOHeuqV69uE2e6LZg88ydEZR6fYXJAJuGqq66yz5DPBhmo1KhEFEIIIUT2Jb4GLl0VvmPCj8Xef/99W69BgwZJSlBAly5dbGJ0ySWXuLZt26binv+fFGhCCQp8xjy8l4QSFEABSI8ePZSgEEIIIYQQacb//ve/8HiTwqD0RkkKkWl49tln4wTjSSYkNYFAYJ3n0X1x2223ua+++sq2hfbx7NmzTT7pgQceyBJGhXRPIJOADAEeFnRS8HmRJUUaqnTp0m7QoEFW0ZcU6JjArBzPi02bNrkxY8YoSSGEEEKIZLN//34rPHnwwQfdwYMHrdBixowZ9hidrZ5nnnnGxm7PPfdckrZPlynjFaB7lrFfSqDQ47HHHnMbN25MdN05c+bYe0NSNCEzQsahJGGEEEIIIYQ4HqC+QlGzHy+nN0pSiEwBk8C5c+eG7z/55JPuwgsvTNI2CM7TZcAEmOA6nRhMdtk2k0JMD7NiRwDvqUaNGu7dd981uQQ8JDDkRusY+Sc+R29UGStILUyYMMEkt4QQQgghUsL06dMtMUECgkIRuj8J6OPfgFdYcEyDkXRSpCvZDtJOXDdt2tRddtllKf6y8IzAp4t9SawzlTEmPmpIQkUbZ+7atcv2DT8xumCFEEIIIYRIa55//vlwEQ1F3emNkhQiUzBw4MDwbVqQkmLWjHQTEz9kjn788UfTQUOLmMkwskglSpRw2QU+O+QDSNIMHjzYvDeYNGMCjmzTL7/8kuRtog/NJD21pROEEEIIkX38J4DOViZKb731lt2nu9VPmvbt25esbaOtSzcDyY+XXnopVfaXTtWaNWu6Pn36JGoyiNE3iQc6OKKRO3du17x5c/PMYDwmhBBCCCFEWoKqChKjnuTEA1MbGWeLDM/hw4ddwYIFw5NTqu3q1auX6POoWuvXr58lIpAOoHqtVatWrlevXq5w4cLHYc8zPlTukfAZMmSIBQCQiHr66addp06d4vxZRQPjR9bjs2aSjmdILM8TQmQtZGAphEgujNEYl2EWvWDBAgvY4xvBuA2z69NPP90SDS1btnRPPfWUaefGCuOTCy64wLpmu3XrlmSZqMTGQEhgpibsr4yyRVqTFc7ZWeE9CCGEEOnJ77//7ooXLx6nqBnFlbRAxtkiy8DEkgkrkzYq6hJLUFCBhyk2k1Imskx+McBm4otBthIU/w86KajsW7x4sZmIo0VHu1eFChVMzikh7WRgcu7Ny5E7+PDDD1PlOxdCCCFE9uCzzz6zBAXjCcynkZQkOYEnBQkK343A5ObQoUNJ7sRlHIk8JUUYKYViDE9CCYr169fbGJRCm8SKRYJjLSUohBBCCCHE8YBxdVDCnaLl9EZyTyLDw2QVyaZVq1ZZkiEhtm/f7ho0aGCm2ExKixUr5saNG2d+Fkx8RWQqVarkvvjiCzd58mQz1ObzxmibxAW3E+LRRx8N3x4wYIA+YiGEEEIkS+rJezbQlYmfFvz000/um2++cTly5HCPPPJIzNtlTEj3LNBVmytXrhR9K/Pnz3clS5Y0ydCEijjosGjRooV74YUXXIcOHaKuR2FI7dq1bcy6c+fOFO2bEEIIIYQQSQHfN7qVPUijpjdKUogMDzJEdEGQ4Uuoag2zxWrVqpkcFBnArl27WmLjnnvuyZKG2KkNnxET5RUrVlg3BdWLX3/9dfgzjcaNN94Yvr1o0SL3xx9/HKc9FkIIIURmBnmjqVOnhpMU3I/P8OHDw49TfBIryFkiFUqRCh4SKQVfif3795u/WULjSsaq7dq1c2XKlHFPPvlk1PW+++47t3LlSjdv3rxEzbeFEEIIIYRITSiYwZ/WoySFEIlAF8Qtt9ziLrvsMqvwj1S5RhIDjeHrrrvObdu2zWSemEBSPZfSqrnsCH9MSBQsWbLEXXjhhVbdV79+fffMM8+YsU58zj333DgSWl26dDnOeyyEEEKIzAhJibZt27prrrnGXXrppeYdVrFixXBxBJMn5CeDJtqxgNzSiBEj7DadD6nhHTFo0CAz9EZ6KjFIqKxZs8bGrtHgPVOEM378eHf22WeneP+EEEIIIYSIld27d5vkqieYsEgv1EkhMiwkJJASmjZtmt2vUqXKMZVrtPLfcMMNVi1Hez2mij/88IMlKkTKW7++/fbbsJxT7969bUL922+/xVmP74TlnnfffTdiMkMIIYQQIkjevHlNFoluWIpOPvnkE+vo9Ea4n376qflA0E2LNFKsUKjC9hgj1qpVK1U+dMY7jDMLFCgQ8XG6IYKeGchTJUbVqlUzxIRQCCGEEEJkLz7//HOTMvVEG+MeT5SkEBmWd955x+3Zsyd8P/4kc9asWSZF9OWXX5o00ZgxY6zCDR1jkTpg4Ejl4Pvvv28BAyQJ6K4gaBDkqquuCt+mWpEKRiGEEEKIWEFiknHfWWedFfajQGIJ7r33XnfSSSfFtJ1169a5t99+22737NkzRV8AiQc6MmKRY8L3gjESxTIJQWdH/IIPIYQQQgghjid0/f766692m5jq1Vdf7dIbJSlEhoSuCOSFwHdP+EA4lXFMOr28E7IACxcudPfdd1+67nNWBtkCJLQuuugik3/CnLxTp07hSTu+FEy6kefCkwKzcyGEEEKIaDBe+Oyzz8Jt5h9++KFd33zzzeGEBF2ceIxhRB0r+GoxVkSqErnQlPDqq6+6Bx980NWrVy9Bs2w6KCiUWb16tduwYUPU9TAn7NixoxXZ0GIvhBBCCCFEetCoUSPzpQWkRxk/pzdKUogMCZX7v//+u91mUogR9iWXXGKTwFtvvdX16NHDlqNPTMXa+eefn967nOXBewL5p8cff9zu9+nTx5ITmFLyWPv27c2knO4LIYQQQoiEQNqJcQSSTBSn+CQF4zwPRQ9IN8U6zqMijE5cYKyYUooUKeLy589vnRwJmWXj5/XTTz+5gQMHurvuuivqepUqVTLvjdatW5vUlRBCCCGEEOlB/vz53aZNm+w2RTa//PJLun8RiYulCnGcIXuHcXMQKuEwV6S67ptvvrFA+JtvvumaNWum7+c4QrKICThtYFQ1IrWFljIGl16/Dj+KmTNnuo0bN5oB5imnnKLvSAghhBDHyHYCvlZ0xG7ZssXlypXL1alTJ9mf1HPPPWcJj5tuusmKW1IKyQkSKUziEoN1fCFHNM477zyTzkyoK0MIIYQQQoi05r333nOLFi0K32cMnd6ok0JkOCZMmGB6wuAnhcgMYZhIggJvBAxeMmKCAtkCdJC9dIFv7WcC3qVLl2Naq6644gq3atWq8LIFCxa4hx56yA0ZMiTOuphIEvTPKIbUjRs3tuACiQn2GSmupUuXutGjR1uFIBILGG6PHDkyvXdVCCGEEBkMgvQUOgBJCd9FwfiBggg6Iu64445jPLASgvHU+PHjU62LwsNYJ1oXBeOzOXPmJLqNf/75J46h9sknn5xq+yeEEEIIIURS+euvv8xT1oNyTXqjJIXIcFD9VqxYMbvdsmVL9+STT1qgnzb6QoUKmbFi0Kg5PSBJwuT55ZdfjrP87rvvNm8Mbz4DeDjMnj3bdIqDkLH87rvv4iQ0li1b5oYPH24SCEHQiTvnnHOsQ8FD0gJJA56THlChyMSc72rlypXu+uuvt+/LJ5jghRdesA4YIYQQQggPY6KtW7daQuLyyy+3MQQdmk2bNrXHKfiYNGmSe+ONN5LcRUHX7cUXX5zsDxsZy4YNG1oRRmKdv/fff7+rVauWmWtHA5NsxnCDBw/OEBVqQgghhBBCTJkyJc7Y9Mwzz0z3D0VJCpHh4IdB5RzG2bfccot1VhD0L1mypJs7d6678MILj9u+8IO988477bWDwffNmzfb5NlXAXqQQapbt26cbCRySLwHjKaDMKGlchA/Bw/vjUk2yY74WsdM5CtUqBBexmvTTfLUU08d4+eBT4c3tU5L0IhGtqBcuXJu+/bt4ck9VYKAr8jEiRPTfD+EEEIIkXnw46eaNWvaGIeO01GjRlmCgbEXSQqItWuWYgnGWqnRRYHxNsUiSD0lZCBId0SVKlVs3IokVDRITiBlNXbsWCUphBBCCCFEhiB37txxYpcZwS9NnhQiQ8Kk7/Dhwzbp+/PPPy04TxdB8eLF0+w1MYmhM+Gkk06yBAnwg127dq1VwSEjULZsWVtOJ0e/fv1MhiqIlysIQvUcl/hgFBkfkhSRkjB0kTBpD8oN8AdCUqRGjRrhZchBUdW3f/9+t2TJEvscYdeuXZbkOOOMM1xqU6pUKeuoqFevnlu8eLEtK126dDipM2jQIOsuEUIIIYSAoNRTfBhTYOKHvCfFKrHwyiuvmIQUUpopLWbp2LGjJRWaN29uY8JonH766eaPhrF34cKFo65HV2nRokWtW8QXcQghhBBCCJGeLFq0yGKGXp0lIyQpTgjJuU1kEKiCe+SRR1zbtm1N/5fJHFVq1apVswRFwYIFU/X1vMyA971AkolKviJFilgHgE8I8NqsR0ICQ8eMzB9//OEeeOAB00hGz9lnRUm69O3b13Xu3NkqBNOCPXv2uMqVK1tCh8+OvxZ/PX/+fPOqEEJkTfbu3WvVxPwPEFgUQoho0J2AfCc6uMheUojBGIFxFuOGVq1amacVRRexeFsxnqNggg5Sthcs3hBCZM1zdlZ4D0IIIUR6Uq9ePTdjxozwfQqzy5cvn67nbck9iQwDusP4TZCo4MfiTQbxpEjtBMUTTzxhXgpvvfVWeBkT5CZNmpjBdbC9H/km9IYzeoICmPR//PHH1v0RbNtC+5kui+AfDn8SVB6uX78+VV6bPxyvHe1zn/46KZrSQgghhMi6MD6hW+L111+3DgPGfdWrV3fbtm2zsR+ylRBrFybbIUGBdFRKEhSxmgWOHj3atWnTxu3evTvqOnS/YuKdkFyUEEIIIYQQ6cHff/9txc0eCoWCUvTphZIUIkNAwHzMmDF2m0lqcKJIkiAlIBnQu3fvOAbOeCgQQKfbwIMmMhPKxx57LNO34wdloQDjcZIRyCB40Ft++umnzag8tahdu3ZEaQS+A5lFCiGEEIIxSsWKFW28hQcZkFygk5ViFcaEZ599tklrJgbylkOGDAkXtSQXtoPPFkUs3I7GgQMH7HWGDh0aHrdGYtiwYe6ee+5x9evXDxdsCCGEEEIIkRHo2LGjKcb42CdxvIwQB1WSQmQIMBNkUuir/337D5m8hHR+E4Pugcsuu8zkjr744ovw8qZNm5oZN1rCqQXeGSQ9ggmWn3/+2bSI409kX3zxRffoo49aO5Vn48aNpms8bty4OOuii4yMU0qD/PhiBLtB6E657rrr3F133RVexkSaisaPPvrIPrukwva9DwbVkUDHynvvvRens0MIIYQQwreY+4IJOg/wlMCLIpZxAx2xdDRQfNKwYcNkf6BTpkyxggq6UROaoOHtNWnSJHfHHXfYeCkhvwrMCHlf8QtHhBBCCCGESC8OHTrkJkyYYD6yfrx9ySWXZIgvRFFDke4QGMdcGXwgHsNsIMGQ1EQB5tceJpotW7Y0Y0Ymix4MYUqUKJGs/SUR8dprrx2TTKAqEDmlpUuXhpdhQPO///3PpAGCELQfPHiw27x5c3jZ8uXLXbdu3WzbQe68805L1ARfj+f179/fffbZZy654PmB30b37t3Dy7799lurSLz77rvdvn37kp1w2rFjh/vxxx8tMYK/R4MGDRKsTBRCCCFE1ufw4cMm4zRixAibINE5ARRNAJ0HjB/8uDAhKKYYMGCA3e7QoUOCJteJ0axZM/f555+74cOHu9NOOy3BdfEvmzhxojv55JOjroPpNoUoFKQIIYQQQgiRUciZM6d5Ag8cONDG5kBHcUbo/k3/Xg6R7SFQjmeCh2SCD2gnJZuHPEDp0qWtFZ8qPJIGQCdDcqv4SSTMmzfPtsG2gckzcgDIENCR4aHrgwn3wYMHw8sqVKhgRtZ+XzytW7d227dvd2XKlAkvo/OAdTF/DOL/NIL6cIsWLbL2rIsvvtj8Ozz9+vWzPxYSGyVLlozpPQYr/HhtJKCoZMyXL194+auvvmqGlrznxCoCK1WqFL5NEuWKK66w/b311lstAXPBBRfEtF9CCCGEyFrMnz/fvf322zY+oPOSLgi6ZxnPBIml3Rwpy19++cU6Q0kKpJSE5EWRDMUvA/+tWPEdpUIIIYQQQmQk8ufP73bt2hW+/+6777qRI0e69EZJCpGuEFDHfDAIQfdvvvkmbGadEEgh+Ukgk1y6A5BxwjHeE0uCYuvWrTbZZRJK8N9DB8SCBQvczTffHE5SEIS//fbbj5lQz50795jXqlatmlULxieSRADbi7TuDz/8YNWCweRAgQIFLBER39iGZAJdFnxuPkmB5BRSV0y+E0sQFC9e3L388svHfMboL5O4INlAsiJW/vrrL0s0IefAPlApSWeFpA+EEEKI7MesWbPCHlZfffVVuDOBpATjFcYuwc7XhMaPffv2tdt4W1ARlhwokqGzFnmmhECmkzEaMqHRvLwYf7Vo0cLGYsGCDSGEEEIIITIC//zzj3lRoELTo0eP8PKEOoSPJ5J7EukKlf8bNmwIexd480S6DGjbpyMiEmT8brjhBmtJCmb/qM5buHChVe8nBM/ZuXNn+D5abExy+/TpE6fFqVWrVuYT4X0WgInn+++/7zp37hxnm2npucDkPShjcOWVV5pkFJNmD0kEkh+33XZbnM8NU0o6Pzp16nRM50ksIMFFhwf60MEEBZJO0WC/SBh9//33bvr06Vbl6JNBkj4QQgghsidffvmlXV977bVW3OFvAz4PjBe8BFRCzJkzx4pIkGZKyBsiIY4cOeIaNWpkXa90ySa0HoUsjGGY2EXjqaeesvencY4QQgghhMhoHD582GKodCBv27bNnXXWWeHHgoow6YmSFCJdq+mQFoLevXubTwQV9kgo0b4/bdq0qJVxrMuPih+S77rwhoaJwSSSSXDQNJvECJVxTHSZjHoeeugh17VrV/shJwSdDuvXr3eLFy8+xoiRZMbs2bPDy+jyQPsYTeYgmFWTSEAT2UPChED/2rVrLQmRECQxMAifPHlynCpEui1I6NAN4kESiz8kujfodkisu2LYsGH2XjzIWlWtWtW6M+i0iA+dE8h4kY3lQkLDf4Z4XmBMKYQQQojsA2MHxjSAVxiBfxIVJCfoaEAbl3FPtAKVIL6Lgs6FQoUKJWt/GGsyjmS/4nemBmEcQwEMnlsUgiRUeEOn7dChQ5O1P0IIIYQQQqQVxOg2btxoKifE54jbHY+i66SQMfZCZDvolCAZwWSUKn2C8xhH0ypP8BxvBALrHiQA2rVrFzbW5geEXhom1lTBRYPnPfvssybj5MEHgtflucEJ6NSpU81E+pRTTklw3/khs028KjxMrMuWLeuuvvrqOOt+8sknJp+EIbWHfcHcO2jw7f8w6OSgOjCYTLj88svdeeedF0fCiu1iyB1MfkSDCTXazw8++GB4GZNt9oNuEhI+Hv6sSLREMswJSjTxfnguyRPfJRHEy3RhHI6PBQQ/GzK3yHIJIdKGN954wyTqqDK+7LLLTDYuIZAnKV++vCWGkT5p3759nP9NIYRIKXQrUAjCOI+kAGOvmjVruiJFilihhpeBSsz3gckV4yDgvyq5lCtXzpIjjOsSe03+SykwSUiuEvlROm0TK2wRQgghhBDieNOgQQOLC1A4jOST9wKGoHJLeqIkhTjukGhgokcnxNlnn23B9oRMBvnhIG+E8zyTP0/16tXjGE9Heh38LZ5//nmTHPLcfffdlgwZNWpUgvtJEL5bt25WpRdk4sSJtk2vqwwEA9EzxnzGJ1KATgOkloIG4Lly5bJqO18F6EHugMk2E/ZgkoJtM4EPGlkzOcfM28smABP/hg0bWucHVYEJQcIA2YIJEyaEJ9wkJpAooIKR6saEYF9JUCCvFUzqoNdMMsUnKfgDrF+/flhSy3+/GGXyPQS7VoQQqQNScB06dLCkK0FBup5I+kaTaMMki44v1ifhSgKYbXTp0kVfiRAi1fDJUhKn8YP9H374oV0nVHjiobuTMQuykhRxpASSD9G8thjPUMASqXAjfkeGECJpoIPN/0DwgvSaEEIIIdIOYpMUhROL27dvX4ZLUjDwFuK48uKLLzLbC5100kl2/dBDD4X++ecfe+zo0aOhO++809Y5cOBA+DmvvPJK6JZbbgmtXr064jb//vvv0NixY0PNmzePs7xLly6hm2++OTR37twE92np0qWh559/PjRt2rTwst27d9v+cfnzzz/Dy8eNG2f7HFwX/vvvv9DxYuLEiaGHH344NGPGjPCyJUuW2L7myZMn9O+//4aXDxkyJNSjR4/Qzz//nOA29+7dG2rcuHEoX758dtszc+bM0MiRI0MHDx5M8PlTp0611y9ZsmRo1apVdjtHjhyhxYsX2+1TTjkl1LZt2/Byrp955pkUfQ5CiGO59NJLQ48++mj4Pv8HRYsWDb300ksRPy7WrVOnTpxlHTp0CNWsWTPqx8t/7p49e8KX3377zX7T3BZCiEh07NgxdMIJJ4ReeOGFUNOmTW0cs2HDhtCWLVtsOf8hmzdvTvDD47+nYMGCtu6UKVOS9UH/+uuvccZP0Xj88cftdbiOxgcffGBjmu7duydrX4RIDzhXp/c5m99MxYoVQ1u3bg1f/vjjj0z1HoQQQojMwL59+2y+DsT6cufOHSpSpEjotNNOC8c88+bNm6b7EOt5W0kKcVyZM2dOODlx6qmn2vWgQYNCp59+eqhZs2ah5cuXhxMYy5YtizkBwATXB77ZRkIQsCOgf+TIkTgDZZ7bpEmTOOs+9dRTtn9//fVXKKOzfft2S0j06dMnzvKrr77a3tvw4cPDy/hjWrRokSWFIgUAgjRs2NCe36lTpwRff/bs2aFy5crZZ8b3VahQIXved999FypTpozdfv3118MJC/9n+Nlnn6X4vQsh/g8Svvx/xg/e3XfffZawjQSJ1zPPPDM0f/58u79+/fpQhQoVLJAYDf+fGf+iYIEQIiH4j9i0aVN4zLZx48bQsGHD7DYJ1sR45513bN3ixYvHGcclBcabsRRKdOvWLXTyySdbsUY0HnnkERVdiExHRgjwM46oWrVqpn4PQgghRGagZcuWVoxMYTFz/sKFC4fOPffcOPP4unXrpuk+xHreltyTOG78+eefrkmTJmYAjXzTP//8Y1JG+FNgXEi70YIFC2xd1unYsWP4uUFZAJJr3333XRzja+SQ2rZtaxJISEhFg+2ec845Jn/y008/hZffeOON5t3gpYk8eEQggRT0bcioFC5c2D388MNmDB4Ez48777zTJJqC3hOYZiOZFR+06YLwPD6zoKfFpk2bzLA8KIFQq1Ytt3Tp0nD7tpd8eu6558wgs0qVKqZ1P3z4cLdhwwYzKQekvyKZbwshkvc/y/8cmu9BuI/EXiTuuece+53yv4xGPFrx11xzTYJyT88884xJofjLb7/9pq9LCJEoefLkMb+qo0eP2tiCcaCXerrlllsSfT4auvDQQw+5HDlyJPkTZ9yClxZSlQmZYAP/i0g5XXfddQn6/yDBiVeZECJpIB2LFCz/BXgVJuRXx7xx7969cS5CCCGESBgk5PH/RXKdcThxOs63H3/8cRzp/Uhes+mBkhTiuMCkEG+H33//3fSD8W+Ae++9N+ztwCTQ6xUzacXINRIYO19xxRWWlPjjjz/Cy/F5IKhWoEABu4/pK0aMr7zyShydNTTYzjjjDAuUe9BHnjx5sgXMsxq8J/Tlg/4dJIZy585tBpVBSAzxOTAR8GBYjp8EgUtP//79zdeC7yC+trP/bvnzI+CJH8hff/3llixZYgGIVq1auWLFitn3RbKI75CJCYFVIcTx5+uvv3YvvviiGzx4sHlY4Ekzbdo0896JBslMBjnBixBCxIL30/LFE/z3MOajoCIhKISYN2+eJScYSyQHiigYw5BYjVSoEZ9IXmmRTAgZ/wghYoe51+jRo91nn31myceNGze6q666Ko4+dpCXXnrJDO79hcInIYQQQiQMsU/Gz5xvKSz2c/kLLrjA5cyZM3wfP90MQZr2cwjx/+NlfpB4mjVrVljyaeHChaETTzzRbv/yyy+hiy++2G6/99574c8O6aDff/89zv0rr7wy1KJFi7CuWiSCvgg7d+4ML0fv9PDhw9n+u0EmIeg9sWLFCvu8kDZITN7qySefDOXMmTOOpjPSUUEvjEOHDoUmTJgQKl26tMlrRfuOzjjjDHvdhKRlhBBpJ/fE/ym/6SBvv/22/caDv+mEkOyCECIh8MThv2b8+PGhKlWq2HmfMUJSwMOC591+++1p9mEzXqQlHt+KaOzfv9+80xLz6hIio5IRz9nMPfDVGzFiRMTH5YUlhBBCpIz441ukTxkPVKtWzXzW0hLJPYkMA9VqSINA3759rc2fqnk6Gqiy/++//+yxnTt3WpUc8BhQVXP55Zdb58Thw4fDVXCzZ892o0aNcsWLF7dlyAX17NnTDRgwIPy65cuXNxmnxx57LPxc38ZEhX92h0pEuimCGVakou6///448lZPPvmktYEFJZnoTqErJiiB8NZbb1lV4syZM+0+VYV33XWXW7NmjUk9waFDh9zUqVOtUvv66693U6ZMsQpKL6tA27cQIvkgYYKUm69UBv5juc9/aSSQ2zvxxLiNlXSdQVDSTQghUtKxNXfuXJOL9GO9+N2cCUF19TvvvGO3vVxkUmDc2b17d7d58+YE1+vWrZuNL++4446o67AdOndvvvnmJO+HECIyzD3otqd7OxLq4BRCCCFih9goEvl+Pr9161aTV0TimeWMY1esWBFWq/EKN+mN5J5EmsIPgiTB/v37Xc2aNW1iyY+DJAFST+in+6QEAWx8KQoVKmRyT15HnQntjh07TIYkfODGC6jhUYEXwssvv2zb8Hz66af240zIp0L8HyVLljQPjqFDh4Y/kl27drlBgwaZ1wdJiSD58uULfw98z6+99pr5fPg/Og/fNUFStssEpHHjxuZvQTJjzJgxdhyQsEBiqnXr1gqKCpFCOnToYN4v/L5Wrlzp2rRpY1qULVu2tMfvu+++cOIYGjZsaFILEyZMsMQwv00CdSz3yQohhEgujBG8nKeXdqxcubKN95BtGjZsmP1HJQQJCsaSFSpUMM+cpDJ+/HgrhmC8GSxciQ9eF7TC9+7dO+o6SNIgA9W+ffsk74cQIjL8vtevX28+g0IIIYRIPhQKP/300xZfw48WKBbyjBs3zoqHg8U7GaU4MemOc0IkASrlMWQhUM0klC6I888/37or8C6gQwKo4OcHQpUMk1ZvlM06EydOtMoabwSLSSsBb5bdeuuttowsYKNGjRKsfBNJh04LAgNUYQe1mzGKpPOFBFT+/Pnt+6JKkuX8EQarDemwwNCb6m4CA3Rw4I9B9faqVass+USAtFKlSu6rr75yY8eOdc2bN9fXJUQyoYMJrxeMXDHLrlatmmlQ+v9QjLKCiV46pfgNc00ykv9gEhQkJ4UQIqVQGY03FWM8gvt4XOFHQRJ15MiRNlEieRoNJk2+65LxhB8jJgW6a0ku1K9f3zrOooFXFuOZhF4Dfy2KK7yOrxAi6dCpzVijVKlS1q3NnIHCiLvvvlsfpxBCCJECypUr53r16mUqNl79hFgpheMUihOTe/vtt8031hO/KDndSFPRKZGt2b17d6ho0aKmcda1a1db9uCDD9r9Tp06mbdE7969Q9dee635RPz5559hf4Ivvvgi6nZ79Ohh69SoUeM4vhsR9J4oUaKEfQfRdGOB77ds2bK23kUXXWQazvhdcH/u3Lmhu+66y2536NDBPEI4FrhfoEABOx6EEJmHjKhvLYTIGOBxE3/cxnl/wIABtrxu3boJPn/OnDm2Hj45iXlmJQTjEvy4IhGL/w7PFyIrkBHO2cwDihQpEjrllFNCxYoVs/vr1q3LVO9BCCGEyMj8l8jYlVgs51IuzZo1S9N9kSeFSHe6du1qlTFly5a120A1PV0VVM1QpdapUydrP8InokCBAiZHcvXVV1ulnYeuCyp/PY8++qi161NNl1FakrITfObIauH30axZs/ByNKaRigm2bfOdApJddMV4TXwyunfeeafdHj16tGV0mzZtat4VdGh07NjxuL8vIYQQQqQ+XurpsssuCy9jLOg9rOhKSAi6LYAK66BnVlJh3EnlWHwYrzD+QLYyKBkaBM8suizo+BRCpBwkJpknIvdKNz336bISQgghRNLhXEp89ejRo3HGvp988klU79e9e/eGb5955pkuIyBPCpEmfP/99+HWfKSZaIlHF43EAhNBNH9pJ3rggQfMb8KDsTYTQCShAIkoBqw+yQEkNJjwIgmUnJZ/kTKY4BMowO8jKJmA9BNtZe+++25YKgrzHdYn8UCiybeaoX9Xr149S1zge7FgwQI3adIkM/DhO0XyKWj8K4QQQojMyfz588M+FN6TgsAkskpQt27dqM8lgfD+++/b7fvvvz/Jr40MJZeEfChGjBjhfv75Zzdw4MDw/sUH+TwKLF566SUVyAghhBBCiAzD0aNHXYMGDcxjFjnFYOLCFwMvWrTI4qg8vnz58mOSFHny5HEZASUpRKpDFRrGyFTcU23PhG7fvn1u8uTJ4SQDgWg6JvAr6Ny5s5sxY4ZNXl988cU4iQd8ENgeuurBjKDIWBBEIBGFlmzQ0JIkBJWHPkiB4SWQ4ECjmuMD8CZp166dVVnSKQN4W2CmLoQQQojMCWPBkiVLusKFC7tvv/3W5cuXzzoWvvvuO/OmwiuH8V80KGDAVJsiCO9jFisUSHTp0sWKKPBHi8bjjz9uRTGDBg1yp512WsR1eJz1KLxRgYwQQgghhMgo5MiRwz3//POmYtOhQ4c44/BLL73UPCq5DB8+3PXr18/179/fHmeMndGSFDLOFqkOJshk5jBU5hq5pp49e4Yr5ho3buzWr19vFyZ6dFWQpGBdAt1MZumw8PJQLK9YsaK+qQxMrly57Dvkuw5KdWGC57styNryvZLIoFKR5BMGv7t377ZjwE/6n3vuOTd+/Hg7PvjzDHbRCCGEECLzwLmdTggmSSQZKFpBCvLzzz+3x+mwPPHE6DVTSEJCixYtkpwcoKOzd+/elqC47bbboq7HuIRxSEIwcaPTQgghhBBCiIzGzTffbEXASKp6SpQoYWNuYm6Md2+//XZTMmFc7YuNPTfccIPLCJyAgUV674TIOtAuhDwTjvFUm1100UXu1VdftUAziQYmonRF0FXRpk0b66YgeVG/fn03ffp02wZVdlTZk+QQmZcNGza48uXLhztgrrzySjdnzhxLWJG4wH/k7LPPtsepqLzqqqtsPTK/AwYMCAcFSFbQfSOEyNj//ehY7tmzJ8NUYQghMg7IO/HfgOwSYzySB6NGjbKO2vvuuy/qOIIxJckJvK2YaKUm6OEzDkkoSUKhTKVKlVL1dYVIb7LCOTsrvAchhBAiufz888/m5YrcevzYKePtoDR7NFjH+7Ft3brVxsXpfd6W3JNIVWgdIkFx3nnnmXYwBtfjxo0LB52ZCPKD8X4DderUseo6b6rI+kg+abCZ+cEcHY8JOmcuvPBC+27hmWeesYv/A3zhhRdcrVq1LJHFsXDGGWdYQIKOGv7IOB6EEEIIkflgIsK5/ccff7TxX6FChdw555xj7eaMFxkjRGPMmDFhz4rUTlAwIaOL4/LLL7ekSSSQpkSKykuYCiGEEEIIkd78999/5hOLmknQg8JLONWsWTNRHzWKhX2CgqKgvHnzuoyAkhQi1di+fbtVxgH6v8E2I2/Mgh4a7feYYwNO81TKoxtMFo9Ke8y10VQTmRvayeiWQE+a4ATSTehP41Hxv//9z/39999xzHpoQSM5gZbe0qVLLcEBGF5SQSmEEEKIzAXjvmLFirmJEyfafZICXraJyRCFCdEmXz5J4VvSYwXpSVrWGVNGAxNszATp1ojWrYnBIPtK1Zd8KIQQQgghREbgxBNPtA4KFGn69u0b5zFkVhcuXGjxtx07dtgyCsdJWtDZ7An6Udxxxx0mA5URUJJCpBo9evSwKjn466+/3MqVK+3277//7r7//vvwD8YnJWDBggXmYQFU25966qn6RrIwfP+rVq1yI0eONJmHFStWhOWfBg8e7NasWWPr0Ylz/fXXu9q1a9sx1bx58/TedSGEEEIkAcaCnNdpH2fs55MUfqyYEEiBUqBAgqBRo0ZJ+tyZhKG/S0FENJAjZd8Yl0SrHOvWrZuZfTNOEUIIIYQQIr3477//3Nq1a8P3kSOdNm3aMVJPFPcQY50yZYo766yzrCi4ffv2rkuXLhaD8+AT56HYnA7njICSFCJVYPI5YsQIu926dWubVPKj4ceBx8SECRPsR4Gpspd6qlKlinv77bfDGTwmriLrQudEjRo1rLOiQoUK7pFHHnHvvfeemW7jTQI8xvGAuSZBBroqYPbs2QkGG4QQQgiRsaAQBZB3oivBj/UYA3Ce94mLSPhJVJMmTVzOnDmT9LpISjIW9WOIaCA7ec011yS4DuOWaN0eQgghhBBCpDX79+93t912m7vsssuiypQGQZ0GT1hAyQb5faT2keSPr3bjSep4O61QkkKkmD/++MOqzdA0o70ew2xkfcj0/fTTT+700083LeGPP/7Yquh9koIM37333muTRDTQfKBaZD0ITlCpiP4zf65Nmza15RwLX3zxhclBwUcffWRVjayP4TrHBebbvqpSCCGEEJkD7zeG5BNJg3r16lkRy8aNG+08X6RIkYjPo+Jr8uTJyZJ6AsacjEXxu4oP3RMYDUaDsWz37t3DHb9CCCGEEEKkJzly5HDbtm2zgl4kS+ODxCkeakE5Jw+SpcTfiL0FzbTpwghC3DYjcEJITnAiBUyfPt3dfvvtlpQAgs3INnFYYTiIRhqQvJg5c6YZJA4cONDNmjXLMnulS5cOb4vnSPM3a8LxQZICYx4qJ/meqazkz5Zqym+++Sa8LvJgU6dOdRUrVrRjZPXq1e6CCy6wpBcdFZGCDkKI9IWgIsFHTHLz5Mmjr0MIYWO+Dz74wPXr18916NDBPpFBgwa5xx9/3Kq5fNFKfOjMZaJFxwWykLGODRMbR/I4UpL4omHcjW9WfND1feqpp+y1qTDDX0uIrEZWOGdnhfcghBBCxMrWrVvdr7/+at0UQUhclClTxorHkSh99tlnw+Pef//9N6LfL48Rj/vll1/CyyjQiS8dlR7nbXVSiBQxbNiwcIKCqncknIBJYoMGDaxKHtkepHratGljXgRIPtFBEUxQ+OeIrAlZ2UsuucRuk2jgT5QLFYtt27a1qkX/OGbqVFz69jQ6KbweNdINGLRjrC2EEEKIjMuSJUvsumrVquFleEUAyYJojB49OtxFkZSxIWMHxhRUmkWC8Sot7yQeonXvUjhBYcTTTz+tBIUQQgghhDjuHDx40Ma1b7zxRngZHcjxExSALOnYsWPdjTfe6J588snwchRK8GALFgR78A8mQREcZ0vuSWQJgnq/VMi//PLL4UA0VWokJbp27eo+++wzM0YmcxZk8+bNFqgWWR8fEODYgGuvvdauMaXEdN0nIpB8wr9kxowZ4Ywx6wBJr2rVqplkBMeOEEIIITKmdq73nKBiisQB3ZReujFakmLDhg1u3rx5Nmlq1qxZzK/HRIsx5+uvvx51fMAkjs4OJJ+oHouWpECqNDkyU0IIIYQQQqSUiRMnujfffNO6e3fs2BFxnaAoEvEx5Ju8ZBOPUSyONBQdxPGhMBjwD/acdtppGeKLUyeFSDLBHwOTQahevbpVvmPQguQTbfx0TviD/+abb7brJ554wlrpaUUC5KBoKUJDTWSvJAX+FMGqyltuucWukQLjD5VjgwAHQYXzzz8/nOA6dOiQVUJixC2EEEKIjAfn6Hbt2tm5/a677rLqLwpW9u3bZ+O+YHdFkAkTJtg140g6b2OlVKlSNp6gc5cxaWLrJjS2Ra9X3b1CCCGEECI9aN68uUmf4utbuHDhYx4nZlazZk33559/hpcFx67cpsD3mWeese7g+Hg/iqDsUkYZ+8qTQiQJJnE4wuM7gRcFkj2HDx+2JAPVZyeeeKKt06RJE/fXX3+ZDwXG2PgMUElXsGBB8xag4i1Xrlx2H5DwifTjE1kHAhNkatHF27RpkyUfChUqZH+GVFhyLGCUyXHUq1cvW/eFF14IJya+++47675gfQw3OQaFEBkDaUMLISLB+BAvKZIU7du3t4kShSt0TUaicuXK5gWBL8UDDzyQKh8q41Ha5Xl9xh6RHqeQonPnzu7uu+/OMJM0IdKKrHDOzgrvQQghhAC8JvBw69evX0QPiSDE0ypVquRWrVplReADBgxI0ofIuJc4HNtBrh8pdaT4N27cmKZfhjwpRJpAxg2tYCZ66JuRoLj88svNj8JXoTG5e+edd9x5551n9xs2bGjJCwwSSVBQFU8Vm++ewJwwuyQo+IyQOyDojs4ct/lMsgN0P1x88cXhbooCBQqYuTrtaz5ZQeKLykmkwUhUePgD5Y8TeQg+QzwsSGhAtPY3IYQQQqQvFBgAY0W8HjjPMy6MBC3pJChOPvlkd9ttt8X8GsEuiGjSpN26dYu6TSZ3vDbrMS4TQgghhBDieMDYk4KegQMHhuXzEwJvtUmTJrmmTZu63r17x3kMWdXp06cn+Hxk1YmvVaxYMTyGDso+pTcJp2iEiAdm2C+++KL9eOh+ACZ9JCyoPuvfv///HVg5clhrUlDqiTZ/uOGGG+zaG7hEMy/MLNBihf4x3gn+smXLlji3CaST0ImWkCCJg7wAwXqqDQnUc+0v/n6xYsXCAf3MyCOPPOLuuOMO65bw2nnR8O+RP1COLQIdBBmQc5g6daolzDgW6bYYNWqUa9y48XF7H0IIIYSIjq/KCiYpGENyicb48ePtGrnHWCdLVH1RwIBR4EMPPRRxfIQc6Ycffug6duwYcRtIRDEGY4LItRBCCCGEEMcDinOIadH1e+edd0ZcBx/fdevWWYE3kGCgMDwI6jU8n/gk414fh42Pl+RnTL548WLbrveLzQgoSSGSBJM/dM127txprUjlypVzxYsXN7keNM8wSkTGiYP9t99+M+MWDngydD5J4QPTdFZkpiQF74GEA1JDwQvvPYhPNHChawRdZTpFMKLhD4gEjm/h4s/GX9BvJpnhkxuYRXONf0ewSpBt0ZEQvPAdZIbEBdp6iTFkyBD7wyUrfNVVV1lbGJ/xgQMH3GWXXWYyT5hacuzx2SAjhSyEkhRCCCFE+kNBBokBzs90TfokRUIwzvF+FBQmxApVZ0yupkyZ4lq3bh1xHYpp6N5gDBYJEhMkKoQQQgghhEjrcTIxr0svvdRdcskltuyee+4xyfyTTjrpmPWJseLvRnyQ4h+fqIgP8unExL7//ntXt27diOtQAOw7LW666SbXqlUrN27cuIh+bemFkhQiUZg4Ut1GBTwTPNqR3nvvPXsMt3l+TATIb7zxRktQwNq1a+025sg5c+Z0P//8s2X2CNRTqYYnAVV2dBBE+wGlNwTFaZeaP39+OCHhu0f4AyA50LJlSwua86MmKXHWWWelehUenzevS8ICrToSQOzLm2++GZY6IjHiExb80ZEYQV4pMzBo0CD3/vvvuz59+lgSgj9V/oDRqyZJQTUl8lAYsteoUcP0rAlgkCEmqEClZrTAhBBCCCGOL4zxSFAwZqSohWuKVtasWWMFBpGKKhhr0RWBZ0Q0OahI0FGJPxrjh4SIlKBYuXKlTfQyQ5GHEEIIIYTI/CBrjnw5fhALFy60MSpj0UgJCmD5rl273D///OPWr18fNUlx6qmnWvKDpAYx2EgQa2NbxNgoICJh0bNnT0uYENvMCJyY3jsgMj7Dhg0zvTOq4VasWGFSO8gbERhv1qyZrUNmL2ha5tuM8BYA30VxzTXX2A/Gtxgh++PNszMCdEoQ/CeryH5xPXToUMt2kmX84IMPbPJNcoD3xOSY5A0/6hIlSqSJTAB/WnRKkHwgM4pmMl4OdBfwPRDMb9Omjf15jRw50jVq1Mj2nY4VPn86WjISHBdjxoyxFjQv+8XFZ3R9cIL35TtICG5QlQnoWSN7ReCDbTz22GNu7NixpicthBBCiPRlyZIldk3xBiAJ+tJLL7ny5cu7vn37RnzOu+++a9eMYTjnxwpjyrZt2x6TpGDcRhEN0pCRPCtImFBkgrQUkzkhhBBCCCHSGmJ3FNggUxotMRF/rEtsjMLd+LKpjHGJrQbHur5wPBKMi4FYIeouGzZssPsUj2cU1EkhEiV//vx2AFMV16FDB5vYAdVuCQXlyeT5CSoO8vy4vB8FHRY9evRwZcuWTddvgB8zk2kSL3hokMnkB0oFPxlOAubRqv7SG/aJYD2XoN4cfzS8Hy7t2rVzjz76qKtWrZqtw/shWJCef0J0TeBNQYKKYAR/kCwj6cMxwTHCcYV8w+rVq4/JFHvzcfDyDCSQONY4Puki4T0KIYQQ4vhDpyyQOGAsRRctiQS/LD5IXk6cODHc7h4LPMdLZ0aC1nW6fimAoLgkb968cR5nvMd4gmQG41khhBBCCCFSG+JyxBx97Ipib+Jc0WRIjxw5YhL755xzjsXNvOQ7l/g8++yzNtZmnP3aa68lui9BPwp47rnn7BrVlgxDSIgYWLZsWahJkyahBQsWkKKzywsvvBBx3X379kVcfujQoaiPHW9WrFgR6tChQ6hEiRL2XnLnzh268847Q2+//Xbozz//DGUV/vrrr9D48eND99xzTyhv3rz2XosWLRp6/PHHQ0uWLEmXffr1119tP0444YTQjh07Qps3bw7f95/9DTfcYMv69OkTcRuDBg0KH4fz5s0LVaxYMXTttdfa/fLly4cOHDhwnN+VENmbPXv22O+PayFE9ua2226z/4N+/frZ/TVr1tj9U045xcaC8Zk5c6Y9XqBAgdDhw4djeg3GMddff33oxx9/jDr+efrpp0MDBgyIuo3Vq1eHNm7cGPP7EiKrkBXO2VnhPQghhMjaLF68OBzrWrhwYUzPGTduXHjcTOwsIYYOHWrbJj6WGJs2bbLtnnjiieG4G7dZVq5cuVBGOW9nnJ4OkeEItgxVqlTJfCnoNgA6Dbp06RLxecgfnXfeeW7WrFlxllNJl1DrUVpz8OBBkwVCNuiCCy6w27fccoubOXOmSRBRcXfvvfeGTR6zAlQOIndARSESVV999ZVJcVGxWLVqVatoRCLqeEodIItFZwfHF7JVdIKgx+fvg+8M8cdbfOgO8bJQdGH88MMP9v35tjmONSGEEEKkXycF53ZA0hEYc0Q6P3upJ+Qco1WVBWHMMmrUKPf555+brm608c/LL7/snnjiiajbYayKr5UQQgghhBCpHUcl5ta8eXPzVY3mJRGfu+++2/whiL8SO0sIvFmXL19u8bHE8FJPeFEQ8/QdxRDNwyI9UJJCRAR9/5IlS7o33njDHOBpN8LQkIA24AMQbeJIcgLj7LPPPtuWxZ9Ajhgxwk2aNOm4BcZp8+dPAV8H/iCYIE+YMMH8HF5//XWTnkoLL4mMBhN/PEEGDBhgPhX4ayDl9eCDD7qiRYvaRB4jnuNB/CQEsk/gfSp8AgID7T/++COqlh/gb4GpNibuBEZ4H/4PWAghhBDHD8Z2fizx3Xff2cUnKWrVqnXM+n///beNR5Ii9UTBC+d7fC6QeAziJ1vRGDRokPvll19ifj9CCCGEEEIkBkF/Cmdr1KhhUvkeCmt69+4dVV5079695jvrJc1POOEE99Zbb7nbbrst4vrvvPOOO3DgQPg+Bdix7BtxM8B3Fw4fPhx+PENJn6Z5T4fIlFxyySVhOZ2WLVvadfHixe26YMGCob///jvi8yZPnmzrnHvuuaH//vsvdOTIkVD+/PlDlStXtvaio0eP2vNZ58svv0zT9zB37txQ48aNrYXpzDPPDHXs2DG0bt26NH3NzMgvv/wSeuaZZ0xmgVaxhg0b2nfD95dWeNmwXLly2bGEXAP3Tz/99NDBgwdtnSuvvDJ06623htauXRtxGxxLJUuWtOfx/XKNtMPNN99st0eMGBH6999/0+w9CCH+H5JdEELA3r17Q6+//rpJMXEuvuqqq0KlS5e22zNmzDjmQ/rggw/CY8zUOGe3adPGJC4Zc8bn66+/Do89tm/fri9MZFuywjk7K7wHIYQQWYd//vknVLZsWTs3Pf/88zE9h5jbxRdfbM/53//+l+j6PXr0sHXr169v8bBYmTp1qj0vZ86coa1bt9qyXbt2hWO+devWDaU1knsSKYIMIIbRVKtjxoLc01lnnWWPtWjRwkyxI+Er46mUJwM4d+5c66TAiIVqfSrjkVY688wzTTIqLfjpp5/MfBlZJ1qf6Jaga6Jv377u3HPPTZPXzMyUKlXKvfjii9Zd8eabb1rHzLXXXutq167t5s+fnyavibE1RtdUXH755Zcm/3T++ee766+/3u3cudPWofKS6spo5uonnXSSe+CBB+w2bXBkhLt27WpyEnTG9O/f396PEEIIIY4PuXPntm5bzunAWJLOBc7ZtJfHB8lGuOuuu9yJJybe4O2rzCLBWJNuXeSjInVL0OFLN0fTpk0jmg8KIYQQQggRK9u3bw/LOxGDGjhwoOvZs6fr2LFjTM8nZooiCDE5YmGJwTqnn366xeoYW8cCXcbetBuDba94E+zGQHI1w5Dm6RKRqfFVbVSkeVMVjAYjQdcE1fisM2vWLFvWrl27cDcGPPjgg3a/efPmqb6vdElg7s32zzvvvND777+vSvpkQDaXTGulSpXss6SbYeXKlan+fWF6SefGiy++aPeTU0H522+/HXNcsh2y0N4knIy2ECJtUUWjECII3ZCch4cPH25jikgG1pho09XAet9//32iH+C+fftCJUqUCD3xxBN2OxKLFi0K9ezZM8ExTiTzbiGyE1nhnJ0V3oMQQojMy0svvWSdCVOmTEnS82bPnm3KIkEOHDgQ8/N///33JL3exIkT7XyZJ0+esGG23w/fSTFz5sxQWqNOCpEsvJY/HRELFy4MV7VNnjzZMnA1a9Y0o8FI0CVBFXy+fPmsS4KMovcYwHPg0KFDZtgMeEOkFtu2bTOjGIxoqL6nev7nn3+2bGAsVXni2GwuXQmLFy8O+z1UrFjRtWrVyjpSUgt8QujewO8Eon1X+JtE88rAZ8RnnPEZ8dupXLmyddPMmTPnGPMiIYQQQqQNn376qVu0aJF1tQLdE4wpIhlYY3xNRyXdkJdeemmi22Ysyrjhk08+iWrwR6cmHcBBgmMAxjiRzLuFEEIIIYSIFcawxDinTJkS83Pefvttd/XVV7v77rvP/fPPP+HldEdEYuPGjTaOZvzrQaEmVvAX9uPiDh06mGG2Z8eOHS5PnjwWO4umXpIeKIIrwmDWwg+A1nwC/JgsY0wYDADjNB+Njz76yK7ZRo4cOdySJUvMtJofXN26dS3xsWfPHjPk5oeZUjCY6datm/2gaO3v1auXBbQxgub1RcqgfYw/z9WrV7t+/fpZwoljg+RCfDP05ECCoVixYscsX7dunfv111/tNq1yJMVefvnlqNvxx+T48eMtEIHEWJMmTUxGimQViTUkv4QQQgiRdnAO5pxcvXp1ayEnkUABSTQmTZpk1xgDkjxIDMYkM2bMcK+99lqcFneKaHbv3h11n2655RaTgDx69Giy3pcQQgghhMi+MJ4k3hksnu3UqZMV0IwePTrm7dSvX99k9JGmT0jC1NO6dWsrJE9ukTcm26tWrXL58+d37du3j/MYMV8MupFcJbaaUVCSQoSZPn26XTPxI0GBLwEV9Bs2bHA//PCDVagnpFWGDwUJAh809hlFKt2ZqI4dO9buN2vWLMUdDmgYk5zAZ4IuCvaRP4loGUiRfPAfoQKSzxi9vMGDB9tnz/eZWh0K+JRA586dLREyYMAAu+/1q0lwEYSIBMEH9pE/32XLlrkrrrjC/mg5FtGkpiOoR48eGeqPVwghhMhqUJjCudYnEBhDcv794osvjln38OHDYR+zWHVwSWQwpmSCF4RCGjzHhg0bdsxzmNhNnTrVtHhTsxtUCCGEEEJkD1D/QB3Gq4B4H7bECm2IRw0dOjR8n06GFStWmPpLrly5En3d4cOHuxtvvNEUTpIKY22KfoFYKV0T8WG7jJHTyos2OShJIeLINZEF/Oyzz6yVnkkfE01MtKFOnTph8+xI0B3Bj40fEcFrKtuhcePGVr1GF4VPUiSXP/74w9155512QVKKzgmq7JGYEmkLf2rPPfecZY8JEJDNJTG1ZcuWZG+T44LjBfMekiAkGABZMFrTSJbxuhgSRfvjxITdByw4ZkmA0Ub3xhtvmHknpkK04XnpJyGEEEKkPr77lmotKFSokHW5xq/cArodGRcWKVIkfO6PBuOBhLog6KalwxPJ0fgwPsBMu0+fPq506dLJeFdCCCGEECK7ESzIbdq0qSUVUPmItVB369atVrDTpk0b991334WX+3FyNAmp2bNnh+9jqI2UKtKoSYUuCeSiiOFS2B3/dSgCRjrfm35nFJSkEAYHKN4DBJ6ZxHGQer1fL/WEhE6s8MNFIujee++1jCPyS8jw8CMpX758sj51ZAH4kc+aNcsSINxHMkgcX/iTo20M+acFCxbYd0JSIDldFRwXBB+4sI169epZwonEB/4iHIc+AeHlxCLhj02OVfaD7ZLR5nLxxRe7v//+O0lagUIIIYRIGsh8wnXXXWeFLyQpoFatWglKPSXWXcu5HdkoX/wSH8YHFNlE8r1g2w888IAVLQghhBBCCJEQxCyRGH3llVfCy/Bt+P333634JhaJUqAQh+JqCm+DXhDRIGFw0UUXWUwMf7eUcPDgQdtX6Nq1qzvjjDPiPI6EO/tHPC+joSRFNofs3j333GMtPmgI9+7dO87jtCJRGXfyySe7W2+9Nep2Bg4c6L7//vuwJA+TwoYNG1rgOdjGlJwqNqSAkO+54447TLsNnwGC0rH+OYi0AZklvguSCPyJc5/jKal4fT1azejcofMGfDCC7SaWpGjQoIH98XJCif9HSxeGT66wv8hRCCGEECJtOikoDkCuEU8rwBsqCBq8FDqAP+cnBJ0QdHEGdYCDMHZgLBGU/MRgkAIIIYQQQgghYoVCG+KYxEYJ9nsiySUFWbNmjXVcBH3SkEqnyJoOjMQgXnXeeee5ggULxjHVTg50MZNUoQPjoYceOubxmTNnmnF2UJ0ko6AkRTanXbt2FgymDZ4K9PitR17q6YYbbojaloTGL9uhXT94oHsIHCPTlBwworngggtMz5h2fu4nJDklji9khMeNG2ddCsgx0VVBl0VSuipIftE9wXFCKxtJM19lyZ8zclAkyfCc4BIJEhRITwU7fzxkoglgsP0LL7zQ/qRTy0tDCCGEEHE7KapUqWIdjHToQo0aNeJ8RLSxI89EpwXSnYmBBClm2fFb1Xm9SOdzxg54V1x22WVu3bp1+nqEEEIIIUREiFUuX748fJ+CaAyrCeTH6nnLeJQ4FjFL/Ng8qNMkVFxN/NRLmrLe6NGjbXybmBRqQhBHQ4af7SH5hH9rfJ8MxsfeQw6UpBAZBsyFCQBzABPc5X6kdnw6GaLhq+GomsNbgI4KWorowoCOHTtaBo9sZKwwwWRfMFOkAo8KeAy51T2RMUHSi++bhACeI/xBB7POCcEff6tWrew2QQhkIYoWLer++usvN2PGDPvDxA8leKxFwh+jHLPBoAX7QjUnJwuOH7p9Dhw4kMJ3LIQQQggP51WfEKD4ZdCgQdYxUbhwYVemTJmIY0uKFJBnTAwKEdq2bRvHf4zCg0svvdQSEcGKNWDMSGcnRTSxtNcLIYQQQojsB4mIc845x2JYXhWG4D1m13QGJwTjXB93Is704osvWoHtI488EtNrE9uiIPuFF14ILytYsGCCnhWJgWqIj+ki6YQEa3woAIeqVauGl8WajDkeqJMiG8MPqm7dum7v3r324yTIG0wCYGRM4JkfKXI60fBa/+gKw8iRI+0H+uqrr1qWDpkekg6J/ciD8jzXXnutGzt2rGX+PvjgA0t+iIwNgQAyxyS7Pv74Y6uORG4hFqiORCIMI82VK1eGPSZ8IKNTp072J07HTjSomiRTzWsuW7YszmPnnnuuJT04jjAJIjEnhBBCiNSBZMPUqVOtqGDUqFE2dvNdFMGxJRJM/jEKURKb/EWDKjN8q2i9j1/9hZ4vnZeMIYKJDSGEEEIIIYJjRsapxKIiqcJEY/r06eZT4ZVnfDwKZZBYpJ3g8OHDbufOnRY743ZKOXr0qBXoUrxDEc/zzz8fcT1iv/Gl+L0fcUZASYpsCllCDlqvT4aZS3ymTZtm1/hARJvk4Rfh3eepiKO93weW+YFQScdrkQwhS5gYP/30k7vkkktMd5jttmzZMst0T/hK/kiXSJ9/ZoVk17x58+zY4Lv87rvvEn1OqVKlrBsDhg0bZu11SHvRpga1a9c2b4qE/jx5zGeKkYaI9BqceBYuXHiMZIQQQgghkg+t5MGCFl+NRpdtkDlz5lhbPePKxMY+jCfwvaIzIj6MGejcYMwQaZxIUQLjVyGEEEIIIfbt22fF1HTnBgttf/jhB4sRJaUwGklT1Dr69+8fs5Q46yF36sFzl+5j4mUU3qSUnj17mp8GBTxsN1JhLuNzCoPh0KFDdo25N90kGYaQyHZs2bIlVLp06dCJJ57Iryn04YcfRlyvbt269njfvn2jbuutt96ydapVq2b3x48fb/dLlCgR2r17d+jMM8+0+5988kmi+zVx4sRQzpw5Q9WrVw9t3rw5lNXYt29f6MEHHwxdfvnloa1bt9qlY8eOoYoVK4Z27twZymps3749VLNmzdApp5wSGjVqVKLr//DDD6Fhw4aFDhw4kOzX5PkcbzVq1Ij4+CuvvGKPn3766aH//e9/oY0bNyb7tYQQ/489e/bYb4trIUT25L///gvlzZvX/gs4py9fvjz0+++/x1nnscces8dbtmyZ6Fg1R44ctu6KFStiev3p06eHfvzxxxS9ByGyA1nhnJ0V3oMQQojjB2NEzhsnnHBCaNWqVUl6LmPRtWvXhu/v378/1LNnz5jPQYxr69evH6pQoULo0KFDodRm1qxZ9r54f8Rko7Fw4UJbJ3fu3KEiRYrY7ZkzZ4Yy0nk7cSFYkeWguwEZJirPMKGOVGlGlvHrr7+22zfddFPUbfmW/aDUE9ABgfTPnj17XNmyZU2bLRpk87p37+569epl3RcjRozIUO1GqUWuXLlM640sqc/SsgyJhJTozmVU0KGeNWuWafJxPCxdutQM2qPpT9N1wSVSxpljddu2be6NN94wnWmOkUj4Kk5MvOmaYB+CPPnkk9YGR6cHxxuafciKCSGEECL5IPVIhwQt5oxz0LmNXxXGeI8uyViknooUKWKSTbSkn3/++eHlixYtMo+KChUqxFkfScf77rvPKtQ+++yziBq8QgghhBAie0BME0Ns39V74YUXuieeeMJVr17dYpSxgrpHmzZtLNaENBMwFn322Wdj3gZxQLovkHeaO3duqo5Tly9f7ho3bmxxs/vvvz8snR4JOpnxqiAmhp8s/hQZrfNYSYpsCAkBJnHDhw+3IG6kAPnnn39uWsDlypVz5cuXj7gdDmwCzz5JQeLDm7BgPHPDDTfYbdqp0HiLBP4ArItvRe/eve0Hk1XknYSzAAXHGcGK9u3bm2QDgYzENKLRrCaYMWDAAJNy4GRAQofEAscSbXrxExBQrFgx0xXkBIAeYIsWLY5Zp3PnztbOh28FuoFCCCGESPnYcs2aNXYbjd5Ibeu001NokDt3bvMeSwz8pLh4GBe0atXKzt+0sdMmHxyT4ofBuLRWrVr6OoUQQgghsinEnRgPElvcuHGjjT2B+FJSufrqq8O+FXjtInEaC4yLvT8F/mnjxo1zRYsWPabQJiVs2LDBYloU6+ADN3DgwATXR9bp5ZdftttI9fM5jRkzxsbXeBFnBORJkc3YvHmzaY8NGTLE/f7772ZuGCkp4DX9E+qioCKeHwUaavhNjB492pYz8aSSbsuWLeZOTzYvEvyQWJfEBkkKzJGVoMh68J0+/vjjVtm4YMEC06BOyJSI7hyOJ7olOLY4xjBQx1MC83WCFBwv0WjYsGFUXwr49ddf3TPPPGMnmUsvvdSMuoUQQgiRPJiw4SUWHB9SgOI9yzz+3I3PREITvGiG2XTnlixZ0ooW8KoKUqhQISuCSC1dXyGEEEIIkXkIekNQaI3fBAXZFFPHCr6qxCUpig1ua+3ate7DDz+MKUFBvOree++1533zzTfh5RTTpGaCYuvWreb9y3WlSpXMU5gOj1hhXE0h8cMPPxy1qDw9yDh7ItIcDkJafziAmcQh9UTQN9KPiir0xJIUQLaNjB2BaIxZ8ubN6x544AFroeLPALf7SD8UfvwkKDA9RFbKB5azG9kpKUNLG4aZ27dvt0QFf6aRIHlG1hlpqObNm9syJJkOHz5sbWzg5SIi4Y/ZGTNmRAx0EMhALoLjs0qVKq5p06ZRAyJCCCGESBgmbnRAejlHxnjvvPPOMZNCJnfe9DqhsWrp0qVdhw4dwoZ+HrowSXRQXEARTCSoVBNCCCGEENmDvXv3WkcvHQU+UcGYlHgQY0Y6fGMFKSbiUCQpkGbylClTJuZtEPCnoIZYH9tLC3bt2mXvl4JeuiNQwklMQp7PYvr06fbcp556yoqI4bTTTstQcUklKbIRSDIRnOXHRptRQppmVLqjmxZNn4y2epIZQbp27WqBZx9IJglCtjA+BKmpgKOr46uvvoqYKMku0HaG14KXSMjqVKxY0bLJnEhov/vtt9+OWYdWM6ScCG7QbYMuNQGPqVOnho+tL7/80v5cI4HcE4kIpMSQlogPfidvv/22+VZwm8DKgw8+mAbvVgghhMj6+I5Ezr+c1yk2AIpYPKtXrzaPCQpaEvIpo7iFTlwmW0yaIsG4wNO3b1+TCj1w4EAqviMhhBBCCJEZoJi1X79+ptBCnCiYWEhMwoiY0pIlS8L3b7nlFvM4ozs3Vt9Y4qKsT1zPg0w5EuNdunRxqc3evXvNH4O4LWNi/NuCY+NooFRCNzNFuoyf8ecAioMyEkpSZBNIHhAcRneMLFm3bt2OqVDzYHYMBJGjtcxTDVe8eHH3wgsvxFlO+1NC8jkkP0hQkChBBoBK9uyM9+1gYp9dQJePY5FEF/p+JKuCkDigghKC3RQYFvFcjhmeG03yicy1l4Hwx3J8+FPHpJvsMccrOnycRIQQQgiRNPy4D6lGxpuMNel68Dq84M/ZdFIm1O1A0QBVXv379w9XdSEhim9Z/EQERS+MZ1955ZWwkaEQQgghhMi6MNbE38FDdy3jxPfffz9ikXQ0iEcSoEdthsJVYOxJbAh1jli7C5BLuvvuu12PHj3i7FNaxPi2bNlicdrvv//extoU9dBJkRh//PGHecX6eJvfR8hoPq1KUmQTyKzRCtS6dWt38OBBt3jx4qgVaj77mNAPfNKkSfbnQFs+k0Qkm2it4kdSrVo1y0AGNeGAxASSP1THs/7555/vshuvvvqqvfdgZwEZV6r+sxP8kfI5cDJA9iuYdYY2bdqYdBhVlyTDOEFwbKF57Y0yOQaj4Y/dYCY9Epdddpn9Jjp27BhT9lkIIYQQkZMUjOuYNIGXAo2fpEhI6gl4Tr169eJMmDD4w0vq5ptvjrMuHbtMSClmYIIphBBCCCGyLnTr0iFBt0PQD+2xxx5zt99+e6LeCsEY5YUXXmiyUBRmE/xPLvhPIO+Eh2paj7cvv/xy6/xgDEznCFL+sfDcc8+5ffv2WeLEy7ESlw0WTmcUlKTIBtB6jx5biRIl3ODBg03mBlf7SJlBKtS90WG0JAUdGN6UmIAxFe5UrvNH0bNnz3AQOrh9quA4+ElsEDgOVteJ7Al/4nQ6kKAhUUF215MnTx7Xtm1buz1s2LBwsILbnHzIGnM8x0+Eefyxi/cKSblIbNy40bLedPegOYhhd3aR3RJCCCFSixUrVtg1re5cgEmUh2IWzscQP9Hg4XweX0bUgywo40o/LghCpdvo0aMzlJauEEIIIYRIHYIFvcWKFbNYD+PMpBT6UhTbrl07SygEY04U1/z0008WW4oFAvwtW7Y06SSPlzGnoCatmDdvnqtZs6b79ddfLZbKuDrWTg2844YOHWq3//e//9n79UXkKOGgbpKhCIksT9OmTYnkhjp16pTout9//72tmy9fvtDRo0cjrjNlyhRbp2TJkqHDhw+Hihcvbveffvppuz7ttNNCW7ZsCa9/6NCh0BVXXGHbXLx4caq+N5H5WblyZahw4cKhCy+8MLRv377w8p07d4by5Mljx1SvXr1C9913X+iHH36wxzjuEuK///4LH5czZ86MuM7GjRvt8RNPPNG2ze1bb701ld+dENmDPXv22G+IayFE9mLNmjWhK6+80v4D8ufPb9eff/55+PHhw4fbsurVq0fdxvTp00PnnXdeaOzYsREf/+eff+zcDnv37g0dOHAgDd6JENmDrHDOzgrvQQghRHSIBzVp0iR01llnhfbv3x9eTszIjwmTEnM64YQT7LyxevXqZH/sr732mm2jWLFiicakUov333/fYqy8bo0aNUJ//PFHkp7fuHFje279+vVD7777bjiWy/V1110XymjnbXVSZHHojEB3n7YnqtUTw8vjoBkczWSG1nqgoh3dYDwFChQoEO7AoDrdS+dQGffQQw+5H3/80datWrVqKr47kRWoUKGCmf2Q4aUbx1dSYlQ0cOBAOyYxHEIbEB8JwHgzIaioTEzyCf1B2t44LvHAwKybbDxa2kIIIYSIjXLlylk1FuA3Qev8pZdeeozUE1Kg0aDCi25GX90VH1rxfbdE586drb09KJ8phBBCCCGyDnQ6/PDDD9aRi/S3B2mlxDpokUR677334sSciP0Qd2LcGiuofRCn8iAVjvH05MmTE41JpZQjR46YLDnqNcSoGjZsaLEt7yURC3RcsK/Eg5FP5f3DnXfeaXFcFHYyHMctbSLShRkzZoQr25588slQt27dQps2bYq6/rXXXmvrv/766xEfpysid+7cts53330XuvHGG+32HXfcEe6i2Lp1a3j9vn372vJx48alyfsTWYePPvrIstvdu3ePaX2y5wsWLLCKykiMHj3ajr1LL7000W39+++/oRIlStj6Y8aMSfK+C5HdUUWjENkXxoZ0JXIOpZM2frXbqaeeao8tXbo06jY4lw8YMCDOGJUO3WnTpsWplmN7pUqVsu3NmjUrDd+VEFmXrHDOzgrvQQghxP/BWO/LL78MPfroo3HGfV988UWS1VjmzZtn5wdUOXbv3p3sjxgFmdNPPz1Up06d4/41/fbbb6ZGw/vg0rFjx9CRI0eSvJ0lS5aEatWqFXrggQfsPrGx+B3PGe28rSRFFocf+OzZsy3w6pMLSDpFgoP+jDPOSHAi+eGHH9rjSOmsXbs23DJVrVo1u27fvn143U8//dQmrZ07d06z9yeyFi+88IIdR7S0RWr34wT18MMPh5YtWxaqV6+erfv2228nKOeUI0eO0MGDBxN97d69e4caNmxoyTchRNJQsECI7AlJBCaUnG8LFix4TPv95MmT7bFzzjknSa353377bViScd26dcckNFT8IkT2PmdnhfcghBDi/8V6cubMaf/rFFonBQpOCeoH71epUsWkojZv3pzsj5jCmZNPPjl08cUXpyjZkVQ+//xzG1P7RMsHH3yQou0x/qagyN9evnx5+H5GPG/nSO9ODpF2DB8+3AyHMXKh7Z6WqK+++iosmROf5cuXuwMHDlhb1QUXXBBxHdqkkMYpVKiQGWaT6EIaasOGDe60005zTz/9tK23atUq16RJE1e/fn3Xq1cvfc0iJjAbWrp0qWvevLkrW7asq1atmi2nNe2FF15wFStWNHMjjmWOY6TMkB8LGiAFjbmRHcOsfeHChe6qq66K+JqYD2GaXb16dTt+kS1DXgozbSGEEEJEh3MwxtVQuXLlY9rvP/zww7DUU6TWfCQeaUGPT/ny5d1TTz1l49Jzzz03zmO5c+d299xzj74WIYQQQohMKks/f/58M4P2Ut8YWyO/ff7558e8HWJHSBcxliSeyTUXZKIwhY6V33//3fXp08eewzWULFnSLVq0yCRGE5OXSg0OHTrkunXr5vr3729xVmJhkyZNOmYcHOvni3w/+82FWC1wGxksPh/iusSLMxzHLW0ijisrVqywLNUpp5wS2r59e0zPeeONN+w5devWTXRdMnC+/QiZHgwNfQX6rl27zPzw/PPPV3WLSDKYYV500UVm5uOP3WeffdaOtTJlyth1rly5wlWWyEhEy8bedttttg5dEtHwhu8tW7Y0qTI6L7jvTbqFEImjikYhsieXXXZZuBUdyc/LL788tGPHjnCHrjfS/vrrryM+n/Z1uhh//PHHRKvZ0qM1XYisSFY4Z2eF9yCEENmRv/76y+I6J510UmjDhg0p2hYdDnQbnHnmmaFVq1YleztITfnYkh/HHk+IpZYvXz48pn7wwQdjUgOJFqslttWqVSuL0wIm3+vXr7fblStXttcYP3586Hgi4+xszuHDh13RokWtGj1ShVo0UxW4/PLLE12XDNzcuXPdrFmzXIMGDczQsEaNGpaxu/vuu81g5uOPP7auDCGSwumnn26Vl//8849r3LixHctPPPGEHUsbN250xYsXtww7WW0qLVlv6tSpEbflj2V/bEfihhtusAzyZZdd5s4++2zXrFkzu4+RthBCCCEiQ5XXihUrwuduTP1+/vlnV6BAAVvGOHHXrl1231fKxa8YGzFihJ3Dt23bluDH/Pjjj9u5+aWXXtLXIUQWo3fv3ja3ZLwvhBAi60HnrCdv3rxmXp0vXz63evXqmLexZcsWO08Qr/GceeaZ7pNPPnG//fabxYZihVjS9OnTw/dr165tY022lRRj6pTC2Llz5842TuazKFKkiI2LUa3JmTNnsrZJJ8aoUaPcW2+9ZYoiMGjQIFPLefbZZ92yZcvsnFu3bl2XEYktei0yHUwI+REzedy5c6fJ2ZA4SEmSggMdN3gSEZ59+/bZJNXzv//9z33xxRfW/k+CRIjkUKJECTdlyhRrQ2vfvr2dwGj/C57ghgwZ4m6//Xa7zfGWWJIieJwGqVOnjpsxY4Zr3bq1O3jwoJs4caL7/PPPLXgihBBCiMgwzmQcSDt53759bRnSib445qOPPrLrm266yeXIcazCLJMvzvNMmOrVq2fL3nnnHXffffdZUYKHcWfp0qWtVf3mm2/W1yFEFmLBggVu2LBhrkqVKum9K0IIIVIZZDu7du1qEk7EWjwUqWzatCk8/ouFvXv3utdee82NGzfOrV+/PrwcWW+kQGOFgljGqw8//LA7cuSILSNoP3DgQHfdddcdF2knIG6KpBPS5sS4kDBfvny5jZuTy6effmpyqTBgwAB3xRVX2Hi9e/fuVtxLMgd4/76oKKOhJEUWhYwinhTojPEDpiKdAzQaO3bsCP/QqSiPDwc0wWKq2PABIID75ZdfmsYwPywmkN9++63pt+FBce2116bp+xNZHxIM/LEOHjzYkmNkzTn58CdLoIIEXJkyZWxdjkkCJfG5+OKL3cknn2zHdzDgEQ0qQa+++mrTHeQ5QgghhIjMypUr7Rqt3MWLF9tt73tGYYDvcmzYsGHUj/C8885zPXv2tAnhv//+a1q8b7/9thUMeEhwMCnlPI43lRAia0BndNOmTW3OSkGSEEKIrAUeD++++65bs2aNeSEEi1KJvUSDMSGF1nQUBP1xe/ToYbGfc845J+Z9QJkDz4mgkkaxYsUs7hMphpTWbN682d11113WyUD3xFlnnWUFuox/8+fPn+zt0s2MLzBj8AcffNA6Q4CkBe8Tn2KfKOIzyKgoSZHF4KAjK8mErlWrVq5fv36WHSToyo8wGpgRAxnOSINEEhJ79uyx9iMyj0juPProo/YYCQleo2XLlnbg+8ydECmF7DadDg888IAd023btrXl/oRGxwOtgiTRgu16HpIZF154YaKST/7k9csvv1hghBY4EiCdOnVyu3fv1hcphBBCRElS0D5ONXQwScGki+IXCgUimfJF6m6kI4POSGRD/cQqCJKMQoisA3NJZIOpXE0MxvpU0QYvQgghMhZ0AtAh68d5xHCQHyLh0Lx585i3Q5EqhdZPP/20JbQ9dAQwroy12wF5euI6wdemk3ft2rVu7NixKUoKJBXiTXQek2wh5kTnMfGtVatWuUaNGqVo23/++ad1G5OMIO6LvBOf0ddff21JIm6//vrr1r0BSlKI4waTO7JmaKp56HYg6EorbUKabECSIRK4ygOtRxMmTDCNYbKhZEYJ5CLzRLvW6NGjbZIpRGrAH/fIkSPdX3/95Z588knrDMqVK5clDmhPo6KSP3qSaLfddlvEbfjOIH+MR2L27NnWfcQf+xlnnBH+3dAZREZbCCGEEHHxfhRMgJYsWRJuHwc0feGaa645pgWfiSsTTIpamFQF4flMpihG+PHHH12LFi0SlSsVQmQ+mE/yG4/VZ4b1GKv7C1W4QgghMg4kj4m9PP/88+6rr74KL7/11lvtkpBXLsWivnAaGCeirPHYY49ZV0Vy/S+QoN++fbsV1hDD9CTX7yE5MO4lKUFBOGNfJLBQueEcSKcwHh0p3f6dd97pNmzYYAkZYrd4BlNI7gvLKf4FPgO8XiOp52QUjhWIFZkafvgYZtP+xAEYzAwmlDz46aef7Pqiiy465jEObq8rzKSRHxWBXK7pnqD9HlketNTICgqRmqBD/corr7g2bdqYBwVJAyTG6OaJpHEdH99J4Y/xSHDCwLSIExhSZpy07r//fusaolNDCCGEEHFh7Ie27bRp0+x+oUKFXMmSJeMkKSJJPTEJpZILY20q5IAJaHCcyoTrkUcecfPnz7dzPV3CQoisAf8beM1RKUvXcyw888wzVqwUDIYpUSGEEOkHY7WlS5e6qlWr2n2C36i5IM+NhFGsfPzxx5bEICbjTZ2Ja86bNy9J/hAUpVI8TSz0jTfesGWMS+mmqFGjhgXujzfffPONJSbwYPNdwS+++KJ1diSUtEkKfEb4flBEjtSqN/7GY4OCIu4jyc/jSExxn07nDEtIZDnuvfdeeqtC//vf/0L//fdfTM8pXry4PWf27NnHPPb555/bY4UKFQpVqlTJbnM58cQTQ8uXLw+VK1cuVKNGjdDRo0fT4N0IEbLj+Nprrw2VKFEitHv37iR9JD/++KMdr3nz5k3w97B27drw41OnTg0VK1YsdMstt+jjFyIG9uzZY78zroUQ2YfKlSvbb59xYMuWLW3Zrl27QieddJItX79+/THP+ffff0OffPJJ6NVXX7X727ZtC5UqVSrUr1+/0JEjR8LrzZ8/P3T11VeHtmzZchzfkRBZn/Q+Z0+ZMsVen/8Jf+H+CSecYLdjmVOm93sQQojszN69e0NVqlQJ5ciRI/TLL7+El8cSf/z7779DW7duDd8nvpM7d+5Q3bp1Qzt37kz2Pn311Vd2XsiVK1fowIEDofRk4cKFoZtuuikcO2WfnnvuudD+/ftT7TUOHz4c5/6hQ4fi3Gdcfdppp4VGjhwZZ3msMeLUJtbztjwpsiBkDslC0mKPERktPxjMRINWe8xbgAr1+EyePNmuaUlCY85XuqEZjBTPr7/+6kaNGiWZJ5FmkB0Oyj55aGmjghONQyqyOnbseMxzkYQiU4xEFJJk0aAV0GfqqQbFXIkKzki62UIIIUR2B41470tBG/tbb71lt2fMmGGdEXhVRDI2pHIMHXrO24AcKedn5F+C3RRIkCIlhR+aECLrgJ8h1bKLFy8OX5B6w0Sb25IOFkKIjEcwLoKUJzETuuH43/Yk1vnw6aefulKlSlm3rAcJP3zM8BuN1SMCTwn8y4KS9ngxvPDCCyZBmpApd1qCegey4ZzT6CrmfIYiyLp161y3bt3C0uIpZdasWa58+fLhcTjE70yk+5DuCaRTgySlOyU9UJIiC4GbO38cPXv2tLYeBoAkFdB3Q5opGv5P5dxzz7UWrfgwiARvWFO4cOGw2cqrr75qrUOSeRJpDScz/CeQfMAk+4477rBjFp8UtPxoZyORgTxZENr6SFQkJvkU5OKLLzafC06WmNFPmTJFyQohhBDi/4cJ4F133eWOHj1qWrpIMHq81BPn51jo0qWLndv79etnEydM/4QQWReCW5UqVYpzIXCD3xy3hRBCZByQwybmV6VKFbvtGTp0qBUsE5RPiGB8BilvJLaRZiLO4iHhkRQoYsEcGg9R71nBGJIxZaQCmbSG94NHKvL5yFdRkHPvvfdaXHbw4MFJkr9KCOK9xGDr1atnsvtIRwXhs+U78SCLSEHvPffcc4wPXEZFSYosAhkyBnWVK1eO8ydABwU/4AceeCDqc33g1mv3xwfNYPSDv/3223BnBckPJpNUubVv3z7V348QkXjooYcs+da2bds4OnroFXJi27Nnj5lgJ8eXgj95svFk9dG/rlOnjr0GnUiccBIy3hZCCCGyE3Qaer+y8847L7ycpAWFBJGSFHilXXLJJZaQCJogcs5lnHrVVVdZhR3nXfynhBBCCCFE+sI4DYUWYoB0vQaVKPLlyxf1ed4Lgg4CD122+JLRWRBrtwMKF88995w9z0PQnWIZOilSy9shOQkDClvxeaBzgsJWEiXsG8kJxrLBMXJK2bFjh3UiE38l5otZNt+LB+UQCslr1qzpVq9ebcv++OMPi2+NHz/evfnmmy4zoCRFFoFuCMx+aYkPBm9pl6LtKaFOB99JES1JwQ8N93eCtL1797Y/Gp5DFR2miWrJFccLjsX+/ftbh0MwQ06ww9/H7Do+/tgOtiJGkq0gGz9mzBj333//2TJ+SyQr2DZ/8EIIIYRwcdrLMQNkcgYUtZCMYNJ6+eWXx/moSE4sXLjQzrVMKCksiC+pSFXezp07bYwphMjYMHZOLSiqozpUCCFE+o/xnn/++fAYjZjIK6+84t555x3XrFmzmLdDZyxFLWPHjrUiFg9Fp0kxbkY1o3v37lYk7aH7joTJddddd9zli3gv77//vhVs8/okT4iJ8tmQyBk3bpxJMaUmM2fOtE4WCoFOPfVUMwbn/XuJJ5RzSGAwfiaB4WO0FPcSx6KYPSibnpHJkd47IFIHsmi0/OBFQQUarfZe4iYxyPIBB26kHyCZU8APgEo3DnqyobR1xZ+ACpHW8OeMZi3STlRdzpkzx5Zv3brVrqnsfP311+OcrPyx7Y/1SFAJ8NRTT1l2n6QHrYxDhgyx451OJSXjhBBCiP9j1apVdo3UE5VbtO8HpZ5uvPHG8PjR07p1a1tG4p9zNOdyJk5UdlWtWjXcrUuiomXLlvqohchgEBwhKMLY+7fffrOiHgJFFANdf/319rstWrRoeu+mEEKIZLJ3714rPEGKqVatWlbw7OONCbFgwQJLItSvX9/dd9994Y5aljHeiz8mjMa2bdvc6NGjXaNGjcKF1qhpUATTvHnzdP1eGe9ScEOsyUsqUSjeqlUr83/wY+HUZu7cuXaOBWK8dEUEY7d8Zo0bNzblG8bleHsQ26Kzw/u94SGMDHqm4LhZeYs0Z8eOHeaWfsIJJ4T27dsXWrVqVah///6hOXPmRH3Ov//+G8qZM6c9b82aNXEeW716dShv3ryhFi1ahP75559Q0aJFzR2+ffv2oRNPPDG0fPlyfasiXdiwYUPo5JNPDjVt2tSOXX/xx/LChQvjrL9161ZbznF76NChmF7j8OHDdrxH+m0IIeKyZ88e+61wLYTI+pxzzjn2m69du7Zdv/jii7b8ggsusPvjx49P8Pm//fZb6IwzzgiddNJJOscKkcHP2R988EGoXLlyobPPPjt0//33h4YOHRr6+OOPQzNnzgy99957oW7duoWuueaa0Kmnnhpq3bq1zUkz2nsQQghxLP/9919oyZIlcZY9+uijoUaNGoWWLl0a80fWp08f+0+uVq2abTO5NG7c2LbTtm3bDPN1rVy5MvTYY4/ZuNXHnQoWLGjnvuNxvjt69GioevXqoTZt2oQOHjwY57Fvv/02VKRIEdunM888MzRv3jxbvnHjxtBZZ51ly7t06RLKCMR63laSIouxe/fu0KJFi+z2kCFD7CCoX79+1PU5eFnnlFNOCR05ciTiHw0T0Ro1athtDnR+kCQuhEhPHn/88VDu3LlDpUqVCp8sfNCEE0YQTpQk3HgsKSfbrl27hnr37m1JDog1wSFEdkPBAiGyD3///bcl/TmnlixZ0q4JVq5fv95uk3jYtWtXotvh3Eoyg4KZqVOnpmhSK4RIu3M288BPPvnEfqsJsXnz5lCnTp2sSC6t0bhDCCFSHjusXLlyKEeOHKFff/01vDyx//q1a9eGOnToYAFyz59//hl66KGHQj/++GPMr0/ByvPPPx9nzDh9+nQ75yRW7JLWULD6/vvvh4tx/IXPa+TIkcckC1KTVatWhZo3bx46cOBAeBlF6PFh7E3hLvtFkZAvrOW6RIkStrxSpUo2bs8IxHrelidFFgCzX9qqaL0988wzzVEeihUrZoa/aL4l1q5frly5Y1qwMC8EXOBprwKkcNCW69mzZxq+IyES53//+5/pJCJv5kHjumTJki5Xrlxx1kVWwrcL+mM+Ekg8Ie2EkRP06tXLderUyf3444/2G7n33nv11YhMATqVtJyiU4mnEJrxibWvPvroo+ZrhM4lJl/+HCCEEEHwhfIyL77dHWmAadOm2e0rr7wyjpEi7ee33nqrtasHOfvss12TJk1MvrFhw4a2TnyPCiFE+vPdd9+Z1nVi5qTMPfEvxNRTCCFExiM4ziJ2iIct88WffvopvDyx//o+ffqYTyheEZ4CBQqYiXU0n9tIMPZDRv7dd98NL8P4mXMO48P04JdffnHPPvusK1WqlLvjjjvcV199ZZ8HUveYZOP5cP/995vMU2qDbFPbtm1Nygmf1BdffDH8WPz4FiC9j9z/7bffbt4fxKsAQ3Jiuzw2Y8YMm9tnJuRJkQX+ZNDgRxf0iSeeOOZHzyUW40MO4PhadH4yyW3gQOfgJ5BFIFiI9KRw4cKuY8eO7qWXXnIvv/yyaSYSJEFzL5J5Esc4ybag2Wd80BjkxICm36RJk8LLCbaQuOC3wG/ueJszCZEU3nvvPdPFRNedBAVGlAz4Vq9ebb+b+Bw+fNjVrVvXHuO4J8iwadMm07QUQohIEzhv0gdMivi/8H4UaBAHYSL74Ycf2gSWCRXPP/fcc8OP//333zZBRvdY51chhBBCiNSFMRvm13h/4R/hDZeHDx/uChUqFHXeh3fYW2+9Zb4SxYsXt2WPPPKI+/3335PkH/bzzz+b2TRJCe/1yfM/+OAD8yrzpMc48J9//rGYKrEgTLB9Iuess85yDz74oHlilChRIs1eH+9fvhuSPgcPHrRlFKFH+nxJmlAMhPE4xULcJ1YV/NyYy8+aNcse57vNbChJkQWYOnWqZfVIICxevNjdfffdMf+IfMDWV5l72B6m2WRX9+zZY8uoyt2xY4fr0qVLGrwLIZIOSYrBgwdbd8TTTz+d4Lr+GE8oSYHZH3/mQZNsEhNkyj/++GMFUESmgIAgAyo/sCFZQYUzA8zOnTsfsz7Ld+3aZdXODHggrYy/hBCZHyZOjDUx7gMKBPbv3+++/vrriEmK5557zhIUdP5SLcd/E+dvCgyA5RTV+MmvECJjQeFDUsYgQgghMhbM8ehc3bx5syULmjVrZst99X00SE7MnDnTkhyM56BatWrh7tlYkwAE1uncr1mzphXH+fEfBaLpAYkI1DLGjh3rxo0b53bu3Bl+7LrrrjMzbDp809psmrEwHYh8NnDppZdaEW6dOnXirLd9+3YrSscIm8f9nJ5OGGAMTqzWG5xn5rm8khSZHDJmVatWtQtt8xy8tWvXtiRFLBXfSNtESlJMnz49XN3mobKWzCcTTSEyArlz57akGcGOHj162HHPCZTjfsuWLXFOuv4Yp5o8Gsij0UUR/H2UL1/eEhckKxJrfRQivaErYtGiRe6ZZ54JL+O4ZbBF62wkSMBR3UyXHFUkVFzcc889JnUWTNjFH2xy8fiOOyFE9sCfS2+++WY7d1Lcwv8P1XCcN4MgFYoEgJei+/fff8OTKk9mnkwJkdUJyoAAgR2K2fxvnfEy44WLL744nfZQCCFEEGSJpkyZ4rp3726xEYLtffv2tdvBeEcQCk7oyCcx4TstKHwjgF6lSpWYPmDGeFTxU0CNPDcgN9S8eXOLJwblQNOja2Lr1q2WlBg9erR1dwSLVZFxopAm2NmR1ixfvtw+34oVK7oXXnjBxtXBz+XIkSOWXCLmRccF83rk9z2MvZHiJ9HB8+j+oDM5U3PcXDJEmoK5DaYzd999d2jv3r22rFixYmYqvG7duqjP84aHQdMbjAuLFy8exyAmT548odNOO80McYTISGAidOaZZ4ZuuummUKFChcw86Iwzzgjly5cvdPTo0fB6y5Yts2OZ5UkxTGJ7RYoUCW3fvj2N3oEQqcfvv/9+zH86PPXUU6FLL7004nPKly8fOvXUU0P3339/aOHChaEJEyaE8ufPH+rRo0fU1+nevXucc4S/xGrCKYTIvHBuzZkzp/3mvUkfZoncf/zxxxN9/pw5c0I7d+4MPfDAAwmOUYUQGc90ul+/fqGGDRvGMTrl9i233BLq27dv6Hgh42whhIgM/8nE7vifZ8wVC8QAMYXmOW+//Xac5UkBA+4TTjjBtrNhw4Zkbye1zxejRo0KXXfddaETTzwxPG9l/nvnnXeGpk2bFjpy5Eia7wem4i1atAitWLEivIzb48aNixO38vHdd999N1S2bNnw/l544YU2V/esXLkydNFFF4Ufj2+2ndGI9bytTopMDpVpaI7RPeEzlUCFKzpxEE1fjqwc7V7xK9jIxpFFHDJkiGnQkU1EUuquu+5SF4XIcGAi9MADD9jxivG1h44KzIKpEA8e42SgkTBDyiyWtkha/+jY4Dm0sOP/MmDAgDR8R0IcXzDAxY/izTffDFdCcv5AG5Pqm0jQqRGUf6CTIi21OoUQGYd69erZ+ZYqO6rN6Nz99NNPw1JQHiq/1q5d6x577LE4Uk60/NP9yONo6foqbCFExqdfv37u888/j1MNy+1evXq566+/3rqbhRBCHD/oXkD23Xez8Z9MPI84RsGCBSM+h5gfMk6M26jA54JUEOO7oMRRQt0OdAAg/UkHxlNPPWXLmA9iOM3rBsd2x7trgveBOgz7RywzqABAfIjODt5v8FyWFvC6+IAMGjQorGrAZ4HcsvdNje8PDMg5MRcH5uko2jz88MPmE8z3jZwznznvk+5k5vHROmQyHcctbSJSnb///jt00kknWTZq8+bNx2TefvnlF6umjZa1XL9+vT2XLGukdQYMGBC65JJLrJqW9ahEFyIjQpaejL3P2vvrXr16xVmvYMGCtnzx4sVRt9WxY0fryli7dm3EzC+XYPWYEBmJf/75x84LU6ZMibP8vvvuC918880Rn1OrVq3QtddeG2fZp59+asc624sFVTQKkT3g/OfPheecc07or7/+Ci1dujQ8njx48KCtR0UYj7N8yJAhoXnz5sWp7qIDg4q2iRMnpuO7ESJ7kpJzdq5cuUJfffXVMctnzZpljx0vNO4QQoiQdaaWK1fO1B+CMcGEOhdQi0BxhfPA999/H15+6NAhiyPGCucCr7rix3/pHR/9+OOPQ02bNrXzUbDbv0KFCqY8Qwz0eLB69erQM888EypcuHB4H3LkyBFq0qRJnM88+J0EVWtWrVplygbsM8ohwe+1du3a4W1ef/31pqSQGYj1vC2B9UwMWmRk/6644grrlgj6R6BVVqpUKcsSRsta/vLLL3bNepHWeeSRR6wSnWoZjFsqVaqUhu9GiORTpkwZd8stt5h3BFDVCd7E0+O7KfyxHwk0+T/55BO3bdu2OMvz5MljmoxUllN5LkRGhMoXqmjQh/dwvHLfdxXFBwOzdevWxTmuqWwuUqRImpuFCSEyF97LDDZs2GBV076LgrFizpw57TbjSroPMcSmSu/GG2905557rlu/fr09jmcU48vbb789nd6JECI5YCRKl/0HH3xgHflcqBKlqxl/GiGEEGlLcM5GFT3etKhL4G/gCcb3qLxfuHBhHLUIfAvwYQjGPOiQjebBybYxuvYeY1CrVi3XoEEDi4/wGukBMVD8Fe+77z7zY8DTAc8JujtKlizpnnzySfNRWrFihSnPHA+/Cb6fa6+91gyuMbNG+QbTcRQ56Oy47LLL4sR0UekoW7asa9euXXg5nk+cX9lnvtvg98pnjirI66+/bt0ifI9ZiuOWNhFpyksvvWRZKTSBY2XEiBH2nHr16oWXkTn95JNPQrt37w5dccUVoYsvvtjWUaWbyOhMnz79GH18NLPJqHvuuOMOW06XUDRGjx4dGjx4cDgjTUU6VegsFyIzgKcEGpscs+hccl7ImzdvaNu2bfZ4s2bNQp07d46jHZo7d+7QY489ZlUfnAOo+ojfiZQQqmgUInswZswYO4+ecsopds35km4sbg8aNCjicxYsWBAqXbp0qGrVqlalJ4RIX1JyzqYjqk2bNjbOQNubC/8HLNu/f3/oeKFxhxAiu4H37JNPPmldAcEYB/5ewWr7IFTnlyhRwqr4/VzQd2BQvR8rb775pp03KlWqlK7+Ev5zID5JV0L8jgm8RNu1a2eKMknpCkkufIbMnVu1ahXn83z22WdD9evXD02aNCni54w/RevWrePsP57CB+N1pOA7gW8kvhkevvs//vgjlNmQJ0U2488//7Rrr7P/66+/umnTpllWjQrzSPhq8qAfxdKlS91NN91klXBe35/sbLRtCJFRqFu3rmkgknGmk4IsM8cw3UBXXXVVnGN948aNUbeDPmGQZcuWubFjx1pFefzHhMiI4B+En9Czzz5r1THVqlVzn332mVWX+PNDsEqG382MGTNc+/btXZUqVazag0qOTp06peO7EEJk5E4K/x9Cpde8efPsNt0SkahevbpbvXq1VeGxfps2bawDg0o+IUTm4vTTT3eDBw82rWzfGUWXlO9mFkIIkTaceuqpVomPd+CUKVNckyZNwv/BwSp+4ny+Y6BAgQI2tzt48KCNw/x8kBhfNHiNN954w7oQGjVqZMvwmZg9e7a799570+XrpSMBbwne9xdffBHHYwLfM/wY6M5FOSCtfc7oGpk7d66bMGGCe//99837w3caem82vNciqdXQ9YGH04IFC8LLKlSoYF6PzZo1s24W+P77793LL79sKh/EtvCzuOGGG+y9cRxwyarIODsTg/G1n+AxUAwaZxNYRa6JiWG0BIM31g6anXp5HJ+g4EdA+64kP0RGh2PVyzHFl3zySQp/rG/ZsiXm7V533XV2/PNb8i2F/HaCgwEhMhoY1XKJRHwZNGBAx2BICCESgmSDPxdi3kcilMkaEyw/IX7hhResSObuu+8OT7Y4jyI7R5L0nXfekbmuEJkckhIUNgghhEgbvv32W5OhfvHFF8NjKaSBSBb7YHiQtWvXunr16rkDBw6YtJCPFb777rsm4+vHZPFhTBd8DHkkClBIaPgkBfLyjN+OF8RyVq1aZUF9LgTpfXwHkEdi30hMXHLJJVFlqlITPt9+/fpZooSkiYfPiSLBYHzIJyiI2ZI48kkFkvskKPhuSKy0bt3apLdYHzPz9957zwoBvvnmm/C2kLDCSDutky8ZBSUpMjEXXHCBHfAffvihq1y5sv1xeAoVKmS6oAkFUr3+HH9YHrKjQZh4tmrVKk32X4jU5v7777ckBcGR888/3yZP6GF7/LEe328iCCecv/76y35DVBgQvPVa/lQfVK1a1ZZTqS6EEEJkJ9D09VSsWNGq2cBPljmHPv/881bhhoZu7ty5rfKLyRcVeegmM7FUF4UQmRe0zSdOnGhJR4IqQfCqEEIIkXKllNq1a9t/LEon+ND6jgYPQXvWI27hVSNIUFBw/PPPP1s3vffvjATPf+ihhywwThKAcZ2PqTBeo9jkeMJ7pUOBxAxdE3gmBrnooousW4HkBPsazXs3tdi7d6/bs2dPuNCVZI735MiXL58Vg99zzz32PVG4E4yhzpkzx02aNMnOlXRE4OUEfKYkLlq0aOEKFy4c5/XopJg4caLdZpzctGlT99RTT1ncNzuhJEUmhT8U2riOHj0aJznhufTSS83ELCF8oJY/IL/N+JW0JD/OO++8VN13IdIKWhkxcCIwwsktPv5YTyhJQQcSvx1aHLkdhFZCEoOcsOJXHAghhBBZGcaJwQT9hRdeaIZ9wSQF50WSFIwnaYHn0rVrV2ttZzLJBEwIkXlB3gKDUpKPn3/+ubv++utNBm779u0WPBJCCJG8AP2iRYvCxZEFCxa0YmFiDj6GEQRJa/6LKZ6k48IHtpF8p7s1kgQf4zi6AXx8j3EZ4zrMm5EV8kkKij25HA+IyyBLzH4jP8y+eOgcqVOnjnUSkKgJKsCkFRs2bLCxLUmSWbNmWbcD8ldQqVIl98wzz7hrrrnGEhPBghsSD3Q/kJggWR/stGBbPknBd/n000+7Xbt2uTfffNPOoV6SHPmuuXPnmpINySNiT9kRJSkyMWQWyZxSHT5w4ED7IZD1jNWxPn6SAi3/YPCWPy26MYTITNA5gfQZVQTxT86xJCnwdfHeLn7AsHXrVmuvIwnCiZPtpnXmXgghhMhIcN7DT+K5554Lt7dzPuWceOWVV9qyPHnyWNUXCX18bZAkYKIblCgVQmRekB1BbuTRRx+1TqnXXnvNqnSRrAh25wshhIgN4ngXX3yxXVOI7P9LBw0aFI45kGAgvkExJpQsWdKkg5ChJlbhn8N2or0GhcyM20gq+3hHt27dLGjukyNpDV0G8+fPt0TAp59+atJSQeguoPClQYMGlgznPJPW0BVMgSv75L3XPHzG3u+Ui5feCkIiiQSK9wn2nRZ0fND5gncqEEciGYP8FokZxsaMqfkOgGRMw4YN43RlZEey97vPxPADKVWqlF2ALBwtXWQaY0lS8Ofgs3s+cEs2Ngg/Rn4oQmQmOGaRlOjfv7+dtKkkIHiCp4Q/1vfv328Xf5IPMnLkSLsEzeTROeTEQ1t7pOcIIYQQ2QFkDwENYG9aiHdTfAM/tIHxS6MNHomCPn36mCcFlYFCiMwLARuCR77KlaAZ89L27dvbPLRnz57pvYtCCJHhQRHFB6MJzJN0YBneXz7h4BMUM2fOdO3atbOYxJgxY2wZcQ0C3iQXIgXyKWgmdsH/MiAJlTNnTisYIb7hPTujJTVSE2IydEkQmCchgLR2EPaBxATdEsRs0tJfgiIauiWQHvV06dIlbGTNd1KzZk3bH+ScypcvHyc+umTJEnsfmzZtckOGDAl3EdOFgiSq98nwnRYkMPjOIhl+IyMe7A7JLp4TiaEkRRYBvTIyqL4lCC0zKtloRfJ/ZEFwoCdRwR+f17Ajo+mhKo4/MVr5hchMlCtXzlrmnn322fCyhx9+2E54JBg4tplQUUEQS8KBkyQnnvgBGCGEECK7JimomvbnWSZyTNxogadQgAmzn1gjI0A3BWPNAgUKpOu+CyFSDtWhXo6DDmP+E5AH3r17tzt48KA+YiGESAAC9ATFCVhTZEyyF6iup0OVuANjKqrs/WN0qa5cudLGVAS5fVwCqaBIkBDAQJuYCAF53wWADBFFzozL0hLOBUgfkVxBFtCPHYPnEfad8SPdErzvtILPkuQ60k1cvvrqK5NaIh7K5+p9IvAyZX8ovPHLYcuWLVZkw/fFe/GKHHyeyJv64ht8PbhN7Ih1fPewT+L78ybJEUy2eU0vryXioiRFJgWne34kZPb4YTMxDELGjswpgdhI+C4KJow+g/vggw+6jz/+2LK3/DmSAZSkjciMcOz27ds3fD/YJcRJkJM1v42EjOWDBk2YT3lI+rE9Tixe3kIIIYTI6nTv3j3cBl+0aNGwj9mNN95oesgYA7766quuY8eOpqXLRJhJKGNWzqMaUwqR+cH7jcATiQlkLKjuJfDDsmuvvTa9d08IITI0JAjwf6DAGLkjKu/BK6TgjYn8D52oSFgDMk3jxo2zToP4hZPENPD/Iq7BeAzoksC3llghSRF8KyCtfCYofl68eLEF8jkXYBqNZLaH8R/vgcQJsUs6QtJa0ohkxFtvveVmz57tfvvttziPUbRK10ONGjXsPkmESKDO0a9fv2OeS3cK78MnIoit8nq8d7osiKXSycL75vt64oknLOGEbxMm2BoPJ4ySFJmU7777zgaF/BHxA4kPWUACqWQpI0G1CwQfpwIdLTb+AHv06CGpJ5FpoTUvmKSgpdFXHXij+T179kR8LjJRrI9hkW+DDEJbJQMBDKeUpBBCCJFdYPIFTLQolKE6jUAlreoUx3DepHoMvd7Bgwdbe7/vohBCZA3QSOf3Dl27drUgDUlKzEV9QE0IIcT/VfEzduKCBCYQj+B/lGJhkr6sgwSRl/qhqIOuCcya+Y/1XRAkLSIxYsQI+++lKMQnKRh74TcbyTw7NbsTfIcBiWq6E4IwNmSf8GOgOyGtumlJkNCpgeE0UoTehJoCmXfeeSc8bqXLl+QCFxImvkuFcStJFZIZXIiF0lUBPqFA0SpJeOKuSEHxHfJ6+Enw/okdBeHzJwlFQQ94LzcRG0pSZFL40d95551R5ZhoNUpI99cHaIMGwYBRDwkMfljoqAmRGeEk5GWdAH1Hqj8JpvhjPlqSghMNpkkc/5GSFJjJ43PByU0IIYTILqxdu9auqY5jEgd+QkyhCxPln376Kdx9iIwB1XJCiKwB42kK2nyBHLIWnTt3Tu/dEkKIDAkBcLofkG5C6eGyyy4LxxNg1KhR1oVKEJvYHpDwRS6pSZMmx1TcT5gwwY0ePdo6W73RNdJBqKHwOkFSO0FB4QnJCBITXMfvTsAXg/gJCQmSExR0pkXHAL6i+EeQHJ83b55d+7gOiR5kvoHzFMmbq6++2rzRvMQVnScoY/BcEg0kW4J8/fXX4SQF3YJ0upAIYX224ztZkNd//fXX4/hLkMigW4QYEt0UInkoSZFJ4cfPxUOWj2whPyoysokRP0lB9pEMIvp4JCn4MeuHJTIrnKA4SXDC9hAsCSYpfDdRfKgExcvFm0hxAu7Vq5d1YDCIYMAghBBCZCeonP7zzz/D92lj9527QSieoZOCFnouSIgGzQmFEJkX5DkIAFHlK4QQIi4kF/B59cW+GGDj4cV/J96xdCAEA/cbN260cRJBc5+kwBcWyUy/vaB/BPJQ+E2QAPBJCsZYQW/Z1IJgPhJG/uILVTx00bEPPi6ZFhJOfF6MP/lMvJoMCQCSBkHwGSWBgJm455xzznEdOnSwhAafs/d/ICbkP1/g+yBGRAyVGBDXSEEFkyBe6pROCx9rJSnE90OnCN835ucidVCSIovAH4L/EfusLVlOfrBI3ySWpOAPr1OnTuHHycgKkZkhmRA/SQGJdVJQvRC/auDNN980nUiSFEIIIUR2wycl/ISORD9Vc9WqVXM9e/Y0XzPf1l6mTBl37733WsGAEhRCZC3oJEZ73OunCyGE+L+YAdX0VPqjTuID5r7a/rXXXnNvvPGGdUMgHwStWrWy5AVel0HoWKWKH5kovDT9thhrkaBIi1gdSQmC8BQ9c4mfjKZzzsseIZmE7HVqG3AjGUVSAdl6Ei94n91///2uT58+9jiJBqSxUJUhKUGShKQFnQ90+i1ZssSktHgu2/DJBTwnkPT25zCSEcg28R647z07pkyZYuPWvXv3HrNv+Hl482ugWySacblIGUpSZBGQpyHD6PX2aVtigoiBTixJCh/A9fCjFSIz442QkpqkiE+xYsVc7969w51FyFjQskmrX3zjKiGEECIr4id6gJzoH3/8YZVztLvjYzZ06FArdmnTpo1Vk7399ts2YRRCZC0eeeQRq06l05iu4/iSIl4mQwghsjoUCPsYAYUaSF9iokyS4qyzzorTNUHAnW4EJJ58kqJkyZJW1U9QnKC6l5PGL4GkAXEHPMDuu+8+W05APpIcdXLYsmVL2Ifhm2++idghR9KFLgEudBD4WGNqQjcCyRqSE8GCGA/LPXny5LH9Zj8wBKdTBfisSPZEGncSD/X7zXo//vijJVoWLlxo0lkU2qCk4eM+fBckX+gMISbKhbiST2SItEdJikzKgAEDLKPYrFkzu+YHFYQ/STKE3jgmFrmnYJYU+SghMjMc+0ycyLjTHYGeYCxJCgYPnMgwd+K3QKY+2GWEBiTGVx07doxjzi2EEEJkVZYtW3bMMnR36Zqgko1xJJVqdPAy2YTUbvsXQqQ/Xva0bdu24WUE4ryMSXwZDiGEyGqQiGDMg/wQck1IH/H/N2nSJIsh9OvXz7Vs2dLk1L1PLMldijvid0HQmUYQ3Afg/diJyn+WVapUKcX7y/8ziROSEVxITMT3YmD/STITQ+RCMiS1zK7pLuF9kiBYtGiRy5cvn3v11VftMQqt8QSl+AVI9JCs4cLnQkyHfeb5+J6xDYpPMcn+6KOP7DkUx7CvdFmQXMD7g+dzm5gP5yvio5hZR0qC+CQF3cG8DvEjjWHTD80eMikYAiPpFC3QyqQR7bho/PPPP3ZN5pc/rWDmlD8C/ShFZocTLYETMuFPP/10eLmvdvC/gSD8Fjg5UxVBayW/o/hw8gMSGEIIIUR2gImzx3tTkKSgCpDJ7MiRI13Xrl3d0qVLrR0eKSghRNYDbW8hhMjOkDwgsE6ygpibl/3xhcMf/H/snQm8lOP7/29rQtZoQ6kkKksSIu0iFSWhPVrQTqU9RSKJlEq7SqVE+16khCxli4QWoZClsi/n/3pfv/893+dMc86Zc86cdT7v1+t5zcwzz8w885w5z3Pf1+e6PtdLL1m/2BkzZriuXbvaOgLmWDXNnz/fXl+/fn1bjwhBggeZ+lSo+fgDdkZphXgFgXxEEppDE+THjioIsQyC8vSiZUGUiGW1ANZW9HNAWOBYEGfxcJy8SEHMBisshAv6SHCMgO2p5IiUJAO7du2yW+KhJMp0797dhBfGobyWMapnyZIloc86//zzrZKFv0eFChXsGHioYOEzRdYikSKHQpZavXr1Quom5WP0oOAkF8neKRx87vw/It5vlJJ5fJmZEDkdytAZHAThNx/8HwjiGzNx67MeUPXJCuN/jSwJrJ+GDBkikUIIIUTcwNiQ/kzA5I+KWwQKILGFhtn79+832yca66oiV4jciXpRCCHiCeIAiA4E+n1/CZIeGRMRH0CswPaS532iL84L9O5q1KhRovciLtGxY0erEPAiBa8hEE/fiaA9VGog+RL7IgQJFho+Y4cUhDgGQXlsmxAk6MfgHSbSAmPB3bt3W+UBCzET+kF4nn/+eas08VDJQGyGBSGCvheIC3x3v2DZ5JOnORaIN8B4k0RSXovAULp0aRN/SK72YkUQ/zrgbzRx4kTrKcF7BJ8T2ROJFDkUTmLB7vWcFPv162d+dakRKThZhf9j4zknRG6ACxnNrgmWsAwdOtR+80mJFAgUiHb4GdLwE/ApJBOA/6+HHnrIBhKqNBJCCBFPeFtQJopMSsnwo+9E48aNrT8TIsby5cvN9kAChRC5C5Lhwnu9JecvTrUFdhlCCJHTwSKoSZMmFh8g1kYGPhBzQxzAUpokDcZAdevWtecQIObNm2fNrzt16hTK6m/YsKEbO3asq127tlU7eGcG31shWohXUKWAGIEogWVRuEsEbhK+sTQL5/D0NrrGXonEaBpUU7GAEOPhu2BD7z+Dhtf0fiBmifW2j13y3RF1IsH4kmpdriGIFSRgU3VCrwpiOP51CCQIIP7zqcxAgChXrlxIzAji7ZxEzkAiRS4BRZF/PhRRDycDTliomOENdoKVFJwMguDhJkRuwF+guMixMJjwlRQ0v06KoAjBBR8lX82ShBBCxCvYBoCfEDJBZrLeo0cP98ILL5hVABNPFiFE7oIeiNhwUMlfp06dw5plw9atWy1LmKawJAhJpBBC5ESoQHjrrbdCwgLZ/VQ/kMDIOY7elHPmzLHnSNJ45JFHzOLSN8P2UCmwdOlS65fg3wsxItgLNhoIyBOkD4oSkZpcn3HGGRYLpNEzsT8qXH1yZrQgnCAQ+MoGxn58Zx8bQXghQcXDes71LHz+5MmTzTKb6wGv3bNnj8Ve2rdvH3oNx8MfV64r7K8XF4hf8j6RCFaZcB+bUaokeK3iNLkLiRQ5FDzlUDEpNSOLjSY8LEHwyMPXjt4V4fgALScuJpZkvXEy4USjDDiRW8DTkQGFb+KHIFegQIEkKykiMWHCBLOv8O9BVQUXXJpeBT0MhRBCiNzIpk2b3Nq1a+3+gQMHLEBJJcXKlSvdvn37zAeYbdJqUyCEyN4wRyT7l6piMoqx6sC6g3koAT38xmmM2qBBAzsvEDQSQoicBgF6zl/M+3Eb8QH1J5980ub/2N0RyOech+UQkCiMeIuYy/qSJUva+pYtW1rcgWqK1IANO82lESX84ptKB+E8TIDfixI0nE7LOAwhBTsrL0rQ+zbIgAEDLD6IWMJnsX+c+2kEjjiBCEFchL4SkaASApssqk0+++wz+wzcKziePIfI4/FWTFRdYM/E5wZvg1CVInInEilyKJxEOPGhOCJSRAKVFxHCn0CTsnuiSQ2KbNOmTU3QSK3iKkR2hQs1kyjEOti5c6c7++yzkxQpaKpERiiZoPw/eBA6vP3TrFmzLIuBbAmJFEIIIXI7+Bx7oR6qV6/u7r//fpsgYvPERJ7KXfU0EyJ3wtywc+fOtnjfc/7vCVbRZLRbt25mF6xsViFETuPgwYNWCQH0OCAgzjqC8FQ+EFPzmf/0miCATrDdx9iIESBcME5at25dSKSg/wNLShCnwLqIxTeaDnd8oGKD9yJBBKGA26QqDsJBHEAYoIKDW5apU6fadwUEEaoSgp/FMUBg4Xv17dvXzvd856CAgQ22729LbwuqGk455RRbqJxAwEBY4NrAsQzHW2gjfnhxhTiMfx8Rv0ikyMEZ4lROhCuKZLihbHLCiMY71J8QOKFy4vEee0LkFrhAepGC8kNvfRYp04CBASWMDFSCIkUQ7C2wkcIjUQghhIgHP/og3raA6yhVFWRS+wQAIUTuJtrAmxBCZHdnkrvvvtuC98TBEGMZ15C0SEUEDaYZ41BJ4EUMkjOotGA91Q1UBMDw4cOtKoAYXXJgI40IERQl2I9wEAgQI+gpwS3JkYgHyREM9i9evNiNGDHCBAncVcJ57733TAjheyNiENv4448/zDGCz0M8QJwIVjkA6xFhEC/q1atn+x5s0M17cUyoLvH9NhBUELCp/GA5//zzreqDYxWeHF2iRIlkv6OIDyRS5FD45161alWidQwYUULJbuHkkhzeV46TE5nhqJtUUagfhcht+GwGYDDhMxMiNb+m2VXQU3L79u12gcbTsXfv3rauXbt2mbbvQgghRFYTbjPgmx+ShccEmOaJqW36KIQQQgiRVRA4p/cEYxwsmUgApvcEFQr58+d3zZo1s+1mzpwZ6qlA8iNjHxIziJ15UYKKskiiAZZGJHp4UQJxINzNgUoM3FEQJAjos/AZkRIqec9vvvnGLPh8z03u+55Avi8YlSCvvPJK6HW8H/uOuMA+4MQSrJD1kLjM8yR2cmyokMDKj32kWTYiAsICYs3LL78ceh2Nq4m5+IV4ixdVxowZk+a/kYhPJFLkInxZFOVYiBS//PKLW7FihTU5DA+setWSEwgKqe9bkZL6K0ROI6jIo/T/888/dj+SrRmDA5agrdrcuXPNJsqLFEIIIUQ8gWDvOf74462xIddKPIwRLILXTSGEEEKI7AQVDM8//7xZU9JfB8j4x/Zoy5YtlpRIRQWVFSQyIhBcd9115qBA5YMXKViPIOArKIJghUTCMMF9hAkWBIVwEEB8zIEFJxMqM4IQr0AoQEhhe18dgdMDzilJ9dEk9keTbfbR9+Wk5wQ2ncQI6bO5bNky257ncYagqoEKB9ZjZ5UU2DD5+EmXLl3s2BBnofl1+P4LkR4kUuQiOMlSZsYCP/zwgzWxwf6pbdu2idRYf4LhBBjMkKNCQ4jcRLAnC8JdsGl8SpDVQKmkFwAZ4DAw4CLtSxiFSA8M8Cit9WXEZKngA6reQEKI7ABZe7t37w49pmLiiy++sMk3wr+vqhBCCCGEyI6QkEvSLkF7qhsQHXBQoOF1lSpVrCoA66I5c+a4Jk2a2GuwM7rxxhutaoAKBD/3R6DgMVZJCBJelKCqNLw6ASGAKgts2L0oQVDfx+WwWEIcwV6KhcoIbkkOIWbBHLF169YmWGzbts3iELz2nHPOsd6YzBn5blOmTHHz5s077Hvz+QgbJC0zngvCvq5cuTLUHJy5J9uzfyQusyBCsFA5EnSh4JgJkVFIpMjBUIKGWjpx4kR30003WTOfIJy8rrnmGivvorEZ2W+R7J6CaixKqhC5Cf4PoFWrVu6OO+4wa4pIdk8IEAwSuDDTTB4oV6QZoIeG2TVq1DAvSgYiQqQXsnrwMfUiBT1TyOjhdyiEEFnNt99+m6iBI+crJvd4HG/atOmw3mhCCCGEEFk9dqFqon79+va4aNGirmvXrlYVQUUCSboIEL63FlUTuIssWLAgJFKQpMi2wPaMebwowX0C/+EULlzYBAm/0OuBhGH6YyI+0O8CW2lidEDlhb8fDqJIr169XIcOHRKtR2xg7IWd0tq1axNVu8Jjjz1mn0Ec48knn3RPP/20rScW6MUH4oPhPSEefPBBW4TIaiRS5GBQcKmWoJwLkSIcTjrr16+P+Nqg3RMCRvDEKkRuwvtkkynBAIRMdQjPVCdzgb4uCBQ//vhjkgMexA0GOkLEgvCslvDHQgiRlWAP4OG6iZBKBRhWT9g+CSHiF7KACcAJIUR2gYoD3BD8/P+hhx4yWyOSLHiO+T5CA0lh9J0EqhWoTGB7zmuIGUFRgkqGcDj3IULQ05UKCUQJkoZJ4hg1apQtfB4iQjDehvUSn8t7Uo2BUML8j3XsJ2MtKlhXr15tvSWAZDZEB6oasKFevnz5YfuD2IL40KBBg1DiMT02SGxmPbZRkfpcCJHdkEiRg+nXr5/r06dPyKIJ0QK1lBMqnnTe9ikS3kcP+5sgKtsXuQ2yIBhEIDDAb7/9ZrfhXpIIfggavtE2Ta1oHoVPpLd7olyyUaNGZnEhhBBC5Hb8BBmY2GN3+Pjjj7vBgwdH9GQWQuRumG8OGTLEvM337dtnQTaqP/v372+BsLvuuiurd1EIEWeQYEj/BqC/Aq4HO3bscPPnz7cqiA0bNthzxM1IWnz11VdNJMCKCRHBixHDhg2zhMZgBamH1zIO8q4LxAro//DOO+/Y2Aihgs9B4Hj44YcTvZYkR17DvlD9wBIOr2OJxJo1aywmAYsWLbLHJE2ycN7llu8fLkLIJUXkRCRS5GDwoAsvCUOxJeuNpj/VqlVLMtPl5JNPtttgmRontWOPPTZT9l2IzILfNYEUyhfJSPD2T/5/wFOzZk1rbuUzHbBzYhBD1gEZEf6iT2mlxDwRS6iGw08UyKShHPjQoUOJtvEZQUIIkZkwAfe88cYb7oEHHjArAQkUQsQnBN+ee+45C+bR89BDBvBTTz0lkUIIkWlQVUB1J2IpIsHkyZNNDGDOj3UTds+ID8S8SDpkvoUDCULGs88+a+er8KRdIOCPgEE8jUoJKhhq1arlZs+efVjfCcC9hObb4fjm1eF9YKFHjx72/oge2Ephy+SFB+IV9IHwj30Spe+VwSJEbkUiRS6Dki5OgiiqQCY4vnqc3DZu3BjazmeGB0WK8KCtELkFMh1+/fVXyzygEiL4PxCOD7yQkcGggUGMSiNFRkKfk6DNE43cwJf/chtpQCyEEBlNeFZfuIAqhIgvpk2b5saPH29jF5LiPAT0SLIQQojMgqbP9Jtk3k7VBGOUVatW2TwfS0oqvrBPwvKIBER6Q4TD8wUKFLAYADEDKsR4PxJ/iaXNnTvXqjL8+Id5GUmLzM18xYWfx2GdTsUFMQSSH5ctW2brSXr0woO/pVem7ynLa+6//379cISQSJHzWbp0qYkPCBFUVnTv3j3R82eccYadICnX98GuoCCB9U3VqlWt5M2XyCXH2LFjbUG1hjJlyrgBAwa4G264IVX7PWjQICutQzEeOHCgW7lypXnvsb8333yzeQfmdtGE4466zyL+DwYCDCIYQAwdOtQ8r5nwMGioVKmSZW96e7PUQIUQIgX4RvEp/b6oovjiiy9ssAJkaJBByn6Q+SBELGDQK4QQ2ZUZM2Ykeuwn1EKI+OTrr79OlNUbtIGKZJEihBCxgLk8ogNVB8zjqZogfkV1w/PPP28VXjTLvvPOO+2WSnXOS+GQvIvF84knnmi2S5y39uzZc9h22EGF96Kg7wP7gUuJB7cSxkY0oiZW4ftc4MRAQjDP0bRaCBEdqqTI4WDvROMcTn7h9k9AFvjrr79uJbjBbHCfRU7AFtWZk3nwZJsUfM6jjz5q/naIHlwMKJkj0w7BIloov+vVq5cJKCw0MmL/vVUV61588cWo30/kDvhd+PJFBIsOHTqY/yLVQfRfQThgwMEAITXgA+nxIkWwkoLySxpl0TCL0k+s0zzeAo3Bjve1lEghYoWasAshsitkCfqxYfny5S1TWtc/IeIb5mtYm4SPX5i3+eCcEELEGoL+jEF81QJJuqVLlzY7J1/1iXXTlClTkn0f4k0s0UCVBQm5VGXgVEICIwnCVEL4JanER6o8WIQQqUMiRQ6HgC7CASdoD576nKgZRBKIJfM7HH8y5UTOCZ9GwNH0owj3v6NxGpUVb775pgWUCSxHgmoJegIAWfKU5V1//fXW3HvevHmh7fD74z3JpicwHQwui5wLf3uqZyJRpUoVq+SBhQsXutGjR9t9xLcgU6dOtQv9u+++66699tpUfT4DDE+kSgoaZNH0imwHBIpg1ZGnYsWK1piexlhCxBoqyxDpqFLjt0c2DlVllAsLIURWQJKLB+/5oLWLECI+IWDXsmVLq6ggS5mq523btpkNFBnOQggRC7BnogcOVeeIEzhv0G8CKyZYsWKFLWmBPhP0sGC+RWUEyYjEzhAdiK35Wz4vGBMg8ZdFCJFxKAKcw7n33nsj2ght2rTJBovNmzeP+DofaEWg6N+/v23PSTq1GXZ49HFi5yTfoEEDCx4jPnjbqYYNG9qJPGhDRSCafUSgiATCCc9JoMg98PenOuajjz6yyQxQPYMQ4R8jXPF7rF69esT38E2torEli9S0yoMgB0GxoUKFCiaWea9JgsXsM1Zc/fr1s3VUD3Xt2jXVny1ESmBtxqSfyT5CHCIZFTtUmz3yyCOH2fgJIURmgH2CJ1K1rhAi/qCCnh5vgwcPtspmxi9UWrGOxrJCCJFamPvQC2LNmjWWmEhc4Ntvvw09f9ttt0X1PsSQSNIljkTy4UUXXWQxLgQH5v64jHCfxFhZMAmRPZFIkQuhkRklbN6Df+/evW769Ol2oqZKAYoUKWK3rPNZL1RgRMOHH35oogQWAHj5vfzyy6HJKxcE1hUsWNAeU53BBYB1HgLADHAj8cMPP1g/inbt2rncBsFGFg/HmwoUmp17sDKimVJug78/vwN+D/63wTp+L1504HdRu3btiBU9BG8RCK6++uo0ZS8E/SgRQoL/A8BgBkHNQ6YG5Zz87wiRkbzyyismhCEWd+nSxTJ2gCyhp556yoQKqnhSWz0khBDpZdasWYmyDoUQAipXrmzNaYUQIpp5OPNvqsa3bNlic3+SD5csWWJWTSQQRuodkRTED5gv+ZgCVefYUWLJhCghhMjZSKTIJVByiyiBOkzAi9I476uPENGzZ09r6oPtEkFgrG4IGtM42xOtSEHjYi4wXFzwH6XkF5unaLLssNph20mTJkV87sYbb7T38dZQuQlsEho3bhx63LRpU7uYBoPjhQsXdvEKIkVQsAmClRhVGBs2bEjTe2MdFqwAomzTD2wiQdMrKoK83+57771ngysCxcq6ELGEBnBt2rQ57JzHAJ4sRYQyLPUkUgghMhOulT7ZJV++fC5Pnjz6AwghhBAi0ViBuQqxJWJPJMpSVcW8ntgOTgqIEL6PRLTwXmeccYYJosRKmJNTEeFjWEKI3ItEilwAHv6dOnVyjRo1Mvul8BM3ogIBcZoC//333yZSEKSl1O2zzz6LGMhNDl5fsmRJu3/ZZZeZh9/IkSOt4XBKLFu2LOT3F+TgwYMWFGYiTGVGsIdAboGgY9CqKG/evGbt4o9lPEM5J31UEKnCQbig2ue1116z32xaIKvi008/tUqNiRMnmkDhf2P0SKFygkEQIh/wO6xfv36i/zGacGG78/jjj6f5ewoRDlZ7VLolBZZ9LVq00IETQmQqjBd9ZmO1atV09IWIY8J92ZPD+8ULIXJf7zxEhz179rjdu3ebJZO3SkY88NbMqbVkJj6CkEEsqk6dOmY1icuBECI+kUiRC8BPn4Ejgf5Ik0yCsTNmzDjsOexuEClQqpmIpqbMLgiv+/PPPyM+Fz6gjWT1hMpO8JgsPfpVUPEhcj/B3wYZFzR4D4o4ZFwgviFa0Vg7tT1Twv0pEcdo/I5IEbR6ouEWDUGDDbzDQdRAILnuuuvSvA9CRAL/1WLFiiV5cPjdy3ZMCJGZ0BMnWPGKiC+EiF+wnxRC5C4QFbCaJmEP4YFbkvp27txpcw8sxElOZRtEiqADR6T38vP7pKomiEmRNMtnkaDIe/OeCBU4bWDpHOwZKYSITyRS5AIuv/xy6+UQDPC+8cYbZpHDutWrV0d8nQ/U+mBxNCJF79693Q033GB9ExBFZs6caYFdAr2RICOdix1WOewLlRTBJrAIFAR+uUAhpPCYBSjxCzY8FrkLfhsMgBDKEKeClQvA75ffF8KW39ZnalCFkhrIzMC/Els0CIoUZIdhpcNAzDcxJnuDyiR+g0AvEfq5pLZUVYiUoLdPpD4swQH9X3/9pQMphMgU9u/fb4I+PtGee++9V0dfiDgGa18hRM7qAYHoEFywYmJ+S/IdQgQ9IXDhSIp58+al+Fk+2dXj58rEl8qVK2f7wRwey6YXXnjBPve8884LxZU8JAsKIQRIpMgF+DK5IPnz5zf7HIK5CABYQNFzYv369a5mzZp2QfF++9zHTzAauycuNFiPoH4TLMZGB4GiVq1aEbe/9dZbrRfDnXfe6bp162bNksuXLx96Hq9/PxEOtz3asWNHshnGOZ2ksvbjBapnhg0bZnZkVM+EZ2nhww9Vq1ZNtB7bpVatWqXaUgdvbV+CHmxOTl8QFuB/BDGCbWkS6kUKP9iKttRdiNRAdQ/nxkhEqpATQoiMokePHokEigIFCsj/WYg4hwQyqpL9/eTw2wkhMgaqFrBbQnjg9pprrrEqBAQChABiNbhpRIJ+otFAxQO23lQ2YO39wQcf2Pvz2cSNPF6gIK5Ekh9xpzFjxrirrrrKnXDCCe7KK680keLLL7+0hEHiPfRPZX+ZfyshVQgRjkSKXJiVi20SCjV+fogHCBRcQLh4UMKPMHDppZdacBi4OHAhiyYAG6nhdRAaaof7qbNA586dLTsvCAFoZafHB+EiRJkyZWzQ8tJLL9lgJVykiuXvAksd/gfeeecde1y6dOmI2yHUDRgwwMQ8/keAQVXx4sVjti9CBEEwmzBhQrIHJSiqCSFERsF1l8AB40Zv60CQQggR31B1TIIavfQIREaaM3L+YH0wgJkcJCOxkFnt5wWMwanYFyJeYS5K5T/JS976iMTTvn37hkSJcKGQigWSTpmz+uQm/hd5D6q1f/7559D/JUIBMSGe//zzz0PvwXW/RIkSloTKc7wflsuResyQHFuxYkX7XCogcPUgsa9w4cI2t8caiqRYkgRJeiDWRBzI89BDD2XY8RNC5HwkUuQi8O+fNm2aW7NmjfWpaNKkSeg5LjQo2VzkGGQSgPWBWq9gc1H0A8yMgIkvqroQQRhAPfbYYxl6UMKtzPxv39uQMWADbKV69uxpC2BVdsEFF9hA7PXXXw9tJ0Ss8JNzIYTIahj/3XfffaFbwE5UCBHfrF27NlS1/8orr8TkPen19uijj1piHfPP5557zvoWMldFsBAiN0MwH0tjLJhYEB+4pV8D/w9dunSx+ecXX3xhwX4ss5OyWfrwww8Pe3/eI7wae9y4ca5NmzYW+3n33XfdnDlzLCGBz6RSItL7IHLggsG+4DLALe9LnInX4YoQdPLge/n3Qbwg5lSqVCkTLYQQIhoUcctFMJFEWZ8/f76JFOHQ84EgrBchfCUF1jZkrgwePNi8iLnAZATt2rXLkPcVOZuMbkZNdZHHl7763z4Ns2nURYWQt3wKQnkrwgTZIRIoREZN/Dt27OjefPPNwywSKKmmoTyTCjWuFUJkNARMGD9yXfSE24kKIeKPoF/8ueee684+++zDktoIipLpHS3h1fXYrVJZwXgokkjx559/2uJJyXZKiKyA3yUJSH5BePD377nnHhMJqGrgd44ldlKMHDky0WP+35gLkGDHe2JRDAh7CAD8X1IZ0bVrV4vlMNf1CyIB1kskqpKAwGfjfhGp5x3bezGCW5JMceHAmtlbdv/000/2WYgk27Zts9cgTFB1wef4/232mc9KrveeEEKEI5EiF9GrVy+7+OFLGOx7MH78eLtY3HHHHYm2JyBWqFAhu2AhVABqfUaJFEJkBQzkwis3KEdlMvX+++9bIJiBHRklZIYwAPTVRViVUXbOYEyIjLJBQyyL5OFMyXX79u3diBEjJFIIITIMxn5c7954442QzYNHFbBCiCCMmb31UxAClDwXrd1TEF5DA1/mo0mdc4YOHeoGDRqkP4bIUg4dOmSCA70zuaV3g08kwlaY6oGkeOSRR9zjjz9uryVxjmstsRtsnbj2zpo1y3322We2bZEiRcx+ifUkDjBvfe2110Lvdcwxx5hVMk3tGzRoYOuoiuBazjyWRDsEAiyM+cxIVZHEfBAi/MK+Y+0WBGsmkllpuO2bbGP5xlya6g/2DZGCPqJ8PoJEsKeoBAohRGqRSJGLuPjiiw9bt2HDBrvgEWQNihRYO5EZju0NA82nn37a1hO05SIlRG7h448/TvSY37zP/iIwgzjBAPO2226zZmIMxIKTIAZwEu5ERsE5Nzm7MyqNhg8frj+AECLD6N69uwkU3j4iGGSkd5gQQniSsgYmeEu2dWog+xpRgqpnkojwwL/wwgsjbtu7d++QDZ3PWKeiQ4hYQozE/x6B6iBsgOn3gLhAf88grVq1siQ3+jBgmQSIDgTqWRjn+94PvN7D9ZY+osRpwvs+YKHUo0cPu//RRx9ZwhL2w8xhWRAFEASJ5XDNZq6LIMF1nNutW7ce1tsRsYD5LvbfLMR7eI/g//Lq1avd7NmzrX/ERRddZOtI1mOegnji//ep5vC9JP12uHUsWbLEHvtjJ4QQaUEiRS7n9ttvN4GCACzMmzfPDRw40Mp2n3nmGSunxVvU2+BwYZMtk8hN0EsiSHDyQ6YJ5axQsGBByx6pX79+IiFPiIyEpu5kQyUFv8HwCZEQQsQSqrWA8SGZnj5bErB6EEIILxAQpOzfv7812vUgbNIglyBoaiDYiu0MVc0kCpEVTmZ2JKGCgC6LEOmFuAeBfZLVEB+Ct1QHEKR/4oknQuNwAvdBEOMI2GOXNHXqVFuCLFq0yCoXEAt4P+aXiAJUPBDcR9DDpgnLJhb+pxA0ECAQI4LVRFyDg3NZ4jr8r2HjjSjB/UjWZ7wf78PnIkrwvxn+/xM+1x0zZowJhThtePHBJ/chwODQUa1aNft/JX7EMaCqwoNFrRBCpBdF4HIZXCyZbCJGLF++3C6E/iILDCi5KHNxHD169GG9K8gqFyI3QblrkKTKcEeNGmX/KwSM+f9g4nTttdfa/wkZMUJkBJRzkyXlM5LCYVLAZEEIITIKsikJTIC3mgC8pdWTQggBNLQGApNUQARtXLhPRT9VWamB1/nxz2WXXWZjdrz4n332WR10kS583wQWqhyY1/mkTQQEGjonxdKlS01c4HrIa2Hy5Mn2Gq6XWCD5+ErevHmt+XuBAgVszM7nRgrWY93kE0GpvOjXr58JEghy9IwIin4eqiQ++eQTEyNYNm7c6D799NPDtuO1zG8RJXylBPuTFAgjVIBQOYE4g70sIBLymcHKDqoi6tSp477++uuQxRv7++CDD1ocyfd5FEKIWCGRIpdBgHXOnDk2kKQZMOWJQWrUqGHK+4033miqeHjANjUNz4TICdDki1Jb33CP3zyTKwZnTZo0cffff39oWz/holz1m2++MdEu3JtTiFjCwJ+MxOuvv/4wmwQmEWQ2161bVwddCBFz9u/fb4krZJVSYYuFA9dLD57TQggBZE5D69atTUiI1EsrvRAgDTbHFiI5qODxfQRJMLv33ntNVGDh+hakYcOG7tZbb7VYB4F/KgAQyAi4IyDgJrFq1SrbFiEgKAZQbUC/lLVr11piEb0nGLM3a9bMBDWsm/g8bw/MfJIKBBwrECFYfNNpb42E0BEO4gWVEV6Q4JaqhXAQRbwgwS3VFslV//MeVIn4fUBY8Y2uSWr14k25cuXcggULLEb0wAMPuHPOOcf6YBBbYp9JrPJgjyyEEBmBRIpcBheVwYMHW4CVC6cHlRzRgtLCpk2bhtajfqOQc2H3F0chchP0XOF3TnYWAzgyvR599FH33nvvubPOOss1btzYBrnBJl8M1siU+fnnnxM1EBUi1pBJ9dJLL9kkqWPHjqGMJCZHWPLx2+zbt68OvBAiphAIod8EgQcs5agYJIgThACLEEIEmTJlSkwOCD0m8LsnEMr8c+bMmWYns2LFCh1wkUi42rVrl9u2bZstjI+5pcrh6quvdi+88EKomgCrQvpJeLiuEedAyEBY4HpHc+dgFT2Bfhg7dqxVQjD/Y67IuJxKZoQP5oOdOnU67K9CdYGfJ/JZ2DwF+0UkBxVJfC/ECOycuOXz+b5B+F5YE1Od4YWJ1PRK5H2xaOK70BPD96CgEoRjiPjiKV68uKtXr55VUXquueYaEzeodJKAKITIDCRS5EIiZd0OGTLEyhS5mHoPfuCizUUH/0/vTZhUQzQhciJUQ/jAL/6aZL506NDBBAqECZqTEQwmoyUYDA7+nwiRUVCOzQTinnvusQm7b3THObh27dr220yuZFsIIdICzToJ5tB4FnsKskB9FYVvoE3SixBCBCGoSbLPmjVrrPoqPKhKYlw08NoWLVpYMhF2M4zREShq1aqlAx6HEACnAoLfF30UgN8WloORqgnACxZUN1AVSEUBVfIE5amSIPbRpUuXw1wneI5r3/r1692yZctMHGChTxyfPW7cONuWMTkJRFwTqV7g/VkQ8Kk6CLdqTa7ymRgL/VcQJPxCUmk4RYsWNfEFQQJhgv+LaHskYmM1f/58m+NSoQ1YVPGdqZ7g+9GD0R+Hrl27WkXJHXfcYc8j5LBQJcV7AN9906ZNoYoVIYTIaCRSxAlt27Z1e/bsCWXJ0bOCjBVsRrC/8SIFcLGnRFGInA7ZoZS3MigDb292xhlnuDZt2tj98ePH2yDUP6eG2SKzYUKC/633z+X3yGRIVmNCiIziySeftCAIwRyCDwsXLnTdunULBYYIishrWggRDuNn5o3Nmze37Oy0JrZR4S/iEwQF7IYQF2guzcL4l+phkicJlPsAORZD2J8yLvYOEIgZBOQRKcJjFogSvoE7VQcE4HkPKgLoAUGVAwF4LJ9WrlwZce7o4beNDRSCRrgla0rgUsFrN2zYYAv3g1ULwHUWEQFRggVRIj02ixMmTHB9+vRx1113XUikQHzgeGMFTuIelt/AtZ/Prly5sh1ftqN6hEoTvjdVF9hggQQKIURmIpEiF8OFd/jw4eZpzoUvWD5LBh0WI2QAhDd34nUSKURuYOrUqXbr7cwiNTLDZ5OBGIFiskgpPWeAixenEJkJokRSjd2FECKWEITwPtRAcIJsVW8ByuNgY1whhAAyz+ndxtxSiKQg4Wbnzp0mRpCEQ1Nmz80332yiRDhU1JDFjx0hczKqG3jMXA3LaiCpxwfavR0SPR+obkCA+Ouvv9zjjz9utr5ULmBpxPOs81BJf+DAAauKoFIBeyduqY7AtikI4ki0lUGIEVRncIsogOgS/v2Yi/K/g2jCmD9Sw+xomDZtms1zBw0aZEID0HODY0UP0vD/WSq2+Y70wuP6TxUHgtDevXutWgU41lRIcVzy5MmTpv0SQoj0IpEiF8NFigZQXBDDB5JUVnDRpXnwmWeeaRcrbzPCxbVz585ZtNdCxA7EuCDVq1c3qydKyRngUuoKDGr9gI+ycwa2QgghRG4cG3INHDp0qHlskyEKNM8ErCAIHlFVix1UarNHhRC5P6HCBzWF8CAq0P+PW8QBBAaEAMBSCGsvX3VDoJ74A8ICC+I4DZu57tCXxPeJ8BDw9yIFgXVsrBEa2I5bKi5q1qzpnnvuuYh/EESSYKU8lYOIEdHaKEVi9+7d1lSahdhJsNG2hwQ4xAi/IJaktdch3yFYYY2YQDN7BAUvUpB8isDDseRv4ROfSEjgmo+NLCIOAgRVHVQzEf/hOfpR+OMrhBBZiUSKXEz37t3tIkTZn4cJ54wZM6x8jwuSx5dWUkFByZ8QuYHggJES4a+++sqNGTPGMk8YvNGsj4Gx57HHHrPBni8TFkIIIXILeFUTrMCiBUEeawiud/RmItMSfHYr2Z0SKIQQ4dDDbcCAARYQTmsWuMi5ENxGhMCiiaRHT8+ePQ+zTyIZjMA8cyuuLdgOkQhGDyQSJf3rESe8DS/Qi43qBl/hgE0T783cjXgFtzSzpvrPB/19rwViHNgY0eyZ6xv3/XPB908NBPKxD8bmjAVhgqbX4fA9ESMQDVh8EkB6e3UgLtDDAmGE6ze0a9fOKj8aNWqUaPt+/fpZ1cgtt9ziXnzxxZBIRI877I99hQQxn0ceecT21wsUQgiRHZBIkYvh4sMFKQjCBI0Qq1SpYl6EHrIPuOgz8CCDQYjcQFBw4zfOwA7xjsEmdk6U4yJY+OwcMmpat26dhXsshBBCZAxc++jJRFUhIj42HIz5fvzxR/OqDkJ2qhBChPPEE09YwJZAL+cJX5XsUTVy7oGseyoiyM73TZURJ3yz9AYNGrj8+fPb/apVq9p6hAXEAarUqdCjCmL16tXu+eefT/TeWAt5kYIKAMRyL0x4EYFgO7bVkZqxU5XBem/HxOuJe+AgEYtrJX0vuD6yIEyEN7mmTwNJnogR1157rblWhFtFpQXsl+iX4eM0iAoIFVSCII54m0Y+j8/HvptjQdUG0CuGY42A4eH416tXz445ooY/Rr169Ur3/gohRKyRSBFHMHBgMMCFq379+vaYhlXTp083FR3INAcyJJRNLnIy+KAGwZ+TyRQDXsQ4BnZk4JDhQzlyvnz50tz8TwghhMjuEFAiSYUKCZpkkgm6ePFi89IG7Df8/YoVK2bx3gohsiP0ExC5k6+//toEAm+DRI++cePGHbYdzZ2ZRzF/oiIdYYpgOk2q77zzzlCiGMIFwXUf1KfSgAoHXovlE2IAFRY0lWbeNnv2bOt34qGJsxcoECMqVKhgCzZGxCmYuwX3Ka34/cA+yQsTVBsGoUcT10WuoYgS7H+wGj8WUCGChRW2TogV/u8wevRoSzDAASAIggTVEr1797aqCECcQOTYs2dPojkw+068J7xPhhBCZDckUsQBTDhpqsTFl4wGMgN8DwrUeLLpKPPj4kvGBDz88MOhEkEhciKPPvpooscMlD0nnHCCZQIxGGTQSyUFJbBjx461smAhhBAiNxL0kke479ixo2vatKk9Dto7EUwSQohwyGwXOR+SFbFfIjsfKyFvJ7Rp06ZQLwNuX3jhBXfFFVfYfRbEACppNm7caKIElRJ///23bY+A4EUKhHCC54jfrKdCgnVYO7388sv2O+I9sH4KQtWGr3Bv0qSJiQG8PtiPIRbwXdeuXWsL4kQwqA/ERa666iqbPyJMIB6w/7GC7z1v3jyrRGnYsKGtYw7KY6pQEEm8XRSiDqIPiaVsyzwWbr/9djte3gIKcAng+GFxRbUkdlgsCEFKxhNC5AQkUsQB9KGYOHGiCRCU83OhBy5UDCQYIJDVgMruPYlXrFiRxXstRPoI+qJSEksFEZZP2KABAzYG3QwCKYPl/0TeukIIIXITZE3edddd5l+9atUqV6RIEdeyZcuQRQvP+zFfMFhEHychhBC5C4La2D/T7BmrvyDMjUhe9CJFs2bN3PXXX5+oSoHAeXhAHyGCgL5v4Ozp3LmzBc0JmPsAPyII4oWHCgyC8IgAzMuYs3lIJPN2Tunlhx9+MEGChtPc+v5LHq6J7AM2SyzsSyxFiXCoGiFJgM/xIgWVE5999llEyyqqN7DbojLFWxNT1cQSFB+opGAb4j5UxnihQwKFECKnIJEiDqA0cMSIEa5MmTIhgQIYNJA1RzYDcIH0IsWhQ4csw8I3oxIip4HvJo3CaKzGoLlTp072e2ZwykDP/7bJPiEjiAGrgjJCCCFyE+PHj7cGt/hWk4lJ8ALrCIIxZLKSTYo4gW0FYz9PqVKlsnS/hRDZE4TNJ5980s2ZM8fOH74K3xMe+BZZx44dOywRC2skLzyQlLVgwQK7T0Y+lQrYACEOYAmE9TO9HXyDaP7euDL4IDdVBVSjsz3CBAtVeTxP4hfBd99gGtsh38fkvvvus/t8Fn0R+FwWqgeoWog1WEUR6+D7s1DxEYR5IMeEHk0s7EtGJatxvEkYRZSgCTbQ2HrKlClmw4i7hT++CBTsO7ZXHCe/nu2///77kAWU//vSKJvXU/HiX09VDM3GsdgSQoicxhEJnNVE3EH530UXXWRZA9g/0WyJCx+ZEJ4JEya4Nm3aZOl+CpEW8Nn2A2ZOcVRVMOBmIoXPKMEXMkrx9xRCpB98iZkY0ecFgVAIkT0ge7Rnz54WpCL5hKoJrD9JUiEYhWCBJSjBKTJcgaSW999/XwEOIXIp6blmDxgwwAKu999/vwVI+/bta/0E5s+fb8+RPZ8ZaNxxOAgQiAMkHS5dutTm+ECi1tNPPx3ahvuIDTgpEAsgID5r1ixL2ArvxcC1ArGBeRVESmIk+5/GzNyGw/WEz2/fvr3LSNgvrlvM75j3IVDQcDoINoZU1SNKkLAWiybbkeBzqRDx8D8xatQo6yExbdq0ZF9LIgFxGRp18x18ZQl/N8Sc4LHn70JvRdYx9z3rrLMy5PsIIURmXrdVSRGHHDx40LwO69SpYyWAXPD4oTA4IYsA+yfv6S+RQuREqA4ie4TsH0qIa9WqZQuDcF9BRLYMXqwMnoUQQojcCP7WkydPDj2mESrZsWTC8hyBLKhbt64FGsmYZfynDEwhRCSwTyWR7cYbb3QPPvig9SUoUaKEJb/he59ZIoX4H8zjCYBTMUDFnIese6rmgnMdkrfoD4EtkLf9w/qJvyswRyIw7nsxIGD7gPuvv/5q1w+EAALivjqCeAJBcpLDEMR5HQuV7KeffnqG/anoJ4gggfjOLQmXQdhH5n9emMB2KiPh2GLFRK8JKjdKlixp61u1amU9NeghEQ5VE2+88YbZbvu/GRZb9Mn46aefQtuxfu7cufa3xr4RqJagSoXXSqAQQuQWVEkRZyxatMgyGWhENWzYsJAazyDCN1ryJaBMUFHzhchpMOj2v90hQ4a4Pn36hJ7D1oJBLGWxDz30kGWQkgUmhEg7ymgUIntBMMk310wuwOODNgSYCKjQABULCZ81K4TIfaTnms15hQxu7ISxTCUBiIz8L7/80qx7eM/MIJ7HHWTZ44rgrYMIjpOAyHmc/hEkIt5www0WnOfY0ENi8eLFbuHChRb8JiufvxvbAVV0PEewG/smhAr/vlQnUJmBMIGNkLf3QpTiOQ9xBCoVsNrNKJjbEdBHXEeYCLdwwrYQceW6666zhcr5jOzFQDIc1SOIBR7+JggmWG1369YtxUpHem6QQMrfjp5R/rfNdwlWTfD3o1qF44vNWr58+TLsewkhREagSgqRZPCWMk4GJo888kjIAxKFH7WeC7oXKbjwklWniarISTBwC4prDE45IfoJDBk9p512mpVA8xuX77YQQojcBJmZZMoSLKGpJkkpjPm8J7nHN8wmsIiogUBBANI32hRCiHDI2GYuiUhBBQUBWUSKt99+O5HFjYgt9NgjQ3/mzJkmNCDQUPnG3J65Dv2HsG3m3M9jmibTOwTx4b333jvsbxgUk6iWYAmHXpbhr8WKiHgBFQpB6DWRESCme/sqfmvhIhi/Pa51LAgsGdHfIhLYJdL0mjkmfwffz4LkNyqMqGAJhyoXqhip8geqGaloQUQi5uJFCuas9HZhPWIQIChR4RJ+3IUQIrchu6c4g/JBGlpRMeEv4lz833nnHWuqSMCWRmj4WQKDITxHhcgpILh5yCqiimLkyJE2uGUgCwzeZ8yYYSXp4UEbIYQQIidDxuUXX3xh1bMEROjFRPCDzNtmzZq5Dh062BjQWz2ReUpzbUCswDMbywohhAiHRr9r1qyxAC29BjinTJo0yZKEUsocF6nvs4CFEwIE5/Ngk3J6EezduzckKhO8PnToUKhygORDguXAOgL4ZOJj7Yf9U7DCgAA57081BPbPPoOfAPmnn35qFRaIAIgTVNxlZHUC35kKCa5jJFUifgUh2Yx9IabB/hQoUMBlBtu2bbPjjY2VF3oQ5biWcp1F0IFI4gRgMYxzBU4ViA9e0MPCiR6JwaoJ/uYkGDCP/eCDD+x48zy2XBl57IUQIjsguyfhbr31Vvfiiy+6hg0bmijB4AQ7KC66DHgYJAiRE62emDxRnoyPJwPIxx9/POSfKoSIHfFsuyBEdoQGqAR7CChhbYilRO/evS3zGXsKniMwQnYuz/fv3z/0WgIhGZUVK4TIXdds7HdYOMcQBM8s4mHcMXjwYDdw4MDQY8SFpk2bWm8DAtjw+eefW+IVPSUIlDOP91ZNCNJUSJCFT5WFh+cImjPvJ0mRQLgHUcAH3KkQ4BhndIUMFQZcs6j6QCwJb95N5QE9ULCwIrkss3sm0RQeca506dI2n/RCAQIOf4dIx4fm2VSzFC9e3B4zN8WdgnkqCQJBiyigktH3COG6jPjE9Xr58uUZ3ktDCCEyA9k9iRRhgMLghCaKKPpklbMOcYJyf7LpyGDgYky2hhDZHTJHvUDBAJbACw3FaOr30UcfWTM3sop69OiRole3EEIIkVOhSaiHLGcsoLA6JJhHRiZBRQIhrGPSEOT888/Pgj0WQuREyNBnEekHsYCAtz8H33bbbWbZRFPsu+66y6ycfJXE2LFj3fTp0+1c7uFcjpUtcyAC6WPGjDnsM0g+xCUBsdrDNYEs//r16ydqwBwUNmIN/RjYF2ymsXHiGuVhjkaVBMIEAgu9TzILRC+EG8QFXzXB9ZQeEayjWsX3g0C0iASOFLfccosJGL4ShIQ5mo4jVASrJpifPvDAA/b+9EsE+k5gs5XRVStCCJEdkd1THMMFkcxyMjI2btxoF8HHHnvM9erVywYDiBRAGW+4H6UQ2REG857GjRtb9g9QKcRgnIH+uHHj7PfOgFgIIYTILXBto3EpQoQPVHnwy27Xrl3osbd6wjZjy5YtofVcN/HJFkKISGAHlxwtWrTQgUsFJAgS1GYOTtZ8o0aNzAIIECuwGApm6lP1RgIW1QdAwBvnA+brWASFVxlQaUGA3PeYJMDOnIj3RAggmI4FFDZKGQ2WYFQlvPzyyxawp6LPQ+UAlTgIJVgQZlV/E/4OQ4cOtf3wIgXXVP4OSSW4UQWB6E91oq94oRk2ltrff/99aL2vqgj/+3M9poqC7b19FZVJQggRj0ikiGMYBI0aNcpKCT1kagwfPtwGLd6fGF9ILqBS8kV2Jyim0YiMwa/PVqHfCgNOBoJYXgghhBC5BWw5CDTlzZvXRHgqCBnLDRgwIKIVihcpsM/o2rVraD2ZoRrvCSGSggr88AAtWfBU4iOGSqSIHqz1SBr01RDMWTiOQZGZ+8HHHGMECuY59A7C+im80oCmy9g+MZcnkx/bp9GjR9tzWPnRn5Jzf2bYZCGS4NzAEt5fggp3hBV6ZfqG35nJpk2bTHS7++67TeAHLK8RUWhSHSQpgQLRhddTbUFTc0Do52/KdwqKRlhAUf3C/8w999xj6/g7Eo+hx0Zm9dcQQohsTYKIa/bt2xe6/88//yRMnDgx4eqrr074448/EooXL57AT4SlZ8+eWbqfQqTE559/Hvq9HnvssXZbtWrVhAMHDiTajt+2ECK2/PLLL/Y/x60QIvPZvHlzQokSJRIuueSShDlz5tj/4xlnnJHw9ttvJ9SqVSth6dKloW337Nljzx9xxBEJ77zzjt0/6qij7LZ58+b68wmRy4n1Nfuzzz5LqFGjRsLy5csTMoucPO7geDVo0CA0bznuuOMS7rnnHpvLeL777ruEgQMHJuTPnz9h7ty5idZv3Lgx4b///kv0nszjV6xYkXDbbbcl5MmTJ/TenNubNWuWqd9v+/btCUOGDLHrkd8Pf82pXLlywogRIxK+/PLLhKymYcOGtl89evRItD782IYf519//TX02F9DixYtmvDnn38m+3kvvfSSbXvqqacmHDx4MAbfQAghcg7RXrdVSRHnBL0myYKhhJRmVRMmTHBDhgyxTDx46qmnrPxRiOzK+PHjLQOHqh/KntesWeNeffVVaxhHhQXZpZBV5cNCCCFERkFG6ocffmh2EUWLFrVKCewm6EexatUqy74lcxawFAGujzt27Ej0PlQdCiFEasCa5tFHHzXLIZoJi+TBhpZsfSon2rZta/3yfHPknTt3umHDhpO68IEAAJaBSURBVLkpU6a4P/74w9ZR+YADAmAd5O2DPMx9rrzySvfOO++E1pHFT6UFc/mM7C3hYb/nzJljfRWCle1UElSrVs32n6qJrKgWoLKe40l1Cceeng9Anw/mh/S+CJJURQeVElTjc1z5m/mm3lxTqaTwja89xFRYypcvb4+p6OdYUPUY7EshhBDif0ikEAYXUC642D1Roti+fXsrz+RiS0niX3/95V5//fXDSh+FyA4wiKeBHIN0BuIMQLG7uO+++8xvG/sKSp7xOBUiHnjmmWes5xAeukxUKSUnIJkSTISZ0FJ6Twm7ECLnQLDF+457QYL/e2wq+J8Ot3qiIam338BOhHOFrpNCiLRA34NvvvlGBy8JsPrxiVJY7NEXonv37ta/wFv2kSDIfIa5N1SoUMH16NHDNWzYMNF7Md959913LfhNsJuges2aNd0XX3xhvSbvvPNOd+mll2b434Lm1wgTzz//vPVECgoTBO3pFYgwkRn9LpKD40PCJU2q6feBMOSvgSxJwXFG4PCWTbwPfTVorD1w4MCQmMFcMxyagtPv44ILLjDrbLblfdauXZth31MIIXIDR1BOkdU7IbIePIsfeugha1qFOPHPP/+4IkWKWBMoDxkeiBlCZDfw82TgCYMGDbLfsxcvCNRQUYFfKAN/IXI7ZLHhCU2T+CuuuMImZkzKtm3blmw2HVlweBXT2O+0005LlUhx4MABa7j7yy+/ZIrHsRDi/8Bn/KyzzrJAEBWxBArxNE8Kkk5IRqHKAj9u7hMAo3k24ua9996rQytELic91+yFCxcmekwogfkh5yLmkcuWLXOZQU4ZdzAX6dOnj9uwYYMl/IVn23sYf/E8EODH3YDGzcGsfgLmixYtMncDeh5wrOllABwHRJDjjjsuQ78P/TD4DdBbYcWKFRYzAPaT/UWYIDgfXu2RWRC74PjQmJueH75igf39+uuvLSGTGEdKzJgxwz3yyCOub9++Jvx4oYnxNN/PV+iH/6398acvyDnnnGNVjgsWLMhyoUYIIbKaqK/bmeU/JbI3+PS3aNEiYevWraF1ffv2NU//I488MuQlKT9/kd3466+/Evmdvvnmm4mex/OzX79+ifxDhcjNVKxYMaFDhw6hx//++29C4cKFE4YOHZqsx26lSpWsL1HLli0TbrrppmQ/g2sBfpJ++eqrr3KsN7QQOZVt27aFejCtW7cuoU+fPtZPbMmSJUm+Zu3ataF+FZwboFixYqH3EELkftLTz4G+AsGFeWKBAgUS7rjjjoRvvvkmIbPICT0ptmzZklC2bNnQHGXBggWJ+h74czBw3q5QoULCqlWrDnsfeh1MmjQpoXTp0on6740cOTJTvgf7umHDhoS2bdsmnHzyyYnmXeXLl0944oknrNdRVhHsIfHbb78lnHTSSbZvXO/SyqBBg+w9atasmeK27777bkKVKlWsH0iQXbt2pfnzhRAitxHtdVtmeMIg8wI7HEoSgUwDyjbJrG3VqlXoKNGrQojsxHXXXXdYJhKlx75I7MQTT7QqIfy4hcjtkCWNBQBl/x6yyHhM1l1SDB482Kos8OeNhqFDh1omhF/InhRCZC5UUNx///1m5XTVVVdZFdWXX35pViHYUXTs2NFt37490Wt8ljNVhpwbDh06ZGM9yAqvcCFEzoJs/uCCVRzWkvj1FypUKKt3L9tA9jzVrFR6M77C/oeeBMB5mgoIKl09nJOpbguO3zi2EydOdCVKlLDxGf0+GHP16tXL7dq1y3Xu3DlDvwMVMvQaOf/8821+RRyADFgqBKgw+OSTT2zMib1uNNUJsQZ7KyojqCT0UOHAPmP9W6lSpajeh3kjltbe/hCwhMIqlfdJCWyc1q1bZ3/z/fv3h9ZznIQQQqSSTJNNRI7i/fffTyhYsGBC3rx5E+bPn2+3/FzItiNzXYjsWEVRsmRJuz311FMTZs6cmdW7J0Sm8/XXX9v/wMaNGxOt79Gjh1VYRGL9+vUJRYoUSfj+++/tsSophMhZ+CzSQ4cOWTUU2bmXX365nQvIBg1y4YUX2vpZs2ZZZmzXrl1D19BoMkaFEDmfWFQhMGbIyiqG7FxJwRzkqKOOsv274YYbEvbt22fr//7774Rhw4aF5tWnnXaanbeTgu199UShQoXstRn9ffnMRYsWWUWt/w4sJ5xwgo0PqU4IVoBkZdXEjh07bN+o6Nm9e3ea37Np06b2Pq1bt05xW/5eVLA888wzidY/++yzVlUshBAiMqqkEGlm9erVlk2ArzHemGR6XHnllfYc2XbNmjXT0RXZgho1aoTu33rrre7999+3rKJ8+fK5Jk2auJEjR2bp/gmR3cGXniw0suPwpk9N9R1eksFFCJE5+KaqHu9ZToNssm15TCYp2aX0Y/KQvbt161bL+mRsh7d2MJO3VKlS+hMKIZL1++/QoYONF6i8OvXUU61nYe/eva0njnBWUUIPA6ogmDPTv4FKCqpNqlat6nr27Gl9HbhPhSvn7SDMvf05nrn48OHD3YgRI+z8TRPtjBpv0fScqtpixYq5evXqWVUA34FqhMmTJ9v+T5061VWrVi3U5yEzeeutt9yNN97ounTpElrHvj7xxBPuzTfftMrClKDKfuXKldaHiUblHt6T704PipRYunSpbU//w19//TW0vl27dlHtgxBCiOQ5OoXnRRxCgycGnTRPpXSTQcErr7ySqCRy/PjxVm4qRFbBAJ6GaB4afmLpxGCV2ylTpphwIUQ8QeCAAOS+ffsSrecxgYRIpfKIz0xIPdg3+MkxzbaxGRBCZB8QHrDcQIhnnPbZZ58lEhgQKWi8yhJkyZIldlu5cmV3yimnhKwtEB1pCIqlhxBCRIJGwNjKYQlMEN5bBCN8YouzatUqaw79wQcfWNA4o62IsiuXXXaZNY1u0KCBGzNmjAX0ESNotox9EiID4jB2ysGm2IgA3bt3d88//7zNZbBQAgLzLBkBQftXX33V9nP+/PmhJtiMJVu2bGmit/87ZwXsnz9GJNUgEHDtQrg59thjbb0/TtHAe/Xr18+ufRUrVjTbLLj88sttiQS2Wj/88IP9XQGBA6th/r6Mk4UQQsQWnVnFYTAwwVcRj3EuvmR/kGnLoJNMdeDCTvBKiKwCb1QPA2ifWcRvFr98MpUQ24SIJ5i0MZFas2ZNyKMX0YHH+NOHU7p0affhhx8mWscEjskgAVD1mhAie7F79243bdo0CyZ169bNff/99658+fImNM6bNy/ZoMmiRYvstm7duvb6zZs322P+zz///HNVUgghkoRMc8YYJDeE96/hOQK3zBfJVH/66afj9kgi9tKnAQGZoDhJIlR+Uz1x4YUXupdffjnRuZZz8dixY23sdeDAgdBrMhL2hYoPxBJ6ZnhwUrj33ntNUEG8zir4DVENiBDQqVMnW4fo/vDDD7vGjRuHBIqUYHzL9ZJ5ob82IgQhpvHeKUFvJz7voosusr8pfxsSgVasWJHObyiEECIpJFKIiJx77rmh+2TZ0jSKLDuyQQh4kbUXnrknRGbBb5FmbR7u16lTxwIwvkG2BAoRr5BVRgZchQoVTFBmEkpJeuvWre35Fi1a2OSZSdtxxx3nypYtm+j1ZKlB+HohRNZDI06CJWQtE1CiipCxGdc+gjBk4BLA4f/9xBNPDL0O4ZGMWS9SfPzxxxaoQuBH+ABVUgghkoJM+2efffYwgQKo1Bw2bJiNxQcOHGhjkHiCapK//vrL3AggaPvD8XrooYesmoIqbyxpg/MXLKHee+89e0w2P4KFz9qPNVRyUDUxbtw4qw4A7KYQl+655x4LxmcHEM1xcWAfvUjBdY5m3ampuKcJObZO2FYjvACiA0tSlRt//PGHNd+GKlWqmFhz+umnW/WiHx8LIYTIOCRSiGThYk0WAQMDPCm5WA8ZMsSeI/iFN6kQmQ1lvgRc4IorrnCbNm2y0nIG2fimyopMxDO33XabZVfjl4t9AJPm5cuXhwILBCSzwk9YCBEbCCT5YBL+8ARiEBy5LpLRTDYuNm0EDD2IGgRtSpYsaQkmkyZNsvVk9nL9JBCDACKEEEkFuMuUKZPkwSGxgbEFIkU8QSUEyR+4DcyYMcPGYCT0kRziBQlvSRS0d6LyjdfRy4PgN4kjbdu2tUz9WLN9+3b3+OOPu+eee87EFOB8jyUXlk5ZGXzHhpBkmvvvv996JQF2YogLd955Z9Tvw7h32bJldkzhmGOOMeEFQT6YfJkUzCXpNYHdNZZbgDjBsStcuHCav58QQojUIZFCJAsDJ/pPMNAi845SXgZRDL7IKOAizkBCiMyCACtBGLj00kutwRxeuNg7vfPOOyE/VSHiGaydItk7gc+mTgoaIwohshdfffWVVUoUKlTosOd8BQSVEVhk4Nvtgz2exYsX2y1jOQJlvh8F101AvMiI4JgQIvfYAVNdn1Rz4B07dphFcLxB8J/qNgL91157rSX4YcVHJQC2RVSZBMUJz3nnnWeNqRGZsSSKdG5PL+zXY489Zo4I7BfQVwTRBEvQ7NBTAQF99erVVtHhr1skmz344INRvwfCPOLCoUOHLDHHi/gIZpGOfSQQNRDssYgiCdMLNxIohBAic1EqpUgWBgyU9+JNThCYC70f5IC3DxEisyCQ4rOAsLkgqNK1a1cLvC5YsMCyXoQQQojcAuOudu3aWQ8Z31eCrN1w33IsKsgcZZtgtRSJJb5pNiIFeHsRhH0sRgiqCSFEUtSuXdvsdvwYPNyGtX///oeJo/Fg8+SD6cyVERoGDRpkPTkIdtP7IAhBdA+B9I0bN1p/g1gLFIjPNNvG9nPu3Ll2DeHcv379evvMRo0aZYlAwVzt1ltvNTsnz9133+369Olj1RTRQlUgAowH20IqB/m+wWOclEDBNk8++aRZa3lIfJswYYLtm2ydhBAi6zgiIRhxFiIFmOi2atXKmm2R/QEMKiiPFCKjoSyZqgkgAEMVBT6jQoishSw2Mt+osPNN7IUQsYGsTgKEW7ZsscAXVk4EuHbt2mWJJGTipmRjgTUi/5tYYtCzgkrZ+vXruzVr1limLYkoQoj4IC3X7D179lgQGGs4bOYQTQkj0FeBPgcIFVRoZZZtXFaPOxB46QvE+RVBAHEYcYLEKeC+76fgq9lI7mO7jJq7ID5TPeAr50jkuuOOO+z8Xq5cOZfVIGIhytC8mgqUtPDNN9/Y9Wz//v32mzzttNNsPdc035cwJWbPnm3HheogrqPRvk4IIUTGX7dVSSFSBc2kKMtEoPC2AAyGWC9ERsJg1AsUXjBjsMtgVQghhMitkNVJ9itZufSToIKCSlfEBoKGQNAHa5FIuUe++gKhg9cAQRl//cwuzVKFENkXbJ5o/kwfm969e5tdUIMGDay6gnUkDsVTXxsy8REoCLjQUJwEPi9QUE0RFCjol8fxohE0VeCx5tNPP3UNGza0htsIFCRy0ZuB9dOnT88SgeLLL790DzzwgFlGe7CZonIitY3VCWx5qDqhap5+H1SyeJITGhAiNm/eHHpMJYm3sM4OlldCCCH+hyopRKoYNmyYDThOPPFEG5zR4Atoqs3gVIiMgkmAH6TSlI7sUbK22rRpY+W5QoisI6szGoWINxAjsKXA1xwfbXzG8dSmd0WBAgUSbYuNBVUYNE31TUVJLkHoQPBfuHChu+GGGxSsESJOSO81+6effrKGwt6G1Wezx8u4g94cVJIwD0GA4PxJbyD2CaFixIgRIYvkRx55xPXr189ehxsBvR45V8eCvXv3miDCPIgEQj6zSZMmbsCAASZoZxV8b44HvxEEHOwK0wLiAvM8BI/PPvsslCD5xRdfmGhGVU9K0KCceSPXQUSlaHtUCCGEyJrrtqRjkWq7neXLl5u9U7A5Ghl+ZPENHz5cR1TEHLyyvUBBae6sWbNCGTpMBIQQQojcBgEVsj9JCAn2mAACLQgUUKRIERuXEaQKFyiww0CgYHsCaTBkyBD3wQcfmEAB2D5hlaGMUiFENJx66qmuYsWKcXuwjjvuODd48GAThREe7rrrLpun0N+HuTDnW86vnJdHjx5tr6H6hHNvLILkVCc88cQTljzoKxU4j1MZQFVLZoNYQ8XeLbfcYt+PpWPHjm7ZsmXuggsuSPP7nnHGGWZhheUhfTaweQIsD1PaHy9g0MycCkIqEn2ATAghRPZFlRQiTdkRfvBFqSR+xh4yG4oXL66jKmIGpdEMUj3ffvutK1iwoI6wENkIVVIIEXu/c6ycaJBNMIymtGQevfzyy65Zs2ZRCwpksWKvQaUFCSVQpkyZRDYZBHyCjUyFELmb3HDNzk7fgcQpEqqomECo8HbInLuZM9O/kUS/WMzBqSSnWmP37t22DrGI/g4E47PqWkXVBMdg7dq1rlq1aqF9TY0gQ78kXBp27NhhyWgeL3QUK1YsxfdAyMBSim2nTZsWWv/111+bmC+EECLrUE8KkWH4AQdZfQxKgmRF9obI3dx+++2JHs+ZMyfL9kUIIYTIrLEWTVYJtiAyABm6rLv11lujfh/fQLVu3bp2e/DgQWt0C34Ml55MVyGEiHdI0FuwYEFIoCBwT/8OwN4pFgIFQjINuuk9gUBRtGhR98ILL5jdX2YLFCSQeRDM6XeECEDFgye1FSOHDh1yjz32mDW1DoroVABGI1B41q9f71566aVE+yKBQgghcg5qnC3SDJUUPisPX2NfXlm5cmUdVRETXn311VCljh/s4rNK1pQQQgiRW8F7G6sQfLh9NSENQ/F+b968uT0mCEPWKBmskcDCafXq1YlECqwzyHDFz7tWrVq2TiKFEEJEBxZ8M2bMcN99912iYH0QAvdLly61yjd6KqQH5tZUZVABR1UB1kVUbBDIb9y4cab2WGBf6O/A9cNXcgB9N7gO0Ug9GrgG8V3GjRsXWnfuuefa9+SYhSdBRoK+SlQKTpo0KbSO6sOxY8fadRN7JyGEEDkPiRQi7T+eI480+wGsd5gE+0HShg0bbNAgRHrA1omMIfBlxNhVjBw5Un6iQgghci0EcDzBBqv33nuvWWH4QNDEiRPNHoPHwdd4sN4gkHP22We7cuXK2bq3337bbsn49dmqEimEECI6pk6dakIxAjFNw+lH4ftCcOvPxQgVN998c7oFEc7V2Eb99ddfZrP84Ycfuoceesgdf/zxmf4no88DwgxiBSKMB0EA8SRaXnvtNVenTh3rZ0kTdg+JaBwz3yA7OaiWoMqwT58+7vfffw+tZ13hwoVT9b2EEEJkHyRSiHRByen27dutkVX16tUTDRB+/PFHHV2RJqiUYIBJFigDYrJqKPVFAGvZsqWOqhBCiFwJfuNYd3z88ccRn8d73SeFMPbCZoOKi0jZtNiP+Iaq/nk8u70w4W2fZNUphBDRsWLFCrulaTbzlY8++sjlzZvXAuVVq1Y1Mfnvv/9O1+Hk9YMGDbJ+E4gS+fPnN2un5cuXu1KlSmXKnwqxZeHCha5evXomdnto2E2vJG9DGA1U/SG4eLjGXX311a59+/bu33//jbpnRfC6iO0h7g19+/bN1GoSIYQQGYsaZ4uYsXfvXsso8dkkBQoUsHVCpBYG+35ATKUOVRVCiOxLdmpgKUROttHE0uPTTz+17NAhQ4bYeny6a9as6S677LKIr4vUoJTAD2I/liQrV64MWTthqbFz587DAkj8/woh4oPccM3Oiu+wa9cuS5rCTYDzNefdTZs2mc1Q27Ztrbrt9NNPN1u9c845J02fQSC+WbNmbsuWLfb4lltucWPGjHFnnnmmy0yo3GBejxjD599zzz1peh96RFA1wXyOa5uvkkhNY+0lS5aYtVXZsmWtB4dECSGEyHmocbbIdGgSxoDNs2/fPterVy/9JUSqIKMzmLGD0PX666/rKAohhMjVEPgiS5cMVTzHfeUDYykyaoMe4EEiBWzeeustEygI4lWpUiXUNNsH1oD1eIJLoBBCiOirKHwjZqz2ECioEvC9EebOnZtmgWL69Olm74RAQf+hWbNm2ftlhkCBsE2lhgf7JnpEcP1BKEltTMBz6aWXmm0hlfHffPNNaH1KQkMwpsAx4TH7GLSHEkIIkfs4Oqt3QOQeGLC1aNHCAsp4U2LNQ/YfmRgjRozI6t0TOYBGjRqF7CcY0DLwJ+uTXhRCCCFEbofgFo0/PQSnyKpFwPCBr40bN1pQrHXr1kn6kmMbBWSweq/wfPnyWSYw19p58+aZvzl2G0IIIaIXKXzfCc6v3O/Zs6fd3nHHHa5atWqpPpQkZ3Xu3NlNmDDBHlP5Nm3aNKs+yAwQFajU++CDD9wrr7xitlVAv43UQMNqRA3eD6soOPHEE63apESJElFVQPAe9KbgdVSm+Osgwg1WV6qiEEKI3I1EChEzGDRQDordE80aESmApo40Dxs2bJiOtkgSBC2CJh6ag2JVQdYMwRkhhBAiN8J1jmse1hrhIEyQXRv07aZpKhmvX375pfmDR8L3o7jpppsOe27btm12e9FFF8XwWwghRO6FwPuaNWvsvq8IQExAuFi9erWJwd6iLzVwHkc4RnhmLk31ApV00TSPjhXM06+55hq3Z8+edFnssv/+2kPlnxfWI13bkoJKCfpvkKw2dOhQd8YZZ9j6888/P837JYQQIuegyJ+I7Q/qyCMtU49JcadOnULrH3/8cTdnzhwdbRERPEqD1mBk8VCZw2CXgbMQQgiRWyHBA6vD5JI5gj7edevWtaAPDVqTuqaSjUqQ54Ybbgit57V//vmnPQ9ffPGFWUIJIYRIHqoM6H9Bhj/WQ6VLl7a5So8ePez5jh07WvV3ali3bp1VMCBQ0Bwb8RmRIiMFCq4Dy5Yts8bVQfulwYMHm1hONUg0cAyolnj22WdD68477zw3evRoayYejeUV+0Ji44svvhhad8UVV7iHH37Yvf322yGBQgghRPwgkUJkGLfeemuix7fddpt5KwsRhICJb+gZzCoSQggh4oE33njD/f3335bk4SFo88ADDxzmv41436FDBxMhsM9IzuqpevXqoYayZAETNKpRo4bdJ6mka9euIYtFIYQQSVO+fHmrMpgxY4abMmWK6927t1WlEejH5rhv376pOnwk72G59/PPP7srr7zShAoeZwZUfGAb+Oijj4bW0fA7NQ3IERdISuzevbv78ccfQ+tpsH3BBRdE9R5UXXBNIrEx2I+QY3nxxRdHvS9CCCFyD0pRjhGUNHJRJgOcDIuWLVtaiWI8Z4GTocFxYBC0ffv2UOMrBmGXXHJJVu+eyAbQr4SBLOXFZA3RXO3ss8+2340QQggRDzz//PN23fOCPYIFAgWCPcEvgmHhJOfL7e02br755kRZwFxrfTDJNyWNNpgkhBDxDj0iwi30qEh7//33rdF1tDz11FPuvvvus0qChg0bmvCRN29el1EgahcvXtziElw7iFFQBcF1JloQt7mGFCtWzB4jLlSuXNnm+9H2ieC68/3337sCBQrY4xtvvNFsnLj2/f777+64445L4zcUQgiRW1AlRQzAJ5iLLAFXAvLPPfecmzp1qjV9imfI0iPT5OOPP3blypULrScQzYAunnnmmWdskMdgjLJWGorFo7DH96e0mN/KrFmzrLSXvhSZ6cMqhBBCZCUEeGrXrh3qv0Qg6emnn3Y1a9a0Zqoexpd4ovumrZEg0/ett96y+/Xr1w+tf/PNN+2W8ViTJk1CmbOy0xBCiLSDkFylSpWog/RUHnTr1s3O41hEUVGRkQIF/S2wE5w0aVJoHeICVsxYTEUDIjeCNvaBvj8S1y3sqhA8Tj311BTf491337XrT4MGDULXMCwJsYYaNWpUVO8hhBAi9xO3IgVZZjS4OnDggD1GYOACTjZbalm5cqXbunWrZUFQIcAFnKaGBKJ533iGAQwDkC1btriiRYuG1pM1QSZFPEIzMLJn8Bx97733rJyV4EQ8+UKTicPvwQ9SGZx6e7Bos3GEEEKInMqvv/5qTa+xPAyH6yDJL6tWrXInnHCCrWO8imCBcIHNRlIsWrTIrq0VK1Z0hQsXTmQpBddff729NxB00jVXCCGS56WXXrJzLwLDk08+acll2OolJxhHEijatGlj53147LHHTIzO6MQsqhYQFtJjuUxi3f79+23u7t0RIDXXD65HJCkSMyFRzRPPrhNCCCEySaTggs3kK7OX1AwUGGiQscYEEBAsCBwPGjTIHt99991m25TcEpz4kRngSxeBoDMTSqoIxP9VVcydOzd0KBgslS1b1v5u8caIESNc27ZtXevWrU0YGzdunDv++OPd5MmTXTzAwBRLpyDKnhFCCBFP0KSUgFew2gGSGsuS9NKiRQtrslqtWrUUrZ7CLUl8JQXe574PhayehBAiZRB/qWLj/Eq84JFHHrGKgHbt2kV1+Divc77HYQBRYtq0aa5nz54xF4n5HPYR+ylP+/bt3fr1692ECROieg/m6CResr8eelUsXrzY7dy50xqGpwTXKz7vwQcfDK0rVKiQ7duuXbsSJS4KIYQQQTJEuv7tt98SBfEzi0OHDoUyzlKC7a699lq3dOlSd8stt9i6q666yrIDsJ/xk8do2Lt3byKBAvxjnhMu1I+CKoKJEyfaQI/KAZpEUipK2Wk8wKCNctegvzQCDqKZz3LMzWzYsCHR35rMnD59+rg77rgjS/dLCCGEyEwqVKhg/uY0DA1aNZHkwnXxtttuSxTAwpaDqkOycb0tVDgHDx608VW4SEH26+eff273ef2HH35o90mUEEKIrACbICoUPv30U7M7qlSpklUXUG2f3cCOFmiS7c+1EJ50lRSIGlRgAElpzZs3z5D95Pgxx7zmmmvca6+9ZtcQEjF5HC00A0cQR/BgP30Da/4+0ULVBgIObgp33nmnO+ecc2w91zchhBAiOeLW7gkod1+2bFkoa+3nn3+2WwSWM88805UsWTLZRaSexo0bmz3WXXfdZY859ohFDKrigR9++MEyVCKJWrld0Bo7dmwigYKBKoIgVSVCCCFEPIHFIcJB3bp1Q+uGDx9uAsLIkSOTfF1SAgWsWLHC7KMYowYFCN+jokiRIjb2ZTtQJYUQIqsgSa1Dhw5W5YWzwd9//+2uu+66bFll7/eJREyqvzdv3myPaficEmPGjLG+EL5hNgJARtG0aVPbP+ZbHM9oYC7OfMzDtYO/C8IKzbajgeuOF7+9oMG+ML+Ptu+FEEIIkWGVFFjXUNWQ2fC5qaFOnTqua9euNtAoX768lWDS1Jkmgtg9UeqYHP47kgkX3vh43759oefE4YwfP96O0cKFC+1xr169bHCT0jEXOZNXX33V3XvvvaHHZOZQ6iyEEELEK+HVv1iO0oQVOydfRUHlA8EirpspWWQErZ6CVRhk0vKeZP9+/fXXrl69ehYoo2+FEEJkBcuXL0/0eOrUqZYkSMU5CWzZid9//z10H8u91atXmwUSLgHJMXPmTGuODfQi7NKlS0z3C0cIxG76FfnKDmx1o3W0YC6OowTNqxEqvP0uVXvRgrU1vY64VtFz4rjjjrP1mtMLIYTINiIFE6NobZeykvPOO8+WJUuWmA3Pc889Z1n+kBq7J2yihgwZYvZFDK6AjBAGLyqlT5o5c+bY8f/qq6/sMU3LGZh6r+TcCNkkeJF6EcvD49wqaJFB5AfocPLJJyebJSqEEELkRqiYJCCEzUmkIByBpf79+x8WhGIdGbgIDHny5In43oxj8QyP1I+C7GQWknOgSpUqiSo4hBAiq/nll1/s9rTTTksyW5/FQ+/HzIIKCg9WxYDwm1zT59dff921bNnSKhWw9UOkiCXYBFMZh6USFR2+Mi41ltvMSzmOHFcqWm644YZU7weVe8R+WLDNpk+nEEIIkVbi2u4JmLARLMeGCA9g34wwNXZPTPwQI8hyo1EVZfSUdVIqmdRkUjg7NjTgokeFB19S1gcHobkJshnJwPGe0UDmCY8Ru3IT//zzj3mQ8n/AAB1PUyoq9u/fr0bZQggh4g6aiG7cuNGSYIINsoMBsHCo7q1Ro4bZZCY3ply7dq3ZlpLwEMk7nM8jEQQYhwghRHaBuRDuBldffbUrW7ZsxG0Qd0l08ku0/SBiQfAc7e15k7N6+umnn1yTJk1sLkSMAZE51k2yr7zySnfzzTdbFUW0x2LPnj12HeJ4A4lz06dPtwqIaAQKxHDcEII9NbguYZ/Ne0igEEIIkV6OSAjOkuIQKh4QGWjcSyZ/WgcQu3btcvfcc48FYakiIXPi0UcfTTbDQvyPLVu2mOVW8OdI465SpUrlusNE83B+H88++6xZLTBwRShDoAnvVZFTocFc0EaiYcOGVqmUmuweIUTOgUw8ggZkQlJFKISIHLiiqSkNRRnzBHtznX766VZlmJSlE/2sCCglRZs2bdykSZPMWvGZZ55J9L9JoAy7krPOOst6WrAP9evXl92TEHFKdrtmM4cm0L1hwwY7T0VbSUFwPqO/A+de5vZ8Nj0aCPQTrE9qnso5nZ5D8+bNs6TG9957L1R9kR5o2k1s4fHHHw8J1ogNyfUpCsL+kzyG88OsWbPc7bffnup9wP2A78T3f+WVV1zVqlVT/R5CCCHikwNRjj3iPoJOFkQsdBomlZTki7RxySWX2I+WEl/f6KtMmTKW3ZGWQVR25rbbbnPff/+9GzBggGXj8N3xZc0tAgUVSWQ7eRD+XnzxxZhnEAkhhBA5Cfy+x40bl2gdFbjYdlBpmVxiS3ICBSLE/Pnz7X6jRo0SPTd79mzXvn37UKUwwTIsSgm6qSeFECKrwRIWq7rXXnstSYECCMxnhUMB594//vjDmmd/+eWX7scff7SKOCyLI0GlAQIF53PEgFgIFIgR1atXN2GEwM7DDz9s61MSKIhx+PkXx46eGMw5k9r3SAIN1ygvqiMKMc/jWkYlhxBCCBFr4r6SQmQvyPJgEEZlhS+tJeuDElJVpWRvGMgi1uGZ7UF0IusmtU3thRA5i+yWlSlEdoLM2+SCb/TiYtxDVa+H6koyVVu1auXy5s2b7PtjGVmzZk3zF//2228TjZfuvPNON2XKFFe5cmW3fv16Cy5R0YGoEd67QggRH2SHa7bv1fDyyy+bE0G0gfPs9B0iNZGuUKGCiRpUPETb3zIaXnrpJUsCo8E4iXwpgQUgn08Da98jE0Eb0SWaxDHseelfRGNuluSuYUIIIUSsrttx35NCZC/I8qDR2NatW0OB7d27d1tTsCeeeCKrd08kARYVBEWCAgW2VgxwJVAIIYSIVwhalShRwrVt29YsMiJBw9OgQAHYemDdxJISVCtCgwYNDkvooEoDqErFXvLgwYP2+KKLLkrzdxJCiPRCzzoC6DNnzrRqA6rLWbCmy4mw35xnEShq167t7rvvvnS9H+du30fIW+fS3DoagQI432/evNkNHjw4tI7rQ7SV7SSaYUOISP7hhx+m4RsIIYQQqUcihciWkJGPJRKDIw/ZIJSZkrEvsg/YVtHszoMogTpKozghhBAinlmxYoWJE/iAk3DhOXTokNu3b1+Sr8NKg7EQXu3JwZiIDNtIVk9UTFCRAVyTacBNJi0BwaR6XwghRGYwduxYmy/Q16BQoUKhhSSn7ATJcoULF7Y5KJVtixYtirgdNkgfffSR2ffShy/aXhGRoLqE6jcsgr2wnJLtHyIJAolnxIgRVqkyZsyYqD4TAaRZs2YhMR0xY/LkyW7Hjh1RNdUWQgghYoFECpFtIdiNUEFDyaBlAlkg+CmLrIXBLM3THnroodA6GsgReMkuZddCCCFEVkI2LV7ro0aNSpTBOmzYMLuG4l8eibvvvtusLlPqG0GjWQQQbJx83wnPW2+9Zbd8DlZQH3zwQaiKIj0BNCGEiIXdU6QFISA7QVU4NnrMQREfSM4Kh14Vo0ePtvvYMaW3zyDCTZEiRdwVV1wRVe/MVatWmaUT1xUP5/2nn37aKiJSAmGCSo3nn38+0TWJKsBTTjklHd9ECCGESB2aoYhsDRP6devWmVgRtA3q16+fNX0kA0dkLgRDEIquuuoqC6AQ6ODvQT8RGrqpQbYQQgjxP8iIpb+Wh6AT/SEQ9YMVo+EklzXroUEr0F8iWKkBfAZgD0JfCjzK4eKLL9afRwghoiDcfqpWrVqHbYOlElVq2Dxdf/31aTquNOT2IDq//fbbZocVTeIXQsrOnTtNZGA/ooHXeI499lj34IMPWg+j+vXrp2n/hRBCiFggkULkCMgA/PXXX92tt94aWkdjbdb36NEjS/ctnrjxxhstOyhoubVp0yarpmCAK4QQQghnosDPP/8c8VAg5tPseunSpZa9GmT69OnWRDaa7Nn//vsvJFKEWz0BFRz+8wg+LV++3B6rH4UQQkTf6DM5keKTTz6x8zYEq8tTw+zZs12xYsXcypUrQ+vOPPPMJBO/mId99dVXocfYQo0bN856WIT3JQqHa0v//v2tETZ9ID3t2rVzkyZNSiSoCyGEEJmNRAqRo5gzZ45lmhQsWNAeky0yfPhwy+Zv06ZNVu9eroUgCseYgIqHQfCuXbvcZZddlqX7JoQQQmQnsN5AFKCCIegnHoRrKj7fwSAU1aF4iGPb5KseUrJd/OabbyzTtmbNmhEto1q3bm1JHkD/qK1bt7pbbrklXd9PCCHihaDYnCdPHnfNNdcken7gwIEmGFPNdvnll6fpMxCtuVYgbqcE1lKVKlWyqo1g/4j27du7E088McXXsy39kOhfkd36fwghhBASKUSOgxJYvEGZzPuBIlkhZH8w8FK/itixefNmO6Y0cPNZndhJLF682P3999/KthFCCCHCwI7y/PPPNzGAJtVBli1blqgaMQjX1aZNm7ry5csf1l8iEi+++KLdYs9B8Cwc3ovGp755Nv0tLrjgAqtCFUIIkbpKCuadefPmDT3esmWLmzt3rs2V0lpFAfSzoG8R9k4pgSiNtRMC9ccff5zi9szf5s+fb9bJHqydFixY4EaOHJnmfRZCCCEyAokUIsfCIA2/5V69eiVaT38EBotktoi0QW8JmrURKAlCtQpZO9g+CSGEEOJwyHJ9//333dChQw/Llq1Tp45l2yJIhIN48Mwzz5iNYkqNrQk8eaun5CojCEx5W5BLLrlEfy4hhEgFwf6H4VZP2CZ5u6Vy5cql6j0nTpwYeozI3LFjxyT7EO3duzfRdQKBGoHi0ksvTfGzeN8GDRqYMOEpXLiwidvqIyiEECK7IZFC5HgIAjBZD7c6oIkZgy/KbynDFSlD4IRjVrp0aQuSQNmyZe0xx3DChAk6jEIIIUQKEHSioiLIDz/8YNWgZOOGN7lObcPsd955x+3evds+A9uPcAhivffee9Z8FQoVKuQ6dOjgFi5cqL+dEEJEibfL89VoQbs9KssRlAcNGhT18fzzzz9d1apVXdu2ba16IjmY3z722GPWr2Ljxo2h9ZUrV3ZFihSJ6vPo53jccce5M844I+p9FEIIIbIKiRQZyAcffGCDCAYGZ599ths2bFiKryHLjgw87AHou/DAAw9Y34Xwvgxkwx1//PGuaNGi7vHHHz/sfcjEo6SfklQsB6ZNm+biwQOaQHqNGjUSrWdCTlDg5ptvdj/99FOW7V925ffff7eqCcQJgh4efocMiD/88ENrCqdsGyGEECIyjD8aN25s1h9JNb0m2/aLL744LKBFhSJVoMFGqNE0WoW6desmsh8BqjRatmxpPaNWrFgREk2wEsHGUQghRHRQgUD/hj179ti83sM5GzjXlipVKurDybmYa0WBAgUO628RDnMvKiYQNry9X3JwLSEuQKzAgyDCtSVYSSGEEEJkWxJEhvDLL78kFChQIKFp06YJH330UcKsWbMS8ubNm/Dss88m+ZotW7YkHHvssQmDBg1K2L59e8Krr76aULp06YT7778/tM3SpUsTjj766ISxY8cmfPHFFwmLFy9OKFSoUMKoUaNC24wZMyYhX758CbNnz7Zt+OwTTzwxYeHChXHz1/73338TqlevnnDkkUcSKUi0sK5t27YJ//33X0I8c/vttyccccQRhx0fljJlymT17gkhctg1j3MHt0LEIzNmzLD/gRNOOCFh7969qXrt5MmT7bXnnHOOjV9S4p9//kkoXLiwvWb+/PmHPf/mm2/ac6eeempCw4YN7b7f/qWXXkrVvgkhch+54Zqdld/hjTfesM8+5phjEnbs2JHq1zMH/e6775I9x3v4flxfopm3Eg9gv4gNHDx4MNX7JYQQQmT1dTtuKyloFnXssceGmmGReXDhhRe6559/Pibvz/vwnjQsLFOmjLv99ttd586d3YgRI5J8zQsvvOAuuugiN2DAAFeyZElXpUoVq76gKuLgwYO2zfTp060i4O6773bFixe33gC9e/e2UlCfucc27du3t4w9tuGz27VrZ9vEC5TeUpVCc8qvv/7afDc93raIbU455RT7LcQLeFOT+YMXKVmYwWxPMjGffPJJW/fRRx9l6X4KIYQQOQn6QtAL69FHH7UM2SCzZs0y66WkIAuXbNdOnTql2IsC6MdF01TGMNdff/1hz7/22mt2S9bv2LFjraLUN029+OKL0/DthBBCeF5++WW7bdSokVkxpQRVGD169Ai5I1AhEcl+ier2u+66y3Xr1i1RD8amTZsmWdEenMvRO/Dqq692jzzyiDkuCCGEEDmNIzPaw5ElePEkcM86yhYjbRvsHUC5OusosUxp29RC/wImglgEAYLFfffdFyrBRwQ48cQTk12S44033nDXXnutva8Hz2AaEidlOcQxwRoqCIFjvv+7776b7DYMfnbt2pXsNvQYiNSoMbdDQB4h4rPPPjvMv5PGZYg+DPxOO+00EzZyG0uWLLHfId/xzDPPdEOGDHHffvtt6HkGsfw2fvvtN9e1a9cs3VchhBAiJ8K4CzsNmpQG2bdvnyWKYL3E2DASBJVeeeUVG4dGA6KHF0awDokkYgDjUK77JKww/mPsGk1ATQghxP/Rq1cvmyude+65of4U9KKAYBJcUiBM1KlTxw0fPtzdf//9yW67YcMGS3AcM2aMWQMmBzEVRHGso3yshesQ5/9WrVpFJXgLIYQQ2Y0MvXr5YD6NAj34JLIufBLHJIr1NAH0UEHAOjIKgjDBYj0++WmFRoNM3pYuXRpad9VVV7nt27e7HTt2WNPlLVu2JLskx969ew/LpPOPeS4SiBj0AGDy6SsA2A/wQWW2eemllyyYjkhD4P2JJ544bJuJEyeasMGghT4DPGaCGvxbxBvnnXeeiTkck5EjRx4mNCEeIV7RsJLsRO5/+eWXLqfBb6J69eqWeYMwgV91UJyiSocKHUQtfkMMuGmYLYQQQojUQYVCUj0ogOssgSwartL/KTmiCSoRmPLe5HfccUfEzwuKFL5HGlCtq8CVEEJEDw2yqXDYuXOnnT+JE2zdutXmi8y5U+Loo4+2BDHmoSkJ0bVq1bIqiOXLl7sSJUokuy3zONwXuB4gcnvUQ1AIIUROJq4ldqySli1bFppc/vzzz3ZL8BrRhGBucosHOycvyNxwww1p3p/rrrvORByqOMiMo/yfzAvwk8q2bduawEPgmez4K6+80uycgtv079/f9oPnjjnmGHfTTTdZU6/gNvEO1ltYaDHZ5/iQeeIHdUzwqbBACGKAyHpELZqVU96LgJRdYF/ItJkyZYqVHPO7oVE6g1VvEebhe/CbR4ij5Picc87RQFYIIYRIIwSuGGsxjqBiIhKFChUyC9B169YdNgYjUWbcuHGHVRcnx8qVK92PP/7oChYsaBZR4WDXyHiWcQvJPH369Ak1z0akEEIIET2HDh0K3We+SIW6r4A79dRTo3qPevXqWQPsokWLJlrPnJNkQ28/Ddg4kygXiaCLBKIHgsa0adNctWrV9CcVQgiRKzgyoy/qLPnz5w+tIzjKutGjRyfa9rvvvrP1BE49HTp0sHWTJk1KtC2ZDKy/4IIL0rV/CABUH2zevNkeE+i99NJLzSMyNXZPTDJ9dQUVC8DkMXzC6h/zXFKQYcHkkooSqh6Y+AKl+j7QTG8Jvj8ZFFRlkJ0X3AZrJ0pFse/hWPFeVJ/ky5cvov9lPIOIM3/+fAs0MPCjeuXWW2+17JggHMv333/fNWzY0DJiWMh2YdCJBzXluRkpXvDeixYtsvLfSpUqWaUHvwX2A8HszjvvdPPmzTPRJQj2VghfvJ7v58uThRBCCJE+uPZ/9dVX1m8iJf/vcBtOrskPPPCAu+eee6y6M1q81RN9x8LHKsF+FATQ6D01dOhQS05AIJFIIYQQqYM5IHAOZe7lRQoSv5KCBMinn346lADp55zhEG/o3r27uUYkV5EHJMoR+wi6TvDa5s2bK+lMCCFEruEIume7OIZqBS7uBJxpMEiGGtkIiCbBrIZIBKspwqFRYd++fU2Y8IMSstmwavr000+j3j/KOKdOnWqlpZEmo9CiRQv3+eefm1VUUtCEm4D1zJkzo/7seIcKBUQjPKQRjFLzr8Iglr8XlQ0EChA3+BtRoYE1BANdBDJ8Sq+55hrLoty/f7/1hiDgQZUMghm/Q35DKf0W+dvyPjVq1DCx4qmnnnKlS5eOwVEQQoiU4Rx18skn2zkOqzkh4gVsP7iuM84KwniSvmf9+vWz/41wsGGkioLx4uuvvx5VRi72jFiHcosFSST7KJIu3nrrLRuHNGjQwKws3377bav6RRihwkIIEd/khmt2Zn0HkgCZhzOf53x6+umn27yNyogLL7ww4mtIxuzUqZOJCiQxBntUBuE8fv3115vFNc2xk4JzN3EK5voIG1w3hBBCiNx43Y57kYJGwdj6cKBat24dapydXng/bHewcCJTjvJ7st2ffPJJa6DoMyIo6QyKFmS9M1ghiI2g8dBDD7k5c+ZYc2cgWI73JCX+NNSm+mP8+PFmI+ArKuhJQLCbySuDqREjRthEmR4VapiYdqhS4O83d+5cy5hkor927drDqhcyA34fDHip6Ln33ntj9rsVQoh4DXgIESuoXqRqAQGDcR6WHElBAkS0HuJURtCHgqAZiQ/JvQ6rJwJoVNfyfxkpi1cIEZ/khmt2Zn2HwoULW2IZ1XAvvPCCuRwwn6ZvYVLnYObct9xyi8UZWMKvD8HEQ6otqJBP6frAOR3rQITv8Mo8IYQQIrdct+O+QQGlmggIZKE/+OCDMfsDcPDJoiPz4rLLLnP333+/VUV4gQL442zbti3R6+iRQaZEhQoVrJx0wYIFIYHC89xzz9nzZOiTxfHqq6+GBAo/+MHf8uKLL7YKEcQMMi8kUKQPRAEEJxqRY6fA34pMGgaXiEn8TaiuQTjAhsnDfQa4qekHwoCU3wtZlthRlS9f3j77m2++sQErf2OyJcnelEAhhBBCZB40NaXqMSm43pN0wtgSm9PkSE2TU2/1hFCR0uuoAgXGJhIohBAibfhkNM6j3jaX3pDJnYOZ+2MT3KVLl0Tr6RmIgL1nz57QukgCBUmGOD0EKyaoynj44YclUAghhMjVxH0lhRCZDRZPvqm1FzRSE6QQQojsRm7IyhQiGkgWIFiE/QY9KUgISQ0kGhC4aty4sYkY0ULQCqsnbKJIrsG+KZyFCxdahScWk9OnT7c+abVr17b/y5YtW5pNiBBC5IZrdmZ9Bz6DzzrttNOsMo3+hSSq4XwQhHMzNr1Y8EaCBDOsfD/88ENLWnz22WeT/ExcEtq3b2/9JOlBkVSlhRBCCJFTUCWFENkURAm8p1nIypFAIYQQQuQMqGIsW7asWSlxG05K/asIbo0aNcrEg2BT1ZSg3xRBMLJwIwkUfhuacFPJ6/uU8Rp8z/fu3Rv1ZwkhhPg/ECWwZp42bZrdx/IX2+Vw+vfvb6L16tWrIx46LJ5wScCml/N0crRp08aWFStWSKAQQggRV8S93ZMQQgghhBDRUKJECbd+/Xqz/Qj6igMe5YgX9K5KSqwoV66cZdFSTZGa7Nig1VMk+DysRICeZPv27bP72EIC4oYQQojUQdU7fSY3b95sj7FSDu8JgSUU14T9+/dbpmgQXz0PZ599tjXJDn891RJYQ1Nt4S0DJ0yY4K666ir9uYQQQsQVEimEEEIIIYSIdvB85JHujDPOOGz9Y489Zhm3BJeSgiAVNh/JNdMOhwCWFyBuv/32iNt89tln1ieD/lk1atQw2xEad7MeUmtLJYQQ4n9QBeH7WYbDefe9996zajbs9jyLFi1y5557bqiyLRIIHFj/jRgxwq4hQgghRDzzv+6+QgghhBBCiMMYMGCACRNYdYRXUHgIMhUsWNA1atQoplaO2IxQKVGtWjVXrFixiNtg8QQEu7AjAV7z559/WiYwgTIhhBCpo2TJkib6+oqIOnXqRNwOoSIoUNC3aPjw4VZdQX+gSpUqJfk6GmKPHj06SRFaCCGEiBdUSSGEEEIIIUQS0Oh0yJAhrnPnzslmxJ5wwglu0KBBZukUzoIFC8zi6dtvv03VcUZomDp1qt1v1apVktutWrXKbq+77rrQOm9Pwv5Q/SGEECJ1fPHFFyGBgsbXwcbYv/76q53bI9n7cc6lp8RTTz1ljbCDYAm1Z8+e0OMWLVrYtaV48eL68wghhIhrVEkhhBBCCCFEEtCoGh/x999/31WuXPmw58myPfPMM5M8fmTU9u3b13388cfWhwIhI1o2bNhgQTKqIW655ZaI29Ac29tBYfVE/wl6Y5x00km2rmLFivrbCiFEKvnnn38SPa5bt26ix0OHDjUBu3Xr1m7y5Mm2DsHCV9LRewJxOgjn83r16rk8efLY+R1xG44+WmEZIYQQQmlVQgghhBBCJAEZsXfffbcbO3bsYc/98ssvrmzZsq5BgwZm6xEJAlZk015//fWuW7duqTrOvoqicePGoWBWOLt27XKnnXaay58/v1mHUPlBE9fTTz/dnXXWWRIphBAiDfz++++JHlepUiXR47x585rY4MULBOMbbrjBTZo0Kcn35BzNteL777+3PkJCCCGE+B9HJESqTxRCCCGEiBKsC04++WQL2PrsbSFyOj/99JP9npPqQQHz58+3HhTnnXee++CDD9wxxxwTs8/HSoQeF4cOHXLr16+3fhNJwXCeio6FCxe6du3auapVq4aqK6jkkN2TECI3XbMz4ztwTi1QoEDoMc2xsXwK8vXXX7vChQubGE3vibZt21rl2/bt2+38HYl33nnHBOSknhdCCCFyG9Fet1VXKIQQQgghRFjQnyamDKSpZihdunTE43PzzTebDRSe5bEUKGDevHkmUNC49eqrr052WwJkBNPeeOMNexxs0iqBQggh0l9JgfgQTrBHxZ133mnVEVjsBQWICRMmuMsvv9xdcskl9rhChQr6cwghhBARkEghhBBCCCFEmG/4m2++6f78889kKyl8z4pIeOsPxI6WLVumWsSYMmVKqGG29ziP9BmIEH4fvUhBtm/QG10IIUT6RIp8+fLZ7UsvveTKlStnFXRBOBeH9xyaPn26VbfRt4hqu2BlhhBCCCESo54UGQgDERos0jTr7LPPdsOGDUt2ezL1mExGWig3hVdffTXi83v37s3IryKEEEIIETdQvbB161Y3c+bMwwJRsHnzZvftt98m+x4Ep9asWeP69OljYkdq2LFjR2jM16JFiyS3W7BggTvjjDNc9+7d3Y8//ug+/fRTWz9nzhwLis2YMSNVnyuEEOJ/lnvhlRSsQ3QuVaqU27Jli9npzZ492/37778RD1v9+vWtgqJ9+/Z2ThZCCCFE0qiSIgP9tq677jpXs2ZNN27cOGtiSAnoKaecYtkUkbjtttusqWIQsuf++OOPwwY127ZtS+TjpUGPEEIIIUTswMajYcOGh63/66+/rDoCkYIeEPR/iESTJk3czz//bGO/SDYhyfHcc8/ZLeNIEl2SYtWqVdY7459//rHKDyB4hgXVDz/8YA21hRBCpJ6LL77YhOYaNWrY4+OPP97snEhC/PLLL+35MWPGuI4dO1rl2/Llyw+rXsN/e+PGjdZkWwghhBDJE7eVFGSeHXvssSYm+AnnhRde6J5//vmYvD/vw3tOnjzZbACYzHbu3NmNGDEiydcweMG/0i+U7q9du9bdddddh22LKBHcVn7DQgghhBDp4/XXX7dK2OSguhXhgYBV+fLlk9yOStr77rvPklRSA5m5XqQgWSUpsHNauXKl3a9Vq5a9jv3BD/2zzz6z9dwXQgiReo4++mh3zjnn2H2EZubbRYsWdUuXLjUhGEGC6wA2UFRMeIFi5MiRbsmSJaH3kUAhhBBCZAORgnJIFiZRHgL3rAsve/fbMsEK+uyyjkqClLZNLWSmMdAgAw0QLJhIeh/Ju+++2wYjyS3JgSfwtddea+/rqV27tlVAkPEWDdOmTbOBT6NGjQ57jrLRQoUK2aSUCbUQQgghhEg7jC2bNWvmLrvsMgtCJcVZZ51l47wNGzYkqmr1JGX7ES3r1q1zO3futPdu0KBBsn0z2I5eF1WqVHF169Z17777rn0HKF68uMufP3+69kUIIeKZQ4cOJepH4cmTJ4/dtm7d2mz27rnnHnuMcNy1a1d30003uY8//jgL9lgIIYTIuWSoSOGD+ZSbex5//HFbR1lkeGUA63fv3h1a98wzz9i68EqCYsWK2fpPPvkkzft2wgknmIgQnIReddVVbvv27eYDPHjwYPOZTG5JDnpEhDfG8o+j7R8xadIkswoIZl8gTGAfNW/ePFuwAMBm4L333kvlERBCCCGEEMEmqTScLly4sI0Rk4NEF/pWRKJfv36WmJJSRUZSjB8/3m6pwk0uA9dXUVSqVClR8szbb79tt1dccUWaPl8IIYRzixcvDl0LqIxDdAjvUwFcM7yrQbVq1Vzz5s1dt27dzE1BCCGEENET1z0pbrzxRvfYY49ZpQflmfgGAxM9mhBG2+eBAciuXbvsPh6Vy5YtS/e+kaGHCEPTxSDnn3++LR4mpmTSPfnkk4dtK4QQQgghooOqg5deesnsnCJVzNLzAYuPNm3amCVnJAhgjR071v3yyy+WkHPRRRel6vDv27fPklDAZ+Ymha8GpgcaTbOp3mW/33rrLVsvqychhEg7JAEePHjQ7iMY425AT4qZM2faeZ7ky7JlyyZ6DZVtU6dOPaw3hRBCCCGyWKTw5ZFYFnl69OhhJZB4PAZhQgjBjLEOHTq4tm3bHjYRpLQ9fNu0UKdOHduXzZs3m4cvDa/IoEOgwO5pxowZUX0/qjGwpgruE30imGgG8Y95LiUmTpxolk5YDqQEk1AsB4QQQgghRPqIlKSChdO9995rY0bGcwMGDEiyUpdtSBzBfim1UEXLmPLKK6+0cWBS0CibvmWA9edTTz3lHn30UdenTx+3adMmW69KCiGESDu+d6WvpOAx1wIEa5pk4xbB+ZZbROM77rjDxAn1ihRCCCGyoUjBRC0csryCfRqS25ZMBJZotk0L5513ni00tqJXBk0Kfek8dk/du3eP6n1ooBUO1lF9+/a1iab/DgxeqII49dRTUxQ/5syZ44YOHRrV52M9hQ2UEEIIIYRIHcOHD7dKhP79+yeZAEPVLU2s2Y5EluQ499xzkxQxkoPg17PPPhtVFQXWVF26dLGqCRJtSLphzEkiDPuJ5ROJN0IIIdIGFXHBSrt33nnHff7559Yvc//+/SYQw5133mnWUNhBDRkyRIdbCCGESCNxbffkqykQBCZMmGDZZ/hI+iy6aO2eIkEvCZpw00/jgQcecB999JEbOXKk2TJ5Xn75Zde7d29rthXkhRdesAw53/gwCJlyTH6xmGKARMUFmXReXBFCCCHo6YQNAT2QLr74Yjdq1KgkrV+4/k2bNs2uU0AF3yOPPCKrGBEXfP3119ZD4s8//7TKhcaNG0fcjgrgzp07WzVFeDWwh6DV6aefnuZ9wS6U3mynnXZakvvhoYkrCTWAHYmvnqAXBuNEIYQQsRMpTj75ZKuSIMERvKD833//WdXaK6+84m677TYdciGEECK7Ns7OKX0pCMxcc8017sEHH4zZ+zKQQTigCTcBn/vvv9+y6tq1a5do4LNt27aIpf4NGzZ0p5xyymHPUfHBe5UrV85VqVLFvJFXr17tatSoEbN9F0IIkXNB6L7vvvvcwIEDzU8ZkYLApbdVDOfVV181iwIm2PRDOvvss83jnuCtELmdIkWKuFmzZrmWLVu6W2+9NckqCk9SAgX/O2eddZZV0Qa3Tw1jxowJZeViLRIt69evt+QWxAkJFEIIEXu7J4ThSGDthNCNHXVqexAJIYQQIjFHJKR1JiWEEEKIbAcZfZdffrkbPXp0KMsP4aFTp06uV69eUVnOYEvI61u0aBH1RB5xHvH9pJNOSvd3ECK7gPhARSz/D8kFoLp162bVrggMJJukFpJaSpQoYQLH9u3bXcmSJZPclsateKJff/31FjgjeWXEiBHW0JtebqVKlYqY6CKEELnlmp0Z34Ekxtdff93uMy7iPPvFF1+49u3buwIFCljfTPWfEEIIIWJ33Y77SgohhBAit0C13bvvvutq1qwZWscEmscEW6Pht99+M297LGeSAmscBhrBRYicxPfff299HVKiZ8+eVqmAZWdyELxauHBhyIIptWAdgkBBFVNyAgXMnj3b7KC8JdSaNWvstmrVqrYQTMM3XQghRNphPOT56aef3IIFC9zDDz8cSvrANvrbb7/VIRZCCCFihEQKIYQQIpfwww8/WCUEGX5BeEx/imgga7xw4cKJhI5whg4dapkQfqFSQ4icAmIA9k5URtBgOjlmzpxp2z766KPJbodXeb169cw+KrUg+vnqi5QaZsP8+fPtls9DbMH6EwoVKmTCC/+TxYsXT/V+CCGESHyuRfiFDh06WM8JHtevX98q51asWGG2mkIIIYSIDXHfOFsIIYQQ/weBWLK06VORnCd+7969re+Fh0oKCRUip/DNN99YYB9RLymfcQ+/66lTpyb5/ObNm12ZMmXcsccem+b9efHFF21f6GlRt27dZLfdt29fqCqKQNkxxxzjnn76abOI8tUT2L3JgkQIIdLHOeecE6oqvfDCC93tt99uC1SqVMlt2LDB+lsKIYQQIjZIpBBCCCFyCfnz5zePZAKZQXhcsGDBZF87fPhwEylWr16dYvPHPHny2CJEToRqh61bt7qNGze60qVLR9yGyqOU/md+/PFHV6NGDQti8X9TrFixNO3P2LFj7bZdu3ZJNub2LFq0yCpBECIQNQDrEbjrrrvstmLFimnaDyGEEIk5dOiQ3YYL2ueff74tQgghhIgdsnsSQgghcglkc1922WUhj3rfOJvHV111VZKvGzZsmHvooYfc8uXLXYUKFTJpb4XIOrBEuuGGGyI+RyVR0aJFXb9+/UwQSIpt27bZ/1zevHnTXEmE3RSNWREnaHwdrdXTTTfddNhzNNMGiRRCCJF+qGxbu3ZtyPrvjz/+sN5fQgghhMgYJFIIIYQQuQhsmCZMmOCee+4598knn5jH/a+//upat25tz7do0cLsmjyPPfaY69+/v5s8ebJlgpNBzuKzB4XILSxbtiyRgJcUNEclELV//37rNZEUCH9YLGHXRAVTWnjiiSfstkmTJtZTIjkOHjxoFRtw8803W8PWiRMnuh07dtj/LNUh7O8111yTpn0RQgjxP1577TX3zz//2H2SOBhP0bOL3l30/xJCCCFEbJHdkxBCCJGLoLEjzXQHDBhggctLLrnEJte+mfbu3bsT+dVjNUNAtlGjRoneZ+DAge7BBx/M9P0XIiOg50OrVq3cd999Z9UIkSoRPE8++aQ1R61SpUqK73viiSem2fJj586dbu7cuXb//vvvT3F7Ki5osl2yZEnzR58yZYpr27atiSUdO3a0bfh/P/3009O0P0IIIf6HFyjglFNOMZtLxGsq4NIqTAshhBAiaSRSCCGEELkMApY+aBnJyiY8UCpEbodG8AhxZMZef/31KW6fnIjBe8C1116brn166qmnzI7tuuuuS7EPDLDfVE189dVXVjHhq0Loi4Go8uyzz7oTTjghXfskhBDi/whWS9Ak+4ILLrBG2WeccYYOkRBCCJEBHJGQnNmuEEIIIUQKHDhwwDz+f/nlF3fSSSfpeIlsy++//249JMJhOIx1UvPmzU3QSAoqGcqVK+e2b9/uZsyY4Zo2bZqm/fjpp5+sjwVWbCtXrnS1atVK1evZX2xHqJZ65ZVXTKQQQoh4uWZnxnegV5AXKkjooFeREEIIITLuuq2eFEIIIYQQIlcS7hseSaAAeri0a9fOXXnllcl6jSNSVK9e3QSCevXqpXm/qHpAoKCCombNmql+Pf0nECgQVNhnIYQQsSWYy3n88cfr8AohhBAZjESKDOSDDz5wlStXtgkk2XLDhg1L8TWU74cvs2fPzsjdFEIIIYTIlbRp08aaxlO5kBynnXaaNa6mMiI5r3Eyf8aNG+c+/fTTNGfvInQ8/fTTdr979+7JNuf29OjRw0SR9evX2+MVK1bYLU2ysSEZPXq0++KLL9K0P0IIIQ4HOz4P1wf6GQkhhBAi45BIkYGlLHgMUxb67rvvuscff9wakI4fPz7F19II8dtvvw0tN998c0btphBCCCFErgQhYdq0aVYl8cknnyS7bf369W2brl27RvXe+fLlS/N+zZo1y8Z3RYoUsUb30QTKeM3ixYutRBp8sIz9njRpkuvUqZN9TyGEELGHCjv6AQkhhBAi44hbkWLBggXu2GOPNTEB/vrrL3fhhRe6559/Pibvz/vwnpMnT3ZlypRxt99+u+vcubMbMWJEiq895ZRTXMGCBUNLct7IQgghhBDicEqXLm1NrocPH+4qVaqU4iHCJ/WYY46J+Nybb77p7r77bvfDDz+k2z6E/YEuXbrYWDQlaHb/9ddf2/gQayjGrm+//XZIpFi7dm2ogbYQQojY8Mwzz4R6U1DN1qRJEx1aIYQQIqeKFHjtsgT9HAncs45S90jbBssq//77b1v3xx9/pLhtamGSd+SRR7pVq1bZYyaJ9913nxs0aJA9ZiJ64oknJrskxxtvvOGuvfbaRJPP2rVru23btqVoOdChQweXP39+V7FiRRM51NtcCCGEECL1XH311Ta+i8TBgwdtPLhu3bpk34NxGGMz+kgMGDAgXX+G5cuXu48//tgqMeiBEQ1UgwBVFySuYDNFJcaiRYvsO3z33XfWa0O9KYQQOQUEZCzs6O+D5V12tFKqUKGC3bKP2DaffvrpWb1LQgghRK4mQ0UKH8wPZp1he8S6jh07Jtr2zDPPtPW7d+9OlL3AurvuuivRtsWKFbP1KZXuJ8cJJ5xgIsLSpUtD66666iq3fft2t2PHDjd48GC3ZcuWZJfkoJlhgQIFEq3zj3kuKfjcOXPmmHhyyy23uHvvvdeNGjUqzd9TCCGEECKe2LhxY1QVD4888ohbs2aNu/POOy0xJikIoI0cOdL6jGHdmVYQOxjnQdu2ba1yIyVIynnxxRftfosWLULrqaqoW7duqIqC3hR58uRJ874JIURmwrnt4osvDlUrZEcOHTqUbns/IYQQQkTP0S6OufHGG91jjz1mk0YmoD///LOtRwA544wzTDiJBuycdu3aZfeZwC5btizN+9S/f//Q/UsvvdQGcAg7WEUJIYQQQoikoargpptusmpZBIiyZcsmuW2vXr3cjz/+6Bo3bpykzZMHEYDM3/RAs2tso6h6wDokGl5++WUbC5YoUcKSacKR1ZMQIidyww032JJdQej2PYOY5w8dOtT17t07q3dLCCGEyNUcmdHZByxYF3mYlLFu9OjRh00qWX/OOeeE1lFazzoaAgbZuXOnrb/gggvStX916tSxcvnNmzeHGlYjDCBQpMbuiWoMX10xceJEW0cviX379iX6PP+Y56LliiuucHv27DnMHksIIYQQQiQGS00qV1nOO++8ZA8PlQxYOCXXy8Fn0qYXEmIGDhxo9++5556ox4LTp0+32+bNm1tCDVUV2IEyNv7nn3+sXwVUr149JvsphBDZEebC9OMJLhkJfYB8RR7XgfRa/QkhhBAiiyspsFQKhx4NkZoERtqWrLZImW2Rtk0LTF5ZlixZYr0ynnvuObdy5Up7jnL87t27R/U+RYsWPWwd2W59+/Y1+wD/HbBwOv/8892pp54a9T4ifLC9SviFEEIIIZKHcda7775r1ppJjZ2+/PJLV7x48RQP5YIFC6xvBFZPt99+e7oOPVW2mzZtcscff7zr2bNn1K/D+pO+E82aNQtVVtA0u0qVKu6zzz6zKgusn8qXL5+u/RNCiOwMlQy+d2Rm4B0WPGeffXamfbYQQggRr2RoJUVOgGoKekBQ6t+nTx9XrVo1W4/VU8mSJZNdkqNJkyYmxtBPgwaJL7zwgk1yg80bmWiWLl069JgGiFRifPTRR+7zzz93Y8eONb/kTp06ZeAREEIIIYTIPSBOREogAQL8pUqVcm3atLFKhORgHEal7/vvvx+zKgqqhMN7liUHIgk9NrB7IqGGxBpo0KCBu/DCC61yBFuro446Kl37KIQQ2Rmsln755ZfQ8tVXX2WaSEH/H8RtIYQQQmQscd2TwvelQDy444470tUMMZKFAFUZTEYvu+wys7yiTJTJpocB1rZt20KPqbigeVi3bt1sQosQMmLECGuuKIQQQgghDue///4z7/CGDRvaeC451q1b5/7991/322+/uaOPTn4YvHDhQjdmzJhEY7e0sHjxYvfOO+9YJXC0vSgigbUTY0dEDuxAAftRVVEIIeJBfM5MZwHOtR6q1YQQQgiR8cS9SFGrVi0TBDKCiy66yK1fvz7J51u1amWL5/rrr7dFCCGEEEJEx8yZM61XAz3CsEEqXLhwktti5VmhQgUbo6UEFbFdu3ZN15+BMaZPgunYsaP1PYuGTz75xEQJxJfTTjvN1s2fP99u69evr8oJIYTIQKhSCyYfCiGEECLjiXu7JyGEEEIIkXMhkI8Q8OSTTyYrUHiqVq0aCvyHg6XSSy+9FLMEFqox3nvvPat4iLbXGWD/ee+991qTbV8tQo8Mb/VEEszll1/uHnvssZjspxBCZCY0o6b3Igvs2LHD7u/evTtb/CH2798fuo/TQefOnbN0f4QQQoh4QCKFEEIIIYTIsWCXSc+HpGyZaDyNleaPP/6Y4ns9/PDD1qyanmLpBWHB96IgwIX1ZzTQK+P555+3+02bNg310vjmm29M7Khevbr1NcNCij5mQgiR0+D8demll9oC9G3kPvbI2a2SItz+SQghhBAZQ9zbPQkhhBBCiJzHpk2brJrgiCOOSHY7+kA8++yztv2GDRuS3T5fvnxm81SnTp1079/06dOt6fZJJ51kAbhoWbVqldu3b5+JGt4GlH1q1KiRvRf3sbcCBBUhhMhpUNGWUZbLsYDKt9WrV7tPP/3UXX311dZnUgghhBAZiyophBBCCCFEjoJ+DVdeeaW78cYb3Z9//pnstq1bt3alS5d2Q4YMiUrQ2L59uwkC6bUy6dOnj93v16+fO/3006N+LdYi0KRJExMkgAzjuXPnukmTJllVxVdffWWNuGvXrp2u/RRCCHE4RYsWdQULFgz1E6pYsaIOkxBCCJHBqJJCCCGEEELkKPAtJ4BfqFAhlydPnmS3veKKK9yHH37ojj46umHvOeeck+79GzZsmNkzFS9ePFVe5p999plbsmSJiSkExiLhqyjq1q3r8ubNm+59FUIIEVls9hV2QgghhMh4VEkhhBBCCCFyFC1atDBP85EjR0Z8HhuR77//PvQ4OYGCZq3YO+3atStmAsrjjz9u97lNSUQJ8vTTT9stFSLnnXee3aeCYtu2baHv5UWK9FZ7CCGEiAy9MTZv3mz3J06c6A4cOKBDJYQQQmQwEimEEEIIIUSOo2zZstZIOhJjxoxxF1xwgVu4cGGy70HQ/95773XLli0zW6ZY0Lt3b/fHH3+4KlWquAYNGqTqtb///rs76qijXNeuXUNNv71dFQEzlh07drjjjz8+Jn0zhBBCHM78+fPdv//+G7ofKxFbCCGEEEkjkUIIIYQQQmR7PvnkE1ezZk23c+fOZLf777//3KxZs9z+/ftT3BZbpeeee84qF5544ol07+Obb77pZs6cae87YsSIFHtghEPPCYJh1atXt8cvvPCC+/XXX12pUqXcJZdcYhZXzZo1c7fffrsJFUIIIWIPgrGH827+/Pl1mIUQQogMRj0phBBCCCFEtueee+5x69atc927dw9ZHkXiyCOPdGvXrnXTpk1zd911V4rvi63S4sWL071/VGV069bN7rdq1cqVL18+Te9TpEiRRKIF8D0QPKgemT59err3VQghRNJQDeeheo3+R0IIIYTIWFRJIYQQQgghsj1Tp0519evXd6NHj05xWzJf27Rpk2Qlw759+9ynn34a0/2jeoNKihNOOMENGTIkVa997733rGl2kK1bt9r7Yf9EDw4hhBCZw59//hm6r8bZQgghROYgkSJG0CQRqwBK788880zXo0cP988//6Q4Ia1Vq5Y75ZRT3Omnn+7atWvnDh06lGibNWvWuEqVKtngqGDBgu6BBx447H3nzJljFgB8dtGiRUPNGoUQQgghcgvFihVzCxYssPFQJOg/MXnyZKtoSA6ep88DlQ7z5s2Lyb5hLeX7SPTp0yfVWbddunRx559/vllPhVdR1K1b174zY8L3338/xe8nhBAiffz111+h+wjPQgghhMh4JFLEAJpqIVAwmNm4caNNMMn2GzBgQJKv+eabb8xXuWTJku6tt95yy5cvdx9//LHZA3iYiNIU8frrr7dGifgSMwHv1atXaBsaPTZt2tTdfffd7qOPPrJGkU8++WRUWYZCCCGEENmZ7du3uy1btqS43Z49e1zz5s3NFmnGjBnJbktCCAkf9K5AGIgF9913n/v+++9dmTJlzI4qNbzzzjtuw4YN7phjjrHkFWBMiV0VeMuqTp06WVLKSy+9FJN9FkIIEZlgUmCsrhNCCCGESJ4jEjIwHYtGf0lB6fpxxx0X1bZ4C+fNmzfZbVOb4UAm3q233up++OEHd9JJJ9lkkIlf3759LeifGhAKyHJDeChQoICtGzdunFU9MGHFciCc8ePHu/79+7tvv/3Wvh98+OGH7qKLLrIJOeIFmXirVq1yb7/9duh1ixYtco0bN3bfffedVVc0adLE/f33327u3LmhbUaNGuWGDRtm1R2pbdgohBBCpJYDBw64k08+2f3yyy92TRUiVo1Lr7zySrdt2zYb59SrVy/JbREchg8f7pYuXWpjJwL+ycH2JINceuml6d7PFStWWEIJYy6SVdjn1IC4grBCQ2zfb4J9q1atmo2VGc9hBYUAwpiSMSD/b0IIEa/X7Iz+Dnny5AlVU5x66qnuxx9/jPlnCCGEEPHCgSiv2xlaSXHiiScmudxyyy2JtsUiKaltb7jhhsPK/cO3SS1UMSAOMJEFJn1kwQ0aNMgeU5mQ3P4HP/ONN95w5cqVCwkUULt2bfsjUB2RlM8ln+kFCvBCDNl0fpugkOO3oZHXu+++m+w2ZBTu2rUr1cdFCCGEECI7wBjnnHPOsYHsZZddluy2jKd69uxplkhJCRQIE8HtYyFQUJXRvn17u9+5c+dUCxSff/65mz17dsjyyXPxxRdb8gsCyNFHHx1qFH7ddddJoBBCiAymd+/eIbHiwQcf1PEWQgghMoG4tXui8uLaa6+1jDvPVVddZVUMO3bscIMHDzZ7geQWz969exMJFOAf81wkqlevbs/RP4IsjZ9++ilk40R1hRc6yMijESOWUl9//bXtV/g2lP0zKWfyTabdE088kWgbIYQQQoicBj27qHzFFrNw4cIRt8EOkzFSsFI3EoyRGjZs6B555JFEYkV66devnyWF0BPs4YcfTvXrsQbFVoSEnAoVKiR6jiQUkmAoesbyExo1ahSzfRdCCBEZLzhfcMEFJkALIYQQIuM5OiPfPLwJdJDwSSSl60kRrDaAnTt3xmDvnPWReOyxx2zyR4n+zz//bOupkjjjjDOsuiOjoGSf3hVUb5CpwfFgAIS44b8v2XKIGFR1YAVAJgcWUevXrw9t07ZtW/fFF1+Y3RS2T2QbkolHxkf4cRNCCCGEyO5g6+ltPBnLnHvuuRG3wybz6quvtoUG2MmVDpOUguBBDzAC/aVKlUr3fr755pvu6aefDtl4prayl4QXElEA8cRDjzECY36s/Nprr7mtW7e6448/3t10003p3m8hhBDRxTGwVxZCCCFE5pChUWwmmEkt4RZFyW0b7EeR1LZpgabUVBuQhQdTpkyx0n8EitTYPRUsWNDt27cv0Xv7xzyXFPSToJqCCon9+/ebsEAPi+LFi4e2QcRAPMGPmP4ZfnLqt0FcQWhhIEUmH+9XsWLFRNsIIYQQQuQEGA9hdcSYKKWKh6+++srGQQTzUxIISOaYOHGie/bZZ2MiUGC92aZNG0t0adGihSWWpBbGbfnz53d33HGH9UUDfM8rVarkypYta+ND8EIICStUlwghhMhYvMMBonHQQUEIIYQQObSSIrtz3nnn2bJkyRKzXKKyYeXKlfYctkrdu3eP6n2wiRoyZIhVg/jqC3pdkNF34YUXpvh6bw01efJkE29q1aqV6Hkm4N7mgIy7s88+25UvXz7RNkzQixQpEtqGfUJsEUIIIYTIKdB7gQpRGkh369Yt2f4LJJtgi8n4J5rq0bvuuitm+3n//fdb3zHGfSNGjEjTe5B4QnNsGoR7ECQOHjxofTUKFSpkz/k+ZJ06dYrZ/gshhEgarkOAJTMC9+jRo3W4hBBCiAwmrkUKP8GdM2eOmzBhguvTp49NFoFJZ7R2T2TPIUaQ4TZs2DCrZsCjuEOHDmbRBJs2bbJMO3pHeDGBwQ7ZcmT/IWr06NHDPfroo4my5LB7uv76623yTe8Jnmd/vQUA1RVM6KtWrWpZfVSDzJ07161bty4DjpYQQgghRMZBE2oSNqhsTUqgYLzjK3KpukjONopxFLaafjwWC7CWGjNmjN0nweX0009P83uR0OJtqg4cOOBGjhxp9xlHMvajmph+aVh9YhUqhBAic8F+TwghhBAZT9w3LaAvBWWc11xzjVkLpAUEg8WLF9stFQzNmjUzQcI3uYbffvvNbdu2zfpGeBAuqJqgKSJexlgQhDfmWrZsmatcubI1U6TiAz/lm2++OdE2TJB5Hk9msvpeffXVkOWTEEIIIUROomXLlu6iiy6K+BzjJcY8X375ZYrvc+edd7pBgwaZnVKsoC+ar8jo2bOnJZKklldeecUST7CKCvLMM8+YxWfp0qXdLbfcElpPVUX16tVjsPdCCCFS4p9//gndv/baay3xUAghhBAZzxEJ4TMkIYQQQohUQAY4We+//PJLss2LhYjE+++/b5UJTz311GF9yMIrKAjg08uBylUqUJOD6tWmTZuaIEDlanoh0YSAFQ2zr7zySmtojYCQGv7991/rP0GCDN+3S5cuoaqPYsWKWYUsVlckvPA9qb49+ui4L3wWQsSQ3HDNzsjvgOWef0+SA19++eWYvr8QQggRbxyI8rqtWY8QQgghhMgS6AnWoEEDt2PHDhMoCNwnBRZPr7/+ull0RtM3rEaNGlZxcfzxx8dkX7FgQqDAlpP+X6kVKGDatGkmUPAeVN16xo0bZwJFiRIl3O23325VFgTHWIeNJ6KIEEKIjOfQoUOh++mx8xNCCCFE6oh7uychhBBCCJE1HHvssdaUFLvMgQMHprg9lQXYcx5xxBERn0dE+P7770OPYyVQYL9J9QZMmjTJqh5Sy759+0LiCn0yTj311NBzGzZssFv6o1E5weMtW7a4/fv3u1KlSsXkOwghhEgZmmV7pk6dalmfQgghhMh4JFIIIYQQQogsg34LVEgEg/YebJDq1KnjNm7cmOL7UKFAj4grrrjCekfEiq1bt1p1A9x7772uYcOGaXqfjh07uh9//NHsnrp165boOSypsKdq3ry5PR41apTdYvt02mmnpfs7CCGEiA7O00GLvuRsCIUQQggROyRSCCGEEEKITIUg/HfffRd6nFRlxEMPPWRVDLfddpv7888/k33PE044waw5Chcu7AoWLBiT/WQfb7zxRvNRrVy5shsxYkSa3mfevHnuxRdfdEcddZSbPHnyYVZRfH/EGtZ/9dVXJlpAp06dYvI9hBBCREeZMmVCNk/0IaLiTwghhBAZj0QKIYQQQgiRadBTonPnzmbxRKVEcgwYMMA1btzYzZkzx+XJkyfZbc8991y3fv16t2jRIutfkV5+//13d9NNN1lVRsmSJa15akr7kFTDb6oo4IEHHnCXXnpp6LkXXnjBLJ2CDB061LJ3q1at6sqVK5fu7yGEECJ6qOrDWhD69u2rQyeEEEJkEhIphBBCCCFEpkHFAIJCmzZtrPohOegpQSAfQSMS9J+gd4OHKopItlGp5b///nOtW7e2Hhe83+LFi9PcQBXBZPbs2a5evXquf//+ofXvvvuua9KkiStdunSoqgTLqmeffdbu03tDCCFE1jXPzpcvnw6/EEIIkUlIpBBCCCGEEJlGiRIlLEDfq1eviM8/8sgjZomUEjQzrV27tqtSpYr1tIglNPFGHMF+Ceul888/P13vxz4uXLgwVOHxzz//uHbt2pkYUqtWLXfmmWfa+iVLlti6W265xV4jhBAic0GU3rFjh91ft26dDr8QQgiRSUikEEIIIYQQGQqNr997773QY6oTIvWhWLVqldlr3HXXXe6DDz5I9j15/UknnWQWTPnz54/Zvj755JPu4Ycftvvjx48326W0EF7lEeSZZ56x43HKKafY53mwg8Ky6vHHH0/j3gshhEgPWPslJCTY/eHDh+tgCiGEEJnE0Zn1QUIIIYQQIv7AwqhOnToW9Hn11VcT9WQIp2bNmq5Lly6uQIEC7qKLLkr2fREoaKq9e/fudFc6eEaOHOnuu+8+uz9o0CDXqlWrNL3P33//7W699Va3adMmq8jA6slDY+x+/frZ/WHDhtl3DXLNNdek6zsIIYRIO1TpeQoVKqRDKYQQQmQSEimEEEIIIUSGcc4557iLL77YbIxSEhOojqCyIFKVBXz77bduw4YNJgBA3rx5YyZQjBo1ynXt2tXu0zsi2D8itXTr1s1sQvAzx94qSKdOnczv/Oqrr7aKEVi+fLm78MIL7VgJIYTIOn7++efQ/bffflt/CiGEECKTkN1TjCCL78Ybb7QGj/gK9+jRw/yGk4JMQibgkRY/GNq5c2fE52niKIQQQgiRE6DigSA8Pt+Mk8LB2ojqCW+vkZRAsX//fle5cmV32223uRdffDGm+4j9UufOne0+dlNUUSS1HykxYcIEez9e//zzz5v44KHnxIIFC9zRRx9tDbKPPPJI98MPP7g77rjDxBZ6dQghhMgelRTYCQohhBAic1AlRQz4999/TaAoWLCgeS6T5deiRQtrtkjzx0hUqlTJtgtCxt6aNWtchQoVEq1fvXq1K1OmTOjx6aefHovdFkIIIYTIEOgn8fHHH1vw3Vc8sETajj4MCBRYPQVtkcI57bTT3HXXXWeCR/ny5WO2r1g8+QqK3r17u4ceeijNAgVVHh06dLD79LUI/z7Vq1d3zZo1c0WLFg2N7R588EHL3KXa5JJLLkn39xFCCJF2qHTzpPVaIIQQQohsJlL8+uuvST531FFHueOOOy6qbckyC05sI217wgknpGrfyGLDKoDsNTL8/vrrL5sYkj3XtGnTVL3XypUr3datW01MwFeY92GCy6Sbieexxx572GtYh6gR9C5mn7AACB8MIUoEtxVCCCGEyK5QCVqtWjULvJ988snWjyIp6DsxZswYCwolJ1AA46PRo0dbRcUZZ5wRkyQT+k88/fTT9rhnz55uyJAhaQ5K0WvilltuCfWjQPAIh/HstGnTzPoK6KnB9wdsrhgfCyGEyDp+++230P3x48e7du3a6c8hhBBC5HS7pxNPPDHJhUlcECySktr2hhtuSLRtsWLFDtsmtZCth/ixatWqkGjARJXyfrj77ruT3f/gZ77xxhuuXLlyiRof1q5d2x04cMCyCKNh4cKFNulu3br1Yc/Vr1/fjg+NFNlOCCGEECK7Ql+Fhg0buooVK1rlaKQAEGMkD2Ou7t27R3yvsWPH2vPeCoqxWywECkSRBg0ahASKxx57zD366KPpypodN26c++6776wiYsqUKaH3QrSYPHlySJhgPWIEYg6JMXw3viPCjhBCiKzljz/+CN0nkVEIIYQQmUPc2j1ReXHttde6pUuXhgSTq666ym3fvt3t2LHDDR48OMkJczh79+5NJFCAf8xz0TBp0iQTNs4666zQOoSQJ554whorMimfN2+eu/nmm938+fNNuBBCCCGEyG4wZqHfwu+//35YpStWlwgYVBQwBgtW1YZDlWrHjh0tuM+4J7mKjNTwzTffWNXGe++9Z58/ffp016hRo3S/L2NH+pFh9xT83iTBUAHyyiuv2Gf5IBif+dNPP7nLL7/cPfXUU+n+fCGEEOkHm0JsAOlHEZ4sKYQQQogcKlIE/RzDCS9nJ/MsucluEDLPYgF9JMicI4ONrDZsCbw4QJYe1QuZwZ49e9yKFSvcnDlzEq3Pnz+/TWw9TGKZWNNgUiKFEEIIIbILVDx8+umnFmxnTMXYLZIVJ2MtqkxpHP3555+7smXLJvmeNJzm/RhPxipQRO8wGm8z9mKsR4XqlVdemeb3+/rrry0xhe/D2JZxZZCJEyeaQAFBIYTG2jTJxtKTJuBqziqEENkDqgCBRMESJUpk9e4IIYQQcUOGihSp6RORUdsmBxl5NErcvHmzNWCkNP/SSy+1SStl9zNmzIhKhKFfxKZNmxI9t2/fvtBzKcHnMkmNRni44oorQhZVQgghhBBZzUcffWTVAyR9ICZcf/31SW57wQUXWGXoueee60qWLHnY86+++qorXbp0aPxEr65YQP8J7JwGDhxo9/mMJUuWuOLFi6f5Pam+xaKpatWq7rnnnjssAYdxJONJX2Vx0003hZ7r0qWLJejQSBt7LCGEENkDP8dPi6W0EEIIIdJO3No9wXnnnWcLk1T8Jplg0gQbUmP3hE0UjRaZbPrqC4QEGnKTBZgcTOgRKVq0aOGOOeaYFD9ry5YtrlChQlHtlxBCCCFERkM1xPDhw83eCevKIPRj6Nevn/XcQhiAWrVqRXwfGpQS1CdwT4VprJpIU+3QvHlzs1sC+kDQrJpxWlpZv369NccmKYVkFypESDjxUD3hBZZWrVrZMQhC5UV41YUQQoisZ9SoUXaLJaAQQgghMo+4Fil8NQU2SxMmTHB9+vQJNS1EbIjW7um6664zMYIJ8LBhw6wPBZNRsgp9+T6VFggRa9ascUWKFAm9du3atdYDo02bNoe9L6IJDb2p7oCXXnrJGi9iHSCEEEIIkVVQRXDKKaeEmlgH7SmD9O/f38ZGCxYscB988IGNa5KCXmH0qihWrJiJG+kVKUgEefnll127du3c/v37rRIXmyXGY2ltkM17Pvnkk65nz55WkUGTbBJcggIFtpw8D507d7bt+TyEDZprT506NarEFCGEEJkPloSALaAQQgghMo/EzR7iEPpSYFNwzTXXuAcffDBN78EkevHixXZLVUWzZs1sAkw1hue3335z27Zts0l3eMPsSpUqhbILw3nooYfcZZddZjZPTPBfeOEFy0YUQgghhMgKaHjN2ITxDoH65EC8OP/8893QoUMPEyh4LVUIHsZCBIdIxkiuoXY00L8MG81bbrnFBAoSPsiKbdmyZZoFigMHDlj1xP3332/73qRJE/f6668fltRyySWX2HfFWoqeGvTnWLZsmSW1zJw506pOhBBCZE8Qo4UQQgiR+RyRoKuwEEIIIdIBwduTTz7Z/fLLL+my0BE5A5I7aCx6+eWXWwIFFRWeH374wapGaU7tIaAfXhXx448/WqLI+++/7z788MOYNSfFvpPKhUGDBpn9FBULPXr0cAMGDEhXc2qGy1Tbrlu3zt4T8eGee+4JCR7//POPWTh5vvjii9B3omIXiym24TvPnTvXKkaEECIryA3X7Iz8DgjLnPNLlSplSYZCCCGEyJzrdtxXUgghhBBCiORhQBnsQfHaa6+ZGBEUKKhY4DlfYeCJZNt06qmnWqCewP4nn3yS7sNPQAnBhIqJXr16mUBBQ2tEEPqGpUegAMQIhA+sqPju9957b0igoH8GPc4QWzwIFOwTfTbuuOMOEyhuv/12s5+SQCGEENkXn8OpxtlCCCFE5iKRQgghhBBCRITgOrZFRYsWteoAT4UKFRJVDgB9GWrUqGH2TvR/CH8fejH8+eef9pgA/5QpU0ygqFu3brqCSYgEVHbcfPPNbuvWrdYnY9q0adb364ILLkjz+86ePdtsOT1VqlSxrNorr7zSHv/xxx+uS5cu7vrrrzd7KSw6gxUlVJO0b9/e/ffff9YXY8aMGepFIYQQOYR8+fJl9S4IIYQQcYVECiGEEEIIERGqIDZs2GCVFPRTCC/bpbrg4MGDoXU0pt6yZYv1ZQhyww03WE8tnvcgfBQpUiTNIsKqVatMOEAkeOedd0wY6dOnjwkJzZs3T3PvCRpcI7ZQAdG1a9dEzVPpNcFnL1y40Ko2nn76aVvfsWNH99xzz4W2Q8CgoTZCzsMPP2wNs9PbCFwIIUTmWhsKIYQQIvNInAInhBBCCCHimm+++cZsnI4//ngL9E+YMMGaTjdq1CjRdlQuvPLKKyZWPPHEE7bO2z/RhwJfby8UEPCnSXbQHiot/Prrr1aRgDhA1QRg5YT9EjZP4U2sU1uRgTUUoox/3549e7r8+fOHtnvjjTescTa3UKBAAasIQYT5/vvv7TV877POOsuqObgtX758ur6zEEKIzIceR0IIIYTIPFRJIYQQQgghjFGjRll/hZEjR4aOSPHixU2goDoA6yIPVQZYO1WvXj3R0UNEwGaJoL+nZcuWZhd15513pulII0jQAJug/913322P8Qvv1KmTve+IESPSLFCQLUsTcIQGBAqqJbBnwoqqf//+7rjjjgtt+/HHH5tAQV8JqjY+/fRTqxq57777rDJk/vz5oW3r168vgUIIIXIYvodRvXr1snpXhBBCiLhCIoUQQgghhDBOO+0099tvv1lzaN88FMaMGWNixZw5c0LrCOAQ4L/xxhsTHT0qJrZv326v8WB1dPLJJ6fqKH/77bcmPlCJUKZMGTd8+HD3888/2348+eSTZsNERUVqLaP4Xj/99FOi78w+IzwgvHz55Zfu2WeftaoPxBp6aXhatWplwgXCCP0muH/uuefa/tCse9GiRfolCSFEDoa+RtCtW7es3hUhhBAirpDdkxBCCCFEHIIIQI8Imk6T9e9tmWiAXbt27UQ9HehJwfYTJ050t99+u63j+ZdfftmNHj3aBAmEBB/YoeKhbdu2qd6nzz77zAL9ixcvNqHEV24cc8wxrk6dOu6uu+6y29T2d/j777+tSoL3XbBggStWrJhbvXq1PVe4cGE3ffp0V6tWLauaoJcE32vevHlWPYII0aJFC7NxosdEiRIlXLNmzczqygs5lSpVMsGC4yaEECLncujQIbulWk8IIYQQmYdECiGEEEKIOGT8+PHWgwGrI6oiEB0IxO/YscOaQo8dO9ZdddVVti2CA3ZG4VUTL774ookJiBdUEwACRbQZqFRG0Kh67dq1bsmSJVaBEeTqq682QeDWW2818SQ1fP755+7VV181MWL58uUmtHj27dtnn+17ZPDdsaRas2ZNIh/yiy66yDVu3Nj9888/ZgMF9Jpgf6FatWquX79+dpvWRt1CCCGyB4jxXBsgeM0QQgghRMYjkUIIIYQQIpeDPdHzzz/vrrvuOnfllVfaunvuucetW7fOqieC0CT7/ffftyoLL1Jg1US1AWLF7t27Q4IBPSbKli3rWrduneI+UHWwa9cu9/bbb7vXX3/dPpvPCdpKUTFBwL9u3bomnFDxEA0//vijvde1114bqrKgZ8TcuXND29AAm0qHCy+80ASFYK8J9mXZsmV2/+yzz7bvxL5gZ4UI0bx5c3fOOefY8507d3Y1atSw40aVhRBCiNzBpk2bQvc3btzorrjiiizdHyGEECKekEghhBBCCJHLwCaJQLzP7h82bJhVTlAl4UUKejF8//331iQaqyMvCNAkm74Ul112Wej9CNh//fXXtp5qA6oLgKB/JIsjqhGoiiDI/+GHH7p3333XvfPOO+6HH344bNtSpUq5KlWquOuvv972I1++fEl+LzJbaZqNLdS2bduskfWWLVtMOAGeo2k30MuCz8dfnAqRr776ys2cOTORRROfC4gNiBPfffedbcfiQfRAAPEixU033WSLEEKI3MXOnTtD96koFEIIIUTmIZEiRjA5JiMRf2L8K7EMGDp0qHkXJwXBADIKg/CaXr16xWq3hBBCCBFndOjQwSoIsFE6//zzbR3VCVgeIUp4GKNgYYSQsXDhQqsQACoMCOZTXUAjaS90jBo1ygL+VCLAv//+a8IFVRos2CuxfPLJJyYiYJEUDp+JhRJ9MKpWrWqVD4UKFQoJG3v37jXhAcsNhALGSZ06dQoJKPS/oLIhEieccIJlvnqRAjGCfWEJguiAiEPGrBcp6DPhhYnjjz/eXXzxxSbmUDFRuXJld9JJJ6X77yKEECJ7gxWgh2uUEEIIITIPiRQxgEk6Hs0FCxa0yTETaxosknX4yCOPJPvawYMHJ2osmVz2oBBCCCGEZ8+ePW7cuHHuzz//dI8//nhoPQ2iESOwa3r66adtHUIACRVUChCgp7IAzjzzTAvm8x7B7FGCMwT7V61a5fbv32/iAeMbRAneh4X7jIGSAtGgePHiVqHAUqBAARMAsGbCHqp06dK2Hb0sBg4c6A4ePBjxfXjNQw89ZPc/+OCDJD/v119/dZs3bw499k23w/H7HGy+jViCMMN3P++881LdmFsIIUTOh2ukEEIIIXKhSMFkMSmY/AW9gJPblol03rx5k92WiXBqWLBggTVhxHaA7Diy9y655BLXt29f17Rp01S918qVK81egMaMTMB5HybTDzzwgHvwwQdDjRYjgSiBuCGEEELECoLTBK0JLJMRTgY8metJQdZ9//79zeaAAO1jjz3m6tSpoz9IFvHHH3+YMFCkSJHQuuHDh9vY5a677nKtWrWydVQt0PiaSgdfvYngwOuBgP2bb75pTUB9Q2qeY2zCOOynn34y+yfGY7yexIrff/89JFjQdJrm2SnhKy3w7r799tvNvonfEJUYWD2xhIPIMWvWLLu/ePHiJAUKwNbJU7JkyWT3Jdhc+4YbbrDqEcZmNPP2C8cVe6fChQuHtkWsCe/NIYQQInuNVzIarr1CCCGEyBqOSAh2K4z1m///SWskCH4sWbIkkciAz3EkKMVnouzBaiDc0zi1XwOhg4ksTSRvueUWWzdx4kTzbMai4O6773YzZsxI9j0OHTpktwMGDDCbBDyRPUz6yR6k+WRSfpZYFxAs+Pvvv83nuEmTJq5bt27JWkQJIYQQyfHCCy9YNR8Z9gSNn3rqKRMhCPQSiA2HCkCyyAlS06yYbHICzFy/aB4cDQcOHLDGyvQLyK62OIwTguMSAvfsN9dhxgSMQQjQc591t912Wygbf/bs2WYZxPM+iM8t23GLgJAnTx6zN+rRo4f1QSDBgiQFrvFsT/UA70Vlw6mnnmrbYhPJfiAYUH3JPpLlz2t8bwgC7LyeMUpyMI7iM/keyVU3pBb+riRfUIlBL4qgXVQ4CBReeGDs9tprryW5LceX4wocM44h+GPBseOYUkVB0gfHyldSTJ061cZw/NZY6K3BMeUWESK7/gaFECI7kF2u2akdr2TGdwjaMWdgmEQIIYSIKw5Eed2OW5ECrrvuOrMfmDRpkj3GA5mAzJdffmn7w0FMDp/NR8NJBjMrVqwIPcd34T2WLl1qmXyRGDFihDV1ZFJNkKh3795mf8B6IYQQIi0w0b/88svNux8IjHOtw9c/Us8jgsUE5slm9+DFT2CawEEkCJoH7YG4XvIZsQ4W0A9h5MiRicYV4df7a665xr4jgfm33nor2fcje55tWYKNkeMNbJYQpgjsk6yBbVT42I1bRA9smHwPCH5D06dPNxHB97PgPtWuVGPw+/KJHwgUVH4wFmLhd8HA9JRTTrGFfWD8Awg2/E14r+TGjkIIIXKPSJGa8UpmjTu4LpI8ABIphBBCiMwde2Royr6vNIhEuNdvcv6P3jfZgx1FLKCPBNmiPrvSD0hofI0QklIGR3q57777QvdpIslkv3379pbNSvagEEIIkRqwLnz33XdN9A5eQ2vWrOneeOONiK9hffB6BLVr13bz589P8nO4Tg0aNCjD/zivvPJKoseRAgb0X4gWqhwzAgL2BOm59WMJjw+6+30nOJ8/f37b9vXXX7eqCf5GvJ5tGR+R6MBtw4YNLSGCMQGWkuw/lQWMU1jHaxAIeNysWTOzWeJ5slARHhgIYivJ8wwGEQu4zzo/Dnv00Uej/p7YcLBEAyIIS7THTwghRPyQ2vFKZo07Kleu7BYtWpTIlloIIYQQmUOGzgpT0ycio7ZNDqo5yNLEs5mKhilTppg1EwJFauye6CmxadOmRM/t27cv9FxqsknIJkSEOf/889P0nYQQQsQvVBlSUYBFUBAef/rppxFfgw90pO1ZnxQEFYLChs9ojDX0yWjbtq3ZKpF1z0IQA4sl9o9APdUerCPoTuYlfRboq0HAniADosE777xjYweyNdmO7bFd4j0IpFOxybYcv5deeskC+ffff78Fz9l+7dq1tm2FChXcZZddZusIsLz//vsmClB1ktHQMytagr0WhBBCiJw+XsmscccTTzzhbrrpJvWMFEIIIbKAuE5dI4jBgu0UwYbnnnvOmmDD4MGDXffu3aN6n6uuusoaV1IN4qsvVq1aZVmLF154YdT7Q08LAicZXcEhhBBCpAfEgcyo+KMnA0u01K9fP+ptp02bFnF9JItG358iCNZElSpVivrzhBBCCJG9xx0+PiCEEEKIzCeuRQpfTTFnzhw3YcIE16dPH1etWjVbj1AQrVhAbwvEiObNm1vjbbIt8W/u0KFDaDBFpQWNwWg6WaRIEStjxTubz8N2gcc0zcauAS9MIYQQIrVgI0SWv6/m8/A4qco+1qdmeyGEEEKIzB6vCCGEECJ3k7jZQxxCX4qPPvrIGm8++OCDaXoPBlg0HOWWqgqEBgQJqjE8+EvjEY33NCBezJ492ywmypQpY5UYiBTjx4+P2XcTQggRX9DbCDsiBHEPjSh5zPUpEqwPbu+rAZPaXgghhBAis8crQgghhMjdxH0lRa1atSI24kwtRYsWdUuXLk3y+apVqyb6HHpgvPnmm+n+XCGEECIIns0tW7a0/gkVK1Z0Tz31lPv1119d69at7XlEdCr6aEIJXbp0McEcH2aEewR0ejhINBdCCCFEVo1XhBBCCBFfxL1IIYQQQuQm6J/w/fffuwEDBpj9IE2dly9fHmpOuXv3but/5KGvwsyZM82mENtDvJjnz5/vypYtm4XfQgghhBDxPF4RQgghRHxxREIsygiEEEIIEbccOHDAnXzyye6XX35xJ510UlbvjhBCCCFy8TU7N3wHIYQQIl44EOV1O+57UgghhBBCCCGEEEIIIYQQImuQSCGEEEIIIYQQQgghhBBCiCxBIoUQQgghhBBCCCGEEEIIIbIEiRRCCCGEEEIIIYQQQgghhMgSJFIIIYQQQgghhBBCCCGEECJLkEghhBBCCCGEEEIIIYQQQogsQSKFEEIIIYQQQgghhBBCCCGyBIkUQgghhBBCCCGEEEIIIYTIEiRSCCGEEEIIIYQQQgghhBAiS5BIIYQQQgghhBBCCCGEEEKILEEihRBCCCGEEEIIIYQQQgghsoSjs+ZjhRBCCJFbSEhIsNsDBw5k9a4IIYQQIhn8tdpfu3MiGncIIYQQuW/sIZFCCCGEEOni4MGDdnv22WfrSAohhBA55Np98sknu5yIxh1CCCFE7ht7HJGQk1MohBBCCJHl/Pfff+6bb75x+fLlc0cccURMMy4QPr766it30kknxex9cws6Pjo2+t3o/0rnnOxDTjknM/0nSFC4cGF35JE50/05o8YdOenvmJPRMdZxzk3o96zjnFs4kIHXv2jHHqqkEEIIIUS6YKBx1llnZdhRZJCkQIGOj347+r/KTHTe0bHJzb+dnFpBkVnjjpzyd8zp6BjrOOcm9HvWcc4tnJRB179oxh45M3VCCCGEEEIIIYQQQgghhBA5HokUQgghhBBCCCGEEEIIIYTIEiRSCCGEECJbkidPHjdw4EC7FTo++u3o/0rnnaxF52Qdn3hAv3Md49yCfss6zrkJ/Z7j4xircbYQQgghhBBCCCGEEEIIIbIEVVIIIYQQQgghhBBCCCGEECJLkEghhBBCCCGEEEIIIYQQQogsQSKFEEIIIYQQQgghhBBCCCGyBIkUQgghhBBCCCGEEEIIIYTIEiRSCCGEECJb8swzz7hixYq54447zl1xxRVu06ZNWb1L2YLXXnvN1atXzxUuXNgdccQRbv78+Vm9S9mGoUOHussvv9zly5fPnXnmme7mm29227Zty+rdyhaMHTvWXXTRRe6kk06y5aqrrnLLli3L6t3Kljz66KP2v9W1a9es3pVswYMPPmjHI7iULl06q3cr2/D111+7Zs2audNPP93lzZvXlStXzr3zzjtZvVsihuOLuXPn2m+e7fn7Ll26VMc3hsd4woQJrnLlyu7UU0+1pWbNmhrzZfBYefbs2XYuZ5wkYn+cf/75Z9ehQwdXqFAhlydPHleqVCmdNzLgOD/11FPu/PPPt2vv2Wef7bp16+b++OMP/aRjOId89dVXXfny5e13XLJkSTd16lSXkUikEEIIIUS244UXXnD33XefGzhwoHvvvffcxRdf7GrXru2+++47F+/8+uuvdjwYyIvErFu3ziaFb775plu1apX7+++/3XXXXWfHLN4566yzLPj+7rvvWgC1evXq7qabbnIff/xxVu9atuLtt992zz77rAk64n+UKVPGffvtt6Flw4YNOjzOuZ9++sldffXV7phjjjHRb+vWre6JJ56wQKvIHeOLjRs3ujvuuMPdddddbvPmzRbUZfnoo48yfd9z6zEmCMYxfuWVV9wbb7xhwUau3QiAInbH2bNz507XvXt3E4ZE7H/Pf/31l6tVq5Yd5xdffNGSZRDiihQposMdw+M8c+ZM16tXL9v+k08+cZMmTbL36NOnj45zjOaQO3bscDfeeKOrVq2a27JliyXvtGnTxq1YscJlGAlCCCGEENmMihUrJnTo0CH0+N9//00oXLhwwtChQ7N0v7IbDOVefvnlrN6NbMt3331nx2jdunVZvSvZklNPPTVh4sSJWb0b2YaDBw8mnHfeeQmrVq1KqFKlSkKXLl2yepeyBQMHDky4+OKLs3o3siUPPPBAwjXXXJPVuyEycHzRuHHjhBtvvDHRuiuuuCKhffv2Ou4xOsbh/PPPPwn58uVLeO6553SMY/hb9se2UqVKdu1v2bJlwk033aRjHOPjPHbs2ITixYsn/PXXXzq2GXic2bZ69eqJ1t13330JV199tY57jOaQPXv2TChTpkyidbfddltC7dq1EzIKVVIIIYQQIltBBhLZ3pT7e4488kh7TIadENHyyy+/2O1pp52mgxbg33//NasHMqqwfRL/B1U4ZIwFzz3i/9i+fbvZAxQvXtw1bdrU7d69W4fGObdw4UJXoUIFd+utt5rF3KWXXmoZsyL3jC9YH35OILtX45HYHeNwfvvtN6uE1LU7tr9lGDx4sJ2rqAwSGXOcuS4wtmJMUaBAAVe2bFn3yCOP2NhLxO44V6pUyV7jLaG+/PJLs9SqU6eODnOMyIrr39EZ9s5CCCGEEGnghx9+sIE8A/sgPP700091TEVU/Pfff1aWjBULE0Th3IcffmgTZ/x6TzzxRPfyyy+7Cy+8UIfm//tzYy+A3ZNIDL7QeBDj+4zV06BBg8wmBLsb+r/EMwRF6PeCRQUWE/x+Onfu7I499ljXsmXLrN49EYPxxd69eyNuz3qRMWO4Bx54wERRCcaxPc7Y9GGJg22LyLjjzHVh7dq1JugTNP/888/dvffea8Ib1kQiNse5SZMm9rprrrkGhyD3zz//uLvvvlt2TzEkqevfgQMH3O+//269QGKNRAohhBBCCJHrIIONIKq88/8HQWaCE1SY4JNMEJU+HvEuVHz11VeuS5cu1seEZo0iMTfccEPoPr06EC2KFi3q5syZE/fZuIihVFKQJQtUUnDeGTdunEQKIdIAvZMQjelTofNx7Dh48KBr3ry5VXrlz59fv80Mvi5QrTJ+/Hh31FFHucsuu8z6qzz++OMSKWII5wiuvWPGjLFxCWIQY7mHHnrI9e/fP5YfJTIRiRRCCCGEyFYweWJQv2/fvkTreVywYMEs2y+Rc+jYsaNbvHixe+2116xhtPg/yO4uWbKk3WfSTNb3yJEjrVF0PINdAI0Zy5cvH1pHRh+/n9GjR7s///zTzkni/zjllFNcqVKlLCAQ7xQqVOgwke+CCy5w8+bNy7J9ErEdX7Be45HMGcMNHz7cRIrVq1ebICpid5y/+OILa+Rcr169RMF0OProo625c4kSJXTIY/B75rpwzDHHJBo3cF0gKx1bI8ZiIv3HGSEC4Y1GzlCuXDmzMW3Xrp3r27ev2UWJ9JHU9e+kk07KkCoK0F9NCCGEENkKBu8EUNesWZNoIsVj+eeL5KDcG4ECGyNK7c8991wdsGTg/4oAfLxTo0YNs8KiysQvZMdj1cB9CRSJOXTokAW8CMTEO9jJEdwL8tlnn1mlicgd4wvWB7cHqq40HondMYZhw4ZZBvTy5cvt/Cti+1suXbr0Yde5+vXru2rVqtn9s88+W4c8Rr9nrguI+F4E8tcFrpkSKGLze/a9a8KFCD9e+7++0CK9ZMn1L8NacgshhBBCpJHZs2cn5MmTJ2Hq1KkJW7duTWjXrl3CKaeckrB37964P6YHDx5M2Lx5sy0M5UaMGGH3d+3aFffH5p577kk4+eSTE1599dWEb7/9NrT89ttvcX9sevXqlbBu3bqEHTt2JHzwwQf2+IgjjkhYuXJl3B+bSFSpUiWhS5cuOjYJCQn333+//U/x23n99dcTatasmZA/f/6E7777Lu6Pz6ZNmxKOPvrohCFDhiRs37494fnnn084/vjjE2bMmBH3xyanji+aN29u50cPv3n+xsOHD0/45JNPEgYOHJhwzDHHJHz44YdZ+C1y1zF+9NFHE4499tiEF198MdG1m/GOiN1xDqdly5YJN910kw5xjH/Pu3fvTsiXL19Cx44dE7Zt25awePHihDPPPDPh4Ycf1rGO4XHmXMxxnjVrVsKXX35p49kSJUokNG7cWMc5jXNIji/H2cNxZUzTo0cPu/4988wzCUcddVTC8uXLEzIKiRRCCCGEyJaMGjUq4ZxzzrGJa8WKFRPefPPNrN6lbMErr7xiA8vwhclmvBPpuLBMmTIlId658847E4oWLWr/T2eccUZCjRo1JFAkg0SK/3HbbbclFCpUyH47RYoUsceff/55xv9ocwiLFi1KKFu2rAVXSpcunTB+/Pis3iWRjvEF//vh19M5c+YklCpVyrYvU6ZMwpIlS3SMY3iMuTZFunYThBSx/S0HkUiRccd548aNCVdccYVdF4r/v/buA0aqsgvj+KEozRVEpCgLCFZEpQUUVAKRJk3BQhMVTEhQBAGjRMiuIioBoqIgRaUFC1WJBFGqgI1uAUGKKFHp0lTqfnmOmfnu3t3Zpew6u8v/lwzL3Nm5985Act/7nvecU7myB7JPnDjBf+cs/J6PHz+ekpyc7IGJwoULpyQmJqb06NEjZf/+/XzPZ3kPqZ/6nsPvqV69uv+b6P9ydt9T5dMf2ZenAQAAAAAAAAAAkD56UgAAAAAAAAAAgLggSAEAAAAAAAAAAOKCIAUAAAAAAAAAAIgLghQAAAAAAAAAACAuCFIAAAAAAAAAAIC4IEgBAAAAAAAAAADigiAFAAAAAAAAAACIC4IUAAAAAAAAAAAgLghSAAAAALncm2++aRUqVLBixYpZ27Ztbffu3Zm+Z+PGjVa2bFk7dOhQtpxTvnz57MMPP/S/79mzx0qXLm07duzIlmMBAID4CV7zc8J+4uHnn3/281+7dm28TwXIlQhSAAAAALnYzJkz7amnnrLXX3/dVq5c6UGHe++9N9P39e/f33r27GkJCQnZfo6lSpWyLl26WFJSUrYfCwCAvOaPP/7wa3blypWtUKFClpiYaK1atbIFCxZYbpScnGzVq1dPs/3333+35s2bx+WcAMQXQQoAAAAgFxs8eLA9/vjj1qZNG7v++utt4sSJtmzZMn/E8ssvv9jHH39sDz/8cMzfOXnypJ06dSrLzvORRx6xKVOm2L59+7JsnwAA5HVaoV+rVi1buHChDR061L777jv75JNPrGHDhvbYY49ZXqIMTwVhcprjx4/H+xSAPI8gBQAAAJBL7d+/31avXm0tWrSIbrv88sutWrVqNn/+/Jjvmzp1qt188812xRVXRLdNmDDBSpQoYbNnz7aqVav6JIGCGStWrLDGjRt7NkTx4sWtQYMGfsygn376ye644w4rXLiwv/ezzz5Lc8wbbrjBz23WrFlZ9vkBAMjrevTo4WWEvvnmG2vXrp1dc801fk3t06ePffXVVzFLDf3555++bfHixf5cP/V83rx5VqNGDStSpIg1atTIdu3aZXPnzvWFDhdffLF17NjR/vrrr+h+KlWqZK+++mqqc1IWhLIhYnn66af9PIsWLerZHwMHDoxO9Gu88dxzz9m6dev8fPTQtnC5p3r16vl+glTO8oILLrDPP//cnx89etT69evn4xmVvKxbt27088aiY6hMpjI29B3o/KZPnx59PfJdfvDBBz7m0dhGiyy0cOP555+38uXL+xhJ34GCRWE//vijn7vep/HYkiVLMjwfAP8iSAEAAADkUlu3bvWfV111VartV199dfS19CxdutRq166dZrsmJYYMGWJvvfWW/fDDD95HQuWjHnroIc/M0GSI9n3XXXdFe1nopl19MC688EL7+uuvbfTo0WkmFSLq1KnjxwYAAJlT9qEmwpUxoUn4MC0uOFMKLrzxxhv2xRdf2K+//mr333+/ByHeffddmzNnjn366adeQvJcqJSkAg/r16+31157zcaNG2evvPKKv/bAAw9Y3759PdCi8k56aFtYp06d7P3337eUlJToNgUOtODh9ttv9+fKJP3yyy/997799lu77777rFmzZr54IiMKmijgo0CJjtO+fXvbsGFDqt955plnrFevXr69adOm/jmGDx9uw4YN82NpW+vWrdMcSyU49fnWrFljt956q5fl2rt37zl9n8D5gCAFAAAAkEtFVjoqcHDRRRdFHx999FGqVZBh27dv95v8MK1yHDVqlK8AvPbaa30FpFZZdu7c2a677jpfZTl27Fjfd2RloDI2tGpw0qRJnp2hjIoXX3wx3ePqmDo2AADI3ObNm32SXtfgrPLCCy9Y/fr1PZuiW7dufj1XZoGea/Jffa0WLVp0TscYMGCAjyWUhaFJemU7KItTlL2gsUrBggW9vJMe2ham4Mlvv/2WqnylAikdOnTwTAdle44fP96mTZvm512lShU/zm233ebbM6JgxqOPPurZHoMGDfKFG+HATO/evX0RxpVXXmnlypXz4IQWYSigoTGSFnUomyKcZaLAiQIgGjPpe1UW6ttvv31O3ydwPigY7xMAAAAAcHYURBCVNgiuptTKv8hr6fn777+9DEGYsiFuuummVNt27tzpkw06hkpCqFeFghSaHBCtMFQDz2DQQysH06NJiIyCJwAA4P+CWQRZJXidL1OmTLQkU3CbSkudC2U8jBgxwrZs2WKHDx+2EydOeCmpM3HZZZdZkyZNvNSSghDbtm3zrIkxY8b46+rNoTGJAg1BKgF16aWXZrjv8DhFz4OlsiSYcXrw4EEPmCi4E6TnysaItW8FYrSfcJYGgLQIUgAAAAC5VGRSQTf+wZJP//zzT6oJhzD1l1A/i/SCCFqdGKRSTypToDIHFStW9DrMugE/duzYWZWt0KQDAADInDIldV1WxmJG8ufPnyaoEavZs3o6RGjfweeRbSrlGNx3OFiSUSNpBRJUQkl9J1QSSZkEKsekUklnSvt54oknPMtBWRQ33nijP0TBjwIFCtiqVav8Z5AyNc5VeuW1AGQfyj0BAAAAudQll1xitWrVStXnQTftmiBQs+tYVNJBdaJPx/Lly32CQH0oVD9aQYo9e/ZEX1c5A9W0Vk3piEgjz7Dvv//ejw0AADJXsmRJn+gfOXKkHTlyJM3rao4tkQUAwWtxODPgbGnfwf0qq0BZDbGo14UWNTz77LOeRaBAS7jUozI3lQWRmTZt2vjCC/XlUJBCQYsIjSe0D2V5aqFG8KESUhkJj1P0XOOZWLQYRBmjGhMF6XnVqlVj7lsZJAqiZLRvAP8iSAEAAADkYpoE0EONLtW8UfWl69atm6YkQZAmPBTIOJ0JAk0uTJ482UsVqDG2JgiCtaPvvPNOL7WgjAuVPFDAROcTpjJPulFX6QYAAHB6FKDQ9bpOnTo2Y8YMv9brmqxySpHSQrou33LLLfbyyy/7a+ozoVKNWUG9qTQO0PVdJZZ0vQ9nLoTHDSoJqewJlXvSec6aNSvV76hXhQIdCqRo4YNKNMXKZrj77ru90bU+l/pRRGjsoTFJly5dbObMmb4/lal66aWXvAF4RtTH4p133rFNmzZZUlKSv0+9JDKihtjqQ6FSVhs3bvTG2jp/ldgM/3vp8yr7RQ3PlbnatWvX6OvqLxL+PgAQpAAAAABytXvuuceSk5M9OKHG1SrBEGlOGUvz5s29TrKaXmdGzR51g12zZk178MEHPauidOnSqcpA6GZbfS40gaJGlIMHD06zHzXzrlChgteVBgAAp0flG1evXm0NGza0vn37WrVq1TxbcsGCBd6YOUKT7lq5rwxLNX1Wg+ys0L9/f2vQoIG1bNnSWrRo4UEDNamOpXXr1vbkk0/6pL8aSyuzQkGGIDWWbtasmX8mZWq89957MfenQIQWQWj8oHFEkBpkK0ih70XNrHVuK1asSPN7YSpFpSCK+nNMmjTJjx/OiAjT+KdPnz5+LJWcUnbH7NmzPSgTpECRHhqTqem3fkdlNiMU4Dhw4ECGxwLOR/lSsqMLDwAAAIAcTSv9dOM8b968/+R4WuGpG/yOHTv+J8cDAAAIU88NLa5QQANAzkHjbAAAAOA81L17d69lfejQIUtISMjWY6mUQ9u2bVOVaQAAAAAAIZMCAAAAAAAAQJ5HJgWQM5FJAQAAAAAAACDPo+o9kDPlj/cJAAAAAAAAAACA8xNBCgAAAAAAAAAAEBcEKQAAAAAAAAAAQFwQpAAAAAAAAAAAAHFBkAIAAAAAAAAAAMQFQQoAAAAAAAAAABAXBCkAAAAAAAAAAEBcEKQAAAAAAAAAAAAWD/8DhpFKYusQQ7MAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1106,7 +1179,7 @@ "ax[\"c\"].set_xlabel(\"Cumulative prob.\")\n", "ax[\"c\"].set_ylabel(\"Quantile (rad)\")\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-vonmises-flat-topped.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-vonmises-flat-topped.png\")" ] }, { @@ -1130,7 +1203,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm8lPP7//+2RrKlHW2kSKWkRSqiUqJUJKIkZYvs9FF2RShEmz0RUkqWUinthITIUlmy79m3+T+e1/d/3b97pnNOnTrnzDlnXs/HY87M3HPPnHtm7nkv1/t1va6tEolEIgghhBBCCCGEEEIIIYQQYgO23nCTEEIIIYQQQgghhBBCCCFAQXQhhBBCCCGEEEIIIYQQIhsURBdCCCGEEEIIIYQQQgghskFBdCGEEEIIIYQQQgghhBAiGxREF0IIIYQQQgghhBBCCCGyQUF0IYQQQgghhBBCCCGEECIbFEQXQgghhBBCCCGEEEIIIbJBQXQhhBBCCCGEEEIIIYQQIhsURBdCCCGEEEIIIYQQQgghskFBdCGEEEIIIYQQQgghhBAiGxREFyLD+frrr8OQIUNC165dQ7Vq1cJWW21lFyGEEEIUfv78889w3XXXhRo1aoQddtghVKpUKfTt29f6dyGEEEIUfj766KNwzTXXhOOOOy7sueeeNh+vWrVqug9LCJHCVolEIpG6UQiROcydOzccccQR1lEzAf/ss8/Cb7/9FtQ0CCGEEIWb//77L7Rv3z7MmDEjNGnSJLRs2TJ88MEHYcqUKbYwvmTJklC2bNl0H6YQQgghcuDBBx8Mp59+ethmm23C/vvvH1auXBn23nvvsHbt2nQfmhAihpToQmQ4dNLz5s0LP/30U1i1apV11kIIIYQo/Dz00EMWQO/evXtYtGhRGDp0aHjqqafCPffcE1avXh2uuuqqdB+iEEIIITZCixYtwuLFi8P69evDW2+9Fbbbbrt0H5IQIgsURBeigCEti3Tr+KozKnCuHe7XqlWrQI6nfPny1mnvvPPOBfL/hBBCiOJIOvr3cePG2TW2bHErtn79+oXq1auHCRMmhN9//z3P/p8QQghR3ElHf06fTUbZjjvumGevKYTIexREF0IIIYQQoojxxx9/hKVLl4aaNWuGKlWqJD3G5L5169bh119/DcuWLUvbMQohhBBCCFFc2DbdByCE2DgjRowIP/744ybv36lTp3DQQQfl6zEJIYQQIn39O0XI8ESnnklW+HY80ps3b55HRyyEEEKIVDRfFyIzUBBdiCLSKX/88ce5SkFTpyyEEEIU3/6dWiaw6667ZrnvLrvskrSfEEIIIfIHzdeFyAwURBeiCLAlVbnnzp1rlzh02Kx+CyGEEKJo9u9CCCGEKByoPxciM1AQXYhiDgH0a6+9Nmlbz549FUQXQgghijCuQM9Oaf7zzz8n7SeEEEIIIYTYfBREF6KA2W677cK///6b7eO//fZbtF9eeKxdc801dhFCCCFE8enfq1evHrbeemvzPM8K356dZ7oQQggh0t+fCyGKDgqiC1HAVKxYMXz44YfmmValSpUNHn///fej/Rx5rAkhhBCFm4Lu33fcccfQqFGjsGTJkg3+ZyKRCC+++GLYaaedQsOGDbfwnQkhhBCZg+brQojs2DrdByBEptGuXTu7vuGGG8J///2X9Bj3b7zxRrvdtm3bJI81JsSbeunVq1cBvyshhBAis0lH/963b1+7vvLKK+1xZ8yYMWH16tXhlFNOsWC7EEIIITYNzdeFENmxVSI+4hZC5Du//PJLOOyww8Kbb74Z6tSpEypUqGBqsTZt2oQvv/wyrFixIjRp0iTMnj07lCxZskCOKd6JT5kyxXxU8U13rrjiilCrVq0CORYhhBCiKJKO/p3JfPv27cOMGTPstVu2bGnqucmTJ5vKbenSpaFs2bJ58r+EEEKITCAd/fm3334bLrnkkuj++PHjbRG8a9eu0bZbb701lClTJk/+nxBi81AQXYg0dczDhg0LEyZMCB999JFtw9f04IMPDqeddlo4++yzwzbbbFNgx7PVVlvl+PhLL70UDj/88AI7HiGEEKIoko7+/c8//wxDhw61Cfenn34aSpcuHTp06GAKuvLly+fp/xJCCCEygYLuz1GyV6tWLcd91qxZYwvkQoj0oSC6EGmGlOuzzjorjBs3LvTp0yfdhyOEEEKIPED9uxBCCFH0UX8uhHDkiS5EmilRooRdb7ut6vwKIYQQxQX170IIIUTRR/25EMJREF0IIYQQQgghhBBCCCGEyAYF0YUQQgghhBBCCCGEEEKIbJAnuhBCCCGEEEIIIYQQQgiRDVKiCyGEEEIIIYQQQgghhBDZoCC6EEIIIYQQQgghhBBCCJENKi8sRBHi66+/Dr/99lsoU6ZMKFWqVLoPRwghhBBCCCGEEEKIYo+U6EIUQt54441wwAEHhPr164f33nsvnH/++eG4444LNWvWDNWqVQsnnHBC+Pfff23fFStWhCOPPDK8+uqr6T5sIYQQQgghhBBCCCGKHSosKkQh4Msvvww77LBD2G233ez+d999F8qVKxe22mqrKFieSunSpUPHjh3DV199FZ577jnbtt9++1mA/ZhjjrFge/ny5e01hBBCCCGEEEIIIYQQm4eC6EKkmUWLFoWuXbuGxo0bh8mTJ0dB7+7du4eJEydu0Wtvs802oXLlyqFv377hoosuCttvv30eHbUQQgghhBBCCCGEEJmB7FyESDMEtlGeL1y4MDz77LPR9qFDh5qdy8Zo0KBBuPHGG83+JRVU7GvWrAlXXnllqF27dpg1a1aeH78QQgghhBBCCCGEEMUZBdGFSAPxBJD999/fguXffPNNGD16dPjkk09se5UqVcKcOXNMpb711sk/1Ro1aljgfO3ateG1114LAwcODO+8844VHe3Xr1+W//PDDz8MrVu3Dt26dQvr1q3L53cohBBCCCGEEEIIIUTxQEF0IQqY5cuXh0MPPTR8+umnFjhv1apVWLp0adhuu+1Mjd6jRw8rLAorV64M8+bNC//991/YfffdrcAoBURXrVplgXMC7XF23HHHMGrUqHDPPfeEChUqhD322CNUr149VKpUKRx88MEWjH/iiSdCrVq1wm233Rb+/vvvNH0KQgghhBBCCCGEEEIUDeSJLkQBws+tefPmFixv3759+OCDD+yy0047hV9//dX22XnnncP69evDBRdcYAHxv/76y5Tq06ZNC3vttVeu/hd2LgTOf/nlFwuYv/XWW+HSSy8Ny5Yts32weHnwwQdDw4YN8+09CyGEEEIIIYQQQghRlFEQXYgCZvXq1eGcc84xG5Zvv/3W1OJ4osNuu+0Wfvzxx6T9O3XqFB555BELtG8O/MTvvPNOU66jdv/zzz9DqVKlwvfff28K91122SXMnTt3k/zXhRBCCCGEEEIIIYTINGTnIkQB8M8//0S3q1WrZspwAuiVK1eOAugEuAmgY8niXHHFFeGpp57a7AA6oEAfP368+aX/9NNP4Y8//rD/TQAdfv7559C2bdvw/vvvb9F7FEIIIYQQQgghhBCiOKIguhD5DHYteJC/9NJLdn+rrbYyX/IWLVpERURRhhPs5vr333+3gDo2K0OGDNmgqGhu2X777cP06dPD0KFD7TiyAm/2o446ynzahRBCCCGEEEIIIYQQ/w/ZuQiRz5x22mmmBKeY6IIFCyyI7kVDKSqKSh01eokSJcxqBXuXKVOmmHd6XvPFF1+Eli1bWmA/DoF6lOk1a9YM8+fPD2XLls3z/y2EEEIIIYQQQgghRFFESnQh8pmxY8eGvn37hnXr1oUxY8aYRzkccMAB5ot+3nnnhR122MEC6BUqVAhLly7NlwA6VKxYMcycOdOKl8YhgL7tttuGVatWhaOPPtpsX4QQQgghhBBCCCGEEAqiC5HvYM1CMdGPP/443HjjjeG5556LHttzzz1D+fLlzad8m222MZuXffbZJ1+P54033gjr169P2oYPe5kyZcLuu+8eXn/99XDccceZrYwQQgghhBBCCCGEEJmO7FyEyAduu+22sOuuu4Y+ffqEwYMHh+uvv94C1Vi2EDAnmN6vX7/wzjvvhMMOO8z80G+99dZw8cUXF8jxXXbZZRbAr169uhUzrVOnjqngsXs5/PDDrdjoMcccY7YyLAIIIYQQQgiRHddcc43V30GI8eijj1qGoxBCCCFEcUJBdCHymJdfftkC0fy0hg0bFi699FLbXrdu3bBixYpQpUoVU6XXq1cvfPvtt2bz0rlz5zBp0qTILz2d4NveunVrC/YT/L/qqqvSfUhCCCGEEKIQ88svv4RXX301tGvXLjzwwAOhe/fum/1ajKGvvvrqMG7cOBN7NGvWLIwaNSrUqFEjT49ZCCGEECI3KIguRB6Dqvz22283f/GpU6eG77//3jzOKdi5/fbb2z5//fVXqFy5cvjkk09sQrBs2bKwyy67pOV4f/31Vzs2/Nk/+uijUKlSpTB8+PDw22+/mQqd7SjVhRBCCCGEyIlevXqFr7/+Osm+MLfcfPPNYciQIeGhhx4K1apVC4MGDQpvvfVWWLlypdUREkIIIYRIBwqiC5EPUCSUwDmKHALQH3zwgSm799577/Dpp5+GfffdN3z44Ydm8UIh0XQFqZmMtGnTJnz++edRwVMmJxyrXx988MFhyZIlSssVQgghhChgGJ8hbEgHJUuWzHWW5OjRo0P//v1tbFm2bNnNer8IOrA4vOSSS2wbBe+pIfTggw+Gk046KdevKYQQQgiRF6iwqBB5xJdffhkFolFwd+zYMZo8EIxGcU4AfaeddrIAOowdOzatKm+KmBLIdxU8xU05Vo6RazzcUaJjSyOEEEIIIQoWAuilSpVKy2VzgvcEuv/5558wceLEaBsZjxv7XxMmTLB916xZY2Pqo446Kno+dYYaN24cFi9enEefqhBCCCFE7pESXYg84PfffzePc/zOST1FQQMjR440NQ5BaixcPECNhcpZZ51l/o7p5r333jN1D36T7777bth6663Df//9Z4+hPqKJwIbm9ddfD7Vr10734QohhBBCZAyMGQkyp8vnnHHrpkKQm/Fkhw4dzNKFTEYfJ1MDKCcYi+68885h0aJF9hoo2StWrBg9fuKJJ9q49PHHH9+CdySEEEIIsfnIn0GIPADbFlTmTHRQbzvnnHOOqXEee+yx8Morr1hwnUnBgQceGEaMGBEKA7Vq1bLr+++/Pxx66KFRAB1V+r///ht233338MMPP4TTTz/dJjaydRFCCCGEKDhLFYLZ6frfuYGxLQH0a6+9NjRo0MAyL7EwJOuRayGEEEKIoozsXITIA1q0aGEFj7p06WLpp668QdU9YMCA8OSTT4ZWrVqFL774wrbfeeedScH2wkCTJk3MggZQnhNAJ2BOAJ3JDwsFFEwVQgghhBAFA+pr1ODpuOTGDx0xyeTJk8NFF10U6tevb9mLbtGSGzuXChUq2PVXX32V9Prc98eEEEIIIdKBguhC5BFMNvCBXL58uflAkrrqUFCUoDTWKCeccEI44ogjQmHjkUceCU8//bQFzrGe8WA6CwFHH3203R88eLBZvgghhBBCCOFgYVi3bt1w+OGH2/0ePXpEgfGGDRva+Diny3HHHWf7VqtWzYLls2fPjl77559/DkuXLg1NmzZN07sTQgghhJAnuhBbBDYthxxyiKWo+mSBCcTKlSttAvDoo4+G5s2bhyeeeCJ069Yt7LDDDuZBjnd6YYPiUfi6H3zwwVZwFB/Krl27hu+//z7sv//+4ZhjjgnPP/+8FXZauHCh2b0IIYQQQojMhjHkXnvtFe66665wyimnRMp0xrtkZzZq1ChXr3fzzTeHoUOHWp0hguqDBg0KK1assPE1Y2khhBBCiHQgc2MhNpO1a9eGXr16mVJ7zJgxFkAn7bV06dLmg04QGpuXnj17RmqaK664olAG0N338u23397AZsZTZ8eOHWupuSiBHn74YfNIF0IIIYQQmQ3jQsaRFP+MZ2GiSifTMbdB9Msuu8zqDPXt2zf8+OOP4bDDDgsvvPCCAuhCCCGESCtSoguxmXzwwQfh3HPPDX///bf5NGJzQirqtGnTLLBO8Jkioii3CTwTPGcf/MWLCjQP2NJw/BQYpVDq4sWLQ+XKlcP7779f6HzdhRBCCCGEEEIIIYTIa+SJLsRmUqNGjTBz5kwrJEpwvEyZMuHjjz+OinQSQCeQ/sYbb9i22267rcgE0D/88EMrkoq1C+pziqKiAiKAvttuu4VPPvkkjB49Ot2HKYQQQgghhBBCCCFEvqMguhBbqNResGCB3e7UqVN48803w8477xxWrVpl27B0oUgnhUQ7d+4cigpnnnlmmDx5si0AEDD3IqNAgVS48cYbw/r169N6nEIIIYQQQgghhBBC5DcKoguRS1566SVTlf/xxx/mgf7ss8+Gxx9/3IpuQtOmTcN3330XKlWqZEFoCnDecccdtm9R4dJLLw3t27cPDRs2DP/995/5XP7www9m6ULgHNX9N998E0aMGJHuQxVCCCGEEEIIIYQQIl+RJ7oQuYCAMhYny5cvD4MHDw7XXnutbf/666/D2WefHV555ZXw888/26V69eph9erV4bzzzgt33XVXKIosWrQoNGvWzBYCUKATTP/tt98smE5QfZdddrH3uMcee6T7UIUQQgghhBBCCCGEyBekRBcil5x//vnmE44n+i+//GLbypUrF5566qlw3333me951apVLbjM7UGDBoWiyqGHHhratGljAXQC5wTQsashgL7XXnvZYsHQoUPTfZhCCCGEEEIIIYQQQuQbCqILkQu23nrrcPrpp4cnn3wy9OzZ09TmWLc4BJw/+ugjszuBvn37WoC9qMIiwf7772+3f/rppyRP9D///NOuR44cGdatW5fGoxRCCCGEEEIIIYQQIv9QEF2IzQAbF6xdDjroILN1Wbt2bfTYa6+9FpYtW2aFOC+55JJQlEFZj587Ni68X9Toe+65ZzjggAPCwIEDzeoFb/jrrrsu3YcqhBBCCCGEEEIIIUS+IE90ITYBbEtOOOGEcMUVV5j/d7169Wx7t27drKho8+bNw7nnnmv7tGvXLsycOTP069cvjB49OhRlKCJ61FFHhdatW5sinaB55cqVrUgql4ULF4bDDjvMPNNXrlwZ9ttvv3QfshBCCCGEEEIIIYQQecq26T4AIYoC99xzjwXGP/nkk1CzZk3bduyxx4ann37abuMTftJJJ4WJEyfafgSVL7/88lDU4X0tXbo028cJqh9zzDHh2WefDTfffLMp14UQQgghhBBCCCGEKE7IzkWITeDUU08NAwYMCKeddlqYOnWqqbBRpOML3qBBg/DCCy/Yft9++61d9+jRI1SrVi0UR/7++29TqD/xxBPh0UcfjYqrPvLII+GLL75I9+EJIYQQQogC5pprrgk77LBDOPHEE8M///yT7sMRQgghhMhzFEQXYhPAB3z48OFhwYIFdr9r165WXNQfwy+8adOm9jgB9iuvvDIUJ3B9mjFjhqnOq1atagsEWNmcddZZYd68eWbj8tdff1mRUSGEEEIIkVlQB+j5558P06ZNi8bIWzLupOZQxYoVw4477mjWgh988EGOzxkyZEg45JBDLIuyXLlyoVOnTmHVqlVJ+xx++OGRJaFfGMsKIYQQQmwKCqILsYkQJN5tt93CdtttF8qWLRt+/fXXULdu3TBr1ix7nEKiQHDZLV+KCx999FE4+uijbXL0+eefm10NVKpUya5R5MOoUaPscxFCCCGEEJlDqVKlwhFHHGH2huPHj9+i17rlllvCnXfeabWFsBXcaaedQtu2ba2YfXYg6qA+0ZIlS8KLL75omZNt2rTZYFx65plnWuakX/hfQgghhBCbggqLCpEDeHy/+uqrVlAUBTa89957oXHjxlZs1H3QKbr57rvv2uMrVqwIderUCcWN448/3hYPHnzwQZuYAAoeUnd///13C6gTYL/rrrvCeeedl+7DFUIIIYQoNuQkUkDcwHhsU/bdeuutTd29sX0JXG8OBL779+9vY0LGjbmFqSljyosvvtjU7fDTTz+F8uXL2xiUsfem8M0335gineB6ixYtIiX6QQcdFEaMGJHr4xJCCCGEkBJdiGzAz/H6668PY8aMCdOnT4+2k1qK0oVA+uzZs20bg3To2LFjsQygw5QpU8LYsWPN6xL22msvm+i497t/Brfffnv4999/03qsQgghhBDFTemd3aVLly5J+zImy27fdu3aJe2LSCSr/TYXAt2MoRGZOPPnz8/x+LlMmDDB9l2zZk348ssvzcLF2XXXXW3cvXjx4k0+DgLvULp06aTt/J8yZcqEAw880OwXf/vtt81+r0IIIYTILLZN9wEIUVjZdtttw8MPPxzuueceU+N8+OGHYd9997WB/E033WQWJ927dzcbF1JH4dJLLw3FHRYQmIB8/fXXdp/PwRX42N0w+SHgjm+8EEIIIYTIDAhyv/LKK+HYY4+1sSKKdGjYsGFYvnx5js9FaQ4E0OP344/7YxuDWkUDBgwIzZo1s2C5c/LJJ4cqVaqY0p1x6+WXX26+6ZMnT871exVCCCFE5iE7FyE2AgN2BtxYmLzzzjtm3eLw8xk0aFC48cYbQ4MGDcKyZcvM4qQ48/7775sv5dq1a02N/tlnn4Xq1auH1atX22Rl4cKFoVGjRrawUNw/CyGEEEKIgqAo2LlQFwiLv2uvvdbGxRQDRYCSGxYtWmTjSexgyP50yIRkXPn4449v9DXOPvtsq+OzYMECG6tmx5w5c8KRRx5pQpl99tknV8cphBBCiMxDdi5CbAQKG1FUlDRSig/NnDnTgueAbQlqdTj//POLfdAY33eKpq5bty6poCipwExCUKmXKFHCVEgE04UQQgghxJZDUDu7SzyAvrF94wH0nPbNLZ9++qkpui+66KJQv379ULt27ciiJTd2LhUqVLDrr776Kun1ue+P5QR1ebBhfOmll3IMoANjeyCILoQQQgixMWTnIkQKBMjxlmzZsqUparBzAe7ffPPN4ZlnnrFr9kHBwqQBb0X2Le7UqlXLCjKRUst7Puecc8x3M64yYtIybty4cNttt4XDDjssrccrhBBCCCHyn5EjR4a6deta8U7o0aNHuP/++8PVV1+dKzsXau0QLKfuEGNO+Pnnn8PSpUtNYZ7T+B37GCwF586dG9XsyQk/prjiXQghhBAiO2TnIkQKBIFbtWplSh0KDg0ePNjU12XLlrW00J49e4aHHnoo7LHHHmbtwrb//e9/4YYbbgiZAKp8fOCz47333rPPBVU+abxKjxVCCCGEKL5QnBPV91133RVOOeUU24bIBDtE7P2w+csNiFWGDh1q422C4Vgn4mG+cuXKSHVPBuTxxx9vynNA2PHoo4+GqVOn2rjdoZYRY3pq+PB4+/btbQzP61144YV23PPmzcvTz0MIIYQQxRPZuQiRQpMmTcLo0aMtMD5mzBjbdsIJJ1iwnGKj33//vW3Dr5Ft+FCeddZZIVPILoCOdzx+6U888YR9hqzP+ecnhBBCCCGKJ1gblixZ0nzLnb333ttU6Y888kiuX++yyy4zVXnfvn3DIYccEn755ZfwwgsvJNnWEBT/9ttvo/ujRo0KP/30k/1PlOV+cQ91xq+zZs0Kbdq0sczKiy++2LJKyTAVQgghhNgUpEQXIhtQv/Tq1csG4AzIH3vssdC5c+cwbdq08M8//5j6hZRRJgybUuSouMGEZtKkSbaQgNoIaxvSbimuyudFKi1KHwqPpnp1CiGEEEIIIYQQQghRVJAnuhA5BIl33313C6QPGzbMthEUJoCO0hpFDKCUyTQoMEpq7n///WcpvCw08Ll888039viiRYtCpUqVwueff26BdnwxhRBCCCGEEEIIIYQoisjORYiYHQk+iTNmzDArknPPPddU1ASHuWDfMn36dNsXf8bff/891K9f37ZnGnhNsqBAEajtttsufPHFF6Y2//jjj8MBBxxgvulce3qtEEIIIYQQQgghhBBFFQXRhfj/ufvuu8Pzzz8frrnmGiuKCfg7EignINy4cWMLFhM4RmkN559/frRvJrH11ltboSj8KLG4gerVq0cFnIDH8Ivns6J4kxBCCCGEEEIIIYQQRREF0YX4/znjjDPCgAEDQr9+/azwkJcL6N69e3j77bfDzjvvbEHhI4880hTXu+22W+jWrVvIVCpUqGALCD179rT7WLfAG2+8EXbaaaewZs2a0Lx5c9smNboQQgghhBBCCCGEKKooiC7E/0/VqlXD8OHDw/vvvx9at24devfuHT1GsBiFOsFzvNLh1FNPDTvuuGPIdI466qhQrly58OOPP4YqVaqEP/74I9StW9cew+oFHnnkkbB+/fo0H6kQQgghhBBCCCGEELlHQXQhYuBzPnbsWLu9//77h9GjR0dBc9h+++3N8gX69OkTMp158+aF2rVrm+0NoM4HAups22effUKtWrXsMySQLoQQQgghhBBCCCFEUUNBdJHxvPjii+Zt/uGHH4aJEyeG7777LlSuXDm8+uqr4eyzzw4XXnihqdNh/Pjx4e+//w6HHHJIpLbOZPbcc8/wwQcfhG+++cZU6B06dDBv+Zdfftn847FxOeuss2xfbrtFjhBCCCGEEEIIIYQQRYVt030AQqSbYcOGWSAd65E5c+ZEVi0333yz3S5dunSoWbOmBdTnzp1r26RC/z/23XffMH369NCiRYtQqlSpLIus4pl+5ZVXhrfeesuKkTZt2jQtxyqEEEIIIYQQQgghxOYgJbrIeC677LJwzDHHhMaNG4fly5eHHXbYIfz111/hn3/+CYcddliYNm2a7Yf/+bvvvms2JSeddFK6D7vQwGdH0dWsAuhAgdH27dvb7fvuu6+Aj04IIYQQQgghhBBCiC1DQXSR8VAYEzX1pEmT7P7JJ58c+XcfccQR4b333gs77bRT+Oqrr2xbt27dwi677JLWYy6s/Pnnn2Hq1KlhxIgR4dBDDw0nnnhiaNCgQfT4448/nuQxL4QQQgghij7XXHONCVEY+yFEEUIIIYQobiiILkQIpjxftWqV3aYQJn7eFSpUiLZ17do1TJkyxW7LymVDZs2aFY499tjQsGHD0KlTp/DYY4+FxYsXh++//94exyaHIqME0J944ol0H64QQgghhMhDLrnkkvD8889bBueTTz65Ra9FDZ3BgweHihUrWiYoghdq8GwsiE9WZPzCmF4IIYQQIq9QEF1kLFiLjBw50gK722+/vVm5vPLKK6ZKhx49eoSnn37ableqVCn89ttvYf/995endxZQeJXPzVXmHjzHA53ioz/88ENo1KiRbZOlixBCCCFE8YLaOGRwYnk4fvz4LXqtW265Jdx5551h9OjRYenSpZYR2rZt2/DHH3/k+LzatWubEMYvCxYs2KLjEEIIIYSIo8KiImOV5yhcPv/887DrrrtaIVEUK3Xq1DF/b4Lq7o1+8MEHW+FRV6Fn5/2dyaDUx+7m6KOPtiKjH374Ydh7773Dp59+Go488siwbt06e3ybbbYJixYtMoscqYOEEEIIITaNX3/9NdvHGF8xbt2UfbfeemtTd29sXwLXm0OTJk1C//79wzfffBPKli27WSp0bAGvuuqq0LFjR9v28MMPh/Lly5u4Jae6RNtuu61lkgohhBBC5AdSoouMhAH6wIEDQ/PmzUP9+vVNZQ5MQFBUE/SdOXOmbaMo5rJly8J2220XTjvttDQfeeGkXLly4dprrzWVfuvWrW0b9i3w3Xff2fXcuXNDq1at7Pb999+fxqMVQgghhCh6Su/sLl26dNlgXJbdvu3atUvat2rVqlnut7k8+OCD5ok+ceLEaNv8+fNzPH4uEyZMiArSf/nll2bh4iB4ady4sVkF5gSWL2SPVq9ePZxyyinhk08+2ez3IYQQQgiRioLoIiMpUaJEOPfcc8O8efMsML7XXntZkNcpU6aM3Wci4AVFjz/+eNsucobCq8BCBDDhQc3/33//mbULPPTQQ+Hvv/9O63EKIYQQQoi8gzEf1ojUyfGgOFAzB9vEnC7HHXec7UsAHVCex+G+P5YVBNkZt7/wwgth1KhRFoxHLLN+/fp8e79CCCGEyCxk5yIymoULF4Y33njDFOi///67KVYqV65sj5HqeuKJJ4YBAwbYfRUU3Tj4VrpqHzXQQQcdZBOjKlWqhNdeey2sXbvWJkEsTDz77LNWhFQIIYQQQuSM153Jzs4lztdff52jnUscxmZ5BTYsHTp0sOzEBg0amL3fvvvua2NqrvOTuMK+bt26FlRn/ElB+zPOOCNf/7cQQgghMgMp0UXGQbEiPM6xdLnrrrtsGymfF154YahWrZr5LfIYTJ48Ofz44482CMfbW+TMJZdcYsVaa9asaffxPT/mmGNC9+7dwzPPPGMWOW6JowKjQgghhBCbBh7l2V3ifugb2zfuh57TvrmFOjiMmy+66CKzSqTIp6vRc2Pn4p7mngnqcD83fue77bZb2G+//SyQL4QQQgiRF0iJLjIKlOZ4of/7779hzpw54amnnrLtjRo1sqAuRUVRTl955ZXhuuuuC+PGjbPHUbCkKnfEhvTo0cMKiuJjeeihh2ZZPLR3795h2LBh4bnnnrPCrnhXCiGEEEKIogsiChTghx9+eDQmpAbO1VdfHdm55ITbtyBoIVg+e/Zsy2iEn3/+2bIdzz777Fwp9z/66KNw6qmnbtH7EkIIIYRwtkq45FaIDICg7dChQ8PHH39sA/0bbrghtGjRIuy+++5h6tSp5pNOcBcfxSFDhlgwneA5qa4Eh8WWwwIGn/miRYvsM77iiivSfUhCCCGEEGIz+e2336y+EBmeZHe6Mp1MziVLlphYJTfcfPPNNl6nhg5B9UGDBoUVK1aElStXRqp7MkSpV3TeeedF2ZB4sfM/Ge8TvCdwz3PKli2bD+9aCCGEEJmGpLUio0D1fOedd4bHH388jB071raddNJJZjUC9erVswA6KaDffPONbTv66KMVQN8CKCjKogUKpVtvvTVUrVrVFEmAQknreEIIIYQQRZeHH344lCxZ0moJOYydUaU/8sgjuX69yy67LPTv3z/07ds3HHLIIaYqp2Bo3LYGlfm3334b3f/ss8/MPhBLQY5jjz32sAC+AuhCCCGEyCukRBcZCSmiWI7sueeeppjBJ71Vq1Zhl112MU90VC1PPvmk+S/i74jSRWw6TGqY7KDuf/fdd03J/+uvv9qCxcSJE0PHjh3tO2BSNG/ePFOmCyGEEAUFw18Web0gI/39tGnTLPssXoTwgQceMDXrCSecEA477DDbRt/FYjwL7l26dEnbexBCCCGEEEIUHFKii4yAiTLWLajMPQX0/fffD2PGjLEJMnjxS6AQERPqcuXKhQ4dOqT12IsaqM7xtSQIMX369PDOO++E5s2b22PuK//8889bIB1UYFQIIUR+8fvvv29QWBCPZBbNp0yZkqRiRfWKBUScZ5991jLYsJJwsIro06dPUrDd1bNYxY0fPz4pWI/VhRBCCCGEEKJoo8KiIiOYMWOG+Snefvvt4YsvvgglSpQINWrUCD/++KNNsPFxZAKNXzcB35kzZ9rzevXqFbbbbrt0H36RAi9KFiFI6y1Tpox9ltwG1OdY5rz55ptWNApQ/BOg2HXXXdN85EIIIYoyBKz//vvvsP3229t9ChE2a9bM+ngyouIL66jJV69eHW2rWLGi+Sl7sWvGBti6NWjQwF6P26NGjbLX//LLL0Pbtm1DqVKlbF8sI1599VXLwHrrrbfsPj7OvOaff/4Z6tSpEw444AALxG+11VYF/rkIIYQQQgghthzZuYiMgIk06rIDDzzQgunxgO369evNcqRr165WBImA7oABA2yS/d5775m3osgdBCcILjz11FP2uVauXNnsXL777rvQr18/ywBwj0s++9GjR9t2IYQQYnOgEOHw4cOtj6dIOPz0009muYInMgFzD3p/8MEH1seXLl3a+nky01CrDx48OOy44462D7Zud999d7b/Lz4+4H+S7ZYTKNRZQH7llVfCsmXLzDrmjz/+sOe5TYwQQgghhBCi8CIlusgIGjdubAox1GOozNq1axcVQdp5550toIutCynY33//vU2uUaQrgL55eKCiffv2dvuTTz4JnTt3Nn/5H374IWy77bam2rvkkkssiE6BUQXRhRBCbAoEvalfcvHFF0ee5vTb2LDNnTs3CqKzYL5u3TpThKMARyVOdtRrr71mF14nTo8ePULt2rXtNkUJyUQjAE9W1e67727b//nnn/DXX3+ZKh21OuMKAvAo1vk/WLcwjnj77bftmNCqsJDM9kaNGtliclwBj6KdzDgeQ7HO/8NGzvtRIYQQQgghROFAQXSRURCsZSJLUBdbl+rVq9vEmgs+6UcccYRNZgG/U7FlYJtz9NFHh0mTJlng3P3Q27RpE5577jlT4bEdZR7BDQIIQgghRHZgp9KkSRNbkCXwfPjhh9t2ioQ3bdrULh7sJlCOjYpbqBB4R20eZ++997Z99t13X1OhEwBHKY6FC2px+jCguGj9+vWj57EQHAd/9N69e9v4gv4M1bnDtjgE/r2wKWMS9o3vT9/JAv9OO+1kC/8cG0F87NKoOYK6nvso6SmQzr5CCCGEEEKI/EVBdFGsQfFFAJciYkyIUY7B6aefbtYutWrVCrNmzTLFGaBgQyFGwTFsSMTmw+fev39/+4xh4cKFFgDAV7ZVq1amzMNzngJtKNTHjRtnVjpCCCGEB8wpUP3GG2+E6667zrahDj/xxBOtiLV7nwN9CopxCoHS/7BQi50LxUM7depk+7Ro0SIcf/zx4eCDD7YLQXEW1OfNm2eLuajC40VIyZDyIDoL7ATcUZsTuKauB8HwJ554Inz77bdWJDu1UDYBfRaHOVbGFtjIAPVXcgIfdS68Ls9dvHhxjvsTVK9atap9BvSz9Lv8X8Y5rqAXQgghhBBCbBnyRBfFmiFDhoSBAwda0Pacc86xwDip0hdeeKFtZwJ98sknWyCX9G8Uao8++mg466yzooC72DwWLFhgljhM6LmQnt6yZUtT/MXT1LHZwV6HIADfg/vRCiGEyGw++ugjU2GjJOc2xTqBoaury1FyP/PMM1aDgwA69x36lVtuuSWceeaZ0TYyoHbYYQe7TQDdC4nG4X82bNjQ+iwC0ywCL1q0yALtvNaIESNsP4qTe5B66623Nos4jo1j2NjwmmNjAZ/nsxjA4j33sYpBZY8dDIvO2QXcef8E8VHc5wTvj4A6tnWHHnqoqfgVWBdCCCGEECL3SIkuijVMHrFsQfF81113RTYtqJ6BYPk111xjE2kUW0zCPS1bbBko8GbMmGGp9nG1YCqtW7e2IAXp7ijSSckXQgiReaDUXrlyZejYsaPd32effcynHAU4AWrHA+j+nJNOOim6z6ItC+ZdunQxuxcCzezz5JNPmkKdhXT6JkBVTlAZWxT6LPbff//9w8iRI22Bd+LEiRscIz7qFCt/6aWXwpw5c8x6BdU41iwUy3Z4TeqqoGDfb7/97Jr3w7iEY3CLs41Bhtz1118ffv75Z6shQpFuIEifUwCd900AnsVpLv6eAd93AuoIDLBX41iFEEIIIYQQOSMluij2MIlcsWKFFf1iUkm6NUF1lFj33HNP6N69eyhXrly48sorTaFer149Sx2PT9JF3kOaPUo7irkygSdrANUfAQMhhBCZBYFpArsosrEw4ToVAshki3399dfhf//7X7T9hBNOMPU4wXP6evrvtWvXhkceecSC54wBHDKh8D3HFgZQfWPhglIbCIYTXOd/AAFwrF8I4rPYi7VKPFgO9GE8n/1QsHNN4D+vxxGo1Ane33333aa+Z0xz0EEHmfc7cAwE9fFrJ7APFF/ls1myZEmYP39+UlFTV9CzeIBtDVlhHD/bhBBCCCGEEMkoiC4yAqxaCJgzwWYSTnHLiy66KLzzzjumzrrsssvsmsJe+HLj5S3yFlR0U6dOtUn/zTffbAXT2MZ3wH0WMQherFq1yoIWQgghiv8iN30C0P6TEYZamyAxGUoO3uCow7lQ6wQ7FtTV2dmSnH/++bavD3FRfVM8nDEA/ujYhhGERmnOeAAv9U8//TQKHo8ZM8aODbuW2bNnm2d63FYFKxayrChGzgVld0EGnlGk33DDDVZQdPTo0ZZpx3sGMr+wqVuzZo0dN59nz549rRYM/vJnn322KeEJ8rOYjU1OnL322ssWJbp162bBdQkKxKZCZufQoUPDcccdZ4tdm5ptIYQQQghRZCCILkRx46233krMmTMn8d9//9n9H3/8MTFixIjEk08+mdhqq62YVdvjfvvpp5+26xIlSiS+++67dB9+seK+++5LtGzZMnHsscfaZ3zaaacltt56a7t9+eWX23WzZs0SxxxzjN2+9NJL033IQggh8pEffvghMWDAgETTpk0T//77b7R9/fr1SfutWbMm0b9//8SOO+5o/QOX6tWrJ4YNG5b46aefov0+/vjjxB9//BHdHzlypO175JFHWh/07bff2nhgwYIFiVNPPTVRsmTJ6PW4HHDAAYlPP/008euvvyYeffTRRLt27aJ+yi8HHnhg4qqrrkq88soriX/++SdRGPAxDu/v+uuvj8Y0fonf5/3UqlUrsf322yftU6NGjUTnzp0T7du3T+y8885Jj1WpUiVx2WWXJd599910v1VRBOD3y9iasTS/oy09twcNGpSoUKFCYocddrDf8vvvv5/jczhf4+evX84555xoH8ajqY/369dvi45VCCGEEJmDguiiWHLiiSfawJgJb5xrr73WtjNBvvLKK+12mzZtEmeddZbd7t69e9qOubhC0JzP9vjjj7frsmXLJlq3bm23L7nkkihQMWrUqOjxP//8M92HLYQQIp/46quvooDtzJkzs9znscceS2yzzTZRoKtBgwaJxx9/PCmAvXz58sQpp5xi+917773RdgLsH374YdLrEZCLB8722WefxP/+9z9bdH/ttdcSZ5xxxgZB5CZNmiRuu+22DV6rMPLCCy8kdtllFwv2ExSPLwI0atQo6X3VrFnTxjsEJ30bwfUvvvgiMWXKFHtsp512SnpO8+bNE+PHj0/89ttv6X6ropDTs2dPG2dvCUOHDk3suuuuJnJ58803E8cdd1yiWrVqid9//z3b53z99dd2DvvlxRdftHP3pZdeSgqin3nmmUn7xRfkhBBCCCFyQkF0UexAvYJyDaXZ66+/Him1gMn39OnTE/Pnz0+UK1fOBteoZZh4cnv27NlpPfbiCJ/18OHDLQhRpkwZ+5xRtrkCrm3btnabRQ0UR9wmY0AIIUTx4fPPP0+6/+CDDyZmzJiR7f4EtwjkokAlGBbvy1G7et/hl759+26gYv/kk0+i+8uWLTNF++mnn55YvHixKdfp/1HDx1+natWqicGDB29U9VpYFf4ffPCB3V69enXi/PPPT+y7776Jt99+29TkqP9ZKBg4cGCUpTd27FgLspMNlrqIwXdEFlk8IL/bbrvZ6/D5ioLll19+yfaSGlzOad/UhZDs9ttcEEVsu+22FtTeHPitMx4k48ThXEXhznm5qVxwwQW2WBZvOwiis10IIYQQYnNQEF0UW37++efExIkTE/Xr109Mnjw56TEG4xdddJEptkj1ZmKIwiWeVi7yHlJm3dLF0+lJQee6cuXKiSuuuCLKDhBCCFH0+fvvvy2YSwBsxYoV2e6D5RpWK3GwWImzdOnSRKtWrZIsSrp162YBcgfVqqvTUZfHQXFKoPmGG26IFm25bLfddomTTz45MW/evGI1DhgzZoy9P0QDBFkJfBPcxNZl0qRJFlxEWMC2Hj16RLYtBOCxgqGfPu+88xJLlixJXHfddUl2Gf7Zv/rqq+l+mxlDVlYlfsGOJ06qZVH8QiA5jgscUi+bS+PGje35d955Z7Tt5ZdftkWxnC6PPPKI7fvRRx/Z8994442k123RooW1JZsCGY177LFH4sYbb0zaznvn/fJY7dq1bdyJjZMQQgghxKagii+i2FKqVKlw2223hTfeeMMKhh5zzDFWcAt23XVXe4w5CcXB4IwzzijQwmCZCIXKKNhGQTcKT1HUjeJwfB+ffPKJFWeDF198MaxduzZUrVo13YcshBBiC6Bw6Mcffxz+/PNPK2xZp06dpMcXLVpkxS5XrFhh9/v16xeaNWsWFbmMc/nll4e5c+daX96nT59w8cUXh+rVq9tj9PWDBg0Kzz77bLT/V199ZQVL6dspTjpixAgrwklRa6hYsWI466yzQt++fUOFChVCcYPxDYVU27Zta8VYKeTN2Oi9996zIqt8zhRw/eeff8IjjzxixSBPPfVU65/pj99++20r0Eq/fdppp1kB9tWrV4fhw4dbP/3444/bhf8zcODAcNRRR6kQaYazePHi8Morr4Rjjz02TJgwIfTv39+2N2zYMCxfvjzH55YvX96uv/zyy6T78cf9sY3x9NNPW2HgXr16JW2n6G6VKlVCpUqVrM2hTaGg/eTJk3P1PoUQQgiRoWxSqF2IIsKiRYuswJjbiHixUJRWKLFQPcdZtWpVpKj67LPP0nTUxZ+//vrL0vaxbHEbHfenxwO9T58+pkR/6qmnLHWf7fjXCiGEKHqgekZd7tC/plq3UAyTtt9Vr6VLlzbldPx533zzTVKxUfr4Xr16JdauXRttw3YFRXSqQhqfc/dfv/jii5OUuWShTZgwIWPqb8TtLObOnWuWNYyN/PPAGueoo46K7qNMJ3OMbL5U5T8qf6x58KMnc4B9/XGUwqj5RebauVCTCAsg7BQ5J9xeKDcsXLjQnptqAXXCCSfY628KZDR26NBho/th48j/Kgp1D4QQQgiRfhREF8UGUrBJUSaFm6B5p06dbGBMASEmfdxm8k26KINmJpVMrNme6gUq8hZS6Cla5sVb3caFVPtnnnkm8d1330Up9EzaeXzPPfdMCqYIIYQo/KxcuTJRp06dHBdC8TXGTsGDr71797aAebx+yT333JPYfffdE5deemmO/8+LhGM/Ql/vQTuCgPQzpUqViv7PwQcfbIUzi5NlS2454ogj7LOgUCNjIj437vNZU4DRC39zqVu3ro2VCGpiF+Ke6PTZccsdPKbjQXleA+sdkVlQg4BFFS/kiV3KNddcU+B2LiyyseBDUdKNQTvB/6IwrxBCCCHExlAQXRQbmICjmKJIKANvnxiiSPcA7oIFC6KJO4NrlG/cJpAr8hcm6yjbUKnFi72lQrE3/470vQghRNGCYp2033iOs4CaVdCKRVJXhNNHx8F/u0GDBlFAtmHDhkkLqmQ2UXTUweMc5TnKaGBfFO0VK1ZMeo3nnnsuSZGdqRBgPOmkkxJffvml3UcxTGA97h2NWv3QQw9NTJs2LWlhA+95MsYcPs/777/fvlOC6WeddVaSMp1FjVRfe1F8oWg8v11nyJAhVkAeUL+zwJXThVpG8cKit956a/RatCWbWlj06quvtudvihCDeQHnKrUUhBBCCCE2hoLoothB6jaFsLzQEhNDbjdq1MjSt7m911572cSP2xTKYnIo0g/BkZkzZ1rRV1fKCSGEKFpQJDQe6E7lxRdftEAXbb5DkI223xfAd91118Rdd92VFAibM2dO4oADDkg0a9Ysy4A4i7QE5j2IS8Fwgm6ZrDzfFAYPHmwBT/+cCCz27Nkz8fXXX0f7UCSSzz0ebHz22WejMdWTTz5p3wlFSXmuf4/Y6FCUNNVCRBQvKM5JNoOryQHBBOfB5mQlDB061LIepk6dagWJO3bsaL/nuG0NwhnaiDicw9gDXn755Ru8JpYtnIssBlFkl9euXr26KdyFEEIIITYFBdFFseP777+PvE/xYGVyx+2HH3440aRJE7tNeqnfjquvRMGC6ui9996zdHwm4Hvvvbd9JyjduMaaRyo2IYQovOBbTJZRdkFSfMcvvPDCxAMPPJDtaxCY3W+//aLg92mnnWYL4g7BXLcC41KmTJkkD2P25Tlxf3UC+WQ2iZx59913zfrCx0wEIbFx4T41TAg0stjhYymU5ldccYV931hgENiM27jQpwOe9Icddlj0GIFNXksUT0aNGmUZJvGFMSDLoX///rl+PRZksIQqX768KdCpl0MdoziIYFiMi8M5zPmWuq8H9QmY0z7wmvvuu6/ZRWWVMSOEEEIIkRUKootiAengPoFnAkgKMgXLPBjLhBs/Rm5vt912poLz257SLAoG1D98FxQyY7HD/WxRFFE0itvnnnuuTXRUYFQIIQov9Lf16tWzthorj1TWrVtntiA8jtUai9zZWYzsvPPOiUqVKpm6OQ4LrBSg9sKW9A/uyc3/xzsdxar7ovft29eKlopND1aOGzcucc455yRZ6uBnHV/UePvttxNdunSJthGApL4MYy8Cme6Jzrhq4MCBphjmtalz4gvkXOjnc8pSEEIIIYQQorCiILooFio4PM8JlKeqllGuMGlDNXXyySdHk0Em2dzGR1UUHKTV87kfcsghVniO26SQe9r3Qw89FKXxjx8/PlLCSU0ohBCFEyxWaM/ff//9pO34aqMi9TY9VYX8448/Jt2nGGE8yM7jJ554YhR8xabl1VdfjR6n+GDLli2jx+vXr2/BX7HlEBi/4YYbEpdcckmkUkdljACBwqwsdvjnjmBh/fr1lhngxUe5tGnTJsnqg3EY2WVenPS+++6TR70QQgghhChSbB2EKOKsWbMmVKxYMdSsWTPsueeeSY/dfffd4YwzzgidOnUKTzzxhG3r3bt3mDBhgt0+++yz03LMmcoRRxwRtttuu1CqVKlw4okn2rYZM2aEI4880m5/+OGHoVq1auGnn34Kf//9d6hUqVL4+uuvw1NPPZXmIxdCCOGsX78+qV1/4403Qo0aNew+Ao3bb7/d2vWvvvoq1KlTJyxbtiwcd9xx0XNo06tWrRpmzpwZbTv88MPD7rvvHt3fcccdw6pVq8I222wTrrrqKnuNhg0bhv/++y+MGjUq1K1bN8ybNy+ULFky3HnnneHVV18NjRs3LrDPoDhzySWX2GdOnzx//vyw7777hnXr1oU2bdqEPfbYI6xcuTIaP91///3hnXfeCfvss0+YPn16mDx5cqhQoUK46KKLotfjOxoyZIh9hw0aNAg//vijjc3atm0bPv/88zS+UyGEEMWZ7777LqxevTr8/PPP0bZff/01LF682MYucZh//vLLLzaOEUKIbEl3FF+IvAAPRlToKJ9IK/7hhx+SHkedVqtWrUTz5s0Tw4cPNyUUxcmkgip4XGlI+r6n31MYitukfFP0idsUMLv22mvtNnYAQggh0gt95vXXX28+2GSBpYK9imd6cenRo4epkB2yivBH9sc7deq0gX96vNA3BQUpAuh89tlniaOOOip6PrZfKNJF3vL0009bkUj8peGXX34x33uU5vEirWQb4D2feo7Ev3PAYu/111+32xSKvfXWWxM77LCDfYd77LFHYvLkyQXyvoQQQhR9yH5avnx5UvYadTgOP/zwDcYV2IV6trPDc9lWsWLFpH299srtt98ebfvmm2/sNbE8i8cNOIb4eEUIkTkoiC6KDTNnzrSOb8cdd8zSD5WJHz6c1atXt/1Gjx6dluMU/w8WNfguCMowYef2o48+aoXLuD1r1izzV+U2gyMhhBDpgwJ8++yzj7XJeJFnxcUXX2yLowRX4xNOin+yOOoB8MsuuyypCOHq1asTjRo1soXUrMArHds27+fvuOOOpICuyFtS7XYQJ7DI4RBYZ9wV55133rGFDWqfOCxy4HeP7R4iBj8nVq5cmWjQoEF0PpxxxhkWlBBCCCGA2hqLFy9OTJ8+PWl706ZNrd94/PHHo23YvbkgK95vEURn0fb0009PDB061GzKCIrvtNNOZhMXH2PQV/EaFNKmwDZ91EEHHRTZkDn0cY0bN7b56tlnn20FuukTGdPQt7FYLIQoviiILoosTLYoauUTMvdGPf/8863wGKvJ77333gZqKPYhYEtnJ9I7MLrzzjvt+9h///3tO+M2Hrjug4tfuqsCGPwIIYRILwS7c1qEJrDNpDcOivIqVapE/ujPPPNM0uNMkNnuyuR4AJfALZPeuPf5qlWr8uGdiexAicfiyQUXXBAp73r16mXfBxljvpjhWQIEGxhvAaIGAhb+/aFmZ0HFv1u80r0uSs2aNS0QL4QQIrOgb0EhTsaZs2jRoiwV4z179rSxwr333mv1OAiA33TTTYkjjjjCamo5I0eOjPqerC633XabLQbzHK+dlt2FAucs9Ddp0sTmrVnt48IvFvrpA1955RUbr3CMyn4XovigILoospBqRUdFkHXBggVR54ViuUSJEnafQmUPP/ywFcmKFxq99NJL0334GQ1qtF122SVx5ZVX2kDD0+yYeF900UU2iWYgBQsXLrTH+U594i2EEKJgYOJH4Dw7KCh6yimnZFsAGiVyqVKlrB3fd999TbEVf+14cWnUZVh9OZ988ompvXyCihWMCk0XPI888oh9/tj4EBQnaO4L31w6duxoWQp8d/Hvi7EWyjy+ZzIX3MKlQoUKifnz5yfZwqD84zHUgWSkCSGEKL6kBpU9iI1aPC6Yo5D10UcfbeIrwBoM9TeZbfQXqYHsCRMmRK9///33W7C9du3aiWOOOcaC71iTeZHrrC6o0xHkEV9wK5i8vFCsm8ws5r8E5lG6s7jM/+P/ko1Hfzlp0iSzo8U6T1l3QhQuFEQXRRbUT0zIxo0bl2jXrp11TH369LHArE/G8fXkdo0aNRJvvvlm1HnFJ+mi4CFgznfB4OSGG25IjBkzxibgPkCKwyDokEMOsf2vueaatByvEEJkIrS/TOpY9EQRlgoLnijE3J4lu9fAqoP2/rvvvou245vdrVu3aGJ51llnJdmFEGQtV65cpGx+6qmn8uldik3hiSeesDT1OAQoCAbwHVF3BsUd3+GAAQOSfOu//vpr2/+tt96yYAbbSYNHJeiwT9zvngWT+PkghBCi6EPff+qpp1p2Wrx+BqpwFtwHDRpk9xHAIYbD8jNeG8Wzyv2CyIrAN/0HweguXbqYYtwX7z3L2ccjH3/8sfU/LN6XLl3anovIDoV5TsFvXwROx4XjZRGb98gCNnZ2L7zwgsUzpHAXouDZij/Zlx0VonDz1VdfhTVr1oSmTZuGrbfeOixbtiwcccQRVl376aefDrfeemtYsGBBuOyyy8IPP/wQxo0bF7p06RImTZqU7kPPaNavXx/efPPNcOihh9r3trGq6jNnzgwnn3xyKFu2bPjkk0/CDjvsUGDHKoQQmcoff/wR2rRpE+bPnx8efPDB0LNnz+gx2vDWrVuHb775JtSpUyfMmjUrlCtXzh5jaPn333+H7bff3u7/9ddfYauttgrbbbed3f/nn3+s/X/11VfDtttuG+66665w1llnRa89duzYcN5559lr1K1b1/rzatWqFfj7F9mzcOHCULp0aevPO3fuHNatWxd23333MHXq1NC8efPw1FNPhdNPP90er1KlSnjppZfsO/z1119Dnz59wsSJE8OAAQPC8OHDo9f8999/w9VXXx1uvPFGu8/rTJ48OZQpUyaN71QIIcTm8uWXX4ZPP/00HHLIIdH4gL7g448/Ds8991xo166dbf/tt9/C+++/H2bPnh1mzJgRXn755fDnn3/aY4MGDQrXXXdd9Hr0EZUrVw7HHHNM2G+//WxMsfPOO9t1HMYcFSpUCBUrVgylSpUKy5cvD99//330+B133BEOOuggix9wLHPnzrV+KCd23XVXe83y5cuHPffc027T9+2222524fGSJUuGEiVK2OW///4Lr7/+ur2vbbbZxuIWa9euDd9++22efL78b96DXxo3bmyfCWMuIUT+oCC6KPKccMIJFhQnyFq/fv1w6aWXhv333z/ce++9oVmzZtaB0jnSqRAQmDdvXmjRokW6D1tkA00SARsGIXyHLHwQQOnXr58F0Nl2xhlnpPswhRAiIyDoyeTvuOOOi7a99tprFkBncfrggw+2Ce8ee+xhjzEB7d+/f/jss88skOqB81Ro2//3v/9Z/+19MhPg888/P4waNSrq3x944IGw0047Fch7FZvGW2+9ZQFuAgIEOvjuO3XqFJYuXWoBhdWrV4cdd9wxvPvuu+HYY4+1AAbnkC+q0M8TRO/atWuW58czzzwTevToEX7++eewzz77hOnTp4datWql4Z0KIYTYXGjLO3bsaPPyd955J9rO4iiLsIjgCDR/9NFHoWXLlrYYG6dSpUrW1zAWoG95/vnnTVhFUJo5PwvxzpFHHmnzfALJvBaL+wSr27dvn/SaiLcIdjNWoY/JKhTG47Vr1w4HHHCABaSrV69uF4L/zE/zAoL2jHV4b7xPAvy33357+OKLL6J9CPwTDGcxGjgW+kQC8ytXrrTFiazwz5YL4ytiIN7/CiHygDSo34XYIqi+TSqWQ/FQClzhhe5p5aQYd+7c2W7zGKlh3MYWRGlPhQu+D4rIkdZNCjg2PXxXfH/nnXee3SY979Zbb7XbBxxwgL5DIYTIR9x+IysoEkpxbtpj0p9/+OGH6DH8r0866SR7jFTpWbNmJT3Xi1I68QKieJ+6NRvPvfHGG9XWF+JCo6TLH3bYYVHNGa7xdJ03b17Svlj4xM8nvtPU75Xz5rTTTotqocDbb7+dqFq1amTnk3ouicLH1VdfbdYKJ5xwQuLvv/9O9+EIIQoQ+ncsRpYuXZrUx+P9zfwb206gbaAQKLU24s/FHxzLlLZt21rdM+ziHn/8cbNioQ9ItTjBqvX7779PTJkyJXHmmWcmqlevvoG1HH7i9CPMHcuXL5+lVQr1OI4//ngbc3D8FDZN19iDY+CYsKLBwiUnixe83lO38Vln5feOdzy+8sOGDbN+VmMrIbYMBdFFkYJGv27dutax4Hce57777rOOYs899zT/cy9URmVsPM+4jaenKDyMHj3a/FGpru6BkxkzZthtBgF44sa/R/e3e/7559N96EIIUSyhyGPJkiWtXU6FyS/FQT2A/vPPPycFQvEi9SLfTH7j0GfXq1fPArCpfPnll4mDDz44mgSm9u+i8MGiR3wBJSvwSE8tiEaAg6Jw8QWVwYMHR4EDgisOwfdDDz008oR98MEH8+GdiLw8J+bMmWOB9C0tDksNhNatW0fj9zfeeCPPjlMIkfe4YI2AdOpCKvN3xG4XXHBBVOuE+Xq8f6BmBkHvOD6m4MLiPXVUxo4daz7pBIVpa+LBYuaOLOTjGY7Pudfs8AtzSgp5UuuFwp2p/68wQLH2xYsXW//62GOP2fvhuHlvFEVl7EV9N39PLDo0aNAgmi/75YorrrAFCBYnUoPqe++9t/XDzz33XJb1yIQQOaMguihS0BFTVIOJVrxAma92U9GbiX+PHj2sk+jYsWPirrvustusUKeq4ER6YTDFd8MAwQuKURiWQmTcRtXUqVMnu83AwYuVHXHEEek+dCGEKJZQ0JF2tmvXrlmqlRYuXGhtNAqweHAd9SnPY9LKxCwOE0FXRzGxi0M2GQWzeKxMmTI2eRRFj/HjxycmTpwY3Ufttuuuu1r/7gVC4wIHxmdeVI5zicKzbCc4wAK7wwT/lFNOiSb/FJ8ThZuePXtaVsmW8PDDD1tm4rhx4xREF6KQZoZ/+umn0X0KTxPovuiii6KxA4FgAtpeUNovBHYpkMnC2x9//GGLZscdd5wtljImcBBN/e9//7PFOc9u4ToeGGb8QKFSspnq16+/QcAYJTqFy1Gsb2zhtzDC54GKnvGR96UffvhhFEhH2HDTTTdZ9hafAwsLLFSQFcYiBRc+23322ce+h9QCqajU6af5fBRQF2LTUBBdFEk++eQT63xJHUbpFIfOgsk/EzVSynxyfvfdd6fteEXWMOBCUcCghgEU3xMdPyl+3MaeZ/bs2XabTp9JlKe3LVmyJN2HL4QQxQ4mv7TLbtOR3T4OE1q3cEGBHlcSe3DVJ3tMcuM2D7TpTAx5jAkeCixR9GBhhe+Yi6fyT5482c4HvlsUgx4wR/3n6kEUdS6IIDjQu3fvaGIft/Ph+uKLL44eGzhwYEamo//yyy92ib93Pje2EYjKat+40pNsEbalBkqy23dzGTVqlI3VcrKF2lTWrFmjILoQhYxLLrnEfpeXXnpp0vbUdgi1s7fbtPsoo5955hlrX/hNn3POOVG2iV98EZUxyIQJE0xkVaVKlaT2CbsXlO8Ir7AWS1WbN2/e3BZcCUAXh76CcdO7776bFAdhISGuPqf/9fGUX/jc+Jx23nnnJLV+w4YNTalfqVKlpP3ZDyHizJkzJTwUIgcURBdFEvzKPEWL1POsOsiPPvrIVFGubvMJnCicMKByT3uC6H4bNRKdPbdJ38Pjntso1IUQQmw5OU0yCdKhBH799dezfJwUbOxfCJhOmzYt6THqk/gkr0+fPkmTYIKt7nNKKvJXX32Vh+9IFCRMtgmA40sb/47xl+Xc4Dtu1qxZ5ImLVZv76tepU8fsfPw8dEsALnFFI9dkG/pjffv23cAqprjj7z0enL7hhhui31cc/9wJQjvDhw+3bSeffHLSvh54QcnosJC2uTRu3Nhe784774y2vfzyy6Z4zOkS90h2FEQXIv3Q1saDqtOnT7eFMmxR4vtMnTo1KdjL7xb1M3WvXAX+wQcfJJo2bZoUvCWYe/nll1sbhMId5TiZTPF9sIMhmMw4o0OHDkne3wSQ27RpY+2W9yfFmW+//dbabcZd1Axj0SD+WbFAvcsuuyQtLOALn7rgQLt7+umn2yI1Fi+pli9kAfB9CSGSURBdFAnomPHCdPWMp5tT1ArfRfzNUn2yeQ6TM/YjJVQUftwX9fDDD7fUNG6TmocSwS15KDTjQRluCyGE2DKuuuoq86pOLQZI4NLVwSxsZpfqS4CMVODUALpPxlCjxQOe7O/KKDyv4wVGRdHE08azUqn7YgmBEw+kEyypUKGCbd9vv/1MWZca7MW6j7T1OARJPLOBczOTAulFIYi+aNEiG6Mde+yxFkx3UJUSjMnpEq+x4CiILkR6IbvswAMPTDz00ENJYwO3ckF9jpVqrVq17LeKpUgc9o0H4BG1ESAnAIzHuauesR9JDfJWrlzZ5oYsvHKNj3r8cQqWYheTCYHzVGhTydZ2UN0TD6HtpwC8K/n5jPisyAIAMv74LL1wt8dI6EsZm9GXpBZyRbVOdpkKRgvxfyiILooETz75pDXidNBr166NVOionGrWrBmplFGxfPzxx/YcCpN5alLcu1UUPlgAQVWAj65PjpmIMRBgcs1AjaC6Txw7d+4cWQMIIYTYfOILk/SpcYYNGxapvFJ9zvEyzQ4mbz5BQ6kWV7q/9NJLVjzU61vk9DqiaML3zcKMF4hFQejKcxRyvmhC4JQgCdtTC9EinIgHCFI99jMxkF4U7FwI1BBAJ3OF72dLVYwKoguRXjwDiIyxeNtDm4NVajywjfoZ9XI8sEuGEsHx+HMJnH/xxRdJ/4dAOa/BHB+71hdffNG2UW8lrjpn0Q/ldFzxLhKWzRfP0gc+c/pcsgZol32hlO8Fm9T27dtb4NzBWpXvkHEbNeWwYotbxqBOZ+E2qwLxQmQSCqKLIgGNOg03K6ek8LpaGasPbuOnRko5nQQr21i5uAUIfmmicIMSwYuHUtWdAij4pdPZZzU5JtWP/fm+V69enZZjFkKI4sITTzxhqdRxCID65Cluy+BBTFTEBEezgwXta665JmnizOIo6cO8JpOznHzXRdHF65rggevCBoKqjNVQtMXt9Xgc3/yNQV8fVzNmaiC9MEM2AeMyFsoAGwfaAJCdixBFA1TM8cUvFtiuu+66pKKc/FZ9AZQLgXRsRTzTiNfo0qVLUgCWgLjDPJ0MNepbOIwVqKfw+eefmx1rqiqdeT/bUxcMxf/7/Gh7sUFzyO45+OCDkz5HFiUuuOCCJKsXLFIp6h6vS0L/yndIliEF4eN+6wghzjvvPM3BRcaiILooMtBpeqCcBpyOgorU3B4yZIgFYLlNARLUdNxGyZwXhY1E/rJgwQLr9FkZ35RUMTIL8L7LKoVZCCHElkHBbrdbofBXPBBOMMwLRqYWFctJVU7A3T1O6aezs4YRRR/6cQq833PPPUnbWRzfWH0axmweeHfefPNNm8BjQ5JdIB0P3eJQQK4ogyUUalWHsXmNGjXstuxchCj8jBkzxtrUdu3a5bif20hh84bfuQe2ET8RpI0HbRFGEUCnfSbzjULk3m6zeObBebJq7rvvPmsz/LksxBLYpQ8QuYdxFiJEPmcWIeLfC5mALGqnbrv55pttjBbf3rp1a8sMQLxIGx8PtCOE0/cjMg0F0UWRgsm8K9geeOCBKK2LlC6f1OOpRgErbsdXY0XR931jktWiRQsrjuJpf1KjCyHE5vmcojBLhSCn1xOhWFXc1gE7tbJly9pjKJTiAU364fLly5v9WipMrPfYY4+olklW/1cULzYW0OZx1IxxVSG+tqiXqX8S90gnK8IFFD179kxSnVMXx9WOWMiI9EC7gWVPXE3Od8h3QxHh3PLdd99Z4Jx2iu8WBSr3Uy0ghBB5B37ZzKdZBI0vdC9ZsiTxyiuvRPdZ8CJDLZ5Nxu88rjzH2sntQ3hdCpTHHydQj+0IfQALrnFlO1lLV199tQqObyHMjwl677XXXvZ9kiHAIod/D3ims7hNcVGPo+CHjiCCfbFNdSsd/Nbpt7kwJ2/btm1SoJ1zhucIkQkoiC4KNbNmzUrMmTMnuk+jjjc2nTmTLBptPFvPPffcKNULf21fvV63bl1aj19sPqiPBg0aZH7o5cqVs84dBYNXGye9TGp0IYTIPaTtMjGipkhqzRDuMzkiIE5atUPgm0mUF3yOB8JRD1erVi0KkscDqKiKK1WqFBUB83RvkTkweSf1+7PPPou20b9zTmDh5hloPL7PPvvYdjIN48XisPXzyTyp6PFzDAsAn8hTPFMUPHwHWDqkeqmjbOzfv3+uX8+FMqkXAmtCiLyBhSkCqXHixYiZR+NP7v1+qm1WvB3mMfZhgT0eTEW9HPc0p83n/7IIz2M+duDCuIN5fVZZKWLz4HuJf6fAvJnMrvj3OXXqVAumo0SPf7+I1rDeobBofNGURZPly5ebEj2+OEKQnsxyIYozCqKLQgud6/77728N8v3337+Bf6t3tqxuEzDnPiujdOBSoRdNPvzwQytmQofthWpQmbVs2dJuDxgwwPzzuF2vXj2p0YUQYjMgY4s2lklUVjCxwrM0PpHyFG0WNeN2GyjRmjZtao+xuB23UCMgT+YQj3GNulRkHmeccYadA3iz+qQdkYSP3VCXezAG9bIXpWU850VIwevgcMGjNyt7AS7sJ4QQInuoL0VwG3/r1DkUC5t33HFHZOtGkLRXr16RZRuPU3iSrLW4jVtWdU5o02nrjznmGLN1o61/5plnEgceeGBS8DxV2S7yhxkzZthnThFSz+xBFIE1D7VuKOrt/TQF5bFsoR5dPAvolltusdfo2LGjBcyx243b+HBe4R4QXwgXojihILootNCgo16hY6UDjq+W0gGjRMYP04tgYPPx+OOP2206fVWOLnqwMs7317lzZ5sg+6TbO3wGenTWPqhDmeZqdAZ3QgghNg0C2vFCYTl5Vd99993WzpIRFC8ORr9MyjaPYeUQVx+hPqZf5jGU6HF7DpFZoIIj6wGhQxyUb65Q/N///hdtx7qNxRq2s4getxUgsOMTdYI48XHhhRdeGC2sx7MYhRBCJEObSQY3wc94gBSFsQvSuDRu3DipiDiZbJ6Vlpr9w5jg3nvvtQzxON7/E2zFX9ufi3UItRNk8VZwkGHYo0ePpJo22PF5nTkuFHXlPGAf34avOm4A2O/Q17qvPf0t2WGMKclAOPbYY6PnlCpVKnH99ddrcUQUOxREF4UeJvZUjaZDj/ux+QCA1E4adib2TNJotK+55pq0Ha/YfPDOw+9+5syZpmYkaM73SaHYhg0bRhNtTwNHAbFo0aKouAmDMyGEELkDCwasVlAMZ5VGjRqYiTZFx+IwofLgOsW+4xNpUnx5DAsuFZ0Scf/8OARcfMIdL0T6+uuvR/ZtqN3iRccZ47GdDIj49vh5l7qoI4QQmQyFO1kQj7fFqYvnFA53aw4C3PT5LmL79ttvI7GTt7G8nrfBtNkE3P1x5mcOwjYsQTzwigqaQsSpdnKi4IiLE1lEYYx35ZVXWuDbsw+wYUONHv9eKfyKdS5e6h06dEg6H8gm4HxgPOjzdi5kl1HbRMW/RXFBQXRRJNLNPEi6bNmypNReBzUdFb3Zj+Jl8lwtHmDf4lkGZB54lgG2L7vuuqvdx9oH/z1us/othBAi6wn0cccdl3jxxRc3eIzFaJ80U4ciK7ygVFyN5pPtsWPHJu177bXXRsH1VPWxECySY9WWer4wzmOi7VB0DhuAvffeO8lCiPOQcy6r7AkUb02aNLHXw19dWYlCiEyHNtOtMVn8zimwyn6nnnpqVNST55LpXaZMmSgoine2W7cxLydz3APkzNNuvfVWUyzzXCxZvbA4F+Zscbs4kX588ZnMBFeq+/dFJiH96Pjx483uxbezKAII3+LWPJ6FwLmEYwD9tz+GUG7VqlVpfrdCbDkKootCB95qBE+ZyNP5tmrVyhpeOnQm+nTEjzzySNJzSPX1Rvq2225L27GLvIUiY6gV+F5Z1cYHndtXXHFFpETD+gW1maeEx60GhBBC/B/0jbSRZcuWTUqdJmXX208mPA4TIOw2slMOoWZDtYRXZpxJkyZFEyYWt4WIQ8o3heRYgOH8As6xM88804IwI0eOTNqfCXq8wG12xAPqBH/cV51CtywgCSFEJoPXNXNorDAd2sahQ4cmjQni9lnePlMMlPaUYOmCBQuix6ZNm2Ze2t7nn3TSSVaM1LOLmzdvHj3Gc+MZa6LwgKqc74pCoQ51S7B4idfOQaR48cUXm4WL99+A+pxMMix4UzPAOLeoZ+bzeRbGqWGSWoRaiKKEguii0OHFoehsSSHytC+sXLBtcfUxK52olAA/NrbvtddeG3T+oujBd4jX6bhx4xL9+vWz7xbvcwZr3D7ttNNM+UAauKcR+n6HHnqo0sWEECIFJj+oxSZMmBBtQynmNmjdu3dP2t/7VRRJORFvb5mAlSxZ0p6HR6YQWZ0vKNhICY9bsNGXL1y4cKPPT81G5PUGDx5shejjj73zzjuRHQwp6UIIkUmwsBjPLKOtjBf3Rg2OjRttJGODVOJWWdh94G0dX5AkOErQ1C0+PMuN4CjZRWSi8RhjAgpRKmhauEmdOxNrIQMhbrnDecD21Bo306dPt0A8Y8rUmI5nl73//vumRPdFFSxZU216hSgqKIguCh14qKEcIm2obt261tBedNFFNunyAiesfnqhSQpWoazLKqVcFE3INOD7pLAYE2F81i6//HIb0KFsyAqUah68iaeDCyGEyBq3cSFFNz5RYjKEWojH8DyNg4otK2UvfqlVqlSx51A4LD4BFyIOwZSsrPni8HiqXQsLQFgOxYvccd7tueeekaVb3OfVx4pcHnrooXx4J0IIUfjAMgMxGgVAsyrqSNYZtivuZR1Xp1MXpVevXpYBvjGw2qT4pP8P6p/Ei5LSJq9duzaP353Ib7BP80VoBGweZMcSkG0UlPcx45dffmnnEGNGMh69D16yZElk+YdIA0sYXoM5vtv7kH3G+ZMafBeisKMguiiU0MiSduYerfF08zlz5iQOOOCAyNbjuuuui1bBNWkvPhNsfNkI3tCxbiy7gMdRsFF0lHMBRZrOBSGE+D+P6Kx49913o/RalEUObaer09q2bZukTpo8ebJtp2BUfNLDpKl9+/aRD7WKhYncQPp//DxDIUk/TqEz3851u3bt7BzDvs/9er12ji/6XHXVVUmvjUqd7TvssIMVvhNCiOIOgWsEZijF4+Ij5kvx4qCI1uKqYtpSLDy8sGS8KDiLmmeddZapk7Oyd0N17Orz0qVLW90LZQYXTRBKUPiV88Pn03zH9Kcej6EfnjdvnonY4gpz6pitXr3azjUEcO6VjzDumWeesdfCT/+UU05JUqWrAL0oSiiILgotXizy5ptvjm5TBZoCJb5yzkq7r6RPnDgx3YcsCniAiJ0Lgz/Uj1j9cD746jaPCSFEJsPkh4yueJEwh9RrJtkEv+MTXVK2fQGbuhQObS39Lo+hHIozZMiQyOvyjTfeKIB3JooLTKopFE4hOofaJh6MYQwYLyK/33772Xb8W+MZEQ8//HA0IceXP6sFHnzSeQ0hhCjuLFu2zOw3HKxdfIGcADkBUQ+QMgbAwg2va7dHJUDq0K+zsOnzb+zh4qrluPd5p06dkv6vKLrELXg4RygUj7ARsYQryRGwsd+YMWMi291SpUpF9euwbIkXHsVZwLPMyBx3NwFEHdj+xLPJhCisKIguCg00whSl8Aabxpr0MoqQeEPNgMALiDLh8tV0VHFqdIs/eODjhc9AkGCNqySw+OE8oMDd7bffbrdJ705NBRdCiEyCCY9PerG9SAV/1HjRRtpTn0RjqeagQEJd5P1tPHhJu+xKI+pYCJEbyDhz9RrnmTNq1Kho7Edx0XgGhaeZo4qMc+GFF0YT+HhxMwLnFDPlsbi6XQghigNkhtEeoiTPDtTBKMS5uH85rF+/PtGtW7coyIlwzbPJaCtpoz1rjSKi8ec++eSTtuDu7S62WWpfiycjRoyw75l5uFv++DnTsmVLs3Uhiwz1um9nH+IznJ9Y8/p2FnM8boPAw21ivAZaquhDiMKGguiiUECxCU8PwhM9zrBhwyxY2rt378i6pXLlyonFixdHXlubUoxKFE1efvnlROfOnU0RiQc+3zfKta5du9pt0rtRrflkG7WE+/KSWiiEEJkMKqC432l2MPFt0qSJtZ3HH3980kQYn0ufJH/wwQfRdgLzTKq94LMmzyK3cM6gIk/12Wf7GWecEVkDEAByGAP4+A/rPwdVJVZwnh4ef03Uc75ApPo5QojiBNYbPj/OyV+a+VK8LaWdJQDKc2kf77zzzqgfp3Bo3HKDQCe+1sD/OOecc6LHGjVqlPjwww8L4J2KdHHjjTdav3vHHXdE23ABwBGgevXqUZYX/TD1dpiTE3CPw4I4Y8Z4vw2cc4gwfJ7PPgg0hCisKIguCgVMdEaOHGmB8hkzZtgKZ5wVK1ZYcNQLR1IQxVVxJ510UtqOW+QvZCUwIOR7ZjEFbzVu165d2wrf+YR41qxZFvRxyx+Kj3lF+HhleiGEyHTI4qIPzSrgTc0RFEJ4VDsoevGTpk0lXdfh+d7u1qpVyybcQuQleKq6/cDBBx+cFBy69tprowLzCDEcMitQnWP9lwrjCPdHz65IuRBCFDUoxIwC+IUXXoi2ofQluB7flhUoy7FvWbBgQbSN/twtOBC5MW7wMQP2LQTNPYBOfbK47YcovhCLiY8duY2V6vLly5P2YzuiyHhNM1/Uxgoo/hr0xWRD+G2ve0cQnsC9xBmiMKIguih0PtekjFF8Iu7F6oMB/LWoCE36mE+e6MxF8QVLAVIUmRiTXogizYM5/fv3t9t4/saD6gSCmjVrZrdPPvnkdL8FIYQoUJgApy5GA6m2npaNVVpWpE5YjjrqKNu/devWSY9Rd4LteFerYKPICzi/sHGJFwfFi99rnRAQio8JyUQbNGhQkg0MpKra48/xAmiMG7LbTwghCjseeHTi/TMFxT1jF/srV5A7qQKjeLDTOf/88xMVKlRI8kZHSeztMTZxzz77bB6+I1GUoP+k3khqTTrm58y940XtUacfeeSRifPOOy+p36XAKPar+O0TjPfx6+mnn55kL5R6rguRbhREF2kn3ulT/IwGs1WrVonJkycneVrGO3qKQ7EfRVFEZkGqoVf5JiXRvfhGjx5taWPcrlevnqVue7p3XF0hhBDFHVS6THTxJ43jRbpTA+JZ+aU72LcwUYovWKP89QJS8cKPQmwJKNd84kwf7jz33HOWfZgqrkgNnmcFi+/xcxev1TJlytj/GDhwYB6/AyGEyH9Q/hLgzsqqjf68adOmUbFGL/DowUzmSsydqC8RhzFBPPBJsBOfa38MT2yvf0Jm0Jo1a/L1PYrCDQ4CnAvYufgiDUFxdw3gHGER3BdfvG8nY4L9XNleqVIl206B8eeffz56fexdXPRBBnrcSlCIdKMgukgr+F0xMcLTnIbUg56klrFyjrIY7/P4CuRNN90UFY5U+njmwaBuv/32s3PgyiuvjILqBIwI7DAw7Nixo02cvfBsgwYNNmmyLYQQRR0mu55q/fjjj0fb6Wc9Rfatt96KtqMyIyBOUeZNgbb00EMPtdfCf1ptq8hLBgwYYOdiarH4jaV0Y/XCeDG1HgA2BRQfj9sNEHjy38KSJUvy+B0IIUT+4pm49MXxtpGsXbdhYT4U95X+9ddfE8ccc4w9xnw7XhuC9rFfv37Wp6dm6HD/zDPPjIKgPXv2zFK5LjILxn4XX3xxYvr06UnbyXL0hWq8zV977bWolgmBcrYjhvRx6BdffBGNKemTb7nlluicpk/3ujucz9llUApR0CiILtKKF4A6++yzrRqze5xj38Ht+vXrm51H+fLlbSWdwQGFzXiM7SJzYJWb84TB29SpU+0cKFGihBWyYbWblG4GiHGlGooz77BZ0RZCiEwAtRm2Z/FAJBletIUUa3R4nEVGttPvOkxgUlVqDkWlvMgoFmxCFDQEhjjHHVRtjBdRwMXPWxToPgZIzVz0gnksyjN2EEKIohTAvO6666JijoAyfJ999rF2DXXvO++8Ez2GsMgDldSEiCvYEaRhjeXBdWqTxZ/nc3Uei3ujC5EKc3DOJ85FX8xBpEEAHeif991332gM6dtZBHfhGxfsXHzhm9iPF73HPjC1KKkQ6UBBdJFW8GRj5Rs/LW8cSdv1dDGKoaAi4jbFJQigchtVUapKSRRvXn311ahzxeanR48etrDCYC4nJSSKNp5TtmzZpMGmEEJkCrNnz45Su+PWFg888EDkmerptTBlyhSbMF9wwQUbeKp7qi7e1ULkJ/TtrmJzvMA4lkUO40FfJCKYHi9AShFdV7hhFxMPDnkaedxrXQghCiOpPuZZZfHQnlFYmb46HtiMq9Pnz58fPUa/78WbqTOGSMlhrOBFHrHsSFUcC5EqdqtZs6ZlQnKbYrdYB3r/e/fdd9t+3333XdRfs92D4sznsYjxGND//ve/6LWxGaImnscBEM5pMUekEwXRRaGYJOFhTaNIERMvYoZ36zXXXGO3q1SpYhYv3ngq/TYzueGGG5JSE7MCdRoTanz8TjvtNLMqqFWrlp03DDCFEKK4QruXOrHgvivQKOrkYJOGpyrbhw0blrTdF6/jntG8zhFHHBHZuGghW+QnTMCx+yOwE1dUTpgwwc7BbbbZJmksuG7duqjg3aWXXpr0Wiy6s50Jftzzd9q0adFrYSkohBCFkRUrVlgAPL54mArK3QsvvDApI5dAuNcRwxaD13GoK1WjRo3IEjNuh8V+2Ka6feqbb76Zj+9OFAdY8C5dunRi7733jhZ8OCddYX711VdH+7KdrEjU6Kl9L8VqUZ4zBojDmBMbV48F9e7dOykjTYiCZCv+BCEKmL/++itsv/32dvvnn38O5557bnj22WfDXXfdFXr06GGPzZo1K7Rp0yb88ccf4dFHHw033XRTePvtt8OZZ54Zxo4dGzKR//77L3z33Xfhiy++CL/88kv4559/7PL333/bNT/nbbfdNumyww47hPLly4cKFSqE7bbbLhRHfvrpp1CiRInw1ltvhX79+oW+ffvauXL33XeHgw46KNx4443hmGOOsc9j+fLloXbt2uk+ZCGEyFP+/fffUKtWrbDLLruExx57LOy33362nX6B/pR2kO0VK1a07dddd124+uqrwz777BPeeecda0Nh0KBB4YYbbghVq1a17SVLlrTtDz74YDj99NPDjjvuaG0tzxNbxp9//mn9+ddff23jIu/T/bL11ltv0Kfvuuuu9h3uvvvuYauttgrFebzTvn37sHDhwjBhwoRw3HHHRY+dfPLJdi7vu+++4Y033gilSpWy7VOnTg2dOnWyz2X+/PmhWbNmtv2HH36wfp/P+rLLLgs333xz9FonnnhiePLJJ0PDhg3DkiVLwjbbbJOGdyuEENlzxx13hAEDBoRDDz00zJ07N5rPffXVV6Fs2bLWV2TFr7/+au3o559/Hl588UXr1+H9998PrVq1CuvWrQtVqlQJM2bMCDVr1rTHaDs7dOhg8/MDDjggvPDCC2HvvfcuwHdbNGGsRV9DP8O8NLU/p09L7c+Jd5QrV876dB+DFWXee+89+xz233//aBv3n3vuOTsP42MWtn/00UfWj6fCY/F9v/3221CmTBm7fd9999k8n8+T/p6xALEOIQoSBdFFgfP777+HOnXqWFDz+uuvtwk/0Okcfvjh1rEzyVmzZo1NbNjGvpdeemnYY489wqpVq+y6OE6meW+fffaZfRYMeLiO3/7yyy8tYL65MNCio+ZSqVKlDW4zgCpdunQoCjBAofl66aWXwtlnnx369OljA5ELLrjAggwLFiwILVq0sAENizMEkZhgN2/ePMybN69YBx+EEJkHC4RMsAlyf/LJJ2GnnXbKdt/vv/8+VKtWzSbJEydODN26dbPtPI9+gMXrp556KnTu3DnanwD9N998YwFI+miRMwQ3Pvjgg2z7cy58rpsLE+6s+nO/T9CDhRQm6kUVxjwEgVIXbOjX69ata+MlJtNjxoyJHmOhhwUfnvPmm29Gv4NnnnnGAvEEmxYtWhQaN25s2/kemPAzphg+fLgFqoQQorCBoKxdu3a2gApr1661eU7btm2tDcwukI7oav369dECOrz++usWRN9zzz0tuE6fATNnzrTAJHN15kvMm/z/ZTIEwYlPfPrpp9n251yYy28uzL9zmqPTnzPPLUq8+uqrFufxBRr47bffwogRIyyuExf3sYg9cuRIC5LHFxRuu+22MHToUFvoadCggW17+umnw0knnWSf9xFHHGH3PZ4kREGgILoocJiwd+/e3SZ4dEi+eogKi0Z13Lhx4fbbb48mO6yAM5FnEEDD2rt371DUodFfsWJFeO211+zCYAZlnwfICfBmF/D2C4Hi+Gq2d0SoEePqdAZCTETjnXy88+cxPnuHwMrBBx8cXeiwCtuiBecE5wGLK0cffXTo2rWrfQavvPKKZSrwmXKOMQA855xz7LOaPXu2DTbpvB944IHQq1evdL8NIYTIU1Dr0JcwqciJKVOmmAIXlRlKXp98u8K3ZcuWtkDpi40sVI4ePdr2J1hfXLOaNhf6Ue/P/YLCz2Gck11fzoVsMfaJ9+koohmixzPOuPz444/Z9udck63msKBSr14968e9T+c7LA7fH+fnkUceaZ8RgR5XqhMMR6hBsOP88883Badz6qmn2mfIwjpjLIfsRrLYULQzLo0Hm4QQIh2wgEgbnlVwnLaeTBsEZwQoWRh0EdTq1autTbzwwgtzfH36qcqVK0dtIc9hXMCcENXwpEmT7P9nGvQRK1euTOrPWZBFXOAwL86uP2c78076WS7epzOe8jm6X3hNFtyz68+5xP8vix7xOToXMs0LI4xFmXcztiG7AcU5/fWxxx5r7gPHH3+8xYRQ4xOrqF69uo2lWrdubWNUFsA5FznPly1bFnbeeecwffp0e00fA3Ts2NEWiJo0aWKxAT53IQoCBdFFWkAVTEPJ6jfp5DScDp0KqeTXXnttOO+886xzQZGOwo5GOLuV9sIK74cgebwzxmqE7UySSTH2jrB+/fqWVsdKc0FNcmkCUMMx4ee44oF9OibgmOIdNgqu3XbbLaQL0rsPO+wwGzhyrEyM6XAPOeQQW8Vu2rSppXmRPnbVVVfZeyGojrXL5ZdfbilhpJwVtsUBIYTIS1hsZMGaYGJqe0caLYpebCxcBUTbyUSPCYsrflicZIJCX0EWj09gMhXU+HxW8T6diS4QxIj3lQSsfUJdUNlPTDoZXxFciY89yHTjO2RCi4rbj5Hvn6BzYR9bYS1EFgRCC1epoWS79dZbLQjE+3PFJIvmjCMJjteoUSMpOJLV2IrxAuc+5/ppp50WHnrooQJ8Z0IIkQxtFapz+hTao3gwm4VCFroJ7JJxQ79McBUIvjI/ov0fNWpUOOuss6LnMcdDxEW7nwrzbOZJBHm7dOliqne3XS3O0PYT7GXMEw+Y8znRZ5OBF5+jIzQjaF1Qnw19Nt8332tqYN8z2RhjpM7R44vE6RwrsdBN8Pv555+PlOIEwjnHGKsghmOxhnHJnDlzbDGcxSMC5zyH55IxSbAcGyPsBQnA41IAfA5Y//JZNGrUyNTq6YxPiAyiQB3YhYhxzjnnWGEICp5lVWF54cKFiSeffDKq3rx8+fJEUYFiGBMnTkyccsopid13393ew7bbbps46KCDrJDGPffcYwWx4gWuChsU8Fi1alXi0UcfTVx88cVWSG6XXXaJinBRYO72229PfPjhh2k5PirI//7771FBsV133dWObfjw4Vagltv77LOPVaH3St8UEatdu7bdPvPMM9Ny3EIIkddk1ZdQjJG2bquttkq89957G32Nxx9/3IpCnX766Un9QOPGje11Tj311EQmwvjkrbfeStx0001W7IrP0wuxtWnTxgpdTZo0KbFmzZosxzKFhZ9//tn6wxEjRth3ecABB0R9Y/ny5W1sQr/666+/JgobFCGjWBnHSsF5548//rDv4IknnsiyoG5ufjdLly6NCpYtWrQoj9+BEEJsOsyBt9tuu8ROO+1k/U+8zWvVqpW1U+XKlUt89NFH0WPffvuttes+//niiy+ixxgD0M4zj1u2bFnS/5o8ebLN67yfL+7FGunj6Ovo8/hMPM7AZ8f7p4+kr6TIemGF/o0xB2MPxiD0g15YmzEKYxXGLG+//XZaxyVff/21jT1SmTFjRmKHHXaw423Xrp2d10BshAK6Hh/y59JXH3300badYuOzZs2KXovCpIxdeaxhw4aJ77//vgDfochUFEQXBRpY9qAnnbl32A8++GCiXr161qDGYd99993X9hkwYECisEOV8zvuuCNx5JFHWsCc4yZoPmjQIKt47u+9KENA5f3330+MGjXKOr3tt9/e3icDj8svv9wGff/8809ajm3s2LF2LCVLlrQq8pUqVbL7//vf/xIXXXRR1CHPmzdPE2UhRLHhl19+SZQtWzbRrVu3pMkDE0TaueOPPz5pkk1wPTt++ukn28eZMGGCvQYT+c8//zyRKRC0ZZLGgmy1atWiz6Bz586JBx54ILF27dpCHTDPzbnz0ksvJS655JJEzZo17X0yse3QoYP1qYXpO0dUwXF99tlnuX7up59+mnSfhfcuXbok2rZtm/Q99u7d2z6Dgw8+OG1jGSGEAOYrzz77bNIcjH6eNqpUqVKJ1157LXqMYOMhhxxij+25554WYHUItLPN56XxccIzzzxjwXoPoBfXdo82f8yYMdaHePCWPo++jz6QvrCoQ1/G2IQxCmMVxiy8T8YwF1xwgY1pGNukk+effz4aV/C5ExDnGDt27BgdG4s8Hkhv1qxZFEgnjtK+fftonBIPpCO09EUEhB9ZBe6FyEsURBcFxllnnZWoXLly4rnnnrPGkobu2GOPjRrE4447ziZt3vFfd911tr1ixYo2sS9sMJhhxXTgwIGJAw880I6VgQiTspEjRyY+/vjjRHGHVXoUDL169bIgDp9BmTJl7P5TTz1VIIMSBg0oKFmoaNmypR0DK/KsznMbxQbnD98TCznA8fEYizfFXXEhhCjeoMKlPatevbr1S/Ddd99FE0UUVQ6Lumy74oorNkmt5erfG264IVHc+eGHH2zRgCCFZzbttddeibPPPtsmfsVhIXxjIHAYNmxYokWLFpFKncAM4zEmqeleONjY/2cBKD55JiB03nnn2dgMtZpDll2JEiXs/TFWcL788sso4+6hhx7Kp3chhBC5B+EPAjTasxdffDHazjzGVboEEleuXJnUpjE2cMETymBn5syZkRiKfq84zYfoK+iz6Lt8cYE+jb7t1ltvtT6guMOYhbELYxhfRGFsw3fNWIcxT0GPVTl/mXt7XIfz2PtiFrGdeCCdbHgHxToLIWxnrBJnxYoVkSKdbPlMGLOJ9KEguigQaMiqVq1qDdudd94ZWYK4epgBwZQpUywFiVXJBQsWRI0qtiiFCQYkQ4cOtVQ5H7CcdtppNhHL5JVPJqso0VGkezohSom+fftukDqYl9x11132v2rVqmUpjwSOCJJzzk2fPj0KKsVhEOk2O1jSCCFEUZ8sxlU5TBJ9odADj/RP3u6h6nWYxND/pgYor7/+etuXxe/CbD22JfCe586da9ZrPuZAhYxlyOuvv572oHE6ISA9fvz4xAknnJDYeeed7bOpW7eu9bkFPfnO7vjiYNfGYn7//v2Ttnft2jVL60BfUKpSpUrS+X3zzTfbdhaQNAkXQhQUH3zwQeKYY44x1XR20F9js+nQpvXr1y+yucCWyqHPb9CgQbTIHs8seuWVVyKlMqrldCuU8wpU9vRRderUsfdG30UfRl+W2mdkEpwnjGkY2/g5wZiHsQ9joIIY62D/in0Oc/T4gg3iygoVKiReffXVpP25z/Gljj8JpDNmzQrOa2IPLtQsLue1KHwoiC4KDBpBAuK+IowntQdbsWthgsNtGkxXpx911FGFYhJLIPaFF16wgQZWLQRqe/ToYalIxTX1LS8Gg4MHDzYlH99l/fr1zQs+r7MKUFwy2eV//fnnn4lPPvkkx/05nwggcSwe6E9N9RZCiKIK/ZUrz8aNG7dBYH2//faL+i329ToRZFDFFxp9IhKfsBcXeH+33HKLfRa8xxo1aljwVH1B1tC3YiuANRACCII1iAcQPBT0GI1zl/6eAFBccUlwyf1g41ZtfKceLHr44YezzLS49tprk8aqPm7hHBFCiIIAlTTtTqdOnXL1PDy8mZs+/fTTSW02Wbm8HouLzMniGUdufdG6dWvbtyhDH0TGHXY0zM/5LOir6LOK+nvLL+gXGfO4bS7WNii745kK+QFz9KzGDJtaiyUrYRyLRfH6bCwKeCYm45TCEEcSxQ8F0UVa0s6ZnA8ZMiRSco8ePTryHL333nvtNilm6U63omFGOc8Em2NiZZv7KlqRuwkvinDseph8892jFMNbPa/ITiVJx8kFWxn84FBrup/gjTfemGjatKndxhtVCCGKA0wcaddIhfWJCaofDxjSxzrYcbENC4u4utjrSKDKLk4TECw9UEGhwOJy8skn22J4cXqP+Q3F6hi/+UINHrt4sBaUapvvCrUm/xs1eZyePXvadhaG4sETsge9gGp8IR9hhys44xZ81Orx3xAL9UIIkd8wL0I8Fq/7gHoca4qNzYfjHuhut0mAnDpRqHMdVO5kl3kRxqKcQU2fc//991vGnRdTpW+KF1QVG+9PGQMxFiLuwriI4vLMlwvif2M3kzr+Ins9vuDt+5LpTnZ7fH/650aNGllGWTzTgnGw19676qqr8v29iMxDQXSR75A+5BDMxJ+MNHG8s93TCt9zbpNm5BN9CkKmC4qwoI4nsEAjTOAVqxJNtLcMBoZ0Znz3qMWYCOPJl5efK6/F5Jn/hT89ivNzzjknUsMz4PI0NtK/vZMlnUwIIYoKtHVMkvE3j6cpUziUGiRXX311tM1rRKBI82Anz2cSzXZqRsSVQm5tQgZWcVjIpUaHq/wYYxBUzeTU7rwARRgF4T1zkHOL/r0gipFSyJ0FoNSxA9+p12eJq8tJ//asAxaIHJ7v5wUqxvg5g3XNptYPEEKIvIbFb2+fDjvssKT2jnnqxgLgzIXidprMwd3Kg/Ywv1XH+QULAfQ13tYzl6QvykqlLDYd+k/GRp6JRZ0x+tn8yri/7LLLNlgMZ7EIQSX+9czRHYroep2WeI0ezmFX0zPHj/8mXJTJBftgIfISBdFFvoJHq/tSxTu3uI81lbF9BdnVb1SSTocHK+lNZ5xxhjXUFKe48sorld6dDxDEue+++6JJKpW0WQnPC7/6du3aWSExrAl4bVQYLIB4sREWcQg8eeGRCy+8MPILLK6+v0KI4geTY1fRbswmyyfi8cVpJp3+/PhkGqs1tvOcorxwzLHjm7n//vvb+2nWrJllwxWn4mmFBSa+9LtMflmAoRBYuhYpsB/yhXKC7Q4LQl6P5+23397gd8TiSnwCPnXq1ChDsqgGm4QQhV99jr1KVjAHdV/vuBKdrDEypOnbCKbHWbt2bZavRSC0Y8eO0YJnvG0sKtCnECegbaddps9Jd8Z6cYQxEmMlt9nFeheroLweD44ZM8YEdWSGO/wPlPA+Nl28eHH0mM/ruZAt5mDlUq5cucieKO6DjvWb9/vFQRQiCg8Koot8Zfjw4eZNRmXoeBCdRhJlHOk6FBV1P1b25Tb2HwUJ6UCXXnqpeWihkua4N9WfS2w+nAco0V0NSXV50u03Fw8K8T0ykDzyyCPtfpMmTRIPPfRQVMQW1TmdM/fvvvvuqGq5Ur6EEEUFVGVMdPBDzQkCgCwiMomIp4kffvjh1u5hdeUwsfbsHPyuiyrz5s2L7LroB5YsWZLuQ8oICO6QUYhtG5l8TI45T/N7Uf6ZZ55JGle0atXKvnt8ceNwn+K6cYUbsNiSOubjdbAz4nUYHwohRF6CUhxlOGIf7CfiMA/2gOHjjz8ebWcu7XZW2LLEF/jeeusta3vJvk0tqOiCNQLQCIuKEvQhqI/pU3h/9DGFobh1JsDYyftTxlSMrfKSeF0Th3MXQZxb/sYXmbB0YTvxotmzZycVIfXaJ2RiesCfa7d523XXXbXoIvIMBdFFvsMKIZXDGSjEiz0BkxZSzinYSapaVpOe/IT/j38aDSuNLyuWeV34UmwcL/bp6dZ4s6WqKzYVFkAYSLotAd8tr4mFEL7s7vPrHqlMqD3liwB7dooQIYQo7GBhQT+bqhiir6PwYtxmzSci8WLM+E26mqco8uabb0b2IrTz8fcsCo6vvvoqcf7551ufWqFChcSoUaM2COrkBfj+Mm5AzRZfKEFpzv9G0Rb/v1jNfPPNN5v8+h7IIshFppsQQuSlsppFXha54wvcZEB79ixq6zgsTLpYCIsL58cff4xsLVggj7d7CNY8IF+UCoXzHrDkpA+hPadPoW8R6RG8uRUQiziMtfIasiV8cYSFk0MOOSSyHuL89kWk7t27R/P3eH01FscZC/AYjgdxOzdX1VNAVQswIi9QEF3kOyjbXG0+bty4LBsvilL5RCVe3Ck/O2bSiCpVqmTHxiBFE6T0498LHvl59b344JFgEUp1CoW5p5oPCE466aRo1ZsV96JsYSCEyEyY1HhR7o0VQ0Rljn8kk5H4xN376pdffjlR1MYZPXr0sAkUgQSUe/JHLVzfC/YD+fG9nHbaaTZmSE3V3hwrPo4NVXtcxUbRMn4T+LcKIUReQpsTV8dy37NoWQgmABjvtz1TjPpODu0UYjS3pYovFBJoJ+BelLJt+Qwo+kxfTt9BvYqiaD9T3Ej9XujbUwvabi4EyZmHE+z2c54FE6+TF7cFJvsMG1i3BY7/Rm6++WbbzsILi+wOsQR/LbLe88vnXWQOCqKLfIFO24tL0fl5SjWTdlJz8Er3BozJvhcZpfErKopnUXAZAhQd2ZwK8gy6JkyYkOjSpUvk68ZCjnewDEjxZSe1kfPAB5qPPfZYvrwvIYTIC7BxYRIdD5a7fyqTaYfJdHaLgmyPW230798/KiZVVCCVvSAUz6LwZgjwG3CV2qbCuY9qLd7Xs80tgLB3cdjPfYmlYBNC5Ce0Z7RDWE7GM2PZ7kFAgpfxfv22226LsmmXLl2apHSvUqWKPUb7WxQWlukb8lvxLPI+Q2BL64agKEfkluqDjk0LFkQEvuPj1S+++MIW5sePH5/0OvwucDjIatGFDEy3cmUfIbYEBdFFnkNwnGAlAUkmtJ5aQyDUPalYDaeTpKHE6sUDnPk5+SVlnUaY/8Vq55Z4b4uCgUEj6i/OJQaPKMlzYyPEpBcFOoOy8uXL2+IJ20mHpLo7xAeiFB3l/EDVJlsfIURhxSeZWFF5O0Zx7lT/VFQ9pK9uzBOcCZAvIrLIXdjh/ZKWTso7Y4qbbrop3723Rd561Z9yyikbzZjICz744APLNovbADz11FNRgb34Av3AgQNte506daKAE9e1a9e27ZxnQgixJRDAQzSWXZFrthM8jOOCNAKH8TYL+zZXp1NbzKHdatu2rW1nbPD9998nCjME/BG2ufd2UcuGy0QYczGfxquesRhjsi3J5MbjnELfqbAtK+U4NQU2Nzud2FRuYgpCpKIgushzSJlh4s6KoltkdOrUyVYsPZjuxR8YSHiQPa+LVTg06AQaaOQpIJlavEUUfigSetRRR9l50qdPn00KcPO9o0Bv1qyZpZstX758o8ViyZ5wT8ELL7wwD9+BEELkDbRt1O/AL9Ltrsj+ot1CZePBZAo2sY0JtmeGuWVWqnIXL3X2pchzYbez4j0zpnArri1VQImChfOLiSx+pixuP/3003n22nPnzjVVZhz3Qj3jjDOSglSekRhXpBFo8joq8cUon3iXK1cu8dtvv+XZ8QohMgv65a233trak9xk5GBPRV2nuA86NhbVqlWL+sJ43002r48JVqxYkSjMkPlDX0CfQFtb2McgIhnGYN26dYvq2uWnPS7nRlYZYSySZ7XwQsxnwIABSeeU1/7BGSFeE0iI3KAgushX2xQaKQYLrjZnNdwLQjRp0iRx0EEH2W0qJ+cHDDpcfU6BKaXiFu1ziuAPldk3VZWOH1p2So94qjaDWgacLO7ccccdUeCpsA88hRACrrjiCmu3unbtuoG9S4cOHaJtkyZNsm3Vq1ePJhUEBVHkFnYrq7j6nONFTSyKLizs4HPq9gRbqkqnv/a+m8KiDnZtrjyLWwP4GJUxRVylfs0119j2evXqRb8RFp/cFoFxiBBCbA60KVixnXXWWUnbhw8fnrj88stzvUg3depUW1CPL4zT5rk63bPVCrv6nL7AF/tF0YQ+lbEZwWnGkluyGILFKoH5uGgOL/TevXubD3p8O9lmiCRZACfb3EFARzZ6ag0BXgd7YbYfdthh8kcXm4WC6CLfYIBAA0Uj6GniXlWcyczFF18cVVfO62rbNNz33Xefqc8pHir1efFSpXvRnTPPPDNXtiso0eksb731Vjs/GbR66iAqDm6zsOMqx+bNm0sRIYQo1NBGeQaNq2fZ5go1CkE5rVu3tm0E2J2xY8fatsqVK2900TFdoGxC4eRjinjhNFF04Tx96KGHLHORbEUCQlvCCSeckDj77LM3OD9OPPHEyBc4/r/JvGA7nq4OwXzPlowXK3XfYaxdNC4QQuQVBAzdq5k6Tg7tDAHxjRFvj8imoS/ntRCtFda2igwk1Oe0/VKfFy9VOv2w1+fZnPgO5wL1ynye7/BaBMtTz21sXTzjjD49bvPicaeSJUsm3n333Wg7wXYW0Hnshhtu2OL3LTIPBdFFnsHkG5WY+5rjx0bxMy/q2KJFi2jlj5Vn/Kq5PXr06DxXn7uNDAr3wu4DJ3IPHSd++3SADBZnzpy50f1RmDNgmz59emQhRPDIz8Prr7/eFnS8gj0dLreZ4AshRGGAfhWv1HiBMCYt1HHYfvvtI69U6o3QfhEMdBsrJups4+JFl2gbqUfCtttvvz1R2OD4UDShbELhhNJJFD+oUUIRuS1VpWdXOI+iZa5Ie+mll6Lt+P97Qb54ITLSv9l+xBFHRNvIZPTgel4WRhVCFH+wWctK8Uof53aVrVq1SgomM89hO0W/UxeVKayYFa7sJvO7MNZ2om2nHoZnyXl9KlG8IP5TpkwZG7sh5MjtIgmLR8SNEM7FidcAiBcVxZbF5/AXXXRR0pjAhXdkl6FCd5jfe/ZavCCvEJuCgugiz6AxozEircwbSxovUm+wdPGCTaTbuNK3UaNGeVotnAaR1yegQLBUFG9I1WLQybmEx1l2heVY4PFiZv/73/8sZdKLit1yyy2RbyBFw3zFmoKm7oEqGyAhRGHAvc/jdizAbQKFDpNuL97osDjItjZt2kTb5syZEwXbU33S0w1qYpRMHB/KJnmfF284hx988MF8G8Odc8450bgz/tvxAFbcVpAJOUF3xrPxIn7nnnvuBhZJQgixMVDUIiRLLRj6yCOPWJtCxja2FA7WJmRT89iIESOi7bRdeKMTMEzNsiYTzYOCGysmng5o08k4Qn3OfF3q88xRpSOoxL4nN2R3flx33XX2mojgEIfEsxtcKBIfP7BQQ0Cf7RdccEHS67uXO4tOWMAKsakoiC7yDNKxUPpSkDE1mMmExL0vSbV1r/R4gZQtAfW7T5CoYC71eebAIsw999xjgW9WmVNXrR1UZnfffbd1mhTjqVOnjp0vHTt2TBx++OGR6gwLF27jpV+zZk27fd555xX4+xJCiFTwAScDJ25LkQpqN/pi2i6fZNNOuqdz3PfcM8VS/VnTDd7VVatWNRUTiiaROXz22WdRNiEZYpsTaCEARS2eO++8M9qGctOV5JMnT462v/LKKxbcSvXYp1ZK6v9etWpVNEmPT96FECI7CB56weIFCxZE21mgY8HQ7U7jeHCPhby4gp2Mb8+eiddtos2jXgiPDRo0KFGYoB314uWMXaQ+zywYwzGWw2Lwrbfe2qzX4Fx3FTnCuGbNmkV2rHEbQheQIICLCy8YC3vfPXv27Gg78SLqrGWV8SFETiiILvIUguf4RaLwnT9/ftJjTOLp/Pfbb788baxQqxEERTWU6QWf5s6dm9hrr73sNqpqvMEIuPB9ECx+7733EsUVOliCLlmde1nxxhtv2CCUc3HYsGGRfQtFxbBF8IGoL/i8/vrrBfI+hBAiJ5gwuM8kC8ipKeLcf+6550w1696Q8+bNs7YMZZsXLiNY6WmxmzuxyQ+mTJliwc6cFkUzgUzuzxkvetAFJVt2WWbZQTE9nktQKf5cMs/4LN3iyMlNoN7rClDMVwghNgUCeqn2kF4QnMyyuM3E888/n+Xcg9cgGMljtI/x9suFag0aNEjyhE43tL+uRt7cRdHiQib36Yzl8Dnn/aIYzw0PPPCAzcvJIo9nonumxtVXXx1t53dEHMoz1OOwsM72Sy+9NGn7jBkzogD7yy+/vNnvUWQWCqKLPGXSpEnRRB1PKlQ7cbwwEyuEeZE6zsSflU3SdAgSZDpkAaD0h7Zt21rH8/bbbyeWL19uq//4h+d2MlqUYEGlZcuWFhwfN25cjkEoAudub8D5Onjw4Cg9jA6WDhsVmxccbdKkSZ5aDwkhRF70uUzANqY8w++cCXmfPn2ibSwYer2SwgCTaybZnvpbnPuqTSHT+3NAHc4CN0rxjz/+eJOfRx9/2mmnbdKC+sZgrEpQK3Wcyzi2MAWrhBBFB6wj3MM5HlQkCEhQPdXbGXr16mXbCUbG2x63cWHuQx9RWKDNPuigg2xRPJ79k6lkep/OOe/ZjxTz3NQFFQqOu41afB5OEV7Gv88888wGIjns2VKtWPn/06ZNy/J/nHHGGfY/9t133w0W2YXICgXRxRZDMQa812jY3CLjxBNPjIKTFG+k4UI556uG99133xb/XwYdrGgymGBFsjjDKquvkqZeCBo7eHrFJ3txUDCwf3FfbECZiTWBZzvE07xSC+8QIG/cuLENPMmSoHOns8buxReASDv04qMqMiqEKEy4PdqmZHaR7u2ByLi9C56shUmthsKuOC9Yqj/PHQQYOFcJWsetELYUJvDx8QHWCq5Uj1sRMm5lUZ1ifj7GwNeXz1+FboUQ2UE/Fq9Vkgrty5AhQ5KCidynbdlzzz2TPJpZEPR+gsLhcTsKt2+LK3LTDcdLgJMM4bjtTHFEfXrufhMu4MCyaFMD1hQEzyronle1fHgdfnMcFzXRhNgYCqKLLYIGDYUujQ5FUzxw7l7S3bt3t2v8pk4//XS7ffDBB2/RBJn/yQomr0XRsUwoBMF75PPF+wtfTy4XX3yxpSxR6RxYzSbYm50yioI1hS1tPz/BJx2LH6py+2cUr+5NSiSBcwa4TNJzwouPVqpUKSPONyFE4YNFPOo2xBfzvK91JRvpwGTSsLidEzNnzrTn4dPq9i7pgsA+SmMUx6m+1MUR9ee5hwADGRMseG+OCIPAd2r6NuccdVJSPVNRTcYLoFGIlO0Et5yBAwduUKRXCCHiTJw40TLABgwYkKvnMNcYP358tI3FPhep0XfEIbuM7bVq1TIBUGEAOy3aagLIZAgXd9Sn5x4yuhjzYT/EYlJekNX5T8xo1qxZGwTg+Y6odxYP4qNS5zsgdpAp34PYfLYOQmwBf/zxR6hVq1YoVapUmD9/vm1r1apVWLVqVShdunRYuXKlbTvssMPCgw8+aLfvuOOOsPXWm3fq/fbbb6F79+7hqquuCtdcc0148skn7X8Xd3iPJUuWDNtvv32oUKGCXdi27bbb2ucMU6dODW3btrV9Uvnvv//CgAEDQrNmzcKBBx4YMoGzzz47vPjii2H58uWhUaNG0bkITZs2DWvXrrVzqUaNGqFevXobPP+LL74IX3/9dVi6dGlYsWJFqFatWvj888/DLbfcUsDvRAghgvWxL730Unj33Xft/rp166yvpT9t2bKlbXv66afDsGHDwrXXXhs979dff93gte677z67PuWUU8KOO+4Y0sXChQvDIYccEr7//vuwaNGi0Llz51DcUX+ee8qWLWv9ee/evcMZZ5xh7/+ff/7Z6PMQC40dO9b677feeiva/sEHH4Q33ngjDBkyJPz555+2rV27dqF+/fr2e7nzzjuTxhIwZswY++yB44BZs2bZ71AIIVKhT6PN2H333ZPapLfffjvb53Tr1i28//774eSTT4620UY1b948lCtXztqs+Ovfe++9dnvcuHGhRIkSIZ3QJl9wwQWhT58+dqHNLlOmTCjuqE/PPV26dLHz99tvv7UxILc3hb///jtcf/314dVXX03aPn78+FC1alXr1+O/NcaURx11VJg4cWLSdr6LkSNHWizJOfbYY0PHjh3tPD7nnHNsPyGyZQsC8EJEoIxzFToe5XEVOiuvWGb4ti1RIqFiZ+WSFcxM44ILLkhKCyN9jMJrcbXUww8/nOVzsTchHfrTTz9NZBqrV69OHHjggXYevvjii1nugxITpcdrr71mGRNYuuBV2KlTp6javWda7LDDDrnyZhVCiLzg3XfftVoPtFNAe0+bdMghh0T7UGSbbSNHjoz8VXfbbTfrO+hDPf3biyf7a6UD/CxRq6Ew9mPLFNSfb1mWGQVxUYFvin+se7DiJ+zwu0DtyfZRo0ZF27FnYRu/mZ9++sm2oVTjPtvjqfiHHXaYbbv55pvz/D0KIYoH9LFxywkvYoiVRW6LbMZfhwLiqHh5LeYt6Ya2mDYZFS9tdKahPn3zwOq3efPmNiYlO3xjeBYYKv+48txthIkTxW3arrvuOttO7bx4hhk+6mxnLBHPRmd+T5yJx/CsFyI7FEQXeQL+UTQ4VJfmGqsMD6Z7w7bjjjtudsoOXq4HHHCA+b5RMCITyamD5vMhGJFqWwLnnnuuVQMnmJyp4HV69NFHJ0qUKGEp23Hw6qMzvuKKK6Kq9+eff751rNx2z2GC6oceeugWLwYJIURe4At72Ld4O0c/wDZSg+MFmegD3EaNQLxPQnI7ic8rsOTYaqutrPhTJhZnVH++ZcyePdtq4hDI9mB3dmDZdtddd22Q6k3hcH4HFHPzc5DfiFsk8Xj8+/IxrkO9H7YxNk3X70gIUXSgnWjYsKG1GxSZjMNc4/7778+yjlNWjBkzJrJk83oN6YI2mLYYsdKcOXMSmYj69M2H/pdC4IwJ+Q3kBPZAfK4sSMT7XexZfLH7tttuS3ptxrps79u3b9JreR0ezt34a7EwznZiToyrhcgKBdHFZsPknBVEB/8oD5x7MJ0GiAmKFwvbHAi816hRwwo+eLHHTCS1g6Ywh3fQDKbijwEdAp0zaqucCttkCkygOS8ZyMSrxD/22GNREZ/Ro0fbbVbEUa1xm6I47kWIoo1OntsLFy5M6/sRQmQ2BO/ifugeMKd4ldO7d+9oYTBVrR4voFiQ4EPN/0d9VZwLiOaE+vMth+J6BJDIdPzhhx9y/XzU6BUrVrRzkc889fxk3Onn58qVK20b/sauFkQVysI8219//fU8fGdCiKLMRx99lGWWzHPPPRfVXYhnX9GWuSo23r6zGH7sscean3Ycsslc9DNixIhEOuFYUFnTFi9ZsiSRqahP3zLoa/v167dBdlhWZLdo7QIRlOTxRYmXX37ZtjN/jxflpS931fkjjzySFHjfd999bTvKdyGyQkF0sVmw6s3kgQuDBZ+Q3HjjjdbwkDbjQUcvyLipFZjj0AgSxCTNyf9PppLaQbPSyiIFCwvHHHNM0sqrqxoY1MydOzcqdMIl3UXk0gnFxciMYKBK8Ny54447bEGIjpnPknOWiTnqAG736NEj6oCPO+64yEJB6jMhREGwbNkyC5KvW7fO7tP2ULiKdsoXs5mQ0Tadc8450aSkXLlyto3CSj5p8IXAtWvXFvj7oJ/if1NoLZPbT/Xnefe7wHKNIqGbWsAurlwnAMX5yBjT1egUicOaMNW+he+LIDo2RA7F7TXRFkLEwaKMeTAZMw79XbNmzay9oO+O06pVK9t+xhlnZKmUpU+IQ/aZZ8GkFk0uSGhzDzroIAvop9MarjCgPn3L4TfiWV/Dhw/fpOfEhRg8n++A55N9Hh9jkvXIds5XrJAcxCRsZ0E9rjqfMmWKbSfOlY6xsij8KIguNgssMFh5ZpU1NQXps88+M7sLVDxYYNAIUak7t9BooWJHVScP6g07aJQJdNDu0+3p+w7bs7pkuscXqZKnnnqqTYbjgfR45gMpiXEfdDz+OnToYLfxIERFwm38U4UQIr9BtU2bc+WVV2a7j6esPvXUU0nqNgKCHiD0IDbpqwXNrbfeav8b66xMDqCD+vO8480330yULVs2Ubdu3SzT5Z333nvPsjAIZPn5R8DCP/fHH388yaLw5JNPtgzL+Lg31bMWD1eeu99++2X8OS2E+D9lNotyzBuYDzvz5s2LMl19MRywP/Ht8bku1qUu3qHtcdjHM2CmT5+eSBf4S9PmslAfP75MRX163kA/evnll9tncfvtt+e47/z58+0cnDlzZlI/7zV/8D13EJu43QtWbPEsdVedkz0QPw7P2mQsIEQqCqKLzYYGhjQzVL3YYKRyySWXWOOz//77b7LHm8PAo3r16nbJxEIbuYGACZ+x2HRYhSaQzrkbt3aBRYsWmfUB5y6eq0cddZTdZtHIg+fu88/EObfnthBC5Jbrr7/eFq3jgb44pI57EWRX5HoBJtqr1GKIcb/ngoBCpwqgbxz155sHAQuUnxQVixffi0PgimAGE2yK9DosppPlkapo21RVu0/Y4wF3IUTmwrxg6dKlSdsouuk2ZnF8juEZZA7za7afdNJJSdtdUUvANl19KfZZtLW0ue+8805ajqGooD4993BeM1bkPMdeLTt8rt60adMs6/RdddVVSdvJPOO78MxMh2A7z0m1hcOmzRc34sVHhQAF0cVmQ4qSp4W3b9/efFl9EkIQnEKiPMbkJDeQzkRwEhW6Umg2DpXep02blu7DKJKDXIJLeKR7sVE6UhTq2A81adIkGvCiTD/vvPMsEIRKAKWJWxbhwSaEEAUJE9fUgkf0v3g3O1hc0EZRgMmVOLRvbCvI7C4y0WThsmmoP998UG6iNGNCnV0xMLLH8uLcj7++B7viKjYhhHDIkEGxTf8btyZ99dVXIy/0NWvWRNsJwHsNBpS1Dgt1Pu9ODdIXFLR9zI/INFdgceOoT99yaxcK0WcFQW/GlalWbiykv/LKKxvsj/VRbu2PunXrZsdAPy9EHAXRRa4bNQKONEJUOaZh8UrjTF7wcyNlieusKh5vDBpCUtIJYqamPgmR13AeU2yU1MgXX3zRUrtr1qxpVcIZ3LICTmCKtMVU8GvzgqSZ7GEnhCh46COZTOMJnRX0u2SIHX/88bYwDUxE3JKqoKBYE8eJ/6cC6CK/YeLMojeexJtTh8dtjxwWpfr37x/5qLOAfuSRR9r/wDsdHnzwQftdHXjggXn0LoQQRZF4sdBUqBuGdUscr6lAZmwcr83EXCQrj3Selw5oU2lbsYjLKkgpRF7CmBEhG2PIeOHP/P6f8aLACEZZ5OJ3R6a6EI6C6CJXeIVjbFY8hZXUGE8t4xpvKV8pX7hwYa4mL82bNzdvy3iqrRD5CX5oFCBhUoy6M7tU8KyUJV54dNiwYfl+nEIIAQTF3Ss1PtjfGK6Yve666xIFAQWz8IXt1atXklWGEPnJggULEiVLlrSAU04LNwS84o9TYAy1KIp24DEK9/Gbueeee6Jt1Olhm0/qCaxznrONCbcQIvOgj8MLncKFm9oOEFRv3bq12VHFazy4Cv39999PUqG7tUQ6PMhp+7p27Wpta27m9kJs6e+KMSR9LHUFciKr4uJkfng2poPwjXk7KvY4/PYQfyI+iePCUKyXhHAURBe5Aj9WJhl4ocUD6Ch5qTLNbbfB6NSpU646Z4o4Yq2hzlmkIz0RFRmT49TCZL4qjS0RQXYUIli4EEBv1aqVneukNaZ6qQkhRF5AEaRq1aolBg0aZPefe+65qP91dRgWaBQ/yi4rBtWsFyNjopDfUHB8jz32SBxxxBG5Tp8VYkuZNGmSnes33HBDlo9feumlUQaa0717d3vOKaecEm2jsBnbDjnkkGjb4MGDIxtDp23btraNQLwQIvMgyI24jLlwvB/GpiU3i8j01WS6YmWRlQqdQHY6YPE9XrhciIKCMSRFPrFRjdsexUWYBLqpefLhhx9G21mE4jdJbCm+IOU2SghR4rVMmOO7CPS1116LtvM/faE8XTZKovChILrINUzYK1SoYI0JK+4+wXCFuq+U52ai7kXHsvO9EqKggj6kauOXTvo2PuisgOPPjyqkWbNmdp76NSlerkrzAJcQQuQlF110kbUxF154od0fMmSI3SfoB/Pnz7f7FStWtEU/Lg899JB5qbrSlokv+xCMz29bFYIAderUsf+VlRWWEAUBHuWc89Trya4gGVYtDtZI3q+7bzpqdZ88+2SbTEnfz+0bWFhnGwITIURmggjnpZdeiu4TPKcfJEN7SwpwepuTLhX65MmT7X9fe+21Bf6/hXCVOb+lunXrRlZqcXwhm4XvOGSaZ7X41KVLF9uOpWscFtHZ3qFDhywL+h533HF5+r5E0UVBdJFrSHXdaaedEqVLl45W8lDixlXoufFrmz17tk1GUtNqhChoGPwyYWaCTUq4D1rdn7BevXpRYb7GjRvbdaNGjewa9cmmWsEIIURuJg9YqXnRUPxT4yrbW2+91e57CiqqGe7TlvlkA2/VeCA+vyBowHGUKlUqSeEjREHDuchEmXMxNfD02WefWX+fuqBE5gS/kyuuuCLaxvnMNhazHOoKxG1e4hZLOfkiCyEyB+xaaBfwEI/XaLj//vutjfnkk0826XXcTiI14FcQIIhjzk8QUrZsIp0wpqQ/p09OPRdZpMrKszxugxQfk7Iw5fP5119/PdqOFZNvj9ccQpTiKvV0LGSJwoeC6GKToLGKe7YRLCSVNa5Gp8CiN1SbWrGbtBuC8XjCof4VIt0wKeYcRlmG6oJ073Xr1lnHzXaU6qne/56BkV3quBBC5BVup4Y6DE488US7P3ToULuP/6Mv9ME///wTLXrjU56fYHVBu4j9lRDpBis2Fr9RsGXll5qd4pK0ceqlwDPPPGPbqNfj1kS33XZblJXmoJBj22OPPZaP70gIUdjILrurR48e1ib069cvaT5do0aNpEU4YMGb+QVZZPH58Oeffx7VICvowoYsCOLzThuam/orQuQXZJbxW7j66qs3+TluhcR1VqrzVPth/92mqtf9dVILAYvMREF0sUkQSKThaNeuXTRYePLJJ02N48UVfWKfWpAhO7DLoGgTwUgKMwlRWKAaOB5q2CQ4rvbE8mW33XZLyryoX79+9FhWaWZCCJEXMAFHFUZ7gzIG8EPn/syZM+1+nz597D6+z3H/R9Rw+blY/cQTT9j/ufHGG/PtfwiRW9auXWsBcDxVs/Lnx0/1q6++stv8PnxM64VD2eYWhlOmTImU7C4aIcgFF198sd3v3bt3gb4/IUR6wfqBgBvq1rjYDI/mVB9lFrLZtvPOOyfNF0aNGmXbCbDHVbYo1tlOwcOChHaxRYsW1nbShgpRWECwxm+COFRWkPXhlmyActwzxeKCUH6vLoaLiz9dvc5jPs4GfsdsJz7g/b7IXLYOQmwCK1asCNtuu20oW7ZstK1r165h/vz54fTTTw9VqlQJr732mm0fPHjwRl/vv//+Cz169AifffZZmDZtWth9993z9fiFyA133HFHOPTQQ0Pnzp3DJ598Yts4z2vUqBG+++67UKdOHdv28ccfh6233jq88cYbYe+997bHRo8eneajF0IUF3755ZcwcuTIMHXqVEQP4Z9//gk33nhj6Nu3b9hnn33s8Q8++MD2rVevnl3TL0OLFi3ses6cOXbdsmVL68fzA9rAnj17hm7duoUrr7wyX/6HEJsD49OnnnoqLFiwIAwYMCDpsVmzZlm/3r9/f7vP76Nfv352++677462nXbaaaFcuXLhxx9/tG177rlnuOiii8LYsWPDTjvtZNtat25t1y+++KL9VoUQxZ+vv/46PPfcc2HSpEmhRIkS0fbHH388/PHHH6F27drhkEMOibbff//9dn3SSSeFUqVK2W3aC/p5OPfcc21eAb/99ls0p7j00ksL9H1dcMEFYfHixWHy5MnWhgpRWBg4cKCNNRlzLl++POkx+t+qVauG3r17R9uYs3fp0sV+Z9dff320vVatWvY6MGTIkGj7gQceGI499ljb/9577422N2rUyGIDf//9dxg1alQ+v0tR6El3FF8UHViN23HHHU197qqdjaXEZMfAgQNthe/ZZ5/Np6MVYsvTGKtWrWp2RWRioE5zH1RWocuXL5/kjY5XIdds/+2339J9+EKIYoArYshyyYqFCxfa45UqVYrUb66QdfsKL6w0fPjwfDlGxgN77723tY9x31chChNjx4613wGKz7jfrxfldbsC/M2xX4gr08iczErFHodzv0SJEvZ6cUWqEKL4Qnb2a6+9lhgxYkTSdjJfaAtuvvnmpHaEeTTbFy9eHG2fN2+ebSPL7Icffoi233vvvVFBcGzZ0mFrKURhhP6WLPDKlSsnxaTImqAeEPN3Cv3G+3pql2EDE7dfop8nhhX3Pwd+0xMmTNgge9MzLrF801w/s1EQXWwyY8aMsYaDBgtrC2+cPv30U2uweIy08Y1BynnqwEKIwogX1Onevbt5EtIpU3gMX7Q777zTBs0sLi1ZssQm2DzOuc1jQgixpVBMlELdJ598craFuVno8wVsiiXSBuFj6inZbv9Ce5bXMBmhPkq5cuU2uUiaEOni3HPPtUXw+G8Bz/O8mgx7zRSNAYTIXLB6cJuIuBWKL+Ttv//+SYG8nj172nYKiDo87laRw4YNK7Bjp22kjTzvvPMK7H8KsTkw5mTsyRg0/ntCXJKVdWFeiDx4XeJg/C6pPyQyFwXRxUbxyUXTpk0jvzb3Z0NJfskll9j9li1bbvS1WIVHscZEI7tCLEIUJlyRwSCW3wJBqewYPXp0tNCkQrlCiPxQpr/xxhsb1F7w/pR2ijaoS5cudn/BggWRaibus5pX3H///fb6BCKFKOxQLLR27doWnNqYsjwrUIPy+3PWrFmTuOOOOyJVKcV9+T0ce+yxeXrcQoiiA+0E3ude7NvBYzxVRPbzzz8nSpYsadsJ/jkUEWUbvupxRW1+QptI23jggQdGhZWFKMxMmzbNficPPPBAvv0P5vPxOf3111+fljoFonChILrIkY8++shUbG5Vsc0220TFFjxlvFSpUnZNQ7YxzjzzTNtfRUpEUYHAU6tWrSwwziJQVtC5ssLNeV26dOkcC54IIcTmQvGynKxZsHCZPn16VBT5uuuus/3JnslryEKjWOlpp52W568tRH5BxiRjWX4bqcSDVex3+umnJx566KEo2IVtEuNfLF/gnHPOsd9X3759oxRwHxdrIV2I4s2MGTMSgwYNSrJ+ymkuQTuBNVs8a8stW2rWrJkkLqPtYXuvXr0SBcW1115rbWOqtYUQhZlTTz3VrFoo+B2H3xNFRVO38bu97777kraTVU6MKm735i4MiD+xdnHWrVsXxcPeeeedfHlPovCjwqIiR5555pnw66+/hjfffNPuV65c2a733Xdfu6YgE4XNatasGY455pgcX2vmzJlh3Lhx4dZbb1WRElFkoMDPfffdF77//vuosM8LL7wQXn/9dSs2RpESipaccMIJ9jsoX7687TNixIg0H7kQorixZs0au65WrVpUpDtOmTJlrC8+7LDDkoqKtmrVKk+PAxHGmWeeaYXR1NaJokTDhg3D5Zdfbn33ihUrbBtF7o888kjry//66y/bNm/evPDAAw9EBcR23nlnKyDOuU+hUqD4GEyfPt22H3TQQWHXXXe1cfFbb72VtvcohMh/xo8fb+3Io48+uklziTFjxoSvvvrK2hGHIoht2rQJZ5xxRthqq61sG+3HE088YbfZXhAwz+e9XHHFFeHggw8ukP8pRF5wxx13hJIlS9qY1It6//7776Fp06bWJ7///vvRvi+99FJo27ZtuPDCC8P69euj7YyViVHdcsst4d9//422f/HFF+HTTz+1IuJOpUqVor4/vl1kGOmO4ovCDSt2pJSVLVvWVtw85Wz33XePUsS5xsYiJyh2xkreUUcdJRsXUSRhdZpz3ZWg7lXIeR3PyNh6661zVSNACCGyA2UMtRbGjx9v972g8euvv24FyEj1rlevXpY2U7///rvVcmD/VatW5elxoeLhdVG9C1HUwKoAywK3deH3g8qc/nvOnDm2D2pzV5uhUoPbbrvN7mPL4L8xrzmACh3atGlj97GCE0IUXygySJYX82Tn6aefTpx//vlJhUM3hfjc2G3SsE8tiDkzbSC1VWTjIooqWArym+G343To0MHGyI888khSRsh+++23Qe0SCot7JvnkyZOTMi4ZF8THAYCdscfBNscaThR9pEQXOcKqOCvi33zzjSnOfvvtt7DHHnuEH374Iey2227h22+/NeUbitycuOSSS8KPP/4Y7r333milXYiiRL9+/Uyp9vLLL4cSJUqEJk2amOKMFeo999zTfidkZqAM3WeffaLVcSGE2Fw+/vjjsHbtWlPG/P333+Hrr7+27bQ5H3zwQfjjjz9s2/bbbx+WL18eBg0aFGbPnm37cB9Vbbly5axtyito81Dx9OzZc6MZaEIURujDH3zwQVOiDxkyxH4/qEn5rR1xxBG2T4UKFUK7du3s9kMPPWTXXbt2tev58+eHzz//POywww5Rlof/7hgbwJIlS9Ly3oQQBQMZqCjGUbw6jzzySLjzzjvDc889F2377rvvwmuvvbZB5lic+NyYDBjo1atXgcyZb7rpJsucoU2kbRSiqNGhQweLRQ0YMMAyy3wOzu1TTjklKSPkggsusNt33XVX9JvcaaedwllnnWW3R44cGe2/1157hfbt29ttlOoO2SOMrYmD4bQgMg8F0cVGOfzww83WxS1cCKbHr88555yw4447Zvv8GTNmWPBcNi6iKMNAFlsXFpJOPPHEcM8991ggyR8DFps88AWPP/64TbSFEGJzYNC+aNGicPTRR1taKamq2223nS1eeztDOjgwkL/hhhssZRxeffVVuz7kkEPybCIuGxdRXMCyAOsCLAywMmjZsmWSzQKwUAQPP/ywLWRhaUjALG7p4kF30sTjQfTFixcX8DsSQqQTFro9oEZQz6GtwEbquOOO28AOhkXpONxnkY4+e2MCtbyAxXbGDVdeeaVsXESRhjEpY1O3dalevboJP1Phd4UIDiHK888/H23v27ev/e6wdmFBPb7dF9P5jcO2224bunfvHi2cicxDQXSRJTQ+DAAGDx5sClvUZvg9M3ln4k4jw+reNttsYwrd7Pjpp59Cnz59QuvWra1RE6IowyIQi0EMfBkon3/++WGXXXax30LZsmUt2wKFKOpQJtt0tu6nKoQQucWDdtRacHUNbQxqGg+i++L022+/bdd4QKYG0fOK+++/P1oYJxtNiKIMmRu1atUyxadPjsF90fE93X333cO6desipXmXLl0iH/R4EJ3AF6/RuHFju88EHQWqEKL4wSIZtZLiLFy4MPz888+mUCVo7nhbEVes038TzKO+Sfx13Au9efPmpoLNT2jnaPv2339/awuFKMrQV+NRTt0yz+ZwEKG46pxAO7EpiItBGEt7ZhkL5w4ZaVmpznv06GHXTz/9tP3uRWahILrIEibjzz77bBg2bJiluRI0nzhxom2rV69epHxjgkGBheygECOBdNm4iOICK9JHHXWUdcBffvllOPTQQ207vxMggA6c94B6/Z9//knjEQshigMUJAMvXpwaRPfiSSx450cQnSD+RRddFE4//fTI5kKI4mDrgpUBti4UI0MYwkIVgS0eP/nkk21f9gO3MJo7d66JTOrWrRtKly5tff97771nt/03uHTp0jS+OyFEfsCYHjsHMsJWrlwZbfdC3swRWOgG2pRZs2ZtoE4nwxuYQ9BmOMy1oVu3bvn+PoYOHWrzfdo2n8MIUZShfyaDjExxF56cffbZJkiJB8DPO+88i0vx21yzZk20nUUl4DfhQffsVOdkbuy3337W98ftm0RmoCC6yBIm5ahtGzVqZGlentaCopzVdzzRISd1OemxBM+ZmNB4CVEcoNPlvMaHmAUlVryxM0KpRnoYyjMGxAycuc/qN/sIIURuYREOWyjakwMOOCDcfPPNUWppPIhO9tiqVavsPoN6VDF+P66I2xJQquEBffvtt+fJ6wlRGGAiTN0eAkoEzgl8ozhzuxbUovym6tSpY/cJkOMhjDKdvp9gGRNxxsW+jyxdhCi+YNOISpxsLF8w84W1eHaK2zzRf2MVxYJbahA9bvGyevXqsGzZMmtTvP5CfsGchfk5bV+DBg3y9X8JUZCgLmcBHDcFYNzKwpdbrgFiUOqcMa5mnu507tw51K5d2xbP//zzz2g7gXnEcwTf4/EAz0zz8YLIHLaiumi6D0IUTlhZw6ICpQ3pZRRQgQkTJlgKCwMCVu+wdMluNZB01nfeecdsYIQoTlx22WVh+PDhFqDiQuCcgqJkZtBhkyLORJt9jj/++DB58uR0H7IQogjBoN/7ToJ6qd6O2LawWE2qOAvepJsyqP/111+tqCFpqSxge7B9S6AfJwBAoab4JEKI4gCZY/inMs7lgvKsRYsW9nvyaVJusilHjx5t6jcUqS+++GI+HrkQIl2wWI2lI1AvCTsJLFKY+3odsYsvvtgWngnAeWHC9evXm4qdfcle8UA8+7E/fbfbR+UXZNwQ+Pvoo49M8CNEcYLivqjRyTLbeeedbQxdv379Dfp9fr+pfTt9/qb29xQMJgZQsmRJq4vGtcgMpEQX2ULaCwF0Gh8KKZLKwoDBBwFnnHFGtgH0l19+2VJbbrzxRgXQRbGEgmRU80bFRoXva6+91hRrTJoPO+wwGyD37t07UpygXBdCiE0Ff+X27dtbm+KFvOOgeiUbhuCfq84JmqOOzWsrl//973+m3HEVvBDFCYJIAwcOtCwzBCIUGfVJNNe5tSN0ZScTeCFE8cQD6EDGNgvZKNQR1DiufkX16rCwRgC9Ro0aSUr2adOm2XXHjh3z9bgZL5DlRpunALoojrBIxHiYsSt9emoAHTj3s+rbc9Pf09eTDcoiGvWCROagILrYAKwnHn300fDYY4/ZfQ+CUziBAcK8efMs1cwDhKmwgnf55ZdbcDG/09GESBcozwmkU8SEFMxU/v3333DggQdax42iVNW7hRC5gWA4dUiYcJOaysSXVG8UNYDl2vLly60oWKofOvvlVRB90aJFYerUqeH666+Xb6ootpx77rmhYsWK4aqrrso2O5PfAZNlF5qgNndPZKwR+L2RBUKKuNcx8N+rEKL4wm/+k08+Ca+//noUhMPekT461eLFvZlZJHfYd8GCBRtYvOQHtHFkzZ5zzjn5+n+ESBeMmRmzEruK26oxN3evc4fsTYoCp/b3jL8Z/8bjW+xHbSBEpsBvvVOnTnab/UUGgZ2LEHGOPPJIclcTO+ywg11z2Wabbex6l112sev27dtn+/wpU6bYPi+++GKBHrcQBc2vv/6aqFixYqJbt26JMWPGJEaNGpVo1apV4swzz0xUqFAh0bhx48ROO+1kv4cDDjgg8d9//6X7kIUQRZQuXbpYWzJy5MgNHvvrr78Sq1atSrz11lt2n/aGfZ9//vkt+p+0Wc2bN0/Uq1cv8e+//27RawlR2Lnvvvvsd7N48eLE0KFDEw0aNEj89NNP9ljdunXtsUmTJtn9Dh062P2bbrop6f6IESPsftWqVe3+3Llz0/iOhBB5Ce1BzZo1EyeffLL1uznx559/JubMmZO4/fbbk7bzfNqGadOmRdvGjx9v22hn8pNXXnnF/s8DDzyQr/9HiHTDmJXfU4sWLWwse/3119ucPd4nf/TRR4lSpUrZXH39+vXR9muuucZ+J8cff3y0jdfYd999bfvEiROj7TNmzLBte+65p+b5GYSU6GIDGjdubKlorMJ5CrlXDvdq43iiZwWKW9LDSD/nIkRxBu+zq6++2gr/kTpGEd45c+aYWu3LL780r0NWuMnmQK32yiuvpPuQhRBFFFfAYiOVCm0MxQ/JfqEfxpMVUKlvCdiyzZ8/31S23v8LUVzBko3fDCngDz74oKlKqQkEbdq0sesnn3zSrtu1a2fXFBWNZ324lRK/RXj77bfT8E6EEPkBbQJZYShSPVMbhWpWJebI3EKBjjdzHJSxU6ZMCYcffni0za0gqCeWX3CMZNBSOPHUU0/Nt/8jRGGAMStjVyyGn3/+easPRBHRiRMnRvtUq1bNMtCYq0+aNCna7tkguDP42BvVOYVH44WBgfopxAMo1isLt8xBMyKxAfiYe2oK6eSeZgY//vijbTv22GOzfO7DDz8c3n333TB06NACPGIh0ge2RnggUkzUO12KBoGndPoilE/GhRBiY3hxMmosAIN8YLBOoWL8HL3gdxzspfBTZz+8IDcX0l6vvPJK84c++uijt+CdCFE0oKAoBcFZDGeyjEd6t27d7DH/rVHI9/fff48CYATE8DdWEF2I4g91SLBtGDFiRLSN4FyFChVCly5dsgymp0IBUubZ1BwDnuOLca1bt863Y8cajraNNi67mmZCFCdY7CbIzVi2f//+tnh1xx13RI8zT/cFpXgQ/aCDDjKvc/r6eHFwX+QiuM4YGZj/u10TwhORGSiILrKEQDmFEak0DPhH7bHHHnabAHpWRc5oaFDlUoQUP3QhMgGUKLfddptlblADgEJB/Bb4DbHoBF5UlA56UwbYQghBIPyjjz6yhel4EB0lOj7LFPomeAcDBgwI11xzTfjhhx+i/fFH3xL1OLVRUNWwKJ7bwopCFFUo6te0aVObJJ9++ulRoIsg+Z577mm/Q2oDoVgvW7as9fcEzhs2bGj7UZ+Avh+1J7zzzjtpfT9CiLyDADhe5i42A37/jPMJpntfSd9MfbCnnnrKssNygjaC7FXmDYceemi+HDfzeFTozZo1y1YIJ0Rxg9/jzTffHFasWGEXfreptX1cXU6wPC6C8984vuoOv8/ddtvNxKXx7PK2bdsmFRIWxR8F0cUGCjaCfBRjuO6665JUtD5ZP+mkk7J87t13322DACwthMgkUKgxgWal+7zzzrNtqECBxSh+U3TaFB1ylZoQQuRE1apVLVjnypa4ncv3338f9c9//vmnKWuuvfZaa2s8iL4lVi685uDBg8Pxxx8fmjRpkifvR4iiAJNnFo6wbXDrFt/uhQD5TXIfhRvwOyWgjnINeG5cia7FcyGKL27hgHrVefPNN8Mtt9wS+vbtm6T67tWrlxX2dHENuAqd9oSCiPkBmbBvvPGGFsVFxsEYloD4oEGDbGybVVFgBHDEubB9cTyIjnWLL4SRreYB83ghUVeiUxzY42WieKMguohAwUbqOEobFG6kt+D1jMIWWJ1DkeM+kHFolIYNG2aqHRoiITIJBqSkR7IqTcVuOlm3QOK3BK5mi6eLCSFEdrAQx6SaOiWpdi7xIDoej8DkG5WcB9Fr1aq1RSp0VHVaFBeZCL87LIwQlBB8Ovfccy0Q7qncTJ65j9WRB9EhbunC749MEMbWCEyEEEWfhx56yPzQyRRz3LKpTp060TYXzDRq1CgKWtNv83xsU+NZYng2xwNxeQ1tFf+T+bvbwwmRSXD+r127NkyYMCGMGjXKapzQNwO/TwQjgFWiw28FFwbm8/zmHbc3nD17dlIgHtEcYpdly5YV4DsT6UJBdJE0CGASjlULAT+usWYhzcy9H2lk8H5KhWA7q+oXX3xxGo5ciPRDId1KlSpZQTICWYBnMSvSdNAeVEfZJlWaECK3xO1c4kH0zz//3G7T/tDWUNB4S5TotE8o21HdMjEQIhNhPMv4l2Kj99xzj6k4jzzySLNwI2vzww8/jILoFBTjd+OWL/wOGSt7TYI1a9ak+d0IIbYUxvEoyQmuxdWmbtnkFk6AdQTUr18/2rZkyRK7pgg4ATeg3UC9CvkV4MZigjn+JZdcki+vL0Rhh7EsY9q77rrLnBOwbqG+SaqlC1lm/ttGEOfWR3Ff9FatWtk1QhPfl0UxHw/MnTu3AN+ZSBfbpu0/i0JH8+bNbYBAkUQm4yhr6OhJT2XCAATVU2EAQIEVVubwYBUiE2HSjC/xZZddZr8DsjrIymCgjGcqatKzzz7bVsJJ9VbdACFETqBo8dRSCpbhZ4rXMgXMsguiw6pVq7ZIiU7fTyo62WVCZCoEzAmK0X9j2YYiDXHJI488EurWrWt9PONfAuRYL3ngnTGAw3Ym2vT7+eV1LIQoGMg0RTBDm8BiNpCtzYIauIVTPIhOW5GqTo9bpFFAnPpjiNi8rkJewxydY8svpbsQRYELLrjArFjoo3v27BkJRIEF8DvvvNMC7XHPdKyXsGqNuyxUrlzZFs482yweR6MGAsXGRfFHQXSRBAo20lvozMePHx+6d+9ukwS8nFHV+OpbHFbQUejEfaSEyETwQ6eASYMGDZKqfzukgKNEx9JFQXQhRE4QKKdYMcpX1C5xFVl2QfSffvrJLlCtWrXN+r+0Xah2CBYIkckL40y6+/XrZ77G7nceF5OwjwfQIe59DP4cAulCiKINv+e4ItWD4BTtJAO1fPnyto37bvESD6IvX758A3W620QQxMsPP3SKk6O4HTt2rLzQRUbTunVry9Bk0Yu5ehyC4f3799/gOfvss0+Wr5VVlqZbLy5dutRiZ/q9FW9k5yKS8JQyKoTjhUoRUS8wygo221Nh5Q7lLf5SQmQy/D7OOuus8MADD0Re6HG8SMkLL7yQhqMTQhQlWLgmvTurFG9UsE2bNjW7iHgQ/dNPP7XbTOhdKZcbUNVOmzYtnH/++ZoAiIznlFNOsd/SyJEjc/1cJtEeYEeJLoQofuCN3qxZM1OXe5/Johl1xFC0ktGdUxA9K3V6XkLbxWI7bZkQmQy/T8a2Tz/9dL70yRQWRvRCZon6/OKPgugiWjXD94mCJ+ABQCqO+6p7VgVFKWg2ZcoUK7oUT2kRIlPBsgXvYjxUKRaE9xqFyUgHW7lyZTSQ/uqrr9J9qEKIQgxWUPPnzw9z5syx+xQMRd3GpP3ee+8NixYtMosIL1qIzYsH0d2LObeMGzfOaqL06NEjD9+JEEUTivj26dPHFsYJdnnG5cSJEy1TExUpSs8OHTpYMVJAzVaxYkVL61YQXYjiDZmnCNDwUnbef/99u8YCAl9lwIrN24F69epF+7722mt2nR/ZqdjOPPjgg+GMM87IUgQnRKZx6qmnmi0bmRmMrenb43CfbDP6dYdxONsGDx4cbWOezxiA3ziWTi58IZDucTVRvFHUU0QNBOleXpCMVDRXsXlqeFZBdDpnVt1olIQQwYqKMUAmaH7ccceZxUu3bt3CLbfcYtXBd9llF9tv1qxZ6T5UIUQRgsF5nTp1oqC5M3z4cEspJ9i3JUF0gvNMIAigb46KXYjiCL8rAmCNGjUyFZtbsxFInzFjhvXp3GcczXgZ32R+oyyaK4guRPGhd+/epiLn954TWJ/SJz/88MNJWV4E77CE2W233aI+l/oj+RVExzqStuvMM8/M89cWoijC2JYxLkF06p5Qx+Tff/9Nimthuxq3bfr6669t2+TJk5MW2CnYizWML4SB1zXA5lgUbxREFwYqGmxbKGTmeKNCQJ10NNLH47AdNRyrcz4gEEL830DbO1lA2cnvBfw3NnPmzDQeoRCiqOHZXt6WONhN0D+jXP/ss89sGwXCcwuBAYJ/mnAL8f9AaUbBMBSlFBJDgeaqc4rwli1b1gqN+cQZz1XPHPEgOvYOqb9bIUTRgsA4maQovHMCcRl9Mip1h+A7Wd7x4BptxJ9//mkLcdl5L28JZJYR0E+dvwuRyTDG/e6770xs0rFjxyT7VQLrMHv27Ghby5Yt7ZpiogTU3RrGi4XHC4l6lokXFhbFFwXRhcHEoHbt2kmBP9JTvEhSVip0VuBWr16tCbcQKVCIjAJD7mXsgXN+W//8808URMczVQghsoNaJBQwWrduXRREp91AkU7WC5PwOFuiRGfCTXGzeKq5EOL/bNrou2+99VZTsvmkmpRtxsquPlu2bFlSEJ3FLCbbBMrwSRVCFF1Gjx5tNY3idUrwQ2cRjUyUjUFbwKK3Ey8+mteWqGSWc0yaowuxYVYnfTa/O7Iv479JD6IT4/KFbwQqXiCYhfOcVOe+n2eYiOKLgugiArU5aS1//fVXtI2iKJBV0VBU6EwWGEAIIZJVKH379jX/VNQlntXhAXQUbSg+qTkghBDZgSUEwbjvv/8+KlrGwJ5iolzYRhbZwIEDLYC+uUF0FOwEBzThFmJDjj/+eCvOx7jX1enUICA4/sorr0RWDKR1I0qBVatWWV/P8+Dbb79N4zsQQmwpiM3atm1rv32HLBP6XfyQnauvvtounhmWHV4nyUVsecl9990X9thjD2u7hBDJMNZljp76G8W2DdsllOrxQLhnny1ZsiTa5gWCX3/99WjbgQceGNUM1MJ58UZBdGE+baStkJKKgrZEiRIWBARS1uIpKw7Km2nTppmvlE/shRD/j9NOO828UX1wzO/KF6j89xX3XBNCiFTGjx9v/XO1atWS7Fy8LWGhe9SoUWHIkCEWaCewDqjUcwNej2SeUb9BCJEMATJ+G3gMr1+/3n5/cUsXD6IzmXZrF8bJBM5RsYGC6EIUL8gKc3sHsk+dkSNH2uK21xQDbCM6d+6cVLDQg+hkm+X1ceHhjN0qcw8hRDL054x5p0yZYqI2t2hifu6ZZhQeddyaKa469yA6C+bYvLl9K3UPfLsoviiILmxScNRRR4UBAwaYuoZOnxRyt3JhVS3V85w0FywqGBQIITYED0IWplB3gqeFsejknXXcR00IIVIhCwxPU5QxHkQnsyUeRHc/R3xVCaQDCrTc8Mwzz1i/74WPhRDJUCicAqH8tqgf4BNtLBN8sRyLQ36nrlT95JNPFEQXohjAotgTTzwRpk+fHlkx/vDDD1YcNB5EZz/vhytVqmTX7D9r1iwL2MVxOza3gMorsIlBIa85uhBZs+uuu4bDDz88XH/99aFixYpJdcqogZKd6pwguv/+6ee5cN+tmdzZAd5///0Cez+i4FEQXdgqNZYT+DWzok7wfMaMGeYBCVnZtaBCr169ep6vngtR3ALpBLv4jflAm1VqV4bEO2ghhMiJHXfc0a5ZhPP2hMG711ygbWFSD3GPx43BwvncuXMtSCiEyBoWmVCp8dsjcE7aNwFz+ngyP1CgU1OANPCmTZtGQXYF0YUo+vC7Rr2KPYpnYLtdA4vPPq73bDCyV1yARlDd+2kv+s1iuKvSPeiWVzBHZ+GdIKEQImsY8/K7hrh1C307sbB4AWHiXYyxiZf9+OOPSfuiUsfazfHfM4WIRfFl23QfgEg/559/vjUKHTp0CK+++mpUURifR4gXUPFJO6q1E044QVYuQuTARRddZL+TESNGmI8inugMrBncolKnWCB+bD6oFkKIOO+8845NtGvWrGkL26jcUMIywKc9wVrCwX/ZFeq5CaKzaM5rHXvssfnyHoQoDhAko+gYXqe33367ZZfx+0OAAig/4/ZIjgfRfbIuhCh6MN/1hTHHs8BQtTq0D65C9zkyGSmuVo8H21mQY2Eur+cAzNGZc8jKRYjsYczbv39/qx/Qu3fvaDtxL37b3rd71iciFXdpcKZOnbrB6+LqAFKiF2+kRBeGp6EwCTj11FNt1dwLJaQq0UllIfinCbcQOYNihQk0vys8jelYKfhHgMsreEuNLoTIjltvvdVSskkDHzx4cLjpppusDfGi33H1iwfUGeSjmMmNaq1evXqRl7MQImtOOukkE5p89dVX9juLT7KzQ0p0IYo+BMXJ2OKS2ufG+9usLNU8iB4v+E09MqDfTQ3MbQn4Oy9dulSZZUJsBLzLmYtjURyHha2s+vZN/Z3i1ADYv4nii4LoIlK7AStvFCMhPQVlGimqXiAhPuFm1d09o4QQWUOHe8wxx9hvJpUmTZrYtYLoQojsIEuM/hjPxjgHHXSQFTN0b0bwFFNSyDc1S4x+/rnnntOEW4hNoH379naNJ3p2eP0Tv60guhDFEzJLGcvTHztZWap58VGvlRAPoiOwyUvwbMdmytsqIUT2IAilP2csnBXxMbaDFVNO+/li2aeffpqnxyoKFwqiZzj4OlI41IsfOu7TxuQ9dTJOmhidMyt1QoicIf1z5cqV5pHK76lFixbml+YpYAqiCyGy46qrrjJVWc+ePW1y/uGHH1owbuHChWHZsmVR4TImzR5Ez42VC6/D6yqILsTGwYaNrA0yQm655RYbQxNE69y5c1iwYIFlm9Hnz5kzx0Qo9Pfuixz3URVCFH0OPfTQsHjx4jBhwoQcg+junU774WDlCHmdAcYcnePyxTshRPYw9uU3i+Bt3Lhx0faXX345NG7cOHTt2jXaxvibBTPsFeMLZPilk3niC+geROd3jwWjKJ4oiJ7hYOOCCj3u1RhPD3fLiXinj82LrFyE2DQoNAYEwqg5wKSbjtiLD7322mvZroALIUS8fglBuoceeijaxkSZRTosJjanqChZMqjcKYwkhNg4derUCatXrw4PPvigeQ7Tt9OvY+lA387vEbsl+nisFbwgsCbTQhRdsDJt2LBh6NKlS4779enTxwoK3nzzzdE2xvg77bRTUmDbvdNTs8y2BAohvvjii1oUF2IT4TdN3z1z5sykrHH6dmoDsjjuUECYAqT0/x4rK126tHmfM/723zTb3A4G+2NRPFEQPcOho73//vtt9Qwlm+PFSJgspKaJUbzs6KOPLvBjFaIoQqYHRYPKlStn95lce9oXvzkm1nTIQgiRE+676sXMgP54//33D7Vr1w6//vpr0n4bg3aISQOL4vH+XwiRPRT4BX439O/8dsgOwdrBPZH9NhNrv02ASwhRNPnll19M9OL2p9lBsHzfffdNskKlngnPHzp0aLTNA25xi5ctZfbs2dbOSOgmxKZB/92mTRsLfF9yySXRdvp2V5q70JRMEn7fjJ3d75wxuGeT+FweBwdfHGMhXRRPNGvKcEg3dT82GgKHiuFZBdGZcJOemhulmxCZzsCBA6N0zrjq3IuUvPvuu2k7NiFE4YUChtQfYUDvwXGKmbVr186KF6GCdf766y+79qKjG2PVqlWmnJVqTYhNB/sWgmTYs6A28zE0QbFSpUrZbVepEUR3UYqU6EIUXViopn7I2LFjo21ko2DdcN55523Sa8QXqz24lpdKdKxcyFaL200IIXIGu0QWv+MLWgTL3ZaFsbIHx71oaFz85gtmcQ90t25SLZTii4Lowjrce+65Z4NiSKSgUtQsvg3/1COPPDJNRypE0YTfDL8fJtjx35kvVpH+LYQQqdBmkE6K+s1tIVDFkCJKYTKuUbnh0eztyabWK+F1mdQffvjh+foehChOMJGmT2c8DNQ4AVK6yTrzhS5AseZFyKREF6LoglKVxWuEZM5PP/1kNqcE4JwnnnjChDN4KueEB9fiPulbCn06bdOmFhYXQoRwxBFH2G/G+3SnVq1adv3ee+9F2zwuFg+i+0KYZ5eAWze5gE4UPxREz3AmT55sjQMFFZgIxNXorLq7UtaLjZJGfvDBB6fpaIUomqBaIxiGn5oTD3RJiS6EyArUMJMmTbLJsatiULC5Kh2l+vXXXx9uvPHGXCvRSU1nksD/EEJsOtQQYPEb+wRXfcaD6Eyc/XflqnQp0YUoXvgCWVxhju3pkCFDzE/Z6devnwXgKQbu/H/t3Qm41eP6+P/PwTHPJUdCZEiIzISQZB4yZEqGzPM8Hpnn6Zgzi2NIpgwlUcaQiIgUklkiwzF8z3H6X+/793/WWXtYtcfW3mu9X9e17b3X3tUqe32ez3M/91CXQeAzQjs39vPu0aXaYX9OQungwYNjvlCS1vaUiY7qMtFbt24d7w2ilxeD6GWMDJl99tkn22KLLSKDjUy3gw8+OHcqXrmVCxtuuEBLtUcWWhomWrmti0F0SYUwyKxz5865AB036mnj/euvv+YCdCmIXtNMdNZ013Op9shaS/fQKROdjTYtEkF2anqNpgoRg+hS88VaO2zYsGzIkCG5x9Jam17j+R/nr8McgvPr8itU0iDwhRdeuEGe35gxY6LS1TVdqj1as5GwwgFY5SB6fiZ6dUH06jLR0/pPtYpKk0H0MsYNPRtzBiKQZc4L/frrr8+6d+8eX6/cU40NN9+bP11c0syRpcIiy3sySFms6b2W+qgRRM9v8yJJleXfqFcOonP9SO0iapKJzkafjBs33FLt7bjjjrlAGeXdVJsRQGd2wXrrrRf3yeuuu27MM3CwqNT8UQHWrVu3bNddd809ltbadICN1EqFQHmSXvv514IUbG+oIDp7dJ4PVeSSamfttdeO9+zPkw4dOuTW9oTYGEmmaRYKuAfg16cBo0jVogwUVmn6X+8OlR36qz7zzDNxMSBwzik57ydPnhxfz58sDrPWpLqj5cL+++8fp9ctWrTIZaOzYFOGSW/j1K5BkhKyWkeNGhUbcKrFuKFPJaL5N+hpo16TTHQqz2gz4Zou1V6rVq2ipQv3z1tuuWU2YcKE3NdOPPHEeH/QQQdVqDSzT7HUfBEU4/VO6wcC5Lyeqwuip9Yu+Ykxqe1Lapmav243VDs19ugdO3ascTs3Sf+z9957Z7feemt2zDHH5B7bfPPNK6ztoHtDfssX7LTTTvGWLw0ZN4heusxEV26a8HHHHZfdfvvt2aeffloliM4Nw5tvvumGW6qjDTbYIFdyyc03bwS7UouGdHglSfnuv//+rEePHln//v2zfv36xSBRhpyBOSUpOJey0vNnmxTCes6vW2ONNRr52UulicwzXkczk1q35c8YktS80OqU4Nkrr7ySW3NTwDrNPSiUiZ6C6OkakFo78evz+6nXh3t0qe547fDarcmaXhMpiJ5aOKn0GEQvc9zcp35NZMscfvjhuWBeflkK2bN8nwu0VDcMLSGTJc0WSFKZGJnoklQZ2W/rrLNOlJUmVK1QVkrbiFQinjbtacNek6Gi6UZfUu1wP8xw0Zm1aakcQJNUGqgqZR3Nb+2QguL563DKSk/XgBR0T2t3fXGAzrXIPbpUN+zPmW9SeY9eV+m17SyU0mUQvYw9/PDDUY6aj4WdjTgZsqn/KtJFpfL3S6oZTrhpoXT22Wdniy++eLyxaNOmAQbRJVWHNmuvv/56tIQiq4UhR5SO8p7HuK7kZ8Dll5YXwpruei7Vb5NMoIzBv/vtt1+0eLnyyivjgIve6H369In76EGDBsX3G0SXSstWW20VCWi33HJL7rG0HucfruVnpecH1hoqiP722287VFSqJ5JK7rrrrujKkDA8nLX98ccfzz1G2yTmEqXhoswpIvE0vyVrWu9rktSi5skgehkjaDd27NhqezXSYiK/xIwNN49xIZFUe7zGGCTEzfO3334bb2SPpICXQXRJM9OrV69s5ZVXzh544IHcY0OHDs3eeuutGFZckyA6FWhsut1wS3XXtm3beD9y5MiYa8KcgqlTp8YMA96o3mQYYSrnNoguNW9HHHFEVIW9+OKLBb/n1FNPjbaNVHYntG0hOS21dkrva9J6rTZDRTm8k1Q3Cy64YKzX3E8n9DRnbc/fo//www/ZtGnTYr1Pr2NaI7Pup6qT9NpOr3WVHoPoZYxMtmuvvbbar+W3coFDRaWGCYDlyx88ZBBd0sy0a9cu3n/00Ue5x1ib6W2eWrPk92etDmXfHOa5pkt1x2uOe2XmnaTKTWYUpPdpwG861DKILjVvVH+98cYbM5xhxOHa6quvHj3Uk0mTJsV1oLHWXPbotH1zqKhUd3vttVeu+jNJazvZ5vltnJCC6Kn6JL8CJa33BtFLl0H0MkbZySqrrFJtqVl+K5d04+AJt1Q/Bx54YO7jysOEDKJLKuT000+PgB0VLKCEnA05azUVLkgb6JllorOewzVdql/W2mabbRZZaa1bt47H+DjdU6cKz3So1VBZp5KK47TTTsueeOKJbIsttshlqRK8Zj89o8PrytXeSeW9d11xP+B6LtVPjx49qrRiSmv7l19+Wasgukqfd3RljmGH11xzTXb00UdXeHzhhReukC1LSWoagCipbtJiXDkLvfICLUn5aBdBuWjaqH/66afZxIkTI4BOaxcy3dLXZhZEJ6OGXqz0dJRUvzV9xIgRubWdQy4Os3gNpjU+vS7NEpWatxQ8T+abb77sww8/jNf7N998EwfdBLSZOUZ7tfzEmZoE1euKNb1r164N+ntK5YZ74rnmmqtC1nlKKs3fo6cYWao8y68yS+t+ykBPFWkqPWailzEGGr777ruRScNk8fyLQH4QnV5QDEbIDwBKqj1Oq3mdVc5CB/1TJak6Bx10UPbSSy9lffv2zbVzSQfbDz74YPb3v/89l2E+syA6mwHW84beyEvlhsA4VWTMN8F3330Xm/D84HnaTC+00EJFfKaSGhpraOUgG+3SzjzzzOyOO+7Ifd/555+fbbfddnHgll+VkqrI6oNsdoJ+7tGl+r+eF1100ez555/PZZTzeeU9egqM579+0/10qi5JXzOIXroMopexq666Ktt6662zYcOGxYThbbfdNmvZsmWVIHo6kavc4kVS7TB0hAOpylnoqSxUkqpDqXbnzp2z9u3bx005gfLUczUdgKeb/jTIsBDWdNdzqWGSUQiSP/vss7mKkfR6TIdZBtGl0sDrmwDb448/XrBnctpHc6CWvPbaa9mTTz6Zm2WS2j80ROsHWkoQsHNNl+qPajIqSdivI80ayt+jVzc0NAXR0/7eIHrpM4hexsg+p5cbC/17772XPfbYY9lGG20UXzOILjU8yjvJUiN7jayRNm3a5LJHGPTnABJJM0KAbrnllouPF1hggXjPwVy6huT3ZS7EILrUMFZcccXcRpthgh06dMg6deqUrb322rG+d+zYMbeJNoguNW8knG266aZZ7969c49VzkSvLojO/IT8bNb8IHp9+6K7R5caDpnnrNVpP87rmbV9pZVWyn1Pu3btYiZR/vBg1nySXSontdA6UaXJnuhl7IILLohF96ijjsrGjx8fJeHTpk0rGERffPHFi/ZcpVLAwkz1B8GuwYMH57LVUvk3J935rz1JSl555ZXsxRdfjKqxXr16RV/05557Ltc2giw5fP/99zP8fVjTV1555VnynKVSxjyhq6++Ottrr70qtG/Id/bZZ8d7g+hS80bwjAQ0Ds8IkhEMpw86WI+RAmusw9zfkzSTXvtpj52C6GStkrFan3kJBtGlhtOzZ89ou5Tukddcc81szJgxFb7nnHPOibd8VJvkSxWhKdlFpcdM9DKXTsApRd13332rDaJzus5NgUORpPrjRjd/aAmvq5SpZksXSYVcf/312amnnpq1aNEiO+OMMyI7Jn+4Ucpy4/2MqlpST3RJ9VPd0LHK0n21QXSpeZt33nkjG33IkCG5QHiqDEutWtgvkxjD/jpdF1JgnVYR+S0iatJ+bWbSn2EQXao/7o1ntJ7XlEH00mcQvcylIDrl3/fee28MGkW6OYCl31LjBdEL9VyTpHzdunXLdt9992gZAfqjkxm3zDLLxOcMOKwcuKuMKhjWe9d0qf4o1V5kkUWqrOn50uGWQXSp9NDmYYUVVsitqfRGppUTJk+enGvliG+++SbekziT7vtn1n5tZrj20IIiVbRKqjtex1SRpArPujKIXvoMopexCy+8MMpQE/qqpuy12Wb734+GQXSp4YwePTqyUaj2YFNNZkvaZBtEl1TIfvvtlz3wwAPZjjvuGFlvZKBPmDAhu/322+PrfJ5u2Au1dPn666/jvWu6VH9TpkyJlg1XXXVVBNPIYltvvfWytm3bZl27do22D7xGYas2qfSS0Lp37559+OGH2XXXXZf7Wmrx8tlnn1Voh5qC6ODwrSbt12bGPbrUcN5+++14f+6558Z72jaxjrO2//rrr7l2yLR1uuSSS3KvaypSSHBJ14X0unbdL132RC9jLPqffPJJtV9LU4bTAk3Gm6T6S6fTKXCeL031lqRCCNqxJnPoTabbUkstFS3ZyH7bcsst4xpTaGNu/1Sp4cwxxxwxi4C3qVOnRjIKr08+Tn2S06AxX3NS8/f8889nxx9/fLbkkktmgwYNqvZ7SFAjGS21ekmZ6PnZrWSPE2RviEx0ry1Sw0iv0XHjxuUeSwfhaY/O63bSpEm576Xyk3gaiXEpfpZaN7Vq1WqW/x00a5iJXsaOPPLIbP/9959pEJ0TtnQDIJVqr2EyxyjNJovs9ddfb7Q/q3fv3gW/ll8BIknV4cZ9+eWXj48ZeETmyyabbBLZMpV7r1aWMuFc01XKZtWaTuXHxhtvHBloaYNN5lr+rIJ0oEXQTVLzRvXom2++mY0cOTKXdQo+ZkgoOnbsmK266qrxvVh77bXjcJtK1GRma3VNuUdXOZhVazpDwsE9deXktrRH59Ac8803X4W1Pr9lG1VqMIheuozYlDEW9c6dO880iE4P1fwe6Wq6Nt100+zOO+8s9tNoVmiPQFZJ375948aYYX2UZ9b3xnZGr7tCUsaaJFXn9NNPjzLwNIz4yiuvzFq2bBnvQVZ6fhl5ZazncE1v+lzPm/6aTiY6bVzob5wCaqnkO80lSJtpg+hS87faaqtlDz30UDZq1KjcY2eeeWYM/CbQV50555yzwjDRmg4lrgn36M2Ha3rTX9P5vUH7FlBdViiIng7JUmX5ggsumPvetO6nwzKVHoPoZW7dddfNjj766BkG0SkZZ6PQWM4+++z486p7Y8GRGhPBp4MOOiiqMsgmu+mmm2JhTH2GG9qMXktmokuaEYaIkhmTriNsIsh0ffnll7NzzjknF8BLA80qS3NPGmtNdz1XOa7pKQM1Xwqq854D8tQXWVLzRSZsjx49Iis27ZV5fdOW5d13381lptIvmYrvQlKQbkZDiWvCPbpK3axc09NrKd0r52eip0S3ypnoqdoszTngfiBVfdpqqXQZsSljnJKx6FOKml741QXRuRikrLfGcOKJJ8bFcYMNNoibCd5OOOGEbJVVVskefvjhRvtzJXqXUl65xRZbVAhk8zmlmo0hnU5Xx0x0STPSs2fPyFxLA43SzfvYsWNjs5sy0OnFXJ0U7GusNd31XOW2pn/33Xe5rPPKUoYo7RZc36XSzU7HO++8kwvEnXrqqZGZzvUh9Ukne/axxx6rEET/4osv6vVnE+xzj65SNavX9HRP/dFHHxVs55KSVVIQPQXM00E5r2kOz6lAsZ1L6TKIXsYGDx6cdenSJbv11lvjorHOOutkc801V3wtP6umsU+5KXHjRJGLDRsN3niMP5PBK1Jj4eaWUq3KGWJ8/vXXXzfKn5luoAvdLEhSIQsvvHBktqy55prxebpOpWy2NKRsZpnojVX14nquclvTn3jiiRgqli8FtchaRbq3ltT8sc72798/10Ytrcdvv/123MezBqahoimw/sEHH2RDhw7N9XJOrdcKHXjXlHt0lbJZvaY/++yz8X7AgAE1budSeYhomn3AfYAV5qXL/7NljIVwhRVWiIWRUnAWdk6WwQCU/AXaDJqm6cILL4ybmfT24osvZoceemiFxwoFU1Qc6eQ6ZamlRRgff/xxkZ6VpOaE/qvt27ePj1nDU6/ztKmYURCd9Ty/2kxNg+t585ReewTNUuAsrfNpyKhru1Q6yDTt3bt3dtZZZ8Wauuyyy8aaTAA9Bc1Tb2UC61h55ZXj/fvvvx/v07Wi8gFcbblHb7pc05ufdACeKkQIghMb4/Wb7punTp0ar7nUAz3NNUgDfu+4444KwXaVJoPoZWzLLbeMU/HHH38869atWzyWLghp0jDcbDddLMZjxozJvTG08txzz63wWCoZVFUM5GMhTKVYs2La/Z577pn7mP9fv/zyS+7zxvozJZUOWrf06dMnNu4PPvhgtsYaa8Tj+cMNuamvrrLF9bzpcj1vnms6vZHTay4NGEsbcavLpNJDX2baSRx22GHR2oF1lWpupEzztC5z3a4uiM76nTJt8xPXass1velyTW9+a3rKeE/vORxj1sG4ceNy38PrlQz11Ao5VYKm/ufjx49v8OelpscgeplLQXOyZRgymspO8oPobAaqG5rUmLwpqBlK6ZZffvncG5nNlBPlP9aYZX7NHRmca621Vq58K/U/43P6/zWGgQMHxvttt902u+uuuyoE0VNJqCQVwvp82223ZW+88UYMOEvXqoUWWii3ZhNMry7Dia9x85+C7bOC63nNuJ43zzV9xx13jKpOMtLTep7at6SWDTfeeGOj/NmSZj32ys8880x22WWX5fbRKYj+2muvVchET0F0Au+YOHFiHK7x6wgQ1rdSpdBg48bkml4zrunNb01Pw3JPPvnk3Gtzhx12yI444ohcvCy1TUwHIOlee+mll65wLUizi1SaDKKXOfqrcoHCqFGjoq1L5SA6F/jUR3VWWWCBBaIs/cMPP5ylf67Kz/HHH5/dcsstEdAmQ4TMEkqwmALeGCgDA4Es+qil02423WkImSQVwg06g73oyUownOHgZMURyEvren7GW760YZuVa7rruUp5Tc9/LaUe6EkaQJZem5JK0yabbJJtttlm2XrrrRefE/gDWaxcf5ZccslYm7lepKzWFVdcseBaXVMcjLtHVymblWt6ei2le2WyzOnY8PTTT+c+T2s9iSvcg6e5BimInl4X6fWt0mQQvcztu+++FT7/448/4n1+aVkxguhMMIeZuWpsPXv2zC6//PLobUj5JVkjQ4YMqTLEpKHsvPPO8b5NmzbZ+uuvn+uZSlmY2R2SZoaDb65ZW221VWS9sam45pprcq2iUiuJ/PLTYgbRXc9Vyms6AwNT79P02mMzTZvE77//Pj43iC6VHgJo9DwnE5yD7Oeeey47/PDDc/f4vJG1zhrN/X1aA9988814n+aQVbdW15R7dJW6Wbmmp9dSWsunTZtWodIz9T8nC53XNFnpqQKNdZ9rQgqiu+6XNmtIyhzl4NX1bEx9HWfVKffVV19d4XNuLBpj6nKpGzFiRLGfQrN05JFHxtuskHqopeFDiVPuJdUW5aKDBg2KAcUcipMNN2DAgKxv377Ze++9V+X708agMdd01/OG4Xre9Nd0Xkf5ZeapJeI222wTJeAdO3aMtg2prYuk0kHLFmaUvPDCC1ERVtmwYcMisJaqTDt16hRB93Tollq8NPUgumt6w3BNb/prOtnu4L6axJT0c576r+cH0TFhwoTc59yHT5o0KRJRudc2iF7azEQvc5deemlsuiubMmVK7mOGleUH1SXVXXotpeFDlYPrkjQzZLuQAZt6mz///PPxMSWmBO5QXRCd9Ryu6VL90Qd9scUWy7VxWXXVVbMXX3wx22uvvXIH5bwerTKTSg/BZAJnn3zySYX9c8o0X2mllSq0abzgggvi60cddVSFIDotX+rKPbrUcFIWeerIUDmIntq5pCA6iahUZKT2TRySpdd2apes0mQQvcyRKUNLico+++yz3MdMG04XDUn1k/qqVWYQXVJtMJyYXo3pusLAKspd08acEnIGMOVjPYdrulR/BLDoe5raMrDRZkNN6XfaTKdDLUmlhQxtWjal1qhkGrMO77LLLtUO72b2Uf6BWho+SuAuv41qbbhHlxpOSizt1atXtUH0NFQ03UtTgTJ69OjIXEf+4blKm0F0Rdnp7rvvXuExg+hS47j33nurfZyhQ5JUE2zEd9xxx6xr167RLiLNMyGYfvbZZ2ezzz57zFvIz5CDQXSpYfFaYoO90UYbZauttlr0am3RokV2xx13xNfdTEuliZ7MBMbzh36TfUpLh/Hjx8djHGwTLCfQlhBgpwULv557fz6nz3NduEeXGk5qybbppptWG0Tn/pr77fPPP7/aX59ex+mATKXLIHqZ++mnn+KC0blz5wo3Ap9//nkug42SFRdoqWGQoVZdafeyyy5blOcjqXm68soro+cqGelgLf/222+z++67L1dCXrlMnNYTBNhd06X6I/jFa4khoo8++mhkpaaeqqnvsUF0qfSxZ55vvvmyLl26xOdPPfVULqhGdipDR3HFFVfEjITUZzy1gUgtYGor7dGry3yXVDu8lrhH5l4ZqUIkBdHBQVlqjchQ4XyvvfZa7kBNpc0gepmjZyqlKwwnI/s8DT/iosBmPJ1yp0EKkuqHDXX+gVUKdhlEl1QXW265ZbynN2t+r+bqZi+wOSD7zTVdqj8C51R8PPnkkzEc8LLLLssNGuXx1CddUml66623si222CLbbrvt4vOtt9463g8ePDjeb7755vE+XRcItn/xxRfZSy+9VCGIXnmtrin26L/++mskxUmqH4LgCy+8cDZ16tT4nMoyXl+0P67sl19+iWA6+3q+h9c1byS0pNe1SpdB9DLHzX2bNm2ydu3axSk5PRxTW4nU0oUFmgsFb5LqhwWWMs5ULpZOsw2iS6oLejLizz//jPdzzDFH7hrz6quvVvl+y7+lhguggQ10at+QnxHKvfUCCyxQtOcnqXFxD0+AnKowAtm0SE3Dvhn4SYA9fc51ImWq8zlr9oYbbhifv/zyy3X6823RJjUc5gwRQB81alSFZDeS3yZOnBidG4455phcpSeDRb/77rtIYklZ6MTWqEpRaTOIXua4uSdYzgVgjz32iAtAykbPD6LDBVqqP1olEeCipcsjjzySTZkyJR43iC6ptoYPH56tscYa2UorrZQ99NBDuSB6QnZbCq4nBtGlhpH6no4cOTI7/vjj42MCZcn6669ftOcmqfGtsMIK2Y033ph98MEHMZ+Etbh9+/ZR0U2FCkOH2VdTHcZ6TYYqbR2nTZsWLVzWW2+9yFz99NNPI8mmttyjSw0ntWpZZpllqnxt7Nix2SuvvJI78HrjjTfiPffg4Gtw3S8PBtFVodz0wAMPzPVCT1k19FuD5d9S/XBIxY02N9hkoRBQBws2g8gkqTYYZEjbCPov8zEB9NTKhY+pIKPNRD7WdNdzqf5Syxbum9PH+Otf/xrvGTYqqbQdeuih2XLLLZf7fJdddon3Dz/8cCTMpFYvBNVpqbbZZpvF52Svk8yWDuNSi5e6BNFd06X6o/f53nvvHYdfL774Yta1a9fsggsuiK+9//778X7llVeO9ynznIMwsK8HbZJV+gyiK3CxSItwGm6SBpJ5yi01jA8//DA222SoTJgwIXd6TRZ6dcNGJWlGWrZsGdkxZLHRmu2MM87ITjvttPhauqZUbuliJrrUMHgdpbkmZJMmqfqD0m9J5aVXr17ZLbfcEhnqSMO/CaLT7im1eHnmmWcqtGRLQbjaIAmHQLxrulR/vI5S3IuhwLQ6ThnnKSGlQ4cOVYLotG5K8bPUskmlzSC6otz7rrvuyn2eeqmyMQeLM72eXKCl+kmDRshEp+ojbbTTgixJtUVWDAG8vn37ZrfeemvcwLNuE2AvFET/5ptvqrR5kVQ79EJOWef0RgVZpxyW07IhJahIKm3MFDviiCOym2++OVq69OnTJ1tsscVyw0VpD9G9e/do97TVVlvF42S6Enwj2zVlpteFB+NS/XFP/O233+aC6FSOg9dz/gwUujfQN51kOKyzzjpRRcK6zxwUElpU+gyiK3q4ffLJJ1Uep2yFjFmy2bggkOkmqe7ogZhfEpakjHRJqiv6qfI2aNCgqCrr169ftQPLWM+52a9L/1VJ/88ff/yRPf300zFMMGnbtm3WrVu3+JiBgfnZ6ZJKF4fVN9xwQ3b11VdXGC4MqlXYZxNgZ+Aggbbtt98+O/bYY+M6wsE31wqCcpMnT671n+0eXao/qke4Nyb7PL+tMUF09u8pE53Mcw7AUhIL7VjTAVhq1aTS592dYihK//79I9s8HxnptJ9Ax44dcydwkuqGUi8OpT7++OMKj3fq1Kloz0lS80c1WbqJf/DBB7PrrrsuNuW8sRFIg8LTeg7XdKnuyCjlvpkex7jnnnuygQMH5voa2w9dKh977rlnts8++2TXXnttfE4w7vrrr4/rwJQpU6q0bOSw+7LLLstatWoVVSvrrrtunbPR6anuei7VTwqMV54NSBA9tW7hAIzXLG+85nfdddd4fPDgwfE+VZmo9BlEV2wA6N+2wQYbVPla6otOGwoW6HRhkVS3QFd1vc/NRJdU34AemWgEzdmw0xf9oYceyrWQSr1XU9YaZeajR48u4jOWmjeyTXndpazTpZdeOob6jhgxIj43iC6VV1X33XffHa1ZuM9nLb799tujEmzAgAHxPeyhyVifNGlSlV+/5ZZbxvunnnqq1n826zzJOT/88EMD/E2k8kRgfOGFF86OP/74aNfy+eef57LNqTijJVOKlVFpdu+992bnnntuVJkQcCeellozqfQZRFfOiSeemJsgnrzzzju5Bfrnn3/OJk6cWKRnJzVv9CBmOEnlgygmgS+++OJFe16Smr+ePXtGKWqPHj1yj3GDnwYiDR06NPc4G3zW9DQESVLtpdfPzjvvHCXcjz76aC7rlGF/66+/frGfoqQiIkENd9xxR7w/7LDDIgh3zTXX5OYoEDSnn3raf9MiihYvtZEOy13TpbojEE5wnLV71KhRuW4NiyyySLbbbrvF4ddtt91W5dcNGTIk3vPaJgiv8mAQXeG3336LUzcyajiJS9JAsjXXXDPem7km1a8femW2cpFUX4suumgMMqO8NAXK2YinLFlKxPMP8Nh0u55Ldccmm2A5LRvmmmuu7IEHHsh9bYsttsjmnHPOoj4/SbMe2eBXXHFFtHeivQvXAdZaAtwpUP7Pf/4zWqaecsop2bbbbpv94x//iDWZpJpffvkle/7552v1Z6644opxLXJNl+qGe2VeP+lAitcxCW70P8/H65mBo3RqSPfXHKCD17LKh0F05ey///7Zk08+GSXgqb3EyJEjY7goQxMoY3GBluqmcpnlAgssEO8NoktqKPRj5NqSP9iMgDqH5Pk9UzkY//rrr2MAqaTau+CCC+JgintmMtHyB/Vus802RX1ukoqDwzQqu88555w43N5ll13icYaKsj63bNky+/bbb6M6bMcdd8wF4QiqpyD7Y489Vqs/k9Yx7Nvdo0t1wyEXr0sOo0BCyldffRWvWypG8pNQLr744my11VaL1zgJcmkQKVVpKh8G0ZWbHN67d+9sr732isWcU3HKV8hQTxtvM9ekuuO1k/qhU/KdBvl27ty5yM9MUikNRiKbLfVt5JqTAur5LV1Sto1rulS3Q/F//etf0RO9utfQ1ltvXZTnJan4LVw23njjyDL/888/s4MPPjiXfU51GPvs1OKF72O95nrCQVwKwj388MPxa2vDPbpUdw8++GDudZpw/0x8rF+/fnH4dcYZZ0QwnZZLaS9P8ikHYPRNZwCpyodBdOXQT5VeTpShDRw4MLfJTtOKUw9Vh4tKtUdrJEq+wdASeqQzhMThY5IaCjf3EyZMyJZYYomoIMvPSOdmP2EIIl930y3VXv7rKvU7TlZdddUY3iup/Mw333zZCy+8EO3V/vrXv2ZdunSJdiu0aWHwKFXfIGHtu+++y/bee+/4/K677oo2UOzDqRJjIGltsEf/6KOPCraOlFQYQ0R5vTLglzhX/hrP3AIOukguZc4Qr08y1jkEoxINZqGXH4PoqoDhSKDHI/2e8NJLL+UWaKYTs0hLqjluaumPOMccc2SDBw+uMLB3wQUXLPbTk1QiDjjggOzkk0/Ozj333BiENPfcc+e+xqY8tW9Jw0UNoku1N2bMmNzH+Ztt2MpFUsJae9RRR0V1SseOHaPtCn2WyV7lAG7fffeN73v88cezn3/+Odtpp53i8wEDBtTqz0mJb/lt2yTVfJ/etWvX7LLLLouWTK1bt45qEqrNhg8fHt/Dazj1P2edp1tDSk7ZY489ivr8NesZRFcFnIKTHcspHCdtKROdTYLTv6W6ee211+I9p9z33ntvdvbZZ1c4tJKkhkAW7CWXXBKlpd26dYverJSjJo888kju41RdJql2OHziULw6BtElsW9+4okn4kD7iCOOiGzW1L7x0EMPjffPPvtsLrDO/LH77rsv23333XPtJXispmglQRa8B+NS7eUPFeV1SQyM19+IESOiDRPVmx06dMgF0Tnsou0S/dK576ZHusqLQXRVQAZb5T5sDCR77733oh8Uw0Vff/31oj0/qTlK2ea8fijnTAyiS2oMn332WQw0Y/jh4YcfnhtuRqu2ZO21147MdMpYJdUMG+sbb7wxEk7yE1BAGyVbtEn64IMPsu233z6SZiZOnFjhaz179syeeeaZXG/l1OJl1KhRcS1p1apVDDlMX68JrkcE492jS7VDC0SC5gTROfxKr7vu3bvH4Vc6HH///ffjjYQ4stJT/3SGkKr8GERXBQwjqy67JpWrsLinC4qkmuH1ww0uh1EJnztUVFJjIDuGvsxsCBZYYIEIpINercxjwKabbhrXIVpMSap5Zdknn3wS2WnIr/QgizQ/uC6pPFENxhDRk046Kfqc46uvvorqMALs7Kdnm+3/hWFo6UKvZfqiE6BLfdL79+9fqz+T35MB4rXJYJfK3XnnnRfviW8RJCexhFaI9DzPD6Kn/ucE12n/8txzz8XnBtHLk0F0VTkdr+4Um15t2GGHHWLx59ROUs2Q/UmFR/6NLT0RGUwiSQ2NzXjKMD///PNjc7366qtHq7bU0mXRRReNrNlBgwYV+dlKzcekSZNyH7dv3z6qOUaOHJm7h5YkkKlKe7XFFlssPj/11FOzK664IirEEnouc+idWkkg9Ul/7LHHsu+//77Gfx579B9//DE3y0zSzJFcAjoupCz0TTbZJJs8eXIcmM8555zZ5ptvHq9fkk5OP/307M4774zv4/Fll122qM9fxWEQXRXMO++8UQ623HLLxTCU/IFkU6ZMiY04p3MpqC5pxuiBPn78+GpvdiWpMRxyyCGRObPIIovEADMy0lPmLL1WE8rNhw0bFht5STNHxmjKPqdFG71R//Wvf8XH66+/frGfnqQm3DIV9FIm45XhofRaTo+nFqpt27aNvTjB9dpko3fq1ClbcsklPRiXaoi1mwoRAuRUbOa3ciHRhJkGBx54YMwboEpkq622ytZdd90YCow+ffoU+W+gYjGIrioIntOrrXJ5CiUtBNkJpLtASzVzyy23VPv4zjvvPMufi6TysNRSS0UbqaOPPjr3GFVkoASVnunpMO/333+PQLqkGeMwivtfDp+OPfbYeB09//zzuSz0/OQTScJHH32U9e7dO1o9ce/PdeTCCy+MgzeC5iTbcC258sorY+3+xz/+EQfhuOmmm+L7a4LrD9cmrlE1/TVSOSPexWHVAQccEJnoaT0niM5sgr///e/ZDTfcUOH1xK8hS50kFffy5csguqpgQ3388cdH76f8wYcp+5wFmlIxFn5JM/bbb79V2ytxxRVXLMrzkVQ+2IhXN+cklaKusMIK2UorreTBuFQDTzzxRJR3k3F+9dVXZ+PGjct9bY899ijqc5PUNJFpTkb5WWedlZ1xxhnxGIHzBRdcMGaT0Orxsssuy1q3bh17huuvvz6GgdPykUrWFNirCfboH3/8cWS6S5oxYlu0ZeNemPjXcccdF0NDO3TokPseHl911VUjW53M9euuuy4e52CM7gwqTwbRVQUXBHo8UvpNmWo6DafEhce222676O/sMDJpxn766aco/U64YQY3x5LU2BhoRll4/vBD3HbbbdEfPWWjExxMn0uqHqXduO+++yo8zoab15kkVXb22Wdn3bp1i17K9D5nb81627dv3+zMM8/MVa0yo4RMdNqncrCdBoymoF1N0KOZqnEPxqUZI5bFWs5h1cSJEyOznAoROi8wV4jWhxxqPfroo3Fgzvd+8cUXuWGjRxxxRLH/Cioig+iqFhk2/fr1i9IyAuqcjv/yyy/ZkCFD4uN11lnHvujSTHDwxCKNXXfdNdeT2PIvSbPC0KFD4yCvcjb6p59+mj377LO5IPo333yTjRo1qkjPUmoeKOGmZcKHH35Y4fFDDz3UVi6SqrXaaqvFWpwO2s4777y4XhCkI3C33nrrRbbrNddck2vBdumll2aHHXZYfMww8PyBxjNLhKMVhUF0acaY90eQnHvk/AG+7Ns58Np9992jdcvNN9+cyzxP7ZXIVl9++eWL+OxVbAbRVa0NN9wwTsTZaHPixikd0oATysXIRKePlKTqXXLJJVmLFi3ixnnNNdeMIDo9EBn+I0mNjbWam/2LLrooMtTy3XrrrfF+gw02iOuUm26pMA6avv3229hA//jjjxWCVr169Srqc5PUfKyyyirZ/vvvHwHzNm3aRN/llHG+4447RmCdgzrmmJDBTtb6tddeW6t1/9VXX43rlaTqMTdogQUWiIGiBM45rOIwa/jw4TFslMGiDP7l89lmmy3mnqT75iOPPLLYT19FZhBdBVGeSrCPC0vKumGTzWkdmWs///xzrfq0SeWEm9/Ro0dnP/zwQ0zzTgvvbrvtZsaapFmCG38Owik7pXQ8vwqGDcN3330Xw8623XZbg+jSTDbc1dlzzz2jbZIkzQiJNFR4r7322hEUZ4Aowwu32WabOMwmgDdy5MjsmGOOie+/4IILch+zh8g/vJsR1vMZXbMk/b/XR48ePWIGAR0Y+Jj75JQwyn497d053OL7iX1xCMa+XuXNILoKmjZtWpWNwX/+85/s/vvvzzp27Binc2zCJVXFjXDqg87izKAfMAFckorRz5k1m7V7oYUWimFmacAoB+PvvvtuNmHChGI/TanJIfucfqgcOFVGKxdJmhn20OwH3nzzzdzam5CFPnbs2GzffffNjjrqqMiQZT1mvSZox4ylG264oUZ/DoF5gvLu0aXq8dp67733omqDYaHMBcIWW2yRDRgwINeGNQXU+/TpE69dnHTSSZGgovLmT4AKYhDZmDFjqjzOwk8m7V577RXTxX/99deiPD+pqfdDpySTwyiyS0Dfw5VXXrnYT01SGQYB11133fiYDQPZNqAHK8F0Wr4QWL/99tuL/Eylpodg1LBhw3IzTghSgVZtzAiSpJmZb775IuuVHsvp8O3tt9+Oli30ZSZYDtpI/POf/8w++uij6Kd+2mmnxeNXXXVVjffc7NGpQqMthaSq7VaJc7EvZ8Yfryt6nL/++utRMUK1yFtvvRWZ53Rm+Pzzz+O1tOSSS0b1mWQQXQXNNddc2cUXXxyn2fkYPjZ+/Pg4laO0bODAgUV7jlJTRMujhx56KFq55DvooIOK9pwklS/ml9x1113x8dSpU6MHK5lun332WQw3m3feebN99tknu+OOOyKoLul/CHwllHgnDhSVVBtkvrIXSJmsI0aMiCHfZ5xxRm644fvvv58tt9xyWevWreNzejHz+ZQpU7JbbrmlRn/O3nvvnc0555yxpkv6H+5xqSxjqOgJJ5yQa9nC64zBoaAaZKeddoo1/uSTT465QjjxxBPjdSUZRNcMHXzwwbkLRz4W5Xbt2sWgspou6FK5IMuTss18nHgz6VuSinEoft5552WbbLJJLhs9Bf8uu+yyyFRnY8/wxFTWKimLoX75bY7YQDOwb7HFFnOgqKQ6o7Kla9eukenKfJIzzzwzMtDJPj/kkENiXQbzlQj2geS2mmSj04419XTmGibp/0mZ5+3bt8823XTTOMTiUIu2hm3bto21nYD6CiuskN14440RdJ80aVL2t7/9LV6XEgyia6bYdB977LGxCU84qeMCxKb7pZdeilNzSf8vOFVd38I99tgjMj8lqRiYxzB06NAoRwU9VkHbtuHDh2err756tKbwYFz6HzbYVGyw4U5tFsDAPyo4JKm2vvjii6j0JhntwgsvzO2taQPJfvvll1+OKrEDDzwwW3/99aMtJAG+r7/+usa90dmjf/LJJ9lzzz3XyH8bqfngHpc2LsSuUvyKChFaHr744ovRKz3FvKjiZMAvyEgnIU6CQXTNFCfhbK451Z5//vnjMdq43H333dnOO++ctWjRIuvXr1+xn6bUJAwaNKjarA9uhCWpmNgYnH766VUeJxs9VZ8NGTIkNt6SsshEW2mllaI9W2q3QG/jI444othPTVIz1bJly0i6IUjHPBLar7DfppKVwYU4/vjjY/8NAnm0kkjZ6PRqnpnOnTvHHKbUokIqd9zbMrOMAyZebx9//HE8fvjhh+e+hxZLu+yyS8wrIL5lFrqqYxBdM0XJN1PDKfPu0aNHnISDKcV//etf40JEe5eaLOhSqaMXeuUeqZ06dco23HDDoj0nSUrIuFlwwQVzPVlB4Hzs2LExMIkNfX4PaKlcPfnkkzFUlHJu7oETNtwklkhSXQ+0H3jggWzcuHHRUuLyyy+PtZcBo2S7LrvsspGtPnny5GzVVVeNAzzaSq244oox14Tvnxn2Ihz2Pfroo/H7SOXuiiuuiIRQ2qvy+qB94TvvvBPtlHgjCY7Whw8//HC8PvkYHG5ZeaZ8BtE1U1xkGEJG9hofs4DTluKDDz6I0nA2E5ym33nnncV+qlJRUfLNwsvpNq+RNHzklFNOcfiYpCbhww8/jFYu+UH0tEkgw5aDcfqo/vLLL0V7jlJTcM4558T7/ADUHHPMES0OJak+CI6n4aFkuqbA+GOPPZb94x//iI95f+SRR8bHHG4fdthh8THf++WXX870z+jdu3cEDT0YV7njnva2226LpE+Ghuav6fvss08M76XVCwklJJoQUGeYL73RrSZXZQbRVSM77rhjLNz33ntvBM650OCqq67KllpqqSh7ufbaax1eorJ2xhlnxGJMwJzMEso0qdzg9SFJTQGDzNiUk32+zDLL5B4n45YBZmSuscno379/UZ+nVEwkh9AbFfmDwvfff/9c4EuSGgKzSWgtcdddd2XPP/98VIyx9+baw1q83XbbxcdkztJLnblkJLjNDAF0AoAEB7mmSeWK19Yff/wRAXLmDDBfAGSbk/zGfIL81obEtVIrJTovSPkMoqvG2rRpk/Xp0yc+pk8UCKi/++67MWCJMrPBgwcX+VlKxTF+/PiYE0AZJpvs119/PR4/4YQTIrAuSU0FmwOC6ZS2dujQocJBIIF15p1cc801HoyrbBG4IlCVb/bZZ89OPfXUoj0nSaWHNhL0L7/oootiD5ECdqzBSyyxRLbHHntEC9W55547Bh1vs8028XVaqb711lsz/f05NGeW2T333NPofxepKeJeltfTrrvuGm2SXnrppWiZxOvq/vvvz1WGfPTRR1mrVq2i+oz1n9clv0aqzCC6aoWNdeW2FJS7cirOVGMmjHOaJ5WbK6+8Mt7TIuH222+P/qn0NySgLklNUerJSusp1nYGLr344ovZcccdFweDZKdL5YaMzfPPP7/K41RppEpMSWqoIaMnn3xytsMOO0Q2LKhkJXucirGjjjoqa9euXRzgkdDGnCUC6+y3CZDP7LCbYCHtK8iy5feVyg2tVmllSCs2qj5eeOGF7M8//8yGDx8eryMqPWhjCFq7DBgwIO6JaadkO1ZVxyC6aoUTuspB8oEDB8ZQBsphXnnllezxxx8v2vOTioEMDxbcNdZYI5s2bVru8aOPPjp6DEtSU0SWDdhYp4/JRmcQcvfu3ePj/FYWUjlgwG7lfsO0RTjzzDOL9pwklS6uLQwAbdGiRa6KlYM8KsAZbJwO8Wgxte2220ZAnP0F+26qYGfm7LPPjnYxKVAolQvuYTmk2mijjeLeNg0L5WApxayWXnrpSH5j7h/VHthvv/2ytdZaq6jPXU2XQXTVygEHHBBDSihpzXfWWWdl3bp1ixN0BpByuieVC1oiMKiP0+2EKd5kj0hSU7XooovmPqa8FWSik5FOaTnZ6A4NVzlhLX/yySfjYzLQ0kE4m/DFFlusyM9OUiliX52f8Uqm+cILL5yNGjUqKr5Zl9dZZ53crBIy0lNPdK5NP/zwwwx//9VWWy3r1atXdu655zo0XGWF6vBPPvkk7nEPP/zwaEVMm1XWehJD6bJANfkll1wSbQ5pWcxrj3tgqRCD6KoVSr7ZUB9yyCEVHh80aFD2xhtvZBdffHGcktt3TeVi4sSJsfBWLqc85ZRT3HBLatIoW73hhhuyxRdfvMLjZLytssoqkZFLBttvv/1WtOcozUqUb6f1nNcFrV14T4sjSWpMBPUIjm+yySa5OWS0SqX12qRJkyJg/sEHH0Rg8KGHHorM2W+//TYenxkC6ATb6QMtlQP6mvft2zdaGnFIlZLduPdt3759Ntdcc8Xrgvd77713Ln5FPKvyfbGUzyC66oRs8913373CY6eddlqckjOAgcz033//vWjPT5pVCDJV7jHICfbxxx9ftOckSTXBpuKwww6LQHo+yr4ZPkrZKyWufCyVuilTpmSXXnppttJKK8V8k6+//joe556Wdi6S1NhrMpniHORxDTrooIMisE7AfOONN44D7b322isC7WSpk2EO2rSMGDFihr83Q8PJxOUaxzBTqdQxTJSf9WHDhkXb1ZEjR8brilaFHCY9//zzsd7zGiN55Oeff87WX3/9eN1JM2IQXXXyt7/9LaYYM0Gc0zvQQ4pSGXq4Mfn4xhtvLPbTlBp9RgAVGJVxqu2GW1JzQTnrlltuWaVHK22pDj744ChrnVm5uNTc8TPPZpqMz5SNvvzyy7uhljTLEOSmVzNVrgT6qApLB3oLLbRQ9tZbb0VvZxBcp0c6WKvJvJ1ZElzKbpdK2ffffx8Z5XRPYCA47VvmnnvuaEvMus5rpWfPnjGo96qrrsoee+yxiGv169cvAu3SjPgTojrh4sLpHcNOttlmm2yppZaKx5l6zIWJ3ukXXHBBDFyUShUn2fRVy0efwsrtjiSpqWe/pXU8oZqMihoy3qi2YUMvlarXXnstu/nmm6Nt4R9//JF7/JZbbhLouwgAADRRSURBVImNtSTNClxvtttuu/iYg+z7778/m2eeeaIVBf3RMXDgwFzwnMdJbpswYcJM27rQZvLEE0/Mrr/++uzTTz+dBX8bqTgIoHMfm+aTEZsiE/2rr77K3nnnnUj65DUwbdq0iFmlfX3Hjh2L/MzVHPxlOikXUh28//77cTGif9Srr74aQ1EoQWMTQmCdYDoLdZqCLJUSMkHWXHPN+JibW4JMDNTl9UBfNUlqTljHN9tss2yJJZaIIUwJB+bPPPNMdvnll8cMiCWXXLKoz1NqDOutt172+uuvV3iM4X733Xdf0Z6TpPLGgR6VMCStMZ+E1hMEBa+77rqsRYsW2QILLBCVM1y/OAgEg5HZhxfCXr1du3bZ1ltv7eBwlaTPP/88fsb/85//RPXG2LFj496Vli20L2SWAIdOhEFpRUxrJILnvOcgXZoZg+iqF3586NH28ssvZ4ssskiUey+66KJxYaIcjT6q9FZ1OINKDYst5ZXc4FImRiYIQXUWYMvAJDVHDCgjc2f11VeP7BxwIE6Anc37LrvsEqWuUil59913c72FEzJAOUxq1apV0Z6XpPI2aNCgbMcdd4yq1/Hjx8d+gzWavs1t27aNajFasbEX6dy5c+zH2XMTNCTrvBCC8EcffXRk5NKeVSolHDw9+OCDWevWrWNPToIn7YfXXXfdaNVG5eVnn32WC6ATOOcQao011ij2U1czYaRH9S4BZ2gDUr9UelBRDnPKKafEBevUU08t8rOUGr5EjBtUsjnmm2++3LRv+6hJas4IGLK52GijjXKPkX1O6Tfr+m233RZVOFIpJYPQS7gyKi8MoEsqph122CEy0AcPHhwBdLzyyitR/U2rqU022ST6pqNLly7RP51h4H369IlrWyFc85ZddtnsuOOOm+H3Sc3N6NGjs9tvvz1eN0899VTML+OAabfddosAOgkhBNA5ZHr77bfj15D4aQBdtWEmuuqN3lIdOnTIZa3lX8TYbLOQz6y0TGouOCyiDIwAOuWVtHDBYYcdFiViktTc0XeVDQiHgmw62LCzcWfjzW2jJa8qFSeccEJ25ZVXVniMSow333zTQ3FJTQr7DgLlVHxvuumm2dChQ2N9JuuWIYkEBcm2pcUk2bczGor89NNPZ1tttVUkAFV3kCg1N1RkrL322lG5QXs22qvy2kiZ5wsvvHAuXsUMM9q+MFuAQb4khko15d2h6o2yMYLolS8+LNz77bdfLNB8XDnILjVHDM9lYC4/7ymATiujiy66qNhPTZIaRAqQE0BP1zoOxMl8GzduXAxkkpo7kj0qB9AZ6te/f38D6JKaHPYftFij3dSIESOyQw45JOvdu3fWq1ev+JwDwDR8lP3KBx98UPD36t69e3bggQfGQaJDRlUKmMPHPeruu+8e1RsE0Dlk+uKLL+LrF154YRw+kQxHAJ2BvHfccYcBdNWamehqEJzuDR8+PBbyfGxOKJ/h1LxHjx5xoZKaKyoqtttuuyqPM3iMAWSSVAoImrOeDxgwIDLfEtq0MUiZjQpZPmm4stTcsP0hY/ONN96Iz9lo83NPWfdJJ51U7KcnSVWQmEYGOdm2HAJyHVt55ZWz999/PxJ6CBqyTtNalZkO7du3j17PCy64YMGgPD3R+T6y2g0mqrliLWfALveo//rXv3Kz+vj5Zu4JlRr3339/3NfyMT/rzzzzTNa1a9diP3U1QwbR1aC4KD300EO5DF0yehhaQhk4p91PPPFElM1IzQ03pAwooUQy/7LJifZzzz3njaekkkNfSdbufKznhx9+eKzztHVh9onU3Nx0003Rhi3fxhtvHAkhBNQlqan58MMPI2mH5B0yzw899NB4nCGjkyZNijkODAjHoosuGnuXnXbaKfbmhaprUlsXrolktkvNsY3LWmutFW1cdtlll5jX991338UcAVoLM+OEQbpTpkyJobw//fRTdtppp0VmulQXBtHVoDjRvvPOO6OELGFQAxlrTBenVxungZwOSs3JFltskT377LMVHiN4xM8zpZWSVGq4RaSnJBv2hMPEgQMHxkAzMt5s7aLmhmAT2WkLLbRQzPXh55z1nNYHBKMkqaniepUSd84999ysb9++8TkBdIaKskZ/+eWXcU3jsPs///lPrNMMBy+Etqtk6Y4dO9ZroJodfrYvu+yyyEYn2W2dddaJx0ly4zBpgw02iJZH7OMZNMqBOR+T7CnVhUF0Naiff/45W2aZZaJ8Jv80nNJv+qOzaeFEnEC71FwwcGSHHXao8jj9gekTLEml6uWXX866dOmSqzAD6zgH5Kztr776apSWS80Bff65TyVD89dff61QdbH//vsX9blJUm0Q9Oagm9lkp556alTHktC25JJLRh/oBRZYIPbmBNmpBt9mm22q/X3IzGWPTq9oWlxYXavm1saFw6SzzjorDpmuvfbaOBR65JFHso022iibOHFi1qJFi2zq1Kmx/lNFudhiixX7qasZc2qOGhSLNSeB++yzT7bnnnvmLlAMOaGs5qqrrsruuuuu6C0tNQccCBEor3xaTelj5TYHklRq6BvNBmXZZZfNPfboo49GRVnHjh3jgJxSWqk5OOaYY2KgWH4Afeutt46fY0lqLn755Zdsyy23jEA6wW8OtqkSo6UFSWw8RgCdtZrA4l577RXBxOrQM/3WW2+N7Nx+/frN8r+LVBfce7J2EyB/8cUXY0YfCR/co44cOTIy0vmZJz5FAJ2BvI899pgBdNWbmehqcPxIMdChU6dOceFiYeaEm1NyhpvQN53+VLTBoMRGasrI2qAcjIU6VVcwzZub1pYtWxb76UlSo2PzMf/888f1kJ7RrPP0V/3nP/+Z7bvvvtmJJ55ob0k1eQzaI7BEe4Nk8cUXzw3lk6TmZNCgQdkll1wSyWkLL7xwVNpQOcv8se222y4OwGlZRdCQftAMIX3ppZcK7r8PPvjg7N577409Tv7BudQUnX766ZG8ycHR77//HkNDx4wZE/ejtDNi756GhoPZAD169Cj201YJMIiuRsNFjAy2f//737nHdt999+yKK66I7DW+xqLvACc15cX5oosuip7nLM5kr2Hw4MGRiS5J5YQAevfu3XPrOmWxVJ6xYWEzz6ZdaopI7iBTMz8Tk4OgN998M1t99dWL+twkqa4InKehoWeffXZUf5OZO2zYsAgeMgj8+uuvjzZstHjp3LlztGyZZ555qvxeJL1xPeRQkWA7mbtSU221yrw9+v3TiojgOAdJJH2AlkQp4YPXCK8L2r1IDcF2Lmo0bFa6detW4TFOCCmjefDBB2NxZyiZ1BS98MILkd3BIkz2WgqgH3nkkQbQJZUlekum7DSujZ9++mn2zjvvZNtvv32Uio8bN67YT1Gqgo00hz+VWxkw18QAuqTmLAXQQdJPCiRuvvnm2eTJkyMTnb7RTz/9dHyNOSe0XM2vyEmoHqcVxvjx42NGhLmWaoree++9uOckiH7ooYdmJ5xwQhwYMQ8AtGDlZ5f3BNB33XXX7Mwzzyz201YJMYiuRrXbbrtVeeyoo46KsnD6o5OVTo90qSmZNGlStvPOO8fNJotwKgOjgoKyMUkqR2xI2LQgba7JBlpuueUiK50ycgY2Sk0J1RIEjvJxIH7AAQcU7TlJUkOaNm1aXNd4v/TSS8dMJwKN9Ik+7LDDIpB+9NFHRwU4CW1HHHFEtUFyDhb79+8fiW+2aVNTwwER95pUSxAYpyc6B+S0dOFgiD7ol156abRzoWqS5A9iTfmHTVJ92c5FjY5BD717945s3oRe0pwinnHGGbFQP//889n6669f1OcppUE9G2ywQTZhwoQKw/LIzuBntk2bNkV9fpJUTGT13HzzzZH5kz+c8dxzz83+8Y9/RBXakCFDYkMjFdsjjzxSpQcqa/yIESOyOeecs2jPS5IaGte1u+++OxJ+CDRyeMh17v/+7/8iiEjYh7fU6mJGLS74Gu1hyExPh+dSMREUpxqcAyHuP/k55jF+xueee+5cJQWZ5yTEcSDEa4KkOKkhGUTXLEGJNz3Q6UmZEDRnCngqsR01apQBShU9OLTxxhtnr7zySrXtXfiaJCmL6yTXRK6bCS2wOBynBysBdamYGI7HYD0CSKmijMHgo0ePzlq3bl3spydJjZoUxDBwktnSkMUUPM934403RkuMyljbmWVGGxjW+9VWW20WPnupKiop+Hl94IEHsr///e+5FoL9+vXLnnvuueiA0Ldv30h6o7URff0ZHi41NOsaNEt06NAhMntXXHHF3GOvvvpqlJINHDgwSsQZeJKf1SbNaiy81QXQr7nmGgPokpRnww03zO68884Kj1Fay6wTrpm33npr0Z6bRB/gbbfdNrIvUwCdbDXm8RhAl1TqaJ266aabxh6brPKDDjqo2vYttHohCFkZ107aYLRr1y6y2r/77rtZ9Mylqphhcu2118YbMSMOhnDsscfGQQ+BdVq3EUBnjWd4rgF0NRaD6Jpl6NHGpoYSb8ptwAb89ttvzwYNGpS9//772YEHHugQExUFw26Z8F0ZCzI9BiVJFW299dbZYostlvucsloC6Pvuu29ko5MBJ81qZJ6vtdZaMRA8vwLyqaeeylZZZZWiPjdJmhXIPOeax7rMvptA+cknnxxfqxxcJBP9hhtuqPJ7zDfffNE/nesoLTL4vaRZjWpwDnvINOdnlQOePn36RCCdyrKHH344qix+//33bNFFF82GDh2atW3btthPWyXMdi6apbioUV5Gphq9qtJkcPq3cSGkbOyCCy7ITj/99GI/VZWRMWPGRI9ULof55Y5rr712BIHosyZJqooqM8poTzvttBhkhiWWWCJbdtll42u0amPoqDQrsHb37NkzDsbzkbCx//77F+15SdKsxp77oYceitlkmDx5ctaxY8fYb7NOM8skH1m+1SUOsRfafPPNI3BJsJ19kjQrfPrpp7Efp7KCIbkkajBbb88998y1E0z7dnqfk5VOC2GpMRlE1yzHBY+TRE4NE04UKbvhpJGSM0p2WKilxkYFBBlr9En97bffIghEIJ1sNX4eOdGWJM0YAXM22WT/gn6UZARzQM7wcDbsUmM79dRTozd/5VZtDMiTpHLGUPBDDjkkPmbgMvPJWJ/bt2+fXXHFFfE480zoPV0Ze/ODDz44rqVcU6XGRgeDLl26RAUEP6v3339/JL29/vrruTZtCYF1YkkMt5cam+1cNMsRMCfznD7p+YF1ysJZ0OmTziLN90iN6aOPPorFmOA5p9tff/11BNCXWmqpbMiQIQbQJamGCJp37do19zkDw8kK+vnnn7MtttgimzJlSlGfn0ofg8YqB9BpE2jAR5Ky7LXXXstl7pLMdtNNN2VPPvlkBCWPOeaY+BrvL7/88iq/lp7qF110UQTRL7744ln+3FVevv3227inZF4eP6ME1DFy5MgqAXQS4UaMGGEAXbOMQXQVxbzzzpvtuOOOFR4jY61z587R8+qAAw7I9ttvv2zAgAFFe44q/fIwBu4waIyDndRaiJ9NSsHatGlT7KcoSc0Gm3IGPDHELHnnnXdic8NAsm7dumXff/99UZ+jShfB8spzTXr16hXZk7YekKQs22WXXbIWLVpEkJxD7o8//jiuj7Rrofc5SUQ46aSTsuOOOy7XLiO/0uess86K9m1XX311kf4WKnXcK3LPSPLF4MGDsxNOOCEqJpLu3bvn7jX5maVy3HknmpVs56KiYWGmXIyT8HS6iAUWWCB75ZVX4pSbsh36Wu68885Ffa4qLbQboDzsiy++iMzzhKG3L730UrbeeusV9flJUnP16quvxlDRt956K/cY/dF//PHHbLnllotyWzbvUkO56qqrsuOPP77CYyRkXH/99QbQJSkP1WHstcePH5/ttNNO2QcffFDwexkmSmV4/mwoQkcE0y+99NK4xrLeSw1l2rRpEUCnRSAJbgyvZ47e7LPPHhnoVDa+/fbbEWDnnvLZZ591iKhmOTPRVTRk/1533XXZm2++mbVu3brC4k5GOgs0J+b0T3/ggQeycnLjjTfG4BemqfNGyxFOYmuL/vL77LNPnOgeddRR2UorrZTNM8882dJLLx0HGAQ1yg0LcadOnWK4Tn4AnY32oEGDDKBLUj3Qt5LS8B122CH32CeffBJrDy1eKM+dOnVqVk5c0xsP2ZCVA+gEdQygS1JVBNDB+sE6RAXuQgstFOtSZQMHDoygZf6azXWVRDcqz2jBSg/1cuJ63nj4OWO2DhUSrOP/+te/Yt/ObJ127drFvzVVEwTQ+X9ABroBdBWDQXQVHaXebLjzhz799NNP2UYbbRT9LZm+vNdee5VVj3RaiXCDMnr06OyNN96IBYX2N++9916tfh9K8whkfPnll/FG+d67776b3XnnndHzm/LnckIAhyA5rQVS+5Z0oEO/NfryS5Lqh6qeRx99NA7CEyp/uNbSSmuzzTaLfpflwjW9cZxxxhnRciAfiRckaBhAl6QZI5GNhCKGMrIPqm4NefnllyO5jcPwhOvrlVdemZ188skRTCcrvVy4njeOb775JtqsUi0+fPjwCJKDKgh+Pj/88MPoh87P6zbbbBOV40suuWSxn7bKFe1cpKbg4IMPprXQ9BYtWsR73v72t79NHzt27PQ+ffpM/8tf/jL95ptvnl6uFllkkem33nrr9C5duuT+fSq/9e3bN/f9kydPnj7nnHNO//HHH6v9/QYMGBBf//e//z29HIwbN2764osvPn3uueeu8G8222yzTX/mmWeK/fQkqeSMHz8+1nHW73TNnX/++ae3bNlyevv27ad/8cUX08uVa3rd/fe//52+0047Vfn32nvvvaf/+eefxX56ktRsPP/889PfeOON3LV16623nj7PPPNUWZtatWoV35uP72ed4uvnnHNOfF6OXM/r5/PPP5++0korxb3h6NGjYx0/5phj4t9trrnmqvDveNRRR5XNv4uarjmKHcSXEjKH6HtFq42ePXvGY19//XW2ySabRJsNSnkOPvjgKOFhoEm5ZBnR/4u+8JQ0UcZEf3j+TbbaaqvsxBNPjO/p0aNHtuqqq+Y+B/9mnOhSalYdysT4GhmDpY4sCrIEfvvtt+z333/PPc7PFENE6Y8uSWpYK664YvSufP/996P3Kr0uf/nllxgkzhq+8cYbZ48//njWoUOHrFy4ptcPVWRk6FHpkI/BY5dddlnZ3BtKUkNg/Un+/e9/R6909ksMclx33XWzsWPHRrsX9uRkXZMxfcwxx8S1ljcqydlPnX766VHpS4Z6qa9Diet5/ZHBv/3228e9IW+0ZyPz/KGHHoqvp9ar/KzRvo1WN1Kx2c5FTQZTls8///wo82bRZmHCDz/8EEFOFpu+fftG+S7tXX799deslHHTMv/888eNyaGHHpo98sgjEWhYdNFFY1Hla7TC4W3OOeeMnnY8VrlMrDrc5Jx33nlxKFHqbrvttrih4edr+eWXj3YCqScg5WIG0CWp8bRq1Squswwv42MQRKdtGwPK6KH+xBNPZKXONb3+6B1LoKJ///4VHr/iiisisGMAXZLqjmtofrtL2q3+97//jQA6QxzZm9NCa++9947AcUJy20033RT9wmmNybW6lLmeNwySKLgHZE9+0kknRaIbbVpSAD3h34+DBwPoaioMoqvJYQEaNmxYtvLKK+ceYwGnzyUn4Zz4ciElMErfrFLFgJExY8Zkr732WnbYYYdlvXv3zsaNG1ejX0twggyC6hZovrbtttvGYp/fh77UcBNIn74+ffrkbgDfeeed+JiKh+eee67aITqSpIa3+OKLZ3fccUfuc7KL6LHKEC2ykC655JIIqpcq1/T64d9u2WWXjR60lQffVR4sKkmqPRKOnn322dg7PfXUU9kSSyyRywRm2CN7dNx3330xY2rChAm5X3vIIYdkQ4cOzd566634GhVopcr1vH6417vooouiSrxbt27RW585eOCgZvbZZ6/wb81hznbbbVfEZyxVZBBdTRInjmeeeWaVrCI2SmQPp8nMa6+9dgyZKEWcXJM5vdZaa8VCs/rqq9d4AjpTwlmAl1pqqQqP//zzz1Fixokvp+bcLJUiMiDIhLjmmmuyFi1aVBkIw2LMz44kadZhGBQbw3nmmadCKS/B0VNPPTXbZ599ooy8FLmm1x2JE2uuuWYEGBKSKljL84fXSpLqh3XqlltuiX0UGde0YkvyM8xZu7kuP/zww7nHqCbnuswwSALpDCstRa7ndUcnAToK0P6HzgMkUnDvlw5r5ptvvlw3Ar6Pg/NVVlmlyM9aqsgguposLpyc8B555JEVHr/hhhvixHLEiBGxgNHm5a677spKHRnUaYGprPJhA2VinO7mY/O55ZZbxsLPhpQbnFJE5gN99emDjqlTp+a+tsYaa8QNYdu2bYv4DCWpfNGW7auvvooNdkJGOv0/KeGlyuyLL77ISp1res2y1ahQ4O+eX6VAAILKsnXWWaeoz0+SShmJSPvvv398THYwe+589LDmIJPvSYectH155ZVXon86VWaXXnppSVeZwfW8ZuggkGbd8fNBnCcdPhA85+9NmyD+HWgNdM8991RogyM1FQbR1aSxQbr22msjSE6mWkKp2UYbbRQX2F69emX77bdfDJXK7+PWnNFb7oUXXsgmTZoUQV8+59CAHnTV4dSafrPffvtt/Btwyp1fJpYWZxYmeoTzOe1NeEunvaWAjAeyAj777LPIZsy/aeMmj+yIhRdeuKjPUZLKHVnEbLIpgU5Yl1i/CKhTKcTmqlS4ptcea/gee+wRFQr5yNQbPXp0ZK9Jkhq/goyZE2Rc0wrz9ttvj2qy/ODwnXfeGdnCVIqnNYwMdbKNTznllNirl0qVmet53bz66qsR16GTQEp0Q/o54u9PT3TiPXQZoNe8c07UZE2XmonBgwcTEa3wtsACC0wfOHDg9GuuuWb67LPPPr179+7Tp06dOr25O+CAA6Yvs8wy0+ecc87piy222PSuXbtOHzp0aO7rq6+++vS+ffvmPu/fv//0eeedd/q22247fdiwYdPbtGlT4fcbPnx4lX+79PbJJ59Mb+7+/PPP6RdffHHuZ6Ly3/Gss86a/t///rfYT1OSVMn2229f5ZrdqlWrWP/uvPPO6aXANb12Pvroo+ktWrRwLZekJmjVVVfNXZf/8pe/VPj4lFNOmf7777/nvvf++++fPs8880xfZ511pn/22WfTmzvX89q74447pv/1r3+d3qlTp+lff/113NvNNddcVf6+e+655/Qffvih2E9Xmqm/8J9iB/KlmpZKXXjhhfH+/vvvrzCwhPYuXbt2jawlSoFuvvnmsh1AweRqTrppe1MOyASgjJAsAE776SmXMDV9wIABBSegS5KKj+s3rVyuu+66CrNR6J256667xnrGQOhyVE5rOlsShs8edNBBca+X0Bt2yJAhUf4tSSou9tsPPPBA7nPab/z73//OVQB37Ngxqshpo4k333wzWpjQ/uXqq6/O9t1337LMMi6n9Rxk3x9xxBExAJzqsS+//DLbYIMNchULySKLLJLdeuutWY8ePYr2XKXasJ2Lmo3ZZpstho1SGta9e/cKX6Pf2rHHHps9/fTT0Q+bHmyUif/www9ZuVl11VVjUnipY4NNO5+VV145e+mll6JUkIBLwrCSDz/80AC6JDVx9FmldRvDtBKu5wRP0xCuBx98MCtH5bKm0we/S5cu2YEHHlghgL7iiitmkydPNoAuSU0E+y/23ddff30MyPy///u/Ci00mVnBfpygMclNDCB9++23Y39OC1b2ZgRUy025rOfgno0WPyRJEL+hPQ0HCJUD6DvvvHM2fvx4A+hqVsxEV7NFhvGee+5ZYbPF0BNOd9l4H3fccTGkgqz0bbfdtqjPVQ3r008/jY02vfEZepM/PBTHH3989O4jM0KS1HzcdNNNVTaZLVu2zL777rts9913j2z1cs1KL0VsQwjIEGyp3P+VfuhUIJZjxqIkNQf0siaZ7YILLqi2hzf7NNZ1ZlNxLWeo5CGHHBL9r6+55ppsn3328RpfQuh5TvY5QXTiL4suumh29913V/k+qseJ0fTs2dP//2p2DKKr2WKhZoN15ZVXVgikg2wmpj0z7IMsNk69r7rqKodKNnNcrlhwTzzxxAiQp0F0CYcn//znP7PddtutqM9TklR3DO3iMJQBkvkYZsbheNqQq3kjE5EAyvDhwys83rZt22zo0KHZCiusULTnJkmq+f6MbPMxY8ZkO+20U/bkk09Ge5fKe3OGki633HLZ999/Hwen7Nlov9qvX7+sdevWRXv+ahgEzg8//PCoTGBPzjDZ/CrxhCRI4jd/+9vfivI8pfqynYuaLbLOL7vsstiEnXvuuRVOMZ9//vlsvfXWixYfTLpmQjglVATU1Xyzz7t16xbTusENWH4AffXVV88mTJhgAF2SmrlNNtkke+ONN2JDxmyLhA0ZPVXpk05PVrLT1TwDLmSmESSn1DsfZd+s5QbQJal5YA/++uuvR5Cc/te009xyyy0rfA9785VWWik744wzYg9/zz33ZI8++mg2atSoaPvBmmBuZ/PNPiejnGpBDkuWX375qBKvHEBfbbXV4ufg3nvvNYCuZs0gupq9xRdfPPv73/8evdZSgBV//PFHttdee2XPPfdcvHHh3mabbWIIJX251DyQyUDPPQ5BXn311XiMIEr+jdsVV1yRvfXWW9kyyyxTxGcqSWpIBMvZiOVnqFECDgaR0iudzVjlajQ1XRMnTszat28fg+XYYKegCSXfzDc577zzsjnmmKPYT1OSVAtkHrPHJkBONRHtXXgsH8lPtOgiG50Bo1tttVX23nvvxf6cNYEs9o8//rhofwfVDvdeVBNwL/bMM89E4uKCCy4Yg2TzkQzBXp3HSZKQmjvbuaikEGRNvbWYCE3WWioBZzGnDJwWMATYKRWnLchCCy1U7KetAgsz2QwpK22JJZbIvvrqqwrfQ2D9iSeeMHguSSXevo3S3zvvvDMbN25c7nHWem5j11hjjeySSy6JaiV7azZN33zzTXbyySdn/fv3r/K1I488MgIqBF8kSc0fLT0ImNP3fO65566yh8MiiywSazsBdHql00ubrGZ6prP/I1FOTQ/3XbRco20uSWz0N+eAhL07MZZ8tN5jlo2Z5yolBtFVcgicswCfdNJJMXw0H8PI6LtGyRk90+edd97s9NNPj/5dLPBqGjjN5rCDE2uy0zp37pw9/vjjua/z/4pWPtxsGTCRpPJaH3beeecYZpa/JpChvtlmm2UXX3xxtu666xb1Oep/mF1y/vnnR6Ck8tC5FVdcMQaEt2nTpmjPT5LUuBXFBFfZf/ft2zebNm1ale9Zcsklc5npBFxZxwnKnnDCCfFGdrOahtdeey326LRiow0PbfU4JK9so402yq699tpIcpBKje1cVHLIOl966aWz+++/P3vggQcq9FMluN6jR4/ox8Ubp6NkRtGjjQy36qaKa9ahB+4WW2wRffQo82Z4KL3P8wPoBxxwQPbJJ59E5poBdEkqL2SbMyODQ/HKLV5efPHFmIdCG5jx48cX8VmKbDSyEFu0aBGH3vn3V9yXPfLII/H/yAC6JJUuWrpwzWeQKPs3kqNAdXjyxRdfxEwremmTnc7aQILbpZdemrVr1y4C7JUznDVrffDBBxE3WX/99aMisFOnTtGKp3IAncA6rdm4HzOArlJlEF0liwArAy7oz0VgPd/IkSMjU41eqy+88EJ8TB83hlNSTmaBxqzFABr+X62zzjpx4zT//PPHYk0pYELLFv6/8f/TkjBJKl8EZtm4McRs2WWXzT2ehk0/9thj0Xf74IMPjs25Zh2C5bRsITjOALn8AeBUDNxwww1RRUDvW0lS+Vh44YWjrcuTTz4Ze3DWAx5LWNeZb0aV0lJLLZW98847sVaQjU7CG2uLCW+z1ueff54ddNBBERx/5ZVXou0aLXNp45JvrbXWihYvY8eOjQpyqZTZzkVlgUGUkyZNikUgDadMWAw47d5hhx2yiy66KIaQbrjhhtHni0Ens83mWVNjIVBOiTeBELIUaMVT+ZLEAQgZCPy/M/NcklQZh9/0VP3xxx8rPM6awZBKMuB4o0pNjVeyf8cdd2SnnHJKlXJ97qPIRqeCjAozSZLw9ttvRzJbfuJUQlLVUUcdFVXK119/ffbwww/HPCwOaMmKrjy4VA2Hij/62fPvTtUAiYZkmLPW5yO4TsXA1ltv7T5dZcMgusoOmc4EzMl+zscCcdxxx8VJKsF0+qZTVsbiTZY6QzNUf/TFe/rpp6MnPe/JQKB0jxK/yptugh4MhKV3vSRJhbCxYw2/9dZbqy37ZnPHpvuYY46JLCk3ew2DNnms55dffnm1/+577rlndvPNN0cwRJKkytiTE4ilNRutWPMrmBIy0Xv16pUNHz48ZmnQR50kOCrOWrZsWZTnXWoICxIoZ01/6KGHYi/Ovr06G2+8cXbFFVdEFblUbgyiqyx9+eWX2bnnnhsb6f3226/KAkEGOoHzgQMHxhtBXHpxMy185ZVXLtrzbs5++OGH7J577omBMdwsUY7PqfW9995b4d+fBZus80suuSRbaKGFivqcJUnNC7e1lB8zfHT06NEVvpY2hPTp5JCWNmL5fVlV83/jUaNGxWB2qvcqbyU4oKAvPcHz/FJ9SZJmhFlYZD+fd955VbKeQfb5dtttF+3BmK2BvffeO9rAkAjnAXnt0WKNwwsGgY4ZMybui6gOrxwf4d+WeyuC523bti3a85WKzSC6yho//mRDMwWcQaOVdejQIUrG6O9FdhsTqAm8E+RlAIoZ0jU70WYjzWEEN0McQlAi9vPPP1f4XgLm9LwjS9Ap7JKk+nrttdey7t27V2nzkt8urHfv3rGmr7nmmrP8+TU3/DvefffdkTH42WefVfk6hxS01enXr59tWyRJdfbuu+9GOxEy0AmqV65YBjOyyIR+4403otc6B+Ss5wTVTcSauTfffDO75ZZbotf8r7/+GkHy6kKD9Kcn45/kA/fokkF0KYfgLQNOqishY8GgTJwBZmwgKSNjcaZMmRPZTTfd1A3j/49LCtO66VHLvxV9z/m34t+Q7MDKlxxOu4899tjoo2rLHElSQyMjneomstaqW+PRsWPHqEyj3Vu7du1m+XNsqthYMyyMIAb3PtVtG+g1Twbb9ttvbxagJKlRgurMLKuchJXQ3oW2YVQ7k6VOshst3OinbtLb/3z00UexR7/rrruiHz3xi+r60TNPhjjHSSedlK222mpFea5SU2UQXcpDL7YvvvgiTlqHDBlSpYyJErKePXtmW265ZQSK77vvvmzy5MkR/N1qq61i802LElqVlBMyzF944YVYlB9//PHIFuCGhaxzysKqm6RO9sD5558fWYAs1JIkNSbWdAZcUmFW3bqUkPm20047xZq+3nrrxQDyckJG3xNPPBHZaVSTVYdg+WabbRbDRB3YKklqbAR7H3zwwQj+Pvroo9mECROq/T6C6KzbtCnhYwLprOe0gVliiSWycsK9DlV57NEZzFro3ywhYZB5cIcddlj820mqyiC6VAADsuj3efXVV2eLLrpoNnXq1AoZWATUu3Tpkh144IHZxIkTI3jMMFLKmTfaaKNYrHlbYYUVslLtcT548OD4e/OeMu9WrVrFzUmnTp2i/3l1GX8MIqE8j5I7SZKK4a233ooeoLQbYz2rLJU1U0lFxRnrebdu3UpyQCZ/T9rWMUjstttui2SCQljjTz755Eg24H5HkqRiHfgef/zxEVjnkLy6sBZrOa3bqKoC7V/SHp0M61Ksnvrll1+yZ555JoLmvM2oVQsWX3zxmPvGv6VtcKSZM4guzQTBYV4mZE2TccXAk8oIqG+wwQbRh42F66mnnorFi8x2MtoYVLruuutGz9Xll1++WW48p0yZEiXxvFHSTeY5p9urr756HDIwrJUSuuouKWSkM5iVfmr2UpMkNSXjx4+P0m/KxWd0W8zavfnmm0c1GgPMWNOb4+BMDrj5OzMcdMSIERE8596lEAIQlHVfeeWVbrAlSU0K6zaH4VSHn3322ZHcVV2LEuQHkwke0/KFijPW9Pbt2zfLyrNp06ZFf/OXX345/u6vvvrqDO9l+DcgPtGnT5/Ym9tOVaodg+hSLduWkIF14403RqZ6oYWJLGtKoegzxgaVgDrDNEEQmUxtFuv0RrZ6Uwqsf/PNN7EYp6A5b2mIGM9/ueWWi8+5Yanc8iZp2bJllMzvscce0bpFkqSmjIPhF198Mbv88suz4cOH5zLXZoSBW+uvv3629tprR1CdNw6Wm1LA/P333491nGq5YcOGRfXczA4LWOc5/GZejP1kJUnNaS2/8847o9KMPS3B9ZqEvAigd+jQIdtkk01iTWePTiJYU2o7SjIfe3QC5c8991wchs/oEDwhUM69yjnnnBOHBk0p7iA1NwbRpTr66aefomfoxRdfnE2aNKngoJO55porgsj0YSN4nh+g5teB8nC+xuab3qKUS/PWunXreN/QJ8Sczn/99ddRBscbWeS8Uc7N80ql3GTYrbrqqvH8eB5MP6eXGhn21SHAzmCxvn37lmwbG0lS+QzgoryZTep3330XB+k1wVyUzp07x7peeT0n860hN+TcxlMxl7+e837cuHGxwSZ4UBP0PiVoQNCc9jXNMRtPkqTq1kn2sAzJpD84CWCFMtULrekE06k6pwUMQ0zT2k51VkO2hOHgm1gB6zjrN9nlH3zwQcxiY32v6X0Ih9/LLLNMHIYffvjhHoZLDcggutQACKAzgIthpJzsElwvlKENguIdO3aM/qpsrNmc05+VQSkEsBmEkm+++ebLbcDzF2024umNljIs4iy+vLHI8v63336rEDDnjT8vH7+eQD+LLfi1ZJrTwqW6vuYJf9c2bdpEG5sjjjgiW2SRRer9bylJUlPEmnjVVVdlN9xwQ6z7M1rnZxawZoZIu3btsrZt28b6y2P5azpv/P6V13Sy0D7++ONox8JazoF+XW7l+f0JBNAHlf7m3GdIklQOqCin/epZZ50VQeoZ7Xdnhv0wayr7exLK2KOTDc/aTPCa6uwU/GbN5v6B7+c5cAhOOxY+rmtYjoQ9YgNkmh955JHZhhtuWJK93qWmwiC61AgIXFMyTUuXmpSQsfiS9UXfUbK/yeKmV9mKK64YWeAsrgTCU4YZb5RupU112mCz4SaYnoLqvE+Z8PnBdxZver+moHv+7zkj/F5kqvXo0SPr3r17lLy5SEuSyhGZbPQT79evX2Srs/Y3tdtq7i9oLbfssstG33d6m3N/4dotSVLFNZ2EuEcffTTmf5ERnh5vCms7+3AOvEla23bbbSPLnKQ813Np1jKILjUyXmJsrF966aXIVh8zZkz0J2Vjm06pa4KAOAsngXZ6kec/zu/F4/w5vGdx5ffmVJvM9rpmy/F7rbLKKtnuu++e7b333pENL0mSCmMtfuyxx7LHH388WqqwFnNgTY911uaGlA7h2VxzP8H636VLl1i3t9hiC0u4JUmqJ/bSVJqTvU6rN9Z1EuV4z76cZDbWYr6Pt5nt7wl885bfm5wDb/batH2jSo3WMbSDpZWMPcylpsMgulQkLLaUhtObjcGj9913X5R41TXgXVeUnjEYjeEpqXc7g1EpR5MkSQ2LdZ6WaQz4ZPP9+eefx/0AJeW0dWGznDbhtGxho02FGtVpiy22WBxus6mm4kySJEnSrGEQXWqiaLnCEJEnn3wyysjIXmMzzYabISOpbzqba17GnH7zPWSd0WuVIDg92BheSrY6H9N+hWA5WWr0P/dUW5IkSZIkSZoxg+iSJEmSJEmSJBVgGqokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZJUgEF0SZIkSZIkSZIKMIguSZIkSZIkSVIBBtElSZIkSZIkSSrAILokSZIkSZIkSQUYRJckSZIkSZIkqQCD6JIkSZIkSZIkFWAQXZIkSZIkSZKkAgyiS5IkSZIkSZKUVe//Aw2MLTmX7oMQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQm8lPP7//+2RrKlHW2kSEXSIhVRKakIWaKEskX25aMsoRIK0WaJRLZSspRKaSckRJbKkn3f9/k/ntf3f92/e6ZzTp0658w5M6/n4zHNzD1zplnfy3W9rte1WSKRSAQhhBBCCCGEEEIIIYQQQqzD5useEkIIIYQQQgghhBBCCCGEguhCCCGEEEIIIYQQQgghRB5IiS6EEEIIIYQQQgghhBBC5IKC6EIIIYQQQgghhBBCCCFELiiILoQQQgghhBBCCCGEEELkgoLoQgghhBBCCCGEEEIIIUQuKIguhBBCCCGEEEIIIYQQQuSCguhCCCGEEEIIIYQQQgghRC4oiC6EEEIIIYQQQgghhBBC5IKC6EIIIYQQQgghhBBCCCGEguhCiJz46quvwqBBg8Kxxx4batSoETbbbDM7CSGEEKL48+eff4brr78+1KpVK2yzzTahSpUqoXfv3ja/CyGEEKL48+GHH4Zrr702dOrUKey66662H69evXq6n5YQIoXNEolEIvWgECJ7mDNnTjj00ENtomYD/umnn4bffvstaGgQQgghijf//fdf6NChQ5g+fXpo2rRpaNWqVXj//ffD5MmTLTG+ePHiUL58+XQ/TSGEEELkwbhx48Jpp50Wtthii7D33nuHFStWhN133z2sWbNG75sQxQjZuQiR5TBJz507N/z4449h5cqVNlkLIYQQovjzwAMPWAD9xBNPDAsXLgyDBw8OTz75ZLj77rvDqlWrwtVXX53upyiEEEKI9dCyZcuwaNGi8PPPP4c333wzbLXVVnrPhCiGKIguRBFDWRbl1vGsMypwzh2u16lTp0ieT8WKFW3S3n777Yvk/xNCCCEykXTM72PHjrVzbNniVmx9+vQJNWvWDBMmTAi///57gf1/QgghRKaTjvmcOZuKsm233bbAHlMIUfAoiC6EEEIIIUQJ448//ghLliwJtWvXDtWqVUu6jc19mzZtwq+//hqWLl2atucohBBCCCFEprBlup+AEGL9DB8+PPzwww8b/FZ16dIl7LfffnprhRBCiAyd32lChic6/Uxywo/jkd6iRYsCesZCCCGESEX7dSGyAwXRhSghk/JHH32UrxI0BdGFEEKIzJ3f6WUCO+64Y4733WGHHZLuJ4QQQojCQft1IbIDBdGFKAFsSlfuOXPm2CkOG3DUbEIIIYQomfO7EEIIIYoHms+FyA4URBciwyGAft111yUd69Gjh4LoQgghRAnGFei5Kc1/+umnpPsJIYQQQgghNh4F0YUoYrbaaqvw77//5nr7b7/9Ft2vIDzWrr32WjsJIYQQInPm95o1a4bNN9/cPM9zwo/n5pkuhBBCiPTP50KIkoOC6EIUMZUrVw4ffPCBeaBWq1Ztndvfe++96H6OPNaEEEKI4k1Rz+/bbrttaNy4cVi8ePE6/2cikQgvvPBC2G677UKjRo028ZUJIYQQ2YP260KI3Nhcb40QRUv79u3t/IYbbgj//fdf0m1cv/HGG+1yu3btkjzW2BBv6Klnz55F/KqEEEKI7CYd83vv3r3t/Morr7TbndGjR4dVq1aFk08+2YLtQgghhCi+87kQomSwWSK+4hZCFDq//PJLOPjgg8Mbb7wR6tWrFypVqmRqsbZt24YvvvgiLF++PDRt2jTMmjUrlC5dukg+kfgkPnnyZPNRxTfdueKKK0KdOnWK5LkIIYQQJZF0zO9s5jt06BCmT59uj92qVStTw0+aNMlU60uWLAnly5cvkP9LCCGEyAbSMZ9/88034ZJLLomujx8/3pLgxx57bHTslltuCeXKlSuQ/08IsXEoiC5EmibmoUOHhgkTJoQPP/zQjuFresABB4RTTz01nH322WGLLbYosuez2Wab5Xn7iy++GA455JAiez5CCCFESSQd8/uff/4ZBg8ebBvuTz75JJQtWzZ07NjRFHQVK1Ys0P9LCCGEyAaKej5HyV6jRo0877N69WpLkAsh0oeC6EKkGUquzzrrrDB27NhwxhlnpPvpCCGEEKIA0PwuhBBClHw0nwshHHmiC5FmSpUqZedbbqk+v0IIIUSmoPldCCGEKPloPhdCOAqiCyGEEEIIIYQQQgghhBC5oCC6EEIIIYQQQgghhBBCCJEL8kQXQgghhBBCCCGEEEIIIXJBSnQhhBBCCCGEEEIIIYQQIhcURBdCCCGEEEIIIYQQQgghcmHL3G4QQhQ/vvrqq/Dbb7+FcuXKhTJlyqT76QghhBBCCCGEEEIIkfFIiS5EMeT1118P++yzT9h///3Du+++G84///zQqVOnULt27VCjRo1w3HHHhX///dfuu3z58nDYYYeFV155Jd1PWwghhBBCCCGEEEKIjEONRYUoBnzxxRdhm222CTvttJNd//bbb0OFChXCZpttFgXLUylbtmzo3Llz+PLLL8Ozzz5rx/baay8LsB955JEWbK9YsaI9hhBCCCGEEEIIIYQQYuNQEF2INLNw4cJw7LHHhiZNmoRJkyZFQe8TTzwxTJw4cZMee4sttghVq1YNvXv3DhdddFHYeuutC+hZCyGEEEIIIYQQQgiRHcjORYg0Q2Ab5fmCBQvCM888Ex0fPHiw2bmsj4YNG4Ybb7zR7F9SQcW+evXqcOWVV4a6deuGmTNnFvjzF0IIIYQQQgghhBAik1EQXYg0kEgkost77723Bcu//vrrMGrUqPDxxx/b8WrVqoXZs2ebSn3zzZN/qrVq1bLA+Zo1a8Krr74arrrqqvD2229b09E+ffrk+H9+8MEHoU2bNqFbt25h7dq1hfwKhRBCCCGEEEIIIYTIDBREF6KIWbZsWTjooIPCJ598YoHz1q1bhyVLloStttrK1Ojdu3e3xqKwYsWKMHfu3PDff/+FnXfe2RqM0kB05cqVFjgn0B5n2223DSNHjgx33313qFSpUthll11CzZo1Q5UqVcIBBxxgwfjHHnss1KlTJ9x6663h77//1ucvhBBCCCGEEEIIIUQeyBNdiCJWoLdo0cKC5R06dAjvv/++nbbbbrvw66+/2n2233778PPPP4cLLrjAAuJ//fWXKdWnTp0adtttt3z9X9i5EDj/5ZdfLGD+5ptvhksvvTQsXbrU7oPFy7hx40KjRo0K7TULIYQQQgghhBBCCFGSURBdiCJm1apV4ZxzzjEblm+++cbU4niiw0477RR++OGHpPt36dIlPPTQQxZo3xgIpt9xxx2mXEft/ueff4YyZcqE7777zhTuO+ywQ5gzZ84G+a8LIYQQQgghhBBCCJFtyM5FiCLgn3/+iS7XqFHDlOEE0KtWrRoF0AlwE0DHksW54oorwpNPPrnRAXRAgT5+/HjzS//xxx/DH3/8Yf83AXT46aefQrt27cJ77723Sa9RCCGEEEIIIYQQQohMREF0IQoZ7FrwIH/xxRft+mabbWa+5C1btoyaiKIMJ9jN+e+//24BdWxWBg0atE5T0fyy9dZbh2nTpoXBgwfb88gJvNkPP/xw82kXQgghhBBCCCGEEEL8P2TnIkQhc+qpp5oSnGai8+fPtyC6Nw2lqSgqddTopUqVMqsV7F0mT55s3ukFzeeffx5atWplgf04BOpRpteuXTvMmzcvlC9fvsD/byGEEEIIIYQQQgghSiJSogtRyIwZMyb07t07rF27NowePdo8ymGfffYxX/TzzjsvbLPNNhZAr1SpUliyZEmhBNChcuXKYcaMGda8NA4B9C233DKsXLkyHHHEEWb7IoQQQgghhBBCCCGEUBBdiEIHaxaaiX700UfhxhtvDM8++2x026677hoqVqxoPuVbbLGF2bzssccehfp8Xn/99fDzzz8nHcOHvVy5cmHnnXcOr732WujUqZPZygghhBBCCCGEEEIIke3IzkWIQuDWW28NO+64YzjjjDPCgAEDwsCBAy1QjWULAXOC6X369Alvv/12OPjgg80P/ZZbbgkXX3xxkXwel112mQXwa9asac1M69WrZyp47F4OOeQQazZ65JFHmq0MSQAhhBBCCCFy49prr7X+OwgxHn74YatwFEIIIYTIJBREF6KAeemllywQjW3L0KFDw6WXXmrH69evH5YvXx6qVatmqvQGDRqEb775xmxejjnmmPDEE09EfunpBN/2Nm3aWLCf4P/VV1+d7qckhBBCCCGKMb/88kt45ZVXQvv27cP9998fTjzxxI1+LNbQ11xzTRg7dqyJPZo3bx5GjhwZatWqVaDPWQghhBAiPyiILkQBg6r8tttuM3/xKVOmhO+++848zmnYufXWW9t9/vrrr1C1atXw8ccf24Zg6dKlYYcddkjLZ/Hrr7/ac8Of/cMPPwxVqlQJw4YNC7/99pup0DmOUl0IIYQQQoi86NmzZ/jqq6+S7Avzy5AhQ8KgQYPCAw88EGrUqBH69+8f3nzzzbBixQrrIySEEEIIkQ4URBeiEKBJKIFzFDkEoN9//31Tdu++++7hk08+CXvuuWf44IMPzOKFRqLpClKzGWnbtm347LPPooanbE54rn5+wAEHhMWLF6ssVwghhBCiiGF9hrAhHZQuXTrfVZKjRo0Kffv2tbVl+fLlN+r1IujA4vCSSy6xYzS8p4fQuHHjwgknnJDvxxRCCCGEKAg2L5BHEUKEL774IgpEo+Du3LlztHkgGI3inAD6dtttZwF0GDNmTFpV3jQxJZDvKniam/JceY6c4+GOEh1bGiGEEEIIUbQQQC9TpkxaThsTvCfQ/c8//4SJEydGx6h4XN//NWHCBLvv6tWrbU19+OGHR39Pn6EmTZqERYsWFdC7KoQQQgiRf6REF6IA+P33383jHL9zSk9R0MCIESNMjUOQGgsXD1BjoXLWWWeZv2O6effdd03dg9/kO++8EzbffPPw33//2W2oj0gMYEPz2muvhbp166b76QohhBBCZA2sGQkyp8vnnHXrhkKQm/Vkx44dzdKFSkZfJ9MDKC9Yi26//fZh4cKF9hgo2StXrhzdfvzxx9u69NFHH92EVySEEEIIsfGobboQBQC2LajM2eig3nbOOeccU+M88sgj4eWXX7bgOpuCfffdNwwfPrxYvPd16tSx8/vuuy8cdNBBUQAdVfq///4bdt555/D999+H0047zTY2W26pYUMIIYQQoqgsVQhmp+v/zg+sbQmgX3fddaFhw4ZWeYmFIVWPnAshhBBClGRk5yJEAdCyZUtreNS1a1crP3XlDarufv36hccffzy0bt06fP7553b8jjvuSAq2FweaNm1qFjSA8pwAOgFzAuhsfkgU0DBVCCGEEEIUDaivUYOn45QfP3TEJJMmTQoXXXRR2H///a160S1a8mPnUqlSJTv/8ssvkx6f636bEEIIIUQ6UBBdiAKCzQY+kMuWLTMfSEpXHRqKEpTGGuW4444Lhx56aLF73x966KHw1FNPWeAc6xkPppMIOOKII+z6gAEDzPJFCCGEEEIIBwvD+vXrh0MOOcSud+/ePQqMN2rUyNbHeZ06depk961Ro4YFy2fNmhU99k8//RSWLFkSmjVrpjdcCCGEEGlDnuhCbALYtBx44IFWouqbBTYQK1assA3Aww8/HFq0aBEee+yx0K1bt7DNNtuYBzne6cUNmkfh637AAQdYw1F8KI899tjw3Xffhb333jsceeSR4bnnnrPGTgsWLDC7FyGEEEIIkd2whtxtt93CnXfeGU4++eRImc56l+rMxo0b5+vxhgwZEgYPHmx9hgiq9+/fPyxfvtzW16ylhRBCCCHSgcyNhdhI1qxZE3r27GlK7dGjR1sAnbLXsmXLmg86QWhsXnr06BGpaa644opiGUB338u33nprHZsZL50dM2aMleaiBHrwwQfNI10IIYQQQmQ3rAtZR9L8M16FiSqdSsf8BtEvu+wy6zPUu3fv8MMPP4SDDz44PP/88wqgCyGEECKtSIkuxEby/vvvh3PPPTf8/fff5tOIzQmlqFOnTrXAOsFnmoii3CbwTPCc++AvXlLAfgZbGp4/DUZplLpo0aJQtWrV8N577xU7X3chhBBCCCGEEEIIIQoaeaILsZHUqlUrzJgxwxqJEhwvV65c+Oijj6ImnQTQCaS//vrrduzWW28tMQH0Dz74wJqkYu2C+pymqKiACKDvtNNO4eOPPw6jRo1K99MUQgghhBBCCCGEEKLQURBdiE1Uas+fP98ud+nSJbzxxhth++23DytXrrRjWLrQpJNGosccc0yJea/PPPPMMGnSJEsAEDD3JqNAg1S48cYbw88//5zW5ymEEEIIIYQQQgghRGGjILoQ+eTFF180Vfkff/xhHujPPPNMePTRR63pJjRr1ix8++23oUqVKhaEpgHn7bffbvctKVx66aWhQ4cOoVGjRuG///4zn8vvv//eLF0InKO6//rrr8Pw4cPT/VSFEEIIIYQQQgghhChU5IkuRD4goIzFybJly8KAAQPCddddZ8e/+uqrcPbZZ4eXX345/PTTT3aqWbNmWLVqVTjvvPPCnXfeWSLf54ULF4bmzZtbIgAFOsH03377zYLpBNV32GEHe4277LJLup+qEEIIIYQQQgghhBCFgpToQuST888/33zC8UT/5Zdf7FiFChXCk08+Ge69917zPa9evboFl7ncv3//EvseH3TQQaFt27YWQCdwTgAduxoC6LvttpslCwYPHpzupymEEEIIIYQQQgghRKGhILoQ+fnBbL55OO2008Ljjz8eevToYWpzrFscAs4ffvih2Z1A7969LcBeUiFJsPfee9vlH3/8MckT/c8//7TzESNGhLVr16bxWQohhBBCCCGEEEIIUXgoiC7ERoCNC9Yu++23n9m6rFmzJrrt1VdfDUuXLrVGnJdcckmJfn9R1uPnjo0Lrxc1+q677hr22WefcNVVV5nVC97w119/fbqfqhBCCCGEEEIIIYQQhYI80YXYALAtOe6448IVV1xh/t8NGjSw4926dbOmoi1atAjnnnuu3ad9+/ZhxowZoU+fPmHUqFEl+v2liejhhx8e2rRpY4p0guZVq1a1JqmcFixYEA4++GDzTF+xYkXYa6+90v2UhRBCCCGEEEIIIYQoULbU+ynE+rn77rstMP7xxx+H2rVr27GjjjoqPPXUU3YZn/ATTjghTJw40e5HUPnyyy8v8W8tr2vJkiW53k5Q/cgjjwzPPPNMGDJkiCnXhRBCCCGEEEIIIYTIJGTnIsQGcMopp4R+/fqFU089NUyZMsVU2CjS8QVv2LBheP755+1+33zzjZ1379491KhRIyPf27///tsU6o899lh4+OGHo+aqDz30UPj888/T/fSEEEIIIUQRc+2114ZtttkmHH/88eGff/7R+y+EEEKIjENBdCE2AHzAhw0bFubPn2/Xjz32WGsu6rfhF96sWTO7nQD7lVdemVHvayKRCNOnTzfVefXq1S1BgJXNWWedFebOnWs2Ln/99Zc1GRVCCCGEENkFfYCee+65MHXq1GiNvCnrTnoOVa5cOWy77bZmLfj+++/n+TeDBg0KBx54oFVRVqhQIXTp0iWsXLky6T6HHHJIZEnoJ9ayQgghhBAbgoLoQmwgBIl32mmnsNVWW4Xy5cuHX3/9NdSvXz/MnDnTbqeRKBBcdsuXTOHDDz8MRxxxhG2OPvvsM7OrgSpVqtg5inwYOXKkvS9CCCGEECJ7KFOmTDj00EPN3nD8+PGb9Fg333xzuOOOO6y3ELaC2223XWjXrp01s88NRB30J1q8eHF44YUXrHKybdu266xLzzzzTKuc9BP/lxBCCCHEhqDGokLkAR7fr7zyijUURYEN7777bmjSpIk1G3UfdJpuvvPOO3b78uXLQ7169TLufT366KMteTBu3DjbmAAKHkp3f//9dwuoE2C/8847w3nnnZfupyuEEEIIkTHkJVJA3MB6bEPuu/nmm5u6e333JXC9MRD47tu3r60JWTdujAqdNeXFF19s6nb48ccfQ8WKFW0Nytp7Q/j6669NkU5wvWXLlpESfb/99gvDhw/P9/MSQgghhJASXYhcwM9x4MCBYfTo0WHatGnRcUpLUboQSJ81a5YdY5EOnTt3zsgAOkyePDmMGTPGvC5ht912s42Oe7/7e3DbbbeFf//9N63PVQghhBAi05TeuZ26du2adF/WZLndt3379kn3RSSS0/02FgLdrKERmTjz5s3L8/lzmjBhgt139erV4YsvvjALF2fHHXe0dfeiRYs2+HkQeIeyZcsmHef/KVeuXNh3333NfvG3337b6NcqhBBCiOxiy3Q/ASGKK1tuuWV48MEHw913321qnA8++CDsueeetpC/6aabzOLkxBNPNBsXSkfh0ksvDZkOCQQ2IF999ZVd531wBT52N2x+CLjjGy+EEEIIIbIDgtwvv/xyOOqoo2ytiCIdGjVqFJYtW5bn36I0BwLo8evx2/229UGvon79+oXmzZtbsNw56aSTQrVq1Uzpzrr18ssvN9/0SZMm5fu1CiGEECL7kJ2LEOuBBTsLbixM3n77bbNucVBi9+/fP9x4442hYcOGYenSpWZxksm899575ku5Zs0aU6N/+umnoWbNmmHVqlW2WVmwYEFo3LixJRYy/b0QQgghhCgKSoKdC32BsPi77rrrbF1MM1AEKPlh4cKFtp7EDobqT4dKSNaVjz766Hof4+yzz7Y+PvPnz7e1am7Mnj07HHbYYSaU2WOPPfL1PIUQQgiRfcjORYj1QGMjmopSRkrzoRkzZljwHLAtQa0O559/fsYHjfF9p2nq2rVrkxqKUgrMJgSVeqlSpUyFRDBdCCGEEEJsOgS1czvFA+jru288gJ7XffPLJ598Yoruiy66KOy///6hbt26kUVLfuxcKlWqZOdffvll0uNz3W/LC/ryYMP44osv5hlAB9b2QBBdCCGEEGJ9yM5FiBQIkOMt2apVK1PUYOcCXB8yZEh4+umn7Zz7oGBh04C3IvfNdOrUqWMNmSip5TWfc8455rsZVxmxaRk7dmy49dZbw8EHH5zW5yuEEEIIIQqfESNGhPr161vzTujevXu47777wjXXXJMvOxd67RAsp+8Qa0746aefwpIlS0xhntf6HfsYLAXnzJkT9ezJC39OccW7EEIIIURuyM5FiBQIArdu3dqUOjQcGjBggKmvy5cvb2WhPXr0CA888EDYZZddzNqFY//73//CDTfckBXvJap8fOBz491337X3BVU+ZbwqjxVCCCGEyFxozonq+8477wwnn3yyHUNkgh0i9n7Y/OUHxCqDBw+29TbBcKwT8TBfsWJFpLqnAvLoo4825Tkg7Hj44YfDlClTbN3u0MuINT09fLi9Q4cOtobn8S688EJ73nPnzi3Q90MIIYQQmYnsXIRIoWnTpmHUqFEWGB89erQdO+644yxYTrPR7777zo7h18gxfCjPOuusrHkfcwug4x2PX/pjjz1m7yGKIH//hBBCCCFEZoK1YenSpc233Nl9991Nlf7QQw/l+/Euu+wyU5X37t07HHjggeGXX34Jzz//fJJtDUHxb775Jro+cuTI8OOPP9r/ibLcT+6hzvp15syZoW3btlZZefHFF1tVKRWmQgghhBAbgpToQuQC6peePXvaApwF+SOPPBKOOeaYMHXq1PDPP/+Y+oWSUTYMG9LkKNNgQ/PEE09YIgG1EdY2lN3SXJX3i1JalD40Hk316hRCCCGEEEIIIYQQoqQgT3Qh8ggS77zzzhZIHzp0qB0jKEwAHaU1ihhAKZNt0GCU0tz//vvPSnhJNPC+fP3113b7woULQ5UqVcJnn31mgXZ8MYUQQgghhBBCCCGEKInIzkWImB0JPonTp083K5Jzzz3XVNQEhzlh3zJt2jS7L/6Mv//+e9h///3teLaB1yQJBZpAbbXVVuHzzz83tflHH30U9tlnH/NN59zLa4UQQgghhBBCCCGEKKkoiC7E/89dd90VnnvuuXDttddaU0zA35FAOQHhJk2aWLCYwDFKazj//POj+2YTm2++uTWKwo8SixuoWbNm1MAJuA2/eN4rmjcJIYQQQgghhBBCCFESURBdiP+f008/PfTr1y/06dPHGg+hRocTTzwxvPXWW2H77be3oPBhhx1miuuddtopdOvWLWvfv0qVKlkCoUePHnYd6xZ4/fXXw3bbbRdWr14dWrRoYcekRhdCCCGEEEIIIYQQJRUF0YX4/6levXoYNmxYeO+990KbNm1Cr169oveGYDEKdYLneKXDKaecErbddtusf/8OP/zwUKFChfDDDz+EatWqhT/++CPUr1/f3hesXuChhx4KP//8c9a/V0IIIYQQQgghhBCi5KEguhAx8DkfM2aMXd57773DqFGjoqA5bL311mb5AmeccUbWv3dz584NdevWNdsbQJ0PBNQ5tscee4Q6derYe0ggXQghhBBCCCGEEEKIkoaC6CLreeGFF8zb/IMPPggTJ04M3377bahatWp45ZVXwtlnnx0uvPBCU6fD+PHjw99//x0OPPDASG2dzey6667h/fffD19//bWp0Dt27Gje8i+99JL5x2PjctZZZ9l9uewWOUIIIYQQQgghhBBClBS2TPcTECLdDB061ALpWI/Mnj07smoZMmSIXS5btmyoXbu2BdTnzJljx6RC/z/23HPPMG3atNCyZctQpkyZHJus4pl+5ZVXhjfffNOakTZr1qwIP10hhBBCCCGEEEIIITYNKdFF1nPZZZeFI488MjRp0iQsW7YsbLPNNuGvv/4K//zzTzj44IPD1KlT7T3C//ydd94xm5ITTjgh6983h/eOpqs5BdCBBqMdOnSwy/fee6/eNyGEEEIIIYQQQghRolAQXWQ9NMZETf3EE0/Ye3HSSSdF/t2HHnpoePfdd8N2220XvvzySzvWrVu3sMMOO2T9+5YTf/75Z5gyZUoYPnx4OOigg8Lxxx8fGjZsGN3+6KOPJnnMCyGEEEKIks+1115rQhTWfghRhBBCCCEyDQXRhQjBlOcrV66094JGmPh5V6pUKTp27LHHhsmTJ9tlWbmsy8yZM8NRRx0VGjVqFLp06RIeeeSRsGjRovDdd9/Z7djk0GSUAPpjjz2m75wQQgghRAZxySWXhOeee84qOB9//PFNeix66AwYMCBUrlzZKkERvNCDZ31BfKoi4yfW9EIIIYQQBYWC6CJrwVpkxIgRFtjdeuutzcrl5ZdfNlU6dO/ePTz11FN2uUqVKuG3334Le++9tzy9c4DGq7xvrjL34Dke6DQf/f7770Pjxo2j910IIYQQQmQO9MahghPLw/Hjx2/SY918883hjjvuCKNGjQpLliyxitB27dqFP/74I8+/q1u3rglh/DR//vxNeh5CCCGEEHHUWFRkrfIchctnn30WdtxxR2skimKlXr165u9NUN290Q844ABrPOoq9Ny8v7MZlPrY3RxxxBHWZPSDDz4Iu+++e/jkk0/CYYcdFtauXWu3b7HFFmHhwoVmkSN1kBBCCCHEhvHrr7/mehvrK9atG3LfzTff3NTd67svgeuNoWnTpqFv377h66+/DuXLl98oFTq2gFdffXXo3LmzHXvwwQdDxYoVTdySV1+iLbfc0ipJhRBCCCEKAynRRVbCAv2qq64KLVq0CPvvv7+pzIENCIpqgr4zZsywYzTFXLp0adhqq63CqaeemuZnXjypUKFCuO6660yl36ZNGzuGfQt8++23dj5nzpzQunVru3zfffel8dkKIYQQQpQ8pXdup65du66zLsvtvu3bt0+6b/Xq1XO838Yybtw480SfOHFidGzevHl5Pn9OEyZMiBrSf/HFF2bh4iB4adKkiVkF5gWWL1SP1qxZM5x88snh448/3ujXIYQQQgiRioLoIispVapUOPfcc8PcuXMtML7bbrtZkNcpV66cXWcj4A1Fjz76aDsu8obGq0AiAtjwoOb/77//zNoFHnjggfD333/rrRRCCCGEyBBY82GNSJ8cD4oDPXOwTczr1KlTJ7svAXRAeR6H635bThBkZ93+/PPPh5EjR1owHrHMzz//XGivVwghhBDZhexcRFazYMGC8Prrr5sC/ffffzfFStWqVe02Sl2PP/740K9fP7uuhqLrB99KV+2jBtpvv/1sY1StWrXw6quvhjVr1tgmiMTEM888Y01IhRBCCCFE3njfmdzsXOJ89dVXedq5xGFtVlBgw9KxY0erTmzYsKHZ++255562pua8MIkr7OvXr29BddafNLQ//fTTC/X/FkIIIUR2ICW6yDpoVoTHOZYud955px2j5PPCCy8MNWrUML9FboNJkyaFH374wRbheHuLvLnkkkusWWvt2rXtOr7nRx55ZDjxxBPD008/bRY5bomjBqNCCCGEEBsGHuW5neJ+6Ou7b9wPPa/75hf64LBuvuiii8wqkSafrkbPj52Le5p7JajD9fz4ne+0005hr732skC+EEIIIURBICW6yCpQmuOF/u+//4bZs2eHJ5980o43btzYgro0FUU5feWVV4brr78+jB071m5HwZKq3BHr0r17d2soio/lQQcdlGPz0F69eoWhQ4eGZ5991hq74l0phBBCCCFKLogoUIAfcsgh0ZqQHjjXXHNNZOeSF27fgqCFYPmsWbOsohF++uknq3Y8++yz86Xc//DDD8Mpp5yySa9LCCGEEMLZLOGSWyGyAIK2gwcPDh999JEt9G+44YbQsmXLsPPOO4cpU6aYTzrBXXwUBw0aZMF0gueUuhIcFpsOCQze84ULF9p7fMUVV+htFUIIIYQoofz222/WX4gKT6o7XZlOJefixYtNrJIfhgwZYut1eugQVO/fv39Yvnx5WLFiRaS6p0KUfkXnnXdeVA2JFzv/J+t9gvcE7vmb8uXLF8KrFkIIIUS2IWmtyCpQPd9xxx3h0UcfDWPGjLFjJ5xwglmNQIMGDSyATgno119/bceOOOIIBdA3ARqKkrRAoXTLLbeE6tWrmyIJUCgpjyeEEEIIUXJ58MEHQ+nSpa2XkIP4BFX6Qw89lO/Hu+yyy0Lfvn1D7969w4EHHmiqchqGxm1rUJl/88030fVPP/3U7AOxFOR57LLLLhbAVwBdCCGEEAWFlOgiK6FEFMuRXXfd1RQz+KS3bt067LDDDuaJjqrl8ccfN/9F/B1RuogNh00Nmx3U/e+8844p+X/99VdLWEycODF07tzZPgM2RXPnzjVluhBCCFFUkMAlyesNGZnvp06datVn8SaE999/v6lZjzvuuHDwwQfbMeYukvEk3Lt27aoPTQghhBBCiCxASnSRFbBRxroFlbmXgL733nth9OjRtkEGb34JNCJiQ12hQoXQsWPHtD73kgaqc3wtCUJMmzYtvP3226FFixZ2m/vKP/fccxZIBzUYFUIIUVj8/vvv6zQWxCOZpPnkyZOTVKyoXrGAiPPMM89YBRtWEg5WEWeccUZSsN3Vs1jFjR8/PilYj9WFEEIIIYQQomSjxqIiK5g+fbr5Kd52223h888/D6VKlQq1atUKP/zwg22w8XFkA41fNwHfGTNm2N/17NkzbLXVVul++iUKvChJQlDWW65cOXsvuQyoz7HMeeONN6xpFKD4J0Cx4447pvmZCyGEKMkQsP7777/D1ltvbddpRNi8eXOb46mIiifWUZOvWrUqOla5cmXzU/Zm16wNsHVr2LChPR6XR44caY//xRdfhHbt2oUyZcrYfbGMeOWVV6wC680337Tr+DjzmH/++WeoV69e2GeffSwQv9lmmxX5+yKEEEIIIYTYdGTnIrICNtKoy/bdd18LpscDtj///LNZjhx77LHWBImAbr9+/WyT/e6775q3osgfBCcILjz55JP2vlatWtXsXL799tvQp08fqwBwj0ve+1GjRtlxIYQQYmOgEeGwYcNsjqdJOPz4449muYInMgFzD3q///77NseXLVvW5nkq01CrDxgwIGy77bZ2H2zd7rrrrlz/v/j6gP+Tare8QKFOAvnll18OS5cuNeuYP/74w/7ObWKEEEIIIYQQxRcp0UVW0KRJE1OIoR5DZda+ffuoCdL2229vAV1sXSjB/u6772xzjSJdAfSNwwMVHTp0sMsff/xxOOaYY8xf/vvvvw9bbrmlqfYuueQSC6LTYFRBdCGEEBsCQW/6l1x88cWRpznzNjZsc+bMiYLoJMzXrl1rinAU4KjEqY569dVX7cTjxOnevXuoW7euXaYpIZVoBOCpqtp5553t+D///BP++usvU6WjVmddQQAexTr/D9YtrCPeeuste06o40kkc7xx48aWTI4r4FG0UxnHbSjW+f+wkfN5VAghhBBCCFE8UBBdZBUEa9nIEtTF1qVmzZq2seaET/qhhx5qm1nA71RsGtjmHHHEEeGJJ56wwLn7obdt2zY8++yzpsLjOMo8ghsEEIQQQojcwE6ladOmlpAl8HzIIYfYcZqEN2vWzE4e7CZQjo2KW6gQeEdtHmf33Xe3++y5556mQicAjlIcCxfU4sxhQHPR/fffP/o7EsFx8Efv1auXrS+Yz1CdOxyLQ+DfG5uyJuG+8fszd5Lg32677Szxz3MjiI9dGj1HUNdzHSU9DdK5rxBCCCGEEKJwURBdZDQovgjg0kSMDTHKMTjttNPM2qVOnTph5syZpjgDFGwoxGg4hg2J2Hh43/v27WvvMSxYsMACAPjKtm7d2pR5eM7ToA2F+tixY81KRwghhPCAOQ2qX3/99XD99dfbMdThxx9/vDWxdu9zYE5BMU4jUOYfErXYudA8tEuXLnafli1bhqOPPjoccMABdiIoTkJ97ty5lsxFFR5vQkqFlAfRSbATcEdtTuCavh4Ewx977LHwzTffWJPs1EbZBPRJDvNcWVtgIwP0X8kLfNQ58bj87aJFi/K8P0H16tWr23vAPMu8y//LOscV9EIIIYQQQohNQ57oIqMZNGhQuOqqqyxoe84551hgnFLpCy+80I6zgT7ppJMskEv5Nwq1hx9+OJx11llRwF1sHPPnzzdLHDb0nChPb9WqlSn+4mXq2Oxgr0MQgM/B/WiFEEJkNx9++KGpsFGSc5lmnYCK29XlKLmffvpp68FBAJ3rDvPKzTffHM4888zoGBVQ22yzjV0mgO6NROPwfzZq1MjmLALTJIEXLlxogXYea/jw4XY/mpN7kHrzzTc3izieG8+B87zguZHA5+9JBpC85zpWMajssYMh6ZxbwJ3XTxAfxX1e8PoIqGNbd9BBB5mKX4F1IYQQQggh8o+U6CKjYfOIZQuK5zvvvDOyaUH1DATLr732WttIo9hiE+5l2WLTQIE3ffp0K7WPqwVTadOmjQUpKHdHkU5JvhBCiOwDpfaKFStC586d7foee+xhPuUowAlQOx5A97854YQTouskbUmYd+3a1exeCDRzn8cff9wU6iTSmZsAVTlBZWxRmLO4/9577x1GjBhhCd6JEyeu8xzxUadZ+Ysvvhhmz55t1iuoxrFmoVm2w2PSVwUF+1577WXnvB7WJTwHtzhbH1TIDRw4MPz000/WQ4Qm3UCQPq8AOq+bADzJaU7+mgHfdwLqCAywV+O5CiGEEEIIIfJGSnSR8bCJXL58uTX9YlNJuTVBdZRYd999dzjxxBNDhQoVwpVXXmkK9QYNGljpeHyTLgoeyuxR2tHMlQ08VQOo/ggYCCGEyC4ITBPYRZGNhQnnqRBAplrsq6++Cv/73/+i48cdd5ypxwmeM9czf69ZsyY89NBDFjxnDeBQCYXvObYwgOobCxeU2kAwnOA6/wcQAMf6hSA+yV6sVeLBcmAO4++5Hwp2zgn8F/Q6ApU6wfu77rrL1Pesafbbbz/zfgeeA0F9/NoJ7APNV3lvFi9eHObNm5fU1NQV9CQPsK2hKoznzzEhhBBCCCFEMgqii6wAqxYC5myw2YTT3PKiiy4Kb7/9tqmzLrvsMjunsRe+3Hh5i4IFFd2UKVNs0z9kyBBrmMYxPgOuk8QgeLFy5UoLWgghhMj8JDdzAjD+UxGGWpsgMRVKDt7gqMM50esEOxbU1bnZkpx//vl2X7dUQfVN83DWAPijYxtGEBqlOesBvNQ/+eSTKHg8evRoe27YtcyaNcs80+O2KlixUGVFM3JOKLuLMvCMIv2GG26whqKjRo2ySjteM1D5hU3d6tWr7Xnzfvbo0cN6weAvf/bZZ5sSniA/yWxscuLstttulpTo1q2bBdclKBAbCpWdgwcPDp06dbJk14ZWWwghhBBClBgSQmQgb775ZmL27NmJ//77z67/8MMPieHDhycef/zxxGabbcau2m73y0899ZSdlypVKvHtt9+m++lnFPfee2+iVatWiaOOOsre41NPPTWx+eab2+XLL7/czps3b5448sgj7fKll16a7qcshBCiEPn+++8T/fr1SzRr1izx77//Rsd//vnnpPutXr060bdv38S2225r8wOnmjVrJoYOHZr48ccfo/t99NFHiT/++CO6PmLECLvvYYcdZnPQN998Y+uB+fPnJ0455ZRE6dKlo8fjtM8++yQ++eSTxK+//pp4+OGHE+3bt4/mKT/tu+++iauvvjrx8ssvJ/75559i8f3wNQ6vb+DAgdGaxk/x67yeOnXqJLbeeuuk+9SqVStxzDHHJDp06JDYfvvtk26rVq1a4rLLLku888476X6pogTA75e1NWtpfkeb+t3u379/olKlSoltttnGfsvvvfdenn/D9zX+/fXTOeecE92H9Wjq7X369Nmk5yqEEEKI7EFBdJGRHH/88bYwZsMb57rrrrPjbJCvvPJKu9y2bdvEWWedZZdPPPHEtD3nTIWgOe/t0Ucfbefly5dPtGnTxi5fcsklUaBi5MiR0e1//vlnup+2EEKIQuLLL7+MArYzZszI8T6PPPJIYosttogCXQ0bNkw8+uijSQHsZcuWJU4++WS73z333BMdJ8D+wQcfJD0eAbl44GyPPfZI/O9//7Ok+6uvvpo4/fTT1wkiN23aNHHrrbeu81jFkeeffz6xww47WLCfoHg8CdC4ceOk11W7dm1b7xCc9GME1z///PPE5MmT7bbtttsu6W9atGiRGD9+fOK3335L90sVxZwePXrYOntTGDx4cGLHHXc0kcsbb7yR6NSpU6JGjRqJ33//Pde/+eqrr+w77KcXXnjBvrsvvvhiUhD9zDPPTLpfPCEnhBBCCJEXCqKLjAP1Cso1lGavvfZapNQCNt/Tpk1LzJs3L1GhQgVbXKOWYePJ5VmzZqX1uWcivNfDhg2zIES5cuXsfUbZ5gq4du3a2WWSGiiOuEzFgBBCiMzhs88+S7o+bty4xPTp03O9P8EtArkoUAmGxedy1K4+d/ipd+/e66jYP/744+j60qVLTdF+2mmnJRYtWmTKdeZ/1PDxx6levXpiwIAB61W9FleF//vvv2+XV61alTj//PMTe+65Z+Ktt94yNTnqfxIFV111VVSlN2bMGAuyUw2WmsTgM6KKLB6Q32mnnexxeH9F0fLLL7/kekoNLud139RESG7321gQRWy55ZYW1N4Y+K2zHqTixOG7isKd7+WGcsEFF1iyLD52EETnuBBCCCHExqAgushYfvrpp8TEiRMT+++/f2LSpElJt7EYv+iii0yxRak3G0MULvGyclHwUDLrli5eTk8JOudVq1ZNXHHFFVF1gBBCiJLP33//bcFcAmDLly/P9T5YrmG1EgeLlThLlixJtG7dOsmipFu3bhYgd1CtujoddXkcFKcEmm+44YYoactpq622Spx00kmJuXPnZtQ6YPTo0fb6EA0QZCXwTXATW5cnnnjCgosICzjWvXv3yLaFADxWMMzT5513XmLx4sWJ66+/Pskuw9/7V155Jd0vM2vIyarET9jxxEm1LIqfCCTHcYFD6mljadKkif39HXfcER176aWXLCmW1+mhhx6y+3744Yf296+//nrS47Zs2dLGkg2BisZddtklceONNyYd57Xzermtbt26tu7ExkkIIYQQYkNQxxeRsZQpUybceuut4fXXX7eGoUceeaQ13IIdd9zRbmNPQnMwOP3004u0MVg2QqMyGrbR0I3GUzR1ozkcn8fHH39szdnghRdeCGvWrAnVq1dP91MWQgixCdA49KOPPgp//vmnNbasV69e0u0LFy60ZpfLly+363369AnNmzePmlzGufzyy8OcOXNsLj/jjDPCxRdfHGrWrGm3Mdf3798/PPPMM9H9v/zyS2tYytxOc9Lhw4dbE06aWkPlypXDWWedFXr37h0qVaqUcZ8z6xsaqbZr186asdLIm7XRu+++a01WeZ9p4PrPP/+Ehx56yJpBnnLKKTY/Mx+/9dZb1qCVefvUU0+1BuyrVq0Kw4YNs3n60UcftRP/z1VXXRUOP/xwNSLNchYtWhRefvnlcNRRR4UJEyaEvn372vFGjRqFZcuW5fm3FStWtPMvvvgi6Xr8dr9tfTz11FPWGLhnz55Jx2m6W61atVClShUbcxhTaGg/adKkfL1OIYQQQmQpGxRqF6KEsHDhQmsw5jYi3iwUpRVKLFTPcVauXBkpqj799NM0PevM56+//rKyfSxb3EbH/enxQD/jjDNMif7kk09a6T7H8a8VQghR8kD1jLrcYX5NtW6hGSZjv6tey5Yta8rp+N99/fXXSc1GmeN79uyZWLNmTXQM2xUU0akKaXzO3X/94osvTlLmUoU2YcKErOm/EbezmDNnjlnWsDby9wNrnMMPPzy6jjKdyjGq+VKV/6j8sebBj57KAe7rt6MURs0vstfOhZ5EWABhp8h3wu2F8sOCBQvsb1MtoI477jh7/A2BisaOHTuu937YOPJ/lYS+B0IIIYRIPwqii4yBEmxKlCnhJmjepUsXWxjTQIhNH5fZfFMuyqKZTSUba46neoGKgoUSepqWefNWt3Gh1P7pp59OfPvtt1EJPZt2bt91112TgilCCCGKPytWrEjUq1cvz0QovsbYKXjwtVevXhYwj/cvufvuuxM777xz4tJLL83z//Mm4diPMNd70I4gIPNMmTJlov/ngAMOsMaZmWTZkl8OPfRQey9o1MiaiPeN67zXNGD0xt+c6tevb2slgprYhbgnOnN23HIHj+l4UJ7HwHpHZBf0ICCp4o08sUu59tpri9zOhSQbCR+akq4Pxgn+LxrzCiGEEEKsDwXRRcbABhzFFE1CWXj7xhBFugdw58+fH23cWVyjfOMygVxRuLBZR9mGSi3e7C0Vmr35Z6TPRQghShY062T8xnOcBGpOQSuSpK4IZ46Og/92w4YNo4Bso0aNkhKqVDbRdNTB4xzlOcpo4L4o2itXrpz0GM8++2ySIjtbIcB4wgknJL744gu7jmKYwHrcOxq1+kEHHZSYOnVqUmID73kqxhzez/vuu88+U4LpZ511VpIynaRGqq+9yFxoGs9v1xk0aJA1kAfU7yS48jrRyyjeWPSWW26JHouxZEMbi15zzTX29xsixGBfwHeVXgpCCCGEEOtDQXSRcVC6TSMsb7TExpDLjRs3tvJtLu+222628eMyjbLYHIr0Q3BkxowZ1vTVlXJCCCFKFjQJjQe6U3nhhRcs0MWY7xBkY+z3BPiOO+6YuPPOO5MCYbNnz07ss88+iebNm+cYECdJS2Deg7g0DCfols3K8w1hwIABFvD094nAYo8ePRJfffVVdB+aRPK+x4ONzzzzTLSmevzxx+0zoSkpf+ufIzY6NCVNtRARmQXNOalmcDU5IJjge7AxVQmDBw+2qocpU6ZYQ+LOnTvb7zluW4NwhjEiDt9h7AEvv/zydR4Tyxa+iySDaLLLY9esWdMU7kIIIYQQG4KC6CLj+O677yLvUzxY2dxx+cEHH0w0bdrULlNe6pfj6itRtKA6evfdd60cnw347rvvbp8JSjfOseaRik0IIYov+BZTZZRbkBTf8QsvvDBx//335/oYBGb32muvKPh96qmnWkLcIZjrVmCcypUrl+RhzH35m7i/OoF8KptE3rzzzjtmfeFrJoKQ2LhwnR4mBBpJdvhaCqX5FVdcYZ83FhgENuM2LszpgCf9wQcfHN1GYJPHEpnJyJEjrcIknhgDqhz69u2b78cjIYMlVMWKFU2BTr8c+hjFQQRDMi4O32G+b6n39aA+AXPGBx5zzz33NLuonCpmhBBCCCFyQkF0kRFQDu4beDaAlCDTsMyDsWy48WPk8lZbbWUqOL/sJc2iaED9w2dBIzOSHe5ni6KIplFcPvfcc22jowajQghRfGG+bdCggY3VWHmksnbtWrMF4Xas1khy52Yxsv322yeqVKli6uY4JFhpQO2NLZkf3JOb/x/vdBSr7oveu3dva1oqNjxYOXbs2MQ555yTZKmDn3U8qfHWW28lunbtGh0jAEl/GdZeBDLdE5111VVXXWWKYR6bPieeIOfEPJ9XlYIQQgghhBDFFQXRRUao4PA8J1CeqlpGucKmDdXUSSedFG0G2WRzGR9VUXRQVs/7fuCBB1rjOS5TQu5l3w888EBUxj9+/PhICSc1oRBCFE+wWGE8f++995KO46uNitTH9FQV8g8//JB0nWaE8SA7tx9//PFR8BWblldeeSW6neaDrVq1im7ff//9LfgrNh0C4zfccEPikksuiVTqqIwRINCYlWSHv+8IFn7++WerDPDmo5zatm2bZPXBOozqMm9Oeu+998qjXgghhBBClCg2D0KUcFavXh0qV64cateuHXbdddek2+66665w+umnhy5duoTHHnvMjvXq1StMmDDBLp999tlpec7ZyqGHHhq22mqrUKZMmXD88cfbsenTp4fDDjvMLn/wwQehRo0a4ccffwx///13qFKlSvjqq6/Ck08+meZnLoQQwvn555+TxvXXX3891KpVy64j0LjttttsXP/yyy9DvXr1wtKlS0OnTp2iv2FMr169epgxY0Z07JBDDgk777xzdH3bbbcNK1euDFtssUW4+uqr7TEaNWoU/vvvvzBy5MhQv379MHfu3FC6dOlwxx13hFdeeSU0adJEH1IBcMkll9h7zpw8b968sOeee4a1a9eGtm3bhl122SWsWLEiWj/dd9994e233w577LFHmDZtWpg0aVKoVKlSuOiii6LH4zMaNGiQfYYNGzYMP/zwg63N2rVrFz777DN9ZkIIIQqFb7/9NqxatSr89NNP0bFff/01LFq0yNYucdh//vLLL7aOEUKIXEl3FF+IggAPRlToKJ8oK/7++++TbkedVqdOnUSLFi0Sw4YNMyUUzclyakwmChdXGlK+7+X3NIbiMiXfNH3iMg3MrrvuOruMHYAQQoj0wpw5cOBA88GmCiwV7FW80otT9+7dTYXsUFWEP7Lf3qVLl3X80+ONvmkoSBNA59NPP00cfvjh0d9j+4UiXRQsTz31lDWJxF8afvnlF/O9R2keb9JKtQHe86nfkfhnDljsvfbaa3aZRrG33HJLYptttrHPcJdddklMmjRJH6EQQogNguqnZcuWJVWv0YfjkEMOWWddgV2oVzs7/C3HKleunHRf771y2223Rce+/vpre0wsz+JxA55DfL0ihMgeFEQXGcOMGTNs4tt2221z9ENl44cPZ82aNe1+o0aNSsvzFP8Pkhp8FgRl2LBz+eGHH7bGZVyeOXOm+atymcWREEKI9EEDvj322MPGZLzIc+Liiy+25CjB1fiGk+afJEc9AH7ZZZclNSFctWpVonHjxpZIzQm80rFt83n+9ttvTwroioIl1W4HcQJJDofAOuuuOG+//bYlNuh94pDkwO8e2z1EDP6dWLFiRaJhw4bR9+H000+3oIQQQggB9NZYtGhRYtq0aUlvSLNmzWzeePTRR6Nj2L25ICs+bxFEJ2l72mmnJQYPHmw2ZQTFt9tuO7OJi68xmKt4DBpp02CbOWq//faLbMgc5rgmTZrYfvXss8+2Bt3MiaxpmNtIFgshMhcF0UWJhc0WTa18Q+beqOeff741HiOb/O67766jhuI+BGyZ7ER6F0Z33HGHfR577723fWZcxgPXfXDxS3dVAIsfIYQQ6YVgd15JaALbbHrjoCivVq1a5I/+9NNPJ93OBpnjrkyOB3AJ3LLpjXufr1y5shBemcgNlHgkTy644IJIedezZ0/7PKgY82SGVwkQbGC9BYgaCFj454eanYSKf7Z4pXtflNq1a1sgXgghRHbB3IJCnIozZ+HChTkqxnv06GFrhXvuucf6cRAAv+mmmxKHHnqo9dRyRowYEc09OZ1uvfVWSwbzN947LbcTDc5J9Ddt2tT2rTndx4VfJPqZA19++WVbr/AcVf0uROagILoosVBqxURFkHX+/PnR5IViuVSpUnadRmUPPvigNcmKNxq99NJL0/30sxrUaDvssEPiyiuvtIWGl9mx8b7oootsE81CChYsWGC385n6xlsIIUTRwMaPwHlu0FD05JNPzrUBNErkMmXK2Di+5557mmIr/tjx5tKoy7D6cj7++GNTe/kGFSsYNZoueh566CF7/7HxIShO0NwT35w6d+5sVQp8dvHPi7UWyjw+ZyoX3MKlUqVKiXnz5iXZwqD84zbUgVSkCSGEyFxSg8oexEYtHhfM0cj6iCOOMPEVYA2G+pvKNuaL1ED2hAkTose/7777LNhet27dxJFHHmnBd6zJvMl1TifU6QjyiC+4FUxBnmjWTWUW+18C8yjdSS7z//H/Uo3HfPnEE0+YHS3Weaq6E6J4oSC6KLGgfmJDNnbs2ET79u1tYjrjjDMsMOubcXw9uVyrVq3EG2+8EU1e8U26KHoImPNZsDi54YYbEqNHj7YNuC+Q4rAIOvDAA+3+1157rT4uIYQoIhh/2dSR9EQRlgoJTxRibs+S22Ng1cF4/+2330bH8c3u1q1btLE866yzkuxCCLJWqFAhUjY/+eSThfQqxYbw2GOPWZl6HAIUBAP4jOg7g+KOz7Bfv35JvvVfffWV3f/NN9+0YAbHKYNHJehwn7jfPQmT+PdBCCFEyYe5/5RTTrHqtHj/DFThJNz79+9v1xHAIYbD8jPeG8Wryv2EyIrAN/MHweiuXbuaYtyT917l7OuRjz76yOYfkvdly5a1v0Vkh8I8r+C3J4HTceL5ksTmNZLAxs7u+eeft3iGFO5CFD2b8U/ubUeFKN58+eWXYfXq1aFZs2Zh8803D0uXLg2HHnqoddd+6qmnwi233BLmz58fLrvssvD999+HsWPHhq5du4Ynnngi3U89q/n555/DG2+8EQ466CD73NbXVX3GjBnhpJNOCuXLlw8ff/xx2GabbYrsuQohRLbyxx9/hLZt24Z58+aFcePGhR49ekS3MYa3adMmfP3116FevXph5syZoUKFCnYbS8u///47bL311nb9r7/+CptttlnYaqut7Po///xj4/8rr7wSttxyy3DnnXeGs846K3rsMWPGhPPOO88eo379+jaf16hRo8hfv8idBQsWhLJly9p8fswxx4S1a9eGnXfeOUyZMiW0aNEiPPnkk+G0006z26tVqxZefPFF+wx//fXXcMYZZ4SJEyeGfv36hWHDhkWP+e+//4Zrrrkm3HjjjXadx5k0aVIoV66cPgohhCiBfPHFF+GTTz4JBx54YLQ+YC746KOPwrPPPhvat29vx3/77bfw3nvvhVmzZoXp06eHl156Kfz55592W//+/cP1118fPR5zRNWqVcORRx4Z9tprL1tTbL/99nYehzVHpUqVQuXKlUOZMmXCsmXLwnfffRfdfvvtt4f99tvP4gc8lzlz5tg8lBc77rijPWbFihXDrrvuapeZ+3baaSc7cXvp0qVDqVKl7PTff/+F1157zV7XFltsYXGLNWvWhG+++aZA3l/+b16Dn5o0aWLvCWsuIUThoCC6KPEcd9xxFhQnyLr//vuHSy+9NOy9997hnnvuCc2bN7cJlMmRSYWAwNy5c0PLli3T/bRFLrC4ImDDIoTPkMQHAZQ+ffpYAJ1jp59+ut4/IYQoAgh6svnr1KlTdOzVV1+1ADrJ6QMOOMA2vLvssovdxga0b9++4dNPP7VAqgfOU2Fs/9///mfzt8/JbIDPP//8MHLkyGh+v//++8N2222nz7oY8eabb1qAm4AAgQ4++y5duoQlS5ZYQGHVqlVh2223De+880446qijLIDBd8iTKszzBNGPPfbYHL8fTz/9dOjevXv46aefwh577BGmTZsW6tSpk4ZXKoQQYmNhLO/cubPty99+++3oOMlRkrCI4Ag0f/jhh6FVq1aWjI1TpUoVm2tYCzC3PPfccyasIijNnp9EvHPYYYfZPp9AMo9Fcp9gdYcOHZIeE/EWwW7WKswxOelJub1u3bphn332sYB0zZo17UTwn/1pQUDQnrUOr43XSYD/tttuC59//nl0HwL/BMNJRgPPhTmRwPyKFSssOZET/t5yYn1FDMTnXyFEAZAG9bsQmwTdtynFcmgeSoMrvNC9rJwS42OOOcYucxulYVzGFkRlT8ULPg+ayFHWTQk4Nj18Vnx+5513nl2mPO+WW26xy/vss48+QyGEKETcfiMnaBJKc27GY8qfv//+++g2/K9POOEEu41S6ZkzZyb9rTeldOINRPE+dWs2/vbGG2/UWF+MG41SLn/wwQdHPWc4x9N17ty5SffFwif+fWLOT12H8b059dRTo14o8NZbbyWqV68e2fmkfpdE8eOaa64xa4Xjjjsu8ffff6f76QghihDmdyxGlixZkjTH4/3N/hvbTmBsoBEovTbif4s/OJYp7dq1s75n2MU9+uijZsXCHJBqcYJV63fffZeYPHly4swzz0zUrFlzHWs5/MSZR9g7VqxYMUerFPpxHH300bbm4PnT2DRdsQKeA88JKxosXPKyeMHrPfUY73VOfu94x+MrP3ToUJtnFQsRYtNQEF2UKBj069evbxMLfudx7r33Xpsodt11V/M/90ZldMbG84zLeHqK4sOoUaPMH5Xu6h44mT59ul1mEYAnbvxzdH+75557Lt1PXQghMhKaPJYuXdrG5VTY/NIc1APoP/30U1IgFC9Sb/LN5jcOc3aDBg0sAJvKF198kTjggAOiTWDq/C6KHyQ94gmUnMAjPbUhGgEOmsLFEyoDBgyIAgcEVxyC7wcddFDkCTtu3LhCeCWiIL8Ts2fPtkD6pjaHpQdCmzZtovX766+/XmDPUwhR8LhgjYB0aiKV/TtitwsuuCDqdcJ+PT4/0DODoHccX1NwInlPH5UxY8aYTzpBYcaaeLCYvSOJfDzD8Tn3nh1+Yk9JI096vdC4M/X/Kw7QrH3RokU2vz7yyCP2enjevDaaorL2or+bvyaSDg0bNoz2y3664oorLAFBciI1qL777rvbPPzss8/m2I9MCJE3CqKLEgUTMU012GjFG5R5tpuO3mz8u3fvbpNE586dE3feeaddJkOdqoIT6YXFFJ8NCwRvKEZjWBqRcRlVU5cuXewyCwdvVnbooYfqoxNCiEKAho6Ms8cee2yOaqUFCxbYGI0CLB5cR33K37FpZWMWh42gq6PY2MWhmoyGWdxWrlw52zyKksf48eMTEydOjK6jdttxxx1tfvcGoXGBA+szbyrHd4nGsxwnOECC3WGDf/LJJ0ebf5rPieJNjx49rKpkU3jwwQetMnHs2LEKogtRTCvDP/nkk+g6jacJdF900UXR2oFAMAFtbyjtJwK7NMgk8fbHH39Y0qxTp06WLGVN4CCa+t///mfJOa9u4TweGGb9QKNSqpn233//dQLGKNFpXI5ifX2J3+II7wcqetZHPpd+8MEHUSAdYcNNN91k1Vu8DyQWSFRQFUaSghPv7R577GGfQ2qDVFTqzNO8PwqoC7FhKIguSiQff/yxTb6UDqN0isNkweafjRolZb45v+uuu9L2fEXOsOBCUcCihgUUnxMTPyV+XMaeZ9asWXaZSR8lkpe3LV68WG+rEEIUMGx+GZfdpiO3+zhsaN3CBQV6XEnswVXf7LHJjds8MKazMeQ2NngosETJg8QKnzEnL+WfNGmSfR/4bFEMesAc9Z+rB1HUuSCC4ECvXr2ijX3czofziy++OLrtqquuyspy9F9++cVO8dfO+8YxAlE53Teu9KRahGOpgZLc7ruxjBw50tZqedlCbSirV69WEF2IYsYll1xiv8tLL7006XjqOITa2cdtxn2U0U8//bSNL8z/55xzTlRt4idPorIGmTBhgomsqlWrljQ+YfeC8h3hFdZiqWrzFi1aWMKVAHQmzBWsm955552kOAiJhLj6nPnX11N+4n3jfdp+++2T1PqNGjUypX6VKlWS7s/9ECLOmDFDwkMh8kBBdFEiwa/MS7QoPc9pgvzwww9NFeXqNt/AieIJCyr3tCeI7pdRIzHZc5nyPTzuuYxCXQghxKaT1yaTIB1K4Ndeey3H2ynBxv6FgOnUqVOTbqM/iW/yzjjjjKRNMMFW9zmlFPnLL7/UR1lCocqPADi+tPHPGH9Zvht8xs2bN488cbFqc1/9evXqmZ2Pfw/dEoBTXNHIOdWGflvv3r3XsYrJdPy1x4PTN9xwQ/T7iuPvO0FoZ9iwYXbspJNOSrqvB15QMjok0jaWJk2a2OPdcccd0bGXXnrJFI95neIeyY6C6EKkH8baeDX3tGnTLFGGLUr8PlOmTEkK9hIoR/1M3ytXgb///vuJZs2aJQVvCeZefvnlNgahcEc5TiVT/D7YwRBMZp3RsWPHJO9vAsht27a1ccvnk0zmm2++sXGbdRc9w0gaxN8rEtQ77LBDUmIBX/jUhAPj7mmnnWZJaixeUi1fqALg8xJCJKMguigRMDHjhenqGS83p6kVvov4m6X6ZPM3bM64HyWhovjjvqiHHHKIlaZxmdI8lAhuyUOjGQ/KcFkIIcSmcfXVV5tXdWozQAKXrg4msZlbqS8BMkqBUwPovhlDjRYPeHJ/V0bheR1vMCpKJl42npNK3ZMlBE48kE6wpFKlSnZ8r732MmVdarAX6z7K1uMQJPHKBr6b2RRILwlB9IULF9oa7aijjrJguoOqlGBMXqd4jwVHQXQh0gvVZfvuu2/igQceSFobuJUL6nOsVOvUqWPjCJYicbhvPACPqI0AOQFgPM5d9Yz9SGqQt2rVqrY3JPHKOT7q8dtpWIpdTDYEzlNhTKVa20F1TzyEsZ8G8K7k5z3ivaIKAKj44730xt0eI2EuZW3GXJLayBXVOtVlahgtxP+hILooETz++OM2iDNBr1mzJlKho3KqXbt2pFJGxfLRRx/Z39CYzEuT4t6tovhBAgRVAT66vjlmI8ZCgM01CzWC6r5xPOaYYyJrACGEEBtPPDHJnBpn6NChkcor1eccL9PcYPPmGzSUanGl+4svvmjNQ72/RV6PI0omfN4kZrxBLApCV56jkPOkCYFTgiQcT21Ei3AiHiBI9djPxkB6SbBzIVBDAJ3KFT6fTVUxKoguRHrxCiAqxuJjD2MOVqnxwDbqZ9TL8cAuFUoEx+N/S+D8888/T/p/CJTzGOzxsWt94YUX7Bj9VuKqc5J+KKfjineRsGq+eJU+8J4z51I1wLjsiVI+F2xSO3ToYIFzB2tVPkPWbfSUw4otbhmDOp3EbU4N4oXIJhREFyUCBnUGbjKnlPC6WhmrDy7jp0ZJOZMEmW2sXNwCBL80UbxBieDNQ+nqTgMU/NKZ7HPaHFPqx/35vFetWpWW5yyEEJnCY489ZqXUcQiA+uYpbsvgQUxUxARHc4OE9rXXXpu0cSY5Svmw+2Tn5bsuSi7e1wQPXBc2EFRlrYaiLW6vx+345q8P5vq4mjFbA+nFGaoJWJeRKANsHBgDQHYuQpQMUDHHk18k2K6//vqkppyM8Z4A5UQgHVsRrzTiMbp27ZoUgCUg7rBPp0KN/hYOawX6KXz22Wdmx5qqSmffz/HUhKH4f+8fYy82aA7VPQcccEDS+0hS4oILLkiyesEilabu8b4kzK98hlQZ0hA+7reOEOK8887THlxkLQqiixIDk6YHyhnAmSjoSM3lQYMGWQCWyzQgQU3HZZTMBdHYSBQu8+fPt0mfzPiGlIpRWYD3XU4lzEIIITYNGna73QqNv+KBcIJh3jAytalYXqpyAu7ucco8nZs1jCj5MI/T4P3uu+9OOk5yfH39aVizeeDdeeONN2wDjw1JboF0PHQzoYFcSQZLKNSqDmvzWrVq2WXZuQhR/Bk9erSNqe3bt8/zfm4jhc0bfuce2Eb8RJA2HrRFGEUAnfGZyjcakfu4TVLdg/NU1dx77702ZvjfkoglsMscIPIP6yxEiLzPJCHinwuVgCS1U48NGTLE1mjx423atLHKAMSLjPHxQDtCOH0+IttQEF2UKNjMu4Lt/vvvj8q6KOnyTT2eajSw4nI8GytKvu8byoiWLVtacxQv+5MaXQghNs7nFIVZKgQ5vZ8Izaritg7YqZUvX95uQ6EUD2gyD1esWNHs11JhY73LLrtEvUxy+n9FZrG+gDa3o2aMqwrxtUW9TP+TuEc6VREuoOjRo0eS6py+OK52xEJGpAfGDSx74s1B+Qz5bGginF++/fZba0rIOMVniwKV66kWEEKIggO/bPbTJEHjie7FixcnXn755SSFMxVq8Woyfudx5TnWTm4fwuPSoDx+O4F6bEeYA0i4xpXtVC1dc801aji+iVDBRdB7t912s8+TCgGSHP454JlOcpvmoh5HwQ8dQQT3xTbVrXTwW2fe5sSevF27dkmBdr4z/I0Q2YCC6KJYM3PmzMTs2bOj6wzqeGMzmbPJYtDGs/Xcc8+NSr3w1/bs9dq1a9P6/MWm+WD279/f/NArVKhgkzsKBu82TnmZ1OhCCJF/KNtlY0RPkdSeIVxnc0RAnLJqh8A3myhv+BwPhKMerlGjRhQkjwdQURVXqVIlagLm5d4ie2DzTun3p59+Gh1jfuc7gYWbV6Bx+x577GHHqTSMN4vD1s8385Six79jWAD4Rp7mmaLo4TPA0iHVSx1lY9++ffP9eC6UST0RWBNCFAwkpgikxok3I2YfjT+5z/uptlnxcZjbuA8J9ngwFfVy3NOcMZ//lyQ8t/nagRPrDvb1OTUZFhsHn0v8MwWquKnsin+eU6ZMsWA6SvT454toDesdGovGk6YkTZYtW2ZK9HhyhCA9leVCZDIKootiC5Pr3nvvbQPyfffdt45/q0+2ZLcJmHOdzCgTuFToJZMPPvjAmpkwYXujGlRmrVq1ssv9+vUz/zwuN2jQQGp0IYTYCKjYYoxlE5UTbKzwLI1vpLxEm6Rm3G4DJVqzZs3sNpLbcQs1AvJUDnEb56hLRfZx+umn23cAb1bftCOS8LUb6nIPxqBe9qa0rOe8CSl4HxxOePTmZC/AifsJIYTIHfpLEdzG3zq1vxSJzdtvvz2ydSNI2rNnz8iyjdtpPEnVWtzGLac+J4zpjPVHHnmk2box1j/99NOJfffdNyl4nqpsF4XD9OnTowauXtmDKAJrHnrd0NTb52kaymPZQj+6eBXQzTffbI/RuXNnC5hjtxu38eF7hXtAPBEuRCahILootjCgo15hYmUCjmdLmYBRIuOH6U0wsPl49NFH7TKTvjpHlzzIjPP5HXPMMbZB9k23T/gs9JisfVGHMs3V6CzuhBBCbBgEtOONwvLyqr7rrrtsnKUiKN4cjHmZkm1uw8ohrj5Cfcy8zG0o0eP2HCK7QAVH1QNChzgo31yh+L///S86jnUbyRqOk0SP2woQ2PGNOkGc+LrwwgsvjGze4lWMQgghkmHMpIKb4Gc8QIrC2AVpnJo0aZLURJxKNq9KS63+YU1wzz33WIV4HJ//Cbbir+1/i3UIvRNk8VZ0UGHYvXv3pJ422PF5nzlONHXle8B9/Bi+6rgBYL/DXOu+9sy3VIexpqQC4aijjor+pkyZMomBAwcqOSIyDgXRRbGHjT1do5nQ435svgCgtJOBnY09mzQG7WuvvTZtz1dsPHjn4Xc/Y8YMUzMSNOfzpFFso0aNoo22l4GjgFi4cGHU3ITFmRBCiPyBBQNWKyiGcyqjRg3MRpumY3HYUHlwnWbf8Y00Jb7chgWXmk6JuH9+HAIuvuGONyJ97bXXIvs21G7xpuOs8ThOBUT8ePx7l5rUEUKIbIbGnSTE42NxavKcxuFuzUGAmznfRWzffPNNJHbyMZbH8zGYMZuAu9/O/sxB2IYliAdeUUHTiDjVTk4UHXFxIkkU1nhXXnmlBb69+gAbNtTo8c+Vxq9Y5+Kl3rFjx6TvA9UEfB9YD/q+nRPVZfQ2UfNvkSkoiC5KRLmZB0mXLl2aVNrroKajozf3o3mZPFczA+xbvMqAygOvMsD2Zccdd7TrWPvgv8dlst9CCCFy3kB36tQp8cILL6xzG8lo3zTThyInvKFUXI3mm+0xY8Yk3fe6666Lguup6mMhSJJj1Zb6fWGdx0bboekcNgC77757koUQ30O+czlVT2AH0LRpU3s8/NVVlSiEyHYYM90ak+R3XoFV7nfKKadETT35Wyq9y5UrFwVF8c526zb25VSOe4Ccfdott9xiimX+FktWbyzOiT1b3C5OpB9PPlOZ4Ep1/7yoJGQeHT9+vNm9+HGSIoDwLW7N41UIfJdwDGD+9tsQyq1cuTLNr1aITUdBdFHswFuN4CkbeSbf1q1b28DLhM5Gn4n4oYceSvobSn19kL711lvT9txFwUKTMdQKfK5ktfFB5/IVV1wRKdGwfkFt5iXhcasBIYQQ/wdzI2Nk+fLlk0qnKdn18ZMNj8MGCLuN3JRDqNlQLeGVGeeJJ56INkwkt4WIQ8k3jeRIwPD9Ar5jZ555pgVhRowYkXR/NujxBre5EQ+oE/xxX3Ua3ZJAEkKIbAava/bQWGE6jI2DBw9OWhPE7bN8fKYZKOMpwdL58+dHt02dOtW8tH3OP+GEE6wZqVcXt2jRIrqNv41XrIniA6pyPisahTr0LcHiJd47B5HixRdfbBYuPn8D6nMqybDgTa0A47tFPzPfz5MYp4dJahNqIUoSCqKLYoc3h2KypYTIy76wcsG2xdXHZDpRKQF+bBzfbbfd1pn8RcmDzxCv07Fjxyb69Oljny3e5yzWuHzqqaea8oEycC8j9PsddNBBKhcTQogU2PygFpswYUJ0DKWY26CdeOKJSff3eRVFUl7Eg+xswEqXLm1/h0emEDl9X1CwURIet2BjLl+wYMF637DUakQeb8CAAdaIPn7b22+/HdnBUJIuhBDZBInFeGUZY2W8uTdqcGzcGCNZG6QSt8rC7gNv63hCkuAoQVO3+PAqN4KjVBdRicZtrAloRKmgafEmVTBBrIUKhLjlDt8Djqf2uJk2bZoF4llTpsZ0vLrsvffeMyW6J1WwZE216RWipKAguih24KGGcoiyofr169tAe9FFF9mmyxuckP30RpM0rEJZl1NJuSiZUGnA50ljMTbC+KxdfvnltqBD2ZATKNU8eBMvBxdCCJEzbuNCiW58o8RmCLUQt+F5GgcVW07KXvxSq1WrZn9D47D4BlyIOARTcrLmi8PtqXYtJICwHIo3ueN7t+uuu0aWbnGfV18rcnrggQf0IQghsgIsMxCj0QAUi6tUqDrDdsW9rOPqdPqi9OzZ0yrA1wdWmzSf9P+D/ifxpqSMyWvWrCngVycKG+zTPAmNgM2D7FgCcoyG8r5m/OKLL+w7xJqRikefgxcvXhxZ/iHSwBKGx2CP7/Y+VJ/x/UkNvgtR3FEQXRRLGGQpO3OP1ni5+ezZsxP77LNPZOtx/fXXR1lwbdozZ4ONLxvBGybW9VUXcDsKNpqO8l1AkabvghBC/J9HdE688847UXktyiKHsdPVae3atUtSJ02aNMmO0zAqvulh09ShQ4fIh1rNwkR+oPw//j1DIck8TqMzP855+/bt7TuGfZ/79XrvHE/6XH311UmPjUqd49tss401vhNCiEyHwDUCM5TicfER+6V4c1BEa3FVMWMpFh7eWDLeFJyk5llnnWXq5Jzs3VAdu/q8bNmy1vdCjSRLJgglaPzK98P303zGzKcej2Eenjt3ronY4gpz+pitWrXKvmsI4NwrH2Hc008/bY+Fn/7JJ5+cpEpXA3pRklAQXRRbvFnkkCFDost0gaZBiWfOybR7Jn3ixInpfsqiiBeI2Lmw+EP9iNUP3wfPbnObEEJkM2x+qOiKNwlzKL1mk03wO77RpWTbE9j0pXAYa5l3uQ3lUJxBgwZFXpevv/56EbwykSmwqaZROI3oHHqbeDCGNWC8ifxee+1lx/FvjVdEPPjgg9GGHF/+nBI8+KTzGEIIkeksXbrU7DccrF08QU6AnICoB0hZA2Dhhte126MSIHWY10ls+v4be7i4ajnufd6lS5ek/1eUXOIWPHxHaBSPsBGxhCvJEbBxv9GjR0e2u2XKlIn612HZEm88irOAV5lROe5uAog6sP2JV5MJUVxREF0UGxiEaUrhAzaDNeVlNCHxgZoFgTcQZcPl2XRUcRp0Mx888PHCZyFIsMZVElj88D2gwd1tt91mlynvTi0FF0KIbIINj296sb1IBX/UeNNGxlPfRGOp5qBAQl3k8208eMm47Eoj+lgIkR+oOHP1Gt8zZ+TIkdHaj+ai8QoKLzNHFRnnwgsvjDbw8eZmBM5pZsptcXW7EEJkAlSGMR6iJM8N1MEoxDm5fzn8/PPPiW7dukVBToRrXk3GWMkY7VVrNBGN/+3jjz9uCXcfd7HN0viamQwfPtw+Z/bhbvnj35lWrVqZrQtVZKjX/Tj3IT7D9xNrXj9OMsfjNgg83CbGe6Clij6EKG4oiC6KBTSb8PIgPNHjDB061IKlvXr1iqxbqlatmli0aFHktbUhzahEyeSll15KHHPMMaaIxAOfzxvl2rHHHmuXKe9GteabbdQS7stLaaEQQmQzqIDifqe5wca3adOmNnYeffTRSRthfC59k/z+++9HxwnMs6n2hs/aPIv8wncGFXmqzz7HTz/99MgagACQwxrA139Y/zmoKrGC8/Lw+GOinvMEkfrnCCEyCaw3fH+cl780+6X4WMo4SwCUv2V8vOOOO6J5nMahccsNAp34WgP/xznnnBPd1rhx48QHH3xQBK9UpIsbb7zR5t3bb789OoYLAI4ANWvWjKq8mIfpt8OenIB7HBLirBnj8zbwnUOE4ft87oNAQ4jiioLooljARmfEiBEWKJ8+fbplOOMsX77cgqPeOJKGKK6KO+GEE9L2vEXhQlUCC0I+Z5IpeKtxuW7dutb4zjfEM2fOtKCPW/7QfMw7wsc70wshRLZDFRdzaE4Bb3qOoBDCo9pB0YufNGMq5boOf+/jbp06dWzDLURBgqeq2w8ccMABScGh6667LmowjxDDobIC1TnWf6mwjnB/9NyalAshREmDRswogJ9//vnoGEpfguvxYzmBshz7lvnz50fHmM/dggORG+sGXzNg30LQ3APo9CeL236IzIVYTHztyGWsVJctW5Z0P44jioz3NPOkNlZA8cdgLqYawi973zuC8ATuJc4QxREF0UWx87mmZIzmE3EvVl8M4K9FR2jKx3zzxGQuMhcsBShRZGNMeSGKNA/m9O3b1y7j+RsPqhMIat68uV0+6aST0v0ShBCiSGEDnJqMBkptvSwbq7ScSN2wHH744Xb/Nm3aJN1G3wmO412tho2iIOD7hY1LvDkoXvze64SAUHxNSCVa//79k2xgIFXVHv8bb4DGuiG3+wkhRHHHA49OfH6mobhX7GJ/5QpyJ1VgFA92Oueff36iUqVKSd7oKIl9PMYm7plnninAVyRKEsyf9BtJ7UnH/py9d7ypPer0ww47LHHeeeclzbs0GMV+Fb99gvG+fj3ttNOS7IVSv+tCpBsF0UXaiU/6ND9jwGzdunVi0qRJSZ6W8Yme5lDcj6YoIrug1NC7fFOS6F58o0aNsrIxLjdo0MBKt73cO66uEEKITAeVLhtd/EnjeJPu1IB4Tn7pDvYtbJTiCWuUv95AKt74UYhNAeWab5yZw51nn33Wqg9TxRWpwfOcIPke/+7itVquXDn7P6666ip9YEKIEgfKXwLcOVm1MZ83a9YsatboDR49mMleib0T/SXisCaIBz4JduJz7bfhie39T6gMWr16daG+RlG8wUGA7wJ2Lp6kISjurgF8R0iCe/LF53YqJrifK9urVKlix2kw/txzz0WPj72Liz6oQI9bCQqRbhREF2kFvys2RniaM5B60JPSMjLnKIvxPo9nIG+66aaocaTKx7MPFnV77bWXfQeuvPLKKKhOwIjADgvDzp0728bZG882bNhwgzbbQghR0mGz66XWjz76aHScedZLZN98883oOCozAuI0Zd4QGEsPOuggeyz8pzW2ioKkX79+9l1MbRa/vpJurF5YL6b2A8CmgObjcbsBAk/+W1i8eLE+QCFEicIrcZmL42MjVbtuw8J+KO4r/euvvyaOPPJIu439drw3BONjnz59bE5PrdDh+plnnhkFQXv06JGjcl1kF6z9Lr744sS0adOSjlPl6IlqvM1fffXVqJcJgXKOI4b0dejnn38erSmZk2+++eboO82c7n13+D7nVkEpRFGjILpIK94A6uyzz7ZuzO5xjn0Hl/fff3+z86hYsaJl0lkc0NiM2zgusgey3HxPWLxNmTLFvgOlSpWyRjZkuynpZoEYV6qhOPMJm4y2EEJkA6jNsD2LByKp8GIspFmjw+0kGTnOvOuwgUlVqTk0lfImo1iwCVHUEBjiO+6gamO9iAIu/r1Fge5rgNTKRW+YR1KetYMQQpSkAOb1118fNXMElOF77LGHjWuoe99+++3oNoRFHqikJ0RcwY4gDWssD67Tmyz+d75X57a4N7oQqbAH5/vEd9GTOYg0CKAD8/Oee+4ZrSH9OElwF75xws7FE9/EfrzpPfaBqU1JhUgHCqKLtIInG5lv/LR8cKRs18vFaIaCiojLNJcggMplVEWpKiWR2bzyyivR5IrNT/fu3S2xwmIuLyUkijb+pnz58kmLTSGEyBZmzZoVlXbHrS3uv//+yDPVy2th8uTJtmG+4IIL1vFU91JdvKuFKEyY213F5niDcSyLHNaDniQimB5vQEoTXVe4YRcTDw55GXnca10IIYojqT7mOVXxMJ7RWJm5Oh7YjKvT582bF93GvO/Nm+kzhkjJYa3gTR6x7EhVHAuRKnarXbu2VUJymWa3WAf6/HvXXXfZ/b799ttovua4B8XZz2MR4zGg//3vf9FjYzNETzyPAyCcUzJHpBMF0UWx2CThYc2gSBMTb2KGd+u1115rl6tVq2YWLz54qvw2O7nhhhuSShNzAnUaG2p8/E499VSzKqhTp459b1hgCiFEpsK4l7qx4Lor0Gjq5GCThqcqx4cOHZp03JPXcc9oHufQQw+NbFyUyBaFCRtw7P4I7MQVlRMmTLDv4BZbbJG0Fly7dm3U8O7SSy9NeiyS7hxngx/3/J06dWr0WFgKCiFEcWT58uUWAI8nD1NBuXvhhRcmVeQSCPc+Ythi8DgOfaVq1aoVWWLG7bC4H7apbp/6xhtvFOKrE5kACe+yZcsmdt999yjhw3fSFebXXHNNdF+OUxWJGj117qVZLcpz1gBxWHNi4+qxoF69eiVVpAlRlGzGP0GIIuavv/4KW2+9tV3+6aefwrnnnhueeeaZcOedd4bu3bvbbTNnzgxt27YNf/zxR3j44YfDTTfdFN56661w5plnhjFjxmTlZ/bff/+Fb7/9Nnz++efhl19+Cf/884+d/v77bzvn57zlllsmnbbZZptQsWLFUKlSpbDVVluFTOTHH38MpUqVCm+++Wbo06dP6N27t31X7rrrrrDffvuFG2+8MRx55JH2fixbtizUrVs33U9ZCCEKlH///TfUqVMn7LDDDuGRRx4Je+21lx1nXmA+ZRzkeOXKle349ddfH6655pqwxx57hLffftvGUOjfv3+44YYbQvXq1e146dKl7fi4cePCaaedFrbddlsba/k7sWn8+eefNp9/9dVXti7yOd1Pm2+++Tpz+o477mif4c477xw222yzjF7vdOjQISxYsCBMmDAhdOrUKbrtpJNOsu/ynnvuGV5//fVQpkwZOz5lypTQpUsXe1/mzZsXmjdvbse///57m/d5ry+77LIwZMiQ6LGOP/748Pjjj4dGjRqFxYsXhy222CINr1YIIXLn9ttvD/369QsHHXRQmDNnTrSf+/LLL0P58uVtrsiJX3/91cbRzz77LLzwwgs2r8N7770XWrduHdauXRuqVasWpk+fHmrXrm23MXZ27NjR9uf77LNPeP7558Puu++uj2c9sNZirmGeYV+aOp8zp6XO58Q7KlSoYHO6r8FKMu+++669D3vvvXd0jOvPPvusfQ/jaxaOf/jhhzaPp8Jt8ft+8803oVy5cnb53nvvtX0+7yfzPWsBYh1CFCUKoosi5/fffw/16tWzoObAgQNtww9MOocccohN7GxyVq9ebRsbjnHfSy+9NOyyyy5h5cqVdp6Jm2le26effmrvBQsezuOXv/jiCwuYbywstJioOVWpUmWdyyygypYtG0oCLFCYZF988cVw9tlnhzPOOMMWIhdccIEFGebPnx9atmxpCxqSMwSR2GC3aNEizJ07N6ODD0KI7IMEIRtsgtwff/xx2G677XK973fffRdq1Khhm+SJEyeGbt262XH+jnmA5PWTTz4ZjjnmmOj+BOi//vprC0AyR4u8Ibjx/vvv5zqfc+J93VjYcOc0n/t1gh4kUtiol1RY8xAESk3YMK/Xr1/f1ktspkePHh3dRqKHhA9/88Ybb0S/g6efftoC8QSbFi5cGJo0aWLH+RzY8LOmGDZsmAWqhBCiuIGgrH379pZAhTVr1tg+p127djYG5hZIR3T1888/Rwl0eO211yyIvuuuu1pwnTkDZsyYYYFJ9ursl9g3+f+XzRAEJz7xySef5Dqfc2Ivv7Gw/85rj858zj63JPHKK69YnMcTNPDbb7+F4cOHW1wnLu4jiT1ixAgLkscTCrfeemsYPHiwJXoaNmxox5566qlwwgkn2Pt96KGH2nWPJwlRFCiILoocNuwnnniibfCYkDx7iAqLQXXs2LHhtttuizY7ZMDZyLMIYGDt1atXif/UGPSXL18eXn31VTuxmEHZ5wFyAry5Bbz9RKA4ns32iQg1YlydzkKIjWh8ko9P/tzGe+8QWDnggAOiExNWcUta8J3ge0By5YgjjgjHHnusvQcvv/yyVSrwnvIdYwF4zjnn2Hs1a9YsW2wyed9///2hZ8+e6X4ZQghRoKDWYS5hU5EXkydPNgUuKjOUvL75doVvq1atLEHpyUYSlaNGjbL7E6zP1KqmjYV51OdzP6Hwc1jn5DaXc6JajPvE53QU0SSK4xVnnH744Ydc53POqVZzSKg0aNDA5nGf0/kMM+Hz4/t52GGH2XtEoMeV6gTDEWoQ7Dj//PNNwemccsop9h6SWGeN5VDdSBUbinbWpfFgkxBCpAMSiIzhOQXHGeuptEFwRoCSxKCLoFatWmVj4oUXXpjn4zNPVa1aNRoL+RvWBewJUQ0/8cQT9v9nG8wRK1asSJrPScgiLnDYF+c2n3OcfSfzLCef01lP+R7dTzwmCffc5nNO8f+XpEd8j86JSvPiCGtR9t2sbahuQHHOfH3UUUeZ+8DRRx9tMSHU+MQqatasaWupNm3a2BqVBDjfRb7nS5cuDdtvv32YNm2aPaavATp37mwJoqZNm1psgPddiKJAQXSRFlAFM1CS/aacnIHTYVKhlPy6664L5513nk0uKNJR2DEI55ZpL67wegiSxydjrEY4ziaZEmOfCPfff38rqyPTXFSbXCY01HBs+Hle8cA+ExPwnOITNgqunXbaKaQLyrsPPvhgWzjyXNkYM+EeeOCBlsVu1qyZlXlRPnb11VfbayGojrXL5ZdfbiVhlJwVt+SAEEIUJCQbSVgTTEwd7yijRdGLjYWrgBg72eixYXHFD8lJNijMFVTx+AYmW0GNz3sVn9PZ6AJBjPhcScDaN9RFVf3EppP1FcGV+NqDSjc+Qza0qLj9OfL5E3Qu7msrrIWogkBo4So1lGy33HKLBYF4fa6YJGnOOpLgeK1atZKCIzmtrVgv8N3nu37qqaeGBx54oAhfmRBCJMNYheqcOYXxKB7MJlFIopvALhU3zMsEV4HgK/sjxv+RI0eGs846K/o79niIuBj3U2GfzT6JIG/Xrl1N9e62q5kMYz/BXtY88YA57xNzNhV48T06QjOC1kX13jBn83nzuaYG9r2SjTVG6h49niRO51qJRDfB7+eeey5SihMI5zvGWgUxHMka1iWzZ8+2ZDjJIwLn/A1/S8UkwXJsjLAXJACPSwHwPmD9y3vRuHFjU6unMz4hsogidWAXIsY555xjjSFoeJZTh+UFCxYkHn/88ah787Jly0rM+0czjIkTJyZOPvnkxM4772yvYcstt0zst99+1kjj7rvvtoZY8QZXxQ0aeKxcuTLx8MMPJy6++GJrJLfDDjtETbhoMHfbbbclPvjgg7Q8PzrI//7771FDsR133NGe27Bhw6xBLZf32GMP60Lvnb5pIla3bl27fOaZZ6bleQshREGT01xCM0bGus022yzx7rvvrvcxHn30UWsKddpppyXNA02aNLHHOeWUUxLZCOuTN998M3HTTTdZsyveT2/E1rZtW2t09cQTTyRWr16d41qmuPDTTz/ZfDh8+HD7LPfZZ59obqxYsaKtTZhXf/3110RxgyZkNCvjudJw3vnjjz/sM3jsscdybKibn9/NkiVLooZlCxcuLOBXIIQQGw574K222iqx3Xbb2fwTH/Nat25t41SFChUSH374YXTbN998Y+O6738+//zz6DbWAIzz7OOWLl2a9H9NmjTJ9nU+z2d6s0bmOOY65jzeE48z8N7x+pkjmStpsl5cYX5jzcHagzUI86A31maNwlqFNctbb72V1nXJV199ZWuPVKZPn57YZptt7Pm2b9/evtdAbIQGuh4f8r9lrj7iiCPsOM3GZ86cGT0WjUlZu3Jbo0aNEt99910RvkKRrSiILoo0sOxBTyZzn7DHjRuXaNCggQ2ocbjvnnvuaffp169fsf+k6HJ+++23Jw477DALmPO8CZr379/fOp77ay/JEFB57733EiNHjrRJb+utt7bXycLj8ssvt0XfP//8k5bnNmbMGHsupUuXti7yVapUsev/+9//EhdddFE0Ic+dO1cbZSFExvDLL78kypcvn+jWrVvS5oENIuPe0UcfnbTJJrieGz/++KPdx5kwYYI9Bhv5zz77LJEtELRlk0ZCtkaNGtF7cMwxxyTuv//+xJo1a4p1wDw/350XX3wxcckllyRq165tr5ONbceOHW1OLU6fOaIKntenn36a77/95JNPkq6TeO/atWuiXbt2SZ9jr1697D044IAD0raWEUIIYL/yzDPPJO3BmOcZo8qUKZN49dVXo9sINh544IF226677moBVodAO8d8XxpfJzz99NMWrPcAeqaOe4z5o0ePtjnEg7fMecx9zIHMhSUd5jLWJqxRWKuwZuF1soa54IILbE3D2iadPPfcc9G6gvedgDjPsXPnztFzI8njgfTmzZtHgXTiKB06dIjWKfFAOkJLTyIg/MgpcC9EQaIguigyzjrrrETVqlUTzz77rA2WDHRHHXVUNCB26tTJNm0+8V9//fV2vHLlyraxL26wmCFjetVVVyX23Xdfe64sRNiUjRgxIvHRRx8lMh2y9CgYevbsaUEc3oNy5crZ9SeffLJIFiUsGlBQkqho1aqVPQcy8mTnuYxig+8PnxOJHOD5cRvJm0xXXAghMhtUuIxnNWvWtHkJvv3222ijiKLKIanLsSuuuGKD1Fqu/r3hhhsSmc73339vSQOCFF7ZtNtuuyXOPvts2/hlQiJ8fSBwGDp0aKJly5aRSp3ADOsxNqnpThys7/8nARTfPBMQOu+882xthlrNocquVKlS9vpYKzhffPFFVHH3wAMPFNKrEEKI/EOFDAI0xrMXXnghOs4+xlW6BBJXrFiRNKaxNnDBE8pgZ8aMGZEYinkvk/ZDzBXMWcxdnlxgTmNuu+WWW2wOyHRYs7B2YQ3jSRTWNnzWrHVY8xT1WpXvL3tvj+vwPfa5mCS2Ew+kUw3voFgnEcJx1ipxli9fHinSqZbPhjWbSB8KoosigYGsevXqNrDdcccdkSWIq4dZEEyePNlKkMhKzp8/PxpUsUUpTrAgGTx4sJXK+YLl1FNPtY1YNmc+2ayiREeR7uWEKCV69+69TulgQXLnnXfa/1WnTh0reSRwRJCc79y0adOioFIcFpFus4MljRBClPTNYlyVwybRE4UeeGR+8nEPVa/DJob5NzVAOXDgQLsvye/ibD22KfCa58yZY9ZrvuZAhYxlyGuvvZb2oHE6ISA9fvz4xHHHHZfYfvvt7b2pX7++zblFvfnO7fnFwa6NZH7fvn2Tjh977LE5Wgd6QqlatWpJ3+8hQ4bYcRJI2oQLIYqK999/P3HkkUeaajo3mK+x2XQY0/r06RPZXGBL5TDnN2zYMEqyxyuLXn755UipjGo53QrlggKVPXNUvXr17LUxdzGHMZelzhnZBN8T1jSsbfw7wZqHtQ9roKJY62D/in0Oe/R4wgZxZaVKlRKvvPJK0v25zvNLXX8SSGfNmhN8r4k9uFAzU77XovihILooMhgECYh7RhhPag+2YtfCBofLDJiuTj/88MOLxSaWQOzzzz9vCw2sWgjUdu/e3UqRMrX0rSAWgwMGDDAlH5/l/vvvb17wBV1VgOKSzS7/159//pn4+OOP87w/3ycCSDwXD/SnlnoLIURJhfnKlWdjx45dJ7C+1157RfMW9/U+EVRQxRONvhGJb9gzBV7fzTffbO8Fr7FWrVoWPNVckDPMrdgKYA2EAIJgDeIBBA9FvUbju8t8TwAorrgkuOR+sHFPcz5TDxY9+OCDOVZaXHfddUlrVV+38B0RQoiiAJU0406XLl3y9Xd4eLM3feqpp5LGbKpyeTySi+zJ4hVHbn3Rpk0bu29JhjmIijvsaNif814wVzFnlfTXVlgwL7LmcdtcrG1QdscrFQoD9ug5rRk2tBdLTsI4kkXx/mwkBbwSk3VKcYgjicxDQXSRlrJzNueDBg2KlNyjRo2KPEfvueceu0yJWbrLrRiYUc6zweY5kdnmuppW5G/DiyIcux4233z2KMXwVi8oclNJMnFywlYGPzjUmu4neOONNyaaNWtml/FGFUKITICNI+MapbC+MUH14wFD5lgHOy6OYWERVxd7HwlU2Zm0AcHSAxUUCixOJ510kiXDM+k1FjY0q2P95okaPHbxYC0q1TafFWpN/m/U5HF69Ohhx0kMxYMnVA96A9V4Ih9hhys44xZ89Orx3xCJeiGEKGzYFyEei/d9QD2ONcX69sNxD3S32yRATp8o1LkOKneqy7wJY0muoGbOue+++6zizpupMjfFG6qK9c+nrIFYCxF3YV1Ec3n2y0Xxf2M3k7r+ono9nvD2+1LpTnV7/P7Mz40bN7aKsnilBetg77139dVXF/prEdmHguii0KF8yCGYiT8ZZeJ4Z7unFb7nXKbMyDf6NIRMFzRhQR1PYIFBmMArViXaaG8aLAyZzPjsUYuxEcaTryDfVx6LzTP/F/70KM7POeecSA3PgsvL2Cj/9kmWcjIhhCgpMNaxScbfPF6mTONQepBcc8010THvEYEizYOd/D2baI7TMyKuFHJrEyqwMiGRS48OV/mxxiComs2l3QUBijAawnvlIN8t5veiaEZKI3cSQKlrBz5T788SV5dT/u1VBySIHP7evxeoGOPfGaxrNrR/gBBCFDQkv318Ovjgg5PGO/ap6wuAsxeK22myB3crD8bDwlYdFxYkAphrfKxnL8lclJNKWWw4zJ+sjbwSiz5jzLOFVXF/2WWXrZMMJ1mEoBL/evboDk10vU9LvEcP32FX07PHj/8mXJTJCftgIQoSBdFFoYJHq/tSxSe3uI81nbE9g+zqNzpJp8ODlfKm008/3QZqmlNceeWVKu8uBAji3HvvvdEmlU7aZMILwq++ffv21kgMawIeGxUGCRBvNkISh8CTNx658MILI7/ATPX9FUJkHmyOXUW7Ppss34jHk9NsOv3v45tprNY4zt+U5MQxzx3fzL333tteT/Pmza0aLpOapxUX2Pgy77L5JQFDI7B0JSmwH/JEOcF2h4SQ9+N566231vkdkVyJb8CnTJkSVUiW1GCTEKL4q8+xV8kJ9qDu6x1XolM1RoU0cxvB9Dhr1qzJ8bEIhHbu3DlKeMbHxpICcwpxAsZ2xmXmnHRXrGcirJFYK7nNLta7WAUV9Hpw9OjRJqijMtzh/0AJ72vTRYsWRbf5vp4T1WIOVi4VKlSI7IniPuhYv/m8nwmiEFF8UBBdFCrDhg0zbzI6Q8eD6AySKOMo16GpqPuxcl8uY/9RlFAOdOmll5qHFippnveG+nOJjYfvAUp0V0PSXZ5y+43Fg0J8jiwkDzvsMLvetGnTxAMPPBA1sUV1zuTM9bvuuivqWq6SLyFESQFVGRsd/FDzggAgSUQ2EfEy8UMOOcTGPayuHDbWXp2D33VJZe7cuZFdF/PA4sWL0/2UsgKCO1QUYttGJR+bY76nhZ2Uf/rpp5PWFa1bt7bPHl/cOFynuW5c4QYkW1LXfDwOdkY8DutDIYQoSFCKowxH7IP9RBz2wR4wfPTRR6Pj7KXdzgpblniC780337Sxl+rb1IaKLlgjAI2wqCTBHIL6mDmF18ccUxyaW2cDrJ18PmVNxdqqIIn3NXH47iKIc8vfeJIJSxeOEy+aNWtWUhNS731CJaYH/Dl3m7cdd9xRSRdRYCiILgodMoR0DmehEG/2BGxaKDmnYSelajltegoT/n/80xhYGXzJWBZ040uxfrzZp5db482Wqq7YUEiAsJB0WwI+Wx4TCyF82d3n1z1S2VB7yRcB9twUIUIIUdzBwoJ5NlUxxFxH48W4zZpvROLNmPGbdDVPSeSNN96I7EUY5+OvWRQdX375ZeL888+3ObVSpUqJkSNHrhPUKQjw/WXdgJotnihBac7/jaIt/v9iNfP1119v8ON7IIsgF5VuQghRkMpqkrwkueMJbqqivXoWtXUcEpMuFsLiwvnhhx8iWwsS5PFxD8GaB+RLUqNwXgOWnMwhjOfMKcwtIj2CN7cCIonDWqugoVrCkyMkTg488MDIeojvtyeRTjzxxGj/Hu+vRnKctQC34XgQt3NzVT0NVJWAEQWBguii0EHZ5mrzsWPH5jh40ZTKNyrx5k6FOTFTRlSlShV7bixStEFKP/654JFfUJ+LLx4JFqFUp1GYe6r5guCEE06Ist5k3EuyhYEQIjthU+NNudfXDBGVOf6RbEbiG3efq1966aVESVtndO/e3TZQBBJQ7skftXh9LtgPFMbncuqpp9qaIbVUm+9zfuG5oWqPq9hoWsZvAv9WIYQoSBhz4pYkXPcqWhLBBADj87ZXitHfyWGcQozmtlTxRCGBdgLuJanalveAps/M5cwd9KsoifYzmUbq58LcntrQdmMhSM4+nGC3f+dJmHifvLgtMNVn2MC6LXD8NzJkyBA7TuKFJLtDLMEfi6r3wvJ5F9mDguiiUGDS9uZSTH5eUs2mndIcvNJ9AGOz701GGfxKiuJZFF2FAE1HNqaDPIuuCRMmJLp27Rr5upHI8QmWBSm+7JQ28j3wheYjjzxSKK9LCCEKAmxc2ETHg+Xun8pm2mEznVtSkONxq42+fftGzaRKCpSyF4XiWRTfCgF+A65S21D47qNai8/1HHMLIOxdHO7nvsRSsAkhChPGM8YhLCfjlbEc9yAgwcv4vH7rrbdG1bRLlixJUrpXq1bNbmP8LQmJZeaGwlY8i4KvENjUviEoyhG5pfqgY9OCBRGB7/h69fPPP7fE/Pjx45Meh98FDgc5JV2owHQrV+4jxKagILoocAiOE6wkIMmG1ktrCIS6JxXZcCZJBkqsXjzAWZibX0rWGYT5v8h2bor3tigaWDSi/uK7xOIRJXl+bITY9KJAZ1FWsWJFS55wnHJIurtDfCFK01G+H6jaZOsjhCiu+CYTKyofx2jOneqfiqqH8tX1eYKzAfIkIknu4g6vl7J0St5ZU9x0002F7r0tCtar/uSTT15vxURB8P7771u1WdwG4Mknn4wa7MUT9FdddZUdr1evXhRw4rxu3bp2nO+ZEEJsCgTwEI3l1uSa4wQP47ggjcBhfMzCvs3V6fQWcxi32rVrZ8dZG3z33XfF+kMj4I+wzb23S1o1XDbCmov9NF71rMVYk21KJTce5zT6ToVjOSnH6SmwsdXpxKbyE1MQIhUF0UWBQ8kMG3cyim6R0aVLF8tYejDdmz+wkPAge0E3q3AY0Ak0MMjTQDK1eYso/tAk9PDDD7fvyRlnnLFBAW4+dxTozZs3t3KzZcuWrbdZLNUT7il44YUXFuArEEKIgoGxjf4d+EW63RXVX4xbqGw8mEzDJo6xwfbKMLfMSlXu4qXOfWnyXNztrHjNrCncimtTFVCiaOH7xUYWP1OS20899VSBPfacOXNMlRnHvVBPP/30pCCVVyTGFWkEmryPSjwZ5RvvChUqJH777bcCe75CiOyCeXnzzTe38SQ/FTnYU9HXKe6Djo1FjRo1orkwPndTzetrguXLlyeKM1T+MBcwJzDWFvc1iEiGNVi3bt2ivnaFaY/LdyOnijCS5DklXoj59OvXL+k75b1/cEaI9wQSIj8oiC4K1TaFQYrFgqvNyYZ7Q4imTZsm9ttvP7tM5+TCgEWHq89pMKVS3JL9nSL4Q2f2DVWl44eWm9IjXqrNopYFJ8md22+/PQo8FfeFpxBCwBVXXGHj1rHHHruOvUvHjh2jY0888YQdq1mzZrSpICiIIre4W1nF1ec8X9TEouRCYgefU7cn2FRVOvO1z900FnWwa3PlWdwawNeorCniKvVrr73Wjjdo0CD6jZB8clsE1iFCCLExMKZgxXbWWWclHR82bFji8ssvz3eSbsqUKZZQjyfGGfNcne7VasVdfc5c4Ml+UTJhTmVtRnCateSmJEOwWCUwHxfN4YXeq1cv80GPH6faDJEkCXCqzR0EdFSjp/YQ4HGwF+b4wQcfLH90sVEoiC4KDRYIDFAMgl4m7l3F2cxcfPHFUXflgu62zcB97733mvqc5qFSn2eWKt2b7px55pn5sl1BiU5J2C233GLfTxatXjqIioPLJHZc5diiRQspIoQQxRrmO6+gcfUsx1yhRiMop02bNnaMALszZswYO1a1atX1Jh3TBcomFE6+pog3ThMlF76nDzzwgFUuUq1IQGhTOO644xJnn332Ot+P448/PvIFjv/fVF5wHE9Xh2C+V0vGm5W67zDWLlJKCiEKCgKG7tVMH6f4GEVAfH3ExyOqaZjLeSxEa8V1rKICCfU5Y7/U55mlSmce9v48GxPf4TtLvzLf5zs8FsHy1O82ti5eccacHrd58bhT6dKlE++88050nGA7CXRuu+GGGzb5dYvsQ0F0UWCw+UYl5r7m+LHR/MybOrZs2TLK/JF5xq+ay6NGjSpw9bnbyKBwL+4+cCL/MHHit88EyGJxxowZ670/CnMWbNOmTYsshAge+fdw4MCBltDxDvZMuFxmgy+EEMUB5lW8UuMNwti00Mdh6623jrxS6TfC+EUw0G2s2KhzjJM3XWJspB8Jx2677bZEcYPnh6IJZRMKJ5ROIvOgRwlN5DZVlZ5b4zyalrki7cUXX4yO4//vDfnijcgo/+b4oYceGh2jktGD6wXZGFUIkflgs5aTrzNznNtVtm7dOinozT6H4zT9Tk0q01gxJ1zZTeV3ceztxNhOPwyvkvP+VCKzIP5Trlw5W7sh5MhvMofkEXEjhHNx4j0A4k1FsWXxPfxFF12UtCZw4R3VZajQHfb3Xr0Wb8grxIagILooMBjMGIwoK/PBksGL0hssXbxhE+U2rvRt3LhxgXYLZ0Dk8QkoECwVmQ2lWiw6+S7hcZZbYzkSPN7M7H//+5+VTHpTsZtvvjnyDaRpmGesaWjqHqiyARJCFAfc+zxuxwJcJlDosOn25o0OyUGOtW3bNjo2e/bsKNie6pOeblATo2Ti+aFskvd5ZsN3eNy4cYW2hjvnnHOidWf8t+MBrLitIBtygu6sZ+NN/M4999x1LJKEEGJ9oKhFSJbaMPShhx6yMYWKbWwpHKxNqKbmtuHDh0fHGbvwRidgmFplTSWaBwXX10w8HTCmU3GE+pz9enFVyYuCV6UjqMS+Jz/k9v24/vrr7TERwSEOiVc3uFAkvn4gUUNAn+MXXHBB0uO7lztJJyxghdhQFEQXBQblWCh9aciYGsxkQ+Lel5Tauld6vEHKpoD63TdIdDCX+jx7IAlz9913W+CbLHNq1tpBZXbXXXfZpEkznnr16tn3pXPnzolDDjkkUp1h4cJlvPRr165tl88777wif11CCJEKPuBU4MRtKVJB7cZczNjlm2zGSfd0jvuee6VYqj9rusG7unr16qZiQtEksodPP/00qiakQmxjAi0EoOjFc8cdd0THUG66knzSpEnR8ZdfftmCW6ke+/RKSf2/V65cGW3S45t3IYTIDYKH3rB4/vz50XESdCQM3e40jgf3SOTFFexUfHv1TLxvE2Me/UK4rX///sXqw2Ac9eblrF2kPs8uWMOxlsNi8M0339yox+C77ipyhHHNmzeP7FjjNoQuIEEAFxdesBb2uXvWrFnRceJF9FnLqeJDiLxQEF0UKATP8YtE4Ttv3ryk29jEM/nvtddeBTpYoVYjCIpqKNsbPs2ZMyex22672WVU1XiDEXDh8yBY/O677yYyFSZYgi45ffdy4vXXX7dFKN/FoUOHRvYtNBXDFsEXop7wee2114rkdQghRF6wYXCfSRLIqSXiXH/22WdNNevekHPnzrWxDGWbNy4jWOllsRu7sSkMJk+ebMHOvJKi2UA2z+esFz3ogpIttyqz3KCZHn9LUCn+t1Se8V66xZGTn0C99xWgma8QQmwIBPRS7SG9ITiVZXGbieeeey7HvQePQTCS2xgf4+OXC9UaNmyY5Amdbhh/XY28sUnRTCGb53TWcvic83pRjOeH+++/3/blVJHHK9G9UuOaa66JjvM7Ig7lFepxSKxz/NJLL006Pn369CjA/tJLL230axTZhYLookB54oknoo06nlSoduJ4YyYyhAVROs7Gn8wmZToECbIdqgBQ+kO7du1s4nnrrbcSy5Yts+w//uH53YyWJEiotGrVyoLjY8eOzTMIReDc7Q34vg4YMCAqD2OCZcJGxeYNR5s2bVqg1kNCCFEQcy4bsPUpz/A7Z0N+xhlnRMdIGHq/kuIAm2s22V76m8lz1YaQ7fM5oA4nwY1S/KOPPtrgv2OOP/XUUzcoob4+WKsS1Epd57KOLU7BKiFEyQHrCPdwjgcVCQISVE/1doaePXvacYKR8bHHbVzY+zBHFBcYs/fbbz9Liserf7KVbJ/T+c579SPNPDc0oULDcbdRi+/DacLL+vfpp59eRySHPVuqFSv//9SpU3P8P04//XT7P/bcc891kuxC5ISC6GKToRkD3msMbG6Rcfzxx0fBSZo3MnChnPOs4b333rvJ/y+LDjKaLCbISGYyZFk9S5p6Imjs4OkV3+zFQcHA/TM92YAyE2sCr3aIl3mlNt4hQN6kSRNbeFIlweTOZI3diyeAKDv05qNqMiqEKE64PdqGVHZR7u2ByLi9C56sxUmthsIukxOWms/zBwEGvqsEreNWCJsKG/j4+gBrBVeqx60IWbeSVKeZn68x8PXlu6pGt0KI3GAei/cqSYXxZdCgQUnBRK4ztuy6665JHs0kBH3fR+PwuB2F27fFFbnphudLgJMK4bjtTCaiOT1/vwkXcGBZtKEBaxqC5xR0L6hePjwOvzmeFz3RhFgfCqKLTYIBDYUugw5NUzxw7l7SJ554op3jN3XaaafZ5QMOOGCTNsj8n2QweSyajmVDIwheI+8v3l/4enK6+OKLrWSJTudANptgb27KKBrWFLey/cIEn3QsfujK7e9RvLs3JZEEzlngsknPC28+WqVKlaz4vgkhih8k8ejbEE/m+VzrSjbKgamkIbmdFzNmzIgafbu9S7ogsI/SGMVxqi91JqL5PP8gAqBigoT3xogwCHynlm/znaNPSqpnKqrJeAM0GpFynOCWc9VVV63TpFcIIeJMnDjRKsD69euXr79hrzF+/PjoGMk+F6mxF4xDdRnH69SpYwKg4gB2WozViLyoEM50NKfnHyq6WPNhP0QyqSDI6ftPzGjmzJnrBOCJo9DvLB7ER6XOb4nYQbbESsTGs3kQYhP4448/Qp06dUKZMmXCvHnz7Fjr1q3DypUrQ9myZcOKFSvs2MEHHxzGjRtnl2+//faw+eYb99X77bffwoknnhiuvvrqcO2114bHH3/c/u9Mh9dYunTpsPXWW4dKlSrZiWNbbrmlvc8wZcqU0K5dO7tPKv/991/o169faN68edh3331DNnD22WeHF154ISxbtiw0btw4+i5Cs2bNwpo1a+y7VKtWrdCgQYN1/v7zzz8PX331VViyZElYvnx5qFGjRvjss8/CzTffXMSvRAghgs2xL774YnjnnXfs7Vi7dq3NtcynrVq1smNPPfVUGDp0aLjuuuuit+zXX39d5+2799577fzkk08O2267bdre3gULFoQDDzwwfPfdd2HhwoXhmGOOCZmO5vP8U758eZvPe/XqFU4//XRbz/zzzz/r/TvEQmPGjLH5+80334yOv//+++H1118PgwYNCn/++acda9++fdh///3t93LHHXckrSVg9OjRtpYCngfMnDnTfodCCJEKcxpjxs4775w0Jr311lu5vlndunUL7733XjjppJOiY4xRLVq0CBUqVLAxK/7499xzj10eO3ZsKFWqVFo/BMbkCy64IJxxxhl2YswuV65cyHQ0p+efrl272vf3m2++sTUglzeEv//+OwwcODC88sorScfHjx8fqlevbvN6/LfGmvLwww8PEydOTDpOvGTEiBEWS3KOOuqo0LlzZ/sen3POOXY/IXJlEwLwQkSgjHMVOh7lcRU66mgsM/zYpiiRULGTuSSDmW1ccMEFSdYtlI/ReC2ulnrwwQdz/FvsTSiH/uSTTxLZxqpVqxL77ruvfQ9feOGFHO+DEhOlx6uvvmoVE1i64FXYpUuXqNu9V1pss802+fJmFUKIguCdd96xXg+MU8B4z5h04IEHRvehyTbHRowYEfmr7rTTTjZ3MId6+bc3T/bHSgf4WaJWQ2Hszy1b0Hy+aVVmNMRFBb4h/rHuwYqfsMPvArUnx0eOHBkdx56FY/xmfvzxRzuGUo3rHI/b5R188MF2bMiQIZvwaoQQmQxzbNxywpsYYmWR3yab8cehgTgqXh6LfUu6YSxmTEbFyxidbWhO3ziw+m3RooWtSakOXx9eBUYlflx57jbCxIniNm3XX3+9Had3XrzCDB91jrOWiFejs78nzsRteNYLkRsKoosCAf8oBhy6S3OOVYYH031g23bbbTe6ZAcv13322cd832gYkY3kNUHz/hCMSLUtgXPPPde6gRNMzlbwOj3iiCMSpUqVspLtOHj1MRlfccUVUdf7888/3yZWLrvnMEH1gw46aJOTQUIIURB4Yg/7Fh/nmAc4hn1XvCETc4DbqBGI901IfjfxBQWWHJtttpk1f8rG5oyazzeNWbNmWU8cAtke7M4NLNvuvPPOdUq9aRzO74Bmbv4d5DfiFkncHv+8fI3r0O+HY6xN0/U7EkKUHBgnGjVqZOMGTSbjsNe47777cuzjlBOjR4+OLNm8X0O6YAxmLEasNHv27EQ2ojl942H+pRE4a0J+A3mBPRCxD0Qk8XkXexZPdt96661Jj81al+O9e/dOeizvw8N3N/5YJMY5TsyJdbUQOaEgutho2JyTQXTwj/LAuQfTGYDYoHizsI2BwHutWrWs4YM3e8xGUidoGnN4EJ3FVPw2YEIggI7aKq/GNtkCG2i+lwSZ4l3iH3nkkaiJz6hRo+wyGXFUa1ymKY57EaJoY5Ln8oIFC9L6eoQQ2Q3Bu7gfugfMaTDt9OrVK0oMpqrV4w0UixJ8qPn/qZDK5AaieaH5fNOhuR4BJCodv//++3z/PWr0ypUr23eRNVTq95N1p38/V6xYYcfwN/aKPlShJOY5/tprrxXAKxJCZAIffvhhjlUyzz77bNR3IV59xVjmqtj4fo1k+FFHHWU9r+JQTeain+HDhyfSCc+FSmjG4sWLFyeyFc3pmwZzbZ8+fdapDsuJ3JLWLhBBSR4XDr700kt2nP17vCkvc7mrzh966KGkwPuee+5px1G+C5ETCqKLjYKsN5sHTiwWfENy44032sBD2YwHHb0h44Z2YI7DIEgQEysS/3+yldQJmkwrSQoSC0ceeWRS5tVVDSxq5syZEzUj5ZTuJnLphOZiVEawUCV47tx+++2WEGJi5r3kO8vGHPUml7t37x5NwJ06dYosFKQ+E0IUBUuXLrUg+dq1a+06Yw/NpRmnPJlN0pSx6Zxzzok2JRUqVLBjNFbyTYMnAtesWVPkHx7zFP83jdayefzUfF5wvwss12gSuqEN7OLKdQJQfB9ZY7oanSZxWBOm2rew/iKIjg2RQ3N7bbSFEHGwKGMfTMWMw3zXvHlzGy+Yu+O0bt3ajp9++uk5KmXZl8Sh+syrYFKbJhcljLn77befBfTTaQ1XHNCcvunwG/Gqr2HDhm3Q38SFGPw98zR/T/V5fI1J1SPH+b5iheQgJuE4CfW46nzy5Ml2nDhXOtbKovijILrYKLDAIPOMEjrVJuTTTz81uwtUPFhgMAjRqTu/MGihYkdVJw/qdSdolAkE0d2n28v3ox93CDmest3ji1LJU045xTbD8UB6vPKBksS4Dzoefx07drTLeBCiIuEy/qlCCFHYoNpmzLnyyitzvY+XrD755JNJ6jYCgh4g9CA25atFzS233GL/N9ZZ2RxAB83nBccbb7yRKF++fKJ+/fo5Wto57777rlVhEMjy7x+iAl9HPfroo0kWhSeddJJVWMbXval9ZfBw5W/32muvrP9OCyH+T5lNUo59A/thZ+7cuVGlqyfDAfsTPx7f62Jd6uIdxh6H+3gFzLRp09L2luMvzZhLoj7+/LIVzekFA3Pz5Zdfbt/v2267Lc/7zps3z76DM2bMSJrnvecPvucOYhO3e8GKLV6l7qpzKvzjz8OrNlkLCJGKguhio2GAocwMVS82GKlccsklNvjsvffeG+zx5rDwqFmzpp2ysRlmfiBgwnssNhyy0ATS+e7GrV1g4cKFZn3AdxfP1cMPP9wukzTy4Ln7/LNxzu93Wwgh8svAgQMtaR0P9MWhdNybILsi1xswMV6lNkOM+z0XBTQ6VQB9/Wg+3zgQFaD8pKlYvPleHAJXCA7YYNOk1yGZTpVHqqJtQ1XtvmGPB9yFENkL+4IlS5YkHaPpptuYxfE9hleQOeyvOX7CCSckHXdFLaKqdCWjsc9irGXMffvtt9PyHEoKmtPzD99rxBZ8z7FXyw3fqzdr1izHPn1XX3110nEqz4iXeGWmQ7Cdv0m1hcOmzQWI8eajQoCC6GKjwUbEy8I7dOhgvqy+CSEITiNRbmNzkh+wHCE4iQpdJTTrh07vU6dO3chPMbsXuQSX8Ej3ZqNMpCjUsR9q2rRptOBFmX7eeedZIAglP0oTtyzCg00IIYoSNq6pDY+Yf/FudrC4YIyiAZMrcRjfOFaU1V1UosnCZcPQfL7xoNxEacaGOrdmYFSPFcR3P/74HuyKq9iEEMKhQgbFNvNv3Jr0lVdeibzQV69eHR0nAO89GFDWOiTqfN+dGqQvKhj72B9Raa7A4vrRnL7p1i40os8Jgt5YA6ZauZFIf/nll9e5P9ZH+bU/6tatmz0H5nkh4iiILvI9qBFwZBCiyzEDi3caZ/OCnxu2Ipzn1PF4fTAQUpJOEDPVnkSIgobvMc1GKY184YUXrLS7du3a1iWcxS0ZcAJTlC2mgl+bNyTNZp95IUTRwxzJZhpP6Jxg3qVC7Oijj7bENLARcUuqooJmTTxPenRku4WLKHzYOJP0xpN4Y/rwuO2RQ1Kqb9++kY86CfTDDjvM/g+802HcuHH2u9p3330L6FUIIUoi8WahqdA3DOuWON5TgcrYON6bib1ITh7p/F06YExlbMUiLqcgpRAFCWtGhGysIeONPwv7/4w3BUYwSpKL3x2V6kI4CqKLfOEdjrFZ8RJWSmO8tIxzvKU8U75gwYJ8bV5atGhh3pbxUlshChP80GhAwqYYdWdupeA5KUu88ejQoUP1IQkhigSC4u6VGl/srw9XzF5//fWJooCm1vjC9uzZM8kqQ4jCZP78+YnSpUtbwCmvxA0Br/jtNBhDLYqiHbiNxn38Zu6+++7oGH16OOabegLrfM85xoZbCJF9MMfhhU7jwg0dBwiqt2nTxuyo4j0eXIX+3nvvJanQ3VoiHR7kjH3HHnusja352dsLsam/K9aQzLH0FciLnJqLU/nh1ZgOwjf27ajY4/DbQ/yJ+CSOC0OxXhLCURBd5Av8WNlk4IUWD6Cj5N1xxx3tsttgdOnSJV+TM00csdbQ5CzSUZ6IiozNcWpjMs9KY0tEkB2FCBYuBNBbt25t33XKGlO91IQQoiCgCVKNGjUS/fv3t+vPPvtsNP+6OgwLNJof5VYVg2rWm5GxUShsaDi+yy67JA499NB8l88Ksak88cQT9l2/4YYbcrz90ksvjSrQnBNPPNH+5uSTT46O0diMYwceeGB0bMCAAZGNodOuXTs7RiBeCJF9EORGXMZeOD4PY9OSnyQyczWVrlhZ5KRCJ5CdDki+xxuXC1FUsIakySc2qnHbo7gIk0A3PU8++OCD6DhJKH6TxJbiCSm3UUKIEu9lwh7fRaCvvvpqdJz/0xPl6bJREsUPBdFFvmHDXqlSJRtMyLj7BsMV6p4pz89G3ZuO5eZ7JURRBX0o1cYvnfJtfNDJgOPPjyqkefPm9j31c0q8XJXmAS4hhChILrroIhtjLrzwQrs+aNAgu07QD+bNm2fXK1eubEk/Tg888IB5qbrSlo0v9yEYX9i2KgQB6tWrZ/9XTlZYQhQFeJTznadfT24NybBqcbBG8nndfdNRq/vm2TfbVEr6/dy+gcQ6xxCYCCGyE0Q4L774YnSd4DnzIBXam9KA08ecdKnQJ02aZP/3ddddV+T/txCuMue3VL9+/chKLY4nskl8x6HSPKfkU9euXe04lq5xSKJzvGPHjjk29O3UqZM+EGEoiC7yDaWu2223XaJs2bJRJg8lblyFnh+/tlmzZtlmJLWsRoiihsUvG2Y22JSE+6LV/QkbNGgQNeZr0qSJnTdu3NjOUZ9sqBWMEELkZ/OAlZo3DcU/Na6yveWWW+y6l6CimuE6Y5lvNvBWjQfiCwuCBjyPMmXKJCl8hChq+C6yUea7mBp4+vTTT22+T00oUTnB7+SKK66IjvF95hjJLIe+AnGbl7jFUl6+yEKI7AG7FsYFPMTjPRruu+8+G2M+/vjjDXoct5NIDfgVBQji2PMThJQtm0gnrCmZz5mTU7+LJKly8iyP2yDF16Qkpnw//9prr0XHsWLy4/GeQ4hSXKWejkSWKH4oiC42CAaruGcbwUJKWeNqdBos+kC1oR27KbshGI8nHOpfIdINm2K+wyjLUF1Q7r127VqbuDmOUj3V+98rMHIrHRdCiILC7dRQh8Hxxx9v1wcPHmzX8X/0RB/8888/UdIbn/LCBKsLxkXsr4RIN1ixkfxGwZaTX2puikvKxumXAk8//bQdo1+PWxPdeuutUVWag0KOY4888kghviIhRHEjt+qu7t2725jQp0+fpP10rVq1kpJwQMKb/QVVZPH98GeffRb1ICvqxoYkBPF5ZwzNT/8VIQoLKsv4LVxzzTUb/DduhcR5TqrzVPth/92mqtf9cVIbAYvsREF0sUEQSGTgaN++fbRYePzxx02N480VfWOf2pAhN7DLoGkTwUgaMwlRXKAbOB5q2CQ4rvbE8mWnnXZKqrzYf//9o9tyKjMTQoiCgA04qjDGG5QxgB8612fMmGHXzzjjDLuO73Pc/xE1XGEmqx977DH7f2688cZC+z+EyC9r1qyxADieqjn58+On+uWXX9plfh++pvXGoRxzC8PJkydHSnYXjRDkgosvvtiu9+rVSx+SEFkE1g8E3FC3xsVmeDSn+iiTyObY9ttvn7RfGDlypB0nwB5X2aJY5zgND4sSxsWWLVva2MkYKkRxAcEavwniUDlB1YdbsgHKca8UiwtC+b26GC4u/nT1Orf5Ohv4HXOc+IDP+yJ72TwIsQEsX748bLnllqF8+fLRsWOPPTbMmzcvnHbaaaFatWrh1VdfteMDBgxY7+P9999/oXv37uHTTz8NU6dODTvvvLM+B1FsuP3228NBBx0UjjnmmPDxxx/bMb7ntWrVCt9++22oV6+eHfvoo4/C5ptvHl5//fWw++67222jRo1K87MXQmQKv/zySxgxYkSYMmUKoofwzz//hBtvvDH07t077LHHHnb7+++/b/dt0KCBnTMvQ8uWLe189uzZdt6qVSubxwsDxsAePXqEbt26hSuvvLJQ/g8hNgbWp08++WSYP39+6NevX9JtM2fOtHm9b9++dp3fR58+fezyXXfdFR079dRTQ4UKFcIPP/xgx3bddddw0UUXhTFjxoTtttvOjrVp08bOX3jhBfutCiEyn6+++io8++yz4YknngilSpWKjj/66KPhjz/+CHXr1g0HHnhgdPy+++6z8xNOOCGUKVPGLjNeMM/Dueeea/sK+O2336I9xaWXXlqkr+uCCy4IixYtCpMmTbIxVIjiwlVXXWVrTdacy5YtS7qN+bd69eqhV69e0TH27F27drXf2cCBA6PjderUsceBQYMGRcf33XffcNRRR9n977nnnuh448aNLTbw999/h5EjRxbyqxTFnnRH8UXJgWzctttua+pzV+2sryQmN6666irL8D3zzDOF9GyF2PQyxurVq5tdEZUYqNPcB5UsdMWKFZO80fEq5Jzjv/32m95+IcQm44oYqlxyYsGCBXZ7lSpVIvWbK2TdvsIbKw0bNqxQPhHWA7vvvruNj3HfVyGKE2PGjLHfAYrPuN+vN+V1uwL8zbFfiCvTqJzMScUeh+9+qVKl7PHiilQhROZCdfarr76aGD58eNJxKl8YC4YMGZI0jrCP5viiRYui43PnzrVjVJl9//330fF77rknagiOLVs6bC2FKI4w31IFXrVq1aSYFFUT9ANi/06j3/hcT+8ybGDi9kvM88Sw4v7nwG96woQJ61RvesUllm/a62c3CqKLDWb06NE2cDBgYW3hg9Mnn3xiAxa3UTa+Pig5T11YCFEc8YY6J554onkSMinTeAxftDvuuMMWzSSXFi9ebBtsbue7zW1CCLGp0EyURt0nnXRSro25SfR5AptmiYxB+Jh6SbbbvzCeFTRsRuiPUqFChQ1ukiZEujj33HMtCR7/LeB5XlCbYe+ZojWAENkLVg9uExG3QvFE3t57750UyOvRo4cdp4Gow+1uFTl06NAie+6MjYyR5513XpH9n0JsDKw5WXuyBo3/nhCX5GRdWBAiDx6XOBi/S/oPiexFQXSxXnxz0axZs8ivzf3ZUJJfcskldr1Vq1brfSyy8CjW2Gjk1ohFiOKEKzJYxPJbICiVG6NGjYoSTWqUK4QoDGX666+/vk7vBZ9PGacYg7p27WrX58+fH6lm4j6rBcV9991nj08gUojiDs1C69ata8Gp9SnLcwI1KL8/Z/Xq1Ynbb789UpXS3Jffw1FHHVWgz1sIUXJgnMD73Jt9O3iMp4rIfvrpp0Tp0qXtOME/hyaiHMNXPa6oLUwYExkb991336ixshDFmalTp9rv5P777y+0/4P9fHxPP3DgwLT0KRDFCwXRRZ58+OGHpmJzq4otttgiarbgJeNlypSxcway9XHmmWfa/dWkRJQUCDy1bt3aAuMkgXKCyZUMN9/rsmXL5tnwRAghNhaal+VlzYKFy7Rp06KmyNdff73dn+qZgoYqNJqVnnrqqQX+2EIUFlRMspblt5FKPFjF/U477bTEAw88EAW7sE1i/YvlC5xzzjn2++rdu3dUAu7rYiXShchspk+fnujfv3+S9VNeewnGCazZ4lVbbtlSu3btJHEZYw/He/bsmSgqrrvuOhsbU60thCjOnHLKKWbVQsPvOPyeaCqaeozf7b333pt0nKpyYlRxuzd3YUD8ibWLs3bt2ige9vbbbxfKaxLFHzUWFXny9NNPh19//TW88cYbdr1q1ap2vueee9o5DZlobFa7du1w5JFH5vlYM2bMCGPHjg233HKLmpSIEgMNfu69997w3XffRY19nn/++fDaa69ZszGalNC05LjjjrPfQcWKFe0+w4cPT/MzF0JkGqtXr7bzGjVqRE2645QrV87m4oMPPjipqWjr1q0L9HkgwjjzzDOtMZrGOlGSaNSoUbj88stt7l6+fLkdo8n9YYcdZnP5X3/9Zcfmzp0b7r///qiB2Pbbb28NxPnu06gUaD4G06ZNs+P77bdf2HHHHW1d/Oabb6btNQohCp/x48fbOPLwww9v0F5i9OjR4csvv7RxxKEJYtu2bcPpp58eNttsMzvG+PHYY4/ZZY4XBezzeS1XXHFFOOCAA4rk/xSiILj99ttD6dKlbU3qTb1///330KxZM5uT33vvvei+L774YmjXrl248MILw88//xwdZ61MjOrmm28O//77b3T8888/D5988ok1EXeqVKkSzf3x4yLLSHcUXxRvyNhRUla+fHnLuHnJ2c477xyViHOOjUVe0OyMTN7hhx8uGxdRIiE7zXfdlaDuVcj3Ol6Rsfnmm+erR4AQQuQGyhh6LYwfP96ue0Pj1157zRqQUerdoEGDHG2mfv/9d+vlwP1XrlxZoG8yKh4eF9W7ECUNrAqwLHBbF34/qMyZv2fPnm33QW3uajNUanDrrbfadWwZ/DfmPQdQoUPbtm3tOlZwQojMhSaDVHmxT3aeeuqpxPnnn5/UOHRDiKvQ3SYN+9SisD5lDKS3imxcREkFS0F+M/x2nI4dO9oa+aGHHkqqCNlrr73W6V1CY3GvJJ80aVJSxSXrgvg6ALAz9jjYxljDiZKPlOgiT8iKkxH/+uuvTXH222+/hV122SV8//33YaeddgrffPONKd9Q5ObFJZdcEn744Ydwzz33RJl2IUoSffr0MaXaSy+9FEqVKhWaNm1qijMy1Lvuuqv9TqjMQBm6xx57RNlxIYTYWD766KOwZs0aU8b8/fff4auvvrLjjDnvv/9++OOPP+zY1ltvHZYtWxb69+8fZs2aZffhOqraChUq2NhUUDDmoeLp0aPHeivQhCiOMIePGzfOlOiDBg2y3w9qUn5rhx56qN2nUqVKoX379nb5gQcesPNjjz3WzufNmxc+++yzsM0220RVHv67Y20AixcvTstrE0IUDVSgohhH8eo89NBD4Y477gjPPvtsdOzbb78Nr7766jqVY3Hie2MqYKBnz55Fsme+6aabrHKGMZGxUYiSRseOHS0W1a9fP6ss8z04l08++eSkipALLrjALt95553Rb3K77bYLZ511ll0eMWJEdP/ddtstdOjQwS6jVHeoHmFtTRwMpwWRfSiILtbLIYccYrYubuFCMD1+fs4554Rtt90217+fPn26Bc9l4yJKMixksXUhkXT88ceHu+++2wJJfhuQbPLAFzz66KO20RZCiI2BRfvChQvDEUccYWWllKputdVWlrz2cYZycGAhf8MNN1jJOLzyyit2fuCBBxbYRlw2LiJTwLIA6wIsDLAyaNWqVZLNApAoggcffNASWVgaEjCLW7p40J0y8XgQfdGiRUX8ioQQ6YREtwfUCOo5jBXYSHXq1GkdOxiS0nG4TpKOOXt9ArWCgGQ764Yrr7xSNi6iRIO1ILEpt3WpWbOmCT9T4XeFCA4hynPPPRcd7927t/3usHYhoR4/7sl0fuOw5ZZbhhNPPDFKnInsQ0F0kSMMPiwABgwYYApb1Gb4PbN5Z+POIEN2b4sttjCFbm78+OOP4Ywzzght2rSxQU2Ikky1atUsGcTCl4Xy+eefH3bYYQf7LZQvX96qLVCIog5ls81k636qQgiRXzxoR68FV9cwxqCm8SA64xK89dZbdo4HZGoQvaC47777osQ41WhClGSo3KhTp44pPn1zDO6Lju/pzjvvHNauXRspzbt27Rr5oMeD6AS+eIwmTZrYdTboKFCFEJkHSTJ6JcVZsGBB+Omnn0yhStDc8bEirlhn/iaYR3+T+OO4F3qLFi1MBVuYMM4x9u299942FgpRkmGuxqOcvmVezeEgQnHVOYF2YlMQ7+nDWtory0icO1Sk5aQ67969u50/9dRT9rsX2YWC6CJH2Iw/88wzYejQoVbmStB84sSJdqxBgwaR8o0NBg0WcoNGjATSZeMiMgUy0ocffrhNwF988UU46KCD7Di/EyCADnzvAfX6P//8k8ZnLITIBGhIBt68ODWI7s2TSHgXRhCdIP5FF10UTjvttMjmQohMsHXBygBbF5qRIQwhUUVgi9tPOukkuy/3A7cwmjNnjolM6tevH8qWLWtz/7vvvmuX/Te4ZMmSNL46IURhwJoeOwcqwlasWBEd90be7BFIdANjysyZM9dRp1PhDewhGDMc9trQrVu3Qv/wBg8ebPt9xjbfwwhRkmF+poKMSnEXnpx99tkmSIkHwM877zyLbfHbXL16dXScpBLwm/Cge26qc6rZ9tprL5v74/ZNIjtQEF3kCJty1LaNGze2Mi8va0FRTvYdT3TIS11OeSzBczYmDF5CZAJMunyv8SEmoUTGGzsjlGqUh6E8Y0HMwpnrZL+5jxBC5BeScNhCMZ7ss88+YciQIVFpaTyITvXYypUr7TqLelQxfj2uiNsUUKrhAX3bbbfpgxQZAxth+vYQUCJwTuAbxZnbtaAW5TdVr149u06AHA9hlOnM/QTL2IizLvb7yNJFiMwFm0ZU4lRjecLME2vx6hS3eWL+xiqKhFtqED1u8bJq1aqwdOlSG1O8/0JhwZ6F/TljX8OGDQv1/xKiKEFdTgIcNwVg3Uriyy3XADEofc5YV7NPd4455phQt25dS57/+eef0XEC84jnCL7H4wFemebrBZE9bEZ30XQ/CVE8IbOGRQVKG8rLaKACEyZMsBIWFgRk77B0yS0bSDnr22+/bTYwQmQSl112WRg2bJgFqDgROKehKJUZTNiUiLPR5j5HH310mDRpUrqfshCiBMGi3+dOgnqp3o7YtpCsplSchDflpizqf/31V2tqSFkqCWwPtm8KzOMEAGjUFN9ECJEJUDmGfyrrXE4oz1q2bGm/J98m5aevwKhRo0z9hiL1hRdeKMRnLoRIFySrsXQE+iVhJ4FFCntf7yN28cUXW+KZAJw3Jvz5559Nxc59qV7xQDz34/7M3W4fVVhQcUPg78MPPzTBjxCZBM19UaNTZbb99tvbGnr//fdfZ97n95s6tzPnb+h8T8NgYgClS5e2vmici+xASnSRK5S9EEBn8KGRIqUsLBh8EXD66afnGkB/6aWXrLTlxhtvVABdZCQ0JKObNyo2Onxfd911plhj03zwwQfbArlXr16R4gTluhBCbCj4K3fo0MHGFG/kHQfVK9UwBP9cdU7QHHVsQVu5/O9//zPljqvghcgkCCJdddVVVmWGQIQmo76J5jy/jXld2ckGXgiRmXgAHajYJpGNQh1BjePqV1SvDok1Aui1atVKUrJPnTrVzjt37lyoz5v1AlVujHkKoItMhCQR62HWrszpqQF04Luf09yen/meuZ5qUJJo9AsS2YOC6GIdsJ54+OGHwyOPPGLXXQlH4wQWCHPnzrVSMw8QpkIG7/LLL7fgYmGXowmRLlCeE0iniQklmKn8+++/Yd9997WJG0WpuncLIfIDwXD6kLDhpjSVjS+l3ihqAMu1ZcuWWVOwVD907ldQQfSFCxeGKVOmhIEDB8o3VWQs5557bqhcuXK4+uqrc63O5HfAZtmFJqjN3RMZawR+b1SBUCLufQz89yqEyFz4zX/88cfhtddei4Jw2DsyR6davLg3M0lyh/vOnz9/HYuXwoAxjqrZc845p1D/HyHSBWtm1qzErrAhju/N3evcoXqTpsCp8z3rb9a/8fgW96M3ECJT4LfepUsXu8z9RRaBnYsQcQ477DBqVxPbbLONnXPaYost7HyHHXaw8w4dOuT6pk2ePNnu88ILL+iNFRnNr7/+mqhcuXKiW7duidGjRydGjhyZaN26deLMM89MVKpUKdGkSZPEdtttZ7+HffbZJ/Hff/+l+ykLIUooXbt2tbFkxIgR69z2119/JVauXJl488037TrjDfd97rnnNun/ZMxq0aJFokGDBol///13kx5LiOLOvffea7+bRYsWJQYPHpxo2LBh4scff7Tb6tevb7c98cQTdr1jx452/aabbkq6Pnz4cLtevXp1uz5nzpw0viIhREHCeFC7du3ESSedZPNuXvz555+J2bNnJ2677bak4/w9Y8PUqVOjY+PHj7djjDOFycsvv2z/z/3331+o/48Q6YY1K7+nli1b2lp24MCBtmePz8kffvhhokyZMrZX//nnn6Pj1157rf1Ojj766OgYj7Hnnnva8YkTJ0bHp0+fbsd23XVX7fOzCCnRxTo0adLEStHIwnkJuXcO927jeKLnBIpbysMoP+ckRCaD99k111xjjf8oHaMJ7+zZs02t9sUXX5jXIRluqjlQq7388svpfspCiBKKK2CxkUqFMYbmh1S/MA/jyQqo1DcFbNnmzZtnKluf/4XIVLBk4zdDCfi4ceNMVUpPIGjbtq2dP/7443bevn17O6epaLzqw62U+C3CW2+9lYZXIoQoDBgTqApDkeqV2ihUc2oxt/XWW5sCHW/mOChjJ0+eHA455JDomFtB0E+ssOA5UkFL48RTTjml0P4fIYoDrFlZu2Ix/Nxzz1l/IJqITpw4MbpPjRo1rAKNvfoTTzwRHfdqENwZfO2N6pzGo/HGwED/FOIBNOuVhVv2oB2RWAd8zL00hXJyLzODH374wY4dddRROb5zDz74YHjnnXfC4MGD9c6KrABbIzwQaSbqky5Ng8BLOj0J5ZtxIYRYH96cjB4LwCIfWKzTqBg/R2/4HQd7KfzUuR9ekBsLZa9XXnml+UMfccQR+sBExkNDURqCkwxns4xHerdu3ew2/63RyPf333+PAmAExPA3VhBdiMyHPiTYNgwfPjw6RnCuUqVKoWvXrjkG01OhASn7bHqOAX/jybg2bdoU2nPHGo6xjTEut55mQmQSJLsJcrOW7du3ryWvbr/99uh29umeUIoH0ffbbz/zOmeujzcH9yQXwXXWyMD+3+2aEJ6I7EBBdJEjBMppjEinYcA/apdddrHLBNBzanLGQIMqlyak+KELkQ2gRLn11lutcoMeADQK4rfAb4ikE3hTUSboDVlgCyEEgfAPP/zQEtPxIDpKdHyWafRN8A769esXrr322vD9999H98cffVPU4/RGQVVDUjy/jRWFKKnQ1K9Zs2a2ST7ttNOiQBdB8l133dV+h/QGQrFevnx5m+9Rnzdq1MjuR38C5n7UnvD222+n9fUIIQoOAuB4mbvYDPj9s84nmO5zJXMz/cGefPJJqw7LC8YIqlfZNxx00EGF8nGxj0eF3rx581yFcEJkGvwehwwZEpYvX24nfrdUiMRxdTnB8rgIzn/j+Ko7/D532mknE5fGq8vbtWuX1EhYZD4Koot1FGwE+WjGcP311yepaH2zfsIJJ+T4rt111122CMDSQohsAoUaG2gy3eedd54dQwUKJKP4TTFp03TIS72FECIvqlevbsE6V7bE7Vy+++67aH7+888/TVlz3XXX2VjjQfRNsXLhMQcMGBCOPvro0LRpU31QImtg80ziCNsGt27x494IkN8k11G4Ab9TAuoo14C/jdu5KHkuRObiFg6oV5033ngj3HzzzaF3795Jqu+ePXtaY08X14Cr0BlPaIhYGFAJ+/rrryspLrIO1rAExPv3729r25yaAiOAI86F7YvjQXSsWzwRRrWaB8zjjURdiU5zYI+XicxGQXQRgYKN0nGUNijcKG/B6xmFLZCdQ5HjPpBxGJSGDh1qqh0GIiGyCTbTlEeSlaZjN5OsWyDxWwJXs8XLxYQQIjdIxLGppk9Jqp1LPIiOxyOw+UYl50H0OnXqbJIKHVWdkuIiG+F3h4URghKCT+eee64Fwr2Um80z17E68iA6xC1d+P1RCcLaGoGJEKLk88ADD5gfOpVijvc9qFevXnTMBTONGzeO1OnM2/w9tqnxKjE8m+OBuIKGsYr/k/2728MJkU3w/V+zZk2YMGFCGDlypPU4YW4Gfp8IRgCrRIffCi4M7Of5zTtubzhr1qykQDyiOcQuS5cuLcJXJtKFgugiaRHAJhyrFgJ+nGPNQpmZez8yyOD9lArBdrLqF198sd5RkZXQSLdKlSrWkIxAFuBZTEaaCdqD6ijbpEoTQuSXuJ1LPIj+2Wef2WXGH8YaGhpvihKd8QllO6pbNgZCZCOsZ1n/0mz07rvvNhXnYYcdZhZuVG1+8MEHURCdhmL8btzyhd8ha2XvSbB69eo0vxohxKbCOh4lOcG1uNrULZvcwgmwjoD9998/OrZ48WI7pwk4ATdg3EC9CoUV4MZigj3+JZdcUiiPL0Rxh7Usa9o777zTnBOwbqG/SaqlC1Vm/ttGEOfWR3Ff9NatW9s5QhO/L0kxXw/MmTOnCF+ZSBdbpu1/FsWOFi1a2AKBJolsxlHWMNFTnsqGAQiqp8ICgAYrZObwYBUiG2HTjC/xZZddZr8DqjqoymChjGcqatKzzz7bMuGUeqtvgBAiL1C0eGkpDcvwM8VrmQZmuQXRYeXKlZukRGfupxSd6jIhshUC5gTFmL+xbEORhrjkoYceCvXr17c5nvUvAXKslzzwzhrA4Tgbbeb9wvI6FkIUDVSaIphhTCCZDVRrk1ADt3CKB9EZK1LV6XGLNBqI038MEZv3VSho2KPz3ApL6S5ESeCCCy4wKxbm6B49ekQCUSABfscdd1igPe6ZjvUSVq1xl4WqVata4syrzeJxNHog0GxcZD4KooskULBR3sJkPn78+HDiiSfaJgEvZ1Q1nn2LQwYdhU7cR0qIbAQ/dBqYNGzYMKn7t0MJOEp0LF0URBdC5AWBcpoVo3xF7RJXkeUWRP/xxx/tBDVq1NioN5ixC9UOwQIhsjkxzqa7T58+5mvsfudxMQn38QA6xL2Pwf+GQLoQomTD7zmuSPUgOE07qUCtWLGiHeO6W7zEg+jLli1bR53uNhEE8QrDD53m5Chux4wZowbhIqtp06aNVWiS9GKvHodgeN++fdf5mz322CPHx8qpStOtF5csWWKxM7dxEpmJ7FxEEl5SRodwvFBpIuoNRslgczwVMncob/GXEiKb4fdx1llnhfvvvz/yQo/jTUqef/75NDw7IURJgsQ15d05lXijgm3WrJnZRcSD6J988oldZkPvSrn8gKp26tSp4fzzz9cGQGQ9J598sv2WRowYke/3gk20B9hRogshMg+80Zs3b27qcg+akTSjjxiKViq68wqi56ROL0gYu0i2M5YJkc3w+2Rt+9RTTxXKnExjYUQvVJZozs98FEQXUdYM3ycanoAHAOk47ln3nBqK0tBs8uTJ1nQpXtIiRLaCZQvexXio0iwI7zUak1EOtmLFimgh/eWXX6b7qQohijFYQc2bNy/Mnj3brtMwFHUbm/Z77rknLFy40CwivGkhNi8eRHcv5vwyduxY64nSvXv3AnwlQpRMaOJ7xhlnWGKcYJdXXE6cONEqNVGRovTs2LGjNSMF1GyVK1e2sm4F0YXIbKg8RYCGl7Lz3nvv2TkWEPgqA1ZsHlhr0KBBdN9XX33VzgujOhXbmXHjxoXTTz89RxGcENnGKaecYrZsVGawtmZuj8N1qs2Y1x3W4RwbMGBAdIx9PmsAfuNYOrnwhUC6x9VEZqOop4gGCMq9vCEZpWiuYvPS8JyC6EzOZN0YlIQQwZqKsUAmaN6pUyezeOnWrVu4+eabrTv4DjvsYG/TzJkz9XYJITYYFuf16tWLgubOsGHDrKScYN+mBNEJzrOBIIC+MSp2ITIRflcEwBo3bmwqNrdmI5A+ffp0m9O5zjqa9TK+yfxGSZoriC5E5tCrVy9TkfN7zwusT5mTH3zwwaQqL4J3WMLstNNO0ZxL/5HCCqJjHcnYdeaZZxb4YwtREmFtyxqXIDp9T+hj8u+//ybFtbBdjds2ffXVV3Zs0qRJSQl2GvZiDeOJMPC+Btgci8xGQXRhoKLBtoVGZo4PKgTUKUejfDwOx1HDkZ3zBYEQ4v8W2j7JAspOfi/gv7EZM2borRJCbPiC7f+v9vKxxMFugvkZ5fqnn35qx2gQnl8IDBD804ZbiP8HSjMahqEopZEYCjRXndOEt3z58tZozDfOeK565YgH0bF3SP3dCiFKFgTGqSRF4Z0XiMuYk1GpOwTfqfKOB9cYI/78809LxOXmvbwpUFlGQD91/y5ENsMa99tvvzWxSefOnZPsVwmsw6xZs6JjrVq1snOaiRJQd2sYbxYebyTqVSbeWFhkLgqiC4ONQd26dZMCf5SneJOknFToZOBWrVqlDbcQKdCIjAZD7mXsgXN+W//8808URMczVQghcoNeJDQwWrt2bRREZ9xAkU7VC5vwOJuiRGfDTXOzeKm5EOL/bNqYu2+55RZTsvmmmpJt1squPlu6dGlSEJ1kFpttAmX4pAohSi6jRo2ynkbxPiX4oZNEoxJlfTAWkPR24s1HC9oSlcpynpOS4kKsW9XJnM3vjurL+G/Sg+jEuDzxjUDFGwSTOM9Lde738woTkbkoiC4iUJtT1vLXX39Fx2iKAjk1DUWFzmaBBYQQIlmF0rt3b/NPRV3iVR0eQEfRhuKTngNCCJEbWEIQjPvuu++ipmUs7GkmyoljVJFdddVVFkDf2CA6CnaCA9pwC7EuRx99tDXnY93r6nR6EBAcf/nllyMrBsq6EaXAypUrba7n7+Cbb77RWytECQaxWbt27ey371BlwryLH7JzzTXX2Mkrw3LD+yS5iK0guffee8Muu+xiY5cQIhnWuuzRU3+j2LZhu4RSPR4I9+qzxYsXR8e8QfBrr70WHdt3332jnoFKnGc2CqIL82mjbIWSVBS0pUqVsiAgULIWL1lxUN5MnTrVfKV8Yy+E+H+ceuqp5o3qi2N+V56g8t9X3HNNCCFSGT9+vM3PNWrUSLJz8bGERPfIkSPDoEGDLNBOYB1QqecHvB6pPKN/gxAiGQJk/DbwGP7555/t9xe3dPEgOptpt3ZhnUzgHBUbKIguRGZBVZjbO1B96owYMcKS295TDLCNOOaYY5IaFnoQnWqzgn5eeDhjt8reQwiRDPM5a97JkyebqM0tmtife6UZjUcdt2aKq849iE7CHJs3t2+l74EfF5mLgujCNgWHH3546Nevn6lrmPQpIXcrF7JqqZ7nlLlgUcGiQAixLngQkphC3QleFkbSySfruI+aEEKkQhUYnqYoYzyITmVLPIjufo74qhJIBxRo+eHpp5+2ed8bHwshkqFR+Jo1a+y3Rf8A32hjmeDJciwO+Z26UvXjjz9WEF2IDICk2GOPPRamTZsWWTF+//331hw0HkTnfj4PV6lSxc65/8yZMy1gF8ft2NwCqqDAJgaFvPboQuTMjjvuGA455JAwcODAULly5aQ+ZfRAyU11ThDdf//M85y47tZM7uwA7733nt7+DEZBdGFZaiwn8Gsmo07wfPr06eYBCTnZtaBCr1mzZoFnz4XItEA6wS5+Y77QJkvtypD4BC2EEHmx7bbb2jlJOB9PWLx7zwXGFjb1EPd4XB8kzufMmWNBQiFEzpBkQqXGb4/AOWXfBMyZ46n8QIFOTwHKwJs1axYF2aVEF6Lkw+8a9Sr2KF6B7XYNJJ99Xe/VYFSvuACNoLrP0970m2S4q9I96FZQsEcn8U6QUAiRM6x5+V1D3LqFuZ1YWLyBMPEu1tjEy3744Yek+6JSx9rN8d8zjYhF5rJlup+ASD/nn3++DQodO3YMr7zyStRRGJ9HiDdQ8U07qrXjjjtOVi5C5MFFF11kv5Phw4ebjyKe6CysWdyiUqdZIH5svqgWQog4b7/9tm20a9eubYltVG4oYVngM55gLeHgv+wK9fwE0Uma81hHHXWU3nwhcoEgGU3H8Dq97bbbrLqM3x8CFED5GbdHcjyI7pt1IUTJg8C5J8YcrwJD1eowPrgK3YPtVKS4Wj0ebCchR2KuoPcA7NHZc8jKRYjcYc3bt29f6x/Qq1ev6DhxL37bPrd71SciFXdpcKZMmbLO4+LqAFKiZzZSogvDy1DYBJxyyimWNfdGCalKdEpZCP5pwy1E3qBYYQPN7wpPYyZWGv4R4PIO3lKjCyFy45ZbbrGSbMrABwwYEG666SYbQ7zpd1z94gF1FvkoZvKjWmvQoEHk5SyEyJkTTjjBhCZffvml/c7im+zckBJdiJIPQXEqtjilzrnx+TYnSzUPoscbftOPDJh3UwNzmwL+zkuWLFFlmRDrAe9y9uJYFMchsZXT3L6hv1OcGgD7N5G5KIguIrUbkHmjGQnlKSjTKFH1BgnxDTdZd/eMEkLkDBPukUceab+ZVJo2bWrnCqILIXKDKjHmYzwb4+y3337WzNC9GcFLTCkh39CG38zzzz77rDbcQmwAHTp0sHM80XPD+5/4ZQXRhchMqCxlLc987ORkqebNR71XQjyIjsCmIMGzHZspH6uEELmDIJT5nLVwTsTX2A5WTHndz5Nln3zyid76DEZB9CwHX0cah3rzQ8d92ti8p27GKRNjciZTJ4TIG8o/V6xYYR6p/J5atmxpfmleAqYguhAiN66++mpTlfXo0cM25x988EH45ptvwoIFC8LSpUujxmVsmj2Inh8rFx6Hx5UfuhDrBxs2qjaoCLn55pttDU0Q7Zhjjgnz58+3ajPm/NmzZ5sIhfnefZHjPqpCiJLPQQcdFBYtWhQmTJiQZxDdvdMZPxysHKGgK8DYo/O8PHknhMgd1r78ZhG8jR07Njr+0ksvhSZNmoRjjz02Osb6m4QZ9orxBBl+6VSeeALdg+j87rFgFJmJguhZDjYuqNDjXo3x8nC3nIhP+ti8yMpFiA2DRmNAIIyeA2y6mYi9+dCrr76aawZcCCHi/UsI0j3wwAPRMTbKJOmwmNiYpqJUyaBypzGSEGL91KtXL6xatSqMGzfOPIeZ25nXsXRgbuf3iN0SczzWCt4QWJtpIUouWJk2atQodO3aNc/7nXHGGdZQcMiQIdEx1vjbbbddUmDbvdNTq8w2BRohvvDCC0qKC7GB8Jtm7p4xY0ZS1ThzO70BSY47NBCmASnzv8fKypYta97nrL/9N80xt4PB/lhkJgqiZzlk4O677z7LnqFkc7wZCZuF1DIxmpcdccQRRf5chSiJUOlB06AKFSrYdTbXXvbFb46NNROyEELkhfuuejMzYD7ee++9Q926dcOvv/6adL/1wTjEpoGkeHz+F0LkDg1+gd8N8zu/HapDsHZwT2S/zMbaLxPgEkKUTH755RcTvbj9aW4QLN9zzz2TrFDpZ8LfDx48ODrmAbe4xcumMmvWLBtnJHQTYsNg/m7btq0Fvi+55JLoOHO7K81daEolCb9v1s7ud84a3KtJfC+Pg4Mnx0iki8xEu6Ysh3JT92NjIHDoGJ5TEJ0NN+Wp+VG6CZHtXHXVVVE5Z1x17k1K3nnnnbQ9NyFE8YUGhvQfYUHvwXGambVv396aF6GCdf766y8796aj62PlypWmnJWVixAbDvYtBMmwZ0Ft5mtogmJlypSxy65SI4juohQp0YUouZCopn/ImDFjomNUo2DdcN55523QY8ST1R5cK0glOlYuVKvF7SaEEHmDXSLJ73hCi2C527KwVvbguDcNjYvfPGEW90B36yYS7CIzURBd2IR79913r9MMiRJUmprFj+Gfethhh+ldEyIf8Jvh98MGO/4782QV5d9CCJEKYwblpKjf3BYCVQwlojQm4xyVGx7NPp5saL8SHpdN/SGHHKI3XogNhI00czrrYaDHCVDSTdWZJ7oAxZo3IZMSXYiSC0pVktcIyZwff/zRbE4JwDmPPfaYCWfwVM4LD67FfdI3FeZ0xqYNbSwuhAjh0EMPtd+Mz+lOnTp17Pzdd9+NjnlcLB5E90SYV5eAWze5gE5kHgqiZzmTJk2ywYGGCmwE4mp0su6ulPVmo5SRH3DAAWl6tkKUTFCtEQzDT82JB7qkRBdC5ARqmCeeeMI2x66KQcHmqnSU6gMHDgw33nhjvpXolKazSeD/EEJsOPQQIPmNfYKrPuNBdDbO/rtyVbqU6EJkFp4giyvMsT0dNGiQ+Sk7ffr0sQA8zcCdjWkEnhfYubGf1x5diPzB/hxB6XPPPWf9hRyf212JDjkp0atUqWLnCqJnFwqiZzEoZLp37x7+v/buBM7qeX/8+Pfi2rMUuQgRSYjshGwJWbNkS5Ys2WVfruz7du1ZE9earVASZQ2JiEghkS1Llmu5W//H6/37f849s5yatZk55/V8PObOzJlRc09zvp/v5/15L9tss01ksJHpdthhh+VOxcu3cmHDDRdoqfrIQkvDRMu3dTGILqkQBpl16tQpF6DjRj1tvH/99ddcgC4F0auaic6a7nouVR9Za+keOmWis9GmRSLITk2v0VQhYhBdarpYa0eMGJENGzYs91haa9NrPP/j/HWYQ3D+u/wKlTQIfLHFFquTn2/cuHFR6eqaLlUfrdlIWOEArHwQPT8TvbIgemWZ6Gn9p1pFxckgegnjhp6NOQMRyDLnhX7DDTdkXbt2ja+X76nGhpvvzZ8uLmn2yFJhkeU9GaQs1vReS33UCKLnt3mRpPLyb9TLB9G5fqR2EVXJRGejT8aNG26p+nbZZZdcoIzybqrNCKAzu2DDDTeM++QNNtgg5hk4WFRq+qgA69KlS7bHHnvkHktrbTrARmqlQqA8SWtz/rUgBdvrKojOHp2fhypySdWz3nrrxXv250n79u1za3tCbIwk0zQLBdwD8N+nAaNI1aIMFFZx+l/vDpUc+qs+88wzcTEgcM4pOe+nTp0aX8+fLA6z1qSao+XCQQcdFKfXLVq0yGWjs2BThklv49SuQZISslrHjBkTG3CqxbihT30W82/Q00a9KpnoVJ7RZsIgulR9LVu2jJYu3D9vu+222aRJk3JfO+mkk+L9oYceWqbSzD7FUtNFUIzXO60fCJDzeq4siJ5au+QnxqS2L6llav66XVft1Nijd+jQocrt3CT9z3777Zfddttt2XHHHZd7bKuttiqztoPuDfktX7DrrrvGW740ZNwgevEyE125acInnHBCdscdd2SffvpphSA6NwxvvvmmG26phjbeeONcySU337wR7EotGtLhlSTlu//++7Pu3btnAwcOzPr37x+DRBlyBuaUpOBcykrPn21SCOs5/93aa6/tky3VAJlnvI5mJ7Vuy58xJKlpodUpwbNXXnklt+amgHWae1AoEz0F0dM1ILV24r/P76deG+7RpZojoYTXblXW9KpIQfTUwknFxyB6iePmPvVrIlvmyCOPzAXz8stSyJ7l+8xak2qGoSVksqTZAkkqEyMTXZLKI/tt/fXXj7LShKoVykppG5FKxNOmPW3YqzJUNN3oS6oe7ocZLpoqQAopH0CTVByoKmUdzW/tkILi+etwykpP14AUdE9rd21xgM61yD26VDPsz5lvUn6PXlPpte0slOJlEL2EPfLII1GOmo+FnY04GbKp/yrSRaX890uqGk64aaF0zjnnZEsttVS8sWjTpgEG0SVVhjZrr7/+erSEIquFIUeUjvKex7iupGtM+dLyQljTXc+l2m2SCZQx+PfAAw+MFi9XXXVVHHDRG713795xHz148OD4foPoUnHZbrvtIgHt1ltvzT2W1uP8w7X8rPT8wFpdBdHffvtth4pKtURSyV133RVdGRKGh7O2DxkyJPcYbZOYS5SGizKniMTT/Jasab2vSlKLmiaD6CWMoN348eMr7dVIi4n8EjM23DzGhURS9fEaY5AQN8/ffPNNvJE9kgJeBtElzU7Pnj2z1VZbLXvggQdyjw0fPjx76623YlhxVYLoVKCx6TZrTaq51q1bx/vRo0fHXBPmFHz33Xcxw4A3qjcZRpjKuQ2iS03bUUcdFVVhL774YsHvOe2006JtI5XdCW1bSE5LrZ3S+6q0XqvOUFEO7yTVzCKLLBLrNffTCT3NWdvz9+g//PBDNmPGjFjv0+uY1sis+6nqJL2202tdxccgegkjk+26666r9Gv5rVzgUFGpbgJg+fIHDxlElzQ7bdq0ifcfffRR7jGC4fQ2T61Z8vuzVoaybw7zDKJLNcdrjntl5p2kyk1mFKT3acBvOtQyiC41bVR/vfHGG7OcYcTh2lprrRU91JMpU6bEdaC+1lz26LR9c6ioVHP77rtvrvozSWs72eb5bZyQguip+iS/AiWt9wbRi5dB9BJG2cnqq69eaalZfiuXdOPgCbdUO4ccckju4/LDhAyiSyrkjDPOiIAdFSyghJwNOWs1FS5IG+jZZaKznsM1Xapd1tqWW24ZWWnLLLNMPMbH6Z46VXimQ626yjqV1DBOP/307Iknnsi22WabXJYqwWv207M6vC5f7Z2U33vXFPcDrudS7XTv3r1CK6a0tn/xxRfVCqKr+HlHV+IYdnjttddmxx57bJnHF1tssTLZspSkpgGIkmomLcbpdZUvf4GWpHy0i6BcNG3UP/3002zy5MkRQKe1C5lu6WuzC6KTUUMvVno6Sqrdmj5q1Kjc2s4hF4dZvAbTGp9el2aJSk1bCp4nCy20UPbhhx/G6/3rr7+Og24C2swco71afuJMVYLqNcWavvXWW9fpnymVGu6J55tvvjJZ5ympNH+PnmJkqfIsv8osrfspAz1VpKn4mIlewhho+O6770YmDZPF8y8C+UF0ekExGCE/ACip+jit5nVWPgsd9E+VpMoceuih2UsvvZT169cv184lHWw/9NBD2V//+tdchvnsguhsBljP63ojL5UaAuNUkTHfBN9++21swvOD52kzveiiizbgTyqprrGGlg+y0S7trLPOyu68887c911wwQXZjjvuGAdu+VUpqYqsNshmJ+jnHl2q/eu5efPm2fPPP5/LKOfz8nv0FBjPf/2m++lUXZK+ZhC9eBlEL2FXX311tv3222cjRoyICcPdunXLllhiiQpB9HQiV77Fi6TqYegIB1Lls9BTWagkVYZS7U6dOmXt2rWLm3IC5annajoATzf9aZBhIazprudS3SSjECR/9tlncxUj6fWYDrMMokvFgdc3AbYhQ4YU7Jmc9tEcqCWvvfZa9uSTT+ZmmaT2D3XR+oGWEgTsXNOl2qOajEoS9utIs4by9+iVDQ1NQfS0vzeIXvwMopcwss/p5cZC/95772WPP/54tummm8bXDKJLdY/yTrLUyF4ja6RVq1a57BEG/TmARNKsEKBbaaWV4uNmzZrFew7m0jUkvy9zIQbRpbrRtm3b3EabYYLt27fPOnbsmK233nqxvnfo0CGXiWYmutS0kXC2xRZbZL169co9Vj4TvbIgOvMT8rNZ84Pote2LbqKbVHfIPGetTvtxXs+s7auuumrue9q0aRMzifKHB7Pmk+xSPqmF1okqTvZEL2EXXnhhLP7HHHNMNnHixCgJnzFjRsEg+lJLLdVgP6tUDFiYqf4g2DV06NBctloq/+akO/+1J0nJK6+8kr344otRNdazZ8/oi/7cc8/l2kaQJYfvv/9+lk8aa/pqq63mEyvVEvOErrnmmmzfffct074h3znnnBPvDaJLTRvBMxLQODwjSEYwnD7oYD1GCqyxDnN/T9JMeu2nPXYKopO1SsZqbeYlGESX6k6PHj2i7VK6R15nnXWycePGlfmec889N97yUW2SL1WEpmQXFR8z0UtcOgGnFPWAAw6oNIjO6To3BQ5FkmqPg6v8oSW8rlKmmi1dJBVyww03ZKeddlrWokWL7Mwzz4zsmPzhRinLjfezqmpJPdEl1U5lQ8fKS/fVBtGlpm3BBReMbPRhw4blAuGpMiy1amG/TGIM++t0XUiBdVpF5LeIqEr7tdlJf4ftXKTa4954Vut5VRlEL34G0UtcCqJT/n3vvffGoFGkmwNY+i3VXxC9UM81ScrXpUuXbK+99oqWEaA/OplxK6ywQnzOgMPygbvyqIJhvXfDLdUepdqLL754hTU9XzrcMoguFR/aPKyyyiq5NZXeyLRywtSpU3OtHPH111/HexJn0n3/7NqvzQ7XHlpQpIpWSTXH65gqklThWVMG0YufQfQSdtFFF0UZakJf1ZS9Ntdc//vVMIgu1Z2xY8dGNgrVHmyqyWxJm2yD6JIKOfDAA7MHHngg22WXXSLrjQz0SZMmZXfccUd8nc9T6Wihli5fffVVvDeILtXe9OnTo2XD1VdfHcE0stg23HDDrHXr1tnWW28dbR94jcJWbVLxJaF17do1+/DDD7Prr78+97XU4uWzzz4r0w41BdHB4VtV2q/Njnt0qe68/fbb8f68886L97RtYh1nbf/1119z7ZBp63TppZfmXtdUpJDgkq4L6XXtul+87Ilewlj0P/nkk0q/lqYMpwWajDdJtZdOp1PgPF+a6i1JhRC0Y03m0JtMt+WWWy5aspH9tu2228Y1ptDG3P6pUt2ZZ555YhYBb999910ko/D65OPUJzkNGvPgSmr6nn/++axv377Zsssumw0ePLjS7yFBjWS01OolZaLnZ7eSPU6QvS4y0b22SHUjvUYnTJiQeywdhKc9Oq/bKVOm5L6Xyk/iaSTGpfhZat3UsmVL/2mKlJnoJezoo4/ODjrooNkG0TlhSzcAUrH2GiZzjNJssshef/31evu7evXqVfBr+RUgklQZbtxXXnnl+JiBR2S+bL755pEtU773ankpE841XcVsTq3pVH5sttlmkYGWNthkruXPKkgHWgTdJDVtVI+++eab2ejRo3NZp+BjhoSiQ4cO2RprrBHfi/XWWy8Ot6lETWa3VleVe3SVgjm1pjMkHNxTl09uS3t0Ds2x0EILlVnr81u2UaUGg+jFy4hNCWNR79Sp02yD6PRQze+RrsZriy22yAYMGNDQP0aTQnsEskr69esXN8YM66M8s7Y3trN63RWSMtYkqTJnnHFGlIGnYcRXXXVVtsQSS8R7kJWeX0ZeHus5XNMbP9fzxr+mk4lOGxf6G6eAWir5TnMJ0mbaILrU9K255prZww8/nI0ZMyb32FlnnRUDvwn0VWbeeectM0y0qkOJq8I9etPhmt7413T+bNC+BVSXFQqip0OyVFm+yCKL5L43rfvpsEzFxyB6idtggw2yY489dpZBdErG2SjUl3POOSf+vsreWHCk+kTw6dBDD42qDLLJbr755lgYU5/hujar15KZ6JJmhSGiZMak6wibCDJdX3755ezcc8/NBfDSQLPy0tyT+lrTXc9Vimt6ykDNl4LqvOeAPPVFltR0kQnbvXv3yIpNe2Ve37Rleffdd3OZqfRLpuK7kBSkm9VQ4qpwj65iNyfX9HRvnO6V8zPRU6Jb+Uz0VG2W5hxwP5CqPm21VLwMopcwTslY9ClFTS/8yoLoXAxS1lt9OOmkk+LiuPHGG8fNBG8nnnhitvrqq2ePPPJIvf29Er1LKa/cZpttygSy+ZxSzfqQTqcrYya6pFnp0aNHZK6lgUbp5n38+PERwE4Z6PRirkwK9tXXmu56rlJb07/99ttc1nl5qeKD9kmu71LxZqfjnXfeyQXiTjvttMhM5/qQ+qSTPfv444+XCaJPmzatVn83wT736CpWc3pNT/fUH330UcF2LilZJQXRU8A8HZTzmubwnAoU27kUL4PoJWzo0KFZ586ds9tuuy0uGuuvv34233zzxdfys2rq+5SbEjdOFLnYsNHgjcf4Oxm8ItUXbm4p1SqfIcbnX331Vb38nekGutDNgiQVsthii0VmyzrrrBOfp+tUymZLQ8pml4leX1UvrucqtTX9iSeeiKFi+VJQi6xVpHtrSU0f6+zAgQNzbdTSevz222/HfTx72jRUNAXWP/jgg2z48OG5Xs6p9VqhA++qco+uYjan1/Rnn3023j/44INVbudSfohomn3AfYAV5sXLIHoJI1i9yiqrRPCaUnAWdrK/wQCU/AXaDJrG6aKLLoqgRXp78cUXsyOOOKLMY4WCKWoY6eQ6ZamlRRgff/xxA/1UkpoS+q+2a9cuPmYNT73O06ZiVkF01vP8ajM1Dq7nTVN67RE0S4GztM6nIaOu7VLxINO0V69e2dlnnx1r6oorrhhrMgH0FDRPvZUJrGO11VaL9++//368T9eK8gdw1eUevfFyTW960gF4qhAhCE5sjNdvum/+7rvv4j469UBPcw2Iq+HOO+8sE2xXcTKIXsK23XbbOBUfMmRI1qVLl3gsXRDSpGG42W68CJiPGzcu98bQyvPOO6/MY6lkUBUxkI+FMJVizYlp9/vss0/uY/69fvnll9zn9fV3SioetG7p3bt3bNwfeuihbO21147H84cbclNfWWWL63nj5XreNNd0eiOn11waMJY24laXScWHvsy0k+jTp0+0dmBdpZobKdM8rcvswyoLorN+p0zb/MS16nJNb7xc05vemp4y3tN7DseYdTBhwoTc9/B6JUM9tUJOlaCp//nEiRPr/OdS42MQvcSloDnZMgwZTWUn+UF0NgOVDU2qT94UVA3tblZeeeXcG5nNlBPlP1afrXiaOjI411133Vz5Vup/xuf06K8PgwYNivfdunXL7rrrrjJB9FQSKkmFsD7ffvvt2RtvvBEDztK1atFFF82t2QTTK8tG52vc/Kdg+5zgel41rudNc03fZZddoqqTjPS0nqf2Lallw0033VQvf7ekOY+98jPPPJNdfvnluX10CqK/9tprZTLRUxCdwDsmT54ch2v8dwQIa1upUmiwcX1yTa8a1/Smt6ZvscUW8f6UU07JvTZ33nnn7KijjsrFy1LbxJSkmO61l19++TLXgjS7SMXJIHqJo78qFyiMGTMm2rqUD6KzQKc+qnNKs2bNoiz9ww8/nKN/r0pP3759s1tvvTUC2mSIkFlCCRZTwOsDZWAgkEUftXTazaY7DSGTpEK4QWf4Nj1ZCYYzHJysOAJ5aV3Pz3jLlw5V5+Sa7nquYl7T819LqQd6kgaQpdempOK0+eabZ1tuuWW24YYbxucE/kAWK9efZZddNtZmrhcpq7Vt27YF1+qq4mDcPbqK2Zxc09NrKd0rk2VOx4ann34693la60lc4R48zTVIQfQUu0qvbxUng+gl7oADDijz+R9//BHv80vLGiKIzgRzmJmr+tajR4/siiuuiN6GlF+SNTJs2LAKQ0zqym677RbvW7VqlW200Ua5nqmUhZndIWl2OPjmmrXddttF1hubimuvvTbXKiq1ksgvP23IILrruYp5TWdgYOp9ml57bKZpk/j999/H5wbRpeJDAI2e52SCc5D93HPPZUceeWTuHp83stZZo7m/T3vaN998M96nOWSVrdVV5R5dxW5Orunp3jit5TNmzChT6Zn6n5OFzmuarPRUgca6zzUhBdFd94ubfR5KHOXglfVsTH0d59Qp9zXXXFPmc24s6mPqcrEbNWpUQ/8ITdLRRx8db3NC6qGWhg/ll/1JUnVQLjp48OAYUMyhONlwDz74YNavX7/svffeq/D9aWNQn2u663ndcD1v/Gs6r6P8MvPUEnGHHXaIEvAOHTpE24bU1kVS8aBlCzNKXnjhhagIK2/EiBERWEtVph07doygezp0Sy1eGnsQ3TW9brimN/41nWx3cF9NYkqKRaX+6/lBdEyaNCn3OffhU6ZMiURU7rUNohc3M9FL3GWXXRab7vKmT5+e+5hhZflBdUk1l15LafhQ+eC6JM0O2S5kwKbe5s8//3x8TIkpgTtUFkRnPc+/DkmqOfqgL7nkkrk2LmussUb24osvZvvuu2/uoJzXo1VmUvEh4YvA2SeffFJm/5wyzVddddUybRovvPDC+PoxxxxTJohOy5eaco8u1Z2URZ46MpQPoqd2LimITiIqFSapfROHZOm1ndolqzgZRC9xZMrQUqK8zz77LPcx04bTRUNS7aS+auUZRJdUHQwnpldjuq4wVJpy17Qxp4ScAUz5WM/hmi7VHgEs+p6mtgxstNlQU/qdNtPpUEtScSFDm5ZNqTUqmcasw7vvvnulw7uZfZR/oJaGjxK4y2+jWh3u0aW6kxJLe/bsWWkQPQ0VTffSVKCMHTs2MteRf3iu4mYQXVF2utdee5V5JgyiS/Xj3nvvrfRxhg5JUlWwEd9ll12yrbfeOtpFpHkmBNPPOeecbO655455C/kZcjCILtUtDqTYYG+66abZmmuuGb1aW7Rokd15553xdTfTUnGiJzOB8fyh32Sf0tJh4sSJ8RgH2wTLCbQlBNhpwcJ/z70/n9PnuSYMokt1J7Vk22KLLSoNonN/zf32BRdcUOl/n17H6YBMxcsgeon76aef4oLRqVOnMjcCn3/+eS6DjZIVs9akukGGWmWl3SuuuKJPsaQqu+qqq6LnKhnpYC3/5ptvsvvuuy9XQl6+TJzWEwTYXdOl2iP4xWuJIaKPPfZYZKWmnqqp77FBdKn4sWdeaKGFss6dO8fnTz31VC6oRnYqQ0dx5ZVXxoyE1Gc8tYFILWCqK+3RK8t8l1Q9vJa4R+ZeGalCJAXRwUFZao3IUOF8r732Wu5ATcXNIHqJo2cqpSsMJyP7PA0/4qLAZjydcqdBCpJqhw11/oFVCnYZRJdUE9tuu228pzdrfq/mymYvsDkg+801Xao9AudUfDz55JMxHPDyyy/PDRrl8dQnXVJxeuutt7Jtttkm23HHHePz7bffPt4PHTo03m+11VbxPl0XCLZPmzYte+mll8oE0cuv1VXFHv3XX3+NpDhJtUMQfLHFFsu+++67+JzKMl5ftD8u75dffolgOvt6vofXNW8ktKTXtYqXQfQSx819q1atsjZt2sQpOT0cU1uJ1NKFBZoLBW+SaocFljLOVC6WTrMNokuqCXoy4j//+U+8n2eeeXLXmFdffbXC91v+LdVdAA1soFP7hvyMUO6tmzVr5tMtFSnu4QmQUxVGIJsWqWnYNwO8CbCnz7lOpEx1PmfN3mSTTeLzl19+uUZ/vy3apLrDnCEC6GPGjCmT7Eby2+TJk6Nzw3HHHZer9GSw6LfffhtJLCkLndgaVSkqbgbRSxw39wTLuQDsvffecQFI2ej5QXRY/i3VHq2SCHDR0uXRRx/Npk+fHo8bRJdUXSNHjszWXnvtbNVVV80efvjhXBA9IbstBdcTg+hS3Uh9T0ePHp317ds3PiZQlmy00UY+1VIRW2WVVbKbbrop++CDD2I+CWtxu3btoqKbChWGDrOvpjqM9ZoMVdo6zpgxI1q4bLjhhpG5+umnn0aSTXW5R5fqTmrVssIKK1T42vjx47NXXnkld+D1xhtvxHvuwcHX4LpfGgyiq0y56SGHHJLrhZ6yaui3Bsu/pdrhkIobbW6wyUIhoA4WbAaRSVJ1MMiQthH0X+ZjAuiplQsfU0FGm4l8rOmu51LtpZYt3Denj/HnP/853jNsVFJxO+KII7KVVlop9/nuu+8e7x955JFImEmtXgiq01Jtyy23jM/JXieZLR3GpRYvNQmiu6ZLtUfv8/322y8Ov1588cVs6623zi688ML42vvvvx/vV1tttXifMs85CAP7etAmWcXPILoCF4u0CKfhJmkgmafcUt348MMPY7NNhsqkSZNyp9dkoVc2bFSSZmWJJZaI7Biy2GjNduaZZ2ann356fC1dU8q3dDETXaobVGimuSZkkyap+oPSb0mlpWfPntmtt94aGepIw78JotPuKbV4eeaZZ8q0ZEtBuOogCYdAvNXiUu3xOkpxL4YC0+o4ZZynhJT27dtXCKLTuinFz1LLJhU3g+iKcu+77ror90ykXqpszMHiTK8nF2ipdtKgETLRqfpIG+20IEtSdZEVQwCvX79+2W233RY38KzbBNgLBdG//vrrCm1eJFUPvZBT1jm9UUHWKYfltGxICSqSihszxY466qjslltuiZYuvXv3zpZccsnccFHaQ3Tt2jXaPW233XbxOJmuBN/Idk2Z6TXhwbhUe9wTf/PNN7kgOpXj4PWcPwOF7g30TScZDuuvv35UkbDuMweFhBYVP4Poih5un3zySYVngrIVMmbJZuOCQKabpJqjB2J6beVLGemSVFP0U+Vt8ODBUVXWv3//SgeWsZ5zs1+T/quS/s8ff/yRPf300zFMMGndunXWpUuX+JiBgfnZ6ZKKF4fVN954Y3bNNdeUGS4MqlXYZxNgZ+AggbaddtopO/744+M6wsE31wqCclOnTq323+0eXao9qke4Nyb7PL+tMUF09u8pE53Mcw7AUhIL7VjTAVhq1aTi592dYijKwIEDI9s8HxnptJ9Ahw4dcidwkmqGUi8OpT7++OMyj3fs2NGnVFKNUU2WbuIfeuih7Prrr49NOW9sBNKg8LSewzVdqjkySrlvpscx7rnnnmzQoEG5vsb2Q5dKxz777JPtv//+2XXXXRefE4y74YYb4jowffr0Ci0bOey+/PLLs5YtW0bVygYbbFDjbHR6qrueS7WTAuPlZwMSRE+tWzgA4zXLG6/5PfbYIx4fOnRovE9VJip+BtEVGwD6t2288cYVno3UF502FCzQ6cIiqWaBrsp6n5uJLqm2AT2qxQias2GnL/rDDz+cayGVeq+mrDXKzMeOHeuTLtUQ2aa87lLW6fLLLx9DfUeNGhWfG0SXSquq++67747WLNznsxbfcccdUQn24IMPxvewhyZjfcqUKRX++2233TbeP/XUU9X+u1nnSc754Ycf6uD/iVSaCIwvtthiWd++faNdy+eff57LNqfijJZMKVZGpdm9996bnXfeeVFlQsCdeFpqzaTiZxBdOSeddFJugnjyzjvv5Bbon3/+OZs8ebLPmFQD9CBmOEn5gygmgS+11FI+p5JqrEePHlGK2r1799xj3OCngUjDhw/PPc4GnzU9DUGSVH3p9bPbbrtFCfdjjz2Wyzpl2N9GG23k0yqVMBLUcOedd8b7Pn36RBDu2muvzc1RIGhOP/W0/6ZFFC1eqiMdlrumSzVHIJzgOGv3mDFjct0aFl988WzPPfeMw6/bb7+9wn83bNiweM9rmyC8SoNBdIXffvstTt3IqOEkLkkDydZZZ514b+aaVLt+6OXZykVSbTVv3jwGmVFemgLlbMRTliwl4vkHeGy6Xc+lmmOTTbCclg3zzTdf9sADD+S+ts0222TzzjuvT69UYsgGv/LKK6O9E+1duA6w1hLgToHyv//979Ey9dRTT826deuW/e1vf4s1maSaX375JXv++eer9Xe2bds2rkWu6VLNcK/M6ycdSPE6JsGN/uf5eD0zcJRODen+mgN08FpW6TCIrpyDDjooe/LJJ6MEPLWXGD16dAwXZWgCZSwu0FLNlC+zbNasWbw3iC6prtCPkWtL/mAzAuockuf3TOVg/KuvvooBpJKq78ILL4yDKe6ZyUTLH9S7ww47+JRKJYjDNCq7zz333Djc3n333eNxhoqyPi+xxBLZN998E9Vhu+yySy4IR1A9Bdkff/zxav2dtI5h3+4eXaoZDrl4XXIYBRJSvvzyy3jdUjGSn4RyySWXZGuuuWa8xkmQS4NIqUpT6TCIrtzk8F69emX77rtvLOacilO+QoZ62nibuSbVHDe3qR86Jd9pkG+nTp18WiXV2WAkstlS30auOSmgnt/SJWXbuOmWanYo/o9//CN6olf2Gtp+++19WqUSbeGy2WabRZb5f/7zn+ywww7LZZ9THcY+O7V44ftYr7mecBCXgnCPPPJI/LfV4R5dqrmHHnoo9zpNuH8mPta/f/84/DrzzDMjmE7LpbSXJ/mUAzD6pjOAVKXDILpy6KdKLyfK0AYNGpTbZKdpxamHqsNFpeqjNRIl32BoCT3SGULi8DFJdYWb+0mTJmVLL710VJDlZ6Rzs58wBJGvG0SXqi//dZX6HSdrrLFGDO+VVHoWWmih7IUXXoj2an/+85+zzp07R7sV2rQweJSqb5Cw9u2332b77bdffH7XXXdFGyj24VSJMZC0Otijf/TRRwVbR0oqjCGivF4Z8EucK3+NZ24BB10klzJniNcnGescglGJBrPQS49BdJXBcCTQ45F+T3jppZdyCzTTiVmkJVUdN7X0R5xnnnmyoUOHlhnYu8gii/hUSqoTBx98cHbKKadk5513XgxCmn/++XNfY1Oe2rek4aIG0aXqGzduXO7j/M02bOUiKWGtPeaYY6I6pUOHDtF2hT7LZK9yAHfAAQfE9w0ZMiT7+eefs1133TU+f/DBB6v1JKbEt/y2bZKqvk/feuuts8svvzxaMi2zzDJRTUK12ciRI+N7eA2n/ues83RrSMkpe++9t091iTGIrjI4BSc7llM4TtpSJjqbBKd/SzXz2muvxXtOue+9997snHPOKXNoJUl1gSzYSy+9NEpLu3TpEr1ZKUdNHn300dzHqbpMUvVw+MSheGUMokti3/zEE0/EgfZRRx0V2aypfeMRRxwR75999tlcYJ35Y/fdd1+211575dpL8FhV0UqCLHgPxqXqyx8qyuuSGBivv1GjRkUbJqo327dvnwuic9hF2yX6pXPfTY90lRaD6CqDDLbyfdgYSPbee+9FPyiGi77++us+a1I1pGxzXj+UcyYG0SXVh88++ywGmjH88Mgjj8wNN6NVW7LeeutFZjplrJKqho31TTfdFAkn+QkooI2SLdokffDBB9lOO+0USTOTJ08u84T06NEje+aZZ3K9lVOLlzFjxsS1pGXLljHkMH29KrgeEYx3jy5VDy0QCZoTROfwK73uunbtGodf6XD8/fffjzcS4shKT/3TGUKq0mMQXWUwjKyy7JpUrsLini4okqqG1w83uBxGJXzuUFFJ9YHsGPoysyFo1qxZBNJBr1bmMWCLLbaI6xAtpiRVvbLsk08+iew05Fd6kEWaH1yXVJqoBmOI6Mknnxx9zvHll19GdRgBdvbTc831f2EYWrrQa5m+6AToUp/0gQMHVuvv5M9kgHh1MtilUnf++efHe+JbBMlJLKEVIj3P84Poqf85wXXavzz33HPxuUH00mQQXRVOxys7xaZXG3beeedY/Dm1k1Q1ZH9S4ZF/Y0tPRAaTSFJdYzOeMswvuOCC2FyvtdZa0aottXRp3rx5ZM0OHjzYfwCpiqZMmZL7uF27dlHNMXr06Nw9tCSBTFXaqy255JLx+WmnnZZdeeWVUSGW0HOZQ+/USgKpT/rjjz+eff/991V+Mtmj//jjj7lZZpJmj+QS0HEhZaFvvvnm2dSpU+PAfN5558222mqreP2SdHLGGWdkAwYMiO/j8RVXXNGnuQQZRFcZCy64YJSDrbTSSjEMJX8g2fTp02MjzulcCqpLmjV6oE+cOLHSm11Jqg+HH354ZM4svvjiMcCMjPSUOUuv1YRy8xEjRsRGXtLskTGass9p0UZv1H/84x/x8UYbbeRTKKlgy1TQS5mMV4aH0ms5PZ5aqLZu3Tr24gTXq5ON3rFjx2zZZZf1YFyqItZuKkQIkFOxmd/KhUQTZhoccsghMW+AKpHtttsu22CDDWIoMHr37u1zXaIMoqsCguf0aitfnkJJC0F2AulmrklVc+utt1b6+G677eZTKKleLLfcctFG6thjj809RhUZKEGlZ3o6zPv9998jkC5p1jiM4v6Xw6fjjz8+XkfPP/98Lgs9P/lEkvDRRx9lvXr1ilZP3PtzHbnooovi4I2gOck2XEuuuuqqWLv/9re/xUE4br755vj+quD6w7WJa1RV/xuplBHv4rDq4IMPjkz0tJ4TRGc2wV//+tfsxhtvLPN64r8hS50kFffypcsguipgQ923b9/o/ZQ/+DBln7NAUyrGwi9p1n777bdKeyW2bdvWp05SvWIjXtmck1SKusoqq2SrrrqqB+NSFTzxxBNR3k3G+TXXXJNNmDAh97W9997b51BSBWSak1F+9tlnZ2eeeWY8RuB8kUUWidkktHq8/PLLs2WWWSb2DDfccEMMA6flI5WsKbBXFezRP/7448h0lzRrxLZoy8a9MPGvE044IYaGtm/fPvc9PL7GGmtEtjqZ69dff308zsEY3RlUmgyiqwIuCPR4pPSbMtV0Gk6JC4/tuOOO0d/ZYWTSrP30009R+p1wwwxujiWpvjHQjLLw/OGHuP3226M/espGJziYPpdUOUq7cd9995V5nA03rzNJKu+cc87JunTpEr2U6X3O3pr1tl+/ftlZZ52Vq1plRgmZ6LRPJZs8DRhNQbuqoEczVeNWjEuzRiyLtZzDqsmTJ0dmORUidF5grhCtDznUeuyxx+LAnO+dNm1abtjoUUcd5VNcwgyiq1Jk2PTv3z9Kywioczr+yy+/ZMOGDYuP119/ffuiS7PBwROLNPbYY49cT2LLvyTNCcOHD4+DvPLZ6J9++mn27LPP5oLoX3/9dTZmzBj/UaRZoISblgkffvhhmcePOOIIW7lIqtSaa64Za3E6aDv//PPjekGQjsDdhhtuGNmu1157ba4F22WXXZb16dMnPmYYeP5A49klwtGKwiC6NGvM+yNIzj1y/gBf9u0ceO21117RuuWWW27JZZ6n9kpkq6+88so+xSXMILoqtckmm8SJOBttTtw4pUMacEK5GJno9JGSVLlLL700a9GiRdw4r7POOhFEpwciw38kqb6xVnOzf/HFF0eGWr7bbrst3m+88cZxnXLTLRXGQdM333wTG+gff/yxTNCqZ8+ePnWSqmT11VfPDjrooAiYt2rVKvoup4zzXXbZJQLrHNQxx4QMdrLWr7vuumqt+6+++mpcryRVjrlBzZo1i4GiBM45rOIwa+TIkTFslMGiDP7l87nmmivmnqT75qOPPtqntcQZRFdBlKcS7OPCkrJu2GRzWkfm2s8//1ytPm1SKeHmd+zYsdkPP/wQ07zTwrvnnnuasSZpjuDGn4Nwyk4pHc+vgmHD8O2338aws27duhlEl2az4a7MPvvsE22TJGlWSKShwnu99daLoDgDRBleuMMOO8RhNgG80aNHZ8cdd1x8/4UXXpj7mD1E/uHdrLCez+qaJen/Xh/du3ePGQR0YOBj7pNTwij79bR353CL7yf2xSEY+3qVNoPoKmjGjBkVNgb//ve/s/vvvz/r0KFDnM6xCZdUETfCqQ86izODfsAEcElqiH7OrNms3YsuumgMM0sDRjkYf/fdd7NJkyb5DyOVQ/Y5/VA5cCqPVi6SNDvsodkPvPnmm7m1NyELffz48dkBBxyQHXPMMZEhy3rMek3QjhlLN954Y5WeZALzBOXdo0uV47X13nvvRdUGw0KZC4Rtttkme/DBB3NtWFNAvXfv3vHaxcknnxwJKipt/gaoIAaRjRs3rsLjLPz0ctt3331juvivv/7qsyhV0g+dkkwOo8guAX0PV1ttNZ8rSXM8CLjBBhvEx2wYyLYBPVgJptPyhcD6HXfc4b+MVA7BqBEjRuRmnBCkAq3amBEkSbOz0EILRdYrPZbT4dvbb78dLVvoy0ywHLSR+Pvf/5599NFH0U/99NNPj8evvvrqKu+52aNThUZbCkkV260S52JfPmTIkHhd0eP89ddfj4oRqkXeeuutyDynM8Pnn38er6Vll102qs8kg+gqaL755ssuueSSOM3Ox/CxiRMnxqkcpWWDBg3yWZTy0PLo4YcfjlYu+Q499FCfJ0lzHPNL7rrrrvj4u+++ix6sZLp99tlnMdxswQUXzPbff//szjvvjKC6pP8h8JVQ4p04UFRSdZD5yl4gZbKOGjUqhnyfeeaZueGG77//frbSSitlyyyzTHxOL2Y+nz59enbrrbdW6e/Zb7/9snnnnTfWdEn/wz0ulWUMFT3xxBNzLVt4nTE4FFSD7LrrrrHGn3LKKTFXCCeddFK8riSD6Jqlww47LHfhyMei3KZNmxhUVtUFXSoVZHlStpmPE28mfUtSQxyKn3/++dnmm2+ey0anogyXX355ZKqzsWd4YiprlZTFUL/8NkdsoBnYt+SSSzpQVFKNUdmy9dZbR6Yr80nOOuusyEAn+/zwww+PdRnMVyLYB5LbqpKNTjvW1NOZa5ik/5Myz9u1a5dtscUWcYjFoRZtDVu3bh1rOwH1VVZZJbvpppsi6D5lypTsL3/5S7wuJRhE12yx6T7++ONjE55wUscFiE33Sy+9FKfmkv4vOFVZ38K99947Mj8lqSEwj2H48OFRjgp6rIK2bSNHjszWWmutaE3hwbj0P2ywqdhgw53aLICBf1RwSFJ1TZs2LSq9SUa76KKLcntr2kCy33755ZejSuyQQw7JNtpoo2gLSYDvq6++qnJvdPbon3zySfbcc8/5DyT9f9zj0saF2FWKX1EhQsvDF198MXqlp5gXVZwM+AUZ6STESTCIrtniJJzNNafaCy+8cDxGG5e7774722233bIWLVpk/fv395mUsiwbPHhwpVkf3AhLUkNiY3DGGWdUeJxs9FR9NmzYsNh4S8oiE23VVVeN9myp3QK9jY866iifHkk1ssQSS0TSDUE65pHQfoX9NpWsDC5E3759Y/8NAnm0kkjZ6PRqnp1OnTrFHKbUokIqddzbMrOMAyZebx9//HE8fuSRR+a+hxZLu+++e8wrIL5lFroqYxBds0XJN1PDKfPu3r17nISDKcV//vOf40JEe5eqLOhSsaMXemqTkHTs2DHbZJNNGuxnkqSEjJtFFlkk15MVBM7Hjx8fA5PY0Of3gJZK1ZNPPhlDRSnn5h44YcNNYokk1fRA+4EHHsgmTJgQLSWuuOKKWHsZMEq264orrhjZ6lOnTs3WWGONOMCjrVTbtm1jrgnfPzvsRTjse+yxx+LPkUrdlVdeGQmhtFfl9UH7wnfeeSfaKfFGEhytDx955JF4ffIxONyy8kz5DKJrtrjIMISM7DU+ZgGnLcUHH3wQpeFsJjhNHzBggM+mShol3yy8nG7zGknDR0499dQKgXVJaggffvhhtHLJD6KnTQIZthyM00f1l19+8R9IJe3cc8+N9/kBqHnmmSdaHEpSbRAcT8ND6becAuOPP/549re//S0+5v3RRx8dH3O43adPn/iY7/3iiy9m+3f06tUrgoYejKvUcU97++23R9InQ0Pz1/T9998/hvfS6oWEEhJNCKgzzJfe6FaTqzyD6KqSXXbZJRbue++9NwLnXGhw9dVXZ8stt1yUvVx33XUOL1FJO/PMM2MxJmBOZgllmlRu8PqQpMaAQWZsysk+X2GFFXKPk3HLADMy19hkDBw4sEF/TqkhkRxCb1TkDwo/6KCDcoEvSaoLzCahtcRdd92VPf/881Exxt6baw9r8Y477hgfkzlLL3XmkpHgNjsE0AkAEhzkmiaVKl5bf/zxRwTImTPAfAGQbU7yG/MJ8lsbEtdKrZTovCDlM4iuKmvVqlXWu3fv+Jg+USCg/u6778aAJcrMhg4d6jOqkjRx4sSYE0AZJpvs119/PR4/8cQTI7AuSY0FmwOC6ZS2tm/fvsxBIIF15p1ce+21HoyrZBG4IlCVb+65585OO+20BvuZJBUf2kjQv/ziiy+OPUQK2LEGL7300tnee+8dLVTnn3/+GHS8ww47xNdppfrWW2/N9s/n0JxZZvfcc0+9/3+RGiOyynk97bHHHtEm6aWXXoqWSbyu7r///lxlyEcffZS1bNkyqs9Y/3ld8t9I5RlEV7WwsS7floJyV07FmWrMhHFO86RSc9VVV8V7WiTccccd0T+V/oYE1CWpMUo9WWk9xdrOwKUXX3wxO+GEE+JgkOx0qdSQsXnBBRdUeJwqjVSJKUl1NWT0lFNOyXbeeefIhgWVrGSPUzF2zDHHZG3atIkDPBLamLNEYJ39NgFyAoSzQrCQ9hVk2fLnSqWGVqu0MqQVG1UfL7zwQvaf//wnGzlyZLyOqPSgjSFo7fLggw/GPTHtlGzHqsoYRFe1cEJXPkg+aNCgGMpAOcwrr7ySDRkyxGdVJYUMDxbctddeO5sxY0bu8WOPPTZ6DEtSY0SWDdhYp4/JRmcQcteuXePj/FYWUilgwG75fsO0RTjrrLMa7GeSVLy4tjAAtEWLFrkqVg7yqABnsHE6xKPFVLdu3SIgzv6CfTdVsLNzzjnnRLuYFCiUSgX3sBxSbbrppnFvm4aFcrCUYlbLL798JL8x949qDxx44IHZuuuu26A/uxovg+iqloMPPjiGlFDSmu/ss8/OunTpEifoDCDldE8qFbREYFAfp9sJU7zJHpGkxqp58+a5jylvBZnoZKRTWk42ukPDVUpYy5988sn4mAy0dBDOJnzJJZds4J9OUjFiX52f8Uqm+WKLLZaNGTMmKr5Zl9dff/3crBIy0lNPdK5NP/zwwyz//DXXXDPr2bNndt555zk0XCWF6vBPPvkk7nGPPPLIaEVMm1XWehJD6bJANfmll14abQ5pWcxrj3tgqRCD6KoWSr7ZUB9++OFlHh88eHD2xhtvZJdcckmcktt3TaVi8uTJsfCWL6c89dRT3XBLatQoW73xxhuzpZZaqszjZLytvvrqkZFLBttvv/3WYD+jNCdRvp3Wc14XtHbhPS2OJKk+EdQjOL755pvn5pDRKpXWa1OmTImA+QcffBCBwYcffjgyZ7/55pt4fHYIoBNspw+0VAroa96vX79oacQhVUp24963Xbt22XzzzRevC97vt99+ufgV8azy98VSPoPoqhGyzffaa68yj51++ulxSs4ABjLTf//9d59dFT2CTOV7DHKC3bdv3wb7mSSpKthU9OnTJwLp+Sj7ZvgoZa+UuPKxVOymT5+eXXbZZdmqq64a802++uqreJx7Wtq5SFJ9r8m//PJLHORxDTr00EMjsE7AfLPNNosD7X333TcC7WSpk2EO2rSMGjVqln82Q8PJxOUaxzBTqdgxTJTf9REjRkTb1dGjR8frilaFHCY9//zzsd7zGiN55Oeff8422mijeN1Js2IQXTXyl7/8JaYYM0Gc0zvQQ4pSGXq4Mfn4pptu8tlV0c8IoAKjPE613XBLaiooZ912220r9GilLdVhhx0WZa2zKxeXmjp+59lMk/GZstFXXnllN9SS5hiC3PRqpsqVQB9VYelAb9FFF83eeuut6O0Mguv0SAdrNZm3s0uCS9ntUjH7/vvvI6Oc7gkMBKd9y/zzzx9tiVnXea306NEjBvVeffXV2eOPPx5xrf79+0egXZoVf0NUI1xcOL1j2MkOO+yQLbfccvE4U4+5MNE7/cILL4yBi1Kx4iSbvmr56FNYvt2RJDX27Le0jidUk1FRQ8Yb1TZs6KVi9dprr2W33HJLtC38448/co/feuutsbGWpDmB682OO+4YH3OQff/992cLLLBAtKKgPzoGDRqUC57zOMltkyZNmjR7G50AADQvSURBVG1bF+Y6nHTSSdkNN9yQffrpp3Pg/43UMAigcx+b5pMRmyIT/csvv8zeeeedSPrkNTBjxoyIWaV9fYcOHfwn02z9aSYpF1INvP/++3Exon/Uq6++GkNRKEFjE0JgnWA6C3WagiwVEzJB1llnnfiYm1uCTAzU5fVAXzVJakpYx7fccsts6aWXjiFMCQfmzzzzTHbFFVfEDIhll122QX9OqT5suOGG2euvv17mMYb73XfffT7hkhoEB3q0liBpjfkktJ4gKHj99ddnLVq0yJo1axaVM1y/OAgEg5HZhxfCXr1NmzbZ9ttv7+BwFaXPP/88fsf//e9/R/XG+PHj496Vli20L2SWAIdOhEFpRUxrJILnvOcgXZodg+iqFS4+9Gh7+eWXs8UXXzzKvZs3bx4XJsrR6KNKb1WHM6jYsNhSXskNLmViZIIQVGcBtgxMUlPEgDIyd9Zaa63IzgEH4gTY2bzvvvvuUeoqFZN3330311s4IQOUw6SWLVs22M8lqbQNHjw422WXXaLqdeLEibHfYI2mb3Pr1q2jWoxWbOxFOnXqFPtx9twEDck6L4Qg/LHHHhsZubRnlYoJB08PPfRQtswyy8SenARP2g9vsMEG0aqNysvPPvssF0AncM4h1Nprr93QP7qaCNu5qNYl4AxtQOqXSg8qymFOPfXUuGCddtppPssquhIxblDJ5lhooYVy077toyapKSNgyOZi0003zT1G9jml36zrt99+e1ThSMWUDEIv4fKovDCALqkh7bzzzpGBPnTo0Aig45VXXonqb1pNbb755tE3HZ07d47+6QwD7927d1zbCuGat+KKK2YnnHDCLL9PamrGjh2b3XHHHfG6eeqpp2J+GQdMe+65ZwTQSQghgM4h09tvvx3/DYmfBtBVHWaiq9boLdW+fftc1lr+RYzNNgv57ErLpKaCwyLKwAigU15JCxf06dMnSsQkqamj7yobEDJ42HSwYWfjzsabDbclryoWJ554YnbVVVeVeYxKjDfffNOqMkmNCvsOAuVUfG+xxRbZ8OHDY30m65YhiQQFybalxSTZt2TkFvL0009n2223XSQAVXaQKDU1VGSst956UblBezbaq/LaSJnniy22WC5exQwz2r4wW4BBviSGSlVlJrpqjbIxgujlLz4s3AceeGAs0HxcPsguNUUMz2VgLr/vKYBOK6OLL764oX80SaoTqSckAfR0reNAnMy3CRMmxEAmqakj2aN8AJ2hfgMHDjSALqnRYf9BizXaTY0aNSo7/PDDs169emU9e/aMzzkATMNH2a988MEHBf+srl27ZoccckgcJDpkVMWAOXzco+61115RvUEAnUOmadOmxdcvuuiiOHwiGY4AOgN577zzTgPoqjYz0VUnON0bOXJkLOT52JxQPsOpeffu3eNCJTVVVFTsuOOOFR5n8BgDyCSpGBA0Zz1/8MEHI/MtoU0bg5TZqJDlk4YrS00NFRVkbL7xxhvxORttfu8p6z755JMb+seTpApITCODnGxbDgG5jq222mrZ+++/Hwk9BA1Zp2mtykyHdu3aRa/nRRZZpGBQnp7ofB9Z7WbjqqliLWfALveo//jHP3Kz+vj9Zu4JlRr3339/3NfyMb/rzzzzTLb11ls39I+uJsgguuoUF6WHH344l6FLRg9DSygD57T7iSeeiLIZqanhhpQBJZRI5vcP5ET7ueee88ZTUtGhryRrdz7W8yOPPDLWedq6MPtEampuvvnmaMOWb7PNNouEEALqktTYfPjhh5G0Q/IOmedHHHFEPM6Q0SlTpsQcBwaEo3nz5rF32XXXXWNvTnu2WbV14ZpIZrvUFNu4rLvuutHGZffdd495fd9++23MEaC1MDNOGKQ7ffr0GMr7008/Zaeffnpkpks1YRBddYoT7QEDBkQJWcKgBjLWmC5OrzZOAzkdlJqSbbbZJnv22WfLPEbwiN9nSislqdhwYEhPSTbsCYeJgwYNioFmZLzZ2kVNDcEmstMWXXTRmOvD7znrOa0PCEZJUmPF9SpljJ933nlZv3794nMC6AwVZY3+4osv4prGYfe///3vWKcZDl4IbVfJ0h0/frzXQDU5/G5ffvnlkY1Ostv6668fj5PkxmHSxhtvHC2P2MczaJQDcz4m2VOqCYPoqlM///xztsIKK0T5TP5pOKXf9Edn08KJOIF2qalg4MjOO+9c4XH6A9MnWJKK1csvv5x17tw5V2EG1nEOyFnbX3311Sgtl5oC+vxzn0qG5q+//lqm6uKggw5q0J9NkqqDoDcH3cwmO+2006I6loS2ZZddNvpAN2vWLPbmBNmpBt9hhx0q/XPIzGWPTq9oWlzY1kVNrY0Lh0lnn312HDJdd911cSj06KOPZptuumk2efLkrEWLFtl3330X6z9VlEsuuWRD/+hqwhwsqjrFYs1J4P7775/ts88+uQsUQ04oq7n66quzu+66K3pLS00BB0IEysufVlP6WL7NgSQVG/pGs0FZccUVc4899thjUVHWoUOHOCCnlFZqCo477rgYKJYfQN9+++3j91iSmopffvkl23bbbSOQTvCbg22qxGhpQRIbjxFAZ60msLjvvvtGMLEy9Ey/7bbbIju3f//+c/z/i1QT3HuydhMgf/HFF2NGHwkf3KOOHj06MtL5nSc+RQCdgbyPP/64AXTVmpnoqnMs1Ax06NixY1y4WJg54eaUnOEm9E2nPxVtMCixkRozsjYoB2OhTtUVTPPmpnWJJZZo6B9Pkuodm4+FF144rof0jGadp7/q3//+9+yAAw7ITjrpJHtLqtFj0B6BJdobJEsttVRuKJ8kNSWDBw/OLr300khOW2yxxaLShspZ5o/tuOOOcQBOyyqS2ugHzRDSl156qeD++7DDDsvuvffe2OPkH5xLjdEZZ5wRyZscHP3+++8xNHTcuHFxP0o7I/buaWg4mA3QvXv3hv6xVQQMoqvecBEjg+1f//pX7rG99toru/LKKyN7ja+x6DvASY15cb744ouj5zmLM9lrGDp0aGSiS1IpIYDetWvX3LpOWSyVZ2xY2MyzaZcaI5I7yNTMz8TkIOjNN9/M1lprrQb92SSppgicp6Gh55xzTlR/k5k7YsSICB4yCPyGG26INmy0eOnUqVO0bFlggQUq/FkkvXE95FCRYDuZu1JjbbXKvD36/dOKiOA4B0kkfYCWRCnhg9cIrwvavUh1wXYuqjdsVrp06VLmMU4IKaN56KGHYnFnKJnUGL3wwguR3cEiTPZaCqAfffTRBtAllSR6S6bsNK6Nn376afbOO+9kO+20U5SKT5gwoaF/RKkCNtIc/pRvZcBcEwPokpqyFEAHST8pkLjVVltlU6dOjUx0+kY//fTT8TXmnNByNb8iJ6F6nFYYEydOjBkRXDulxua9996Le06C6EcccUR24oknxoER8wBAC1Z+d3lPAH2PPfbIzjrrrIb+sVVEDKKrXu25554VHjvmmGOiLJz+6GSl0yNdakymTJmS7bbbbnGzySKcysCooKBsTJJKERsSNi1Im2uygVZaaaXISqeMnIGNUmNCtQSBo3wciB988MEN9jNJUl2aMWNGXNd4v/zyy8dMJwKN9Inu06dPBNKPPfbYqAAnoe2oo46qNEjOweLAgQMj8Y0qM6kx4YCIe02qJQiM0xOdA3JaunAwRB/0yy67LNq5UDVJ8gexpvzDJqm2bOeiesegh169ekU2b0IvaU4RzzzzzFion3/++WyjjTbyX0ONYlDPxhtvnE2aNKnMsDyyM/idbdWqVYP+fJLUkMjqueWWWyLzJ38443nnnZf97W9/iyq0YcOGxYZGamiPPvpohR6orPGjRo3K5p133gb7uSSprnFdu/vuuyPhh0Ajh4dc5/75z39GEJGgOW+p1cWsWlzwNdrDkJmeDs+lhkRQnHaqHAhx/8nvMY/xOz7//PPnKinIPCchjgMhXhMkxUl1ySC65ghKvOmBTk/KhKA5U8BTie2YMWMMUKrBg0ObbbZZ9sorr1Ta3oWvSZKyuE5yTeS6mdACi8NxerASUJcaEsPxGKxHAClVlDEYfOzYsdkyyyzjP46kok4KYhg4yWxpyGIKnue76aaboiVGeaztzDKjDQzr/ZprrjkHf3qpIiop+H194IEHsr/+9a+5FoL9+/fPnnvuueiA0K9fv0h6o7URff0ZHi7VNesaNEe0b98+Mnvbtm2be+zVV1+NUrJBgwZFiTgDT/Kz2qQ5jYW3sgD6tddeawBdkvJssskm2YABA8o8J5TWMuuEa+Ztt93m86UGQx/gbt26RfZlCqCTrcY8HgPokoodrVO32GKL2GOTVX7ooYdW2r6FVi8EIcvj2kkbjDZt2kRW+7fffjuHfnKpImaYXHfddfFGzIiDIRx//PFx0ENgndZtBNBZ4xmeawBd9cUguuYYerSxqaHEm3IbsAG/4447ssGDB2fvv/9+dsghhzjERA2CYbdM+C6PBZkeg5KksrbffvtsySWXzH1OWS0B9AMOOCCy0cmAk+Y0Ms/XXXfdGAieXwH51FNPZauvvrr/IJKKHpnnXPNYl9l3Eyg/5ZRT4mvlg4tkot94440V/oyFFloo+qdzHaVFBn+WNKdRDc5hD5nm/K5ywNO7d+8IpFNZ9sgjj0SVxe+//541b948Gz58eNa6dWv/oVRvbOeiOYqLGuVlZKrRqypNBqd/GxdCysYuvPDC7IwzzvBfRnPMuHHjokcqGRr55Y7rrbdeBIHosyZJqogqM8poTz/99BhkhqWXXjpbccUV42u0amPoqDQnsHb36NEjDsbzkbBx0EEH+Y8gqWSw53744YdjNhmmTp2adejQIfbbrNPMMslHlm9liUPshbbaaqsIXBJsZ58kzQmffvpp7MeprGBILokazNbbZ599cu0E076d3udkpdNCWKpPBtE1x3HB4ySRU8OEE0XKbjhppOSMkh0Waqm+UQFBxhp9Un/77bcIAhFIJ1uN30dOtCVJs0bAnE022b+gHyUZwRyQMzycDbtU30477bTozV++VRsD8iSplDEU/PDDD4+PGbjMfDLW53bt2mVXXnllPM48E3pPl8fe/LDDDotrKddUqb7RwaBz585RAcHv6v333x9Jb6+//nquTVtCYJ1YEsPtpfpmOxfNcQTMyTynT3p+YJ2ycBZ0+qSzSPM9Un366KOPYjEmeM7p9ldffRUB9OWWWy4bNmyYAXRJqiKC5ltvvXXucwaGkxX0888/Z9tss002ffp0n0vVKwaNlQ+g0ybQgI8kZdlrr72Wy9wlme3mm2/OnnzyyQhKHnfccfE13l9xxRUVni56ql988cURRL/kkkt8OlWvvvnmm7inZF4ev6ME1DF69OgKAXQS4UaNGmUAXXOMQXQ1iAUXXDDbZZddyjxGxlqnTp2i59XBBx+cHXjggdmDDz7ov5DqrTyMgTsMGuNgJ7UW4neTUrBWrVr5zEtSFbEpZ8ATQ8ySd955JzY3DCTr0qVL9v333/t8ql4QLC8/16Rnz56RPWnrAUnKst133z1r0aJFBMk55P7444/j+ki7Fnqfk0SEk08+OTvhhBNy7TLyK33OPvvsaN92zTXX+JSqXnCvyD0jyRdDhw7NTjzxxKiYSLp27Zq71+R3lspx551oTrKdixoMCzPlYpyEp9NFNGvWLHvllVfilJuyHfpa7rbbbv5Lqc7QboDysGnTpkXmecLQ25deeinbcMMNfbYlqQZeffXVGCr61ltv5R6jP/qPP/6YrbTSSlFuy+ZdqitXX3111rdv3zKPkZBxww03GECXpDxUh7HXnjhxYrbrrrtmH3zwQcHnh2GiVIbnz4ai9zTB9Msuuyyusaz3Ul2ZMWNGBNBpEUiCG8PrmaM399xzRwY6lY1vv/12BNi5p3z22WcdIqo5zkx0NRiyf6+//vrszTffzJZZZpkyizsZ6SzQnJjTP/2BBx4oqX+pm266KQa/ME2dN1qOcBJbXfSX33///eNE95hjjslWXXXVbIEFFsiWX375OMAgqFFqWIg7duwYw3XyA+hkYgwePNgAuiTVAn0rKQ3feeedc4998sknsfbQ4oXy3O+++66knmPX9PpDNmT5ADpBHQPoklQRAXSwJ2RvSQXuoosuGnvN8gYNGhRBy/w1m/0SiW5UntGClR7qpcT1vP7we8ZsHSokWMf/8Y9/xL6d2Tpt2rSJ31GqJgigEychA71169b1+BNJlTOIrgZHqTcb7vyhTz/99FO26aabRn9Lpi/vu+++JdUjnVYi3KCMHTs2e+ONN2JBof3Ne++9V60/h9I8AhlffPFFvFG+9+6772YDBgyInt+UP5cSAjhkmdNaILVvSQc69FujL78kqXao6nnsscfiIDyh8odrLa20ttxyy+h3WSpc0+vHmWeeGS0H8pF4QYKGLVwkadZIZCOhiKGM7IMq2xe+/PLLkdzGYXjC9fWqq67KTjnllAimk5VeKlzP68fXX38dbVapFh85cmQEyUEVBL+fH374YfRD5/d1hx12iMrxZZddtp5+Gmk2ZkqNxGGHHTaTX8kWLVrEe97+8pe/zBw/fvzM3r17z/zTn/4085ZbbplZqhZffPGZt91228zOnTvnnp/yb/369ct9/9SpU2fOO++8M3/88cdK/7wHH3wwvv6vf/1rZimYMGHCzKWWWmrm/PPPX+Y5m2uuuWY+88wzDf3jSVLRmThxYqzjrN/pmrvwwgvPXGKJJWa2a9du5rRp02aWKtf0mvvvf/87c9ddd61wD7TffvvN/M9//lOH/0qSVNyef/75mW+88Ubu2rr99tvPXGCBBSrsN1u2bBnfm4/vZ+/J188999z4vBS5ntfO559/PnPVVVeNe8OxY8fGOn7cccfF79V8881X5vfwmGOOKZnYhRqveWYXZJfmFDKH6HtFq40ePXrEY1999VW2+eabR5sNSnkOO+ywKOFhoEmpZBnR/4u+8JQ0UcZEf3iek+222y476aST4nu6d++erbHGGrnPwXPGiS7tYCpDKxe+RsZgsSOLgkz+3377Lfv9999zj/M7xRBR+qNLkupW27Zto3fl+++/H71X6XX5yy+/xCBx1vDNNtssGzJkSNa+ffuSeepd02uHKjKyJal0yMfgscsvv7xk7g0lqS6wp0z+9a9/Ra909ksMctxggw2y8ePHR7sX9uRURlPVfNxxx8W1ljcqydlPnXHGGVHpS4Z6Kewt4Xpee1TZ77TTTnFvyBvt2cg8f/jhh+PrqfUqv2u0b6MdrdTQbOeiRoMpyxdccEGUebNoszDhhx9+iCAnAeF+/fpF+S7tXX799desmHHTsvDCC8eNyRFHHJE9+uijEWho3rx53JzwNVrh8DbvvPNGTzseK9/KpTLc5Jx//vlxKFHsbr/99rhB5Pdr5ZVXjnYCqScg5WIG0CWp/rRs2TKuswwv42MQRKdtGwPK6KH+xBNPFP0/gWt67THfhWSCgQMHlnn8yiuvjMCOAXRJqjmuofntLmm3+t///jcC6AxxZG9OC6399tsvkrsSkttuvvnm6BdOa0yu1cXM9bxukETBPSB78pNPPjkS3WjTkgLoCTEOkgMNoKuxMIiuRocg8YgRI7LVVlst9xgLOH0uOQknK5sLKYFR+mYVKwa+jBs3LnvttdeyPn36ZL169comTJhQpf+W4AQZBJUF0flat27dIiCf34e+2HATSJ++3r17524A33nnnfiYiofnnnuu0iE6kqS6t9RSS2V33nln7nOyi+ixyqBrspAuvfTSCKoXK9f02uF+aMUVV4w5MeUH35UfLCpJqj4Sjp599tnYOz311FPZ0ksvncsEZtgje3Tcd999MWNq0qRJuf/28MMPz4YPH5699dZb8TUq0IqV63ntcK938cUXR5V4ly5dorc+c/DAQc3cc89d5rnmMGfHHXes5d8q1R2D6GqUOHE866yzKmQVsVEiezhNZl5vvfViyEQxIruczOl11103Fpq11lqryhPQmbZOkHy55ZYr8/jPP/8cbWA48SWznZulYkQGBJkQ1157bdaiRYsKA2FYjPndkSTNOQyD4vB2gQUWKFPKS3D0tNNOy/bff/8oIy9Gruk1R+LEOuusE0kACUkVrOX5w2slSbXD3vPWW2+NfRQZ17RiS/IzzFm7uS4/8sgjuceoJue6zDBIAukMKy1Gruc1RycBOgrQ/ofOAyRScO+XDmsWWmihXDcCvo+D89VXX72O/uWkumEQXY0WF06ysI8++ugyj994441xYjlq1KhY6Gnzctddd2XFjgzqtMCUV/6wgVYunO7mY/O57bbbxsLPhpQbnGJE5gN99emDju+++y73tbXXXjtuCFu3bt2AP6EklS7asn355ZexwU7ISGdGByW8VJlNmzYtK3au6VXLVqNCgfuZ/CoFkgSoLFt//fXr9d9IkkoZiUgHHXRQfEx2MHvufPSw5iCT70mHnLR9eeWVV6J/OlVml112WVFXmcH1vGroIJBm3fH7QZwnJQgSPCc2QZsgYhW0BrrnnnvKtKqVGguD6GrU2CBdd911ESQnUy2h1GzTTTeNC2zPnj2zAw88MIZK5fdxa8roLffCCy9kU6ZMiaAvn3NoQA+6ypBZTr/Zb775Jp4DMtHzW7mkADoLEz3C+Zz2Jryl095iQMYDmfufffZZZDPm37Rxk0d2xGKLLdagP6MklTqyiNlk06YsYV1i/SKgTqUQm6ti4Zpefazhe++9d1Qo5KOabuzYsZG9Jkmq/woyZk5QFU0rzDvuuCOqyfITuAYMGBDZwlSKp30pGepkG5966qmxVy+WKjPX85p59dVXI65DJ4GU6Ib0e0SMgp7oxHvoMsA8OOecqNGaKTURQ4cOJSJa5q1Zs2YzBw0aNPPaa6+dOffcc8/s2rXrzO+++25mU3fwwQfPXGGFFWbOO++8M5dccsmZW2+99czhw4fnvr7WWmvN7NevX+7zgQMHzlxwwQVnduvWbeaIESNmtmrVqsyfN3LkyArPXXr75JNPZjZ1//nPf2Zecsklud+J8v8fzz777Jn//e9/G/rHlCSVs9NOO1W4Zrds2TLWvwEDBhTF8+WaXj0fffTRzBYtWriWS1IjtMYaa+Suz3/605/KfHzqqafO/P3333Pfe//9989cYIEFZq6//vozP/vss5lNnet59d15550z//znP8/s2LHjzK+++iru7eabb74Ka/w+++wz84cffqiHfzWpbv2J/2noQL5U1VKpiy66KN7ff//9ZQaW0N5l6623jqwlSoFuueWWkh1AweRqsvloe1MKyNanjJBMfTIf6PuezDfffNmDDz5Y6YBVSVLjwPWbVi7XX399mdko9M7cY489Yj1jIHQpKqU1nS0Jw2cPPfTQuNdLmN8ybNiwKP+WJDUs9tsPPPBA7nPab/zrX//KVQB36NAhqshpo4k333wz2nLR/uWaa67JDjjggJLMMi6l9RxUyB911FExAJzqsS+++CLbeOONcxULyeKLL57ddtttWffu3RvsZ5Wqw3YuajLmmmuuGDZKaVjXrl3LfI1+a8cff3z29NNPRz9serBRJv7DDz9kpWaNNdbI+vTpkxU7Nti081lttdWyl156KUoFCbgkDCv58MMPDaBLUiNHn1VatzHwOuF6TvA0Dcp+6KGHslJUKms6ffA7d+6cHXLIIWUC6G3bts2mTp1qAF2SGgn2X+y7b7jhhmy55ZbL/vnPf5ZpocnMCvbjBI1JbmIA6dtvvx37c1qwktxEQLXUlMp6Du7ZaPFDkgTxG1rIcoBQPoC+2267ZRMnTjSAribFTHQ1WWQY77PPPmU2Www94XSXjfcJJ5wQQyrISu/WrVuD/qyqW59++mlstOmNz9Cb/OGh6Nu3b/TuIzNCktR03HzzzRU2mUsssUT27bffZnvttVdkq5dqVnoxIvBCQIZgS/kZLfRDpwKxFDMWJakpoJc1yWwXXnhhpXO22KexrjObims5QyUPP/zw6H997bXXZvvvv7/X+CJCz3OyzwmiE39p3rx5dvfdd1f4PqrHidH06NHDf381OQbR1WSxULPBuuqqq8oE0kE2E9OeGf5BFhun3ldffbVDJYtgs82Ce9JJJ0WAPA2iSzg8+fvf/57tueeeDfpzSpJqjsHaHIYyQDIfw8w4HE8bcjVtZCISQBk5cmSZx1u3bp0NHz48W2WVVRrsZ5MkVX1/Rrb5uHHjsl133TV78skno71L+b05Q0lXWmml7Pvvv4+DU/ZstF/t379/tswyy/h0N3EEzo888sioTGBPzjDZ/CrxhCRI4jd/+ctfGuTnlGrLdi5qssg6v/zyy2MTdt5555U5xXz++eezDTfcMFp83H777TEhnBIqAupqutnnXbp0iWnd4AYsP4C+1lprZZMmTTKALklN3Oabb5698cYbsSFjtkXChoyeqvRJpycr2elqmgEXMtMIklPqnY+yb9ZyA+iS1DSwB3/99dcjSE7/a9ppbrvttmW+h735qquump155pmxh7/nnnuyxx57LBszZky0/WBNcFRf080+J6OcakEOS1ZeeeWoEi8fQF9zzTXj9+Dee+81gK4mzSC6mryllloq++tf/xq91lKAFX/88Ue27777Zs8991y8ceHeYYcdYgglfbnUNJDJQM89DkFeffXVeIwgSv6N25VXXpm99dZb2QorrNCAP6kkqS4RLGcjlp+hRgk4GERKr3Q2Y+Wr0dR4TZ48OWvXrl0MlmODnYImlHwz3+T888/P5plnnob+MSVJ1UDmMXtsAuRUE9HehcfykfxEiy6y0Rkwut1222Xvvfde7M9ZE8hi//jjj33emwjuvagm4F7smWeeicTFRRZZJAbJ5iMZgr06j5MkITV1tnNRUSHImnprMRGarLVUAs5iThk4LWAIsFMqTluQRRddtKF/bBVYmMlmSFlpSy+9dPbll1+W+R4C60888YTBc0kq8vZtlP4OGDAgmzBhQu5x1nqCsGuvvXZ26aWXRrWS/bMbp6+//jo75ZRTsoEDB1b42tFHHx0BFYIvkqSmj5YeBMzpez7//PNX2MNh8cUXj7WdADq90umlTVYzPdPZ/5Eop8aH+y5artE2lyQ2+ptzQMLenRhLPlrvMcvG1i0qJgbRVXQInLMAn3zyyTF8NB/DyOi7RskZPdMXXHDB7Iwzzoj+XSzwahw4zeawgxNrstM6deqUDRkyJPd1/q1o5cPNlgETSSqt9WG33XaLYWb5awIZ6ltuuWV2ySWXZBtssEGD/oz6H2aXXHDBBREoKT90rm3btjEgvFWrVj5lklSkFcUEV9l/9+vXL5sxY0aF71l22WVzmekEXFnHCcqeeOKJ8UZ2sxqH1157LfbotGKjDQ9t9TgkL2/TTTfNrrvuukhykIqN7VxUdMg6X3755bP7778/e+CBB8r0UyW43r179+jHxRuno2RG0aONDLfKpoprzqEH7jbbbBN99CjzZngovc/zA+gHH3xw9sknn0TmmgF0SSotZJszI4ND8fItXl588cWYh0IbmIkTJzbgTymy0chCbNGiRRx6599fcV/26KOPxr+RAXRJKl60dOGazyBR9m8kR4Hq8GTatGkx04pe2mSnszaQ4HbZZZdlbdq0iQB7+QxnzVkffPBBxE022mijqAjs2LFjtOIpH0AnsE5rNu7HDKCrWBlEV9EiwMqAC/pzEVjPN3r06MhUo9fqCy+8EB/Tx43hlJSTOdhkzmIADf9W66+/ftw4LbzwwrFYUwqY0O+cfzf+PS0Jk6TSRWCWjRtDzFZcccXc42nY9OOPPx59tw877LDYnGvOIVhOyxaC4wyQyx8ATsXAjTfeGFUE9L6VJJWOxRZbLNq6PPnkk7EHZz3gsYR1nflmVCktt9xy2TvvvBNrBdnoJLyxtpjwNmd9/vnn2aGHHhrB8VdeeSXartEylzYu+dZdd91o8TJ+/PioIJeKme1cVBIYRDllypRYBNJwyoTFgNPunXfeObv44otjCOkmm2wSfb4YdDLXXJ411RcC5ZR4EwghS4FWPOUPMDgAIQOBfzszzyVJ5XH4TU/VH3/8sczjrBkMqSQDjjeq1FR/Jft33nlnduqpp1Yo1+c+imx0KsioMJMkCW+//XYks+UnTiUkVR1zzDFRpXzDDTdkjzzySMzD4oCWrOjyg0tVd6j4o589zztVAyQakmHOWp+P4DoVA9tvv737dJUMg+gqOWQ6EzAn+zkfC8QJJ5wQJ6kE0+mbTlkZizdZ6gzNUO3RF+/pp5+OnvS8JwOB0j1K/Mpvugl6MBCW3vWSJBXCxo41/Lbbbqu07JuAOpvu4447LrKkPJStG7TJYz2/4oorKn3e99lnn+yWW26JYIgkSeWxJycQS2s2WrHmVzAlZKL37NkzGzlyZMzSoI86SXBUnC2xxBI+qXWARDYC5azpDz/8cOzF2bdXZrPNNsuuvPLKqCKXSo1BdJWkL774IjvvvPNiI33ggQdWWCDIQCdwPmjQoHgjiEsvbqaFr7baag32czdlP/zwQ3bPPffEwBhulijH59T63nvvLfP8s2CTdX7ppZdmiy66aIP+zJKkprcJpPyY4aNjx44t87W0IaRPJ4e0tBHL78uqqj/HY8aMicHsVO+VryDjgIK+9ATP80v1JUmaFWZhkf18/vnnV8h6BtnnO+64Y7QHY7YG9ttvv2gDQyKcB+TVR4s1Di8YBDpu3Li4L6I6vHx8hOeWeyuC561bt/YXWSXLILpKGhs/sqGZAs6g0fLat28fJWP09yK7jQnUBN4J8jIAxQzpqp1os5HmMIKbIQ4hKBH7+eefy3wvAXN63pEl6BR2SVJtvfbaa1nXrl0rtHnJbxfWq1evWNPXWWcdn/DZ4Hm8++67I2Pws88+q/B1Diloq9O/f3/btkiSauzdd9+NdiJkoBNUL1+xDGZkkQn9xhtvRK91DshZzwmqm4g1e2+++WZ26623Rq/5X3/9NYLklc2Foz89Gf8kH7hHlwyiSzkEbxlwUlkJGQsGZeIMMGMDSRkZizNlypzIbrHFFm4Y/z8WX6Z106OW54q+5zxXPIdkB5ZfnDntPv7446OPqi1zJEl1jYx0qpvIWqtsjUeHDh2iMo12b23atPEf4f9jY82wMIIY3PtUtsGm1zwZbDvttJNZgJKkegmqM7OsfBJWQnsX2oZR7UyWOslutHCjn7pJb//z0UcfxR79rrvuin70zCmprB8982SIc5x88snZmmuu6W+0lMdMdCkPvdimTZsWJ63Dhg2rUMZECVmPHj2ybbfdNgLF9913XzZ16tQI/m633Xax+aZFCa1KSgkZ5i+88EIsykOGDIlsAW5YyDqnLKyySepkD1xwwQWRBchCLUlSfWJNZ8AlFWaVrUsJmW+77rprrOkbbrhhDCAvJWT0PfHEE5GdRjVZZchY23LLLWOYqANbJUn1jWDvQw89FMHfxx57LJs0aVKl30cQnXWbNiV8TCCd9Zw2MEsvvXRJ/UNxr0NVHnt0BrMWes4SEgaZB9enT5947iRVZBBdKoABWfT7vOaaa7LmzZtn3333XZkMLALqnTt3zg455JBs8uTJETxmGCnlzJtuumks1rytssoqRdvjfOjQofH/m/eUebds2TJuTjp27Bj9zyvL+GMQCeV5lNxJktQQ3nrrregBSrsx1rPyUlkzlVRUnLGed+nSpSgHZPL/k7Z1DBK7/fbbI5mgENb4U045JZINuN+RJKmhDnz79u0bgXUOySurlGItp3UbVVWg/Uvao5NhXYw91H/55ZfsmWeeiaA5b7Nq1YKllloq5r7xXNoGR5o9g+jSbBAcZtEha5qMKwaelEdAfeONN44+bCxcTz31VCxeZLaT0cag0g022CB6rq688spNcuM5ffr0KInnjZJuMs853V5rrbXikIFhrZTQVbZAk5HOYFb6qdlLTZLUmEycODFKvykXL7TJBGv3VlttFdVoDDBjTW+KgzM54Ob/M8NBR40aFcFz7l0KIQBBWfdVV13lBluS1KiwbnMYTnX4OeecE8ldlbUoQX4wmeAxLV+oOGNNb9euXZOsPJsxY0b0N3/55Zfj//urr746y3sZngPiE7179469ue1UpeoxiC5Vs20JGVg33XRTZKpX+qL6058iy5pSKPqMsUEloM4wTRBEJlObxTq9ka3emALrX3/9dSzGKWjOWxoixs+/0korxefcsJRveZMsscQSUTK/9957R+sWSZIaMw6GX3zxxeyKK67IRo4cmctcmxUGbm200UbZeuutF0F13jhYbkwB8/fffz/WcarlRowYEdVzszssYJ3n8Jt5MfaTlSQ1pbV8wIABUWnGnpbg+qzWvIQAevv27bPNN9881nT26CSCNaa2oyTzsUcnUP7cc8/FYfisDsETAuXcq5x77rlxaNCY4g5SU2MQXaqhn376KXqGXnLJJdmUKVMKDjqZb775IohMHzaC5/kBav47UB7O19h801uUcmnelllmmXhf1yfEnM5/9dVXUQbHG1nkvFHOzc+VSrnJsFtjjTXi5+PnYPo5vdTIsK8MAXYGi/Xr169o29hIkkpnABflzWxSv/322zhIrwrmonTq1CnW9fLrOZlvdbkhJzBAxVz+es77CRMmxAab4EFV0PuUoAFBc9rXNMVsPEmSKlsn2cMyJJP+4CSAFcpUL7SmE0yn6pwWMAwxTWs77U/qsiUMB9/ECljHWb/JLv/ggw9iFhvre1XvQzj8XmGFFeIw/Mgjj/QwXKpDBtGlOkAAnQFcDCPlZJfgeqEMbRAU79ChQ/RXZWPN5pz+rAxKIYDNIJR8Cy20UG4Dnr9osxFPb7SUYRFn8eWNRZb3v/32W5mAOW/8ffn47wn0s9iC/5ZMc1q4VNbXPOH/a6tWraKNzVFHHZUtvvjitX4uJUlqjFgTr7766uzGG2+MdX9W6/zsAtbMEGnTpk3WunXrWH95LH9N540/v/yaThbaxx9/HO1YWMs50K9Khl15/PkEAuiDSn9z7jMkSSoFVJTTfvXss8+OIPWs9ruzw36YNZX9PQll7NHJhmdtJphNdXYKfrNmc//A9/MzcAhOOxY+rslanhL2iA2QaX700Udnm2yySVH2epcaC4PoUj0gcE3JNC1dqlJCxuJL1hd9R8n+JoubXmVt27aNLHAWVwLhKcOMN0q30qY6bbDZcBNMT0F13qdM+PzgO4s3vV9T0D3/z5wV/iwy1bp375517do1St5cpCVJpYhMNvqJ9+/fP7LVWftrugmuL9xf0FpuxRVXjL7v9Dbn/sK1W5Kksms6CXGPPfZYzP8iIzw93hjWdvbhHHiTtNatW7fIMicpz/VcmrMMokv1jEWXjfVLL70U2erjxo2L/qRsbNMpdVUQEGfhJNBOL/L8x/mzeJy/h/csrvzZnGqT2V7TbDn+rNVXXz3ba6+9sv322y+y4SVJUmGsxY8//ng2ZMiQaKnCWsyBNT3WWZvrUjqEZ3PN/QTrf+fOnWPd3mabbSzhliSplthLU2lO9jqt3ljXSZTjPftyktlYi/k+3ma3vyfwzVt+b3IOvNlr0/aNKjVax9AOllYy9jCXGg+D6FIDYbGlNJzebAweve+++6LEq6YB75qi9IzBaAxPSb3bGYxKOZokSapbrPO0TGPAJ5vvzz//PO4HKCmnrQub5bQJp2ULG20q1KhOW3LJJeNwm001FWeSJEmS5gyD6FIjRcsVhog8+eSTUUZG9hqbaTbcDBlJfdPZXLPR5vSb76H3Gr1WCYLTg43hpWSr8zHtVwiWk6VG/3NPtSVJkiRJkqRZM4guSZIkSZIkSVIB/2vCJEmSJEmSJEmSyjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJKkAg+iSJEmSJEmSJBVgEF2SJEmSJEmSpAIMokuSJEmSJEmSVIBBdEmSJEmSJEmSCjCILkmSJEmSJElSAQbRJUmSJEmSJEkqwCC6JEmSJEmSJEkFGESXJEmSJEmSJCmr3P8DDYwtOQdj6o0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1293,7 +1366,7 @@ " if j == 1:\n", " ax[s].legend(frameon=False)\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-jonespewsey-sineskewed.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-jonespewsey-sineskewed.png\")" ] }, { @@ -1310,7 +1383,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qmc1eP///8L0SKhvSwtpE37HimklCQSkkpIZGuzJgopFNkS9UGSbEVR2ihbq/bSTmmV0kJZM//b4/r+rvf/PWfOmTln5mwz87zfbsfMnDlzznum4329r9f1ul6vY1JSUlKMiIiIiIiIiIiIiIikcWzau0REREREREREREREBAqii4iIiIiIiIiIiIiEoCC6iIiIiIiIiIiIiEgICqKLiIiIiIiIiIiIiISgILqIiIiIiIiIiIiISAgKoouIiIiIiIiIiIiIhKAguoiIiIiIiIiIiIhICAqii4iIiIiIiIiIiIiEoCC6iIiIiIiIiIiIiEgICqKLiIiIiIiIiIiIiISgILpILrdnzx4zZMgQc/XVV5ty5cqZY445xt5EREQk+f3111/mscceMxUqVDD58uUzpUuXNrfeeqsd30VERCT5bd682QwcONC0bdvWnHbaaXY+XrZs2UQflogEOCYlJSUl8E4RyT3mzp1rLrzwQjtQMwHfvn27OXLkiNGpQUREJLn9999/pnXr1mbGjBmmYcOGpmnTpmbjxo3mo48+sgvjCxYsMMWKFUv0YYqIiEg63nzzTdOtWzdz3HHHmcqVK5vvv//enHHGGWbLli2JPjQR8VEmukguxyD95ZdfmoMHD5r169fbwVpERESS39ixY20AvWPHjmbevHlm6NChZuLEiWbkyJHmhx9+MA8//HCiD1FEREQycMEFF5j58+eb3377zaxatcocf/zxiT4kEQlCQXSROGNbFtut/avOZIHz0eHrSpUqxeV4SpQoYQftk046KS6vJyIikhMlYnwfPXq0/UhZNn8pth49epjy5cub8ePHmz/++CNqryciIpLTJWI8Z8xmR1n+/Pmj9pwiEn0KoouIiIiIZDN//vmnWbhwoalYsaIpU6ZMqu8xub/kkkvM4cOHzXfffZewYxQRERERySnyJPoARCRjI0aMMAcOHAj78e3atTM1a9aM6TGJiIhI4sZ3mpBRE51+JsG4+6mR3qRJkygdsYiIiATSfF0kd1AQXSSbDMpbt26NaAuaBmUREZGcO77TywQnn3xy0McWKlQo1eNEREQkNjRfF8kdFEQXyQay0pV77ty59ubHgM3qt4iIiGTP8V1ERESSg8ZzkdxBQXSRHI4A+qBBg1Ld17VrVwXRRUREsjGXgR4q0/zQoUOpHiciIiIiIpmnILpInB1//PHm6NGjIb9/5MgR73HRqLE2cOBAexMREZGcM76XL1/eHHvssbbmeTDu/lA100VERCTx47mIZB8KoovEWalSpcymTZtszbQyZcqk+f6GDRu8xzmqsSYiIpLc4j2+58+f39SvX98sWLAgzWumpKSYWbNmmRNPPNHUrVs3i7+ZiIhI7qH5uoiEcmyiD0Akt2nVqpX9+MQTT5j//vsv1ff4evDgwfbzli1bpqqxxoQ43NuNN94Y599KREQkd0vE+H7rrbfajw8++KD9vvPqq6+aH374wXTq1MkG20VERCQ8mq+LSCjHpPivuEUk5n7//Xdz/vnnmxUrVphq1aqZkiVL2myxFi1amN27d5uVK1eahg0bms8//9wUKFAgLsfkH8Q/+ugjW0eVuunOAw88YCpVqhSXYxEREcmOEjG+M5lv3bq1mTFjhn3upk2b2uy5SZMm2Sy3hQsXmmLFikXltURERHKDRIzne/fuNf369fO+HjdunF0Ev/rqq737hg0bZooWLRqV1xORzFEQXSRBA/Mzzzxjxo8fbzZv3mzvo65pnTp1TJcuXcztt99ujjvuuLgdzzHHHJPu9+fMmWOaNWsWt+MRERHJjhIxvv/1119m6NChdsK9bds2U7hwYdOmTRubQVeiRImovpaIiEhuEO/xnEz2cuXKpfuYH3/80S6Qi0jiKIgukmBsub7tttvM6NGjzS233JLowxEREZEo0PguIiKS/Wk8FxFHNdFFEixv3rz2Y5486vMrIiKSU2h8FxERyf40nouIoyC6iIiIiIiIiIiIiEgICqKLiIiIiIiIiIiIiISgmugiIiIiIiIiIiIiIiEoE11EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREJCw//fSTueyyy0yBAgVM8eLFzb333mv+/fdfk5PlSfQBiIiIiIiIiIiIiEjyO3r0qA2glyxZ0sybN8/s2rXLdOnSxRx//PHmySefNDnVMSkpKSmJPggRERERERERERGR7IbQ6pEjRxLy2mSCH3PMMRk+bvLkyaZDhw5m7969plChQubvv/82NWvWNP379zedOnWK6DU/++wz06ZNG7Nz505TokQJe9+oUaPM/fffb3755RdzwgknmJxIQXQRERERERERERGRTDh8+LApWLBgQl77999/NyeeeGJYx1ikSBEzfvx40759e3vfmDFjzNNPP202bNhgbrvtNvP2229n+Fp45JFHzJQpU8zy5cuN8+OPP5ry5cubpUuXmlq1apmcSOVcRERERERERERERHIoAu0XXHCBmTZtmhdEb9Sokdm4caMNgD/22GOmX79+YT3X7t27vQx0x33N93IqBdFFREREREREREREMllSxWVpJ+K1w0Ud86eeesqWn6EEzIEDB+z9ZNEXK1bMNgiV0BREFxEREREREREREckEAtLhlFRJtNatW5tevXqZZcuWmdq1a5s33njDll4hgB5JOZeSJUuaRYsWpfrezz//7H0vp1IQXURERERERERERCQHq1Chgr1NnTrVNhYdO3asmTlzpv1eJOVcGjVqZAYPHmz27NnjZa/PmjXLNiytUqVKTH+HRFJjUREREREREREREZEcjkz0zz//3Bw8eNB069bNDBo0KOLnOHr0qKlZs6YpXbq0bUxKHfTOnTubW265xTz55JMmp1IQXURERERERERERCSHI2O8RYsWpmPHjmb8+PG2FE1mbN261dx+++1m7ty5tpRN165dzdChQ02ePDm36ImC6CIiIiIiIiIiIiIiIRwb6hsiIiIiIiIiIiIiIrmdgugiIiIiIiIiIiIiIiEoiC4iIiIiIiIiIiIiEoKC6CIiIiIiIiIiIiIiISiILiIiIiIiIiIiIiISgoLoIiIiIiIiIiIiIiIhKIguIiIiIiIiIiIiIhKCgugiIiIiIiIiIiIiIiEoiC4iIiIiIiIiIiIiEoKC6CIiIiIiIiIiIiIiISiILiIiIiIiIiIiIiJh+emnn8xll11mChQoYIoXL27uvfde8++//4Z8/JYtW8zNN99sypUrZ/Lnz2/OOuss8+ijj5q///471WOOOeaYNLcFCxaYZJAn0QcgIiIiIiIiIiIiIsnv6NGjNoBesmRJM2/ePLNr1y7TpUsXc/zxx5snn3wy6M+sW7fO/Pfff+bVV181Z599tlm9erXp3r27OXz4sBk2bFiqx86ePdtUrVrV+7pIkSImGRyTkpKSkuiDEBEREREREREREcmuCAiHctxxx5l8+fKF9dhjjz3WZmtn9NgTTzwx7GObPHmy6dChg9m7d68pVKiQzQCvWbOm6d+/v+nUqZOJxGeffWbatGljdu7caUqUKGHvGzVqlLn//vvNL7/8Yk444YSwnueZZ54xr7zyivnhhx+8THQy1ZctW2aPLdmonIuIiIiIiIiIiIhIFhQsWDDkrX379qkeSwmUUI9t1apVqseWLVs26OMi0bx5cxucnzVrlv2aQHefPn3MoEGD7Ne33XZbusdf0Pd68+fPN9WqVfMC6GjZsqU5dOiQWbNmTdjHdPDgQVO4cOE097dt29b+fc4//3wzZcoUkyxUzkVEREREREREREQkhyJr/YILLjDTpk3zAvqNGjUyGzduND/++KN57LHHTL9+/cJ6rt27d6cKoMN9zffCsWnTJvPiiy+mKuVCoH748OHmvPPOswH/iRMnmnbt2pmPP/7YBtYTTUF0ERERERERERERkSz4/fff0y3n4rdnz56QjyWA7EeZk2igjvlTTz1lqOxNw84DBw54wetixYrZ7O942LFjh7n00ktteRnqojtFixa12fFOvXr1bMkYyr4kQxBd5VxEREREREREREREspjtHermr4ee0WP99dDTe2ykWrdubZuAUnMcb7zxhqlVq5YNoEdSzqVkyZLm559/TvXc7mu+lx6C4hdeeKFp3Lixee211zI85gYNGtis9WSgTHQRERERERERERGRHKxChQr2NnXqVNtYdOzYsWbmzJn2e5GUc2nUqJEZPHiwzaZ32evUWqdhaZUqVdLNQCeAXqdOHRvAD8y4D2b58uWmVKlSJhkck0IOv4iIiIiIiIiIiIjkWL169TKff/65berZrVs3r7FoJI4ePWpq1qxpSpcubZ5++mlbB71z587mlltuMU8++aR9zKJFi0yXLl3sa5122mk2gN6sWTNTpkwZG7z3l7dx2evcT8NTsuMxadIkM2DAADNmzBh7rImmTHQRERERERERERGRHI666M8//7zp2LGjGThwYKae47jjjjOffvqpuf32221WOqVlunbtarPZnSNHjpj169ebf/75x8tUpywLt9NPPz3V8/nzux9//HGzdetWkydPHlOpUiXz3nvvmauvvtokA2Wii4iIiIiIiIiIiIiEoMaiIiIiIiIiIiIiIiIhqJyLSDa3f/9+M336dFs3itpS3IoWLWqOOeaYRB+aiIiIiIiIiIhItqcgukg2RBfladOmmXHjxtk6VHztV6BAARtML1++vK1RRc0rERERERERERERiZxqootkI8uXLzevvfaabazw66+/evdXrVrVFCxY0DZfoCtyoLZt29rGEWXLljXJYMKECbYT9LHHHmsbUtSvX99Uq1Yt0YclIiIiIiIiIiKShoLoItnESy+9ZO655x7z33//2a9LlSplOnXqZDp37myqV6/uPe7PP/8027ZtswF1yrwQPP/3339N/vz5Tf/+/U2/fv1M3rx543LMu3btMiNHjrSB/dGjR3v3V6xY0WzYsMH7mtIzt956q3nyySdN4cKF43JsIiIiIiIiIiIi4VAQXSTJEQAneE4wGldccYW54447zEUXXWSzuDPy/fff28fPnTvXfl2hQgXz8ssvm0suuSRmx7x06VIzYsQI8+6775p//vnHBsk3bdpky8vgrrvuMjt27LALAmSku2OjlvsLL7xgOnbsGLNjExERERERERERiYSC6CJJ7MCBA+aaa64xs2bNsoHop556ymaSR9o0lP/NKaHSt29fr9zL66+/brp16xbV4/3mm29stvtXX33l3Xf++eeb3r1725IyefIEb8PA43v27GnWrFljM+4J+ouIiIiIiIiIiCQDBdFFktTmzZtNmzZtzLp162yj0HfeecdmoWfFoUOHTJ8+fcz//vc/W4/8ww8/NFdeeWVUjvfjjz827du3t9nlBMuvvfZa06tXL1O3bt2wfp6MdRqldu3aNawM+3jtAggV+BcRERERERERkdxBQXSRJLR48WLTqlUrs2/fPnP66aebKVOmmFq1akXluflf/pZbbrGZ6CeccIKZOnWqad68eZafl7IsBMwbNmxohg4dak477bQsPd/PP/9sHn30UfPMM8+Yk046yUTb/v377d95xYoVZuXKlfYjf4dnn33Wfv/IkSO22Wm7du3swkNWfx8REREREREREcmeFEQXSTIEj2vXrm127txp6tWrZyZPnmybiEbT0aNHbab4xIkTzYknnmhmz55tg9+RooEpQX5XXoagP41BIy03E4jTUoMGDWyQm5IzBPyj5bfffjNPP/20GT58uPnjjz9Sfa9JkyZeKZq3337bNm0Fiw033nijue+++8xZZ50VtWMREREREREREZHkd2yiD0BEUpcPoakmAfTKlSubL774IuoBdFAuZfz48ba56OHDh03r1q3N6tWrI3qO9957zx4jTUqdIkWKZDmADp5j2LBh9uMbb7xhg/3R+vuyQPHEE0/YADqNTjt06GC/Jtufv4nTqVMn89lnn9nA+t9//21ee+01c84555j7778/KsciIiIiIiIiIpId/fTTT+ayyy6z5YeLFy9u7r33XhtzSU/ZsmVtnMd/o5JBdqFMdJEk8tBDD5khQ4bY7HCysAlSx9Lvv/9uA+kLFiywwfp58+bZk1p6OCmSkf3cc8/Zry+99FIzbdq0qATPQ/09yG6n5EpmSqpwivMf2+OPP27eeust26SVevDhHPfXX39tj4OguvuahqkiIiIiIiIiIrnJ0aNHTc2aNU3JkiVtCd5du3aZLl26mO7du5snn3wy5M8Rb7r55pvt4xzK9xIDyw6UiS6SJMiEJlALGn/GOoCOggUL2gA4tb856dHUk8ag6Z0oKXHiAugPPPCA+eSTT2ISQMfAgQNt5vivv/5qy6mkd2zBLFq0yDRt2tR8/vnn3n2sjq5Zs8ZcddVVYR832ej8nW699Vb79dixYyP8TUREREREREQkJ2Onf6jbn3/+GfZjA0vPhnpcJCgVTKnaQ4cO2a/ZcV+lSpVUO/LDNXPmTPP999/bMrgE0+npR8IilQp43vQQNCf47m7ZJYAOBdFFksDmzZvtqh3uvvtuW688Xk499VR7MuXERT3wkSNHBn0cAWxWDN99912TJ08e88EHH9igP5/HCid4Tuj58+e3ddsp7RJuXXnK4lBXnazxRx55xPtevnz57PNmxoABA8yECRPMq6++mqmfz8zrnX322WbEiBF214CIiIiIiIiIJCcSFUPd2rdvn+qxlEAJ9ViC0oEZ3MEeF4nmzZubY4891syaNct+TVykT58+ZtCgQfbr2267Ld3jL+h7vfnz59tkzBIlSnj3tWzZ0gboSVpMD+VbKAVcq1Ytm8WeUQmYZKIgukiCscLIyfTgwYOmUaNG9iQSb+XKlbPlTUDN7x9++CFNSZSePXvaDGzqqRNIv/rqq+NybJUqVbIZ6RgzZkyGj//222/tyZhjJNOc7Ho+jwaaqF533XV24IkWVo8pE8PgxSA0Z84c73s0e2WBpXfv3ubMM8+0QfU9e/ZE7bVFREREREREJOcjcfKCCy6wu+wdYlAbN240P/74o3nsscfM8uXL0705u3fvThVAh/ua74VC0ijxGeIePXr0sKVfKBecXcQuhVREwq77vWLFClO0aFHz/vvvZzpLOqtuv/12m13+5Zdf2oxzSqC4YDHB6AoVKtivx40bl2YFNdZuueUWe8Kn2WcoBPqff/55r5mF25bE1qJYOHLkiNm2bZupWLFixD974MABm80+ffp0W4fev92JbVEXXnih/ZwBju1QZKIzsNEAlYarlLbh96QxqoiIiIiIiIgkXno7yElI9EsvQS4wcW/Lli1RODpjG4GSQOl6xxGbAFnmxYoVs9nxsdSnTx/v8+rVq9v4F8F0qhzkzZvXJDs1FhVJILa51KhRw9YaZzUwcMtOvJH1zImMADFlXQis+61bt85mhiejTz/91Fx++eX2c7LFR48eHfH2pnDRiJWmpGxBYgEkcDDM6N+8WbNmZu/evd59ZcqUsQ1e2V518cUX2wUVP94flNxhsKPOuyvDw3PREFZEREREREREJD0k551zzjlmyZIltv8cCYtLly61N8q5UOM8nEWCRx55xPb182enk81Ooh/PRXWAcBDTOPfcc22sKTMJivGmILpIgvC/HoFTMr4JyE6aNMkkgxdffNFusSHzmxMjzTRPOeUUk0zcqmngfdSVr1+/vrnzzjtj1uwUrNZSAoePEydOtE1Kw0WWPAsnHO8dd9xhWrRoYeueh3O8/Ax161kguOKKK8yll15qm3KIiIiIiIiIiGSEIHrnzp1tPKpJkybebngy413T0VDOPvts+5GStG3atDG7du3ystdfe+01u2Oe5wk3q5zqAcRxSDIkUTDZKYgukiAEzSmLwsll7dq1NiibDGggSqY0DTlRp04dW2c8GbbWELAmG5vtPpSc+fjjj+3J/uSTTw4ZXI8VasS/8sortoY8jTHSW+mlBAulZmhqiq1bt5rSpUub448/Pi7HKiIiIiIiIiLSq1cvm8xJX75u3bp5jUUjcfToUVs6l7jG008/beugE5gns50652AXPQFyXuu0006zzUgXLlxoYzgkA/I1/d+oyED/vexAjUVFEtRM1NWCYqUuWQLorvZWx44dU61SJkMAHZs2bTKLFy+29cTvuecem8F/00032eA54hVAh9tqxDEFQ5Z63759TdWqVe2KLEF0f/mWZAugU5d99uzZttGpiIiIiIiIiOQ81EVfvXq1Of/8883AgQMz9RzHHXecLanLR5qT3nDDDTZgTnNShzLB69evN//884/9mrgSTUWbNm1q4ySDBw+2QXTiJdmFMtFFEuDxxx+3pVJOP/10W/uJ0inJYtWqVfYk6IKpBNGpU5UnT+L7EP/88892BZNVT39jVk7UkdQlj2YNdlZfly1blqpcC+VW+Pd1dc9bt25thg8fHtV68uwUoAksWfk0AMkqfg/qu1N7vW3btva+lStX2vrvZP3H++8rIiIiIiIiIpIslIkuEmc//fST7TwMynwkUwCdoC8BVALorA7SOHPDhg3mzTffNMmAFcwCBQrYz+niTMCX1ctEBHhdLTAy0d1aJJncNNCg1At/y8qVK9taYVOnTo16Q1bqqQ8YMMDWSI/Evn377Gpzhw4dUt1PLbQSJUqY/fv326/5ne666y4bpO/fv39Uj11EREREREREJDtREF0kzijfQjmXCy64wFxzzTUmWRCgvvrqq82WLVvMWWedZeuPu+ApNbL+/PPPhB4fGfuNGzc2v/32m/2agK/LmE4ESvBQPobu1DTOoJY8GfFsiypcuLBt0EpmN80/Y4GgN1zt+lDI2nd/M7CjgIWHDz/80GzevNm7n4WdnTt3mq5du9qv+X1omFqqVClz++23x+R3EBERERERERHJDhREF4mjJUuWmPfff9/WHadGdjxreIeTIU/WOQ0eyPAmC53g6RlnnGG2b99uRo4cmbBjIxBMQHfbtm2mQoUK9u/G5wR9E4V6Xv369bNNRalvzr8pnaW5j2aid955Z0zrnrsg+jfffBPyMTTyqFu3rs0od2jCyuLI66+/booWLerdX7BgQfs7OGT3U3eeRRVquIuIiIiIiIiI5FYKoovEERnAoHEnNaiTCdnn3333nZkyZYpt8oB8+fKZRx991H5Oh+VDhw4l5NgI6L711lvm4osvNvPmzbMlUxBpKZNoIlObbPhffvnFZp6DBYdnnnnG+zqWaAIC6rH7M839WGxYvny5/Tf99ddfvfsp50IXbgLqGaFsjquVTz16/g1ERERERERERHITBdFF4oQyHx999JENbNIMM1n89ddf3uelS5c2zZo1S/V9yntUrFjR1tKmOWY8USbFIaN61qxZNnu6Xbt2tqZ3yZIlTSLs3r3btGrVymad8zdZuHBh3I+BfysC3ATzCeRj165d5osvvvAeU69ePTN27Fi7wyCrgX3+Lcj853cXEREREREREclNjklxHfFEJKauv/56M2HCBFt3/IMPPjDJgKAodcafeuopc+2114Z8HMdL/XZKfvzwww+mWLFiMT+2F154wZYdoVlngwYNTLKYPn26XVggqJw/f34bSKc2O0H+eKLEDpnvZOlTY3/lypW2zj7HRK3zcLLMI0Htd4Lx//77r6lfv35Un1tEREREREREJJkpE10kDgg+vvfee/Zz16wz0QiGEtjfunWrretN3fFQ2rdvb2rXrm0Dqc8++2xMj4t1vYcfftjW4+b1PvnkE5MsGft9+/a1GegE0KtVq2ZL3Dz++OOpao7Hy6ZNm7wGp9Rer1Gjhq1dTs34vXv3Rv31WEDhPaAAuoiIiIiIiIjkNgqii8QBQWrKbrRp0yZpaqE/9thj5ssvv7TBUQL8ZDSHQsPJAQMG2M9HjRplg9uxCqD36dPHqx3PR4LUoR67fv16mxkfa7zWZZdd5i0g0DSUpp3ly5e3X/NvG08cD/Xpabb69ttv2/vy5MljS7lQM5769iIiIiIiIiIiEh0KoovE2JYtW8y4ceOSKgudEilPPPGE/fzVV18155xzToY/c/nll9ss5wMHDpjXX389JoHhXr16mREjRnjBemrHU0M+mAceeMBUqlTJe3wscQw9evQwRYoUMZMnTzYvvviibbrq6snnzZvXxBP16WlOO2nSJFvWxaFGfKi/V1bNnTvXjB8/3mzcuDEmzy8iIiIiIiIikqwURBeJMeqNUzqlefPmpmHDhok+HNsY8oYbbrBB61tuucWWdAkHmeq9e/e2nz/33HP2d4oWjoWSKNRBJwg8ZswYG7ROj6tBTjZ9LBw5csSsWbPG+5pGppRQof658/fff8ctiP7bb795n9NclZI39957r7n44otNPLCowftm6tSpcXk9EREREREREZFkoSC6SAxRO9tlbRP0TDTqnnfq1Mn8/PPP5txzzzXPP/98RD9PQ02yscmu/+ijj6J2XP/88499ThdAv/nmmzP8GZpoYtWqVVEvL0Od+PPPP99cdNFFqTK9TznllFSPc5noJ5xwgokVSsWMHDnSnHnmmba2vsPvfNJJJ9mmovFADXgC9uxGEBEREREREZHc66effrJlbwsUKGCKFy9uk/zSS7Zkdzsxn2C3xYsX28e4uFDgbcGCBSYZKIguEkOvvfaazVauV6+eF/RNJDK+yeCmDvr7779vT3aR4PF33HGH/fyZZ56xzxcNBKEnTpxoPvvsM3PTTTeF9TMlSpSwN45h3bp1JlrmzJlj/0bLli2zAewdO3aEfGw8yrkwYFC2hTI6Y8eOtfdxXOwGeOSRR2JWnz4QpYgoA8QgKSIiIiIiIiK509GjR21sgHgXfdmIVbz55ps2RhFK48aNza5du1LdqI5Qrlw5r9KAQ+zB/7g6deqYZKAgukiMkF39yiuv2M/vvvvumNWqjgTNJykvQ13rypUrZ+o5CKITNGal8Jtvvsn0sRAIJpDvAvE8Z8uWLSN6Dvc7fP/99yarOA4y8y+55BKzd+9eU7t2bbNkyRLToEGDkD/jyrlEOxOdvw2DEnjf/O9//7N12F2TVQYRMtApsVO2bNmovraIiIiIiIiIRO7w4cMhb3/++WfYjw3ccR7qcZGgvxuxi0OHDnnxjCpVqtjeZ5GaOXOmjcO8/fbbpmbNmqZVq1Y2XvHyyy97cZJAvDZ93NzN9Zzr1q1bmngZ3/M/9vjjjzfJQEF0kRghe3jnzp02W5p62onEydW/rYaTUGaxTYeyLhg2bFimg8S33nqrufbaa+2Wn8zihI+1a9earGCAuvHGG21jU4LX1P5mgYASKumpX7++GTBggLnqqqtMtGzevNmWkSHT3ylTpoy58847zbHH/t8p2zX3JIAej8GEv88vv/wS89cRERERERERya7Y9R/q1r59+zSxlVCPJSjtx9w/2OMiQZ8+YgqzZs3ygtp9+vQxgwYNsl/fdttt6R5/Qd/rzZ8/35Z8Jd7lkBRJgN7fWy49U6ZMMfv27bNB9ED0ouPvQ5ldHpcsFEQXiREyh0GDzHg0nkwPJ8MmTZrYAG00cKIFJzMX0I00gE52NSdwMr6zGkTPaib6k08+ad566y2b2f3ss8/az/Pnz5/hzzVq1Mg89thj5pprrjHRQvCeZqkE0f3NRP3c3zxe9clZXT799NPNQw89FJfXExEREREREZHoOfHEE22Z4WnTpqWKaRBf+PHHH21sY/ny5enenN27d6cKoMN9zffCQUyIwDuxBodA/fDhw80HH3xgpk6daoPo7dq1S5pAep5EH4BITrR06VLz7bff2vIpBLAT6b333rNBUALWNBQ966yzsvycFStWtCuj1DB/9dVXw85Ip2RKz549vQA6x9WxY8dMHwcDADW3GjZsaLLigQcesHW8CBLTPDPeWFhwWeZdunSxix1kxtM4NJhNmzbZj2effXZcjo/3Mluy2FIlIiIiIiIiImml17OMpD2/PXv2hHysiw84NNyMBuqYU+KX2AwlVOi95oLXxYoVs9nf8bB9+3YzY8YMW+LXr2jRol7SJugvSIUHkgzJTk80ZaKLxDALnQzlUqVKJew4ODG5ID6NIWnkEC233367/fjGG2+kqdcVDCdpasMTdOdkPW7cuCwF0MH2IbYeBW51CudYWH119dhZkaVxRaQBdGqTU0qGLUiZDZ5Th53VVVc3jL8NK8Dly5cP+XOrVq2KayY6DUIWLVoUdtNXERERERERkdyG2EKoW758+cJ+bODO+FCPi1Tr1q1tHGPZsmVePKdWrVo2gB5JOZeSJUvaJE0/93U45YN5XZL0wgmM06fOJRImmoLoIlFG7egJEybYz++6666EHQcBWmqXs7LI6h21u6OJky81w3/99Ve71SYj9913n3nppZdskJgT5vXXX28S4a+//jLdu3e3K7BDhgzx7s9M41dWcCkpk9na8PztaL5BPbFwm3lQs90F0S+88EITL7yHTj311Li9noiIiIiIiIhED4l43CiVsmDBAjN27FhbPgWRlHNp1KiRjUv4s+mptV6oUCGv7G4oJDMSE2IXfjg93njdRCan+qmci0iUUaqEQC1BR1bMEoUM5y+++MIUKFDAlk2JdgNKtiJR2/zhhx82r7zyij0BpqdGjRr2Z3isa0waDWztWbFihSlXrpypVKlSuo/lBE8TUMqTsD0qq7Xq3danUGVXgnHbptxWJTLzWXihfEs4+BuylWvx4sXm3HPPNbF05MgR22yEskQiIiIiIiIikr2REEkZldGjR9uSti45j1Iu4ZZzadGihQ2Wd+7c2Tz99NO2DjqxoTvuuMOLs7CbnTjR559/bk477TTvZ4lTUYP9lltuSfO8BPWJQZAdj0mTJpnXX3/djBkzxiQDZaKLRBEBUvc/N+VOMpPdHA2sCFLnG6wqnnPOOTF5nZtvvtkGWFnB9K9KBnPDDTeY9evX2yzwaKImOoOAy/5P729Sv359G0A/+eSTbT33vn37ZrlcDs4444ywHs8WpGbNmtnBxKFDN9umInmvEEinDnys3180WaULOI1WRURERERERCR7Y1f+6tWrbVnZgQMHZuo5jjvuOPPpp5/aj2SlE+8hYE42uz8pjxjQP//8kybxlFLDoZIg2a1fp04dm5Q6efJk2+evW7duJhkovVAkiubOnWubQpKZTD30RGHljixltrz06NEjZq9DrSsyu1nFJMOcrGq/UaNGmSuuuMLbehONpqaB3Il3w4YNIR/DyZ366zT5oBnnJ598kmHWeji2bdtmP/q7SaeHweCrr76yteEp4RJpENzVcI/X4szHH39sduzYkaapiYiIiIiIiIhkP5dccokXW8iKMmXK2F5zoZBAGOx13nnnnZA/Q9WCaFYuiDZFRkSiyGWhU+87M00eoqVixYo2SEvzzlgHXF2DUWp6Hzp0yLufLT18r2nTpul2qI7Gidsf0A5E04yrr77aHgPblBYuXBiVADqDgXvNcDPRR4wYYYP5rKRm5t+FbH/q0Pfr18/EA1n7DHD8/UREREREREREcisF0UWihCaREydOtJ9Hu2RJuNgu489Gj0cjSILklStXNocPH/aaYxIsvv/+++3n1Pr2d3GONhfA/umnn4J+nyz4l19+2dZvnzFjhilcuHBUXnf//v3mjz/+SDcTnZ0JNB91+PcgKO0C/5Eig54SMux2iAdqmRH0D+wiLiIiIiIiIiKSmyiILhIlBJBpKFqzZk1Tu3btuL8+Qd2qVavaGuGBNadiiYxqt2hAbSsC1r1797ZfP/roo7ZRRSyRmQ3Kjvz777/2871796Yq70LtdkrNRLO5qstCL1asWNAg87p168xFF11ka9MTTI8GytKgTZs2Jpbc31FERERERERERIw5JiUahXBEcjn+N6pRo4ZtXvnSSy/ZjsTxRgkZmmtS83vZsmUxzf4ORNC6dOnSqYL3Dz74oBk8eHDMy8n8999/NojNa5ON/ttvv3lBZkq3EOSOBTLC6RyN/v37B30MDUM5vueeey7L5X0oS8Pf2H1OPfpYueuuu8yKFSvMk08+aZuNiIiIiIiIiIjkZmosKhIF3333nQ2gE8wlmB1vlAghgE5n5LfffjuuAXQULVrUZt8TtEbfvn3jEkAHTS9PO+00s2XLFltrnOad1GYvV66czc6PVRCdEi7+4DkLKexGaNeunff3HzlyZNSacrqGHfXq1YtpAP3vv/+27yfKE7lyNSIiIiIiIiIiuZnKuYhEwejRo+1HGjDGow6539atW03Pnj3t5wMGDDANGjQwieCy76mjTSA7HgF0Z+DAgaZTp062DjsB9AsuuMAsWrTInHPOOXE7BrK3O3fubO655x7vvmgF0F099HiUcqGW/sqVK82wYcPMxRdfHNPXEhERERERERHJDhREF8mi33//3WaB45Zbbonrax89etR07drVHDx40AbPQ5UViQcy8Ck3Ql34yZMnx+11KeMyb948mwVO6ZSbbrrJzJo1y2bHxxI7D9asWeM1c+3QoYPdiUCT1WhXyfrzzz/t74TLL7/cxBqZ/ewmiOYigIiIiIiIiIhIdqUIiUgWvf/++zaQXqFCBZsBHU/Dhw83X375pa23TRmXPHniW6Hp448/tiVUQCkZGni6BqPx8vDDD5vXXnvNZr7z9xgzZozNpo61O++805x77rnmo48+sl83bdrUlpTp169f1LPwDx8+bG699VbTpEkT27g2VtRQVEREREREREQkLQXRRbKIoK3LQo9nCRMUKVLEFChQwDz//PO2oWg8ffrpp+aaa66xGejffPONva9bt2724+zZs21AOR7uu+8+U716dVvSpWrVqnH5N9i2bZtX/71QoULe/SVKlIjZvzPNSb/66quY/X5kz19yySX2ffzzzz/H5DVERERERERERLIjBdFFsoByHvPnz7cZ4F26dIn765P5vX79elvCJJ5mzJhh2rdvb0upEEhv1KiRvZ9mnq6O9htvvBGz1+d39geYBw0aZB599FFbEz4eCJxTtgb8DXKCxYsXm7lz59qyODQXFRERERERERGR/6MgukgWuLIl1KkuWbJk3F7XBXBx+umnxzUD/vPPPzft2rWzgVYC6W+99ZYt5eK4ki4E0anZHm0vv/yyzTgfNWqUd5/728cyg5qSPc7u3bvtx/z589u/RSytWLHCTJ8+PSZ/S7/69eubb7/91rz00kvmjDPOiOlriYiIiIiIiEj29dNPP5nLLrvMVkcoXry4uffeezMsEbt06VK7A/6UU06xCZGUrfXHWlzMqXHjxuakk06ysZ77778/zfNSVplSt7x2mTJlzDPPPGPiQUF0kSwEsgkgx7uh6LRp00zFihVtaY94o/46CwY0umzbtq155513zPHHH5/qMVdeeaU9IVLyhLIu0ULG9x133GFrkRNQ/u6779KUUdmzZ0/Um3pi5syZtub9hx9+aL9et26d/UgT0Vg33xw2bJhp1aqVeeCBB0ysMVC5RRARERERERERkUBHjx61AXSSK+fNm2fGjh1r3nzzTfPII4+E/JmdO3ea5s2b21LElMclWZDqDjfeeGOqJMLWrVubSy+91Cxbtsz24JsyZUqqeMhnn31mOnXqZG677TazevVqM3LkSFv+loTAWFMQXSQLTTX37dtnTjvtNNOyZcu4vOYvv/xiS7ds3brVTJo0ycTT5s2b7Unyjz/+sEFdVv6CNfDMly+fPaFFs8EovzerlZwcybp/6qmnzOjRo73vs+oJgvuBq5jRWjwg+3zEiBE2SO+C6JUqVTKxdOjQITNx4kT7eYcOHWLyGvy9fvvtt5g8t4iIiIiIiEhucfjwYXvzJ/cRaOY+f0UB/2P/+++/VMmD3EdsI5zHRmLy5Mk2hkOcwR1XlSpVbEnXzCQafv/99+btt9+2GeHEiB5//HFbOSBUeVj66pGEyWNIDK1Xr56tMEDMY9OmTfYxBM3peUcwnmB706ZNzdNPP21/xsUtxo0bZysCEEQvX768jVM9+OCDNk4Ui6RKPwXRRTLJBYhppukvZxIrnAxc00fKmQwZMsTEEycnfleC2QTw8+bNG/KxLpuZhYa9e/dm6XWXL19uT64EstnOw4mfZqL+EjYnnniivUWzpIv/5EvT0qFDh9qBgtddu3atl4keSx988IFdtOB1+BvEAu8jBicWRUREREREREQkcwoWLGhv/jgIpUa4j131fiQDcj9lURyCxdwXuEO8bNmy9n4XiwCZ35EgC5yd9LNmzbJfE1Dv06eP7TEHgtLu+EPdHHoDVqtWzasKAJJLCdCTXR4Miwi8pn83PyVy8c0333iPITHTj8ewqLBkyZJ0H7N9+3abcBpLCqKLZMKWLVu8E0+8mnqOGTPGbmPhpMNKoTvZxAvB4xdeeMEeQ+AJK1CtWrXsjZVRViazkoHepEkTeyJ0W34oJxOMv6RLVoPnDFzXX3+9F0hntZQ6XNTbQteuXe0qa4sWLUwsuUGR7U2xqHvPFqypU6fav1l6iyIiIiIiIiIikn2ReHjBBRfYEsFOo0aNzMaNG82PP/5oHnvsMZvEmN7NYae+P4AO97XrIRfooosust9jUYFs9f3793tlWnbt2uUF4ikPM2HCBBuv2LFjhz2uwMeQ2EntdDLzN2zYYIYPH57qMbGSJ6bPLpJD0TTTreSVK1cu5q/HSa1Xr17288GDB5saNWqYeODkyu9K0J7gPYHcjALoDiunrLSSsX/PPfdkKghcrFgx079/fzN37lx7Ej311FNDPpZV3B9++CHLmehsI+rdu7ddACCQHixof+GFF9pbLHEcrMaySnvDDTfE5DXYQbF48WLz0Ucf2Rr3IiISX0wgWMiktNaRI0e8mztH58mTx97I/GEM5Mbn8WwoLiIiIiLhceVlXQIeaLhJPIdrOj+XAOhPkKQPXPfu3dNUOyCRM/Cx/lri4aL0iSt7wvXkgQMH7P1cXxJ/caVyY6Fq1aq2djrZ75Rf4Xe8++67bfDdZaeTqEiQnaz4zp0722S/AQMGmK+//tp7DH8fyg23adPGxm0KFSpkY05UEIh1z7pjUmJdMEYkh2E1jK00bBUhsHvdddfF9PU4KZx33nk22EnglmadsT4xuFIs11xzjX19mlv27ds3op9nVbFUqVJ2qw0Z5PXr1w/r5w4ePGi3AJ1xxhn2a05RrC5mVDKHQDA1spo1a2bOPPNMkxVk3INFgHj8rYNhoHjiiSdsbTH/SrGIiGQfXDOwEE6GDDc+Z5GULBkWfX/99deIn5PxkAbe1JIsU6aMvbkamUx8mGxwO/nkk+2kghtZR9pxJCIiIpK7cS16zjnn2NIotWvXtiWDly5dam8ErjOqJPD7/1skoGY5VQr82elks1MGmOeiMkF6uA4mM55APteq7777bqo+cMSBuF4mgYQFBGq3L1q0KFWZW66zyWwn+E9WOg1JWZjg61hRJrpIhCjjQgC9cOHCtplBrFH7iYAyJztW7eIR1KWZA9nP//77r7n22mvt6mCkONm1b9/evPPOOzYbPZwgOvW9rrrqKpv1/u2333rZduHUnL/yyitNZv++jz76qF3xdcH39H5fTuCrVq2y9b9YTIkVV+8rM6vLGWFA+uqrr2xQRdmMIiLRQ01Lzq/fffedvS1btszLLA+FrCQmD2QscSPDiHMzkwsmKixGs6Dt8l6YMNDYnK2u3MLB410QnR1tXMswGXG3c889N6aZRyIiIiKSeBUqVLA3yrqyI5IYE73fQNmUfv36hfU8jRo1steUBK3dNSTXl1zTcm2ZEVf65fXXX7fVDui958e1cOnSpe3nJK8SEyPo70ec6LTTTvMewzHFMoAOBdFFMlGbHASZwy1tkhU00/zwww/tqp7Lzo6lV155xQaUmazzO1LOJXDbUbgo6UIQnRPas88+6zX/DIaVR1ZByaY7/fTT7UJFpUqVTKyx2srAQbb8nDlzMgwqM9iQoU6ZF1ZeY4XXYQWXLU/R9tlnn9ltXAxU06dPT1i2vYhIdkcmOefRL774wo4hlBULRGCcrHGyftzEhXGOyQO7rwi0E3BnIZmguDsnd+rUyY6hfgTYmagwnlJDkkA7i7tk3/CRheFAjGssapOdQxk6xjuadXPzozxdw4YNzYgRIxRQFxEREcmhuCZ8//33zejRo81DDz3klarl+i/ca8AWLVrYYDklV55++mmbEf7www/bWJJL3CBzvEuXLvY61QW7X3rpJdO4cWObMEnQnVI3Q4cOtbssHcq5XHrppfaamNrnfJ/jdcmVNG0lRkYVAq59iVl98MEHaa5tY0FBdJEIG126wGlgt+RoI5jMxJvJLze2xcQSQfMnn3zSnvhw++23mxdffDGsLPBQOKkxKWcBgJMcDTkDsfrJaiev5ZpNEDQIbFKREQIJBJ0JMPC64eL3pfb4fffdF1ZW9rp16+zHypUrm1jiWOrUqROT56ZRKwtA1NZXAF1EJPJz6OTJk23ZM7LOyQx3GDPr1q1rg9Gcw7kRQHdjKZnqn376qV2w5kKf6wo/Sr64BWQWshs0aGCD75RsIRuH7J5gYxVjOOMgAXJqRv7xxx9m27ZtNihPFjq9RbgFw6SFYD5jNc/BwjdjBJMoVzqG3Vfczj//fPu7iYiIiEj2RELd888/bzp27GjriGfGcccdZ69piRuRAU6CB/Ee1wQU7MZcv3693VHpEFinEgC7LbnmffXVV20gPjDpjyx3dmMSs+C6mzK3fiRCEkfiGpjX5zo33BLCWaGa6CIRIJua2uDUYeJ//lhhQk6WMFtRXnvtNVvXNNaYbJP1TF1x6nEPGjQoKqU+qOvN8zVp0sQGG/zINqfu1YIFC+zXrIJy0s1M4J4SNNSnD/Y6wYLt/pMwZWvCzba/+OKLbcYh2466detmoo3AB3Vt08vajwb+9qz++ld8RUQkOILMZLi89dZbNkjtRymUli1b2kVggswEuh0us7m5BUsWbMmucVgsJxuHi3+C72QCsQMtIwTGycyh9Be1KFng5Rj9C8SPP/64fW0y5ck4CoZxntflmFjU5vlo9JTeGMiiOGMH4xXlz/h5rouY5GRl4V1EREREJJkpiC4SJv5XIcjMdmtWy2699daYvRYBbFYECaQS8CULLR5YvVu5cmWmaqCnF6wlg47AMKuQ/t/liiuusJn9TMYJTFAiJSvHTvCBjD+XLR6IbfZk0LHqSaAg0mxy3gNk5rF9iEavBA6ijfrxdO5mVZUVWhERSQzO+fPnzzcvv/yyDVi7UikEngmW0xeFceyss85K83P0zqBMGTcWwymjAvp9sGDMFljGLMYR+oCk58CBA/bn6DVCwB00J6UsjB/HRa8OxkEWld3uL7J4vv/+e7sgz/Zaysfw+9CQm+d2qDPJLjuyk/gdGL+fe+45m92+Y8cO73EcL49h19c999zj3c9Yzu9EEgC/b+DxiYiIiIhkZwqii4SJiTSTV7LG6BLszzSLphkzZtgsaf7XJLAcuLUlmg4dOmQn4oENGqKNDDi25FDvinpZDhN06qCPHDkyy+VqCBCwyMEkfv/+/UEfQyCf2lrU6yJzPdIgOj9XqlQpm1FIxj7vhWgjk57yMtT9uv/++6P63BMnTjQ1a9ZME/AREZH/H8FySppQs5GFbIe6j9R1pFY5Nc0DEZB+++23bX1JFqQdFt1ZfA8Xu6NYqOV6gCxyPmf8uuaaa+zYBb4miM8x1apVy45/Z599dkS9Wsg8p5HU+PHjbVCdr8HYxmuxU4wSaVwjUHaG16bm5ObNm+3jeN2SJUvaEjUsUpOZ7jds2DC7e09EREREJCdQTXSRCBuKMrGMVQCdiSiTcwLoPXr0iGkAnQA2mWSuZmosm3jyuxBEJ7BArXM3qSYIQYAgGlwNdYIYBAJcZh/N2ggcU66F4DeBETL8M9MU1gVFyK6LRQCdWrgE0DlOauFGEws/BH+oR0ZAhm33IiLy/2OX0qhRo2zwl9JfYKy4/vrrbb1H6psHK3PGwi07iGh45LLVGYNYQKbWZJs2bcIu5cbCMju0aFjqx7hDjxGHcSKzza0ZI/l5jpFj43XZYbVmzRr7e1O/8s0337Q38DdhHO/fv7/NhqdhFMhoD0RmPmVlyJznb0eg/cwzzzTHH3+8fc3u3bvbhIRYlywTEREREYk2BdFFwkDWscv+ilVDUbZbk/VFnVMm6iNGjDCxQjCYyT3bswk+M2GOJYL1hQsXtkEBypRQ0iUrpVuCYWJPoJwMvj179tgAPSVxqLFOw9QHHnjAPq5IkSKZfg0XRK9evbqJBQIVYCeC614dLWQIkuVOcCNWxy8ikl3HeJorUbrEBa/POOMMGywmqJ3RuMHCOovRBNBpvkmgmIVQxqWMgtkrVqyw9cRBPXF2VXEM/CwlUdg9RemXYJnv4SA4TjY9AW9qp3PbuHGjretOHXbs3LnTzJ49O9XPsVjgNqvedtttZurUqXY8ZcGdUjF8j/GWG4uzLFgz9tJg6sYbb7R/zzlz5niv6VBXHvw+LKzz+4mIiIiIZAcKoouEga3Ohw8ftnVGzzvvvJi8Bs3GaFbKxJmmXZnJlA4HGeHXXnutDRpQzmTatGm2hmqs8Dp33XWXF5igYRpBhmgjw41GrGRck0nHBJ0SMUz0t27dGpXXYBcCz0td9GgjyO2y/nr27Bn15+dvQdY/JXyi0TBWRCS7I/hLvXL6kFCuBJREoWY5u8KC1Son8E2pNcqafP7553asJvj9yiuv2GbNDRo0SPccy5jEbqCxY8faxXnGSMYs1+R58ODBNmuba41wG14HQ5Y6u74o2RYMPUpcEJ2GqPwdyBhn8aB06dJ2YWD16tU2K59roE8++cTeWOynYSnXQ36zZs2yx/7ll1/a3h7jxo2zzbepCc/4z/GQnc7v63bDsbjN34NAOsF1AvBXXnmlXTRQprqIiIiIJB1qootIaP/991/KueeeSzpWyogRI2L2Ot98801KqVKlUqZOnRqz3+Ppp59OOeaYY+zv0rRp05Rff/01JZa+/PLLlLPOOsu+3rHHHuu99vLly2PyetWrV7fP7/6G/M4LFixIyQ7eeOMNe+xly5ZN+ffffxN9OCIiORZjw6RJk1IqVKhgz7vc+Hz8+PEp//zzT9Cf+euvv1JeffXVlDJlyng/w3k7XAcOHEh5+eWXU2rUqOH9PLeSJUumzJ8/P9O/y4YNG+zzXn311SnTp0/37v/iiy9S/W7XXHNNypAhQ1I+++yzlG3bttm/QbjWrVuX0rFjR28Mz5MnT0qfPn1S9u/fn+ax3377bcpFF13kvfapp56a8uKLL9rv8ZoLFy5Mue6661KOP/547zFt27ZN6dKli/d1vnz57H3jxo1LOXLkSKb/NiIiIiIi0aQgukgG5s6dayd1J554YtAJYzT9/vvvMXvuMWPGeBPUW265xQYEYmngwIHe65155pkpX331VUqHDh3s1z169Ij6661YsSKlRIkSKWeccUbKDz/8kJLdNGrUyP5tCHJEEwsngwcPjvm/t4hIdrBx48aUli1beuNT8eLFU0aOHJny999/B3380aNHbXC9XLly3s8w1gwfPjzsMXvKlCkpBQoU8H4+b968KZ06dUqZMWNGyKB9KDye65K+ffumnHPOOakC8nfffbf3uMOHD9uAeTQXy1etWpVy2WWXea9XtGhRu7DA38iZNm1ayptvvpny9ttvewkId9xxR8qDDz5og/3Ozp07baD8hBNOSHnkkUfsQgKBeRaS/b/TKaecknLnnXem/Pnnn1H7PUREREREMkNBdJEMkN3FRO62226L+nPv2LHDBn/jgQnoBRdckPLSSy9FlIGWWRMnTrR/t+7du9sMPH9mHAsSBw8ejOrr/fzzz3ZCf/rpp9usuWjbunVryrBhw2zwIhZ++umnlAEDBtjfI5rHTLCGv/lHH30UtecVEcluGAMfffRR75xI8Pbhhx9OOXToUMifYZyqXbu2F9Blt9jzzz+fYXY0Y6x/0X3Xrl0287pKlSr25/ft25ep34HAM5nd/iAzz3vhhRemPP744ylLly5NiYUff/zRBuTdWM7np512mncM559/fsr3339vv1e1alV736xZs+yuKoLp7nqgbt26NnPePU/jxo3t/RMmTPBe68knn7Q71/hbu4B6rVq17M9F+7pBRERERCQSx/CfRJeUEUlW1OykXvjRo0fNqlWrzLnnnhu156YB2YUXXmibVVIDnWaS0bZgwQJTt25dr67qf//9Z2uHx8KBAwdsjVXqwTo0TKtRo4b3NaebKlWqmHXr1pmXX345S7W/ea6FCxeahg0bevfxNU3PTj75ZBNtEyZMMNdff71p3LixreuaHfA3euedd2wtdGr4qha6iORGNL2k2eWaNWvs19Tcfumll0yFChUy/FmacH/zzTfm/vvvN7169Uq3VjfXChMnTjRDhw61PTpmzJjhfY9xjzri4Z6H6ZNBDXJqtdPg1J3TzzrrLNsgmobdNOhu2bKlrV8eDfTMYByl0XmbNm28+znuDRs22Brw1E8HjUZ5DNcUXFtQP75///5m9+7d5ocffrBNSOvXr28fy9+dmuv0FGFMokY6YxI9Wfjeo48+apur8vfjMTyHqzPPNRi/N89H81Z6h1BzvUePHrY+O/XjRURERETiIqKQu0guQ5aaqx8eTWx9vvbaa716oZs2bYr68w8aNMjWL73//vtTYomMu7Fjx9ot8UWKFEnZvXt3uo+nrjy/N9u8M5sRT0Yh/yb8ftRXdXht6qGT8R5tDzzwQEx2JMRjV4CISG5EGSvG8eOOO84r3fL++++HPO/+8ccftvzVnj17vPu2bNmS6utQYy4Z1/4a6+y4InM8EmRuz549O+XGG29MOemkk+zzFCpUyB6XQ7mySEvABMOxkSHOLijnk08+8cbnwB15ZJiTge6QFb5kyZKU7777LqV169be703m/tq1a4O+Jn9L1yfFXZ8Elhqjprq/bnzz5s1tJrzbEXDvvfd636N8Gxnx/JuJiIiIiMSagugi6QRqmXAzUfvggw9iEpBlG/bnn38e1ecmkOyv93rrrbfGLFC7cuVKu43bvValSpVSli1blu7PsMU9f/789vFff/11pl+7c+fOtsYsjcecd9991z4vZWuizQUJ/DVdo4GGa61atYpqmZjffvstZH1fEZHcUvu8Tp063vhEM8tffvkl3UbYLghO35BwMLZS77xatWre6xQuXNj2BNm7d2/Yx0oplH79+qWULl06VakWmpg+9NBDWe7HwnFSPs6PhWhe47XXXvPuo+Ho2WefbZuIRnLdwGPfeecd+7vznIzx1JkP9hyUz7n55pu935F/I4LrgYsJlE+jwSiPKViwoK1LT1kc/q6UrnGv5fqu+Mu4UbtdC9QiIiIiEm0KoouEQFYZkzOynKIZkKQJl5v4kcEdTZMnT04pVqyYN4mluVcsEIi46667vOw+gtlDhw4Nu3nlTTfdZH+OiXo4XGM3f1CCzMDAibdrAkuztWgj4y2rgf9ATPIrV64c9eA8AQqCOosXL47ac4qIZBfU2HaZ3ARbyT4PhfrcNLt24zKB7PQe7+cWbl0DTOp5s4gZKZpuuudhdxrHQzNuf8POzGKcpBEqfw+C0w7NPMn49i9EZ9X27dtt5rj7Xa644oqQCwCTJk2yu9d4HB+poR6IOuj+hfpvvvnG+x7P27NnT1s/ne/lyZPH7jogU58s94oVK9rmqiIiIiIi0aKa6CIhUPt6/vz5tg7ngAEDovKc1Kamhih1PwcOHGjrgEbD4cOHTZ8+fWzNUVSvXt2MHz8+qjXc/TVTy5UrZ2ua4qqrrjLPPfecOfPMM8N+jiVLltha7dQy3bJliyldunS6j+/SpYsZN26c6d27t3n22WdDPo6ardRupT4sNWOjWe/91FNPtZ/v37/fnHLKKVF53rlz59q6+NTY3blzZ1Tq2vLvQl146uh+/fXX5vzzz4/KsYqIJDtqed9zzz3m1VdftV83adLE1uCmznYwX3zxha2Vvm3bNvv1rbfeap5++ul0+2ow3rq66H///bepVauWadu2rbnvvvu8cSI9vBZjNbXFOf9j69attt56165dbX+UvHnzZroPyuuvv257kbg66lxvFC5c2PZhoQcLYyS4/I9Fnwzqo7/wwgu2hjx/H2q4T5o0yV6XBOL3bt++vb0moJ8KNc8D+7Zw/IMGDbI9avjdAtGLpW/fvrZG+xVXXGH/PTt16mTrsc+ZMyfVeyOzf1cREREwljJ20fuDcWnXrl32xjxu3759tp8J80Y+MmdmHGQcY7x1Yy49PxiPuDYpWLCgKVq0qPn999/tvLhkyZJ2ns1YzbhZtWpV+3gRSSKJjuKLJCNqfLpyK2wfjha2k/O8Xbp0iepWY2qqU3+V7Cu2hFOKJpoCs+EoEVOrVq2gmWPhOu+88+zfgq3qGZkxY4bNonvmmWfSfRw1Wl3GWjQz0MgIdFvGo6lDhw72eck6jPZOgVjtQhARSUaM1Y0bN/bqbQ8YMCDd2uFkYLvxgjrdGZXUYicU52oynP270/zZ3aEw3s+ZM8dmZrvM6TZt2kT4G6Z9zqVLl6bKfKc0C8/dqFGjVI9dvXp1qrrq8cBOKMrRuJ1xb731VtDHcVy9evVK2bp1a7rP579mYqznOs2Psns///yzVzJmzZo13rXLkSNH7G4yyvSkV9JHRETEjU0LFiyw4+o999xjd1mdfvrpqUquxeuWN29e25uEUnEff/xxysyZM+0uM5UtE0kMBdFFgujatasdtK6//vqoPi8T+ueffz7ssifpCRw42VYe7frqHC/BWOrEUv/c+f3337O8zZyGZm6rvT/gzUVB9+7d7XZ8v19//TWsv4mrt7558+aUaKHUCs952WWXRe05aerG9nOed/ny5VF7XhGR3GbRokW29Brn05NPPjlVA8xQ9u3bZ0u3EBhPrwQLY92YMWO80iPcmMCGgwD7hx9+mFKvXr1UE+ILL7zQ3p8VzZo1s8/FWOqvac5kf/r06SnJgIWHSy+91Pu9KVsTzrUDv1OofxMWMFq0aGHrpft/98BrAa7j2rdvb5+HALtbCFeJFxERCRwzKAXGnJc5aM2aNb2SpZHcmNfRl4vSY/QIo+QYJU9DPZ7FXYLi//vf/+x1wQknnBDR63GMXMdceeWVtkQsJdVEJPYURBcJQDaUC26yAp1V0Qg4ByKrjIy7L774IiUWyGRnQCc7zw3UN954Y1Rfg+BCuXLl7HO/8sor3v00E3MN1TJTi94957fffhu1Y2XSTVZdNGuM0xgtWMZgZrFoEI33q4hIdsIE1DWgpMcEdbRDCexpQSA9PWR6N2zY0BsHq1atahuQhotsc/ezHONtt91mM6QjHY/pd3Lfffelur9379520Tjaza6jjeuf/v37e38HAtvpBbJdnfnatWvb3ieB+FkWtN2OgxdeeCHoNRI7CXkM/UEYHwlqBF4zzZ8/P0q/pYiIZCeML/Q/69y5s9f3KlSg+u6777bzYsYMdpMXKlQo5OOZh/pdcskldj5Nvy5uNO/mMSzqMtf1J1IRDKcvCj1WeA12mbuxjM/btm1re5mkF1hn5zYJe+ntxBORrFEQXSQAA6XLFItGAJ2yJTTSDGfLdzhby9ii7gbUc889N6oBehp1DRkyJKVUqVLeYFy0aNGUp556KlPN0jLCIO8C5u734G/GlrXMNvAkKB2YnZdsuLBxWwK5gItGBgUXaQQURo4cGZVjFBFJdi+99JJXHqV169a2zEcwlPPo1q2bfdwbb7yR4fPy+DvvvNN77oIFC6YMHz48w4Vdxi//Y0aPHm0nwwSRXamRSBHod2P+999/791PWZLslFVNlpz7PerXrx+yrAqLwa5BOtc4wf5ujKG33367d53Cv02gefPmpZQsWdJ+n6BE4DUF2fp8jwBKtBMdREQkuTBXYoGVJKa6devaOVNGmd4EshnDK1WqlOq5yDbn+4xVLPg2bdo0pUmTJnbXGSXf/IvlzKvTew1/aVTmcOk99tNPP/UW1/0L/MFu7MqjjCwLycyrp02bpsC6SJTkSXRNdpFkQjPG0aNH288ffPDBLD0XTaxouvntt9+aNWvWmIceesg22MosmkR2797dNtHC5Zdfbl5++eU0Tbgyi0W1hg0bes9Ps08and1+++226UksuL7GNGih8djVV19tG7Z98MEHmX5OmrvRnKVevXomWdF4jaay7733nv2ds4r3WqlSpWyTmksuuSQqxygikqwYOxhThw4dar9mbBw5cqTJkydP0EaeV155pW1eyXj5888/Z/j8nEtXrVplz9UdO3Y0w4YNS7cBNo3GRo0aZYYMGWIGDx5sbrnlFq8p9rXXXmtOOumksH6vzZs320bdvC6/D2gKevPNN5sTTjjB5MuXz3ssjciyE/4WNEtr166dWbRokW36OnPmTHPGGWekehwNRrneofHq6tWrTbNmzcznn39uxziHf2euf4oUKWKeeOIJ21iUv1m/fv28xzRq1Mh899139jqM12vRooWZPHmyN0bSiJz3A3/faF1HiYhIclm3bp0ZP368ef/99+15369mzZqmZcuWtjHoW2+95Y0He/futd+nMShoFMrtlFNOsV936NDBfs1zEzsINpZXqVLFfl67dm3bfLx48eL2+Rm3ChUqZI+Fawd/4/MzzzzTXHfddba5KGPYkSNHzMGDB81XX31lfvvtN1OsWDHvGqVNmza2mXgo/Ny7775rP+d65sMPP7QNSqtVq2Z69uxpm3DTyFREMiFa0XiRnIAsb/63qFOnTpaadbDSy5Yst/2KjKisZIfTyNOtLJNZRX3PrDYTIav9nXfeSVWffejQoTbzi5pw0ajbHogsQX/2GdvuXSYAK+XJ2CBlx44dNuONmrjJ7qeffkr0IYiIxBRZw9QZdWPiE088EXLsoPSKy2qmpvns2bNDPi+7rfyZ3dRHzajPCOPkqFGjvHrs3KhVHgn/sVM+xpV+CZVVn92RTe92YrGFfu3atUEft3HjRu9xbIHfvXt30Mc9+uij3t/+ueeeC7qroFWrVvb71JulNI6zcOHCVI3Y2TGYjNchIiIS2Q4udjsznw+Vqc1ONne+pzE5pcb836d827XXXmvLt1x00UWp5vKuz4bLVicz/a677kp5+umn7c4o5o7Oq6++and409jajx1S/PyqVatS7V7jPsq2+JUtWzZNmdn333/fK33G54MGDbLHy/UIu+iYt1L2rXjx4kF/f+bf7OAjO19EIqMgusj/c+jQIbtli4GFwTErE3y2B7sJW3qT9nBMmjTJG/BodhJOg830rF+/PqVv3762oSfPycDrDwjEagLJxQr1WxnQ/djyxlZ5jmXKlCkpyYZj4tiqV6+e6EMREcnVCHJSHs1NAJmchvL66697/U1oEvbjjz+GfCylPqhZSgmXcI+D8iSuBwc3Ar6vvfZa2L08uDagbBxBYIfx995777WNUXPytmt6z7Dlnb9biRIlQtaJZyGDurE8rlatWrZcTjAEDyg9F6ovCIHyq666ypaTYUt7MPztKflD3fqc/LcXEcmJOId/9dVXKTfccENK3rx5QwbPmYtSl5wktxUrVng/zwIrCXA333yzbYjtYgLuNnDgQO+xlBmjRjrjuCsHxutTjzyw9BqJaa7knB8lVrjPf21CoJ7rkMBrG5Lp6LHCmOiwgM/zEvz3o0Qq97v+La7kZ6i/B4vUW7ZssUluGfWJEZH/oyC6yP/zzDPPeINJZuuXM1DdcccdXiMSf8ZTpAF9/3P26tUromZmwbLZmdy7Gm7uRhbY+PHjU6KNCwoms/6mYFOnTrWvSUPUwED9/fff79VJzWoQn0UGXiuzf/tAgwcPtsfWqVOnqDzfs88+axcUopFlSKM0Mh9yasaiiIjDuMzkmPMxWVZvvfVWyMeSWeV2OZGZFap2ODuyWFR2j2XyGc751NVXd0FgmlvyXBnxj28TJkywP0+GWW7Mfub6gMWNjALp7Fgjk+6BBx5I9+8UrAmpH4Hx9Jpv8z3eB7y3srJ7UERE4odFUgLVbjxxN+qYu8+Zk1epUiVVzy9uTz75ZKqdYK4Pij/LnOD1sGHDUgXGWaTn+y1btkx1LCz2Mp75e3AQnF68eHHI3VRZ/d39yXWMkSQaUJt979693v1kx3O81IIny50FBP/vSdIfO8JZaCaTnblquAkBIrmRgugi/28QcgMrK8uZxYo2mW9MxDITnCbYTWNTtp9nNCEMF4O2f0WeY7vssstSPvnkk6g0Ow2mXbt29rVefPHFVBNYtk4HmwSzok9mAD8zc+bMLL323Llz7fOQVRgNNGXh+Sh1k1Vk0dHohecj0zAr+Lej9A7PFZjdLyKSkzBusBWa8x1jrH8HVSg083r44YdDNo2kXIh/0s3E88CBA2EdDwFXtmLTdDtUdnTgjjIWiQmcOwTdWaQlKzu3YpJfo0YNL5DuD1L4RdqUdcmSJam2yIcqfxb4evw7sZ1eRESSGwveBMEZO9w4zvUBmeSLFi2y1w0svBNM9wfHCSB37NjRJr35S4Axr2LBlvIolIljzsrclYV2Sqn6d5bz/Mynzz///FTH5C8PlkzYYU/W+yuvvGK/5m/z7bffplk08N9YeODvF4vgv0h2pyC6SEqKzdJmwGD1Nau1wMmC5vkiwSSfVW1Xu5WbG+gifR4y1tni5degQQNb241AcDTrZnOxwAUIQXP/hQMr9pRoIUAQrnvuucf+3mTLZwXb4tyqeqjgSSTIXOD5+HfNKurT8Vzly5ePyrGx4NCoUaNU2QYiIjkJkz0Wl10G+rvvvhuypnm4wVaC8G7bNeMui8rpLW4zifaXXUE4wfPAut2Ub5HQgXSuwdhWnh4WHyZOnJjuDi2CJGzXD7UoQvCc12I3nr92bbB66txERCQ5UHKEHmb+citkULsgun+ey9zUlS8977zz7FhOyRb3+NKlS6eaj82fPz9NDyxqovNYdkM5BNez+y7glStX2sUBxkF2X3Xo0CFkQJ04wrp16xJ9yCJJQ0F0yfUImru6pmxfyswEPytBTLZ4MTj5t59Fko3N6/Mcffr08ZqbEUD2b+8iCJDV7eKUmJkxY0bKp59+6t3HhYfLAJgzZ06qYEakq/Hbt2+3x+2v45YZbD9zK+s7d+5MyQp+B1biea5t27Zl6bn4+7PNj+eidJCIiGTskUce8cZHtmwHw3Zpti+TWZ5RNjkTcDf5btKkiR17Qp2z2ZlGrW0ey46ucMYUgrhXXHGFzYZ2CNSyqBxpRnVuwb9f5cqVvZJ6of5OjMksHPM4GqOHei5XR50F/mDXPlyzuZrsLNwHq4HO+6hp06Z25562tYuIJBZzy8cff9yWWPGXIfHXOmc+3bBhw1SB8TfeeMMmarnmnO5G01HKa7rkOcZpt2PbP9YzltNkPJySbdkN46P/d928ebO3YzrwVqBAgSzNz0VyEgXRJdd7+eWXva3EkWSWucHnvvvus6u4DDyR/iwNrFwtVrLiyOAONxOeOqFsVSfbyj/IMfjdeOONWco4J8hAWRS6lQd2ASdI4UdAmOPOapAZ/D14DRqgZAX/HjwPGQVZsXz5cvs8BFyyugjBsfBc+fLly9KiC8cRqr6viEhO3CXGjbE6GAKurrRVkSJFUjUKC4WyHfTiCNVAkkxlfw8RAryhGlIGuuaaa7zyMBI+riFc8Jvt9P7eMH5cc7lFDRIIgmGrvQuuUHIn1DWU243w0EMPpfk+W/kZr3lMRqVhREQkNljEpDyof7c252Z/3XIW0V1ZUG7+8do1I3dz5J49e9qgOHNXgvJ+buE0VGmxnM7tjKfWO38n15zd3Zin09yUmu+MoSK5lYLokqsRNGcrEwMDq9GRBjPvvfdeb2Bh0IkUAxQ/27lz57Ay3PyB3Oeffz7V6jvN0z7++OOIMsC5MGE7V2B97osuuijN78QEl4x9trXFqgkapVhc5jcd1jPLBT+y2jT1vffe87IVs4p/Y56LBY6soJTB6aefHrXGqSIiyYgSK25XEVu3g6F3iAug09dk7dq1QR/H7q5wMqjINOO13FZvMq+YaIfKRGZBc+TIkXbh2SGwe+utt4Y8Fglt/fr1XqCEQEawRQ7q1l5++eX2MWQWstMuGEriubquBMRDjafuOipYnxICMTSbExGR+OO87HYpcSNx7NVXX7WLmwTPmZ/5g+cswFI+zd+omoA4jxs7dqyXhMS53S28+8eZaJTazElIprvrrrtSBdJpwO7P5ieoLpLbKIguuRo1wt1ELJJa6ASR+/Xr5w0i4QbgKXnirynGxNvfwTsYtpeNGDHCblHzN7wi6M5Eki3NbHHLCEFwAq+rV6/27uNzlwXvv3CgUSV/k0Q02OrRo4c9JrZsZzZY7xrQBdawzQz+jTZt2pSl52B7ucuKI0Mus/h7NG7c2D7PoEGDsnRMIiLJil1ABLA513Xr1i3oWBAYQCcAGwwZ7ARSqYvKQm16+L6bkBPEzag+N1lrPDaS/h+SPpcBzt+VWvjBEDh3Zfiobxvs/cF9JBe4Mnmhapvffvvt9jGU7WGsFhGRxGIsbtOmjTfPps8FC9ZuQfutt96yzb3d95kzPvbYY7aUC1936tQp1TyO+b6/sTeLsW3btrW73bLaCy03oC9Y4M53/41xONLd/CLZmYLokmsxCXMDMKvT4WJi5ppgprfF3I/SKm6LN6VKMgoOU+6DlXaakLlyL9wuvvjiDF+LiwGy7tj65n8dF5z2b1vmYoRO5HQX99dQT+RKPIsDLnjy0UcfZeo52L7Nz9N9PRkQhKdGLgshWUUWxdNPP520HeBFRLKC8iyurAfjZbAscALo1apV8wLowRpekV12xx13eOMnu6iCnTcDs50Zez/44IOg4zSTRP/4yKScBedQtdolc/j7Z5SkQMa/2zHAzrxQ11Jut2GoXiTsPnDvpTvvvDPkMbGzgIUVNfIWEYkNxnsC3m4xm91olO7icwK5DuNz/fr1U6pUqWJLslDOxY0ZPJ5zuRvDmTNxf/Xq1WO2kzq3+Pbbb73+XoE3Sr9EI3lNJDtQEF1yLYLJnPSrVq1qV6TDweTZZS1xGzVqVLqPZ3LG4O6/GODnQ616u5XxwBpkZB+/8MILqWqUu+D822+/bWu7+YOsLvDufzyBAeqZBzZPTcYLiv79+3vZY6Fq1qaHbXxkKVCqJpmoOZmISGiMjWy75vxfoUKFVIu7gQuTNNIOFUBnkbxFixbeGDpkyJCgYx07wXidjHaEgYVpspX9i7uM2Tqvxwb/Zm5iHqq8G9dFbkt+qB15NENnYp/ev9OCBQtsCZ5Q7zd/Y/Drrrsuk7+RiIiEQuksAt1u3HY9K9x8sHnz5qnO87Nnz0659NJLU2WrP/jgg7Z0m/+6gCbRXFfQKFzlWrKO6x7KpfH3DhZMJ7Eg0j5xItmNguiSK+3evTtT2c40uiIQTZCawTgUJlyUTilfvrw3qJDtvWzZsjSPC2xewkUCj+d1yKh228/JvKMZmj+TzpWj6dChQ6rnoCFI+/bts22dMi54mBTzuyWipIwL5rRq1cpuJ090R3Ym/7NmzUroMYiIxBrZY65RWEY1xTdu3Bj0MUzemHC7muaMm4E4p9PTxC04s+sr3IV3ti1L7HF9RMDaNX7fvn170MfQYD0eE3au3zierVu3xvy1RERyC+ZbjzzyiJdARuKZ649FIJ05rfsejaUdyre4hVZ2nTG3d1nnGqdjj7+3K5kWeOvVq1eiD08kphREl1w9UWcrWKSZ2NTMzCjw7hpScitdurRtcOl/HTfQM9EnO526586SJUtsYODgwYPeffwsk0ie75tvvvHuZ7WdLPUnnngiJachY979/VwjmHji34DXL1iwYJay9ceMGZPlCb4rT0OmnIhITuRv8kj2cLDFxHCaPHbv3t0+Bw2Ygz2eYKirpe6aPbNw68c5n+C7/9xNGQ/KtmRmd5RkDuVzXKkVat1mtXYt7yHq7aeHf3sFykVEYo+McZqBuvHYld9yu7BdaTdu9AFj15BDVjo9sDZs2ODdR2IaZb6uvvpqjdVxMmXKFDtX9wfRyVSnFBu75dWcW3IiBdEl12GAdSvc/jIooTAIT58+PaLXYKLHlrQHHnjA23rGxIwt49RG95drIVPuk08+8X523rx5dnt53bp1Uz0nmeXUfqNTeW5Axr3rAM627sw0J2Ort79DeyTYScBrc3GXWQRgyHTk/Uat98xiKzrPobq7IpJTJ9IsWAb27XAYP7t27WobNFMvOz1kmffs2TPNOZfnoDGZa/JMP5CPP/446HO4xuEq3ZF4lO455ZRT0mQhBsM1VuDuPn9zdcr3nXzyybbufjDs+GNXAo+hGV16/IkOIiISPsZjdnS7XeE0/iYBjbrn7ERm97abJ7MgTvNu5sDMjV0JVs7X7BYOnCOGOr9L7FAKze0c4+Zf/HCL4Go8KjmJguiS67j6adQeDycYTvCax9PBO5Rp06bZFXJ/zU3/Cji1uWvUqJFqQKHJJAM/Fwb+ep9M9Ph+vnz5Uo4cORL0+XIL6pq7rf2RXhRdddVV9mcDa8CHiyZkWQ2iUC6A52ArYlatX78+KevXi4hkdcHU1UFt1qxZ0LHO9clgMdHfXMwhuzij8yM/58bfNm3a2Al4KGSrE9QfMGCAzrtJYOLEid6/XaikBhZI+D61b4P9mxF4cXXNb7vttqDPQb1cl/keKmDP+5OFHq5LlLEuIhIZgqmdOnXyzumcl/3lutz32KnNuZqm4O6xxYoV88q4uV3fjNWh+llIfL3zzjt2ETpYiRfK9LCDXiQnUBBdchWC3ZzI2erl3/4VamJPYJzHk7nmzxZ3yHQjs9wNECNGjPC+529ewuDOajsDCFvPXG10suX4Obaf+zFJVJZT6klv4N8onOxtt1U/M/h34uep05cZLICQWcFzkNUuIiJp9enTx5scBzbPBg283RhLeaxAlEtjd1dGWcquxvbw4cNTBVlZ/GbRNHChXGNwcnHXS6HeJwS0XVbjG2+8EfQ5mMC7GrqhyqxxrecSGfyl9hzeO02bNs30LjkRkdyKhCB2BLkgOQFwgq6u/5ebW5O5/Pjjj9tm3m78Zx74008/pZpnd+vWTT2jkgz92OrVqxc0kM6td+/eavAq2Z6C6JJrMFF2zcb69u2bYQDUZawzkQrMfOLkT9YTmUguO47npHQLEzNWzi+66CJvos5HBn+y7fwTt7lz59rMO5XpSH97Nn9jyqJQLz5cH374of25OnXqZOp13SR53Lhxmfr5sWPHelva3NbDSFCjlxroWSkDIyKSzJj8uolVsIVqaqMz0eb7LIwGevXVV73moNdff32qcy3jLufhwP4igTjHux1P6WWnS2JRpsftWGAnQbB/S9c/hMBLqMzEFi1a2MdQHigYnpdavOlloy9atChlxowZ2qUgIhImxngahbqGoW5sP/vss20JtVCZ6vQw4Wc7duxod3Xnxp3Z2Q07+QmWhwqkU7Y2WLNwkexCQXTJNZ5//nkviymwiZgfg/fFF1/sbT2aPXt2qu8TBCfw7QYCVltpmkHJFibx7qKA2+LFi72fcz9DQ1GJDBdO/O3OO++8sCet7DRwiyD+MjvhKlu2bJpGrpGgXA8/T7merDS/5f2libqI5DT79+9POe2000KW1yBjzS1U33TTTWnOg6NHj/bGWs6X/swmJnBuN9G1116b7jmUwHurVq1SXn/9dWVHJTmus1xN+2DZ5oz11M1NL1mCALjLggxVP931RKEWu+q4iohkHuMvu73cgrc/u5yEJdcPheQndx6vX7++PUezG5ivf/nlF7u7l/u++OKLRP9KEqYJEybYWIpLhvMH0kuVKqUyPJJtKYguucLevXtTTj31VHvSJnMtFCbeF1xwgVdjLVjtLpfFxLZhAvOrV6+2XcD9AwMBWJpi+mua0xCUbelcCEhkqBPvtmlTby0cBENcAIZ6uZHgZ10pFl47UqtWrfK2jO/evTslMyj5w0WkLhZFJCdyQW6y0IIFKnv16mW/T4MxxmY/AqhuQsbj/EFy+me4pmRMuFm49n+fxqT0OlHAPHsaOnSot3MgWE1yrrVcGb5QJVuuuOKKdLPRWVg566yz7GNeeeWVdI+H95beSyIiaREAp+SKmx/TNNTNj1i8dvczZtNE2tm4cWOaMi0sbn733XcJ+C0kK5jPusQ05vLNmzdPyZs3r42dKElMsisF0SVXIMuNkzdbgTMqrcGWcSZn3377bdDvkx3HwM/kjIagLvOcCT310RcuXGg7iXMfTU8kOqiNx9+UzMVwM8MoqcPPkLEYKQZ2VsgzMzkmSMN76Morr4z4ZwOPQUQkp5k5c6Y3efY31vbj3EsAPLCkFeVXXACdDHT/eZLJGiW0XJCVPih+BNhd1luoutmS3LiGa9Sokf03vOyyy9KMk3x9ySWXeLsQguE6zTUhDXVN6HYvMuEPhTr6lStXDntxX0Qkt6DEacuWLb0F7QsvvNDLRHcL3a7Wed26dVPuv/9+7xzOzjCSmfw7uiX74tqLOveuL92LL75ox2ESG++44w5bio2SbSLZhYLokuOxdddNuKlBnhEGb9e4hM//97//pTz00EOpvu9vPlq6dGm7wso2Y+f9999P+eijjzJVRiSzcno2FFn9biW7f//+Yf0M9Ux5PLXF4+3w4cOZymIPzLgUEclJWAR153KC4JF666237IScxfHADHO3Y+mcc85JWbt2bdCfZ9LGFnHG72TGeK6F1OAow+LKugRLVmD3Ge8xdv+F+huy4JLe3/fQoUP2udO7jhswYIA9hrZt22byNxERyZlBU3pSuexj+pswv2Fhk3rY3E828oMPPmjLrLosdZKXOC936NDB3kcWe06Q0+fo4c7j3b+rK5fm38XPoklm5s0iiXAM/zEiOdTRo0dNgwYNzJIlS0znzp3NW2+9leYx+/btM4888oh5+umnzYknnujdf+DAAdOjRw/z/vvvm2OOOcYsWLDALF682IwdO9Z8/fXXJm/evGbbtm3m7LPPNn///beZN2+eadSoUVSOm/8td+/ebX766Seza9euVLedO3d6n//222/m33//Nf/884/577//7M9yrHny5DHHH3+8yZcvnylRooQpVaqUdytdunSqz8uVK2cfnx189NFH5qqrrjInnHCCWbVqlTnnnHPSffyGDRvML7/8YmrVqmUKFChgkt3WrVvNeeedZwYMGGC6d+9ujj322EQfkohIVD300ENmyJAh5swzzzRr1qwxBQsW9L73xRdfmLffftu8/PLLJn/+/CGfg/G4fv363jmSsbBChQrm559/Ni1btjTvvvuuOeWUU8yhQ4dMnz59zL333msqVqwYl98vGK4Rfvjhh1Tjd+B4vmfPHvPXX3/ZMZ2buzw/7rjj7BjNjd8p1HjOrUyZMqZYsWImNxg0aJAZOHCgvcZZu3atOfXUU9Nc//G3iyX+Tb/88kt7XXLyySfH9LVERLKD7du3m+bNm5v169ebQoUKmRkzZpiGDRummscxXnXq1MmMGDHCjnc1a9a03ytbtqw3N+da4M4774z5eTwzmFsyZws1nnMjjuDGc8Yj/xydG3GE4sWLhxzP+bp8+fJ2zptTEKvgmuz5558P+n1+30WLFpkiRYrE/dhEIqEguuRoI0eONHfccYed3DCYM9nyY9LKQE9A9rrrrjMTJkyw93/zzTd2cCeIzUB300032Un7ypUr7fdHjRplA+x4+OGH7USegZ7BMFL8L8gFB4F+/41jc7iAKFmyZJoBlt+LYLkbkBmcGagJqjNoHzlyxAbjAwd57ncIVNSoUcPUqVPHu1WpUiUpA+v8rVq3bm2mT59uLr74YjNr1iz7O0fbm2++aSZNmmSuvvpq06VLl4h+dt26dTZYk5nj6tevnxk+fLi54IILzNy5c2Pyu4mIJArBTsYbxqiPP/7YXHHFFd73GKuqV69uJ6cERx999FHve0uXLjVnnHFGugFiFrlZ9B46dKg36e7WrZs9nxNwZwyPxzmVQDjXFG4s59j5mkC6c9JJJ6UZz7k+YeHbjen8Dox5bqGc2/79+9OM51wruEV0nH766anGc26B1z45AX9nAi+MuT179rQLL5lx8OBBu/iS3qK8+/tqYVtEJP2FReZnW7ZssYu+BJLvvvtuGyx34++rr75qF8wZr8H8+6yzzrLn18cee8wkG8aHwDk683aH42b+Hzims7DLeO7GdDdHd2P6n3/+aZ87MAhPUoBDAL1atWqpxvNzzz3XBuCzK65rBg8ebBPGguG9QLIif0ORZKUguuRYDEwEM5kgvfTSSzaY7sdAxUDPpJ4A9eeff24f/8QTT9hBnEkTWV3cN3PmTPszTGoZBDdt2mS/lxkMoPPnz7cr8999950djAkagImuGyRr165ts8QZRIoWLRq1yRv/yzNA8/tzEcDCAMfAsZC5zfeZyLvAerNmzWxmH9kEyWDz5s32AoKLj3feecd07Ngx6q/Ru3dve8F33333maeeeirsn+MCiEAP75mFCxfaQEmk7w0CAZdccompXLlyJo5cRCQ5MbawaM3kuU2bNmbKlCnepJrvXXbZZeazzz6zgXQC3i4TnXGpcePGdkLKOE0GOwhKr1692o6VoezYscMG6l944QX7HLGwd+9eM23aNDvpYyzlmJggc73AgrQb05kIn3baaXZM9+96yyrGDQLpjOmMj/6JPkF38LocQ7169UyrVq3s3ywnLNLOmTPHXHTRRfb6iMUKrlv8CFaMHz/efi9Y5hvvQQI4/G349wtm2LBh9hqSG+9bERFJi/GnadOmdtwtXLiw+fXXX+39JD+NGTPGjn3MrXkMyWqct9kFznmbeQ9WrFhhrwEShWsRxguuRciIZhxlbgeuQfzBbIK9/E4E0KOZLX/48GE7nvN39C/If//993a8JyjPPJhjaNKkif37EifIbpjvkoAYDHNpEiKuv/76uB+XSFgSUkRGJA46d+5sa2zVrl07TeOo7du3ezXZaFRJs1DqlbVr186rzUXjqpNPPtlrGkpdbe6jWRm13SJBbc0PP/wwpUuXLrahimusQlMsarPScZxjSnT9U47zyy+/THnuuedSbrjhhpSKFSt6TUBo1EUjkC1btqQkS5PRkiVLphw4cCDdx86bN882LaEBWLiuv/56+/zDhg2L6LiGDh1qf+68886L6OdERHI6+oS4Oqg//PBDqu+99NJL3vdWr17t3b9r166UcuXK2e/Vq1fPayrNWMWYRK1VmlM5v/zyS8qUKVNSPXe0x1Wej3rrND2lOZprLl6tWjVbv5XfZf78+bb+ZyJxnPydqRX/wAMP2L+Xu6bhuoea8lOnTs32zbxcjdULLrggzb8113auJ06wGvlcd7l/v3Xr1gV9/nvuucd+v2vXrkG//88//9gmtTfeeGPS19kXEYkF5oauqbeb53JzTZ6rV69uG43i7bfftvXPaTDu72E1duzYhBw7YyBjYY8ePWyfM46XsZJjZ+xkDGUsTfQcnWsKri24xuBag2sO17SVaxGuSUKNY8mKHjX+uuiBN74vkowURJcciQaiLvjtn2Bj9+7dtukY32fA37RpU6qGZUzK+disWTP7GBqjLFmyxH7/xx9/TNm3b19Yx0Bz0pdffjnl0ksv9RpgnXvuubaJCoNgdmkwwu9M8JyLCYLp7mLo4Ycftn/bRPweTFRdgD+jxnQjR460j7v44ovDfn530RfJBR0XV+59RTPaSHz33XfZ5v0gIhIpGoqdffbZ9vzob9TtmkTmy5fPfu/555/37idQziI495911lm2URn279+f0qBBA3v/iSeemDJjxgwv4F6mTBk7Tn377bdRPX4CpVxX9O3b11uAz58/v20oOWbMGPva2QFNMr/44ouUXr16pZQvX977G5JA8Prrr3t/4+xk69at9t+C34Wm7oGuuOIK+73u3bsH/XmSGfj+/fffH/T7s2fP9hbtgwVRuK9EiRL2MSQhiIjkJixGuvHEH0Bv2rSp9zlBcv/5c8KECSmHDx9O2DEz1jHmMfa5huRcZ/Tu3duOkek1lE4mO3fuTBk9erS9FnHjINcoXKtwzcK1S7Lj+N37hLGUuAuLGCRV8G8hkowURJcch4GvSpUq9mRMppUfAzjZSi6Azsr53r17ve+xGr1jxw4b0HQB0eHDh0cU3OXC4KKLLrI/mydPHhu8HTFiRMrmzZtTsruDBw/aSSpZ6qeeeqr9HblwevLJJ+1AHk+ff/65twK/ePHikI8jq9EFPMLNEqtRo4b9mc8++yzs4+EYXBd6gj/hIoDE+6Rx48ZeloaISE7y7LPPeoFI//mR4HqtWrXs91q0aOEtJrJ7zAU3ixUrlrJx40Z7/6+//ppSt25dez+ZbP5zP2M4WclMhFetWhWV4yb7jKB/qVKl7GvykWDsJ598kvBM86zi77VmzRq7g4rxh6QDxtPLL7/c/n7ZYfLtPProo/bfh4Ua3lN+X3/9tbfLIdgiAVmGfJ8FmGBBcq4bXJBl+fLlQV9/0KBB9n3i3qciIrkBiWVVq1ZNE0BnTHGfM2aSfOXmicyruZ+5ZDyzuxnT2KnGGMdYx5jHcTIGMhYmOtM8q1iUYOzm7821lrtmYWwK3P2XbNxuRG5k1HMNGGz3mEiyUBBdchxOvm4wD5Y1vnTpUrsFipMzZT5OP/10O3i2atXKlmxx2EJUqVKllFmzZmX4mmSz9+nTx07qee0mTZrYLGYy5nIqLkbmzJljtzgToD7uuOPsij5ZgfG6EHFlV1i1DizZEyxLjOMNh9vOR4Z4uFj152euvfbalEiwKEEmIFkEIiI5DUFzNzaSte23cuVK+z1uLGA77Nji8WSou91kLHi7gDvj+4oVK+yiuT/Yy0IkgfasYCyZOHFiSvPmzb1t3T179kzYzqt4IcDMzi2X/U/JF8rN+f9dkvk9Vrx4cXvc7JwLvAZwOxcIdgcLPLggeagFebeg89RTT8XsdxARyU44d7pgOcFazr0uKcgFRCmR4nZj33777V4SFDvG+vXrF5cxlTGMsYwxzZV5ZazLjjuvwsXflWsWrl0oQ+tK63BtE2q+nGiDBw/23jfjxo1LGTVqlE3SI6ZCciJVAkSShYLokqOwrddNhqhRGQp1tCmz4k7Wp5xyipep5CaMDDLpbediYsaFACvarGYTBCCQmhtXTlksoHQNmQb8HdkJwOAX6616bKF3NV5Zxc4o2E4JmnDwPuDxlLIJ92KFxRh+hrq/kdq2bZst/yMiktO4iRG7u4JlN5Od9tVXX6UKiLo66OPHj7f3sSDudgiRmU6mOTujCHSzTTwaCL4/88wzNiPZZdK9+eabCd1yniiUsGMnX8GCBW1QhDE0sDResnGl23h/BO7q4n3E9xing70HXV31UCVdXnjhBft93m8iIrkdc2RXKos5NAvi4Bzq5tY33XST13Pi6quvTrUbOB61uxmzGLsYwxjLGNNcedbchGsYrmXc4gbXOFzrJFuiH3EVl5BGYl6wGuns9hdJBgqiS45y5ZVXeo0d3eo2gfDrrrvONph0AUsX7GVgdQM8NzLPM6qDxkme7VJuQk9WO9l12X1rdzTwt6EmKP8O/F0p+cIqciyDEG4LGCvtoerSUqOcxzRs2DDD52OC7Wq/h1v/ngCQO4bs3qRNRCRaWLB2pb9oJhYuGoRSJ9OhRAcL1uwqYucYaNbtanpnpSY5wXMC8SzAkzFHA/DcONEO9e9Ho3FX75bmZf4Fj2TCtZuruz9kyJBU3yN440oNBDaexXvvvefVxA22k45dD26MD5U5yetTPk5l2UQkp3PBTuZLZDc7JB8xXnTu3NkLhBLIbt++fdwyvxmjGKtcyVFKqrLoLv/Xg4trHK51uObh2ieru/eiifGVHd0uRhMYRGfHe3YvuyM5g4LokmN8+umn3uqlWxHnRMtgwf1s9aXZmCvV4QKlrgQHGUpMFtPb5vTNN994AzONR8lE18k8OC6kaPrJ35ltfq+88kpMGrXw7+Vq5HKhFgwLJ3yfHQMEZ8JB0Cbcf1sC73SZDyxVkB62peXGXQsikns89thj3gK1f2yloVfgrp2MzrcEQgPrelJbNZKyW34s7hJsJYuOQHz//v1t43FJi3+7jz/+2Cv10qZNG+86K5kwrnJ8hQsXThM0IVjQsmXLoE1nCXyzIB+qpjljPNcZZFaGCsbQOJ7Xdo1uRURyotdee82bP5PhXbZs2VS7ad955x0vAHrjjTfa3mB8TlmsWGKx05XeYqxizErW0iWJRuIB1zxc+3ANRF34ZNl1RzKa61/nSgH5bxyrSKIpiC45Aid+BnFOrtRYC6yrSmCdWukMFv6TMl+7GlvpNZ1k6zhZcPxMzZo1U6ZPn67geZgIetA8hgA2HcPJ+Ip2DTzqmPL8/PvMnj076GPYOUBGwqJFi1ISjYk670EuMslcExHJadgq7Mptvfvuu6nKrrmxmLEUjAlMfv0LkSxkEmz3j7Xz58/P8q4vAqL0PGFBnUVeFnsVPA8P/078W5LxzZhLtmG4Zc/igX/bihUr2vfWE088kep7sb5mI9PypJNOimjHhYhIdkIymQuQuz4UjAcErN052DUaZe5HEHv9+vUp9evXT9mwYUPM55kcSyzmmTkV1z70h+PflGsiFkiSoak4PXBcWT9/0qNLiCMxLzv0a5GcS0F0yRFYTXX1Lt1WWhqcuBMuE3EykKnV3bRpUy/g7uqthrJlyxbbOJMTNgFYVtc1MGc+Q6B169ZeI9BwGrZGgosAV3c32III29WSZeGD9xWZfC1atEiaYxIRiaZHH33UnpOZULtxk/OdW5CmWZS7n4xw7mN7MRMjJt5uS+8999xjHzN58mS7+Ei5sMxkl/HaH3zwgR0j3M6lzZs3R/m3zh3YVUYN8pIlS9p/E/6N9uzZk5IMCGK72ujxLLPHtafGcxHJqRibOee7RqKuyTeL4pTwdElMPI6dP/5gbCzOjZSHufvuu22QleOK1Y7n3GDTpk0pHTt2tP+mLERTLi/R4xkJjOx0cIHzwIx0SvOmlwApEksKoku2R3MSt0rp6rLx0Z1wH3/8cTsQELhkwGWbUKdOnWwj0FDbbhmE2YbO5JAarDTNJCtOso6a6Y0aNfK2hG/fvj1qtVv5t+J5aWSXlQsJmuWQnRgOar737t3bq9MbiWTZOiciEk2UvKB+NOdjAtcOY7PLLHLnTLLLXe1U+lcwXvfs2dN7nMtWZ4KeL1++NA3Kwr1OcE21aCq+bNmyKP/GudPvv/9ux1v+rcnCJrCe6EQDAjdnnnmm/bcmqy4QZQfYiRCIazyCMNdcc03I6z2uDSkPJyKSm3Duc2Oo6y+RN29eL6hOiVMXwGa+Xa9ePZs8FQuMMczLCbAy9jAGMRZJ1nFtxDWS6y/HLoJEYoeDP3BOjx3Kz3DNSMmeZFm8l9xHQXTJ1phsu1prZDnzNQMAE23uI+ucgZZtXgz6btvxoUOHQk6EqPPJiZkTNOVg1CQq+vh3IphCJgPb/ekaHo0V73Hjxtl/9/z589uLuGC4yEuvIzn1dd2uhoxwzG5XQ7BmZSIiudHzzz/v1UJ3QVUWsN35kt1jbvHT3UcDcM6p1Lt0mUf+MjBYunRpRFuNyVgfNmyYvSagnBh9TCQ2W6979Ohh/90uuuiihJd4efbZZ72MOn9Qn+s5d31Ilpsf7z2SK/jeggUL0jzn8uXL7XUhQSMRkdzk/vvv9+ZXLqDpGjlTdqNMmTIpY8eOtY8lEYn7GzZsGPVsZkq3XHjhhfb5GXMYeyT6uFbi35fxkt4ziawtz64Gt1Nx3rx59t+c5u/KQpdEUhBdsjXKq3Bi5STvtmWzGn3VVVd5Ndn8NbTef//9kM9FcJWsdTLf+FnqbEtsUWKFmqqu4UxW65txseaakdDBOxBZcmQt9OnTJ+Rz8O/Oz59xxhkZvh71zN37L5yscoL8vMeUMSEiORVBy7POOsueGznnOvQl4T7qbnIO5HztSrYwCSegTtaR20VGSTbG7MzWKyeDisw5no/dQtr5E3uUaSMLnAxBsroTtR2cRAlXj/+TTz5J9b22bdva+yk3FMiVGiJoEIj3p7ueDNZclAz37t27p9x6661R/m1ERBKH3WDu3MfciI+VK1e2H8kKdn0oKJnKLh4Slbp06RLVXTtcV3A9QekYxphQ/a8kerhm6tWrl72GSmRWOokTlP9z5WB5j3Ef1xcE1Pft25fwHXCS+yiILtkWExq3jYzApB9bwgNrZzEIBGYeBcs+f+ihh7S6GWdkcfNvycUYmQxZmXjzb+xKA0ydOjXV96jxxv1kJIZ6jYULF9rHkFWREVfHl10Q4VyMEDxywSERkZx6PneTa7dg6G8y+sYbb9j7+MjXNLQi85dMX9dwlB4Xrrb1ueeeGzRoGQoZUwRBWdwkk+rrr7+O2e8qafFvRSCZfzt2CobaFRZr9957r7cj0Y9rDPe+CuR2QdAkNBhXMo4da8EahruG9SIiOQFlUF0D0dtvv92O5a1atbJfM9eibAufc26M1Q4knpcdTi77nEVSiZ+vvvrKy0pnl1cistIp/Vq4cGH7HmCxumbNmva9R3kXxtxatWrFtQeKiILokm3dddddXiNJtolPmjTJBkbJXPM3oGDizqAbrNwGK5lPPPGEss+TACvJlN1xtdJ37tyZ6efq27evfR6awfLecLjwooYf3wtVq4/6vHyfEgMZYWU+MNsyFFbJJ0yYYC8EtUgjIjmVK7HWr18/7z7G5mnTptmSLW4CRt8RmpHRVwI0+iag3rx5czs2f//99ymnnXaaHevDXVglkMl5mWsAMqiUfZ44M2fOtFmLZKWPGjUq7lnpZEHyfuK96L+2Ywecuz8ws44FF+5nUT/Y8Z5//vn2+++9916a7/Fee+qpp2yQIdEN2UREsorzGI283aIjQUruu/nmm+197nxIiRcC6x999FHUX5+xgzGE7HN2OkliML7RQNxlpXOtFW/EeQITJP03JahJPCmILtkStbCYfHPSZFClqYjLenJZyNxYPQ/VQIyJVIsWLezzUPs8JwQ2586d69XyJjBRt25de/FRrFgxW6OO5mrJbvLkyXYCyy1YXdJwECx3Wd8DBw5M9T3KvHA/Ow6yUs6FLWTuPbh169ZMHaeISE7CTiDOiZwbw8lAJvvcn9VExhNjsz8LLtyAJDuPKNeVU7LPc8J47s9Kp6F7vDPFXLk4Fuj9uPbjfkoM+XF8blwPtpBP01G+N2LEiJgfu4hIIrldO26Xtn8sdjXSCaqSoe6C6ZktvxaIc/H1119vn5cxJJLdaMkqJ4zpXKNRro9rLRIj4u2WW26x74kTTjghTRB99OjRcT8eyb2ONSLZDIs/d955p/nvv//MddddZ4455hjz8MMP2+999dVX5ujRo+bYY481+fPnN3PmzDE1a9ZM8xzr1q0zDRo0MIsXLzYzZ840Tz75pMmbN6/J7iZPnmwuv/xy+/mXX35p7rjjDrNgwQIza9Ys888//5gWLVqYw4cPm2TWtm1bs3z5clO+fHnTtGlTM27cuIif46STTjLPPfec/XzIkCFm8+bN3veuvfZa+/Hdd9+176VA+fLlsx///PPPdF+Dvy/vwSpVqpgzzzwz3ccGex0RkZzmhRdesB+vvPJKU6ZMmQzPpTVq1LBjtlOgQAGzc+dO7+vixYvbMT6j8+szzzxj2rRpY5o1a2aWLl1qzj//fJPd5YTxvFChQubVV181EyZMMBMnTrRjuv/fN9b4m+HDDz80Bw8e9O7nvYLPPvss1eO5bqxYsaL9fMWKFWmer2TJkvbj7t27Y3rcIiKJtGvXLnP33Xd750XmyZzLsXHjRm+sf/TRR+3n3bt3N2PHjjUlSpTI8mvv2LHDXHDBBeajjz6yczVel7Eku8sJY3qTJk3sNRZj+WWXXWaGDRsW1znus88+a68t//77bxvr8bvvvvvMnj174nYsksslOoovEilXJ5UaWGSku1pt3bp1S3n44YdTGjVqZOt2sVIabEWclVNKvNAAZdOmTSnZAQ2wQm1f8tf75Hf+7LPPgj7Hnj177OO//PLLlOyAnQH8m3LM1DaNtAYbGROUBXDlYZzffvvN6y4frHyPq2t60kknZZihQamBnj17pvs4no96+4H12UVEchLOra6muRtnli5dmlKkSBGbdcU5mTGZHhJr1qzx+lTQlIzyWpTW4LHUvQxVbisQ5bpcGbD+/ftni+ZSuXE8B3XEGTNLlSple4/EA+8512SeRqeB43yBAgXSZMdTcohsdP/jA/ugdO3aNehrUbeV+r2JqBkrIhIt9IVwvU1ciStKtrALl3F20KBBdiyP9pjLDmTGCDK2meNnB7lxTOffnd0JHDNNZP2lU2ONCgSh/t4dO3a0Gf8isaYgumS7Sbor00Ez0QsuuMDrCE5QE9RSnTNnjh2QAic4w4YNs5MjgqrZaWsYvzeNNFgg2LVrl71R95vJIbXEsXr1ahv4pWt1MG7SGKq5ajLi34xt0/ybcfFGM9lIsDXO1T6dMWNGmi3Z/pq9DpNfysH8/fffYR1fRhcON910k32tSy+9NKJjFxHJjlu/Kafitn1fddVV3sQGHTp0sF83aNDALmKzJdiV12Jca9iwod3iHE7jsB07dqTUr1/fLprTbyK7yK3jOdy/Mb1Jxo0bF5fXpEY5fyveV4EJFcHeZxxjqFr6XEdQImbMmDFpvsd73k3kKUMkIpIdffzxx15ZNlfOxZXPcD2gWCx86aWXotr/4a233rJjQ+PGjaNWFiYecvOY/s4779hrMK7pstLLLFL8vUOVdeF9G6qUr0i0KIgu2QqZ5q5hJNnJfE5TUBqepFenkkAnK6U8hvrn2TFLiIYe/hVtVr5r1KjhfU1d+KuvvjrkivFll11mm4FkR0xcyYYgYzGwEVhGaC7HvzsXMyywYPbs2bZWeqTPlRks5hAgUtNaEcnJaJrMuZaGof766NRMZQJJBpabkJNtVqdOHfs145I7NzNWk+mWETKZyVYjs5kM5+wmN4/n7DK78cYb7b/9fffdF/PrMcZgrhPTaygerd+L+ra83yNd8BcRSQa///677QnlduTy0SWv1atXzy4wMk4zXnHfE088keXXZAxwc3p2IGfHHmW5eUxnfsu1GO+TRYsWxeU16Z1DLXkXOGcXJDcS59ht/sEHH8TlOCT3Uk10yTa2bNli657i3nvvtXWxQB2x1atX29pY55xzTpqfO3TokLnkkkvM+++/b9555x1b1+24444zOQ211qgnHgx11/gbUVsuO6JO3KJFi2xtXGrZL1y4MOyffeSRR0zhwoXNmjVrzOjRo+19F198sa3jF+z9Eg5q1lEPPRzFihUzgwcPNnXr1s3Ua4mIJLuffvrJ9iBB586d7ccnnnjCfrz66qtNhQoVTK9evezXd911lxk/frxZsmSJKVKkiB2T8+TJ4/Wk4L70fPrpp7ZeKnUxv/vuO1OnTh2T0+Tk8Zz+M6+//rq9hqOeaocOHcxff/0Vs9djDHZ/y//9738x/b1+++03W+M/J9TvFZHcZ+jQoWbbtm22txTnM+ZP9LGgXwl9Is477zzzxx9/mBtvvNGULl3adOnSJUuvx7mfMWD48OFmxIgR9hydE3qU5aYxnfktPeboD8a12dSpU2P+mqeeeqq9fsAJJ5xgpk+fbjZs2GBWrlxp+6Bx3SkSSwqiS7ZBwwgGWwKgPXr0MLfddluq79OArHr16qnu279/vw2gMzgxwe/YsaPJqQ1gli1bZpt8BKIJK0EHfv/TTz/dZFcEYWjAUrVqVftv+s0334Q90D722GP28wEDBpgDBw5k+DN9+/Y111xzjQ0MBUNwiPfbyJEjQz6HmomKSG5BA2jOeTT2LFu2rFm7dq1duAaNv1966SWzfv16e96kIdWLL75ov8d5ljE93ODmpEmTzFVXXWVat25t5s6d6zV6zElyw3jOgnjv3r1tYGHatGn23zSjZt5ZcfPNN9uPb7/9thewJ9h9//3326CQ/7qA9zHXl7xPAxuI8j0W0fft25fu75ZRM1wRkWTzww8/eMlqR44csR9do8uiRYvaZo4Ezk855RS7KM6YfsYZZ2T69QjG04ScMYCx4J577smR587cMKaXKlXK/g6tWrWy/6Y0hY01EjZodMr78pVXXrHvzcqVK9tjEYk1BdElWyDz+IMPPrDZ5s8995wNoPoDmGSyffvtt+a0007z7tu7d6+56KKL7IrkF198YRo2bGhyEv+FxieffGIaN25sMwb8kz0GZwYyfv9y5cqZ7O7kk0+2q82serds2dL+XuFg0aVKlSp24usC6uxgmDhxornlllvSZJXzN+P9Rof4YLgY4rnS29FAIJ4MjU2bNkX0O4qIZCeMNW+99Zb9vGvXrt6YzP3t2rUzJUqUMIMGDfIWMu+++24v++qXX34x//77r/2YkQkTJtige/v27c17772Xo7LVcuN4jjZt2tjfl8n35Zdf7gVsYrGbjQn2r7/+ambPnm3vY/xmUWbevHn25v+3mDVrlvnqq69skMhv1apVpmDBgvZ6QkQkJ3nggQfsImPz5s3t+Y9xhq9ZGCepiDnYqFGjvPGKc2Fmca7nnM9iOEFkxoKcJDeO6ewk5NqMRXF2F8Q6s56/MbsX+EilgS+//NK88MILNimDZDfm+x9//HFMj0FysUTXkxHJCE1LXAPRFi1apHz99dcphQsX9upgBWsOSU3VatWqpZQoUSLbNekIt97a8OHD7e9HXW9qqfG13+23355y8skn2y7VrtEJtyNHjqRkd/wONOqkmcnnn38e1s9Mnz7da0JCQxxq7vH3CdYNnQZk3D958uSg70dXh426vKFqtXFsPIb66yIiORXnQc51BQoUsI0aaaTlalBTK5OeEK6x4/bt21Muvvhi29eE2qucT6dOnZphc7Lx48fbZlHU0s6OPU0CaTxPjd+LeuLNmjUL2dQzq+68806v5q7D59z3wAMPBK3vT6M7v7Vr19r76dESiH87GokPGjQoJscvIhIr9ClxPUxWrlxpx+oyZcrYORN1pvle2bJl7bjF97KCczznes75gfOv7Epj+v+PazT60HHNRuPRWHM9VqiJHthklLGaOblItCmILknvk08+sSdCOnYz4Lhu4a4hGQ05/Pbv359Su3ZtG+j8/vvvU3KKwAGaRm0M0PwdCNjS2dsvcCBxtzfeeCMlJyAITiCdwA0LK+Fo3ry5/Rt07do11cDLxYzf5Zdfbu8fNWpUmufg4tE1x0vvYofg0f333x/VzvUiIsmGACTnxGuuuca7j7H3mWeesZ///ffftun3/Pnz7decE3fs2BH283/44Yf2fMv5OnC8z640nqfFOM54TrIEjeuibc6cOfZvduqpp9r3JF5//XXvWtKPawTuf/LJJ1Pdv27dupBB9I8++sh+r0GDBlE/dhGReCSr+ZtfkpBG4Jz7L7zwQhukLFKkSETjdyDO7Zzjea5vvvkmJafQmJ4a12qMo1y7TZw4MaavxfuRZqLB/p4VK1ZM2bp1a0xfX3InBdEl6Vczq1atak+EZ511lhe8dIH0YcOGpXo8WXBMYMhUX7FiRUpuwOBUuXLllNyIIDYXdnSQJ4siI3QNd5kW7FD47LPP7NcsuPzzzz/e42699VZ7P93VA02ZMsV+79xzz4367yMikt0w/nBOnDBhQsjH+BcTych68MEHU51zQ+F8SxZcx44dc0QGekZy83gOdpYRcGAh+6+//orqc/P+cbvIZs6cae8jsOF2qPkD9/3797f39+zZM+wgOt8bOnRoypgxY6J63CIiseR26jLWkrDmFsBZRHRzpD179tjz5RdffJHp1+Gc3qZNG3uOz8rzZCe5eUxnzL3uuuvszkQSImOJpDX3HvYH0Um+PHjwYExfW3In1USXpEad1TVr1pgTTzzR1jbPkyePmTFjhvnwww/NmDFjTJ8+fbzHUuOaOlzr1q0zM2fOTNNkNKeiJt1TTz1lcqP8+fPbWnP8W1966aW2M3d66tWrZzt2s4DYv39/29CuSJEith4vdfkc15SEjvSBaJiHatWqRf33ERHJTqgZzTnx+OOPtw2lqG/ub6bFuOx6RFADffny5baZ45AhQ2wjsfTMnz/fnq+pmzp27Nh0e1DkFLl5PAd9bKgRy3Ue/Uqi2aCb9w8Nz0A/FJx11lmmWLFitjEZ9c4d1+Bt+/btYT9/xYoV7XvbNTEVEUl2nGMHDhzonSOpgc48msbLzKnpJ0EvMs6TZ599trnwwgsz/TqcG5mfU6c6s8+T3eTmMZ33E3Ec6t1zLcc1Xazcd999plChQqmuQXHw4EFbx18k2hREl6TFpMY1gSR4jpIlS5pzzjnHToQYjP2NO5ikEwhlcK5Tp47JLbjAIciQW7HAMnXqVPveaNu2rR0w00OzEQb2KVOmmMWLF9uLRNAMxSlTpoz9uHXr1jQ/7xqFVqhQIejz0/hu8ODB5sCBA1n6vUREkp0LhDMhZgLTpEkT07FjR9uE7IYbbjCVK1c248aNM88//7xtBs6C5fjx422A1J17g9m2bZsd51n4pKEoQfrcILeP52BB/M0337Tvm+HDh0f1uZnIg0A9QSKuIWvUqGHvW7lypfe44sWLew3q/VwTcprci4hkdwS1FyxYYOfZBNAZx2nMeM8999iFQcbhaMyphw0bZt5++217bm/ZsqXJLXL7mM61G9dwdevWtdd8kSxMR4KmrcSB/DEjh+sIGpASVxKJFl0FStJi9XLLli2mQIECXmCUky+dlwONHj3avPjii/bWrFmzBBytJBId4wnm/PzzzzaAw+Q4FC4Ku3XrZj8fMGCAufbaa+3nkyZN8rImy5cvbz/u3r07zc9XrVrVXHLJJaZ27dppvrd06VLzwQcfmEGDBtmLURGRnIxFa7Rr185OxLlx35IlS8wXX3xhg+kvv/yyDT62b9/enjtZaGTM9i+C+x05csQ+3wknnGDPy3nz5o3zbyWJxjj+4IMP2uyyadOmRe15uT5ksr1nzx4vK46dbCVKlDB//vmn9zh2qMFdEzh//PGH/ch1aSB2Te7bty9qxyoiEmsk/cDt+jl06JAdm2+77TY7jrODjIXGH3/8MdOvwTmcXToPPfSQPbdL7sI1HLu/CKhzbefG0Wi76667zEknnZQmG53xvnfv3nZ+LhI1ia4nIxIMTZ9cM5PA25IlS1I99quvvrL1tgKbQ0ruM2PGDFsv/9577033cTQZcXXT6AxP8xea0f74449e09Jffvkl4qag1FQdN25cymOPPZal30NEJNnt2rXL9pfgPErD5VtuucV+3qVLl5TGjRvbz2kg5hqDr1+/PsPn5Jx77bXX2gaTy5Yti8vvIcnbmIza6IUKFUpZu3Zt1J6XGq28JwcMGGC/dk1GA2u5BqvZT03gG264IeWOO+5I873SpUvb5124cGHUjlVEJFZo9s05y/UZo7+Ua77co0cP21vs0ksvtT1JMosm45zDOZfnlMbgkjlLly61DUB5P0U6v460Njr980qVKpVy5plnphQvXjylTJkyKZMnT47Ja0rupCC6JCUaM3ESLFq0qJ1MuwA6DR/9tmzZYhueNGvWLOhESHKf5557zr5X3nrrrXQfd/PNN9vHtWrVKuXXX3+N2/GJiOQEnGM5h9apUyfl8OHDdqLM188++6z9SPOwkiVLemN5pUqVMgyGDh482D7+gw8+iNvvIcmLhmA0l69QoULUxun//e9/9j3WsGHDlGhh4f2MM86wz7tv376oPa+ISKxcddVVaZox0mTZNRPdv3+/DXYeOXIkU8/POfvss8+25/BDhw5F/fgl+3n//fft+2vIkCExef7du3d772GS5FgMp6FtrIL2knupnIskHbbPuu1llSpVslu78eijj5pXX33Ve9zhw4fNFVdcYWtis0Unt9RMlfRRx++mm24y3bt3NwsXLgz5OLaKU9f0s88+Mz/88ENYz80WsVhtQxMRyU4o1wJKtFDChW3g9JOYNWuWvf/cc8+1JbFo0kiNSr5P2YxQKMlFw2fGele7WnI36vPyvqBMCqXXArdpZwbvVyxatMjs378/1fcy28iU7eqULvr9999tuRgRkWRGeRZ6Q4C5kCtR5Rp40z/qlFNOsaVd8ufPH/Hzc67mnP3rr7/aHlSU2RDp0KGDeeSRR2xpn08++STqz881ZqdOneznlBLk2pPSgKHKB4pkloLoknRoQMHgzuD9zTffeE0cH3744VQTHepa0+SRwblo0aIJPGJJJgyUNLCjEQ4NcXbt2hX0cWeddZa5/vrr7edu0YYgz44dO+znr732ml2kcTV/sWzZMnuhSV30QHRf573rFn1ERHIqxmAXRL/ooovM2LFj7eetWrWyC5MgqAgaOlEvmmDoqaeeGvT5vv/+e9uIlMZTTLBE/GM1iRK836irm1VnnHGGTdCgTv+cOXPsfXfeeadd7HHvXb7He7F169b2usBhfE9vIZ2kDhGRZDdq1Cg7jrOo+M4779hzGwF0zm/0mWLulJX5DP0sOGd/+OGHXp8pEZAoQW105uBr166N+vP36tXLfqQOO316eA/SM4/YwNSpU1P1PxHJtESnwov4sd2mevXqabaXzZs3L9Xj3nzzTW35lgy3dFFKoE2bNiG3cVGrz9X0pT4qdXtvvPFG+z1q7HP/gw8+6D1+ypQp9r66deumep4DBw7Yn+V7y5cvj/FvJiKSWJs2bbLnO/qRUCfa1VTt3bu3/cg28T179qQ888wzGW6jpRQbPSkqV66c8ttvv8Xtd5DsWapt9uzZWX6uu+66yz4XdX9xzTXXeKWIHGqqct+OHTu8+4YOHWrvoxyciEh2RHmWwoUL23PZxx9/bPs40MfEzWPcvChw7h2uWbNm2Z8fMWJE1I9dcgau9bjmoxxgLMrxUuY3WF89bu+++27UX09yH2WiS1L5/PPPzcqVK+3nbtvuOeecY+rXr+89hkxhSnaQtaYt35Leli7K/3z66adm3LhxQR9TuXJlm22GpUuXmr/++stmnv/999+mYsWK9n7/KjkdvlG8ePFUz8N79d577zWXXXaZqV69egx/KxGRxHNZ6A0bNjRFihSxO3EoozV8+HC7g2zQoEF2LOf7GW2j5WdXrFhhs9kLFiwYp99Aspu7777bNGvWzNx8883mt99+i0pJF1d6qFy5cvYjuyCdfPny2Y/+rLW9e/d6ZWb8evToYTp37mxWrVqVpeMSEYk1MnMps1KyZEnTpk0bO8du3ry5nQMxL2LORDZvo0aNIn5udu5wjr7wwgvNXXfdFZPjl+yPa70333zT7vB++umno/78jMmuVJEfpX8pDyeSVQqiS1JhAu6wtZatu9TMcjXa2Hp266232vpszz//fAKPVLKDtm3b2sUWFl127twZ9DG9e/f2JtPFihUzBw4csIs5rmQLZQYct62bUkN+BJEef/xxG7BX3TURyelcGQxKuVCipV+/fuZ///ufPf9xHqUExy233GKaNGli3n///ZDPQ6D9scces1u/69WrF8ffQLIbJsOvv/66DWSzaJ0VTZs2te9V+qFwbRAsiO7qAPvLt7jJN2O+w3Up28bffvttuwAvIpLM3njjDfuRniUko9GLjHMrmMtQU/q5557L1HNzbuY8yfVAYABTxI/FG679SLqI9gI05Vwp9UtpNj/GfRa8RbJKZzdJGtRMnT59uvf1M888Y4YOHWoz0R0y1aZNm2brVat5k4SDxRYyylh8CdY0rHHjxqZu3bp28uvq9hH0qVKliv2cuvsuE80F0QOz0EREcgvOo3PnzrWfk23mduPQVHHLli12AfLSSy+13zvzzDPtDp1gmLjfeOONdoynRqZIRgh2k7XGLrPZs2dn+nkYw2l8CxqQly1bNqxMdLcYX6pUqVT/P3BtSiDAPaeISDLiHOcWwd05jaD38uXLzbPPPmuDj5lFMhLzc+bvbmFSJD0DBw60fe+4FuSaMFpo9t2lS5c09zPXJ44kklUKokvSCFz1JhvYjzIubC9jBfHyyy+P89FJdsViCxd1NBN566230nyfVWky1V3AHJR0IdOMjHNWsTds2BAyiE7zPC4+gwXoRURymu3bt9umY3ny5DEHDx60W79p/Ehgkaw2AuonnHCCzWxjcTxUs0UWyclEZ0svEx6RcNx22212gYaSAf6mn5Gi1BBoPOYCPiwCubHcZaL7g+iu8Tg7JR2yLVkooiGu3scikszYMQOXJb5o0SJbiu3rr7+2YzlzpcxwZVzYneZKaYhkhDGTa0BK+lHaL5qCBdExadIkNReVLFMQXZICE/Hx48enuu+KK67wPmdS0717d1OgQAGVcZGIsejC4gvBcjcJ9rvmmmtsbUCyMehKT0kXMi1dSRcCQXCd6nkfOmPGjDG1atXSRaOI5AqLFy+2H8m6femll+xEZfDgwTYT3fU0ceU2QtU453FsG6dkGzuBRMJF8IdSAYzXWSnr4ur9EkQvU6aMXVA/fPiwV/ecRSL4s+Pc9cNpp52Wxd9CRCT+KD0FEoRcqVR26jK3pj41O3Myg5Ju+/fvVxkXiRil/CjrQmk/dw0ZDfQoC7Y7jP8HWDgPLPUiEgmd5SQpEED3rwqSAezfAk4G8WeffWYziqm/KhIpLhAJfpPFFoisyZ49e6bawk0tfkq6EAQiqA4GY5rwVKpUyftZGpzxGJfVJiKSG4LoTFDctvB169Z5AUfqUKbXYJlMdbbu0ryZ7F2RSDEBpmQA14SBuxbD5cZs3s8EfVgMJ7Dumpa65vY0InOL6ASJAoPo77zzjm1M7h4vIpKMNm/ebDN+naNHj9rFQkpkDRkyxJZVcztzI0FprdGjR9tzsiuNJRIJ3nuU9uvWrZt9X0YDC+PXX399mvt5fvoBuAQ5kcw4JkU1CCTBeAsyefEP7JzYXE1qJi5nn322bQQ1YcKEBB6pZHds4Wrfvr2t20cnej8yzKjfy8p0//79bVO84sWL2y3dGTULZUBmAq2t3CKS03HuJHDJFnBKtnCe3LNnjw02uqxdtnSHCm7S1IyfJeONxlIimcFYzXUhZQTIoIw0+5Gfp9wbOyGXLFliateunebalHGdbE2e+9dffzUPPfSQvVaYMmWKvS5g9wVJH1wDUNrtjDPOiPJvKSISHQS5yfgF5y8XAjrppJNsmbbM9HviPFqzZk27i/err77KcL4kEgrXhCxuc41IokU0kOBRuXJlO44TQyLpjYVyFsw1XktWKBNdEu67775LFUAnA90F0PHCCy/Y7bVPPvlkgo5Qcgoa5jBwPvjgg2lqmJNZRjM8MCEmm4LM9XAuCBmcFUAXkZyOCTNjNn755Rf70WXgEkCnlwRbcynTEgw7zsg4ooSWAuiSFQS2yaBk+3dmEiz4efcedLsr/Bj7WRhywXkC7qNGjbK71Nx1AbvUuG7gmlUTchHJDqVc4J8DUcs8MwF0txNn1apVNkCvALpkRYMGDWxfHXYoRqtmOTseaVzKvJ73Z6tWrez1p8ZrySoF0SXh2I4b6msyf2g+RgkOdfqWrGIA5f1EEOjDDz9M832yIzF27FhtzRYRCUDzZTJ3WTQk+9eN027yTI1qsokuueSSoD//8ssv26akTzzxRFyPW3ImFsXpnzNgwADz999/R/zzNWrUsB8zu62bBqOffvqpWb16daZ+XkQkHsg0d/XO6RPl9+OPP9pbpP766y977m3Xrp1KWkpU0F9n586dZuTIkVF5Pq5N27Ztaz9nB5lItCiILgn1xx9/pGooyoSkdOnS3tcEPAlmPvzwwwk6QslpLrjgAtO6dWtbssXfMMxdWFLPlyBP7969TZ8+fWyGBllmTLJpvkPwaPjw4fbxPIayBdOnT0/QbyMiEj9knIHMHiblLkuXcyrlsliIZNISLCON4Ds7yiiVxc+LRGvSvXXrVvPqq69G/LOueThBcJrkkqzBTjUw9nfs2NFrJsr7nfItwSgDU0SS2ccff2w/nnfeeTY71zVOxuTJkzOV+cs5lzJW2iku0UJddMZexnWuGaPBBdFJnqOJOKVbKRPM7nTXz0ckUgqiS0LRLJRAeuAg7yYsL774ounbt6+tuSoSLVzwkVFJPd/ABqOdO3e2nzOhfu655+xW8bVr19pJNtvByHZzwXfq/9FYz/8eFhHJqdyEgzrQqFu3rs0qJxhJber0toRTeoNzJZlrItHCe69Lly7m8ccf95qChotm4WCRnKzKLVu22KCQK33w7rvvmsOHD9uvO3XqZGsHu11sPF5jv4hkBzT/dMlCjMWunMWgQYPs19SNjgTnWsZ+aldH+rMi6aGcC/3wKBEUDY0bN7bl2BivGd+3bdtmm+wSc/r222+j8hqS+yiILgk1btw473MG4zp16nhfDxw40DaAIIguEk1s4aZjNxePDNR+LojuMsuYNLtJtsvccEH0MWPGmDfffNMO0CIiOR0Lii7zfPfu3Wb06NG2URmBRSbT/jHdj909LEr26tUr1W4zkWhgLGcR59lnn43o5wj+MNbTGNf1NXG1/l15GOqiY+PGjfYjWWyYOnWqXUxiZ4WISDL3MiHpB+vXr7dlLSjf4ubYlGGLFDtyOecyVxeJJnqU3XPPPfaakWvHrGLuTr+9QOyIrFatWpafX3InBdElYdgWSy1JsCL+0EMPpZqo052ZMi6ZbXYikh6y1mhY+/zzz6e6ny7z5cuX95ruuCy077//3guiu3rptWrVMl27djUlSpSI+/GLiCQqiE7wkfMeE3K2xZLR6xYng3nsscdMvnz5bMBdJNoIbN9xxx1m2LBhNiAerhNPPNGO93ClWgiis1Dussy5BuV7bjLvShEtWLDABtp5DhGRZLVixQqzf/9++zlza0pUfvDBB3ZXbmbOX5xjCaLfddddatAoMUFzenaHM1ePhgsvvDDNfczl1eBeMktBdEmYTz75xAtGEpz015RkYKc+Og1FRWKB2qc9evSw28X82ei8Dzt06OB9/cMPP9iPBIsCg+giIrkpm82Vc6lUqZINjDNWsz2WIDqNRgsUKJDm52gSxa6dBx54wCsDIxJtJGIwfo8YMSJTddFd8J0yBf6yMATRN2zYYD8vUqSIOfXUU+3nTz31lF1UYneFiEiymjt3bqqvKX/FThqagrudN5EgQ5hzresfIRJtjLNcM7LbkWvIrDr//PPT3MduDLe4JBIpBdElYfxNoJo1a+Z9TrbPe++9Z7fyuO21IrFA41Aal7z99tup7vcH0clWB5NoF0Qn+4wGezTjcUF2EZGcjD4lLDjSTLRnz57m0UcfNcuXL/fKYIVqrjhy5EiTP39+LYpLTBHgprHta6+9FlGtcpdZ7oJJvMddQzPet5RzoTcK/Fu/eb+zmMSCvIhIdgmiszBIKUpKsVCSJRKcHznHUsaKOtMiscI1IzsYX3nllSw/FzsmixUrlub+L774IlNNdUUURJeE4ITl6rPBX1Jj1KhRdgsPkyGRWGLyS9du3n+ufAtq165typYt633NJNrfUJQSLwTe27Vrl6YcjIhITuRqQp988sm2obLDubJixYpBf4ZgJgvm3bp1U2k2iTnKC5BdOX78+LB/xo31P//8c5ogOu91Vw4BlCwSEckujh49mmq+DRbCySYnk/yss86K6Pk4t5K9e+edd0b5SEVSY/yl1w5xoawGuln0DpaNfvXVV5vFixdn6bkld1IQXRLi66+/9oKWTGBc88a//vrLrjgy4da2b4kHtmJT79x1rneDbfv27b3PWb1m8ly8eHFz0UUX2cw1st7q1aunSbWI5Arbtm2zH/0LjtiyZYuZOHFi0J955513zL59+2xwUyTWCAhdfvnlaRbG01OmTBkviM5iEDeXnekWflwQnZ4puPLKK03v3r2j0vRMRCRWKEV54MCBVPdNnz7d7qqhHFskOKdybiX5yPWSEImlu+++2+4I51oyq8477zz78bjjjrM7y1lM4rZjx44oHKnkNsekhHuVKRJFBMnZSgYm31dddZX9nJNkp06dbN3VUJltItHEKZCJMZPvSZMmefd//vnnpnnz5qZkyZJ2gGWgFRHJrZ544gkzYMAAOwEhu80pWrSoDaQHa1BWt25d24CU+qsi8eDGbpI1gmWeBaI0W/Xq1e3CuCvf5pI6yEqnNuv//vc/8+2335p7773XFCxY0DYyZYGdOuq8/0VEktGECRPSNPxmcZDyVez6jgQZ7U2bNrVJRxdffHGUj1QkuMsuu8yOtVnNGF+4cKFp2LChTdJkAZzd5Vy3an4vmaF3jSTE+++/75XJcAF0UGeN+ugKoEu8MBG+9dZbzZQpU1JllbFiTT3U3bt320x1EZHczGWi+wPoBBNp+hQsgL506VKzZMkS28BZJF4uvPBCuyjO9WQkmejsmPj999+9++nJ45qI3nzzzeb11183lStXtkFzkj9orKsAuogkM9fPgcVvp0qVKnaRMFKcU6ktzY5ckXhhjv7dd9/Z5vVZQcIc/x+wM4PxnioICqBLZumdIwmpq0p2D/zBcho3fvnll6Z79+4JPDrJjdj9QEaG2x0BmpmQcYGZM2faj9q4IyK5PYjuUN6KuqgshgczevRoU7p0adO6des4HaHI/9X7pendBx98YGv3ZoSsTNcgjx0VGWFxneSPhx9+OCrHKyIS6yC6v6niggULIuobAXpNfPjhh/bcGqqJuEisMtFLlSplrymzgoVxFoGg5DjJKgXRJe7ee++9VLWunDFjxtiJjD8zXSQe2NrVoUMH+x7877//vPtbtGhhPw4aNMiWJOAilC3f9evXN1WrVrVbxbmwFBHJbUH0K664wpa3CIbmy5Rno0E4tSdF4olmZP/++2/YgSIWe9CmTRtTqVIl8+yzz5rOnTvbHWqUeyEQRXNxEZHsxPVz6Nixo3cf5asinWu//fbbdhca51aReOIakmtJxnOuLbOCXRguME/yHM1L+/fvH6UjldxEQXSJuxkzZqQ6KboMX4Lr1113nc0AFok3Lgx/+OEHW34gMIhOkzHqsbH9i6A5tQRZxaZGarAyBiIiOQ1lW8AWWBYSWXQcPHhw0MfSuIzzpibckgj0Mrn00ktTJW2kx5VlYaGIRnzz5s2zQaO1a9eaRx55xDYQf+mll+yuNEoacA0gIpLMmLO4pokEzl1JCwLr7CSLBOdSdpWRUCQSb1xLck3pYkhZDaJTD50bz0nfAJFIKYgucUedVLcK6Gq0keXz008/mXbt2iX46CS3atKkia1/SuaZf7AlSz3QH3/8YebOnWsbkbI9TEQkJ2OHjiuNQT1oznssfrsJSSDOo+eee66tTS2SCFxPEgz3NwsNJbC2ufsZAkaLFi2yn7NwNGLECFvjf9SoUTE6ahGR6Fi9erX9yFybnWGUrmKuEymSiObPn685uiQMZVjYAf7JJ59k6XmCXbMGNt4VCYeC6BL3Ad3VQydLyOGkSHabq0EtEm/sjCDLwj9AU/evcePGaR7LdjLeq1deeWWcj1JEJP4OHjzo9YSgweLXX39tevXqlWocd9jyPXXqVHP55Zcn4EhFjJeoweLPtGnTIg6iEzRy1wXswCAIVatWLXPJJZeYOnXq2PJvIiLJzPV4YExm4ZudNE888UTEz+POoZxTRRKFa8pPP/00VXP7aATR1ShXMkNBdIkrf9PQa665JlXWGpNx6lOJJErbtm3tNsetW7d69zVq1CjN41gIUpNREcktXBY6QcWPPvrIq4lOk8VAZKyxjZzzqUgiS7o0aNAg1e6ySDPRf/75Z/uRXRWUbuvdu7f57rvvbN10EZHs0seE4GPDhg3tjppI5y+cQ/nZSEvAiEQT15SMzQsXLsz0c1SsWDHNfb/99lsWj0xyIwXRJSGlXEATUezatcssXrxYWWuScC1btrRBIi42HS4cA5HdRiCJybSISG4JotOs8a+//jLHHnts0HMj2M3DZJvJukgicV1JDVXes5EE0VkE8mdy6r0sItm9GTiL3gQR2WUbrj///NNmsGuOLonGOFysWLGwFsZD4f8Byhr57d69W4lxEjEF0SWuaOIAf51pApZMyCmlIZJIdOlu1qxZqgG6Xr16QR/bvn17069fvzgenYhIYoPoDg3AQwUmOX+2adPGjusiic5c+/33320Pk/S4a1IWyN1HdkbSQNxlon/55ZdZ2kYuIhJP/l21JAgNGzbMvPLKKxE9x5w5c2wJS+0sk0SjrBrXllmti84uNb/bbrvNKzUsEi7NcCRu2C7jVvr8TRyYcJ9//vmmSJEiCTw6kf/DhSIXjXTsdoH1M888035esGBB22iMCXXt2rVDNtUTEclJDhw4kGZBnD4mgTZu3GjWrVunCbckBcbqsmXLZpi5xqKQy1JjFwULQKeffrrdJekWkVhgD9YDQEQkGf3444/e5+wi+/vvv03p0qUjeg7OneXLl9d8R5IC15Ysbm/atCnTz8HYHiiS3RkiUBBd4ubdd9/1Pu/fv7/9yMrf7NmztU1MkgbvRQJEbAF3qKuKgQMH2m1fq1atMkuWLDEjR45M4JGKiMRHYNY59dCDZZqTIUQDs+bNm8fx6ESCY2LMmM77Mr3t2q62f/Xq1W0ddEoY0Dx34sSJZtCgQXYBnWx1AukiItnBjh070iwqRoJzJudOzqEKMkoyoLk315hZyUYvVaqU/fj000/b3WVc3wbr7yOSHgXRJW4GDx5sPzIQu5XwRYsW2ckKtahFkgFZa9QMZOu2U7lyZftx7dq1CTwyEZHElmJzevXqFfRxlM1o0qSJbcIokgzIHqc2sD8rM1QmOtejOP744+11KhP2Rx55xPTt29cG1++55564HbeISFbGbMqw+K1cuTKi59i8ebMNxGuOLsmCa0uqF2RUoi2cIDo9+UgGoXSbFokkUgqiS1xQX9I1OGEF0SGbt0CBAtomJkmlbt269r0ZLIiu5iMiktuwDdzfFLxmzZpBH8d5k/OnSLJw70f/mB4qiP7HH3+EfAwTbTLSRUSSHb0gAv3www8RPYc7Z2pMl2Seo2c2iM7OcpHMUhBd4oJabG6SQo1ph5Mgk3GaRYgkizp16pgVK1bY9y3cIs+8efNscx4WfqpWrWpGjx6d4CMVEYlvEP20004LmmnOhGTnzp32/CmSLKhxTg3U9Cbdbis32erlypUzN9xwg7n99tvNxx9/bLPVRESyYxDdza85r3Xs2DGi5+CcecYZZ5hixYrF5BhFMoNrTHZIsDssMwoVKmQ/TpgwwcambrrppigfoeQGCqJLXJDB44Lo/gk2A7Qm3JJseE+SkebKt5xzzjmpdlXwPRqbaHItIrmtnMvBgweDPsYFKTWmS7LhPZleEJ3Fcfc+3759uxk/frwZNWqUueqqq0yZMmVsiaLA0ggiIskeRKc0FVq1amXOO++8iJ5Dc3RJRu49uXTp0kz9vL8iAvXQp06dGrVjk9xDQXSJCyYlhw4dsp83bdrUfuTrDRs2aICWpFOrVi1bH81NulkA8u+gwP333286dOiQoCMUEYl/EP3UU0+19SiD4XzJ9+krIZKMQfRQ5dhoLua4HWgggM57n4CU6vyLSHbx22+/eUHCChUqhCzBFgrnSoKUmqNLsmFXBdeamS3p4pI6nRYtWkTpyCQ3URBd4uLll1/2JiaNGjWyH5ctW2Y/aoCWZHPSSSfZ7HP/AF2kSJE0NdlcrXQRkZzMZeru37/fVK9ePd2sNTVokmTD+5L37pYtWzIMovvf75dddpn56aefzGuvvRaX4xQRiWYmOsHwhg0b2gbLkaB++oEDBzRHl6TDNWbt2rWjFkTv1q1blI5MchMF0SUuRowY4X3OiQ+c/KhDWalSpQQemUh4279LlCiR7qRbRCQnl2TLiLZ+S7Jy78tQk25/9rm/BALlD6gJXK9evTgcpYhIdPjLT40bN8706NEjop9XeTbJziXaIgmiFy5cOEpHJbmJgugSc2yF9ddTdVtiXVNRl/EjkmwD9PLly73JNY3J/NasWWOzNEREcrpjjz021U6dQDR4otGTJtySjFgEpyFuqEl34KL4n3/+aT+GKl0kIpJdxmwS1s4999yIfp5zJfMeGjOLJBuuNbdt22Z++eWXLAfRA3eai4RDQXSJOTJ6XBabf1AnCBlqW7hIotWoUcM2EP3xxx/t14F1fh9//HGvJJGISE7mgoooXbp0mu/TaBka0yWZx/TVq1eHFUSnBAKBp0GDBpnNmzfH6QhFRKLD7aZxc+8hQ4ZE9POM6RrPJZnHc4Qa09Pjj0Vh8uTJUTsuyT0URJe4oLEJyARydu7cmSa7VyRZuPfqrl277Eca8/g7e/Pe1eq1iOQG1JN2SpYsmeb7jOfQmC7JPKa78TzUIpG/nj/3/e9//wvZjFREJDsE0f/77z9z3HHHRfTzmqNLdpqjR4IEOT96oIlESnU0JC4dwhnAUapUKfuR8i5swXFfiyQb9950A7TLvqSh6OLFixN6bCIi8eRfMCxUqFDQCTf3u3JtIsk4prvFnkAHDx60H5s2bWqmTZtmNmzYYMu50VT07LPPjvORiohkjb9UKrtqIsW5MtiuM5FkULBgQXsLNaanxy2a0+vk008/DXpNK5IRBdEl5oYNG+Z97mqrUT8VCqJLsmJQ5cLTBdEZrP0d70VEcgt/FluwCTnnSY3nksx4f3LtSemWwKxMF0Q/+eST7fubreJuu7iISHbORGfewjmO81s4OEfu2bNHY7okNd6fWclEpza6av5LZqmci8TcunXr0py43MqhVrklWbGtm/ene68qiC4iuVW5cuW8z12PEz8F0SXZMZ6zKzJYIzLXJDzcIJOISHYJov/999+mQIECYf8sAXTOlRrTJdnH9KwE0TOzQ0PEURBdYq5nz55enUnXvMmd9DRAS3ZZ5XZB9O3bt9sstvPOOy/BRyciEh9btmwJ2ZQJnCe1KC7ZqUSbH+M6xo8fb8qXL2+6d+9utm7dGvdjFBGJBjdnQZUqVVIF1TMSWMZSJCdlorvr2ZkzZ5qHHnooBkcmuYGC6BJz1JgsWrSo/dx95KRHILJYsWIJPjqRyILoIENj1apVCTwyEZH4mTVrVqo+J4HYsaNFcUlm7v0ZrIaqG+dJ9Pjxxx/NmDFjzNixY+N+jCIi0eAvU1GtWrWIftadIzWmS3btc5Iet2gemCAiEgkF0SXmyOahkShc0zEmLCVKlAia0SaSGS+//LIpW7asrXHWoEEDs2jRoqgG0Xlev379+mX5+UVEsoOKFSt6nwfbFq5yLpLs4znXnOyKDJa5tm3btlRfN2zY0Fx99dVZfk0RkUQ45ZRTvM8De0BkhHMk50rVi5bsMkePxMqVK73Pu3btmuXjkNxJEUyJuRdeeMGrN+lqqdLcqWTJkgk+spynWbNm5s033zS5zXvvvWf69OljHn30UbN06VLbEKxly5a2rl9WB+jdu3d72ed+11xzTZaeW0Qku6hevbr3eWBN6SNHjtheERrTo0vjeXTHc8oZsBvSjel+O3bs8D5nh+S8efNsCQQRkeyIILhLVAtMAsoIc3TOg3ny5InR0eVOGtOjP0dnZyTXoJH44YcfvP9HOA6RzFAQXeISRHdcbfQ///wzoiYn6Rk4cKB93mA3BizJ+Z599llbw7Rbt2524jtq1Cj7/nr99dez9Lw0Hfnrr79S1fMPluUhIpKT+RcR16xZk+p7jOeIxpiu8VxiNZ4Hjul++/bt8z6/+OKLvWtVEZHsyp3HPvroo4h+TnN0yS5zdAQb09Nz8ODBVD8vkhkKokvM5c2b1/vcBSIp7xKtFW7KanBybtSokd3Ww61v376matWqZtKkSVF5DUledJ1fsmSJad68uXcf2Rd8PX/+/Cw9N+9RV4ooMBM90pVvEZHsyr+I+Nlnn6X6njtHRmNM13ieu8VyPHfv0X///TfVfYztbiEI559/fpZfR0Qk0VwZl5SUlIh+TnN0yS5zdASO6eEcE7R7UrJCQXSJuS5dunifuxMdH6M1QNPwkRVNSsVwQuTGfTx/4cKFo/Iakrz27t1rAzzUO/Xj62DbtiPd/u3es4Er3Wo6JiK5BdtwnY0bN6b6njtHRmNM13ieu8VyPA8c0/19e/zIkhMRye443/mDhuHSHF2yyxw9M0F0p0iRIll6fcndFESXmHN10FGuXDnvhBdpoxNJ68knn7QXI+729ddfm9tuuy3VfT/99FOiDzPbmjx5ss1SIysjsHmJVrBFJLfw77wJPBe6CYzG9KzReB5769evN8OGDUszzvu1bds2zkclIhJ9rlxFZoLoGs+zTmN6bC1cuNB+3LJlS9g/s2zZMu/zDh06xOS4JHdQxwiJazmXP/74w35UvcnoYDD2N7js1KmTad++vbnqqqu8+0qXLm1yMhqFcbFHIxy/aDSvPfPMM72tZ4HPn9P/riIizuOPP2569uxpP3eNwh2N59Gh8Ty247lz9tlnp/p68eLFqRI9rrvuuqi8johIIhUqVMjLBI6ExvTo0Jge2zGd5rdgMSKSa1mnV69eWXp9yd0URJeYYuCeOXOm9/X+/ftD1qWMptxyAcBWOP92OLIOihcvnmaSmNN3OtSpU8d8/vnnpl27dvY+ssf5+s4778zSc9NBnMGfm78mOn/zypUrZ/nYRUSyg5o1a4bsB5HZupTh0niu8Twa4zkqVKjgPW+wJuH9+/c31apVy/LriIgkmhubI62Jrjl6dGhMj+2YXrZs2VTB9Eiy13kPunIwIpmhci4SU2Twrlq1yvt6xYoVIetSRtNJJ51ka21t2LAhZq8hyaNPnz5m9OjRtk752rVrze23324OHz5sO4FnBe9RN8hu377du79JkybmnHPOyfJxi4hkB5zvatWq5U2Afvnll6jVpcyIxvPcJVbjeahav/731SWXXJLl1xARSQZnnXWW93ngDrL0aI4u2WWOjnDr97OY5DLieQ+KZIWC6BJTrPQ9/fTTXm21HTt2eCc86kzHSsuWLe3H2rVrx+w1JHlce+21ts7pI488YjMmly9fbqZPn56mkUmk/B3q/XXrlKkmIrkJ2Tv+bB+3IA53jozVmK7xPHeJ1XgeOKY7mzZtsh/JEHQl3EREsrsrrrgiZEPw9GiOLtlljh5JEH3u3LleaaPq1atn6bVFVM5F4rICOW3aNLt1588///RWAA8ePBi11xgxYkSqr6tWrZrlrs/ZEQNEbsW2sGhs9/bjPepWq/2Z6K5BrohIbjBw4EBbO5rdZWSiL1q0yDRv3jxVPcpojekaz/+PxvPojueBYzrIhnNNyX777Tf73uY9LiKS3V1wwQXe56tXrzb16tUL6+c0R48NjenRn6PjxBNPDOvxX375pfe56/Ejklm6UpSYI3BepkwZ+/nvv/9uP5YqVcrs2rUrwUcmkj7eo7xXsXPnTu/+KVOmJPCoRETi67zzzjMNGza0tS0DFxXZ+k3zKI3pkswImBMod2M6Pv74Y+/zVq1aKYAuIjkGu2vy5ctnP3/zzTfD/jnOkQQoA/ufiCQTrjnZIRlubfMHHnjAq8fftGnTGB+d5HS6WpSYW7BggXn99de9gDpbaRigf/31V/PXX38l+vBEwgqib9682btfTUVFJDd57rnn7ISabHSX1eZXunTpVAuNIsnGLfLwXnVee+01+5GSg+PHj0/YsYmIRFuBAgVMpUqVgo7Z6XHnSC2MSzLj/ekfzzOydOlSWxedpA//YrpIZiiILjH32GOPhTzp5cbtXJJ9+N+rbPN2ddT69u2b4CMTEYmvM844w/v8u+++82pLQrvLJNm596d/8rxy5Ur7kUm1y9gUEckJfvzxR1t/GiSu/fHHH2H9nDtHakyX7JLolhEWkdq3b+/V4ncZ6SKZpSC6xFxg/eh169YFLZEhkmx4f7r3qqu91qBBAzvhFhHJTfxNF5mMr1mzxvtaQXRJdu560z/pPnDggDeui4jkJCVLlky1OLhkyZKwfk5BdMluc/T0kATXrFkzL3FTu8klGhREl5gbNWqUKVSoUKrtNBqgJdmRZfnzzz/b9yq1VF1TXH82pohIbkAfiA8++CDVfV9//bX3ucq5SLLjejN//vzm5JNPtl9/+umn3vcuueSSBB6ZiEj0FS5c2LRp08b7+rPPPgvr50455RQbfNeYLjmhnMucOXPMvn37vK9dRrpIViiILjFHwwd/BhuNnYoUKWLvVxBdktXevXu9+v3z5s1LVeNfRCQ3yZMnjz0n+k2fPt37nPMkWT7UmxRJ5q3fbhv3I4884n3v5ptvTuCRiYjEhj/IOHPmzLB+hnOkdpdJMuNak2vOcDLRiTv51a9fP4ZHJrmFgugSF+eee673+bJly+wAzTYzDdCSHeqn+huO/fPPPwk8KhGR+GvUqJHXINxZtGiR9znnyb///tvWXRXJDvVTN23aZD+S0EGGuohITlOvXj3v8xUrVph///03rJ9TEF2SGZnlzMfDCaK/+OKL3ufnnHOOyZs3b4yPTnIDBdEl5phUb968OdUgDrLTaXoikozce5PyLfPnz/fu79q1awKPSkQk/k499VTTpUuXVPVV9+zZ42WnuzJXGtMlWfHedO9Tavq77LQWLVok+MhERGKDPmQOQcdwd9NyrtR4Ltlhjp4e+p7MnTvX+9pf3kgkKxREl5grWLCgrYPubN++3daYrlmzZqr7RZIJ780SJUrYHRPbtm2z9x133HGmU6dOiT40EZG44/z3xhtvmJNOOsm7b/bs2d5us2OPPVZjuiQlGostX77c1KpVK00pojvvvDOBRyYiEjvsEPPzn/vSwxydcybnTpFkw7Um16T+SgeBKMnatGnTVO/hDh06xOkIJadTEF1i7oQTTjBDhgyxJzJ/h/A6deqY9evXp6lVJZIM3HsUrqlopUqVEnxUIiKJwYSarJ5q1ap5902aNMl+LFCggKlSpYo9b4okmw0bNpjff//dG9P79OljP1JasEmTJgk+OhGR2Ljmmmu8ZsqRBNE5VzI/37hxYwyPTiRzuNasWrVquqXYaKS7cuVK72uuU1UPXaJFQXSJi3vvvdeMGjXKNifDlClT7ABNYwgm5iLJhPelC6J/9913XrM8dfQWkdyKLPTbb7/dTkJcRu9XX33lnR85XyqILsnIvS9r165ts9K2bNliv6bJ/YknnpjgoxMRiY26deumKlnFuZBSbBnhXOkeL5LMiW6hNGvWzAwfPtzLVm/Xrp3dMSkSDXonSdywEl60aFH7+Zw5c2zWGvVVNUBLstmxY4e9yGSAfu+997z71WRHRHKrxo0bm5YtW9qdOQ0aNLC7zH7++We7owycL1etWpVm+7hIonGdWb58eVvb398Qt2PHjgk9LhGRWLvwwgtteRbnk08+yfBnWGAsW7as5uiSdP766y97rZlREJ1ywr1797Y9UKBEOIkmBdElLqhLdf/995vdu3fbr9euXWtrWdWoUUMDtCQd955kgH7//fe9+6+99toEHpWISOJw/vv000/N+PHj7c4yxm/MmDHDO18SQF+9enWCj1QkdNbaM888493PzgoRkZysdevW5uqrr/a+fv3118P6Oe0uk2TENSZNct1uiWAoPchOcq5ZN2/ebJM+Lrnkkrgep+RsCqJLXJDBO27cOO9rVgXprKwBWpIR78nixYub0047zavZ37x5c7s1TEQkt6Ik23nnnWc/d01E3333XfuRTDe2ympMl2RC+ZZly5Z5QXRXE5idkOpzIiI53QMPPGAefvhh7+t58+aFtbOWcybjvJqLSjLhGpNrTZfIEWjFihW2jFG9evVM27Zt7X0XX3yxOemkk+J8pJKTKYgucXH66afbbWF+EydOtAP0unXrbMMnkWTLWtu3b59dzUaPHj3s7gkRkdzs/PPP93aYYcGCBbasC02bKleu7AXXRZIBjfFYDGdM79Wrlzly5Ii9nzrBNBYVEcnJCCZSQtXPX6oyo+aiZPKKJAuuMXk/c80ZzJAhQ9K8Z7t27Rqno5PcQkF0iZsNGzbYGmvO7Nmz7UohTcn8NSpFEonAEO9H3pujR4/27mcVW0QkN3vxxRfNY489lub+jz76yH7kvDl//vwEHJlIcO79yNbvV1991bufWqkiIjldnz59zA033JDqvrfeeivDn3O7dzSmSzLh/ci1ZijnnHNOqq8JtruMdJFoURBd4ub4449PFYgkUEnWWqlSpWzNKpFksHDhQrN3717bQO+pp57y7qeemohIbsZ4Td3zwF05Y8eOtR85b7KVdtu2bQk6QpHUuL6sX7++yZs3r22K68oSNWnSJNGHJiISF9WqVUv1NSWu2KWTHhLfCFZqji7J4qeffjIrV640l156adDvs9Ns5MiRqe6jgXj+/PnjdISSWyiILnF12WWXeZ9TJmPx4sXm8ssvN1OmTLEZ6SKJRtf6okWL2gvHgwcPegtAJ554YqIPTUQkoSiBsWrVKnPllVemup+SLr/88oud2BCg1KRbksFff/1lG9+ShTZ48GDvft6/Ks8mIrkFPZ0Ym/3GjBmT4c9x7qSPBIvnIonGtSXv42BBdGr3v/LKK7YUq1+3bt3ieIT/X3t3Amf1vD9+/Pu/9/IjS7rJUmhBUUmyb2WJLLkX2YosIYQsiayVNdl3yRJR2bJdIVS6QqJC1ijJLkv25efO//F6+33PPTPNN0XNOWfm9Xw85s7MmTP5Ts09n+/n/XkvqikMoqtK0cIl31133RULNL2r6I0uFRoHOh07dix3kk0fVUmq6ZZffvmkZcuW8wTRMXz48KROnTpJ27Zt43VUKrRx48bFzB3uM/N7APfq1aug1yVJVYk1mWGMFYPoP/zww3y/j9dO+qI/9dRTi/kKpQX7PW7Xrl1Su3btco+TiLnddtuVG6CLhg0bJltssUUVX6VqAoPoqlKVlYDzokeZDRnAUiFxmPPaa69FdUR+79RzzjmnoNclScXkn//8ZzJjxoykcePG5fqls5Hh9XPMmDEODFfBcV/JJvqFF16I39e0JRHtXSSppiDomGaT056SitsvvvgiGTFixHy/r1WrVsnqq6/uHl0Fx2HO2LFjK+1vPn78+DjoSVu2pY466igHiGuxMIiuKkX2zzPPPBObmrSly/vvvx8l4mauqdC4SeTmsn379rlegc2aNYteqpKk3zYy/fr1S7p27RoDy1q0aBGPv/3228mLL74YQXQ266NHjy70paoG40CH+0o23P3798893r17dzfVkmoUsndvuummXELbcccdFx9feeWV822nymslr6G2XVWhcU/JvSX3mBVRATlq1KhIejv55JPjsaWWWirWe2lxMIiuKkUZ+Oabbx79U9Os9AEDBsQCTXCdnqpSoXCTyPBb3tNbDS7AkvRftWrVis34hAkTkjZt2iSXXnppstVWW8XXeHzNNdeMwLoH4yqkdMAtG24yLlOHHXZYQa9LkqrasssuG72hmzRpEi1cGNBIgHzq1KnJs88+O9/vZY8+a9asmIciFQr3lMSR8isgU/wu77zzztHO5fXXX4/HunXrFi0GpcXBILoKggWbBR333HNPsssuu8THnCJKhfDll19GORgb7tNPPz33eIcOHQp6XZJUTDgAP/PMM6MM/LLLLosZEgcffHB8bdiwYcn3338fr6MPP/xw8uuvvxb6clWDK8vo4Z9WT4CB4auttlqBr0ySqh6Bxr59+yZDhgyJz9PM8ssvv/x3s9jZs9vSRYXCvST3lBWz0OfMmZO8+uqryQMPPBAJmtOmTcsNtk+rLaTFwSC6qhxTkykfmzt3bnz+9ddfx1DRzTbbLALqUqFOuFmkmfhN9lrayiVtVSBJ+s0JJ5yQ7LvvvlGx88svv8TazSab9ZxAOj3T2dxwMClVNYJD/E6ynp9yyim5xwkgSVJNxB6HhKGbb765XED87rvvjnlQWWhpSZave3QVCv3OiR9V7Ifeo0ePZOONN05233336HTAQTnrP8kdTZs2Ldj1qvoziK4qx4vb008/Xe6x8847LznwwAMjE/2DDz4o2LWp5mJKPa1c7r///lx2htPoJSnboYceGu8fffTR3CBR1nM2NWxgeF2VqhqDRF9++eVkiSWWSKZMmRKPLbfcchEIkqSaWkU2aNCgONxOq8FT55577ny/lz06rV+YeyJVNe4lSWzbdNNNc4/Rpm3cuHHRnij1008/xXvm9UiLk0F0VTkmgp922mkx7Ts1ZsyYOEVkCMQtt9xS0OtTzUP/NA52Dj/88OSCCy6Ix1isV1555UJfmiQVJbLOP/roo1zLjNS7776bPPLII9F7+t57743sIakqDR48ONq20HIo1bt379wsHkmqiU466aQ46F5nnXXKPT58+PBcL+nKUNXToEGDeG2VqhL3kNxLck+ZPxScg6C///3vlQ4Z3Wabbar4KlXTGERXQfTv3z8W8hQl4fSzojycwWTpUEepqk6469atG4c46XBbFmFJUuXISmNTk2b+5GOTftBBB8VaPnTo0IJcn2omKiIICLVv3z7Xk/8vf/mL/VEl1XgMWzzggANyfaMXNBv9b3/7W3zvHXfckas6k6rCbbfdFhXi3FPmGzBgQPLmm2/O8/xzzjmnXLBdWhwMoqtgWMTps5a69NJLY0NOFhul4VJVYAgeQ3YYjJcOxwO/i5Kkym211VbJDjvsED0pK2LA06xZs6LC7Prrr/dgXFXm9ttvj3X9mWeeyT3WvXv3eSomJKkmWmONNZIdd9xxnsc5fGRG2fzat/HaSiBdqgrcO9KCaI899kjq1auXa9fGfWVlhz78XpsEp6pgEF0FQxkOm/DUW2+9lXz11VcxFOKKK64o6LWp5uBmkEE7LND8/qW9UzfZZJNCX5okFS2ye0ePHh0H4J06dZrn6/369UuOPfbYyBR6/PHHC3KNqlnIVmNw/bbbbhv3lGkGJb+LkqTfApMVA40tWrSI18+TTz458/saNmwYgx2vuuqq3OwoaXF67LHH4h6Se0lQ+UhG+lFHHRVD7SvLQpeqgkF0FQxZak8++WS5xxgEQcktG/P59WaTFgVuAjmw4aaQfqmp559/vqDXJUmlhDknAwcOTDbYYIPcYwwKp0UWj3kwrqrAYQ33jq+99lq5qjLnm0jSbz7++OPkrLPOKvfYFltsEQeODz30UOzBs7BHf/XVV+fZv0uLA/eObdq0SbbccsvcAVCHDh2S2rVrxxu/syn28ibAqaoYRFfBrL322kmXLl2iN3ra1oXTxqZNmyarrLJKZBNJixMDbbkZZKDos88+G4+tuuqq8wzckSRlH0b++OOPyTLLLJOceeaZsbanTj311Nh0M2i0st6V0qLecNevXz8G3qbVEqecckqhL0uSigavkZ07d84FJps0aRItM9Js3xNOOKHSLF+0a9cuadWqlQfjWuxoLUQmOveQaY/zpZdeOqofZ8+eHTPMhg0bFo8zNPyCCy4o8BWrJjGIroK30rjoooviRXDJJZeMx4455pjk6KOPTm655ZZ4kZQWV+CHsq/1118/ueGGG3KP33PPPQW9LkkqJdOmTYvN+PHHH59sttlm8TnltmxqyFZr0KBBHIwzbFRaXF588cWofuB3LdW1a9ekUaNGBb0uSSrG2REMF61Vq1YyY8aMqOKhzSoHj1Ty0HO6MgQzCbLzvZMnT67y61bNQc9zEtv23Xff5Oeff46Dnc8//zze03aVweEkaoDfyebNmxf6klWD/L8ym1qpCHz99dfJTjvtlMsG/ve//53sueeeUZpz4403FvryVA0xvHbnnXdO7rzzzligQdCHfmu8lyQtmO222y5p3LhxsssuuyRnn312suuuu8asCTbizD4h640D8pdeeilZb731Cn25qoYYKPbOO+8kM2fOjENy1nEy0tNhZJKk8liXP/nkk1i32Qu98sor8XidOnWS6dOnJ3Xr1p3ne/73f/831nEGlJIpLC1q3CvSCvDaa69NjjzyyOSAAw5IpkyZEms63Qs23XTTqHq8+OKLI9BOpSOBdamqmImuojB48OBcAB2U7pxxxhmRjW5vdC1q9FTr06dPsvXWW0c2RYpMSQPokrRwnnjiieSmm25KllhiieTll19OLr/88nid5fX06aefjkDmmmuuGb3TpUWNigcyKaloTHODyEwzgC5J2Xr16pVstNFG0dry7bffzj3OITivoZWhDzX7JXqn0xZTWtS4V1xrrbWSQw89NOJAI0aMiAoJfi/p6f/AAw8kl1xySTyXQLoBdFU1M9FVcGy0mzVrVm7xTjdFvHhyEjly5MiCXZ+qH9oH7b///rHpJnOS0jCyJamAkCT9MdxScjg5YcKEco/TYoPBowceeGC8zvJ6Ky2q3zmGiZE1OXfu3HiMgbZz5syJPv2SpHl9//33kcVLNfiQIUNiCDNZ5vlINKKyrLLXXdq38X7ixIm5ntXSnzV+/PjovU+l+D777JN88803Mavsww8/nOe5PG/s2LH+/qnKmYmugqP/Gj2tOAnP16NHj6R///7Jfffdlzz33HMFuz5VL/RVY/gdrYLoiZ4Oz2GxliT9cZ9++mmUeFdE5hBBTg7FGfRo/oYWFeaYvPDCC7kAOshQM4AuSdnoh37wwQcn22+/fVK7du2kadOmuX15qnv37slXX301z/cStBwwYEAyadKk5N57763S61b1xb0h94ht2rRJ9tprr/ichMrKAui0daHdiwF0FYKZ6CoK/Bry1rp161w/NrAw9+vXL/n73//uSaMWiauvvjraBdF64JBDDonHqIRgCrgk6Y9r27ZtZJrTq5KgOWt2eptJCTgzTti0U4rLQab0Z3AI3qJFiwjyfPbZZ/EYhzj0Rc8PBEmS5kXmOWvzscceG/sjXjepEAft2BjeSBAzaz4Z88x4vaUdDH+O9Gfcf//9yR577BGtgqZOnZp8++230a8/X3pfedFFFyUnnXRSwa5VNZtBdBXlsMfU6quvHr1VO3XqlIwaNarc16SFxWJMX15auAwfPjyGiIJqh913373QlydJJe3hhx+ODc8RRxwRGWxswCsOfyTwScY6g6OcQaE/Y9CgQTF0LB/Dx0jIkCQtmA8++CD2R+m+KA2Ip+1d2J936NBhnu/j9ZasYV6LWfOlP4rftVatWiX169ePlqvdunXLfC4tAceNG+c9pArGNA0VFXqppuVkmD17dvTG4nFOG9PFXfojzj///MhYo19q+rtE1poBdEn68zigpP0am590KFl+Ww2yiygdJ2vthhtuKOCVqtQxYOyss85Kll9++dxjPXv2NIAuSQtpxRVXTDbffPP4mAHhBDTJCCZDHQcddFC0ZauIFm2dO3dO+vbtG6/J0h/FPSFDRGkTRFXjeuutF5VmJFTmVzlwT0kPfwPoKiQz0VVU2Hyni3i+Bx98MLLRTz755OTcc88tyLWptNEzlSE4TPxmqjzlipQt/vjjj3HDKEladL777rvkoYceil6rBNdTyy67bPLPf/4zWrrQvq1Ro0YFvU6VJobUMiQ8rXZYaaWVYkD9csstV+hLk6SScuKJJyaXXXZZsuSSS8bsKPZHffr0iT0Te6dp06Yl2223XRyEVwxevv/++0nLli1jXb/11lsL9jOodNESiKA5GehUNeCHH36I30cOdBhwu++++8Z6f911181TgSZVNTPRVVRYqDn1ZmOUPw2c4PkZZ5wRp5MEQ6WFQdY5fXjXX3/9WIjTfn8sxAbQJWnR4jX27rvvjj6q7du3j96VzKBg801brS+++CKpU6dOcthhhzlkVAuNw5mhQ4eWaxd08803G0CXpD+AWVGNGzdODjjggNzQxqOOOiqyfqn4Ya80ZsyYShPZVltttQjA33bbbfHaLC3s/SJ995l/x16de0dm6lA1zj0jCRm9evWK9Z5ZOrQLlArNTHQVrTlz5iQDBw6MzTdYuEeOHBkB0RdffDEWeGlBkElx8cUXxxs3iulNH+2CJEmLFmXdDBf9/PPPk8GDByd77713zDeh0qxjx47RF713796xvptVpIXBAQwl3mSpzZ07Nx7bc889YxC9JOmPIUhJBjotVCdMmBDrcr9+/aLtJdnp6VDHJ554IrLS8xFOYm2nRzrt2jgklxbEtddemxx99NExM2fs2LFxf8ihTfPmzSOhcvLkydGTv0mTJhH/WWGFFQp9yZJBdBX3Ys6J5O233x6fs7Bzwk3/avqj099a+j2TJk2KCgf69THwLs1cYyBJu3btCn15klQtkZX2ySefJMccc0yy0UYbJa+99lpUlH344YeRNUwva9q8sK7T1oUsOOn3dO3aNTLV0rkmtAf66KOP4r0k6c8hED58+PDkzDPPjGSjHXbYIdZtsoLZQ6288spRFU4yUsXhpBxwki3M+i8taBuX/fbbLwLkU6dOrfR5ZKU/++yzzjxR0bCdi4rWSy+9FK038st9aPXCJvzCCy+M4Kg0P/Q75yCGwTf8PqUB9NNPP90AuiQt5p7VZJsvvfTScYgJ5lEQQGdI1Ndffx0bJkp4KeVN22xJWZiPQ2JF/pB5MtQMoEvSokHLNbLJyT6ngpcAOus4eyh6VHM4vttuu8Xz8jVo0CAqzmi1ZVsX/R7u+RhCz1BbgugkWqSoeMhHxaIBdBUTg+gqWrRrYYEmAz01Y8aMKBPnhZTgKEFSKUv//v1j0BjDbmgFBNoKOJxWkqrOXnvtFVVkFD8SQGdQFN54443IQqKE9/rrry/0ZarI27iw4c7Xs2fPZMsttyzYNUlSdUKgnDYuo0aNilYul1xySbLKKqtE+6xatWpFYJ1AOgfgDIHMn0uBgw46KFpwdO/ePV6zpSwExqkKJ7GNvXnaMgjcK6YDbA8//PCI+UjFxHYuKmr0uOQ0slOnTrnHCKoz/ZvNFC+s11xzTUGvUcWJnn0dOnSIPmtXXXVVPMaAHHqoVpwsL0laPL755psIoo8fPz7KwGfNmhXreH7m+bbbbptMnDgxeeaZZ2IAtJSP35U99tgjMtFTTZs2jcw113NJWnRomzFo0KCo+u7cuXMccqdrdtrSJX3PwEey1Su2dWnZsmVU/JLAlJ8MJ4HqcFqtEobkUIb7xHxpsgX3hlSb8RypmPiqpqJG8JyBUfRUTbGIUyJOWTjDKFjopXxkn++zzz4x+IbfkdTJJ5/shluSqhCtNtLS3KOOOioGRlVs3cIQs9VXXz2qhj777LMCXamKFe2A8gPobKg5cHE9l6RFiwHgQ4YMiUPvjTfeOB6jnQvSgHj6OJnqN9xwwzxtXWjpwms22exSvk8//TT65tPKj9ZsFdsCpQF0+utzCGMAXcXITHSVBNq2UPJNcDTFoDLebrzxxuTJJ59M2rZtW9BrVHGgzy6n22RIsDiT9QhuBhk+VrHPmiRp8aKnKq/N66yzTvRMPeGEE5LllluuXPYRfTHRvHnz5PHHH3fjpHDnnXdGv9QUazhD7dq0aVPQ65Kk6o59VKtWrZK33nor1ug5c+YkK620UvLyyy9HEhsHnATWR4wYES058g0YMCA59dRT4zWcxCaJli3t27dP3nzzzVjHuderW7du/J5RQU6nAZ5DC6HnnnsuadiwYaEvWaqUmegqCQRC6YeONPOIF1825VtvvXVkrL/77rsFvkoVGoHzLl26RMCGQ5U0gL7CCivEYwbQJanq1a9fPwLoOO6445KBAwcmr7/+erLVVlvlnsPmnNdqMowZIm6OhyZPnpwccMAB5R4bPHiwAXRJWsyoGDvppJNi/012MGs02cPNmjWLvfiZZ56ZGwrO3uvhhx8u9/2nnHJKtIOhn/WUKVMK9nOoOHBPR7997vFos0p1A615qUCkXRu/XwTQab3K75IBdBUzg+gqCSzYRxxxRCzGbKBSw4YNS7bffvvIaONFuGJJkGoWhpM88sgjEaShQgG0DnjvvffsySdJRYAD7/vuuy82TMw9YU2nDzqZ51Sb8THl4fmtuFTzfPzxx0nHjh3LDa5jkChBG0nS4sW+iWQ1WmvwWowvv/wyguNkpaetOGjZxnNIaBszZkzu+0lcuummm6K6jD36J598UsCfRoVGFeItt9yS/M///E+s4yRWcEhOwhtDarkv5D6QFi4elKvY2c5FJYMFmpNvFmUGkO28886xmOPqq69O+vTpk+ywww7JPffcY8C0BrrjjjtiMWaTzQl3+tJG9kPr1q0LfXmSpCSJw3BKv2m7RUYSmyqC6bR4YV1nrd9www2TqVOnJqNHj47ZFqpZCM4wlG7SpEm5/vn04KW82/s7SaoatFx7+umnY20+/PDDI0GJ+SUceLMH32CDDaJVZu3atZO5c+dGFjHr9hZbbJH7M95///14/W7SpEkE2Qmiqmah7S4xmsrCjnXq1InfJZLe7r///mSXXXYpyDVKC8MgukoSvdhYoL/77rv4nOA608FPPPHE5LTTTkvOPffcQl+iqniSPBO8yYJgAf7+++/jccrDONGWJBWHL774IgaMMpCMQ/G11147+eGHH2KI+LRp06L3Kho3bhybcl7fmzZtWujLVhUhaM6B+PDhw3OPrbHGGvF7YfBFkgo3n4zWLOyzW7ZsmfTu3TuyiwmcE2xffvnlI3OdzPSHHnoo2WabbXLfywEoB6MconNwbnvNmoP+55tuumms7flzcPKHiPKe/fpuu+1WsOuUFobpHCrZrOM0gA7KfVnUGWBy3nnnRb9V1ZyeqWRIkLk4fvz4XACd3wWyGyVJxYOeqgwaW2211ZIGDRrE63S6gUoD6Jg5c2YckNOyjY9V/ZHX06NHj3IBdPrkv/TSSwbQJamAfvnll2SppZaKYDpBcA6/CYzynraqBNAJpNPiZaeddopAeorKs5tvvjkGR9Jy0xzOmhNAZ3YdvyMVA+hknqddBrgnNICuUmIQXSWJE00WcEqAUrxA33777ZGNTr+2K6+8sqDXqMXvlVdeifKwNddcMxZqSgZBJcL5559vpoMkFTk23//4xz8q/dpnn30WG3ZausyePbvKr01Vh6AKQ+wGDRpUbpPNOk8gXZJUOGeddVYEwQ866KAInu+zzz5JixYtIhBKC640kM5BOZ9TDcy+PEXf6+uvvz5abrJPN5Bevb3zzjvRTpX7OAaG5mNt51CGHugE0KlElEqJQXSVJF5s6XVNv8y6devmHmeA5KhRoyKTiZNuFutSdN111yWtWrWKE33eNt988xiYubD69+8fZdGUzx977LExoJVp2JRG0zucUvlS9frrryft27ePbMbXXnst+fzzz3MHLAwYlSQVN3qpdujQIbLQKROvDANI2ZiTkf7BBx8kpcg1ff4IplBNeOmll+YeIzuNTThrvCSpsPr16xetVMkoZ0govatfffXVZN11140gKcF0WrlQEczXqBLv2rVrzC1LHXHEEdEC5qKLLoqgfCkG0l3Pfx/3atyz8XtBQhvB8nSeSRpA59CFvzdasUqlxiC6Stb6668fGci8ANeqVSv3+BtvvJE88cQTyWGHHRZ9VznxLjVsGgcMGJC8+OKLyQsvvBBZeEw252ZlYTzwwAOR4ffhhx/GG33j6Tk7ZMiQ5NFHH43p2KWI0m5669WrVy822WQqppvuBx98sNCXJ0laAKuuumq0YNt1112Ta665JjbWlWGTyaad1/1Zs2YlpcY1PRtBlF69esXfT4oeu6ztDLCTJBUew0MZMkrQuH79+lHxmyY1NW/ePCrCcc4550QrFwLBIEBMYhtBdvAxbVepGu7Tp0/JBdJdz+ePe7S2bdvGvyu/B7RnY5YdQ2mJ1xBAX2mllZJx48Y5OF6li8GiUin76aefytq2bcsKXPaXv/wl3vNWp06dsh49esTHF154YVmp4+e58cYby9q1a5f7GSu+9e3bN/f89957r2zJJZcsmzt3bqV/3l133RVf/+WXX8pKyaRJk+LvYoMNNiirV69euX9vfmZJUmn59ddfcx8PHDiwrE+fPmWXX375PGvc8ssvX7b66quXvf3222WlzjX9t3/3I488stzPvMIKK7iWS1KRmz17dtmOO+4Yr9t//etfy9Zdd934eOjQofH1//znP2XHHHNM7rW9Q4cOZV9++WXu+y+77LJ4vGfPnvHcUuZ6/pvnn3++bLnllitbZpll4t9+9OjR8fijjz4aazt/D02aNCmbPn16oS9V+lPMRFfJYyBZ48aNozyIk2GGnuDLL7+MAaS0dqH3Gi0+6OFWaiiHGzFiRAxS5fSfsnd60JG5RSk8bzx++OGHRz/RFBnZTEan1KwylInxNf7+SsXYsWOjPIwKhLfffjv6rGGVVVZJPv30U7PWJKkEpWW+aRbyiiuuGNlqZGRROp1Wm9HWhbWLQVVUJJUi1/TfUOZ94IEHlmu7R+9zMvFcyyWpeH311VfRPnP06NHJVlttFesa+7KTTz45WpSkLVbvueeeaFHCYOjHHnssBoxOnz49vn788cfH+s4MM9a7in2zS4Hr+X/x78vvBANE+fugjc+OO+4Y6zztffid4e9iwoQJyVprrVXoy5X+FIPoqhabb0qExo8fn/Tu3Tt5/vnncyVkLEI33XRTcvTRRycXXHBBsvfee8fU8FLAMC16y3HjceSRRyb33XdflMsxsIVFla8RPOaNXmMEGXisYplYVo9Zyu26d++elIprr702hohyc0JZWDrlu2nTpjFQtJRuNCRJ86I8mvWazSaHpgwuY4NKGxfavdBbk0A66zibsXvvvTcpFa7p/8UB+JZbbhmJDikGxb/77rtJgwYNCnptkqT548CzW7dusYbRI32//faLNh2XXHJJtHwBw0VZ32jzQisX2sG8+eabEWhlfhlYCxlWetttt0XANU2OKnau5+Xxb7jzzjvP05qHGM3QoUMjiZE2u9zX8XcilTqD6KoWWLA43cZ6662XrLzyyrmvsYhz0s2mnBNzNm5s1IodA0amTp2aTJw4MXq7Mw2dAZoLgiDDU089VekCzdfoP8tiz5CYYkdmAj8/gZUuXbpEAD3NViBjkZ+TXuiSpNK24YYbRo90stDJ0mKA+HPPPRezTxhGlh6Wpoeoe+21VwznKoUqM9f031BBQBYavWRTHI6TsUeQRZJU/M4+++xYz9Zee+3k9ttvjzVt9913j/04B90krrHGsS8nY5vEtrp160alOGsW+/K0IongKr3VN95449jnFTvX899w78UhAoPhKwbQOTzg69y3kQh3ww03xKGDVB0YRFe1w5BJFvN8vIgzsIxTUBZ2Fmky14sZiw8bTYIKZNEzSPWKK65YoO8l4MACXLEkmsDDTjvtFBOxOTWnBU4xIyOBzASqCVikhw0bFiVi6aAaMtA90Zak6uO0005LLrvsssg632KLLZLHH388hlBRAp4fLCe7jc0ZG00y1tO1oVi5pidRObDBBhtEoCDVsWPHCJq4uZak0sEanWZXk8x0yCGHRECcdZkkJ1p4pFnbrVq1iqzkzz//PNq1gax1WrPNmDEjEtwmTZoUFUms+7RFKWau50nEU2ivOmjQoHm+xr81ByT16tVLnnzyyTho4PdFqi4MoqvaoSc6J6KUVLFI5SOTjd5tZD3RW5tT0VJB8ICs+spUXJgoE2NSeD42rQSkWfjpxZb2ji9WbKo32WSTXBYDfVPJZOBGjZ+PHnqUE0qSqpd0TSOzib7oBNFZt1kD8tc7SsTBmsbGe9asWUmpqElrOj/rGWecEZUD+dlqtN576KGHyvXElySVFvZsBM3JPn/22WfjsdmzZ8djBIP5esOGDSMTnXYl2223XQTMacHKweqdd96ZrLHGGtEKhu/p1KlTZLqXQpVZTVvPQUU/e/OKlf3pz8rfBz8PlWdt27Yt0FVKi493raqWGGxCWRiLM2VR+ei7xmLVuXPn5Igjjog2IWSvF5NTTz01MuVZnDjB5/Nx48Yl+++/f6XP59T6jTfeiOGaBBU45c4vE0sXZzL1yOrm848//jjeCEoUGwbREBAhw4GT7MmTJ5c7CMnqIydJqj4+/PDD2FBymEqbFzbWFUuGQS9W1kCywigLLzY1eU2nhJ9eqfz7pQia33///QucuSdJKl7rrrtu0qFDh2TbbbdNWrduHe1KmHlB73OyzDkInzlzZqxP7du3j9d/2qGw12P9oqc6h6xkYxNQpyd43759k3333bdc5VIxqMnreTpAtE2bNnEvxrwaKgEHDhwYPyePcWhClQE/56qrrlroy5UWjzKpmvvll1/Kunbtyq673Nvf/va3ssMOO6xsiSWWKGvevHnZ888/X1YsunXrVtawYcOyJZdcsqxevXpl22+/fdno0aNzX19//fXL+vbtm/v8tttuK6tVq1bZrrvuWvbEE0+UrbbaauX+vLFjx87z86dvM2fOLCsWc+bMKevSpUtcV7t27eLfKP9a+/XrV+hLlCRVIdaooUOHxse//vprWf/+/ctq165ddvnll5cts8wy86zrvO/Zs2fZt99+W1Ysauqa/thjj5Utu+yy5a5vjTXWiLVeklR9/PTTT2U//PBD7nPWbdY8XvdbtWpV1rp16/h4yy23LPvPf/6T+542bdqU/fWvf42v1alTp+zWW2+Nr48cOTLWj9VXXz3WkmJRU9fzb775Jv6tuK6//OUvZY0aNYrYSefOnXPXu84665RNnjy50JcqLXb/j/9ZTPF5qWjsueee0V+sUaNG0cOLUrLUDjvsEJ9TckQGO/1VS7k3J+XRnHQzxKOUkG1IZQB9bskmHDNmTO5r9evXj1N8TrklSTUXszJOOeWU5NJLL43+qhdffHFktPGWVpXR9ovS8FtvvTV6rpayUlzTyaQ75phjkqFDh5Z7nLk0tGZzGLgkVW+03aSS+F//+les1ezlNt988+TCCy+MXtq4+eabk0MPPTSqk+if/cknn8TjVC9dd911kdnMukFf7cMPPzzW++WXXz4pVaW4nqd7dCoB0xZ6KeIltLHh3+/444+PFjz0w5eqO9u5qEZg0OiJJ54Yizll4SzYaUCWoWXvvfdeLNKUHxHAfeGFF5JS1bJlyxjgUSq++OKLpGvXrtEfjv5qyA+gM72dAaIG0CVJ3bt3T2655ZYonWYjTinxxIkTk8022yxXTk0JNP1Y6cV5wgknJN9//31SqkptTeeeigOM/AA6G2zuwwYPHmwAXZKqOVqqElTlIHvAgAHR7iVtz0arl9Rbb70V7V7ooU0AnXlmDCalFcg666wTaz2tXwioDxs2LPaJTzzxRFKqSm09596Jli3s0SsG0EEAnZ72tM8lhmIAXTWFmeiqkVgImIpNv7F8e+yxR/Q4YwAKmW5nnXVWSWelFzsGiqXZ57vttlsyYsSI6G2bOvLII+PGSZIkEDDv1q1bMnz48KRVq1Yx54TAOps5enHmryHpoKvGjRvH89isa/Ggly3rOf8u+TbeeOPoF1urVq2CXZskqWrR35v9NLOsmI3Buk0QnX7i9EJPD7+x6aabxv47zURfccUVc1Xjq622WvTc5rkkvJFoxVpz0UUXmWC1GHF4waDYyoLnWHrppSPznMMSDj6kmsQgumokJoezma7s179p06aRvcbpOR+zSO+0007zTNfWHzdjxozk9NNPj6A5N1LTp0+PEv00Y41hrwTQmzdvXuhLlSQVGbLWWCtSDKhkzZ4yZcp8v4+NNy3bVllllSq4yprzb0HgnIOM/Ix/7pk4uDjggAMKen2SpMKj3drIkSOTLl265CrGGB5KexcCtcsuu2yy0UYbRZCddaVZs2bxPbNmzYrns1+84IILkmnTpkX71bp160aWO8NH8+8H9OeQYMh90qBBgzKfwxBYDjZIUJBqIoPoqpHIWGOaNifebPo4ba1o1113jcAuJUqUMrFQpyfm+mP4+z733HNjYebmZ6mllorMg1SdOnXi73uttdYq6HVKkkrDRx99FGXfZEL36tUrufHGG5Ovvvqq0ucS2CVbvXfv3vFWu3btKr/e6oLtw+jRo+PQ+5133in3NXrbclhOUESSJNqYkJ1OhTFtVV999dXYVzO3jPYvkyZNiuexnlMFfs011yRt2rSJ+Sfnn39+7pC2ffv2cSDOIS0VzbQTIbi+4447mvD2J3DfxGE4MRH+/jnI4O887XueVgzQtsWqPtV0HtupRmJBYFGmZyen4vRZqzio5OGHH47e6PQBo283w1Bo98JCr4UfMkZrHPrX8ndOpv+nn35aLoBOYGPs2LEG0CVJC4y1Y/fdd48MNg67WaPJTAPzNvLLvQn8/vzzz7HhbtiwYdwHpMNIteAow2/dunVU6eUH0NODcNZ3A+iSJJBpTmIa7xs0aBCP3Xvvvcm3334bwXBatxx33HHJCiuskLzxxhvRP50AOi1DqFxmqChfI+Ocnui0GWEtZ1A1rcJYi7bffvtYf7RwuAeiTQ796O++++5oicffddqihQA690tUnKWV/FJNZya69H9oH0KG9JJLLhkLR35ZMoMy6NnN4sGwsoMPPjhKneirrmwsvGQcnHfeeXGjtO2220aZ3nfffZd7DtnoBD7ISnDTLUn6I5itwYY7LRPnAJzB1PRN79+/f5SEM6yMTTwZVqmVVlop1qADDzzQoZe/g+AGwYynn3663ONk/1177bWRHWgmoCSpIkJOzz33XCSlpQjaUkHG3jptEwKC4uwLQbCcBKv0OVQyk9yWhrBIzCKw+8ADDySvvfZa0qlTp6h6JqNd2bhP4oCCtrX590T5GjVqFJX7Bx10kDPipDwG0aX/w8JLIJ0+ayzwffr0iRNthqKkyGijXIzJ4pSOE0zv2bOnvbsrKQmjZO/KK69MPvjgg2TnnXdOpk6dmrz//vu55xCsILDB4mwvO0nSokLFE0Fxsqnee++9COyuvfba0euTIWUc5H755ZflvmeNNdaIDSU9vB2CWR5l9ieeeGKlwfMWLVok//73v+PvWpKkBd0rcsjdsWPH+JyscsJSDBWlSoxKMtx5552xP6fajGS2NBGLxCsS3tIAMP25aQ/DekSbt/322y+y2xlurf/i74zqcAa+EkivDPdLp512WrL//vtHtZ+k8gyiS3n4v0N+FhUnr5SZVUTJE1nVbCjp801gnWA6weKaHBB+8803k6uuuioZMmRIZKFz40Jf1HTaOliMeeOmKL1xkiRpUWEDfc4550QLMbLcWI+uvvrqqIqqGDyviMqzHj16JMccc0wE1msqSropt+egO7/1GrhP2meffeKwwg22JGlhsVc85JBDkqZNm0aiFUlrVDq98soryWWXXZYcf/zx8TzatZFlns7bWG+99eL5ZKNjk002Sd5+++3c5wTXeQ7rFvcCJMYRTKf3ek1er0go4D5o8ODBmXNjWrZsGcFz1ncr86RsBtGl+eBEm96fZKCTeV5ZMH3rrbdOZs6cGYs/PcMoP+vWrVuu51tN6KXGRptFmQx9Mgjq168fN0H5Ly/0nKcFDll+fGxZmCSpqrDpZgAZm8S5c+fmSsPnZ5tttonNN4PGa8rmm2AEVWQ33HBDbphYvlVXXTUOzPN7zUuStLAeffTRGPCdtnhJ+5zTGizdJ44ZMyZmZnFoS1s20LqN4DnrOD3SV1555eSOO+6IAaT5h76sV7QNZZ/Oc6ggp/93TZm/xWE4GecXXnhh8vnnn0e7WpIDSHBLcW9DxjlDwsn2l/T7DKJL88FG+4orroiJ4iNGjEjOPvvsGH5SGVq6UCZOGRkbT7LS6e3G5puT8+qEn4+AORO8+Xshs2/DDTeMg4bp06eXC56nPdV4PB1SIklSVaJKisw2MqyoMGNIFhtLWrl17tw51jP6qleGg18q0xhmxma/uq1ltFrjMJzeqLRgq4hgBgfgZ555ZiQLSJK0qFGlzJ6bYDgtXJhhwsE3B7fsq9lr/utf/4pDcWy33XbJk08+mft+9t2sZcw3o80L359aZZVVIgOb5C+qybkXoCKavXt1ws/M3xF94V988cX5Prd3797RxpYEOEkLziC6tBDYYDO8ZMqUKZGFxULMKW/FUnAWfALNL730UjzGpvsf//hHDCddd911S3LwFocHo0aNSh566KHIHGBQKINVuSmZNm3aPMEHfsbWrVtHqxtKwwhCSJJUKO+88068p80L6JFOT+8uXbpEq5d77rknGTZsWDJu3LjYVOa3IkuRAcd6zvCyDh06lOTaxq0/9zFpFdlnn31W6fM4LOCgnJ9VkqTFibWVfSYzs+jb/fXXX0dLtptvvjnX+3zTTTeNgDpDSo899thkl112ybUrYRYK1VT5h8FkWlfcqzP3hH0rayF7VQaR89+mWq0U9+j8PT322GMxj+zxxx/PHBTKfQ0H4sQvyD7faqutqvxaperAILq0kCgzI1uLTDYC4mxAn3nmmeTBBx+sdLHilJw+bTyHYR5s3lmoOf2mFI3ebcV6kk2GHosyNzQTJkyIRZmbDQaIURqXltVVPESgbQuZBHwsSVIxuvbaa6OEmfkdDBJP1zjakS0INtuUP7MpJaDOMK5inYtCxRhD2cj0GzlyZByEV4ZDAQ7827RpEyX1ruOSpKrAoEvatpAlng74Zi9Ky9Tx48cnt9xySwSAwXrLGt6+ffv4nGrxvn37xsccjrN2kcFOVTmoomrWrFm0h8nPUKf3N2s5j7Fv32OPPaIPOwlwderUSYoR9yoM/CYG8cgjj0RCAI/xc1QW2uNA/NZbb42/1+pWSScVgkF06Q9gocrfKO+7777JXXfdNd/voU/4SiutlNStWzduCBh2wmLHgk55WvrGKXhV9xrlxuH111+Psq8XXngh3pNFzyk9ZdxMT2caOqf79KuriJ5ztLPhz2GiOptvSZKKfcNOP1XW8x122CEeY41jrU77sX766acL/OfxPazpbdu2jQ04a3ohAusc3E+ePDkOBh5++OHIOs9qVZPicJx7E9ZzSZKKAUFt2q3RnoTBowzH5I2DYQLitGYByWzM8qBamrU91bhx49h7k3lNSzeC6nfffXf8WZUFnfMfI6jOwTrzUciAZ3/LPLSqjjmwR2ct52ejlc3vDUgH1eL0f6e6jkNz/g7teS4tGgbRpUWYnU5fVcrJKAmf34aVBZoFnT5snHJThvXqq6/G6TpfY1I5CzULPxva9I1APO1TGJKyMLiZoFybwP2HH34Y73mj3I1geRow57/NsBVO63kepexsxrNeJrixYFHnuiRJKnUcIrPRZKPMOkm2F2s6Q8uoPuPAmH6jbGI5XP49ZLkxF4SAOt/LUK90Pec99wILG2Snqi1/Pec9rWoIlrOeZ2WZ5+M+gqAAVWOs/ZSzO/BbklQsCCD36NEjsqg5GGYNBnva++67L4LE6fp5wgknRKCYvuhkW9PuhTll7IFJTuN70jWO4dn0Aq9sePbvoVqrSZMmcUDOe/bN7NsbNGgQa3qaQb8wPyNDP1nHGYrKPQeBcmIDxBSYWZJ/KFAZ7i1ozcKenNY19ImntSzeeuutuO9Y2NiBpGwG0aVFhEWQ/zuxYSYgTR9wJmLz+Z577hmnxzyeX0KWj+nkLMKcerOos9gzAIVAdsXsbwLvLNR8D73euFngLS1HS9/477HBJpMufwHmefx3yDyj3I0NOQs4P8PvnW4T2CdLb7PNNosbEAPokqTqhHXzjTfeyGW4gcxyNuVs5um7ymadDLlFgc0trd14zz0D6zqbfdZ11m7uCbgfYK1mXc/qd5qFNZ/7Bv4s7g1ouXbSSSctkmuXJGlxYm+a31rljDPOiAzrgQMHRtCc/TdB7XTuCdhTU2HGXpe3/DWP51JdzbrLfpo1lX03gWuQpc4eO63oWpCD6RRBfdZv3viYNZ33aciN9Thd11nTfy9APj/8WcwlI4jOPQLZ51xrfoa+pEXPILq0mHDyy2Z75ZVXTnr27BmLJzcBfJ4VSK8Mm2hOtVmMec9bWm7NwkuAnVNn/nze0oWar/FGlhtYrDnNJrM8/Z754c8h0E4Anv82A8jo785QNUmSago22JSBP/XUU5H9RvYZ6ysVaKeeemocLLNeEnhPA9ysm38ky21RGzt2bJSigwABB+ds6iVJKjWsvWR/k7X9wAMPxJwx0KaFli4E1wki5yegMYNs4sSJ8TFV3/Q8Z1bZN998M8+fT7b76NGjo1ochxxySDJkyJCkKhEcX2eddSJhjapx2s7lH57zdQLmJLJxrWkb2BtvvDGyzjk8KMUBqVKpcLKAtJhwAn7eeeflPk8XMxY3yrNOP/30KDOjB3l68l0ZAu4Vv05vtMWFEnaGlNCbnUA6Zevt2rWLU3xJkmoa1kLKv/MRiCZznNJuMtJp60ZWGe1U2MDS6oVhaGS60X/1lFNOWaD/VtZgsHwcprNp5pCc+wkyz8isIzuPGSZsvocPHx7l3KzlKa5VkqRSxdpLC1QOtHfZZZfc48wmo8qKg20GaD/22GMRVKfFyZZbblnuzyB7m0zt9ECcJLfp06fH41tssUUugM5BeGUB9LQKvF69evF11lzasXAvQNA7TWyr+D0E7wnoo3fv3pXea7C+d+nSJRk0aFA8xp9PoJz9+Y477hhDzMk8px3b7NmzIwM9DaLT3kbS4mcQXapCLICUmtE6Jc0QZ5Fl2AkbXhZNStN4DpviXXfddZH9tylLYzNPORw3CWAxX3PNNWMhnjNnTrzx38wfDEqfVEmSVB7Z6ccdd1xuBgqbXwLXvFH5xaE5ay+bZarALrzwwmSnnXaKzDbuA3g7++yzozLslVdeiawyggO9evWKvqgcxrMGs24TACdIzoaZfqdkqIHvmzBhQnzOnJIU/w1Jkqob1lr2zvmYXUIgm8A36+Xee+8d+1wC6QTGUySvEejmLR8B8Y033rjcc1m3WbOpymZNTweNs2bztvXWW+fapvD9BLWzkJBGoB/0PCeAz16fDPq0ao1scx5r0aJFuYN17g04MBg8eHDu8TPPPDMC8g4Dl6qeQXSpANIAero4Unp21VVXxccE2hlOwkJMD1Y2zCya9EbnjVIterSxyDOFPG0Nk26e6dXKYszGnSw4eriy8JJRnmbDs5HnlJ0T84UdgCJJkn7Dupq/jpIRxrpb8Tls6NNhZPm9SunLymE6G3DWfzbltIlh48+Gfr/99ss9l5ZqtI7hean11lsv3iRJqqlYM8k+Z4h3ihZs9Exv1qxZtFsDgWcqwVmnn3766dgrz5w5M3qijxs3LtceBlR6MdOMDHHasVLpteSSS0ZWORnx+QF3/nzWbPblaZCdgDhZ7lSpkUGe4vEZM2bkPufP4hqZO8b9Qn4QnQA6hwO0dOFeId3LcwAvqTAMoktFGFgHvc7o11ZRx44d4zScRbVhw4bxGAs1QXIWYcrI036nLNp8nE4jTy1oWbkkSfrz2Njnb+5TlZWKk7HGW2W9WiVJUnnsdfMD4CDLm71y2kIFBMGPOuqoaMdCqzX6q9N+jSptAuFplReoFiOAToY4A8d5y9epU6fcx7RepYIsS35rVqrAGV7KnLEjjzwyPue6SHqjper2228fb+BeYOTIkdHKxT7nUnFwsKgkSZIkSZKqDUJdJJUxVDtt0ZImrtHGNP348ssvT84555wIsJ977rm57yfQTkIayWsE5WnfxkBS3pOJTvs2UC1+++23x8dUlBMgp2qMarMpU6Yk7du3zwX5qTan3RuBfLLS02Q3KswZBn7wwQeXy1yXVFzMRJckSZIkSVK1QfZ2GkAHgW36oU+cOLFcFTjzSAiwk3me+vHHH5N99tknPuZrzCfBaaedllxwwQUxE4XgO5g7dtJJJ8XHBNn5HKNGjYqWrUiD6LRUXX/99ZNGjRpFYJ42bejevXu8SSpuBtElSZIkSZJUrZFVzlywfFdeeWXSo0ePXKAcZIm3bds22rqssMIKucd//vnneJ/fLpXMcwL2Sy21VGS+p0H0bbbZJmaV8T7F8xguKqk02c5FkiRJkiRJmg+C4rRzYcBofpb7r7/+mptLJqn6MoguSZIkSZIkSVKG/zZ9kiRJkiRJkiRJ5RhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJksyvLEEAAAIwSURBVDIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkjIYRJckSZIkSZIkKYNBdEmSJEmSJEmSMhhElyRJkiRJkiQpg0F0SZIkSZIkSZIyGESXJEmSJEmSJCmDQXRJkiRJkiRJkpLK/X+EecYUVBfrCQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qmc1eP///8L0SKhvSwtpD3tGymklCQSkkq2yNZmTRRSKLIl6oMkEUVR2ihbq/bSTmmV0kJZM//b4/r+rvf/PWfOmTln5mwz87zfbqOZM2fOec+Z4329r9f1ul6vY1JSUlKMiIiIiIiIiIiIiIikcWzam0REREREREREREREREF0EREREREREREREZF0KBNdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFRERERERERERERBREF5Fg9uzZYwYPHmyuvvpqU65cOXPMMcfYDxEREUl+f/31l3n88cdNhQoVTL58+Uzp0qXNbbfdZsd3ERERSX6bN282AwYMMG3btjWnnXaanY+XLVs20YclIgGOSUlJSQm8UURyj7lz55oLL7zQDtRMwLdv326OHDlidGoQERFJbv/9959p3bq1mTFjhmnYsKFp2rSp2bhxo/noo4/swviCBQtMsWLFEn2YIiIiko633nrLdOvWzRx33HGmcuXK5vvvvzdnnHGG2bJli143kSSici4iuRyD9JdffmkOHjxo1q9fbwdrERERSX5jxoyxAfSOHTuaefPmmSFDhpiJEyeaESNGmB9++ME88sgjiT5EERERycAFF1xg5s+fb3777TezatUqc/zxx+s1E0lCCqKLxBnbsthu7V91Jgucfx2+rlSpUlyOp0SJEnbQPumkk+LyfCIiIjlRIsb3UaNG2X8py+Yvxda9e3dTvnx5M27cOPPHH39E7flERERyukSM54zZ7CjLnz9/1B5TRKJPQXQRERERkWzmzz//NAsXLjQVK1Y0ZcqUSfU9JveXXHKJOXz4sPnuu+8SdowiIiIiIjlFnkQfgIhkbPjw4ebAgQNhv1Tt2rUzNWvW1EsrIiKSQ8d3mpBRE51+JsG426mR3qRJkygdsYiIiATSfF0kd1AQXSSbDMpbt26NaAuagugiIiI5d3ynlwlOPvnkoPctVKhQqvuJiIhIbGi+LpI7KIgukg1kpSv33Llz7YcfE3Cy2URERCR7ju8iIiKSHDSei+QOCqKL5HAE0AcOHJjqtq5duyqILiIiko25DPRQmeaHDh1KdT8REREREck8BdFF4uz44483R48eDfn9I0eOePeLRo21AQMG2A8RERHJOeN7+fLlzbHHHmtrngfjbg9VM11EREQSP56LSPahILpInJUqVcps2rTJ1kAtU6ZMmu9v2LDBu5+jGmsiIiLJLd7je/78+U39+vXNggUL0jxnSkqKmTVrljnxxBNN3bp1s/ibiYiI5B6ar4tIKMfqpRGJr1atWtl/n3zySfPff/+l+h5fDxo0yH7esmXLVDXWmBCH+3HjjTfG+bcSERHJ3RIxvt92223234ceesh+33nttdfMDz/8YDp16mSD7SIiIpK847mIZA/HpPivuEUk5n7//Xdz/vnnmxUrVpjq1aubkiVL2myxFi1amN27d5uVK1eahg0bms8//9wUKFAgLn8R/yD+0Ucf2Tqq1E13HnzwQVOpUqW4HIuIiEh2lIjxncl869atzYwZM+xjN23a1GbDT5o0yWatL1y40BQrViwqzyUiIpIbJGI837t3r+nbt6/39dixY+0i+NVXX+3dNnToUFO0aNGoPJ+IZI6C6CIJGpifffZZM27cOLN582Z7G3VN69SpY7p06WLuuOMOc9xxx8XteI455ph0vz9nzhzTrFmzuB2PiIhIdpSI8f2vv/4yQ4YMsRPubdu2mcKFC5s2bdrYDLoSJUpE9blERERyg3iP52SylytXLt37/Pjjj3aBXEQSR0F0kQRjy/Xtt99uRo0aZW655ZZEH46IiIhEgcZ3ERGR7E/juYg4qokukmB58+a1/+bJoz6/IiIiOYXGdxERkexP47mIOAqii4iIiIiIiIiIiIiEoCC6iIiIiIiIiIiIiEgIqokuIiIiIiIiIiIiIhKCMtFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREFEQXEREREREREREREYmMMtFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREQkBAXRRURERERERERERERCUBBdRERERERERERERCQEBdFFREREREREREREREJQEF1EREREREREREREJAQF0UVEREREREREREREQlAQXUREREREREREREREQXQRERERERERERERkcgoE11EREREREREREREJAQF0UVEREREREREREREQlAQXURERERERERERETC8tNPP5nLLrvMFChQwBQvXtzcd9995t9//83Rr16eRB+AiIiIiIiIiIiIiCS/o0eP2gB6yZIlzbx588yuXbtMly5dzPHHH2+eeuopk1Mdk5KSkpLogxARERERERERERHJbgitHjlyJCHPTSb4Mccck+H9Jk+ebDp06GD27t1rChUqZP7++29Ts2ZN069fP9OpU6eInvOzzz4zbdq0MTt37jQlSpSwt40cOdI88MAD5pdffjEnnHCCyYkURBcRERERERERERHJhMOHD5uCBQsm5LX7/fffzYknnhjWMRYpUsSMGzfOtG/f3t42evRo88wzz5gNGzaY22+/3bzzzjsZPhceffRRM2XKFLN8+XLj/Pjjj6Z8+fJm6dKlplatWiYnUjkXERERERERERERkRyKQPsFF1xgpk2b5gXRGzVqZDZu3GgD4I8//rjp27dvWI+1e/duLwPdcV/zvZxKQXQRERERERERERGRTJZUcVnaiXjucFHH/Omnn7blZygBc+DAAXs7WfTFihWzDUIlNAXRRURERERERERERDKBgHQ4JVUSrXXr1qZnz55m2bJlpnbt2ubNN9+0pVcIoEdSzqVkyZJm0aJFqb73888/e9/LqRREFxEREREREREREcnBKlSoYD+mTp1qG4uOGTPGzJw5034vknIujRo1MoMGDTJ79uzxstdnzZplG5ZWqVIlpr9DIqmxqIiIiIiIiIiIiEgORyb6559/bg4ePGi6detmBg4cGPFjHD161NSsWdOULl3aNialDnrnzp3NLbfcYp566imTUymILiIiIiIiIiIiIpLDkTHeokUL07FjRzNu3DhbiiYztm7dau644w4zd+5cW8qma9euZsiQISZPnpxb9ERBdBERERERERERERGREI4N9Q0RERERERERERERkdxOQXQRERERERERERERkRAURBcRERERERERERERCUFBdBERERERERERERGREBREFxEREREREREREREJQUF0EREREREREREREZEQFEQXEREREREREREREQlBQXQREREREREREREREQXRRUREREREREREREQio0x0EREREREREREREZEQFEQXERERERERERERkbD89NNP5rLLLjMFChQwxYsXN/fdd5/5999/Q95/y5Yt5uabbzblypUz+fPnN2eddZZ57LHHzN9//53qPsccc0yajwULFiTFXyVPog9ARERERERERERERJLf0aNHbQC9ZMmSZt68eWbXrl2mS5cu5vjjjzdPPfVU0J9Zt26d+e+//8xrr71mzj77bLN69Wpz6623msOHD5uhQ4emuu/s2bNN1apVva+LFCliksExKSkpKYk+CBEREREREREREZHsioBwKMcdd5zJly9fWPc99thjbbZ2Rvc98cQTwz62yZMnmw4dOpi9e/eaQoUK2QzwmjVrmn79+plOnTqZSHz22WemTZs2ZufOnaZEiRL2tpEjR5oHHnjA/PLLL+aEE04I63GeffZZ8+qrr5offvjBy0QnU33ZsmX22JKNyrmIiIiIiIiIiIiIZEHBggVDfrRv3z7VfSmBEuq+rVq1SnXfsmXLBr1fJJo3b26D87NmzbJfE+ju3bu3GThwoP369ttvT/f4C/qeb/78+aZ69epeAB0tW7Y0hw4dMmvWrAn7mA4ePGgKFy6c5va2bdva1+f88883U6ZMMclC5VxEREREREREREREciiy1i+44AIzbdo0L6DfqFEjs3HjRvPjjz+axx9/3PTt2zesx9q9e3eqADrc13wvHJs2bTIvvfRSqlIuBOqHDRtmzjvvPBvwnzhxomnXrp35+OOPbWA90RREFxEREREREREREcmC33//Pd1yLn579uwJeV8CyH6UOYkG6pg//fTThsreNOw8cOCAF7wuVqyYzf6Ohx07dphLL73UlpehLrpTtGhRmx3v1KtXz5aMoexLMgTRVc5FREREREREREREJIvZ3qE+/PXQM7qvvx56eveNVOvWrW0TUGqO48033zS1atWyAfRIyrmULFnS/Pzzz6ke233N99JDUPzCCy80jRs3Nq+//nqGx9ygQQObtZ4MlIkuIiIiIiIiIiIikoNVqFDBfkydOtU2Fh0zZoyZOXOm/V4k5VwaNWpkBg0aZLPpXfY6tdZpWFqlSpV0M9AJoNepU8cG8AMz7oNZvny5KVWqlEkGx6SQwy8iIiIiIiIiIiIiOVbPnj3N559/bpt6duvWzWssGomjR4+amjVrmtKlS5tnnnnG1kHv3LmzueWWW8xTTz1l77No0SLTpUsX+1ynnXaaDaA3a9bMlClTxgbv/eVtXPY6t9PwlOx4TJo0yfTv39+MHj3aHmuiKRNdREREREREREREJIejLvoLL7xgOnbsaAYMGJCpxzjuuOPMp59+au644w6blU5pma5du9psdufIkSNm/fr15p9//vEy1SnLwsfpp5+e6vH8+d1PPPGE2bp1q8mTJ4+pVKmSef/9983VV19tkoEy0UVEREREREREREREQlBjURERERERERERERGREFTORSSb279/v5k+fbqtG0VtKT6KFi1qjjnmmEQfmoiIiIiIiIiISLanILpINkQX5WnTppmxY8faOlR87VegQAEbTC9fvrytUUXNKxEREREREREREYmcaqKLZCPLly83r7/+um2s8Ouvv3q3V61a1RQsWNA2X6ArcqC2bdvaxhFly5Y1yWD8+PG2E/Sxxx5rG1LUr1/fVK9ePdGHJSIiIiIiIiIikoaC6CLZxMsvv2zuvfde899//9mvS5UqZTp16mQ6d+5satSo4d3vzz//NNu2bbMBdcq8EDz/999/Tf78+U2/fv1M3759Td68eeNyzLt27TIjRoywgf1Ro0Z5t1esWNFs2LDB+5rSM7fddpt56qmnTOHCheNybCIiIiIiIiIiIuFQEF0kyREAJ3hOMBpXXHGFufPOO81FF11ks7gz8v3339v7z507135doUIF88orr5hLLrkkZse8dOlSM3z4cPPee++Zf/75xwbJN23aZMvL4O677zY7duywCwJkpLtjo5b7iy++aDp27BizYxMREREREREREYmEgugiSezAgQPmmmuuMbNmzbKB6KefftpmkkfaNDQlJcWWUOnTp49X7uWNN94w3bp1i+rxfvPNNzbb/auvvvJuO//8802vXr1sSZk8eYK3YeD+PXr0MGvWrLEZ9wT9RUREREREREREkoGC6CJJavPmzaZNmzZm3bp1tlHou+++a7PQs+LQoUOmd+/e5n//+5+tR/7hhx+aK6+8MirH+/HHH5v27dvb7HKC5ddee63p2bOnqVu3blg/T8Y6jVK7du0aVoZ9vHYBhAr8i4iIiIiIiIhI7qAgukgSWrx4sWnVqpXZt2+fOf30082UKVNMrVq1ovLYZKXfcsstNhP9hBNOMFOnTjXNmzfP8uNSloWAecOGDc2QIUPMaaedlqXH+/nnn81jjz1mnn32WXPSSSeZaNu/f799nVesWGFWrlxp/+V1eO655+z3jxw5YpudtmvXzi48ZPX3ERERERERERGR7ElBdJEkQ/C4du3aZufOnaZevXpm8uTJtoloNB09etRmik+cONGceOKJZvbs2Tb4HSkamBLkd+VlCPrTGDTScjPBAv0NGjSwQW5KzhDwj5bffvvNPPPMM2bYsGHmjz/+SPW9Jk2aeKVo3nnnHdu0FSw23Hjjjeb+++83Z511VtSORUREREREREREkt+xiT4AEUldPoSmmgTQK1eubL744ouoB9BBuZRx48bZ5qKHDx82rVu3NqtXr47oMd5//317jDQpdYoUKZLlADp4jKFDh9p/33zzTRvsj9brywLFk08+aQPoNDrt0KGD/Zpsf14Tp1OnTuazzz6zgfW///7bvP766+acc84xDzzwQFSORUREREREREQkO/rpp5/MZZddZssPFy9e3Nx333025pKesmXL2jiP/4NKBtmFMtFFksjDDz9sBg8ebLPDycImSB1Lv//+uw2kL1iwwAbr582bZ09q6eGkSEb2888/b7++9NJLzbRp06ISPA/1epDdTsmVzJRUIavdf2xPPPGEefvtt22TVurBh3PcX3/9tT0OguruaxqmioiIiIiIiIjkJkePHjU1a9Y0JUuWtCV4d+3aZbp06WJuvfVW89RTT4X8OeJNN998s72fQ/leYmDZgTLRRZIEmdAEakHjz1gH0FGwYEEbAKf2Nyc9mnrSGDS9EyUlTlwA/cEHHzSffPJJTALoGDBggM0c//XXX205lfSOLZhFixaZpk2bms8//9y7jdXRNWvWmKuuuirs4yYbndfptttus1+PGTMmwt9ERERERERERHIydvqH+vjzzz/Dvm9g6dlQ94sEpYIpVXvo0CH7NTvuq1SpkmpHfrhmzpxpvv/+e1sGl2A6Pf1IWKRSAY+bHoLmBN/dR3YJoENBdJEksHnzZrtqh3vuucfWK4+XU0891Z5MOXFRD3zEiBFB70cAmxXD9957z+TJk8d88MEHNujP57HCCZ4Tev78+W3ddkq7hFtXnrI41FUna/zRRx/1vpcvXz77uJnRv39/M378ePPaa69l6ucz83xnn322GT58uN01ICIiIiIiIiLJiUTFUB/t27dPdV9KoIS6L0HpwAzuYPeLRPPmzc2xxx5rZs2aZb8mLtK7d28zcOBA+/Xtt9+e7vEX9D3f/PnzbTJmiRIlvNtatmxpA/QkLaaH8i2UAq5Vq5bNYs+oBEwyURBdJMFYYeRkevDgQdOoUSN7Eom3cuXK2fImoOb3Dz/8kKYkSo8ePWwGNvXUCaRfffXVcTm2SpUq2Yx0jB49OsP7f/vtt/ZkzDGSaU52PZ9HA01Ur7vuOjvwRAurx5SJYfBiEJozZ473PZq9ssDSq1cvc+aZZ9qg+p49e6L23CIiIiIiIiKS85E4ecEFF9hd9g4xqI0bN5off/zRPP7442b58uXpfji7d+9OFUCH+5rvhULSKPEZ4h7du3e3pV8oF5xdxC6FVETCrvu9YsUKU7RoUTNhwoRMZ0ln1R133GGzy7/88kubcU4JFBcsJhhdoUIF+/XYsWPTrKDG2i233GJP+DT7DIVA/wsvvOA1s3DbkthaFAtHjhwx27ZtMxUrVoz4Zw8cOGCz2adPn27r0Pu3O7Et6sILL7SfM8CxHYpMdAY2GqDScJXSNvyeNEYVERERERERkcRLbwc5CYl+6SXIBSbubdmyJQpHZ2wjUBIoXe84YhMgy7xYsWI2Oz6Wevfu7X1eo0YNG/8imE6Vg7x585pkp8aiIgnENpdzzz3X1hpnNTBwy068kfXMiYwAMWVdCKz7rVu3zmaGJ6NPP/3UXH755fZzssVHjRoV8famcNGIlaakbEFiASRwMMzob96sWTOzd+9e77YyZcrYBq9sr7r44ovtgoof7w9K7jDYUefdleHhsWgIKyIiIiIiIiKSHpLzzjnnHLNkyRLbf46ExaVLl9oPyrlQ4zycRYJHH33U9vXzZ6eTzU6iH49FdYBwENOoVq2ajTVlJkEx3hREF0kQVv4InJLxTUB20qRJSfG3eOmll+wWGzK/OTHSTPOUU04xycStmgbeRl35+vXrm7vuuitmzU7Bai0lcPh34sSJtklpuMiSZ+GE473zzjtNixYtbN3zcI6Xn6FuPQsEV1xxhbn00kttUw4RERERERERkYwQRO/cubONRzVp0sTbDU9mvGs6GsrZZ59t/6UkbZs2bcyuXbu87PXXX3/d7pjnccLNKqd6AHEckgxJFEx2CqKLJAhBc8qicHJZu3atDcomAxqIkilNQ07UqVPH1hlPhq01BKzJxma7DyVnPv74Y3uyP/nkk0MG12OFGvGvvvqqrSFPY4z0VnopwUKpGZqaYuvWraZ06dLm+OOPj8uxioiIiIiIiIj07NnTJnPSl69bt25eY9FIHD161JbOJa7xzDPP2DroBObJbKfOOdhFT4Cc5zrttNNsM9KFCxfaGA7JgHxN/zcqMtB/LztQY1GRBDUTdbWgWKlLlgC6q73VsWPHVKuUyRBAx6ZNm8zixYttPfF7773XZvDfdNNNNniOeAXQ4bYacUzBkKXep08fU7VqVbsiSxDdX74l2QLo1GWfPXu2bXQqIiIiIiIiIjkPddFXr15tzj//fDNgwIBMPcZxxx1nS+ryL81Jb7jhBhswpzmpQ5ng9evXm3/++cd+TVyJpqJNmza1cZJBgwbZIDrxkuxCmegiCfDEE0/YUimnn366rf1E6ZRksWrVKnsSdMFUgujUqcqTJ/F9iH/++We7gsmqp78xKyfqSOqSR7MGO6uvy5YtS1WuhXIr/H1d3fPWrVubYcOGRbWePDsFaAJLVj4NQLKK34P67tReb9u2rb1t5cqVtv47Wf/xfn1FRERERERERJKFMtFF4uynn36ynYdBmY9kCqAT9CWASgCd1UEaZ27YsMG89dZbJhmwglmgQAH7OV2cCfiyepmIAK+rBUYmusuEJ5ObBhqUeuG1rFy5sq0VNnXq1Kg3ZKWeev/+/W2N9Ejs27fPrjZ36NAh1e3UQitRooTZv3+//Zrf6e6777ZB+n79+kX12EVEREREREREshMF0UXijPItlHO54IILzDXXXJM0rz8B6quvvtps2bLFnHXWWbb+uAueUiPrzz//TOjxkbHfuHFj89tvv9mvCfi6jOlEoAQP5WPoTk3jDGrJkxHPtqjChQvbBq1kdtP8MxYIesPVrg+FrH33moEdBSw8fPjhh2bz5s3e7Szs7Ny503Tt2tV+ze9Dw9RSpUqZO+64Iya/g4iIiIiIiIhIdqAgukgcLVmyxEyYMMHWHadGdjxreIeTIU/WOQ0eyPAmC53g6RlnnGG2b99uRowYkbBjIxBMQHfbtm2mQoUK9nXjc4K+iUI9r759+9qmotQ3529KZ2luo5noXXfdFdO65y6I/s0334S8D4086tatazPKHZqwsjjyxhtvmKJFi3q3FyxY0P4ODtn91J1nUYUa7iIiIiIiIiIiuZWC6CJxRAYwaNxJDepkQvb5d999Z6ZMmWKbPCBfvnzmscces5/TYfnQoUMJOTYCum+//ba5+OKLzbx582zJFERayiSayNQmG/6XX36xmedgweHZZ5/1vo4lmoCAeuz+THM/FhuWL19u/6a//vqrdzvlXOjCTUA9I5TNcbXyqUfP30BEREREREREJDdREF0kTijz8dFHH9nAJs0wk8Vff/3lfV66dGnTrFmzVN+nvEfFihVtLW2aY8YTZVIcMqpnzZpls6fbtWtna3qXLFnSJMLu3btNq1atbNY5r8nChQvjfgz8rQhwE8wnkI9du3aZL774wrtPvXr1zJgxY+wOg6wG9vlbkPnP7y4iIiIiIiIikpsck+I64olITF1//fVm/Pjxtu74Bx98kBSvNkFR6ow//fTT5tprrw15P46X+u2U/Pjhhx9MsWLFYn5sL774oi07QrPOBg0amGQxffp0u7BAUDl//vw2kE5tdoL88USJHTLfydKnxv7KlSttnX2OiVrn4WSZR4La7wTj//33X1O/fv2oPraIiIiIiIiISDJTJrpIHBB8fP/99+3nrllnohEMJbC/detWW9ebuuOhtG/f3tSuXdsGUp977rmYHhfreo888oitx83zffLJJyZZMvb79OljM9AJoFevXt2WuHniiSdS1RyPl02bNnkNTqm9fu6559ra5dSM37t3b9SfjwUU3gMKoIuIiIiIiIhIbqMgukgcEKSm7EabNm2Sphb6448/br788ksbHCXAT0ZzKDSc7N+/v/185MiRNrgdqwB67969vdrx/EuQOtR9169fbzPjY43nuuyyy7wFBJqG0rSzfPny9mv+tvHE8VCfnmar77zzjr0tT548tpQLNeOpby8iIiIiIiIiItGhILpIjG3ZssWMHTs2qbLQKZHy5JNP2s9fe+01c84552T4M5dffrnNcj5w4IB54403YhIY7tmzpxk+fLgXrKd2PDXkg3nwwQdNpUqVvPvHEsfQvXt3U6RIETN58mTz0ksv2aarrp583rx5TTxRn57mtJMmTbJlXRxqxId6vbJq7ty5Zty4cWbjxo0xeXwRERERERERkWSlILpIjFFvnNIpzZs3Nw0bNkz4601jyBtuuMEGrW+55RZb0iUcZKr36tXLfv7888/b3ylaOBZKolAHnSDw6NGjbdA6Pa4GOdn0sXDkyBGzZs0a72samVJChfrnzt9//x23IPpvv/3mfU5zVUre3Hfffebiiy828cCiBu+bqVOnxuX5RERERERERESShYLoIjFE7WyXtU3QM9Goe96pUyfz888/m2rVqpkXXnghop+noSbZ2GTXf/TRR1E7rn/++cc+pgug33zzzRn+DE00sWrVqqiXl6FO/Pnnn28uuuiiVJnep5xySqr7uUz0E044wcQKpWJGjBhhzjzzTFtb3+F3Pumkk2xT0XigBjwBe3YjiIiIiIiIiEju9dNPP9mytwUKFDDFixe3SX7pJVuyu52YT7CPxYsX2/u4uFDgx4IFC0wyUBBdJIZef/11m61cr149L+ibSGR8k8FNHfQJEybYk10kuP+dd95pP3/22Wft40UDQeiJEyeazz77zNx0001h/UyJEiXsB8ewbt06Ey1z5syxr9GyZctsAHvHjh0h7xuPci4MGJRtoYzOmDFj7G0cF7sBHn300ZjVpw9EKSLKADFIioiIiIiIiEjudPToURsbIN5FXzZiFW+99ZaNUYTSuHFjs2vXrlQfVEcoV66cV2nAIfbgv1+dOnVMMlAQXSRGyK5+9dVX7ef33HNPzGpVR4Lmk5SXoa515cqVM/UYBNEJGrNS+M0332T6WAgEE8h3gXges2XLlhE9hvsdvv/+e5NVHAeZ+ZdcconZu3evqV27tlmyZIlp0KBByJ9x5VyinYnOa8OgBN43//vf/2wddtdklUGEDHRK7JQtWzaqzy0iIiIiIiIikTt8+HDIjz///DPs+wbuOA91v0jQ343YxaFDh7x4RpUqVWzvs0jNnDnTxmHeeecdU7NmTdOqVSsbr3jllVe8OEkgnps+bu7D9Zzr1q1bmngZ3/Pf9/jjjzfJQEF0kRghe3jnzp02W5p62onEydW/rYaTUGaxTYeyLhg6dGimg8S33Xabufbaa+2Wn8zihI+1a9earGCAuvHGG21jU4LX1P5mgYASKumpX7++6d+/v7nqqqtMtGzevNmWkSHT3ylTpoy56667zLHH/t8p2zX3JIAej8GE1+eXX36J+fOIiIiIiIiIZFfs+g/10b59+zSxlVD3JSjtx9w/2P0iQZ8+YgqzZs3ygtq9e/c2AwcOtF/ffvvt6R5/Qd/zzZ8/35Z8Jd7lkBRJgN7fWy49U6ZMMfv27bNB9ED0ouP1ocwu90sWCqKLxAiZw6BBZjwaT6aHk2GTJk1sgDYaONGCk5kL6EYaQCe7mhM4Gd9ZDaJnNRP9qaeeMm+//bbN7H7uuefs5/nz58/w5xo1amQef/xxc80115hoIXhPs1SC6P5mon7uNY9XfXJWl08//XTz8MMPx+X5RERERERERCR6TjzxRFtmeNq0aaliGsQXfvzxRxvbWL58ebofzu7du1MF0OG+5nvhICZE4J1Yg0OgftiwYeaDDz4wU6dOtUH0du3aJU0gPU+iD0AkJ1q6dKn59ttvbfkUAtiJ9P7779sgKAFrGoqeddZZWX7MihUr2pVRapi/9tprYWekUzKlR48eXgCd4+rYsWOmj4MBgJpbDRs2NFnx4IMP2jpeBIlpnhlvLCy4LPMuXbrYxQ4y42kcGsymTZvsv2effXZcjo/3Mluy2FIlIiIiIiIiImml17OMpD2/PXv2hLyviw84NNyMBuqYU+KX2AwlVOi95oLXxYoVs9nf8bB9+3YzY8YMW+LXr2jRol7SJugvSIUHkgzJTk80ZaKLxDALnQzlUqVKJew15sTkgvg0hqSRQ7Tccccd9t8333wzTb2uYDhJUxueoDsn67Fjx2YpgA62D7H1KHCrUzjHwuqrq8fOiiyNKyINoFObnFIybEHKbPCcOuysrrq6Ybw2rACXL18+5M+tWrUqrpnoNAhZtGhR2E1fRURERERERHIbYguhPvLlyxf2fQN3xoe6X6Rat25t4xjLli3z4jm1atWyAfRIyrmULFnSJmn6ua/DKR/M85KkF05gnD51LpEw0RREF4kyakePHz/efn733Xcn7PUlQEvtclYWWb2jdnc0cfKlZvivv/5qt9pk5P777zcvv/yyDRJzwrz++utNIvz111/m1ltvtSuwgwcP9m7PTONXVnApKZPZ2vC8djTfoJ5YuM08qNnugugXXnihiRfeQ6eeemrcnk9EREREREREoodEPD4olbJgwQIzZswYWz4FkZRzadSokY1L+LPpqbVeqFAhr+xuKCQzEhNiF344Pd543kQmp/qpnItIlFGqhEAtQUdWzBKFDOcvvvjCFChQwJZNiXYDSrYiUdv8kUceMa+++qo9Aabn3HPPtT/DfV1j0mhga8+KFStMuXLlTKVKldK9Lyd4moBSnoTtUVmtVe+2PoUquxKM2zbltiqRmc/CC+VbwsFryFauxYsXm2rVqplYOnLkiG02QlkiEREREREREcneSIikjMqoUaNsSVuXnEcpl3DLubRo0cIGyzt37myeeeYZWwed2NCdd97pxVnYzU6c6PPPPzennXaa97PEqajBfsstt6R5XIL6xCDIjsekSZPMG2+8YUaPHm2SgTLRRaKIAKn7n5tyJ5nJbo4GVgSp8w1WFc8555yYPM/NN99sA6ysYPpXJYO54YYbzPr1620WeDRRE51BwGX/p/ea1K9f3wbQTz75ZFvPvU+fPlkul4MzzjgjrPuzBalZs2Z2MHHo0M22qUjeKwTSqQMf6/cXTVbpAk6jVRERERERERHJ3tiVv3r1altWdsCAAZl6jOOOO858+umn9l+y0on3EDAnm92flEcM6J9//kmTeEqp4VBJkOzWr1Onjk1KnTx5su3z161bN5MMlF4oEkVz5861TSHJTKYeeqKwckeWMlteunfvHrPnodYVmd2sYpJhTla138iRI80VV1zhbb2JRlPTQO7Eu2HDhpD34eRO/XWafNCM85NPPskwaz0c27Zts//6u0mnh8Hgq6++srXhKeESaRDc1XCP1+LMxx9/bHbs2JGmqYmIiIiIiIiIZD+XXHKJF1vIijJlythec6GQQBjsed59992QP0PVgmhWLog2RUZEoshloVPvOzNNHqKlYsWKNkhL885YB1xdg1Fqeh86dMi7nS09fK9p06bpdqiOxonbH9AORNOMq6++2h4D25QWLlwYlQA6g4F7znAz0YcPH26D+aykZubvQrY/dej79u1r4oGsfQY4Xj8RERERERERkdxKQXSRKKFJ5MSJE+3n0S5ZEi62y/iz0ePRCJIgeeXKlc3hw4e95pgEix944AH7ObW+/V2co80FsH/66aeg3ycL/pVXXrH122fMmGEKFy4clefdv3+/+eOPP9LNRGdnAs1HHf4eBKVd4D9SZNBTQobdDvFALTOC/oFdxEVEREREREREchMF0UWihAAyDUVr1qxpateuHffXlaBu1apVbY3wwJpTsURGtVs0oLYVAetevXrZrx977DHbqCKWyMwGZUf+/fdf+/nevXtTlXehdjulZqLZXNVloRcrVixokHndunXmoosusrXpCaZHA2Vp0KZNGxNL7nUUERERERERERFjjkmJRiEckVyO/43OPfdc27zy5Zdfth2J440SMjTXpOb3smXLYpr9HYigdenSpVMF7x966CEzaNCgmJeT+e+//2wQm+cmG/23337zgsyUbiHIHQtkhNM5Gv369Qt6HxqGcnzPP/98lsv7UJaG19h9Tj36WLn77rvNihUrzFNPPWWbjYiIiIiIiIiI5GZqLCoSBd99950NoBPMJZgdb5QIIYBOZ+R33nknrgF0FC1a1GbfE7RGnz594hJAB00vTzvtNLNlyxZba5zmndRmL1eunM3Oj1UQnRIu/uA5CynsRmjXrp33+o8YMSJqTTldw4569erFNID+999/2/cT5YlcuRoRERERERERkdxM5VxEomDUqFH2XxowxqMOud/WrVtNjx497Of9+/c3DRo0MIngsu+po00gOx4BdGfAgAGmU6dOtg47AfQLLrjALFq0yJxzzjlxOwaytzt37mzuvfde77ZoBdBdPfR4lHKhlv7KlSvN0KFDzcUXXxzT5xIRERERERERyQ4URBfJot9//91mgeOWW26J6+t59OhR07VrV3Pw4EEbPA9VViQeyMCn3Ah14SdPnhy356WMy7x582wWOKVTbrrpJjNr1iybHR9L7DxYs2aN18y1Q4cOdicCTVajXSXrzz//tL8TLr/8chNrZPazmyCaiwAiIiIiIiIiItmVIiQiWTRhwgQbSK9QoYLNgI6nYcOGmS+//NLW26aMS5488a3Q9PHHH9sSKqCUDA08XYPReHnkkUfM66+/bjPfeT1Gjx5ts6lj7a677jLVqlUzH330kf26adOmtqRM3759o56Ff/jwYXPbbbeZJk2a2Ma1saKGoiIiIiIiIiIiaSmILpJFBG1dFno8S5igSJEipkCBAuaFF16wDUXj6dNPPzXXXHONzUD/5ptv7G3dunWz/86ePdsGlOPh/vvvNzVq1LAlXapWrRqXv8G2bdu8+u+FChXybi9RokTM/s40J/3qq69i9vuRPX/JJZfY9/HPP/8ck+cQEREREREREcmOFEQXyQLKecyfP99mgHfp0iXuryWZ3+vXr7clTOJpxowZpn379raUCoH0Ro0a2dtp5unqaL/55psxe35+Z3+AeeDAgeaxxx6zNeHjgcA5ZWvAa5ATLF682MydO9eWxaG5qIiIiIiIiIiI/B8F0UWywJUtoU51yZIl4/ZaugAuTj/99LhmwH/++eemXbt2NtBKIP3tt9+2pVwcV9KFIDo126PtlVdesRnnI0eO9G5zr30sM6gp2ePs3r3b/ps/f377WsTSihUrzPTp02PyWvrVr1/ffPvtt+bll182Z5xxRkyfS0RERERERESyr59++slcdtlltjpC8eLFzX333ZdhidilS5faHfCnnHKKTYikbK0/1uJiTo0bNzYnnXSSjfU88MADaR6XssqUuuW5y5QpY5599lkTDwqii2QhkE0AOd4NRadNm2YqVqxoS3vEG/XXWTCg0WXbtm3Nu+++a44//vhU97nyyivtCZGSJ5R1iRYyvu+8805bi5yA8nfffZemjMqePXui3tQTM2fOtDXvP/zwQ/v1unXr7L80EY11882hQ4eaVq1amQcffNDEGgOVWwQREREREREREQl09OhRG0AnuXLevHlmzJgx5q233jKPPvpoyBdr586dpnnz5rYUMeVxSRakusONN96YKomwdevW5tJLLzXLli2zPfimTJmSKh7y2WefmU6dOpnbb7/drF692owYMcKWvyUhMNYURBfJQlPNffv2mdNOO820bNkyLq/jL7/8Yku3bN261UyaNMnE0+bNm+1J8o8//rBBXVb+gjXwzJcvnz2hRbPBKL83q5WcHMm6f/rpp82oUaO877PqCYL7gauY0Vo8IPt8+PDhNkjvguiVKlUysXTo0CEzceJE+3mHDh1i8hy8Xr/99ltMHltEREREREQktzh8+LD98Cf3EWjmNn9FAf99//vvv1TJg9xGbCOc+0Zi8uTJNoZDnMEdV5UqVWxJ18wkGn7//ffmnXfesRnhxIieeOIJWzkgVHlY+uqRhMl9SAytV6+erTBAzGPTpk32PgTN6XlHMJ5ge9OmTc0zzzxjf8bFLcaOHWsrAhBEL1++vI1TPfTQQzZOFIukSj8F0UUyyQWIaabpL2cSK5wMXNNHypkMHjzYxBMnJ35XgtkE8PPmzRvyvi6bmYWGvXv3Zul5ly9fbk+uBLLZzsOJn2ai/hI2J554ov2IZkkX/8mXpqVDhgyxAwXPu3btWi8TPZY++OADu2jB8/AaxALvIwYnFkVEREREREREJHMKFixoP/xxEEqNcBu76v1IBuR2yqI4BIu5LXCHeNmyZe3tLhYBMr8jQRY4O+lnzZplvyag3rt3b9tjDgSl3fGH+nDoDVi9enWvKgBILiVAT3Z5MCwi8Jz+3fyUyMU333zj3YfETD/uw6LCkiVL0r3P9u3bbcJpLCmILpIJW7Zs8U488WrqOXr0aLuNhZMOK4XuZBMvBI9ffPFFewyBJ6xAtWrVsh+sjLIymZUM9CZNmtgTodvyQzmZYPwlXbIaPGfguv76671AOqul1OGi3ha6du1qV1lbtGhhYskNimxvikXde7ZgTZ061b5m6S2KiIiIiIiIiEj2ReLhBRdcYEsEO40aNTIbN240P/74o3n88cdtEmN6Hw479f0BdLivXQ+5QBdddJH9HosKZKvv37/fK9Oya9cuLxBPeZjx48fbeMWOHTvscQXeh8ROaqeTmb9hwwYzbNiwVPeJlTwxfXSRHIqmmW4lr1y5cjF/Pk5qPXv2tJ8PGjTInHvuuSYeOLnyuxK0J3hPIDejALrDyikrrWTs33vvvZkKAhcrVsz069fPzJ07155ETz311JD3ZRX3hx9+yHImOtuIevXqZRcACKQHC9pfeOGF9iOWOA5WY1mlveGGG2LyHOygWLx4sfnoo49sjXsREYkvJhAsZFJa68iRI96HO0fnyZPHfpD5wxjIB5/Hs6G4iIiIiITHlZd1CXig4SbxHK7p/FwCoD9Bkj5wt956a5pqByRyBt7XX0s8XJQ+cWVPuJ48cOCAvZ3rS+IvrlRuLFStWtXWTif7nfIr/I733HOPDb677HQSFQmykxXfuXNnm+zXv39/8/XXX3v34fWh3HCbNm1s3KZQoUI25kQFgVj3rDsmJdYFY0RyGFbD2ErDVhECu9ddd11Mn4+TwnnnnWeDnQRuadYZ6xODK8VyzTXX2OenuWWfPn0i+nlWFUuVKmW32pBBXr9+/bB+7uDBg3YL0BlnnGG/5hTF6mJGJXMIBFMjq1mzZubMM880WUHGPVgEiMdrHQwDxZNPPmlri/lXikVEJPvgmoGFcDJk+OBzFknJkmHR99dff434MRkPaeBNLckyZcrYD1cjk4kPkw0+Tj75ZDup4IOsI+04EhEREcnduBY955xzbGmU2rVr25LBS5cutR8ErjOqJPD7/1skoGY5VQr82elks1MGmMeiMkF6uA4mM55APteq7733Xqo+cMSBuF4mgYQFBGq3L1q0KFWZW66zyWwn+E9WOg1JWZjg61hRJrpIhCjjQgC9cOHCtplBrFH7iYAyJztW7eIR1KWZA9nP//77r7n22mvt6mCkONm1b9/evPvuuzYbPZwgOvW9rrrqKpv1/u2333rZduHUnL/yyitNZl/fxx57zK74uuB7er8vJ/BVq1bZ+l8spsSKq/eVmdXljDAgffXVVzaoomxGEZHooaYl59fvvvvOfixbtszLLA+FrCQmD2Qs8UGGEedmJhdMVFiMZkHb5b0wYaCxOVtd+QgH93dBdHa0cS3DZMR9VKtWLaaZRyIiIiKSeBUqVLAflHVlRyQxJnq/gbIpffv2DetxGjVqZK8pCVq7a0iuL7mm5doyI670yxtvvGGrHdB7z49r4dKlS9vPSV4lJkbQ34840Wmnnebdh2OKZQAdCqKLZKI2OQgyh1vaJCtopvnhhx/aVT2XnR1Lr776qg0oM1nnd6ScS+C2o3BR0oUgOie05557zmv+GQwrj6yCkk13+umn24WKSpUqmVhjtZWBg2z5OXPmZBhUZrAhQ50yL6y8xgrPwwouW56i7bPPPrPbuBiopk+fnrBsexGR7I5Mcs6jX3zxhR1DKCsWiMA4WeNk/biJC+Mckwd2XxFoJ+DOQjJBcXdO7tSpkx1D/QiwM1FhPKWGJIF2FnfJvuFfFoYDMa6xqE12DmXoGO9o1s2HH+XpGjZsaIYPH66AuoiIiEgOxTXhhAkTzKhRo8zDDz/slarlGjPcpIoWLVrYYDklV5555hmbEf7II4/YWJJL3CBzvEuXLvY61QW7X375ZdO4cWObMEnQnVI3Q4YMsbssHcq5XHrppfaamNrnfJ/jdcmVNG0lRkYVAq59iVl98MEHaa5tY0FBdJEIG126wGlgt+RoI5jMxJvJLx9si4klguZPPfWUPfHhjjvuMC+99FJYWeChcFJjUs4CACc5GnIGYvWT1U6eyzWbIGgQ2KQiIwQSCDoTYOB5w8XvS+3x+++/P6ys7HXr1tl/K1eubGKJY6lTp05MHptGrSwAUVtfAXQRkcjPoZMnT7Zlz8g6JzPcYcysW7euDUZzDueDALobS8lU//TTT+2CNRf6XFf4UfLFLSCzkN2gQQMbfKdkC9k4ZPcEG6sYwxkHCZBTM/KPP/4w27Zts0F5stDpLcJHMExaCOYzVvMYLHwzRjCJcqVj2H3Fx/nnn29/NxERERHJnkioe+GFF0zHjh1tHfHMOO644+w1LXEjMsBJ8CDe45qAgt2Y69evtzsqHQLrVAJgtyXXvK+99poNxAcm/ZHlzm5MYhZcd1Pm1o9ESOJIXAPz/FznhltCOCtUE10kAmRTUxucOkz8zx8rTMjJEmYryuuvv27rmsYak22ynqkrTj3ugQMHRqXUB3W9ebwmTZrYYIMf2ebUvVqwYIH9mlVQTrqZCdxTgob69MGeJ1iw3X8SpmxNuNn2F198sc04ZNtRt27dTLQR+KCubXpZ+9HAa8/qr3/FV0REgiPITIbL22+/bYPUfpRCadmypV0EJshMoNvhwp4Pt2DJgi3ZNQ6L5WTjcPFP8J1MIHagZYTAOJk5lP6iFiULvByjf4H4iSeesM9NpjwZR8EwzvO8HBOL2jwejZ7SGwNZFGfsYLyi/Bk/z3URk5ysLLyLiIiIiCQzBdFFwsRElCAz261ZLbvtttti9toRwGZFkEAqAV+y0OKB1buVK1dmqgZ6esFaMugIDLMK6f9drrjiCpvZz2ScwAQlUrJy7AQfyPhz2eKB2GZPBh2rngQKIs0m5z1AZh7bh2j0SuAg2qgfT+duVlVZoRURkcTgnD9//nzzyiuv2IC1K5VC4JlgOX1RGMfOOuusND9H7wzKlPHBYjhlVEC/DxaM2QLLmMU4Qh+Q9Bw4cMD+HL1GCLiD5qSUhfHjuOjVwTjIorLb/UUWz/fff28X5NleS/kYfh8acvPYDnUm2WVHdhK/A+P3888/b7Pbd+zY4d2P4+U+7Pq69957vdsZy/mdSALg9w08PhERERGR7ExBdJEwMZFm8krWGF2C/Zlm0TRjxgybJc0ElsBy4NaWaDp06JCdiAc2aIg2MuDYkkO9K+plOUzQqYM+YsSILJerIUDAIgeT+P379we9D4F8amtRr4vM9UiD6PxcqVKlbEYhGfu8F6KNTHrKy1D364EHHojqY0+cONHUrFkzTcBHRET+fwTLKWlCzUYWsh3qPlLXkVrl1DQPRED6nXfesfUlWZB2WHRn8T1c7I5ioZbrAbLI+Zzx65prrrFjF/iaID7HVKtWLTv+nX322RH1aiHznEZS48aNs0F1vgZjG8/FTjFKpHGNQNkZnpuak5s3b7b343lLlixpS9SwSE1mut/QoUPt7j0RERERkZxANdFFImwoysQyVgF0JqJMzgmgd+/ePaYBdALYZJK5mqmxbOLJ70IQncACtc7dpJogBAGCaHA11AliEAhwmX00ayNwTLkWgt8ERsjwz0xTWBcUIbsuFgF0auESQOc4qYUbTSz8EPyhHhkBGbbdi4jI/49dSiNHjrTBX0p/gbHi+uuvt/UeqW8erMwZC7fsIKLhkctWZwxiAZlak23atAm7lBsLy+zQomGpH+MOPUYcxonMNrdmjOTnOUaOjedlh9WaNWvs7039yrfeest+gNeEcbxfv342G56GUSCjPRCZ+ZSVIXOe145A+5lnnmmOP/54+5y33nqrTUiIdckyEREREZFoUxBdJAxkHbvsr1g1FGW7NVlf1Dlloj58+PCY/W0IBjO5Z3s2wWcmzLFEsL5w4cI2KECZEkq6ZKV0SzBM7AmUk8G3Z88eG6CnJA411mmY+uCDD9r7FSlSJNPP4YLoNWrUMLFAoALsRHDdq6OFDEGy3AluxOr4RUSy6xhPcyVKl7jg9RlnnGGDxQS1Mxo3WFhnMZoAOs03CRSzEMq4lFEwe8WKFbaeOKgnzq4qjoGfpSQKu6co/RIs8z0cBMfJpifgTe10PjZu3GjrulOHHTt37jSzZ89O9XMsFrCgj9tvv91MnTrVjqcsuFMqhu8x3vLB4iwL1oy9NJi68cYb7es5Z84c7zkd6sqD34eFdX4/EREREZHsQEF0kTCw1fnw4cO2zuh5550Xk9eMZmM0K2XiTNOuzGRKh4OM8GuvvdYGDShnMm3aNFtDNVZ4nrvvvtsLTNAwjSBDtJHhRiNWMq7JpGOCTokYJvpbt26NynOwC4HHpS56tBHkdll/PXr0iPrj81qQ9U8Jn2g0jBURye4I/lKvnD4klCsBJVGoWc6usGC1ygl8U2qNsiaff/65HasJfr/66qu2WXODBg3SPccyJrEbaMyYMXZxnjGSMcs1eR40aJDN2uZaI9yG18GQpc6uL0q2BUOPEhdEpyEqrwMZ4ywelC5d2i4MrF692mblcw30ySef2A8W+2lYyvWQ36xZs+yxf/nll7a3x9ixY23zbWrCM/5zPGSn8/u63XAsbvN6EEgnuE4A/sorr7SLBspUFxEREZGkkyIi6frvv/9SqlWrRjpWyvDhw2P2an3zzTcppUqVSpk6dWrMfo9nnnkm5ZhjjrG/S9OmTVN+/fXXlFj68ssvU8466yz7fMcee6z33MuXL4/J89WoUcM+vnsN+Z0XLFiQkh28+eab9tjLli2b8u+//yb6cEREcizGhkmTJqVUqFDBnnf54PNx48al/PPPP0F/5q+//kp57bXXUsqUKeP9DOftcB04cCDllVdeSTn33HO9n+ejZMmSKfPnz8/077Jhwwb7uFdffXXK9OnTvdu/+OKLVL/bNddckzJ48OCUzz77LGXbtm32NQjXunXrUjp27OiN4Xny5Enp3bt3yv79+9Pc99tvv0256KKLvOc+9dRTU1566SX7PZ5z4cKFKdddd13K8ccf792nbdu2KV26dPG+zpcvn71t7NixKUeOHMn0ayMiIiIiEk0KootkYO7cuXZSd+KJJwadMEbT77//HrPHHj16tDdBveWWW2xAIJYGDBjgPd+ZZ56Z8tVXX6V06NDBft29e/eoP9+KFStSSpQokXLGGWek/PDDDynZTaNGjexrQ5Ajmlg4GTRoUMz/3iIi2cHGjRtTWrZs6Y1PxYsXTxkxYkTK33//HfT+R48etcH1cuXKeT/DWDNs2LCwx+wpU6akFChQwPv5vHnzpnTq1CllxowZIYP2oXB/rkv69OmTcs4556QKyN9zzz3e/Q4fPmwD5tFcLF+1alXKZZdd5j1f0aJF7cICr5Ezbdq0lLfeeivlnXfe8RIQ7rzzzpSHHnrIBvudnTt32kD5CSeckPLoo4/ahQQC8ywk+3+nU045JeWuu+5K+fPPP6P2e4iIiIiIZIaC6CIZILuLidztt98e9ddqx44dNvgbD0xAL7jggpSXX345ogy0zJo4caJ93W699VabgefPjGNB4uDBg1F9vp9//tlO6E8//XSbNRdtW7duTRk6dKgNXsTCTz/9lNK/f3/7e0TzmAnW8Jp/9NFHUXtcEZHshjHwscce886JBG8feeSRlEOHDoX8Gcap2rVrewFddou98MILGWZHM8b6F9137dplM6+rVKlif37fvn2Z+h0IPJPZ7Q8y87gXXnhhyhNPPJGydOnSlFj48ccfbUDejeV8ftppp3nHcP7556d8//339ntVq1a1t82aNcvuqiKY7q4H6tatazPn3eM0btzY3j5+/HjvuZ566im7c43X2gXUa9WqZX8u2tcNIiIiIiKROIb/JLqkjEiyomYn9cKPHj1qVq1aZapVqxa1x6YB2YUXXmibVVIDnWaS0bZgwQJTt25dr67qf//9Z2uHx8KBAwdsjVXqwTo0TDv33HO9rzndVKlSxaxbt8688sorWar9zWMtXLjQNGzY0LuNr2l6dvLJJ5toGz9+vLn++utN48aNbV3X7IDX6N1337W10Knhq1roIpIb0fSSZpdr1qyxX1Nz++WXXzYVKlTI8Gdpwv3NN9+YBx54wPTs2TPdWt1cK0ycONEMGTLE9uiYMWOG9z3GPeqIh3sepk8GNcip1U6DU3dOP+uss2yDaBp206C7ZcuWtn55NNAzg3GURudt2rTxbue4N2zYYGvAUz8dNBrlPlxTcG1B/fh+/fqZ3bt3mx9++ME2Ia1fv769L687NdfpKcKYRI10xiR6svC9xx57zDZX5fXjPjyGqzPPNRi/N49H81Z6h1BzvXv37rY+O/XjRURERETiIqKQu0guQ5aaqx8eTWx9vvbaa716oZs2bYr64w8cONDWL33ggQdSYomMuzFjxtgt8UWKFEnZvXt3uvenrjy/N9u8M5sRT0YhfxN+P+qrOjw39dDJeI+2Bx98MCY7EuKxK0BEJDeijBXj+HHHHeeVbpkwYULI8+4ff/xhy1/t2bPHu23Lli2pvg415pJx7a+xzo4rMscjQeb27NmzU2688caUk046yT5OoUKF7HE5lCuLtARMMBwbGeLsgnI++eQTb3wO3JFHhjkZ6A5Z4UuWLEn57rvvUlq3bu393mTur127Nuhz8lq6Pinu+iSw1Bg11f1145s3b24z4d2OgPvuu8/7HuXbyIjnbyYiIiIiEmsKooukE6hlws1E7YMPPohJQJZt2J9//nlUH5tAsr/e62233RazQO3KlSvtNm73XJUqVUpZtmxZuj/DFvf8+fPb+3/99deZfu7OnTvbGrM0HnPee+89+7iUrYk2FyTw13SNBhqutWrVKqplYn777beQ9X1FRHJL7fM6dep44xPNLH/55Zd0G2G7IDh9Q8LB2Eq98+rVq3vPU7hwYdsTZO/evWEfK6VQ+vbtm1K6dOlUpVpoYvrwww9nuR8Lx0n5OD8WonmO119/3buNhqNnn322bSIayXUD93333Xft785jMsZTZz7YY1A+5+abb/Z+R/5GBNcDFxMon0aDUe5TsGBBW5eesji8rpSucc/l+q74y7hRu10L1CIiIiISbQqii4RAVhmTM7KcohmQpAmXm/iRwR1NkydPTilWrJg3iaW5VywQiLj77ru97D6C2UOGDAm7eeVNN91kf46JejhcYzd/UILMwMCJt2sCS7O1aCPjLauB/0BM8itXrhz14DwBCoI6ixcvjtpjiohkF9TYdpncBFvJPg+F+tw0u3bjMoHs9O7v5xZuXQNM6nmziBkpmm66x2F3GsdDM25/w87MYpykESqvB8Fph2aeZHz7F6Kzavv27TZz3P0uV1xxRcgFgEmTJtnda9yPf6mhHog66P6F+m+++cb7Ho/bo0cPWz+d7+XJk8fuOiBTnyz3ihUr2uaqIiIiIiLRoproIiFQ+3r+/Pm2Dmf//v2j8jpRm5oaotT9HDBggK0DGg2HDx82vXv3tjVHUaNGDTNu3Lio1nD310wtV66crWmKq666yjz//PPmzDPPDPsxlixZYmu1U8t0y5YtpnTp0unev0uXLmbs2LGmV69e5rnnngt5P2q2UruV+rDUjI1mvfdTTz3Vfr5//35zyimnROVx586da+viU2N3586dUalry9+FuvDU0f3666/N+eefH5VjFRFJdtTyvvfee81rr71mv27SpImtwU2d7WC++OILWyt927Zt9uvbbrvNPPPMM+n21WC8dXXR//77b1OrVi3Ttm1bc//993vjRHp4LsZqaotz/sfWrVttvfWuXbva/ih58+bNdB+UN954w/YicXXUud4oXLiw7cNCDxbGSJBIE4s+GdRHf/HFF20NeV4farhPmjTJXpcE4vdu3769vSagnwo1zwP7tnD8AwcOtD1q+N0C0YulT58+tkb7FVdcYf+enTp1svXY58yZk+q9kdnXVUREBIyljF30/mBc2rVrl/1gHrdv3z7bz4R5I/8yZ2YcZBxjvHVjLj0/GI+4NilYsKApWrSo+f333+28uGTJknaezVjNuFm1alV7fxFJIlqPEEmLGp+u3Arbh6OF7eQ8bpcuXaK61Zia6tRfJfuKLeGUoommwGw4SsTUqlUraOZYuM477zz7WrBVPSMzZsywWXTPPvtsuvejRqvLWItmBhoZgW7LeDR16NDBPi5Zh9HeKRCrXQgiIsmIsbpx48Zeve3+/funWzucDGw3XlCnO6OSWuyE4lxNhrN/d5o/uzsUxvs5c+bYzGyXOd2mTZsIf8O0j7l06dJUme+UZuGxGzVqlOq+q1evTlVXPR7YCUU5Grcz7u233w56P46rZ8+eKVu3bk338fzXTIz1XKf5UXbv559/9krGrFmzxrt2OXLkiN1NRpme9Er6iIiIuLFpwYIFdly999577S6r008/PVXJtXh95M2b1/YmoVTcxx9/nDJz5ky7y0xly0QSQ0F0kSC6du1qB63rr78+qq8PE/oXXngh7LIn6QkcONlWHu366hwvwVjqxFL/3Pn999+zvM2chmZuq70/4M1Fwa233mq34/v9+uuvYb0mrt765s2bU6KFUis85mWXXRa1x6SpG9vPedzly5dH7XFFRHKbRYsW2dJrnE9PPvnkVA0wQ9m3b58t3UJgPL0SLIx1o0eP9kqP8MEENhwE2D/88MOUevXqpZoQX3jhhfb2rGjWrJl9LMZSf01zJvvTp09PSQYsPFx66aXe703ZmnCuHfidQv1NWMBo0aKFrZfu/90DrwW4jmvfvr19HALsbiFcJV5ERCRwzKAUGHNe5qA1a9b0SpZG8sG8jr5clB6jRxglxyh5Gur+LO4SFP/f//5nrwtOOOGEiJ6PY+Q65sorr7QlYimpJiKxpyC6SACyoVxwkxXorIpGwDkQWWVk3H3xxRcpsUAmOwM62XluoL7xxhuj+hwEF8qVK2cf+9VXX/Vup5mYa6iWmVr07jG//fbbqB0rk26y6qJZY5zGaMEyBjOLRYNovF9FRLITJqCuASU9JqijHUpgTwsC6ekh07thw4beOFi1alXbgDRcZJu7n+UYb7/9dpshHel4TL+T+++/P9XtvXr1sovG0W52HW1c//Tr1897HQhspxfIdnXma9eubXufBOJnWdB2Ow5efPHFoNdI7CTkPvQHYXwkqBF4zTR//vwo/ZYiIpKdML7Q/6xz585e36tQgep77rnHzosZM9hNXqhQoZD3Zx7qd8kll9j5NP26+KB5N/dhUZe5rj+RimA4fVHoscJzsMvcjWV83rZtW9vLJL3AOju3SdhLbyeeiGSNgugiARgoXaZYNALolC2hkWY4W77D2VrGFnU3oFarVi2qAXoadQ0ePDilVKlS3mBctGjRlKeffjpTzdIywiDvAubu9+A1Y8taZht4EpQOzM5LNlzYuC2BXMBFI4OCizQCCiNGjIjKMYqIJLuXX37ZK4/SunVrW+YjGMp5dOvWzd7vzTffzPBxuf9dd93lPXbBggVThg0bluHCLuOX/z6jRo2yk2GCyK7USKQI9Lsx//vvv/dupyxJdsqqJkvO/R7169cPWVaFxWDXIJ1rnGCvG2PoHXfc4V2n8LcJNG/evJSSJUva7xOUCLymIFuf7xFAiXaig4iIJBfmSiywksRUt25dO2fKKNObQDZjeKVKlVI9FtnmfJ+xigXfpk2bpjRp0sTuOqPkm3+xnHl1es/hL43KHC69+3766afe4rp/gT/YB7vyKCPLQjLz6mnTpimwLhIleRJdk10kmdCMcdSoUfbzhx56KEuPRRMrmm5+++23Zs2aNebhhx+2DbYyiyaRt956q22ihcsvv9y88soraZpwZRaLag0bNvQen2afNDq74447bNOTWOA5QYMWGo9dffXVtmHbBx98kOnHpLkbzVnq1atnkhWN12gq+/7779vfOat4r5UqVco2qbnkkkuicowiIsmKsYMxdciQIfZrxsYRI0aYPHnyBG3keeWVV9rmlYyXP//8c4aPz7l01apV9lzdsWNHM3To0HQbYNNobOTIkWbw4MFm0KBB5pZbbvGaYl977bXmpJNOCuv32rx5s23UzfPy+4CmoDfffLM54YQTTL58+bz70ogsO+G1oFlau3btzKJFi2zT15kzZ5ozzjgj1f1oMMr1Do1XV69ebZo1a2Y+//xzO8Y5/J25/ilSpIh58sknbWNRXrO+fft692nUqJH57rvv7HUYz9eiRQszefJkb4ykETnvB17faF1HiYhIclm3bp0ZN26cmTBhgj3v+9WsWdO0bNnSNgZ9++23vfFg79699vs0BgWNQvk45ZRT7NcdOnSwX/PYxA6CjeVVqlSxn9euXds2Hy9evLh9fMatQoUK2WPh2sHf+PzMM8801113nW0uyhh25MgRc/DgQfPVV1+Z3377zRQrVsy7RmnTpo1tJh4KP/fee+/Zz7me+fDDD22D0urVq5sePXrYJtw0MhWRTIhWNF4kJyDLm/8t6tSpk6VmHWRJsSXLbb8iIyor2eE08nQry2RWUd8zq81EyGp/9913U9VnHzJkiM38oiZcNOq2ByJL0J99xrZ7lwnASnkyNkjZsWOHzXijJm6y++mnnxJ9CCIiMUXWMHVG3Zj45JNPhhw7KL3ispqpaT579uyQj8tuK39mN/VRM+ozwjg5cuRIrx47H9Qqj4T/2Ckf40q/hMqqz+7Ipnc7sdhCv3bt2qD327hxo3c/tsDv3r076P0ee+wx77V//vnng+4qaNWqlf0+9WYpjeMsXLgwVSN2dgwm43WIiIhEtoOL3c7M50NlarOTzZ3vaUxOqTH/9ynfdu2119ryLRdddFGqubzrs+Gy1clMv/vuu1OeeeYZuzOKuaPz2muv2R3eNLb2Y4cUP79q1apUu9e4jbItfmXLlk1TZnbChAle6TM+HzhwoD1erkfYRce8lbJvxYsXD/r7M/9mBx/Z+SISGQXRRf6fQ4cO2S1bDCwMjlmZ4LM92E3Y0pu0h2PSpEnegEezk3AabKZn/fr1KX369LENPXlMBl5/QCBWE0guVqjfyoDux5Y3tspzLFOmTElJNhwTx1ajRo1EH4qISK5GkJPyaG4CyOQ0lDfeeMPrb0KTsB9//DHkfSn1Qc1SSriEexyUJ3E9OPgg4Pv666+H3cuDawPKxhEEdhh/77vvPtsYNSfXM6X3DFveed1KlCgRsk48CxnUjeV+tWrVsuVygiF4QOm5UH1BCJRfddVVtpwMW9qD4bWn5A9163Pyay8ikhNxDv/qq69SbrjhhpS8efOGDJ4zF6UuOUluK1as8H6eBVYS4G6++WbbENvFBNzHgAEDvPtSZowa6YzjrhwYz0898sDSaySmuZJzfpRY4Tb/tQmBeq5DAq9tSKajxwpjosMCPo9L8N+PEqnc7vq3uJKfoV4PFqm3bNlik9wy6hMjIv9HQXSR/+fZZ5/1BpPM1i9noLrzzju9RiT+jKdIA/r+x+zZs2dEzcyCZbMzuXc13NwHWWDjxo1LiTYuKJjM+puCTZ061T4nDVEDA/UPPPCAVyc1q0F8Fhl4rsy+9oEGDRpkj61Tp05RebznnnvOLihEI8uQRmlkPuTUjEUREYdxmckx52OyrN5+++2QLw6ZVW6XE5lZoWqHsyOLRWV3Xyaf4ZxPXX11FwSmuSWPlRH/+DZ+/Hj782SY5cbsZ64PWNzIKJDOjjUy6R588MF0X6dgTUj9CIyn13yb7/E+4L2Vld2DIiISPyySEqh244n7oI65+5w5eZUqVVL1/OLjqaeeSrUTzPVB8WeZE7weOnRoqsA4i/R8v2XLlqmOhcVexjN/Dw6C04sXLw65myqrv7s/uY4xkkQDarPv3bvXu53seI6XWvBkubOA4P89SfpjRzgLzWSyM1cNNyFAJDdSEF3k/w1CbmBlZTmzWNEm842JWGaC0wS7aWzK9vOMJoThYtD2r8hzbJdddlnKJ598EpVmp8G0a9fOPtdLL72UagLL1ulgk2BW9MkM4GdmzpyZpeeeO3eufRyyCqOBpiw8HqVusoosOhq98HhkGmYFfztK7/BYgdn9IiI5CeMGW6E53zHG+ndQhUIzr0ceeSRk00jKhfgn3Uw8Dxw4ENbxEHBlKzZNt0NlRwfuKGORmMC5Q9CdRVqysnMrJvnnnnuuF0j3Byn8Im3KumTJklRb5EOVPwt8Pv5ObKcXEZHkxoI3QXDGDjeOc31AJvmiRYvsdQML7wTT/cFxAsgdO3a0SW/+EmDMq1iwpTwKZeKYszJ3ZaGdUqr+neU8PvPp888/P9Ux+cuDJRN22JP1/uqrr9qveW2+/fbbNIsG/g8WHnj9YhH8F8nuFEQXSUmxWdoMGKy+ZrUWOFnQPF4kmOSzqu1qt/LhBrpIH4eMdbZ4+TVo0MDWdiMQHM262VwscAFC0Nx/4cCKPSVaCBCE695777W/N9nyWcG2OLeqHip4EgkyF3g8/q5ZRX06Hqt8+fJROTYWHBo1apQq20BEJCdhssfisstAf++990LWNA832EoQ3m27ZtxlUTm9xW0m0f6yKwgneB5Yt5vyLRI6kM41GNvK08Piw8SJE9PdoUWQhO36oRZFCJ7zXOzG89euDVZPnQ8REUkOlByhh5m/3AoZ1C6I7p/nMjd15UvPO+88O5ZTssXdv3Tp0qnmY/Pnz0/TA4ua6NyX3VAOwfXsvgt45cqVdnGAcZDdVx06dAgZUCeOsG7dukQfskjSUBBdcj2C5q6uKduXMjPBz0oQky1eDE7+7WeRZGPz/DxG7969veZmBJD927sIAmR1uzglZmbMmJHy6aeferdx4eEyAObMmZMqmBHpavz27dvtcfvruGUG28/cyvrOnTtTsoLfgZV4Hmvbtm1Zeixef7b58ViUDhIRkYw9+uij3vjIlu1g2C7N9mUyyzPKJmcC7ibfTZo0sWNPqHM2O9Ootc192dEVzphCEPeKK66w2dAOgVoWlSPNqM4t+PtVrlzZK6kX6nViTGbhmPvRGD3UY7k66izwB7v24ZrN1WRn4T5YDXTeR02bNrU797StXUQksZhbPvHEE7bEir8Mib/WOfPphg0bpgqMv/nmmzZRyzXndB80HaW8pkueY5x2O7b9Yz1jOU3GwynZlt0wPvp/182bN3s7pgM/ChQokKX5uUhOoiC65HqvvPKKt5U4kswyN/jcf//9dhWXgSfSn6WBlavFSlYcGdzhZsJTJ5St6mRb+Qc5Br8bb7wxSxnnBBkoi0K38sAu4AQp/AgIc9xZDTKD14PnoAFKVvD34HHIKMiK5cuX28ch4JLVRQiOhcfKly9flhZdOI5Q9X1FRHLiLjE+GKuDIeDqSlsVKVIkVaOwUCjbQS+OUA0kyVT29xAhwBuqIWWga665xisPI+HjGsIFv9lO7+8N48c1l1vUIIEgGLbau+AKJXdCXUO53QgPP/xwmu+zlZ/xmvtkVBpGRERig0VMyoP6d2tzbvbXLWcR3ZUF5cM/Xrtm5G6O3KNHDxsUZ+5KUN7PLZyGKi2W07md8dR653VyzdndB/N0mptS850xVCS3UhBdcjWC5mxlYmBgNTrSYOZ9993nDSwMOpFigOJnO3fuHFaGmz+Q+8ILL6Rafad52scffxxRBjgXJmznCqzPfdFFF6X5nZjgkrHPtrZYNUGjFIvL/KbDema54EdWm6a+//77XrZiVvE35rFY4MgKShmcfvrpUWucKiKSjCix4nYVsXU7GHqHuAA6fU3Wrl0b9H7s7gong4pMM57LbfUm84qJdqhMZBY0R4wYYReeHQK7t912W8hjkdDWr1/vBUoIZARb5KBu7eWXX27vQ2YhO+2CoSSeq+tKQDzUeOquo4L1KSEQQ7M5ERGJP87LbpcSHySOvfbaa3Zxk+A58zN/8JwFWMqn+RtVExDnfmPGjPGSkDi3u4V3/zgTjVKbOQnJdHfffXeqQDoN2P3Z/ATVRXIbBdElV6NGuJuIRVILnSBy3759vUEk3AA8JU/8NcWYePs7eAfD9rLhw4fbLWr+hlcE3ZlIsqWZLW4ZIQhO4HX16tXebXzusuD9Fw40quQ1SUSDre7du9tjYst2ZoP1rgFdYA3bzOBvtGnTpiw9BtvLXVYcGXKZxevRuHFj+zgDBw7M0jGJiCQrdgERwOZc161bt6BjQWAAnQBsMGSwE0ilLioLtenh+25CThA3o/rcZK1x30j6f0j6XAY4ryu18IMhcO7K8FHfNtj7g9tILnBl8kLVNr/jjjvsfSjbw1gtIiKJxVjcpk0bb55NnwsWrN2C9ttvv22be7vvM2d8/PHHbSkXvu7UqVOqeRzzfX9jbxZj27Zta3e7ZbUXWm5AX7DAne/+D8bhSHfzi2RnCqJLrsUkzA3ArE6Hi4mZa4KZ3hZzP0qruC3elCrJKDhMuQ9W2mlC5sq98HHxxRdn+FxcDJB1x9Y3//O44LR/2zIXI3Qip7u4v4Z6IlfiWRxwwZOPPvooU4/B9m1+nu7ryYAgPDVyWQjJKrIonnnmmaTtAC8ikhWUZ3FlPRgvg2WBE0CvXr26F0AP1vCK7LI777zTGz/ZRRXsvBmY7czY+8EHHwQdp5kk+sdHJuUsOIeq1S6Zw+ufUZICGf9uxwA780JdS7ndhqF6kbD7wL2X7rrrrpDHxM4CFlbUyFtEJDYY7wl4u8VsdqNRuovPCeQ6jM/169dPqVKlii3JQjkXN2Zwf87lbgxnzsTtNWrUiNlO6tzi22+/9fp7BX5Q+iUayWsi2YGC6JJrEUzmpF+1alW7Ih0OJs8ua4mPkSNHpnt/JmcM7v6LAX4+1Kq3WxkPrEFG9vGLL76Yqka5C86/8847trabP8jqAu/++xMYoJ55YPPUZLyg6Nevn5c9FqpmbXrYxkeWAqVqkomak4mIhMbYyLZrzv8VKlRItbgbuDBJI+1QAXQWyVu0aOGNoYMHDw461rETjOfJaEcYWJgmW9m/uMuYrfN6bPA3cxPzUOXduC5yW/JD7cijGToT+/T+TgsWLLAleEK93/yNwa+77rpM/kYiIhIKpbMIdLtx2/WscPPB5s2bpzrPz549O+XSSy9Nla3+0EMP2dJt/usCmkRzXUGjcJVryTqueyiXxusdLJhOYkGkfeJEshsF0SVX2r17d6aynWl0RSCaIDWDcShMuCidUr58eW9QIdt72bJlae4X2LyEiwTuz/OQUe22n5N5RzM0fyadK0fToUOHVI9BQ5D27dtn2zplXPAwKeZ3S0RJGRfMadWqld1OnuiO7Ez+Z82aldBjEBGJNbLHXKOwjGqKb9y4Meh9mLwx4XY1zRk3A3FOp6eJW3Bm11e4C+9sW5bY4/qIgLVr/L59+/ag96HBejwm7Fy/cTxbt26N+XOJiOQWzLceffRRL4GMxDPXH4tAOnNa9z0aSzuUb3ELrew6Y27vss41Tscer7crmRb40bNnzzgcgUjiKIguuXqizlawSDOxqZmZUeDdNaTko3Tp0rbBpf953EDPRJ/sdOqeO0uWLLGBgYMHD3q38bNMInm8b775xrud1Xay1J988smUnIaMeff6uUYw8cTfgOcvWLBglrL1R48eneUJvitPQ6aciEhO5G/ySPZwsMXEcJo83nrrrfYxaMAc7P4EQ10tddfsmYVbP875BN/9527KeFC2JTO7oyRzKJ/jSq1Q6zartWt5D1FvPz387RUoFxGJPTLGaQbqxmNXfsvtwnal3figDxi7hhyy0umBtWHDBu82EtMo83X11VdrrI6TKVOm2Lm6P4hOpjql2Ngtr+bckhMpiC65DgOsW+H2l0EJhQnz9OnTI3oOJnpsSXvwwQe9rWdMzNgyTm10f7kWMuU++eQT72fnzZtnt5fXrVs31WOSWU7tNzqV5wZk3LsO4GzrzkxzMrZ6+zu0R4KdBDw3F3eZRQCGTEfeb9R6zyy2ovMYqrsrIjl1Is2CZWDfDofxs2vXrrZBM/Wy00OWeY8ePdKcc3kMGpO5Js/0A/n444+DPoZrHK7SHYlH6Z5TTjklTRZiMFxjBe7u8zdXp3zfySefbOvuB8OOP3YlcB+a0aXHn+ggIiLhYzxmR7fbFU7jbxLQqHvOTmR2b7t5MgviNO9mDszc2JVg5XzNbuHAOWKo87vEDqXQ3M4xPvyLH24RXI1HJSdREF1yHVc/jdrj4QTDCV5zfzp4hzJt2jS7Qu6vuenPVqM297nnnptqQKHJJAM/Fwb+ep9M9Ph+vnz5Uo4cORL08XIL6pq7rf2RXhRdddVV9mcDa8CHiyZkWQ2iUC6Ax2ArYlatX78+KevXi4hkdcHU1UFt1qxZ0LHO9clgMdHfXMwhuzij8yM/58bfNm3a2Al4KGSrE9Tv37+/zrtJYOLEid7fLlRSAwskfJ/at8HeCwReXF3z22+/PehjUC/XZb6HCtjz/mShh+sSZayLiESGYGqnTp28czrnZX+5Lvc9dmpzrqYpuLtvsWLFvDJubtc3Y3WofhYSX++++65dhA5W4oUyPeygF8kJFESXXIVgNydytnr5t3+FmtgTGOf+ZK75s8UdMt3ILHcDxPDhw73v+ZuXMLiz2s4AwtYzVxudbDl+ju3nfkwSleWUetIb+BqFk73ttupnBn8nfp46fZnBAgiZFTwGWe0iIpJW7969vclxYPNs0MDbjbGUxwpEuTR2d2WUpexqbA8bNixVkJXFbxZNAxfKNQYnF3e9FOp9QkDbZTW++eabQR+DCbyroRuqzBrXei6RwV9qz+G907Rp00zvkhMRya1ICGJHkAuSEwAn6Or6f7m5NZnLTzzxhG3m7cZ/5oE//fRTqnl2t27d1DMqydCPrV69ekED6Xz06tVLDV4l21MQXXINJsqu2VifPn0yDIC6jHUmUoGZTwzcZD2RieSy43hMSrcwMWPl/KKLLvIm6vzL4E+2nX/iNnfuXJt5pzId6W/P5jWmLAr14sP14Ycf2p+rU6dOSma4SfLYsWMz9fNjxozxtrS5rYeRoEYvNdCzUgZGRCSZ0TDZTayCLVRTG52JNt9nYTTQa6+95jUHvf7661Odaxl3OQ8H9hcJxDne7XhKLztdEosyPW7HAjsJgv0tXf8QAi+hMhNbtGhh70N5oGB4XGrxppeNvmjRopQZM2Zol4KISJgY42kU6hqGurH97LPPtiXUQmWq08OEn+3YsaPd1Z0bd2ZnN+zkJ1geKpBO2dpgzcJFsgsF0SXXeOGFF7wspsAmYn4M3hdffLG39Wj27Nmpvk8QnMC3GwhYbaVpBiVbmMS7iwI+Fi9e7P2c+xkaikpkuHDitTvvvPPCnrSy08AtgvjL7ISrbNmyaRq5RoJyPfw85Xqy0vyW95fKuIhITrN///6U0047LWR5DTLW3EL1TTfdlOY8OGrUKG+s5Xzp3/3FBM7tJrr22mvTPYcSeG/VqlXKG2+8oeyoJMd1lqtpHyzbnLGeurnpJUsQAHdZkKHqp7ueKNRiVx1XEZHMY/xlt5db8PZnl5Ow5PqhkPzkzuP169e352h2A/P1L7/8Ynf3ctsXX3yhP0c2MX78eBtLcclw/kB6qVKlVIZHsi0F0SVX2Lt3b8qpp55qT9pkroXCxPuCCy7waqwFq93lspjYNkxgfvXq1bYLuH9gIABLU0x/TXMagrItnQsBiQx14t02beqthYOAigvAUC83EvysK8XCc0dq1apV3pbx3bt3p2QGJX+4iNTFoojkRC7ITRZasEBlz5497fdpMMbY7EcA1U3IuJ8/SE7/DNeUjAk3C9f+79OYlF4n/qC7ZB9Dhgzxdg4Eq0nOtZYrwxeqZMsVV1yRbjY6CytnnXWWvc+rr76a7vHw3tJ7SUQkLQLglFxx82Oahrr5EYvX7nbGbJpIOxs3bkxTpoXFze+++04vczbDfNYlpjGXb968eUrevHlt7ERJYpJdKYguuQJZbpy82QqcUWkNtowzOfv222+Dfp/sOAZ+Jmc0BHWZ50zoqY++cOFC20mc22h6ItFBbTxeUzIXw80Mo6QOP0PGYqQY2NkOnpnJMUEa3kNXXnllxD8beAwiIjnNzJkzvcmzv7G2H+deAuCBJa0ov+IC6GSg+8+TTNYooeWCrPRB8SPA7rLeQtXNluTGNVyjRo3s3/Cyyy5LM07y9SWXXOLtQgiG6zTXhDTUNaHbvciEPxTq6FeuXDnsxX0RkdyCEqctW7b0FrQvvPBCLxPdLXS7Wud169ZNeeCBB7xzODvDSGby7+iW7ItrL+rcu750L730kh2HSWy88847bSk2SraJZBcKokuOx9ZdN+GmBnlGGLxd4xI+/9///pfy8MMPp/q+v/lo6dKl7Qor24ydCRMmpHz00UeZKiOSWTk9G4qsfreS3a9fv7B+hnqm3J/a4vF2+PDhTGWxB2ZciojkJCyCunM5QfBIvf3223ZCzuJ4YIa527F0zjnnpKxduzbozzNpY4s443cyYzzXQmpwlGFxZV2CJSuw+4z3GLv/Qr2GLLik9/oeOnTIPnZ613H9+/e3x9C2bdsw/qIiIrknaEpPKpd9TH8T5jcsbFIPm9vJRn7ooYdsmVWXpU7yEuflDh062NvIYs8JcvocPdx5vPu7unJp/l38LJpkZt4skgjH8B8jkkMdPXrUNGjQwCxZssR07tzZvP3222nus2/fPvPoo4+aZ555xpx44one7QcOHDDdu3c3EyZMMMccc4xZsGCBWbx4sRkzZoz5+uuvTd68ec22bdvM2Wefbf7++28zb94806hRo6gcN/9b7t692/z0009m165dqT527tzpff7bb7+Zf//91/zzzz/mv//+sz/LsebJk8ccf/zxJl++fKZEiRKmVKlS3kfp0qVTfV6uXDl7/+zgo48+MldddZU54YQTzKpVq8w555yT7v03bNhgfvnlF1OrVi1ToEABk+y2bt1qzjvvPNO/f39z6623mmOPPTbRhyQiElUPP/ywGTx4sDnzzDPNmjVrTMGCBb3vffHFF+add94xr7zyismfP3/Ix2A8rl+/vneOZCysUKGC+fnnn03Lli3Ne++9Z0455RRz6NAh07t3b3PfffeZihUrJuwvyTXCDz/8kGr8DhzP9+zZY/766y87pvPhLs+PO+44O0bzwe8Uajzno0yZMqZYsWImNxg4cKAZMGCAvcZZu3atOfXUU9Nc//HaxRJ/0y+//NJel5x88skxfS4Rkexg+/btpnnz5mb9+vWmUKFCZsaMGaZhw4ap5nGMV506dTLDhw+3413NmjXt98qWLevNzbkWuOuuu2J+Hs8M5pbM2UKN53wQR3DjOeORf47OB3GE4sWLhxzP+bp8+fJ2zptTEKvgmuyFF14I+n1+30WLFpkiRYrE/dhEIqEguuRoI0aMMHfeeaed3DCYM9nyY9LKQE9A9rrrrjPjx4+3t3/zzTd2cCeIzUB300032Un7ypUr7fdHjhxpA+x45JFH7ESegZ7BMFJMlLngINDv/+DYHC4gSpYsmWaA5fciWO4GZAZnBmqC6gzaR44cscH4wEGe2x0CFeeee66pU6eO91GlSpWkDKzzWrVu3dpMnz7dXHzxxWbWrFn2d462t956y0yaNMlcffXVpkuXLhH97Lp162ywJjPH1bdvXzNs2DBzwQUXmLlz58bkdxMRSRSCnYw3jFEff/yxueKKK7zvMVbVqFHDTk4Jjj722GPe95YuXWrOOOOMdAPELHKz6D1kyBBv0t2tWzd7Pifgzhgej3MqgXCuKdxYzrHzNYF056STTkoznnN9wsK3G9P5HRjz3EI5H/v3708znnOt4BbRcfrpp6caz/kIvPbJCXidCbww5vbo0cMuvGTGwYMH7eJLeovy7vXVwraISPoLi8zPtmzZYhd9CSTfc889Nljuxt/XXnvNLpgzXoP591lnnWXPr48//njSvbyMD4FzdObtDsfN/D9wTGdhl/Hcjeluju7G9D///NM+dmAQnqQAhwB69erVU43n1apVswH47IrrmkGDBtmEsWB4L5CsyGsokqwURJcci4GJYCYTpJdfftkG0/0YqBjomdQToP7888/t/Z988kk7iDNpIquL22bOnGl/hkktg+CmTZvs9zKDAXT+/Pl2Zf67776zgzFBAzDRdYNk7dq1bZY4g0jRokWjNnlj8GKA5vfnIoCFAY6BYyFzm+8zkXeB9WbNmtnMPrIJksHmzZvtBQQXH++++67p2LFj1J+jV69e9oLv/vvvN08//XTYP8cFEIEe3jMLFy60gZJI3xsEAi655BJTuXLlTBy5iEhyYmxh0ZrJc5s2bcyUKVO8STXfu+yyy8xnn31mA+kEvF0mOuNS48aN7YSUcZoMdhCUXr16tR0rQ9mxY4cN1L/44ov2MWJh7969Ztq0aXbSx1jKMTFB5nqBBWk3pjMRPu200+yY7t/1llWMGwTSGdMZH/0TfYLu4Hk5hnr16plWrVrZ1ywnLNLOmTPHXHTRRfb6iMUKrlv8CFaMGzfOfi9Y5hvvQQI4vDb8/YIZOnSovYbkg/etiIikxfjTtGlTO+4WLlzY/Prrr/Z2kp9Gjx5txz7m1tyHZDXO2+wC57zNvAcrVqyw1wCJwrUI4wXXImREM44ytwPXIP5gNsFeficC6NHMlj98+LAdz3kd/Qvy33//vR3vCcozD+YYmjRpYl9f4gTZDfNdEhCDYS5NQsT1118f9+MSCUtCisiIxEHnzp1tja3atWunaRy1fft2ryYbjSppFkq9snbt2nm1uWhcdfLJJ3tNQ6mrzW00K6O2WySorfnhhx+mdOnSxTZUcY1VaIpFbVY6jnNMia5/ynF++eWXKc8//3zKDTfckFKxYkWvCQiNumgEsmXLlpRkaTJasmTJlAMHDqR733nz5tmmJTQAC9f1119vH3/o0KERHdeQIUPsz5133nkR/ZyISE5HnxBXB/WHH35I9b2XX37Z+97q1au923ft2pVSrlw5+7169ep5TaUZqxiTqLVKcyrnl19+SZkyZUqqx472uMrjUW+dpqc0R3PNxatXr27rt/K7zJ8/39b/TCSOk9eZWvEPPvigfb3cNQ3XPdSUnzp1arZv5uVqrF5wwQVp/tZc27meOMFq5HPd5f5+69atC/r49957r/1+165dg37/n3/+sU1qb7zxxqSvsy8iEgvMDV1TbzfP5cM1ea5Ro4ZtNIp33nnH1j+nwbi/h9WYMWMS8sdhDGQs7N69u+1zxvEyVnLsjJ2MoYyliZ6jc03BtQXXGFxrcM3hmrZyLcI1SahxLFnRo8ZfFz3wg++LJCMF0SVHooGoC377J9jYvXu3bTrG9xnwN23alKphGZNy/m3WrJm9D41RlixZYr//448/puzbty+sY6A56SuvvJJy6aWXeg2wqlWrZpuoMAhmlwYj/M4Ez7mYIJjuLoYeeeQR+9om4vdgouoC/Bk1phsxYoS938UXXxz247uLvkgu6Li4cu8rmtFG4rvvvss27wcRkUjRUOzss8+250d/o27XJDJfvnz2ey+88IJ3O4FyFsG5/ayzzrKNyrB///6UBg0a2NtPPPHElBkzZngB9zJlythx6ttvv43qH4lAKdcVffr08Rbg8+fPbxtKjh492j53dkCTzC+++CKlZ8+eKeXLl/deQxII3njjDe81zk62bt1q/xb8LjR1D3TFFVfY7916661Bf55kBr7/wAMPBP3+7NmzvUX7YEEUbitRooS9D0kIIiK5CYuRbjzxB9CbNm3qfU6Q3H/+HD9+fMrhw4cTdsyMdYx5jH2uITnXGb169bJjZHoNpZPJzp07U0aNGmWvRdw4yDUK1ypcs3Dtkuw4fvc+YSwl7sIiBkkV/C1EkpGC6JLjMPBVqVLFnozJtPJjACdbyQXQWTnfu3ev9z1Wo3fs2GEDmi4gOmzYsIiCu1wYXHTRRfZn8+TJY4O3w4cPT9m8eXNKdnfw4EE7SSVL/dRTT7W/IxdOTz31lB3I4+nzzz/3VuAXL14c8n5kNbqAR7hZYueee679mc8++yzs4+EYXBd6gj/hIoDE+6Rx48ZeloaISE7y3HPPeYFI//mR4HqtWrXs91q0aOEtJrJ7zAU3ixUrlrJx40Z7+6+//ppSt25dezuZbP5zP2M4WclMhFetWhWV4yb7jKB/qVKl7HPyL8HYTz75JOGZ5lnF67VmzRq7g4rxh6QDxtPLL7/c/n7ZYfLtPPbYY/bvw0IN7ym/r7/+2tvlEGyRgCxDvs8CTLAgOdcNLsiyfPnyoM8/cOBA+z5x71MRkdyAxLKqVaumCaAzprjPGTNJvnLzRObV3M5cMp7Z3Yxp7FRjjGOsY8zjOBkDGQsTnWmeVSxKMHbzenOt5a5ZGJsCd/8lG7cbkQ8y6rkGDLZ7TCRZKIguOQ4nXzeYB8saX7p0qd0CxcmZMh+nn366HTxbtWplS7Y4bCGqVKlSyqxZszJ8TrLZe/fubSf1PHeTJk1sFjMZczkVFyNz5syxW5wJUB933HF2RZ+swHhdiLiyK6xaB5bsCZYlxvGGw23nI0M8XKz68zPXXnttSiRYlCATkCwCEZGchqC5GxvJ2vZbuXKl/R4fLGA77Nji/mSou91kLHi7gDvj+4oVK+yiuT/Yy0IkgfasYCyZOHFiSvPmzb1t3T169EjYzqt4IcDMzi2X/U/JF8rN+f8uyfweK168uD1uds4FXgO4nQsEu4MFHlyQPNSCvFvQefrpp2P2O4iIZCecO12wnGAt516XFOQCopRIcbux77jjDi8Jih1jffv2jcuYyhjGWMaY5sq8MtZlx51X4eJ15ZqFaxfK0LrSOlzbhJovJ9qgQYO8983YsWNTRo4caZP0iKmQnEiVAJFkoSC65Chs63WTIWpUhkIdbcqsuJP1Kaec4mUquQkjg0x627mYmHEhwIo2q9kEAQik5saVUxYLKF1DpgGvIzsBGPxivVWPLfSuxiur2BkF2ylBEw7eB9yfUjbhXqywGMPPUPc3Utu2bbPlf0REcho3MWJ3V7DsZrLTvvrqq1QBUVcHfdy4cfY2FsTdDiEy08k0Z2cUgW62iUcDwfdnn33WZiS7TLq33noroVvOE4USduzkK1iwoA2KMIYGlsZLNq50G++PwF1dvI/4HuN0sPegq6seqqTLiy++aL/P+01EJLdjjuxKZTGHZkEcnEPd3Pqmm27yek5cffXVqXYDx6N2N2MWYxdjGGMZY5orz5qbcA3DtYxb3OAah2udZEv0I67iEtJIzAtWI53d/iLJQEF0yVGuvPJKr7GjW90mEH7dddfZBpMuYOmCvQysboDng8zzjOqgcZJnu5Sb0JPVTnZddt/aHQ28NtQE5e/A60rJF1aRYxmEcFvAWGkPVZeWGuXcp2HDhhk+HhNsV/s93Pr3BIDcMWT3Jm0iItHCgrUr/UUzsXDRIJQ6mQ4lOliwZlcRO8dAs25X0zsrNckJnhOIZwGejDkagOfGiXaovx+Nxl29W5qX+Rc8kgnXbq7u/uDBg1N9j+CNKzUQ2HgW77//vlcTN9hOOnY9uDE+VOYkz0/5OJVlE5GczgU7mS+R3eyQfMR40blzZy8QSiC7ffv2ccv8ZoxirHIlRympyqK7/F8PLq5xuNbhmodrn6zu3osmxld2dLsYTWAQnR3v2b3sjuQMCqJLjvHpp596q5duRZwTLYMFt7PVl2ZjrlSHC5S6EhxkKDFZTG+b0zfffOMNzDQeJRNdJ/PguJCi6SevM9v8Xn311Zg0auHv5WrkcqEWDAsnfJ8dAwRnwkHQJty/LYF3uswHlipID9vScuOuBRHJPR5//HFvgdo/ttLQK3DXTkbnWwKhgXU9qa0aSdktPxZ3CbaSRUcgvl+/frbxuKTF3+7jjz/2Sr20adPGu85KJoyrHF/hwoXTBE0IFrRs2TJo01kC3yzIh6ppzhjPdQaZlaGCMTSO57ldo1sRkZzo9ddf9+bPZHiXLVs21W7ad9991wuA3njjjbY3GJ9TFiuWWOx0pbcYqxizkrV0SaKReMA1D9c+XANRFz5Zdt2RjOb617lSQP4PjlUk0RRElxyBEz+DOCdXaqwF1lUlsE6tdAYL/0mZr12NrfSaTrJ1nCw4fqZmzZop06dPV/A8TAQ9aB5DAJuO4WR8RbsGHnVMeXz+PrNnzw56H3YOkJGwaNGilERjos57kItMMtdERHIatgq7clvvvfdeqrJrbixmLAVjApNf/0IkC5kE2/3B9fnz52d51xcBUXqesKDOIi+LvQqeh4e/E39LMr4Zc8k2DLfsWTzwt61YsaJ9bz355JOpvhfrhAcyLU866aSIdlyIiGQnJJO5ALnrQ8F4QMDanYNdo1HmfgSx169fn1K/fv2UDRs2xHyeybHEYp6ZU3HtQ384/qZcE7FAkgxNxemB48r6+ZMeXUIciXnZoV+L5FwKokuOwGqqq3fpttLS4MSdcJmIk4FMre6mTZt6AXdXbzWULVu22MaZnLAJwLK6roE58xkCrVu39hqBhtOwNRJcBLi6u8EWRNiuliy7BnhfkcnXokWLpDkmEZFoeuyxx+w5mQm1Gzc537kFaZpFudvJCOc2thczMWLi7bb03nvvvfY+kydPtouPlAvLTHYZz/3BBx/YMcLtXNq8ebP+6JnArjJqkJcsWdL+Tfgb7dmzJyleS4LYrjZ6PMvsce2p8VxEcirGZs75rpGoa/LNojglPF0SE/dj548/GBuLcyPlYe655x4bZOW4YrXjOTfYtGlTSseOHe3flIVoyuUlejwjgZGdDi5wHpiRTmne9BIgRWJJQXTJ9mhO4lYpXV02/nUn3CeeeMIOBAQuGXDZJtSpUyfbCDTUtlsGYbahMzmkBitNM8mKk6yjZnqjRo28LeHbt2+PWu1W/lY8Lo3ssnIhQbMcshPDQc33Xr16eXV6I5EsW+dERKKJkhfUj+Z8TODaYWx2mUXunEl2uaudSv8KxusePXp493PZ6kzQ8+XLl6ZBWbjXCa6pFk3Fly1bpj94FPz+++92vOVvTRY2gfVEJxoQuDnzzDPt35qsukCUHWAnQiCu8QjCXHPNNSGv97g2pDyciEhuwrnPjaGuv0TevHm9oDolTl0Am/l2vXr1bPJULDDGMC8nwMrYwxjEWCRZx7UR10iuvxy7CBKJHQ7+wDk9dig/wzUjJXuSZfFech8F0SVbY7Ltaq2R5czXDABMtLmNrHMGWrZ5Mei7bceHDh0KORGizicnZk7QlINRk6jY/N0IppDJwHZ/uoZHY8V77Nix9u+eP39+exEXDBd56XUkp76u29WQEY7Z7WoI1qxMRCQ3euGFF7xa6C6oygK2O1+ye8wtfrrbaADOOZV6ly7zyF8GBkuXLo1oqzEZ60OHDrXXBJQTo4+JxGbrdffu3e3f7aKLLkp4iZfnnnvOy6jzB/W5nnPXh2S5+fHeI7mC7y1YsCDNYy5fvtxeFxI0EhHJTR544AFvfuUCmq6RM2U3ypQpkzJmzBh7XxKRuL1hw4ZRz2amdMuFF15oH58xh7FHoo9rJf6+jJf0nklkbXl2NbidivPmzbN/c5q/KwtdEklBdMnWKK/CiZWTvNuWzWr0VVdd5dVk89fQmjBhQsjHIrhK1jqZb/wsdbYltiixQk1V13Amq/XNuFhzzUjo4B2ILDmyFnr37h3yMfi78/NnnHFGhs9HPXP3/gsnq5wgP+8xZUyISE5F0PKss86y50bOuQ59SbiNupucAzlfu5ItTMIJqJN15HaRUZKNMTuz9crJoCJzjsdjt5B2/sQeZdrIAidDkKzuRG0HJ1HC1eP/5JNPUn2vbdu29nbKDQVypYYIGgTi/emuJ4M1FyXD/dZbb0257bbbovzbiIgkDrvB3LmPuRH/Vq5c2f5LVrDrQ0HJVHbxkKjUpUuXqO7a4bqC6wlKxzDGhOp/JdHDNVPPnj3tNVQis9JJnKD8nysHy3uM27i+IKC+b9++hO+Ak9xHQXTJtpjQuG1kBCb92BIeWDuLQSAw8yhY9vnDDz+s1c04I4ubvyUXY2QyZGXizd/YlQaYOnVqqu9R443byUgM9RwLFy609yGrIiOuji+7IMK5GCF45IJDIiI59XzuJtduwdDfZPTNN9+0t/EvX9PQisxfMn1dw1F6XLja1tWqVQsatAyFjCmCoCxukkn19ddfx+x3lbT4WxFI5m/HTsFQu8Ji7b777vN2JPpxjeHeV4HcLgiahAbjSsaxYy1Yw3DXsF5EJCegDKprIHrHHXfYsbxVq1b2a+ZalG3hc86NsdqBxOOyw8lln7NIKvHz1VdfeVnp7PJKRFY6pV8LFy5s3wMsVtesWdO+9yjvwphbq1atuPZAEVEQXbKtu+++22skyTbxSZMm2cAomWv+BhRM3Bl0g5XbYCXzySefVPZ5EmAlmbI7rlb6zp07M/1Yffr0sY9DM1jeGw4XXtTw43uhavVRn5fvU2IgI6zMB2ZbhsIq+fjx4+2FoLagiUhO5Uqs9e3b17uNsXnatGm2ZIubgNF3hGZk9JUAjb4JqDdv3tyOzd9//33KaaedZsf6cBdWCWRyXuYagAwqZZ8nzsyZM23WIlnpI0eOjHtWOlmQvJ94L/p3FrIDzt0emFnHggu3s6gf7HjPP/98+/33338/zfd4rz399NM2yJDohmwiIlnFeYxG3m7RkSAlt9188832Nnc+pMQLgfWPPvooqi86z8XYwRhC9jk7nSQxGN9oIO6y0rnWijfiPIEJkv4PJahJPCmILtkStbCYfHPSZFClqYjLenJZyHyweh6qgRgTqRYtWtjHofZ5Tghszp0716vlTWCibt269uKjWLFitkYdzdWS3eTJk+0Elo9gdUnDQbDcZX0PGDAg1fco88Lt7DjISjkXtpC59+DWrVszdZwiIjkJO4E4J3JuDCcDmexzf1YTGU+Mzf4suHADkuw8olxXTsk+zwnjuT8rnYbu8c4Uc+XiWKD349qP2ykx5MfxuXE92EI+TUf53vDhw2N+7CIiieR27bhd2v6x2NVIJ6hKhroLpme2/FogzsXXX3+9fVzGkEh2oyWrnDCmc41GuT6utUiMiLdbbrnFvidOOOGENEH0UaNGxf14JPc61ohkMyz+3HXXXea///4z1113nTnmmGPMI488Yr/31VdfmaNHj5pjjz3W5M+f38yZM8fUrFkzzWOsW7fONGjQwCxevNjMnDnTPPXUUyZv3rwmu5s8ebK5/PLL7edffvmlufPOO82CBQvMrFmzzD///GNatGhhDh8+bJJZ27ZtzfLly0358uVN06ZNzdixYyN+jJNOOsk8//zz9vPBgwebzZs3e9+79tpr7b/vvfeefS8Fypcvn/33zz//TPc5eH15D1apUsWceeaZ6d432POIiOQ0L774ov33yiuvNGXKlMnwXHruuefaMdspUKCA2blzp/d18eLF7Rif0fn12WefNW3atDHNmjUzS5cuNeeff77J7nLCeF6oUCHz2muvmfHjx5uJEyfaMd3/9401XjN8+OGH5uDBg97tvFfw2Wefpbo/140VK1a0n69YsSLN45UsWdL+u3v37pget4hIIu3atcvcc8893nmReTLncmzcuNEb6x977DH7+a233mrGjBljSpQokeXn3rFjh7ngggvMRx99ZOdqPC9jSXaXE8b0Jk2a2GssxvLLLrvMDB06NK5z3Oeee85eW/7999821uN3//33mz179sTtWCSXS3QUXyRSrk4qNbDISHe12rp165byyCOPpDRq1MjW7WKlNNiKOCunlHihAcqmTZuyxR+ABlihti/5633yO3/22WdBH2PPnj32/l9++WVKdsDOAP6mHDO1TSOtwUbGBGUBXHkY57fffvO6ywdrHuvqmp500kkZZmhQaqBHjx7p3o/Ho95+YH12EZGchHOrq2nuxpmlS5emFClSxGZdcU5mTKaHxJo1a7w+FTQlo7wWpTW4L3UvQ5XbCkS5LlcGrF+/ftmiuVRuHM9BHXHGzFKlStneI/HAe841mafRaeA4X6BAgTTZ8ZQcIhvdf//APihdu3YN+lzUbaV+byJqxoqIRAt9IVxvE1fiipIt7MJlnB04cKAdy6M95rIDmTGCjG3m+NlBbhzT+buzO4Fjpomsv3RqrFGBINTr3bFjR5vxLxJrCqJLtpukuzIdNBO94IILvI7gBDVBLdU5c+bYASlwgjN06FA7OSKomp22hvF700iDBYJdu3bZD+p+MzmkljhWr15tA790rQ7GTRpDNVdNRvzN2DbN34yLN5rJRoKtca726YwZM9JsyfbX7HWY/FIO5u+//w7r+DK6cLjpppvsc1166aURHbuISHbc+k05Fbft+6qrrvImNujQoYP9ukGDBnYRmy3BrrwW41rDhg3tFudwGoft2LEjpX79+nbRnH4T2UVuHc/h/sb0Jhk7dmxcnpMa5bxWvK8CEyqCvc84xlC19LmOoETM6NGj03yP97ybyFOGSEQkO/r444+9smyunIsrn+F6QLFY+PLLL0e1/8Pbb79tx4bGjRtHrSxMPOTmMf3dd9+112Bc02Wll1mkeL1DlXXhfRuqlK9ItCiILtkKmeauYSTZyXx+/PHH24Yn6dWpJNDJSin3of55dswSoqGHf0Wble9zzz3X+5q68FdffXXIFePLLrvMNgPJjpi4kg1BxmJgI7CM0FyOvzsXMyywYPbs2bZWeqSPlRks5hAgCpb1LiKSU9A0mXMtDUP99dGpmcoEkgwsNyEn26xOnTr2a8Yld25mrCbTLSNkMpOtRmYzGc7ZTW4ez9llduONN9q//f333x/z6zHGYK4T02soHq3fi/q2vN8jXfAXEUkGv//+u+0J5Xbk8q9LXqtXr55dYGScZrzitieffDLLz8kY4Ob07EDOjj3KcvOYzvyWazHeJ4sWLYrLc9I7h1ryLnDOLkg+SJxjt/kHH3wQl+OQ3Es10SXb2LJli617ivvuu8/WxQJ1xFavXm1rY51zzjlpfu7QoUPmkksuMRMmTDDvvvuuret23HHHmZyGWmvUEw+Gumu8RtSWy46oE7do0SJbG5da9gsXLgz7Zx999FFTuHBhs2bNGjNq1Ch728UXX2zr+AV7v4SDmnXUQw9HsWLFzKBBg0zdunUz9VwiIsnup59+sj1I0LlzZ/vvk08+af+9+uqrTYUKFUzPnj3t13fffbcZN26cWbJkiSlSpIgdk/PkyeP1pOC29Hz66ae2Xip1Mb/77jtTp04dk9Pk5PGc/jNvvPGGvYajnmqHDh3MX3/9FbPnYwx2r+X//ve/mP5ev/32m63xnxPq94pI7jNkyBCzbds221uK8xnzJ/pY0K+EPhHnnXee+eOPP8yNN95oSpcubbp06ZKl5+PczxgwbNgwM3z4cHuOzgk9ynLTmM78lh5z9Afj2mzq1Kkxf85TTz3VXj/ghBNOMNOnTzcbNmwwK1eutH3QuO4UiSUF0SXboGEEgy0B0O7du5vbb7891fdpQFajRo1Ut+3fv98G0BmcmOB37NjR5NQGMMuWLbNNPgLRhJWgA7//6aefbrIrgjA0YKlatar9m37zzTdhD7SPP/64/bx///7mwIEDGf5Mnz59zDXXXGMDQ8EQHOL9NmLEiJCPoWaiIpJb0ACacx6NPcuWLWvWrl1rF65B4++XX37ZrF+/3p43aUj10ksv2e9xnmVMDze4OWnSJHPVVVeZ1q1bm7lz53qNHnOS3DCesyDeq1cvG1iYNm2a/Ztm1Mw7K26++Wb77zvvvOMF7Al2P/DAAzYo5L8u4H3M9SXv08AGonyPRfR9+/al+7tl1AxXRCTZ/PDDD16y2pEjR+y/rtFl0aJFbTNHAuennHKKXRRnTD/jjDMy/XwE42lCzhjAWHDvvffmyHNnbhjTS5UqZX+HVq1a2b8pTWFjjYQNGp3yvnz11Vfte7Ny5cr2WERiTUF0yRbIPP7ggw9stvnzzz9vA6j+ACaZbN9++6057bTTvNv27t1rLrroIrsi+cUXX5iGDRuanMR/ofHJJ5+Yxo0b24wB/2SPwZmBjN+/XLlyJrs7+eST7Wozq94tW7a0v1c4WHSpUqWKnfi6gDo7GCZOnGhuueWWNFnlvGa83+gQHwwXQzxWejsaCMSTobFp06aIfkcRkeyEsebtt9+2n3ft2tUbk7m9Xbt2pkSJEmbgwIHeQuY999zjZV/98ssv5t9//7X/ZmT8+PE26N6+fXvz/vvv56hstdw4nqNNmzb292Xyffnll3sBm1jsZmOC/euvv5rZs2fb2xi/WZSZN2+e/fD/LWbNmmW++uorGyTyW7VqlSlYsKC9nhARyUkefPBBu8jYvHlze/5jnOFrFsZJKmIONnLkSG+84lyYWZzrOeezGE4QmbEgJ8mNYzo7Cbk2Y1Gc3QWxzqznNWb3Av9SaeDLL780L774ok3KINmN+f7HH38c02OQXCzR9WREMkLTEtdAtEWLFilff/11SuHChb06WMGaQ1JTtXr16iklSpTIdk06wq23NmzYMPv7UdebWmp87XfHHXeknHzyybZLtWt0wseRI0dSsjt+Bxp10szk888/D+tnpk+f7jUhoSEONfd4fYJ1Q6cBGbdPnjw56PvR1WGjLm+oWm0cG/eh/rqISE7FeZBzXYECBWyjRhppuRrU1MqkJ4Rr7Lh9+/aUiy++2PY1ofYq59OpU6dm2Jxs3LhxtlkUtbSzY0+TQBrPU+M6hXrizZo1C9nUM6vuuusur+auw+fc9uCDDwat70+jO7+1a9fa2+nREohrMRqJDxw4MCbHLyISK/QpcT1MVq5cacfqMmXK2DkTdab5XtmyZe08lO9lBed4zvWc8wPnX9mVxvT/H9do9KHjmo3Go7HmeqxQEz2wyShjNXNykWhTEF2S3ieffGJPhHTsJujpuoW7hmQ05PDbv39/Su3atW2g8/vvv0/JKQIHaBq1EUTndSBgS2dvv8CBxH28+eabKTkBQXAC6QRuWFgJR/Pmze1r0LVr11QDLwsOfpdffrm9feTIkWkeg4tH1xwvvQUJgkcPPPBAVDvXi4gkGwKQnBOvueYa7zbG3meffdZ+/vfff9um3/Pnz7dfc07csWNH2I//4Ycf2vMt5+vA8T670nieFuM44znJEjSui7Y5c+bY9+mpp55q35N44403vGtJP64RuP2pp55Kdfu6detCBtE/+ugj+70GDRpE/dhFROKRrOZvfklCGoFzbr/wwgttkLJIkSIRjd+BOLdzjuexvvnmm5ScQmN6alyrMY5y7TZx4sSYvva8H2kmGizmUbFixZStW7fG9Pkld1IQXZJ+NbNq1ar2RHjWWWd5wUsXSB86dGiq+5MFxwSGTPUVK1ak5AYMTpUrV07JjQhic2FHB3myKDJC13CXacEOhc8++8x+zYLLP//8493vtttus7fTXT3QlClT7PeqVasW9d9HRCS7YfzhnDh+/PiQ9/EvJrJr6qGHHkp1zg2F8y1ZcB07dswRGegZyc3jOdhZRlIAC9l//fVXVB+b94/bRTZz5kx7G8kHboeaP3Dfr18/e3uPHj3CDqLzvSFDhqSMHj06qsctIhJLbqcuYy0Ja24BnEVEN0fas2ePPV9+8cUXmX4ezult2rSx5/isPE52kpvHdMbc6667zu5MJCEylkhac+9hfxCd5MuDBw/G9Lkld1JNdElq1Flds2aNOfHEE21t8zx58pgZM2aYDz/80IwePdr07t3buy81rqnDtW7dOjNz5sw0TUZzKmrSPf300yY3yp8/v601x9/60ksvtZ2501OvXj3bsZsFxH79+tmGdkWKFLH1eKnL57imJHSkD0TDPFSvXj3qv4+ISHZCzWjOiccff7xtKEV9c38zLcZl1yOCGujLly+3zRwHDx5sG4mlZ/78+fZ8Td3UMWPGpNuDIqfIzeM56GNDjViu8+hXEs0G3bx/aHgG+qHgrLPOMsWKFbONyah37rgGb9u3bw/78StWrGjf266JqYhIsuMcO2DAAO8cSQ105tE0XmZOTT8JepFxnjz77LPNhRdemOnn4dzI/Jw61Zl9nOwmN4/pvJ+I41Dvnms5ruli5f777zeFChVKdQ2KgwcP2jr+ItGmILokLSY1rgkkwXOULFnSnHPOOXYixGDsb9zBJJ1AKINznTp1TG7BBQ5BhtyKBZapU6fa90bbtm3tgJkemo0wsE+ZMsUsXrzYXiSCZihOmTJl7L9bt25N8/OuUWiFChWCPj6N7wYNGmQOHDiQpd9LRCTZuUA4E2ImME2aNDEdO3a0TchuuOEGU7lyZTN27Fjzwgsv2GbgLFiOGzfOBkjduTeYbdu22XGehU8aihKkzw1y+3gOFsTfeust+74ZNmxYVB+biTwI1BMk4hry3HPPtbetXLnSu1/x4sW9BvV+rgk5Te5FRLI7gtoLFiyw82wC6IzjNGa899577cIg43A05tRDhw4177zzjj23t2zZ0uQWuX1M59qNa7i6devaa75IFqYjQdNW4kD+mJHDdQQNSIkriUSLrgIlabF6uWXLFlOgQAEvMMrJl87LgUaNGmVeeukl+9GsWbMEHK0kEh3jCeb8/PPPNoDD5DgULgq7detmP+/fv7+59tpr7eeTJk3ysibLly9v/929e3ean69ataq55JJLTO3atdN8b+nSpeaDDz4wAwcOtBejIiI5GYvWaNeunZ2I88FtS5YsMV988YUNpr/yyis2+Ni+fXt77mShkTHbvwjud+TIEft4J5xwgj0v582bN86/lSQa4/hDDz1ks8umTZsWtcfl+pDJ9p49e7ysOHaylShRwvz555/e/dihBndN4Pzxxx/2X65LA7Frct++fVE7VhGRWCPpB27Xz6FDh+zYfPvtt9txnB1kLDT++OOPmX4OzuHs0nn44YftuV1yF67h2P1FQJ1rOzeORtvdd99tTjrppDTZ6Iz3vXr1svNzkahJdD0ZkWBo+uSamQR+LFmyJNV9v/rqK1tvK7A5pOQ+M2bMsPXy77vvvnTvR5MRVzeNzvA0aKUZ7Y8//ug1Lf3ll18ibgpKTdWxY8emPP7441n6PUREkt2uXbtsfwnOozRcvuWWW+znXbp0SWncuLH9nAZirjH4+vXrM3xMzrnXXnutbTC5bNmyuPwekryNyaiNXqhQoZS1a9dG7XGp0cp7sn///vZr12Q0sJZrsJr91AS+4YYbUu6888403ytdurR93IULF0btWEVEYoVm35yzXJ8x+ku55svdu3e3vcUuvfRS25Mks2gyzjmcc3lOaQwumbN06VLbAJT3U6Tz60hro9M/r1SpUilnnnlmSvHixVPKlCmTMnny5Jg8p+ROCqJLUqIxEyfBokWL2sm0C6DT8NFvy5YttuFJs2bNgk6EJPd5/vnn7Xvl7bffTvd+N998s71fq1atUn799de4HZ+ISE7AOZZzaJ06dVIOHz5sJ8p8/dxzz9l/aR5WsmRJbyyvVKlShsHQQYMG2ft/8MEHcfs9JHnREIzm8hUqVIjaOP2///3PvscaNmyYEi0svJ9xxhn2cfft2xe1xxURiZWrrroqTTNGmiy7ZqL79++3wc4jR45k6vE5Z5999tn2HH7o0KGoH79kPxMmTLDvr8GDB8fk8Xfv3u29h0mSYzGchraxCtpL7qVyLpJ02D7rtpdVqlTJbu3GY489Zl577TXvfocPHzZXXHGFrYnNFp3cUjNV0kcdv5tuusnceuutZuHChSHvx1Zx6pp+9tln5ocffgjrZWWLWKy2oYmIZCeUawElWijhwjZw+knMmjXL3l6tWjVbEosmjdSo5PuUzQiFklw0fGasd7WrJXejPi/vC8qkUHotcJt2ZvB+xaJFi8z+/ftTfS+zjUzZrk7pot9//92WixERSWaUZ6E3BJgLuRJVroE3/aNOOeUUW9olf/78ET8+52rO2b/++qvtQUWZDZEOHTqYRx991Jb2+eSTT6L+gnCN2alTJ/s5pQS59qQ0YKjygSKZpSC6JB0aUDC4M3h/8803XhPHRx55JNVEh7rWNHlkcC5atGgCj1iSCQMlDexohENDnF27dgW931lnnWWuv/56+7lbtCHIs2PHDvv566+/bhdpXM1fLFu2zF5oUhc9EN3Xee+6RR8RkZyKMdgF0S+66CIzZswY+3mrVq3swiQIKoKGTtSLJhh66qmnBn2877//3jYipfEUEywR/1hNogTvN+rqZtUZZ5xhEzSo0z9nzhx721133WUXe9x7l+/xXmzdurW9LnAY39NbSCepQ0Qk2Y0cOdKO4ywqvvvuu/bcRgCd8xt9ppg7ZWU+Qz8Lztkffvih12dKBCRKUBudOfjatWuj/qL07NnT/ksddvr08B6kZx6xgalTp6bqfyKSaYlOhRfxY7tNjRo10mwvmzdvXqr7vfXWW9ryLRlu6aKUQJs2bUJu46JWn6vpS31U6vbeeOON9nvU2Of2hx56yLv/lClT7G1169ZN9TgHDhywP8v3li9frr+MiORomzZtsuc7+pFQJ9rVVO3Vq5f9l23ie/bsSXn22Wcz3EZLKTZ6UlSuXDnlt99+i9vvINmzVNvs2bOz/Fh33323fSzq/uKaa67xShE51FTlth07dni3DRkyxN5GOTgRkeyI8iyFCxe257KPP/7Y9nGgj4mbx7h5UeDcO1yzZs2yPz98+PCoH7vkDFzrcc1HOcBYlOOlzG+wvnp8vPfee1F/Psl9lIkuSeXzzz83K1eutJ+7bbvnnHOOqV+/vncfMoUp2UHWmrZ8S3pbuij/8+mnn5qxY8cGvU/lypVtthmWLl1q/vrrL5t5/vfff5uKFSva2/2r5HT4RvHixVM9Du/V++67z1x22WWmRo0a+qOISI7mstAbNmxoihQpYnfiUEZr2LBhdgfZwIED7VjO9zPaRsvPrlixwmazFyxYME6/gWQ399xzj2nWrJm5+eabzW+//RaVki6u9FC5cuXsv+yCdPLly2f/9Wet7d271ysz49e9e3fTuXNns2rVqiwdl4hIrJGZS5mVkiVLmjZt2tg5dvPmze0ciHkRcyayeRs1ahTxY7Nzh3P0hRdeaO6+++6YHL9kf1zrvfXWW3aH9zPPPBP1x2dMdqWK/Cj9S3k4kaxSEF2SChNwh621bN2lZpar0cbWs9tuu83WZ3vhhRcSeKSSHbRt29YutrDosnPnzqD36dWrlzeZLlasmDlw4IBdzHElWygz4Lht3ZQa8iOI9MQTT9iAvequiUhO58pgUMqFEi19+/Y1//vf/+z5j/MoJThuueUW06RJEzNhwoSQj0Og/fHHH7dbv+vVqxfH30CyGybDb7zxhg1ks2idFU2bNrXvVfqhcG0QLIju6gD7y7e4yTdjvsN1KdvG33nnHbsALyKSzN588037Lz1LSEajFxnnVjCXoab0888/n6nH5tzMeZLrgcAApogfizdc+5F0Ee0FaMq5UuqX0mx+jPsseItklc5ukjSomTp9+nTv62effdYMGTLEZqI7ZKpNmzbN1qtW8yYJB4stZJSx+BKsaVjjxo1N3bp17eTX1e0j6FOlShX7OXX3XSaaC6IHZqGJiOQWnEfnzp1rPyfbzO3Goanili1b7ALkpZdear935pln2h06wTBxv/HGG+0YT41MkYwQ7CZrjV1ms2fPzvQLxhhO41vQgLxs2bJhZaK7xfhSpUql+v+Ba1MCAe4xRUSSEec4twjuzmkEvZcvX26ee+45G3zMLJKRmJ8zf3cLkyLpGTBggO17x7Ug14TRQrPvLl26pLmduT5xJJGsUhBdkkbgqjfZwH6UcWF7GSuIl19+eZyPTrIrFlu4qKOZyNtvv53m+6xKk6nuAuagpAuZZmScs4q9YcOGkEF0mudx8RksQC8iktNs377dNh3LkyePOXjwoN36TeNHAotktRFQP+GEE2xmG4vjoZotskhOJjpbepnwiITj9ttvtws0lAzwN/2MFKWGQOMxF/BhEciN5S4T3R9Ed43H2SnpkG3JQhENcfU+FpFkxo4ZuCzxRYsW2VJsX3/9tR3LmStlhivjwu40V0pDJCOMmVwDUtKP0n7RFCyIjkmTJqm5qGSZguiSFJiIjxs3LtVtV1xxhfc5k5pbb73VFChQQGVcJGIsurD4QrDcTYL9rrnmGlsbkGwMutJT0oVMS1fShUAQXKd63ofO6NGjTa1atXTRKCK5wuLFi+2/ZN2+/PLLdqIyaNAgm4nuepq4chuhapxzP7aNU7KNnUAi4SL4Q6kAxuuslHVx9X4JopcpU8YuqB8+fNire84iEfzZce764bTTTtMfTESyHUpPgQQhVyqVnbrs2qU+NTtzMoOSbvv371cZF4kYpfwo60JpP3cNGQ30KAu2O4z/B1g4Dyz1IhIJBdElKRBA92f7kAHs3wJOBvFnn31mM4qpvyoSKS4QCX6TxRaIrMkePXqk2sJNLX5KuhAEIqgOBmOa8FSqVMn7WRqccR+X1SYikhuC6ExQ3LbwdevWeQFH6lCm12CZTHW27tK8mexdkUgxAaZkANeEgbsWw+XGbN7PBOZZDCew7pqWuub2NCJzi+gEiQKD6O+++65tTO7uLyKSjDZv3mwzfp2jR4/axUJKZA0ePNiWVXM7cyNBaa1Ro0bZc7IrjSUSCd57lPbr1q2bfV9GAwvj119/fZrbeXz6AbgEOZHMOCZFNQgkwXgLMnnxD+yc2FxNaiYuZ599tm0ENX78+AQeqWR3bOFq3769rdtHJ3o/Msyo38vKdL9+/WxTvOLFi9st3Rk1C2VAZgKtrdwiktNx7iRwyRZwSrZwntyzZ48NNrqsXbZ0hwpu0tSMnyXjjcZSIpnBWM11IWUEyKCMtIkdP0+5N3ZCLlmyxNSuXTvNtSnjOtmaPPavv/5qHn74YXutMGXKFHtdwO4Lkj64BqC02xlnnKE/pogkJYLcZPyC85cLAZ100km2TFtm+j1xHq1Zs6bdxfvVV19lOF8SCYVrQha3uUYk0SIaSPCoXLmyHceJIZH0xkI5C+YaryUrlIkuCffdd9+lCqCTge4C6HjxxRft9tqnnnoqQUcoOQUNcxg4H3rooTQ1zMksoxkemBCTTUHmejgXhAzOCqCLSE7HhJkxG7/88ov912XgEkCnlwRbcynTEgw7zsg4ooSWAuiSFQS2yaBk+3dmEiz4efcedLsr/Bj7WRhywXkC7iNHjrS71Nx1AbvUuG7gmlUTchHJDqVc4J8DUcs8MwF0txNn1apVNkCvALpkRYMGDWxfHXYo+qsTZAU7Hmlcyrye92erVq3s9afGa8kqBdEl4diOG+prMn9oPkYJDnX6lqxiAOX9RBDoww8/TPN9siMxZswYbc0WEQlA82Uyd1k0JPvXjdNu8kyNarKJLrnkkqCv3SuvvGKbkj755JN6bSXLWBSnf07//v3N33//HfHPn3vuufbfzG7rpsHop59+alavXp2pnxcRiQcyzV29c/pE+f3444/2I1J//fWXPfe2a9dOJS0lKuivs3PnTjNixIioPB7Xpm3btrWfs4NMJFoURJeE+uOPP1I1FGVCUrp0ae9rAp5kuT3yyCMJOkLJaS644ALTunVrW7LF3zDMXVhSz5cgT69evUzv3r1thgZZZkyyab5D8GjYsGH2/tyHsgXTp09P0G8jIhI/ZJyBzB4m5S5Ll3Mq5bJYiGTSEiwjjeA7O8oolcXPi0Rr0r1161bz2muvRfyzrnk4QXCa5JKswU41MPZ37NjRaybK+53yLcEoA1NEktnHH39s/z3vvPNsdq5rnIzJkydnKvOXcy5lrLRTXKKFuuiMvYzrXDNGgwuikzxHE3FKt1ImmN3prp+PSKQURJeEolkogfTAQd5NWF566SXTp08fW3NVJFq44COjknq+gQ1GO3fubD9nQv3888/breJr1661k2y2g5Ht5oLv1P+jsZ7/PSwiklO5CQd1oFG3bl2bVU4wktrU6W0Jp/QG50oy10Sihfdely5dzBNPPOE1BQ0XzcLBIjlZlVu2bLFBIVf64L333jOHDx+2X3fq1MnWDna72Li/xn4RyQ5o/umShRiLXTmLgQMH2q+pGx0JzrWM/dSujvRnRdJDORf64VEiKBoaN25sy7ExXjO+b9u2zTbZJeb07bff6o8hmaIguiTU2LFjvc8ZjOvUqeN9PWDAANsAgiC6SDSxhZuO3Vw8MlD7uSC6yyxj0uwm2S5zwwXRR48ebd566y07QIuI5HQsKLrM8927d5tRo0bZRmUEFplM+8d0P3b3sCjZs2fPVLvNRKKBsZxFnOeeey6inyP4w1hPY1zX18TV+nflYaiLjo0bN9p/yWLD1KlT7WISOytERJK5lwlJP1i/fr0ta0H5FjfHpgxbpNiRyzmXubpINNGj7N5777XXjFw7ZhVzd/rtBWJHZPXq1bP8+JI7KYguCcO2WGpJghXxhx9+ONVEne7MlHHJbLMTkfSQtUbD2hdeeCHV7XSZL1++vNd0x2Whff/9914Q3TXSq1WrlunataspUaKEXmwRyTVBdIKPnPeYkLMtloxetzgZzOOPP27y5ctnA+4i0UZg+8477zRDhw61AfFwnXjiiXa8hyvVQhCdhXKXZc41KN9zk3lXimjBggU20M5jiIgkqxUrVpj9+/fbz5lbU6Lygw8+sLtyM3P+4hxLEP3uu+9Wg0aJCZrTszucuXo0XHjhhWluYy6vBveSWQqiS8J88sknXjCS4KS/piQDO/XRaSgqEgvUPu3evbvdLubPRud92KFDB+/rH374wf5LsCgwiC4ikpuy2Vw5l0qVKtnAOGM122MJotNotECBAml+jiZR7Np58MEHvTIwItFGIgbj9/DhwzNVF90F3ylT4C8LQxB9w4YN9vMiRYqYU0891X7+9NNP20UldleIiCSruXPnpvqa8lfspKEpuNt5EwkyhDnXuv4RItHGOMs1I7sduYbMqvPPPz/NbezGcItLIpFSEF0Sxt8EqlmzZt7nZPu8//77diuP214rEgs0DqVxyTvvvJPqdn8QnWx1MIl2QXSyz2iwRzMeF2QXEcnJ6FPCgiPNRHv06GEee+wxs3z5cq8MVqjmiiNGjDD58+fXorjEFAFuGtu+/vrrEdUqd5nlLpjEe9w1NON9SzkXeqPAv/Wb9zuLSSzIi4hklyA6C4OUoqQUCyVZIsH5kXMsZayoMy0SKyRSsoPx1VdfzfJjsWOyWLFiaW7/4osvMtVUV0RBdEkITliuPhv8JTVGjhxpt/AwGRKJJSa/dO3m/efKt6B27dqmbNmy3tdMov0NRSnxQuC9Xbt2acrBiIjkRK4m9Mknn2wbKjucKytWrBj0ZwhmsmDerVs3lWaTmKO8ANmV48aNC/tn3Fj/888/pwmi81535RBAySIRkezi6NGjqebbYCGcbHIyyc8666yIHo9zK9m7d911V5SPVCQ1xl967RAXymqgm0XvYNnoV199tVm8eLFeeomYguiSEF9//bUXtGQC45o3/vXXX3bFkQm3tn1LPLAVm3rnrnO9G2zbt2/vfc7qNZPn4sWLm4suushmrpH1Vq9ePU2qRSRX2LZtm/3Xv+CILVu2mIkTJwb9mXfffdfs27fPBjdFYo2A0OWXX55mYTw9ZcqU8YLoLAbx4bIzXU8eF0SnZwquvPJK06tXr6g0PRMRiRVKUR44cCDVbdOnT7e7aijHFgnOqZxbST5yvSREYumee+6xO8K5lsyq8847z/573HHH2Z3lLCbxsWPHjigcqeQ2x6SEe5UpEkUEydlKBibfV111lf2ck2SnTp1s3dVQmW0i0cQpkIkxk+9JkyZ5t3/++eemefPmpmTJknaAZaAVEcmtnnzySdO/f387ASG7zSlatKgNpAdrUFa3bl3bgJT6qyLx4MZukjWCZZ4FojRbjRo17MK4K9/mkjrISqc26//+9z/z7bffmvvuu88ULFjQNjJlgZ066rz/RUSS0fjx49M0/GZxkPJV7PqOBBntTZs2tUlHF198cZSPVCS4yy67zI61Wc0YX7hwoWnYsKFN0mQBnN3lXLdqfi+ZoaiQJMSECRO8MhkugA7qrFEfXQF0iRcmwrfddpuZMmVKqqwyVqyph7p7926bqS4ikpu5THR/AJ1gIk2fggXQly5dapYsWWIbOIvEy4UXXmgXxbmejCQTnR0Tv//+u3c7PXlcE9Gbb77ZvPHGG6Zy5co2aE7yB411FUAXkWTm+jmw+O1UqVLFLhJGinMqtaXZkSsSL8zRv/vuO9u8PitImOP/A3ZmMN5TBUEBdMksBdElIXVVye6BP1hO48Yvv/zS3HrrrfqrSFyx+4GMDLc7AjQzIeMCM2fOtP9q446I5PYgukN5K+qishgezKhRo0zp0qVN69at43SEIv9X75emdx988IGt3ZsRsjJdgzx2VGSExXWSPx555BG93CKSLYLo/qaKCxYsiKhvBOg18eGHH9pza6gm4iKxykQvVaqUvabMChbGWQSCkuMkqxREl7h7//33U9W6ckaPHm0nMv7MdJF4YGtXhw4d7Hvwv//+825v0aKF/XfgwIG2JAEXoWz5rl+/vqlatardKs6FpYhIbguiX3HFFba8RTA0X6Y8Gw3CqT0pEk80I/v333/DDhSx2IM2bdqYSpUqmeeee8507tzZ7lCj3AuBKJqLi4hkJ66fQ8eOHb3bKF8V6Vz7nXfesbvQOLeKxBPXkFxLMp5zbZkV7MJwgXmS52he2q9fvygdqeQmCqJL3M2YMSPVSdFl+BJcv+6662wGsEi8cWH4ww8/2PIDgUF0moxRj43tXwTNqSXIKjY1UoOVMRARyWko2wK2wLKQyKLjoEGDgt6XxmWcNzXhlkSgl8mll16aKmkjPa4sCwtFNOKbN2+eDRqtXbvWPProo7aB+Msvv2x3pVHSgGsAEZFkxpzFNU0kcO5KWhBYZydZJDiXsquMhCKReONakmtKF0PKahCdeuh88Jj0DRCJlILoEnfUSXWrgK5GG1k+P/30k2nXrp3+IpIQTZo0sfVPyTzzD7ZkqQf6448/zNy5c20jUraHiYjkZOzQcaUxqAfNeY/FbzchCcR5tFq1arY2tUgicD1JMNzfLDSUwNrm7mcIGC1atMh+zsLR8OHDbY3/kSNHxuioRUSiY/Xq1fZf5trsDKN0FXOdSJFENH/+fM3RJWEow8IO8E8++SRLjxPsmjWw8a5IOBREl7gP6K4eOllCDidFsttcDWqReGNnBFkW/gGaun+NGzdOc1+2k/FevfLKK+N8lCIi8Xfw4EGvJwQNFr/++mvTs2fPVOO4w5bvqVOnmssvvzwBRypivEQNFn+mTZsWcRCdoJG7LmAHBkGoWrVqmUsuucTUqVPHln8TEUlmrscDYzIL3+ykefLJJyN+HHcO5ZwqkihcU3766aepmttHI4iuRrmSGQqiS1z5m4Zec801qbLWmIxTn0okUdq2bWu3OW7dutW7rVGjRmnux0KQmoyKSG7hstAJKn700UdeTXSaLAYiY41t5JxPRRJZ0qVBgwapdpdFmon+888/23/ZVUHptl69epnvvvvO1k0XEckufUwIPjZs2NDuqIl0/sI5lJ+NtASMSDRxTcnYvHDhwkw/RsWKFdPc9ttvv2XxyCQ3UhBdElLKBTQRxa5du8zixYuVtSYJ17JlSxsk4mLT4cIxENltBJKYTIuI5JYgOs0a//rrL3PssccGPTeC3TxMtpmsiyQ6c40aqrxnIwmiswjkz+TUe1lEsnszcBa9CSKyyzZcf/75p81g184ySTTG4WLFioW1MB4K/w9Q1shv9+7dSoyTiCmILnFFEwf460wTsGRCTikNkUSiS3ezZs1SDdD16tULet/27dubvn37xvHoREQSG0R3aAAeKjDJ+bNNmzZ2XBdJdOba77//bnuYpMddk7JA7v5lZyQNxF0m+pdffpmlbeQiIvHk31VLgtDQoUPNq6++GtFjzJkzx5aw1M4ySTTKqnFtmdW66OxS87v99tu9UsMi4dIMR+KG7TJuC5m/iQMT7vPPP98UKVJEfw1JOC4UuWikY7cLrJ955pn284IFC9pGY0yoa9euHbKpnohITnLgwIE0C+L0MQm0ceNGs27dOk24JSkwVpctWzbDzDUWhVyWGrsoWAA6/fTT7S5Jt4jEAnuwHgAiIsnoxx9/9D5nF9nff/9tSpcuHdFjcO4sX7685juSNHN0Frc3bdqU6cdgbA8Uye4MESiILnHz3nvveZ/369fP/svK3+zZs7VNTJIGWxYJELEF3KGuKgYMGGC3fa1atcosWbLEjBgxIoFHKiISH4FZ59RDD5ZpToYQDcyaN2+uP40kHBNjxnTel+nVAXa1/WvUqGHroFPCgOa5EydONAMHDrQL6GSrE0gXEckOduzYkWZRMRKcMzl3cg5VkFGSAc29ucbMSjZ6qVKl7L/PPPOM3V3G9W2w/j4i6VEQXeJm0KBB9l8GYrcSvmjRIjtZoRa1SDIga42agWzddipXrmz/Xbt2bQKPTEQksaXYnJ49ewa9H2UzmjRpYpswiiQDssepDezPygyVic71KI4//nh7ncqE/dFHHzV9+vSxwfV77703bsctIpKVMZsyLH4rV66M6DE2b95sA/Gao0uy4NqS6gUZlWgLJ4hOTz6SQSjdpkUiiZSC6BIX1Jd0DU5YQXTI5i1QoIC2iUlSqVu3rn1vBguiR9rVXkQku2MbuL8peM2aNYPej/Mm50+RZOHej/4xPVQQ/Y8//gh5HybaZKSLiCQ7ekEE+uGHHyJ6DHfO1JguyTxHz2wQnZ3lIpmlILrEBbXY3CSFGtMOJ0Em4zSLEEkWderUMStWrLDvW7ja5/PmzbPNeVj4qVq1qhk1alSCj1REJL5B9NNOOy1opjkTkp07d9rzp0iyoMY5NVDTm3S7rdxkq5crV87ccMMN5o477jAff/yxzVYTEcmOQXQ3v+a81rFjx4geg3PmGWecYYoVKxaTYxTJDK4x2SHB7rDMKFSokP13/PjxNjZ100036Q8hEVMQXeKCDB4XRPdPsBmgNeGWZMN7kow0V77lnHPOSbWrgu/R2ESTaxHJbeVcDh48GPQ+LkipMV2SDe/J9ILoLI679/n27dvNuHHjzMiRI81VV11lypQpY0sUBZZGEBFJ9iA6panQqlUrc95550X0GJqjSzJy15hLly7N1M/7KyJQD33q1KlROzbJPRREl7hgUnLo0CH7edOmTe2/fL1hwwZNuCXp1KpVy9ZHc5NuFoD8OyjwwAMPmA4dOiToCEVE4h9EP/XUU209ymA4X/J9+kqIJGMQPVQ5NpqLOW4HGgig894nIKU6/yKSXfz2229ekLBChQohS7CFwrmSIKUWxSXZsKuCa83MlnRxSZ1OixYtonRkkpsoiC5x8corr3gTk0aNGtl/ly1bZv/VAC3J5qSTTrLZ5/4BukiRImlqsrla6SIiOZnL1N2/f7+pUaNGullratAkyYb3Je/dLVu2ZBhE97/fL7vsMvPTTz+Z119/PS7HKSISzUx0guENGza0DZYjQf30AwcOaI4uSYdrzNq1a0ctiN6tW7coHZnkJgqiS1wMHz7c+5wTHzj5UYeyUqVK+itI0m//LlGiRLqTbhGRnFySLSPa+i3JyiVrhJp0+7PP/SUQKH9ATeB69erF4ShFRKLDX35q7Nixpnv37hH9vMqzSXYu0RZJEL1w4cJROirJTRREl5hjK6y/nqrbEuuairqMH5FkG6CXL1/uTa5pTOa3Zs0am6UhIpLTHXvssal26gSiwRONnrSzTJIRi+A0xA016Q5cFP/zzz/tv6FKF4mIZJcxm4S1atWqRfTznCuZ99CYWSTZcK25bds288svv2Q5iB6401wkHAqiS8yR0eOy2PyDOkHIUNvCRRLt3HPPtQ1Ef/zxR/t1YJ3fJ554witJJCKSk7mgIkqXLp3m+zRahsZ0SeYxffXq1WEF0SmBQOBp4MCBZvPmzXE6QhGR6HC7adzce/DgwRH9PGO6xnNJ5vEcocb09PhjUZg8eXLUjktyDwXRJS5obAIygZydO3emye4VSRbuvbpr1y77L415/J29ee9q9VpEcgPqSTslS5ZM833Gc2hMl2Qe0914HmqRyF/Pn9v+97//hWxGKiKSHYLo//33nznuuOMi+nnN0SU7zdEjQYKcHz3QRCKlOhoSlw7hDOAoVaqU/ZfyLmzBcV+LJBv33nQDtMu+pKHo4sWLE3psIiLx5F8wLFSoUNAJN7e7cm0iyTimu8WeQAcPHrT/Nm3a1EybNs1s2LDBlnOjqejZZ58d5yMVEckaf6lUdtVEinNlsF1nIsmgYMGC9iPUmJ4et2hOr5NPP/006DWtSEYURJeYGzp0qPe5q61G/VQoiC7JikGVC08XRGew9ne8FxHJLfxZbMEm5JwnNZ5LMuP9ybUnpVsCszJdEP3kk0+272+2irvt4iIi2TkTnXkL5zjOb+HgHLlnzx6N6ZL0Y3pWMtGpja6a/5JZKuciMbdu3bo0Jy63cqhVbklWbOvm/eneqwqii0huVa5cOe9z1+PET0F0SXaM5+yKDNaIzDUJDzfIJCKSXYLof//9tylQoEDYP0sAnXOlFsYl2cf0rATRM7NDQ8RREF1irkePHl6dSde8yZ30NEBLdlnldkH07du32yy28847L8FHJyISH1u2bAnZlAmcJ7UoLtmpRJsf4zrGjRtnypcvb2699VazdevWuB+jiEg0uDkLqlSpkiqonpHAMpYiOSkT3V3Pzpw50zz88MMxODLJDRREl5ijxmTRokXt5+5fTnoEIosVK6a/gGSrIDrI0Fi1alUCj0xEJH5mzZqVqs9JIHbsaFFckpl7fwaroerGeRI9fvzxRzN69GgzZsyYuB+jiEg0+MtUVK9ePaKfdedIjemSXfucpMctmgcmiIhEQkF0iTmyeWgkCtd0jAlLiRIlgma0iWTGK6+8YsqWLWtrnDVo0MAsWrQoqkF0Htevb9+++kOJSK5QsWJF7/Ng28JVzkWSfTznmpNdkcEy17Zt25bq64YNG5qrr746y88pIpIIp5xyivd5YA+IjHCO5FypetGSXebokVi5cqX3edeuXbN8HJI7KYIpMffiiy969SZdLVWaO5UsWVKvfpQ1a9bMvPXWW7nudX3//fdN7969zWOPPWaWLl1qG4K1bNnS1vXL6gC9e/duL/vc75prrsnSY4uIZBc1atTwPg+sKX3kyBHbuExjenRpPI/ueE45A3ZDujHdb8eOHd7n7JCcN2+eLYEgIpIdEQR3iWqBSUAZYY7OeTBPnjwxOrrcSWN69Ofo7IzkGjQSP/zwg/f/CMchkhkKoktcguiOq43+559/RtTkJD0DBgywjxvsgwFLcr7nnnvO1jDt1q2bnfiOHDnSvr/eeOONLD0uTUf++uuvVPX8g2V5iIjkZP5FxDVr1qT6HuM5ojGmazyXWI3ngWO63759+7zPL774Yu9aVUQku3LnsY8++iiin9McXbLLHB3BxvT0HDx4MNXPi2SGgugSc3nz5vU+d4FIyrtEa4WbshqcnBs1amS39fDRp08fU7VqVTNp0qSoPIckL7rOL1myxDRv3ty7jewLvp4/f36WHpv3qCtFFJiJHunKt4hIduVfRPzss89Sfc+dI6Mxpms8z91iOZ679+i///6b6jbGdrcQhPPPPz/LzyMikmiujEtKSkpEP6c5umSXOToCx/RwjgnaPSlZoSC6xFyXLl28z92Jjn+jFUSn4SMrmpSK4YTIB7fx+IULF47Kc0jy2rt3rw3wUO/Uj6+DbduOdPu3e88GrnSr6ZiI5BaUynI2btyY6nvuHBmNMV3jee4Wy/E8cEz39+3xI0tORCS743znDxqGS3N0yS5z9MwE0Z0iRYpk6fkld1MQXWLO1UFHuXLlvBNepI1OJK2nnnrKBh3cx9dff21uv/32VLf99NNPeukyafLkyTZLjayMwOYlWsEWkdzCv/Mm8FzoJjAa07NG43nsrV+/3gwdOjTNOO/Xtm3bOByJiEhsuXIVmQmiazzPOo3psbVw4UL775YtW8L+mWXLlnmfd+jQISbHJbmDOkZIXMu5/PHHH/Zf1ZuMDgLm/gaXnTp1Mu3btzdXXXWVd1vp0qVNTkajMC72aITjF43mtWeeeaa39Szw8XP66yoi4jzxxBOmR48e9nPXKNzReB4dGs9jO547Z599dqqvFy9enCrR47rrrovK84iIJFKhQoW8TOBIaEyPDo3psR3TaX4LEgYjuZZ1evbsmaXnl9xNQXSJKQbumTNnel/v378/ZF3KaMotFwCUq/GXrCHroHjx4mkmiTl9p0OdOnXM559/btq1a2dvI3ucr++6664sPTYdxBn8+fDXROc1r1y5cpaPXUQkO6hZs2bIfhCZrUsZLo3nGs+jMZ6jQoUK3nVCsCbh/fr1M9WrV8/y84iIJJobmyOtia45enRojh7bOXrZsmVTBdMjyV7nutKVgxHJDJVzkZgig3fVqlXe1ytWrAhZlzKaTjrpJFtra8OGDTF7DkkevXv3NqNGjbJ1yteuXWvuuOMOc/jwYdsJPCt4j7pBdvv27d7tTZo0Meecc06Wj1tEJDvgfFerVi1vAvTLL79ErS5lRjSe5y6xGs9D1fr1XydecsklWX4OEZFkcNZZZ3mfB+4gS4/m6JJd5uiR9ONhMcllxHNdKZIVCqJLTLHS98wzz3i11Xbs2OGd8KgzHSstW7a0/9auXTtmzyHJ49prr7V1Th999FGbMbl8+XIzffr0NI1MIuXvUO+vLa9MNRHJTcje8Wf7uAVxuHNkrMZ0jee5S6zG88Ax3dm0aZP9l118roSbiEh2d8UVV4RsCJ4ezdElu8zRIwmiz5071yttVKNGjSw9t4jKuUhcViCnTZtmt+78+eef3grgwYMHo/Ycw4cPT/V11apVs9z1OTtigMit2BYWje3efrxH3Wq1PxPdNcgVEckNBgwYYGtHs7uMTPRFixaZ5s2bp6pHGa0xXeP5/9F4Ht3xPHBMB9lwrinZb7/9Zt/bvMdFRLK7Cy64wPt89erVpl69emH9nObosaExPfpzdJx44olh3f/LL7/0Pnc9fkQyS1eKEnMEzsuUKWM///333+2/pUqVMrt27dKrL0mN9yjvVezcudO7fcqUKQk8KhGR+DrvvPNMw4YNbW3LwEVFtn7TPEpjuiQzAuYEyt2Yjo8//tj7vFWrVgqgi0iOwe6afPny2c/feuutsH+OcyQBysD+JyLJhGtOdkiGW9v8wQcf9HrsNG3aNMZHJzmdgugScwsWLDBvvPGGF1BnKw0D9K+//mr++usv/QUkWwTRN2/e7N2upqIikps8//zzdkJNNrrLavMrXbp0qoVGkWTjFnl4rzqvv/66/ZeSg+PGjUvYsYmIRFuBAgVMpUqVgo7Z6XHnSC2MSzLj/ekfzzOydOlSWxedpA//YrpIZiiILjH3+OOPhzzp5caSK5J9+N+rbPN2ddT69OmT4CMTEYmvM844w/v8u+++82pLQrvLJNm5gJB/8rxy5Ur7L5Nql7EpIpIT/Pjjj7b+NEhc++OPP8L6OXeOVBBdskuiW0ZYRGrfvr3XL89lpItkloLoEnOB9aPXrVsXtESGSLLh/eneq672WoMGDeyEW0QkN/E3XWQyvmbNGu9rBdEl2bnrTf+k+8CBA964LiKSk5QsWTLV4uCSJUvC+jkF0SW7zdHTQxJcs2bNvMRN7SaXaFAQXWJu5MiRplChQqm202iAlmRHluXPP/9s36vUUnVNcf3ZmCIiuQF9ID744INUt3399dfe5yrnItkhay1//vzm5JNPtl9/+umn3vcuueSSBB6ZiEj0FS5c2LRp08b7+rPPPgvr50455RQbfFeim+SEci5z5swx+/bt8752GekiWaEgusQcDR/8GWw0dipSpIi9XVvFJFnt3bvXq98/b968VDX+RURykzx58thzot/06dO9zzlPkuVDvUmRZN767bZxP/roo973br755gQemYhIbPiDjDNnzgzrZzhHaneZJDOuNbnmDCcTnbiTX/369WN4ZJJbKIgucVGtWjXv82XLltkBmm1mCqJLdqif6m849s8//yTwqERE4q9Ro0Zeg3Bn0aJF3uecJ//++29bd1UkO9RP3bRpk/2XhA4y1EVEcpp69ep5n69YscL8+++/Yf2cguiSzMgsZz4eThD9pZde8j4/55xzTN68eWN8dJIbKIguMcekevPmzakGcZCdTtMTkWTk3puUb5k/f753e9euXRN4VCIi8XfqqaeaLl26pKqvumfPHi873ZW50pguyYr3pnufUtPfZae1aNEiwUcmIhIb9CFzCDqGu5uWc6XGc8kOc/T00Pdk7ty53tf+8kYiWaEgusRcwYIFbR10Z/v27bbGdM2aNVPdLpJMeG+WKFHC7pjYtm2bve24444znTp1SvShiYjEHee/N99805x00knebbNnz/Z2mx177LEa0yUp0Vhs+fLlplatWmlKEd11110JPDIRkdhhh5if/9yXHubonDM5d4ok4xyda1J/pYNAlGRt2rRpqvdwhw4d4nSEktMpiC4xd8IJJ5jBgwfbE5m/Q3idOnXM+vXr09SqEkkG7j0K11S0UqVKCT4qEZHEYEJNVk/16tW92yZNmmT/LVCggKlSpYo9b4okmw0bNpjff//dG9N79+5t/6W0YJMmTRJ8dCIisXHNNdd4zZQjCaJzrmR+vnHjRv1pJOlwrVm1atV0S7HRSHflypXe11ynqh66RIuC6BIX9913nxk5cqRtToYpU6bYAZrGEEzMRZIJ70sXRP/uu++8Znnq6C0iuRVZ6HfccYedhLiM3q+++so7P3K+VBBdkpF7X9auXdtmpW3ZssV+TZP7E088McFHJyISG3Xr1k1VsopzIaXYMsK50t1fJJkT3UJp1qyZGTZsmJet3q5dO7tjUiQa9E6SuGElvGjRovbzOXPm2Kw16qtqgJZks2PHDnuRyQD9/vvve7erEa6I5FaNGzc2LVu2tDtzGjRoYHeZ/fzzz3ZHGThfrlq1Ks32cZFE4zqzfPnytra/vyFux44dE3pcIiKxduGFF9ryLM4nn3yS4c+wwFi2bFnN0SXp/PXXX/ZaM6MgOuWEe/XqZXugQIlwEk0KoktcUJfqgQceMLt377Zfr1271tayOvfcczVAS9JxCzsM0BMmTPBuv/baaxN4VCIiicP579NPPzXjxo2zO8sYvzFjxgzvfEkAffXq1fozSdJmrT377LPe7eysEBHJyVq3bm2uvvpq7+s33ngjrJ/T7jJJRlxj0iTX7ZYIhtKD7CTnmnXz5s026eOSSy6J63FKzqYgusQFGbxjx471vmZVkM7KGqAlWSfcxYsXN6eddppXs7958+Z2a5iISG5FSbbzzjvPfu4ag7/33nv2XzLd2Cqr3WWSTCjfsmzZMi+I7moCsxNSfU5EJKd78MEHzSOPPOJ9PW/evLB21nLOZJxXc1FJJlxjcq3pEjkCrVixwpYxqlevnmnbtq297eKLLzYnnXRSnI9UcjIF0SUuTj/9dLstzG/ixIl2gF63bp1t+CSSbFlr+/bts6vZ6N69u909ISKSm51//vneDjMsWLDAlnWhaVPlypW94LpIMqAxHovhjOk9e/Y0R44csbdTJ5jGoiIiORnBREqo+vlLVWbUXJRMXpFkwTUm72euOYMZPHhwmvds165d43R0klsoiC5xs2HDBltjzZk9e7ZdKaQpmb9GpUgiERji/ch7c9SoUd7trGKLiORmL730knn88cfT3P7RRx/Zfzlvzp8/PwFHJhKcez+y9fu1117zbqdWqohITte7d29zww03pLrt7bffzvDn3O4djemSTHg/cq0ZyjnnnJPqa4LtLiNdJFoURJe4Of7441MFIglUkrVWqlQpW7NKJBksXLjQ7N271zbQe/rpp73bqacmIpKbMV5T9zxwV86YMWPsv5w32Uq7bdu2BB2hSGpcX9avX9/kzZvXNsV1ZYmaNGmil0pEcoXq1aun+poSV+zSSQ+JbwQrNUeXZPHTTz+ZlStXmksvvTTo99lpNmLEiFS30UA8f/78cTpCyS0URJe4uuyyy7zPKZOxePFic/nll5spU6bYjHSRRKNrfdGiRe2F48GDB70FoBNPPDHRhyYiklCUwFi1apW58sorU91OSZdffvnFTmwIUGrSLcngr7/+so1vyUIbNGiQdzvvX5VnE5Hcgp5OjM1+o0ePzvDnOHfSR4LFc5FE49qS93GwIDq1+1999VVbitWvW7ducTxCyS0URJe4ooSL34QJE+wATe0qaqOLJBoLOm3atEm1kk0dVRGR3K5QoUKmWrVq/1979wFlV1X+DfjYEJEWkV5CkdADRJEeWiA0laI06dKl996RpoCgKL1KkS6CEKpI70jvUpXeFFQ+nG/9tv8z3pnMgQSSKZnnWesyM3fuhJk7s+4++91vGSmIHueee241YMCAaujQoeV1FHrajTfeWGbu5DqztQfwTjvt1KPfF0B3ypqcYYydg+gffPDBx35dXjvTF/2Pf/zjWP4OYdT+jpdYYolqkkkm6XB/EjGXXnrpDgN0Y+DAgdUiiyziqWWME0SnW3VVAp4XvZTZJAMYelIOcx555JFSHdHaO/Wggw7q0e8LoDf53ve+Vz3zzDPVTDPN1KFfejYyef28/vrrDQynx+W6Mpvou+++u/y91i2J0t4FoL9I0LHOJk97ylTcvvnmm9V55533sV83ePDgavrpp7dHp8flMOeGG27osr/5TTfdVA566pZttS233NIAccYKQXS6VbJ/br311rKpqVu6vPjii6VEXOYavWHDnYvLYcOGtfcKnG222UovVQD+u5HZf//9q/XWW68MLJtrrrnK0/LUU09V99xzTwmiZ7M+YsQITxc9Jgc6ua7MhvuAAw5ov3+zzTazqQb6lWTvnnLKKe0Jbdttt115/9hjj/3Ydqqf+9znymuotqv0tFxT5toy15idpQLyyiuvLElvu+66a7lv/PHHL+s9jA2C6HSrlIEvvPDCpX9qnZV+2GGHlQU6wfX0VIWekovEDL/N2/RWCwswwP9MMMEEZTN+yy23VEOGDKmOOuqoarHFFiufy/2zzDJLCaw7GKcn1QNus+FOxmVtk0026dHvC6C7TTjhhKU39Mwzz1xauGRAYwLk999/f3Xbbbd97Ndmj/7cc8+VeSjQU3JNmThSawVkLX/LK6ywQmnn8uijj5b7Nt5449JiEMYGQXR6RBbsLOhx4YUXViuuuGJ5P6eI0BPeeuutUg6WDfdee+3Vfv/w4cP9QgD+Tw7A99lnn1IGfvTRR5cZEhtuuGH53DnnnFO9//775XX0iiuuqD766CPPGz1WWZYe/nX1RGRg+HTTTec3AvQ7CTTut99+1emnn14+rjPQjznmmE/MYs+eXdtVekquJXNN2TkL/fXXX68efvjh6rLLLisJmg899FD7YPu62gLGBkF0ul2mJqd87J133ikfv/vuu2Wo6EILLVQC6tBTJ9xZpDPxO9lrdSuXulUBAP+1ww47VGuuuWap2Pnwww/L2p1NdtbzBNLTMz2bmxxMQndLcCh/k1nPd9ttt/b7E0AC6I+yx0nC0KmnntohIH7BBReUeVBN0tIyWb726PSU9DtP/KhzP/StttqqWmCBBapVVlmldDrIQXnW/yR3DBo0qMe+X8Z9guh0u7y43XzzzR3uO+SQQ6r111+/ZKK/9NJLfit0u0ypTyuXSy+9tD07wzR6gGY/+tGPyturrrqqfZBo1vNsarKByesqdLcMEv3zn/9cfelLX6ruu+++ct9EE01UAkEA/bWK7IQTTiiH23U1eO3ggw/+2K/NHj2tXzL3BLpbriWT2Lbgggu235c2bTfeeGNpT1T717/+Vd5mXg+MTYLodLtMBN9zzz3LtO/a9ddfX04RMwTitNNO81uhW6V/Wg52Nt100+rQQw8t92WxnnLKKf0mALqQrPO//vWv7S0zan/5y1+qP/zhD6X39EUXXVSyh6A7nXTSSaVtS1oO1XbZZZf2WTwA/dHOO+9cDrpnn332Dvefe+657b2ku5Kqnmmnnba8tkJ3yjVkriVzTZmWRLUcBH3ta1/rcsjokksu6ZfEWCWITo844IADykJeS0l4+lmlPDyDyeqhjtBdJ9yTTTZZOcSph9tmEQaga8lKy6amzvxplU36BhtsUNbys846y1NIt0lFRAJCw4YNa+/J//nPf15/VKDfy7DFddddt71v9Khmo3/xi18sX/ub3/ymveoMusOZZ55ZKsRzTdnqsMMOqx5//PGRHn/QQQd1CLbD2CCITo/JIp4+a7WjjjqqbMiTxZbScOgOGYKXITsZjFcPx4v8LQLQtcUWW6xadtllS0/KzjLg6bnnnisVZr/+9a8djNNtzj777LKu33rrre33bbbZZiNVTAD0RzPMMEO13HLLjXR/Dh8zo+zj2rfltTWBdOgOScRIC6JVV121mnzyydvbteW6sqtDn/xdS4KjOwii02NShpNNeO2JJ56o3n777TIU4uc//7nfDN0iF4MZtJMFOn9/de/Ub3/7234DAA2S3TtixIhyAL766quP9Pn999+/2mabbUqm0DXXXON5ZKxLtloG1y+11FLlmrLOoMzfIgD/DUx2DjTONddc5fVz1113bXyKBg4cWAY7Hnfcce2zo2Bsuvrqq8s1ZK4lI5WPyUjfcssty1D7rrLQoTsIotNjkqV23XXXdbgvgyC22267sjH/uN5sMCbkIjAHNrkoTL/U2p133ukJBhhFmXNyxBFHVPPPP3/7fRkUnhZZuc/BON0hhzW5dnzkkUc6VJWZbwLwX3/729+qfffdt8PTscgii5QDx8svv7zswZtkj/7www+PtH+HsSHXjkOGDKkWXXTR9gOg4cOHV5NMMkm55W+2lr28BDi6iyA6PWbWWWet1llnndIbvW7rktPGQYMGVVNNNVXJJoKxKQNtczGYgaK33XZbuW/qqaceaeAOAM2Hkf/85z+rr371q9U+++xT1vbaHnvsUTbdGTTaVe9KGNMb7mmmmaYMvK2rJXbbbTdPMsD/yWvk2muv3R6YnHnmmUvLjDrbd4cddugyyzeWWGKJavDgwQ7GGevSWiiZ6LmGrHucf+UrXynVjy+88EKZYXbOOeeU+zM0/NBDD/VbodsIotPjrTSOPPLI8iI43njjlfu23nrr6sc//nF12mmnlRdJGFuBn5R9zTvvvNWJJ57Yfv+FF17oCQcYRQ899FDZjG+//fbVQgstVD5OuW02NclWm3baacvBeIaNwthyzz33lOqH/K3V1ltvvWrGGWf0pAN0mh2R4aITTDBB9cwzz5QqnrRZzcFjKnnSc7orCWYmyJ6vvffeez2njDXpeZ7EtjXXXLP697//XQ523njjjfI2bVczODyJGpG/yTnnnNNvg27zuTZNregF3n333Wr55Zdvzwb+05/+VK222mqlNOfkk0/u6W+PcVCG166wwgrV+eefXxboSNAn/dbyFoBRs/TSS1czzTRTteKKK1YHHnhgtdJKK5VZE9mIZ/ZJst5yQP7AAw9U88wzj6eVMS4DxZ5++unq2WefLYfkWceTkV4PIwOgo6zLr7zySlm3sxd68MEHy/0DBgyonnzyyWqyySYb6Sn7f//v/5V1PANKkykMY1quFdMK8Pjjj6+22GKLat11163uu+++sqane8GCCy5Yqh5/+tOflkB7Kh0TWIfuIhOdXuGkk05qD6BHSnf23nvvko2uNzpjWnqq7b777tXiiy9esilqyZQUQAcYPddee211yimnVF/60peqP//5z9UxxxxTXmfzenrzzTeXQOYss8xSeqfDmJaKh2RSpqKxzg1KZpoAOkCznXbaqfrWt75VWls+9dRT7ffnEDyvoV1JH+rsl9I7PW0xYUzLteI3vvGN6kc/+lGJA5133nmlQiJ/l+npf9lll1U/+9nPymMTSBdAp7vJRKfHZaM922yzdVi8601RXjxzEnnxxRf32PfHuCftg374wx+WTXcyJ1MalmzJVEAA8OkkgJnDyVtuuaXD/WmxkcGj66+/fnmdzestjKm/uQwTS9bkO++8U+7LQNvXX3+99OkHYGTvv/9+yeJNNfjpp59ehjAny7xVEo1SWdbV627at+XtHXfc0d6zGj6rm266qfTeT6X4GmusUb333ntlVtnLL7880mPzuBtuuMHfH91OJjo9Lv3X0tMqJ+Gtttpqq+qAAw6oLrnkkur222/vse+PcUv6qmX4XVoFpSd6PTwnizUAn96rr75aSrw7S+ZQgpw5FM+gR50EGVMyx+Tuu+9uD6BHMtQE0AGapR/6hhtuWC2zzDLVJJNMUg0aNKh9X17bbLPNqrfffnukr03Q/LDDDqvuuuuu6qKLLvI0M0bk2jDXiEOGDKm+//3vl4+TUNlVAD1tXdLuxQEOPUEmOr1CXiRzm2+++dr7sUUW5v3337/62te+5qSRMeIXv/hFaReU1gMbbbRRuS+VEJkCDsCnN3To0JJpnl6VCZpnc1MHzFMCnhkn2bSnFDcHmfBZ5BB8rrnmKkGe1157rdyXQ5z0RW8NBAEwsmSeZ23eZpttyv4or5upEI+0Y8vwxgQxm+aTZZ5ZXm/TDib/DnwWl156abXqqquWVkH3339/9fe//730629VX1ceeeSR1c477+wJp0cIotMrhz3Wpp9++tJbdfXVV6+uvPLKDp+D0ZXFOH1508Ll3HPPLUNEI9UOq6yyiicU4DO44ooryoZn8803Lxls2YB3Hv6YwGcy1jM4ygwKPosTTjihDB1rleFjScgAYNS89NJLZX9U74vqgHjd3iX78+HDh4/0dXm9TdZwXouz5sOnlb+1wYMHV9NMM01pubrxxhs3PjYtAW+88UbXkPQYaRr0KumlWpeTxQsvvFB6Y+X+nDbWizt8Gj/5yU9Kxlr6pdZ/S8laE0AH+OxyQJn2a9n81EPJWttqJLsopePJWjvxxBM95XxqGTC27777VhNPPHH7fdtuu60AOsBo+vrXv14tvPDC5f0MCE9AMxnByVCPDTbYoLRl6ywt2tZee+1qv/32K6/J8GnlmjBDRNMmKFWN88wzT6k0S0Jla5VDrinTw18SBj1JJjq9Sjbf9SLe6ne/+13JRt91112rgw8+uEe+N/q29EzNEJxM/M5U+ZQrpmzxn//8Z7lgBGDM+cc//lFdfvnlpddqguu1CSecsPre975XWrqkfduMM87oaWe0ZUhthoTX1Q5TTDFFGVA/0UQTeTYBRsOOO+5YHX300dV4441XZkdlf7T77ruXPVP2Tg899FC19NJLl4PwzsHLF198sZp77rnLun7GGWd43hltaQmUoHky0FPVEB988EH5e8yBTgbcrrnmmmW9/9WvfjVSBRp0N5no9CpZqHPqnY1R6zTwBM/33nvvcjqZYCiMjmSdpw/vvPPOWxbiut9fFmIBdIAxK6+xF1xwQemjOmzYsNK7MjMosvlOW60333yzGjBgQLXJJpsYMspoy+HMWWed1aFd0KmnniqADvApZFbUTDPNVK277rrtQxu33HLLkvWbip/sla6//vouE9mmm266EoA/88wzy2szjO71YvruZ/5d9uq5dsxMnVSN55oxCRk77bRTWe8zSyftAqGnyUSn13r99derI444omy+Iwv3xRdfXAKi99xzT1ngYVQkk+KnP/1pueVCsb7oS7sgAMaslHVnuOgbb7xRnXTSSdUPfvCDMt8klWYrr7xy6Yu+yy67lPVdVhGjIwcwKfFOlto777xT7ltttdXKIHoAPp0EKZOBnhaqt9xyS8n23X///Uvby2Sn10Mdr7322pKV3iqDHrO2p0d62rXlkBxGxfHHH1/9+Mc/LjNzbrjhhnJ9mEObOeecsyRU3nvvvaUn/8wzz1ziP5NOOqknlh4niE6vXsxzInn22WeXj7Ow54Q7/avTHz39reGT3HXXXaXCIf36MvCuzlzLQJIllljCEwgwFiQr7ZVXXqm23nrr6lvf+lb1yCOPlIqyl19+uWQNp5d12rxkXU9bl2TBwSdZb731SqZaPdck7YH++te/lrcAfDYJhJ977rnVPvvsU5KNll122bJuJys4e6gpp5yyVIUnGanzcNIccCZbOOs/jGobl7XWWqsEyO+///4uH5es9Ntuu83ME3oN7VzotR544IHSeqO13CetXrIJP/zww0twFD5O+p3nICaDb/L3VAfQ99prLwF0gLHcszrZ5l/5ylfKIWZkHkUC6BkS9e6775YNU0p4U8pbt9mCJpmPk8SK1iHzyVATQAcYM9JyLdnkyT5PBW8C6FnHs4dKj+ocjn/nO98pj2s17bTTloqztNrS1oVPkmu+DKHPUNsE0ZNoUUvFQ6tULM4333yeVHoNQXR6rbRryQKdDPTaM888U8rE80Ka4GiCpNDkgAMOKIPGMuwmrYAibQUMpwXoPt///vdLFVlKvhNAz6CoeOyxx0oWUkp4f/3rX/uV8LFtXLLhbrXttttWiy66qGcNYAxIoDxtXK688srSyuVnP/tZNdVUU5X2WRNMMEEJrCeQngPwDIFsnUsRG2ywQWnBsdlmm5XXbGiSwHiqwpPYlr153TIocq1YD7DddNNNS8wHehPtXOjV0uMyp5Grr756+30Jqmf6dzZTeWH95S9/2aPfI71TevYNHz689Fk77rjjyn0ZkJMeqp0nywMwdrz33nsliH7TTTeVMvDnnnuurOOtmedLLbVUdccdd1S33nprGQANrfK3suqqq5ZM9NqgQYNK5pr1HGDMSduME044oVR9r7322uWQu16z65Yu9dsMfEy2eue2LnPPPXep+E0CU2syHESqw9NqNcHyHMrkOrFVnWyRa8NUm+Ux0Jt4VaNXS/A8A6PSU7WWRTwl4ikLzzCKLPTQKtnna6yxRhl8k7+R2q677mrDDdCN0mqjLs3dcssty8Cozq1bMsRs+umnL1VDr732mt8PHaQdUGsAPRvqHLgIoAOMWRkAfvrpp5dD7wUWWKDcl3YuUQfE6/uTqX7iiSeO1NYlLV3ymp1sdmj16quvlr75aeWX1myd2wLVAfT0188hjAA6vZFMdPqEtG1JyXeCo7UMKsvt5JNPrq677rpq6NChPfo90jukz25Ot5MhkcU5WY+Ri8EMH+vcZw2AsSs9VfPaPPvss5eeqTvssEM10UQTdcg+Sl/MmHPOOatrrrnGxoni/PPPL/1Sa1nDM9RuyJAhniGAsSj7qMGDB1dPPPFEWaNff/31aooppqj+/Oc/lyS2HHAmsH7eeeeVlhytDjvssGqPPfYor+FJbIK0bBk2bFj1+OOPl3U813qTTTZZ+TtLBXk6DeQxaSF0++23VwMHDvSk0SvJRKdPSCA0/dCjzjzKi2825YsvvnjJWP/LX/7Sw98lPS2B83XWWacEbHKoUgfQJ5100nKfADpA95tmmmlKAD2222676ogjjqgeffTRarHFFmt/TDbnea1OhnGGiKfMl/7t3nvvrdZdd90O95100kkC6ABjWSrGdt5557L/TnZw1uhkD88222xlL77PPvu0DwXP3uuKK67o8PW77bZbaQeTftb33Xef31c/l2u69NvPNV7arKa6Ia15U4GYdm35+0oAPa1X87ckgE5vJohOn5AFe/PNNy+LcTZQtXPOOadaZpllSkZbXoQ7lwTRv2Q4yR/+8IcSpEmFQqR1wPPPP68nH0AvkAPvSy65pGyYMvcka3r6oKdkN9VmeT/l4a2tuOh//va3v1Urr7xyh8F1GSSaoA0AY1cyzJOsltYaeS2Ot956qwTHk5Vet+JIy7Y8Jglt119/ffvXJ3HplFNOKdVl2aO/8sorfmX9WKoQTzvttOrLX/5yWceTWJFD8iS8ZUhtrgtzHZgWLirN6O20c6HPyAKdk+8syhlAtsIKK5TFPH7xi19Uu+++e7XssstWF154oYBpP/Sb3/ymLMbZZOeEu85iTPbDfPPN19PfHgBVVQ7DU/qdtlvJSMqmKsH0tHjJup61/pvf/GZ1//33VyNGjCizLehfEpzJULq77rqrvX9+evCmvNuQOoDukZZrN998c1mbN91005KglPklOfDOHnz++ecvrTInmWSS6p133ilZxFm3F1lkkfZ/48UXXyyv3zPPPHMJsieISv+StruJ0XRVYThgwIDyt5Skt0svvbRaccUVe+R7hNEhiE6flF5sWaD/8Y9/lI8TXM908B133LHac889q4MPPrinv0W6eZJ8JngnCyIL8Pvvv1/uT3lYTrQB6B3efPPNMmA0A8lyKD7rrLNWH3zwQRki/tBDD5XeqzHTTDOVTXle3wcNGtTT3zbdJEHzHIife+657ffNMMMM5e9C8AWg5+aTpTVL9tlzzz13tcsuu5Ts4gTOE2yfeOKJS+Z6MtMvv/zyaskll2z/2hyA5mA0h+g5ONdes/9I//MFF1ywrO2tc3Bah4jmbfbr3/nOd3rs+4TRoZ0LfTbruA6gR8p9s6hngMkhhxxS+q3Sf3qmJkMimYs33XRTewA9fwvJbgSg90hP1Qwam2666appp522vE7XG6g6gB7PPvtsOSBPy7a8z7gvWWpbbbVVhwB6+uQ/8MADAugAPejDDz+sxh9//BJMTxA8h98JjOZt2qomgJ5Aelq8LL/88iWQXkvl2amnnloGR6blppkn/SeAntl1+RvpHEBP5nndZSDXhALo9CWC6PRJOdHMAp4SoFpeoM8+++ySjZ5+bccee2yPfo+MfQ8++GApD5tlllnKQp2SwUglwk9+8hOZDgC9XDbf3/3ud7v83GuvvVY27Gnp8sILL3T790b3SVAlQ+xOOOGEDpvsrPMJpAPQc/bdd98SBN9ggw1K8HyNNdao5pprrhIITQuuOpCeg/J8nGrg7Mtr6Xv961//urTczD5dIH3c9vTTT5d2qrmOy8DQVlnbcyiTHugJoKcSEfoSQXT6pLzYptd1+mVONtlk7fdngOSVV15ZMply0p3Fui/61a9+VQ0ePLic6Oe28MILl4GZo+uAAw4oZdEpn99mm23KgNZMw05pdHqHp1S+r3r00UerYcOGlWzGRx55pHrjjTfaD1gyYBSA3i29VIcPH16y0FMm3pUMIM3GPBnpL730UtUXWdM/XoIpqSY86qij2u9Ldlo24VnjAehZ+++/f2mlmozyDAlN7+qHH364mmOOOUqQNMH0tHJJRXA+lyrx9dZbr8wtq22++ealBcyRRx5ZgvJ9MZBuPf9kuVbLNVv+LpL0mGB5Pc+kDqDn0CWxjbRihb5GEJ0+a9555y0ZyHkBnmCCCdrvf+yxx6prr7222mSTTUrf1Zx49zXZNB522GHVPffcU919990lCy+TzXOxMjouu+yykuH38ssvl1v6xqfn7Omnn15dddVVZTp2X5TS7vTWm3zyycsmO5mK9ab7d7/7XU9/ewCMgqmnnrq0YFtppZWqX/7yl2Vj3ZUcBGfTntf95557rs89t9b0Zgmi7LTTTuWap5Yeu1nbM8AOgJ6X4aEZMprErmmmmaZU/NZJTXPOOWepCI+DDjqotHJJslYkiSuJbQmyR95P29VUDe++++59LpBuPf94uUYbOnRo+b3m7yDt2TLLLkNpE69JAH2KKaaobrzxRoPj6bvaoI/717/+1TZ06NCswG2f//zny9vcBgwY0LbVVluV9w8//PC2vi4/z8knn9y2xBJLtP+MnW/77bdf++Off/75tvHGG6/tnXfe6fLf++1vf1s+/+GHH7b1JXfddVd5Luaff/62ySefvMPvOz8zAH3LRx991P7+EUcc0bb77ru3HXPMMSOtcRNPPHHb9NNP3/bUU0+19XXW9P/+3rfYYosOv+NJJ53UWg7Qy73wwgttyy23XHnd/sIXvtA2xxxzlPfPOuus8vn//Oc/bVtvvXX7a/vw4cPb3nrrrfavP/roo8v92267bXlsX2Y9/68777yzbaKJJmr76le/Wn73I0aMKPdfddVVZW3P73vmmWdue/LJJ3v09wWflUx0+rwMJJtppplKeVAymTL0JN56660ygDStXdJ7LS0+0sOtr0k53HnnnVcGqeb0P2Xv6UGXzK2UwueW+zfddNPST7SWjOxMRk87mK6klUs+l+evr7jhhhtKeVgqEJ566qnSZy2mmmqq6tVXX5W1BtAH1WW+dRby17/+9ZKtlqqplE7X1WZp65K1K4OqUpHUF1nT/ytl3uuvv36HtnvpfZ5qORnoAL3X22+/XdpnjhgxolpsscXKupZ92a677lraiNYtVi+88MLSRvTLX/5ydfXVV5cBo08++WT5/Pbbb1/W98wwyx62c9/svsB6/j/5/eZvIgNEE7NIG5/llluurPNp75O/mcQrbrnlluob3/hGD/7W4LMTRGec2HynROimm26qdtlll+rOO+9sLyHLZvuUU06pfvzjH1eHHnpo9YMf/KBMDe8LMkwrveVy4bHFFltUl1xySSmXy8CWBL7zuQSPc0uvsQQZcl/nVi5NPWZTbrfZZptVfcXxxx9fhojmACFlYfWU70GDBpWBon3pMACAkaWFWdbrHAjn0DSDy3KInDYuafeS3poJpGcdz2bsoosu6jNPozX9f3IAvuiii5ZEh1oGxf/lL3+ppp122h75/QAwanLgufHGG5d9aXqkr7XWWqVNx89+9rPS8iUyXDR71rR5SSuXtIN5/PHHS6A188si+9sMKz3zzDNLwLVOjurtrOcd5Xe4wgorjNSaJzGas846qyQxps1urusSt4C+ThCdcUICqDndjnnmmaeacsop2z+XRTwn3dmU58Q8G7ds1Hq7DAG9//77qzvuuKP0ds809AzQHBUJMvzxj3/sMoiez6X/bC58MiSmt0tmQn7+BFbWWWedEkCvsxWSsZifM73QAejbvvnNb5Ye6clCTyVVBojffvvtZfZJhpHVh6X1Ier3v//9MkC7L1SZWdP/KxUEyULLvJdaDsdTVZcgCwC934EHHlj2qLPOOmt19tlnl33qKqusUvbjOehO4lr2rdmXJ2M7iW2TTTZZqRTPPjT78roiKcHV9FZfYIEFyj6vt7Oe/1euvXIQksHwnQPoSfDL53PdlkS4E088sSQGwrhAEJ1xToZMZjFvlRfxDCzLKWgW9izSyVzvzbL4ZKOZoEKy6DNI9ec///kofW0CDgmSdy6JTuBh+eWXLxOxk9meFji9WTISkpmQaoIs0uecc04pEasH1SQD3Yk2wLhjzz33rI4++uiSdb7IIotU11xzTRlClRLw1mB5stuyOcthcDLW67Wht7KmV6VyYP755y+H+bWVV165BE1srgH6jqzRdQV0kpk22mijEhDPupwkp7TwqLO2Bw8eXLKS33jjjdKuLZK1ntZszzzzTElwu+uuu0pFUtb9tC7tzaznVYmnpL3qCSecMNLzk991Dkgmn3zy6rrrrivJcPl7gXGFIDrjnPREz4loSsgSSG6VTLb0bkvWU3pr51S0r0jwIFn1Xem8MKWVy/e+970O92XTmoB0Fv70S697x/dW2VR/+9vfbs9iSN/UZDLkQi0/X3ropZwQgHFLvaYlsyl90RNEz7qdNaB1vUuJeGRNy8b7ueeeq/qK/rSm52fde++9S+VAa7ZaWu9dfvnlHXriA9C3ZM+WoHmyz2+77bZy3wsvvFDuS8JWPj9w4MCSiZ6WoksvvXQJmKcFaw5Wzz///GqGGWYorWDyNauvvnrJdO8LVWb9bT2PVPRnb965sr/+WfN85OdJ5dnQoUN76LuEscdVK+OkDDZJWVgW55SMtUrftSxWa6+9drX55puXNiHJXu9N9thjj5Ipn8UpJ/j5+MYbb6x++MMfdvn4ZJY/9thjZbhmggrJRG9t5VIvzsnUS1Z3Pv7b3/5WbglK9DYZRJOASDIccpJ97733djgIaer1DsC44+WXXy4byhymps1LNtadS4YjvVizBqZyK2XhvU1/XtNTwp9eqfn91RI0v/TSS0e5ug6A3muOOeaohg8fXi211FLVfPPNV1ptZuZFep8nyzwH4c8++2xZn4YNG1Ze/9OyNHu9rF/pqZ5D1lRMJ6CeuV377bdfteaaa3aoXOoN+vN6Xg8QHTJkSLkWy7yaVAIeccQR5efMfTk0SZVBfs6pp566p79dGDvaYBz34Ycftq233nrZdXe4ffGLX2zbZJNN2r70pS+1zTnnnG133nlnW2+x8cYbtw0cOLBtvPHGa5t88snblllmmbYRI0a0f37eeedt22+//do/PvPMM9smmGCCtpVWWqnt2muvbZtuuuk6/Hs33HDDSD9/fXv22WfbeovXX3+9bZ111inf1xJLLFF+R63f6/7779/T3yIA3Shr1FlnnVXe/+ijj9oOOOCAtkkmmaTtmGOOafvqV7860rqet9tuu23b3//+917ze+qva/rVV1/dNuGEE3b4/maYYYay1gMw7vjXv/7V9sEHH7R/nHU7a15e9wcPHtw233zzlfcXXXTRtv/85z/tXzNkyJC2L3zhC+VzAwYMaDvjjDPK5y+++OKyfkw//fRlLekt+ut6/t5775XfVb6vz3/+820zzjhjiZ2svfba7d/v7LPP3nbvvff29LcKY93n8p+xFJ+HXmO11VYrPcBnnHHG0sMrpWS1ZZddtnyckqNksKe/al/uzZny6Jx0Z4hHX5Jsw1QGpM9tsgmvv/769s9NM8005RQ/p9wA9F+ZlbHbbrtVRx11VOmv+tOf/rRktOVWV5Wl7VdKw88444zSc7Uv64trejLptt566+qss87qcH/m0qQ1m2HgAOO2tN1MJfHvf//7slZnL7fwwgtXhx9+eOmlHaeeemr1ox/9qFQnpX/2K6+8Uu5P9dKvfvWrktmcdSN9tTfddNOy3k888cRVX9UX1/N6j55KwLqFXi3xkrSxye9v++23Ly140g8fxnXaudAvZNDojjvuWBbzlIVnwa4Dshla9vzzz5dFOuVHCeDefffdVV8199xzlwEefcWbb75ZrbfeeqU/XPqrRWsAPdPbM0BUAB2AzTbbrDrttNNK6XQ24iklvuOOO6qFFlqovZw6JdDpx5penDvssEP1/vvv99knrq+t6bmmygFGawA9G+xch5100kkC6ADjuLRUTVA1B9mHHXZYafdSt2dLq5faE088Udq9pId2AuiZZ5bBpGkFMvvss5e1Pq1fElA/55xzyj7x2muvrfqqvrae59opLVuyR+8cQI8E0NPTPu1zE0MRQKe/kIlOv5SFYPrppy/9xlqtuuqqpcdZBqAk023fffft01npvV0GitXZ59/5zneq8847r/S2rW2xxRblwgkAIgHzjTfeuDr33HOrwYMHlzknCaxnM5denK1rSD3oaqaZZiqPy2adsSO9bLOe5/fSaoEFFij9YieYYAJPPUA/kf7e2U9nllVmY2TdThA9/cTTC70+/I4FF1yw7L/rTPSvf/3r7VXj0003Xem5nccm4S2JVllrjjzySAlWY1EOLzIotqvgeXzlK18pmec5LMnBB/Qnguj0S5kcns10V92MBg0aVLLXcnqe97NIL7/88iNN1+bTe+aZZ6q99tqrBM1zIfXkk0+WEv06Yy3DXhNAn3POOT3NAHSQrLWsFbUMqMyafd99933sM5WNd1q2TTXVVJ7RMfi7SOA8BxmtGf+5ZsrBxbrrruu5Bujn0m7t4osvrtZZZ532irEMD017lwRqJ5xwwupb3/pWCbJnXZltttnK1zz33HPl8dkvHnroodVDDz1U2q9ONtlkJcs9w0dbrwf4bJJgmOukE044ofExGQKbg40kKEB/JIhOv5SMtUzTzol3Nn05be1spZVWKoHdlCillCkLdX1izqeT5/vggw8uC3MufsYff/ySeVAbMGBAeb6/8Y1veIoB+ER//etfS9l3MqF32mmn6uSTT67efvvtLh+bwG6y1XfZZZdym2SSSTzDn1KSEEaMGFEOvZ9++ukOn0tv2xyWJygCAGljkuz0VBinrerDDz9c9tWZW5b2L3fddVd5krKepwr8l7/8ZTVkyJAy/+QnP/lJ+yHtsGHDyoF4DmlT0Zx2IgmuL7fcchLePoNcN+UwPDGRPP85yMhzXvc9rysG0rZFVR/9nWM7+qUsCFmU07Mzp+Lps9Z5UMkVV1xReqOnD1j6dmcYStq9ZKFn9IeMpTVO+tfmOU+m/6uvvtohgJ7Axg033CCADsAoy9qxyiqrlAy2HHZnjU5mWmTeRus8jQR+//3vf5cN98CBA8t1QD2MlFGXMvz55puvVOm1BtDrg/Cs7wLoAEQyzZOYlrfTTjttue+iiy6q/v73v5dgeFq3bLfddtWkk05aPfbYY6V/egLoaRmSyuUMFc3nknGenuhpM5K1PIOq0yosa9EyyyxT1h9GT66B0iYn/egvuOCC0hIvz3XdoiUB9FwvpeKsruSH/k4mOvyftA9JhvR4441XFo7WsuQMykjP7iweGVa24YYbllKn9FWnWRbeZBwccsgh5UJpqaWWKmV6//jHP9ofk2z0BD6SlWDTDcCnkdka2XDXZeI5AM9g6vRNP+CAA0pJeIaVZROfDKvaFFNMUdag9ddf39DLT5DgRoIZN99880gZ/scff3zJDtT6DoDOcoh9++23l6S0WoK2qSDL3rpuExIJimdfGAmWp0K5fkwqmZPcVrdkTWJWAruXXXZZ9cgjj1Srr756qXpORjvNcp2UA4q0rW29Jmo144wzlsr9DTbYwIw4aCGIDv8nC28C6emzlgV+9913LyfaGYpSS0ZbysUyWTyl4wmmb7vttnp3d1ESlpK9Y489tnrppZeqFVZYobr//vurF198sf0xX/jCF0pgI4uzXnYAjCmpeEpQPNlUzz//fAnszjrrrKXXZ4aU5SD3rbfe6vA1M8wwQ9lQpoe3IZgdpcx+xx137DJ4Ptdcc1V/+tOfynMNAKO6V8wh98orr1w+TlZ5AuMZKpoqsVSSxfnnn1/256k2SzJbnYiVxKskvNUB4PTnTnuYrEdp87bWWmuV7PYMt+Z/8pylOjwDXxNI70qul/bcc8/qhz/8Yan2AzoSRIcWWbxbs6hy8poys85S8pSs6mwo0+c7gfUE0xMs7s8B4ccff7w67rjjqtNPP71koefCJX1R62nrkcU4t1wU1RdOADCmZAN90EEHlRZiyXLLevSLX/yiVEV1Dp53lsqzrbbaqtp6661LYL2/Skl3yu1z0N3aei1ynbTGGmuUwwobbABGV/aKG220UTVo0KCSaJWktVQ6Pfjgg9XRRx9dbb/99uVxadeWLPN63sY888xTHp9s9Pj2t79dPfXUU+0fJ7iex2TdyrVAEuMSTE/v9f68XiWhINdBJ510UuPcmLnnnrsEz7O+J9kN6JogOnyMnGin92cy0JN53lUwffHFF6+effbZsvinZ1jKzzbeeOP2nm/9oZdaNtpZlJOhnwyCaaaZplwE1aV2kZ7zaYGTLL+8n770ANAdsunOALJsEt9555320vCPs+SSS5bNdwaN95fNd4IRqSI78cQT24eJtZp66qnLgXlrr3kAGF1XXXVVGfBdt3ip+5ynNVi9T7z++uvLzKwc2qYtW6R1W4LnWcfTI33KKaesfvOb35QBpK2Hvlmv0jY0+/Q8JhXk6f+d9jD95TA8GeeHH3549cYbb5R2tUkOSIJbLdc2yTjPkPBk+wOfTBAdPkY22j//+c/LRPHzzjuvOvDAA8vwk67MOeecpUw8ZWTZeCYrPb3dsvnOyfm4JD9fAuaZ4J3nJZl93/zmN8tBw5NPPtkheF73VMv99ZASAOhOqZJKZlsyrFJhliFZ2Vimldvaa69d1rP0Ve9KDn5TmZZhZtnsj2trWVqt5TA8vVHTgq2zBDNyAL7PPvuUZAEAGNNSpZw9d4LhaeGSGSY5+M7BbfbV2Wv+/ve/L4fisfTSS1fXXXdd+9dn3521LPPN0uYlX1+baqqpSgZ2kr9STZ5rgVREZ+8+LsnPnOcofeHvueeej33sLrvsUtrYJgEOGHWC6DAassHO8JL77ruvZGFlIc4pb+dS8Cz4CTQ/8MAD5b5sur/73e+W4aRzzDFHnxy8lcODK6+8srr88stL5kAGhWawai5KHnrooZGCD/kZ55tvvtLqJqVhCUIAQE95+umny9u0eYn0SE9P73XWWae0ernwwgurc845p7rxxhvLprK1FVktGXBZzzO8bPjw4X1ybctBd65j6iqy1157rcvH5bAgB+X5WQFgbMramn1mZmalb/e7775bWrKdeuqp7b3PF1xwwRJQz5DSbbbZplpxxRXb25VkFkqqqVoPg5Np3Xmvnrkn2bdmLcxeNYPI8/9OtVpf3KPnebr66qvLPLJrrrmmcVBormtyIJ74RbLPF1tssW7/XmFcIIgOoyllZsnWSiZbAuLZgN56663V7373uy4Xq5ySp09bHpNhHtm8Z6HO6XdK0dK7rbeeZCdDL4tyLmhuueWWsijnYiMDxFIaV5fVdT5ESNuWZBLkfQDojY4//vhSwpz5HRkkXq9xaUc2KrLZTvlzNqUJqGcYV2+di5KKsQxlS6bfxRdfXA7Cu5JDgRz4DxkypJTUW8cB6A4ZdJm2LckSrwd8Zy+alqk33XRTddppp5UAcGS9zRo+bNiw8nGqxffbb7/yfg7Hs3Ylgz1V5ZEqqtlmm620h2nNUE/v76zluS/79lVXXbX0YU8C3IABA3rlLz7XKhn4nRjEH/7wh5IQkPvyc3SuBq8PxM8444zyvI5rlXTQEwTR4VPIQtW6UV5zzTWr3/72tx/7NekTPsUUU1STTTZZuSDIsJMsdlnQU55W33IK3t29RnPh8Oijj5ayr7vvvru8TRZ9TulTxp3p6ZmGntP99KvrLD3n0s4m/04mqmfzDQC9fcOefqpZz5dddtlyX9a4rNV1P9ZXX311lP+9fE3W9KFDh5YNeNb0ngis5+D+3nvvLQcDV1xxRck6b2pVU8vheK5Nsp4DQG+QoHbaraU9SQaPZjhmbjkYTkA8rVkiyWyZ5ZFq6azttZlmmqnsvZN5nZZuCapfcMEF5d/qKujcel+C6jlYz3yUZMBnf5t5aN0dc8gePWt5fra0svmkAemRavH0f091XQ7N8xzqeQ5jhiA6jMHs9PRVTTlZSsI/bsOaBToLevqw5ZQ7ZVgPP/xwOV3P5zKpPAt1Fv5saOtbAvFpn5IhKaMjFxMp107g/uWXXy5vc0u5W4LldcA8/+8MW8lpfR6XUvZsxrs61Y5cWGRRz/cFAH1dDpGz0cxGOetksr2ypmdoWarPcmCcfqPZxOZw+ZMkyy1zQRJQz9dmqFe9nudtrgVGN8ieqrbW9Txv06omwfKs501Z5q1yHZGgQKrGsvannN3AbwB6iwSQt9pqq5JFnYPhrMGRPe0ll1xSgsT1+rnDDjuUQHH6oifbOu1eMqcse+Akp+Vr6jUuw7PTC7yr4dmfJNVaM888czkgz9vsm7Nvn3baacuaXmfQj87PmKGfWcczFDXXHAmUJzaQmEJmlrQeCnQl1xZpzZI9eVrXpE98WsvGE088Ua47Rjd2ADQTRIcxJItggs3ZMCcgnT7gmYidj1dbbbVyepz7W0vIWmU6eRbhnHpnUc9inwEoCWR3zv5O4D0Ldb4mvd5ysZBbXY5W3/L/ywY7mXStC3Ael/9PMs9S7pYNeRbw/AyfdLqdwH6y9BZaaKFyASKADsC4JOvmY4891p7hFsksz6Y8m/n0Xc1mPRlyY0I2t2ntlre5Zsi6ns1+1vWs3bkmyPVA1uqs6039Tptkzc91Q/6tXBuk5drOO+88Rr53ABibsjdtba2y9957lwzrI444ogTNs/9OULueexLZU6fCLHvd3FrXvDw21dVZd7OfzpqafXcC15Es9eyx64quUTmYriWon/U7t7yfNT1v64S0rMf1up41/ZMC5B8n/1bmkiWInmuEZJ/ne23N0AfGPEF0GEty8pvN9pRTTlltu+22ZfHMRUA+bgqkdyWb6JxqZzHO29zqcussvAmw59Q5/35u9UKdz+WWLLfIYp3T7GSW11/zcfLvJNCeAHz+3xlAlv7uGaoGAP1FNtgpA//jH/9Yst+SfZb1NRVoe+yxRzlYznqZwHsd4M66+Wmy3Ma0G264oZSiRwIEOTjPph4A+pqsvcn+Ttb2ZZddVuaMRdq0pKVLgusJIrcmoGUG2R133FHeT9V3ep5nVtl777030r+fbPcRI0aUavHYaKONqtNPP73qTgmOzz777CVhLVXjaTvXeniezydgnkS2fK91G9iTTz65ZJ3n8KAvDkiFvsJkARhLcgJ+yCGHtH9cL2ZZ3FKetddee5Uys/Qgr0++u5KAe+fPpzfa2JIS9gwpSW/2BNJTtr7EEkuUU3wA6G+yFqb8u1UC0ckcT2l3MtLT1i1ZZWmnkg1sWr1kGFoy3dJ/dbfddhul/1fTYLBWOUzPpjmH5LmeSOZZMuuSnZcZJtl8n3vuuaWcO2t5Ld8rAPRVWXvTAjUH2iuuuGL7/ZlNliqrHGxngPbVV19dguppcbLooot2+DeSvZ1M7fpAPEluTz75ZLl/kUUWaQ+g5yC8qwB6XQU++eSTl89nzU07llwLJOhdJ7Z1/poE7xPQj1122aXLa42s7+uss051wgknlPvy7ydQnv35csstV4aYJ/M87dheeOGFkoFeB9HT3gYY+wTRoRtlAUypWVqn1BniWWQz7CQb3iyaKU3LY7IpXmmllcbY/ztladnMpxwuFwmRxXyWWWYpC/Hrr79ebvl/tg4GTZ9UAKCjZKdvt9127TNQsvlN4Dq3VH7l0DxrbzbLqQI7/PDDq+WXX75ktuU6ILcDDzywVIY9+OCDJasswYGddtqp9EXNYXzW4KzbCYAnSJ4Nc/qdJkMt8nW33HJL+ThzSmr5fwDAuCZrbfbOrTK7JIHsBL6zXv7gBz8o+9wE0hMYryV5LYHu3FolIL7AAgt0eGzW7azZqcrOml4PGs+andviiy/e3jYlX5+gdpMkpCXQH+l5ngB+9vrJoK+r1pJtnvvmmmuuDgfruTbIgcFJJ53Ufv8+++xTAvKGgUP3E0SHHlAH0OvFMaVnxx13XHk/gfYMJ8lCnB6s2TBn0Uxv9NxSqpUebVnkM4W8bg1Tb57TqzWLcTbuyYJLD9csvMkor7Phs5HPKXtOzEd3AAoA8L81vHUdTUZY1t3Oj8mGvh5G1tqrNH1Zc5ieDXjW/2zK0yYmG/9s6Ndaa632x6alWlrH5HG1eeaZp9wAoL/Kmpns8wzxrqUFW3qmzzbbbKXdWiTwnErwrNM333xz2Ss/++yzpSf6jTfe2N4eJlLplZlmyRBPO9ZUeo033nglqzwZ8a0B9/z7WbOzL6+D7AmIJ8s9VWrJIK/l/meeeab94/xb+R4zdyzXC61B9ATQcziQli65Vqj38jmAB3qGIDr0wsB6pNdZ+rV1tvLKK5fT8CyqAwcOLPdloU6QPItwysjrfqdZtPN+PY28Nqpl5QDAZ5eNfevmvtZVqXgy1nLrqlcrANBR9rqtAfBIlnf2ynULlUgQfMsttyztWNJqLf3V034tVdoJhNdVXpFqsQTQkyGegeO5tVp99dXb30/r1VSQNWltzZoq8AwvzZyxLbbYonyc7ytJb2mpuswyy5RbfT1w8cUXl1Yu+pxD72CwKAAAAADjjGRvJ6ksQ7XrFi114lramNbvH3PMMdVBBx1UAuwHH3xw+9cn0J6EtCSvJSif9m0ZSJq3yURP+7ZItfjZZ59d3k9FeQLkqRpLtdl9991XDRs2rD3In2rztHtLID9Z6XWyWyrMMwx8ww037JC5DvQuMtEBAAAAGGcke7sOoEcC2+mHfscdd3SoAs88kgTYk3le++c//1mtscYa5f18LvNJYs8996wOPfTQMhMlwffI3LGdd965vJ8gez6OK6+8srRsjTqInpaq8847bzXjjDOWwHzatMVmm21WbkDvJogOAAAAwDgtWeWZC9bq2GOPrbbaaqv2QHkkS3zo0KGlrcukk07afv+///3v8ra1XWoyzxOwH3/88Uvmex1EX3LJJcussryt5XEZLgr0Tdq5AAAAAMDHSFA87VwyYLQ1y/2jjz5qn0sGjLsE0QEAAAAAoMH/mj4BAAAAAAAdCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAIDEU4UAAAIJSURBVAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoIEgOgAAAAAANBBEBwAAAACABoLoAAAAAADQQBAdAAAAAAAaCKIDAAAAAEADQXQAAAAAAGggiA4AAAAAAA0E0QEAAAAAoOra/weEecYUK+d0hAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1471,7 +1544,7 @@ " if j == 2:\n", " ax[s].legend(frameon=False)\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-jonespewsey-asym.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-jonespewsey-asym.png\")" ] }, { @@ -1488,7 +1561,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQmclfP7//+2ZC1LFLJUCpWlkhRCRKSUrZQiWUqlBSXLB22KkJ320kILhRaVNUlaqCSSPUlki0K2+T+e1/d/nd89p5lpljMz58y8no/HaWbuc59z7nPO3X2936/3db2uHdLS0tKCEEIIIYQQQgghhBBCCCG2YcdtNwkhhBBCCCGEEEIIIYQQAiSiCyGEEEIIIYQQQgghhBCZIBFdCCGEEEIIIYQQQgghhMgEiehCCCGEEEIIIYQQQgghRCZIRBdCCCGEEEIIIYQQQgghMkEiuhBCCCGEEEIIIYQQQgiRCRLRhRBCCCGEEEIIIYQQQohMkIguhBBCCCGEEEIIIYQQQmSCRHQhhBBCCCGEEEIIIYQQIhMkogshhBBCCCGEEEIIIYQQmSARXYhiyNatW0Pfvn3DEUccEXbbbbdQrly50L59+/D9998X9qEJIYQQIoGxukKFCmGHHXbI8Fa/fv18O34hhBBCZI/PPvss9O7dOzRt2jQcfPDBFqOJ30KI5GLnwj4AIUTB8t9//4VmzZqFOXPmhLp164aLL744fPLJJ2HEiBHh1VdfDe+8804oU6ZMYR+mEEIIUWxJdKzee++9Q/fu3bfZrgm6EEIIUfjMnz8/9OnTJ+y0006hatWqYcOGDYV9SEKIDNghLS0tLaM7hBBFk9GjR4errroqtGrVKkyYMMFWuWHIkCGhY8eOluU2dOjQwj5MIYQQotiSyFjtQvmXX36Zr8cshBBCiNzx+eefW6VZ9erVw+67724VaAceeKBitxBJhkR0IQoZVpkp0a5Ro0Z47733Ytv/+OOPcOyxx4Ydd9wxvP/++xZIE8HJJ58cFi5caAG5fPnyse1cCipXrhy+++67sHHjRgveQgghhEjtWC0RXQghhEjuuB+PRHQhkhN5ogtRyBAca9WqFZYtWxbWr18f287EeODAgVa+PXz48IS81p9//hkWLVoUjjrqqHSTciDL7eyzzw5btmwJS5cuTcjrCSGEEEWBVI/V+KuPGTMmDBgwIDz22GP2/EIIIYQo/LgvhEgd5IkuRBLQpEkTmwzPmDHDSrQd/FD33HPPMGrUqNClSxfb9tBDD4Vffvkl2899wQUX2Aq6NyzBZ5UmZRnh2xkUnHrqqXl8V0IIIUTRIZVjNRl17dq1S7etdu3a4ZlnngmVKlXK9nEKIYQQxYWCivtCiNRBIroQSUDjxo2tG3d8gN5ll12ssQjB+/fffw977LGHBeivvvoq289NGbcH6E2bNsUajGXEXnvtlW4/IYQQQqR2rEY8R2w/5phjQsmSJcOaNWvC4MGDw7hx40KDBg3CypUrQ6lSpbJ9rEIIIURxoKDivhAidZCILkQSQKnYQQcdFF599VUr4456q1GyDd6+QL5oQgghRMGTqrH6rrvuSvc3k/axY8fa7wjplKPfeOONhXR0QgghRHKSqnFfCJF/yBNdiCQAj9PzzjvPVrIJ0g7BmIwxSrcpGcsrntWWWfbar7/+mm4/IYQQQhTNWN2hQwf7uWDBgjw9jxBCCFEUKai4L4RIHZSJLkQSlYuNHDnSysX4He6+++7w77//hmuvvTa2X1781g4//HDrJI6Pakb49sx8WIUQQojiTFGK1fvvv3+6bDohhBBCFHzcF0KkDjukef2JEKJQ2bx5s01oy5YtG9auXRvefPPNUL9+/XD00UeHd99917zX3D8tJ35ro0ePDldeeWXs75NOOim88847toJevnz52HYuBZUrVw7fffdd2Lhxo3UeF0IIIUTRjNVYurRt29Yy0ocMGZLr5xFCCCGKKgUV9+PBOubAAw+UTYwQSYbsXIRIEmj2dfrpp4evv/46zJ49O1x22WXW6OvZZ5+NBWcgkDKJzu4tPjh7U5Rbb7015uEGQ4cODZ9//nlo3bq1BHQhhBAihWL133//HVavXh0+++yzdM/DNsrQ42F7r1697HfegxBCCCEKL+4LIVIDZaILkUQ88sgjoVu3bmHXXXcN//zzT5g+fXpo1KhRQl/jv//+M2+3OXPmhLp169qg4NNPPw1Tp061FfRFixaFMmXKJPQ1hRBCiKJCMsZqJu8VK1a0rPVo1lrv3r3D4MGDw2mnnWb34d2Kj+usWbNMeEekHzBgQEKPXQghhChKFETc/+GHH0KPHj1if9P4m8XySy65JLbt/vvvj1mxCSEKB4noQiQRZJdVqlTJmpjgvdauXbt8eZ2tW7eGe+65x4Izq+qlS5cOTZo0Cf379w8HHHBAvrymEEIIURRIxlidmYg+b9688MQTT4Rly5aZBQxZ6UzA69SpEzp16hQaNmyYL8cuhBBCFBUKIu57HM+KL774whbShRCFh0R0IYQQQgghhBBCCCGEECIT5IkuhBBCCCGEEEIIIYQQQmSCRHQhhBBCCCGEEEIIIYQQIhMkogshhBBCCCGEEEIIIYQQmSARXQghhBBCCCGEEEIIIYTIBInoQgghhBBCCCGEEEIIIUQmSEQXQgghhBBCCCGEEEIIITJBIroQQgghhBBCCCGEEEIIkQkS0YUQQgghhBBCCCGEEEKITJCILoQQQgghhBBCCCGEEEJkgkR0IYQQQgghhBBCCCGEECITJKILIYQQQgghhBBCCCGEEJkgEV0IIYQQQgghhBBCCCGEyASJ6EIIIYQQQgghhBBCCCFEJkhEF0IIIYQQQgghhBBCCCEyQSK6EEIIIYQQQgghhBBCCJEJEtGFEEIIIYQQQgghhBBCiEyQiC6EEEIIIYQQQgghhBBCZIJEdCGEEEIIIYQQQgghhBAiEySiCyGEEEIIIYQQQgghhBCZIBFdCCGEEEIIIYQQQgghhMgEiehCCCGEEEKIIkHv3r3DbrvtFlq0aBH++eefwj4cIYQQQghRRJCILoQQQgghhCgS9OjRI7z00kvhxRdfDFOmTEn48w8bNizUr18/7LXXXmGHHXYIv/zyS66fi+OrUqWKif7HHntsmDVrVpb7X3nllfaa8bejjz463SJC/P28Rm544403wvHHHx923XXXULly5TBmzJgs9//yyy8zPL533nknx6/9008/hdatW9vnvM8++4Srr746bN68Ocv9u3TpEo466qiw++67h8MOOyx07do1bNq0Kd1+GR3fxIkTc3x8QgghhCh+SEQXQgghhBBCFAlKliwZzjjjjNCyZcswbty4hD//77//Hs4999xw22235el53n777dCqVSsTh5ctWxYuuOACu33wwQeZPubhhx8O3377bez29ddfh9KlS4fmzZun2w9RPbrfW2+9lePj++KLL0Ljxo3ts1y+fHno3r17uOaaa8KcOXO2+9hXXnkl3evXqlUrx6+PgL5q1arw8ssvhxkzZoQ333wztG/fPtP9169fb7f777/fPkME/9mzZ9vnG8/o0aPTHR+fuxBCCCHE9tghLS0tbbt7CSGSlj/++CN07tw5TJ48OdSoUSPMnz/fsmqEEEIIIRLJli1bMr1vp512sozq7Oy74447Wrbw9vbdc889c32sQ4YMscxkhNUyZcqEREOWNgLzzz//bJnSOeXSSy+1941A7NStW9fGchx7dnj++efDRRddZIJ3+fLlY5nobEf4zgu9evUKM2fOTCfqszBB5j3idGaZ6BUrVrRFAd5Hbvnoo49CtWrVwpIlS8IJJ5xg23jN8847L6xbty6UK1cu25n+bdq0sc955513tm2MkadNmybhXAghhBA5RpnoQqQ4H3/8sWXUMEFYsGBBnidNQgghhBCZZXlndrv44ovT7Vu2bNlM923UqFG6fStUqJDhfnmBTGQ80aNWHSQaZPUeuE2YMCHkFexesF7JioULF4azzjor3bZzzjnHtmeXkSNH2nO4gO588sknJjQffvjhltG9du3adPdzbBxjfh1f06ZN7fuvV6+e2erELz4gZCO4Z/XaLEy4gA4cC4svixYtCtkFKxfsYFxAd0g+2X///cOJJ54YRo0aFZRTJoQQQojskH5EIYRIOZjwdevWLTzxxBNh0qRJ4cgjjyzsQxJCCCGEKDQQYRcvXhzOP/98E8XJSAdE2e0lGxxwwAF5fn38uA866KAs99mwYcM2r8XfbM8OZNjj/f7000+n216nTh1bQMAbHKuSPn36hFNPPdUyykuVKmX7cGz//fdfro7v119/tSrIaCVBdEz6wAMPhFNOOcUE7+eee84yvsmMR1iHPfbYw46tRIkSWb42InwUhHCsa7L7+fzwww+hX79+21jA9O3bN5x55pl2HHPnzg2dOnUyr3X804UQQgghskIiuhApDo2eHnroIbsJIYQQQuQXWTV2xM4lyvfff5/pvgisUbLKSs4NjImaNGliAjKNMT/99FMbLyH88jM7DBgwwG7Ohx9+aOJ4dhg7dmzsd7LAsSZx8FLPq586PPXUU5atHW9LEs3yP+6440xUJ1Md2z/3Bx84cGC6x0Sz/rE/ya6dTDxkd994442xv2vXrm1i/3333RcT0cn+Xr16dWyf6667LowfPz5b51h2QejHz53PHXubKHfccUfs95o1a1olJ8cnEV0IIYQQ20MiuhBCCCGEEGK75MSjPL/23R4025w6dao1pEQkpckm2eh33XWX2bnEW8nEM3ToULNAQdxt0aJFbHt2fbjj4XHR7HeyqeHAAw8M3333Xbp9+Zvt2wP7EWxILr/88rDLLrtkuS9CO1WKLCRkRvT4sD/J6vi4P6Ms9MxAxOe7yAwyw3v06JFuG68dvwiDNc9PP/203c/nt99+s8avZN3jfZ5VxrsfHxnrW7duDbvuumu23pMQQgghiicS0YVIcbzcFn9JynZpUEWWFc2uhBBCCCGKE4899phlYLvnN5nVCM6I6Dmxc0HsdsE7L2BDklH2+0knnRReffXV0L1799g2xGa2b4958+aZKO6Z5VlBZvdnn31mgntmZHZ8s2bNSrctu8cXhc87K2sbbFvirVt4DRqYvvvuu6FWrVq27bXXXjMLGkTvrDLQ8W1HDMeLPdroNqvj23fffSWgCyGEEGK7SEQXIoX5999/rRkXEzQajFJ+279//9C8eXOJ6EIIIYQoVvz+++9h+PDh4dFHH41tI6sc+xQ80rESya6dS1bJC9w8s3vlypWW9YzVS05Ed/rZnH766eYhjvUIDVCXLl0ahg0bFtvn1ltvDd988006exhvKIqYfMwxx2zzvGR14wWPhQtWKiweYLXTqlWrHL1PMvFZkLj55pvDVVddZSI2ljAzZ86M7cP9ZHuzGOAWM2TGUwEAVASwgDFixIgcvXbVqlUtm/zaa6+1se3ff/8drr/++tCyZctYRQCfS4MGDeyz4XtFQG/YsKGdA9jD8Dc3KFOmjH0G06dPt2z6unXrmsDOogCWPfGZ8EIIIYQQGZHekFAIkVIwgUBI50Z5K5MmJgYnn3xyYR+aEEIIIUSBgqBKw8ioDcuhhx5qWelR3+28gKiLSIzAC6eddpr9Teazw+tdeeWVWT4PYzWagiKaV69ePTz77LPWgDMqjFNhiKd6lE2bNlnDzsyy0NetW2eCOc07+Rz222+/8M4775iQ7HBsnqmfGRUrVjTBHKGZ40PsRwwn0zvavJMs9yhYo5A9jsj/wgsvWNP7du3axe5/4403rHpyez74WPBUqVLFhPLzzjsv1KtXL90CA8I6CSSI5vDee++FRYsW2aIGCyVkv/sNix/A2uXxxx+3TPcaNWqYdc/gwYNtoUEIIYQQYnvskIapnhAiZWESwYSJyY4QQgghhChcyAKnqen2hPTCggx4Khbjm24WBKNHj7bsbxq1bs+vXAghhBAimZCdixApDhMQCehCCCGEEIXPqlWrwt577x2uuOKKkIyQyU72eNSWpSDBZx0RXQK6EEIIIVINZaILUQTB3oXyX4nrQgghhBBCCCGEEELkDWWiC5HC3HLLLeYr2aFDB2swCl999VWoVq2a/U5DJRopCSGEEEIIIYQQQgghcocy0YVIUfivS7Oon3/+OSxfvtyaPnkWOmXE8MEHH8TEdSGEEEIIIYQQQgghRM5RJroQKcp///1nTas++uijcOSRR8a2k3mOH+chhxyiLHQhhBBCCCGEEEIIIfKIMtGFEEIIIYQQQgghhBBCiEzYMbM7hBBCCCGEEEIIIYQQQojijkR0IVKUzz77LGzYsMG80eOhoejNN98czj//fLN9EUIIIYQQQgghhBBC5A7ZuQiRopxzzjlh7ty5YdSoUaFdu3bp7vv7779DqVKlwtatW8Mnn3wSKleuXGjHKYQQQgghhBBCCCFEKqNMdCFSlH/++SfssMMOoWrVqtvcV6JEidC7d+8wfPjwULp06UI5PiGEEEKIgobxz2677RZatGhhYyUhhBBCCCESgTLRhUhhsG3ZY489ws4771zYhyKEEEIIUehs3rw5LFmyJDRq1CiMHj06tGrVKtfPxTTprrvusqSEX375JZxyyinhySefDEcccURCj1kIIYQQQiQ/ykQXIoXZa6+9JKALIYQQQvz/lCxZMpxxxhmhZcuWYdy4cXl6rkGDBoVHHnkkDBkyJCxatCjsueeeZqf3559/Jux4hRBCCCFEaqBMdCGKKPzX/uabb8Ly5ctD48aNzfpFCCGEECI3Y4rff/+9UF6birvcjGEQvrt06RLWr18fypQpk6v3XK5cuXDTTTeFHj162LZNmzaFAw44IIwZM8ZEeiGEEEIIUXxQCqsQKUjTpk3D7rvvHvr3759pSTFNRStWrGh+oGvXrg2HHnpogR+nEEIIIVIfBHQyvAvLnoUM8JyC0M0YaOLEiSamw/z5883mJSuGDh0aWrduHb744ouwYcOGcNZZZ8Xu23vvvUOdOnXCwoULJaILIYQQQhQzJKILkWJs2bIlzJo1K/z777/hgQceyHQ/mmpVr149/PXXX2Hjxo0S0YUQQghRLEDkXrx4cTj//PPDhAkTYiL6CSecYBV6WUGmOSCgR/+O3u/3CSGEEEKI4oNEdCFSjF122SW8/PLLYcWKFeGQQw7Jcl/8O3faaacCOzYhhBBCFD2wVCEjvLBeO6c89NBDoUmTJqFPnz7h+OOPD59++mmoXLmyVfHxUwghhBBCiJwiEV2IFKNEiRLWMIvb9pCALoQQQoi8gid5bixVCoOvv/46TJ061RIOatasGY4++mjLRr/rrrtyZOdy4IEH2t/fffddOOigg2L383eNGjXy/X0IIYQQQojkQiK6EMUA7x+s5qJCCCGEKMo89thj4bjjjgv169e3v9u0aRNGjRplInpO7FzoK4OQ/uqrr8ZE819//dWq/Dp27FgA70QIIYQQQiQTO6S5uiaESHr478rksFatWuHEE08MO++8/XWwrl27hueee84aa5166qkFcpxCCCGEEIXRABWru0cffdSyyT0zvXz58uGdd96xsVNOuPfee8M999wTnnrqKRPV77jjjvD++++HDz/80HrPCCGEEEKI4oMy0YVIIT7//HMTxfFFJxsqOyI6Zcfr168P8+bNk4guhBBCiCLL2LFjzUO9RYsWsW00Vicrffz48TkW0W+++WZr6N6+ffvwyy+/hHr16oXZs2dLQBdCCCGEKIYoE12IFILMp9tuuy38999/4cUXX8zWY5YsWWITwDp16lhDLSGEEEIIIYQQQgghRPaRiC6EEEIIIYQQQgghhBBCZMKOmd0hhBBCCCGEEEIIIYQQQhR35IkuRIqwefNmayxaqlSpHD929erVYfr06aFSpUrhoosuypfjE0IIIYQQQgghhBCiKKJMdCFShIkTJ4bSpUuHTp065fixL730kjXHGjlyZL4cmxBCCCGEEEIIIYQQRRWJ6EKkCCtWrAj//PNPKFOmTLrtixcvTvf3M888Ey677LLwzTffxLadeeaZoVmzZqFp06YFdrxCCCGEEEIIIYQQQhQF1FhUiBTiyy+/DLvssksoV65c+Omnn0Lbtm3DjBkzLNP83HPPtX2uueYayzhv3rx5mDx5cmEfshBCCCGEEEIIIYQQKY080YVIISpUqBD7HW/0ihUrhhIlSpjnuYvo7dq1Cz/++GMYMmRIIR6pEEIIIYQQQgghhBBFA2WiC5HifPfdd+GAAw7I1r5btmwJy5YtC/Xq1cv34xJCCCGEEEIIIYQQoiggT3QhUgCaiXJbs2aNeaNH1762J6A///zzoWXLlmHjxo1hv/32C6effrpZwQghhBBCCCGEEEIIIbaPRHQhkpytW7eGsWPHhieffNKyyE844YRw5ZVXhr///jtbWeqtW7cOkyZNCrNmzQqVK1cOhx56aPjiiy8K5NiFEEIIIQqS3r17h9122y20aNHCGrILIYQQQgiRCCSiC5Hk7LjjjiaC33jjjeGHH36wLPTNmzeHnXfefksDstQHDx4cevXqZdno8+bNMwG9Vq1aBXLsQgghhBAFSY8ePazh+osvvhimTJmSp+dizHXnnXeGgw46KOy+++7hrLPOCp988kmWjxk4cGCoXbu29a4pW7ZsuOCCC8LHH3+cbp/69euHHXbYId3tuuuu2+7x8H6qVKliiwTHHnusJUhkxRtvvLHN63DbsGFDlo+jYpEkjL322ivss88+4eqrr7axZ1aN7zN6HW7R7yCj+ydOnJjlsUydOjU0bNjQqinZf/ny5VnuL4QQQgiRX8gTXYgUAzsXJmVM6IQQQgghxLZQtff9999vV2jOinvvvddE8aeeesqaud9xxx1h5cqV4cMPPzQhOyNo9E7iAkI6mfC33XZb+OCDD+wxe+65Z0xEP/LII0Pfvn1jj9tjjz1MtM6Mt99+O5x22ml2PE2aNAlPP/20Hd97770XjjnmmExF9DPOOMNE/OhzM44kSSMzGjVqFL799tswdOhQq3ykaT3vh9fMiH///ddsA6MMGzYs3HffffY8JUuWtG2I4KNHj7bPyEGkz+yzhHHjxlkCSLly5cK1115rVZk1atTIdH8hhBBCiPxCIroQxbQR6X///ZflBEoIIYQQIr5BuQu+CKLw119/mdBKhdyuu+66zb5kcPt4g/3Yf6eddkonnGa2b4kSJXJ9rEOGDAldunQJ69evD2XKlMnx45kiIdzedNNNlt0OmzZtsjHUmDFjTCjPDojLiNZUAyKCu4iOEPzQQw9l+3guvfRS+5xmzJgR21a3bl17Ht5rViL6zz//bGJ1dvjoo49CtWrVwpIlS8xCEGbPnh3OO++8sG7dOvtMskPNmjXD8ccfH0aOHBnbxjkzbdo0y87PKWS7s5AhEV0IIYQQhYUUNCGSmM8++yw8/vjjoV+/fpbJkxeYxDVr1swyn4466qgwaNCghB2nEEIIIYo+ZBRzw17OIduYbddff326fRGO2b527drYNsY0bMMeJEqFChVsOwKug1CdF3g8meBRu5D58+fH3kNmtwkTJti+ZD9je4KFi7P33nuHOnXqhIULF2b7OBDeoXTp0um28zr777+/ZZHfeuut4ffff9/mM8Hf3eE1o8cC55xzTraOBdGZCsazzz47LFiwYJvPyRdE/HUQ3F1AB16XxY1FixZl6z2/++67ZrsS/z1D586d7X2feOKJYdSoUbZYEW8Lg/gvhBBCCJFsbN9UWQhRaDz77LPhlltusd8ffPBBm9AxgcsNlPFSSoyn5Zo1ayyTyZ9bCCGEEKKogBC8ePHicP7555tYTUY6IAxvz1ObTHNw33D/O3r/9jzFHar+unfvHk455ZR0liuXXXZZKF++vGV1v//++9a7BssV/L+dSpUqmdjs8Jo5PRaEc7LUed80qh8xYoRlwSOGkyUOjCtJroi+DgsgUagyYBEgu++b7POqVauGk08+Od127GvOPPNMq2SYO3du6NSpk41Lu3btavdTecCxcL8QQgghRLIhEV2IJIYJFuWwlOFSApxbAR0osR47dqz5Vn7zzTfmdymEEEIIkV28uWRU5OzZs6cJxfENz/Ejd4uWaBYyvtbYuUQhAzl+XzzNcws2KfiG9+nTx8TiTz/9NFSuXNmen58FBe8XP/S33nor3fb27dvHfqdBKGJ3gwYNrAIR8RxeffXVPL8+gnRUIEfU5jVIzMBrHC688EK7JYo//vjDvNPxj48nuo3xLfY0VDK4iH7wwQeH1atXJ+xYhBBCCCESiexchEhi8NukYdTnn38ennjiiTw/30knnRTq1atnvppZNa8SQgghhIiHxpjcovYfu+yyi22L+qFH9432XyHTmG3xjSQz2zc3fP3115bRfeONN5pQe/TRR8csWnJi53LggQfGeslE4W+/Lyuwt6Hq7/XXXw+HHHJIlvtiEQOI/ZnBa+b2WKJgo7K91/EFEAdbnJ9++ilbr0UVJdY0V1xxxXb35X3js06WvBBCCCFEsiMRXYgUgMkqk8tEwsQLexghhBBCiKLCY489Fo477jizLYE2bdrEhHG3c8nq1rRpU9uXJpaIxtGM8F9//dWsUEhKyAw8vhHQaaD52muv2fNsD7eYISM9M3jN+Oz0l19+Octjyey1tvc6v/zyi/maO7wPrGlc7N+elQufYXaauXIs++677zYLMEIIIYQQyYjsXIRIUu6//37LiLrmmmu2KZHOK5MnTw6XX365TVzw4MyLTYwQQgghRDJABvTw4cPDo48+GtvWunXrcNttt5lHOlnY2bVzIYEBm5r+/fuHI444wsRw7EjwMb/gggti+2HDgh2KN1bFwgU7kxdeeCGUKlUq5iPOWAs7GexUuP+8884L++23n3mi33DDDWbbh/ifGd26dQunn356eOCBB0Ljxo2tYerSpUvDsGHDYvvQoBTLPuz73NaG4yYb/88//zRPdARx/MgzAy/zc88912x38FP/+++/7b1RHcl7B16D983r8Jk6ZLi/+eabYdasWds87/Tp0y2Bo27dulaJwALAgAEDQo8ePbL8HsiApznt+vXr7W/GrcACR06z8IUQQggh8oIy0YVIQiijxWO0Y8eOYdCgQQl/fvxB//rrL5vMRJtYCSGEEEKkKoi6+LW3aNEitu3QQw+1rPTx48fn+Pluvvlma0qKh3nt2rXNE3727Nnp7GgQxX/44YfY308++WTYtGmTvSYZ336bNGlSzP7mlVdeCQ0bNgxVqlQJN910U7j44otNZI5SoUKF0Lt373R+5ojviObVq1c325Tnn38+XcPSb7/91gRnh7Eez4/vOgL8ihUr7LURwJ0xY8aks+cBMvc5NvZD7McKMCrWI6wjZrNoEWXUqFFmXcN7iwd7nscff9wy3WvUqBGGDh0aBg8eHO6666503vgcyxtvvBHb9uKLL5otDwsHgJjP3wj8QgghhBAFyQ5p1BwKIZKKBQsWWBYQk5Qff/wx4VYuQFYWExoy0guyyZYQQgghhMgcxGmy1F966aWYLU1+gYg9b968dMJ1YYF//EUXXWS9gKiWFEIIIYRIJiSiC5Gk/Pvvv9Yci0wkIYQQQghRPJg5c6Y1lOdnfoMdCz7yUVuWwoIqzLJly9pPIYQQQohkQyK6EMWcf/75xyxdLrnkkrDjjnJ4EkIIIYQQQgghhBAiihQzIZLMC71JkyZhyZIlBfJ6//33n/lKXnrppdagSgghhBBCCCGEEEIIkR6J6EIkEffcc4+V7uJ/+dZbb+X7661evTp88MEH9vsvv/yS768nhBBCCCGEEEIIIUSqIRFdiCTi6quvDjvttJM1lCqIhkrVqlULJ5xwglm5kAEvhBBCCCGEEEIIIYRIjzzRhUhCS5e5c+eGNm3aFMjrcQnYYYcdCuS1hBBCCCGEEEIIIYRINSSiCyFivPvuu2HdunWhWbNmhX0oQgghhBBCCCGEEEIkBbJzESIJuPbaa0PPnj3Djz/+WGjHMHnyZLN24Vg2b95caMchhBBCCCGEEEIIIUQysXNhH4AQxZ1PPvkkjBw50mxVVq5cGXr37h3q1q1boMcwe/bs0Lp167DLLruEhg0bmid7yZIlC/QYhBBCCCGEEEIIIYRIRpSJLkQhU7ly5TB9+vSw9957hzlz5oQ1a9Zs9zEbN24Mzz77bPjjjz9i22bMmBFKly69jRXLr7/+ut3nQ7SnoekxxxwTHn300VC2bNlcvhshhBBCCCGEEEIIIYoWEtGFKGRo6tm4cePw2muvha5du4ZLLrkky/3//vvvUKVKldC8efOwcOHC2Pbffvst/Pzzz9tYsZx99tmhatWq4fXXX8/0OffZZ5/w2WefmSf6vvvum4B3JYQQQgghhBBCCCFE0UB2LkIUIv/880/Yeef/+294/PHH2y2erVu3hvnz54ezzjrL/i5RokRo2bJleOutt8Kff/4Z269Jkybhww8/NEsW56effgrLly8P//33XzjyyCOzPJaDDz449jve7A888EDo3r27stKFEEIIIYQQQgghRLFmhzSMmIUQBc68efPCVVddFfr37x9atWqVqW1L7dq1w9dffx0++uijmBD+77//mv1Kdti0aVNYsWJFOO2002Lb/ve//4Udd9wx9OrVK+y5557bZLqfeeaZJtLfcMMNYfDgwXl6n0IIIYQQQgghhBBCpDKycxGikHjwwQfD559/HoYOHRruuOOOsHbt2m32KVOmTKhevXo48MAD092fXQEd8FqPCuhfffVVGDRoUOjXr1945ZVX0u2LpUz58uXNGobXxQpGCCGEEEIIIYQQQojijDLRhSgktmzZEh555JEwfPjw8MUXX9jPa665JsydOzfUr18/Zsvy/fffh5IlS4Y99tgjIa/Lf/mpU6dapjlCfhSE+ooVK5p4T+a7/NGFEEIIIYQQQgghRHFHIroQhQi2LM8++2wYN25cmDhxYujTp0+4//77wy233BIGDhxYYMeBt3rHjh3DnXfeGdatWxfq1KmTzltdCCGEEEIIIYQQQojiiuxchChgfv3113S2LJdeemmYMWOGZZsjXuNVDgW5vnX77beHMWPGWPPSunXrxgR0GpI+/fTTdr8QQgghhBBCCCGEEMURZaILUcCZ58cee2yoVKlSeOKJJ8Khhx66zT5r1qyJNRAtKLBxad26dejdu3do0KBBbPv8+fPNT32HHXYIK1euDEcffXSBHpcQQgghhBBCCCGEEIWNRHQhCpC3337bROm99tor3HPPPWadwrZp06aFUqVKFeqxcSlALIePP/44XHHFFeH3338PJ554Yjj88MNDt27dLFteCCGEEEIIIYQQQojihER0IQoYMs1XrVoVunTpEr755hvbduONN4YHHnggJAurV68O1apVM1F9xYoV4ZhjjinsQxJCCCGEEEIIIYQQolDYuXBeVojiC1Yt2Lhcf/31YezYsaFq1aqhb9++IZlYvny5ZaYfcsgh4cADDyzswxFCCCGEEEIIIYQQotBQJroQBcDmzZvthiD9xx9/hN13330bC5VkY8qUKaFWrVpm5QJkz99yyy2hffv24fzzzy/swxNCCCGEEEIIIYQQokDYsWBeRojizf333x8qV64c2rZta5nnn376qW1PVgEdmjdvHhPQt27dGh588MEwY8aM8L///c/EfyGEEEIIIYQQQgghigMS0YXIZxCc33rrrbBly5bw2muvha+++ioMGDAgpAK//fZbuOqqq0K5cuXC5MmTQ/ny5cMzzzyT1OK/EEIIIYQQQgghhBCJRHYuQhQA/DebO3du2GuvvcIpp5xif3/++eehYsWKIZn577//rMHoxx9/HHbaaadw8sknh1mzZoWSJUsW9qEJIYQQQgghhBBCCFEgSEQXIp+JeqB/8cUXoU+fPuHXX38NU6dOTcjzL126NKxZsybUqFHDBG/4+++/Let9//33D9WrVw8775z7HsKI/3vuuWf4559/Qu3atcMee+xh2//666+wyy67JOQ9CCGEEEIIIYQQQgiRrEhEFyIfefjhh8PAgQPDuHHjwtlnnx3bnpuGogjw1113ndnCYA/j4LM+duzYMGjQoNCzZ0/b9t1331kTU2B/F76nTZsW1q1bF84555xw5JFH5uo94Y/OexoyZEj44IMPTKgXQgghhBBCCCGEEKKoIk90IfKJefPmhe7du5ugPXjw4HTNOLcnoL/yyivhmmuuCc8991xsG1YwZIUvWLDAhHHnuOOOCw0aNAgHH3xwOhsWMtDJTncBHch+79q1a5g4cWJsG8f19ddfZ+s9/fnnn3bso0ePtvfVqVOnbD1OCCGEEEIIIYQQQohURSK6EPnE999/H0qXLh1q1aoVnnjiiXD77bfbtszE6ajI/uabb4aRI0da5riz3377hTFjxpiIHrVRuemmm0x0v+yyy2LbDjrooLB8+fKwbNmydK+D2N6oUaNwxhlnxLaxz2GHHRbq16+f7hji4XgOP/xwE+DZF0qVKpXjz0UIIYQQQgghhBBCiFQi90bJQogMcauW5s2bm4ULWeH33XdfuOeee8yGBYE8um+3bt3CU089ZdvJHoemTZuasN64ceN0z411S1648sor7RZlyZIldrzYskQz5FetWhWqVq0adtzx/9baNm7cGL799luzpiEjnmO86KKL8nQ8QgghhBBCCCGEEEIkOxLRhUggiOJt2rQJp5xyilmd7LPPPrb99NNPt2zxHj16pNsf0Xrt2rXWaPSFF16IiegnnHCC3QqCDh06hGbNmoXffvsttu3HH3+01z/00EMt871MmTL2fvh5+eWX23FffPHFsSamGzZssEz5qHWMEEIIIYQQQgghhBBFATUWFSKB4DmOuLzTTjuF1atXh8qVK8fuIyMdIZ2MdGxa9t57b9u+YsWK8MMPP5jFimd9FzavvvqqZZlXqlQpvPvuu5l6uK9cuTJceumldvx4spNpv+eeexb48QohhBBCCCGEEEIIkV8kh2InRBGhTp065lf+77//mv1JFET0zp07h9dffz2MGjUqtp3sc7zKk0VAB47nm2++CU8//XRMQP/nn39s+5NPPmnZ5zQWxXud/RDR8WB/6aWXCvvQhRBCCCGEEEIIIYRIKMpEFyKBICz37NkzfP7552H+/PmhX79+oUKFCqF169aWnT5lyhTL1qbJaNmyZUMq8cwzz1jz0r322itUq1bNmqSSbf/222+H33//PWzZsiVccsklhX2YQgghhBBCCCGEEEIkFInoQuQRMrGHDRsW7rjjjrDzzv/XZmDr1q3h3nvvDXfddZf9jY0LWdypDO+J90mm/Z133hk2bdpkWfVHH320CetCCCGEEEIIIYQQQhRFksc/QogUBNuWCy64IPTt2zfceOONse277rpr+Omnn+x3vMLPPPPMkOrwnrp06WKNSMlK//TTT21b+fLlw/Dhw62p6uLFi8MHH3xgGet4vQshhBBCCCGEEEIIker8X9qsECJXYNFy8803m9f5b7/9Fr7++utw6KGH2n39+/cPxx9/fGjTpk2mjTlzA2I1WeD4kGOh8ueff4Y//vjDfuKrXqJECcsW5yfNS0uXLh323XffWJZ8IvBFAZqk/vLLL2Hu3Lnh119/DT169AiHH3642dksXbo0rFq1yo5DCCGEEEIIIYQQQohURXYuQuQRxGuysfEIr1GjRli2bFmen/Pnn38O77//fvjkk08s4/uzzz4zYRrPdV6Hxp45BUGdrPiKFSuaTzu3KlWqhOOOO86E/9wI/WTi9+nTxzzfOaaaNWuGFi1ahPXr14eBAweGunXr5vg5hRBCCCGEEEIIIYRIJpSJLkQu+Pjjj02QLlmyZNhtt92sUWi3bt3Cl19+GaZNmxZGjBgRBgwYEKpXr54tEf6dd96xhqPvvfee3b766qvtPo7X5rb77rvbMXD777//TMz+66+/7EbGOjfw3z/88MMMBXbE9Nq1a4d69eqFU045JVuNT5988slYNvojjzxiYj/WLmTCH3vssdt9vBBCCCGEEEIIIYQQyY4y0YXIIdio1KpVK5QqVSrMmDHDMrrh6aefDvXr17dM7AULFoRrrrnGBOV4ELqXLFkSZs2aFd544w0T0BG84/FM8cqVK9sNm5Ry5cqZuF2mTBkTzbPDP//8Y5ntHPe6detM6P/iiy8ssx1B/aOPPrJ94jnyyCPNtqVx48bhjDPOCHvuuec2+7z66qvhrLPOsn1efPFFs7PhWHm+559/PjRr1syy0hHXTz311Gx+wkIIIYQQQgghhBBCJA8S0YXIIcuXLw8NGzYMmzdvDgsXLtwm2xxx+s477wwPPPBAOOCAA2wbIjm+4S+88EKYPn262bJEOeigg8Lpp58eTjzxRLNEwRZmn332KZD3w7GtXr3a3hfvh4x4moNGoYEoCwQXXnhhuPjii8P+++8fu48FATLYHRYGeI9YvTRt2jS0atXKXoMMe6xkhBBCCCGEEEIIIYRIJSSiC5FD+C9Dw1BE5z322CNMmDAhXHDBBRnu9/bbb4fx48eHyZMnh59++il2H1ns5557bjj77LNNnCZ7O5HNR/MKmeuI6XPmzAkzZ8607HWHBqUcd8uWLU1QzyhDHbGdTPSLLrrIstPJRkdc530KIYQQQgghhBBCCJFKSEQXIpvwX8WF7jVr1ljTTMTmu+66K/Tu3dsy0/Eo//HHH8Po0aPDkCFDzMYkmm2O6Ex2Nlnn+IanyvsmU53s8okTJ6ZrnLrXXnuFNm3ahA4dOpj9y9ChQ0PHjh1tf7Y/+OCD4YknnghTp04NV111VRg5cmShvhchhBBCCCGEEEIIIXKKRHQhssE333xjFi4I4+7t/fvvv4fHHnssdOnSxbzG8UnHroSmo1u3bo1lnCOcIyiTcb7TTjuFVIf3h5g+bty4dIsEvNfffvvNGqreeuutsUWHp556KnTu3Nk80/FY57PBHkYIIYQQQgghhBBCiFRAIroQ2wHRt2rVqtaMk5/4he+4446x++fPnx/atWuXTlDG1xzhGD9wLF8SwZYtW6w5KJnuWMNw++OPP6yJJzeOwbPbsZHheLBa8RtZ42TD77fffumOP7fQIPW1114Lw4YNC9OmTYs1Jz3wwAMtO79t27Zh9913t23ff/+9NURFeL/lllvCvHnzZO0ihBBCCCGEEEIIIVICiehCbAeE6rPOOsuabj700EPmh16vXr3w+uuvWwNRvMOBrOvzzjsv3H777Wb1klOPc7K4V61aZY1JEezJbscKxZ+nefPm4dlnn8308Yjq++67r/2OvQridkaUKFEifPjhhzERG0Gb7HIWCLhFm4Zmlw0bNoTHH3/cMvN/+eUX24Zgz2dBg9S+ffuG2bNnhyuuuMI+L4R2MtOjDUmFEEIIIYQQQgghhEhGJKILkQ0Qht9///3w1VdfmRCMQPztt9/afWR/kwXes2fPUKlSpRw979NPP20NOGlS+umnn5oFSpSNGzfGRG2E8TFjxlgmObfSpUtbljuNPrGJGTt2rGWbA2L/rFmzLHvdb5s2bbLng19//dXsV6B9+/Zh+PDhsdfk9RDTyaY/8cQTQ7NmzczrPTvgCz9q1KjwwAMPhLVr19o2rFvI5iczv1evXtZ09N133w3VqlWzz7QoWNwIIYQQQgghhBBCiKKLRHQhMgCxee7cuSZKn3/++bZt/fr1oXHjxiZ4A+L1ueeeGx599NFQoUKF7XqqY32C9csjjzwSdtttN9vetWtXe7xTrly5cMQRR4TDDz/c/NURnhHLAbsUBOecZrhH+euvv8J3330XDj300Ng2MshnzJgRPvroI1skiAf7GD+GRYsWmSh+3HHHZWkJw2d3ww032GN5PahevbplqvOzU6dOZvkiSxchhBBCCCGEEEIIkexIRBcig6xz7FqwVoF+/fqZt3fv3r0t09qtVbi1aNHCsrYXL16cLlv777//NsEcC5OXXnrJfNQd7FNOO+202O88tkaNGnYrU6ZMKExoloq1C+996dKltnAwefLk2P00BsXGhmx1FhBYVDjnnHNiNjIu1LMQQCb6//73P1uIoNmo27y0bNky3HfffbZggKjO57j33nsnzDteCCGEEEIkH950ngSLAw44oLAPRwghhBAiR0hEFyKDhpnXXHONiccIwmRt41MOderUMeH3hBNOMLsUbFwaNWpkNisOTTZ5PB7lDhMG/L8Rz7nvqKOOCqkGl4pLLrnEssx9MQHIjq9fv35o3bq1fR7wwgsvhDlz5oS7777bBHYy+xHU3aedBQc+DwR5LGPIgKfp6Nlnn11o708IIYQQQiSeN9980/rjYHtIb6Ebb7zRxtGnn356YR+aEEIIIUS2kYguRAYgEjPAd69w7Ff69+9vFiVRGxOE8iVLloRDDjkkHH300bYNuxf8xMkqp9EoGduIw/iY54YVK1aY1QqvRTZ39Ebm+KRJk8Kee+5p+w4aNChMnz7djpfsebK7/SfZ3hy/Z7tjtcJ/f44rJxYxZNnTZBULmJkzZ1qTUuB9knXvYD+D5Y3DgkTDhg0t+97hfqxh3nvvPZtIIarnxa5GCCGEEEIUHoz3qMasUqVKOPjgg23bq6++Gs4666xQtmzZcPLJJ1s/oG7dulkPHyGEEEKIVEEiuhD/v40Jmedt2rQJ77zzjmVU0+gTEHlpgMlkAJsTRHQEbRpojhgxwuxPeByZ1MB/qQULFoSTTjppu00zEZrJckeI9tsXX3xhGTv+2EsvvTSdpUo8HIvbqcQ3CY1n3bp1sQnNTTfdFAYPHmxZ4XiTcyNDiJ80/axVq5b5n2+Pzz77LDz77LO2iNCkSZOYBzz2NBz7tddea8d32GGHWVPWiRMnhosvvthEeBYraMxKhv6UKVPCPvvss93XE0IIIYQQyQkN6V988UWz7uvRo0dMWH/yySctuYTEkwkTJoSrr75aiRNCCCGESCn+X5qoEMXYvgVfbspK77zzzvD111/bdsRmBGm8uxGCe/XqZVnnrVq1MpGYCQGQ5e2Z4MCEAE/1rHjwwQfD2LFjLcN869at29yPVySvC5S98jc+5IjM0ZtnmjvXXXedZXvznH/88YctDvjPn3/+OZ3nuluy8JPseW+YGhXHaXAKLCxs2bIl1K1bN917BYR3PpsoCOI//PCDNS3lxmfywAMPhHvvvTfccsstJtLjmd6hQwfzjX/llVfMX57Pu3z58nb82RHwhRBCCCFE4bB69eowfvx4axZfokQJ29agQQMbN3qeFuNMqiTJPHewNhRCCCGESDWUiS5ECKFPnz528/8OWIvg640FCvz777+hbdu2ljnjkKHepUsXy7YuVapUhuL8smXLwssvv2w2JWRge8Y4QjKCMiCC05yUTG7E5SOPPNKadcaL1fnBn3/+aZnvZN0jmvOTGx7lnnUPLDKQbY79Cn7wfD5kj59yyimxzygKn9drr71mojiP888Vf3ky4FmUYAGA7UOGDAndu3e3RQlsaLDReeaZZ+wzQ1AXQgghxPYhpiJYsuhNTCWGc6OyjRuVXzT7FiIRMNYjq3zDhg3hueeeCxdddJFtJxECQZ1zj3Hmqaeeas3qR44cGa666qrCPmwhhBBCiFwjEV0Ue9544w0TicmcRsSlUejUqVNtAsokwEtNKUu99dZbTdiliSaie3wZ6rfffmu+4DTfxP+R53RotEmWOKxcuTJ88sknZnlSoUKFdD7r8fz666+W+c5z4YO+adMmE9gvvPDC2D4DBw4M33//vU1o+C9NFjfiPDf8J6MZP2SAs7106dLbtZtxELYRwz1L3+G4ybpnoYDJeUa8++674eGHH7aMcxqM8tpffvmlTbJoyOoNR8mij4KwTsa+EEIIUVz47bffbHEb+zXs2oj9LGxjl4b9G+MMxhgseCNQsohPs3LGL9wQMzODRXAyhOltwkI/1hqMdeiNQvUd4xGqy6hCY6xDBZwQDtaGjGV79uwZ28YYju233XabVStmxO23327jPGz86tSpU4BHLIQQQgiRWCSii2ILmdJYmNx8880mPiNo4z2OJzilqXg1csOOBLGYiS2WKHh7ZwSPwfM7+l+Kye0ZZ5xhjUURvd2PPN4XnQkzz491i8NEA7sXtsfDsZLl7hxxxBExD/d4mBBH72MSjbDNezrwwANtslyxYkX7SRb8ZZddlulnhvhNY1A82/lJ9jrHyaTceeyxx+z4aBwVXRxgsv/UU0/ZZ9i1a1ebrCOqd+rUKdx///1h6NChZpfz9NNP2/5M7vlMPXtfCCGEKAp43Cd2O1hdYPPGYnkiYJEcoTy3w3wef8ABB1jfFKzgOGbGMAj2VJWRgcx4ifED4r0o2tCMnjEj5wGJIMccc4xt5/zanq85+7D44zaFQgghhBCpikR0USzBm5HGR376U4KKYItofcMNN5hIDEweyfxmsosYHZ1MYO1Cs1HPLkdQZkJ54oknhnPPPdeEcwRm94gE/MkR7hGLub333nuWkU5WWM2aNe1vB2sXjgfwPyejHOsUbojdiPsOWfJkrDHpZTJDlrf7oZNJ5tYxUL16dcsayo7gjkc8z8djaJR60EEHpduf7Diy5GhCCkz+fbKNSI4gT9NV7GoAAf2ee+6xLP5HHnnEBANsY5iM9+7dO1x55ZW2rWPHjvYemKzPnDkz3WcvhBBCpAqMM1iAnj9/fnjrrbfC4sWLLe4RJ7FGI45SSUbMdrBOQ6RkIZ7HZQaVXYwxqFgrLBgjIKp7g/Jjjz3WEgIYNxSELZ3In3OWZAvE8nbt2sW20xOI85bxGhaEmUHGORWdI0aMyLLSUgghhBAi1ZCILoodiM34eTOJBby5sT9xH3T+S2BNQiZ1v379bILIfdiNNG7c2CxInn/+eSuBvuCCC8K0adNiz02mTVRoRsSONv7MLGOcfRCio5NlMs05NjK/OAYm2WQB+fMxuWF/suijN7dzOf/882PiMxnflIEjcHMja4yFAOxZ2M4iAT/J+nbBnedhX/ZzyDjDvgUvdDwuEfqjUH5O2S6fSTSDngUCBPLRo0fbIgL2MIMGDTLrGzLR3SaGiTfiOn/jN49Az/vFQ5MMdyGEECLZwZccEfKhhx4y+wvGAtkF4ZnFeWImi+3EPsYbLCwT4zMDizbGN5nBOIbn4tiI1fRp4flICGDMwzgDOw68qx3GEsR54jljEATUqNi/PUg0IK4zvmHcRZUaCwQiuWF8zCIOY0XGtSRyZDfrHH90xopUH2LhQg8cIYQQQoiigkR0UaxALMYmZPXq1TZRxXP77rvvNtGWsmfA7xyPcTKr3O+RfRC0o5NHhOEOHTrYzSGjHJsT/L+xi1m/fr3dPBOnRYsWluVeu3ZtuzGxZKLCa7EPwvmsWbNifqh4ofPTy7vxb2ciDGSiX3/99Zm+V4R+su2BRp1RmxYmxmS2Y03DZKdz584xL0ufJDFZ5jXIWkcM4Gf0csEiw4IFC2J/MzEncx/4nMj2Z3KOUM5zAWI4mXjjxo2zjH1gosXr9O3bN5ZNx2fBcyEKkMEHZLD36tUrl9+8EEIIkT8Q/1gYZiEesZsKMx9TOAiSZGkjIlNlxmOIjYwDqPQis5fY+Pbbb2f6OsRmKtHI8mZ8QFY7i9/EcxbZaRrK2IbXogqNBXRiLnHU+70AQjljECDbHZs3joHxCfvzGlSO8fgoiPQI6sR+bNi8eo7FcCrvPv74Yxs/ZTa14LgaNGgQ6tevbzcy112gFYUDfXI47/geGAsC3x9jXMan0fFwdmHsxxiYxvHRakwhhBBCiFRHIrooNjDZYxJJNhX2IYjVTGjJmsbOBVG3ZcuW5ksaLT9lO9lgwCQDkR2vdCYYgPCLaM7kGesR7F+iMFkmGwvIRmMCyrEwieVGtjvHAY8++qj5hWc2+eRYsYoBJihklTFBwcbFb0yyEaYRnMn6chGdpqi894wy4jj2pk2bxsR3su6PO+642I3JNhn2TNiZYDOB5rPs0aOHPYbJNhN4JuJ4v9OolaZkQDY5GW9k8NMMDXGcrLdXXnnFPjteFz90MuDJVGPyBezHogLvF6sc3tcTTzyxTQNSIYQQoiAhxlK9RewjZk2ZMiVdI3GgioqFdV9EzgyES+LqihUrtrmPBW8W8BHeGZcsXLjQFr4Bmw3iamZQ9UY1GmMaKrwYsxA/EeCJp5k1eOR1Lr30UntfH374oY01GJswvuAYvYk4lm18DojhjGOotONvfK/5XByOlwWDeEHeYQxD83F6yrAAQCYzCxCMObaX9SxyRzSjnF5AfN98Tz7WAqoUstt8nnOcsa162AghxP+D6yjXRrQBbvzO9ZI4ysK188EHH1jFGTHQb2gOioFCJCmI6EIUdRYtWpS26667smCUdsQRR6TNmTMn3f0vvfRS2rPPPmv316pVK23Tpk2x+0aNGmXbxo0bl/b7779v89w33XSTPc5vZcuWTWvXrl3a008/nbZ+/Xq7DRkyJK1ly5Zp5cuXT7cvN543epxXXHFFWp8+fex1Oc5Vq1al/fLLL2n//fdfQj6LzZs3p33xxRdp77zzTtqkSZPS7rnnnrS1a9fG7ue144+R27777pvWuHHjtOXLl2/znDNmzNhm/zp16qTdf//9aV999VWGx3HSSSfZflWqVIl9Lr17905bsmRJ2rHHHmufH/zzzz9p1113Xex5BwwYkLDPQgghhMhu7Jw8eXLaBRdckFaiRIm0nXfeOcNYGX8rVapU2n777ZdWt27dtPbt21uMP/nkk9P23HPPdPvtsMMOaTVr1kzr1q1b2nPPPZf23XffxV57y5Yt6Y7llltusf07duxoMXP27Nlpw4YNS9txxx3tuXitrVu32r6vvfZaWo0aNdK91i677GL7dO/e3eL0E088kXb55ZenlStXzu73+AsffvhhWocOHWyc5M/JGCL6fDvttFNao0aN0iZOnGj7M6445ZRT0u3DsXEcN998c1rTpk3T9tprr3T377bbbmlNmjRJO++88+zvLl26pHvP0c9D5A6+V8ZmY8aMSXden3/++WkjR45M+/vvv3P8nDye76x27dr2uxBCFAeYixKX3njjjbShQ4faLUq1atUyHRegFcydOzdt6tSpNk/2OXF8XN1///1tTrx69eq0b7/91q7RxPz33nsv7ddffy209y5EcUciuijyzJs3L91k9dBDD7UJ5AMPPJBOjL3rrrssYLFPv379bLKLeP3vv//afvzkua655pq0t99+O93zH3nkkWk9e/ZMW7BgQdqGDRvSNm7cGLv/+eef3yYwsv9ll12WNnjw4LRPP/00LZlgEoSYP3z4cJvEnnrqqWm777577Ng/+uij2L6I/A8++KBNmr/88su0xx9/PK1+/fo2uc9socCF8UsuuSTdfogMLDYwSWeQEP1u+AyZ5Pm+CAgS0oUQQuQnf/31l8Wfiy66KF0czOzG+MIXnYmfjBV+++03E9+bN2+etscee6Tbn7jHWIAY+f3332/z+n/++aeJk4xNoiIysZbHt2nTJt3+xG4W7uPj4/Tp09N69OiRds4559ikPH6ijgjw8MMPp73yyit2YxxDnG7btm3aMcccE9sX4RtxvHr16vZ8jKMQZaPPV7JkSYvlMH78+LTjjz8+Js7zWuvWrbP3S6IAovuVV16Zdvjhh2/zWSIcsJjAZ8BnwzYW3P/44498+76LEoyl+C75Hp3+/fvb53juuecm7HU++eQTO4/5//HWW28l7HmFECLZeOqpp0wfqFevXlrp0qW3if8kmhHvv/766wyF8YxuxEMWlg8++OBtFtfjb4MGDbJ5uf/NmOKoo45Ka9GiRdpjjz2WtmbNGs2PhSgAJKKLIs38+fNjk9aKFSvGRHKfzBFs3n///bRmzZqly5ZiX35H6P3555/THnroIctg930Q0h2CFSvEBDaCKo8no9r56aef0k4//XQT6ZnQIMynopCwePHitEcffdQWExxEAf9MDjvssLTOnTvbZJxJMsH8tNNOs4w9JvUOK+grVqxIu/vuu+1xTJ6jAxE++5kzZ9q+TJ7JlGPRwwcLvt/tt9+ugYIQQoh8A7ExOoElXrFgTkwn1jOOIM6RCc5YAeGSyix+IiheffXVlokefQ5iHNnYCxcuTCdwfvDBB2ldu3ZN+9///pfuGKjW4nFkrTm8FkJ3VhCL77zzzlg8BQR9Pw4WyqnyQsTnNdlGDEcUJyu8YcOGscx2xPoDDzww3ftANEVIZ4zDGIhY7/e9+OKL9noI8/zNBH/lypVpY8eOte0HHHCAbeezYxzBsbrAiwgfnzV/yCGH2O98FoCozliC4+XY+F38PxgbVahQwT4zxsEOY17GZmQ0JhLOZW5CCFEUoPL85ZdftkSxKPGLxj43jV9kRxj/5ptvbPF72rRp6eJZmTJlbBzAQjFVaSxyO1xHzz77bBtjsFjNfuzPAjaJZxMmTDDNIn4xPH4BmgVwrv2ff/55riqMhBBZIxFdFFmwK/HJK2VTHlwoO73jjjvSbr31Vitf9mxoJouUWX/22WeWPcbKLhYsUeGW57vqqqtsckzmNdYiRx999DYBjElpcYDSNYK9W+X4jQlyp06dTCD44Ycf0j2mQYMGsckzq/lklZH9Tla+T9J79epl+yK2e8m8L4BEs9f5HoUQQoi8wkSTDDImsTfeeKNl10bjGhNXJqXYmkW3E8schO2BAwdatVm8cE5cW7p0aWzxlyq0H3/8MfZY7FJ83ygsYEct13h81FqOkm7iKo9zuxVgoZnnIxZHH+sxlUw5Bzs7xGxierztHDGX94j4ygIB4xsXupnY+7GQNY5wMGvWLFt4B94vx8ZCOSK5v1/GXogE8Z8Rr9WqVStLbmChgcy86D4nnniiHevo0aPtbx97sIgBLAogqk+ZMiW24O/VbUUVkhZYzOAzjcL3xNiXczrRsHDCWFkIIYoCxEayyLEiO+uss2Kxhbknc1QXxKkCI5bfcMMNGQrYVKFhlUaccrCIZZGcuMX4gPEF12sW6bGLZXGe7PIoCOH++hwLGerEUfYldgJjFcRyYmd8lRs3BHcWoInXJPmdeeaZVgHGYroQIm9IRBdFknfffTdt7733jq368pMsqUceeSQ2gY1OhAlkWJI4TACjWVcI5U8++WQs8DApi/p58tyUSTPJzMwDvCiDXyuTa8qy99lnH/tMWK2PwuSZiSwT9aiXLIsVlH4zESdLv3LlyrbdV+avvfZaG7SQaeYl39GKAioAhBBCiNzABJdFXM92jr8R01h8R8CNVqwhqpMdjliLjQribTQbm0kvMRHLt/iqKbazD2OSaBzFe5zJt+9PNVb0sezP2IYKLYf7vQQ8areGmM3z0fskCnZzLnJnBM9HLxYm+0zwo58Fvuc+BsLmhnFR9HFM0klQcNGfbWTTRRMRbrvttpjlHaIFMT66EI9vOj6xfK4sxCOmMwaLLqCTmcf3wiI+r+ee8dHsPCx4AGGfMQNJEVGwo2NckUr2MAgxjDPxuXdI6vD3jLjtYCfE4gefpcP3QVZk1HIwp/AaWPSwwEFmuxBCpDJUZWVkKYZoTfVTpUqV7O++ffumW7ykQp1FX2zNXn/9dUv8Yi5Mgh3buUWJVrTH31i8joKNW2b7YhsTBdE+ej/jE5IAzjjjDKsqy+g5GO9QVU8MVFW3EDlHIrooclC65KXC0YDDxCGapUWwc6GcSR6ZS9FsLyxcsHMhMJJNRcPNaKCheSgBasSIEVZaLf4PPmMy6jwzzCddlLoxwcYjlQw8SuJ9oYMbK+VM+sioYqLNCjoZdmRS8ViyAyjhpqlb/GCAlXUhhBAiu1AlRUZYfINLvx133HExKxQq0HxRHtEXH2gWhYlTUXGdGz6o0WwvhEYm1dFsaJp5IuwSBzMC8RgBlNdjTON4BjbZ3VEQtN988810+wLjF6zTsJJzEI2JxZSRRzPaEQIQRhG5oxx00EEWnxG3XZB/5plnbJKPP7onILBYEJ3EI1qTUY7we/3118cWyH2BgUq0ZcuWmaCP5RtN2qPZdHjPRiFBgWOL2r/xOz1svBk8nw/jMp7fy/DdOo7jx1LGQYhnOw3aoln/jDWiFiiJgkUBkgkQX6IgcnN+sHARTQTh/CM7MWqh51aD0eoHPkNf7Ik29nS7PfenB2x32IawwgJNbqDagoZ5fH7Rz1MIIVIBrlseM6I9RrguskDILd6GjUVcFqXjYWGbhtjxlWvc2BbFK4aI+ySAMU4gYYx+avHXUo6POS+xEW2C2E4sZV9ibfzzMiagAi7eVgZbLxarOfZ4S7aooB5dgBdCbB+J6KLITYrJbCYo0AwLH04yohHByXQiUESbdzEpYwLsq8NMpvHmdDGYSVzU/4xsMyfqZSqyhgl+NIuMQM6KPoMCJrqePcYEGnHCFzOYbDIhjlYE4Kl633332fN5lQFixAsvvFDYb1MIIUSSw2I4oni0oolxAxNpGmDSxJrs5ahdxccff2wiLyXdiNBkYLug6eI6dnDx3twI5x7fyHx2WHh3axMmuBxPNLscmMjzOOKnQwYxC9H33ntv2quvvhrbTpk57wfxOirWM1nnORCsPVub+/24mZQ79G1hW8eOHdMdh1eOEY89kQDRNzoJpxKPDLyMmq8iBvOTpATei78vv0VFbOxkGAcwFotmiJO5f+GFF5oIjFBMNnbU6gUxHbGchXcWPp5++unYggJjtSeeeML2Y+Ee8ZgbQjTfDSXxPA4Q5NmPyoPoZ4M1Dp8lzxvt8cI5wudG0kUUzhWe38eTQPY4z121atV0++I9z3YWAOKFcW4sRDhUAvA985jouJckD95jFMa9LHpEm9eTtc7YmHFVXkBIj4r+QgiRzJDMxTXyhBNO2GZxkesZFWDE0WhjT5K46GtCEh7XWRZZ46+zfv3mRqzk+oqVFpVcxMRo8h2/o0FwTWdhm0V4quDoSUIcicI2xHlujEloPHrppZfaWIHeKdHFVWIVC6/EaLQLxin4udOTJFrtxut7tXh0cYDxC2MKYjXHgwUY71UZ6kJkjkR0UWQgo8pLmsg8J4gAwcAzngkWvp0JBtlY0UBCKTYTKs/I8vvYTlaVJg25Bw95Gq5GP1cWNhigIFAgYjAx94EBmW4IFWSpjRkzJl3gpwTNy+F9OxPv6GRcCCGEcBBTJ06cGJtE+w0B0uMOFWpe7cQifBQyy1nAjWZzkY3LgjCTbyacZH7j/R2FCS+WcQiYxDOynKNVb2SQ81xU0EUnrYjkVLwxiY5mjJM9z/6I0T4m4b15E1Den4NPOQsDbGdhwHERnPscxkYIAggBUaEAyxqeE3sUPz5iNplt7tsazbxjXMUEns8vunjOewGeA6Gb+I8gjDAO2LnRvJx9EcwdRH+3yUGUcEhy8Njvr4Eo7t8P34WDoOEZd1HcwofqOUAsQfxmG1Y2flzR9+j2KIji/l14w1MHmxm2M3aJF8ZZfIkmYXTr1s2O218PWCggcz4+I5/HJULYiFZl8r3TgHZ7AhTnrxBCpBJkeDNnjNqaEONYLGZhlGt19JrKgime5/RGY3GVKnVsWaKZ5q4jAPcjPNOHzat7yCLnehlvpZaVRQsLx1HwZc9sX0TvKNEKbcYBxBgeT48Qxix+XIw/Ro4caYvqCObR+BwvrHusojIrvnpKCCERXRQRmFiwUusBgJVaMrZYtfVtlDmx6kvmEF6m0WBEgxCabDFZoSmI38cEk+wmVqlFYiCIk83lgwkGM3z20UklAZ+FEB9YvPjii7ZPtLyO6oFbbrnFVvXJgvOsgWiWmBBCiOINsQUhOyPPU25MdBEt8db26iYmoowjeCzxiGyuaINy4hPbPLsbEMZ98klFlROdoPvYAxE7GhMZqzDppVm2+1qz3cVjxOqoMO5WJMRSB4E5I29VsqoRq6NiLEkEZI3j9RrFe8Uw0XbImnORPwrZdmznc2MMFY3PCBYI/5SIU76OlQvH/cUXX9hjo1Yi/vnwfIjRZAhGs6fJ2Is+L2XwCOuIFtjEkAXOAkHUb5b3Fu2Bg0jO9x9dGHFrE27R5ptkjyOu87kBYwzEFt4DiRpeAcD7crHdF05YjCGDj4UHziuqDKLnIaIGWfPR7w2Rh+chAzI6DmKB5Ntvv03LTxDTDzvsMHv9aF+gKCwisIjCZx+tfhBCiGSF+BnNEudGljgCMrE2KiDHJ2Cx0H3xxRdvU1nFfNQrohyEdmIUi+lki2Of4vtjg5ZR/GfRFEssKoJI0OvcufM2Nmr0NMEu1m/Dhg2zzHI0iag3O9BcFNu1aHVdNFktmrXOgjJVb8RMstdJLMCijjjAgn38wriL6tiDYSWj7HQh/g+J6KJIwAQ5esHH69N90QkqlEV5gy7EdN+vdevW6TxEmZix8so+TCJz6xkptg/fBQGZQUEUvGKZHDMx98w6bqy0M6igHJxsdjLYHTIJo4sl0aw9IYQQxRPEYrcT4RZt/MkiORVPTCKjTUXJGkfARNAkkxhR2u9DdMbHFPGRsUPUagUQaZmkIwKTocYYIyq0MxFmIk72W9T6xTOwuXFMDpPdjARs7EzwQeX9OSwE8HfUhgZyMulFECDrzO1NAFGfY4oKv4BwTgWZC9Bk37l9DNnhUbByYTtVfhwnQgPZgcRyLPMolY9m+mGzR4a+w5gA/3W/nyxtxOp40QRLnmhzUUSU6IJGFAR+BBGOLQoCSVR0yAzGLvjQInCQoEEVA2IMr0s2PAIMix1RECu4nzGpw7nEOcg5UxgCBUkIJDVw/BnBOJjFFT7XqLWMEEIkM4jCzCOZPxKvvEFoNNZTfcQ1Llqdg2Wa74MmQFxDWCfGRON5tOoo/saYAvut6HyUOMdrEQOxkyVeULXFMRBjsfSiApuFYeILcZ6/GTewCM5+LGQydqAajNgcjRnELbLkiZ08F3GGaqko8SI5MZhxC69HtRTPQRZ+fLNSv2FVJoSQiC6KAASXaJaSC+ceHCi9jQYZSpK5j1XmmjVr2mQuGjzJlJLfeeHAJC5aIUC2HgMYF9PZhm8c2ebetA0QDchg88cy2dZquRBCFE+I42T9erYZP31cwE8mlgjF7pXtk2V6axA7mKhGJ5sI7mRIM4kGMriIS2RfRxuUOTyHi+9MyB3GGm5pRtWbQ/NRhGGEV3zBHSbcCONkA6cCfBYsdiMKO0zMEdUZa+E7SwZcfHYfYy4EAV808PEcAgKTerL8qVoji9urBfn8yShk0SLaOJXKQTL+3MudTDwW2lkYQRyIluLz+fJdY80CHAP2f2SdI0BELUx4XsT9eE9zFvR5HV4DkYPHe3Uc5x3Cyc0332wJArw+n0eqLfTzOXGOCiFEskGMYDGXqiCqlqMLpYwFiDseV7g+E2e4nlGxjl0JyVdcnx3iLYlcxHmeG7Gb7O969erZPNT7mQBWWGRxk1GO+E0lE/alLPKyCM+cFSszbM6IK1FbmUTciG/EVhqao2sQa9BFsDPjs4hfEGY8goUYi9ceI/3GmMXnzsQ7KqyivV+8YopERSqo6O2SarFMiEQhEV2kNKzg+iSZiRhiKpMhAhliOcGOiVa0YReTNUqn3CedWzR4isKD74+SMf9eCPBkAOBT75NSbgwOuLEyzwCBsjgP7r4PpeFCCCGKD0z8yAyLlmrjZ4r46VVq0YxbMsJoWI0AymSQ7HJfaHehm4ZbZJ8xYXSIO4ipxCWywvBRJestChNVYhKT3GhzL8YfHB9jkOhzcixFcfEX71n/PFnsnj59ujVZjVYIYBfimfldunSx8ZzfhziApZtneOM/T4Y/f3vWOQ3KHUQTtrEgEc0S9DEf5fAOC/IuyANiPCX4iPVsj3qFs+jiz8V35ZD9Xr9+/ZgFDmNMLGA4l1g0QZDxCojMLFOSDZq68j0JIUQyM3v27HQL3mSck2SFAO5wTaYqiYovrt0Z+aRTjRON71RKk3UdLyJzY7EdiNdc57Eqw16U8YBbkW7vRkwgnjH+IOsbaxcy16mOwt6N7HCqpPgbmxiOn1jI/rxG1D4tqxtjEB5HHGaBnqoub9rNuIa5NA21iZVRrYTKfCzsyNZnDIQ4H31vxEj6h1Al5xVmQhQnJKKLlIUVZJ+YMEklAygKZVB+P5MiJjJM0qIlSkyq8LVU5nlywYSZVXL/nijz5vska5BBzbx582w72W14jrqIjjDh/p6eGSaEEKJow4SPiVzUwxSB1ZtLYpWB0EoJNJPsaHYWj2VSiR85YwnPVsdvm4wz7EDIImPyGn2cV0MhmPpYA2s5z1Ynq9mrqHh8FEq5i6JgnhF8HogXUbsWPg8ysonrLpgTvzt16mTjMW6UlzN2w+uVxRFsZqJetIgn7IPQjTCAYM13iYiOqI2gwWdMVny0GSzb3aqPLHGEfb5b/z4YW5KBx9iQDEa28xp8Z9j3IK74d5wdEN95nzRDj4Jwge9+9D0VNJz38e+Fz9C9e+Pt9oQQIhlgQRLROVrRRPUQSXEIu1SPxVuvkHgX37CTBt0sgEarm1kYje7DuIJrInNQmmKTqIdFjNvGZnQj5rB4jzhNMhgVWMxd6c+BYI5QHqVNmzYWI8eOHRvbRizDx50M+CgcA8dClRoiPjGJWMVxsQiN8E3We0Ye6dxIMERYxxIO7YQxTDyLFi3aRvTneUl0i8byqFjPGCwnsVGIVEYiukhJmNSwSusZRNwIZpQuMSmKNhQl24nA5ZloLqrTnEqe58n9HdMozW1aGMQQ+PGl4z4myUxyGWAglLBaH/1+fVJemBNUIYQQ+QuZ5ZRx+/Wf7DLKm8n4dogZeIR6tRKirkP8iDalROAlU81BSN9nn32sMopSbSbpZGVFiWY8R5sv4pXNa2FHUtwhkYHPLbpQ0bt3b2ue6Znl8f7kjOmYzEe/R8Z4GcECO0kS0aak0e8QkcK/I0Tz7Pp7u/0MWXmewZdXEKpd2I/3mi9IsCgio5Bmc9HPGNGH74nzXQghkgns2FwgRtwlg5rK5GjPMxpJf/DBB+keR0a36wZYnzCfJC4hSDPfdKh2QiimopkeKFwniU3Rfht+4zhI5EJjoBoNQdubg5Op7ZVSfiwk87GNMQV2ZVh8gS8I8Jr4o1MZ5xanLCRHbVNc/xg8eHC6GEfyGQuzvtiPoI2NGeMQrulks3tT8vgbdnLEZ8Yvro0wf2axN95HnTk2FjXRxelo8gIL18UlSUAUXySii5SEoOaBMLoKiieaX9QJbGQPEUSiPpunn356Os80kfzZBgxQWDXn+2PlnODMwMe9SPmuCfT33Xdf7JzwARaDJgVzIYQoWnBdJ3vcr/lMSqk+wmaFvxG9Ea+JFfiV+hiABViyt5joegzxiSrNQHkMnqJRyB7D55SMZx974LnukFXN65ENF99sVKSH7Dq3zCFzzsGKLzo2w+ommh0IZOlhscP3FAVh3b3SmeBnJkzTIwcx3Bdb+J63Nz6g2u3UU09NJzQnqrE6fu4I6g7CftSzPb/x5APK9ePJrCGrEEIUJiyYct0iO5yKpGh2OSIxC9cIwfTniC5gk7lNtRixnLkllU+edIXg7eCXTjUS886oNZxXvrPoTqUa13DEbXpneIY3Ywq0B2xIsSmLPhYR28cQ0UprBGkE7Oh2RHtEfjLl3Ubl/PPPt5iIJRmiO8dPLKTaiX3Zh2rs+M+KDHLvG0Ls4dqOXzuNrr2SO3qjypvXIvHA/d/xl8cX3hMOsMsh058xly+MR2/nnXfeNvFbiKKERHSRUpAFRClR1PuaG5k0eJISwDyI4lnmDb8ocyJQsfLsgVfCavLDd0STUL4zSueYAAOLJXQ+53uNiiMMgoYPHx47D3zwQxaAvm8hhCg6MBH2RXMqlpg4M/lzQZwsWiasZKX7wiqTT6xCyDqLZlF16NDBRFs8shlfEDvIAkPwZZIexRuDcuMYohnSijPZh4y3qIBM9j8ZgA6xnWzCN9980/7ms6VKwD97xJBoU3jsVhC7/X7Eg+jzO5SuIyr4frxORs1ho/Da0eeifwvWAYmsZiR7EMEEm8Foo9T8hPfE94Bwj9VBfBM6IYQobLi2Rxf1iNVct4i/Pt9DyOWazLUcgddjRXxFGgviDRo0SKchMH6gAShVZtGqNr/VrFnThHFEc3/eSpUqpR111FE2diB2ZSQik9zlC/q+2E88o4EnOkX16tVjC/sDBgyw8QsiuGscc+fO3UbEp/qa44xuIwufmMSiMA1RaZbqPUY8izy6uM++xE/ve0HcpeHoFVdcsU12OcdOpR3Z+Fid8RlGq8OA7HkqAohf0X4mPBdjMCGKIhLRRcrA4D7a8MsnxQQN98KMruQShAhuDk0v8D0j+wgrF5EasPrNYAQ/VCCA4w/n33Pbtm3tb/ek9UYx/N2rV6/Y7wyCVIEghBCpC9d/sq4Q/DzzGKsvYoTHBCbIeGhjw+FxASGdzDDGAWSQ+75Mgl2kdWhESkyh4o0xBg28ovYvLOYy2WXRlsm9yDt8L3i4kiXOZB+h2/ubID6QFcgYkLGex3VvFBvN3GaBhAZvfj8ZihnZv/BcZF97xRrZeNnNvOYc9DJ9LGISBQIFze04r1nMKUiwM/DxlIR0IUQywLUWyxPm81zrM7o2Ea+J/9h4kXWOzadf/xHYb7vttti+iMR+H3GFbGuq2YgTUbGauICw7fNJmoTTiJQkLRL5/PG+P4ue2MjyfCTpEbto5InYj10Z2eqTJk2y7G/+dhin8Fgy5KNgv4JOwfuhRxg6B+MZYgPP7zEQgdz7wJAYwEKCJxKgl3gvOMYvI0aMiM2jEcRdvI/C6/EZU1mH1Vq8jQvjKRLa8FH3BWxiLlYw0c+VhQjEdAR43hsZ8zRfVZKBKEpIRBcpA35e0Ys5gYPV2Kh3KZMlJiG+D7/He1gyUdIkIbXhe2ZAFR/cfVWfGxmHBOzGjRvHtjEgQIARQgiRetd97LmiDbMol45mFTMh9kbhixcvtkklFWhMJsmeinqfY/OG5ycNH6NxAUGX2EGWsZcpM5lmO/D8GWU4i9yDvQ4Zdv7dUN7OondUEKEU3hugIbR7xhv9cOK9u6lWczGB582seTx+tDSgYz8ECjL/sgOCANmLHHci4byK9/HNj0ZtlOFHPxMyGfk/RSanEEIUNmRHI0r79Z+FbTLPqTCKLpwyx0fQZVHUr/ncENcR1qPXT6xP2If4QpJdvD84lU9kcbPgjo1JfGNOPNfJrMaTHVEdQZ1xBA3LCwoXrzk+4iFZ4CwC09uFeTD2NC5qk0HOXJjY6fNkPi/eHxn6iOkOnxOWeFjHYGfj8DufCVnm8d7nZLOT6IamgnVOfNNWz2T33xm7kc0vRFFAIrpICfC3jF6UEUOZDLPiSVBzPzD3DSNQ4FdG8yi8yjThLTogjLiAThm2T4A5F1g5Z3BEM1kXPFh5jw6sEGG0iCKEEKkDYmfURsWzZpkQMj5gUZ1Mr3ixFEsWrvcPPPBAbDKHFRjZXwjlnmnFeIFJOFle0WbUlHCToUbDrswaWorEwKIF1YSeEUjJO4IFFQGebUe898oBEiL8++O7jU783V+cknvOi6wg65uGpD6OiFYdZEX8OAJhImovk6jxDtUSiW5MSyYjiwBYG0S935UpKIQobLgusTjq2eQ00GShFJGbbTTwjEKc9nEBFqAsmM+cOdPmgsR+B52Ax0azzrF+IyOb36PbyYCn0ogsd+acaA28TjLPH8l4p5EolUUVK1a043V7GuIp2sg555xjdi6MjRDgSTQjzpKQSJylGiyqmfC5Y49DbGAf+pLFW74gnrOwzfiLuMvnFs3Uj7/xuvmxOCxEQSIRXSQ9DOy9pMpLlHxVlRuNkZgQePBjpZPyJc9Oo2M2t0RnDImCh6Zibs1CEKfMjeZwBGQ/H/DJi/qbMqhg/2gAx3tOCCFE8oOIGu1zweSMKrSo4IcQSgkyE91oaTTxAWHcr/2UXFNi7cyZM8d8tLGH8awzJtU+UWaB3kugRcGA0OFiCfH+4Ycftok5oq8L6cR1z6hu3bq1+dlmRHwlYmaVaOxHRYKfJ1jC5ERQ5txjnErj+u35q+cEF3cSaRuDQOJWOWTsCyFEMsC1KVp1TiLce++9F1vMZhvXLuJ1FLKyaShOI0wE4WhvDMRkLNhoEhqdB7I4SRNQ9AMWYKMiOmMMYkCqg6jNggJ2aNi9eAY5/uduW+NWMEBcJf5Gx0jeHJVxWPR7YpGCsVVULEeoZ2xGQ1Gy86+66irrSYYlXryQTtZ7diu/hEhGJKKLpIbAyEXZL7qU70YFdFZQydDxkmuEc58kEQTwJPPstaIunDLhS+YV8kTAKjgTVbqWe1m3Q4Ani42yfW/2xUCB4E3jWffP9YFSQTXuEkIIkXOYqOFFGl1AxxcUr1AyzKLiNplrlDF7VhQgpntTUUT4xx9/3LLSfOLmYwUXSz2rmWysZFh0J54X18xghGj3nqUkHTGAiTnVB1QXRuEzin5OeIsjrsfDWJFqRUrTM/pc2Ubpu59v+OdmN1uO5rOMNRiDJjLDjmPmPfPeEwlZ/Pvtt58JS/FjKSGEKAy4bnsc7tKli2VM+0Ki23wRG5i/4bMdvY7jNY5o6/sS8/Hvjvp6sy2+oo3bvHnzzI4EKy0ytKMiclGZo/P6ZKkjflN1h25y7bXX2qIEc+KJEyemPfPMMzaPZp5NnKSyijhMbIvGCT4j4jDPSfN1FiKYZ/vnyXybhW2v3qN3DBUCGWWl8z37orgQqcQO/BOESFLWrFkTatSoEf744w/7u1y5cmH9+vVh1113DWPGjAktW7YMmzdvDocddlj4+eefw5w5c0LDhg3TPcfatWvDww8/HAYNGhR22mmnkArw33LDhg127N9++226G+/ff//tt9/CP//8E/7+++/w33//2WN32GGHsPPOO4cSJUqE3XbbLRxwwAHhoIMOit34DKO/V6xY0fZPFT766KNQpUoVe58O733HHXcMzz77bOjcuXO48cYbwxVXXBHatGkTXnvtNdunVKlS4ffffw///vuv/b3PPvuE999/Pxx66KGF9l6EEEJkzNVXXx1GjRplv/fu3TvccccdYebMmaFFixbhzz//DO3btw9Dhw4Nw4cPDx07drRr+5lnnhmee+65MGvWLHs8+x1++OFhypQpYf78+aF79+4W+1q1ahWefPLJ0LZtW/sJxFteY+DAgRYbE8lff/0VPv/883TxOz6ef//992Hr1q0W07n58JxxCzGaG3Ers3jOrXz58qFMmTKhKMD757u94IILQtmyZTPc56233gpHH3102Hfffe1vYnz9+vVtfDB9+vR0j3vwwQdtbABdu3a1vxk3xDN69Ohw7bXX2vnUuHFjG1cwltoeq1atss+/ZMmSIdlZtGhROPfcc8P+++8fFi5caD+FEKKw+eyzz8KyZctCpUqV7BpFXOSaSqxv1qxZuPnmm8MTTzxh+06cODFceumlYdq0aaFdu3Zh06ZNtr1Bgwb2uJUrV9rfaAZsq127dqhevXq46KKLbE5InKhVq1YYPHiwaQ05YePGjeGrr77KNJ5z++WXX2Lx3OeePkfnxnERozKL5/zN+GWXXXZJ+OeMfrBlyxbTURYsWGBjJvQTXovxSr9+/cL//vc/25fPFR3mwAMPtL8vu+yy8Mwzz4Q777wz9OnTx7Zx/4QJE0xr+eSTT2zbnnvuGTp06BB69epl7/uEE06wcZZ/Dj7GOe+882xsJ0QqIRFdJC1cxAmYs2fPtr+ZPBKQmCDedNNNFvDOOeccu+/HH3+0iQ6T5qVLl4a6deuGVIH/guvWrQvvvvtuuhsDAIdJNMErPsDuvffeJpZ7QCYoEagR1QnaTCgR4+ODPNud3Xff3QYVDCT8Vq1atZQR1l955ZXQrVs3+/757hHPjz/+eAveiCYnnXSSfcbvvPOOfY4+kOH3efPmhVNOOaWw34IQQog4mKS1bt3a4tx7771nYh/Xd67hTZs2tfsRQn2ihyA+ZMiQ0LdvXxPCARF0/PjxNn5gwnjqqaea+M79PpkjbhD3EgVCOJN3j+UcO38zpnGYwMfHcxa8EWs9phOjiF2+UM6NZIH4eM5YwRfR4ZBDDkkXz7nx3EWBW2+9NZx22mmhUaNG9pmefPLJ9tkxTkRsYGH8jDPOCD/99FM46qijbHzA55GRkM54cdiwYRkK6UzomzdvbsIAQg4iTXaE9CgICnz2LPonirfffjscccQRuV4oITHlyCOPjCUkcJ7xfEIIURgQx7/55pvQo0ePbURerp/MUSdPnmzxj2vy6tWr7f5OnTqFe++91wR2YkHNmjXt2rbXXnvZIiFwbSc2+tyPOTICLz8ZV5QuXTpdQlZmfPfdd9vM0Zm3O7wOYnh8TGdxl3juMd3n6B7TWeTnueNFeN67g6h97LHHpovnxxxzjAnwiYIxxAcffGCCNwsNaC0vvfSSJS/wma9YscLGVyw+33///aFLly5hxIgRNibzxQeOmc+a72Pq1KlhwIABYfny5XYf8/EbbrjBtJs33ngj9OzZM3z66ad2H5/LU089ZQl9vC/GRkKkBIWdCi9ERlBCRGdtL/fBt4tyK7ww8Tx3Py3KiKLcd999dh92H/ioJSOUJeM59r///c9Kf6PdwWmkQhOTO+64I23atGnmB0+H8kSWgFF+RTkczdMoiaNhC56i+MO5HxylXDRSo1wOz8xEenwm8hyh7MwbnPCd8zk99dRTZufSr1+/2OfaqFEjayYTX0aGH54QQojkwK24aKiIfRvX6dq1a6cNHTo05r3pNhuUEPu1nJiJPcv5558f23bTTTdZibKXiRN7PZbSeMs9PLGNywvYhxB3rrnmGuu/gY+3j1soJcdrm2aVNOjCRsObXicK3hee8DT/Il7zuWBpE7Uwo4SdptrERWxuUtEm5rnnnov51T700ENWUu7e3owD+BvwYvUm89j5YAkQBZs3P5f4zjIbX9FfxZuSYyOYk5LzCRMm2OM4jkTZpdxwww32nIx7csOCBQtifQHiG/AKIURBQgwaOHBgzGKTmE9cj8YmbNWI3SNGjIj1RkMHwMM7asnJNTbqz03spVeWXzNpPI19CTHwyy+/3O5xESOJlYwneL2oTQmxlRhLrCXmEnsTfT1ljMBYgTEDYwfGEIwl3MPce4MRvxh7MAZJBMRCrGyYG2N9g00Zn7tbtfC+HfaLfld9+vRJ23vvvdOGDBlif3MfFjnuqc6N58GOD9vVqM8974tYiw7Bd71hw4aEvB8h8hOJ6CLpoMFTfOdnJsNff/11ugYW+J0TwKJ07do15mlKAHj77bfTkgEm988++6xN/mnq4c098HQnkLzwwgvm71rYE1uOk8UKGoHQyIqA5gEbX1KC+fYGIAUFjcZcrEBAJyjHM2nSpNjAiwEIA6joebVw4ULbLyP/VCGEEAUHk2hEx+HDh9siOdfoevXqmQ+6Tx5d9GSy7f1R8Dln0lWrVi37m8nymDFjrKE4fzO5K1u2rDUMjXqdIpLmJubymI8++sgmgxyfj0uIMXi2PvbYYxZbCtvnk+NEhJgyZYo1SSOGM8l1Uf26664zf9T45pvJCgvnUc/b9u3bm2c4/vj8zXt78803bV/GKZUqVYq9V76veJHbvzd8YTMT0hEx9txzz9hifHb9zhE1aITK2DVR4zqEI8Qg+gTkBvyBvbeAEEIUZr+TDh06xK7liN14muOb/cgjj2Q4r/e+Z8TtatWq2bUQDYDxQnTBGP9u5oYItojr06dPt+t/VnGO+4iFHJOL5sQTYiaxkxhKLC3sOTpjCsYWjDEYa7jfO7GMsQhjEhLkEgHJBd5rhkQG4iRCNwvYwKI1sZfFBD4Xb+bqiQsO97EATuPXaANS9mvRokVsG7qN/06/jmTRb4TIDInoIum4/PLL0wmdXMAJrt5kihvdnwmcrGJ279493eNZnUYsJRgTqAsLJnc0MiPoI+hz3Mccc0zarbfeakEwVZqAku2PeM5gwkVrAieZ9HT9Lsz3wedL1/WMIHAzoaZTu2f7c74wgfTziGx7FmPoAF/YgocQQhRXaFLljUGZHPOTGP7TTz9Z3ORvGixG4w2Ln1z/16xZk3b44YfHFqe55sNtt91mk2sXD7ndeOONuTo+xhIIqoiiRxxxRGzSx1iDzCnGKKkAIvBrr71m4yb/zBCJ+Yxozk3lWzJDXGfRxDPY+PzJBPQJPIvmJCUA2xFb2M4YgIX3jDLSOb+yaiRH5aBP8MluzO6Yhwq+RIouPBfjytxWeHhSBItKQghRGCBYe2Uw1/GHH37YqoW8yhwBNZoU9frrr9t1fcCAATb39/k0Irlf3z2ORbUDrvnxiXZRiHXEPGKfVxyx8IqgT4xMZIPo/IQ4hx5CLPQ4xRiFsQpjlrzqIIzBPvzwQ8vA57lJamBBGdHeK5uAuMiCRTQrHxG+f//+llnPcYwePTrtkEMOiX1HZ555pmkivqAd/Q7ZhvZQ2AsXQmSGRHSRVDBZibfcIIvIJ0iIuE8//bTtSzYO28iajoeLLlnVBQ0TFbpbExhcDGjQoIGt3MaXFKciTApZdSZL3Vf+mYgzuCGQJwNMlAnm55xzjh0f5WQsBJCdyN8M1HgPPmjyzDwEGyGEEAULGUfxAvpJJ50UsxFDoEYQZxJGNm50UkX2uld3VaxY0SZ7DvtT4cWEnOw0sttzavNG9hmvTRY7r8FPMrKYLKb6wiuf46pVq9LuueeetJNPPtkEDSaulLDz/gozCWF7PP/887GYfvrpp9s54lY+bv8HZCJS9o5VXryIDtjmZcduhXGEn5tkRuZ0Ys/+ZDoWpiDwww8/2AKERAkhRGGAmOpiLMI4i+DYlnr1OfZbZI3Hz99XrlwZqzzjxoKgC6+I6iREffXVV7adCiuE+Ywyz4lpL774osUKHk/MI/YRA4mFqX5tJLGA2M0YxT9TxiyMYRjL5AU+m5dffjlt5MiRscUOBHSsZogtwJjN4xxiuidA3HXXXenOAez3PH4Tr0luc/s+XyTxG3azqVItJ4oXEtFF0sCqLxnBLpb7xdRLubjAUsYVZcmSJbaa3KNHj0L10Pr0008tw42gwrEi+uNTllV2U6rDYIQMAbIDWf0mELKiP2fOnEIZiDDoIluez59BEucEQZqyN69QqF+/vvnMwe233x4bCHiwZuAlhBCiYCBrHIHbrVsoG+YWH8+JKe5vSnk1UGnk4jtCKYu7F198sQmsLL5Hq5SYIGfXtovJH+XHPtlnoZX+IIVdeZXfMJbCK/7444+PJTBgN/fNN9+kJSNk2TEuRAhhcYUxCecAAol763smHWO07JCV0EDmerQaMrtw7rZs2dIe9+STT6YlAt5rds9FjjvZKwyEEEWfsWPHxirMWej0a7hXOJOMhUjLvIyYDezHIqhbtWEF4tdhr0jihmVqZhDDiGXENPYlxhHrivJ1kfjAmIWxi3/GzJEZ2+TFw/23336zxDk+v+rVq8f6dDBmQyznb4R1Xh/bNGz2iMGOL84Tay+88MLY94fo797rUeteT3JLlO+7EIlCIrpICrjYugAavXgiRCOcI6qzupwRnTt3tn3JLEYYLagSLCZGHBsTNgI5QZ/yqXjvzeIAiwVYq7g3KSV2NBcpKK9xMg29xJ5b79697ZjITMjqMe676zcWAopCxYAQQiQ7LIL75I4FTuIFN7w2yUij9NfBPsyv09insCjq1URUfjEZZ5xALHb/dO7PSQYTEz2ak/sknQw1vNWLY88MyuAZcyF2kIGNjQkT8mSDygJEFwdxAO/07VkHZZR0Qek47zUrMYZG7C7ekHGXXTivOD8TIaKzuEPigotMmYFYQSUkx0vloJq1CSEKG+w9qD4j4cqzkU877TSbs/Xt2zcW50mEArLEPaPa9/fY79diKo89GzoKMYvYxXWdWEZMy8ripajCGIaxDGMaPjPGOMSkvCT6oYGweM34Cy2EpMe6devaT6q9o/tFoTcc9rxuTcZ5wHjPv0/64mCn4/ZjfmMRRIhkQiK6SAro+Bxv48LqJRdfypK8iRSwihr1S2Py7KXWNAShGUZ+wjFRLuUrsDT2YFKf6qXdifpsyBpgdZnFECZurFgXhAhBwzGyDLwzeFZQ+o0tULSRid8YXESz2IQQQiQeynS55lKBRokvMKnzijR+Iogibvr1mcoixEufTOPN6bEXKzXu8wxy7suueE4mFRNzJoBM8orjRDsjGGthmef+6VQLePPOZITMQreWYzxCYgOVac7cuXPNRoBxW7yAQMaeZztm9h6jY1IqKD744INsHRePi1oN5QWy8nh9MsyzAusWT0yh+boQQhQ0zP8ymh/ffffddn0iEY34H200iv2Ii6/M6d0WxKvSsX5FZMdzO6PFRK7f7tlN7MJS1e3hijtLly61MQ5jHcY8jH2imeK5wZMcWLCgWShJkZ6Qhkh+77332ryaht+e5BBdlOf7p9LQkyix6EPrwS/dv3cse+h/I0SyIBFdJEU5d3zpDjesQQiiZKlTns3Fl67T7MsFNupjSfYRK5/xdi+JhgwmD8xkzvF6qe6hll/gQ3799ddb9hWLHGRg5WeVACVmmS2gcCwMtjyTjEkyDWTiywH9xnELIYTIP4gHLJZzzR04cKDFcYRvXxAnUwlLFr9Gk8E2e/bsmGcmGVBUG2HVEe2NQvY5za+2F5uZ3PO6VCTR0IpKNmXrZgzfDeMwt3qhMVxGHuOFCd8dVXBVqlSx3906ICqKc6540gVZ2tExCe/Rm9ByTrj1Wzws7ODD7gJNNKmjIKDaEUHeF54yA9GC5BMy6yUgCSEKGq6V5557rs2XM7oGTZw40aw4/bpLrCcms1DJ9Q2hlczk+Dlaq1atMnw9qtgaN24cs2whZuXFuqQoQzIZYx7GPsQ7Mv7zkvDGAjXe9Z6chn868fbII49M54vOd8QCb/z8Hfi+WeD275neODwfC9ZoCXynzPOpYhSisJGILgoVJh80A+Nied5556XVqFEjdvHEHiXei3PBggU2QWLluiDFawKDN63iGJnISzzPHvie4VPK4AjLlUmTJhWIryz+aQgrlA0SfPFaYxBHIzH3hvOJsFu5RAdpZDoIIYRI7KTaYydVQ1FrDLzO+ZtJEzYdxHuyhtlGlhpVZz5BQwBlMR3R1K/dLJBmB2wuhg4dakI9sYFFU4nn2YPYjfBBg26+t8svv9wWqZNlrHHIIYfELOUYPzZr1iwmijOOg2XLlplwwParr7463ViOjElK0rmP7Eef3Gc0vnDbH7K8czIeRFhA6NmeHYsQQqQqiNdkJXtMR/gkrkez0lnwRmT3xU7mbG7tgfWI90eLJjshqsd7mUfnmcSmgppnFgUY+2CLi+UNY6Jhw4blqak4i89UDJJZjvjdsWNH000yW8jFhoeFbarGODcYI5IdH/3OOTd87FemTBk7L8hUF6IwkYguChUmMFwUCZpkNXlGOhNnbEEyCoIE5o8//thWK5n85qdVCNnvNM7kYk7GERYgCsy5g9VnFkrcqodV6vwCnzYffDHhx1uNEn8m+3x/VBQw6WWC7BNmP+/4yWOnTJmSb8cnhBDFDa69LEYzYSO++zUayy+u034dJs7C8OHDLfbyGAR1b0BKHFm+fLmJ6J7lxK1bt25Zvj7XfK7r/hhKj9UDI3eQwU1jMZqBURnAZx+tDiwsmMB78zjGGYgtbn/Cdu+TwhjBx5tk4EVBfOd9cR8iUGYCOVlzfg57A/PsgOjOYxiTJBoECTLwKYOnp4DGq0KIgoZrpttjcY0k8QwBnRhONbdbaZFtjh86tiJkJ9PE2y1bPK4jwFKR1qVLF8t2jl6Pub537drVXoNrdn5XPBdlWNwlw5/PnDkzFUy5TRZEhPeqfcZzxF7sd7xHDRa+brPmyRQsfEetVPFFR9T384Bxhi9++8IKFYdCFBYS0UWhgRWKXwzJQvMSHi6M3Id4zUX19ddf3+axnrHGrWrVqjlqHpYdCMI0OOGiTVdwmmZur1mVyB6IJ5RoeUn4unXrEvr8BG9vSILIgviSlU8+1RAeqFmJ95Vu91UVQgiRd+64445YVhHXZs/ixabNs4x69uyZ7jEstpLBRn8N7j/jjDMsW4nJHX7UXL95DJO/rCbPvIY31SLzjWxkkXcQQfC2RfRAIEFYL2zhliQLP78aNmxoZeuMJfmbSkYfDzzyyCOxcWT8ojmVaD4eQHDPDDInfYKPSJQdEPJZGMqtvysLSAgPiAzxCSZU2EUr6lT2LoQoaB5++OHYfB6rVQRa5tJuhRqds5PMhIDufU58sTwqnmJhFYUYw7ycZqHEHmLQ9uytRPZgbOTVASxAE09zA/Fo1qxZVvXnsZeFdioK/dzwPiHE2PjG5TyeWO1WP34u+Hnit0Q06xYiN0hEF4WGT2i5HXbYYekaihAMsXPhbzzTyWJmJdpXRZlE0xiDiVL8pDuvkBGP7xYl4mTzZFbOK3IP3yOlWJRwkXlA1/BE2uNg4UIJ2fa8ShHcyVxjkOBZaTQvQdineayEFiGEyDtuo+UL31G7DCZL/fr1swxzhPDoZJjFTLfNoNEo1+TmzZtbllN2So557vvvv9+qjLATy+++KcUVMqC9MRxe9YVt8cKEnOxGjocGtlQVutULGeAu9JPd6Is58TA5p6ltVmMT7nPLGBJBCiLZYtCgQfZ6jIHjj4WqDkSoG2+80cZAQghRkJAU5/Op++67z+xCvDF19erVTUiNLlpOmDAhZsmGKB7vf37ppZem8zXHuoXFdLd5I/aIxMNYCWscxk4scuTFW/6FF16wRV/GYFQOYPXSvXv3TPfHjoe5OPNz4hoxz+1dWNyOt18dOXJkro9NiNwiEV0UGt5QLOp7xUq1T24QQClLBbcBoQN0FErCMur6nRuYvDORpyyMyboyePIfOoLjqcp3i0dovAd+oiH7gS7tlACSzYW3Hp78DA6YcHIcJ5xwglUheBkh2fKqQhBCiNxBtpFnl7ngSFlufIYTsb9Pnz4Wf8lcQ2D3RpYstLPgGp1kcy3PCp6fxXrGGEza8tP6Tfy/ygG+K74nROjC7B1DFhwTbhZhyEYnGYPkjGgJOLGfRfy8ZM8znvDM9/gxan5A1t6FF15owkJGJIOtjhCi+IEdhy9WYtca7TGBkE6CkvukE+tpKlq2bFn72xc9sWUhhpANTRa7wzWaSifGDtz/yiuvFOp7LQ4wZkLsZgyVl6x0GD9+fGwsR8ylSsx70aAF0FCWxAhu3iuPpEoH+xcXz4nrUe2IG4sxQhQkEtFFoUDjCr/wkQmEfQa/U/YTD5Mc7FtoDElWen4QzT7noh315RL5D8GRgRPNv5566qmETrwZeDHZxJ/PBRzOJwYHWARw7lHqz8STUjHup+rBvU653XvvvQk7HiGEKC6QVU4ZL9dRGjmzWE0VEhOexYsXp1sExzc1mlnUqFGjmL0WmcXHHXecZa8zeWISlVljRsYMZE6RQUUmlZpEFyw0EGvfvn2sASxZ4IVZARFdnEe02R4ZjT9I6sCiILOxCWIP75cx5NKlS7N1bDznXXfdZRYseRnzUPLOOIckATW8F0IUJtisYcfKPNqTpJjbMc/yuOA+6a4HuHUWN3qdxS9qUtlEhZNnn2fnOi4Sx5tvvhnLSqeBe26z0p9//nl7Lu9b0rt3b9tOfxr+pjmsW57RZyXeoo8qc7drdWs+n7ezWC4bVlGQSEQXBQoDfCbPftEjO42/faLMhDozAZuJAhdeMoloeJEIWPHs37+/ss+TAL5fAqh7pSciGBLomzZtGgu4rHSzCj5q1Ci7n8lu1JuP8mj2a9mypQ0Y/HF4sH399dd5Ph4hhChO+KSZ2E3GrsMkCS9TLDAQObne+2L6ddddZ3YU/I5XOhMnqs6IEQiPL730kmUVZwTlv2RMIbSTQaXs88KDJnBUe5GVjod3Mgi80fElWXDvvvtu7G/Gn+3atTOf8yhUolGGzvk4YsSITJ/bMyxJyMiOyIANgfcCoNl5buDYKHs/55xzzLYGoQmxSgghChOEbxKVWFikQonMc651WL3Q9BjIJnfrF79xHXURnZhB7CCGMHfjeUThwFgKYduz0hlr5RYSIK688kr7/klyo/loVomSnAd33nmnLcij22AJ4+cLyXFu/0tSphAFhUR0UaCwChkNlmQEu7cZZbBcKJlU00iCSXZ8aa4HW8rF8mqxQfkQ5UQ8J97nRSH7nIYdfDaANybWJAw+ECcINKkwucI7jax0bomoPEAYJ+hjF8MgIKvzhkUUzyaL9+VjxVsIIUT2mThxok2O6F2CpQYQ570BIk2mib0+DiDbnCx0v+5isYatFnEtqwbR7sWKMF9Uss+LQjyPZqUj8ibKfi83UOVWoUIFsxTgs+OzZXFn48aNdj82L14qTpVEFKrR3IYoM/GARSIsh3LS7IysPrLYczKejWZpLly40LIDeV1vuEYzdSGEKCiGDx+eYcyleTKJcp4sx+2aa66xzHSufVy7fDtzcRYD/VpIrPAMZWIIsSTVKQoxnUzySpUq2VgLXSa3EHfdBg2bHs6HaA86BHOPdTSRdasf3+eee+6JnTs1a9Y0IZ1FcRLe4vUjIfIDieiiwKAsx5uLRD3QPXhy0XMRk6BCwMTeJRpUuEDSACqvmeh0+iaziFXyouSrhu+rN5NiMMJqP6V1+H/jK89Kfip0MCdDDC9bJoXui59bsGnJToWBZ76T1eULNfFCOhNWIYQQ2WfOnDl2/STecj1mws3fTKDx2PQMNQRKGo65GEh5bnRBk6qxjIg2nqLyqKiUeheVeA7PPPOMfd+1a9fO994nGYEwQ4KG9z1hAu9l4Sywcw5xY3zJNu6LVjGQWY4dEffh8ZtZpvkjjzwSO9ddnE80+MUiYjCOBaoy+D/22WefpT322GP58ppCCJERLNp5s0diUzxU2Xj1OVnmbpXpSXHENuL3ypUrY9VKLHRynaZSh4X4okJRienoM+eff76NuWgem5sqMx5DvCKe8hzeeBataO3ateaVf/HFF5toTlUDFV40+o5vsB29sSiO0I7tn6xdRH4jEV0UGFz8os1DfPLiP6NlPgRNGosRZLlxAU0UrJyStVOtWjV7jVQA38z4YOE3JnYOEytK3TMC8YL9582bl5YKkJ1IaTXHTBZjXjqDx8Nz0SkcwQabAD5DBmuUV3vzk4MOOsiyJaKfNd6+Qgghsp4cuZCNXZaLlTQaY7Hcm4ziW84CpwvlZBth/8Hv+KGTmcV4AVGdSXhGTa14frcBu/322/PUILKgKI7x3O3TmOQSW/G4L2g+//zzWNl3586dTbjwBRvORaDagePzfaK4BRH3RSfzUSg1p5rCvXsTDee7N1RTA1EhRGFCnPcmkNhgIoDS9Nj9zgGhlPvr168fi/3x9i1RqEDmGkwiU9RuK5kpjjGdsRY95DhmKr6j1qg5nY9j2cd3jpUac3J6mbDYgqjuiwpoAlGxnliNkB9dkOHmizTE6vxayBYCJKKLAoGMHvc79SBKaa+X8mDhEQ8TZibRifJ45OJ7//3328UWz+1UKg1jJfbaa6+10ndK4rnddNNN5uPuJe6sZvPZZlYWTAkynzWr/akC39lDDz1k3xmiCn64eYFyQ1ao3fucSghKBgnUvAaBm4GAi+dewh290QRVCCFExlA9xISIBs0I216GS6wi28ptXJg8kT1br149m0gTl7mPKjFKebmfRXUW0Wn+HQ8ZzSeeeKJlOJPpnCoU13gOvFcyzxCvsU8paBAwPJZT0Yjtilu4uLAfbXAbL3h4WTnfTWYZ9ZS7uy0cdgbbA9GAPi3xXuxZfYb8fyEJBAuZVEkGEUIULYhjXOuwyWJO3atXL/ubORTXNWfMmDGxyvP4GzZs0bEDsYFKZCqSU4XiHNPxM2cMRhV3XrK/+ZyIg+hCiOrM1zNLoOQzPO2000wf8v5lUWsgvzHuVF8ckV9IRBcFAh5oXNC8iRJCJsGS38uVK2fZO5nBqjaZN0y0o0E5JyCMunCK/3kis5oLChp6RFe0WflG/HXuvvtuK0XObMWYbH+agaQilCozKCOjMaNsxOyAAI9dgA/wjjzySCurI3CTIUf5oMN2X+ihU3x0pRvvNiGEENtC5o9n+9Ic1LOCnnvuuVhPFLZ9+OGHsccQj2n6zH1knHfq1Mks3TJrHgoIngj1ZDZz/U41inM8J6OMpmJ83zfffHOBj8dc6KEikUWc5s2b299kCXrWm8d9zrGoFz/HysIN91EplxleZdmqVavtHg9igY9LsuON7lWdlLvjGYzoRB8BIYQoKGbMmGHXIebneH1jjeriJVW+ZKV7tjpisi8s+j7EeJ9PcV2l4tivq6nYo6w4x3QqChmLoefE9xPJLnwGLJ54v7yzzjrLLPw8+5wxpCdLUKFAlSKLEiyGe0WZV4pFb9gCpaLmI5Ifiegi38EiI77UhpVWL8NB1ObiySomK7c0/IyK34idLrbnpikVq+MI8KxSsmKaqmwvQDOxy8w//LrrrjN/WRpupCpkdGGnwkQztw1HyRRg4skAL6ugikDjiz5kevE5E5yzmykmhBDFkcsvv9yunVhaeNa527VRUUZD0fhG3lxvXWwnTvt4Af/sjJg+fbpNmsho9malqUZxj+dMjGkkxndNokRBiiaIO2QMco7xObPw4z1QODeB7DUW7WmKS2Z5lGXLlqW1bdvWxgaZwT4+5s3IJzgKY5EGDRpYb4Ds+PlTpcGY9uGHHzahARErEU3YhRAiu/N6snx9sZwkJfy83caKjGKaPbJI6dVoHtdJops7d24s05xrPzGA+6k8zo2/djJQ3GM6WeiMyRjDscCSG1jEZlyAWM65glBOpRVZ/J5pzrkDiPWvvvqq/T5kyJDYgk68DSs3xqVCJBqJ6CLfIaBGL2aUfRGAKZ/lby6OXAg9MwgRnUwbt1shoFIK5hfLnMBzEbi4qKZ6U8isAjTBCxEimjHl4OvJBBE/0FSHgRor9aw+Z9QJPjsBensr0lRFcM5VrVrVzslhw4ZZ9jsCkA8MspMtJoQQxYmXX345NpFB4HObjKgdG9dWFsMR2bt27WoiuJfjeuNHF9SxX4uHbCTuL2jhNdEonqdfEGHBJbeeqrkBIZqycURz4jnVbnjrRz9zxqZ58R3HI5jz+KKLLkrQUaeZIEX2JsflzVBzm/knhBC5wa0umSdx3fb+VYcffrhlJbvgec8999giZbQXGv3IvHcJYwGsOokBxIJURjH9/xIfGZvxXrHzywt46WOtRuNa5u18viRfZuRcQBwkWYOeOjzGXQ+iCZyMSYVIJBLRRb6Cx5dPiD3ThwZOQ4cOtd89wJAZhC8621nB9tXqvKxIE7hr1KhhpeXvvfdeWqoTH6B79+4d+/z43KL3AZ8dwZkM/uz4cqaS99wZZ5xhg7LcLKxEQYShWRhCOYs2DAT5vMhCY/DHechrId6zwMPfdFfnnGLlWwghxP8tPnrJdpcuXcx6jQw17Dri47hfWxEx3VOVUmAWvSdPnmyZR0899dQ2r0ElGeXg3sAslVE8/3+QWcakl6xqt1MpCLKT9Z0dolZwUfDz90WlRHxnPIfbIaRyxqIQIrXx5Da8q+kT5dc5LF2Yd/N3w4YNTfykx0k0ke6RRx6x5+BaTwUO134W4FMdxfT/g7HZpZdearEqL71q+HyYb3PO0LuEHiTRvmjc70lxLCqzgINFEKI7C+C4G3gihwvqieivJ4SzYxAiH7nzzjvD33//HU455ZSwbt26sPPOO4e2bduGCRMm2P2tW7e2nyVKlAhNmzYN7du3D/vss0+oWrVqOPbYY8OPP/6Yq9flcWeeeWb49ttvwxtvvBFq1qwZihqlSpUKGzZsCGvWrAkvvviifX5ROnfuHMaPHx+efvrp2L7c/vjjj5DKlCxZMsycOTOcdtppoXHjxuG1117L8XPwGZx//vlh//33D5UrV7bz7uuvv7ZzZf369fb8LVq0sH3nzZsXtm7dGurUqWN/83lyfnXv3j38+uuvCX9/QgiRaowaNSqsWrUqlC5dOvTp08fi+AMPPBDuvffe0K5dO4tH3333Xfjyyy/tfrjqqqvC8OHD7fcyZcrYtbx58+ahUqVK4Yorrkj3/Fx327RpEy6//HKLa4wZihLFNZ7D2WefHV566aXwzjvvhCZNmoTff/+9QF6Xz9H5559/bKwKJBi9//77sfv4e9q0aeGJJ55I9/iff/7ZxhHVqlULGzdu3Ob52c4YhccPHjx4u8fz77//hpUrV9r+8cyYMcPGxHxWF154YZg0aVL466+/cvyehRAir+ywww42lz/ppJPC3LlzbduNN94YZs+eHZYvX27x//jjj7f4/8knn9j9O+64o8XvLl262DWea/2iRYvsMWeddVYoahTXmM7YDI0HfYfbM888k+vnIibC5s2bTdO54IILwpYtW2zbPffcE5o1a2af1+677x4qVKgQypYtG8qXLx+OPvpoi5m1a9e22M79Dz/8cDjqqKMS9j6FUCa6yDfwPfeVZ28sSrkNWTu+ar127doMH0ujMF85pBlZTiAD7vjjj08rU6ZMuuZlRW2Vm5VW73ZO6RxZ/1Ey6oLObfTo0WlFAbLIzz33XMtIz6m1izfE4YbvKR2+8TAlowL/U8+cxJPXV8HHjx+/zWdJxqUQQhR3yKjimhjfN4IqML9e8nvTpk3td2y53EOVWJ1VphCNo8hqohmll4GnOorn20IcJ56TwViQ1i589jQfu+OOO8zaBWsZzkWal8Frr71mnzWWA1988UXscZyL+P5yH+d/RtBwz7/TrDzUqeTwhrz4CMeDB7v7D7t1Atl+QghRUHAtdKvVKNhhvfTSSzav59rkvcz8RoNIzzbn2s41fs8990x766230ooKiunpIT4Stxi7YcOXG9yujBt9ybBrwYqNSiy3bPFsd6yB2E52OlaAVEAwnvTvoGLFilYFyeOFSAQS0UW+QQMxDwoES34iROLnyO80doLu3bubSBkt06GUmwsvE5mMJhRZledSwkMzqBUrVqQVBwhO+NIVRwia2K3gkZ6TxloEZs4TAjz+/JkxaNAgO1cR2Rk4egdwv1Emhm2QEEIUd+g7QlMorpd+PT7nnHPsWnnZZZdZqbdfN6+44orY5NKvp8T7+IV1FjbZv1WrVtvtZ1EUKM7xHLBo45zA+7Sgeo9gIcT5x5jz/ffft3ONvxkjIAQwXuCcZhtWQlFcYMe2MCqwOzzWF+PxEc4KbBB47xnZ1PE82BkhQDE+pqkfVgpCCFEQYJnBXOuggw7a5lqHBSZ2Glzn6HcSP08iSQm4pjdp0sSuc1w7iwPFOaYzZiNmEh/z6nlPA3os0l5//XX7m4Q3FmfiwSbI++yceuqp6caY3IjHWO2kagNbkTxIRBf5Bv6W0QsXFzJEblagfUJBVrqvXJOlhjemZ5ohqrOynRMfLl4T72oy2YsLZAAgNBRXCJhkNdI8lgagiYRGLy7ukEV2wQUXbCP80OhLCCGKO0ykEfe4LtIzwhuGM4HC8xN/UM+g9YZPAwYMsKw1smvxDY2CSLjLLrtYo6pU90DPLsU9ngPjPr73yy+/vMAmupxjPulmXIpYxN/Dhw+3+xGBfKwav2DvY10qLjNi5MiRdj+ZcVm9H8a8md3PYj9er95UrSAz9YUQ4vrrr7frGJXeXIdonEljcKC3FNU89DmJz6ym3wliKtc2mjdzbaf5Y3GhuMd0xm7EV5LQ8rLwS9IcsZbF7lmzZlmmP2NOh3OMnmmAX7+ffzT2dveD6HlJwocQeUEiusg3YdObOVB+w8/mzZvbJMEbjVJmw8SAbF8mH0ymfb/cgLUGr+mrlKL4wHlVpUoVs2aJVjRkFxZuyDSfNm2aZVvcfffdaVdffbXdx4DRS+zIBON3Lw/jRvl5RuWNQghR1MFuzZscMinhmlihQgXLOKO0mb+ZfGPvRjkui9zeeKxevXo2sc7IooWMdK6zLJBi3SWKFx5r77vvvgJ5PUQgYjmvOXbs2Ni5jMWKV6thJ+RWRFGxG3HbM9lpihsPE3sanrEP9i7ZhUa7vH9ECBfiacQnhBAFCQlKPqdncdztLQ855JBYxRDXKwTzqFCJcOmWLV7Zy7VdFC8YwxE3SbLIbVNsxomtW7e2WPr444+n7bvvvma9RnxkUYdqx5NPPtmSNfm7fPnydr4de+yxseoIT97wCgm3bBMiN0hEF/kC2bl+ocIHjIkFQRjvKrYheMaDiM7FkYlKTrOPhg0bFvOuFsUTzi+y0Rs1apSjsv8HHnjA7IbccoiSMz93CfZ33nlnbHGH4OxZ6ARw3w+fNSGEKE6w4IjwSGYZlWRMqLkeEo+ZOHsWuk+aqObp2rVrbDs/yVCKh+wiFi9ZgM/KR1oUbW699VYTYWbOnFkgrzdw4EA7J8uWLWvn9jHHHGN/c84CGeruw4pPfxT6s7DdF9/jufbaa+1+MjGzC5n4biFD2TqTfio2hBCiIPFsXkRLMoK9nwkJR/HXOL95ryngGs61/LbbbivEdyEKkw0bNtiYrlatWnYO5QYWbOh1x/iSWFy3bl3rg0elI/N/YqTboRGv2ca5eNNNN6UT0P2GFhXNZhciJ0hEFwmH5kzuHY33VBRWCtneq1evDB97ySWXxMq/sttADF8sJuQdO3ZMyPGL1C6bI1D27Nkz2485+uij7ZxDCGJgSNNRmneR+YVoTuk295NByYo3ZXn49FPm7YGYAC2EEMVN5PTy7gkTJsQESKwmmjVrZn8zsXaY7HjzRJ/QELuj3tcsoGP3gjjvE3BRPGEMiDc6FQwfffRRvr8e5yHVbC6cu4c/56j35mF8yzYsiKKL9Z6NTvOyjLzcKWPnfhJFMrNiIdmEikrGH0C2J/YI9BqgdxCPZ7xSVJrrCiGSH28OTszGQoOkIc9Cp8cZ10S2U4njcyKqzTwZDtGTazjXcl27ijecS4jf9B3Jq1UbMRfLVbcUWrJkiVVGRiGxkvOR88/7mjBGjQrpmTUFF2J7SEQXCYVyLsRIvzhFG4cQPMuUKRMraWW1kPujExEv/ybYZge6LPOc9evXLzaeqSJrHnzwwVhJdnZgokwDMTrHZ5TBzjb3+Zs3b166+2644QarrlCDEiFEcQLbLPeNxgaL7CJ+79u3r91PBvktt9xiDb59HMBiY3xPiajIDmS2sX3KlCmF8r5EcoFVGsIxfuKML/MbxgGcf/j7UhJODx9e271cWVg/++yz01544YVt4j4T+Mysh9jXrQ15bGYJIS7QO54lR2Y8toc5sYMRQohEZaGTBLdx40YTJPkbAd0XxZl3uWUVt6ZNm9pjuWbT5JFrONdOIbyRN5VfeQEBnXOLbHQWpnE9iLcVZkGbWM4CEJUQ3NCoaPQaFdILqtpNFC0koouEQrNQvyghPFKGSjNGMsq4sR3bDC5sNHDy5g74UUZXKrNTws0FkkZl+K8S2IXwyepVV11l1RDxDcByCyXYnKs333xzQp5PCCGKwmJltWrVrA+Ji+Pxsdiz1piIu4XL1KlTbaxA5m00Mw0RkvtpWCaEw3lSunRpE6+9sWZ+V7T5eUkJeqISNLp162bnNzYtGYHtUe/evbexJVTPFSFEYcD1lsowssxXrVplC+Oeae6NRhHI461cqJ7hsVyzuXZ7JY8QgE0qgnZeGq5i4YKtKhXk2LJi5UJDe6CPCclx7du3T1u+fHna4sWLzbqFBM0vvvjCFnSiTXBxTVAynMgpEtFFwmDSgaDtHtFk9Lh/JBcxbyqCp5oLnWSRe0PR+Iy0rODxeFQjyL///vv5+r5E6kE2GA1GDjrooLT169fn+DxmRZsgi+/p/Pnz08aNG5fOnmjixImWaUGH8Jdeeintuuuus27zGigKIYo6XCPJAOKayKSFxomjRo1Ku//++9OJ4ix0e6baiSeeGFtcjy6aO0zQyWRDbFfJt4iHykWEHLc6SRYymnhTvZZR8zTGEl5anpHlC7DwX7NmzVgCAGIAvq40ZVN/ACFEYYC/NNcizzansaPbtzz88MOx8QA3FgK9Upd9ohXpQgBjPPrhcD5h95NbqBAjLnrvMqoliMnYspJ9Tuz0eTl2gtF4zeO8j8/FF18sEV3kGInoImFQZsrFiBJvSlDdI5JJMxcnVqS97Ct6ISXQRps3ZYcxY8ao5FtkCRlkdAJv0qRJtoIjti4MBPHiJfgyWeccw6efCbF7ApIV1qlTJ/ubTIzDDz88NngkgAshRFGG0leud0xQEMqjkEV+1llnmWDI5Nq9U6NZapUqVUonIpLpi686JbYI8kJkVf1ArC4IGMdiC8f4gXJxMsSXLl1q93GeYj10xhlnpFv0IeONZJLjjjtum3EH+3n2G/8/MqJBgwZ2/xVXXGGWSb4/CQFaXBJCFBY//vijzYtY0CM7Pd5fmvnWypUr09liPfTQQ4V92CJJIYYy5sMKMK/VXsRakt6idmr06YnvpYLTAUmd7E/2+vTp0y2D3RNChMgJEtFFwiDDnAsRDSOiZdysNnKB9Kx0D7JRaMbkgmV2VsRp8ojFhhBZgfco59VTTz213X29TNEbiRFgEdVpmgMIP+6dRia6N9Rzsd0fp07fQoiiDGIiVWDxDZWZwBxwwAF2LWQC45Vp2K5FRXSstqL9J/r162cZawiQQmQGIjL9b8qXL5/v/ros8vgCOZmUbsXi/Xrw+nVvYCbiUaHJPf/dRz1KixYtMrUs4v8E4+Mrr7zSPNAZt/iiU0EtHAghBGC1kVF17bvvvpsunkctMYBEIyw24hcYhYhn0aJFlpzWv3//PD8XcZqxAVWNEF/tNWLECLOQYQzhY1Iq1n3hmvk7PX0ya/wtRDwS0UVCIBvNS7tYjSYr3UV1PM+5UPI73mgI6t5NGfBNw9fKG5VkBauHPC+vwWRFiO3BYgsZk998802W+yEA4ZnWq1cvK1uMzyK7+uqr7Rzt2bNnusx0bFyiA8mRI0fm8zsSQojChSxZ/M+xXyHbjKwiX1wsV65czAKLay8/vakTGbWPPfZY7HloPMrk5dZbby3U9yNSA5qJsYDToUOHfH+tzp0727nLJPvjjz+2eM/fnLPRRrk0H43Srl072962bdttnnPYsGF2H9mc8fi4gv8PDv0GMstaF0KI/JrTE7uJ2czfo2BlyXUq2kiUG5atgA8112iu1UJkJ4GNmJcXa96o2wEL1czj6bvnmekffPCBefd71jn2Lfzkb3qURM9jjkeI7CARXSSEefPmpbsIUVZDtji/L1myxIR0fsdag+wcfueC59loXACfe+657dpujB492h6bl2YUonjBYguLLo0bN86T51m8LzqZFvyNJzoDRj/3jz322AQevRBCJCf4NnPNo8oMUf3cc8+1v2+77ba0E044wX5nYZKfLGbSayLaJJEFdfyfmdxEy3CFyAr8eDmnsAzIT/Du90k3jfLcwoCfgEjkwnrU19WtDBGZ4ivTeAz3kXQStS5iO1mfPB+PA3m0CiEKA6wtvAqGzFwWBkmO45rEdYoM3uicnzEAMXzu3LnZSogTwuG8oUE9ld15sXXB47xHjx5m4eJVYpMmTbL7mP/z98EHH2w/zznnHHs9fidBLjqHJwZrAUhkhx2DEAlgypQpsd933nnncPDBB4dNmzaFkiVLhho1aoQFCxbYfaecckpYsmRJbL8DDjggXHPNNfb3RRddFHbYYYdMX+Obb74J3bt3D5dffnk4//zz8/09iaJB6dKlw7Bhw8LMmTPD2LFjc/TY/3+hMaxbt87OXVi+fHn4888/Y38vWrQo1KtXL/aYDz74IPz6668JfhdCCFG4cC1cuXKl/YRJkybZzwsuuCBs3rw5zJ071/5u2rRp2LhxYyhRokRYvXq1bdt3331D+fLlw1577RV7vnvuuSe8//77YcyYMWHXXXctlPckUo/rrrsunHHGGeHqq6/O11h72GGHhSuuuMJ+v/vuu8Ntt91mv0+ePDl8+umnoWLFinauw2OPPRZ73EknnRQOP/xw+z/x/PPPp3tOHsP4+N9//w3vvfeebZszZ06oXLlyeOihh8I///wTFi5caI9t0qSJjY+/+uqrfHuPQggRhfju17Prr78+PPfcc2H06NGhZcuW4e+//w6HHHKIzYmcgw46KLz11lth69atdk0+88wzQ4cOHQrxHYhUgrEfY8AVK1aEe++9N9fPU7Zs2XDfffeFKlWqmCY1ceLE0KJFC7uP50c7euGFF8JOO+1kMZdzFcaPHx/at28fe57//vsvtGvXLgHvTBR1JKKLPPPHH3/YRcipXbt22HHHHU1kPO200+yCFRXRu3btGjZs2BBq1aoVfvzxx/DJJ59kKZ57UL/22mvDHnvsER5++OF8f0+iaMGiCwG0W7duthiTFR999FGoX7++DQwbNGhgk+FDDz007LnnnmH//fe3QSTBPiqis3/0XO3Xr1++vychhChIli5dGo477rhQp04dE/t88fzSSy+1BUomH6eeeqrd/9lnn6Vb7H7iiSfC/PnzY38jnnOd7NWrVzjhhBMK5f2I1ITx5ciRI2382LNnz3x9rVtuucVeb8aMGRbbGzVqZD85n4HxLDz11FPhl19+sd8Zz7Zp08Z+Hzdu3DbPyRjZ/z/B66+/bv93GCsjrjPxr1SpUpg1a5aJVyScCCFEQcDiHslAu+22W2jbtq0t7kGnTp3CLrvsYte6tWvX2jbm5Ox7/PHHhx49eoSff/7Zrs1cM4XILsTEm2++OfTt29fGhnmlYcOGNlcn6QOYuzNGRXe67LLLbBtJHyTAsfjDWDYaZ+fNmxdefvnlPB+HKOIUdiq8SH3uvfdeK4HxchgaLWbk80j56u+//57OC50mEHiude3aNcvXGDNmzDYNnITICTQCw48XS6GsoJFotEzxqKOOspJuGnt5SdjDDz9sJds0yMOjn1Jvtu+xxx72k9cRQoiiRJcuXez6dtlll8UsKyibJa67bcuoUaNsX/qe4HMZvZbiS+mxHxuXY445RjYuItdgGcB5ld9NN93GhYafs2bNst+xK8Q3GHsDzmO2PfLII7HHrFmzJjbuje/fQxM17mvVqlVsG1YJP//8s1klYKGw3377pc2YMSPt/vvvz9f3JoQQUa6//nq7PrVs2dLsWL0ZOJZsbPPrIbeyZcta81CstfibpuNC5AbGglj7YbMSbTyfG+i74/P3DRs2pHXv3t16nQHWa37+cr767z5edYu2MmXKyFJNZIlEdJFnEAyjIvqUKVPS3f/CCy/Y9uOOOy7ddibSftHyhiQZgackr0HwFiIv4Lu/PS9Vzjc81PH0ZWKLvxqTZejTp489vnXr1hbkOYcBHzcmv3QHb968uXkFCyFEUYHJxKGHHhrrSdKtWzf7naZMXAvxUMVncuXKlXY9vOuuu2ILi4wNmMQ4CO3cF9+wTIicgHhTr149G1vye35BHx+SPWhGxrl+xBFHpDVq1Cjtyy+/tPtHjBiRds0116S9++676R43YMAAG0PECwJz5syx85/niUITURqm0px82bJl+fZ+hBAiMyGzdOnSsX5P1113nf1+4YUXxubru+yyS0x4vOCCC+zaSy8orsUSHUUi+uzQ/y4v0PS+QoUKaXfeeWesEa4n0HnSG7cHH3zQFq333XdfG5cyXvU+KNx69uyZoHcmiiIS0UWeQESkoUh09W7t2rUx0RF8Mt22bVtbHSSbh0ak8Ouvv9pFLqtstIEDB1rwVqMHkVcY4J100kkmkOdmsMegknP5yCOPzJfjE0KIZARRz0VxFhqZoPA3i+RRatWqlbb//vtbJi33T5gwISY2Ak3KEONbtGhRCO9CFDW8Uf348ePz7TUYK0TP4ej4Njd88803dswI89EsdZJJvAmvEEIUNCwElipVKq1cuXI2P/cGjVdddZX9rF69erqMXZovjxs3LtZ8WYi8cskll9gYkbFiXvDHr1ixwoTyN998MxbPWQRHi2Ifqsa8oSkJIsRndAKvKo9vDi6EI9MqkSfwj8YTfffdd7dmSkcccYR5O5YqVcq8U/ndmyfhmYbvFA0eaChGA4ktW7aEPn36ZNpU7KeffrJ9aSRFQyYh8gJepZxPeJE+++yzOX589erV7SdNxWguKoQQxQEaMrnXJHH92GOPtabN9I2Ijgfeffddi9v4VePxjBclDUWdxx9/PHz77behf//+hfI+RNGCcWezZs3CHXfcEf766698GzdEz2H6o+QF+q3gN0wiU9WqVc1Lfc2aNfb3nXfeaT2DBg0aZP7CQghRUDBP5/ozc+bMMG3aNGvczNzb/aEPPPBA85ouWbKk9Ws44IAD7NpLc/G6desW9uGLIgBNvNevXx/rO5JbiLGAFsXY1HvvEM9p+D1q1CjbB92qRIkSdh99fH777Tc7l2kAzlh14MCBCXhXoigiEV3kiTfffNN+0mSR7tyrV6+OTQYItDQXWbZsme1Ts2ZNmyDQSIzH0bAp2uE7IxA8aWD2v//9r0Dejyj60Oz2vPPOC7fffrudo5mBCESHbvZlkHjRRRdZA519993XRCTO9alTp4YaNWpYwx3O86ZNm9pgkkl95cqVw+eff16g700IIfKDF1980X5yjWMCzd/ff/99+O6772LC+IQJE2wfrpFAk0SujfyETZs2hQEDBoRrrrnGJi5CJGrS/dVXX4WhQ4fm+2vRmPzjjz+237/++uvw0ksv2e+MeWkyTnM0P9+9aWj37t3D22+/HdvGJJ4JOlSpUiXss88+4cYbb7SxMcL5K6+8YuNjb1QqhBAFBc1CmdewCM4iHwuVXOtovDhnzhzbp3379uGKK66way5NRonrQiSCI488Mlx99dUW1xkz5hUWhZi/c74Sp5nbk8BJHGYuj3ZFM1O0pjfeeMPO9wcffDCcffbZ9ngWtD/55JMEvDNR5IjlpAuRQ77//vu0s88+20pe+vbtG9v++OOP27bzzz8/bdOmTTFvKZomAU3ITjvtNCsJ69ixY6bPT0PS3XbbzexehEgky5cvt1JqfHwz45RTTomdu9447Pbbb0879dRTY+XjXsZYv359K4P0hmP+uH79+hXo+xJCiERDk1C3n/juu+/S3XfffffZfQ0bNoxZvERvbHNuu+02s3+jXFaIREJpNo3AsCDIL4YNG2b/B5o1a5b23nvv2e/Ee0rCt27dGvMSjjY6bdeunW3r0aPHNiXrPkbAM/2WW25JK1mypI1N8ES/8cYb8+19CCFEPJnZqp533nnbxPWZM2fatZZrLlYvQiSSdevWmf7DnDuvMDfH5xwvf+bsWBXRuww7YhqP+tgWC0Iagffq1ctiOc10fb6PjZH8/kU8ykQXueaZZ56JlXidfPLJse2+YsdqIlnpULZsWcu2AaxfsMMgCxhbjczo3bu3ZbzddNNN+fxORHEDW5bLLrvMrIR+//33DPfBQohKCiwLLrnkknDfffeF5s2bh6OPPtruJyudbHPgfGY7mRusnHPewnPPPVeA70oIIRLP3nvvbXYuVIYRxym1dWbPnm0/jznmmPDll1/GymK5FmJbMXz4cPubTHWye8jKLVeuXCG9E1FUIZZjPTB48OB8ew3GuWSyYXXAOXzooYdavJ8+fXrYZZddwoUXXmj7USrunHXWWfbTx8rOYYcdZj85Zv6vkHVHludRRx0VrrrqqvDAAw/k2/sQQoh4qBqrVq1amDFjRmwblWaefe6QwYs1Btcorl/M1YVIJFRqdevWzcaMjB3zalE0bNgw05uIr1RQknlO7OY+IK4zb6eKjDEu9m1bt26NPceKFSs0nxfbIBFd5ElEByYAbdq0sYvTZ599FhPRKdf2sldKVrFwwfIC8RxvdGwvKF/NCPyr8FvDxmWvvfYqwHcligv9+vULP/zwQ3j44YczvL9169YWRCn9uuuuu0KPHj1MfEcschG9UqVKsRJvgrBPjFlA8sCbiHI0IYQoLFj4xsYFq4rFixfbBAdBcfPmzWH+/Pm2jy9Gen+TJ5980spkXUTs27ev+U/yHEIkGmJv586dw/3332+T5PyAhfJatWpZ2ffkyZNt3Atjx461n9i4AQtOjAfAz3/GAow3sEFCpKJXAPixYomALSJWSFE7GCGEyG+wteC6xNybeI8NFTGdxUFiN/P8+N5QiOhdunSxxUQhEg36EOcfc/W8gjUrfXxq165ti9707tlvv/1C27Zt7X76+LkeRd++66+/3n7HJo5jAET9rCxgRfFDIrrIFQRXzyJH6MZziqxzmo4gpANZui6iI7ATbFn1I2OIRg80Lbn44oszfH781Q455BDLBhYiP6BZTocOHSzDPKNsdLIt8ACMx0X0VatW2USY4MuE+YsvvoiJ6i6ms33u3Ln5/l6EEKIgQBgHhHT8I2nmWKFChVh/FIR1KnhOPPHEcPjhh9s2MtdHjBhhPs9ekSZEorntttssbj/00EP59ho+6X7qqafC5Zdfbr/ji85iO4I5fsL4B3svIKowfVGdBScm5zQvY7wAiFVUcJDxyQJUmTJl8u3YhRAiI1auXGkLejRNJumNhuE0DWUOQ3z3hT1+JyOXDGGutbfeemthH7ooorCgzJiRasZo9WMiFsPJRAdiNlVlNBNlLk/8Rrdi7MrfLG6zwAQcg1dWCgES0UWuWLBggWXjIHQzIQAEdAKwX+y4z0V0stIp7eYCRdkqTUsyg9KdSZMm2aqfZ7UJkR/QzItM8fHjx2e6DwEUIRzBaN68ebEMM4IrA0vEeF+xdhHdu4LDrFmz8v19CCFEfsDEmsbKiH1REZ2sWRogwjnnnGOiomeocc2MNgN/4oknLLtNi+IiPyGzDCsUSrf/+OOPfHmNli1b2uI6mWyMBTjnGQeQxck5zv8Fz0Z3aFQGCxcuDK1atTJR/dxzz42NIxo3bmz/z6h8YzySmcWcEELkB243dfrpp4fXXnvNrm3M27Gz5HrqkBXMXJ9tNAjnfiHyC8aMzKepbEyUdoVlUYsWLUw4J067Reuzzz4bzjvvPPud85t9AK3LufPOOy1RRAiQiC5yBUEWWK3GysJFcy42XIROO+00W91zEZ0O33in0smbCyJiemaTnCFDhlj5DJMhIfITBHBsCrB0cXE8CuXXPjFu0qRJqF+/voninJ9MnDn3WRwCqjFcRCc704n3QhVCiFThnXfeCf379w9du3Y1cZxJCNSrVy8mqHNdxOYCf1SH7FogzhP3KaeVNZvIb6h4/Omnn8KECRPy5fnJFHeLFqopsSWM+qD73xmJ6O+991649957rYoNwR8YC2MXR5Um5eQ9e/a0DDghhCgofJ5y9tlnW2UNMJ/BHmv58uWx/Zjfc239+eefY5YXQuRnP54rr7zSdKE///wzz89Xs2ZNqw6jWpy5PG4IJMgB3v+//PJLTFCnbxqgAbDQDVScqV+JcCSiizyJ6Fxc3L4FEZ0MHbzSydhlIvD555/bfd6AkQkDF0JKx1xgj0ImDiuOTLhV9i0KAhrdffjhh7GsyijYtXhWOQISzUaotnC7FoQirIpY2UZYZ9DJ5JgKCgI1IM7LF10IkYog/AGNxGigzCSDuE+WGj7PLqgjDLpFBde/QYMG2e9PP/20TTwQN4XIb4jBVEdmtjCeCC666CL7ib+5i+ZMxPFLbdSokf3NAvuWLVvs97p169pP///BONmrLBHlaViOPRKNe6MVHEIIkd+Q9OO9Tc4888xYs3DmRSzq+fyF6xbzH66tJB+5XZsQ+QkJHCS0MZbMK2hQxGrOdzLN6WNCvzMS6tCmqBTD/59Yzr7M+UkEIUnEwQJ248aNeT4Wkfpsa/grxHagBGbJkiX2O6uD2K64iB6/H7fofZSB4bfGKja+6PHgtcbFSSvcoqCgaoJzkcUbsjDimTlzpg0csSDCAxAIwAhKWLjENyb1CTYDUwaf8jgVQqS6iE6mrIvmNGgiQwgf57fffjsMHDjQsn+9Og37F8rCgesqwqIvpAtREJNussWpmmCBJ9EgnHt2GskeU6dOtfO+RIkSFu9Xr15ti0z0BgAW3a+44gr7f+G4iM44Yd26dTahp1kvmZ8+zhBCiPyGTHOEQhKAsKpgfk7VGCJ6FOL+okWLbME8ft4jRH5BLKUCgrFkIhwKoo1wid3EaWIv53+dOnViSSII59gXEY+J+STa4aXO/xH6rmBNLIo3EtFFjiHj9vHHHw+dOnUyPzSfPJNJg50Lq3hcdNzmhWDcsWNHy8LhokP378zAh4rScLJ7hSgIOFfbt29vi0H48bs9i5PRJJzmOlHLgsz+n0hAF0IUBRGdMlgv83bvc+I/Yjqe5y4YNmzYMCag81i8o6PWFkLkN2eccYZlpDOezA8Rnbjepk2b2N8XXnhhuvvjx6/8/xg7dmxYunRp+OCDD8xL2O1cEK8Q2LFNIvtNAroQoiAh4xZxEvHQG4STZY64ToYuc3fm8fSOGjBggC2Ik7EuREHBHB0hm4bdjEUTAXoVVoOMYYnnVK6R+Ek2usNiPPczn0c8dz/0xx57LNx88812nyi+yM5F5BgyaNzOgp8EW1bxmDiMHj3aSr7wknIRHXGdjCBubdu2tay1jFizZo3ZwFx77bUF+n6EaN26tQXJMWPGZGt/Sry2J6ILIUQqQ7ND4jjCHsI5C9zYsnjzJfCGo9hdwauvvhrrdzJ8+HDrjRLdX4j8hgUdhOopU6ZYVmVhQ08VGonefvvtYfHixWHUqFFh8ODBdh8l5JSX0zfolltuKexDFUIUM4455pgwcuRIEwZdRHcrLLegIsmISnK8orm2arFPFCRUfZHgxpgyUYwbN85cD2644QazF6aKnFjtY1l6ntB0FIs1dC3Gsdi04qxA/x+SSUXxRiK6yBVff/11rCymd+/eJpCTjYNfKhcgLjhREZ2mS6eeeqrZX9CAMSNGjBhhmW1uhyFEQUFJNr6knIMeQKMQaMnWKFmypNm6UH4NnMs01yPQ4sPKwJPJMoITvoJkwRF0yeaIdvgWQohkh4VtXyynxwl2V4888ohlBLHwiOjHwncURHQW2vGDxsOSDDfGA0IUJDQjI+bmV4NRbFiorOT/BItGffv2tWQS+gDRdJzscv7fsBBFPwEsZugXRDUH4wyOD/h/hb8wovoll1ySL8cqhBDZgV4mWLW4eO7Q14FMdK5tfu0SoqBgDMlYknjuvUbyCtnn6FLEbnqfzZ071+yK6JPGYhJ2xSzC0wOQWE+iHVZtLCLBgw8+mLBjEamJRHSRY/CC8k7enpHueAMSRMmoiI7ntJevchGMb/jE35MmTQotW7aMNXIUoiBhYMgEGPuBzDwDCZj4ArvXP81OGFTiHfjJJ59YdgaPxzcNv2AWl9iHjHVvsiuEEKkAfR8Af8go9C1BIL/33nu3uV4iJJIJzCIi2TqacIvCgKxJFrQZV+YH+J9j04JPKn0BGBMvXLjQKjOwNMS6hWQTMs8BMX3GjBm279VXXx3zdqUcHLsjjlUIIQoS5jVYTLEo6FnpJ510ksXuKGznWko27gEHHFBIRyuKM4wlOS/nzJmTsBhOEgh2w1SX44KAFkViHHEbUR1fdBa4yUanUoP4TeIoMZ65PQviovgiEV3kiK1bt1onY5oxxDdoADLRfWLgGefuMe1BGTE9vhQM0XHt2rWW4SZEYcCK9L777htefPHFbe7jnMeuiEyxyZMnxzLGCKJ4BUbPb3wFgWak4Od6Vr0AhBAi2bj00kvDypUrw3333WcZOWTp/Pjjj+ZL6YvovnAOVKNNnz7dfuc6ysQbb2ohCgPGk0x6idOJhriOXyogpLtHMJUYwOQbmHiz+O4JJ24Bh40LIF5RVu69hYQQoqCgbwkNQ6tUqRLb5gt/DoIhyW0sEmqOLgoLvPip+vYxZiKIalG9evWyn4xvTzzxRPudBDl+R7ciRpONzu8kz8Gjjz6aYfW6KB5IRBc5ggkAFw+CKrAizeSAbPPPPvss/P777zEB0QV1VrrxpiRrh8ycjDKDuChS1uoNyYQoaNzzLKMAzcCRMi7OY2xfEIcyE9G9kgL7F/AAG9/pXgghkhkWBLnWYWE1f/58K+nGM9KvZfGNk/FVZQGdMcLMmTPN4kqIwvRRJf7OmjUrX54/IxGdTHSy2XyMQNYcC+9kpgM2CdyPtzAwTsb6BZ90IYQoSMhCB0R0qsvwnCZud+7cOd1iul9DuaYKUVhwblLR5SJ2oiBBhPPcF7tXrVoV9t9/f9OvuM8rxZ577rnQoEGD2OPQvRKVGS9SD4noIke4JQXZZWTcNGzY0DLU1q9fbyt6XhLGap1nqCE+tmjRInTq1MlKWpmQx0PWGhcpHidEYYE3KXYtePdnBcEVsHXBugD83HcRnYWmqBewRHQhRKpbuxD73SudcliH333BkIw1Mta5ngpRmJYuderUybC6LBH4ZBpLIyrViPdUYNIz5fjjj4+NBy677LKYSI5PO1ZvCFaecILg3qxZs3w5RiGEyAzEQuAahFVr+/btwzvvvBOrqOGahmUF11AW0enxJERhwZiS5DWE7URC3z4SRbxCjEa6/jv2Lq5n0dcEL3Xw+T3VZqJ4IhFd5EpEr1atmmXelCtXLjZxRkz8+++/YxNqz0THzoWJN80Z8JWK59tvvw1LlixR1poodMiyJDCy0h0PIjhdvJkQc7+XgXkGujcOdREdUd37APiKtRBCpAp33HGHNVRi0uILizRJdhG9Q4cOtpAOxH4aMgHVPEy2vSRWiMKCcSWZYlgRJhrGvxUqVLDMcjI6Pfuc8Wzt2rXtdybi2LmQoe6LTkzI69evH8vsxDIpvu+AEEIUlIjOIiC2qlC1alVLfgPiOHMd/KE1RxeFDWNKKiATvTB+yy23WKInTUbjk+WwhLv55pvt982bN9sxUGnuc36ahXuSiSheSEQXuRLRDz/88Ng2F9EJtDQQZVLNxMJX7mgWeuSRR4Zdd93VstbjQZBEgMdKQ4jCBCsCJrcZBWhWn8nUYCW6bdu2MRsX787NRJr/Cz5RRlRyf3RfLBJCiFSA6xmNQ1n4xqYt2uPERXQm3t5kGRo1amQ/uX42adIkVqUjRGFmrjHxfeONN/Ll+cl0BzLjTjjhhJiIvs8++9g4GBDYyYpHdAcSTLxXkG8TQoiCBnspYH7OQiNJQCQTeZJQ6dKlbQGQeY4qy0RhQ4U3Y8tE+qL73P/xxx+P2RVhFzN27Fj7ncqMk08+2XoAMsdfvnx5TK8iQZSxMnbFovihGY7IVcAlK23IkCE2geYCAkyYb7/9dsv6YcU62mSUpqEEaH7Gw4S7Xr166bJ2hSgsGCgyaIzvTn/aaafFznMCKoNOD7YsKpFJxu94+9OgFAGdngGsmpPN4V5rQgiR7LDg7ZVlXMdcRCc7Z+PGjbEJhNtUIahTpfPJJ59YFpsm3CIZIDscMTu/LF2wOGBBnYxzss/5/0HWJh7CWLqQWOIZa9zHuIEEE89co5+QEEIUNMxX6FMGXqnDtYyEH5/XH3LIIXbtZI5DBboQhQ1jS8ad+ZH9zflOTGbMwAJSyZIlbcEbCzbs28hA5//MhRdeaPv7/xN6Cbilqyg+SEQXOYKybmAVsGPHjtatOJqJHsUz1AjKvXv3tpU7GihFIcONpkwqExPJAuci4lF8sxCy0DnXGXguWLDAgitg/4JVC9mZZKHPnj3b/l+QlckKNn0ACMDz5s0rpHckhBA5g2sWkFGL8Od/M8EgbiMUXn755SYIsrC4bNmy2NiA/b3pohCFCeNSYjrnpU94E8l1111nC079+vULV111VZg0aVJ47733wiWXXGKVHN98841tIxueMcDZZ59tYwiy2UANRYUQhQG9zFjgYw7jc3syfaMwZ+fayTU0fo4vRGFADGWMmehsdKCRKP1JGNeSAIdgjk0hiSH33XefxfpTTjkljB492mI3VelAfM+vBuYiefl/Xe+EyAaUuzApiK7CUf6F6OhNGBzPYqM0jEw2PNHdAsNZvHixPY59hEgGWIEmq5IJb/PmzdPdFx1EulVL/HkvhBCpjluveYWYi+jEcq6DX375pQnpwGTDr4fYZpx66qnWMFGIZICm9Y8++qhVUkatCBOB90ABxCisC2+66Sb7nTEEDXaxeiGD7eGHHzb7QuxdXLRyb3QhhChIECLxgCbhzbN63Z4SuJZRScOcX3N0kSwwtsS9gLEmfcoS/X+CeE3cnjx5sv1/wC+9SpUq1jOARDkWx0n+ZAHqhRdeCGPGjLGxxYQJE8IFF1yQ0OMRyY1EdJEjjj32WLu51ykiOj6QrN6xjUycKVOm2Iqdl7CuW7fObqzeLVy4MJbBC++++65NLlQmJpIJzmnOzexMnjn3hRCiKEG2ObgY3qtXL5tsu4dztFEy1TZMOFq0aGHXzfiKMyEKE/cq59xMtIieUTn4/fffb2NjFpsQovjJ+Bi7I8bC+KPTqIyFp1tvvTVfj0cIITICm0mah0cX86I2lpUrV7YFv+g1VIhkgPNx/PjxCX9e4vRjjz1mY10y3rElJuucpqOeRDdgwACb9999992WGPrcc8+ZdRuZ8exP9aYoHsjOReQKv5gwUSDDHHGcyQlZuZS18NNF9Lvuust+4pUan53GpKZGjRrblJAJUZjUqlUrrFixInYOOz4hZvKLZQvgH0i2xkknnWR/sxJN1gaZHVdeeaUNTvkbz/RXX321UN6PEELkBM9IY5EbyMZh0oBd1UUXXZTuWsY4AP9IfNMpEef6KUQyiUWI29tbGM8tJI0wNsDy7c4777T+J0OHDrUxAHYvXvJN+Te2b94v6Oijj7aeQUIIUZiMGzfOfJ2jsGDONZOGilSbCZEsMMakQsIrJBNJ1apVzZ4NL3S3dRk8eLDpVAMHDjRxHV929Kz27duHHj16WCIofQUQ1EXxQSK6yDY0TXjggQesdCUqokeh1MX3dQHSV7a5wCCkRyFAa8Itkg3OSVaaP/roo3TbybgEFom8iQhi08qVK2MZG5SYYXOA7+nSpUutpBuhnQm1C+9CCJEKmeguojtc66ZNmxZrSOZxn0ozFykV00WywTmZXyI6YwDGtsOGDbOJPf83GA8wyaYB2ldffWX9VBgbYOdCrxRQdqcQorCgKgavZ+boCOXxSW6Ihpqji2TEz0n6jyQassvpWUJSCCI9SaLYFxLX+ZuYjhUx/19YGCeRlB5onmySH71XRHIiEV1kG4RDVtzatWuXqZVFqVKl7CelMN5wlNIWF91Z2XMI3GTlKECLZKNmzZp2zsZPummQi79q165drSQbfLGI/xOc875otO+++8b80l2IcmFKCCGSmcaNG5sH5BNPPGFxnsahWLi4V3q0F8SgQYOsOofrJdc9+koIkYwien5McN2OkEV3JtQwYsQIa0AOLKi3adPGstrA95GILoQoLKigIev2nnvuiSUJRfs+USWOSKk5ukg2KlasaGPN/FgY5/+Ax3TGwW5BjP85lZjAeJh5PT2CwN0U6HUyderUhB+TSE4koots46I4eAkqkwIERcq+8I3yxqE+WQBKW8nGJUC7yO4XIVCAFskG5ynl2fEBmi7dL730kjUI22WXXdKJSSwWIaD7JJ3/IxLRhRCpCLGc/ic0WUY8x/MRyyq3omCh3Lnkkkvsp2etRSfiQiQDnJcsAJFRlmh8wk0zUXzPvfKSpBEfEz/zzDPbVKJp7CuEKCz8eoQP9O23327XqtNOOy1WXcYiH/Fe1ymRbDDGZEyaX9VlWK25KO5V52PHjg0ff/yx/c5PhHMf66JxuaDuiSai6CMRXeRKRH/yySetOzEXGkpZsavg5hMGfNG9+SiZ61dfffU2kxcufmSv0fVYiFQr/ya7DFwoRzT34Ml5TZdv/h8Av8Pff/9dAEcuhBCJj/3EdBfRo+OBzz//3H6q9FskK35e5sek2ysvqEqjJ4qPAbA42n///e3vCy+8MLbw7gvrPlEXQoiCxivJmcPTLPHee+81qwqgx5nHdcV0Udws2sh0hwYNGlhfEyCppHXr1vY7SaEki/p9VKJfc8019vvLL7+cL8ckkg+J6CLbRCfNZ511ll1cyL6laZNfVFxEJyPXLV/IxsEvEu+ojJqKkr0jRDIGaHzRos1FychkQYjGIj/++GO6gSj/F/BQA1akWb32igxfUHIxXQghkhmsXPr37x+efvrpWHUNWTe+MOjZ5zBy5EjzisQPWhNukYwQkw8++OB8mXRT7k1j3ejiOuMCKs+8Cq1z586W1eacccYZsR5CQghR0HgCkF+zSATyeQ3XLa6VNGT2Ob4QyQRjTXzKN27cmPDnLl++fOz3I444wn7yf2P8+PExW2J0rWbNmtnv2B41adLEfqdanUo0UfSRiC6yTWZeklERHeuWunXrWnmri+iIiYiHUYsXWLVqVTjuuOMK4MiFyDnVq1e3ifAXX3wR20YAZTGIKgwEo/hMdBr1AJN1b0IaXSTSpFkIkQqwgHjHHXdYCWtURPfS1mgFGZm4nsGmmC6SOaZ7A/BEwTj28ccft5gPCOUunNNQlIx0n4BHJ/skoQghRGHhcxevkCXme7Ic9xHTFc9FMsdzSHRMB7Qsj+FeaUYTXsDq1V+XngLEeOwNaTRK5Rm/E99dAxBFF4noItv4xACWLFkShg4damKiN1hEVGQljk7Gffv2jWXdMnlgVS6a0Qvr16+3VW4hkhGfFGNTFA2sZJUjJnl2OSXadLanLwCZZ2Skc15TjUH2G6vW/B+hPIz7hBAi2fHFv3gLKv+bEnDYb7/9wpVXXmnxHBTTRTLH9Gg8TwQPPfRQuP7662M2R7feeqtlyCE+4S/MAhS/05QsWs155plnJvQ4hBAiJ3i2rMd0XyD37HTN0UWqzdETBcI5lkaVKlWy/wMI5WvWrAkrV6404RyxvGfPnjbnr127tmkDNCH1GE9T8Xj3BVH0kIguciSiu3D4/PPPmxfUuHHjYt5R0Yxd8Ez0Tp06hYsuuii0aNEidh9Bm6wcL4sRItnwczMaoPH3Z3BJoHTrojZt2oS1a9eGRx99NLRt29Z80clYpxoDexd6AWB3gL8g/w+EECLZ8SbgZNW4lzOTbBbJX3vttZjv4znnnGNjACbcXBPJxhEiWWO6L/Ykijp16lhVBgtJJI4wmX7zzTetCS9Z6UzGyfAko81hwR1/VSGEKCxc8MvIeqJevXp2reRaJUQygo0at0THdLdzwb519uzZFqtJECWx5J133gmPPPKI2beRIDpp0qTwxhtvmJ0LiXO+EFWmTJnQtGnThB+XSC5kRi2yDdm3U6dONTHdbSvwo3IRnW1cQJhwk33jZaxkq1PaEvVQxT8VJKKLZAVBiHM4s1VutyfCxiWeqIWLLzwJIUSq4Nc1rnNehUbWDZZUlLF6CS2TGOA6qXgukhnOT8aeLITvtNNOCXlOmonRJwU6dOgQ65HConrNmjXN+5yx87x588K5555r42Gaj2pcIIQoTFq1amWLfRmJ6FdccUUYM2aMYrpIajg/8yMTPZ5BgwbZza1dnnzySft/Q0wnvlOR+eKLL1rV+VFHHWUL6FqAKvpIRBc5wpsozJ8/336SgYsn+tFHH20XDybcp59+uq3guV8VJTCI7aecckqss7GvHOoiI5IVAiPnZ0ar3FRS+GQ5IxFdCCGKiohO1s0NN9xgWeYskEf7m1CyyoRCIrpIdojnZF9SBek2hIkaK0TLy4HFJkT1KCtWrLCfF154YcJeWwghcgM2VNCnT58ME4G4Viqmi2SP6QUhort4npUdG/Zt7pmO7vXWW2/Fmo2KoolSIUSemi4gjhNoyUojw4YSFlbnyEj3THR8oREcves3+EVPAVqk0io3vQCYHLu9ATRs2NBKH7FtwfuUoPnTTz+Z3RFZaK+++qp5qNFwNz+6iAshRH6K6FTlDB48OPTr189uM2bMiO1HrxOyarlOalFcpJpFW25ZunRpmDt3rtm0kEwya9asULly5XDeeeeFXr162RiZhqP4pB5xxBG2nfjPQhSJJkIIkQxQTfPEE0+k24Y1BSimi+KaiY5VK/3OZs6caVUbeKMT87F0QSjHxg2Y+x9//PHmoU6Sicf3Z5991nqkaN5fdFEmusgRixcvNu8nLhh4ntPBGy90Jg8OFx38n71c1q1b3AIGuOhxP6K7EKkSoGkeFm2Qi80B/x/8PpqO0MEb0entt9+2v8n28K7e8gsWQqQClKcCMR5fdPdIxyNy0aJFsf18OxU7J5xwQiEdrRDZF9E5V7FayQtkb7KYxML5Rx99ZFnnVGAiqDMmYNzL6zDpZsxAfxRgMZ2FeCGEKEwQyrGd2GeffcyqLQrbQYluIpnh/PQ5eKIhGQ7d6vvvv7ck0G+++SZMmzbNbI4YFwP9T+iFhpAOCOYkl8LTTz9tVeuMpXv06JEvxygKF2WiixwxYsSI0LFjR5tIk10L7o0KXFhcUPeO395g1H1VAWGSDHX5QopEQdYXJVecbzT7YsEn0SI6DUaaN28ejjnmmHTZmojjBFqgmzfn9aeffrrNPtH/A0IIkawgjtM8lPjOdYtJ9apVq7aJ2VdddZX9lJ2LSPZ4zpgT65W8Zq6RbUacJ7bTE4Cxbq1atew+BHMXpMhSx38dNm/ebD+vvfbaPL8PIYTIKyz8cR176qmnYovhDmIg10rsWoVIlTl6IsHG0MV0TyrZd999Y81DgffCYrknjZJUSg9AYFyAZzp2x6JoIgVT5AiyzIFsGxcSmVjTNImLGWUslK6CTyTIvJkyZUq4/fbbY89Dlk4iPSnF/1G/fn1bJS1u0CH7xhtvDHfddZetSuPHf84558SE7dzCOe0ZZMA5O3nyZHsdIOMcKO368MMP7XdKvAikWBhh++KZ65SCCSFEqnDWWWfZBIAJArGdmO+L4w7l3sR6RELF9MSieJ7YeE4G+P77758upucGxKWHHnrInmfBggVWceY9gBDqsXDxmB/tmcLjLrnkkjy9thBCJAK/NlEpS7WZ9zzjOoWNG5XieKOLxKGYnvg5OudufCVFIvCkN+by/juLTcuXL48tOiGqY/dSo0aNmLbVrVu32P+t/v37h0aNGiX82ERyIBFd5MoLHRGdRmOI5507d7bVaiYUCOqsbLu9BbzxxhvWUPT9999Pl7GeqKzc3r17W9DP6EbAEkUf/HrJ8GrXrl2oVq1aGDJkiJ1fNL3LC/j6Z9S5nrIucG90unF7SRlWR/47pd4I6i60CyFEKuLWa/GTakREL21NRExXPBf5Fc+zium5wassWVzy/xf0CPLsTc5Z9xb28bNnrAkhRLKI6NhN+LyFaxQVNJqji1SYo0OiYnoUn9+Teb7rrrvGXoeKdBfRSR4h2cSbiqODsVjv1obLli1L+HGJ5EEiusgR5cuXt594P+IpSTdi/NTIPucis2XLltjEwlcYKf/mIjR27Nj/r737AI+q2h42fq7l2hW72MWOBbuCBexixwqi2HtHAVHsXbGDqNiwotjwItiwAFawYcFesOvFgl3U+Z533W/PfxIy1CQzk7y/5xmSzEwmZ8LJ2Xuvvfba+dchm622Zrhp/Lk4t2zZMpb1cDvhhBMig+6+++6rlZ+h8sW59dJLL0VDlnDO8fVzzz03Xa/NOVqYeUmJFiaE+vbtmx8wVw+i83eRPmeJN7t0wyC6pEoyfPjw2Eh0yJAh+cBgKueSgoGUfEnXyNpo023PG7e6bM/TOVq4r8nUYgk6e/5Q0jAN3N977738xDqv/f3338fnTC6lPgJ23XXX6T5+SaoNjN2RylOk6xblqhyjq1LG6JieNn1KgugprpUSRijjlvq/SKsw2XSUzPi05wrvj74C5zl/V2pYDKJrqqTaTmTXphqP6UKWlrMQPF933XWzzTbbLL5mEMEFiOVhCRe82mqguZgxo8kFjwsZN+7j9VNNKzVc1Oola4Jl1IX4enqXbTOjXNg4sySNzUJYcQEaS1Dnjc3FUiY6HYb0OQNspDJHklQJWGl22mmnxXUvlXJLAfOUAcS1N10ja6NNtz1v3OqyPa+pTZ8aDIKPOOKI2PeHJdq06WSasxpzhx12yP99sDoDhRvwIpV5kaRSS9fYVAojjem5/tZmEN02vXGr6zF6fQTRCzPRkVZpdOvWLQLl6b3ddNNNWc+ePWMVOsi033bbbWMCPcUF1HAYRNdUL+mmAWQwQSCRDDXqP3ERYaMIUC+KbB1m3lK2GrN3hcttuOC5rHX6nXfeedEZSTcyBw877LAq91F6R9Nm4MCBMQmUAkdsMFKIxpWawHQQeB6f8/fBbDQz7QTRX3vttegskq0uSZUiXbPeeeedbJlllqky4Ka2NNhgPA1gbNOnj+153eNcZpA7LQgy0QemDAHo83IfA/nCDXfTZqJpEJ4mndgfSJLKQSpBkZKBqo9tbM+nn2163UoT1R9//HGtv3Zq54l3UXudvm4qa0jfmJUc3JgISBuP8j30kQsnh/h+4gJMJqhhcccITTXqQXHRYDMlMtVuu+22uJCkIHq6qNEAs7HSJ598Esu4CjdXSBcnTR8a4z322CP/NaVGmPHcZZdd8vcR2G3ICOZwrrGhR6Ha2Lw27QGQBshpNjrhvOf3ner/swKDQTqdUgbNfP9nn32W/7uRpEoLolMzNZVy41pIiaoOHTrEwKVVq1a257XE9rxu2/OETPJpQR3Uiy++OJZno3v37tmmm24aKzRvvfXWbM8994xkkfXWWy/6vW+88Ub+e1mJmbLmJKnUUltSPTkIlp6oHbbpddump6B2Kq9Sm9IkEpPic8wxR/ys9HP69+8fQXHG+TzGZPruu+8e95FQN3To0Pzr9O7dO/6eBgwYkG2zzTa1fpwqHTPRNU2bhIwYMSIGDATHUT0TncxzsnfTTPcXX3xRZVZ7eutSTk5jGdQz28mAMN24oFO7tvC+hr67Otle1B4vbLRSI5bOz2nFDuKct+ncPeqoo6o0+gSXaBj5e8CGG24YmQbg74GJJpDFmWaqJakSUK6CtpRJwrnnnjvuI2uKchVpaSrBwbqsSwnbc9vz2mjP0zndrl27qf4+yrZwrrO3yXXXXZcdd9xx8XfB/kDPPvts1qxZs3wGZwqypxrD9AtSdroklQOSfA488MCsU6dOEz1GCVbH6NPPNr1u23RKqRYG02tT2iuA42cflGHDhkV7D/ZAoT9AcHzUqFHZBRdcEJMhBNl5r126dMmXQCSZ9Pjjj4/SLmmPNDUMDfsvV3WCzLNko402io8MqgmYs1EEgccnnngiZlpT3Siycij7wizs9NalnNKMIbLluWC5oWPD17lz52zfffeNHbHJArv88stjk1t2Ap8enKOF2WM0kuxoz7lFVnrKOkuDZv4emHUGm+5S1gg8R5IqCQO+ZZddNjZUZnUNA26yblM99JSRw/UWddWm2543LnXVnk/Pfjy9evWKpflnnXVWHF9CuTZWm6XSLazUoI/A30vaVJT+MXsFpZVtklRqXKeuv/76uLZeddVVEz3uGF2VMEZHXUxEFAbRU0nXFA/Ye++9s6eeeiom1Emu47lbbbVVjPt32223fOb9p59+GkmkxxxzTKxcJ2tdDYeZ6Jouq666amyoQA0ostHZqZh6k2wySoAxlbnAuHHjst9++y1/wUsXpbqw9dZbx0dqUqvhY1UE5x2b4HHusRqCwHb1jUymVvXNdWgoaSSRduumzAFLuPiaHbkfffTRuL9NmzbZyJEj43OD6JIqUWpDKU3BgJsM3LTyBgQKU7teV2267XnjUlftOaZ1wzyy0Bj0V894Y1KJ8zPtFUDWWQqeJ9RSNYAuqRwR2LvjjjvyYxowfneMrkoYo5ciiJ7KHbFC8+CDD46kUTYVPeWUU7Lbb789/p7S5qIkodAvuOyyy7Inn3yy1o9TpWMmuqbJQw89FDeWgTH7Rj3IRx55JOpDgk0YWLJE9k0hyryQxcYsNEthakvKhCsc2Ezvrs+ViJnRxorZYG61iXOUczWh5nmqc5o2yk0NLZuGsdnut99+G0u6WMLNEq70fZJUaViaevfdd2ejR4/OL8MeNGhQleekUhW11abbnv+P7Xnttuc1telTiuXaLOGmviv7npDFWVjaLdUVpmxb+ltJDjjggFo4ckmqXQQH2duEj4zPExKDHKPXPtv02h+joy4yvCcVRE/oD7OKg0kBJoRYrX7uuefGY2kfIbLRKetDH+Gee+6JLHY1DGaia5owy9anT59syJAhEURHysAlI+fxxx+PZTvVpd2JCbJ/+eWX9XzU0tThHOVcTahxnrLM6HDSoI4ZMya+3nLLLaM+G9mazLbT8L788svZK6+8Yia6pIq0zz77xOQgE+VMHFK+ojB7iPIVDBwILtqmq5yRSU6ZlcI2fUpRyoUJ9H79+sWydEoQ0P9lcM2GYpRsSX8PhfXPGWTXVHNYkkrt7LPPjmvZgw8+GBODhddKApRphY1UjuhzsjqsLjbt5nXZ64SP/D0glTIszICnjU+rONKqTMw777zxkRjA4YcfHnEzJhH4Wg2DQXRNk1TS4umnn84H0QkqcmMJC/elgQq1o9G1a9d85g6PMSuXsnmlcg+iMytNoKgQy9LYLITGkR3YyUKjbjCbiqQBNc9JfwOSVEm4/jVv3jxqPN57771xPfvoo4/yjzOpSNk2AunUfpTKVZrk4VydUj///HOc42RSHn300TEIZik3N/4W2AOF7LJrr702Nh1LWe5peTl7CrAqU5LKzYorrhgf2TgxjVuQrmNOjKuccX5OTXs+Nc4///xo0ynXkjYJJ6McTManci6F5V2IgT3wwAPxOdnp6W+LIDvBc5Ltrrnmmjo5XtU/g+iaJptttll8JPuGACEXmrfeeisuFJtvvnk8luqhp6yciy66KLvhhhvi83TRa4zLuVSZDTSZ5SeeeGL+MRpPSrgwS92hQ4fYZV2SGqpUliqVrkgGDhzo6jKVvXR+Tk0merdu3SLQxKqyK6+8MjYPZ/+fZ599Nl6HUi2HHnpodumll8aqNJbrE0BPmXFkrUtSOWIfJ7DarEePHpH4U7hho226Kmm1eF1J2eYpuzwF0dNkU/p7IRP9pJNOiq+POOKI/PcTJ6PEK4mkxA7Gjx9f58esumcQXdNk+eWXz1ZaaaW4ULA5BEtekh133DE+vvDCC1GnqnCHbzLZkC56Zq6pnHF+FjbQqcY/DScb5bIUMmE5JBuHfPbZZzEbTQYapRBSYytJlYiAIXUcWXHDIKKwTQeT4wbRVe5Sf3NKB92c57TrbAyWlnGDQNNqq60WnzMgJrOMki5kqoPyLfSPmVg/+eST6+S9SNL0YoKQa1uq/5zKVY4dOzY+2qarksbodeX++++PADntPFIQPGWip2RRguWXXHJJrNxcbLHF8o9RDmb77bePGBjljvfff/86P2bVPYPommYpWM4gIyF42LJly2iUCSaSoZsuOkhlLdJFzwZa5YqG7+uvv86fq4MHD45gUjr3aSTJQGOFBbUDr7jiiqxz584RaBo6dGgs4WInbjYZlaRKHqjcfvvtMQCoaX8HNiaznIvKHf1N+qaFtX8nhYxyVl+w8pLSg5RsSYNl+reFtttuuyhzRMm3iy++OHvppZeyESNG5DM7JancMI5p0aLFRPenEhS26Wqs5VwoTczefmwoXpiRjsMOOyxuqVRbSixhvyD6AjyPvkaKebF6k/uaNGkSZV4eeeSRSMRTZbN3p+kOohNcZJOFU089NUpbMGOX6qQvscQSWc+ePfPf8+6778ZHakez3NUgusoVm+AyYE5BdJZts4wbG2+8cZQvuuuuu+K857lp13Umje6+++74fNddd803upJUyXugsLHyKqusEp8zOZhKVtDuc52kPFuqDSmV69LvKW2T33nnnejP0razpw+D5rPOOiv6sWzGd9BBB0XiCJnqqf1Pfw833XSTtdAllb211lorPhZO+DGmcXWZyhl9TfqcdZGJzl4o9HeZDK8pEe7cc8/N+vTpE7GswiB62gslSeVfBgwYEHsLgbjBe++9l/9eVS6D6Jpm1IMm64YlKynDhwsPGWuFWepLLrlkfjBBcJ2LDYMYakPZQKtS6qcW1gFmIJ1KuXBOP/roo7EMkllrZsXTxiJsNipJlYz2O2WrpcA5AwuCiKBkFddJloRXr5cuVWL9VDLPKXXw9NNPx4CZVWf0ZQ8//PDssccei6XdlDzg7+GQQw7JTx4RfKIvwAbjKWlEksoVq8dRWLKK6xmTgY7RVa7I5CaBsy6C6J9++ml8ZNUa/dr1118/23PPPYsmiTARxYpMVp/znP79+8eqzVTuhX2DmJRnjxU2LE2JpqpsBtE1XcvAWJbCbB2DC2qmEhznIkK9SGa1mcUbPXp0fgfwm2++OV8Sg+9h+atUjtK5yWqKVOc0YYnjiy++mM8257xG+/btI6BOvTQml1LnVJIqGUtUQdYtmyyTAXTjjTfGfQQTU1aNbbrKFedmas8np23btnFjAomNwqh3zrlP8seRRx6ZDRs2LOvbt2/Wu3fv6PNWx4qN1O+VpHK16aabxjVu5513rnI/pSdsz1UpY/Ta9Mknn+TjVHzOeH/48OER46J8K5nkv/76a/75lG1Zaqml4vmsYCfRbtSoUfk90YgfnHLKKbE5OXGzN954I14n7UWgymQQXdOFQGFaGsvFY/PNN4/PhwwZEpuNMfPGZotcfMDFpUuXLvH5Gmuskb388sslPHqpOM5N6psxaEbhZnpsmEsDztItNtmlgeVzNhJlBhq77bab9VAlNQhsigT2e6BNZ+8HsnUTJsu53tmmqxyRHc7gdc0115zsc2nbyUBnAzDa+iStwkgl3SjlQmZZUlgmhgl1SaqEcTzZsdWvWYxpuGamzUalckJfk2TOVVddtdZfO22sS1wrZaWnYD31zCnnts0229T4vfzd0EdmtTrfD6o2nHPOOdkyyyyTPfTQQ9nIkSNjBRt119M+K6o8RnhUK9h5mI1I9ttvv/iazFxm3rjQbLvttlWey2aNWHvttSPInmbqpHLCKgrOUQbGZJ6//fbb+cdoCFMGx3333Ref77DDDtGgs/ke9tprrxIduSTVLpamMhD44YcfIsuWAfeGG26Yf/zqq6+Omo9cN6VyQ2kVyg3Spk8Om4aysoIl1x07dowJIgLmJICkckVMqu+7775x/8orrxz3FS715vskqVIwMcg1Lfnggw9ifE7WrVRu6GvSFy0sQ1TbQXSyywsD6kib7RZuaEriaOfOnaNsC7beeuusR48e2eyzzx5f009IiIlRK51V68TAUnUGVR6D6Jpu1D0nY5f6qO3atcvmmmuuyOR54okn4nEGIgQXCwPuYDDDoIOZbqmccF6mIHrKwnzhhRfyj3/zzTfxkYkilmOxlIuNR8nE7N69ezx/3XXXLdnxS1Jtog2npAuZvFzzmFwsbNepBc310iC6ylE6L9MmepNCiZZvv/02vodVlFdccUV28sknZz179oz+LP2Diy66KPoE1DxNQfTC/YLSRLsklTtWlT3//PP5pCBQvgq26SpHhWP02pYmjmjHU2mXlIn++eefTxREp59A9nmKeyXEBkDplvSRVeocN/0J4l9MXqkyGUTXdGPDMTZZoi4kGyuk2tEMRBhkEFxcfPHF889nAE5GEFlrs846qw20yg6NJIFyGjpmkF955ZX8YwSONtpoo9h0h0mjq666KmamWdrF7PLpp5+e/ec//6mytFuSKt21114bS2i33HLLbMSIEVWya7jecb1kjxTrPKrc0M9s1qxZtNGTQoZ5v379onYp7TiZmRdccEGsLKPGObVOyRw77bTT4vk877nnnqvyGqlkoSRVAlbYMIYh85xyFKDMBNm3jtFVjpM+9DXrKojOqkvOfUrFjBkzJu5baaWVqtRiT5npSCvUqvcviI2BgDmT73POOWdMTrFvGmVhiJ+pchlE13RjucuOO+4Yn/fq1Ss2YGKAwecEIpnZThcYUF+NwQkNNRcQG2iVm3RO0kCTYVmYcbnZZptFyRbqpKV6qfPNN1++4ylJDVHKqgGbiqbNlcF1ctlll40AOpsmSZWWtUaWGIF2Ntkj+YPVZJQmZMJ8nXXWiUE7ZY0oZUSAicA6g+Yvv/wyJpFYuj3PPPPk+8OSVAmaNm0a+5QhfQTXQ8foKjf0MSdMmDBFK8umBUmgZKAzsfTWW2/FfSR+ghIsKNw4nBJw1bPTkfYTIMH0tddei1gCq9gIqBMbSwkn7jtQmQyiq1Ycc8wx8ZEMHkq7nHnmmbFZCXWh+JrZ7bTJIlnoxx57bHzu8m+VI87JhRZaKM5hbgyMQZ1UNg8FDSy1UpMzzjgj6qHZGEpqyGjP2e+kumeeeSbaedt0lRPaZFaTTS6IfsMNN8Tk+KBBg6LOKgNdJocSBsBkpjNg5vy/5ppronQLQfVUL52/ASfUJVWatm3bxsdRo0bl7yNQyeozxzUqJ/Qx6WvWdSY3QW5KFNOmU7aNyfNU6qUwiJ5KvpBUWihtRs5qtjQ5xUrOnXfeOeJgTNyTdEoCyvfff1+n70W1zyC6akWbNm1i2cuvv/4aA5Hk3//+d2T0VF/mQr1JZuYY1LBhI4F1qRw3FaVmGYNjPqeWGTWBwUQRDTiNI40qy7xpGNnATJIaagYQE4znn39+ftOkhKAiAw0G3VK5oH1m4mdSQXTKuPTp0yeWaH/44YfZOeeck/Xt2zcGyqlOMEuyBw8eHGUIBwwYEINr/hbuvPPO+HtgpQYbnUlSpdlpp53iY2EpSsYzXDvZZFQqF/QxyQyv3getDQTKC2NY9HmJbZFER7CcUjK09SlgzmR7sSB6eq3C0i/8fd1///3ZJZdcEo/fcccdEQ/r379/rb8X1S2D6KoVXBRSNvrll18eFxkycjbffPPI3mHGcNy4cfkNmHg+gXSWyHIBKlwWLpUSjRrnI+cmM8PspI0tttgiavyvttpqsdHY3XffHfez0RiNIecxG4qmummS1NAwcFlkkUWipuPqq69e5TEmG5lkrF4jWiqldD5Oauk3E+dkoVOCkKxLMjBvv/32OKcJqg8dOjQ2F0110NlQlDb/sMMOiwEyj6XNwySp0lCqis0Tua4ljNNhm65ywvnIGL0unHrqqVFBgUnz6hnlBO1JmDvuuOPyZV5/+OGHmGiqHizHL7/8Eh9T6VdWsaVyMLwHJunpN9x6663ZgQceWCfvR3XHILpqDWUuqKv21VdfxcWBzRjYqfimm27KLxNLJV1SPSiy1/kels9K5YBAOUu4KUVEbVTO57TRCFnpZKFRxoXMNQLrlHuhbiq6detW4qOXpLpDG546+2ngkNp1MMlI7UcCklI5oH9JgIi9S2pCwJwsdTLWKcnGnj2nnHJK9thjj2XXXXddZGjuvvvuMcHeqVOnWI7N0uw99tgjssg41y+88MJsyJAh9f7eJKk2pNW21VFqwjG6ysXYsWNjDE698rqKATCZThnXwgklkEBCkJ0V6AlZ5GDvlOqZ8amPzKq1hx56KJLs6EMwUU8SChUall566WzDDTeMrHdVFoPoqjUEF5lNY/kX5V0IqrPJwueff54tv/zy8RwGG2n2kLprDEp22GGH7MEHH5zoYiWVAgNoAubUOqUxTe655574uMsuu0SGGhhoM1vNyouWLVtGQyhJDdl+++0XgfM333wzMnIZEKRMHTZZpH6kg26VA9rmRx55ZJKbfZLowSrJ559/PlaWsaKM/iyD2j333DPKtLEqbf3118+uuuqq2FCU7DE2HEuDZGqo05eVpErFZGH1iXECfQ8//HB+E0SplOhb0sesiyA6MamRI0fG57T3G220UXxkT5VimFAn6P7kk09O9BgrNlMQnVWa/F1x7MTKKA9DEin9jmWWWabW34vqnkF01SrKt6SLATWjOnfunL/okbXLBgq///573Pf444/HslgGN9Rboza6VGpM6DCIZqkWgfHCbDUQLEpB8+WWWy7r1atX3N+jR48qtQQlqSFafPHF86vLWL5KsDFdH2+55ZZsk002ieuoVGpPPfVU7LlTLIhOuYLevXtn77//ftQ17devX2Sfk9TB5NDee+8dwXISQlg9SdkWVlqSpZaWc+Oggw7KL9mWpEpEwJDkoSOPPDJ/H2NzJguffvrpkh6bBPqWrVu3jja4tqVznba8WbNmUdqVW9rTj1jWRx99VCXpk3E/Weg17YdSGESnD8Hf1vDhw+O1iSOw6p1+BH0N+h6bbbaZG4xWEIPoqtONH/bdd9/I6mWAQkYPQXXKYCQMuLlokMVDBrBUSkzmMGAmo4zzNGWfJ2Sas6FYykI/99xzY1KI2eoUVJKkhu7oo4/OL2Xl85SJTg1pBhOUcnPDcJUa/Uo2+6J0YE1Yms3GYaA0CzXODz300OyBBx6Ix/h+EkL4msQPAu6pdNvrr7+ef53CoJMkVSIyZSl9xeRhykanHSdj1jG6So0ANxnfk1pZNj3S6vN11103X7aVzcPpQxDcJjZAAHxKAt1sRppqovMaYMUbf1dUZGCvFeINIChPTIH3dtttt9XJe1PtM4iuOtGlS5eoMUmt6LQZ05lnnhkzb+3bt88/j6XfBNBZQmvmmkqNTiJZlZyPbBzCLDFShjkZ6k2aNIlsDTYc5Wvqmp133nlmoUtqNLhGMiD47bffYlVO4SZPI0aMiKXfjz76aEmPUY0bA1P6lQy4a2qfWbpN9jlZYCytps1n0zDadQa/tOu4/vrr43w+5JBD4mv6tH379s2/Disv2CBMkhoCNlZkpW3CuMiyqyo1+pS0xXVVOi2ttqBPmwLqjPfpP5AYCoLohfur7L///tkJJ5wQ8axCaT81Ylxkohfi74mJ+dRHJqGU0sdkwLPniirDTKU+ADVMaVnLOeecE3VTL7vssqiHTu1Jak0WLqVlaQyDHJbD8jXLYqRSoJNISaIvvvgin3EG6v6ya33Xrl2zY445Jvv666+jUd1uu+0iA72wfqAkNXRc/2688cZYokpJFwbXqZ4qbTp9AK6n7CEhlULa4LZY1hrZZIMHD85eeumlCILPOeeccV6ThcbG4ikhhM32CCiRBMImowTYOceTs88+u97ekyTVNUpLsL9Z4WaOtPGsviFxSCoF+pSsKquLGuKc36w2A3GAK664Ij5Pe51R1gX0Dwqzzflb4XuJD9QURGcz0uqT+FdffXVUZqD/TDZ6x44do4wcSaaFk1cqb0Z+VCfYVJTNFth86eKLL84uvfTSGHDvuuuuEw04eJxgJBjQSKXAgHrYsGExw114jjLjTAeSeqgEy9l9m920EwPokhojNl8mgE4mL6Uvkh9++CEee+ihhyLbVyrVyjImwMkUr45AOINx2vtx48ZFthgDXQa07dq1i2w3+qsXXHBBJH70798/NjJjU/HDDz88JtUJujPgren1JalSNW/evMr4hiAh10FLuqhU6EvSp6yrLHTafLLK02ai7KeClBlemKWekCTK3wbJn6zeKJQy0wmiV0fSKHGEFi1aRFIemenPPvtsduyxx8bGo6oMRn9UJ9gooWfPnvE5Gb00yFycqAuVlsQmffr0ycaMGROD7uo1qKX6nOGmkWYpd+HSK7LYqPvLZmI8To20jTfeOCZ/3K1eUmPHQLt6zWmCkZTDYmJSqm8MbOlPEvhmgFqITXDphzJ4Zck2bTzPe++992JlGZNArVq1ym699dZ8EImB9ZAhQ2K5NVnr9Amoz/rqq6+W6B1KUt3YeeedYwNxJsgLE4oco6tUCGIz4V1X9dDZ+4TqCWz8yYoL2nfOeRJCGetTphDs45ek7HSeUx01z0E99eqYtCfoTp8i1UVnEp9+Cz+fFe/st6byZhBddYblMFzsCDqSuZNqqbEBExeQQj169Mg6deoUmejUhZLqG3VPOWeZUb777rvz97NKgmVXbJJLLdRrr702e+aZZ7Lzzz8/GllJaswOOOCAiQbXBCfJ0uW6KtW3UaNGxcZgtNvVXXnllbGJKJgwJ+mDQPsee+wRq86WX375OJ+POOKIfJCc2v8pMw0puE5QXZIaErJhq2+W/M0338T1kPJXUn2jL8kENlnidY3+AGXcWI1GWz9y5MhYvUZ8IJUrBrGANMle3QcffBAfl1122Rp/RocOHeJvbLHFFosg/fjx4yNeRsm4q666aqKEU5Ufg+iqUwxWKH9BNhobJ7Dz8KabbhpLwAsHIiyJ2WuvvWK5GHXTpfrESghmmQ8++ODstNNOi9lulmqDzcWGDh0as9Q0qEz4gBlrNiOTpMaM0hbVA4pksDVt2jS7995743oq1Sc2/uS8TLXNC9H/JAusTZs2UQOVVWZkpxMgYpA8aNCg2GT05ptvjg3EqXtK34AMNAa2ZKm/8847JXlfklQfKDlRuIqHAF+TJk2qbKos1Qf6kPQlOSdr2iR8etHGM3H+888/x9drr712NmDAgKhTjieeeCI+Er8qLOGastOnJYhO6ZZevXpl8847b9Rd32+//WLyqnXr1vE4pZPS8ag8GURXnWIZy+mnnx4DE4LpBB3JNGcAQjZ6WirG8tk33ngj23PPPbMbbrihyhIyqT5muDk3OV8p05IaVbBsGyeddFJ20UUXxbm61lprOUssSf9/MEBGL5k6hdjUkbacshhSfWHgeeedd8YKCbLMC5FpzoCXiXMmx6lLSptPMJ0+6cCBA2OVGavRZp555tjL5/LLL49a6AyeeV2C7pR0k6SGaoEFFoigYSFW5HAtNLin+kQSJtUMalpZVhseffTRbPfdd8/WWWedGh+nmgJ9gsLVGfQl6OPSx6gpO/7999+fZBA9YUU7m6BTroZ4A/uvsS8b96VkPpUng+iqc8cff3z29ttvxwWKXb1ZIot0cUizit27d49BDxeRhx9+uKTHrMaDYDkZZ8wCH3bYYfn7Cf6QrcaGo+wEzjIyZsJpMJnocfMPSfpfrdSuXbvG56zYSWjLCTZec801Toyr3tx2223RrtOfLMQgvGPHjlmzZs2ihimDXDLOCQrRnpN5xvfSH6Cdv+uuu2JzsFNOOSW+n317UvCI5BBJasgoK1Hojz/+iGsg10ypPtB3pIwqG36TkFkX7r///vjI3iiUgWOSvfqEEjGswk3EP/nkk9jnj6S66mXdKM2SEvAKy7/UhL4I5eX4ucQaiImx4j1VbFD5MoiuOkc2D4PshMEHWb/ffvttbEbGIAaUfGHnZWYCr7jiihIesRoTOoMEyplp/u6776o8xsZ4qXQLddHRrVu3GjcRkaTGPFm+yCKLxCC7EAMNVp499thjJTs2NR4EyikjyMZ4hYNQyrWsueaasfyaDbvIImPiPAWJyDhn+fTVV18dg9h+/fpF35UyLqBeeqp/yoA63S9JDRX7Q7CSjABmwvWP62ba50yqS4888kj0IY8++ug6eX36BrT94Dw/9dRTs+bNm8cKtEkhQeSrr76qMemTjUlBvfNiZV9Zwcnk/Zlnnhn113luoc8++ywS99h4lP6Kyo9BdNUrMn2oQ5kye9i9mNpTCYMfLiwsrak+EyjVNjqBTNiwAS6NNEuzEmr//f3331ETlc8JsJONTgMrSfo/ZOKcccYZ8XlhzUjqQjIQd2Jc9YHJGvqOxxxzTJX7+/TpE8ujceCBB0ZGGWVZUr+TCXOy3Qigs9KMDDMyz+gDMMCl9EtCH6CwVrAkNVR77713lLhKuFayj1nhNVGqK/QdyfambnhdoIwKiXRkuTPRTvwJqZQR7T3lVQhqV0d/oTBJNCGrHC1atCj6c5nMp39R2F8GG/eSic6eLvRBOCbKxzppVX4MoqveMNvHjBuNLxk9DGJYcksGUMoY4muWs5DRxsBGqktsFsL5SBmX6rXWKEHA8m3OQwLpL774Yiz1ZvNbSVJVBCdXXnnlmHRksjz55ptvsiFDhrgZo+plwM3AtXDZNTp16hSbkjEgZnA8fPjw/MpIMtwYpLJxKCvT9t9//wiwM8jdbrvtYh+ftDkuA1v3Q5HUmKywwgoxGZ4wDnJiXHWNUsBkopNcWRcbiiKVJiILnUl42n3iUJQfZmUl5/lpp50W/YDCvQEmVaKQTcrBaxTTs2fPeE3eW/LRRx9lLVu2zM4999woO0cAHayKq77nkMpATqpHo0aNys0444xMp+XOO++83GyzzZbbbbfdcrPOOmvcx2311VfPnX322blZZpklN3bs2FIfshqof/75J9e6detcixYtcmuvvXb+/GvSpEnuyCOPzD9HkjRl3nrrrdz48eNz48aNy7f13BZYYIHcPvvsU+rDUwPvX3Ku3XzzzVXu/+STT3KdOnXKDRs2LDdkyJDcTDPNFM87/PDDc3///Xf+eYXtPZ/ffvvtuffeey+36KKL5s/jO++8s17fkySV2ujRo/PXwMLbSy+9VOpDUwPWsWPHXNOmTXO///57nbz+zz//nJtzzjnjXB4xYkSuXbt28XmXLl3i8Ycffji+5hgK+wrnn39+bsEFF8xddtllNb7uqquuGt933333TfUx8bN32mmn3Ndffx1fjxkzxlhEmTITXfWK0i0siwEfH3jggSjxQm30wmUwZLLNPffckbku1QVmt1nGRS1flk8V3n/xxRdnf/31V2xMNmrUqJIepyRVCjLR55prrtiYsXDzZdpzVvKkWpFSbWNz+pVWWik2D01YAbHeeutlt9xyS9a6deuolU7bzjJpNv4q7GOyJ89PP/0Un5P1ttdee2XLLbdc9vjjj2dt27aNlWl77rlnSd6bJJXKaqutFtfCQrPPPntcc6W6QPk1NtwkC7xww/raxIo0Nspddtllo1zroEGD8ivXcPfdd8dHSr4Wll2hr8C+fjWVdfvhhx9ihTtatWo11cdE6aT77rsvSsqBPk1dZeFr+vyLSPp0voY0VVgCs/XWW8fAhOA5ZTKoN00DzTIaMADnQnLSSSdlb7zxRgzMpdo8B6mxRmCHQfUJJ5wQ93M+snyMpVTUSLvgggui3hmb480555ylPmxJqgh0LVkC/v777+fvoxQGpTbSJk5SbaE+7xZbbBGDz7QJHjVMKRXIucgAmBsB9M033zwGzi+88EI222yzxYCXc5Jl1Tw2ePDgWDo977zzVvkZLOHm+ZLU2FALnXH6jz/+ONG1l1JYUm2ilNp7770X7TPlTOoKJVTYD40Ej6OOOipiAyTWUV6Y0sJMrA8bNiw2EgWxATbXJY7ARPxSSy1V5fWYuKcELH8rHH8x7L1CwJ0YBEH8Yp599tkI8JOcQvIpG5BSglalZya66h0DGXb7ZpaNADn1KJnNK7yIsNkC9VMZAKVNSKXa0r9//5jl7tatW35lBNgFm0E2gXQC6Kk2ugF0SZpyd955Z5UAOpgkJ9NnxIgRJTsuNTwEyUm4WH/99WNAWriqjMfY9JbJcNp2VkNSh5QAOkFyaqAymE11SZs3bx5BdPqe7NdDXzQxgC6psSJweM4551S5j8Ae117zMVWbCFrTDnO+1WUAHdQ/Zw+VBx98sEoWOl8TQF966aWrbGp6//33RwCd1RnVA+hI+61MLgu9d+/e2YknnjjJvYJ23XXX+NnbbLNNdtddd8Xvo3PnztmXX345ze9XtccgukqC2T02cyCgTiN8zz335Je/FA7CCaBzwXr++edLdqxqWP7888/YXIzlWZdffnnMBCc0jOuss05ks4GBNcu+JUlTbo899ois80Isf2VAwuSlg27VFvqPlF1j4jste+b8Yhk0y7EJoJNFycZ4DD6ZJCebiwB6r169YuUZGKButdVWce6SqU4/gcErG+NKUmNHBizXzoQg48iRI7N77723pMelhoO2mz4iGeG77bZbnf0c2vhCrEYj3kQZN1ACDvvss0+VUi5pI9IOHTrU+LqPPvpofGRV26SwYo7Sc5PKQk9/ax9++GE8l77JzTffnDVt2nQK36XqkuVcVFJk/pL5w2m4/fbbx8xjoeOOOy6WijEIevLJJ60LpenGoJng+H777ReZZoXITGOCZ8yYMbFD9lNPPVVjzTNJ0qS9+uqrkfnL5GSy+OKLR5mNgQMHxkSmND0mTJiQrbLKKjEQZRk1WEJ91llnRQ1+2nSWXy+66KKxPJtJc5ZGsxryyCOPjAAQtftZcUY/s3379jHRTpYZy7upxUrWevUJIUlqjMjaTdm2YIzE5DiJcIX7oEjTgr3yCDATjN5yyy3r5GdQmo0scrLFr7/++lhlUYiY1EEHHRST8C+//HJMwINVbJQl5HHKwHDeF2LCfeGFF47PmbAnnjA9WL1JMP/AAw+MMscqL2aiq6QIoIPg+HXXXTfRhYxMYWbz2ADy4YcfLtFRqqFg5pnyLXvvvXfWr1+/iR6noSSATqkhlk4ZQJekabPGGmvEUu9CqU71ySefXKVUhjQtmAgnaM4eOhg/fnwMjFO2GAF0BrJsIE4AnZIvBID4mgA6gXMy0in1QtYbAXRqn6aVkVdeeaUBdEkqSERKmx6Ca+a77747UVKSNLVoh+kbEvepqwB6qnTAykjKurJBLj+3EDEpyrwRFE8BdBAXIIBOiZXqAfTCLPQ111xzugPomHXWWbNDDjkkH0DnZ6fNz5kIoCa7SscgusoCFyqWxhRu5JQuGgxiGBRRO+qPP/4o4VGq0p133nkxkCa7rHoA5+CDD45Gj8A5M+HMNkuSpt1pp50WWb2Fxo4dG0FKJs6laUWA/Iwzzojl10zYgElySrekRbb0KdnEnv7jgAED4vMFF1ww6pFSuo1SgaxypEwBKyaoQcoKCj5nGTf9AknS/6y++upRxzkFDBPKX3FNlqYVfUIS2dKeZHWBvsFVV10Vnx9xxBGRid6sWbMok1Jd9X1Q2rZtG6VmWMVWk4ceeig+br311pM8BgLgZJlPDeJfJADy2q+88kqUu9lhhx2m+nVUewyiqyywzJbSLmQUsdS2EIMZgp48VrgJpDQ1qJl60UUXZYceemjWt2/f/P2cWwR5rrjiiqiFzk7YlHKRJE0frq9s5Fy9FBvLvrt27WomjaYZZdkYjNKup5VmbCyaBr5kcZFxRrkXBprzzz9/fpNwsstffPHFyDJLg1Bej9ItZHqRjU4/wRKCklRVkyZNIlOY8mwJmb2UYJWmBeVR6BOSec0Ed11h0pyJcvoHlHVlZcWnn34afYkUK+BWk5VXXjkC/DXVQ+f7qauOwg3Oa0KZGDY8Jyg+Ob/88kvsD0jwnJJ1rKCjRvp3332XjRs3Lvvggw+m8J2rthlEV1lgWQwbk5AFzAw3WcA00oUXPS6sXLyKXdykSc3g0lgSLGfWOWHJFUu2OKcYeLP6gRq+kqTaK9t2ySWXRPZvwvJZApTUnXRrHk0tBqvUNafkH5tvkYixxRZbxOCVwSyTNATHKSdEZhvLrxmEEjhPUoCcFWqDBg2K7C7KDZHIwWo0JoAkSRNjNS+TjQntOPWbUyBRmlIkS1L3m4nuiy++uE5/VtpInJ9HQJoEzbnnnjtWnqF79+7Zuuuum89Wn1KUHCbgTbnC9dZbb5LPff/99+M9zzPPPJN9XYL9VGSgrDH9aALprJjj7+yNN96IJAGVCBuLSuXizjvvZDQdtx122CH/ObcFFlgg16JFi9wqq6yS+/3330t9qKog3bt3z80888y5JZZYIn8+LbXUUrmhQ4fmmjRpktt3331zEyZMKPVhSlKD1r9//yrtOrc+ffqU+rBUQcaNG5dbZJFFctttt13un3/+yX311Ve5RRdddKLzihtt+zzzzBOfzz///NHm/+c//8m1bdt2on7km2++mVtvvfVyH374YcnemyRVAsZMa6655kTX3IUXXjj33XfflfrwVEF69+4d585jjz1Wpz/nueeei58z00wz5T7++ONcq1at4usTTjghHn/rrbfi6xlmmCEeT3744YfcnnvumXv88cejz1GTDh06xPd27tx5ssfBa3z55Ze5zz//fIqO+6KLLspde+21uW+++Wai11HpGERX2bn44ovzjfGBBx6Ym3XWWasEPgmGEhSVpsSLL74YDeKhhx5apaO3+OKL5xZaaKH4fMMNN8z98ssvpT5USWrQ/vzzzxhkp+vw7LPPnptjjjkMXGqK7b333hEY/+yzz+Lr1q1bTxTImXHGGXPbbrtt/usNNtgg9+677+aOPvro/H0XXnhh7rfffqvy2g5KJWnKvPbaa7kjjjiiyrWXAOU+++xT6kNThaDvRx+QMXpd69ixY5yjBxxwQO7JJ5+Mz2eZZZbcF198EY8ffPDBcd9OO+1U5fuuvPLKuL958+Y19hF+/PHH6MvyHAL19YGA+iabbJIbMmRIvJfDDz/c/ks9M4iussNF4JhjjskHOk866aQqDXS7du0iKEpwVJoUBsg0emussUaVLHRus802W3xcddVVzZqQpHoaMFUPeM4999y5TTfdNPf333+X+vBU5gYOHBjnzM033xxf//HHHxNloZN4Qbuevj722GNzL7/8cm611VbL30cfc9iwYfG9ZKdLkqbN8ccfP1G7/uCDD5b6sFTm6PO1adMmEiTHjx9f5z+PZLnLL788JtS32GKLOE+ZBMLYsWMjSZP7nnnmmSoxqZVWWinu79WrV42ve91118XjK664Yr0Fsrt06ZKPkzERwOf9+vWrl5+t/7EmusoOdSovvfTS2DX5kUcemWhjJ3Y/pgYUNa7dlViTcuaZZ0a9M2qds3FIMsMMM0Td1KWWWirOsXnnnbekxylJjcEyyyyTtW3btsp948ePj31PrrnmmpIdl8ofG2mxMfh2222XderUKXvqqaeyZZddNvviiy/yz6Gm6mGHHRa1QtlElI1FeU6rVq2y119/PVtooYWywYMHZxtssEG21VZbxfdSE926/JI0bdivbK655qpyHzWnuWZLxfTp0yfacfYmq37+1IXZZ589NhCnnv/jjz+e3+Ae1GKfMGFC1qZNm+gvJI899lj29ttvR38i1U2vLu21xh4/k9uMnFrmPI8a6lOK/snHH38cx8Ix4pxzzom/sUcffTQ7//zz4/Nddtllil9TteD/B9Olsp6ppBZ64Qz38ssvH0vG0gyiVB211VixkEq2FC415OOCCy4Ys9GSpPot6cLS08LrMst5ySB+9dVXS314KtN+IEus2cOEOqJkOabsK249evSIsmxvv/12PJfMyDFjxkSt0/Qc6qCTbXbUUUfl76Ou+s8//1zqtydJFYvs25YtW06Ujc412xVmqgl9PUqgHHbYYXX+s+gz/PXXX1XuGzVqVNRiB/uqpNLB1D0vRMmUtKKtJqNHj87HFr7++uvJHstBBx0Uz+/atesUHz9/Q2n1fE1xi5T9bjmX+mUmusoeWcOnnHJKlfvILm7SpEl29dVXZ9dee23Jjk3liZ2v99hjj2z55ZfPvvnmm/z9//73v+MjmedkoPO4JKn+zDzzzNmVV16Zbbnllvn7fvnll8jg2WmnnbJvv/22pMen8nP66adnDz74YHbrrbdm//zzT5wnf/zxRzw299xzRztPZteKK64YfUZWM6600kqxonHhhRfOevfunV111VXRL+jVq1d8X48ePbKBAwdmc8wxR4nfnSRVLtru9u3bZ7PMMkuV+7m+nnHGGSU7LpUn2usdd9wx2utLLrmkTn8W/QV+VosWLbLRo0fn71977bWjf4APP/ww+gmsUNtss83yzxk2bFjciB106dKlxtenLwt+BivdJoeVcscdd9xEKzInhT7NWmutFTGLcePG1fj39+abb2YbbbRR9sknn2SvvfbaFL+2pt2/iKRPx/dLdY5TdJtttoklK9Uttthi2ddff50NHTo022STTUpyfCovlAagISQoQwmXwksc59Cff/6ZNW3aNBokSVJp/PjjjzEoKAyaM1jh+s2y1TTpqcbtrrvuigANJQO6deuW7bbbbtm9994bj6222mpRMuDzzz+PEn+HHHJILA/v3r17/vsp+0c/cdVVV81+/vnnSMAgGL/99tuX8F1JUsPBWGvs2LHZ999/n6277rrZX3/9VeUazgSmxBh8iy22yN55551s1KhR2RJLLFEv/QfKxZCAyeT7kksuOUQFie4AADJWSURBVNHzKJPy1VdfVTkeSr7RFyXwTemZ6uhXUBaW1xw+fHgEsUv1t7fhhhtmzz33XJRM/OijjyLpYIcddijJ8TQWZqKr7DHDds8998TAujoGTlwwdt1116gXpcaNOmd77bVX9tlnn8W5URhAb968edQ6o56qAXRJKi0yiKsPOhhgkflz9NFHW6da2csvv5ztv//+0a4fcMABMemSAugg+4q2nkExE+cMJE8++eQ4h5JZZ501Bro777xzJFu88sorBtAlqZbH6lxn11hjjey6666r8hi1pLnuqnGjT3fUUUdlzz//fHb//ffXeQD9119/zU466aT4nExyEi6XW2657NRTT61xhWTh8XCse+65Z6xoS69RHdUQCKCvt9560fco5d/e3XffHQkGJJ2CPWBUt8xEV0VlGDPwYbavOpbhcHvmmWdi8wc1TjR0F154YWwkSkA9BWrYPGTQoEFZy5YtS32IkqSCQQ4D7n79+mWvvvpqlccou3HkkUeW7NhUWmSFkdG4yCKLxGZcLMcuLM+W8BwC6WmDUYLubBZ6yy23RPB98cUXz59rlBugfyBJqhtPPPFEZBsXhpi4jtPGM1ZX40SfjgQJNhJlUryuESxnA06C40zirLPOOpFwyX2UCX7rrbcibkSfgThBTTiHa9oslFVtJHH+97//naKVFrzOZZddlm277bYRmK8rBPVHjhwZCSrEQezv1B0z0VUxCIZS83LzzTevcUkNS4M6deoU9a/U+Nx+++0RQKe+aQqgp8kXGsDqtfokSaU1++yzR33Ixx9/fKLsIDKWGIyr8WEguMsuu0RJADLWVl999YkC6AwOCawzYCSA3qxZs1h6TVkX+omUfuHcKjzXHFBKUt2qXkozTYqyGijtZaHGhSxw2mNu9RFAp3TLRRddFJ9ffvnlsS8KAfRFF1003y8g8Y4ScJ07dy76OjUF0NOEAAH0ZZddNvoqk0MC6AknnBCBfErMTa3bbrstVtJfc801k3wesQ4C6A899FD8rC+//HKqf5amjEF0VRQGQVwYqFOFwqU3NMwMtk477bQSHqFKgTpgNMppSXchzpERI0ZYwkWSytT8888fQXTqVReiVNu7775bsuNS/SMRgoEtpVwo3UJ988K6+Sy7Zl8TBsNsoMWmWyzVvvPOO2Pz0NatW0eG2YILLhgbkLrgVpLqz7777ptdfPHFkeVbuLcJZTy4tntNblxIctx9991j007Oi/oqG0N5wK233jom288///x4jI1MSbZ7+umnY4UbE+uFKx7TRqRkyxcm5FXfzycF6Nk4t1gWeyF+JsfSsWPHKDE3tegHDx48OHvjjTcm+1ze97HHHhsrP/idU3tedYByLlKlmTBhQu7yyy/PvfLKK7kZZ5yR1jhuM888c3y88MILS32IqicvvfRSbp555sktuOCC+fMg3RZZZJHc2LFjS32IkqTJGDJkyETXcG5NmzbNffjhh6U+PNWDf/75J3fUUUfF/3vv3r2rtOszzDBD7vHHH8+9+OKLua+//jp366235tZcc83cAw88kOvYsWPuX//6V/55hxxySG7cuHGlfjuS1Kh99NFH+Wtzuh199NFxrVfD98EHH+QWW2yx3Morr5z77rvv6uVnjh8/PtemTZvcv//979w777yT22677eK822yzzeK8+/PPP3OrrLJK3Hf44YdX+d7bb7897p9rrrly33zzTY2vf/rpp8dzeE9//fXXVB3b1D4/eeutt3I33nhjbujQoVP0fPrMq666ahwn7/Xvv/+epp+r4qyJrop33333RbZa4Wwf2chXXHFFdswxx5T02FS32DiDrDNqk7GzdqGFFlooZmzJRpMklT9KcpGt9sADD+TvI9OYutasKKrrjahUOgxHunbtmvXs2TNuZ555ZvbTTz/FYx06dMiWXnrpqH/erl27/PPJFLvgggvypYDYWOvss8+u05qjkqQpw3W6VatW0a4XYvUQ7X2xchmqfGPHjo3NvFk9xmbfrCCrz/OOGMCHH34YZYQ4htGjR0ffgCxyyr0tsMACkSU/33zzxfcQS+Bx9lihH9GjR4+JXpfScSuuuGI8d8CAAdHnKFffffddrADg74zSLpSf4T2rlkwiwC5VBLKRqmeuzTTTTPGxT58+uUp09dVX51ZbbbWYCeW2wQYb5AYPHjzVr3PGGWdEhhYZWWR3rbDCCrlZZ501t8QSS0QmwA8//JCrVMzKkqWW/q/Tbc4554xZZ2aiJUmV55hjjqlyXSe7uFmzZrnPPvssV4ls0yeN7LBTTjkl/q/PPvvseE+F//8pk5HVZWQ20v4nP/30U659+/a5UaNGlfQ9SJImzrxNGbHVbz169KjIjHTb88mjr7bccsvlll566ZKuCL/ttttyc8wxR+6kk06Krz/++OPc7LPPHuffzTffXOW5Xbp0ifuXWWaZ3K+//lrj6/H/xXP4P5+S7O6vvvoq17Nnz9xvv/2WKyUqNBAzoYKDaodBdDUIJ5xwQr6US/XblVdemas0Dz74YO6hhx7Kvfvuu7EU6eSTT47398Ybb0zV67DU+a677sq9/vrruV122SVe9/3334/lQMsvv3xu1113zVWiV199NTf//PPHUq3C/+utt946lnlP63IpSVJ5uPfeeydqz5daaqkYBFUa2/TiCKKkweuhhx4aE+E19eWaNGmSa9euXW7uuefOrbXWWi5PlqQKQJvdqVOn3PXXX1+lBCu3E088seIC6bbnk///JulhySWXrNdSfP37948+RPUkOkrK/Pzzz/E5fQjOu9atW1c579588818Ut6gQYNqfP3hw4fnJ/WndNI+lafbaaedpuu93X///bn33ntvmvo9v//+e26dddbJJymodhhEV4MxcuTI3MILL1zj4Ksh1Eifd955owPChb+m98iNOl0JM78EmX/88ccaX+/uu++Ox6kvX2n/z9RALwygpyy16rXNJEmVqWvXrjW2c2TTMNCsdLbpuRgQknHHe91mm22K/h4INjBxnr4mC/CLL74o9eFLkqYCwczqCVAEGistkF6d7fn/EOgleE4QvT4THr788st8H+Hiiy8u+rzXXnst/o8Imhf2QzbaaKP43h133LHG76OOeosWLeI5Bx988BQfF/+Piy666BTXMq8JyYHpHJrWVfbsHUMG/lZbbWUCQi0xiK4GhYto8+bNa2y8mCmuxAsHWdV33nlnNKZc9Fn2xSYRZN/zfrm1bNkyLuosa0569eoVF8ti+vbtm1tggQVyleSJJ56IZVnV/29ZTseM/S+//FLqQ5Qk1QKyZ1g6S9tW/ZrPgJUVSZXINv1//vjjj9z+++8f/5+tWrWqsd/G/3Ph5qLLLrtsbPxViX05SWrsKJNBmY/q13oy1WkTKo3t+f+hT0bAeMUVV6zX0nv8H2y++eZxHq2xxhrxO99www0jZjAlhg0bFsl4rIIrFvg/66yz4vXnm2++ohuOFjO9sYkxY8bE+1l99dWn+TUogUepIBISvv3225gUILCuaTdDbdVWl8rBIosskh1xxBE1PnbeeefFBgtsBlEpm2bOOeec2SyzzJIddthh2f333581b948NsCYaaaZ4jHeL7d///vf2eyzzx73JQMHDsx23HHHGl+bzSXYNOOQQw7JKsXVV1+dbb755tlvv/1W5f6FF144e/nll7N77rknfgeSpMpH23fbbbdl1113XXbLLbdk66+/fv6x77//PjZKuvfee7NKYZv+f7799ttsiy22yG699dZs9dVXz5599tkqj/M72HbbbeP/meeyIVmfPn2yMWPGZHvttVdsNitJqixsJPrnn39OdD9t/MYbbxzX+0pge14VfTE2kOX9Pv3009liiy1Wbz+bzcWHDh0av+M77rgjO/7447NnnnkmO/LII7O//vorNhl98803i34/5x3Pv+GGG7Klllpqosdfe+217KyzzorPe/XqlS244IKTPSZ+ZjK9sQk2Ox0xYsREm/NOjZVXXjl74okn4jXmn3/+7KCDDooNV9P70tSzF6oGh4vmoEGDspNPPjkatkL33XdfXOQ//vjjrNyx+/Orr76avfDCC9nhhx+e7bvvvtlbb701Rd87fvz4aMRqaqB5bLvttovG/owzzsjKHZ0t3j//rzRK//zzT/6xNdZYI3beXm655Up6jJKkurPPPvtEwHXmmWfO38fgaLfddsvOPPPMKu1CubJN/78B6brrrhvvfa655spGjx6df4zBb+fOnbN33303+89//pNtueWW2UUXXZS9//770Z8r/P+XJFWWWWedNXvqqadijE5bUBhgfPHFFyPYV9gmlCvb8/+h78Vx0hfj/QwfPjyS2+oLP++0007LJ9sRbO7fv38244wzZjfeeGNMaPTt2zcm65mYKKZly5bZHnvsUWMMYr/99ov+Zrt27bL27dtP9pg++uijbM0114xjqU2zzTbbdH0/75EJHSy//PLxu1l77bVr6egan5lKfQBSXaAB4gYCrCeeeGL+MRo5LhrMGm+yySZZueJCl4LDHO/IkSOzK664Irv22msn+71DhgyJBniJJZaocv9PP/2UbbPNNjFw5f2X+4CUjARWD9DZqMlOO+1k9rkkNQIDBgzIJkyYENf8X3/9NX8/AzgG3WSyzTHHHFm5sk3/X7Zap06dsgUWWCD77rvvqmRr8R5YefDBBx/E53jkkUcic1GS1DAss8wy2bnnnhuf//DDD9lCCy0UHzFu3LgIQNLe77LLLlm5sj3PYmU/kwckKPL/2b1793ptr8nY79ChQwTy6Vdw3qQVixzPBhtsEBPwTMzznOr9Q4LrG220UUzcFNO1a9eYLCF7m9VwU/L+0gRRjx49sieffHK6fiePP/54tuGGG053AL26xRdfPCYVUqxMU89MdDV41Rupv//+Oxrr1q1bxzLxSkED8Mcff9T4WPULNMvECDBXn93eaqutouF/8MEHIxugnBEUWWuttSYKoNO5eOyxx6IxO/3000t2fJKk+sPAhEEPA7bqAwruI7v5k08+ySpFY2rTea+sGCBbjUmQsWPHVgmgpwDCjz/+WKW0iwF0SWq4yIZt0aLFRO3FrrvuGmO8Slhl1tjac7Cin+Duo48+mj3wwAPRP6vv9pp+BIkVrAq48MILI5P8999/z9q2bZt16dIlyr/S5/jll18i5nPcccdVyWBndRsTIKxorwkTOUyM4KabbpriDHsmUiiXQmLH9PxOKFXLe2nWrFn2zTffZLWZzLD//vtHmeMvvvgiP3nFSgImHTRlzERXg7feeuvFLCMzpp9++mnclxrlQw89NGYLL7nkkrJqsJjN5cK55JJLxsCSGl8sfyMrqyYElt9+++24yFKPjVnuwuz71DiTvUemF19zA7W9WPZUTqhv3rFjx4nq5lGrjAZ7hRVWiHqqkqTGg4EJGPQQMCeLiGW2oF72KqusEmVANt1006ycNOY2ncD4gQceGAM3jovssZoccMABsSy7ppqkkqSGiTEdCVMkThE4TKjXzKQqbcfcc8+dlYvG3J6D7GoC1ryv5557Llt11VVLchycL6wAIEjO7/Odd96JWuwpeM0eecR4+B3ye017qfD/wN4qxIJ4HwSpq3vvvfei34Ju3bplO+ywwxQfF+cqCR/Ti0mZRRddNOJYrNaoLZSloY/MqodU3/2YY46JvjNBdX6nJjBMgenYlFSqGD/88EPsRDx69Ohc06ZNJ9oVvFmzZrkXX3wxVy4OOOCA3FJLLRW7fS+44IKx6/Sjjz6af7xFixa5008/Pf/1Lbfckpt99tlz2223Xe7xxx/PLb744lVe78knn5zoPafbRx99lCsX//3vf3MdOnSY6BjZNXvGGWfMPfLII6U+RElSGRg5cmS0kTPMMMNEbcZhhx2W+/nnn3PlorG26bTZiy66aLThxY63bdu2uTFjxpT6UCVJJfDPP//knnjiifj8q6++yi255JJV2ohZZ521rMZ/jbU9p0919NFHx3FtttlmMWYvhfHjx1f5mvhOx44dI04wbNiwuK9v375xnPQPhw4dWuW5rVu3jsdWXHHFiV4L48aNi8d4ziabbJKbMGHCZI+pf//+uX79+uXqIn7F8dTF31yhL774Is7j119/vdZ/VkP1L/6ZkmC71FCQtUaJl6+++mqix0466aSor8pu25WK2UTeIxtsVBKWr7F5x/fff1/l/nXWWSdm+7n/rrvumqJdsSVJDRs1tVmxRIk26kZW786S8cUy44033jirZJXYppNFR2YY2Vhk0fF/lNC/IrOKkjwsJ3ZjK0lSYab3BRdcMNH9e++9d9a7d++yykpvDO15Kn9CCRAylWm3jz766JJkyLNigUxqNg3deeed8/fT/2MVA/0JNvakAgGZ3Oeff37EdhJKulCihSx6NrJdaaWVqrw+38OqgGHDhkXdcJ7TtGnTSR7TK6+8En0a/l/J0m/Tps00vz+y4z/77LOIe5QaqyfYgLTcVkKUC2uiq9GhAeBCV9NSFRptliWNGjUqq1QcPzuFV1IghI4R9eGqB9CpPzZo0KDs1ltvjTroBtAlSSlITvtAoJzBE4O6wlrptC1sHn7UUUdV2Yi00lRam05bTVkdBrksn04BdPpc1L/lvquuuiqWvhtAlyQVYt8MUB+8ECU5KG/BpHmlqrT2nL4TgWdqii+yyCJRHoWvSxFYff311/Oxgrvvvjv78ssv8+V56V+k/sTSSy+dXXnlldnuu+8eG4MmN9xwQ77GOSVfqgfQCcRTVo4AOhM1gwcPnmwAHdT0p3QMJWKmJ2mDGu7t27fPVl999eyZZ57J6gOTBOw/wIbuhd59992sZcuWUcaGkkWqQalT4aVSYNkKS28GDx6ce/rpp2tcQtW9e/fc77//XupDbdAefPDB3BxzzFHj759lRTUts5IkqSannHJKjaVDmjRpkhsxYkSpD69Bo70+5JBDii5Lb9OmTe62227Lvfnmm6U+VElSmaLkRo8ePaJEynPPPZebb775JmpPdtppJ8eIdWz48OG55ZZbLsrpXHrppbm//vqrZMfy8ccfR2k4/u832mij+JpSvO3atcv99NNPky1Zwuc77LBDfH9hqZ3Cx4844oh4fKaZZso99thjkz2mv//+u8r3T+/vh/Oe2MfMM88cfaX6sO2228Z75r0XGjRoUG622WbLbbDBBrnffvutXo6l0hhEl3K53FNPPVXjoG/hhReOQHv12lGaPh988EH+wl14o+E49dRT4/P27dtXaaAkSSqGdnrPPfeM9oOapDW16XvttVfuyy+/LPWhNii003fccUfUhq3pd05926uuusp+lCRpqn3//fdRf7ymMeONN97oWLGW0UdiXxkSElq1apV75513Sno81F5faaWV4v98lVVWiQD6WmutFV8vs8wyuW+//TYC0N26dZtknXaec9NNN03UF+HrI488Mr8H2+Rqm1MjvXPnzrmDDz54uvs1nLuFNde/++673DPPPJOrLy+88ELEXe67776JHhs1apT95UkwiC7lcrmTTz45f/GsaRC4+uqrx2y4pg8bxtDoFMtUu+SSS+J55bTJqySpsjYoYyCy++6759Zee+0a2xoGQGzYpOn7XT/88MO55s2b1/g7Tv0pBuOSJE2LP/74I9e0adOi4/SFFloo2iInaqcPfSJW87EJ6jzzzBObai677LK5pZdeOjLSSxEHYbUB2dD8P7Mh67vvvpvbdNNN42sm7gnw8/9+0EEHxX1rrLFGlUmVzz//fJLnBY+lzVI5t5iUmZJN7dOG9s8+++w0vzdWR3K8NWXGl6Orr746+nNmpv+PQXQpl4slOFdeeWXsmk3mOdlqNQ0KuXC/9dZbpT7civPjjz9GeZyaOj/cx1L7IUOGlPowJUkNCJ395ZdfvsYsNgZBZ511lgOCafD888/nNtxww6IT4iussEKUyiPDybJ4kqTpwficMThBUVY2MW6s3u4QZCWzVlOHPlDPnj2jbA59JVbhF2vb63usft5558XPnXfeeXOvvvpqlG/h67nmmisypQmCE19IfTrKxCYE2BdZZJEI/Na0WoG+SYr3EIu44YYbpvi4SPq7++67p+u9caz87AUWWKDskzrISKesD8d78803l/pwyoJBdKmISWVMt23bNjd27NhSH2LZo4G64IILcjPOOONEv0NqbbFkiaXeK664Yu7tt98u9eFKkhoQ6m+z3JeBFJlVNbXntE+9evUqab3PSjFmzJjcNttsU+PvkQEsWWwffvhhqQ9TktSADRw4sOgYfeWVV462SpNGn4fMayYf+L2RgV7sd1rYX3rvvffqLeufYzzqqKNicmS//faLYyDQz4pDkAiRjq1Pnz757+MYF1tssbh/tdVWmyhIPW7cuMi0TzXQJ1XCheeecMIJua+//nqa3wd12/ld33///fn7+B1efvnlUY6mVO66664Iik/J/ycTKGT8u+LjfwyiSzXgAtG6det8sHfOOeessTHhOW6SVXP9upNOOinq1RVb5s3MMejomKkmSaqrLCsymJj4JiOJQG9NE7vcd8YZZ+R++eWXUh9y2aHEGpt5FRtYb7nllvFxzTXXtD6tJKlO0aan8eQcc8xRY7vERpT1WV+6UtDHufbaa6NUS7E2fZZZZsmXTEmlS9KNjHXK67D56/Sgr1DYXyCYTHkUAuaFSQ0En48//viIx3As9957b5SWoRRK9XKwO++8cyTnpZUKlJsjY5z3QT8lxR1SjXVuBOITfjYblm699db5+9KGpGSMF244+sUXX8RqOyoZFKJmO3u/FfYl+/btG6/ByshySdj45JNPIqOf4xowYMBUf/+ECRNy11xzTZWa7o2JQXSpCC4KzEwyA/nZZ59Fg81sZU2NDVluzC429sEj2eRpMF39RicnBS5cCiRJKgUGXyn7qNgkb8eOHWOA0ZixCdekNgxleTWZXF27do1+Eht2UbtWkqS6RvlVJr4JSjJJ3qZNmxrbqrnnnjvXu3fvaNMaM/o0Xbp0yQfIi93oGz311FOTzUonwZANKYl9kFC41FJLRf30wlUABLwJdh977LFVjoVANa/xyiuv5O+jD8F9BMD33nvvfLCZwDP3X3HFFZE5jf333z9/HOeee27+NdJzufFz2YvtoYceiq/ZjPSWW27JT7qkMn8PPPBA/vvJcE8bmCYcY0qmpE9UWNaO+3jfhTbeeOOJ9oPh90OmP3vsFZYQfP3116MsDcmH9RXbSrEqfr/nnHNOlEmalkB49/9fRmf77bdvlNnpBtGlKcQFomXLlpNsUJgh3XfffSPo3ljQGLAUvthAm1uLFi3iuYcffnhs9sYyK0mS6hvtz2677Zbr1KlTZFcTNC+2qTjLgZn0bUyDb34/DP6KTTKkrLT11luvUQ6cJEnlh2zaSbXn3E+gnc0pGwv6LiT5EbydVPyCjOTLLrssAs+sJP/vf/8bGdVk8p955pmxz0lN30dW+q+//pq77rrr8vcV7h1HOb20cj956aWXYhKe+9lcM+Hnpn4HgfTRo0dHAiP9kQ4dOlR5XYLdPIea5gkB7rQCnj1bUgkXNiclw5x+XzrGzTbbLI6D5D8eL6y9v84660QJmUJkoBPkJ8M8ef/996O8Sfv27askEFBOiJ+x7rrr5u/j98h9TDIUSjXeiaMkn376aZQNZsPTQj///PMUJWvSL+O9V49FUZKGWM3QoUOr3D+tmfF33XVXTC70798/1xgZRJemELN07KDMLuDdunWLi3W6+BWb+WZDjG+++SbX0FB+5Z577onduic1oUCHhSVRzLSisWfqS5LKQxo4sCSXWpdkZ7FcuFibxuBn0KBBDXLpKoM2MtRq2qwt3cjaYqDNZlhLLLFEZDA1xN+FJKnykBlM0JYSHkx+U4ajWJ1vgq3U2G6I+5vRLrOxN++/eimWmn4PtP9JsYlxxv2nnXZaja9BljlB7e222y6C6jvttFNsAIuUwV1YC5wSINxHoDj1IQhmp9XqlE3h/3KrrbbKfz+r3AtjCKkcC+8zIdjPfZSaKcz2Xn/99fPBeeISPI/vY8KgMAiPLbbYIp43//zz54+NGMa2224be+UVni/0gVJWPyscwZ4wZGaTPEhAPmF/uM033zx+duFmnewJx3ss/P1QJidVOUjoo1Kmhv/Pwg1QeT3O91TOBh999FF8PxMVhf+fhx56aNx/4IEH5mrL19XqxLOZ648//phrDAyiS1OpekYaF8vJLXliR2My1FnOU6mZW9QqY5aaGnOTeq9s4MHviOVMBCQKl0lJklRuaKcIEpOBNKlAcrqxfJfl4ZU6WKAfQhYWg91iGedpwMmN/gtZYWn/knKp6SlJUpJKuyRkyaa2rFg7R/CWkhYjR46s2DE6fZHbbrstxuCTeq8EYcnGp7QLAXRW2E9NKZGXX345t/baa1d5zZQxTQA1TbiTnY7XXnst17lz5wjcPvnkk3EfpWII6F599dX5LG0C5ymoT4ZzqnfOa3EfQfRWrVrly7mkeu6FQXRqnxdmvVPKhSzxdJyFWdgkRKSAOyVnklRxgGRJvh8cd3oNSsIkqXwtr0vJmLR/DPcR8C5EX4v7mUBIiAmlgH2hlKC5xx575O9jVUA6BhIZkh133DHum2eeefL3kYWefneF2ftvvPFG1Jyvq33ofvvtt5jc4L0XlulpqAyiS9OBxjZtOLHNNtvkTjzxxNwBBxwwycE3jRuNw6233hq7NZcrZmCHDx8em3QwCTCpzgfviY9sKpYaOGqiUSdVkqRyR0Y6gWU2g2IwxsQxWVWTav9ShjptPwOicl5t9d1338UKMgaikxpkk7nH4wzA2HysMde8lCRVLoK+TBST7ctqcsqapJIfxYLMBKIvvPDCsh7D0tdgnD25FWRpnJ4ymws3u5zWLHyCsMQGCn8G5VoJ3pJxvcEGG0T8IElxksINOAnik4VNUDr9fxCc79OnT6z452s+MrHBjcQF7iORjwA9/Rn6J4svvni+PA8/n8l++nFs+Jmy2OnP7LrrrlHSJSU+UCWAIDWP8xoJAXOyyLk/ZXzTNzz//PPzPz/1hcge79mzZ5Ua8Dz3oosuqhIsT6WGqN3O+ZhwDNT051wrRP/zlFNOqbIpLiVneB7ncGHsiIkIyg4Wlsvh+Pi9cryFEwSUn+Hn/ec//8nVhXfeeSdWgiy88MJRDqihM4gu1QIu4IUDTAbUk8tkKwyqc8FhSRHZcIW1ueozYM5sMY0gy7QnlZlWeGNTCWb9aVRoBJnhlCSp0jEIpH0my4gJ4jTAnly7yICVTJzjjjsuMn9KEVhn8E9WGkuTmQiYVNC8MHjOR5Yok91F/U36NQyMJEmqRJTNeOSRR/JfM96dkjaxsDwrpTjYlLIUgXX6EPQlCKCS6TslY3Sew9icOt6UFeE+VojXVn+EsX+qd55uHFuqvU4/Ihk4cGBko/N7T1J2NwFs4gcEuQlapz4WcRHqj7OZaHq/lE6hP0Lwmc3f088lIxzET/g5hf00VhcSVE/HVVhnnH4O97FqvjCGQyyEwDR13gv/DyhRU67JBNWPi/fJZEZh/f9+/frlz4NCTEaQAFkbm5v+9NNPVSYK0FD3wfsX/2SSatVpp52WXXLJJdn222+fLbLIItnZZ58dnw8fPnyKX2PWWWfNmjVrli233HLZ2muvnbVp0yZbcskl4/V4bGr8/fff2bfffpu999572bPPPpt98MEH2ciRI7OxY8dm48ePz/7666/Jvsbss8+eLbvsstnrr7+ezT///NmBBx6YHXDAAdmKK64Yr7nCCitkCyywwFQdlyRJ5eqLL77I3n777Wh/X3jhhWzllVfOttxyy2zUqFHRPn/44YdT9DozzTRTtswyy2Trr79+ttJKK2VLLbVUtO20qbSnM8www1Qd16+//pp9/vnn2ZgxY7Ivv/wye+ONN7JnnnkmjvW3336boteYeeaZsw4dOmR33nlnvL899tgj69y5c3bkkUdm559//lQdjyRJleDnn3+O9vi///1v9sgjj2TvvPNO9uKLL2b33nvvFLefc801V7bQQgtlm2yySbbooovGOH2VVVbJFl988RgvT41//vknGzduXPbZZ59FG/7SSy9lL7/8cjZ69Ojshx9+iDH8lJhnnnmir8Fr7bTTTtkDDzwQ9xPqe//997Pll18+q03nnHNOduqpp050P32bq666Kttmm23i66eeeirbfPPNIw4ycODAiDn88ssv0Wf517/+lS288MIRj2jXrl08n9/fZZddlg0ZMiT/HrDEEktkxx9/fHbmmWdmP/74Y/7+bt26xe/p9ttvj/9b8LoDBgzIdtlll/icWMW7776btWzZMmIW+Omnn7Lu3bvH/yPvg+el31f6vCEZNmxYdtNNN2UtWrTIjjvuuPx7nXfeeeP3+corr2RrrLFG3P/mm2/GjT4r/dVpNXz48OhfHnLIIVnv3r2nuq9bzgyiS3WEBgJzzDFHfBw0aFC2ww47RANHA9K2bdvsueeeiwv/tCq8yDMgpiHmT3rGGWfMJkyYEJ9Pi3SR4/X4GbwHGnQa6MUWWyzbcMMNs8GDB091R0GSpEr1559/ZltssUUMwhiM9OrVK9rIWWaZJSameXxKB7zF2l5utK28Lu34H3/8MV2viX//+9/RR6BfQvCf12Yy/b777otJgTnnnDOCB9w/tZP0kiRVEtpq2nECfAkBxNdeey3ayK+++iraX27TgzE/bTrjcdpg2vM0Vq8txxxzTATNN95446xv377ZtddeG5PhBC7rEu+hVatW2fPPPx9fk+hHMDzZcccds/322y8m+Uku3HvvvSP57qCDDsruv//+OGb6HUxkkKDAa6255ppZ8+bNs7POOiviI/zOmNRnguGOO+7Ivvnmm3htnr/gggtG4JdgeMJEARMGHBvHQuAdTJIQRN92222z+eabr05/L5WEPuEJJ5wQEzZPP/10/L7B/xcJoPyf3Xrrrfnnk4zJJMm/pnCSgf+7k08+ORIvr7/++qwhMYgu1RNmuvv16xez1+3bt4+ZawbezFqTUQZm+whUczGrLzTuNOgJAXJmDpmdvfDCC2NmuH///jEIB40V70GSpMaIwV2TJk3yXx966KHZddddlx122GEx0GOF1+qrrx4DDtpYMsfrq7td2KaTGUc2EVl3HB9Z60wC3HPPPXGM9EXIhpckqTHr06dPZKOzIotgKxgLX3DBBdGuEmAkCY62vHDcXF9tOpPdrVu3jiS8I444ImvatGn29ddfxxh9zz33LEkW9e+//x6xixTcJkj+/fffR5A8IdOZjH36HE8++WTcx++XTHOOl+8lIE5AnWzlLl26RJCcCX0Cr2uttVZ8zgQEcRPiJOnngffLSrrDDz88fk7Hjh0j4Y9saz5q6l199dXZzTffHJMx++67b9zHyg3+n7h99NFH+STRySE4zwQV/29Ikx6VHksyiC6VENllZKczQ0qAnQvTeuutl5133nnZKaeckn8eM4IjRoyIxif9ydKY06DSWBUiC50GpbBECxc6ljCxTIyAPY/TID/22GPZZpttFhc2lkCRVcfMMTO3lG1h8L3RRhtFoF+SJE3sk08+yYYOHZqtuuqq2brrrhtZUwwIWULM4G+fffaJzHUyeGijKQNDu0qQvRADRNru6pnntNmF3XVeg9JuTMaTAc9yaDKw6CdceumlUYaGbDoG2xzPBhtsEIFzXl+SJE0epUhSUJaxOu0zwVyymclmJ2ua8imUZSOwS6Cxentdk/Sc9JExPZncH3/8cbT/ZMgzbieTm7H6UUcdFcdA3yKhvefn0s8oZZkM4goE0lO/hQQCkgHpl/C7qr7inux8bgTgV1tttXiv9J+IhzDRT6yDFQC8Jr8XYhf8XgtxP8F1fgbZ0rvvvnu9vufGiPNtq622iqSMN998s8pKCILqlNUhZjQ5JJ2w+uCWW26JSY9KZRBdKgPVZ45vu+22mAUkY4zZZeqNM2hOA2yywwl+06impTLM9NLg3HXXXfF8AuPM+m666aYx43viiSdGJhoXL5Z8MUtMJ4Cfy8wv38+Am4+SJGnaMeij/icDSJbL0s4zMKRNp85nz5494zncyCpjQMjEeI8ePWJJNqvCaJ+ZYGdinZJw9AFY5kwbzmMMZAiYM4gmA/7BBx/M9t9//1g6mzTU+p6SJNUHVpMVljAl85ka04y5yQ4vrBHOWJxJa8bhTG7PPffckX1LO0/5NOqDX3755ZEgR/IcAWdWtjHhzqQ3e66Q1EYWMEiWoy9BwJna6+U62UC8YVKmZHKhGCYJWFlHjW5qrRPMrfRM5krExBGTJssss0z+vqWXXjoSSR599NE4v0HpHPqkJHCk2vggLkVWOkF3JksKyylVGoPoUoUgeE5jzYz3wQcfnM0222xx/0MPPRRBdwbVNNAJy6G42DEzSLYaWPbFLDYXPGavJUlS/aENp1YnS7HJJgfZV0yI084zgZ6wORebb1F2Zeedd477eA5BdjbyZkKdjC5JklQ61OJ++OGHIyBOdnRCYJ2SrozLCZKD1WgE0smkLlx5zv0E67m/0ia/6a9QQmV6S93w/ikzR410JijYjJ3kwCktH6L6k8vlYiNcJpSowU8iCDi32QSWPip77yS77bZbxKbIWO/atWu+T0s1hMISiZXAILokSZIkSZKkqcYkAvupkSlONj2r78ggJ1OdTPu0Rwyr68lSptwLK+Cpgc5qPEraEjSvtAkEVTV48OBswIABsXKAvYJSsJwEUD4WbvqaVnCQHMKms5XCILokSZIkSZKk6UKI8ccff8zGjBkTXxNQJWOZ1XOUpkkbTapxmDBhQpQlZMUGJQ5THX9KGlHWkLLDF198cVYpDKJLkiRJkiRJkurcH3/8kX377bexcW4lrUAwiC5JkiRJkiRJUhH/y6OXJEmSJEmSJEkTMYguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkIgyiS5IkSZIkSZJUhEF0SZIkSZIkSZKKMIguSZIkSZIkSVIRBtElSZIkSZIkSSrCILokSZIkSZIkSUUYRJckSZIkSZIkqQiD6JIkSZIkSZIkFWEQXZIkSZIkSZKkrGb/D+rO/ZzMcj5MAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQmcjfX7//9u32hRVFoQFVqQRCUpRSLaiChpIWRJpOVT1iiV0iL7rpTSYgmtkjaEpKS9JKVNUWmb/+N5ff/X+d1zzIxZzsycM/N6Ph7HzNznPufc55zbfb3fr/d1va4d0tLS0oIQQgghhBBCCCGEEEIIIbZhx203CSGEEEIIIYQQQgghhBBCIroQQgghhBBCCCGEEEIIkQXKRBdCCCGEEEIIIYQQQgghMkEiuhBCCCGEEEIIIYQQQgiRCRLRhRBCCCGEEEIIIYQQQohMkIguhBBCCCGEEEIIIYQQQmSCRHQhhBBCCCGEEEIIIYQQIhMkogshhBBCCCGEEEIIIYQQmSARXQghhBBCCCGEEEIIIYTIBInoQgghhBBCCCGEEEIIIYREdCGEs3Xr1jBgwIBw5JFHht133z2ULVs2dOjQIXz//ff6kIQQQogiFKvLly8fdthhhwxv9evXz7fjF0IIIUT2+PTTT0O/fv1Cs2bNwiGHHGIxmvgthEgudi7sAxBCFCz//fdfaN68eZg/f36oU6dOuOiii8LHH38cxo4dG1566aXw1ltvhdKlS+trEUIIIYpIrN5nn31Cjx49ttmuCboQQghR+CxatCj0798/7LTTTqFKlSphw4YNhX1IQogM2CEtLS0tozuEEEWTCRMmhCuvvDK0bt06TJs2zVa5YeTIkaFTp06W5TZq1KjCPkwhhBCi2JLIWO1C+RdffJGvxyyEEEKI3PHZZ59ZpVm1atXCHnvsYRVoBx10kGK3EEmGRHQhChlWmSnRrl69enj33Xdj2//4449w3HHHhR133DG89957FkgTwSmnnBLefPNNC8jlypWLbWc9rVKlSuG7774LGzdutOAthBBCiNSO1RLRhRBCiOSO+/FIRBciOVFjUSEKGVaYa9asGZYvXx7Wr18f287EeMiQIVa+PWbMmIS81p9//hnefvvtcPTRR6eblANZbmeffXbYsmVLWLp0aUJeTwghhCgKpHqsxl994sSJYfDgweGhhx6y5xdCCCFE4cd9IUTqIE90IZKApk2b2mR49uzZVqLt4Ie61157hfHjx4euXbvatvvvvz/88ssv2X7u888/31bQvWEJPqs0KcsI386g4LTTTsvjuxJCCCGKDqkcq8moa9++fbpttWrVCo899lioWLFito9TCCGEKC4UVNwXQqQOEtGFSAKaNGli3bjjA/Suu+5qjUUI3r///nvYc889LUB/+eWX2X5uyrg9QG/atCnWYCwj9t5773T7CSGEECK1YzXiOWL7scceG0qUKBHWrl0bhg0bFqZMmRIaNGgQVq1aFUqWLKmvWQghhCiEuC+ESB0koguRBFAqdvDBB4eXXnrJyrij3mqUbIP3AFZjMCGEEKLgSdVY3bdv33R/M2mfPHmy/Y6QTjl6z549C+nohBBCiOQkVeO+ECL/kCe6EEkAHqfnnnuurWQTpB2CMRljlG5TMpZXPKsts+y1X3/9Nd1+QgghhCiasbpjx472c/HixXl6HiGEEKIoUlBxXwiROigTXYgkKhcbN26clYvxO9xxxx3h33//Dddcc01sv7z4rR1xxBHWSRwf1Yzw7Zn5sAohhBDFmaIUqw844IB02XRCCCGEKPi4L4RIHXZI8/oTIUShsnnzZpvQlilTJnz11VfhtddeC/Xr1w/HHHNMWLZsmXmvuX9aTvzWJkyYEK644orY3yeffHJ46623bAW9XLlyse1cCipVqhS+++67sHHjRus8LoQQQoiiGauxdGnXrp1lpI8cOVJfsxBCCFFIcT8erGMOOugg2cQIkWTIzkWIJIFmX6effnr4+uuvw7x588Kll15qjb6efPLJWHAGJtRMorN7iw/O3hTl5ptvjnm4wahRo8Jnn30W2rRpIwFdCCGESKFY/ffff4c1a9aETz/9NN3zsI0y9HjY3qdPH/ud9yCEEEKIwov7QojUQJnoQiQRDzzwQOjevXvYbbfdwj///BNmzZoVGjdunNDX+O+//8zbbf78+aFOnTo2KPjkk0/CzJkzbQX97bffDqVLl07oawohhBBFhWSM1UzeK1SoYFnr0eZm/fr1C8OGDQv16tWz+/Buxcd17ty5Jrwj0g8ePDihxy6EEEIUJQoi7v/www+hV69esb9p/M1i+cUXXxzbds8998Ss2IQQhYNEdCGSCLLLKlasaE1M8F5r3759vrzO1q1bw5133mnBmVX1UqVKhaZNm4ZBgwaFAw88MF9eUwghhCgKJGOszkxEX7hwYRgxYkRYvny5WcCQlc4EvHbt2qFz586hYcOG+XLsQgghRFGhIOK+x/Gs+Pzzz20hXQhReEhEF0IIIYQQQgghhBBCCCEyQZ7oQgghhBBCCCGEEEIIIUQmSEQXQgghhBBCCCGEEEIIITJBIroQQgghhBBCCCGEEEIIkQkS0YUQQgghhBBCCCGEEEKITJCILoQQQgghhBBCCCGEEEJkgkR0IYQQQgghhBBCCCGEECITJKILIYQQQgghhBBCCCGEEBLRhRBCCCGEEEIIIYQQQoicoUx0IYQQQgghhBBCCCGEECITJKILIYQQQgghhBBCCCGEEJkgEV0IIYQQQgghhBBCCCGEyASJ6EIIIYQQQgghhBBCCCFEJkhEF0IIIYQQQgghhBBCCCEyQSK6EEIIIYQQQgghhBBCCJEJEtGFEEIIIYQQQgghhBBCiEyQiC6EEEIIIYQQQgghhBBCZIJEdCGEEEIIIYQQQgghhBAiEySiCyGEEEIIIYQQQgghhBAS0YUQQgghhBBCCCGEEEKInKFMdCGEEEIIIYQQQgghhBAiEySiCyGEEEIIIYoE/fr1C7vvvnto2bJl+Oeffwr7cIQQQgghRBFBIroQQgghhBCiSNCrV6/w/PPPh+eeey7MmDEj4c8/evToUL9+/bD33nuHHXbYIfzyyy+5fi6Or3Llyib6H3fccWHu3LlZ7n/FFVfYa8bfjjnmmHSLCPH38xq54dVXXw0nnHBC2G233UKlSpXCxIkTs9z/iy++yPD43nrrrRy/9k8//RTatGljn/O+++4brrrqqrB58+Ys9+/atWs4+uijwx577BEOP/zw0K1bt7Bp06Z0+2V0fNOnT8/x8QkhhBCi+CERXQghhBBCCFEkKFGiRDjjjDNCq1atwpQpUxL+/L///ns455xzwi233JKn53njjTdC69atTRxevnx5OP/88+32/vvvZ/qY4cOHh2+//TZ2+/rrr0OpUqVCixYt0u2HqB7d7/XXX8/x8X3++eehSZMm9lmuWLEi9OjRI1x99dVh/vz5233siy++mO71a9asmePXR0BfvXp1eOGFF8Ls2bPDa6+9Fjp06JDp/uvXr7fbPffcY58hgv+8efPs841nwoQJ6Y6Pz10IIYQQYnvskJaWlrbdvYQQScsff/wRunTpEp544olQvXr1sGjRIsuqEUIIIYRIJFu2bMn0vp122skyqrOz74477mjZwtvbd6+99sr1sY4cOdIykxFWS5cuHRINWdoIzD///LNlSueUSy65xN43ArFTp04dG8tx7NnhmWeeCRdeeKEJ3uXKlYtlorMd4Tsv9OnTJ8yZMyedqM/CBJn3iNOZZaJXqFDBFgV4H7nlww8/DFWrVg1LliwJJ554om3jNc8999ywbt26ULZs2Wxn+rdt29Y+55133tm2MUZ++umnJZwLIYQQIscoE12IFOejjz6yjBomCIsXL87zpEkIIYQQIrMs78xuF110Ubp9y5Qpk+m+jRs3Trdv+fLlM9wvL5CJjCd61KqDRIOs3gO3adOm5fnLx+4F65WsePPNN8NZZ52VblujRo1se3YZN26cPYcL6M7HH39sQvMRRxxhGd1fffVVuvs5No4xv46vWbNm9v3XrVvXbHXiFx8QshHcs3ptFiZcQAeOhcWXt99+O2QXrFywg3EB3SH55IADDggnnXRSGD9+fFBOmRBCCCGyQ/oRhRAi5WDC17179zBixIjw+OOPh6OOOqqwD0kIIYQQotBAhH3nnXfCeeedZ6I4GemAKLu9ZIMDDzwwz6+PH/fBBx+c5T4bNmzY5rX4m+3ZgQx7vN8fffTRdNtr165tCwh4g2NV0r9//3DaaadZRnnJkiVtH47tv//+y9Xx/frrr1YFGa0kiI5J77333nDqqaea4P3UU09ZxjeZ8QjrsOeee9qx7bLLLlm+NiJ8FIRwrGuy+/n88MMPYeDAgdtYwAwYMCCceeaZdhwLFiwInTt3Nq91/NOFEEIIIbJCIroQKQ6Nnu6//367CSGEEELkF1k1dsTOJcr333+f6b4IrFGyykrODYyJmjZtagIyjTE/+eQTGy8h/PIzOwwePNhuzgcffGDieHaYPHly7HeywLEmcfBSz6ufOkyaNMmyteP9vKNZ/scff7yJ6mSqY/vn/uBDhgxJ95ho1j/2J9m1k4mH7O6ePXvG/q5Vq5aJ/XfffXdMRCf7e82aNbF9rr322jB16tRsnWPZBaEfP3c+d+xtotx2222x32vUqGGVnByfRHQhhBBCbA+J6EIIIYQQQojtkhOP8vzad3vQbHPmzJnWkBKRlCabZKP37dvX7FzirWTiGTVqlFmgIO62bNkytj27Ptzx8Lho9jvZ1HDQQQeF7777Lt2+/M327YH9CDYkl112Wdh1112z3BehnSpFFhIyI3p82J9kdXzcn1EWemYg4vNdZAaZ4b169Uq3jdeOX4TBmuenn37a7ufz22+/WeNXsu7xPs8q492Pj4z1rVu3ht122y1b70kIIYQQxROJ6EKkOF5ui78kZbs0qCLLimZXQgghhBDFiYceesgysN3zm8xqBGdE9JzYuSB2u+CdF7AhySj7/eSTTw4vvfRS6NGjR2wbYjPbt8fChQtNFPfM8qwgs/vTTz81wT0zMju+uXPnptuW3eOLwuedlbUNti3x1i28Bg1Mly1bFmrWrGnbXn75ZbOgQfTOKgMd33bEcLzYo41uszq+/fbbTwK6EEIIIbaLRHQhUph///3XmnExQaPBKOW3gwYNCi1atJCILoQQQohixe+//x7GjBkTHnzwwdg2ssqxT8EjHSuR7Nq5ZJW8wM0zu1etWmVZz1i95ER0p5/N6aefbh7iWI/QAHXp0qVh9OjRsX1uvvnm8M0336Szh/GGoojJxx577DbPS1Y3XvBYuGClwuIBVjutW7fO0fskE58FiRtvvDFceeWVJmJjCTNnzpzYPtxPtjeLAW4xQ2Y8FQBARQALGGPHjs3Ra1epUsWyya+55hob2/7999/huuuuC61atYpVBPC5NGjQwD4bvlcE9IYNG9o5gD0Mf3OD0qVL22cwa9Ysy6avU6eOCewsCmDZE58JL4QQQgiREekNCYUQKQUTCIR0bpS3MmliYnDKKacU9qEJIYQQQhQoCKo0jIzasBx22GGWlR713c4LiLqIxAi8UK9ePfubzGeH17viiiuyfB7GajQFRTSvVq1aePLJJ60BZ1QYp8IQT/UomzZtsoadmWWhr1u3zgRzmnfyOey///7hrbfeMiHZ4dg8Uz8zKlSoYII5QjPHh9iPGE6md7R5J1nuUbBGIXsckf/ZZ5+1pvft27eP3f/qq69a9eT2fPCx4KlcubIJ5eeee26oW7duugUGhHUSSBDN4d133w1vv/22LWqwUEL2u9+w+AGsXR5++GHLdK9evbpZ9wwbNswWGoQQQgghtscOaZjqCSFSFiYRTJiY7AghhBBCiMKFLHCamm5PSC8syIDH9i++6WZBMGHCBMv+plHr9vzKhRBCCCGSCdm5CJHiMAGRgC6EEEIIUfisXr067LPPPuHyyy8PyQiZ7GSPR21ZChJ81hHRJaALIYQQItVQJroQRRDsXSj/lbguhBBCCCGEEEIIIUTeUCa6ECnMTTfdZL6SHTt2tAaj8OWXX4aqVava7zRUopGSEEIIIYQQQgghhBAidygTXYgUhXYGNIv6+eefw4oVK6zpk2ehU0YM77//fkxcF0IIIYQQQgghhBBC5BxloguRovz333/WtOrDDz8MRx11VGw7mef4cR566KHKQhdCCCGEEEIIIYQQIo8oE10IIYQQQgghhBBCCCGEyIQdM7tDCCGEEEIIIYQQQgghhCjuSEQXIkX59NNPw4YNG8wbPR4ait54443hvPPOM9sXIYQQQgghhBBCCCFE7pCdixApSqNGjcKCBQvC+PHjQ/v27dPd9/fff4eSJUuGrVu3ho8//jhUqlSp0I5TCCGEEEIIIYQQQohURpnoQqQo//zzT9hhhx1ClSpVtrlvl112Cf369QtjxowJpUqVKpTjE0IIIYQoaBj/7L777qFly5Y2VhJCCCGEECIRKBNdiBQG25Y999wz7LzzzoV9KEIIIYQQhc7mzZvDkiVLQuPGjcOECRNC69atc/1cWOb17dvXkhJ++eWXcOqpp4ZHHnkkHHnkkQk9ZiGEEEIIkfwoE12IFGbvvfeWgC6EEEII8f9TokSJcMYZZ4RWrVqFKVOm5OlzGTp0aHjggQfCyJEjw9tvvx322msvs9P7888/9XkLIYQQQhQzlIkuRBGF7KlvvvkmrFixIjRp0sSsX4QQQgghcjOm+P333wvlg6PiLjdjGITvrl27hvXr14fSpUvn6j2XLVs23HDDDaFXr162bdOmTeHAAw8MEydONJFeCCGEEEIUH+QBIUQK0qxZs7DHHnuEQYMGZVpSTFPRChUqmB/oV199FQ477LACP04hhBBCpD4I6GR4F5Y9CxngOQWhmzHQ9OnTTUyHRYsWmc1LVowaNSq0adMmfP7552HDhg3hrLPOit23zz77hNq1a4c333xTIroQQgghRDFDIroQKcaWLVvC3Llzw7///hvuvffeTPejqVa1atXCX3/9FTZu3CgRXQghhBDFAkTud955J5x33nlh2rRpMRH9xBNPtAq9rCDTHBDQo39H7/f7hBBCCCFE8UEiuhApxq677hpeeOGFsHLlynDooYdmuS/+nTvttFOBHZsQQgghih5YqpARXlivnVPuv//+0LRp09C/f/9wwgknhE8++SRUqlTJqvj4KYQQQgghRE6RiC5EirHLLrtYwyxu20MCuhBCCCHyCp7kubFUKQy+/vrrMHPmTEs4qFGjRjjmmGMsG71v3745snM56KCD7O/vvvsuHHzwwbH7+bt69er5/j6EEEIIIURyIRFdiGIAzbFAzUWFEEIIUZR56KGHwvHHHx/q169vf7dt2zaMHz/eRPSc2LnQVwYh/aWXXoqJ5r/++qtV+XXq1KkA3okQQgghhEgmdkhzdU0IkfTw35XJYc2aNcNJJ50Udt55++tg3bp1C0899ZQ11jrttNMK5DiFEEIIIQqjASpWdw8++KBlk3tmerly5cJbb71lY6eccNddd4U777wzTJo0yUT12267Lbz33nvhgw8+sN4zQgghhBCi+KBMdCFSiM8++8xEcXzRyYbKjohO2fH69evDwoULJaILIYQQosgyefJk81Bv2bJlbNthhx1mWelTp07NsYh+4403WkP3Dh06hF9++SXUrVs3zJs3TwK6EEIIIUQxRJnoQqQQZD7dcsst4b///gvPPfdcth6zZMkSmwDWrl3bGmoJIYQQQgghhBBCCCGyj0R0IYQQQgghhBBCCCGEECITdszsDiGEEEIIIYQQQgghhBCiuCNPdCFShM2bN1tj0ZIlS+b4sWvWrAmzZs0KFStWDBdeeGG+HJ8QQgghhBBCCCGEEEURZaILkSJMnz49lCpVKnTu3DnHj33++eetOda4cePy5diEEEIIIYQQQgghhCiqSEQXIkVYuXJl+Oeff0Lp0qXTbX/nnXfS/f3YY4+FSy+9NHzzzTexbWeeeWZo3rx5aNasWYEdrxBCCCGEEEIIIYQQRQE1FhUihfjiiy/CrrvuGsqWLRt++umn0K5duzB79mzLND/nnHNsn6uvvtoyzlu0aBGeeOKJwj5kIYQQQgghhBBCCCFSGnmiC5FClC9fPvY73ugVKlQIu+yyi3meu4jevn378OOPP4aRI0cW4pEKIYQQQgghhBBCCFE0UCa6ECnOd999Fw488MBs7btly5awfPnyULdu3Xw/LiGEEEIIIYQQQgghigLyRBciBaCZKLe1a9eaN3paWlrsvu0J6M8880xo1apV2LhxY9h///3D6aefblYwQgghhBBCCCGEEEKI7SMRXYgkZ+vWrWHy5MnhkUcesSzyE088MVxxxRXh77//zlaWeps2bcLjjz8e5s6dGypVqhQOO+yw8PnnnxfIsQshhBBCFCT9+vULu+++e2jZsqU1ZBdCCCGEECIRSEQXIsnZcccdTQTv2bNn+OGHHywLffPmzWHnnbff0oAs9WHDhoU+ffpYNvrChQtNQK9Zs2aBHLsQQgghREHSq1cva7j+3HPPhRkzZuTpuRhz3X777eHggw8Oe+yxRzjrrLPCxx9/nOVjhgwZEmrVqmW9a8qUKRPOP//88NFHH6Xbp379+mGHHXZId7v22mu3ezy8n8qVK9siwXHHHWcJElnx6quvbvM63DZs2JDl46hYJAlj7733Dvvuu2+46qqrbOyZVeP7jF6HW/Q7yOj+6dOnZ3ksM2fODA0bNrRqSvZfsWJFlvsLIYQQQuQX8kQXIsXAzoVJGRM6IYQQQgixLVTtff/999sVmrPirrvuMlF80qRJ1sz9tttuC6tWrQoffPCBCdkZQaN3EhcQ0smEv+WWW8L7779vj9lrr71iIvpRRx0VBgwYEHvcnnvuaaJ1ZrzxxhuhXr16djxNmzYNjz76qB3fu+++G4499thMRfQzzjjDRPzoczOOJEkjMxo3bhy+/fbbMGrUKKt8pGk974fXzIh///3XbAOjjB49Otx99932PCVKlLBtiOATJkywz8hBpM/ss4QpU6ZYAkjZsmXDNddcY1WZ1atXz3R/IYQQQoj8QiK6EMW0Eel///2X5QRKCCGEECK+QbkLvgii8Ndff5nQSoXcbrvtts2+ZHD7eIP92H+nnXZKJ5xmtu8uu+yS6y9g5MiRoWvXrmH9+vWhdOnSucpCR7i94YYbLLsdNm3aZGOoiRMnmlCeHRCXEa2pBkQEdxEdIfj+++/P9vFccskl9jnNnj07tq1OnTr2PLzXrET0n3/+2cTq7PDhhx+GqlWrhiVLlpiFIMybNy+ce+65Yd26dfaZZIcaNWqEE044IYwbNy62jXPm6aeftuz8nEK2OwsZEtGFEEIIUVhIQRMiifn000/Dww8/HAYOHGiZPHmBSVzz5s0t8+noo48OQ4cOTdhxCiGEEKLoQ0YxN+zlHLKN2Xbdddel2xfhmO1fffVVbBtjGrZhDxKlfPnyth0B10Gozgs8nkzwqF3IokWLYu8hs9u0adNsX7KfsT3BwsXZZ599Qu3atcObb76Z7eNAeIdSpUql287rHHDAAZZFfvPNN4fff/99m88Ef3eH14weCzRq1Chbx4LQTgXj2WefHRYvXrzN5+QLIv46CO4uoAOvy+LG22+/na33vGzZMrNdif+eoUuXLva+TzrppDB+/HhbrIi3hUH8F0IIIYRINrZvqiyEKDSefPLJcNNNN9nv9913n03omMDlBsp4KSXG03Lt2rWWyeTPLYQQQghRVEAIfuedd8J5551nYjUZ6YAwvD1PbTLNwX3D/e/o/dvzFHeo+uvRo0c49dRT01muXHrppaFcuXKW1f3ee+9Z7xosV/D/dipWrGhis8Nr5vRYEM7JUud906h+7NixlgWPGE6WODCuJLki+josgEShyoBFgOy+b7LPq1SpEk455ZR027GvOfPMM62SYcGCBaFz5842Lu3WrZvdT+UBx8L9QgghhBDJhkR0IZIYJliUw1KGSwlwbgV0oMR68uTJ5lv5zTffmN+lEEIIIUR28eaSUZGzd+/eJhTHNzzHj9wtWqJZyPhaY+cShQzk+H3xNM8t2KTgG96/f38Tiz/55JNQqVIle35+FhS8X/zQX3/99XTbO3ToEPudBqGI3Q0aNLAKRMRzeOmll/L8+gjSUYEcUZvXIDEDr3G44IIL7JYo/vjjD/NOxz8+nug2xrfY01DJ4CL6IYccEtasWZOwYxFCCCGESCSycxEiicFvk4ZRn332WRgxYkSen+/kk08OdevWNV/NrJpXCSGEEELEQ2NMblH7j1133dW2Rf3Qo/tG+6+Qacy2+EaSme2bG77++mvL6O7Zs6cJtcccc0zMoiUndi4HHXRQrJdMFP72+7ICexuq/l555ZVw6KGHZrkvFjGA2J8ZvGZujyUKNirbex1fAHGwxfnpp5+y9VpUUWJNc/nll293X943PutkyQshhBBCJDsS0YVIAZisMrlMJEy8sIcRQgghhCgqPPTQQ+H444832xJo27ZtTBh3O5esbs2aNbN9aWKJaBzNCP/111/NCoWkhMzA4xsBnQaaL7/8sj3P9nCLGTLSM4PXjM9Of+GFF7I8lsxea3uv88svv5ivucP7wJrGxf7tWbnwGWanmSvHst9++22zACOEEEIIkYzIzkWIJOWee+6xjKirr756mxLpvPLEE0+Eyy67zCYueHDmxSZGCCGEECIZIAN6zJgx4cEHH4xta9OmTbjlllvMI50s7OzauZDAgE3NoEGDwpFHHmliOHYk+Jiff/75sf2wYcEOxRurYuGCncmzzz4bSpYsGfMRZ6yFnQx2Ktx/7rnnhv3339880a+//nqz7UP8z4zu3buH008/Pdx7772hSZMm1jB16dKlYfTo0bF9aFCKZR/2fW5rw3GTjf/nn3+aJzqCOH7kmYGX+TnnnGO2O/ip//333/beqI7kvQOvwfvmdfhMHTLcX3vttTB37txtnnfWrFmWwFGnTh2rRGABYPDgwaFXr15Zfg9kwNOcdv369fY341ZggSOnWfhCCCGEEHlBmehCJCGU0eIx2qlTpzB06NCEPz/+oH/99ZdNZqJNrIQQQgghUhVEXfzaW7ZsGdt22GGHWVb61KlTc/x8N954ozUlxcO8Vq1a5gk/b968dHY0iOI//PBD7O9HHnkkbNq0yV6TjG+/Pf744zH7mxdffDE0bNgwVK5cOdxwww3hoosuMpE5Svny5UO/fv3S+ZkjviOaV6tWzWxTnnnmmXQNS7/99lsTnB3Gejw/vusI8CtXrrTXRgB3Jk6cmM6eB8jc59jYD7EfK8CoWI+wjpjNokWU8ePHm3UN7y0e7Hkefvhhy3SvXr16GDVqVBg2bFjo27dvOm98juXVV1+NbXvuuefMloeFA0DM528EfiGEEEKIgmSHNGoOhRBJxeLFiy0LiEnKjz/+mHArFyAriwkNGekF2WRLCCGEEEJkDuI0WerPP/98zJYmv0DEXrhwYTrhurDAP/7CCy+0XkBUSwohhBBCJBMS0YVIUv79919rjkUmkhBCCCGEKB7MmTPHGsrzM7/BjgUf+agtS2FBFWaZMmXspxBCCCFEsiERXYhizj///GOWLhdffHHYcUc5PAkhhBBCCCGEEEIIEUWKmRBJ5oXetGnTsGTJkgJ5vf/++898JS+55BJrUCWEEEIIIYQQQgghhEiPRHQhkog777zTSnfxv3z99dfz/fXWrFkT3n//ffv9l19+yffXE0IIIYQQQgghhBAi1ZCILkQScdVVV4WddtrJGkoVREOlqlWrhhNPPNGsXMiAF0IIIYQQQgghhBBCpEee6EIkoaXLggULQtu2bQvk9dLS0sIOO+xQIK8lhBBCCCGEEEIIIUSqIRFdCBFj2bJlYd26daF58+b6VIQQQgghhBBCCCGEkJ2LEMnBNddcE3r37h1+/PHHQjuGJ554wqxdOJbNmzcX2nEIIYQQQgghhBBCCJFM7FzYByBEcefjjz8O48aNM1uVVatWhX79+oU6deoU6DHMmzcvtGnTJuy6666hYcOG5sleokSJAj0GIYQQQgghhBBCCCGSETUWFaKQqVSpUpg1a1bYZ599wvz588PatWu3+5iNGzeGJ598Mvzxxx+xbbNnzw6lSpXaxorl119/3e7zIdrT0PTYY48NDz74YChTpkwu340QQgghhBBCCCGEEEULiehCFDI09WzSpEl4+eWXQ7du3cLFF1+c5f5///13qFy5cmjRokV48803Y9t/++238PPPP29jxXL22WeHKlWqhFdeeSXT59x3333Dp59+ap7o++23XwLelRBCCCGEEEIIIYQQRQPZuQhRiPzzzz9h553/77/hCSecYLd4tm7dGhYtWhTOOuss+3uXXXYJrVq1Cq+//nr4888/Y/s1bdo0fPDBB2bJ4vz0009hxYoV4b///gtHHXVUlsdyyCGHxH7Hm/3ee+8NPXr0UFa6EEIIIYQQQgghhCjW7JCGEbMQosBZuHBhuPLKK8OgQYNC69atM7VtqVWrVvj666/Dhx9+GBPC//33X7NfyQ6bNm0KK1euDPXq1Ytt+9///hd23HHH0KdPn7DXXnttk+l+5plnmkh//fXXh2HDhuXpfQohhBBCCCGEEEIIkcrIzkWIQuK+++4Ln332WRg1alS47bbbwldffbXNPqVLlw7VqlULBx10ULr7syugA17rUQH9yy+/DEOHDg0DBw4ML774Yrp9sZQpV66cWcPwuljBCCGEEEIIIYQQQghRnFEmuhCFxJYtW8IDDzwQxowZEz7//HP7efXVV4cFCxaE+vXrx2xZvv/++1CiRImw5557JuR1KT6ZOXOmZZoj5EdBqK9QoYKJ92S+yx9dCCGEEEIIIYQQQhR3JKILUYhgy/Lkk0+GKVOmhOnTp4f+/fuHe+65J9x0001hyJAhBXYceKt36tQp3H777WHdunWhdu3a6bzVhRBCCCGEEEIIIYQorsjORYgC5tdff01ny3LJJZeE2bNnW7Y54jVe5VCQ7QpuvfXWMHHiRGteWqdOnZiATkPSRx991O4XQgghhBBCCCGEEKI4okx0IQo48/y4444LFStWDCNGjAiHHXbYNvusXbs21kC0oMDGpU2bNqFfv36hQYMGse2LFi0yP/UddtghrFq1KhxzzDEFelxCCCGEEEIIIYQQQhQ2EtGFKEDeeOMNE6X33nvvcOedd5p1CtuefvrpULJkyUL9Lsh8RyyHjz76KFx++eXh999/DyeddFI44ogjQvfu3S1bXgghhBBCCCGEEEKI4oREdCEKGDLNV69eHbp27Rq++eYb29azZ89w7733Js13sWbNmlC1alUT1VeuXBmOPfbYwj4kIYQQQgghhBBCCCEKhZ0L52WFKL5g1YKNy3XXXRcmT54cqlSpEgYMGBCSiRUrVlhm+qGHHhoOOuigwj4cIYQQQgghhBBCCCEKDWWiC1EAbN682W4I0n/88UfYY489trFQSTZmzJgRatasaVYuQPb8TTfdFDp06BDOO++8wj48IYQQQgghhBBCCCEKhB0L5mWEKN7cc889oVKlSqFdu3aWef7JJ5/Y9mQV0KFFixYxAX3r1q3hvvvuC7Nnzw7/+9//TPwXQgghhBBCCCGEEKI4IBFdiHwGwfn1118PW7ZsCS+//HL48ssvw+DBg1Pic//tt9/ClVdeGcqWLRueeOKJUK5cufDYY48ltfgvhBBCCCGEEEIIIUQikZ2LEAUkpC9YsCDsvffe4dRTT7W/P/vss1ChQoWk/vz/++8/azD60UcfhZ122imccsopYe7cuaFEiRKFfWhCCCGEEEIIIYQQQhQIEtGFyGeiHuiff/556N+/f/j111/DzJkzE/L8S5cuDWvXrg3Vq1c3wRv+/vtvy3o/4IADQrVq1cLOO+e+hzDi/1577RX++eefUKtWrbDnnnva9r/++ivsuuuuCXkPQgghhBBCCCGEEEIkKxLRhchHhg8fHoYMGRKmTJkSzj777Nj23DQURYC/9tprzRYGexgHn/XJkyeHoUOHht69e9u27777zpqYAvu78P3000+HdevWhUaNGoWjjjoqV+8Jf3Te08iRI8P7779vQr0QQgghhBBCCCGEEEUVeaILkU8sXLgw9OjRwwTtYcOGpWvGuT0B/cUXXwxXX311eOqpp2LbsIIhK3zx4sUmjDvHH398aNCgQTjkkEPS2bCQgU52ugvoQPZ7t27dwvTp02PbOK6vv/46W+/pzz//tGOfMGGCva/OnTtn63FCCCGEEEIIIYQQQqQqEtGFyCe+//77UKpUqVCzZs0wYsSIcOutt9q2zMTpqMj+2muvhXHjxlnmuLP//vuHiRMnmogetVG54YYbTHS/9NJLY9sOPvjgsGLFirB8+fJ0r4PY3rhx43DGGWfEtrHP4YcfHurXr5/uGOLheI444ggT4NkXSpYsmePPRQghhBBCCCGEEEKIVCL3RslCiAxxq5YWLVqYhQtZ4XfffXe48847zYYFgTy6b/fu3cOkSZNsO9nj0KxZMxPWmzRpku65sW7JC1dccYXdoixZssSOF1uWaIb86tWrQ5UqVcKOO/7fWtvGjRvDt99+a9Y0ZMRzjBdeeKHOAiGEEEIIIYQQQghRpJGILkQCQRRv27ZtOPXUU83qZN9997Xtp59+umWL9+rVK93+iNZfffWVNRp99tlnYyL6iSeeaLeCoGPHjqF58+bht99+i2378ccf7fUPO+wwy3wvXbq0vR9+XnbZZXbcF110UayJ6YYNGyxTPmodI4QQQgghhBBCCCFEUUCNRYVIIHiOIy7vtNNOYc2aNaFSpUqx+8hIR0gnIx2bln322ce2r1y5Mvzwww9mseJZ34XNSy+9ZFnmFStWDMuWLcvUw33VqlXhkksusePHk51M+7322qvAj1cIIYQQQgghhBBCiPwiORQ7IYoItWvXNr/yf//91+xPoiCid+nSJbzyyith/Pjxse1kn+NVniwCOnA833zzTXj00UdjAvo///xj2x955BHLPqexKN7r7IeIjgf7888/X9iHLoQQQgghhBBCCCFEQlEmuhAJBGG5d+/e4bPPPguLFi0KAwcODOXLlw9t2rSx7PQZM2ZYtjZNRsuUKZNSn/1jjz1mzUv33nvvULVqVWuSSrb9G2+8EX7//fewZcuWcPHFFxf2YQohhBBCCCGEEEIIkVAkoguRR8jEHj16dLjtttvCzjv/X5uBrVu3hrvuuiv07dvX/sbGhSzuVIb3xPsk0/72228PmzZtsqz6Y445xoR1IYQQQgghhBBCCCGKIsnjHyFECoJty/nnnx8GDBgQevbsGdu+2267hZ9++sl+xyv8zDPPDKkO76lr167WiJSs9E8++cS2lStXLowZM8aaqr7zzjvh/ffft4x1vN6FEEIIIYQQQgghhEh1/i9tVgiRK7BoufHGG83r/Lfffgtff/11OOyww+y+QYMGhRNOOCG0bds208acuQGxmixwfMixUPnzzz/DH3/8YT/xVd9ll10sW5yfNC8tVapU2G+//WJZ8onAFwVokvrLL7+EBQsWhF9//TX06tUrHHHEEWZns3Tp0rB69Wo7DiGEEEIIIYQQQgghUhXZuQiRRxCvycbGI7x69eph+fLlef5Mf/755/Dee++Fjz/+2DK+P/30UxOm8VzndWjsmVMQ1MmKr1Chgvm0c6tcuXI4/vjjTfjPjdBPJn7//v3N851jqlGjRmjZsmVYv359GDJkSKhTp06On1MIIYQQQgghhBBCiGRCmehC5IKPPvrIBOkSJUqE3Xff3RqFdu/ePXzxxRfh6aefDmPHjg2DBw8O1apVy5YI/9Zbb1nD0XfffdduX3755XYfx2tz22OPPewYuP33338mZv/11192I2OdG/jvH3zwQYYCO2J6rVq1Qt26dcOpp56arcanjzzySCwb/YEHHjCxH2sXMuGPO+647T5eCCGEEEIIIYQQQohkR5noQuQQbFRq1qwZSpYsGWbPnm0Z3fDoo4+G+vXrWyb24sWLw9VXX22CcjwI3UuWLAlz584Nr776qgnoCN7xeKZ4pUqV7IZNStmyZU3cLl26tInm2eGff/6xzHaOe926dSb0f/7555bZjqD+4Ycf2j7xHHXUUWbb0qRJk3DGGWeEvfbaa5t9XnrppXDWWWfZPs8995zZ2XCsPN8zzzwTmjdvblnpiOunnXZaNj9hIYQQQgghhBBCCCGSB4noQuSQFStWhIYNG4bNmzeHN998c5tsc8Tp22+/Pdx7773hwAMPtG2I5PiGP/vss2HWrFlmyxLl4IMPDqeffno46aSTzBIFW5h99923QL4bjm3NmjX2vng/ZMTTHDQKDURZILjgggvCRRddFA444IDYfSwIkMHusDDAe8TqpVmzZqF169b2GmTYYyUjhBBCCCGEEEIIIUQqIRFdiFw09qRhKKLznnvuGaZNmxbOP//8DPd74403wtSpU8MTTzwRfvrpp9h9ZLGfc8454eyzzzZxmuztRDYfzStkriOmz58/P8yZM8ey1x0alHLcrVq1MkE9owx1xHYy0S+88ELLTicbHXGd9ymEEEIIIYQQQgghRCohEV2IbIIo7kL32rVrrWkmYnPfvn1Dv379LDMdj/Iff/wxTJgwIYwcOdJsTKLZ5ojOZGeTdY5veKq8bzLVyS6fPn16usape++9d2jbtm3o2LGj2b+MGjUqdOrUyfZn+3333RdGjBgRZs6cGa688sowbty4Qn0vQgghhBBCCCGEEELkFInoQmSDb775xixcEMbd2/v3338PDz30UOjatat5jeOTjl0JTUe3bt0ayzhHOEdQJuN8p512SvnPm/eHmD5lypR0iwS8199++80aqt58882xRYdJkyaFLl26mGc6Hut8NtjDCCGEEEIIIYQQQgiRCkhEF2I7IPpWqVLFmnHyE7/wHXfcMXb/okWLQvv27dMJyviaIxzjB47lSyLYsmWLNQcl0x1rGG5//PGHNfHkxjF4djs2MhwPVit+I2ucbPj9998/3fHnFhqkvvzyy2H06NHh6aefjjUnPeiggyw7v127dmGPPfawbd9//701REV4v+mmm8LChQtl7SKEEEIIIYQQQgghUgKJ6EJsB4Tqs846y5pu3n///eaHXrdu3fDKK69YA1G8w+0/0w47hHPPPTfceuutZvWSU49zsrhXr15tjUkR7MluxwrFn6dFixbhySefzPTxiOr77bef/Y69CuJ2Ruyyyy7hgw8+iInYCNpkl7NAwC3aNDS7bNiwITz88MOWmf/LL7/YNgR7PgsapA4YMCDMmzcvXH755fZ5IbSTmR5tSCqEEEIIIYQQQgghRDIiEV2IbIAw/N5774Uvv/zShGAE4m+//dbuI/ubLPDevXuHihUr5ujzfPTRR60BJ01KP/nkE7NAibJx48aYqI0wPnHiRMsk51aqVCnLcqfRJzYxkydPtmxzQOyfO3euZa/7bdOmTfZ88Ouvv5r9CnTo0CGMGTMm9pq8HmI62fQnnXRSaN68uXm9Zwd84cePHx/uvffe8NVXX9k2rFvI5iczv0+fPtZ0dNmyZaFq1ar2mRYFixshhBBCCCGEEEIIUXSRiC5EBiA2L1iwwETp8847z7atX78+NGnSxARvQLw+55xzwoMPPhjKly+/XU91rE+wfnnggQfC7rvvbtu7detmj3fKli0bjjzyyHDEEUeYvzrCM2I5YJeC4JzTDPcof/31V/juu+/CYYcdFttGBvns2bPDhx9+aIsE8WAf48fw9ttvmyh+/PHHZ2kJw2d3/fXX22N5PahWrZplqvOzc+fOZvni2fBCCCGEEEIIIYQQQiQrEtGFyCDrHLsWrFVg4MCB5u3dr18/y7R2axVuLVu2tKztd955J1229t9//22CORYmzz//vPmoO9in1KtXL/Y7j61evbrdSpcuXajfB81SsXbhvS9dutQWDp544onY/TQGxcaGbHUWEFhUaNSoUcxGxoV6FgLIRP/f//5nCxE0G3Wbl1atWoW7777bFgwQ1fkc99lnn4R5xwshhBBCiOTDm86TYHHggQcW9uEIIYQQQuQIiehCZNAw8+qrrzbxGEGYrG18yqF27dom/J544olml4KNS+PGjc1mxaHJJo/Hozz2H22HHcz/G/Gc+44++uiUnPhcfPHFlmXuiwlAdnz9+vVDmzZt7POAZ599NsyfPz/ccccdJrCT2Y+g7j7tLDjweSDIYxlDBjxNR88+++xCe39CCCGEECLxvPbaa9YfB9tDegv17NnTxtGnn366Pm4hhBBCpAwS0YXIAERiBvjuFY79yqBBg8yiJGpjglC+ZMmScOihh4ZjjjnGtmH3gp84WeU0GiVjG3EYH/PcsHLlSrNa4bXI5o7eyBx//PHHw1577WX7Dh06NMyaNcuOl+x5srv9J9neHL9nu2O1gjDOceXEIoYse5qsYgEzZ84ca1IKvE+y7h3sZ7C8cViQaNiwoWXfO9yPNcy7775rEylE9bzY1QghhBBCiMKD8R7VmJUrVw6HHHKIbXvppZfCWWedFcqUKRNOOeUU6wfUvXt36+EjhBBCCJEqSEQX4v+3MSHzvG3btuGtt96yjGoafQIiLw0wmQxgc4KIjqBNA82xY8ea/QmPI5MaEKYXL14cTj755O02zURoJssdIdpvn3/+uWXs+GMvueSSdJYq8XAsbqcS3yQ0nnXr1sUmNDfccEMYNmyYZYXjTc6NDCF+0vSzZs2a5n++PT799NPw5JNP2iJC06ZNYx7w2NNw7Ndcc40d3+GHH25NWadPnx4uuugiE+FZrKAxKxn6M2bMCPvuu6/ORyGEEEKIFIWG9M8995xZ9/Xq1SsmrD/yyCOWXELiybRp08JVV12lxAkhhBBCpBT/L01UiGJs34IvN2Wlt99+e/j6669tO2IzgjTe3QjBffr0sazz1q1bm0jMhADI8vZMcCCTGk/1rLjvvvvC5MmTLcN869at29yPVySvC5S98jc+5IjM0ZtnmjvXXnutZXvznH/88YctDvjPn3/+OZ3nuluy8JPseW+YGhXHaXAKLCxs2bIl1KlTJ917BYR3PpsoCOI//PCDNS3lxmdy7733hrvuuivcdNNNJtLjmd6xY0fzjX/xxRfNX57Pu1y5cnb82RHwhRBCCCFE4bBmzZowdepUaxa/yy672LYGDRrYuJGkEh9nUiVJ5rmDtaEQQgghRKqhTHQhQgj9+/e3mw/4sRbB1xsLFPj3339Du3btLHPGIUO9a9eulm1dsmTJDMX55cuXhxdeeMFsSsjA9oxxhGQEZUAEpzkpmdyIy0cddZQ164wXq/ODP//80zLfybpHNOcnNzzKPeseWGQg2xz7Ffzg+XzIHj/11FNjn1EUPq+XX37ZRHEe558r/vJkwLMowQIA20eOHBl69OhhixLY0GCj89hjj9lnhqAuhBBCiO1DTEWwZNGbmEoM50ZlGzcqv2j2LUQiYKxHVvmGDRvCU089FS688ELbTiIEgjrnHuPM0047zZrVjxs3Llx55ZX68IUQQgiRskhEF8WeV1991URiMqcRcWkUOnPmTJuAMglwj27KUm+++WYTdmmiiege79/97bffmi84zTfxf+Q5HRptkiUOq1atCh9//LFZnpQvXz6dz3o8v/76q2W+81z4oG/atMkE9gsuuCC2z5AhQ8L3339vExom0WRxI85zw38ymvFDBjjbS5UqtV27GQdhGzHcs/QdjpusexYKmJxnxLJly8Lw4cMt45wGo7z2F198YZMsGrJ6w1Gy6KMgrJOxL4QQQhQXfvvtN1vcxn4NuzZiPwvb2KVh/8Y4gzEGC94IlCzi06yc8Qs3xMzMYBGcDGF6m7DQj7UGYx16o1B9x3iE6jKq0BjrUAEnhIO1IWPZ3r17x7YxhmP7LbfcYtWKGXHrrbfaOA8bv9q1a+sDFUIIIUTKIhFdFFvIlMbC5MYbbzTxGUEb73E8wSlNxauRG3YkiMVMbLFEwds7I3gMnt+edQ1Mbs844wxrLIro7X7k8b7oTJh5fqxbHCYa2L2wPR6OlSx358gjj4x5uMfDhDh6H5NohG3e00EHHWST5QoVKthPsuAvvfTSTD8zxG8ag+LZzk+y1zlOJuXOQw89ZMdH46jo4gCT/UmTJtln2K1bN5usI6p37tw53HPPPWHUqFFml/Poo4/a/kzu+Uw9e18IIYQoCnjcJ3Y7WF1g88ZieSJgkRyhPDomyenjDzzwQOubghUcx8wYBsGeqjIykBkvMX5AvBdFG5rRM2bkPCAR5Nhjj7XtnF/bawjPPiz+uE2hEEIIIUSqIhFdFEvwZqTxkU8uKUFFsEW0vv76600kBiaPZH4z2UWMjk4msHah2ahnlyMoM6E86aSTwjnnnGPCOQKze0QC/uQI94jF3N59913LSCcrrEaNGva3g7ULxwP4n5NRjnUKN8RuxH2HLHky1pj0Mpkhy9v90Mkkc+sYqFatmmUNZUdwxyOe5+MxNEo9+OCD0+1PdhxZcjQhBSb/PtlGJEeQp+kqdjWAgH7nnXdaFv8DDzxgggG2MUzG+/XrF6644grb1qlTJ3sPTNbnzJmT7rMXQgghUgXGGSxAL1q0KLz++uvhnXfesbhHnMQajThKJRkx28E6DZGShXgelxlUdjHGoGKtsGCMgKjuDcqPO+44Swhg3FAQtnQif85Zki0Qy9u3bx/bTk8gzlvGa1gQZgYZ51R0jh07NstKSyGEEEKIVEMiuih2IDbj580kFvDmxv7EfdCZPGBNQib1wIEDbYLIfdiNNGnSxCxInnnmGSuBPv/888PTTz8de24ybaJCMyJ2tPFnZhnj7IMQHZ0sk2nOsZH5xTEwySYLyJ+PyQ37k0Ufvbmdy3nnnRcTn8n4pgwcgZsbWWMsBGDPwnYWCfhJ1rcL7jwP+7KfQ8YZ9i14oeNxidAfhfJzynb5TKIZ9CwQIJBPmDDBFhGwhxk6dKhZ35CJ7jYxTLwR1/kbv3kEet4vHppkuAshhBDJDr7kiJD333+/2V8wFsguCM8szhMzWWwn9jHeYGGZGJ8ZWLQxvskMxjE8F8dGrKZPC89HQgBjHsYZ2HHgXe0wliDOE88ZgyCgRsX+7UGiAXGd8Q3jLqrUWCAQyQ3jYxZxGCsyriWRI7tZ5/ijM1ak+hALF3rgCCGEEEIUFSSii2IFYjE2IWvWrLGJKp7bd9xxh4m2lD0Dfud4jJNZ5X6P7IOgHZ08Igx37NjRbg4Z5dic4P+NXcz69evt5pk4LVu2tCz3WrVq2Y2JJRMVXot9EM7nzp0b80PFC52fXt6NfzsTYSAT/brrrsv0vSL0k20PNOqM2rQwMSazHWsaJjtdunSJeVn6JInJMq9B1jpiAD+jZeEsMixevDj2NxNzMveBz4lsfybnCOU8FyCGk4k3ZcoUy9gHJlq8zoABA2LZdHwWPBeiABl8QAZ7nz59cvnNCyGEEPkD8Y+FYRbiEbupMPMxhYMgSZY2IjJVZjyG2Mg4gEovMnuJjW+88Uamr0NsphKNLG/GB2S1s/hNPGeRnaahjG14LarQWEAn5hJHvd8LIJQzBgGy3bF54xgYn7A/r0HlGI+PgkiPoE7sx4bNq+dYDKfy7qOPPrLxU2YWMhxXgwYNQv369e1G5roLtKJwoE8O5x3fA2NB4PtjjMv4NDoezi6M/RgD0zg+Wo0phBBCCJHqSEQXxQYme0wiyabCPgSxmgktWdPYuSDqtmrVynxJo+WnbCcbDJhkILLjlc4EAxB+Ec2ZPGM9gv1LFCbLZGMB2WhMQDkWJrHcyHbnOODBBx80v/DMJp8cK1YxwASFrDImKNi4+I1JNsI0gjNZXy6i0xSV955RRhzH3qxZs5j4Ttb98ccfH7sx2SbDngk7E2wm0HyWvXr1sscw2WYCz0Qc73catdKUDMgmJ+ONDH6aoSGOk/X24osv2mfH6+KHTgY8mWpMvoD9WFTg/WKVw/saMWLENg1IhRBCiIKEGEv1FrGPmDVjxox0jcSBKioW1n0ROTMQLomrK1eu3OY+FrxZwEd4Z1zy5ptv2sI3YLNBXM0Mqt6oRmNMQ4UXYxbiJwI88TSzBo+8ziWXXGLv64MPPrCxBmMTxhccozcRx7KNzwExnHEMlXb8je81n4vD8bJgEC/IO4xhaD5OTxkWAMhkZgGCMcf2sp5F7ohmlNMLiO+b78nHWkCVQnabz3OOM7ZVDxshhPh/cB3l2og2wI3fuV4SR1m4dt5//32rOCMG+g3NQTFQiCQlTYhiwNtvv5222267kRqVduSRR6bNnz8/3f3PP/982pNPPmn316xZM23Tpk2x+8aPH2/bpkyZkvb7779v89w33HCDPc5vZcqUSWvfvn3ao48+mrZ+/Xq7jRw5Mq1Vq1Zp5cqVS7cvN543epyXX355Wv/+/e11Oc7Vq1en/fLLL2n//fdfQj6LzZs3p33++edpb731Vtrjjz+eduedd6Z99dVXsft57fhj5LbffvulNWnSJG3FihXbPOfs2bO32b927dpp99xzT9qXX36Z4XGcfPLJtl/lypVjn0u/fv3SlixZknbcccfZ5wf//PNP2rXXXht73sGDByfssxBCCCGyGzufeOKJtPPPPz9tl112Sdt5550zjJXxt5IlS6btv//+aXXq1Enr0KGDxfhTTjklba+99kq33w477JBWo0aNtO7du6c99dRTad99913stbds2ZLuWG666Sbbv1OnThYz582blzZ69Oi0HXfc0Z6L19q6davt+/LLL6dVr1493Wvtuuuutk+PHj0sTo8YMSLtsssuSytbtqzd7/EXPvjgg7SOHTvaOMmfkzFE9Pl22mmntMaNG6dNnz7d9mdcceqpp6bbh2PjOG688ca0Zs2ape29997p7t99993TmjZtmnbuuefa3127dk33nqOfh8gdfK+MzSZOnJjuvD7vvPPSxo0bl/b333/n+Dl5PN9ZrVq17HchhCgOMBclLr366qtpo0aNsluUqlWrZjouQCtYsGBB2syZM22e7HPi+Lh6wAEH2Jx4zZo1ad9++61do4n57777btqvv/5aaO9diOKORHRR5Fm4cGG6yephhx1mE8h77703nRjbt29fC1jsM3DgQJvsIl7/+++/th8/ea6rr7467Y033kj3/EcddVRa79690xYvXpy2YcOGtI0bN8buf+aZZ7YJjOx/6aWXpg0bNiztk08+SUsmmAQh5o8ZM8YmsaeddlraHnvsETv2Dz/8MLYvIv99991nk+Yvvvgi7eGHH06rX7++Te4zWyhwYfziiy9Otx8iA4sNTNIZJES/Gz5DJnm+LwKChHQhhBD5yV9//WXx58ILL0wXBzO7Mb7wRWfiJ2OF3377zcT3Fi1apO25557p9ifuMRYgRn7//ffbvP6ff/5p4iRjk6iITKzl8W3btk23P7Gbhfv4+Dhr1qy0Xr16pTVq1Mgm5fETdUSA4cOHp7344ot2YxxDnG7Xrl3ascceG9sX4RtxvFq1avZ8jKMQZaPPV6JECYvlMHXq1LQTTjghJs7zWuvWrbP3S6IAovsVV1yRdsQRR2zzWSIcsJjAZ8BnwzYW3P/44498+76LEoyl+C75Hp1BgwbZ53jOOeck7HU+/vhjO4/5//H6668n7HmFECLZmDRpkukDdevWTStVqtQ28Z9EM+L9119/naEwntGNeMjC8iGHHLLN4nr8bejQoTYv978ZUxx99NFpLVu2THvooYfS1q5dq/mxEAWARHRRpFm0aFFs0lqhQoWYSO6TOYLNe++9l9a8efN02VLsy+8IvT///HPa/fffbxnsvg9CusNklRViAhtBlceTUe389NNPaaeffrqJ9ExoEOZTUUh455130h588EFbTHAQBfwzOfzww9O6dOlik3EmyQTzevXqWcYek3qHFfSVK1em3XHHHfY4Js/RgQif/Zw5c2xfJs9kyrHo4YMF3+/WW2/VQEEIIUS+gdgYncASr1gwJ6YT6xlHEOfIBGesgHBJZRY/ERSvuuoqy0SPPgcxjmzsN998M53A+f7776d169Yt7X//+1+6Y6Bai8eRtebwWgjdWUEsvv3222PxFBD0/ThYKKfKCxGf12QbMRxRnKzwhg0bxjLbEesPOuigdO8D0RQhnTEOYyBivd/33HPP2eshzPM3E/xVq1alTZ482bYfeOCBtp3PjnEEx+oCLyJ8fNb8oYcear/zWQCiOmMJjpdj43eRlm5cWr58efvMGAc7jHkZm5HRmEg4l7kJIURRgMrzF154wRLFosQvGvvcNH6RHWH8m2++scXvp59+Ol08K126tI0DWCimKo1Fbofr6Nlnn21jDBar2Y/9WcAm8WzatGmmWcQvhscvQLMAzrX/s88+y1WFkRAiaySiiyILdiU+eaVsyoMLZae33XZb2s0332zly54NzWSRMutPP/3UssdY2cWCJSrc8nxXXnmlTY7JvMZa5JhjjtkmgDEpLQ5Qukawd6scvzFB7ty5swkEP/zwQ7rHNGjQIDZ5ZjWfrDKy38nK90l6nz59bF/Edi+Z9wWQaPY636MQQgiRV5hokkHGJLZnz56WXRuNa0xcmZRiaxbdTixzELaHDBli1WbxwjlxbenSpbHFX6rQfvzxx9hjsUvxfaOwgB21XOPxUWs5SrqJqzzO7VaAhWaej1gcfazHVDLlHOzsELOJ6fG2c8Rc3iPiKwsEjG9c6GZi78dC1jjCwdy5c23hHXi/HBsL5Yjk/n4ZeyESxH9GvFbr1q0tuYGFBjLzovucdNJJdqwTJkywv33swSIGsCiAqD5jxozYgr9XtxVVSFpgMYPPNArfE2NfzulEw8IJY2UhhCgKEBvJIseK7KyzzorFFuaezFFdEKcKjFh+/fXXZyhgU4WGVRpxysEilkVy4hbjA8YXXK9ZpMculsV5ssujIIT763MsZKgTR9mX2AmMVRDLiZ3xVW7cENxZgCZek+R35plnWgUYi+lCiLwhEV0USZYtW5a2zz77xFZ9+UmW1AMPPBCbwEYnwgQyLEkcJoDRrCuE8kceeSQWeJiURf08eW7KpJlkZuYBXpTBr5XJNWXZ++67r30mrNZHYfLMRJaJetRLlsUKSr+ZiJOlX6lSJdvuK/PXXHONDVrINPOS72hFARUAQgghRG5ggssirmc7x9+IaSy+I+BGK9YQ1ckOR6zFRgXxNpqNzaSXmIjlW7y9CtvZhzFJNI7iPc7k2/enGiv6WPZnbEOFlsP9XgIetVtDzOb56H0SBbs5F7kzguejFwuTfSb40c8C33MfA2Fzw7go+jgm6SQouOjPNrLpookIt9xyS8zyDtGCGB9diMc3HZ9YPlcW4hHTGYNFF9DJzON7YRGf13PP+Gh2HhY8gLDPmIGkiCjY0TGuSCV7GIQYxpn43Dskdfh7Rtx2sBNi8YPP0uH7ICsyajmYU3gNLHpY4CCzXQghUhmqsjKyFEO0pvqpYsWK9veAAQPSLV5Soc6iL7Zmr7zyiiV+MRcmwY7t3KJEK9rjbyxeR8HGLbN9sY2JgmgfvZ/xCUkAZ5xxhlWVZfQcjHeoqicGyh5ViJwjEV0UOShd8lLhaMBh4hDN0iLYuVDOJI/MpWi2FxYu2LkQGMmmouFmNNDQPJQANXbsWCutFv8HnzEZdZ4Z5pMuSt2YYOORSgYeJfG+0MGNlXImfWRUMdFmBZ0MOzKpeCzZAZRw09QtfjDAyroQQgiRXaiSIiMsvsGl344//viYFQoVaL4oj+iLDzSLwsSpqLjODR/UaLYXQiOT6mg2NM08EXaJgxmBeIwAyusxpnE8A5vs7igI2q+99lq6fYHxC9ZpWMk5iMbEYsrIoxntCAEIo4jcUQ4++GCLz4jbLsg/9thjNsnHH90TEFgsiE7iEa3JKEf4ve6662IL5L7AQCXa8uXLTdDH8o0m7dFsOrxno5CgwLFF7d/4nR423gyez4dxGc/vZfhuHcfxYynjIMSznQZt0ax/xhpRC5REwaIAyQSIL1EQuTk/WLiIJoJw/pGdGLXQc6vBaPUDn6Ev9kQbe7rdnvvTA7Y7bENYYYEmN1BtQcM8Pr/o5ymEEKkA1y2PGdEeI1wXWSDkFm/DxiIui9LxsLBNQ+z4yjVubIviFUPEfRLAGCeQMEY/tfhrKcfHnJfYiDZBbCeWsi+xNv55GRNQARdvK4OtF4vVHHu8JVtUUI8uwAshto9EdFHkJsVkNhMUaIaFDycZ0YjgZDoRKKLNu5iUMQH21WEm03hzuhjMJC7qf0a2mRP1MhVZwwQ/mkVGIGdFn0EBE13PHmMCjTjhixlMNpkQRysC8FS9++677fm8ygAx4tlnn9XXIIQQIktYDEcUj1Y0MW5gIk0DTJpYk70ctav46KOPTOSlpBsRmgxsFzRdXMcOLt6bG+Hc4xuZzw4L725twgSX44lmlwMTeR5H/HTIIGYh+q677kp76aWXYtspM+f9IF5HxXom6zwHgrVna3O/HzeTcoe+LWzr1KlTuuPwyjHisScSIPpGJ+FU4pGBl1HzVcRgfpKUwHvx9+W3qIiNnQzjAMZi0QxxMvcvuOACE4ERisnGjlq9IKYjlrPwzsLHo48+GltQYKw2YsQI24+Fe8RjbgjRfDeUxPM4QJBnPyoPop8N1jh8ljxvtMcL5wifG0kXUThXeH4fTwLZ4zx3lSpV0u2L9zzbWQCIF8a5sRDhUAnA98xjouNekjx4j1EY97LoEW1eT9Y6Y2PGVXkBIT0q+gshRDJDMhfXyBNPPHGbxUWuZ1SAEUejjT1J4qKvCUl4XGdZZI2/zvr1mxuxkusrVlpUchETo8l3/I4GwTWdhW0W4amCoycJcSQK2xDnuTEmofHoJZdcYmMFeqdEF1eJVSy8EqPRLhin4OdOT5JotRuv79Xi0cUBxi+MKYjVHA8WYLxXZagLkTkS0UWRgYwqL2ki85wgAgQDz3gmWPh2JhhkY0UDCaXYTKg8I8vvYztZVZo05B485Gm4Gv1cWdhggIJAgYjBxNwHBmS6IVSQpTZx4sR0gZ8SNC+H9+1MvKOTcSGEEMJBTJ0+fXpsEu03BEiPO1SoebUTi/BRyCxnATeazUU2LgvCTL6ZcJL5jfd3FCa8WMYhYBLPyHKOVr2RQc5zUUEXnbQiklPxxiQ6mjFO9jz7I0b7mIT35k1AeX8OPuUsDLCdhQHHRXDucxgbIQggBESFAixreE7sUfz4iNlktrlvazTzjnEVE3g+v+jiOe8FeA6EbuI/gjDCOGDnRvNy9kUwdxD93SYHUcIhycFjv78Gorh/P3wXDoKGZ9xFcQsfqucAsQTxm21Y2fhxRd+j26Mgivt34Q1PHWxm2M7YJV4YZ/ElmoTRvXt3O25/PWChgMz5+Ix8HpcIYSNalcn3TgPa7QlQnL9CCJFKkOHNnDFqa0KMY7GYhVGu1dFrKgumeJ7TG43FVarUsWWJZpq7jgDcj/BMHzav7iGLnOtlvJVaVhYtLBxHwZc9s30RvaNEK7QZBxBjeDw9Qhiz+HEx/hg3bpwtqiOYR+NzvLDusYrKrPjqKSGERHRRRGBiwUqtBwBWasnYYtXWt1HmxKovmUN4mUaDEQ1CaLLFZIWmIH4fE0yym1ilFomBIE42lw8mGMzw2UcnlQR8FkJ8YPHcc8/ZPtHyOqoHbrrpJlvVJwvOswaiWWJCCCGKN8QWhOyMPE+5MdFFtMRb26ubmIgyjuCxxCOyuaINyolPbPPsbkAY98knFVVOdILuYw9E7GhMZKzCpJdm2e5rzXYXjxGro8K4W5EQSx0E5oy8VcmqRqyOirEkEZA1jtdrFO8Vw0TbIWvORf4oZNuxnc+NMVQ0PiNYIPxTIk75OlYuHPfnn39uj41aifjnw/MhRpMhGM2eJmMv+ryUwSOsI1pgE0MWOAsEUb9Z3lu0Bw4iOd9/dGHErU24RZtvkj2OuM7nBowxEFt4DyRqeAUA78vFdl84YTGGDD4WHjivqDKInoeIGmTNR783RB6ehwzI6DiIBZJvv/02LT9BTD/88MPt9aN9gaKwiMAiCp99tPpBCCGSFeJnNEucG1niCMjE2qiAHJ+AxUL3RRddtE1lFfNRr4hyENqJUSymky2OfYrvjw1aRvGfRVMssagIIkGvS5cu29io0dMEu1i/jR492jLL0SSi3uxAc1Fs16LVddFktWjWOgvKVL0RM8leJ7EAizriAAv28QvjLqpjD4aVjLLThfg/lIkuigRMkKMXfLw+3RedoEJZlDfoQkz3/dq0aZPOQ5SJGSuv7MMkMreekWL78F0QkBkURMErlskxE3PPrOPGSjuDCsrByWYng90hkzC6WBLN2hNCCFE8QSx2OxFu0cafLJJT8cQkMtpUlKxxBEwETTKJEaX9PkRnfEwRHxk7RK1WAJGWSToiMBlqjDGiQjsTYSbiZL9FrV88A5sbx+Qw2c1IwMbOBB9U3p/DQgB/R21oICeTXgQBss7c3gQQ9TmmqPALCOdUkLkATfad28eQHR4FKxe2U+XHcSI0kB1ILMcyj1L5aKYfNntk6DuMCfBf9/vJ0kasjhdNsOSJNhdFRIkuaERB4EcQ4diiIJBERYfMYOyCDy0CBwkaVDEgxvC6ZMMjwLDYEQWxgvsZkzqcS5yDnDOFIVCQhEBSA8efEYyDWVzhc41aywghRDKDKMw8kvkj8cobhEZjPdVHXOOi1TlYpvk+aALENYR1Ykw0nkerjuJvjCmw34rOR4lzvBYxEDtZ4gVVWxwDMRZLLyqwWRgmvhDn+ZtxA4vg7MdCJmMHqsGIzdGYQdwiS57YyXMRZ6iWihIvkhODGbfwelRL8Rxk4cc3K/UbVmVCCInooghAcIlmKblw7sGB0ttokKEkmftYZa5Ro4ZN5qLBk0wp+Z0XDkziohUCZOsxgHExnW34xpFt7k3bANGADDZ/LJNtrZYLIUTxhDhO1q9nm/HTxwX8ZGKJUOxe2T5ZprcGsYOJanSyieBOhjSTaCCDi7hE9nW0QZnDc7j4zoTcYazhlmZUvTk0H0UYRnjFF9xhwo0wTjZwKsBnwWI3orDDxBxRnbEWvrNkwMVn9zHmQhDwRQMfzyEgMKkny5+qNbK4vVqQz5+MQhYtoo1TqRwk48+93MnEY6GdhRHEgWgpPp8v3zXWLMAxYP9H1jkCRNTChOdF3I/3NGdBn9fhNRA5eLxXx3HeIZzceOONliDA6/N5pNpCP58T56gQQiQbxAgWc6kKomo5ulDKWIC443GF6zNxhusZFevYlZB8xfXZId6SyEWc57kRu8n+rlu3rs1DvZ8JYIVFFjcZ5YjfVDJhX8oiL4vwzFmxMsPmjLgStZVJxI34RmyloTm6BrEGXQQ7Mz6L+AVhxiNYiLF47THSb4xZfO5MvKPCKtr7xSumSFSkgoreLqkWy4RIFMpEFykNK7g+SWYihpjKZIhAhlhOsGOiFW3YxWSN0in3SecWDZ6i8OD7o2TMvxcCPBkA+NT7pJQbgwNurMwzQKAszoO770NpuBBCiOIDEz8yw6Kl2viZIn56lVo045aMMBpWI4AyGSS73BfaXeim4RbZZ0wYHeIOYipxiawwfFTJeovCRJWYxCQ32tyL8QfHxxgk+pwcS1Fc/MV71j9PFrtnzZplTVajFQLYhXhmfteuXW085/chDmDp5hne+M+T4c/fnnVOg3IH0YRtLEhEswR9zEc5vMOCvAvygBhPCT5iPdujXuEsuvhz8V05ZL/Xr18/ZoHDGBMLGM4lFk0QZLwCIjPLlGSDpq58T0IIkczMmzcv3YI3GeckWSGAO1yTqUqi4otrd0Y+6VTjROM7ldJkXceLyNxYbAfiNdd5rMqwF2U84Fak27sRE4hnjD/I+sbahcx1qqOwdyM7nCop/sYmhuMnFrI/rxG1T8vqxhiExxGHWaCnqsubdjOuYS5NQ21iZVQroTIfCzuy9RkDIc5H3xsxkv4hVMl5hZkQxQmJ6CJlYQXZJyZMUskAikIZlN/PpIiJDJO0aIkSkyp8LZV5nlwwYWaV3L8nyrz5PskaZFCzcOFC2052G56jLqIjTLi/p2eGCSGEKNow4WMiF/UwRWD15pJYZSC0UgLNJDuancVjmVTiR85YwrPV8dsm4ww7ELLImLxGH+fVUAimPtbAWs6z1clq9ioqHh+FUu6iKJhnBJ8H4kXUroXPg4xs4roL5sTvzp0723iMG+XljN3wemVxBJuZqBct4gn7IHQjDCBY810ioiNqI2jwGZMVH20Gy3a36iNLHGGf79a/D8aWZOAxNiSDke28Bt8Z9j2IK/4dZwfEd94nzdCjIFzgux99TwUN5338e+EzdO/eeLs9IYRIBliQRHSOVjRRPURSHMIu1WPx1isk3sU37KRBNwug0epmFkaj+zCu4JrIHJSm2CTqYRHjtrEZ3Yg5LN4jTpMMRgUWc1f6cyCYI5RHadu2rcXIyZMnx7YRy/BxJwM+CsfAsVClhohPTCJWcVwsQiN8k/WekUc6NxIMEdaxhEM7YQwTz9tvv72N6M/zkugWjeVRsZ4xWE5ioxCpjER0kZIwqWGV1jOIuBHMKF1iUhRtKEq2E4HLM9FcVKc5lTzPk/s7plGa27QwiCHw40vHfUySmeQywEAoYbU++v36pLwwJ6hCCCHyFzLLKeP26z/ZZZQ3k/HtEDPwCPVqJURdh/gRbUqJwEummoOQvu+++1plFKXaTNLJyooSzXiONl/EK5vXwo6kuEMiA59bdKGiX79+1jzTM8vj/ckZ0zGZj36PjPEyggV2kiSiTUmj3yEihX9HiObZ9fd2+xmy8jyDL68gVLuwH+81X5BgUURGIc3mop8xog/fE+e7EEIkE9ixuUCMuEsGNZXJ0Z5nNJJ+//330z2OjG7XDbA+YT5JXEKQZr7pUO2EUExFMz1QuE4Sm6L9NvzGcZDIhcZANRqCtjcHJ1PbK6X8WEjmYxtjCuzKsPgCXxDgNfFHpzLOLU5ZSI7aprj+MWzYsHQxjuQzFmZ9sR9BGxszxiFc08lm96bk8Tfs5IjPjF9cG2H+zGJvvI86c2wsaqKL09HkBRaui0uSgCi+SEQXKQlBzQNhdBUUTzS/qBPYyB4iiER9Nk8//fR0nmki+bMNGKCwas73x8o5wZmBj3uR8l0T6O++++7YOeEDLAZNCuZCCFG04LpO9rhf85mUUn2EzQp/I3ojXhMr8Cv1MQALsGRvMdH1GOITVZqB8hg8RaOQPYbPKRnPPvbAc90hq5rXIxsuvtmoSA/ZdW6ZQ+acgxVfdGyG1U00OxDI0sNih+8pCsK6e6Uzwc9MmKZHDmK4L7bwPW9vfEC122mnnZZOaE5UY3X83BHUHYT9qGd7fuPJB5Trx5NZQ1YhhChMWDDlukV2OBVJ0exyRGIWrhGC6c8RXcAmc5tqMWI5c0sqnzzpCsHbwS+daiTmnVFrOK98Z9GdSjWu4Yjb9M7wDG/GFGgP2JBiUxZ9LCK2jyGildYI0gjY0e2I9oj8ZMq7jcp5551nMRFLMkR3jp9YSLUT+7IP1djxnxUZ5N43hNjDtR2/dhpdeyV39EaVN69F4oH7v+Mvjy+8Jxxgl0OmP2MuXxiP3s4999xt4rcQRQmJ6CKlIAuIUqKo9zU3MmnwJCWAeRDFs8wbflHmRKBi5dkDr4TV5IfviCahfGeUzjEBBhZL6HzO9xoVRxgEjRkzJnYe+OCHLAB930IIUXRgIuyL5lQsMXFm8ueCOFm0TFjJSveFVSafWIWQdRbNourYsaOJtnhkM74gdpAFhuDLJD2KNwblxjFEM6QVZ7IPGW9RAZnsfzIAHWI72YSvvfZa7DOmSsA/e8SQaFN47FYQu/1+xIPo8zuUriMq+H68TkbNYaPw2tHnon8L1gGJrGYkexDBBJvBaKPU/IT3xPeAcI/VQXwTOiGEKGy4tkcX9YjVXLeIvz7fQ8jlmsy1HIHXY0V8RRoL4g0aNEinITB+oAEoVWbRqja/1ahRw4RxRHN/3ooVK6YdffTRNnYgdmUkIpPc5Qv6vthPPKOBJzpFtWrVYgv7gwcPtvELIrhrHAsWLNhGxKf6muOMbiMLn5jEojANUWmW6j1GPIs8urjPvsRP73tB3KXh6OWXX75NdjnHTqUd2fhYnfEZRqvDgOx5KgKIX9F+JjwXYzAhiiIS0UXKwOA+2vDLJ8UEDffCjK7kEoQIbg5NL/A9I/sIKxeRGrD6zWAEP1QggOMP599zu3bt7G/3pPVGMfzdp0+f2O8MglSBIIQQqQvXf7KuEPw88xirL2KExwQmyHhoY8PhcQEhncwwxgFkkPu+TIJdpHVoREpMoeKNMQYNvKL2LyzmMtll0ZbJvcg7fC94uJIlzmQfodv7myA+kBXIGJCxnsd1bxQbzdxmgYQGb34/GYoZ2b/wXGRfe8Ua2XjZzbzmHPQyfSxiEgUCBc3tOK9ZzClIsDPw8ZSEdCFEMsC1FssT5vNc6zO6NhGvif/YeJF1js2nX/8R2G+55ZbYvojEfh9xhWxrqtmIE1GxmriAsO3zSZqE04iUJC0S+fzxvj+LntjI8nwk6RG7aOSJ2I9dGdnqjz/+uGV/87fDOIXHkiEfBfsVdAreDz3C0DkYzxAbeH6PgQjk3geGxAAWEjyRAL3Ee8Exfhk7dmxsHo0g7uJ9FF6Pz5jKOqzW4m1cGE+R0IaPui9gE3Oxgol+rixEIKYjwPPeyJin+aqSDERRQiK6SBnw84pezAkcrMZGvUuZLDEJ8X34Pd7DkomSJgmpDd8zA6r44O6r+tzIOCRgN2nSJLaNAQECjBBCiNS77mPPFW2YRbl0NKuYCbE3Cn/nnXdsUkkFGpNJsqei3ufYvOH5ScPHaFxA0CV2kGXsZcpMptkOPH9GGc4i92CvQ4adfzeUt7PoHRVEKIX3BmgI7Z7xRj+ceO9uqtVcTOB5M2sejx8tDejYD4GCzL/sgCBA9iLHnUg4r+J9fPOjURtl+NHPhExG/k+RySmEEIUN2dGI0n79Z2GbzHMqjKILp8zxEXRZFPVrPjfEdYT16PUT6xP2Ib6QZBfvD07lE1ncLLhjYxLfmBPPdTKr8WRHVEdQZxxBw/KCwsVrjo94SBY4i8D0dmEejD2Ni9pkkDMXJnb6PJnPi/dHhj5iusPnhCUe1jHY2Tj8zmdClnm89znZ7CS6oalgnRPftNUz2f13xm5k8wtRFJCILlIC/C2jF2XEUCbDrHgS1NwPzH3DCBT4ldE8Cq8yTXiLDggjLqBThu0TYM4FVs4ZHNFM1gUPVt6jAytEGC2iCCFE6oDYGbVR8axZJoSMD1hUJ9MrXizFkoXr/b333hubzGEFRvYXQrlnWjFeYBJOlle0GTUl3GSo0bArs4aWIjGwaEE1oWcEUvKOYEFFgGfbEe+9coCECP/++G6jE3/3F6fknvMiK8j6piGpjyOiVQdZET+OQJiI2sskarxDtUSiG9OSycgiANYGUe93ZQoKIQobrkssjno2OQ00WShF5GYbDTyjEKd9XIAFKAvmc+bMsbkgsd9BJ+Cx0axzrN/IyOb36HYy4Kk0IsudOSdaA6+TzPNHMt5pJEplUYUKFex43Z6GeIo20qhRI7NzYWyEAE+iGXGWhETiLNVgUc2Ezx17HGID+9CXLN7yBfGchW3GX8RdPrdopn78jdfNj8VhIQoSiegi6WFg7yVVXqLkq6rcaIzEhMCDHyudlC95dhods7klOmNIFDw0FXNrFoI4ZW40hyMg+/mAT17U35RBBftHAzjec0IIIZIfRNRonwsmZ1ShRQU/hFBKkJnoRkujiQ8I437tp+SaEmtn/vz55qONPYxnnTGp9okyC/ReAi0KBoQOF0uI98OHD7eJOaKvC+nEdc+obtOmjfnZZkR8JWJmlWjsR0WCnydYwuREUObcY5xK4/rt+avnBBd3Emkbg0DiVjlk7AshRDLAtSladU4i3LvvvhtbzGYb1y7idRSysmkoTiNMBOFobwzEZCzYaBIanQeyOEkTUPQDFmCjIjpjDGJAqoOozYICdmjYvXgGOf7nblvjVjBAXCX+RsdI3hyVcVj0e2KRgrFVVCxHqGdsRkNRsvOvvPJK60mGJV68kE7We3Yrv4RIRiSii6SGwMhF2S+6lO9GBXRWUMnQ8ZJrhHOfJBEE8CTz7LWiLpwy4UvmFfJEwCo4E1W6lntZt0OAJ4uNsn1v9sVAgeBN41n3z/WBUkE17hJCCJFzmKjhRRpdQMcXFK9QMsyi4jaZa5Qxe1YUIKZ7U1FE+Icfftiy0nzi5mMFF0s9q5lsrGRYdCeeF9fMYIRo956lJB0xgIk51QdUF0bhM4p+TniLI67Hw1iRakVK0zP6XNlG6bufb/jnZjdbjuazjDUYgyYyw45j5j3z3hMJWfz777+/CUvxYykhhCgMuG57HO7atatlTPtCott8ERuYv+GzHb2O4zWOaOv7EvPx7476erMtvqKN28KFC82OBCstMrSjInJRmaPz+mSpI35TdYducs0119iiBHPi6dOnpz322GM2j2aeTZyksoo4TGyLxgk+I+Iwz0nzdRYimGf758l8m4Vtr96jdwwVAhllpfM9+6K4EKnEDvwThEhS1q5dG6pXrx7++OMP+7ts2bJh/fr1YbfddgsTJ04MrVq1Cps3bw6HH354+Pnnn8P8+fNDw4YN0z3HV199FYYPHx6GDh0adtppp5AK8N9yw4YNduzffvttuhvv33//7bffwj///BP+/vvv8N9//9ljd9hhh7DzzjuHXXbZJey+++7hwAMPDAcffHDsxmcY/b1ChQq2f6rw4YcfhsqVK9v7dHjvO+64Y3jyySdDly5dQs+ePcPll18e2rZtG15++WXbp2TJkuH3338P//77r/297777hvfeey8cdthhhfZehBBCZMxVV10Vxo8fb7/369cv3HbbbWHOnDmhZcuW4c8//wwdOnQIo0aNCmPGjAmdOnWya/uZZ54ZnnrqqTB37lx7PPsdccQRYcaMGWHRokWhR48eFvtat24dHnnkkdCuXTv7CcRbXmPIkCEWGxPJX3/9FT777LN08Ts+nn///fdh69atFtO5+fCccQsxmhtxK7N4zq1cuXKhdOnSReKU4v3z3Z5//vmhTJkyGe7z+uuvh2OOOSbst99+9jcxvn79+jY+mDVrVrrH3XfffTY2gG7dutnfjBvimTBhQrjmmmvsfGrSpImNKxhLbY/Vq1fb51+iRImQ7Lz99tvhnHPOCQcccEB488037acQQhQ2n376aVi+fHmoWLGiXaOIi1xTifXNmzcPN954YxgxYoTtO3369HDJJZeEp59+OrRv3z5s2rTJtjdo0MAet2rVKvsbzYBttWrVCtWqVQsXXnihzQmJEzVr1gzDhg0zrSEnbNy4MXz55ZeZxnNuv/zySyye+9zT5+jcOC5iVGbxnL8Zv+y6664J/5zRD7Zs2WI6yuLFi23MhH7CazFeGThwYPjf//5n+/K5osMcdNBB9vell14aHnvssXD77beH/v372zbunzZtmmktH3/8sW3ba6+9QseOHUOfPn3sfZ944ok2zvLPwcc45557ro3thEglJKKLpIWLOAFz3rx59jeTRwISE8QbbrjBAl6jRo3svh9//NEmOkyaly5dGurUqRNSBYLIunXrwrJly9LdGAA4TKIJXvEBdp999jGx3AMyQYlAjahO0GZCiRgfH+TZ7uyxxx42qGAg4beqVaumjLD+4osvhu7du9v3z3ePeH7CCSdY8EY0Ofnkk+0zfuutt+xz9IEMvy9cuDCceuqphf0WhBBCxMEkrU2bNhbn3n33XRP7uL5zDW/WrJndjxDqEz0E8ZEjR4YBAwaYEA6IoFOnTrXxAxPG0047zcR37vfJHHGDuJcoEMKZvHss59j5mzGNwwQ+Pp6z4I1Y6zGdGEXs8oVybiQLxMdzxgq+iA6HHnpounjOjecuCtx8882hXr16oXHjxvaZnnLKKfbZMU5EbGBh/Iwzzgg//fRTOProo218wOeRkZDOeHH06NEZCulM6Fu0aGHCAEIOIk12hPQoCAp89iz6J4o33ngjHHnkkbleKCEx5aijjoolJHCe8XxCCFEYEMe/+eab0KtXr21EXq6fzFGfeOIJi39ck9esWWP3d+7cOdx1110msBMLatSoYde2vffe2xYJgWs7sdHnfsyREXj5ybiiVKlS6RKyMuO7777bZo7OvN3hdRDD42M6i7vEc4/pPkf3mM4iP88dL8Lz3h1E7eOOOy5dPD/22GNNgE8UjCHef/99E7xZaEBref755y15gc985cqVNr5i8fmee+4JXbt2DWPHjrUxmS8+cMx81nwfM2fODIMHDw4rVqyw+5iPX3/99abdvPrqq6F3797hk08+sfv4XCZNmmQJfbwvxkZCpASFnQovREZQQkRnbS/3wbeLciu8MPE8dz8tyoii3H333XYfdh/4qCUjlCXjOfa///3PSn+j3cFppEITk9tuuy3t6aefNj94OpQnsgSM8ivK4WieRkkcDVvwFMUfzv3gKOWikRrlcnhmJtLjM5HnCGVn3uCE75zPadKkSWbnMnDgwNjn2rhxY2smE19Ghh+eEEKI5MCtuGioiH0b1+latWqljRo1Kua96TYblBD7tZyYiT3LeeedF9t2ww03WImyl4kTez2W0njLPTyxjcsL2IcQd66++mrrv4GPt49bKCXHa5tmlTTowkbDm14nCt4XnvA0/yJe87lgaRO1MKOEnabaxEVsblLRJuapp56K+dXef//9VlLu3t6MA/gb8GL1JvPY+WAJEAWbNz+X+M4yG1/RX8WbkmMjmJOS82nTptnjOI5E2aVcf/319pyMe3LD4sWLY30B4hvwCiFEQUIMGjJkSMxik5hPXI/GJmzViN1jx46N9UZDB8DDO2rJyTU26s9N7KVXll8zaTyNfQkx8IsvvtjucREjiZWMJ3i9qE0JsZUYS6wl5hJ7E309ZYzAWIExA2MHxhCMJdzD3HuDEb8YezAGSQTEQqxsmBtjfYNNGZ+7W7Xwvh32i35X/fv3T9tnn33SRo4caX9zHxY57qnOjefBjg/b1ajPPe+LWIsOwXe9YcOGhLwfIfITiegi6aDBU3znZybDX3/9dboGFvidE8CidOvWLeZpSgB444030pIBJvdPPvmkTf5p6uHNPfB0J5A8++yz5u9a2BNbjpPFChqB0MiKgOYBG19Sgvn2BiAFBY3GXKxAQCcox/P444/HBl4MQBhARc+rN9980/bLyD9VCCFEwcEkGtFxzJgxtkjONbpu3brmg+6TRxc9mWx7fxR8zpl01axZ0/5msjxx4kRrKM7fTO7KlCljDUOjXqeIpLmJuTzmww8/tMkgx+fjEmIMnq0PPfSQxZbC9vnkOBEhZsyYYU3SiOFMcl1Uv/baa80fNb75ZrLCwnnU87ZDhw7mGY4/Pn/z3l577TXbl3FKxYoVY++V7yte5PbvDV/YzIR0RIy99torthifXb9zRA0aoTJ2TdS4DuEIMYg+AbkBf2DvLSCEEIXZ76Rjx46xazliN57m+GY/8MADGc7rve8Zcbtq1ap2LUQDYLwQXTDGv5u5IYIt4vqsWbPs+p9VnOM+YiHH5KI58YSYSewkhhJLC3uOzpiCsQVjDMYa7vdOLGMswpiEBLlEQHKB95ohkYE4idDNAjawaE3sZTGBz8WbuXrigsN9LIDT+DXagJT9WrZsGduGbuO/068jWfQbITJDIrpIOi677LJ0QicXcIKrN5niRvdnAiermD169Ej3eFanEUsJxgTqwoLJHY3MCPoI+hz3sccem3bzzTdbEEyVJqBk+yOeM5hw0ZrASSY9Xb8L833w+dJ1PSMI3Eyo6dTu2f6cL0wg/Twi257FGDrAF7bgIYQQxRWaVHljUCbH/CSG//TTTxY3+ZsGi9F4w+In1/+1a9emHXHEEbHFaa75cMstt9jk2sVDbj179szV8TGWQFBFFD3yyCNjkz7GGmROMUZJBRCBX375ZRs3+WeGSMxnRHNuKt+SGeI6iyaewcbnTyagT+BZNCcpAdiO2MJ2xgAsvGeUkc75lVUjOSoHfYJPdmN2xzxU8CVSdOG5GFfmtsLDkyJYVBJCiMIAwdorg7mODx8+3KqFvMocATWaFPXKK6/YdX3w4ME29/f5NCK5X989jkW1A6758Yl2UYh1xDxin1ccsfCKoE+MTGSD6PyEOIceQiz0OMUYhbEKY5a86iCMwT744APLwOe5SWpgQRnR3iubgLjIgkU0Kx8RftCgQZZZz3FMmDAh7dBDD419R2eeeaZpIr6gHf0O2Yb2UNgLF0JkhkR0kVQwWYm33CCLyCdIiLiPPvqo7Us2DtvImo6Hiy5Z1QUNExW6WxMYXAxo0KCBrdzGlxSnIkwKWXUmS91X/pmIM7ghkCcDTJQJ5o0aNbLjo5yMhQCyE/mbgRrvwQdNnpmHYCOEEKJgIeMoXkA/+eSTYzZiCNQI4kzCyMaNTqrIXvfqrgoVKthkz2F/KryYkJOdRnZ7Tm3eyD7jtcli5zX4SUYWk8VUX3jlc1y9enXanXfemXbKKaeYoMHElRJ23l9hJiFsj2eeeSYW008//XQ7R9zKx+3/gExEyt6xyosX0QHbvOzYrTCO8HOTzMicTuzZn0zHwhQEfvjhB1uAkCghhCgMEFNdjEUYZxEc21KvPsd+i6zx+Pn7qlWrYpVn3FgQdOEVUZ2EqC+//NK2U2GFMJ9R5jkx7bnnnrNYweOJecQ+YiCxMNWvjSQWELsZo/hnypiFMQxjmbzAZ/PCCy+kjRs3LrbYgYCO1QyxBRizeZxDTPcEiL59+6Y7B7Df8/hNvCa5ze37fJHEb9jNpkq1nCheSEQXSQOrvmQEu1juF1Mv5eICSxlXlCVLlthqcq9evQrVQ+uTTz6xDDeCCseK6I9PWVbZTakOgxEyBMgOZPWbQMiK/vz58wtlIMKgi2x5Pn8GSZwTBGnK3rxCoX79+uYzB7feemtsIODBmoGXEEKIgoGscQRut26hbJhbfDwnpri/KeXVQKWRi+8IpSzuXnTRRSawsvgerVJigpxd2y4mf5Qf+2SfhVb6gxR25VV+w1gKr/gTTjghlsCA3dw333yTloyQZce4ECGExRXGJJwDCCTure+ZdIzRskNWQgOZ69FqyOzCuduqVSt73COPPJKWCHiv2T0XOe5krzAQQhR9Jk+eHKswZ6HTr+Fe4UwyFiIt8zJiNrAfi6Bu1YYViF+HvSKJG5apmUEMI5YR09iXGEesK8rXReIDYxbGLv4ZM0dmbJMXD/fffvvNEuf4/KpVqxbr08GYDbGcvxHWeX1s07DZIwY7vjhPrL3gggti3x+iv3uvR617PcktUb7vQiQKiegiKeBi6wJo9OKJEI1wjqjO6nJGdOnSxfYlsxhhtKBKsJgYcWxM2AjkBH3Kp+K9N4sDLBZgreLepJTY0VykoLzGyTT0Entu/fr1s2MiMyGrx7jvrt9YCCgKFQNCCJHssAjukzsWOIkX3PDaJCON0l8H+zC/TmOfwqKoVxNR+cVknHECsdj907k/JxlMTPRoTu6TdDLU8FYvjj0zKINnzIXYQQY2NiZMyJMNKgsQXRzEAbzTt2cdlFHSBaXjvNesxBgasbt4Q8ZdduG84vxMhIjO4g6JCy4yZQZiBZWQHC+Vg2rWJoQobLD3oPqMhCvPRq5Xr57N2QYMGBCL8yRCAVninlHt+3vs92sxlceeDR2FmEXs4rpOLCOmZWXxUlRhDMNYhjENnxljHGJSXhL90EBYvGb8hRZC0mOdOnXsJ9Xe0f2i0BsOe163JuM8YLzn3yd9cbDTcfsxv7EIIkQyIRFdJAV0fI63cWH1kosvZUneRApYRY36pTF59lJrGoLQDCM/4Zgol/IVWBp7MKlP9dLuRH02ZA2wusxiCBM3VqwLQoSg4RhZBt4ZPCso/cYWKNrIxG8MLqJZbEIIIRIPZbpcc6lAo8QXmNR5RRo/EUQRN/36TGUR4qVPpvHm9NiLlRr3eQY592VXPCeTiok5E0AmecVxop0RjLWwzHP/dKoFvHlnMkJmoVvLMR4hsYHKNGfBggVmI8C4LV5AIGPPsx0ze4/RMSkVFO+//362jovHRa2G8gJZebw+GeZZgXWLJ6bQfF0IIQoa5n8ZzY/vuOMOuz6RiEb8jzYaxX7ExVfm9G4L4lXpWL8isuO5ndFiItdv9+wmdmGp6vZwxZ2lS5faGIexDmMexj7RTPHc4EkOLFjQLJSkSE9IQyS/6667bF5Nw29PcoguyvP9U2noSZRY9KH14Jfu3zuWPfS/ESJZkIgukqKcO750hxvWIARRstQpz+biS9dp9uUCG/WxJPuIlc94u5dEQwaTB2Yy53i9VPdQyy/wIb/uuuss+4pFDjKw8rNKgBKzzBZQOBYGW55JxiSZBjLx5YB+47iFEELkH8QDFsu55g4ZMsTiOMK3L4iTqYQli1+jyWCbN29ezDOTDCiqjbDqiPZGIfuc5lfbi81M7nldKpJoaEUlm7J1M4bvhnGYW73QGC4jj/HChO+OKrjKlSvb724dEBXFOVc86YIs7eiYhPfoTWg5J9z6LR4WdvBhd4EmmtRREFDtiCDvC0+ZgWhB8gmZ9RKQhBAFDdfKc845x+bLGV2Dpk+fblacft0l1hOTWajk+obQSmZy/BytdevWGb4eVWxNmjSJWbYQs/JiXVKUIZmMMQ9jH+IdGf95SXhjgRrvek9Owz+deHvUUUel80XnO2KBN37+DnzfLHD790xvHJ6PBWu0BL5T5vlUMQpR2EhEF4UKkw+agXGxPPfcc9OqV68eu3hijxLvxbl48WKbILFyXZDiNYHBm1ZxjEzkJZ5nD3zP8CllcITlyuOPP14gvrL4pyGsUDZI8MVrjUEcjcTcG84nwm7lEh2kkekghBAisZNqj51UDUWtMfA6528mTdh0EO/JGmYbWWpUnfkEDQGUxXREU792s0CaHbC5GDVqlAn1xAYWTSWeZw9iN8IHDbr53i677DJbpE6Wscahhx4as5Rj/Ni8efOYKM44DpYvX27CAduvuuqqdGM5MiYpSec+sh99cp/R+MJtf8jyzsl4EGEBoWd7dixCCJGqIF6TlewxHeGTuB7NSmfBG5HdFzuZs7m1B9Yj3h8tmuyEqB7vZR6dZxKbCmqeWRRg7IMtLpY3jIlGjx6dp6biLD5TMUhmOeJ3p06dTDfJbCEXGx4Wtqka49xgjEh2fPQ759zwsV/p0qXtvCBTXYjCRCK6KFSYwHBRJGiS1eQZ6UycsQXJKAgSmD/66CNbrWTym59WIWS/0ziTizkZR1iAKDDnDlafWShxqx5WqfMLfNp88MWEH281SvyZ7PP9UVHApJcJsk+Y/bzjJ4+dMWNGvh2fEEIUN7j2shjNhI347tdoLL+4Tvt1mDgLY8aMsdjLYxDUvQEpcWTFihUmonuWE7fu3btn+fpc87mu+2MoPVYPjNxBBjeNxWgGRmUAn320OrCwYALvzeMYZyC2uP0J271PCmMEH2+SgRcF8Z33xX2IQJkJ5GTN+TnsDcyzA6I7j2FMkmgQJMjApwyengIarwohChqumW6PxTWSxDMEdGI41dxupUW2OX7o2IqQnUwTb7ds8biOAEtFWteuXS3bOXo95vrerVs3ew2u2fld8VyUYXGXDH8+c+bMVDDlNlkQEd6r9hnPEXux3/EeNVj4us2aJ1Ow8B21UsUXHVHfzwPGGb747QsrVBwKUVhIRBeFBlYofjEkC81LeLgwch/iNRfVV155ZZvHesYatypVquSoeVh2IAjT4ISLNl3BaZq5vWZVInsgnlCi5SXh69atS+hHR/D2hiSILIgvWfnkUw3hgZqVeF/pdl9VIYQQeee2226LZRVxbfYsXmzaPMuod+/e6R7DYisZbPTX4P4zzjjDspWY3OFHzfWbxzD5y2ryzGt4Uy0y38hGFnkHEQRvW0QPBBKE9cIWbkmy8POrYcOGVrbOWJK/qWT08cADDzwQG0fGL5pTiebjAQT3zCBz0if4iETZASGfhaHc+ruygITwgMgQn2BChV20ok5l70KIgmb48OGx+TxWqwi0zKXdCjU6ZyeZCQHd+5z4YnlUPMXCKgoxhnk5zUKJPcSg7dlbiezB2MirA1iAJp7mBuLR3LlzrerPYy8L7VQU+rnhfUKIsfGNy3k8sdqtfvxc8PPEb4lo1i1EbpCILgoNn9ByO/zww9M1FCEYYufC33imk8XMSrSvijKJpjEGE6X4SXdeISMe3y1KxMnmyaycV+QevkdKsSjhIvOAruGJtMfBwoUSsu15lSK4k7nGIMGz0mhegrBP81gJLUIIkXfcRssXvqN2GUyWBg4caBnmCOHRyTCLmW6bQaNRrsktWrSwLKfslBzz3Pfcc49VGWEnlt99U4orZEB7Yzi86gvb4oUJOdmNHA8NbKkqdKsXMsBd6Ce70Rdz4mFyTlPbrMYm3OeWMSSCFESyxdChQ+31GAPHHwtVHYhQPXv2tDGQEEIUJCTF+Xzq7rvvNrsQb0xdrVo1E1Kji5bTpk2LWbIhisf7n19yySXpfM2xbmEx3W3eiD0i8TBWwhqHsROLHHnxln/22Wdt0ZcxGJUDWL306NEj0/2x42EuzvycuEbMc3sXFrfj7VfHjRuX62MTIrdIRBeFhjcUi/pesVLtkxsEUMpSwW1A6AAdhZKwjLp+5wYm70zkKQtjsq4MnvyHjuB4qvLd4hEa74GfaMh+oEs7JYBkc+Gthyc/gwMmnBzHiSeeaFUIXkZItryqEIQQIneQbeTZZS44UpYbn+FE7O/fv7/FXzLXENi9kSUL7Sy4RifZXMuzgudnsZ4xBpO2/LR+E/+vcoDviu8JEbowe8eQBceEm0UYstFJxiA5I1oCTuxnET8v2fOMJzzzPX6Mmh+QtXfBBReYsJARyWCrI4QofmDH4YuV2LVGe0wgpJOg5D7pxHqaipYpU8b+9kVPbFmIIWRDk8XucI2m0omxA/e/+OKLhfpeiwOMmRC7GUPlJSsdpk6dGhvLEXOpEvNeNGgBNJQlMYKb98ojqdLB/sXFc+J6VDvixmKMEAWJRHRRKNC4wi98ZAJhn8HvlP3EwyQH+xYaQ5KVnh9Es8+5aEd9uUT+Q3Bk4ETzr0mTJiV04s3Ai8km/nwu4HA+MTjAIoBzj1J/Jp6UinE/VQ/udcrtrrvuStjxCCFEcYGscsp4uY7SyJnFaqqQmPC888476RbB8U2NZhY1btw4Zq9FZvHxxx9v2etMnphEZdaYkTEDmVNkUJFJpSbRBQsNxDp06BBrAEsWeGFWQEQX5xFttkdG4w+SOrAoyGxsgtjD+2UMuXTp0mwdG8/Zt29fs2DJy5iHknfGOSQJqOG9EKIwwWYNO1bm0Z4kxdyOeZbHBfdJdz3ArbO40essflGTyiYqnDz7PDvXcZE4XnvttVhWOg3cc5uV/swzz9hzed+Sfv362Xb60/A3zWHd8ow+K/EWfVSZu12rW/P5vJ3FctmwioJEIrooUBjgM3n2ix7ZafztE2Um1JkJ2EwUuPCSSUTDi0TAiuegQYOUfZ4E8P0SQN0rPRHBkEDfrFmzWMBlpZtV8PHjx9v9THaj3nyUR7Nfq1atbMDgj8OD7euvv87z8QghRHHCJ83EbjJ2HSZJeJligYHIyfXeF9OvvfZas6Pgd7zSmThRdUaMQHh8/vnnLas4Iyj/JWMKoZ0MKmWfFx40gaPai6x0PLyTQeCNji/Jglu2bFnsb8af7du3N5/zKFSiUYbO+Th27NhMn9szLEnIyI7IgA2B9wKg2Xlu4Ngoe2/UqJHZ1iA0IVYJIURhgvBNohILi1QokXnOtQ6rF5oeA9nkbv3iN66jLqITM4gdxBDmbjyPKBwYSyFse1Y6Y63cQgLEFVdcYd8/SW40H80qUZLz4Pbbb7cFeXQbLGH8fCE5zu1/ScoUoqCQiC4KFFYho8GSjGD3NqMMlgslk2oaSTDJji/N9WBLuVheLTYoH6KciOfE+7woZJ/TsIPPBvDGxJqEwQfiBIEmFSZXeKeRlc4tEZUHCOMEfexiGARkdd5g4ePZZPG+fKx4CyGEyD7Tp0+3yRG9S7DUAOK8N0CkyTSx18cBZJuThe7XXSzWsNUirmXVINq9WBHmi0r2eVGI59GsdETeRNnv5Qaq3MqXL2+WAnx2fLYs7mzcuNHux+bFS8WpkohCNZrbEGUmHrBIhOVQTpqdkdVHFntOxrPRLM0333zTsgN5XW+4RjN1IYQoKMaMGZNhzKV5MolynizH7eqrr7bMdK59XLt8O3NxFgP9Wkis8AxlYgixJNUpCjGdTPKKFSvaWAtdJrcQd90GDZsezodoDzoEc491NJF1qx/f584774ydOzVq1DAhnUVxEt7i9SMh8gOJ6KLAoCzHm4tEPdA9eHLRcxGToELAxN4lGlS4QNIAKq+Z6HT6JrOIVfKi5KuG76s3k2Iwwmo/pXX4f+Mrz0p+KnQwJ0MML1smhe6Ln1uwacmOv71nvpPV5Qs18UI6E1YhhBDZZ/78+Xb9JN5yPWbCzd9MoPHY9Aw1BEoajrkYSHludEGTqrGMiDaeovKoqJR6F5V4Do899ph937Vq1cr33icZgTBDgob3PWEC72XhLLBzDnFjfMk27otWMZBZjh0R9+Hxm1mm+QMPPBA7112cTzT4xSJiMI4FqjL4P/bpp5+mPfTQQ/nymkIIkREs2nmzR2JTPFTZePU5WeZulelJccQ24veqVati1UosdHKdplKHhfiiQlGJ6egz5513no25aB6bmyozHkO8Ip7yHN54Fq3oq6++Mq/8iy66yERzqhqo8KLRd3yD7eiNRXGEdmz/ZO0i8huJ6KLA4OIXbR7ikxf/GS3zIWjSWIwgy40LaKJg5ZSsnapVq9prpAL4ZsYHC78xsXOYWFHqnhGIF+y/cOHCtFSA7ERKqzlmshjz0hk8Hp6LTuEINtgE8BkyWKO82pufHHzwwZYtEf2s8fYVQgiR9eTIhWzsslyspNEYi+XeZBTfchY4XSgn2wj7D37HD53MLMYLiOpMwjNqasXzuw3YrbfemqcGkQVFcYznbp/GJJfYisd9QfPZZ5/Fyr67dOliwoUv2HAuAtUOHJ/vE8UtiLgvOpmPQqk51RTu3ZtoON+9oZoaiAohChPivDeBxAYTAZSmx+53Dgil3F+/fv1Y7I+3b4lCBTLXYBKZonZbyUxxjOmMteghxzFT8R21Rs3pfBzLPr5zrNSYk9PLhMUWRHVfVEATiIr1xGqE/OiCDDdfpCFW59dCthAgEV0UCGT0uN+pB1FKe72UBwuPeJgwM4lOlMcjF9977rnHLrZ4bqdSaRgrsddcc42VvlMSz+2GG25IO+aYY2Il7qxm89lmVhZMCTKfNav9qQLf2f3332/fGaIKfrh5gXJDVqjd+5xKCEoGCdS8BoGbgYCL517CHb3RBFUIIUTGUD3EhIgGzQjbXoZLrCLbym1cmDyRPVu3bl2bSBOXuY8qMUp5uZ9FdRbRaf4dDxnNJ510kmU4k+mcKhTXeA68VzLPEK+xTyloEDA8llPRiO2KW7i4sB9tcBsveHhZOd9NZhn1lLu7LRx2BtsD0YA+LfFe7Fl9hvx/IQkEC5lUSQYRQhQtiGNc67DJYk7dp08f+5s5FNc1Z+LEibHK8/gbNmzRsQOxgUpkKpJTheIc0/EzZwxGFXdesr/5nIiD6EKI6szXM0ug5DOsV6+e6UPevyxqDeQ3xp3qiyPyC4nookDAA40LmjdRQsgkWPJ72bJlLXsnM1jVJvOGiXY0KOcEhFEXTvE/T2RWc0FBQ4/oijYr34i/zh133GGlyJmtGJPtTzOQVIRSZQZlZDRmlI2YHRDgsQvwAd5RRx1lZXUEbjLkKB902O4LPXSKj650490mhBBiW8j88WxfmoN6VtBTTz0V64nCtg8++CD2GOIxTZ+5j4zzzp07m6VbZs1DAcEToZ7MZq7fqUZxjudklNFUjO/7xhtvLPDxmAs9VCSyiNOiRQv7myxBz3rzuM85FvXi51hZuOE+KuUyw6ssW7duvd3jQSzwcUl2vNG9qpNydzyDEZ3oIyCEEAXF7Nmz7TrE/Byvb6xRXbykypesdM9WR0z2hUXfhxjv8ymuq1Qc+3U1FXuUFeeYTkUhYzH0nPh+ItmFz4DFE++Xd9ZZZ5mFn2efM4b0ZAkqFKhSZFGCxXCvKPNKsegNW6BU1HxE8iMRXeQ7WGTEl9qw0uplOIjaXDxZxWTlloafUfEbsdPF9tw0pWJ1HAGeVUpWTFOV7QVoJnaZ+Ydfe+215i9Lw41UhYwu7FSYaOa24SiZAkw8GeBlFVQRaHzRh0wvPmeCc3YzxYQQojhy2WWX2bUTSwvPOne7NirKaCga38ib662L7cRpHy/gn50Rs2bNskkTGc3erDTVKO7xnIkxjcT4rkmUKEjRBHGHjEHOMT5nFn68BwrnJpC9xqI9TXHJLI+yfPnytHbt2tnYIDPYx8e8GfkER2Es0qBBA+sNkB0/f6o0GNMOHz7chAZErEQ0YRdCiOzO68ny9cVykpTw83YbKzKKafbIIqVXo3lcJ4luwYIFsUxzrv3EAO6n8jg3/trJQHGP6WShMyZjDMcCS25gEZtxAWI55wpCOZVWZPF7pjnnDiDWv/TSS/b7yJEjYws68Tas3BiXCpFoJKKLfIeAGr2YUfZFAKZ8lr+5OHIh9MwgRHQybdxuhYBKKZhfLHMCz0Xg4qKa6k0hswrQBC9EiGjGlIOvJxNE/EBTHQZqrNSz+pxRJ/jsBOjtrUhTFcE5V6VKFTsnR48ebdnvCEA+MMhOtpgQQhQnXnjhhdhEBoHPbTKidmxcW1kMR2Tv1q2bieBejuuNH11Qx34tHrKRuL+ghddEo3iefkGEBZfceqrmBoRoysYRzYnnVLvhrR8dQzE2zYvvOB7BnMcXXnhhgo46zQQpsjc5Lm+GmtvMPyGEyA1udck8ieu296864ogjLCvZBc8777zTFimjvdDoR+a9SxgLYNVJDCAWpDKK6f+X+MjYjDEadn55AS99rNVoXMu8nc+X5MuMnAuIgyRr0FOHx7jrQTSBkzGpEIlEIrrIV/D48gmxZ/rQwGnUqFH2u4vAZAbhi852VrB9tTovK9IE7urVq1tp+bvvvpuW6sQH6H79+sU+Pz636H3AZ4eATgZ/dnw5U8l77owzzrBBWW4WVqIgwtAsDKGcRRsGgnxeZKEx+OM85LUQ71ng4W+6q3NOsfIthBDi/xYfvWS7a9euZr1Ghhp2HfFx3K+tiJjuqUopMIveTzzxhGUeTZo0aZuPlUoyysG9gVkqo3j+/yCzjEkvWdVup1IQZCfrOztEreCi4Ofvi0qJGIPxHG6HkMoZi0KI1MaT2/Cupk+UX+ewdGHezd8NGzY08ZMeJ9FEugceeMCeg2s9FThc+1mAT3UU0/8PxmaXXHKJxaq89KrhHGO+zTlD7xJ6kET7onG/J8WxqMwCDhZBiO4sgONu4IkcLqgnor+eEM6OQYh85Pbbbw9///13OPXUU8O6devCzjvvHNq1axemTZtm97dp08Z+7rLLLqFZs2ahQ4cOYd999w1VqlQJxx13XPjxxx9z9bo87swzzwzffvttePXVV0ONGjVCUaNkyZJhw4YNYe3ateG5556zzy9Kly5dwtSpU8Ojjz4a25fbH3/8EVKZEiVKhDlz5oR69eqFJk2ahJdffjnHz8FncN5554UDDjggVKpUyc67r7/+2s6V9evX2/O3bNnS9l24cGHYunVrqF27tv3N58n51aNHj/Drr78m/P0JIUSqMX78+LB69epQqlSp0L9/f4vj9957b7jrrrtC+/btLR5999134YsvvrD74corrwxjxoyx30uXLm3X8hYtWoSKFSuGyy+/PN3zc91t27ZtuOyyyyyuMWYoShTXeA5nn312eP7558Nbb70VmjZtGn7//fcCeV0+R+eff/6xsSqQYPTee+/F7uPvp59+OowYMSLd43/++WcbR1StWjVs3Lhxm+dnO2MUHj9s2LDtHs+///4bVq1aZfvHM3v2bBsT81ldcMEF4fHHHw9//fVXjt+zEELklR122MHm8ieffHJYsGCBbevZs2eYN29eWLFihcX/E044weL/xx9/bPfvuOOOFr+7du1q13iu9W+//bY95qyzzipyX0pxjemMzdB40He4PfbYY7l+LmIibN682TSd888/P2zZssW23XnnnaF58+b2ee2xxx6hfPnyoUyZMqFcuXLhmGOOsZhZq1Yti+3cP3z48HD00Ucn7H0KoUx0kW/ge+4rz95YlHIbsnZ81fqrr77K8LE0CvOVQ5qR5QQy4E444YS00qVLp2teVtRWuVlp9W7nlM6R9R8loy7o3CZMmJBWFCCL/JxzzrGM9Jxau3hDHG74ntLhGw9TMirwP/XMSTx5fRV86tSp23yWZFwKIURxh6onronxfSOoAvPrJb83a9bMfseWyz1UidVZZQrROIqsJppRehl4qqN4vi3EceI5GYwFae3CWIrmY7fddptZu2Atw7lI8zJ4+eWX7fzEcuDzzz+PPY5zEd9f7uP8zwga7vkYLSsPdSo5vCEvPsLx4MHu/sNunUC2nxBCFBRcC91qNQp2WM8//7zN67k2eS8zv9Eg0rPNubZzjd9rr73SXn/99SLz5Smmp4f4SNxi7IYNX25wuzJu9CXDrgUrNiqx3LLFs92xBmI72elYAVIBwXjSdZIKFSpYFSSPFyIRSEQX+QYNxDyAEiz5iRCJnyO/09gJevToYSJltEyHUm4uvExkMppQZFWeSwkPzaBWrlyZVhwgOOFLVxwhaGK3gkd6ThprEZg5Twjw+PNnxtChQ+1cRWRn4OgdwP1GmRi2QUIIUdyh7whNobhe+vW4UaNGdq289NJLrdTbr5uXX355TFz06ynxPn5hnYVN9m/duvV2+1kUBYpzPAcs2jgn8D4tqN4jWAhx/jHmfO+99+xc42/GCAgBjBc4p9mGlVAUF9ixLYwK7A6P9cV4fISzAhsE3ntGNnU8D3ZGCFCMj2nqh5WCEEIUBFhmMNc6+OCDt7nWYYGJnYY3FY+fJ5GkBFzTmzZtatc5rp3FgeIc0xmzETOJj3n1vKcBPRZpr7zyiv1NwhuLM/FgE+R9dk477bR0Y0xvWI8dbqo2sBXJg0R0kW/gbxm9cHEhQ+RmBdonFGSl+8o1WWp4Y3qmGaI6K9s58eHiNfGuJpO9uEAGAEJDcYWASVYjzWNpAJpIaMbq4g5ZZOeff/42wg+NvoQQorjDRBpxj+siPSO8YTgTKPyc6eHhGbTe8Gnw4MGWtUZ2Lb09oiAS7rrrrtaoKtU90LNLcY/nwLiP7/2yyy4rsIku55hPuhmXIhbx95gxY+x+RCAfq8Yv2PtYl4rLjBg3bpzdT2ZcVu+HMW9m97PYj9erN1UryEx9IYS47rrr7DpGpTfXob59+1pjcKC3FNU89DmJr9il3wliKtc2mjdzbaf5Y3GhuMd0xm7EV5LQ8rLwS9IcsZbF7rlz51oFGWNOh3OMnmmAX7+ffzT2dveD6HlJwocQeUEiusg3YdObOVB+w88WLVrYJMEbjVJmw8SAbF8mH0ymfb/cgLUGr+mrlKL4wHlVuXJls2aJVjRkFxZuyDR/+umnLdvijjvuSLvqqqvsPgaMboNDJhi/e3kYN8rPMypvFEKIog52a97kkEkJ18Ty5ctbxhn2Y/zN5Bt7N8pxWeT2xmN169a1iXVGFi1kpHOdZYEU6y5RvPBYe/fddxfI6yECEct5zcmTJ8fOZSxWvFoNOyG3IoqK3YjbnslOU9x4mNjT8Ix9sHfJLjTa5f0jQrgQTyM+IYQoSEhQ8jk9i+Nub3nooYfGKoa4XiGYR4VKhEu3bPHKXq7tonjBGI64SZJFbptiM05s06aNxdKHH344bb/99jPrNeIjizpUO55yyimWrMnf5cqVs/PtuOOOi1VHePKGV0i4ZZsQuUEiusgXyM71CxVe3UwsCMJ4V7ENwTMeRHQujkxUcpp9NHr06Jh3tSiecH6Rjd64ceMclf3fe++9ZjfklkOUnPm5S7C//fbbY4s7BGfPQieA+374rAkhRHGCBUeERzLLqCRjQs31kHjMxNmz0H3SRDVPt27dYtv5SYZSPGQXsXjJAnxWPtKiaHPzzTebCDNnzpwCeb0hQ4bYOVmmTBk7t4899lj7m3MWyFB3H1Z8+qPQn4XtvvgezzXXXGP3k4mZXcjEdwsZytaZ9FOxIYQQBYln8yJakhHs/UxIOIq/xvnNe00B13Cu5bfccou+uGLKhg0bbExXs2ZNO4dyAws29LpjfEksrlOnjvXBo9KR+T8x0u3QiNds41y84YYb0gnofkOLimazC5ETJKKLhENzJveOxnsqCiuFbO/Tp0+Gj7344otj5V/ZbSCGLxYT8k6dOiXk+EVql80RKHv37p3txxxzzDF2ziEEMTCk6SjNu8j8QjSndJv7yaBkxZuyPHz6KfP2QEyAFkKI4iZyenn3tGnTYgIkVhPNmze3v5lYO0x2vHmiT2iI3VHvaxbQsXtBnPcJuCieMAbEG50Khg8//DDfX4/zkGo2F87dw59z1HvzML5lGxZE0cV6z0aneVlGXu6UsXM/iSKZWbGQbEJFJeMPINsTewR6DdA7iMczXikqzXWFEMmPNwcnZmOhQdKQZ6HT44xrItupxPE5EdVmngyH6Mk1nGu5rl3FG84lxG/6juTVqo2Yi+WqWwotWbLEKiOjkFjJ+cj5531NGKNGhfTMmoILsT0koouEQjkXYqRfnKKNQwiepUuXjpW0slrI/dGJiJd/E2yzA12Wec769esXG89UkTX33XdfrCQ7OzBRpoEYneMzymBnm/v8LVy4MN19119/vVVXqEGJEKI4gW2W+0Zjg0V2Eb8PGDDA7ieD/KabbrIG3z4OYLExvqdEVGQHMtvYPmPGjEJ5XyK5wCoN4Rg/ccaX+Q3jAM4//H0pCaeHD6/tXq4srJ999tlpzz777DZxnwl8ZtZD7OvWhjw2s4QQF+gdz5IjMx7bw5zYwQghRKKy0EmC27hxowmS/I2A7ovizLvcsopbs2bN7LFcs2nyyDWca6cQ3sibyq+8gIDOuUU2OgvTuB7E2wqzoE0sZwGISghuaFQ0eo0K6QVV7SaKFhLRRUKhWahflBAeKUOlGSMZZdzYjm0GFzYaOHlzB/wooyuV2Snh5gJJozL8VwnsQvhk9corr7RqiPgGYLmFEmzO1RtvvFEfshCi2OOLlVWrVrU+JC6Ox8diz1pjIu4WLjNnzrSxApm30cw0REjup2GZEA7nSalSpUy89saa+V3R5uclJeiJStDo3r27nd/YtGQEtkf9+vXbxpZQPVeEEIUB11sqw8gyX716tS2Me6a5NxpFII+3cqF6hsdyzeba7ZU8QgA2qQjaeWm4ioULtqpUkGPLipULDe2BPiYkx3Xo0CFtxYoVae+8845Zt5Cg+fnnn9uCTrQJLq4JSoYTOUUiukgYTDoQtN0jmowe94/kIuZNRfBUc6GTLHJvKBqfkZYVPB6PagT59957T9+iSAfZYDQYOfjgg9PWr1+f4/OYFW2CLL6nixYtSpsyZUo6e6Lp06dbpgUdwp9//vm0a6+91rrNa6AohCjqcI0kA4hrIpMWGieOHz8+7Z577kknirPQ7ZlqJ510UmxxPbpo7jBBJ5MNsV0l3yIeKhcRctzqJFnIaOJN9VpGzdMYS3hpeUaWL8DCf40aNWIJAIgB+LrSlE39AYQQhQH+0lyLPNucxo5u3zJ8+PDYeIAbC4Feqcs+0Yp0IYAxHv1wOJ+w+8ktVIgRF713GdUSxGRsWck+J3b6vBw7wWi85nHex+eiiy6SiC5yjER0kTAoM+ViRIk3JajuEcmkmQsXK9Je9hW9kBJoo82bssPEiRNV8i2yhAwyOoE3bdo0W8ERWxcGgnjxEnyZrHNe4tPPhNg9AckK69y5s/1NJsYRRxwRGzwSwIUQoihD6SvXOyYoCOVRyCI/66yzTDBkcu3eqdEstYoVK6YTEcn0xVedElsEeSGyqn4gVhcEjGOxhWP8QLk4GeJLly61+zhPsR4644wz0i36kPFGMsnxxx+/zbiD/Tz7jf8fGdGgQQO7//LLLzfLJN+fhAAtLgkhCosff/zR5kUs6JGdHu8vzXxr1apV6Wyx7r//fn1hIkOIoYz5sALMa7UXsZakt6idGn164nup4HRAUif7k70+a9Ysy2D3hBAhcoJEdJEwyDDnQkTDiGgZN6uNXCA9K92DbBSaMblgmZ0VcZo8YrEhRFbgPcp5NWnSpO1+UF6m6I3ECLCI6jTNAYQf904jE90b6rnY7o9Tp28hRFEGMZEqsPiGykxgDjzwQLsWMoHxyjRs16IiOlZb0f4TAwcOtIw1BEghMgMRmf435cqVy3d/XRZ5fIGcTEq3YvF+PXj9ujcwE/Go0OSe/+6jHqVly5aZWhbxf4Lx8RVXXGEe6IxbfNGpoBYOhBACsNrIqLp22bJl6eJ51BIDSDTCYiN+gVGIeN5++21LThs0aFCePxziNGMDqhohvtpr7NixZiHDGMLHpFSs+8I183d6+mTW+FuIeCSii4RANpqXdrEaTVa6i+p4nnOh5He80RDUvZsy4JuGr5U3KskKVg95Xl6DyYoQ24PFFjImv/nmmyz3QwDCM61Pnz5WthifRXbVVVfZOdq7d+90menYuEQHkuPGjdOXIoQo0pAli/859itkm5FV5IuLZcuWjVlgce3lpzd1IqP2oYceij0PjUeZvNx8882F+n5EakAzMRZwOnbsmO+v1aVLFzt3mWR/9NFHFu/5m3M22iiX5qNR2rdvb9vbtWu3zXOOHj3a7iObMx4fV/D/waHfQGZZ60IIkV9zemI3MZv5exSsLLlORRuJcsOyFfCh5hrNtVqI7CSwEfPyYs0bdTtgoZp5PH33PDP9/fffN+9+zzrHvoWf/E2Pkuh5zPEIkR0koouEsHDhwnQXIcpqyBbn9yVLlpiQzu9Ya5Cdw+9c8DwbjQvgU089tV3bjQkTJthj89KMQhQvWGxh0aVJkyZ58jyL90Un04K/8URnwOjn/nHHHZfAoxdCiOQE32aueVSZIaqfc8459vctt9ySduKJJ9rvLEzyk8VMek1EmySyoI7/M5ObaBmuEFmBHy/nFJYB+Qne/T7pplGeWxjwExCJXFiP+rq6lSEiU3xlGo/hPpJOotZFbCfrk+fjcaBGZ0KIwgBrC6+CITOXhUGS47gmcZ0igzc652cMQAxfsGBBthLihHA4b2hQT2V3Xmxd8Djv1auXWbh4ldjjjz9u9zH/5+9DDjnEfjZq1Mhej99JkIvO4YnBWgAS2WHHIEQCmDFjRuz3nXfeORxyyCFh06ZNoUSJEqF69eph8eLFdt+pp54alixZEtvvwAMPDFdffbX9feGFF4Yddtgh09f45ptvQo8ePcJll10WzjvvPH1vIluUKlUqjB49OsyZMydMnjw5R5/a/7/QGNatW2fnLqxYsSL8+eefsb/ffvvtULdu3dhj3n///fDrr7/q2xFCFCm4Fq5atcp+wuOPP24/zz///LB58+awYMEC+7tZs2Zh48aNYZdddglr1qyxbfvtt18oV65c2HvvvWPPd+edd4b33nsvTJw4Mey2226F8p5E6nHttdeGM844I1x11VX5GmsPP/zwcPnll9vvd9xxR7jlllvs9yeeeCJ88sknoUKFCnauw0MPPRR73MknnxyOOOII+z/xzDPPpHtOHsP4+N9//w3vvvuubZs/f36oVKlSuP/++8M///wT3nzzTXts06ZNbXz85Zdf5tt7FEKIKMR3v55dd9114amnngoTJkwIrVq1Cn///Xc49NBDbU7kHHzwweH1118PW7dutWvymWeeGTp27KgPVWQLxn6MAVeuXBnuuuuuXH9qZcqUCXfffXeoXLmyaVLTp08PLVu2tPt4frSjZ599Nuy0004WczlXYerUqaFDhw6x5/nvv/9C+/bt9e2J7SIRXeSZP/74wy5CTq1atcKOO+5oImO9evXsghUV0bt16xY2bNgQatasGX788cfw8ccfZymee1C/5pprwp577hmGDx+ub03kCBZdCKDdu3e3xZis+PDDD0P9+vVtYNigQQObDB922GFhr732CgcccIANIgn2URGd/aPn6sCBA/UNCSGKFEuXLg3HH398qF27tol9vnh+ySWX2AIlk4/TTjvN7v/000/TLXaPGDEiLFq0KPY34jnXyT59+oQTTzyxUN6PSE0YX44bN87Gj717987X17rpppvs9WbPnm2xvXHjxvaT8xkYz8KkSZPCL7/8Yr8znm3btq39PmXKlG2ekzGy/3+CV155xf7vMFZGXGfiX7FixTB37lwTr0g4EUKIgoDFPZKBdt9999CuXTtb3IPOnTuHXXfd1a51X331lW1jTs6+J5xwQujVq1f4+eef7drMNVOI7EJMvPHGG8OAAQNsbJhXGjZsaHN1kj6AuTtjVHSnSy+91LaR9EECHIs/jGWjcXbhwoXhhRde0BcoskYJ+yKv3HXXXVYC4+UwNFrMyOeR8tXff/89nRc6TSDwXOvWrVuWrzFx4sRtGjgJkRNoBIYfL5ZCWUEj0WiZ4tFHH20l3TT28pKw4cOHW8k2DfLw6KfUm+177rmn/eR1hBCiKNG1a1e7vl166aUxywrKZonrbtsyfvx425e+J/hcRq+l+FJ67MfG5dhjj5WNi8g1WAZwXuV30023caHh59y5c+137ArxDcbegPOYbQ888EDsMWvXro2Ne+P799BEjftat24d24ZVws8//2xWCVgo7L///mmzZ89Ou+eee/L1vQkhRJTrrrvOrk+tWrUyO1ZvBo4lG9v8esitTJky1jwUay3+pum4ELm1dcHaD5uVaOP53EDfHZ+/b9iwIa1Hjx7W6wywXvPzl/PVf/fxqlu0lS5dWpZqIkskoos8g2AYFdFnzJiR7v5nn33Wth9//PHptjOR9ouWNyTJCDwleQ2CtxB5Ad/97Xmpcr7hoY6nLxNb/NWYLEP//v3t8W3atLEgzzkM+Lgx+aU7eIsWLcwrWAghigqIhYcddlisJ0n37t3td5oycS3EQxWfyVWrVtn1sG/fvrGFRcYGTGIchHbui29YJkROQLypW7eujS35Pb+gjw/JHjQj41w/8sgj0xo3bpz2xRdf2P1jx45Nu/rqq9OWLVuW7nGDBw+2MUS8IDB//nw7/3meKDQRpWEqzcmXL1+eb+9HCCEyEzJLlSoV6/d07bXX2u8XXHBBbL6+6667xoTH888/36699ILiWqw+DiIRfXbof5cXaHpfvnz5tNtvvz3WCNcT6Dzpjdt9991ni9b77befjUsZr3ofFG69e/fWFyoyRSK6yBOIiDQUia7effXVVzHREXwy3a5dO1sdJJuHRqTw66+/2kUuq6ZiQ4YMseCtRg8irzDAO/nkk00gz81gj0El5/JRRx2lL0MIUWxA1HNRnIVGJij8zSJ5lJo1a6YdcMABlknL/dOmTYuJjUCTMsT4li1bFsK7EEUNb1Q/derUfHsNxgrRczg6vs0N33zzjR0zwnw0S51kEm/CK4QQBQ0LgSVLlkwrW7aszc+9QeOVV15pP6tVq5YuY5fmy1OmTIk1XxYir1x88cU2RmSsmBf88StXrjSh/LXXXovFcxbB0aLYh6oxb2hKggjxGZ3Aq8rjm4ML4ci0SuQJ/KPxRN9jjz2smdKRRx5p3o4lS5Y071R+9+ZJeKbhO0WDBxqK0UBiy5YtoX///pk2Ffvpp59sXxpJ0ZBJiLyAVynnE16kTz75ZI4fX61aNftJUzGaiwohRHGAhkzuNUlcP+6446xpM30jouOBZcuWWdzGrxqPZ7woaSjqPPzww+Hbb78NgwYNKpT3IYoWjDubN28ebrvttvDXX3/l27gheg7THyUv0G8Fv2ESmapUqWJe6mvXrrW/b7/9dusZNHToUPMXFkKIgoJ5OtefOXPmhKefftoaNzP3dn/ogw46yLymS5QoYf0aDjzwQLv20ly8Tp06+qJEnqGJ9/r162N9R3ILMRbQohibeu8d4jkNv8ePH2/7oFvtsssudh99fH777Tc7l2kAzlh1yJAh+lZFhkhEF3nitddes580WaQ795o1a2KTAQItzUWWL19u+9SoUcMmCDQS43E0bIp2+M4IBE8amP3vf//TNyUSAs1uzz333HDrrbfaOZoZiEB06GZfBokXXnihNdDZb7/9TETiXJ85c2aoXr26NdzhPG/WrJkNJpnUV6pUKXz22Wf61oQQKc9zzz1nP7nGMYHm7++//z589913MWF82rRptg/XSKBJItdGfsKmTZvC4MGDw9VXX20TFyESNen+8ssvw6hRo/L9A6Ux+UcffWS/f/311+H555+33xnz0mSc5mh+vnvT0B49eoQ33ngjto1JPBN0qFy5cth3331Dz549bWyMcP7iiy/a+NgblQohREFBs1DmNSyCs8jHQiXXOhovzp8/3/bp0KFDuPzyy+2aS5NR4roQieCoo44KV111lcV1xox5hUUh5u+cr8Rp5vYkcBKHmcujXdHMFK3p1VdftfP9vvvuC2effbY9ngXtjz/+OAHvTBQ5YjnpQuSQ77//Pu3ss8+2kpcBAwbEtj/88MO27bzzzkvbtGlTzFuKpklAE7J69epZSVinTp0yfX4aku6+++5m9yJEIlmxYoWVUuPjmxmnnnpq7Nz1xmG33npr2mmnnRYrH/cyxvr161sZpDcc88cNHDhQX5wQIqWhSajbT3z33Xfp7rv77rvtvoYNG8YsXqI3tjm33HKL2b9RLitEIqE0m0ZgWBDkF6NHj7b/A82bN09799137XfiPSXhW7dujXkJRxudtm/f3rb16tVrm5J1HyPgmX7TTTellShRwsYmeKL37Nkz396HEELEk5mt6rnnnrtNXJ8zZ45da7nmYvUiRCJZt26d6T/MufMKc3N8zvHyZ86OVRG9y7AjpvGoj22xIKQReJ8+fSyW00zX5/vYGMnvX8SjTHSRax577LFYidcpp5wS2+4rdqwmkpUOZcqUsWwbwPoFOwyygLHVyIx+/fpZxtsNN9ygb0kkFGxZLr30UrMS+v333zPcBwshKimwLLj44ovD3XffHVq0aBGOOeYYu5+sdLLNgfOZ7WRusHLOeQtPPfWUvjkhREqzzz77mJ0LlWHEcUptnXnz5tnPY489NnzxxRexsliuhdhWjBkzxv4mU53sHrJyy5YtW0jvRBRViOVYDwwbNizfXoNxLplsWB1wDh922GEW72fNmhV23XXXcMEFF9h+lIo7Z511lv30sbJz+OGH20+Omf8rZN2R5Xn00UeHK6+8Mtx777359j6EECIeqsaqVq0aZs+eHdtGpZlnnztk8GKNwTWK6xdzdSESCZVa3bt3tzEjY8e8WhSNHj3a9CbiKxWUZJ4Tu7kPiOvM26kiY4yLfdvWrVtjz7Fy5UrN58U2SEQXeRLRgQlA27Zt7eL06aefxkR0yrW97JWSVSxcsLxAPMcbHdsLylczAv8q/Nawcdl77731LYmEM3DgwPDDDz+E4cOHZ3h/mzZtLIhS+tW3b9/Qq1cvE98Ri1xEr1ixYqzEmyDsE2MWkDzwJqIcTQghCgsWvrFxwarinXfesQkOguLmzZvDokWLbB9fjPT+Jo888oiVybqIOGDAAPOf5DmESDTE3i5duoR77rnHJsn5AQvlNWvWtLLvJ554wsa9MHnyZPuJjRuw4MR4APz8ZyzAeAMbJEQqegWAHyuWCNgiYoUUtYMRQoj8BlsLrkvMvYn32FAR01kcJHYzz4/vDYWI3rVrV1tMFCLRoA9x/jFXzytYs9LHp1atWrboTe+e/fffP7Rr187up4+f61H07bvuuuvsd2ziOAZA1M/KAlYUPySii1xBcPUscoRuPKfIOqfpCEI6kKXrIjoCO8GWVT8yhmj0QNOSiy66KMPnx1/t0EMPtWxgIfIDmuV07NjRMswzykYn2wIPwHhcRF+9erVNhAm+TJg///zzmKjuYjrbFyxYoC9QCFEkQBgHhHT8I2nmWL58+Vh/FIR1KnhOOumkcMQRR9g2MtfHjh1rPs9ekSZEornlllssbt9///359uH6pHvSpEnhsssus9/xRWexHcEcP2H8g70XEFWYvqjOghOTc5qXMV4AxCoqOMj4ZAGqdOnS+XbsQgiREatWrbIFPZomk/RGw3CahjKHIb77wh6/U2FLhjDX2ptvvlkfqMgXWFBmzEg1Y7T6MRGL4WSiAzGbqjKaiTKXJ36jWzF25W8Wt1lgAo7BKyuFAInoIlcsXrzYsnEQupkQAAI6AdgvdtznIjpZ6ZR2c4GibJWmJZlB6c7jjz9uq36e1SZEfkAzLzLFp06dmuk+BFCEcASjhQsXxjLMCK4MLBHjfcXaRXTvCg5z587VlyeESEmYWNNYGbEvKqKTNUsDRGjUqJGJip6hxjUz2gx8xIgRlt2mRXGRn5BZhhUKpdt//PFHvrxGq1atbHGdTDbGApzzjAPI4uQc5/+CZ6M7NCqDN998M7Ru3dpE9XPOOSc2jmjSpIn9P6PyjfFIZhZzQgiRH7jd1Omnnx5efvllu7Yxb8fOkuupQ1Ywc3220SCc+4XILxgzMp+msjFR2hWWRS1btjThnDjtFq1PPvlkOPfcc+13zm/2AbQu5/bbb7dEESFAIrrIFQRZYLUaKwsXzbnYcBGqV6+ere65iE6Hb7xT6eTNBRExPbNJzsiRI618hsmQEPkJAjg2BVi6uDgehfJrnxg3bdo01K9f30Rxzk8mzpz7LA4B1RguopOd6cR7oQohRKrw1ltvhUGDBoVu3bqZOM4kBOrWrRsT1LkuYnOBP6pDdi0Q54n7lNPKmk3kN1Q8/vTTT2HatGn58vxkirtFC9WU2BJGfdD974xE9HfffTfcddddVsWG4A+MhbGLo0qTcvLevXtbBpwQQhQUPk85++yzrbIGmM9gj7VixYrYfszvubb+/PPPMcsLIfKzH88VV1xhutCff/6Z5+erUaOGVYdRLc5cHjcEEuQA7/9ffvklJqjTNw3QAFjoBirO1K9EOBLRRZ5EdC4ubt+CiE6GDl7pZOwyEfjss8/sPm/AyISBCyGlYy6wRyEThxVHJtwq+xYFAY3uPvjgg1hWZRTsWjyrHAGJZiNUW7hdC0IRVkWsbCOsM+hkckwFBYEaEOfliy6ESEUQ/oBGYjRQZpJB3CdLDZ9nF9QRBt2iguvf0KFD7fdHH33UJh6Im0LkN8RgqiMzWxhPBBdeeKH9xN/cRXMm4vilNm7c2P5mgX3Lli32e506deyn//9gnOxVlojyNCzHHonGvdEKDiGEyG9I+vHeJmeeeWasWTjzIhb1fP7CdYv5D9dWko/crk2I/IQEDhLaGEvmFTQoYjXnO5nm9DGh3xkJdWhTVIrh/08sZ1/m/CSCkCTiYAG7cePGPB+LSH22NfwVYjtQArNkyRL7ndVBbFdcRI/fj1v0PsrA8FtjFRtf9HjwWuPipBVuUVBQNcG5yOINWRjxzJkzxwaOWBDhAQgEYAQlLFziG5P6BJuBKYNPeZwKIVJdRCdT1kVzGjSRIYSP8xtvvBGGDBli2b9enYb9C2XhwHUVYdEX0oUoiEk32eJUTbDAk2gQzj07jWSPmTNn2nm/yy67WLxfs2aNLTLRGwBYdL/88svt/4XjIjrjhHXr1tmEnma9ZH76OEMIIfIbMs0RCkkAwqqC+TlVY4joUYj7b7/9ti2Yx897hMgviKVUQDCWTIRDQbQRLrGbOE3s5fyvXbt2LEkE4Rz7IuIxMZ9EO7zU+T9C3xWsiUXxRiK6yDFk3D788MOhc+fO5ofmk2cyabBzYRWPi47bvBCMO3XqZFk4XHTo/p0Z+FBRGk52rxAFAedqhw4dbDEIP363Z3EymoTTXCdqWZDZ/xMJ6EKIoiCiUwbrZd7ufU78R0zH89wFw4YNG8YEdB6Ld3TU2kKI/OaMM86wjHTGk/khohPX27ZtG/v7ggsuSHd//PiV/x+TJ08OS5cuDe+//755CbudC+IVAju2SWS/SUAXQhQkZNwiTiIeeoNwsswR18nQZe7OPJ7eUYMHD7YFcTLWhSgomKMjZNOwm7FoIkCvwmqQMSzxnMo1Ej/JRndYjOd+5vOI5+6H/tBDD4Ubb7zR7hPFF9m5iBxDBo3bWfCTYMsqHhOHCRMmWMkXXlIuoiOukxHErV27dpa1lhFr1641G5hrrrlG34ooUNq0aWNBcuLEidnanxKv7YnoQgiRytDskDiOsIdwzgI3tizefAm84Sh2V/DSSy/F+p2MGTPGeqNE9xciv2FBB6F6xowZllVZ2NBThUait956a3jnnXfC+PHjw7Bhw+w+SsgpL6dv0E033VTYhyqEKGYce+yxYdy4cSYMuojuVlhuQUWSEZXkeEVzbdVinyhIqPoiwY0xZaKYMmWKuR5cf/31Zi9MFTmx2sey9Dyh6SgWa+hajGOxacVZgf4/JJOK4o1EdJErvv7661hZTL9+/UwgJxsHv1QuQFxwoiI6TZdOO+00s7+gAWNGjB071jLb3A5DiIKCkmx8STkHPYBGIdCSrVGiRAmzdaH8GjiXaa5HoMWHlYEnk2UEJ3wFyYIj6JLNEe3wLYQQyQ4L275YTo8T7K4eeOABywhi4RHRj4XvKIjoLLTjB42HJRlujAeEKEhoRkbMza8Go9iwUFnJ/wkWjQYMGGDJJPQBouk42eX8v2Ehin4CWMzQL4hqDsYZHB/w/wp/YUT1iy++OF+OVQghsgO9TLBqcfHcoa8Dmehc2/zaJURBwRiSsSTx3HuN5BWyz9GliN30PluwYIHZFdEnjcUk7IpZhKcHILGeRDus2lhEgvvuuy9hxyJSE4noIsfgBeWdvD0j3fEGJIiSUREdz2kvX+UiGN/wib8ff/zx0KpVq1gjRyEKEgaGTICxH8jMM5CAiS+we/3T7IRBJd6BH3/8sWVn8Hh80/ALZnGJfchY9ya7QgiRCtD3AfCHjELfEgTyu+66a5vrJUIimcAsIpKtowm3KAzImmRBm3FlfoD/OTYt+KTSF4Ax8ZtvvmmVGVgaYt1CsgmZ54CYPnv2bNv3qquuinm7Ug6O3RHHKoQQBQnzGiymWBT0rPSTTz7ZYncUtnMtJRv3wAMP1JckChzGkpyX8+fPT1gMJwkEu2Gqy3FBQIsiMY64jaiOLzoL3GSjU6lB/CZxlBjP3J4FcVF8kYgucsTWrVutkzHNGOIbNACZ6D4x8Ixz95j2oIyYHl8Khuj41VdfWYabEIUBK9L77bdfeO6557a5j3MeuyIyxZ544olYxhhBFK/A6PmNryDQjBT8XM+qF4AQQiQbl1xySVi1alW4++67LSOHLJ0ff/zRfCl9Ed0XzoFqtFmzZtnvXEeZeONNLURhwHiSSS9xOtEQ1/FLBYR09wimEgOYfAMTbxbfPeHELeCwcQHEK8rKvbeQEEIUFPQtoWFo5cqVY9t84c9BMCS5jUVCzdFFYYEXP1XfPsZMBFEtqk+fPvaT8e1JJ51kv5Mgx+/oVsRostH5neQ5ePDBBzOsXhfFA4noIkcwAeDiQVAFVqSZHJBt/umnn4bff/89JiC6oM5KN96UZO2QmZNRZhAXRcpavSGZEAWNe55lFKAZOFLGxXmM7QviUGYiuldSYP8CHmDjO90LIUQyw4Ig1zosrBYtWmQl3XhG+rUsvnEyvqosoDNGmDNnjllcCVGYPqrE37lz5+bL82ckopOJTjabjxHImmPhncx0wCaB+/EWBsbJWL/gky6EEAUJWeiAiE51GZ7TxO0uXbqkW0z3ayjXVCEKC85NKrpcxE4UJIhwnvti9+rVq8MBBxxg+hX3eaXYU089FRo0aBB7HLpXojLjReohEV3kCLekILuMjJuGDRtahtr69ettRc9Lwlit8ww1xMeWLVuGzp07W0krE/J4yFrjIsXjhCgs8CbFrgXv/qwguAK2LlgXgJ/7LqKz0BT1ApaILoRIdWsXYr97pVMO6/C7LxiSsUbGOtdTIQrT0qV27doZVpclAp9MY2lEpRrxngpMeqaccMIJsfHApZdeGhPJ8WnH6g3ByhNOENybN2+eL8cohBCZgVgIXIOwau3QoUN46623YhU1XNOwrOAayiI6PZ6EKCwYU5K8hrCdSOjbR6KIV4jRSNd/x97F9Sz6muClDj6/p9pMFE8kootciehVq1a1zJuyZcvGJs6IiX///XdsQu2Z6Ni5MPGmOQO+UvF8++23YcmSJcpaE4UOWZYERla640EEp4s3E2Lu9zIwz0D3xqEuoiOqex8AX7EWQohU4bbbbrOGSkxafGGRJskuonfs2NEW0oHYT0MmoJqHybaXxApRmJlrZIphRZhoGP+WL1/eMsvJ6PTsc8aztWrVst+ZiGPnQoa6LzoxIa9fv34ssxPLpPi+A0IIUVAiOouA2KpClSpVLPkNiOPMdfCHVmWZKGwYU1IBmeiF8ZtuuskSPWkyGp8shyXcjTfeaL9v3rzZjoFKc5/z0yzck0xE8UIiusiViH7EEUfEtrmITqClgSiTaiYWvnJHs9Cjjjoq7Lbbbpa1Hg+CJAI8VhpCFCZYETC5zShAs/pMpgYr0e3atYvZuHh3bibS/F/wiTKikvuj+2KREEKkAlzPaBzKwjc2bdEeJy6iM/H2JsvQuHFj+8n1s2nTprEqHSEKM3ONie+rr76aL89PpjuQGXfiiSfGRPR9993XxsGAwE5WPKI7kGDivYJ8mxBCFDTYSwHzcxYaSQIimciThEqVKmULgMxzVFkmChsqvBlbJtIX3ef+Dz/8cMyuCLuYyZMn2+9UZpxyyinWA5A5/ooVK2J6FQmijJWxKxbFD81wRK4CLllpI0eOtAk0FxA7mXbcMdx6662W9cOKdbTJKE1DCdD8jIcJd926ddNl7QpRWDBQZNAY352+Xr16sfOcgMqg04Mti0pkkvE73v40KEVAp2cAq+Zkc7jXmhBCJDsseHtlGdcxF9HJztm4cWNsAuE2VQjqVOl8/PHHlsWmCbdIBsgOR8zOL0sXLA5YUCfjnOxz/n+QtYmHMJYuJJZ4xhr3MW4gwcQz1+gnJIQQBQ3zFfqUgVfqcC0j4cfn9YceeqhdO5njUIEuRGHD2JJxZ35kf3O+E5MZM7CAVKJECVvwxoIN+zYy0Pk/c8EFF9j+/v+EXgJu6SqKDxLRRY6grBtYBezUqZN1K45mokfxDDWCcr9+/WzljgZKUchwoymTysREssC5iHgU3yyELHTOdQaeixcvtuAK2L9g1UJ2Jlno8+bNs/8XZGWygk0fAALwwoULC+kdCSFEzuCaBWTUIvz530wwiNsIhZdddpkJgiwsLl++PDY2YH9vuihEYcK4lJjOeekT3kRy7bXX2oLTwIEDw5VXXhkef/zx8O6774aLL77YKjm++eYb20Y2PGOAs88+28YQZLOBGooKIQoDepmxwMccxuf2ZPpGYc7OtZNraPwcX4jCgBjKGDPR2ehAI1H6kzCuJQEOwRybQhJD7r77bov1p556apgwYYLFbqrSgfieXw3MRfLy/7reCZENKHdhUhBdhaP8C9HRmzA4nsVGaRiZbHiiuwWG884779jj2EeIZIAVaLIqmfC2aNEi3X3RQaRbtcSf90IIkeq49ZpXiLmITiznOvjFF1+YkA5MNvx6iG3GaaedZg0ThUgGaFr/4IMPWiVl1IowEXgPFECMwrrwhhtusN8ZQ9BgF6sXMtiGDx9u9oXYu7ho5d7oQghRkCBE4gFNwptn9bo9JXAto5KGOb/m6CJZYGyJewFjTfqUJfr/BPGauP3EE0/Y/wf80itXrmw9A0iUY3Gc5E8WoJ599tkwceJEG1tMmzYtnH/++Qk9HpHcSEQXOeK4446zm3udIqLjA8nqHdvIxJkxY4at2HkJ67p16+zG6t2bb74Zy+CFZcuW2eRCZWIimeCc5tzMzuSZc18IIYoSZJuDi+F9+vSxybZ7OEcbJVNtw4SjZcuWdt2MrzgTojBxr3LOzUSL6BmVg99zzz02NmaxCSGKn4yPsTtiLIw/Oo3KWHi6+eab8/V4hBAiI7CZpHl4dDEvamNZqVIlW/CLXkOFSAY4H6dOnZrw5yVOP/TQQzbWJeMdW2Kyzmk66kl0gwcPtnn/HXfcYYmhTz31lFm3kRnP/lRviuKB7FxErvCLCRMFMswRx5mckJVLWQs/XUTv27ev/cQrNT47jUlN9erVtykhE6IwqVmzZli5cmXsHHZ8QszkF8sWwD+QbI2TTz7Z/mYlmqwNMjuuuOIKG5zyN57pL730UqG8HyGEyAmekcYiN5CNw6QBu6oLL7ww3bWMcQD+kfimUyLO9VOIZBKLELe3tzCeW0gaYWyA5dvtt99u/U9GjRplYwDsXrzkm/JvbN+8X9AxxxxjPYOEEKIwmTJlivk6R2HBnGsmDRWpNhMiWWCMSYWEV0gmkipVqpg9G17obusybNgw06mGDBli4jq+7OhZHTp0CL169bJEUPoKIKiL4oNEdJFtaJpw7733WulKVESPQqmL7+sCpK9sc4FBSI9CgNaEWyQbnJOsNH/44YfptpNxCSwSeRMRxKZVq1bFMjYoMcPmAN/TpUuXWkk3QjsTahfehRAiFTLRXUR3uNY9/fTTsYZkHvepNHORUjFdJBuck/klojMGYGw7evRom9jzf4PxAJNsGqB9+eWX1k+FsQF2LvRKAWV3CiEKC6pi8Hpmjo5QHp/khmioObpIRnyMSf+RREN2OT1LSApBpCdJFPtC4jp/E9OxIub/CwvjJJLSA82TTfKj94pITiSii2yDcMiKW/v27TO1sihZsqT9pBTGG45S2uKiOyt7DoGbrBxNuEWyUaNGDTtn4yfdNMjFX7Vbt25Wkg2+WMT/Cc55XzTab7/9Yn7pLkS5MCWEEMlMkyZNzANyxIgRFudpHIqFi3ulR3tBDB061KpzuF5y3aOvhBDJKKLnxwTX7QhZdGdCDWPHjrUG5MCCetu2bS2rDXwfiehCiMKCChqybu+8885YklC07xNV4oiUmqOLZKNChQo21syPhXH+D3hMZxzsFsT4n1OJCYyHmdfTIwjcTYFeJzNnzkz4MYnkRCK6yDYuioOXoDIpQFCk7AvfKG8c6pMFoLSVbFwCtIvsfhECBWiRbHCeUp4dH6Dp0v38889bg7Bdd901nZjEYhECuk/S+T8iEV0IkYoQy+l/QpNlxHM8H7GscisKFsqdiy++2H561lp0Ii5EMsB5yQIQGWWJxifcNBPF99wrL0ka8THxY489tk0lmsa+QojCwq9H+EDfeuutdq2qV69erLqMRT7iva5TItlgjMmYNL+qy7Bac1Hcq84nT54cPvroI/udnwjnPtZF43JB3RNNRNFHIrrIlYj+yCOPWHdiLjSUsmJXwc0nDPiie/NRMtevuuqqbSYvXPzIXqPrsRCpVv5Ndhm4UI5o7sGT85ou3/w/AH6Hv//+uwCOXAghEh/7iekuokfHA5999pn9VOm3SFZcCMqPSbdXXlCVRk8UHwNgcXTAAQfY3xdccEFs4R3IYvOJuhBCFDReSc4cnmaJd911l1lVAD3OPK5LRBfFzaKNTHdo0KCB9TUBkkratGljv5MUSrKo30cl+tVXX22/v/DCC/lyTCL5kIgusk100nzWWWfZxYXsW5o2+UXFRXQyct3yhWwc/CLxjsqoqSjZO0IkY4DGFy3aXJSMTBaEaCzy448/phuI8n8BDzVgRZrVa6/I8AUlF9OFECKZwcpl0KBB4dFHH41V15B14wuDnn0O48aNM69I/KA14RbJCDH5kEMOyZdJN+XeNNaNLq4zLsC+za3cunTpYlltzhlnnBHrISSEEAWNJwD5NYtEIJ/XcN3iWklDZp/jC5FMMNbEp3zjxo0Jf+5y5crFfj/yyCPtJ/83pk6dGrMlRtdq3ry5/Y7tUdOmTe13qtWpRBNFH4noIttk5iUZFdGxbqlTp46Vt7qIjpiIeBi1eIHVq1eH448/Xt+ASEqqVatmE+HPP/88to0AymIQVRgIRvGZ6DTqASbr3oQ0ukikSbMQIhVgAfG2226zEtaoiO6lrdEKMjJxPYNNMV0kc0z3BuCJgnHsww8/bDEfEMpdOKehKBnpPgGPTvZJQhFCiMLC5y5eIUvM92Q57iOmK56LZI7nkOiYDmhZHsO90owmvIDVq78uPQWI8dgb0miUyjN+J767BiCKLhLRRbbxiQEsWbIkjBo1ysREb7CIqMhKHJ2MBwwYEMu6ZfLAqlw0oxfWr19vq9xCJCM+KcamKBpYySpHTPLsckq06WxPXwAyz8hI57ymGoPsN1at+T9CeRj3CSFEsuOLf/EWVP43JeCw//77hyuuuMLiOSimi2SO6dF4ngjuv//+cN1118Vsjm6++WbLkEN8wl+YBSh+pylZtJrzzDPPTOhxCCFETvBsWY/pvkDu2emao4tUm6MnCoRzLI0qVqxoY1qE8rVr14ZVq1aZcI5Y3rt3b5vz16pVy7QBmpB6jKepeLz7gih6SEQXORLRXTh85plnzAtqypQpMe+oaMYueCZ6586dw4UXXhhatmwZu4+gTVaOl8UIkWz4uRkN0Pj7M7gkULp1Udu2bcNXX30VHnzwwdCuXTvzRSdjnWoM7F3oBYDdAf6C/D8QQohkx5uAk1XjXs5Mslkkf/nll2O+j40aNbIxABNurolk4wiRrDHdF3sSRe3ata0qg4UkEkeYTL/22mvWhJesdCbjZHiS0eaw4I6/qhBCFBYu+GVkPVG3bl27VnKtEiIZwUaNW6Jjutu5YN86b948i9UkiJJY8tZbb4UHHnjA7NtIEH388cfDq6++anYuJM75QlTp0qVDs2bNEn5cIrmQGbXINmTfzpw508R0t63Aj8pFdLZxAWHCTfaNl7GSrU5pS9RDFf9UkIgukhUEIc7hzFa53Z4IG5d4ohYuvvAkhBCpgl/XuM55FRpZN1hSUcbqJbRMYoDrpOK5SGY4Pxl7shC+0047JeQ5aSZGnxTo2LFjrEcKi+o1atQw73PGzgsXLgznnHOOjYdpPqpxgRCiMGndurUt9mUkol9++eVh4sSJiuki6WN6fmSixzN06FC7ubXLI488Yv9viOnEdyoyn3vuOas6P/roo20BXQtQRR+J6CJHeBOFRYsW2U8ycPFEP+aYY+ziwYT79NNPtxU896uiBAax/dRTT411NvaVQ11kRLJCYOT8zGiVm0oKnyxnJKILIURREdHJurn++usty5wF8mh/E0pWmVBIRBfJDvGc7EuqIN2GMFFjhWh5ObDYhKgeZeXKlfbzggsuSNhrCyFEbsCGCvr3759hIhDXSi2Mi2SP6QUhort4npUdG/Zt7pmO7vX666/Hmo2KoolSJEWemi4gjhNoyUojw4YSFlbnyEj3THR8oREcves3+EVPAVqk0io3vQCYHLu9ATRs2NBKH7FtwfuUoPnTTz+Z3RFZaC+99JJ5qNFwNz+6iAshRH6K6FTlDBs2LAwcONBus2fPju1HrxOyarlOalFcpJpFW25ZunRpWLBggdm0kEwyd+7cUKlSpXDuueeGPn362BiZhqP4pB555JG2nfjPQhSJJkIIkQxQTTNixIh027CmAMV0UVwz0bFqpd/ZnDlzrGoDb3RiPpYuCOXYuAFz/xNOOME81Eky8fj+5JNPWo8UzfuLLspEFzninXfeMe8nLhh4ntPBGy90Jg8OFx38n71c1q1b3AIGuOhxP6K7EKkSoGkeFm2Qi80B/x/8PpqO0MEb0emNN96wv8n28K7e8gsWQqQClKcCMR5fdPdIxyPy7bffju3n26nYOfHEEwvpaIXIvojOuYrVSl4ge5PFJBbOP/zwQ8s6pwITQZ0xAeNeXodJN2MG+qMAi+ksxAshRGGCUI7txL777mtWbVHYDkp0E8kM56fPwRMNyXDoVt9//70lgX7zzTfh6aefNpsjxsVA/xN6oSGkA4I5yaXw6KOPWtU6Y+levXrlyzGKwkWZ6CJHjB07NnTq1Mkm0mTXgnujAhcWF9S947c3GHVfVUCYJENdvpAiUZD1RckV5xvNvljwSbSIToORFi1ahGOPPTZdtibiOIEW6ObNef3JJ59ss0/0/4AQQiQriOM0DyW+c91iUr169eptYvaVV15pP2XnIpI9njPmxHolr5lrZJsR54nt9ARgrFuzZk27D8HcBSmy1PFfh82bN9vPa665Js/vQwgh8goLf1zHJk2aFFsMdxADuVZi1ypEqszREwk2hi6me1LJfvvtF2seCrwXFss9aZSkUnoAAuMCPNOxOxZFE4noIkeQZQ5k27iQyMSapklczChjoXQVfCJB5s2MGTPCrbfeGnsesnQS6Ukp/o/69evbKmlxgw7ZPXv2DH379rVVafz4GzVqFBO2cwvntGeQAefsE088Ya8DZJwDpV0ffPCB/U6JF4EUCyNsXzxznVIwIYRIFc466yybADBBILYT831x3KHcm1iPSKiYnlgUzxMbz8kAP+CAA9LF9NyAuHT//ffb8yxevNgqzrwHEEI9Fi4e86M9U3jcxRdfnKfXFkKIRODXJiplqTbznmdcp7Bxo1Icb3SROBTTEz9H59yNr6RIBJ70xlzef2exacWKFbFFJ0R17F6qV68e07a6d+8e+781aNCg0Lhx44Qfm0gOJKKLXHmhI6LTaAzxvEuXLrZazYQCQZ2Vbbe3gFdffdUair733nvpMtYTlZXbr18/C/oZ3QhYouiDXy8ZXu3btw9Vq1YNI0eOtPOLpnd5AV//jDrXU9YF7o1ON24vKcPqyH+n1BtB3YV2IYRIRdx6LX5SjYjopa2JiOmK5yK/4nlWMT03eJUli0v+/4IeQZ69yRjUvYV9/OwZa0IIkSwiOnYTPm/hGkUFjeboIhXm6JComB7F5/dknu+2226x16Ei3UV0kkdINvGm4uhgLNa7teHy5csTflwieZCILnJEuXLl7Cfej3hK0o0YPzWyz7nIbNmyJTax8BVGyr+5CE2ePDn2PGSzJWqFm+DPxfnkk0+2sh5uN9xwg2XQzZw5U99wEYdza9myZRbI/r/27gM8qmp72Pi59i52sYsdC3YFC9jFjhVEsRfsooAFe1fsICo2rCg2vAg2LIAVbFiwF67diwW7qPM977rfnv9JyECAtCHv73kCySSZTJLJ2XuvvfZaCc853n7++een6b55juYzLynRwoZQ3759iwvmykF0/i7S6xzxpks3DKJLKifDhw+PRqJDhgwpBgZTOZcUDKTkS7pG1sSY7njeuNXmeJ6eo/m+JlOKI+j0/KGkYVq4v//++8WNde77+++/j9fZXEpzBOy2227T/PglqSawdkcqT5GuW5Srco2uclmjY1rG9OoE0VNcKyWMUMYtzX+RTmHSdJTM+NRzhe+PuQKxKP6uNH0xiK4pkmo7kV2bajymC1k6zkLwfL311ss233zzeJtFBBcgjoclXPBqKojOxYwdTS54XMh44TbuP9W00vSLWr1kTXCMOo+3p/XYNjvK+cGZsjE0C+HEBRgsQZ03moulTHQmDOl1FthIZY4kqRxw0uz000+P614q5ZYC5ikDiGtvukbWxJjueN641eZ4XtWYPiVYBB9xxBHR94cj2ozpZJpzGnPHHXcs/n1wOgP5BrxIZV4kqb6la2wqhZHW9Fx/azKI7pjeuNX2Gr0uguj5THSkUxrdu3ePQHn63m6++easZ8+ecQodZNpvt912sYGe4gKafhhE1xQf6SZIzWKCQCIZatR/4iJCowhQL4psHXbeUrYau3f54zZc8DzWOu3OP//8mKCkFzIHDz/88Aq3UXpHU2fgwIGxCZQCRzQYyWNwpSYwEwQ+jtf5+2A3mp12guivv/56TEbJVpekcpGuWe+++2627LLLVlhwU1saNBhPCxjH9GnjeF77eC6zyJ0aBJmYA1OmBcx5uY2FfL7hbmommhbhadOJ/kCS1BCkEhQpGajy2sbxfNo5pteutFH9ySef1Ph9p3GeeBe115nrprKGzI05ycELGwGp8Sifwxw5n8DJ5xMXYDNB0xc7RmiKUQ+KiwbNlMhUu/322+NCkoLo6aLGAExjpU8//TRKreSbK6SLk6YNAfM999yz+DalRtjx3HXXXYu3EdidnhHM4blGQ4+8mmhem3oApAVy2o1OeN7z8071/zmBwSKdSSmLZj7/s88+K/7dSFK5BdGpmZpKuXEtpERVhw4dYuHSqlUrx/Ma4nheu+N5Qib51KAO6iWXXBLHs3HyySdnm222WZzQvO2227K99torkkXWX3/9mPe++eabxc/lJGbKmpOk+pbWhpWTg2DpiZrhmF67Y3oKaqfyKjUpbSKxKT7nnHPG10pfp3///hEUZ53P+9hM32OPPeI2EuqGDh1avJ/evXvH39OAAQOybbfdtsYfp+qPmeiaqsZfI0aMiAUDwXFUzkQn85zs3bTT/cUXX1TY1Z7WupST01iC9Ox2siBML1zQqV2bv216765Othe1x/ODVhrE0vNzatFBnOdteu4eddRRFQZ9gksMjPw9YKONNorTAODvgY0mkMWZdqolqRxQroKxlE3CeeaZJ27jZBPlKtLRVIKDtVmXEo7njuc1MZ6n53S7du2m+PMo28Jznd4m119/fXbcccfF3wX9gZ577rmsWbNmxQzOFGRPNYaZF6TsdElqCEjyOeigg7JOnTpN9D5KsLpGn3au0Wt3jU4p1XwwvSalXgE8fvqgDBs2LMZ70AOF+QDB8VGjRmUXXnhhbEoRZOd77dq1a7EEIsmkxx9/fJR2ST3SNH2YvqNrqhVkniUbb7xx/M+imoA5jSIIPD755JORDZ3qRpGVQ9kXMqWntS5ldTOGyJbngmVDx+lfly5dsv322y86YpMFdsUVV0STWzqBTwueo/nsMQZJOtrz3CIrPWWdpUUzfw/sOoOmu5Q1Ah8jSeWETdnlllsuGipzuoYFN1m3qR56ysjheovaGtMdzxuX2hrPp6UfT69eveJo/tlnnx2PL6FcG6fNUukWTmowR+DvJTUVZX5Mr6B0sk2S6hvXqRtuuCGurVdfffVE73eNrnJYo6M2kgXzQfRU0jXFA/bZZ5/s6aefjg11kuv42K233jrW/bvvvnsx8/4///lPJJEec8wxcXKdrHVNP8xE1zRZbbXVoqECNaDIRqdTMfUmaTJKgDGVucC4ceOy3377rXjBSxel2rDNNtvE/9Sk1vSPUxE872iCx3OP0xAEtis3MplSlZvrMFAySCJ166bMAUe4eJuO3I899ljc3qZNm2zkyJHxukF0SeUojaGUpmDBTQZuOnkDAoVpXK+tMd3xvHGprfEcU9swjyw0Fv2VM97YVOL5mXoFkHWWgucJtVQNoEtqiAjs3XnnncU1DVi/u0ZXOazR6yOInsodcULzkEMOiaRRmoqeeuqp2R133BF/T6m5KEkozAsuv/zy7Kmnnqrxx6n6Yya6psrDDz8cLxwDY/eNepCPPvpo1IcETRgoK0L2TR5lXshiI7OMozA1JWXC5Rc209r1uRyxM9pYsRvMS03iOcpzNaHmeapzmhrlpoGWpmE02/3222/jSBdHuDnClT5PksoNR1PvueeebPTo0cXSKoMGDarwMalURU2N6Y7n/+N4XrPjeVVjenVxXJsj3NR3pe8JWZz50m6prjBl29LfSnLggQfWwCOXpJpFcJDeJvzP+jwhMcg1es1zTK/5NTpqI8N7UkH0hPkwpzjYFCDhhNPq5513Xrwv9REiG52yPswR7r333shi1/TBTHRNFXbZ+vTpkw0ZMiSC6EgZuGTkPPHEE3Fsp7LUnZgg+5dffulPXw0az1Geqwk1zlOWGRNOBtQxY8bE21tttVXUZyNbk912Bt5XXnkle/XVV81El1SW9t1339gcZKOcjUPKV+SzhyhfwcKB4KJjuhoyMskps5If06uLUi5soPfr1y+OpVMmkPkvi2sailGyJf095Oufs8iuquawJNW3c845J65lDz30UGwM5q+VBCjTCRupIWLOyemw2mjazf3S64T/+XtAKmWYz4BnjE+nONKpTMw333zxPzGAzp07R9yMRD/e1vTBILqmSipp8cwzzxSD6AQVeeEIC7elhQq1o9GtW7di5g7vY1cuZfNKDT2Izq40gaI8jqXRLITBcc8994wsNOoG01QkLaj5mPQ3IEnlhOtf8+bNo8bjfffdF9ezjz/+uPh+NhUp20YgndqPUkOVNnl4rlbXzz//HM9xTkccffTRsQjmKDcv/C3QA4Xssuuuuy6ajqUs93S8nJ4CnMqUpIZmpZVWiv9pnJjWLUjXMTfG1ZDx/JyS8XxKXHDBBTGmU64lNQknoxxsxqdyLvnyLsTAHnzwwXid7PT0t0WQneA5yXbXXnttrTxe1T2D6Joqm2++efxP9g0BQi40b7/9dlwotthii3hfqoeesnIuvvji7MYbb4zX00WvMZZcUXkO0GSWn3jiicX3MXhSwoVd6g4dOmTLL798PT5SSapdqSxVKl2RDBw40NNlavBSQGhKMtG7d+8egSZOlV111VXRPJz+P88991zcD6VaDjvssOyyyy6LU2kc1yeAnjLjyFqXpIaIPk7gtFmPHj0i8SffsNEgusrptHhtSdnmKbs8BdHTZlP6eyET/aSTToq3jzjiiOLnEyejxCuJpMQOxo8fX+uPWbXPILqmygorrJCtvPLKcaGgOQRHXpKddtop/n/xxRejTlW+wzeZbEgXPTPX1JDx/MwP0KnGPwMnjXI5CplwHJLGIZ999lnsRpOBRimENNhKUjkiYEgdR07csIjIj+lgc9wSbWro0nyzuotunueM6zQGS8e4QaBp9dVXj9dZEJNZRkkXMtVB+Rbmx2ysn3LKKbXyvUjStGKDkGtbqv+cylWOHTs2/jeIrnJao9eWBx54IALkjPNIQfCUiZ6SRQmWX3rppXFyc/HFFy++j3IwO+ywQ8TAKHd8wAEH1PpjVu0ziK6ploLlLDISgoctW7aMQZlgIhm66aKDVNYiXfQcoNVQMfB9/fXXxefq4MGDI5iUnvsMkmSgccKC2oFXXnll1qVLlwg0DR06NI5w0YmbJqOSVM4LlTvuuCMWAOuvv/5E76cxmeVc1NAx32Rumq/9OylklHP6gpOXlB6kZEtaLDO/zdt+++2jzBEl3y655JLs5ZdfzkaMGFHM7JSkhoZ1TIsWLSa6PZWgMNFNjbWcC6WJ6e1HQ/F8RjoOP/zweEml2lJiCf2CmAvwccw1UsyL05vc1qRJkyjz8uijj0YinsqbsztNcxCd4CJNFk477bQobcGOXaqTvuSSS2Y9e/Ysfs57770X/1M7muOuBtHVUNEElwVzCqJzbJtj3Nhkk02ifNHdd98dz3s+NnVdZ9Ponnvuidd322234qArSeXcA4XGyquuumq8zuZgKlnBuM91kvJsqTak1FCPfld3TH733XdjPsvYTk8fFs1nn312zGNpxnfwwQdH4giZ6mn8T38PN998s7XQJTV4a6+9dvyf3/BjTePpMjVkzDWZc9ZGJjq9UJjvshleVSLceeedl/Xp0ydiWfkgeuqFkqTyLwMGDIjeQiBu8P777xc/V+XLILqmGvWgybrhyErK8OHCQ8ZaPkt9qaWWKi4mCK5zsWERQ20og+gql/qp+TrALKRTKRee04899lgcg2TXml3x1FiEZqOSVM4Yv1O2Wgqcs7AgiAhKVnGd5Eh45XrpUjnWTyXznFIHzzzzTCyYOXXGXLZz587Z448/Hke7KXnA38Ohhx5a3Dwi+MRcgAbjKWlEkhoqTo8jX7KK6xmbga7R1VCRyU0CZ20E0f/zn//E/5xaY167wQYbZHvttVfJJBE2ojiRyelzPqZ///5xajOVe6FvEJvy9FihYWlKNFV5M4iuaToGxrEUdutYXFAzleA4FxHqRbKrzS7e6NGjix3Ab7nllmJJDD6H469SQ5Sem5ymSHVOE444vvTSS8Vsc57XaN++fQTUqZfG5lKanEpSOeOIKsi6pckyGUA33XRT3EYwMWXVOKaroeK5mcbzyWnbtm28sIFEozDqnfPcJ/njyCOPzIYNG5b17ds36927d8x5K+PERpr3SlJDtdlmm8U1bpdddqlwO6UnHM9VLmv0mvTpp58W41S8znp/+PDhEeOifCuZ5L/++mvx4ynbsvTSS8fHc4KdRLtRo0YVe6IRPzj11FOjOTlxszfffDPuJ/UiUHkyiK5pQqAwHY3l4rHFFlvE60OGDIlmY+y80WyRiw+4uHTt2jVeX3PNNbNXXnnF34AaJJ6b1Ddj0Yx8Mz0a5jKAc3SLJrsMsLxOI1F2oLH77rtbD1XSdIGmSKDfA2M6vR/I1k3YLGfj3DFdDRHZ4Sxe11prrcl+LGM7Geg0AGOsT9IpjFTSjVIuZJYl+TIxbKhLUjms48mOrXzNYk3DNTM1G5UaEuaaJHOuttpqNX7fqbEuca2UlZ6C9dQzp5zbtttuW+Xn8nfDHJnT6nw+qNpw7rnnZssuu2z28MMPZyNHjowTbNRdT31WVH4MoqtG0HmYRiT7779/vE1mLjtvXGi22267Ch9Ls0ass846EWRPO3VSQ8IpCp6jLIzJPH/nnXeK72MgTBkc999/f7y+4447xoBO8z3svffe9fTIJalmcTSVhcAPP/wQWbYsuDfaaKPi+6+55pqo+ch1U2poKK1CuUHG9MmhaSgnKzhy3bFjx9ggImBOAkgqV8Sm+n777Re3r7LKKnFb/qg3nydJ5YKNQa5pyYcffhjrc7JupYaGuSZz0XwZopoOopNdng+oIzXbzTc0JXG0S5cuUbYF22yzTdajR49sjjnmiLeZJyTExKiVzql1YmCpOoPKj0F0TTPqnpOxS33Udu3aZXPPPXdk8jz55JPxfhYiBBfzAXewmGHRwU631JDwvExB9JSF+eKLLxbf/80338T/bBRxHIujXDQeJRPz5JNPjo9fb7316u3xS1JNYgynpAuZvFzz2FzMj+vUguZ6aRBdDVF6XqYmepNCiZZvv/02PodTlFdeeWV2yimnZD179oz5LPODiy++OOYE1DxNQfR8v6C00S5JDR2nyl544YViUhAoXwXHdDVE+TV6TUsbR4zjqbRLykT//PPPJwqiM08g+zzFvRJiA6B0S/qfU+o8buYTxL/YvFJ5MoiuaUbDMZosUReSxgqpdjQLERYZBBeXWGKJ4sezACcjiKy12WabzQFaDQ6DJIFyBjp2kF999dXi+wgcbbzxxtF0h02jq6++OnamOdrF7vIZZ5yR/fvf/65wtFuSyt11110XR2i32mqrbMSIERWya7jecb2kR4p1HtUQF9zNmjWLMXpSyDDv169f1C5lHCcz88ILL4yTZdQ4p9YpmWOnn356fDwf9/zzz1e4j1SyUJLKASdsWMOQeU45ClBmguxbg+hqiJs+zDVrK4jOqUue+5SKGTNmTNy28sorV6jFnjLTkU6oVZ5fEBsDAXM23+eaa67YnKJvGmVhiJ+pfBlE1zTjuMtOO+0Ur/fq1SsaMLHA4HUCkexspwsMqK/G4oSBmguIA7QamvScZIAmwzKfcbn55ptHyRbqpKV6qfPPP39x4ilJ06OUVQOaiqbmyuA6udxyy0UAnaZJUrllrZElRqCdJnskf3CajNKEbJivu+66sWinrBGljAgwEVhn0fzll1/GJhJHt+edd97ifFiSykHTpk2jTxnS/+B66BpdDQ1zzAkTJlTrZNnUIAmUDHQ2lt5+++24jcRPUIIF+cbhlICrnJ2O1E+ABNPXX389YgmcYiOgTmwsJZzYd6A8GURXjTjmmGPifzJ4KO1y1llnRbMS6kLxNrvblLoAWejHHntsvO7xbzVETBoXXnjheA7zwsIY1EmleSgYYKmVmpx55plRD83BUNL0jPGcfieVPfvsszHOu+hWQ8KYzGmyyQXRb7zxxtgcHzRoUNRZZaHL5lDCApjMdBbMPP+vvfbaKN1CUD3VS+dvwA11SeWmbdu28f+oUaOKtxGo5PSZ6xo1JMwxmWvWdiY3QW5KFDOmU7aNzfNU6iUfRE8lX0gqzUvNyDnNljanOMm5yy67RByMjXuSTklA+f7772v1e1HNM4iuGtGmTZs49vLrr7/GQiSZZZZZIqOn8jEX6k2yM8eihoaNBNalhthUlJplLI55nVpm1AQGG0UM4AyODKoc82ZgpIGZJE2vGUBsMF5wwQXFpkkJQUUWGiy6pYaC8ZmNn0kF0Snj0qdPnzii/dFHH2Xnnntu1rdv31gopzrBHMkePHhwlCEcMGBALK75W7jrrrvi74GTGjQ6k6Rys/POO8f/+VKUrGe4dtJkVGoomGOSGV55DloTCJTnY1jMeYltkURHsJxSMoz1KWDOZnupIHq6r3zpF/6+HnjggezSSy+N9995550RD+vfv3+Nfy+qXQbRVSO4KKRs9CuuuCIuMmTkbLHFFpG9w47huHHjig2Y+HgC6RyR5QKUPxYu1ScGNZ6PPDfZGaaTNrbccsuo8b/66qtHo7F77rknbqfRGIMhz2Maiqa6aZI0vWHhsuiii0ZNxzXWWKPC+9hsZJOxco1oqT6l5+Okjn6zcU4WOiUIybokA/OOO+6I5zRB9aFDh0Zz0VQHnYaijPmHH354LJB5X2oeJknlhlJVNE/kupawTodjuhoSno+s0WvDaaedFhUU2DSvnFFO0J6EueOOO65Y5vWHH36IjabKwXL88ssv8X8q/coptlQOhu+BTXrmDbfddlt20EEH1cr3o9pjEF01hjIX1FX76quv4uJAMwY6Fd98883FY2KppEuqB0X2Op/D8VmpISBQzhFuShFRG5Xnc2o0QlY6WWiUcSFzjcA65V6om4ru3bvX86OXpNrDGJ4m+2nhkMZ1sMlI7UcCklJDwPySABG9S6pCwJwsdTLWKclGz55TTz01e/zxx7Prr78+MjT32GOP2GDv1KlTHMfmaPaee+4ZWWQ81y+66KJsyJAhdf69SVJNSKdtK6PUhGt0NRRjx46NNTj1ymsrBsBmOmVc8xtKIIGEIDsn0BOyyEHvlMqZ8WmOzKm1hx9+OJLsmEOwUU8SChUalllmmWyjjTaKrHeVF4PoqjEEF9lN4/gX5V0IqtNk4fPPP89WWGGF+BgWG2n3kLprLEp23HHH7KGHHproYiXVBxbQBMypdcpgmtx7773x/6677hoZamChzW41Jy9atmwZA6EkTc/233//CJy/9dZbkZHLgiBl6tBkkfqRLrrVEDA2P/roo5Ns9kmiB6ckX3jhhThZxoky5rMsavfaa68o08aptA022CC7+uqro6Eo2WM0HEuLZGqoM5eVpHLFZmHljXECfY888kixCaJUn5hbMsesjSA6MamRI0fG64z3G2+8cfxPT5VS2FAn6P7UU09N9D5ObKYgOqc0+bvisRMrozwMSaTMO5Zddtka/15U+wyiq0ZRviVdDKgZ1aVLl+JFj6xdGij8/vvvcdsTTzwRx2JZ3FBvjdroUn1jQ4dFNEe1CIzns9VAsCgFzZdffvmsV69ecXuPHj0q1BKUpOnREkssUTxdxvFVgo3p+njrrbdmm266aVxHpfr29NNPR8+dUkF0yhX07t07++CDD6Kuab9+/SL7nKQONof22WefCJaTEMLpScq2cNKSLLV0nBsHH3xw8ci2JJUjAoYkDx155JHF21ibs1n4zDPP1Otjk8DcsnXr1jEG17T0XGcsb9asWZR25SX19COW9fHHH1dI+mTdTxZ6Vf1Q8kF05hD8bQ0fPjzumzgCp96ZRzDXYO6x+eab22C0jBhEV602fthvv/0iq5cFChk9BNUpg5Gw4OaiQRYPGcBSfWIzhwUzGWU8T1P2eUKmOQ3FUhb6eeedF5tC7FanoJIkTe+OPvro4lFWXk+Z6NSQZjFBKTcbhqu+Ma+k2RelA6vC0Wwah4HSLNQ4P+yww7IHH3ww3sfnkxDC2yR+EHBPpdveeOON4v3kg06SVI7IlKX0FZuHKRudcZyMWdfoqm8EuMn4ntTJsmmRTp+vt956xbKtNA9nDsFpNGIDBMB5fXJoRppqonMf4MQbf1dUZKDXCvEGEJQnpsD3dvvtt9fK96aaZxBdtaJr165RY5Ja0akZ01lnnRU7b+3bty9+HEe/CaBzhNbMNdU3JolkVfJ8pHEIu8RIGeZkqDdp0iSyNWg4ytvUNTv//PPNQpfUaHCNZEHw22+/xamcfJOnESNGxNHvxx57rF4foxo3FqbMK1lwV3VKjKPbZJ+TBcbRasZ8moYxrrP4ZVzHDTfcEM/nQw89NN5mTtu3b9/i/XDyggZhkjQ9oLEiJ20T1kWWXVV9Y07JWFxbpdPSaQvmtCmgznqf+QOJoSCInu+vcsABB2QnnHBCxLPyUj81Ylxkoufx98TGfJojk1BK6WMy4Om5ovIwU30/AE2f0rGWc889N+qmXn755VEPndqT1JrMH6XlaAyLHI7D8jbHYqT6wCSRkkRffPFFMeMM1P2la323bt2yY445Jvv6669jUN1+++0jAz1fP1CSpndc/2666aY4okpJFwKWqZ4qYzpzAK6n9JCQ6kNqcFsqa41sssGDB2cvv/xyBMHnmmuueF6ThUZj8ZQQQrM9AkokgdBklAA7z/HknHPOqbPvSZJqG6Ul6G+Wb+bIGM/pGxKHpPrAnJJTZbVRQ5znN6fNQBzgyiuvjNdTrzPKuoD5QT7bnL8VPpf4QFVBdJqRVt7Ev+aaa6IyA/NnstE7duwYZeRIMs1vXqlhM/KjWkFTUZot0HzpkksuyS677LJYcO+2224TLTh4P8FIsKCR6gML6mHDhsUOd/45yo4zE0jqoRIsp/s23bQTA+iSGiOaLxNAJ5OX0hfJDz/8EO97+OGHI9tXqq+TZWyAkyleGYFwFuOM9+PGjYtsMRa6LGjbtWsX2W7MVy+88MJI/Ojfv380MqOpeOfOnWNTnaA7C96q7l+SylXz5s0rrG8IEnIdtKSL6gtzSeaUtZWFzphPVnlqJko/FaTM8HyWekKSKH8bJH9yeiMvZaYTRK+MpFHiCC1atIikPDLTn3vuuezYY4+NxqMqDwbRVStolNCzZ894nYxeBmQuTtSFSkdikz59+mRjxoyJRXflGtRSXe5wM0hzlDt/9IosNur+0kyM91MjbZNNNonNH7vVS2rsWGhXrjlNMJJyWGxMSnWNhS3zSQLfLFDzaILLPJTFK0e2GeP5uPfffz9OlrEJ1KpVq+y2224rBpFYWA8ZMiSOW5O1zpyA+qyvvfaav1xJ05VddtklGoizQZ5PKHKNrvpCEJsN79qqh07vE6on0PiTExeM7zznSQhlrU+ZQtDHL0nZ6XxMZdQ8B/XUK2PTnqA7c4pUF51NfOYtfH1OvNNvTQ2bQXTVGo7DcLEj6EjmTupmTAMmLiB5PXr0yDp16hSZ6NSFkuoadU95zrKjfM899xRv55QEx65okkst1Ouuuy579tlnswsuuCAGWUlqzA488MCJFtcEJ8nS5boq1bVRo0ZFYzDG7cquuuqqaCIKNsxJ+iDQvueee8apsxVWWCGez0cccUQxSE7t/5SZhhRcJ6guSdMTsmErN0v+5ptv4npI+SuprjGXZAObLPHaxnyAMm6cRmOsHzlyZJxeIz6QyhWDWEDaZK/sww8/jP+XW265Kr9Ghw4d4m9s8cUXjyD9+PHjI15Gybirr756ooRTNTwG0VWrWKxQ/oJsNBon0Hl4s802iyPg+YUIR2L23nvvOC5G3XSpLnESgl3mQw45JDv99NNjt5uj2qC52NChQ2OXmgGVDR+wY00zMklqzChtUTmgSAZb06ZNs/vuuy+up1JdovEnz8tU2zyP+SdZYG3atIkaqJwyIzudABGL5EGDBkWT0VtuuSUaiFP3lLkBGWgsbMlSf/fdd/2FSppuUXIif4qHAF+TJk0qNFWW6gJzSOaSPCerahI+rRjj2Tj/+eef4+111lknGzBgQNQpx5NPPhn/E7/Kl3BN2elTE0SndEuvXr2y+eabL+qu77///rF51bp163g/pZPS41HDZBBdtYpjLGeccUYsTAimE3Qk05wFCNno6agYx2fffPPNbK+99spuvPHGCkfIpLrY4ea5yfOVMi1pUAXHtnHSSSdlF198cTxX1157bXeJJen/LwbI6CVTJ4+mjozllMWQ6goLz7vuuitOSJBlnkemOQteNs7ZHKcuKWM+wXTmpAMHDoxTZpxGm3nmmaOXzxVXXBG10Fk8c78E3SnpJknTqwUXXDCChnmcyOFaaHBPdYkkTKoZVHWyrCY89thj2R577JGtu+66Vb6fagrMCfKnM5hLMMdljlFVdvwHH3wwySB6wol2mqBTroZ4A/3X6MvGbSmZTw2TQXTVuuOPPz5755134gJFV2+OyCJdHNKu4sknnxyLHi4ijzzyiL8Z1QmC5WScsQt8+OGHF28n+EO2Gg1H6QTOMTJ2whkw2eix+Yck/a9Wardu3eJHwYmdhLGcYOO1117rxrjqzO233x7jOvPJPBbhHTt2zJo1axY1TFnkknFOUIjxnMwzPpf5AOP83XffHc3BTj311Ph8+vak4BHJIZI0PaOsRN4ff/wR10CumVJdYC1OGVUafpOQWRseeOCB+J/eKJSBY5O98oYSMax8E/FPP/00+vyRVFe5rBulWVICXr78S1WYi1Bejq9LrIGYGCfeU8UGNVwG0VXryOZhkZ2w+CDr99tvv41mZCxiQMkXOi+zE3jllVf6m1GdYDJIoJyd5u+++67C+2iMl0q3UBcd3bt3r7KJiCQ15s3yRRddNBbZeSw0OHn2+OOP19tjU+NBoJwygjTGyy9CKdey1lprxfFrGnaRRcbGeQoSkXHO8elrrrkmFrH9+vWLuStlXEC99FT/lAV1ul2Splf0h+AkGQHMhOsf183U50yqTY8++mjMIY8++uhauX/mBoz94Hl+2mmnZc2bN48TaJNCgshXX31VZdInjUlBvfNSZV85wcnm/VlnnRX11/nYvM8++ywS92g8ynxFDY9BdNUpMn2oQ5kye+heTO2phMUPFxaO1lTeCZRqGpNANmxogMsgzdGshNp/f//9d9RE5XUC7GSjM8BKkv4PmThnnnlmvJ6vGUldSBbiboyrLrBZw9zxmGOOqXB7nz594ng0DjrooMgooyxLmneyYU62GwF0TpqRYUbmGXMAFriUfkmYA+RrBUvS9GqfffaJElcJ10r6mOWviVJtYe5Itjd1w2sDZVRIpCPLnY124k9IpYwY7ymvQlC7MuYL+STRhKxytGjRouTXZTOf+UV+vgwa95KJTk8X5iA8JnqxuGnV8BhEV51ht48dNwZfMnpYxHDklgyglDHE2xxnIaONhY1Um2gWwvORMi6Va61RgoDj2zwPCaS/9NJLcdSb5reSpIoITq6yyiqx6chmefLNN99kQ4YMsRmj6mTBzcI1f+wanTp1iqZkLIhZHA8fPrx4MpIMNxapNA7lZNoBBxwQAXYWudtvv3308UnNcVnY8rGS1FisuOKKsRmesA5yY1y1jVLAZKKTXFkbDUWRShORhc4mPOM+cSjKD3Oykuf56aefHvOAfG+ASfXuo0k5uI9SevbsGffJ95Z8/PHHWcuWLbPzzjsvys4RQAen4ir3HFIDUJDq0KhRowozzjgjZ8AK559/fmH22Wcv7L777oXZZpstbuNljTXWKJxzzjmFWWedtTB27Fh/P6oV//zzT6F169aFFi1aFNZZZ53i869JkyaFI488svgxkqTqefvttwvjx48vjBs3rjjW87LgggsW9t13X3+MqtX5Jc+1W265pcLtn376aaFTp06FYcOGFYYMGVKYaaaZ4uM6d+5c+Pvvv4sflx/vef2OO+4ovP/++4XFFlus+Dy+6667/A1KalRGjx5dvAbmX15++eX6fmiajnXs2LHQtGnTwu+//14r9//zzz8X5pprrngujxgxotCuXbt4vWvXrvH+Rx55JN7mMeTnChdccEFhoYUWKlx++eVV3u9qq60Wn3f//fdP8WPia++8886Fr7/+Ot4eM2aMsYgGykx01SlKt3AsBvz/4IMPRokXaqPnj8GQyTbPPPNE5rpUG9jd5hgXtXw5PpW//ZJLLsn++uuvaEw2atQofwGSVA1kos8999zRmDHffJnxnJM8qVakVNNoTr/yyitH89CEExDrr79+duutt2atW7eOWumM7RyTpvFXfo5JT56ffvopXifrbe+9986WX3757Iknnsjatm0bJ9P22msvf3GSGpXVV189roV5c8wxR1xzpdpA+TUabpIFnm9YX5M4kUaj3OWWWy7KtQ4aNKh4cg333HNP/E/J13zZFeYK9PWrqqzbDz/8ECfc0apVqyl+TJROuv/++6OkHJjT1FYWvqbNv4ikT+N9SFOEIzDbbLNNLEwInlMmg3rTDNAcowELcC4kJ510Uvbmm2/GwlyqyecgNdYI7LCoPuGEE+J2no8cH+MoFTXSLrzwwqh3RnO8ueaay1+AJFUDU0uOgH/wwQfF2yiFQamN1MRJqinU591yyy1j8Zma4FHDlFKBPBdZAPNCAH2LLbaIhfOLL76YzT777LHg5TnJsWreN3jw4Dg6Pd9881X4Ghzh5uMlqbGhFjrr9B9//HGiay+lsKSaRCm1999/P8ZnypnUFkqo0A+NBI+jjjoqYgMk1lFemNLCbKwPGzYsGomC2ADNdYkjsBG/9NJLV7g/Nu4pAcvfCo+/FHqvEHAnBkEQv5TnnnsuAvwkp5B8SgNSStCq/pmJrrp/0s0wQ3T7ZpeNADn1KNnNy19EaLZAo0cWQKkJqVRT+vfvH7vc3bt3L56MAF2wWWQTSCeAnmqjG0CXpOq76667KgTQwSY5mT4jRozwR6kaQ5CchIsNNtggFqT5U2W8j6a3bIYztnMakjqkBNAJklMDlcVsqkvavHnzCKIz96RfD3PRxAC6pMaKwOG5555b4TYCe1x7zcdUTSJozTjM8602A+ig/jk9VB566KEKWei8TQB9mWWWqdDU9IEHHogAOqczKgfQkfqtTC4LvXfv3tmJJ544yV5Bu+22W3ztbbfdNrv77rvj59GlS5fsyy+/nOrvVzXHILrqBbt7NHMgoM4gfO+99xaPv+QX4QTQuWC98MIL/qZUI/78889oLsbxrCuuuCJ2ghMGxnXXXTey2cDCmmPfkqTq23PPPSPrPI/jryxI2Lx00a2awvyRsmtsfKdjzzy/OAbNcWwC6GRR0hiPxSeb5GRzEUDv1atXnDwDC9Stt946nrtkqjNPYPFKY1xJauzIgOXamRBkHDlyZHbffffV6+PS9IOxmzkiGeG77757rX0dxvg8TqMRb6KMGygBh3333bdCKZfUiLRDhw5V3u9jjz0W/3OqbVI4MUfpuUlloae/tY8++ig+lrnJLbfckjVt2rSa36Vqk+VcVK/I/CXzh4vmDjvsEDuPeccdd1wcFWMR9NRTT1kXStOMRTPB8f333z8yzfLITGODZ8yYMdEh++mnn66y5pkkadJee+21yPxlczJZYokloszGwIEDYyNTmhYTJkzIVl111ViIcowaHKE+++yzowY/YzrHrxdbbLE4ns2mOUejOQ155JFHRgCI2v2cOGOe2b59+9hoJ8uM493UYiVrvfKGkCQ1RmTtpmxbsEZic5xEuHwfFGlq0CuPADPB6K222qpWfoiUZiOLnGzxG264IU5Z5BGTOvjgg2MT/pVXXokNeHCKjbKEvJ8yMDzv89hwX2SRReJ1NuyJJ0wLTm8SzD/ooIOizLEaFjPRVa8IoIPsoeuvv36iCxmZwuzm0QDykUceqadHqekFO8+Ub9lnn32yfv36TfR+BkoC6JQa4uiUAXRJmjprrrlmHPXOS3WqTznllAqlMqSpwUY4QXN66GD8+PGxME7ZYgTQWcjSQJwAOiVfCADxNgF0AudkpFPqhaw3AujUPk0nI6+66ioD6JKUS0RKTQ/BNfO9996bKClJmlKMw8wNifvUVgA9VTrgZCRlXWmQy9fNIyZFmTeC4imADuICBNApsVI5gJ7PQl9rrbWmOYCO2WabLTv00EOLAXS+dmp+zkYANdlVfwyiq0HgQsXRmHwjp3TRYBHDoojaUX/88Uc9PkqVu/PPPz8W0mSXVQ7gHHLIITHoEThnJ5zdZknS1Dv99NMjqzdv7NixEaRk41yaWgTIzzzzzDh+zYYN2CSndEsqF8Sckib2zB8HDBgQry+00EJRj5TSbZQK5JQjZQo4MUENUk5Q8DrHuJkXSJL+Z4011og6zilgmFD+imuyNLWYE5LIlnqS1QbmBldffXW8fsQRR0QmerNmzaJMSmWV+6C0bds2Ss1wiq0qDz/8cPy/zTbbTPIxEAAny3xKEP8iAZD7fvXVV6PczY477jjF96OaYxBdDQLHbCntQkYRR23zWMwQ9OR9+SaQ0pSgZurFF1+cHXbYYVnfvn2Lt/PcIshz5ZVXRi10OmFTykWSNG24vtLIOdWqTjj23a1bNzNpNNUoy8ZilHE9nTSjsWha+JLFRcYZ5V5YaC6wwALFJuGUZ3nppZciyywtQrk/SreQ6UU2OvOEys9bSWrsmjRpEpnClGdLyOylBKs0NSiPwpyQzGs2uGsLm+ZslDM/oKwrJyv+85//xFwixQp4qcoqq6wSAf6q6qHz+dRVR77BeVUoE0PDc4Lik/PLL79Ef0CC55Ss4wQdNdK/++67bNy4cdmHH35Yze9cNc0guhoEjsXQmIQsYHa4yQJmkM5f9LiwcvEqdXGTJrWDy2BJsJxd54QjVxzZ4jnFwpvTD9TwlSTVXNm2Sy+9NLJ/E47PEqCk7qRNRjWlWKxS15ySfzTfIhFjyy23jMUri1k2aQiOU06IzDaOX7MIJXCepAA5J9QGDRoU2V2UGyKRg9NobABJkibGaV42GxPGceo3p0CiVF0kS1L3m43uSy65pFZ/cKmROF+PgDQJmvPMM0+cPMPJJ5+crbfeesVs9eqi5DABb8oVrr/++pP82A8++CC+53nnnXey90uwn4oMlDVmHk0gnRNz/J29+eabkSSgelKQGpC77rqLM7jxsuOOOxZf52XBBRcstGjRorDqqqsWfv/99/p+qCojJ598cmHmmWcuLLnkksXn09JLL10YOnRooUmTJoX99tuvMGHChPp+mJI0Xevfv3+FcZ2XPn361PfDUhkZN25cYdFFFy1sv/32hX/++afw1VdfFRZbbLGJnle8MLbPO++88foCCywQY/6///3vQtu2bSeaR7711luF9ddfv/DRRx/V2/cmSeWANdNaa6010TV3kUUWKXz33Xf1/fBURnr37h3Pnccff7xWv87zzz8fX2emmWYqfPLJJ4VWrVrF2yeccEK8/+233463Z5hhhnh/8sMPPxT22muvwhNPPBFzjqp06NAhPrdLly6TfRzcx5dffln4/PPPq/W4L7744sJ1111X+Oabbya6H9Ufg+hqcC655JLiYHzQQQcVZptttgqBT4KhBEWl6njppZdiQDzssMMqTPSWWGKJwsILLxyvb7TRRoVffvnFH6gk1aI///wzFtnpOjzHHHMU5pxzTgOXqrZ99tknAuOfffZZvN26deuJAjkzzjhjYbvttiu+veGGGxbee++9wtFHH1287aKLLir89ttvFe7bRakkVc/rr79eOOKIIypcewlQ7rvvvv4IVS1sWjMHZI1e2zp27BjP0QMPPLDw1FNPxeuzzjpr4Ysvvoj3H3LIIXHbzjvvXOHzrrrqqri9efPmVc4Rfvzxx5jL8jEE6usCAfVNN920MGTIkPheOnfu7PyljhlEV4PDBeqYY44pBjpPOumkCgN0u3btIihKcFSaFBbIDHprrrlmhSx0Xmafffb4f7XVVjNrQpLqaMFUOeA5zzzzFDbbbLPC33//7e9AkzRw4MB4ztxyyy3x9h9//DFRFjqJF4zr6e1jjz228MorrxRWX3314m3MMYcNGxafS3a6JGnqHH/88RON6w899JA/Tk0Sc742bdpEguT48eNr/adFstwVV1wRG+pbbrllPE/ZBMLYsWMjSZPbnn322QoxqZVXXjlu79WrV5X3e/3118f7V1pppToLZHft2rUYJ2MjgNf79etXJ19b/2NNdDU41Km87LLLomvyo48+OlFjJ7ofUwOKGtd2JdaknHXWWVHvjFrnNA5JZphhhqibuvTSS8dzbL755vMHKUm1bNlll83atm1b4bbx48dH35Nrr73Wn79KopEWjcG33377rFOnTtnTTz+dLbfcctkXX3xR/Bhqqh5++OFRK5QmojQW5WNatWqVvfHGG9nCCy+cDR48ONtwww2zrbfeOj6XmujW5ZekqUO/srnnnrvCbdSc5potldKnT58Yx+lNVvn5UxvmmGOOaCBOPf8nnnii2OAe1GKfMGFC1qZNm5gvJI8//nj2zjvvxHwi1U2vLPVao8fP5JqRU8ucj6OGenUxP/nkk0/isfAYce6558bf2GOPPZZdcMEF8fquu+5a7ftUDfj/wXSpQe9UUgs9v8O9wgorxJGxtIMoVUZtNU4spJIt+aOG/L/QQgvFbrQkqW5LunD0NH9d5jgvGcSvvfaavwpVOQ/kiDU9TKgjSpZjyr7ipUePHlGW7Z133omPJTNyzJgxUes0fQx10Mk2O+qoo4q3UVf9559/9icuSVOJ7NuWLVtOlI3ONdsTZqoKcz1KoBx++OG1/gNizvDXX39VuG3UqFFRix30VUmlg6l7nkfJlHSirSqjR48uxha+/vrryT6Wgw8+OD6+W7du1X78/A2l0/NVxS1S9rvl6OqWmehq8MgaPvXUUyvcRnZxkyZNsmuuuSa77rrr6u2xqWGi8/Wee+6ZrbDCCtk333xTvH2WWWaJ/8k8JwOd90uS6s7MM8+cXXXVVdlWW21VvO2XX36JDJ6dd945+/bbb/11qIIzzjgje+ihh7Lbbrst++eff+J58scff8T75plnnhjnyexaaaWVYs7IacaVV145TjQussgiWe/evbOrr7465gW9evWKz+vRo0c2cODAbM455/SnLUlTibG7ffv22ayzzlrhdq6vZ555pj9XVcB4vdNOO8V4femll9bqT4f5Al+rRYsW2ejRo4u3r7POOjE/wEcffRTzBE6obb755sWPGTZsWLwQO+jatWuV989cFnwNTrpNDifljjvuuIlOZE4Kc5q11147Yhbjxo2r8u/vrbfeyjbeeOPs008/zV5//fVq37em3r+IpE/D50u1jqfotttuG0dWKlt88cWzr7/+Ohs6dGi26aab+ttQlAZgICQoQwmX/CWO59Cff/6ZNW3aNAYkSVL9+PHHH2NRkA+as1jh+s2x1bTpqcbt7rvvjgANJQO6d++e7b777tl9990X71t99dWjZMDnn38eJf4OPfTQOB5+8sknFz+fsn/ME1dbbbXs559/jgQMgvE77LBDPX5XkjT9YK01duzY7Pvvv8/WW2+97K+//qpwDWcDU2INvuWWW2bvvvtuNmrUqGzJJZesk/kD5WJIwGTzfamllpro4yiT8tVXX1V4PJR8Yy5K4JvSM5Uxr6AsLPc5fPjwCGLX19/eRhttlD3//PNRMvHjjz+OpIMdd9yxXiqzZsAAADInSURBVB5PY2Emuho8dtjuvffeWFhXxsKJC8Zuu+0W9aLUuFHnbO+9984+++yzeG7kA+jNmzePWmfUUzWALkn1iwziyosOFlhk/hx99NHWqVb2yiuvZAcccECM6wceeGBsuqQAOsi+YqxnUczGOQvJU045JZ5DyWyzzRYL3V122SWSLV599VUD6JJUw2t1rrNrrrlmdv3111d4H7Wkue6qcWNNftRRR2UvvPBC9sADD9R6AP3XX3/NTjrppHidTHISLpdffvnstNNOq/KEZP7x8Fj32muvONGW7qMyqiEQQF9//fVj7lGff3v33HNPJBiQdAp6wKh2mYmussowJnOI3b7KOIbDy7PPPhvNH9Q4MdBddNFF0UiUgHoK1NA8ZNCgQVnLli3r+yFKknKLHBbc/fr1y1577bUKPxfKbhx55JH+rBopssLIaFx00UWjGRfHsfPl2RI+hkB6ajBK0J1mobfeemsE35dYYonic41yA8wPJEm148knn4xs43wiE9dxxnjW6mqcmNORIEEjUTbFaxvBchpwEhxnE2fdddeNhEtuo0zw22+/HXEj5gzECarCc7iqZqGcaiOJ87///W+1TlpwP5dffnm23XbbRWC+thDUHzlyZCSoEAdxvlN7zERX2SAYSs3LLbbYosojNRwN6tSpU9S/UuNzxx13RACd+qYpgJ42XxgAK9fqkyTVrznmmCPqQz7xxBMTZQeRscRiXI0PC8Fdd901SgKQsbbGGmtMFEBncUhgnQUjAfRmzZrF0WvKujBPpPQLz638c80FpSTVrsqlNNOmKKeBUi8LNS5kgTMe81IXAXRKt1x88cXx+hVXXBF9UQigL7bYYsV5AYl3lIDr0qVLyfupKoCeNgQIoC+33HIxV5kcEkBPOOGECORTYm5K3X777XGS/tprr53kxxHrIID+8MMPx9f68ssvp/hrqXoMoqussAjiwkCdKuSP3jAws9g6/fTT6/ERqj5QB4xBOR3pzuM5MmLECEu4SFIDtcACC0QQnXrVeZRqe++99+rtcanukQjBwpZSLpRuob55vm4+x67pa8JimAZaNN3iqPZdd90VzUNbt24dGWYLLbRQNCC19ZMk1Z399tsvu+SSSyLLN9/bhDIeXNu9JjcuJDnuscce0bST50VdlY2hPOA222wTm+0XXHBBvI9GpiTbPfPMM3HCjY31/InH1IiUbPl8Ql7lfj4pQE/j3FJZ7Hl8TR5Lx44do8TclGIePHjw4OzNN9+c7MfyfR977LFx8oOfObXnVQtoLCqVmwkTJhSuuOKKwquvvlqYccYZ2e6Ol5lnnjn+v+iii+r7IaqOvPzyy4V55523sNBCCxWfB+ll0UUXLYwdO9bfhSQ1cEOGDJnoGs5L06ZNCx999FF9PzzVgX/++adw1FFHxe+9d+/eFcb1GWaYofDEE08UXnrppcLXX39duO222wprrbVW4cEHHyx07Nix8K9//av4cYceemhh3Lhx/s4kqR59/PHHxWtzejn66KPjWq/p34cfflhYfPHFC6usskrhu+++q5OvOX78+EKbNm0Ks8wyS+Hdd98tbL/99vG823zzzeN59+effxZWXXXVuK1z584VPveOO+6I2+eee+7CN998U+X9n3HGGfExfE9//fXXFD22Kf345O233y7cdNNNhaFDh1br45kzr7baavE4+V7//vvvqfq6Ks2a6Cp7999/f2Sr5Xf7yEa+8sors2OOOaZeH5tqF40zyDqjNhmdtfMWXnjh2LElG02S1PBRkotstQcffLB4G5nG1LXmRFFtN6JS/SF7rFu3blnPnj3j5ayzzsp++umneF+HDh2yZZZZJuqft2vXrvjxZIpdeOGFxVJANNY655xzarXmqCSperhOt2rVKsb1PE4PMd6XKpeh8jd27Nho5s3pMZp9c4KsLp93xAA++uijKCPEYxg9enTMDcgip9zbggsuGFny888/f3wOsQTeT48V5hE9evSY6H4pHbfSSivFxw4YMCDmHA3Vd999FycA+DujtAvlZ/ieVUMmEWCXygLZSJUz12aaaab4v0+fPoVydM011xRWX3312AnlZcMNNywMHjx4iu/nzDPPjAwtMrLI7lpxxRULs802W2HJJZeMTIAffvihUK7YlSVLLf2u08tcc80Vu87sREuSys8xxxxT4bpOdnGzZs0Kn332WaEcOaZPGtlhp556avyuzznnnJin5H//KZOR02VkNjL+Jz/99FOhffv2hVGjRtX671GSNGWZtykjtvJLjx49yjIj3fF88pirLb/88oVlllmmXk+E33777YU555yzcNJJJ8Xbn3zySWGOOeaI598tt9xS4WO7du0aty+77LKFX3/9tcr7I6bCxxCXqU5291dffVXo2bNn4bfffivUJyo0EDOhgoNqhkF0TRdOOOGEYimXyi9XXXVVodw89NBDhYcffrjw3nvvxVGkU045Jb6/N998c4ruh6POd999d+GNN94o7LrrrnG/H3zwQRwHWmGFFQq77bZboRy99tprhQUWWCCOauV/19tss00c857a41KSpIbhvvvum2g8X3rppWMRVG4c00sjiJIWr4cddlhshFc1l2vSpEmhXbt2hXnmmaew9tprezxZksoAY3anTp0KN9xwQ4USrLyceOKJZRdIdzyf/O+bpIelllqqTkvx9e/fP+YQlZPoKCnz888/x+vMIXjetW7dusLz7q233iom5Q0aNKjK+x8+fHhxU7+6m/apPN3OO+88Td/bAw88UHj//fenat7z+++/F9Zdd91ikoJqhkF0TTdGjhxZWGSRRapcfE0PNdLnm2++mIBw4a/qe+SFOl0JO78EmX/88ccq7++ee+6J91Nfvtx+z9RAzwfQU5Za5dpmkqTy1K1btyrHObJp2Awud47phVgQciqO3+u2225bcm5DQgAb5+ltTup98cUX9f0rlCRNAYKZlROgCDSWWyC9Msfz/yHQS/CcIHpdJjx8+eWXxTnCJZdcUvLjXn/99YijEDTPz0M23njj+Nyddtqpys+jjnqLFi3iYw455JBqPy5iLYsttli1a5lXheTA9Lcytafs6R1DBv7WW29tAkINMYiu6QoX0ebNm1e5CCObuxwbK5BVfdddd8Wkg4s+pVloEkH2Pd8vLy1btoyLOseak169esXFspS+ffsWFlxwwUI5efLJJ+NYVuXfLSVvyKr/5Zdf6vshSpJqANkzHJ1lbKt8zWfByomkcuSY/j9//PFH4YADDojfZ6tWraqct/F7zjcXXW655aLxVznO5SSpsaNMBmU+Kl/ryVRnTCg3juf/hzkZAeOVVlqpTkvv8TvYYost4nm05pprRlxko402iphBdQwbNiyS8TgFVyrwf/bZZ8f9zz///CUbjpYyrbGJMWPGxPezxhprTPV9UAKPMnkkJHz77bexKUBgXVNvhpqqrS41BIsuumh2xBFHVPm+888/Pxos0AyiXJpmzjXXXNmss86aHX744dkDDzyQNW/ePBpgzDTTTPE+vl9eZplllmyOOeaI25KBAwdmO+20U5X3TXMJmmYceuihWbm45pprsi222CL77bffKty+yCKLZK+88kp27733xs9AklT+GPtuv/327Prrr89uvfXWbIMNNii+7/vvv49GSffdd19WLhzT/8+3336bbbnlltltt92WrbHGGtlzzz1X4WfFvGa77baL3zMfS0OyPn36ZGPGjMn23nvvaDYrSSovNBL9888/J7qdMX6TTTaJ6305cDyviLkYDWQZu5955pls8cUXr7PfBc3Fhw4dGjGAO++8Mzv++OOzZ599NjvyyCOzv/76K5qMvvXWWyU/n+cdH3/jjTdmSy+99ETvf/3117Ozzz47Xu/Vq1e20EILTfYx8TWTaY1N0Ox0xIgREzXnnRKrrLJK9uSTT8Z9LLDAAtnBBx8cDVfT96Up5yxU0x0umoMGDcpOOeWUCD7n3X///XGR/+STT7KGju7Pr732Wvbiiy9mnTt3zvbbb7/s7bffrtbnjh8/PgaxqoLovG/77bePgPyZZ56ZNXRMtvj++b0yKP3zzz/F96255prReXv55Zev18coSao9++67bwRcZ5555uJtLI5233337KyzzqowLjRUjun/tyBdb731Yj4z99xzZ6NHjy7+jFj8dunSJXvvvfeyf//739lWW22VXXzxxdkHH3wQ87n871+SVF5mm2227Omnn441OmNBPsD40ksvRbAvPyY0VI7n/8Pci1gCczFiDsOHD4/ktrrC1zv99NOLyXYEm/v375/NOOOM2U033RRJh3379o3NepIHS2nZsmW25557VhmD2H///WO+2a5du6x9+/aTfUwff/xxttZaa8VjqUmzzz77NH0+3yNJl1hhhRXiZ7POOuvU0KNrfGaq7wcg1QaCxLyAAOuJJ55YfB8LNy4aZHZvuummDfYXwIUuBYd5vCNHjsyuvPLK7Lrrrpvs5w4ZMiSC5EsuuWSF23/66ads2223jYUr339DX5CSkcDpATYEqrLzzjubfS5JjcCAAQOyCRMmxDX/119/Ld7OAo5FN5lsc845Z9ZQOab/L1utU6dO2YILLph99913FbK1mJdw8uDDDz+M1/Hoo49G5qIkafqw7LLLZuedd168/sMPP2QLL7xw/I9x48ZFAJLxftddd80aKsfzLE72k+BHgiK/z5NPPrlOx2tO1Xfo0CEC+cwreN6kE4s8ng033DA24NmY52Mqzw8Jrm+88caxcVNKt27dIqGR7G1Ow1Xn+0sbRD169MieeuqpafqZPPHEE9lGG200zQH0ypZYYonYVEixMk05M9E13ascSP77779jsG7dunUcEy8XDAB//PFHle+rfIGmlAsB5soZ6FtvvXUM/A899FBkAzRkBEXWXnvtiQLoLK4ff/zxGMzOOOOMent8kqS6w8KERQ8LtsoLCm4ju/nTTz8tm19JYxrT+V45MUC2GpsgY8eOrRBAT5v8P/74Y4XSLgbQJWn6RTZsixYtJhovdtttt1jjlcMps8Y2noMT/QR3H3vssezBBx+M+Vldj9fMI0is4FTARRddFJnkv//+e9a2bdusa9euUf6VOccvv/wSMZ/jjjuuQgY7p9tIUuREe1XYyCF5ETfffHO1M+xJdqRcCokd0/IzoVQt30uzZs2yb775JqvJZIYDDjggyhx/8cUXxc0rThKw6aDqMRNd0731118/dhnZMf3Pf/4Tt6VB+bDDDovdwksvvbRBDVjs5nLhXGqppWJhSY0vjr+RlVUVAsvvvPNOXGSpmU4mej77Pg3OZO+R6cXbvIDaXhx7akiob96xY8eJ6uZRq4wBe8UVV4x6qpKkxoOFCVj0EDAni4hjtqBe9qqrrhplQDbbbLOsIWnMYzqB8YMOOigWbjwusseqcuCBB8ax7KpqkkqSpk+s6UiYInGKwGFCvWY2VRk75plnnqyhaMzjOciuJmDN9/X8889nq622Wr08Dp4vnNInSM7P8913341a7Cl4TY88Yjz8DPm5pl4q/B7orUIsiO+DIHVl77//fsxb0L1792zHHXes9uPiuUrCx7RiU2axxRaLOBanNWoKZWmYI1OZINV3P+aYY2LuTFCdn6kJDNUwDU1JpbLxww8/RCfi0aNHF5o2bTpRV/BmzZoVXnrppUJDceCBBxaWXnrpwiyzzFJYaKGFouv0Y489Vnx/ixYtCmeccUbx7VtvvbUwxxxzFLbffvvCE088UVhiiSUq3N9TTz010fecXj7++ONCQ/Hf//630KFDh4keI12zZ5xxxsKjjz5a3w9RktQAjBw5MsbIGWaYYaIx4/DDDy/8/PPPhYaisY7pjNmLLbZYjOGlHm/btm0LY8aMqe+HKkmqB//880/hySefjNe/+uqrwlJLLVVhjJhtttka1PqvsY7nzKmOPvroeFybb755rNnrw/jx4yu8TXynY8eOEScYNmxY3Na3b994nMwPhw4dWuFjW7duHe9baaWVJrovjBs3Lt7Hx2y66aaFCRMmTPYx9e/fv9CvX79CbcSveDy18TeX98UXX8Tz+I033qjxrzW9+hf/VCfYLk0vyFqjxMtXX3010ftOOumkqK8666yzZuWK3US+RxpslBOOr9G84/vvv69w+7rrrhu7/dx+9913V6srtiRp+kZNbU4sUaKNupGVp7NkfHHMeJNNNsnKWTmO6WTRkRlGNhZZdPyOEuZXZFZRkofjxDa2kiTlM70vvPDCiX4g++yzT9a7d+8GlZXeGMbzVP6EEiBkKjNuH3300fWSIc+JBTKpaRq6yy67FG9n/scpBuYTNPakAgGZ3BdccEHEdhJKulCihSx6GtmuvPLKFe6fz+FUwLBhw6JuOB/TtGnTST6mV199NeY0/F7J0m/Tps1Uf39kx3/22WcR96hvnJ6gAWlDOwnRUFgTXY0OAwAXuqqOqjBocyxp1KhRWbni8Xfu3Dkrp0AIEyPqw1UOoFN/bNCgQdltt90WddANoEuSUpCc8YFAOYsnFnX5WumMLTQPP+qooyo0Ii035TamM1ZTVodFLsenUwCdORf1b7nt6quvjqPvBtAlSXn0zQD1wfMoyUF5CzbNy1W5jefMnQg8U1N80UUXjfIovF0fgdU33nijGCu45557si+//LJYnpf5RZpPLLPMMtlVV12V7bHHHtEYNLnxxhuLNc4p+VI5gE4gnrJyBNDZqBk8ePBkA+igpj+lYygRMy1JG9Rwb9++fbbGGmtkzz77bFYX2CSg/wAN3fPee++9rGXLllHGhpJFqkJ9p8JL9YFjKxy9GTx4cOGZZ56p8gjVySefXPj999/9BdWihx56qDDnnHNW+fPnWFFVx6wkSarKqaeeWmXpkCZNmhRGjBjhD60WMV4feuihJY+lt2nTpnD77bcX3nrrLX8PkqQqUXKjR48eUSLl+eefL8w///wTjSc777yza8RaNnz48MLyyy8f5XQuu+yywl9//VVvz9hPPvkkSsPxu994443jbUrxtmvXrvDTTz9NtmQJr++4447x+flSO/n3H3HEEfH+mWaaqfD4449P9jH9/fffFT5/Wn8+PO+Jfcw888wxV6oL2223XXzPfO95gwYNKsw+++yFDTfcsPDbb7/VyWMpNwbRpUKh8PTTT1e56FtkkUUi0F65dpSmzYcffli8cOdfGDhOO+20eL19+/YVBihJkkphnN5rr71i/KAmaVVj+t5771348ssv/SHWIMbpO++8M2rDVvUzp77t1Vdf7TxKkjTFvv/++6g/XtWa8aabbnKtWMOYI9FXhoSEVq1aFd599916fdZSe33llVeO3/mqq64aAfS111473l522WUL3377bQSgu3fvPsk67XzMzTffPNFchLePPPLIYg+2ydU2p0Z6ly5dCocccsg0z2uYP+Vrrn/33XeFZ599tlBXXnzxxYi73H///RO9b9SoUc6XJ8EgulQoFE455ZTixbOqReAaa6wRu+GaNjSMYdAplal26aWXxsc1pCavkqTyalDGQmSPPfYorLPOOlWONSyAaNikaftZP/LII4XmzZtX+TNO8ykW45IkTY0//vij0LRp05Lr9IUXXjjGIhPepg1zIk7z0QR13nnnjaaayy23XGGZZZaJjPT6iINwwo1saH7PNGR97733Cptttlm8zcY9AX5+7wcffHDctuaaa1bYVPn8888n+bzgfalZKs8tNmWq09Q+NbR/7rnnpvp743Qkj7eqzPiG6Jprron5nJnp/2MQXSoU4gjOVVddFV2zyTwnW62qRSEX7rffftuf2RT68ccfozxOVZMfbuOo/ZAhQ/y5SpJqDJP9FVZYocosNhZBZ599tguCqfDCCy8UNtpoo5Ib4iuuuGKUyiPDybJ4kqRpwfqcNThBUU42sW6sPO4QZCWzVlM+T+rZs2eUzWGuxCn8UmN7Xa/Vzz///Pi68803X+G1116L8i28Pffcc0emNEFw4gtpTkeZ2IQA+6KLLhqB36pOtjM3SfEeYhE33nhjtR8XSX/33HPPNH1vPFa+9oILLtjgkzo4nUBZHx7vLbfcUt8Pp0EwiC6VMKmM6bZt2xbGjh3rz24yGKAuvPDCwowzzjjRz5BaWxxZ4qj3SiutVHjnnXf8eUqSagz1tznuy0KKzKqqxnPGp169etVrvc9yMWbMmMK2225b5c+RBSxZbB999FF9P0xJ0nRs4MCBJdfoq6yySoxVmjTmPGRes/nAz40M9FI/0/x86f3336+zrH8e41FHHRWbI/vvv388BgL9nDgEiRDpsfXp06f4eTzGxRdfPG5fffXVJwpSjxs3LjLtUw30SZVw4WNPOOGEwtdffz3V3wd12/lZP/DAA8Xb+BleccUVUY6mvtx9990RFK/O75MNFDL+PfHxPwbRpSpwgWjdunUx2DvXXHNVOZjwMTbJqrp+3UknnRT16kod82bnGEx0zFSTJNVWlhUZTGx8k5FEoLeqjV1uO/PMMwu//PKLv4hKKLFGM69SC+utttoq/l9rrbWsTytJqlWM6Wk9Oeecc1Y5LtGIsi7rS5cL5jjXXXddlGopNabPOuusxZIpqXRJeiFjnfI6NH+dFmSH5zPECSZTHoWAeT6pgeDz8ccfH/EYHst9990XpWUohVK5HOwuu+wSyXnppALl5sgY5/tgnpLiDqnGOi8E4hO+Ng1Lt9lmm+JtqSEpGeP5hqNffPFFnLajkkEeNdvp/ZafS/bt2zfug5ORDSVh49NPP42Mfh7XgAEDpvjzJ0yYULj22msr1HRvTAyiSyVwUWBnkh3Izz77LAZsdiurGmzIcmN3sbE3wiSbPC2mK78wyUmBC48CSZLqA4uvlH1UapO3Y8eOscBozGjCNamGoRyvJpOrW7duMU+iYRe1ayVJqm2UX2Xjm6Akm+Rt2rSpcqyaZ555Cr17944xrTFjTtO1a9digLzUC3Ojp59+erJZ6SQY0pCS2AcJhUsvvXTUT8+fAiDgTbD72GOPrfBYCFRzH6+++mrxNuYQ3EYAfJ999ikGmwk8c/uVV14ZmdM44IADio/jvPPOK95H+lhe+Lr0Ynv44YfjbZqR3nrrrcVNl1Tm78EHHyx+PhnuqYFpwmNMyZTMifJl7biN7ztvk002magfDD8fMv3psZevKf7GG29EWRqSD+sqtpViVfx8zz333CiTNDWB8JP/fxmdHXbYoVFmpxtEl6qJC0TLli0nOaCwQ7rffvtF0L2xYDDgKHyphTYvLVq0iI/t3LlzNHvjmJUkSXWN8Wf33XcvdOrUKbKrCZqXairOcWA2fRvT4pufD4u/UpsMKStt/fXXb5QLJ0lSw0M27aTGc24n0E5zysaCuQtJfgRvJxW/ICP58ssvj8AzJ8n/+9//RkY1mfxnnXVW9Dmp6vPISv/1118L119/ffG2fO84yumlk/vJyy+/HJvw3E5zzYSvm+YdBNJHjx4dCYzMRzp06FDhfgl28zHUNE8IcKcT8PRsSSVcaE5KhjnzvvQYN99883gcJP/x/nzt/XXXXTdKyOSRgU6Qnwzz5IMPPojyJu3bt6+QQEA5Ib7GeuutV7yNnyO3scmQl2q8E0dJ/vOf/0TZYBqe5v3888/VStZkXsb3XjkWRUkaYjVDhw6tcPvUZsbffffdsbnQv3//QmNkEF2qJnbp6KBMF/Du3bvHxTpd/ErtfNMQ45tvvpnufsaUX7n33nujW/ekNhSYsHAkip1WNPZMfUlSw5AWDhzJpdYl2VkcFy41prH4GTRo0HR5dJVFGxlqVTVrSy9kbbHQphnWkksuGRlM0+PPQpJUfsgMJmhLCQ82vynDUarON8FWamxPj/3NGJdp7M33X7kUS1U/B8b/pNTGOOv+008/vcr7IMucoPb2228fQfWdd945GsAiZXDna4FTAoTbCBSnOQTB7HRanbIp/C633nrr4udzyj0fQ0jlWPg+E4L93EapmXy29wYbbFAMzhOX4OP4PDYM8kF4bLnllvFxCyywQPGxEcPYbrvtolde/vnCHChl9XPCEfSEITOb5EEC8gn94bbYYov42vlmnfSE43vM/3wok5OqHCTMUSlTw+8z3wCV++P5nsrZ4OOPP47PZ6Mi//s87LDD4vaDDjqoUFO+rlQnnmauP/74Y6ExMIguTaHKGWlcLCd35ImOxmSoc5ynXDO3qFXGLjU15ib1vdLAg58Rx5kISOSPSUmS1NAwThEkJgNpUoHk9MLxXY6Hl+tigXkIWVgsdktlnKcFJy/MX8gKS/1LGkpNT0mSklTaJSFLNo1lpcY5greUtBg5cmTZrtGZi9x+++2xBp/U90oQlmx8SrsQQOeE/ZSUEnnllVcK66yzToX7TBnTBFDThjvZ6Xj99dcLXbp0icDtU089FbdRKoaA7jXXXFPM0iZwnoL6ZDineufcF7cRRG/VqlWxnEuq554PolP7PJ/1TikXssTT48xnYZMQkQLulJxJUsUBkiX5fPC4031QEiZJ5Wu5X0rGpP4x3EbAO4+5FrezgZAQE0oB+7yUoLnnnnsWb+NUQHoMJDIkO+20U9w277zzFm8jCz397PLZ+2+++WbUnK+tPnS//fZbbG7wvefL9EyvDKJL04DBNjWc2HbbbQsnnnhi4cADD5zk4pvBjcHhtttui27NDRU7sMOHD48mHWwCTGrywffE/zQVSwMcNdGokypJUkNHRjqBZZpBsRhj45isqkmNfylDnbGfBVFDPm313XffxQkyFqKTWmSTucf7WYDRfKwx17yUJJUvgr5sFJPty2lyypqkkh+lgswEoi+66KIGvYZlrsE6e3InyNI6PWU255tdTm0WPkFYYgP5r0G5VoK3ZFxvuOGGET9IUpwk34CTID5Z2ASl0++D4HyfPn3ixD9v8z8bG7yQuMBtJPIRoGc+w/xkiSWWKJbn4euz2c88joafKYud+cxuu+0WJV1S4gNVAghS837uIyFgThY5t6eMb+aGF1xwQfHrp7kQ2eM9e/asUAOej7344osrBMtTqSFqt/N8THgM1PTnuZbH/PPUU0+t0BSXkjN8HM/hfOyIjQjKDubL5fD4+LnyePMbBJSf4ev9+9//LtSGd999N06CLLLIIlEOaHpnEF2qAVzA8wtMFtSTy2TLB9W54HCkiGy4fG2uugyYs1vMIMgx7UllpuVfaCrBrj+DCoMgO5ySJJU7FoGMz2QZsUGcFtiTGxdZsJKJc9xxx0XmT30E1ln8k5XG0WQ2AiYVNM8Hz/mfI8pkd1F/k3kNCyNJksoRZTMeffTR4tusd6szJubLs1KKg6aU9RFYZw7BXIIAKpm+1Vmj8zGszanjTVkRbuOEeE3NR1j7p3rn6YXHlmqvM49IBg4cGNno/NyTlN1NAJv4AUFugtZpjkVchPrjNBNN3y+lU5iPEHym+Xv6umSEg/gJXyc/T+N0IUH19LjydcaZ53Abp+bzMRxiIQSmqfOe/x1QoqahJhNUflx8n2xm5Ov/9+vXr/g8yGMzggTImmhu+tNPP1XYKMD02gfvX/yTSapRp59+enbppZdmO+ywQ7boootm55xzTrw+fPjwat/HbLPNljVr1ixbfvnls3XWWSdr06ZNttRSS8X98b4p8ffff2fffvtt9v7772fPPfdc9uGHH2YjR47Mxo4dm40fPz7766+/Jnsfc8wxR7bccstlb7zxRrbAAgtkBx10UHbggQdmK620UtzniiuumC244IJT9LgkSWqovvjii+ydd96J8ffFF1/MVllllWyrrbbKRo0aFePzRx99VK37mWmmmbJll10222CDDbKVV145W3rppWNsZ0xlPJ1hhhmm6HH9+uuv2eeff56NGTMm+/LLL7M333wze/bZZ+Ox/vbbb9W6j5lnnjnr0KFDdtddd8X3t+eee2ZdunTJjjzyyOyCCy6YoscjSVI5+Pnnn2M8/u9//5s9+uij2bvvvpu99NJL2X333Vft8XPuuefOFl544WzTTTfNFltssVinr7rqqtkSSywR6+Up8c8//2Tjxo3LPvvssxjDX3755eyVV17JRo8enf3www+xhq+OeeedN+Ya3NfOO++cPfjgg3E7ob4PPvggW2GFFbKadO6552annXbaRLczt7n66quzbbfdNt5++umnsy222CLiIAMHDoyYwy+//BJzln/961/ZIossEvGIdu3axcfz87v88suzIUOGFL8HLLnkktnxxx+fnXXWWdmPP/5YvL179+7xc7rjjjvidwvud8CAAdmuu+4arxOreO+997KWLVtGzAI//fRTdvLJJ8fvke+Dj0s/r/T69GTYsGHZzTffnLVo0SI77rjjit/rfPPNFz/PV199NVtzzTXj9rfeeitemLMyX51aw4cPj/nloYcemvXu3XuK57oNmUF0qZYwQGDOOeeM/wcNGpTtuOOOMcAxgLRt2zZ7/vnn48I/tfIXeRbEDMRcEGecccZswoQJ8frUSBc57o+vwffAgM4Avfjii2cbbbRRNnjw4CmeKEiSVK7+/PPPbMstt4xFGIuRXr16xRg566yzxsY076/ugrfU2MsLYyv3yzj+xx9/TNN9YpZZZok5AvMSgv/cN5vp999/f2wKzDXXXBE84PYp3aSXJKmcMFYzjhPgSwggvv766zFGfvXVVzH+8jItWPMzprMeZwxmPE9r9ZpyzDHHRNB8k002yfr27Ztdd911sRlO4LI28T20atUqe+GFF+JtEv0Ihic77bRTtv/++8cmP8mF++yzTyTfHXzwwdkDDzwQj5l5BxsZJChwX2uttVbWvHnz7Oyzz474CD8zNvXZYLjzzjuzb775Ju6bj19ooYUi8EswPGGjgA0DHhuPhcA72CQhiL7ddttl888/f63+XMoJc8ITTjghNmyeeeaZ+HmD3xcJoPzObrvttuLHk4zJJsm/qrnJwO/ulFNOicTLG264IZueGESX6gg73f369Yvd6/bt28fONQtvdq3JKAO7fQSquZjVFQZ3BvSEADk7h+zOXnTRRbEz3L9//1iEg8GK70GSpMaIxV2TJk2Kbx922GHZ9ddfnx1++OGx0OOE1xprrBELDsZYMsfr6uBnfkwnM45sIrLueHxkrbMJcO+998ZjZC5CNrwkSY1Znz59IhudE1kEW8Fa+MILL4xxlQAjSXCM5fl1c12N6Wx2t27dOpLwjjjiiKxp06bZ119/HWv0vfbaq16yqH///feIXaTgNkHy77//PoLkCZnOZOwz53jqqafiNn6+ZJrzePlcAuIE1MlW7tq1awTJ2dAn8Lr22mvH62xAEDchTpK+Hvh+OUnXuXPn+DodO3aMhD+yrflfU+6aa67JbrnlltiM2W+//eI2Tm7we+Ll448/LiaJTg7BeTao+L0hbXqUeyzJILpUj8guIzudHVIC7FyY1l9//ez888/PTj311OLHsSM4YsSIGHzSQpzBnAGVwSqPLHQGlHyJFi50HGHimBgBe97PgPz4449nm2++eVzYOAJFVh07x+zcUraFxffGG28cgX5JkjSxTz/9NBs6dGi22mqrZeutt15kTbEg5Agxi7999903MtfJ4GGMpgwM4ypB9jwWiIzdlTPPGbPzQXjug9JubMaTAc9xaDKwmCdcdtllUYaGbDoW2zyeDTfcMALn3L8kSZo8SpGkoCxrdcZngrlkM5PNTtY05VMoy0Zgl0Bj5fG6Kulj0v+s6cnk/uSTT2L8J0OedTuZ3KzVjzrqqHgMzC0Sxnu+LvOM+iyTQVyBQHqat5BAQDIg8xJ+VpVP3JOdzwsB+NVXXz2+V+ZPxEPY6CfWwQkA7pOfC7ELfq553E5wna9BtvQee+xRp99zY8Tzbeutt46kjLfeeqvCSQiC6pTVIWY0OSSdcPrg1ltvjU2PcmUQXWoAKu8c33777bELSMYYu8vUG2fRnBbYZIcT/GZQTUdl2OllwLn77rvj4wmMs+u72WabxY7viSeeGJloXLw48sUuMZMAvi47v3w+C27+lyRJU49FH/U/WUByXJZxnoUhYzp1Pnv27BkfwwtZZSwI2Rjv0aNHHMnmVBjjMxvsbKxTEo45AMecGcN5HwsZAuYsosmAf+ihh7IDDjggjs6Wml9IkqTq4zRZvoQpmc/UmGbNTXZ4vkY4a3E2rVmHs7k9zzzzRPYt4zzl06gPfsUVV0SCHMlzBJw52caGO5ve9FwhqY0sYJAsx1yCgDO11xvqZgPxhkmpzuZCKWwScLKOGt3UWieYW+6ZzOWIjSM2TZZddtnibcsss0wkkjz22GPx/Aalc5iTksCRauODuBRZ6QTd2SzJl1MqNwbRpTJB8JzBmh3vQw45JJt99tnj9ocffjiC7iyqGaATjkNxsWNnkGw1cOyLXWwueOxeS5KkusMYTq1OjmKTTQ6yr9gQZ5xnAz2hORfNtyi7sssuu8RtfAxBdhp5s6FORpckSao/1OJ+5JFHIiBOdnRCYJ2SrqzLCZKD02gE0smkzp8853aC9dxebpvfzFcooTKtpW74/ikzR410Nihoxk5yYHXLh6juFAqFaITLhhI1+EkEAc9tmsAyR6X3TrL77rtHbIqM9W7duhXntFRDyJdILAcG0SVJkiRJkiRNMTYR6KdGpjjZ9Jy+I4OcTHUy7VOPGE7Xk6VMuRdOwFMDndN4lLQlaF5uGwiqaPDgwdmAAQPi5AC9glKwnARQ/s83fU0nOEgOoelsuTCILkmSJEmSJGmas5R//PHHbMyYMfE2AVUyljk9R2ma1GhSjcOECROiLCEnNihxmOr4U9KIsoaUHb7kkkuycmEQXZIkSZIkSZJU6/7444/s22+/jca55XQCwSC6JEmSJEmSJEkl/C+PXpIkSZIkSZIkTcQguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkkowiC5JkiRJkiRJUgkG0SVJkiRJkiRJKsEguiRJkiRJkiRJJRhElyRJkiRJkiSpBIPokiRJkiRJkiSVYBBdkiRJkiRJkqQSDKJLkiRJkiRJklSCQXRJkiRJkiRJkrKq/T/qzv2cj/MinAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1722,7 +1795,7 @@ " if j == 1:\n", " ax[s].legend(frameon=False)\n", "\n", - "fig.savefig(\"../docs/docs/images/circ-mod-inverse-batschelet.png\")" + "# fig.savefig(\"../docs/docs/images/circ-mod-inverse-batschelet.png\")" ] }, { @@ -1739,7 +1812,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABecAAAH/CAYAAADdUWYgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4G1XW8PFjSe41jkt67z0QCC0hQEiAUAIsLfTeYQnwsSz7Upe6LGXpLYS+LHWBhFBSWCABQkJCCum9uMW9W5a+597RyJItucpy0f/3PHpnJI1mRvG73NGZc88JczqdTgEAAAAAAAAAAEFjCd6hAAAAAAAAAACAQnAeAAAAAAAAAIAgIzgPAAAAAAAAAECQEZwHAAAAAAAAACDICM4DAAAAAAAAABBkBOcBAAAAAAAAAAgygvMAAAAAAAAAAAQZwXkAAAAAAAAAAIKM4DwAAAAAAAAAAEFGcB5Am/vyyy9l0qRJEhcXJ5GRkTJkyBD529/+JmVlZW19agAAAAAAAECrIDgPdCClpaU6aD1q1CiJjY3VgexevXrJjBkz5H//+1+rHLOiokLuv/9+GTx4sERFRUmPHj3kqquukqysrIDs/5tvvtHnv3z5cjnjjDPkpptukuTkZHnwwQflwgsvlNayadMmOfvssyUlJUWio6Nl7Nix8sILL4jT6Wy1YwIA2rfOOM62ha1bt8q9994rp556qvTs2VPCwsKkX79+0pGpv/9tt90mxxxzjCQmJurvdMkll7T1aQFAyGGsbn/fS43xalz09ZgyZYp0RM8884xceumlMmbMGLHZbPq7LFmypK1PC52Ura1PAEDjXX/99TJ37lwZMWKEXHnllRIfHy/FxcXyxx9/yH//+1+ZPHlyQI/ncDjktNNOk6+++koOO+wwOfPMM2Xz5s3y6quvysKFC+Wnn36S1NTUFh3j0Ucf1QHx+fPny7HHHut+/aijjpKPPvpI9u7dq3/YB9L69evliCOO0Jn5KkCvLkLmzZsn1113nX5PDcQAgNDTGcfZtvD999/LfffdJ1arVYYPHy4ZGRnS0c2ZM0feeOMNiYmJkT59+khhYWFbnxIAhCTG6vb5vdSN6z//+c91Xu+oN+dV0qDSvXt3/e/QGa5l0I45AXQYw4YNU2ndztzc3DrvVVVVBfx4c+bM0cc777zznA6Hw/36Cy+8oF+/6qqrWnyMxMRE54ABA+q8fvvtt+tj/Pjjj85Amzx5st73/Pnz3a9VVFQ4J02apF9funRpwI8JAGj/OuM42xa2bt3qXLZsmbO0tFQ/j4yMdPbt29fZkS1fvty5du1ap91u199N/X0uvvjitj4tAAg5jNXt73upMb6jj/O1ffHFF879+/fr9auvvlr/myxevLitTwudFGVtgA5E3dlWVIa5yu5evXq1uwyLmmoVaK+88opePvzww3oal+nqq6+WAQMGyDvvvNPiuvAFBQU+M+O3bduml0lJSRLocjZquqOaln7iiSe6X4+IiJAHHnjA63sDAEJLZxxnlTfffFMOOuggXcZNTf1XM8XU+KtKA6h+L+p5IKlzV1l46niB9tRTT+kyBqoUnvoOtam/18CBA3UGX0lJScCOO2HCBBk5cqSeDQAAaDuM1R3re7XU+PHj9Ux3f7Pbv/vuO33+l19+eUCPq8okdevWLaD7BPwhOA90IA899JCccMIJeop4dXW1fq7qw6mae+Xl5QE9ltrfzz//LEOHDpW+fft6vacGv+OPP17/6P31119bfCyLxfs/RSp4rqYkpqeny7BhwySQzDpx06ZNq/OeKqWjfvCrAR4AEHo64zj717/+VS6++GKpqqrSU7RVjV7VY+Wiiy7SJd3UMdRU9o5CBf1POukk+eSTT/TfpTY1FV/d4J81a5Ye0wEAnQtjdfv8Xqp+vSo3pP4ezz77rN5/IKjSRQkJCfrfZcWKFX5vMqha+UBHRc15oANRd8vVYPnuu+/q56qm24YNG3SgecGCBbrGq2eWmsouy8/Pb/T+Z86cKePGjXM3c1N16NSFji/m66ou3aRJkyQQVKO1tWvXytdff62zHtSgXjtwv2PHDj3oN4VqSmdS5+t5/p5UNlz//v113Xm73d4qmRcAgPars42zq1atkkceeUSGDBmiG6+rZm+KCly/9957kpmZKV27dpWjjz7a63Mt+V7BCM5/8MEH+t/k7bffln/+85969pvp5ZdfrvMjXX0X9Z2aQv3tAz17DwDQcozV7fN7qZrsqoGqp0MOOUR/BzWjrSV/b3WzQN1IeO211+Tggw92v5ebm6v71KmmrRMnTvRKyGtK81ZVF58m72hLRJ6ADuLzzz+Xl156SRYvXuz1usosV1PRLrjgAnnxxRfllltu8Rqwd+7c2aRByRywzanialq4L+ruted2gaDOV2U/KMnJyZKdna2nKHpOs1PBedVkrrnB+cZ8L3WhUlRUJF26dGnmNwEAdDSdcZz9z3/+o8dR9cPW/LFvBq7Vj2WV1XbZZZfVuRndku8VLCrDUGXTqUDMqaeeql9T1w1q5p364a6mwZtU8KKp1w7qRzrBeQBoXxirpV1+LxWUV0F8lfGvSvCoUrJPPPGEvPXWW3LcccfJmjVrdOPe5lI3C4444gj58MMPdXkbs8Sc2r+aBaCuBzypwHxTxn1144PgPNoSZW2ADsKcrjV27Ng676kBT1FT3jypQLYa6Bv7aOsBSdW027Nnjx50+/Tpoy9Qand8nzJlSpO+k1l/EACAUBtn1UwwRf2g9XTooYe6Z6b5mibf3r+XomrOh4eHy7///W/3a2+88YZUVlbWmdquAhJNvXZQnwEAtC+M1e3ze91zzz26B0BaWprExMTomwCqhv6FF16obyAEoqfbueeeq2/Cq/J1JrVfNUtC3ZSpnZzXlH+bpmTZA62B4DzQQWzcuFEPzr7ubqtBUGWX7969O2DHM4/j7255YWGh13aBoH5kq+aw6uJD1Z1X09+ee+45ycrKCur3Uv+WLbmzDwDoeDrjOFtcXKyX3bt393pd/XBW0+fVvqdOnSodkZphp6a5f/bZZ7pZnvkjXWXsqVIAAIDOh7G6Y/3WV81llR9//FFa6k9/+pP+26vZBMrSpUtl3bp1cvbZZzPTDR0eZW2ADiIyMlKXW1G13FS3ck/qNXXH17Pmakvr0KkO7WrwM2u011Zf7fZAUFP6VINWVQ9PNXZTF1uBqDnvWT+vNlVSZ/v27bruPPXmASC0dMZx1myIqpq6eVLBbBW86NatW53v1N5rzns655xzZP78+brMgfouahr9FVdcoQP0nqg5DwCdA2N1x/leSkpKis/v1hzq30GVn/n00091aSMzG792SRuFmvPoaIg+AR2Eqt+marWpaVxqepinb7/9Vi9HjhwZsDp0anqYmkr3008/6X14dnFXFz3ffPONvpCYMGFCC7+ZsT9f1AWWZ827QNScNxvpqKazf/nLX7y2++GHH/SFQ+1mOwCAzq8zjrOqBq/KLF+xYoVupGZSddnVeKdufquMvdrB7I5Qc94MNKhAjSptYwY3ape0Uag5DwCdA2N1x/leiqqXbx47EFRpG9VvQI37qla/+lsfeeSRdbaj5jw6HCeADmH+/Pkqgu0cPHiwMy8vz/36gQMHnAMHDtTvzZs3L6DHnDNnjt7veeed53Q4HO7XX3jhBf36VVddVecz6vWm/KdFbWu1Wp2ffPKJ1+tr1651hoeHO1NTU512u90ZSJMnT9bHVf+mpoqKCuekSZP06z/++GNAjwcAaP864zi7bNkyve2YMWOc+fn5+rXKykrnuHHj3Pv5/PPPna0tMjLS2bdv33q3Ue+r89m+fXuT9j1z5ky9/6ioKP29gsH8d7344ouDcjwAgIGxuu2+lzqnP/74w7llyxav19VrJSUldfavXu/WrZve13fffef13uLFi/XrRx99dJPOOScnx2mz2ZyJiYn680899ZQzGK6++mp9PHXeQGsIU/+nrW8QAGgclQ2mpm+puuyq5prywQcfyL59+/R0rpdffjmgx1NTBk866ST56quv5LDDDtN3lLds2SIff/yxvvut7oSnpqZ6ba86p6uH3W5v1DFUXUBzOW3aNH03X2XMq6awKlPg1Vdflcsvvzyg30vVplN32FUDWjUlXtX3U42D1Os33HCD7gAPAAg9nXGcPe+883SGmerjcvLJJ+t9qky5v/3tb/L000/rzDhVCubWW28NWKZ4Tk6O3Hbbbe7nb731ls7SM/9Nlccff9w93V1RjeDV9H316NWrV6OP9f777+tMOkX1qVHN5FuDml2nrkkU1ZBOldNR/6aqBJ+ivov6TgCA1sVYndQm30vNYFflX1WWvVr3nKX+xBNPyOTJk/V76lxVmTk1TlZVVcmdd94pDz30kNexFy1apBv4qoc546GxTjzxRFmwYIEug7t3717dg6Y1PPLII7Jhwwa9vmzZMv2dpk+frsvrmLP31AMIiFYJ+QNoFeqO9iuvvOKcMGGCMzo6Wj/U+ssvv+x1tzuQysvLnffee6/ORIiIiNB3v6+44gpnRkZGnW1Xr16t7yiff/75jd6/2l5lBVx++eV63yqLPiEhwXnMMcc4P/vsM2dr2bBhg/NPf/qTMzk5WWfcjR492vncc8+12r8jAKD964zjrJoZpvY/aNAgPSOtS5cuztmzZ+vv89VXX+nXm5OxXh+1LzPbz9/D83gq+9FisTiPPPLIJh+ruLjYGRMTo/9WZsZha3j99dfr/T4NzQwAAAQGY3XbfC9zbK893i1ZssR59tln69kM6ne8ymxX+znttNP0ufvy9NNP632pv2Nzx+NZs2Y5W5PK6q9v3L/nnnta9fgILWTOAwiYZ599Vm666SZdB7B2rT9/VMa8ukvflIYtAACEouaMsx3BF198Iaeccoqexaay+JrKrGXrmckHAEBb6KxjdSCpGQ8qM3/r1q0+m93WR8UNjjnmGLnnnnu8essBHZmlrU8AQOfx/fffy6mnnspFCAAAraCzjrPqe6myds0JzAMA0J501rE60KXiVImepgbmgc7K1tYnAKDzUHVfAQBA6+is4+yjjz6qHwAAdHSddawOJNVjDkANMucBAAAAAAAAAAgyas4DAAAAAAAAABBkZM4DAAAAAAAAABBkBOcBAAAAAAAAAAiykAvOqyo+hYWFegkAADouxnQAADo+xnMAQCgLueB8UVGRJCYm6iWA1vPaD9ul31/m6cf3m7Pb+nQAdEKM6QAAdHyM5wCAUBZywXkAwVFeVe2x7mjTcwEAAAAAAADaG4LzAFpFWWVNcL7MI1APAAAAAAAAgOA8gFbiGZAv9wjUAwAAAAAAACA4DyAIwXky5wEAAAAAAABvBOcBtArPbHmC8wAAAAAAAIA3gvMAWj9znrI2AAAAAAAAgBeC8wBaRblnzXk7wXkAAAAAAADAE8F5AK2ChrAAAAAAAACAfwTnAbSKsiqHxzrBeQAAAAAAAMATwXkAraLKXhOcr6p2tum5AAAAAAAAAO0NwXkArcLu8AzO16wDAAAAAAAAIDgPoJXYPbLlPdcBAAAAAAAAEJwH0EqqPDLnPbPoAQAAgECw2+1y++23S8+ePSUhIUGmTJkiv//+e1ufFgAAaCJ7CI/pBOcBtArPbPlKMucRQOXl5XL99ddL165dJS4uTs4880zJzMxs9OevueYaCQsLk6eeekra0v79+2XWrFkyZMgQsVgs8uc//7lNzwcAgI5mzpw58uyzz8ozzzwjv/32mwwaNEjOOeecZu9PBQEmTZokUVFR0rt3b3nsscca/MyuXbtkxowZEhMTI2lpaTqwoAIMAACg8eaE8JhOcB5Aq/CsM2+n5jwC6JZbbpHPP/9cPvjgA/nuu+9k3759csYZZzTqs5988on89NNP0qNHD2lrFRUVkpqaKn/7299k7NixbX06AAB0OAsXLpRTTjlFXwcMHDhQZs+eLRs2bJDc3Nwm76uwsFCmTZsmffv2lRUrVsg//vEPuffee+Xll1/2+5nq6mr9I76yslKWLl0qb7zxhsydO1fuvvvuFn4zAABCy8IQHtMJzgNoFVXUnG9VTqdTSivtbfJQx26s4uJiufTSSyU+Pl7S09P1oLh37159J1q911QFBQXy2muvyRNPPCHHHnusHHzwwfL666/rwVMF3eujjnvjjTfKO++8I+Hh4U06rhqUu3TpIm+//bbX64sWLZKIiIgmZe6b+vXrJ08//bRcdNFFkpiY2OTPAwAQ6tcZWVlZXjfcMzIy9NJqtTb5O6vrA/WDXGXujRw5Us4991y56aab9DWHP19//bWsX79eXx+MGzdOTjzxRHnggQfkueee0/sCAKCtMaaPbPdjuq1V9w4gZHlmy3vWn0dglFVVy4i7v2qTY6+/f7rERDRu+LjkkktkzZo1smTJEh3AVnfB165dK1OnTtUlacyB8+qrr653P19++aWekqbueldVVenPm4YNGyZ9+vSRZcuWyWGHHebz8w6HQy688EI9LU0Nzk2lptOp81dZ+2pgt9mM7//KK6/IySefrG88KGrfO3fu9Lsf9R3UdwEAoD3rKNcZnj/6N2/eLHfeeaccfvjh7pve6of1999/7/fzKqNu3bp1el1dR0yePFnfdDdNnz5dHn30UcnLy9M36WtTnxk9erT7OsD8zLXXXqv3O378+EZ+awAAWgdjevsf0wnOA2gVVQ4y50NdTk6OfPzxxzr4rjLcldNPP13efPNNnf1uOvXUU2XixIn17ks1hTHvnqsBNikpyet9NYCad9Z9UYOwCqiru+XNER0dLbfeeqvO/P/222/lhBNO0NPrVJmcjz76yL3d/Pnz9c2D+vYDAAAC64477tC1ZFVPGVX2zvTqq69KWVmZ3895zqRT1xH9+/f3et/8ga7e8/VDXr3u+SO+9mcAAEDT3BGCYzrBeQCtnzlPzfmAiw636rvQbXXsxtiyZYu++63udpsOPfRQPcCqgLxJlbxRj9aisu1V+ZiVK1fqAb65VHBf3Vx4//33dXD+rbfe0k1p1brn3XoAADq6jnCd4UndQFd1atVN8vPOO09PST/77LPdN/cBAAhVjOntH8F5AAHncDjFI3Ge4HwrUEHmxk4PayuRkZF66TmVTDVAHTJkiKSkpLhfa0pZm27duul6b/n5+V7Z86rkjHrPFzX1TdWvU6VvPJu9qEH/qaeekh07djT6O5111lm6xM2LL76os/9V2R7PGniUtQEAdAYd4TrDU1pamn4cddRResx//vnn9Q/5pkyBV9cRtXvImM/9XWOo13/55ZcmfQYAgGBiTG//Y3rH+esA6DBq15i3e0bqETLUNDKLxaLrxZmNXT777DPZtWuXzqg3s9ibUtZGlcdR09VUJ/czzzxTv7Zx40a9T88MfU+q1rxnjXqzdpx6XTWrbQrVhFYF4++//35dO1+VtfFEWRsAAILLbrd7PVfXCVFRUU2eAq+uI+666y49jpuvf/PNNzJ06FCf09/Nzzz44IM6eKACCeZnEhISZMSIEQH5fgAAhAp7iI7pBOcBBFztGvPUnA9NKrNdNYBVA5wqZ7Np0yZZsGCBDlAvWrRIjjvuuCaXtVHNYC6//HKZPXu2JCcn64Hyxhtv1AOpZzNY1ST24Ycf1mVoVOkZ9fCkBmh191sNzk0tbTNz5kx55JFH5Oijj5aBAwd6vd/UsjarVq3Sy+LiYsnOztbP1UwDftADANA4c+fOlQkTJsgxxxwjq1evlnfffVffRFeaMgV+1qxZct999+nrDFXvVt2EV2XxnnzySfc26qa8alC3YcMG/XzatGl6zFY3/FV9XFWT9m9/+5tcf/317hmEAACgceaG6JhOcB5AwNUuY0NZm9D13HPPyRVXXKEHUpVxrsrIqIHt/PPP10F7NVg2lRpQVUa+ypyvqKjQWfBqqpsnlU1fUFDQpP1OmTJF+vXrpy8IGipto0raNOfca/Ps+K5q46uLDxXgb0qpHQAAQtmoUaPk8ccfl2uvvVbfeFfN32+44YYm70clAHz99df6R7iaqadK8N19991y1VVXubdR1xbqGsOkrm2++OILfWyVKBAbGysXX3yxO5AAAAAab1SIjulhTlVbIIQUFhbqP5L6I6iMSwCBl11UIYc8+K37eZeYcPnt7mltek5AQ1RQXN1dV3Xk66MC56pkz2+//Sbjxo0L2vmhLsZ0AAht6sa6GovVzX90XIznAIApITymW9r6BAB0PvbaNecpa4N2TjWOUT8KL7roorY+FQAAAAAAECIoawMg4GoH42s3iAXam5EjR8rvv//e1qcBAAAAAABCCMF5AAFXu8Y8mfPoTFRd+hCrCAcAQLu0ZMmStj4FAAAQAEtCeEynrA2AgLM7nHWeE8wEAAAAAAAAahCcB9BqmfNR4TX/iakiex4AAAAAAABwIzgPIODMMjYxETa/TWIBAAAAAACAUEZwHkCrZc5Hh1s9XiNzHgAAAAAAADARnAcQcGYgPtKjrI29VpNYAAAAAAAAIJQRnAcQcGYJmwirRayWMNdrZM4DAAAAAAAA7SI4/7///U9OOeUU6dGjh4SFhcmnn37a4GeWLFkiBx10kERGRsqgQYNk7ty5QTlXAE2vOW+zhkm41QjOV9rJnAc6M8Z0AECw2e12uf3226Vnz56SkJAgU6ZMkd9//72tT6tDYzwHALQFewiP6W0anC8pKZGxY8fKc88916jtt2/fLjNmzJBjjjlGVq1aJX/+85/liiuukK+++qrVzxVA02vOh1stEm4x/jND5jwCpby8XK6//nrp2rWrxMXFyZlnnimZmZn1fqa4uFhuuOEG6dWrl0RHR8uIESPkxRdflLb+HpdccomMHj1abDabzJw5UzoyxnQAQLDNmTNHnn32WXnmmWfkt99+04Hhc845p9n7U0GASZMmSVRUlPTu3Vsee+yxerdfvXq1nHfeeXpbdX0xfPhwefrpp6UjYzwHALSFOSE8ptukDZ144on60VgqkNK/f3/55z//qZ+rf6gffvhBnnzySZk+fXornimApjAD8Sowr7Ln9WvUnEeA3HLLLTJv3jz54IMPJDExUQfdzzjjDPnxxx/9fmb27NmyaNEiefvtt6Vfv37y9ddfy3XXXaezwk499VRpC9XV1XrQv+mmm+Sjjz6Sjo4xHQAQbAsXLtRZ3uo6wBzvX3vtNcnNzZXk5OQm7auwsFCmTZsmU6dO1WPUmjVr5LLLLpOkpCS56qqrfH5mxYoVkpaWpq8v1I/5pUuX6m2tVqu+PumIGM8BAG1hYQiP6W0anG+qZcuW6X9YT2rAV3fn/amoqNAPzz8QgOBkzqvAvM1q8WoSiwBxOkWqStvm2OExImHGTZeGqIz1G2+8UT788EOJiYmR2267TWbNmiWDBw+WrKwsnfneFAUFBXqAfvfdd+XYY4/Vr73++uv6h+BPP/0khx12mM/PqYH14osv1lPjFDXIvvTSS/LLL780KjivpmurrLC7775b7rjjDvfrW7du1d/l119/1dO5myI2NlZeeOEFva5uLOTn50soYUwHgHasg1xnqGsJleVtysjI0Ev1Q7qp3nnnHamsrNSZexERETJy5EidCf7EE0/4/SGvfuh7GjBggB7fPv744w4bnG8qxnMAaOcY06W9j+kdKjiv/jDp6eler6nnajAvKyvTGYi1Pfzww3LfffcF8SwBmIF4FZgPdzeEJXM+oNTg+lCPtjn2X/eJRMQ2alNVtkXdpVbBbVV6Rt0FX7t2rf4RZwbm1cB59dVX17ufL7/8Uk9JU3ezq6qqvH4EDhs2TPr06aMHTn/B+SOOOEI+++wzPeCqbHl1Pps2bdJZXY2hPv/yyy/LpZdeqveRmpqqX3/11Vdl3Lhx7sC8yjT7/vvv/e6nb9++sm7dukYds7NjTAeAdqyDXGc4VcDBZfPmzXLnnXfK4YcfrmfWNXVcVtcRkydP1j/iPYPMjz76qOTl5UmXLl0anUjQ1Ay/jozxHADaOcb0dj+md6jgfHOoP6aaCmFSFwlqegKA1mOWsFGB+XCbmTlPcD7U5OTk6LvMKvh+8MEH69dOP/10efPNN3X2u0llrk+cOLHefammMOYPQDXAqulotX8EmnfWfVF169QdclVzXtV3t1gs8sorr+gBuzHUMc8//3z5xz/+oUvQXHPNNbphzRtvvCF33XWXezsVrFc/RP0JDw9v1PHgG2M6AMAXNatN1ZJVDUxV2bvmjMvqOkKVZ/FkBp3Ve435Ia9m6r3//vu6/B78YzwHAPhzRwiO6R0qON+tW7c6Tf/Uc9XF19cdeUV1jFcPAMFT5ao5r8vauDLnKWvTCtPD1F3otjp2I2zZskXf/VZ3u02HHnqoHmA9S8nEx8frR2tSwXlV9kZlz6s76v/73/90U1mVRV97KnZ9zjrrLD1Aq+C8GqTVXXcVtK99EwENY0wHgHasA1xneLr11lt1ndr58+frZm6qXuzZZ58d1HFZzQw87bTT5J577tF1bkMF4zkAtHOM6e1+TO9QwXkV4FF/HE/ffPONV+AHQPvJnNdlbVw15+0E5wNL1W1r5PSwtmL+6PKcSqbKwQwZMkRSUlLcrzWlrI36Aahqx6n67J7Z8+pHoHrPF3V3/a9//at88sknum68MmbMGF1z7vHHH29ycF7Vnd+/f7++c6/K9HieB2VtGo8xHQDasQ5wneFJNXBTj6OOOkrXrH3++ef1D/mmjMv+gszme/VZv369HHfccXqW3t/+9jcJJYznANDOMaa3+zG9TYPzqlGgyqw0bd++XQdLVD0fVT9YTXfbu3evLoGgqEzFZ599Vv7f//t/uubvokWL5D//+Q/TBoF2xgzEq7I2KnteqaLmfMhR08hU+RhVL05lqCsqc33Xrl06o15NU2tqWRtVHkdNV1Od3M8880z92saNG/U+/f0IVDXq1UOdiyfVWMbRxP+/VDcWRo0aJU899ZS+YfD11197vR/KZW0Y0wEAbUGVmas91kZFRTV5XFbXEapUnbpmMF9XQeahQ4fWO/1dBQJUk3rVeP7BBx+Ujo7xHADQVuyhOqY729DixYtVBK/O4+KLL9bvq+XRRx9d5zPjxo1zRkREOAcMGOB8/fXXm3TMgoICfQy1BNA6nlu82dn3ji+ct/1nlfO0Z3/Q61+vy2jr00Ib+NOf/uQ8/vjjnaWlpc5Vq1Y54+PjnSkpKc5vv/222fu85pprnH369HEuWrTI+euvvzoPP/xw/fA0dOhQ58cff+x+rsaSkSNH6jFk27ZteuyIiopyPv/8800+/gMPPOC0WCzO/v37Ox0Oh7Ml1q1b5/ztt9+cp5xyinPKlCl6XT06IsZ0AECwqXElNjZWjx87duxw/ve//3UmJCQ4n3rqqSbvKz8/35menu688MILnWvXrnX++9//dsbExDhfeukl9zbq2kJdY5jWrFnjTE1NdV5wwQXO/fv3ux9ZWVnOjorxHADQFo4O4TE9TP0fCSGq2Yzq9Ks67qo6eAAC718LN8sT32yS8w7tI1uziuWXHbny/PkHyUmju7f1qSHI1DS0K664Qn744Qedqa66o6tyN6qOnLoTffnllzd5n+Xl5frz7733nlRUVOiu62qqm+f0NJWV//rrr8sll1zibvqiMr1Upntubq6e8qamqd1yyy3uDH617Y4dO2TJkiX1Hl9l6g8bNkweeOCBFk9z69evn+zcubPO6yE2NDcbYzoAhLYpU6bo6wKV7b1161Z9LXDBBRfIvffeq687mur333/XPWmWL1+uS/DdeOONujGdae7cuXLppZe6x2l1nPvuu6/OftR1hrqmQOMwngMApoTwmE5wHkDAPfH1RvnXoi1y0eF9ZUtWsSzdekCePnecnDaOZplov44++mg55phj9KDcEBXQVzXsZ86cGZRzg2+M6QAQ2tQP+XHjxulyc+i4GM8BAFNCeEzvUA1hAXQMla6a8zaLRTeFVWgIi/ZM/RhUd+epjwoAAAAAAIKF4DyAgLNXG002w61huimsfo2GsGjHVLbWnj172vo0AAAAAABACCE4DyDg7A5X5rw1TD+UKjLn0YmEWEU4AADapYb6xAAAgI5hSQiP6Ua9CQAIoCpX5rwqaxPuKmtjvgYAAAAAAACA4DyAVmDWl9dlbag5DwAAAAAAANRBcB5AwFW56surZrA2V8158zUAAAAAAAAABOcBtGrmvEUH6JUqO5nzAAAAAAAAgIngPICAs7uy5FVZmwhXQ1jzNQAAAAAAAAAE5wG0gkpXlrxqCOvOnKfmPAAAAAAAAOBGcB5AwJlZ8jZrmH7o16rJnAcAAEDg2O12uf3226Vnz56SkJAgU6ZMkd9//72tTwsAADSRPYTHdILzAFqx5rwqa2NmzhOcR2C8/PLLeqBWA3ZYWJjk5+c3+JmHH35YDjnkEImPj5e0tDSZOXOmbNy4UdpSeXm5XHLJJTJ69Gix2Wz6nAAAQOPNmTNHnn32WXnmmWfkt99+k0GDBsk555zT7P2pIMCkSZMkKipKevfuLY899lijP3vgwAHp1atXo69NAABAjVAe0wnOAwg4MxCvy9pYXMF5B2VtEBilpaVywgknyF//+tdGf+a7776T66+/Xn766Sf55ptvpKqqSqZNmyYlJSXSVqqrqyU6OlpuuukmmTp1apudBwAAHdXChQvllFNOkTPOOEMGDhwos2fPlg0bNkhubm6T91VYWKivDfr27SsrVqyQf/zjH3LvvffqpIDGuPzyy2XMmDHN+BYAAGBhCI/ptqAdCUDIsDtqMucpa9M6nE6nlNnL2uTY0bZofQe5MYqLi+XGG2+UDz/8UGJiYuS2226TWbNmyeDBgyUrK0vi4uKafPw///nPerlkyZJGf2bBggVez+fOnasz6NVAPXny5AY/r441Y8YMufvuu+WOO+5wv75161b9XX799Vc56KCDmvQ9YmNj5YUXXtDrP/74I1l2AIB2o6NcZ6hribFjx7qfZ2Rk6KXVam3ycd955x2prKzUmXsREREycuRIWbVqlTzxxBNy1VVX1ftZNZ6rcVxdJ3z55ZdNPjYAAK2FMT2i3Y/pBOcBBJwZiFdZ8zVlbcicDyQ1uE58d2KbHPvnWT9LTHhMo7ZVZVvWrFmjg9uZmZn6LvjatWt1prgZmFcD59VXX13vftSgqKakBUpBQYFeJicnN2r7I444Qt9lv/TSS+Wyyy6T1NRU/fqrr74q48aNcwfmTzzxRPn+++/97kfduV+3bl1AvgMAAKF+naECDqbNmzfLnXfeKYcffrgkJiY2eVxetmyZvmGvfsSbpk+fLo8++qjk5eVJly5dfO5j/fr1cv/998vPP/8s27Zta/T3BAAgGBjT2/+YTnAeQMCZgXjPhrDUnA89OTk58vHHH+vg+8EHH6xfO/300+XNN9+U1157zb3dqaeeKhMn1n+xoJrCBIrD4dDZ90ceeaSMGjWqUZ9Rg/r555+vp8N99NFHcs011+iGNW+88Ybcdddd7u1UsL6szH9WQnh4eEC+AwAAqKFmtalasio774MPPmjWuKwy9Pr37+/1fnp6uvs9Xz/kKyoq5LzzztPXB3369CE4DwBAC90RgmM6wXkAAWcG4lXWfLgrc95sEovATQ9Td6Hb6tiNsWXLFn33W93tNh166KF6gFUBeZNq0qoewaJqz6vs/R9++KHJnz3rrLPk/fff18H5efPm6bvuKmjfGjcRAABoKx3hOsPTrbfequvUzp8/X/+wfvvtt+Xss89u9XFZZfUNHz5cLrjgglY9DgAAzcWY3v7HdILzAFqt5rxNB+fJnG8N6i5yY6eHtZXIyEi99JxKpsrBDBkyRFJSUtyvBbOszQ033CBffPGF/O9//9Pd15sTnFe15/bv36/v3KsyPUlJSe73KWsDAOgMOsJ1hifVR0Y9jjrqKF2z9vnnn9c/5JsyLnfr1k2X4PNkPlfv+bJo0SJdvk/11vGckq+uc9TMuvvuuy9g3xEAgOZgTG//YzrBeQABZwbidVkbi6vmvCtgj9ChppFZLBZdL65Hjx76tc8++0x27dqlBzqzMUwwytqo46nGtJ988omuf197iltjqRsLqhTOU089pW8YfP31117vU9YGAIDgUmXmao+1UVFRTR6X1Uw/9eO7qqrK/fo333wjQ4cO9VubVpW689z/8uXLdW8aFTwYOHBgi78bAAChxB6iYzrBeQABZ5awCbdYJNzmCs7byZwPNSqjXGWWP/jgg7qczaZNm2TBggUSHR2t70ofd9xxzSpro2rEqYcqm6Oou9vq86ounNngVe1b1bdXmfJmKZt3331X/vvf/+ptzc7vqrmMOp+mZs/fc889+s78Mccc06KbCKrhjOoin5ubK0VFRbqDvKKazAIAgIbNnTtXJkyYoMfk1atX6/FeNXNr6rg8a9YsnRV3+eWX63q3qgTe008/LU8++aR7G3WTX01737Bhg35e+8e66rejqGnxnjPrAABAw+aG6JhOcB5AwNkdNZnz4ZYwr9cQWp577jm54oor9EBqtVp1xrkqd6PqtKugvRosm+rFF1/0mlKmurArr7/+ulxyySV6fevWre7BVHnhhRf0csqUKV778vyMWu7YsUNn1jcUnP+///s/fRfdzP5vrpNOOkl27tzpfj5+/Pg6neoBAIB/akbb448/Ltdee62eqn7TTTe5b843hbphr2bEqRv6qpG9msauStldddVV7m0KCgpk48aNAf4GAAAglMf0MGeIRQAKCwv1H0n9ERISEtr6dIBOaex9X0tBWZV8O3uybM8plSvf/FXG9U6ST68/sq1PDfDr6KOP1nfo77333ga3VUF5dad95syZQTk3+MaYDgChTd10V7PN1M1/dFyM5wCAKSE8ppM5DyDg7GbNeVXWhoaw6ADUj0GVbT9v3ry2PhUAAAAAABAiCM4DCDiz+asua2O1eNWhB9ojla21Z8+etj4NAAAAAAAQQgjOAwg4M0s+wmoRm6vmfBU159GJhFhFOAAA2qWG+sQAAICOIZTHdCOlFQACpNrhFDNuabNaJNxm/GeGsjYAAAAAAABADYLzAALKMwivy9pYKGsDAAAAAAAA1EZwHkBA2V315hUVmA+3mQ1hCc4DAAAAAAAAJoLzAALKXitz3ubKnKesDQAAAAAAAFCD4DyAgPLMkFfNYMOtYXWC9gAAAAAAAECoIzgPIKDsDoc7MB8WpoLzZuY8ZW0AAAAAAAAAE8F5AAFVaTeC8xE2i7u0jVLlCtoDAAAAgWC32+X222+Xnj17SkJCgkyZMkV+//33tj4tAADQRPYQHtMJzgMIKLO2vJkxr5rCKk6nSLVHs1igOXJzc+XGG2+UoUOHSnR0tPTp00duuukmKSgoaOtTkw8++ECGDRsmUVFRMnr0aJk/f3692y9ZskTPLqn9yMjICNo5AwDQkc2ZM0eeffZZeeaZZ+S3336TQYMGyTnnnNPs/akgwKRJk/RY3rt3b3nsscca9bm5c+fKmDFj9OfS0tLk+uuvb/Y5AAAQiuaE8Jhua/UjAAgplXanV+Z8uGtpBu6tFmubnRs6vn379unH448/LiNGjJCdO3fKNddco1/78MMP2+y8li5dKuedd548/PDDcvLJJ8u7774rM2fOlJUrV8qoUaPq/ezGjRt1ZoBJXQAAAICGLVy4UE455RQ544wz9PPZs2fLa6+9pm/mJycnN2lfhYWFMm3aNJk6daq8+OKLsmbNGrnsssskKSlJrrrqKr+fe+KJJ+Sf//yn/OMf/5CJEydKSUmJ7Nixo8XfDQCAULIwhMd0gvMAAqrSlTkf4cqcV7XnPYPzUeEE5wPJUVrq/02rVSyRkY3b1mIRS1RUg9taYmKadH7FxcU6010FzmNiYuS2226TWbNmyeDBgyUrK0vi4uKatD8V6P7oo4/czwcOHCgPPvigXHDBBXoanM3W8LB233336QH6rbfe0oO15536O+64Q/bu3SsRERFNOq+nn35aTjjhBD0NT3nggQfkm2++0Xf+1bHqo4Lx6iIBAID2wul0irOsrE2OHRYdrWeSNYa6lhg7dqz7uTn7zGpt+vXmO++8I5WVlfp6QF0HjBw5UlatWqV/qPv7IZ+Xlyd/+9vf5PPPP5fjjjvO/brKuAMAoD1gTI9o92M6wXkArVTWJsyrvI1ipylswG086GC/78UePVn6vPSS+/mmI4/yOyjHHHKI9H3rTffzLcdNleq8vDrbDd/wR5PO75JLLtF3qVUJl8zMTH0XfO3atToobgbm1cB59dVX17ufL7/8Uk9J80WVtFGZ540JzJt34HNycvSNAjVAm1555RW58MIL3YH5hm4cqBsCZuB92bJler+epk+fLp9++mmD5zNu3DipqKjQNx7uvfdeOfLIIxv1PQAAaC3qeqG+a4zWNHTlCglrZDKACjiYNm/eLHfeeaccfvjhkpiYqF878cQT5fvvv/f7+b59+8q6devcY/nkyZO9btCrsfzRRx/VP9i7dOlS5/PqRrzD4dA39ocPHy5FRUVyxBFH6Kw7NYUeAIC2xpje/sd0gvMAAqqqVkNYqyVMVPK8KjdvBu4RGlQA/OOPP9bB94MPNi4GTj/9dHnzzTf19DTTqaeeqqeM1Uc1hfF3DJWlXt/UtNri4+Plnnvuke7du8uGDRt0nXg1iP/000/y6quvurfzDNz74lmKRt3VT09P93pfPa+vfrw6vgruT5gwQQfn1bFV05uff/5ZDjrooEZ/HwAAQp2a+aZqyarsPNUDxqTG1rJ6sgXDw8Pd62rM7t+/v9f75tiu3vP1Q37btm36h/xDDz2kZ9GpAILKujv++ON1rdumzsQDACDU3RGCYzrBeQABVVGrIaxis1qk0u6QKhrCtsqdaL9qTf8a8uMP/rd1Ne41DVr4bYvPbcuWLfrut7rbbTr00EP1AKsC8p7BcvVoKlVHbsaMGbr2vMo4b4qUlBQdCH///fd1oF4N9OoGgZruZlINaFqTamqrHiZ1V37r1q3y5JNP6pI7AAC0FTUNvd5rjFY+dlPdeuutuk6tasauesC8/fbbcvbZZ/u9uR8o6kd8VVWV/Otf/9K1bZX33ntPunXrJosXL9ZZegAAtCXG9PY/phOcB9CqmfN63RWct5M5H3BNqQHfWtv6E+mqd+95hzk1NVWGDBmig+Om5pS1UVPMVI13FdT/5JNPvO6SN9ZZZ50lTz31lJ4up4Lhqpmrp6aUtVEDtirb40k9V683hbp58cMP9dxEAQAgCFS2WmOnobcHqn+Lehx11FG6Zu3zzz+vf8g3ZQq8v7HcfM/fLDhFJQp4Xuuo65xdu3YF5LsBANASjOntf0wnOA+gVRrCemfOG/XnKWsTWtQ0MovFouvF9ejRQ7/22Wef6YFNZdSbjWGaWtZGZcyru9Yq+K/2F+XRyLYpVImd6667TjeILS8vl3PPPdfr/aaUtVGzA1R3+T//+c9eNes8Zw00hjqmeVEAAAAaphrCe1I37M1rg6ZMgVdj9l133aWz5szX1ViuZrn5mv6umH1iNm7cKL169dLrubm5uuyeChIAAIDGs4fomE5wHkBAmQF4lS1vsrlKplTREDakJCUl6QawDz74oM4I37RpkyxYsECio6Nl0aJF7g7oTSlrowLzaopZaWmpnt6mnquHeVe7KZ3c1faqtM0jjzwiF110UZ1zaEpZm5tvvlmOPvpo3SxGldr597//Lb/++qu8/PLL7m1Uhr5qLqNq7isqa1/dwFCldNTNAXWxof5dvv7660YfFwCAUDd37lzdv+WYY46R1atXy7vvviv333+/fq8pU+BnzZqlb9hffvnlut6tamCvas6qcnMmNVtPjeeqZ42iZgOedtpp+jpAjfnqxr16X/WzUecDAAAab26IjuneRYYBoIWq7E4fZW3InA9Vzz33nL7TrQbSqVOn6oC0epx//vleTWEba+XKlbph6po1a3TwXGWZm4/du3e7t+vXr1+j6tCr0jaqtpwatFtC1YtXFw5qEB87dqx8+OGH8umnn8qoUaPc2+zfv99rOlxlZaWupzd69Ggd2FcXH99++637pgUAAGiYGmsff/xx/eNZ/aC+6aab5IYbbmjyflTjN3WDfPv27bqRvRqj7777bq+m8wUFBTqjzpO66a5mAKqb82o8Vxl6KhmhOSX3AAAIZaNCdEwPc6raAiFEZViqP5L6I3iWJAAQGG/9tFP+79O1Mn1kurx04QT92uTHFsuu3FL56Noj5OC+vqcQAYGisuq7du2q69SrzPj6LFmyRN8Fz8vL05n+6FgY0wEgtKlxfty4cfrGPzouxnMAwJQQHtPJnAfQKg1hfdWcpyEsgkF1Uj/22GMbDMwDAAAAAAC0JYLzAFqlIax3WRtqziN41BS0efPmtfVpAAAAAAAA1IuGsABaJXPeqyGsWXPeQeY82heVXR9i1d0AAOg0VHk6AADQ8S0J4TGdzHkAAVXlI3PeZjHW7WTOAwAAAAAAABrBeQABVVFdt+Z8TVkbMucBAAAAAAAAheA8gICqsjv9NoQlOA8AAAAAAAAYCM4DaPWyNmagnoawAAAAAAAAgIHgPICAqnQ3hDWy5T0D9WTOAwAAAAAAAAaC8wACqspXzXlXcL6iqrrNzgsAAAAAAABoTwjOA2iVhrCeZW0iXeuVZM4DAAAgQOx2u9x+++3Ss2dPSUhIkClTpsjvv//e1qcFAACayB7CYzrBeQABVWWvmzlvBucrqgjOo2Vyc3PlxhtvlKFDh0p0dLT06dNHbrrpJikoKGjT81q3bp2ceeaZ0q9fPwkLC5OnnnqqTc8HAIBQMGfOHHn22WflmWeekd9++00GDRok55xzTrP3p4IAkyZNkqioKOndu7c89thjDX5m+fLlctxxx0lSUpJ06dJFpk+fLqtXr272OQAAEIrmhPCYTnAeQKs3hI20WfWywhW4B5pr3759+vH444/L2rVrZe7cubJgwQK5/PLL2/S8SktLZcCAAfLII49It27d2vRcAAAIFQsXLpRTTjlFzjjjDBk4cKDMnj1bNmzYoG/mN1VhYaFMmzZN+vbtKytWrJB//OMfcu+998rLL7/s9zPFxcVywgkn6GSBn3/+WX744QeJj4/XP+arqqpa+O0AAAgdC0N4TLe16t4BhByzdE2Ej5rzlLUJvKoK/3X8wywitnBr47YNE7FFNLxteGTNNo2hBjiV6f7hhx9KTEyM3HbbbTJr1iwZPHiwZGVlSVxcXJP2N2rUKPnoo4/cz9Wg/eCDD8oFF1ygp8HZbA0Pa/fdd5+8+OKL8tZbb8nUqVO97tTfcccdsnfvXomIiGjSeR1yyCH6ofzlL39p0mcBAGhvnE6n2Cvb5rrNFmHRs9AaQ11LjB071v08IyNDL63Wpl2vKO+8845UVlbq6wF1HTBy5EhZtWqVPPHEE3LVVVf5/IwZNLj//vt1Vp5yzz33yJgxY2Tnzp066w8AgLbEmB7R7sd0gvMAAqrK7qynrA0NYQPt5Zu/8/te31Fd5eQbaga3Obd/73dQ7jE4SU6/9SD38zfvWirlxXXvDl//4rFNOr9LLrlE1qxZI0uWLJHMzEx9F1xlvKuguBmYVwPn1VdfXe9+vvzySz0lzRdV0kbVpGtMYF5Rd+BzcnL0jQI1QJteeeUVufDCC92B+YZuHKgbAirIDwBAZ6OuF+q7xmhNVz19dKOTAVTAwbR582a588475fDDD5fExET92oknnijff/+938+rjDpVmk5ZtmyZTJ482esGvcqWe/TRRyUvL09Pb69Nldnr2rWrvPbaa/LXv/5Vqqur9frw4cN1qTsAANoaY3r7H9MJzgNoncx5j7I2ZhY9mfOhRQXAP/74Yx18P/jgg/Vrp59+urz55pt6kDOdeuqpMnHixHr3pZrC+DvGAw884Pfuty9qapq6A969e3d9d3zYsGF6EP/pp5/k1VdfdW/nGbj3Rd0QAAAAbU/NfFO1ZFV23gcffOB+XY3rZWVlfj8XHh7ulaHXv39/r/fT09Pd7/n6Ia+uKVQCwsyZM/X1iKJmB3711VeNThoAAAChPaZzxQAgoCrdDWFrpi5FhtMQtjXvRNdX1sbTZf+Y5H/bWjPNLnrwiBaf25YtW/Tdb3W323TooYfqAVYF5D0HQfVoTh25GTNmyIgRI3T9uKZISUnR3d/ff/99HahXA726QaCmu5mYig4ACFVqGnp91xitfeymuvXWW3Wd2vnz58t5550nb7/9tpx99tl+b+4HigoSqL43Rx55pLz33ns6y071xVHXJ6qpnGpeDwBAW2JMb/9jOsF5AMFrCEvmfMA1pQZ8a23rT2RkpF56TiVLTU2VIUOG6OC4qTllbYqKinSzFhXU/+STT7zukjfWWWedJU899ZSeLqfqzz/88MNe71PWBgAQqlS2WiCuBYIlLS1NP4466ihds/b555/XP+SbMgVeNXRXJfg8mc/9NXt/9913ZceOHXr6vMVicb+mMvL++9//yrnnnhvAbwkAQNMxprf/MZ3gPICgNYQlcz60qGlkalBT9eJ69OihX/vss89k165dOqPebAzT1LI2KmNe1YtTwX+1v6ioqGadnyqxc9111+kGseXl5XUGW8raAADQ/qmG8J7UDXvz2qApU+DVTL+77rpLqqqq3K9/8803ugatr+nvSmlpqb7W8Wx2Zz53OLjuBQCgKewhOqYTnAcQUFXusjY+GsLaaQgbSpKSknQD2AcffFCXs9m0aZMsWLBATwdbtGiRHHfccU0ua6MC89OmTdMDp5repp6rh5mV35RO7mp7VdrmkUcekYsuuqjOOTSlrI3qBL9+/Xr3+t69e3VwX2XfUx4HAIDWM3fuXJkwYYIcc8wxsnr1ap3ldv/99+v3mjIFftasWfqGvZrSrurdqgb2Tz/9tDz55JPubdRsPTXjTvWsUY4//ni5/fbb5frrr5cbb7xR/3hX1xWqNq06HwAA0HhzQ3RMb3rxHwCoR2W1s25DWNe6WY8eoeO5557Td7rVQDp16lRdRkY9zj//fK+msI21cuVK+fnnn2XNmjU66K2aupqP3bt3u7dT3dQbU4delbZRg64atFti3759Mn78eP3Yv3+/rk2n1q+44ooW7RcAANRv1KhRetxVDd5vvvlmuemmm+SGG25o8n4SExPl66+/lu3bt+tG9qrm7d133+3VdL6goEA2btzofq6O+fnnn8vvv/+us/RUCT51TaCSEdS1CQAAaLxRITqmhzlVbYEQojIs1R9J/REoSQAE3ph7v5LCcrt8O/toGZRm1Oz+Zn2mXPnmrzKud5J8ev2RbX2K6ORUVn3Xrl11nXqVGV8f1Y1d3QXPy8vTmf7oWBjTASC0qXF+3Lhx+sY/Oi7GcwDAlBAe08mcBxBQVWbmvI+a82TOIxgWL14sxx57bIOBeQAAAAAAgLZEcB5AqzSEDbfVNNGg5jyCacaMGTJv3ry2Pg0AAAAAAIB60RAWQMDYqx1S7TAy56Ns1jrBeTNwD7QXKrs+xKq7AQDQaajydAAAoONbEsJjuqU9NAtUjftUw8CJEyfKL7/8Uu/2qvbQ0KFDJTo6Wnr37i233HKLlJeXB+18AfhX4VG2JjK8blmbiiqC80BnxpgOAEDnwJgOAEAIBOfff/99mT17ttxzzz2ycuVKGTt2rEyfPl2ysrJ8bv/uu+/KX/7yF739H3/8Ia+99prex1//+tegnzuAusqrasrWRHplzlvrBO8BdC6M6QAAdA6M6QAAhEhw/oknnpArr7xSLr30UhkxYoS8+OKLEhMTI3PmzPG5/dKlS+XII4+UWbNm6bv406ZNk/POO6/Bu/gAgsMMvodbw8RqqVtznoawQOfFmA4AQOfAmA4AQAgE5ysrK2XFihUyderUmpOxWPTzZcuW+fzMEUccoT9jDvLbtm2T+fPny0knneT3OBUVFVJYWOj1ANC6wXnPevMKDWGBzo0xHQCAziEYYzrjOQAA7aAhbE5OjlRXV0t6errX6+r5hg0bfH5G3YlXnzvqqKN0Az+73S7XXHNNvdPlHn74YbnvvvsCfv4A/Je18aw371lzXvWKVU1jbdY2b3cBIIAY0wEA6ByCMaYzngMAUMPS0Tr3PvTQQ/L888/r2ncff/yxzJs3Tx544AG/n7nzzjuloKDA/di9e3dQzxkIxcx5z3rztZ9Tdx6AwpgOAEBojumM5wAAtIPM+ZSUFLFarZKZmen1unrerVs3n5/5v//7P7nwwgvliiuu0M9Hjx4tJSUlctVVV8ldd92lp9vVFhkZqR8A2j5z3qw7H8v/JIFOhTEdAIDOIRhjOuM5AADtIHM+IiJCDj74YFm4cKH7NYfDoZ8ffvjhPj9TWlpaZ2BXFw6Kmj4HoH1mzqvmsDZXg1gy59ESubm5cuONN8rQoUMlOjpa+vTpIzfddJPOumpL69atkzPPPFM3QQsLC5OnnnqqUVlmp512mnTv3l1iY2Nl3Lhx8s4770hHxJgOAEDnwJgOAECIZM4rs2fPlosvvlgmTJgghx56qA5mqDvsqiu8ctFFF0nPnj11TTrllFNO0Z3jx48fLxMnTpQtW7bou/TqdXPwB9D2mfNRtTLnzaaw9spqmsKiRfbt26cfjz/+uIwYMUJ27typa5qq1z788MM2Oy/1o3TAgAFy1llnyS233NKozyxdulTGjBkjd9xxh67j+sUXX+hxLzExUU4++WTpaBjTAQDoHBjTAQAIkeD8OeecI9nZ2XL33XdLRkaGzhpcsGCBu/nMrl27vO7A/+1vf9MZiWq5d+9eSU1N1QP+gw8+2IbfAkDdzPm6wXlV2qakslqXtUHgVJWX+30vzGIRW0REo7YVS5iER0Q2uG14VFSTzq+4uFhnuqvAeUxMjNx22226adjgwYMlKytL4uLimrS/UaNGyUcffeR+PnDgQD0GXHDBBbr5mM3W8LCmGpC9+OKL8tZbb8nUqVPdr8+ZM0cHytX4orLGmuKQQw7RD+Uvf/lLoz5Tu0nazTffLF9//bWu09oRg/OM6QAAdA6M6QAABE+YM8TmmRUWFuqsRFUCISEhoa1PB+hU/vPrbvl/H/4uU4amytxLD/V677CHFkpGYbl8ceNRMqpnYpudY2fzz3P8B3H7j58gZ/zlXvfzpy86U+wVFT637TVilJxzzyPu589fMUvKigrrbHfr+1806fz+9Kc/yZo1a+Tdd9/VtUrPOOMM/YMvLy9PPvvsM72NKuVy9dVX17ufL7/8UiZNmuTzvVdffVU3FlM/IhujqKhIB8a///57WbVqlft1NVVbPVTml9LQjQN1Q0AF+WtTpW3+/Oc/60dTHXXUUXLYYYfpmQFoGGM6AAAdH+M5ACCUtWnmPIDQypz33AadX05Ojs4CV8F3VbtUOf300+XNN9+U1157zb3dqaeeqqdA10dNnfZ3jAceeEA3HGus+Ph4ueeee3St9w0bNsiwYcN0zfiffvpJB/pNnoF7XwL94/E///mPLF++XF566aWA7hcAAAAAALRPBOcBBEyFu+Z83dqSZsDe3AaBcdMbH9Zb1sbTdS/X02zU1bDXdOWzc1p8bqreqJqc5dk8TNUt/eCDD3RA3jNYrh7NybKaMWOGrj1/7701MwQaIyUlRaZMmSLvv/++DtSroLy6QTBy5Ej3NoMGDZJgWbx4sa7j+sorr3idAwAAAAAA6LzqprcCQCtkzpsBezLnA0vVgPf38Kw339C2nvXm69u2KSIjjX161m9XNUiHDBmig+MmlVmvSsjU91AlaGqXpjnhhBN0UP+TTz6R8PBwaSrVvFUF5ysrK3X9+csvv9zr/YbOSTWiDYTvvvtO12V98skndYM1AAAAAAAQGsicBxCUzPmocCNgX07mfMjo37+/bha2efNm6dGjh35N1ZlXTcRURr1qHNacsjYqY3769Ok6+K/2F9XEmwYmVWLnuuuu0w1iy8vL5dxzz/V6PxhlbZYsWaKbvz766KNNKs0DAAAAAAA6PoLzAAKmvBGZ8+V2gvOhIikpSTeAffDBB3U5m02bNsmCBQskOjpaFi1aJMcdd1yTy9qowPy0adOktLRU3n77bf1cPcysfKu17o0hf9T2qrTNI488ojPWa59DU8raqOz79evXu9f37t2rg/sqw97cz7PPPquz/BcuXOguZaMC8zfffLOceeaZkpGR4Z5pkJyc3OhjAwAAAACAjomyNgCCVHPeFZyvoqxNKHnuued0ZrvKfJ86dao89dRT+nH++ed7NYVtrJUrV8rPP/8sa9as0UFv1dTVfOzevdu9Xb9+/RpVh16VtnE4HHVK2jTVvn37ZPz48fqxf/9+efzxx/X6FVdc4dW8duvWre7nb7zxhr7J8PDDD3t9D3VDAwAAAAAAdH5kzgMIGDPw7jtznrI2oSgtLU2XnqlNBeebQ2W6q5I49VEB78zMTL1tQ4YOHaqXo0aNkpZQNwMaOi91s8DzhsHcuXP1AwAAAAAAhCYy5wEETIW9vprzZM4jOFS5mGOPPbZRwXkAAAAAAIC2QnAeQMBU1Ftz3nitjMx5tLIZM2bIvHnz2vo0AAAAAAAA6kVZGwABY5asMevLe4pyvWbWpQfag8aUyQEAAAAAAGgNZM4DCHzmvCtL3ndZG4LzAAAAAAAAAMF5AMHJnHc3hKXmPAAAAAAAAEBwHkDAM+fNQLzPzHlX01gAAAAAAAAglBGcBxCUzPlIytoAAAAAAAAAbgTnAQQnc95GWRsAAAAAAADARHAeQMCYgXffNefJnAcAAAAAAABMBOcBBEyFq558/TXnyZwHAAAAAAAACM4DCHhZG7O+vCczYF9B5jwAAAAAAABAcB5AYDgcTqk0a8676st7oqwNAAAAAAAAUIPgPICAqKyuKVfjK3M+2h2cp6wNAAAAAAAAQHAeQEB4ZsT7zpw3Xit31aUHAAAAAAAAQhnBeQABrTdvtYSJzVr3Py2RNsraAAAAAAAAACaC8wACwgy6R/rImveuOe8Qp9MZ1HMDAAAAAAAA2huC8wACmjlvBuH9lbXx3BYAAAAAAAAIVQTnAQQ1c16poCksAAAAAAAAQhzBeQBByZwPt1p0PXqljLrzAAAAAAAACHEE5wEEhJkN7y9zXolyvUdTWAAAAAAAAIQ6gvMAglLWxqsprJ3gPAAAAAAAAEIbwXkAAWEG3P2VtfF8r5ya8wAAAAAAAAhxBOcBBERZpRGcj47wH5yPDKesDQAAAAAAAKAQnAcQEOVmQ1hbPZnzrvcIzgMAAAAAACDUEZwHEBDljcicj3JnzlPWBgAAAAAAAKGN4DyAgDCz4c0AfH015ytoCAsAAAAAAIAQR3AeQECUVTWlISzBeQAAAAAAgqmkwi5F5VVtfRoAPBCcBxAQZqma+oPzlLUBAAAAACDYdh4okUMe/FYO/vu3sjGjqK1PB4ALwXkAAc2cj64vOE9DWAAAAAAAgu69X3ZLaWW1VNod8tZPO9r6dAC4EJwHEBAVjak572oWS+Y8AAAAAADBs2xrjsf6gTY9FwA1CM4DCH7mPA1hAQAAAAAICpUt/8f+mlI223JKqD0PtBME5wEEhFmqJrJRNecJzgMAAAAAEAw7DpRIZbVD4iNtkp4QKU6nyOas4rY+LQAE5wEENXPe9R5lbQAAAAAAaKHSXJFXjhV5/nCRvJ1+N9udW6qXfbrGSN+usV6vAWhbBOcBBIQZcDcD8PVlzpv16QEAAAAAQDP99LzI3hUiWetFFt7nd7NdZnA+OUY/FILzQPtga+sTANA5lDchc97MsgcAAAAAAM20aUHN+ob5IpUlIhFGZry/4HxspM3rNQBti8x5AAENzpvZ8fU2hCU4DwAAAABA81UUiWSuM9bDrCL2MpE9y31uambJ90qOkd7J0a7XyoJ3rgD8IjgPICDMbPj6ytpEuhvCUnMeAAAAAIBmy9kk4nSIxKaJjDjVeE2VuGlkWRsy54H2geA8gCDWnHdlztvJnAcAAAAAoNkObDWWKYNFek4w1vfUDc47nU53lnzvLtHS2xWc319QJlXVJM4BbY3gPICAZs5HRzQiOE/mPAAAAAAAzXdgi7HsOlCk58HG+t5fVTTea7PCcrv793qPpGhJjYuUcGuYOJwi2UUVQT9tAN4IzgNoMYfDKZV2V+a8rb6a88Z7FdScBwAAAACg+Qr2GsukPiLdx4qEWUSKM0WKs7w2yy4q18uEKJtOmAsLC5O0+Cj9Wmah8R6AtkNwHkCLeZapaVzmPMF5AAAAAACarTjDWMZ1E4mIEUnqazzP2ei1WZYrOz41PtL9WlqCsZ5ZSOY80NYIzgNoMc8yNVG2xtScp6wNAAAAAADNVpRpLOO7GcuUITWNYj1k+wjOp7sy582segBth+A8gBYz69dF2CxisYT53S4q3PhPDpnzAAAAAAC0QNF+7+B8qis4n+07OG+WstHrZM4D7QbBeQAtVlZZ3WC9+dplbVTHeAAAAAAA0ETVVSKlOTVlbZSUoY0ua5OeQM15oL0gOA+gxcxM+PrqzXsG51VX+MpqStsAAAAAAFBbmb1M3l7/tvy490ffG5hNXy02kZiuxnrq0AYy5z1qzrvWM13vAWg7tjY8NoBOorjCrpexkfX/JyXWI3hfUlEtkfXUpwcAAAAAIBTd+f2dsnDXQr3+yKRHZMaAGX6awaaLWFx5t10HGcuifSJVZSLh0fpplquuvHdDWCNzPovMeaDNkTkPoMVKK43gfFwDwXmb1SKRrtI3Ja6APgAAAAAAMGzN3+oOzCtPrXxK7A6772awKjhviu4iEplorOftrLfmfLqr5rxZ8gZA2yE4D6DFiiuMsjYxDZS18Qzgl7gC+gAAAAAAwLB492K9nNhtonSJ7CIZJRmyPGO578x5sxmsEhYm0qWvsZ63o/6a865AfW5JpVTYjd/zANoGwXkALWZmwTeUOe9Z+obMeQAAAAAAvP2a8ateHtPnGDmu73F6/asdX3lvVHrAWMameL+e3N9Y5m3XCxV4zy+tqlNzPikmXCKsFq/MegBtg+A8gBYraWTNec9tzGx7AAAAAAAg4nQ6Zf2B9Xp9TMoYmd5vul5ftGuROJyOmg3L8mtK2Xjq0s9Y5hrB+QPFlXoZbg3TAXlTWFiYO5Oe0jZA2yI4D6DFVHPXRgfnXaVvSsmcBwAAAADALbssW/Iq8sQaZpUhyUPk4PSDJdoWrV/bkr+lZsPSXD/B+f5eZW3cJW3iInVA3lOaq+58ZgFNYYG2RHAeQIuZ9ePNwHvjMucJzgMAAAAAYNpTtEcvu8V2k0hrpIRbwmV82nj9mlfd+bK8+jPnXWVtsn3Um69ddz67mMx5oC0RnAfQYmagvTGZ8+6GsATnAQAAAABw21NsBOd7xfdyv3ZIt0PqCc4n+6k5v1PE4ZCsIiMrPtUViPdkBuypOQ+0LYLzAILcENbIri+ppOY8AAAAAACmvUV79bJXXE1wXpW2UVZlrdI16bUyP2VtEnqJWGwi1RUiRfvrzZx315wvJDgPtCWC8wCCWnM+JoLMeQAAAAAA/GXO94zr6X5tWPIwXYP+QPkBySzNrL+sjdUmktjbWM/bUVNz3kdwPs3MnKesDdCmCM4DaDEz0E5ZGwAAAAAAWlZz3rOsjWoIOyhpkF5fm7NWRGXPm8H5mFplbWrVnTcz581AvCfK2gDtA8F5AG3UEJayNgAAAAAAmPYW762TOa+MShlVE5yvLBZx2H1nznvWnc/dXm/mvLusjasuPYC2QXAeQFAbwrprzpM5DwAAAACAZnfYJas0S6/3iOvh9d7IlJF6ufbAWpFSV715W5RIeHS9mfM59WTOp7maxOYUV4rD4aplDyDoCM4DaLFSVxZ8oxrCmjXnXdn2AAAAAACEuvyKfHGKU8IkTLpEemfEj+pqZM6vz1kvjtID/rPmPYLzzryd9TaE7RoXIWFhItUOp+SWVgb42wDoMMH55557Tvr16ydRUVEyceJE+eWXX+rdPj8/X66//nrp3r27REZGypAhQ2T+/PlBO18ALas5b25D5jzQ+TCmAwDQOTCmA63L6XDUeS233MiI7xLVRawW75Kxg7oMkkhrpBRVFcnuvM3Gi9E+6s3XCs5XVjv8BufDrRZJjonQ69SdB0I0OP/+++/L7Nmz5Z577pGVK1fK2LFjZfr06ZKVZUzjqa2yslKOP/542bFjh3z44YeyceNGeeWVV6RnT+9aXACCx+l0NqnmfE1DWGrOA50JYzoAAJ0DYzrQeqoLC2XXZZfJhpGjZM+NN4mjtLROcD45qm7QPdwS7m4KuzFvY/2Z80l99cJSmi0xUi6J0eESafP9W52msEDbazjNtRU98cQTcuWVV8qll16qn7/44osyb948mTNnjvzlL3+ps716PTc3V5YuXSrh4eH6NXU3H0DbKauqFrM8XWMy52NcNefNOvUAOgfGdAAAOgfGdKD1ZD76qJQsXabXi775RjLi4qTHww/p57ll/oPzypAuQ2TdgXWyqXCnTFMvRCf5Poh6PSpJpDxfeoVlizM+xe/5qOD8howid+NYACGUOa/urq9YsUKmTp1aczIWi36+bJnxH6raPvvsMzn88MP1dLn09HQZNWqUPPTQQ1Jd7T8Dt6KiQgoLC70eAAKnuNwIslvCRGIakTmfEGUE8AnOA50HYzoAAJ1DMMZ0xnOEKnt2thT89zO9nnL99XpZ8MknUr7RyIQ/UH6g3uD80OShermxdF/9mfNKFyN7vk9Yls+SNiYy54EQDs7n5OTowVoN3p7U84yMDJ+f2bZtm54mpz6n6tf93//9n/zzn/+Uv//9736P8/DDD0tiYqL70bt374B/FyCUFbqC86pcTZjqJtOA+Cgjm6aovEqXxAHQ8TGmAwDQOQRjTGc8R6gqWrhQxG6XqLFjJPXGGyT+xBP06zkvvNhgWRszc17Z7AriS4yfmvMeded7h2VJGsF5oF1r84awTeFwOCQtLU1efvllOfjgg+Wcc86Ru+66S0+z8+fOO++UgoIC92P37t1BPWegs1NBdiUh2gi6NyTBFZxXpXBKKqk7D4QqxnQAAEJzTGc8R6gq+flnvYybPFkvU665xh20t+fmuoPzXaO71huc3+sokyKVGFdf5nxSIzPn44z3sorKm/elAHTcmvMpKSlitVolMzPT63X1vFu3bj4/ozq/qxp26nOm4cOH6zv4avpdRITRZdqT6hSvHgBaR5Erc97MiG9IVLhFbJYwsTucUlhW5W4QC6DjYkwHAKBzCMaYzniOUKRmjZf+slyvxx52mF5GDR0qUaNGSfnatVLw2WeS27v+zPnEyETpFttNMkoyZHNEhBxUb1kbI3Ne1Zy3x0f53SwtwXiPzHkgBDPn1QCt7qovVNN6PO64q+eqXp0vRx55pGzZskVvZ9q0aZO+GPD1Ix5AMIPzjQuyq9I3Zpa9+VkAHRtjOgAAnQNjOtA6Krdtk+oDByQsOlqiR492v554+ky9LFrwVYNlbZShXVx15yPCRaLrK2vTtMz57GKC80BIlrWZPXu2vPLKK/LGG2/IH3/8Iddee62UlJS4u8JfdNFFesqbSb2vusDffPPNerBXHeNVoxnVeAZA2yg0y9o0Mjjvua35WQAdH2M6AACdA2M6EHgVrqavKls+zOOmVbyr+XLZqlVSlZXVYHDeLG2zSQfn68uc768XvcOyJS0uouGa84UE54G20qb1JFQtuuzsbLn77rv1lLdx48bJggUL3M1ndu3apTvDm1SjmK+++kpuueUWGTNmjPTs2VNfANxxxx1t+C2A0GbWnG9sWRvPbc3PAuj4GNMBAOgcGNOBwKvYslUvIwcP8no9PD1dN4gtX/27DFqXJ3+MFomPiPe7nyHJZnA+ov7gfGIvcUiYxIRVSDdbkQrD+9wsLcEIzhdV2KWsslqiI2rKUwEIjjYv9nzDDTfohy9Lliyp85qaSvfTTz8F4cwAtEZZGyUh2pU5X0ZZG6AzYUwHAKBzYEwHAqtiqxGcjxg4sM578cdN1cH5MetL5fPRVokLj/O7n6FJRnB+c0S4VEcliL9QernTJrnOLtIjLFdSqzNEZIDP7eIjbRJps0iF3aHrzvfpGtOs7wegg5a1AdB5gvMJTcicN7elrA0AAAAAoLOr2LpFLyMHemfOK/FTj9PLETudElHlrDdzvk9EF4lyOKTMYpE91WV+t8sprpDdzjS9Hle6p96ecO7SNsXlTfhGAAKF4DyAFjED7E3JnDe3pSEsAAAAAKAzc1ZVSeWOnXo9cmDdDPaI/v3Fkp4m4dUiI/dYJNoW7Xdf1opCGVRl/AbfWGTs05esoprgfFi+/+2UNDM4X0TdeaAtEJwH0CJmaZr45mTOl5E5DwAAAADovKr27xex2yUsKkps3bv7zF6XQ8fq9YN2Wo3n/pTlypBK43f05vzNfjdTgfZdDiM4L3k76j0/M3NeBfQBdKDgfFVVlezevVs2btyoO7MDCPWGsE3JnDfL2pA5D7Q1xnMAADoHxnSgfarat18vw7t18xt4rxg/VC9Hba+uf2dleTKkslKvbsrd1EDmvKsJbF5DmfNReknmPNABgvNFRUXywgsvyNFHHy0JCQnSr18/GT58uKSmpkrfvn3lyiuvlOXLl7fe2QLoXA1hqTkPtAnGcwAAOgfGdKD9q8pwBed71M2aNxWO7qeXPTOqxJ6T439npTWZ85vyNtWfOe8qa9NQcN5dc57gPNC+g/NPPPGEHuhff/11mTp1qnz66aeyatUq2bRpkyxbtkzuuecesdvtMm3aNDnhhBNk82b/02sAdB5FFcaFQUJ0TVkbe16elK1aJUWLFknxd99J2Zo14igtdb9PWRug7TCeAwDQOTCmA+2Tw+EUp8Ppfm5XZW1ExNbNf3C+KM4i29ON9ZJlP/nfeVmeDHYF5/cU75GSqhKfm2UVlrtrzkvhHpFq/7+9KWsDtK1Gp7qqu+3/+9//ZOTIkT7fP/TQQ+Wyyy6TF198UV8cfP/99zJ48OBAniuAdpw5n+DKnN91xZVS8sMPdTcMC5Oo0aOl9wvP0xAWaEOM5wAAdA6M6UD74nQ65Zcvtsuqb3ZJmCVMDpnRX8ZN7S1V+zP0++E+6s2biiqLZHu/MOmf6ZSSZcsk8ZSTfW9YlidJDoekhUVIlrNSNudtlnFp4+pspgLt2ZIodkuk2BwVIgW7RZLrNqNVaAgLdJDg/Hvvvdeo7SIjI+Waa65pyTkB6EAXH/aiYhFrpLuOvL7gCAsTW3q62NLSRKqrpSozU6pzcsSenS3W5GRJKDBqYFLWBgg+xnMAADoHxnSgffl90R75dV5N89WlH22RipIq6eHKnA/v3s3vZ4urimVN3zA59WenlNZXiqrU+C09OKKLZFVk6qawvoLzmYXl4hSLVMT1FFvhNqO0jZ/gPGVtgLbV+CLRHqqrq3WjmdLSUomJiZHevXuL1WoN/NkBaNeB+cw335a5Xz4hfzviSnc2fMr110narbPFmpTktb0K0Fft3asb4KiyNuHVdrn6i6elaLxT4o89po2+BRDaGM8BAOgcGNOBtlVZbpfl87fr9cNPHyhWm0V++GCzrFiwUyx54RKvAnANZM5v6hUmzrAwqdq9W6oyMnQD2TrKjOD8kOh0+bEi029T2MxCI9DuSOwnooPzNTcN/AXnc4ordEkei8V301oA7aAh7OLFi3W9utjYWBk4cKCMHj1aL9Xz6dOn6yl1ADq/6uJi2XvznyXv4Yck1l4uJ+z6RaLDjYt/dQFROzCvX09Pl5iDDtLrKpA/Y/tSGbN/g+y57jrJ/Mc/xGmnxA0QLIznAAB0DozpQPuw/od9UlFil6T0GBl3fB8Ze1xvGXV0T/3euthJ4gizNljWpiwyTIr6pejnpct/9b1hWZ5eDInr7bcprL3aIQdKjOC8ravRaFby/TeFTYkzgvN2h1PySisb+Y0BBD04//bbb8tJJ50kgwYNkn//+9+yevVqiY6Oli+//FK+/fZbmThxosycObPRU+sAdExVmVmy8/wLpOjrr0VsNnlx9GnyxuHn6oz4xlLNY+f3P1w+GjhZP899bY7svuZar6axAFoH4zkAAJ0DYzrQfmxenqmXKihvZp4fNnOgRMeFS2l0mmSkH2qUfa2nrI1SMsoIppf++mu9ZW2GJA0yjpu3Wc9q95RTXCnqJaslTCJTXaVs6smcD7daJDk2Qq/TFBZox2Vt7rvvPnnttddk1qxZ7tdUME5dCAwYMECOOuoomTBhgsyePVvOO++81jpfAG2ocvdu2XXxJVK1b59YU1Ok5G+PyH8X50ufaONOe2PFRdqk0hour44+VS698mQpuu8e3UR21+VXSO+XXhRrQkKrfQcg1DGeAwDQOTCmA+1DcV6FZO0sEgkT6T/WyHxXIqNtMvawJPnp22zZ1XeaSHSM/31UGsH5qtFDRD5f7j847ypr0z95iNgsNimqKpKMkgzpHtfdq968khoXKZZkV+a8qjlfD7Vtbkmlrjs/3H+CP4C2zJzft2+fHHbYYfVuM2rUKNnvanQBoHOx5+TIrksv04H5iL59pd9770l+v8H6PbPefGOpO/jxkcZnKo48RvrMeU0sCQlS9ttvsvuqq8VRVtYq3wEA4zkAAJ0FYzrQPuxcm6OX3fonSGyid+La4P4OsVWV6Oz57auM7fyVtVEs40boZeXWrWI/cMBvWZvw2DTpn9jfZ2kbMzifnhAp0qVfg5nzSpralqawQPsOzh999NFy5513SnGxcTevNjWN5tFHH5UpU6YE8vwAtBMqmz1q9CgJ79NH+rz1pkT06iVF5fZmBefN0jZKYbldYsaPl75vvqED9BXbtknlzvrv6gNoPsZzAAA6B8Z0oH3Yv7VAL3sNS67zXlhRnvTcZ/R+WPu/PX73oTLgldiUbhI52EiCK/11hfdGjmqRsnxjPbqLDOkyxHdw3hVgT0uIEknqW5NxX15Yb+a8QlkbIPgaHVF75ZVX5OSTT5a0tDQ58sgj9VS5yspKuf/++8Vut8vSpUslOTlZPvvss9Y9YwBtIiwiQno+/rhU5+WJLcWYqldUXqWX8VFGoL0pzIC+uY+oYcN0SRtLbKxEDTEuMgAEHuM5AACdA2M60D5kbjeC3t0GJNZ5r/pArvTc96Ps7HOC7N2YL/lZpZKUFuO3rE18eLzEHHKIVGzerEvbJEyfVrNRuboJ4PQKzs+TebruvKdsz8z5qASR6GQjOK+awnYb7fM7pMaTOQ+0+8z5nj17ysqVK+X999+XkSNHyt69e2XSpEmSm5srKSkp8swzz8jy5culR48erXvGAIKq+PsfxOlw6PUwq9UdmFdalDnvCugXlhn7UFQGvWdg3lHBhQEQaIznAAB0DozpQNsrL6mS/MxSvZ7er27vNHvuAYmqyJP0cKNEzR8/7vO5HzM4HxcRJzGHTNDrpcuX+yxpIxHxIrYI/5nzha7M+fgo44UufRusO+8OzhfzGxwItiZF1FRzmVNOOUU/AHR++R9/Ivv/+leJnz5dej75hIRZvO/nmVnvZqC9KRKivTPnayv+4UfZf+ed0uvZZyR67NhmnT8A3xjPAQDoHBjTgbaVtcPImk9Mi5aouHCfmfPKgK4FkpmZIn8sy5BDTx0gVmvNb2uH0yHFVa7M+Yh4iZlgBOcrNm6U6oICsSa6MvJLc91Z84oZnN9RuEMqqisk0moE2DOLPDLnFVV3ft9v9dadN4PzWa6sewDtMHN+165dTdqxumsPoOOq2LZdMh54QK+rmne1A/OeWe8JzcicN0vhFPoJzud/+KHYs7Nlz81/1hckAAKD8RwAgM6BMR1oewf2luhlau94n++rzHmldy+rRCdESFlhpexc493otaSqRJyucjVx4XFiS02ViH79VOMIKV25smZDVZpGiTGC86nRqZIYmSjVzmrZlr+tbua8qjmvmHXnVVkbP8wse8raAO04OH/IIYfI1VdfrafF+VNQUKDr3qmO8B999FGgzhFAkDkrK2Xf7beLs6xMYg4/TFKuu9bndi2pOW8G9D3L2njq/vcHJKJvX7FnZEjG/cZNAgAtx3gOAEDnwJgOtL28DCM436V7rM/3zcz58NRkGXJoul7f/Gumz5I24ZZwd/Z7TWmbX+uWtVE15F0zZ3yVtsl2Zc6nxXtkzuuT9Z85b2bZZxSW62bSAIKn0emuf/zxh/z973+X448/XqKiouTggw/WtevUel5enqxfv17WrVsnBx10kDz22GNy0kknte6ZA2g12c88K+Xr1unpcz0eecRn1nxLa86bAX1/ZW2scXHS47FHZces86Vw3jyJO/YYSZwxo8nHAeCN8RwAgM6BMR1oe7n7XcH5bnWbvCr2XCM4b+vaVYb0SZfV3+6WHatzpLLcLhGu39FFVUXukjYq4K6o0jb5H3zoXXe+VlkbRQXnl2csdwfnq6odklNcqdfTExpfc75borFtaWW1FFXYm1W6FkArZ87v2bNH/vGPf8j+/fvlueeek8GDB0tOTo5s3mx0hT7//PNlxYoVsmzZMgZ9oAMrW7tODrz2ml7v9sD9Ep5u3N2vPzjf/Jrzha59+KJqzadcc41ez7jvfqnKymrycQB4YzwHAKBzYEwH2pbKMM/LMJrBJvvLnM8zst2tSUmS2ideElOjxV7lkB2/57i3Kaoscpe0MZl158vXrxdHSUmtsjZG5rxiZs5vztvsVZbGZgmT5JgI78x5VdbGT1Z8TIRNEqON3/UZBdSdB4Kp0emu48ePl4yMDElNTZXbb79dT53r2rVr654dgKBfXGTcc4+IwyEJM2ZIwrRp9W5v1otvTua8eSe+sMx35rwp5Zqrpfi776R87VrJeuQR6fnEE00+FoAajOcAAHQOjOlA2yotqJTKMruoZPekNN+Z82b/NDUrXWXFDz4kXX6dv0M2/5olQw7t5lXWJi6iJjgf3rOnhPfoIVX79knpb6sk7qgj65S1UWqXtclyBedVg1eLxcjCl8TeImEWEXu5SFGGSEJ3n+faPTFKCsqqZH9BuQxJ911DH0AbZs4nJSXJtm1Gg4kdO3aIw+FohdMB0JbUxUL6XX+V6IMPlvQ7/9Lg9vmlRmC9i3lHvlllbez1n1N4uHS//z4Rq1WvO6vqD+YDqB/jOQAAnQNjOtC28rOMrPn4lGixhtcNrzkqK3UfNzM4rwyeYMxM37XugJSXVNUpa+PJXXf+1+V+y9oMTBooYRImB8oPSE5ZjmQUlHmXtNEHDxdJ6mOs525tsLSNuQ8AwdHodNczzzxTjj76aOnevbsO4E2YMEGsVqvPbc0LBAAdT8xBB0m/d95u1LZ5pUYtu6SYlpS1aTjYHjVihAz8cr5E9HFdUABoNsZzAAA6B8Z0oG0VHTDKvySmeATCPThcWfMqtd4SbwTek3vESteecXJgb7Fs+y1bRhzVw505Hx/uHZyPnjBBCv77mZT++qvfsjbRtmjpk9BHdhbu1KVt9uUb2fg9kmqdU9dBRkPYA1tE+h3lN3NeUZnzANphcP7ll1+WM844Q7Zs2SI33XSTXHnllRLv+o8LgI7Pnpcnti41d+AbUlZZLRV2IzunS2xEs8vaNJQ5byIwDwQG4zkAAJ0DYzrQtgpdwfn4rtE+368uLNRLS0KChFlqMusHH5Kmg/NbV2bp4Ly75rxHWRsl9pBD9LJ89e/iKC8XiztzviY4b5a2UcF5Vdpmf4GRod89MbpucH7Lt0Zw3o9uCcZnqDkPBFeTCkWfcMIJeqmaytx8880M/EAnUfLTz7L72msl5eqr3A1YG5s1H24Nk9gI3xk69THr1DdUc762yj17JPvpf0nqzTdLRK+eTT4uAMZzAAA6C8Z0oO0UHTDKv8R3jaq/3nxCgtfrA8enyU+fbpM9G/J0aRuzrI1nQ1glvG9fsaamSHV2jpT9/rvEluXXKWujDO4yWL7Z+Y0OzucXjPbKgvcKzisH/Je1IXMeaOc15z29/vrrDPpAJ+GsrpbMRx7RtfDsWdmN/lxNSZsIPY22qRJcneCLKuxS7fDdMd6XjPvvl8LPP5dsGsMCLcZ4DgBA58CYDgRfYY4RxE5oKDjvqjdvSkqP0eVtHA6n7FyT4y5rkxDhHcRXv7NjJph153/1WdbGsymsKmuzP9+4YdAjqXbm/EBjWV/mvLvmPMF5oN0H5wF0HgWffCIVGzboGngpN97Q6M/VNINter15z8x5pbiRpW2UtFtu0TX7CufPl7LVq5t1bAAAAAAAAlFz3m9ZGz+Z88rA8al6ufW3bHdwvnZZGyXGVdqm7JdfRFzbSWyKz+D81vytsr+gpP7M+dztIo7qBjLnaQgLBBPBeSCEVReXSNZTT+v1lOuva1LNec/M+eaItFklxlUOJ7/M2FdjRA0fLokzZ+r1zEceFaez8Vn3AAAAAAC0lKPaIcX5FfVmzpsNYa1J3pnzyoDxaXq5a32uFJeV+ixro7gz51etEqdq+WYJF4n0Dvb3jOspMbYYqXRUSnbFHt815xN6iVgjRRxVIvm76s2cLyy3S0lF4xPoALQMwXkghOW99aZU5+RIeN8+kjxrVtM+28LMeaVrnBHYzylufHBeSf3zzRIWHS1lv/0mRV9/0+zjAwAAAADQVCUFleJ0OMViDZOYBN8Ja9UFroawtcraKF17xkpiarRUVzkkfLeRJBcfUbc0VeSgQbosjrO8Qspzw0ViU/VMck+WMIsMTR5qPInYJzZLmKTGR3rvSDWkTR5Qb935+KhwiYs0ZrhnFFLaBggWgvNAiFJT7A7MeV2vp950k4RFNC0DPr/ECKh3aWbmvNI11rhgOFBsZBw0Vnh6unS99BK9nv3Mv3TdfAAAAAAAgqGkwPgNG5MYIWGWsAbK2tQNzqt68gMPMkrbJOzt6Tc4H2axSPQhruz57EiR2K4+jzWi6wjjWFF7JD0hSqy+zom680C7RHAeCFGlK1eKo7xcIgcPloQTT2zy583M+eaWtVFSXJnzB1yB/qZIvuQSnYFQuWWrFM7/stnnAAAAAABAU5TmG79hYxNrZah7qC4s9NkQ1jRgnFHapmt2X7E6bD5rznuWtinJijAy530YnjxcLy1R++rWm69dd76e4HxN3XmC80Cw1HRkBBBS4o85RgZ9tUDsB3L13fimynfVnG9JWZvk2IhmZc6bTXVSr79eqosKJe6YKc0+BwAAAAAAmpM5X29wviBfL62JdRvCKmn94iWuS6QU54n0yh8m8eF1M+eVmAmuprA5EeKMThFfefrDuxrBeWvUPukWFdny4Hw+TWGBYCE4D4Sw8B499KM5cksDUNYmLrJZNedNyRdd2OxjAwAAAADQsuC8/9/DjqJivbTE+w66q9I2/calyNrFe2VA7hi/mfNRw4eJJdImjgq7VOSHi6+8+AGJA8Qi4eKwVkh8nHFTwG9wPtd3zXmlm6uR7D4y54GgoawNEGLsOTlStnZdi/eT48p2r9Nopgm6xja/rE1tTqdTnA7Vvh4AAAAAgNZtCKvE1JM57yg2gvPWON9Bd6XH6Fi97Js7SmItxnptYVarRPc1su9Ld/sOmtssNomR3sZxI3bXH5zP3y1S5Xs/PdxlbcicB4KF4DwQYlQT2B1/+pNk/+tfLdpPdpERnE9xZb83h/nZ3JKml7XxVPzjj7Lz3POk4NP/tmg/AAAAAAA0pNTMnE+qJ3O+pEQvLfUE56N6OqU0vEiiqmMlc4sRzPclppdRTrZ02wG/21gqe+lliezyvUFsikikqn/vFMnb7nOTXl1i9HJPHsF5IFgIzgMhpDo/X/L+/W+9Hj12bLP343A45YCrFE2LMufNhrDNLGtjqvjjDylbvVoOvPoq2fMAAAAAgFZVkt9w5ny1GZyP9Z0RrxTbi2V78u96fetv2X63i0kzjle6Ya+eNe5LaXF3vcyu9FO2JixMpOtAYz1nk89NenUxytrsySv1exwAgUVwHgghue+8I87SUokcNkxiJ09u9n7yy6rE7nB6Bdibo2tsy2rOm5LOPVcsCQlSuW2bFH37bYv2BQAAAABAfUoL628IqwLbZlmb+jLni6uKZVvyKr2+fVW2ToTzJTquUMKsDqkuKpHKrXWD75V2hxQWpOv1ncWb/AfWU4cay+yNPt/unhSlY/jlVY6AlJ8F0DCC80CIUFPq8t58S693vfIK3XympSVtusSES7i1+f8ZSXEF9lVZm2o/FyGNoWr4dTl/ll4/8NLL3OEHAAAAALQKR7VDyoqq9HpMgu9kNWd5uUh1tV63xPoPzhdVFsn+hC1SFV6u97l/s49mrk6nhJXnSHRX45ily5fX2WRffplUl6eJ02mVkqpi2VO0x/cBU4cZy+wNPt+OtFklPd6oO09pGyA4CM4DISLvgw+kuqBAwvv2kYQTTmjzZrBKcmyEviuv4vK5Lbwrn3zhhRIWFSXl69ZJydKlLdoXAAAAAAC+lJfYjZUwkag4oxZ8bWbWvPrBa4kxSsX4y5x3WBxS1HOffr51ZVbdjSpLROxlEpNm/A4v+fmXOpvszitVbWElvLqHfr4+d30DwXnfmfO1S9sAaH0E54EQ4KislNzX5+r1rpdfrru9t3UzWMVmtbhL22QVlbdsX8nJknTWWXr9wMuvtGhfAAAAAAD4UlZkJJZFxYSLxRJWfzPY2FgJs1jqzZxXKvrk6OXWVdnirD2rvNR4L9aIu0vpTz/V6bW2O9fIcu9iHaCX6w+sr7+sjao5X+26yeA3OE/mPBAMBOeBEKBqsTurq8WWliaJM2e2eH+Bypz33IcZ8G+JrpdeImKzSenPP0vZmrUt3h8AAAAAAJ7Kio3yMtHxvrPmlerihpvBegbnbb0rJCLaJqUFlZKxrcB7oxIjOB/dJ0ksMTFSnZ8vFRu9M9935RpZ7j1jBtUfnE/qK2KLFqmuFMnb4XOTXl1i9JLMeSA4CM4DISBq2DAZtGih9H71FbFENL+Ba6Az5wMdnA/v0UNSb7xRej7xT4ka7pquBwAAAABAoDPn/ZS0URrTDNYzOB8fHSf9xnTV61tXZntvVGyUuglLSJPoQybo9ZKly3yUtREZljxCL9cdWCcOp3d2vXFCFpHUIcZ69h8+z4nMeSC4CM4DIUIF5aOGuAbhFsoOYOZ8mmsfWQEIzispV18lCSedJGE2W0D2BwAAAACAqdydOe8/8c1RYgbn68+cL6ws1MuEiAQZOD5Nr2/9LUucTo/SNsUZxjK+m8QefrheLfnpJ6/97HFlzo9LHyGR1kgd9N9R6DszXlKH19sUtiZznuA8EAwE54FOrvS333RJm0Bqr5nztXld0AAAAAAAEKiyNo3InLfG1p85X1hRE5zvMyJZbJFWKc6rkKwdRka9VpRpLOPS3cH50l9/FWelkcGv7HYF0vt1jZeRXUfq9TXZa+qvO++nKaxnQ1h+UwOtj+A80IlVbN8uO8+bJdtOmiGO0sDVizMD6QGpOe8K8JvZ+IFqgJvzyiuyfebpAf3eAAAAAIDQVu4qa1Nf5ny12RC2gbI27sz5yASxRVil32hXaZvfjFI2tTPnIwcPFmtysjjLyqRs9Wr9ckmFXXJLjHPqnRwjo1NG6/Xfs3/3fdBUVwnYLN+Z892ToiQsTKS8yiEHXPsF0HoIzgOdWN5bb+tlRP/+unFMoOQUV3oF1lsiLcEVnC8MXHA+zGqV/A8+1E1yCv7734DtFwAAAAAQ2szM+fprzjcxOB+RoJfu0jYrPUrbeGTOh1ksEnvYYfppybKfvOrNJ8WES0JUuIxJHaOf/57jJzif5grO52wScdSdZR9ps0p6fJRep7QN0PoIzgOdVHVBgeR/8oleT77k4sDt1+GU3BJXWZt6MgXaMnNeBeeTL7xQr+e+8aY4HT4a4QAAAAAA0ERlrmS16PhGNISNjW1UQ1gzON9nZLLYwi1SmFMuOXuMfUjRfmMZ300vYg43g/NGU9jduUYAvberVrwZnN+Ut0lKq3zMJE/qK2KLEqmuEMnbUW9pm92uWvYAWg/BeaCTyv/gAz3VLXLoUImZODFg+1XT5RxOEUuYSNfYQGTOR7VKzfnE00/XWQqVO3ZIyfffB3TfAAAAAIDQVFZk1pyPaDg438iGsPER8XoZEWWTPiNdpW1WukrbFNdkzitm3fmyNWukurjEHUDvnWwE1LvFdpO0mDRxOB2y/sD6uge1WEVSBtfbFFaVx1F2EZwHWh3BeaATctrtkvvOu3o9+aKLJEwVjAsQM4ieHBshVhWhbyGzbn1xhV1KK+0SKNa4WEk66yx39jwAAAAAAC1VUeIqaxNbT+Z8iashbD1lbewOu5RUlbhrzpsGHpSql1tXZouz2i5SnOWVOR/Rq5eE9+4tYrdL6a/L3WVtzMx5ZUxKA6VtUocbyywfwXvdWNa4qbDzgHF+AFoPwXmgEyr+7jux798v1qQkSTh5RkD3neMqP5MSgHrzSmyEVaLDra2SPd/l/PNFdbIpWbpUZ9ADAAAAANASFaVGUllkjK3hhrCxcQ2WtPHMnFf6jU4Riy1M8jNLJXfbPhGnqgsfJhJr1KNX3HXnly51l7Xp5cp2V9x15/01hU0faSwz1/l8u1+Ksa8dOWTOA62N4DzQCRX/8INeJv3pTLFEBiaIbjID6GbGe0uprH6zKWxWgIPzEb16StzkyXo979/vB3TfAAAAAIDQUl3lEHuV0dMsMrZlDWHNkjYxthgJt9TsKyLaJn1GGKVttvyy13gxNkXEWnMzIPbII/Sy5IcfZVeucazerjrxtYPz7saynrqNNpYZa+rNnN9B5jzQ6gjOA51Qt7vvlr7vvitdLrgg4Ps2G7eajVwDwd0UNsDBeUX9GySedpokzDgp4PsGAAAAAISO8lKjpI2qHBsRacwAb27NeXczWI+SNqbBE4ws+U1rSkXH1uOMkjYmXXfeYpHKbdukdNce/dqAlJobASO6jhBrmFWyy7Ils9RVs95XcP7AVpHKEr/BeZVAV1IRuPKzAOoiOA90QiobPeag8RLezXsAD4QcVwA9JUCZ855Z+K0RnI+bdJT0ePQRiR7tuvgAAAAAAKAFJW0iYmwSVk8PNjM4b431H5wvrDAy5xMi6gbn+41JEVu4RQrzwyTLPkgk3mgGa7ImJkr0uHF6fey+9RJuDZOeHpnz0bZoGdJliF5fnb267sHj0lwNZp0imXXrzifGhEuXGCObf+cBStsArYngPNCJOCordbf21tQamfNpruB8VlF5wPYJAAAAAEDr1Jv3X9JGqXY1hG1MWRvPevOmiCib9B+botc3l02qkzmvxE2epJcTMjdI366xYq11s8AsbbMqa5XvE3CXtvFdl75fCqVtgGAgOA90IoVfzJMtkydLzgsvtNoxzIawgao539qZ86byjRtl/z33Stla3w1vAAAAAACoT4WrrE1UPc1gFUdJaaOD874y55XBhxjZ8lvKjxSHznL3FjvJCM6Pzd4ig5Ii6rx/cPrBerkic4XvE2hk3fntOQTngdZEcB7oRPLee08cpaVejWICzQygp8R1rOD8gddek/z335e8d99ttWMAAAAAAEIhc97/b25ndbU4S1senFdNYSNtFVLi6Cr7SwfWeT9q+HApi0uS6OpKmVC4s877B6UdpJcb8zZKcaWRyd+c4PxOMueBVkVwHugkytaskfI1ayQsPFySzjyj1Y6TWWgE0NMSAlnWJsrdbKa1dDnvPL0snDdPqvPzW+04AAAAAIDOqbykqsGyNo6SmmC2pb6a82Zw3kdDWMUabpEBCWv1+qbddTPnwywW2dJvlF4fvKNugD09Nl16xfUSh9Mhq7J9lLbpZpS9kcx1Io7qOm/3S4nRyx051JwHWhPBeaCTyHvv33oZf8IJYuvatVWOUVheJQVlxsVIz6SaZjMdIXNeNcuJHD5cnBUVkv/Jp612HAAAAABA6GbOm81gVeKcJaJuuZnGNIQ1DY5crJdbN1ul2u6o8/5PKUbT167rVvr8/EHpRvb8ykwf7ycPEAmPEbGXieRu85s5T815oHURnAc6geriYimcP1+vdznv3FY7zp7cMr1Mjo2Q2EhbwIPzB0oqpdrhlNYQFhYmXc41/m3y//MfcTpb5zgAAAAAgM5dc76+zHn1+7yhkjaNKWsjVWXS07FMYiy5UlHulN3rc73errQ75NvYflItYWLdvUOq9u6ts4sJ6RP81523WEXSRvhtCmsG59UM95IK46YEgMAjOA90AoVffinO8nKJ6N9fosePb7Xj7MkzprP16hK4rHmla2yEhIWJDsznllRKa0mYMUPCYmKkcvt2KVvhpykOAAAAAADNzZx3lbVpbHA+PiLezwb7xBLmkEExv+inm5Zner29K7dUCsNjZFNKP/28aMkSv5nza3LWSEV1RZPqzifGhOvEPIWmsEDrITgPdAIFrjItqta8yhBvLXvyjMz53l2M2nOBYrNapGuskT2fWVgurcUaFysJJ52o1/M/+LDVjgMAAAAACNWyNo0MzrvK2iRGJvreoGCPXgxJ3ayX21dlS2VZTQa7GTDfNthI0CteuKjOLvrE95GU6BSpclTJmuw1/oPz+1f7PIVBqcZ32Jrto6EsgIAgOA90Aj0efURSrrtOEk49tVWPs7uVMueV3snGPnfntm6zmS5/+pPYUlMlol/fVj0OAAAAACD0yto4SoxAtrWeZrBKfkW+XiZFJvneoNAoU5PWzSFdusWIvcohW1Zmud/enmMcp+CgI/SyZPlyqS4q8tqFSt47KM1Vdz7LR935nsZ7sneliI/SrwPTjOD85kyC80BrITgPdAIRvXtL6k03SnhaWqsex8ycb5XgvCsb37wB0Fqixo6VQYsXScq117bqcQAAAAAAnTRzPrbhhrANZc7nlefpZZeoLr43KDCC82GJvWToYd30+safMtxvb8kyjtNl2GBd4laqqqT4f/+rs5uD0w/Wy+UZy+seI32UiDVSpDzfZ1PYwWZwPss76A8gcAjOA2g0M6u9V3Jgy9p4Zs6runmtSWUOhNkC18wWAAAAABAaKkqMzPmoxjSErSdzvrSqVMqrjZKuyVHJvjcqNMraSGJPGTqxu+7Ttm9zvhRkG7+ZN7my2Yekx0n81OP8lrY5rPthevlb1m91685bw0W6jzXW99btyzY43QzOkzkPtBaC80AHVvz997L72uuk+PsfWv1YTqdT9rprzgc+c76PK+C/O9c4Rmtz2u26YU7Ftu1BOR4AAAAAoGMLVEPYvAojaz7CEiExtph6M+cloafEdYmU3sONIP6GnzL073Mzc35IerzEHXusXleZ887KSq/d9E/sL6nRqTowvyprVd3j9DzYf3A+zWhWu/NAqVTaHX6/D4AOHpx/7rnnpF+/fhIVFSUTJ06UX34xOlE35N///rfOgp05c2arnyPQHqmmpsWLF0vJD9+3+rEKy+xSVGFciPRMimm9sjatnDlvyvj732XPNddK7ptvBOV4QChgPAcAoHNgTAfqqq5y6LrvjW8IG9uokjbqfzP11ZxXmfPK0MNrStuoxLniCrvYLGHSr2usRI8dK9aUFF1SR9We96T2b2bP/7z/5yYF59MTIiUu0ibVDqfsOGB8LwCdLDj//vvvy+zZs+Wee+6RlStXytixY2X69OmSlVXT5MKXHTt2yG233SaTJk0K2rkC7Yk9L0+KFi/W64lnnNHqxzNrwafERUp0hDXg++/typxXde0djrqNaAIt4YQT9LLwi3niKA3ODQGgM2M8BwCgc2BMB3wrdzWDlTCRiKiGa85b68mczy3Prb+kjWrOmr/bWE/srRcDxqZKRJRVig6Uy6qVRu35/imxEmGzSJjFIvHHTPFb2mZi94l6+dP+n/w3hd3/u4i9sk5gfxBNYYHOHZx/4okn5Morr5RLL71URowYIS+++KLExMTInDlz/H6murpazj//fLnvvvtkwIABQT1foL0o/Pxz3fAlauRIiRo6tNWPt8cVnG+NZrBK98QosVrCpLLaIZlFRu291hRz6KES3qePvnAqXPBVqx8P6OwYzwEA6BwY04EGStpE2yTMElZPWRuz5nxc85vBluWJVLqasCb10QtbhFUGHZKu13etyHaXtDGZpW2KFi0Sp8PhMzi/7sA6Kaws9D5W8gCRqCQRVY8+a12dU6EpLNCJg/OVlZWyYsUKmTp1as0JWSz6+bJly/x+7v7775e0tDS5/PLLGzxGRUWFFBYWej2Ajk7Vl8v/6GO9nnjG6UE5pspob83gvM1qkZ5J0UGrO68yC5LOPFOv53/4YasfD+jMgjGeK4zpAAC0Ln6jA/5VlhvB+Yho/1nzXg1h41oQnM9z9UaL6yYSXvMbfPjh3Y1j7CyRCKd3cD72iCN0E1p7RoaUrV7ttbtusd2kX0I/cTgdsjzDu+yN7jRbX915msICnTc4n5OTo++wp6cbd/5M6nlGhjFFp7YffvhBXnvtNXnllVcadYyHH35YEhMT3Y/evY3pQEBHVr5+vVRs3Chh4eGSOGNGUI5p1oI3y8/UqzRXZMu3Iivmiqx8U2THDyKVDden651sBueDU2Ym8fSZIlarlK1cKRVbtgTlmEBnFIzxXGFMBwCgdfEbHfCvqqxaL+sraaM4SozfsypQ3uyyNnk7jWWXfl4vp/dPkC7dY8XiEBlRaZUhrsC5Pl5kZE32/IIFdXZpZs/XX3d+ZZ23zLI2WyhrA3TOsjZNUVRUJBdeeKEe9FNSUhr1mTvvvFMKCgrcj927XTW7gA6s4ONP9DL++KliTUpqP5nzu38RefcckX8MEnn7TJHPbxb57EaRuTOM1z65RiTHfxC8jyvwvytIwfnwtDSJm2LU5TNnIgBon+O5wpgOAED7wm90hJLKCjNzvv4ebGbN+foawjYcnN9hLLv0rVMDfsRRPfT62AqbO3BuSjjxRL1UpVtrl7Y5vPvherlsn49ZML0mGMs9y32UtTGy87flFEul3XufAFqu/tt9rUwN3larVTIzM71eV8+7dTO6UHvaunWrbjJzyimnuF9zuP5jY7PZZOPGjTJw4ECvz0RGRuoH0JlEjRqla80nnt76jWDrBud9ZM6X5Yt8+f9Efn+/5rXkgSIpg0UcdpGsP4xO86vfE/n9PyJH/Vnk6L+oonleuzH3bTafDYakM8+Q4oULpWLjhqAdE+hsgjGeK4zpAAC0Ln6jA/5VujLnwyMbyJxvREPYvApXWZtIP2Vt8n1nzivxwxKlSpyS5rBITJFdxGOiS+xRR+pyOvbMTClbtUpiDnI1exWRQ7sfKtYwq+wo3CG7i3ZL73iPWSs9XcH5nE3GTPiYmpsGKkEvPsomReV22ZJVLCN6JNT7/QF0oMz5iIgIOfjgg2XhwoVeA7l6fvjhxh09T8OGDZM1a9bIqlWr3I9TTz1VjjnmGL3OdDiEiqTTZ0r/jz7UA2+watybAfPetTPnczaLvDTZCMyHWUTGXyBy/S8iN60UmfW+yAUfidyyTuTyb0QGTxNxVot8/08jm77kgM/M+WCVtVHiJk2Sfh9+KL1fey1oxwQ6G8ZzAAA6B8Z0oDE15xubOd+SmvOuzPkk78x5ZUdhmWwMN24UbPhxv9d7logIiT/uOL1e+KV3aZv4iHgZnzZer/+w9wfvncZ2FUkZaqzvWlYnW394dyMg/8d+ekQAna6szezZs/UUuDfeeEP++OMPufbaa6WkpER3hlcuuugiPe1NiYqKklGjRnk9kpKSJD4+Xq+rCwkglKhBMhjySquktNIY/Hu4mra6y9i8drxxV191kL/sK5HTnhNJHVr7REV6Hypy/gciZ70hEpUossf1WfOiw6OefTAawrpPLTxcokeNDNq/JdBZMZ4DANA5MKYDvlWZwfl6as6rxLbqkpIGg/PNrTmvrNtXKKsjjd/nW37NkorSKq/34088wV13vnZpm0m9Junl93u+r3vMvq4bcDuX1nlrhCs4v57gPNC5ytoo55xzjmRnZ8vdd9+tG8yMGzdOFixY4G5As2vXLt0dHoBIVWamFC9eIgkzThJrfE1X9tZmZrKnxUdKVLgrS2DfbyJvnSFSWWQ0j5n1H5HYRtSZHDlTJG24UZM+d6vIG6cYQf2EHu7M+YzCcimvqq45VpA4zIuoehr3APCN8RwAgM6BMR2ov6xNRJT/36nOykoRu73B35X1Zs47qkUKdvusOa+s21cg+6wOCUsMF3tBlWz8OUPGHFMzSyXuiCPEEh8v9uxsKVu5UmImuErWiMhRPY+SJ1c8Kb9k/CLl9nKJskXV7LjPESIr5tbJnPcKzu8jOA90uuC8csMNN+iHL0uWLKn3s3Pnzm2lswLan4JPPpXsp56Soq+/kj5z5gS93ryZ2a5L2ajgugrM95tklK+JaEJAW2XWqzI3c08Syd0m8tbpIpd+KV1iukhshFVKKqtlb36ZDEz1n2kQaDkvviQ5L78saTffJMkXXxy04wKdCeM5AACdA2M6UF9ZG1uDJW0US4yPfm0iUlFdIaX2Uv/BedWvTfVus0aIxHf3mTkvYSpHLlX2LNwn677fJ6On9HLPBg9TpW2mTpWCTz6RwvnzvYLzg5MGS3pMumSWZsryjOXuTHqvzPn9q0UqS7x+45t15v/IKNSzA5h5DgQOt7uBDkINgPmffKzXE06uabgUDHtc9eZVIxgpLxB571yR0gMiPcaLnPde0wLzpoTuIhd+alxsZG8Q+ehyCXM63DcAdgWx7rxiSYgXZ2mp5H/yaVCPCwAAAABo/yrLzcz5hoPzKms+zM8MEzNr3maxSXy4jxnxuduNZWJvEYt3ln5BaZU7ee6IY/uKLcIiuftKZO+mfK/tEk6eoZeF8+Yb2fwuKqjuLm2zt1ZpG1WqNqGXcWNgz69ebw1KixObJUzyS6tkf0G53+8PoOkIzgMdRNmKFVK1c5e++54wfVpQj709xyj30qdLlMgn14gc2GIM2rM+EIlsQXkdNUXv/A9FwmNEti4SWfR3d2mbXQeCG5xPPOkkXX++YsMGKV+/PqjHBgAAAAB0jJrz4fWUtaluRDPY7NJsvUyJTvGdga5+bytdB9V5a93+AnfiXGrXaBl2mJFZv3qhqwyOS+xhh4ktLU2qCwqk+H//83pvUs+auvMqCdCLmT1fq7SNKjlrzmynKSwQWATngQ4i/+NP3M1dgl0TfVNmkV6elP+uyMb5ItZIkXPeEolLbfnOu40SOfUZY/2HJ2S6ZbnXDYFgsSYlSdzU47z+rQEAAAAAaHzmfMPNYLNKs/QyLTrN9wYHthrLlMF13jJrvo90lZkZc2wvvdyxJkcKsmsS3MKsVkk45WS9XvDf/3rt47Duh0m4JVz2FO+RbQXbvA/Q5zD/TWFdx6TuPBBYBOeBDkA1Ki1csECvJ51xRlCPre6kb84slrFhW2TYhueMF2f8U6TnQYE7yOg/iRxu1LQ8eefDkiZ5QQ/OK0mnn66XhZ9/Lg6PqX8AAAAAgNDmrjlfT+a8+u2uWOL8J9RllbmC8zH+gvNm5vxA3/XmdXA+US+7dIuVPiOTRZwiaxbv9do28bTT9LJoyXdizzNK6Sgx4TEysftEvb5w10LvA6imsMqe5SLVVT6bwprnACAwCM4DHUDhgq90PfSIvn0l+qAABsUbIaOwXKoqSuTJiBckzFktMupMkYMuDPyBjrtHpPtYiawqkMfDX5Tt2TWNdIIl9sgja6b+La6/0RUAAAAAIHRUljWiIWyJ8TvWWs9sdzNzPjXGz0z0esrarN1b4JU5r4w5trderl+6z32OStSQIRI5YrhIVZUUfvml136O63Oc7+B86jCR6GSRqlKRvSu83hrV07ghsMZ1DgACg+A80AFU7tghYrFI4hlnBL0r+qbMYrnT9q4MCNtvNG896fHWOZAtQuSMV8Rpi5LJ1jVyTOGnUmE3pg0Gi5r6Z2YXFHxsNN8FAAAAAMAsa1NvzfkioySsJS6+4bI2vjLn7ZUieTt8BufLKqtlqyuJzcycV/oMT5ak9BipKq+WP5bt9/pM4qmn+ixtM6X3FAmTMFl/YL3sL/b4jGpiO+BoY33rYq/PjO6VKCocsTe/TLKKaAoLBArBeaADSLt1tgxavFi6nHN20I9dvP5budj2jfHktOdEYpJb72CpQ0WOv1+v3mH7t+zfsVGCLenMMyTlxhuk293/F/RjAwAAAADae1mbejLnC13B+fiGG8L6DM7n7xRRM9bDY43kOA9r9xWIwymSGh8p6QmR7tfDLGEy1lV7/vfFe8ShNnJJnDFDxGqV8tW/S8W2mvryqhnt+LTxen3R7kXe5zDgGGO5zXs2eVykTQanGd/r991kzwOBQnAe6CDC09N009KgqiqTiesf0Kuruv1JZJAx9a01hR1ypay1jZKYsAqJ+eb/qaL3EkwR/fpJ6vXXS3jPnkE9LgAAAACgfaqucojD7my4rE2xEZy3NiJzPjU6tf5687Vmzf+2y6gbP753Up0Z9UMP6y6RMTYpzC6Tbb8ZwX/FlpoqcZMn6/X8Dz70+syxfY7Vy0W7agfnp9TUnS/3ri8/ppcRk1i9J9/v9wPQNATngXbMWV0tVfv2td0JfP9PSancKxnOLpJ5yF+Cc0yLRb7sf6dUOG2Slvm9yNqPgnNcAAAAAAB8qKyoqeUeHllfWRuj7IwlPr7BhrDpMelNqje/arcREB/fp0ud99Q5jZ5iZM+v/GqnOD2S3JLOPksvCz75RByVlXXqzq/IXCF55TUNY6VLX5HkAUYG/84fvY4ztneS17kAaDmC80A7VrJ0qWw5bqrsnX1r8A+etUGcPzylV++pulgG9u4WtEOn9R8lz9pnGk++vEOkNFeCrWjRItl19dVStmZN0I8NAAAAAGg/KsuMevO2SKtYLP77wDlcNeetfsralNnLpKiyyH9D2GxXadeUwXXe+m2XERAf5wqQ1zbm2F5iC7dI9q4i2fNHTbA9btIksXXrJtX5+VL0tatkrYj0iu8lw5KHSbWzum5jWDN7vlZpm3GuzPnf9xR43QAA0HwE54F2LF81JXU6xZrcinXefXE4RL64RcIcVfJN9UGyKOxQ6dvVf7f5QBvRI0FerD5VtoX1FinNEVl4nwRb4ZcLpOS7/0n+R2TuAwAAAEAoq6k37z9rXqkurr8hrFlvPtoWLXHhPgL4WX8Yy9RhXi9nFJTL/oJyUfcFxvSqaQbrKTouQkYc1UOvr/hqp/v1MJtNks48U6/n/+c/Xp85od8Jevnl9i99152v1RR2aLd4ibBZpKCsSnYeKPV5HgCahuA80E6pu9rF3y50NykNqtXviexaKtXWaLm36mIZkBIv4dbg/ediWLd4qRKb3FF+qfHCijdE9q2SYEo63cjcL5w3XxwVFUE9NgAAAACg/ahqRDNYxWGWtUmIr7fevGoGW7tuvO63lr3BWE8b4fXWqt1GJvyQ9HiJjfR/DuOO76Mz+/duzJPM7TX14pP+dKYuIVv6yy9SsX27+/UT+5+ol8szlrvPTes/SXWaFcnZKFJYU2pXBeZHdE9wnROlbYBAIDgPtFMFX8wTZ1WVRA4fLlHDhwfvwKrhy7f36tVf+l0leyVVBqf77zTfGuKjwqVPcowsdw6T7H6nqKsUkS+D2xw25rDDxNaju56WWPTtt0E7LgAAAACgfZa1aTBzvsgIiFv91JyvtxlswW6RymIRS7jRENbDb/XUm/cUnxwlQw41atmvWLDD/Xp49+41jWH/84H79R5xPWRc6jhxilMWbF9Qs6PoLiI9DjLWt3j/Hh7fxyhts2KnR516AM1GcB5op/I/NsqpJJ0R5Kz57/8pUpIlkjxQPo5QgXGRoen+m9m0FvNu/Dc9bxAJjxXZ/bPI7+8H7fhhFoskzTSy5ws+/iRoxwUAoD2osFfLpswiWfhHpvx31V759y+79HLxhiz9elW1o61PEQCA4Je1iW5k5nxcA8F5X/XmszbU1Ju3hvusNz/eT715T+On9xUJE9m+OkcO7DXOR0k652y9LPj4Y3GUldXJnq9T2mbIdGO50SNoLyKH9DPK7i7fEfzecEBnVP9/VQC0ifING6Ri/R8SFh4uCSfPCN6Bc7eJ/PS8sT79QdnwtVHOZXAbBOeHd0+QBesy5Ne8KJk1+Taj7vw3d4sMPUkkygjct7bE00+XnOdf0I15q/bv19kGAAB0aNVVIvt+E8lYI5KzWaRov0hliTjtFZJXHSl7yiJkdUmy/FSYLCurB8l+6epzNxFWiwzrHi+TB6fKMcNS5aA+XepOzwcAoJOoLDcz5xsKztffEHZfiVEipkesURveS7bvevPqhvlqV+b8QX0bDs4nd4+VgeNTZevKbFn+xXY54erR+nWVOR/eq5dU7dkjBZ9/Ll3ONoL10/pNk8eWPyZrD6yVXYW7pE9Cn5rg/OIHRbYtVnV9RMKjvILzGzOLdO35xGjvGwkAmobMeaAdKvj0v3oZd9xxYutS/7S1gPr6/0SqK3XzF8eg6bI5y7iwGBLksjZmU1hl/b5CkcOv15n8Upwp8r/HgnYOEb17S8whh+hyOgX/Nf4mAAB0OFVlIms+FHn3XJFH+4m8drzIvNkiP78gsv5TkS3fSNiO/0ny7m9kTM48ubDsLXku/GlZFnWjLI25VV7q+m+5ql+2HDEgWc9si4u0SWW1Q37fUyDPLt4iZ76wTI55fIk8t3iL5JVUtvW3BQCgTRrCOqurxVFqNEm1+Clrs6/YFZyP6+G/GWytevNqvK2wOyQlLkIGpjbut/khJ/fX2fNbf8uW7N3G7/owq1W6nH++Xs976y1xusrGpkSnyMTuE/X6/O3za3bSbYxIfA+RqlKRHd+7X06Nj5T+KbG66uyKnWTPAy1F5jzQDqXeeINEDh4sEQP6B++g274T2fCFGrFFTnhYdueXSXmVQzd86ds1VtoqOL81u1gqJVwiTnhE5N2zRH56QWT8RSKpQ4KWPe+orJCIfv2CcjwAAJpL/cjeWbhTlmcul425G2VH7ibZl7tJiiuLpCxMJNwpEp2eIKnOREkPT5ToyiQpykkWa2mqSHWMpIRXyoQ0p4yMypbuFdslPHut9HDslx4ln8n0ks9EuvQTmXiNOMedL3tKbfLL9lxZsilbFv2RKTsOlMo/vtqoA/QXHtZXrpo8QLrGRbb1PwkAAAFR5cqcD6+nrI2juKaEjDXOdxB9b/FevewV16ue4Lx3zzk13iqH9k9u9Cy1rj3iZPCEdNm8PFN++Xy7zLhujH496cwzJPuZZ6Ri8xYpXbZMYo84wl3aZum+pTJv2zy5eszVxnHUQ2XPr3hdZOOXIoOPd+//kH5dZHtOiSzfkSfHDjNq3ANoHoLzQDtkiY3Vg2bQVNtFFtxprE+4TF8MbFqfqZ8OSo0TqyX409R7JEZJQpRNCsvtOoN/5JBpIkNOENm0QOTru0TOr2li05oST58pSWecHpRjAQDQHCoQP2/7PPlq+1fu6fJerMZk2XIRKRKLqGq366RYJKJYpMce/V6vmGEyfPDxMqL/NOmb6LohXV4gsuNHkfX/NW7g5+0QWfAXCVv8kPQ+9ErpfeTNcubBvaSkwi7z1uyXuT/ukPX7C+Wl/22Td3/ZJbOPH6ID9TbX8QEA6Kgqy1yZ85H+M+erXfXmw6KiJCwiwudNdL+Z86rsnBmcT/fOnP/ZDM67ysk01iEz+smWXzNlx+85krmjUNL7JYg1IUGSTj9d8t55R3LffMsdnJ/aZ6o89PNDsqNwh6zOXi3j0sYZOxl6ohGc3/SVnlGuA/YqbNAvWf7z6x5Z7jo3AM3HlTIAkZVviGStE4lKEjnmr/ol1eytrUraKOpOvVdpG2X6Q0bn+s1fi2z6OmjnAQBAe+NwOuS7zd/IrXPPlgefPEO2vfuajPhhj5z8q1Mu+9Uuf11RLP9cnS9v5CbKR6NukS9nzpOHDnlTEnNvk7LdF0p5xskSVzVR0qN66/3tKd0gz69+Rk759BS5+MuL5bOtn0m5LVJk2EkiZ7wkcttmkZOfFOk6WKSi0Ggg//RYkWXPSazVIWdP6C3zbjpK5lwyQUb2SJCicrvc9/l6mfGvH9x1cgEA6MwNYR1Fxu9Wi5968/kV+VJqN8redI+r1c8se6NIdYVIZKJIl5oZ9PZqh6xwNV6dOMB3Hxh/unSLlSETu+l1lT3vfv0Co7RN8XffSeWOHXo9LiJOju9rZMZ/vPnjmp30nyxiixYp3COSudb9snmjQJXcKa8yZhUAaB6C80A7UpWZJdvOOENy33zTXf+t1ZXlG01eFBWYjzEG2T/2GxcWQ7oFvxmsaUT3RNe5GDcKpOtAkcOuMda/+quIPXh1basLCiTvvffEUVIStGMCAOCpuqhICubNkzW3XiPfTzlY0k65Sa54ZI3c+YFDrp/nkKsWOOSib6rlhG9Exn0dJb3nx0n0SwfEcdm/ZNefrpN1tz8v/Vfukd6VQ+XR46+XHy97Rb49Z74sOmuR3H343XJkzyPFGmaVlVkr5a4f7pITPjpBXl/7upRUlYhExBiz667/ReSct0VShoiU5Rnj8UuTRXb9rG9oq6ntn91wlDx4+ijpEhOum8Wd8cJSefrbzTrAAABAx24IW1/mvKsZbFz99eZTo1Ml0lqr9Nv+Vcay+xh3drqybl+hlFRW66arQ9Ob/ttcZc+HWcJk17oDsm+zcbM8sn9/iT16ss6EPzB3rnvbMwYbs/cX7FhgjP1KeLTIgCnG+oaaevR9u8bo2vOqB81vu7gJD7QEwXmgHVFNRyvW/yGFC74KXsb2d4+JlB4QSRlq/Oh2MQfYcb0b7gbfWoZ3Ny4+1u8vqHlx8u0isakiBzaLLH8laOey84ILJeO++6Xw62+CdkwAAFRzuaIlS2T3NdfKpsOPkH233ia2ed9JWqYqUiNSFR0u1n7dJLanQ+J7lUlC3wqJG9tXYiYcLBH9+4vYbOKsqJAuu7fKaVt/kL8uf1ue/+guOfjpv0n+22/pxIDUmFQ5a8hZ8uLUF+XrP30tN46/UbrHdpcD5QfkiRVPyLQPp8krv78i5fZyEYtFZPgpItcuEznlXyIxKSLZf4jMmS7yxWyR8kJdDu/8iX1l0a1TZMaY7lLtcMqT326Ss15aJvsLytr6nxQAgGaXtQmPstWb0KVYE40kM3/15n02g92/2lh2H+v18s/bD+jlIf2SxdKMcrOJqTEy4kgjS//Hj7a4kwC7Xna5XhZ8/InYs7P1+kFpB0m/hH5SZi+Tr3Z8VbOT4ScbS9VE3kXFK44YaGTyL92a0+TzAlCD4DzQTqhBsuBjY/pY0Gqc52wW+eUlY/2Eh0Ss4XpV/XDem1+mf1yP7dV2wXnPsjbumQRRiSLH3W2sL3lUpCQ4FwIJM07Sy4JPPgnK8QAAoc1ZWSm577wjW6dNlx3X3yJ7V+6UrKRRsnbwZPnyyBPlu3Oulf13vSUVV94uFWPSpWLCILGdMFG6vvCp9H5/gfR9+23Z9dRcmXXmY3L51DvkmSMuluITT9cN56W6Wkp//lkyH3pYthxzjA78Fy1cKM6qKkmLSZOrxlwl886YJw8c+YD+kV5YWSj/+u1fuuTNF9u+0CV1xGoTOfhikRuWi4y7QJ2xyK+vibw0SWTPr/o7dImNkGfPGy9PnztO4qNs+sb/Kc/8ID9vMwINAAB0uMz5esraVOcbCW7WpKR6M+d7xvWsJzjvqvXusnSrMWYeNqBp9eY9HXJyf7FFWiVrR6FsWaE6z4jEHHqIRI8bZ1xvvPGGO+A+c9DMuqVths0wystmrRfJ3uR++chBKXr5wxaC80BL0BAWaCfKflul672FRUdL/AknBuegX90l4rCLDJ4uMmiq++WVO42LimHd4iU2su3+MzE4LV7CrWG6Key+gnLpmRRtvDHufJFfXhHJ+F1k0d9FTnmq1c8l8bTTJPvpf0np/2fvLKCjuNow/Oxu3N2NBHd3d0qR4lKkQt2o00JpgRZK3Q2KtlihFCjF3S1AcJIQd/dk7T9zB0L5CxSKBLnPOXtm9o7sTLLJnfvd73vfffsoi4/HKlDV6JVIJBKJ5GZiNplIWLiSyCU7SNd4kx/4JCVVLtWYVQrhjalwMlWRoFMG+E+oG5SEvekZWNtto9RRx+7cAlx14FoljLdHDS7vR8sSEijYuFFU6hWHh1OwZYt4Wfj54j56NC4DBmBpZycG6L1Ce7H63GoRnE8pTGHc9nEsPLWQiS0mUsW1iiqH1/cbqDcYlj+rmsYqWfSKVF6rl9BodfSp70+DQFeemHeAUyn5DJ+xl/E9azCqZYj0dpFIJBLJXYH+gub81WRt/iU4fyFz/h/BeZMRUiL+kTlfajCy5/yEdpsqnv/52u2drWnYNUjozu9ZHkVoPU90llrcn3yChKefIfvXBbiPGSMy/vtU7sNX4V8JU9jonGhCXULB1lWVtolcr2bPt3v9kuC84i2TV6LHyUZN9pNIJNeHzJyXSO4QcpYtFUunbt3QOdjf+g+M3ABn14LWArqd15w/z8HYbLFsFOx63adVMtwVfbq0ojSRGRCfH09GcYYohb9eHX0rCy1hnqqZzrHEv0nbaHXQ48OLZrYXHmRuIZa+vti3aCHWc3+/WM4nkUgkEsnNoDC3lP0Lw5n/5FJWbHPkhHcP0r0aUmKjBuYLrHIwexcSUt+dms3dqe15iDp2f1LDbiOhIYX4VXHB3kXVry0tMkBqKS1KLOlfaE2n0wb2/3ySQ+tiyUkrwiogALdRowhZ8Cuhq//E7bFH0bm5YUhKPp9N35H0r74W2rk6rY5eYb1Y2XclLzR4ATsLOzFgH7RqEF+Hf02pYl53wTDuqe1Qq5868b9xEvwyAIpUE7sgdzuWPdOS3vX8MJjMvLvyBJNWncBkuk0eOxKJRCKR3BTN+f+eOX9FWZvMSNAXgaW96rN2noMx2ZToTXg5WlPV+/Ims9dK/c5B2DlbkZdRQsTWBNHm0L491tWqYSoqEtV6Ch62HrQNaCvWl5xZcvEEtc5X9x+/WEmuTPqHetijdOV7zmf4SySS60dmzkskdwBKZ5i/+i+x7tJfNWG5pRj1sOYtdb3pk+BR5ZLNh+L+PTivlLSfyT7DycyTYnk2+yxJhUkiEK9o1F0OG52NyBIIcAwgyCmI2u61qetZV7RdKXOuQZCLyLJTJgy61VKd5gXBLdUAwPFlsGYcjFp5iXHOrcC5Xz8Kd+0id/lyPJ57Fo2iuyuRSCQSyQ2QkZDPobWxRO5PxYwGdO5oTEac7AvZ7XmASIfj6F0LmNzxXWHYSl4SzOsHupPg6QxDF0BIK3GuglIDz889yPHTmfiatDzg64Z9npHc9GISz+SI1+5lUXhXcqJqU28qN/LGLjQU79dew/P550X/lvnzLPRxcWR88w3Z8+fj/uSTuA4fho21DWPqjhGB+g/2fsDm+M38cPQHoUn7fuv3RX+OrQsM+Bkqd4I/X4WoTfBTBxjyK3jXws7KQkjcKLJ10/46xaydMaTllfLJoHrYWF45E1EikUgkkoqm7HzmvOUNZM4riWuXzZy/IGnjU0dNRDvP1rOqFnzrKh43XGlmaa2jWe9QNs87xYHVMVRv4YuNvSXuT4wRfjbZc+biPmoUWnt7BlUbJPr55ZHLhQ+NnaUdVH8AVl6QtjkNntXKs+ejMwqFtE3Xv4/XJRLJNSOD8xLJHUDeunUiQG8ZFIRt48a3/gMPzIKM02DnXl6SdoESvZHjSWqWesOgS4PzmcWZbIzbyJ7kPexL2Udu6d+y2f8PnUanvrS68mB9ibGEqNwo8fo77jbuIuDQLqAdLf1a4mB1MStAMb5ZsC+e/TFq5t0ldJkEp1dDzHY4uQJq9uFW4ti5E1pHR/RJSULexr5581v6eRKJRCK5d8lMKhCB8thjFzLNNDjlRhPilI1pVBVei/lA9J/V3arzeYfZ6kA+6xzM6Q25ceDgAyOWiaC3Qk5RGSN/3sfRhFxsbLW8P7QBXWp6i2256UXEHssi5mg6CaeyST2XJ147l0QS1tCTOh0C8Ql1wnXIEFwGDiR/3TrSv/6Gsqgo0qZPJ2vuXDxffBHnPr3xsffhiw5fsCFugwjSx+TFMPKvkTxZ70nG1BmDhVKR1+BhtSx/4TBV5mZGZ+j7rci6U4ILT7ULw9fZhleXHOHPiGTSC0qZOaoxjrIcXiKRSCR3IGaTGf01Zc6fN4R1+achrN6kJyFfzViv5Fzp0o1Jh9Wlb91LmrefUbXc296ApM3fUQLyRzfFk5lYyN4V0bQbWg2n7t1J//JL9LFxZC9ajPujj4gxueI5o/TxK6JWMKT6EFXaJqwDnF0Hx5dD+zfKg/Pz9sSy46zUnZdI/isyOC+R3AFYBQfj2K0btnVq33rtVaW8fMsH6nqHt9Ust78RkZiL3mjG09GaAFdbivRFrIlZw1/n/hIBeWECdx57S3uR/V7VrSpVXasS6BiIp62nKIUTs+vnUY5RzpNZkklifiIJBQlE5kQSkR7BqexTol3p9JWXMqhXgvR9wvrQOqC1CM6L60rIpbjMiK3V3zIVXAKh1Yuw9UNYN17Vzre0uWU/Oq2NjTCGzVnyGyWnTsngvEQikUium+L8MjEgPrEjCaH2ZjbhnXaQ4PQdVHn1MbbX9mLCrncwmo208G3BZx0+E/0t2bEwpxfkxoNbGIz4HVyDxTnT80sZMXOvqDRzs7fi59FNqB94sX939rSjbgflFSDkcyIPpHFmXwppsfmcPZAmXp5BjtRpHyAy6p169MCxSxdy/1hB+tdfY0hOJnncOHIWLcLnnQnY1KxJl+AuNPNtxvt73hea9N8e/pZdibuY2maqqJAT2X9PbIXfHoHoLbBkNGRGQZtXRKWbokOvPGs8Ofcg+85l8fDMfcx9pCnOdjJAL5FIJJI7C32pGphXsLL9b5nzyjjYYDZga2ErzNcvIWG/uvRrWN6k9O0nkvMu0Xa/UbRaDW0GVWX5Z+Ec35ZIzVZ+ov/3GDOG5PETyPzpJ1wGDRIyu0OrD2Xqvqn8eupXkUmv1WhVaRslOB+xWE3y02hoEeaOTqsR2fOxmYUEu98GiV6J5B5DY75eEei7nLy8PJydncnNzcXJyamiL0ciuf2sfh32/QBeteDJbaC7dI7u+61RotS8bU0TNaodEwHzAn1B+XYlGN8usB3NfZtTy6MWlopr+w2gaNUeSTvCtoRtbE3YKmbnL+Bm48aAKgOYty6AtBwrfh3TjJZh//dgUlYIXzeBvEToOAHavsqtRJ+Sgkanw8Lz5mQvSCSS/47s0yV3E8ojd+TBNLYtPENJgV60eWYcISzqd1wDXfH//DPWmY/z9o63MWPmwdAHmdRyEpY6S8iJg9k91aV7FRj9JziqWfEpuSUMm7GH6PRCEez+9fFmVPF2vKZrSo/LJ2JLAmf2p2LUq5PvDm6KaVwwNVr5YmGpw1RaSva8eaR/+x3moiJlZI/L4EF4vfhiefBhVfQqEaRXnheUiYR3W75L95Du6ocYDbBhIuz+Wn3fcCT0/BSU+1Kka5NyeXjGXrKL9NTyc2LeY83EBINEIrl/kP255E6nILuEOeN2odVpeOrr9ldMqIvq+aCoOguaPesfiVxb4rfw/KbnRUXckl5/03LXl8C0QDCWwQvh4BYqmpcdSuDlxUeo4evEXy+2uan3s27GMTExr1TN9Xu1kTCkjVauPTYWjxeex/OZZ4SPXKclncTyh84/0NK/JZTmw8dVVX38xzZAYBNxviE/7mZPdBbvPFiTR1v/X1WARCL5V6RgskRyP5F2CvbPUNe7f/CPwLzCtphwbALmEG5+S8ySKwPtYKdgXmz4IqsfWs2CBxfwVL2nqO9V/4YD8wrWOmua+jbl1SavsvKhlSztvZRRNUeJwHxWSRY/RvxIie8krH1/Y8PZ4/88gZU9dH5PXd/+qarFewux9PGRgXmJRCKRXBdKMH7Nj8dYN+O4WHe2LqFh+KfUOfYj3u0aEbJoIes5wfid40VgfmDVgULHXQTmlX5t9oNqYF7JmFc8Vs4H5pNyihn0w24RmPdztmHxky2uOTCvoGTLdRxZg9FTW9HioTBhFFeQVSomEOa9vZvDG+IwaS1wf/xxwv5ajVPPnmAykbNgIVEP9iJv7TpxHmUi4bfev9HQq6EYxL+29TU+3PchesXjRnfeeP6Bj0HJujs0F34drA7wFX85P2cWPtECDwcrjiflMfTHPSJbUCKRSCSSO4Wy4ouSNlerdL9a5nxsXqxYKnIxl5B8WA3M23uC68XA9saTaWLZqfr/ZdnfBFr2ryI06FOi8zi1JwWNhQWeL74gtmX9PAtDdraYbO9bua9o++WUahaLtSPU6K2uH/m1/Hyda6jPJRtPpd70a5VI7gdkcF4iqUDMRiMZ339PWczFbPFbyrq3lQ+Faj0htP0lm45nHOfZDc8SwXtYOp5Eg4YOgR3ELPmKvit4vM7jBDoF3vJLVORxlED9hoEb+KTdJ8JgzowBK5cDLEl5gYm7JpJckHzpQXUGQGAz0BfChvOB+tuAPlV9YJJIJBKJ5Eoo2u6LPthHdHi6KCev4RhLg3Wv45IbhfsTT+D/6SesTdkiMuYVGbgBVQcwvvl4tXy8OBvm94ecWHXAPnoVOPmK86bllTDspz3EZRUR5GbH4qdaUMnjv5WS2zhY0rBbMCOmtKDtkKo4uFpTlFfGzt8i+eWdPZzclYzO0wv/Tz4maO4crCqHYczIIPHFF0l48SUMGRlCE39mt5k8Vvsxcc75J+fzyNpHSClMUT+k6RjVGFaRvYvaCD/3gHx1EF/Nx1EE6L0crTmdms/wGXvIKiy7Wb8CiUQikUhuiLJSw79K2igVcsbc3CsG58/lnhNLJfHtEuL3qktlPHs+8F9qMLL1jGoG2/m8f8zNROnnG/dUJwl2/x5JSaEex+7dsa5eHVNBAZkz1IQ+RdpGQalyv3D91BuiLo8tVbP+lQmE88H5vdFZ5JWo1YESieTakcF5iaQCKdy9h/TPv+Dc4CGYy27xIPTMOojcAEq2e9fJ5c3KoHnc9nEM+XMI2xK3YTZrMOY1ZHHPZXzZ8UtRviYCBLcZJSu/a0hXfnngF6Y0/QFDfnXQmFh2dhk9f+8pMvLKDWmVh5ju09T1owsh4cAtn1SJe/QxItu3pzT6/EOKRCKRSCT/hyIZs+zjgyIb3dnTlnYOe/BdOR0tJnzeew+vl8eyO2UPb21/SwTm+1fpz4TmE9R+V18MC4ZB2glw9IVRK8DJT5xXCVwPn7GXmMwi4Q+z8InmBLhe9Hr5rygyNoru/MOTW9Dh4epi8F6QXcqmuSdZNGUfMREZ2DVpQqVly3B/+imwsCB/7VpRCp+7YoUwgn+p0Ut82eFLHC0dOZJ+hEErBwkjeUG1Hqokj70XpEbArO6qlj5Q2ctBZP57O1lzJrWAkT/vJbdYDvAlEolEUvHoz2fOW17FDFYJamMwXDE4f0G+NcT5/zLn4/4WnD+PEuQuKDUIubq6/v80l70Z1OsYiKuPHcX5enb/HoVGq8XzpRfFtuz5v4hENGUioX2AmtQ369gs9cBKbcHJH0py4cwatcnDnlBPewwmM9vOTypIJJJrRwbnJZIKJHfZUrF07tkTjdUt1FdVysrXvqWuN38K3MMoNhQL87Zev/cSWrEK9Vw6URj1CtV0T1DdozJ3Cg9Wa4FFxuMUxjxNDZcGwuleycjrvbw3v5/9XTWp9W8I9YerB/z1hii7v1UomvMaS0slPYLc33+/ZZ8jkUgkkrsTkzI4XXRGyMOYjGbCGnjSumQFmhVzhWa734fTcB08iBOZJxi7eawwiOsR0oN3WryjBuYVnfalj0PcLrB2hoeXgkuQOLcSsFbMX8+mFeDjZMOvjzfHz8X2pl6/zkJLzdZ+DH+vOS37VcbazoKspEL+/OYoK744THZGmdCcr7RkMdY1a4hMwaTX3yDhuecxZGXRIagDi3otooZbDbJLs3lq/VP8cvIXkVUo+uvH1oJLMGRFw8/dVNk9JWDhYc8vjzfD3d6KY4l5PDJrH4XnsxUlEolEIqkoykrOZ87bXMUMNjtbLDU2NmhtbP6xPSZXDc5XcvqbJrvSL17InA+6qFG/4aRaWda5hpeoursVKH19++HVxLpiUp9wOhuHdu2wbdAAc2kpGd98I7Y9VketiFsZvVKthtPqoO5g9SSHL0rbXJDf2XRejkcikVw7MjgvkVQQio5b/voNYt1lQP9b+2GKznzmWbDzgLaviQy2fn/047sj31FiLBEasQsfXEiw6THMeg8aBblyJ6G4vzcJccNUHEwX14lCaifUOVRo0r+z6x0eXv0wJzNPQqd3wMoBEg+oDvK3EOd+/cQy948/RCa9RCKRSCQXBvB/fXeUiM0J4n3zvqHUTV5G8crlItPc/9NPce7dm/j8eJ7e8DRFhiKa+TRjSuspFyvV/nodTq0CnTUMXQDetUSzkkU3etY+oc2uaLT/MqYZQe43njF/JSysdDToGiQy6Rt2CxID+YRT2Syasp8di8+iCa5MpUWL8HzpJTFpXbBxI9F9+lCwfTuBjoHM7TGX3mG9MZqNTNs3jfd2v6fq0Ctmd4+uAc/qkJ8Ms3pA4kHxmZW9HIUprJONBYficnh8zgFK9LKflUgkEknFB+ctra+cOW/IyBRLCw+Pf2zLL8snsyTzn7I2yiR1UYba3/vWE03KRPZFvfmbL2nzd/yquFKrrb9Y3zz/FAa9Ca9XXhbvc377jZLTp4XXXGPvxhhMBuYcn6MeeCEpLnI95CZcIm2z+XQaRpP5ll63RHKvIYPzEkkFkbfqT8x6vcg4s6lZ89Z9UGEmbJkqVnPbvsKEgx8zZt0YEgoS8Lbz5uN2HzO7+2xquddiZ2SG2K9xiBt3GkpwXmF/TLaQ2lGM515t/Cp2FnZEZEQw9M+hfBW5hLI2Y9UDNrwLpQW37HocOrRH5+yMIS2Nwl27btnnSCQSieTuobTYwMovjxATkYnOUku3MbUJPLmc3IULhQSbkjHv1L0beWV5PLPhGTHJXM21Gp93+Bwr3fkKugM/w4GZSu4d9J8BIa1EsxKgfnzOfsLjcnCxsxQB7DBPh9tyXzb2lrR4qDJDJzajUj0PzCYzRzbF88vEPZzcly6080OWLFa16NMziB/zBClT3sfKAFNaTRH9tTLxsPTsUh5f97i4byHR88hf4NcQirNgTm84t018Xk0/J+Y82hR7Kx27ozN5ev5B9MZbVxEnkUgkEsm1GMJaX0Vz3pCefsXgfGROpFh62XnhoCSTXSBut7r0qw8W1mI1IjGXxJxibCy1tKr8z3PdbFo+FIa9izV56cXsX3kOu8aNhf68Uome+sFUMVmg+M8pKP14dkk2KFX2IW1AqWA/OFtsaxzsirOtJdlFevaeUyciJBLJtSGD8xJJBaB0cDlLVUkbl363OGt+47tCD26zX3V6xy5ieeRyYfaqmLss77OcbiHdhOP8uYxCoV1rqdPQusqtfwi4XppWUrP598dkiZl4RZN+VK1RrHpoFV2Cu4isvB+P/sjgzB0c9whWM/F2fHbLrkdrZYVTr15iPWfZslv2ORKJRCK5O1DM1FZ8Hk5KdK6Qgek7tgGuh1eR+cMPYrvPxIlCxk7JPHt96+tCe9bH3ofvOn93caAetwdWv66ud5oANXuLVaXfe2nhYfZEZ+FobcHcR5tSw9fptt+jopv/wNN16fV8PVy8VZ3azfNOsfSjgxQ6BlDpt99wffhhsW/2/PnEDBxI6enTor/+uuPXOFg6cCjtEENXDeV01mmwc1O19JUBflkB/DJQ9ccBGgS58vPoJiI4sfl0Om/8dlTIBUkkEolEUmGZ87ZXy5w/H5z39PzHtjNZZ8RSmZC/hPOT0oS0Lm9adTS5PBPd1urKkwE3CytbC9oNU6/r8IY4UmPy8Hr1VTTW1hTt3Uv+hg209GsppOoUaVxFpk7QRJW74dBcIaNrodPSvZbPJfcgkUiuDRmcl0gqgJITJyg9dUrozDs/2PPWfVD8forC5zHJ3ZUXrItEplqYc5goM3+r2VuXzNpvPqWWzjWt5IbDVcr1Koq6AS6ixF2ZiQ+PU/X8FDztPPm0/aeiAsDNxo3I3CiGO2r41sUZw66vIFvV9rsVuPR7SCwLNmzEmJNzyz5HIpFIJHc2xfllLP8snLTYfJFl3mdsA+zO7CHto4/Eds9XXsZ1iKrP+tnBz9iZtBNbC1u+6viV6McEecmweCSY9FCzD7R+uXxC/72Vx1lzPAUrnZYfRzYWfWJFElTLnSETmgo9ektrHann8lj8/n72rknE4/U3CfzpR3QeHpSejSRm4CCy5s2ntX9rYfIe5BhEUmESI/4awea4zWDtCMN/g6o9wFACC4bCmbXic5qFuvPt8IZC3m5ZeCIfrlG16SUSiUQiuZ2UlaiZ81ZXMYQ1ZKhV6Bae/0x0O5OtBuerula9VG8+equ6XqmdWCiT0H+eD2z3quvL7aJSXQ+qNPEWl7Rh1gk0Xj64PfqI2JY2/SPMZWXl2fNKcD63NBeqPwgO3lCQqkrxKV5x9dRrXnMsBYOseJNIrhkZnJdIKgB9XBxaJyccO3e+rJP7TcFk5PhfLzLYz4clTo6i6ZFaj7C412KhG/f/KNpwCh2qqUYudxqWOi0dzpvMrDuhGuT8HaUC4Pc+vwtDPSMmvnN15jEvZ1LWvnHLrkmRI7KuXl3IE+WuXn3LPkcikUgkd7aUzYovD5OZUICtkxV9X26AQ/Y5kt5Q+x/XESPwGDNGrCvVa3NPzBXrk1tNprpbdfUkhlJYPEId4HrVgj7fChkche+2RjF3d6x4++ngerQIc+dOQNGfV/Toh73bnND6niKgcGhNLAsm7yPbsxahK/7AoVMn0Uemvv8+iS+8SLDWg197/kpz3+Yi++7FzS8y/8R8sLSBQXPVgb6xDBYOh1N/is/pWN2bD/vXFes/bItmxvboCr5ziUQikdxvXIshbLmszeUy5y8XnE8/DQUpYGEDgc1EU3h8tpC0UWTd2t/mcXnbwVWxd7YiJ7WIXUsj8Xj8cSy8vNDHx5M1ew6dgztTxbUKBfoCZh2bBTpLaDhSPXi/IscHLULdhal7VmEZu6KktI1Ecq3I4LxEUgE49ehBle3b8B735i05v5JlN2vtczxslUeMlSVeth781PUnXm788kVN279RWGpgb3SWWL/ehwCj0URhbimZiQWknMsl8XQ2sccyRXn/BfIyikVb/Kks0mLzyEkrorigTBx7PXStqZbJrTueIu7x/1Ey56e3m860NtOw19lyyMaG/kURbNz/FbcKj2efwXfaVFz69r1lnyGRSCSSOxN9mZE/vzlCRnwBto6WPPRyA5w0ecQ/8yzm0lIc2rXD+001SB+RHsGk3ZPE+lP1nhKTygKlP/vzFUjYDzYuMGQ+WKuVbUsPJjB9zWmxPqFnTR6s68edhoOrNT2eqiNeFzRrV3x+mC0rUnCf9gneb78Nlpbkr1/PuYf6YXU6Vkj5DKw6EDNmPtz/IVP3TsWo1cHA2VCzr1o9oFQRnPhDfMaARgG80V2dyJjy50mWhydW8F1LJBKJ5H5CX2z418x5xXNFQakc+zsms4mzOWf/GZw/dz5rXgnMK5PUwMojatZ811o+2Fjeekmbv2PjYEmnUaoX3rGticRFF+P16ivifcZ332FITOL5+s+XZ89nFGdAo9GgmNnHbIfUE0Lapkcddcy+8kjSbb1+ieRu5s7TrpBI7hO01tZoLzOrfqMoTvDjt77OprQdIuuui2MY7zwwGxdlwH8FlFntMqOJIDc7wjztL9lmKDOSnVIkAupKGbv1eZ29Ixvj2b/6HKWF6oPK//PQqw3xq6x+pmKMt32Rmi1wuYeAzqNrElxbzQTMyywW2YeuPvY4edig1V2cQ2xXzVOU9Cva+JFpBVTxVisC/p+eoT2p61GX11YO4Th5vHTiR4YYcnmt6euXnZy4EZy6dLmp55NIJBLJ3YEywbz2p2MkR+aKTLpeL9TH2UlDzNBnMGZkYF2tGn6ffIJGpxN982vbXkNv0tMpqBNP13v64okU89fweergdsBMcAsVzVvPpPPG0qNi/cm2oTzauhJ3Mkr2fEA1V/b8EU3E1gRO70kRE/PthnYl5Nf6JL78ssi+ixn+MF6vvMz4keMJdAzk04Of8uupX0ksSGR62+nY9Z+pZuNFLIElj0D/n6B2f55qF0pafgmzdsbw6pIjuNlb0bbqzX+OkkgkEonkirI2VzOEvSBr83/B+aSCJAr1hcIzLdg5+OKGC5I2oe3K/WVWR6jB+Qdvo6TN3wms6Ua9joHC9H3TvFMMGd8Nu2bLhPZ8yrvv0e7HH6jjUYeIjAh+OvoT45qNgxq91Mn03d9A329EIsH8PXGsPZ7ClIdqY21xeycZJJK7EZk5L5HcZkpOn75s1vfNQDFXG7JqCJuSdmBpNjOhzJZP+vx21cC8wqbzevMdQ92JP5HFwTUxrJtxjF/f3cOPL25l8Qf7WTfjOFmJBeXHKDGEC4F5pdRe0dh1dLPB1ccOzyBHUe5+AVsHS9Hm5mcvMuwUfdoLlBTosfxbeWDcsUxWfxfBLxP38MMLW1kwaa/QvTu6OZ6CxEJah7pdUdrm7wQ6BTKvzzJGF5SK9wvPLOKRtY+QWnj14yQSiUQi+TeUfnzL/FPERmRiYaml53P18AhwIPmdicIAVefuTuB336JzsBf7Tt49WQSf/R38hZyNVulEFWJ3w1/n5dc6TYTKncVqREIuT88/iMFkpm99v/Ks8TsdxVSu7ZCq9H+tEe7+9qKPVyYwtu424zN3IY7duoFeT9q0D0l87nlGBjzEJ+0+wVpnzdaErYxeM5q00ix46AeoNxTMRlj6OBxdLMzrleqB3vX8xM/lqfkHORIv/V4kEolEcjtlbSyuQdbG67KSNmEuYSJALzAaIGaHuh7aXiz2nsskLb9U+Ky1qVJxk8/NHwoV4/bivDI2zz+N98R3hFde4Y4d5K/+ixcaviD2W3xmsZh4oIWaTc/RRZCfQpMQN7ydrMkrMbD1tPozkUgkV0dmzkskt5GyhATO9emLVWgolZYtRWujlq/dDP6I/IPJeyZTaizFT2/g07QMao34UxGFveIxBdmlWFpr2XJeb75WqQUrvzryj/2UwLuLt90lbZUbeeNfzRU7Ryus7S3RalVt3MuhmMsor79jMpqETm9hThnOnrbl7RbWOjwCHYTWnaHMRFZSoXid3psitrfr5scmMoS0zaONg8QkgBIMuByWDt680mwcTTa+yZteHhxNP8qgVYNEIKCxT2NuFqaSErJ/XUDBli0EzfhJPLxIJBKJ5N7l0NpYTu1OQaPV0O2J2qJSLGv+L+StWgU6Hf6ffYqln1+5zvxfMX+h0+j4sO2HOFqdr/rKTTxvAGuAWv2g1YuiOTazkEdm76OozEjryh5MH1Dvqn3snYhPqDMDxzXhwF8xHPorlqhD6SSeyaHtiHF4NW1K+rRpFGzaRHS/frT59FNmdpvJC5te4GTWSYavHs43nb6hap9vQGuhVhUse0L8nLT1h/HxwHpCy3ZHZAaPzt7P0qdbEuJxadWfRCKRSCQ3k7LiqxvCmk0mDJmZlzWEVfq2f0jaJB4ExVTVxhl8VT+4JQcSxLJnXT+s/pbodruxsNTR5dGaLJl2gJijGZyq6kLA00+R/sWXpH7wAU1W/0lTn6bsS9nHl+FfCklZAptD/B7Y+wO6zhPFRPpP28+x5GCCkOiRSCRXR2bOSyS3kdxly8TS0sfnpgXmlRL5KXumMH7neBGYb2XQsSgphVq1BkFg00v2NRpMJJzKEgYvSkb6nHE72bU9geTcEmwstTRr4ouTpy1VGnvRvG8oDz5Xj9HTWvHox63p/3ojfM/L1CjYOVnh7ueAraPVfwoaKHI1tg5WItPw75n01Zv7MvjtpjzxeTtGvN+Cns/UpUnPEILruAujvU6tAkSm/pGEXHasimbGK9v57cMD7F0RTeq5PMym/6tKaDiKtp4NWJSYQhWsySrJ4vF1jwsDuptVwaCxsCBz1s8U7dtH/uYtN+WcEolEIrkziQpPY89y1ZS0zaAqhNTxoOhQOKnTpok2r9dexb6p2v9G50Yzdd9Usf5cg+eo51lPPYm+RDWALUwD79rQ52tRhpZRUMqon/eRUVBGTV8nvnu4YYUO0G8EZfK8Wa9QBrzZGPcAB5FFr1Th7S+og9fP87EMCsKQlEzMwyMI+DOceT3mEeIUQkphCiP/GsnO5D3Q60to/KgS9oDlz8ChueLn8f2IRtT2dyKzsIyRP+8jPV+tkpNIJBKJ5FZmzlteQdZGZM0bjWKC3sL9UuN2RQJGobZH7YuNZ/5Sl0rFnFZHbrG+XNJmcJNAKhqPAEdaD6gi1ncti6Ksw0CsKodhzMoidfpHwstOg4Y/o//kSPoRaHk+e/7Az1BaUH4PSoW+IkknkUiuzt35tC+R3IWYjUZylv0u1p3797sp58wtzeXp9U+z6PQi0Tk+41KPb+PP4WLjCp0nlZvVnd2fypofIpj5ynb++Pww4evjRDY6GjgZqRrBtgzzIKiqKyMmt6Dr47Vp1D1E6MAr5m5KKfntRslGdHK3JaSuB017hfLgs/V45MNWBHg50CBQnSSIPpcrgvFKUP7A6hgRpJ/95k42zz8lZvmV7Hy0Wuj1BYEmDfNjInnArS5Gs1EY0L214y0xoXHD12phgUvfh8R6zpIlN3w+iUQikdyZpMflC6k1hTrtA8RL0ZhNfOklMBhw7NEdt1GjxHalf3l96+sUG4pp5tuMR2s/eqkBrJI1p8jODZ4PVvYUlRl4bPZ+4asS4GrL7Eea4Ghzvvz9LkaRtRv4ZmOaPFhJTOZHhafz+8JcjBN+xKF7d/FzU2RuNG9NZ27r72js3Vho8z678VmWRC6Fnp9C0yfUAP2K58XA38Hagp9HNyHQzZa4rCKRQa+Y20skEolEUhGyNvok1fzU0ttbjA0voCSDHc84LtZru/8tOH96jbqs2kMsVhxJotRgopq3I/UCnLkTqN3OX1S/K+PtdbNP4zLuXZFIoCQcBh1Jo3dYb7Hf9H3TMVftDm5hUJIj+unKXo40DHIROvrLDkkTd4nk35DBeYnkNlG4azeGlBS0zs44dlY1ZW+E6Jxohv05jL0pe7GzsOOLRm/w9NG16h919w/BXp2xL84vY93M42IwrC81YutoSbXmPnR5rCaPfdSGjVo1ON2h2p1vqnZhkuBCadwOb0R2fceR1Qlr6CUy8IvyyjixI4lN806qYvgKntWg9VjszGamnT7AGw1eEPICq6JX8djax1Sn+RvEZeAAsSzcuZOyBPkAIpFIJPcahbml/PntUSG5FlTTjdYDK4sy9qTX38CQloZVWBh+U6aU91WfHfyM09mncbNxY2rrqRd15vfPgMPzVfOWgbPArRJ6o4lnfzkkqsJc7SyZ82hTvJxunvTdnZBF3/TBSgwYdz6LvlDPhl+iiKj+CE5vTkRjaUnBho1kDn2EL/1eoldoLzGRPmn3JD499Bmm7tOg+TPqyVaNhX0/4eVow9xHmwlj2IjEXJ7+5ZD4OUokEolEcjNRAuz6f5G1uRCct/C71Mg1oSCBnNIcLLQWVHOrpjZmx0C6MlbVQRU1LrB4f7xYDmoSWCGJcZdDuY72w6sJT7nCnFJ27NfhOmq02JY8YQLPVRqJrYUtRzOOsjp2LbR5RT1w5xdQVliePa/c263y3JNI7hVkcF4iuU3kLF0qls69eqG1tr6hc+1I3CE0WePy44S53Lzuc2m/dz6JxVXYaJrK+gM1y/dVss8rN/aiUfdgBo5rzCMftqbz6JpUbeJDWqmeg7HZKKo0d5MWXJeaqn79nuhMsLegRks/uj9Rm8c+bkOvF+pRp52/aLsgt6PM9i/Z24VtZa+Qlu3A8NiT/NDlB6H7q5ThKZMcF4x6/itWQUHYtWguMiJzlv52U+5TIpFIJHcGSiWWIsmiDE6VQWrXMbWFPFvWrFkU7tqFxsaGgC+/QGuvap9vid/CLyd/EeuKAayn3fkJ8JidsOZNdb3zexDWUQxY3/49gs2n04XE3MzRTQjzdOBexDPQUTyLNO2lZtGfO5zBmgh/jO/9jGVAAPqEBBKHj+DV2Fo8U/dpccysY7N4bdvrlHR652LZ/OpXYc93VPKwFxn0tpY6tp1J542lR2UAQCKRSCQ3FaPehOm8dKrVlWRtklVJmgt+Mxe4kDVfzbUaVjqrS7Pmg1qArSsnkvLEJLOlTsNDDfy5k1AmI7o/UQcLKy0Jp7KJrtwH6yqVMWZmYpj2NWNqP16ekFBUoxe4VoKiDNg/U2jn21npiM4o5EBsdkXfikRyRyOD8xLJbcCQlUXBxo1i3eUGJG2UAaeila6UehfoC2jo1ZCfWswmd+kx5h8awfKsKZxKq07kgTSRMX+Bbo/XpnnfMLyCnYRczAV+D1czvFtV9sD7LsrQU4IWYZ726I1mNp9SzWwVdJZagmq603ZoNVo8FFbennIuj7TYAiKyWvNb5kcsXlsTuz165nSYT7BTMMmFyYxYPYKt8Vtv6LpcBw0Sy9ylyzAbZHm9RCKR3CsoGvNJZ3NEhVaPp+pgbWtBcUQEaZ99LrZ7vzUO6zC130ktTGXCzglifUTNEbQNaKueJDcBloxSDWBrDygPNH+2/gyLDySIifKvhjakYZAr9zI6nZYmPSsx8K3GwgBeyaLfsi6Ps/2mY9mpB2a9ntQpU+g19yxTG74jsg3Xxa7j8fVjyGozVlTCCZRJjl1fUz/QhW+HN0Sn1YjS+elrT1f0LUokEonkHqKsRM2aVyRhLa10V5e18fW7dr35at3F4pe9seUJaEo12J2Gm589HUZUF+vhGxIpeuRdsLAgf/16+ka5iWTB1KJUvo34Edq+ph608wscNKX0rKNWEvyyR71HiURyeWRwXiK5DeSvXSsGmza1a2NTo8Z/OofBZGDSnklCK91kNjHQaRQDz41l5eQT7DvkSp7RB0tLIzVb+9H3lYbYOFj+a6B/WbjqCH+nzdBfCz1qqx39tWjYeYU4CnNbRTNPpzWSYQhl29oyNr0fx7PZ79PWrgtFhiKe3/Q8c47P+c9Zdw6dOqFzdRXyBgXbtv2nc0gkEonkziI6PF14tSh0HFkDVx97jAWFJL7yqqoz360bLgMHiu1Gk5FxO8aJEvYabjV4qeFL6kn0xbDoYShMB+860PsrIb2mDMi/3BQpdpnSt055Zdj9gGI2N+BvWvTRR7PZZvsQpWPOD/r/WkONV2cyo9L48kq34asf5lzjkRcH/+vehh2f06G6F1P71RFN322JYs6umIq9OYlEIpHcM5QVn9ebt9Zdkuj2d/RJl8+cP5p+9NLgfFEWxOxQ16v2ILdIXz6eHdE8hDsVpeq+Yfdgsb5jUz6aR1QJm6z3pzEhYIxYn39yPicD6v0te34GI1uo9/RnRDJpedIYViK5EjI4L5HcBlwGDyZo9iy8Xj2vw3adFOmLeGHTC/x25jdh/Ppq41fp7TiI2KNZwlfO3+oonUOW88hH7ejwcHV8w5z/VavuUFwOsZlFohS8210kaXOBgY0DxHLb2XQSc4r/NUtPMbft+lgtRk+qT2uPJbhZxGHQm4jel8lrtcfRv0p/zJj5+MDHYhJEmQy5XrRWVrgMGiQMAS28758Ai0Qikdyr5KQWsXGOagBbr1MglRt5ifXUyZPQx8UJbVnfSe+V97kzImawP2W/8IL5qN1Hagm70lGvehmSwsHWDYb8AlZ2rD2ewoTlx8RxL3SqwrBmQdxvKP2z0KJ/szHu/vYUF+jZedaTc6O+xeQfSllsLPbPTmaOfgT+9n5Cu/fhv0ZwoGZ3aD9OPcmGibDtYwY1DuSVLlVF07srj7M6Qg2USCQSiURyU8xgbS+vN39J5vzfNOdLDCUcy1T7+UZejdTGkyvUCjqfOuBRmYX74yjWG6nu40jzUDfuZJr3DqVSPQ+MBhO7UsKgcVtMhYX4fvgLD/h3Vr1i9r6P8YL2/I7PqeMBjYNdRcX7fJk9L5FcERmcl0huAxqtFvvmzcXrelHMSp/841n0u1ypmt2Izzt8zqhao6jR0pe6tfIZ5vEcfT0/oNqjT2Npc+1lcL+fz5rvXtsHe+srP2jcqQS729Mi1F3EPJafl+e5Fmw8PKk3qh9D3F+kn9s4GrXQEVzdg4ktJvJa49eon9iRyM1ZjF37qpgUuV68xr5EwGefYVur1nUfK5FIJJI7S2N27YxjopxdmfRu0U+VrcldsYLcP1aAVov/xx+jc3YW7eFp4Xx35DuxPr75eCGbJtj3Ixz59aIBrGswB2KyeGFBOIqE7eDGgYztXIX7Gc8gRYu+CY0fCBFZieei9Oxt8Ab57YZgLi3F8MGXfLe7Bo0ca5FXlscT659gVVBt6DBePcGmybDlQ57rWJnhzYLEs8FLiw6zV/GmkUgkEonkJsjaWF7BDFYYxiYk/CNzXpG0URK+vGy9CHBUE8s4tkxd1uqHwWhi7m41YP1oq0p3jBHslVD6586P1MTd34HifD1HwkZidveh9MRJntpqg4Olg5iMWKjY63lUheIs2P4Jj7SqJI7/ZW8cJfrzEkESieQSZHBeIrnFmI3/vQOKiDzN9I/m02TjUOondaJXziN0COwgtlmXJtIm/xlcLRKh0wTwuna5nDKDiVVHk+9aSZsL9G2gPvysPKJmKlwzVbqgaTgCX6tTNM9+Hk1ZoXgYGhI2jJapvWke14ewld2Y9NkPxKfIzDuJRCK5H9n9RxQZ8QXY2FvS9fHaIstbyYxLeW+S2O7x7DPYNWwo1nNLc3lj2xsia+zB0AfpFdZLPcm57bDmfIZ3l8kQ2p6zqfk8NucApQYTnap78f5Dte/4AfntQGehpVnvUAa80QhXXyWL3sB+TRui+k1Db+VAyZ9rGT8zn4GWzdGb9IzbPo7vXRwxd3xHPcGWD9Bs/oBJvWvRtaa3eNZ5fO4BTqfkV/StSSQSieRekLWxubzevDEjA1NRkZi0twwMLG8/kHpALBt5N1L7+YI0iNmubqz1EOtPpIoKcEVnvnf9S+Vw7lQUg9gHnqmDraMlmamlnOz8DiaNBSVLljOxqLPY54vDXxHX5kX1gD3f0c2/FD9nGzILy65/3C6R3CfI4LxEcgsxZGZytn17UqdOE5rz10pabB4LvtzO1o/jCU6qi85sgVuIDe37n8/GNhnh96ehrACCW0HzZ67rujafTiOnSI+Xo7Uwg71b6V7LV7jan0rJ50zqdQ6+u30ATgGQEwvr1YG9EnhpP7gGdt46LE3WBEbX4/dJEaycs5/8rOvTyCuNjib9y69uaHJGIpFIJBVD3IlMjmyIF+sdR1bHwdUas8lE8vjxooTbtn59PJ56qjxj7r3d7wlz8SDHIJE1L8iJVw1gzUaoMwhaPEtKbgmjft5HbrGeBkEufD2sIRY6+Tj+dxTz+kFvNaZht2BFlp/YLEcOdJ5OdqVW6KOiGfTRQd7Obi32/ebwN4zXZqHv8p568Lbp6DZP5ssh9UUZfX6JQfy8k/5F/k4ikUgkkiuh/xdZG0WCTcHS11fInF7gUOqh8uC84MQfYDaBfyPMriH8uD1aNA9rGoSN5eUD/3ciTu629Hq+PpbWOlJSzUT2fA8zGkK+XU0Pc22KDcW8lbgGY6U2YCzDYvMkRpzXnp+x/RwmpWxQIpFcghwNSCS3kJxlyzCmZ1AUHo7G8uoGrRfYtSySJVMPkHVCjwYtWd6xdH6xCkPfbElIHQ911n3PtxC3C6wcoO+3oL2+znzZIbXsrk99P3RXMLW5G3C2s6RdVU+xvuLwdc7C2zhBn6/V9QMzIWoTOkstNVr6MfrdtjR5xIds50R0Jgviduczb/wuTu+5tix6ZSImdugwMr79lsKdO6/7viQSiURScRTllbFh9kmxXrudP5Xqqf1M9sKFFO7ajcbGBr9pU9Ho1L53yZklrI9dj4XWguntpmNvaX/eAHY4FGWCT13o9QW5FwLFuSWEetozc1QTbK3unsH47cTCUkeLh8Lo93ojXH3sKC4yEx48jDNtXqZMD/W+38L3B+piY9CyImoFTxVEkHchQL/jU2y2vMeMkY2o7OVASt75CZGia0+SkEgkEonk/2VtrpQ5XxarmsZbBQdfDOgb9cLI/JLg/NFF6rJWP3ZFZRIel4O1hZaRLS8edzfJ0fV4sg5anYaEAhfOtX5WVA88Ni8Vb72duPdZVRRJXw0cW8qIwHQcrS04nZrP+pOpFX35EskdhwzOSyS3CCXDLmfxErHuOnjQ1fdVxFHPc8r6ECZMnPbYR3S3Dbw6YQjValwsjyP1BGxUS+rpPhVcr8/VPSajUJTQKfRvdF777i6mT31Vlmfh/vjr17AL6wBNHlfXf38KCtLFqjIB0rRZTZ5+9wGOtVhNgtMZjCYjZ22OXvZ39v8oEzHOffuI9ezFi//DXUkkEomkIlD+t2+ad5LivDIhrdKqf2XRXhYXR9pHH4t1r5dfxipE7XvPZp9l+v7pYv2lhi9Ry72WagC78kVIPgJ27sIAtkRjzROKxEpqPp6O1sx5pKkoY5dcHZ9Kzgx6qwn1uwSJ8X2CLowD7aeS6V4Lt/WH+HmpF5VyrdmXso8R6ZtJ6DxBPXDXl7hsf485jzTB28mas2kFjJl7QGrdSiQSieS/G8La/EvmfPBFY3clOK1kkLvZuBHqEgpppyBhP2h0UHcQX206K/Yb2jQIL0cb7kYCa7rRabQqrRtjUYP4OoMxJSYzbZ0HOqOZb6KWcrqOOiZ22PAGo1qosYevN0VedSwtkdyPyOC8RHKLKNy9G318PFoHB5x69LjsPlnJhaz96RiH1sZiMpvEAP+z9MksaDAZrwcNTO8zGVsL24sHKJl4Sx8T5WFU7Q4NRlz3df2wLUoY0LWv5kl1HyfudhRDW0XDLqOglN+vwxi2HEUD2LM6FKTC8qfBZCrf5G7rzqfDJ1PY/QQLG7zPW0deY+7xuWLbpjkn2bHkLMX5ZZc9rcvAgWJZsHkL+rS0/3p7EolEIrmNHNuaSGxEptA/7/pYLSysdGKyPemttzAXF2PXtCmuDw8X+5YYSnh92+uUGktp5d+KETXP98l7vlOz45QB+MDZGJ0CeXnxYfaeyxJZY0pgPtDNrmJv9C5C+R0okyT9Xm2Es5ctxQZLjtR5hlN1H4XYDD6cbaR7lCPRudEMT1xJRMfX1QP3fIP/7ndFgF75ue+LyeKlhYcxynJ6iUQikVwHZcXGawrO/z1zflfSLrFs7tscrWIIf3i+uqFqd/ZnWLAnOkvIsz7RNpS7mapNfGg9UDW1j3RvS1zYA9gfjeatvX7CDPdNbRZFNs6QfJin7bZga6kjIjGXrWfUpDiJRKIig/MSyS0iZ6Fatubcuzdau0sH4YW5pWyed5KFk/YSeTCN8PVxvL7xDeadmCcywx5vNYq3m72N7v/lata8CWknwMEben+lpHhf1zWl5ZXw20FV0ua5Dmo24N2OpU7Lo61VB/iftkdfv4adlR0M+BksbCByPez97pLNyuTIZ+0/o2f9rpgx89GBj5i+/gtO7UnhyMZ45o3fzd4V0ZSeNwq6gHXlytgqRoFGIzm//XbjNyqRSCSSW0puepGQllNo0S8MjwAHsZ41dy7FBw6Kvtz3g/fRaNXH54/2f0RkTiTuNu683+p9dfB9bhusO6853+19zCFtmLzqBKsjUsQg/IcRjajpd/dPjFcEvmHODB7flHodA8WzUpJbI/a1eo8s6xAeXZzNK1udyCvI5NG45Wxs97xaSr/vB6offI8fRzTESqdlzfEU3lt5XGbsSSQSieS6M+ctba8ga3PunFheqKpT2JmkSpsqk/cY9XBkobqhwcN8uVHNmh/QKAA/l78l4t2l1OsUSLM+6iRDZGBP4gI6UGdrPP2O2hKZF8MH1VuIbfY7pvJkA/V+lZ+B7IslkovI4LxEcgtQMqXzN20S6y6DB1/Sse9dGc38Cbs5sTNZVL4H1HHmQJNlrE1cI/Rqp7WZxqO1H1W15f/OsaVwcLY62Oz3Izh4Xfd1LdgXj95oFiZpjUPcbvg+jQY9mQnxJJ89Tfzxo8QcDSc6fD+RB/ZyZu9O0mKiL9n3XPgBYiMOk3DyGMmRp8lKSqAwJxt9WekNdc5DmgbhaGNBdHohG/6Lhp13LRFEEayfCEmHL9msTJKMazqOVxu/Kt7PS5xBYrs9eATaoy81cmB1jNCkP7IpHqPxYua969AhYqnIG5kNlwbvJRKJRHLnYDaZ2Tz/FIYyE/5VXajbPuCiufenn4l1rzfewCpAbVc05hefUWXLPmjzgai0IjsWFp83gK03FJo9xbdbopi9K0bs9+mg+rS8i03Y7wQsrXS0HlSFh15uiJOnLSVaBw7Xe55TVYfQaG8hny20wymjmLFxK5jR4mFhUKf4yrQ4NpHPBtYSOQ1zd8eK34tEIpFIJDcqa6N4jZWeD87bVFEzyLNKsjiZqXrXtPBtAWfWQGE62HuxW9eA7WczsNBqeLrdvZEsp9C4RwhNeqqTE5GVB5Dg347Bqwtodhr+yD3B8sBaUJbPUyUzhM7+obgcNp6U1eUSyQUuX5cjkUhuiNxly0TGtG2DBthUqyra4o5nsmGOqmOr4BPqROXuzoyPepmYvBgcLR35vMPnNPVt+s8TZkXDihfV9bavQmj7674mvdHEgn2qWc2IFlc2nSktKiTh5HEKc7JE4LwwJ4fC7CwKc7MpysmmbuceNO0zQOybk5LC7FeevuK5GvToRcfRT4r1koIClk1794r71mzbkR7PvizWTSYjf375MfYuLtg7u2Lv6oaDiytOXt44eXpj8X/mug7WFjzcPJjvtkTx47Zoutby+Q9PFI9B1GY4tQp+exSe3ArWjuWblcmSUbVG4W3nzVs73mJl2QLi65/ktc6TOPZXKtkpRexYfFZIInR/sjbufg44duuGbuo0DCkpYrLGqWvX678uiUQikdxyju9IIvF0DhZWWjqMqI5GqxGTqklvjsNcVoZ969a4DFLlypILkpm4a6JYVybTW/q1hNICWDgMirPAtz48+Blz98Ty0drTYr93HqxJr3p+FXqP9xJ+VVwYMr4pu5dHEbE5gSS/NmS516b6ybl8OuccXzxg5Au2crZhd947vA6bw7/QsySXjO4TmPhXlPi9eDvZiKxFiUQikUiuTdZGd3lJG71eVNdZ+PmVS9ooFddVXaviaecJe38Q7eb6w5i2Vp0cHtYsiCD3e0virsmDlTAazRxaE8uZKoMwaSwYu3IL79rB+8Gl1LKypsqZFUyt2ZqXjwbw4ZpTdKjuhU57fWoAEsm9iAzOSyS3ACUoa8zJxbZ+/Ytt7jaUFOhx9rSlxUNhFAel8dzGMWSWZOJj78O3nb6liqs6234J+hI1WFyWD0Etod2b/+ma1hxLISWvBC87LY2dSji5cytZifHkpqZQqUFjarRWA/65aaksn37ecPYyKAH7C1jb22Pj4IiVrR0WVlbodDo0Oh06nYVYOnteGiT3CgnDZDRgNBgw6MsoKyqitLhImOdZ2V4s6SvOy+PM7u2XvwCNhjodutD1yRfEWyXjPnL/bvpV8ubnbXAgNpuDsVk0Cr7OygAlnU6RClKy5rOiYMULqtzN/1UwdK/UHQ9bD17Y/AKHMw7zdtkLfP3SNxRE6MrlbRzdVFMfrZUVLgMGkLNoEaa8vOu7HolEIpHcFvKzSti1VJWzad4nDGdPdbCcOfNnSo4eRevoiO+UyWKSVtFPfWP7G+SX5VPXoy7PNXhONYBVPEtSj4msOIb8yu/HMnnnj+PiPC90qlIuvya5eVha62g7uCph9T3ZOPck+ZmuHK7/Iv6JWxm7/A/WNjIwv/0xYms25Ysz4XifWsWo0nzSW0/k6x0pvLH0KO72ViIwIJFIJBLJlSgt1Iuljb3lP7edVSVqrKtUKa983xSnVtC3C2gHKccgZrvwodns1IcjCcnYWel4vuNlxv13Ocr9N1fkbcwIT73Iyv0wWNgwbulaxg8vZWxQGL9En6Rvwkd8aTOVs2mw9FACgxoHVvSlSyQVjgzOSyS3AOtKlbB+5HniTmdT+3ybq489vV+sLzRTd6Xs5JW1rwgHd2VGXQnMe9t7//NEyoB/9auQFA62rtB/Buiu/882LzODXT98zMN5qbga8lg47lIJGSUwfiE47+zlI4LoDu7u2Lu4qi8le93FFTtnF5y9Ll6ng6sbz85ccE3XoBw/4sMv/nmLJhP60hJxqxfQWVrSYfQTasa+yN7PpiArU0wcKPta26s6wApFuTms+OQDsT5GqyPTwoUVn2/H0LYhnsGV8KlcFTsn52v7Qdm5qQH52Q/A8WXg3whaPveP3Rr7NGZej3k8veFpUfUwcu0I8Tt8uHELkUF/oeRRmTiIqfQANVY8hqO31BiWSCSSOw3l//SW+aeERJlPqDN1OqiZ1CWnz5D+9ddi3fvtt7D0USebvz/yPeFp4ThYOvBh2w+x1FrC1o/g5ApQ1gfPZ12CjleXHBL7j24ZwtjO994A/E7Cv5orQyY0ZfeyKI5tSyTRvx2ZbrVoeWoe1ZNi+Lh3AkNCKvNFYjx1z23llbLXya47kV+O5vPU/IPMfqQpLcLcK/o2JBKJRHKHUlKkytpY21lcOThftUq5WfyOxB1ivVNwJ9jxrVg31ujN5O1qstaYNqF4OlpzL6IE6JVERCtbHXuWRxMT8oAI0I9f9AfvDMvntYAQvo07xyzPX+kQ/xifrT9Dr7p+2FpdXs9fIrlfkMF5ieQWaNId/CuGwxvihYatIl/jEaDKowRUc2XpmaVM3jMZo9ko3NsVs1EHq4vB5ks4OAvCFZNYrRo0dva/4ucWZGeREnWW1OizpEadxbdqdVr0Hyq2bYzMwSPzzCUZ7+4BwbgHBOLi7Ytf1eoXt9nZXTaIfqtQjPWUzPu/Y2PvQMMevS8bRCnOy72kTZHL8QmrQkZCHIbSUjzKMiEpkx0Lj4nt9bs9SKdHnxLrirZ90qmTeIdVFp9xWYKaQbep8NdrsP4d8K0Hldr8Y7cwlzDmPzCfZzc+y6msUzyy9hE+bvcxbSu1Ld/n7IFU9q9N5PCWFFHmV7djADqdtPqQSCSSO4VTu5OJO5GFzkJLx5HV0SpyNmVlJI17U5SpO3TsiHOfPmLf/Sn7+fHoj2L9nRbvEOAYAKf+hM1T1JM9+Ck7y8J47tf9GE1m+jcMEHI2//CQkdx0lEnxdsOqEdrAk03zTlKQ5UF4g7EEJGxm+txVfNM9h0equfNulhW9Eg8wxfM1Sqq8y9KzJh6bs595jzWjUbBrRd+GRCKRSO5ASovUzHlru39mzpecOl2eOX9B0kZJwPO196WmtRccXSLaV9r05lxGIR4OVoxpq5qn3ss06h4i+uZtC8+QENARg86WiQsW8O4wAx+5uzEufROPONZhVm4zvtsSyctdq1X0JUskFYoMzkskNwklcHx85VH2rE6gFFWiJaiWuyi7vrD9m8Pf8MNRVXOud1hv3m3xLpa6f3bygvh9sPp1db3TOxDW8ZLNijTMiW2bSDx1nIRTx4U8zd/Rl5aK4HypwchHm2JxdW9Ht+Y1ePTBFkLD/W4MFijXrGTv/x1lgmH4B5+JDPy8jDSmzNtE9NkoqloVUNUiD9/Kqua/Qlp0FL+9P/78cUEE1KiNf41aBFSvhaP730z6mo6BxINwdCH89gg8sfWyEyNedl7M7j6bl7e8LB7Ent/0POObj2dgVVWXWJFG8K7kROq5PCGZcHxDFG2HViOovtQdlkgkkoqmMKeUHUtUOZumvSqJCjeFjO9/oPTESXTOzvi+967oe3JKcnhz+5tCQ/ahyg/Ro1IPSDsJy55QT9b0CcI9ejFmxl7KjCa61fLmw/51RLBfcvsIrOHG0AnN2Lk0khM7kkgI6CCy6J9aP5+90dG829GGs1b+vJh6io9c3oBK77H0nBWjZ+1jwZjm1Pa/xko7iUQikdw3lBaez5y3/2f4rCQiQixtatUSy41xG8WyU1AnNEqinbGUMu/6vH1AiQ+YeKN7deGXdj9Qp32AiIVsmnuSFN8WlFk7M37hTCYPtSfMsYy3i2ewWRPE99u09G8UQLC7+hwmkdyPaMxKxPA+Ii8vD2dnZ3Jzc3FykjITkptDely+mBVOiVazuu0poP2zLQmpowZ89SY97+56lxVRK8T7J+o+wXP1n7tygDw/BX5oBwUpULMP5gGzyU5JJj8zneA6qo698qf73RMPX8wk12jwCAjCO7SKyAz3q1Id79DKzNsTy4Tlx/B2smbrax2wsby3S8YSc4rp9MkWSvQmZo1ucomWbHT4fjb9/L2Qx/l/FLmejo88RWjDJmpDWRHM7AqpEaq8zeg/wfKiLv7fUX6/k3ZPYnnkcvF+TJ0xPN/gefH7VaonTu5OZufcw5RpVC36yo29aNW/Mg6u6nuJRPLfkH265L+i9KGrv4sg5mgGXsGO9H+9EVqdluJjx4kZPFiYuvt/9ilOPXqIfRWfkS3xWwhxCmHRg4uwU/xgfuoI2ecgpA3HO89m2MxD5BbraVPFgxmjGmNtcW/3t3c6ccczRRZ9YU6ZoqGHf9J2bHJW8M2DevzdNUxLSsDZ1oM3bCawONEdVztLFj3ZgqreF83gJRLJ7UH255I7FUOZkR9e2CrWx3zWFivbi4F1fWoqke3ag1ZLtQP7MdpY0m5RO+FLM7vjNzT6dSQUZzPbdwLvnqtBwyAXfnuq5X03ca88a639KQKD3ox9QSL+sd8ybUA+E0oyCDH40S1/Aq2rBzBz9PlxuERyH3J/TNlJJLcQRaf2jy/CxYy6zlhKcOxftHpnCE7nA/MFZQUis3p38m50Gp3IrB5QdcCVT6gEhRcOozgngziLesRm1Cfm+cfIz0gXGu9PfDdHBH2VV70uPUTGuH/1WkKaxtru0tnmEr2RbzerWYHPtK98zwfmFfxdbBnZIoQft0Xz2YYztK/mWT4JEtqgCaFfNaEoL1etODipvI6RHnNOBOxtHC5K3cSeOkO0ti8hpdkExIdjufwZ6D9TPHz9P4rm8KSWk0T54ndHvuOniJ9ILUotr4yo2coPt1Mb2LM8ikS/NkQeSKMgq1QEgyQSiURy+zm7P1UMFrU6DR1H1hCBeVNZGcmKnI3RiGOP7iIwr/DLyV9EYF75X/9Ru4+w01jA4pFqYN4liNNtv2b4z2pgXhl4/zCikQzM3wEo1YtDJzZn55KznNyVLLTorTzq8fKqxWysFcGQJgF8kprMh2VvYuf1OrPTqjB8xl4WP9mCSh4ye08ikUgkUHI+a16j1WBpo7ts1rx15cpo7ezYFr9FBObdbdypH71HBOaLnMKYdK4aSjx+Up/a911gXiGkrgcPvdqIVV8dphB/Yiq/xhvLvuPj3mYmm+KZaDmft049yppjKXSvrXr8SCT3GzI4L5H8B5QsugsBX6VUq3mfMM6tCydg5fs4Bbrj2KqF2JZamCo0yU9nn8bWwlbVJA+4qEn+D0wmwj8exfHTRlJLmiuPAXBSdXvXWVjg5h9AaWFheRC51aCHr3qd32+NIjm3BF9nGwY3uX9c0J9sG8r8PbEcTchl06k0OtW41GxXMYit0rSleCmUFhWRdOakqDS4wJk9Ozi6aQuHqIROE4x//FmC458jbPA43PwC/lH1oLx/pv4z+Nj7iCx6pUoirSiNT9t/iqOVI54D+1L96/b4Je8itud4YZRzue+TRCKRSG4tRXllbFuk+rA06RmCu7/ap2Z89RWlZyPRubvj8847ou1YxjE+OfiJWH+tyWtUd60GfzwLMdvByoHozjMYMv8MOUV66gW6MPvRpthZycfrOwVrWwsx+VKlqTdb5p0kL9OFE7WeoE7GEer8tpixPXx5siyTifmTcHJ9li+zmzP8pz0igz7Q7VI/HIlEIpHcz3rzFv8YrxVHqB5nNnVqi+UfkX+IZc/gLui2qkawHxX3woSWUc2D72vpNK9gJwaMa8Kqzw+Rne5CVNWXeeav+XzYKZwpNlvpa6zK+OXWNKvkhqu9VUVfrkRy25HOhBLJdZKXUcyqr48SE5FR3lazlQ8193+NTWkObsOHi447MjuSh/96WATm3WzcmNVt1j8C84pBafSh/RgNaqfPxnfJjT9LaolSUq0RuuiNevah37j3eHbmQgZO+OCS7O6rEZ9VxHdbosT62z1r3BdZ8xdwd7AW2fMK09ecFrr7V0Mxwa1UvxE6i4v6/1WatqBOp244enhiNGuJK3Jh+944Zr/8NLPGPimMaC9Hvyr9+KrjV2IyZk/yHkavGS0maXROTjg/+CCOBQk0z1mOX5WL2vmH1saycc4JSgrOfw8kEolEcsvYtvC0qHbzCHSgQbdg0VYUHk7mzJ/Fuu+k97BwdRXZb69ufRWDyUCX4C4MqTYEtn8Mh38BjY74zt8x4Pc8spXAfIAzcx9tipPNFXxkJBVKYHU3kUXfqHswGo2ZDI96ZPtP4IU/W7M+1Y2J7s48U/IV7zmtICm3mME/7CY2s7CiL1sikUgkd1Bw/v+5kDlvW6eO8KbZkrBFvO9dUCyy5tOtA5mT35hAN1te716d+x0nd1v6j2tKQGVHTDprzlV+jEG7ejNd78Vzdj8TUHic91Yer+jLlEgqBJnaI5FcI0ajicPr4zjwZwwGvWI+WkxwLXdR4la0axdlsbFoHRxw7t2b/Sn7eXHTi+Tr84U+7XedvyPAMUCcpzg/j6gDe4k6uJeYo+EYSksZ8PYUgvWHYecX1HK2w6PlIIJ7PoGj299MSq+T91aeoNRgomWYOz3r+HK/oWTPLzkQz+nUfD5df4ZxPWpc1/Eh9RuJl5LVnp2cRMziKZw7eoT4IhcwlFwySRK+ZqUw2a1UrxGWNja0CWjDrO6zeHbDs5zJPsPw1cPFdyBw+DByliyhYMN69ElJWPr5UVKo58DqGAxlJmIiMmk9oDJVm/nITHqJRCK5BUQeTCPqULooK1cyqnWKnE1xMclvjhPVa859euPYqZP43z9x10QSFW1UB3/ebfkummNLYdMUcZ7U1pPpu9aWrMIy6iqB+cea4WwrA/N3MhZWOpr3DaNKE282/3yU1ESIrTSQlolNKI5dwJOt4ng/fwleDuk8nzuKwT/sYcETzaXEjUQikdzHXJC1sbG/tI9XpGWLj6uBZJvadVge85eYzK/hUoVqB+aK9vfz1az5D/vXxf4+MYH9N6ztLOk1thG7Fp/iyNYUkv270u5kAD8GzWKi02c8c9iVdXV86VpLyttI7i9k5rxEcg0kR+aw+P397FkeLQLz/lVdeODpOiIwr5A9/xexdO73EH+lbuHJ9U+KwHwDrwbM6zEPT50rEZvXsXTqRL5/cgRrv/+CyP17RGDewd2DkrPbYNXL4hye3V+k9oi3bigwv/lUGhtOpmKh1TCpT637MtCrlMNN7VdHrCv68xEJ541zrxPlZ+fm50/DF76hf7dQnq6yh15uuyFFzZQwlJWx/dc5rPx0Kt+OGc7Kz6YJSZyqDmH80vMXMTmj6M+P+msUR53zsGvWTOgZZ53/zigPen1eaoCbn73InN8w+yQrvjhMTmrRTfxpSCQSiUT5H6tkzSs07B6MZ6Bq/Jn26Wdigt3C2xvvt98WbUvOLGF97HosNBZ81PYjnJKPw/Knxbasek/Sc3dVMgvLqO3vxLxHZWD+bkKRMer/dgvaDq6MpdZIvlMIRtfXeXBTf6YVBGFruYtF9p9SlJchMuij0i9fKSeRSCSSe5/SIsNlM+dLz5zBlJuLxs4O66pVWB65XLT3NlhASS5nNSGsMLVkRPNgWob993H9vYji89N6aE26jKyCzmwgx7Um1dLfZENcDSbbfsSkZQdIzy+t6MuUSO6/4Pw333xDSEgINjY2NGvWjH379l1x359++ok2bdrg6uoqXp07d77q/hLJjaBkNW+ef4plHx8iK0nRerek0+ga9BnbAFcfNZNKya6zb9sGq9BQ/moAb25/E71JT5egzvzY5UdcbFzISUlm3fdfEnP4ICajEc+gEFoMGMbD077gidcep9rJ98FshHpDod0bN3bNeiPvni8He7R1JSp7qcGH+xFlxr13PT/MZpjy5wnxu/rPKEaw/X7CulJTPLVpMK8fZEULaaK6nbvj7OWNoaxUBOaVAL0SqA+fMZ/pIeNo6NVQTNY8ueFJorvXFKcrPnqk/Hp8Qp0Z9HYTmvcNRWepJeFUNgsn7xMZ9UaD6Wb9OCSSW47szyV3MtsXn6E4Xy8mQxv3UKXPCvfsJXvePLHuO2WKkCA7lXWKD/d9KNpeavQSdbR2wqgdYxm5wd3pfLQjGQVl1PR1Yr6SMW8nA/N3G0pyRZ0OQQz/oC0hYVaYNTrSfDtTP3UCpw53ZqtVDMvt3sO+IEZk0J9Nza/oS5ZIbjuyT5dI/i5rc2lfX7R3r1jaNWpERO5JTmSewEprSY+Tm0X7u6VDCXR34M0eUs7mSlRtGUj/t5phpyumxMYde+3LREV24Fn9h7y68AAm0w2M3SWSu4wKD84vWrSIl19+mYkTJ3Lo0CHq1atHt27dSEtLu+z+W7ZsYejQoWzevJndu3cTGBhI165dSUxMvO3XLrk/MuZP7EgS6zVa+TL83eZUb+57SSa6sm4/ZAA/vF6TL5IXUinRjtGnGtDtTCVsLGzEPl6Vwght1FQYuD7y2feM/OhrWg4chrdNAZqFQ4VMClV7QO+vlBPe0DV/vSmS2MwivJ2seaFTFe533uhRHWsLLXvPZfFnRPKNnczSFoYuBO/aUKgE6B/C1lxE+5GP89iXM3h46uc06d0fJ09vURVxevd28mIS+LHrj0Kv2Ggw8FLxXMIn9iNo7txLvkeKtEKj7iEMfacpgTVcRVB+/+pz5GeW3PgPQSK5Dcj+XHInc+5oBmf2pYoutuOIGmIi1FhQSPJbb4ntLoMH49CmNYX6Ql7b+hplpjLaBbRjZEAXmNcXirMo8KhL55jhZBUbhcb8r2Oa4WInTcvuZuxdrOn5WmseeKIGdhallFq7YnR+FPcjbzIv14tvHN6lWtEBhvy4h1MpeRV9uRLJbUP26RLJpZnzNv+XOV+4V518sm/WlF9OqhXRPcz2uBvK2GBswH5NPb4Z1lDK2fwLnsHODPu4G37u+WKi3GDfl8KYwTQ/N41vN5+p6MuTSG4bGvMNpZLeOMosfJMmTfj666/Fe5PJJDrz559/njfffPNfjzcajWJ2Xjl+5MiR/9heWloqXhfIy8sT58/NzcXJyekm343kXkCZoVW0aC+w+/dIgmt7XGLg+XfSCtN4Z+HzaI6nEpxih6VRnfOytrPn6Z/mX2IyegkZkTCrOxSmQ3AreHipGvy9AdYeT+HJeQfF+tfDGvBgXb8bOt+9gqI5/+XGszjZWPDnC20IdLO7sRPmp8DP3SA7Rg3Uj1oJdm7lm5V/q6lRZzm9Zwf1OvfAxccXk9nEJ/PfoHTdMc75FeLduB4T+k7H9jK/c+X4s/tTRYZnvU6B5e0mo0mUAUokdyK3uj9XkH265L9mvS14by+FuWU06BJEy/6VRXvyhHeED4ilvz+V/vgDrb0dr2x9RcjZeNt581uXGbj8OhTSTlDsGEznnHEk6p1oWsmNmaMa4yjNX+8pDGVG9s3bx5G9eZi0lmhMRrQlW/CrvJD9pQ/yh2UPZj3SlEbBF/t7ieReRY7RJRKVLb+e5vi2RBo/EEKz3qGizWw0cqZ5C0z5+TjP+56eJ1/CYDawKDGZqqVGupV9yIgHuzC6VaWKvvy7BmX8u+unNRzdr8Gks8JCn0ep3RqavjSF5lIWSHIfUKFRnrKyMg4ePCjK3sovSKsV75UZ92uhqKgIvV6Pm9vlH5SnTp2Ks7Nz+Uvp9CWSK3UIp/emiAF8UV5ZeXuLhypfMTD/13uvM2fMaKqsK6RyooMIzCvyJs37D2Ho5I+vHJjPjII5D6qBeZ+6MHTBDQfmk3KKeXXxEbE+umWIDMz/jec7VqZBkAt5JQaeWxBO2Y1KxTj6wIjfwd4LUo/B3N5QlFW+WcmI96lclXYPPyoC8wpajZaa2V7YlumoGeOE+2/n+PSZQWz46UvyMi7NQlKOr9rU55LAfOq5PH6ZuIe445k3du0SyV3anyvIPl3yX9j5W6QIzLt429G0lzpQLti2TQTmFXynfoDOwZ5Zx2epOvNaCz5u9T4uS58UgflSG096Zr0iAvPtq3ky55GmMjB/jxrGtnysBUPfbY63bSZmrQ6jXSdSYj7CPyedF/XfMWrGTjafvnzmsERyryDH6BLJRYpy1UkkO6eLlXIlJ06KwLzWwYGlhIvAfAO9iZplen4y9qRyzYaMaqnK50muDWX82+qJHvQY7Y1NSRIGSyd0+kGET5tLdNJ/846TSO4mKjQ4n5GRIWbVvb29L2lX3qekpFzTOd544w38/PwueXj4O+PGjRMz8Bde8fHxN+XaJfcW+Vkl/PntUTbMOiGMOA9viLvsfkW5OUKaRGHHuc3k7diJ1qjFpDVTqU0rBr/3oZA3UeRr3AMCr5wxP7sn5CeDZ3V4eBnYON/wxMK4ZRHklxpEEPrtnjVu6Hz3GpY6LV8NbSAM+47E5zB9zakbP6lbqJoxb++pmsPO7XNJgP5ydH9mLA+9MRGPBrUwaczY5Jk5smEdPz33GIsnvSX066/EgdXnyMsoYeVXR9g4+4TwQ5BI7hRuR3+uIPt0yfUSdyKTk7uSQcjZVBcBWGNuLsnjJ4jtriNHYN+0KXuS9/DFoS9E27jGr1N/y6cQv4cyC0ceyn+FaKMHPWr78OOIxtha6Sr4riS3Ehc/ZwZ8NpBOPRywLstAb+WC0fg4psQHGF/8I2/PWccfh6VUh+TeRY7RJZKLXEjas3e2Lm8r2LpVLK2aNGTB2cVifURWJjEmb1a4jOCjgfUukS+VXDshrRow6JPuOBVtA7MJk64+6yZu5NTumIq+NInklnJXC2BNmzaNhQsXCo07xajmclhbW4uXRHI5zCYzx3cksWtZJPoSI1oLDU0eqESDbkHl+5hMRmKPhBOxaR1RB/fS88U32O90jr0zpjI6RYOjwUjTpb/j4aZmSF+VjLMw+0EoSAHPGmpw18Hzhu9j/p5Ytp5Jx8pCy0cD6opgtORSAlztxM/miXkHmbHjHM1D3elc89JBx3XjVV39HSq/05Sjqi7xiOWXSNz8HZ2FBaENm4jX2YidRD01lmQXR7IcbMnMT8fS6uL/quyUJFy8L/obdH28Nnv+iOLo5gRO7Ukh9kQW7YZWJayB143dg0Ryl/TnCrJPl1wPZSUGYequULdDAL6V1Sq4lPffx5CWhlVICF5jx5JUkCR05hX5sb5hfRh4YjOcWYNBa83wwrGcMAcxoFEA0/rVwUL2r/cN1fs0JbRzXdZNmUd8RiBlNlXILBjLY8bdLP11ATlFA2RmpERyGeQYXXIvBuftnC9mzhds2iSWh6tZka/PJ7RMT6eiYp7Uvsa3o1vjJKvrbghHdw+GzhrPgrGPUpbbkxJbTzbOiSZmdyztn2iJjYP8+UruPSp0hOHh4YFOpyM1NfWSduW9j4/PVY/9+OOPRce/bt066tate4uvVHIvkptexB+fh7P119MiMO9dyYnBbzUVenKKOWduWgo7F88XWc3Lpr3L2X27MBmNLNn0E9P2TqXnXiO2egONhz16bYH59DMXA/NeNW9aYH7NsWQmrjgu1l/rWo3KXo43fM57la61fHiklTqQHrv4MBEJN6FEzuv8JIudByQfUTPoC9L/9bAqdVpRvWkLmkclYWeIZVHgIWZEzBBVEMX5ecx55RnmvPosB/9cTlFeLpbWOtoMqkq/Vxvh6mNHcV4Za344xpofIig8X24pkVQUsj+X3InsXhZFQVYpTh42NO8TJtry1qwhb8VKRaMBv2lT0VtpGbtlLDmlOdR0q8nbGRloIhZhRMeTJc+x31ydZzuEicldGZi//7Cyt+HBqWN48ElfnIsOi7YSXQua59Qia/5CPlx5XHgVSST3ErJPl0hUlHFZUW7ZJbI2+pQUSk6cUHRY+MFhv2h7KieXJcYOjBo+ikoe9hV6zfcKFjoLRnw5F5s6f+CetkW0RZ0xMu+NTZzckSB+NxLJvUSFjjKsrKxo1KgRGzduLG9TzGaU9y1atLjicdOnT2fy5MmsWbOGxo0b36arldxrHN2UQOKZHCystLQeWIV+rzXCzc8efUkJS6aMZ8bzj7Nn6UIKMjOwcXCkWufOHH/QjoV+B2hwTkNQBmjt7HAfPOTfPyzhoGogepMD85FpBbyy+AjKuHBw40Aeay1NZ/6NcT1q0DTEjfwSA4/M3kdqXsmNn9S75sUAvZJBrxj95sT9+2GPPSGWbU8Z0VAqJBVe3/Y6cWePo9HqyEyIY8vcGfzw1ChWfjaNmMMH8a7kwKC3m9CoRzAarYao8HRiI6QOvaRikf255E4j4XQ2x7ap0iMdRtQQE5z6pCSS35ko2tzHjMGmXj0m7Z7EicwTuFi78JnRBZvDCzCh5cWyZ9hsbsTkvrV5rVt1WZ5+nxPYuB7D54ylapVDOORHYdZaY2VqitOKM0yZto7iUlXyUCK5F5B9ukSiUlZswHjeq+xCcL5g82axzK3iQ6JlISFleqrmO6LpPo3WVaRx6c1m+Ku/oumThXX2J9gXJFJmtGTT/DP8/sFuspILK/ryJJKbRoWnAL388sv89NNPzJkzh5MnT/L0009TWFjII488IrYr7u6KJt0FPvzwQyZMmMDPP/9MSEiI0L1TXgUFBRV4F5K7hb/PsDbrE0rVZt4MmdCMsIb2aLXqwNvSxoayIvUffXDdBvR88XWaT3qZj52Ws990EmdrZ16NrCq2uwwcgM7J6eofGrkR5vSC4izwa3Bep/zGO+6CUgNPzz9IYZmRFqHuvP9Q7fJ7kFwZRfrn50eaUN3HkYyCMp779RB64w0axF4I0D+6BpwDITMSZnaDtKtr29vWroV9yxZojWYmxTbCQmPBmpg1vBk/nQc/+oDOjz+Dd2gVTEYDZ/bsYOnUiWLSKDX6jMgCHTiuMXXaB1Cj1cXKDZnBJ6koZH8uuVPQlxrZPO+kWK/V1p+Aaq6YjUaSXn8DU14eNnXr4vncs8w8NpMVUSvQaXRMt66M3+GFmNAwtuwp1mtb8f3DjRjRPLiib0dyh6BM0HR55VW6T2uLW8F8bIozMOmccY+zZOaLyzkefm1a3BLJ3YDs0yWSi5I2VrYWwrNGIe+vNWK52l+tlH46O4+DDT5kUKvqFXil9zaDR32NS/+WxHpMJSj2d7TGMpLjS1g0aQ87fztDabGcIJfc/VR4cH7w4MGi/O2dd96hfv36HD58WMy2XzCgiYuLIzk5uXz/7777TjjIDxgwAF9f3/KXcg6J5EooM977/zzHqq+PlAfotTozAVUz+Ovrd5n5whhKCi8+PHZ69Gke/2oGA96ezFH3FB7f9ASZJZlUca3C/MqTsTx4AnQ6XEeMvPoHR/wGvw4CfSGEtr9pgfnCUgOjft7H2bQCvByt+XJoA1lufx04WFvw3cONcLS2YH9MNm8ujcBwMwL0HlXg0bWq0W9+kppBn3Dgqoco2ZsKnhuO8HOzz/Cw9SAyJ5IRmx8ht4YDD0/9jBEffkmD7r2wtrenMDsLF2+1pNgz0JHGPbyUWadyfeVFU/YRsSVB+ClIJLcT2Z9L7hQUfw7FQNvBzZqW/VQ5m8wZMyk6cACNnR3+H01nY9LWiwawDjVpcWSZCMy/rn+CbTYd+HVMcyGFJpH8P96B1Rgybya+bffjkfw7OkMxGtzY8sMJFry7mfS4/Iq+RInkhpF9ukQChf8vaZOcTNG+fWJ9Ww0z9UpKsXIZzsC+fSv0Ou8HBgx6m2otXyWi9V84JU/BPTMCk1nD4Q0JzH9rh6iWNN2M8bxEUkFozPeZWFNeXh7Ozs7CFRfnP+cAAIsSSURBVN7p3zKeJfcEabF5bJp7isxENfjefrgfWQl7ObZ5PUW5OaJNo9XS9/UJhDZoUn5cqbGUqXunsvTsUvG+W0g3JrWchDY6nrQPp6NzdcX/kys8cCp/Vru+hPXvqO9r94e+34PFRSOZ/0qpwcjjcw6w/WwGTjYW/PJ4c+oEON/wee9H1h5PEdUHShy7a01vvh3e8OZMchRlwS8DIfEAWNhCvx+gZp/L7qr8C44ZNJiS48fx+2g6pR2a8MqWVzicfhgNGp6p/wxP1H0CrUaLoayMlMgzBNSsXX784vfGkZeRRp1O3UFTkwN/qfqgflVc6PBwdVy87W78fiSSOxTZp0v+n6SzOfz+6SEwQ6/n6xFUy53iiAhihg4DgwHf998nsX01Rv81mhJjCcNtAnnz5E5x7Bv6MRxwe5CZo5oQIjVjJddAUkoEyyc9g1dSJ9K8WmHWqpmVYXVcaD5A9sESybUi+3PJnciZ/Smsn3kC/6ou9H25IZkzZpD28SccD4T3HrZgUo4XfZ5bh1an/u+X3FqUcfMPi37HMe51DiZb0SO8JglB/SiyU5Mp3HxsaT2oGoE13Sr6UiWS60YG5yX3LIYyI/tWnePw+jgRK7e0zsPObh+p5yLKM40dXN1EULNOp644ul3MaI/Pi+flrS9zKuuUCJC+2PBFHq396CWas+ayMjRWlwm2G0ph1Vg4/Iv6vumT0H2aMJ+7UYwmMy8uDGfV0WTsrHQis69+oMsNn/d+Zv2JVCFtU2owMbRpIB88VOfmaAuXFsBvj8DZder7juOhzavCPOj/KT52HJ2jA1bBqnyC3qjnw/0fsuj0IvG+fWB7Pmj9AY5Wl5r9KsaxM18cQ2mhKsOk1VngWak+eVmVMZl8Rfll016VqN8pEK2srJDcg8g+XfJ39GVGFk7eR156MTVb+QqteVNhIdH9+qGPjcOxe3d0U15n+OrhpBen01rnwleRR9GaNbxteJTkykNEJZqTjWVF34rkLsJsMvHHby+QvuQoroaepHqriR4azEJ2rmmvMOxdrCv6MiWSOxrZn0vuRMLXxbFrWSRVGnvR5bFaHO7cDZvEeL7voUVTVcOno3agtZNj8duJEr78YtkWqp14icX2JbTdaol/QWvOhTyAwdJB7BNQ3VVIGPtUkgmMkrsHGZyX3LOZc5vnnyI7pVAEWpUOtUFXd+a98aQYRAXVqU/9Lg8Q2qgpOguLS47dELuBCTsnUKAvwNXalWltptHSv+W1fXBhBix6GOJ2K+n4alC+6ROXDcheL3klesYuPMzGU2lY6jT8PLoJbarcuKms5NIM+ifahvJm9+o3R7/faIB142Hvd+r7uoOh91dgcW2D9OWRy5m8ezJlpjL8Hfz5pN0n1PKodck++tISTu/azpENf4ms+gtY2Xpi1jZHZ1UFr2BHOo6sgbu/+sAikdwryD5d8ne2Lz4jzN4dXK0Z8k4zrGx0JL/5Jrl/rMDCxwePJXN5dNcLQjosDGvmx0RiY9Lwsv4ZfFo/zBvdq6OT3i2S/0hq7C5mzniCGnt9KHXuRaZ7HdGu05qp2zmYBl2DsHW48QpKieReRPbnkjuRLb+c4vj2JBp1DyYq7QgNP32bUgt45VkNC3v+jGdQ84q+xPsSJYT52V9H8N/9NmnuEYSnOzJsiw1FLj1I8G+LWavGd0LqetCsdygeAXIMLLnzkcF5yT2HojU2b/wyshL2oNMZ6DX2bSrVU4PYipSNX7WauPn5/+M4JVv504OfMv/kfPG+gVcDpredjo+9WialT0wke8EC3EaNwsLzMkHxlGOwcCjkxIG1EwyYBVU635R7yikqY+hPezmZnCcMTT8fXJ8H6lw0AZXcOPP2xDJh+TGx3qWmN18Pa4C1xU0qUdw/E1a/BmYjBDSBgXPA+Z/fQYWy2FgRRNJaqwH845nHhcxNYkEiFloLXmn0CsNrDL9sdn9qdCRH1q/m5M6tGEpLqdftUWKOeVBaZCCskQfdx9S9OfcjkdwhyD5dcjU5m+wlS0iZ8I6oXPOZ+QMv5vxIeFo4HmYd8xPi8NBrecH4El0eGs2ARgEVfQuSewF9Mb/OHcmJiGO0ORxGum8fcp1V3wMLS6jbMZj6XQJlkF4i+T9kfy65E1n+WTiJp7PJquVAy5XP4ReXz8Z6GnxeHMmAlm9W9OXd1yhhzK83niVr85f0tl/CJFdX6oTreOCgC0kBD5Ds00xNlgQqN/aiSc9KuPlKyULJnYsMzkvuGUqLizi1YytH1v1JelxMefvjX83E2Us1L7oSyQXJvLrtVY6mHxXvR9cazQsNX8BSe7G0PWXSJLJ/XYB9u7YE/fDDpScInw9/vgKGEnCtBMMWgWe1m3JfuUV6Rv68lyMJuXg4WDNrdBOpMX+LWB6eyBtLjwqJmx61fYS8geXNkoOJ2gRLRkNJLti5Q/+ZENbhkl1SPviA7Pm/4DNxIq6DB5W355XlMXHnRDbEbRDvOwZ2ZFKrSThbX/57UFpUyMkdW6ndvjOlRWZ2/x6FrcMxYsJ3U6/LA1Rt0RorG9ubc18SSQUi+3SJgr7UyMIpl8rZlJw8SczgIUKCzv2lF5lU5RhbE7Zib4I5SckElGl50+otHhs5WsrDSW46R3b+xurd49Gf1tLqdC0SAntS4BgktllYaqjTIZAGXYKwdZRBeolEQfbnkjuRWW/upCinFGyW027dOnQmDfOeC2LKs38JPzBJxbN4fzyLly/jA4uvWO1WxkqNI8M2m6kX48m5Sj1J82pcvm+leh406h6CdyX5P0Zy5yGD85K7nuTIGNb9+CvZSYcw6ktEm4WlFdVatRXSNT6Vq171+DXn1jBp9yTy9flC03tKqyl0DOp4yT76tDSiOncRg/ygOXOwb9b0/IZiWP2qGpxXqNwZ+v0EdjfHhORwfA5PzTtISl4JrnaWLHyiBdV8LtUdl9xcdpzN4NHZ+ykzmmgQ5MKXQxoQ6HaTDN2yomHxSEiJEGq0dHwbWr9S7keQNWcOqVOnYRkQQNhfq9FYXpwcUv5VLzi1gI8PfIzepMfP3o+P2n1EXc9ry4af/cozZCbEiXWdhS2eoU3p8vhgvILVYIFEcjci+3SJwvZFZzi6+aKcjYWhmHP9B6CPi8O+bVt+fNiDP86twMps5sfkNCqVWPKN7/s8N2IYrvYyOCq5NaSlp7F+zuPs1Zyk8n5L6iXUIja4J/l/D9K3D6R+lyDsnOT3UHJ/I/tzyZ3GyYRcNk05KNYDc16myuFSzgZqaf7HZrzsvCr68iR/Y/vZdF6bv4M3TT9Sy2Y/kzzcKMqwYtgWI0FZfkKPPt2jXnkmvaJJ37BbsFjeFK85ieQmIIPzkrua6PB01v20mMLMv8R7Z29fGnTrSc12nbB1uHoQu1BfyAd7P2BF1Arxvo5HHT5s+yGBjoH/2Dd1+kdk/fwztg0aEPzrL+o/8fQzquFn6jH1H32Hty4JtN4oW06n8fT8QxTrjVTysOfb4Q2p4Su/s7eDzafTeHFBOHklBpxtLZn1SBMaBrnenJOLCZ3XIHzexQmdPt+Cozem4mIiu3TFmJGBz+RJuA4c+I/DFZmb17a+Rnx+PBYaC56q9xSP1XlMSN5cjaK8XCHrFL7mTwqy0svbvUNr0bzfQ1RuIjUTJXcfsk+XJJ3N5vdPwsW6ImcTWNONxBdfIn/dOix8fVk1oT0/xy9BZzbzeWoGIUVO7Gj6PcN6dLg53iISyVXQG038vnAmJE7jD7MVPbZpCM6pxbngB8h3Ci4P0tdqG0D9zoE4uNpU9CVLJBWC7M8ldxKrI5L5YMERhmZZodUU0mzH69jqIXPy07Qe+EJFX57kMpxKyePJeQdpmL2W9yxns85Jy2cuLoTFaBi+xYR7oTexQV2FabtZo0rXKr5s9ToHEtbAC52FrISQVCwyOC+5q8hLT+PoxjXYuXiTFudP1KE0zGY9GtNmWvZ/kPpdW6K5huD4kfQjvLntTRIKEkRJ2pg6Y3iy3pOXyNhcwJCRIQKm5uJiAn/4Hoe2bWHfT7B+gipjY+8J/WdAaPubco/FZUY+XneaWTvPCYPSNlU8+O7hRjhYXz34Krm5xGcV8eyvhziakIutpY7xD9ZgaJOgmxfMOTRPrbpQvkOKzI1iFFu9J5mzZ5M27UMs/fwIW/MXGqt/ZtPll+WLao81MWvE+3qe9ZjaeiqBTv+cWPp/FEPkvcu3sG/FCvTFkaLNzb8+w99/Fytb+R2T3F3IPv3+pqzEwKL3918iZ5M5azZpH34IlhbsePsBvixdLfadlJ5JWIE/JQPm07T2zZGdk0iulZ0RZ4n//TWSnMPZl+9Av21mfAtqEhPyAHlOIWIfrU5D1abeNOgSjJuf1MWV3F/I/lxyJ6CMwyf/eYKFe2OYYNxGUX4PjKZYumybTk6wK83X7JSZ1ncwucV6Xll8mOMnTzLF8mcaWR7hexdnFjs40OKEmYE7TDgVuxEf2Ikkv5aYtOo4287Zijrt/KnZ2l9WskkqDBmcl9zxKMHEmKPhHF73J+cOHcBsNqG1cMfSYSRanZYGXYNo0jMEC8t/N+80mAzMiJjB90e+x2g24mvvy9Q2U2nk3eiKx6ROnUrWnLnY1KtLyI+foVnxrKofrhDaAfp+B043x5w1Kr2A534NF8avCoMaBzClbx1hAiu5/RSVGXhq/iG2nVEzzVuGufPNsIY3TwYh7SQsHQOpiswN0HAkpnYTiXzwIYzpGfi8994l2vN/R/nXvSp6laj+KNAXYGthy+tNXqd/lf7X9NBYWmxg8/x9nNqxAZ1lKE6elWg/vDoOLkXsXDRPaNMH1a57TZNdEklFIfv0+5tNc09yclcyDm7WDJnQDP2BPcQ/+SSYTBwe1owPgtVy9AkZWVQ21idozC94uEp9eUnFkJZXwvdz59Ep61OWu5WSmGHL4K0m3EtqiGy+HNeLMowhdT1o2DUI38ry+yq5P5D9uaSiOZaYy4sLw0lIz+YLy2+wLq7BiYKH8EneQc3TC/D58nNcu3ar6MuU/Asmk5lvt0TyyfrT9NLsYpLVXLIti/nU1YVttra0Om6m/24zHnn2JPq1IdG/LWVW6v8cJXu+ShMv6nYIxDNISglLbi8yOC+5Y1FkOI5v2cCRDX+Rm5pS3q61DEJnVRev0AZ0Glnzmv9xRmZHMmHnBI5lHhPve1Tqwfjm43E6/8/4cuhTUojq2k1ozQeOH4VDwndQkgMWNtBlMjR5/KbI2Ag98X3xTFp1nBK9CQ8HKz4aUI8O1aWeXUVjMJqYtyeWj9aepqjMSKCbLZ8MrE/TSjfHVwBDKWx+H3Z+qXwThKFwlrkvqd8vwsLPl8pr1lw2e/4CSQVJvL3jbQ6kHhDv2we2590W7+Ju635NH59wKovN80+Rl1Ei9JoDKkdweN0qsc3V108E6Wu164yNg8PNuV+J5CYi+/T7l6jwNNb8oMjKQd+xDfCwzCFm0GBM+fmcbFqJiR3jQKPhrYws6ngNpdawaWh0sjpIUrEYTWZ+3HySsi2f0Mr2T75wc0KXYMngbSZci0OIC+p8iS6ub5gzDboFE1LbHY2UYZLcw8j+XFKR8mM/bovm8w1n8DBmMNP2c0KI5vP8qTgXVKP6qfkE+xUR9ssCmTV/F7E7KlNk0ZfkpvGW5a8M0G1jr401X7q7E2Gho/lpMwN2gX+6hjTPhsQHdiDfUZWbU1BiTDVb+1GliTfWsrpcchuQwXnJHcvKzz/kzO7tYt3azp5a7TtTr0sP4k6YMJSZaNAtCJ1Oe03Z8rOPz+bbw98KI01HS0fGNRvHg6EP/msHa8jKIuOz6ZQd3EBgk7PKOB9866umr55XN5q9VrILy3hz2VHWHk8V71tVdufTQfXxdpK6o3eajt2YuQeIzyoW7/s19GdK39rYWd2kzvrcdvj9KchLwGSAqLUhmLU2BM2ahU3Nmlc91GgyMu/EPL4M/1J8x12tXXmz6ZtiAupaHiL1pUb2rogWpjgOLoUcWb+aE9s2UVZcfN0GyxLJ7UT26fcnhTmlLJi8l9JCgzD0atrJk5jBQyg7d44YP0feGl6EwULDq5l5dGvxIT4thlT0JUskl6BUSH6y4E9GZn9FiWM0n7u64Bet46FdJrzzvIgL7EyKTzPM5/1knL1sqdshgOotfLGykUECyb2H7M8lFUF4XDbjlkVwKiWfJppTzLT7EltjDs/7+lPj8MdYmG1ouv99as/+Ats6tSv6ciX/QebmvRXHWRaeSH1NJNNs51HNdJbttjZ84+HFSZ2ZBpFmeh/QUDPGSK5jCAkB7Un3aojpvC69hZWWyo28hOSNT6iTnKCR3DJkcF5yR6AvKeHkzq0E1a6Hi7ePaIuNOMzmOTPRWdajw6heBFT3vu7zns0+y/id4zmReUK8bxvQlneav4O3/TWcy2iAfT/ApimYy4rQWFhBm1eg9cvKf2lulDKDiQX74vhmcyRp+aVY6jS81q0aj7cOlSZ1dyg5RWUig175vSl+AJW9HHjrgep0qOZ1czrqklzY8C4c+JniTEusfN3Q9ZkONfuIDNB/43TWacbtGCe+9wrtAtqJ6hAfe/Vv6no4uimaY1s2UVZ4mMyEGNFm4+jEk9/NwcLyn94MEklFIPv0+w+zyczKrw4TfzJbZDX1e7keSc8/S+H2HeQ46HjtUci11zA2x8iIgQux9Ktb0ZcskVzxOfCrjWc4s20xr+nmccC5iB+dnQiI1dJvl4mQdGfiA9qT5Ncag4WdOMbKRkeNVn7UaR+As6dtRd+CRHLTkP255HaSX6Lnk3VnmLM7Rnmw4Dnb9YzlFwxmA68GhnKsyIP+x8ehM5bSy3Ur/tOnVfQlS26AP48m884fx8gqLBEZ9BNsf8PRkMVmO1u+9fDmtM5EcKqZngegzQkzRo0tqd5NSQpoS6HNRSUDVx87qjbzoWoTb5w8ZB8subnI4LykQslMjFezdLduorSokEYPPkT7EY9hNJo4vD6O/avOYTSYhZP2gDcbX3MAVG/U8/Oxn/n+6Pcic97RypFxTa8tW14Qvw9WvwbJh9X3QS2h1+fgeeMmcsqf3PoTqUxbc4ro9ELRFuppz5dDGlDb3/mGzy+59ew7l8Uzvxwio6C0XIt++oC6BLiqg+cbJnYXrHgBMtUgO5W7QPep4FHlmr77M4/N5IejP4jvvoOlAy83fllo0Svmx9eCvszI3Ld2UVKgx8pWR+3WOrKT9+Ls5U2rQQ+Xe0HsXrqQ6q3a4uYXcGP3K5H8R2Sffv9xZGM8O5acxcJSy8C3GpP+8RRMf/6B3gLGj9AR5w3jzb4MGLwI7G6S/JhEcgs5Ep/DuMX7aZ+1hMcsl7PKyYqZzo74JWp5aJeZmvFWpHg3E9l8RXbnk0s0UKmuB3U7BuJf1UVm8knuemR/Lrld0mKL9sfz6frTZBSU4Uk289xnU71wP8UaDS+F1WKXMY9RO9pjq3sI9/yzDPh6EBaurhV96ZKbkGQ37a9TLNwfjy0lPG27gSd1K7Ey5LPT1oZZXv7s0+pxLjTT9ZCJB45aYpdXRp5TJZJ8W5Hm0wSj5mLlmiI7p5i4V27kjY2DTFyT3DgyOC+57RgNBqIO7OHwutXEHz9a3u7i7UvjXv3wqdxKaGBnJhaIdv9qrnR4uBrOntcW+Nyfsp8pe6YQnRtdrsGtZMt72nn++8G5iSJzuXTnUtIOO+PR0Izt0Hehwciboi2vDMDeX31SBHcV3O2teKlzFQY2DsTmGgxtJXcOihzR99uimLMrRvgE2FrqGNAogGc7VMbH+SZIEulLYPvHmLd/Tn68DnsfE7q2T0Lb18HG6Zo8FibunsjRdPVvrIlPEya2mEiw00UtvauRkZDPprmnSI/LF++DarnRblg1nNzVLIGYI4dY+sE76rbadYU2fVjj5ugsZLm95PYh+/T7i7TYPJZ+dBCTwUzzgZWJXzGTamsXY9LAR/21RFTW8JFfdzp2+eiaqo0kkjspi/6n7dEs3LiXsZpf6Waxk1+cHJnt4oRPsoa+u000jIQc1xrEB3Qgy+2i3J2bn73Qxa3WzAcbexkgkNydyP5ccqvZcTaDKX+eEBI2is/XKJejvG3+EavSbHKt7HihSj0OFSVSJ9mKXoceJcutBo1qGWj+fNeKvnTJTUSJw7z9ewRn0wpwooA3nNYxxPgnOmMxx6ysRJB+g6UJjdFEwygzPSOsqHG2BKPWhjTP+qT5tyDLMUydJVf8ELUagmq7U6WxFyF1PLCS+vSS/4gMzktuK8rXbe5rz5ERHyveazRaQhs1pX6XHvhWqcPeVTFEbEkQvpjKAKPVgMpUa+5zTRlBWSVZfHLgE1ZErRDv3WzceL3J6zxQ6YF/P76sCHZ9BTs/B30RCTtcyU+wxaF1cwJnzLrh+47PKuLjdaf543CSeG9toeWx1pV4qn0YTjZyIHU3E5tZyCuLj3AgNlu8t7fSMbZLVYY2DcLe+sY756SXniF3zWbca+bjVTcf7D2h4wSoP1yxlP9XLfoFpxYILfpiQzGWWktG1xrN43Uex87y3ye7TEoFy4Z49q1UKlhMWFjraNarktC9TYuJYs+yhUQf3I/ZbFLv3dWNOh27UrdTdxzdPW743iWSf0P26fcPpcUGFr+/T5hX21ZyIOrkKh7es0Rs+7G7lj31tHzZ+A2a1FGreySSu5GYjEIm/HGMzMgDvG6xiAaWR/nVyZFfnJywy9HwwAETHSJAb+lFgn87kn1bYNKqUotKNYmii1urrT/elaQuruTuQvbnklvFgZgsPt9wlh2RGeJ9FZtcZnguIjh9i3gf41OT59wdiS1Kxkdvx6dzbdhRbRwmnRWDxzfBI8Cxgu9AcitMgBfui+OzDWfJKizDnVzGu2+hV9mfWOgLiLfQscTDn2X21uSaSvHINdP5qIZuxyywzymh1MqZVK/GpAa2JN/6onys1kJDYHU3Qht4ElrPU2bUS64LGZyX3FKMBj3nDh8irGETNOczzzfP/pFTu7ZRt1M36nTqhpOHquN1ek8yG2afFOtK9o8SmLd1/Hdtd5PZxLKzy/js4GfkleWhQcOgaoN4vsHzOFv/i0yMoQwOzYFtH0GBashapGlA7IJUkSkf+sdyrKv8u5TI1UxIvt0SyaydMSIrShknPdTAn1e7VsPPReqU3Sso/0YVR3hlAuZQXI5oc7C2YEybUJ5sF3pDVRH5GzaQ8NzzaKwsCRumw7JErQjBoyp0ePua9OgT8hOYsncKOxN3ive+9r5i4qpTUKdrGrxnpxSKapbkyFzxUYPevvigmpeRxtENa4nYtJaiXPXelb/1kdO/wiPw2rL0JZL/iuzT75//sWt+PEZ0eDolVhrSc9cwct8KNGb4rZWGHe1s+bbbTMK861f0pUokN+X7vuJIEpNXnaRyUThvWiygqi6aJY4OzHFxprhUQ+fDZh44BA5FiuRNU5L821Bg71d+Dnd/B2q18RPauNYyi09yFyD7c8nN5mBsNp9vOMP2s2pQ3lpr4rPQg/RI+wlNWYESSWVXoyG8mhdOflk+/jY+fLbKnbRzGo7VHoODixUjp7aSE533MHkler7dHMXPO8+JWI0jRbzluYMBZSuwLM2iRKNhnaMzC738iTDmozWZqRNjpuspGxqeKkNXaqDQzocU78ZkBDSnUHdR/kij1QjZudD6nuJl72JdofcqufORwXnJLSErKVEE645v3UhxXi4DJ3wgpC8USgoLsLS2RmdhiclkLjc/Vb6Km+adEgYbgTWuTSf2YOpBPtz3ISez1KB+dbfqTGg+gbqe/2IAZzLC0UWwZSrkxKltzkGYO08kdspvFB85gsvAAfhOnvyf7j8us4ivN59l1dFkisqM5brkbz1QQ+rK38Mo3+fFB+L5fmsUMZlFos3HyYbhzYIY2iwID4fr75SVv4vYYcMpDg/HZUB/fB/wEXI3FKuZ+vjWh07vQFjHqwbpxd9X/Cam75tOUqFawdHKrxVvNn2TEOeQf78Ok5mTu5PJzyyhWe/Qi/dsNKHVacVEXOT+PRxZt5ri/DxGfvR1+cNs3LEjeASFYOckv/uSm4vs0+8Ptv0ZTcTKGIyYcdIvosnubWhNGjbV1bBrYDBfPjgfd1v3ir5MieSmGxZ+owQNdkTTwbyPVy0XE6RN5A8HB352cSZFo6XVCTMP7jcLIztFFzfRrzVp3o0xndfFtbBSs+mrN/fFr4qLCBZIJHcisj+X3AyU8c7WM+nM2H6uPFPeQgtvV0ng4fwZWGadEW2GgCZ8V70VP0X9jhkz9TzqMnmHHyW/r+JYnSdIc69Hg65BtOxXuYLvSHI7SMop5rstUcKPoMxowoZSxnodZphmDY65p8U+x62s+N2vMqstDOQbS7AuM9PkjJmeZx0IPZOPxmQWgXpF+kYJ1OdbXiqp7BHoQHBtdyF94xXiVB4Dk0guIIPzkpuGoayMs/t2EbFxLfEnIsrbFamLDqOeoFqL1pcEMY9tTeTY1gQGvNH4urW5lExgJVN+Xew68V4xvXy63tMMqzEMC+1VzmU0wPFlsO1jyFD/0eLgDW1fg4YjyduwmcSXxqKxtSVs7RosvS66c/8byj1tOJnK7+GJwvDVYFL/tKp4OYigfPtqnnLm/T5B+S78GZEsdA1T80rLpYyGNAmkf6MA6vg7X9d3oejgQWKHP6xWc6xaibWfO+z+Rn0pmR8XTIvbvAKVO101SK/I28yImMGsY7PQm/Ti72Vo9aE8WffJf680+T+ykgtZ+dVhWj5UmcqNvcrvqaykGCsbtTJEX1LC90+NFP8fwho3pXaHLoTUbYhWJz0WJDeO7NPvbXKL9Pzw+wlstmegQ0OYeQn+OzZjYdSwq4aGM8904r0OH2FjcRN8PiSSO1g+74PVJ1l/PJkHtHt50fJ3KmkSWG9vxzwXFyIsdVRJQhjYtTqlKEPaCAPZpIC2FNqeN5AFHN1thFRk9eY+1+zjJJHcLmR/LrkRSvRG/jicKILyipa4gk6r4YUaRTxZNgeb+G3qjrZuJLZ+nrfyjnAo7ZBo6l+lP0/ucybn+x8ps3Jkd5tpGI0w6K0meAZJSZv7ieRcNUi/cJ8apFd61L6usYx12kxQ2iY0ZiOlGtjs5MEf3oHs0mdhwoxzgZnmZ6BLtAOBUXkiUF9k40G6CNQ3I9fat1yjXkGRu1H83EJqexBY0036xUgEMjgvuSnkpqUwf9xYSgryy7XkKzVoRJ2O3Qht2OSSQFxqTB7bFpwmLVbdV5mRVmamr4VCfaEILM49PpcyUxlajVZ0qM/Wf/bqWXP6YgifD7u+vJgpb+sKrV6Cpk+AlR3msjKiHuyFPi4Oj2efxfP5567pmgpKDaw4nMSsnRcfBhTaVvXk+Y6VaRzsKoPy9ymlBiOrI5KFrNHRhNzy9tr+TkLypn01L5xtr60zjn/mWQo2bcKhQwcCv/tWbSzMgO2fwP4ZYCxT23zqqkH6Gr1Ae+UAeGxeLNP2TWNH4g7x3tHKUQTolUC9le7f5aQUNs45wandKWJdebBoN7TqPwb8WUkJrP7qY1KjI8vbHFzdqNmuE7Xbd8bV1/+aPksiuRyyT783UfpVxWx7/uZo+qVrsDPr8Nbspcr2OVgZNOyrqkE35XWG1xkl+1fJfcOuyAym/nWKY4nZdNUeYKzVcqoRwxFrK+Y5u7DB3gb7IjPtj5p54LAWt2wDuc5hJHs3I923CQbNxb7dt7Iz1Vv4UrmhlzSvk9wRyP5c8l99Ohbuj+e3g/FkFJSVS4u+WLOQh0sWYnturbqjzgpj0ydY6FOJL479KJKV7C3tmdhiIo1XRZHxzTdit4zRUzka4ySC8gPHNZbPGPdxkF4Zvy/YF0d+iaHcq2CC735a5K/FsiBRtKXpdPzpHcIaRydOlGWKNsciM83OauhyzpHgs3loDUbKLB3IdKtJlk8DMl1rYODi+F/5inkGOxFQ3VW8fMOcsbgBSVzJ3YsMzkv+E4q2dHpcDMF1VH1X5Ws0a+xTGPRl1OnQlVrtO+PkcWkpT0mBnt1/RHFiR5IwfLWy0dG8bxi12/r/a5ltqbGUhacWMjNiJtmlqpxHM59mvNbkNaq5VbvKhWbBwdmw5zsoTFPb7Dyg+dPQdAzYXMwUzl6yhJQJ76Dz9KDymjVo7e2vOjuvOH2vOpp0iXSNo42FMALtU9+PWn5SwkNC+d+HUlq5+EAC646nUGpQDVQtdRp61vFlRItgGgS6XrW8rTQqiug+fcFgIPCnn3Boc7EShbwkNYv+wM/C0FjgXgVaPgd1BonJpytd186knXx68FPOZp8Vbf4O/rzQ4AW6V+ouJr+uhlFv4uDaWA6uicFkMKOz1NK4R4iYbNMpNaR/Iz32HMe2bODE9s2U5OeVt3d+/FnqdelxDT9FieSfyD793pPxmL0zhpk7z1FcWMzTBQYsja5YkkCjXZ9iV1ZKRFUrKn/7Ew0Dmlb05Uoktx2l3157PIWP150hMi2fjtpwxlqvoI75DEkWOmEeu9TZhUKzkbrRZrqHQ4MoRbTBgnSPeqT4tSDLRXlu1pSbyFaq50Hlxt4E13IX/bhEUhHI/lxyPclPa4+nCkPPXVFqQFTBz8maN+rk8UDOAiyj1Op6lLFM7f6cbjSMySd+5kj6EdHcyLsRk1pMwmbmUjJ//FG0ebzyGn9GVaMwp5ROo2sIOTDJ/Y2SLPLbgXhm7Yoh9rxkrQYTo33iGG2/i6DUDWgMJaJdMZFd51uFtfZ2nCxVJZXsSsw0ijTTPs6R6pElWBaWYtJoyXUKJdOjDll+jSj4m069gtIPKwF6Eayv5oZnsKOUwLlPkMF5yTWjaEpHH9zP8W0bORd+AEsbG576fh4WVmomTl56Gg7u7mgvk62rBOR3/R5JaaGh3PC1Rb8w7J2vrsFtMBlYHrmc7498T2qRatga4hTC2EZj6RDY4cqz2clHYd+PELEEzv/DxDkQWr4ADR6+bLDSrNeTvWgxOmcnnHv1+sd2xSTkUFw2G06k8tuhBHKK9OXbQj3tGdY0iEFNAnGykWVJkiujOMIrGaGK7E3k3yotPBysGNAokIGNAwj1sL/sdzt16jQKd+/G5713sWvQ4J8nL8yEfT/A3u+h5Hymvo2LkGyiyePgenmDVqPJyIqoFXwd/jVpxeokVk33mqIipY1/m3/NGslJLWLLr6dJPK1OnLl429F2cFWRTf+PzzLoiTq4j2Ob1xNz5BCPfvYDLj7qw2/quSj0pSX4V61RbiAtkVwN2affGyjm6SIovyP6f+3dB3wcZ5k/8N/MbO+7WvUuS5bcux2XFMfpPSGNQAgJcISDEAiEdoGDu+PCn97LwZEQEh9ppPdiO07ce2/qvW7vZf6f953VSrIkx45tSdY+Xz4vMzs7lkYTad+ZZ573ecEm57pM2Iarwzq0hBZDhh9LNv8YplAvjs7OwtI/P4Vs68DEl4RkokRSxvM7W/GLt4+gxRXCfOEIvqh9DRdjC4IC8KrJgKcd2TgoJmENyDh/n4zL9quQ1xlFWGtDR+4idBauQEDrTH9NlkFfMdeJqoW5KKyxQ5KoHyZjh/pz8mElQzfX9/HJsl/b156+D2e3KKuqbPhy/gHMbF4NsW3HQFB+1i3oXfI5/LbpVfzz6D+RlJM8W/6BBQ/gptJr0fnQ9+B9+WW+e86DD6Kz5gqs+fsh6C0a3PXDZfSwkgzpc9cc6sI/tjbh3UNdSFUvRr42iq8V7sclyQ9g7dwEQVYS8JpVKryRX4U1RgP2Rnr4vAZsMtmprcDyRh2W1KtgS42qZ32yy1YNV/YMuJzTEYFSGraf1qDiwfr8ShtvOSVm+t2cpCg4T06I/XqwchRsYtdDH6xLl61h8qZU4eovfyMdWDuRt/66H0e2dCKr0IgLbp+KgqqhTwiPxzrPNxvexG93/ZaX3+Dfz5jH68pfN+W6kevKx6PAoZeVoHzTxoHtebOA874IzLqZPYo8pZ8/EInzmd7ZxDKsljwLrPbLMWuxsjoHNy8sotI15CPZ2+LBIxvq8eb+Tv5kvl+hTY9r5uTjqpn5mJZvgSaVhZ4MhSCo1RBUHzIEPeIDtv9N+VtwNw5cpFZfpQTpyy/k9euPF4wF8fcDf8df9/0VwbiSHTDLOYv/3a0oXHHC33H2WcH+xj945ihCvthJlasKej1DJol94af/xSeVtWTnYtqKCzFtxUXIKjq5klckM1Gffm5rcQX5sGE2ARf7DJwt1OI/Df9AwluFjb67ICOBebt+C4f7CHpWzsayX/8dkvrkym4RkglY4sjT25WJ6Jv7QigROnGv5g3cLK2FJhnmE9g9ZbPjNaMBITmOKe3Aqr3A+QcFaEJx+Mwl6MxZiK6CJYhIpiH1cKfMz0HVwhweDKCsPXK2UX9ORrq32NfqxYu7W/HS7nZ0eMMDt/cWHT47S8St0nuwHPw/wNeuvCFpgdm3wrv4c3iiawP+tv9vvCwuc3nZ5fj6wq8jyyuj9YGvIbRzJ6BSIf8H34fx2hvwxPc28az5ZR+rxLxL6f6DjKzDE+ZllJ7c1sz73X5VxjDuLziIC2Lvw9yxCQIrFcFKJYki3ncWYZ09FxsSbgQTynx07PdwXi1wfosJlfVKVj37F0FDLlz2GrhyZsFlrRxSAodho9NzyswoSAXr8yos0BooOXQyoOA8OaHtrzyPtY/9ZUit6Gnnr8SMC1edMGgWDsSQiCfTmfEBTwTHtndh1oWFEE+QicMmqHy17lX8777/Rb2nnm+za+343OzP4dbqW6FlHe7xOvYBu54A9jwFBJUhRGDB+2nXAUs+DxQvOeEEmbG2Nkgs41+rfO2m3iAvQbK5vpcHTUMxpWQNk2XUYHmlk5etYfXC2UQzhJyJm+s1h7vw+KZGbK7rS01Ag3TdxMtn5OGyGblYUGqH03Ti0SZDJBPA0TeVTPq6tQPbrSXAvE8Ac+8AbMP/jntDvXh0/6O8lFQ4oVwIz86ejX+d869YVrDshEH6SCiOvWtahpS2cXUEYHLooNaMXj+PdUVv/fm3OPTBe4iFBy50csqmYNr5F6Fm2QUwOU4wrwTJSNSnn5t2Nbvx5/V1eH1fB89GmiHU49+ML2BZfAu2Rs7HZtdXIEDE1KNPoah1HYRbr0X1939EI2oIGUU8keRlFn+/9hiOdPphhR8fV6/DZ3Vr4Yy1wicIeMVkxLNZuTgkxKCOyVh8RMbFB1WYUReDkAA81gp05ixAd/5iRMWBzD2DRcNL31TMzUZhtX1Y2TpCzgTqz0n/PRG7B3/rQCcfrd7mGQjIs/Kx106349P2vahqfR5CQ2qSV8aUxxOQvLNvwRONr/FkI19MSSqckTUD31j0DczPnQ/fu++i7dvfQdLjgWg2o+jXv4Jx6VJsfaUeW16qh9mhwx0/WEI1v8lHHs3BzLCE8PmcA1ie3AYHy6hPBeRZmuc2sw3rcsqwSSWjLqqMOmcTyJZ1AXObRJzXZkJJnQ9SJM5L4PhNRXBbK+HJqobHVomooBt6IAKQVWBCboUFuWVKs+cb6aH6OYiC8yTN29ONwxveQ25FFUpmzubbelub8fg378eURedh5oWrUDJ77ohla/olE0nsX9/GO7fCqTZc8flZJ/W9WU35548+j0f2P4LW1AQbbILKO6ffiU9N/xQfgjaslvzeZ4BdjwPtSu04zpQLLPg0sOBuwPLhGf1yMon6W29DoNeFdbd9BW8n7DxoMBjLYl5UZse1cwpw4dRsqGiYLzmLQtEE1h3pwrM7Wvm8BqzcQz8WE19akYXzSy1Ysu115MUDKPjed0/uC3cdArb+GdjzNBDpn5xWACouBObdCdRcDaiHDqPrCfXgkX2P4MnDT/K/UWa2czY+PfPTuLj4Ykgn+Czoxx7S/eM/tyAeTWD5zVWYMj/7hMF9VtaGlb05+P5aNOzajmRCeTiWX1mNO374s5P7WUnGoD793KoRy4Lx7CHk1gblZmSG0IAfWF/CwvBGsL/0v6sWw9v6ICRZhcLWdag69hScX38AOfd8lkanEXKSwYK3D3bi92tr+fUsq427QtyHL5nfw6LoZohyAofVarxkc+AVsxk9clSZvO6wjEsOa1HeEGKD7+G2TUVn7kJ05y4YMpEsK31TOjOLB+pLZjig0dFksuTMoP48c3X7IthQ24O3D3Zh7aEu+AaNJtapRVxebcddufWY410L6cirQKR/7ioBmLISmPsJNBXNw+qjT/NyuP2Z8lOsU3DvnHtxWdllkL0+dP30Z3A//bTydWfOROEvfg5NcTF6W/146r+3IpmQcelnpmPqorxxOQ/k3H6o9MGxHh6oZ/PLBVLzETJOTQz3FDThCs0ulPauh9Q/DyIr6SpJ2GzLxSZHHjYhjO64UvJWSsiobAPmNAmY32FASVMIqnBMyazX5/DJ3t32KnidNQhKw+c5VGklZBebeKA+JxWwN2fp6Fp6gqPgfIZjE7se2fQBDm1Yh9ZDB/i2qUuW49oHvp3eJxoOQaMbGrQbSeP+XnzwzDG42pUO0VFgxE0PLoBWP/qFuzfqxT+P/BOPHXgM3aFu5d/pHDwgf1v1bTBpBobYIuwFDr8G7H8OqH0HSKRKzIhqoPpKpZb8lFVsrM8Jj9MViOJguxfrjnYj8dLz+Ni7jyGo0uKzl3wTLp0F7CHjwjIHFpc5sLImB/NLbPRBRsbtJpvNc8A6epZRf7hTyQCZ6mrCr9b9mq//7Y6HkLVkAS+xNLvIli6BM6poUCn/tPPvQP2gjBP2t8bK3sy8CZhyMevVhwTp2WTMTx95Oh2kLzGX4K4Zd/EyUzrVcU/wj6tH/+KvdsHXp2S+FFbbcP6tU5FVOOhv+wRlb9jn08H1a1Cz/ALMu0KZCyLk9+GNP/wSVYuXYcrCJdAZP/xrkcmJ+vSJr7E3gNVbmvD0tpZUaTgZS6XD+Df725jp38D32aTT4Q+28zBvz79AndQju3snZtY+juKf/RTmVavG+0cg5JzErh/YXA6v7m1HPCkjD734nHE9bpXWwhztAgt/bdLr8GJWHt7VCIjICTi8MpYdlLHqiAaFLWEkBRVc9ql8MtnevPmIiANzNrEMeja3DMuqZwH7D5tHipATof48cwSjcZ6AxIKZ64/24FDHQNlcho0SvqLaipvtxzDLswbSkdcHJRaxya1KgLmfRGLOrdgcbMfqQ6vxXst7vK43U2mrxOfnfB6XlV4GAQJ8r72Gjv9+GIkeZYS949OfRs4DX4Wg0SAWTeDZH29Hb4sfZbOduOoLs+i+n5yWcCyBjbW9/EE5a51e5d6ZYQ/Mr3J240brUcyP74a9d3t6Qln221unVmGTPR87LFnYgTB6EkqZWVavvqQLqGmRsaDTiKrmOAwuZaR5RGPhE8x6LaXw2abAZy4e8lC9n96sRnaJBc5iE5xFJmQXm2HN1kOgDPsJg4LzGYj9J9/5+ks4umUDWg8egJyauIIpmjaTl6yZufLSk/56fe0BHpRv2q/Mlq4zqrHkunJMX1EwagmbBk8Dnjj4BF6ofQGheChdU/7TMz6Nm6pugl6lH6idfeQNJSB/9C0gFRjkcmcqAflZtwLGrFF/1obeILbU9+Jwhx/rj3bjaGoSTmvEh/95+yewxIJ4YsGNSHzs4zwQf8HUbORaRg82EjJemvuCeGN/B8+Gm/nEr3Fh7WY0mHNx38qvIi6qoBIF1OSbeaB+er4F0wssKHEYRr/IdDUAu1YDu/4P8DQNbNdZgZprgZk3AmUXACpNOki/+uBqnknPHqz1P0y7o+YO3FJ9C18fCbvw3fFGI3a+0cQz6dnhTFtRgMXXlJ/0zTz7W+7/Odhksm/88Vd8XZRUKJ01B1XnLUfloqXQm8yndE7JuY369Il7Y/LOQWXiLHbjzUhI4OPGnfiS/nXk+ZVkgHq1Gj8vnYadfjVu2X0fVLIVNvdRLOh8GqW//RX0M2aM809CyOSoj/vE5kY8sbmJPyATkcRycT/utW3BeZEPICXCvOzN20Yj3nAWYJMQQQIycvuU0jcX1WpR3MQy6gV4LOXozp6DnvyFCKlsQ75PdokZpbOyeKA+p9RCQ+rJKaH+fPJic8rsbHJhW4OLl6zZ0egeUsKTmVFgwXUlEVyl24eing8gNKwHUjECzpyvlKydfj3qrfl4sf4lvFj7IrqCA1nI5xeej09M+wSWFiyFKIgIbtuGrp/8FKHdyih7TUUF8v/jBzAsXJi+t3j70QM4srmTz7Nx+3cX00NGclbmTXjrYCfePdSJ/W1eDI6+GsQYbsvtwOWGg5ge3glz3970pLJstxaVCjtMVuxgAXsV0BBPjRqRZTi9QE2zjOp2AdO7tShoi0CKsd5b4HXrveZSJWBvnwKfPh+yII2YYZ9VYISz2MwD9ixwzxLoTlSKlpw9FJzPEL6+HpgdzvTrx7/9FT7RK5NbUcnrOVcvuwDmrIF9TgbLln/ld3sgJ2WIkoDZK4uw8KqyESelYL9qG9s34vEDj2N96/r0dvZ0m2XKX1NxDdRswlZPixKQZ61+HZB6mshlVSmZvTNuBHKmDfn6sUQSRzp9qO8JYG+rB9sbXDww3+MfFNBPYQHLr219HFP3bgAqqzD12WcgaWmSOXLuiPa5cOyqqyG4Xdi88lb8Im/5kBI4/QqsOkzJMfFA/ZJyB6Zkm1BkNwydL4F1Ay1bgX3/BA48PzCpEqO1AJWrgKlXAlWXAgYHnzj2n0eVES/tAWVfjajhEy3dXnM7n0R2pAcC3p4QPnj2GOp2dqcvCG5/aDF/an8q3B3tvOzNkU3vo6c5NeEtD9RLKJ4xGyvv+hdkFRWf0tck56ZM7dMn6kifbY0uPLezhde+9oWVYelZghffyN2O66KvQh9Uyta1aw34n/LZeD7aCYfLjpv23weINhj9rThftxGlP/khVPYTTxxPCDn1h2bsAT+bgHlDrZJQY0IQt+i34y7jRpT5d/FtblHEu0YDD9RvhhKot/tkLDoi44I6LSrrwrw+bsBYwDPqe/Lmw6cvGPK9WKCLlb1hgfqSaVn8NSEnQv355MDu91md+O2NLmxv6ONl7A51eJE8LuLEysZeXq7GlZZ6zIztgb7hXaCvduhOlsJ0QL7Rmoe3m9/F241vY1/vvoFdNBYeQ/h4zcdRZi3j20K7dqHnj3+Cf60y35ag1yPrs59B1uc+B1EzcL+/6flabH+9kWcOX3//XD6nBiFnE3tAzrLq2fyGbORIU5+SGd/PJIRwraMNl5jqMSt5CE73HogxJbGU6RVF7NVqsc+ajX1GM/YhCk8yki6FU9QDTGmXMbVDRE2XGnkdYYgJGQlRBb+xiGfVsxr2fr4s5KPjhhEAW46BB+3tBUY48pXGtklqKu98NlFwfpJidZrbjhxE/c5tOLZ1EzxdHfjCn1dDa1CGo7LAVtDjQeWi82DNyf3I34dlxK7+9008W2bZTZWw5Q4Md+3XF+7Di8dexLNHn0WDt4FvY0PMLiy6EJ+c/kkszlkAoX0XwIassdaxd+gXcFQAM1IB+dwZ/Ckim629zR3iw+B2NbnR0BvAgTbvkPpe/TSSiLklNswssGJOsRUXTc2BtHUDmj9/LyCKKHvySehnzfzI54CQ8eJ56WW0PfggH5ZZ/vzz6HXk8Rtu1ukf6/LhQLsXscTwj3ijRuIlcCpzTDzTfm6xDaVZRj75LJJJoGkjsJ8F6l8EBtXFA3viXnKeUkZqyirEnJV4s/EtPunS/t796d2mZ03H7dW344ryKwZGwQzSdszNR9todBKuu3/uaQ0fZfNiHN28gQfquxvreWH+e//4GIw25QKbfQ5KKjVyyqfQMNVJKFP69ImKXUKy0Wgv727DP3e2oiU1xJbl+1xtrsWXLOtR41oHIamUoeswOfGX8jl4NlCPuBzHoqMOnNd2P2IaG4yBNlyyOIjCL36WJn4lZAzKTT21rZmXm+ryKTf2RUI37jDvxI2aLchPjW5xiSLeMRrxpjMfWxFFHEkYQzIWHJOx7JgKs+qTUEfifFh9n2M6erNmos85Y8iQetb15pZbUFTjQPE0O3LLrTSpLBmG+vNz8xqg1R3CvlYPT4xjGcJsvZeXsBuqyK7HysIkLjXWYW5yH8ydWyF0KZ8zaaIKKFkKVF6CZOUqHFSJWNeyDm83vY2jrqPp3SRBwvLC5bh+yvW4qPgiaCQNn0fOv2YNev/6CELbt6d2lGC75WY4//Vfoc7JGXLcbH68ba8qcYkL76jGzAsKz9p5ImQ0Tb1BfFDbg60NffyBVmPv0GA9G+m2SN+Gq6xNWCQdQWnkMIz+gcQ0Jbtewn6tFnstTuzTG3AQUYRkJUFGHVfK4VR0yCjtklHZo0ZRVwKaSIJPNhvSZ/NgvY8F7FmzlCCqGrlcLHuIxRLqHIMC9mziWVuuniZQPkMoOD/J6sfX7dzGA/KNe3YiElRqv/eXfvjYd/4jPdHrR8Emez20qQO1O7pw9RfnpIerhv2xYRkxSTmJze2beUD+naZ3EE8qHxAGlQE3Vt6AO/JWoKTzkJIZX78eCA+ehFUAihcjWXU5WrIvQK1QwjPg97R40OIKor5n5Gx4xqJToSrXjMpsExaXO1CVa0JVjhn6QUNzEv4A6q69FvH2djjuvhu53/zGRz4nhIwn9vHd/Ll/QeD992FYvBglf3t0SAA6EInzv5umvgDv8Hc0uXlpnEh86FDSfjlmLc+wz7fqeeB+Wq4R5dEjyG1/FyJ7cNY1EIBPT8BccRFQsRJ7bbn4R8s7eL3+dURTgTg2qfNV5VfhhsobMCNrxpBjY8ceCcZ5Gaz+z5HX/rQXC64sRcn0kctUfRhXeyvajx7G9AsuTm976gffRvOBvTDZHSifvwhTFizm2fUnM48Gmfgmc58+UbG/XTYsl03u+uq+dtR1D1xrVGi9eCBvN1aF3oDeW5feXls4C4/lluAlzyHEkjHoIzK+vGUawvHbEdHZYYz24Np7ypG1YtE4/VSEZKZ4Iol1R7rx/K42vH2gE6GYkuRSJHThbtsuXCttRo7/IN/mFwR8oNdhbVY+1qtFeOQoz9Rjw+oX1Ak4r0ENZyerUy/y+re9WTPQlzMHft3QJCCVRkRBlS0drM8qMFHNW0L9+Tkw8uZYlx9Hu3w40unnQXjWXMHho3bZ6NwFeSpcldWJxdoGlEeOQN+1a2gJzX7ZNUDpMn4v0ZE3DRt792FD2wZsat8Ed2QgPqASVFicvxirSlbh4pKL4dQro/1j7e1wP/ccPP98DrGWFmVntRrWa69F1mc/C21F+ZBvx8prrlt9GAc3KCN/l940BfMvKz3DZ4uQj6bLF+bVH9hIVNb2t3r4nDGDWRDAYn0LVllaMUeqR0n4CEzB5vT7yVQ5nMMaNY7o9DhstOGIWkKrrMTPBFlGths8WF/aBZR2yyjvkZDTq8Tr2MN2FqgPGPIQMOYhYMhHwJiPxAgJd/zrCeCTzbIkXWuOgWfY23L0/LXJoaMSd6eAgvPnsHgsBjmRgFqn1Eff9eareOd/f59+X2e2oHzOfB6Qqpi3EFqD8SN9H/YrUrerG5tfqIOrQ3maN9pM5qyW/Cv1r+Dl2pfR4k91kABm2qrwMVMlrvS4YGz4APAqQ9v7xVQmNNmXYo/hPLwemYmjfh3aPCGEYyMHEVlt7XybDqUOI+aV2DA118zLddTkmT/0AyDe24v27/wbIrW1qHjxBYip0QSEnIuiLS2ou0aZKLX86aegrao64f6JJMt09WFPswf1vQHsbnbzDHv3CBfX/XRqkf99zdC7cbG4A7ODm5Dr2g4pNYwuLbsGrtLz8JxOwlOuPWgNdqbfmmKdgusrr+dDT7MN2cO+x4Znj2HnW03pSWPPu34K8iqGzz5/KlgWzSu//gl/aBkLh4Y8rCyYWsMnk114zY2n9T3I+JpMffpED+CxuS5YzczX9nYMGYbrkMK4L28/rhE/gLN7M4TUhGyyxoRNNavwmCaB93v3KDvLMj7VUoblaw3YW3on4mojzKogbvruCphyh9avJoSMLfZAn01e9+KuNrx3tDs98q5Y6MQd5j24SrsLJf49EOQEn0x2l06LdRYH1potaEgqfWy2W8a8WhmL6iXMaEhAFUsirLWjz14Dl70aLud0RKWh9yMswaeoxo6iajsP2rMbehrplnmoP584k7U29ARxrNuPIx0sEO/jI+TYaJvjS9MwbBDMedkxrLR1Y662FeWJRtg8+yD2sEz34/+BAOTNBEqXI1myFA2OYuz0NWBX9y7s6tqVHmHfz6g2YkneEqwqXcVH3Fu1yn1B3OWC/5134H3tdQQ2bFDKc7Lre7MZ9ttvh/2Tn4Q6dyBTvp+7M4g3/3c/upt8PKDIMuZnnE8Z82TiisQTONzhS41M8fCkO/Y3efzIeAv8mCE24jxjJ+bq2lElNyInXAdVfOB6nc0tc1SjwRGNGoe1WtTrTahXieiD8lBeG1XK4hT0yijqlVHYCxT1CcjtS0JMAlGNFX5jPoLG/FTgXgnax1Wjx9JElQCrU68E7XOVoD3Lvrc49TDZtaPOT5mpKDh/jpWq6ag9iub9e9C0bzfaDh/EBXfeg3mXX8Pf93Z34cWf/zfK5ynB+NwplRDF0xti0nLYhY3P1aKrQZl8gmW5sszWmRcWpoevsEkiX6t/Da/UvTKktIVJ1OBK2YSbutow0981NBgPFXaiGutiM7AhOQN75AokMPxY9WoJZU4jCm06XoajIput6zEt3wLdaQyfYb/2id5eqJynVmOfkInI+9pr0FbXDMsOORW+cIx3/iwbpsOjlIxiF+OsfNRImfZaRDFfPIoV4l5coNqPGaiDOOginHXz79uL8bLDiTWyGxE5kR6KuqxgGa4svxIri1fCpFGGzoUDMWx7pQF732tBMq58HVardsl1Fbxs1uk+yGw5sBe127egfudWeLqUhwYV8xfhxm/+e3q//eveQV7lVDgKiigwcI44l/v0ia7XH+EZtWsOd+O9I91D5rTIUoXxrwW1uFK1Ffmd6yAMmqzdU7IELxVW49lQI4556vk2NjHbLcIi3PhSD/pa1dg3/TNIShpkZwu47psrqB41IROMOxjFa/s6+AgZViqvf/JGK/y4xrAft5j3YUZwC9QxH9/erJKwUa/HRlsONqsBnxyHOiZjaquMWY0yFjRrUNwS5Rl7rFZ9HwvU22vgtk9FQhw655PerEZBpQ35lTYerM8qMlHmXQag/nxsA/CsfEZDT4An6jT2BJVlbwCd3pFHp7NA+1S9D8ttHswxdqNGbEVRtB5Gz2EIIdfI/8RaDBTMg1wwD53OChzUqHHI18RrxrNgvDeamtwyhV0rsHmr2ISu7F5hpnMm1KJyfRBtaoJ//Xr43nobwa1bgcRAKVvDkiWwfewmmC+9FKJeP+Lo/33vtWLj83WIRxLQGlW45NPTUTaL4gDk3A3YszJShzu8/N79cKeP17MfTEAShUIvqoUmzNe1Y466FeVCG3KizVAnB+Z0ZPPMNKhVqFOrUc+aVoc6rRatosyz8NkIuTxXf9AeKOyRkd8nI88NmEIsaG9BUJ+DkCGHL4P6bIQMuQjpnUim/n5HIoiAya6DxamDJYsF7HUw86WybrBoMu5+nILzExwrTbPrjVfQevgAWg/tRzQUGjqz+YWrcMW/fvWMf99oKM5LTLQccqUnbpy7qhhzLikG67IPdrVhfdtafND+Dur8uyCngnKiDJwXiuBavw+rgiHoU79eUVnCPrkcW5LT8H5yJrYlpyIMZTZ0VuealZ8pyzLyshosQ7cky4Bci45P3Dpk4srTIMfjEFQjTHpBCDnhJI91PSxjJoh2T5gPaWX1Jbt9EdR2+eGLxNM37EvFA1giHsRC8TCmC42QBDn9pP4NkwH/NFmwVzfQSaugwlTLIqwoWIWLii9ErtkGbUTGjtcacHBjB59omqlalItL75l+xjpod2cHL/1ldjpRMW9R+uHmn790D1/Xmy0oqJ6OwprpKKqZgZzyCl63nkw851qfPtEv9tkcLmzeirVHurGnxd2fjMZV6nz4bO4hrJK3wNmzBUJyIFifzK7G9qoL8IwYxtvtG9OlrdicE3caL8YV77gRe2sdmoovQW3F9fyKvHSGHZd/fjbUg8rOEUImHvbwnj2oe+tAJ9491JWe7FmFOBaLh3GL9RCWi3uREzjCt7N392s12GAwYpPVid1ClE8qqw/LmN4sY2aDjHnNKhR0xpAUJHgtZXDZWLB+KryWciRZ3elB2Pw0eVOsSrC+0oacMjPVt52EqD8/M1hoh5WaYck17Hq91RXi62xEeqs7zF+PVh6WBfNy4EaN3o0FJhdm6rtRjnZkx1ph8DdAjA2thz3wD0UgqxLImY5g9lQ0WHNRy8ppBNpxyHUIh/sODylR008n6TArexbmZs/F3BylsQlemXhfH4Jbt/HM+MAHHwyUrEnRTp8Gy6WXwnL11dCUlIx6LpoP9vHRub2tSgk+9sCP3VOwoCAhkwn7u2ZZ9XzES5cy8qW+JzDCHBAycuFChdiOCqEd0zRdqFZ1ooT/rbdDTGXSRwT24F2NZrUKzSpVetmi0aBVkhAXAENYRq4LyHMpAfw8N3utrNv9AsI6O0I8YJ+DoCEbIb0StA/pHJBPELhnJJUAs0MHS7aBl81hmfZmu5b/7ZocWhht2kl3LUDB+QmC/Wdg2ZztbPJCtRpTz1vBt8ciYfz27tt41jyjM5p4veTimbNRMmM2HIXFHylgxb6fNxRHIBrnw1i7/RFeS45t6/SG4QvFIK7tgtoTR3uWhD0WGe3RJhi1GyCbDsKj74M86NvOCUdwlT+AywNBZCWT6JNN2J6cip1yNZrNsxFwzITZbOaTwRTbDbAZ1DwjngXkTycD/lS0fuMb/FzlPvQQJPPpZeISMlEFd+xAtL4eto997Kx/r/7PkU5fmD/BZ5PKsaA9y8QJ+FzI9e5DaWA35uMw5onHYBAiqFer8KrRiDeMBtRrBjplKSnAFshDMjAD4fhyFKqcmOsVkdUbR6BYB+0SJwwaCVa9GjlmHUw6FWypdZ1G5BM/n07wvquhDmsf+wvajxxCPDb0Ikal0eL8O+7C/CuvU35uNmmuIGTc0/yJaKL26eeCaDzJA/AsK3ZjXS+fl2LwKBkWeLspuw03WA5jTmQ7jD2p0jQpsnMqDlQsw6sGLV7v3o6u4MAIuRpHDe4wXIT5bzUi+OIrSECFgzWfRFfOAv7+9OX5uOCOakg0nJWQc0oskcTmuj6sOdzFR9SwEXb9suDBxdpDuM58GHNju2COdKRr1e/QabFdr8d2sx37RVYWR4Y1IGN6k1KzfkabhKIOFtZXwWsugdtWCY+1Eh7bFMSloUE0URLgLDIht8KK3DILn2yWDZOnPvncRv35h19z+yPx9LU2W3Z5w/wevturvG73sEB8OD13xPGMCCFHcCNP6MNUrQvT9G6Uq/tQgB44Yp3QhzsgDnrwPowgAfYyxBwV6HAUo9mcjQaNGg3JMOp9Taj31KNzUEnLwVjN+ApbBb8+mOaYhnk58zDVMZVnxrMEusiRIwju2oUQb7sRazquPr1aDcOcOTCtXAnzZZdCU1x8wsSixn292P5aAzrrlex8li3PSmZOX1FAI3FIRvGGY/zenM3hyJepETNsefycEezav0ToQrHQzSeJZ61M6uGtAN2wJpWHbOwTpkMlpYP2rMZ9u0qFTpXEl12SBFUMyHErAXunB8j2yHB6ASdfCtDHLalAfRbCuixlqWdLJyJam/LQ70PodIIStHcaYcpSSuWwwL3JpgTzjVYtJPW5c69Bwflx0tPciK56Vi6mFl31dehqrEMkoDzRzZtShU/89y/S+65f/SgMVjuKps+ErbAUnggLqCf4BTLLXglFE4glk/AEYzyLNRJLoMcf5UF3lgnH/ujYPiz4zp6csQwY1rkPrudeHBOxKKLCq4Yo4mIcZUIHZiV6YTIchd96EHVGP+q0Qzuy6ZEIVgVCWBVMQKOpgMs2HbGcOYjmzYOlaDqKs4wwa1UT4mLZ+/rraP3KVwFRRNnqJ6CfO3e8D4mQMy60bz8abr0VgiSh7JmnoauunhC1qlk5jG6PH731u6Hq3A1jz15Y3XvhjzfhbaMWbxoN/OK+Hxv2XhURUBKwwtQ3F+3xIhxEHtqQhZy4hMURFTZr4+hSDXRfGpUIh0HDlyyA7zBqoGXbjBpYDWpoVRKfMJqN1GGjcdg+Zp0aGpUAu0GT3m5QAa6m+tRopQN8GfZ5ce1Xv5V+aNq4Zxde+c1PkFtRibyKSuSwVloOizMHgnjuXABMBhOlTz9XylTsbHZjZ5MbOxpdPBg/9AZexgJjL27LOoblwl7ku7ZCjA4E3phk0ULsLVuCdToN3ujaiibfwM2zWW3GZWWX4ZbILFieWQP/u+/yOrCsPuXBRffBByu/IT7/tirMuKBwQlwbEEJODwsGrj/aw9v7R7sH3ejLKBc6cIH6AC411mN28gAsqWB9UBCwR6vBdp0O28027FEBEZZZH1HK4LBgfU0LMLUNUMUBv6kQbmsl3NYp8Ngq+RD647GymzllFuRVWHjAnq33TzhPzg2Z1p+zOaDY9bErGIUrEOV/O8oyir5gFO5AjC/Ztv6A/PCguww9IrDDD7vgg0Pw8cx3FoAv1XpRpPYiT/DAIffBHO+DOjF0BP5IZEGCz1aIHlsBuix5aNdb0KpSoQ1xtEbdaA2084fx/aPmR+LQOVBmKUO1o5oH41mbYpsCraRFvKcH4cOHETlyFBG+PILIsWOQo8dn9wKayikwLl0G4/JlMC5aBNF44vnzvL0hHNncif3vt8Lfp4wOYIG5mecXYuFVZVRCj5DjsM8gNppGGWUTRJtHGV3TwkbbpEbKD6ZHGIVCDw/aswB+vtCHXKEPeXAhX3TxB38GhPkIuh6JBeoldPDAvRK075AGXgeTohKs98rIHhy898qw+yUYonYk1UrQPqJ18Cz8iNaOsNbGl6w85snQqJMw6EUYLGoYWNa908SbwaqB0aqBwaLl6xrd+FfYyNjgfH1bNwwmE1gCZDyZ5EO3WWCGdZRM/zqbHZmdIpZN1v8eC4qzNSGVecb2Ye8FowkkZZm3SCyJZDyGSG8ngt1tiLPJCKuX8IA5K9soPf1DiIGh9dlkQUTAnA+XpQhHii9EOJ7kXzMhywiygHx05KfgHwUbtlYg92KBHEFFyAF1LItvL7K+jlj2amzUa7BJr4NXGshqF2UZ86MJXKxy4JKcBcgvWgoUzAWcU1kaCyaqWGsr6m76GJIeD7K+cC9y7r9/vA+JkLOCfVa1/OsX4V+zBprycpQ/8/SHXsiOq3gE6DoAuXUHjjS/j7fcB7A24cVhzdDOsSAWx7JQCAvDCfjbvoae0Gy+Paztxj6NC7slK/rARsOcmWAfy8JXSwIMWhW0kgBb1AXRZINGb4BaElHashHZh98Z9u9klRqCLQ+a5TfCXFrF+xExmYBOq+ZP/1WSwEcKSYLA19mcGgzbjz1UYJP7sO/LHiSwmx7lOETep4iCwAObsXiS/1u2nfU97AEE+6nZOvva7KFDJsm0m/mTxa5N2NDWXalg/M4mF+p6lASAwdkx5xnacIOjkZemKPDthirUO/QLGZwIVFyAjc4SrJX9WN+1DX3hviFD0i8qvghX5a3ErF1e+J59DuE9Soa9DAFdF30Wh6S5vDSs3qLBFf8yk5elIIRMPuxeaH+bB1vq+7C5vg/bGvqGZOWx7Nwl0iGsMtZjoXAIeRFlTgoWkjuk1WCvVoPdWh32GkxoEZO8zm1FB1DVKqOynTXw4fIsw85jKePlcLzmMvjMJZCPK4XDWHP0fM6a7GKlOUtM0JtO7maejL1zqT9niSf8Pj0S54lxLFmOJ7/xZZxnqvoHb0+te1lLBeRZUEyJwsjQIQozgjALIZgQglkIppYhWBCETfClA/BOMYBsyQ8b/LDIHqjlE2S6p7AIglcU4ZZEeLQmuI0O3np0JvSoNegWBXQno+iOB9ATcSOcGKhHPRoWaC8wFaDUUopyaznKLeV8yYLyppDMM99ZnfhoI1s2IsaWjY1IuIeXt2FEkwn62bN5Ap1+3ly+LlmVCWBPdN/DJnlt2NOLYzu60nPk8eMzqjB9WQEvycuyZwkhp44l97Kytu3ukDJaxxdGV2qkDqu20T+Kh33G9TMhiFxBCdSzoD0P3gsuOAUPsgQvnPDwdb0QRK8koVsloVuSeDCfL1Ovu0UJgbgIOSTC5gccPlYqhzUWvAesAQNMMTs0CRtimv7AvR0RnU1Zam0fWjpnMEmIQ6eOQ68DjEYVdGYNDDY9DA4DjNkWGFizaKA3a6DVqyCchRE4GRucL/7KUxC1o88sfDIEOckD6v1meA8gN9IJc9wPa9wLS9ybDhWFRQ3+XHIPL4XAXNL9DqwxL7q12ejWONGtyUKfxsFrL37o9xUAk0bFAzSstINRM5AJatGpoVWLcOhVyFX5kBXvQq7cDXusE6ZIJ2zhNmh9LWjsKsIu3zXoi5fyrykLMbQ4N2Bt8bsIaAc6TbOgwjJjKZbnLcaFU2+Ew1mT/hnOBewpfMOddyK8ew90s2bxrHlBnVnBK5JZ4i4X6m+4EfHOTliuuxYF/+//nVsZqskkOjp24L1jL2Jdx1ZsDrXyjLp+Wf58XNiyCtmuBRCgfP4WavZinvU1ZGf7EDEVwqfLR586F25NPtrhRKvshEc2wRuJ8xsnFsh2h9hNVIxPcucKxHg2Uv8D2A8jJeNwxnqRHelGDmvRbjiiLkh82hzgHwU38892Zo5nN5b3bYJPZYJXZYFHbUkv/ZIJvRoH4qdw4fBhGn50NTLJuXQzf7awIMDBNi8OtHuxny3bvDja5eMPewbIKEQPLrG1Y4WpBTOTR5Dr3QsxflwWnaRFpHgRdhdMxxa9Dlt8Ddjbuw/xZHxIhvzywuVYWXghznNlIfLiq/C+8iqSQaUWLetjhWtuw37TRWhvjqQnd155Zw3dIBOSQVhpidpuPw/Ub23ow9b6Pp6V14/NVTNHrMV8qQ7L9E2YljwGc1x5QNgnijxYv0erxV6dFvt0OvjY/U9QxpQOGZVt4AH7KW0yLCGJZ9d7LOXpgD2bmG4kbJi7kwXredDexJesbu05dZ002RPo6mthtWUhKYhIQoQMthTSCXAscqGsK0s5tc6u4VgCHWvR+MA6f52QeXLDkNdsPbUtwoLtkTii0Qgi0Qhi0ShisQjibD0WQyIeRZy9jkV58h0SMaiRgFaI8sA6b0IU+tS6XohAhxh0iKRes/ci6f3MGBSEF0JQpa4fR8LeCQkCAqIIvyggKChL9jooCvCz5D5JhYDWiIBaB79aC7dKDY8AuJGEOxmFLxE+Yab7SFhf7zQ4UWAs4EF41opU2ShImJEdVsPoCiPe1YV4RyfiXZ2IsWVnJ2KdnZCPmyNvCEHgNeK11dXQVk+FdupUPtJXXVT0oaNP2VxUnu4QOus9aDns4nPj+V2DMnsF8ASAacvzUTk/Byqa04aQMcESkPtH+PSPBmIVO9iyfwRQX//oIFbJIxKHGnE44IVT8CKLBe7hHQjgC15YEYBV8MOEAERVADEphIAkwy1J/BqBLyURbkFEJCohGVIC+WJYgCkk8NJ5lpABprAFhrgF6oQVatmChMqKiNaCiMbGR+JFtVYkpFO8P5ETkJJBSAhCJYYhSVGoNXGodUlojCK0Zg10Vh0MDguMThtM+bkoqaj50C+bscH5qvsehVqjg0aQoRJkJaiSTPJfkh59Pu/gWfC7wlcLW7QPRjkMfTwEbTwIXUJZsquDtxd8CSqWHSkIWHD4GTj66oZ8v4RKi5g5G3FzNrzzr4fZqOf7S6msSfbvWMakUSNBJYl8m1nHAu8iz4g0alhZGGXSVBaIZ9mSJiEMKdAF+FnrHFh62wBPM+BpAbytQGL48LB2UYsXu36FeDyXv45KYRzI2YC9+WsR0HogQMAs+1QsK74IywtX8FnSVSNko5wrOh9+GH1/ewyi1YryZ5+FpqhwvA+JkLMuuH07Gj91F1i6av4P/2tM6s+fLcFYEFs7tmJT2wZsan0fx1JlNKyhbMxtvQTVPYsgysrFt9GwDVfbH0Y2G550PI0JsBYD1iLAnAuY8gBzHmDKTS8Txhz44hIP1LPRT2xODpaBzPoDpRRYgo+iYtlPyqipJELRJB/dlIjHEOztBlztCORU8Sf97N9l7XsVjobNo/5866ffCZchh98glrsOoLDvIAKSETFJi5Cg4S0uaREWNGjRFULW6BBLylDHgtDLUYSTIhKCCEGUEJVFHPvxDcgkmRScZ9l3td0BPilzf2PZ8U19Qydok5BAqdCJOdo2XGRuxxypHgWhw9BEho7W43Q2uIoXYp+zjAfAtoXasLt7b3pC134l5hJcWHwhLiq4ADXtIoJvvg3fG2/yG/F+mrIymG66BcdMi7Hng24kEzKfTH7FzZW8xisFvwghrEb27hYPn++CjezZ0+LhGcQKGXno4wH7OWIdFmsaUI1GmJMeHlZsU0k4pNGkmhqHtDp0SAKyvOAB+9JOGWVdQFmnDFvQCK+5GH5TMXzmYvhMxaMG7LV6EVlFZqUVGOEoMMFRYOSZcWTs+/NffPJJmCRATAQhyEEISdbHsfvuAGQhqDQxiKSUamq2DEBWh5HUJMEvCVUykiIgsPKHogxBxQYwynygtwrsvl+GSpaVdbYLkpCEkQPko/Vc7HeSPTRgWekJQVnG2VJgmeoCnyxx8HtsG3svJgiIDGpRQUA4tYxIEiIs0CSIiApAmO1/ikH1E7GoTMgWLMiRTciSDchOmpCdNMKR1MMaV8McU8EUEaD1RyF4fEi4XIi7XUi43HxdDn94Rn0/VV4eD8JrSkugLi5Jr2tKSyEaPjxBMh5NwNUZhKs9gN62AM+K72r0IRoaSBZgJJWI/EorKuZmo2JeNiUBEHIOYPfRrNwmG13H7m/6Rxx5U6ON+OuQshx4HUU0HIQq6oY25oFZ9qcD+GwkEXvQyR58GhGEJIUgS0FACiMhRpCQYoiJMUSFBC+nE4uISIRFyBERQliEGNFBFbVBHbNCG7dCkzBDJRshspH5ogkJlRlRtQkxtRlx9UdL8P7iHy/+0H0yNjj/XzdeBt0IGdRsMtavPP5c+vVzP/4P1G3fMurX+9IjT0JrUMpGHFi/Bp7ODliyc3hzFBTBYLWd+IY0HgVCLiDUl1q6gOCgdf66JxWAT7XY0KHpo/GLEvbb8rBHXYp9Zj/2yWF0JcO46NjHUeyehr3563AgdwNKs4uwIGcBFuYtxJK8JbDpJseQc++bb6L1y0oJm6Lf/x7mi1eO9yERMmZ6/vQ/6P7FLyDodCh78knoqqdiMugJ9WBz+2Zsat/El76+MOa0rURN13nYUvIK/1wrlAyYlzRgVlDCrFATqrxd0J1sV8c+/1iw3pgN6O2AwQEYsgB9apl+nXpPa+VzWYyGTR7rd/XxvsHd1QEPa2y9sx3+vj584r9/DqPNzvdd87c/Y8erL4z6te76yW/hLCnj6x889QQ2Pft/Q96fe+X1WPXpzyGTTLbgPHsA1OIK8oB7E5u4qTeYDsR3eMPDytKwuo9ThRYs0Hdgrq4TFWhCVqgR0nHBdU5UwZ9Tg6M5U7DfaMEeIY59/iY0+5qH7Zqjz8Gi/EVYnLcYC/XVsO1tgv/99xFY/z7PlEt/SZMJ5lWrYLnpJjRGC7Ht1YZ0FlvJjCxccHsVrNmnN0qREDJ5sdtQ9nnHAvZs1M/hDi8Odfj4MPrUHsiGBzViE2qEJr6cpWpBhdzCPwPdosgD9Yc1Gt7qNCrUqdUQIwJKu2SUpoL1bD3fpUNYXwS/qSgdsA8a83iN7ZEYzSKyCs3IKrEqQftCE+y5BsrGPcv9+U/ufhF6zUcoySgnoYqHlJYIQ4qHhyxV8TAkVq5FVpqMMJIII8GWAgvghBAXIkgIESQlJbgfF4EEa5Kynt4mKduVdUHZJ9X4oQhK8L4/si+ntg15L/V+/3sie0iQVJrElvLAkm1TyQJ0UEMrqKGFGhpBBZ0sQZeQoE0I0MRZA9RxmS9VsSSkeBJiNA4hGgfCEcipEW6ng42OkxwOqHJzoc7NVZZ5ynLwNlE3dCLnkUbWBD1Rfh3v6wvB1xvmdeK9vWG4OwN8OdJzCVZDnpWpyp9iRfE0Bw/M098kIZknllBKgLO5NYPRuLIeS6S2Ka/732f3V2y0fDQehxwN8jm1xKgPQjzERxELsdQyEUIi6UcyGUCSPRCWQ7x/QII9FIhAFYlAiiShimogRQ0QYkaICSOQNEGUzYBsYuOOIItG3hKSEXGVkZe3PZngfEanBIiSBFFSQZTE1FKCRq9HMpHg6yyTvmzWHJgsZuiNRhhMBhgMOhiMOhgMGhh0Gmg6tgPsJjgewXR7GDDGgOgRoHsH0OoDIn4gGgDYpGoRn7Jkr9l2Fng/yUD7iFmgphwl69OUgx6DDUfUahwRkziS8GO/vxXxFjNmtp2PYncNds/+KXqNbkiChN65B1FUoMKnC6/FgpzvT5pg/PEkqw2S0wnr9ddRYJ5knKzPfRbBrVsReP99eF9+GbrqBzAZOPVOXF1xNW/spr7V34pd3buwu3kXYr3dEHwCWhNBGLqnI7/24/gf53YcytsIS14S0wy5mCaZMV1WozoWhcHPHnx2Aj42AqlDGW0Udiut+9DJH5TGDGhHahYIWjPMvJlQxDKFKrVATSmgrgZUesC1D/DrAZUOM+ZWIyfnLgQCIURCIUSCYWXJ14PQmQeCz6zfYv1VPBpDMqFkEbHyZmRiY9kfrEYjCzx1eMJocYXQ3BdEcyog3+kdOvESGxJfInRhttCBa6QuVGt6MFXTjWK5A7ZYJ0Q5NRcNWwy6nIio9GjIqcBReyGO6U04KsRwNNiJ9mAH4NsJ+IYeF6sRO8s5C3Nz5mKhoQbZx/oQ2roTwc1PIbB3LwJsgp4hAfmLYb78CuiWLsWxnS6881I9vD2H+fvmLB1W3FKF8jlOypYnhJwQ+4wozTLydt2cgvR2llF3uMPHA/WHOljQvgxP9wTgZjXsY8rDySlCGyqFNkyJtKFCbMPHhXZMEduhQxgdKgm1WjVqK9SorVHjA7UaDVIEZk89inrqUNgLFPXIKGlRwRbOR1Sbj4CxgE9gHTAV8Nq1AV8SgUMeNB3yDDpiGUa9DJtTC3uxDY4SO2y5Bt5YyRz6zDt9qz5hgSoqI+QJIOwNIxKIIRKMIxpKIhYB4jER8ZiEeFKNRFKDBDRIChoe/IirjbydLikRgRQPQUpEoU5GISai/KG3FO1fj0BKxPh+Itueep+/N2Q9AlGOQ0wONGHQa+GUs+JZZ3/y2ev9hn0XFgMxmSAZjXwp9i9NRkgmMw++S3YbVHY7pMHNZodoNKR/z9l1eCKeRDSUQCwSRzC1jB7xIxpx8+0hXxQhX0xZ+gfWw/7+mvujY3XjHXlG2PMMyC5VJnt2FBohSScuf0MImfzUkgirnrWJVbKaPXhkJdcY9v+JWBze7oHEphPJ2Mx59/dLYWUPdNkNp8xaQlkmEwPrY4XVrWcBcpaJ2d9YRmb6tSMdiPdojWhMhlAf7MAR15F065+gTRczYmr3IszoOB/WiJNvYzXmtBe4sWBVOaZlTYOeBYQyBJsRnk0mQ3XmSabWn2elJ2y33ZoxN4z+qB97uvdg59MdwKGBB489hhY+Uuho9jbEpAgv4cXqZ1baKlFhq0CldQqm6LJRLuphCLmBYG9qFFPfCOup0U7sYetYYn0FKzPGsvzYko3PFtmgbFaTVSF+4ygyyUTInGdDM/tYLcVU6w1E+JLVXWTZ7v3B+E5POD2xOxtCz4ZgstqKfMIkoQ/56OOTJhVJbhSrXMiRe2FMHhdFT2H/vf2CgDadEU32IjSbnWjS6tAsJNAU9aAz3DtqfVmWFT89azovWzfLPBVVfVqoalsQ3r8foZ07EDl6bNi/0VZVwrh8BYznr4Bh0SKwke3717di33utPPON0ZvVmH95KWZeUEhZbISQs4LVqq3r8fMSX/U9AdR1+1HXHUBjX5B/FrNPxxy4MUVsQ4XQzluJ0IlioRtFQhcCqjia1Cq0qFR82aRSoUVSIxiS4OgV0kH7XLcOlkgBBFU+/MYCBIzKMq5mWXEjExGHWR+Dza6BnQUUy5ywlWfDmmPgk8hlynXYePTniVgS4WB/ED+OKCs/mAoUR0JxxAJRRAJRRFkLxdL7xCJJRCNJxGIyYlEWUBnb/0YCr6qf5A/aRSG1niq3y5Z8G7v0E2Re5pb9DvEl3ybwCQkFnmQoKkuVBEHFXrOllHrdf70oAio10P86Vb9fHrzkf0Is4K4E3dMtlhzYxteVFoskeAm7j/zziwJMNi1/qG926PiSPeRiD7vY3xC7rqC/G0JIpsjY4LznW2ZYtKf4Yc8CIiodoNIoS0lz3GstwIbhaU3KkmdTsnXTwHLwuj4VkD+uLIIv6kObvw0tvhbUe+vR6G1Mt/4g/PH0MRMub74Lud2VENiYO/Y0SS9h+vICzLqwMGOGlcuxGKLNLdBWlI/3oRAy4bCP+0y6yO2o82Dv2hYc29GFZFzp6pJSHI25e/BmyWOQhZG7v0JTIUotpSg2F/NWZC5CkamIrxsG15mLR4CwF4iw5juujbCNTb4ZCwPxVIuFBq0P2pbsr7/7EXx/cIbf5Hc6N/NsOGT/PAL9Szb0kdU8ZBMHs/qGbK4BXuuQL5UJhdlrViOxzx9BOOiDHPHBwiZ1YxO8Cf2TvLG6h0E4BB8c8MEhePk6m+zIIfp4YH7gkcoAdl/sEwW4RAluSUSfJKFbZ0Kn0Y5OrRGdKgmdiKMzFkAoOTTLfqTJ3CrtlaiyVaFaX4pKvxEFLgGq1i5EjtUifOggonX1SpLCcVj9eP38+TAsmA/jsmVQ5+fz+q8Ne3txdGsnGvb2pG/IWdBpzqpizLqoCGotBeUJIeOTqdbjj6DZFUKrO8TLg7GRSay1ptYj8QTs8PFAvdK6UJRazxFc0EkueDRRNKnVaFVJ6FCp0JuQEPOpIPlEZLkF5LmNcARzYIzlQBBzETSwloOQLhsyC3iOQkhGoYEHWnUIemMCxiwNrAV25FTkIb+6AoYse0Zdn03Uh+0s8MwD+6ngPuv3YlG2VALR8f51vkwgzgP7bDl0u7JvUtknlkQyPhDcnqxY/6/WSdDoVNDo2Lqy1Js10JvUytKiht6kUdbNbF3NHywQQgjJ5OD8sS2wWKypR89sxhjWpNRradC6qAThWeBdUp2RyQ1ZzeTecC862RBzfzsPxLcH2tEWaOOv/bETZ2PmGHL4EPQqYzWm5lZiqn0qys0VeOp7O3gGW3aJGTPOL8DUxXkZd6Pc8R//Cffzz6PwJz/mdXAJIYqE34+2B78B04UXwH777cgkbOjsoU3t2L++De7OIIpq7Dj/3lLUumt5q+toRG3kCI65j436ALRfli6LB+tzDbnINeYqy9Q6+2xmWclq6TRH6rBgaTKujOJiS97Y+uDX7P0ku5NU8qh5Vy4DebOQiX36z+++BBpzGAltFHGthIRWg6RWBUHSQEpKvAlJAWy+NyEhQ0jKkNjEumx0tyxDLQNqWYYkyNAiDg3i0CKmNCE66HUUWkFZ6hDi9WfZ5G5s4ja+hDKpWyz1OiQICIii0gQBQVGEX1S2Bdl7ai3cah3ckgSXIMMjx5E4hWHuNq0NJaZiVKjzURm1oSioR3ZAhM2TgKrHg1hLC6INDUMmbj0eG76umzYNumk10M+dC/28eVBlZfH32NDzpgN9aNrfi/o9PYiFU2V0AOSWWzB7ZRGmzM/hE7IRQshExW53vaE4unxsNFOEL7t8ET6yiS27U9tCAT90kW7k8pFMrkGtFzrRi7jaj4g6CJ8qhh6IiARUSAQkiH4JWha0D+fCEMuBCrmQJSfCeifCWrtyT3kC6qgHqlgfxKQLMvqQlNz4zGO/RyaZCMH5sfg9ZA+2BzLSlfVkYujr45uckJXB/jy7PZXpzpdKtjt7ODX4Nf8+6W0snMHS7ZUS+Dzbnq+ksvD5kmXhK8fI1lldd0kl8L59SFMLEAe97g/Cs3gD/x6EEEI+ssytOZ9dDZxGx886vVA8BG/UyxvLdvdGvPDFlCXbxoI8vaFeHozvD8izf3My7Fq7kr1pLeWBeNZYJqczmY+2PT4c3dbJJ1274b+XpTvDiz5RA7NDC2eRGZmo93//F67Vq/nFBiFkKO9LL8G/Zg3869ZB5XTCfMklyBQ6kxpzLynh2b1tR938hsKhs8KR58A07Wz8/dcbcG3Vpahekoes6Ro0hRv4JJnHN/a5zj7HWTsRh87BP8PZfB6jrbOsZqPGCJPaxBsrN5bOmuNjmDVjc3ImiQS+DESMUAejMEU90EbcvKliHsiym00biJjoQVTyICL5ENLE4NcCIY2AkAYI8XUgrAEirKmAqAqIsaWkLGOSgJhaB1k406XhEpASceiigC3KytMB9qQeThjhSBqQJZjgjOvhiKphDQkwBhLQBmJQeYOQ3R7EXYchB3cO+YojzWYj2Ww8I5638nIejNfW1ECVnZ3+3fO7wmio86JjzVG0H3Wjq8k3pFityaHF1EV5qFqUC2fR6OUdCCFkImGfcVaDmreq3BPfJyWSMjwhNkIqymvfuwLKemdQWbIRVYFwFMmQBypjH1ThXmiiLohRN4LxPviFbiTFOiTFAFTREFTBODRBE1SRLEgxJ4QEe/jphCw6EdNkI6HSI6ax8gbQyN/JjAe+U0FvQgghZLCMDc7/evuvoTaqkZSTSMgJ3th6PBnny1gyhnA8zFsoEVKWcWXZvx6XlUn4ThULwrDsy2xDNvKN+bzucf+ywFiAPGPekNIJLHOtdkcXDm3rQtuxHekbZXYv3d3o49lrTPlspcZ8JnI/9zy6fvJTvp7z4IOUNU/IcWy3347wgQNwP/0MWr/2dZQ88lcY5s9Hpt0UFU61D9nWesTFs4taD7t5Y9lCJdMdmD5/Ka6adQ20hoEseE/Ew8uNsUlou4JdfPQTbwFlybaxvoM9mOUZ+KdQYYbVwDeqjbyxYL1OpYNG0kAjapRlap1l5bN1tajmE3yzn0lk/xNEvv7VBV9FJpKSQQBGJCUNQvps3k5EFw/DHPNB4/NBE/NDzdajfmhiPqijbBt77YMqHoQ6FuQTvvU/9o2xYH0qYJ8QgSTPQANkJQUtvc4D3qLy30ZKAqoEICbZscoQE0oTEkmlDRvEyEbQjT6Kjg2MVyq9DxCtVqhzc6HKy4U6L19Z5hdAW14GdWkpn9itP7mA1eV1dwXRfCyAvvW16GsLoLfVj4B7eKkcZ7EJJdOzUDYrC3kVVp51RwghkxWbXN1h1PD2UbDP2GgiyWvg85ZaZ6XUWPm0aCyOeDiARDSIaNiHYE8HgqzcWLcPCXcCiaCERJRNjHbxGf/ZCCGEEDIxZWxZm2l/mAZJf/olX1SCCmYNq19v4ZmQbGnRWPg2u84Op97JGwvG86U+CwbVwCznH4ZNtvbe/x0eMps5uzmuWpTDh5IbrVpkOt+aNWj50n1AIgHHPfcg9xsPjvchETIhyfE4Wu77Ms+gZ4G8ssf/Dm1VFTKdtyeEI1s6cXhzBy9700+UBFxz3xwU1zhO6uuw7tQVcaE72A13xA1X2MWD9GydLdlrvj3iQiAa4CXMArEAfzh8puy9ay8ydRi8QW/kpd387gjPAPd3+eDv8sPfG0TAE0UwkEAwLCDJo+mnRkjGlUB9PAhVLAhVPKSsp5o6FoKUCENKRCElI5ASrEX5UkxEoWLLJHvNgvyjX3YJGg1EvR6C0QDRwJpRWZqMPLgu2VizQeLrNt4ENum5PRtJlZbXuQ0HYkrzp1oghqA3Cn9fGD7WXBFeH3fE7y8KyCo08uuMvHILiqY56DqDEELIWZcJZW0IIYSQ0WRs5vwnaz4Jg9kASZR49iHLbFOJKiXDTZD4Oguis+xFnaTjS5bxPvg1C8IPKUVwmhPQtNd50Li3B2WznCistqcz1lhgntWRr1qYi8qFOXw2c6IIbNqE1q8+wAPz1uuvR87Xvzbeh0TIhCWoVCj8+c/Q9Om7Edq9G41334PSx/4GbUUFMpnFqcfCq8qw4MpS9LT4UbezG7U7u+HpCiKndOAG8cAHbfD1hlEyIwu5ZeZhk1ixvoCVrmHtZLGAfjgR5kF6f9SPQFxZRhIR3qKJKG8sIz/9OhlFLBGDDJmP9OK1ReUk2P8ymUot8f+WrCnyhu3DzhULYLMRaSGfErROr/PlwGu2DAfiSs1WUYWYxsLb6eJViySBl6TjS97EdB1X9poFyeXj68uydTcAl4zEUTk1MZ0HibgLQMMpH4fBqoEj38ibnS0LjMguNmfcXDWEEEIIIYQQMp4yNnN+vJ/Ks5ttFgRqPtiHlsMuXtuVzebOTF+ej5V3Tkvv53OFYck60zVuJ4e2b38Hnueeg+mii1D0m19DUJ/mRIyEZIC4y4Wmu+9B5NAhaKsqUf788xAkCsgdj83rYbIPZA0/8/+2obPey9e1BhWKahwonmZHQZUNttyTHxFFzp0+vT+Yz8rARIKx1PK4dZalHozz/VjAfPCSt2hy1Ez1M02lEaEzqvk8C4OXerOGz0ljcuhgtuv477VKQ3/zhBBCJoaJco9OCCGEjIeMzZwfayzI3l+nNRqO4+//tpEPNR9Mb9HwQE/53IFauezfUGB+dPn/+R/QVlbCfucnKTBPyEli5TFYzfnWr3wVud/8BgXmRzE4MM/MvLAQ5iwdmg/08aAsmwuENYaVArn9u0uGBHUpWH/uY/8NNToVb6czao1dA7AH8CxYn4gnkUzISCb6l/Kw1/z3R2R165VjENggjVQde7aNZdizQDwLsKs1El9n8yXQ7xwhhBBCCCGEnFsoOH8WsJvv3jY/elv86Gn2o6PeA4NFi2vvm8Pf5zf6egmJRJJPTlhUbUdRjZ0PKacb6w8X3LkT+lmzeIkO1rI+c894HxIh52aA/tFHhnzmJMNhiDoqmzWamvPyeWNB1K5GHxr396LtiJtn01tzBibxZoHVx/5tA0w2LbJLLLwsWU6pGfY8w7BSOCQzsEA7KxdDJWMIIYQQQgghhAxGwfmPiAVfouEEtPqBU7j2iUO8RI2nO4Tj53vT6EJIJmVeY5a57v55fIg5BWpOjeupp9Dx/R/AdvPNyPvB9+lhBiGnYfDfT2jXLjR/6T4U/uTHMC5dOq7HNdGxz20+YWaFNT1nSDg4MBKKTbrp74vw1lGnlMFhWGYzK38zdVEu5l9emt4eiyZ49jMhhBBCCCGEEEIyCwXnj8OGm7Ph4v3ajrrh7gwi4Ikg4Iki6InwwAsLwLPh5Pf8eEV6X29PCJ6uEF83WDTIKjIhq9CE3DIL8ios6cA8Y82mUjWn+jCk57e/Q8/vfqe8TsSBZBKgchyEnBG9jzyKRE8Pmv7l8yh4+GFYr7l6vA/pnMGC7kbrQAkcVtP7ju8v4dn13U0DjY+qavEjVKNM+M2wSUf/+uD7vC64yaHlpVNYXXBWUof1I84iM5xFJr4vnyJGVrKwCSGEEEIIIYQQcu7L2OD8Uw9vhU5lSNd5TSRYJnwckiTiX351YXq/ba818PrCI+mf7K1/mPqCK8sw77JSHpBnQRVyZiRDIbQ/9F14X3mFv876wr3I/vKXKWuekDOo4Cc/RhvL+n7jDbR9/euIHD2K7Pu/DEGk0T2nigXP7XlG3qqX5KVrjnt6Qvxh7+Da5a7OIF+yOUhYY6XQBpt3WQmcRZV83dcbxt8f2jhQb1wtQmL1xnmtcaBmaT7mXlIypj8rIYQQQgghhBBCPrqMDc6zAIleMzy4m4wneLC+v9wMK1sgSgLPijRYNXzJ6ghbsvWwOHVQqQcyt1n9eHJmRVta0XLffYgcPAioVMh76CHYb79tvA+LkElH1GhQ+POfoetnhej761/R+6c/IXL4MAp++hNIJiVzm5xewN6WY+BtsPwpVnz25+fDx8vghOF3hfk6G6EV9kf5XCT9+icRZyO8WIsc9z2CnuiY/CyEEEIIIYQQQgg5MwSZj5PPHF6vF1arFQe3NfAlC8Kz4DtrGj2bqFUFjU6irOwJQE4mUXf1NYjW10NyOFD0q1/CsGjReB8WIZOe58UX+WgVORqFprQUpf+3GiqHY7wPK+OxB8fhQBzxWILXuY9Hk4jHkkjEEmA9OcvIZzXtM7FP93g8sFgs4304hBBCCPkIqD8nhBCSyTI2c76gyk4d/wTHymnkfO0B9Pzhjyj67W+gzs8f70MiJCNYr7sOmvJytNz3ZWinToVkp1FBEwF7mEwl0wghhBBCCCGEkMkjY4PzZGIKHzqERF8fjMuW8dfmSy6B6aKLIKjoV5WQsaSfNQsVzz8HVsy8fyRRvK8PcjgMdUHBeB8eIYQQQgghhBBCyDmPZvojE0IyHEbXz36G+o/djNYHvoZYZ1f6PQrMEzI+JJsNktWaft35Xz9E3TXXou+JJ3jZKUIIIYQQQgghhBDy0VFwnowrNuWBf9061F13PXr//BcgkYBh8WIIqQl5CSETQzIUQqyjA8lgEJ3/+V9o/PgdCO3ZM96HRQghhBBCCCGEEHLOoggoGTfhgwfRdM89aP78vYg1NUGVm4ui3/8ORb/+FVRO53gfHiFkEFGvR+njf0fudx+CaDAgtHs3Gm69Da3f+AYP2hNCCCGEEEIIIYSQU0PBeTIuWNma+ltuRXDjJghqNRz33IOKV16G+eKLx/vQCCEnmKTZ8YlPoOK1V2G94Qa+zfviS6i94koEt20b78MjhBBCCCGEEEIIOadQMW8yZmLt7VDn5/N1dW4ObDfegGQggOwHHoCmqGi8D48QcpLUubko+NHDsH/iE+j80Y8QbWiAbsaM9PtyPE5zRRBCCCGEEEIIIYR8CEFmRb8ziNfrhdVqhcfjgcViGe/DmfTkRILXlHet/j8ENmxAxUsvQjtlSvo9QZLG+xAJIaeBdSGx1jZoigqV18kk6m++GdqyMh6818+fD0EQxvswySRFfTohhBBy7qP+nBBCSCaj1EZyVkSbm+F56SW4n34G8fZ2ZaMgILBpUzo4T4F5Qs59LPDeH5hnglu2InLgIG/eV1+Dtroato/dBMuVV0KVnT2ux0oIIYQQQgghhBAykVDmPDmjYm1taPnqVxHevSe9TbLZYLv5Y7Dddhs0xcXjenyEkLGZ7Nm1ejU8L70MORxWNooijEuXIvu+L0E/d+54HyKZJKhPJ4QQQs591J8TQgjJZDQhLPnIWFma0K5d8L37bnoby4yNNTYpgbhlS1Hw/36EynVrkfP1r1NgnpAMoZs2Dfn/+Z+oWrsGuf/2b9DNmQ0kkwh88AEve9OP1aqPHDvGS+MQQgghhBBCCCGEZBoqa0NOWjIaRXjfPgS3bUdo+3YEd+5E0uuFKi8PppUreXkLQa1G4S9/Ce2UCiphQUiGY6NmHHd+krdoYyN877wL/bx56fd7//oI3E89BcnphGHhwlRbAG1VFZW9IoQQQgghhBBCyKRHwXkyomQgANFoTL9u/+534XnhRcjR6JD9RLMZ+nlzkQwEIZmU/Y3nLRnz4yWETGya0lJk3XP3kG1yLAZBo0Gipwe+11/njREMBuhqalD62N8gqJRuSo7H0+uEEEIIIYQQQgghk8GEKGvzu9/9DmVlZdDpdFiyZAm2bNlywv2ffvpp1NTU8P1nzZqFV199dcyOdTKJ9/YitHs3PK+8gp4//AFt3/o2Gj5+B44sX4HDCxfxAH0/QaPlgXkpKwvmSy9F7re/hbKnn8bUjRtQ9ItfpAPzhBBysgoe/m9M3boFpU88juyvfAXGFSsgGgyQg0Ek+vqGBOMbP/FJHL3wIjTe9Wm0//v3eda99803EdqzB7GurnH9OcgA6s8JIYSQyYH6dEIIIWRsjHsa4pNPPokHHngAf/zjH3mn/8tf/hKXX345Dh8+jJycnGH7b9iwAR//+Mfx8MMP45prrsHq1atxww03YMeOHZg5cyYyDa/fzMrJCAJ/HW1uRrShEQmvh5ecSXi8SLCl2414dzcKf/JjXmqC6fnDH+F6/PFRv3akthb62bP5Ost4dXz6LqiLitLfixBCTpeo1cKwYAFvwOf5XBasFj37zBos0tCApMeDeGcngps3D3lPU16OKa8N3AB2PvwwEn4//6zjzWpNr6ucTmgrKtL7snr39Jl2ZlB/TgghhEwO1KcTQgghY0eQx3kmPtbZL1q0CL/97W/562QyieLiYtx333341re+NWz/2267DYFAAC+//HJ623nnnYe5c+fyi4eTnQm+6R9PwmLQs8gMb/w0sDMhALYbbkjvH9iwAdHW1tR+PJLD/i/9b+y33Zaujexf/z6i9XVDv17q67MX9jvvhKjRKMfxxps8ax2JOORYnAek5HgMiMchxxPI+953eUCJ6Xvs7/C+/jqS4RDkUBjJcBhyKKQsw2FUvvM21IWFfN/Oh3+Evr/9bdSfv/yF56GrrubrLPO07/G/Q52Xz0tOKK0E6pISvi6ZTCf935EQQs6muMuFWGMjr13PAvUsgB9va0essxPaykqU/OXP6X2PLFvOM+9Hoq2pQcXzz6Vf115xJc+8Zxn7ol7PGyu1wxqbxJpNat2v62c/5yOO2NwafB+2lERAEPnnddZn7knv6372n8q+qff7l5BEiHoDbDfdmN7Xv24d4j29yov+BwWpJfse1muuTu8b2LSJP2hN7TTwgwkCNOVl0M+YgUzpzwf36R6PBxaL5Qz+NIQQQkjmGq97dOrPCSGEZKJxzZyPRqPYvn07vv3tb6e3iaKISy65BBs3bhzx37Dt7Cn+YOwp/vPPPz/i/pFIhLd+rMNnjn3n2zCJI0w4KEmovvji9MuWRx9FYM3aUX+GqssuSwfc255+Gr7XXht138pLL01nrXe88w48zw0EiI6n+/y/QJ0KzvTV1cG1deuo+7q7uqA1m/l6KCsL0YoKSGYzRKsFkpk1MyS27sxGUKdD1Ovl+6pv/hhyb/7YsK8XY41l5Kf2I4SQccceglZUQKiogI59Rg56iz0MZTd1/evaz36WZ9kn+hsfRcTW3ZCzstL7Ml6Wje/zAawdR9PXB9Ogfdtefw2xhsYRD09VWAj1LTenXzc9+igihw6N/KM4HKi8ZFX6dePvf4/wjp0j7sseGlRdcH76dfPv/4DgKP2j/Y47kPO1YpjN5jEfDTAW/fmJ+vTB/00JIYSQyWA8+vPxvken/pwQQkgm9unjGpzv6elBIpFAbm7ukO3s9aFRghodHR0j7s+2j4QNrfvBD34wbPvFdXWjH1gqY/2kZGef/L6lpSe/byq7/aTMn3/y+xJCSKb76/+e3H7Hjp58f3Aq+zJnY9//+AFv45F1Nhb9+Yn6dJbNRwghhEwm45VFPp736NSfE0IIycQ+fdxrzp9t7In/4Kf4bEheX18fsrKyTvjUgj21ZxcHzc3NNLRuEDovI6PzMjI6LyOj8zIyOi9n5rywp/KTFfXpZxadl5HReRmOzsnI6LyMjM7LyKg/H0D9+ZlF52VkdF5GRudlZHReRkbnZWz69HENzjudTkiShM7OziHb2eu8vLwR/w3bfir7a7Va3gazpUrLnAx2kukXcDg6LyOj8zIyOi8jo/MyMjov5955GYv+nKE+/eyg8zIyOi/D0TkZGZ2XkdF5OTfPC92jn7vovIyMzsvI6LyMjM7LyOi8nN3zImIcaTQaLFiwAO+8886Qp+bs9dKlS0f8N2z74P2Zt956a9T9CSGEEHJ2UX9OCCGETA7UpxNCCCFja9zL2rDhbHfddRcWLlyIxYsX45e//CWf6f3uu+/m73/qU59CYWEhr0vH3H///bjwwgvxs5/9DFdffTX+8Y9/YNu2bfif//mfcf5JCCGEkMxF/TkhhBAyOVCfTgghhGRQcP62225Dd3c3vve97/EJY+bOnYvXX389PaFMU1MTnx2+37Jly7B69Wo89NBD+M53voOqqio+C/zMmTPP6HGxYXb//u//Pmy4Xaaj8zIyOi8jo/MyMjovI6Pzcm6fl4nan59L53Cs0XkZGZ2X4eicjIzOy8jovJz752Wi9unn0jkcS3ReRkbnZWR0XkZG52VkdF7G5rwIsizLZ+QrEUIIIYQQQgghhBBCCCFk4tecJ4QQQgghhBBCCCGEEEIyEQXnCSGEEEIIIYQQQgghhJAxRsF5QgghhBBCCCGEEEIIIWSMUXCeEEIIIYQQQgghhBBCCBljFJw/Cddddx1KSkqg0+mQn5+PO++8E21tbchkDQ0N+MxnPoPy8nLo9XpMmTKFz1QcjUaR6X74wx9i2bJlMBgMsNlsyFS/+93vUFZWxv9ulixZgi1btiDTvffee7j22mtRUFAAQRDw/PPPI9M9/PDDWLRoEcxmM3JycnDDDTfg8OHDyHR/+MMfMHv2bFgsFt6WLl2K1157bbwPa1KgPn046tNHR326gvr04ahPH4769JFRn372UJ8+FPXno6P+fAD16UNRfz4c9edj359TcP4krFy5Ek899RT/ZXz22WdRW1uLm2++GZns0KFDSCaT+NOf/oT9+/fjF7/4Bf74xz/iO9/5DjIdu/i55ZZb8IUvfAGZ6sknn8QDDzzALwZ37NiBOXPm4PLLL0dXVxcyWSAQ4OeCXRARxbp16/DFL34RmzZtwltvvYVYLIbLLruMn6tMVlRUhB/96EfYvn07tm3bhosvvhjXX389/7wlp4f69OGoTx8d9enUp4+G+vThqE8fGfXpZw/16UNRfz466s8V1KcPR/35cNSfj0N/LpNT9sILL8iCIMjRaHS8D2VC+fGPfyyXl5eP92FMGI888ohstVrlTLR48WL5i1/8Yvp1IpGQCwoK5Icffnhcj2siYR+/zz333HgfxoTT1dXFz826devG+1AmHLvdLv/lL38Z78OYdKhPHxn16UNRn059+olQnz4y6tNHR3362UF9+nDUnw+Vyf05Q336iVF/PjLqz89+f06Z86eor68PTzzxBB8SpVarx/twJhSPxwOHwzHeh0EmQFYCe5J4ySWXpLeJoshfb9y4cVyPjZwbnyMMfZYMSCQS+Mc//sEzFdjQOXLmUJ8+OurTCUN9Ojkd1KcPR3362UN9+sioPyf9qE8nHxX152e/P6fg/En65je/CaPRiKysLDQ1NeGFF14Y70OaUI4dO4bf/OY3+PznPz/eh0LGWU9PD/+gys3NHbKdve7o6Bi34yITHxuG+5WvfAXLly/HzJkzken27t0Lk8kErVaLe++9F8899xymT58+3oc1KVCffmLUp5N+1KeTj4r69KGoTz97qE8fHfXnZDDq08lHQf352PTnGRuc/9a3vsUnezhRYzXb+j344IPYuXMn3nzzTUiShE996lOsJBAy/bwwra2tuOKKK3gNt8997nOYjD7KeSGEnBpW127fvn38CTQBqqursWvXLmzevJnXx7zrrrtw4MCB8T6sCYn69JFRnz4y6tMJOfuoTx+K+vSTR336cNSfj4z6c0LOPurPx6Y/F1htG2Sg7u5u9Pb2nnCfiooKaDSaYdtbWlpQXFyMDRs2TLrhiKd6Xtra2nDRRRfhvPPOw6OPPsqHRU1GH+X3hZ0P9oTR7XYj04bLGQwGPPPMM3xW737sQ4udC8pmUbCLRfaUdfA5ymRf+tKX+O/Ge++9h/Ly8vE+nAmJDTmdMmUKn+SLDEV9+sioTx8Z9eknj/r0k0N9+lDUp3846tNHR336cNSfj4z681NDffqHo/58KOrPx64/VyFDZWdn8/ZRh3UwkUgEmXxe2NP4lStXYsGCBXjkkUcmbad/ur8vmYZd/LDfiXfeeSfdqbG/GfaafbgTMhh7Pnzffffxi6C1a9dSp38C7O9oMvY7ZwL16SOjPn1k1KefPOrTyamgPv3kUZ8+OurTh6P+fGTUn58a6tPJyaL+fOz784wNzp8sNlRh69atWLFiBex2O2pra/Hd736XPxmZTE/jTxXr9NnT+NLSUvz0pz/lT6375eXlIZOxWodsQiK2ZDXd2JAXprKyktemygQPPPAAfwK/cOFCLF68GL/85S/5RBl33303Mpnf7+e1H/vV19fz3w82sUpJSQkydZjc6tWr+RN5s9mcrndotVqh1+uRqb797W/jyiuv5L8XPp+PnyN2YfTGG2+M96Gd06hPHxn16aOjPp369NFQnz4c9ekjoz797KA+fTjqz0dH/bmC+vThqD8fjvrzcejPWVkbMro9e/bIK1eulB0Oh6zVauWysjL53nvvlVtaWuRM9sgjj7BySCO2THfXXXeNeF7WrFkjZ5Lf/OY3cklJiazRaOTFixfLmzZtkjMd+x0Y6XeD/c5kqtE+R9hnTCa755575NLSUv73k52dLa9atUp+8803x/uwznnUp4+M+vTRUZ+uoD59OOrTh6M+fWTUp58d1KcPR/356Kg/H0B9+lDUnw9H/fnY9+cZW3OeEEIIIYQQQgghhBBCCBkvk7cAGSGEEEIIIYQQQgghhBAyQVFwnhBCCCGEEEIIIYQQQggZYxScJ4QQQgghhBBCCCGEEELGGAXnCSGEEEIIIYQQQgghhJAxRsF5QgghhBBCCCGEEEIIIWSMUXCeEEIIIYQQQgghhBBCCBljFJwnhBBCCCGEEEIIIYQQQsYYBecJIYQQQgghhBBCCCGEkDFGwXlCyFnxhz/8ASUlJTAajbjpppvQ3d093odECCGEkI+A+nRCCCFkcqA+nZCJh4LzhJAz7p///CcefPBB/OY3v8G2bdvg8/lw8803j/dhEUIIIeQUUZ9OCCGETA7UpxMyMQmyLMvjfRCEkMllwYIFuPTSS/GjH/2Iv25ra0NxcTHWrVuHFStWjPfhEUIIIeQkUZ9OCCGETA7UpxMyMVHmPCHkjHK5XNixYweuvvrq9LaCggLMnDkTb7/99rgeGyGEEEJOHvXphBBCyORAfTohExcF5wkhZ1RdXR1fVlZWDtleVVWVfo8QQgghEx/16YQQQsjkQH06IROXarwPgBAyuQSDwXQnP1gkEsH1118/TkdFCCGEkFNFfTohhBAyOVCfTsjERcF5QsgZZTAY+HLt2rWw2Wzp7ffff3/6PUIIIYRMfNSnE0IIIZMD9emETFwUnCeEnFEVFRV8abFYhgyZC4fD6fcIIYQQMvFRn04IIYRMDtSnEzJxUc15QsgZZbfb+Szw69evT2/z+/3YuHEjnxmeEEIIIecG6tMJIYSQyYH6dEImLkGWZXm8D4IQMrk899xz+MIXvoDHHnsM5eXleOihh9DV1YU1a9aM96ERQggh5BRQn04IIYRMDtSnEzIxUVkbQsgZd+ONN6KzsxOf+cxn0NvbiyuuuAJPPfXUeB8WIYQQQk4R9emEEELI5EB9OiETE2XOE0IIIYQQQgghhBBCCCFjjGrOE0IIIYQQQgghhBBCCCFjjILzhBBCCCGEEEIIIYQQQsgYo+A8IYQQQgghhBBCCCGEEDLGKDhPCCGEEEIIIYQQQgghhIwxCs4TQgghhBBCCCGEEEIIIWOMgvOEEEIIIYQQQgghhBBCyBij4DwhhBBCCCGEEEIIIYQQMsYoOE8IIYQQQgghhBBCCCGEjDEKzhNCCCGEEEIIIYQQQgghY4yC84QQQgghhBBCCCGEEELIGKPgPCGEEEIIIYQQQgghhBCCsfX/ARbktg/LdpMJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABecAAAH/CAYAAADdUWYgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4G1Xa9vHHktx7T++9BwKhpUBCAoQSYIEl9N47vCxlqctSl/JRlxJCh6WXhFBSIJAAISG99+rYjnu3LH3XOSPJUiy5xJJc9P9dl96RRyON7LzLmXnmmfuE2e12uwAAAAAAAAAAgKAxBW9XAAAAAAAAAABAoTgPAAAAAAAAAECQUZwHAAAAAAAAACDIKM4DAAAAAAAAABBkFOcBAAAAAAAAAAgyivMAAAAAAAAAAAQZxXkAAAAAAAAAAIKM4jwAAAAAAAAAAEFGcR4AAAAAAAAAgCCjOA+gxX377bcyZswYiYuLk8jISOnXr5/ce++9Ul5e3tJfDQAAAAAAAAgIivNAG1JWVqaL1kOGDJHY2FhdyO7SpYtMmTJFfv7554Dss7KyUh566CHp27evREVFSadOneTKK6+U7Oxsv3z+Dz/8oL//4sWL5YwzzpAbb7xRUlJS5JFHHpELLrhAAmXDhg1y9tlnS1pamkRHR8vw4cPl5ZdfFrvdHrB9AgBat/Y4zraEzZs3ywMPPCCnnnqqdO7cWcLCwqRHjx7Slql//9tvv12OPfZYSUxM1L/TxRdf3NJfCwBCDmN16zsGUWO8Ghe9PcaPHy9t0fPPPy+XXHKJDBs2TCwWi/5d5s+f39JfC+2UpaW/AIDGu+6662TGjBkyaNAgueKKKyQ+Pl5KSkpk7dq18uWXX8rYsWP9+ue02Wxy2mmnyXfffSdHHHGEnHnmmbJx40Z5/fXXZc6cOfLbb79Jenp6s/bx+OOP64L4rFmz5LjjjnOtP+aYY+TTTz+V3bt36xN7f1qzZo0cddRRujNfFejVQcjMmTPl2muv1a+pgRgAEHra4zjbEhYsWCAPPvigmM1mGThwoGRlZUlbN336dHnrrbckJiZGunXrJkVFRS39lQAgJDFWt85jEHXh+uabb66zvq1enFdNg0rHjh3136E9HMugFbMDaDMGDBig2rrteXl5dV6rrq72+/6mT5+u93fuuefabTaba/3LL7+s11955ZXN3kdiYqK9V69eddbfcccdeh+//vqr3d/Gjh2rP3vWrFmudZWVlfYxY8bo9QsXLvT7PgEArV97HGdbwubNm+2LFi2yl5WV6Z8jIyPt3bt3t7dlixcvtq9atcputVr176b+fS666KKW/loAEHIYq1vfMYga49v6OH+gb775xr537179/KqrrtJ/k3nz5rX010I7RawN0IaoK9uK6jBX3d3Lly93xbCoW6387bXXXtPLRx99VN/G5XTVVVdJr1695L333mt2LnxhYaHXzvgtW7boZVJSkvg7zkbdmq5uSz/xxBNd6yMiIuThhx/2+L0BAKGlPY6zyttvvy2HHHKIjnFTMT3qTjE1/qpoADXfi/rZn9R3V114an/+9uyzz+rIIRWFp36HA6l/r969e+sOvtLSUr/td9SoUTJ48GB9NwAAoOUwVretY5DmGjlypL7T3dfd7T/99JP+/pdddplf96siDTt06ODXzwR8oTgPtCH//ve/5YQTTtC3iNfU1OifVT6cysetqKjw677U5/3+++/Sv39/6d69u8dravA7/vjj9Unvn3/+2ex9mUye/ylSxXMVH5CZmSkDBgwQf3LmxE2aNKnOaypKR53wqwEeABB62uM4e/fdd8tFF10k1dXV+hZtlaev5li58MILdaSb2oe6lb2tUEX/k046ST7//HP973IgdSu+usA/bdo0PaYDANoXxurWeQyi8utVNKD693nhhRf05/uDihlMSEjQxzBLlizxeZFBZeUDbRWZ80Abojrb1GD5/vvv659Vptu6det0oXn27Nk649W9S011lxUUFDT686dOnSojRoxwTeamcuhUUcIb53qVSzdmzBjxBzXR2qpVq+T777/XHYpqUD+wcL9t2zY96DeFmpTOSX1f9+/vTnXD9ezZU+fOW63WgHRJAgBar/Y2zi5btkwee+wx6devn554XU32pqjC9QcffCD79u2T1NRUGTdunMf7mvN7BaM4//HHH+u/ybvvviv/+c9/9N1vTq+++mqdk3T1u6jfqSnUv72/794DADQfY3XrPAZRmexqAlV3hx12mD7eUHe0NeffW10sUBcS3njjDTn00ENdr+Xl5el56tSkraNHj/ZoyGvK5K0qF59J3tGSqDwBbcTXX38t//3vf2XevHke61VnuboV7fzzz5dXXnlFbrnlFo8Be/v27U0alJwDtvNWcXVbuDfq6rX7dv6gvq/qVFRSUlIkJydH357ufpudKs6rSeYOtjjfmN9LHagUFxdLcnLyQf4mAIC2pj2Os//73//0OKpObJ2FeWfhWp0sq662Sy+9tM7F6Ob8XsGi7gZQ3XTqosmpp56q16njBnXnnTpxV7fBO6niRVOPHdRJOsV5AGhdGKulVR6DqKK8KuKru/NUXJ6Kkn366aflnXfekQkTJsjKlSslPj5eDpa6WHDUUUfJJ598ouNtnBFz6vPVXQDqeMCdKsw3ZdxXTQoU59GSiLUB2gjn7VrDhw+v85oa8BR1e7o7VchWJ+WNfbT0gKQy7Xbt2qUH3W7duuliwoEzvo8fP75Jv5MzKxgAgFAbZ9WdYIo6oXV3+OGHu+5M8xZp09p/L0VlzoeHh8uHH37oWvfWW29JVVVVnVvbVUGiqccO6j0AgNaFsbp1jtX333+/nq8nIyNDYmJi9EUANd/NBRdcoC8g+GNOt7///e/6IryKr3NSn6vuaFQNFAc25zXlb9OULnsgECjOA23E+vXr9Ym0t6vbahBU3eU7d+702/6c+/F1tbyoqMhjO39QJ9lqclhVKFC58+r2txdffFGys7OD+nupv2VzruwDANqe9jjOlpSU6GXHjh091qsTZxV1oz574sSJ0hapO+zUbe5fffWVntjWeZKuOvZUbA8AoP1hrG5b5/pqclnl119/leb629/+po/T1J1/ysKFC2X16tVy9tlnc6cb2jxibYA2IjIyUsetqCw3NVu5O7VOXfF1z1xtbg6dmqFdDX7OjPYD1Zfd7g/q9ns1QavKw1MTu6nCiD8y593z8w6kInW2bt2qc+fJmweA0NIex1nnhKhqUjd3qpitLjR06NChzu/U2jPn3Z1zzjkya9YsHXOgfhd1G/3ll1+uC/TuyJwHgPaBsbrtHIMoaWlpXo9DDoYa51X8zBdffKFjCJ3d+AdG2ihkzqOtoTgPtBEqv01ltanbuNTtYe5+/PFHvRw8eLDfcujU7WHqtvfffvtNf4b7LO6qQPHDDz/ok/5Ro0Y18zczPs8bVQxxz7zzR+a8c9I7NensP/7xD4/tfvnlF33gcODEeACA9q89jrMqL191li9ZskRPpOakctnVeKcufqvu+gOL2W0hc95ZaFCFGhVt47wQcWCkjULmPAC0D4zVbecYRFFz2zj37Q8q2kbNDaTGfTWvjjouO/roo+tsR+Y82hw7gDZh1qxZqoJt79u3rz0/P9+1fv/+/fbevXvr12bOnOnXfU6fPl1/7rnnnmu32Wyu9S+//LJef+WVV9Z5j1rflP+0qG3NZrP9888/91i/atUqe3h4uD09Pd1utVrt/jR27Fi9X/U3daqsrLSPGTNGr//111/9uj8AQOvXHsfZRYsW6W2HDRtmLygo0OuqqqrsI0aMcH3O119/bQ+0yMhIe/fu3evdRr2uvs/WrVub9NlTp07Vnx8VFaV/r2Bw/l0vuuiioOwPAGBgrG65YxB1/LB27Vr7pk2bPNardaWlpXU+X63v0KGD/qyffvrJ47V58+bp9ePGjWvSd87NzbVbLBZ7YmKifv+zzz5rD4arrrpK7099byAQwtT/aekLBAAaR3WDqdu3VC67ylxTPv74Y9mzZ4++nevVV1/1659S3d5/0kknyXfffSdHHHGE7ijftGmTfPbZZ/rqt7oSnp6e7rG9mjldPaxWa6P2oTJ8nctJkybpq/mqY15NCqu6+l5//XW57LLL/Pp7qWw6dYVdTUCrbolXWbxqkj+1/vrrr9czwAMAQk97HGfPPfdc3WGm5nE5+eST9WeqTrl7771XnnvuOd0Zp6JgbrvtNr9ltubm5srtt9/u+vmdd97RXXrOv6ny1FNPuW53V9RE8CpqRz26dOnS6H199NFHupNOUfPUqMnkA0HdXaeOSRQ1IZ2K01F/UxXBp6jfRf1OAIDAYqxOapFjEHUHu4p/VV326rn7XepPP/20jB07Vr+mjitUzJwaJ6urq+Wuu+6Sf//73x77njt3rkyYMEE/nHcnNtaJJ54os2fP1jG4u3fv1nPQBMJjjz0m69at088XLVqkf6fJkyfreB3n3XvqAfhFQEr+AAJCXdF+7bXX7KNGjbJHR0frh3r+6quvelzt9qeKigr7Aw88oLsGIyIi9NXvyy+/3J6VlVVn2+XLl+sryuedd16jP19trzrdLrvsMv3Zqos+ISHBfuyxx9q/+uore6CsW7fO/re//c2ekpKiO+6GDh1qf/HFFwP2dwQAtH7tcZxVd4apz+/Tp4++Iy05Odl+66236t/nu+++0+sPpmO9PuqznJ35vh7u+1N3KphMJvvRRx/d5H2VlJTYY2Ji9L+V8+6AQHjzzTfr/X0aujMAAOAfjNUtcwziHNsPHO/mz59vP/vss/Wdh+o8XnW2q8857bTT9HGGN88995z+LHXMdbDj8bRp0+yBpLr66xv377///oDuH6GFznkAfvPCCy/IjTfeqDN7D8zl9UV1zKur9CoXDgAA+HecbQu++eYbOeWUU/RdbKqLr6mcWbbunXwAALSE9jpW+5O6k0515m/evNnrxPT1UXWDY489Vu6//36PueWAtszU0l8AQPuxYMECOfXUUzkIAQCAcbZJxw8q1u5gCvMAALQmnBM3LipOxek1tTAPtFeWlv4CANoPlfsKAAAYZ5vi8ccf1w8AANo6zokbpuaYA1CLznkAAAAAAAAAAIKMzHkAAAAAAAAAAIKMznkAAAAAAAAAAIKM4jwAAAAAAAAAAEEWcsV5u90uRUVFegkAANouxnQAANo+xnMAQCgLueJ8cXGxJCYm6iWAwHlx3ibp8Y+Z+jFzxV7+1AD8jjEdAIC2j/EcABDKQq44DyA4qmtsrudVNTX82QEAAAAAAAA3FOcBBL44b619DgAAAAAAAIDiPIAAsdbUzutAcR4AAAAAAADwROc8gICocuucr6RzHgAAAAAAAPBAcR5AEDLnibUBAAAAAAAA3FGcBxAQxNoAAAAAAAAAvlGcBxAQ7t3yZM4DAAAAAAAAnijOAwiIaiaEBQAAAAAAAHyiOA8gIKxkzgMAAAAAAAA+UZwHEPgJYa1MCAsAAAAAAAC4ozgPICCq3GNt3Ar1AAAAAAAAACjOAwhCrI3VrVAPAAAAAAAAgOI8gCDE2rg/BwAAAPzBarXKHXfcIZ07d5aEhAQZP368rFixgj8uAABtjDWEx3RibQAEPNamms55+FFFRYVcd911kpqaKnFxcXLmmWfKvn37Gv3+q6++WsLCwuTZZ59t0X+XvXv3yrRp06Rfv35iMpnk5ptvbtHvAwBAWzN9+nR54YUX5Pnnn5e//vpL+vTpI+ecc85Bf54qAowZM0aioqKka9eu8sQTTzT4nh07dsiUKVMkJiZGMjIydGFBFRgAAEDjTQ/hMZ3iPICAx9rQOQ9/uuWWW+Trr7+Wjz/+WH766SfZs2ePnHHGGY167+effy6//fabdOrUqcX/USorKyU9PV3uvfdeGT58eEt/HQAA2pw5c+bIKaecoo8DevfuLbfeequsW7dO8vLymvxZRUVFMmnSJOnevbssWbJEnnzySXnggQfk1Vdf9fmempoafRJfVVUlCxculLfeektmzJgh9913XzN/MwAAQsucEB7TKc4DCAj3grzVRqyNv9ntdimrsrbIQ+27sUpKSuSSSy6R+Ph4yczM1IPi7t279ZVo9VpTFRYWyhtvvCFPP/20HHfccXLooYfKm2++qQdPVXSvj9rvDTfcIO+9956Eh4c3ab9qUE5OTpZ3333XY/3cuXMlIiKiSZ37Tj169JDnnntOLrzwQklMTGzy+wEACPXjjOzsbI8L7llZWXppNpub/Dur4wN1Qq469wYPHix///vf5cYbb9THHL58//33smbNGn18MGLECDnxxBPl4YcflhdffFF/FgAALY0xfXCrH9MtAf10ACHLPcqm2sqEsP5WXl0jg+77TlrCmocmS0xE44aPiy++WFauXCnz58/XBWx1FXzVqlUyceJEHUnjPBm+6qqr6v2cb7/9Vt+Spq56V1dX6/c7DRgwQLp16yaLFi2SI444wuv7bTabXHDBBfq2NHXC3VTqdjr1/VXXvhrYLRbj93/ttdfk5JNP1hceFPXZ27dv9/k56ndQvwsAAK1ZWznOcC/kb9y4Ue666y458sgjXRe91Yn1ggULfL5fddStXr1aP1fHEWPHjtUX3Z0mT54sjz/+uOTn5+uL9AdS7xk6dKjrOMD5nmuuuUZ/7siRIxv5WwMAEBiM6a1/TKc4DyDwE8LSOR+ScnNz5bPPPtPFd9Xhrpx++uny9ttv6+53p1NPPVVGjx5d72epSWGcHXHqpDkpKcnjdTWAOrvlvFGDsCqoq6vlByM6Olpuu+023fn/448/ygknnKBvr1MxOZ9++qlru1mzZumLB/V9DgAA8K8777xTZ8mqOWVU7J3T66+/LuXl5T7f534nnTqO6Nmzp8frzhN09Zq3E3m13v0k/sD3AACAprkzBMd0ivMAAl+cd3sO/4gON+vOspbad2Ns2rRJd7SpDjanww8/XA+wqiDvpCJv1CNQVLe9io9ZunSpHuAPliruq4sLH330kS7Ov/POO3pSWvXcvQMPAIC2ri0cZ7hTF9BVTq26SH7uuefqW9LPPvts18V9AABCFWN660dxHkDAY22sbs/hH6rI3NhbvltKZGSkXrrfHq4mQO3Xr5+kpaW51jUl1qZDhw46762goMCje15FzqjXvFG3s6tMWhV94z7ZizqRf/bZZ2Xbtm2N/p3OOussHXHzyiuv6O5/FdvjnmtLrA0AoD1oC8cZ7jIyMvTjmGOO0WP+Sy+9pIvzTYm1UccRB84h4/zZ1zGGWv/HH3806T0AAAQTY3rrH9PbzhEXgDbFvVu+is75kKRuIzOZTDoD1jlZ21dffSU7duzQHfXOLvamxNqoeBx1u5qayf3MM8/U69avX68/071D353KmnfPqHdmx6n1arLaplCT0Kpi/EMPPaSz81WsjTtibQAACC6r1erxszpOiIqKavIt8Oo44p577tHxdM71P/zwg/Tv39/r7e/O9zzyyCP6goC6OOB8T0JCggwaNMgvvx8AAKHCGqJjOsV5AAEvztM5H5pUZ7uaAFYNcCrOZsOGDTJ79myduz537lyZMGFCk2Nt1ARvl112mdx6662SkpKiB8obbrhBD6Tuk8GqSWIfffRRHUOjomfUw50aoNXVbzU4NzXaZurUqfLYY4/JuHHjpHfv3h6vNzXWZtmyZXpZUlIiOTk5+md1pwEn9AAANM6MGTNk1KhRcuyxx8ry5cvl/fff1xfRlabE2kybNk0efPBBfZyh8m7VRXgVi/fMM8+4tlEX5dWks+vWrdM/T5o0SY/Z6oK/ysdVmbT33nuvXHfdda47CAEAAGN6fSjOAwh4rA2Z86HrxRdflMsvv1yfHKuOcxUjo05WzzvvPF20VyfATaVOklVHvuqcr6ys1F3w6vZ1d6qbvrCwsEmfO378eOnRo4c+yW8o2kZF2hzMdz+Q+4zvKhtfFRRUgb8pUTsAAISyIUOGyFNPPSXXXHONvvCuJn+//vrrm/w5qgHg+++/14V1daeeiuC777775Morr3Rto44t1DGGkzq2+eabb/S+VaNAbGysXHTRRa6LAwAAgDG9IWF2lS0QQoqKivSBlzqwUh2XAPzPZrNLr7tnuX5Oi4uUP+/1jBUBWhtVFFcdcypHvj6qcK4ie/766y8ZMWJE0L4f6mJMB4DQpi6sq7FYXfxH28V4DgAYH8JjuqmlvwCA9qfaZvP8mcx5tHJqMjh14fbCCy9s6a8CAAAAAABCBLE2AAIaaaNYKc6jlRs8eLCsWLGipb8GAAAAAAAIIRTnAfjdgcX4A4v1QFumculDLBEOAIBWaf78+S39FQAAgB/MD+ExnVgbAH5XdWBx3majmAkAAAAAAAC4oTgPwO8O7JRXTcY1NjqNAQAAAAAAACeK8wD8zlvGvJXiPAAAAAAAAOBCcR6A31U7ivMxEWafUTcAAAAAAABAKKM4D8Dvqqz2OsV5K5PCAgAAAAAAAC4U5wH4ndVmdMlHmE1iNoUZ6+icBwAAAAAAAFpHcf7nn3+WU045RTp16iRhYWHyxRdfNPie+fPnyyGHHCKRkZHSp08fmTFjRlC+K4Cmx9qEW0xicRTnibUB2jfGdABAsFmtVrnjjjukc+fOkpCQIOPHj5cVK1bwD9EMjOcAgJZgDeExvUWL86WlpTJ8+HB58cUXG7X91q1bZcqUKXLsscfKsmXL5Oabb5bLL79cvvvuu4B/VwBNj7UJN5t097xCrA38paKiQq677jpJTU2VuLg4OfPMM2Xfvn31vqekpESuv/566dKli0RHR8ugQYPklVdeafHf4+KLL5ahQ4eKxWKRqVOnSlvGmA4ACLbp06fLCy+8IM8//7z89ddfunnrnHPOOejPU0WAMWPGSFRUlHTt2lWeeOKJerdfvny5nHvuuXpbdXwxcOBAee6556QtYzwHALSE6SE8plukBZ144on60ViqkNKzZ0/5z3/+o39Wf6hffvlFnnnmGZk8eXIAvymAg4m1UV3zFnOYRzc90Fy33HKLzJw5Uz7++GNJTEzURfczzjhDfv31V5/vufXWW2Xu3Lny7rvvSo8ePeT777+Xa6+9Vt+5deqpp7bIP0pNTY0e9G+88Ub59NNPpa1jTAcABNucOXP0ndjqOMA53r/xxhuSl5cnKSkpTfqsoqIimTRpkkycOFGfd65cuVIuvfRSSUpKkiuvvNLre5YsWSIZGRn6+EKdzC9cuFBvazab9fFJW8R4DgBoCXNCeExv0eJ8Uy1atEj/Yd2porzqoPelsrJSP9z/gQAElrMQH2Ex6e55Y53RTQ8/sdtFqsta5s8ZHiMSZlx0aYjqWL/hhhvkk08+kZiYGLn99ttl2rRp0rdvX8nOztad701RWFioB+j3339fjjvuOL3uzTff1Bdrf/vtNzniiCO8vk8NrBdddJG+NU5Rg+x///tf+eOPPxpVnFeRaurOrfvuu0/uvPNO1/rNmzfr3+XPP//UkWtNERsbKy+//LJ+ri4sFBQUSChhTAeAVqyNHGeoYwl1J7ZTVlaWXqoT6aZ67733pKqqSnfuRUREyODBg/Xd2k8//bTPE3l1ou+uV69eenz77LPP2mxxvqkYzwGglWNMl9Y+prep4rw62MrMzPRYp35WBffy8nLdgXigRx99VB588MEgfksA7rE2tcV5Ouf9Sp0w/7tTy/w/2917RCJiG7Wpim1RV6lVcVtFz6ir4KtWrdIXWp2FeXUyfNVVV9X7Od9++62+JU1dza6urva4UDtgwADp1q2bHjh9FeePOuoo+eqrr/SAq7rl1ffZsGGDvvOqMdT7X331Vbnkkkv0Z6Snp+v1r7/+uowYMcJVmFfdZgsWLPD5Od27d5fVq1c3ap/tHWM6ALRibeQ4w64KDg4bN26Uu+66S4488kh9Z11Tx2V1HDF27FhdmHdvBHv88cclPz9fkpOTG91I0NQOv7aM8RwAWjnG9FY/prep4vzBUAdo6lYIJ1XIV7cnAAhOrE24I9bGuQ6hIzc3V19lVsX3Qw89VK87/fTT5e2339bd706qc3306NH1fpaaFMZ5AqhOmtXtaAdeqHV2y3mjcuvUFXKVOa/y3U0mk7z22mv6JLwx1D7PO+88efLJJ3UEzdVXX60nrHnrrbfknnvucW2nivXqYrEv4eHhjdofvGNMBwB4o+5qU1myYWFhOvbuYMZldRyhIlTdORvD1GuNOZFXd+p99NFHOn4PvjGeAwB8uTMEx/Q2VZzv0KFDnUn/1M9qFl9vXfNKZGSkfgBomVgbi6Nz3tlNDz/e8q06y1pq342wadMm3dGmOticDj/8cD3AukfJxMfH60cgqeK8ir1R3fOqS+7nn3/Wk8qqLvoD49Lqc9ZZZ+kBWhXn1SCtrrqrov2BFxHQMMZ0AGjF2sBxhrvbbrtN59TOmjVLT+am8mLPPvvsoI7L6s7A0047Te6//36dcxsqGM8BoJVjTG/1Y3qbKs6rAo864HL3ww8/eBR+ALS8ai+xNnTO+5nKYm3kLd8txXlh1P32cBUH069fP0lLS3Ota0qsjToBVHmwKp/dvXteXahVr3mjrq7ffffd8vnnn+vceGXYsGE6c+6pp55qcnFe5c7v3btXX7lXMT3u34NYm8ZjTAeAVqwNHGe4UxO4qccxxxyjc+hfeuklXZxvyrjsq8jsfK0+a9askQkTJui79O69914JJYznANDKMaa3+jG9RYvzaqJA1VnptHXrVl0sUXk+Kj9Y3e62e/duHYGgqE7FF154Qf7v//5PZ/7OnTtX/ve//3HbINDKVHuJtSFzPvSo28hUfIzKgFUd6orqXN+xY4fuqFe3qTU11kbF46jb1dRM7meeeaZet379ev2Zvi7Uqox69VDfxZ2aLM7WxLgldWFhyJAh8uyzz+oLBt9//73H66Eca8OYDgBoCSpm7sCxNioqqsnjsjqOUFF16pjBuV41gvXv37/e299VcV9NUq8mnn/kkUekrWM8BwC0FGuojun2FjRv3jzVXlvncdFFF+nX1XLcuHF13jNixAh7RESEvVevXvY333yzSfssLCzU+1BLAIHx5i9b7N3v/MZ+7XtL7Ge89Kt+PnvVXv7cIehvf/ub/fjjj7eXlZXZly1bZo+Pj7enpaXZf/zxx4P+zKuvvtrerVs3+9y5c+1//vmn/cgjj9QPd/3797d/9tlnrp/VWDJ48GA9hmzZskWPHVFRUfaXXnqpyft/+OGH7SaTyd6zZ0+7zWazN8fq1avtf/31l/2UU06xjx8/Xj9Xj7aIMR0AEGxqfI+NjdXj+rZt2+xffvmlPSEhwf7ss882+bMKCgrsmZmZ9gsuuMC+atUq+4cffmiPiYmx//e//3Vto44t1DGG08qVK+3p6en2888/3753717XIzs7295WMZ4DAFrCuBAe08PU/5EQoiaETUxM1DPuqqx6AP732s9b5JFZa+X0kZ1lT0G5/L41T16YNlJOHmZ0TyN0qFvLL7/8cvnll190p7qaHV3F3ahsWHUl+rLLLmvyZ1ZUVOj3f/DBB1JZWalnXVe3r7vfnqa68t988025+OKLXZO+qLuxVKd7Xl6evo1d3aZ2yy23uDr41bbbtm2T+fPn17t/1ak/YMAAefjhh5t9m1uPHj1k+/btddaH2NB80BjTASC0jR8/Xh8XqG7vzZs362OB888/Xx544AF93NFUK1as0HPSLF68WEfw3XDDDXpiOqcZM2bIJZdc4hqn1X4efPDBOp+jjjPUMQUah/EcADA+hMd0ivMA/O6l+Zvkidnr5axDu0hWUYUs2Jgrz54zQqaOZLJMtF7jxo2TY489Vg/KDVEFfZVhP3Xq1KB8N3jHyTwAhDZ1Ij9ixAgdN4e2i/EcADA+hMf0NjUhLIA2NiGsxaRz55WqmqZlewPBpO6mUlfnZ86cyR8eAAAAAAAEBcV5AH7nnPw1wmyScLMxCae1hpgOtF4q7mzXrl0t/TUAAAAAAEAIoTgPwO+qbUZxXnXNO4vzzoI90B6QCQ8AQMtraJ4YAADQNswP4THdqJoBQIBibcLNRqwNxXkAAAAAAACgFsV5AH7nLMSHm8LE4uqcJ9YGAAAAAAAAcKI4D8DvrI5Ym3CPzHlibQAAAAAAAAAnivMA/K6KWBsAAAAAAACgXhTnAQQs1sZjQlgbsTYAAAAAAACAE8V5AAGLtYmwmMTinBDWSqwNAAAAAAAA4ERxHkDgYm1U5rzJkTlP5zwAAAD8yGq1yh133CGdO3eWhIQEGT9+vKxYsYK/MQAAbYw1hMd0ivMAghJrU8WEsPCTV199VQ/UasAOCwuTgoKCBt/z6KOPymGHHSbx8fGSkZEhU6dOlfXr17fov0lFRYVcfPHFMnToULFYLPo7AQCAxps+fbq88MIL8vzzz8tff/0lffr0kXPOOeeg/4SqCDBmzBiJioqSrl27yhNPPNHo9+7fv1+6dOnS6GMTAABQK5THdIrzAIISa2OlOA8/KSsrkxNOOEHuvvvuRr/np59+kuuuu05+++03+eGHH6S6ulomTZokpaWlLfbvUlNTI9HR0XLjjTfKxIkTW+x7AADQVs2ZM0dOOeUUOeOMM6R3795y6623yrp16yQvL6/Jn1VUVKSPDbp37y5LliyRJ598Uh544AHdFNAYl112mQwbNuwgfgsAADAnhMd0S9D2BCBkVLvF2kQ4J4StYUJYf7Lb7VJuLZeWEG2J1leQG6OkpERuuOEG+eSTTyQmJkZuv/12mTZtmvTt21eys7MlLi6uyfu/+eab9XL+/PmNfs/s2bM9fp4xY4buoFcD9dixYxt8v9rXlClT5L777pM777zTtX7z5s36d/nzzz/lkEMOadLvERsbKy+//LJ+/uuvv9JlBwBoNdrKcYY6lhg+fLjr56ysLL00m81N3u97770nVVVVunMvIiJCBg8eLMuWLZOnn35arrzyynrfq8Zz1VmnjhO+/fbbJu8bAIBAYUyPaPVjOsV5AH5X5RZr45oQls55v1InzKPfHy0t4fdpv0tMeEyjtlWxLStXrtTF7X379umr4KtWrdKd4s7CvDoZvuqqq+r9HDUoqlvS/KWwsFAvU1JSGrX9UUcdpa+yX3LJJXLppZdKenq6Xv/666/LiBEjXIX5E088URYsWODzc9SV+9WrV/vldwAAINSPM1TBwWnjxo1y1113yZFHHimJiYlNHpcXLVqkL9irwrzT5MmT5fHHH5f8/HxJTk72+hlr1qyRhx56SH7//XfZsmVLo39PAACCgTG99Y/pFOcBBCzWJtxicmXOU5wPPbm5ufLZZ5/p4vuhhx6q151++uny9ttvyxtvvOHa7tRTT5XRo+svAKhJYfzFZrPp7vujjz5ahgwZ0qj3qBP18847T98O9+mnn8rVV1+tJ6x566235J577nFtp4r15eW+Ow3Dw8P98jsAAIBa6q42lSWrOu4//vjjgxqXVdd9z549PV7PzMx0vebtRL6yslLOPfdcfXzQrVs3ivMAADTTnSE4plOcBxCwWBsVaRPuypwn1sbft3yrzrKW2ndjbNq0SXe0qQ42p8MPP1wPsKog76QmaVWPYFHZ86p7/5dffmnye8866yz56KOPdHF+5syZ+qq7KtoH4iICAAAtpS0cZ7i77bbbdE7trFmz9In1u+++K2effXbAx2XVqT9w4EA5//zzA7ofAAAOFmN66x/TKc4D8Ltqt1gbZ+e8M+oG/qGuIjf2lu+WEhkZqZfut4erOJh+/fpJWlqaa10wY22uv/56+eabb+Tnn3/Ws68fTHFeZc/t3btXX7lXMT1JSUmu14m1AQC0B23hOMOdmkdGPY455hidQ//SSy/p4nxTxuUOHTroCD53zp/Va97MnTtXx/epuXXcY3bUcY66s+7BBx/02+8IAMDBYExv/WM6xXkAflftFmtjcRTn6ZwPPeo2MpPJpDNgO3XqpNd99dVXsmPHDj3QOSd7C0asjdqfmpj2888/1/n3B97i1ljqwoKKwnn22Wf1BYPvv//e43VibQAACC4VM3fgbe1RUVFNHpfVnX7q5Lu6utq1/ocffpD+/fv7zKZVUXfun7948WI9N426INC7d+9m/24AAIQSa4iO6RTnAQQs1ibcZJIIJoQNWaqjXHWWP/LIIzrOZsOGDTJ79myJjo7WV6UnTJhwULE2KiNOPVRsjqKubqv3q1w45wSv6rNVvr3qlHdG2bz//vvy5Zdf6m3V+xU1YZz6Pk3tnr///vt1t92xxx7brIsIasKZqqoqycvLk+LiYj2DvKImmQUAAA2bMWOGjBo1So/Jy5cv1+O9msytqePytGnTdFfcZZddpvNuVQTec889J88884xrG3WRX932vm7dOv3zgSfrar4dRd0W735nHQAAYEz3heI8gIDF2oRbwsRickwIayNzPhS9+OKLcvnll+uTY7PZrDvOVdyNymlXRXt1AtxUr7zyisctZWPHjtXLN998Uy6++GL9fPPmza4TZOXll1/Wy/Hjx3t8lvt71HLbtm26s76h4vw///lPfRXd2f1/sE466STZvn276+eRI0d63EIHAADqp+5oe+qpp+Saa67Rt6rfeOONrovzTaEu2Ks74tQFfTWRvbqNXUXZXXnlla5tCgsLZf369fyTAAAQAENCdEwPs4dYBaCoqEj/I6l/hISEhJb+OkC7NOyB76Sowipzbhsnu/LL5aLpf8igjgky66bmZ4YDgTJu3DjddffAAw80uK0qyqvuualTp/IP0oIY0wEgtKmL7upuM3XxH20X4zkAYHwIj+l0zgPwu+qa2libcJPRWWx15NADrZG6YKu67WfOnNnSXwUAAAAAAIQIivMAAhproyaFNdaF1E06aGPUHVW7du1q6a8BAAAAAABCCMV5AH6lkrKsjnz5cLNJLI7OeWfBHmgPQiwRDgCAVqmheWIAAEDbEMpjutHSCgB+4t4hr2NtzM7OeYrzAAAAAAAAgBPFeQB+5V6E17E2juK8lVgbAAAAAAAAwIXiPAC/ci/Cq8J8uNmItamicx4AAAAAAABwoTgPwK/ci/Aqb57OeQAAAAAAAKAuivMAAhJrowrzYWG1xXky5wEAAAAAAIBaFOcB+JWzCB9hMf7zYnHE2lhtdrHbayNvAAAAAAAAgFBGcR5AQIvzzs554zWK8wAAAPAPq9Uqd9xxh3Tu3FkSEhJk/PjxsmLFCv68AAC0MdYQHtMpzgPwq0qrzaMo75wQVrHaavPogYORl5cnN9xwg/Tv31+io6OlW7ducuONN0phYWGL/0E//vhjGTBggERFRcnQoUNl1qxZ9W4/f/58Hf104CMrKyto3xkAgLZs+vTp8sILL8jzzz8vf/31l/Tp00fOOeecg/48VQQYM2aMHsu7du0qTzzxRKPeN2PGDBk2bJh+X0ZGhlx33XUH/R0AAAhF00N4TLcEfA8AQoqzOz7C7KVz3moXiWixr4Z2YM+ePfrx1FNPyaBBg2T79u1y9dVX63WffPJJi32vhQsXyrnnniuPPvqonHzyyfL+++/L1KlTZenSpTJkyJB637t+/XrdGeCkDgAAAEDD5syZI6eccoqcccYZ+udbb71V3njjDX0xPyUlpUl/wqKiIpk0aZJMnDhRXnnlFVm5cqVceumlkpSUJFdeeaXP9z399NPyn//8R5588kkZPXq0lJaWyrZt2/jnAwCgCeaE8JhOcR5AYDPnTbWd89V0zvudrazM94tms5giIxu3rckkpqioBrc1xcQ06fuVlJToTndVOI+JiZHbb79dpk2bJn379pXs7GyJi4tr0uepQvenn37q+rl3797yyCOPyPnnn69vg7NYGh7WHnzwQT1Av/POO3qwdr9Sf+edd8ru3bslIqJpV5Gee+45OeGEE/RteMrDDz8sP/zwg77yr/ZVH1WMVwcJAAC0FmqeIHt5eYvsOyw6Wt9J1hjqWGL48OGun513n5nN5ibv97333pOqqip9PKCOAwYPHizLli3TJ+q+TuTz8/Pl3nvvla+//lomTJjgWq867gAAaA0Y0yNa/ZhOcR6AX1W5Ym2Mkyp1cqWeq456Z+Ee/rP+kEN9vhY7bqx0++9/XT9vOPoYnyfaMYcdJt3fedv186YJE6UmP7/OdgPXrW3S97v44ov1VWoV4bJv3z59FXzVqlW6KO4szKuT4auuuqrez/n222/1LWneqEgb1XnemMK88wp8bm6uvlCgBmin1157TS644AJXYb6hCwfqgoCz8L5o0SL9ue4mT54sX3zxRYPfZ8SIEVJZWakvPDzwwANy9NFHN+r3AAAgUNTxQn3HGIHUf+kSCWtkM4AqODht3LhR7rrrLjnyyCMlMTFRrzvxxBNlwYIFPt/fvXt3Wb16tWssHzt2rMcFejWWP/744/qEPTk5uc771YV4m82mL+wPHDhQiouL5aijjtJdd+oWegAAWhpjeusf0ynOA/CrKkcB3j3OxmIySXVNjViZEDakqAL4Z599povvhx5qnOCffvrp8vbbb+vb05xOPfVUfctYfdSkML72obrU67s17UDx8fFy//33S8eOHWXdunU6J16dmP/222/y+uuvu7ZzL9x74x5Fozr1MjMzPV5XP9eXH6/2r4r7o0aN0sV5tW816c3vv/8uhxxySKN/HwAAQp26801lyaqmEDUHjJMaW8vruQMgPDzc9VyN2T179vR43Tm2q9e8nchv2bJFn8j/+9//1nfRqYsCquvu+OOP11m3Tb0TDwCAUHdnCI7pFOcB+FW11TPWRlGd8+XVtYV7+Le7zKcDbunu9+svvrc1ec4P3mfOj83+bps2bdIdbaqDzenwww/XA6wqyLsXy9WjqVSO3JQpU3T2vOo4b4q0tDRdCP/oo490oV4N9OoCgbrdzUlNQBNIalJb9XBSV+U3b94szzzzjI7cAQCgpahomXqPMQK876a67bbbdE6tmoxdzQHz7rvvytlnn+3z4r6/qJP46upq+X//7//pbFvlgw8+kA4dOsi8efN0lx4AAC2JMb31j+kU5wEEvHPe+ZzOef9rSgZ8oLb1JdKRd+9+hTk9PV369euni+NOBxNro24xUxnvqqj/+eefe1wlb6yzzjpLnn32WX0LvCqGq8lc3TUl1kYN2Cq2x536Wa1vCnXx4pdf6rmIAgBAEKhutcZGy7QGav4W9TjmmGN0Dv1LL72ki/NNibXxNZY7X/N1F5yiGgXcj3XUcc6OHTv88rsBANAcjOmtf0ynOA8gMBPCeinOkzkfWtRtZCaTSWfAdurUSa/76quv9MCmOuqdk701NdZGdcyrq9aq+K8+L8ptItumUBE71157rZ4gtqKiQv7+9797vN6UWBt1d4CaXf7mm2/2yKxzv2ugMdQ+nQcFAACgYWpCeHfqgr3z2KApt8CrMfuee+7RXXPO9WosV3e5ebv9XXHOE7N+/Xrp0qWLfp6Xl6dj91ThHwAANJ41RMd0ivMAAjIhrHusjcUxOSzF+dCSlJSkJ4B95JFHdEf4hg0bZPbs2RIdHS1z5851zYDelFgbVZhXt5iVlZXpW9bVz+rhvKptPiDKpz5qexVt89hjj8mFF15Y5zs0JdbmpptuknHjxunJYlTUzocffih//vmnvPrqq65tVIe+mlxGZe4rqmtfXcBQUTrq4oA62FB/l++//77R+wUAINTNmDFDz99y7LHHyvLly+X999+Xhx56SL/WlFibadOm6Qv2l112mc67VRPYq8xZFTfnpO7WU+O5mrNGUXcDnnbaafo4QI356sK9el3NZ6O+DwAAYExviGfIMAA0U5Vj0leVM+/k7KK32ozXEDpefPFFfaVbnRxPnDhRF6TV47zzzvOYFLaxli5dqidMXblypS6eqy5z52Pnzp2u7Xr06NGoHHoVbaOy5dSJeHOovHhVDFAn5sOHD5dPPvlEvvjiCxkyZIhrm71793rcDldVVaUzcocOHaoL+6qg8OOPP7ouWgAAgIapsfapp57SBXFVJL/xxhvl+uuvb/KfTk38pi6Qb926VU9kr8bo++67z2PS+cLCQt1R505ddFd3AKqL82o8Vx16qhnhYCL3AAAIZUNCdEwPs6tsgRCiOizVP5L6R3CPJADgH9N/2SoPfbNGThneSZ4/d6ReN+mZn2TDvhJ5//LRclSf2qxxIBBUV31qaqrOqVed8fWZP3++7mzLz8/Xnf5oWxjTASC0qXF+xIgR+sI/2i7GcwDA+BAe0+mcBxCgCWHD6mbO0zmPIFAzqR933HENFuYBAAAAAABaEsV5AH5Vba07IazFWZx3vAYEkroFbebMmfyRAQAAAABAq8aEsAD8yjnpq/uEsBGOLnqrjeI8WhfVXR9i6W4AALQbKp4OAAC0ffNDeEyncx6AX1W6Ym3cOudNJo/JYgEAAAAAAIBQR3EegF9VW+11ivPhji56Ym0AAAAAAAAAA8V5AEGLtXG+BgAAAAAAAIQ6ivMA/KrKNSGsUZB3L9RXUZwHAAAAAAAANIrzAPzK2R3vHmsT4XjuLNwDAAAAAAAAoY7iPAC/qvIWa+N4XklxHgAAAAAAANAozgPwK2d3vEfnvDPWhuI8AAAA/MRqtcodd9whnTt3loSEBBk/frysWLGCvy8AAG2MNYTHdIrzAAIzIaxHrI1ZL8mcR3Pl5eXJDTfcIP3795fo6Gjp1q2b3HjjjVJYWNiif9zVq1fLmWeeKT169JCwsDB59tlnW/T7AAAQCqZPny4vvPCCPP/88/LXX39Jnz595Jxzzjnoz1NFgDFjxkhUVJR07dpVnnjiiQbfs3jxYpkwYYIkJSVJcnKyTJ48WZYvX37Q3wEAgFA0PYTHdIrzAPyqusbuM9aGznk01549e/TjqaeeklWrVsmMGTNk9uzZctlll7XoH7esrEx69eoljz32mHTo0KFFvwsAAKFizpw5csopp8gZZ5whvXv3lltvvVXWrVunL+Y3VVFRkUyaNEm6d+8uS5YskSeffFIeeOABefXVV32+p6SkRE444QTdLPD777/LL7/8IvHx8fpkvrq6upm/HQAAoWNOCI/ploB+OoCQQ6xNcFVX1vh8LcwkYgk3N27bMBFLRMPbhkfWbtMYaoBTne6ffPKJxMTEyO233y7Tpk2Tvn37SnZ2tsTFxTXp84YMGSKffvqp62c1aD/yyCNy/vnn69vgLJaGh7UHH3xQXnnlFXnnnXdk4sSJHlfq77zzTtm9e7dEREQ06Xsddthh+qH84x//aNJ7AQBobex2u1irjLshg80SYdJ3oTWGOpYYPny46+esrCy9NDvu2myK9957T6qqqvTxgDoOGDx4sCxbtkyefvppufLKK72+x1k0eOihh3RXnnL//ffLsGHDZPv27brrDwCAlsSYHtHqx3SK8wD8yhldE26uPamKpHM+YF696Sefr3UfkionX197wjr9jgU+T7Q79U2S0287xPXz2/cslIqSuleHr3vluCZ9v4svvlhWrlwp8+fPl3379umr4KrjXRXFnYV5dTJ81VVX1fs53377rb4lzRsVaaMy6RpTmFfUFfjc3Fx9oUAN0E6vvfaaXHDBBa7CfEMXDtQFAVXkBwCgvVHHC/UdYwTSlc+Na3QzgCo4OG3cuFHuuusuOfLIIyUxMVGvO/HEE2XBggU+36866lQ0nbJo0SIZO3asxwV61S33+OOPS35+vr69/UAqZi81NVXeeOMNufvuu6WmpkY/HzhwoI66AwCgpTGmt/4xneI8gMBkzrvH2jjy58mcDy2qAP7ZZ5/p4vuhhx6q151++uny9ttv60HO6dRTT5XRo0fX+1lqUhhf+3j44Yd9Xv32Rt2apq6Ad+zYUV8dHzBggD4x/+233+T11193bedeuPdGXRAAAAAtT935prJkVcf9xx9/7FqvxvXy8nKf7wsPD/fouu/Zs6fH65mZma7XvJ3Iq2MK1YAwdepUfTyiqLsDv/vuu0Y3DQAAgNAe0zliABCQWBuPCWHpnA9od1l9sTbuLn1yjO9tD7h7/MJHjmr2d9u0aZPuaFMdbE6HH364HmBVQd59EFSPg8mRmzJligwaNEjnxzVFWlqanv39o48+0oV6NdCrCwTqdjcnbkUHAIQqFS1T3zFGoPfdVLfddpvOqZ01a5ace+658u6778rZZ5/t8+K+v6gigZr35uijj5YPPvhAd9mpeXHU8YmaVE5NXg8AQEtiTG/9YzrFeQAB6ZwP9zIhbKWjcA//aUoGfKC29SUyMlIv3W8PT09Pl379+uniuNPBxNoUFxfryVpUUf/zzz/3uEreWGeddZY8++yz+hZ4lT//6KOPerxOrA0AIFSpbjV/HAsES0ZGhn4cc8wxOof+pZde0sX5psTaqAndVQSfO+fPviZ7f//992Xbtm06EsdkMrnWqY68L7/8Uv7+97/78bcEAKDpGNNb/5hOcR5A4DvnibUJSeo2MjWoqQzYTp066XVfffWV7NixQ3fUOyd7a2qsjeqYV3lxqvivPi8qKuqgvp+K2Ln22mv1BLEVFRV1BltibQAAaP3UhPDu1AV757FBU26BV3f63XPPPVJdXe1a/8MPP+gMWm+3vytlZWX6WMd9AlvnzzYbTSkAADCmN4ziPAC/qqoxJuYK9xprU8NfO4QkJSXpCWAfeeQRHWezYcMGmT17tr4dbO7cuTJhwoQmx9qowvykSZP0ybC6ZV39rB7OrnyzufFdfmp7FW3z2GOPyYUXXljnOzQl1qaqqkrWrFnjer57925d3Ffd98TjAAAQODNmzJBRo0bJscceK8uXL9ddbg899JB+rSmxNtOmTdMX7NUt7SrvVk1g/9xzz8kzzzzj2kbdrafuuFNz1ijHH3+83HHHHXLdddfJDTfcoAvy6rhCZdOq7wMAABjTG9L0QD8AaNSEsLUdRGTOh64XX3xRd6+pk+OJEyfqGBn1OO+88zwmhW2spUuXyu+//y4rV67URW81qavzsXPnTtd2ajb1xuTQq2gbdSKtTsSbY8+ePTJy5Ej92Lt3r86mU88vv/zyZn0uAACo35AhQ/S4qyZ4v+mmm+TGG2+U66+/vsl/tsTERPn+++9l69ateiJ7lWN/3333eUw6X1hYKOvXr3f9rPb59ddfy4oVK3TnvYrgU8cEqhlBHZsAAIDGGxKiY3qYXWULhBDVYan+kdQ/QkJCQkt/HaDdGfjP2VJeXSM/33GsdEuN0evmrc+WS95cLEM6J8g3N/ielBTwB9VVn5qaqnPqVWd8fdRs7KqzLT8/X3f6o21hTAeA0KbG+REjRugL/2i7GM8BAONDeEyncx5AgCaEre2cj3RmzjMhLIJg3rx5ctxxxzVYmAcAAAAAAGhJFOcB+E2NzS5Wm3EzTqSlNvubWBsE05QpU2TmzJn80QEAAAAAQKvGhLAA/Ma9M95ZkHd/Tuc8WhvVXR9i6W4AALQbKp4OAAC0ffNDeEw3tYbJAtXEfWrCwNGjR8sff/xR7/Yqe6h///4SHR0tXbt2lVtuuUUqKiqC9n0B+FZprXE9j/RWnHdE3gBonxjTAQBoHxjTAQAIgeL8Rx99JLfeeqvcf//9snTpUhk+fLhMnjxZsrOzvW7//vvvyz/+8Q+9/dq1a+WNN97Qn3H33XcH/bsDqMvZGW8KE7Go/+MQ4cicryRzHmi3GNMBAGgfGNMBAAiR4vzTTz8tV1xxhVxyySUyaNAgeeWVVyQmJkamT5/udfuFCxfK0UcfLdOmTdPd9pMmTZJzzz23wW57AMHhLL6rvPmwMLfiPLE2QLvHmA4AQPvAmA4AQAgU56uqqmTJkiUyceLE2i9jMumfFy1a5PU9Rx11lH6Psxi/ZcsWmTVrlpx00kk+91NZWSlFRUUeDwCBjbVxz5s/MNaGfG+g/WFMBwCgfQjGmM45OgAArWBC2NzcXKmpqZHMzEyP9erndevWeX2P6phX7zvmmGN0gc9qtcrVV19db6zNo48+Kg8++KDfvz+AuiqqnZ3znsX5SLNZL9W8m1abXcLNtV31ANo+xnQAANqHYIzpnKMDANCKJoRt6sy9//73v+Wll17SGfWfffaZzJw5Ux5++GGf77nrrruksLDQ9di5c2dQvzMQSpwTvkaGe++c19uQOw+AMR0AgHajqefpnKMDANAKOufT0tLEbDbLvn37PNarnzt06OD1Pf/85z/lggsukMsvv1z/PHToUCktLZUrr7xS7rnnHn273YEiIyP1A0DgVbo6541OeV/F+Vj+Jwm0K4zpAAC0D8EY0zlHBwCgFXTOR0REyKGHHipz5sxxrbPZbPrnI4880ut7ysrK6gzs6sBBIccaaEWZ8+YD/ndqCtMP9+564GDk5eXJDTfcIP3795fo6Gjp1q2b3HjjjfrOqJa0evVqOfPMM/Vk5Woy5GeffbZRXWannXaadOzYUWJjY2XEiBHy3nvvSVvEmA4AQPvAmA4AQIh0ziu33nqrXHTRRTJq1Cg5/PDDdTFDXWG/5JJL9OsXXnihdO7cWWfSKaeccoqeOX7kyJEyevRo2bRpk75Kr9Y7i/QAWk6l1XusjbNgX26rIdYGzbJnzx79eOqpp2TQoEGyfft2nWmq1n3yySct9tdVF4979eolZ511ltxyyy2Nes/ChQtl2LBhcuedd+oc12+++UaPe4mJiXLyySdLW8OYDgBA+8CYDgBAiBTnzznnHMnJyZH77rtPsrKydNfg7NmzXZPP7Nixw6NT/t5779UdiWq5e/duSU9P14X5Rx55pAV/CwAH5skfOCGsM9qmvLrGVcCHf1RXVPh8LcxkEktERKO2FVOYhEdENrhteFRUk75fSUmJ7nRXhfOYmBi5/fbb9aRhffv2lezsbImLi2vS5w0ZMkQ+/fRT18+9e/fWY8D555+vJx+zWBoe1tQk4a+88oq88847MnHiRNf66dOn60K5Gl9U11hTHHbYYfqh/OMf/2jUew6cJO2mm26S77//Xue0tsXiPGM6AADtA2M6AADBE2YPsTyYoqIi3ZWoIhASEhJa+usA7conS3bJ7R8vl3H90uWtSw/3eO2wR36UnOJKmXXjGBnUif/t+ct/zvFdxO05cpSc8Y8HXD8/d+GZYq2s9Lptl0FD5Jz7H3P9/NLl06S8uKjOdrd99E2Tvt/f/vY3Wblypbz//vs6q/SMM87QJ3z5+fny1Vdf6W1UlMtVV11V7+d8++23MmbMGK+vvf7663piMXWxtzGKi4t1YXzBggWybNky13oVqaYe6g4tpaELB+qCgCryH0hF29x888360VTHHHOMHHHEEfrOADSMMR0AgLaP8RwAEMpatHMeQDvNnPfWOe/IoSdzPnTk5ubqLnBVfFdzjCinn366vP322/LGG2+4tjv11FN1VFl9VMSZr308/PDDesKxxoqPj5f7779fZ72vW7dOBgwYoDPjf/vtN13od3Iv3Hvj7wu8//vf/2Tx4sXy3//+16+fCwAAAAAAWieK8wD8prLad6yNc50z+gb+ceNbn9Qba+Pu2lfrmWzUMWGv0xUvTG/2d1Pzgqibs9wn+Vbzi3z88ce6IO9eLFePg+mymjJlis6ef+CB2jsEGiMtLU3Gjx8vH330kS7Uq6K8ukAwePBg1zZ9+vSRYJk3b56eb+W1117z+A4AAAAAAKD9qltBA4CD5OyKj7TUnaDZ2U3v7K6Hf6gMeF8P97z5hrZ1z5uvb9umiIw0PtM9v13NFdKvXz9dHHdSnfUqQqa+h4qgOTCa5oQTTtBF/c8//1zCw8OlqdTkrao4X1VVpfPnL7vsMo/XG/pOaiJaf/jpp5/0/CnPPPOMnhAWAAAAAACEBjrnAfi/cz7cS+d8uNljG7R/PXv21JN6b9y4UTp16qTXqZx5Ndm36qhXE3wfTKyN6pifPHmyLv6rz4tq4kUDJxWxc+211+oJYisqKuTvf/+7x+vBiLWZP3++nvz18ccfb1I0DwAAAAAAaPsozgPwG2dXvLdYmyjHugo650NGUlKSngD2kUce0XE2GzZskNmzZ0t0dLTMnTtXJkyY0ORYG1WYnzRpkpSVlcm7776rf1YPZ1e+2Vz3rg1f1PYq2uaxxx7THesHfoemxNqo7vs1a9a4nu/evVsX91WHvfNzXnjhBd3lP2fOHFeUjSrM33TTTXLmmWdKVlaW606DlJSURu8bAAAAAAC0TcTaAPAbZ568twlh6ZwPTS+++KLubFed7xMnTpRnn31WP8477zyPSWEba+nSpfL777/LypUrddFbTerqfOzcudO1XY8ePRqVQ6+ibWw2W51Im6bas2ePjBw5Uj/27t0rTz31lH5++eWXe0xeu3nzZtfPb731lr7I8Oijj3r8HuqCBgAAAAAAaP/onAfgN5VW35nzdM6HpoyMDB09cyBVnD8YqtNdReLURxW89+3bp7dtSP/+/fVyyJAh0hzqYkBD30tdLHC/YDBjxgz9AAAAAAAAoYnOeQBBibVxds5XkDmPAFNxMccdd1yjivMAAAAAAAAtheI8gAB0zvvOnHcW8IFAmTJlisycOZM/MAAAAAAAaNWItQHg98x5r8V5OufRCjUmJgcAAAAAACAQ6JwHEJTMeWfBns55AAAAAAAAgOI8gEBkzof77pyvJHMeAAAAAAAAoHMegP84C+9eJ4Slcx4AAAAAAABwIdYGgN9U1RjF+Qgy5wEAAAAAAIB6UZwHEIDOeS+Z846oGzLnAQAAAAAAAIrzAPzIWXj32jnvKNhXkDkPAAAAAAAA0DkPwH+chXdnId5b53xFtVHABwAAAAAAAEIZsTYA/KbC0TkfHeFtQlijYF9pNQr4AAAAAAAAQCijOA/Ab5xd8d4y56PonAcAAAAAAABcKM4D8Au73e6KtYmO8BJrQ+c8AAAAAAAA4EJxHoBfuMfVRIXTOQ8AAAAAAADUh+I8AL8or6qd6DXKQuY8AAAAAAAAUB+K8wD8OhlsuDlMLOa6/2khcx4AAAAAAACoRXEegF848+ajvEwGq0Q6om4qHdsBAAAAAAAAoYziPAC/xto4i/AHckbdVNXYxGaz81cHAAAAAABASKM4D8CvsTbREd7/s+JetHefPBYAAAAAAAAIRRTnAfhFRXVNvbE27pPEVjoK+QAAAAAAAECoojgPwL/FeR+xNmqSWIspzLEtnfMAAAAAAAAIbRTnAfiFs+Ae7aM4r0Q6uuedhXwAAAAAAAAgVFGcB+AXzoJ7ZLjv/6xER1j0spziPAAAAAAAAEIcxXkAflHeQKyN+2SxZVV0zgMAAAAAACC0UZwHELRYm5hwR+c8xXkAAAAAAACEOIrzAPw8IWx9sTZG4Z5YGwAAAAAAAIQ6ivMA/Fqcr69z3vlaWZWVvzoAAAAAAEFUXFEtheXV/M2BVoTiPAA/d87XE2vj7Jwn1gYAAAAAgKDZvr9UDn9kjhz2rx9lXVYRf3mglaA4D8AvnFE1kfVOCEusDQAAAAAAwfb+Hzv0eXtVjU3e/W07/wBAK0FxHkDQJoStjbUxCvkAAAAAACDwftu83/V8kdtzAC2L4jyAoE0IS6wNAAAAAADBVWW1ydq9xa6ft+SW6vx5AC2P4jyAoGXOR0dYPCJwAAAAAABA4PPmVZxNXKRFMuIjxW4X2Zhdwp8daAUozgPwa6xNfZ3zxNoAAAAAAOAnZXkir00QefEIkXzfOfI78sr0sltKjPRIjdXPdzrWAWhZFOcB+EVZlVUvo8ON7vj6Y22MbQEAAAAAwEH67WWR3X+K5KwV+fGBRhXnu6bE6OcU54HWwXcVDQCawDnJq7MA7020szhPrA0AAAAAAM2zYXbt8/XfilSVikQYnfFei/OpMRLriJvdmVfOXx9oBeicB+AXzoJ7vcV5Rx69s5APAAAAAAAOQmWxyL5VxvMws4i1XGTXYq+bOrvkVdd8t9Roj4I9gJZFcR6AnzvnGxNrQ3EeAAAAAICDlrtBxG4TicsUGXSasW73kgZjbdTDfR2AlkVxHoBfOAvuxNoAAAAAABBg+zcby9S+Ip0PNZ7vXlpnM7vd7oqw6Zoc7cqc31tYLtU1Nv6ZgBZGcR5As6nBvtQxyWtjYm3onAcAAAAAoBn2bzKWqb1qi/O7/lQn6B6bFVVYXTG0nZKiJT0uUsLNYWKzi+QUV/JPALQwivMAmq3SanON/85JX71xRt6QOQ8AAAAAQDMU7jaWSd1EOg5XwfMiJVkiJdkem+UUV+hlQpRFosLNEhYWJhnxUXrdviLjNQAth+I8gGZzL7bXlznvLNw7r9oDAAAAAICDoArxSlwHkYgYkeTutVn0brId3fHp8ZGudRkJxvN9RXTOAy2N4jyAZitzRNpEWExiNoU1XJxnQlgAAAAAAA5esaM4H9/RWKb1N5a56z02c0bXOLvllUzHc2dXPYCWQ3EeQLM5i+2x9UTaKDGOzPmqGptYmXgGAAAAAIBmFuczjWV6P2OZs8FrcZ7OeaB1ojgPoNlKHcX5+iJtDsyjJ9oGAAAAAICDUFMtUpZbG2tTT+e8M9Ymwy3WJjOBzHmgtaA4D8BvsTb1TQarRFpMEuZIvSHaBgAAAACAusqt5fLe2vfk192/ev/zOCd9NVlEYlKN5+n9G98573i+z/EagJZTf5srADSCs9Ae00BxXs0Kr6JtVKe9+ySyAAAAAADAcPeCu+XHHT/q54+NeUym9JriYzLYTBGTo+82tY+xLN4jUl0uEh6tf8x25Mp7xtoYnfPZRWTOAy2NznkAzeYstEc7MuXrE+2IvqE4DwAAAACAp80Fm12FeeWZJc+I1WbcrV4nb14V510n28kikYnG8/zt9U8ImxDpEXkDoOVQnAfgvwlhIxu+GcfZXU/mPAAAAAAAnubtnKeXozuMluTIZNlXtk/+yPrDc6OSfcYy3pE3r6gM2eTuxvP8ba7VzgK8e+d8pqNQn1daJVVWG/8EQAuiOA+g2UobmTnv3l1P5jwAAAAAAJ7+zPpTL4/tdqxM6D5BP/9+2/eeG5XtN5axaZ7rU3oay/ytelFprZGCsuo6E8ImxYRLhNkoCeaU0D0PtCSK8wCazRlRo/LkG+Is4DsnkQUAAAAAACJ2u13W7F+j/xTD0obJ5B6T9fO5O+aKze7W4V6W7zjBTvb8syX3MJZ5RnE+t6RKL8PNYbog7z4fnLOTfh+580CLojgPIGgTwrpvQ6wNAAAAAAC1cspzJL8yX8xhZumX0k8OzTxUoi3Ret2mgk1uJ+G+ivM9PWJtnHnz6XGRuiDvLsORO7+vkElhgZZEcR6A/yaEdUz2Wh9ibQAAAAAAqGtn8U697BjbUSLNkRJuCpeRGSP1usVZi70U51O8d847Ym2yHV3x7nnzB+bOE2sDtCyK8wCarbza2ujO+dpYG6OgDwAAAAAARHaX7NZ/hs7xnV1/jsM6HFZPcT7ZR+b8dhGbzVV4T3cU4t05C/bO7noALYPiPIBmK6lsfKxNrKO7nsx5AAAAAABq7S42ivNd4rq41qloG2VZ9jKdSa+V53kvzid0ETFZRGoqRYr31sbaeOmcd67LLqI4D7QkivMAmq200uicj49qONYmzrGNs6APAAAAAABEdpXs0n+GznG1nfMDUgboDPr9FftlX9m++jvnzRaRxK7G8/xtku0ozmd4Kc471xFrA7QsivMAmq3EUZyPjWy4OO/cpqSymr88AAAAAAAOu4qN4nyX+NrOeTUhbJ+kPvr5qtxVIqp73lmcjzkgc/6A3PnGdM4TawO0LIrzAPzWOd+Y4ny8szhfYbwHAAAAAAC4Zc67dc4rQ9KG1BbnK4tFbFbvnfMeufP1d867Ym2KjUljAbQMivMA/NY5HxfZlFgbivMAAAAAAChWm1Wyy7L1805xnTz+KIPTBuvlqv2rarvmLVEi4dG+O+fztkpuPZ3zGY5JYnNLqsRmc2TZAwg6ivMA/NY536jivCvWhuI8AAAAAABKQWWB2MUuYRImyZGeHfFDUo3O+TW5a8RWtt9YGe0l0satOG/P31ZvrE1qXIRe1tjskl9WxT8CEKrF+RdffFF69OghUVFRMnr0aPnjjz/q3b6goECuu+466dixo0RGRkq/fv1k1qxZQfu+AJrZOU9xHmi3GNMBAGgfGNOBwLLbbHXW5VXk6WVyVLKYTWaP1/ok95FIc6QUVxfLzvwNviNtPIrz26WqxuazOB9uNklKrFGgd8bfAAix4vxHH30kt956q9x///2ydOlSGT58uEyePFmys43beA5UVVUlxx9/vGzbtk0++eQTWb9+vbz22mvSubNnFheA4LHW2KSi2tbozHlXrA2Z80C7wpgOAED7wJgOBE5NUZHsuPRSWTd4iOy64UaxlZXVKc6nRNXtiA83hbsmhV3fUHE+qbtemMpyJEYqJDE6XCItnsV+J2cWPZPCAi2n4UpaAD399NNyxRVXyCWXXKJ/fuWVV2TmzJkyffp0+cc//lFne7U+Ly9PFi5cKOHh4Xqd6roH0HJKq2pcz2MjvQ/47uicB9onxnQAANoHxnQgcPY98YSULlyknxf/8INkp6dJh/vu0z/nlfsuziv9kvvJ6v2rZUPRdpmkVkQned+JWh+VJFJRIF3CcsQen+bz+6iO+nVZxRTngVDsnFdd8EuWLJGJEyfWfhmTSf+8aJHxH6oDffXVV3LkkUfqWJvMzEwZMmSI/Pvf/5aamtri4IEqKyulqKjI4wHA/5E24eYwn1fj3VGcB9ofxnQAANqHYIzpnKMjVFlzcqTwiy/189QrrtDL/Pc/kPJVqxvsnFf6p/TXy/Vle4wVMT4y55Vko3u+W1i210gbJ+drxNoAIVicz83N1YO1GrzdqZ+zsrK8vmfLli06zka9T+XM//Of/5T//Oc/8q9//cvnfh599FFJTEx0Pbp27er33wUIZU2ZDNZ9OxWFU+3IvwPQtjGmAwDQPgRjTOccHaGqeM4cEatVooYPk4zbbpWEKVP0+rwZM/Ryf8X+BjvnlY2O7XzG2rjlzncNy3ZF19RXnCfWBgjhCWGbwmazSUZGhrz66qty6KGHyjnnnCP33HOPjsPx5a677pLCwkLXY+fOnUH9zkCodM43Jm/+wO2chX0AoYcxHQCA0BzTOUdHqCr9/Xe9jBs3Ti9TLjUinotmz9Zd9Q11zjuL87tt5VIcFlZ/cT6pkZ3zcc7O+YqD+6UAtN3M+bS0NDGbzbJv3z6P9ernDh06eH1Px44ddda8ep/TwIED9RV8dftdRIQxy7S7yMhI/QDQOjrnIywmibSYpNJqk+IKqyTF1P3fLYC2hTEdAID2IRhjOufoCEV2u13Kfv9DP48dPVovowcPlqhhw6RixQop+u57yevoKM5Hey/OJ0YmSofYDpJVmiUbIyLkkHo7543ivMqct8ZH+dwsI8F4jc55IAQ759UAra6qz1G39bhdcVc/q7w6b44++mjZtGmT3s5pw4YN+mDAW2EeQPCK843tnHcv5JdW0TkPtAeM6QAAtA+M6UBgVG3eLDV5eRIWHS3RQ4e61ieceKJeFs3+1tU5nxqV6vNz+ic7cucjwkV8FPHdY20a2zmfU1LZ1F8JQHuItbn11lvltddek7feekvWrl0r11xzjZSWlsollxi39lx44YX6ljcn9XpeXp7cdNNNuig/c+ZMPdGMmngGQMtQ3e9NLs5HGduWON4LoO1jTAcAoH1gTAf8r3LDBr2MGjBAwtyaSxNOmKyX5UuWSs2+bP08Ocp3R7wz2ma9+ox6Y22cmfM5khEX0XDmfBHFeSDkYm0UlUWXk5Mj9913n77lbcSIETJ79mzX5DM7duzQM8M7qclcv/vuO7nllltk2LBh0rlzZ12ov/POO1vwtwBCW22sTe1trI3tnC8mcx5oNxjTAQBoHxjTAf+r3LRZLyP79PZYH96xo0QfcoiUL10q/VbkyeqRIokRiT4/p1+KY1JY3TlfX3G+q9gkTGLCKqWDpViV4b1ulpEQ6To3L6+qkeiIxp/XA2gHxXnl+uuv1w9v5s+fX2edirz57bffgvDNADRGaVVNkzLn3bdlQligfWFMBwCgfWBMB/yrcrNRnI/o7VmcV+InHKeL8wM2louMNEt8RLzPz+mfVFucr4lOFF+l9Aq7RfLsydIpLE8yatQcEr28bhcfaXHNCZdbUildU2IO6vcD0EZjbQCEaKyNY1tibQAAAAAA7V3l5k16Gdm7T53XYo8Zo5eDttsl3GqvtzjfLSJZomw2KTeZZJe1zOd2aoLXnfYM4/PLdvrcLiwszBVtk11c0YTfCIC/UJwH0CxFFdV6mRgd3vTMeWJtAAAAAADtmL26Wqq2bdfPI3vX7WCP7NdXwtJTJdIqMni3WSLNvidwNVcWSZ9q4xx8fbHxmd6oCV6dxfmwAt/bKRnO3PlicueBlkBxHkCzFJUbBwYJUeFNz5xnQlgAAAAAQDtWvXeviNUqYVFRYunY0Wv3uv2w4fr5qG0W/bNP5XnSr8o4B99YsNHnZqrQvsNmFOclf1u93881KSzFeaBtFeerq6tl586dsn79esnLy/PvtwLQZhQ5CuwJB9E5T+Y80PIYzwEAaB8Y04HWqXrPXr0M79DBZ+G94tABejl0i3F+7VN5vvSrqtJPN+Rt8LlZto61cUwCm19/53xtrA2d80CrL84XFxfLyy+/LOPGjZOEhATp0aOHDBw4UNLT06V79+5yxRVXyOLFiwP3bQG04s75JmTORxBrA7QkxnMAANoHxnSg9avOchTnO9XtmncqHN5DbCLSMatKqvepCVx9KKvtnN+Q77s4n1NUITscsTYNFecz4qOM91CcB1p3cf7pp5/Wxfg333xTJk6cKF988YUsW7ZMNmzYIIsWLZL7779frFarTJo0SU444QTZuNH37TUA2l/mvHvnvDU/X8qXLZPiuXOl5KefpHzlSrGVldXpnC8mcx4IOsZzAADaB8Z0oHWy2exit9ldP1tVrI2IWDr4Ls4XRdtlSwfjedkff/j+8PJ86esozu8q2SWl1aX1dM47ivNFu0RqjPd4Q+c80LIa3eqqOuJ//vlnGTx4sNfXDz/8cLn00kvllVde0QX8BQsWSN++ff35XQG0QkXlVo/M+R2XXyGlv/xSd8OwMIkaOlS6vvySK3O+hMx5IOgYzwEAaB8Y04HWxW63yx/fbJVlP+wQkylMRp3UU0Yc31Wq92bp18O95M07FVcVy+5uYdIny66L84mnnOJ9w/J8SbLZJCMsUrLtlbIxf6OMyBhRZ7N9RRWSI4liNUWKxVYpUrhTJKXuZLQKE8ICbaQ4/8EHHzRqu8jISLn66qub850AtCHVxcUiYRGSEG2pPeAICxNLZqZYMjJEamr0bXk1ublizckRc0qKxO0xMvJK6JwHgo7xHACA9oExHWhdVszdJX/OrJ18deFnm6SyrFo6OTrnwzs6WuO9KKoqktXdwuSUP1Rxvp646DJjzse+EUmSXblPR9t4K86rznm7mKQyrrNYirYY0TY+ivNMCAu0rMaHRLupqanRk8GWlZVJTEyMdO3aVcxms/+/HYBW3RWQ88578sbM/8i9R13hirVJu+5aybjtVjEnJXlsrwr01bt36wlwEqPDJbzGKud9+h8p7l8p8ccd20K/BRDaGM8BAGgfGNOBllVVYZXFs7bq50ee0VvMZpP88vFGWTJ7u5jywyVeFeAa6Jxf1zVM7GEiVdu3S3V2toSrZrcDlRvF+X7RmfJr5T7dOe/NviJjcldbYg8RXZyvvWjgqzifW1KpI3lU1z+AVjoh7Lx583SmfGxsrPTu3VuGDh2ql+rnyZMn69gbAO1fTUmJ7L7pZtn/70ck1lohk7f/4ZrkVc1Af2BhXq/PzJSYQw7Rz1Uhf8rWhTJw1xrZde21su/JJ8VubWBWegB+w3gOAED7wJgOtA5rftkjlaVWScqMkRETu8nwCV1lyLjO+rXVsWPEFmauN9amqLJIyqLCpLSHUZAvW+yje748Xy/6xXX1OSlsdY1N9pcaxXlLag9jZYHvSWHT4ozivNVml/wy4y53AK2wOP/uu+/KSSedJH369JEPP/xQli9fLtHR0fLtt9/Kjz/+KKNHj5apU6c2+tY6AG1T9b5s2X7e+VL8/fciFou8MvQ0mXHEOU26uq4652f1PFK+6DtO/5z3xnTZefU1HpPGAggMxnMAANoHxnSg9dj4Z7ZeqqK889z4iKm9JTouXMqiMyQr83Aj9rWeznmlYogRPeMz2sYRa9MvqY+x3/yN+q52d6oDXq0ym8IkMt0RZVNP53y42SQpsRH6eU6JUdQH0ApjbR588EF54403ZNq0aa51Kp5CFet79eolxxxzjIwaNUpuvfVWOffccwP1fQG0oKqdO2XHRRdL9Z49Yk5Pk7J/PiZfzi2QLjHGlfbGSowJlypzuPx38Cly5VWnSs4/79WTyO647HLp+t9XxJyQELDfAQh1jOcAALQPjOlA61CSXynZ24pEwkR6Dk9zrY+MtsjwI5Lktx9zZEf3SSLRMT4/o7jaKM7XjBwk8vVv9XTOG8X5nin9xGKy6PdllWZJx7jarvxsR6SNmujVlOLonFeZ8/VIj4uUvNIq/d4BvqPxAbRk5/yePXvkiCOOqHebIUOGyF7HRBcA2hdrbq7suORSXZiP6N5denzwgRT26KdfS4gy8uYbS0XgOBvtrWOPk27T3xBTQoKU//WX7LzyKrGVlwfiVwDAeA4AQLvBOTrQOmxflauXHXomSGyiZ+Na3542sVSX6u75rcuM7errnI8YOUx1wkrVli36HNxXrE14bIb0TOzpNdpmX1GFqzgvyT0a7JzX2yYY3zunmM55oNUW58eNGyd33XWXlJSUeH1d3Ubz+OOPy/jx4/35/QC0EqqbPWroEAnv1k26vfO2RHTpIkXl1fq1hOimzS2tbvNzTiBbWF4tMSNHSve339IF+sotW/QEOAACg/EcAID2gTEdaB32bi7Uyy4DUuq8FlacL112G/Mzrvp5V4PF+bi0jhLZz2iCK/vzT8+NbDUi5QXG8+hk6Zfcz3tx3lFgz0iIEknqXttxX1FUb+e8QqwNEHyNrqi99tprcvLJJ0tGRoYcffTROs6mqqpKHnroIbFarbJw4UJJSUmRr776KrDfGECLCIuIkM5PPSU1+fliSTNu1SuqqD6oznln7nxBWbUuzitRAwboSBtTbKxEOQ5GAPgf4zkAAO0DYzrQOuzbahS9O/RKrPNazf486bT3V9nW/QTZvb5ACrLLJCmjbrxNUZXxGfER8RJ92GFSuX69zp1POOGE2o0q1EUAu0dxfqbM1Lnz7nIcnfOZqhs+KkEkOsUozqtJYTsM9fo7pKsue7dIHACtsHO+c+fOsnTpUvnoo49k8ODBsnv3bhkzZozk5eVJWlqaPP/887J48WLp1KlTYL8xgKAqWfCL2G02/TzMbHYV5pWicqteOrvgm1qcVwrLjOK8ojro3QvztkoODAB/YzwHAKB9YEwHWl5FabUU7CvTzzN71J07zZq3X6Iq8yUzfL/+ee2ve+psY7PbpKSqxFWcjzn8MP28bPEfXiNtJCJexBLhu3PelTkfZaxI7t5g7ryzOE/nPBB8TcqiUBPAnnLKKfoBoP0r+Oxz2Xv33RI/ebJ0fuZpCTN5Xs9rbue84uycP1DJL7/K3rvuki4vPC/Rw4cf1PcH4B3jOQAA7QNjOtCy9ESw6vw2I1qi4sK9ds4rvVILZd++NFm7KEsOP7WXmM2159al1aVid3TEq+K8edQo/bxy4yaxqjvXk5ONDcvyXF3zirM4v61om1TWVEqk2Siw7yt265xXVO78nr/qzZ2v7Zw33gugFXbO79ixo0kfrDrrAbRdlVu2StbDD+vnkX371inMKwebOe9enC/wUZwv+OQTsebkyK6bbpaaQiPDD0DzMZ4DANA+MKYDLW//7lK9TO8a7/V11TmvdO1iluiECCkvqpLtK411B+bNq+K6elhSUiSiT2+9rnzJktoNVTSNEmMU59Oj0yUxMlFq7DWypWBL3c55lTmvOHPnVaxNQ53zTAgLtN7i/GGHHSZXXXWVjq7xpbCwUOfeDRkyRD799FN/fUcAQWavqpI9d9wh9vJyiTnyCEm79hqv2xVVWAPWOd/xXw9LRPfuYs3KkqyHjIsEAJqP8RwAgPaBMR1oeflZRnE+uWOs19ednfPh6SnS7/BM/Xzjn/u8TwYbHudaF+Poni9zr8E5Y21Uhrzjzhlv0TY5js75jHi3znn9ZX13zndwFPL3FVWI3e7ItQcQFI1ud127dq3861//kuOPP16ioqLk0EMP1fny6nl+fr6sWbNGVq9eLYcccog88cQTctJJJwX2mwMImJznX5CK1avFnJgonR57zGvXvHvnfHzUwXfOOz/jQOa4OOn0xOOybdp5UjRzpsQdd6wkTpnS5P0A8MR4DgBA+8CYDrS8vL2O4nyHupO8KtY8ozhvSU2Vft0yZfmPO2Xb8lypqrBKhOM82lmcV5E2TjGHHSYFH34kZYv/rP2wA2JtFFWcX5y12FWcr66xSW5JlX6emdD4zPkOica2pVU1UlxpPagGPAAB7pzftWuXPPnkk7J371558cUXpW/fvpKbmysbNxqzQp933nmyZMkSWbRoEYV5oA0rX7Va9r/xhn7e4eGHJDzTuLrvjStzvjkTwvoozisqaz7t6qv186wHH5Lq7Owm7weAJ8ZzAADaB8Z0oGWpDvP8LGMy2BRfnfP5Rre7OSlJ0rvFS2J6tFirbbJtRa5rm5LqEp+d8xXr1klNcfEBsTZG57zi7JzfmL/RI5bGYgqTlJgIz855FWvjoys+JsLiOkfPKiR3HgimRre7jhw5UrKysiQ9PV3uuOMOHW+Tmpoa2G8HIOgHF1n33y9is0nClCmSMGlSvds7C+uBiLVxSrv6Kin56SepWLVKsh97TDo//XST9wWgFuM5AADtA2M60LLKCqukqtwqYWEiSRneO+ed86epu9JVDE3fwzLlz1nbZOOf2dLv8A6esTYRtcV51SQX3q2bVO/YIeVLl0rcuHF1Ym2UA2Ntsh3FeZUhbzKFGRsldhUJM4lYK0SKs0QSOnr9rh0To/T5+d7CCumX6T1DH0ALds4nJSXJli3GBBPbtm0Tm80WgK8DoCWpg4XMe+6W6EMPlcy7/tHg9vmlxu1yqXGOK/IBKM6HhYdLx4ceFDGb9XN7df3bA6gf4zkAAO0DYzrQsgqyja75+LRoMYfXLa/Zqqr0PG7O4rzSd5RxZ/qO1fulorTao3PePdZGiTnMkTv/558+Y216J/WWMAmT/RX7Jbc8V7IKyz0jbfTOw2snhc3b3GC0jfMzALSyzvkzzzxTxo0bJx07dtQFvFGjRonZbPa6rbOID6DtiTnkEOnx3rsNbldjs7sK60kxB9E5H9O44rwSNWiQ9P52lkR069bk/QDwxHgOAED7wJgOtKzi/Ub8S2KaWyHcjc3RNa9a603xRuE9pVOspHaOk/27S2TLXzky6JhOUlpdWifWRokZdZgUfvpZbe68l1ibaEu0dEvoJtuLtutomz0FRjd+p6QDvlNqb5H8rSL7N4n0OMZn57yiOucBtMLi/KuvvipnnHGGbNq0SW688Ua54oorJN7xHxcAbZ81P18sybVX4BuiJnK1OeLqkp1ZdgHonHeiMA/4B+M5AADtA2M60LKKHMX5+NRor6/XFBXppSkhQcJMtZ31fQ/L0MX5zUuzdXHeGWsTGx7rtXO+fNUqsZWViclLrI0z2kYV51W0zd5Co0O/Y+IB3ym1j8imH43ivA8dEoz3kDkPtNLivHLCCSfopZr49aabbqI4D7QTpb/9LjuvuUbSrrrSNQFrQ/LKjEib+EiLhJsbnZDltTivsu7VHTmNUbVrl+Q89/8k/aabJKJL5ybvFwDjOQAA7QXn6EDLKd5vxL/Ep0bVnzefkOCxvvfIDPntiy2ya12+VJZVS0mV91ib8M6dxdKxo1j37pXy5csltsxZnPdsquub3Fd+2P6DLs4XFA716IL3KM4r+33H2tA5D7SMplfUROTNN9+kMA+0E/aaGtn32GM6C8+andPo9xU4ivPJsU3vmncvzldZbVJR3fg5LLIeekiKvv5acpgYFmg2xnMAANoHxnSg5WJtEhoqzjvy5p2SMmN0vI3NZpdtK3KluLrYa6yNamCLGeXInV+82GusjfuksCrWZm9BuY/O+d7Gsr7OeVfmPLE2QKsvzgNoPwo//1wq163TGXhpN1zf6PflOSavOdjifFykRSyO2eMLyo1Cf2Nk3HKLzuwrmjVLdw8AAAAAANDqYm18FOeVXiPT9XLzXzmuzPkDO+c9JoX94w8RR4e9xKR6bNMvySjOby7YLHsLjc/qmOSjcz5vq4itpoHOeSaEBYKJ4jwQwmpKSiX72ef087Trrm1S5nx+qaNz/iAmg3V2ASQ5surzHJ/VGFEDB0ri1Kn6+b7HHteROAAAAAAABIutxiYl+ZX1ds47J4Q1J3rG2jijbZQda/KkrKzCa+a8c1JYpXzFCqOmbgoXifIs9neO7ywxlhipslVJTuUuva7TgZ3zCV1EzJEitmqRgh31ds4XVViltNLa0J8AgJ9QnAdCWP47b0tNbq6Ed+8mKdOmNe29jliblIOYDNYpNbbpxXkl/eabJCw6Wsr/+kuKv//hoPcPAAAAAEBTlRZWid1mF5M5TGISvJ8T1xQ6JoT10jmf2jlWEtOjpabaJpF7jJiauAjPWBslomcPMaelib2qWir2R4jEpus7yd2ZwkzSP6W/4w179B3q6fGRnh+kJqRN6VVv7nx8VLi+w13JKiLaBggWivNAiFK32O2f/qZ+nn7jjRIW0bQiu3NC2IONtVFSDrI4H56ZKamXXKyf5zz//3RuPgAAAAAAwVBaaHTNxyRGSJgjrtX3hLCJXu8kd0bbJO/prpfx4XVjbTxy53NUcd4z0sZpYMpAY19RuyQzIUrM3r4TufNAq0RxHghRZUuXiq2iQiL79pWEE09s8vubG2ujpMQZxfn9JVVNf+/FF+sOhKpNm6Vo1rcH/R0AAAAAAGiKsgLjHDY28YAOdTc1RUU+M+fdo20yc3uL2Wbx2jmveBbnjYL+gQalDtJLU9QeV3Z8Hc7c+XomhXW+d49jYlkAgWfcrwIg5MQfe6z0+W62WPfnSZi6xa2J8suaNyFsc2JtFHNCgqRfd53UFBdJ3LHjD/o7AAAAAABwMJ3z9RbnCwt8Zs4rGT3iJTY5UkrzRboU9Pc6IazHpLC5EWKPShVvffoDU52d83ukQ5SP7+SaFNZ7rI17cT6rkFgbIFgozgMhLLxTJ/04GLWd882Ptdl/EMV5/f4LLzjofQMAAAAA0LzivO/zYVtxiV6a4r0X3VVkTbdhSbL2p33SK2+41wlhFXW3uykmXGxl1VKRZ5EDpnrVeiX2EpOEi81cKfFxxkWBg+mc7+CYSHYPxXkgaIi1AUKMNTdXyletbvbnuDLn/TIhrHFg0xx2u13sNluzPwcAAAAAgIYmhFVi6umct5UYxXlznPe4GiV9sNGp3j1/qISL93Nrdad7THej+75sp/eOdovJIjHS1dhvxM76i/MFO0WqvX9OJ0fn/N5CYm2AYKE4D4QYNQnstr/9TXL+3/9r1ucUOGJtnN3vByMlNvKgY23clfz6q2z/+7lS+MWXzfocAAAAAAAaUubsnE+qp3O+tFQvTfUU56O72KUsvFiirDGyZ4OPjnd1EaCLMddb2eb9PrcxVXXRy1LZ4X2D2DSRSJV/bxfJ3+p1ky7JMXq5K5/iPBAsFOeBEFJTUCD5H36on0cPH37wn2OzS0GZHyaEbWasjVPl2rVSvny57H/9dbrnAQAAAAABVdqYCWGdxflY73E1Som1RLYlr9DPt/yV43O7mHRjf2Ubdom9psbrNmUlHfUyt2qL9w8JCxNJ7W08z93gdZMuyUasza78Mn13OoDAozgPhJC8994Te1mZRA4YILFjxx705xSVV4vNMU4nNSfWJu7gJ4R1l/T3v4spIUGqtmyR4h9/bNZnAQAAAABQn7KiynpjbVRh2xlrU1/nfEl1iWxJXa6fb1mWIzbnifYBomILxWSxia20Qio31C2sV1ltUlSYoZ9vL9ngu7Ce3t9Y5ngvzndMitI1/IpqW7Ob6AA0DsV5IESoW+ry335HP0+94nI9+Uxz8+bjIi0SYTE1u3O+sLxarDUHnxevMvySz5umn+//76tc4QcAAAAABIStxiblxUbMa0yC92Y1e0WFiKPD3RRbT3G+qkT2JGwUa3il/sy9m7xE29jtElaeK9HO7vnFf9bZZE9BudRUZIrdbpaS6mLZVbLL+w7TBxjLnLVeX460mCUz3sidJ9oGCA6K80CIyP/4Y6kpLJTw7t0k4YQTmvVZucVGl0B6vO9b+BojKdqIxFEX9QvKjYObg5VywQUSFhUlFatXS+nChc36LAAAAAAAvKkotRpPwkSi4rzHvDq75lUbuinGiIrxpri6WGwmm5R0ztI/b17qJdqmqlTEWl4bbfNn3eL8zvwyNS2shNd00j+v2b+mgeL8ep/fyT3aBkDgUZwHQoCtqkry3pyhn6dedpmEmc3N+rycEkdxPq55xXmL2SRJjsz65kbbWFJSJOmss/Tz/a++1qzPAgAAAADAm/Ji49w1KiZcTKaw+ieDjY2VMJPv0lupKryLiLVHnl5u/itb7AdG25Tl6kVMB8ePf/5Z527xnXnGBK7J5l56uXb/2vpjbVTmfI3jIoPP4jyTwgLBQHEeCAEqi11NGmPJyJDEqVOb/Xk5js75tPiDz5uvMylsSfPz7FIvuVjEYpGy33+X8pWrmv15AAAAAAC4Ky8x7vqOjvfeNa/UlDQ8Gayzc16xdK2UiCizlBVWSdaWQs+NSo3ifHS3ZAmLjpaavDyp3LDRY5MdeUaXe+eYPvV3zid1F7FEi9RUieRv87pJl+QYvaRzHggOivNACIgaMED6zJ0jXV9/TUwRzS+o5/qpc15JdRTnm9s5r4R36iTpN9wgnZ/+j0QNdNyuBwAAAACAvzvnfUTaKI2ZDNaZOa/ER8dJj+Fp3qNtSrL1IiwhXWJGjdLPSxct9BJrIzIgZZBertq/Smx2L/O6qS7+9H7G85x1Xr8TnfNAcFGcB0KEKspH9XMMwn7qnG9u5rySGmt8xv5S4zObK+2qKyXhpJMkzGLxy+cBAAAAAOBU4eqc9934Zit1Fufr75wvqTa2i4uIk94jM2qjbdxja0qMPHqJ7yCxRx6pn5YuWuTxObscnfMjMgdJpDlSiquKZVvRtoOaFLa2c55YGyAYKM4D7VzZX3/pSBt/csXa+KFz3lngzy7yT3He3YE5fAAAAAAA+CXWphGd8+bYxnXOx4XHSbdBKRIeaZaS/ErJ3mbE3WjF+4xlXKbEHmUU58sW/yn2qtq7z3c6Cuk9UxNkcOpg/XxlzsqDmhTWfUJYzqmBwKM4D7RjlVu3yvZzp8mWk6aIrcx/M63nOvLh/dE5n+EszhdXiD8nwM197TXZOvV0v/7eAAAAAIDQVuGItamvc77GOSFsQ7E2zs758DixRJilx9BU/fPmpUaUjVa811jGd5DIfv3EnJIi9rIyKV+xQq8urbS6YmK7pkTL0LSh+vmKHON1n8X5bO+xNh2ToiQsTKSi2ib7/RA/C6B+FOeBdiz/nXf1MqJnTzHFGLemtbZYm4wEZ3Hef53zYWazFHz8iVSuXy+FX37pt88FAAAAAIQ2Z+d8/ZnzjSvOq/gZZ6yN0vsQL9E2JbWd82EmU220zcKFHnnzSTHhEh8VLsPSh+mfV+T6KM5nOIrzuRtEbHXvso+0mCUzPko/J9oGCDyK80A7VVNYKAWff66fp1x8kd8+12azuyaE9UesTYZj0PdnrI0qzqdccIF+nvfW22K3eZkIBwAAAACAJip33EkeHd+ICWFjG5c5Hx8Rr5fdhqSKJcIkRbkVkrvTeE2KazPnFWe0TelCI3d+Z54RadPVkRXvLM5vzN8oZdVe7iRP6i5iiRKpqRTJ31ZvtM1OR5Y9gMChOA+0UwUffyz28nKJ7N9fYkaP9tvnFpZXi9VmXMFPjfN9G1+TM+f92DmvJJ5+uu5SqNq2TUoXLPDrZwMAAAAAQlN5sTNzPqLh4nwDE8KWVpe6Ym2U8AizdB9iRNtsckbbuHXOK87O+fKVK6WmuNhVQFeRNkqH2A6SEZMhNfYaWbN/Td2dmswiaX2N5zneo226phiF/h0U54GAozgPtEN2q1Xy3ntfP0+58EIJU4FxfpLj6JpXt8yp2938FWuzv7RSrDX+63A3x8VK0llnubrnAQAAAABorspSR6xNbD2d86WOCWHribVRsTVFlUUenfMe0TZLssVeYxUpyfbonA/v1EkiuncXqamRssWLXbE2zs55ZVhaA9E26QONZbaX4r2I9Eg1Lips329cPAAQOBTngXao5KefxLp3r5iTkiTh5Cl+/Wxn3rw/Im2U1NhIMYWpA5PaiWb9Jfm880TNZKOy+FQHPQAAAAAAzVFZZtXLyBhLwxPCxvouzpdZy8RqNz4rKTLJtV51zpvDTVKYUy77N+8Rsatc+DCRWKNor8S4Rds4Y226OLrd3aNtVuas9L7zzMHGct9qry/3SDM+a1susTZAoFGcB9qhkl9+0cukv50ppkj/FNGdnHnz6X4qzptNYW7RNhXiTxFdOkvc2LH6ef6HH/n1swEAAAAAoaWm2ibWauOO78jY5k0IW1hZaHyOOVKiVAa8Q0SURboNStHPN/+521gZmyZirr0Y4JoUdtEi2ZFn7Kubl+L88pzltRPLuusw1Fhmray3c34bnfNAwFGcB9qhDvfdJ93ff1+Szz/f75/t6px3FNT9IRCTwjqpv0HiaadJwpST/P7ZAAAAAIDQUVFmRNqo5NiISHOzMuedxfnEiMQ6rzmjbTauLNN3mUucEWnjFKvmlTOZpGrzZinZaRTwezoK6sqg1EFiDjNLTnmO7CtzZNZ7K87v3yxS6Zh41ktxXs0NV1ppdPcDCAyK80A7pDLmYw4ZKeEdPAdwf8gqNLrbOziy4v0hI0CTwipxY46RTo8/JtFDHQcfAAAAAAA0I9ImIsYiYSqftYHivDnWd3G+oLJALxMiE+q81nN4mhFtkx8mOdZeIvHGZLBO5sREiR5mdMcP27NWws1h0jnZmBBWibZES7/kfq7u+TriMhwTzNq95s4nxoRLcoxxZ8D2/UTbAIFEcR5oR2xVVVLjuH0uUPY6ivMdE2sHfn9NCuvvWBsAAAAAAPyfN+870kapcUwIW2+sTZWjcz6ybue8irbpOSxNP99QPrZO57wSN86IcD1s3zrpnhqrI2PdOaNtlmUv8/4FGoq2SSPaBggGivNAO1L0zUzZNHas5L78csD2sbfQmGymY2JtJl5zpTtjbQLQOe9UsX697L3/ASlf5X3CGwAAAAAA6lPpiLWJqmcyWMVWWtZgcb6osshnrI3S9zCjW35TxTFi013unmId86uNyNkofZIi6rx+aOaherlk3xLvX4DceaBVoDgPtCP5H3wgtrIyj4liAhZr48fivCvWpihwnfP733hDCj76SPLffz9g+wAAAAAAhELnvO9zbntNjdjVeXkjJ4T11jmvdB+cKpGWSim1pcrest51Xo8aOFDK45MkxlophxbtqPP6IRmH6OX6/PVSUlVy8MX53MDenQ+EOorzQDtRvnKlVKxcKWHh4ZJ05hkB2UeNzS77HN3t/oy16ZBgFPqzAlicTz73XL0smjlTagqMbD8AAAAAAJraOV9frI2ttLaYbaonc76h4rzKnO+dsEo/37Czbud8mMkkG3sYBfZ+21bUeT0zNlO6xHURm90my3K8RNt0MGJvZN9qEVtNnZd7pMXo5TYy54GAojgPtBP5H3yol/EnnCCW1NSA7CO3pFIX6FWWXbqj290fOiUZhf49BYErzkePGCGRAweKvbJSCj7/ImD7AQAAAAC0TxWlDXfOOyeDVY1zpoi6cTONyZx36hs5Ty83bzRLTbWtzuuL0vrrZepq79E1h2Qa3fNL9y2t+2JKL5HwGBFruUjeljov0zkPBAfFeaAdqCkpkaJZs/Tz5HP/HvDJYFUMzYGTzTRHZ0dxPq+0Ssqr6l6x94ewsDBJ/rvxtyn43//EbrcHZD8AAAAAgNDtnFfn5w1F2igFlQX1F+ery6WTbZHEmPKkssIuO9bs93i5ymqTOTHdpSbMJOad26Vq5846HzEqc5Tv3HmTWSRzsPE8a4XP4ryaG6600rgoAcD/KM4D7UDRt9+KvaJCInr2lOiRIwO2n6wATAarJERbJDbC7DHhbCAkTJkiYTExUrV1q5Qv8TEpDgAAAAAAB5k574y1aag439CEsFK0R0xhNukb85v+ccPifR4v78grk+LwaFmX1lP/XPLzzz4751fmrpTKGiOi1kPmEJ+584kx4ZISa3T+byV3HggYivNAO1DoiGlRWfOqQzzQnfP+zJtX1HfuGIRoG3NcrCScdKJ+XvDxJwHbDwAAAAAgRIvzJY0rzjeUOS+Fu/SiX8Ymvdy2PFeqKmo72J0F8219hutlyU8/1fmIbvHdJC06Tapt1bIyZ6XvSWH3eMmkF5E+6cbvsDnHy4SyAPyC4jzQDnR6/DFJu/ZaSTj11IDuJ8tRnO/g5855z9z5wHXOK8l/+5tY0tMlokf3gO4HAAAAABCKE8IahWxzPZPBNipzvmi3XqRn2iUxI1qs1TbZvDTH9fLWXGM/RSOP0MuyRb9JjePCgHsj3CEZjtz5bC+5850PNZZ7lop4iX7tnWEU5zfuozgPBArFeaAdiOjaVdJvvEHCMzICup/aznn/F+c7JxmfuSeAsTZK1PDh0mfeXEm75pqA7gcAAAAA0E4752MbnhC2vs55NQeaq3PeV6xNoVGcD0vsIgOO6Kifr1u01/Xy5myjEJ80oJ9EdO8u9upqKV1QN9rm0EyjAP9H1h9196Ey582RIhWFXieF7esszmcX+/xdADQPxXkAjebMg89MCEDnfGJwOudV50CYxfeBFAAAAAAA3lSWGp3zUY2ZELaezvlya7mOmqm/c96ItZHEztL/iA4iYSJ7NhZIYY5xzrx+n1Ew79chXuKPn6ifF/84p87HHNHR6Kxflr2sbu68OVykoxGLI7vrzsvWN9NZnKdzHggUivNAG1ayYIHsvOZaKVnwS1D2tyvfOAjokuzfzHnFmTnv7M4PNLvVKsXz50vllq1B2R8AAAAAoG3z14Swzq55i8ki0ZboejPnJaGzxKdESdcByfrHdb/t1Z33mxwF836Z8RI3YYIrd95eVeXxMT0Te0p6dLouzKsCvc9oG2/F+Yx4vdy+v0yqrDafvw+ANl6cf/HFF6VHjx4SFRUlo0ePlj/+8HKrjRcffvih7oKdOnVqwL8j0BqpSU1L5s2T0l8WBHxfldYaySoyCuddU2L8/vmdHLE2uwPcOe+U9a9/ya6rr5G8t98Kyv6AUMB4DgBA+8CYDtRVU23Tue+NnxA2tsG8+aTIJF3Xqi/WRnXOKwOOMqJt1i/Kkt355VJSaRWLKUx6pMZK9PDhYk5L05E6pX8s9vgY9fnO7vnf9/7epOJ8ZkKkxEVapMZml237PfPsAbST4vxHH30kt956q9x///2ydOlSGT58uEyePFmys7Prfd+2bdvk9ttvlzFjxgTtuwKtiTU/X4rnzdPPE884I+D721NQoeeHiQ43S2pshN8/v7PbhLCqCyDQEk44QS+LvpkptrKygO8PaO8YzwEAaB8Y0wHvKhyTwap4mYiohjPnzfV0zhdUFuhlQkSC9w3UObGzcz6xq170Gp4uEdEWKc6rkGVLsvS6nmmxEmExSZjJJPHHHafXFf/4Q52PG91xtF7+tve3uvvqbEwYK3tXiFir6hT2+zApLNC+i/NPP/20XHHFFXLJJZfIoEGD5JVXXpGYmBiZPn26z/fU1NTIeeedJw8++KD06tUrqN8XaC2Kvv5apLpaogYPlqj+/QO+v515RgG7a0q07yv7zdAhMUrUx1ZU2ySv1POAIBBiDj9cwrt10wdORbO/C/j+gPaO8RwAgPaBMR1oINIm2iJhJt/nxLZSZ+a87+J8XnmeXqZEpXjfoDxfpMoxCWtSN72wRJil76gM/XzHkhxXpI2TM3e+ZM5csdtsXovzq/evlqKqIs99pfQSiUoSUXn02avrfBUmhQXacXG+qqpKlixZIhMnTqz9QiaT/nnRokU+3/fQQw9JRkaGXHbZZQ3uo7KyUoqKijweQFunOssLPv1MP0884/Sg7HNnvlGc75Ls/0gbJdJilg6OiWZ3OC4EBJLqLEg680z9vOCTTwK+P6A9C8Z4rjCmAwAQWJyjA/X876PCKM6r7vX6uCaEradzfn/Ffr1MjU71vkG+Y260uA4i4bWZ9M5om5odpRJhr52wVYkZPVpPQmvNyZGKFSs8Pq5DbAfpkdBDbHabLM7yjL3RXXL15c4zKSzQfovzubm5ugs+MzPTY736OSvLuEXnQL/88ou88cYb8tprrzVqH48++qgkJia6Hl27GrcDAW1ZxZo1Url+vYSFh0vilClBnQy2a2Mmgy3LE9n0o8iSGSJL3xbZ9otIVcP5dN0cWfbBKM4riadPFTGbpXzpUqnctCko+wTao2CM5wpjOgAAgcU5OuBbdXmNXtYXaaPYSo3zWVUo9yWvwuicT43yVZzfbiyTe3iszuyRIMkdYsRkExlYZZb+bp3zpogIiRs3Tj8v+u77Oh/p7J6vP3d+aZ2XnLE2m/YZFx0AtLNYm6YoLi6WCy64QJ/Ip6WlNeo9d911lxQWFroeO3fuDPj3BAKt8LPPXbetmZOSgvIHr421qadzfucfIu+fI/JkH5F3zxT5+iaRr24QmTHFWPf51SK5mxoszquZ4IMhPCND4saP18+ddyIAaJ3jucKYDgBA68I5OkJJVaWzc95c73bOzPn6JoTdX95Q5/w2Y5nc3WO1ipgdeHQn/Xx4lcVVOHeKP9Ext9q339aJtjmy45F6uWiPlztbu4wylrsWe4m1MS4AbMktkSqr52cCaL76L/cFmDohN5vNsm/fPo/16ucOHTrU2X7z5s16IthTTjnFtc7m+I+NxWKR9evXS+/evT3eExkZqR9AexI1ZIjOmk88PfATwTrtdHTOe421KS8Q+fb/RFZ8VLsupbdIWl8Rm1Uke61I0W6R5R+IrPifyDE3i4z7hwrN8/iY7qnB7ZxXks48Q0rmzJHK9euCtk+gvQnGeK4wpgMAEFicowO+VTk658MjG+icb8SEsM5YG5+Z8wXeO+eVhIFJYhW7ZNaYJKa4RsTt5tW4sWONaJusLClftkxiDnFM9ioih3c8XMxhZtlWtE12Fu+UrvFuyRKdHcX53A3GnfAxtd+rS3K0xEdZpLjCKpuyS2RQJx+T2AJoe53zERERcuihh8qcOXM8Ts7Vz0ceaVzRczdgwABZuXKlLFu2zPU49dRT5dhjj9XPiaxBqEg6far0/PQTiT3m6KDtc5fbhLAecjeK/HesUZgPM4mMPF/kuj9EblwqMu0jkfM/FblltchlP4j0nSRirxFZ8B+jm77UOCBxcnbl7whS57wSN2aM9PjkE+n6xhtB2yfQ3jCeAwDQPjCmA43JnG9s53xcw53zUQ10zid5ds4rW4vKZV24caFg3a97PF4zRUZK/MQJ+nnRrG89XouPiJeRGSP18192/+L5obGpImn9jec7FtXt1u9oFOTX7GUeR6Ddxdrceuut+rb2t956S9auXSvXXHONlJaWyiWXXKJfv/DCC/Vt7EpUVJQMGTLE45GUlCTx8fH6uTqQAEKJGiSDoazKKvtLq+rG2qgYmzeON67qqxnkL/1O5LQXRdL7H/hFRboeLnLexyJnvSUSlSiyy/Fe50GH7pyPDXrnvMrtjx4yOGh/S6C9YjwHAKB9YEwHvKt2FufryZy32+1SU1raYHHelTnvM9bGd+e8KpAvjzSK8xv/zJaK0mqP1+NPPFEvi76bLfYaYzunMV3G6OWCXQvq7rO7o0l2+8I6Lw1yFOfXUpwH2lesjXLOOedITk6O3HfffXrSuBEjRsjs2bNdk8rt2LFDTKYWv4YAtArV+/ZJybz5kjDlJDHH1078Emjbco1ieVJMuCREhRsr9/wl8s4ZIlXFxuQx0/4nEtuI7OjBU0UyBhqZ9HmbRd46xSjqJ3RyZc5nFVVIRXWNRIXX35HgbzbnQVQ9E/cA8I7xHACA9oExHag/1iYiyvd5qr2qSsRqrfe8UhXw682ct9WIFO70mjmvrN5TKHvMNglLCpeagmpZ/1uWDJ9QG1ETd9RRYkpMlJqcXClb/KfEHmFMBKsc0/kYeWbJM/JH1h9SYa2QKEtU7Qd3O0pkyYw6nfPuxfk1e+icB9pdcV65/vrr9cOb+fPn1/veGTNmBOhbAa1P4edfSM6zz0rx999Jt+nTg7bfrblG0bpXWmxtlI0qrqvCfI8xRnxNRBMK2qqzXsXczDhJJG+LyDuni1zyrSTHJEt8pEWKK616Atq+bjPPB1ruK/+V3FdflYybbpSUiy4K2n6B9oTxHACA9oExHagv1sbSYKSNYorxMl+biJRUl0iVrcp35ryar03N3WYKF4nvWOfl1apAHqZi4jNk14+7ZfWC3TLsuC6uu8HDIiIk/viJUvjJp3piWPfifN+kvpIZkyn7yvbJ4qzFrk56j875vctFqko9zvGdOfNrs4r0xQXuPAf8h5Z0oI1QA2DB55/p5wkn106iGAxbc40DjJ5pcSIVhSIf/F2kbL9Ip5Ei537QtMK8U0JHkQu+MA42ctaJfHqZhNltrtic7UHMnVdMCfFiLyuTgs+/COp+AQAAAACtX1WFs3O+4eK86poP85EC4eyaj7HESLTlgDndPPLmu4mYPLv0C8uqZVd+uX5+1HHdxBJplvysMtmzocBjuwRHtE3xd98Z3fwOqqjuirbZfUC0jdpfQhfjwsCuPz1e6pMRJxZTmBSUVcvewgqfvz+ApqM4D7QR5UuWSPX2Hfrqe8LkSUHd9xZX53y0yOdXi+zfZAza0z4WiWxGd7u6Re+8T0TCY0Q2zxWZ+y/pkWYU57ftN/YZLIknnaTz5yvXrZOKNWuCum8AAAAAQNvInA+vJ9amphGTwTaYN6/uVNcb9Knz0uq9hXrZJTla0lOipf/hRiT0inm7PLaLHT1azGlpUlNQICULPIvwYzrX5s6rJkAP3Y4wlgdE26jI2d7pxu9E7jzgXxTngTai4LPP9TL+xBOCnonujLWZmPuuyPpZIuZIkXPeEYlLb/6HdxgicurzxvNfnpbJpsX66eac4BbnzUlJEueY1d75twYAAAAAoPGd8w1PBru/wpE3H+WjOL9/s7FM61vnJWfm+2BHzMywY42s+S3Lc6Qwx+ioV8IsFkk8+WT9vPALz7vDj+h4hISbwmVXyS7ZUril8ZPCOvZJ7jzgXxTngTZATVRaNHu2fp50xhlB378qzg8P2yT91r5grJjyH5HOh/hvB0P/JnKkMe/EiVv+LRmSL5tzarP6giXp9NP1sujrr8XmdusfAAAAACC0uTLn6+mcV+fuiinOd0NdvZPB6g02GcvU3nVeWrXb6Jwf3ClRL1M6xUq3QSkidpGVB3TPJ54+VS+L5/8k1vx81/qY8BhdoFd+3P6j5w7UpLDKrsUiNdVeJ4XVmfcA/IbiPNAGFM3+TuehR3TvLtGH+LEo3gj5pVVSUVYiT4e/LGH2GpEhZ4occoH/dzThfpGOwyWiulCeCn9FtmQXS7DFHn20WDIypKawUErm1T8ZNQAAAAAgdFSVN2JC2FKjycxcz93uzs55r5PB6g3qibU5oHNeGTbB6J5fs3CP6zsqUf37S+SggSLV1VI0c5bH50zsPlEv5+yY47mD9AEi0Ski1WUiu5d4vDSks3FBYKXjAgEA/6A4D7QBVdu2iZhMknjGGUGfFV3lzd9leV96m/Yak7ee9FRgdmSJEDnjNbFbomSseaWcVPGNFJQFt3s9zGyWxNNO088LPzMm3wUAAAAAwBlrU2/mfLHRZGaK8z03W255ru/OeWuVSP52r8X58qoa1x3mzs55RXXOJ3eIkeqKGlm7cK/He5KmTvUabTO+63gxhZlkbd5a2V2yu/YFNYltr3HG883zPN4ztEuiqHLE7oJyyS5mUljAXyjOA21Axm23Sp958yT5nLODvu+StT/KRZYfjB9Oe1EkxsfVfX9I7y9hxz+sn/7D8qHs3LJOgi3pzDMk7YbrpcN9/wz6vgEAAAAArT3Wpp7O+SJHcT7ed+b8vtJ9epkZY0zm6qFgu4i6Yz081miOc7NqT6HY7CLp8ZGSmRDpWq8a+IYdZ3TPr5i3U2xqI4cElTtvsUjFqlVSuckRl+Po2j8kw7grf872A7rne403lls87yaPi7RI3wzj91qxk+55wF8ozgNtRHhmhp60NKiqy2XYXw/op7+nnSHSx5gwNaAOu1zWRgyVmLBKSfvpLpEDZ48PsIgePST9uuskvHPnoO4XAAAAANA61VTbxGa1NxxrU2IU5831dM7vKzOK8x1iO9SfN3/AXfN/7TBy40d2TapzR33/IzpIZKxFinIrZOvyHNd6S0qKxI0dq58XfP5546Jteh1bmztf4ZkvP6yLUZNYvqvA5+8HoGkozgOtmL2mRqr37Gm5L7DgP5JcuUuy7MmybcTtwdmnySQ/9L5LKu0W6Zjzi8iqT4OzXwAAAAAAvKiqrM1yD4+sL9bGiJ0xxTdcnPfaOZ/rO29+2U6jID6yW3Kd18IjzDJkrNFgtvS7HWJ3a3JLOuN0vSz8/AuxV9VGx07oZjTf/ZX9lytqR0vuLpLc0+jg3/6rx36Gd03y+C4Amo/iPNCKlS5cKJsmTJTdt94W/J1nrxP55Vn99P7qi6RXF89b6gIpqdtgecFqZOPJt3eKlOVJsBXPnSs7rrpKyleuDPq+AQAAAACtR1W5kTdviTSLyeR7HjibI3Pe7CPWptxaLoWVRiRMZqy34vwGY5nWt85Lf+0wCuIjHAXyAw07tquYw02Sva1Idq03uuyVuPHjxZKRITV5eVL844+u9apzf3DqYLGLXebt9MyXl97Heo22GeHonF+xq9DjAgCAg0dxHmjFCtSkpHa7mFMCmPPujc0m8s0tIrZq+aHmEPnOdpj0y/B95d/f+mXGyys1p8rWsK4iZbkicx6UYCv6draU/vSzFHxK5z4AAAAAhLLavHnfXfNKTUn9E8I68+ajLdESH+5lm+y1xjJ9gMfqrMIK2VtYIeq6wLAutZPBuotJiJBBx3TSz5d8u702k95ikaS//U0/z//wI6/RNt9v+9577vwBk8L27xAvERaTFJZXy/b9ZV6/B4CmoTgPtFI1BQVS8uMc1ySlQbX8A5EdC6XGEi0PVF8kmQlRkhgTHrTdD+yQINVikf+ruMRYseQtkT3LJJiSTjc694tmzhJbZWVQ9w0AAAAAaD2qGzEZrGJzxtokxDeYN39gbryeby1nnfE8Y5DHS8t25rsa2WIjfX+Hkcd30539u9fnS9aW2klbk876m46QLfvjD6ncssW1fnL3yXr5R9YfntE2PVVOfZhI7nqRotqoXVWYH9QxwfGdiLYB/IHiPNBKFX4zU+zV1RI5cKBEDRwYvB2rCV9+NCaBXdnnGtkt6foAIJjUhYBOiVGy2D5A9vc8VR2liHz7f0GdHDbmiCPE0qmjvi3R/dY/AAAAAEBoxto01DnvmhDWR+Z8vXnzhTtFqkpETOHGhLBu/qonb95dfEqU9DvCmGh2yeza7vnwjh11vI1S8NH/XOu7JnSVYenDxGa3ybdbv639oOhkkc6HGM83eZ4Pj+xmRNss2V4bnQPg4FGcB1qpgs+MOJWkM4LcNb/gPyKl2SIpveXr6NP0qmAX55WBjqvxc7tdLxIeK7Lzd5EVnrfgBVKYySRJU43u+cLPPGe1BwCgvau01siGfcUyZ+0++XLZbvnwjx16OW9dtl5fXWNr6a8IAEDwY22i6++crylqXKyN1+K8mvfNmTdvDveaNz/SR968u0MmddNN79tW5Mr+3UYnv5L893P0suCLL8RWUeFaP6XnFL2cuWWm5wf1NbrqZf1sj9WH9TBidxdvC/7ccEB7VP9/VQC0iIp166RyzVoJCw+XhJONgTIo8raI/PaS8XzyI7L2Z2PA7pfpfTKbQBrQMV7mrMuWpfnRctbY243c+R/uE+l/kkiUUbgPtMTTT5fcl17WE/NW792ruw0AAGiPbDa7Psmeuz5bFm7aL6v3FIrN6w1rdukali0jzNvl6PgsGRxXKl0jSyUxwi5hYSZjjE7oLJLSU6TzKJHMwXUKDAAAtDVVFTWNjLWpf0JYV+e8t8lgc7znzasL5ssdnfOHdG+4OJ/cIVZ6j8yQzUuzZfHMbXLClUP0+tijj5bwzp2levduKZo5U5LOPFOvn9xjsjyx+AlZvX+1bCvcJj0Sexgf1P8Ekfn/FtkyT+X6iIRHeRTn1+8rlsKy6qBG4ALtEcV5oBUq/OJLvYybMEEsyfXftuZX3/9TpKZKpNexYu87WVZ/aNy+NriT9wlngtE5v3Zvscip14n89a5I3maRn58QmfSvoHyHiK5dJeaww6Rs8WIp/PJLSbv66qDsFwCAYMktqZR3Fm2XT5bskt0F5R6vxUVapEdajCRFmWW4dZUML/lZRpT/Jhm2HGMDtbnnW+pSd7/1myQy6DSRfie6TuwBAGhvE8Laa2rEVmZMkmryEWuTVZpVT+f8Wq958yt2FUql1SZpcRHSO71xjXOjTuqhi/PqkburWNK6xEuY2SzJ086V7Cefkry33pbEM87Qufep0alyZKcj5Zfdv8isrbPk2hHXGh/SYZhIfCeR4j0i2xaI9D1er06Pj5SeabGyNbdUluzIk+MGePldADQaxXmgFUq/4XqJ7NtXInr1DN5Ot/wksu4bkTCzyAmPyu7CCj0Du8UUJn1bonO+g1GcX59VLDWmCDGf8JjI+2eJ/PayyMgLRdL7Ba173lZVKRE9HN0DAAC0A9nFFfLC3E3y0eKd+oRfiY+0yPGDM2VM3zQZ3TNVOoaXSdjSGSJL3xbJ3+Z6r90ULtVpA2V3VF9ZXZYof2RbpNhqFqu5Quyx+yQ+rUBKLfmSZS2S3DC7VBQvFusfiyX6j39KfES8dEzpJz2S+8mg1EEyqsMo6RLXpe6keAAAtCLVjs758Ho6520ltREy5ri4BieE9V2c9+yc/2OrER9zeM+URo+XaV3ipM+oDNn0Z7b8/tVWmXLtML0+6ayzJOfFl6RywwYpW7RIYo86Sq+f0muKLs6raJtrhl9j7Ec9+k0WWfKmyPpvXcV55bAeybo4v3hbPsV5oJkozgOtkCk2VpLODGLWfI1VZPZdxvNRl4pkDJRVq7JcefORlvonvQmEHqkxEmkxSXl1jezIK5Oequuu3wkiG2aLfH+PyHkfB+V7JJ4+VZLOOD0o+wIAINAqqmtk+q9b5cW5m6S0yig0DO+SKJce01MmD+4gUeFmkdJckYWPiSx+3ZiYTolMEBk8VaT/FAnrOVYiImJEtRDU5G+SrVu+l0WbfpCsik2eO1Of5UY12edZS2R79lL5LXupa33X+K5yQo8T5OReJ0uvpF78PwEAoNWpKm+4c76m2BgzwyIjJSwiwus2e0v3eu+cr6muLc6rSDg3vzuL8444mcY6/OSesnlJts6e37e1SDJ7Jog5IUGSTj9d8t97T/a/9ZarOH9c1+Mk2hItO4p3yMrclXqSWK3/iUZxfsN3Ina7UbBXZYMeKfK/P3fJYsd3A3DwKM4DEFn6lkj2apGoJJFj79Z/kTV7CvVycKeElvmPk9kk/TvE61v41u4t0rfNyeR/i2yaI7Lxe5EN3xu3yQcYnXwAgPbiz215cvvHy2Xb/jJXUf7OEwbIkb1TjfHOWiXyy/MiPz9ZW5TvMFRk9DVGYT4iVq8qqy6T2Rs/k082fKJP4J3CJEwyorpKSVEn2Z+XLrbqZOmW0FH+b9IwGdoxUUrXzZSSBe9I7u5dst8aLlkSJdlikkrzdtnw63/lgZj/Ssd+I+W0MVfIkd3HMgYDANrUhLC2kuJ6I22KqoqksNI4z+4S38XzxZx1IjWVIpGJIsm1d9Bba2yyxDHx6uheqU36zip7vv8RHWTdoiz5/estcuqNI/T6lAvOl/z335fSn36Wyi1bJbJXT4kJj5EJ3SbIN1u+kc83fV5bnO85VsQSLVK0S2TfKuO4wO1CgTpfVxf+9cV9AAeF4jzQilTvy5ad11wtSVOnSvIFFwTnpLS8QGTeI8ZzVZiPMQbZ1XuK9HJI5+DnzTsN7JCgB/uVuwvlpKEdRVJ7ixxxtcjC50W+u1uk13gRi/eOBH+rKSyUolmzJPHUU/WdDQAAtBXqpPnpHzbIawu26Ka3jPhI+ceJA2TqiM5iMjmONTb9KPLtnSL7Hd3vHUeIjP+Hcdea43hEFRXeX/u+vLv2XVdxwRJmkWM6HyPHdTtOxnYZq3Nra2x2+XDxDnn1yz+l27q1smr2fEmp2iuJ2bskpqpKukmcdNPvVjPOGt37tZaITZbIzx2jJe2wo6XrhFMk7pijGXsBAK1kQth6OueLiuqNtNlVvEsvU6JSJFbNyeJu73Jj2XGYa9x1nperO90So8Olf6b3on99DpvSUzb8vk92rsmTPRvzpVPfZB3ZGjd+vJTMmyd577wtHe+/X297Rt8zdHF+1pZZcseoO3TBXsKjjfPuDd+KrJvlKs53T43R2fM5xZXy144CfaEfwMGhOA+0ImrS0co1a6UoKlpSLrwwODv96QmRsv0iaf2NSBuHVS3cOa8M75okH/250zUzvTb2DpHlH4rs3yiy+DWRI68LynfZfv4FUrlxo4RFRUvS6VODsk8AAJprZ16ZXP3uEtdF9zMP6SL3nTJIn+RrFYVGtN2y94yfYzNEjn9IZNg5IiaTq1N++qrpuihfWl2q16mc+LP7ny2n9j5VF+SdqvfskaLZ38nRc+bIIUuXGrfAO+hn4eES0a2bWJKTxFS1T0wFm8RWYxd7WLSUWzpKZVauhFdUS8becpGvfpTdX/0oEhEh8ePGSdLZZ0vs0UdJmON7AQAQ7Fib+jLnVUOXYk5Kqrc4X6dr3qM4P9xj9e9b9+vlYT1Sai+oN0FCWrQMPKaTrP55tyz8bLOc+X+H6ibAlIsu0sX5ws+/kPTrrxdLaqqMyhwl3RO6y/ai7TJ722xdrNcGnmwU59d8ITL+Tr1KfcZRvVPly2V7ZOHmXIrzQDNQnAdaCbvdLoWffaafBy3jPHejyB//NZ6f8G8Rs3Ginl1UIfuKKvUF+4EdW644P6KrcVCjuudVF55ZHYxEJYpMuE/kqxtE5j9uFA9i0wL+XRKmnCQ5zz4nhZ9/TnEeANAmzFufLTd/uExP8J4cEy5P/G24HD8o03My+C+vEyncqUNp5IhrjG55NdaqIoOtRr7c/KU8/9fzklueq9f1SeojVwy9Qib1mCQWk3EqYa+qkuK5c6Xgk0+l9NdfPQrykQMHSFaPQfJmYYKsjO0oNemZ8sL5o/St+erYp2zjMin+/CEpzquQCnuqVE+9XLJjesmGDYukcs926ZZdIWkFBVK0aJ3kzbtRYjqlS9qVV0jiaadJWLjjAgMAAMHqnK8n1qamoKD+4nyJozgfV19x3oiecVq42SjOH9GraXnz7g47qYes/22vzp3fvDRH+hyaITGjD5eooUOlYuVKyXvrbcm49RZdcFcF+WeWPCOfbvi0tjg/YIrI1zeLZK8Rydkgkt5Prz66T5ouzv+yKVdum9T/oL8fEOoozgOtRPlfy6Rq2zYJi46W+BNODM5Ov7tHxGYV6TtZpM9E1+qlO/L1Ut02FxvZcv+Z6JcZJ9HhZimptMqWnBLp67yNb8R5In+89v/ZOwswK6o2jv/23u3u3oWFpTuW7kZCJKVTDEwwQEAUVMJuEURKCSUU6W5YuhdYlmW7O29+z5yBRT4BQUDq/J5nmZkzM/fO3LvsmfM/7/t/Iek4bHkfunx+z69FEQFSv/iSgvBwdLGxWAcF3fP3lEgkEonk36CI3t9uu8DHG84KnVzxlv92QB0CXO3UA0xG1dJu5yfqtltp6PY9lGpY8hqn0k/x3p73OJNxpqRo66u1X6VNqTZoLNTIdWNeHlmLF4tBvSE1teRc+7AwnNq3x6l1K6z8/FBKvAamF/DC3AMUxRfw/ZeHOOzqiFW2gWIRifjS1Ys/qvyjeOLXwNq6BkmBiJ8r2BWk4PzzBTx+eZtKg9vi07Wt9KaXSCQSyT1Hf8Vz/ma2Nv8gzsfmxpb0qdeg9MtJJ/4WOV9sMLIvShXnm5bz+tfX7uBqQ622wRxYHc3eFZGEVPdEa6XB89mRxL34kvCf9xgxXBSLVTLivjr8FcfTjnMu8xzl3cqDnZtqbRO5UY2eb/5miTivoGS65xTpcbaVk+YSyb9B5oRKJA8IWcuXiaVz+/ZoHf8DT3PFW/b8elCi3tpf9py/zOEY9aGiVrDbvxIElJT3lIIUEvISxAOIEm1XZCgS+263KGy1y573R/5qbaPRQsfply923tUHmXuIIi44NFRFCyX1TyKRSCSSBxG90cS45Sf4aL0qzPevH8zS5xpeFebzUmFBt6vCfJ0h8NzuEmFesbD56MBH9FvdTwjzTtZOwnf29yd/F9HyijBvyMwk5ZNPiWzRkpSPPxHCvKWXFx7PPkvZDesptWA+7gP6i74zK7mAg2uiOfDjaZ64YOSpAhvqFlliSioSwrySpefoZoNfWRdCS+dSyW4z1ezXUM3nKBXreVC6pgdGrzzyrVSrgEJ7b5J9wjjt3ZFlay35+dnfOLT0KEV5+vv2mUskEonkcfKcv4XIeReX27O1Ueq96AtA8aFX6qxd5lB0JkV6k6gVowSu3Qm12pXC3sWanLQijm9Tr8OxVStsyoViyssj82fV3s7TzpOWwS3FuhI9X0KVy9n9p1aUNCnPFmU8HTCZYd/lCH+JRHL7yMh5ieQBwFRQQO6atWLdtcfl1LF7iVEP695W1+s9C57lrtl9+JIaOV87+Poz/goms0nMpJ9JPyOW5zPPk5CfIIT4QkPhdc+x1doS4BggHkaCnYOp6lFVVIFX2m5U/LZmsCvh0Rkcjc2id92/RBiUagRVusOp5apX7uBV1xTOuRe4dO9O/p49ZK9cieeLo6TnrUQikUgeKJRMs1E/H2b7uVQUJ7h3u1ZhUMPSVw+I2Q+/DobcRFUA6PolVOtZsvtA0gEm7p5IfF682O4Y0pG3wt4q8ZRXnlcy5i8gffZsMZBXsC5TBo/hw3Hp0hkLa7VIe352MWf3JRF5KIXUmNxrrtHF244cJy1rEzJI1poIq+HDJ0/XxNZKiUSsA+ds4bdhoMsD/UoYuAIcarDp0iambHsf+yx3yhdUISypFtlFjmRrPNi3JYPwrTsIredLnfalcfeXhdslEolEcnfRXY6ct7qVyHm3f/Cc/39bmyuWNkqxVSUQ7TI7zquWck3Ked5xlpiVjZb6XcuwdUEEh9ZGU6mhH7aOVniMfJaEN94QWXCKD73G3l7Y2Wy8tJFVUat4pfYramHYik/AKqvL1jZnwatCSfR8VFq+sLZpV8X3jq5RInlckeK8RPIAkLNhgxjwWgUHY1e37r1/w4M/QdpZsPcoSUm7gs5g4ni8Gp1Wu9S1kfPphelsjtnMvsR9hCeFk12sHnc9tBZa9UejLRHri4xFXMi+IH7+ioetB40DGtM8sDmN/BvhaO34N9/5a4rCXkEpWHd2DUTvhDN/QOUnuZc4tWmNxslJFLtT7G0cGjS4p+8nkUgkEsmtklWgY9CccFGnxdZKw1d9a1/rL68UU1fqtRh1ahH43vPBu6LYpTfq+eroV8w9ORczZvwc/JjQYALNApuJ/WajUfjJp339dYl9jU3Fini9OEpE3SkFWpXsuLizmZzcHs/Fo6mYlDA6xcleY0FgRTfK1vIiqLI7zh5qBH/A0Xhe//UYq08lkTonnB8H18VJSYcv3x6GroUFT6lixdxOMGilsNMp/1R5Rm0exZac5RwotZGPg8ZhmHeKi4V+5DkFcW5/MufCkwmt7U1Y5xDc/aRIL5FIJJI7x2wyo7+lyPkbF4TVm/Qk5ide39Ym4eh1i8HuPK/2uc3uwNLmr1Rs6MfxLXGkx+cR/udFmj1dHueOHUj96iv0MTFkLlmKx9AhNPRrKK5RyYL/M+pPUQBeWNuUbQnnN8Cpq4VhFXF+wb5L7Lo8kSCRSG4fKc5LJA8A1qVKCW9Wu2pV771vakEGbPtQXW85HuyufXA4nZgjBHpXeyuRoqaktyuV2tdeXCsEeSVi/goOVg4i+r28e3nhRad04F52XiIVTsyuX0Y5R3md9KJ04nPjRSGcyKxITqSeICIzQrT/ceEP8aMUl1NE+ifLPkmTwCbUuCzORyTlUqgzYmf9l0gF1yBo/Apsnw4bJqje+Va29+yj09jaisKwWb/+RlFEhBTnJRKJRPJAkJpbzMAf94u+0t3BmjlDwkomtzGZLvvLf6xuV+qi+svbqBPhUVlRjN05tsRbvke5HrwZ9mZJP1549CiJ702m+Iy63yowEK9XXsa5Uychyhv1JiJ2x3NscyyZSYpXvIpvGRcqNvSlTE0v7JzUiPq/8mTNALycbHh2/iHCL2Yw4Mdw5g+th4u9FfhVVwX6+V0h9Qz81FFkyAW7BLOg4wJe3voyR1KOMCr6HT6Z8BGdtycSOfMzLvm1INWrlojYjzqSSrVWgdTrFHLT4n0SiUQikfwT+mJVmFewtvt3nvNJ+UkYzUasNdZ42f+f2B53QF361yppSssr5lRCzjXe7neKRmNB416h/PH5UU5uj6NSYz+8gpyE93zi+Amk//ADrr16CZvdfhX7Mf3AdBaeWUjP8j3VejOKtY0izp9Yqgb5WVjQsKwHWo2FiJ6/lJ5PKQ85MS6R3C7ySVUieQCwr1VL/PwnbJsGhZngXQVqD/7b7iuWNhWDCpgWPk0I5nl6NXVdQRHjmwc1p4FfA6p4VsFK889FX5SOXImGV35KOZe6Zl+xsZhjKcfYEbeD7XHbic6JFtH5yo+7rTs9y/XEyyWA1GwbjsdlUb+MmlpfgiLOH1kIWTGw92to9jr3Es/nnsNr1CjhrSuRSCQSyf0mKbuIfrP3EZWaL8TuX0bUv1pAXV8IK5+/6g/b5DVo9Y4yOhebK86v4MP9H4rMNlcbV95t+C6tS7UW+xRf+dRPPxUT0goaFxfR/7k93UfY1yjp/ad3xXF0Ywz52bqSlPkK9X2p0iwAz8B/9sZtVNaTxc82YMDs/SJDTrmPBcPriwkGvMpfFegzomBeV7Ht6uTDrHazGLdznEi5H7PjDT5u8TGNG3yC5yuvkBG9hqiyT5LmXpVjm2I5H55M834VxCSBRCKRSCR3Ymmj0VqgtdT8K3H+Us4lsVQsXq8UVhfoiyDxcuR8cP2/Rc1X8nMW/fvdIqiiO2Vre3PhcAo7Fp2l++t1cHnySdJ/mIXu0iUy5s/D64UX6Bbaja+Pfs3F7IvsTdgrMt3FBP/qMapHftxBCArDxc6KsNJu7IvKYPOZFIY1Cblr1yqRPC7IgrASyeNESgQcmK2ud/gQtH+fn9tx6Qi2gfM4pZnILxG/CGFeEdQVr7k1T61hUedFPFfjOWp617wlYf6fsNHaUM+vHq+Hvc6qp1axrOsyBlceLIT5jKIMfjjxA8X+U7Dx+431507+/QWsHaDNe+r6zk8hJ4F7iZWvrxTmJRKJRPJAkJBVSO+Ze4Uw7+9iy9JnG14V5pVMOUXQVoR5pb9+8hto864Q5pUi7ZP2TOKdPe8IYV5JX1f6X0WYV+xpspYtJ6pDxxJhXqm5UnbtGtwHDcSAlsPrLzF//B52/xYphHkHVxsa9wxlyPTGQgi/FWH+ClX8XVg8siGejtYiQrDvD/tEJoDAPUQV6F2CIeOCanVTkCGeHWY0myE88Q1mA2O2j2G7zUVKL12CT60yVD/+HTWOf4OTrZ6CHB1rvz/B5vln0BWq4opEIpFIJLeDrvCqpc3NMt1vJs4rmWoKZV2vFnwVKMK8Yjnn4AVuV4XtTadTxLJ1Re+7/mU16RWKpY2WpKgcIvYlYmFpKbLiFDLm/CQm6JXAuqdC1SKwC84sUE+0cYJKXdX1Y7+UvF6bSqqN3uaI5Lt+rRLJ44AU5yWS+4ji4Zr2/ffooqP/mzfcMF55U6jQCcq0uGbXqbRTjNo0ikOGSVg5ncECC1oGtWRmm5n80e0PRlQbQZDz/3nj3QMUexxFqN/UaxOfNP9EFIw1Y8Da9SC/Jr0sxITEPNWrrwSlmF1QfdDnw6bLQv1/gD5ZfWCSSCQSieS/JiWniH6z9hGTUUCwuz1Ln2tIiOflVHJlovqnJyAuHGxdhWc7tQaIXYp/7KC1g1h+frno61+q9RLft/0eb3tv9ImJxI58lsTx4zFmZ2NToQKlfvkZ/w8/QOPiyqmd8fw8cS97V1ygON8giru2HFiRgVMaUrNN8E19eG9GBV8nIdB7O9lwNjmX/rP3kZGvRuPjEqhev6MvpJyChT2gKEfY4E1tMpUuZboIm4CxO8ayN/c4QTO/x33wIDwyTlNn/etUcE8BC4jYk8iSD8JJjb22QK1EIpFIJP+Ertjwj5Y2yuS20nfeUJzPVsX5EJf/iyyP3a8ulfHsZeG/2GAUxd0V2vy1fsxdwtHNVti+KexZfoGifD1OHTqIejJKwfeMH38U+/pV6ieeFXbH7y6ZXKDG0+ry5DIwqJPprS+L8/ujMsgp0t/165VIHnWkOC+R3Efy9+4j9fMvuNjnacy6y4PQe8W5DRC5SY2eazflGu87JTX86dVPsyN+B2azBcac2izptJwvW31Jo4BG16bd/UcoUfntSrfj5yd+ZmqDmRhyK4KFSYgJnVZ0Ynr49KsFaZWHmA7T1PXji9UUu3s8qRIzbDiRLVpQHHXxnr6XRCKRSCT/jyJc95+9n+j0AgLd7Fg8sgGBbpdrvaRFwo/tVa92Jz8Ytg5KNxG7tsdup8+ffYS/vJuNmxDlR1YfKQbeWb/9RlSXruTv3Clsa7zfeJ2QZb9hV0v1cF80OZxtP58VkfJO7ra0HlKJfu82oHJjf7RWd/6cEOrtKCL/fZxtOJecx6A5+8kuvDzA9ygLg34HO3dIOAxLBoBBJ4rOT2k8pSSCfvS20RxLP4H32LF4jR6NxmwgYPl7NHc/Ia45J62I5TMOcS48Sf5SSSQSieSW0V+OnLe6ySS0ImpjMNxQnFfsYRTKuJS5dkfMX8T5yygid16xQdjZVA9wuSffVPXWgbj7O1CUp2ffyguijozXq6+IfRkLFopANKWmXIsgNahv/un56okhzcA5AIqy4exatcnTgTJeDhhMZnZcnlSQSCS3jhTnJZL7SPbyZWLpohRVs/57sbS7hlEP699W1xs8Jwa5hYZCvj36LV1WdBEV2BWqOLck/8IYqlk/RyXPUB4UOpVviEPWSPKjn6eiS01R6V4pTNN1ZVfhlyuK1AbUhpr91RPWvqUWwLtHWGi1WFhZKeERZK+47OMrkUgkEsl/gCJYK8Vfz6fk4etsyy8jGuDvaqfuTDgKc9pDdgy4l4Vh68G7kojmm31iNi9ueZFcXa7ISlvaZSmN/BuhT0oidsQzJE6YKIQFuxo1CFm5Ao/hw0lLLGTFJ4dZP+skWckF2DlZ0aR3Ofq/14CKDfxEYbm7SWlPB34eUR8PB2tOxucw9Kdw8i9HK+JdEQYuBysHuLgdVr0i+mFFoP+g8Qc09m8snm1GbR7FhawLeI58Bt/33hMT+Npl39PSfhfBld0x6E1snHOaPcsjMZvMd/X6JRKJRPJoe85b296kGGymWrvNwtYWja3tDSPnrxHnzeZrI+cvs/lMcomlzd3ua6+g1Wpo9nR5sX5qZwLx5zJxbN5cTMqbi4tJ++YbsW9IlSFiqdSiS85PVoz3oXof9UWOLfq7tc0ZmV0ukdwuUpyXSO4Tio9b7sZNYt21Z497+2aKz3z6ebD3hGZvsC9xH91/7853x74TXrO1vWuzuPNiPAqGYNZ73rVq8HcLxdevfogHpsJSNHWcKKx2lIcaxZNe8csdsGYAZ9LPQOt3wNoR4g+qFeTvIYr/rkL277+LSHqJRCKRSO41ShTdkJ/ChTe74tH+8zP1Cfa4HDF/cQfM7QwFaeBXQxXm3UqJCW3FEu6Lw1+Iw/pU6MPc9nPxdfAlZ916op7sRv7u3VjY2OD95pvCxsbkHci2X87y64cHSIzMxtJaQ1jnEAZMaUiNVkF3JVL+RoR6O4misM62lhyOyWLEvIMU6S/3s/61oPc8ZZZc9bpVitwrkYxaKz5t8amYdMjR5fDspmdJLUjFrU9v/D74QP3sFv5EPcM26nRUC9Mf2RDDprmnMRru3WS+RCKRSB4tcd7K5saR84a0NLG09Pz7WFoZt2YVZ4lMtdIupf+yI0rtt7XW4F9TNCkT6psuC9xXBO97RUB5Nyo39RfrWxZEiAls7zGjxbaSUVd09iy1fWoLvUB5nph7aq564pWguPMbIDvuGm/8rWdTMMrJb4nktpDivERyn8j5czVmvR6bypWwrVz53r1RfjpsmypWs5uNYeKhj3lmwzPE5cXhY+/Dx80/Zm6HuVRyq8y+qHRxXKOyHjxoNCjjLpb7ozOE1c5vXX/j9bqvY29pz4m0E/Rd3ZevIn9F1/Q19YRN70Jx3j27HseWLdC6uGBISSF/z5579j4SiUQikSgoAvWIeQc4EpOFq72VELDLel0uvHp+IyzsCbpcKN0UBv8Jjl5CqH5+4/OsiFwhLOrG1RvHhAYT0BbpSBg/nvhXX8WUnY1t1aqErFiO2+DBnNyZyM/v7OPUjngR0Feurrewr6nXOeRfe8rfLpX9nZk3rB4O1lr2RqXz/MJD6I2XRfRybaHTJ+r69mlwZKFYtbey59vW3wov35SCFF7e8rIofOva/Sl8J70jjsn4YSahiRtpM6SSiEQ8F57Mn18fKxFdJBKJRCK5WUFYm5t4zhtSL4vzXl5/23fFr93f0R87y8vZbgox+65OPlvaiNUT8dnEZxVia6X5T4LmGnUPFYXdc1ILCf8jCvu6dYX/vJKJnvzhVDFZoFjgKfx27jcx0YCSZa88bygZ7IfmiX11SrmJ55OsAj37L6q6gkQiuTWkOC+R3AeUDi5rmWpp49r9HkfNb35X+MFt9a9I10tLWBm5UszY963Yl5VPrqR96fYiMv1cSi7p+TrsrbVUD/y7R979pkEZdcLg0KVMIVAonvSDqwzmz6f+pG2ptqIY3A/Hf6BP+i5OeZaC3ETY9dk9ux6NtTXOXbqI9azly+/Z+0gkEolEokSgvbr4KPuiMnCysWT+sHpU8nNWP5iz62BxPzAWQ4UnoP9vYOtMXG4cA9cMZH/SfjGR/VWrr0Rht8ITJ7nYvQfZy5YLyxePkSMpvegXciy9+G36IXYsPkdxgQGPQEeeGlOLdiOqCr/2/5pawW7MGRImxImtZ1N567fjmK5E4tUdCk3HqOuKvc2FrWLVxcaFb1p9I5Yn008yYfcE8czl1rcv3m+9JY5Rav34xO+h06jqWNpoiYvI5M+vpEAvkUgkkluInLe7WeR86g0j529YDFaxaVO4XBtG4c/jiSVFVu2sbzwZcLewsbOkRf8KYv3Y5liSL+bg/frrIqOuYP9+cjdtEjZ4lT0qi6z7BacXqCeGDVeXh+cJG11LrYb2lX2vuQeJRHJrSHFeIrkPFJ0+TXFEhPCZd+nc6d69UewBCo4sYLKHGy/bFIhZ7rIuZZnfcT5v138bR8UC5jK7I9XZ7bDS7lhbPnh/GpRCcYq3bpHexP6LGSXtXvZeIpVdyQBwt3UnMvsC/Z0s+NbVBcOeryAz+p5dkxKNp5C3aTPGrKx79j4SiUQieXxRxOX3Vp1i3akkrLUafhhU9+okesRqtTiqUQeVukLv+Uq1Oo6lHqP/mv5CDPC292Zex3k09WtM2g+ziO7bF92lS1j6+hI8dy6uL7zE7t+j+XXqAVJjcrGxt6R53/L0fjsM/3Ju9/Xe65fx4Nv+tdFqLFh+JJ7p6yKu7mw1Ear1ApMBfh0C6RdEc5BzEJ+1+AxLjSXro9cLCz8Fj6FD8HjuWbGeOOld3LMi6PZaLaztLEm8kC0FeolEIpHcEF2RGjl/swwyQ+plcd7r7+K8Ugvlun7zUZfF+ZDmYqFMQq++LGx3qe73n30jpat5Ur6+j7ikzfNOo/H2xX3YULEvZcZHmHU6RlZTo+cXRywmuzgbKnYGRx/IS4YItYZd5xrqNa87mXQ1400ikfwjD54CJ5E8BuhjYtA4O+PUps11K7nfFUxGTq19hT7+vvzq7CSahlYZKgrA1fRW/ez+ypWq6o1DHzxLGwUlur9FBTVFcNvZvxeZUTIAVjy5go6lO2LExHduLgz3diFpvRopdy9Q7IhsKlYU9kTZa9bcs/eRSCQSyePLd9svMH/vJSXInU/71KDhFeu503/A0kFg0kOV7tBzDmithCA9fP1wMSFfyb0SvzzxC6EmT2JGjCD100/BYMCpfXvKrFxBqn0ZFk8O59imWNXCJsxHWNhUbR54zwrQ3S6tKvowvUd1sT5zRxSzd6rRh+ID6fo1BIZBURYs6gtFOWJXmG8Y7zRQrWwUcV75TBS8XnlFzXozGIh/+RVcihN58tWaUqCXSCQSyR0XhC3xnL+OrU1Ehjq5XNG94tXGtHOQlwSWtiXFYI/EZgpLG8XWrUUF1cP9v6Jpr/LYO1uTmVTAnuUX8BwxAktvb/SxsWTMnUfL4JaEuoaSp89j3ql54pmD2oPUkw/8KBYNy3iIou4Z+Tr2XJDWNhLJrSLFeYnkPuDcsSPldu7AZ9zYexZl99P6FxlgnUO0tRXedp7MajeL0XVHY60Um/k/8osN7L3ceba6XMjlVjEaTeRnF5Men0fSxWziz2Zy6WQ6Rfn6kmNy0gpFW2xEBimXcshKKaAwTyfOvR2uiPPbz6oTCf+PEjk/o/kMpjWdhoPWjsO2tvQoOMHmA19xr/Ac9QJ+06bi2q3bPXsPiUQikTyeLDsUx4x1Z8X6xE6V6VxdLdrGqRVqtLgSNa5Ej3efhVljyewTs3l9++sUG4tpEdhC1JRxOh3Dxae6U7B3HxZ2dqJAqtt709j0axyrvzlObkaRsK3p/GIN2g2vIgbmDxo96wTyVgdV0Hh/9RlWHolXd1jZQp+F4OQPaWdh+TMiOEHhqXJPMbjyYLE+cfdE4ferTPT7ffA+9vXqYcrPJ/bZ53B30F0j0K+beUIWiZVIJBLJNegLDf8YOW+87Dmv/T9bG5PZxNlMtS+v4K7axwiitqlLRZhX+jPFqe2YGjXfroovtlb33tLmr9g6WtF6cCWxfmJbHDFRhXi/rlrIpX33HYb4BF6s+aLYXnhmIWmFaVBnCFhoIHonJJ8W1jYdq122tjmW8J9ev0TyMPPfVHWSSCR/Q2Njg+Y6s+p3Sq4ulwnb32RLyi4RVdbWqSzvPDEXV9sbR+jvjkxDZzQR7G5/tbjcZQw6o5g9VwT14CoewpPuih/dgTUXKc6/fhG1p16vjX+o+p7RJ9LZueTcDR8C2gypTKmqaiRgTnoh6XF5uPk64Oxpi0Z7dQ5RKYhjqbEgKi2fS+n5lPJwuO5rdirTieqe1Xlj1dOcIodXT//A04Zs3qj35nUnJ+4E57Zt7+rrSSQSiUSisP1cKm8tOy7Wn21WhmFNLvvUnvgNlo8EsxGqPw3dvkWPiSl7JonCrwoDKg1gTO3RZM2ZS+rnn4uibtahZQn4/HMuptize3K48JVXgs9rtAkWxV6tbP5bEeB2ea55GVJyi/hpdzSv/3oMdwdrmpX3AidfeHoh/PQEnFsHW96HNpPEOa/WeZUzGWcITwrn1W2vsqjTIhysHQj86kuin+6L7uJF4l59lVI//UTXl2uy8vMjxJ7JZPO8M7QdWhmLByR7QCKRSCQPiK2N3S1Ezv+fOB+fG0++Ph9rjfW1nvNXLG3KtCipL7PmhCrOd/4PLW3+ijLer94qkONb4tgy/wx9JrTHvv5y4T2f9O57tPxhJtU8q3Ei7YSo96ZY5VKpC5z+HfZ+A92+EYEEC/fFsP5UEu8/VRUbywf7+UIieRCQkfMSyX9M0dmzIrL9XnA24yxP//k0WxJ2YWU2M1FnxydP/nZTYV5h62WbmNZlPYk9ncGhddFsmH2SX97dxw+vbGfphwfYMPsUGfF5JecoE+RXhHllcG/rYCUi79x87fEKdkL7F996O0cr0ebu74Cjm801AkBRnh6rv6QHxpxMZ813J/h50j5mvrydRZP3s+mn0xzfGkt+QgF1g9R72XaD6PkrKJ6zC55czpC8YrG9+NwShq4fSnJ+8m1+qhKJRCKR/LeciMvm+YWHMJjMdKvpXxI1zrHFanS4IszXHCCE+RxDPs9vfF4I8xoLDePqjWNMuZEkjHpRtbExmXB5sivesxayaX0+W+ZHCGFe6Zd7jQujcY/QB16YV1Ci3pXsga41/MXn8tzCQxyLvVzvJaCOanGjsOtTdQJDEUg0lkxvNh1vO28uZl9k0p5J4hlM6+JC4DffoHFwoPDgIZKnz8AnxJmOI6sKO5/zB5LZszzyPt6tRCKRSB5MW5tb8Zy/NhM9IlO1tAl1C8VKY6U2Gg0QvUtdL6P6ze+/mE5KbjHOtpY0LXf3g/hulYZPlRXj9sJcPVsXRuAz6R1RKy9/1y5y16zlldqviON+PferKD5Pw5fUE48vgdwkUcPOx9mGnCLDDTPeJRLJtcjIeYnkP0QXF8fFJ7thXaYMIcuXobFV09fuBr9H/s6UfVNEKru/3sCnKWlUGbgatDf+b56XWYyVjYbNZ1RxvmqxllVfHfvbcYrw7upjf01baB0fAiq4Ye9kjY2D1U29aRUPW+Xnr5iMJooLDeRn6XDxsitpt7TR4hnkSFZyAQadiYyEfPFzdn+S2N+8pTf7LmWyOSKF3tX8xSSAkop+PawcfRhTfxxhm8cy1tuT46nH6f1nbz5p/gl1fetytzAVFZH5yyLytm0jePYs8fAikUgkEsm/QckMGzo3nAKdkSahnszoWUPtY4/8DL+PUszrVI/Xzl8Ql5/AqM2jROFXe0t7Pmr+EWHpLlzs0QNDQiIWNjb4TJhAclBj1nx0XIjyGksL6ncpQ802Qddkpz0MKJ/Dx71qCC/bXZFpDJt7gGXPN6K0pwNU7wXJJ2H35+rn5BEK/jXxtPPkkxafMHTdUOE9X8OrBgMrD8SmTAj+H80g7oVRZC5ciG2VKgQ/1Y1Wgyqyae4Zjm6KxdHNlhqtg+73bUskEonkPqMrvHlBWLPJhCE9/boFYc+knxFLpQ5MCfEHQSmqausCfmo9uF8Pxollp+r+WP8l0O2/xtJKK2zufp16kEsn0jlb0Z2A558j9YsvSf7wQ+quWU1Dv4bsTdzLN0e/YWrTqRDUAGL3wf6ZaNtMEhPps3Ze5NdDccKiRyKR3JyH64lcInnIyV6+XCytfH3vmjCvN+l5f9/7TNg9QQjzjQ1aliQkUaVKbwiqd82xRoOJuIgM9iyLFBHp88btZtf2WDFDb2+tpV6YH85edpSr602DbmWE/+yQaY0Z9nETerxZB7/LNjUKiieth78jdk7W/6ponCII2Dla4xnoeE3EXsUGfvQZX4+Rnzdn4AcN6fRCdcI6laZUNQ/snK1p0SBQHLf3Qhr71kYze8xOfpt+kP1/RJF8MQez6f+yEmoPpplXLZbEJ1EOG1Egb8SGESw8vfCuZTBYWFqS/tMcCsLDyd162TtQIpFIJJLbJC2vmMFzwknL01HZz5nvBtRWB+iH5l0V5usOE8L80bTj9F/TXwjz3vbezOswj6pbookeMFAI81algvGZ8zN708qzee6Zkmj53m+HUbt9qYdOmL+C8nl8P7AOVQOcSc/XMWhOOKm5apYcrd+Bcu3BUARLBkJBhmiu6V2T18NeF+ufHvyUIylHxLpTq1Z4jlI+V0iaNInCk6eo0MBPRA0q7P7tPDGnZEE7iUQiedy5EjlvdQNbGxE1bzSCVoulx+XC7Ze5rt+8YsOmENpGGRiTXagvsbTpE3b/J4U9Ahxp1EPtCxXtQNeyl7DHM2ZkkDzjI16po0bP/xn1JyfTTkKjy9HzB+dAcV7JPWyJSBGWdBKJ5OY8nE/lEslDiNloJGu56gXr0qP7XXnN7OJskcq+5OwSLLDgBdcafBt7EVdbN2gzWRyj1xlFerZS4OzHMTv5/fOjHNkYI6LRsYAT59RBZ9NyngSVc2PglIa0G1GVOh1KCx94B1cbkUr+X6P4vDp72FG6uif1upSh86gaDJ3emEqlXCnv44jeaOZCVKYQ4xVR/uCaaCHSzx27W6TfRR9PE9H5aDTQ5QuCTBYsjI7kCffqGM1Gph+Yztu73hYTGnd8rZaWuHZ7Sqxn/frrXbh7iUQikTxuFOgMDJ97gOj0AgLd7Jg7NAwnWys48COselkV5uuNhE6fsi5mA8PXDxcTzkok3sKmP+D47rckfzgV9HqcOnTAOPEHlv+SwcVjaWi0FtTvGkKPt+qIifWHHUcbS+YMCSPI3Y6YjAIRQa8Ut1cEDrr/AG4hkB0Dy4aXFIjtV7EfHUt3xGA28NaOt8Qz1JXC7o4tWmDW6Yh/7TWMubnUahdMxUZ+KHP462efIjMp/z7fsUQikUgeZFsbfYJa/NTKx0eMDa+gBIOdTj8t1iu6X7aoUzh7WZwv31Es/jiWQLHBRAUfJ2oEuvAgUK1FIKF1vTGZzGz4KQLXce8KP1sl4DD4WApdy3YVx00Nn4qpfHtwLwtFWUKgD/V2onawq/DRX374chF3iURyQ6Q4L5H8R+Tv2YshKQmNiwtObdrc8etFZUXRb3U/9iftF6nsX9R5i+ePr1f/U3eYDg7qjH1hro4NP57iwpFU9MVG7JysqNDAl7bDKzNsRhNW6vJK0ucedK5MEnSoqhbI2eenFdH1Sgp62dreIgK/IEfH6V0JbFlwRjXDV/CqAE1ew95sZtrZg7xV62W0Flox06+IG6LS/B3i2qunWObv3o0uTj6ASCQSieTW0RtNjPr5MMfisnGzt2LesHp4O9vC/h9g9Wj1oAYvYO4wndknf+SN7W+gM+loEdiCH0qNJX/QC+Ru3AhWVri+NZGTlYexaeEFivL1eAQ60mtcXeo+EYL2IY2Wvx7eTrbMH1ZfFIY9EZ/N8z8fFp8jdq7w9M9gZQ8XtsDWD0qeISY1mkSwUzCJ+Ym8u+ddIZpYaDT4z5iOlb8/+thYEUGv0KJvBfzKuqArNLD62+Pis5RIJBLJ44fSV+j/wdbGkKhGvVv6X1vINSE/QYw1LS0sr9raZEZDqjJW1UI5VRdYeiBWLHuHBd2XwLjroVxHywEVRU25/GwdO8M1uA4eIvYlTpzISyGDsbO0E9axq6PXQdMx6om7vwBdfkn0vHJv96rmnkTyqPDoPKFLJA84WcuWiaVLly5obGzu6LV2xe8SqewxuTEEOAawoMN8WuxfSHxhOTabprLxYOWSY5Xoc2XGu06HUmJwPnR6E9oMqUz5MF8u5BSKCD0bSw2tK15buOZBpmNV1bdux/lUNI5WVGrkT4eRVRn+cVO6vFyDas0DRNsVux0luv7X/W3ZoRtDSqYj/S+dYWbbmThZO3Es9ZiY5DiXee6Orsk6OBj7hg2UpzeylqmF6CQSiUQi+SeUAev4FSfYejYVWysNPw4Jo6yXI+z9Fta+oR7U6CX0bd5j0t53+eLwF6JpQMX+vJvamKQBQ9HHxAhxmSk/svZ0EBcOp4oMtLpPlKbX2Lp4Bjo9kl9EiKeDiKC3s9Ky41wqby07rgoAPlWg61fqQTs/gTN/ilUHKwdmNJ8hCsVuitnE0rNLRbvW2ZmATz8BS0ty1qwVWXBaKw0dnq2Go7sN2SmFbJxz+u/WeRKJRCJ55DHqTSJ6XMH6BrY2JZHzftcGvCnC9RVLG1tL22uj5oMbgp0bpxNyxCSzldaCp2oF8CChTEZ0GFlN1IWLP5vFxdAnVXub9HQM075mZLVnxHGfH/qcgkpd1My1gjQ4MFsE/ynWuVFp+Ry8lHm/b0UieaCR4rxE8h9gyMggb/Nmse56B5Y2yoBT8UpXir/l6fOo7V2bWQ3nkr3sJAsPD2RlxvtEpFQk8mCKiJi/QvsRVWnQrSzepZzFYP0Kqy/72rWq6I2DzcNTH7qir5MYkOsMJjafSS5pVwbSwZU9aNa3QolfrELSxRxSLuVxIqMJv6V/xNL1lbHfp2dey4WUci4lIugGrhnI9tjtd3Rdbr17i2X2suWYDWrqo0QikUgkN+OzjedYejAOpXv+qm9tage7wZ6vYP049YAmr5HT/A2e3/wCKyJXoLHQML7aGAb8lkHKu+8JOxbrFm2J6v0xW9blUpirx93fgZ5v1aF+1zKicPqjTM0gV77tXxutxkKkzs9Yr3r7Uq2nyDYQrHgO0s6L1SoeVXit9mtifcaBGZzNUI+3q1kT71dVD93kDz6k6Nw5UV9HqX2jPF8o3vOH1l26L/cokUgkkvuHrkiNmlcsYa2sbyTOq+NqMVF+HXG+ulf1q43n1qrLCh3E4pdwtW9pW9lHZIM9aCjPFK0GqJY8RzbFUzjsPTGZrWTsdbvgTqBjICmFKXx/ajY0uxxUsPsLHC2K6VRNzST4ZX/M/bwFieSB59F+WpdIHhBy16/HrNdjW7UqtpX+UqX9NjCYDEzeN1l4pZvMJno5D6bXxddYNeU04YfdyDH6YmVlpHITf7qNqY2to9U/Cv2rj6sPEZ0fAkub/0+xe6KaGj3/x1E1SuFmeJd2EsVty4X5oNUYSTOUYcd6HVs+iGFU5gc0s29LgaGAl7a8xLxT8/512p1j69Zo3dwwpKSQt2PHv3oNiUQikTw+/Lz/El9uiRTr73erJgbm7PwUNkxQD2j2BnH1hjNw7aASG7tvy44jbOJv5KxaJQrPGUZMYIdLb84fzRRubkqx197jwsSE/ONCy4reTO1eTax/t+0C8/ZEqzvaToZSjUGXC0sGQHGuaB5YeSBNA5oKa6A3d7xJgb5AtLsPG4ZDkyaYi4uJHz0aU2GhyDpo3re82B++Koq4CLXIrEQikUgeDxR7MwVrG+01gW7Xj5z3u7k4rxQqj96lrpfvSHaBnmWHVEvUgQ1K86CijKOVeiwKu7bkYjFUtbBJf38qbwcMFevzT80nIrDm5ej5dBE9P6ihek9/Hk8gJUcWhpVIboQU5yWS/wDXPn0InvsT3q9f9mG7TZRB48tbXua3c7+Jwq+v132drk69uXQ8QxQrC7A+TpvSKxn6UXPhC6d4pP6TV93hmCxRRE1JBW9Z0YuHjadqBYrltnOppOXdvKir4rGrFLdtN7wKQybXpInnr7hbxmDQm4gKT+eNquPoUa4HZsx8fPBjMQmiTIbcLhpra1x798apYwcsfXz+9b1JJBKJ5NFn/akkJq48KdZfbl2OfvWDYfsM2PyeekCLcRyt2pn+awcQlR2Ft7038zTD8XhxBroLFzD7BBI7/Dt2RPpRkK3D1cee7m/UEZljSqT340bvukGMaauK6O+uOsUaJTtQawU9fwInP0iNgN9HCfs55Rnp/Sbv42XnJT5bJYJeQfjPT5+GpZcXusgLJE+bLtoVq7wrBWKVOj75WXdeTF4ikUgkD1kxWLsbZ5rrL3vOWwVcDXorNhZzOkMtBlvDq4baeOYPUMaZvtXAM5TFB2Io1BtFZniDMu48yDTsVpaQGp4YDSb2JJXFXLcZpvx8AmYspoN/K4xmI+/un4Lxivf8rs+p5mGmbik39EYzC/fJ7DOJ5EY8fk/uEsl9QBnsOTRoIH5uF6WAzLO/j0K/x43ymXX4vOXnDK4ymEqN/KheJZd+ni/SzetDKgx7HivbW0+D+/WgWnSmYzVf7K0fHkubK4R6O1IjSK0A//stRM9fwdbTixqDu/O0xyt0dx9HnYZaSlX0ZFLDSbxR9w1qxrcicmsGr61/vSSS7nbwfu1VAj/7DLsqVW77XIlEIpE8HhyMzuDlRUdQLGz71A3itdahsPXDkuKltJrIutI1RdHyjKIMqjlVYNbROpjf+wxzYSH5jZ4ivME7nD+nF2n2NdoE0Wd8GL5lXHicebFVKP3rBwsR/dUlR9kflQ5OPtB7Pmis4PTvqmWQEiVv6860ptNE0MOy88tYe1G1GbD08BAFYhWyliwhb7tqedfs6fJ4BDgK26D1s09iUorPSiQSieSxsbWxukExWFEwNi7ub7Y2p9JOiYAvpb9RrF8EJ5eryyrdMRhNzN+rCtbDGoc8MIVgb4SSNdBmaGVRaF7pC4+VGYTZw4fi02d4YYc9TlZOnEo/xSIbM3iWh8IMUfdlaOMQcf7P+2Mo0l+2CJJIJNcgxXmJ5B5jNv77DuhE5FlmfLSQsM19qZnQmi5ZQ2kZ1FLssymOp2nuC7hZxkPrieB963Y5BToDf162tFEizR5WetRWC+YsP6w+DN0y5dpiUXsgftYRNMh8CQtdvngYerpsPxold6VBzJOUXdWeyZ/NJDZJ/ZwkEolEIrkbnE/OZfi8gxQbTKIY+wfdqmCx9X3YrgrC5jbvMdvNlTe2vyFsV7ra1mPKAiPFy1ZhsLQlutsU9lu3IT9bj7OXHU+NqU2TnuWwvIEP7uOE0pdPfrIq7Sr7iLo0I+Yf5GxSLgTVgw5T1YM2TYIoVXCv51ePEdVGiPXJeycTl6s+Tzg0bIj74EFiPWH8BAyZmcJnWCk+b2WrJTEym4NrZQSgRCKRPFa2NrbX72eNaWkighyNBqugq2Pr8KRwsazjU0cV3vNSIHqnurPKU2w8nUx8VqHwme9a8+GwmVUKxCq1WJSaLBkpxUS0nYTJwpKiX1cyqaitOObLo18T2/RV9YT939M+oBh/F1vS83WsOnbrQXUSyeOEFOclknuIIT2d8y1akDx1mvCcv1VSLuWw6MudbP84llIJ1dGaLXEvbUuLHpejsU1GWPE86PJUL9UrBc9ukbUnksgrNhDsbk/9kAc7fe5mdKnuL6ran0rIEVXub4v2H4JzIGRdgo3vlNjftOhTCXsfLVYmG4KiarBi8glWzTtAbsbteeQVR0WR+uVXdzQ5I5FIJJJHi6TsIgbPCSe7UE+tYFe+7lsLyy3visgyBX27KUyyyOCLw1+I7dcLmjHo4xPozkSQHVibQ+0/ISpL7bertQzk6Qn18A91va/39KChFIb9sm8tkUafW2QQn3dCViGEjYAa/cBsgt+GQrYqxL9Q8wVhN5Cnz2PszrEltnZer72GdWhZIbokvTNJREYq1kEt+lUQ+w+uvkjihez7eq8SiUQiuffo/8HWRnfpUonfvGJzeoWDSQfFsp5vPbVByd5S+iD/2pjdSvPDzijR3K9eMLZWD88Eu5O7LZ1GVcfSRktikpkLnd/FjAWlvv6T9qZKFBoKGR+/HmNIUzDqsNw6mYGXvedn77yISUkblEgk1yDFeYnkHpK1fDnG1DQKjhzBwurmBVqvsGd5JL9OPUjGaT0WaMjwuUSbV8rRd2wjSlfzVGfd930LMXvA2hG6fQua2+vMl162tOlVJ/CBT5+7GW4O1rSrrBaGXbj/NiPYbJ3hya/V9YM/woUtwqNX8ZUd8m4zwob6kukSj9ZkSczeXBZM2MPZfbcWRa9MxFzq24+0b78lf/fu274viUQikTx6KIK8EIqziyjj5cCPg+pit3Ui7PlS3d9uCs/mHmVF5AqsTBZ8dTqMel9sQVeg40LDFzgUOhwlMM/Jw5YnX6tFsz7lsbJ5eAbz/yWKyDF7cF1hgZeUc2VCxACdPwXf6mqhuiUDFcUFS40l05tNx9HKkWOpx/ju2HfiNTS2tgTMmAFWVuRu3Ej277+L9vL1fClf30dY52ycc6okolIikUgkj7atzY0i53WXYtT9pUpdbTPqOJp69Fpx/vgSdVm1B3supHMkJgsbSw2DGl0972FBKTr/xLPV0GgtiM1142KTFzEVFDBiYRreejuOpB7hp3KKpa8FnFzGwKBUnGwsOZucy8Yzyff78iWSBw4pzksk9wizyUTW0l/Fuluf3jc/VhnhXSbC5jAmTJz1DCeq/SZen/g0FSr9xXom+TRsnqyuKynabrdX1T0iKYf9FzNQCs33qHPZ++4hZmBD9WFmxeF4IXzcFmVbqpF04gWeg7xUsapMWNSrX5nn332Ckw3XEOd8DqPJyHnb49f9zv4fZSLGpduTYj1z6dJ/cVcSiUQieZRQPFZHKhYrybl4Odkwb0gY7jsmqJPtwKU2E+mfvIEDSQcIKLRj7upS+Py+l0yXUA61/JBLNmrmXJVmATw9sR6BFdzu8x09+LjaWzNvWD18nG04n5LHM/MPUoQ19FkAtq6QcBjWvimODXAM4J2GahbdrOOzxPegYFu5Ml4vvijWk6e8jy4uXqw3e7qCmCTJTS9i++Kz9+0eJRKJRHL/C8KWRM6XCi5pUyZ7lYKwHrYehLiEQEoExB0ACy1U781XW86L4/rWC8bbyfah/BqDKrvTZkhlob9HW1YktlofzPGJTN/ghdZo5psLyzhTTR0TO256i8ENVe3h6y2RNx1LSySPI1Kcl0juEfl796KPjUXj6Ihzx47XPSYjMZ/1s05yeP0lTGYTMw7M4LPUKSyqNQXvzgZmPDkFO0u7qyfoC2HZcJEeRvkOUGvgbV/XvD3qw0P7Kr74u/7ltR9SFFueCj5Oosr9b4du03teoe0U8KoIecmw8nkwXS3w5mHnwaf9p5Df4TSLa33A28feYP6p+WLflnln2PXreQpzddd9WddevcQyb+s29Ckp//b2JBKJRPKQoxQuH730qJgYV6LG5g2pS9DeCRD+g4goO9DydfrFruBSziVaJLrz2TwNmtOXOF+pL0dqvUa+wRZHNxu6vlxTWKoofq+SWyPA1U4I9MrnHh6dwauLj2J0KQU9f1Sj+Q7Pg0PzxLEdQzryZNknMWNm3M5xZBerljUeI4ZjV6uW8BNOHDtW2NXZ2FnSdlgVURzv3P5kzoUnya9EIpFIHlF0hVci528uzv81cn5/4n6xDPMNUzPVjy5Ud5TvwIE0S/ZFZQh71pHNyvAwUy7Mh6a9y4n1SI9mxJTpiMPxKMaHBwibuHEW6RTZuEDiUZ6334adlZYT8dlsP6cGxUkkEhUpzksk94isxWramkvXrmjs7a/Zl59dzNYFZ1g8eT+Rh1I4sjGGNze/xYLTC8RYcUTjwYyvPx7t/9vVrBsLKafB0Qe6fqWEeN/WNWUX6Fl5RI36Gtzo9iLuH1SUh50rqYAL9126fQ87a3voOQcsbSFyI+xX09mvoEyOfNbiMzrVbCcG7B8d/IgZG78gYl8SxzbHsmDCXvb/EUXx/6W124SGYle7NhiNZP32253fqEQikUgeOpTIsCl/nmbNiSQxCJ/ZvwaV978FB+cIcXhFs+cYGbOc3KJsRh324oV5qWQZPTjQ6F1ifZqI16jc2I++79QXEWqS26eirzM/DKqLtVbDulNJvLfqFOayraHVePWANa9DrBop/3b9tynlXIrkgmQm7VF95i20WvxnTBfPcgUHD5IxT52k9yvrQt0n1Gep7b+cve3aNBKJRCJ5yCLnb2Rrc/Giur/01fH1jrgdYtk4oDEY9XBssbqj1gC+3KxGzfesE/hIBMtVbxlE/a7qJENkcGdiAltTdVsM3Y/ZcSH3ElMrNxL7HHZN5dla6v0qn4GMnpdIriLFeYnkHqBESudu2SLWXfv0uaZj378qioUT93J6d6LwKw2s5sLBsOWsj18nfE+nNZ3GsKrD/u4Ff3IZHJqrRnp1/wEcvW/7upYcjBER5hV9ne5KIVijQU96XCyJ588Se+o40cePEHXkAJEH93Nu/25SoqOuOfbikYNcOnGUuDMnSYw8S0ZCHPlZmeh1xXfUOXerGSCi4i6m5bPj/L+YhfepAu0/UNc3ToIE1R/wCsokybh643i97utie0H8bOKb78MzyAF9sZGDa6KFJ/2xLbEYjVcj7936Pi2Wir2R2SA9aSUSieRx49ttF5i7J1qsf96jEo0Oj4HjizFZaPmsfh/eiV2NU7aez1e40mRjGufLdONw7dEUWLri4GpD55dq0HJgpRum0ktujYZlPfi0Tw0R0zB/7yXxvdBkDFTsrGYjLhkAOYnYW9kL/3nleWxzzGZ+PafaE1oHBeE9bqxYT/38c4rPq8JK3Y6l8AlxFn7EStCFFBokEonk8bK1UWqNFV8W523LqRHkqQWpnMk4I9abBDSBc+sgPxUcvNmrrcXO82lYaix4vnkojwrKZHW9LiFiPTK0OzGBLemzNo/6Z80szzrFiqAqoMvluaLZwmf/cEwWm8/I7HKJ5ArySV8iuQdkL18uIqaVNGjbCuVFW8ypdDbNO0NhjmqD4lvGmdAOLky4MJronGicrJz4vOXn1PO7XDDmr2REwR+vqOvNXocyLW77mooNRn7cpT44DG1c+oaFYIsL8ok7c4r8rAwhnOdnZZGfmUF+diYFWZlUb9ORek/2FMdmJSUxd8zzN3zPWh270GrIs2K9KC+P5dPeveGxlZu1ouOo0WLdZDKy+suPcXB1xcHFDQc3dxxd3XD29sHZywfL/yuu62BjSa+6QczZfZHvtl2gRYXbn7ig7nC4sBUi/oTfhsGz28HGqWS38nkNrjIYH3sf3t71Nqt0i4iteYY32kzm5NpkMpMK2LX0PCe3x9Ph2ap4+Dvi1L492qnTMCQlicka53btbv+6JBKJRPJQMn9vNB+tV/3IJ3coTacTr8DF7RRa2vB2jdZsStlDrUgTY9ZZU2jhxIGwFymwU/uvig19adKrHDb2t1ZMXvLPdK7uT0pOMZP/PC2+Fx9nW3o+9T3MbgupZ1SBfshqqnhU4ZVar/DJoU/46MBH1PGpQ1nXsrj27CkKw+bv2EnC2HGUXrwIjZUVrQdXYskHB4g9k8mpnQlUbRYgvw6JRCJ5BG1trleEXVja6PUiu8rS31+07YzfKZbVPKvhaed52cYOzDX7MW39BbHer34wwR7XZtc/7IR1ChFZ7AdXRxMZ2hMLs5nXVu3kPTszH5QuorK1DRXO/cHUyk0YfTyQ6esiaFnRG61SDE8iecyR4rxEcg9QRFljVjZ2NWtebfOwpShPj4uXHQ2fKkthcAovbn6G9KJ0fB18+bb1t5RzU2fbr0FfpIrFulwIbgTN1cit20XxY0/OKcbf0ZImHnrO7N5ORnws2clJhNSqS6UmquCfnZLMyhmXC85eB0Wwv4KNgwO2jk5Y29ljaW2NVqsV6d9araVYunj5XnOud+mymIwGjAYDBr0OXUEBxYUFSt4/1nZXU/oKc3I4t1d9qPkbFhZUa9mWds++LDaVKLXIA3vpXc6bhXvNwtP3YHQGdUvfZmaAMlmhWAUpUfMZF+CPl1W7m/+bxOgQ0kE8ZL289WWOph1lvO5lvn71G/JOaEvsbZzc1aI+GmtrMZjPWrIEU07O7V2PRCKRSB5aVhyJ453fT4n1N5r7MCjyVYgLJ8HWiVdDq3Eu9QRDtlvQ/oCGi6XbExPUBiw02LtY07J/RUpX97zft/BIMqxJCMm5RczcHsVby47j4VCXln1/gR9aQvxBWD0anvyGQVUGsTdxL3sS9vDGjjdY1GkRNlob/Ka8T1TXrhSdOkXazB/wenEUbr4ONOxWVtSh2b0skuDK7jh7Pvw2BRKJRCJRKc7Xi6Wtw98nzK9kUtmUK1cS/LY9drtYNg1sCsmn4eIO0cdvde7Ksbgk7K21vNTqOuP+R4B6nUPAjMgsP1+uFwZLO8Yt38D4fjpGB5dh8YUIusV9xJe2UzmfAssOx9G7btD9vmyJ5L5jYX7M8i9zcnJwcXEhOzsbZ2fn+305kkeYrOQC4s5mXhNBpWwrHqV7knYzZvsYCg2FlHcrL4R5Hwefv7+I8t/zj5fgyAKwc4PndoPL7UdkZaam8v74D7ArSMXNkKO+7l+o0bYjbUaMEuvFBQUsfW8cjh4eOLi6qT9K9LqrG/Yurrh4++Do7sHdwmwyoS8uEpdkc9mbvyg/j9M7tqgR+yJ6P5O8jHQxcaAcW7dLd5oPGCaOVfZ9/6xaGNes0ZJu6Yqlhx+dm9fGq1QIvqHlsXd2ufULitkPc58AkwHafQCNXrzuYReyLvD8pudJzE/E3dZdnVxxqCAi6JUUd3E9ZjMHVp6jUiM/nHzk3xuJ5G4j+3TJg8iGU0k8//NhUQh2VJgzr6e8hUXyKQ44ezDG1wfr5FzGrLLANS+YiIr9KbBXJ7LL11eKqpW/7uBfcvdQovrG/HqMFUfiRWr93KH1aMgxWNhDeSiBDtOhwXOkFabR448eZBRl0K9iP8bVHyfOz169moQxr4OlJaUXL8auahXMJjMrPj1MYmQ2ARVcefKVWqJYrEQiuTVkfy55kPnlvf1kJubz5Ks1Cax4bQBY6pdfkvbtd7j26onflCnojDqaLG4ixvmLOy+myp4fhDWtqWJXWscNFzasr7Qux2tt1ez6RxFlDKyI8+Gr1Kz9wLiteCWv4J1+EOpsydexF4n1akXL2OH4udixZUwL7Kyv7+cvkTwuyMh5ieQeeNIdWhvN0U2xYrCm2Nd4Bqr2KIEV3Fh2bhlT9k3BaDbSwK+BKDbqaO14/Rc79JMqzFto1CjumwjzeZkZJF04T3LUeZIvnMevfEUa9ugr9m06n4V/duQ1Ee8egaXwCAzC1ccP//IVr+6zt2fg9C/4r7DQaETk/V+xdXCkdseu1+3oC3Oyr2lT7HJ8y5YjLS4GQ3Exnrp0SExn1+KTYn/N9p1pPew5sa542ydEnMGnbKh4j+sSXB/aT4W1b8DGd8CvBoQ0/dthSor7wicWMmrzKCIyIhi6figfN/+YZiHNSo45fzCZA+vjObotibDOIVRvFYhWK0t9SCQSyaPK7sg0XvzliBDmh1ez4vX4V0Q21iJPP2Y421L/aA4jNtoQH9CZw+WaqdHyztY071eBMjW97vflPxZoNBbM6Fmd3CI9m86kMHzeARYMr0+dtlNgw3hY/zZ4V8KzTHOmNJ4i+vlfIn6hkX8jmgc1x/mJJ8jduIncdetIGPsWIcuWobGxodWgSix5P5z4s1mc2B5P9ZaB9/tWJRKJRHIXI+evZzVXFHG2JHJeYX/ifiHMK5nWlWx94NgS0f6nXRchzHs6WvNMM7V46qOKkkGgWNwon9fOJeeIC2yJ3tKBSYsW8m4/AzM83Hk7dQtDnarxU3Z9vt0WyZh2Fe73ZUsk9xUpzkskdwlFOD616jj71sRRjJrOHFzFo8SbTtn/zdFvmHl8ptjuWrYr7zZ8FyvtDSLkYsNhzZvqeut3oGyra3Yr1jBKdHl8xCniIk4Je5q/oi8uFuK83mji2z3x2Hs0p0PDygzt1EB4uN/Ic/5BRrlmJXr/rygTDP0//ExE4OekpTDtl22cizhPFdsCQjRZ+IVejUpIibrAbx9MuHxeMIGVqhJQqQqBFavg5PEXC4F6z0D8IVG0j9+Gwsjt150Y8bb3Zm6HuYzeNlqkvr+05SUmNJhAr/K9xH4XL3sRRZ98MYc9yyI5tekCzfpWILim6kcokUgkkkeHIzGZPDP/IDqjiaGhBUxIegd9bgIf+AWxWgMj/tRRI64SR2v0pdhWjbxTMqsa9VAmjGW0/H+JlVbD1/1qi+9LKcw35KdwFo0YQNXqx+H4Evh1CIzcSrPAZgyoNICFZxYycfdElnVdhpe9F76T3qHg4EF0kRdI/eJLfN58A1dvexo+FSqEiL0rIgmu4i7aJBKJRPJwU1ygFoS1cfi7fFZ04oRY2lapIpbroteJZZvgNmgUr3lDIXqvqow9pATrmXizQ0UcbR4PGU6ZpLZ1sGTz3NMk+9bDYGXPhMVzmNLXgRAnHeMLZ7PVIpiZ2zV0rx1IiKfD/b5kieS+IW1tJJK7QGpMLjsWnyMpSo3qdiCPFqMaUbqaKvjqTXre3fMuf1z4Q2yPrD6SF2u+eGOBPDcJZjaHvCSo/CTmnnPJTEokNz2VUtVqloj9340ccDWS3MICz8BgfMqUE5Hh/uUq4lMmlAV7o5n4+yk8HKzZ9kYLnGwfbQEgKjWPtp/tEFGLi0c2oEGZqxY8UUcOsGXO98Ie5/9R7HpaDX2OMrXD1AZdAfzYDpJPQEAdUSQOq+t7yCrf7+S9k1kZuVJsP1PtGV6q9ZL4fpXsiTN7E9k9/yg6C9WLPrSuN417hOLopm5LJJJ/h0yDlzwonErIpt+s/WQX6nkmKIG3cyaTZsjjtYAg8pNMPL/GlhzPnmJwquDsYUuLARUJqnSb9VEkd5UCnYHBc8I5EJ2Jm70VS4fXpNzq3pBwBHyqwrB16Cxt6Le6H2czz4qMx5ltZ6Kx0JC7ZStxL7wgnr9KLZiPfd26os///YsjInreL9SFp0bXlvY2EsktIPtzyYOKQWdk5suqh/wznzXD2u6qsK5PTiayeQslJYsKBw+gt9HSfElz8vX5zG/1LbV+7g9F2czxf5fJUeWpFezKsucaiQyux4noE2ms++EERr0Zx7w4/C99x7SeuUwqSqWUIYB2uROpXz6AeUPDHsoAQonkbiD9FSSSO0RfbBQDMUWY1xqLKRO1ku4DPEuE+TxdHqM2jRLCvNZCy6SGk0qE2+uiiMKL+1GYlcZZarAhrSazXhrOT689y7pvPhWivIJyvuIVX/+p3nQf9x4vzlnM4I+/ocMLr1KrfWchzOcVG/h8k1qk5tU25R55YV6hjJcjfeupRWWmrjlT8nmJfbXCGPHVjzw/62e6jnmb2k88iXdIWSwsNEKwt3W8anVzKeIcWzXduFgciD72CKx8QTGqve57WmmsmNxoMs/XeF5szzoxiwm7J6A36sWgvHJjf7rUSyMgfrvws408mML6WWqhQIlEIpE83JxOyKH/bFWYH+V9krcz3uYERfQLCKL8HgMvratJdPmJQphXuv4arYN4+p36Uph/ALC3tmTOkDBqBLqQWaCn39zjxLSbBQ7ekHwSfhuONRpmNJuBrdaWfYn7mHtqrjjXqVVLXLp3F3V8Esa9jSk/X/T5rQZWwtJGK/znj2+Lu9+3KJFIJJI7oChfjZpX/r5b2V7ri150UrVRtQkNRWNvz664XUKY93XwpcbF/UKYL3AOZUpUqOj/pzxZ9bET5hUUXeSp0XWwc7QkzzGQ6NA3eHO5Px9ZepKhiWWS1UJ2nEtl3clrnQAkkscJKc5LJP+Cvwq+im1NgyfLEuxZQP3wyZS3jsKpcUOxLzk/mSHrhrA3cS92lnZ82epLepbveeMXNpk48vFgFu4y8u35Bvx5xpkT27eQm5aK1tIS94BAivPzSw5v3HsATZ4eREjNOtjY/z0N7IftF0jP14kUsafrBT823/Urrctjb63lWFw2q08k/m2/UiC2XL1GtBz8DAOnfcGoOYvFBIcyoXGFc/t2cXjLNpZHhfDNuYb8uuY84Z+/SHp87DXf/xWUyZIXar7Ae43eE5MwymTMC5tfIFeXK/Z79epGxbhVhB2ajrePloZPlS059zGryy2RSCSPDGcSFWF+H1kFet723MGYnKkssrfmLVtfnl/kSIWskZypPAy9tRNuPrZ0f7MOTXqVK7G8k9x/lMCFecPqUdHXidTcYp5eFENyp5/A0hbOrxce9GVcy/BWvbfE8V8d/oqTaaog4/P2OCz9/dDHxpI84yPR5uxpR6PLffy+lRfITi24j3cnkUgkkjuhuOCK37zl34LrCq9Y2lSrKpZrLq4Ryw5BrdHs+1asf1TYCTMaBjUoRdUAl8f2y1CsXnuOC8Pd2wadjStR5UfzwprqTMeLurbb6abZxaQ/TpFVoLvflyqR3BekOC+R3CY5aYX8+fVxkZ51hcqNfal84Gtsi7Nw799fdNyRmZEMWDtApEG727rzU/ufhHfpX1EKlEYdPoDRoHb6bH6X7NjzJBcpnnQWwhe9TqcnhXA86sfF9Jr44TXR3TcjLrOAH3ZGifW3OlQQ/qqPC15ONjzbTB0YT1sbQaHOeNPjlSK4ygSH1vJqZkG5eg2p1ro9Tp5eGM0aYgpc2bk/hrmjnxdZDEoh2uvRvVx3vmr1lZiMUSLslMkZZZJG6+yMS+fOOOXF0SBrJf7lrnrnH15/ic3zTlOUd/n3QCKRSCQPPGeTckXEfFZBMZ+4Lad//kzGeroTHuPOqHXNSS49kTTP6mgszNTrEkKfiQ3wDXl8B+YPMq721iwcUZ+yXg4kZBfx1O/FpLb9Ut0ZPhP2z6RHuR60LdUWg9nAmzveFNGRWkdH/D+cKg7LWrKEvJ27xHrVZgEElHfFoDOxdUGEsLuRSCQSycMtzv8/RSfUiVq7atXI0eWwPU61v+mYmwMF6aRbBzA/ty6BbnbCa/5xx9nDjh7j6hNU3gmT1pqocs/QZ08XPtL78JL9HPzzTvHuHzK7XPJ48viodRLJHWI0mji0LppF7+0n5lQ6u3+LLBlsFezZg+7SJTSOjrh07cqBpAMMWjuIpPwkSjuX5ucnfqaKp1okpjA3h5NbN/L7x+/z7Yh+rJj+HnGnT8GhubD7C6q4JNO+cyNGfjeXIZ98S4tBzwjh2Mr21v3JlUjsSb+fokhvol6IO+2r+D523/8zzULwd7ElLrOQr7ao1j63Q+madWg38iWe+XoOQz+bScuGQZR2yEBrYQJD0TWTJEfWreLc/t3oi4rEdtPApvzU4Sc8bD04l3mO/mv6cz7zPG79+4n9eZs2ok9IEOtF+XoOrokmYm8SP7+7j7P7EmUkvUQikTzgnEvOpd+sfeTn5zHP+QdqGH5nhKsvlbdUomb6m1wK6Y5Ja4NvsB29J9YnrFMIWkv52P0g4+low6JnGpQI9F02e5LR8G1157qxWJzfIKwJFbuC2NxYPtz/odjl0KA+bgMHivXE8eMxZmcL+4OWAytiaa0h/lwWJ3fE389bk0gkEskd2tr8f+F2s8lE4WVbG9uq1fjzwp8UG4sJdS5NpQMLRPv7eV0xomVGj+o4PCZFYP8JxbO/8yt1qN7MR2wnBLSnecQoZmYFM8n+M/YfPcG6k3/PfJdIHnXkKEEiuQUSI7NY+sEB9q2MwqA3iWioJ56vVlLkK3Phz2Lp0v0p1iZv49mNz5Krz6WWdy0WdFyAl9aNE1s3sGzqJL5/diDrv/+CyAP7MBQX4+jhSdH5HfDnaPEaXh1eoerAt3FyVz3r/w0bTiezOSIFK60FHz5V9bEsrKL4yL7bVZ0Q+WFHlBBS/g3KZ+fuH0Dtl7+hR/syPF9uH13c90KSmsZo0OnY+cs8Vn06lW+f6c+qz6YJS5zyjmX5udPPYnImuSCZwWsHc9wlB/v69ZWZHjIu/84oD3pPvloLd38HETm/ae4Z/vjiKFnJMg1eIpFIHmRhXpOfwu+OU8mxPMiXWaXptr0f+d5jyHcMwNrSSMuBFeg+tgEe/reW8Sa5/3g727JoZAPKeTuSlFNEhwO1yanUV9SL4bdhuGTGMK3pNFEQVrGvWx21Wj1v9GtYly6NISWFpPc/EG0uXvY06KZm8e1ZcUFkXkokEonk4aK4wHDdyPnic+cwKZOx9vbYlC/Hr+d+Fe09TXZYFOdw1qIMK02NGdAgmEah/35c/yii0Wpo2q8KbQeVQ2vWk+1akfJpY9kUU5HJ9h8xZflB0vKK7/dlSiSPnzj/zTffULp0aWxtbalfvz7h4eE3PHbWrFk0bdoUNzc38dOmTZubHi+R3AlKVPPWhREs//gwGQn52Dpa0XpIJZ58rRZuvg4lUeoOzZpiXaYMa2vB2J1j0Zv0tA1uww9tf8DV1pWspEQ2fP8l0UcPYTIa8QouTcOe/Rgw7QtGvjGCCmc+ALMRavSF5qqn6b9FKQJ7JR1sZLMyhHorFjmPJ+2q+NKmkg8Gk5kJK05iupO0co0Gus/CJqQeXpoUWNAdMqKENVH1Nh1w8fbBoCsWwrwi0CtC/ZHZC5lRehy1vWuLyZpnNz1LVIfK4uUKjx8riZD3LeNC7/FhNOhWBq2VhriITBZPCRcR9UbD9YvQSiQPIrI/lzzqnIjLps/MvXjmR7LCfhJ/WKaQeLgDVdMnkubdRBxTvoo9A6Y1p3LjgJJJfMnDg7eTKtBX8HEiJU9H23PdKAhoDLo8+LkXdWy8GFl9pDh2yr4pxObEorGzw3/aVPGskLNqFTnrN4j91VsE4hfqgqHYKJ4nZY0ZycOE7NMlkr/a2lwbOV+wf79Y2tepw/Gs00RmRWKjsabz6S2i/b3ipwlyd2Rsx0ryY7wB5RsF0WtCQxy0BRTbuuFgMZqo880ZZZjBG0sO3dnYXSJ5yLjv4vySJUsYPXo0kyZN4vDhw9SoUYP27duTkpJy3eO3bdtG37592bp1K3v37iUoKIh27doRHy/TRSX3JmL+9C7VfqRSYz/6v9uAig38rolEV9Ydnu7JzDcr80XiYkLi7RkSUYv250KwVYqJKQO9kLKUqVNPFHAd+tn3DProaxr16oePbR4Wi/sKmxTKd4SuXykveEfXPGXVaRKziwhyt+PFluV43Hm3a2XsrLSER2fw057oO3sxKzvouxh8qkK+ItA/hZ25gBaDRjD8y9kMmPo5YV174OzlI7Iizu7dSU50HD+0+0H41BoNBl4tnM+RSd0Jnj//mt8jrVZDnQ6l6ftOPYIquQlR/sCai+Smq1Y5EsmDjuzPJY86B6IzRMR87aJ9fOwwhTkZQfgeH4vOdaAo+OpsU0S3V6rR9qUG2Dla3+/Lldypxc3IBlTycyY530jHxJEUu5WH3EQxOf9s2Z4iO1LxnX9t22sUGgqxq1kTj2eeEecnTZqEIS1NTM60GlipZOL9yjOlRPKgI/t0ieTayHnb/4ucz9+vBog61K9XEjXf3myHi1HPNmMNDlpU55t+tXGUdjY3xSPImX4fd8DPPQ+zxhKDQ3cKop+mfuR0vt16Tv4aSh4bLMz3OYRDiZQPCwvj66+/Ftsmk0kI7i+99BJjx479x/ONRqOIoFfOHzRo0N/2FxcXi58r5OTkiNfPzs7G2dn5Lt+N5FFAmaHV/CXSbe+KSEpV9bymgOdfSclP4Z3FL2FxKplSSfZYGdU5Lxt7B56ftfCaIqPXkBYJP3WA/FQo1RgGLFPF3ztg4+lknpl/UOj7i59pQP0yHnf0eo8KC/ddYsLKk1hbalj9UhPK+dxhNkFuEsxpD5nRqlA/eBXYu5fsVv6sJl84z9l9u6jRpiOuvn6YzCY+WfgWxRtOctE/H5+6NZjYbQZ21/nOlfPPH0imMFdPjdZBJe0mo0mkAUokDyL3uj9XkH265H6x83wqz8w/QH/TKipYbyH7fB90Ds3AQoPGpKd2U3fq9lUKi8u/0Y8Smfk6Bvy4n1MJOZSzzWa1wxSs8xMgoA5JPWfTZ8NQMooy6Fq2K+83fh+zXk90r94Unz2LY6tWBH7ztZiIP7opRtQqsrLV0ved+ji533odIYnkfiDH6BKJyvZfzoq6IXWfKE39rmVEm9lo5FyDhphyc3FZ8D2dIl7FYDKwMCGJSkVGOuqmMbBzW4Y0DpEf4y2ijH/3zFrP8QOIYrFafS46+7XUfWUKjUK95OcoeeS5ryMInU7HoUOHhDVNyQVpNGJbiYq/FQoKCtDr9bi7XxXG/srUqVNxcXEp+VGEAonkRh3C2f1JouBrQY6upL3hU6E3FObXvvcm854ZQrkN+YTGOwphXrE3adDjafpO+fjGwnz6BZjXWRXmfatD30V3LMyn5xUzbvlxsf5M0zJSmP8L/esH06KCFzqDideWHhXLO8LJFwauAAdvSD4J87tCQUbJbmUg7htanuYDhglhXkHxp62c6Y2dTkvlaGc8frvIpy/0ZtOsL8lJuzZTSDm/fD3fa4T55Is5/DxpnyhGLJE8aPwX/bmC7NMl94P1p5IYNXc3E/gC90wdmTEfoXNsIYR5X6dM+k1uRP2BYVKYfwRxc7DmlxENqFPKjfNFLnTLGYPe2hXiD+H75+t81GRqif+8EjmpsbbGf8Z0sLIib8sWslf+Ll6neqsgfMs4oy8ysk3a20gecOQYXSK5Sn62Guhp73w1I67o9BkhzGscHVliPiCE+Vp6EzWKdcw0dqFspdoMblRafoy3gTL+bTyyAx2GemNbGIfRygmtvjfHps8lOjFHfpaSR577Ks6npaWJSDkfH7VS8xWU7aSkpFt6jbfeegt/f/9rBIG/Mm7cOBElf+UnNjb2rly75NEiN6OI1d8eZ9NPp0UhTiXC6XoUZGcJaxKFXRe3krNrNxqjBpPGTEjTxvR5b7qwN1HsazwCg24cMT+3k5oa7VURBiwHW5c7un6jycwri4+SlqcTHqmj25a/o9d7FDv7GT2q42pvxcn4HD5cc+bOX9S9jBox7+ClFoed/+Q1Av316PDCazz11iQ8a1XBZGHGNsfMsU0bmPXicJZOflv419+Ig2sukpNWxKqvjrF57mlRD0EieVD4L/pzBdmnS/5rlh6MZerPaxlfPIeCuH5g6o/ByhE7XQodenjQ46MeuPg+vrVdHgdc7K1YMLyemOQ/rfejb/5oDFo7uLCZevt+4pVaL4vjpoVP40TqCWwrVMDrxRdFW/IHH6BPSBAZma0GVRITODGnMzizJ/E+35VEcmPkGF0iucqVoD17l6vifN727WJpE1aHpZHLxPqw9HSiTT6sdu3HR71qXGNfKrl1QhrV5unPOuFcsENsm7R1WPfOJs7svkN7WonkAeehzr2dNm0aixcvZsWKFaKY7PWwsbER9jV//ZFIrmA2mUWa2qLJ+7l0Ih2NpYVIV6v/pJqypmAyGbl45CB/fPIhM58fzIVD4fx85meWfv0S5ZJyqJSSxtBvZtP9xXEEVqxy84447fxfhPlKMPhPcLzzNK1PN55lV2Sa8Fb/ql8tbK208kv+P7ydbfmkVw2xPndPNL8fvQt1KrwrXra08YSk47Cg200Feq2lJWVqhzF47HS6jX+bKnEpuOcVKmkbpOemYmVtU3JsZlLCNYXj2o2oSvVWgWABEfuS+OW9/Vw4cv3aHBLJo9ifK8g+XfJfofz9/WLTeTYtXcjAlBTS8l5FbxOE1lBAOe+LDP62O2Xbqn2K5NHH3tqSWYPq8mRNfw4aQxlR9BImCy2cWMrQ6JO0Dm6N3qRn9PbRZBZl4jF8GHY1amDKyyNh/HjMJhNuvg7U66JaHCgWN3mZN56Ql0geZuQYXfIoivMOLlfHaUpmlMKJSrbk6fMoo9PTrLCQaZpn+G5IE1zsbpA9L7klHNw96Dd3Is7W87ArSMGodWXLgijWfLxdBqhJHlnuqzjv6emJVqslOTn5mnZl29fX96bnfvzxx6Lj37BhA9WrV7/HVyp5FMlOLeD3z48IHzklzdgnxJk+b9cTfnJKcc7slCR2L10oopqXT3uX8+F7MBmN/LplFtP2T6XTfiN2egN1+w3D0121LrkpqedgbmfISwLvyqqoexeEecVn/putF8T69J7VKX+nfuqPMK0r+fBiy1CxPnbZCc4m5d75i3pXuirQJx5TI+jzUv/xtHLVGlOxXkMaXEjA3nCJJUGHmX1ithCECnNzmDfmBea9PopDq1dSkJONlY2Wpr3L0/31Orj52lOYo2PdzJOsm3miJN1SIrlfyP5c8ihhMJqYsPQoLPuVmlm1KLIMU2bzcS08yFOvlqXd5OFobWXB18cNK62Gz3rXZHDDUmwz1uS14mcxY4HFoTm8X6CltHMpkvKTeGP7Gxg0ZvymTcXC1paCvfvIXLRIvEbNNkF4l3JCV2hg2y8R10zCSyQPCrJPl0hUlL/RBdm6a2xt9ElJFJ0+raRm8439PtE2PDuHxcbWDOg/lBBPB/nx3QW0Gi0Dv5yHTfU/8EzeJJ7DLkYaWfDmZs7uvTaITSJ5FLiv4ry1tTV16tRh8+bNJW1KATllu2HDhjc8b8aMGUyZMoV169ZRt27d/+hqJY8ax7fEEX8uC0trDU16laP7G3Vw93dAX1TEr+9PYPZLI9i3bDF56WnYOjpRoU0bTnW2Z7H/QWpdtCA4DTT29nj0efqf3yzukFpA9C4L84q4PHrJUbE+pFFputbwv+PXfNR5rW15mpbzpFBvZOSCg6Tl3QVh26fytRH0SqHfrJh/Pm34SLFsFmHEgmK+OPwFb+54k5jzp7DQaEmPi2Hb/NnMfG4wqz6bRvTRQ/iEONJ7fBh1OpbCQmPBhSOpIutDIrmfyP5c8qiQV6jng/dXE7gpBktzA8waaxxzI6lU4wz95r6BT9VK9/sSJfcRxZ7m3a5VeK1NeX43NeFN/TOi3fHAbD6zLou9pT37k/YzPXw6NiEheI8ZI/anfPQxuuhoUdS91eBKIlNT6buVWkcSyYOG7NMlEhVlItV4uVbZFXE+b+tWscwq50O8Vb6Imq+S44hlhw9pUs5TfnR3mf6v/wLdcrDJ/AT7/ER0Rms2zYtgxYd7SU/Ik5+35JHhvtvajB49mlmzZjFv3jzOnDnD888/T35+PkOHDhX7Bw0aJDxmrzB9+nQmTpzInDlzKF26tPCyVX7y8uR/TMk/89cZVsW6pnx9H56eWJ+ytR3EgEvBytYWXUG+WC9VvRadXnmTBpNH87HzSg6YzuBi48Lrkaqnu2uvnmj/ySopcjPM6wKFGeBf67JP+Z133EnZRQz5KZzcYgP1Srvz9hNSMLgVtBoLvni6FoFudlxKL2D4vIMU6ox3R6Aftg5cgiA9En5sDykRNz3FrmoVHBo1RGM0M/lSHSwtLFkXvY6xsTPo/NGHtBnxAj5lymEyGji3bxfLpk4Sk0bJUedo8GRZeo2rS7UWgVRqfDVzw2SSUQSS+4PszyUP+/PBkd2xzHt1FZ6JDpi0TiKV2q14EZ0/7UCrF16S/rESgWJf+EqbcnzcqwYracl4/TDRHnpgLtNdayux9Cw5u4RFEYtw698P+wYNMBcVkTB2HGajEQ9/R8I6qfY2u5ael9lvkgcS2adLJFctbaztLLG0Vm1jc9atF8t1AWliOSojm8O1ptK7cUX5kd0j+gz+GrceTbnkMZWgmD/QGHUkxhaxZPJ+di09KyZRJJKHnfsuzvfp00dY1LzzzjvUrFmTo0ePioj4K0XlYmJiSEy8WjTpu+++ExXke/bsiZ+fX8mP8hoSyY1QZrwPrL7In18fKxHoNVozgeXTWPv1u/z48jMU5V+d4Gk97HlGfDWbnuOncNwjiRFbRpJelE45t3IsDJ2C1aHToNXiNnDQzT/0E7/BL71Bnw9lWtw1YT63SC+E+cTsIsp6OfDDoDpYW973/84PDe4O1swbVk8UiD0Wm8VLi46Iorp3jGc5GLZeLfSbm6BG0McdvOkpHs+oUXdem44xp/5neNp5EpkVycCtQ8mu5MiAqZ8xcPqX1OrQBRsHB/IzM3D1UW2/vIKcqNvRW3jWK+iKDCx5P5wT2+JEPQWJ5L9E9ueSh5Xk6BwWjt/MngXnwcIVK10uXolLCXkikn4/zcLDJ/h+X6LkAaRnnUDmD6vPKqsOvKtXnwdbHPiFV13VWgRK9Py+pP34f/A+GgcHCo8eJf3HOWJfrXbBeAU7UVxgEPaKMj1f8qAh+3SJBPL/39ImMZGC8HCxvr2SmSrFxeA2iJ7dusuP6x7To8/bVGw0mhON/8Q5YQpeqUeFtdyxLfEsHL+L07sSZJCa5KHGwvyYPQ3m5OTg4uJCdna2LA77mJByKYct8yNIj1fF9xb9/cmI28/JrRspyM4SbRYaDd3enEiZWmEl5xUbi5m6fyrLzqsV2LCxmR8AAIlrSURBVNuXbs/kRpPRRMWSMn0GWjc3Aj65waSQ8t9qz5ew8R11u2oP6PY9WN65R22BzsDQnw6w/2IGXk42LH++EUHu9nf8uo8jB6Mz6Dd7PzqDiV51Apneo3pJBsUdoRSF/bkXxB8ESzvoPhMqP3ndQ5U/wdG9+1B06hT+H82guGUYY7aN4WjqURF990LNFxhZfSQaCw0GnY6kyHMEVq5acv7S98aRk5ZCtdYdwKIyB9eqNTz8y7nSckBFXH3k74bk0UX26ZI7ITMpn31LTxN1Wq0/okRi+SRtJTlkDz0nzcfLQ41ulkhuRmRKHsPmHqB99lLGW/2CMrCaULkxfxTG4mTtxC9P/ILrpsMkjh8PVlaE/PYbthXKkxaXx69TD2Aymmk7vDLlw25eb0sieZSR/bnkQeTcgSQ2/niagPKudBtdm7RZs0j95FNOBcN7/S15L8uHbi9uEJZlknuPMm6etXQljpde52CSDR0PVSK2VC8K7b3FfjdfOxr1KEepqh4y21Hy0CHFeckji0FnJPzPixzdGCO0ciubHOztw0m+eKIk0tjRzV2ImtVat8PJ/WpEe2xOLKO3jyYiI0IIpK/UfoVhVYdd80ferNNhYX0dsd1QDH++Bkd/VrfrPQsdpilGpXd8T4r9ijIA3BuVjpONJYtGNqBqgMsdv+7jzNoTiYz65TBKoPnTYUF8+FS1uyPQF+fBb0Ph/AZ1u9UEaPq6KB70/xSePIXWyRHrUqXEtt6oZ/qB6SItXqFFUAs+bPKhGORfc15uDj++8gzF+aoNk0ZriVdITXIyQjGZ/ET6Zb0uIdRsHSQfGiWPJHIwL/k3ZKcWcuCPSM4eSFEehUWRMZ/kcFLtVhH0dBM6dZ0hB3WS2yI9r5iRCw5RI+4X3rFaQLEFDA+txjFDNkFOQczrMI+iMZOEV7FNxYqUXrIYjY2NyOoMX3URGwdL+k1qUBKdKZE8bsj+XPIgcmRDDHuWR1Kurjdth1fhaJv22MbH8n1HDVblYcbgXWjs3e73ZT5WKBauny/fSuUzr7HYsYhm22wIzG/CxVIdMFg5imP8y7vSuEco3qX+wX5YInmAkOK85JEk4XwWWxdGiKg4RVBXOtRa7TxY8NazmE0mgqvVpGbbJyhTpx5aS8trzt10aRMTd08kT5+Hm40b05pOo1FAo1t74/w0WDIAYvYq4fiqKF9v5HUF2X8jzD8z/yC7ItNwtLFk/vB61A6WDwN3g9+PxvPakqNCoO9XP5j3n6x6dwR6owE2TID936nb1ftA16/A0uaWTl8ZuZIpe6egM+kIcAzgk+afUMWzyjXH6IuLOLtnJ8c2rRVR9VewtvPCrGmA1roc3qWcaDWoEh4B6gOLRPKoIAfzktshL7OYg2sucnpXPGaz+jfeM+0YFPxJdP1URo6Yi1tAbfmhSv4VxQYjk34/hfnwfKZaziZDa8GA0mWJNxdT2aMys+t8ROJTfTBmZeHWry++77yD0Wji16kHSY/Lo2wtLzo8W01++pLHEtmfSx5Etv0cwamdCdTpUIrIlOPU+fRtii3htVEalnSeg3dQ/ft9iY9tBP1na48RsHc8yZ4nOJriRL9tNhS6tCMusCUmjZU4rkwtL1HjxTNQjoElDz5SnJc8cpiMJhZMWE5G3D60WgNdXhtPSA0vsU+xsvGvUBl3/4C/nadEK3966FMWnlkotmt512JGsxn4Oqhpxvr4eDIXLcJ98GAsvdTXu4akk7C4L2TFgI0z9PwJyrW5K/eUVaAThUsPXcrEwVorhPk6pdzvymtLVJYfjmPMr0pNAuhSw5+Pe1XHxlIt/HPHHPgR1rwBZiMEhkGveeDy999BBd2lS1j6+oqIOoVT6aeEzU18XjyWGkvG1BlD/0r9rxvVmRwVybGNazizezuG4mJqtB9G9ElP4Wlbto4nHZ6pLr9uySOFHMxLbrWg2+H1lzixNRaTSW1zzziNe8oqdte+RI1ajejR9+5Yz0kkv+yP4cCqmXyk/ZZ4Kw0DgoLIwkhj/8ZMs+pN4nOjxIcU8OknOD/xBKkxufw27aCIBmz/TFVC66jp+RLJ44TszyUPIis/O0L82UwyqjjScNWLBMTksrmGBf6vDqF7wzfv9+U99nyz5Txpm7/gSYelTHZzp+oRLZ0OuRAX1Jkkn3pqsCSIye+6UqSXPOBIcV7yyFBcWEDEru0c27Ca1JjokvYRX/2Ii7daYPhGJOYl8vqO1zmeelxsD6kyhJdrv4zV5VlXhaTJk8n8ZREOzZsRPHPmtS9wZCGsHgOGInALgX5LwKvCXbmvxOxCBv0YzvmUPJxtLflpaJgU5u9hBP2YpccwmMw0DvXg+wF1cLK9+jtwR1zYAr8OgaJssPeAHj9C2ZbXHJL04YdkLvwZ30mTcOvTu6Q9R5fDpN2T2BSzSWy3CmrF5MaTcbG5vqVRcUE+Z3Ztp2qLNhQXmNm74gJ2jieJPrKXGm2foHzDJljb2t2d+5JI7iNyMC+5GfnZxcLa7uS2OAwG1c7OJSsS/7hVbK16AcdyZjo3+4IqYe3kBym5qxy6lMEv87/nQ8MnnLPRMMzflyIL6Fq2K6+Ee5D+wyxRJLb0b79iExLC/j+iOLgmGltHK/pNqo+dk5wokjxeyP5c8iDy09jdFGQVo7VdSZMNG9CaLPjlpdJMfmGNtL97QFgcHsOvv69guuVX/OGu508LR/pvNVP9ki/RpTuQ4lX7GpG+zhOl8Qq61ipWInkQkOK85KEnMTKaDT/8QmbCYYz6ItFmaWVNhcbNhHWNb2j5m56/7uI6Ju+dTK4+V3h6v9/4fVoFt7rmGH1KChfatBU+88Hz5uFQv97lHYWw5nVVnFcIbQPdZ4H93YlqPx6Xxcj5h0jKKcLX2VZEzJf3kZ3JvWTHuVSeW3iIAp2RKv7OzBpUF3/XuyRkZ0TB0kGQdEL1OW41HpqMKalHkDFvHslTp2EVGEjZtWuwsLK6Jn1vUcQiPj74MXqTHn8Hfz5q/hHVvW4tGn7umBdIj4sR61pLO7zK1KPtiD54lwq+O/cmkdwH5GBecj1yM4qET+zpnfEYjaoo75RziVKXVnEgJIKE2jrqWdSi/ZAfcHOT9nCSe0NyThHf/jSHMRmTOWZv5kUfb0wWMKTCQHp8fYLCgwexqVBB+M+bLa1Z+uEBMhLyCa3rTfsRVwu/SySPA7I/lzxonI7JYuuHh8V6UNZoyh0t5lyQhgYrt+DjcPPAP8l/y67zabyxcCdvm76ngu0h3vd0oyDNhn5bjQRl+P1NpA+s6EatdsEEVXKXkyySBwYpzkseaqKOpLJh1lLy09eKbRcfP2q170Tl5q2xc7y5iJ2vz+fD/R/yx4U/xHY1z2pMbzZdFO76f5JnfETGnDnY1apFqV9+Vv+Ip55TC34mn1T/0Ld8+xqh9U5ZcSSOt5adQGcwEertyLxh9Qi4WyKx5B8nRYb+dID0fB2ejtZ806829ct43J1PTUzovAFHFlyd0HnyW3DywVRYSGTbdhjT0vCdMhm3Xr3+drpic/PG9jeIzY3F0sKS52o8x/Bqw4Xlzc0oyMkWtk5H1q0mLyO1pN2nTBUadH+K0LAGd+f+JJL/EDmYl/x/odfD66KJ2JtYYl/jnB1FyKW1RPicYXtjE08aTViHTqTzUwPuTm0RieQm6I0m5q1cyxPHXyTcqZiJXuqzxIuB/Wg58U+MGRm49uqJ35QppFzK4bfphzCbzHR4tipla0l7G8njg+zPJQ8Sq44lMH3xcfpmWqOxyKf+rjex00Pq5JE06/3a/b48yXU4n5zLsLnh1M9ZzwTLBWxxsuBTN1fKXrSg33YT7vl+XCrVnhTv2pgtVOtaj0BHarUNFpPiWu3d0XAkkn+LFOclDxU5qSkc37wOe1cfUmICuHA4BbNZj4VpK416dKZmu0ZY3II4fiz1GGN3jCUuLw6NhYZnqj3DszWevcbG5gqGtDQhmJoLCwma+T2OzZpB+CzYOFG1sXHwgh6zoUyLu3KPihg/Y10Es3ddFNttKnnzWZ+ad89eRXJLxGYU8OyCQ5xOzMFSY8GETpUY3Kj03ZtdP7xAzbpQfocUmxulUGzFTqTPnUvKtOlY+ftTdt1aLKz/ntqeq8sV2R7roteJ7RpeNZjaZCpBzn+fWPp/lILI+1duI/yPP9AXRoo294Ca9P/gXaztbi7wSyQPGnIwL1FQoo0Pb7jEufAkzJdFedfMs0KUj3aL5I8m0Mo+F+ucplTsM40GFWXGkOS/Ze/RE7ivHMBhpzQ+9FSzK8dbdKbG1N+V1Dh833tP2NntXXmBw+suYeek2Ns0EDY3EsnjgOzPJQ8ChTojU9eeYeHei0w07qAgtyNGUzRtd3xEdil36q/bJSOtH2CUOn2KRe3JiAg+sPqROlbH+M7VhV8dHWl02kyvXSaci9yJDWxJol9jjFq1xpujmw1VmwdQubG/tJWT3DekOC954FHExOjjRzi6YTUXDx/EbDahsfTAynEQGq1GpCSFdSqNpdU/F+80mAzMPjGb7499j9FsxM/Bj6lNp1LHp84Nz0meOpWMefOxrVGd0j98hsUfo1T/cIUyLaHbd+Dsd1fuNTotn5cXH+F4XLbYfqlVKK+1KS+j++7jA9rY5cf5/WiC2G5fxYdp3avj5nCXvGBTzsCyZyBZsbkBag/C1HwSkZ2fwpiaVjJYvx6Kzc2fUX+K7I88fR52lna8GfYmPcr1uKWHxuJCA1sXhhOxaxNaqzI4e4XQon9FHF0L2L1kgfCmD65a/ZYmuySS+4UczD++KH8D489lCU/5SyfTS9o90k9R6tI6ElyiWNxcSxm3Arqk2bPd7y2e7dcbT0d1ICaR/NekpqaSOLsPR23O8ZGHaqf0QWQY5X7dC1ZWlJr7E9bVa7L0gwNkJhVQvp4PbYdVkV+U5LFA9ueS+83J+GxeWXyE+NQMPrX6DtvCipzJewrfxJ1UPrsY3y8/x61d+/t9mZJ/QCmu/t32C3yyIYIuFruZbL2ADKtCEUW/w86OxqfM9NgLXtm2xPs3JS6oJTor1XFBY2khirJXax6IT4iznIiR/KdIcV7ywKLYcJzatoljm9aSnZxU0q6xCkZrXR3vMrVoPagyXsG35sEemRnJxN0TOZl+Umx3DOnIhAYTcLZ2vuE5+qQkLrRrL7zmgyYMxjHuOyjKAktbaDsFwkbcFRsbRWRYdjieSb+fJF9nxMXOihk9q9O+iu8dv7bkzr+bObujmbb2DHqjGR9nGz7pVZMm5TzvzkdrKIatH8DuL5V3EwWFM8zdSP5+CZb+foSuW3fd6PkrJOQlMH7XeA4mHxTbLYJa8G7Dd/GwuzUbnriIDLYujCAnrUhEDQSGnuDohj/FPjc/fyHSV2neBltHx7tzvxLJXUQO5h8/jEaTyJo7ujGW1JhctdFswivtGKUurSfJOZYlzTTY+eh4MSOXbcVd8en4Jn0blJWDLMl9x6jXcXLuyxzIW80X7q4ian7GuiBKH41G6+FByG+/kl5kz/IZh5RdPPF8NUJqeN3vy5ZI7jmyP5fcT/uxH3ZE8fmmc3ga05hj+xmlLS7yWe5UXPIqUDFiIaX8Cij7yyL5HPEQsfdCOqOXHkWXncxbVkvord3GAVsbPvXw4JSllgZnzfTcA/5pGlK86xIX0Ixcp1Il53sGOQqRvlyYD1Y2/xwEKpHcKVKclzywrPp8Ouf27hTrNvYOVGnRhhptOxJz2oRBZ6JW++Bb8gZTouXnnprLt0e/FYU0naycGFd/HJ3LdP7HDtaQkUHaZzPQHdpEUNh5xOF+NdWir143LzR7q8RlFjBh5Um2nVV9wOuHuPP50zXxc5H+8g9iNMWF1Hyx3a9+MG91qCgmUu4KF3fCiucgJw6TAS6sL41ZY0vwTz9hW7nyTU81mowsOL2AL498KX7H3WzcGFtvrJiAupUoen2xkf1/RIniOI6u+RzbuIbTO7agKyy87QLLEsl/iRzMPz7oigyc3pXAsS2x5GUUizaNUYdf0l6CYreQ4JrGr0015AYZGJ2ZRW5eVZZ7vsC4fu0p6yUnFyUPFgnbfmT50SnMdHPCRmdmxgI7/FLyRH9f6ueF7FsTz5GNMdi7WNP3nfrYOkh7G8mjjezPJfeDIzGZjFt+goikXGpbnOMn+y+wM2byql8AFY5+jKXZlnoH3qfq3C+xqyYLdT9sZBfqeW/VKZYfjqemRSTT7RdQ3nienXa2fOPpzRmtmVqRZroetKBytJEcp2Di/ZuR7BuGyUK1e1WE+bJ1vKnU0Be/UFc5QSO5Z0hxXvJAoC8q4szu7QRXrYGrjxotfunEUbbO+xGtVQ1aDu5CYMXbr4p+PvM8E3ZP4HT6abHdLLAZ7zR459YqrBsNED4TtryPWVeAhaU1NB0DTUaDsn6HGE1mFuyNZsb6sxTojFhrNbzSphzPNS+LVhape2Btbj5Yc5qF+2LEtreTDe91rUKHqr53p6MuyoZN78LBORSmW2Ht5472yRlQ+UnUmaGbczbjLON2jRO/9wrNA5uL7BBfh9vPwDi+JYqT27agyz9Kely0aLN1cubZ7+ZhaSVFAsmDgRzMP/pkJuVzcnu8KPKqKzKKNitdDoHx2wmM38lZ/wJWNLIgOdDEi1nZVMlxZqppCDVadGdUy1CsZIEvyQOKPuYgs1YO4DsXK7yyzEz/CRyLjDi1a4fP9I9YOu0wWckFIsW+3YgqUhCQPNLI/lzyn/6+Fen5eP1ZFuy7JLLvXrJbz6sswmA28GpwGSLyPelxahxaYzFd3LYRMGO6/IIeYtadTGL8ihNk5BfRU7uDCXbLcTaksd3Ojm+9fDijNVEq2Uyng9D0tBkTdiT6NiA+qDmFNlez0Z09banY0I8KDXxx9pCBlJK7ixTnJfeV9PhYNUp3+xaKC/Kp0/kpWgwcLtLWFR/ZA39exGgw413KiZ5j697ywERv1DPn5By+P/69iJx3snZiXL1bi5YXxIbDmjcg8ai6HdwIunwOXhW4G+yPSmfyn6c5lZAjtsNKuzG1e3VCvWV038OSJqd08FFpahR9ywpejO9U+e59f5f2wB8vQ7oqshPaFjpMBc9yt/S7/+PJH5l5fKb43Xe0cmR03dHCi14pfnwr6HVG5r+9h6I8PdZ2Wqo20ZKZuB8Xbx8a9x5QUgti77LFVGzcDHf/wDu7X4nkXyIH84+uX6jiI39iWxyxpzNK2u3zkwiO24xPcjhHyxhZ0VBDhq+J4dk5dMjR84P+KQ77Pc2HvepQ3ufWLO8kkvtKXgrzF3XnY6ssKsbCxEVGLE2g7d0X56GvsOKjw+L/Q4v+FajSNEB+WZJHFtmfS/4LlOC4Xw/G8vGGc6TlFeNFFgs9fqJC/gGKLCwYU6YqO0zZDN7dAjvNU3jknqfn172xdFPrhEgeXjLzdcxYH8Gi8FhsKeY5u808r/0da0OuiKSf5+1PuMaAS76ZdodNdDxuiUOOnmyXsiT61ifFtx5Gi6sBagEVXClX14eytbxl8XbJXUGK85L/HKPBwIWD+zi6YQ2xp46XtLv6+FG3S3d8QxsLD+z0+DzRHlDBjZYDKuDiZX9Lr38g6QDv73ufqOyoEg9uJVrey/4WPDuz40XkcvHuZaQcdcGzthm7vu9CrUF3xVs+NqNAVIBfc0L10HeyseTNjhXpXy9YFn19yCjSG/l2a6QoOKN40SvZDgPqB/NKm/K4342Csfoi2Pkx5p2fkxurxcHXhLbZs9DsTbC9cZ2Ev9ZYmLR3EsdT1f9jYb5hTGo4iVLOV730bkZaXC5b5keUeDoHV3Gneb8KJVEC0ccOs+zDd9R9VasLb/qydRugtVRTACWS/wI5mH+0UCYET+9JEJHyuelFaqPZjGf6CQLit+OadZZ9FWFlQw25niaGZeXwVE4hKwwtmWnRk2Ht6jG0cYjMPpM8XJiM/LH6Bd5J3039M2Ze/d0kms/1GI5/k56E/x6F1kpDr7F18QiQQRySRxPZn0vuNTvOpfLhmjPCwkap8zXU5Sjj+BHr4gwyre15uVx1jhYkUDXRiq6Hh5HhXpk6VQw0eKmd/HIeIQ5dyhSWwmcSc3Amj7HO6+ljXI3WWMQpayvmeQeywcqkzORQ+4KZTiesqXS+CJOFNaleNUgKbEqGU9mS19NoLAis5CaE+pCaXtjYybGw5N8hxXnJf4pSXHP+Gy+SFntJ/QW00FCmTj1qtu2IX7lq7P8zWkTKKXUxFX/Nxj1DRdrQrUS7ZxRl8MnBT/jjwh9i293WnTfD3uSJkCf++XxdAez5CnZ/DvoC4na5kRtnh2OTBgTN/umO7zsxu5Bvtkay5ECsEHIV15q+9YIZ3bY8Ho42d/z6kvvHhdQ8pq6JYNOZZLHtZGvJM03LMKRxaZxt79z+JeHVF8hetxWPyrl4V88FBy9oNRFq9get5T960S+KWCS86AsNhVhprBhSZQgjqo3A3uqfJ7tMSgbLpljCVykZLCYsbbTU7xJC9ZaBpERfYN/yxUQdOoDZrAoJDm7uVGvVjuqtO+DkcZcK5kokN0EO5h+N54KkqBxO707g/IFkjHr174mVoQC/hF0EJOzCwpTB5uqwtq4GvbOZodnZ9MnJY7uhLjMMT1OqfHVhMVbKw+F+345E8q/Zceh7Xj/xNW3CzQzcov4/+LHFMKoEN6cgJg83Pwd6jauLlbUsTCd59JD9ueReirFKsded59PEdjnbHGZ7LqZU2jaxHetTiec9nblUkIifwYGP59mwu8I4TFprnp5YT06KPoIYjCYW7rvEF5vPk1mgx50c3vbYTjfdn1jqc4m31PKLVwAr7W3IMRXjmW2mzXFof9ISh6xiCm3cSfapQ2pAQ3JtrtolaywtCK7sIezoSlfzwMZeWsFKbh0pzkvuKUaDnotHD1O2dhgWlyPPt879gYg9O6jeuj3VWrfH2dNbtJ/dl8imuWfEeoX6vkKYt3P65whkk9nE8vPL+ezQZ+TocrDAgt4VevNSrZdwsXG5+ckGHRyeBzs+gjxVXC2wqMWlRckiUr7M7yuxKffPViI3IjmnSERXK+lTOqM60GoS6smEzpWo6PvP0c+Sh4c9kWm8v/oMpxNVqyJnW0tG3AWRPnfTJuJefAkLayvK9tNiVaRmhOBZHlqOvyU/+rjcON7f/z6743eLbT8HPzFx1Tq49S1NfCmez0o2S2Jktnir3uPD8AxULSNy0lI4vmk9J7aspyA7S7Qp/9cHzfgKz6Bbi9KXSP4tcjD/8FKYq+Ps/iRR5DUzqaCk3TEvjsC4bfikHCTTycDquhZsqW6Bs6WJwdk59MjN44wxlA/1/Uh2rcmkLlVoU8lb+nFLHgnOxO9j1Mbn6LxRR8dDZkwa+KFBL0o7tMRab6ZyYz9aDqx0vy9TIrnryP5ccrc5GJ0hxNcroryd1shnZY7QPnkWFrpc0Fixs25fxmUfIVuXTYCtL5+v9iI5yszJqs/g6GbNoA8by+eLR7z2wMztF5i98yLFBhNOFPC21x566lZiVZwhrI7WO7uy1CuA48YcNCYz1aLNtIuwpXaEDm2xgQI7b5K9a5Ma3Jg8rfs1EfX+5V0pXd2TkOqeOHtKj3rJzZHivOSekJEQL8S6U9s3U5iTTa+JHwrrC4Wi/DysbGzQWloJH03lD9eV6LktCyIoH+ZDUKWrf9huxqHkQ0wPn86ZDFXUr+hekYkNJlLdS32vG2IywvElsG0qZKnFPXEJxtxmEpfe/43CY8dw7dUTvylT/tX9RyTliD/yfxxNKBHl64W481qb8jQse7WoiOTR8zFccyKRLzef53xKXkkkfb/6wQxuWBp/19vvlJX/F5f69afwyBFce/bA7wlfYXdDYaZ6gF9NaP0OlG11U5Fe/P+K3cKM8Bkk5CeItsb+jRlbbyylXUr/83WYzJzZmyisJup3LXNNdL1GqxETcZEH9nFswxoKc3MY9NHXJQ+zMSeP4RlcGnvnf5gsk0huEzmYf7hQ/o7ERmRwelciF4+lYjKaRbvWpMc7+SD+ibtxzrnI+QANq+rBgfIWlDYaGZaVzRN5+Zw2leFzQw92a2rzfPNQnm9RFlsrGUUsebRIyktk1Kp+dFqSTMMIMyatmd2NOqLTdhYBKA36laNOs6D7fZkSyV1F9ueSu4Ey3lHE+B92RLErUhXlLTUWjCsXz6CcmVhlqvW8jAF1+L5SM2ZeWI4ZM1XcK/PhjgCKV63lZLWRpHjUoFa7YBp1D5VfzGNAUnYRX2w+x2+H4oTLgeJJ/4rXEQZq1uOYfVYcc8baiqX+5Vin1ZNnKsZGZybsnJlO5x0pcy4XC5OZPHs/UrxrkxZYnzzLazUfxZYupIan+PEKdpKTPpK/IcV5yV3DoNNxPnwPJzavJ/b0iZJ2xeqi5eCRVGjYpKRNEeUVT9mT2+Po+VZdrG/Tm0uJBFYi5Tdc2iC2laKXz9d4nn6V+mGpuclrGQ1wajns+BjS1D+0OPpAszeg9iByNm0l/tXXsLCzo+z6dVh5q1H9t4JyTzvOp/LjroslM/RXir1eEeVvtaCt5NET6RVP+ieq+TGscWlqBd9eUaGCQ4e41H+Ams3x5yps/D1g7zfqjy7vatHipmMgtPVNRXrF3mb2idn8dPIn9Ca9+P/St2Jfnq3+7D9nmvwfGYn5rPrqKI2eCiW07tXIVV1RIda26kSEvqiI758bJP4+lK1bj6ot21K6em00WimoSe4cOZh/OMhKKeDc/iQi9iaRm3HZS17JMMqLwS9+Fz4phzBrdOysZGZjLQ0X/C2oXqxneFYWLQoKOWUuw2f67mwx1aJzdX/ebF+RYI9bq0MjkTyM5OnymLDpVep8u4e6kWYMlmaimnQljg7oFSmplTfDu1a8K/Z5EsmDgOzPJXdaC2zFkXjm7LpYMvZSRPlXKuczQv8zdpe2qgfaexDT+AUm5hzncMoR0dS7fG+e2e9I5vc/oLd2ZHeT6ZhM0PvtMCGiSh4f4rMK+WH7BRYdiEVnUAIszTzlFs2rTlsITt2Khdkkoum3OXvwh08QewyZGM0mXPLMNDxnQZsoB4Iu5AihvsDOizSPaqQH1SfTRinofnV8budsTXAld4Iqu4ugVHvnu1CvTvLQI8V5yV0hOyWJheNeoygvt8RLPqRWHaq1ak+Z2mHXCHHJ0TnsWHSWlEvqscqMtDIzfSvk6/OFsDj/1Hx0Jh0aCw09yvVgVM1ReNjdJCJdXwhHFsKeL69Gytu5QeNXod5IsLbHrNNxoXMX9DExeI4ahddLL97yTOtvh2JZcjCW2IxC0aYkA3Ss6sfwpiHUvk0hVvLooEzYbI5IEQ+Ke6PSS9qrB7rQu24QXWr442J3awPr2BdGkbdlC44tWxL03bdqY34a7PwEDswGo05t862uivSVuoDmxgL4pZxLTAufxq74XWLbydpJCPSKUG+tvbUHhM3zTguxTUF5uGjet/zfCjdnJMSx5quPSY6KLGlzdHOncvPWVG3RBjc/5WFFIvl3yMH8g0thno7IgynCuib5omr3pWBpKsY3YS9+iXtwyo8nydOStTVN7KhqQbGdhrZ5+fTPyaF6sY4zhPCprjubTLVpUMaDcR0rUSPI9b7el0TyX6HYNs45/D0OE76m5kUzRdZwvskIUk21yLUwstzbzLBWZUVmnp30oZc85Mj+XPJviE7LF2Nwpa5bRr46FnKw1vJy5QIGFS/C7qIayKdY2JjqjWSxf1k+PzFTBCvZW9ozof54GqyNIe2bb8RhmSNmcCTSAc8gRyHOy8C6x5OUnCJm7YwS1sR5xQbRVs4mi/H+h2mStw7L3DjRlqbVsManDKucHInQZYg2pwIz9c5Du4tOlDqfg8ZgQm/pQJpHFdL96pDuWhEj1waTKr9vild9cGV3fMu6oLVU7aAljxdSnJf8KxRv6dSYaEpVq1mSQvbTa89h0Ouo1rIdVVq0wdnT65pzivL07P39gvCXVQq+WttqadCtLFWbBWBx2drmRhQbi1kcsZgfT/xIZrFq51Hftz5vhL1BBfcKN7nQDDg0F/Z9B/kpapu9JzR4Huo9A7ZXI4Uzf/2VpInvoPXyJHTdOjQONy4sV2wwsu1sKksPxLL1bAomNTMfJxtLeocFMaRRaYLcZVSf5CqnErKZsyuaVceuWh3ZWGpENL0i1NcPcS+xeLru79yFC0Q92Q0MBoJmzcKx6dVMFHIS1Cj6g3NEQWOBRzlo9CJU6y0mn66H8v92d8JuPj30Kecvp3kGOAbwcq2X6RDSQUx+3QylcOOh9Zc4tC4ak8GM1kpD3Y6lxWTb/z9UpF66yMltmzi9cytFuVeFujYjRlGjbUf5qyL5V8jB/IOFQW8k+ni6EORjTqaLCUoVMx6ZEfgk7scr7ShYGAivoGF9TTOngy1wt7CkV2YGvXPz8DYa2Ut1vtZ1YrepKhV8nBnbsSItKnjJQbLksWT3hS2kjHqFitEG8mztONLwDfRmH4os0/jWwQ4PZzth8fR0WLAU6SUPLbI/l9xOlPz6U0ksDo+9JvgpwMWWsZUz6JD7G1aR69RGZSxTrTena/bgw4j5HEs9Jprr+dbjvUbvYT1zMemzfxRt7q+NZv2lKiLDr+WAilRu4i+/lMccRZhfdiiOeXuiiUrLF20WmBjmH8sgu90EJ2/CwqBmhF6ytGSjXygbHOw5U6y6KNgXmakTaaZlrDMVzhdilV+MycKSLJcyZHhUJsu/NjnaawNMLW20+Ie6EFDeTXjWK9kbWq0U6x8HpDgvuWUUT+moQwc4tWMzF48cxMrWlue+X4CltRplm5OagqOHB5rrROsqgvyeFZEU5xtKCr427F4WBxebm76nwWRgZeRKvj/2PckFasHW0s6lea3Oa7QMannjgXricQj/AU78Cpf/YOISBI1ehloDritWmvV6MpcsRevijEuXLn/brzea2B2Zxp/HE8UDQW6Rei8K9Uq70ycsSAitMnpJcjPS84pF2uXSg7GcS75sSaMEvDvbit+fTtX9qBXkel2hPnnqNPL37sX3vXexr1Xr7y+enw7hM2H/91CUrbbZugrLJsJGgNv1C7QaTUb+uPAHXx/5mpRCdRKrskdlkZHSNKDpPwpiWckFbPvlLPFn1YkzVx97mvUpL6Lp//ZeBj0XDoVzcutGoo8dZthnM3H19VPv7+IF9MVFBJSvVFJAWiK5GXIwf/8xGkzERWQSeTiFqMMp6IqMJfucChPwid8jbGtsdDnE+1mzoYqBXVUsyLW3oLLRgv4ZaXTIy8cSDetpwNfFnTllLk0ZLwdeahVK1xoBwhZMInmcSUiN4uiIfoSczSbLyY9DdV7HAltKOWxjqY0tO0w18HCwZliTEAY0KHXLWXkSyYOC7M8lN0OZ7A+PzuCPYwmsPp5IdqFetCtDlJahrrzie5LqsT9jkXTsqihftSeZDZ/jq0ur+e3cb8Jb3s7Sjldrv0rv/7V3H3CSVHUewH9V1TlPzjlszmxgF1iWJUoOCiYQlBMDqHigKKbzFLMoIngGEAQlB0Eyu0vYxOacJufU0zlX1X3eq56eGWZ22Tyz0/+v965C98z2FN39qv71f/9XcSW67v4+fC+9xJ+ed9e30VF5LlY+tpeXGPnM/54OPY1IIkPef+8e6MXD7zdg5b4eqMnck3xDBP9dvAfnqu/D2bmGl71hWnQS3iyoxetWM3YkA/VsMtlJrcDiJiMWNujgatOS1aIGB9wZk9GfMx3u7GmIwTTsuOuNEgqqnDxQzwL2OWUUrJ+oKDhPDoll1rJyFGxi1z3vr0qVrWHyq2pw8W13pgJrh/LG33Zi3/ouZBVZcdZ1tSisyfjIobyvN76OP2z5Ay+/wf89az6vK39Z1WWj15VPxIA9L2lB+eY1g/vzZwCLvgLMuAaQ9Ed8Z35NXR9e39WJV3d0oj+knQgweQ4jLp9dxIPyVTm2I/q9hLDP1pYWD57c0IqXtrbDnxwyxxQ6tUD9hdPzeX36gcCUEg5D0Osh6D5ijoaoH9j4d+2z4GkaPEmd9DEtSF+xlNev/7BQPIRHdz2Kv+34G0IJLQN/RvYM/rk7o+iMQwbp2d/DPuPvP70fYX/8sMpVhXzeYZPEvvCr/+WTyjpy8jDljKWYcsbZyCo+vJJXJD3RxfzYB+QbtvQgGhr8/jLJfuS1rkZ+13pYQ50I2/RYOUXB2zOApjwBNkHCxf4grvb2Y0osjohkxdOJs/Bg7AK0qrmoyrHituU1vLY8BeUJGRSPhLH2i9cie91+dOXMxs5pN/P9Sx0PImTrxA/C12G3WsZHcX7m9DLctKQCOfZDJ8EQMl5Qf05Gu7bY1urlAfmXtrWjyxcddq30hekCrpHegWP3vwB/h/aAzgTMug6+eZ/DI13v8+uagWuaiyouwjfnfROZAaD1ttsQ2boN0OmQ/4Pvw37FVXjs+2sR6I/ijE/UYNY5NOk2GV2HN4xnN7XhqQ0taOxLjlhnyae2CG7N34Wz4u/C3rUeAisVwUaPSyLeyyrGOxl5WC17EJK193G2V8XcemBJux1V9WEYAlGoEBCwFcHjrIYndxpfxmEYkVmfX+FAfqWTt7wKB0xWuiE/EVBwnhzSxpefx8pH/jKsVvSUM5dh2tLlhwyaRYJxfvE+kBkf9EZxYGM3ZiwtgniIYTlsgsr/1P8Hf93xVzR4G/i+DGMGbp55Mz4x6RMwSqNcZHTuALY8Bmx7EgglJ2JlwfsplwELvwiULDzkBJnx9nZILOPfaEx94b69pxsr9nTzWd4jce0OKJNtM/Ba8pfMLMD88kOXISHkSG4CsUmEX97Wjjd2dSEYG8w8dVn0OKsmB+dMzsXS2hxkWI9gwhhFBva/rmXS168c3O8sBeZ8Gpj9KcA18nPcF+7Dwzsf5qWkIrI28mRmzkx8edaXsbhw8SGD9NFwAttXtA4rbdPfGYQt03TIDBR2Av7Gn/+APe+/wwMQA3LLqzDlzLMxefFZsGUeYl4JkpboYn58BOQNSgg5HR8gt3sTXN46qJKAbdUS3pguY1OVAFkSMFs14OreDpwfDMGiqmg3lOOPoXPwbOIMhGBCbZ4Nt55Tw29MUlCekNGpiQR2fes2iC+vQEPZhWiouBQqFJyVeQ9mGDZilf4M/CRwKfarxTBIIp/b5sYl5ZhedGQTvhNyslF/Thg2Cef6Bjfe3N3Fr4nYBJ0D7CYdLpmSgRsytmFS+wsQGt8ZPGi2fF6y1jvjGjzR8jq/jvHHtKTCKZlTeCnc+fnz4X/zTXR8927IXi9EpxPFv7sX1kWLsO7f9djwciOsLiM+8+NF0OkPfs1CyMC16weN/XzuQZbE6RtSVWGaPYhb8vdjibweGV1rICQD8mxWhI32DLyTW4b3JAWNcQ/fL6gqyruA2U0iFrVbUdoQgBRN8GB90FqAflctPNmT4XHVIi6MjIexUev5lYMB+4wCK8WpTkEUnCcpvt4e7F39DvIqa1A6fSbf19fWgn9862uomr8I05cuR+nM2aOWrRmgyAp2vtuO9f9uQFGtCxd+ccZhHWFWU/75/c/joZ0PoS3Qlpqg8rNTP4vrp14Pq946spb89qeBLf8AOpLD1xhbHjDvc8C8GwHHR2f0q4qCuo9fi7C7Hyuv/Tpejjiwp3NwdABT4DRh2eRcfGx6ARZVZkJHNb/ICQ7Ur9rXg/9s7+DzGgwM22TYvaDZJS6cVebAWVvfQF48iKIffO/wfnH3HuCDPwPbngKiyZI3bNb4yqXAnM8Cky8G9OZhP9Ib7sVDOx7CE3uf4J9RZmb2THxu+udwTsk5kA7xXTA0oPevH69HIiZjyTU1qJp76LrRrKwNK3uz+72VaNyyEYqs3agoqJ6ET/3k14f3t5K0QRfzJxa72da8sw8NW3v5cmhA3qiEkc0D8ht5QJ59neyvNOKtSTGsrxUQNAvIEQy4yOfFlV4PquNxKIKEdYbT8Tv/2VirTOHfQWdUZ+MLZ1bwm4808RohhxcQ6Pj9vfA88H/YM+nT6ChYjIQYRX7hj/HxxE4IEPC+8Qz8j+8S7FNLUuUXWZD+vKl5dB5LxiXqz9O75CdLUmIB+VV7e4aNJjbpRVwwORM35DVglm8lpL0vA1HfkOuYs3nJ2pbiOXh03xO8HC6b7JWpclbhq3O+iuWly6H4/ej+1a/hefJJ7fdOnYqi3/4GhrIyuNuDeOIn66HIKi64eTqq5+WOyXEgp/ZNpYHyx6ziwtDyx1mGOD5f2IQL9VtQ1vcupFBP6rFOScI6Vx7WZeZjHSLoTmglbyVZRU07MLNZwNwuC0qbwtBF4qlgvddZCa+zCr7sWoQk14jXozdJyCt3ILfMjpxSB3JKbXBkm+k8e5yj4HyaYxO77lv7PvasXoW2Pbv4vtqFS3Dp7XelnhOLhGEwDQ/ajaZpZx/ef/oA+ju0yTIyC6246o55MJoPXoLDF/Ph2X3P4pFdj6AnrH1RZZoyeUD+2knXwmYYUi4m4gP2vgLsfA6oewuQY6nZ1zHpIq2WfNVyQDp0yQ9fJI7NzR5eribx4nO4esUjCOmM+MK530K/ycGT7FnN7+VT8rBsUi6mFNjpi4yMiYSsYHOLJzWSY+DGUW1/M3636vd8/S/XfgclZy7E6ZVZmFXigumjMj1iIa380+ZHgYYhGSfss8bK3ky/Cqg6h42ZGxakZ5MxP7XvqVSQvtReihum3cDLTJnYENJD1KN/8Xdb+ORKTNEkF878RC2yij66FBQre8O+n3a/uwKTl5yFORdqc0GEA3689sC9qFmwGFWnLYTJSmWl0hVdzJ+AY9oXRuO2Xh6Qb9/nGTKp68gMeTZkt6nMjDdro1g7WYDXJsAi6HBuVMYlfZ1YEImCfSO5TSV4LHom/hFejC5kQicKuGxWIb5wZiWmFjpOwF9ByMTn/fdLaPnud7F98s1wZ05FRPJh+8z/w23uDZgb1frqzbal+J/+87BZrkyVgvj4aSX4+GnFKM4YfbJ4QsYC9efpIxyTef14Fsx8b38vdnUMBNs12TYjLqh14prMOszwroRu/38G59IaMgI4MfNarA618HryK1tW8pryTG1GLW6afhMuLL8QoiDC99LL6Pr5zyH3aiPss77weeTcdhsEgwHxmIxnfr4BfW1BlM3IwsVfnknX/eSYRBMy3t3Xy0d+vL23Gz3+wXJMbDLZS3J6cYVzP+YktiKjd0NqQln27m3Q67AuowDrHZnYjCj65FCqXn1pNzCpVcW8LgtqmxOweLSfi+mt8Dkq4HVUwJdRA5+9FLIwssyN0aJDdokduaV2XreeTTTrzKGA/XhCwfk0zbjZ/Oq/sX/9arTt3gU1OXEFUzxlOi9ZM33ZeYf9+9wdQR6UZ1l1DKt5tfCyCj7D+cFK2DR6G/HY7sfwQt0LqbvbrKb856Z9DlfVXMUna0nVzt73mhaQ3/8GkAwMcnnTtYD8jE8A1tHLXciKiv3dfh6M39zcz5cHegJ8Eg9n1I//e/OXcMRDeHrhNQhd/gmcXpWFJVVZyLJRjU4y/rR7wnhnXw/W1Pdh6qO/x1l1a9Foz8Oty76BhKiDXhIwtcDBs+tZrfo5pS6UZloOfpLZ3whseRzY8k/A2zy43+QEJl8KTL8SKD8L0BlSQfrHdz/OM+nZjbWBm2mfmvwpfHzSx/n6aNiJ76bXmrD5tWaeSc9ezpQzCrHgkoqPnBR66PfWwN/BJpN97cHf8XVR0qFsxizULFqC6vmnw2yzH9ExJac2upg/diz43tPkR+P2XjRs60Vf6+BE1Yw11ouszk3I6d0Gh6+RnTmiqdSMd6uiWDNZQK9TgAQBSxQ9Lultx9mhMMyqioRkwfumM3GfeyE2qJP4JQmb+Pq6BSW4bn4p8p0Hv6lHCDk8oU2b0fi1b+KD0hsQsJcgJvTjqdm/x2Krgtsbd6IwoY0+a7XPwm+D5+O50CwoEHk/fGZNDq6bX4Jzp+TBkCxDR8hYof584gpEE/w6fENjP9Y19GFTkwcxeTD+wEzOt+OqigQuMm5Hce97WsmaZNAyVbZm6mXA1CvQ6CrA83Uv4sW6F1PJfQybH4sl+C0qWMSvGUIbNqD7t/civHEjf9xQUYH8H/4Q1oULUtcWbz28G3vXdcJs1+Pauxcc9nUJIYd7jr2z3ccT7d7e04WtrUNuMgEwi3F8PLcdH7PuxbTIJtjcOyGocipY36LTYbPNhc2ZBdiiA+riyZ9XVeR4tWB9baeAad1GFLZHIcVlrW69tRA+Rzn89hIEXJUImPP56NUPM5h1yC628aQ5NjckW7IEW4PpI+a3IycEBefThN/dC3tmdmr7H3d9nU/0yuRVVvN6zpMWnwV71uBzDgfLln/5/m1QFRWiJGDmsmKc9rFyGC0j79axDnBNxxr8Y9c/8G7bu6n91a5q3pFeUnkJ9GzCVm+rFpBnrWHV8I45q0bL7J12JZDLhsQPissK6noC2NXuw+4OH3a0+bCt1TOsfvcAFrC8Y8NjqN72PsSaWtQ++zSfaJOQU0XC3Y/9H7sY8PRj3bJP4P7iM4fdmR+QaTVgVrET0wqdmFLg4FmqZZmW4XXo2N2q1g+AHc8Cu54fnFSJMTqA6uVA7UVAzXmAJZNPHPvsfm3ES0dQe65BNOCC8gtw3eTr+CSyo90Q8PWG8f4zB1C/uSc1oc11dy/gd+2PhKezg5e92bf2PfS2JCe85YF6CSXTZmLZDf+FrGKayCkd0MX80WHzwLTscvOb6i27+/k8MYNUuAKNyO7cjOy+bbCEeyDrROyrNOGdygg21GgZ8jqIOF014LzediwLheBSFKiCiAPWuXgkMB/PRObzWvLsq4CVrPn0wjIsm5RDJTUIOc7iXd1o+O/v4n0sQ8iaD1XpxZOzfoeAPYRrdDm4uWELcuLa+UHQUoKn9Zfg111z4YM1dZ5w+exCXD67iJ8vUHkpMhaoP58Y2PU+qxO/sUkLxrPlnk4fhgzCS43iuaBCh4vs9ZgR3w5z63tA797hT3IUA5M/lgrIv9nyNt5oegO7+rTR/gNz011SdQmurrkaVa4qvi+8fTt67rsPwXe0eINgNCL7S7cg86abIBoG5+5i1yRb3mjm5ymXfm02SiaPnmREyPHCrtVZkt2aul6srutD05AJZRmbEMElme0411aPGfIe5Hi3QoxrVSkYjyhiq9GALc5c7LTasRNR+JRYqhROcS9Q3cEC9iKmdOmR2xnhWfcsMM/K4fjtpfDbSuF3lPKJZxVh9CC8I9uUDNhrwXoWwGfX64eaO5IcOwrOT1CsTnP7vt1o2LwBBz5YC293J77058dhtGhDWFlgK+T1onr+Ijhz847632EZsY//YC0fFrP4qmo+GcWHuSNuvHjgRTyz/xk0sqw7nj8nYGnxUnxm6mewIHcehI4twL5Xtda5ffgvyKwEpiUD8nnT+F3Ebn8Udd0BXuaDBeLZcLj9XYERd+EZq0HC7FKXlk1cksHXTRvXouWLtwCiiPInnoB5xvSjPgaEjOWQ9vY77uDDMiuefx7drjxsaWGjRDzY3NKPnW2+UT8TFoPEM1RYoJ4F7Cfl2VGVY9Mmm1UUoHkNsJMF6l8Egt2DP8juuJcu0spIVS1HPLsarze9gUd3PYqdfTtTT5uaNRXXTboOF1ZcODgKZoj2Ax4+2sZgknDZ12YfUyCAzYuxf91qHqjvaWrgkz/f8uAjsLoytH9r325IOj1yK6oo4DAB0cX84WEjVjrqvDwY37zLPSI7XqfGkNG7E9m925Dl3glDPIiYSYctVQLer5b5MmwUYBAkLJF1PCC/NByCI3m13WafhSciC/C4fy564UxdeF85t4hnyZdkUvkMQk70RLHNv74fb+3KR9icA2O0G2+X34ft5T4YRQM+YSnDTXWbkB3q589XdCbsyliO37oX461guVa7GUBZloWXnGKtJo9GopGTh/rzUzMQ3+6NYHurFzvbvdje5sWONi96A8nSs0MUZ5ixrEjBubZGzJZ3wNG1DkL3YJB92HVGzfmQq8/FLknBe23v443mN7C/f3/qaaxUzZLCJXy0PYsnsOQ+VZbhf/ttuB/+eypTHpIE1zXXIPvLX4I+L2/Y6173Yj02vqIl+Jxz/WRMWVx4wo4TIQfT2h/ipZZZoP6DRjda+wcnQGYkyFho6cDFzkbMkepRGt0Lm78h9Tg7C2/VSdhpNGKXIxs7zVbsQgwBVUu60cdVlHcDZd0qb9W9ehR3yzBGZCiCiKClgAfpg9YiBGyFCNiLEdOPXm5S0olw5ZnhyrMiI9+SbFYe/9MbaQLl44GC8xOsfnz95g08IN+0bTOiocG7bKz0w9Xf+Z/URK9Hg032umdtJ+o2dePir8xKZd5GAnGYbMOzzhVVwbqOdTwg/1bzW0go2qQYFp0FV1ZfgU/ln4HSrj1aZnzDu0BEm6laIwAlCyBXn4/2vKXYlShGXW8QB7oDqOsJor47MGyimKHsRl0qO5jVip9dkoHqXBukIVnCciCI+ksvRaKjA5k33oi8b9151MeEkLHETi5bbv4vBN97D5YFC1D694eHBaBZzbvdHX4+goTfxGr38Rta0cTIgD2TZTXwIH1VrlVb5lgwValDbvvbEPa9AnQPBuBTEzCziZgql2G7Kw//an0Lrza8iljyDj6b1PljFR/DFdVXYFrWtGGvjb12NrkkK4M18D3yyp+2Y95FZSidOnqZqo/S39GGjv17MfWsc1L7nvzRXWjZtR22jExUzJ2PqnkLeHb94cyjQcY/upg/+DDa3hY/Wvf2o22vh98QS0SHjyJzhNqQ0cOC8bvh8DVAVBV0F5ixpiyKzZXA3mIBsiQgQzTgzEgCZ3q6cWYoDCsbacMmsbJOxguJhfi7dx7aoY26sxl1uGh6Pq6aW4yFFZnDR+gQQk64ztfew8tP9iCid8IU6QNMj+OPp+1HTC/AKBlxmb0G17fXo5ydgycFHDV41XQBftMxC+1xLZueYefTl84qwPlT8/m5NCEnEvXn41skLvNrcVYudl9XgAfhWbkOd3BkIJ5dd88r0ONjWV1YaGhERXQ3TF1bAF/ryF+cOxUoP4O3zrwpWOPeidXtq/loe290sASITtBhQcECnFt2Ls4pOQdZZu1aId7eDu8LL8DzzLOItyZ/v04H58UfQ/aXv8wnfP1wssKqx/di92pt5O/iq6sx57zS43y0CDk63b4INjX3Y1OzB5ua+rGtzcsnmx3KjhDmm1qw3NGG2VIDyqL7YAu1pB5nz27S67BPr8c+kxn7bS7s00loU7URdAIriePRAvbl3Vot+6oeEdn92nVCXGfVAvUsYG8tRDC5rkiDo04+zJZh5MF6V74VGXla4J4F7VmZKIGuBQ4bBedPYYl4nN8l1pu0uq1bXv8P3vrrH1OPm+wOVMyaywNSlXNOg9EyeMJ9JFgQrX5LD9a9UI/+Tm3ozXmfn4ra+fmj1pJ/ueFlvFT3EloDgx3wdFcNrrZV4yJvP6yN7wO+tmE/F9fZ0JSxCJtMC/F2YiZ2eg1o90R4zfjRsM84K01Tnatl/7I629MKHfyu/Edl4Sb6+tDxne8iWleHyhdfgJgcTUDIqSjW2or6S7SJUiueehLGmpqPnGS2sS/IT6jZiBMWvGejUNgQ1INhtWjZZ2uuw4ezsRGzw+tQ4NkESflQGZ2cyegvW4TnTBKe7N+GtlBX6qEqZxUur76cl6/KseSM+DdWP3MAm99oTk0au+jyKuRXahm4R0tVFLz8+1/ym5bxSHjYzcrC2sl8MtnTLrnymP4NMrboYl7DSsv1tQd4IJ4F5Nv3exALD7+JbUgEkdm7A5nuXcjs3wNDPICYScL2chEbKmRsqRTQ59D6z0mCGWf5vVjqc2N6NMYndVVEPRrtc/F8aBae9M9AJ7QLY4Mk4syabFw+pwjnTcmD2UDZM4SMJU9zL57/2VoEFQsMMR9mtDyC18+J4KmCZj66jP1vWfZsfC6sYPaeNyEk535SBQnduYvxorwE93fUwiMPzgtRmW3FeVPzcP60PJ74MjTphZDjgfrz8TNZa0NvMBmE1wLx+7v8aHaHRpSmYdh0FYtyYljm6sZsYzsq5Ea4fHshshI1Q+a14wQRyJkClC+BUrYYDZkl2OxvxObuzdjSvQXN/ubhAT+9DQsLFuLskrOxrGQZnEbtuiDR34/AipXwvfRvBNes1cpzsvN7pxMZ116LjE9/alim/NDymq/9eQe6m/xayb1PTcK0M4uO6/Ej5HhigfmBUSlsRPyOdi//XMbl4R9GJwKYKjZjka0TcwxtqFKbkReph04evP4NCgL2G/TYZzBgv8GAfRY76nQivNCC8saYikI3UNSrorhPRVEvUNInIK9fgagIiJgyEbTkI2TJ421gPW44+Cg7SS/CkW3mJXEGmoMts82wZ5sgUZmcYSg4f4qVqums24+WndvQvGMr2vfuxlmfvQlzLriEP+7r6caLv/kpKuZowfi8qmqI4rFdJLOL/DXP1aG7UZv8kWW5sszW6UuLoNNLqUkiX2l4BS/XvzystIWN1aBWbLimpx3TA93Dv2igwxZ1ElYlpmG1Mg3b1ErI/PJ/OLNe4lm81TyLl2X02nj2Dht2a9Qd/d/GbjjIfX3QZR9ZjX1CxiPfK6/AOGkyjJUVR/07gtEEPxln8zZoo1QCqOsO8n2jlcYxIoa54n6cIW7HUt1OTEU9RD64TsO6+fcySvDvzCysVL2IJie3kQQJiwsX46KKi/iJts2gZeOxmtcbXm7E9ndaoSS031M2PQsLL6vkZbOO9UZm667tqNu4Hg2bP4C3W7tpUDl3Pq781g9Sz9u56i3kV9cis7CYSuCcItL1Yp6NZOtrC6KjzoO2fR607/N8qG48+M0zl3sfMjxaswXaoEpAY5Eem4vj2FEuYE8yO94u6LEgrmCxpwdnhcLIlweyZ2zYZl6AJ/0z8Z/IdPih3cw26kQsm5SLi2bk45zJubCbaM4WQsaTkC+G53/6Hvo9gC4ewvRdf4GzSo8nL7ThOXlD6nmTXNW4xliMi5u3wt6+NbVf1ZnRnHM2XojPx986KuGRBzPmsm0G/rlfWpuLJdVZcFkOnk1HyOFK1/58rCZobeoL8nrX7DyfrTf2hfiyyzdy/ipGgIIacwBLXB7MtvRikq4dxbF6WD17IYS1clkjsJrxRXOhFs5FZ04Vdukl7PE38prxW3u2DsuMHyhXMz1rOhYXLebXCmwOK52oSyUjBVaugv/NNxH64AMgeZ7CsNHDzquuhOP880dNumPnTNtXtvFSNvGoDKNFh3NvnIryGRQHIKdmwJ7dPGPBeha4Z8l27CaaNxwf8ZktFnowRWjGaeYOTNN3oBztyI21Qq8MBu37RRGNeh0a9Ho06vVoMBrRYDShVVT59TyrZZ/fDxQlA/YscJ/Xr6KgH7CHtUz7kCU3GazPRzAZvI+Ys/hN/4Nh9+rsGSYtWJ9r4XXu7Zkm2LO0pcVhSLvrcQrOj3OsNM2W115G295daNuzE7Hw8OzWaUuX48Ivf+O4/7ss446VmGjd05+auHH28hJMXVaEgKKg3t2FVa0rsK5rBRqCW6Amg3KiCiwKR3FpwI/loTDMyTvZMVXCDrUC65UpeE+Zjg1KLSLQZkPPcxh5FjyrSVuSYRlczzQjz246bsPiWT1OQUczTxNyJFimfYc3ghZ3iGfNtPSzZZivt7pD6EsOZ2V37E8Xd2GhuBuniXsxVWiCJGiff78g4DWbBc/aHNg+JIgnQYcax3ycnncOzi5ZihJXJvRRBZtfacTuNZ08G5ipmZ+H826aetw6aE9XJy/9Zc/ORuWc+ambm3/+6k183Wx3oHDSVBRNnoriydOQW1HJ69aT8SddLuZZn9zZ4OV14zvrvOhq8PELzKEkJQan5wAy+geC8S38xLwlX48tpQnsKNOC8RGjAD1EzFV0WOTtxaJQCFNiWnY8m9C10zoV7ygz8JSnFluUKiSg9ZtOsx5n1ebgwmn5OHtSDqxG6k8JGc+ioTheum8LOhv8EFQZNfufRlHne5AuXIYXlhrxpH8VorIWiGPzw1yYvxhXxEXM3rcCors+9XtUyYjunEV4G/Pxp85aNEYGS9ywU/SZxS6cVZONM2tz+PxOesqEI0chXfrzE40loPWH4mj3hPmo2PZUi6DdG0aLO4zewMED8LnwoNbUjwUOD6aZelAhdCAn1gqrvzE1ymbkD0pAdg2fGy6YU4tGWxbqTSbsC3djt3s39rj3jAjEMybJhOnZ0zEndw5vs3JnwWHQ/tsn3G6E1q7lmfHBNWsGS9YkGSdPhv28c+G8/HIYiosPeiyadvTxoHxvizbXTkG1E+fdNI0H/wiZKNh7nc31wIL2vPxUl5Zst787MMrnXUU+3KgQO1EltGOKvguT9V0oRQey4p0QeWEcgIX6W5JB+1adjq+zZZvBgFZJQkIALBEWqAfy+7UAfr5HC9yzdVdQRMSYibA5m8+Fo7VshE3a9qHK5DCSJMCWaYQ9y5wK2KdalgnWDOOEy7yn4Pw4+kCxbM4ONnmhXo/aRWfw/fFoBH+48VqeNc+YrDZeL7lk+kyUTpuJzKKSowpYsXq0rG67LxyHJxTnd9o84Rhf8haMwfhOL/S+BDqyJGy2KehKtMBieB+CfQ+8ZjfUIf/srEgUHwsEcUEwhCxFgVu1YaNSi53SFDRbZ8CXMR1ZLifynSYUOE3Ic5p4IJ6VyjAlM/BPtLY77+THKu/uuyHZaZIrMjGFNm1CrKEBrquvPmnZN2wyG3ay3+mLoNMb5sF8T78bWf3bUB7ahtnqHswRD8AiRNGg1+E/Vites1rQYBgSqFcEuIL5SASmIpZYgiJ9DmZ6BOT0ywgWm6DOy4TLoofLrOdLB1uaDdo+i56PsjmW4H13Yz1WPvIXdOzbg0R8eP1MncGIMz91A+ZedFmqXA4vDZBmd/PHo4l4Mc/OB3y9EXQ1etF5wIv2Oi/cbYGBUdspUiICp68eLhaQ9+yD3c8mNlPQkidhV5HCg/G7SgUEzQJ0EDBVETHP78GiUBhzotHUzXO/MQ8bpDl43j8ZK+NT4cVg4I2Vi2OBeJYlz4Juugl2EkzIRJeIy1j5j73Yu66Tbxe2v4va/U9D1AmwXHkp1i8vxGP9b6DOW5f6mQJrAS7KnouPBQKorXsHQr82aSKjQoA/ezY2GebhWU8tXnYXDBv5yuadYPNNLKjIxPyKTMwoclKwnqRtf368zw3YtXu3L4oefxQ9geQy2bp8ES0I7w0jEh9tbikVVkSQK3iQL7gxydiPyWYPKvRuFKIXmfEumCOdEJXh2bfDsCz2jHLEM6vQ4SpAmyMPTQYDGpQI6v1NaPA2oGtIScuhWM34SlclpmROwZSsKZiZPROTsyZDL+qhxuOI7N2H8LatiGzdhvC2bfxaZvgv0ME8exbs5yznQXlDSckh4xxN23ux8dUmnszAsGz506+swtQlhVQDm6SV/mAMDX1BNPPRMdoImSa3tv7hwL0eCRQKvSgRelAidPNlmdiDCl0vitANp6LdZGORyW5JQmsyYJ8K3Ot06NRJ6JEkGOJArgfI86jI8QLZvuTSqyLLB1gSzlTgPmTORsTEWiYP6EdZCSuWWn8IAlRYrBKsLiNs2VZYM02wuYx8m+9zGWFxGmAwnTrJRBScHyO9LU3obmDlYurQ3VCP7qZ6RIPaBK75VTX49E9/m3ruu48/DIszA4VTpsNeUIKorCIYlXlQLBhLaMtkC0TlIesf2hdLBuPDcb4cWjeuJC5iflSH/1hiSIgJlAudmCH3wWbZj4BzN+qtAdQbhweipkajWB4MY3lIhsFYCY9zGiI5M6ArnQ9n8VTku8ywGMbHh8H36qto+/o3AFFE+eOPwTx79li/JEKOu/COnWj8xCcgSBLKn34KpkmTxkegMZJAp9sPf8s2qG2bYe7djgzvDvjiTXjTasTrVgsahwTq2UQ1NVEBpUEnbO7Z6EgUYzfy0Y4s5CYkLIjqsM6YQLdu8EtMLwlwmg1wmHQ8o5cFCNjSzrcl2Ix6bd0gwWbSw5bcpz2m4zcJWa1svaDA39rIb5S27dnFRy1F/D5c+o1vp26aNm3bgpfv+yXyKquRX1mNXNbKKuDIzoUgUvDyZJoIF/NBb5TXP2Xl43hr8o8oUcOYwr08GO/01sPlrYM12IGoAdhXyCZvBc+K31+oZcZbIGJ2TMbcoBdzI1FeN34gGO8xFWOrOA2vBKrwXnwSWlU2rFvr37NtRiyqzMRZNTlYOikHeQ7KLCPkVMf64c2vN2PN83UsPgeH4saUD+6DNdzNz4vtF1yAniuX4GlxE95qfgvBuHY9MjBfzPLsWVgWjmBqw1qI7VuG/W7F6EB7xny8r8zEYz0V2BZmc1EMXi+Y9CLmlmZgfrkWsJ9T6ho31wZkfJkI/fmRYPOqeUIxnuU+sOwPxYbt6wvEhgXhox+aGJIxIYoMBJAp+JEleHnwnWW/lxr9KNb7kC94kam6YY/3Qa9EPvJ1sTIUflcRelyF6Lbno9Pi4AG3diTQFvOgLdiB7lB3atT8aDJNmah0VqLKVcWD8SwIX+2qhkE0INHTg+j+/VrbN7DcBzU6MpvfOGkSrIsWwbr4dJjnnQbJduj583x9Yexb14Wd77Uh4NZ+n04v8nK8cy8og9lOJbgIGYrFC1nQvtkdRBsbXeNhSXZs1E0EHZ4w//4ZmhxkQYSXymGtQHDzG30sC58tC8R+FAp9/DnsKqZHJ6FT0oL1vEk6dOgkdCUD+AFFRLYPyPGqyPFpQfuBIL4rIMIay4Ci14L1PGg/0IwZiJoy+VxYh0MvKbBYRVjtOlizLLDn2mDLtvHJas0OAywOPf9uGA9B/LQNzu9r7oLVboeiqvwNxxpfZyeafJ/Kg9cD+z/8vISi8nIPbMnqMSdkbTuuqIgn2H4FsWgMkb4uxPs6kYiGgdqFiLPnyCqkp34CMTi8PpsiiAja8tHvKMbOorMQSSj8znc0LiOSkEdM/HAs2LC1QrUPp6lRVEWyIMUy+f4S56uI5T6ONSYD1ppN8EmD2TCiqmJuTMZyfRaW58xFQfHpQOFsILuWzbCI8Sre1ob6q66G4vUi60u3IPdrXxvrl0TICcG+t1q//BUEVqyAoaICFU8/BdF6dBNBnxSJKNC9C2rbJuxreQ9veHZhlezDng9duBfGE1gcDuO0iIxA+zfRG57J98eMPdhp8mCT4IAbbDTM8ctkZ5NcGvUizDoR2SxLwOyE3qyN9CltXYP8fW+P+BmVlb5x5UN3+hUwFFfx36FTZej0OhhYk0SeQchuJOh1It8WBYGXBWCT67FMfLZk29r+Idt8KUDiGfva9sD60L86N82CqafaxTwLuve0DATi/ehu8iHQP/KCVFDivEY8z4z3agF5Y8yLjgwBdQXAviKtRE1zLpuoVUCxImJ6OIDZkQjmRKKojcV5MRqW5dppLMcHci3eDNVgnTIZXdD6eybTauDB+NMrs3B6VRaf24VGhBAyMTVu78VbD+/m30OsyuO0yFpkvvdoqg8xz5sH61WXY8s0M17ueBPvtL6D+JAs2mxzNpbmzscy1YAFXQ0wN74LRIaXqohb8tBim4V1ci1ecJdifbgQCgZvWrP+rCbXjlklTl4OZ1axC5Py7XzieZLeTqX+nAXWw3EZgQhLgovzJBRtXVv6IvHUuj+5f3DEegzuYIz/jEaFGVHYEIZdCPOlTQjDzrdDcCIIlxBABvzIEPzIloLIFoNwIQC76oNBjX3062XHVxThkUR4jTb0WzPhsWbCbbKhV29Etwj0qnF0xwPoifanyl0dCitJU2grRIm9hAfiK5wVvJU7ymELJBBraUG8pQWxZrZs5stYfT1k78jyNgOTuZpnzIB55kyYZ82EaeZM6DIyPrqET2cITdv7cGBTd2qOPMZo1WHq4kLMOreEB+EIIUdX337oqBw2On7oiJ2Bm4fse26ADSHkCf08eF8g9CEP/cgWvMgWfNoSXmQJPpjFIHolEb2SNLzptGWPKCKYkICwCEcAyPQDGXzJgvcCnGEbD+AbZRfiRheiBieibMmbE1GDC7Lu8K+LRSRg0idgMgmwWiQtcO80wZplhTXXwZvFYeS18PWmYxuxfzBpG5wv+fqTEI0jJww5EoKq8PqsA6b5diEv2gV7IgBnwgdHwpc64Y2IBvy59CZeCoE5t+ctOOM+9Bhz0GPIRo8hC25DJpRDTJowFCvhoGWHasuhmaJ8n15EjuhDntqLrEQ3MhJdcLDXFmmD0d+Kpq5ibPFfAneijP8+VYijNXs1Vpa8jaDRk/p37IIOi61lWJK/AEtrr0Rm9uTU33AqUGMxNH72s3yInGnGDJ41L+ipdjSZuBL9/Wi44kokurrguOxSFP7856dWsE1R0Nm5Ce8ceBGrOj/AunAbokOyc7ICBVjauhw5/fMgJC/4iwzbMcf5CnJy/YhYCxEwFcJryIfbkI9eKRddyEGvbEUwpo04GmhsRBE7mWCjiiLsJuiow4BHkpQEsuN9yIn2IJe1WA8yY/2QkjX6/lV4Df9uZ2Z5t2KJey38Oht8Oge8ekdqGZBs6DNkInGYd/4PR+PPLkY6Ga8X82y+BG9vGH2tAfQOtBb/qIF4qAqsoU7YfU1w+LVmC7TDbUugrkBAfYGAAwVAfb5WoiZLAWaEQ5gWi/GM+GnRGDJYqSUAXl02dgg1WB0px0a5CtuVCgRhTv1TldlWzC51YU6JCwsqslCTaztu87oQQsY/9h305sNsVJiWIFRUasRU9xuQX30GSGgX16LdDuell0B3yflY7ejCytZVeL/tfYQSodTvYZM0zsqehYXWUiwMhzCjfSf0LesBZfACnZH1NnQ5ZmIbqrHCW4hVgSJ08huEg987LDA/pcCBGUUOTM53YEqBHbV5dppoOs0M9OcNDXVwODOhiuysSoTKKyALw5LltPXhCXUsYD6QBKcttRZLfGibPZ4Yvh1NyIhEE4hGo4jFo4jHYojHo0jEoojH45ATMV7yUGYtEQPkOPSQYRRiMCHZkuvm5LZZiMHIt6P8sYH9FiEyIhCvS54/joZ9oqKCgLAoICiICLClyJYigqKAAEvuk3QIGiwIGMwI6k3w6/ToFwAvFPQrUfjkyCEz3UfDar/nmHOQa8lFkb0IRbYiFOtzUJiwIyckwdofRaK7O9m6EO9Krnd2QgkNfleMIIowlJXBWFsLY00Nb6ZJtdCXlX3k9YpWBjjM5+Bh8+K17nYj6B1yc0IACqtdmLKkANVzc6EzjN/kQUImEnYdPTRY3+2P8nI62migOL8hOXSEELv+ZiV02E3HHB649yILyaXggyt5U5I1O4IQpSASujACkoJ+SeKT2HrYUhLRL4iIRSUkIiILukKICLCHBDhCKpxBE2xRJy+ho1ec0KkuJPRaID9mdCKmtyNmcHxk/fvRkqgkNQgJYUhiFJIUg06fgM6kwmiRYLTrYHJaYM2ywZaTAXthPoorPrqiQdoG56fc9ncYTGYeTNGayjtGHWT0mfNTWYqlvv1wRtwwy2GYEmEY5ZC2TIR46YWV82+DXidAJ4qYvuNJZLgHazYy7G5NwpED2Z6D0PwrYDAYeM1Wlj3JhnqyLEyTLrnkjWVrsn3aOttn/PDjShhSsBsIsNY1uPS1A94WwNsK+NoAeeSd9A7RiBe7f4dEIo9vx6QIduWuxvaClQgavRAgYEZGLRaXnI0lRWfwSVoGZkk/FXXdcw/cf3+E342veOYZGIqLxvolEXLChTZuRNP1NwCyjIKf/O9Jqz9/IoTiIXzQ+QHWtq/G2rb3cMDfzPc7wzmY3XYuJvXOh6hqJ99WywZcnHEPcuRRLnIMNsBZAjiLAXseYMsH7PmALS+1VKy5iMLATzBYRtTgko1ikhGOaaOYtKWCSEzmI6dYVgG7eEt4eqC4uxDOq0FckPgFon3LS3DWrz3o3/f+9OvhseTyi83C7u0ocu9BRGdBVDIhJhoQk4yICAZERSM6zEX8Rq+sqjAkwtAnokgIIq/3y0ZeJSBi38+vQDoZD8H5WCQBd0dwMBDf4kdfix/x+OinV6w8zUAQngXk7YEWuG1RNOUKaMoFD8gfKBDgtQkoSMiYFI2iJh7H1KgWjM+TZR7WckvZ2KuWYWOsGDuUCj55aydYSQkNK+PE6sSzQPyc0gy+nmGlId2EpDt283DzG81Y/+8GyAkFEis9c1Y2ynreh//Zp4dNvKgvKuJlb8znnYPtOWEeqF/VugodwY5hv5NNKDsneyZmGbIwKxrF9O4GONs2AdHBTNYBUWMW2syTsVUpxypfITZHC9Ci5g7LsGfYvFQsWD85386z69nInopsKy9BRyZuf/7bzzwBmwSIMrvWDkFQWKA3BJU1IdnEEBTWdEEouhBUHVsPAwYFCnt7SCpvKruEFVUIOla+WOXzlmrX/Kr2FKjQqyqPBeiEwXPHob03G4F2KOynZIEF0QU+QWJCECAPrENIPTb0ObIg8ID7QIsMLEUJUVEc8pjKg/PHi0OyIVdwIBd2ZKkWZMsWZMOKTMUCV8IAR0IPa1iBKRADvAHI/f2QPR4kPP2Q+z1QwweZEPbDBAG6gnwYSkqhLynmS0NpCQ/KG6qqIBo/OpM9HpPh6QrB0xni51ZspGFPsx/R0PAjIulEPslr5ewcVM7JoSx5Qk4BrOIIK7WdCtgHY6nkORa415o2AomPPkqOSIpFgpAiHujjHjjUAJxgAfwgX1qFCB9xZEUIejEESGHIujASUhSKGOelu2NiAiFZRDwqQk4G8xEVIUZN0MWcMMQcMMh2GGQHdKodIhuZL9qR0DkQM9gRNzggS0c3EucrD57zkc9J2+D8/155PkyjZFCzyVi//o/nUtvP/eJ/UL9x/UF/31cfegJGi1Y2Yte7K+Dt6oQjJ5e3zMJiWJyuQ98FZnffw/1A2J1c9gOhIet8uzcZgE+2IbUgDyUgStjpysc2fRl22APYoUbQrURw9oFPosQzBdsLVmFX3mqU5RRjXu48nJZ/GhbmL4TL5MJE4Hv9dbTdppWwKf7jH2E/Z9lYvyRCTpreP/0fen77WwgmE8qfeIJnpUwEveFerOtYh7Uda/nS745gVvsyTO5ehPWlL/PvtSLJgjmKBTNCEmaEm1Hj64bpcLs69v3HgvXWHMCcAVgyAUsWYE4uU9vJx9iENYeoM88mjw30u3nf4OnuhJc1tt7VgYDbjU//9DewurRhuyv+/mds+s8LB/1dN/zyD8guLefr7z/5GNY+889hj8+7+HKcff3NSCcnMzgfZSePnSEeiOetxQd3mx/BwOgZb2xSNWuwHbZAKy9RYw+0Qh9pQ3tmBE15LBCfbDmAalBRHY9jUiyO2mgMtfE4amMxOFgJPUhoEIqxLVGCXUoZdqtl2K2Uoh+Df2+h04SphU5MLXRgaoGDT+TKAlun1KgZQshJxQJfq/65l2egMvZME+ZfUo5ipQG+556Df8UKqEMyYHUFBbCdeSasS5bAPaMY6/07sL5zPdZ3rEd/dHipTqbCUYFZ9lJMTQCTAh7UdtfB1rMXUFmRjeFk0YgeUznqhWJsiRRgQzgf+9UitKvZwyacHfi+q0wG6itzrNoy24YCl4kmn50A/fkvb3wRZsNRlGRUFejkCHTxEF+ySdOHLnWJCCQ5DKgRQGVjMiNQEIaCCGRBawkxCkVggRwVsgQkRPbexOjrkradEIXUOjvTVJPdLlvyM0/h4PuV5D5B5fcQICqDS+lD22xpgh5GQWts3axIMMoscU+EMSFALwP6BGsqdKzFFYhxGWIsDjUYPvzg+qHo9dDlZEOfmwddbi50eXnQ5+Vq62xfXi6/qScaDp0MIMsKgp4oH80T6I/wGvFs3dsd4uda7Px+NCwYn11iQ1FtBoqnZKCg0kkZ8oSkGVVVB5PnBhpLnkuuhwbWY4OPs6S6UDQBIR7kTYr7IcTDEBPJJkcgJkJQlRBk1Q9ZDUFhTYgArF+JRaGPRSFFAClughQ1Q0xYIMhWCEqyqTZAsEIVbFBEG2TJioSe7RMpOP9RwXmLyQRR0kFkdX/5UoLBbMaNv3mQr7PyCptf+zd6m+phtlphsVlgsZhgsZpgsRhgMRlgNokQlJhWOzkRAWJBrUUDQMyfXLJ9ASDq15YDj7PA+2EG2kfNArXlalmftlz0WlzYp9djn6hgnxzAzkAbEq12TO88EyWeyXh65q/QZ22DJEiYap2BWYUzcFrRPB6UnyjB+A8LrluPtm9+E87LL0PeHXeM9csh5KRiQeGW//oigu+9h6ybb0buN2+fkB1zW6ANW3q2YGvLdmzp24K9/t186G5Nz2k4u+6T2J+9EXvy18CRr2CKJQ9TJDumqnpMisdgCbAbn12An41A6hx1tNFhMdgB42jNMWTdBugtgM4I6MyA3qQt2baeLU3o7nKjp70LwWAY0XAY0VBEW/L1EC69/S7YMrR64Wue+Sc2/PtZJGJxKLKWRTTv4itw9vVfQDo53sF5llEa8GgXh57uEPoa+uBu9qK/N4Zw9OA3YQwxH6zJADwLxBsjrXCbu9CepaItW0BbFtCcIyDqkFEuJ1ART6AiFkdFXGuFbEg9zNivFKJOLcQBpQh1agFfb1LzkOAV5LUJW6tzrajOtaE6x4aaPDsPxlNGPCHkqL7zVBX71ndhzbMHUuUhMgutmHdhGSqm2hFe/T78r74G/8qVwwL1kCSYZ8+GZcF8mOfOQVuZDVtD+7G1Zyu29W5Dk69p1H+vyFqISeY8TIIe1SEfytytKOupg4ldR41CEXRw6/PRjDzsjeVgfzwHjWoe/15sU7MRwWAGG6vQVeA0o8hl5jcntWbhy6IMM5/gmo1CJuO7P9/05kroYirC3iAivgiigTii4QTiYQXxKMuoFpFISEjIesiqgRWXgSIc35KlLKAvscA+K10gRyHKMUhKDJIcS65HIcnJx5L72eP8MTk6+HNKHKKSGLJMQFATg+tHWGrmuNHpIFmtfF4q0WbTlskmuVyQMlx8yWq+a9sZWnO5+PMHbvyz749EjP13kfkoQraMR2S+jIbjiATiCAe05dD1cCCGkC82fIjCKFjd+Mx8KzIKrMgtsyO3zIHMIiskieaoIISMb+z7kZdbiyXg7+lGbmnxR/5M2mbOe35YBiebH4DVaVVZk7WlIg+unyysbj0LkLNMzIHGMjJT25mpQLzXaEWTEkZDqBP7+velmjvi5r/KFLeitmc+pnWeCWc0m+9jgSrjWR7MW16BKVlT+NDTdJHo7YXkdFKdeZK29ef9r70O17WfSJsM2kAsgG0927D5qU5gz+CNx15LKx8ptD9nA+JSlJfwYhNZVbuqUemqRLWzClWmHFSIZljCHiDUlxzF5B5lPTnaid1sPZlYX8HKjLFx2WzJJuIW2eBsVpNVI965H+nkaILz7LQn5I2hv8OP/vpuuJv74e0KweuJIxDR80J3B2OM9sMS7IQ11AErK+uQ6ITH3ImOzDDasgS0ZgGeTBVWs4wiOYHieAJlPADPAvLsYt2EZjU31VrVHNSrBTwY3w32fhX4/DGlmRaUZJpRlmXlQfiqZDDeaaE5Uwghxx8rIbF9RSs2vdaUKhthyzBi5rISXr/ZIMkIrV+PwLvvIfjuu4g1Ng7/BYIA46RJMM+ZDfO0aYhVFmGPK4St3l3Y496Dve696Ap1HfTfLzDnoEzvRJkqoTwaRpG/BwXuVhTEwnAorOL46AKiHV3IRnPChXYlE+1qFjrVTLQjC72qE32qAx7YUiVznGY9cu1G5DqMyLWbkuvJpd3Ib3S6LHpkWAyUhX8K3Wxn5ZnY+5aNcGPLWDiBWEQLGPP1YAyxUAzRYAzxcDz5OGsK4iy4HFMRi7P69Sf3XFlg70xVhiiwd6hWalcU1MFtQdVO/diTRXa2J/BtdkrPBm0KPMFQTC1FnaRt6yTetPNE9gvYtg7Q6SHo2fmjlubPzx3ZkoWDWA1/ReXHUk6oUGS2VKAkRu6T4wpiLBAfZTGTo//7RUng3zO2DFNq6cwxw5VvQUa+BWYbleIjhKSPtA3Oe79th8N4hB0wC4iwGX91Bm3JJg4Ytm0E2DA8liHJljybkq3bBpdD183JgPyHyiL4Y360B9rR6m9Fg6+BZ58MtIEg/IeZ4zZc0HID8nqqISja79KbJUxdUogZS4vgzDm2yW9PFWo8jlhLK4yVFWP9UggZd9jXfboE6ZnOei+2r2zFgU3d/OKCUaQEmvK24fXSR6CyccSjYJNelTnKUGIv4a3YXoxiWzFft7Ds9wEs0y/i02rqspFRw9oo+xJhIB7RRlmxFg8PWR+yT4kf/R/9Qy/S/WKevc99nT3o3N+EvsZO+Do8CLjjiAQFRGNsSjYXFPHgF3yCIsMU6YUl3ANzqBOq0omgvhNuSye6XFH0OVXIDgU6m4xcSQvAFycSKIknYI6bEZKd6FSz0KVmokXNGRaM98HGa8HnO0zId5pQ6DSjNMvCg/EDjQWG0ulzSggZPyLBOHasasW2lW0Is8xWFkDTCaiYmYPJp+ejZGomz1qNtbYi+P5qhDdtQmjTJsRbWkb+MkmCsbISximTYayuQbwoB20ZCvZYvNgTqEODt4Ff57DrnkOxSEYU6GzIhw4FiQSyIwFkBd3IioaQKSvIkmVkKjLsyujVwWWI8Kg29Kl29LGAPezJoL0dPtUMPyzwqVb4YYZftfBttlSNdpgtVh6oHwjYZ1j0fKJaq1EHm1HiS21dN2yfxaDjc4YZWMCUJt0+JeaQ4VmOCQWxcDILPCIjEWONBe+1dRaMTm1HR3ksrvD92j6F7x8IZrPgNlufqPRGSWsmbWkw6WC262GyGWC26WGy6pPb2rrVZYTFboBAnw9CCEnz4PyB9XA4nMlMRHbrmd9+Tm5LQ9ZFLQjPAu+S7rhMbshqJvdF+ngGSUeggwfi2cRK7cF2vh2IHzobk82aXu4oR411EmrzqlGbUYsKeyWe/P4mng2YU2rHtDMLUbsgn3eO6aTzf34Mz/PPo+iXv4B9+fKxfjmEjBtyIID2O+6EbelZyLjuOqQTNoR2z9oO7Hy3ndfYLZ6cgTNvKUOdp463+s4m1EX34YDnwEFvgA7IMmXxYH2eJQ951jxtmVxn38255lzopWPMbmYjupSENoqLLXlj60O32eMKIMcH0p60Zf4MpGOffv/H74BZXwBFykLckAlZd+gb0oLKAvBumMLdEBI9iAvdCOl7EDB3I2rug2pPQGdLwGZJIEtVYEkYoU9YgLgdUcUBt+pCh5qJLjWDZ2l2C1mImfNgt1mQaTUgy2pEts2APKdJC8Qng/GsrAIL3BBCyHiWiMu83A27wd3bMnhdYrToUDotCxWzsvnSaNa+z+Ld3Qhv3oLwli2I7NmN6K7dkL0HuVksCNAXFMBQXs7r2Ms5LvQ7JXRY42g2B7FP70ZLoodfG31UnzyUASIyBB0cKmBPJGBPxGBLRGFXlFSzKQosisrnoTEmm0lJLge22QShKstSZl2rgLhqQAwGPmF8VDUggmRT9XwZg55PABqHNjF7YmBdELRtVpdcEqCKKlRJgSoqUEQFqqD162IsATGagBiTIUUNkMJW6OJ23PzXJ5BOxjo4fzKwsIsiq8lg/ZAWH8hOH8xMH8hWZ+X2WEb70KW2juH71OR+ma1rj6UC3wL/P/7ZY/f+tfv/2k5tW0hlsrOa7nypF/mNOHZzju0btq4ThwXi9QaJguyEEHKM0jc4f4wdPzts4UQYvpiPN5b14Yv64I9rS7aPnVD2hft4MH4gIM9+5nBkGDO07E1nGQ/Es8YyObOVArRv82P/hi4+acr1P12cysho2NYLe6YR2cV2pKO+v/4V3b/8FT/LKP7DfRScJ2SI/n/+E50/+h9+w7H497+D/dxz0+74sO/t9v0eflGRX+nk+9j36KPfXY2CGicmLcxH1lQDmiONaPG3jGjse/1wZJoy+Xc4m8/jYOt2vR1WgxU2vY03Vm6MsqWP7wRyurgfungfRNkNVeiDKvYhYXBDNvciYfEibtYjrtcm8IHqAFQnZNGBqCEDUWMmZFMWFEs2dGYXbGaWLanjGZN2o46Xl8myGnggnjWHSU/ZkYSQCamnxY+9azqx74NOhP2DI7tY4C+nxIaCGhcKq10oqHLCbDcM1qLu6kJk925E9+xBtKEBscYmxBoaoPgPnSnPf7fFwutdCxkuJOxmROwG+C0iPGYFXn0c/VIEbjGMXgTRLfjgFiMIG4GoDkiwJrGJN4/vCCRBVflEmwYZMMpswk2BT75piAHGuABTTIUpztYBUyzZ4irMUcAcM8MSc8Ao26FXHJDYhN6CA7LeiajRxVvE6ILCksGSvvLgOUgn6RCcJ4QQQg4mbYPzP377x9Bb9VBUBbIq88bWE0qCL+NKHJFEhLewHNaWCW05sJ5QtZqMR4oFYVj2ZY4lBwXWAl73eGBZaC1EvjV/WOmEsD+Guk3d2L+hG+0HPKnabuyc8+o7T0NeBZ3AeJ57Hh133cWPS+6ddyLrphuPzxuGkAmCfdV3fv/78Dz1NASjEaUP/Q2WuXOR7vau68SbD+1KbbNModKpmaiam4vyGVkwDqnx7Y16ebkxNgltd6ibj37iLagt2T7WdxwNVgPfqrfyxoL1Jp0JBskAg2jQlsl1lpXP1vWink/wzQL6IvufIPL1b8z7BtKxT3/giz+FPdMAQ4YOxlwHzCX5sGYUQDLYoOotEHVGmAwSjDoJJr3IJwVkJQfYksoOEELIR2MZul31XjRs7eUJQWwk2odZnQZkl9iRVWxDZoGV149mjZWyYH0ULx3idvOa9SxYH+/sQKKzE/GOTm29oxNKMHhc/nOokghFJ0HRiZB1AmRJ4FnsCpJZxkOXfJ0/wq+zdAqgkz/UkhVJ2GWYLJn4zV2t2RDXDayzZkfUYEfM4Eg1hY3CPkyiHIQOftz8508hnVBwnhBCSDpL2+D8lAemQDIfe8kXnaCD3cDq1zt4JiRbOgwOvi/DlIFsczZvLBjPl+YsWHSWw86Q3PFOG975516tYkESy/ismZ/Lg0dW52CGRbryr1iB1q/eCrCakzfdhLw77xjrl0TIuKQmEmi99TYEVqyA6HSi/B+PwlhTg3Tn6w3z4fssUD802MCG9V5y6yyUTM48rN/DutP+aD96Qj3wRD3oj/TzEVRsnS3ZNt8f7UcwFuQlzILxIL85fLxsv2E70gldzBNCyNjwuyPoOODhI9JY6+8cGawfwMpfOLLNsGcYYXYYeK1pvnRo9agNZl2qTrUkRyD4+yH3s+aB3O9Gwu2G7Nb2KcEAL9WnBEM8kD+08Vofo+CF3wQdFJE1PWRJry1FA2SdCQnJjITOxIPuQ5dsP3s8rrMgMRB811mhshKoR0ivU2A2CTBbJVicBlhdZlizbbDl2mDPMMHKJsR0GaEzpFdJ0gHUnxNCCElnaRuc/8mKn8Bit0ASJZ59yLIOdaKOL9k2W2dBdJa9aJJMfMky3odusyD88SpFwGrLddR70bS9F+UzslE0KYPv72zw4pmfb+R15GtOy0P1abmwZ5qOw5GYGIJr16Llli9BjUTgvPxyFNzzUwhDJtclhAynhMNo/tyNCG/dCik7G2WP/J1P2Ea04HpvawD1m3tQt7kH3u4QbvrVmamaurveb4e/L8Lr7OaV2yFK4nH5NyNyhAfpA7EAggltGZWjvMXkGG8sIz+1rcQQl+M8w4+N9OI1TFUF7H93zr8zrf5T0sU8IYSMD2wSzb62IHpb/OhtC8DTGeI3v1n5uCMmgNexZjWuWV8rSWyprWtLloXPO9FUfW1tqaRqcg/U7k7wiTiP/+Wujo3Csg1OcJlqdj2s7MaD08hvPgy0dA26Hy7qzwkhhKSztA3Oj3U9O3bSyIJALbvdaN3bj479Hj7DOzN1SQGWfXZK6nn+/ggcWeYxe63jWftd34H3uedgO/tsFN/3ewj6Y5yIkZA0kOjvR/ONN/E6sMaaalQ8/zwEiS4aP4wFFGwZg6OTnv75BnQ1+FKT4hVPzkTJlAwU1rjgyjv8EVFk4vXphBBCRscml2U3tr09YQQ9UV6uM+SLI+RjyygiwQTikQRiEZkvT8aVKQusszJ2LGDOsvYNpiFLE1vqoDcPrEu8xJ3JqhsWiKdg+/FF/TkhhJB0RsH5k2TojOkss+TR765BJDi8NjEb3skCPSxDnmXPk8M4rokE3H9/BBmf/QxEw+HXcyQk3bEAfdvXv4G8b90J09SpY/1yTgl71nagaUcfWna5EQ0Nn3Mkq8iK6763MLXN7ntTsP7Eo4t5QgiZOPhEsjGFXyvFozIUWU02JbWUZRWqnOxjRTYHl8Dn4Uotk9dbbPJ3nUHky4FAvE4n8mx86p/HH+rPCSGEpDNtrD45rtjJZF97AH2tAfS2BHhpGovDiEtvncUf51kYZgmyrKCoNgPFkzJQPDkDmYVWOlk8DKHNm2GeMQOCTsdb1udvoncwIUdIl5GB0ocfGvado0QiEE1UNutgJi8q4I0FB7qb/Gja2Yf2fR6eTe/MtQwLLjzy3dW8dmxOqYOXJcstsyMj33JcSuEQQgghExE7J2G151kjhBBCCEkXFJw/Siz4woZfDtQiZlY+toeXqGHDNvnMQ0MYTGEoigoxmc1x2dfmwJ5ppEDNEep/8kl0/vBHcF1zDfJ/9EO6mUHIMRgamA9v2YKWr96Kol/+AtbTT6fjeggswM4m5maNYTVtI6H4sEnyAu4ob531WhkchmXusfI3tfPzMPeCstT+eEzmtXUJIYQQQgghhBCSXig4/yFs8iA2/HFA+34PPF0hBL1RBL0xhLxRHnhhAXg2PPKmX5yRei6b9MjbHebrbOKfrGIbsopsyCt3IL/SkQrMM84cqiF/xBM1/uF+9N5/v7YtJwBFAahONiHHRd9DD0Pu7UXzf30RhffcA+clF9ORPUws6G51Dtamt2eY8KkfLuTZ9T3Ng42PqmoNIDxZm/CbYbV3/3bHe7x+rS3TyCf8trGWoU0kl11sR3axLfU9yG78DgzZJ4QQQgghhBBCyKktbYPzT97zAUw6y7D6hay+oSSJ+K/fLU09b8Mrjby+8GhYoIW1gaGX8y4qx5zzy3hAngVVyPGhhMPouPt78L38Mt/O+tItyLntNsqaJ+Q4KvzlL9DOsr5few3t//3fiO7fj5yv3QZBpDIsR4oFzzPyrbxNWpifmnfE2xvmN3tZAH5Af1eIL9kcJKyxUmhDzTm/FNnF1XydTaj36N1rUnV0+YR2rIauXuR1diefXoDZ55Ye4zuBEEIIIYQQQgghJ0vaBudZgMRsGJl9qCTY5ENKqtwMK1sgSgLPirQ4DXzJ6gg7csxwZJug0w+WImD148nxFWttQ+uttyK6ezeg0yH/7ruRcd21dJgJOc7YhMpFv/k1un9dBPff/oa+P/0J0b17UfirX0KyaZnb5NgC9q5cC29DFVQ58YXfnAk/L4MTQaA/wtfZCK1IIMbnIhkwMIk4G+HFWvRD/0bIG6P/RIQQQgghhBBCyClEUPk4+fSbCX73hka+ZEF4FnxnzWBmE7XqYDBJlJU9DqiKgvqLL0GsoQFSZiaKf3cvLPPnj/XLImTC8774Ih+tosZiMJSVoeyfj0OXmTnWLyvtsRvHkWACibjM69wnYgoScQVyXAbryVlGPqtpn459utfrhcPhGOuXQwghhJCjQP05IYSQdJa2mfOFNRl0IT/OsXIaud+8Hb0PPIjiP9wHfUHBWL8kQtKC87LLYKioQOutt8FYWwspg0YFjQfsZjKVTCOEEEIIIYQQQiaOtA3Ok/EpsmcPZLcb1sWL+bb93HNhO/tsCDp6qxJyMplnzEDl88+BFTMXWEFzAAm3G2okAn1hIf3HIIQQQgghhBBCCDlGNNMfGReUSATdv/41Gq6+Bm23fxPxru7UYxSYJ2RsSC4XJKcztd31vz9B/SWXwv3YY7zsFCGEEEIIIYQQQgg5ehScJ2OKTXkQWLUK9Zddjr4//wWQZVgWLICQnJCXEDI+KOEw4p2dUEIhdP34f9H0yU8hvG3bWL8sQgghhBBCCCGEkFMWRUDJmIns3o3mm25CyxdvQby5Gbq8PBT/8X4U//530GVn038ZQsYR0WxG2T8eRd737oZosSC8dSsaP3Et2u68kwftCSGEEEIIIYQQQsiRoeA8GROsbE3Dxz+B0Jq1EPR6ZN50Eypffgn2c86h/yKEjONJmjM//WlUvvIfOK+4gu/zvfhv1F14EUIbNoz1yyOEEEIIIYQQQgg5pdAsm+SkiXd0QF9QwNf1eblwXXkFlGAQObffDkNxMf2XIOQUoc/LQ+HP7kHGpz+Nrp/9DLHGRpimTUs9riYSNFcEIYQQQgghhBBCyEcQVFb0O434fD44nU54vV44HI6xfjkTnirLvKZ8/+P/RHD1alT++0UYq6pSjwmSNNYvkRByDFgXEm9rh6G4SNtWFDRccw2M5eU8eG+eOxeCINAxJicE9emEEELIqY/6c0IIIemMMufJCRFraYH33/+G56mnkejo0HYKAoJr16aC8xSYJ+TUxwLvA4F5JrT+A0R37ebN959XYJw0Ca6rr4Ljoougy8kZ09dKCCGEEEIIIYQQMp5Q5jw5ruLt7Wj9xjcQ2bottU9yueC65mq4rr0WhpISOuKEpMFkz/2PPw7vv1+CGoloO0UR1tNPR86tX4V59uyxfolkgqBMO0IIIeTUR/05IYSQdEYTwpKjxsrShLdsgf/tt1P7WGZsvKlZC8QtPh2FP/8ZqletRO5//zcF5glJE6YpU1Dw4x+jZuUK5H33uzDNmgkoCoLvv8/L3gxgteqjBw7w0jiEEEIIIYQQQggh6YbK2pDDpsRiiOzYgdCGjQhv3IjQ5s1QfD7o8vNhW7aMl7cQ9HoU3XsvjFWVVMKCkDTHRs1kfvYzvMWamuB/622Y58xJPd73t4fgefJJSNnZsJx2WrLNg7GmhspeEUIIIYQQQgghZMKj4DwZlRIMQrRaU9sd3/sevC+8CDUWG/Y80W6Hec5sKMEQJJv2fOuihXRUCSHDGMrKkHXTjcP2qfE4BIMBcm8v/K++yhsjWCwwTZ6Mskf+DkGndVNqIpFaJ4QQQgghhBBCCJkIxkVZm/vvvx/l5eUwmUxYuHAh1q9ff8jnP/XUU5g8eTJ//owZM/Cf//znpL3WiSTR14fw1q3wvvwyeh94AO3fvguNn/wU9i05A3tPm88D9AMEg5EH5qWsLNjPOw95d30b5U89hdo1q1H829+mAvOEEHK4Cu/5KWo/WI+yx/6BnK9/HdYzzoBosUANhSC73cOC8U2f/gz2Lz0bTTd8Dh0/+CHPuve9/jrC27Yh3t1NB32coP6cEEIImRioTyeEEEJOjjFPQ3ziiSdw++2348EHH+SB+XvvvRcXXHAB9u7di9zc3BHPX716NT75yU/innvuwSWXXILHH38cV1xxBTZt2oTp06cj3fD6zaycjCDw7VhLC2KNTZB9Xl5yRvb6ILOlx4NETw+KfvkLXmqC6X3gQfT/4x8H/d3RujqYZ87k6yzjNfNzN0BfXJz6twgh5FiJRiMs8+bxBnyRz2XBatGz76xh30eNjVC8XiS6uhBat27YY4aKClS9MniTtuueeyAHAvy7jjenM7Wuy86GsbIy9VxW756+044P6s8JIYSQiYH6dEIIIeTkEdQxnomPBeTnz5+PP/zhD3xbURSUlJTg1ltvxbe//e0Rz7/22msRDAbx0ksvpfYtWrQIs2fP5gH+w50JvvlfT8BhMbPIDG/8MLAjIQCuK65IPT+4ejVibW3J5/FIDvt/qZ/JuPbaVG3kwLvvIdZQP/z3JX8/28j47GchGgza63jtdZ61DjkBNZ7gASk1EQcSCagJGfnf/x4PKDHuRx6F79VXoUTCUMMRKJEI1HBYW0YiqH7rTeiLivhzu+75Gdx///tB//6KF56HadIkvs4yT93/eBT6/AJeckJrpdCXlvJ1yWY77P+OhBByIiX6+xFvauK161mgngXwE+0diHd1wVhdjdK//Dn13H2Ll/DM+9EYJ09G5fPPpbbrLryIZ96zjH3RbOaNldphzVBSwie1HtD969/wEUdsbg3+HLaUREAQ+fd11udvSj3X88yz2nOTjw8sIYkQzRa4rroy9dzAqlVI9PZpGwM3P5NL9m84L7k49dzg2rX8RmvySYN/mCDAUFEO87RpSJf+fGif7vV64XA4juNfQwghhKSvsbpGp/6cEEJIOhrTzPlYLIaNGzfirrvuSu0TRRHnnnsu1qxZM+rPsP0s034olmn//PPPj/r8aDTK2wDW4TMHvnMXbKIWVB9GkjDpnHNSm60PP4zgipUH/Rtqzj8/FXBvf+op+F955aDPrT7vvFTWeudbb8H73GCA6MNMX/wv6JPBGXd9Pfo/+OCgz/V0d8Not/P1cFYWYpWVkOx2iE4HJDtrdkhsPTsHIZMJMZ+PP1d/zdXIu+bqEb8vzhrLyE8+jxBCxhy7CVpZCaGyEib2HTnkIXYzlF3UDawbv/AFnmUvDzQ+ioite6BmZaWey/hYNr7fD7D2IQa3G7Yhz21/9RXEG5tGfXm6oiLoP35Narv54YcR3bNn9D8lMxPV5y5PbTf98Y+IbNo86nPZTYOas85Mbbf88QGEDtI/ZnzqU8j9ZgnsdvtJHw1wMvrzQ/XpQ/+bEkIIIRPBWPTnY32NTv05IYSQdOzTxzQ439vbC1mWkZeXN2w/295zkKBGZ2fnqM9n+0fDyt/86Ec/GrH/nPr6g7+wZMb6YcnJOfznlpUd/nOT2e2HZe7cw38uIYSku7/99fCed2D/4fcHR/Jc5kQ8939+xNtYZJ2djP78UH06y+YjhBBCJpKxyiIfy2t06s8JIYSkY58+5jXnTzR2x3/oXXw2JM/tdiMrK+uQdy3YXXt2ctDS0kJD5em4fCR6v9BxORL0fqHjciLfL+yu/ERFffrxRd9FdFzovUKfoROBvluOz3Gh/pzeW/SZo++iE4G+o+m40Ptl/PXpYxqcz87OhiRJ6OrqGrafbefn54/6M2z/kTzfaDTyNpQrWVrmcLCDTHVs6bjQ++XY0OeIjgu9Xyb25+hk9OcM9enp994aS3Rc6JjQe4U+Q+n43ULX6Keu8f7eGit0XOi40PuFPkfj/ftFxBgyGAyYN28e3nrrrWGZ7Wz79NNPH/Vn2P6hz2feeOONgz6fEEIIIScW9eeEEELIxEB9OiGEEHJyjXlZG1Zy5oYbbsBpp52GBQsW4N577+Uzvd9444388euvvx5FRUW8Lh3zta99DUuXLsWvf/1rXHzxxfjXv/6FDRs24P/+7//G+C8hhBBC0hf154QQQsjEQH06IYQQkkbB+WuvvRY9PT34/ve/zyeMmT17Nl599dXUhDLNzc18dvgBixcvxuOPP467774b3/nOd1BTU8NngZ8+ffpxfV1s6PwPfvCDESVx0h0dFzou9H6hzxF9v9D37qnUn1PfRceF3i/0GaJ+i/qt8eBUuo4ar336qXQMTyY6LnRc6P1CnyP6fjm1v3cFVVXV4/KbCCGEEEIIIYQQQgghhBAy/mvOE0IIIYQQQgghhBBCCCHpiILzhBBCCCGEEEIIIYQQQshJRsF5QgghhBBCCCGEEEIIIeQko+A8IYQQQgghhBBCCCGEEHKSUXD+MFx22WUoLS2FyWRCQUEBPvvZz6K9vR3prLGxEZ///OdRUVEBs9mMqqoqPlNxLBZDuvvJT36CxYsXw2KxwOVyIV3df//9KC8v55+bhQsXYv369Uh377zzDi699FIUFhZCEAQ8//zzSHf33HMP5s+fD7vdjtzcXFxxxRXYu3cv0t0DDzyAmTNnwuFw8Hb66afjlVdeGeuXNSFQnz4S9ekHR326hvr0kahPH4n69NFRn37iUJ8+HPXnB0f9+SDq04ej/nwk6s9Pfn9OwfnDsGzZMjz55JM8YPTMM8+grq4O11xzDdLZnj17oCgK/vSnP2Hnzp347W9/iwcffBDf+c53kO7YDYqPf/zj+NKXvoR09cQTT+D222/nN2w2bdqEWbNm4YILLkB3dzfSWTAY5MeCnRARzapVq/CVr3wFa9euxRtvvIF4PI7zzz+fH6t0VlxcjJ/97GfYuHEjNmzYgHPOOQeXX345/74lx4b69JGoTz846tOpTz8Y6tNHoj59dNSnnzjUpw9H/fnBUX+uoev0kag/H4n68zHoz1VyxF544QVVEAQ1FovR0RviF7/4hVpRUUHHJOmhhx5SnU5nWh6PBQsWqF/5yldS27Isq4WFheo999wzpq9rPGFfv88999xYv4xxp7u7mx+bVatWjfVLGXcyMjLUv/zlL2P9MiYc6tNHR336cNSnU59+KNSnj4769IOjPv3EoD59JOrPh0vn/pyh6/RDo/58dNSfn/j+nDLnj5Db7cZjjz3Gy5bo9fpjvzsygXi9XmRmZo71yyDjICuB3Uk899xzU/tEUeTba9asGdPXRk6N7xGGvksGybKMf/3rXzyrgw2dI8cP9emH/izS55BQn06OBfXpI1GffuJQn37wzyH154ShPp0cLerPT3x/TsH5w/Stb30LVqsVWVlZaG5uxgsvvHDMB38iOXDgAO677z588YtfHOuXQsZYb28v/6LKy8sbtp9td3Z2jtnrIuMfK5X19a9/HUuWLMH06dOR7rZv3w6bzQaj0YhbbrkFzz33HKZOnTrWL2tCoD790KhPJwOoTydHi/r04ahPP3GoTz846s/JUNSnk6NB/fnJ6c/TNjj/7W9/m0/IeKjGarYNuOOOO7B582a8/vrrkCQJ119/PSsJhHQ/LkxbWxsuvPBCXmf95ptvxkR0NMeFEHJkWO35HTt28DvQBJg0aRK2bNmCdevW8TksbrjhBuzatYsOzXH4jqY+nfp06tMJObGoTx+O+vTDR336sR8Thq7R6RqdkOOB+vOT058LrLYN0lBPTw/6+voO+ZzKykoYDIYR+1tbW1FSUoLVq1dPuBIDR3pc2tvbcfbZZ2PRokV4+OGHefmSieho3i/seLAsYI/Hg3QbLmexWPD000/jiiuuSO1nX1rsWNCoEw07iWZ3WYceo3T21a9+lb833nnnHVRUVIz1yxmXWGmoqqoqPhE3GY769NFRn358jgtDfTr16YdCffpw1Kd/NOrTD4769GM/JnSNPvpxSef+nKHr9I9G/flw1J+fvP5chzSVk5PD29EO62Ci0SjS+biwu/HLli3DvHnz8NBDD03YwPyxvl/SDTv5Ye+Jt956KxV4Zp8Zts2+3AkZit0fvvXWW/mNipUrV1Jg/hDY52gi9jvHA/Xpx35cqE8no6E+nRwJ6tMPH/XpB0d9+rEdE+rPycFQn04OF/XnJ78/T9vg/OFiQxU++OADnHHGGcjIyEBdXR2+973v8TsjEy1r/kiwTp9lzJeVleFXv/oVv5s/ID8/H+mMzUnAJiRiS1Z7nQ15Yaqrq3ltqnRw++2380z50047DQsWLMC9997LJ8q48cYbkc4CgQCv/TigoaGBvz/YJE2lpaVI12Fyjz/+OM+at9vtqXkJnE4nzGYz0tVdd92Fiy66iL8v/H4/P0bs5sVrr7021i/tlEZ9+uioTz846tOpTz8Y6tNHoj59dNSnnxjUp49E/fnBUX+uoev0kag/H4n68zHoz1lZG3Jw27ZtU5ctW6ZmZmaqRqNRLS8vV2+55Ra1tbU1rQ/bQw89xMohjdrS3Q033DDqcVmxYoWaTu677z61tLRUNRgM6oIFC9S1a9eq6Y69B0Z7b7D3TLo62PcI+45JZzfddJNaVlbGPz85OTnq8uXL1ddff32sX9Ypj/r00VGffnDUp2uoTx+J+vSRqE8fHfXpJwb16SNRf35w1J8Poj59OOrPR6L+/OT352lbc54QQgghhBBCCCGEEEIIGSsTt0g4IYQQQgghhBBCCCGEEDJOUXCeEEIIIYQQQgghhBBCCDnJKDhPCCGEEEIIIYQQQgghhJxkFJwnhBBCCCGEEEIIIYQQQk4yCs4TQgghhBBCCCGEEEIIIScZBecJIYQQQgghhBBCCCGEkJOMgvOEEEIIIYQQQgghhBBCyElGwXlCCCGEEEIIIYQQQggh5CSj4Dwh5IR44IEHUFpaCqvViquuugo9PT10pAkhhJBTEPXphBBCyMRAfToh4w8F5wkhx92zzz6LO+64A/fddx82bNgAv9+Pa665ho40IYQQcoqhPp0QQgiZGKhPJ2R8ElRVVcf6RRBCJpZ58+bhvPPOw89+9jO+3d7ejpKSEqxatQpnnHHGWL88QgghhBwm6tMJIYSQiYH6dELGJ8qcJ4QcV/39/di0aRMuvvji1L7CwkJMnz4db775Jh1tQggh5BRBfTohhBAyMVCfTsj4RcF5QshxVV9fz5fV1dXD9tfU1KQeI4QQQsj4R306IYQQMjFQn07I+KUb6xdACJlYQqFQKhg/VDQaxeWXXz5Gr4oQQgghR4r6dEIIIWRioD6dkPGLgvOEkOPKYrHw5cqVK+FyuVL7v/a1r6UeI4QQQsj4R306IYQQMjFQn07I+EXBeULIcVVZWcmXDodjWGmbSCSSeowQQggh4x/16YQQQsjEQH06IeMX1ZwnhBxXGRkZfBb4d999N7UvEAhgzZo1OO+88+hoE0IIIacI6tMJIYSQiYH6dELGL0FVVXWsXwQhZGJ57rnn8KUvfQmPPPIIKioqcPfdd6O7uxsrVqwY65dGCCGEkCNAfTohhBAyMVCfTsj4RGVtCCHH3ZVXXomuri58/vOfR19fHy688EI8+eSTdKQJIYSQUwz16YQQQsjEQH06IeMTZc4TQgghhBBCCCGEEEIIIScZ1ZwnhBBCCCGEEEIIIYQQQk4yCs4TQgghhBBCCCGEEEIIIScZBecJIYQQQgghhBBCCCGEkJOMgvOEEEIIIYQQQgghhBBCyElGwXlCCCGEEEIIIYQQQggh5CSj4DwhhBBCCCGEEEIIIYQQcpJRcJ4QQgghhBBCCCGEEEIIOckoOE8IIYQQQgghhBBCCCGEnGQUnCeEEEIIIYQQQgghhBBCTjIKzhNCCCGEEEIIIYQQQgghJxkF5wkhhBBCCCGEEEIIIYQQnFz/D3Oqiphf+/FWAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1749,7 +1822,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4FFXbBuBnN9n03kMaNYTQe+8I0nuXjopSVNTP34aKYi8UQaR3QZogTZAmvYbeIUAgnfS+7b/OWRISICEbAknIc3/XfLs7Ozszm2DOzHvOeV+FXq/Xg4iIiIiIiIiIiIiIHqF8dBUREREREREREREREQkMohMRERERERERERER5YJBdCIiIiIiIiIiIiKiXDCITkRERERERERERESUCwbRiYiIiIiIiIiIiIhywSA6EREREREREREREVEuGEQnIiIiIiIiIiIiIsoFg+hERERERERERERERLlgEJ2IiIiIiIiIiIiIKBcMohPRIzIyMjBp0iRUrFgRZmZmsLe3R4sWLbBhw4aiPjUiIiIiIiIiIqLnikF0KpVSUlLwySefoFq1arC2toa5uTm8vb3RuXNn/PfffyhOxDnWq1dPPr979y6mTp2K9u3bw9fXVwa4PTw80Lt3bxw5cqTQjjlq1Ch8+eWXUCqVePPNNzF48GBcvHgRPXr0wN9//41nZfny5WjQoIH8nTg6OqJLly44efLkMzseERE9G2xnix/Rfo8fPx5NmzaVvxOFQoHPP/8cJdmMGTMwYsQI1KhRA6ampvI77dmzp6hPi4ioRGBbXTxduXIF/fr1g4uLCywtLVGzZk389ttv0Ov1+d6HaAtFm5jbsmjRIpQ0169fl9ct3bp1g5eXl/weZcuWLerTolLGtKhPgKgojB07VjYcgYGBePXVV2Fra4ukpCQZKBajrcWo6+LSUJw/f14GtDNvFr/77jtUqFBBXjS4urri6tWr+Ouvv+SyYsUK9O/f/6mOefv2bRnMrly5MoKCgmTDLbz99tsICAiQ59C1a1cUtilTpsiLOD8/P4wZMwaJiYlYuXIlmjRpgp07d8qbfiIiKhnYzhY/P/30E/bu3Qs7OzuUKVMG165dQ0k3YcIE+ejp6Sl/V+Hh4UV9SkREJQbb6uLnwoUL8v43NTVVBtJFe71582Y5sE28J767MVq2bIlWrVo9sr5WrVooafbt24cvvvgCJiYmqFKlCtt8Khp6olIoICBAdOPqY2JiHnlPrVbri4uffvpJnueZM2fk67Vr1+r37NnzyHb//fefXqVS6R0dHfVpaWlPdcz169fLY06ePPmR91xdXfWVKlXSF7YrV67oTU1N9f7+/vq4uLis9UFBQXpzc3N9lSpV9FqtttCPS0REzwbb2eJHfAfR3up0Ov0ff/whv/dnn32mL8k2bdqkDwsLk89ff/11+Z12795d1KdFRFQisK0uflq0aCG/65YtW7LWpaen65s3by7XHzx4MF/7EW3hi9DOZ3f9+nX9oUOH9CkpKfK1iBP4+fkV9WlRKcN0LlQqde/eXT62adNG9uaePn06a3qUmA5cmETPb15TqTKXx02pFiMAypUrh+rVq8vXvXr1kr3JD2vevDlat26N2NhYnD179qnONz4+Xj6KKVLZiZHh0dHRcHBwQGFbuHAhNBoNPv74Y5l/PXsP+cCBA+VoiP379xf6cYmI6NlgO5s3sZ+33npLtrVWVlYyHcmSJUvke4sXL5bne/ToURQm8R0qVaok913YateuLUfL5TZCToyAF8cV6eIKk0g5IKbwExGR8dhWF6+2WqRxEWl0xHfo2LFj1nqRriZzFP7cuXNR1E6dOgWVSiXTsOb2cxap1sTPR4weLyzly5dHo0aNsmbKExUFpnOhUunrr7+WFwki77ZWq5WvT5w4gQEDBsiUIhYWFoV2rOHDh8vAs2j827Zti2bNmmW9t2zZMjk9TTTOD0+zEgHrAwcOyPyl+SEassK44Mm8cBL50DOJn9EHH3wg33vcdLCnlZm/VEzHe1iHDh3kNENxA15cphQSEVHe2M7m3VktUpRdunQJffr0kflc165di2HDhsHGxgZ//vknfHx8UL9+fZQUIg3A9OnTZXoVMQ29bt26Od7PvOl/7bXXiugMiYjoYWyri1dbndc9sfh5ibz14p7YGCLNjcgfL9LDiHz3osPk4cFyxhKd1yK9zOzZs2XttDNnzuR4PyEhQf58RMoV0bFB9CJhEJ1KJfFHX/SMinxpmfm+RQMpGqxt27bJHtPsPZyi4YmLi8v3/kUBzsw8Y+KCQRAXDO3atcP//d//ZW13+PBhecEgjv9wUYxNmzbJixmxr/zkMf/3339lTtDMHvrCIC6qZs6cKRtr0TNesWJFGUx/mMg9J3qk80v8bLJ/L9G4i4uRx40mE6PmMrchIqKSge1s7sQoOzHDatKkSTK3p/D+++/LuiOiPogY1ZX588t08+ZNo4uAPc+ioeJ8X3rpJVlPZf78+TmC6DExMTLwIEbwNWzYMEewwJgioOL3l/m7JiKip8e2uni11Zn3u5n3v9mJPOBiNL7Iiy5mcOe3k0D8bjN/v4L4nOiQ+OGHH+Q+C0Lcs0+bNk3m0Bc/CzEaX4xKz94pIorWig727J7m3w9RsVHU+WSInreNGzfmmjNz2bJl8r2ff/45x3qRa0usz++ycOHCHJ8Xr8X6b775Jsf6Dh06yPXBwcGPnEuPHj30zs7Oeo1Gk+f3ycjIyMqdtmTJEv3TyjxX8bh06dIc36t169b6Y8eOPfKZYcOGGfXzEdtnJ3LXeXl5PfZ8RP5W8Zlu3bo99XcjIqJnj+1s3sqUKSPbvcjIyFzbUpHX9XG5TY1Z8vKscqI3bdpU1k/J/jOdOnWqPNaMGTNybCuObcz3admyZZ7HZk50IqL8Y1td/NrqV199Va7bsWPHY8+pSZMmueawf9i5c+f03377rXxMSkrSR0RE6P/666+sPPgTJ07UP62rV6/Kfb3zzjs51teqVUvmK4+Oji7Ufz8PY050KgrMiU6lTuaU4po1az7ynphaJogK2NmJXmWRyiS/y9OOlBLTrbZv3y5zfebVQ6zT6eSxRO400dM7ZMgQFKZXXnkFycnJOHfunKyALqb3iSlZhw4dyrGd6HE35udjbA89ERGVHGxncydGYIWGhspRZq6urjneE3k+BXd3dzmFPDsxvd2Yn09marbnTaQAiIqKws6dO3P8exAjGcU1xcOj74z5PsaMWicioryxrX6x2+qqVavKGeTiUaSBcXNzkznwd+/eLb+TSMEWGRn5VMcQs9TFzDORukX8DoTjx4/LGeoib72zs3OR/vshehYYRKdS5/LlyzLfd/YClplE4yKmZIWEhKAo7dixQ06Byiz28jiioRo5cqScniVuTEVOsmdBFFERje///vc/rFmzBmlpafjmm28K9Rjid5FZ0PRhIqda5jZERFT8sZ3NXVJSknwUU80fV5xT6NmzZ466JCWJyBsrzv2PP/6Qrw8ePIjz58+jX79+z6QwORERFQzb6uLXVmf+LvK6Lxa/F5FGpaBEKhbx8xQpYY4cOYKn1b9/f9y9ezergOicOXPkI2ug0IuKOdGp1DE3N5eNbXh4OMqUKZPjPbFO9HqKCthFmb9L5IoThVxEUc3HEecvKl6L6uADBw6UI7ufxw23GJUgGm6RH70wc6KLXn4xul38/B/Oi55XbjgiIip+2M7mTowGE8Qsr8cFNITHFfwq7jnRM4k2vGXLlvK64Pfff88a6fhwXlSBOdGJiIoO2+ri11bnVQtM5IUPDg6WedGftmiqi4tLrt/PWKKTXIx4X7lypRyVLjrRxfd4uECswJzo9CJgEJ1KnWrVqslCIGKq8cNTvUQhEkGMvH74D/6tW7eMutEr6B98cTEgCqiIgiuZDXhuFwui53fp0qUFLgqSl8dNLxNTvsR6Ozu7HOvFzfLixYvzvW9R1Tx7EF3ccIsgupiuN3To0Bzb/vPPP1nbEBFR8cd2NneOjo5yCrhIk5aeni6DGJmWL1+eVdT7cTfmmYXNinMQPTOli5guLm6oxRRv8bt+eMq7IALoxnwncR3AIDoRUeFgW1382urM+11xT5y98Kqwf/9+GfQujHvizBHoDxdxLQg/Pz+Z4kbMWBepgcQo/sd1nD/vfz9Ez0yRZGInKkJbtmyRhSoqVaqkj42NzVp/7949fYUKFeR7mzdvLtRj5lZEpUuXLnL9hQsXstbt379frps7d+4j+9FqtVnFTPr27atXq9X5PvbDxTyftH3VqlX1YWFhOd778MMPC60QSXaXL1/Wm5qa6v39/fVxcXFZ64OCgmTBkCpVqsjvTkRExR/bWX2+CmBmL+p55MgRvUKhkOtFMbP09HT9s5SfwqKZBdKeVNDzYaKQmGjT7e3t5edFYdHngYVFiYjyj2118WyrM4ujit9PJnGc5s2by/UHDhzIsX1UVJT+4sWL8jG748ePP3b/mcW+xe/94WKtmT/TJxX0zG2fot03MzN7pBjrs8LColQUOBKdSp2OHTvK3lExxVj0wIv8ncLq1atlARHxXqdOnZ7Lufj6+srHsWPHyqlQY8aMkaO6xTS0rl27PrL95MmT5YhvGxsb+Pv746uvvnritKfMIh/GTvsSOUwDAwNlURAnJydZJESMLBM58t59910UJvFdRC/8J598Inuwe/fujcTERDmKTRC/q5KaH5aIqLRhO5s30datXbtWjlYTo8ECAgLkSDpRfPP999+X60URtcGDBxfqyGvxvcUiiCnhmevEyDlBnEf2kW8FvX4QhcTEyMFt27bJafiFXfQ8u2+//RaXLl2SzzOLnot1mdPpxe8q+8w3IiIyYFtdPNvqWbNmydlb4vzFCHuRl10UeBX35uPGjUOTJk1ybP/rr7/Kc/nss89yjGoX99MqlQr16tWDt7e3HMV++PBhBAUFyRoly5Yte2TkfkHbffE7mzhxoszl3rdv30eKsRaW6OhovPfee1mv1Wq1XJf95//jjz9mpasheiaKJHRPVMR0Op3s1a5Xr57e0tJSLuL5nDlz5HuFLbde93PnzukDAwP1SqVS37BhQ7lO9Ao3adLksfvJ7B3Oa3m45/idd96R63fs2GHUuY4ePVqOPrOxsZEjyry9vfUjRozQ37p1S/+sLFu2LOt3InqyO3XqpD9x4sQzOx4RET0bbGfzduXKFTl6zsnJSa9SqfQVK1bUb9++XY6ue/fdd/V2dnZGjwB/EjGaLq/v9fDxpk2blusowPz+PgYNGqR/lsQ55/Wd8hppT0RU2rGtLn5ttXDp0iV9nz595HHFaOvq1avrZ86c+djfSWbb/nB79+233+pbt24tR8yLfYjfbUBAgP7tt9/Wh4SEPPa4tWvX1tva2upjYmIK3B6Ln8+zEhwc/MTfu9iG6FlSiP97NuF5IjLWxYsX5ejv7777Dv/73/8KZZ+i91n0Mue3+rYYvSXyyy1cuJC5R4mI6IVSHNrZkkKMShTf6fr1648Ul3sSke+8devWj4yMIyIiehK21c9fQkKCzAUvZpx///33Rn9exA3E7AAx060wcq0TFVdM50JUjIgK5EL37t0LZX8iJcqpU6dkoQ8iIqLSju1s/okiZiK9i7EBdCIioqfBtvr5O3DggEz/ItKyEFHuGEQnKkbEzerDlbifhq2tLTQaTaHtj4iIqCRjO5t/4eHhRX0KRERUCrGtLpoc+WlpaUV9GkTFHiv1ERERERERERERERHlgjnRiYiIiIiIiIiIiIhywZHoRERERERERERERES5YBCdiIiIiIiIiIiIiCgXDKITEREREREREREREeWCQXQiIiIiIiIiIiIiolwwiE5ERERERERERERElAsG0YmIiIiIiIiIiIiIcsEgOhERERERERERERFRLhhEJyIiIiIiIiIiIiLKBYPoRERERERERERERES5YBCdiIiIiIiIiIiIiCgXDKITEREREREREREREeWCQXQiIiIiIiIiIiIiolwwiE5ERERERERERERElAsG0YmIiIiIiIiIiIiIcsEgOhERERERERERERFRLhhEJyIiIiIiIiIiIiLKBYPoRERERERE9MxoNBq8//778PLygp2dHVq1aoUzZ84U9WkRERGRkTSluE1nEJ2IiJ6JtLQ0jB07Fs7OzrCxsUHv3r0RERGR78+PGTMGCoUCU6dORVEKCwvDoEGD4O/vD6VSibfffrtIz4eIiKikWbBgAX799VfMmDEDQUFBqFixIvr371/g/Ymb9ebNm8PCwgI+Pj74/vvvn/iZ27dvo3PnzrCysoKbm5sMAIhAABEREeXfglLcpjOITkREz8Q777yDv//+G6tXr8bevXsRGhqKXr165euz69evx+HDh1GmTBkUtfT0dLi6uuKTTz5BzZo1i/p0iIiISpydO3eia9eu8jqgQoUKmDhxIi5duoSYmBij95WQkID27dvDz88PJ06cwA8//IDPP/8cc+bMyfUzWq1W3mxnZGTg4MGDWLx4MRYtWoRJkyY95TcjIiIqXXaW4jadQXQiomdIr9cjJUPz3BdxXGMkJSVhxIgRsLW1hbu7u2y87t69K3t2xXvGio+Px/z58/Hzzz+jTZs2qFu3LhYuXCgbOREcz4s47vjx47F8+XKoVCqjjisaT0dHRyxbtizH+l27dsHMzMyokfCZypYti2nTpmHo0KGwt7c3+vNEREQv2nWGsdcakZGROTrGw8PD5aOJiYnR31lcH4gbZzESrmrVqhgwYAAmTJggrzlys337dly4cEFeH9SqVQsdO3bEl19+iZkzZ8p9ERERFbWSEjuILMVtuukz3TsRUSmXqtYicNI/z/24FyZ3gJVZ/v/EDx8+HGfPnsWePXtkoFn0Kp87dw7t2rWTqVgyG7jXX389z/1s3bpVTsUSvchqtVp+PlNAQAB8fX1x6NAhNGrU6LGf1+l0GDJkiJyOJRpRY4lpZOL8xSh40QCbmhp+BnPnzkWXLl1kB4Eg9n3r1q1c9yO+g/guRERExVlRXWcYe62R/Qb96tWr+PDDD9G4ceOszmlxA7xv375cPy9GqJ0/f14+F9cRLVq0kJ3jmTp06IDvvvsOsbGxsjP9YeIz1atXz7oOyPzMG2+8Ifdbu3btfH5rIiKi0h070JfiNp1BdCKiUi46Ohrr1q2TQXIxYlzo2bMnlixZIkeTZ+rWrRsaNmyY575EcZHM3mjREDo4OOR4XzR0mT3VjyMaSxH4Fr3PBWFpaYl3331XjqT/999/8fLLL8tpZSI9zNq1a7O227Jliwzy57UfIiIiKlwffPCBzHUqap6IdG+Z5s2bh9TU1Fw/l31mmriOKFeuXI73M2+kxXuPu+EW67PfbD/8GSIiIjLOB6WwTWcQnYjoGbJUmcie3aI4bn5du3ZN9iaL3uNMDRo0kA2hCJxnEqlexPKsiNHrIm3KyZMnZUNcUCIILzoBVq1aJYPoS5culcVNxfPsvd9EREQlXVFdZ2Qe21iio1vkURWd2QMHDpRTsfv165fVCU9ERFRalYTYQWlv0xlEJyJ6hkQw2JipUUXB3NxcPmafQiUKafr7+8PFxSVrnTHpXDw8PGQ+sri4uByj0UWqFfHe44gpXyK/mkj5kr1oiGicp06dips3b+b7O/Xt21emdpk9e7YcTS/S1WTP0cZ0LkRE9CIoCdcZ2bm5ucmlWbNmss2fNWuWvOE2Zuq3uI54uMZJ5uvcrjHE+qNHjxr1GSIioueJbXrxb9NLzm+HiIieCTF9SqlUynxmmQVCNm7ciNu3b8sR6pmjwo1J5yLSwohpWqJyd+/eveW6y5cvy31mH/GenciFnj2HemZuM7FeFD01hihmKoLmkydPlrndRTqX7JjOhYiI6PnSaDQ5XovrBAsLC6OnfovriI8//li245nrd+zYgcqVKz922nfmZ6ZMmSJv8sUNf+Zn7OzsEBgYWCjfj4iIqLTQlNY2XU9ERKVenz599C+99JI+JSVFf+rUKb2tra3excVF/++//xZ4n2PGjNH7+vrqd+3apT9+/Li+cePGcsmucuXK+nXr1uW6Dz8/P/0vv/xSoOOPGjVKr1Qq9a1atdI/raCgILnUrVtXP2jQIPn8/PnzT71fIiKi0qBly5Z6a2tr/cKFC/U3b97Ub9iwQW9nZ6efOnWq0fuKi4vTu7u764cMGaI/d+6cfuXKlXorKyv977//nrWNuLYQ1xiZNBqNvlq1avr27dvL65xt27bpXV1d9R9++GGhfUciIqLSoGUpbtM5Ep2IiDBz5kyMHj1ajiQXI7hF+hSR5mXw4MGyl3fUqFFG7/OXX36RI9zFSPT09HQ5qlxM8cpOjE6Pj483ar+tWrVC2bJlsWjRoiemdBGpXApy7g/LXuFb5G5fsWKFnIZmTIoZIiKi0qxatWr48ccf8cYbb8jp1qKI+Lhx44zej729PbZv346xY8fKmW8i9dykSZPw2muvZW0jri3ENUYmcW2zadMmeWwxgs3a2hrDhg2TM9aIiIjIONVKaZuuEJH0Z34UIiKiQiKC11988YXMc54XEeAWqWqCgoJQq1at53Z+RERE9GgHuGiLRSc9ERERlVytSnGbrizqEyAiIsovUYBE9FYPHTq0qE+FiIiIiIiIiEoJpnMhIqISo2rVqjhz5kxRnwYRERERERERlSJM50JERERERERERERElAumcyEiIiIiIiIiIiIiygWD6EREREREREREREREuWAQnYiIiIiIiIiIiIgoFwyiExERERERERERERHlgkF0IiIiIiIiIiIiIqJcMIhORERERERERERERJQLBtGJiIiIiIjomdFoNHj//ffh5eUFOzs7tGrVCmfOnCnq0yIiIiIjaUpxm84gOtEL4nJ4In7bcx2xyRlFfSpEUlpaGsaOHQtnZ2fY2Nigd+/eiIiIyPMzSUlJGDduHLy9vWFpaYnAwEDMnj0bRf09hg8fjurVq8PU1BQ9evQo0vMhIiIqaRYsWIBff/0VM2bMQFBQECpWrIj+/fsXeH/iZr158+awsLCAj48Pvv/++zy3P336NAYOHCi3FdcXVapUwbRp0wp8fCIiotJqQSlu002fy1GI6Jlacugmvvj7ArQ6PU7ejsXcofWK+pSI8M4772Dz5s1YvXo17O3tZXC8V69eOHDgQK6fmThxInbt2oVly5ahbNmy2L59O958802UKVMG3bp1Q1HQarWycZ4wYQLWrl1bJOdARERUku3cuRNdu3aV1wGZ7f38+fMRExMDJycno/aVkJCA9u3bo127drKj/ezZsxg5ciQcHBzw2muvPfYzJ06cgJubm7y+EDfdBw8elNuamJjI6xMiIiLKn52luE1nEJ2ohEtTa/HDtssygC7suBCBA9ei0bSiS1GfGgl6PaBOef7HVVkBCkW+NxcjwMePH481a9bAysoK7733HgYNGoRKlSohMjJSjiQ3Rnx8vGxIV6xYgTZt2sh1CxculL3Ehw8fRqNGjR77OdEADhs2TE4JE0Rj+Pvvv+Po0aP5CqLv2bMHnTt3xqRJk/DBBx9krb9+/br8LsePH0edOnWM+i7W1tb47bff5HPRARAXF2fU54mIiF646wwjrzXEtUTNmjWzXoeHh8tHccNrrOXLlyMjI0OOhDMzM0PVqlVx6tQp/Pzzz7necIsb8uzKly+PQ4cOYd26dQyiExFR8VBCYgeRpbhNZxCdqITbfSkSiekalLG3wEuB7lh86BZm7r7GIHpxIRrBr8s8/+N+FAqYWed7c5GuRPT6iiC0SLkiepXPnTsne4QzA+iigXv99dfz3M/WrVvlVCzRO6xWq+XnMwUEBMDX11c2cLkF0Zs0aYKNGzfKhlGMPhfnc+XKFfzyyy/5+h7i83PmzMGIESPkPlxdXeX6efPmoVatWlkB9I4dO2Lfvn257sfPzw/nz5/P1zGJiIhK3XWGkdcaehEYuO/q1av48MMP0bhxYzlTzdh2WVxHtGjRQt5sZ+rQoQO+++47xMbGwtHRMd8d/saOmCMiIirtsQN9KW7TGUQnKuH+OnVXPnar5YX+9X1kEP34zVikZmhhaWZ8TyCVPtHR0bLXVgTJ69atK9f17NkTS5YskaPJM4mR4A0bNsxzX6K4SGZvtGgIxTSs7Nzd3bN6qh9H5FUTPc4iJ7rIP65UKjF37lzZsOaHOObgwYPxww8/yNQrY8aMkYVPFi9ejI8//jhrOxFUT01NzXU/KpUqX8cjIiKi/BOzxESuU4VCIdO9FaRdFtcR5cqVe+T6IvO9/Nxwi5lvq1atkmnniIiIyHgflMI2nUF0ohKeymX35Sj5vFvNMijrbAUvB0vcjUvFsZsxaOFvGIVLRUhMjRI9u0Vx3Hy6du2a7E0WvceZGjRoIBvC7ClUbG1t5fIsiSC6SPciRqOLHur//vtPFicVo9Kzj2p/kr59+8qGVATRRWMqerFFcP3hYD8REVGJVlTXGZnHNtK7774r86hu2bJFFgUT+Uz79ev3XNtlMdOue/fu+Oyzz2QeViIiomKhBMQOSnubziA6UQl2PjQBGRodXGzMUcXTVvYANqngjNUn7si86AyiFwMit5gRU6OKgrm5uXzMPoVKpEHx9/eHi8uDtEDGpHPx8PCQuc1E/vDso9FFqhjx3uOI3uqPPvoI69evl3nNhRo1asicaD/++KPRQXSRFz0sLEz2hIv0NNnPg+lciIjohVACrjOyE4XAxNKsWTOZU3XWrFnyhtuYdllcR4jriewyX+d2jZHpwoULaNu2rZz19sknnxTKdyIiIioUbNOLfZvOIDpRCRZ0O1Y+1vZ1kAF0oVklF0MQ/Xp0EZ8dlRRi+pRImyLymYkR34IYCX779m05Qj3z35Yx6VxEWhgxTUtU7u7du7dcd/nyZbnP7CPesxM51MUiziU7UaBEp9MZ9Z1EB0C1atUwdepUGdjfvn17jveZzoWIiOj5EunVHm5rLSwsjG6XxXWESNEmrhky1+/YsQOVK1fOc9q3uGEXxc5FAfMpU6YUwjciIiIqnTSltE1nEJ2oBAu6HZcVRM/UoJyhmMLFsESZ7sVCxbzolDcxQluM1BaNj0jjIgp5btu2DZaWlti1a5fs3TU2nYsoKjJq1ChMnDhRFviws7PD+PHjZSOZvaioKDb6zTffyBzsYpuWLVvi/fffl8cWPdR79+6VudlFdW5jidHoYlqX2E/r1q1zvGfsFDPRyy1G1sfExCAxMVGOjhdEsVIiIiJ6skWLFqFevXqyTT59+jRWrFiByZMnG90uDxo0CF988YW8zhD5WMVU7mnTpuUoQi5mtYlCZ5cuXZKvxTbiZlsUKxPXJpn1WURHfWYRciIiIsqfRaW0TWcQnehFGInu86CHzsPOAk7WZohJzsCViETU8M5Z2JHocWbOnInRo0fLBk80PmIEt0jzIvKIi+C6aNSMJRo+MapcjERPT0+XjZyY4pWdGJ0uKmlnWrlypWwgxXFFwFoEwMXxRW7zTMOHD8fNmzexZ8+eJwbRP/30U4wcOTJrNH1BderUCbdu3cp6Xbt27UcqkxMREVHuxAwxkZ7tjTfekFO0J0yYgHHjxhm9H9FRL2aYiZopYuabSD0nUriJ6dyZxLWFuMbItGbNGkRFRcl8rWLJJK4zxDUFERER5V+1UtqmK/SMABCVSJEJaWjw9U4oFcDZzzvA2vxBn9iQ+Uew72o0vulVHQMb+BbpeRIVNjFaXfR4f/7550/cVgTPRc91jx49nsu5ERER0aNatWolZ2+JTnoiIiIquVqV4jadI9GJSnBRUaG8q02OALoQ6Gkng+gX7m9D9KIQvdDXr1/H5s2bi/pUiIiIiIiIiKiUYBCdqIS6EGYIkFfxtHvkvcAyhnXnQx+kySB6EYjpXnfu3Cnq0yAiIiIiIiKiUoRBdKIS6mJWEP3RQo9Vy9jf3yYRWp0eJiLnC1EpxIxlRERERe9JdUyIiIioZNhTitt0ZVGfABE9bRD90ZHo5VysYakyQapai5v3kovg7IiIiIiIiIiIiF4MDKITlUBpai2Co5Oz8p8/TIw8D7g/Qj0zdzoREREREREREREZj0F0ohLocngidHrA2doMbrbmj90mM7jO4qJEREREREREREQFxyA6UQlP5aJQPD7feWZedBYXJSIiIiIiIiIiKjgG0YlesKKimQLLPBiJzuKKREREREREREREBcMgOlEJdDEsMdeiopkCPGyhVAD3kjMQmZj+HM+OiIiIiIiIiIjoxcEgOlEJI0aVXwx/kM4lNxYqE1RwtZHPmdKFiIiIiIqKRqPB+++/Dy8vL9jZ2aFVq1Y4c+ZMUZ8WERERGUlTitt0BtGJSpg7salITNNAZaLICpLnpmq2lC5Ez9ucOXNkgyoaVpG7Py4u7omf+eabb1C/fn3Y2trCzc0NPXr0wOXLl1GU0tLSMHz4cFSvXh2mpqbynIiIiCj/FixYgF9//RUzZsxAUFAQKlasiP79+xd4f+JmvXnz5rCwsICPjw++//77fH/23r178Pb2zve1CRERET1Qmtt0BtGJSpizdw2jyv3dbWFmmvd/wpl50c8ziE5FICUlBS+//DI++uijfH9m7969GDt2LA4fPowdO3ZArVajffv2SE5ORlHRarWwtLTEhAkT0K5duyI7DyIiopJq586d6Nq1K3r16oUKFSpg4sSJuHTpEmJiYozeV0JCgrw28PPzw4kTJ/DDDz/g888/l533+TFq1CjUqFGjAN+CiIiIdpbiNt30uR2JiArFqRBD71otH4cnblu1jL18ZBC9aNPvpGpSn/txLU0tZW9sfiUlJWH8+PFYs2YNrKys8N5772HQoEGoVKkSIiMjYWOT96yHx3n77bfl4549e/L9mW3btuV4vWjRIjkiXTSoLVq0eOLnxbE6d+6MSZMm4YMPPshaf/36dfldjh8/jjp16hj1PaytrfHbb7/J5wcOHOCoNSIiQmm/zjD2WkNcS9SsWTPrdXh4uHw0MTEx+rjLly9HRkaGHAlnZmaGqlWr4tSpU/j555/x2muv5flZ0Z6LdlxcJ2zdutXoYxMREZX22EFkKW7TGUQnKqFB9Jr5CqIbRqLfjklBbHIGHK3Nnvn5UU6iEWy4ouFzP+6RQUdgpbLK9/YiXcnZs2dlEDoiIkL2Kp87d06OvM4MoIsG7vXXX89zP6LxElOxCkt8vGHmhZOTU762b9Kkiey1HjFiBEaOHAlXV1e5ft68eahVq1ZWAL1jx47Yt29frvsRPeHnz58vlO9ARET0ol1nGHutIQIDma5evYoPP/wQjRs3hr29vdHt8qFDh2THurjZztShQwd89913iI2NhaOj42P3ceHCBUyePBlHjhzBjRs38v09iYiInoeSEjvQl+I2nUF0ohJEo9Xh7J34fI9Ed7AyQwVXa1yPSsaJW7FoF+j+HM6SSpro6GisW7dOBsnr1q0r1/Xs2RNLlizB/Pnzs7br1q0bGjbMu1EXxUUKi06nk6PZmzZtimrVquXrM6LxHTx4sJwGtnbtWowZM0YWPlm8eDE+/vjjrO1EUD01NfdefpVKVSjfgYiIiB4Qs8RErlMx4m316tUFapfFiLdy5crleN/d3T3rvcfdcKenp2PgwIHy+sDX15dBdCIioqf0QSls0xlEJypBLoUnIlWthY256ROLimaq5+ckg+jHbsUwiF4ExNQo0bNbFMfNr2vXrsneZNF7nKlBgwayIRSB80yi2KdYnheRG12Mht+/f7/Rn+3bty9WrVolg+ibN2+WvdgiuP4sgv1ERESl7Toj89jGevfdd2Ue1S1btsgb4GXLlqFfv37PvF0Wo+SqVKmCV1555Zkeh4iI6EWOHZT2Np1BdKIS5MC1aPnYsJwTTJT5y1lVt6wjVh0PwYmbsc/47OhxRK+sMVOjioK5ubl8zD6FSqRB8ff3h4uLS9a655nOZdy4cdi0aRP+++8/WW27IEF0kRstLCxM9oSL9DQODg9mbzCdCxERvQhKwnVGdqLOiViaNWsmc6rOmjVL3nAb0y57eHjI1HPZZb4W7z3Orl27ZNo6Ufsl+1R0cZ0jZqp98cUXhfYdiYiICoJtevFv0xlEJypBDl6/Jx8bV3DO92fqlzXkkj5zJx6pGVpYmhlf7IFebGL6lFKplPnMypQpI9dt3LgRt2/flg1SZpGR55HORRxPFDhdv369zM/+8NSu/BIdACIFzNSpU2Vgf/v27TneZzoXIiKi50ukV3u4rbWwsDC6XRYz58RNslqtzlq/Y8cOVK5cOdfcqSLFW/b9Hzt2TNZOETf5FSpUeOrvRkREVJpoSmmbziA6UQmRodHh2M0Y+bxpxQejg5+krLMVPO0tEBafJj/fwt9QaJEokxihLUZqT5kyRaZxuXLlCrZt2wZLS0vZy9u2bdsCpXMROczEItLFCKK3WHxe5C3LLBQq9i3yr4uR55kpXFasWIENGzbIbTMrfYsiJeJ8jB2N/tlnn8me7tatWz9VsF8ULhFVw2NiYpCYmCgrhguiWCkRERE92aJFi1CvXj3ZJp8+fVq296IomLHt8qBBg+Qos1GjRsl8rCL127Rp0/DLL79kbSM648V070uXLsnXD99Ui3owgpgOnn2mGhERET3ZolLapiuf6d6JqNCcuROHlAwtnKzNUNk9/4FMMYq4SQVD0P3AdcMfF6KHzZw5U/YciwavXbt2cgS3WEQe8ezFRY0xe/Zs1K5dG6+++qp8Lapui9dilHum69evZzV6wm+//Yb4+Hi0atUKnp6eWYvIb55p+PDh8v38BNFFcVLRK505mr6gOnXqJM/977//liPkxXOxEBERUf6IGWI//vgjAgIC8NZbb2HChAlZnejGEB3rYoZZcHCwLIgucrKKFG6vvfZa1jbiWuLy5cuF/A2IiIioNLfpCn1m8hgiKtam/XsVv/x7BZ1reGLmoDpGfXbdyTuY+OdpVPOyw6bxT5+vmqgotWzZUvZ4f/7550/cVgTPRc91jx49nsu5ERER0aNE57eYvSU66ImIiKjkalWK23SmcyEqIQ7eH0XexIh86Jma3U//cj40AbHJGXC0flBAkqgkEb3QYvT65s2bi/pUiIiIiIiIiKiUYDoXohIgJUODoNtx8nlmahZjuNlZwN/dBmLeSWZxUqKSSEz3unPnDmxsbIr6VIiIiIiIiIiolOBIdKIS4EhwDDK0Ong5WMpCoQXRrKIrrkQkYf+1KJkShqg0YMYyIiKioifqiRAREVHJt6cUt+kciU5UAuy/akjl0sLfpcAFEptVMqSB2X+NxUWJiIiIiIiIiIjyi0F0ohJg39WorNHkBdWwnDNUJgqExKTi1r3kQjw7IiIiIiIiIiKiFxeD6ETFXERCmkzDIgagF6SoaCZrc1PU9nWUzzkanYiIiIiIiIiIKH8YRCcq5vbdT+VSw8sejtZmT7WvZhVdcqSHISIiIiIiIiIioryxsChRMbc/M5VLJUMA/GmIffy84woOXr8HrU4PE2XB8qsTERERERER0aP0ej3O3InH3itRSEhVo5K7DV6u5gl7S1VRnxoRPQUG0YmKMZ1On5V65WnyoWcSo9ltLUwRn6rGubvxqOnjUAhnSURERERERETh8Wn4cN0Z7L5sGAyX6ctNF/F+h8oY2tgPCpGrlYhKHKZzISrGLoUnIjopA1ZmJqjj9/QBb1MTJRqXN+RVZ150IiIiInoeNBoN3n//fXh5ecHOzg6tWrXCmTNnivq0iIgK1fnQeHSZsV8G0FUmCnSu7omRTcvB390GSekafLbxPD5cd1YOliMqqTSluE1nEJ2oGNt/zdB73bCcE8xNTQpln83vp4VhXnR6lmJiYjB+/HhUrlwZlpaW8PX1xYQJExAfH1/Up4bVq1cjICAAFhYWqF69OrZs2ZLn9nv27JGjRR5ewsPDn9s5ExERlWQLFizAr7/+ihkzZiAoKAgVK1ZE//79C7w/cbPevHlz2Zb7+Pjg+++/z9fnFi1ahBo1asjPubm5YezYsQU+ByKi7K5GJGLI/KOITkpHgIcttr7VAjMH18GkroHY9lYLTOoSCJFNdeWxELy/5oxMr1pgGcnAjT3AiUXA8QXAzQOATluYX4coVwtKcZvOdC5EJaCoaLNKT5/KJVPT+8VFT9yKRUqGBlZm/DNAhS80NFQuP/74IwIDA3Hr1i2MGTNGrluzZk2RndfBgwcxcOBAfPPNN+jSpQtWrFiBHj164OTJk6hWrVqen718+bLsac8kGmoiIiJ6sp07d6Jr167o1auXfD1x4kTMnz9fdro7OTkZta+EhAS0b98e7dq1w+zZs3H27FmMHDkSDg4OeO2113L93M8//4yffvoJP/zwAxo2bIjk5GTcvHnzqb8bEdGd2BQMnncEMckZqOFtj2WjG8LO4kH+c6VSgZHNysHV1hxvrzqFtSfvwM7SFJ91rWrcgUKOGYLmFzYA6uSc79n7Ap1+ACq/XEjfiujxdpbiNp3RM6JiKk2txdHgGPm8RSEUFc1UzsUa3o6WuBObKkejt6/qUWj7ptzpUlJyf9PEBEpz8/xtq1RCaWGR57ZKKyujzy8pKUmOHBcBbisrK7z33nsYNGgQKlWqhMjISNjY2Bi1PxGQXrt2bdbrChUqYMqUKXjllVfk9C9T0yc3P1988YVsSJcuXSob1ew93x988AHu3r0LMzMzo85r2rRpePnll+X0M+HLL7/Ejh07ZE+6OFZeRNBcNOZERETFqXidPjW1SI6tsLTMd15fcS1Rs2bNrNeZs7lMTIyfabl8+XJkZGTI6wFxHVC1alWcOnVK3lDndsMdGxuLTz75BH///Tfatm2btV6MYCMiehqpGVq8tuQEIhPTUdndFotHNMgRQM+ua80y8nH8H0FYeOCm3H5AA98nHyTiArDzC+DKtgfr7LwB96qA+DsccgSIvw38MQDoOg2oO6zQvh+9+G26Me15aW/TGUQnKqZEgDtdo4OHnQUquhkXwMyL+OP4UqC7bLT/OR/BIPpzcrlO3Vzfs27ZAr6//571+krTZrk2nlb168Nv6ZKs19fatoM2NjbHNlUuXTT6/IYPHy57fUXqkoiICNmrfO7cORm8zgygiwbu9ddfz3M/W7dulVOxHkekchEjufMTQM/s0Y6OjpYBfdGQZpo7dy6GDBmSFUB/UoBfBO4zA+SHDh2S+82uQ4cO+Ouvv554PrVq1UJ6errsIPj888/RtGnTfH0PIiKiZ0VcL+R1jfEsVT55Aop8dtyLwECmq1ev4sMPP0Tjxo1hb28v13Xs2BH79u3L9fN+fn44f/58VlveokWLHB3poi3/7rvv5I21o6PjI58XHeY6nU52wFepUgWJiYlo0qSJHMUmpo4TERWE+Nv20fqzuBCWAGdrMywcUR+O1nkP8hGB9ODoZPy84wo+3XAO/h62qOP76N8tSZ0G7P0OODAN0GsBhQlQo78hSO7T0BBAFzJSgH8+Ak4sBDa9A7hVAXwaPINvTC9im25Me17a23QG0YmKqXVBd+Rj5xqehV69++WqHjKIvuNCONLU1WChKpx861QyiUD1unXrZJC8bl1Do92zZ08sWbJETsvK1K1bNzlVKi+iuEhuxxCjvvOakvUwW1tbfPbZZ/D09MSlS5dkHnPR2B4+fBjz5s3L2i57gP1xsqdgEb3k7u7uOd4Xr/PKby6OL4Lw9erVk0F0cWxRPOXIkSOoU6dOvr8PERFRaSdmkolcp+LaVtQoySTa1tQ8Rt+pVA9GdYo2u1y5cjnez2zbxXuPu+G+ceOGvOH++uuv5aw0caMvRrG99NJLMhersTPbiIiEP46GYH3QXZgoFfh1UB2UcbDM1+fGt6mIy+GJ2Hw2DG+tDMLmCc0fHb0echTYMBaIvmJ4HdAFaPc54FLp0R2aWQFdfgHSE4Bza4GNE4Ax+wEThvzo2fmgFLbp/C+KqBiKT1Hj3wuR8nmvOo8PSj6NemWdUMbeAqHxafjnfDi61yr8Y9Cjvbu5emjak/+B/blvq8xZD7rizn+f+tyuXbsme5NF73GmBg0ayIZQBM6zB7XFYiyR56xz584yN7oYwW0MFxcXGbBetWqVDKiLBlkE8sU0r0yikMmzJIqjiiWT6OW+fv06fvnlF5lqhoiIqKiIKdh5XmM842Mb691335V5VEVRb1GjZNmyZejXr1+unfCFRdxsq9VqTJ8+XeZeFf744w94eHhg9+7dctQbEZGxhUQnbzKMpn2/Q2U0ruCc78+KoOM3vavj9J04hMSk4pP15zBtQC3D4DlRIPS/H4G93wJ6HWDjDnT+CajS9Uk7NWx3fTcQdRE4sxKo/crTfk0qBW16Qdrz0tqmM4hOVAxtOhuKDK1OVvUO9HwwirawiJ7yvvV8MG3nVaw6FsIg+nNgTJ7yZ7Vtbszv52PP3mPr6uoKf39/GcTOVJB0LmJqlchBLoLv69evz9HrnF99+/bF1KlT5TQxEbQWRUGzMyadi2hYRbqa7MRrsd4YopNh//48OjuIiIieAxFwMWYKdlET9UXE0qxZM5lTddasWfKG25ip37m15Znv5TarTBAd+tmvdcR1zu3btwvluxFR6apfJvKap6l1aF7JBa81L2/0PsTI8+kDa6Pv7EPYeDoULfxd0cdfBawbDQT/Z9hIpG55+VvAKp/FGi0dgaZvAf9+BhyeDdQa/CDlCxV7bNOLf5vOIDpRMbTmxJ2sUeiFncolU9963pi+6yoOXr+HW/eS4eds/UyOQ8WfmD6lVCplPrMyZQzFbjZu3CgbIDFCPfPfoLHpXMQIdNELLIL0Yn8W2QqiGkOklnnzzTdlodG0tDQMGDAgx/vGpHMRo+1FNfG33347R0617KPw80McM7PxJiIioicThcWzEx3rmdcGxkz9Fm32xx9/LEehZa4XbbmYNfa4ad9CZh2Ty5cvw9vbWz6PiYmR6ebEzTwRkTG+3XoJl8IT4WRthp/61oRSWbB7dpELfeJL/vjhn8vYsuEP9LD+HaapUYDqfnqWmgMKsNOhwJ5vgYizwO1DgF+TAp0bUV40pbRNZxCdqJi5EJqAoNtxMFUq0KP2sxsh7u1oheaVXPHflSg5Gv1/Lwc8s2NR8ebg4CALiU6ZMkWOsL5y5Qq2bdsGS0tL7Nq1K6vitTHpXEQAXUytSklJkdO6xGuxZPYSG1O5W2wvUrp8++23GDp06CPnYEw6l7feegstW7aURUdEipmVK1fi+PHjmDNnTtY2YsS7KFIicsILYhS86GgQKWREEF9cFIify/bt2/N9XCIiotJu0aJFsr5I69atcfr0aaxYsQKTJ0+W7xkz9XvQoEGyY33UqFEyH6sohC5yooo0a5nE7DfRnouaKoKYXde9e3d5HSDafNHBLt4X9VbE+RAR5deuSxFYdPCmfP5j3xpwsyvYQKFMY1qUg+vJaeiTsBTKVD10rlWg7LcEcPUv2A7FqPUa/YCTi4Gjc3INoidmJOL8vfO4FnsN4cnhiEmLkYOnzE3MUdGhIqq5VJOLUpEznShRaW7TGUQnKmZWHL0lHztU9YCbbc4GOXHXLmQEB0MbnwBdSophSU2BPiUVCgsLeE+bmrVtzOLFSA8OhomtHZR2tvLR1M0VKk9PuSjt7TGwvo8Moq8+cUf2gJuasIEsrWbOnInRo0fLBk8EuEXgWIwgHzx4sAyui0bNGCdPnpSFNx8X5A4ODkbZsmXlc/E4fPjwJ+ZKFyldxAhyY8/jYSKfuWjgReGRjz76CJUqVcJff/2FatWqZW0TFhaWYxpYRkaGzPcmAutWVlaoUaMG/v33X950ExERGUG0tT/++CPeeOMNOUV7woQJGDdunNH7EQXEREf22LFjZUF0MX170qRJOYqXx8fHyxFq2YnO8XfeeUd2oosZeKJTXQwaKEiqOSIqnSIT0/D+6jPy+fAmZdEmwFAAscBSYmCy7jX0S9wBKICVmla45fMZPihoAD1TvZGGIPrlrUB6ImBuC41Og9NRp7H/7n65XIoxBCTz4mfnh/G1x6NDWdaNoJxKa5uu0Iu5+kRU5DSxsYgNOo2fft8Kt7gItLNJg52FKcouX5a1zc3+A5B6+vRjP6+0sUHl48eyXt8aMQIphw4//mAKBQJOn4JaaYrG3+xEuRun8VZzPzRoVQ9mfr5QGDFKmKigxCh1Z2dnmUddjDTPy549e2TQOjY2Vo6cJyIiopJDtPO1atWSnfRERCWRTqfHsIVHse9qtKxd9tfYprBQPcV9c2gQ8OdQIO42YGqBc7U/R5d9vvKtpaMayFnjBSbCfDPqQh9zHWc7fI5NylRsC96G2PTYHJt52XihilMVlLEpAxdLl6wR6ldir+B4xHEkq5Pluj7+ffBpo085Kp1Q2tt0jkQnKmIR3/+AxB07oA4Jka+HZXsv1dQUerUaivu9adbNmkHl5wsTewdZUDJrsbSAIltRSMGhdx9Y1akLbWICdAmJ0CYkQBMZCXVYGBSmpnJ78Ynedb1RYdtUuBy6gRvfA0pra1jWrAnL2rUNS80aMMlnCg8iY4jK2W3atHliAJ2IiIiIiKgoLTgQLAPo5qZKzBhY++kC6CcWA1veB7TpgGNZoN9SVPOsgSHqc1h6+BYm/nka295qDmcb8wLtPiIlEut8KuNvqxSEXFmQtd7B3AFNyjRBM69maFymcVbg/HFS1CmYf24+5p2dhzVX1sDCxAIfNPigQOdD9KJgEJ3oOcm4cwfJ+w/IkeSeU76CQmnoxdVERWUF0CMd3HHJyh1laweiUau6MCtfDri/neA6Pv/TY+y7dM71PRGYz9Svng/+dPCChTYD/qnR0CUnI/ngQbkIIu2L/8EDHJ1OhU5MvRILERERERFRcXU+NB7fbzOkk/i0SyAquRdwkJk6FdjyHhB0f7a5f0eg52zA0jDT9uPOVXD4xj1cjUzCB2vPYO7QejJPeX6IJBNHwo9g1aVV2B2yG1q9VlRwhKVOhzZlO6CLfy808mwEU2X+woBWKiuZyqWSQyW8/9/7WHZxGZp7N5dBeKLSiulciJ6h9OvXkbh9OxK270D6xYtZ68v9tR4WAYZCnqlnz0KXmIhrjj7ovvgMzEyVOPxhW1np+3np9/shHA2OwdttymOMrwKpQUFICQpCatApWARUhveMGVnb3hw4CGYVysOuY0dYN2woR7UTERERERERvWhSM7ToMmMfrkcl46VAd8wZUjffge0cYoIN6VvCzwAiLUrrj4FmE3MMmhMuhiWg+8wDyNDo8GX3qhjS2FBLKjdJGUlYf209/rz8J24mGAqeCnXc6qBPyHm0DbsGq26/ArVfQUF9feRr/HHpD1R2rIzVXVcX7PsTvQAYRCd6BhJ37UbkTz8h4/r1BytNTGBZuxasmzSBQ69eUHl45PjM/9acxp/H76BnbS/80r/Wcz3fDafu4q2Vp+Bpb4F9/2udo8CoLiMDyvupYjJu3sT1lztmvWfi5ATbDu1h37kzLOsW8GKCiIiIiIiIqBj6aP1ZrDhyG2625tj2douCDXa7vA1Y/xqQFg9YOQO95wMVWue6+YL9wZi86YJMHfP3+Gbwf8zI99CkUCy/uBxrr67Nyl1urbJGl/Jd0L9yf1RyrATs/QHY/RVQoS0wZB0KKi4tDu3XtkeqJhULOixAfY/6Bd4XUUnGIaREhUCfkQFdWhpM7Ozka5GnXAbQVSpYN24Eu/btYdO2LUwdHR/7+fhUNf4+HSafD25oKCbyPL1czQOOViqExadh16VItK/6IMCfGUAXVF5e8F20EAlbtyHxn3+gjYlB3B8r5WJWrhzc3n8Ptm3aPPfzJyIiIiIiIipM/5wPlwF0MVZMDHQzOoCu0wK7vwb2/Wh47V0f6LsYsPfK82MjmpbFf1ejsOdyFCb8EZSjiOnZqLNYcmEJdtzaYUjZIma625fDK1VeQefynWUgPUu1XoYg+o09QHI0YJ17DvS8OFg4oFO5TjJgvyV4C4PoVGoxiE70FDSxsYhbuRIxK1bAvlMnuH/4oVxv1aA+yvzwA2xatsgKrOdl1bHbSFVrUdndFnX9Hh9of5bMTU3Qv74vZu+9jmk7r6JdFXcolY+OKhcFTq0bNZKLxycfI/nwESRs2YKEf/5BRnBwjqloep0uK+87ERERERERUUkRFp8q85ILr7Uoj6YVjQxAi6D12lGGALbQ4DWg/RTA9MmBeDHD+4c+NdFx2n+4FJ6IyX+fQ5u6UTJ4HhQZlLVdQ8+GGBY4DE29mkIpUsQ8zLkCUKY2EBoEnF8PNHgVBdXOr50Mou+7s0/mX+csdCqNmM6FqADSb9xAzKLFiN+wAfr0dLnOvHJlmevc2MYkLiUDLb7fjYQ0Db7vXQP96vugKMQkZ6D5d7uQnKHFrMF10Km6Z74/q01KliPT7Xt0zypAGvXrTKQcPw7nUaNg3awpG1kiIiIiIiIq9kQ+8gFzDuHk7ThU97LH2jeayNpl+XbnOPDnMCDhDqCyArpOB2r0Nfo8tl8MwdiNc2DmtA9Ks3tynSgMKkaFDw0cispOlZ+8k0MzgX8+AnwaAqO2o6BEKpfGKxrL0e/be/0Dd3MXeY8vBtoRlRYMohMZGTyPnjlLjr7G/f90LAID4TRiOOw6dIAiW+qT/Ppy0wXM3x+MAA9bbJ7QHCaPGQH+vPy84wqm77yKCq7W+OftFjlyoxtDr9HgauvW0EZFZ3UwuLz5Jmzbv8RgOhERERERERVbn288j0UHb8LOwhSbxjeHr7NV/j4oYgTH5gHbPgR0asC5ItBvKeAeaNTx49PjseryKpnzPCYtxrBrrSV6V+qLsXWHwc3KLf87SwgDfq4i9gC8dRpwzL1QqS4lBRkhd6C+E4KM2yFQh4RAHREh07iKJT4yBOZpOiizRREVFhZQ2tjA1MkJZn6+MK9UCZZ16sKqTm2Z5pboRcIgOpERwidPRuyKP+Rzm9at4TxyBCzr1StwYPjWvWS0+3kv1Fo9loxsgBb+rihKCWlqtPx+N2JT1JjSsxoGN/Qr8L7UoaGIWbwEsatXQ5+SItdZVK0K17ffgnWzZgymExERERERUbGy8XSozEMuzBtaD+0C3fP3wYxkYNM7wJlVhtdVugLdZwEWT07vmik8ORxLLyzFmitrkKIx3EN7WntCkdASl69WQXkXJ2wc1ww25kZmZl7cDQjeC7T5FGjxHvRqNdKDg5F+5SrSL19G2pXL8rkmzFCnrTAorKxg264tnIYMgWX16oW2X6KixCA6UR60cXGyYKjKw1BoUx0ejogpX8PljTFyBPrTenP5CWw5Gy6D5yKIXhwsPBCML/6+ABcbc+x5v5XxDfRDtPHxiFm8WKa/ET3bgsu4cXAdN7aQzpiIiIiIijONRoMPP/wQK1asQGJiIurUqYPp06ejRo0aRX1qRERZrkUmotuvB5CSocXY1hXwfoeA/H0w+hrw5xAg8gKgMAFe+gJoPE4kN8/Xx6/HXceCcwuw5cYWaPQaua6SYyWMqDoCL5d7GQkpOnSevh/hCWnoUsMTMwbWzvegNFGrLGPzNKSu+Q5pKW5I1fkj/coVGUh/HKW9Pcx8fKDy8YaZjy9UZTxh4uQEU0dHLLm7ASvu/IVeVfphfP23oddqoUtOhi4pCZrISGTcvIW08+eQfOwYNKEPAvK2L70E908/gcrNiBH0VGxpSnGbzqp/RI8hGpSYJUtxrcPLCP9ictZ6EUz3njG9UALox2/GyAC6yN7yUad8Ns7PgRh9XtbZCtFJ6Zjz342n3p+JvT1cJ0xAhX93wGn4cNkjbde5U6GcKxVfMTExGD9+PCpXrgxLS0v4+vpiwoQJiI+PL9LzOn/+PHr37o2yZcvKC8+pU6cW6fkQERGVBgsWLMCvv/6KGTNmICgoCBUrVkT//v0LvL8zZ86gefPmsLCwgI+PD77//vsnfubYsWNo27YtHBwc4OjoiA4dOuD06dMFPgcierGIWdmvLz0hA+hNKjhj4kv5yDcuXPwbmNvaEEC3dgOGbQSajM9XAP1kxEmM3zkePTb0wMbrG2UAvZ57PcxqOwtru65F1wpdoVKq4GxjjpmDa8NUqcCmM2GYu+9GngMBE3fvRuTUqbg9ciSuNGyEG+/PQdgRR8SeVSPt/HkZ71BaW8Oydm04DOgPj88mwW/5MvgfPoTKRw6j3JrV8P7lF7hNfAeOAwbArn17WNWvD9vKVRBrq8BtkziY2NnJwLqZtzcsAgJg06IFnIYOQZnvvkPFnTtRduUfsO/eXf4cEnfsQHDv3kg5edKYXwkVUwtKcZv+dENMiV5AKSdOIGzSZ8i4fl2+Vt+9C21iIkxsbQvtGGICyFebL8rn/er5IMAj/1O8njVRMOV/LwfgzeUnMfe/GxjUwBce9hZPvV+RI839/z6Ay7ixMLGxyVof8e13MPVwh9PgwSxK8gIJDQ2Vy48//ojAwEDcunULY8aMkevWrFlTZOeVkpKC8uXLo2/fvnjnnXeK7DyIiIhKk507d6Jr167o1auXfD1x4kTMnz9fdro7OTkZta+EhAS0b98e7dq1w+zZs3H27FmMHDlS3ki/9tprj/1MUlISXn75ZXTr1g2zZs2So+g+++wzedMdEhICFa9BiUo1rU4vU7hcj0qGh50Fpg+s/eRaZVoNsGsycGCa4bVvY6DvIsDWMIs9Nzq9DntD9sqR56eiTsl1CijQ1rctRlQbgRqujx/NW9fPCZ92CcRnG8/jm62XUNHNBm0C3KGOjETq8eNIOX4CKcePy1HmD1OYm8PCXQVLy3BY1m8Gi2HfQ+XlBYXSuHG1HtYeWWln8iIGK1nWqiUXp5EjEfreu0i/eg23R42G37KlsKxa1ajjUvGysxS36QyiE92nTUhA5E8/I26VIYeZmLLk+tZbcOjTGwoTk0I9lug9PhUSByszE0xs74/ipmM1D9T1c8SJW7H4aftl/NC3ZqHtO3sAPe3yZZnqRRRgid+wEWW+ngKLKqLoyYtHna7N9T2FEjBVmeRvWwVgapb3tipz4/+9ioZIjBwXAW4rKyu89957GDRoECpVqoTIyEjYZPu95Ue1atWwdu3arNcVKlTAlClT8Morr8hGztT0yc3PF198IRvSpUuXykY1e8/3Bx98gLt378LMyGK+9evXl4vwf//3f0Z9loiIqLgRAzM0GboiObapmTLf6QTEtUTNmg+uJ8PDDQEYkwJcYy9fvhwZGRnyekBcB1StWhWnTp3Czz//nOsN96VLl+TN/eTJk+UoN0HccIup56KjX4yiI6LS6+stF7HnchQsVErMG1ZPpjbNU2IEsGYkcGu/4bVI3dLuc8Ak9+CdWqvGphubsOj8ItyIN4wkF6PMu1XohmFVh6GcfbknnufQxn4IuRyMmzv24uI7q+GZEQrcDXlkO7Ny5eQoc8sa1WFZo4Ys9qm4vR9Y2gMw2Q+4OwFGBtAFB3MH+ZiQkZDvz1hU9kfZlSsRMm4cUg4dxp0xb6Dchr/kIDsqHm26Me15aW/TGUQnApB6/rz8Y66JipKvHfr2gdt778lUJIUtTa3Fd9suyedjWlaAm+3Tj/IubOIP6Medq6DXrINYc/IOBjfyQy0fQ4NZmERj7jH5C0T++BPSL15EcN9+cH51NFzeeANKI4Ojxd2ct/bm+p5fNWd0GfegEVrw/r5cG88ylRzQ8906Wa+XfHwQaUk589mNnd3G6PMbPny47PXds2cPIiIiZK/yuXPnZPA6M4AuGrjXX389z/1s3bpVTsV6HJHKxU5M+8tHAD2zRzs6OloG9EVDmmnu3LkYMmRIVgD9SQF+EbgXwXgiIqIXjbheyOsa41l6bVrLfHfcZy/DdfXqVZlLtXHjxrC/f63dsWNH7Nu3L9fP+/n5yZRswqFDh9CiRYscHeli9Nl3332H2NhYOa37YSK9nLOzsxwp99FHH0Gr1crnVapUkSneiKj0+uPobczfHyyf/9yvFqp5PSEGcGMvsO41ICkcMLMBus8EqvbIdfOkjCRZKFQUDI1MjZTrbFQ26Fe5H16p8gpcrVzzPJyYFZ9y5AiSDx5C8sGD6H3zZs4NFAqYVwmAVb16sKpbD1b16sLU2fnRHZVrCTiWA2KDgfPrgdqvwFi2ZobZ+YkZiUZ9TqSO8Z4+HTcHDJQz/qN/nQmPSZ8affwXXVG16ca056W9TWcQnUgEc8uVg9LKCmZly8qgrnWDZ1fk84d/LuNObKqcJvZq8/JP/oAmHYi6BNy7bmjwYm8aer5T7gEp0UB6IqBVG7bTaQBTC8DUHFBZApZOgLULYOMG2HkBLpUAZ7FUAKzy7vmt4+uIHrXK4K9ToXh7ZRA2T2gO66csMvowMX3MsW9f2LZqhfAvv0Li9u2499tsmTPN64cfXthR6cWNCFSvW7dOBsnr1q0r1/Xs2RNLliyRjVEmMV2qYcOGee7Ly8sr12N8+eWXufYmP46tra3sUfb09JS9zQEBAbKxPXz4MObNm5e1XfYA++OIwD0REREVPTGTTOQ6FQM2Vq9enbVetOupqam5fi771Gwx4q1cuZwjNt3d3bPee9wNt7imEAMFevToIa9HBDHb7p9//sl35z4RvXgOXo/Gp3+dk88nvuSPTtU9c99Y3G/v+go4OEOEEQHXAKD/MsM99mNEp0Zj+cXlWHVpFRLVhqCzq6UrhgQOQV//vrARAfjH0GdkIPX0aSQdPIiUg4eQevYsoMs2wEqphCqwKjYqPHDI2leOOJ/zZitYZJvZ/Fhi5HndYcC/nwPH5gO1Bue78GkmW1XBguiCSI/rMWkSbg8bhtg//5T500X8hUquD0phm84rBiq10i5fgXmlijKQKwLoPvPnwdTVFUrzJ0zdego7LkRk9XJ/1aMaLLOl5ZBEj170VeDmPiA0CAg7BUReNATH80udbFjE36yEu7lvZ+sJeNcDvOsbljK1DYH3bL7oVg1Hg2Nw814Kvvj7PL7vU3hpXbITP3fv6dOQsO0fhH/5JTKuXcft0a+i4s5/obQofiP1C9q7m1c6l+xG/tA8920fus4ZOqXJU5/btWvXZG+y6D3O1KBBA9kQisB59sZKLMYSec46d+4sc6N//vnnRn3WxcUFrVq1wqpVq2RAXTTIIpAvpnll4hRsIiIqrcQU7LyuMZ71sY317rvvyjyqW7ZswcCBA7Fs2TL069cv1074wiJu5keNGoWmTZvijz/+kKPWRN0WcX0iipOJIuhEVLpcCE3A60tOQKPTo2vNMhjfJo97iqjLwNpRQPhZw+u6w4EOXwNm1o9sGpIYgoXnFmLDtQ3I0GXIdWXtysp8513Kd4GZyaMzrtWhoUjauxdJe/Yi+dgx6FNSHknPYt24MaybNpEFPkVRzy4RiVg46yASw9Iw8c9TmDGwTp553MX9njpgIFJ3zEf6rXhk7DsEtX0lZKRpZYrQjDQNNOlaaLV66LV66HR66LIedTJQqlVo0ORmT/l44K8rMFOpYGZpCgtrFcytTGFupYKljQrWjuZQPRzrAGDdsAGsmzdH8r59iP1zNdz/936ev6PSpqja9IK056W1TWcQnUodvU6He3PmImrGDPlH22nYMLleVJV+lu7GpeK91YZqwaOalUO7QEPvGlJigKs7gBt7DEti6KMftnQEXPwN06+cyhkC4GKEuZULYGEHiIZYLEoTQw+5WNQpQGoMkBQFJEcaRrDfuwZEXzMcIzHMUElcLIKJOVC2KVDxJaDSS4BzRdhbqfBL/1oYMPcw/jx+B22ruKND1bwLpTwNu5c7wKphA4R9/AnsOnd6YQLogjHTo57Vtrkxv99xlH0KlaurK/z9/WUQO1NB0rkkJibKoh8i+L5+/foCFfkQRUCnTp0qp4mJ/OjffPNNjveZzoWIiEorEdQojGuB58XNzU0uzZo1kzlVRUEwccNtzNRvDw8PmXouu8zX4r3HWbFiBW7evCmnjSvv5wEW68QItw0bNmDAgAGF+C2JqLgLiUnBsIVHkZiuQYNyTvihT43H54QWg9yOzQO2fwJo0gwzvbv/CgR0fmTTq7FXMf/cfGwN3iqLhwqiSOjIaiPR2qc1lNlGTuk1GsNo8z0icL4H6Vev5tiXibOzIWgul0ZQlSnzyPH83W3x+9C6GD7/GPacDscU7SkMru6FpNh0JIslIR1piWqkJGbI9J+piWpoNeK8pht2sCINwP1OASPUQCv5eCr0Tp7bicC6jZM57Fws4VTGGs5lbOSjXd++MoguZqEziJ4T2/Ti36YziE6lrnho6Af/h6Tdu+XrtMdUrn4W1Fodxq84ifhUNWp62+ODFq7AicXAhb+A4P9yjjQXwWzfRvdHh9cCPGsC9j5GT7XKk0gBI3rR7xwzLCHHDDndru8yLP98CDhVAKr1RsPqffB6iwqYvfc6Plx3FrV9HZ5pHndTR0d4z/w1x0VMyokTUJiawjJb8QoqPGL6lGh8RD6zMvcv0DZu3Ijbt2/LEQuZvwtj07mIEegin5kI0ov9WRSwU0SklnnzzTdlodG0tLRHGkWmcyEiIir+RGHx7ETHeua1gTFTv8XMuY8//hhqtTpr/Y4dO2SO1MdN+xZSUlLktU7268vM17rsaRKI6IV3LykdwxYcRVRiOgI8bDF3aL3Hp0JJigQ2jAOu/mN4XaEN0OM3wDZnYO9s1FnMPTsXu0MMMQahqVdTjK42GnXd62b93RGxiKS9/8mgedL+/dDFxz/YiVIp07LYtGwJmxbNYe7vL2fMZ9KqdYiPTkV8VCriI1MQF2l4TIhOxVtxFoBODxyMxbaDsU/8/qYqBSy0UVApUqHyrAAzG2sZuDWzMJWPSlMFlEoFlCZiUUIhnssR7npoNXosPrsEGo0W3cp1g7XCBumpWqSnqJGeopGPIlgvRranJavlEh2ShBtBhtpzgspcBdua4+AQexXWJ27Ao045o4paUvGgKaVtukKfPSM80Qss7eJF3JnwFtQhIVCYmclCFg59+jyXY3+79RLm7r2Cly3O4Yfyp2AV/C+g1z7YwL2aYfR3+VaAT8NH0qo8c+LPgJiidm2HYVT8rYOA7kGxSp17dcxLaIBZsQ1Q0788Fg6vf78hffbUYWEI7t0HusREeHw26bn9zkobMdpbFP4UPbdXrlyRo8lF8HvlypVo27at0fsTAfT27dvLBk6MQLe2ts4xyt3Yyt2iwOnu3bsxdOhQLFy4EAUlKn9fuHBBPu/UqRMGDx4sFzGanWlhiKioZGh0SFVrodXpodHpDI9aPcxMlTL1m6XKBCqTgk21JSoORGq248eP49dff0Xr1q1x+vRpWSR88uTJeOutt4zal7heETfX4jpD5GMVhdBHjhyJX375Jav2irj2EDPYRE0VQTzWqlVLbjd+/Hh5k/3tt9/i77//xsWLF2X9FSJ68SWnazBo7mGcvhMPLwdLrHuzCdztHjPQ58o/wIaxQHKUYZDbS18ADV435BW/nxrlWPgxGTw/HHZYrlNAgXZ+7TC6+mgEOgfKdZqYGCTu3InE7TuQfPgwoH5wj21iby9Tm8jAefNmMHFwgFarQ1x4Cu6FJuHe3WTcu5uEmNBkJMWkyVv2vCQp9EhQ6lHOxw4B5R1h5WAGSxszWNqqYGkrnhse5UjnZX0M9/51hgHd7o9Mz6eX176Mu0l3sazTMtR0ffwgt/RUjTznxJg0xEemyu8jvse90GSZMiY7MVq9Qi03BDYrI0eqU/HXqhS36QyiU6mQsH07Qv/3AfRpaVB5ecFr2jRYVnuQU/lZOhB0FifW/oh+JnvhocjWM+xRw1DFO7CHodBncSJGql/eCpxdA1zfmTVSPl2vwiZdI6gajkK3zj0Kd3R8LrRJyQj78P+QuONf+dphQH94fPSR7AihwiOmX40ePRr79++XAW5RDVsE0UWesylTpsicY8YQhT5Eg/o4wcHBWVWzxePw4cOfmCv9999/x5gxY+S0MDFdrKDEtK+HC5cILVu2lOdMRFSYxGV2aHyanDYul9hU3IlJQXhCGuKSM6BIvQdVaiRsNLFwRRxcFPFwUiTCAhlysVSkwxIZMIEWOoUJoDSVBZNUpirA3Eame1NZO8LWwRVOLu5w8SoPlZOfIeUbR3VRMbvhFrPJkpKScP36dTlFW6RbE+2/sR3rwpkzZzB27FiZ+1SknhM30eLmO9OiRYswYsQI+d9gJjGyTcxqEzfoYsRa7dq15TVOo0aNCu17ElHxlabWYvTi49h/LRqOViqsHtMEFd1sHr0P/ucj4OQSw2u3QKD3PMDdEDsQf1P23tkrg+dnos7IdSYKE3Qu3xmjqo9CefvyUEdEyHtXka4k5fjxHEVBzSpUgG2bNrBp1RKmAdUQHZqCiOBERIUkIiY0CbHhKTIP+eOI4Le9myXsXa3gIB7drGDvagEbRwtYO5jjhx1X5OxxMdZN5EfvXCOPQOLtw8CCDvK6AuOOG1LG5lO/v/vhYsxF/NbuNzTzMu6+TORXFx0DF76ei3CRcda9JrS6B9crXpUdUKutL/yqO3N0ejHWqhS36Qyi0wtPffcurr3cUfb6WjdrBq8ff5C9vM9c+Fmk7p0O04vroML9qS5WzkDNgUDtIYBbAEoEkbP9/HrgxMIHhVREx4RjNdi1ex+o0tWQi/1Z57H//XdETZ8hR81bNWoE7xnTZYVvKrnEKHVnZ2eZR100xPkJysfGxsLhefz3S0RkJI1WhwthCTgfmoCLYYblUlgiUtLTUV4RhmqKYFRQhqKsIgJlFeHwU0TAVmGY6irKjoWbmuKeiRKxJiaIVRoeE5RKpCkUSFcqkK5QIEOhkFcUIh+jiV4P0fqa6vWw0Othp9PBXquTj1Z6E9iYOMLdxgde3rVh6V3TEABwqQSYGF+bguhpiXZejBoTNU6IiJ63dI0Wry05gb1XomBlZoLloxuitu9DqSKC9wEb3gTibhteN3oTaPsZoLKARqfB9pvbMe/cPJn7XDBTmqFXpV4YXm043NPMkbB1GxI2b0bqQ6kmLQIDYf1Se2hqtkCMxg6RNxMQeStBjsx+XDROZWEi84c7e1nD2cuQR9zB3QpWdmZ5BpZFaO//1p7FquMhMFUqMGtwHbTPq57Z0l6GAXO1XgF6zMz3z3LkPyPlKPzvW3yPjuU6oiAivvkWMYsXw27YKKR3HIZLh8Jw80x01s/Do7w9Wgzwh6sv7/eLo1aluE1nTnR64YmR5x4ffYj0q9fg/tGHMrf2MxVyFNjzjcwtnpmU5ZxpIPy7vQezwK6i9LFRu0tRpyAyJRJRqVGISolCkjpJLsnqZLmkadJk4RKx6MX/9HqYKk1haWqZtViprOBg7gBnS2c4WzjLR0dzR5jkJ/ht5QTUHwXUGwn93RM4tuYn1IjdAbvYc8DqYYbc6U0nADUHGf3d8kvkg3N54w2YV6mC0InvIuXwYdwaNBg+c36HitNvSyyRnqVNmzZPDKATERXXEW1Bt+Nw7GaMXE7cikVKhhZeiEID5SV0U17FR8qbqGJ+CxYKNcQ4tLumprhipsIBMxVWmFrhrsoWd1RmiFIqoZfpRvWwTQXsUgBrsaTpYZUuHgGVFrDUASZawEQHKPV6aJUKqE2BBBMgxgRIVwGJlkCSpQJJJjokam8hI/wmPELXoIxGg/JqLcqZuyHAozYqlG0D2/KtARvXov5REhERPdOUaW8uOykD6BYqpUxNmiOArk4F/v0COPKb4bWDL9B9FlCuOdQ6NTZeWSsLhoYkhsi3rVXW6F+5Pwb79YbZ/pNImPc5rh46BGjvpylRKGBeuw7UjTohwaMarkfpEXYlHhmnwwCI5QEbR3O4+dnJYLGztyFwbutkUaBR2OIzX/eqjgytDuuD7mLsipOYM7QeWld2e/wHWn9kCKKf/gNoPjHfs+NtVYbAdnx6tpzuxp6rlSFSYqJNR/larnIRqV/O7r6Ds3vuIPxGPFZ/exx1X/ZD/S6ifhdHpVPxwCA6vZB0qanQJiRC5W5oMBwHDnz2B717Atj9jSG3mEhDAiW2aBtglWk3fDVmOMxccs/vJYLhokf7ZsJN3Iy/iVsJt+TzsOQw+d6zYKowRRmbMvCx84GPjQ98bH1QwaECKjtVhouly6MfUCig8K6H2uOX492F/6LCzRUYbroD9jHXgb/fAvb9BLT6CKjR75mNTLdt1Qp+y5Yi5PUxsoJ59G+z4Tn5i2dyLHr2OnfuLBciopIiIiENuy5FymX/1WiZx9wNsWhpchpfKi+gscUllEE0xECqEFNTnDY3wxYLG5yzsMR1lQqpCj0s0/XwjAHK3NOjYowezWL1cErUwDlRAackPUw1gMbUEhkqW2hNLaA1Mc9adEoV9Lh/I6lQyOMo9TootRkw0WVAqVXDRJcOlToZKnUSTDWpUJsA0XYKRNubIcoeuGSXhH9d9iHk2n6Y2HyGakoz1HIMQM2KneBfpQ9UZsxHSkRELwa1Vofxf5zEzkuRMDdVYsGw+mhY3vnBBndOAOtfB+4ZRpfLHOEdpkCtssDfV9dhzpk5Mv+3IAalveI/CD2ifaFZvhMxu7rLdLGCaI/VtVshqUZ7RJmWQURIKjQXdMCF6BwjzN3L2sG9nJ0MnIvnIg1LYTJRKvBDnxqy42Dz2TCMWXoCC4bXR9OKj7m/964HVOpgKJy66yugb/7qTrlaGTrfxSC/glKYGEKReu2D4pSi86BJ74qo2dYH+9dcxbXjkTi+5aYctd9+dDWYWzJ8SUWP6VzohaNNTETIG29Aey9GBlxNnbM1ks9C5CXg38+BK1sNrxUmOOXSCePutEWUiQdWvNoIdf0e9HSna9NxLvqcXC7cuyAXETQXo8hzI0aTu1u5y+C2nZkdbMxsZA+4jcoGFqYWUCqUspCJ6H0W/xPTzVI1qVmLGM0ekx6De6n3EJMWg9i02DyPJ45T2bEyApwCUMutFmq71Ya9uX3W+4lpavT+7SDuRERjovMhjFRshDIp4v6HKwNtPjGkeXlGeczUoaEytYsoNKq0fM5FWImIqFQJjUvFpjOh+Pt0GM7ejYcCOtRU3EBrkyB0MD2FAATLFjVYZYpDlhY4bGmJU5ZWiIMOzolAuXC9YYkAykcADklKpFk4IdXSFakWzlmP6RaOyFDZIcPMBnpl4aRcUeg0MphunpEAi7R7crFMNTxapUTAVH0PYU563HJT4KqXArc8AVcPOzTxboimNUehrGs15iQlIqISm2btrZWnZDBZFOqeN7QeWvjfn32lyQD2fgfs/1nkDgVsPIBuM6Cp2AabbmzC76d/x52kO3JTMZN7jFN3ND+VgZSNm6GJMgSP1abWSKjcHPH+zRGpdkZKUs6CmebWpihT0QFlKhkWF28bKJ9TkXDRefDm8pPYcSFCjr6fMyTbd89OpGud3dzQDTBiK+DX5In7nntmLqYHTUf3Ct3xVbOvCnR+0b/9hqhp0+HQty88v5z82G2uHAvH7iWXoFHrZHqXrhNqwsyCgXQqWgyi0wtFc+8ebo9+FekXL0Jpawvf+fNgWaPGs8sVLtK2HJsvulBFzhGgxgBsdnoFY7fGyU1mDKyNDtVccDrqtMwbdjziOE5HnkaGTmQ/zcnNyk0WIvGz80NZu7Ly0cvWSwbPRcA8sxBHRqpG9sIq7k9pio9KQeK9NPmeKEIibnZNVEqYqpTy0dHdCqZmOUeGiyB7dGq0nJKWuYhAvhgNn1tAv6JDRRlMb+DRAI3LNEZ8kgrdZ+5HbIoarctbY05AEFSHpgGp94unetcHOn4PeNXBsyb+jGXcvAnzxxSMJCIiMlZ8ilredG84dRdHb8bIdqaG4ga6mRxED7OjcNHdQ7JCgQOWFthrZYXDNraIghY+UUBAiB5VxHJHD5s0GyTaeCNJLl5IsvZCipUH9PmYsSVGrIn2XhQSk4uFCUxMTeTlhrwCEB3nCsi2X5OhhTpDZ3hM1yItSS0fn0SpTYd1cjhskkNhnXwXdgm3YJF6G8HuGlzwVSC0vBm8atZF+zqjUMezYf7SwBERERWDHOgT/gjCP+cjYGaixO9D6qJ1wP20JuHngPVjgIj79b6q9YHm5W+wJeKwDJ7fTjTkRHdXOuLthIYIPBSG9OMn5LpUCyfc82mMmPLNcC/DLkdOc1MzJbz8HeET6ATvyo5w8rTOumcvqp/BG8tOytlz4mcgcqS3C3R/dMONE4CTiwHPmsCrewBl3oH+jdc34uP9H6ORZyPMbT+3QOcWOW0a7v02G46DBsJj0qTct7uVgI3TTiE9RSOLjXZ+o0aR/kyJGESnFyqAfmvoMGRcvw4TZ2f4zpsLiypVCv9AWrUhcC4C6GmGYDkCugDtPsfaW5Z4f81p6JVJ6FA/Bpb2V3Aw9CBSNCk5diF6s2u61kSgc2DWIvKUZ7p9/h7uXI5FUmw6kmLTkByXjrRkDTLSNLKTeOjXTeR0J+Hg2msI2nG/+Mlj9Pu4Plx9DHnLzuwOwakdIbC0VcHS1gw2Thawc7GAvYsl7Fws4ehhhQxFOq7FXcOlmEs4f+88giKDEBwfnGOfYuR7DZcaqGBTF6v/s0FykgfaBLhjdp+KMDv2G3DwV0CmoVEAtV8xFGR5hjlXI3+ZiphFi2SxUZsWLZ7ZcYiI6MV2OiQOyw7fwt9nQpGm1sFbEYm+JnvR3/wwPLRhuKdUYre1JXbZ2OGwhRksk3WoeUOP2jf0qBEs2kcPxNuXR7x9BcTZV0Da49Kj3b/RFu2uvatl1qNok61szWBpp5KPD3eAG0sE1FOT1DKgnhSXjsR7qUiITkNCtOExLiIZWo3+saPXbZLuwD4hGA7x12GRfBlXy6TiWnkV7Nq0RKvGw+UsNXEtQEREVNykZmjx+rIT+O9KlByB/tvgOmhbxR0QqUMOTgd2fw3o1IClE7Sdf8RWK3MZPBfpVIWARFu8eb0cPPddhj4pGUnWnohyrY17fk2QoMhZjFTkMPcJdIZvoBM8K9rDVFW8OptFWpe3VgZh67lwWWx02oDa6FzjoZpiSVHAjDpAeoIcjY86Q/PcpxgcKIqLett4Y2vv+7PxjRT22eeIW7UKLmPHwnX8uDy3DQ+Ox18/B0Gr1qFZ30oy3QtRUWEQnV4ImpgY3B42XObJNnV3h++ihc9mVPKd44b83xHnDK/dqwEdvgbKt8T8Q6fw3b4/YWp7GiZWouiIPkfQXIzgrudRTy6uWk9E3kpE9J0kxIYlIyYsBb3eqwMLa8P07f2rr+L0TkPhkscZ8GkDWalbOPXvbVw8GCZ7ZEXBDfGftLgp1qq1cupTz4l1ZDXv/ATce/+vrpwqJUTcTEBceLIscKJ3SMeZmNM4EXECh0IPySB7dnq1EzLiq6ORe2vMH9ADqpRIQ4qbMysNG5jbGQqXNHit0POl6zUa3JnwFpJ27YJCpYL3rFmwad6sUI9BREQvLjFSa8OpUCw9dEuma1FBg5eUxzHK6j/U1ZxCikKBXVaW2GRnCJx7RunR+JIOta/pUSbWAXFOgbjnFIhYB39o7s8cy6KADJCLKdxicfa2lY+ikFhRp0kRM9jiI1MQE5qMe3eTEHk7EXeuxUGb+tAIdr0Otom34RR7CU4xFxFpfQNXqlnBq/sAvNxkeI5BAEREREUpKV2DkYuO4WhwDCxVJpg7tB6aVXIBoq8Bf40B7hyT2+krvYw99QZg2sXFuB5/XQTG0OyWFV654ATH07eQZu6IcPd6iPRqgiTzB4U5RdPtWdFBFsIsV8sFds6WJSKtzburT8trHTGI+6d+NdGztnfOjQ7OALZ/IjsWMPZongPgxIz21n+2lmlkj71yDOYmxud1vzN+AhJ37ID7p5/AafDgJ25/bu8d7P3jipxt/8pXjWFtX7i55Inyi0F0KvE0sbG4PXwE0i9fhqmrK/yWLoFZ2bKFe5C0BGDnZODYPENwXDQubSchuXpvbL+9E/NPrcPN5NNQKB785yRGl7f0bomWPi1RxakKbp+LwcUDYYgIjkdy/KPpXEQQXTTIws0z0Qi5FAMbRwt5oy0eLaxNYW6lgrmVKUxMCzb6KzlejERLQ2piBlISMmQF7KxRaffSMOCTBrCyM5Pb7v/zKk7vMgTyxfHcytrK8/OsYA+FexqOxB7E/rv7cTjssMy7nslS4Yah1XuiZ6We8Iq5A2x9Hwg7bXjTq66hd9u9KgqTXq3G3XffQ+L27VCYm8Nn7hxYN2hQqMcgIqIXi6jv8cfR25i/PxgRCelwQTyGq3ZgmNku2GjjEGRujjW2NvjX1gaO93RockGPRpf0sFOXR7RzdRk4T7bxyrFPcXPnXt4OnhUM7aV7efsSVQhL3BaI64RrF+/hyLEwxAYnwF6dM9hvqk6Ca/RZuEafwj3Ly4hoVRl1Bo1HvXLNi7xjgIiISq+4lAwMW3hMziqzNTfFwhH1Uc/XwXAPv2MSIO5Zze1wqvk4/JJ4Hicjg2CVpkfH8+bodloF03sZiHStgwj3+ohzqJS1X6WpAr5VnFBOBM5ruMgZ3SWNVqfHR+vOYtXxENkR8HXP6hjYwDfbBmpgTmtDipuqvfIsMiquFZqubIrEjESs6boGlZ0qG30+N195BanHT8Drl59h17HjE7cXx1z3wwmE30hA9VbeaDHA3+hjEhUGBtGpxFOHheHWsOHQpaTAb8kSmJcv5BHol7cBm94BEkMNr2sOwvn6Q7AmZAe23NiSI1WLk0kljK7dCw3MmiP1lgIV67rJALhwds8d/LfyinwuGi4nLxu4+dnKXGmOntZyBHhxutE+s/sOrp2IwL27yTIP+8OGfdNUBvhF0dJ9d/dhyZkNOH3vMBRKtXxf9EyLPGm9KvZAm6gQmImK32KKmNIUaDYRaPEeYFp4Pcj6jAzZo520dy+UVlbwXTAflrVqFdr+iYjoxRCbnCED50sO3URCmgb+ihCMs9yOzvr/kAoNNtlYY5WDAyIyFGh+To+WZ/VwTC8vb6wjXWshw9zQ4S0pAPeydvCtapjK7epnC5PnVDTseY1W33HyLrbtvImMOymoqAbM8OBaxUSTCpd7Z+EcdRih5aLgPXAomnYYBVOT4nM9Q0REL76oxHQMmX8El8IT4WClwtKRDVHdNgnY8CZwY4/c5ka5Rpjm4Ydd4YfglKBH9+MKtDsFJFv44W6ZZjJliy5bYW8vfwf4N/BA+dquWTPGS3qb/vnf57Hk0C35+n8vV8YbLSs86AAPPQXMbWOo9zZgBRDQOdd9Dds6DCcjT+Krpl+he8XuRp/L1dZtoAkLg9+K5bCqk78aancuxWDD1FMwNTfByB+aQfWUae+ICoJBdHohqCMioEtKgnmFCoW30/REYNuHQNBS+TLDqRy21B+IP+6dxIV7F7I206W7QBtXD4NcO6G5mSduno6Wo7yFVoMro2pzwyi1uIgU3DgdBY9ydnD1tZNFwnIj/rPMbMwigq/j+vEjSEtKRGpiglzSk5OgyciAVqNG25Fvwq+GIVh87dhh7Jj7K5SmplAqDQXIzCytYG5lDQtrG9Rs3xm+1QyFVtOSRCqZu7Bxdoa1g6PcPrdziY9MRei1OIRfj0fY9XiZZ1XkZc88x51LLsqcq9F2Wvx8cwcynA7B1PpByhdHc0f0L9cJ/a+fgMuV7YaVrgFAr7mAZ+EVftWlpyPk9TFIOXwYSjs7lF2xHOYVKxba/omIqORKTtdgwf5gzPnvBhLTNaihuI4PrTagsfY4bpmaYom9LTbZ2KLCLR3antYj8I47otwaI8KtXo7AuZmFCcrWdEHZai7wqeIEC5uSf2OdH1ciEjF79zWcOBGBgHQdqql1UOoN6eIE87QYeEQcAfRBMO/dBC2H/h/MzB+8T0RE9CzcupeMoQuO4ta9FLjammPZqIaoHL3dMBAuLR6RZlaYFdgC6xMuwTNKi+5H9Gh02QqRrvUR6tkMKdYeOXKci8B5pfruWTXIXiTi3v77fy7jtz3X5euRTcvhk85VZFpYacdnwIGpgK0n8OZhwDLbwIFsfjz2IxZfWIz+lfvjk0afGHUO2qRkXKlXTz73P3wIJg4O+T73ZZ8ekjPp24+uikr1HlMklegZYxCdSiTxzzb94kVYBAY+mwPcOgisfx2Iu40EpRKrq7XHck0kolKj5dumSlOUtWiE4LM10CS2AgKhgkKtz1EwrEwlR1Rv6YWyNR5fVEyn0yI+IhzRd27j3u1biA65hZjQO0iIikS3dz+Cb7Wacruzu7dj++zpuZ5ql7f/D5UbG3KAX9y3G1t+/SnXbTuNfw9VmrWSz6+fOIK/vv9SPleamMDO1Q1OZbzh5OUDZy8f+FavCTuXB/nfslOna7M6AXRaHea/t//BaHUFcNtEi0sWCVD7n0a6wwFEpkbKt1RKFTo5VsOQK4dQOSESED39bScBjcc9sQp4fokZCbdHjkLq6dPw/HIyHPr0KZT9EhFRyc15vvzwbczcfQ33kjNk8Pxj6w1oqDmOc2ZmWOBghwMmlmh9Ro+XgsygN6+DMM8mSLB7MLPNzFyJcrXdULGOmwycm6henNHmxroZnYxZe65h3Ym78FJr0FkdBft0N2jwIB+8U8wFOMb+B5t2fmj45qdQ2doV6TkTEdGL6dzdeAxfeBTRSRnwcbLE8kGV4XvkM+DsaqQrgCXelTHXXI8yIanodVCHgNAyCPFpg0i3ulmjzsXIZv96bqjawguuvralIjWZmJH35SbDwMDutcrghz41ZRFWqFOB35oCMdeB6n0Ng94e8/P45+Y/eG/vezJt7Z9d/zTq2Klnz+Jm334wcXGB//59Rn320PprOPnPbQQ08kDb4c8oFkSUBwbRqUSK/Okn3FuwEJ5ffgmHXj0Lb8eaDGD3V8CB6YhRKrDQzRt/2pgjRZsu33azcMOA8oMRda865uyJhIUOGJdoCZEK3dLODOVrusgiI17+jo/cYOt1OijuB4pFsHv7nF+hyTDs92Htx0xA9dbt5fPwa1dwdtd2WNrZwcLGFpa24tEGpmbmMFGpZODbys5QDDQtOQmJ0VHQabVyESPVM1JT5ch18V7ZWnXh6FFGbnv1yEHsXjIXSTH35Lk9rNO4d1GleWv5PCb0Lm6fOw3Piv5w8S0LE9MH07TFn5DokCTcOn8PwaeiZMHUTDroEe5sgvrDU7D66nKciTqT9V4rhS3G3LmCqhlqoGxzoOdswP6hAidPkSdfBNFtWxk6DOj5i4mJwWeffYbt27fj9u3bcHV1RY8ePfDll1/C3t7w77UonD9/HpMmTcKJEydw69Yt/PLLL3j77bfz/MyePXvkdkePHkVCQgIqVaqE999/H4PzUQSHiIrW7kuRmLzpAoKjk1FBcRdfWK1GU+1RHLYwx3wHe9xIN0en4zo0vOqBKLfWiHCvB939AlkKJVC2ugsCGnvCr6pzqQ6cP05ITAqm/nsV64LuwEKnxgjdRVRIs0R4RjXDD0/USUmJhFvUf3Bt7YJ6b/4PJjaGouhERERP6+C1aLy29IQsJlrF0w4r2qbCcfvb0Cfcxb/W1vjJ0xdmd5PQd58eZWOqIMSnLWIdH+TvdvGxkbPG/eu7w6wYpVV9Xjacuot3/zwNjU6P5pVcMPuVurA2NwVCjgELOhjSuvT8Hag54JHPhiWFof3a9jBRmODgwIOwUuV/5lnc+r8Q9uGHsGrYEH6LFxl1zjdORWHr7LNw9rLBgE9ZA42ev9L3l4JKvNhVf+LeXFHgs5DF3QZWD0dcWBAWOdphhYMjUqEDtOkIsK6K7pqhUF5yQtRpNeboDCOr3+oUgOYKc/lHXBQPy5oGJQqWxUTj1plTuHUmCHcunEWLwSOygtK2rm4ygC4C4U5e3nDx8ZOLs7cv7N3cYef2YGqSR0V/ueSHSNkilvyo1LCJXMSI+OTYWJna5d7dEMTcX1z8HozACw46jj1L5srnKnMLeFepCp9qNeFbtQZcy5aTPfZiqdexrCxSeu1EJM4cCkVyeCquJ6fj7D92mDd0Pu4mX8Kqo+uxNf4v7NEnYo+XJ1qmZuCN0COo+lsToPtMoEpXPC1TR8ccAXRtUhKUFhZQZAv+07MVGhoqlx9//BGBgYEyYD1mzBi5bs2aNUV2XikpKShfvjz69u2Ld955J1+fOXjwIGrUqIEPPvgA7u7u2LRpE4YOHSo7A7p06fLMz5mIjCeC5mKE1a5LkXBCAr63/At9sAOnTU0w0s0dkQlm6LVNj6FRAbjj1RpnalXJ+qyDmyUCm3mhciOPrGLb9CgfJyv81K8mRjUrh2+2XsSsqyrYWSfhHYd18Eu2wKWUNki1csMtvz4IvZyEiAGTULmDLyq9Oka2yURERAW16UwoJq46jQytDs3LWWOe198wX/M7Lpup8J2PHyLv6TDgzxR4JzZGiE9rnPE2pGwRg6pF3bIabX3gUa7oBvYUB91recHBygxvLDuBfVejMWjuYSwYXh/OPvWBVh8aBhdufhfwrg8450yb62HtgTLWZRCaHIqj4UfRyif/g9cybhhSyRQkFa+IOQixYcnQanUvVB0aKhk4Ep1KlJTjx3Fr+AhAo4HLhPFwffPNwtnx5a1I+WsMFpnrscTeDsn3g+H1Vc3wUmI/JJxTQKM2jNZWQ4/f7dLwbtcqGN28fNYuxMjvOxfPyfzlN88EyUB0drU6dEbbkW/I5xq1GglREXDw8Mw1F3lxcvnQfpzd9Q/Cr19BenJyjvfMra3R5+Ov4FHhQQXzTEfPRGDCutMIT1PDw84C39Qvjwtrg+FY1hzXfI5inWYxtNDKbV9KTsHbMXHwrT8GaPc5YKIqtMKzIa+9DqtGjeDx8UeFss8CnUdaWq7viRkKpmZm+doWSgVUZuZ5bqsqQHAiKSkJ48ePlwFuKysrvPfeexg0aJAcdR0ZGQmbQhg9uHr1arzyyitITk6GaT46NL744gvMnj0bS5cuRbt27bLWL1iwQAa07969C7NsPzdjlS1bVo5Cf9JI9Mfp3LmzDKiLcyGi4pW6Zebu6/htzzUotekYrdqGCaqNCDZVY4ajA24mWaD3fsAvvgFu+76EFCv3rJvqcrVcUbONDzwr2peKqdyF7b8rUbLj4mpkErwVUfjRZg0U8TY4mdAdOhh+zqbqFHjGHEC9IY3g2bMbf85ERGS0xQdvygKZIpL1WqVE/F/qz0i+dwXTnRywV2OD/ntN4JPYBLd92yHd3DErLVtgC2/UaO39QuY6fxqnQuIwYuFRxKaoUd7FGotHNoCPgzmwuCtw6wBQpg4wcpvIe5Pjc18d/gqrLq9CP/9++LTxp/k+XsgbbyJp9264f/oJnIyc2SuKo/725m75fOSPzWBpw8EO9HxxWCaVGOrQUNyZ8JYMoNt16giXNwwB6aeiVUP37+f4++xCTHOxR9T9wF5DXWs0De+BlFtADEQ/kx5JFgocVKTjmrkOX/SpgX71fHLsSuQyX/3lxw9WKBTwKF8RfjVqw7daLZkKJZPp/TQsJYXIuS4WkfYl6vZNhJw/I9O7iE4DrVoDZ+8HP4vze3ciPSUF/g2boEENd6zyaoqRi47helQyFm27hgYKE8TeTIfzzZp4y2k6QsufwzqThdhhDey2ssSAy8vw+t2jcOizBLDzfOpzT7t4EelXr8rFsno12HfrhqIwfVjuudnL1a6HXv/3edbrWa8Nhib98al+vAOrof9n32a9njtupCw2m927qzYZfX7Dhw/H2bNnZeqSiIgI9OrVC+fOnZPB68wA+vLly/H666/nuZ+tW7eiefPmj30vPj4ednZ2+QqgCxMnTkR0dLQM6J86dSpr/dy5czFkyJCsAPqTAvwicC+C8YVJfJcqVR6MXCWionfydiw+WHNGBnGbKs/iJ5vFUOgj8JmTA06nOqPvNgV6JjTELd/2uORpqFeiMlOgagtvVG/lDTsXy6L+CiVaC39XbJ7QHAsOBGPavyYYkPgGXladwLc+X+BcUmWciu0LjaoMQtxfQtjmZPiu/xzN3+sLm5rVivrUiYioBBDjP3/afgW/7r4GBXSYU+4A2t2dh+2WKvzq7IXWh1V4J6Ip7vi8hKsehloc1rYmqP1yeVRp6gkzC4a/HqeWjwPWvNEEQ+cfxY3oZPT+7aAMpFfpNceQHz30JLDt/4Auv+T4XAvvFjKI/t/d/+TvJr8d4+lZI9ErGn2uYua/qM0marRlpGphySxx9JzxrwiVCLrUVNwZNx7amBiYBwTA86uvnn70UnI0Tv7ZH9+pQ3DB1Vmu8rLxwjt134FvWHXsOnJJjkxzD3TEyrg4HEtKga2FKX4fXA9+6nBsm7VWpkIRucMFMapcFAO1c3VHudp14VO1BixtDNONXhRixLRb2fJyqdu5hxx9HxseKlO8ZDq2cS3u3bmNPYvnyuKkopDpyhH1MW71eewNjsEZByUmliuD9MvxSInRwCEmAK9Zfo9Qv/P4y34eltnbYYM2FOOWtEL/Tr/DpPzT5TW3bdMGLm++gehZvyHs00kwr1jx2RWkLaFEoHrdunUySF63bl25rmfPnliyZAnmz5+ftV23bt3QsGHDPPfl5eWV6zFEPvTXXnst3+dla2sr86p7enri0qVLCAgIkDnNDx8+jHnzHqR0yh5gfxwRuC9Mf/75J44dO4bff/+9UPdLRAWTmqHF9/9cwqKDN+Gsj8dvlsvRBvuxxNoOf6o80W2fAm0ixYi09rjs6SQ/Y2mlRO2O5VG1eRneVBciUZRsTMsK6FqzDL7YeB7bLtTFf4lV8ZX9Bowxm4ANmuYIjTYE02+oWiL05/Oo5rELdT8ZAVPbF+uaiYiICo9Gq8Mnf53DymMhcEUc1nosgiLqJMY7OsLhvDXGBDdBqNfLuFHBNit4Xq9rRVRp7MmaJvlQwdUGa99ogmELjuJyRCL6/X4I84bWQ8Pe84DlfYHjCwwj0usMyfpMA48GsDS1RHhyOM5Fn0N11+pPPI4uPR3qkDvyuXlF49O5CKZmShlE12QYZrQTPU9M50IlQsySpYj4+muYODqi7OrVMPN+fKAuv+JvH8ZP217FenPxH4ECgTEN0Lb8SxjWtSfMTMyg0+pw8p9byPC2xLgNZxGTnIFKlumY4BuH8BMHZCoWwVRlhjfmLYeZBUevCWKk+onNf+Hq0UMIvXIxa73I/V6ubkPsQnn8FW74WU1oWQHtLKxxetcdJESlwq2sHcoMScfPR77FlcSbcpvA9Ax8WnkIqrX85KnPK+SNN5C89z+ovLxQds1qmTf9eSrO6VxEULpx48YIDg6WKU4EUUhTFM8MDw+Hi4thxGZBiWKcL730EpycnLBx40aoVMal6hGfbdasmQyoizzmhw4dkuf8tAqSzmX37t0yD/pvv/0m86ITUdE6eyceb60Kwo2oJAw02YVPzVfhsIUW02wcUTtIiWZXa+C2bzek3k/bYmWtRJ1OFWTw3NSs+KdTK+m2nA2TQQ9xHdXI5DJ+t5kLZXoE5md0hiqqF2BiyEdrn3wLLXqXhW8PQ+0YIiKi7J3l4/8Iwr8XI9BCeQa/2szBSgsNTkbYo+PpWoh274Y0S8P9io2NAvV7Vkblhh4wMWXw3FjxKWqMXnIMx27Gyo7x6QNq4eV7ywz50UXhdZHWxatO1vYf/PcBtgRvwcCAgfio4ZNTp6Zdvozg7j2gtLeH/+FDBRoY+fv4PTLV7pCvGnMWIT13DKJTiSD+mcYuXQpz/8qwbtTwqfazad+X+PHaKsQolfCNC0T70IEwTbCDjaM5XvmycVZju/lMGN758xRcEu+gVfo5OMfdEDuQ75lZWsn0JoEt28KrciBzej5GXEQ4Lu7fjYv79siipYJ/4xY4698Vc/67IV93qeGJH/rUQOi5GFjamaFMRQdodVqsOvUHdm07iRMee6FVpqOfpQ/e7rYCNpYFD3xr4+MR3Lcf1Ldvw7p5c/j8PlsGrwkICgpCnTp1ZI7xMmXKyHXLli3D119/jQsXLmRtV5B0LomJiejQoYPMsy4KcloUIF/7nDlzMHXqVDniXJzfN998g1dffTXr/YKmczE2iL53716ZC/3nn382akQ9ERU+rU4v25Kftl+Giy4a0yznoazyHKY4OSLttgX6HPZDRJleSLA31C6xsFSgfrdKCGzmCVMVg+fPU3RSOj796xy2nguHNVIxzWEV2qVtxz5ze+y41x8e8W2gNzGHQqdFBfObaPFJL1i6G2YIEhFR6RaXkoHRi4/j1K0ovG+2Fq0stuAnE2c0OxwIWHVHoq2v3M7CXIeGvQNQpWkZFpt8SmlqLSb8EYTtFyLkzPzJ3QIx5OZHwOUtgJ038PpewNrQabH/7n688e8bcDR3xM6+O6F6Ql2z+M2bEfrue7CsUwdlVyw3+ty0ah1mj98jn4/+uTnMrQqnjhpRfjGITqVGeFIYPt88HAfSQuGS5I02t3rCKcGQh8vcyhS12vmgVjtfOd3r9/9u4Nutl+R7/c2uwu3yv/K5yG9etVU7VKzfKMdoYMqd+BMTcf0qzu7ejsDmbeAVEIg/j4fgh1X/ITD2DFCtJWaMeQl2Fg8awGObg3H072BozZLxn89fuOx6DJ4KJSa3/BGNyj4oMGmstMtXcLNfP+jT0+H+0UdwGvpgOlppFhcXB2dnZ+zatQstW7aU6/r164ctW7bIIHhmJ5F4LvKlPymdi6WlZdYIdBFANzc3l/sSgfSCiIqKkildRDHRadOmISwsTKZ6yXTt2rUnpnNxc3N7qiC6yBUvRqB/9913GDt2bIG+BxEVjsjENHlzd/jGPfRQHsBXFoux1RpYpnBAv532MDPvhUg3Q2oqExM9ancoh9rtfZm2pYivBTaeDpWj0hPTNOhucRI/qn5HqjYJP9kEwOliP5ia1JLbWmTEolknD1Tu07SoT5uIiIpQWHyqzNOdGhWMaeYzcNw6ErEXy8EvsTdinA2pQ0yVWtTpUBa1Xi4vc2VT4aXP+XTDefxx9LZ8/V4LD4y99ioUMdcBv6bAkPWy0KhGp0H7Ne0RlRqF75p/h07lO+W536jpMxA9axYc+vaB55dfGn1eyXHpWPR/B2Rwf8zM1jJHOtHzxCA6FVsiX1b07NlwHjUaJjbWBd6P+Ce+5frfmHLwM2jTrdD0ZjdUuFdfvidGnYsK3XVe9oOFtQqJcXGYOn0B/o22wC0rPwxvUhbvtfTG8Q1/omb7znD0MIzSpae3fOo0hB/aAR0UCHeujCGvjkCt2lXle9eDInFw3XWZ5kWIs7qNPeXWI9zuBvr7dcTEpp/DSlWwgGzsH38gfuPfKPPDD0+dFuhF0rdvX1ksc8OGDbhy5YocTS6C3ytXrkTbtm2N3p8IoLdv3x4pKSlYv349rK0f/Dfs6uoKExPjLnJFgVORSkWkUFm4cCEKKiMjI2t0fadOnTB48GC5iNHsFSsaOtV+/fVXec47d+7MkcLlrbfewoQJE7L2JQqbihQ1RPT8HLsZg7HLTyIjMRrfmS9AgOoEvnRwgvdpCzS41QK3fTtDa2oBBfQIaOyBhj0qwtqend7FRUhMipySfyokDj6KCKx0mA2v1Mv4y8Ya/yS0RK07vaExM/xdLe9wD20/7QYza/7+iIhKm2uRiTKAXi1xH96wno81ifaoefFl3HN/CTqlCgq9DoH1HNBwQA1Y2j5Ii0mFR8RRpu28iqn/XpWvJ1TX4J1bY6HISASq9QF6zRWVPjH79GzMPDUT1ZyrYUXnFXnO0r/77ntI2LwZbu+/B+dRo4w+pzuXYrBh6inYu1rKLAJEzxuD6FRshX/9NWKXLIVl7drwW7G8QClT4tLi8OXBz7A9ZJd83Sy6LKpdfUc+92/ojobdysPO2RLJcbE4tGEtTv6zGSZaNSLMXVH51U8xqrlhGjgVvjsXz2Hnyj8Qfel01joH/+p4+ZWh8KpcRU7VOrP7Do5vCUZGmqFoyDXnkzhYdj2c7C3wQ5tpqOZSzejjyj95Wi0UphyRmF1kZCRGjx6N/fv3ywC3GHEtgujvvvsupkyZglFGXuSIkdutWz8+t2323Ovicfjw4fj888/z3J8o4jlmzBjs27dP5kcvqJs3b6JcuXKPrBcj8MU5C+JcFi1aJLcVxPktXrw4z88Q0bMl/nYvPHATX2+5iBr6y/jN4lfst07FqgwHvLK7PGLc+yPZxtAx6u5lgVYjqsPFm4UqiyO1Vocft1/G73tvwBwZmO74JzqkbsEVlQofuVREq0PtoLBoI7e10sbjpddqwrs+r8eIiEqLE7di8eqiwxihXg5rq71IP9cEZqreWXnPPdz0aP1GQzh55p3SkQrHiiO38clfZ6HTAxPKhuCdyI+h0GmAZhOBdp/hXuo9ORo9Q5eBpR2XopabYWbZ4wT374+002fgNX0a7Nq3N/pcRHxg36orKFvDBZ3frPGU34zIeAyiU7GUfPQobg8dJp+L3NU291NMGONU5Cm8t2ci4hNSoDFNwusJKRjdfjpOBVeDb6AT3PzskJaUhKMbVuPk1r+hVWfIz90zd0btrn3Rp09n5jp/Di6dv4RFv82Hc9QlKGH4c1S5SQt0nvC+/PmnJGTgyN83cHF/qExJH+J0DJsrL4OpQom3607EkMAhUCoKnvcuIyQEZj4+hfiNKL/EKHWRRkbkUW/VqlW+gvKxsbFwcHB4budIREUvJUODD9aexd+n72K0yRa8Yf4npjjawynIFlWjuiHUy/D3w9xMjyb9q6BKY08oOL232Nt9KRITVgbJ9C6jrffhY91cpECLT30rAOd8USXmFWSYO4rq4KhdzwqNRzXm75WI6AW382IEPl6xBx+aTsOFeDV87g5GvKMhWGphkoYWr1RHxUbevE9/zv45Hy5T6aVrdHjX9RjGJ/5ieKPLVKDeCEw6MAnrr61Ha5/WmN5meq77udKkKbQxMSi3fh0sqlQx+jz2rLiM8//dRZ0Ofmjcs8JTfCOigmEQnYodXUoKbnTvAXVICBz69oXnl5ON+rz4J734/GLMPDYLdW91QpXI+mjm9wXqDp4FeNfL2u783p3Ys3gu0pKT5Oswc3dc8WiIyeP6opZvwQtYUsGKl3ywaDcSD29DlaTLQI02ePfDt3PkOIsKScTB1ZfQwPoH/KA9gR3WhnQuzb2aY0qzKXC0cDQ+V/uUrxG7YgV8Fy6EdcMGhf69KG+bN2/GrFmz5OOTMIhOVDpFJqRh1OLjuHX3Ln42+x3WVucwU++MXnsrItb9FaRZusrtAuo5o+mAQFjYsMBUSRIcnYxXlxzHtcgkNFNdxHyL6VCp4zHT3RubUq0w6GhvJDkY2mdPpwx0+qgtf8dERC8oUTdr+foNeEU1HQmXmkFj0wsaUyso9FpUq22FxiMaMe95EafUG7XoGBLSNJhstxFDM1YCChNg4ErccKuInht7QqfXYWWXlajqbEjTmp0uNRWXa9eRz/2PHoGJnZ3R57BqylFEhySh/eiqqFTPvVC+F5ExWLaYip3In3+RAXTTMp5w++B/Rn02ISMBE3ZNwLI9a9Hz9LuoHt4CpjpLqKr+niOALqgsLGQAPdbMCX+7d8SpmkMw8/9eYQC9CFioTPDLqLao0m80lnv1x9w4P7yx/ARSM7QIu3oZ/y1fCHsXE3SfWB+eo5biJ+em+DQ6Bq2v9UPiUTP0/3sALt67aNQxxegFvUYN6HQI+/RT2ajT89W5c+d8BdCJqHS6GJaAHjMPICX0AjZaTMJVx6tYf8cTvQ/2QVjZd2QA3cpSj24TaqHt6JoMrpZA5Vyssf7NJngp0B371VXQPukzxFr4YXzEHYwzicXsdiuhilsCpTYDYTFm+OODHQi/HlvUp01ERIVIDG6atecaDv/1C9pnLEbKlbeQ5vCKDKDbmSWg7//VRYsxTRlAL2L1yzphzRtN4GlvgUkJXbFJ2QrQa4HVw1E+JQGdyhmKis4MmvnYz2sTEw1PFAoobY1PuZeWrEb0HcMAyDKVOKiKigZHolPxTeMyfx5smjbN92dvJdzC+B1vwe18IGqGtoESSlir4tFmeA341q2A6Ns3kXAvCuVrG4qKLj98CwtX/I3rln5oVMEVs4fUhb0lb8CL2rqTd/B/a88iQ6tDLW979LyzBtHB12Dt6ISWg0cgoFkrWUgm4o9vsGZfE/mZULurOOC/Bh+0nYiO5Trm+1japCTc6NIVmvBwOI0YAXcjO22IiOjZ2HM5EuNWBKGe+jimWMzEd3ZWqLXPD0qrkUi29pTbBNR1QvNXqsHMkjUuSjqdTo+pO69i+s6rsEcS/nKchnKp53HC2g7jPTzw8n4HeKeOQqqVG5TQouWgyghs4VvUp01ERIXw9/+rv8/A9vgkWIQ4Q2Hax1AgXKdGnaZ2aPBKQyhNOPazOAmLT8WwBUcRHBGHJRY/oDHOAjbuuD1gCbrtGgOtXotFLy9CXfe6OT6XfiMYNzp1kgH0yseOGn3cG6eisHX2WTi4W2HwF40K8RsR5R+D6FSsZBaaMDaNy6HQQ/hi67dofL4PXFIMhcUqO51G83cHA5Y2OLRmBU5u3QgLaxsM/3k2ph24KwtaCb3qeOHbXjVgZsrGuThNFRu9+DjiUzLQ0DQcreMOIjk6Ur7nFRCIdqPehLO3Ly4umIt9J7yh0Vsi3SQF/5X/Ey1b1caE2hNgoszfSIXEPXtwZ8wbsrJ42ZV/wLIGC5QQERX1dO4P153BCMVm9LBeg+kaZ3Q83AThXn2hMzGDhUqLdq/Xhl81Q4ExetF+92dhpkvFSvtZqJl+HJfNLfC6bzlUOqtG2+uv4J5zTblt3baeaNgngHlxiYhKqAyNDh+vPAD/sx9DFdIdyXa15Xo7ZRQ6/68dnMo6F/UpUi7iU9QYsegort4OxRrzyaisuA24BmByjZew+sYGBDgFYGXnlTnuyVPPn8fN3n1g6u6OSnv3GH1MUVBUFBat2rwMWg0OKORvRJQ/DKJTsaKJikL0b7/B9Z13YJKPKT7in+/Kyyvx3dHv0CC4K2qGtYa5Mh5tyu9E+XFTcOPCFeyYMwNJsTFy+/L1G2O3YzNsvGqYBvROO39MaFuRN2DFkMiPKnq478alwtFcgQ99IxC2dxM06elQmpiiUa/+aNCjDxK3zsSO7RaIVPvLz112PQJ9s3B81+YbWKkMedOf5O77/0PC33/DPLAKyq1eDYUJpwoSERWFBfuDMWXTWXxlugCO9kewK8QT9e4MQJSbISWbl68Z2o9rACs7s6I+VXpGdl+OxNjlJ6HOSMcc2/lord6LWyozvFq+MhyuxmPgsU4I9eogt61Y3R5tX6sFUxXbbSKiklYT68OFGxBwehGUKcNkIWmFTouAwHS0ntCZhaRLgOR0DV5fegLXrl3GBvNJcFfEIqZsE3Qxi0OiOgmTGk9CX/++WdunXb6C4O7dYeLkBP+DB4w6loj7LP34EBJj0tDx9eooX9tQE4foeWMQnUosUbTip+M/YcmFJfJ110QtXrrREQ2q3IFJ7+nYs3KFLB4qOLh7ov6gUfgiSIcTt2KhMlHgu9410KuOdxF/C8pLVGI6Xlt6HEG342CqVODr9t4wO7YR148flu93HDsRgS3aQLv3ZxzfeAXHk/vIUg937a7iZou9+LXdr3CycHricTQxMbj+ckfoEhLg8fnncBzQ/zl8OyIiyiQuR6ftvIrZ/57DdNV03HC4jvSTFWFn8ipSrDyggA4NO/uiTudKvLEuBc7cicPIRcdwLykNM20XoZP6X4SbqjC6YlXoQu7hzZ2NcNu3P/RKE3j4WaHL2/VgzrQ+REQlJvg65bdfUe7UXWSYdwAUSphpovHyG3XhU7dCUZ8eGdkZMuGPIIRcPIo/zSbDVpGKZQEt8F36TTiYO2BTz02wN7eX22bcuoXrHV6G0toalU8cN+o4USGJ+HPKMZiqlBj5U3OozNh5TkWD+SuoWEg9e86o7dU6NT7750vc2JQMhV6JtxJSMSX6LlrXugaTvjOx+OP/GQLoCgXqdumJlv/3PSbsS5UBdDsLUywZ2ZAB9BLA1dYcf7zaCF1qeEKj0+N/20IQVn8AOk/4Hyo1aIIqzVrJ7UxaTkTDPtXR3fEzqJRxuOa1D2fvncXQrUMRkhjyxOOYOjnBdfx4mDg4QGlp8Ry+GRERZQ+gf7npIhb+G4SF5lNw0O42bP9rDHPL92QA3VKlRs/366FuV38G0EuJGt4OWDNGFC+zwtjE4dhs2hYeGjXmXTsPnbcTfu54GOVvzIapJgXht1Lw1w9HkZakLurTJiKiJ0hIU2PG9x+iwklzZFh0lAF0Z7NrGDatOwPoJZCFygSzBtdBlVpN8Kb6LWj0SvS/9B8qmNohLj0OP5/4OWtbpZ2dfNQlJ0OXkWF0PnTBJ9CJAXQqUhyJTkUu6cABhIwaDdsOHeA19ZcnplZJUafg03Vfw2N/fVipbWHn+heGmCwG/JoCg9cAZlbYMfdXhJw/gw5j3kaohQdeXXIccSlqeDtaYtGI+qjoZnw1aCragjNfb7mIefuD5esRTcvi086BUN4PpqjT0rBj3kw0qaCF9aEfEWKuxRtlKyNUkwgflMcPnb9GVZeqeR5Dr9FAl5QkA+lERPR8iMvQL/6+gH8OnsAsi2+xzFSDRke7ILJMF/m+uyvQ6f1mTN9SSoXEpGDQvMO4E5OMGdYL0EW7C3dV5hhevjK0/8/eXYDFdaV9AP+P+wzuHghEibs0nlSSNJXU3d228m23tvV22+7WLfW0qUuskbZxN+JAAgR3GGB87nzPORfSCDIkMNj7e5bnDsOd4dKd3HPOe85535JK/N/PUTgafzucSgP8Q1SY8+Aw6Eyqjr5sQgghjaisc+DzJ+6DpmIKnCp/SN129B1kxsQ7aRdwdxivP/3bfli2foZXFB9gh0qF6yJC+c8+mPYBRkeM5n2+w4OHwGOzodeK36GM8a5AOE/h+++tqCiow5Tr+iBllFhgnpCOQCvRSYfyCAJKXnmVP5aHhrQYQDc7zPi/BS8h9q8JPICuVuViLpagwm84ame9ywPozDlX34SrX/ofdtj9cOWHW3gAPTXaDz/dMZYC6F0QC5Y/fn5f/PPcPvz7TzZk4+5vdsHucvPv13/zOQ6u+xNfLNqGjKirkOB04Yujh5Dq6Y3J227EJ/9dgd2Fe5r9HRK5nALohBDiQ2xQxCZIV23ahvc0z+BLtwTDdt98PIDed7ABFz51DgXQe7DoAC2+vXU04oIMuLvuBiyXTkCk046Pco4CIX54fm4eko6+BaW9CpUldvz48nbUVto6+rIJIYScotRsw9cPPQJFzRweQFfaizH1umAKoHej8fpTs/shdMJN+K/rQgy12zHfLNahe3rT03whJIv1KCIj+XOO7Gyv37sst5YH0GVyKeIHUlF50rFoJTrpUFU//4zCRx+D1GDgs5Fyf/8mz622VePFtz5GVOYg/n2AYTcu0ryEDGk/rD7qj7DEZFz8+L8hra8A/fH6LPx78QH+eEa/ULwxfzA0XXTrD/tnajabUVhYePyruLgYdrsdLpeLfzmdTn6eXC7nXwqFgh8DAgIQHh6OiIgIfgwODoZU2nXnz37ZnY+HvtsDp9uD8UlBeP/qoXCZK7D0zf8g/9B+fk6/RH9MkS3GIcdo/FV9P6QeGYqNWbjgjsEYHjek2fdn/w1rfl8By/btCHv8nz76qwghpGdh99pXfj+MxWs24lXt8/i5yoQ+BbfCbEqExOPGhIvj0X9aIroj1maXlJSc1KZXVVXxdryhTWdfrK0+sU1Xq9UICwvjbXnDl16vR09QYrbhio+2ILukCl9q38AoYScO6wNwbVgwdGUWPP1jGA4n3AqbOhB+oRpc+OBQmnwhhJBOIr+4AkseewdO5Rj+vda2Dxe9dCWMoYHo6mpra4+35QUFBXyMbrPZTmrTBUE43p43tOl+fn4ntechISH8Z93BGysPI3rtA5gp34C5UREokstwZZ8r8eiIR5H/wIMwL12K4PvvR9Ctt3j1fmsXpWPvn3lIGhaC6Tf1b/frJ6Q5FEQnHUaw2XBk1rlwFRYi5KEHEXjTTU2eW2WtwuuvLkJIfhL/Pi5kNWbgHfxVPRh7isTV59H9BmL2g/8HlVaH11dl4H+rM46n/nj8vL6QdfI8qqyh3b9/P3bs2IF9+/YhPz//pAbZarWedL5Wq4VGozmpMWbcbvfxBtvhcKC6uvqk18lkMoSGhp4UWO/duzeGDBnCv0wmsfBHZ7Y+o4wXHLU43Bge54+PrxsOvVKKLT9+i03ffw2PR0CIvwqzA9ahVNIPS6ofhtylgllThgk3x2Ns3+FNvrcjL48XPIHbjdgvv4B22DCf/m2EENIT/HdVBn5avQbP6V/An7nhiLTcwfOfy+HAuXcORvQAcQtwV1VWVoadO3fyNv3IkSMnteelpaV8QN2ABcuNRuPxyW/2xdpq1kU/MaheV1fHB+YnYkH0E9vzqKgoDBw4EEOHDkVycjJ/n+6i2GzDJe9tQmlFBX7UvYg+7nRsDIzEnSYlwotdeOr7IKT1uQt2dQCCovSY+8BgqLRi34gQQkjHyD6SjVXPLIFd04dtQ4efZB0ue/NfkCm6RsCYja0PHz7M2/O0tDTk5eUdb8/ZkQXRT8TG52ycfmLQnK3APnGMzsb9bIHcqX0BttitoT1nX7169eLtOfsKDOxaEw5vrjiAIetugkR/BLeGhUACCT6Z+QnilqSh5OWXoZ84EdHvv9fi+7idAj55dD3sdS6cf3cqYvt1rf8OpPuhIDrpMOUffYSSV/8DOWsgli2FVK1uMoXLAz88hv7rLoBMkKF/whKMMH+J3wpTkV+r4cVDx1x8BUbOuxQSiRTPLD7A030wD03vjTsnJbaYJsbXWHC7IWDe8MUaZbaynDWgiYmJiI6OPt6AntiYtnb1GWuk2Yx4Q0N/4hd7jn2xjoHFYuHns9/d0FizLxZYZzPlnQ0rEnvdJ1tRY3NhYJQJn10/Av46Jc+F/9sbL8FqroZaKcHc8F2ALhLfVv0flFYDrIpajLwpHONTmw6kFz75FKoWLYJm0CDEfr2w031+CCGkK/tqSw4+/HklntM9hw1ZifD33AmH0gi11IY5j41DULRYeKqrYEHxE9tz9nXs2DH+MxYcZ8Hsptpz9j0bNHuz+ozvlKqpabI9Z0f2e48ePcrP1+l0GDRo0EltOruWrrzSjeVIv/i9jbCby/Cr7lnEuHPxU0QynlBZ0TdHwEO/hmDXwHvhVBoRlmDEBfcMglLddf9eQgjpyg7vSMPaN/fAoY7k+c9DQjfgomefRWfFAtyHDh063pazyfDdu3fzSWwmISEBMTExTbbn7GgwGLwaOza2K+3E9px9sTE6C7YzsbGxx8fmDW066z90Zu/9vhOTNlyNr0Is+MmgR4Q2DAtTXkDJJVdDotGg95bNkCqb3zV2ZFcJlr+/DzqTEte8MPZ4TTRCOgoF0UmHYBWZM6dMhbuqCuEvvAC/C+c2eh7LnXXzypuRVpqGPrXDcS/8kXjsa/yS3x81TiWUGi3Ou/cfSBg8HG7Bg3/+tBffbMvlr316dj9cOyYOnQGbZd62bRt+++03/P777zxgzgLpLGDep0+fkwa4bMDLBr6+xGbGWYehYdUc+9q1a9fxDgObBZ8wYQJmz56NadOm+fz6mrIvvxrXLNiKijoHkkMN+OKmEQgxqGEuK8Gv/3meH68aXA1jyXpUaFKwoOIhaKoDYZdbMf72GAzvN6DR93UWl+DIjBm86EnU22/BMGWKz/82Qgjpjn7fX4Snv1yBF3XPYPuRJOikd8Kl0MKotmLuk1Ng8G98Qr0zqaysxPLly3mbvn79euTmiv0OtpPr1Elo1n76OoUaSw3D2vATg/oZGRnHV8ix65o1axYuuOACDBgwoMtNFGeW1ODS9zdDXVeAZdonYBKq8GbiMHzgLsH4wzJctyIYu1Lv5Z+ruAGBmHX7QBp0E0KIj+1avRFbFxbBpfCDwlGNsEGHMfueR9GZsFDY3r178euvv/J2nY2FG3Z/JyUlndSmDx482OcLy1gMge1mO7E9Z9fYsNOcLbobN24cb89Zu94ZF759smQdztl2Fe6I0iBPocCsmBm46V+b4S4rR8wnC6AbPbrZ1y95Jw3ZaWUYMiMGoy/snmn+SNdCQXTSIWwHDyL3zjshVSiRsGQxL+p4qhqzBf9c/ST+NC+HUWnEAl0qknZ8hc+yhqHCroF/RBTm/uNxBEREweUWeJ7sn3cXgI2TXr44FRcPjUJHYiu7V61axRvlxYsX89XgbBvWzJkzMXLkSN4Yp6amdpqAdGOB9fT0dN5Yb9++HStXrsSBAwegUqkwZcoU3lizr8j64iAdJaO4Bld+tAUlNXYkBOnw1c0jEW7SwOVwoKqoAEHBJmDBTKD0EKoChuC9wltQ57Rg4+CvseCCjxFrjG30fUteex3lH3wAVd8+iP/hhy4XZCCEkM5me3YF7vpoJZ5VPYWDGYlQKG+HW65GgN6Kef+eAZWm864YZoNY1p6zwPnatWt5G8mC0aw9HDZsGG/T2Qq1ztpWsAF3Q2B906ZNWLFiBV/Vzla2sbacTZJPnDgRyhZWhHUWbBJ9/vubkOw8iG/Vz0HqceKePiOxxlaIa7dqMW5bIHal3gNBpkTq5GiMu1RMB0gIIaT9bfl5NXYusUOQqaG2FiB6WgWmX3UPOgO283vNmjW8PWftOtvBxVaPT58+HWPGjDm+qK2zpjhl4Tu246xhjL569WoeWGe7zMaPH8/bc9aus0n8zmLRL78hbv9tuDXCH26JBB/uGAzTim3wu+QShP/7mSZfZzE78OmjG+ARPLj8yZEICO+ccRPSs1AQnXQYj8MBZ0EBlHGnrxavq7Hhg+d+h6vOg98HfIhXU0Zj0B+v8J9VnPM6Nu+twJQbb+f5z1kA/d5Fu7EkrRByqQT/vWwwzhsY3gF/Efi2K9Ygsy8WQGe5S9nW6YbGbPTo0V16G3VmZubxv+/EIELD38dm6DsigJBTXocrPtyC/Corovw1WHjTKMQEirnyuapjyHxlDvYXqzBqRBjuC9RhX20aInQR+GzWZwjThZ32nq7KSr5bwmOx8HxtLG8bIYSQM5NZUotr31mJx6VP4GhGEqTqW3iAM9hkxYXPzIRC1blyd7P2bfPmzccH2QcPHjxpEvn888/n+ce7qqaCCGyin/195557bqfPv/rn4RLc9Nl2zMEavKZ8D2apBFf0TkWOrRzPLjPBVBCH/f1u5OdOuKw3BpzTdf//IoSQrmLTV0uxa40MHqkC2prDSLpMhXEX3NCh11ReXo6lS5fy9o7tCu/Kk8iNYXna2aI91qazoDpr4/v27Xv87xs1apTPd8Wd6sevP0Rx0b/xToAJg3MkeGyhE1KjEUnr1zWZ0mX3qmPY8H0mQuKMuORRqlNGOgcKopNOx1brxIfP/w5phRYWhRmpc0qRuvoZhKrMwOR/ARMeOn4uC6Dft2g3FqcVQiGT4O0rhmB6v9MDou2J5RxnjdaHH37It4GxIDKbBW5Yqc2KdnZHDdvZWWdk2bJlfJVbSkoKbr75ZlxzzTUICgry6fWwAPqVH25GdrkFYUY1vrttNKIDxEC6w2rBh3dcC5vFijB1DSZeMBC3y7KRbc7GpMqLcOfUm5Dc//TBdfHLr6BiwQJoUlMR+83XnXaFISGEdGbVFicuefsv3Gv9J45kRUKuuI0PrsMCbZjz1AzIFbJONRBdsGABPv74Yx5YZvlGWcCcDUKnTp3qdT2SruTE7exsAL5161Ze5HTu3Lm8TWcTBx09+G7Kwi3H8H8/7cWj8q9xm/w3ZKr1uCIqHILVhne/9UOZZBiOJsyGRApccNcgRPcN6OhLJoSQbmvDp0uxe5MCkMigrdmD3teHYezUyzvkWlgqFBZQ/uCDD/DLL7/wMfuIESOOL/7qiunMvMEKnbId5Kw9ZzEKVreFTRjceOONuOGGGzpsFznrayz+6El8L3yNXSoV3n8H8DO7EfHySzDNnt3oa77591aU59di4uW90X8iTYSTzoGC6MSnBLsdNatWwTh9OiQKxWk/t9U58emLf8BdquAB9PgLq6D/7kMcrDDhwgkBiLvjC15IlGEf3Ud+SMO32/N4AP3dK4diat9Qn/0tOTk5eP/99/HJJ5+gqKiIN8o33XQT5s2b1+lXb7U11in5888/eeDhp59+4s9deOGFuO222/jMvq86KCVmG0/tklFSi/ggHb69dTSCDSr+s/xDB/Dzi0/AZrXBX2nBhGvPxTOHsjFy3zy4ZU7Mu28YopJO/v/NVVqK/AceRMCNN/CV6N2xo0UIIe2JTXZf/8lWTMt9CuX5cqgld/EV6OGBFsx5+lzI5B0fnGUDbbZCjbXp7KhWq3H55Zfjuuuu4zvIZLLOE+T31a66RYsW8cUBLI1bfHw879+wr5CQEHQ2Ly0/hPf/ysCnypcxQZqGxaEJeEzrQniVBK9/ocChyHkoCh8NtU6BS/85HIaAzp93nxBCupq1Hy/H3q1ysFlLrXkr4m7qhUmTL/H5dbAUqmwi/KOPPkJWVhb69evHJ4QvvfRSXvizJ2G76lgKt08//RRff/013yXPdpqxMTrLoe7rCXJB8OCXt6/Ey/o9mLYZuHyNAHW/foj7/rvTxtmluTX49rltkMoluP6lcbwNJ6QzoCA68amq779H4eP/gmbwYMR9vfCknzntbnz58lpY8j2wKGpgmlOM8J+/Q3qpChKJBzNuvgv9psw6fv6Lyw7hvTVHeA70d64cipn9238FOvvnsm7dOvz3v//Fzz//zLc+X3311bxhHjhwYLv//q6grKwMn3/+OR98s2Kl7L/LvffeywMSrKBZeyuqtuHi9zYir9KKfhFGfH3LKBjVYqNbUZCP7/91D2pq7TApbEi95Sr8tNSGyKre8ChcuOTBUQiNM7b7NRJCSE/xzG8HoN7yEhRlRdC47uU50IONNbjo+Qs6PIBuNpv5RPibb77Jc56zPKisPWftldFIbQHr87DBN2vPWVCdDcbZfxvWprP0bZ0FG5TfuXAnNu9Lx3L1/yEUFfhn0mD86irHrKNGXPOdGTsHP4gaQwxC44248MEhHf7ZI4SQ7mT9gpXYs1WccNZXr0Ho9cmYOf0Kn14Dq/vBxugsWMwmv+fPn8/bdDYZTguhxD4P+2/D2nSWT53lTL/77rtx/fXX+7TP43I68eG7U/CFogLvvu2G0gXEfvUltEOHnnTe+u8ysGd1LnoNCcHMW/r77PoIaQn1IIlPB2Pln37KHxumTj3pZ263gJ/e3coD6DZ5Heqm7kPo4mU8gC6VeDD7jjtPCqB/uPYoD6AzL84b2O4BdLZK7ZtvvuH5v9nKarYy66233kJ+fj4ffFMA/W8sjcsDDzzA/xuxrWQxMTF89Ro7PvHEE6iqqmrX3x9mUuOLG0ciSK/E/gIzz5dqc7r5zwIiInHZ82/DTydFtVONnR98jdEzFSgwZELilOOHN7aisqiuXa+PEEJ6iu+256Js02eQm49B67xbLCKqqcK8Z8/v0CAm2z1233338ZzmDz30EIYPH86DxaxA16233koB9Hos6MCKrLGJBpbm5t///jf++OMP3heaMGECT+XWGdbiSKUSvHpJKoJDI3C7/R64IMP/Ze5GjNIPyxLMyBwdhv77P4LcbUVxlhkbf8js6EsmhJBuY8sXfx4PoBuqVsHvsmifBdBZG8TaItYmsbaJ7Yx+9tln+RidtV2sDaMAuoj1bVgfh/V1WJ+H9X1YH4j1he6//37eN/IFuUKB62/8DcM8UqztL/5/c+z11046hxUSzdxRwh8nj/RdpgFCvEFBdOIzdes3wJF5BFKtFn6XXHzSz8rNlcgoyIJT6kDm8NUYsDETmYVOyCQC5txwJRInnHv83B925OG5pQf540dmpuDS4dHt2jCz4iPDhg3jq69CQ0N5HvD9+/fj9ttvh05HFaKbwjosLH8sy8eWnp7O//u9+uqrfNabHdl2svbCUrl8ev0IGFRybM2qwF0Ld/KUAowxNAzzn38TAVoXap0KGJZ+j17zZSjWZ8Njk+L7N7bySuCnFhktfecdlLz+RrtdMyGEdCcHC8347uefkOz6A4aau+FSaGGUV/AV6HJlx6RHYbU7Hn/8cd4OffbZZ3wFVnZ2Nl+ZxYpukaYFBATg4YcfxtGjR/Hdd9/xNG5sS/ikSZN4AdaOplPJ8f7Vw5Ch6ouXnPOh83jw8rEjkEtkeHZUIeTBcvQ9IC7kSPszD0d3l3b0JRNCSJe38/vN2L5eXKykr/oD8jlhmDPnJp/8btb2sDaItUUulwvff/8931X2j3/8A/7+/j65hq6K9XlY34f1gVhfiE04JCYm4l//+hdfsd7e1DoTHpvzLTYMA1xSwLN9J0o2bDr+88Kj1airskOpliGmb89Kk0s6PwqiE5+pqF+Fbrr4IshOWOUleAQ8seOf+D7lP9gy6Bucc9SN7OxSyCVuzL1wDBJOmMn+41AxHv4hjT++aVw8bpuY0G7XywprsWJaM2fO5GlI1q5dywPoM2bM6LQFtjor1ij/73//Q2ZmJi655BI8+uijSEpK4jnUWaenPfSPNOGja4dBJZdi1cESPPLDXr7lm9GHxWL+Uy9hVGgRJmg24vrKY8CsPFSrSuGo8uDnN7fD7RSD7ozjyBGU/e9N/hlmAXVCCCFNq7W78PgXf+A8z0fQFN0Lh8oPGk8FLnnxAig1vs9pySZtX3vtNR48/89//sMHjCwY/Nxzz3VYga2uSi6X4+KLL8bGjRv5JHl5eTnfKs/qwRw8KC5w6ChsAv1/lw/GR8J5+MM9CP2sdbjBIYddKcEr5zoQVHUQMcdW8nP/+urQaRPmhBBCvLd3WRo2razlOdD1VetgnarAFZff0+6/l7U1rPYWa3sqKip48cwNGzbgoosu4m0U8R7rA7G+EOsT3XnnnXyhW0JCAl5//fV2XfDGhEem4NYJD+OvgeJq9P1P3A1n/aK3hlXo8YOCIVNQ3IV0LvSJJD5hz8xE3YYNbM8tAq6++vjzNRU2fLz3Y2zI3wCZUoJ/zbwZhtI0MYA+zh9xl/7z+Lnbsytwx1c74RY8mDc4Ev93bp922Z51+PBhPkAcOXIkSkpKeDXv9evXY/z48W3+u3qaiIgIvPfeezzVC+v4sCrhLBUOyy/fHlvCRyYE4u0rhkAmleCHneIOhobfo41NxdhbH+c59SUb3sD/RQxF5pAVsMprsNO4Bm7J38F9zdChUPXtA4/djqpvv2vz6ySEkO6C3WP/+cMuzKl5Hp7sO2DVRkDhNuPip6ZBrRcLPfsKy+HNimklJyfzVdQs0Msmc1988UVapXaWWP/r/PPPx+7du/mq/p07d6J///48fVtubm6HXdek5BDcO6U3HnHegkqPAbfmZSBRbsTugBrsnZ6AhKzF0NuKYK1x8kB6Z0hHQwghXc2RjUew9udiHkA3Vm5E1fB83HLDE+36O1nbwsaOrK1h+c9ZDS52PO+88yhlSxvsNnvppZeQkZHBJyhYmhfWd2J9KNaXai+TRlwHzBgKpwwIy6/DN/+6k7fLeYfERWsJqcHt9rsJOVMURCc+UfXd9/yonzQJymgx/UrR0Wp88a+N2PRrJuCR4J8jHkPfta9jVvBuXJFajtib3mOjNH7u4aIa3PDpNticAiYlB+OliwfyHJhtqaCgALfccguv4M1WobNtTXv27MHs2bOpYW5jvXv3xrfffott27bxwDprrMeOHcuLtra1qX1D8crFYs76j9dn4Z2/xFz6XL+5wPCbwRao//HfFzBquxu/D/ovfjcuxH92/Of4aez//4Crr+GPKxcuhKedVs8TQkhX99WWY4g7+CzcR+ahztAbUrcNs+8dBmO4yWfXwAZgbJV0amoqL5g1YsQInobtgw8+oJXnbYwVb7vmmmv4AgS2yp8tPGA7zdh2+soO2rl19+QkJMQn4DHnjVACePpYBqSQ4MX+RyFEBaLP3gWQQEDWnjIc3uybHLCEENJdFB8qwopP0wGJDMbKHajqvx033/1Om4/NG7C2hLUprG359ddf+c4y1uZcffXVvA0ibYflR2eFR1mfiaWzZX0o1pdifar2mnS+49pPsW2Ymj9OWP0nvvn+N1QWijXKwnr5ru9IiLcoiE58wpGTw48NudBrK21Y8u4eeNyAvyUMF0knYHZJIZC5EhKFGsHXLwDUYsqX3AoLrlmwBWabC0Nj/fHOlUOhkLXdR5c1CCytSJ8+ffDjjz/ilVde4Tm8r7vuOmqY2xlrnFetWsULkDocDl4Uhk1ktHUutnlDovDE+X3541d+P4yvtoifR276s7AEDkJejRo1JWWYdzAecpcECw8txLLDv6MgQyyEajzvXMj8/eEqLkbt+vVten2EENIdZJbUYvPSD6DPiYbFOAISwY0p86MQ1j/KZ9dQXFzMt3SzCXBWx4RNirMc3mxFFWk/KpWKF2tl+WgfeeQRvPvuu7xfxYLqvsZ2n/33ssHYoh6LH9zjMNBux7U2wCmX4M1ZHhgsBYg/+is/d923Gairtvv8GgkhpCuqLqzBz69thSBVQW8+jKqkxbjk7oXQKtsnjQprQ1hbwnYys3SgLO3Ivffey9sc0n5SUlLwww8/YMuWLQgJCeF9KrZTn/Wx2ppMKsOsF79GpR4IqJZAWLyAP28MUkNrZFPhhHQuFEQnPhH93ruI//UX6MePh8vhxtJ398JW40K5tgAWv7UwLMnGss+/Ap/gnPEcENafv66s1o5rFmxFsdmO5FADFlw7HJo2LEiWl5fHt4CxrWFsNTTbwsSqU6vV4mwo8Q1WgJQFOtigmxU5GTBgAA+st6UbxsXj7smJ/PHjP+/D8n2F4g8Uauiv+gSXJGVBI3PCkleMq44OgdZuwM73K/Hrm7tQllcLqVIJ0+wL+Euqf/ixTa+NEEK6OpbH8oWvl2NA6X44NHP5cwMGO9F7qrgTqL2xCfFvvvmG7yZjKdhY4JxN0g4fPtwnv5+IjEYjnn76ab5KkE2Uz507l68WZHlrfSnMpMYrF6fiKed1KPAE4PaiYwiXabApsAIFk/og9tgqGJ0lcFhd2PhDpk+vjRBCuiJrjQPfP7MaLqke2ro8VMR8hsm3fIcwP22b/y7WZlx11VW8DWHtOGtTnnrqKRgMhjb/XaRpbCff6tWr+Q5yVh+O9bEWLVrU5qvSI8JT4L71Uv44NEfPjwoKoJNOioLoxGfUvXtDIpPxVT+lx2pgldciLfRzJO0S82z5K2oh6T0dGHYj/77O7sL1n2xDVlkdIv00+OyGETBp26YgGbvxs3QtLKcay+fJCpKwnF+UI7XjsGKtt912G/bu3csLkU6fPh233nprm65Kf2Bab1w1KoZP1ty/aA/25VeLPwhIgP/cZzE3aj9kEgHILMPEvFDUKMrhdniw7L002OqcMM27iJ9e8+efcPk4IEAIIZ3Z26sOYdSxdwDHTTxHaog+H+Num+WT383ql7AVUpdffjkmT57MtyGz7ykVW8dhaXPY9m/Wt2JHNvBmR19i6dzmje6Dfzmvh8bjwYOFefz5fw/MgkSvRe+0T1iPEOlbi5F3iNp0Qghpitst4Kenl8HmMUJlq0B10Nvod+GH6BcT0ua/i6VsYW3GkiVLeM0N9j1L/0k6ButLXXLJJbxvNWnSJFx22WX8e9b3akvjbnoKRUl+kPBEbEBJYTovVE9IZ0NBdNKu3NXVcNfWHv8+fVsRDqwvgAcCNkZ+gjEHdPAIAlKMJRgTUwfMfovnQWdB7sd+3Iu9+dUI0CnxxY0j+KqitpCfn8+LYd1www2YM2cObxDYanTSOcTFxfFV6O+88w6++uorviqdrSZsq07AUxf0w4TewbA63bjps+0oqamvPJ56GSKGnoNZEYf5t6GHnShU/wSzqhzmMhtWf3oAqt5J0I4cCdPs2bzIKCGEEGDXsUpY1z4FSdn1cCm00LrzceFzl/skiM1WR/Xt25evkGKP2VdwMBWi6gzY///XXnst72cNGTKEbwdn+dN9mSv9kVkpOOI/HkvcIzC9rg4jBQXKNU6snxUFY80xRJdu4eet+Todbqfgs+sihJCuZOXrq1FZa4DMZYNd/ja0ox/C9JED2nz1Odu5xMbnQ4cO5W0HazNoQrxzYGld2C4/thL9r7/+4hMdrM/VVtj/z4Nf/gBSoX5s7rDgf59/QwXASadDQXTSriq++goZY8ai7L33YDE78NeXYoByd+hSDD8iwGNzIkJjxozwdEjmvAkYQvnPv9ycg1/3FPC8lu9fPRQJweK2nrPBbsBsNpvd8Fklbzarzb6n1eedc1X67bffzlel9+rVC9OmTeOr1Gtqas76veUyKd68fDB6BetQZLbhroW7eBoCXsT2/DeQHC7BhJCj/NyBmVqsifsYLokT2XvLsfevfMR8+gkinn8OivDwNvhLCSGka7O73Fjw9ecIOTYAdk0k5M5qXPjkLMhV7ZMftUFpaSlfCTV//ny+MooNttn3pHOuSmc7/tgOwIYVhux7X2B5el+5JBVPu65FjUeLxwpyIIcUbyVkwh0XgfhD30Etc6Kq2IK0v8SV6oQQQv62+8c9OJIpAzwCZJbPUDtgPG64SNyd21ZYm8B2iJ+4g4lWn3dOl156KQ4cOICJEyfyPhjre7E+WVvw6zMA2nF9+GOFPRThZf/G12vS2uS9CWkrFEQn7YYFrc1LlsLjcEAeGsYLQ3jGFyLHtA/+5fuhrHHDpHJhTtQByIdeCaSIq8F351bhmcUH+OPHZqVgeFzAWV+LzWbjM9msWChbCbVv3z5ccIGY35p0XvHx8XwV+ttvv40vv/yS51dlOfHOlkmjwPtXD4NeJcfWrAq8uOyQ+ANdEDD7TQwLyMewgDxccuPl6DWwFzbHioXRNv6QgYoCsVo4IYQQ4MPV+5B6ZBtsurF8gD16ThD8ooLa9XeyQlepqal8JRRbEcVWRrEVUqTzYivMWB+M9b8GDRrE+2APPfQQ3G4xpV97Yv3I2WOH4EXX5ejldGF+rQWCVIJvJikgd9sQn/4DP2/Hsmyeuo0QQogof38xNv4upu0wVixGdT8nbrzxn3xRUltgbQBrC1ibMHjwYD4hznYw0erzrrEqndWi+fPPP3mfjNU3awuDH74XUrcDglyHwqxoyNbeh7Rc3+1gI6QlFEQn7cZ++DAcR45AolTCMG0qjpmP4UPbq9ga8RnCKlS88Z0TsQdav0BgxvP8NZV1Dtz51U443R7M6h+GG8fFn/V1FBQU8JnS77//HgsXLsTnn3+OgICzD8x3RmvWrEF0dDR//MILL/BCLKwAC2voWGGWtghAd8Sq9DvuuIPvHpDJZBg5ciR+//33s37fxBA9Xr0klT/+eH0W3/nAJc+CZMhVmBiahZgDr+GJ4Y8iK3oncvz2w+3yYN2idD5BZN27D7Xr1p31dRBCSFeVWVID54pn4RKu4N9HBGZh4Ozx7fo7v/jiC96ms9RfbLcSWxHVHXXH9pyJiorieW5ff/11/sXS61VVVbX7731oRjK2+J2PNCEet5SXQQcZfgnNg61PHMJy18Mor4Pd4sKO5Tntfi2EENIV1FXbsfTNbfBIZPAv3w5zv7WYdMX7CNKr2uT92b2ftQEN7QFbjc52LnVH3bFNZxMdbCU664vFxsZiwoQJfNHb2VL6GREaJoYpB+QOwGZ1HhZ/8QqqrTTJTToHCqKTdmNesoQfhQnnwwElnt38LOxuO5L6DMEV99yKWeEHEKy2AOf9B1CbIAge3LdoN/KrrIgP0uHliwee9Sw0mxFlq5dZHvR169bxomPd2S+//HJ8hT1rrO+8805s3ryZ5xh3Op28WGddXddcSZ2UlIRNmzZh3LhxOPfcc/Haa6+ddY60mf3DcPs5vfjjR75Pw+Gi+nQx058FdCFAWTpCd36FO6OvQ6nkJxwN3o3Uy4NRs3Ilsi+5BEXPPkt52gghPRJrsz/+8kMYys6FW66G1pGF2c/c0G6/j61We/jhh/muMtaWs5VPYWFh6K66c3vO+nb33Xcfli1bxv+mUaNGIT09vV1/p1ohw78vHIinnNciQBBwbWUFT+O2YKwdEngQv+cLfl7an7kwl1nb9VoIIaQrtPGLX1gFB7TQ1hWiLOEL6Ea9haHxbVNzhAWN2cIo1gYsX76ctwndefV5d27Tw8PD+c5A1jdjOe1ZX+1sd5n1mdWfH8uChmHgBgUiVAvxytfLaNxNOgUKopN2TeXiliqwXTUZnz25DhkZuVBKlfjXiMcQvudl9DaUAn1mA33O5695849MrEkvhVohxbtXDYFBrTira2AzoWxGlM2Mbtu2jQfTu6qnnnqKdywa+zrnnHOOn8dyjbJ0NQzrkLCt0yz3KNtixfLLHTt2DDt27EBXZTKZeCfkH//4Bx588EFcf/31PFXP2XhoejLGJQbxQqO3frFdnOXW+AOzXuQ/t/75BqoXrEL/o1pkar7Ffw68BN2YMZCoVHDmHIPtgJh6iBBCepIft2ag19582DWxkDnrcN4jUyCTy9rld1VXV/PB53/+8x++Wm3BggVQqdpmJZyvUXv+NxY0YIsd2N8+YsSINtll1pwxiUGIHTQJP7vH4NpqM/w9UvwVXIqawYkIKN2LYEUFBJcH25dmt+t1EEJIZ7fps60oq9JA6rajVvUBqiNvxNXTR7fJe7N7PQugs93GrA1gta+6KmrTRaxPxvpmbJEb66uxv5X13c5UwuAQyOQSWHThSC5OxNpqLUbnP4Xvt1H7TDoeBdFJu7DtPwBnQQGO9p6HmjoJapzVSDniwE0h8xFzcBlQuJuvPse5r/Lz16aX4o3V4iqk5+YOQEqY8Yx/N5v5fOSRR/hM6GWXXcZXq7EZ0q6M5Yq7+eabMXr0aBQWFvIvFkRmje+PP/7Iz2E55EpKSjB58uRG36OhIevqqWxYSpcXX3yRT5KwPGysoBz773HG7yeV4H+XD0aknwbZ5Rb847s94ix3v3lA4jRoJFYMjbTwc0ftD8CO9A1YV7kdlvEXwy2Vo2bZsjb86wghpPNjk425374Ih2Im/z6xfxlCkuPa5XdlZGTwwTbbicRWLnf11WrUnp++y4ytxhs7dizfZcYmSdpzpdn/ndsHb8uugkRQ4NaKMv7ch0MrwT5RMTs+598f3lyEmoqzm6AnhJCuKndvMXZvFnfnaqq+gS0uDDdfexsfM50Ndm9nQVZ2r2f3fHbvZ21AV0Zt+t9Y3+z+++/H0qVLsWHDBr7LjPXhzoRKI0efMWJh2WPRU3DlKg++C6hF4ZLnkFshjssJ6SgURCftovaP1ag2xiM3TMyNekT1ORLzNXB/sx2O1S+LJ019GjCEoqDKinu/2QU2Zrp8RAwuGhp1xr/XbDZjzpw5ePXVV/ks6CeffAK1Wo2uTq/XQ6vVQqlU8u3r7Is9J5fLjze4bIX2jBkz+DmnEgSBBx5Yh4VVPu8OrrzySp6ih83cs7xyZzN7H6BT8t0PCpkEKw4U47sdeXybN081pNBipHwDIqOCoXRJMXF3EH77YjM2ucYgO/ZcmFeubNO/ixBCOrtPf/wNhopJ8Ehl0Dv2Ycp917XL72HbnNkK5YZiomzlcldH7Xnju8zYKj0WjHjggQdwww03wG63t8vvCjaocO3McfjAfT4uMdciWAA2B1fD0jcWpooMhKjNPI3Brt8pNzohpOexW134/d1tgESKgNKNqBu4C4PmvIow09mNp9k9nd3bWYCZ3evZPZ/d+7s6atNPx/5WtsOATZqwPhzry52J1CnRYDPc5YEDYLKFImqvAkHG5Xhr4fdwC5TWhXQcCqKTdmG8cB6OjLuHzUkiy/AHEnLFQhAT+2ugdFUB4YOAIdfwgcpD3+1BpcWJ/pFGPHlB3zP+nRUVFZgyZQrWr1/Pi1axgVhXXq3WWqyBbtgmdiqWd23fvn185XZ3woLnLFUPK0LDtsytXbv2jN9rYJQf7p/Wmz9+5rcDyKu0AP6xwMRHwBZenBuwBUqNBsFVKjjKxOrjx2KmoqJcgD0rq83+JkII6cwyi83Qrt4KuzoScmcNzv3n7HZpa1kxcLZaja3uYgH03r3F+3NP0BPbc7bL7KWXXuKFY7/++mteaM1qbZ/c5GzBxprA+aj16HFdZSV/7qvh4srzqF1f8eOBDYW8qB4hhPQkq/67FnZBC7W1FPkJ36Am7t+YNkAsiHmm2L2cLXJj93Z2j2f3enbP7yl6YpvO+mwNNU9YX+6HH35o9Xv4hWoRPzCIP86KPRcXbRDwpdyI88pfwYK1Xa8QK+k+KIhO2sWhdA+qLEq45BZoy7dD5pEgcUAf9Df/LJ5w7iuAVIYvt+Rg45FyaBQyvHX5EF746UywLVIsrUd2djYvbDFzprjFvKdgW8d27dqF884777Sf3XXXXbzaOUtrExV15qv8O6uIiAj88ccffLs/+//9TGe7mVsn9MKQGD/U2l34x3dpfJIHo24HAhJgdOZj+mgxLVBMvh15+vW8Wv3hpPmo+XNNG/5FhBDSef327ktwyqfwx7G9cxDcq+3TuHz11VeYP38+Lr300m6zWs1bPbk9Z6666iq+EIIVXjv//PPbpdAaS0nwwPnD8I5rDi6uqYWf4MHK8DLY48NhKt6HIL0NbpeAtD9y2/x3E0JIZ5W+LhvZLOW0R4DT9Rlcpom4/eJzz+o9a2treXvGdg+zNB/sHt+T9OQ23c/PD7/99hsuueQS3qdbuHBhq99j+PnxfDV6SegwOFTRuOgv4IdgC6pXv4HMktp2uW5CWkJBdNLm2MqdLb8d5Y9zZF/CVCeHymjENP8dPEMGUi8Hokcgq6wOLyw9xM977NwUxAXpzuj3FRQU8FXIxcXFPIA+aNAg9AQnrvxjDdSYMWNOyqXGtlCxxvmnn37iQeb4+Hh0Vzqdjv83YBMprPgc65Cc6cD6P5cO4pM6m46W47NN2YBcBcx4nv88ueRrJA8bAikkqHWuAyROmE0JSN965jnZCSGkq9h4MBeG7FiexkVn2YcZD9/d5r/j448/5jVNrr32Wnz++ed8S3R3R+35ydiuQlZ4jm0HZ9vCWaq+tjYuKQh5va5AteCPq1g+WokEi4d4eG706AyxD7F/fQFcDneb/25CCOlsLGYH/vzqIH8cWPI7ZMklGHHR4zBpFGf8nizXN1vgtH37dn5PbyoneHdDbfrfWB+O7T5g/To2gcKKj7ZGcLQBvUeE8sdHes3FmIMeFJep0V//G978bpm44I0QH6MgOmlzlV9+iUi/WtSoDiK8WCxKMmPaYGhLdwBKAzD1KZ7HiqVxsTrdGJsYiKtGxp7R7yoqKuKBUzbAYqk8WBGPnsJgMPC/Pz09/aSK3yduD2PFN9msb8O57Ku9tkd3NI1Gwwu4zJo1C/PmzeMr2c5EfJCOT+owLy47hCOltUDvmUDCJMDtwOSQDCTOnYk1g4qQFrqcn3fYOB4Om6tN/x5CCOlM2KBv99v/hV2dCKnbjlE3D2zzNC4sgH7TTTfhtttuw0cffdRjtntTe3668ePH851lbJs7C6TX1Ij9ybb0jwsG4S33PFxuroFW8OCn+FIIBh38Dv8FvQ6w17mQvq24zX8vIYR0Nn+8tR4uqKCrzcOxvr+hOOFZTO4j7sA9E+yezQLorKgmu5ePGzcOPQW16SdjfTnWv7v11ltx4403tjqQPvKCBEjlElT6p6DCPwXXrxTwaoARc0tfwXfbqX4J8T0KopM25XE4UPvxO0j45iGUuL6D1CNB7JAhSCr4XDxh/P2AIQwfrTuKHTmV0KvkePniVEjPoNp3WVkZpk6dyreJsRXoPSlfKsMGlUxycjJWr159WgP97rvv8hUAbJV+eHj48a9Fixahu1KpVPj222/5lrmLLroIq1atOqP3YZM64xKDYHcJeODbPXCxWe6ZLwASGbRZSzFn9GBMjDkHm2P/hFNfx1dvbF/K9j8SQkj3tPzPzZDaJvDHRsVGpIw/p03fnw0ob775Ztx+++14++23IZX2nC4qteeNY7lUWfDlwIEDPLWLxWJp0/fvFayHbPCVqHX7Y25NLRwKCdKGB0ICD6Jrd/Nz9v6VxyeQCCGku8raXoCcY2Ial1rJl3BrJuHueWLatjPB0nCxsRi7d7N7OEu52ZNQm3461qd75513eB+PLZZgafu8ZQzSYMAEMd3NkaSLEF0qweA0KXYEFGPv0vdRWkP1S4hv9ZwRCvEJ69698FgsqNXJsGpYGRQz+2Pm0ACg6higDwNG3o704hr8Z0U6P/+J8/si0k/T6t9TWVmJadOmobS0lDdOiYmJ6O7eeOMNPlnQgK26Z7PWrFAH2wZ26n8DNuhr7Ou6665Dd6ZQKHhxFrZlkHVazqTYKJvUefnigTCo5diTW4X31x4FQvoAQ68VT/jj37hr0J2Ax429qk+gNEoRGmds+z+GEEI6AbZ7LHfhKrjleqitBZjz3H1t+v7fffcdT99y/fXX46233ur2RcGpPW9dAXGWR3fHjh28MJ3NJhYAbSu3TemDBcL5fDU680lSAT8GbVwImVyCstxaFGe1fToZQgjpDNhO2j8+EScNg0r+gC65ACkzH4FJe2ZpXNg9mhWG3rlzJ5YvX45hw4ahu6M23Tusb8f6eOzvvOaaa3gBeW8NPTcWCrUMNdoIFIcMwaXrBPwq1+NC+UK8/MvWdr1uQk5FQXTSZrL3lmHlolxYNMFIixFgUJtw/cX3Qr/zTfGEcx6BINfg0R/S4HALmJwSgkuGtb6IBtvqxFJ25Obm8gB6SoqYeqOn0uv1vMo5OXlFOuu4sBx0bCUEG3y3VoSfBk9dIKYH+t/qDORWWIAJ/wDkauDYJiSV5eDyHcnom+mAvORFKD9+ph3+EkII6Xg/ffMLXNJR/HFQYjr0/oFt9t5skH3FFVfg8ssvxwcffNCjVqCfitrzxo0dO5bXOlm/fj0vNut2t12ectbWS4ZcC4NTg3EWKwoDgJL+EVA46xClq+TnHNxEdU8IId3Txs92wOZWQ20tQ07CLzhsehBzh55ZmlV2b2b36A0bNvC0mqNHj0ZPRm366Vgf78MPP8Rll13G+32sD+gNjV6JIdPFz2VW8kXQ2mW4dI0HHwYqkHzoLWw+Wt7OV07I33ruSIW0KcEtYOOPR5BnNiI9uj/2RUtxXb/rYNjxGWApAwJ6AYOvxk+78rHzWBW0Shmev3BAq1ebsVnaG264AXv37uUFSvr374+ebvr06byYJjk9R/ovv/yCvn378hURbEVAa80bEonRCYE8rcvzSw8CxghgxM38Z9I/n8WgseJWxzozUPXnH3CVUwNOCOleWNGmypU5vJiotnYfzv+/J9rsvQ8ePIj58+fzvKmffvppj8mB3hRqz5vGtr2zuicsMPPYY4+16XvfPKU/PhfOxZX1q9F/Tqrix+CDy/gxc3sJFRglhHQ75QW1OLCzfqeN5RuoTIm4/pKLz3g32KOPPsrv0exePXHiRPR01KY3jvX1PvvsM973Y33AQ4cOefW61CnR0JqUsMpMyI8Yj0l7PMg3qxFvWIvPfl7Kd00S4gsURCdtImNbMSoL6yCx5aBAnYPgqmhcFHIOsPEt8YTJj6PGCbywTLxJ3j05CWEmdat/z4svvshTdXz++ecYOnRoW/8ZpJvR6XS88rkgCLjwwgtht7cuZxrrRD45uy9kUgmW7SvChswyYOz9YoHcojRM7RcMl1EBu0KOzNAA7P52O9Z+fbjd/h5CCPG1nz5cCIdqACQeN6ImWCGTydvkfVlaNpZyKzo6mufGlMvb5n1J98V2If7nP//BK6+8gi+++KLN3jfEqIZr6I0YYJEg2unEugQ7BLUShvQN0OmlcFhdyEora7PfRwghHY0tTPvznY3wSGTwL09DbWoaXIP+ieQwwxm9Hxubv/rqq3jttdd4cJSQ5rA+H+v7RUVF8b4g6xO2RKGSYcT58fxxTtJsCDI1rvxTwKuBJlxe9TYWbWWJ/QlpfxREJ22ySm37shzeGEvMS1jkEdpe0Qg49CPgqAFC+wN95/KUGGW1dsQH6XDDuLhW/x5W3fqf//wnnnzySV40khBvRERE4Oeff8auXbtw2223tbpAWEqYEVePErePPf3bfjjV/sCYu/j38vWvYNQVV/HHWUEmbNpZh71r8lGcTflTCSFdH5uALN8iTj5q6zZh6s0Pt8n7ulwuvvqooqKC7xgyGqmmBPHOvffey3PnsyK0W7ZsabP3vW7KIPzkOQdza+pgV0pwoL+RFxiNglg0/PDm1u9mI4SQzurojkIUl8khEZwoMvyAGuE83DJ98Bm91+bNm/k9me0Wv+eee9r8Wkn3xPp+LL5TVlbG+4Ssb9iSPmPC4ReqhQMqHIudjtRsDwJyZcjyy8OWFV/DbHP65NpJz0ZBdHLWjuwsQVWxBXCnw6Kw8creF117F7DlXfGE8Q8gs6wOn2wQByJPXNAXKnnrtmzv378fV155JV9N/MQTbbeVnPQMrDDZxx9/zNMFsOIvrXX/1N7w1yqQXlyLLzfnAKNuB1RGoPQQJoSp4TFK4ZFKIKtZws/fsUz8rBNCSFe2+MNv4VTGQep2IP58U5sV/PzHP/6BP/74gxcU7dWrV5u8J+kZ2Gfw3XffxZAhQ3ifMD8/v03eN9igQmnK1ZhdWweJx4OfEiv484Fbf+DH3IMVsFtocE4I6frcLgFrP9/DHwcX/4GghHLETrkbBnXri4myezC7F7MCou+88063LwxO2hbrA7K+IOsTPvxwyws1pDIpRs1N4I9zY6fCoTDgqj8FfGQy4BrhS7y9mnaEk/ZHQXRyVjxsFfrSbHg8Aiyu+qrUA8MQnf8XYK0EAhP5KvRnlxyES/Bgap8QTEoOadXvKC8v59t8EhISeP6snlx0jJw5NgnzyCOP4KGHHuL59FuDVaj/xwyxgO1rK9NR7lIDw2/i30s2vI6hl87nj61CEQR3GbL2lKGisK4d/gpCCPENtmunaIuNP1Zb12HiZfe2yfsuWLCAT2b+97//xeTJk9vkPUnPKx7Ocu6yvKoseMMKzreFC6dOxCFHf4yx2rAvVgK7UQN1SSb8TBIIbg+y91LdE0JI17d3eTosDhWU9mpkxi7DfvkNuGyUGJhsDXbvZXWnWGoOdk9m92ZCWmvKlCm8X/j666/jk08+afH8hEHBCIkzwu2RISfpAsSVAAMOSrHB34yqzV+gsLpt+gSENIWikeSssByRFQV1gCcdMmsd7Ao35l5/H7CpPhf6uPuxObsKfx0uhVwqwePn9W3V+zudTlxyySUwm818yzerck3ImXruued4TlW2Zezw4dbNVM8fHo1+EUbU2Fx4dcVhcTW6XA3kbcM5vaIRaLEguMYChZ9YkGzXSsrLRgjpulZ/tgROZQykbjuipp9ZjtRTbdiwgafVuuWWW3DHHXe0yXuSniksLIz3C/ft28fTCLQ2VVtjEkP02BNxKebW1vHdZTuSxBWVYW6xPc/aXXrWv4MQQjqS0+7GtqVZ/LGuchmCQzWYfP6VUMhaFxZi99ybbrqJ7xZn9+LQ0NB2umLSE9x55528LWd9xI0bNzZ7LtvtMLp+NXp+6BhY1QG4fK2Ab7R6XKX4Du+u2u+jqyY9FQXRyVmJSPLDyDlxsDnX8O9tg0PQq3AHUFsMmKLhGXApXl4uFhO9bEQ04oJ0rd7yvW7dOvzwww+Ii2t9HnVCTsRWrbEiJuHh4Xx3Q01NjfevlUrw1Ox+/PE323JxsEYNDBbzoUs2vIE+wYGIqipCtmo1fy59SxFqK8VVnIQQ0pWwwfHRdeKqW7V1LaZedfa50AsKCjBv3jyMGjUKb775Jm35JmeNpXRhq9ZYu84KjraF0TMuQ0KNAUa3G2sSxDbcL20ZP+bsL4fT4W6T30MIIR1h1y8H4BBUUFtLkZWyFhmG2zG9X1ir34fdcxcuXMhTZbJ7MSFng/UJ33rrLYwYMYL3FVmfsTlRKQGISvGH4JEgO+UiBJmBUfsk+MVfgHrXJzhWbvHZtZOeh4Lo5KyodQokjNTBIimDTHDhPGUisOV98Yejbseq9ErsPFYFtUKKeyYnteq9V61axbd7s0Z6woQJ7fMHkB7HZDLxIiYsh583uddONDwuAOcNCAdb8PbWH5nAmLsBiQw4shqpTz2Mp+8LwZKkA9DEePjW77Q/8trt7yCEkPaStmI7nIpongtdP8oOyVmmUWNBebbCiKVj+/7776FUKtvsWknPxnaWsTRt//d//8dXpZ+t4fGB2KCfhckWK/bFSeBSyaE5tgc6vRQuh4CCDHG3GSGEdDW2Oid2/SkGJ1XmJYjQBWH2uee3elI7LS2N33PZYrdLL720na6W9DSsb8gWTrLP46233triDrNRc8WaOoV+qajVhePCTQJ+1egwR7kEb6/Y66OrJj0RBdHJWVtdthYaZyEmH8hFbF4hUHoQUOjgTr0Sr/wurkK/fmw8Qoxqr9+TpW+58cYbMWnSJNx1113tePWkJ0pKSsJLL72E9957D6tXiyvHvXX3lER+XLqvEOmOQKDPBfx79Z4vMS9pHnRWGXKrv0R4Lydi+we2y/UTQkh72v79Ln7U1m7CvNteOOv3Y/VMli5dig8++AAhIa2ri0JIS/7973/zdv26667jaQDPBhu8+428GtNqrXDKJdjTSwoWXgqRlR4vMEoIIV3R7l8PwuVRQFebj6LkjThgugVjerVurMLusexe27t3b37vJaQtsT7i+++/j8WLF+OLL75o9tzQOCN6DQ5mLTeyki/mq9HH7QUW+3mg2fcVjpTW+uy6Sc9CQXRyRqw1Dvz82k6kby3Ct4e+RWwJoHALUHuOiCcMugK/HKpFenEtjGo5bpsgzhR6i81ss4KiH3/8MRUSJe3i9ttvxznnnMMna1qT1iUlzIiZ/cL+Xo0+4hbxB2nf4tKYmRh2yB/67FK4pZsRmezffn8AIYS0g+L0QthkiaxyONzxRyCTn12hMLbr57777sPVV1+NCy4QJx0JaUtqtZqnFNi9ezdefvnls36/aaMGwW3tzVO6bI538edM+eLEUh4F0QkhXZDD5sKeteIqdJllOQJ0kZg9a1arV6G/+OKLfCU6u+dSIVHSHljK1auuugr33ntvi2ldRsxOAPsIlxpTYDbE8NXoP2l0uFS1GB//KS7mJKStUXSSnJEDGwqQd7gSf3z5JfJyMxBXIm63Udl28KNj6E14bWU6f3z7OYkwaRVev/fKlSv5arVXXnkF8fHx7fQXkJ6OTc4sWLAAZWVlfNLmTFaj/5ZWgEzNQCCkL+C0QHjwYVy6uZr/7Ni2bagqLmqXayeEkPay4u3f+FFv3oNz73mqTdK4aLVanp6NkPYyfPhwnqLt6aefxt69Z7eNW6+SoyhuHqZYrEiLFwNM+rRV/FieX4e6anubXDMhhPjK3uXpcHmU0FiKkdNnG/YZb8K4xKBWvQcLnrPV54888giGDRvWbtdKCOszsglyVoi+ubQuAeE69B4p5vTPSZrDV6OP2SfBcpMbsr0LUVRN9clI26MgOmk1diM7uLEQHlc+6or/wtz1EdDYJWwnDVRGJ9BrCn7N1yOv0opggwrXjYlrdRqXyZMn81xYhLQnNknDVq2xbWMsB7+3+kWYMLVPKF+N/s5fR4ARN/PnheJMBFdZYVdaAA+w8bvvsPHHTJTleb/SnRBCOnKXWY01lj+2+29CWJg4YXim2Eq1ZcuW8Ylxf3/amUPa15NPPslTDLRFWpfUKZdjbK0blQYJCoOkUDpqEGASB/J5hyrb6IoJIaT9uZxu7Fp5jD9W1axEhDYQF8yY0apV6A1pXJKTk/HEE0+049USAgQEBPC+45IlS/D55583e+7QmbE8DsVWo9fqInDBFgGL9DpcJvsNn6zP9Nk1k56Dguik1YqOmlFdYoXbKW5trTLUQi54oDR6IJUDnmE34KN1R/nPrh8bB41S5vV7s+JQlZWVlMaF+Mxtt93Gc++zyRs2ieOte+pXo/+8Ox85EeezGSSotOIqdJNLzMF2aOOf2Pl7Jg6sa34rGiGEdAYbPv0dHinLl3oMCbNnndV75eXl8TQu11xzDc4///w2u0ZCmsJSC7CJmz179vC6J2ejb0wonJ4R0AoCdseKwfNAp1gsvDCTiosSQrqOw+tzYXcrobJVIid+Ew4p5uOcZJZL2nsvvPACpXEhPsVSALJUgCytC0sN2BT/MB0Sh4j1dnISz0dYFTAgU4KtJisKtv6MauvZTaoTciqKUpJWO7SxAB6hBm67OLOnk4nbWlVGG6ALxgbpEBwqqoFWKcOVI8QVbd5YsWIFPvzwQ57GJS7O+9XrhJwNNlnDJm1YDv7WpHUZGOWHScnBEFhu9A2FwIBLoDKJjfQAsxLVOic8bgfcjoPI2FECt1tox7+CEELOfpfZ0T0W/tiNDZg87fqzTuOi1+vxxhtvtOFVEtI8lmKApRp45plneMDnbMj6XIhRVtvxlC66LDFlYXG29xPuhBDSkVh7vGuxmBvaVP4nYoNkGDzxwlatQmcTkyyNy6OPPoqhQ4e249UScnpaF5YSsKW0LkNnibGjYv+BqNOE4PytAhYaDZgvLMbXW8VdGIS0FQqik1Zx2t1iQNC+jzXLKAqwoXdwAuR6hRhAHDgfH2wQV+pcOiza61zoNpuN3xynTJlCaVxIh6R1YZM3bNvYunXrvH7dPVOS+PHHXfkoT7wIaj+xAFlQYR0OxYiDbMG5h6dIyD1AxcgIIZ1XzrZsOOXBkLlscKVUQyo78y7iN998g+XLl1MaF9IhWKoBlnKATeQ0N+huyZCJszHUIuBQlBhs0h7dxo/lebW8P0wIIZ1dQXolquuUkLodyIzaiIPO2bhwSFSrJ8VTUlLwr3/9q12vlZBTsT4k60suXboUixYtavK8oCg94gayHP8SHIubieR8wFgkQ50hG1s2/QWBrXojpI1QEJ20SvbeMjisTgguFkQHDsfUIOmGW5A0Ox9B/WqRFT0Xa9NLIZUAN4z1vijoO++8w7d+v/32262uEk5IW2CTN2x1BVvB5u2ge3CMP0bEB8AtePBZTiCUsWwW3AOJxQZnmBx1ahe0EWw3hgvpW6jIKCGk89q4aAM/amq3Y+LFj5zx+zgcDjz++OOYM2cOzjvvvDa8QkK8w1INvPXWW9i6dSt++OGHM36fUH8DjEhFnUaCvEBAba+CVsOCSkDpMVqNTgjp/Hb9sIcfA8u2wj/OjMCRV0Ct8D7V6vfff49t27bxMTqlcSEdgaUEnD17Nv75z3/yPmazudHZavTQ4XAoDLhgq4AvTUacW/sz1mSU+vCKSXdHQXTSKiqtHAGhJRBcNbAp3aiN1SC18CAguCCJHIL3D4qN68z+YYgJ1Hr1ntXV1Xjuued4Tmq2coiQjkrrwvL9bdq0Cb/++qvXr7t2tLh9bOG2XLgHXw65VlydNk0/BN9PykfpOAMkEgWO7imDwyauVCeEkM6E3ZuqatgKHsBm3IKUlDPfrs1WDGVnZ+P5559vwyskpHUmTpyIWbNm8UG3y3XmbW9gysVItjuQHiku8PCXVh2vD0QIIZ1ZbaUNOTniuKRItwYWywhcMSaxVcVE2T303HPPxYQJE9rxSglpHutTsr4lS/3blLAEE0LjjRAgRX7EeAxL9yDHqUSSZht+Wr/Xp9dLujcKopNWiekbiH7j/eFRyZAZWYuJ8ZMg3f8T/5m93yX4dU/BSYFFb7A0GlarFU8++WS7XTch3pg2bRpPKfR///d/cLu926o9vV8owoxqlNU6sFpxDnQhDujCbBju3xseCbCi7leYQjRwOwXk7Ctv97+BEEJa6+Dv++CRKqGxFEM2KOaM36e2tpbnTb322mvRt2/fNr1GQs5k0J2eno4FCxac8XsMnDgXw60uHK5P6WKoPMKPZXliAXFCCOmsDvxxFJBIYarKhDsxCyXRlyHUqPb69ezemZmZyRcZEdKR+vXrxwvVs3onrK/ZlNTJ0fxYEDsJEsgxeY8Hi41q+B/9BbkVYt0fQs4WBdFJqw2YOgPLZpmRlliN6eYQZLyTjbwN/ljmHgGLw42EIB1PceGNwsJCvP7667zqckRERLtfOyEtYR3FAwcO4PPPP/fqfIVMiitHikGn93bbETG/P2LOqcBgfwF+Kj9U2ish8T8KmawY9jqqDk4I6XzSVu3nR6ljG8bOeOiM3+e1117ju8ueeuqpNrw6Qs7MoEGDcMUVV/DPo8VyZoNnk0GPYCH6+Ep0ZZaYGqGioK5Nr5UQQtoSS015YK1YUFFm3YQgeQimjhnp9evZPfPpp5/GlVdeiYEDB7bjlRLiHfZ5rKqq4rGjpiQMCYbOTwW7VIvikCGYskfAUq0Wc+R/4rvtuT69XtJ9URCdeI0VRqyrtmNf2T6UOMqg1OqQkpEBl0UOp8uET/ba+Xnzh0d7ndecrVhTKpV4+OGH2/nqCfHO8OHDcfHFF/OdEazgrTcuGxEDhUyCXceqUBw1nT8nP7QE4yLHoV+WEUWbv0Zg+AH0n+h9IR9CCPEF1q6bHaHi48A9SElIOKP3KS0t5TvL7rzzTsTEnPlqdkLaEutnlpWV4X//+98Zv0ds+DQUBXhgUQG6ymz+XGVxHQS30IZXSgghbacwswp1diVkbjuORO/EPs+5OCc52OvX//e//+X3Trbyl5DOgPUtWR+T9TVZn7MxMpkUA86J5I/zY6cgyAwkZUmQbyjDvp3rzqrYOCENKIhOvMIqGv/+0T4s+MevWL9nG39udMRoeA5u5o/dIZHYk1sFuVSCi4Z6Fyhk28NYXqvHHnuMV14mpLNgOfoLCgp4ER1vBBtUmJQcwh//YBnEj8LRzRgbMADHQsXVb7n79qC2sqIdr5oQQlrv4LI0vt1bX5MN1YCkMy7uze6brLYES4dFSGeRkJDAC4e/+OKLqKg4sza4z6iLkeJ0IicYUNsqIJN5ILg8MJd5N9FOCCG+tm/JAX4MLNuJgKhaBA+9EHKZd6Efdq986aWXcNtttyE+Pr6dr5QQ77E+JuunNld3p+/YCEhlEpi1UajRR2Hqbg9+1OsxsXY5duRU+vR6SfdEQXTilZJsM2y1VXBUf4aqb36B3CXBKP8+cBWI28QytGI15Gl9QxGk965y9+OPP47Q0FDcfffd7XrthLRW7969eaFb1kCz1ATemDtYnPX+a+MxpP8ShSNLgzHGXI5anRulJjs8HgFHtm+GjVK6EEI6kUObj/Kjx70Lg0fdckbvwYo9vfvuu3xXWWBgYBtfISFnh/U3WXFRFkg/ExFxyehtU+JYiAQSeGCUi5PjlNKFENIZsTpMWYfF+1OFcjMktr64cHh8q1JbstpQ7N5JSGcSFBSEf/zjH3jnnXeQk5PT6DkagxLxqeKui8Kw0Rh01IPDHhWGqbbg552Nv4aQ1qAgOvHKsQMVcDvFgXaNzAaX3IPRFgucFhl/br3VeDythTfS0tKwaNEinqdSo9G045UTcmZYOhdW8Jbl+PXG5JQQ6FVyZFsBt1WA2yaDf/oq9Ansg2Nh4oB7zVfL8OOrO9v5ygkhxDt2qwtmq7gTzOK3DwP6iztpWott9w4ICMB9993XxldIyNljCzYeeOABntKlqKjojN4jRtMHOSHiLg2tVdxGXlVCRcoIIZ3Psf1lcHnkUNkrURGdjiz9LPQK1ntdr+zNN9/Egw8+iJAQcZctIZ3J/fffz7MYNJdqqO+4cH4sihgFCRQYfdCDzXoPytNWwu5y+/BqSXdEQXTildwD5RCcR/jjnJA6RBuiEX1sO1xWMYieL9Mj0k+DcYlBXr0fKwgRHR2Na6+9tl2vm5AzxQrd3nTTTXym25vc6GqFDDP7h6FSJU4oeQQJhIxNGBs6HDn1KV2c1hxUFIi1BQghpKNlbcyCRyKHxlIMW7wJSnnru4XFxcX46quveJBSp9O1y3UScrbY51Mul/MdE2diQMJM5ATXFxctF3dh1pRTOhdCSOdzeNUhfvSr2I3wYAFxQ6Z4/Vp2j1QoFDxQSUhnxPqabJLnyy+/5H3QxkSnBMAQoIZLqkZp0CCM2y/gd50O57g2YG16mc+vmXQvFEQnXq1UKzrKgujioCE31IpRYSOAo38dD6KXa0w4b2A4ZNKWc6mWlJRg4cKFvDAEa6QJ6axYqqHy8nJ8/fXXXp0/d1AknDI5apVa/r2rzo1hUMOsd6HWwAqZCBCcWcg7RPnYCCEd78Cf+/lRbktDXJ9Lzug93nvvPR6cZJOOhHRWfn5+fOEG+7za7a2fyE4dNhvOAHH1mrIilx9rKiiITgjpfKlcco5Y+eNi7S6YLak4PzXaq9eyRUPsHnndddfBZDK185UScuZYn5P1Pd9///1Gfy6RSpAyRlyNXhg+Ein5QLlFgb6qHfhjn9iGE3KmKIhOWlR0pBpuB8sf5YZdL0GV3okhchNgN0OmlaJEF4BSjR9m9Av16v0++OADyGQy3Hzzze1+7YScjaSkJJx77rm8Qr031bxH9wrkRUbLVQb+vcsqRWppDqQSKY4Gm/lzgjMH+YcpiE4I6VgewYOSUjl/bNOlYeCwGa1+DxaMZKvWrrnmGioQTjq9e+65hy/kYOkEW0ttCkYk5CgzAhqbWKDUTCvRCSGdzLGD5XB5FFDaq1AenYFcvxmICRQX97Tkm2++QWlpKe666652v05Czgbrc1599dW8D+pwOBo9p/cIMTZV5ZcMh0KPsQc92KSXoObQariFlsf1hDSFguikRYVHqvjqWSYrqAaQAIMqCvn3muuG4dpp/wd3WAQGR7c8gHY6nTw9BrvpsfyphHR29957L/bs2YO1a9e2eC7biXH+wHBUqMWULi6bDLqstUj2T8bh2BqEz50PuXYa8tMpiE4I6VhleTVwS7SQue2wBZegV3jrC4J+++23fCstC04S0tklJydj5syZXk+MnypaEYkiPwnU9UF0thL9TN6HEELay9H1Yg2zgIo0hAW5EJ86wavXsXsZuzfOmjWL3ysJ6exY35PVOWF90cb4hWgRHGOARyJFafAgDE8XsFKnxRjHJuzIobE4OXMURCctGjAxCiqtmG8qL8iCIE0QIvN28O/XulP5cXrfUEi9SOXy66+/8oIlNMNNuoqpU6ciJSWFb2/0xox+YahSicV7XHYZUHoIQ/2SUadxIysiDxKJFOYyG6w1jc+aE0KIL2StFXOmGsyZ8ET1h0TScht+KnZfnDJlCvr06dMOV0hI+6Rp27lzJ7Zv397q1/YJH4lif/BifYzL7obDRgXKCCGdAwuE5xwU709mxQFIrIk4J0VMadGSrVu3Yvfu3TRGJ11G3759eR+0uTF60jBxNXpxyFAkFgLFDgX6K9Owcr+4IJSQM0FBdNIirUmJGbfdDtWoRBT72zA4aAAkBbv5z74ojDweOPTGhx9+iFGjRmHAgAHtes2EtBUWWGJ513788UeUlbVciGRYrD/yg2OwPSQZ7hDx30eqIN5q99WkwT9M3FJZnC2mdyGEkI5wdHceP9pxGBGx57X69fv378fGjRtxyy23tMPVEdI+ZsyYwQvbs/5oa41NnY0ifwlkghNSuPhztlqaECeEdA6VRRZYnUpIBCcKww4iWzoGfcLFFJMtYffEmJgYfo8kpKtg6YE3bNiAAwcONPrzxGEh/FhlSoJdacLQTA8ytDZk7m/9RDohDSiITrwKIiYMHo6jg6VwKjwYIPcDBBdqakNx78/v4sntn2NUQsvbwLOzs7FixQrKhU66HJbvl63u+OKLL1o8Vy6TwjL3MvxrzM3IThnMn+tXXcKPRceOwu1YCYNpA/T+6na/bkIIaYzgFlBZI07o2YwHET9gfKvf46OPPkJQUBDmzJnTDldISPtgNXluuOEGXjC8tra2Va8NjRiMWpOYvkXuEl9rrXG2y3USQkhrZe/I50f/qgxoImog7z3Vq11mNTU1PB86uzeyeyQhXcXcuXMRGBjI+6SNMQSoERpvZAEtlAUOwLB0D9ZpNeht3oT8KrEALyGtRUF00iyWu3nn7zl81Wx6ZTp/LsVSw48FnnhE1JUj1l0Lpbzlj9KCBQug1+sxf/78dr9uQtpScHAw5s2bx1dpeJP/9JzkYH78vSaOHyML0qBX6OF2O1FyZAuqi9MQEKFp9+smhJDGlOXXQpAoIXNZ4fQvQ//ooFa93maz4fPPP8d1110HlUrVbtdJSHtggSKLxcKDRq0ilUJiUPCHCpu4m8xaS0F0QkjnkLNd3GEmtx2AXhqI0f0SvHodm1S0Wq383khIV8L6oKwvyvqkrNh9Y+IGin3c8sB+GJDjwQ6ZCuOku7Exs+Ud5oQ0hoLopFlHd5Vi3dffYvMvK5FXeYw/l1xyhB8zLeINSRPYckFRFnhcuHAhD6DrdLp2vmpC2h7rWB48eJDnC2zJhKRgNuGN38qj+PfS4gNI8UtClcEJiVIBh9WKirxcH1w1IYScrmCX2J4barLhDo6FWtG6lWdsV1lFRQUNuEmXxFIWTJs2DV999VWrX6sPEPu+Kru4oITqmxBCOssOs+JiMc1UkSEDZksfjO7l3QQ5G6NPnz6dp7oipKthfdHy8nLeN21M3AAxY0JFQAqkHjliCySQabOxI0OcdCKktSiITppVnFUCl3UNMjd+AplbghBNMALyd/GfpVUZ+dE/0NTi+xw6dAhHjhzBhRde2O7XTEh7mDRpEkwmE3777bcWz5VvWosfFz+O+zZ+hzpNJOAR0EdhgkcCuEPFFAoHN+6GwyZ2dgkhxJfy0sQguuDOhp//iFa/nt0Hk5OTqaAo6bJYf3TdunWorBSL8HkrKrIvXFJA4bLw7x1WascJIR2vLK8Wbo8ccpcF5pBclBtHwqQRd840h02Ir1+/nsbopEsXGO3du3eTY/TASD30/ioIUiWq/Hqjf44HezQKmI9s9mqHOSGnoiA6aRK7qZQeE1edy0wGOJQCehtiALuZ34TKnOKKcoOx5ZXlv/76K7RaLSZPntzu101Ie1AoFJg5cyb/LLdIJoPaaYPOaUWGSgwyJTnELWZVAW5+3LFkM0pzxJVshBDiSyWF4urZWm0WTDHjWvVaQRD4QOWCCy5op6sjpP2df/75cLvdWLZsWateNyBhFKr0gMwttukuh9imE0JIR8rfW8SPpuqj8Au2QddrtFevY/dAdi9k90RCuirWJ2V9U9ZHPRWrCxDTX1yNXh7QD/2zPdihViPRug9Hy+o64GpJV0dBdNKkuioHHHVigRJnmFgEMUEiHks0CVC4xYGDVN1yPlQWeGTbxNRqKqZIuq7Zs2djx44dyM8X/100RVqfI1guuLHNJqZ0ia2p4Mdj+mp+FFyFqCikhpsQ4ltsB4xVEHeSCYajiEjo36rXb9u2DcXFxfx+SEhXFRkZiaFDh3o3MX6C6IhhqNADUkGciHI6Th+wE0KIr+XtKeBHmT0TGqk/BvWK9Op17B44bNgwREREtPMVEtJ+WJ+0qKgI27dvb/TnsX3rU7r4JyO+CMgUFBgsPYjdx6p8fKWkO6AgOmlSdakFgruYP67yFwPmsQ4bP+51x0DhFrewSpTNB9FLS0uxadMmGnCTLm/WrFm8av3ixYubP1EuFw+CG+vNofxxbHk2P2aoxJUiHqECZXnUcBNCfKs8v5YflfYquE1OpISLAXVvsZU+AQEBGD3au1VuhHTmlWvLly+Hw+F9XvMwvwRU6dhKdLGgqMtOK9EJIR2vtFAco5drslBtTcLw+JZrlrF7H7sH0s4y0tWNGTMG/v7+TaZ0iUjy40eLLhwuhR4J+RJoNTnYm0vFRUnrURCdNMlcZoXHLd5YcrVisC/aXMqPG+siYVGoIAmPhCwwoNn3WbJkCT+ed9557X7NhLQn1jiPHz++xbzoEoWYg1AjEXBAiOGPA8qOwKDQo07lglythUTqh/J88d8TIYT4SukhcSJPV1cAuyEE/jplq17PVq2x9lxeP1lISFfFFndUV1fz3OjeUsgUcGiklM6FENJpWMwOWF1KXoOpwj8XlaoBCDG0vPt77dq1MJvNtNCNdHmsT8r6pk3tLlPrFQiMFFMQV5kSkVjgwQGNBOZssdYfIa1BQXTSpIrCangEMfVEhkzcIhZTlsWPe13RWDlgGpL/WIngO+5o9n3YzWzUqFEICQnxwVUT0r5YR3PVqlWoq2s6FYtEoTweRC+FHywKf0g8AuI0IYAEiLvuRqhM18NWR+mNCCG+VZpeKD5wF0CtTmzVa7Ozs7F3714acJNuYdCgQYiKimp1SheJRgGpIK5Ep3QuhJCOVpJj5kettQTyoBogLNWr17F7X3R0NFJTvTufkM6M9U3T0tKQk5PT6M8jEsXV6FV+SUgsAA4olVCVHYDNSZPhpHUoiE6aFNdfxo9KrQ61CjvkUjnCqsRc0BmeKKRG+/FCDc2x2WxYsWIFDbhJt8G2PNrtdh5Ib4pEIa7QVIENriU4Ko3j30dLxNRH5aoSfqytsFNVcEKIT5XkiwWN6xSF0JgGtOq1bBcOK7LMapwQ0tWxPmxDMbLWtMVKvZ5PjDPUhhNCOlpx/Q4zfU0u/I0CQmKTW3wNu3c1FAlvaTxPSFcwY8YM3kdtMqVLbzHFUZVfInoVenBYoUQysnGwUJyEIsRbFEQnTQrrFY9rXn4TKdfN499HqIPAwup1MiOqocfAKFOL7/Hnn3/yFbsURCfdRWJiIvr06dPsyjWZXg/t8OGQpfTl3++3i7swQt3ioLtMWsRXpLtdAqw14mo2Qgjxhdo6cYLcoS6EIqRPq17L7nuTJk2C0di6POqEdFasf5qVlYX9+/d7/Rq139+5hp1uCqITQjpWaYaYftXjzoXUHYi+keKK2+bs27eP7y6jMTrpLljf9JxzzmlyjB6eKMauanURULmUcNTIkSDLwuEicXEJId6iIDppkkyuQHBsPNyx4g0nSCqmnsiXhPHj6C1LkDXvIlR+/XWT77FmzRpe7ZsFHQnpLtgqTPbZbooiMhKxX3yOXh9/ALlUggxnEH8+2GHhx8qCY5BLfoBa/Rtkclr9QQjxDZfTDYdHI36jLYJfWLz3r3W5sGHDBkybNq39LpAQH2MDbpZLleUG9pY6QGzTGdoGTgjpaJWlYlHRGlURau0x6BfR8kI3ds9jq3YnTpzogyskxHdjdNZXdbtPb5t1JhW0RiUgkaJWH8nzostURcgoppXopHUoiE6a3OK1/vsM7FiejdKqcv5cUP1im0MOcVVtsLUatgMH4CwRU1M0ZufOnRg2bBhtEyPdytChQ3HkyBFUVYkFd5uiVsiQGKJHrqf+30ydeH6ZsxK15TmorTgGpYaK8xFCfKOmXBxoy1w2CHoLIoNaXq3W4NChQ7BarbxNJ6S7UKvV6N+/P++veksTGHH8sdXhaqcrI4SQlgmCBzVWcYdZub4INZIEhBjE9JHN2bFjB7/3sXsgId1pjG6xWHiftTHBMQZ+rNFHI6rMg2y1B9UFGT6+StLVURCdNMppc2PH4l+w/ptFKCvJ5c8FucS0E0eFEChkEhi0YvFENJEPkgXiWQPNbmaEdCcNn+ldu1qu6J0UasCx+iB6qLmYH/Ml4sSUy26HtYZmvwkhvlFdKu6GUdvK4dKqEeFXvyrdC6w9ZwYPHtxu10dIR7XpDZ9vb+gDY44/ttnFiSlCCOkINeVWeCDjxY5dpjI4/RK8WrxGY3TSHQ0ZMoQfm2rTjwfRDdGILgOyFAoIpZk+vUbS9VEQnTTKYnbAbd8Jl3UdqqrFwF+Qw8qPeZ5gRPtrIZXWf3yaSAfJKiNXVFRQA026neTkZOh0uiYbaOv+/UgfPQZZF12MXsE65HqC+fNBlkp+LHGUQucXwB8XZhzz4ZUTQnqyqhwxb6raVgan0oBAff1kuBfY/S4pKQkmU8vbxAnpSlg/leUHttm8C4gbjcHwSMQ+sNsuTkwRQkhHqCwS70EaSwlUBgdkQYktvobtKmN1IGiMTrob1kdl9cuaDKJHn7wS/ZhCDoM1F7V22lVGvEdBdNIoS40dHqGWPy5XiMdAWx0/lnj8EBuohUSp4N97HI5G36Ph5kUNNOluZDIZBg0a1GQDzf5NuCsr4a6uRq9gPWqhRa1ED5MgFha1u+2AVCzMd2D9YZ9eOyGk56qtz/socVfBg0Co5OIWcG/QqjXSXbHPNcv5v3fvXq/O12lMcMvECSiPIC4wIYSQjlBdXxRRay2FXiPALzS2xdekpaXxnNHUppOetrssMErPjxZdGIKrJSgSFIiTFCGnXIxzEeINCqKTRtWWV7Asa2yoDbNCXJljsIqD7xKPP2IDdZCqxW3ggq3xAQS7ebGiomFhYiFSQnrM9m+XOJstkcmQEKzjj8s8RuiEv7dtKHX1jbi5+bzqhBDSViyV4oo1t6QGMmmg169jg+3du3fTgJt0SwMHDuTFRb1N6aJW6yFIxSC6IFA6F0JIxzHnsTE7IHdWQJDrEBskji+aw+517J43YMAAH1whIb7F+qos5WpjxUUNgWpIZRIIUgVsKn9IzFJESItQWEVtOfEeBdFJo+qqq/lRKtfC4haD5Dqb+Fypx4S4QC2kGrEQicfa+E2HVq2R7ox9tjMyMlBd/2/lRIJFDFRJdFpE1uccLhaMYGs+tfUDb5lGfN5uEVeQEEJIe6urFttru6wGKmWQ169jBZpYoSZq00l3xArr9evXz+sgukZtOL4SXfDQ6jVCSMepKRbHEU5JFSQutltcXLzTHCoqSnpCcdHDh0/f7S2VSmAKFsfgVm0IgqsBlaIYBdW0q4x4j4LopFEWs7jqXKbQoM4pDhC0ggAXZKiAAbFBOkgNRsgCAyGpD6afiIqKkp5cXLQhiC7T6mDSKKCUS1HuEdO36KViGiS5wQiJ1A8SeJ+TmBBCzoalTtwlY5fXQKnyPojeEFxsKNhESE8uLqrS6OE+vhKdguiEkI5TW2nnR4uiGoLDD2HGlgPjNEYnPbm4qClEy48WTTCCzICgqENBJQXRifcoiE4aZasRZ7XlCh0srvqCJYIHlR4DPJAiJkAL//mXoveG9Qh/8snTXp+bm4vy8nIacJNuXVxUo9E02kALdeKgWqrTQSKRINSoQplHLMan5+vRAf+BI6Ay3QC/8LE+vnJCSE9ls0v40a2ohaDy8/p1O3fu5IWaqKgo6a5Yf5UVF7XbxYBUc6QSKYSGnOgesW4QIYR0hDqLmCrSoqyEzR3YYsFwVkCZFRWlMTrprvz8/JCQkNBkEN0vRFyJbtGGIMjsgVkuoKJSTItEiDcoiE4a5RcifjSCY4JgddWnc/EIMHvEm06IQdXs69PT0/mxb9++7X6thHQElkswJSWFp3RpaiW6VCfOdIca1KiEWA1c7RE7uy6pUzw6xWKjhBDS3tyCOIknyCxwq7wPiLP7HLXnpDtj6VycTieys7NbPNfjdMIla1jtKbb3hBDSEewuccxuV5hhk4dAIWs+vJOTk8MLKVObTrp7m97YGJ1pSOdiUwfylehlMhlsVYU+vkLSlVEQnTSq/6RzcPVL/8Pk62+Ew+3gzyk9QB3UUMml0Kvkzb6+sFC8EbHCooR0V+Hh4cc/6yeS+flBPXAglHHx/PtQoxoWjzjxJKsPokNaH0ynIDohxEfcnvogutwOKMWJPW8UFBRQe066fXvONNamn8bthlMh5h32SCmdCyGkY7jdAtwecUzuVFng0IR41Z4zkZGR7X59hHQU1mdtqj3XmsQxuUNpQmC1B6UyGRTWUh9fIenKmo+Ekh5LpdUhJC7hpOck8KDOo0GQXsVTVDhyc1H4z8chkcsQs2DBaQ0020rD0l0Q0p0b6N27d5/2vGn2bP7VIMSoggVigy3xiEFzpy0fUs9a2KqCAQzz4VUTQnoij+CBUN/t88htUKia31F2IjYQoSA66c4aPt/eBNE9LtcJQXRaiU4I6RgOi1jnhBHUdZDoAlp8TcM9rmHikJCetNCN0ZrElEd2pREmC1Aql0FjLvPxFZKujILopFFFWdXIO1iBgAg9PPD8XbwEavjrxMKIkEhg2boVkkYG4uymRY0z6e7YZ3zZsmUtnscmnrLqg+iy+iC6TOeCpaoAKi1tCCKEtD+nw338sUduhULuXRCdbfsuKSmhNp10awaDATqdzssgOluJruePpZJauNwC5C2kUCCEkLZmrw+iy1xWyPQuyNTGFl/D7nF6vZ5/EdJdsT4r67u63W7IZOIuzAa64yvRjdDagCqpFCZHVQddKemKqMdHGrV/zWZsWPQN9qzafPw5Vo7MAjUMKjGILvPz50eP3Q7BenJFYwqik56AfcaLi4shCM2nZDGo5cfTuUgb0rnIxQbd5Wi5iBkhhJwt9wmpo6QSJyvs4NXr2CDE4/FQm0569Mq1EwkOB1z1K9Gl0jo43X8vNiGEEF8H0eUsiC4TIFG1nKaNdpaRnoB9xtn4nPVhT6U11hcGl8qh8Ohg9Uggc1vhdFOKVeIdCqKTRpXn7oPLtgHmUrFAaAMXpNCr5X8XTVSIAXV31cmzdxREJz0B+4yzVZplZSdvAcu+6ipkTpkKS31VcBZEtx5P5yKuBnW7JfVBdLHAKCGEtKeG+TtOCri93IzYkD+V2nTS3bHPeMPnvTnWapv4wCNAJrPAQQNvQkgHcLvEMYVMcEAqB6TqlleXs3scteeku2v4jDfWpsvkUqi09bUEFHp4HFLoYIPZSmNy4h0KopNGSeqLHrJ4n4SvQQcEfpQcLyrK8qLL/cXV6K6y8pNeT0F00pMLkTnzC+DMz4dEKc5065Ty40mRHPWPXHniBJTD9neKBUIIaXceAR4JmxQ/eXtrUyh/KukpvF2JXldey49Sdx1byga5VOwnE0KIL7ld4phCKrgglQmQa1oOotMYnfQELRULV6jFPrBbpgYcEmglNpoQJ16jIDpplKw+1QSb4VbJxBW0NgkrLSqB8oS8j/LQUH50lRQff45t+2azfrRVjHR3DZ/xE2e52effXS5OKskDxAI/Crm0fioKaEh8JHGJ/44kEroNE0LaH7s3NeAbYYS/C5I1hw1ApFIpQkJC2vHqCOkcbbo3QfTacnElukSogsejhILyoRNCOoDbJQb9JALL+wwolWKaqeZQEJ30BKzPyhZ8NtWmK+szK7hkanicEmhhh4tSsxEvUa+PNEquEG8sbrcLWoWWP7ZKJXw7uEL+94obRVgYPzoLi44/V1NTA4vFQg006RTefvttxMXFQa1WY+TIkdi6dWubvXdo/STSiQ00S23kcTj4Y1lwMD8qpFJIIXZ07fUr0SWOhiA6rWAjhPiezO1dPQY2ScjudacWZiKkO7XnrUnnUlMl/tvxCBXwCAooZNSOE0J8T2hYie5xQSbxQKFoObRDC91IT2jT5XI577s21aYrVPULRuUquDwSaCQOyolOvEZBdNIoWX2uc8Hlgkau4Y8t9cE+ufSElejhYZAFBgLC3ykpKioq+DGQPU986pxzzsGnn37a0ZfRaSxatAgPPPAAnnzySezcuROpqamYMWNGo0VGzoRSqYTJZDr+mWecefn8KA8OhrQ+nYtc1pAUie3oqH/gZskLjVBp/drkWgghpDnShpQTEimkLgncLnGyryXs/kbtue9Re+7b9pwJCgqC2WyG2918mrUas7iLwyVh9YBUNBlOCOkQglC/cpatcmP/a2EhLavjxBa7UZvue9Smd0ybfuIYvbEgOluJLneL/3bcDf+eCGkBBdFJoxT1ec9dzr+D6FapFHKJ+6QVN6GPPYbeG9Yj4JprTmqgGwKMbeWpp57ig5TGvlijREhjXnvtNdx88824/vrr0bdvX7z33nvQarVYsGBBm/0OhUJx/DPPOOtnvBUnrPJgW71ZMqQTV6KrNRFQm27CoFkPtNm1EEJIU+TKE1aSu5RwOuqLI7aA3d/asj1nqE0nnbU9Z05s0xtTZxXbcYeUDc7b9t8GIYR4S9owJucpV1tGY3TSk8fojQXRBakSsvoF6E5K50K8REF00iidn5hTLaavCVq59vhKdDUcf69mayIVhdPpPL6Npq089NBD/EY7evRonjqDfT344IPo168ffvzxx5q3GGQAAH5nSURBVDb7PaT7cDgc2LFjB6ZOnXr8OZbXl32/adOmNvs97HPe8Jk/KYge+XcQnRUd08DBE7rUNHRzHWLj3VAdnBBC2pP8hG3eHkEFh72hQkPz2P2tLdtzhtp00lnbc++C6OK/Jae8Ck6Zoc1+PyGEtEbDmFyQyCCwiuEtoDE66WltekvtOT+PrUSHBDIqEk68RNEb0qj+50xG7IABMAQG48stW/hz6UolLpQeweKK5gfeDTertmyg9Xo9n51kM+dh9XnY2XPsdwTUF28k5ERlZWV8S3ZD3vIG7PtDhw61WwMtM5mgSU2FKjnl+HMuwQOdxIpqqRRCffvsrBGD6VoTrWIjhLQ/yQmDA1mNAaX5R716Hbu/tXUQndp00lnbc6alQbfVreHLkByqMkhUcW32+wkhpDVcTnEJbY0xDuWQwVFFY3TS+XXUGL0pEp4NSQKlnNYXE+/QJ4U0SuvnB4lMh8KjZcgsEQfai4x6hEsqsGTv30UUBasVx26+BZlTpkKwiVvDG25WVISs/T3//PO8o9LwtW7dOtx2220nPXfs2LGOvsxuLS8vDy+88MLx7/3mXYi4Rd8g6NZbjj/HCpXoYEOlTLzlGpQG+AXmQ+b5Fjl7lnTIdRNCeq5BOWHoXbfdq3NZm07tefuj9rzjrV27lh+Li4ubPMdpd8Mu1YuPtYVwqfx9dn2EEHKikhzz349rVfh5R3az59MY3XeoTe94bFV7U+lhTsym4JQDAjwURCdeo5XopFE5abvxyyv/hkQWitCRccjzO4zKEwqKNpCo1bDu2QPBbIYjJwfq5GQqsORDrDG+9NJLj39/5ZVX4qKLLsK8efOOP9dTK7CzYiKsk3jqYJh937BSoq2wYijNYUF0vcSKivpOa4A6AAa9C3VVeXDaktr0WgghpCVOpQGBkhyvzqU23TeoPe/49rzhvdRqdZPnVBVb+FHhqIFEXwuPmoqDE0I6hs6kOv5YYwdMqr+D6o2h9tx3qE3vHGN0jUas7dccqdQDG9RQURCdeIk+KaRROpM4KPB4rLgk4gr+eKrFikJPAOYMijipMVb16sUf2zMzTyrMdGKe6PZAHQHwbXKJiYnHv1hDERISctJzbb0Nv6tg2wqHDh2K1atXH39OEAT+Pcvb11YiIyNx3nnn8ccetxseh+O0c+zO+pXo9RNR/ip/WKqr+GONwdhm10IIIc0J0Nv5MTu4FhnKeK9ew9r09m7PmZ7eplN73vHteVKSOKnt59d0YLyyQAxSaa0lkKvdkGgpXQEhpGPE9BPvP3JnHcLVdswdGNzs+TRG9x1q0zu+TR81ahSuuEKMY53K42koIuqBTOpBLTS0Ep14jT4ppFFak0l8IFigsYhBvmKZDAGogdlycpBQlSgG0R1HjrQqp+TZMhgMKCoqQnp6erv+HtJ1PfDAA/jwww/x2Wef4eDBg7j99ttRV1fHK4G3FdYRbeiUsomkQ4OHIGv+/JPOqbE74YdalMjFlegh0nCU55Xwxzo/2gpOCPENrV5sn1UuPTyeUriFhkHE2eeUPFvUppOObs+9yRdckSm23SpbCYxyNxTGkDb7/YQQ0hpKTf2YW66B4JBCsFQ3ez6N0UlPG6M31Z6z1GyMzO0Ay7Za51FDo6A0R8Q7FEQnjdIaG1bhuCCtFj8mxXIZVBInHLa6k85VHl+J7tsg+owZM/hxyJAh7fp7SNc1f/58vPrqq3jiiScwaNAg7N69G8uXLz+tkMnZOLHoHp9IcrshkZx8a62xuRAiqUJe/XmRNUnI2SvmwdP70yo2QohvaAzi1m+lWw+FrAqVp0yKd2QQndp00tHtecPqzGaD6HniLjI3ihHkksA/oO1+PyGEnEkQHWzc4VDDY+scQXRqz0lnG6M3HUS3QyYT4FbooKivXUZIS3rmHhLSIoVaDZlCBbfTDmeFFTABZTIZ2O1GZi0/6dzj6VyOikF0lUocpFutzVcIb6033njjpO/79evHZ7nJ3/7666+OvoRO56677uJf7cVmsx3/zNuPiEV4lb0STjrHbHXyIHp+fUPuZw9BlSBORun8KIhOCPENrb+W3ZEg8xggkdWgxGxHkP7vnKqNYfe3tm7PGWrTm0ftece05ywNQbNB9BI28aSARV4MnVMHP/+W860SQkh7kCukkMDNElJA6jQA9uZzorOds+weR2N036M2vWPH6Kdy2uqL7LrtgNIDuMWC4YR4g6ZbSJP0AWJetZriMigkCrglEhTJZVDbxK2sDVSJifzoyM6BYLfzfF/MqcUiCOluampqYLFYjs+a2w4d4kdVfV7VBma+Er3yeBBdXWuEx9MQRKeiZIQQ3zBFi5N2bkUApJ5aFFa3PJBm9zdqz0lPwII+rA8rra9fciqX0w2zRdzuXa7NBZx+CDdREJ0Q0jF4bTK5uINGYTdCajt5odup2L0tODiY2nTSY9r0pla2nxhE1yjccGkCfXx1pCujIDppUkBEOD86bJXorerLH2cpFPBznDyzLA8LgywggO2Zgf3wYV4sIjAwEIWFhR1y3YT4SsNnPDxc/Ldi27+fHzX9+590XlVNHQIkNchXiEF0T6UEEqme7/YwhbRtFXJCCGmKMUKsd2JVB8JjtSOnrKbF17D7W1VVVbusRieks7XpDe15YyoLLfBACrmzFkXGaticQYjwU/v0Ggkh5ERajVjEU2v3g9RW0OL57B5HY3TS3bE+a3V1dZNtusMqBtEdchsCPAIEHaVmI96jdC6kSX3GToDbHYSI3oORayzE/qI9PIge5CqC1eGGRik7PgsedPvtkKhVUERE8OeogSY9LYjuKiuDi21dlEig7tPnpPNc1QWolEpRJ5VC4pHAUiKByngNLnlsGE+dRAghvmAMFO83NnUAbHUyOAuzAIi7yZrSMABhK3ri4+N9cp2EdMYgemmuOOlkqM2DJVxAmScUIQZqwwkhHUdvVKKiBtC4TKiR5qLG5oRBrWjyfBqjk5640O1EbqcAu03gj+3SGgS53Sg1NN32E3IqCqKTJvUZP4l/MTt2bgeKgGyFHL0kpXwLeELw37mjAq6+6qTXUgNNeloDbdu1iz9WJiRAqtOddJ7anI0MpdihTVL0hcPqhlQmQWAk5V8jhPiOIUAM+LnlGgh1BrjLWC2Tac2+JqJ+cpzd7yiITroz9hkfOHBgkz8vzRaLiupr86Dwd6HWlQCZVFwFSgghHUEfoAHybVC4TVDI96HYbG82iM7a9H379vn0GgnxtYKCgpP6sCey1LDaJoBEcKFOVQd/tweuIFqJTrxH6VyIV+JN4sCZrUSPkpShsNrW7PkURCc9AfuMa7VaGAwGyPz8YJx9AQxTppx2nr4uBxlKJX+cLKTyo3+4DjI53YIJIb4jV8qgktn5Y01tGKRVbCV68xpW8VCbTnr6SvSSTDHfsNyehzC5E56gZB9eHSGEnM4QLqZpk8gCIUirUWymMTohza1Er6sW+8FKhxnlJgnkbhWiAmhhG/EerUQnTfJ4PKguLsbR3YeglYnFQtlq2jhJETZVWk4717ZvH/8yzZ7NZ/3Wrl3bQVdOiO9mudlnnaU00qSmIjJVDJCfqMriQJgzD+n1K9EjYgMQmLkF5sIcZGx1IWnEmA64ckJIT+XvJ0NROeBvCUOpIwM2pxtqhazp8/39oVKpjq/qIaQ7EgSBpyxqKojudgkoK2ar1ySoVh1DnNON4kgKohNCOlZAQjCAYlg1IZDYLMirqAMQ1OT57B7H7nXsntdUEWVCukMQnfVd/fz8TvuZpVpcia5ymJFvAgwOP0T5U5Fw4j0KopOmeTz4/OG74LTboDReA81oPapktZArK1BYUgog5vipLIiYf+99cBYUQBEdc3yWmwXX2c8I6Ymr1pjscgufeFrZkM4lJg6FtXtQU5YHmaLp7ZaEENIeAqONKCq3QO2OgFKVhvTiGgyMOn2Q0YC14bRyjXR3ZayuicvV6NbvhnzogiCBwlmLAv8SJDgMSAhr+t8NIYT4gl+ImELSogmGq0aCosJcALFNns/ucU6nE+Xl5QgOZgF4Qrr3QrdT1VX9vRK9NEiCCEcYogO0HXCVpKui6UfSJIlUiqAYsRH2uMswSDKKP96vVMJRdPC087XDh/OjZds2PuC22+2oqhLzRxLSnYPorKio7dAheASxSMmJssvqECspxJH6gHmCLhYV+Xn8cUhsgs+vmRDSswUlixN/TlU4PJ4qHMivbvE1FEQnPXnrN1N0RPx3Yqo+ipwQCZz2cPQ6oTYQIYR0BGOwmi98Y7VO3LV+sBWlN3s+pWgjPX2hW3WJlR811lLYDAKKhUiEGlQ+vkLSlVEQnTQrKCaOHwV3GRLt/fnj/SolFOWHTztXO+LvIHpkZCR/nJvLZsMJ6Z7y8vL4LLd56VJkzb0Q+ffdf9o5+UXFcKgrYJVKEeqKRMmacng8AjRGE3T+AR1y3YSQnisoVlw9W6cLh9UM5B3LbPE17D5H7Tnp7u0509RK9KIj4qIQo/kozMECjglJ6B1q8Ok1EkLIqeQKGTSKhlon4UBF8216wz2O2nTSE8bojakqEdMSa60lUOrcsBrjIZdRWJR4jz4tpFkhcb340eMqhl+lGBg/oFIioDYDLrfQ6Ep069696NNLfN2ePXt8fs2E+EJtbS0yMjIwYMAAWLZt58+p+4sTTScSCvdgj0qc3R7umoztS8RzQ+ISKNURIcTnAiPZ6lkBDpUfpGVBcOa33E73798fu3fv5inaCOmO2Oeb5U6Nioo67Wfsc1+YXsEfqy1ZCNXbURUwAEoqDk4I6QQCAsUMvX7WSMich+A8ZYx+InaPMxqNNEYn3RZrs1mbzvqujakqMPOj0lYCvc4JRUiSj6+QdHXU+yPNiuidwo+CqxCufAWkggz7lCokIQvZ5axwyd8U0dGQh4YCTieUWVlITEzEjh07OujKCWlfDQGloYMHw7JdDIxrhw077TxV6T7sUYtB9KjaJHhc4vbJ0HhxookQQnxJoZLBqBGLKvlXx0FRtfu0SfFTDR06lOdPPXbsmI+ukhDfYv3VIUOGNDq5XV1qhaVOgERwodhwDH2dDmhih3bIdRJCyKlCEsRCokpPNBSKHBwtPXmMfiJWTJTd62iMTrqrnJwcVFRU8L7rqdxuAeZKJ39coyxBjNsN/2gx3kWItyiITpoVFB0LhUoNwAG3vRyxlmTUyKTQqHJxIE9cldOADTy0I0fwx3UbNvAbFzXQpLtin21W9ZtlNXdXVkKq00HTv99J5zhcAkLqDmG3Sgl4AHmhCYIrn/8sIrlvB105IaSnC4s18qPJEQuN8iAOFIqrcprSMBChNp10V+yz3diAm8k7VMmPJnMWMsOdCLQakBJ7+op1QgjpCKH9xd3iFm0UZPYqpOWK96ym0BiddGcNn+3G2nRzqZWVEIDU7UCBvxl6uwlJEeIkFCHeoiA6aZZUJkNYYm/+WHAVYLBrPH+8VyNF+dFdp52vnzCRH+s2b+E3rl27dsHtdvv4qgnxTQOdmpoK24aN/HvdmDGQKJUnnZNZUotI2VHkKRQItETAWSNApgyHKSQMEcl9OujKCSE9XXhqND861HFwC+XYdqSk2fNZXsmwsDAadJNuqaysjO+yaCqInntQXDTiX3kIRyIkqLXHITXa5OOrJISQxgXXT4yzWieOSgVysw41ez6717HVumyHGSHdDeursqKijRUWLcut5Ud9XT5ygwGbLQbJYVTfhLQOBdFJi4aeNxdjL7sTs26fjbgJ4k1mm1oFab6YwuJE+gnjEf3hh4j98gveQNfV1SE9vfkq4YR05VVrtWvX8u/1Eyecdk760SMo1orFyIbYxkEikSJxxJW46c2PoNFTg00I6RjhvQP50WyMQ12ZCsXpp7fnp6KVa6QnrloTBA/yDoqBJr/KQ5CFOHBYloqEIFZbgBBCOp4hUA25xAGPVA55RRwceTubPZ92l5GeurOs5FgNPxpqjsEcKKBYmoxIP42Pr5B0dRREJy3qNXQERl04C71HJGBEtJjzeYdaDf/KXacVGZMZjdCPHwepSsXzrfFzqYEm3QybHDp06BBG9ukD2969/Dnd+NOD6ObDa7FJw9IhAfE1qfwY008MXhFCSEcJCNdBIXXALVPBWJIAaeHGFouGNgTRqbgo6W7Y59pkMqFXr9NrlZTm1MBhEyB3WXg+9EGCHe7Y8ZBKqTA4IaRzYClVQ0PEsE5gbS/I67Y0W1yU1S0zGAw0RifdDuujNhdEL80SF7cZanKhDHRCCEtttBYKIc2hIDppleSAZOhlap4XXadMR1apuCWmMX5+fnxAQg006Y5FRQVBQOro0Yj59FOEPPwwFKEhp52nK9qMjRoNZIIc8nI9BFcpIlP8OuSaCSGkgUQqQUSkmH4quK43jPLdPP1Uc9iAhKW9yM3N9dFVEtLxRUUbUrn4VaZjf6wHCRY1eqf074CrJISQpkUOiOBHubQXlLIjOFDQdK0TKi5KuiuWmo2lKWosiM4C7KXHxH8XTuQiRuZEUKK46JOQ1qAgOvFKeX4u1n61EEvf/BXnF93CnzuktePwgT2nnSs4HCh57XUcvWA2RqWmUgNNuh32mVYqleg7cCB0I0cg8IbrTzunss4BnWcfyuQyyGXAvId7w1HzBb75161w2m0dct2EENIgZngcPzrVveF2F2DtwYJmz6ft36S7B9Ebk51Wxo+BFQdxKBaosKZgTC/aUUYI6VyiBou1TqpNvYDqOmxPb37Cm1K0kZ6Wnq26xAqHA5AITuQEFMHPGoSB8eLkEyGtQUF04pUj27dg268LcWTbX/DPToDcrcBfWg2sh1aedq5EoYD59+WwZ2RgZlAwdu7cCQe7YxHSTWzZsoUXFWWB9KakZRxFYX0+9OEhQ1CacZA/NoWEQqESU7wQQkhHiR4Yyo9mUwJqirUo2venV8VF2f2PkO6iuLiYF9gbNkxMV3iiuio7irPFVWuG6jQYAh3IUA1CfJCuA66UEEKaFhJjgARuOJUGCKXRKD28vtnz2T0vOzub3wMJ6S5YH5UVFGV91lMVZIjjcqM5B0cj3aiw9UNqFO0QJ61HQXTilbhUcYWO4MqF4HQhrrI/DqmUkJatPS0/KtsOa5w1iz8eXFfH80evrS++SEhX53K5sHz5ctzYvz+KnnkG1rS0Rs+rSluGP3QawAOMj52C7D07T/q3RAghHckvVAuNwg5BqkBYcT9oylajzu5q8nzWtk+fPh1Llizx6XUS0p7Y55l9tqdMmXLaz7LqV6Ebq4/iYFQNRtttkCZOpfyphJBOR6aQIthfbMODqvpAVv5ns3nR2T2P3cuWLl3qw6skpP3bdNZXbUz+YTE9m39VBjzBTtQGjYRGKfPxFZLugILoxCvBsfEwBAUDHicE5zEMqRKLKFars5BZWHna+cZZ5/KjbM8epMTE4Ndff/X5NRPSHjZu3IiKigqMsVpRufBr1P61pvET81dgt1qFXuWDISyKwpEd2/jT8YMaL3RCCCG+xAbP8X38+WODsz80qv3YkCkGDZsye/Zs7Nu3D1lZWT66SkLaF+ufjhkzBsHBwaf9LGt3KT8Gl6Vhe5IEAXXhGDswuQOukhBCWpYwPIYfZfK+UEkOIC1PXHnbmJCQEIwePZrG6KTbOHr0KPbv38/7qqdiiz7zDohtusqSgUi9A0H9xHgWIa1FQXTi9WA7cfgo/lhwZiKgPB4qpxYbdXKkb1912vmq3klQJiTA43TijqHDeAN96op1Qrqi3377Db3CwqDYt59/b5w187RzSqpqUa48xB8PrZyAitx0uBw26P0DEJ5IA3BCSOfQ65wkfqwKGIC6cid27tnd7PlsdQ9LY8Xug4R0dVarFStXrsQFF1xw2s/sVhfyDomr1gLL96AqxoX9rhEYlxTUAVdKCCEtixsVy49VpiQIZQJ27BPHIk1h974VK1bAZqNaTaTrY31T1kdtbCW6ucwGS50HEsGF7MAs+NuCMDpZnHQipLUoiE68ljR8ND963EfhcXuQUJGKzRo1HJk/nXbuiSldxrndPN8kW71GSFfHJoTuGTqUTxCpkhKhShKDUCc6uHUVNujk0DqMfMJJcGTw5xNHjIZESrddQkjnENnbHzI44VAaoSlIhDTzp2a3fxsMBkyaNIlWrpFu4Y8//oDFYml01Vr2nlIIAqCtK8KxwBKM9Fhhjp0OtYK2fhNCOqeAcB1UUhsEmRLq4hRUH1jW7Pns3sfugexeSEhXx/qmkydPhl6vP+1nDZPixpocpMc6Ue4cjn4Rxg64StIdUDSHeC0ypR/UBiMEt5XnRh9UNh6CRIJiz3bYHM7TzjfNncOP6vR0JJlMNOgmXd7hw4eRnp6O8XaxUK7pwnmNnld+8CdsV6uQVDYUHkHgE09M75FjfXq9hBDSHJlciuhYsUByaO1gGJQbW0zpwlaurVmzBtXV1T66SkLacWdZr15ISUk57WfpW8Vie6ElO7CttxS96vQYRDVNCCGdGFvEFtNLLHwcYBsImeNP5FdZmzy/T58+SEhIoN1lpMurqqriNfga21nGZO0o5MfA8v1QhdtgjZ0BqZTqm5AzQ0F04jWpTIbeI8dAoVJDqbQgON4AiUeKdXoJ9m1dfdr5yuhoGKZNhd+ll2LCxIkURCddHutk9jcYoM7NBeRymOacvnqNTSjluzdBgAQDSlnQXIoRF96LUfPmI7JPvw65bkIIaUrKNDGAWBUwFDUVdmzaJtZvaAoboDQUWCakqxIEgbfpbCXmqYVC66rtyD0orloLLtmGnCQ30m2jMK1vaAddLSGEeCd5Wh9+rPYfBJm5BGv2Nl3DhN372D2Q0q6Sro71SVnftLEgutPhRl66uPDD5d6LeIkCg4eM7ICrJN0FBdFJq4y99Crc/uGXuOXtO3DhdePYMARpahWyd3/V6PlRb76J8KefwsSLL8bWrVtRVFTk82smpE1TufQVA+GGyZMhDww87Zy9G5fjD4MEobVx0FuCIVfKMOz8URg7/2pIpbQNnBDSucSmhkAuccKu9ofxWDJkR3+Ew9V0SpeYmBgMGjSIJsZJl7Zz504UFBQ0msolc3sJWDzJaM7C0dAyTEAdSuPmwk8r7toghJDOKqpfEOSw8zRt8vxkFO9e3Oz57B7I7oXsnkhIV8X6pIMHD0Z0dPRpP8s7WAG3IIHaVo60mELYLQMwMSWkQ66TdA8URCetojX58ZXobPtLkCYIAzRx/Pkjrq1wOk9P6dLg3HPPhVQqxeLFzTfkhHRW5eXl2LBhAyJTB0IeFga/iy9q9Lwj+z5HplKJgYUT+fe9h4dCpZH7+GoJIcQ7coUM8b3F7d9BtmEwKjbhj4NiKoumsJU+S5cubbbdJ6QzY6vQ/fz8MHbs6WnW0reKCz5Ci7dhXT8JYs0hGD9yeAdcJSGEtI5MJkVMvIo/DqobDJiXoKJOTEPZmHHjxsFkMlFKF9Jlsb7osmXLmk7lslNs04PK9qI6wQlrxExolTQ2J2eOgujkjLAtXxUF+ZgbcAuiqlKwwiBF2rrTC4w20Obn4+nBQ7Bo0SKfXichbeXHH3/kx8FPPYXE1augG8d2YpzMYbfjgLCbP/bEFiAgLBfm4sUoykz3+fUSQoi3UmaIKV3KA4egsliC7RtWNHv+nDlzeP7JVatW+egKCWnbPuy3336L8847DwqF4qSfleXVoiSnBhLBDb+KHaiLdWKXMBGTaNUaIaSLSJnelx/N/kMgMRdh2a4jTZ7L7oHsXsjuiZTShXRFrC/K+qSsb3oqt1vA0V0l/LHUthdJaqDX8OkdcJWkO6EgOmk1p82Gzx66E5/cfxuKvnVhXPaFKJHJsWP/h42fn5+P7EvnY15tLTLWrEFWVtO52QjprD788EPMnDkT4eHhkMhkkEhPv33uWvst/tCLA/J5M+fA40rDke1rkHdwXwdcMSGEeCcqJRAauR0uhQ5Rx4bCr/QbFFY3XYxsyJAhGDBgAD766COfXichbYHtKjt06BCuv/760362f10+PwaV7cGe+DpMdloh9L0QKjmlYyOEdA0xA0OgkNh4ShfNsQHI29L8IjZ2Lzx48CA2btzos2skpC3H6AMHDuTpXE6Ve6ACdocECocZB6Iy4KgbjMl9wjvkOkn3QUF00moKtRr6AJYL2gO498HPGoboqj7YLs9GTVXZ6edHRkI/cSJY2aYbQsPw8ccfd8h1E3Km9uzZg7q0NNw/ajQ8LleT52059AGqZTIECiokOiNQmHGYF+TtM36ST6+XEEJag6Vo6zcuUnysHAuXJx2/bD7UbDGym2++meegLC5uPvULIZ1xwJ2QkIBJk05umx02Fw5vLuSPIwvWY+0gQGVOwQWjB3TQlRJCyJmldEnqZ+KPjc7RUFoXI6usrsnzJ0+ejPj4eH5vJKQrYfX2WCoi1ic9tUg4c3hDHj+GluxEXZwN1viLYVCfvAONkNaiIDo5I6nTz+VHwbkPHo8LqQWTsEmrxvqV/2v0/IDrruXHuQYDvvvkE149mZCugnUq74+MQuRXX6H0v/9t9JyqwqP4S1WC5JKRmFtxH3YsFovu9R41Djo/fx9fMSGEtE6/GcmAR0CVXxKQGY2KbQshCE1v7b7qqqsgl8vx6aef+vQ6CTkblZWVPG0BG3CzWj2nFhR12gVoLCWolaejl78Vu/wuwqBovw67XkIIORP95wzkx8qAAUCRG6s272jyXHYvvOmmm/i9kaXFIKSrYH1Q1he98sorT/sZmxjPSqtf4GnfhhiNEmPG0MI2cvYoiE7OSK8hI6APDILLUQfBlYkoczKCaqOwvvhnlmzytPO1o0ZBlZwMhSBggs1GBUZJl1FbW4u1X3+NMfV5U01z5zZ63pIVzyJTqcawvBmQH/ZHxpZ1/PnBM8/36fUSQsiZ0PurEBUpruKJrB6HQOkyrG6mwKi/vz8uvvhifPDBB3C73T68UkLO3JdffskXclx33XUnPc9yAe9bK6ZyiSjcgFWDJRhZrcXgceKiEUII6UqCow0wqC3wSOUIKhyFqrSP4XILzaZ0cTgc+OKLL3x6nYScKdb3ZAvdLrnkEt4nPVXWnjK4BSmfGN+RmAOLawJG9QrqkGsl3QsF0ckZYSkqBk6ZwR/LpXv44GNY3kys1Lmxf5tYgPFEbHtNwPXigOWmkFC898YbPr9mQs7E559/jitVap6OSD95MlS9ep12juByYn3dJiSWDYHBHgip5AAEtwsh8b0QniQW7COEkM5u0FwxbUV58GhU5suwafUPzZ5/55134ujRo1i2bJmPrpCQMycIAt58801cdNFFCAsLO+lnBRlVKD1WA6nbgYCyTShPcmKnayZmDxLTHBFCSFczcIo4ZnHqJkBp2YI/D4gThY1hNZ/mzZuHt956i98rCensli5dyvugrC/amH0rMvkxpGQbtHFWKAddx9MXEnK2KIhOzljqtHMhV6pgNefD485FXOUA6C2x+HnH642ebzr/fChiYmD0eBCethdpaWk+v2ZCWoN1Ir/93/9wntHIvw+6/fZGz/tr1VvYpJFjcP5Unt7I7djNnx884/xG87MRQkhnFDMgGAa1HW65Bgm54xFS8wX25lU3ef6oUaMwYsQI/LeJNFeEdCZssicjIwP33HPPaT/bvfIYP4YXbcGmFAtm2e1QDrkMagUVFCWEdE19pyVB5nHAqg2F6mhf7Pvry2bPv/fee5Geno7ff//dZ9dIyJlifc+RI0fyr1OV59eiKN8BiceNYu1GBDgScMHY1A65TtL9UBCdnDGt0YT+k6bxx3pTLjwGG+SCEr+rKlCRv/+08yVyOYJuvRXy0FB4jAb873+N508npLNYsWIFplZVgw2hdRPGQzOg/+kneTz4NetT9CofjgBrOFRaGYZdcCFCE5KQMu6cjrhsQgg5I2zSb+hscfeMOWASqisr8duqP1ocdK9atQr795/e7hPS2Qbcw4YNw+jRo096vrKoDtl7y3lNgMj8P7B5qAdl5rG4YkIjbT4hhHQRSrUcvfvr+GOjayLkVd/iaGltk+ePGTMGQ4cOpYlx0unt27cPq1ev5n3Qxuxdnc2PQWVpyEkuR2341Yj00/j4Kkl3RUF0claGz56HuQ8/gcufeQQ3PTcVDm0WKmUyfLbin42eb5ozG71WrkDvW27heSmLi5vOt0pIR/v85Vcwx8+v2VXoe3cswlqVBMNzZ/Hvh85KxOh5F+PK51+DvD6POiGEdBUp42OhlDpgV/sj8shIGHI/QF6lpcnzWV50tg389dcb34VGSGcZcK9cuZIPuE/dIbZ7Ve7xwfbemFLMkNShJOVGGnATQrq8wZcM4cdK/34QcnRYvnJ5k+eyeyO7R7KV6DQxTjqzN954AxEREbwP2lhB0cObi/hjVc1aRPrJMWHKBR1wlaS7oiA6OSvGoBD0GjoCap0SaqUS5xin8OcXC+moqxQHJaeuRpcqlbjtttugUqnw/PPPd8BVE9KytWvXYvuGDbBHRUI3diy0gwc3et4nO15HcskYngtdZ1Ji4DlR/HlK40II6YpkCunx+5hTPxM2ayYWrljf5PlKpRIPPvggPv30U54qg5DO6F//+hfi4uJw6aWXnvR8TYUNhzYV8scxeX9g9XAPUD0YV04b0UFXSgghbcc/TIewQBsgkSK0YjqsR99Gea29yfPnz5/P75VPPPGET6+TEG+xvibrcz7wwANQNLJg7dDGArgEKbSWImxPTodNNgdD4wI65FpJ90RBdNJmHFYLbhxxD0bnToa6ZgDeX3xfk+f6m0x4++KLUbNwIbKysnx6nYS0hBXKffTRR2Ho3w+Df/8dka+/1uh5mYdX4k9VHTKDdkLe2wy57Hdk7drCX08IIV3VoAtSIIcDFl0Ywg6OhCbjdeRWNL0a/Y477uCr0VmgkpDOZtOmTfj555/x73//m0/6nGjH8hwIbg/8KtOR63cUY7R1yIy7AYkhhg67XkIIaUujrxYnBSuCRkGWV4ef/9jQ5LnsHvnMM8/gxx9/xJYtW3x4lYR45/HHH+d9zsYKigpuATsXiws6gkrWIDTahfhzbqHFbaRNURCdtImju7bhw7tvwqr/vYvUvDkYmz0Pv9ozUFslFmo6Vd2mzRi6YSPuCQjEK48+6vPrJaQ5v/76Kx90v/DCC5DJZJDVFxY91Vtrn4BLIkG024Uxg3UoPrILK97/H59QIoSQrkqlkWPQORH8sUt/Lqy1mfh6+Zomz9doNHjqqaewaNEi7Nixw4dXSoh3k+IDBgzA5ZdfftLPzOVWHFyfzx/HZy/B4rFAQFUfXDJtYgddLSGEtL2IlCAEGCzwSOUIK5mGmr0vo87uavL8K664Av379+f3TloYRDoT1sf89ttv8fTTT0OtVp/28/RtxaizSKBwmHEwfBMczqmYOSi2Q66VdF8URCdtwj8sAva6WlTk7YdcWQyTLRiRpRPx9pL7Gz1fN3YMNMOGQsUCkGvXIS0tzefXTEhj3G43Fj32GP4zbBgmn1J87ES7936PdVIH4AFmRd+JTd8v5M+PmHsJVFqxiA8hhHRVg+f0hVwirkaPPDQa2szXcay86QnCa6+9FikpKXjsscd8ep2ENGf58uU8PVvDpPiJdizLgSAA/pWHkB14BKMNdTgQeydSo8VaKIQQ0l2MuWIoP1YGjgOKSvDzX5ubPJfdK9k986+//uL50QnpLNjETp8+fXDNNdec9jOP4MH2nw7yxxEF/9/efYBHVeVvHH+npfdG6L33pnQQUKkqYG8o9rrWta6969+u61pYsSJ2UEBRRJBepHdCT+89mfZ/zs3KimQQXQkQvp995slk5t7smRDvufe95/zODwpqVaKGA69XkJPIE38t/qLwl4itW1/tBw61nrscS6y71t33nKoZJXuUnbXxgO3NlJo6t99uPT8jOlr/vLn6sB2oae9OnKjx5RUaXlSs3IkTA273/KLHNXTzBJ239ka1KQxXUXaWImLj1GXYqBptLwAcDkFmNPpJVbXRy6NHqbRot97/+tuA2zudTmudE7N44/fff1+DLQWq5/P5rJs6/fv314gRI/Z7ryCrVBsWpFrPm27/WjP6+RWS11XjR510hFoLAIdPoy7Jigopkc8RrOS9w5W+9HEVlbsDbj9y5Ej169fPCi3NsRQ40r777jvrYc41zTnnb21fnaWCAsnhKdOmxHly+vrotF5tjkhbUbsRouMv0/vM8+QMClZe6haFRuxSsDdMnXeN05Mzrq92+9DOnRU9Zoz1/ORtKZr7ww813GJgf+Xl5dr4+BNqFBQkZ1KS4i+7vNrtfljymnKKW6tRQVtFFdfT6m8/t17vfdb5cgUF13CrAeDw6HZ6WwXby1UemqBGm4codteTWrk7P+D2Z5xxhnr16sUUcBwVPvzwQ61atUpPPvnkAfVQF362TX6fFJezTpvqbtdJwSXa2/Z6aqEDqJXMMXDA+KrR6LkJA+TYk6sps+YddHtz7DTH0MmTJ9dgS4EDmRs55tyyd+/eOv3006sdhb5o8lrreXLaXPnbFSih/+0Kdu4/Aw34KxCi4y8TlZCoHqPHWs/dJXPl87vVKruH1uXGaO3m6dXuk3TbrbJHRaltSIi+veVWLrpxRE18/Amd858720l3/F2OiAPLsng8lXpp5Vvqu6PqBlBs4jqVlxQpvkGjfbMxAKA2cAU71Htsa+t5QeIwFaRWaOqnbwfsq81F9xNPPKFly5bpk08+qeHWAv9VWVlpLXRrLrbNRfevpW7J17afs8xVt5qlfK7v+/hVUdhPE4b3PWLtBYDDrVGXuoqPMrXRXaqTNUpFKx9SXkllwO379Omj0047zTqWmmMqcKSYc0pTD92cY1a3SOiWZRnKy68ahZ4S/72c/sE6o3f7I9JW1H6E6PhLnXDaOEXExaskL0txyVut13rvHKuH591f7UW3Mz5eSbdUlXIZVVysL7nTjSMkNzdXQe+8oxC7XWG9einqN1O/fzHx21uVlDpCkRXxsgUXKGPrT9brJ42/Uo5qppYBwLGs7eBmigqrkMcZpmapo5RU/Lqmr9odcPuBAwdq+PDhuueee1RRUVGjbQV+8dprr2nnzp3WtO/fjlb76ePN1vN6afM1v026TrNVqLzHzaoXE3qEWgsAh58JHwddUXVTMTfhRDl22DRl6tSD7mOOoTt27LCOqcCRYM4l7733Xqss24ABAw543+vxaeF/RqHX3ztLzjb5anHK7QpxMQodhwchOv5SrpAQDTj/Eut53SZBstev1JyWr2u9s1xfLHi62n1izjpL0WPH6p1GDXXdbbcpLy+vhlsNSG9cdJH6Bgebwr5K/se91d7lzshL0dQtO9UxfaD1/cgrBmjMHfer+6gxatypyxFoNQAcXna7TQMn9LCeZ9XpL8+melr99f+p3O0NuM9TTz2l7du365FHHqnBlgJVTOBjbuJcccUVateu3X7vbV6SrqxdxdZotcS0r7S5p1sbK87Rlad0PWLtBYCaktwyXvXqVEg2u2JLzlL5xse0NaMo4Pbt27e3jqXmmGpuTAI17eGHH7b6dVNeqDrr5uxScaldQRUFWlfvB8k1WiO6tazxduL4QYiOv1ybfoN04RMvaPClV+iyu05RB3fVXcBnN72r/JLMA7a3ORyq99ijunvSJJWUlOhmFhlFDZv2xRfqsqFqAdzE669TcPPm1W732FfXq8/2C6znCR2j1bhDvJp26a5BF11Wo+0FgJrUqEOiGjWyyW9zKNpzrkLKp+utGQsDbt+hQwdr+vfjjz9uTb8FarJu6mWXXaa4uDjrZs6vVZS6Nf+TLdbzxru+0Re9SzSiOEJdRl+n8GBmkgE4Ppx03UDZ/B4VxLRR+OZW+uKTlw66vTmWxsbG6vLLL6f0KmqUKQ9oSrjcd9991rnlb1WUebTki6rZZYnpMxTayq0ep99hDQABDhdCdPzlzAjeOk2rQsggp13D+z6vJpVehZQ002NfXh1wvwYNGui5557TvA8/1MwPP6zBFuN4ZmY+XHXttZrUqqVix49X/GXVB+Lz1n+kpaWl8trc8jgKNPSM+jXeVgA4Uk66po8cfrcKo5spefUA2Vfdow1phQG3v+uuu9SpUyddcskllHVBjfnXv/6l2bNn66233lJUVNR+7y38fJvKij0KK0mXyn9QXPNSLYn5m0Z1pj8HcPyISQpTh55ViyjbgsfJtftD/bhuR8DtzbH0zTff1HfffafXX3+9BluK45k5dzTnkJ07d9Ydd9xR7TaLp6xThcepsNIMrWo9T+6o69WnVXKNtxXHF0J0HFZ56anyzJ+hPjuu0OnrblDpxu6at+HjgNuPiY/X582aK/Xef1g1qoHD7W9/+5tKS0v19FtvKfmuO2VzuQ7YprA8X/ctfkxFITnKbvSSkuqt1wf33KDNi6rqoQNAbRcRG6yewxpazwsTzlDx3lJ9/OFr8vqqH5Xmcrn09ttva9OmTdZUXOBwMyWEbr/9dl111VUaOnT/hb7TthVo3bxU63mrzR/q46Ee1c3tpIvPGldt+TYAqM16X3yCgmwlKg+JV8KWU7Vy2t8PWqbtlFNOscq63HbbbVZpDeBwe+ihh7R582brXNKcU/5W9p5irV2YZT0Pz5mi5KRYnXNOVVlh4HAiRMdhY6Z7TXv2cW1aMFf1g8us19pm9ta/ZnypksriavcJadNGLqdTvV0uvXve+TXcYhxvZk6cqLTPP9cLL7yg+vUDj0R77OsrlG33qYHbozYRlyt19UK5yysUmZBYo+0FgCOp62ltFB1eKY8rXA1yzlNs4ZuaPK9qMafqmJHopqyLmYprpuQCh7uMS0JCgp5+ev81eLxen+a8u956XjdtgRa13KbhwW6V9X5ArepUjcYEgOOJK8ihgee2t54XxJ8i+9ZMvTNt5kH3eeaZZ6xSWZR1weFmzhlNDfT7779fHTt2POB98/f3w+tL5ZddiZkrtLXbWoV1fkQN48KOSHtxfCFEx2FjRvYMvuQq80RZ6xbIG1NVh7JLytl64rPq656HtGqlOrffZj0ftH27vmElcBwmOenpqnz8cb1Yv4FGOwKv3j17/cfyLR2gbrtPVo/s3rItrxp93m3EaNVt0boGWwwAR5bdYdepN/aWze9VbnwXRa85Ubnz7tCO7JKA+9x5553WVFzKuuBweu211/TDDz9YZVwiI/cPxpdN36Hc9DK5KosUnfWFMruXa439Gl0+lAXBARy/Wg5oqjrxZfLbnYouvUhlP9+tDXvzfresy/fff2+VzgIOZxmXLl26BCzjsnHebmVm+mX3Vigz9FMFRwzU2acOrPG24vhEiI7DqkG7Duoxaoz13JXzkyqduxTqiZBtWW/NXP1BtfvEXnSRIgafpCC7Xfb/e1Y5e/bUcKtxPPj67HPU0uGULTpakSefXO02eWW5mvzFAjXOb6/ue05W05IGKsnLUWzd+up79kU13mYAONISG0erW/9463lZzNmq2JOtd955WR6v76BlXcyUXDM1FzgcZVz+/ve/6+qrr9aQIUP2ey9je6GWT68qPdBq68eaMrhEHQpa6+zzL7fW7QGA43nA26m3DpbDV6GiqKaK29BXMz68K2CZNuPkk0/WlVdeaZXOoqwLDocHH3xQW7Zssc4dnc4DF/0uKajQvMkbrOdJaTOk9oXqO/YRBTsDD4oD/kqcPeKw63v2hUpo2FhlhQWKiNosr61EdYqbaPqnW5RWtLfaDr3uo4/KlpioBg6HZo0bJ683cI024I+afu+96pmZaT2v/+QTctWpc8A2Pr9Pj757jzruGmF9745Zp7zNK2R3ODTyxtvlCgmp8XYDwNGg53ldFB1ebpV1qZd7kSLz3tK/v1kccHszFfe+++6zpubOmTOnRtuK2j9i7cILL7TKuDz11FP7veeu9GrWW2tkqg4kZSzT2rorNCiqUgU9HlSH+tFHrM0AcLSIjAtV75FV650Ux46WY+tafTjju4PuY0pmmbIu5thbWVlZQy3F8cCcI/5SxqVDhw7VlnGZ/a9lcvtciijapQ1tvpWr8T/UqyWLiaLmEKLjsHMGBWn49bfK7nCqcNtquWPXyy+fWmf018Mf3iOv78CA3Bkbq0bPPye/3a7OBYX699VXH5G2o/ZZ/tlnSp5Stbht3KWXKHLQoGq3e/u7F5W8erjscqg8eK1caYus1/ucdYHqNGtRo20GgKOJw2HX8FsGyO73KC+uvequOUW+5bfo5525By3rctJJJ+nMM89USkpKjbYXtZO5mL722mut2qmTJ08+oIzLws+2qiC7QkEV+YrO+kgZvcq1wXmTrhzW44i1GQCONp1Gt1dcZLF8jmDFFE1Q9sK/a+3unIOWdfnoo4+0dOlSXXfdddRHx1/CnBuOGzdOgwcPtmaXVWfzgj3alVIhm88rb9m7iknorAvPPLPG24rjGyE6akRSk2YacMGl1vNke7aKo9dpfrP3NC94uV6Z/0C1+4R1767ke+7W+k6ddOWbb+qzzz6r4Vajttm7caMK7rxLoXa7Qk48UUm33lrtdst3LNaeGXFW6SFP8B6dcMU4dT55hBq07aCep4+r8XYDwNEmvn6E+p7RxHqem3S6PJtj9O0H96qgzF3t9mZKrrnojomJ0emnn66ioqIabjFqm5deekkTJ07U66+/rl69eu333o7V2Vozp2q2Y6vN7+qTU0tUt6CXLhs/gTIuAPArNrtNI+8YKoevTMWRTZS4Yai+ef8GlbsDzwQ3x1xz7DU10l9++eUabS9qH3NOeNppp1kzHMy5YnVlXIrzKvTje+us53XSZqige4a6j31W4cEHbgscTjY/tw5RQ8yf2prZ36rdgMFaurNA8z4drXeTi633nu/7mIa0GB1wv/POO0/Tpk3TggULrAXKgD+qvLxc9/Tuo8vLymSvV1ctPvtMjpiYA7bLL8/Xk49MVIPsLvI4C1V5YrRuv+gk6z2P2y2ny3UEWg8ARx/TP097bLZ277YppCxb2bGPydv2Bt15xQTZ7bZq91m/fr118W1GGpmb43Y7gSb+uFmzZmnYsGG6+eab9cwzz+z3XmF2mT56eJEqK/xqsGe2ltf/TJ0aBSlo+Oc6rVvTI9ZmADiabZq9Rd9N2S35fXKUPS/7KeN05YVVg+ACufXWW/XCCy9o5syZGjp0aI21FbWHz+fTmDFjrMXBFy9erLZt21azjV+fPvCDTDVWU8Zld4MnlNTjaV15VvX5EXA4ceWCGmNqnXcacqoVQvZukaDQ9s/r9Hy3QtzhmvbOam3J2BpwPzPSqGOrVpoxbpzSN2+u8bbj2A96zCI4r27coPLrr1Pjf75WbYDu9rl16/Tx2hSzRh57hfIj1ujaM3vve58AHQB+syjZLQMV6ihTeWiCGqZeqrA9T2nSrMD10du1a6cPPvhAU6dOtWpeAn+UWXDs7LPP1imnnGLVTv01r9unma+tsgL0qMLtKvN8qToty7S1yWME6ABwEK0Ht1TjRpVmaLqcjktVuuIVfbu0auRvIOYYbMJzc0zeurX6a3ngYMyaOWaw5IcfflhtgG4s+2yDFaA7vBUqtv1bEUmn6JIxI2u8rYBBiI4jwufzqmPeWrl2jdC49ZepZWZvvffCdyoqrxqZ/lthYWF6t1dvne50acXYcSrPz6/xNuPY9dwzz+jdd9/VW2+9pa7XX6+Q1q2q3e6pH+/SkqIU7YlfooqotxW1Z4W+fOxelZdU/3cJAMe74FCnRt7WVzarPnpHJa89TRWLr9X8TWkB9xk1apQef/xxPfLII9a0XeBQFRQUWFO+k5KSrAtuh8Ox3/s/fbxZWXtK5XQXq+7Ot7Ty5FJl+6/WjWedcsTaDADHilNuGapQe6EqgmMVn3aZNky9TNuzApdfM2U3zJoUiYmJ1rHZHKOBQ2X+dh599FE98cQTGjmy+lA8dVOOls5KtZ7Hp30kR5tKjRn/KKXZcMTwl4cjYtfa1Vr+1eeK2LNZXu9KeW2VSsptpRf+7x25vdXXU210++3yhYerqcej70eMkI/VwHEI5t13nxq98qoeuOkmnX/++QG3e2/Gh/py6wJT40oX746QK9Mhn9ut0IhIBYeG1WibAeBYUqdpjAad3dx6nlNnuELWtNayj6/WjuySgPuYRaPMMfnSSy/V8uXLa7C1OFZ5vV7rbyYtLc2ayWDq6//a+vmpWju36kK71aZJ+mx4ruqXDNCEy25QWBA1UwHg9wSFOHX6nYNk91WoMLq1EjYM1BdvXaGyysD10c2x2ByTU1NTdcEFF1jHauD3mHM/cw5o/mZuv/32arcpKajQ9BeXWLMjEjKXaEf3xWp0yptqnLD/QuJATSJExxHRpFNX9TytaoHG0OxU2UI/lk8+xe5uoxdfmmTVxvqt4GZN1fTNN+R1OtUsN0/fjTtT/mq2A36x6vXXFfvRFLUPCdG1HToE3G724vnKmRarMWtv1sVp4Srd016+kkIlNGysETfcLhs1ewHgoNoNaa52nUOs5+UxF8u5uVST37xD+aWVAUvBmAXJ2rdvby00umPHjhpuMY61smw33XSTVXfXzF5o3br1fu/v3ZynOe9tsJ432fG1pvfcoL7+JPU4/yk1jONGOAAcqvhG5sZ4Vfmr/IRTFbVKeuPfT1vH4UDMMdnMDpoxY4a1VgXL7uFgtm/fbp37dezYUW+88YZ1TvhbXo9P056cqwpvsMJK0pXS+ANFtn1YI05of0TaDPyCZAhHTL/zLlazbj3l97hVmVsqR/SH1ushG5vpzbenVLtPWNeuavziizLRecMtW/TdWWcTpKNaa9+eJNv/PSuHzaaw0aOUMGFCtdstXb1Gq97Jl9MXJKdrr8p2dpajIFNh0TE64+/3KTiMi28AOBQDr+ylxPhKeR3BCnJcI9eO5XrlzedV6am+nw4NDdWXX36pkJAQa6HRPXv21HibcfQzYcydd96pl19+Wa+88opOPfXU/d7PzyzVjFdWyu+3KSlzmTbHzVC3OpJt4Kvq3SLxiLUbAI5VbYe2UcvWVUF4ZcR42Zd+p3emfn3QfYYPH24do1966SXdddddBOmo1u7duzVkyBDr3M+cA5pzwerMeWOpcnIdcnjKVOr/l4KbjNDlZ42t8fYCv0WIjiPGbndYo3wTGjWRyopUlFkub+xk6z33kiRNmTqz2v0iB5+k+k89KdMtN1i3Tt+Nv6SGW46j3cYPP5T38cflstkUPHSoGj3xRLV3uNdt3KqfXt+pIG+oisI2q6J4pcLyUuVwuXT6bfcoOqnOEWk/AByL7A67Tr9niCKCy1QZHKO4kuvl2vmBXnx/SsCL6Xr16mn27NnWDDRzUZWenl7j7cbR7cEHH9RTTz2l5557TldfffV+75WXuPX1C8tVYS0kukNlle8rrGuFUps+q/P6M1oNAP6soTeepPjIIvkcwQr2Xqv8Hx7Vd0tWHXQfc4x+9tlnrQVHH3rooRprK44NphybOdcz53zm3K9u3brVbrd6xiZtXFUi+X2Kynpbah+p8Zc9KKeD+BJHHn+FOKLMKN9xdz2oqMQkOUsLVJRRptL4qSoMztGL6Y/pp93zqt0v5rTTVO/xx1TmcunmTz7WpEmTVJv885//VKdOnRQVFWU9evfubU2P+zMXnhdeeKFyc3N1ww03WFPtzN3eRo0a6cYbb6yVi79s/vhjVTzwoIJsNgUNGqSmzz8n228WHjNStu/Vty9vVJAnTPnh2+QNWq7IinJTY0DDr7tV9VpVvzo4ACCw4DCXxtw3WEG2UpWG11Xd1Gtl3/Sw/vXFrID7mD7p+++/V3FxsXVxlZmZqdqEPv3Pe+yxx6zPbRaiNeVcfs1d6dXXL65Qfo5bweV5isz4l9IHFSk75iHddNap1d48BwAc+o3xMQ+NVKg937oxHp19tTZ+PkFrUqrWngjElHMxx+4HHnjAWjCyNqE///MyMjI0dOhQlZaWWgG6+azV2b4iTfO+2G09T0z/Wpk9duiki95RfERwDbcYqB4hOo64iLh4jbv7YUXEJ2johROUGpKknGYPqyA4TzfNvl5L05ZUu1/MmDHqOG+uel94obUohamnVVs0aNDAOukwC24sW7bMmuZu6oatW7fuD/0cM0XKrJRuFnoxj2eeeUZr167V22+/bdUVveyyy1SbbFi3TtvuvscK0F39+qrZSy/K5jxwMbHdOzP15XMrrAA9L2ynYsJmqeO5D+jCh5/W8GtvVuve/Y5I+wGgNoiKD9WYO/vL4TcLk7VQ8tbLVL78Jr09vfob40bz5s2tiypzQTlw4ECrz6ot6NP/ODNzwQQw99xzj/XVlHP5Na/Xp5mvrlT6zhI5PaVquP1VLTk1W5XOG3TrJefKYSdAB4D/VXCoU+PuP0VOX4lKIhoqevulmjPxTG3LOHjIa8q53H///dZXMyK9tpR2oT//c/bu3atBgwZZ53hm0ESzZs2q3S5ze75m/mt11UKiWYu0p/O36jH2I7VrEFfjbQYCsflryxENxzxPZaWcQUFal1qgd197TMV1P9WPYaFqk9NN4xtdrVFn9q52PzMd6Prrr9eit9/WMyefrEEffyx7UJBqm7i4OD399NN699139eOPP1a7jTlZMRebv9Qba9GihbKysqw75b/18ccfW3fAS0pK5KwmaD7WrFmzxrq73T4hQW+OGqWmDz8sWzV/B0WVRbru8yvUatFpks2thmHvq2Loy7pyUKsj0m4AqK12rUzVV/9cK7/NqdicZcppM0l1hryjswd1D7jPli1brIvS4ODgg45UOtbRpwdmLk3uvvtuK6gwoxlNCLPf+z6/vn1jtbb+nCO7t1ItN72kGcM2K8k2Vlf97WHFhNW+c0AAOJJS16XryxdWymcPUnTuMuW0+1bn3jxVdaIPvnaUOYabm6HmOP7oo4/WyhlC9OcHt2vXLuu8rrKy0grQW7ZsWe12hdll+ugfs1XpD1VM3galN3lFLUdM1GkDe9V4m4GDYSQ6jhomQDfa14vW4JGXqP7PPTQwJ1L9t1yond+VaeoHi6q9i2232/XSM8/ojZYtVXfTZs0/dZg8xcWqLbxeryZPnmx1pGbK2Geffab27dvr1ltvteqKmYd5/YorrtBtt922b7+pU6dad3yr65wNM03MvHesd87mb2LFl1WftX79+pry449q9uSTAQP0q76+SD+Xr9OPrV9Sff8kZW2P0LDE8iPSdgCozRp1qadhE9rK5vcqL76H4jdepKzvL9GXC9cG3MdcXM2dO9e6QT5gwABt27ZNtQl9+sGZf/dbbrnFCtBNDfTqAvQ572+wAnSbz6sWW97Q9JO3qJ6G6eJrHyBAB4DDoF77ZJ16aWvZfB4VxPVQ/Lr+mvLiOcovqTjofuaGqKmRbkpymWO7OcbXFvTnv8+cw5lzOfPvbs7tAgXoJQUV+uT+760APbx4r1Lrvq6EEx4mQMdRiRAdRx2f16u9k19QUEGxmqyro711Prde3z23VFP++ZO8ngM7X0dYmFq/9prcTqcS0tI0f9Agle7apWN9ZHVERIQ1Gs8s0vL555+rXbt21t1u06ma95KTk61HUFCQwsLCrNd+O02sOtnZ2Xr44Yd15ZVX6ljmd7s1f/x4uf7+d53dpKl1dzshIaHabdcu2an7/vWE1hRuU7TXqws3O5STGiabp1Ipy6svGQQA+N80O7GhTr6oxX+C9BMUu/Fc7Z5+nj6ftzLgPk2bNrUutkz/d8IJJ+iHH37QsY4+/fcVFRVp7NixeuGFF/Tqq68eUAPdCtDfXa/189OtxcZabJ2kGYPWqoF9sM699inVjQ49Ym0HgNquWe+mGjiuvnX8LYjvr5jVHfXvFy5UQan7d2ukm2O6ObaPGzfOWv/kWEZ/fmjMuZs5hzO/J3NO16RJk2q3Kyuu1Mf3zVKZN0whZdnKjH5ZkT1v0sVjx9Z4m4FDQYiOo47d4dCg8VfI4XLJVuxW8q692lH/bfnkVfZqt977vx9VWeY5YL+I3r3V8sMP5Q4LU1JxiVYPG6bUOdVPqToWmAVGVq5cqcWLF+uaa67R+PHjtX79+kPat7Cw0JpOVl0Hbd4bOXKk1dn/Mq3sWOTOz9ecoUMVv2SpHDab7r/masXGxlY7Un3+9A2aM3Grmq87Sc3zG+uqNbHK3hsjM6Gw67DRGnhR7ao7BwBHk5b9mmrIuU2tC++8+N6K23iB9nxzoT76fvFB644uXLhQ3bp108knn2xdgB/L6NMPLiUlRX369LFK+JhReuZ39Gs+n1+z316r9QszrL+jllve0zf9lqpxUH+ddc2zqh9DgA4Ah1v7U9ur19AY63lh/FAlrGylN1+4WAVlBw/SzTHdHNvNgCdzrN++fbuOVfTnB2euvV955RXr3K179+5atGiRdU5XnYpStz75x7cqqQhTcEWeCoOfV3iPC3XleZfUytI/qB0I0XFUatqlu06/7V4rSPeVeFV3W4H2NHpJbnuFirf79c7jP6o478ASHKEdO6jttKnyNGigaJ9fWVddpTWvvKJjkblzbeqlmc7HTIHr3LmzdQf/UJhVwk0H3LBhwwNGeQ0bNkyRkZHWXXOXy6VjUd6GDVowYKCSMzLlcTrV4OWXlHz55QdsZxYe+/rfy7Vyappssmlb0k8al5KnzNSqsL3biNN10iVX0kkDwGHW+qQWGnx24/+OSN9yhdK/v0LvzZgbcB8zqsv0Z2bdk+uuu866WDU1NY9F9OkHH63Ws2dPlZeXWxfbo0aNOiBA//6t1dq4JKtqBPqWSZrVd6EaBffRGVe9oIZxB6/JCwD463Q/q4d6Dgq3nhfGDVHSz8016bnzVFB68P7ZHNvNMb60tNQ65s+ZM0fHIvrzwMw5mhmdb87bbrjhBk2fPr3aQW5GebFbU+6eqcKyMLkqC1Xhf0GuHqN19fjrZWdxcBzFCNFxVAfpY/5+v1whofKXeZW00abMhk+p1FWoikybpnz9TbX7uerXV7svvpCjVy8F2Wya9cST+vSTT3SsM7XEKiqqrzv32xDYTBMzK4X/9u72KaecYnX8ZiRASEiIjkVb339f28aMVVJlpTzR0Wr58RRFDR16wHblJW599H8LtXNJoXzyaW2DKeqUPUeZ6VUdeY/RYzXo4ssJ0AGghrQd0lLDLm0lm8+tgtiOit1+rTLn3Kg3Pp1mBaXVMVOjn3/+eb311lvWw/RjZjGuYx19ehUzw8CMVjMzDsyoPhMu/Jqn0qsZL6/Q5uU51g2Y5lv+rdkDFyk5/FSded2rahxfFeQAAGrOCeeeqBMHV5UoKYwbrNiV7TXpmbHKLjr4OlPmGL9kyRJ16dLFOvb/85//1LGO/ryKOTcbOnSo3n77bU2cONFa1yRQXXdTA33yXTNVWB4uV2WRyv0vydtnuK6+7A45CNBxlCNEx1GtcacuOvu+xxQaFS1VeBW7NV5lTR/Rinqz9JznXj21+Al5fd4D9nNEhKvlW28q9u+3a0XvXjrzrLP04IMPHjOLmZiFtEztsB07dlh118z35m79BRdcUO325q71xo0blZmZKY/HY93l/vU0sV86Z7PwiQkhzPfp6enWwyyKcqz4adIkuR9+ROaS2d+6tdpMm6qQtm0P2C57T7Hee/Qn5aVUWLMX1jT/p0a6V2qns7v1/oALLrUeBOgAULOa9Wqs0dd1ksNXrqLoVorfc5OKfnxIz098TRWewP3RhAkTrBHLGzZssGpsrl69WscK+vTqR6uZmQVmhoEZsWY+o5l58NtRap8/uUg71hfI7nOr6da3NHfQEsWHnaNLrn+aEi4AcAT1OPsEnTg00pohVBg3ULHrBuq9p0/T7uzCg+5njvUzZ87Utddeaz1MX+B2H7wczNGC/rx6q1atsmYXbN682TpXu/TSSwNuW5Rbpo/u/kYl7nAFVeSr3PacHANG6rrL75TTQTyJox9/pTjqJTdvqfMeekpNOndT8oUPqjynn06MfE+moPW7G9/Xrd/erAXTNsvj3r+jsTkcSp4wQe9+9JEeffRRPfjAA/qodx+lTftKRzvT0V588cVWzbUhQ4Zo6dKl+uabb6w79tU566yzNG/ePCtkMHXWzOIlZlTXL1asWGGN8DKdvZl+Vrdu3X2P3bt362hnbn68+OKLOunyy7UwLExh556rtp98LFdSUrV12KbNn6WKXL+KgnK1qeVTGl6cp6+bPau/P/moxt71oHqeNo4AHQCOkIad62rM30+Qy1+q4shGiiq6U8ELPtELL91z0AXK+vbta/WHZmqwqan64YcfWsf8ox19+v727NljfXYTGLz55pvWTIPfjlYrzC7Txw/PV+beCjndpWq07WUtOmmZYqKv1DU33K/4iOAj1n4AQJUeZ/ZU/9EJsvk8KoztrtgtZ+jL/xuhrXsyD7qfOeabEihvvPGG1ReYPsH0DUc7+vP9mXOwDz74wDoni4+Pt34f5nkg2TvzNflus4hohILLc1Xq+j8FDThL14y/mRHoOGbY/MfC1QfwK1+tTtW0KRM12PGOnmoSpP7bLlbL7B6KrheskVd2UWxy9VN7f7jnXiV/+qn1vKB3b53w8kuyh9e+acA33nijdaf7WF+EzTCHp20TJ+rWSZM0dd48/e1vf9NTTz6poODqL57dXrceW/SoPtnyqTqlDVJz/aS6O+or5aT79dhZ3eXi7jYAHDXyM0v0+YPfqdQbKbu3QkFFk1TQ2aaxl7+uJomRAfcz9VSvuOIK68Jt3LhxVn+XVM1N1dqgtvXpZpr3zTffrLCwME2ZMkX9+vU7YLv0lAJ9/cJSlVfYrYvsmPRXtWPgbtmT7tW1F1+oEJfjiLQfAFC9bQu26tu3N8tnD1FY8S4VJ72p7pe8oT6dDpwx/Fs//fSTzj77bKtvNyVALrmkdi4qWZv6cyMjI8OaSfDZZ5/p/PPPt26ImL49kF0/p2r6P1fKaw9RaGm6CiJeUvzQG3XRmHNr5b83ai8SJRxzRnWqp+Ed22vPxla6aXmEUmMXqcxZrILUCk1+dLE2LEirdmTawPvvU9DYsdbz6IULtahPX2UcowuaHEyHDh2saXHHusrsbM0bNUrup5/RmLR0fTdrljVarboAPSe1WF+8skzXfHW1Ptn6qWzya0Dp94pa3UCl+dJZYbsI0AHgKBOTFK7znxmphOgS+RzBKo+5UknLkzTt5VP04+qtAfczF2nvv/++PvroI2tkV/v27a1AtjaqLX363r17rUXlzGg8Uw923bp11Qbo6+bu1udPVQXo4cV7ZS94RlkD05XY6Q3dPOFiAnQAOAo179NCZ/yti5zeYpVGNFJI3i36+ZWb9cm3M393X9MXmD7BlDkxfYTpK0yfUdvUlv7c5Czm/Muce5nSNub8y5yTHSxAX/vNRn312lorQI8q2Kq8xP9T8zMf08VjzyNAxzGHkeg4Ji389EMtmPK+9Tw6olTzOxQrOW2CGhS2sl5r2TNJA89vo+DQAxezKF6wQFtvuknBhUXy+f0qHDhQJz73bK0clX7Mjj6fNEm5Tz2tSJ9PXptNsddcrXrXXy+bff8g3O/za/UPezT/sy3ye6VNiYu1pOl7un5NsNJT65mKP6rfpr1Ou+UuhUXHHLHPBAAIzOf16dvnZmvb1qpjfHTeKuU2elfRfR/SRaeNlP0gU3zN1GozEurTTz/VmWeeaY3wSkxMrMHW4/f69EmTJummm26yLrD/9a9/afTo0Qds5/X6NPedtVq/ONv6PjHrZ+0Jf1eRbUPU+NR3dEq3qvM7AMDRK39vgT596FuV2+Jl91bKVfau/EO6aML42w6pXMe0adN05ZVXqqyszCr3YkqnELIePX57zvXKK68cdCagWTR+7uvztG6lx/o+NmeZslp+qO5nvat+XTvUYMuBvw4hOo5ZGxfM1cxXn5fXXSmn06/Ctju0xXaqeu4eLrscCo12adS1nZXUOOqAfb1FRdr+j3/IPfMb6/vNsbEaMP1rq84qjpzylO1aftVVivtPDTh33bpq9eor1S4eWpxXoe8nrdeejXnW97ti1mt33Xc0dE2o8oqqygB0PnmETrrkCjmcrhr+JACAP+rnz1dp4YwM+e1OhZRlq9z5hiq69dGES+9RTFhQwP3MqawZCWUWqTQX2yZIN3VIcWSZkYRXXXWVvv76a1100UXWbLLfLh5qFOeVa+aLS5SRVnWR3XDnNC1rN0NJCZ004IJX1alRwhFoPQDgz6godevTez5TXlnVDe3IvJnK77JHF1w/UfGRIb+7f25urlXC87333tPIkSP1+uuvq169ejXQchzML+dZ5pzLnGeZEjwHU1ZcqakPz1B2QdV1eWzWt8rqOF+nTvhEbRrVqaFWA389QnQc0zJ3pGjac08oPz1V5g85tkGqPmlUT/23X6Rgb6i63hCtwa0GBty/aM4cbb3zLl29dYv2BAfrpZde0pgxY7jjfQRs/PhjVf7jPpm422NGn19xuTX63B4UdMDo83U/pWrBZ1vkLvfJba/UosZfqo3nR8Wtbyy3xyG706UhE65SpyHDjtjnAQD8cRmbszTt2fmqUJRsPrfCCj5Vfrtt6n3Ov3Vim0aHXJ/ThOjPPvusGjRoUGNtRxWv12vVPr/tttsUEhJijT430/Srk7IyU9+9sUpur0MOT5mSd7+tdX1XKiz+Cl1yyU2KDQ988wQAcHQyI5BnPv2Vtm+vmukdUbhJBXWnqN+Vb6hb6xaH9DOmTp1q3YgtLy/XM888Y9VKdzgo6VXTzAKnt9xyiz755JNDXocmc1uOpj49zzqXMzMSQgo/UEFPv8Zf/aZiWRgcxzhCdBzzKstKNeuNV7Rx/o/W911bbNErjVzK8TZQTvhendv6XN3S/RblppSrXquYAwJyv9ervWlpVic9ffp0PdW5iwb3768uDz8kRwwlQGpipNqDDz6oD/79b01r2kwx7dupval93rhxtdsvn7lDi75IsZ5nhu/U/Obv6vqSjdqROVju3UWKTU7WaTfdoaQmzWr4kwAA/gpm9NJXj8xQZn7V6KWo/DXKq/uBwvrcrPFjzz7oGhe/1Oq84YYbVFxcbH298847qx0Bjb+W+d2bqfh33323Vd/2wgsvtKbjV/e797i9+undNVq3JNf6PrJop7yl/1ZJz1zFdHlJ5w8bdNAyPgCAo9/KL5dp4VdZ1ronrspC+WwTFTPqHJ1zxvmHNGjt16PSTU3xxx57zKqZzoC3wy8nJ0dPPPGENcgwMjLS+nrOOecc9HdvzgNWfrlSC6ebWYVB/5lV+JpCBo7U+AtulpM1ylALEKKjVjB/xmtmf6uNKXv0TkaE/l75nBYmpOm96KpSLr1KhqrL6tFq2C5O/c9uqdjk6uufz/70UyXcc681GrrUblfQeeep/d9vl72axSzxv0mfOVPLn35GZy+Yr9DwcN1zzz264qyzFF6/fsDOOacsR4/NfULxM3pobfI8+SNm6+/5RXqh9Br1GHqWRiWUqH6rNnKF/P5UQQDA0d2vL35/iVbMLbDKu7jcxbKVf6iiTg6dNv5ltUg++E3uwsJC/d///Z/1cDqduuOOO6wL8YMtfIU/b968edbNigULFuikk06yLrxPOOGEarfN2lWkb15erILCqovpunu/14bGXyiqfjOdOO41ndCqfg23HgBwuGSnZOvLJ2ar3J5gphQrouBbFXTZq/OufVOJUaGH9DOWLFli9TE//PCD+vbta/Ux1S1Ojf9dSUmJdQP8qaeeksfj0a233mo9oqIOLJF7wACIx6crM6dqu+j8dcpq8J7ajXlWp/btW0OtBw4/QnTUOllFFbpl8nJ12vyGEoo2anKnIsUVDlSvnafJ6XfJ7rCpy9CG6j68iYJC9l941PznUPTjXG29/36FZmRYrxW6XIq7/HI1v+pK2Qln/yfm95s7Z47WP/igEtKrfr+LenTX2FdeUXR0dLXbb1mWoR1rcuQeuFNPLnlUeZWFCvLYNH6jU97ddbWo2UjdfPk56tUs/gh8IgDA4ZS1PVdfP/ODSrxVa5ZE5S5VfsNPFdP/Dp0zaoyCnPbfLfHyyCOPWCVFEhISdP/992vChAlyuVgr46+wZs0a3XXXXVbd865du1rBxsknn1ztzXAz+nzJx+v181zT/9vlqixSbMY72n7iWoU3+JsuPO8KRYfy7wIAtU1lhUfTHvpM6TlVa1yElexSafQHanPB/RrS+9ACVnNd+O2331ph+sqVK60R6WZkeseOHQ9z648Pbrdbb731ljVD3IxCv/rqq61BbnXq/H798p3Ld+ubf62Q2x4pm8+riLxpyu+0TWOuek8Nk1hzDrULITpqJa/PrxdvvVm+1K1yOTzKb5Gub+rGqu/OsWqc397aJiw6SCeMaqq2ferK/pupRabES+5nn2vXk08qpLjYeq00KEh1nn5KDU499Yh8pmOZOcwUzJ6tTY88qqi0NOs1r82msHHj1OjWW+SsZkHX9O0Fmv/xFqWnFFrfz2z9hnbErVWnXGnQqgQVllXNJmgzZIRGXnltDX8iAEBN8Xp8+vGfP2jDWr9ks1uj0h1ln6uobY4GX/gvdWpa93d/RkpKiv7xj3/ogw8+UMuWLfXoo49atT3tdqYW/xk7duzQfffdZ02xb9asmXWjwiwyFuj3mbYtX7NeWayi0qqQPDFzuVIjp8jROkLthv1TQ7q1qeFPAACoaaunLdeCqanyOsJl97kVXDxNZT29uujq5xUVemgzv30+n1W27d5779X27duthatN8NukSZPD3v7ayPw+Tb1z8/vcunWrzj//fD300ENW3/573BVefff8DKWkhFjnZ6GlGSpzTVTESafo/PNuPWj5PeBYRYiOWitj+zZ9+cIzKkrbbX0fFV6obzvlqczfXn12jFV0RdWd8ObdkjTsyg7V/gxfRYUyP/hQe19+WfbiYo3cvUvDzzvPmhLesV072Zz7j2THgbJ27dK2c85VdF6e9b3bZlPwqFFqdustciUnH7B9Tmqxln61XdtWZFVtb6/Qz/VnaWvCDzpng0uetET5ZZMtOFSnXHql2g8aSl08ADgOpK5L18yX56vMX3XjNaJwq4qjJ8vVa7TOPvNaxYT//gW4Gb1mRk7PnDlTrVq1smqmm8XKIiIiauATHNvMJYMp12KmeZvFW83IfhOkX3755Qr6zSLgv57ePf+dldq0qkiy2RRUWajozMna2e1nhdYbr3MvvFUJLDIGAMeN4uwSff7QFyqsrLoBHla8U6XRH6vlubfq5H6DD/m6rrKyUm+++aYV+GZnZ1s3xs01eu/evbk2PARFRUWaNGmSVet88+bNGj58uB5//HF17tz5kPbfvni7vnvrZ1Xaq8rrRefMV1bzb9T7wtfVq0O7w9x64MghREet5vW4tfjLz7Tg08myed2yyS/Vz9LkNm41z+2j7ntOlW/wHl018gJFB0fL6/bJ7rQduPhoZaUyFi3Sv+fP1yuvvGIthvl5x06q16KF2tx8kyL79aOz/hVvfr7W795tdcpmlNobSXXUISxMjlEj1eb22+VMTDxgn4oyj378YJNVvsX8M/nl16bEJVrS6CsNSCtR401JqvBUXaTX7dhdo6+9QZFxVTdCAADHB6/Xp0WT5mv1ohL57EFV04bz5yi/8RzVP/kfOn3IKYe0cJUJg59//nkrDA4PD9dll12m6667Ts2bN6+Rz3EsKS8vt0apmfB82bJl1kj+G2+8UZdeeqn1u6uOz+vTmm+2atG0FHn8VX13YsYi7Ur6RK6m9dV95HPq17FFDX8SAMDRwERQi977USvnlsjnCJXN71VY4Q8qbrdVZ1z9mhokHvpi4GYR8bffflsvvviitmzZoh49elhh+plnnqkQSrEeYNu2bVaeYUq3mPrnv9x86NOnzyHtX1pYrhlPTVN6dlUp1eDyXHk1Wfa+rXX+RQ8oPISybKjdCNFxXCjIzNAXr72i7HUrrO871tuhr1qWaV5IjDz2SkUFRerKzlep5dbe2rUmX92HNbZGqNvttmrrhX315ptq88KL+14rCg9XzBmnq8n48Qpq1EjHI29xsbKmTtWOf7+tkN27NXjrFoXWqaNrr71WE4YNU1KLFnJUU/f81xfcEx+Yo4osaVvcSi1rOFMhQbt1Z06e9u7poswMp5wxiRp15TVq3r36xcoAAMeHwowiTX9qunJKqm7KOt0lcpXOVEGrFPU68wX17tjqkH7Orl279Oqrr+r1119XXl6eBg8erCuuuEJjxoxR8HG+qPi6dev0xhtv6N1331Vubq5OPfVUKzwfNmxYwLIt5rJi99oszZm4TEVlVeFFRPEeqXSKcjvvUHz7+3T26eMU4nLU8KcBAByNo9KnPvqp8soa7Atk/fpCzpM66LzzblNIkPMPlSUxs8zMDV9TOz0uLs4q9WL69Pbtq8q5Hq8qKir0+eefW3367Nmzrd/NlVdeaV2nN2zY8JB+hrlWX/T+fK2aVyCfI8xaJDY6d64yW87VwAteVff2jD7H8YEQHceVzUsWasaUT/VlSCfdZPtASeEr9GxEgjZEOEyBEF348wMKr/jPlKSkUHU9uZFanZAsV/CBF3sVW7dqy4svyfv99wryeve9XlivnurecrMajRql2s5XXq68H+Zo2zvvKGTVKrl8vqrXTf3Ts8/WwH/cW+3ibeaws2dDntbO26sh49tqdf5KvbryVe3eki23o1JB3jSdlV0hs+b6E+6LFdvxVJ0dlaoTTj5VzgBTxgEAx59t87dqzrs/q1y/jIjKlt83VcVtKzRw3FPq1qrpIf2csrIya7S1ucCcN2+e4uPjrbqgp59+ugYMGHDcLERq6stOmzZNkydP1sKFC5WYmGiVuzElW0z5m4NJ25qnuRMXKzu3qp92uosVm/WVdreZq5DGp2vYmXepeZ2qcywAAH6x7puVmv/xNrmdVeXawotTVBb5pRqfeYWGDx79h2d8m/IkptSLGaGelZVllXg599xzNXr0aDVtemjnBcc6M/Bv7ty5+vLLL631YMxiof3797duKphR+qGhoYf8s1IWbtXst1eowvbLwrB7VBH8kcKHDrPK6QU7uTGO4wchOo5LqfllemLGRqWv+k6D9nwnf0i55rUq1Na4IHVIH6DO6YMU5KnqWILDnGrTp646Dqyv6MSwA36Wr7RU2V9PV8rEiYrcvl1mbNZNe/cqv11bq6M+rV8/tapXT8EtW9aaki8ZGRma9+qrajnlYwX96hBSGBmp+DPHqfFFF8lVr94B+1WWe7RlaYbW/LhXOXuqFmzd2WGxZkR+YD2PKrVr7IYw2TLi5HW6NKfrNbrz9G7q3/LA8i8AABg+n18/f7JEy2alyeOIsl4LLU2TVzNV1s6rwWc/rQ7N6h/yz9u4caN18W2CZFO+LTo62qoVetppp1mjsGOrWQz7WGVG7i1dulRTp061HmvXrrVuGAwdOlQTJkywPnOgeue/yNpVqHlvLlBaZtV2Np9biRnztKfedKl5W/U/7Qn1aHVoI90AAMcnd4VHs1/8Uimbw+RzVM0EiyhYpuLkeeo6/gH16dL9D/9MUzfd9G0TJ07Ud999ZwXLHTt2tPo2c53es2fPWrXAuJlRN2PGDOtmuPlaUFCgBg0a6JxzzrFuhrdp88cW8U7bkKZZr3ynIk/9fTfHXWXTVNalWGdMeFX1E2rP+RBwqAjRcVz7fs4irXjtcdn9VSPJgyOLNa9lobYk2NU2s7c6ZQxURHlVTTYTog84r/VBf547I1PpUz7SvLAwffHNN9aUsouCgnR9QqKKg4Nl69RJTUaPUlSfvgpqcOgX9EeSt7hEpcuWavf06VqZna2XNmzQ4sWLFeNwaF7zFioPD1fYSYOs4Dy0U6dqbxRk7izUup9StWVJhrWKt/VzHW6tS5yvNXV/lNNboBGbQhWcESufv+pEJqhpe1182+2KTqDuOQDg91VWePTT699p82qPvGaqsaSQskz5/d+otE2pTjztIZ3QvtUh39A2p8hmIdJfAuYVK1bI4XBYI9N/uQA/Fmuol5aWWmGC+UxfffWVdWPcjLwfOXKk9blOOeUURUZG/u7vJnVjjha+t0QZOf+pOev3KTFroTJiv5a7eZQ6Dn5SQ0/sUmsGEAAADr+irCJ9/cSnyin5T4lUv08RhYtV3GCpel38kLp37PSnfm5hYaFV5sUEzF9//bU1MrtOnTpVg95OO01DhgxRWNiBA+aOhRrn5jOZPt2MPPd6verevfu+85QuXf54P5yzPVvfvDRDeaVVeYVZfya8cJ7yGy/SiRc+q14dOxymTwMc/QjRcdzLz8zQJxPfUd7Kn/aF6a7wEi1pWajVyW41LGirTukDFTagSOf1HqcWsS2UuiVPW5Zlqk2vukpqEhmwYzJ3v1f+7W8K/XGunP8pdfKLopAQuZs2Uew996h1167WhfmRZg4HFRs2KH3+fGX8NF/ezZsVlZenX1q2vKJcn3frZnXKI0aMUFRxsYKaNDlox1xSUKFJd87XL0eaorAcrU2cp42JixVZXq4RGyPkyIqRX1U/w5/URKMmXK42XbvUxEcGANQyFaVuzZ/4nTavcsvriLBeC6rIk6NinoobblbLkbfr5L4DD2kB0l/bs2ePFTqbC1VTU9TUGG3SpIl1sfrrhwmkjxZm1J2pbb58+fJ9j1WrVlltb926tdWfm4eZ6n4o5yFm1H/Kol1aOOVnFZZH7Qs44nNWKDvqK5W3DFPHAQ9qaO8T5KhmXRkAAA5F6ppdmvXP71Tsa7IvyA0rWqSSej+r6wV3qXfXHn/6Jq3H47FKlv0SPm/atMlaB8UEzr/05d26dbNqqR9N5dyys7OtG/q/7tN37Nhhtd3cBDD9+ahRo1S//p8brJe+IVXfv/aN8ssbSja71b9HFixXUdL3ajXuZg0dMIwb4zjuEaID/5GflaWP/v2uClbMlcPvsV5r1m69Pqrr1LpfLS7WJbGLTtpygco2VE1bjqkTpmZdEtWsa6KSGlcfqPvKylS6YoV2fPW1CubPV3RmphVMF3q96r11i8LCw61O++aQUNV3OhXRqpVi2rVTdNs2ctWtK2diohwxMX9Jp2Xa4snMtB7F27YpPzdPGxvUr+qQly3TPZu3KPo309oKw8Nl69RRzceOVfzo0QF/dmlhpbatyFReRqkGnNPKCuVXZa3Sd29uUGppqtYl/aTUqK2K9Xl1ZlGxBqfZ9c32qjvZnrqtNPKiC9W+W1c6ZwDA/8yUEJv/1rfavLJyX5kXU2okrGi5SuMWKqLXAJ0y6holx1YF7X9EcXGxZs2apfnz51sXsaYPNaPcjMaNG++7ADdfzfTpunXrHtaFSk1ZFjOqziyU+vPPP++7uF69erUVmJt+1bTDtMdMXzdlaX6vxvlvb4iv+mKV1i1KV6W/6vdl97kVl71I2TGzVN4qUl0HPapBJ3StdlF2AAD+jJ1Lt2j2Wz+pVI2rXvD7FF60WmWxC9R0zPk6efCY//mmramhbmaQm/Jmpu80Zd3Mdazptzt16rQvWO/atasaNWpk3Sw/nGVgysvLlZ6ebrXj14G56eONqKiofecY/fr1s0qwRUT88XMZw3zOHYs268d3F6jE95/fsVVKZ41KYmYqeeRFGj38XLn+4MADoLYiRAd+Iy8nR5P//b62bd6q8oQoXeGcJk9omj4tr6+F8TZlR7tVr6ClOmT1VdPcTrJ5/ztyKyI2WE07J6rvmS3kcAbuaHwlJSpbvVqFu3drY2Livo7x0hU/q2GAALnA6dR7gwZaF+Lm0XbZMgUVF8sWGiqbyyW73SyO6rdGiXkjwlU0bJg1As3csU58/wOFpacrpKxMob9aBNVIdbs1NGWbEhISrI74bx6vEoODFd2ju+r06avQTh2tIL865vCRvbtYO9Zka8eaHGXuqAoQDNtF2/RVxufaXbRb8kvBlXb12xGiTqVeDYtJ1yeeIZpiH6FRoZkaPXKw2nc6vldNBwAcHl63Tyu/WKxVs1JUZv9vfxZWvEte+2KVNc5Wx5E3q1/PXn94dPqvQ2wzpfrXF7smWDf1SH9haqnXM4uP/6cf/+VhXjPvmdFuTqdz38P8TDNa7peHKcNiLqpTU1OVlpa238O8bvp8w1zYt23bdr/R8Z07d/7DF9jmfGLXylQt/XiJMnMjJFvV+Y7TXaLI/HnKTZ4jX+sO6jX0bvVs25wb4ACAwyZl4UbNm/STitVs32thxSnyBM2Xq3cDnX7OnYqNCv9L/r/MjXJTzu3Xo743bNhg9cuG6a+Tk5Or7c/N66YszK/7c9Mv/7o/N/21qV9eXX9uXjPv/SImJmZfYP7LV1NK7n8N8U0JvKUffK8N87NU4fzPWmbWyPMVKomfq/qjzteIU8790+dFQG1FiA4E4PH6NH1tul77Yavi0+ap684F8vttsoeVaWODYq1oWC6vw6VG+e3UtuAE1c9tLZvHodi6YTr//l77fo5ZSDM6KVQJDSN/d3RW2cqVyl+7TunLl6ty5w7Z0zPkKi5ScKVbqS6XbrbJ6lxNMP5lk6ZqGWBUW5rbrSEp2/Z9P7lJU3X61bZuh0MV4eHyxcXJ3riR6tx9txo2avSHLoDXz0/VkqkpKimo3O/14phsrY7+SZsSF8ttL1WzzBCdsCtUwbkR8vvt8ttsmtpqvM4a2FkX9W6smLCDL1gGAMBfZdfyFP30zhzllzWQ3+787xTx4rWqCF0mf9tw9Rxxs7q2afM/j6g2p9gpKSlWuP7ri+PfXjCXlZUd8s80/XRSUlK1F+7mq5nCbaafh4eH/+k2p2/J0crPl2jXNo889v8G71EFKfL45qmgwTpFdz5TQ0dcq4YJ/ynpAgBADUjftFffv/qVCsqa7uvHrQUvyxfJ3TBFXc+6Xj279f3Lb+yWlJRY5dHMguOB+vPMTLMOy6HHa6GhoQH7c/MwYXmzZs3+0s+SsSFVc9/+Wjm5yfI6qs4V7N5KhZYsUWniErUYe4OG9D+FkmxAAITowO8w/4n8sGyj5r7/tsLSNsihqjvQNvlUEVesnxuUa2udcvkcDtUvaK2EoAS16FpH/er3U/eEnvrgjmXWKDhnsEN1mkSqTtNoJTeNsr6GRR1agOyrrJSvqEjO/9RZNbXWUydPVmVmpnzFJfJ53PJ5fVZb7Q677CEhCjr/fOvOd1xcnBxbtshfWSlnUpL1sJvyLIfQGVeWeZS9p0iZO6se3U5tpIQGVYuNbViUqtlvb5ScPmXH79Ta8EXaFbtepUGFiitwqv/2MMVnRMrnrTq5MQrCk9Ww31Cde/bpiowI/ZP/IgAA/G9KC8u19P3vtWV5riqc/60davdWKLRkvSpD1snfJkjdR1yvLm3bHbaRWKbfNqPV8/PzDxilZmqU/zKKzYx6M9PKTYBuvv8rmRHnaRsytXbGUu3aXKFKe+y+98yo84jC5SqKnqfyltHq0O9m9Tuhj0JcR34dFwDA8asws0g//PNTpe+KlMcVu//odOdy2do5ddL5d6h5gwY11ibTf5sg3ZRRM/34L326Wezzt7PNzAw0U5alJmZxleaV6qdJ07RrTYUqXP/9fQSXZ8vmmavyllkacO4D6ti67WFvC3CsI0QH/oAdqZn6dMpXyl01X3GlGfteb9Bwl1Y0LdacsFCV/mpqVbQ7XsP3TlBMTj2p8sAL8Hb96umkC9vsu4g15VAi40OscP1ITIsuzC7TxoVpVk1zU6YlP7PUKsWyr70jE5TTerMWpS3Syp1r5cqLUFrUNsnvld3vVyd3uYaUlqnhzmgtT29q7VPqCJWnaTcNHj1cA07szHRvAMBRJX3jXi14Z6ayMmPkcf73QtyMUA8t2SqfY6PcCblK7NtHA4ZcpMSYP1d39GhSWlShLbPXaP3cDcovjJXPEbbfjYTIgjUqC16q0gbpqtP9Ag0eepGSYv6aafIAAPxVzECyVVN/0s/TN6rM3qxqQcx9ffh6eULWydkuXP3OvlUtG9ZcoH6kFecUa9H707VrdZ7K7U1/M/tunSrCFyuiX3sNH3uL4iL/ew4A4OAI0YE/wQTe3y9arfkzv5V3+yrl162vEcHL1cexUrOKk7U9L0k7E8q1qU6lMmMq5LfbFFOWrPolLdTa3VkJhQ1lywtRu2GJGnR6BytYNoH1+/ctsn6+w2VXVHyIFahHxIYoNMKlhm3jVL911cW9p9JrBd1Ol93a1ulyWNPOTbv8Pr9cwQ4FhTr3jSZPSymwvppHWVGlivMrVZJfYT3a96+n9v2rRuFlbC/UJ08u2//DRnhUHJ2lXcGbtS5ikXLCU61gPbrYpcbZwWqdGaSIvDD1SU5RcGSEZnp7ak5Fe3Wp3Ks2/U7SmFEDFRMWUtP/RAAA/CHmlHjvml1aMmWWctLCVOlK3u99p7tUQRWb5XWmyJdQqvhunXTCkPPVICnxqL9BXJRTqi0/rNLWJRtVkBeqSkfSAZ8tvGi9ykNWq7R+mpK6j1XfgReoYWLMEWszAAB/RFFmoea++anStjpUEfSrwNzvU1jJdnmda2SrX6Y2o8/UCT2GyuV01KpzmD2rUrTs02+UszdIFa4m+24oGGElO+XXElW2LFHfs25XhzZVGQSAP4YQHfgflVR4NHNtumasTdfyLTt1xt7PFFH634XEZPeqLLpMO+IrtSvWrfT4cvntktMbJLvfoZAwl1rFtlI7d3dF/NhavuLqO/MTRjdVz5FVo7uzdhdpyqNLA7apx8gmOnF01aIrphzLR48E3rbNoCTVGSpty9+mlKwdKp0bqXTXLqXY1yszYrfKXcXWdk6PTS33hqlVdpBic0Mlt2u/n7M9oon2dDtPwzska1iHZDWOZ8QaAODYlZ2SqWWfzVLapkKVq5F8jv3LkJnRXMHle2Tz75Q3OEv2BL/i2rVUx4FnqFnDJv9zTfU/w9xIz08tUMrCVdqxcosKs/2q8CbI64w+YNuwkr2yedapPHy9PE3satT9LPXqc7qSoo/9kfYAgONb+obdmvfONOVnRKjy14G6WRi0skDOys3yhu5QcPNgdRx2jjp16nVM1QE3MV7W5t1aMXWW0rYUq8LX6IC+3gTnPq2Su0GO2p0+Xn1PGHJMfUbgaESIDvzFgfqspZu1ZP4iFW5bp3rF2xXs/e/Cm3abT426rdLPYUFaFxykivwoeexSfmSlyoJ8ptC67D6HwitjFF0Zrwb+ZkrwJSvCFyN74xJFNXcoNjhWIfnRyvw0RH6PTX6PrMd//0+k+v2DVHeQSxXeCuXmFCn9Y6d8QR55nBUqd5Wq0JmjHEe60rVHGcG7VRSSs293E5abUeYxxS5F2DxKislTx4oKtS31aMHq7vKbRprR+Da70kOS5avXWu169tCIQT1VP5apYACA2jldPGXBGq2cMU+FGQ5V2urJ66xaI+S3XJWFcnjSZfNny+8skkIr5YwNUlTDZCU2bar6rdqpQcPmf3gEnDllNzPKClNzlL1rtzJ37FL2zjSV5LjlLg+R1x8jjyNOfrurmp19Ci/ZLXm3yh2SIndigaI799MJ/S5Wi0b1GY0GAKi18nZl6ad3vlBmileVjibyOfZfl8xVWSRn5Xb5nXuk+FLFtmuszkPHqVmj5kdN/1iYnqd13/2o7Su3qCwvVG5bwwPOQ0w5tpCyLfK4NsvWuFydz7hc3TqdSHAO/IUI0YHDxJRWWZdaoB8Xr9aWlSvlTk1RpL9I4XVD1cO+SR1s2zV7RwPlVFSN+PI7PSoPr1RhmEdZYV7lRHi0vX7pf3+g+S81UP/nt8n8z28WPf2dPtLmtzbfp932SCUWO5RY4lRYiUv2iv+eVCSGlKhRI69W+ZvrZ19zhWRmyx6VqLptOqp3727q3SpZ4cF/7QJnAAAc7czpc/b2dK36+lulbsiQuyxKXluC3EFxh7S/udB1eMtk85XJ5jc3282i5f6qTtp6bjpql/y2IPltLvlsQfI5QuS3//6C5HafWyGlqbL59sjr3CtPeLZsjcLV+ISR6tL1VNWJO3BUOgAAxwNTFnXdzLlaO3uFygpiVelqsK9e+AHBujtVsqXLH1woe7RfYfXj1aBTJ7Xt1l9xsYfW3/8RlWWV2vHzKm1bsUp5u7JVkS/5KqPlcdSVxxV1wPY209+X7Zbftk3+6DTF9mqn/sOuUFL8f9d3AfDXIkQHakilx6e1qQVatiNXy3fmae3eQnXZ/LnqVqYrxF12QPYdE1yirm3XKdPpUK7drvQ1beXzOOVxeeV2eeW1++Vx+K2R7MVhbm1slSunX3LIr9YbEhRS4ZTDJwV57HJ57HK4HbKZryGVatFuvZK9XiV7vJq5sYsK3ftPUfc4nMp3xSg9rKFKu4xQ98ax6tkkTt0axSo6rJoRbgAAQBWFpdrw00/atnSNSrLK5Sl1yu8Nk99mLoJj5HX976VSHJ5yOd1FcniLzNg0+W3Z8rny5AstlT1WimzVQq27DlPLlp0VHvL7oTsAAMcrd4Vbm+Ys1Loflqgk0ymP6srtit+vnvhvOd3FcniKZPObsqfFstlK5bdXyubwyu/wye70y+asGuRmponvC9zMLHKvQ36PQ/I55fcFS/4I+eyR8joi5XUepByq36fg8izZfXvld+yWEsuUeGIn9R58vhLj/vpAH0D1CNGBI6ig1K11aQVatytbO7ftUM7e3SrNzZKzJFcuh08V8XFKsuUrXgVypqSZvrNaccGlOrPpenlll0cOfbatjYrcwdVuazr0vCbNlOaPtx5xuXtlszsVFJuoqOQGqt+0iTo0q6t2daPUIDb0qJnCBgDAsc5d6Vbenp3avWWjsnfvVlF2jtzlHnndHvk9Hvk8Hvm9PtnM1GunrAtxuWxyBNkUFBOtyLpJim/cQknJzRQbm6yI0BD6aQAA/kIVpRXaPHe+tixeqcK0CnnLw+RXjDzOeHmdh7d8qblR7nJny+bLkt+eK39IkZx17Erq3Ebd+p+h5KT9Fz0HULMI0YGjUHGFRztzSpRRWK70ggrra3ZGpkqLClVeVKjKkmJVVFTI63FLXq/K7EHaGtFKXp9fTodNLYs2K9jvlsPpkCskVK7QcAWHRyg0IlJxcTFKToxVcnSI6kSFqF5MqJIig7kIBwAAAAAggKLsPKX8/LNSt2xRUXq2ygsr5S2zy2+mh/sc8vsdkt/M3Haa2m9WwVVTrs0K3Wxu2VQp2Solu0dyeWQP8coR6VBYUozimjRWi+79VL9uoyOyODmA30eIDgAAAAAAAABAAIELPQEAAAAAAAAAcJwjRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAIABCdAAAAAAAAAAAAiBEBwAAAAAAAAAgAEJ0AAAAAAAAAAACIEQHAAAAAAAAACAAQnQAAAAAAAAAAAIgRAcAAAAAAAAAQNX7f3p9puzbL+T4AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAH/CAYAAAC4vJRfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4VFW3BuBvJr33AkmogUDovXekShdQelEBKSrixYqoP/YCgoIU6QgC0osgTXoNvQdCAumk92n32XuYkAAJmZCQhHzvfeZOZubMmZPJL/uctddeS6HT6XQgIiIiIiIiIiIiIqLHKB9/ioiIiIiIiIiIiIiIGEQnIiIiIiIiIiIiIsoFM9GJiIiIiIiIiIiIiHLAIDoRERERERERERERUQ4YRCciIiIiIiIiIiIiygGD6EREREREREREREREOWAQnYiIiIiIiIiIiIgoBwyiExERERERERERERHlgEF0IiIiIiIiIiIiIqIcMIhORI/JyMjAtGnT4OvrC3Nzczg4OKB169bYtGkTvy0iIiIiIiIiIipVGESnUiklJQWffPIJatasCRsbG1hYWMDb2xvdu3fHf//9h+JEHGPDhg3lz/fu3cPMmTPRqVMnlCtXTga4PT090a9fPxw/frzAPnP06NH48ssvoVQq8dZbb2Hw4MG4cuUKevfujS1btqCwrFy5Eo0bN5Z/EycnJ7z88ss4c+ZMoX0eEREVDo6zxY8YvydOnIgWLVrIcVahUGD69OkoyWbPno2RI0eidu3aMDU1lb/T/v37i/qwiIhKBI7VxdP169cxYMAAuLq6wsrKCnXq1MHcuXOh0+nyvA8xFooxMafbkiVLUNIEBgbK85aePXvCy8tL/h4VKlQo6sOiUsa0qA+AqCiMHz9eDhz+/v544403YGdnh6SkJBkoFtnWIuu6uAwUly5dkgFtw8Xit99+i8qVK8tAupubG27cuIGNGzfK26pVqzBw4MBn+szg4GAZzPbz80NAQIAcuIV33nkH1apVk8fQo0cPFLQZM2bIiY3y5ctj7NixSExMxOrVq9G8eXPs2bNHXvQTEVHJwHG2+Pnxxx9x4MAB2Nvbo2zZsrh58yZKukmTJsn7MmXKyHOi8PDwoj4kIqISg2N18XP58mV5/ZuamioD6WK83rZtm0xsE6+Ja3FjtGnTBm3btn3s+bp166KkOXjwID7//HOYmJigevXqHPOpaOiISqFq1aqJaVxdTEzMY6+pVCpdcfHjjz/K4zx//rx8vH79et3+/fsf2+6///7TmZmZ6ZycnHRpaWnP9JkbNmyQn/nFF1889pqbm5uuSpUquoJ2/fp1nampqa5q1aq6uLi4zOcDAgJ0FhYWuurVq+s0Gk2Bfy4RERUOjrPFjzhXEOOtVqvV/fnnn3Ks/+yzz3Ql2datW3VhYWHy5zFjxsjfad++fUV9WEREJQLH6uKndevWcizbvn175nPp6em6Vq1ayeePHDmSp/2IsfBFGOezCgwM1B09elSXkpIiH4s4Qfny5Yv6sKiUYTkXKpV69eol79u3by9nc8+dO5e5PEosBy5IYuY3t6VUhtuTllSLrPiKFSuiVq1a8nHfvn3lbPKjWrVqhXbt2iE2NhYXLlx4puONj4+X92KJVFYiMzw6OhqOjo4oaIsXL4ZarcbHH38s669nnSF/7bXX5AqBQ4cOFfjnEhFR4eA4mzsxXr/99ttyrLW2tpblSJYtWyZfW7p0qTwvOHHiRIH+TcS5QpUqVeS+C1q9evVktlxOGXIiA158rigXV5BEGT5R1o6IiIzHsbp4jdWijIsoLSuu67t27Zr5vCjhaliZvmDBAhS1s2fPwszMTJZhzSn2IEqtie9HZI8XlEqVKqFp06aZK+WJigLLuVCp9NVXX8nAuai7rdFo5OPTp0/j1VdflSVFLC0tC+yzRowYIQPPIiDeoUMHtGzZMvO1FStWyJItYnB+dJmVCFgfPnxY1i/NCzGQFcQkgGEyQdRDNxDf0dSpU+VrT1oO9qwM9UtFiZpHde7cWZbeERfgxaXMDhER5Y7jbO6T1aJE2dWrV/HKK6/IHifr16/H8OHDYWtri7/++gs+Pj5o1KhRifmfmSiN98svv8jyKmIZeoMGDbK9brjof/PNN4voCImI6FEcq4vXWJ3bNbGIIYh+JuKa2Bii9KvoqSbKw4gecCKJ8NFkOWOJyWtRXmbevHmyd9r58+ezvZ6QkCC/H1FyRUzgE71IGESnUkn8oy9mRkUNcUO9bzFAigFr586dcsY06wynGHji4uLyvH/RgNNQZ0wE0QURRO/YsSM++OCDzO2OHTsmg+ji8x9tirF161YZvBb7yksd83///VfWBDVkrRcEMdHw66+/ysFazIz7+vrKYPqjRD12MSOdV+K7yfp7icFdnIw8KZtMZM0ZtiEiopKB42zOxMozscJq2rRpsran8P7778u+I6I/iMjqMnx/BkFBQUY3AXueTUPF8b700kuyn8qiRYuyBdFjYmJk4EFk8DVp0iRbsMCYJqDiPMlwTkVERAXzbzeviYvPWG243jVc/2Yl6oCLFeqiLrpYwZ3XxDkR7zDEPATxPpGk9/3338t95oe4Zp81a5bsKye+C5GNL7LSsyYKiqa1YoI9q2eJqRAVG0VdT4boedu8eXOONTNXrFghX/vpp5+yPS9qbYnn83pbvHhxtveLx+L5r7/+OtvznTt3ls/fvn37sWPp3bu3zsXFRadWq3P9fTIyMjJrpy1btkz3rAzHKu6XL1+e7fdq166d7uTJk4+9Z/jw4UZ9P2L7rEQ9dy8vrycej6jfKt7Ts2fPZ/7diIio8HGczV3ZsmXluBcZGZnjWCrqlz+ptqkxt9wUVk30Fi1ayP4pWc9dZs6cKT9r9uzZ2bYVn23M79OmTZtcP5s10YmI8o5jdfEbq9944w353O7du594TM2bN8+xr9ujLl68qPvmm2/kfVJSki4iIkK3cePGzDr4kydP1j2rGzduyH29++672Z6vW7eurFceHR1doDGVR7EmOhUF1kSnUsewpLhOnTqPvSbKrQiiA3ZWYlZZlDLJ6+1ZM6XEcqtdu3bJWp+5zRBrtVr5WaJ2mpjpHTp0KArSkCFDkJycjIsXL+Lbb7+VJW/EkqyjR49m207MuBvz/Rg7Q09ERCUHx9mciQys0NBQmWXm5uaW7TVR51Pw8PCQS8izEqXUjBlnDaXZnjdRFi8qKgp79uzJ9r8HsbpPnFM8mn1nzO9jTNY6ERHljmP1iz1W16hRQ64gF/eiDIy7u7usgb9v3z75O4kSbJGRkc/0GWKVulh5Jkq3iLiEcOrUKblCXfRyc3FxKdKYClFhYBCdSp1r167Jet9ZG1gaiMFFLMkKCQlBUdq9e7dcAmVo9vIkYqAaNWqUXJ4lLkxFTbLCIJqoiMH3//7v/7Bu3TqkpaXh66+/LtDPEH8LQ0PTR4maaoZtiIio+OM4m7OkpCR5L8qvPak5p9CnT59sfUlKElE3Vhz7n3/+KR8fOXIEly5dwoABAwqlMTkREeUPx+riN1Ybrndzuy4WsQpRRiW/RCkWEWMQJWGOHz+OZzVw4EDcu3cvs4Ho/Pnz5T17oNCLijXRqdSxsLCQAejw8HCULVs222viOTHrKTpgF2X9LlE/XTQ3FU01n0Qcv+h4LbqDv/baazKz+3lccItMfTFwi/roBVkTXczyi+x28f0/Whc9t9pwRERU/HCczZnIBhPEKq8nBTSEJzX8Ku410Q3EGN6mTRt5XvD7779nZjo+WhdVYE10IqKiw7G6+I3VufUCE73Sbt++Leui57Ueek5cXV1z/P2MJSbJRcb76tWrZVa6mEQXv4fIyn8Ua6LTi4BBdCp1atasKRuBiKXGj5Y/Ec05BZF5/eg/+Hfu3DGq+VV+g+giQC6aioompIYBPKcAupj5Xb58eb6bguTmScvLxJIv8by9vX2258XF8tKlS/O8b9HVPGsQXVxwiyC6KGEzbNiwbNv+888/mdsQEVHxx3E2Z05OTnIJuCiTlp6eLoMYBitXrsxs6v2kC3NDY7PiHEQ3lHQRy8XFBbVY4i3OqR5d8m4IohvzO4nzAC7tJiIqGByri99YbbjeFdfEH3zwQbbtDh06JIPeBXFNbMhAFzGLZ1W+fHlZ4kasWBflckUW/5Mmzp93TIWo0BRJJXaiIrR9+3bZqKJKlSq62NjYzOfv37+vq1y5snxt27ZtBfqZOTUWffnll+Xzly9fznzu0KFD8rkFCxY8th+NRpPZzKR///46lUqV589+tJnn07avUaOGLiwsLNtrH374YYE1Isnq2rVrOlNTU13VqlV1cXFxmc8HBATIhiHVq1eXvzsRERV/HGd1eWqAmbWp5/Hjx3UKhUI+L5qZpaenF+rfKC+NRQ0N0p7W0PNRopGYGNMdHBzk+0Vj0eeBjUWJiPKOY3XxHKtbt24t9y/+Pgbic1q1aiWfP3z4cLbto6KidFeuXJH3WZ06deqJ+zc0+xaxkKxNwAVDnOFpDT1z2qcY983NzR9rxlpY2FiUigIz0anU6dq1q5wdFUuMxQy8qN8prF27VjYQEa9169btuRxLuXLl5P348ePlUqixY8fKrG5RmqVHjx6Pbf/FF1/IjG9bW1tUrVoV//vf/55aSsbQ5MPYZV+ihqm/v79sCuLs7CybhIjMMlE3/r333kNBEr+LmIX/5JNP5Ax2v379kJiYKLPYBPG3Kqn1YYmIShuOs7kTY9369etltprIBqtWrZpcXSaab77//vvyedFYfPDgwQWaeS3OL8RNEEvCDc+JzDlBHEfWzLf8nj+IRmJiNd3OnTtlabqCbnqe1TfffIOrV6/Knw1Nz8VzhuX04pwo68o3IiLS41hdPMfq3377Ta7eEmOXWHUu6rJv27ZNXptPmDABzZs3z7b9nDlz5LF89tln2bLaxfW0mZkZGjZsCG9vb5nFfuzYMQQEBMgeJStWrHhsNXt+x30Rx5g8ebKs5d6/f//HmrEWlOjoaEyZMiXzsUqlks9l/f5/+OGHzHI1RIWiSEL3REVMq9XKTO+GDRvqrKys5E38PH/+fPlaQcspE/3ixYs6f39/nVKp1DVp0kQ+J2aFmzdv/sT9GGaHc7s9OnP87rvvyud3795t1LG+/vrrMvvM1tZWZpR5e3vrRo4cqbtz546usKxYsSLzbyJmsrt166Y7ffp0oX0eEREVDo6zubt+/bpcUebs7KwzMzPT+fr66nbt2iVXXb333ns6e3t7ozPAn0Zk0+V2/vDo582aNSvHlXF5PZcYNGiQrjCJY87td8ot056IqLTjWF38xmrh6tWruldeeUV+rsi2rlWrlu7XX399YpzCMLY/Ot598803unbt2smMebEPcX1drVo13TvvvKMLCQl54ufWq1dPZ2dnp4uJicn3eCy+n8Jy+/btp8ZCxDZEhUkh/l/hhOeJyFhXrlyR2d/ffvst/u///q9AvkAx+yxmmfPafVtkb4ma64sXL2btUSIieqEUh3G2pBAr9cTvFBgY+FjD9acR9c7btWv3WGYcERHR03Csfv4SEhJkLXix4vy7774z+v0iG1ysmBcr3Qqi1jpRccVyLkTFyKZNm+R9r169CmR/oiTK2bNnZaMPIiKi0o7jbN6JJmaivIuxAXQiIqJnwbH6+Tt8+LAs/yLKshBRzhhEJypGxMXqo524n4WdnR3UanWB7Y+IiKgk4zibd+Hh4YX4lyAiInoyjtVFUyM/LS2tCD6ZqGRhpz4iIiIiIiIiIiIiohywJjoRERERERERERERUQ6YiU5ERERERERERERElAMG0YmIiIiIiIiIiIiIcsAgOhERERERERERERERg+hERERERERERERERMZhJjoRERERERERERERUQ4YRCciIiIiIiIiIiIiygGD6EREREREREREREREOWAQnYiIiIiIiIiIiIgoBwyiExERERERERERERHlgEF0IiIiIiIiIiIiIqIcMIhORERERERERERERJQDBtGJiIiIiIiIiIiIiHLAIDoRERERERERERERUQ4YRCciIiIiIiIiIiIiYhCdiIiIiIiIiIiIiMg4zEQnIiIiIiIiIiIiIsoBg+hERERERERUaNRqNd5//314eXnB3t4ebdu2xfnz5/mNExERlTDqUjymM4hORESFIi0tDePHj4eLiwtsbW3Rr18/RERE5Pn9Y8eOhUKhwMyZM4v0LxQWFoZBgwahatWqUCqVeOedd4r0eIiIiEqaP/74A3PmzMHs2bMREBAAX19fDBw4MN/7ExfrrVq1gqWlJXx8fPDdd9899T3BwcHo3r07rK2t4e7uLgMAIhBAREREefdHKR7TGUQnIqJC8e6772LLli1Yu3YtDhw4gNDQUPTt2zdP792wYQOOHTuGsmXLFvlfJz09HW5ubvjkk09Qp06doj4cIiKiEmfPnj3o0aOHPA+oXLkyJk+ejKtXryImJsbofSUkJKBTp04oX748Tp8+je+//x7Tp0/H/Pnzc3yPRqORF9sZGRk4cuQIli5diiVLlmDatGnP+JsRERGVLntK8ZjOIDoRUSHS6XRIyVA/95v4XGMkJSVh5MiRsLOzg4eHhxy87t27J2d2xWvGio+Px6JFi/DTTz+hffv2aNCgARYvXiwHOREcz4343IkTJ2LlypUwMzMz6nPF4Onk5IQVK1Zke37v3r0wNzc3KhPeoEKFCpg1axaGDRsGBwcHo99PRET0op1nGHuuERkZmW1iPDw8XN6bmJgY/TuL8wNx4Swy4WrUqIFXX30VkyZNkuccOdm1axcuX74szw/q1q2Lrl274ssvv8Svv/4q90VERFTUSkrsILIUj+mmhbp3IqJSLlWlgf+0f577517+ojOszfP+T/yIESNw4cIF7N+/XwaaxazyxYsX0bFjR1mKxTDAjRkzJtf97NixQy7FErPIKpVKvt+gWrVqKFeuHI4ePYqmTZs+8f1arRZDhw6Vy7HEIGossYxMHL/IghcDsKmp/jtYsGABXn75ZTlBIIh937lzJ8f9iN9B/C5ERETFWVGdZxh7rpH1Av3GjRv48MMP0axZs8zJaXEBfPDgwRzfLzLULl26JH8W5xGtW7eWk+MGnTt3xrfffovY2Fg5mf4o8Z5atWplngcY3jNu3Di533r16uXxtyYiIirdsQNdKR7TGUQnIirloqOj8ffff8sgucgYF/r06YNly5bJbHKDnj17okmTJrnuSzQXMcxGi4HQ0dEx2+tioDPMVD+JGCxF4FvMPueHlZUV3nvvPZlJ/++//6JLly5yWZkoD7N+/frM7bZv3y6D/Lnth4iIiArW1KlTZa1T0fNElHszWLhwIVJTU3N8X9aVaeI8omLFitleN1xIi9eedMEtns96sf3oe4iIiMg4U0vhmM4gOhFRIbIyM5Ezu0XxuXl18+ZNOZssZo8NGjduLAdCETg3EKVexK2wiOx1UTblzJkzciDOLxGEF5MAa9askUH05cuXy+am4uess99EREQlXVGdZxg+21hiolvUURWT2a+99ppcij1gwIDMSXgiIqLSqiTEDkr7mM4gOhFRIRLBYGOWRhUFCwsLeZ91CZVopFm1alW4urpmPmdMORdPT09ZjywuLi5bNrootSJeexKx5EvUVxMlX7I2DRGD88yZMxEUFJTn36l///6ytMu8efNkNr0oV5O1RhvLuRAR0YugJJxnZOXu7i5vLVu2lGP+b7/9Ji+4jVn6Lc4jHu1xYnic0zmGeP7EiRNGvYeIiOh54phe/Mf0knPGRUREhUIsn1IqlbKemaFByObNmxEcHCwz1A1Z4caUcxFlYcQyLdG5u1+/fvK5a9euyX1mzXjPStRCz1pD3VDbTDwvmp4aQzQzFUHzL774QtZ2F+VcsmI5FyIioudLrVZneyzOEywtLY1e+i3OIz7++GNZls3w/O7du+Hn5/fEZd+G98yYMUMG7kUQ3/Aee3t7+Pv7F8jvR0REVFqoS+uYriMiolLvlVde0b300ku6lJQU3dmzZ3V2dnY6V1dX3b///pvv72bs2LG6cuXK6fbu3as7deqUrlmzZvKWlZ+fn+7vv//OcR/ly5fX/fzzz/n6/NGjR+uUSqWubdu2umcVEBAgbw0aNNANGjRI/nzp0qVn3i8REVFp0KZNG52NjY1u8eLFuqCgIN2mTZt09vb2upkzZxq9r7i4OJ2Hh4du6NChuosXL+pWr16ts7a21v3++++Z24hzC3GOYaBWq3U1a9bUderUSZ7n7Ny5U+fm5qb78MMPC+x3JCIiKg3alOIxnZnoRESEX3/9Fa+//rrMJBcZ3KJ8iijzMnjwYDnLO3r0aKO/pZ9//llmuItM9PT0dJlVLpZtZyWy0+Pj443ab9u2bVGhQgUsWbLkqSVdRCmX/Bz7o7J2+Ba121etWiWXlhtTYoaIiKg0q1mzJn744QeMGzdOLrcWTcQnTJhg9H4cHBywa9cujB8/Xq58E6Xnpk2bhjfffDNzG3FuIc4xDMS5zdatW+Vniww2GxsbDB8+XK5YIyIiIo7peaEQkfQ8bUlERFQMiOD1559/Luuc50YEuEWpmoCAANStW/e5HR8RERE9PgEuxmIxSU9EREQlV9tSPKYri/oAiIiI8ko0FRMZaMOGDeOXRkRERERERETPBcu5EBFRiVGjRg2cP3++qA+DiIiIiIiIiEoRlnMhIiIiIiIiIiIiIsoBy7kQEREREREREREREeWAQXQiIiIiIiIiIiIiohwwiE5ERERERERERERElAMG0YmIiIiIiIiIiIiIcsAgOhERERERERERERERg+hERERERERERERERMZhJjrRCyL4fgp+3HUNUYnpRX0oRERERESZ1Go13n//fXh5ecHe3h5t27bF+fPn+Q0RERGVMOpSPKYziE70ArgZmYTOM//D7L038cM/14r6cIiktLQ0jB8/Hi4uLrC1tUW/fv0QERGR67eTlJSECRMmwNvbG1ZWVvD398e8efOK/PcYMWIEatWqBVNTU/Tu3btIj4eIiKik+eOPPzBnzhzMnj0bAQEB8PX1xcCBA/O9P3Gx3qpVK1haWsLHxwffffddrtufO3cOr732mtxWnF9Ur14ds2bNyvfnExERlVZ/lOIxnUF0ohfA1PXnkarSyJ83BNxDSoa6qA+JCO+++y62bNmCtWvX4sCBAwgNDUXfvn1z/WYmT56MnTt3YsWKFbhy5QreeecdGVTfvHlzkX2jGo1GDs6TJk1Cx44di+w4iIiISqo9e/agR48e8jygcuXKcry/evUqYmJijN5XQkICOnXqhPLly+P06dP4/vvvMX36dMyfPz/H94jt3N3d5fnFpUuX8PHHH+PDDz+UQQAiIiLimJ4XpnnaioiKrdjkDJwJjpU/m5kokKHR4p9L4ehTz7uoD40EnQ5QpTz/78LMGlAo8ry5yACfOHEi1q1bB2tra0yZMgWDBg1ClSpVEBkZKTPJjREfH49FixZh1apVaN++vXxu8eLFcpb42LFjaNq06RPfd+TIEQwfPlwuCRPefPNN/P777zhx4gR69uz51M/dv38/unfvjmnTpmHq1KmZzwcGBsrf5dSpU6hfv75Rv4uNjQ3mzp0rfz58+DDi4uKMej8REdELd55h5LmGOJeoU6dO5uPw8HB5b2JiYvTHrly5EhkZGTITztzcHDVq1MDZs2fx008/yfOGJxk1alS2x5UqVcLRo0fx999/y8l6IiKiIldCYgeRpXhMZxCdqIQ7Enhf/lvr52GH7rXL4Kfd17H5bCiD6MWFGAS/Kvv8P/ejUMDcJs+bi3IlFy5ckEFoUXJFZIpdvHhRZl4bAuhigBszZkyu+9mxY4dciiUyvlQqVbbM7WrVqqFcuXJygMspiN68eXOZdS4GxrJly8rjuX79On7++ec8/R7i/SITbeTIkXIfbm5u8vmFCxeibt26mQH0rl274uDBgznuR2S3iUw1IiKiYq2ozjOMPNfQiZPVB27cuCGzwJs1awYHBwejx2VxHtG6dWt5sW3QuXNnfPvtt4iNjYWTk1OeJ/ydnZ3ztC0REVGhKyGxA10pHtMZRCcq4Q7djJb3LXxd0b6auwyinwmOk/+wKYyYTaTSKzo6Ws7aiiB5gwYN5HN9+vTBsmXLZDa5gcgEb9KkSa77Es1FDLPRYiB0dHTM9rqHh0fmTPWTiLpqYsZZ1EQX9ceVSiUWLFggB9a8EJ85ePBgubR7/fr1GDt2rGx8snTpUrl020AE1VNTU3Pcj5mZWZ4+j4iIiPJOrBITtU7FOaoo95afcVmcR1SsWPGx8wvDa3m54BYr39asWYNt27bxz0dERJQPU0vhmM4gOlEJd/hBEL1lFRf4edrB3FSJ+FQVgu6noKJr3mcTqRCXRomZ3aL43Dy6efOmnHQRs8cGjRs3lgNh1hIqdnZ28laYRBBdlHsR2ehihvq///6TzUlFVrox9cj79+8vB1IRRBeDqZjFFsH1R4P9REREJVpRnWcYPttI7733nqyNvn37dtkUTNQoHzBgwHMdl8VKu169euGzzz6TtdWJiIiKhRIQOyjtYzqD6EQlWERCGoJjUqBUAI0rusDMRImaZe1lJvq5kDgG0YsDsRrAiKVRRcHCwkLeZ11CJcqgVK1aFa6urpnPGVPOxdPTU9Y2E/XDs2aji1Ix4rUnEbPVH330ETZs2CDrmgu1a9eWNdF++OEHo4Pooi56WFiYnAkX5WmyHgfLuRAR0QuhBJxnZCWae4pby5YtZU3V3377TV5wGzMui/MIcT6RleFxTucYBpcvX0aHDh3kqrdPPvmkQH4nIiKiAsExvdiP6QyiE5VgZ0P0DQ6retjB1kL/n3MdH0cZRBev9a7HbFt6OrF8SpRNEfXMRMa3IDLBg4ODs5UFMqaciygLI5Zp7dmzB/369ZPPXbt2Te4za8Z7VqKGuriJY8lKNCjRarVG/SnFBEDNmjUxc+ZMGdjftWtXttdZzoWIiOj5EuXVshLnCZaWlkaPy+I8QpRoE+cMhud3794NPz+/XJd9iyC8aHYuGpjPmDGjAH4jIiKi0kldSsd0BtGJSjCRbS7U8X6YYVvXxzFbgJ3oaUSGtsjUFoOPKOMiGnnu3LkTVlZW2Lt3r5zdNbaci2gqMnr0aEyePFk2+LC3t8fEiRPlIJm1qahoNvr111/LGuximzZt2uD999+Xny2yzg4cOCBrs4vu3MYS2ehiWZfYT7t27bK9ZuwSMzHLLTLrY2JikJiYKLPjBdGslIiIiJ5uyZIlaNiwoRyTz507h1WrVuGLL74welweNGgQPv/8c3meIeqxiqXcs2bNytaEXKxqE43Orl69Kh+LbcTFtmhWJs5NDP1ZxES9oQk5ERER5c2SUjqmM4hOVIKdu6sPlNct93gQ/XJoAjLUWlkjnehpfv31V7z++utywBODj8jgFmVeRB1xEVwXg5qxxMAnsspFJnp6eroc5MSy7axEdrropG2wevVqOUCKzxUBaxEAF58vapsbjBgxAkFBQdi/f/9Tg+iffvopRo0a9cxNdrt164Y7d+5kPq5Xr95jncmJiIgoZ2KFmCjPNm7cOLlEe9KkSZgwYYLRX5mYqBcrzETPFLHyTZSeEyXcxHJuA3FuIc4xDNatW4eoqChZr1XcDMR5hjinICIioryrWUrHdIWOEQCiEkmr1aHO57uQmK7G9kmt4F/WXj4v/pOu9+VuxKWosHlCC9TOkqVO9CIQ2epixnv69OlP3VYEz8XMde/evZ/LsREREdHj2rZtK1dviUl6IiIiKrnaluIxnSmqRCXUregkGUC3MjNBVQ/bbEFDQ3kXlnShF42YhQ4MDMSUKVOK+lCIiIiIiIiIqJRgEJ2ohDoboi+BUcvLAaYm2f9TZl10elGJ5V53796Fre3DiSMiIiIiIiIiosLEmuhEJdTZkFh5X8fH4bHXDEF0Q+NRotKKFcuIiIiK3tP6mBAREVHJsL8Uj+nMRCcqoc49yESv8yBgnlVtb31gPTAqGQlpqud+bERERERERERERC8KBtGJSqA0lQZXwhKyZZ1n5WJrAR9nK/nz+QfBdiIiIiIiIiIiIjIeg+hEJdCl0ASotTq42prDy1EfLH9UXR8neX/uLku6EBERERERERER5ReD6EQlkKHWeR1vRygUiiduU+dBSZezrItORERERERERESUbwyiE5VAhuzyJ5VyMTC8JoLobK5IRERERERERESUPwyiE5VAhuzyJzUVNahR1gEmSgWiEtMRFp/2HI+OiIiIiIiIiIjoxcEgOlEJE5ucgTv3UzLLueTEytwE1TztspV/ISIiIiJ63tRqNd5//314eXnB3t4ebdu2xfnz5/mHICIiKmHUpXhMZxCdqISWcqnkagMHa7NctzVkqp9lc1EqAvPnz5cDqhhYRe3+uLinT+Z8/fXXaNSoEezs7ODu7o7evXvj2rVrKEppaWkYMWIEatWqBVNTU3lMRERElHd//PEH5syZg9mzZyMgIAC+vr4YOHBgvr9CcbHeqlUrWFpawsfHB999912e33v//n14e3vn+dyEiIiIHirNYzqD6EQvYCkXg7oPMtXPBvMCgZ6/lJQUdOnSBR999FGe33PgwAGMHz8ex44dw+7du6FSqdCpUyckJyejqGg0GlhZWWHSpEno2LFjkR0HERFRSbVnzx706NEDffv2ReXKlTF58mRcvXoVMTExRu8rISFBnhuUL18ep0+fxvfff4/p06fLyfu8GD16NGrXrp2P34KIiIj2lOIx3fS5fRIRFQhDaZY63g5P3dYQaL9wLx5qjRamJpw3e95EU9dUdepz/1wrUys5G5tXSUlJmDhxItatWwdra2tMmTIFgwYNQpUqVRAZGQlbW1ujj+Gdd96R9/v378/ze3bu3Jnt8ZIlS2RGuhhQW7du/dT3i8/q3r07pk2bhqlTp2Y+HxgYKH+XU6dOoX79+kb9HjY2Npg7d678+fDhw8xaIyIilPbzDGPPNcS5RJ06dTIfh4eHy3sTExOjP3flypXIyMiQmXDm5uaoUaMGzp49i59++glvvvlmru8V47nIVBPnCTt27DD6s4mIiEp77CCyFI/pDKITlbB/VA2Z6HXLOT11e193W9hZmCIxXY1rEYmy2Sg9X2IQbLKqyXP/2o8POg5rM+s8by/KlVy4cEEGoSMiIuSs8sWLF2XmtSGALga4MWPG5LofMXiJpVgFJT4+Xt47OzvnafvmzZvLWeuRI0di1KhRcHNzk88vXLgQdevWzQygd+3aFQcPHsxxP2Im/NKlSwXyOxAREb1o5xnGnmuIc1iDGzdu4MMPP0SzZs3g4OBg9Lh89OhRObEuLrYNOnfujG+//RaxsbFwcnryOfLly5fxxRdf4Pjx47h161aef08iIqLnoaTEDnSleExnEJ2oBAmJSUVsigpmJgpUL6NvGpobE6UCdcs54uCNaJy+E8sgOj1RdHQ0/v77bxkkb9CggXyuT58+WLZsGRYtWpS5Xc+ePdGkSe6DumguUlC0Wq3MZm/RogVq1qyZp/eIwXfw4MFyGdj69esxduxY2fhk6dKl+PjjjzO3E0H11NScZ/nNzHLvN0BERETGE6vERK1TkfG2du3afI3LIuOtYsWK2V738PDIfO1JF9zp6el47bXX5PlBuXLlGEQnIiJ6RlNL4ZjOIDpRCWJoEOpfxh4WpnlbKtOgvFNmEH1YswqFfIT0pKVRYma3KD43r27evClnk8XssUHjxo3lQCgC5wai2ae4PS+iNrrIhj906JDR7+3fvz/WrFkjg+jbtm2Ts9giuF4YwX4iIqLSdp5h+Gxjvffee7KO6vbt2+UF8IoVKzBgwIBCH5dFllz16tUxZMiQQv0cIiKiFzl2UNrHdAbRiUoQQ4PQunloKmrQsLy+DIYIotPzJ2ZljVkaVRQsLCzkfdYlVKIMStWqVeHq6pr53PMs5zJhwgRs3boV//33n+y2nZ8guqiNFhYWJmfCRXkaR8eH/92wnAsREb0ISsJ5Rlaiz4m4tWzZUtZU/e233+QFtzHjsqenpyw9l5XhsXjtSfbu3SvL1oneL1mXoovzHLFS7fPPPy+w35GIiCg/OKYX/zGdQXSiEuTcg0x0Q8PQvKjj4wClArgbm4qIhDR42FsW4hFSSSSWTymVSlnPrGzZsvK5zZs3Izg4WA5IhiYjz6Oci/g80eB0w4YNsj77o0u78kpMAIgSMDNnzpSB/V27dmV7neVciIiIni9RXu3R5dyWlpZGj8ti5Zy4SFapVJnP7969G35+fjnWThUl3rLu/+TJk7J3igjcV65c+Zl/NyIiotJEXUrHdAbRiUoIlUaLi/fijQ6i21mawc/THlfCEmQ2erdaZQrxKKkkEhnaIlN7xowZsozL9evXsXPnTlhZWclZ3g4dOuSrnIuoYSZuolyMIGaLxftF3TJDo1Cxb1F/XWSeG0q4rFq1Cps2bZLbGjp9iyYl4niMzUb/7LPPZPZau3btninYLxqXiK7hMTExSExMlB3DBdGslIiIiJ5uyZIlaNiwoRyTz507J8d70RTM2HF50KBBMsts9OjRsh6rKP02a9Ys/Pzzz5nbiMl4sdz76tWr8vGjF9WiH4wgloNnXalGREREHNNzoszxFSIqVs7fjUe6WgsnazNUdLEx6r0NyusvDljShXLy66+/ypljcRHbsWNHmcEtbqKOeNbmosaYN28e6tWrhzfeeEM+Fl23xWOR5W4QGBiYeSErzJ07F/Hx8Wjbti3KlCmTeRP1zQ1GjBghX89LEF00JxWz0oZs+vzq1q2bPPYtW7bIDHnxs7gRERFR3ogVYj/88AOqVauGt99+G5MmTcqcRDeGmFgXK8xu374tG6KLmqyihNubb76ZuY04l7h27Rr/NERERIWgZikd0xU6Q/EYIirWft13E9//cw1danhi3tAGRr13Y8A9vLPmLOp4O2DThJaFdoxEz0ObNm1kFtv06dOfuq0InotstN69ez+XYyMiIqLHiclvsXpLTNATERFRydW2FI/pLOdCVEIcu3Vf3jetpC+DYYxGFfXvuXAvHglpKthbPqxBRVSSiFlokb2+bdu2oj4UIiIiIiIiIiolWM6FqATIUGtxKihW/ty0sovR7/dytEIFF2todcDJ2zGFcIREz4dY7nX37l3Y2tryKyciIiIiIiKi54KZ6EQlwIV7cUhVaWQ99KrueW/smFWzyq4Iuh+Mwzfvo0N1jwI/RqLiiBXLiIiIip7oJ0JEREQl3/5SPKYzE52oBDh2S5893qSiC5TK/DVIbP4gg/1I4MMmjkRERERERERERJQ7BtGJSoCjgfmvh27Q7EEQ/Wp4Iu4npRfYsREREREREREREb3IGEQnKuZSMzQ4EaTPRG/h65rv/bjaWqCap122zHYiIiIiIiIiIiLKHYPoRMXc0VvRsrGoaA7q6/5szRQN2egHb0QV0NERERERERERERG92NhYlKiYO3BNH/BuXdUNCkX+6qEbtPVzx+LDQdh/LUo2XHzW/RERERERERHRQ+Ja+8K9eOy7GoWENBWquNuia60ycLAy49dEVIIxiE5UzO2/rg+it/Vze+Z9NanoDCszE4QnpOFyWAJqlHUogCMkIiIiIiIiovD4NHy04QL2Xo3M9mXM2HYF73fxw9Cm5ZnMRlRCsZwLUTF2OzoZd+6nwMxE8Uz10A0szUwy97P3SvZBnYiIiIioMKjVarz//vvw8vKCvb092rZti/Pnz/PLJqIXyqXQePSYc0gG0MU1fPdaZTCqRUVU9bBFYroa0zZdwgfrL0Cr1RX1oRLlm7oUj+kMohMVY/sezF43LO8MW4uCWTjSvpq7vN97jUF0KjwxMTGYOHEi/Pz8YGVlhXLlymHSpEmIj48v8q997dq1qFatGiwtLVGrVi1s37491+33798vs0UevYWHhz+3YyYiIirJ/vjjD8yZMwezZ89GQEAAfH19MXDgwHzvT1yst2rVSo7lPj4++O677/L0viVLlqB27dryfe7u7hg/fny+j4GIKKsbEYkYuugEohLT4edhhx1vt8avg+tjWg9/7Hy7Naa97A+lAlhzKgRT1p2D5lkC6RnJwK39wKnFwKk/gKDDgFbDPwg9F3+U4jGd5VyIirGdl/RBug7V9YHvgtCumr4szNmQONxPSoeLrUWB7ZvIIDQ0VN5++OEH+Pv7486dOxg7dqx8bt26dUX2RR05cgSvvfYavv76a7z88stYtWoVevfujTNnzqBmzZq5vvfatWtypt1ADNRERET0dHv27EGPHj3Qt29f+Xjy5MlYtGiRnHR3dnY26itMSEhAp06d0LFjR8ybNw8XLlzAqFGj4OjoiDfffDPH9/3000/48ccf8f3336NJkyZITk5GUFAQ/3xE9MzuxqZg8MLjiEnOQC0vB6x8ownsLR/WP1cqFRjVsiJc7Szw7pqz+PvMPfn69J41jPugkJP6oPnlTYAqOftrDuWA7j8AVTvzL0qFak8pHtMZRCcqpsQM9smgGPlzl5qeBbbfMg5WqOllj4v3ErDrcgRea1yuwPZNOdOmpOT8ookJlBYWedtWqYTS0jLXbZXW1kb/KZKSkmTmuAhwW1tbY8qUKRg0aBCqVKmCyMhI2NraGrU/EZBev3595uPKlStjxowZGDJkiFz+ZWr69OHn888/lwPp8uXL5aCadeZ76tSpuHfvHszNzY06rlmzZqFLly5y+Znw5ZdfYvfu3XImXXxWbkTQXAzmRERExal5nS41tUg+W2Fllee6vuJcok6dOpmPDau5TExMjP7clStXIiMjQ54PiPOAGjVq4OzZs/KCOqcL7tjYWHzyySfYsmULOnTokPm8yGAjInoWqRkavLnsNCIfZKAvG9U4WwA9q551ykL8qznxzwAsORKEap52eDUv1+MRl4E9nwPXdz58zt4b8HyQBBRyHIgPBlYNBHrMAhoM5x+1BCqqMd2Y8by0j+kMohMVU7svR0CnA2p7O8DbyfigaG661iwjg+jbL4QxiP6cXKvfIMfXbNq0Rrnff898fL1FyxwHT+tGjVB++bLMxzc7dIQmNjbbNtWvXjH6+EaMGCFnfUXpkoiICDmrfPHiRRm8NgTQxQA3ZsyYXPezY8cOuRTrSUQpF5HJnZcAumFGOzo6Wgb0xUBqsGDBAgwdOjQzgP60AL8I3BsC5EePHpX7zapz587YuHHjU4+nbt26SE9PlxME06dPR4sWLfL0exARERUWcb6Q2zlGYfI7cxqKPE7ci8CAwY0bN/Dhhx+iWbNmcHDQN7nv2rUrDh48mOP7y5cvj0uXLmWO5a1bt842kS7G8m+//VZeWDs5OT32fjFhrtVq5QR89erVkZiYiObNm8ssNrF0nIgoP8S/baKJ6OWwBLjYmGPxyEZwssk9yadHnbKy99lPu6/j000XUdXTDvXLPf7vlqRKAw58CxyeBeg0gMIEqD1QHyT3aQIYAp8ZKcA/HwGnFwNb3wXcqgHlmvCPWsIU1ZhuzHhe2sd0BtGJiqkdF8PkfecaBZeFbiAanHz/zzUcCbwvl5w5P2WgpxebCFT//fffMkjeoIF+0O7Tpw+WLVsml2UZ9OzZUy6Vyo1oLpLTZ4is79yWZD3Kzs4On332GcqUKYOrV6/KOuZisD127BgWLlyYuV3WAPuTZC3BImbJPTw8sr0uHudW31x8vgjCN2zYUAbRxWeL5inHjx9H/fr18/z7EBERlXZiJZmodSoy3kSPEgMxtqbmkn1nZvYwq1OM2RUrVsz2umFsF6896YL71q1b8oL7q6++kqvSxIW+yGJ76aWXZC1WY1e2EREJf54IwYaAezBRKjBnUH2UdbTK0xczsb0vroUnYtuFMLy9OgDbJrV6PHs95ASwaTwQfV3/uNrLQMfpgGuVx3dobg28/DOQnghcXAdsmQSMPQyYMORHhWdqKRzT+V8UUTEkAttHA+/Ln7sWYCkXgwquNqhR1h6XQhOw61J43paQ0TPP7ubokWVPVQ8fynlbZfZ+0L57/n3mv8zNmzflbLKYPTZo3LixHAhF4DxrUFvcjCXqnHXv3l3WRhcZ3MZwdXWVAes1a9bIgLoYkEUgXyzzMhCNTAqTaI4qbgZiljswMBA///yzLDVDRERUVMQS7FzPMQr5s4313nvvyTqqoqm36FGyYsUKDBgwIMdJ+IIiLrZVKhV++eUXWXtV+PPPP+Hp6Yl9+/bJrDciImMbiX6xVZ9N+35nPzSr7JLn94qg49f9auHc3TiExKTi4w0X8curdfUlNUSD0P9+AA58A+i0gK0H0P1HoHqPp+1Uv13gXiDqKnB2Jcu6lDBFNabnZzwvrWM6g+hExdDW86FQa3Uy0F3Jzbha1HnVrVYZGUTfcj6UQfTnwJg65YW1bU4sHtRjzzpj6+bmhqpVq8ogtkF+yrmIpVWiBrkIvm/YsCHbrHNe9e/fHzNnzpTLxETQWjQFzcqYci5iYBXlarISj8XzxhCTDIcO5TLZQURE9ByIgIsxS7CLmugvIm4tW7aUNVV/++03ecFtzNLvnMZyw2s5rSoTxIR+1nMdcZ4THBxcIL8bEZUeaSqNrGueptKiVRVXvNmqktH7EJnnv7xWD/3nHcWWc6FoXcUV/f3Mgb9fB27/p99IlG7p8g1gncdmjVaOQKvJwK5PgCO/APWGPpaERcUXx/TiP6YziE5UDIlu3UKfeoU3gyeamhhKuoTGpeZ56Rm9eMTyKaVSKeuZlS1bVj63efNmOQCJDHVDkxFjy7mIDHQxCyyC9GJ/llkaohpDlJZ56623ZKPRtLQ0vPrqq9leN6aci8i2F93E33nnnWw11bJm4eeF+EzD4E1ERERPJxqLZyUm1g3nBsYs/RZj9scffyyz0AzPi7FcrBp70rJvwdDH5Nq1a/D29pY/x8TEyHJzIkBPRGSMb3ZcxdXwRFkH/cf+daBU5r0pY1aiFvrkl6rK6/Idm1ejj83vME2NAsxsgJd/Aupkv+7JkwYjgAPfAfdvAsFHgAot83VsRLlRl9IxnUF0omLmVlQSzobEQYzDPevqA5qFwcfZGk0rOePYrRhZx218u8ItiUHFl6Ojo2wkOmPGDJlhff36dezcuRNWVlbYu3dvZsdrY8q5iAC6WFqVkpIil3WJx+JmmCU2pnO32F6UdPnmm28wbNiwx47BmHIub7/9Ntq0aSObjogSM6tXr8apU6cwf/78zG1ExrtoUiJqwgsiC15MNIgSMiKIL04KxPeya9euPH8uERFRabdkyRLZX6Rdu3Y4d+4cVq1ahS+++EK+ZszS70GDBsmJ9dGjR8t6rKIRuqiJKsqsGYjVb2I8Fz1VBLG6rlevXvI8QIz5YoJdvC76rYjjISLKq71XI7DkSJD8+Yf+deBun79EIYOxrSvC7cwsvJKwHMpUHbTu/lD2Xwq4Vc3fDi3sgOo9gbMrgAvrcgyiJ2Qk4PL9y7gZexPhyeGISYuRyVMWJhbwdfRFLddaqOlaMzOhiiir0jqmM4hOVMyIgLbQqoob3O2yD8iJe/ci4/ZtaOIToE1J0d9SU6BLSYXC0hLes2ZmbhuzdCnSb9+GiZ09lPZ28t7U3Q1mZcrIm9LBAf3qe8sg+rrTd/FW28ocIEuxX3/9Fa+//roc8ESAWwSORQb54MGDZXBdDGrGOHPmjGy8+aQg9+3bt1GhQgX5s7gfMWLEU2uli5IuIoPc2ON4lKhnLgZ40Xjko48+QpUqVbBx40bUrFkzc5uwsLBsy8AyMjJkvTcRWLe2tkbt2rXx77//8qKbiIjICGKs/eGHHzBu3Di5RHvSpEmYMGGC0d+haCAmJrLHjx8vG6KL5dvTpk3L1rw8Pj5eZqhlJSbH3333XTmJLlbgiUl1kTSQn1JzRFQ6RSam4f215+XPI1tUQLtq7s+2w5QYmPz9JgYk7gYUwJ/qdrjjPQ0f5DeAblDrFX0Q/fJGoOt3gKk51Fo1zkWdw6F7h+Ttaow+IJmb8vblManeJHSqoK87TVTax3SFTqzVJ6Iip46NRdK58/hx/k443Q9DW+sUOFubo8LKFZnbBA18Fannzj3x/UpbW/idOpn5+M7IkUg5euzJH6ZQoNq5s0jRKdFoxr/wD7mIjzpUQo3m9WBevhwURmQJE+WXyFJ3cXGRddRFpnlu9u/fL4PWsbGxMnOeiIiISg4xztetW1dO0hMRlURarQ7DF5/AwRvRqF7GHhvHN4eF6TNcN4eeBf4aCsQFA6aWuFRvOrofLCdfWjaqMVpXdXuGg9UAP1aDLjkSF3p8j63qaOy8vROx6bHZNvOy9UJ15+ooa1sWrlb6XliJGYm4HnsdpyJOIVmVLJ/rX7U/Pm7yMUyUjBMQSvWYzkx0oiIW8d33SNy9G6qQEPl4UJbXUk1NoVOpoHgwm2bTsiXMypeDiYOjbCiZebOyhCJLU0jBsd8rsK7fAJrEBGgTEqFJSIA6MhKqsDAoTE3l9jYAetQui/p7ZsPq6CLcEsF4GxtY1akDq3r19Lc6tWGSxxIeRMYQnbPbt2//1AA6ERERERFRUfrj8G0ZQLc0U+KXV+s+WwD9zDJg2xRAkw44VQQGLkcNz1oYqrqI5cfu4L2157Dz7VZwsbXI1+4jUqPxd8Va2BJ3GSEXZ2c+72jhiOZlm6OlV0s0K9ssM3D+JCmqFCy8sBCLLi7C2utrZZmXqY2n5ut4iF4UDKITPScZd+8i+dBhmUleZsb/oHjQJVsdFZUZQI9y8sQVK3eUrV0NrTs0gnmlitm6abtNzPvyGIeXu+f4mgjMGwxtVh6bF3vBSqtClZQoaJOTkXzkiLwJouxL1SOHmZ1OBU4svRI3IiIiIiKi4upSaDy+26kvJ/FJd39U8chnkpkqFdg+BQh4sNq8alegzzzASr/S9uPu1XHs1n3ciEzC/607j4XDG+a55KooMnE8/DjWXF2DfSH7oNFpRAdHWGl1aF+xC16u0htNyzSFqTJvYUBrM2tMqj8JVZyq4P/++z+suLICrbxbySA8UWnFci5EhSg9MBCJu3YhYddupF+5kvl8xY0bYFmtmvw59cIFaBMTEexWHl0XnYWpUoHDH7SHxzM2KDFGn98OIyA4DpM7VMabPkBqQABSAgKQGnAWltX84D374ex10GuDYF65Euy7doVNkyYyq52IiIiIiIjoRZOaocHLsw8iMCoZL/l7YP7QBvnrJRZzG/hrGBB+HlAogfafAC3ezZY0J1wJS0CvXw8jQ63FF71qYFgzfS+pnCRlJGHDzQ3469pfCErQNzwV6rvXxyu3A9AhKhjWfRfq66Tn01fHv8KfV/+En5Mf1vZYy15qVGoxiE5UCBL37kPkjz8iIzDw4ZMmJrCqVxc2zZvDsW9fmHl6ZnvPh3+fx58nQtC9Vhn8Orj+c/27bAy4h3fWnIWrrTkOTW0PS7OHS9O0GRlQPigVkxEUhMAuXTNfM3F2hl3nTnDo3h1WDfJ5MkFERERERERUDH204QJWHQ+Gh70FdrzdGs422cuo5sm1ncCGN4G0eMDaFXhlEVAp55KWfxy6jS+2XoaFqRKbJ7SEn+fjme+hSaFYeWUl1t9Yn1m73MbMBi9XehkD/QbKDHLs+RI4+IM+433QauRXXFocOq3vhFR1KhZ3XoyGng3zvS+ikowppEQFQJeRAW1aGkzs7eVjUadcBtDNzGDTrCnsO3WCbYcOMHVyeuL7IxLSsP70Pfnz8Oa5zzQXhu61y+D7f67hXlwq1p4KwdAss92GALpg5uWFcksWI2HHTiT+8w80MTGI+3O1vJlXrAj396fArn375378RERERERERAXpn0vhMoAucsV+GlDX+AC6aPC5/2vgv+/1j70bAf2XAg5eub5tZIsK+O9GFPZfi8KkPwOwaUKLzES3C1EXsOzyMuy+s1tfsgVAJYdKGFx9MLpX6i4D6Zlq9dcH0W/+C6TEANbOyA9HS0d0q9hNBuy33d7GIDqVWsxEJ3oG6thYxK1ejZhVq+DQrRs8PvxQPq/TapGwbTts27TODKzn5ostl2WjkkYVnPDXmGZFktG99EgQPtt8Cd5OVtg3pS3MTLIvK3tSXfXkY8eRsH07Ev75B7qUFHjPmwu7B00ixXdgqPtOREREREREVFKExaei66yDiEtRYUybSviwa3XjdpB8H1g/Gri1T/+48Rig0/8A07wF4qMS09F11n+ITsrAoMbeaN8gSgbPAyIDMrcRNc6H+Q9DC68WUIoSMU8ytwUQcRF4eSbQcCTy69C9Qxj37zh4WHtg9yu7uQqdSiUG0YnyIf3WLcQsWYr4TZugS0+Xz1n4+cla58YGwKOT0tHy271IU2mxbFRjtK7qViR/kzSVRh6HGKR/GlAHfet75/m9mqRkmZnu0LtXZgPSqDm/IuXUKbiMHg2bli04yBIREREREVGxJ+qRvzr/KM4Ex6GWlwPWj2sOc1MjEsTungL+Gg4k3AXMrIEevwC1+xt9HLuuhGD85vkwdz4Ipfl9+ZxoDCqywkXw3M/Z7+k7OfQz8O90oHwLYOR25Jco5dJsVTOZ/b6r7z/wsHCV1/gKM7N875OopGEQncjI4Hn0r7/J7GvodPI5S39/OI8cAfvOnaHIUvokr77ZcRXzDgSijrcDNo4v2mDzr/tuyrIuld1s8M87rWH6lGz0nOjUatxo1w6aqOjMCQbXt96CXaeXGEwnIiIiIiKiYmv65ktYciQI9pam2DqxFcq5WOftjSJGcHIhsPNDQKsCXHyBAcsBD3+jPj8+PR5rrq2RNc9j0mL0u9ZY45Uq/TG+wXC4WRuReBd/F/i5ptgD8PZ5wKl8jptqU1KQEXIXqrshyAgOgSokBKqICFnGVdziI0NgkaaFUh8KkRSWllDa2sLU2Rnm5cvBokoVWNVvAOv69WSZW6IXCYPoREYI/+ILxK76U/5s264dXEaNhFXDhvkODEcmpKHtD/uRkqHBgmENZbfvopSQpkKb7/YhNkWFb/rWwquNy+V7X6rQUMQsXYbYtWtlqRfBskYNuL3zNmxatmQwnYiIiIiIiIqVzedCZR1yYdHwhuhQPY/X6BkpwNZ3gPNr9I+r9wR6/QpYPr28q0F4cjiWX16OddfXIUWtv4YuY1MWioQ2uHajOiq5OslGo7YWRrY3XNoDuP0f0O4ToM37sjRr+u3bSL9+A+nXriHt+jX5szosDAVFYW0Nu44d4DxkCKxq1y6w/RIVJQbRiXKhiYuTDUPNPD3lY1V4OCJmfAXXcWNlBvqzmrruPNacCkG9co74e1zzYhFYXnToNr7cehnudhbY/35bWJs/W/9hTXw8YpYuleVvxMy24DphAtwmjC+gIyYiIiKi4kytVuPDDz/EqlWrkJiYiPr16+OXX35BbQZWiKgYuRmZiJ5zDsskt/HtKuP9ztXy9sb7gcCaoUDkJUBhArz0OdBsAmRH0jwIjAvEHxf/wPZb26HWqeVzVZ2qYmTNkehcoTMSUrTo/sshhCek4eXaZTD7tXp5jh2IXmUZ22cjde3XSEt2Q6rOD+nXr8tA+pMoHRxg7uMDMx9vmPuUg1nZMjBxdoapkxOW3duEVXc3om/1AZjY6B3oNBpok5OhTUqCOjISGUF3kHbpIpJPnoQ69GFA3q5TJ3h88jHM3N3zdMxUvKlL8ZjOrn9ETyAGlJhly3GzcxeEf/5F5vMimO49+5cCCaBfCUvAX6dD5M+fdK9eLALowpCm5eDjbIXIxHT8cej2M+/PxMEBbpMmofK/u+E8YoSckbbv3q1AjpWKr5iYGEycOBF+fn6wsrJCuXLlMGnSJMTHxxfpcV26dAn9+vVDhQoV5H9zM2fOLNLjISIiKg3++OMPzJkzB7Nnz0ZAQAB8fX0xcODAfO/v/PnzaNWqFSwtLeHj44Pvvvvuqe85efIkOnToAEdHRzg5OaFz5844d+5cvo+BiF4sYlX2mOWnZQC9ha8LJr+Uh3rjwpWtwPy2+gC6rQcwfAvQfGKeAuhnIs5g4p6J6L2pNzYHbpYB9EaejTC341ys67EOL1d6GWZKM7jYWmDOoHowVSqw9XwYFhy8lWsiYOK+fYicORPBo0bhepOmuDVlHsKOOyH2ohpply7JeIfSxgZW9erB8dWB8PxsGsqvXIGqx47C7/gxVFy3Ft4//wz3ye/C6dVXYd+pE6wbNYKdX3XE2ikQbBIHE3t7GVg39/aGZbVqsG3dGs7DhqLst9/Cd88eVFj9Jxx69ZLfQ+KuXbjdrx9Szpwx5k9CxdQfpXhMf7YUU6IXUMrp0wib9hkyAgPlY9W9e9AkJsLEzq7APkOn0+Gr7VdkybTutcqgQXlnFBcWpiaY0skPb68+i7n7A9GvgTfKOFg9835FjTSPD6bCdcJ4mNjaZj4f8c23MPX0gPPgwWxK8gIJDQ2Vtx9++AH+/v64c+cOxo4dK59bt25dkR1XSkoKKlWqhP79++Pdd98tsuMgIiIqTfbs2YMePXqgb9++8vHkyZOxaNEiOenu7GzceXBCQgI6deqEjh07Yt68ebhw4QJGjRolL6TffPPNJ74nKSkJXbp0Qc+ePfHbb7/JLLrPPvtMXnSHhITAjI3xiEo1jVYnS7gERiXD094Ss16tBxPlU4LgGjWw9wvg8Cz943LNgP5LADv9KvacaHVaHAg5IDPPz0adlc8poEDH8h0xssZI1HKr9cT3NazgLJPvpm+5jK93XIWvuy3aV/OAKjISqadOIeXUaaScOiWzzB+lsLCApac5rCzDYNW4NSyHfQMzLy8olMbl1XraeGaWncmNSFayqltX3pxHjULolClIv3EDwaNfR/kVy2FVo4ZRn0vFy55SPKYziE70gCYhAZE//oS4NfoaZmLJktvbb8PxlX5QmJgU6Pe07UIYDt6IhrmJElO75HGJ2HPUo3ZZLD0SJLuRi9Iuvw1uUGD7zhpAT7t2TZZ6EbMJ8Zs2o+xXM2BZvTpeRKp0TY6vKZSAqZlJ3rZVAKbmuW9rZmH8/17FQCQyx0WA29raGlOmTMGgQYNQpUoVREZGwjbL3y0vatasifXr12c+rly5MmbMmIEhQ4bIQc7U9OnDz+effy4H0uXLl8tBNevM99SpU3Hv3j2YG9nMt1GjRvImfPDBB0a9l4iIqLgRiRnqDG2RfLapuTLPKynFuUSdOnUyH4eH6wMwJvk4x165ciUyMjLk+YA4D6hRowbOnj2Ln376KccL7qtXr8qL+y+++EJmuQniglssPRcT/SKLjohKL5Hgtv9aFCzNlFg4vCFcbS1yf0NSJLBuFBB0UP9YlG7pOB0wyTl4p9KosPXWViy5tAS34vWZ5CLLvGflnhhRYwQqOFR46nEOb14Bd68FIejfA7jy7lqUyQgF7ulXt2dlXrGizDK3ql1L1iMXzT4Vdw4AK/oBJgcBDxfAyAC64GjhKO8TMhLy/B5Lv6qosGY17k6YgOQjR3F37DhU3LRRJtlR8RjTjRnPS/uYziA6EYDUS5fkP+bqqCj5fTj2fwXuU6bIUiQFLT5Vhc+3XJY/v9Wuct47fT9HSqUCM/rUwsuzD2H7hXDsuxqJdtUKvn6ZGMw9v/gckT/8iPQrV3C7/wC4vPE6XMeNg9LI4GhxN//tAzm+Vr6mC16e8HAQ+uP9gzkOnmWrOKLPe/UzHy/7+AjSkrLXsxs/r73RxzdixAg567t//35ERETIWeWLFy/K4LUhgC4GuDFjxuS6nx07dsilWE8iSrnYi2V/eQigG2a0o6OjZUBfDKQGCxYswNChQzMD6E8L8IvAvQjGExERvWjE+UJu5xiF6c1ZbfI8cS8CAwY3btyQtVSbNWsGhwfn2l27dsXBgw+CUU9Qvnx5WZJNOHr0KFq3bp1tIl1kn3377beIjY2Vy7ofJcrLubi4yEy5jz76CBqNRv5cvXp1WeKNiEqvP08Ey75gwk8D6qKm11NiAKJB599vAolhgLmtvnlojd45bp6UkSQbhYqGoZGpkfI5WzNbDPQbiMHVB8PN2u2pPcaST5xAytGjMgjdLygo+wYKBSyqV4N1w4awbtAQ1g0bwNTF5fEdVWoPOJYH4u4AF9cD9YfCWHbm+tX5iRmJRr1PaW0Nr1mzEPTqa3LFf/ScOfCcNs3oz3/RFdWYbsx4XtrHdAbRiUQwt2JF+Q+7eYUKMqhr07hxoX0v3+68iqjEdFR2s8G4tpWf/gZ1OhB1Vd+sJPY2EBsEJEYAKfeBlGggPRHQqPTbadWAqSVgagGYWQFWzoCNK2DrDth7Aa5VABdxqwxY5z7zW72MPUa3rIj5/93Cp5suYmfF1sZ3AX8KsXzMqX9/2LVti/Av/ydrpd2fOw+Ju3fD6/vvX9is9OJGBKr//vtvGSRv0EC/6qBPnz5YtmyZHIwMxHKpJk2a5LovLy+vHD/jyy+/zHE2+Uns7OzkjHKZMmXkbHO1atXkYHvs2DEsXLgwc7usAfYnEYF7IiIiKnpiJZmodSoy3tauXZv5vBjXU1NTc3xf1qXZIuOtYsWK2V738PDIfO1JF9zinEIkCvTu3Vuejwhitd0///yT58l9InrxHAmMxqcbL8qfJ79UFd1qlcl5Y3UGsPdL4MhsEUYE3KoBA1for7GfIDo1GiuvrMSaq2uQqNIHnd2s3DDUfyj6V+0PWxGAfwJtRgZSzwQgWQTNjx5F2sWLgDZLgpWJCcz8a2AzPHDUppzMOJ//VltYZlnZ/EQi87zRaGD3NODkAqDekDw3PjWwM8tfEF0etp2dDJwHDx+O2DV/wXnYMBl/oZJraikc03nGQKVW2rXrsKjiKwO5IoDus2ghTN3coLR4ytKtZ3DgehRWHQ+WP3/Vp5asP56NmNGLvqFfFhYaAISdBSKv6IPjeaVK1t/Ev1kJ93Lezq4M4N0Q8G6kv5Wtpw+8Z/F2hyrYfiEMd2NT8cWWS/julYfZ0gVJfO/ev8xCws5/EP7ll8i4GYjg19+A755/obS0xItAzO7mVs4lq1Hft8p520fOc4bNaP7Mx3bz5k05myxmjw0aN24sB0IROM86WImbsUSds+7du8va6NOnTzfqva6urmjbti3WrFkjA+piQBaBfLHMy4BLsImIqLQSS7BzO8co7M821nvvvSfrqG7fvh2vvfYaVqxYgQEDBuQ4CV9QxMX86NGj0aJFC/z5558ya030bRHnJ6I5mWiCTkSly+XQBIxZdhpqrQ496pTFxPa5lICIugasfx0IP69/3GAE0PkrwNzmsU1DEkOw+OJibLq5CRnaDPlcBfsKGFVzFLpX6g5zk8dXXKtCQ5H0339IOvAfko8dg+6RAKR5pUqwadYMNs2bwbpxYxmQfjkiEYt/O4LEsDRM/ussZr9WP9c67uJ6T1XtNaTuWoD04CRkHDoGlb0vMtI0UKWp9fcZGmg1OnnTiXvtg5tGKwOlGoUazYP6yPvDG6/D3MwM5lamsLQxg4W1KSyszWBlawYbJwuYZSlBamDTpDFsWrVC8sGDiP1rLTz+7/1c/0alTVGN6fkZz0vrmM4gOpU6Oq0W9+cvQNTs2fIfbefhw+Xzoqt0YbqflI4pa/Xdgoc3K48mlR4ssUqJAW7sBm7t198SQx9/s5UT4FoVcKoIOFfUB8BFhrm1K2BpD4iBWNyUJvqMdHFTpQCpMUBSFJAcqc9gv38TiL6p/wyx/OzKFv1NMLEAKrQAfF8CqrwEuPjCxsJULmkbOP8o/jp1Fx2qe6BzjdwbpTwL+y6dYd2kMcI+/gT23bu9MAF0wZjlUYW1bU4sHkwcZV1C5ebmhqpVq8ogtkF+yrkkJibKph8i+L5hw4Z8NfkQTUBnzpwpl4mJ+uhff/11ttdZzoWIiEorEdQoiHOB58Xd3V3eWrZsKWuqioZg4oLbmKXfnp6esvRcVobH4rUnWbVqFYKCguSyceWDOsDiOZHhtmnTJrz66qsF+FsSUXEXEpOC4YtPIDFdjcYVnPH9K7WfXBNaJLmdXAjs+gRQp+lXeveaA1Tr/timN2JvYNHFRdhxe4dsHirUdqstg+ftfNpBmSVzSqdWIzUgQB84339ANt3MysTNVR80b9YcNs2awuwJ/7ZV9bDD78MaYMSik9h/LhwzNGcxuJYXkmLTkSxuCelIS1QhJTFDlv9MTVRBoxbH9Yt+BytFoP6C0d9dbbSV92dD7+a6nQis2zpbwN7VCs5lbeBS1lbe2/fvL4PoYhU6g+jZcUwv/mM6g+hU6pqHhk79AEn79snHaU/oXF0YxKzv1PXnZRmXKu62+LCtO3B6KXB5o76mWtZMcxHMLtf0QXZ4XaBMHcDBx+ilVrkSJWDCLwB3T+pvISeBpHAgcK/+9s+HgHNloGY/NK71Csa0rox5BwLxwfrzqOfjCHf7wgtumzo5wfvXOdlOYlJOn4bC1BRWWZpXUMERy6fE4CPqmZUtW1Y+t3nzZgQHB8v/7Rr+FsaWcxEZ6KKemQjSi/1Z5nNSRJSWeeutt2Sj0bS0tMcGRZZzISIiKv5EY/GsxMS64dzAmKXfYuXcxx9/DJVKlfn87t27ZY3UJy37FlJSUuS5TtbzS8NjbdYyCUT0whPJbcP/OCGvzf087LBgeMMnl0IRyWibxgM3/tE/rtwe6D0XsMse2LsQdQELLizAvhB9jEFo4dUCr9d8HQ08GmT+u6NJSpIB88Q9/yL50GFoE7OURFEqYVW3Lmxbt4Zt2zaw8PPL9u+VRqVFfHQq4qNSER+ZgrhI/X1CdCrejrMEtDrgSCx2Hol96u9vagZYaqJhpkiFWZnKMLe1kZOx5pam8l5pqpA90pQm4qaEQvwsM9x10Kh1WHphGdRqDXpW7AkbhS3SUzVIT1EhPUUt70WwXpWuQVqySt6iQ5JwK0Dfe04wszCDXZ0JcIy9AZvTt+BZv6JRTS2peFCX0jFdoctaEZ7oBZZ25QruTnobqpAQKMzN4TntUzi+8spz+ezlR4MwfdN5dDA9jx8qn4N98B5Ap3m4gUdNffZ3pbaAT5PHyqoUOvHPgFiidnO3Piv+zhFA+7BZpdajFhYlNMavsY1Rw7cClo5sDFOT/C35MZYqLAy3+70iTzI8P5v23P5mpY3I9haNP8XM7fXr12U2uQh+r169Gh06dDB6fyKA3qlTJznAiQx0GxubbFnuxnbuFg1O9+3bh2HDhmHx4sXIL9H5+/JlfWPfbt26YfDgwfImstlZFoaIikqGWotUlQYarQ5qrVZ/r9HB3FQJK3MTWJmZwOw5jbtEhUGUZjt16hTmzJmDdu3a4dy5c7JJ+BdffIG3337bqH2J8xVxcS3OM0Q9VtEIfdSoUfj5558ze6+Icw+xgk30VBHEfd26deV2EydOlBfZ33zzDbZs2YIrV67I/itE9OJLTldj0IJjOHc3Hl6OVlg/rjk8HZ6Q6HP9H30APTlKn+T20udA4zH6uuIPkuROhp+UwfNjYcfkcwoo0LF8R7xe63X4u/jL59QxMUjauxcJu3cj5chR6FQPr7FNHB1laRPbNm1g06K5TCYTwfLYiBTcv5eEmNBk3A/V3yfFpMlL9twkKXRIUOpQ0cce1So5wdrRHFa25rCyM4OVnfhZfy9XL60coJ8cEGVpeswy6jvssr4L7iXdw4puK1DH7clJbumpannMiTFpiI9Mzfw97ocmQ52uyb6q2NkCleu6w79lWZmpTsVf21I8pjOITqVCwq5dCP2/qdClpcHMy0t2hraq+bCmcmE6f+UKDq76Fv2U++GpyDIz7Flb38Xbv7e+0WdxIjLVr+0ALqwDAvdkZsqn68ywVdsUybWGY1j/Vwo2Oz4HmqRkhH34ARJ3/ysfO746EJ4ffSQnQqjgiCXVr7/+Og4dOiQD3KIbtgiiizpnM2bMkDXHjCEafYgB9Ulu376d2TVb3I8YMeKptdJ///13jB07Vi71FkvA80ss+3q0cYnQpk0becxERAVGlQpd7B3cD72F2OhwJMVGIi0hGuqk+9CmJ0KrzoBWrYJOo4JCq4YWSqTDDGkwR5pOfx+rs8N92OO+zh5xCgckmblAbVMGTvY2cLOzgLudBTztLVHR1QaV3GxRztlaBt6JiuMFt1hNlpSUhMDAQLlEe8iQIXL8N3ZiXTh//jzGjx8va5+K0nPiIlpcfBssWbIEI0eOlIEuA5HZJla1iQt0kbFWr149eY7TtGnTAvs9iaj4SlNp8PrSUzh0MxpO1mZYO7Y5fN1tH78O/ucj4Mwy/WN3f6DfQsBDHzsQ/6YcuHtABs/PR+nro5soTGSt89G1RqOSQyWZBCauXRNF4Pz06WxNQc0rVoTdSy/Btl1bmFatgejQFETeSUDknURE301CfESKrEH+JCL47eBuBQc3aziKe3drOLhZwtbJEjaOFvhu9zX8fuAWRNK4qI/evXYugUSRNLe4q74k7MQzgKNPnr/HAVsG4ErMFcztOBctvYy7LhO/m5gguDxjPsKjFIj1qAON9mFMwcvPEXU7lEP5Wi7MTi/G2pbiMZ1BdHrhqe7dw80uXQGVCjYtW8Lrh+/lrG+hC7+A1P9+genlv2EGfRBaZ+0CRZ3XgHpDAfdqKBFEzfZLG4DTi/UlYB6Ic6oJx47vA9V76GuxF3Yd+99/R9Qvs2XWvHXTpvCe/YtsqEIll8hSd3FxkXXUxUCcl6B8bGwsHJ/Hf79ERHmVFCnHR03YBUQEnUZ47C0kpEcgCcmIMzFBslKBZIVS3icplRD5V+ISQKdQyHtx6Wip1cFKp4W1vNfBVquFi0YDV40GLhr9z45ardxWrVPins4Vd3Qe8nZLVwaXtRVwRVcOyUpb+DhZyTqpdXwcUdvbAbW9HOFgbXw/CqKCJMZ5kTUmepwQET1v6WoN3lx2GgeuR8Ha3AQrX2+CeuUeKRVx+yCw6S0gLlj/uOlbQIfPADNLqLVq7ArahYUXF8ra54K50hx9q/TFiJoj4JFuiYSdO5GwdZusdZ6Vpb8/bF96Caq6bXA/3S4zaB4blvzE7HLRqNPFywbOZW3hUlbc28DRwxrW9ua5BpZFgPqDv8/LXmamSgV+G1wfnXLqZyY+eGkPIOigPjYh6rzn0eh/RuNE+Al81/o7dK3YFfkR8fU3iFm6FPbDRyO963BcPRqGoPPRmd+HZyUHtH61KtzK8Xq/OGpbisd01kSnF57IPPf86EOk37gJj48+lLW1C1XICWD/17K2uKEoy0UTf/j2mALLmj1E62OjdpeiSkFkSiSiUqMQlRKFJFWSvCWrkuUtTZ0mG5eIm078n04HU6UprEytMm/WZtZwtHCEi5ULXCxd5L2ThRNM8hL8tnYGGo0GGo4C7p3BuY0/wS/qHzjGXgTWDtfXTm8xCagzyOjfLa8USiVcx42DRfXqCJ38HlKOHcOdQYPhM/93mHH5bYklyrO0b9/+qQF0IqJiQ6OC+l4Agm5ux417x3Er/hZCFCrcNjNFiKkZUqCAvRJw1FjCPsUClirAMgOZ91bZVzBLGaZAuhmQYAakmQOp5kCCtQLxNuIe0JjoL5gtdTr4qNTwUalQTpUBH/Vt1Mq4hn4ZKlg/uOoM0brhUkIFnI2rjD1XqmGmrhJUMEUFF2s0qeiC5r4uaF7ZVWaxExERlZaSaW+tOCMD6JZmSvwxolH2ALoqFfj3c+D4XP1jx3JAr9+Aiq2g0qqw+fp62TA0JDFEvmxjZoOBfgMxuFxfmB8OQMLC6bhx9CigeTDIKxSwaNAQ6qZdEedeA4FROoTfiEf6uTAA4vaQyCB3L28H9/L2MmAsgufiufzUCBd1y7/uW1v+vhvPhmL8qjOYP6wh2vm5P76x2H+HacCil4CzK4EWbwOuVfL0OXbm+sB2fHq80ceY+fHW+kiJiSYdleq6yZso/XJh311c2H8X4bfisfabU2jQpTwavSz6d7FmOhUPDKLTC0mbmgpNQiLMPPQDhtNrrxX+h947Dez7Wl9XXFxnQ4ntmsb406Qnvn5rBCxdcq7vJYLhYkY7KCEIQfFBuJNwR/4clhwmXysMpgpTlLUtCx97H/jY+sDHzgeVHSvDz9kPrlauTx5ovRugxrjlmLBwF6qHrMYI091wiAkEtrwNHPwRaPsRUHtAoWWm27Vti/IrliNkzFjZwTx67jyU+eLzQvksKnzdu3eXNyKi4iz87jGcvbQaF8JP4WJaNMLSlXCOVaBMLOAZa4LqsSZoG6uDU5IW9qmARmmGDHM7qE2soDG1hMbEIvOmk7nk+ix0QAmFTgOlVgUTbQaUGv29qSoF5qokmKqTodRpkWSlwH1bHSIdFYhwVCLC0RLnHIFtrgpEuYjhWQEfDeCXlgL/9HTUTT+Pd9JPyaC7KAkToPHF8fhqOHC6DtaeqizLxlTztEOrKq7oXMMT9cs58eKUiIheSCqNFhP/PIM9VyNhYarEH8MboWkll4cb3D0NbBgD3Ndnl6P+cKDzDKjMLLHlxt+Yf36+rP8tiKS0IVUHoXdMBaiW70LMvl7QpafL18RUtsg0T6r9EqLNfBAenAL1RVHGJTrzo0wtTFCmkj08KjroA+cV7GHjULCT2iZKBX7oXwcZGi22XwjH2OWn5aRBC98nXN/7NAaqdgWu7wD2zQD6L8nTZxhiBSLJL78UJvpQpE7zsDmlnbMlmvfzRZ0OPji09gZuno7Eqe1BMnO/0+s1YWHF8CUVPZZzoReOJjERIePGQXM/RgZcTV2yDJKFIfIq8O90/eAjL4xNEODcDZNCOyBC6SGbcDbPMmila9JxMfqivF2+f1neRNBcZJHnRGSTe1h7yAHL3twetua2cgbc1swWlqaWUCqUspGJuJAW/yeWm6WqUzNvIps9Jj0G91PvIyYtBrFpsbl+nvgcPyc/VHOuhrrudVHPvR4cLBwyX49PVaH/vCO4GxGNiY6HMcZ0K5RJEQ/e7Ae0/0Rf5qWQaqarQkNlaRfRaFRp9ZybsBIR0QstIT0eJy+uwtFbO3Dt3m1YhWlRMUKHChFAhQgdbDJskGLlhtTMmyvSLJ2QYW4vb2pT6wI7Fn1APQGWaTEPbvflzSotBtYp4VCbpCHYVYdgNwWCPBS4WVaBYDdxcaqEf4YadVOT0SQ1DQ3T0mW2erzCHnvVtbBPUw/7tbWRAFu42lqgUw0PdKnhiWaVXdjAlIiIXghqjRZvrz6LbRfCZL+QhcMaonVVtwcvZgAHvgUO/SRqhwK2nkDP2VD7tsfWW1vx+7nfcTfprtxUrOQe69wLrc6pkLJ5G9SRkfJ5lakN4v1aI6FKS0SqXZCSlH25maWtGcr6OqKMrwPKVnGEq7ctlM+pSbiYPBi34gz+vRIhs+/nD83yu2cVfhGYJ+qa64DR/wI+jZ667wXnF+CXgF/Qq3Iv/K/l//J1fNFz5yJq1i9w7N8fZb784onb3DgZgb3LrkCt0sryLj0m1YG5JQPpVLQYRKcXivr+fQS//gbSr1yB0s4O5RYthFXt2oVXK1yUbTm5SEyhipojQO1X8afVQHy4X589/str9dClpivORZ2T3btPRZzCuchzyNBmPLY7d2t32YikvH15VLCvIO+97Lxk8FwEzA11zjJS1XIWVvFgSVN8VAoS76fJ17QanQykm5gpYWqmlPdOHtYwNc+eGS6C7NGp0XJJmuEmAvkiGz6ngL6vo68Mpjf2bIxmZZshKdUcfX87jIiEdLSqYI3FNc7C9MgsIPVB81TvRkDX7wCv+ihsooRNRlAQLJ7QMJKIiOhpIpIj8O+V1Th9fD10N+7D764O1UJ0sMtwR6KdDxJtvZFk44UkW29kZJlUzomJqRLm1qYwtzCBmaWJbAZmZm4ix245vywmvRX6cV2doYVGpZEXiap0DdKT1UhLUenT2p7CIi0WNsmhsE0Ok/d2SSEwywhDoKcON7wUuOyjwOVyCmjNlaifrkLz5ES0SkmDr0oFDUxxCLWxMaMp/tXWRxKsZUC9T72yeKWBD/w8WYeUiIhKbg30SX8G4J9LETAzUcggcrtq7g8DxxvGAhEP+n3V6g9156+wPeKYDJ4HJ+pronsqnfBOfGNUPxaG9FNn5HOpls6I8W6CmMqtEJ3hkK2mubj+LlvVCeX8neFd3QnOZWyKtDmm+A5EIH3v1UiYmyhljfSO/h6Pb7jxLX1JlzJ1gTf2PnVV+ebAzfj40MdoUqYJFnZamK9ji5w1C/fnzoPToNfgOW1aztvdScDmWWeRnqKWzUa7j6udGQchKgoMotMLFUC/M2w4MgIDYeLignILF8CyevWC/yCNSh84FwH0tDj9c9VeBjpOx19Blvi/deehMElC7xbxgNUVHAk9ghR1SrZdiNnsOm514O/in3kTdcoNgi/dx91rsUiKTUdSbBqS49KRlqxGRppaXlQP+6q5XO4kHFl/EwG7HzQ/eYIBHzeCm4/+Qvj8vhCc3R0CKzszWNmZw9bZEvaulnBwtYK9qxWcPK2RoUjHzbibuBpzFZfuX0JAZABux9/Otk+R+V7btTaq2jfCmgM2SEr0wEv+nvi1b2WYn5wLHJkDyDI0CqDeEH1DFtsnzHwXkMifZyJmyRLZbNS2detC+xwiInpxiJVZ2y+vx9VdK+B4MQr1AhWwUZdDvENlxDlUkveqB3U/HyXqlTq4Welv7lawc7GEjb0FrB3MZeMv0RTsWS6cRXA9PUWFtCSVPAcQdULFhLm4JYhbdKo8R3gSE3Uq7BOC4JBwW95sE28j0DMVFyoocb6CAoFlAR8o0TEhDi8lp8I/IwNqhTkO6OpjRUYr/KetI0u+1PJywIBGPuhbzws2Fsz8IiKikiE1Q4MxK07jv+tR2YPHonTIkV+AfV8BWhVg5QxN9x+xw9pcBs9FOVXBL8kOb92qhLL/XYMuMQnJ1p6IdG+A++WbIUGRvRmpqGFeroYLfPydUaayA0zNCqesaX6J+uhvrw7AjovhstnorFfroXvtMo83SJ/dAEhPAF6eCTQcmes+T4Wfwsh/RsLL1gs7++3M13GFfTYdcWvWwHX8eLhNnJDrtuG347HxpwBoVFq0eMUXdTuWy9dnEhUEBtHphaCOiUHw8BGyTraphwfKLVlcOFnJd0/p639HXNQ/9qgJdP4KqNQGS46dx1f/rYap3TmYWIumI7psQXORwd3Qs6G8uWnKyI7c0XeTZFfumLAU9J1SH5Y2ZnJ7UQPs3B5945InefXTxnDxspU/n/03GFeOhMkZWdFwQ2Rla9S6zKy2PpPry27eeQm49/u/BnKplBARlIC48GS4eNtC55iO8zHncDriNI6GHpVB9qx0KmdkxNdCY7d2+GNQb5inROpL3Jxfrd/Awh5o9xHQ+M0Cr5euU6txd9LbSNq7FwozM3j/9htsW4klaURERHhsJdaRO//h9N+/we7wZdQItkeKrT/uu9RArJPf46VYlICTly3KVrCHq4+dXIrtXNamWCwnTk9VIyY0GTGhSbh/Lxn37yUhMjgB6nRRgzULnVYG1Z1jr8I55goU6iCc8dXhRFUFzldUwE2pQPeEePRMTEYFtRoxJm5YmdEKa9RtcFfnBjtLU7zayAfDmlWAj3PBlaohIiIqaEnpaoxachInbsfAyswEC4Y1RMsqrkD0TWDjWODuSbmdrmpX7G/4KmZdXoLA+EAotDq0DLbGkMsucDoXhDQLJ0S4N0Ckd3MkWjzM3hbz42V8HWUjzIp1XGUiWkkoa/Pe2nPYdDYUIon7xwF10Keed/aNjs0Fdn4AWDkBE88A1s457i8uLQ6t1rSSPx8fdBzWZsafG9ydOAmJu3fDY9qncB406KnbXzxwFwf+vC6z/Yf8r1mB15InyisG0anEU8fGInjESKRfuwZTNzeUX74M5hUqFOyHpCUAe74ATorlSjo5ay26WSfX6oddwXuw5PwGBCaehULxMHAussvbeLdBG582qO5cHcEXY3DlcBgibscjOf7xci4iiC4GZCHofDRCrsbA1skStk4W8t7SxhQW1mawsDaVy8TzIzk+XWaxpSZmICUhQ2a2JUTrM9pEZturnzSWGXTCob9u4NxefSBffJ57BTt5fGKGXeGRhuOxR3Do3iEcCzsm664bWMIdw2r1Qd+qfeAVcxfY8T4Qdk7/olcDWWsOHjVQkHQqFe69NwWJu3ZBYWEBnwXzYdO4cYF+BhERlVyxqbH4Z9PPSNq8BVVv2SPJoT6i3OrJ8ixZpUELtasF/Gu5okGDMvAoby9Lo5UUWo0W90OTEXErHuG3EhB+Kx7xUQ/HaEOmunPsNbhGn4NtwgVcqJCGo9UUOOOrgL9Wi14JceicnAI7LXDUpAFmp3bGUa0/lAoFXvL3wFttfVHHR3++QkREVFzEpWRg+OKTOBcSBzsLU/wxshEalXPUX8PvngaIa1YLe5xtPRE/J1zEmcgAWKXp0P2iOXqcN4fp/QyZcR7u3gjxjr6Z+1WaKGS2eeV6brKkiJWt/nq5JNFodfjo7wtYcypETgR81acWXmucJaNbZOn/3gqIvAzUGgD0W5Dr/tqsaSNX9K3uvho1XI2/tg8aMgSpp07Da+bPsO/S5anbi0TBv78/Lc9tarX1RutXqxr9mUQFgUF0KvFUYWG4M3wEtCkpKL9sGSwqFXAG+rWdwNZ3gcRQ/eM6g3Cp0VCsC9mN7be2ZyvV4mTiizfq9UNj81ZIvaOAbwN3GQAXLuy/i/9WX5c/i4HL2ctWduUWtdKcytjIDPDi1HH6/L67uHk6Qma3iTrsjxr+dQsZ4BdNSw/eO4gVFzYjIPooFEqVfF00OG1apin6+vZG+6gQmO/9n36JmNIUaDkZaD1FtCgvsOPVZWTIGe2kAwegtLZGuT8Wwapu3QLbPxERlTxB9y7h2KKv4bA3CDBviEj3+tkC56IHSJiJFlG2StRrXAb9O1WGq92Lld0kJsxDrsTob5djZF1RA4VWDafYa3CLPgvrxPM4WSUZB2opEVxWga5JSRickIhqGSoEmVXG7OSXsEXbDBkwQ1s/N0xsXwUNymdf1k5ERFQUohLTMXTRcVwNT4SjtRmWj2qCWnZJwKa3gFv75Ta3KjbDLM9y2Bt+FE6JOvQ8rUSnACDZohxCyzSX5wha5YMAuQKyKWjVxh6oXN89c8V4SSZKxU3fcgnLjt6Rj/+vix/Gtan8sPzc3dPAoo76RquvrgKqdc9xX6P/GY0T4Sfwvxb/Qy/fXkYfy4127aEOC0P5VatgXb9ent5z92oMNs08C1MLE4z6vqXsNUP0vDGITi8EVUQEtElJsKhcueB2mp4I7PwQCFguH2Y4V8T2Rq/hz/tncPn+5czNtOmu0MQ1RB/Hzuhk7S2zyEWWt9B2sB9qtPKSP8dFpODWuSh4VrSHWzl72WQst5lWw2AWcTsQgaeOIy0pEamJCfKWnpwEdUYGNGoVOox6C+Vr64PFN08ew+4Fc6A0NYVSaQITUxOYW1nDwtoGlja2qNOpO8rV1DdaTUsSpWTuwdbFBTaOTnL7nI4lPjIVoTfjEB4Yj7DAeKgzNLIuu+EY9yy7Iuu2JjoB39zaiXSnozC1eVjyxcnCCQMrdsPAwNNwvb5L/6RbNaDvAqBMwTV+1aanI2TMWKQcOwalvT0qrFoJC9+HWQRERFQ63Di9Bxd//R62t1wQ5d5clmqRDcAlDSJMU3HGzBzqMhYY1d4Xvet6wTyfq7xK2gV0VHCiPFcJDIhEbNjDRACFTgOX+5fgGX4M6bpL+K+WFnvrKFBVqcLg+Hi0S0lFoqkbZqa9jNXqNkiHOVpVccV7nfxQl5npRERURO7cT8awP07gzv0UuNlZYMXoJvCL3qVPhEuLR6S5DX7zb4UNCVfhGa1Br+M6NLtqg0i3xjJ4nmLjmbkvUbKtWtMy8G3ontmD7EUiru2/++ca5u4PlI9HtaiIT7pXl2Vhpd2fAYdnArYewFvHcizr8s2Jb7DyykoMqT4EUxtPNeoYNEnJuN6wofy56vFjMHFwyPOxr/j0qFxJ3+n1GqjS8AlNUokKGYPoVCKJf0DTr1yBpb9/4XzAnSPAhjFAXDASlEqsrdkJK9WRiEqNli+bKk1R0aoZbp2vheaxlVFdZwal+mEpF1NzJcpWcUKtNl6oUNv1iR+h1WoQHxGO6LvBuB98B9EhdxATehcJUZHo+d5HKFezjtzuwr5d2DXvlxwP9eV3PoBfM30N8CsH92H7nB9z3LbbxCmo3rKt/Dnw9HFs/O5L+bPSxAT2bu5wLusNZy8fuHj5oFytOrB3fdDB/BGqdE3mJIBYOr5oyqGH2eoKIMRUiysW8UivchYZTkcQlRopXzJTmqGbU00MvX4UfgmRgNJMlsVBswmAsmCCF2JFQvCo0Ug9dw5lvvwCjq+8UiD7JSKi4u/2oR24PGceNIk1EO7ZFCozff8QwdLsDg6bWeKIqT0qlLXDOx2roJO/58MLx1IoNjwZt85GIfBMJKKCkzKfN1UlwTPiFFyjjuFc+bvY0UCJNDdgRFws+iUmI93EBTPTumOVup0Mpr9cuwz+r3M1lHNhzXQiInp+Lt6Lx4jFJxCdlAEfZyusHOSHcsc/Ay6sRboCWObthwUWOpQNSUXfI1pUDy2DEO92iPBoBK24FhVjnoUJqjR0h3+LsvCoaP9MjcFLikWHbuPLrfrEwF51y+L7V+rokwlUafqyLtHXcy3rsvP2Trz/3/uybO1fPf4y6rNTL1xAUP8BMHFzRdWDB41679ENN3Hmn2BUa+qJDiMKKRZElAsG0alEivzxR9z/YzHKfPklHPv2KbgdqzOAff8DDv+CGKUCi9298ZetBVI06fJld0t3vFppMO5F1sCSg9Gw1AITEq0gSqFb2ZujUh1X2WTEq6rTYzVUdVotFA8CxSLYvWv+HKgz9Pt9VKexk1CrXSf5c/jN67iwdxes7O1haWsHKztxbwtTcwuYmJnJwLe1vX72Ni05CYnRUdBqNPImMtUzUlNl5rp4rULdBnDyLCu3vXH8CPYtW4CkmPvy2B7VbcJ7qN6qnfw5JvQegi+eQxnfqnAtVwEmpqbZJjSiQ5Jw59J93D4bJRumGmihwz0nJRoNT8bft/7E+ajzma+1Vdhh7N3rqJGhAiq0AvrMAxweaXDyDHXyRRDdrq1+woCev5iYGHz22WfYtWsXgoOD4ebmht69e+PLL7+EQx6zDQrDpUuXMG3aNJw+fRp37tzBzz//jHfeeSfX9+zfv19ud+LECSQkJKBKlSp4//33MXjw4Od23ESUu7B9O3FuzlIk6kSt87rQKfQTvRa4D3vbq1ii9MFlpRsquFjj3ZeqokftsqU6eJ5TQP3q0XBcPRqKlAR9aTbBPv4WvO8dQKxZALY31iHQFxiWEI+BCUnIMHHF/1L74m9NK5iYmMjmo5PaV4GDdclf9k5ERMXbkZvReHP5adlMtHoZe6zqkAqnXe9Al3AP/9rY4Mcy5WB+Lwn9D+pQIdYfId7t9SvTHhClVf1blkWVRh7FomH487bp7D2899c5qLU6ubJs3pAGsLEwBe6eAha9pC/r0ud3oM6rj703MiUSHdZ2gFKhxKFXD8HO3C7Pnxu3YSPCPvwQ1k2aoPzSJUYds5j43zHvAly8bPHqp+yBRs9f6fuXgkq82DV/4f4C0eCzgMUFA2tHIC4sAEuc7LHK0Qmp0AKadFSzqYFe6mFQXHVGREAGlkCfkf5u92poAQv5j7hHJYdsF+SJMdG4c/4s7pwPwN3LF9B68MjMoLSdm7sMoItAuLOXN1x9ysubi3c5OLh7wN794dIkT9+q8pYXomSLuOVFlSbN5U1kxCfHxsrSLvfvhSDmwc21/MPa8rcDTmH/Mv0stJmFJbyr14BPzTooV6M23CpUhFs5O3lr2LWCbFJ683QkLhwNRVJ4KoJSM3B6ux2WjV6I8JRrWHNiA3bEb8R+XSL2e5VBm9QMjAs9jhpzmwO9fgWq98CzMnVyyhZA1yQlQWlpCUWW4D8VrtDQUHn74Ycf4O/vLwPWY8eOlc+tW7euyL7+lJQUVKpUCf3798e7776bp/ccOXIEtWvXxtSpU+Hh4YGtW7di2LBhcjLg5ZdfLvRjJqKcJZwLwLHv5iNSWx/xbm9kPu9keh4Vnc7gB1VdnEZ9uNpa4KuXqqJ/Q2+Ymbz4ZVvyw8nTBs36VEaTXpVk3dErR8Jw60wkEhwq4bJDJZin90XfM4egPHwIWxsBS6o7YHBiAr7QzMck0934OHkAFh3SYWPAPXzYrTr61fcqFdl8RET0/G09H4rJa84hQ6NFq4o2WOi1BRbrfsc1czN861Mekfe1ePWvFHgnNkWwT0ec99avsBbDkqhxXqeDj+xJVpr1qusFR2tzjFtxGgdvRGPQgmP4Y0QjuHg3BNp8AOz/Ctg6GfBqALhWyfZed2t3+Nj5ICQxBAGRAWjt3TrPn5txS19KJj+leEXMQYgNS4ZGo4UJz+noOWMmOpUoKadO4c6IkYBaDddJE+H21lsFs+NrO5CycSyWWOiwzMEeyQ+C4Y3MWuKlxAFIuKiAWqXP1lZBhwUOaZj2Si0MbPSwo7XI/L575aKsXx50PkAGorOq27k7OowaJ39Wq1RIiIqAo2eZHGuRFyfXjh7Chb3/IDzwOtKTk7O9ZmFjg1c+/h88K2cfWIVzl6Mwcf15BCenwdPeEt80qoxL62/BqYIFbvqcwN/qpdBAI7d9KTkF78TEoVyjsUDH6YCJWYE1ng15cwysmzaF58cfFcg+83UcaWk5viZWKJiam+dpWygVMDO3yHVbM0vj6/clJSVh4sSJMsBtbW2NKVOmYNCgQTLrOjIyEra2eZucyc3atWsxZMgQJCcnwzQPExqff/455s2bh+XLl6Njx46Zz//xxx8yoH3v3j2YZ/nejFWhQgWZhf60TPQn6d69uwyoi2MhoucvPSgIx76Zh5D4yoh3eHARplPBzeowmjnsw0+a1tigbiYD5qLe54T2vrCzZHa0sZLj03H5UCgu7g9BSqK+bJtSq0KZsCOwif0XO+vH4VxNHd5MjEffxCQEmNTDRymv4YbOG40rOON/fWqiqkfes9OIiIieZumRINkgU6cD3qySiA9Sf0Ly/ev4xdkRB9S2GHjABD6JzRDs8xLSLfUNsM0tlKjRxhu12nq/kLXOn8XZkDiMXHwCsSkqVHK1wbLRjeHtYAEs6wUEHQQ8agGv/ysuMrO9b/qR6Vh/Yz0G+g3EJ00/yfPnhYx7C0n79sFj2qdwHjTI6N4uc9/aJ38e9UNLWNnm/1qQKD+Ylkklhio0FHcnvS0D6PbdusJ1nD4g/Uw0Kmj/nY4tFxZjlqsDoh4E9ppo26FFeG+k3AFiIGqd65BoqcBRRToCrXT44bX66FqrTLZdiVrma7/8+OETCgU8K/mifO16KFezriyFYmD6oAxLSSFqroubKPsSFRyEkEvnZXkXMWmgUanh4u2Tue2lA3uQnpKCqk2ao46/G1aVaYYRi0/iZmQSFu+8jsYKU8QGpcMlqA7edv4FoZUu4m+TxdhtA+yztsKr11ZgzL0TcHxlGWCf/TvOj7QrV5B+44a8WdWqCYeePVEUfhmec232ivUaou8H0zMf//bmYKjTn1zqx9u/JgZ+9k3m4wUTRslms1m9t2ar0cc3YsQIXLhwQZYuiYiIQN++fXHx4kUZvDYE0FeuXIkxY8bkup8dO3agVatWT3wtPj4e9vb2eQqgC5MnT0Z0dLQM6J89ezbz+QULFmDo0KGZAfSnBfhF4F4E4wuS+F2qV69eoPskoqfTpqbi4k+Lcf6iKeIdOgEiiUyXARubPehjsw4HLJuiW+IkJMIarau64bMe/qjs9uyTgKWVjYMFGnWviPqdy+NWQBTO/RuEiDvJuOfVBooyLdHizgl0CdiFTY0VWOFnj7fjrmKH9iMs1nTHT0G90G1WLMa2qYyJHXxhYVr8kwaIiKj4EmVEf9x1HXP23YQCWsyveBgd7y3ELiszzHHxQrtjZngnsiXueXfEDU97+R5rWxPU71pJlm0x9PSi7ERz8HXjmmPYohO4FZ2MfnOPYOmoxqjWdwEwryUQcQHY9QnQ/Yds72tfrr0Mou8L3oePmnwkS7vkRXrgg0z0SsZnoouV/6KGvTpdg4xUDax4ikfPGYPoVGIumu9OmAhNTAwsqlVDmf/979mXCCdH48xfA/GtKgSX3VzkU162Xni3wbsoF1YLe49flcu93Ks7YWVMLAJSU+BkY4bFQ+rDMzUUO39bI0uhiNrhgsgqF81A7d08ULFeA/jUqA0r2xcr+0pkTLtXqCRvDbr3ltn3seGhssSLwcnN63H/bjD2L10gm5OKRqZ/jmiEt9dfxoHA+whwUGNSOU8gMAkpMWo4xlTDm1bfIbT8JWx0WIgVDvbYpAnFhGVtMbDb7zCp9Gx1ze3at4frW+MQ/dtchH06DRa+voXXkLaEEoHqv//+WwbJGzRoIJ/r06cPli1bhkWLFmVu17NnTzRp0iTXfXl5eeX4GaIe+ptvvpnn47Kzs5N11cuUKYOrV6+iWrVqsqb5sWPHsHDhw5JOWQPsTyIC9wXpr7/+wsmTJ/H7778X6H6JKHfhW/fi4MpziHSo8yB4roLW+gBesf8TSmsnjIh/GwGJVeBqa46ve9ZA91plWE6kgJiYKmXNWN+G7rh3PQ6ntt3CvevxCCvTDGGeTdAu8CQsArZiWXMllntl4KOY7ehjfgxTU4Zgzj4d/r0SgR/610FNr9K9dJ6IiPJHrdHik40XsfpkCNwQh/WeS6CIOoOJTk5wvGSNsbebI9SrK25X0l9/29qboMHLvqjerMxjvcrocSLhYP245hj+xwlci0hE/3lHsWh4IzQWNdFX9gNOLgC8GwF1Bma+p0mZJrA2tUZkaiQuRl9EbbfaT/1qtWlpUN29K3+28DU+iC6YmStlEF2doV/RTvQ8sZwLlQgxy5Yj4quvYOLkhApr18Lc+8mBuryKDz6GH3e+gQ0W4j8CBfxjGqNDpZcwvEcfmJuYQ6vR4sw/d5BS1hITNp5HQpoa1W0zMME7DqGnDslSLIKpmTnGLVwJc0urAvpNSzaRqX5620bcOHEUodevZD4var9XatAER8yq4s8Q/XL6Mc0roLudPc7tvYuEqFS4V7BH2aHp+On4N7ieGCS38U/PwKd+Q1GzzSfPfFwh48Yh+cB/MPPyQoV1a2Xd9OepOJdzEUHpZs2a4fbt27LEiSAaaYrmmeHh4XB1dcWzEM04X3rpJTg7O2Pz5s0wMzOupIJ4b8uWLWVAXdQxP3r0qDzmZ5Wfci779u2TddDnzp0r66ITUeFLDY3EwS/WIFBTBVoTc9noKsniOFq6LUNzTQRWmffD9ISeUMEUfet74dPu/nCy4fLewhZ+Ox6ntt7CnUux8rFCq4JX6EFkqP7BynYpaGGdhLdi43Fc1whT04YjVuksy+qMb+fLuvRERJRnaSoNJqwKkBOyrZXnMcd2PlZbqnEmwgFdz9VDtMfLSLNyk9va2SnQqI8fqjbxZL3sfIhPUeH1ZSdxMigW5qZK/PJqPXSJXAj89z1gYgGM2gl41c/c/v0D72Nn0E4Mrj4YHzT+4Ol/y6tXcbt3HygdHFD12NF8JTv8PnG/LLU79H/NYO/KOAw9XwyiU4lZuhW7fDksqvrBpmmTZ9rP1oNf4oebaxCjVKJcnD86hb4G0wR72DpZYMiXzWS2laFb9ftrz8M16S7aZVyEc+wtsQP5mrmVtSxv4t+mA7z8/Jnp9gRxEeG4cmgfrhzcL5uWCn7NW+NWzT74afd1+bhbLU/88EodhF2KgZW9Ocr6OkKj1WDN2T+xd+cZnPY8AI0yHQOsfPBOz1Wwtcp/4FsTH4/b/QdAFRwMm1at4PP7PBm8JiAgIAD169eXNcbLli0rv5IVK1bgq6++wuXLlzO/ovyUc0lMTETnzp1lnXXRkNMyH/Xa58+fj5kzZ8qMc3F8X3/9Nd5442EDwfyWczE2iH7gwAFZC/2nn34yKqOeiPLv2vJdOLQ3HmkW+hVjau1NaMqvxDj1OagsyuCNxDdwXOMHD3sLfNuvNtr66RuH0fMTeScBR9Zew72bifKxiToVPiH/4obzXuxpkYG3UuPQKtUEH6YNxxZtc9Qv54hfXqsHbydr/pmIiChPQd2AoCi8b74ebS2340cTF7Q8VgM6615IstOXFbW00KJxHz/4t/Ji8LwAJi0m/RmAXZcjRP4WvujpjyG3PwCu7wTsvYA39wO2+vOtg3cP4q09b8HBwgF7+++VCYm5/j23bkPolCmwql8fFVatNPrYNCot5k3cL39+/adWsLBmvxt6vhhEp1IjPCkM07eNwOG0ULgmeaP9nT5wTvCVr1lYm6JuRx/U7VhOLvf6dd9N/LBLH+gdZHkDLlf+lT+L+uY12naEb6Om2bKBKfeJi4jAG7iwbxf8W7WHVzV/bAi4i69WHYB/7HlkVG+FOWNegovtw+/z5LbbOLHlNjTmyfjPZyOuuZ1EGYUSX7T5AU0rPGwwaay0a9cRNGAAdOnp8PjoIzgPG8o/nZjwiIuDi4sL9u7dizZt2sjvZMCAAdi+fbsMghsyBMTPol7608q5WFlZZWagiwC6hYWF3JcIpOdHVFSULOkimonOmjULYWFhstSLwc2bN59azsXd3f2ZguiiVrzIQP/2228xfvz4fP0eRJR3yfeisffr7QhW6/uHmKhiccV7EwZb7kTj9HT8Z9UBb8W+hiRYo0sNT3zdtxazz4tYyOUYHFl7FdFh+hVSlqnR8ApZj521LkJTNR2fxsTgjKaxDKZrLJ3x3Su10aXms/c+ISKiF1NYfKosL5ISeRuzLGbjlE0kYq5UQMWEvrjvWkduY6rUoH6XCqjbuRJrnhdw+ZxPN13CnyeC5eMpbcpg/M03obh/A/BpCgzfIpabywS4Tus7ITIlEt+3/h5dKnbJdb9Rv/wiy6w69n8FZb780ujjSo5Lx5IPDsuyu2N/bSdrpBM9TwyiU7GlTU9H9Lx5cBn9OkxsbZ4piLs9cAtmHPkMmnRrtAjqicr3G8nXRNZ57XbeqN+lPCxtzBAfG4eZsxZhb4wV7liXxxutKuKdll44uekv1OnUHU6e+ixdenarRDD0yG5ooUCoU1UMGTMSDerVlK8FBkTiyN+BssyLEGcdjP0VNyDc/hYGlu+KyS2mw9osfwHZ2D//RPzmLSj7/ffPXBboRdK/f3/ZLHPTpk24fv26zCYXwe/Vq1ejQ4cORu9PBNA7deqElJQUbNiwATY2D/8bdnNzg4mJcY19RINTUUpFlFBZvHgx8isjIyMzu75bt24YPHiwvIlsdl9f/aTanDlz5DHv2bMnWwmXt99+G5MmTcrcl2hsKkrUEFHBurrhBA5uC0eGqa0s3ZKmPYigetvweXQgHGGKrxWjsCC5FazNTTG9Rw30b+jNFWHFhE6rw83TkTi8+jKSk/Wr95zvX4JZwlr82TEawxVxaJlsjsnpb2C/ti6GNi2PT16uzqajRESUzc3IRNnosmbiQYyzWYR1iQ6oc6UL7nu8BK3SDAqdFjUaOaLxq6IPGUu4FcqYrtNh1p4bmPnvDfl4Qm0d3rszFor0RKD+MKDHLxDR7DkBc/D7+d9lTfQVXVfkek52770pSNi2De7vT4HL6NFGH9PdqzHYNPMsHNysZBUBoueNQXQqtsK/+gqxy5bDql49lF+1Ml8XyHFpcfjyyGfYFbJXPm4ZXQE1b7wrf67axANNelaCvYsVkuNicXjjepzdtQ0mGhUiLNxQc9xnGNZMXx+aCt7dKxex76/ViLz8sCmkY9Va6DJkGLz8qsulWuf33cWp7beRkaZvGnLT5QyOVNgAZwdLfN9+Fmq66oPuxp4MQKOBwpR9lbOKjIzE66+/jkOHDskAt8i4FkH09957DzNmzMBoI09yROZ2u3btnvha1trr4n7EiBGYPn16rvsTTTzHjh2LgwcPyvro+RUUFISKFSs+9rzIwBfHLIhjWbJkidxWEMe3dOnSXN9DRM8uI12NfV9tx80IfYkm87QwHKmwGm2cLmFY7H0kW5bFkMTxOKepiKoetpg7pIFshEXFjypdI5uPnt0dDK1OIeule9/djZM+uxFfKxmfxMZgXXp3/Kjuj7rlXTF3cH242xtf7ouIiF48p+/E4o0lxzBStRI21geQfrElzMz7Id1Sn7zi6aZD23FN4FKW5wDPw6rjwfhk4wVodcC75YMwKeJjKKADOkwDWr2H6NRodFrXCSqtCku7LEV9j4c10x91e+BApJ07D69fZsG+Uyejj0XEBw6uuY4KtV3R/a2nNzIlKmgMolOxlHziBIKHDZc/i9rVtg9KTBjjbORZTNk/GfEJKVCbJmFMQgpe7/QLzt6uiXL+znAvb4+0pCSc2LQWZ3Zshkalku+7b+GKhr0GoE/frsxsew6uX7mGRb8uhGvUVSjFYPygdnr3Se/L7z8lIQPHt9zClUOhsiR9iPNJbPNbAVOFEu80mIyh/kOhVOS/tnlGSAjMffS19Oj5ElnqooyMqKPetm3bPAXlY2Nj4ejo+NyOkYiej4hrEdj58zEkQV+qyTT5X6xv9S/+F3MHjdPScNW6AQbGjEE8bNGzTll806+WzESn4i0uIgX/Lb+AkJvJ8rFNcijso1ZgXds7GKuIgW1qebyVNgE6+7L4fWhD1PXhv+9ERKXZ3qsR+GjlfnxoOguX41Xwufca4p3qytesTNLQakgt+DblCrTn7Z9L4bJOerpai0/cDuL1xLn6F/ouAGoPwPQj07H+xnq09WmL2e1n57if681bQBMTg4ob/oZl9epGH8f+Vddw6b97qN+5PJr1qfwsvxJRvjCITsWONiUFt3r1hiokBI79+6PMl18YnWm89NJS/HryNzS40w3VIxuhZfnP0WDwb4B3w8ztLh3Yg/1LFyAtOUk+DrPwwM2yTfG/if1R04sXcc+7ecn7f+xF8ol/UD3pGkzqdsC7H7ydbRIjKiRR1lptbPM9vtecxm4bfTmXVl6tMKPlDDhZOhlfq33GV4hdtQrlFi+GTZPGBf57Ue62bduG3377Td4/DYPoRC+u81su4dDWe9ApTGGeHodg6xW40PQeZt+5CR+1GjssumJi/GuA0gwfd6+OEc0rcJK7BBHjbeCZSBxYegFpGUpZosf77h4cK78DTn6xGBmnwZT0t3BUWQ8zetdE/4ac2CYiKo3WngrBig2bMMTsF8RfbQmNbV+oTa2h0GlQq741mo4UfcmMKwlJBedkUAxGLzmJhDQ1vrP/CwMyNspzMwz9G7edfdBrYy/ooMPaHmtRzbnaY+/XpqbiWj19lnrVE8dhYm9v9DGsmXEC0SFJ6PR6DVRp6FEgvxeRMfKfvklUSCJ/+lkG0E3LloH71P8z6r0JGQmYtHcSVuxfjz7n3kOt8NYw1VrBrMbv2QLogpmlpQygx5g7Y4tHV1yqPxxzPxzCAHoRsDQzwaw3OqLKK6Ox0msg5sWUw3t/nUO6WoOwG9fw38rFcHA1Qa/JjVBm9HL86NICn0bHoN3NAUg8YY6BW17FlftXjPpMEaDXqVWAVouwTz+Vgzo9X927d89TAJ2IXkxqlQa7Zx3GwW0RMoBuH3seuyt9i/tNwrHi1jV4qzWYaTIS4+KHwN7GGqveaIqRLSoygF7CiPHWt4EHBn3VGr61HQGFEnd9XkLVpP9Dmb1+mGpvg+nWP2GEbhPeX3cO3+28qi+9RkREpYL4N3/u/kAc3fgzOmUsR8r1d5HuOEQG0O3NE9F/agO0GtOCAfQi1qiCM9aNa44yDpaYmvAK/lU2A7QqYPUQVExPy2wqOuvMrCe+X5OYqP9BoYDSTr/y0BhpySpE39UnQJatwqRHKhrMRKfiW8Zl0ULYtmiR5/feSbiDibvfhvslf9QJbQ8llLAxi0f7EbVRrkFlRAcHIeF+FCrVayQH6gX/3cKa9dtxy6oC2lbzwOxB9WFrwaXhxaHm2qebLkKj1aFJBSd0C/oL0bdvwsbJGW0Gj0S1lm1lI5mIP7/GuoPN5XtC7W/gcNV1mNphMrpW7Jrnz9IkJeHWyz2gDg+H88iR8DBy0oaIiPInKTYNW787hPux+sxk58jN+L3dXrS2t8W0oCtQKs3xtuZtbEmvh0puNlg8ohHKu+S/yTgVH7fPRWHforNIzTCBQquG191N2F5vP16zv4+YpAb4UPU6uteriG/61Ya5KfN9iIheZFqtDv/beh52J6fBMsQJMBsIrYmF7KVRv4U9Gg9pAqUJx4LiJCw+FcP/OIE7ETFYbfk16uEaYO+N4FeXote/b0CtU+OPzn+gkWejbO9Lv3Ubt7p1kwF0v5Mn8nX+sH3uBTh6WGPw500L8DciyjsG0alYMTSaMLaMy9HQo/h8xzdodukVuKZ4yef8nM+h1XuDAStbHF23StY9t7SxxbAf5+KbfcFYcSxYbje0aXl81sMfphyci40D16MwfuUZJKWp0NQsAm1jjyA5OkK+5lXNHx1HvwUX73K48scCHDztDbXOCukmKfiv0l9o07YeJtWbBBNl3pb6Je7fj7tjxwFKJSqs/hNWtdmghIioMEUFJ2LzD8eQlmECU1UyzOMW49cu1zFYaYV3Qq5DbWqD4amTcURTHU0rOeP3IQ3hYG3GP8oLJC1JhX/nncKdm/pVYM4xlxFksxxOtULROM4VYzPeQ1XfKpg7pD7sLPm3JyJ6EWWI+tqrD6PKhY9hFtITyfb6Uh/2yii8PPUlOJXXNxKl4ic+RYWRS07gVnAINlhMR0VFGOBZC/+r1R5rbm6Av4s/VnVble2aPPXSJQT1ewWmHh6ocmC/0Z958K/rOL/3Lmq0Kou2gx8vF0P0PDCITsWKOioK0XPnwu3dd2GShyU+IqN89bXV+PbEt2h8uwfqhLWDhTIe7SvtQaUJM3Dr8nXsnj8bSbExcvuKDZtiu11z/BuUKlYR4eNu1TG6JZeGF0dXwxMwavFJhManwdVKiY/KRSBk3xao09OhNDFF074D0bj3K0jc8St277JEpKqqfN81t+PQtQzHt+2/hrWZvm7609x7//+QsGULLPyro+LatVCYsNYeEVFhCL50Hzt+DYBaq4RN0j3E6ebjj46xeE9lieGhN5Bq5oT+Se/hoq4S+tX3xtd9azEb+QUlzuEu7r2DQ2tvQAsTmGUkwCpmMS60uoixiVqMSf8App7+WDaqMdzsLIr6cImIqIB7Yn20eBP8zi6DMnUoMiycoNBqUM0/HW0ndYdS+bA3FhVPyelqjFl+GncCL2GD+XS4KuIRXakNephGIUmVhE+bfooBfgMyt0+7dh23e/WCibMzqh45bPQ5w/JPjiLxfhq6jqmFSvXcCuE3Ino6BtGpxNLqtPjx1I9YdnmZfNwjUYOXbnVF4+p3YdLvF+xfvUo2DxUcPcqg7sCR+OSUBlfCEmBppsTMgfXQpaZnEf8WlJvIhDSMXnoKF+7FyyDKd13KAUc3IPDUMfl61/GT4d+6PTQHfsKpzddxKvkV2erhnv0NBLU+gDkd58DZ8ukZDOqYGAR26QptQgI8p0+H06sD+YchIipglw+HYv/yK9BBAafYq7htsxCrW2fgI5UVXrt3HUnmruiVOBWBOi+80aoiPupWnfXPS4GY0GTs+Pko4hKVsnmcx70N2NNkD95RJOPj5HcR49oAK19vCk8Hy6I+VCIiKqDg64y5c1Dx7D1kWHSWvTLM1dHoMq4BfBpU5ndcwiZDJv0ZgPArR7DG/EtYKTKw0r89vkm9CXtze2zpsyXzejzjzh0Edu4CpY0N/E6fMupzokIS8deMkzA1U2LUj61YH5+KDItLUbGQeuGiUdurtCp89s+XuLU1GQqdEm8npGJG9D20q3sTJv1/xdKP/08fQFco0ODlPmg0+Su8dSBFBtBdbc2x+s1mDKCXAO72llgzpik6VveQy/3e3RaEuOaD0f3t/0OVxs1RvWVbuZ1Jm8lo8kot9HL6DGbKONz0OogL9y9g2I5hCEkMeernmDo7w23iRJg4OkJpxYt0IqKCduafO9i3/KoMoHuEn8Alp3lY3UaFDwwBdFPnzAD6ey9VZQC9FHEua4MBM9rBt7oVdAoThHu/gjZnR+P3eBd8Yvc9fO/vw8D5R3Evjg3AiYhKuoQ0FWZ/9yEqnzFDhmVXGUB3sbiJ4bN6MYBeAlmameC3wfXhW7c1JqomQqNTYODlvfAzc0JCRgJmnp6Zua3S3l7ea5OToc3IMOpzbp+Nkvc+/s4MoFORYiY6Fbmkw4cRMvp12HXuDK+ZPz816yxFlYJP//4KnocawVplB3u3jRhqshQo3wIYvA4wt8buBXMQcuk8Oo99B7dN3DFm+SkkZ2jg624rm5P5OOetzAcVD6LJ6PTNl7D82B35eEI7X7zXqWrm/1ZUaWnYvfBXNK+sgc3RHxBiocG4Cn4IVSfCB5XwffevUMO1Rq6foVOroU1KkoF0IiIqOKe2B+H45lvy5/J3/sF+3634p6ESU9XWGBJyFUmmTuiV/JEMoE/v4Y8RLSry6y+FxFLt8ztv4vDGO9Ap9OV+/p+9uwCP4lr7AP6fdclm424kBLfgTrFiLUVaqDv1r97e9tZ7e+t660Zb2tJCjQrS4u5uISQkEHdbl9nvOWcSCiUKycbe3/PkmdnNZDNsljln3nPO+57Sf4QxndLwV+VVWGe4FN/NG4qYQOrDEUJIW1RqdmDB0/dDWzIOTnUAZG47evStwJh7aBVweygQ+9zvh+He8RleUH6BfWoVrouQVv1/fvHnGBw+mLfzx5L6w2OzIeGvP6GKiWnQa/MUvv/ZwVeujb+xO7oNDW/mfw0htaOZ6KRFeUQRBa+9zvcVoSH1BtDZaOa/57+C2HWjeQBdo87EDCxFid8gmKZ8yAPozEXX3YrrXvkf9jv9cfOXO3kAfVh8IH66czgF0NsguUzA85f1xIMTpbzn761NxWM/HYTLLfLHm75fgKMb1+LrRTtxPOpaxDtd+PpEMvp6umDczlvwxTt/YV/u/jp/h6BQUACdEEKaELvp2fH7idMB9E7pv2NTvBRA/z8hgAfQLQojZpof5wH0V2f3oQB6B8b6gH2nJGLGg/2hltlh9olEuPMRHDzQD0l+i3Bx5c98RnpmiaWlT5UQQkgjFVXa8N3Dj0FZOYMH0FX2fEy4IZgC6O0Ey2H/7PSe8Bt9Jz5yXYp+dgdmVZr59/696d8ot5fzdl4ZGcmfc2RkNPi1izJNPIAuV8jQqU9Qs/0bCGkImolOWlTZkiXIfexxyAwGPhqp8Pev9dhyWzlefu9zRKX2448DDPswW/sKjst6YvUJf4R17orLn/wPZFUVoL/bcQr//uUgPB5gau8wvDW3H9QKeZsNRFRUVCA3N/f0V35+Pux2O1wuF/9yOp38OIVCwb+USiXfBgQEIDw8HBEREXwbHBwMmaztjp+xv+sTvxyE6AFP8/LuVUlwVhRj2btvIDv5MD+mZ2d/jJf/gWTHMKwrfwAyjxz5vum49K4kDIqTqr7Xhr2HlX/+BcuuXQh78gkv/asIIaT9YQH0nUulm6SEtCXY2WktFo8ArlSG4t8pO+GUaTDH+m/s83TGizN74+ohDZuR1NaxNrugoOCsNr2srIy349VtOvtibfWZbbpGo0FYWBhvy6u/fHx80B6ZSm349T/rUGZRQeZ2QF/8JYTBm5BZeQlWGOfihzuGIdSX0q8RQkhbkJ1fgqWPvw+nagR/rLMdxOxXr4VvSCDaOpPJdLotz8nJ4ffoNpvtrDZdFMXT7Xl1m+7n53dWex4SEsK/1x68vTIZCRvuw3jFdlweGYFMpRyT4ibhtdGvIeehh1GxbBmCH3gAQbff1qDX27T4OPavyUTnASGYNK9Xs58/IXWhIDppMaLNhrQpU+HKzUXIww8h8NZbaz22zFqGt15fhJDsRP44LmQ1JuEDrCtPwv48afZ5dM8+mP7Qv6HW6fHh+jS8uuIYf/6qwdF4YUZvPpu5NWMN7eHDh7F7924cOnQI2dnZZzXIVuvZuUB1Oh20Wu1ZjTHjdrtPN9gOhwPl5eVn/ZxcLkdoaOhZgfUuXbqgf//+/MtoNKK1+/NwHi9gYneJGBjrj/k3DYKPSobtPy/G1h+/g8cjIsRfjekBG1Eo9MTS8kehcKlRoS3C6HmdMKLHoFpf25GVxQuewO1G7DdfQzdwoFf/bYQQ0h7sX52JTT8c5/udU3/CkejNmD/GhYmaCLyWvB0Q5LjZ/jDWi33x3PSeuGF4HNqToqIi7Nmzh7fpaWlpZ7XnhYWF/Ia6GguW+/r6nh78Zl+srWaDumcG1c1mM78xPxMLop/ZnkdFRaFPnz4YMGAAunbtyl+nrXLYXFj68gbk5PGlizAW/gzr4N9RWjkJKwOvw6LbhyFAr2rp0ySEEFKHjLQMrHr+D9i1PfhjP6zDle89DXkbCRize+tjx47x9vzAgQPIyso63Z6zLQuin4ndn7P79DOD5mwG9pn36Oy+n02Q+2dfgE12q27P2VdCQgJvz9lXYGDbGnB4769DGLTpFug0J3BdRCjcgoD/jvwvRqwvRsGrr8JnzBhEf/xRva/jdov46rHNsFY6Me3uPojrTTPRScuiIDppMcWffYaC19+AgjUQy5dBptHUmsLlwZ8eR6+Nl0IuytErfikGV3yD33P7Ituk5cVDh19+NYbMmgNBkOHFZUfx6cZ0/rN3XpSARyd1rTdNjLex4HZ1wLz6izXKbGY5a0A7d+6M6Ojo0w3omY1pY2efsUaajYhXN/RnfrHn2BfrGFgs0vJo9rurG2v2xQLrbKS8tdmZUYJbvtyJCpsLfaKMWHDzYPjpVDwX/u9vvwJrRTk0KgEzwvcC+kgsLvs3VFYDrEoThtwajlF9aw+k5z7zLMoWLYK2Xz/Efrew1X1+CCGkNTu2PQ+rvjhyOoVLqf8mvDzZiiRdBD49uh1qD/CA4078Io7Ck9O649ZR8WjLWFD8zPacfZ06dYp/jwXHWTC7tvacPWY3zQ2ZfcZXSlVW1tqesy37vSdOSOlz9Ho9+vXrd1abzs6lLc10E90i1n64DcmHpMED/8IVKB6wCBbzRGwKuxHfzhsCX400iYAQQkjrcmz3QWx4dz8cmgi+qig4dAsuf+F5tFYswJ2cnHy6LWeD4fv27eOD2Ex8fDxiYmJqbc/Z1mAwNOjesaZVaWe25+yL3aOzYDsTGxt7+t68uk1n/YfW7OMVuzBhy7VYFWDGe/5+0Ct0WNTtVViuuQOCVosu27dBpqp7MDzjQBGWfnAAWoMSN748AjJ5211RT9oHCqKTFsEqMqeOnwB3WRnCX3oJfjNn1FpEdN7KeThQeADdTYNwH/zR+dR3+DW7FyqdKqi0Oky77xHEJw3ixSye/PUQFm6XblyfmNod80a3jhtzNsq8c+dO/P777/jzzz95wJwF0lnAvHv37mfd4LIbXnbj601sZJx1GKpnzbGvvXv3nu4wsFHw0aNHY/r06Zg4caLXz682h3PKcd3nO1BidqBbmAHf3DoEQT5qVBQV4Lc3XuTba5PK4VuwCSXabphf8jC05YGwK6wYdWcMBvXsXePrOvMLkDZpEi96EvX+ezCMH+/1fxshhLRFGQeLsOzDA2ziMKIz10CLVXh0lglBen98f/wIAt0uvOK6Eh+6puPe8Ymna120JaWlpVixYgVv0zdt2oTMzEz+PFvJ9c9BaNZ+ejuFGksNw9rwM4P6x48fPz1Djp3XlClTcOmll6J3796tfqCYDR7s/HYPdm6SVtb5F65HYb+vUWSbhtTYa/DVzYOhUtBNNSGEtCZ7V23Bju8K4FL6QukoR1i/Y5h+72Nobe3LwYMH8dtvv/F2nd0LV6/+TkxMPKtNT0pK8vrEMhZDYKvZzmzP2TlWrzRnk+5GjhzJ23PWrrfGiW9f/bEWk3dej0ciNNir0aBfYB889dJJuIuLEfPlF9APHVrnz6/45CDS9hSi7/hojLxCykpASEuiIDppEbajR5F5992QKVWIX/oHL+r4T5UVFjyx+hmsrVgBX5Uv5uv7InH3t/gqfSBK7Fr4R0RhxiNPIiAiigfQH//5IBbtymQT0/HKrD6YMygaLYnN7F61ahVvlP/44w8+G5wtw5o8eTKGDBnCG+O+ffu2moB0TYH1lJQU3ljv2rULK1euxJEjR6BWqzF+/HjeWLOvyKriIC3leH4lrv5sOwor7YgP1mPhrUMRZtTA5XCgLC8HQcFGYP5koDAZZQH98VHubTA7LdiS9B3mX/o5Yn1ja3zdgjffQvEnn0Ddozs6/fRTqw8yEEJISyvKqsRPr+6GyyEiLG87Ysp+w71zK+HyUWNBfjG6m0rxizgaDzhux1WDY3ge9LZybWU3saw9Z4HzDRs28DaSBaNZezhw4EDeprMZaq3138NuuKsD61u3bsVff/3FZ7WzmW2sLWeD5GPGjIGqnhlhLWnfkoPYvDwfEGTwK96B8t6fINV2OdDvarxxRd9W+94TQkhHs2PJauxeaoMo10JjyUL0pDJcfM29aA3Yyu/169fz9py162wFF5s9fvHFF2P48OGnJ7W11hSnLPDPVpxV36OvXr2aB9bZKrNRo0bx9py162wQv7VYvOQX9D94J66NCoRZJsM727ogfO0R+M2Zg/Dnn6v152xmJ7741yaILg/mPjkIQVEGr543ITWhIDppMR6HA86cHKjizs2Daq604ZP//gmX2YM/e3+K17sNQ781r/HvlVz0FrYdLMH4W+7k+c/dogf/+ukAftydBZb2/I05fTEzKaoF/kXgy65Yg8y+WACd5S5lS6erG7Nhw4a1qWXU/5Samnr633dmEKH638dG6FviJja9yIxrPt2GnHIbYgJ0+PbWIYgOkHLlc2WnkPraZTicr8bQwWG4P1CPQ6YDiNBH4KspXyFMH3bOa7pKS/lqCY/FwvO1sbxthBBCamapcOCHl3fCVGKHf8lR9E6bj4eusSM3UMBrViUm56VhPxIxx/YERnWPwkfXDoCiFS/JZe3btm3bTt9kHz169KxB5EsuuYTnH2+ragsisIF+9u+bOnVqq8y/emRlCtb+eJLn1Pct3Qtrz/ex23Yduo+7BvdPaHurGgghpL3Z+u0y7F0vh0emhM6UgoQ5KoyefnOLnlNxcTGWLVvG2zu2KrytDSLXh+VpZ5P2WJvOguqsje/Ro8fpf9/QoUO9virun3757mPIsp7DkyGB6HXSg6cXuiHz9UXipo21pnQ5tD4L679LQWCkD658arDXz5mQmlAQnbQ6NpMTn774J2QlOliUFeh7WSH6rn4eoeoKYNxTwOiHTx/LAugP/7Afv+zN5oVD35rbD9P7Rnj1fFnOcdZoffrpp3wZGAsis1Hg6pnarGhne1S9nJ11RpYvX85nuXXr1g3z5s3D9ddfj6Ag7xb9yCq14OpPt+NUiQXRAVosum0YIvy0/HsOqwWf3nUDbBYrwjSVGHNpH9wpz0BGRQbGls7G3RNuRdde5wZD8l99DSXz50Pbty9iv/+OZrkRQkgN3E4RS97ai7wT5dBZ8jFgz2v4eLYcG+JtuE4WgEfT9qFACMQ0638QFRPHVwxpVfJWeyM6f/58fP755zywzPKNsoA5uwmdMGFCg+uRtCVnLmdnN+A7duzgRU5nzJjB23Q2cNDSN99nOr4hFSu/OQGPTAHf0l1w9vgIy2x348rL5+LyAW13YIMQQtq6TV8uw/6tSj7Qqas8gM43hmDUxKtb5FxYKhQWUP7kk0/w66+/8nv2wYMHn5781RbSmZ0PVuiUrSBn7TmLUbC6LWzA4JZbbsHNN9/cYqvIWV9j6efPYIP9G6zQ6/DR+x74V4qIePUVGKdPr/Fnfnh5FwoyKjDi8s7oNyHG6+dMSE0oiE68SrTbUblqFXwvvhiCUlnjkp0vX14Dd6GSB9A7zSyDzw+f4miJETNHByDurq95IdHqAPpDi/dhyb4cKGQC/ndVEqb2Dvfav+XkyZP4+OOP8cUXXyAvL483yrfeeitmzZrVKmdvNSfWKVm7di0PPPzyyy/8uZkzZ+KOO+7gI/ve6qDkldsw95OtOFlsQacgPRbdNhQhvlLB2uzkI1jy8tOwWW3wV1kw+oapeD45A0MOzYJb7sSs+wciKvHsv5ursBDZDz6EgFtu5jPR22NHixBCLtSaBUdxdEsuFC4LBu5+DfuHyvDW0CL0UgdjQfJueKDELPszKDX2xK/3jOC1K1oTdqPNZqixNp1tNRoNrrrqKtx44418BZlc3joD/s25qm7RokV8cgBL49apUyfev2FfISEhaA1S1x/HXwvT4REU8C3ZDkXPT/G54wm8ctssDIj1b+nTI4SQDmfD5ytwcKc0o1hXsQ3x8xIxZuwVXj8PlkKVDYR/9tlnSE9PR8+ePfmA8ByWOiTce7GC1rKqjqVw+/LLL/Hdd9/xVfJspRm7R2c51L09QM5S8C5/72a8rd+GYTtkuGq9CE2PHoj76cdz7rNLcs347rntEGQCLyiq8227KwVI+0JBdOJVZT/+iNwnn4I2KQlx3y0863tOuxvfvLoBlmwPLMpKGC/LR/iSH5BSqIYgeDBp3j3oOX7K6ZHMf/9yEN/tyOQB9Peu7o/Jvc5NydHU2O/duHEj3nnnHSxZsoQvfb7uuut4w9ynT59m//1tQVFRERYsWMBvvlmxUva+3HfffTwgwQqaNbfsMivmfrwVWaVWdA7xwfe3DT0dsCnJycaPT92LSpMdRqUNfW+7Fr8ssyGyrAs8SheueGgoQuN8m/0cCSGkvUjelovVXx4FqyTa78D7QFgF7pqeD71Kh8UZ6YhyOvBv5y34RXYxfrxzGHpGtJ4coxUVFXwg/N133+U5z1keVNaes/bK15faAtbnYTffrD1nQXV2M87eG9ams/RtLS1ldTJWLs7kMx4NpVug7/EtPpa/gK/vnYbQqgF0QgghzW/zFyuxb7s04OxTthZhN3fHpIu9OwOd1f1g9+gsWMwGv+fOncvbdDYYThOhpD4Pe29Ym87yqbOc6f/3f/+Hm266yat9HpfLhcXvTsL76jx88IEIlQuI/eZr6AYOPOu4rb+kYs+fpxDXJwjT7qI4C2k9Ws/aTNIhbsaKv/yS7xsmTDjre263iF8+3MED6DaFGeYJhxD6x3IeQJcJHky/6+6zAugvLjvKA+gsB/o7VyY1ewCdzVL7/vvvef5vNrOazcx67733kJ2dzW++KYD+N5bG5cEHH+TvEVtKFhMTw2evse3TTz+NsrKyZv1bRfpp8d28oQg3apBaYMK1n21HqdnBvxcQEYkrX3wffnoZyp0a7PnkOwybrESOIRWCU4Gf3t6B0jxzs54fIYS0F2yW0PqFx/h+p4yl8Hdl4okJhRBlAp4pNfEA+q/u4VjoHoc35/RtNQF0tnrs/vvv5znNH374YQwaNIgHi1mBrttvv50C6FVY0IEVWWMDDSzNzX/+8x+sWbOG94VGjx7NU7mxPllL6TK+G8bNjOADOJX+w1FxdCZuE/+Le7/eCodLbLHzIoSQjmT712vPCKCvhvHKWK8F0FkbxNoi1iaxtomtjH7hhRf4PTpru1gbRgF0CQuUsz4O6+uwPg/r+7A+EOsLPfDAA7xv5A2sPtys237GRLccG3pJs8/T33z9nBnrx7ZJ59NtWPNPlCSkMSiITrzGvGkzHKlpkOl08Lvi8rO+V1xRiuM56XDKHEgdtBq9t6QiNdcJuSDispuvQefRU08f++6aVHy6MZ3vvzyrD6b1CW/WhpkVHxk4cCCffRUaGsrzgB8+fBh33nkn9Hp9s/3uto51WFj+WJaPLSUlhb9/r7/+Oh/1Zlu2nKy5sKKiC+cNRbBBjeS8Slw3fztMdhf/nm9oGOa++C4CdC6YnEoYlv2IhLly5PtkwGOT4ce3d/ACef8sMlr4wQcoeOvtZjtnQghpS5wON/789BBcDhH+pccQd/JPfHOpAcU+HlwiGDGpKBvpnjA+C50VfJzixXRrtWG1O5588kneDn311Vd8BlZGRgafmcWKbpHaBQQE4NFHH8WJEyfwww8/8DRubEn42LFjeQHWltJ9ck+MmCDNoLP4TUBZ8lCML3gZz/12qMXOiRBCOoo9P27Drk3u0zPQ5ZeFYMaMW73yu1nbw9og1hax2c0//vgjX1X2yCOPwN+f0nrVhfV5WN+H9YFYX4gNOHTu3BlPPfUUn7He3DR6I/5v9g/YP8ADlwyQ7dmP/I2bTn8/53gZzOUOqPUKxPXybp01QupDQXTiNSVVs9CNl8+G/IwlQ6JHxNO7n8CP3d7A9n7f46ITbmRkFEIhuDFj5nDEnzGSPX9TOt5cmcL3n76kB+YMim6282WFtVgxrcmTJ/M0JBs2bOAB9EmTJrWqAlttAWuU//e//yE1NRVXXHEFHnvsMSQmJvIc6qzT0xxYTvTv5g1BgF6FQ9kVuOPr3adnpvmExWLus69gaGgeRmu34KbSU8CULJSrC+Eo82DJu7t4obxqjrQ0FP3vXf4ZZgF1Qgjp6Lb+lIqSHDNULhN6HP0SWcM74ffYIoQofPBYxiE4oMBdjvswuGsM7h2X2KLnygZt33zzTR48f+ONN/gNIwsG//e//22xAlttFZtBdvnll2PLli18kLy4uJgvlWf1YI4ePdoi59TvisHo01eaEW/3vRxiRhBcez7BL3uzWuR8CCGkIzi4bD+2rjQBggw+ZRtgnSDHtVfd1+y/l7U1rPYWa3tKSkp48czNmzdj9uzZvI0iDcf6QKwvxPpEd999N5/oFh8fj7feeqtZJ7wxgRFdccfYZ7Gur/T4yDP3wuGSBmROHirm27jeQZArKe5CWhf6RBKvsKemwrx5MyCTIeC6604/X1liw+cHP8fm7M2QqwQ8NXkeDIUHpAD6SH/EzXni9LG/7svG838c4fsPTuyCm0d2apZzPXbsGL9BHDJkCAoKCng1702bNmHUqFHN8vs6koiICHz00Uc81Qvr+LAq4SwVDssv3xxLwjuHGPDlTYOgU8mxKbUID/+wny8PY3SxfTHi9id5SiBh89v4d8QApPb/C1ZFJfb4rodb+Du4rx0wAOoe3eGx21G2+IcmP09CCGlLspJLcHB9Nt/vfvgLqIwKPDXkJH/8bG4OjKIHrzrnosy3K96Y0w8ydqFtASyHNyum1bVrVz6LmgV62WDuyy+/TLPUmmC12SWXXIJ9+/bxWf179uxBr169ePq2zMxMeNvIO8ahU7SUjk1U34CYknT89MsPSC+iFG2EENLU0relYeOSfB5A9y3ZhPLBubjt5mea9Y1mbQu7d2RtDct/zmpwse20adMoZUsTrDZ75ZVXcPz4cT5AwdK8sL4T60OxvlRzGThwLnymjoJDDoTlWPHdM3fymEB1ED22V2Cz/W5CzhcF0YlXlP3wI9/6jB0LVbQ0ezzvRDm+fmoLtv6WCngEPDH4cfTY8BamBO/D1X2LEXvrR+wujR+77UQxHvnhAN+/eUQn/N+4zk1+jjk5Objtttt4BW82C50ta9q/fz+mT59ODXMT69KlCxYvXoydO3fywDprrEeMGMGLtja1PlF++OjaAbwA7W/7c/CfpUf+Dtj3nAEMmgcWV1/zzksYusuNP/u9gz99F+KN3W+cFSwIuO56vl+6cCE8zTR7nhBCWjuHzYU1Xyfz/YjczQgsTcbXU7WwaATMEHUYZSrDdrEbFnim4r2rk/hqIG9j13g2S7pv3768YNbgwYN5GrZPPvmEZp43MVa87frrr+cTENgsfzbxgK00Y8vpS724cou105MfvwRB+nx4ZAoo7HdgjGUxnv3mL9irZrYRQgi5cPnJ+Vjx+TF+rfUt3YOy3ntw6z3vN9uAOWtLWJvC2pbffvuNryxjbc51113H2yDSdFh+dFZ4lPWZWDpb1odifSnWp2quGig3XvsxDgzU8f24tRux8Ic/UJpr5mGg6O4BzfI7CbkQFEQnXuE4Kc1Qq86Fbiq1YemH++FxA/6WMMyWjcb0glwgdSUEpQbBN80HNFLKl+P5lbhtwS443CKm9g7Dk9O6N2lQmzUILK1I9+7d8fPPP+O1117jObxvvPFGapibGWucV61axQuQOhwOXhSGDWQ0dS620V2C8foV0lqxLzZn4NONJ/7+5sUvwBLYD1mVGlQWFGHW0U5QuAQsTF6I5cf+5DnZGN9pUyH394crPx+mTX/nbCOEkI5k689pqCy2QeuuROfUn1AyuAv+iMiHn0yNhzJTYPZo8JDzDjwyuQcGxHr/5ic/P58v6WYD4KyOCRsUZzm82Ywq0nzUajUv1sry0f7rX//Chx9+yPtVLKjuLSyAM+vFy6EX8+FS6iErvAejCl/Bq8ukVYyEEEIuTHleJX59YztEuQY+FSkoS/wDV/zfQuhUzZNGhbUhrC1hK5lZOlCWduS+++7jbQ5pPt26dcNPP/2E7du3IyQkhPep2Ep91sdqlkHwVxajQgeElACOFV/w5/1CddDolU3++wi5UBREJ14R/dGH6PTbr/AZNQouhxvLPjwIW6ULxbocWPw2wLA0A8sXfAs+wDnpv0BYL/5zBRU23PjFTlTYXBgY6483m3hZeFZWFl8CxpaGsdnQbAkTq06t0Wia7HeQ+rECpCzQwW66WZGT3r1788B6U5qRFMkHYJiXlidj5ZGqToBSA59rv8AVienQyp2wZOXj2hP9obMbsOfjUvz27l4UZZkgU6lgnH4p/5Hyn36mPyshpMPJTSvHoQ1SGpeuB7+AQi3D88Okxw8WFcJPFPG86zp06twDtzRTyrW6BsS///57vpqMpWBjgXM2SDto0CCvnkdH5+vri+eee47PEmQD5TNmzOCzBVneWm9QqpWY/fxUKF3lsGnDIc+4CsL2F7E+pdArv58QQtora6UDPz63Gk65D3TmbJTEfIGx8xYjzE+aRdyUWJtx7bXX8jaEteOsTXn22WdhMBia/HeR2rGVfKtXr+YryFl9ONbHWrRoUZPPSg8OSwBun8P3I9Olz5NMR/ntSetEQXTiNZouXSDI5di4+DgKT1XCqjDhQOgCJO6Vltn6K00QulwMDLyFP7Y53bh1wS5kl1kRH6THp9cPhEbZNEu22IWfpWthOdVYPk9WkITl/KJK3i2HFWu94447cPDgQV6I9OKLL8btt9/epLPSWVDnmiExfLDmvu/34khO1WsHxMN/xguYEXUYckEEUoswJisUlcpiuB0eLP/oAGxmJ4yzZvPDK9euhctLAQFCCGkNWD2JDd8f4/sRJbsRUHYMW6bGIEdnR39ocFl5GTa5e2KFciJeu7yvV/Ogs/olbIbUVVddhXHjxvFlyOxxU65aI40vVsaWf7O+FduyG2+29QZDmBGTb+8FQXTAYuiNsMwYLFz8DcqtTq/8fkIIaW/cbhG/PLccNo8v1LYSlAe9h16zPkOv2JAm/10sZQtrM5YuXcprbrDHLP0naRmsL3XFFVfwvtXYsWNx5ZVX8ses79WUBs97BkWdjJB7pDSABbkpMNkphSppfSiITpqVu7wcbpPp9OOUnXk4sikHHojYEvkFhh/RwyOK6OZbgOExZmD6ezwPOgtyP/bTARzIKoe/TokvbxoM/ybKq5qdnc2LYd1888247LLLeIPAZqOT1iEuLo7PQv/ggw/w7bff8lnpbDZhU3UCnp3eEyM6B8LicOPWr3aioLKq8njfKxEx4CJMiZCCRKHHnMjV/IIKdTEqimxY/eURqLskQjdkCIzTp/Mio4QQ0lEc3pCNokwTlDIX4o8uhhgdhnfjUyGHgCez0uHwKPGE6xa8MLM3wozeW83FZkf16NGDz5Bi++wrODjYa7+f1N3m3nDDDbyf1b9/f74cnOVP90au9JhBiUgaLu3bdZMwIHsT3lyylf5chBByHla9tRqlJgPkbjvsig+gH/YwJg7u3eSzz9nKJXZ/PmDAAN52sDaDBsRbB5bWha3yYzPR161bxwc6WJ+rqQgyGfq89jFk7qp7c4cZ7y/4ptlysRNyviiITppVybff4vjwESj66CNYKhxY940UoNwXugyD0kR4bE5EaCswKTwFwmXvAoZQ/v3PNqZjyb4cyGUCPrhmAGICL3yZGLsAs9FsdsFnlbzZqDZ7TLPPW+es9DvvvJPPSk9ISMDEiRP5LPXKysoLfm2lXIYPrh7AVzfklNtw24LdUtExNmPxkrfRNVzA6BApZ3qfVB3Wx30Ol+BExsFiHFyXjZgvv0DEi/+FMjy8Cf6lhBDSNpZwb/9Nui52Sl0CldOE78er4ZYLmGNxINHpxP9cM9G3T39c2tc7s8UKCwv5TKi5c+fymVHsZps9Jq1zVjpb8cdWAFbPMGSPm9uwGycj1Ef63HocNyBkz0tYk9z0+VwJIaQ92//LfqSmSqvB5eavYOo9EjfNllbnNhXWJrAV4meuYKLZ563TnDlzcOTIEYwZM4b3wVjfi/XJmoKxV1/oRnTh+0p7GMKLXsLC9Qeb5LUJaSoURCfNhgWtK5Yug8fhgCI0DDpfFTyjcnHSeAj+xYehqnTDqHbhsqgjUAy4BugmzQbfkFKIl5Yf5ftPX9IDwxICL/hcbDYbH8lmxULZTKhDhw7h0kul/Nak9erUqROfhf7+++/jm2++4flVWU68C2XUKfH5jYNg1CqxL7MMz/9eVXRMHwRMfxcDA7IxMCALV9xyFRL6JGBbrFQYbctPx1GSY77g308IIW3Jzj/SYbe4YJRVIPLUOlj6JGBJWBZ8BDnuKMzHMTEKP2tm4vnLenrlfFihq759+/KZUGxGFJsZxWZIkdaLzSRkfTDW/+rXrx/vgz388MNwu6WUfs1lxgs3QOvMhkvpA03+bCz7/k1U2CitCyGENET24XxsXiENPhqKf0d5TwduvvkJKORNE0ZibQBrC1ibkJSUxAfE2Qommn3eNmals1o0a9eu5X0yVt+sKST9637I3TaICj0yM2LhWf8gDmQ2/wo2QhqKguik2diPHYMjLQ2CSgXDxAk4VXEKn9pex46IrxBWouaN72UR+6HzCwQmvch/JrPEgnsW7oHoAeYMjML1w2Iv+DxycnL4SOmPP/6IhQsXYsGCBQgICEB7tH79ekRHR/P9l156iRdiYQVYWEPHCrM0RQC6JWal33XXXXz1gFwux5AhQ/Dnn39e8Ot2CtLjnSv78Qno324/hZ92Z0nf6DoFQv9rMSY0HTFH3sTTgx5DevQenPQ7DLfLg42LUvgAkfXgIZg2brzwfyAhhLRi5YVWHN6Uw/fj934BAR68P9LEV+/cUlKCAFHEk86b8cT0fvDTNU3atbp8/fXXvE1nqb/YaiU2I6o9ao/tORMVFcXz3L711lv8i6XXKysra7bfp9AoccmjYyB3WWDTxaNbhgwf/k5pXQghpD7mcjuWvrsTHkEBv5I9qOy5Hhdd9RGCDeomefPYtZ+1AdXtAZuNzlYutUftsU1nAx1sJjrri8XGxmL06NF80tuFUvn7ISxMClP2OdUDu3Qn8fvXr1NdE9JqUBCdNJuKpUv5Vhx9CRxQ4YVtL8DutiOxe39cfe/tmBJ+BMEaCzDtDUBjhMMl8gB6hc2FftF++M+MXhc8Cs1GRNnsZZYHfePGjbzoWHv266+/np5hzxrru+++G9u2beM5xp1OJy/WaTa3zZnUiYmJ2Lp1K0aOHImpU6fizTffvOAcaRd1DcF94xP5/hNLDuJoblWh0YtfAPQhQFEKQvd8i7ujb0Sh8AtOBO9D36uCUblyJTKuuAJ5L7xAedoIIe3ajj9OQHR7ECIrgH9pCkoGd8FOYzHCPHJcW16BP9xDYeg6Gpf0ad4UV2y22qOPPspXlbG2nM18CgsLQ3vVnttz1re7//77sXz5cv5vGjp0KFJSUprt94V0jUHPIVKOVbt6PAwbPqBZbYQQUk8x8T9eWgUndNCZc1Hc6UsYhr2PgfFNs+qLBY3ZxCjWBqxYsYK3Ce159nl7btPDw8P5ykDWN2M57Vlf7UJXmXWZLOXbLwweil5blAhXf4M3Fi6j+27SKlAQnTRrKhe3TIld6nH46pmNOH48EyqZCk8Nfhzh+19FF0Mh0H060P0S/jMvL0/G/qxynmLj/Wv6Q62Qcq+dLzYSykZE2cjozp07eTC9rXr22Wd5x6Kmr4suuuj0cSzXKEtXw7AOCVs6zXKPsiVWLL/cqVOnsHv3brRVRqORd0IeeeQRPPTQQ7jpppt4qp4Lce+4RIzpEgybU8Sd3+yWlnlr/YEpL/PvW9e+jfL5q9DrhA6p2sV448gr0A8fDkGthvPkKdiOVKWCIYSQdqYoy4SUHdIy7tid8/n2/QFS3su7igoAUYG3hWubZNC7LuXl5fzm84033uCz1ebPnw+1umlmwnkbted/Y0EDNtmBfXYGDx7cJKvMajNq3uXwwyFWuQwK02z8suBVuNxis/0+Qghpy7Yt2IGiMi1kbjtM6k9QETkP104c2iSvza71LIDOVhuzNoDVvmqrqE2XsD4Z65uxSW6sr8biEazvdr46DwiFUiXAqgtBj9zOWF+hx4icp/HjzvQm+9sRcr4oiE6ahe3wEThzcnCiyyxUmgVUOsvRLc2BW0PmIubociB3H599jqmv8+P/PJyH+Zuli+IbV/RFpJ/2vH83G/n817/+xUdCr7zySj5bjY2QtmUsV9y8efMwbNgw5Obm8i8WRGYB8p9//pkfw3LIFRQUYNy4cTW+RnVD1tZT2bCULi+//DIfJGF52FhBOfZ+nC+ZTMDbc/vxz1xGsQVP/HJIGuXuOQvoPBFawYoBkRZ+7NDDAdidshkbS3fBMupyuGUKVC5f3oT/OkIIaT12LU0HPECkPAeGykyUDOmCg36ViHYDl5rM+MQ9DVdOHHFBbXZ9jh8/zm+22UokNnO5rc9Wo/b83FVmbDbeiBEj+CozNkhyoavMajPjheuhshfBqQ5E1DEfLNx4uFl+DyGEtGVZh/Kxd2sl39eWfQ9bXBhuueE2fs90Idi1nQVZ2bWeXfPZtZ+1AW0Ztel/Y32zBx54AMuWLcPmzZv5KjPWhzsfKo0CiUOk+M2p6PG4bqUHiwIsyFn6Ek//S0hLoiA6aRamNatR7tsJmWGj+OM09QJ0ztbC/f0uOFa/Kh004TnAEIqsUgse+WE/f+rWkZ0woUfoef/eiooKXHbZZXj99df5KOgXX3wBjUaDts7Hxwc6nQ4qlYovX2df7DmFQnE6KM5maE+aNIkf80+iKPLAA+uwsMrn7cE111zDU/Sw2fUsr9yFzLD316vw3tVJkMsE/L4/B0v2ZfN8vzzVkFKHIYrNiIwKhsolw5h9Qfj9623Y6hqOjNipqFi5skn/XYQQ0hqU5pmRtk+adR65/Qu+fb+/9HheSTGKPX740+9K3DA8rtnOgS1zZjOUq4uJspnLbR215zWvMmMr6Vgw4sEHH8TNN98Mu93e5O+9PsgPSdN0gEeETTcM5T++i1Kzo8l/DyGEtFV2ixMrPtjFV+0EFG2Fuc9e9Jn+OsKNFzZYzq7p7NrOJoGxaz275rNrf1tHbfq5WDyCrTBggyasD8f6cucjaUIM+xiiOLA39O4ERBxUIdiwHO8s/AVuVkCPkBZCQXTSLHxnzkLayHvZmCTSDWsQn+nkz4/ppYXKVQaE9wP6X8/zrT24eP/pPOiPTu523r+zpKQE48ePx6ZNm3jRKnYj1pZnqzUWC6JXp3L5J5Z37dChQ3zmdnvCgucsVQ8rQsPS2mzYsOG8Xyspxh/3V+VHf2rJYWmU2z8WGPMvsIkXUwO2Q6XVIrhMDUeRVH38VMwElBSLsKfT0jJCSPuy969TfBZ6uLYEPqYclPeN47PQI10iLjGZ8a5rJh6dPhBKefN0JVkxcDZbja3AYgH0Ll26oKPoiO05W2X2yiuv8MKx3333HS+0ZrVam/z3DLz8EvgLu/i+yjIZX7ez95EQQi7Eqv9thF3UQmspQHanhTB3+g8m9ZEKYp4vdi1nk9zYtZ1d49m1nl3zO4qO2KazPlt1zRPWl/vpp58a/Rp+oTp0HxHB99M6TceszSK+Vvri0uJXMH9D2yvEStoPCqKTZpGc4kGZRQWXwgJd8S7IPQI69+6OXhVLpAOmvgbI5DyFy470EuhUcvzvyiSoFOf3kWRpTFhaj4yMDF7YYvLkyehIWDqTvXv3Ytq0aed875577uHVzllam6ioKLQ3ERERWLNmDV/uz/7u5zvazdw1tjMGxfnDZHfh/kX7pHypQ+8EAuLh68zGxcOkZWUx2XZk+WyCR5DjWOJcVK5d34T/IkIIaVmmUhuObc/j+1G7vuXbBX2klGC3lZYiTwxGYeIcXk+iOXz77beYO3cu5syZ025mqzVUR27PmWuvvZZPhGCF1y655JJmKbQ2/b+3QW0rgEvlB92mNKTmS2kLCCGkIzu+KQMZGSzvigiHewFcxotwx+VTL+g1TSYTb8/Y6mGW5oNd4zuSjtym+/n54ffff8cVV1zB+3QLFy5s9GsMmtoJcqUM5X6dYTb0xOx1wI/BZphWv4bUAlOznDch9aEgOmly5nI7tv9+gu+flH8Do1kBta8vJvrv5hky0PcqIHowjudX4tU/pVHEJ6f1QEyg7rx+X05ODp+FnJ+fzwPo/fr1Q0dw5ix71kANHz78rHznbAkVa5x/+eUXHmTu1KkT2iu9Xs/fAzaQworPsQ7J+WDpXN6c0w8GtQK7T5biw3VpgEINTHqRf79rwXfoOrA/ZBBgcm4EBCcqjPFI2XH+OdkJIaS1ObguC6Lbg2CDFYbCZNhjQ7ExsgLBbpHnQn9XnI3HL+nbLL/7888/5zVNbrjhBixYsICnLWvvqD0/G1tVyArPseXgbFk4S9XXlHwCA5AwRAqc21WjsOx//23S1yeEkLbGUuHAmm+O8v3Agr8g71qAwbOfhK9Ged6vyepxsQlOu3bt4tf02up2tTfUpv+N9eHY6gPWr2MDKKz4aGP4+KvRZ6w0wHAifjqGHwUKijRINKzA+4uX8qwGhHgbBdFJkyv95htE+plQqT6K8KrZPZMmJkFXuBtQGYAJz8LpFvHA4n1wuERc1DUYVw0+v2VieXl5PHDKbrBYKg9WaLOjMBgM/N+fkpLCZ+r9c5kYWx7Gim+yUd/qY9lXcyyPbg20Wi0vsjplyhTMmjWLz2Q7H9EBOjw/Q/ocvbsmlQ/2oMtkIH4s4HZgXMhxdJ4xGev75eFA6Ap+3DHfUXDYXE367yGEkJbgcrpxZLM0MBh1fBnfLhso43Uiri6vwEkxAtoBVyEuSN8sAfRbb70Vd9xxBz777LMOs9yb2vNzjRo1iq8sY8vcWSC9srJpZ4uPvXMe9LY9PO+vNqcHth7JbNLXJ4SQtmT1u5vgghp6UxZO9fgNeZ3+g3HdpRW454Nds1kA/fDhw/xaPnLkSHQU1KafjfXlWP/u9ttvxy233NLoQHr/SbFQaRUw+UQhP2QAbl4p4h1/X0wveAs/7DrVpH87QhqCguikSXkcDpg+/wDx3z+MAtcPkHkExPbvj8ScBdIBox4ADGH4aF0aDmVXwKhV4pXZfc4rd3lRUREmTJjAl4mxGegdKV8qw24qma5du2L16tXnBNE//PBDPgOAzdIPDw8//bVo0SK0V2q1GosXL+ZL5mbPno1Vq1ad1+vM6BeJ8d1C4HCLePSnA3CzQe7JLwGCHLr0ZbhsWBLGxFyEbbFr4fQx89kbu5ax9Y+EENK2pe0phM3khF4vwHhsHTw6DX6OK4BG9OCKykq8hytw9/jzr19SGzboO2/ePNx55514//33IZN1nC4qtec1Y7lUWfDlyJEjPLWLxWJp0vf9ovtHQeE0waGOwr73P+Qr+AghpKNJ35WDU5mA4HHDJHwNt3Ys/m/2+PN+PZaGi92LsWs3u4azlJsdCbXp52J9ug8++ID38dhkCZa2r6E0eiWSLo7h++kJ0xFVJEfSfhn2BuZi37JPUFjZ9IXICalLx7lDIV5hPXgQHosFJr0cqwYWQTm5FyYPCADKTgE+YcCQO5FeZMa7a1P58c9N74lQX02jf09paSkmTpyIwsJCHkDu3Lkz2ru3336bDxZUY7Pu2cxyVqiDpWr553vAbgZr+rrxxhvRnimVSl6chS0ZZAML51NslA3qvDCzF0/rsvdUGb7akgGEdAcG3CAdsOY/uKff3YDHjYPqL6DylSE0zrfp/zGEEOJlh9Zn822M4yhkHhEHBwTArhIws9KEYlcoIobNRch5tNt1+eGHH3j6lptuugnvvfdeuy8KTu154wqIszy6u3fv5oXpbDZbk/0d4voNgUG7he8L9qFYv1kqOEoIIR0FW0m75ot9fD+wYC30XXPRc+pj8NOpzuv12DWaFYbes2cPVqxYgYEDB6K9oza9YVjfjvXxWCzi+uuv5wXkG6rvuGhofVWwqgOREz4cczeK+FXhg8sV3+C1X7ef99+OkPNBQXTSZDIOFmHlokxYtME4ECPCoDHipsvvg8+ed6UDLvoXPEotnlxykKdxGZUYhMv6SRWXG4OlI2EpOzIzM3kAvVu3pp8R15b4+PjwKufk7BnpbHCB5YlnMyHYzXdjhRu1eHxqd77/2p/HcKrYAox+BFBogFNbkVh0Elft7ooeqQ4oCl6G6vPn6U9ACGnTirNNyDtRDjYJPHCzNEvom875fHttRSUWyC7D7WOadtUXu8m++uqrcdVVV+GTTz7pUDPQ/4na85qNGDGC1zrZtGkTLzbrdrub7D2f/p9HoLFmw63wwfEvVtBsdEJIh7Llq92wuTXQ2IpxMv5XpBgfwqVJ0qzfxmLXZnaN3rx5M0+rOWzYMHRk1Kafi/XxPv30U1x55ZW838f6gA2hVMsxaGoc389ImA61U4U56z34OEiJXslvY9uJ4ib+6xFSu457p0KalOgWseXnNGRV+CIluhcORctwY88bYdj9FWApAgISgKTrsGRfNjanFkOtkOGFGb0aPduMzaS++eabcfDgQV6gpFevXh3+L3nxxRfzYprk3Bzpv/76K3r06MFnRLBZ+4115aBoDI0PgNXpxnO/HwZ8I4DB8/j3ZGtfQL8R0lJHcwVQtnYNXMXUgBNC2q5j26XrZLjRApWlBOXxwcgIEzDMaoXa6YOQkTfAqDv/ImP/dPToUcydO5fnTf3yyy87TA702lB7XjuWmo7VPWGBmccff7zJ3nMf/0D4J6Twfad8KJYvOb80cIQQ0hYHzg/vqao3YfkeamNn3HjF5ee9Guyxxx7j12h2rR4zZgw6OmrTa8b6el999RXv+7E+YHJycoPezx4jI+AbpIFDrkNm1FhcdMCDnAoNQn234qsly+CmIqPESyiITprE8Z35KM01Q7CdRI7mJILLojE75CJgy3vSAeOeRJndgxf+kKp+3zs+EbGBjS9K9vLLL/NUHQsWLMCAAQPor0fqpNfr8csvv0AURcycORN2e+NypslkAv47szeUcgGrkwuwNrkAGPGAVCA37wAm9AyGy1cJu1KB1NAA7Fu8Cxu+O0Z/FUJIm+MRPbwtZ0JPSmmwlveQrpmXV5jwLabh2pFNNwudpWVjKbeio6N5bkyFQtFkr03aJ7YK8Y033sBrr72Gr7/+usle97InnoHOdBAemRzZvzfsZp4QQtoyNjFt7YdbeHHlgOJ9MPXZD0eff6NrmOG8Xo/dm7/++ut48803eXCUkLqwPh/r+0VFRfG+IOsT1keukGHI9Hi+fyp+CtwKPa5ZK+LtACOuKP0Ii3ZSgXDiHRREJxdMFD3Ytfwkb4yFiqUs4RV0CdEISP4ZcFQCob2AHjPw9qrjKDY7kBjig3mjpAtgY/z222944okn8Mwzz/CikYQ0REREBJYsWYK9e/fijjvuaPRS7YRgH9w8ohPfZ7PR7Wo/YPg9/LFi02sYevW1fD89yIite8w4uD4b+RkV9MchhLQpOcfLYCq1Q6WRwbBvOTwyGVbFmxHgdmOAGZANuhm+mqaZhe5yufjso5KSEr5iyNeXakqQhrnvvvt47nxWhHb79qbJgyqXKxAyuIiNJMGh6omVPyynPwchpF1L35OH/CIFBNGJXMPPqPRMwx2T+5/Xa23bto1fk9lq8XvvvbfJz5W0T6zvx+I7RUVFvE/I+ob1SRwYisBIH7igxMm4SeiX7kFAphy5/hnY8uf3qLA5vXLupGOjIDq5YGl7ClCWbwHcKbAobfwmZPYN9wDbP5QOGPUgUoss+HrbydPFRFWKxn30Dh8+jGuuuYbPJn766afpr0YaXZjs888/5+kCWPGXxvq/8YkIMaiRUWzB55vSgaF3AmpfoDAZo8M08PjK4JEJkFcu5cfvXp5BfyFCSJuSskNK5RKlK4VcdOFUFyMq9AJmVJrwh+ciXDOmd5P9rkceeQRr1qzhBUUTEhKa7HVJ+8fSDHz44Yfo378/7xNmZ0uFcC/U1Hueg75yB9/PoDacENKOuV0iNnwlFRMNKliLoPgSxI2/F4bzGChn12B2LWYFRD/44IN2XxicNC3WB2R9QdYnfPTRR+s9XpAJGDpDmoyZFT0WdpUR164V8bGvL24Rv8T7q2k1GWl+FEQnF7z8e9eyDHg8IiyuddKTfcIQnb0OsJYCgZ35LPQXlx3leaomdA/F8M5BjfodxcXFfJlPfHw8z5/VkYuOkfPHBmH+9a9/4eGHH+b59BvDR63A41OlArbvrUlFvkMNDLqVPxY2v4UBc+byfauYB9FdhPT9RSjJNdOfixDSZlaUpR8o4vuBKVJO6GUJ0oqa2ZVmlPW4DsEGdZP8rvnz5/PBzHfeeQfjxo1rktckHa94OMu5y/KqsuANKzh/oQSZDEEj7BBENxyqrtjwE+VGJ4S0TweWp8DsUEPlqEBazDIcVtyMuUOkVbeNwa69rO4US83Brsns2kxIY40fP573C9966y188cUX9R4f2ysQ4Z2NED0yZCRehrgCoM9RGTb4m2DZ9iVyyy+8T0BIXSgaSS4Iu+kuyTEDnhTIrWbYlW7MuOl+YGtVLvSRD2BjWgnWJBdAIRPw76pAZEM5nU5cccUVqKio4Eu+WZVrQs7Xf//7X55TlS0ZO3ascbnLZ/SLxIBYf1gcbryz+rg0G12hAbJ24qKEaARaLAiutEDpV8aP37vyFP2hCCFtQt6JclgrnVCpZdAfXgdRIcP2LkA/mx2nHN0w6+KxTfJ7Nm/ezNNq3Xbbbbjrrrua5DVJxxQWFsb7hYcOHeJpBBqbqq0m0+58BlrzVr5/bBmtKCOEtD9Ouxu7lqfzfX3JUgSHajF22tVQyhsXFmLX3FtvvZWvFmfX4tDQ0GY6Y9IR3H333bwtZ33ELVu21HksW+0wdIa0ijEneDAs2mDM2Shiod4Hc5S/4MNVh7101qSjoiA6uSARiX4YclkcbM71/LEtKQQJubsBUz5gjIa71xz8d6lUTPS6YbGID/Zp9JLvjRs34qeffkJcXBz9tcgFYbPWWBGT8PBwvrqhsrKqIn0DsAb7sSnSIBArXHLCqgOSpHzowua30T04EFFlechQr+bPpWzPg6nURn8xQkirx1bPMOH6csg8Ik4k6GHRCJhqMuNA+BWIDtBd8O/IycnBrFmzMHToULz77ru05JtcMJbShc1aY+06KzjaFLPR9UmFEEQXHMp47F8rpTsghJD2Yu9vR+EQ1dBYC5HebQOO+dyBSb3CG/067Jq7cOFCniqTXYsJuRDsPvu9997D4MGDeV+R9RnrEtHZj89I90BARteZCK4Ahh8SsNRPhHzv1zhVbKE/CGk2FEQnF0SjVyJ+iB4WoYjnUJ2m6gxs/1j65tA78cfhQiTnVcKgUeC+8YmNeu1Vq1bx5d6skR49ejT9pUiTMBqNvIgJy+HXkNxrZxoUF4Dx3UJ4aqI3VqYAw/8PEORA2mr0ffZRPHd/CJYmHoE2xgPR7cGBNVn0VyOEtHrp+wv5NiBnF9+ujzVD7vGgr0mNPuOuvODXZzPW2Awjlo7txx9/hEqluuDXJIRhK8tYmrZ///vffFb6hZp176unc6PvWijNSieEkPbAbnFib9W9ibpiKSL0wZh1yfRGD2ofOHCAX3PZZLc5c+Y009mSjob1DdnESfZ5vP322+tdYTb4UikFUZ5fH5h1YZi1RcQvWj0uV/2K9/866KWzJh0RBdHJBVtdtAFaZy7GHclEbFYuUHgUUOrh7nuNlPYCwLxR8fDTNfymmaVvueWWWzB27Fjcc8899FciTSoxMRGvvPIKPvroI6xeLc0cb6hHJncF62suPZCLg2Z/oPul/HnN/m8wK3EW9FY5Msu/QXiCk4+QE0JIa1ZRZEV5gRWs3Ihhz3L+3J4EAUOsNuxWjseILhe+RJvVM1m2bBk++eQThISENMFZE/K3//znP7xdv/HGG3kawAuhUGkhxkt9V5ssEfnJTVO4lBBCWtqeJUfg8qigN+cgr+sWHPW7HUPjAxr1Guway661Xbp04ddeQpoS6yN+/PHH+OOPP/D111/XfWysL+KTgtk8dmR0m4WgCmDEIeAPPw/0h79GWqGJ/jikWVAQnZwXa6UDS97cg5QdeVicvBixBYDSLULjSZMO6Hc1fjtmwolCM4xaJW4a0bhULGxkmxUU/fzzz6mQKGkWd955Jy666CI+WNOYtC7dwnwxs18k33/9r2PA4NukbxxYjDkxkzEw2R8+GYVwy7Yhsqs//fUIIa1a1rFSvg00uqFwmJEXqkKhn4CpZgv0A6+54LQrbNXP/fffj+uuuw6XXioNOhLSlDQaDU8psG/fPrz66qsX/HqX3P8C9BX7WX4X/PnBH01yjoQQ0pIcNhcObMzj+3LTMgToI3Hp5MmNbuNffvllPhOdXXOpkChpDizl6rXXXov77ruv3rQugy/pxGLoyPftiUqfKD4bfYlWjzmq3zF/rZRSmJCmRkF0cl6ObM7hN95rvvkGWZnHEVcgLbdR23bzrWvgrXhnlTST57bR8TBolA1+7ZUrV/LZaq+99ho6dWp8pXBCGoKlFZg/fz6Kior4oE1j3D+hC2QCsD6lEIcUPYGQHoDTAvGhRzFnWzk/5tTOnSjLlzqrhBDSWmVXBdEDLFIhxW2dnFB4PAg2h2HC6BFNksZFp9Px9GyENJdBgwbxFG3PPfccDh68sGXcwcHRcPhJhc1MtjiYy6m+CSGkbTu4IgUujxI6Sx5O9tiFg763YmTnoEa9Bgues9nn//rXvzBw4MBmO1dCWJ+RDZCzQvR1pXUJjPRB4kBpxWR619kIrASGHRLwux/7wH6PPGq/STOgIDppNHYhO7olFx5XNsz56zBjUwS0doGPAqp9nUDCePya5YOMYgsC9CrcMDyu0Wlcxo0bx3NhEdKc2CANm7XGlo2xHPwNFROow/S+EXz/g/VpwOB5fF/MT0VwmRV2lQXwAFt++AFbfk5FUVbDZ7oTQog32/PqmeiG45v59kAnAQNtNuSGTodvIwbAa8Jmqi1fvpwPjPv708oc0ryeeeYZnmKgKdK69LpyNvSmDHhkSqz7+PcmO0dCCPE2t1PE3pWn+L6qchUidIGYPmlSo2ahV6dx6dq1K55++ulmPFtCgICAAN53XLp0KRYsWFDvbHRBJqDI0IXPRr9kh4if9XrMVSzF/E1VWRIIaUIURCeNlneigudPdTv38sdlBhMUogcqXw9kCsAz8GZ8uvEE/94tIzvBR61o8Guz4lClpaWUxoV4zR133MFz77PBGzaI01B3XtSZb5cfykNa+DQ2ggS1TpqFbnRJOdiSt6zFnj9TcWRj3UvRCCGkJZTlW2Apd0AuF6DP2A2XXEBKpICRZjuiR11zQa+dlZXF07hcf/31uOSSS5rsnAmpDUstwAZu9u/fz+ueXIjho6+EW7aJ72elCBDFugucEUJIa5W86RTsbhXU9lKc7LQNx5VX4qKuLJd0w7300kuUxoV4FUsByFIBsrQuLDVgbfxCdeg8QKq3cyphKsJLgR5pAvb6mpC74xeUWy9sUJ2Qf6IgOmm05C058IiVcNtT+WO93M63al8boA/GJqE/kvMqoVPJce2Q2Aa/7l9//YVPP/2Up3GJi2tcDnVCLiStC8u9z3LwNyatS9cwAyZ0DwVbYfbhljyg9xVQG6VGuneFCuV6JzxuB9yOozi+uwBut0h/JEJIq5KbJg38BRockIsuHI8AHEoBRnsCBnaXBgovJI2Lj48P3n777SY8Y0LqxlIMsFQDzz//PA/4XAh5fwUUTjNcigAcX0e5VQkhbQ9rj/f+nsz3/YrWIjZIhr5jZjRqFjobmGRpXB577DEMGDCgGc+WkHPTurCUgPWldek/SYo55fv3gUUThOnbRHzja8BVnl/x3Q5pFQYhTYWC6KRRnHa3FBC0H2LNMvICbOgSHA+Fj1IKIPaZi082Z/Jj5w6KhlHXsKXgNpuNXxzHjx9PaVxIi6R1YYM3bNnYxo0bG/xzd41N4Nsle7NRnDgbGj8XfxyUa0ZyjDSrXXTu54V4M4+UNNPZE0LI+Sk4KaWa8jVL7fbhGCDR4YAq6hLIWOGH8/T9999jxYoVlMaFtAiWaoClHGADOXXddNdn0tynoTZv4/vbf9nVhGdICCHekZNSinKLCjK3HSlRm3HUOR0z+kc1elC8W7dueOqpp5r1XAn5J5YKkN2fL1u2DIsWLar1DQqK8kFsr0Cw/MKZcRejSw5gzJOjzJCFXVtW02oy0qQoiE4aJeNgERxWJ0QXC6IDx2IqkXjzbUicno2gniakRV6GjceLeNHFm0c0vCjoBx98wJd+v//++42uEk5IU2A5+NnsCjaDraE33f1j/DEw1h8u0YMFJ4OgimUrKDwQLDY4wxQwa1zQRbCRcRdStlORUUJI61KQIQ326TKk9GyHYwSMMtvQ7aI55/2aDocDTz75JC677DJMmzatyc6VkMakdXnvvfewY8cO/PTTT+f9xoWHR8EaJAXPKx3hMJdRgVFCSNuy72dpRU5Q0U4ExFXCf/BV0CjlDf75H3/8ETt37uT36OzaSoi3sZSA06dPxxNPPMH7mLXpPymGb3PDhsGu8sXUXSK+9TVggnkp1h8v9OIZk/aOguikUdQ6BQJCCyC6KmFTuWGK1aJv7lFAdEGI7I+PjkqN69Te4YgO0DXoNcvLy/Hf//6X56RmM4cIaam0Lizf39atW/Hbb781+Oeuryqcu3BnJtxJV0Ghc/PHE33648ex2SgcaYAgKHFifxEcNmmmOiGEtIZCY8XZUv0GfeY+iAKQGiEgxBmO+BjpRuR8sBlDGRkZePHFF5vwbAlpnDFjxmDKlCn8ptvlOv+2N3DURfCpPAEIcuz9cQv9GQghbYap1I6TGdL1L8dnPayWwbhmeGKjiomya+jUqVMxevToZjxTQurG+pSsb8lS/9YmvLMfwuJ9IUKGrMjRGJTiwSmXCt21O/HT5sP0FpMmQ0F00igxPQLRc5Q/PGo5UiNNGNNpLGSHf+Hfs/a4Ar8fkAoo3lgVWGwIlkbDarXimWeeob8GaVETJ07kKYX+/e9/w+2WguH1mdwzDMEGNQor7VirGgt9iAP6MBsG+XeBRwD+Mv8GY4iWB6xOHipu9n8DIYQ0RFG2CaLbA7UK0NhKkMVWwSo8CAqZct5voMlk4nlTb7jhBvTo0YP+EKTFb7pTUlIwf/78836NSdPuhQs7+H7yjvwmPDtCCGleh1elwiPIYCxLhTshHUWxVyLMqGnwz7NrZ2pqKp9kREhL6tmzJy9Uz+qdsL5mTVg2g34TqmajR18EmUeB8fs8+MNXhYC0JcgssXj5rEl7RUF00mi9J0zC8ikVONC5HBdXhOD4BxnI2uyPpc6BsDlFdAn1wYBY/wa9Vm5uLt566y1edTkiIoL+GqTFsY7ikSNHsGDBggYdr1LIcPVgqcH+ZL8dEXN7IeaiEiT5i/BT+6HUXgrB/wTk8nzYzVQdnBDSOhRnSTchfspKsCRqaREC+tkdiB8+97xf88033+Sry5599tkmPFNCzk+/fv1w9dVX88+jxXJ+N89GHz2skWkQRBfsslAUZZTSn4MQ0uqx1JRHN0oFFWW2zQhWhGDcsCEN/nl2zXzuuedwzTXXoE+fPs14poQ0DPs8lpWV8dhRbTr1DYKPvxoOmRYFwUkYv0/EMp0OsxWr8cNOKjBKmgYF0UmDscKI5nI7DhUdQoGjCCqdHt2OH4fLooDTZcRn+6VckVcNjmlwXnM2Y02lUuHRRx+lvwRpFQYNGoTLL7+cr4xgBW8b4uohMVDIBOzMKEVB9MX8OUXyUoyMHIme6b7I2/YdAsOPoNeYhhfyIYSQ5lSaZ+ZbXUU236aGC+hi06Bz5/NLq1ZYWMhXlt19992IuYB0MIQ0JdbPLCoqwv/+97/zfo3QQVPgWy4tBd+7ZGcTnh0hhDSP3LQymB1qyF02pMbsxUHPVIzpEtzgn3/nnXf4tZPN/CWkNWB9S9bHZH1N1uesiUwuQ89R0sTM7NhxCKoEupwQkG4oQfKedRdUbJyQahREJw0iih78+dkhzH/kN2zaL91ADIsYBs/RbXzfFRyJ5LxKqBUyzEyKbNBrsuVhLK/V448/zisvE9JasBz9OTk5vIhOQ4T6anBR1xC+/4OpH9+KJ7ZhREBvnAqVZr9lHtoPU2lJM541IYQ0XGmedG1SZx89HUSP1vY+7+Le7LrJakuwdFiEtBbx8fG8cPjLL7+MkpLza4OHjb4RNuVuvn/yqFSMlxBCWrPDy6S2PbB4L4IizQjqPxMKecNCP+xa+corr+COO+5Ap06dmvlMCWk41sdk/dS66u70GBkJmVxAuT4GFT7RGHvAg18Megwzr8Huk7SajFw4CqKTBinIqIDNVAZH+Vco+/5XKFwChvp3hytHWhZzTBvLt9N6h8NPp2rQaz755JMIDQ3F//3f/9FfgbQqXbp04YVuWQPNUhM0xOz+0uDR2s0nkfJrFNKWBWN4RTFMejcKjXZ4PCLSdm2DjVK6EEJa0Ux0bXEGXDKgIEhE7+4zzuu1WLGnDz/8kK8qCwxkydUJaT1Yf5MVF2WB9PMRFRoEa9hJKaWLEICS7MomP0dCCGkqLocbJ45KKdtKlTsgWHtg9uBOjUptyWpDsWsnIa1JUFAQHnnkEXzwwQc4efJkjcfofFVI6C9NbsuJGIGkNA9SRDUGq7ZhyZ6af4aQxqAgOmmQU0dK4Hae4PuVchtcCg+GWSxwWuT8uW12X76d1b9h6SoOHDiARYsW8TyVWq2W/gqk1WHpXFjBW5bjtyHGdQ+Br0aBU3YBbqsIt00O/5RV6B7YHafCpBmf679djp9f39PMZ04IIXVzOd2oKJbSVekt+cgNALq4XOgy8PyKirLl3gEBAbj//vvprSetDpuw8eCDD/KULnl5eef1GoZeY+BbcYzvH/5DmpVOCCGt0alDRXB5FFDbSlAck4yTvlOQEOzT4Hpl7777Lh566CGEhEiBSEJakwceeIBnMagr1VCPEeF8WxA2CAIUGH7Ugx0GEcUHVsLucnvxbEl7REF00iCZR4ohOtP4/skQM6IN0Yg+tQsuqxREz5L7IMhHjWEJDZuBxgpCREdH44YbbqC/AGmVWKHbW2+9lY90NyQ3ulohx6V9I1CqlgaUPKIA8fhWjAgdhJNVKV2c1pMoyZFqCxBCSEupKLIBHkApF6F0ViIrSEC02wiVztDo18rPz8e3337Lg5R6vb5ZzpeQC8U+nwqFgq+YOB89B1wDm2w/3087UER/EEJIq5WyWhrw8yvdh/BgEbFJ4xv8s+waqVQqeaCSkNaI9TXZIM8333zD+6A1ieziD58ANVwyDYoC+2D0IRHL9HpMcK/HhhRqw8mFoSA6qZfd6kLeCRZEl1K3ZIZaMTRsMHBi3ekgerHWiGm9wyCX1Z9LtaCgAAsXLuSFIVgjTUhrxVINFRcX47vvvmvQ8WwlhlOuQKVKWl3hMrsxEBpU+LhgMrBCJiJEZzqykikfGyGk5ZhKpYFBLSxgrXZWEBDr0/28Xuujjz7iwUk26EhIa+Xn58cnbrDPq93e+IHs3t26wB5wiO+b3QGwVDia4SwJIeTCuF0iTp6w8v18/T5UWPpiap+GrRRnk4bYNfLGG2+E0WikPwVptVifk/U9P/744xq/L8gEdB0SxvfzwoaiSw5Qalaii3of1hySYlqEnC8KopN65aWVw+1g+aPcsPsIKPNxor/CCNgrINfJUKAPQKHWj8/CbYhPPvkEcrkc8+bNo3eftGqJiYmYOnUqr1DfkGre/WP8EG7UoKRqNrrLKkPfwpOQCTKcCJaKkYnOk8g+RkF0QkjLMZVKQUSVtZhvM4MEDO3S+FQuLBjJZq1df/31VCCctHr33nsvn8jB0gk2lkYphzMqCHpTFn98ckdGM5whIYRcmMyjJXB5lFDZy1ESeRwnfS9GbGDDVol9//33KCwsxD333EN/BtKqsXQu1113He+DOhw1D2p3GyqldCkO6A67yhdDj3mw2UeG8uR1cIv139cTUhsKopN65aaV8dmzTHpQJdi0tX4lufyx+vqBuGHivyGLiET/GP96X8vpdPL0GOyix/KnEtLa3Xfffdi/fz82bNhQ77GsWvjFPUJRoqkKotvk0KdvQFf/rjgWW4nwGXOh0E1EdgoF0QkhLcdUIs1EV5bm8K3FT0TvpKmNfp3FixfzpbQsOElIa9e1a1dMnjy5wQPj/xQRfynk9qN8/9hGaUsIIa1J2oZUvg0o2Y/QYBcSksY06OfYNZFdG6dMmcKvlYS0dqzvyeqcsL5oTfxCdQiL92XT0lEYnIRBKSLW67QY4tiO3SfpXpycPwqik3r1HhMFtU7KN5UVZEGQNgiRWVJRpY2ePnx7cc8wyBqQyuW3337jBUtohJu0FRMmTEC3bt348saGmNQzDGVqqXiPyy4HCpMxwK8rzFo30iOyIAgyno/YWklLwQkhLTsTXWOR8kJqDQoImsYv3WbXxfHjx6N79/NLBUNIS6Rp27NnD3bt2tXon+2cNA0W/RG+X5AnnFcgnhBCmgu7Jp1MLuP75cpDEKydMa6HNBu3Pjt27MC+ffvoHp20GT169OB90Lru0RP6S8VxC4L68ZQu2Q4VklR7sfKwNCGUkPNBQXRSL51RhUl33An10M7I97chKag3hJx9/HsL86Qca+O6Nax696effoqhQ4eid+/e9M6TNoHNLmd5137++WcUFdVfiGRwpwBkB8dgV0hXuEMi+XN9RelSe6jyAPzDdHw/P0NK70IIId5Wnc9ZbS9HqR4I0TTsJvtMhw8fxpYtW3Dbbbc1wxkS0jwmTZrEC9uz/mhj9eoUAWtgFmSiE07BB6V5UtFwQghpDcryLbA6VfwalRt2DCdlw9E1tGEFw9k1MSYmhl8jCWkrWHrgzZs348gRaYD7n+L7BfNtmV9nOJQ+GHjcgxS9FemHt3v5TEl7QkF00qAgYnzSIJxIksGp9KC3wg8QXag0heL/fvkQz+xcgCHx9admycjIwF9//UW50Embw/L9stkdX3/9db3HKuQy2GZehaeGz0N6tyT+XM/yAr7NO3UCbsdKGIyb4eOvafbzJoSQmtjMTr5VOs0o8AM6B/Vq9Bv12WefISgoCJdddhm9yaTNYDV5br75Zl4w3GQyNepnVQoZXKGRMFRIKQ6zd7N6QYQQ0jpk7JFStBnLUqEPN0HeZQK/j69PZWUlz4fOro3sGklIWzFjxgwEBgbyPmlNfIO0CI4x8JQuRUF9MCjFg/VaLbpWbEV2mVSAl5DGoiA6qRPL3bznz5N81mxKaQp/rpulkm9zPHGIMBcj1mOCWlF/gzt//nz4+Phg7ty59K6TNiU4OBizZs3iszQasnx7TFdp1HulqRPfRuYcgI/SB263EwVp21GefwABEdpmP29CCKmJ3eLiW6XLjEKjgMFdGpYztZrNZsOCBQtw4403Qq1W05tM2hQWKLJYLDxo1FhBwSPgcZ3g+xl7pWA6IYS0Bhk7MvlWYTsKvTwAQ3rEN+jn2KCi1Wrl10ZC2hLWB2V9UdYnZcXuaxKfFHw6pUuPUx7sUagxWHYIW1LrX2FOSE0oiE7qdGJvITZ+txjbfl2JrNJT/LmuBWl8m1wZxLf6wPoLirLA48KFC3kAXa9vWIVwQloT1rE8evQozxdYn+EJgXz7W5GUzkWWfwTd/BJRZnBCUCnhsFpRkiV1dAkhpKVmoiucFhQaga7x4xv182xVWUlJCd1wkzaJpSyYOHEivv3220b/bHDnsbDopCB6QQ7VNiGEtA6iW0R+vjRAnu+TjApLd4zoLN2r14fdo1988cU81RUhbfEevbi4mPdN60zp4t8Vco8SsTkCNNoM7DwurdwgpLEoiE7qlJ9eAJd1PVK3fAG5W0CINhgB2Xv59w5X+PKtf6Bfve9icnIy0tLSMHPmTHrHSZs0duxYGI1G/P777/Ueq962Eb8sfRL3b/kBFl0k4BHRXWmERwDcoVJO9KNb9sFhkzq7hBDiLR7RA3t1OheXGU4fAcqqYsgNxa6DXbt2pYKipM1i/dGNGzeitLS0UT/XJbEbnP5SEN3mMcJqokA6IaTlFWeb4fYooHBZUB6WiVLjEBi1ynp/jg2Ib9q0ie7RSZsuMNqlS5da79FZPTIffzVEmQJlxs7ok+HBPp0ClWlbqUA4OS8URCd1zh4vPCXNOpcbDXCoRHQxxAD2CogyFYpd0k233lcKCtblt99+g06nw7hx4+gdJ22SUqnE5MmT+We5XnI5NE4b9E4rUpTd+VOJDmmJWVmAm293L92GwpNSaiRCCPEWh92N6qxU7GZbrm9cfQZRFPmNyqWXXto8J0iIF1xyySVwu91Yvnx5o34uPsQAq58cOksef5yf2rggPCGENIesQ9I1yVh+Av7BdugShjXo59g1kF0L2TWRkLaK9UlZ35T1Uf+J1QWI7iHV7ysJ6I7eGR7s1GjQzbYfJ4rMLXC2pK2jIDqplbnMAYc5m+87w6Sb7HhB2hZo46F0S8FAWQPyobLAI1smptFQMUXSdk2fPh27d+9Gdrb0/6I21f8nFKIbWyxSSpfYyhK+PeVTzreiKxcludRwE0K8y+WQ2m543JCLLmgDGrbcu9rOnTuRn5/Pr4eEtFWRkZEYMGBAwwbGzyCXCRB846C1SCnZ8g9SajZCSMvL3ifdm8jtadAK/ugbL91/1IddAwcOHIiIiIhmPkNCmg/rk+bl5WHXrl01fj+mh5RqtcS/G+LygFS3EgNkh7HvVBn9WUijURCd1Kq80ALRnc/3y/ylm+5Yh41vD4uxULqlVBSCqu4gemFhIbZu3Uo33KTNmzJlCq9a/8cff9R9oEIhbUQ3tpnD+H5scQbfHldLM0U8YgmKsqjhJoR4l9spzdKRiVIbHhLZsMJj1dhMn4CAAAwb1rBZboS05plrK1asgMPRuJQsRp9+sAtSwCr3uNRPJoSQlpSfI614LdGeQLk1EQPj6q9Zxq597BpIK8tIWzd8+HD4+/vXmtIlqps/IABmn0g4VUbE5QqQabJxILPY6+dK2j4KopNaVRRZ4XFLVYszdVKwL7qikG83mSJgUaqB8AjIA6XlMbVZunQp306bNo3ebdKmscZ51KhR9eZFF5RSDkKtIOKoGMP3A4rSYFD6wKx2QaHRQZD5oThb+v9ECCHe4nadHUSPSkxq1M+zWWusPVdUDRYS0pZnrpWXl/Pc6I3hE94PFm0W3y8pptomhJCWZalwwOZS8hpMxf6nUKrujVDf+ld/b9iwARUVFTTRjbR5rE/K+qa1rS7T6JUIjjbw/TJjAhJzPEjTCCjJOOjlMyXtAQXRSa1KcsvhEaXUE8flUvXimKJ0vj3oisbK3hPRbc0qBN91V53vIruYDR06FCEhIfRuk3Zx071q1SqYzbWnYhGUqtNB9EL4waLwh+AREacN4aPgcTfeArXxJtjMlN6IENJyQXSHAgiL7t/gn83IyMDBgwfphpu0C/369UNUVFSjU7oExvaEW3+K71td+r9TJBFCSAsoPFXBtzpLAeTBJsgi+jXo59i1Lzo6Gn379m3mMyTEO/foBw4cwMmTJ2v8fliCkW/LjZ2QmA0cVqugLzoAm5PacNI4FEQntYrrJedblU4Pk9IOhUyBsDJp+epxTxR6RRp5oYa62Gw2/PXXX3TDTdoNtuTRbrfzQHptBKU0Q1MNFqwScEIexx9HC1Lqo2J1Ad+aSuxUFZwQ4lVup1RVVOZxwawGgv2k61NDsFU4rMgyq3FCSFvH+rDVxcg81dV2GyA+PBBugxkKpwkQZCgrsDTreRJCSF0Kjkn3FT6mTPgbRATHdK33DWPXvOoi4fXdzxPSFkyaNIn3UWtbMR4W78u35b7xSMj14IhChZ5Iw9FcaRCKkIaiIDqpVVhCJ1z/6rvoduMs/jhCEwQWVrfIfVEOH/SMkC5EdVm7di2fsUsFyEh70blzZ3Tv3r3OmWtyHx/oBg2ConsP/viQPZhvQ93SDNAiWR6fkc5mhFornV46c0IIAcSq65AgumFTAf7q+vOmVmPXvbFjx8LXt/72n5C2gPVP09PTcfjw4Qb/TKSfDk69HjqrlPKwLLeyGc+QEELqVpBSlR7SnQWZOxDdI6QZt3U5dOgQX11G9+ikvWB904suuqjWe/SweOn/hcknGmqXEq4KBeIVaTiWR204aRwKopNayRVKBMd2gjtWuuAEyaTUE1mCVChx1K7lSJ81G6XffVfra6xfv55X+2ZBR0LaCzYLk322a6OMjETs1wuQ8PknkMsEpDqlIHqwQ5qtVppzCgrhJ2g0v0OuoNkfhBDvEWTSNccjCHCoBMhl0qqz+rhcLmzevBkTJ05s5jMkxHvYDTfLpcpyAzeUViWHRx0MpV0KXJUclwqGE0JISygpsPJtuToHJnssuofXP9DNrnls1u6YMWO8cIaEeO8enfVV3e5zU7QYAjTQGVXwyOSoMMQiLt8Dt7oQx/NpJjppHAqik1qXeG368Th2r8hAYZlUtTioaqVrskPKbR5qK4ftyBE4C6QlZDXZs2cPBg4cSMvESLsyYMAApKWloaxMKrhbG7VCjthAHTI90v+ZYLN0fJGzFKbikzCVnIJKS8X5CCHeU71s2yPI4VY3LIDOJCcnw2q18jadkPZCo9GgV69evL/aGGp5FFyCFEQvzSxtprMjhJC6iaIHlVapLS825KECnRDWgKKiu3fv5tc+dg0kpD3do1ssFt5nran/GxonDTCZfKIQU+RBrorVAcxogTMlbRkF0UmNnDY3dv/xKzZ9vwhFBZn8uSCXlHbihBgClVwGX51UPBG15JFkgXjWQLOLGSHtSfVneu/evfUe2yXEgFNVQfTQiny+zRakgSmX3Q5rJY1+E0K8qHrxiyDAo1E2+MdYe84kJSU104kR0nJtevXnu6FU+gTY5FIQvaxYmgVKCCHeZiqxwQM5ZKITLmMx3P4JDZq8RvfopD3q378/39bWpgdG+vCtyScS0YVAulIJT+Exr54jafsoiE5qZKlwwG3fA5d1I8rKpcBfkEO6ScjyBCM6QAtBVvXxqaUWE6uMXFJSQkF00u507doVer2+1gbaevgwUoYNR/rsy5EY6oNMj5TOJcgizVYrcBRC7xfA93OPn/LimRNCOjqz08W3HtYF1FYNhjcAu94lJibCaKw/1yohbS2IzvID22y2Bv+MwhgLh1Jq082WhhclJYSQplSWL6WK1FoLofVxQBaUUO/PsFVlrA4ETXQj7Q3ro7L6ZfUG0fURiCryIF2pgL8lHSa71DcmpCEoiE5qZKm0wyOa+H6xUtoG2sx8W+DxQ6cgPQSVNIPN43DU+BrVFy9qoEl7I5fL0a9fv1obaPZ/wl1aCnd5ORJDDTBBB5PgA6MoFfSzu+2ATFpOdmQTjX4TQrynwlYVRBdkkKsbvoybZq2R9or1U1nO/4MHDzb4Z5TGMLg1Uoo2h6vhKzoIIaQpleZIK1p1lgLotSL8QmLr/ZkDBw7wnNF0j0462uqywEg935r14QguF5DjUaKzkIOTxVKci5CGoCA6qZGpuIRlWePrviuU0swcg1VqpAs8/ogL1EOm0fLHoq3mZazs4sWKioaFSYVICekwy79dUpBKkMvRKVBqrIs9vtCLf89WU+mlkXBLRd151QkhpClVOKViS6JcBblS3aCfYTfb+/btoxtu0i716dOHFxdtTEoXtTEYgkaaie6GCk77uUXMCCGkuZWfYvfsgMJRDFGhR2yQdH9RF3atY9e83r170x+ItMt7dJZytabiosYQHeRKGUS5GlZtEIQKOUJkBcgta/hKNEIoiE5qZC4v51uZQgeLWwqS623Sc4UeI+KC9JBppRlsHmvNFx2atUbaewN9/PhxlFf9XzmTaJGWVgp6HSL8pP8neaIvWNkfnUxKnyDXSoNQdkulV8+bENKxVVQN8rnlaigUDQuiswJNrFATzVoj7RErrNezZ89GBdF1Bn9Aa4HMLa3GtFTYm/EMCSGkZqZCaZKbQ14OuPwQE6ir962ioqKkIxQXPXbs3NXeMpkAvxDp/4hFG4LgCg8UyhLkllNtE9JwFEQnNbJUSA2yXKmF2Sktb9GJIlyQowQGxAToIDP4Qh4YCKEqmH4mKipKOnJx0eogulynR4BeBbVCxmeiMz4yadm3wuALQeYHAQ3PSUwIIReq3PF33kdBYWjQz1QHF6sLNhHS0YuL+ulU8KjlUDmkgXRLec2pDQkhpDmZy6Rrj01RDtFpRJSfNEmnLjTRjXTk4qK+QVLsyqYJRHA54FFUIqecZqKThqMgOqmRrVKaHatQ6mFxVRUsET0ohYEXIwv11cB/7hx02bwJ4c88c87PZ2Zmori4mG64SbsuLqrVamtsoEWzNPAk0+shCAIi/LQo8kjF+Hz4fHTAv89gqI03wy98hJfPnBDSkTkcJsAj1WeAUko3VZ89e/bwQk1UVJS055tuVlzUbm/YjHI/nRKiQgllVR/ZbqWiZIQQ7zNbpPbcoiyD3RXEJ+/UhRVQZkVFaVCctFd+fn6Ij4+vPYgeKA00WbWBCCr3oFLpRnFxkZfPkrRlFEQnNfILkT4awTFBsLqq0rl4RFSI0kUn2FD3EvCUlBS+7dGjB73DpF1iuQS7devGU7rUNhNdppeWi7GULmwAitF4pLzoLplT2jqrglmEEOIFHjsrFi7NuBFl9S/7Zth1jtpz0p6xdC5OpxMZGRkNOt5HreBBdLlLCro7zJTOhRDifTanNDnHpiqHTREChbzu8M7Jkyd5IWVq00l7b9NrukdnDGfORK8A8uVyuEqzvHyGpC2jIDqpUa+xF+G6V/6HcTfdAkdVvkeVBzBDA6VcgJ9WSklRm9zcXL5lhUUJaa/Cw8NPf9bPJPfzg6ZPH6jiOvHHoQYNLB5p4EleFUSHrCqYTkF0QogXuR1mCJ6qZatu6ea7Pjk5OdSek3bfnjM1tek1USlkgFwBhVv6v2QrlwbPCSHEW9xuEW6Pgu87NSbYNMENas+ZyMjIZj8/QloKi0HV1p77BmlPB9EDKjzIU8ihtBZ6+QxJWyZddQn5B7VOj5C4+LOeE+CB2aNFkI+aF2VwZGYi94knISjkiJk//5wGmi2lYekuCGnPDfS+ffvOed44fTr/Ov1Yp4QFUhBdqEqj4LRlQ+bZAFsZ6/AO9OJZE0I6MrvDDUFgAb8AiM66B8SrsRsRGhQn7Vn157vBQXS5DB5BCUGUguiOCsqnSgjxLscZaaTcaisEXUC9P1N9jaseOCSkI010Y3z8pHtyu8oIgw0ok8uhskv1AAlpCAqikxrlpZcj62gJAiJ84IHn7wrg0PAgOicIsOzYAUF9bmoXdtGixpm0d+wzvnz58nqP89OqkFkVRJdXBdHlehcsZTlQ62hBECHEexxOJ1SogMBWwoh1p2Zj2LLvgoICatNJu2YwGKDX6xs1E93jUUAQpTQuTpuUoo0QQrzFbpGC6HKXFXIfF1R6qf5SXdg1zsfHh38R0p7v0Vnf1e12Qy4/e9Wl1iBNIHEqfeBjBSplAkIdFEQnDUfRG1Kjw+u3YfOi77F/1bbTz7Ebbgs0PA8kI/fz51uP3Q7RKuVNr0ZBdNJRGuj8/HyIYt15zY1axel0LrLqdC4KqUF3OSiPKiHEizxueASpeLjLXXcBMobdhHg8Hgqikw49c+2flGwmukcBD6T2X3RTfRNCSMvMRFe4rFDKRQhqqf5SXWhlGekoq8vY/Tnrw/6TxkcKontkcqjcWpg9MqjdlXBSO04aiILopEbFmYfgsm1GRaFUILSaCzLo1fK/iyYqpYuQu6zsrOMoiE46yg03m6VZVHR2Re+Ma69F6vgJsFRVBffTqWA9nc7Fzbdut1AVRKfZa4QQ75EJHkCQZtw43eoG50+l1WWkvWOf8erPe30UcgEejxweQQqee1xS204IId7itEnXHbnbDkHhgUxd/+xydo2j9py0d9Wf8ZradIVSDmVVPIvNRhcdMvgKFlRY6Z6cNAwF0UmNhKqihyzeJ/A56IDItwJ0KmkmuiAIUPhLs9FdRcVn/TwF0UlHLkTmzM6BMzsbgkqa5WnQsNlqEkfVnitLGoByVHWACSHEG2QsSZu8KohetUKmLpQ/lXQUjZmJ7hY9kPOEh1Uz0etZkUYIIc1RWJSRedw8iC7X1B9Ep3t00hHUVyz8zJQuHocAA6xw0Ex00kAURCc1klelmnC73FDLpZtsm8BKiwqnZ6IzitBQvnUV5J9+ji37ZqN+VISMtHfVn/EzR7nZ599dLA0qKQICTi/7loaigOrER4JLuvwKAl2GCSHe45apICqqguiipt7j2Q2ITCZDSEiIF86OkJZt0xsaRHe6PRAEEUJVijaPp7qVJ4QQ7xDdntOrXGVyQKHS1fszFEQnHQHrs7IJn7W16SqtNCnUpdDy1eEKuOGq+v9ESH0oekNqpFBKFxa32wWdUmqQrTK2dBXQKP8OoivDwvjWmZt3+rnKykpYLBZaKkZahffffx9xcXHQaDQYMmQIduzY0WSvHVo1iHRmA81SG3kcDr4vDw4+vexbVjVbzV41E11wVAfR6cabEOI9brkGbnUp33cIDVv6za51/yzMREh7as8bm85Fyp3qPn0jJcjolooQ0kJBdNENhccDTdVq8brQRDfSEdp0hULB+661tekspQsjyhSQuaQgOuVEJw1FPT5SI3lVrnPR5YJWoeX7lqpgn/yMoJ8iPAzywEDWip9+rqSkhG8D2fPEqy666CJ8+eWX9K5XWbRoER588EE888wz2LNnD/r27YtJkybVWGTkfKhUKhiNxtOfecaZlc23iuBgyKrSuZw5E91WveNWADJfqHV+9PcihHiNR6GFqJHqONiVfnz1TF3Y9Y3ac++j9ty77TkTFBSEiooKuN31p1lzVc1EB6T+skJFg0yEkJaaiS7yoE5983JYHSc22Y3adO+jNr1l2vQz79HPJFdKYVBRpoRcBOQQeZo2QhqCguikRkp11RIX599BdKtMBoVw9o1F6OOPo8vmTQi4/vqzGujqAGNTefbZZ/mM3Zq+WKNESE3efPNNzJs3DzfddBN69OiBjz76CDqdDvPnz2+yN0ypVJ7+zDPOqhFvZVWql7+D6J6zZqJrtBHQGG9FvykP0h+PEOI1Ko0OSm0h4BEhytWwllUnmaoZu741ZXvOUJtOWmt7zpzZpteGz1hjQXRB6i/LKYhOCPGyM4PmbgEQ6xkUp3t00pHv0c+kOCOILnOzSaIunqaNkIagIDqpkd5Pz7cxPYzQKXSnZ6JrIKWpqFZTKgqn03l6GU1Tefjhh/mFdtiwYTx1Bvt66KGH0LNnT/z888/0VyTncDgc2L17NyZMmHD6OZbXlz3eunVrk71j7HNe/Zk/K4ge+XcQXSEToIWDJ3SprC4x6pBmral1Tff/hBBC6qPW6qFROaB2lPPHZZk1z9Kpxq5vTdmeM9Smk9banjc0iG6yuwCZ4++Z6FWTTwghxFtkCrh90JYAAH3YSURBVCmU45HJIXoEiPXMpKV7dNLR2vTa2vPqmehumRIKNwuKuiGXUYpV0jDU4yM16nXROMT27g1DYDC+2b6dP5eiUmGmLA2/ltY/a41/uJrwptvHx4ePTrLZcGFVedjZc+x3BFQVbyTkTEVFRXxJdnXe8mrscXJycrM10HKjEdq+faHu2u30c6zat16wolwmg1jVPjsrpY6uzti0MzwJIaQuHrBVZYDCZYNdDWTty0FEn6haj2fXt6YOolObTlpre97QIHq51QlBtMEjqwqi66VVm4QQ4i1up1RvqcK3E4ogh6MBK8sYukcnHfEe/UyyqoC5R5BDlAEOUQlV1aAUIfWhTwqpkc7PD4Jcj9wTRUgtOMGfW+Trg3ChBCsO/11EVLRacWrebUgdPwGizcafq75YURGy5vfiiy/yYET118aNG3HHHXec9dypU6foU96MsrKy8NJLL51+7DdrJuIWfY+g2287/ZzDJUIPG0rl0iXXoDLALzAbcs9inNy/lP4+hBCv2Xi8ENu1Gpj14fzxgR1ldR7P2nRqz5sftectb8OGDXybn5/foCC6zOWES67hj9W+FEQnhHhXwcmK0/uFlWr8ujujzuPpHt17qE1veWxWe23pYapXbQgeNzwywAkVBdFJg9FMdFKjkwf24dfX/gNBHorQIXHI8juGUtm5Yy6CRgPr/v0QKyrgOHkSmq5da0zxQpoHC5jPmTPn9ONrrrkGs2fPxqxZs04/F3FGbu6OhBUTYYGff94Ms8fVqxmaCiuGUhe7S4SPYEWJXErhEqAJgMHHBXNZFpy2xCY9F0IIqUuXUAP0GX+nZrO76u4KUpvuHdSet3x7Xv1aGo0UGK8viA6XC06llP5Qa1A32XkQQkhD6I1/X3d0DsBfbarzeGrPvYfa9NZxj67VauspyuuGIPPADiXUNBOdNBDNRCc10hv9+NbjseKKiKv5/gSLFbmeAMxMijyrMVYnJPB9e2rqWYWZzswT3RyoIwCeyqZz586nv1hDERISctZzTb0Mv61gqX8GDBiA1atXn35OFEX+mOXWbyqRkZGYNm0a3/e43fA4zq4bcNZM9KqBKH+1Pyzl0uxPrcG3yc6FEELqc/mAKISXRwGVn/PHgbq6l3+zNr2523Omo7fp1J63fHuemCgNavv5SX3gulSYbYDTA6fShz9W6ztmX4sQ0nJiekopTRVOM8LVdlzWJ6jO4+ke3XuoTW/5Nn3o0KG4+mopjlV7EF2EXPDARjPRSSNQEJ3USGc0SjuiBVqLFOTLl8sRgEqYbGffTKs7S0F0R1pao3NKXgiDwYC8vDykpKQ06+8hbdeDDz6ITz/9FF999RWOHj2KO++8E2azmVcCbyosuFTdKWUDSclJ/ZE+d+5Zx9hdbvjBhAKFNBM9RBaO4qwCvq/382+ycyGEkPqEGNRwOv1RppVSs5VblfB4POeVU7IpUZtOWro9b0y+YHN5Ppx2GVxVM9E1eqkfQAgh3qLSVt1zK7QQHTKIFqlgeG3oHp10tHv02tpzjyjVE5B53GBz3BweJbRK6T6dkPpQEJ3USOdbPQvHBVm59DHJV8ihFpxw281nHas6PRPdu0H0SZMm8W3//v2b9feQtmvu3Ll4/fXX8fTTT6Nfv37Yt28fVqxYcU4hkwtxZtE9PpDkdkMQzr60VlhdCBHKkFV1XGRlIk4elHLV+/hTYVxCiPcE6FWoFANQ4lPI7iLg8ihgKT93BY23g+jUppOWbs+rV1w0JIjuKM6EaNHALZfSKVAQnRDSUkF0sPsOhwYeW+sIolN7TlrbPfo536sqyiuIbniUHtiVBiirapcRUh9ae0hqpNRoIFeq4Xba4SyxAkagSC6HmxUMtZWcdezpdC4npCC6Wi3dUFitdS8Rb6y33377rMc9e/bkM9HJ39atW0dvxz/cc889/Ku52Gy20595e5pUhFeVEH/WMaUWB5KEMmRXNeR+9hCUidJglN6PguiEEO9RyGWwKIPhMjigKymERReKklwz9H4153Rm17embs8ZatPrRu15y7TnLK1QQ4LonvJsyG0BgAqQwwW1jm6pCCHepVDKIMAND+SQOQ2A/e9CozVhK2fZNY7u0b2P2vSWvUf/J7ulatDcZYFK5YbDTffjpOFouIXUyicgmG8r84ugFJRwCwLyFHIoLWcXgVB37sy3joyTEO12npOb+WexCELam8rKSlgsltOj5rbkZL5VV+VVrVZqdiBEKD0dRNeYfOHxVAfR68+9SgghTcmuD4fcxw2dRRqILs6urPVYdn2j9px0BGxiBuvDyqrql9RFZsqG2irddGvVrg6f058Q4n28NplCCgYq7b6Q2YrrPJ5d24KDg6lNJx2mTa9tZrvdXPX/xmWBViHCraEgOmk4CqKTWgVEhPOtw1aKLuoefD9dqYTOknVW/lRFWBjkAQFszQzsx47xYhGBgYHIzc2ld5e0a9Wf8fBw6f+K7fBhvtX26nXWceVmMwKESmQrpSC6p1SAIPPhqz2MIU1bhZwQQuojBMbDX+uE1pLFHxck1z7oza5vZWVlzTIbnZDW1qZXt+d1cYseeNzZ0DulmiYGH8qjSghpGTqtVJRbZ/eD3JZT7/HsGkf36KS9Y33W8vLyWtt0u0VKaeSUWeHnESHo6y7KS8iZaO0hqVX3EaPhdgchoksSMn1zcThvPw+ih7gLUGl3wVejPD0KHnTnnRA0aigjIvhz1ECTjhZEdxUVwcXSCwkCNN27n3WcpyIXpTIZzDIZBI8AS4EAte/1uOLxgTx1EiGEeJMutDOCSl1wQKrNUHjKVOux1TcgbEZPp06dvHaOhLTWIHpehQ0aRQF0zv5ga8p8ArVeOT9CCPknH18VSioBrcsIs+wUKm1OGKru0WtC9+ikI050O5PbLcLllCaE2uUWBIhulPlQEJ00HAXRSa26jxrLv5jde3YBeUCGUoEEoRAFFfbTQXQm4Lprz/pZaqBJR2ugbXv38n1VfDxkev1ZxynL0nFcJf1/SVT2gMPqhkwuIDDSpwXOmhDS0UUH+0FxUIsSrTQTvbzCA6fdDaX63Bm1EVWD4+x6R0F00p6xz3ifPn3qPS61wARBXgiZIN10G6NpGTghpGX4BGiBbBuUbiOUijLkV9jrDKKzNv3QoUNePUdCvC0nJ+esPuyZbCYplQs8Isq1Vvi5RCDo3OMIqQ2lcyEN0skozT5jM9GjhCIUVNjqPJ6C6KSj3HDrdDoYDAbI/fzgO/1SGMaPP+sYlvpIbzqJ4yoVf9xV7Mu3/uF6yBV0CSaEeF9soB4eeyCyAyqgspfDAwFFWTXPRq+exUPLv0l719CZ6Gn55fDYrLDopHRsgQlSLSBCCPE2Q7iRbwV5INyyCuTTPTohdc5EN5Xa+VbtKEeJrwcalw4Rgb70rpEGowgOqRUL/pXl5WHPinXQnZBuENhs2jghD1ll1nOOtR48iNLvvoNoNvNRv+oRQELaK/YZZ591ltJI27cvIl99FSEPPnDWMeVWJyLc2UipmokeERuAwNDtqMidj+M7trTQmRNCOrJOQXpUOCKRGwgYTNUpXSpqPNbf3x9qtZradNKuiaLIUxY1JIhenJUKi0kOi04qWBYQfvbqM0II8ZaA+GC+tWpDAJsVWSUsyVTt2DWOXevYNY+Q9hxEZ31XPz+/c75nKpEmg6ptpShiY1AOP0T5U1o20nAURCe183iw4NF7sPaL13Fk8Ulo3T4ok8uhUJUgJ7/grENZEDH7vvuR99zzsOzdd3om+pkFSAnpiLPWskqtfODpdDqXmDjYTJmoLMqCXFn7cktCCGkuIQY1spUJ8AS6YKiUguh5aWU1Hsvad1pdRtq7IlbXxOWqcen3P7nzkyErD4JbwW66RRiD6eabENIy/EKkQTyLNhiuSgF5uZl1Hs+ucU6nE8XFxV46Q0JadqJbbTPRNfZSFPkKsDtDEB2ga4GzJG0VBdFJrQSZDEExsXzf4y5CP2Eo3z+sUsGee/Sc43WDBvGtZedOfsNtt9tRVlbzTTkh7SmIzoqK2pKT4alhVkdmiQWxQi7SqgLm8fpYlGRLeYhDYuO9fs6EEMJuKpzBvRCucUBlPcHfkNxjtd9QUxCddOSl32dik0PkFUdhrJCO81E7KDUbIaTF+AZr+MQ3NqjnNvnBnptc5/GUoo109IluldUz0e2lsPqIKBLDEGpQe/kMSVtGQXRSp6CYOL4V3UXobO/F9w+rVVAVn9tA6wb/HUSPjIzk+5mZdY+GE9KWZWVl8VHuimXLkD5jJrLvf+DcY/Ly4NCUwCqTIdQViYL1xfB4RGh9jdD7UzEyQkjLMMT0RheHE4X6dAgeN0yV4ukbi39i1zlqz0l7b8+Z+maiZ5ZYoZUnw88WxR8HhdLsNUJIy1Eo5dAqpZm1WlM4ZKXH6zy++hpHbTrpCPfoNakoktISa2ylEAxuWA1xUMgpLEoajj4tpE4hcQl863Hlw69UCowfUasQYE6FKHpqnInOcqN3T5B+bv/+/fQOk3bJZDLh+PHj6N27Nyw7d/HnNL2kgaYzWTP3Yb9aGt0e5BqHXUulY0Pi4mtcYkYIId7QJSoEPjYjMkId8KmUAoi5qTWvHuvVqxf27dtHKdpIu8U+3yx3alRUVN3HZZVBkOfBo5BWaob2kPKiE0JISwkIVPCtnzUSgjMFTnft+c7ZNc7X15fu0Um7xVaMsTad9V1rUpIl1QDSWPPgp3OyhtzLZ0jaOgqikzpFdOnGt6IrF65sJWSiHIdUaiQined6PpMyOhqK0FDA6YQqPR2dO3fG7t276R0m7VJ1QGlAUhIsu6TAuG7gwHOOUxccxH6NFESPMiXC45KWjId2kgaaCCGkJfSM8IXFHoMT4QL8ylP5czmp5TUeO2DAAJ4/9dQpKX86Ie0N66/279+/3sHt1BMnYK10wWSI4Y/Duod56QwJIaRmIfFBfKvyREOmzMSJwtqLi8pkMn6to3t00l6dPHkSJSUlvO/6T26niIoSB9+vVOeik9sN/+juLXCWpC2jIDqpU1B0LJRqDStbDLe9GLGWrqiUy6BVZ+JI1tn5U9mNh27IYL5v3ryZX7iogSbtFftss6rfLKu5u7QUMr0e2l49zzqGzQQJtRzDPrUK8ACKXCNEVzb/XkRXGvUmhLSc+CAfpMl6Qgxxwq88jT+Xk1xzXvTqGxFq00l7xT7bNd1w/5P95C6IRX6waQL545AYgxfOjhBCahfaS1otbtFFQWkvxYHM0jrfLrpHJ+1ZdV+1pja9rMDCSghA7rIix68CersRXSIovSppHAqik7o/IHI5wjp34fuiKwdJrlF8/6BWhvzUc2eZ+4wew7fmbdv5hWvv3r1wu930LpN22UD37dsXts1b+GP98OEQVKqzjmEzQSLlJ5ClVCLQEgFnpQi5KhzGkDBEdKVRb0JIy5HJBNgjhqCbzA6zPBXwiCgtsMFcJuVWPRPLKxkWFkZBdNIuFRUV8VUW9QXR2cC4qmwPgkqklWQ+ajtUWimNAiGEtJTgWF++NevD4ShVIvvE4TqPZ9c6NluXrTAjpD3eo7OiojUVFi3JlVZp6M25yA4SYLdHomsYDYaTxqEgOqnXgGkzMOLKuzHlzumIGy1dZHay9BRZUgqLM/mMHoXoTz9F7Ddf8wbabDYjJSWF3mXSbmetmTZs4I99xow+55ijqanI10k5hvvbRkIQZOg8+Brc+u5n0PpQg00IaVkRif3Q1SrgWIQFvpVSqpZTR2qfjU4z0UlHm7V2pv2ZZdBpDsHX0Zk/joiXAleEENKSDIEaKAQHPDIFFCVxcNdwj34mWl1GOurKsuIsE9/qLbkoCRJRIuuCSD+tl8+QtHUURCf1ShgwGENnTkGXwfEYHC3lfN6t0SCg7NwiY3JfX/iMGgmZWs3zrfFjKS86aWfY4FBycjKGdO8O28GD/Dn9qHOD6KbjG7FVy9IhAZ0q+/JtTE9pCTghhLS0wfGBEC2xOBojIKDkCH/u1OGSOoPo/2z3CWnr2OfaaDQiIaHuWiU7UrLhsJXBok/kj2MGSsVFCSGkJbGUqqEhUlgn0JQAj2V3ncVFWd0yg8FA9+ik3WF91LqC6HmpUqoj34pT0AQ6YAsbWG8tFEL+iYLopFG6BnSFXq7hedF1ymNIL5RG82ri5+fHb0goiE7aY1FRURTRd9gwxHz5JUIefRTK0JBzjvPJ3YYtWi3kogKKYh+IrkJEdvNrkXMmhJB/6hVpRIrYE+YwNwKrguiZR4ohiucGytkNCUt7kZmZSW8k6ZBFRUuTN8BSYEClIZo/juwhFfMjhJCWFtk7gm8VsgQo5ek4klNR67FUXJS0Vyw1G0tTVFMQ3SN6UHBS+n/h8qQjQeZCYKJUz4+QxqAgOmmQ4uxMbPh2IZa9+xsuzbuNP5ess+PokX3nHCs6HCh48y2cuHQ6hvbtS0F00i5vuFUqFXr06QP9kMEIvPmmc44x2V3QiAdRpJBDIQdmPdoFjsqv8f1Tt8Npt7XIeRNCyJnUCjnKI0ahj9yKYu1JKJwW2K1uFGSce/NNy79Jew+i18XmdENbsgmhBV0AQQa9yg4ff2mlGSGEtLSoJGlwr9yYAKHchF0pdQ94U4o20tHSs5XmWeB0AjK3HacC8uBjC0JSp3MnwRFSHwqikwZJ27UdO39biLSd6+CfEQ+FW4l1Oi1syavOOVZQKlHx5wrYjx/H5KBg7NmzBw6Hg95p0m5s376dFxVlgfTa7E1OQ25VPvRBIf1RePwo3zeGhEKpphtvQkjrkNBrCHpYlNiX4EFAaTJ/LuNgUa3FRdn1j5D2Ij8/nxfYGzhQSldYm50ZJdCqD8PX2YM/jkqkVWWEkNYjJMYAAW44VQaIhTEoSV5f5/HsmpeRkcGvgYS0F6yPygqKsj7rP+Wll/MtqwGUHiGizNYNvSONLXCWpK2jIDppkLi+0gwd0ZUJ0elCXGkvJKtVUBRvPOdYthzWd8oUvp9kNvP80Ruqii8S0ta5XC6sWLECt/Tqhbznn4f1wIEajyvetwxr9FrAA4yKHY+M/XvO+r9ECCGtwdhuISgz98CRTkBQkXQ9S9tTWGPbfvHFF2Pp0qUtcJaENA/2eWaf7fHjx9d53Lb9h2GpMKPcvxd/nDCq7vzphBDiTXKlDMH+Lr4fVNYdQsn6OvOis2seu/YtW7bMi2dJSPO36ayvWpPc49X50NPhDHGhMnAQNEo5/UlIo1EQnTRIcGwnGIKCAY8TovMU+pdJRRTL1CdwqkAa1TuT75SpfCvfvx/dYmLw22+/0TtN2oUtW7agpKQEw61WlC78DqZ1Nc/0EHL+wj6NGgnFSRAXRSFt907+fKd+NRc6IYSQltApSI9j2iEI9LdDYz4IQXShLN+CkhzzOcdOnz4dhw4dQnp6eoucKyFNjfVPhw8fjuDg4DoLlTmTl0LIjYVNE8hne0Z1pyLhhJDWJX5QDN/KFd2hFJJxIEtaEVuTkJAQDBs2jO7RSbtx4sQJHD58mPdVa2rHMw8W8H21JQVRBjsCeo5rgbMk7QEF0UmDsJHqzoOG8n3RmYqA4k5QO3XYolfg6M6/zjle3SURqvh4eJxO3DVgIG+g2cWLkLbu999/R0JYGJSHDvPHvlMmn3NMUYUZxSopLcKA0tEoyUyBy2GDj38Awjt39fo5E0JIXe27ptt4DLPZcTDWfjqlS9pe6WbjTGx2D0tjxa6DhLR1VqsVK1euxKWXXlrncYdzKuAvbERUaU/+OCwYUKpp9hohpHWJGxrLt2XGRHiK3Nh1SGrPa8OufX/99RdsNqrVRNo+1jdlfdSaZqKzySFmsweC6MQp/zT4W0IxrJv0/4WQxqIgOmmwxEHD+NbjPgGP24P4kr7YptXAcuznOlO6jHS7eb5JNnuNkLaODQjdO2AAHyBSJ3aGOjHxnGOObF+JzXoFdA5fPuAkOo7z5zsPHgZBRpddQkjrMrZPZ+hMcdjeTUBw4b5ag+gGgwFjx46lmWukXVizZg0sFkuNs9bOtO7ACdgdhbDr+vLHCSPivXSGhBDScAHheqhlNohyFTT53WE+8kedx7NrH7sGsmshIe3hHn3cuHHw8fE553tZyVIqF2P5CaTEOlHsGoSeEb4tcJakPaBoDmmwyG49oTH4QnRbeW70fkWjIAoC8j27YHM4zzneOOMyvtWkpCDRaKSbbtLmHTt2DCkpKRhllwrlGmfOqvG44iO/YJdGjcSiAfCIIh94YroMGeHV8yWEkIYY3CkAe2WjoYhwQF9xAILHjeIsM5+5U9PMtfXr16O8/NxUboS0uZVlCQno1q1bnceVHVwGMTMMFcZ4tiYcnYdFee0cCSGkodgktpgEPd8PsPWB3LEOOWXWWo/v3r074uPjaXUZafPKysp4Db7aVpadqkrlwlZbqsPtcMaOhUwmePksSXtBQXTS8A+LXI4uQ4ZDqdZApbIguJMBgkeGjT4CDu84dwRbFR0Nw8QJ8JszB6PHjKEgOmkXN9y9DAZoMjMBhQLGy86dvWZ3OpHl3goRAnoXsqC5DINn3oehs+Yisru0FJwQQloThVwGZY9LcZHNiv2dLPAvPcafP7Yj75xj2Q1KdYFlQtoqURR5m85mYrLAU22S8yoQ6FyOiBKpKHhIgAt6o9qLZ0oIIQ3XdWJ3vi3z7wtUFGHNoVO1HsuufewaSGlXSVvH+qSsb1pTEN3ldJ+eie4Uk9FJLkPPJCnDAiHng4LopFFGzLkWd376DW57/y7MvHEkuw3BAY0a6fu+qfH4qHffRfhzz2LM5Zdjx44dyMs794ackDaVyqWHFAg3jBsHReC5hcUObf0TawwCQk1x8LEEQ6GSY+AlQzFi7nWQySiHKiGkdRrfvwu0lfE8pUtY3jb+3LFtefCIZ9cziYmJQb9+/WhgnLRpe/bsQU5OTr2pXFbsOAKLIxcOvVQUvOtFCV46Q0IIabyonkFQwA6nyheK7K4o2Ft3DRN2DWTXQnZNJKQt36MnJSUhOjr6nO9lHimByy1AbSvFgZgs2Mx9Ma57aIucJ2kfKIhOGkVn9OMz0dnylyBtEHpr4/jzaa4dcDrPTelSberUqZDJZPjjj7pzsxHSWhUXF2Pz5s2I7NsHirAw+F0+u8bjjh/4CqkqFfrkjuGPuwwKhVqr8PLZEkJI4wyKC8AexRhowuzQVR6A3GVFZbENOall5xzLZvosW7asznafkNaMzUL38/PDiBG1p1kTRQ+s+xdDfiIKlYYYwCMicXiMV8+TEEIaQy6XIaaTtFomyJwEWcXvKDFLaShrMnLkSBiNRkrpQtos1hddvnx5ralc0nbm8m1w0T6Y4xwwR1wKnYruzcn5oyA6OS8ejwclOdmYGXA7osq64S+DDAc3/VLr8brsbDyX1B+LFi2id5y0ST//LBXQTXr2WXRevQr6kWwlxtnsdhuOiFJRPk9sDgLCMlGR/wfyUlO8fr6EENIYcpkA36SZmGB1YnMPF0IKpFlpydvOXUF22WWX8fyTq1atojeZtMk+7OLFizFt2jQolcpaj9t2ohj+ijWIqpCWfUdGCNAaVF48U0IIabxuF/fg2wr//pBV5OLPPam1HsuugexayK6J7NpISFvD+qKsT8r6pv/kdotI31/I9+XWfYjXAt0GjW+BsyTtCQXRSaM5bTZ89fDd+OKBO5C72ImRGTNRIFdgz6HPaj4+OxsZc+ZilsmE4+vXIz09nd510uZ8+umnmDx5MsLDwyHI5RBk514+965fjDU+0g35rMmXweM6gLRd65F19FALnDEhhDTO7KFdUVGZhB29PQjP386fS92VD4fVddZx/fv3R+/evfHZZzW3+4S0ZmxVWXJyMm666aY6j1u/ZSsqi60oDRzKH/eeJgWmCCGkNYvpEwKlYIND5Qv1qT7I3Lm4zuPZtfDo0aPYsmWL186RkKa8R+/Tpw9P5/JPOcfK4HAKUDoqcTjqBJw8lUsYvfnkglAQnTSaUqOBTwDLBe0B3IfgZw1DdFl37FCkw1xefO7xkZHwGTMGrGzTzaFh+Pzzz+ldJ23K/v37YT5wAA8MHQaP6+xg0pl2HPsE5XI5AkU1OjsjkHv8GC/I233UWK+eLyGEnI9OQXocC5mJJJ0FRdo06My5cDlEHNued04xsnnz5vEclPn5+fRmkzZ3wx0fH4+xY2tvm1n6A236Fwg42Y8HolQyO+KSKIcqIaRtpHRJ7Gnk+77OYVBYliG9yFzr8ePGjUOnTp34tZGQtoTV22Pp2ViftKYi4cmbpMK6wUX7UZ7ggC1mBvRqSuVCLgwF0cl56XvxVL4VnYfg8bjQN2cstuo02PDXOzUeH3DjDXw7w2DAD198wasnE9JWsE7lA5FRiPz2WxS+U/NnvDwvHevUhehaMAQzS+7H7j9+4893GToSej9/L58xIYScnyEjxqNvhS/W9pUhKmcjf+7guqxzlnlfe+21UCgU+PLLL+mtJm1GaWkpT1vAbrhZrZ7a/LQtBTL5fugwnD/uOiCIB6YIIaQt6HVZH74tDegNIc+JVVt31Xosuxbeeuut/NrI0mIQ0lawPijri15zzTXnfM9hcyFtX5H0wL4NcWolhoya5P2TJO0O9QbJeUnoPxg+gUFwOcwQXamIquiKIFMUNuUvYckmzzleN3Qo1F27QimKGG2zUYFR0maYTCZs+O47DK/Km2qcMaPG45b9+QJSVRoMzJoE+TF/HN8uBZ+SJl/i1fMlhJALMbl3OPa4JqIswQljyXbIXTaU5lmQnXL2jbW/vz8uv/xyfPLJJ3C73fSmkzbhm2++4RM5brzxxlqPcYseFG77Cu7USJQE9OTP9blE2hJCSFsQHG2AQWOBR6ZAUO5QmA5+CpdbrDOli8PhwNdff+3V8yTkfLG+J5vodsUVV/A+6T+l7i6AW5RBZ8nD3vgMmF3jMSwhiN5wcsEoiE7O74Mjl6PPeGkkTyHbz2eoDcyajJV6N5J3nVtglC2vCbhJumG5NSQUH739Nr3zpE1YsGABrlFreDoin3HjoE5IOOcYj9uJjeYt6FzUHwZ7IGTCEYhuF0I6JSA8sVuLnDchhJwPjVIO9cBrcanNjo097QjL33F6Nvo/3X333Thx4gSWL19ObzZp9URRxLvvvovZs2cjLKz2nKjrkvMRKCxHVNlFgCBDRKgIv1CdV8+VEEIuVJ/x0j2LUz8acssurD6cU+uxrObTrFmz8N577/FrJSGt3bJly3gflPVFa3JkzQm+DcnfBn2cFfoB10MmOzflCyGNRUF0ct76TpwKhUoNa0U2PO5MxJX2ho8lFj/teqvG442XXAJlTAx8PR6EHziIAwcO0LtPWjXWiVz8v/9hmq8vfxx05501Hrdh9fvYolUgKXsCT2/kduzjzydNuqTG/GyEENKaXT2qO/IqR2JXPw8isjfw59L3FaK80HLWcUOHDsXgwYPxTi1prghpTdhgz/Hjx3HvvffWedzmNUtQkqtAcfAw/njAnH5eOkNCCGk6PSYmQu5xwKoLhepED+xfv7DO4++77z6kpKTgzz//pD8DafVY33PIkCH865/K8i3Iz3YAHhH52p0IcMRh2tBeLXKepP2hIDo5bzpfI3qNncj3fYyZ8BhsUIgq/KkuRnH24XOOFxQKBN1+OxShofD4GvC///2P3n3Sqv3111+YUFYOOQD96FHQ9q6h8fV48EvaF0goHoQAazjUOjkGXjoTofGJ6DbyopY4bUIIuSDhRi3yu96ACTIzjkblIbCY1T8B9q7MrPGme9WqVTh8+Nx2n5DWdsM9cOBADBsmBcdrsi+zDKFl85FwciTccjUMGhuiewR69TwJIaQpqDQKdOml5/u+rjHQlH2P1AJTrccPHz4cAwYMoIFx0uodOnQIq1ev5n3Qmuz/S5qFHlh8GMd7FsMUchUi/bRePkvSXlEQnVyQQdNnYcajT+Oq5/+FW/87AQ5dOkrlciz464kajzdeNh0JK/9Cl9tu43kp8/Pz6S9AWq0Fr76Gy/z86pyFfnD3ImxQCxiUOYU/HjClM4bNuhzXvPgmFFV51AkhpK25fOwQ6Mq7Y9UAIPbUX/y55C05MJfbzz7u8sv5MvC33qp5FRohreWGe+XKlfyGu64VYn+sWIbSYhPKA8fxx/0v7U4rygghbVbSFf35ttS/JzwndVi5qvb0a+zayK6RbCY6DYyT1uztt99GREQE74P+k93ixNGteXxfU7kWcb4qjLx4dgucJWmvKIhOLohvUAgSBgyGRq+CRqXCGN/x/Pk/xBRYy7JqnI0uU6lwxx13QK1W48UXX6S/AGmVNmzYgF2bN8MeFQn9iBHQJSXVeNwXu99C14LhPBe63qhCn4ui+POUxoUQ0pb1ijTiQMj16Gc0I9cnDcbyNLhdHhxYc/ZsdJVKhYceeghffvklT5VBSGv01FNPIS4uDnPmzKn1mOP5lQjI/whxJ0bCofaDRmFH99GxXj1PQghpSv5heoQF2nh9h9CSi2E78T6KTWcPhp9p7ty5/Fr59NNP0x+CtEqsr8n6nA8++CCUNUxYO7IpmxcU1ZtzsLvLMZjlszEwLqBFzpW0TxREJ03GYbXg5oH3YljmOGgqe+Oj3++v9Vh/oxHvX345KhcuRHp6Ov0VSKvCCuU+9thjMPTqiaQ//0TkW2/WeFzqsZVYqzYjNWgPFF0qoJD/ifS92/nPE0JIWzdjymTElsXj9xHC6dnorMCozew867i77rqLz0ZngUpCWputW7diyZIl+M9//sMHfWrz059rYCovhMl/En88cFpnyJV0q0QIaduGXTeYb0uChkLIsuCnNVtrPZZdI59//nn8/PPP2L59uxfPkpCGefLJJ3mfs6aCoqLowf4VaXw/OH8tQqNdSBx/E01uI02KeoakSZzYuxOf/t+tWPPeh+ibdRlGZMzCr/YUmMpO1Xi8ees2DNi8BfcGBOK1xx6jvwJpVX777Td+0/3SSy9BLpdDXlVY9J/e2/g0XIKAaLcLw5P0yE/bi78+/h8fUCKEkLZuSHwg9oTcip6BZhSrD8PHlAWnXcTev85u27VaLZ599lksWrQIu3fvbrHzJaS2QfHevXvjqquuqnMWuvHkm4g+PgJ2jT/UMjt6ToinN5QQ0uZFdAtCgMECj0yBsIKJqDz4KipsZw+Gn+nqq69Gr169+LWTJgaR1oT1MRcvXoznnnsOGo3mnO+n7SmA2SJA6TThcMROuBxjMblPTIucK2m/KIhOmoR/WATsZhNKsg5DocqH0RaMyMIxeH/pAzUerx8xHNqBA6BmAcgNG3HgwAH6S5BWwe12Y9Hjj+ONgQMxro7iYwcP/oiNAqv6DVwcfRe2/ihVvB884wqodVIRH0IIaetmTZ2C2NJ4/D4ciE//nT93YM2pc3Kj33DDDejWrRsef/zxFjpTQs61YsUKnp6telC8Not++xXlpUUw+0v1TfpPjoNCWfvxhBDSlgy/egDflgaOhDwvD0vWbav1WHatZNfMdevW8fzohLQWbGCne/fuuP7668/5nkf0YMcPUpH7sNz1QDcLwsf8H5RyCnmSpkWfKNIk/MMj0XPMBL6vlO/go9YDsiZhuTkLRYXJ5xzP8kWHPvII359hNOLDB2oOthPibV/Pn48bbHZMqTShZP78Wo97c9vLmJByM648dC96VPigsqgQPv4B6Df5Eq+eLyGENCeWR3Jf2O3oHsxmox+Cb/kJuJwe7F5+8qzjFAoFr3Py/+3dB3RU1drG8Wdaem8QQu+9ozTpSgcVxC5W7Pfay9XP3vVe28XesGJBFEQsgCKgSC/Se0tCSO+Tad/aJ4oiGeSqtPD/uWYxOTkTJ2eyzj7n2Xu/++uvv9bMmTP5UHDE+f1+q1PnpJNO0pAhQ4Lut2R7npKznlHDTf3lDo23aqG3Hdz0sL5XADiU6ravqZiwEvkdoaq5a7ByFj+sYrc36P5Dhw5Vz549rdDSnEuBI23GjBnWw1xrmmvO39u0NEv5BZLTW6oNSd8o1N9Lp3VrdUTeK6o3QnT8bbqNPlvOkFDlpW9QeNR2hfoi1G77KD06/Zoq9w9v106xp51mPT9502Z99803fBo4osrLy7X24UdUNyREzpQUJV5yaZX7zV7wgrKLm6puQQvFFtfSyq8mW9u7nXGOXCGhh/ldA8ChddawwUrNba7JvW1qtGWKtW3VdztVmF22z36nnnqqunbtyhRwHBXee+89LV++XI8++mjQeqhm0Me0T95R/i6v8pJPsbZ1P6MFo9ABVCvmHNhrbOVo9NykXrLtyNPEr+YecH9z7jTn0IkTJx7Gdwrsz3TkmA6dbt26aeTIkVWOQv/x51HoqenfytaiUKm9blKIk7gTfz/+qvC3iUlKVufhp1vPPSXfyR/wqGl2Z63KjdNP6z+v8jUpN90oe0yMWoSF6asbbqTuGo6o1x5+RGf+3LOdcustckTtX5bF663Q08teVY+tlR1A8cmrVF5SpMTadffOxgCA6qRN7VhtanqDekWXaH3KRsXnrpEZmPbD5MrFm3570/3II49o0aJF+uijj47Y+wUqKiqshW7Nzba56Q5mxqoM1Sh6UQ3SB8vrjFBMhFvNT6rHAQRQ7dRtn6rEGFMb3aUae4apcNm92lO0b2m23+revbtGjBhhnUvNORU4Usw1pamHbq4xq+oUt0ah50sOb5k2Jc6SLdBPp3ZtfkTeK6o/QnT8rU4YMUpRCYkqydujhJobrW3dtp2uB+bcXWVA7kxMVMoNlaVchhUX61N6unGE5ObmKuTNNxVmtyuia1fFBJn6/fpXNyolfYii3YlSaIF2b6wcxdF37Dg5qphaBgDVwbhhvVWe31uzevrVYMtkM+xHGxdnadf6vH326927twYPHqw77rhDbnfwm3PgUHrhhRe0bds2a9p3MOUenxZNeVxl6xOVndLH2tZrbEfZ7FWPWgeAY5kJH/tcVtmpmJt0olxbpY+mfnLA15hz6NatW61zKnAkmGvJO++80yrL1qtXr/2+7/P69f27K63nqRnfWKPQ6/e7gVHoOGQI0fG3coWFqdc5F1rPU+uHyFbLrW+bvKRVznJ9+sPjVb4m7owzFHv66Xqzbh1dfdNNysvb94YcOBxePv989QgNNYV9VfP/7qyyl3t33mZ9umGb2mT2tr4edlkvnXbr3eo07DTVa9ueDwpAtVUzNkzqcYOGy6MfmqYrLX2etX3O++vl9+/bSf7YY49py5YteuCBB47Qu8XxzAQ+phPnsssuU8uWLYPu98aMxQpzT1VS+ZkK2B1KSw2oXrsah/W9AsDhVLNJomrVcEs2u+JLzpBn3SPauqc46P6tWrWyzqXmnGo6JoHD7f7777fadVNeqCorZ21TUYldropCrUmdIX/IqRp5QrPD/j5x/CBEx9+uec8+Ou+Rp9Xvost08e2nqFWFw9r+77VvKb8ka7/9bQ6Haj30oP41YYJKSkp0PYuM4jCb+sknar+mcgHc5GuuVmijRlXu99Bn16j7lnOt50mtY1WvdaIatO+kPudfcljfLwAcCRf3baO1FWO0sYtHSbunyukpVc6uEq2em77Pfq1bt7amfz/88MPW9FvgcNZNveSSS5SQkGB15gSzI7dUnkV3K3nFicqPbyZ7wKt+V3fngwJQ7fW9urdsAa8K4porYn0zTfpg/AH3N+fS+Ph4XXrppZRexWFlygOaEi533XWXdW35e+UlHi34dIP1vEbGNEU39qjbyJtlZ0YZDiFCdPztzAjeGg0qQ8gwl0MDuj2p+hU+hZU01IOfXBH0dbVr19aTTz6pOe+9py/ee49PBoeFmflw+VVXaULTJoofO1aJl1QdiM9Z/b4WlpbKZ/PI6yjQgNPS+IQAHFfCQxw68dR/6JSiOH1wUqkabP3M2j7/4w0qLdy3Xurtt9+utm3b6sILL6SsCw6bF198UbNmzdKrr76qmJiYKvcx5QUnfDRJJTk7VR5XuZZPh941FJMUzicFoNqLS4lQ6y7R1nNb6Cg5d7ytmSu2BN3fnEtfeeUVzZgxQy+99NJhfKc43su4mGvIdu3a6dZbb61yn4Ufr5XH51RkSbqWN52rsvhr1a0JM8pwaBGi45DKy0yXff4X6r7tMo1cda3K1nXSnDUfBt3/tMRETW7YSOl3/p9Voxo41P75z3+qtLRUj7/6qmrefptsLtd++xSW5+uuHx9SUViOsus+q5Raq/XuHddq/fzgq9oDQHV0SutULat1uxrXLlGBY46iinbIXe7XnA/W77Ofy+XSG2+8oXXr1llTcYFDzZQQuvnmm3X55ZdrwIDgC31PW7pNSVkPq8H2UXKHxivCVa7OZ+w/wg0AqqtuF5ygEFuJysMSlbRhoJZ/dovKKnxB9z/llFOssi433XSTVVoDONTuu+8+rV+/3rqWNNeUv5ebXqKV83ZbzyNzJyu5RoJGjzqfDwaHHCE6Dhkz0mfqfx7Wuu+/U+2Qcmtbi6xuenH6pyqpqLr2Wljz5nI5nermcumts8/h08Eh9cVrrylj8mQ9/fTTSksLPrL8oWmXKdvuV22PV00jLlH6ih/kKXcrOimZTwjAceeK0UNkK+in6f19arLhHdkCPm1clKUtK7L32c+MRDdlXcxUXDMlFzjUZVySkpL0+ONVr8FjZBe7te7zf8mxsrGyUyoXKOs/rpOcrsrSgwBwPHCFONT7rFbW84LEU+TavEfvTZt+wNc88cQTVqksyrrgUDPXjKYG+t133602bdrs9/2AP6CZzy9QQHYlZq/U2k4rFNn2ftVPiuTDwSFHiI5DWtal34WXmyfKWjVPntjKUWrtN4/RIx9fX+Vrwpo2VY2bb7Ke99myRV+yEjgOkZzMTFU8/LCeSaut4Y7gN8+zVn8o/8Je6rjjZHXa01WOpZWL6XUcMlypjVm0BMDxuchowsm3a7jfphltdqrOjpnW9tlvr5a7zLvPvrfddps1FZeyLjiUXnjhBX3zzTdWGZfo6MoyBVV5+f1J8uSukD2scn2Tpi1DVbcNU78BHH+a9GqgGollCtidii09X0VL/k/rMgr+sKzLzJkzrdJZwKEs49K+ffugZVxWzd6urD0BOXxu7Ql7X5ER/XTmoN58IDgsCNFxSNVu2Vqdh51mPQ/JnacK53aFe6NkW9RNX6x4t8rXxJ9/vqL69VWI3S77v/+jnJ07+ZTwt5s25kw1cThli41V9MknV7lPXlmuJn7yverlt1KnnSerQWkdleTlKD41TT3GMF0MwPHr7G5NtDj6Zjlal0mlnyu8NEslhV7N+7Bygaffl3UxU3LN1FzgUJRxueWWW3TFFVeof//+Qfebvnyb4tIfVMMtp6s8PFlhjnL1HnciHwiA43bA28Ab+8nhd6sopoES1nTTZ+/cKq/PH/Q1J598ssaNG2eVzqKsCw6Fe++9Vxs2bLCuHZ1O537fN2vwzPtwnfW8RvpU2VoWqvvo+xTqZEYZDg9CdBxyPcacp6Q69VReWKComPXy2UpUo7i+pk/aoIyiXVU26KkPPihbcrJqOxz6etQo+XzBa7QB/6vP77xTXbKyrOdpjz4iV439R6H5A349+NYdarN9iPV1Rewq5a9fIrvDoaH/uFmusDAOPIDjlt1u05Xnna3owt76dGCFGm98x8yv1ZrvM7RpaeX59RdmKu5dd91lTc399ttvj9h7RvUcsXbeeedZZVwee+yxoPul55dp7ZQbFbqipfbU6GNtGzCuk0LC9r9BB4DjRXRCuLoNrWM9L44fLufGnzRx+owDvsaUzDJlXcy5t6Ji30XFgb/CXCP+UsaldevWVZYL/valhfL6nYou2q41zWfJX+cudW3MjDIcPoToOOScISEafM2NsjucKty0Qu641QrIr6a7T9L9790hn3//gNwZH6+6Tz2pgN2udgWFev2KK/ik8LdY/PHHqvlB5eK2CRddqOg+lTfTv/fGjGdUc8Vg2eVQeehPCsmcb23vfsa5qtGwMZ8GgONeWly46g+/R0P8Yfq67SbV3VF54/3NhNUqznPvV9alb9++Gj16tDZv3nzcHzv8deZm+qqrrrJqp06cODFoGRczqvK1N8bLm75N3ujzrG0t24WrXjtuugGg7fBWSogult8Rqriii5Uz/xatTc87YFmX999/XwsXLtTVV19tnYuBv8pcG44aNUr9+vWzZpdVZd28ndqy0W2txeMtf1cxSW108ZjTOfg4rAjRcVik1G+oXudeZD1PdexRUewqzWv4tuaELtb4efdU+ZqITp1U845/aXXbthr3yiv6+OOP+bTwl+xau1YFt92ucLtdYSeeqJQbb6xyv8Vbf9TO6QlW6SFv6E51vnSU2p08RLVbtFaXkaP4FADgZyM61tfq2vcqqWmZ3J7PFF20Te5yv2a89pO18NMvzJRcc9MdFxenkSNHqqioiGOIv+TZZ5/Va6+9ppdeekldu3YNut9rn89TZPZLqpV7kTwh0YoJL1OvSynjAgCGzW7T0FsHyOEvU3F0fSWtOVnT3rxG5Z7gM8HNOdece02N9P/+978cSPwl5ppwxIgR1gwHc61YVRmXotxyzX5ntfW8RvrnKu6YrhPPeEZRocwow+FFiI7DpuOQETp53LU66+6H1fuyc9Q+sMba/vLmTzRz49QqX5Nw7rk6/f2JGnPmmTr//PO1fPlyPjH8KeXl5frP2eco1dTar5Wquk8/JVsVDXR+eb4+emWeEktry+sslKdLXfVuk6be512sUXfcL7udemsA8FvXjhmi4rIzNXugW/U2vyG7z61dGwq05Ktt+7bpCQmaMmWKtm3bZrXpfn/wuqvAgXz99de6/vrrdeONN2rs2LFB9/t+w24Fll+nWiuHKj++uewBj4be0kcOF7dAAPCLmKQI9T2raeW9UNJARa4u0GvvvXHAA2TOvTfccIN1Lp4x48AlYIBgzLWgKQ20fft26xrRXCv+nhmU8eVT38sbcCmmYLPWtJyukKYPqUvjVA4sDjuuIHHYmFrnbfsPlNPlUvfGyQpv9ZRG5nsU5onU1DdXaMPujUFfZ0YatWnaVNNHjVLm+vV8avifmGmGZhGc59auUfk1V6ve8y/IERe3334ev0c3fj5W6+JWymt3Kzdypa44/dfRbeZvFwCwr9hwl0ZeeLs6ljTVxP5ZarKhsmTWj59s0o41ufvs27JlS7377rvWjZKpeQn8r8yCY2PGjNEpp5xi1U49UB30+e//Q84VDZRdc6i1rdcZjZWQGslBB4DfadavierVrTBD0+V0XKSKZc/rq4WrDniczDl4wIAB1jl548aq7+WBAzFr5kydOlXvvfeeWrRoUeU+iyev0e4syeFzq9D+psKTB+mi0yrbdeBwI0THEeH3+9Q67yc5tg3RqNWXqElWN7399AwVlRdXuX9ERITe6tpNI50uLTl9lMrz8w/7e8ax68knntBbb72lV199VR2uuUZhzSpHWvzeY7Nv14KizdqZuEDumDcUt2uJpjx8p8pLqv67BABUap0Wq+iBT6pfhFM/Npyv1Ix5CsimL19cocKcsn0O07Bhw/Twww/rgQcesKbtAgeroKDAmvKdkpJi3XA7HFXPDjNlCF579WHZtqbLG32hFQo1beFSqwGNONgAEMQpNwxQuL1Q7tB4JWZcojVTLtH27OD3QabshlmTIjk52To3m3M0cLDM386DDz6oRx55REOHVh2K71ydrR+/SreeJ2Z+JEdLj0Zf+IBCncwOx5FBiI4jYvtPK7Tks8mK2bVePt8y+WwVSsltqqf//aY8Pk+Vr6l7883yR0aqgdermUOGyM9q4DgIc+66S3XHP6d7rrtO55xzTtD93p7+nj7d+L1sgYAu2BGlkCyH/B6PwqOiFRoewbEGgD8wumtTba73iOJalcnr/lDRhZX10ac/t0ze39VWNYtGmXPyRRddpMWLF3Ns8Yd8Pp/1N5ORkWHNZDD19YPNPnvmnfcVkj5Z8eXj5HVFKD6qXP2u7sFRBoADCAlzauRtfWT3u1UY20xJa3rro1cuU2mFN+hrzLnYnJPT09N17rnnWudq4I+Yaz9zDWj+Zm6++eYq9ynJd2v6fxdZHeHJWfO1teM8NRr4quolRXGAccQQouOIqN+2g7qMqFygMTw7XbbwD+WXX/E7muuZZydUWSc1tGEDNXjlZfmcTjXMzdOMUaMVoJ4qDmD5Sy8p/v0P1CosTFe1bh10v1k/zlPO1Hid9tP1uiAjUqU7W8lXUqikOvU05NqbZbNzqgSAg/HPMYOUbbtGywaUqMaOV+TyFCt7V5m+mbDaCjd/W6rNLEjWqlUra6HRrVu3coARlPnbue666/TFF19YsxeaNWsWdN93Zi5S6Kb7lbbjUpVEpSnEVq4Rd/SXw0lbDgB/JLFunPqMabC3Pnrs8oBefu2xfdrw3zPnZDM7aPr06VaN9APtC2zZssW69mvTpo1efvll65rw93w+v6Y+9p0q/CGKKt6pTfXfUWSz+3Ry55YcQBxRXE3iiOl59gVq2LGLAl6PKnJL5Yh9z9oetrahXnnjgypfE9Ghg+o984xMxF5nwwbNOGMMQTqq9NMbE2T793/ksNkUMXyYki6+uMr9Fq5YqeVv5svpD5HTtUul29rJUZCliNg4nXrLXQqNYBQ6ABysMJdDV156tRLKh+qzIXvUeP1rsgV8Wr9ojxZ8tmWffcPDw/Xpp58qLCxM/fr1086dOznQ2I8JY2677Tb997//1fjx4zVw4MCgR+nLpZtUNO9Spaweo/yENrIFPBp2/YmKig/lyALAQWoxoLmaNKsMwiuixsqxaJbe+WzaAV8zePBg6xz97LPP6vbbbydIR5V27Nih/v37W9d+5hrQXAtW5buXFyon1yGHt0zFtlcUUm+ELjtzNEcVRxwhOo7cH5/dYY3yTapbXyorUuHucvniJ1rf8yxI0QdTvqjyddH9+irtsUdlmvXaq1ZpxtgLD/M7x9Fu7Xvvyffww3LZbAodMEB1H3mkyh7uVWs3au5L2xTiC1dRxHq5i5cpMi9dDpdLI2+6Q7EpNY7I+weAY1lKTJiGXXK/2npa6ZNe69RkfWXbvmjaVq39IWOffWvVqqVZs2ZZM9DMTVVmZuYRetc4Wt1777167LHH9OSTT+qKK64Iut+CjZnaPPU8xS3rodzk3ta2Aec2UWrTxMP4bgGgehjwj75KjC6S3xGqUN9Vyp75oGYuXHHA15hz9H/+8x9rwdH77rvvsL1XHBtMOTZzrWeu+cy1X2pqapX7LZu6RquXlVjPo/e8KbWM1kWX3iuXg/gSRx5/hTiizCjfUbffq5jkFLnKClS0u0yliVNUGJqjZzIf0twdc6p8XdyIEar18EMqc7l0/UcfasKECapOnn/+ebVt21YxMTHWo1u3btb0uD9z43neeecpNzdX1157rTXVzvT21q1bV//4xz+q5eIv6z/8UO577lWIzaaQPn3U4KknZati4bHNW3bpq/+uVYg3QvmRm+QLWaxod7mpMaDBV9+oWk2rXh0cAPDHmqfGqukZ43VieJy+afWD6m370to+683V2rk2d599TZs0c+ZMFRcXWzdXWVlZ1eoQ06b/eQ899JB1LWMWojXlXIJZn1moBRMvUNSyRspNOd3adkKfBDXt1fAv/N8B4Phld9h12n1DFW7PV0VonOKyr9Cajy/S0o27Dvg6U87FnLvvuecea8HI6oT2/M/bvXu3BgwYoNLSUitAN9d+VdmyKF3zPqv8G0tO/0S5nTep/wUTlBAZ8hf+78DfhxAdR1xUQqJG/et+RSUmacB5Fys9NEU5De9XQWierpt1jRZmLKjydXGnnaY2c75Tt/POsxalMPW0qovatWtbFx1mwY1FixZZ09xN3bBVq1b9Tz/HTJEyK6WbhV7M44knntBPP/2kN954w6oreskll6g6WbNqlTb96w4rQHf17KGGzz4jm9O53347tmXp0yeXWAF6XsQ2xUV8rWaj79J59z+uwVddr2bdeh6R9w8A1UnvFrUU0vdVtUpzaWXNz5SStUiBgE2f/3epsrYV7rNvo0aNrJsq0+nbu3dvq82qLmjT/1wJFxPA3HHHHda/ppxLMLvyyzT11XGKWBGnouSx1gJkzdqEqvOZ7f7S5wYAx7vQcKdG3X2KnP4SlUTVUeyWizT3jdHaknXggVimnMvdd99t/WtGpFeXGum053/Orl271KdPH+sazwyaaNiw6g7uPdsK9MXLK612PClrnnZ1mKk2IyaqeVrSX/rcgL+TLVBdzmg45nkrKuQMCdFPuwr05osPqTR1kmZHhKt5TkeNrXuFho3uVuXrzHSga665RvPfeENPnHyy+nz4oewh1a+nMiEhQY8//rjeeustzZ49u8p9zMWKudn8pd5Y48aNtWfPHms0++99+OGH1ij1kpISOasImo81K1eutHq3WyUl6ZVhw9Tg/vtlq+LvoKiiSFdPvkxN54+QbB7ViXhHxX2f0dX9mx+R9w0A1d2EGYtkW3S+Cpe6FK+rlB/fVKGh0mm3nKDEtKh99t2wYYPVcRwaGnrAkUrHOtr04Mytyb/+9S9rMIEZzWhCmGAyCsr09nNXKmZlvvxRV8pvd6l+fWnILX1ls+9fxg0A8L9LX5WpT59eJr89RLG5i5TT8iudff1UpcRWXc/6F+YcbjpDzXn8wQcfrLK85rGO9vzAtm/fbl3XVVRUWAF6kyZNqtyvYE+pPrjrG1UEwhWXt1YZDZ5Vk0FvaGSfEw/J5wb8WYxEx1HDBOhG67RY9R18gdKWdlbvnGidtOE8bZtRpinvzq+yF9tut+vZJ57Qy02aKHXdes0bOEje4mJVFz6fTxMnTrTCblPW5eOPP1arVq104403WnXFzMNsv+yyy3TTTTftfd2UKVOsHt+qAnTDlHIx3zvWA3TzN7Hk08rfNS0tTR/Mnq2Gjz4aNEC/fNr5Wlq+SrObPau0wATt2RKl4TUrjsh7B4DjwdgBnVXW6kWFdipXRfmLiincIrdb+uTxhcrfXbrPvubm6rvvvrM6yHv16qVNmzapOqFNPzDzud9www1WgG5qoB8oQN9dWK63n79aMSuz5I+83ArQU2u4NfjmPgToAPA3qtWqpgZe1Ew2v1cFCZ2VuOokTXxmjHKL3Qd8nekQNTXSTUkuc2435/jqgvb8j5lrOHMtZz53c20XLEAvznPro3tmWQF6REm60mu+pBonPkyAjqMSITqOOn6fT5kfPKuQgmLVX1VDu2pMtrbv+K5UHzw/Vz7v/o2vIyJCzV54QR6nU0kZGZrXp49Kt2/XsT6yOioqyhqNZxZpmTx5slq2bGn1dpvg23yvZs2a1iMkJEQRERHWtt+XcqlKdna27r//fo0bN07HsoDHo3ljx8p1yy0aU7+B1budlFT1dK+fFmzTXS8+opWFmxTr8+m89Q7lpEfI5q3Q5sVVlwwCAPw9xg07SWX1n1FZjyLZC55TVNEOlZcHNPnRH63RR7/VoEED62bLtH8nnHCCvvnmm2P+Y6BN/2NFRUU6/fTT9fTTT+u55547YA30rKJyTXjuGsWs2KNAxDXWwnfJCW6NvHOgVccXAPD3atitgXqPSpMCfhUknqT4FW305tPnqaDM84c10s053ZzbR40aZa1/ciyjPT845trNXMOZazlzTVffTBOrQllRhT66+2uV+yIUXrZH2TFPK7LzNTrv1JF/6+cG/F24ysRRx+5wqM/Yy+RwuWQr9qjm9l3amvaG/PIpe4VHb/97tirKvPu9LqpbNzV57z15IiKUUlyiFYMGKf3bqsueHAvMIqDLli3Tjz/+qCuvvFJjx47V6tWrD+q1hYWFVsmXqkJ0872hQ4dagfwvpV+ORZ78fH07YIASFyyUw2bT3Vdeofj4+CpHqs/7fI2+fW2jGq3qq0b59XT5ynhl74qTmVDYYdBw9T6/etWGB4CjjZnCfc3ogaqo+5QKehfKUTBeESUZKi0NaNJD85WbUbJf3dEffvhBHTt21Mknn2zdgB/LaNMPbPPmzerevbtVwsfMpDPXPQcq4TJh/FWKW5krf+TV8jnDlBTv1ml3nyKHi1sbADhUWg1spa4D4qznhYkDlLi8qV57+nwVlR84SDfndHNuNwOezLl+y5Ytx+yHRHt+YObee/z48da1W6dOnTR//nzrmq4q7lKPPrrra5VURCi0PE8FYU8pvPNYXXHuJdWy9A+qB640cVRq0L6TRt50pxWk+0t8St1UoJ11n5XH7lbxloDefHi2ivPK93tdeJvWajF1iry1ayvWH9Ceyy/XyvHjdSwyo8tNTXPT+JgpcO3atbN68A/G9OnTrZC8Tp06+43yGjRokKKjo62R7S6XS8eivDVr9H2v3qq5O0tep1O1//usal566X77+Xx+TXt9sZZNyZBNNm1KmatRm/OUlV4ZtnccMlJ9LxxHIw0Ah4HdbtM/zxyqQMP/quikfDnznlFkSbrKyqSPH/lRe7YX7bO/mXll2jOz7snVV19t3YSbmprHItr0A49W69Kli8rLy62b7WHDhgXdd1NWkSb+91wlLCuR15RwcYSoRmK5Rt17ilyhjkPy2QEAftXpjM7q0ifSel6Y0F9JSxrrtX+frfySA5d2Med2c44vLS21zvnffvvtMXlYac+DM9doZga9uW679tpr9fnnn1c5yM0oK67Q+//6QoVl4XJVFKrc9rScXUbryrFXW9eLwNGKEB1HdZB+2i13yxUWrkCZTylrbcqq85hKXYVyZ9n0wbQvq3ydKy1NLT/5RI6uXRVis+nrRx7VpI8+0rHO1BJzmyKyVfh9T60p5TJy5Mj9RqCfcsopVsNvRgKEhYXpWLTxnXe06bTTlVJRIW9srJp8+IFiBgzYb7/yEo/e//cP2ragUH759VPtD9Q2+1tlZVY25J2Hn64+F1xKgA4Ah5Fpr64adYqcLV5U8Un5suc/reiibVaN9MmP/ajMzQX77G/Klz311FN69dVXrYdpx8yC2cc62vRKZoaBGa1mZhyYmXdmAEAwK7fn6POXTlPSkmi5Yy9VwNRATynXafcOkjOEAB0ADpcTzjpRJ/arLCNamNBPCctbacK/Rym7aP9Bbr9lzvELFixQ+/btrXP/888/r2Md7Xklc202YMAAvfHGG3rttdesdU2Crb1WnF+u92//UkXlkXJVFKnC/6x8J56iKy+6Xg4CdBzlCNFxVKvXtr3G3PWQwmNiJbdP8RsTVdbgAS2p9bWe9N6px358RD6/b7/XOaIi1eTVVxR/y81a0q2rRp9xhu69995jZjETs5CWqR22detWq+6a+dr01p977rlV7m9Glq9du1ZZWVnyer3WyL3flnL5JUA3i5OaEMJ8nZmZaT3MoijHirkTJshz/wMyYx8CzZqp+dQpCmvRYr/9sncW6+0H5ypvs9uavbCy0fMa6lmmLY6O1vd7nXuR9WCaGAAcfubce9mIvopo+6rcPUpU5n5Wsfkb5fHa9ckTC7V52f4h+cUXX2yNWF6zZo1VY3PFihXHzEdHm171aDUzs8DMMDAj1sx1i5l5EMwPa3fqu9eGKWFpWxUmj1XA5lC9en6devcgOZzczgDA4dZ5zAk6cUC0VSO9MKG3Elb11jtPjFB67oFrnptz/RdffKGrrrrKepi2wOM5cDmYowXtedWWL19uzS5Yv369da120UUXBT2GhTllev+Or1XiiVSIO1/ltv9IvQbr6sv+JSdrmuAYwFUnjno1GzXR2fc9pvrtOirl3HtUntNTJ0a/LVPQ+q217+jGr67X91PXy+vZNwy2ORyqefHFeuv99/Xggw/q3nvu0fvduitj6mc62pkw/IILLrBqrvXv318LFy7Ul19+afXYV+WMM87QnDlzrJDB1EI3C4yaUV2/WLJkiTXCywTypkRMamrq3seOHTt0tDOdH88884z6XnqpfoiIUMRZZ6nFRx/KlZJSZR22qfO+ljs3oKKQXK1r8pgGF+dpeqP/6LbHHtLpt9+rLiNGEaADwBE2dnBPpfT+UK6ONmWGjFdCzir5/HZNf2GFls/Ytt/+PXr0sNpDMzXY1FR97733rHP+0Y42fV87d+60rmdMp/4rr7xizTQINlrN+PjbhVr01nDFrh6u/OTKUi+t2odq6K39WUQUAI6gzqO76KThSbL5vSqM76S49adq0uNDtHb77gO+zpzzTZnSl19+2WoLTJtg2oajHe35vsw12LvvvmtdkyUmJlrXaOZ5MDnb860AvdwXqbCybJWE/Fthfc/RVRfeSICOY4YtcCzcfQC/MWV5uqZ9+Kr6Od7SY/VDdNKmC9Qku7Nia4Vq6Lj2iq9ZWaPt9765407VnDTJel7QrZtO+O+zskdWve+x7B//+Ic1Gv1YX4TNMKenTa+9phsnTNCUOXP0z3/+U489+qhCQkOr3N/j8+ih+Q/qow2T1DajjxpprlK3pmlz37v18BmdaJwB4Cg0b+0urZl0vtJ37Fab9DOVXquntb11jxSddG6r/Wpjmnqql112mXXjNmrUKKu9S6miU7U6qG5tupnmff311ysiIkIffPCBevas/Kyr4vMH9NL776t80aNK2jVOhXHNpIBP3Qcmq8Pp7Q/rewcABLfp+4366o318tvDFFG8XSXJL6vTRS+rW9vgJbp+MXfuXI0ZM8Zq200JkAsvvLBaDnaqTu25sXv3bmsmwccff6xzzjnH6hAxbXsw25fu0ufPL5fPHqbw0kwVRj2thH7/1Pmjzq6WnzeqL0ai45gzol0tDW7dSjvXNtV1i6OUHj9fZc5iFaS7NfHBH7Xm+4wqR6b1vvsuhZx+uvU89ocfNL97D+0+Rhc0OZDWrVtb0+KOdRXZ2ZozbJg8jz+h0zIyNePrr63RalUF6Dnpxfpk/CJd+dkV+mjjJNkUUK/SmYpZUVul+dIZ4dsJ0AHgKNWjeZp6XPSxEuq21qIm76relsnW9p/mZemzJ+Zba1z8lrlJe+edd/T+++9bs69atWplBbLVUXVp03ft2mUtKmdmzJk1W1atWnXAAL2o3KMnn7tX3pkvKSb7NitAt/vdGjS2MQE6ABxlGnVvrFP/2V5OX7FKo+oqNP9GLRl/vT6d9fUfvta0BaZNMKVITRth2grTZlQ31aU9NzmLuf4y116m/Ky5/jLXZAcK0Fd8vkpTX1htBejRhZuUm/Qf1R/1oC4YfQ4BOo45jETHMemHSe/p+w/esZ7HRpVqXuti1cy4WLULm1rbmnRJUe9zmis0fP/pwcXff6+N112n0MIi+QMBFfburROf/E+1HJV+zI4+nzBBuY89rmi/Xz6bTfFXXqFa11wjm33ffr+AP6AV3+zUvI83mMFpWpf8oxY0eFvXrAxVZnotU/FHac1bacQNtysiNu6I/U4AgD+2u7Bc77z6gAoK3lfn77toZ70L5HeEKCpSGnp9FyXVjq5yarUZCTVp0iSNHj3aGuGVnJzM4T6K2vQJEybouuuus26wX3zxRQ0fPvyAr1m9M0dfvXmpoldGqyLqHOtvINRWrJG39FRyg+B10wEAR1b+rgJNuu8rldsSZfdVyFX2lvz9O+iiC26Q6yDqXU+dOlXjxo1TWVmZVe7FlDdllPLR4/fXXOPHjz/gTEBzrz775blatbRyMERcziJlN56ozme9ox7t9l/XDDgWEKLjmLX2++/0xXNPyeepkNMZUGGLrdpgG6guOwbLLofCY10adlU7pdSL2e+1vqIibfm//5Pniy+tr9fHx6vX59OsOqs4cso3b9Hiyy9Xws912j2pqWr63PgqFw8tznNr5oTV2rk2z/p6e9xq7Uh9UwNWhiuvqDJoaXfyEPW98DI5nK7D/JsAAP6MCq9fL7//kdzb/09pc+qqOPkylYcnyW7zqe95LdS8R+0qg1ozEsosUmlutk2QbtYKwZFlRhJefvnlmjZtms4//3xrNtmBFg81n+Ons3/U9q+uVOL64cpP6mNtT4ot0si7higskrYcAI527lKPJt3xsfLKKju0o/O+UH67HTrvH68rISrsD1+fm5trlfB8++23NXToUL300kuqVavWYXjnOJBfrrNMW22us0wJngMpK67QlPunK7ug8r48PusL5bb5XgMumaTmdWtwsHHMIkTHMS1r62ZNffIR5WemyxRwia+dro/q1tJJW85XqC9cHa6NVb+mvYO+vujbb7Xxttt1xcYN2hkaqmeffVannXYaPd5HwNoPP1TF/90lc4vsNaPPL7vUGn1uDwnZr0d71dx0ff/xBnnK/fLYKzS/3qdq7p2thNX15PE6ZHe61P/iy9W2/6Aj8asAAP6iT+ctU+bsS+T5SUryXKicxFbW9uYdYtXrwvZyhToOWJ/ThOj/+c9/VLv2/qE7Di2fz2fVPr/pppsUFhZmjT430/QPpLTCq1fefEa2xZ8ouuhilUTVtba3bGtT7yv67FcXHwBw9PL7A/ri8c+0ZUvlTO+ownUqqPWBel/+mto1aXBQP2PKlClWR2x5ebmeeOIJq1a6w7F/249Da8eOHbrhhhv00UcfHfQ6NLs3ZmvqE3PlVow1IyGscKIKOnt13hUvKyk6nI8MxzRCdBzzKspK9fXL47V23mzr6w6NN2h8XZdyfLWVE7lLZzU7Szd0ukG5m8tVq2ncfgF5wOfTrowMq5H+/PPP9Vi79up30klqf/99csRRAuRwjFS799579e7rr2tqg4aKa9VSrUzt83r1qtx/8RdbNf+TzdbzrMhtmtfoLV1TslZbs/rJs6NI8TVqasT1tyqlfsND/t4BAIfOyu3Z+ubd65S3Z5HarR2qXbUHSza7oqP8GnTtCVXONPulVue1116r4uJi69/bbrvtgCOg8fcwx95Mxf/Xv/5l1bc977zzrOn4f3Tsl2zapdnvjlPs6lpyR42yyrc4/GUaMLalGvc4uLAFAHD0WfbpIv0wbY/89lCFuAvks7+uuGFnaszIcw6qc/S3o9JNTfGHHnrIqplOiZdDLycnR4888og1yDA6Otr698wzzzzgsTfXAcunrND30zIVsLsUVpatcudLCukzXBedcy1rlKFaIERHtWBO2CtnfaW1m3ZqQlaUbq14Uj8kZejt2Mob7K4lA9R+xXDVaZmgk8Y0UXzNquufz5o0SUl33GmNhi612xVy9tlqdcvNslexmCX+mswvvtDix5/QmO/nKTwyUnfccYcuO+MMRaalBW2cc8py9NB3jyhxemf9VHOOAlGzdEt+kZ4qvVKd+5+h4cklSmvaXK6wP54qCAA4+pW4vZrw3psq3fGo6s5vrsKUC+QOjZdNfnU+JU2dT21e5Y14YWGh/v3vf1sPp9OpW2+91boRP9DCV/jz5syZY3VWfP/99+rbt691433CCScc8DVur09vfzxRpd8/pbiMc1UY39banhCZr+F3DFZUAqPVAOBYl705W58+Mkvl9iQzpVhRBV+qoN0unXv1K0qMObg2ecGCBVYb880336hHjx5WG3Ogxanx55WUlFgd4I899pi8Xq9uvPFG6xETs//Ahd+Xb/n84WnKzIm1vo7NW6m8Om+p2alP6RQ+K1QjhOiodvYUuXXDxMVqu/5lJRWt1cS2RUoo7K2u20bIGXDJ7rCp/YA66jS4vkLCnPuF8UWzv9PGu+9W+O7d1rZCl0sJl16qRpePk51w9i8xxzf322+1+t57lZRZeXznd+6k08ePV2xsbJX7b1i0W1tX5sjTe5seXfCg8ioKFeK1aexap3w7UjW/4VBde9EY9WyS9NfeHADgqDVj0Wqt/2qc3OvKlFZ0tvakdLS2Jyb4dfI1XZVYK6rK15kSLw888IBVUiQpKUl33323Lr74Yrlc1Nf+O6xcuVK33367Vfe8Q4cOVrBx8skn/+EowdU7svTFhMsVuzpO3vDT5HVFyeb3qkOPCHU9v4dslG8BgGqjwu3V1Ps+VmZO5f1aRMl2lca+q5bn3aO+Xbsf1M8w94VfffWVFaYvW7bMGpFuRqa3adPmEL/744PH49Grr75qzRA3o9CvuOIKa5BbjRp/XL9826Jt+vKlpfLYY2QL+BSVO025bdbr1MvfVv0azARE9UKIjmrJ5w/o6RuuUyBjk1wOr/IbZ+rL1Hj12Ha66uVX1lWNiA3RCcMaqEX3VNl/t1q4KfGS+/FkbX/0UYUVF1vbSkNCVOPxx1R74MAj8jsdy8xFT8GsWVr3wIOKyciwtvlsNkWMGqW6N94gZxULumZuKdC8Dzcoc3Oh9fUXzV7W1oSf1DZX6rM8SYVllbMJWvQfoiHjrjrMvxEA4HDLyC/Vh28/opKMiWq6rJv2pI6Rzxkum3zq0LeWupzeXE5X1fVSN2/erP/7v//Tu+++qyZNmujBBx+0anva7fu2/zg4W7du1V133WVNsW/YsKHVUWEWGfuj41ns9uq9D1+W+8f3FJ19lopjm1vbIx35GnpjHyU35GYbAKqrFVMX6/sp6fI5ImX3exRaPFVlXbw6b9zTio08uJnffr/fKtt25513asuWLdbC1Sb4rV+//iF//9WROZ6m3rk5nhs3btQ555yj++67z2rb/4jH7dOMp7/U5k0hVrm9sLIslbteV0ifgRp71nUKcXKNheqHEB3V1u4tm/TJ00+oOGOH9XVMZKG+apunskArdd96umLdlT3hjTqmaNC41lX+DL/brax339Ou//5X9uJiDd2xXYPPPtuaEt6mZUvZnPuOZMf+9mzfrk1nnqXYvDzra4/NptBhw9Twxhvkqllzv/1z0ou18LMt2rRkT+X+dreWpn2tjUnf6Mw1LnkzkhWQTbbQcJ1y0Ti16jOAungAcBx1yn754wqtn3mttN6jlJIzlZNUWQYkMqxCAy7vrNotgs9MMqPXzMjpL774Qk2bNrVqppvFyqKiqh7Jjn2PvSnXYqZ5m8Vbzch+E6RfeumlCvndIuBVfW6zFi7Tyin/VML6DiqJHWzVPrf5PWp7Yri6XdhTjt8NaAAAVD/F2SWafN9kFVbUsr6OKN6m0tgP1OScW3Vy994HfV9XUVGhV155xQp8s7OzrY5xc4/erVs37g0PQlFRkSZMmGDVOl+/fr0GDx6shx9+WO3atTuo47/5h02a+fpyVdgr15CLzZmnnMZfqevZL+jEtpWDFoHqiBAd1ZrP69H8Tz/WD5MmyubzyKaAlLZHE5t71Ci3uzrtHCh/v526fOi5ig2Nlc/jl91p23/x0YoK7Z4/X6/Pm6fx48dbi2FObtNWtRo3VvPrr1N0z5401r897vn5Wr1jh9Uom1FqL6fUUOuICDmGDVXzm2+WMzl5v8/KXebV7HfXWeVbzMcUUEDrkhdoQd3P1CujRPXWpcjtrbxJT23TScOvulbRCZRwAYDjUU6xWxPfe1qlW19VvRWdVJB0hipCK8uC1WvgVK9LuigmKXhNbRMGP/XUU1YYHBkZqUsuuURXX321GjVqdBh/i2NDeXm5NUrNhOeLFi2yRvL/4x//0EUXXWQduz+yMSNH0969TeEriuTQ6SoPr2y7Y0OzNfTmUxRfm0XcAeB4YjpW5789W8u+K5HfEW6VAIko/EbFLTfq1MufV+2UxIP+WWYR8TfeeEPPPPOMNmzYoM6dO1th+ujRoxVGKdb9bNq0ycozTOkWU//8l86H7t0PrqxOaZFbXzw6RRnZlZ9RaHmu/P6J8p/UTOeff48iwyiXh+qNEB3HhYKs3frkhfHKXrXE+rpNra36rEmZ5oTFyWuvUExItMa1u1xNNnbT9pX56jSonjVCvarFyky9sM9eeUXNn35m77aiyEjFnTpS9ceOVUjdujoe+YqLtWfKFG19/Q2F7dihfhs3KLxGDV111VW6eNAgpTRuLEcVdc9/4ff59do938q9R9qUsEyL6nyhsJAdui0nT7t2tlfWbqcccckaPu5KNep04MXKAADHhx9Wb9H8qTfLt3Wj6mWepqyUHtaUYlvAq7bdEnXCme0UEh581tj27dv13HPP6aWXXlJeXp769eunyy67TKeddppCj/NFxVetWqWXX35Zb731lnJzczVw4EArPB80aNBBlcHJKizVx+8/Ji2cp/Di0SqOaWJtd/mL1HVkA7UZ0oYBCABwnI9Kn/LgJOWV1d4byAb0iVx9W+usc25WWJASbcHKkphZZqbD19ROT0hIsEq9mDa9Vavje2S02+3W5MmTrTZ91qxZ1rEZN26cdZ9ep06dg/oZ5l59/tvztHxugfyOCGuR2Ji875TXeLZ6nPe8OrVsech/D+BoQIiO48r6BT9o+geTNCW8rf6pd5USuUT/iUrSmiiHKRCi85beo0j3z1OSUsLV4eS6anpCTblC92/A3Rs3asMzz8o3c6ZCfL692wtr1VLqDder7rBhqu785eXK++ZbbXrzTYUtXy6X31+53dSuHTNGvf/vzioXbzOjD3auydNPc3ap/9gWWpG/TM8te047NmTL46hQiC9DZ2S7ZdZcf8RzgaJbnaIzYzLUbeBAOf9gyjgA4Pji9fn16axvtW3+bYpcHa0o/yjlx1fW2napXF2GNFCbwU2D1ks3ysrKrNHW5gZzzpw5SkxMtOqCjhw5Ur169TpuFiI19WWnTp2qiRMn6ocfflBycrJV7saUbDHlbw5Gidurjz55XSVz3lP0nkEqjOtY2bHhr1CTFn71vvKU/RZ2BwAcv1Z9uUzzPtwkj7NynazI4s0qi56ieqMv1aC+w6sc2HYgpjyJKfViRqjv2bPHKvFy1llnafjw4WrQoIGOB2bg33fffadPP/3UWg/GLBZ60kknWZ0KZpR+eHjw2Xq/t/mHjZr1+mK57ZWzySOKd8od9oEiBgzSmaOvVKjz4Ds7gGMdITqOS7vyy/TgtNXKXjlLfXbOUCCsXHOaFmpjQohaZ/ZSu8w+CvFWNiyhEU41756qNr3TFJscsd/P8peWKnva59r82muK3rJFZmzWdbt2Kb9lC6uhHtGzp5rWqqXQJk2qzYir3bt3a85zz6nJBx8qJBDYu70wOlqJo0ep3vnny1Wrss7db1WUe7Vh4W6tnL1LOTsrF2zd1vpHTY9+13oeU2rX6WsiZNudIJ/TpW87XKk7Tuuk7o0o2wIAOLC8kgp9POklFax7XolrW8ofebpKI2pY3wuxmzC9oVoPbHLAMN1Yu3atdfNtgmRTvi02NtaqFTpixAhrFHZ8FYthH6vMyL2FCxdqypQp1uOnn36yOgwGDBigiy++2Pqd/6je+S8Kyyr06ZQ3VDj3A0XtGaDi2M5WeG6kxOVo4HUDFVMz5hD/RgCAY5HH7dWsZz7V5vUR8jsqZ4JFFSxScY3v1HHsPerWofP//DNN3XTTtr322muaMWOGFSy3adPGatvMfXqXLl2q1QLjZkbd9OnTrc5w829BQYFq166tM8880+oMb968coDBwcpcnaGvn5uhQm+a9bXTUyxn2VSVtivV6ZeMV1oS5dhw/CFEx3Ft5rfzteSFh2UPVI4kD40u1pwmhdqQZFeLrG5qu7u3osoTrO+ZEL3X2c0O+PM8u7OU+cH7mhMRoU++/NKaUnZ+SIiuSUpWcWiobG3bqv7wYYrp3kMhtSsbo6Odr7hEpYsWasfnn2tZdraeXbNGP/74o+IcDs1p1FjlkZGK6NvHCs7D27atsqMga1uhVs1N14YFu61VvK2f6/BoVfI8rUydLaevQEPWhSt0d7z8gcoLGWe9lhp7yy2KSyJABwAcvJ25xfr846dUsmGiUtZ3VVnsILnDKtvyEFupOp1ST60Ht/jD0dBm1pRZiPSXgHnJkiVyOBzWyPRfbsCPxRrqpaWlVphgfqfPPvvM6hg3I++HDh1q/V6nnHKKoqOjD/rn5Ze49enk8Sqd+5Wi8vqoMO7X8Dw+PFMDrhyglKYph/A3AgBUF0V7ijTt4UnKKf25RGrAr6jCH1Vce5FOvOBedW5TuZj4/6qwsNAq82IC5mnTplkjs2vUqFE56G3ECPXv318REfsPmDsWapyb38m06Wbkuc/nU6dOnfZep7Rv3/5/HsiXsyVbXz7z+d4yOza/T9EFc5Tb8Ed1PfsJndi2zSH6bYCjHyE6jnv5Wbv14WsTlLdsrhyBynIkrsgSLWhSqBU1PapT0EJtM3sroleRzu42So3jGyt9Q542LMpS866pSqkfHbRhMr3fy/75T4XP/k7On0ud/KIoLEyeBvUVf8cdatahg3VjfqSZwMC9Zo0y583T7rnz5Fu/XjF5efrlnS12l2tyx45WozxkyBDFFBcrpH79AzbMJQVuTbhtnn4ZsF4UkaOfkudobfKPii4v15C1UXLsiVNAlT8jkFJfwy65VM3btz8cvzIAoJramlWg6ZMflnvdNKVs6abS2IFyh1WOIncEytW8U5w6n9FRUfFhB/Xzdu7caYXO5kbV1BQ1NUbr169v3az+9mEC6aOFGXVnapsvXrx472P58uXWe2/WrJnVnpuHmer+v16HbNyVpa8nPyj78gyFlfRVccyvAw1iXbvUd1wfpbU5uFqrAAD8VvrK7Zrx/AwV+evvDXIjiuarpNYSdTr/X+ravsufPmBer9cqWfZL+Lxu3TprHRQTOP/Slnfs2NGqpX40lXPLzs62OvR/26Zv3brVeu+mE8C058OGDVNa2p8brJe5Jl0zX/xK+SY8N53hAb+iCxarKGWmGo+6Qaf0GlhtZtYDfxYhOvCz3Kw9+uD1t1S49Ds5Al5rW8OWq/V+qlOrfrO4WPvk9uq74VyVramc3hxXI0IN2yerYYdkpdSrOlD3l5WpdMkSbf1smgrmzVNsVpYVTBf6fOq2cYMiIiOtRvv6sHClOZ2KatpUcS1bKrZFc7lSU+VMTpYjLu5vabTMe/FmZVmP4k2blJ+bp7W10yob5EWLdMf6DYr93bS2wshI2dq2UaPTT1fi8OFBf3ZpYYU2LclS3u5S9TqzqRXKL9+zXDNeWaP00nStSpmr9JiNivf7NLqoWP0y7PpyS2vrtZ6aTTT0/PPVulMHGmcAwN8aps/47GkVrZmkhK0nyhfeT2URP4+MDvhUq0aZTjirm2q1SDro9qe4uFhff/215s2bZ93EmjbUjHIz6tWrt/cG3Pxrpk+npqYe0oVKTVkWM6rOLJS6dOnSvTfXK1assAJz83uZ92Hej5m+bsrSHGyN89/y+QP6buGPWjn1EUVurSmbvZfKImpWfjPgU2LUbvW+ZIBSW/68DQCAv2Dbwg2a9cpcldrq/dzW+BVZtEJl8T+o/qln6+R+p8rp+GslWUwNdTOD3JQ3M22nKetm7mNNu922bdu9wXqHDh1Ut25dq7P8UJaBKS8vV2ZmpvU+fhuYmzbeiImJ2XuN0bNnT6sEW1RU1J/6f5nfc+uPG/XdhLkqDvx8jK1SOitVEv+lUoeeq2GDzpbrLx5joLogRAd+Jy8nRxNff0eb1m1QeXKsLnNOlTc8Q5PK0/RDok3ZsR7VKmii1nt6qEFuW9l8v47ciooPVYN2yeoxurEczuANjb+kRGUrVqhwxw6tTU7e2zBetGSp6gS5gS9wOvV2n97Wjbh5tFi0SCHFxbKFh8vmcsluN4ujBuT3B+SLilTRoEHWCDTTY538zruKyMxUWFmZwn+zCKqR7vFowOZNSkpKshrif3p9Sg4NVWznTqrRvYfC27axgvxgjW72jmJtXZmtrStzlLW18NeTy/mb9NnuydpRtEMKSKEVdvXcGqa2pT4NisvUR97+mmgbrOHhezRiWD+1ant8r5oOADi0corK9eX0t5S59AXFbWmkEPVTQdyvQXKYvUCtuqWpzYh2iowN/Z9DbDOl+rc3uyZYN/VIf2Fqqdcyi4//3I7/8jDbzPfMaDen07n3YX6mGS33y8OUYTE31enp6crIyNjnYbabNt8wN/YtWrTYZ3R8u3bt/vQNtrElY49mfPakvIvXK7ywi8qi2stvrxydZ/eVKbVGrvpePVKxqdQ8BwD8/Tb/sFZzTNCrhnu3RRRvljdknkK719HIs25XbNTBL5b5Rx3lppzbb0d9r1mzxmqXDdNe16xZs8r23Gw3ZWF+256bdvm37blpr0398qrac7PNfO8XcXFxewPzX/41peT+aohf4fZq4buztGbeHrmdP9/rWyPPl6g4YbZqjThXw04+6y93UADVDSE6EITH59fnKzP00uxNSkifow7bvlcgYJM9okxraxdrSZ1y+Rwu1c1vqRYFJygtt5lsXofiUyN0zt1d9/4cs5BmbEq4kupE/+HK4mXLlin/p1XKXLxYFdu2yp65W67iIoVWeJTucul6m6zG1QTjn9ZvoCZBRrVleDzqv3nT3q8n1m+gtr/Z1+NwyB0ZKX9Cguz16qrGv/6lOnXr/k8jwFfPS9eCKZtVUlCxz/biuGytiJ2rdck/ymMvVcOsMJ2wPVyhuVEKBOwK2Gya3PgCnXpSG13co4ESow7dyDwAAH6v3OPTN/O+05ofnlD4xgrFFvRRYXxH+X5eyMyMqE6IzFHbge3UpFcThYQfuHZ6MKajefPmzVa4/tub49/fMJeVlR30zzTtdEpKSpU37uZfM4XbTD+PjIz8yx98bnG5Zn79lvZ8M13h2U3kd3VSefiv65SE+jLV/MQUdTmnt0Ijjp7p7gCA6itz3S7NHP+ZCsobKGB37l3w0lU+XxV1tqjt6KvVrVOPv31mc0lJiVUezSw4Hqw9z8rKstr+gxUeHh60PTcPE5Y3bNjwb/1ddq9L13evf66c7BryOSuvFey+CoUXL1BJzYVqeuoV6nfSEDn+ILcAjleE6MAfMA3hN4vW6tu3X1dU5lo5VNkDbZNf7oRiLa1dro01yuV3OJRW0ExJIUlq3KGGeqb1VKekLnr31kXyefxyhjpUo360ajSIVc0GMda/ETGVJWH+iL+iQv6iIjl/rrNqaq2nT5yoiqws+YtL5Pd65Pf5rfdqd9hlDwtTyDnnWD3fCQkJcmzYoEBFhZwpKdbDbsqzHERjXFHmVfbOImVtq3x0HFhXSbUrFxtbMz9ds95YKzn9yk7cpp8i52t7/GqVhhQqocCpk7ZEKHF3tPy+X8OHgsiaqtfzZI0ZM0LRf9NIAQAA/qxN6Xv07ZfPqHTZl4rKbCOHo5uKYn4d5WbzexQXlavWvZur2cmt//aw2LTbZrR6fn7+fqPUTI3yX0axmVFvZlq5CdDN14dKena+vv3yRRXOX6iQvEbyOzvKHZa89/tm1HlCdLp6XDBAae0OvCYKAACHSmFWkb55YZIyt0XL66pc72Tv6HTnYjlaOdXn7FvUsPbhW5vDtN8mSDdl1Ew7/kubbhb7/P1sMzMDzZRlORztaGleqea+PkXbV1XI7apcLNQILc+W3fudyhpnq9c596pN01/XNgFQNUJ04H+wZVeWJn80TTlL5yqhbPfe7bXrbNeSBsX6NiJcpb+ZWhXrSdTgXRcrLqeWVLH/VKiWPWup73nNreemDIsphxKdGGaF60fixrQwu0xrf8iwapqbMi35WaVWKZa973doknKardf8jPlatu0nufKilBGzyRq1Zw8E1NZTrv6lZaqzLVaLMxtYryl1hMvToKP6DBmkvt3/99XBAQA41Cq8fi1YtkRL5z4jx9pdisrtKF9YB5X+Uu/bCPgUYc9S3RaJanlyR9VolvyHM8yOdm6vT4uX/qjVM9+Sf7NHrpLG8oQ2lyfk17IsNl+Fopzb1XpAG7UZfoJcIUd+IXQAAAwzkGzZlDla9vk6ldkbVi6I+fNCpOElq+UNWyVnywj1OfMmNaj9a4Bc3RVnF2n+u9O1fUWeyu2/jto3xyWyeJXKI39U1EmtNPjU65UQ89dnrwHHC0J04E/w+vz6cu5yzZ/xtbR1hfJT0zQkdLG6O5bp6+Ka2pKXom1J5VpXo0JZcW4F7DbFldVUWkljNfO0U1JhHdnywtRyULL6jGxtBcsmsH7nrvnWz3e47IpJDLMC9aj4MIVHuVSnRYLSmlX2snsrfFbQ7XTZrX2dLod1I2+C+IA/IFeoY+/0czOaPGNzgfWveZQVVag4v0Il+W7r0eqkWmp1UuUK3ru3FOqjRxft+8tGeVUcu0fbQ9drVdR85USmW8F6bLFL9bJD1SwrRFF5Eepec7NCo6P0ha+LvnW3UvuKXWres69OHdpb8ZFh/J0BAI6Zci/f/zhHq+aNl2tTnsIK2yvg6qDSyH3XB3H4ShThylKdljXVpHcH1Wxew2qPj2Yl5R4tXT5H62dPk3dToVwltRSwNVRZ5L4j9ew+tyKc29W8ez11OL2fQiIPbuYcAABHSlFWoWa/MkkZGx2qCPlNYB7wK6Jki3zOlQqklanF0NHqesIAOZ1Hd5v9v85s27ViixZ+/JVydjjldtXf26FgRJRsk9+2QN7Gxeo+5la1btaKwW3An0CIDvxFJW6vvl69W58u26VlG7fr1PTJiir9dSEx2X0qiy3T1sQKbY/3KDOxXAG75PSFyB5wKCzCpabxTdXS00lRs5vJX1x1Y37C8AbqMrRydPeeHUX64MGFQd9T56H1deLwyunophzL+w8E37d5nxTVGCBtyt+kzXu2qvS7aGW6tmuzfbWyonao3FVs7ef02tRkV4SaZocoPjdc8uw7pX1LVH1ta3+WBrepqcGtU9UgiR5tAMCx32m+cv06LZ77itwrVyo8u65c/pYqiWomn3PfsmSm9EuIL0Ph0aVKa15bDTq1Vo2WtRV2hALo3IJirVr+nbYt+F6lW/PkKIqS3VtTnpB68oTG7bd/qHuXouLz1H5ITzXp0/6AC6QDAHA0y1yzQ3PfnKq83VH7BupmYdCKAjkr1ssXvlWhjULVauAYtW/X7ZiqA25C8z0b07V4ylfKXFegCl89eV2x++xjBedaLm9ajlqcOlY9Tuh/TP2OwNGIEB34GxWVezRr8QYt/H6+8jasUlrxFoX6fl14027zq27H5VoaEaJVoSFy58fIa5fyoytUFuI3hdZl9zsUWRGn2IpE1Q40VJK/pqL8cbLXK1FMI4fiQ+MVlh+rrElhCnhtCnhlPX79n0hpJ4UotY9Lbp9buTlFyvzQKX+IV16nW+WuUhU6c5TjyFSmdmp36A4VheXsfbkJy80o87hil6JsXqXE5amN260WpV59v6KTAuZNmqlzNrsyw2rKn9ZMzTp00pC+XVQ3keAcAFB9ZReWatmSWdqw+EPZNhYrpLCWXL4GKotouE8JlN9yevLkCOTJGVqm0KiAolMiVLNhbaU2aaq42qkKiw2Vw2H/n2+eS0rLtXHVYu1cvVwFO9LlziuVv9gpmztSNn+cAvZEVYSmyG/fv467mc4d4tmpsKh8NerSVG2H9FZkUtSfPi4AAByt8rbv0dw3P1HWZp8qHPXld+zbue2qKJKzYosCzp1SYqniWtRT+5NHqWHdRkfNaO3C3flaNXO2tixZr7LccHnsdeRzVq5V9guzQGhY6Qb5XOukBm61G3GROh5jnQPA0Y4QHTiEo9eW7cjXD4t+0qYVy1Sxa7OiA0WKTA1XZ/s6tbZt0ayttZXjrrxpDTi9Ko+sUGGEV3sifMqJ8mpLWumvP9DUJg/W/gVsMv8FzKKnf9BG2gLW7nu13BKt5GKHkkuciihxye7+9aIiOaxEdev6tDzQSEv9jRSWlS1bdLJqtmit7l07qXuzmooMPXQLnAEAcDQrdXu0YtVCrVs+TWVrNsieHSmXu4bs/lryhNaSOyzhoH6OWbDTlIexBTySfFbvuE0+2QK+ys5rm2lrzUw1pwJmiXNHhLzOCMn2x1PRTWkWlydDDleeYlND1bxnJzXp1VmusL93kVQAAI52pizqT1/M1qpZS1VWEK8KV+299cL3C9Y96ZItU4HQQtliA4qunaRabduoWfueSoxP+NsD9oqyCm1dulyblixX3vZsufMlX0WsfI5UeV37d9SbGXBhZTsU0Cb5EnYr8YQWOmnQpUpJ/HWhVQB/L0J04DAu3rVse74VrK/YWWD92379ZKVWZCrMU7Zf9h0XWqIOLVYpy+lQrt2uzJUt5Pc65XX55HH55LMH5HUErJHsxREerW2aK2fA3GIH1GxNksLcTjn8UojXLpfXLofHIZv5N6xCjVuuVk2fTzW9Pn2xtr0KPftOSfc6nMp3xSkjoo5K2w1Rx3rx6lI/Xp3qxSsugrqoAAAcqBN9y45t2rR+rrJWL1T5jiLZCuxyuGNk88dLtgT5HAnyOaN+DsL/WtkUE5KbAN7uL5Bd+bKHlCoswaXU5vXUrFsP1WhSRzZGoQEAsB+P26N13/6gVbMWqGSPU16lyuNKPGDb7PQUy+Etki1gyp4Wy2YrVcBeIZvDJ3NDbnP4ZXOYDnAzzM2+dzycrFnkDgV8DsnvVMAfKgWi5LdHy+eIls95gFndAb9Cy/fI7tslv2unlFymGl3aqGv/c5SccHAd9gD+OkJ04AjaU+TWmoxCrU/P1dZNW5S9Y4eKc7IUWpYnl8Mvd2KCUmz5SlSBnJszTNtZpYTQUo1usFo+2eWVQx9vaq4iT2iV+9qcNuXVb6iMQKL1SMjdJZvdKVd8smJrpimtfn21apiqlqmxqh0fbi1YCgAA/h5mEfC8ggKlp69VxqblKsvJV3lhqbzFFfKVVihQ4VHAb5dNlaPPzUA3m80vR6hLIZGRCouOUUxivBJr1VDdlu0VnZzMRwMAwN/EXerWuu/macP8pSrKrJCvPEIBxcnrTJTPdH4fQg5vuVyebNn8exSw5yoQViRnDbtS2jVXx5NOVc2Umof0/w/gwAjRgaO0tnp6frl25ZdqZ16ZFbbn7dmjkoJClRYVqLy4WH5Phfxer3xej0psodoQ1VgOm80KvRsXrlNIwCuXyylnaJicEZEKjYhSRHSUEhPiVSM5XinRYUqJCVW9hAglR4ceNfXeAAAAAAA42hRl52nL0qVK37BRBRl75C6qkK/MroDPLvkcCgQcUsCUS3OaBUx+HoNujUOXbB7ZVCHZKiS71yxGJnu4T45ohyJS4pRQv54ad+qptNS6DGQDjlKE6AAAAAAAAAAABPHXijACAAAAAAAAAFCNEaIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAABAEIToAAAAAAAAAAEEQogMAAAAAAAAAEAQhOgAAAAAAAAAAQRCiAwAAAAAAAAAQBCE6AAAAAAAAAABBEKIDAAAAAAAAAKCq/T+RObL/ArrrugAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1898,7 +1971,82 @@ " ax_polar[\"b\"].set_title(\"δ=π/2, α=1, γ=1\", fontsize=14)\n", " ax_polar[\"c\"].set_title(\"δ=π/2, α=0.5, γ=1\", fontsize=14)\n", "\n", - "fig_polar.savefig(\"../docs/docs/images/circ-mod-wrapstable.png\")" + "# fig_polar.savefig(\"../docs/docs/images/circ-mod-wrapstable.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Kato-Jones Distribution\n", + "\n", + "Figure on p.15 of [slides](https://adista14.ulb.be/presentations/Kato.pdf) \"A tractable and interpretable four-parameter family of unimodal distributions on the circle\" (Kato & Jones, 2014)." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAEmCAYAAAAeHNE3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQd0FFUXx//Z3Wx6oyQhoffeexGQ3qSoCChFVFBEUQHbJ6ACShEFQUBQAUUEVBCk9yK9995SSCW9bLZ+577JhE3f9E1yf+fM2dnZmdnZ3dn33n333v+1MZlMJjAMwzAMwzAMwzAMU+QoivoCGIZhGIZhGIZhGIaRYCOdYRiGYRiGYRiGYawENtIZhmEYhmEYhmEYxkpgI51hGIZhGIZhGIZhrAQ20hmGYRiGYRiGYRjGSmAjnWEYhmEYhmEYhmGsBDbSGYZhGIZhGIZhGMZKYCOdYRiGYRiGYRiGYawEFUoZRqMRjx8/houLC2xsbIr6chiGKYaYTCbExsbCx8cHCkXJmuvkNpJhmLzA7SPDMEze28dSZ6STgV6pUqWivgyGYUoA/v7+qFixIkoS3EYyDJMfcPvIMAyT+/ax1Bnp5EGXvxxXV9eivhyGYYohMTExYrJPbk9KEtxGMgyTF7h9ZBiGyXv7WOqMdDnEnQx0NtIZhsmP9qQkwW0kwzD52ZaUJLh9ZBimsNrHkpVMyTAMwzAMwzAMwzDFGDbSGYZhGIZhGIZhGMZKYCOdYRiGYRiGYRiGYayEUpeTbqk8vl6vh8FgKOpLKdUolUqoVKoSmdfGMAxTWuE+tnjDfXPW0NhRp9MV0q/BFDS2trbinmeYwoaN9DRotVoEBQUhISGh0H8MJj2Ojo6oUKEC1Go1fz0MwzDFHO5jSwbcN2dMXFwcAgICxEQUUzIgRxGVynJ2di7qS2FKGWykm2E0GvHgwQMxY0ZF5skwZC9u0UAdHA3mwsLCxG9Sq1YtKBScncEwDFNc4T62+MN9c9YedDLQaQKjfPnyPH4sIfc7jUPpd6VxKHvUmcKEjXQzyCikQQTVr6NGlilaHBwcRJjRo0ePxG9jb29v9T+JISoKkevXI/7kKZg0GqirV4fHiBFwaNigqC+NYRgmT+iCg/H4w49EO+fSuxfKT5iQo+O5jy0ZFMe+uTCgEHcy6shAp++IKRjCYjVI0BpQ3sUOjuqCN2Po93z48KH4fYuzka65fh3hy3+Eff36KPfm+KK+HMYC2EjPAPbYWg/F6beI2bMHwdNniAGsTOLFi4jetAll33gd5d9/HzbF6PMwDMOYE7NtGxJOnxbrSffuoexrr0FhZ1ei23UmY/g3zByOwCw4ErR6BEVrxHp0og7VyjnBxd62AN+xZPye8SdPwm/saxTOhNg9e+DUtg0cmjYt6stisoF7SobJByLW/o7ASe8JA92uVi14fz4DvgsXwrV/f/H6k5U/IXjG55ynxjBMsUVz89bTJwYDku7eLcrLYRimFEFRCrKBLhMSk1Rk11OcCF+2XBjoMiHz5vN4tBjARjrD5JHo7dsRMmsW9SAitL3a5k3wGDYMrr17wfeb+fCZO4fcDoj6809E/vEHf98MwxRLNDdvpHqedPNmkV0LwzCliyS9EfFJeuHZrlHeWTySZ50WJnM0t24h4dQpKsuAquv/gI2dHRLPn0fS7dv8tVk5bKQzTB7Q3LyJoE8+FetlRo+C17TPYKNKnUXiNnAgPCd/INZD58yF1s+Pv3OGYYoVRo0G2gcPxbpr377pPesMwxRLqOTw1KlT4evrC1dXV3Tp0gWXL1+GtZGolcoiO9oq4WSngpuDFOYeEact4iuzbmTnkEuPHiLE3aFZM/Fcc+VKEV8Zkx1spDMZhhRNnz5dlD4j8ZPu3bvjzp072X5TP/zwA6pWrSpEZNq0aYPTybmLJRVjYiICJ0+BSauFc+fO8Pzww0xzl8qMHQvHdm3FviFffV3o18owDJMXku7cFSHuSg8POD3TSdp2I7VnvTSzcuVKdOrUCR4eHmKhfrMg+kAynuh9qJ8lkdt58+Zle8y7776LFi1awM7ODk0zyEM9dOgQBg4cKPp8Jycnsc/vv/+e79fOWCe//PILlixZgsWLF+PChQuoWbMmXnrpJfFaREQE3nnnHdSpU0eMBytXrizup+jo6Hy/juzGkIk6yUh3UEvibVvW/4oxQ/qgQXWfTP9zmzZtQs+ePVG2bFkxPrt48SJK23g+7sBBse7+/BDxKAsZJ169WqTXxmQPG+lMOqjT//7777F8+XKcOnVKdNq9evWCRpM6F8icDRs24IMPPsCMGTNw/vx5NGnSRBwTGhpaYr/h8B9+gPbePajKl0eFOV/DJgvVT+ocvKdNA2xtEXfokFB/ZxiGKS4k3ZJC2+3q1oF93bopYZRcD/qpoTt8+HAcPHgQJ06cEAY0GQeBgYH59hvExMSIc1apUgXnzp3D/Pnz8fnnn2PFihXZHjt27NgUwystx48fR+PGjfH333+LSYBXX30Vo0aNwrZt2/Lt2hnrZf/+/RgwYACGDBmCGjVqiLHczZs3hYH++PFjsXzzzTe4evUqVq9ejV27duG1117L12uwZAxJiu6EY7KRfuLYUfQb9AJWbvgXBw4fzfA/Fx8fj44dO2Lu3LkojSTdugV9aChsHBzg2Lq12GbfsKF41Fy9VsRXx2SLqZQRHR1too9Nj2lJTEw0Xb9+XTzKGI1GU3ySrkgWem9L6Nq1q6lx48amgICAVNtHjhxpGjBgQI6+H3pPb29v0/z581O2RUVFmezs7Ex//PFHpse1bt3a9Pbbb6c8NxgMJh8fH9PXX39tygsZ/SbWQOLNW6brDRqartepa4rZf8Di44K++FIc8+jVVwv0+piia0eKOyX5szG5J2jmLNF2Bc+ZazImJZmuN2wknmvT9DtZYU19rKX9q0xsbKxpzJgxJmdnZ5Onp6dp3rx5os91cHAQr6VFr9ebXFxcTGvWrDHlF0uXLjV5eHiYkpKSUrZ99NFHpjp16lh0/IwZM0xNmjSxaN++ffuaXs2in8qqby7JbUhOxpDFYfxIdOnSxTRp0qSU5/v37xefkcZ+GbFx40aTWq026XQ6U36R3RiSPs+VgCjTJf9IU6JWn7Lfw/A4sS04OjHL/9yDBw/EZ7pw4UKJGYdaQtiy5aKd9nvzrZRtSf7+Yhu14QaztoQpHHLSPnIJtmyg8Jr603ejKLj+ZS+LakD+9ttvGDp0qJhVX7hwodgWFRWFv/76C+vXr8fRo0fRp0+fLM/x448/4uWXX8aDBw8QHBwswoZk3NzcROgReQeGDRuW7liqk0qz+p988kmq8ix0DjqmJBIy52tK5IJLj+5webarxceVfW0sIjduRPzxE0i8fBkOjRsX6HUyxR8KAaT/Nv0vybtAIYmtk2fEM4L++//73/9EmB95QsjrRu1C3+Q8YobJDTp/f/GorlYVNmo11BUrQvvgAbT+AbD19S12fayl/avMmDFjcOXKFeExDwkJEV5H8ixSP+fs7Jxu/4SEBFFXuUyZMinb3nzzTaxduzbL94mLi8v0NepPn3nmGajV6pRt5G0kL2FkZKQI+c0vKJy5Xr16+Xa+0khxGD8S5tEwlNpIY7l27dqJsV9m9wblrqvM9Hcy+g+Y88orr4jozIywZAyp0RthNJmgtLGBneppELCLvUqUYovV6OBoo0v3nyvtxB05Ih6dOz+Tso3aa6WbGwzR0Ui6fScl/J2xPthILwGQ2AeJfkyYMAHffvutaNwon4waWBqYU6OVXR6Ol5eXeCRDwPy5+evya2kJDw+HwWDI8BgKmSppxJ84gYQTJ0XouudHH+XoWGoc3fr1Q/SWLYj8/Xc20hmLQgBpcEMTZWRs06D81q1b8PT0zHCw06NHD/EaTdJR2/Do0SO4u7vzN83kCV2YFHZqm9zOq7y8hJGuT95ekqE+jia9qF+l3G5i8ODB+PXXX/Hzzz9neMxHH30EHx+fVBPeX375JaZMmZLr66A+uFq1apn23fllpG/cuBFnzpwRk/dM6YHuWUp3pPS8P//8M9P/wsyZMzFu3LhU27MbY5JRnxmWjCFl0Th7tTKV9o+LHYnHJYrXP5zxSbr/XGnGGB+PxEuXxLpTx44p2+n7o5D3+GPHoLl+jY10K4aN9GxwsFWKGcmiem9L6d27N2JjY4XXvHPnzmLgMHr0aDHTSQsJgTB5h2acQ7+TohU8hg4V3qSc4vHyCGGkx+zcBa9PPoGSDSgmE2jS7Y033hA5ogQZ69u3bxdCPx9//HG6/Wk7ec8px9TWVlK+JSEehskr+tAw8ahKnhxSeZZP3h5aLPvYnPSvd+/eFW0/eRdlKJqFDJnnnnsu3f5z5swRUWzkdScRLBmaPMtoci0jGjRoICbYCBKK27lzJwoDyqmn9oaE8OgamJI/fpSZPHmyyE3fsWOH0FegqA+K0jTXROjXrx/q168vtBDMsXSMmTaykyaCunbNPhpRZ5BqfJt70QlblQJqpQLLvl+A9Rs24HCa/1xpRhjoBgNUPhXSjVXVVaoII10X+LjIro/JHjbSs4FmnHISEldUUKNEjSsNDCjsiBQ6aZ3ISbi7t7e3eE7hfKT0KkPPM1KFJcqVKwelUin2MYeey+crKcTu2wfN5ctChKPcW2/m6hz2jRrBrm5dUWM4euu/KDNqZL5fJ1P8yU0aydatW4Uh8fbbb2PLli0oX748RowYITwk9B/NiKSkJLGYD8QYxhyTTgfDkycpHnRzj7ouTbtfEvtYUkUnzMPM6b9Vu3Zt0f+ZQwJbZKTv27dPiLGZk5NwdzKUKAqOIFVtgvrTjPpZ+bW8cvjwYTGO+O6774RwHIMSf2+bI08ikdAaCbYtXbo0xUgnJxA5g1xcXLB58+aUSeCchru3bNkyldedvOX0/8puDKnTS0a6rTK93vXalUuwaulCbNyyI91/rjSTcPaseHRs2TLda7Y+0vheF8RGujVTfFoPJltefPFFjB8/XoQN0cw7DSCItI1iRshhRhRKR40iqX3KRjkN2knl/a233srwWBq4UAggHTNo0CCxzWg0iucTJ04sMb+cyWBA2KJFKTXRVWkGZznpuN1ffAEhM2ch6p/NbKQz+ZZGcv/+fRw4cEBMuNEgnzyAlAZDg31Szc2Ir7/+Gl988QX/Ckym6MPDKYxIpPjIkT+q8p6pPOwlGeoXaYKM8nUpnFaeEPPz8xMedjn8lkKFZ8+ejd27d4t+Ny05CXcnLYm00AQc6U3Q/1k2kvbu3SvKY+U11J28/v379xf57WlDmZnSUSvdHLq/ZI80jQEpzYqMabrvM/JUWxruThNOGXndsxtDapM96eQ1T1eNaMFcLP3tL9Ru0CSHn7pkk3Am2Uhvkb4tUiU74fSPgwr9uhjLYSO9BEHe8sTERBHqTmGvMpk1ihlBg4333nsPs2bNQq1atcTgZNq0aWJgIjeeRLdu3UROntyAUt4shdfTwITCACl3lkpfyGG6JYHYffuhvXsPCldXlB07Nk/ncu3bV9RLT7p+A9qHD6HmkGQmH6CBDXlCqCQTeSZo4EPlaEh4LjMjnTz19P+VoQEZlbJhGBl9sofLtnx52CgUqTzq8mslGdJ0IKE4MsCpf7t9+7YoQ0V9K02KUX9Ixu306dOxbt06kWIia7iQh1H2MuYk3D0jKCqGJtSo/BVFx5Bw3aJFi4TnW4a8nPSfNp/Io8k68tDTNdEYQTaoKGyZJtkpxJ0M9EmTJuH5559PuXZ6jUW4SgdUWo3GbxR6funSJXEf06SSXPaPhBApCoSey9FWFE0iR2jlNaUyuzGkzmDC/957E7WrVcGC+VI5Nfk/t/rXtfCqWBl+AY/hoHcR3n75P0fpXzSZRmXkCNJzIcgZVdIiPc0xarVCnJhwbJWBJ72CNNmoC2Ij3ZphI70EQbOb1NFSzip51XPLhx9+KBpHmk0npWgKfaIBifns6b1794SnT4bqr4aFhYkGkzp48sLTMWm9gMUV8pY8+eXnlJxyZRYiKJag8vCAU7t2iP/vP8Ts3IlymUQpMKWX3KSRUIoKeUDMQ9tJoZn+kxQ+bx6uK0PeETmcl2EyQpecdy7no+dnTnpxqrLw+uuvCzFG+n+REUH/G4paIeN92bJl4j/2wgsvpDqOJsfS5u/mFhKD3bNnj0hnoQk4aiOozzX3fJPytmyIyNB1Uyi7TLNmzcQjVXOhCYU1a9YII4yiamiRIX0b8rAzJZ+GDRuKVA2KmKT+5d133xVOGEqXpEjKjAxx+f7JD7IaQ9L4i3LSgwMD4O74tK+S/3Mjhj3Nm0/7nyPPv7mzSK5QlJ//S2tEc+0aTElJUJYpA3UasclU4e4hISJK1CaTdDimaGEjvYRBYW83btyAo6Njrs9B3nSaQaUlMx4+fJhuGzXoJSm83ZzEc+eguXRZlB4q8/LL+XJO8qYLI30HG+lM/qSRdOjQQXhAaD8KzyXI60fGe0YGOsNYgj4kvZFum7xORrp5yHdJhTzgNOBPCxnpBHm3CwPKuSXDKatScbSYk52hTV5UWpjSS9u2bVNK+JrTpUuXVCXaCpLMxpAGo0mUX/v5z21o6OuW4Tj0QXi8KMPm4+6Acs52Wf4fSgOyqrtD06YZts2q8uUBMsz1epHOJGuMMNZFegUGhmHS8eRnKX3AbdCgXOeip8WlezdApULSnTvQJtcgZpi0IYCkskyeLpp8Iy+HeQggiTuZC8vR6xTeR2GrZJxTVM1XX30lPG8Mk1tkb7kc4p4yyJNF5aKi+MtlGKZAkPPRVUoFFJlMBjqqJU9wfFLq3PrSSoqR3iTjPH3ynKu8pIlWXXIqAGN9KKwljIxCZiicmmoBnz592qLjSL2cZojMc6UZJr9JuncPcQcPUogByryafzOyFDLvmFxzV5yfYTIIAaQQRAoBpPA/yiU1TyOhXLsgs5wyyiUn0SqqcUweNwpZJIM9o3JtDGMp+tCQVCHuBEUVUShlaclLZximaKB89IxE48xxSlbRT9AaCs3zXzyM9MzV7uW8dH2yBgVjfRR5uPuGDRuEt4hKM5CBTuE2pCJJOVVZCaxQmAuppJKKOfMUyrEpyXk2RUHE6jXi0bnbs7DLILcnLzh37YKEU6cQe/AgynDJGyYDskojySiMlRSgT548yd8lk+856WlDIsmzboiIkDztdevyN84wxRBr1x2Qa6TbKjNPqSFPug1sxL60qFWlN8daFxIqqbbb2MC+YaNM97OtUAGJwpPO4nHWSpF70r/99lu88cYbInyTlEbJWKd8anN18rRQWSLKAyOV0+rVqxfq9TKlC0NsLKK3bRPrZUePzvfzu3TtmlIqg96LYRimOOSkm3vW81ornWEYJjOyqpEuo1DYwEGtSPGml2YSL0tedLtataB0dsrSSCdY4d16KVIjnVQZz507h+7duz+9IIVCPD9x4kSmx5GgGXnZLRFqSUpKSikZYV46gmEsIfqfLTAlJsKuVk04ZFD3Nq+oq1SRlDf1esRncc8zDMMUFfonT8RjWj0OOS/dkPw6wzBMwXnSszZZHJND3uNLuZGuySYfXUblLZfR5HB3a6VIjXQq4UVe8bRluui5XKczLf/995+oA05iSpZA5USobIm8cP1fxlIoryly/Xqx7j5sWIGpFzu1by8e2UhnGMbaMOn1MEZHi3U5B928lCRhiIwskmtjGKbkozdKOeaqLMLdzcXjErSlWzwu8aKs7J6NkV62rHjUR3D7ba0Uebh7ToiNjcXIkSOFgU71QS2BlI+pbqi8+LOKNmMhCWfOQHvvHmwcHeE2cGCBfW9OHZKN9OPH+bdhGMaqSFFut7GB0u1p+SNC6S4Z6TzIY4oKFh4uRUa6wjIjXaM1wph8TGmcVE28etUiT7rSQ5p0JV0RxjopUuE4MrSVSiVC0uSz0XNvb+90+9+7d08Ixg0YMCBlG9UDJlQqlRCbq1GjRqpj7OzsxMIwOSXyjz/Eo1v//lA6OxfYF+jYurWoV6l75AdtQCDUFX0L7L0YhmFyguwlJwOdyvaYI3vW2ZPOFAUsPFw6oDrplhjpFA5PZdr0BiMSdQY42RW5Nnahk3T7NkwaDRTOzlBno9ml9HAXj9x+Wy9F6klXq9Vo0aIF9u/fn8ropuekUJyWunXr4sqVK6IMkbw899xz6Nq1q1jnUHYmv9CHhSF27z6x7jF8WIF+sTQBIM94xp9gbzrDMNaDXjbSk0PbzeFBHlOUsPBw/qDX6zF16lT4+vrC1dUVXbp0weXLl2EtaYeyJ12pyNpkoZRER1s55N1QukuvNW4Mm2y+L5U8yRodDZOhdH5f1k6Rh7tT+TUKX1+zZg1u3LiBt956C/Hx8ULtnRg1apQIWSeojnrDhg1TLe7u7nBxcRHrZPQz+dMoUl3mChUqwMHBQQj53blzJ9vc/1atWonfgkT9qHY9RTYUV6L+/luIuTk0bQr7evUK/P2c2rYRj4lnzxb4ezEMw1iKITlfMW0+uvkgTx/J4ZI0jqGSsB4eHmKhfvP06dN5utH8/PzQr18/UfGG+lUypMigyoqIiAhR/YaMLRofkcBuXFwcShqFITxcWsSHqZrSkiVLsHjxYly4cAE1a9bESy+9lHI/vfPOO6hTp44YD1auXBnvvvuuSB/NC3/++adwvNG4vlGjRtixY0eG+xlMppS659l50glHu9Kdl25pPjqhdJc86TCZnqY1MVZFkRvp1BB88803wihs2rSp8Ijv2rUrRUyOOqmgIK7hV5jMmzcP33//vSiHd+rUKTg5OYna9RqNJtNjDh8+jLffflvUZ967dy90Oh169uwpJlyKGzSjGLlxY6F40WUcmrcQjwnnzhfK+zEMw1iCIUr2pCcP6MyQveuGSB7gUa3p4cOH4+DBg8JIpMg+6gMDAwNzdaORqC4Z6GSMHj9+XDgyVq9eLcZKWUEG+rVr10Q/vG3bNhw5cgTjxo1DSaMwhIdLi/gwRa9SGumQIUNEyig5z27evCkM9MePH4uFxulXr14V9yCN0S2d5MgIup/pv0LnoEkBcurQQudPi8EgGegKGxtRZi07ZIX3UutJT46AyC4fnbBRqaBI1hnhkHcrxVTKiI6Opn+8eExLYmKi6fr16+KxONG1a1dT48aNTQEBAam2jxw50jRgwIAcnctoNJq8vb1N8+fPT9kWFRVlsrOzM/3xxx8Wnyc0NFR8z4cPHzblhaL4TWIOHDBdr1PXdKtNW5NBoymU99THxpqu16sv3lcbHFwo78kUTDtS3CnJn43JOWFLl4p26fFnn2XcbtWpKxZDQkK25yqufSwRGxtrGjNmjMnZ2dnk6elpmjdvnuhzHRwcxGtp0ev1JhcXF9OaNWty9X47duwwKRQKU7BZf7Bs2TKTq6urKSkpKcNj6Lul/+6ZM2dStu3cudNkY2NjCgwMNOUnWf2WhdGG0Oeh9zh+/Hiq7VOnTjW1bt063f4xMTGmqlWriu9VZvTo0aaBAwdm+T4ajUZ8Dnnx9/cvcWPILl26mCZNmpTyfP/+/eIz0tgvIzZu3GhSq9UmnU6Xq/cbOnSoqV+/fqm2tWnTxjR+/Ph0+8ZpdKZL/pGmG0GW3Ut6g9F02T9KHJOkM5jyg+Lyu+ojI1PaY11EhEXH3O3VW+wfd+pUgV8fk/P2sfSpKuQUCrPRJRTNe9s6CkXd7Pjtt98wdOhQzJ8/HwsXLhTboqKi8Ndff2H9+vU4evQo+vTpk+U5fvzxRzED/+DBAzELbR5CRrPHbdq0Ed6BYcMs8yzLoVBlMgiRLBah7vS5Bw2CopBEBykv3a5uHSRdv4HE8+dhm83vxTAMUxjIyu2yErA5Cicn2NjawqTTCU+MwsGh+PSxFvavMmPGjBGaOOQxJ3Fb8jqS54/6SucMhEUTEhJERJl5H/jmm29i7dq1Wb6PHJpO/S2FAZt7iimijVICyVPerFmzdMfSMRTi3rJly5RtdH0UBk5RcYMHD0ZJoTCEh/MsPlwMxo+EHE5OUGojpZiSLhSN/TIb31E6BX1vMhn9B8x55ZVXRHSmfJ+St94curf/+eefXIvGySgVNrC3VQjhuEStHmpV6UmDTbxyRTyqq1RJKY+ZHSKN6eHDlLQmxrpgIz07qIH9ygdFwqePAbVTtruR2Aflqk2YMEEIqVCH/Pvvv4sGtm/fvmKgQGkEWSEPBOQwsZyEkKWFOr733nsPHTp0EFoBxQl9eDjiDh0W6+7PDynU93Zs0VIY6RTy7spGOsMw1qTunsGgj4SaaLs+NFQIzNn6+BSfPtbC/lUOrd60aZPoV0nsliCD99dffxXh0xnx0UcfwcfHJ9WEN+VDT5kyxaL3pP42o35Yfi2zYyjf2hwypGiiwNL+u7hgLjxModLmwsMTJ07MVHjYnM8++0yU9l20aFHBhLEXg/Fj2nuW0h3pf00545n9F2bOnJkuhSK7MSYZ9dnd2xndo/rkiZTsROPSlmIjI51C3t0cUWrIST66jLKMR6q0Jsa6YCO9hNC7d2/R2ZDXvHPnzmLgMHr0aNFB00JCIIUF5aaTh4Hyv4ob0Vv/FYJx9k0aw65WrUJ9b8cWzRH5229IOHeuUN+XYRgmeyM9fU66tF0y0kuyJ+bu3bvC22hedaZ169bCkKEKM2mZM2eOiGIjrzsJY8mQAZ3WiGZyD3ljaZxDkQP0e1AkYVrhYXJiUF65LDxsDkUdEMXNmVBQTJ48WUQakIgb5YxT1AdFacqQaB7pJNSvXx+ff/55qmMLaoxpaY10cxzVKjyJ15a6vHRZ2d3egnx0Gdnjruda6VYJG+mWhAzRjGRRvbeFUAdEjSsNDCjsiMQ4aJ3ISbi7HCZGIWOk7i5Dz0nYLztoBlsWq6lYsSKKEzQIi9okhbq7D3m+0N/foVlz8Zh06xYMsbFQurgU+jUwDMOYIyu3y0ru+e6JKao+Ngf9qxzubF5Bpnz58qhdu7YIuzaHBLbISN+3bx8aN26c6rWchLtTX5xWHV4O7c4onFveHhoammobqcGTAFhmxxRnSHg4LCxMiOmRF5bGKGmFhymysMgoJuPHtJNIHTt2FPfR0qVLU4x0cgKRM4gq+GzevBm2trapjs1JuDvdi5amKcjCcSplTox0SeGdvOlGk0mIzpV0TEbjU9G4xjnwpCenMZXkSdbiDBvp2UF/7hyGDBUVL774IsaPHy8UT6kUDA0gCJpltjTcvVq1aqKhpJAx2Sin2VPKZ6NcuKwMXCrTQY03eQ/oPMUNzeXL0N69Bxt7e7j2LfyccFsvT9hWqgSdv78IW3Lu1LHQr4FhGMYcWbk9o3B3c09MrtWBi0EfS/0ZGXuUr0sh7MTWrVuFEUh9H4UHExQqPHv2bOzevTtVXnhuwt3Ja0/nImNJ9r6TYjuFDZMnM7NjSI+GSpPJYfkHDhwQYeCkK1MSIcdARuHtBI1FsoKUyguUYnBvy6Qt7UdGuBwFQmNAyhmnySq6782jQ3IT7k73KY0xKS1Shu5t80iVlOtKqZFuuaGtVinE/pTPrtEZUhTfSzJJd+/CGBMDGwcH2NetY/FxKZOsuW2/mQKl5N+5pQjylicmJopQd6p7KUO1LS0NRaLBBjWcs2bNQq1atcTgZNq0aWJgIud9Ed26dRM5eXLnSCHu69atw5YtW8RMq5xbRHnx9P7Fgai/N4lH1149i8yL7diiBaL9/ZFw/hwb6QzDFClkgBqSwyAzM9JlT0xJDpeksGgSiiOjmcKqb9++LTy21LeREUz94dy5c4VHl/rBqlWrpvSB5GGUvYw5CXen8m1kjI8cOVIY/3Q+yqGmvlb27JOnnUK6yeChsO569eoJb+cbb7whvJakR0N9NAm+ypMLDJPZhAVNLHXt2hWXLl0S9zFNKpGBTvciCSFSFIh5rXiKJiHxvpyGu0+aNEmkZS5YsECEz1PU59mzZ7FixYoswt0tj4igcSwZ5rEanQh5Lw1GeuIFaZLEoXFjUVrNUp5Ospbc9rs4U+R10pn8g2Y3+/fvL+qak1c9t3z44YfCK07CIK1atRLhdzQgMZ89JaVUEhCRWbZsmVD87NKliwiTl5cNGzagOGBMTETM9u1i3a0IQt1lHFpIIe+JXC+dYZgixpSYCFNSkljPTC24tNRK/+GHH0QfSMYwicFR/jMtlCZGE+PUB1JN8xdeeCFVH0jh77mBjB9KHaNH8jBSuDAZ5GQ4yZDhRKrkZIzLkLgdiaTRxAEJx1LockbGD8OYQ3n5dK/SvUNG9LvvvismeM6fPy8iKUl0jwxx83vb398/V19i+/btxSQA3ZdNmjQRlYhI2T0jbQBZOC4nOenmIe+lJS+dqgIRDs3TV33IVt3drIoHY12U/OmlUkadOnVw48YNODrmXtKSZiFpIGA+GEgLlTLJrIRHcSR2zx4Y4+NFuLljq/RhioXpSScot8ik1+doRpRhGCY/kUMgbdRq2GTSp8iCciU9XJI84BTqmxYy0onXXnst39+zSpUqQsQrM2hSPG3fS0ruZAAxTE5o27ZtSgnf7O6x/IAcSZY4k+Sc9JyEu6c20lOH8ZdUEi5eEI+OGZRmtCwnnT3p1gh70hnGLNTdfchg2BSh0Iy6alUonJ1h0mhEjhHDMEyR10gvUyYl7zotsqAcD/IYhslvDMkTBLn1pGv1RugMkje+pKJ/8gS6R35i3cECgWdzlO5u4pHEihnrg410ptSj9fNDAqno2tjAzSzvviigCQL75JCvxDQ1XRmGYQoTWbE9s3x089f0XGeXYZj81sRIzklX5NBIp7rq9ralI+Q98YLkRberVRNKM4E+S5D1l0Rqk1ZbINfH5B420ksYVLsyO5VNJjVRmzeLR6cOHWBrVnauqHBoJBnpmqvXivpSGIYpxcgh7KpMaqSnCpcs4TnpDFNSIRX8jELdixrZQM9NuDvhlOxNj08q2SHvCclGulzGNydQ5KYMe9OtDzbSmVKNyWBA9OZ/xLr780NgDdg3SDbS2ZPOMEwRIiu2y4Z4ljnpUVGiVi/DMEx+QDXOCapznpta5052qlJhpCeev5Ar0TjCRqmEItmbbkhW7WesBzbSmVJN/PET0AcHQ+nmBudu3WANpHjSb9+GMVlZmWEYxtpqpBMq92Qvu8Eg6vQyDMPkS/uTixrp5sil16hWurlXviRh1GqhuXo1V6JxaUPeuf22PthIZ0o1UZv+Fo+uAwZAoVbnay5VbhVRVT4+UlkMvR5JN2/m2zUxxbf0E9VdpvJPbdq0EbWRs6p1SwJf5ot56USGyQlPa6RnHu5Oyu+yJ4bL+DAMk+9Gei686IRapYBaqYCpBKu8U1qkSaeDsmxZ2FaunKtzKJLz2A0xLB5nbXB9J6bUoo+MRNy+/fkW6p6gS8DWe1ux/f523Iq8Ba1BC28nb3St1BWjG4wW65YgDKtGDRF/+AgSr1yFQ5Mmeb42pniyYcMGfPDBB1i+fLkw0ClvsFevXqI2MpWEyghXV1fxukxmqtwMY6lwnKzgnhnkaTfGxibvX42/WIZh8k3ZPaeicWlD3rUJWsQnGeBib1vifpXE8+fEo0OzprgYdhG7HuxCeGI4elTpge5VukOlyN7Mk8XmjLEcCWVtsCedKbXEbNsuZiDt6teDfb16eTrXkYAjGLhlIGafmi0aykR9IgwmAwLjArH2xloM2DwAG25usPh8DnJeenIYE1M6+fbbb/HGG2/g1VdfRf369YWx7ujoiF9++SXTY8go9/b2Tlm8vLwK9ZqZkjWRmV24e2mqlc4wTOEhV07Lbbg74WSXLB5XQj3p8aekyLpzPhqM3jka626uw55HezD1yFRMPjQZBmP2yvYKVzknnT3p1gYb6UypJWpTcm30wbn3olNI+5ILS/D2/rcRHB8MHycffNz6Y2wdtBX7XtiH77t+j+aezaExaDDr1Cx8e+5bi8LgyZNOJF7lMmylFa1Wi3PnzqF79+4p2xQKhXh+4sSJTI+Li4tDlSpVUKlSJQwcOBDXrnGVACZ3GOQ66VkIxxGq5NdloTmGYZiizkk3z0unMmyyEF1JgZxMCeckT/pPqpMwwYS+1fri9UavQ61Q44D/ASy6sCjb8yhd5HB39qRbG2ykM6USzfXrSLpxAza2tnAb0D9X5zCajJh5ciZ+vPyjeD6i7gj8M+gfvFzvZVRzqwYvJy90rdwVq3uvxqTmk8Q+q66uwppra7I9t0OjRuJRe+8+DHHxubo+pngTHh4Og8GQzhNOz4ODgzM8pk6dOsLLvmXLFqxduxZGoxHt27dHQEBApu+TlJSEmJiYVAvDmHvGs8pJN/e0cxk2hil+6PV6TJ06Fb6+viJdqkuXLrh8+XKJMNLtVAqoFArhHEksYfXSE69ehSkhATEOgJ8n8L82/8PcZ+aK8easjrPEPjTefBTzKMvzKJM96Rzubn2wkc6kgxqz6dOno0KFCnBwcBCeuzt37lj8Tc2ZM0eE3L733ntW++1G/S150V16dIdSVifO4Xc078w8/Hn7T9jABp+3+xyftPkEDiqHdPvSd0Ezm1NbThXPF5xbgJNBJ7M8v6pcOaioZrvJBM119oQyltGuXTuMGjUKTZs2RefOnbFp0yaUL18eP/4oTSRlxNdffw03N7eUhTzwDEPlKQ3R0VJ7lF24exnZSC+94e4rV65Ep06d4OHhIRbqN7MSebQEPz8/9OvXT6S4kAYFGVJkUGXF7NmzxcQcHeOeQd926dIlDB8+XPzPqX+vV68eFi3K3tvGlFxoYnfJkiVYvHgxLly4gJo1a+Kll14Sr0VEROCdd94RE8B0v1SuXBnvvvsuopPbhtzy559/om7dukLYtFGjRtixY0emOekkHBcUFIQRI0agdu3aIqIss/FlVFQU3n77bTF+tbOzE9d9+si+lFJsn3/+eTpxVbqO4kjEscPi8UZlG7xcfySG1R2W8lqfan3QuWJn4UxacXlFludh4TjrhY10Jh3z5s3D999/L/JfT506BScnJyFWpdFosv22zpw5IwyCxo0bW+03S2XNordtE+tuQ57P1Tkoz/z3G7+L9dkdZ+P52tmfZ2T9kXi+lrTfZ/99huikrDs5h4YNUtQ7mdJHuXLloFQqERISkmo7Padcc0uwtbVFs2bNcPfu3Uz3+eSTT8SAS178/f3zfO1M8UeEPibXPc9uIlM24mU1+NLIoUOHhPF78OBBkY5CRnDPnj0RGBiYq/NRFA0Z6JT2cvz4caxZs0ZUb6AJ9Kyg/V988UW89dZbGb5OKTRk8FOkDaXC/O9//xNtABlpTOlk//79GDBgAIYMGYIaNWoIsdKbN28KA/3x48di+eabb3D16lVxD+7atQuvvfZart+P7mf6r9A5aFJg0KBBYqHzm2NM8aRLEV804fzZZ5+hSSZiunTv9+jRAw8fPsRff/0lBFRp8qxqZWniOS65XnqDBg2E0S8v//33H4ojdw7+Ix6D65TDey3ST1q81URqA7bd34aguKBsw93Zk259sJFeAnj22WdFo5V2MEAeteeeey7HHmJSkKaGkPJZydj+9ddfRSP9zz9Sg5BVLuzLL78sGkXyJFgrsfv2wRgdLTzVTu3a5vj48yHnseDsArE+peUUDKgxwKLjaMb2w1YforJLZYQkhGDxhcVZ7m9fv7541Ny8keNrZIo/arUaLVq0EAMoGQpfp+fkMbd0oH/lyhXhVcgM8jZQiKP5wjCyV5y8LJQWZEm4uz5ZDb4kQv0bCTi6uLiIlJP58+eLPpc81vTa77//jgkTJogoFvLM/fTTTyn/19ywZ88eXL9+XRjTdM4+ffpg5syZoiQjGSOZ8cUXX+D9998X3smMGDt2rPCcU6RN9erV8corr4jPRVE3TOkkNDQUPj4+Kc/ldCqaJG7YsCH+/vtvYcSTAU/jTYrW+Pfff7ON6sgMuv969+4tIkMokoPu6+bNm6ebKDIPd6cypHQcjWsp4iuziACaWKCxaocOHcQxdJ+3bdU8JS+dxrgqlSqVuCpNiBc37obdhPttaQK/95ApsFPapdunQbkGaOnVUnjTdz3clb1wXDSnulkbbKRnA/2hqbRWUSyW1tn+7bff4OzsLAYN5iE/NJP4+uuv4+jRo+L1rBYaYBAPHjwQDbS5WBU1iFT+KSuxKoJCjGjm3/xYayQ6OdTdffAg2Cgl5U9LodIWUw5PEcrtJNAxqv6oHB3vaOuIz9t/LtYpVP525O1M97VLVpyn3HmmdEIeDZr0Ii/ajRs3hHcsPj5eDKoJGrCQF0zmyy+/FIP7+/fv4/z582IA/ujRI9EOMExB5KNL+5RJJTRXHPpYS/tXmTFjxggPIHnMV61ahWnTpuHTTz8V/R31oWlJSEiATqdDGbPydW+++Wa2fbEM9bdkaJtrUlBEG2lG5LcYJEXQmF8nU3rGj/J1ylBqI/UpNBGcmTFM9wtN5pKxK5PdfU33vvm9nXacSPd22jFmTuukb926VVw3jUXpf0MTDF999RVUNiaolAohHKczGMVnpEkJmqQixxKllRQ3Nm6eDXsdkOisRpM2mTuKKOyd2PlgZ6b7KF2l39kQy+ru1gbXSc8GKqXVZl0bFAWnRpwSRl12kNgHzUjSLD6VbKJ8HTK6qYHt27evGChcvHgxy3PIAwF5BjUnYlXE+vXrhVFA4e7WjC4wEPHJHYHbkJyputNs5MdHP0ZYYhiqu1XHjHYzclWDupV3K1HDcu+jvULtfXn35RnuJ5eFS7r/AEaNBgp7+xy/F1O8obzAsLAwEeJK/z/yqFGoofz/pMEF/d9lIiMjRck22peiWcgTT4YFlW9jmJwgK7XLyu0FVYKtqPpYS/tXWcSRPM3Ur9J/ihg8eLCIMvv5558zPOajjz4ShoC5MUKTaFOmTLHoPek/nFE/LL+WX1D7sGHDBmzfvj3fzskUn/Fj2nuW0h1pXEM545n9F8jzPW7cuFTbsxtjmkdoZXZvp72vU3LSLRSOo8npAwcOCMObctwpzYvGxTQGHvvOVEQmaNGgaQsRsk+56hTqTpEnpCVBofYUJVMcuBh6Edoz58W6U5vWWY5Daaz51amvcCPiBh5GP0RVt6qZC8exaKzVwUZ6CYFCh2JjY4XXnMJ7aOAwevRoMdNJCwmBFBSUwzpp0iTs3btXiIBYM1EUsm8ywbFtW6grVszRseturMOpoFNCHO7bLt/muAM05/3m7+OA3wEcCzyGK2FX0Kh8+tBElaenCCOlgW/SnTspiu9M6WLixIliyQjy6pnz3XffiYVh8s+Tnn3qkirZC1tSc9JpsE/eRvM0k9atWwtDJqOUMhJPpYlr+n+a94mUC06LtUCGCaW1zZgxQ+TPM6WbyZMni7B2MnApZ5xSLYYOHZryOkVxULQkTfqSAJs5BTHGlD3pCguNdEovof/XihUrRKg+TahRSgpFmb475RNhpLd+phtqeUpGKaVzUpQolSzduHFjnvLsCwtqh7479x36+UnfjWfHZ7Pc38PeA20qtMHxx8dFSbaxbmPT7aOQS7CxJ93qYCM9G8ggoxnJoiAjpfDMoIEANa40MKDQIhLjoHWCDHfKZ8sKEnuj2UdZkIrEqczzWOk5efEyE6KhnCbKKTLPhT1y5IjIMSLBD2owixqT0YjoTZvFuvvzOfOi+8X4YdH5RSl56DXca+TpWiq5VkL/6v2x5d4WLL+8HD90+yHdPjQ7St70+OPHoblxg410hmEKv0Z6snJ7ViiTjXRjQoIQ5lTYpc+PtLY+Nif9K+k2yDoRMiRiRUrTafNZSWCLjPR9+/alE1ClkF8yfLKC8tsJ6ovTqsPLIpKWCkdmBeW7d+vWTXhESYOGKb3jx7STSB07dhRjuqVLl6YY6eQEImcQeZs3b94sREnNySjlwxxKvSIxYvn+tUQQNacl2GjMStdlPt6knHfy0KsVkggmlWHTG4wi/J2gCgj0P85KXNWaOBV8ClcDz+GDAOm7cWyTfaRGR9+Owkg/HXQaYxuOzdSTTmKhNAmQmwhRpmBgIz0b6GbNi8e0MCFF1/HjxwsDmcJ3qOEhWrZsaXG4e7Vq1URDSWI3slFOs6ek8p6ZWix19CROZQ7lzJJ4DoVPWYOBTiScPi3C3RUuLnDp0SNHYe7Tj0+HxqBBG+82eKH2C/lyPeMaj8O/9//FkYAjuBd1L0PD365eXWGkJ928mS/vyTAMkxNPenbl1wgFDdBp0K7TCW+6IguhwuLYx1K/SGklci6rnP9K6Sbmg1oKFSZRrd27d4t+Ny05CXcnrz2di4wl2ftO0WoUNpzX9BXKaScBMIq2o/dgCobicG/LpBWBI2NXjgKhMSDljNNkFd33GUVM5iTcne5tGmOal1Gje9s8UoXyx2nJSU46icWtW7dOeNTlNLDbt28L493JwR72tjpodAah8u7uqE6ZFLt37x5GjhyJ4sDqq6vR4JEJagNg6+MDdbVq2R7T2ru1eDwfeh46gw62ytQTLEr5t9HpYNJoYOOQ8wkepmBgI70EQd7yxMREEepOKpcyVNvS0lAkub75rFmzUKtWLTE4IYEcGphQiQxzw5xy8igMl2ZWSaDDHCrbVrZs2XTbraE2umu/vjnK795wawPOhZwTM9Mk+qawyR+9xcquldG1Ulfs99svyrlNb5e+tI59vWSF9+ssHscwTOFhiLI83J36DTLm9aGhIpfdNgdGenGAvG1UnooMWgpzp4E/aUNQ30o5sNQfzp07V2hHkJFAqtJyfq25IFxOwt0p/JyMcTIeyPin85HHm0SxZM8+edpJPJIMHtKmIWjigBSu6ZEm7GXjicYAdB0U4k4GOhldJExpruRN0QFM6YTytGliqWvXrrh06ZK4j2lSiQx0uhdJCJGiQOg5LQTdL7ITJifh7pQeSWmZCxYsEOHzFPV59uxZEaYu88nHn+D6vYeYvXB5iiddvpfJsCatFnpO0S3ypBU5kih6k85Ptd1pUo2E46iuO+Fsp8Ls6Z+i/4D+aNWwjqhaRKke9BkovN/auRVxC8ceH8Nr96TnTs90ssjrXcujFsrYl0GEJgKXwy+jhZekqyFj4+hIDQCFwMIQEwsFG+lWA6u7lyBodrN///7CQCavem758MMPRQNHYXCtWrUSDSINSMxnT2nmkQREigsUxhO7Z49Yd3/e8troYQlh+P7892L9vebvoaJLzvLYs+Plei+Lx3/v/Zth3XT7enXFo+b2bZgMhnx9b4ZhmMzQy+HuFgjHif1KeF46lT6jPpCMYRKDo1KltFCaGE2ML1u2TJRGe+GFF4TnTl4o/D03kOGwbds28UgeRgoXJoOcDCcZMpyoFjQJY8nQREGzZs2E8UF9N63TQkYQQVVfyMAhg8v8OqmvZ0ov5FChe5UiIMnIJcOWnDAkCEyRlBQtSYa4+T1DekS5oX379mISgIxyKh9M9ySVTTN36jwOCkJwYAAUNjYphqh8L1OKJR1P6ySOLFOpUiURxUICxpRqQp+BPsvHH3+cYqSHBAXi7dfHCOE4CuUnZ9LJkyeLxQTV6murhaZSez9pLO78TGeLjiPHEgkWExTynhb6fpXJonnGmPTjUKboYE96CYMaHirVRLVbcwv9YWkgYD4YSMvDhw+zPEdaQauiJmbHDpiSkmBXqxbsc+DdJ/X1OF0cGpRtgJfqvJTv10U1LOt41MGtyFvYdn9bitEuo65aFTb29jAlJED7yA921bMPbWIYhinMEmyyeFxSCTbSyQNOob5pISOdKAjRKRK0IhGvzOjSpUu6UlvkEaUlM0jwK63oF8O0bdtWTDpZco/lB+RIysqZ9ONPP+NuaFyqfHRLroMmtMjozggnOxXmL1slzlPHywV2ttaRimkJwfHB2PVgFypEAC7hCbCxtYVTW8srB1DI++6Hu3Eu9FymKUuGqCgY4+Pz8aqZvMKedKZUIIe6uz0/xGJRjDPBZ4ThbAMbTGs7DUpF/jfodC3P15Y8+3/f+TtdJ0R13O3qSNoCSTc55J1hGOvLSTf3pMseeIZhmNxilJXd81HEjAx+J7U0jovRpM7Bt3Z+u/4b9CY9BoVWEs8dW7WEIgfOuEblpOpA18OvC52ltJBWE2GIlYQrGeuAjXSmxKO5dRsaErZTqeCWQbmcjNAZdaK2JPFi7RfRoFyDAru+vtX6Qq1Q407kHVwNv5rudfu6Ur10UnhnGIYpDPSyJz3Z+M4OWQXeEPGkQK+LYZiSjyHZX2GpsruluNpLomkxmqcpItZOjDYGf93+S6x38JdE3ZyeeSZH56jpURN2SjvE6mLxKOZRuteVTk7i0RjPRro1wUZ6CYPC2LJT2SxtRG+SvOguXbum1PPNjr9v/427UXfhYeeBd5tLoiMFhZudG7pX6S7WyXOfaV76DVZ4Zxim4DFqNCLFxlLhOEJuW0k4jmGY4gOlJ2YU6l6UyMru+Wyjw8VByvJNSJJKsRUHNt7aiAR9Auo5VofdZalUnHMOjXRbhS3qlpHGkhk5g0SFDvrek0tAMtYBG+lMicao1SJ6y5aUUHdLiNXGYunFpWJ9QtMJwoguaPpV7yce9zzaA4MxtUAc1Uon2JPOMExhQLmJAlvblMGb5cJxHO7OMEz+hLvntyfdTqWEva0SJpgQm2T9Ie9ag1ZU/yHG69rBpNPB1tfXotJrmYW8X3tyLd1rcjtvYCPdqmAjnSnRxO7eIwacKm9vOHfsaNExP1/5GZFJkajmVi0lX7ygaVehHVzVrghPDBfl3swhsTvY2MDw5An0xUhRn2GY4oks/qZyd7dYw0P2pJdU4TiGYQoPQ4onPZ9d6SLkXfKmxyRaf8j79vvbxbjQ09ETda5IyuvOnTtb3C6bI6dtXgm/ku41hXNyuHscC8dZE2ykMyWaqA0bxKP7Cy/ARpV9MYPHcY+FQAfxQYsPRIhQYWCrtE0Jed/1cFeq10gcRF25slhPun27UK6HYZjSS0o+uoWh7mJfDndnGMbKPemEq4M0rovT6FPC6q0REnhbdW2VWB9VawQSDhwU6y69euXqfFSlSK63njZiM6UEW2xsHq+ayU/YSGdKLEn37iGBasMqFHB/wTKP+PcXvofWqBXlKjpXtKwGZX7Ru2pv8bj30V4hXGeOXe3aKSJ4DMMwBYkcsm6paBzBnnSGYfKtDUq2nQvCk+5gq4RKqRDe+ngrDnk/EnAED6IfwNnWGf1iqsIQHS3aZMeWLXJ1vsoulWGvtEeSIQn+salr3CucksPdWTjOqrAKI/2HH35A1apVYW9vjzZt2uD06dOZ7rtp0ya0bNkS7u7ucHJyQtOmTfHbb5Lnk2HMiUz2ojt37Qpbb+9sv5xr4ddEaBGVXJvccnKuwonyQivvVihjXwZRSVE4HZT6P2BXp454ZE86wzDWViPd3KCnOrvGJKqYzjAMk1dPev5/gzS2exrybr1G+qqrkhf9xTovQrf/qFh36d5dlObNDVRGuIZ7DbF+J+pOJsJxHO5uTRS5kb5hwwZ88MEHmDFjBs6fP48mTZqgV69eCA0NzXD/MmXK4H//+x9OnDiBy5cv49VXXxXL7t27C/3aGetWJ47+RxKM83hpaLb7U33y+Wfni/UBNQagftn6KGxUChV6VOmRYch7Sq30W7cK/boYhildGKJyViM9pc6urRRGynnpDMPkqQ0qgDrpGYW8RyfqxPjP2rgcdhnnQ8+LceHLtYcjdt8+sd2lZ888nbeWRy3xSCV/M85JZ3V3a6LIjfRvv/0Wb7zxhjC069evj+XLl8PR0RG//PJLhvt36dIFgwcPRr169VCjRg1MmjQJjRs3xn///Vfo185YLzG7dsEYEwNbHx84deiQ7f4H/Q8KwTaqI/lOs3dQVMgh7/v99qcKebdPDndPunsXJr31zvwyDFP8kcuoKT3K5Mg7RUJz5sczDGP96PV6TJ06Fb6+vnB1dRXjbHKCFSVyrnhB5KQTznYqqBQ20BuNiLPCkPdfrko2UL9q/eB8w18IByvc3ODUpnWezlvLPWMjXckl2KySIjXStVotzp07h+7duz+9IIVCPCdPeXbQ7Nf+/ftx69YtPJPDmoFM1t/r9OnTUaFCBTg4OIjf486d1H/ojOqz0yDNfKlbV6rJKBMcHIyRI0fC29tbpCo0b94cf//9d4H8FFEbNopH96EvZhsaRMbwd+e+E+uj6o+Ct1P2ofEFRTPPZqI2O5WBuxj6tN69baVKsHFwgEmrhdbPr8iuj2GYUpSTngNPuti/bNlUx5cmVq5ciU6dOsHDw0Ms1G9mlbpnCX5+fujXr59wXHh6egpDigyqzHj48CFee+01VKtWTfTd5MigKEUaa2XE3bt34eLiItIHmdILOcWWLFmCxYsX48KFC6hZsyZeeukl8VpERATeeecd1KlTR9xTlStXxrvvvovoaElpPLf8+eefYoxIaa6NGjXCjh07slR3p1TXHj16oHz58mIioV27dukiaI8cOYIBAwbAx8dHjEH/+eefTN+fzpviTU+wLpX3+9H3ccDvgFgf23AsYvfsFesuzz4Lm+Ropbx60m9H3s443J1z0q2KIjXSw8PDYTAY4OXllWo7PSeDLjOocXB2doZarRYdGDUs9OfNiKSkJMTExKRamKyZN28evv/+exHVcOrUKWFQUwqCRqPJ8rgGDRogKCgoZUkb3TBq1CgxobJ161ZcuXIFQ4YMwdChQ0WnkJ+QuFoinVOlgtuQ7Guj/3nrTzyMeSjywV9r9BqKEsoZ6lSxk1g/5H8oZbuNQgG72lLjyiHvDMMUJPqIJ+JRVU4yui1FVUYy6g2Rpc+TfujQIQwfPhwHDx4UToZKlSqhZ8+eCAwMzNX5aGxE4xsysI8fP441a9Zg9erVYgI9M27evAmj0Ygff/wR165dw3fffSf68U8//TTdvjqdTlwvTSwUZ1jTKO+Qs4uMWxqT0cQOpaDSvUQG+uPHj8XyzTff4OrVq+Ie3LVrl5gMyi10P9O9R+eg8d+gQYPEQueXMRqlR0WyJ50McBrnkzFPzr2uXbuKazYfP8bHx4uUWbonLMHdUS0eozU6q1J5X311tajj3rVSV1RzqYLYPXvEdpeeGds5uTHSSTguQZeQsl3hLKm7G2I53N2qMBUhgYGB9K8wHT9+PNX2qVOnmlq3bp3pcQaDwXTnzh3ThQsXTN98843Jzc3NdPDgwQz3nTFjhniPtEt0dHS6fRMTE03Xr18Xj8WJrl27mho3bmwKCAhItX3kyJGmAQMG5OhcRqPR5O3tbZo/f37KtqioKJOdnZ3pjz/+yPQ4+p6bNGmS5bmdnJxMv/76a6ptZcqUMa1cuTLTY3LzmwR98aXpep26Jv+J72S7b3RStKnjHx1NDVc3NG24ucFkDex+sFtcT/9N/VNtf/zZZ+JzhSxcWGTXxkhQ+5FZO1LcKcmfjbGMu737iLYm7tSpHH1lAR9MFseF/7Iqw9eLax9LxMbGmsaMGWNydnY2eXp6mubNmyf6XAcHB/FaWvR6vcnFxcW0Zs2aXL3fjh07TAqFwhQcHJyybdmyZSZXV1dTUlKSxeeh66xWrVq67R9++KHplVdeMa1atUqMoXJKVr9lYbUh69evN6nVatMvv/xiunbtmumNN94wubu7m0JCQjLcn8aJmzZtEtd99+5d08KFC01KpdK0a9cui98zq89WXO/vLl26mCZNmpTyfP/+/eIz0tgvIzZu3Ci+d51Ol6v3Gzp0qKlfv36ptrVp08Y0fvz4lOfXHkebLvlHmhKSMn+P+vXrm7744osMX6Pr37x5c7bj3evJ7xOVoM10v8L8XYPjgk1Nf20qxoAXQi6YYo/+J9rUW63bmAw5+N9nxTPrnxHnvxp2NWVb0oMH4n1utmiZL+/BZE5O2sci9aSXK1cOSqUSISEhqbbTcwqJzgwKiadwHFJ2nzx5Ml544QV8/fXXGe77ySefCM+7vPj7py47kB30XzcmJBTJYqmYBanbU2TB/PmS8BkRFRWFv/76C6+//jqOHj0qXs9q+f3338VxDx48EFEM5ikIbm5uQnU/uxQEComnMKPq1avj5ZdfFqF65rRv314IBdLsLM32r1+/XnjnKf8pv6DvLXrrVrHuPkwK18qKn678JNTUq7tVx5Ba2XvdC4P2Pu2FWAh59x9GP0zZblc7WeGdy7AxDFOA6J8ke9KTw9dzqvCeE+G4oupjcyoWNWbMGOEBJI/5qlWrMG3aNOGhpr6S+tC0JCQkCG81id3KvPnmm9n2xTLU31IYsHmkIUW0UTQgeckthcY95tdAHDhwQIQbW+pxtFasXdOoOIwf5es0H8fRuJnCyWnsl9k9RSHnKpWkkE5kd1/TvW9+b5uPMeV723yMKau7y570tNAYMjY2Nt29nRMoJN4tOeQ9KiHjlJDC5rfrv0Fv1KO5Z3M09WyK6OSQfdd+/aBQS57/vFLNrZp4fBDzIINw93iY5DAGpsh5+g8rAihcvUWLFiLUhkJd5D8ePZ84caLF56FjKKw9I+zs7MSSW0yJibjVPHc1CfNKnfPnYOPomO1+JPZBuWoTJkwQnRZNYpDRTQ1s3759xUDh4sWn+c0ZIQ8E5DSDnKYgkBFPYVCUt0Sh7l988YUIo6PwJcp5IzZu3CjynMqWLSsad+pMN2/eLCZc8ouYnTuFOiXlcDu1a5flvoFxgVh7fa1Yp5JrZBhbA85qZ7T0aomTQSdxOOAwqrpVFdtZ4Z1hmIKGdC9IdDM3RrqqrDRg1ucg3L2o+lhL+1c5NY9yYqlfpTELQcber7/+ip9//jnDYz766CMxaW1ujHz55ZeYMmWKRe9J/W1G/bD8miVQzjmlA1KossyTJ0/EhMPatWuFoVVckTWNyKDMraYRTVZQCt7cuXML5BqLw/gx7T1L6Y5kvNIkTmb/hZkzZ2LcuHGptmc3xjS/1zK7t+X7WkxuyMJxmai70z0dFxcnUibzgrujLcLjkhCr0QtF+YISqrOE6KRo/Hlb+t4p9dIQF5ei6u42WLKR8stIJ6FkcyeQbKRDTCwlQpms9s4ULUVulVDuy+jRo0Xt89atW2PhwoUir4RmRuU8ZjJCZU85PdK+NAtKhjnlp5AnedmyZSjN9O7dW8wqkte8c+fOYuBA3ysZw7TkpyGcEX369ElZp5lpMtqrVKkiDHM5d4k8D+Th37dvn4iiIFEPamDpmsljkB9Ert/wVDBOkXWgyKLzi4RoXJsKbdDJ17ry8rpU6pJipI9uMDqVwrsuMFA03rIaJ8MwTH6hT66RTpoeihwacbIafEkTjiNjlwwH8i7K0HiFDJnnnnsu3f5z5swRkWLkdSdhLBkSf6OlMKBceBoXvPjii8LbLEPrI0aMKPZiu1lpGlE+dWaQF5jGlDR+pEjOpUuXZqppRNB+5k6gkqxrRJGplOdN42rKGaeJHHMjmD476SRQ1AKJBZuTn2NMWTQuM0/6unXrhCNoy5Ytef4/OdgqYadSIklvQHSiFmWccu/Uyysbb21Egj5B5I3TmDT6779h0migrlED9g0b5tv7VHWVHD8Pop960m3ImUmREXq9EI9jI906KHIjnTyrYWFhQgyFZtEohJ1EKeSGl0KmaXZUhgx48hgHBAQIpUlSh6SGRFaizG9IUZtmJIsCem9LoYEANa40MKDQIhLToHWCjGBzIzojSGiGQtTlNANKOSB1dxl6Tr+NpZBabO3atcXghrh3755QDyXPOgnMESTwQddGIXcUppZXEi9dgubKFaF+6Z6NYNyVsCvY+WAnbGCDKS2niJlja+KZis9gzuk5OB9yHjHaGLiqXaF0d4fKywv6kBAk3b4Dx+bNivoyGYYpYejDw1NqpGc30ZkWpSwclxwub819bE76Vzkaj6L/ZEhlmvo4mnBO6+EjI50mo2nC2hwK+aXxSlaQd5CgvjitOrycGphVOiBBQl8krEUpZitWrEj1GnmPSbxV9q4Lr6XRKCbzad+xY8eiJEORfeT1pe+ZojbJUUQpepml3ZFjiAzCkjx+TDuJ1LFjR4SGhooJDNlIJycQTfrQ90cRkLZpVMYzSvkw55VXXkkZ59H9m1WaqxxtTeOytHXSaVxLaZw0QZY2ZD430Ht4ONkiONqAiHhd7o10mlh4cg+IuAdo4wG1E1CmOlC2Jr1Jtodr9BqsvbE2RdGdritqsxTq7jZoYL6OUTMKd6fzk+PHEBUl1UpPM/nFlFIjnaDQ9szC22km2pxZs2aJpbAQ5cRyGDJUVNCM+fjx48XsMoWa0wCCoMgDS8PdqXQLNZTUeclGOc2eksr7W2+9ZfG1UAdIhjmVXJPz8wjzCReCZrJpgJAfRKyV8upd+/bNMkyTBiXfnJUGKM/VeA51y6QuFWcNVHKphBpuNXAv+h6OBR5Dn2p9UkLeJSP9FhvppQSaxCK9CZrEpIktCl8lL1520GCGvCEDBw7MshQNw5gj55PL5dRygio5PzTFG19C+ljqF6nvknVXCDJ0yYlA/Yk8gKZQ4dmzZ4vSUNTvpiUn4e7ktadzkbEkewv37t0rwobJk5mVB50MdArLp9z5tH0uhYLTGEGGvJEU7k359uRhLi7kVdOIoDHOjRs3hCGemZFO4fRkyMvQeIiU+0vKvS2TtrQfGeFyFAh9ZsoZp8kquu/No0NyE+5O9zaNMd97772UbXRvy5EqmYW6//HHH2ISifo28ujnFx6OaoTEJCFBq0ei1gAHddZle1MRfgc48xNwbTMQl/peFDh5Ag0GAS1fAzzrZulFj9BEwMfJB72q9hKldhPPnaMbFm4ZROvkh5HuF+MHg9EgqgrJIe/CSI+Nzdf3Y4q5kc7kD+QtT0xMFKHu5sIpFHFgaSgSdSrUcNJESK1atcTghMLUaWAi6wYQ3bp1Ezl58uQKDTzIk08h7jSLT7VZqQMlI4GgiAe6BppEoBl8yksnw4Ea5m3btuX5s+vDwhCza5dY93jllSz3pfqT50PPw15pj3eavQNrhUqxpTXSKeQ9/shRJN1OXeOSKZmQ0CINEMkDQSkklA5EgyXKo8wqzI/qJdN/sriXV2KKj2hcboXjigMUGUblqchopgmy27dvi4g/6lvJM039IRm6FBFIobhVq1ZNya81F4TLSbg7lW8jY5wmusn4p/N99tlnePvtt1M8++Rpp5RAMnjIwCYDnYxN6oepn6UoRRnZcCXRNHPOnj0rDNeG+RhOW1I0jfJD16i4QJpCNLFEEzyXLl0S9zFNKpGBTvciOVooCsS8lDFFk9A4L6fh7iTYR2mZCxYsEMY2Gd10H8pRH5QbvmjOFwgPCcaWP/8Q2+h6KIVz0aJFoi+U/1/0H5QF7sg5JEdvykLINHlA4nJU3z0zbJUKuNqrEJ2oQ0SCFr5qC6IQ4p8Ae6cDl9YBpmRHk8oeKFsLsHcDkqKB8LtAfChwegVweiXQZBjQYybgXD7VqagU2s9XJW2LcY3HwVZhi9C//hbPSVvJNp+92jQRoFaokWRIQlB8ECq6VEyVl26Ii8/X92PygKmUURLLZ5gzbNgwUfYlPj4+1+egshTTpk0zeXl5idJr3bp1M926dSvVPlWqVBFl12ReeuklU4UKFURZDl9fX/GcSpyYc/v2bdOQIUNE+RpHR0dRNi5tSbbc/iahS5aI8hEPhr6U5X5avdbUb1M/UX5i8fnFJmvmeOBxcZ3PbnhW/CZE1Nat0ucc8XJRX16pprBKDFEpyrfffjtV+UkfHx/T119/nekxVPqpffv2pp9++sk0evRo08CBA3P0nlyCrXQT/tPPoo0JmDo1x8fqo6LEsbRkVC6oOPexVNaLSpp6eHiYypUrZ/r5559Na9euFf0k/deoT8yo3Kt5P5lTHj58aOrTp48o80bvOXny5FRlr6ikGL3HgwcPxHMqp5bRNWQ11CvuJdhojLJ69WpxLePGjRMl2OSydVSG9uOPP07Z/6uvvjLt2bPHdO/ePbE/lfBVqVRZloEtDWPIzp07ixJoDRo0MNnb25uqVq1q+uyzz0RfIt9jGS3yfZcbqIxb7dq1xZiR3nf79u0pr8Ukak3PvTDc1Lpdx1TXmNE1UB8nk9m1mu+TGfSeVIrtamCUyWCQxluZ/q539ppMc6uZTDNcpeX3oSbT7T0mk06T+qT0nPZdN/zpvnOqmEy3dqfabdWVVWKs1+uvXiatQWsyaDSmW23biXY0es8eU0Ew6J9B4j2P+B9J2fbg5Zel99xpeUlCJufkpH1kT3oJg9TVKXyLlNNzC3nTaQaVlqw8debI+e9ZQZ75v/+WZgfzW404KlkwLjsv+oZbG/Ao5hHK2pfFqw0lcUJrpblXc9gp7RCaGIq7UXeFmEhKGbbbt1OFWTIlj9yqF9P/lrx1JNhImg8MkytPepmce9KF0Fyy+BB50xXZ5E4XJ+g/RaG+aSEtF0IWSM1PyCNOIl6ZQV5z8/JZpNpOS07IzTHWgrVrGhUn2rZtKyK1srvH8jM9k5aMIE/6zO+WwslOlWnqa0bk5Vqd7VRQqxTQ6o2ISqTc9AzKndG5jy8B9k6TvOee9YEBi4BKmaSfqeyAmt2lJeAcsG0SEHwFWDcU6D4D6PAeEvSJWHVtldh9fOPxwoseteMfGCIjoapQAS5du6IgoJB3GldSqd9OkCLulE5yGTZJF4MpethIZ4o9MXv3inB3ZflycO3VM8vyFssuSVUAKMzdyda6S0yQgU6l2I49Pobjj49LRnq1qmIQTDlD+qAg2CbnRzIlj9yoF1O9X0p3yS4/sLSqFzPZI4u+qcrl3EinSUMSnKP2mIx02xJkpDPWiTVrGjG5I7vyawUBtV1lHNUIjtEgIj4JHo62qZ0gdE0HZwOnF0vPm74C9P9WMsQtoWIL4PUDwM6pwLnVwL7PgbDb+KNGC5GLTjpEA2oMEJMMkcnikh7Dh8PGrBZ9flLZRQr/94/1T18rPVm8kil6cibdyjBWSGSyYJzHS8NgY6a+m5bll5YLpXQydgfVzL+akwVJe5/24vHEY8lzSp/Prnp1sa65datIr42xLkh9l/JXV65cmU5xOitINIly+uTFUlEkpmSil4XjcuFJl45LFo8rYWXYGIYpHAzJKd5pld0LGg8ntTDME7QGsaQy0BMjgev/ADYKoPccYOASyw10GZUa6L8Q6PsNYKNE/OU/sPriD+KlN5u8CZVCBc3ly9BcuybGeu4vPI+CgiYF0hnpLsk56bFspFsLbKSXMKh2ZU68aMWdxKvXkHjhAkmRwuOlp/U80/Iw+iHW35RC8qe2nJqiZllcjPSzIWeFyAdhV0cOeb9TpNfGWJd6MVVToDQUEnCkckq0/PrrryJEl9bp9YygcHqqHSwv/v5PO22m9KF/klyCraxkbOeUlDJsEZaXYWMYpuigiIOMQt2L2pOewwqQeYYE5MiDToTFJkeX0bXEBgNaMlwVwJCVQNu3LCqrliF0XOs3gBdX4Q83V0SZ9KiqcEDfKr3FyxG/m1UpSp7wLCwjnUqwEexJtx7YSGeKNZG//SYeXXv3hqp8asVMc7499y30Jr2oP97ORyrzURyo4V4Dng6ewkCnmumEXe1a4jGJPeklGnP1YhlZvVguVWMO5VdeuXJFTNLJy3PPPSfUemk9Mw85KRdTeRzzhSm9GMKf5MmTLuey65+ULIV3hmEKB6MxOdxdUfiaO+WcJe94jEaHJJ0BiAsGNMlRQZRH3uiFfHmf6BpdsKqclMo2PtgfqsNzoXv8GDE7doptHslaFwVtpAfGBYoybKnC3Tkn3WrgnHSm2KILCUH09u1ivcwoqR57RpwOOo2D/gehtFFicovJKE5Q6BVNKmy5t0XkpdO6fbInXXObw91LOlR+jcrOUGkcKv1E3g4SP3r1VUn0kMovUeklClmn2rVpyyhR6SiiuJVXYooGk8HwVDjOM/NJz6xQJadaUF46wzBMTjHInvQiEMa1t1XC1d5WGOlx0eGw00ql3uBQBqjbOd/eZ8XlFYgxaFDLvjz6xPsBR7/Bk3/vCdFNx7Zt4dCoYPtsLycvUYZNa9QiOCEYvs6+UCQLxxk4J714e9IPHjyIkkxBKFky+f9bCHENatBatoRDo0YZ7kMzhPPPzhfrL9Z+EdXdpXzu4kQH3w7ikQTkzMPdtQ8ewqjVFum1MQULqQ5TvWNSLyblYvKIp1UvDgoK4p+ByRdIURgGgwjJzE2ddHPjPisjnfvY4g//hvzdlERPuuxNd4AWHklS32qyLwPYSQZsfhAQG4A/bkr13z/o+CWUHSZBr1Egau9J6f3Hj0NBo7BRwNfFV6z7xfhJ21LC3blOerH2pPfu3RsVK1YU3hzy8pQUoSFbWykXJSEhQZTnYIoe+i3MfxsZQ1w8IpPLrpUZOzbT4/+9/y9uRtyEi60L3mr6FoojbSq0EY93Iu/gSeITlPH0hMLNDcboaGjv3YN9vXpFfYmMlagXp2X16tUFdFVMSUQ2rEn8LbeqwipPz1TnMof72JLfN5dmSENELp/JY8jcY0j2zRSFJ51wsgWqKkKggAlJSido7UhnIzHl980r35//HjqjDm0rtEUHnw5AhXaIWH8IJkMY7D0Bx0ZSSmNBQyHvD6IfiLz0dmgHhbNU8Yhz0q2HXPXCgYGB+O2337BmzRp88cUXePbZZ0WN0EGDBok8yuIK/QEpPDQ0NFQ8p1rjXIe66GbpaRBAvwX9Jmkbx+i//xJlyNTVqsG5S8YhSAm6BNEYEuMaj0MZmg0thtB11/Gog1uRt3Am+Ax6V+sN+9q1kXDmjFB4ZyOdYZj8QDasZUM7N8jaIBkZ6dzHlvy+uTRDAp00bqTa7TR5YV6jnbEcXZIGJr0BBq0CGmWy1HthQdGb0QGAXodEkwp+WheoY0LF70q/b165EnYFOx/uhA1sMLnlZGFjGGLiEHlR8l6Xq/MENlsmACM25F6cLpdl2JQuLuLRGBdboO/LWI4qt6rD77//vljOnz+PVatWYcKECWIZMWKEMNibNGmC4oismiwb6kzRQoOAtErWJr0eEWt+FetlxoyBTSYd4Y+Xf0RYYhgqOlfEiHojUJxpXaG1MNJPBZ8SRjqFvJORzgrvDMPku5Fe3vISfjkx0gnuY0tu31zaIYOrQoUKePDgAR49elTUl1NsCYnRQGcwwRijFjnihUpSrFRuDTaIVHgg3vBYTER1bFYlz047o8mIr09/LdapJnrdMnXF+pPVq2GMT4Bd9cpwrvQEuLMbOPED0D7jCLr8oqJLxVRG+tOcdA53txbyPC3UvHlz0VCXLVsWc+bMwS+//IKlS5cK9eHly5ejQYMGKI6NrKenJ3Q6XVFfTqmGZqIzmqWP3bNHqGBSSKbbwOcyLbn263XJkP+o9UdQK4tvhAfRxrsNfrv+mxDBI1jhnWGY/EafPDmdVaWM7JCPNcbEwKjRQGFvn+p17mNLbt/MSFU5atWqJULemdzxv5UnhaG+eHgzVPNxK7yvMew2sHM8YNQBHScj3LUhpv11GTFaEw7WqwuvPA4jt9zdgivhV+Bk64T3mr+XMpkZsXqNWC/33mTYePgB2ycD+z4HqrQHfJujsMqwcbh7CTLSyYDdsmWLMMr37t0r1IeXLFmC4cOHi1Cfzz77DC+++CKuX7+O4gh1QNwJWWeo3ZOffxHrHiNGpBsAyvvMOT0HeqMenXw7oXPF/FPkzBKdBgg4AwRfAWKDACpr4eAOlKsNVHsGcMx9uH0LrxZCnd4v1g9BcUFwZ4V3hmGsMNxd4eICG3t7mDQacT51Jpo13McyJRUKc6dqG0zuuB+pRVSCAa7OjoX3Peq1wLYJQMx9oHYfoM0YdCRvc7mHOPsoEksO3MXMQblXXI/RxmDheakW/VtN3kJ5R2kyM2zpUpgSE2HfpDFcevSQdr5/GLixFfjnLWD8EUAllYUryHB3Gjeb10mn55zuW0yN9HfeeQd//PGH+BFHjhyJefPmpSrx4+TkJBSJfXx88vNaGQYJp89Ac+0abOzs4DFieIbfCJVbIyV0W4Wt8KIXeEMTeB44uQy4uQ3QSWI66bBRADV7AB0mAVUltfac4Kx2RoOyDXA5/DJOB5/GgJrdRb6SISwc+ogIqMoUz3x7hmGsMdw99550am/peJ2/f5ZGOsMwTFrIrojT6MW6s10hihIe/QYIuSKVWnvuezG+opHjlF51MGzFSaw77YdR7aqglpeUt51Tll5cighNBKq7VU9Jv0x68ABRG/8U656Tpfx0Qf+FgN8JIOwmcOhroPvnKAhE2TUbBRL1iXiieYIyyUY65eWbEhJg4yQJyTFFR65ULcg7vnjxYjx+/FjU7c2oBi/lrZf0Um1M4fPkxx/Fo9vgQRkaphq9BvPOzBPrYxqMQRXXKgV3Mf6ngV96Ayu7Alc2Sga6szdQtz/QbiLQ8X2g6SuAZ33AZJTyjFb3BTaMBOLCcq3yfiroFBROTrBNHvwm3b6d7x+NYZjShz4070a6+fHy+RiGYSwhSW+EPrkEm5NdIaVUPL4IHF0grfdbADg/jSRqW70setb3gsFowqztN3J1+qvhV1NKrn3c+mPhQCLCFi4SJS+dO3eGU+vWTw9wKgv0/05aP7YICDiHgsBWaQtvR+8UbzpFQCFZHI9rpRdjI33GjBkilN3OLnUIhl6vx5EjR8Q6qSB27lxIYcZMqSDxyhXEHz9OcZIo+/rrGe6z6uoqBMYFwsvRC683ynifPBMbAmx+E/i5hzTbSQ1u45eA1/cDk28Cw34Hes2WZj8H/QBMOAFMPAe0GCN51CmMaVl74NGJHIvHESQeR7PN9nVqi+dJt24VyMdkGKZ0oQuTctJt881IZwFWhmEsJy5J8qITTuq8q6lbFOb+zwTAqAfqDwQaDkm3y6d968FWaYPDt8Nw8GbO2jQqtTbj+AwhGtevej+082kntsefPInY3bspNwLlP/gg/YH1BgCNXpQcPP+8KaVTFgCVXCul1EonT74y2XvOZdiKsZHetWtXREREpNseHR0tXmOYgiBc9qL37w91RUmV0pyA2AD8fPVnsT611VQ42jrm/0Vc3wosbQNcollRG6DZSOC9K8CQFUDFlpmXzChXExiwCBh3GChfF4gPBX59Dri+xeK3blq+qZiBDU0IxaOYR7CrXUds17AnnWGYPEITf5Q+k9ecdPPjM1N4ZxiGyYinoe4qKBSFUCf9yDwg9BrgWA7o922Gu1Qt54RXO1QT6zO3X4dWb3lZuDXX1uB25G2427njw1Yfim0mrRbBX84U6x7Dh6c4XNLRZx7g5AmE3wYOfYXCEY97mpfOFFMjPTNBgSdPnoh8dIbJb8gQjdu3XxjBZce9keE+88/MR5IhCa29W6NnlZ75ewHaeGDL28DGkVJ5Du/Gkud84BLAtYLl56nQGHjjIFCnH2DQAn++arGhbq+yR1PPpmKd8tLtasuedA53ZxgmbxiiomBKrmiiKpf7EmyWlGFjGIbJypNORnqBE3QZOPrt0zB3p8zbvYnP1kRZJzXuh8Vj5dH7Fp2eqgwtu7hMrJOBXsZeStGM+PVXaO/fFxWKyk96N/MTkNjwAElsDscXA4HnCs1I53B36yBH/4IhQ6QwEDLQx4wZkyrc3WAw4PLly2jfvn3+XyVT6nmyYqX4Dkj90q5GjXTfx2H/wzjgf0AooH/S+pP8FYuLfASsf1kSFSHvOeWad/kEUOWyHofaEXjpNynE6vJ64O/XAZcKQCWznKRMoAmIM8FnRF76oDrviG1Jd+/CZDDAhkviMAyTS+TQdKWHB2zUeas1pPKUw91D+PdgGMZiYmVPun0BG+lUfWfbe4DJANR7DmgwKMvdXe1t8Vn/enh/wyUs2n8HfRp6o3r5ZKG1DKDqQp/+9ym0Ri06+HRA/+r9xXZdUBDClkqGu+fUqVC6umZ9nXX7AQ1fAK7+Bfz7nuTkUaoKwZPOtdKLnSfdzc1NLORJd3FxSXlOC9VKHzduHNauXVtwV8uUSrSPHiFmxw6xXu7N8eleT9AlYNapWWJ9VP1RqOlRM//e/MFRYEUXyUB3Kg+M/hfoPiP3BrqMQgkMWiqJzJFHnSYBogOyPaxthbYpnnRlRV/YODiIUkfaR355ux6GYUo1NHgkVBUkIaG8YOstRRfpgoLzfC6GYUqfJ92poD3pZ3+RPNNqFyms3AIGNfXFM7XLi3D3TzdfEbZQZvx85WdRE93F1gWft/9cOI5o/6Bp04VyukPz5nAbNNCya+31FWDvBgRfBk6vQEGVYSO4Vrp1kaN/wapVq8Rj1apVMWXKFA5tZwqFJz/9BBiNcHqmE+zr10/3+uILixEcHyzKSbzZ5M38e+NTK4BdH0szrRWaAMPWAW7pc+HzZKgP/hH4pRcQchVYPwJ4dZfkac+EBuUawEHlgKikKNyNuQ+7WrWguXwZSbdvwa66lDPFMAyTU/TJRrpsYOcFWx/ZSA/iersMw1hMXJKUcuNSkEZ6bDCw/0tpnZwuFqYskqE9e1BD9PzuCE7ej8CGM/4Y1loycs259uQall9aLtY/bfspvJ2kic+ov/5C/H//iUilCrNmWh7x6eIlCRFvex84OBuo/1y+jUVp3CyuLSkKcdo4KJ2lEnPGuNh8OT9TROrunHvOFAa6x48R9Y+Us13uzTczbAzX3Vwn1j9r+1n+iMUZjcCuT4GdUyUDvdFQYOzu/DXQZeycJePfsSwQdAnY/WmWu5NwXAuvFmKdQt7t6ySLx928mf/XxjBMqUH2ettWyLuRrvKWBqUU5UO57gzDMJYQl2Qo+Jx0cr4kxQA+zYGWY3N0aKUyjpjcU9IDmrntOh49iU8X2fnJ0U+gN+nRo0oP9KvWT2zXBQYidM5csV7+vfdgV716zq65+RigYmtAGwfs/Aj5hbPaGR52HmKdKiNxTnoxNdKbN2+OyMhIsd6sWTPxPLOFYfKL8GXLAZ0Ojm3awDHNvUU5P18c/0KUtuhTrQ86+nbM+xvqk4C/XwNO/iA9p9lLUm63dUCB4VEFeOEXaf3cKuDuvix3b+Pd5ql4XF3JSE+6yWXYGIbJe7i7bT6EuyvUaijLlk3loWcYhrFY3b2gctLv7AOubQZslFLFHYpozCGk9N66WhnEaw14b8NF6A1P1d5nn5qNB9EP4OngiWltp0lh7gYDHv/vMxjj4+HQrBnKjB6V8+tWKCQROYUKuLkNuCmlgOYHFV0qplRIehruzjnp1oDF/4KBAwemCMUNGpS1wALD5Adaf39Ebd4s1su/K4mkmfP7jd9xI+IGXNQuKaUt8oQmWsoNf3hUqn1OOeONh6JQqN4FaD0eOP0jsGWiVFvdQZrdzKxe+tmQs7CtLTX27ElnGCYvyMa0Kh/C3WWPvOHJE+iCgzNMU2IYhsks3L1APOnaBGB7ck3ytm9J1XZygVJhg2+HNkGfRUdxwS8Kiw/cxfs9amPL3S3Yem8rFDYKzH1mLjzspTHckxUrkHDypNAQqvDV7NyL/Ho1ANpNBI4tBHZMBao9I0Vj5pGKzhVF/nxAXACacAk2q0KVkxD3jNYZpqAIJwVMvR5OHTrAsYUU4i1DdcKXXFgi1ie3mIxyDnkrGYSYx8DaF6R6mSQkQurrNbqiUCGvPXnRI+5J4Uzkwc+AumXqwlXtihhtDO6XN4Ak7PTBwSKsVOnuXrjXzDBMiYCMafN88rxCHnnN1aspHnqGYRhLPekuBeFJp5roUY8A14pShZ48UNHDEbMGNcSk9Rex+MAdVPaKwdwrs8VrE5pMQEvvlmI94cwZhC2Wxqre06bBrloetYM6fwRc2wRE+QGHvgZ6Se+ZF3xdfFPE4xROVcS6MZ7rpBfbnHR/f38EBDxVoj59+jTee+89rFiRv6qDTOkl6cEDRG+RctHT1pGk8Pbpx6ZDY9CI0O/BtQbn7c1CbwA/9ZAMdGcv4NUdhW+gEyQYR0JyNgrg8gbgwZEMd6NZWirFRpyOuQrbilKokoZD3hmGyQUmoxG6EKlcmm1yPnleUSXntnO4O8MwlhJbUOruNM6jWuNE3/n54oEe2NQXQ5r7wmiTgM9PT0GiPlFU4Hm90evidX1EBAInTxE6R24DB8J9SB7HqvI4sV9ybfeTS6Va7/ngSSfIk65wkYTjDLFspBdbI33EiBE4ePCgWA8ODkb37t2Fof6///0PX36ZrJjIMHn1ohuNcO7SBQ6NG6cLcz8feh6OKkd80eELYbTmmkcnJHX1mACgbC3gtb25DoHKFyq1eipksn0KYJBCvzILeT8VfOppXvotFo9jGCbn6MPDhfYH5T2qPD3z5SvkMmwMw+SU+GQjPV/D3alU2rYPAKNeKntbt2++nfqL5+qhXPWNgO0TqIxlMav9HCgVSpi0WgS+Own60FCoq1eH9/Rp+faeqNUDqD+IZlelWu9U8z0fctIDYwPNctLZSLcGcmXdXL16Fa1bS0bCxo0b0ahRIxw/fhy///47Vq9end/XyJQyku7eRcy2bWK93DsT04W5f3/+e7E+ueXklPIRueLGNuC3QVIuOqlmvrZHEnErap79TFJ7D78FnFyWpXjcxdCLUNWW6sKzJ51hmNxA6TKEqnx52KjyZ3AsC9DJYfQMwzCW1knP13D3i+sAv+OArRPQe06+/ghLLy9Eku1NwKhG9MNXsGjvY1F2Mvirr5Bw9iwUTk6o+P0i8Ziv9P5aSs2kWu/nVuePkR4XCJvk62QjvRgb6TqdLkVEbt++fXjuuefEet26dRHE+WdMHglb8oOY+XTp0R0ODRqkbDcYDZh2bJoU5l6hDV6s/WLu3+TsKmDjSECvAWr3AUZtARzLWMdvR4Jx3b+Q1g/PlfLl01DNrZrIw08yJCGogvRf1LAnnWGYXKB7LCu7Z52PHp0UjSthV3A+5DzuR9+HzphxpI/5uXRB6dsvhmGYLNXd88uTnhAB7PlMWu/yMeBeKd+++M13NmPtjbVifWydT2HSVsC6U37YPmsJotZvoMLq8PlmPuxqSo6UfMXVR3LoEPu+AOJCc30qL0cvqGxUoj2PVmnFNgPnpFsFufoXNGjQAMuXL0e/fv2wd+9ezJw5U2x//PgxyiaXXWGY3JB45Qpid+0SjVu5ie+kC3O/EHpBhLl/2f5LUdoiV2FPh+cBh76SnjcbCfRfCCgLsCZnbmj6MnB+DRBwBjg4GxiYXBIuGfrslJe+48EOnHd5gg4kXHrnLkw6HWxsbYvsshmGKX5QDd/MROMoz3LTnU34996/uPbkWqrXnGyd0LliZ7xc72U0Lp86TUjl4yMe9SGh3C4xDJOjnPR8M9L3zQASIwDP+pKiez5xMugkvjwppfdOaDoBbzV5Hi6G+9j701+oekrybJd//324dC1AfaNWrwOX1gFBl4Dd/wOeX5mr06gUKlRwriCE40IQC0cuwVa8Pelz587Fjz/+iC5dumD48OFo0qSJ2L5169aUMHiGySkUIhQ6b75Yd3vuOdjXqZ3y2q2IW1h4fqFYn9JqCnycpQFgjqC8HSq/IRvoz0wFnltsfQa6XBOz19dPQ7VI9CQNJFBCHNbfFKFUZKCT4B7DMExO0Ab4i0fbSpVTtce7H+5G3019Mef0nBQDner/VnGtAgeVA+J18WKi8OUdL2PSgUkIjn8a2i5C5ynizmBghXeGYQq/TrrfKeD8r9J6/+8AZf44MKgtpPZOb9SjV9VeGN94vNg+wikan53/HUqYsL9qKzzoMQQFCo1d6XPBBriyEbh/KNenklNHHyMyJdyd+gCmaMnVv4CM8/DwcMTExMDD42kt53HjxsHRkeZgGCbnxB0+LMpV2KjVqRTdNXoNPj76sQjF6VKxC16o9ULOT67TAH+/BtykXHcbSd2z9RvW/TORiFy9AcCNf6VwphHrMxSPuxpxDba16yDpwiUk3boF+9pPJzcYhmGyQ+cvVWtRV6qY4j2fdXKWqPkrD+BG1R+FnlV7ppS7pCobV8Ov4s/bf2LbvW044H8AZ0PO4utOX+OZis+IaB/bShWhvXsPWn9/qCs/nQBgGIYpUOE4Et3d9v7TiMnKklMjr5Au0oR9E5CgTxDaQF91/EqIF5OWUsBbb0Gl0+JejSb4rsELcFx9Fn+Ma4uGvm4oMHxbSB71MyuB7ZOBt44DKikFMsd56UGAv/EJRHC+0QhTQkJKjjpTNORaFlupVKYy0ImqVavCM5+UYZnShclgQNgCqayEx8hXYJscKkl8d+473I26i7L2ZYWae47D3BOjgN8GSwa6Ug28uNr6DXSZbjMAGyVweyfw6Hiql2jgTIvepEdUJak+uuYmK7yXNH744QfRttrb26NNmzaikkZmbNq0CS1btoS7uzucnJzQtGlT/Pbbb4V6vUzxQ+vvl+JJj9XGYtyeccJAp8Hnm03exNZBWzGi3ogUA52g1yjEfWaHmdgwYAMalG2AGG0MJu6fiHU31ol91BWl/E+dv+SpZxiGyQyD0YR4rSF/jPRTy6Wyug5lgB75U3UqNCEU4/eOR4QmAvXK1MPCrguhVqqRdP8+Ho15FYboaNg3aYyuv69Ei+rlRej+6F9O425oASuld5smlQ9+chc4tihPZdj8tSFk4Il1Q1x8vl4mU0hGekhICEaOHAkfHx+oVCphsJsvDJNTov/ZgqQ7d6Bwc0O5ceNSth8JOIJ1N6UB36yOs1DGPofibpGPgF96S8qedq7AK5uABoOKzw9UrhbQfJS0vne6lFOfQcj77bKSgFMS10ovUWzYsAEffPABZsyYgfPnz4vUol69eiE0NGORmDJlyohSmCdOnMDly5fx6quvimX37t2Ffu1M8Zkg1QVK4m4aT1e8vud1XAy7CBe1C37q+RPebvq2GIhmRW2P2vi1z694ofYLMMGEr09/jV+u/gLbypKRTp50hmGYrIjXSl70PIe7RwcAB5PTBclAzwdR4CeJT4SBTgrolVwqYWn3pXBWO0P78CH8Ro+BITwcdnXrovKPP8LJ3QU/jWmJhr6ueBKvxbAVJ3ErOBYFhr0b0Cs5jfPIN8CTe7lWeA+IozJsUg15I4vHFU8jfcyYMWLAOG3aNPz111/Ce2O+MExOMCYmIux7qaxaufHjoXSTQoPCE8OFmjvxSr1X0NG3Y86+2IBzwE/dgLAbgLM38OoOoFqn4vfjkCKpraMkIifC9Z/S1kcy0o85SsJPmlu3iuQSmYLh22+/xRtvvCEM7fr16wvBTkop+uWXXzJNRRo8eDDq1auHGjVqYNKkSWjcuDH+++8//omYDNEFBQN6PWBri/GXPsX1J9fhYeeBX3r9glberSz+1siQn952uhBRkiOgrts9kd7Dj410hmEsy0dXKxWwU+XB4bfzI0AXD1RuJ4nw5hEai762+zUR0VneoTx+7PGjiCrS3L6NR6NGQx8WBrtatVB51S9QuktRja72tljzamvUq+CK8LgkDFtxAlcDo1FgNHweqN4VMCQBO6akc+hYbqQHQMll2Iq3kU4DPqqJ/tZbb2HQoEEYOHBgqoVhckLEr79BHxIClU8FeLw8IqXc2idHPxFhRTXda+K9Fu/l7Eu9vgVY3ReIDwO8GgFvHAC8GxXPH8bFG2j3trROuemGp7PNlBNlAxucsA8Qivg0m0sdBlP80Wq1OHfuHLp3756yTaFQiOfkKc8OEn3Zv38/bt26hWeeeSbT/ZKSkoS+iPnClB50yaJxER4q3Iq+Iwafq3qvQt0ydXN8LkpFeqvJW3it4Wvi+a+RUgSHNkDKeWcYhsmuRnqevOi3d0vODIUK6PetJMKbDwb6veh7QjSTJi/Jk55w4QIejRwFfWioZKCvXgVVmhTgss52+OONNmhS0Q2RCToMX3kS5x5Jwmz5DqWB9lsAKO2AeweAa5tyFe5OnxdOkrYY10ovenJ191aqVClfVf9yknO5cuVKdOrUSeTD00ID1qz2Z6wbXUgown/8Uax7vvceFKQGDGDF5RWixAUpCH/T+RvYUcNjCXRf/rcQ2DhKqoFeqxcwdifgJilXFlvavws4lgWe3JFKbiTjYe8hBtNJahtofaV8UQ2HvJcISJzTYDDAy8sr1XZ6Hhz8VEU7LdHR0XB2doZarRZlMhcvXowePXpkuv/XX38NNze3lIXad6b0oE32cj901oj2dln3ZajhXiNP55zUfJIIfQ9OHrNq/B6xUjDDMFkSm9ca6doEyYtMtJ0AeNXP0zcelhCGsbvH4n70fVFLnCYvq7pVRdzR/+A39jUYo6Ph0LQpqvz2K1SZlJ92d1Rj7ett0LpqGfH5Rv58CkduF5AjpWwNoNNkaX3XJ4DGcs+9m50bXGxdxLreQVLBN8QVcC49UzBG+sKFC/Hxxx/j4cOHKOycy0OHDomybwcPHhTeJBpQ9uzZE4HJdV6Z4kXYt98KBUmHJk3g2r+/2EbG+bJLy8T6tLbTLB8w6pOArROluphE6/HAsHWAndTwFGvsXZ82vofmSmr1aULeg7yliYykWyweV5pxcXHBxYsXcebMGcyePVu0r9RuZsYnn3wiDHt58ef84VLFxYu7xGOouw3mPTMvVx70jDzqn7X5DHXrSxEcNvEJiAjO+3iBYZiSr+zulFsj/cg8IMoPcK0IdP4oT9fyMPohRu4ciQfRD+Dt5I1VvVahsmtlRP/7L/wnTIApMRFOnTqh8i8/p4S4Z4aLvS1Wj22FTrXKIUFrwKurz+D3U49QIHR8DyhbE4gLAQ7MylXIu8ZeSjUwxrKRXiyN9JdeekkM+ijnkQaEJFZkvhRkziWF2U+YMEGoFtetWxc//fQTjEajCOtkiheJly4hessWse712f9go1CImcuPjnwkxIeer/U8BtQYYNnJYh4Dq/oCF9YCNgqg91yg7zzrrIGeW1q+Brj4ADEBwLlVKZvbVWgnHi+5S7Om7EkvGZQrV04IcZJQpzn03NvbO9PjKCS+Zs2aoo2cPHkyXnjhBeEtzww7Ozu4urqmWpjSwZWwK3h0/aRYr9+oC7pU6pJv51YqlJjZbS6iXKUB38KtH4m6wgzDMFmFu7vkxkgPugQck7SNxNjPThI/y227OGrnqBSROApxr+jsi9AF3+Lx1A8BnQ6uffui0g9LoLCw7LSjWoWfRrfEkOa+QsX+f5uvYvb262I9X6HyaxT2TpxeCQSez7GRHq82ikcWjivGnvQVK1YIQ3rJkiX47rvvUi2FlXNJJCQkQKfTZTo5wPmW1onJaETwbEmN0m3wYDg0aiQGcB8e+VDkoZNa8MetP7bsZH4ngRVdgMCzksrly38Cbd9EicPWHuj8obR+dAGQJM1yNvNsBrVCjWseUrkM9qSXDChcvUWLFqkmIOUJyXbtpIkZS6BjqB1kGHOik6Ix9chUVHgiDcjatx+a718QKcR71G4o1iNvX8PyS8v5R2DyFU6XLHnCcTnOSSedni0TqVQFUH8QULdfrq/haMBRvLbnNUQmRaJ+2fr4rc9v8LHxQMDbE/Fk5UqxT9k33oDP/HmwUWdd9SItJIa34MUmmNyjtni+8ugDvLn2HGI1UnWefKN6F6ARtecm4N9JUs34HOSlx9hKvwOHuxc9uXIzjh49usBzLm9aWO/5o48+EqXgzA19c8iD9MUXX+TL9TL5R/SWrdBcvgyFkxM8P3hfbFtwdgHOhpyFo8oRCzovgL3KPvv887O/SEqeRh3gWR8Y9jtQpnrJ/amavSLVwYx8INUBfWaK+J6aeTXD7WjJI5Z0/wGMGg0U9tl8f4zVQ6Hq1N5S7fPWrVuLCdL4+HgReUSMGjUKvr6+KZ5yeqR9KcqJDPMdO3aIOunLlknpIwxDkKbMjOMzEBQTAJ8I6Tuxq5G3PPTMcK/dAJFnL6HiExNWXlmJ9j7t0dyrOf8QTL6lS1IEJukZUftI6ZIklunp6ZlpumT79u2FBtLcuXNFuuS1a9dEO8oULVRXPFc56ScWA8GXAXt3oO/8XL//xlsb8dWpr2AwGUQ79V2X76AMCMGjd99F0p27wiivMHsW3AZYGOGZSSrQO91qoXJZR0z96zL2Xg/BwCXHsPSV5qjrnY9RbL1mA3f2SN/L8e+fpkta4EmPVCShqhCO4zrpRU2uZQ/v3buHzz77TDR4cv74zp07RWNXWMyZMwfr16/H5s2bRYObEZxvaX0Y4uIR+q0UjlNuwltQlS+PLXe3YO2NtWLbV52+EuIc2QqEUP759g8kA51mT1/bW7INdEJpC3T9n7ROoV2JkSn10iOdgQQXNWAwIIlLsZUIKLXom2++wfTp00X4OuWa79q1K2Vi08/PD0FBQSn7kwFP6UANGjRAhw4d8Pfff2Pt2rV4/fXXi/BTMNbG5rubsd9vP3xilFAZABs7O9j6+BTIe6lrSG1yi0QvGE1GUbUjVluANYOZUgOnS5YscuVJD7/7tCZ67zmAc/rJmezQGXWYdXIWZp6cKQz0/tX7Y8mzS6DbtR8Pnn9BGOg0Tq2y9rc8GejmDGzqiw3j2sLHzR73w+Mx6Idj2HQ+H6tg0PdA3wdxaA4Qmr3j09dZmqgKV0jGOau7F1Mj/fDhw2jUqBFOnTol6qLHJSsAXrp0SQjAFXTOJUEDVzLS9+zZI+oAZwbnW1of4UuWwBAWDtsqleExcqTI//nyxJfiNSrf061yt6xPEHoDWPmslH8OG6D758CLq/OUg1SsoHqYng2ApOiUHKx2Pu1ECY57nlLoqub69SK+SCa/mDhxIh49eiQ849TmksfI3DO0evXqlOezZs3CnTt3kJiYiIiICBw/flwY+gwjQ3mWc0/PFevj3KSwUHW1akITpCCwqy4Z6VWj1CKc8nH8YzEgZpi8UBjpkgSnTBYe8doc5qQbjcDWd6Ta4DW6AU2G5fg9IzWRGL93PDbc2iDK2VJlilktpiFsxhci/5yEjR1btULVv/6CQxa2Rm5oVtkD297tJATlNDojPth4CR//fTlFQC/P0PdRqydg0AJb3gaMBos86SEKaRLVGMeTqUVNrnplUnanweDevXtF3qTMs88+i5MnpZDbgsy5nDdvHmbOnCk8ShTayRQfNDduIOK338S692efIcIQg/cOvQetUYuulbrizSZvZh3efv43YEVXIOwG4OQJjPoH6Pi+VCOytECD6WeTvekU8h4XiroedUUJjTteUiPMRjrDMGkhT/b0Y9ORoE9A0/JN0VFXLZUhXRCoq0th9Hr/AMxpOxNKGyV2PNiB/Y9Y7JUp/BKVOUmXJLhEZeGXYLNY3f3cL4DfccDWCRiwMMfjwGvh1zB8+3CcCT4j0iy/f/Z7vGzTDg+HDkX0X3+L85V7+21RA93WK+ceekso46TG6ldb4/3utcXlrz/jj37fH8V5v3yop04n7L8QsHOVNJtOLs1ydx8nHzFREa2Sctg5J72YGulXrlzB4MGD022nHCBqOHMC5RNR7fM1a9bgxo0beOutt9LlXFLIugzlEE2bNk2I1lFtdWqMaZG9+Yz1YjIYEDTjcxGO7dKnN2zbt8Z7B99DaEIoqrtVx1cdv4KClNkzIikW2PSGFOKuTwSqdwXeOiYJZJRG6vQFfFsAugQhIkdKyq29W+O+t9RJJRZi2gnDMMWDP27+gdPBp0U99NkdZ0P34GGqkPSCQOVZHgpnZ+H1qpvghrENx4rtFFoapYkqsPdlmLymSxKcMln46u4W5aRHBwB7kyN3KZrSvXKONDl+v/E7Xtn5SoqC+9oeq9Fg82U8fOklaO/eg7J8OVRe9QvKvzMRNkqpQkVBoVTYYFL3Wlj3uhT+/vBJAl5Ydhzf7rkFnUGKjsw1br5SfjpBJdkoPSATbJW2otxcolTNl3PSi6uR7u7unioPUubChQs5Ft/Iac4lCSBRmBOVFapQoULKQudgrJuoP/98Khb38Uf47L/PcCnsklAAXtR1EZzVmYSrPzoBLO8IXPkTsFEC3WYAr2zKVe5RiYFmSLtNl9ZJPC/KT+SlP/CSjHTKoTJqtUV7jQzDWA1U93fhuYVi/YMWH4iav9p79wrck05CSerk8yfduy+ipWq41cATzRPMOZOcM8kwOaQw0iUJTpksPOKSVc6zzUmnqMqt7wLaOKBSW6CV5ZorpIcx+fBkzDk9R1QUovTKX2t+CeW4TxG+dJlwIrn27YPqW7fCqW1bFCbtapTFzveeweBmvqDKbN8fuIsBi//DRf88TmY2Gyk5tvQaydFFaQJZhLwnJgdIc056MTXShw0bJsKEyINNHTCFqB87dgxTpkwRnu+CzLl8+PChmAVLu3z++ee5+ShMIaEPDxc1Jony772H5YEbsevhLqgUKmGgZygUp9MAez4DVvUBIh8CbpWAV3cAnT6QQr5LOxRFUO0ZKd/o8FyRlx7mBsSRU0CnQ9KdO0V9hQzDWAEGowH/O/Y/aAwaMZk3tM5QUQYzKdlIl0PSCwpZOZ7aJLVSjZkdZoqoqe33t+Og38ECfW+mZMLpkqW4TvqZn4B7+wGqAPTcYovHg2eDz+LFf1/E3kd7xdjz00bv4+OT3ggbPgZJN29C6e4O34Xfwffbb6Hy8EBR4OZgi+9eaoolI5rBw9EWN4NjMXjpMXzx77WU7ydXTp3nvgfIEeZ3AjgjlZLLCNINSbCTnD1spBc9ubJ0vvrqK9StWxeVKlUSYeb169dHp06dRFkLUnxnmLSEzJkLY2ws7Bs0wOFWDqIUD/F5u8/RyrtV+i/s8QVgRWfg+GKp1mPTV6Tw9sqFO7Np9Tyb7E2/uA6VkjSo4lY1JeRdwyHvDMMAIrTzcthlONk6pRjIusBAMQizsbWFXXUpN72gsK9bR2qTbkkKw43KN8LoBlIp1y9PfilqtjNMTuF0yZKZk56lJz38DrBnmrTe/QugvFRzPCu0Bi2+Pfctxu4eK8LbfZ188Jv6TbR8bw0i16yRUjB79UL1bf/CtXdvWAP9G/tg3wedMaipjwgcWHXsIXp+exg7rgQJx2SOoXSAHsnlqClNgL7HTBTe5XB3QzyXYCuWRjrNYFIe+f3797Ft2zZR4ofqUlI9Xgo/Yhhz4o4cQcy2bWK2M2ziEHx5WlL2Hd94PAbWHJjee37wK+Cn7kDYTUkcbtgfwKAfAHs3/mLTUqmVlJ9uMorvraNvRzxIjvRj8TiGYfxi/LD4Ak12AlNaThE5h6J9uHFDPNrVqiUM9YLErm498Zh042kZoLebvo1qbtUQnhiOeWfm8Q/F5BhOlyyZ6u6ZCscZ9MDm8ZIuUbXOQOtx2Z7zVsQtIQ636uoqmGDCKOfuWLbDB8oZC6EPDRVVhiqtXImKixZCVa4crImyznZYOKwZ1oxtjYoeDngcrcGE389j+MqTuP44JucnbDE2Oew9Efj7dUCfPiWS0qASUnLS43I3IcDkG6qczFhmhbmqO9WuZBhZHTJouiTuYXqhD955vAh6kx59q/UVg7RUPDgCbHsfeJIsbFF/INDvO8CpLH+ZWUF102/tBK5tQse6S/CryEs3QXONy7AxTGlXc59xfIYIc29ToQ2er/V8ymsU3knY1aub/YloMKeJllJrqNyRQQcoVFL4JJW+tHXMUllZ9qST994QEwOlqyvslHb4sv2XGLVzFLbe24qeVXqic6XO+fGxmVIEpUvSkhGULmkOpUsy1u9Jd83Mk350ARB4DrBzAwYtzTLMXaPXYNmlZVhzbY2ofV7Z4I4vbjWA0/Z90Oj1sFGrUXb8OJR9/XUo7JKtUiulc+3y2PP+M1h++D5+PHwPJ+9HoP/ioxjeujI+6FFbGPMWQd/XoGXAsnZA0EXg0FeS6F4aI13OSacIA1NiImwcHfP/QzH5a6STKJw558+fh16vR506Uud7+/Zt4UWnkmoMIxM6bz70pF1QsQIm1jwlSv+08W4jQi5Jz0AQ/0TKPb+0Tnru7AX0ngM0GFy6SqvlFu+GUu30q3+h5aUt+MqXGuxEEVpq0ukK3EvGMIx18uetP3E25KxQc6fUopQ2V3jSJSPdPtnLDW28FL0Uch0IvS6FQ8YGSUvCk6zfiKpyuPhIIZW0eFQFvBsBPk0BV18o3dxg6+srjHTNzZtwat1aHNbUsylG1R+FNdfX4MsTX2Kz12a4ql0L8BthGMYaIY+tbKS72GcwZgk4J7R3BP2+Adykmt4ZcTLopGhP/GP9odaZ8MGdGmi9LwCm+MPidefOneH16SdQV6mC4oKjWiUM8qEtK+LrnTex/XIQfj/lh62XHuOtLjUwpn1VsU+2uFYABnwPbBwJ/LcQqNkdqNox5eUqLlWQZAsYbQCFSXK0KdhIt34j/eDBg6k85S4uLqJsmkeyuEJkZKQom0a56QxDxJ84gaiNG8X64p4GhJqiUL9sfSx6dpEQDxIKkxd/B/ZOBxIjaKQHtBwrqZY7uPOXmBO6fgpc2wz7u3tRpVkfJNhdgmOSDkn378M+eSKNYZjSw+O4xyIPk5jUfJJQ7TVHc0OKtLGP+w9Y8bPkWaG0maygdlsstlLoKakrk2YIHRcTIC1Ut9gcx3JAxZaw87KDLlAKeZeNdGJis4k4FHAIj2IeYf6Z+WICl2GY0kWC1gADSZoLT3oaIz0xCvjrVarjKzlvGr2Y4TmopOOCcwvwz91/oDSYMPCWM4Yds4Ey/Da1UrCvXx+eH34Ip7ZPxamLGxU9HPHDiOYY1fYJvtx2Hdcex2Derlv45b+HmNi1Boa3qQw7VTZpx/WfA5q9AlxYC2waL+k9JY+5qcpSOcfySLALhrMmuQxbKS6kVGyMdHMWLFggSlfIBjpB67NmzULPnj0xefLk/LxGphhijI9H0DRJ1OxkW3cc8YpAFdcqWNptqRAvgt9JYOdH0sCQ8KwPDFgEVHo6eGNyQNkaUqN7fg06RgTigRfQwA/QXL3GRjrDlEKv1BcnvhCRS808m2F43eHSC3GhwK0d0J/bDH2wVLrKzn89oE7OO3QqL7XFXg2A8nUA14qAizfgUgFw8EgfXkoTrboEICkGiA4Eoh6JcpB4ck9q20NvAAnhwO1dsNc6Iw6u0Pz1NVDmnBT9U6UD7FX2Iux9zK4xYnDdq2ovoa3BMEzpQfaiqxQ2sLc1a2coJ/rfd6W2haJ0+i9MF2FJpdQ23tqIHy7+gPjEaDx7FRh52h5O4ZIgpa2PD8q//z5c+/WFTQmpDNSmellsndgRWy8F4ru9d+AXkYDP/72OlUcfYFK3Whjc3Be2yiw+a++5wKPjQMR94N9JwIurU77Xyi4U8p5spMfTRCxTrIz0mJgYhIWFpdtO22JjY/PjuphiTuh3C6ELCECUuy2Wto9FeQdP/NjjR5RNSgC2TwWu/i3tqHYBOk8F2k6QvDNM7un8IXB5AzoFXsd6by808DMh9vIFuD8/hL9VhilFkLF7/PFxKe+79adQXPkbuPCbpPtBehVBlBJTFrZuNlC2HQlU6QhU7ZBlCGmG0ICXctJpcfWRhCzN0SUCIdeAR8dgb/gXuBqIxBAdcG61tFBqU/2BaN70Zbxc72WsvbEWnx//HJsHboYL9Q0Mw5QKYpJrpLvYq1Kl5Yhya9e3AApb4IXV6aIsTwWdEjXPHzy5g2eumjDshBIekXSueCjLlhU55x4jhlt93nluUCpsMLhZRfRr5IONZ/3x/f47CIxKxId/X8ai/XfwZufqeLFlJdjbZuBZpzZ7yE/AL72A6/8Ap1cAbcaLl6gkcoLdabFOVZmYYmakDx48WIS2k0e9dXLYGtU3nzp1KoYMYYOgtBN37Bgi164V60t6GeDoVg4rOn8L39OrpZJqpCxJoe3NRwLPTgOcOZYmX6ABdruJqHz0G0SJMmwmRJw7hUr5c3aGYYoBoQmhImyceNuuMqqu7CmJvsn4NEdiXAVSmoFjlwHAc8l5ngWBrYMIdafFod5I4M8O0MbYwlBvOJQPdgJxIdLg8PQKvOPTDIdd3OGfEIIFZxfg8/apBY0Yhim5xCYb6a4OZs6aoMvA7k+ldSofVvGp5pV/jL9I5/nvzl50u2TC5LNA2WhK1zE+Nc6HvQSFgwNKOmqVAq+0rYIXWlTEryce4sfD94WxPm3LNSzafxevd6qGl9tUTp/rT99nz5nAro+B3f8DfFuItlp40uUybHHsSS92Rvry5csxZcoUjBgxAjqd9MdSqVR47bXXMH++NDhgSieGqCg8/uQTsb67mQ386nngZ89nUXP14OS8c4qlaQ/0mQNUaFK0F1sS6fi+8Jh52SZQBhZUDwJg1GigsLcv6itjGKaAMRmNmLl/EmJ1sWiQlISRD/ZLL7hVktJhmgwHPKogcexrYrN9k8Jrg1VlysC2cmXo/PyQ6PMKnJ//Hrh/CLi8Hri+FY6PL+ALezuMreCFv+/8jV5ebdGuhnXULGYYpmCJSZRF45LNEppY/HOMVFGidh8p2pLKpCeG48dLP2Lf+T/R44wWSy+YRFg2UdqM87SQx3zcMzUwsm1V4VlfcUQy1ufsvImlB+9idPuqYilnrgbf5k0p7P3GVun7Hn8EVV2rIlgtOXpETjpTvIx0R0dHLF26VBjk9+7dE9tq1KgBJyen/L4+ppjlQQbMmA5DaBgelwG29HTEypAI1L6ZXJKvbC2g2zSg3nOs2l5QUAhTtxlou+t9RDnawz3BhITr1+DcnKsuMEyJhfI2b27Hzv9m4pA6ASqTCV+GRUJVt78kxlm9C6BQphjyiZcvi3XHpk0L9TIdmjaRjPRLl+DcqSNQu6e0xIUBF9ei1dlVGBYTg/WuLphx6ANsvr4LTjTx6FF8VJgZhslDuLsdSYsbJUGziHuSLsagpYjTxWP1tdXYd3gVehxPxKJrJtgapGPVVauizKuvwm3gc+yQoHZWrRTG+Ig2lbHl4mMsO3QX98LisfjAXeFlH9DEB692qIqGvm7SWHzgD1JaEn3fm8ahcp/ZeJDiSedw92JnpMuQUd64ceP8uxqmWBP2z99I2L0XBhvg5wFKLAl6iLpanSjBgy6fSF4cZZ5uOcYSmgxH89PL8VeFcDS9B9w/vhuN2UhnmJJpnN/ZCxycjSchl/F1RQpjV2KcU03UfnOLJCiZBu29ezDGxcHGwQF2tWsX6uU6NGmCmK3/IvFismCojHN5KQqo/SS8f30zjp79EoEq4LuH/+AzyqVv8SrwzFTAxatQr5dhmEKuke6gAg7PAW7vBJR2SHjhJ2y88w/Ob/oRHU/G4utHpqftSbNmKPvaWDg/+2yJEYTLT0g4jkLghzTzxZ7rwaLO+kX/KPx9PkAsrap64NUO1dCzvhdUQ38FfuoG3N2LShcbp4S7x0eHo2xRf5BSDFtMFniHE3XJ03VMpkTdv4qQL6aDgqq3drDBJ6YQ1Fe6QNvtfehbjAVU9gB9jVS2hylwFD3mwXhiFHBPhZAT+5Aw7kP+1rPBwVaZWrCGYawZ/9NSHmHAaVFe6Etvb0QplajtVgOvD/gzUyHOhPMXxKNDw4awUWU+BNAZjKLvMxhMMJpokfpDQ/K60WgSThi1UiEGg5QXSY+2SptM/0cOTSTPPXnSTQYDbJRpBI0UCjg2fB5flPHF63vfwAZXF/SMT0DrMyulcp1t3wLav8slOhmmhHrS22lPiHroCTY2+Kv+EATOmYiOZxPQJkbaz6SwgUvXZ1H2tdfg2LxZ0V50MUGhsEHvhhXEcsEvEquOPcSOK0E48zBSLD5u9ni5bRWM7D4Prrvehf3RBVA4VKecA0RHBBX15Zdq2EjPBhqk1J++u3B+jWKIAzR4XrUT7U8cQzUNcM8H6Fg1EVvjX8BLhu5I2G4PbD9c1JdZKpnqSl6nJ7C/G4Qm07dDx3/3LLn+ZS84qrlJZKwcKnG27/OnFTJUDvinYU8ciL4AlUKF2c/MgW2yga7RGRAcrUFwjAZP4rSITNDC99998AZw1KkSPl91WniwqEYx9XWJWgMStHqxrjM89VjlFHWy0e5kpxQ1jynPlESL3OwUeM3OAerYWPy+di/sGzZEeRc7lHe2E49lnNRCsbiNT1sMrT0UG29vxPRq9bEpVgHHgHPA0QWSKny36UCzkSkh/AzDFG+oHaplE4ABgV9jY7w74u+7oMXGw2iV7CPTuzqi/NDhKDt8OGx9fYv6costzSp7iOXTvvWw9uQjrDvth8fRGszffQvfKcpjWfkX0SP6T9iBdI0UiIsMLepLLtXwiJTJFZ6IxEjVXvRQH8De+06oFmiDRDVwqnlTbIwbiiSo+ZstYtaqR+JZLES5aOAVmz+wyjSyqC+JYZjcotMA/30HHFsI6EkpyQb6xsNxuu4rmH3uA7FLTdsXMHdLDIKijyAkRoPIBMk7lYLJhHVXJE/6er0Xrt5KX0o1K8iAVthQGqP0SB518rhT1L05WoNRLHFJeoTEJKV6ralHdbQLvoZLW/bizxupo9TonCRqVNHDARU8usFJcQCBmnB84NsXM5tMRLlTc2ATfkuq63vmZ6DvfKBy2xx9BoZhrA9jwAW8Gfgdrtx2Q6Mo2iK1DYl1KqHqq2/BvU/fEllGrajwdrPHlF51MPHZmvj30mP8cdoP5/2iMD5kIH62vQ1nZSBNtyLuSXBRX2qpho10C0JgycPGSNgEXYTtmeVQXv8HfgoT5id54q2Tyd/VJx/gk+dfhaTtzlgDF07+gDLhOjRMOoMbU2fAROJ9TKb/dYaxRrR3DsL07/uwi3kgnl9XN8Z8jMKhM96wD5kDlWMC9AlVcOYGacSEpbuvaUBWzlmNmnEh8EiKg95WjQHDe2KkqyPcHGzhoFbBUa0U+5LokLxOasEUwi4b5pmhNxiF512rl4xzseiNiNPoRWmlGLNHd1U74K9r6JkUgOBa5RAWm4TwuCQ8idcKoz80Nkks8AOUjkPgUHkljoXuQLvzZWCvmYZ3XQ5jpOYPOARfFjV+4+u9BId+X0PhzJmTDFOcMOl0eLDzbzz8fSWeu/wYCpPUxmjsbKDt2hoNxr4P58ZcBaggoTaeaqnTcjM4ButP++N/59/HJMX/hLp7Uqg/3l79Hwa2qokudTxFhBRTeLCRng00MCn1IbCUR04iHieWAn7HxfdyQ22LD9188ekvOtBfVj2oH2oMf6Mw7lkmJzSsBxy6jPAIFRy2vwO8uovF+xjGijEYTbgdEosLflG4df8BOt7/Dj10B8VrISZ3fKkbhe2aNsKTblvmMFSOD2FjskMHt3dQ/9mq8PVwgJerPSq4OcDb1V4IMckGdsSvvyKEKrK1boXx3erm2zWrlAqolJKqcHZoPAfgwV8/oVLgbawZ2QwKtTrF0I+I14rQ/IDIRPhHJMA/sjJORgYgxGYH7CtsQvz9SvgqoiuWowWmqDZimPIgnG5swJMbu7C+7AQk1hqEJpU90KSSGzxduOwkw1gbpGuRdPMm7m74GUk79sIxRguSuyQe+gIRHTtj6NT5sHV2KeIrLX3U9XbF5881wMd96mLzt/8BR3ZAqTdi8L3PMP7mB3B1tMdzTXwwpHlFNK7oxho+hQAb6UzmRAcA538Fzv8GxD6WtilUOFqnK6ZoH+D93xPhHg8oa1RDtRkz+Zu0Qnxbd0HioctwCVUgJOg8vI5/D3SSQmMZhil6yDi9HBiNY3fCcfLBE1zyj0Zckg6DFf9hmu1vKGMTB6PJBhttemJPhfGo6lsB87xdoLAPxFcX90FnBD7v8CmG1Mo+4ivuv//Eo1O7ogsRt6tVC8py5WAID0fi2bNwat8+xdD3dLUXS+OK7in76wyz8PKOB7gRcQMd2u3Dy1Vm4V5oPE6E1MXpwD6YELsItW0C8PaTr7E/dBemHXoVj1EOlcs4om31Mmhfoxza1SgrJi4YhikadI8fI+rffxG0aQNsHwWBpvMcSWLDEbhXz4AalROxAu9j/IvD2UC3Au96m+YdkbRqBxRaGzyrvIDvVKvwbsJrWHPikVhqejpjSHNfDGrqCx/30leTvrBgI51JjdEglfQ5twq4s4eK6krbHcsCzUfjz/K+mH1pCQYf0aHJQxNs7O1QZdH3UDjwn9Qa8WrVEQ/xPWo+BvY6OuKVQ18DtXoC3g2L+tIYptQSEJmAAzdD8d+dcJy4/ySl/BBRDtFYZPczutmcFc9j3eogqc93eKlOewxL9ojHaeMwdNt46Iw6dK3UFYNrDs72PY3x8Ug4IeUmOXfpgqKCvPrOnZ9B9N+bEHvwUIqRnhkkgjf3mbkY+u9QXAo/gx5V92Lis6OTX20GnXYUQnbPQ7nz36Ob8gLaKW9itm44fo/oBr+IBGw8GyD2rF7OCR1rlUP3el5oW70sh20yTAFjiIlBzO7diPhnM7TnJC0MkrTUKoELtRRIalEBz+Ii2hn0+MLxI1yIqCMEJpmip3y5yqCW014LhKps8Zz+AJo2r40FxmHYfS0Yd0PjMG/XLSE4175GWQxuVhE9G3gJoVAm/2AjnZF4cg+4tB64uA6IkQY1gqqdgBZjYKzbD4uvrMBPFxeh+R0jhv4nGe/e02fArmZN/hatFPs6dWBUq+Ci0eOMjRdeMdwF/noVeOMgYOdc1JfHWMAPP/yA+fPnIzg4GE2aNMHixYvRunXrDPdduXIlfv31V1y9elU8b9GiBb766qtM92cKL8STBjW7rgZj9/VgXA1MrieUDOWF00BnmPMFdLg5GypNBKCwBbp+Apf278LFrJwanevzE5/DP9YfFZwqYGaHmRaFHcYdOyZyQG0rV4a6Rvr66YWJy7PPCiM97sABmD79JNvrr+ZWDVNbTcXMkzOx8PxCNPVsiiblpVxVW7U9vAZMB9oMBf59F47+pzDb9hd8UPkefvf6EHv9gWuPo3E/PF4sv554BGc7FTrXLo/u9T3xbB0vuDnywJJh8gOjVov4I0cQvfVfxBw8ABvd0wnIq5VtcK6pIyr2fxEv2dig/P7Z0gu952DXwdqi5BdVgmCKHrWbh3h0TALud3oH3ge/ReXry7GoVxXEDnoDO68GY9P5AJy8H4Fjd5+IRb1Zga51ymNAEx90q+tlUfoTkzX8byjNJEQA1zZLxnnA6afbHTyApi8L4xzlaiHJkIRpx6Zh54Od8IowYcoOum20cB8+DO5DsvfgMEWHjVoNdaOG0J+7CPhrEFTZBxXCbwPb3geGrCC3Fv88VsyGDRvwwQcfYPny5WjTpg0WLlyIXr164datW/D09Ey3/6FDhzB8+HC0b98e9vb2mDt3Lnr27Ilr167Bl8vWFDp+TxLw9/kAoZ5LBqIMCbG1rFpGGIqdapVDAw8TlLs/Ai5ukHbwaggM/jHDiJc/b/+J3Q93Q2WjwvzO8+Fm52bRtcQdkPLaXbp2LfJcQqd27WBjZwddYCCSbt+BfR0aoGfNi7VfxMmgk9j7aC+mHJ6Cjf03wsNeGkgKPOtKmhunlgH7vkDZoMN4N+oK3h2wCNHV+uDU/Sc4eCsU+26ECrG67VeCxELl4rrUKY9BzXzxbF1PEerJMIzlmLRaxB0/jthduxG7fz+MsbFiO7UyfuWAow0VCGlfC33bjcbn1frA/sJaYPtk6eAunwJt30LsTqnUMXtirQOFk+TEcUgCbparhvZU9nL/l8DuT8Sk8dDWb2Boy0pCO+SfC4HYcumxmIjefS1ELCQ+SlFLZLA/U7sc7Ei0hMkxNiaali9FxMTEwM3NDdHR0XB1dUWpQ68F7u4DLv0B3N4FGLTSdhsFUKMb0GQYULc/YCvl74UmhOK9g+/hSvgVOOmUWP6nO+wehcChWTNUWbNaGIGMdRO6cCGeLP8RhxrZwHHSSxi9fxFgMgADFkkTMYzVtiNkmLdq1QpLliwRz41GIypVqoR33nkHH3/8cbbHGwwGeHh4iONHjRpl0XuW+jYyj1Ct8X8vP8Zf5wJw+kFEynYyBjvULIveDb3F4KWsc3I5oUcngL9flyKYqB3u+D7Q+WNAlb5tvRlxEy9vfxlaoxZTWk7B6AZy2Hf2g+g7nZ6BIToalVevhlNbEp4rWvzffAtxhw6h3Ntvo/w7Ey06hsL8h28fjocxD9HBpwN+6PYDlBnVSg+9AWx6Awi+Ij2nSefecwB7VxiNJqEBsO96CPZcD8btkLiUw1zsVHiuqQ9eblMF9X1K4fggnyjJbUhJ/mw5gdqU+JMnEbNzl2SYxzyNDopwBv5rYIPjjWxRt1UvDK83QkS+iMlBMtC3vC3tSG1dtxkwmIAan+4Qm8591v1p28gUGZQedatFS7H+17LnMa3LTGDfDODYImmHvt8ArZ+KRZMpeSskVkxI/3spSKQayVB0RO8G3sJgp4gx0h8pzcTkoA1hT3ppwKADHhwGrv0D3NwGJEY+fc2rkWSYN3oRcPFKddilsEt4/+D7CEsMg6utC5aerAX1o9NQli8H34UL2UAvJjg2b44npNzpb8KKqJsY3W0asO9zYMdUoHxdrjNspWi1Wpw7dw6ffPK0qKFCoUD37t1x4sQJi86RkJAAnU6HMmXKZLpPUlKSWMw7ECZ3XvPfTj7EhjP+otQYQWPSDjXKCYGdHvW9Uudbkv7H0W+BQ19J2h9lqgODVwCVWmV4/uikaEw+NFkY6J0rdsao+pZNuhBx/x0TBjq13Y6tpIFXUePap7cw0mO2bUO5iW9b5N13VjtjQZcFYqLi2ONjWHF5Bd5q+lb6HT3rAa8fkL7b/xYCF38HHh0HXlwNhU9TNK3kLhaqE0xlh/658BhbLwbicbQGv5/yE0uzyu7CWB/QpAJ7gRgmuWRaimG+b18qwzzSCThZ1wYn6ikQWcsTL9Z9CT/Xfh7lHMo9/e6EgZ48IdfmLWGgUyMZl6hL2YVz0q0DG0dHmGxsyJOLgJA7UmfW/QuyxgESIN4xRdox2VCn9pvU4WmZ0rMOLgVEC4N92+XHCIlJwp/nAsRS1kmNPo280a+RD1pXKwMlhZUxmcJGeok2zI8A1/8Bbvyb2jB39pKM8ibDMxUQ23xns8j/I2Gimu418c3jZ6A9uAJQqVBx4ULYeqUPtWWsE4emTUUD6x1lgv+jKwjoNBcVA89J98X6EcDr+4Ey1Yr6Mpk0hIeHC0+4l1fqyTN6fvPmTYu+r48++gg+Pj7CsM+Mr7/+Gl988QV//7nkvF8klh68h/03Q8T4hahUxgHDWlXG4GaZKN/GBAGbx0ltNNF4GNDvG8Au47JDeqNehHj7xfrBx8kHszrMylHIesy2f8WjW9++sFFaR9ihc7fusLG3h/bRI2iuXoVDo0YWHVfbozamt5uOT//7FMsuLUPj8o3RwbdD+h0pEqH755JQ5qZxQOQD4OceQM9ZQOtxKak+NKj8uI8rPuxVR6jrrzvlJ4SRqAQeLXN33cTYDtXwctvKHIrLlFLD/BRidu9C3N59YrJPJsrZBidrQxjmtysp0KlSZ7xd+3l09O0IlSKNeXFyGbArOfqr5Vig99cp/8EYjWSk26kULOhoJVD/YuPkCMTFIzT0ofCUiz6nx5eifjqOL5YMdZpsbvtmumPlidD/9a2HMw8jRHTZjivBeBKvxdqTfmIp72KHvg290a+xD1pW8YCCDfZ0sJFektBppEHfzX+BG+QxfxpqCcdyQP3ngAaDgSodgIxCBOkURh2+Pfst1t5YK553q9wN05TPIfTTd8Vzr08+hmOLFoXzeZh8QenqCrvatZF06xbqBpiw89FuvEEeu6g+QNBFYN1Q4LU9khYBU2KYM2cO1q9fL/LUKT89M8hTT3nv5p50CqlnMocGLKceRGDJgbv47254yvZnapfH6HZV0KWOZ+YeAqqesXk8kPAEsHUC+i0Amg7P8utecHaByMd2UDng+2e/h7v90xJl2WGIi0Nscj66a/8BVvOzKp2dhIBczI4dQmTKUiOdGFBjAC6EXhD5+VMPT8XavmtR3b16xjtXaQ+8eVTy4FEk2c4PpX5y4JJUbR4NEKlcGy2Us77xrD/WnnyEoGiNMNR/OHhXGOrjn6mBMk6c5sWUXEx6PeJPnULsrl2I3bM3lWEe56zCsdoGHK+nwM2KgI9rRQypNQSLawyEl5NXBiczAYfnAlRZhmg3UZooM5tkjE72pLuzgKNVoXJzgz4uHjZkqCeESr+vMNSTSy6Tob7rIyA+DHj2sww1jqhdbVO9rFg+H9AAx+89ER52mgildlYu6eblaoe+jSqgf+MKaFaJDXYZNtKLO3FhwJ3dwK2dwL2DgC4+vWFef5BkmCuz/rmD44Px4ZEPxeCHmNBkAsY4d4ff8JcpuRVugwbBY8SIgv5ETAHg2KJ5ipG+5d4WvN7oddgMXw/81A0gIbm1LwCj/snUk8cUPuXKlYNSqURISEiq7fTc29s7y2O/+eYbYaTv27cPjRs3znJfOzs7sTCWcck/Cl/tuCGMdEKlsBEe8/Gda4jasVlGN+3/QhrYEN6NgBdWCXHOrNh0Z1PKpOlXHb9CnTJ1cvRTRW/dCpNGIxTd7Rs2gDXhNmhgspG+FZ4fvJ+jUp4ft/4Y96Lu4XzoeUzYPwHr+q1DGftM0jrIGH9pLXDqR2DPZ5KxHnQZeHEVUDF9+D95eN7uWhNvdKouBpQ/Hrknctd/PHwfv5/0E9tf61RNqMQzTEkxzBNOn5ZC2ffuhSEqKuW1RBc1jtc24r86RlyvZIJSZSccOO/Xeh5tKrSBgrQ0MsJoBPb8Dzi5VHre9TPgmSnpjLmohGQj3YEnv6wJlZs79IGP4ZxoEm1tyiSMbKjbuQIHZwNHvwHiQoD+C7O0MygXnSayaZk9uBGO3Q3HtstBQhuEQuJXHXsoFh83e2Gw92tcQXjji1rotCjhHqa4QbOSYbeA2zslw9yfVNnNtP9cfIA6fYD6Ay0yzGWOBx7Hx0c/RmRSJJxtnTGr4yx0dm6Gh0NfEkqdDi1awPvLL0r1n6U449CsOSLX/YF6gTZYE/NI6A1QGSO8/Cewuh8QeBb4fSjwyl+A2qmoL5choTG1WpRQ279/PwYNGpQiHEfPJ07MXGhr3rx5mD17Nnbv3o2WLa0j/7gkQCq283bfEkYboVYpMLRlReFZrVTGMeuD40KBP8cAj45Jz1uPl8IGkwU6M+N8yHmRdkRMaDoB3atknraQmcc/6o8/xLrHSy9ZXfvt1KEDbH19hcp7zI6dcH9+iMXHqpVqLOy6ECO2j0BAXAAmHZiEn3r9BDtlJhNO9NkpLLNSa6kMZeRD4JdeUp5lu7cz9ALRb/x8i4piEobq2n+79zauB8Xgu3238euJh3i3Wy283KZyqRdCYoq7x3y3yDE3RD5Ni0xyscfpOgocqKXBjcoGGBU2qOZWA5NrPS8iWTKdEJPRxktpJjQhRvSZB7QZn+GuUYmSgDGXQrQulO5S5RBnDXAn6g7a+7Z/+iK1l50/BJw9pWpBF36TKkY9/xOgzqY/TG5bu9b1FEuSviGO3g4X1Tb2Xg8R2iA//fdALL7uDsJYJw97I183q+vDCho20osDSbHAg6PAvf3A3f1Sbp05FZoAdfpKxrl34xyV1TIYDSKvjwR4TDChXpl6WNB5AXztPOH36ljoAgJgW6kSKi5ZDAUruRdrTzpRNdgEO60J/9z9RzLSvRoAIzcDawYCfseBdS8Bw9YJFWSm6KEw9NGjRwtjm2qdUwm2+Ph4vPrqq+J1Umyn0mqUV05QybXp06dj3bp1qFq1qqitTjg7O4uFyTkanQGLD9zByiMPoDUYRfNKRtvknnXEACJb/M8AG0cCsUGA2gUYvAyol33Y+Z3IO5h4YKLIR+9ZpSfebJw6788SEs6cQdKdu7BxcBBea2uD8uPdh72EsAXfInLdOrgNGZyjQRiVYPuh+w94ZfsruBh2EdOPTcecTnOyPodvc2D8EWDru5JmC3n6As5I4e+ZRBJRyGb3+l6iRBsNJMlYfxAejxlbr+GP036YOaghWlXNxmhhGGsLZaccczOPuc7FARfr22Nn9Whcr6wThrm7XRm8VK0PnqvxHBqUbWDZ/5M0N/4YJqXTKdXAwB+AxkMz3f2pJ91MWJMpchRuyUZ6InA78nbGO1GFIIra/WsscGs7sKqPNIZ087X4fag8G7WvtFB/e+R2mPCw77sRgsCoRKw4cl8spPVCgnNksDfwcS0VBjsb6dYIhQhR43bvgLT4nwKMklqwgBq9ap0lo7x27xz9GcwJSwjDJ0c/wangUyl1aD9q/RHUCvX/2zsPqKjOJgy/sPTeO4iAvWHvvfduNBprTNTor+kxMUbTTGKMvdeYxGiiURNr7L13RbEgvfcOyy7/me8CYmwLLLAL83ju2eru3cLsnW9m3hfhH36EjKtXoWtuDvfVq6BnzfPK2oy+iwv0nJ2RExEBn/BcHDA9ID5rmnGFS0Ng1A7gl4FA4ClgYy+pom7+8pZqpvR57bXXEBMTIxJvSrh9fX1x4MCBAjG54OBgofiez8qVK4Uq/JAhQ556nC+++AJz5szhj6yInH4Qi8923UJQnGQn08bHDjN71UQdF0vVup6ubAT2fQQo5YBdDWD4b69sbyfCU8Mx6dAkpGSnwNfeV3Q2FeeAJG79enFq2bev0KbQRKwGD0bssuXIvHMH6efPCw/1ouBl6YWfOv6EyYcmY9/jfXA0ccS7jd99+ftlZCmU3nFpnSRmRck62ba94vOhZJ1shMhGb+ulEPx40B/3IlMwdNU5oeD/aa9asGP7KEYTxd8uXETKwWcTc4WlKe7WtcRujxjc8siGUlcOPV0DdHLrICrmbV3bQl9WhOQ54gawZTiQEg6Y2EoJm0eLl/4XnknXTGT5SXpmLm7Ev0SstlYfaVxy2ygpd1nTQRov8ii61aeRvgzd6jiJLVOuwHH/aJGwH7kbjZD4DKw68UhsnrYmosJOSXstZ/MKm7CzT7qmkBAkJUg0Vx5wTBIVKox1VcCnM+DdSUrQDUtWFTsafBRfnP0CiVmJIlEjtdw+Xn3EbTHLlyN26TKh5O6xdk2RD5oYzSTs/Q+QvHcvDnSyxIbmaZjXdl7BZy4Ivw78NhRIiwYsPYDXt0qVdqZSeeVW5NemKonp2Zj7jx92XgsTl50sjDCnXx10r+Oo2sEAiXjue1+yHCJq9QMGrFBJ8yE+Mx5j9o8RXuDkrLGpxyZYGqqwKPAfMu/exeOBgyizhPf+fTCoUgWaSuRXXyPht99g0qIFqmzaWKzHIEeS2Wdni/NTfafi7QbPb619huALwJ9jitzpQMSnZWP+wXsiYac1GRKU+3ZgXfSo64zKTEWOIdry2l6myp5raY4AX3vsdI/GZdcMUTEn6tvVF4l5D88eRRKnlB40V2p5JmvXnExpUfL1bSo5x3yz1w9rTz3GW+28xEIXoxlEL1yEuNWrsb+xDn7pYYiLr198+YIN5THkGBR1Wyom9v4JaPSGWvYlPTsHx+7FYO+tcDF6lClXFtzmZWea1xLvguqOZhqfsLNPujaQGCy1sAeelrak4Kdvp4OFqu0An05SYk4eumogXZ6O+ZfnY/v97eJyTZua+L7t9wXKuEm7d0sJOh2Yzv6cE/QKhEnzZiJJbxFuig1IEy3vTyXpLr6Syvuvg4H4R8DazkCfha9UnmaYisTZh7F4748biEzOFK3tY1p64v1u1VX3700Mkdrbw68BJKhEXsCtp6s0hpSanYoph6eIBN3Z1BmruqwqVoKev9hKWPTsqdEJOmE7YTwStm0TlfT0y5dhUgwthYHVBiI5Oxk/Xv4Ry64vg4m+Cd6orcIBIlV73johzamTZgBVg9q8C3T6/IUuKPlQUj5vUH281tQDn+y4Karqk369KsYhaFHHktt3mTKkIDE/sB+ph488lZjrWFsitLE7/vaIwQn7WCh1pWNOZ1MXcRxAyXlVy2JasWanA3vfB25skS6T7eGgtYCxaol+frs7/71oZiXdKltfjF09SnokcoYXYl0FGH8Q2DUZuPs38PdUIOgs0Gt+iQuLJgZ6UuW8vjPSsnJw5F409t4MxzH/GATEpmHp0YdiI/HW3nkq8dUctV8ImdvdywJaYUwMAoLOSdVy2ihJLwx5Sro0ykvMOwNuTYGitBipwJ24O/jk5CfiAFAHOhhbZyymNpwqBHiI1BMnEP7pZ+K8zfjxsB724hkiRvswbSG1nFk9jIZRNnAh4gICkwLhaen55E606v3mYWDHm5IGwq5JQNBpoPu3Uosow1RQsnOUWHDIX8y+UciuameKn4Y1QEOPIoz6BByXZvOoE8rYBhiyAfDuqNJ/pQSTWrYpTlsbWmN119XPtzRSgfQrV8RBOlXR7SYXfZa9PMZxqO09cds2RM2fD8+tW4tVDRlTZ4xYiF5xYwV+uPQDTPVNhT3UKzF3BEbvBg59AZxfDpxeKC2yDN4AmNq+8r+TAvHuqa2x+PAD0YpJHRjnHsVhyYiGaFaVZ9WZ0iNXoUD6pctiAT7l33+fSsx1bawR08wHB72S8bf5Qyh1pZZlEz1TdPPsJubMGzs2frE6uyqQkDGJYkb7SYuSZMXV+l0Re1QlkS3YNDpJd8whIbhU3Iu/9/IknaBkfOjPwOkFwLFvpYWb0IuSk4nzy51mVMXUUA/9GriILSVTLlrhqSWeZtkfRqdi8ZEHYqvhaF6Q2Hvba6cmDyfppUFOljSXQ7PkYrso2RMURkcmCdh4tgE82wLuzUu80vQiyPt83a11WHNjDXJyc+Bg4iCsfMg6I5/0a9cQOn2GsFqz6NcXDh+8Xyr7wpQfJABIB8Py8HAMyfTFrwa3sdV/q7AyegoTG0n1/eR84Ph3UssujWGQvUb1buW1+wxTapA4zeRfr+BmqHSAO6KZOz7vU1us3qsEZfVnFksWa7lKScyTZvKsPFT670lZSXjr0Fvwi/MTlfNVXVcVu6qVq1Qi6vsfxHmrIUNg6OMDbcB+6jtI+ucfZN64KWzZLHv3LtbjTGowCWnyNPzs9zPmnJ0jKkDDaqiw4EyL4j2+lX6X/54mLbisaQ8M+xlwbayS+NFHPWqicy1HvP/HdQTGpWPE2vOY2bMmJrSpqvEtmIz2QK4NmbfvIHnPHiTv34+c6OiC22S2NkhtWRfHqmfhd8ObyIJkqaurI0Mr5xaiYt7JvZPoNCmxdhJZqx35ElBkAaYO0qJk1bZFfqgktmDTaHV3q2zpd9A/3l+1/0gLNO0+BDxaAX9NBOIeSna/5GhCziZFWMB5FdThNqChq9iSM+U47BeFvZSwP4iBf1QK/A+lCKHPmk7morreu76LWIDXFjhJLyl0cJYcDoRffZKQ0wq8QrKUKEBXXzpwy0/KqcWuDDypaeVr1ulZ8E+Q/ri6VumK2S1mPzVvlPXwIUImTRZeuqbt2sLlm2+go8Y/IkYzoINEk5YtkLTjL3SLccKvFrdFy/u0htNExekpqM2zwyfS93X3VMlRYMtQyUWgyxzAvmhezQyjqVwIiMOU364iLi0bVib6+G5QfSEMViT3jd3vAH67pcu+I4HeCwB91Ty/aQb9rX/fEjGabI3WdF1TZC/0wlA1OvPmTeiamsJu6jvQFvTs7WH75gTELlmKqO++g1nbtsUSu6M4936T95GlyBKLkGRhlypPxfi641V7gHpDJC2OrSOlsZ8NPaTPs9Folf574yrW2De9LWb+dQu7r4fj6713cS04Ed8Pqc++6kyJyAoIQPKevUjauwfyoCfdmLoWFlC2b4azdWT4xfAq4rLPFtxGuhZUMe9VtVexO3OegewLd015Yinp00VScC+m2Gy+BRvFX0YDheMypMu0iFwkPFsDk05Lv4/++/JEOncD/ZYBdupfPLYw0segRm5io4Uf8l8nNw4SgKVRJNp+/Pe+UIYXM+z1XOBhW8LFqlKGheOKCllLkHohJeJiuy4Jbf0XsiSg6jh5stIpzfuqeNCmDuQKOdbcWoN1N9eJ6rmVoRU+bf6pEAQpvKIvj4hA4IjXkRMZCeMGDeCxcQN0TTT7S8sUH6pUkXK/Ye3amP5Gthh9+Kz5Zxhec/jL582OfQOcX0m9dVIXCM2pt5oO2FevlB+HtogHFYeK/Nr+y6/ngzDn7zvIUeaitrMF1oxuDDfrIsS/2AdSMhfrLy3E9vweaDJeZRvMyLRITD48GQ8TH8LWyBbru6+Ht5V3sV8PdckE9OsPZWoqHGfNgs2okdAmlNnZeNyvP7IDA2E5eJBYMC5JtXHJtSWii4yYUHcCpjearnpFOzMJ2DlZshXKtxoir2c9Q5Wff/O5IHy91w9yRS687U2xcWwzjT8oVAcVOYaU9WuTR0UVJOZZfncLrtcxMoJ+u1a41dASv1rcgX9qQMFttNhHSTkl59SerLYuDkUOcHGNdDyQnQrQ4n73b6S/jRI8R7NvDiM6JQt7prVBXVceq9MUsh48QEDffoClBYZNSRci02dHnIUejecWtZh5eb00TkTfGz0joONnQMt3Xqn7oS4h2IN3IkVL/NlHcVAocwtuq+9mKWbYybXDRRVL1TKOIZykv4ooP0kAIT8hT418zrsoA+xrAu5N8xLz5pLQWzm1t9Fq16wzs4TPbn71nBJ0O2O7p+6Xk5CAoFFvIPvRIxh4e6PKr7+w1VoFRx4djYft2ovv5s2f38fXdxcJC6Nd/Xe9+oc85j5weM6Tg1aCKuv0A+3dGZBpWWNOdhoQc0+yXqK/8wbDVZ6Z4oNQ7YZ+pCk5/+V8kLhMbXDzhzSAsUERDhju7gF2TgKyUwBzZ2DYZmlRVkVo9nzakWmIyYiBg7ED1nVfV3zhprzZ1KAxY5Bx+YpYcK2y5TfhQ65tkLd70Ogx4sDOdcliWHQr2YjNhtsbsPDKQnF+SPUh4rdQnxZUVG3pPf0TcPRreoeltvdhvxTJ9vRKUALe+e2qECK0MzPAhrFNUd+tiMrZWgbHx5KhzMpC6pEjSNy5C2lnzkjfQ0JPD8atWiK4uQf+dArCybiLUNJ4DY2z6eqjo3tHkZi3cm2l+ndcVcgFYe97knI3Qa3M5Fihgnr7qxazanx+QGiCnP64Y9EWSZmyOV7U1cX4z8yQmpOO7X23F7/Ti7S4/v6f5GBFONWTFj6rtEJZEZ+Wn7CHC92Q/HydDn/JYnVIYzd0r+MkrOBKC1Z3VyeRt4Dj855cJmEMSsidfSV/aaqQO9YFDMo/sJBgzqqbq7D5zmYochVCfOizFp+hu2f3Z+5L4iLBEyaIBF3PyQke69Zygl4J0HdwEAsy9Ll3inPAQn1TBCQF4FzEObRyeUWgpKr5iC3SSMfpRVL7Uv5m5gjUGQTU6CkFXDWLHpYIeQYQ/xiIuSsl5CIpvyO17NGBd2FlUjUJmzCaS1aOAjO2Xsf+25Hih/mj7jUxqb2X6tUmpUISxDn145ODVfLcJvExFTkechwfnfwIGTkZqGZdDcs7LYezWclsu2IWLxEJOnVCucz/QSsTdMKkaVPR9h63dh0iZn0Oo+rVYeBZSNyyiFCbu7mBOb4695VwNQlJDsGCDgtUU80Xs5UfSL/z2ycAYVeA1e2kz1vF2VtqfydRuXEbL8EvIhmvrT6P5SMbolNNNbUeMxVnzvzWLSTu3InkvfugTE4uuM24cSMkdfDFXo94/BN3HKnyc0CsdJuvva+YM6fjvOI6Qbyye5QWqa7n2UnSqGTXuUDD0WqZLSYrLUrQCSsTScSY0ax2d1okamhSE6eSr+J27O3iJ+mk0fLGTknn6N/PpPxqY0+g7hCg21eAhQtKGxtTA4xo5iG22NQsHLgdib+vh+NiYDxOPYgVm7mhHvo0cBEJeyMPq3LVE+FK+quIDwBO/PAkKXeihFzzRAfooO/bC98iIi1CXO5WpZtI0Knt6b8oUlMRPH6CmFuU2dqiyi+bYeilHos3RvPJ9yS2fv11bOqhj9/u/obmTs1FJa9IUKvv5Q3AzW2SmnU+hhaSO4EY9WgmuRaoaMVSLKjKQM+fHAokhUl/szRLGvdISs7p+hdBYjcOtQCH2kDt/kCVlio9JVeKtJPUrBy8tfmyaHkzkOli8XBf9KxXhOQ4Pf6J8wHRfLJ0cKHiohQdiP/i9wsWXFkgKmC0MLag/QKYGZRMNDRpz16Ef/CBOO8yfz4s+xayVtRCcrOzRTU94/p1sajo+duvkFmVLIYcCz6Gj099LBZGPMw9sLTT0gLrUZWgWELWenRgSd1z9Lm3mKJyxxx990j7gBSIyZb624H1MLyZasKC2gbHR9WRR0Uj+Z+/RdWcFs/z0XN2hm6vTjhVX4Y/0k4hJCWk4DayZ6TEnKrmVSxKyV6Rxj1IDPPcCiAnbyi54Sigy1zA9OmuzJIQkZSBlvOOQk9XBw++6ckCixrGvYaNkJuRgRMLh2N59HYMrjYYc1rNKfkDp8VKiz9XNknFEhIypHjaalrpHi++gKC4NOy4GoYdV0KFkGw+XvamIlkf1NANTpZGqHTt7suXL8f8+fMRGRmJBg0aYOnSpWjW7Pktg3fu3MHs2bNx5coVBAUFYeHChZgxY0al/vGISI3Adxe/w9GQowXBe2azmejo8XzbH2VaGoInvoWMq1fFQY/H5p9FpYKpPCQfOoSwaf+DgZcXTP5Yh147ewkF5F96/gJfB9+iP2BONvDwMHBvL3D/AJCet8RfGBNbwMYbsPUGLFylH3nSbSAleQrOZAOoZyDN9ZLookKed5oN5GQCGYlARsKTTSTl4UByGJAS8axQ438h+zi76lIyTqJQ+Yl5MQ82KlocqQyvLS41C2M3XsKtsCSYGsiwdnQTtPIpwucfcVPy0CY7TT1joN8SoL7qNpXkgT777GwcCjokLtPBDi2klrQtNe3sWQS/PQmQy4V1puNHH6KitFoGDh2GnKgoGNWrB48N6yEzL5nY6v2E+/jf0f8hLDUMZvpmmNd2Hjq4d1D9AUifY88MaWGSqDsY6LdU5YV7uUKJz3bewh+XpYXDL/vXweiWxe8S0FQqagxR12sjB4a0M2eRsG0rUo8dF646+XPmxl064l4LZ2w1uYPLMVcK/g/NA9PoYn/v/mji1KRktmmvGgO7vBE4tQDIiJeuoxHOrl9Jgsdq5m5EMnouPiVGQS7P6qr2x2dKxoMOHYVmVfTSDzE1fCGqW1fHjn471Pe20hjx/o+BkPNPjtVaTweaTyqXgqhSmYvzj+Ow/Uoo9t+KRIZc+tukhdVONR0wskUVtKtmDxldUdHb3bdt24b33nsPq1atQvPmzbFo0SJ0794d/v7+cHBweOb+6enp8PLywtChQ/Huu++iMkO2ar/5/Sb8YKkyoKejh9F1RuPt+m+/0FpDmZGBkMlTRIJOaqDu69dxgl4JMW3eHJDJkB0QAPdEpfjR3/FgB9bcXIMVXVYU/QEpua7ZS9qoFZgqTaGXpLZ48sektnJKqmmjy6WCjtRyT+1S1p7SYkD+ogCd0mIAWyBVWhLSsjFy3QWh7krtbpvGFXEu+MZW4J/p0oIRfb/IXo3m6VSErGveO/4eglOChejOB00+wOs1Xy9x1Sjl6DGE0W+hXA7zHj3g8P57qEijOe5r1yB49BjRBhzy1ttiLItU64sLHWBu6b0F7x57F1ejr2La0WkYWWsk3mv8HgxoofBV0FjbwNWAaxPg4Ezg9g5pfIa+DxRrXvWaZLr4fnB9WJsaYPWJAMzefUdoKo1pVfES9Ypa6CkJOfHxSPrrLyRs+wPykCeVceNGDRHfyRe7PKJxIOYkMtIygDT6VdNBM+dm4je6s0fnktumvQxaCL+4VrJVy0/ObatJbi41e5fa72dinv2apbEGjcgxT7W8U5LurSPlZCRySgvOJe3+KoBGicYfkIo8VFmnsUSy9aMOjuZvA03flI7fyghdXR208rYT25f9c7DvVoRI2C8+jsfhu9Fic7M2Fu3yw5q4w95cNSHR4lKulXRKzJs2bYply5aJy0qlEu7u7pg2bRo++eQ/3s3/wdPTUwTXylhJPxt+FvMvzRd/LEQjh0aY1WKWmG18mRBJ6JR3hAgJHeRQVYLEhZjKSeCoUWJ+1fHzWUjr2w59dvUR7bdb+2xFHds66n0ysqiiFnTRfv4ISInKS9pjgfQEqZWOqvHktUoVdDpYzq+s5583tpZaoMQpbTaAhbNUlaeNrF/KcA6+IsSRyvLakjLkGLnuPG6HJYsf1K1vtYC3vYoHGDlZwIGZkjIt4dMVGLxW+g6qAP1NbfPfhgWXFwhLMCdTJ9HeXt++5NoH1B4bMWuWqMKZdewI18WLoGtQ8WY6M/38EDR2nJjRNapbF27Ll0Hf0bHE7icLry4UowcEKWD/0O6Hogn3BZ0D/hwDpEYBNAtM34vqz+q/PA867PrhoD9WHpfam7/oWxvjWpdMgKsyxhAq9IwePfqpQs+ff/75wkLPpUuX8Mcff6Bx48ai0PPxxx+X+jFkcFwaTO/fRuaO7Ug5eBC5cikp1TU3h36fbjjT1BRbMk4iNPXJWJanhadoZe/j1afEWhWvhH6bL60Hrm4GsvLm4K2rAm3fAxq8XuqCsAduR2DSr1eFdsOOyWUnIMaoRtCYsUi/cAEuC37E8Mxl4nu6sstKtHFto/63kIo8tPBJmi9k+0vQwhTZX7aYLC2QlxOPYlKx5UKwSNjpmELsmkxHiMyN8nVAQzMlDD08Kk4lPTs7W6xmzpw5s+A6XV1ddOnSBefOnVPb82RlZYmt8JujrQQlB+HHyz+K+XOCRELeb/w++vv0f2nrE1XQQ9+ZKtoidUxM4L5mNSfolRyz9u1Fkp564gQ8Ro4Udi17AvZgzY01WNxpsXqfzNAccG4gbQxThtAc8NiNF0WCbmtqgC1vNlc9QSd9gz9GA2GXpcvtPwHaf6SyZUxoSii+OPsFLkZK3SNtXdvi2zbfwoqEl0oAHeTHLF6MuHXSwoHlgAFw/vor6OhpmbuCihjVrg2P9esQMvEtZN6+jcAhQ+G2bGmJfsP0Zfr4qOlHaOHcArNOz8K9+Ht4bc9rwqJteI3hkKnyGZN+xVsnpEQ95AKwZRjQYSbQjr4jL29Fpg6Kj7rXoP4frDj+CHP/8RPtkxWx9b00+emnnzBx4kSMGzdOXKZkfe/evdiwYcNzCz1UFKKNeFUhSB3QeCFZCjrEhRVcZ1ivLqK6+WKbWyiOxfwDZYwkmkbjFz2r9hTHc/Xt6pfubDYlQ4+OSXZqD/59IqBKoshtPwDqDCwzt5aEvEq6FVfSNVo8TpGQiEaejUSSfiXqSukk6RR3aYSMRIj9dgFnFkmdmRdWARdWAz5dJIvTat3K3E2Ijhs+71MbH3avIazcyL411D8Q9r/vge688zho64b2+3eovSOk3H7VY2NjoVAo4PifFXG6fO/ePbU9z7x58zB37lxoMynZKaIV+de7v4rZYZmOTPhaT24w+ZVqnorUNIROnixsbUSCvnIlTBo3LrN9ZzQ3SY9Z8BPSL1wUizgT603E3oC9QtvgevT14s2mM4wGkZGtwPhNl3AtOBFWJvr49c3mqOao4kxzwAlg+3ip24Nm5AatA6p3U7l6/qf/n0IcjkaRaJaUkr8RNUeUeI40OzQUYe+/j8wbN8Vlmwnj4fD++9BRg8qyJmNcrx48//xDdIORdy9Zh9q9845QgS/J4kQ7t3ZivnLm6Zm4EHFB6Lvse7wPc1vOhY+1z6sfgLp5xuwBDn4KXForOcGEXQUGrXml+BElYXTAR7nY8mOP8MXfd2Braoje9Uu5clpB0IZCT5rMAIn6JrCQ6eO4R20c8jVEVM1HyAZZf6KgE3Jw9cFi3pxiRalCYq/Xt0iaCqTnkg8lP00nSslPGccS0gohbM0qXhdQRUBmI3WNKeLj0aR5E/z96G9cjbpayk+qB9QbIml+kF3bmSXS6cND0kbdk2SZW28Y4FATZQlZs/XWj0fLRzuQdPhf6NCCF8WjjESYkWaJsXodFirm0nshKIDT3HvhAEst9doAJeS7Hu7C0mtLEZ8pzQi1dm2Nj5p8pJIqrSIlRVQfSCGXWtxpvs+kUaMy2HNG0zGsVg16Ls7ICY9A2vnz8OrYEQN8BmDnw52Yf3k+fu35K6usMlrtgz596zUxR0Z2Kr+Mb45aziq03dL0F63e00wc+Q/T3Dn5YqvoBXwr5hbmXZyHW7G3Cg7Av279NdwtSvabo8zORvyGjYhdtQq5mZlCU4Sq5yX1ENcmDNzdUeX33xExcyZSDh1CzKJFSPn3Xzh9+SWM6xZ/RMfexB5ruq4R9mw/XfkJN2NuYuieoZhQdwIm1Jvw6sSJxnJ6/wi4NgL2vAs8OAis6QAM/00SqXxFov5BtxpIzsjBL+eD8O6260IzoaW3bbFfT2VBGwo9RvqAwdwB+C7sX/jJ7xRcr8wxgz1aY6LvcIxo2FjMwZZqO7vf34DfbiC8UHJFi48NRkjJuZ0KC1KlRGyqJPpqZ1a6s71M8dCzlcRVc+Li0NixvzhPv280vmUoK+XPTEcH8O4kbTQuSUrwZN9GC0wkbEibYz0poa/Zp1S/xzSiRN3IZA2afl4SuaO/Wr0mDXGpnQuC63igTb5lXUVI0u3s7CCTyRAVFfXU9XTZyclJbc9jaGgoNm2CvgxHg49i8bXFeJz0uGBG6cOmH4qVf1VQJCYi+M2Joj2QDuioXZCqEQyTf3BI1fTE37ci9eRJmHfsiKkNp+JA4AFxkHow6CB6ePbgN4vRSr7ddxf/+kUJm7X1Y5uinpulapZDu6YA9/ZIl31HAr0XAPqvrm7FZsRiydUlYpGLMNEzwbSG0/B6rddLVD3PVSiQvP8AYpcuRXZQkPTYTZvC5bt50Hd1RWVDZmYK1yWLkfzPP4j85lsxrx44ZAgseveG/YzpIpEvDvQZDasxDO3d2uPrC1+LkbLVN1eLz3NGoxno7dX71Z+j7+uSY8S2N6R5ynVdJOV3OoB8RSye068OYlKycOBOpLAI/GNSS9UWlRiNL/TMi9iEBHmC+P7Ut2kORVJTXPR3QqBSF589iMKmEycxtZMP+tR3KZFidAGk70LCrVR59N8PRN1+chtZB1LV3HcEUL0noK8eS6mSQF7VhC0n6RqJzFYSbVPEx8Hd3B0Oxg6IzogW1fSWLqpZ1qoFW2/J9rLjZ4D/XuDmn1JVPeqWtB3+ArD1Aar3AGr0BNxbqKUlnn6DUw4dRtzatci8k7fQpqeH7M7N8U9TYIfyCnJyb8E82BzTm09UezdMuSXpBgYGQrzjyJEjGDBgQIFwHF2eOnUqKiuXIy8LQRtKlAgrQyu8Vf8tMSdHc3SqQCtewRPeRNa9e5LN2sYNMKpVq5T3nNE2CpL0EyfEwpCDiQPG1RknHAMWXVmETu6dVFM8ZhgN4uezgVh/Wlrc/HFYAzSraqOavdqfYyVhQ/rO9/wBaDz2lYrGydnJQnyMtjR5mriOBJ8osaMKbXGhEZTkvXvF3Hl2YKC4TmZvB8ePPoZFn96VusuFXrtlv34wadEC0fN/FAk7vVfJBw/CokcP2IwdW+zKuqOpI5Z0XILDwYeF2B9ZtX16+lMxakb6L6S0/Uql4rfzRiUoSdoxQUqYun4J6L24WEDJ2aLhvhi9/iIuBsYLHYW/prSGq1Uptz9rMdpQ6KFjtvF1x4uqI82ak3Bkvjf4prOB2HI+GA+iUzF963UsOvwAkzt4Y2BDV+ECoDKKHCDaDwg6I82ZB54G8mJRQWJetS1Qqy9Qqx9g9qygXnkSV1BJ52MNTUTPRurqyYmLF7GXEvPdj3YLAesyTdLzoYUlaoOnLT1eml2nLpHAM0DcQ+DcMmmjThGPVkAV2loDzvWLJC5M2i9Jf/8jkvP832CySIzsXA/r68Xgus4FQOp0Fx1ztMhLLlvqplzb3Wl1csyYMWjSpImwzCBlzrS0tAIREFLtdHV1Fe1G+TNIfn5+BefDwsJw/fp1mJmZwcen/Np11AH5ty6+uhgnQ0+Ky7QaM6rWKIyrOw7mBuZFmlkMnjAB8qBgyOzshIo7+6AzL7Ji0zE0FC3vNOdJ35MxdcaItk86ON10Z5NYIGIYbeGwXxTm/iOtdtO8b78GLq9ub7+0Djj4meQuYOEGvLYZcH25bke6PB1b7m3BxtsbRaJOkCvCJ80+KbaeAy2UZd64gaS9+5C0axeUKSkFwj0248bCetQoyMzUZHtTQSzaXOf/ANtxYxG94CfhXJK8Z4/YSAXesl9fWPTqBT07qV1TVehAlOaDqWvtV79fsfbWWvjF+WHCvxPQ2LGx0IJp5tTsxQslZBc0aodkJ3T6J0n0KPgcMGTjS23aaNZx7egmGLr6LO5HpeLtXy7jz7dbwdhANaHCyoa2FHrG1h37zHXOlsaY2bMWpnTwwWZaVDzzGI9j0/DR9ptYfPgBpneuhkGNXKH332Sd5l/J0pTEtEjQMvQKEHEdkKc/fT8TO8CrA+DTWaoslqGFVVGJS5Mq6dzurpno5VfS4+LEKQnGUZJ+Ouw03m/yfvnunImNJCRHW2Yy8OgIcP+gtJGN4P390pavEu/W9ImIMY2yUeX9PyKhontt3z7ELFsm8iiBuRlud/TACp8gxBpek55azwR9vfuK5JysPSukBRtB9mv5Hpe+vr5YsmSJsNIgOnToIKzWNm3aJC4HBgaiatVnZwPbt2+P48clxXNtsxd6lPgIq26swsHAg8hFrhCFG1xtMCY1mFTkSkymvz+C33wTiphY6Lu4CB90w+e8XwyTT/DbbyPtxEnYz5gBu0lvi+tI5X3mqZnQ19XH9r7bVdI/qGxoWhxRJ9r62vwjUzBwxRmkZyswvKk75g2q9/KKc0YCsHvqk/Z2av8csOKlB7Qx6TH4/d7vwlYtPzn3tvTGOw3fET7GRW1tz83ORsaNG0g5fBjJ/x5CTkREwW367u6wHj4cVq+9Jtq8mZdDre9xmzYhed9+ICdHulImg2mrVjDr0B5mbdvCQEWLnMLEZcSJ3+gdD3ZArpSUqBs6NBQVUkrkX/qZ08HizknSASMttvdd9Mr299CEdPRbdgbxadkY4OuCha/5al3nRFlasFGhZ/Xq1QWFHrJYo5l0mk1/WaGnV69eGDlypNiKUugpjdeWlpWD3y4EYc3Jx0hMTYMjEtDEOh3j6umjgWkCdGL8Adpi70uLif/F0AJwayIl5l4dAce6ZS4AV1wafXVIfNcPzGiLmk7a83tTWcgKeIyAXr2ga2aGGpcvITEzEe3/aC8EUg8POSy6jzQOpUJavCKbTOowCToLZCY+ez9qTXeoJRZPcy09kfIoGzF/nUF2ULi4WWFphlMdbLHBOxSZhlIMJqvr16q/hj7efWCqX7zf5aLEkHJP0ivrAWhAYoD44acZYErOiW5Vuok5Rk/LotuwpF++jJDJU0T1hUTB3Netg76jZrU1MZpH4vbtiJj1OQxr1YLXzr/EdRQSphyZIlZKG9g3wM89flbNkqgSoSlxpDTQxteWnClH/2VnRDWqtY8tNo1r9vKW0ZBLUktyUjCgqy+1I5MP6wuSobtxd0VyTgtY+Ymah7kHJvtORk/Pnir/fVAbe+bde8i4egVp5y8g/coV5GZkFNyua2ICs06dYNm/P0xbt6rwqu2lQU58vEjUk/75u0AFPx/9Kh4wbdkSJg0bwtjXF/oeHionwJFpkaJzgjqNspVSiy7NaL5e83UhumlmYPZiK78dbwLBZ6XL5Pnb43vAwOSFz3XuURxGrb8gBBA/61ULE9tp10JpWcYQjS/03P5LShAUckCRnXcql6rftFBIt2XQloDctBjkpkRBF5It23MhsS77GlK3DyXmVB20raY1SXlhchRKVJu1X2po+qwL7M21Sz+qMqBISsL95i3E+Ro3rkPX0BAj940UI7lftPwCQ6q/fNFRI1AqgZi7QMhFSaOBOlEibxeMhaRFGyD6mgUyE6SRixyDXBxsroOtzWTIMtAB/bp3ldlghIknGhq7QMfQTIrfVJ2nRVr6/adF2PpDVdodTtLV9OaUBgFJecn54yfJOVVgqIWuhk2NYj1mytGjCHv3PeRmZcG4cWO4r1he4G3IMC8jJyEBD9q0BRQKeB/YDwNPz4ID0v67+iM9J1208I6sNZLfSA2KI6WJtr02pTIXb/96BYf8osQM7z/T2giF7BfcGTi7BDj6FUksA9aeUhsyKXP/B5ox3/94v0jK7sQ9UWb2tffF2Dpj0cG9wwuTc1royomMRNajAGQHPELm/fvIvHUbWQ8fir+1wshsbGDapjUsuneHaZs24iCIUQ80S0gdCmmnTyP96tUnFfZC771RnTpiYbtg8/GGrpHRS7spSINg+4Ptwh41v/WRPK4pWaeFzWcSf5obPvE9cHK+5EltXwsYulGq4rxEW4Fs2UhLjBad2lUvvsZBWaNtMaRUX9ui+kCiJPqoKrkyAyTp2+N+hiWClXZ4qHSBkUttDOreGR5etZ5p0dVWSCyx6TeHxdrow296qUc4j1Er9Ft2r159ETt9jh2FvrMz1t5ciyXXlqC1S2us6rpKO99xpQLZt84i+qfFSLkg/b7nGAD7mujgr+a6SDfSgYVCgaEpqRienAqn//xuPwPZwr0ndem8Ck7S1fTmqBOaadtwewMOBR0SbSIECXNRJaamTfF9/hK2bkPkV1+JAz+zjh3huvCnlx5gMMx/IRcAOogt3PJObLu3TSgdG8mM8GuvX4u9iFQR4YNQzWHF8Yf44YC/UHL/c1JLNHB/gT91YgiwazIQeEq6XGeQ1H5MAjN5ZCuyRQcJdTiRwjf5nBN6unro4tFFLFbRzDkduFDXkjw8HPLwCOk0gs6HQx4ahuyAACjTCok3FYK0Qozr14dpi+Ywad4ChtV8uGJeBihS05B+4TzSL10WtqSk1EviQM+goyMORPXd3KTN1QUG+eedncXnp2tgIHQJqLPit7u/icX3fMiJhUTCaK69ikWVpx874ATw10QgNUqqiHb5Amg++blVUPqOfbzjJv64HApLY33smdYG7jYvrr5rEhwfC/HPDCAtRhKtIlFKOqXuHXKNMLICjK0B47xTGrUhXQxTe/GdIOXz5cce4tfzQZArcqEv08G41lUxrZMPzMnfTcu5F5mMHotOwdbUAFc+71reu8O8gAft2iMnOhqe27cLUc7ApED03dVXCKUdf+04LA21qyioSElB7MpViP/lF0Auh1IHONxQF9va6iDFRAdVLapilHd/9LGpDxOadae/3/Q4IDvtyUadMHSaq5AW/02sgf7LVXp+TtLV9OaUFPqRvRB5ARtubcC5iHMF13d07ygq57Vsi6+4nqtUInrBAsSv3yAuWw4aBOcv50JHr1y1ABltbnmvWRNeuyQLKYIWk6jt/UzYGXGwubX31he3dFYy+CBUMzj9IBajN1yAMhdiBn1Es+fMHFMv5Y3fgf0fA1nJUotaj3lAozEiIcvISsPlgJM45X8Q1wPOAmnpMMnKhUkm4Jlrg8b6PvDKtYVeYqpopSYBHTolv/KXoqcnZqANvb1g4O0tKrZkg6nn6Kh1M8YVEfKez7p7F5n3/IVwptju34ciIeGV/5dsTfVsbcVGSXuciQJ+yjDcyHqERH050oyANEMdODh4omm1DmhXsxd8HGtJn3tqjLRYRPZBhGdbYMBKwOpZW6+sHAWGrT6PGyGJaORhhW1vtyya8nc5wfFRvQTEpOLrvXdx9F50gcjaRz1qYEgjt9L1WC+D+E1jHdUdzfDvu+3Le3eYFxAwaBCy/O7CffUq4QpEDP57sBC8/rLVlxhYbaBWvHe5ubnCDSTqu++hiI8X112vqoPNnXURaq8jOgNG1R6FVi6tSmSd+io4SVfTm1NcFEoFjoYcxfpb6wvaJEkQrkfVHsLiqqQVSWVmJsI//gQpBw+Ky3b/mwa7yZP5wI8pfst723ainclr/76nxAYTMhMwbM8w0f5Omgk/tv+Rv2dlfBC6fPnygpnLBg0aYOnSpUIk6XncuXMHs2fPxpUrVxAUFISFCxdixowZ5fLahNwJrTDnnYrhnsKX6bTQfeiyqGzK5cjNyXmyyXOAnLzr8m+T5yApJQPz/rmF9IwstPKwwOA69sjNyoQyI7PgVJmSgNyAs1DGhyNXoQOlzAK5Zh7IogQtOUEk5AaZr2hjewkya2up6urqIsQ69cR5Vxh6eQnPbh0DthXSNnJiY5EdHAJ5WCjkoaHIDgsT3RF0Xk52X8+rvquAXE8HSmND6JmawsjUEjJkQDc1GLoyBXT0ZdD1bAJdl9rQMTGGrpExdE2MoaNvgER5LhYdf4xUhQ461nVB/6ZVoKOv/5/NoNB5PakzQ2wy6FASJ5OJBSlxvUwmxXC6Tlf3yXm6XU2LR5yklw7H/KPx1T9+CIiVunSaelpj3qD68HHQzsXz3dfDhP1cK29bbJkozT0zmttt6fztt7AaJCXkNLa7/PpyNHdujnXd1kHTyQ4ORsScuUg/K2mDhNoCv3TSxS0fffTx6StG2LytXuy+oU6KEh+57KpGUrNTsevhLmHNE5ISIq4zlBliULVBwtrK1cy1xM9BHuihU94RisD0g+z8zdfCM5ZhiouetTVMW7QQQZgWfgwnTSq4zdrIWiTmYw+Mxb9B/wo7IrZlKztIvZisKletWiXEkEi9uHv37vD394eDw7PCkOnp6fDy8sLQoUPx7rvvlvr+yaOj8ahL14Iku3DSXRYUGC1dAaKeNIE8h3y/aRL8eijO/Td9VlCiZG4GAwtryMzNITM3g8zaBjJbG+EVK06pempD10lVVBJ6YyoWZNkmbNsaNXzmNjHmkJwsEvmc2DjkxMZInRXifCyUKclQJKdAkZKMnKQkZCclQDctAzq5gH5OLpCSKTY54iCl+tSynNe2HHQDAG3PMjn/zFUgbHOpvfS8xF63QECxIGXX0YFFz55w+f67Unxy5lV0rOGA1t52Qq9g4eH7uBSYgF6LT+Gdjj7CY91AT/O7LAoTm+eRbmvGOhxaYcMWL9mwEWQ/tuL6ClyIuCDyHRLR1ERy5XLErl+P6BUroJstR7YM2NFaFwdaGaJ/zcH4ru44uJi9wqq1HOEkXQ0EJQdhy90tIkEnoS2CvM1H1BwhlF9tjW3V8TSiHS9kyjuQh4RA19ISbkuXwPQFFTWGKQoWPXuIJD15/wHYFUrSCRJC+rjpx/jmwjdYem0pbI1sMbj6YH6Dy4CffvoJEydOxLhx48RlStb37t2LDRs24JNPPnnm/k2bNhUb8bzbSwOyEVMbVNmjaqCenjS6U+i82PSl62IzFAhOyoZSJkO9KnYwMzWCjpGR0OPIzk1HQtRFxGRHI9JIhiBjA8QbAFl6QLY+kK0nJeRVnGuhnmczNPZqB2+3+pCxYBvzCqjSTKKstBl6e6s8mpaSGI2rj07hZuB5+IVdQ1JSFAzlgIEcMMrbXDMVcMvIgXO2Dmysa8PMsjp0cpRS94hcjvthCYhJSIWxjhK17Iyhp1QU3Pakw0Q6L8QJ87tV6Lyqi2a0wEZb/r4Xfh3/Ed1jygdKxEntv1d9Z3y+67ZogaeEfc/NcPw0zBf13LRnPjguVbKTo5l0RnOR2Ug5TE6c1CJOUNGxhXMLMcq788FO/K/R/6BppN6+hQcf/A9GgZGg5atbVXTwa28TdGj9OvbVHg07YztoOpykFxOa1z0Xfk5UzU+FnipQavey9BLiQn28+sCEZh/VRMqRIwj/8CMo09OFf6776tUw9GIPdEY9mHfujMg5c5Hl7y/8ho1q137q9uE1h4uW9/W31+PL81+KCnsnj0789pci5OlLbeszZ84suE5XVxddunTBuXNPNC5KSlZWltgKt2KpClWTfY4cflJ909GV2mvpfN51ooX2BbeL2wrfVwUbIb/wZIxafkYk41O6msPIIxOPkx7jUcJD3Is8gYicVKAO3fOJh6m+rj7q2tVFI4dGaOTYSJyyvgJTFtB32sLGCR1shqJDU8miJyQ5RBzcXo66jBvRNxCeRr689N3PFwMLgH5uAHwsq6Kmg6/w5nUxcce6v2PxMNwAbas54udxzVSeRy4YPaHEPf9UQR0vSpHE5yfz+bcV+o9PXgcL0moU5GSxfkwT7LkZgbn/3MGD6FQMXHEG0ztXE1V1PS3QLiBhPMLOjJN0TUbPLj9Jj33qeirWiCT94U683eBt0TmsCWRkpeHs/A/h8PsxGCmAZGNge3czeA0fh19qjdQqoTtO0otIVFqUqJjTlzIsNazg+nZu7URy3tK5pVpndulHM3blSsQuXSYumzRrBtfFi0SLMsOoC5mVFcy6dEbK/gNI3PEXnP6TpBPTG01HfGa8+O6/f+J9zGszT+gsMKVDbGwsFAoFHB0dn7qeLt+7d09tzzNv3jzMnTu3WP9XRyYTM9ilQZYiSywMRaRFICI1QpwPSQ7Dgft+0K8aCUP9FPwSTANzz/5fj1wZars0R03nZqITpJ59PY05gGAYdwt3sQ2rMazguOJGzA1ci7oKv6Bj8E8LQ5quDu4mPxZbAZaAmYUMV7JtMOivqmhdpSacTZ3haOoIJxMncUqdTv+1BiyYO6d5dH77Kwz0ufZt4II2Pnb4bNct7LsViQWH7uOof7Soqle1e7JQqYlEJktJuoMFOxJpMnr2kv1jTpQkXJgPOVQ5mjgiKj0Kux/uLohn5TpyfHI1LH/4GT7B0kDR9VqGUH74FuY2HavWwmlZwUm6CuQoc4Qtz477O3Ay7GSBhRq1tPf16ovXa73+rNWKGiALn/BPZiLlkKQCaz1qFBw//ki0gzKMurEaPEQk6Ul79sDhow+f8WumA4LZLWcLWyqyqPro5EdIyEoQYx3aDgV3CuClqeipqVClnubeC1fS3d2LP19G8ZHEM+VKORS50inZVZHvOI0D0ak4n3ddUnYS4jPixXcpLiNOLATR+aSspOc/ATkY5Z21N7JBVbkCVRNC4SnPQY1cfdRs8zHMm771XFsrhtFEKLnuZtoN3Ty7Ac0/gTIxBGH73oV/6GncNTDAYxNzBFo6IlieLBavZIYxeJQWg0d+F595LLJFsjexh42RDayMrGBtaA0rQyvR/USndNxirGcsvN3FqX7eqZ4JjPSMRIJPj8EOBNqDtakBlr/eCLuuh2H2rju4FpyIPktO4bvB9UUSr6lEJEoWly6W+ZohjCai5+QkTuWREU9dry/TF4Jr31/6HhtvbxT6W2RXWtYkZibi17u/wv+vTRi7Ow0m2UCmoQ5i3uqHgW/PEXFNW+Ek/RUcDDyIHy79gOj0JytI1Co5pPoQ4YNaWh9+dkiIEIijOXRKyp3mfAGrwTwHzJQepi1bQM/FGTnhEUg5fBiWvXs/cx8KwN+1/U4c7G3134pvL3yLgMQAfNj0QxiQB6wWIVfIxeLb3sd7hSf2yi4r0dRJmufWBOzs7CCTyRBFitKFoMtOeT+a6sDQ0FBsxYHiYv9d/QuScUrO80d/1AElD06mTqJaKFPa4PDNLChzrPBF5xYYkH4J5meWA/I8P/IGr0u+0+bqe28YpjzQtXKH++vb4X5vH7oc/BQIfwyEh0Lp0hARbb/AlLOx8It9BEebNDTz0UV0RpToNInJiEFObo7UfZL29AF1UdGBTkHCTouXtIDwVeuv1PYaGfVCiyoDG7qhWVVbvLftOi48jse036/h4uN4zOpTC4Z6T3dXaAIRSZKNpbOV9iZRlQFyMCFyIqPEaEzhBTxKzNfcXIPQ1FD8ef/PMi3aRKdHY/OdzdhxdxuG/JuGKZelY4+M2p6ouXglGrp7QtvhJP0V0KozfREoKenn3Q+Dqw2Gl5VXqX4oqafPIPz996FISoLM3g5uS5bApOGzSrMMo06oddlqwEDErliBpB07npukE3Tg9mnzT4UgIllwULJ+M/Ymfmz3o2jh1GSoyns9+jr2BuzFwaCDT1VryQ9ek5J0AwMDNG7cGEeOHMGAAQPEdUqlUlyeOrVA17xcoYP3VHnqK+9nJDMSFTtTfVOxUdUu/7yFgQVsjG1E5Y+qfdSuS9U/+n5R3KUDgoxsBXosPgmduEQs9LqKviemAGkx0oO7NQN6fAe4NS79F8wwZUnNXoBPZ+D8SuDkj9ANvwbXbaOwrUpHjMnohguPqmCETw381MunoOsvNiNWtJ9SdYk6UgpOsxKFpSZ1r1A3FHWyiNOcdHE+W/m0ACQtttHj0T8iW6FGgUimVGfVf3uzORYdfoBlxx7il/NBuB6SiBUjG8HdRnPafZMz5UjNkr5bzpacpGsyenkjd7lZWVAkJAiHk3zod32K7xQhLLzs2jL09OwpOnhKk9CUUFG5p9FLy4RszNypQLW8NUmbNyfAYcYMSXi2AlAxXkUpQuqFCzssFDPnpV0pzFUoELt8hZhBJ8EWo3r14LZsKfT/M5PKMKWF5aBB4vuXdvYcskPDYOD2/HljSpwmNZiE2ra18dnpz+AX54dBfw8S4iFjao8RbVCaAlV4L0dexpHgIzgWfAzRGU+6Ykjds2fVnujt1Ru1bZ6dwy9vqA19zJgxaNKkifBGJwu2tLS0ArX30aNHw9XVVcyV54vN+fn5FZwPCwvD9evXYWZmBh8f6UBenVASvWfgHsh0ZKLLgjY6n1+BK3y5JCzcfwNtEv/GNKO/4RSeJ15j7Ql0nAXUG1JgGcUwFQ49Q6DNDKDBCODEd8DVzTAKOoZtOIYD+k2x8vAAtK/+Buq6Woq/N+o8oa2oUEKemZMpumLEyEquQlyXP75irM8tydoCicZ90L0Gmnha491t13ErLAn9lp3GylGN0cJLPW5DJSUiUaqiWxrrw8SAUxFNRtfAADI7OyhiYyGPiHgqSSeos/iP+3/gQcIDfH3ha8xvN79UxmX84/2x8c5GHHh8QMSnGqG5+GSnDkxTAV1LC7h89x3MO3ZERUInV8h6Vh6KYiJflpDHatgHHyL9/Hlx2WrYMDh+9ukzc8EMU9oEjx8vknTbiRPh8P6TWeUXQW2Wn57+FJciL4nLnhaeYmW1W5VuJU7OigtVjM5HnBfOCydCTyA5+4liOVVvO3t0Fg4MzZyaFWsfyzKOLFu2DPPnz0dkZCR8fX2xZMkS4ZlOdOjQAZ6enti0aZO4HBgYiKpVn3V9aN++PY4fP659MTI9HmGHlsHw6lrY6eR9huYuQPuPgIajAA1aDGKYMiH+MXD8O+Te3AadvNGSa3oNUHfobOhX76wRC1YaFUMq+WsLT8zA5F+v4EZoEvR0dfD1gLoY3syjvHcLx/2jMXbjJdR0MseBGe3Ke3eYV/B4yFBk3r4NtxXLYd7pWWefWzG3MHr/aDFuQ9pFQ6tLThYlJTc3V7hgbLi9QYwn5vNmsBe6bnsEnRwFDGvXgvvSpaUmYlueMYSTdA0g7eJFhFF7e0wsdIyN4Tx3Diz79Svv3WIqKTSPHjp1GnQtLFDt2FHompqqFEj3BOzBgssLEJcZJ67zMPfAG7XfEJXq0ra8oHZNarknW0Ta7sbffep2aqXu6N5R2MZRd0xJu2K07UBN615b+HXg6s/IvbENOnkz5wn6jrDu/B7QeCygz+2RTCUn+i4yj/8IPb+/oIc82zTHutLfR/1hgJFl5Y4hpYQ2vrZMuQIfbr+Jf26Q1R8wvnVVfNqrZrnatP1+MRgz/7qFTjUdsGGs5oyZMc8nZOpUpB4+AsfPZ8Fm5Mjn3mfdrXVYfHWx6J5b1HEROrh3KPbbSeM1h4IOYcvdLeLYjhDaGO5dMO6UPnS27BbXmXfrBpfv5kHXRHNGOdQZQ7jHpBwhe7W4tesQs3ix8CY18PGG26JFMCyFtlSGURWzjh2hX8UD8qBgJO7cBZtRzw/Iz1jBePcVQZlUNn+7+xuCU4LFnBIpf7Z1bStGRihBdjN3K9GHQS2Z5Iv9IPEBbsbcFNv9hPui/akw5C1MloiUmPva+5ZbVZ9RkfR4wG8XcOVnIOK6uIpqgn7KKvhdfyA+mP4xYKY9P8QMU6o41ILRsPU4cn4SAvcswHDZUZhG3Qb2fQAcmg3UGQT4vg54tAA49lVqjPRlWDLcF9UczPDTofvYcOYxQhPSsWREQ3FbeSq78zy6dqDvlC8eF/nC+4yvO14cm/396G+8e+xdzGw+U1TUi9L6HpIcgj8f/IldD3YJLQ3CQNcAA3wGYHS1EZB9vRwpB6QE3W7KZNhNnQqdCuzkwkl6OSGPjkbEp58h7bTUvmHZvx+cvvhCq1aDmIorIGczZgyivvwK8T//DOsRw8V1qgotTm4wWcyl//XgL+x+tBv34u/hWMgxsRH2xvaobl0dPlY+YnaS7IJIPIyUvPV19YXFUKYiE1k5WaJNnUSQSLyR2uoDkwMRkhJSYINYGAdjBzR3bo6WLi3FRvPmjIaTGgP47wXu7AIenyRhDul6XX0kVOmBqf71cUZZGxtebwpLTtAZ5hk6t2iKKY8+xOJbAzHZ+hLeNj0F3dh7wPVfpc3MEajVD6gzAHBvAcj4sK8yQonS/zpXg7e9Gd794zr+9YvCmA0XsXZME1gYlf3YUHi+sjuLxmkF+s55NmwRL07SqdI9p9UcUTAhcd6vzn8ltIBo/LG+Xf3nJut0LEez7GfDz+LfwH9xO+52wW0OJg5i3p0SfWuFMUKnTUXKufOAvj5cvv0Wln37oKLD0bocSDlyBBGzPhcqiTqGhnCc9RmshgxhX1JGY7AaOBCxi5dAHhIivq8W3boV6f+T4ueo2qPERlXuI0FHxIw4Vb3JJoi2M+Fnir1/1D7vbemNOnZ10MC+gdgcTRz5b0gbquWhl4CAE8DjEwBV/grjWE+06mbWeQ1DN9zDQ2UqBjV0RaeaLJ7JMC/iy/510S0gHt8ndERGw4l4r1+CEJjD3T1AahRwaa20GZgDnq2Bqu2Bqm0B+1qctFcyetd3ho2pASZuvixs2oavPo+fxzeDvXnZ6h9FJOVX0lmQUJu90v8LFVrmtZknCjHLry0XyTdtbmZuaOCQd5wGnQIXijtxd5CSnfJUok8dkMNqDBPdlySGmRMfj+CJY5B55w50TEzgvmwpTFu1QmWAk/QyRJmejqjvvkfiH3+Iy4Y1asD1x/kwrFatLHeDYV6JrrExrEYMR9yq1YhfvwHmXbsWOwGmYE3bZN/JYnac2tQpcSd/daqQ00Y2XtTGTkrshjJDGOoZwlhmDDMDM7GaSoHd0dRRBHpqYyebrtJQD2VKiFIByNOBlCggORRICgMSAqVkPPIWkBTy7P9xbgDU7g/UHgDYeourFh+4h4fRqeLAcXZfzVPdZxhNws7MEF/2r4OpW65hxfFH6FanNeoOWAH0WSgtiPntljpWMhKA+wekjZAZirZ5ONcH7GsClm6ABW0ugIkNQNodHGcrHC29bbH1rRYYu/Ei/CKSMWTVWWyZ2ELYt5W1ujt7pGuZV/pLKun50LEZtb6TQC/Nqe8L2Cd81Gl7HtRF2dChobg/bWS/mo88KgrBY8YiOzAQMmtruK9ZA+N6dVFZYOG4MiLj1m2Ef/ih+KIRNuPGwf7dGcLagGE0dSTjUZeuyM3Ohvua1TBrxwqs2iweVCqvLTkcWNsJkGdImyLr1U9g4wV4tgW82gOe7QAz+6duvhmaiIErzkKhzMWaNxqjW52i20kxTGVkym9XsO9WpFDM/ntqGxjo6T69gEYLZdTBQqMlwReAQhWs56MD6JsAZL9Wqw/Qd7FK+8HxUTsIjE3DGxsuICQ+Ax42JiJxdymDRD1HoUSt2QcgV+Ti1EcdNcq/nXk+8qhoPGzfHtDVRY3r14qUu1BxhhTaqTgTlxGHXOSKcUQaffS28kZNm5qiYv7sc0YhePQYZAcFQc/FGR7r18PwOe412gYLx2kQuTk5iFu3HjHLlgE5OdBzdBRKhKYtW5b3rjHMS9F3cID1yJGI37gR0QsXwbRNmwot0MEUA119IOU57W8GZoCFK2BJm5ukOu1UD3Cs81LV6awcBT7886ZI0Ps1cOEEnWGK2PZ+PiAe9yJTsOzYQ7zXtXqhv1UZ4OIrba2nC7FaJAZKiXvETSD+kdT5khwm/U0L3Y9cgNwVxCa1JzMVB087U2x7qyWGrzmP4Ph0cVoWiXpYYoZI0A31dMu0es8UHz0He6GZRR3BNAZp6C11vak6/kit67QVZVEgOC9BJ2u1Kpt/1hqLNXXC7e6lSKb/fUR89pnwFiTMu3cX9moyK6vSfFqGURu2b00U4xlZd+8i5cABWPTqxe8u8wRja+Dtk1K1Tc/oSdWNtmK0yS47+hD+USmwMzPAnH51+J1mmOK2vR97iG61HVHX9QWLYrTgSl0ttNG4SWEUOXmJeaY0vkIJusGrrTgZ7YMSckrM8xP1EWvP4/eJpZuoB8RItppV7Uyhq8tja9oAtbAbVK0q5sKzHz8uUpJeVESCPiYvQXdxgcfPlTNBJ7gsVgrkyuWIWb4cj4cMEQk6+U07z5sH10ULOUFntAo9a2vYjB8nzscsXiK+2wxTAClF00y5XTXAyh0wtQUMTIqVoN8OSxLztPkVQRI3YhimaPSp74Je9ZyQo8zFB3/eQHbOs04YKv1dU8eLuSNgUxVwrA1YV+GPooJCCfnvb7WAu40xguLS8fra84hJUWF0qZg8ikkVp172vPCjTVCSTmQ9flxqz6FISkLw+PFiNFifEvTNm2HgVjkTdIKTdDWTcecOHg8dhtilywC5HGadOsHrn39gNXAAC10xWonNmLGQ2diIVc2EbZLoIcOoE2pzp4SC2twpwehVTxKpYRim6OQvcuW3vTPMq6C2861vtYSbtTEC49KFqFxKZuksygfESpV0Lzsz/mC0CIOqnuI0+7GkraVulNnZCJ06DdmPHgk1eY9KnqATnKSrCWVWFqIXLULgsNeQde+eqJi7/Pgj3JYvg76jg7qehmHKHJmZKeymviPOxyxaJFqRGEadLD3yUCQUtqYG+Kp/5VFuZZjSbHsnqO2dulQYRpVE/ZcJzUUcvhOejLc2X0GmXKH2Ny4gr5JO7e6M9mDgmZ+kq7+SnqtUImLmp0i/dAm6ZmZCrNigkifoBCfpaiD11GkE9O0n7KqgUMC8Rw947d0Dyz69uXrOVAisX3sNRvXrQ5maiqh588p7d5gKxI2QRKw8IbW5fz2gLmzNytavl2EqImppe2cqHZQ4bxrXDKYGMpwLiMO7266LDqfSmEnndnftIl9ZvTSS9JhFi5G8dy+gpwe3pUtgVL2Q6GUlhpP0EkD2AKHTZyBk4kTIg4Oh5+AA1yWL4bZoIfRsn/j8MYy2oyOTwfnLuYBMJgTkUo4fL+9dYioAVKV5P6/NndTce3KbO8OoDW57Z4pDPTdLrB3dBAYyXey/HYm5/9xBbq56EvXUrBxE5827e9lzu7s2VtIViYnISUhQ2+PSGGXcmjXivPNXX7H7VSE4SS8GJJ4Vt2kTAnr2QsrBgyJxsRkzBl779sGiW7fiPCTDaDxGNWvCZuwYcT5yzly1BmmmcrLw0H08jE6Fvbkh5rKaO8OoFW57Z4pLKx87LBruKzRAN58LwsYz6plDvhuRLE4dzA1haazPH5AWQRZs+SrrWf7+annM1BMnEPnll+K83dSpQr+LeQIn6UWAVhJTjh1DQL/+iP7ue+EXaOzri6o7tsNx5ididpdhKjL277wDgypVkBMZiYhPZoo5IoYpDucD4rDmVIA4/+3AerBmNXeGUTvc9s4UFxLwnNmzpjj/1V4/HPaLKvGbeT04UZw2cGcrYm3EqF49cZpx85ZahLZD331PjAlbDhwIu3emqGEPKxacpKtI5v37CJnwJkInTxHzGKR27fTVl6iy5TdRYWSYyrKS6rp4EXQMDcUKaPyGDeW9S4wWkpCWjRlbr4M6KIc2dkPX2o7lvUsMUzna3o8+KO/dYbSIiW29MKKZu4jV/9t6DXfCSyZCeD1EStJ9OUnXSozr1xenGTdvlOhx5GFhCJk0Cbnp6TBt1VKMU5IXO/M0nKS/gpy4OER8MQePBwxE2tmz0NHXh+2bE+B98ACshw6Fji6/hUzlghalHD/7VJyPXrgIaefPQ5tJv3IFwRPfQk58fHnvSqXpSPpw+01EJmcK4aC5eSrUDMOUfts7WbKdfRTLbzWjEpQ40SJPax9bpGcrMGHTZUQlZ5Y4SW/ISbpWYtxAStIzb9wstk6BIjkZwW+/DUVMLAyrV4fr4sUit2KehTPMV5C44y8kbtsGKJUw794dXvv2wuGDDyAzN3/Vf2WYCovV0KGw6NtXtCmFvjNVtC1pG5n+/giZNBlBI0ch7dQpxK1ZW967VCmg2cbDd6OEKNHSEQ1hYqBX3rvEMJWi7Z26Vkio+3+/XytRosVULvRlulgxsjF8HMzE4uqEny8hPTunyI8Tk5KFsMQMMedO4nSM9mFUu7bQ4cqJiUFOVNHHH3LJC33a/5D98JEQ2yarNc6nXgwn6a/AZvQbMOvcGVV+2Qy3xYtg4O7+qv/CMJVidd35669g0qwZlGlpCJn4FrJKwZajNMj08xM/Eo/7D0AqqdTLZLB67TXYjBtb3rtW4TnzMBbf7Lsrzs/sVRN1XPhAjWHKCqqI1nQyR2xqNqZuuQq5gjVFGNUgkbeNY5sKD/XbYcmYvrXo1mzXgiWx2WoOZjA34sqpNqJrbCyq30TG9aK1vFPlPeLzz5F+4QJ0TU1Fgq7v5FRKe1ox4CT9VW+QkRHcly+DSdOmZfOJMIyWoGtoCLcVy8XKqiI+HsFjxyHT/z40lYybN0Xl/PGgwUg5dIhWGmDeswe89vwD57lzoO/Ic9GlSXBcOt7ZclUc2A1q6IqxrSQ7F4ZhygZjAxlWjmoMc0M9XApMwOe7bqvNWoup+LjbmGDN6MYw0NPFIb8ofLdfWnBVlWP+MeK0qadNKe0hUxaYNGkiTlNPnizS/4tduhRJu/8WhRHXRYtYz0sFOElnGKbYyMzM4L52DQy8vUXrU9DIkUg7d05j3lFSn089dQrB4ycgcNhrUuVcVxcWffrA65+/4bZwIQyrVi3v3awUQnFvbr6ExHS5UPX9dlA9FolhmHKgqp0pfnrNF7o6wNZLIVh69CF/DozKNK5ig/lDpLnktaceY9MZ1TroaHGWEnuiWx2unmoz5p07i9PUo0eRm6Pa2EPijh2IXbFSnKeiiFnbNqW6jxUFTtIZhikRera28Nzym1hdVaamIvittxG3cVO52rORPWLC1q0I6NNXtOKT6COt3loOGACvvXvg+uN8GPr4lNv+VSaS0uUYtf4C7kelCm/cNW80hpG+rLx3i2EqLeSmMLefJCT306H7+ONSSHnvEqNF9Pd1xYfda4jzc/f44cDtSJVa3WNTs2BupIeWXrZlsJdMaWHSpDFkVlZQJCYi/fKVV94/5egxRMz+Qpy3nTwJVkOG8IejIpykMwxTYmSWlnDfsB4WvXoBcjmiv/9etL9nh4aV2btLbZvp164h4vPZeNC2HSLnzEV2QICYfbIZMxreB/bD5bt5XDkvQ5Iz5Ri94QLuhCeLWcbf3mwORwujstwFhmGewxstPTGlg7c4//FfN7HtUjC/T4zK0HdnZHMPYc02fes1nA+Ie+n999yMEKedazqIdnlGe9HR04NZp07ifPL+/S+9b9qFiwibMUPyQu/fH/b/+18Z7WXFgP9SGIZRTzAxMIDLgh/hRH6XJiZIv3gRAb16Ier7H5CTIAnGlEZinnn/PmKWL0dA7z4IGvE6Ev/8U4jZ6Xt4wPHTmfA5cRyOM2dqrejj8uXL4enpCSMjIzRv3hwXL1586f3//PNP1KxZU9y/Xr162LdvH8qDkPh0DF15DjdCk2Btoo8tE1ugmiO7YjCMpkDV0FEtpETr4x23RFVdWUQxsPJGW+NjRRCPpW6MLrUckZWjxNiNF3HqgTRz/jxV9615i0ADGrqW8Z4ypYFlv77iNGnnTshfoPKeceMGQidPForuJMDt/M3XPOamjUk6B1mGqTg/3NbDhsFr106h/E7BOX7jRjzq0hURc+Yg41bJhYooAU89dRrRP/6IgB498bhff8QuXSaq5jpGRmK11mPzz6JybjN6tJib11a2bduG9957D1988QWuXr2KBg0aoHv37oiOjn7u/c+ePYsRI0ZgwoQJuHbtGgYMGCC227dvl9k+0+e761oYei05Bf+oFNHi/tubLVDDiRN0htG0eP1V/7qY1F6qqC858gCjN1wUNlnagDbGx4qEnkwXy15viE41HZApVwoP9fy588IsP/ZQ3O7rboX21e3LZV8Z9WLSvDmMGzcWx3ixK6VZ88LQMVrQuPFi9NCkRQu4/rRAVOCZoqGTW87SnhRkR48ejVWrVolV0EWLFomVTn9/fzg4ODw3yLZr1w7z5s1Dnz59sGXLFnz//fciQNetW/eVz5ecnAxLS0skJSXBwsKilF4VwzAUWsh/PHrhImTdfaICq1/FA6YtWsK0eTMY+PjAwMNDuCg87/8rEhIgDwtD1v0HyLp/X7SzZ5Inu0JRcD8dAwOYtmoF865dYd69W5kk5WUVRygmNm3aFMuWLROXlUol3N3dMW3aNHzyySfP3P+1115DWloa9uzZU3BdixYt4OvrK2Jsab62tKwcHPePwbrTAbgWnCiuo4OylaMawdnSWOXHYRim7Pnjcghm774tkilDPV283twDw5q4C8s2SuaLAsfHykV2jhLTfr+Kg3eihAf6xLZeeKeDDyyM9bDtUgg++euWuN/m8c3QjpP0CkPa+QsIHitZ1zrO/hzWI0ZAmZKCuLXrELduHR3EwaRlC7gvWybGDpmix8dyT9LL+iCUk3SGKVtIQI58MRO37xDWZ7Ty+hQ6OpBZWEDXzAw6xkbIzZYjNzNTJOi5cvlzH1Pf1VXYIpq1bwfTtu0gMyvbH4CyiCPZ2dkwMTHB9u3bRbUnnzFjxiAxMRG7d+9+5v94eHiIytIMmgHLg6pMu3btwo0bz/c0zcrKElvh10YxWJXXFpGUgUm/XEFcWjYikjILfHON9WV4p6O3qNBRtYVhGM3nUUwqPv3rFi48ji+4zsJIDw4WRuhcywEze9ZS6XE4PlY+5Aol5vx9B79dkNraae6cvNWp1Z14s01VzOpTu5z3klE30QsWiKSckNnbQZmcgty84wnLIYPhNHu2GIVkihcfy7X3gA5Cr1y5gpkzZxZcp6uriy5duuDcC2yc6Ho6CC0MtTfRQaiqB6AMw5QdOrq6MG3ZUmyK1FSkX7yE9AvnkX7tOrIfPxYrr4qkJLE9Dwr8ht4+MKxeDcZ16woVeX0Xlwr/EcbGxkKhUMDxP/7tdPnevXvP/T+RkZHPvT9d/yKoK2nu3LnF2kdDPZmYOc/HzdoYAxu6YlSLKiwQxzBahre9Gba+1QInH8Ti1/NBYsY4OTMHyZmpqO9mCU1CG+JjZUJfpotvBtZDhxoOWPCvP+5FpogEnRZsx7b2xEd5avBMxcL+vfego6+PuE0/QxETK64zrOYDu2nTYNGtW3nvntajV9GDLAdYhtEcqBXdvFNHsRW0tMfHi6o52bcpM7NE+zptZPGh72AvzjOlBy2SFl74zK+kqwJVStaNbgJrUwO4WBlxWzvDaDnU2k5zw7RRG3NAbCriU7NhaaKPykhJ4mNltffrUssBQXHpwnKNtEjMjSrnd6eyxAtSbLcZPwFZ9/2hZ2MD/SpVWCBOTVT4KX4OsAyj2QGefNZpY57Gzs4OMpkMUf9RTqXLTk5Oz3276Pqi3J8wNDQUW3GQ6eqgS+2nF00ZhqkYUMtyTSfN1O7RhvhYmX/XPe1MxcZUDmjk0KRRo/LejQqHbkUPshRcqee/8MYwDKPpGBgYoHHjxjhy5EjBdaTZQZdbtmz53P9D1xe+P3Ho0KEX3p9hGEYb4fjIMExFp1yTdA6yDMMwL4baLNeuXYuff/4Zd+/exeTJk4Vw5rhx48Tt5IxRWNNj+vTpOHDgABYsWCBGhubMmYPLly9j6tSp/DYzDFOh4PjIMExFRk8TgiypFTdp0gTNmjUTFmz/PQh1dXUVs+X5B6Ht27cXB6G9e/fG1q1bxUHomjVryvmVMAzDqBdys4iJicHs2bOF7ga5WFASnq/LERwcLMQ282nVqpWwpZw1axY+/fRTVKtWTYhqqmJPyTAMo01wfGQYpiJT7hZsBNmvzZ8/v+AgdMmSJcKajejQoQM8PT2xadOmgvuTjzodhAYGBoqD0B9++AG9evVS6bnYgo1hmJJSkeNIRX5tDMOUPhU5hlTk18YwTOmjVT7pZQ0HWIZhOI5wjGQYho+z+BiSYRhNzUPLdSadYRiGYRiGYb0ZUqEAAAgASURBVBiGYZgncJLOMAzDMAzDMAzDMBpCuQvHlTX53f3UbsAwDFMc8uNHRZwW4hjJMExJ4PjIMAxT8vhY6ZL0lJQUceru7l7eu8IwTAWIJzRbVJHgGMkwjLpiCcdHhmGY4sXHSiccp1QqER4eDnNzc+jo6KAir9TQQkRISAgrkPJ7x987NUNhkwKsi4vLUxZoFYHKECM5PvJ7x9+70oPjo3bD8ZHfP/7uaUZ8rHSVdHpD3NzcUFkg5UC2CeH3jr936qeiVYgqY4zk+MjvHX/vSgeOj9oPx0d+//i7V77xsWKVgBiGYRiGYRiGYRhGi+EknWEYhmEYhmEYhmE0BE7SKyiGhob44osvxCnD7x1/7xiG4yP/tpQv/LvMaAP8PeX3j797mkGlE45jGIZhGIZhGIZhGE2FK+kMwzAMwzAMwzAMoyFwks4wDMMwDMMwDMMwGgIn6QzDMAzDMAzDMAyjIXCSzjAMwzAMwzAMwzAaAifpFZzAwEBMmDABVatWhbGxMby9vYXqe3Z2dnnvmsayfPlyeHp6wsjICM2bN8fFixfLe5c0nnnz5qFp06YwNzeHg4MDBgwYAH9///LeLYZ5KRwfiw7Hx6LD8ZHRVjhGFg2Oj0WH4+OL4SS9gnPv3j0olUqsXr0ad+7cwcKFC7Fq1Sp8+umn5b1rGsm2bdvw3nvviYWMq1evokGDBujevTuio6PLe9c0mhMnTuCdd97B+fPncejQIcjlcnTr1g1paWnlvWsM80I4PhYNjo/Fg+Mjo61wjFQdjo/Fg+Pji2ELtkrI/PnzsXLlSgQEBJT3rmgcVDmnivCyZcvEZVrgcHd3x7Rp0/DJJ5+U9+5pDTExMaKiTsG3Xbt25b07DKMyHB9fDMdH9cDxkdFmOEY+H46P6oHj4xO4kl4JSUpKgo2NTXnvhsZBIwBXrlxBly5dCq7T1dUVl8+dO1eu+6aN3zGCv2eMtsHx8flwfFTvd4zg+MhoIxwjn4Xjo3q/X4QN5ymcpFc2Hj58iKVLl+Ltt98u713ROGJjY6FQKODo6PjU9XQ5MjKy3PZL26DugxkzZqB169aoW7duee8Ow6gMx8cXw/FRPXB8ZLQZjpHPh+OjeuD4+DRcSddSqPVaR0fnpRvNEhUmLCwMPXr0wNChQzFx4sRy23emYkOz6bdv38bWrVvLe1eYSgrHR0ZT4fjIaAIcIxlNhOPj0+j95zKjJbz//vsYO3bsS+/j5eVVcD48PBwdO3ZEq1atsGbNmjLYQ+3Dzs4OMpkMUVFRT11Pl52cnMptv7SJqVOnYs+ePTh58iTc3NzKe3eYSgrHR/XD8bHkcHxkNAWOkeqF42PJ4fj4LJykayn29vZiUwWqoFOC3rhxY2zcuFHMWTPPYmBgIN6jI0eOCAux/NYbukzBg3kxubm5Qlxv586dOH78uLD8Y5jyguOj+uH4WHw4PjKaBsdI9cLxsfhwfHwxnKRXcChB79ChA6pUqYIff/xRqCbmw9XhZyH7tTFjxqBJkyZo1qwZFi1aJGzExo0bV6afmza2KG3ZsgW7d+8WXun5M/yWlpYwNjYu791jmOfC8bFocHwsHhwfGW2FY6TqcHwsHhwfXwxbsFVwNm3a9MIEk1avmGch+zWyGKFE09fXF0uWLBHWGsyLIQ2E50GdG68ay2CY8oLjY9Hh+Fh0OD4y2grHyKLB8bHocHx8MZykMwzDMAzDMAzDMIyGwMPJDMMwDMMwDMMwDKMhcJLOMAzDMAzDMAzDMBoCJ+kMwzAMwzAMwzAMoyFwks4wDMMwDMMwDMMwGgIn6QzDMAzDMAzDMAyjIXCSzjAMwzAMwzAMwzAaAifpDMMwDMMwDMMwDKMhcJLOMP9h5cqV8PDwgKmpKQYNGoSYmBh+jxiGYTg+MgzDvBA+fmTUCSfpDFOIv/76Cx9++CGWLl2Ky5cvIyUlBUOGDOH3iGGYSg/HR4ZhmOfD8ZFRNzq5ubm5an9UhtFSGjdujK5du+K7774Tl8PDw+Hu7o4TJ06gTZs25b17DMMw5QbHR4ZhGI6PTNnAlXSGySMhIQFXr15F7969C94TFxcX1K1bF4cPH+b3iWGYSgvHR4ZhGI6PTNnBSTrD5BEQECBOfXx8nnpPqlWrVnAbwzBMZYTjI8MwDMdHpuzQK8PnYhiNJj09vSApL0xWVhb69+9fTnvFMAxT/nB8ZBiG4fjIlB2cpDNMHiYmJuL0+PHjsLKyKnhfpk+fXnAbwzBMZYTjI8MwDMdHpuzgJJ1h8vDy8hKnFhYWT7W8Z2ZmFtzGMAxTGeH4yDAMw/GRKTt4Jp1h8rC2thbqxadOnSp4T1JTU3Hu3Dmh+M4wDFNZ4fjIMAzD8ZEpO9iCjWEKsXPnTkyePBmbN29G1apVMWvWLERHR+PYsWP8PjEMU6nh+MgwDMPxkSkbuN2dYQoxcOBAREVFYcKECYiLi0OPHj3wxx9/8HvEMEylh+MjwzDM8+H4yKgbrqQzDMMwDMMwDMMwjIbAM+kMwzAMwzAMwzAMoyFwks4wDMMwDMMwDMMwGgIn6QzDMAzDMAzDMAyjIXCSzjAMwzAMwzAMwzAaAifpDMMwDMMwDMMwDKMhcJLOMAzDMAzDMAzDMBoCJ+kMwzAMwzAMwzAMoyFwks4wDMMwDMMwDMMwGgIn6QzDMAzDMAzDMAyjIXCSzjAMwzAMwzAMwzAaAifpDMMwDMMwDMMwDKMhcJLOMAzDMAzDMAzDMNAM/g8Bp837M6bVPgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from pycircstat2.distributions import katojones\n", + "\n", + "fig, ax = plt.subplot_mosaic(\"ABC\", figsize=(12, 3))\n", + "\n", + "n = 200\n", + "x = np.linspace(-np.pi, np.pi, n)\n", + "params = [ # mu, gamma, rho, lam\n", + " (0.0, 0.00, 0.4, np.pi/4),\n", + " (0.0, 0.20, 0.4, np.pi/4),\n", + " (0.0, 0.40, 0.4, np.pi/4),\n", + " (0.0, 0.580, 0.4, np.pi/4),\n", + "]\n", + "\n", + "for (mu, gamma, rho, lam) in params:\n", + " ax[\"A\"].plot(x, katojones.pdf(x, mu, gamma, rho, lam), label=f\"γ={gamma}\")\n", + "ax[\"A\"].set_xlabel(\"θ\")\n", + "ax[\"A\"].set_ylabel(\"density\")\n", + "\n", + "params = [ # mu, gamma, alpha2, beta2\n", + " (0.0, 0.3, -0.12, 0),\n", + " (0.0, 0.3, 0.0, 0),\n", + " (0.0, 0.3, 0.12, 0),\n", + " (0.0, 0.3, 0.24, 0),\n", + "]\n", + "\n", + "for (mu, gamma, alpha2, beta2) in params:\n", + " rho, lam = katojones.convert_alpha2_beta2(gamma=gamma, alpha2=alpha2, beta2=beta2)\n", + " ax[\"B\"].plot(x, katojones.pdf(x, mu, gamma, rho, lam), label=f\"α2={alpha2}\")\n", + "ax[\"B\"].set_xlabel(\"θ\")\n", + "\n", + "\n", + "params = [ # mu, gamma, alpha2, beta2\n", + " (0.0, 0.3, 0.09, -0.21),\n", + " (0.0, 0.3, 0.09, 0),\n", + " (0.0, 0.3, 0.09, 0.165),\n", + " (0.0, 0.3, 0.09, 0.21),\n", + "]\n", + "\n", + "for (mu, gamma, alpha2, beta2) in params:\n", + " rho, lam = katojones.convert_alpha2_beta2(gamma=gamma, alpha2=alpha2, beta2=beta2)\n", + " ax[\"C\"].plot(x, katojones.pdf(x, mu, gamma, rho, lam), label=f\"β2={beta2}\")\n", + "ax[\"C\"].set_xlabel(\"θ\")\n", + "\n", + "for a in \"ABC\":\n", + " ax[a].legend()\n", + "\n", + "# fig.savefig(\"../docs/docs/images/circ-mod-katojones.png\")" ] }, { @@ -1914,23 +2062,23 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 18:00:14CET\n", + "Last updated: 2025-12-02 11:48:36CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "pycircstat2: 0.1.12\n", + "pycircstat2: 0.1.15\n", "\n", - "matplotlib: 3.10.1\n", - "numpy : 2.2.3\n", + "numpy : 2.3.4\n", + "matplotlib: 3.10.7\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -1945,7 +2093,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -1959,7 +2107,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" }, "orig_nbformat": 4 }, diff --git a/examples/T4-regression.ipynb b/examples/T4-regression.ipynb index 9bc27eb..29358bd 100644 --- a/examples/T4-regression.ipynb +++ b/examples/T4-regression.ipynb @@ -9,7 +9,6 @@ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", - "from matplotlib import ticker\n", "\n", "from pycircstat2 import load_data\n", "from pycircstat2.regression import CLRegression" @@ -277,7 +276,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -286,7 +285,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAH/CAYAAAD0Y+bPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWYVFUbx98NYGmkUzpFQCkREGlQEFARGwtsVOz67G5RsRULCxMDpVFUUkK6U7qbZb/nd4azzg6zu3NnZ/bemX1/z3MZJnbmxrn3nv+bCWlpaWmiKIqiKIqiKIqiKEpMkOj2CiiKoiiKoiiKoiiKEjoq5BVFURRFURRFURQlhlAhryiKoiiKoiiKoigxhAp5RVEURVEURVEURYkhVMgriqIoiqIoiqIoSgyhQl5RFEVRFEVRFEVRYggV8oqiKIqiKIqiKIoSQ6iQVxRFURRFURRFUZQYQoW8oiiKoiiKoiiKosQQKuQVRVEURVEURVEUJYZQIa8oiqIoiqIoMcSuXbvk5ptvlqpVq0rBggXl1FNPlalTp6a/n5aWJv/73/+kQoUK5v1OnTrJ4sWLM3zHH3/8IU2aNJFq1arJO++848JWKIqSE1TIK4qiKIqiKEoMcdVVV8mvv/4qH374ocyZM0e6dOlixPratWvN+08//bS8/PLL8vrrr8tff/0lhQsXlq5du8r+/fvTv+PKK6+U+++/Xz755BN54oknZPXq1S5ukaIoTklIw2SnKIqiKIqiKIrn2bdvnxQtWlS+/fZbOfPMM9Nfb9q0qXTv3l0eeeQRqVixotx6661y2223mfd27Ngh5cqVk/fff1/OP/988xre/PHjx0vZsmXl9NNPl2HDhkmDBg1c2y5FUZyhHvkYhTCoyy67LNd/d8WKFZKQkGBuBF6A9WB9WC8ldnFrPFvwXNSrV0+OHDmS4+9iO9ie3ObBBx8054LinLvuuktatmzp9mooiqKExOHDhyU1NVVSUlIyvE4I/W+//SbLly+Xf//913joLcWLFzfXOcLpLYTe169f37x3yimnqIhXlBhDhbzHWLp0qVx99dVSo0YNc4EuVqyYtG7dWl566SVjgc1LIIiKFCki8QwWcMSXXbgJN2rUSF588cWIiEole3bu3ClPPfWU3HnnnZKY+N8l0R4TwheDce+996Z/ZvPmzbm4xrExpmvXrh30fUJB7X778ssvxQuQZzpr1iz57rvv3F4VRVGUbMEb36pVK+N5X7dunRH1H330kRHp69evNyIe8MD7w3P7ng2t37Jli2zatEmGDBmS69uhKErOSM7h3ysR5IcffpC+fftKgQIF5NJLL5WGDRvKwYMHjXX19ttvl3/++UfefPNN89mFCxdmEB15lUsuucSEiLHPYpXKlSub3DRAEJKrdsstt5gb62OPPSZ5ATfH87vvvmu8GxdccMEx72FMGzFihLz22muSP3/+DO8NHz7cvO+fbwhvvfVWnjfCsF+WLFkiU6ZMkRYtWmR47+OPPw6639ykfPny0qtXL3n22WflrLPOcnt1FEVRsoXc+CuuuEIqVaokSUlJcvLJJ5v72PTp0x19D7nzLIqixB6qBD0CYVAIUvKV5s2bZzzwAwYMkOuvv94IBl474YQT0j+PcM2XL1+W37lnzx7xOjldR25eiAKvhhQj6LITLIS0XXzxxWbBMzhx4kQzDrCOY2XPTVhXN0RoKOM5Wrz33ntGvAWGKEK3bt2Mx/6nn37K8PrkyZPNOeufm2hhO2LZsBQJatasKXXr1jXXrsDx9fXXXwfdb25z3nnnGaPpsmXL3F4VRVGUkK6zEyZMkN27d5sidRhODx06ZCI6MU7Chg0bMvwNz+17iqLEPirkPQI5ulyMaf9Bq5BAatWqJTfddFOmOcU2V5yL+nXXXWcKl+DptSBE2rVrZ8KxCNdv3ry58fxm9n3+YbIsWTF79mzztzYdgJsEVmLCtYLl8GKUuPDCC+W4446TNm3aSKRz5NmWHj16mEk53kDWiXX74IMPjvn77du3G/FcpUoVI77Yz4RZB4pZPHW0dilVqpQJf6egTLCwYNblhhtuMF5HDC98588//+xom1hfjg+tZTZu3JjhPULn+G3WoWTJksb4E6zK7Kuvvmq2mc+xDyZNmnTMsaTADev76aefyn333Wes+oUKFTLCFahyi5DF0MDrjJ/ff/89aPsb9jnbyrjr3LmzzJgxI/0ztLs555xzzLhg2xiXrDeFd7IafwgqIlTYTn6f/D2iVvyx2/D555+b6AW+m9/o2LGj8QhnB2Kc8eufR+gP++S0007LcK4Ax/fEE080UTPZ5cg/8MADJtpgzJgxGT43cOBA4+UnpNsSyj4HxjZjhG1lMvfGG29IKDA2SVfZu3fvMe/hyeEYWePRtGnTTIXj0qVLm3FUvXp1c16HCt/32WefZTiXvv/+e/PbiOZgUG2Z3yD8k/HEOUTEhD9EKZHXyXnAfsKT1LZtWxk3blzQeh6cu0QysZ/4Tvabf4smix0DFI9SFEWJFbgGMm/ctm2bjBo1ykQXcb3meu5/3+Hezj2GkHxFUeIDDa33CExwEV6IxZyAiC9TpoyZ6FpvN2KXyTGT4rvvvltKlCghM2fONAITQZ1TyHlFdF1++eXmxmFTAHj8888/j/GWI87In3388cdNn9NogIg799xzTf5X//79jRhAYDH5t5ENCAqEEuKBugTHH3+88bSyj8gxI0/dQoQEXtuLLrrICAnEL9sxcuTIY7yLY8eONcIS0YQICqfwmRUhHCsLQpU2MYgg8rZtThtCk+NpPzt06FDz24gbQvT5rt69exvDib9xx0KOHYKSyrYHDhww/2cbqHzL/rJCFM91hw4djFHAhktfc801xqDB71EkB+MNInP+/PkmzI99hRjke2+88UYzPtjf7DeMKAixYOA14FzgGA0aNMgYUKimyzHg9/r06ZPh808++aRZR7YBAwGGMY4Vk5as4HgD65oZnCMY0TC0IYIJw//iiy9k8ODBIYWHYyTh/GYs0iIIYxqTLULw2feNGzc2nwt1n9s2Q5znGMdYHz4fmAsZjH79+hkjj03jsbCfWUfOEaJcMCDZ36AQHGOLcfTVV19l+xv++431w9jCNgAGEYwsGHyCHXOMNdYYxm9jgGS/MQHFYAT8/+233zaGAqKWMCZhAGWc4ZGiJ7I//Caf4RznuxkbZ599trlm+UeBMBYR+xhOOG8URVG8DPcR5lBEPzHnIQWToq3MxbjWcc189NFHzXwLYc/8gUr2zAcURYkTaD+nuMuOHTtQs2m9evUK+W+qVq2a1r9///Tn7733nvmONm3apB0+fDj99e3bt6cVLVo0rWXLlmn79u3L8B1HjhzJ9Pss7dq1M4tl+fLl5nf4PcvevXuP+bvhw4ebz02cODH9tQceeMC8dsEFF4S0jaxP4cKFs/yM3W7Wy39bAn9748aNaQUKFEi79dZb01975JFHzPcvWrQow3feddddaUlJSWmrVq3KdBsPHjyY1rBhw7QOHTpkeJ3fTUxMTPvnn39C2kb2bb169dI2bdpklgULFqTdfvvt5nvOPPPM9M+tWLHCrNNjjz2W4e/nzJmTlpycnP76gQMH0kqVKpXWvHnztEOHDqV/7v333zff6X8sx40bZ16rUaNGhu1jXNSuXTuta9euGcYIn6levXpa586d018rXrx42vXXX5/p9s2cOdP8xhdffJHlfggcfzfffLP5u0mTJqW/tmvXLvP71apVS0tNTc2wDfXr1zfbbnnppZfM6+yfrLjvvvvM5/juQHidbdu6dWta/vz50z788EPz+g8//JCWkJBgjokd0xw7C9vB9vjDevAdV111Vdq2bdvSKlWqlNasWbP0Y+Rkn/fu3TstJSUlbeXKlemvzZs3z4yP7C7pfDe/fc4552R4/fPPP89wznz99dfm+dSpU9Ocwhg74YQTzP/ZxiuvvNL8n+1mHwwbNiz9uPmPCz5XoUKFtM2bN2f4vvPPP9+MMztGub75H2v73eXKlUu74oorjrlWcT5wDC3ffvutef37778/Zt27dOlixpKiKIrX+eyzz8z9m+tq+fLlzf2KOZ//9f7+++8310bmPx07dkxbuHChq+usKEpk0dB6D2BDmfHU5RQ8VHjU/L3leKPwqgXmAEcqr5ywWwseSgq24VkD/xBrC17caIN3GI+0Be8eVmv//Fe8qnwGTzXrbBdCbAkvJlc92DYSvobXl78Ntn14+Z20cFmwYIFZPxas6c8884zxPPu3+MMTSogy3nj/dcXDjbXdhhUTDo1XnHGQnPxfwA3eabYzGEQs+G/f33//bcLh8ajyXfa3iPDAm8p+seHSeGrxelM1NxjW447nIFg4d2b8+OOPxgPtn3qBN5xwdDzDpGf4gwfCvxidPfbZ5TuzfeynrLojsN8Id7f53nh4iRagjkGoEIL/0EMPGU8ynmP2JxEG9hiFus8Zl+xLPCpEkFhoH8T3ZgfnPJ549i8RBhZC4EkjsPvbRncQOUHOZbiwPYxdIjOIpODaFBhNAdhNKCrYs2dP83//Mc52cb7Zc43vsMeafbJ161YTldCsWbOg5yNRCP5jP6uxYa8FiqIoXof5AJ2OiHgjivCVV17JEOXG9f7hhx82VeqZm40ePVrq1Knj6jorihJZVMh7AHLWAcGdUwif8oeLPATL5Y0UTKQJPSa0F0GIILXr4Z8HHWwdaanHTcZ/iQT+Isd/ko4ItyCcSC+wItouNlfWPz8dQYNxAmMIOdt8jhD27LYvFAi9x+CCQKM6OoKKsHl/wwvrisBBtAeuL2Hsdl1XrlxpHsn19wfBmFmIf+D68ltW4Af+FkKUSYPdbsKU586da2oMILwJpfYXSHw3Iej8HWkGiDJCu4PtN3/YDgwvgSBY/bczs+NthZv/8c4JCFKO0apVq+Sbb74JKyWFsEfC6An/JhTe39gT6j5nXHDOBGvtFmx/BQNhy3fYVmsIeoQ9At8a9zBGUdcA4wPHjZxLwvxZDyfYWgiEyFNXgNoVwQyWbBepFqTkBG4/RprA8xEjCG0aOUdIu+BzpAsEG1dOxgbnmFcLZyqKoiiKovijOfIeEfLkLSGIcoq/Z9UJmU1e8QD6e/gzswqTa4xQIT8V7yaeMryYwSqg+68jnkA7UbdEIm8+s3X2/27WjcJsd9xxR9DPWss1+cl4yMlFR2hTVIbcWoRNYBG0cI4BhWr8i621bt3a5Gzfc8898vLLL6evK8cIQRRs27LyKGdH4PraY0ZkQGC+ceDvcezxcFKJ/JdffjF/Q7FAvLDke8Nzzz1ncq8pIsZnyHmn3R71E4Ll7EfreAcDEYg3FyNaVhExHH8KpSG0EbOZFWvLCgwcVrCT5x7OPncqpIOBQQqjDnUcMEiQG4+wR+BbbI93jhHvY2SizgbHktdCHW+cKxRY5O/IPcfrHgy7/XRuYB8HA+FuCz4ynohK4JpDvj3HnzFlDZfhjg3EPYYLRVEURVEUr6NC3iPgqcIb9ccff0S0oijFmwAjQaCXNtBLhUcsEDyfFOHLDCa+VEXFc0eBPYsVLNmBhxZPpxuwb/BGZlax3IL4wPOHmPFvK4aQjwYIFgQNlcgp3oZHkXVFeODhzio0zoZ7U/imffv26a8jVglJt2IolDGDgSm7fWPFGkUWWfCaYoSgMJ8V8kCFdxYKv2H0wVjx+uuvm0I8mW0HveWDpSH4b2dOIZXBVq/Pat9g7EA4IiLZLqdiD6GK+GSfUoCIQo8UY6TompN9jueZdQl2fgXbX5mBIYICjqT1YExD2Nt0GH94jYXjidGKFA0KPVJsMVQwFvB5wvXPOOOMTLcLQwqGw+zGHAYGrkkYi/wNkEQ55BTGgS0+qCiKoiiK4mU0tN4j4BXGM8uEN7DvJ+BpYuLtFCpPM0HGWxVYYdvfI4WQwNNGLqt/OHmw1mbBvF2B3i3/iu/ZiUAm7v5LboGYwXCCQA8Eowbi124jgsG/pzuimBDraI4HcpOff/558xzBx3pgMAnc1zy3rf7IE8bLTEV0u/5AWHOoYeZUTWc80LbLP4/aPwwa2B+Bocx4R4kusZ5jhKL/egCCnorsWXmXEXyEoHN8LOSLY+xCdDqpQZAV1mhGbYHswKiCWKTyr1M4jhgwWH8q1ZNjf+2116bnY4e6zxkDGL8Ye4T5W0ivCDaOMwPvO/ufEHXSSwIjDBgrgePMRgo4jQrAYMF+I5rFv46BP2wXofwYzYJFJtntt58F//WjToP/WAkHxjLX2Zx2DlEURVEURckN1CPvEZjE4/Figk0e8KWXXmry2hHWCAAKswXr854dePheeOEFYyCgf7Lt307vaoqPMZEH3sfTRTi8LaCC99F6CrP6fkLOyZVGeJLfTfg0nq1IwHcG89qSp44HOCcQlkueMNEQtjUdYpGwZ/YFYh3PK+3lEGLsG/YfXmfyvIlwoAd5NECoImbJj0Y4chzYD7TGs+3kMNCwnwlrpwgcQhOhRJ46rd5o+cWx5PMUzuM7Qsn/RWTzu3ieadVH6gPHlbZxFNXjmBNuTTg6ofEINbyYhFtTTIce3YRS25ZqtBIj/5pIAkT9hx9+mC7cMoPijBSXYx0Ixed4M1bZXsQe6xgJ8OxynrHe2fVIZxvD8dYisjmGjDGKuQHHA2HMGCbEPdR9DhhzEN+kNPD37FPaEPJ3oY5HoiYYv/fee68R5v5h9cC+RnhTmI5xw7HGOMR6ZOZVzwyKLzEms4MWgmxry5YtTbFGzgHqb1DAjuPD/4HzFW8868a5yZgguoPPBzOChAq/gXGAegCKoiiKoiieJ8JV8JUcQiu0AQMGmBZbtBShdVzr1q3ThgwZkrZ///5s289l1i7qu+++Szv11FPTChYsmFasWLG0Fi1amBZx/jz33HOmNRVtSvjNadOmhdR+bs2aNWl9+vRJK1GihGkT1bdv37R169aZz9GeyxKsVVdWsH18PthSs2bNLNvP+bduswRuC9B27O67706rVauW2d+lS5c2++nZZ581LeYs77zzjmkPxr6hXRy/a7cnWMuycFp1BTJ+/Phj9uGIESNMi0Ha5rGwLvxeYEuZl19+2ewH1pdj/fvvv6c1bdo0rVu3bumfCdYCLLB13Nlnn23ad/E9fN95552XNmbMGPM+LcBolde4cWMzTlkf/v/aa6+lf8eyZctMSzCOFy3TSpYsmda+ffu00aNHZ/itYO0Ply5dmnbuueeaccXfsh0jR47M8JnMtiHYOM2M559/Pq1IkSLHtBgM5Vhm136OVmm0AqxcuXKGtkD+LfJoIRTqPrdMmDDBHE/GLO2HXn/99aDjMSvuvfde83nGfiAzZswwbSKPP/54sx5ly5ZN69Gjh7km5GRMZ3fcNmzYYPZ5lSpV0vLly2daKtEy6c0338zQUunxxx9PH98nnXSSGReBbf/sGHjmmWeO+f3A8wr69etnzi1FURRFUZRYIIF/3DYmKIoSXcjRJg+ZEH08q0rGkGo880SVXHnllW6vjuICdMug/gT5/+qRVxRFURQlFtAceUWJM6iFEGif++CDD0xoMhXElWNDv6lJQMX4YF0WlPiHmh7UblARryiKoihKrKAeeUWJM8aPHy+33HKLyUun8B05xu+8846pvTB9+vRMC44piqIoiqIoihIbaLE7RYkzqOpepUoV04MeLzyF4iieSDExFfGKoiiKoiiKEvuoR15RFEVRFEVRFEVRYgjNkVcURVEURVEURVGUGEKFvKIoiqIoiqIoiqLEEDGdI0+F6XXr1knRokUlISHB7dVRFEVRFNchY27Xrl1SsWJFSUxUe72ixCJ79+6V9evXy4YNG2Tnzp2ye/duc16z2P8Hvnbo0CEzN7ZLamqqmR9zHfBf8uXLZ+bORYoUyfAY+H+WcuXKSYUKFaRQoUJu7xJFUeIpR37NmjWmqJeiKIqiKBlZvXq1VK5c2e3VUBTFDwQ25+by5cuNUGfBKWX/b58j3pOTk6Vs2bKmTWp2gpvnFLT1F+wI+b///lsaN25snluBf+DAASP8gxkH/J/v2LFDNm7cKIcPHzbrgKDHQMijXezz6tWrm+uNGg8VJfeIaY88Fy7gglisWDG3V0dRFEVRXAcBgJHb3iMVRcld8JFt2rRJFi9eLIsWLcqwLFmyxHjOOUf9RfEJJ5wgnTt3ziCSaSGbE2HM7yDwzzjjDOOFDweE/5YtW44xNrD8/vvv6YYHnGv8Ru3ataVOnToZFl4rXbq0Rs8qSoSJaSFvLwiIeBXyiqIoivIfOmlWlNwJgcfrPX36dLPMmzfPCHa82ZUqVUoXs61bt5bLL7/c/B/vdbjCOrfBkFCmTBmz4NnPjIMHD5ooA3+jxbBhw2ThwoVG7JcoUcJse4MGDaRp06Zm4fs0ZF9R8qiQVxRFURRFUZTcYM+ePRlEO8v8+fONtxlhevLJJ0u3bt2kbt26xguNNzyvQFg/280SCKH6RCcg6ufOnSsjR46Uhx56SLZt2yb169dPF/YsTZo0UXGvKCGiQl5RFEVRFEVRAlixYoWMHz9eJkyYIFOmTJEFCxYYz7QVnWeffbZ5xPOuETCZQ5oPRg4W//QDUmMxhsyYMUN++uknefTRR2Xz5s1G3Ldo0ULatWsn7du3l+OPP97V9VcUrxLTxe7IA6T4BuFLGlqvKIqiKHpvVJScCne7rF27Vpo3b24EZatWrYxoJ689VkQ7OfI//vhjjnLkcxMkCfsccf/HH38YA8rUqVONkD/99NPTFxX2iuJDPfKKoiiKoihKngOP8NixY9OFOwXbEO6IxTfffFNOPfXUPBUe7zYYSKh8z9KrV6/0sPzJkyeb4zN06FC54oorMgj7Dh06aHcOJc+iHnlFURRFiSP03qgomVdgx9v73Xffyffffy///PNPunBniTfhHmse+VDwF/YseOwbNWokPXv2lLPOOsuE78dKxISi5BT1yCuKoiiKoihxyb59+2TMmDFGvFNkjSrz3bt3lzvvvNMUpjvuuOPcXkXFYb59165dzQJbt241+fUc3xdffNEYYqyox1ufkpLi9iorStRQIa8oiqIoiqLEDRs3bjQed8Tdr7/+KuXLlzeh2h999JG0bds2brzTikjJkiXloosuMgst8CZOnGiO/fXXX2/GQZcuXYywZ6FQoaLEE4lur4CiKIqiKIqi5ITdu3cboY6XnSryb7/9tilQR+j10qVL5YUXXjAeWhXx8d0Cr1OnTvLSSy/JsmXL5M8//zSpE9Q7YEyQYvDJJ5+YNoKKEg9ojryiKIqixBF6b1TyCuSA43H/+OOP5ZtvvpGaNWvKxRdfLBdccIFUqVJF8jrxmCMfLitXrpThw4fLhx9+aP7fp08f48VH+Ccna4CyEpuokFcURVGUOELvjUo8w7SVnu543z/77DMpUKCAXHjhhUaUUfQsnklNTTXL4cOHgy4U82P/2Kk9r82fP18aNGggSUlJpggcS2JiohGvmS28H6+wb2bNmmWMP3jn2UcYfhg/zZo100J5SkyhQl5RFEVR4gi9NyrxyPr16+Xdd9+V999/XzZt2iTnnnuu8b6fdtppMS08EZL79+9PXw4cOJDhOQu533jX/afsmQlwK9aBz2/YsEHKlStnXrMiH8HP9wUaBSx8Fg8+RhIWCsb5L/6vxbI3m+2nVz1GoS+//FIqVKggl112mWlxxz5TFK+jQl5RFEVR4gi9NyrxAoKTivNvvPGGKWDWvn17ueqqq6RHjx4xVY0c0UxeNnn89tH+n/cQzpkJZfvcX7Bb73okQ+uRA4HCPphRwf81/obvLVy4sKkWbxf7PJZEPt0NGGPUVkDcUxzxmmuuMWNOvfSKV4mdM0xRFEVRFEWJe7Zt22a870OHDjV9w/GQEiJeo0YN8TKIXwxp27dvN49WsCN+Ebz+IpdK+vy/UKFC5j23xSK/bw0FoYCIJ1IAAexvnPj333/NI/sCI4TdZoyKJUqUMEZGDBFeo2DBgnLeeeeZZcmSJfLWW29Jv379THvCa6+9Vi6//HKz/oriJdQjryiKoihxhN4blVhl9uzZ8sorr5hQZ/KVaSFGUTKqkXsNhCrnGKLdPmJ0YF2tYPX3UPN6bot1t4rdWZFvxT2LNXCwTvSCZ/+wn1i4TnnRe48BZsSIEfLqq6/K33//LZdcconccMMN0rBhQ7dXTVEM3jtrwoCLBUsgtpiH/+cyw+YDhfPZwLyl3Pgs+N/YnHzWFkSJxGf9rcjR+qwt7hKJz/oXcfHCZ9kH/nlpgWC1tpZrL3yWMcZYi8Rn/c/PaH02u3NZrxHBP6vXiNi+RmQ1NhXFa3Bd+uGHH+SZZ54xreIoOjZ58mRp0qSJeIm9e/fK5s2bzWJFOyHvVrSTX83/8UK77V13G7bf5teXKlUqw7HGg2+NH+TvL1y40FyzEPd4v/l86dKlTaSC29hCiiwzZswwRiba2Z1yyilyxx13mFaHef1YK+4SF0L+ueeeMydbILVr1zY3BAs3icwEQLVq1UyBC8uLL75oLtrBqFixogwcODD9OZY6LkrBKFOmjLEoW+hlSZGWYHADuPnmm9Ofv/fee7Ju3bqgn+UCx0XEQvXNFStWZDqJvffee9OfU+V18eLFkhkPPvhg+v+/+uormTdvXqafveeee9In9SNHjjQWy8y4/fbbjVUaRo0aZW7YmcF+sCFM5MdxU8+M6667TsqWLWv+P2nSJBk/fnymnx0wYIDpJQr0F6VtTWYwHhgXMH36dGPVzgwu8nXq1DH/nzNnjmmDkxl9+/aVE044wfyfUMEvvvgi08/27t07fTJDqBcVVjMDi3uLFi3M/1etWmUKAmVG586dpXXr1ukFhAghy4zTTz/dLMDYfe211zL97KmnnipdunQx/+cmzXmUGdwMzzzzTPN/zjXOz8xgH7AvgHP48ccfz/SzVOclNM6S1Wf1GuFDrxHxdY3Ai6QoXgejE2P7iSeekI0bN5pz+uuvv5aSJUuK14Q7CznhVmjWr19fRXsYsK+4N7Fwn7Tinn3LPZKUCu5T3CcIdUfQe0XYn3zyySbd4+mnnzY1G/r372/uFXfddZcpvOjFdAEl/okLIa8oiqIoiqJ4H0TbsGHDjCAiigSDI0YxhJvb64VBAdG+ZcsW4zm2wh1jGQYGL4Z/x4O459izENVgjTxbt241xyKYsMcw61axQ9YBw/ctt9xihD3j9/777zePhN4HcywqSrSIixx5vFfB8gA1bDb4ZzVsNrbDZt38rIbW6zXC6Wf1GpGzz4ZzLnNvJNJDc+QVL0Eo+uuvvy7PP/+8EUN4Mikm5pY45nrIuUJxNhbOF7zsrBtLPAh3t3LkI42/sGfOb48VBQNZCMt3KzKCfTx8+HB58sknzXrdeuutJiKP2giKEm3iQsjrZEVRFEVRfOi9UfESeLdfeuklGTJkiNSrV0/uvvtu0z7Ojd7vGLsQg1a8Y5DFu4sYpG94vHlT40XIB4ueIL+eY4iw57hZUY/H3q2x9d1335l0vqVLl8qNN94ogwYN8kyqiBKfqJBXFEVRlDhC742KF6AlGbVECKFv2bKlqZfRrl27XPec4s1F8FEPhtB5vOxW9OF5j+fc5ngV8v4Q3YSYt8Ke441RhjB9jnFuH19k1bhx4+Sxxx4zBfLuvPNOI+jdzvFX4hMV8oqiKIoSR+i9UXFbPL799tvy8MMPS9WqVeWpp54yAj43YWqLuFuzZo0pCEp+NYXJEHacG3mlQF1eEPKBx52ieQj6tWvXmsKfFNWrXLmyMdrk9nEfO3asEfKMwQceeECuuOKKmE/XULyFCnlFURRFiSP03qi4AaHFVKG/7777jFghxJiuCrklnpjOMuYR7yyAgGPJS+I9Lwv5YKKesYCo5/jb8cB1MTfH5ZdffmkK5PGbeOrPOeecPDkelcijQl5RFEVR4gi9Nyq5CdNI2jSS+05480MPPWRac+WW55E2catXrzaCjUrz1gNLwce8LpbyspAPVhuBcUKKBWHujJEqVarkWrcEjgVV7jk/iA6hOF7Hjh1z5beV+EXjOxRFURRFURTHkAN8++23y8yZM42Qv+GGG3JFGCHMMBrQmgyBhminkB650Rq6rARC8TuKGrLYmgkYfhYuXGjGTrVq1czYiabhB0PK1VdfbVrUvfzyy8Yr36JFC1NDgvaGihIOuV/WUVEURVEURYlZaAV27bXXSps2baR58+aybNkyI+ijLeLxuC9YsMBEAMyZM8dUBO/UqZOccsopxsupIl7JDsYI3njGDGOHNnazZs0yYwphT0X8aEI0AK0XOWcaNWokrVq1Mgawbdu2RfV3lfhEhbyiKIqiKIoSkiecQnZ16tSRlStXyuzZs02IMGIomqH7tLCbOnWqjB492uQ9N27cWDp37ix169bNtdBoJf5g7BDJwVg68cQTjYEKQT9t2jTz/2hmH2OEevbZZ+Xvv/+WRYsWmbH83nvvmXNMUUJFc+QVRVEUJY7Qe6MSDRA3119/vWnhRlu5s846K6qhyAgawp/xXNLKjgr4hEAXKVIkar8Zb2iOvHN2794ty5cvl1WrVknhwoWlZs2aJtojmr3pkWJfffWV3HLLLSZa4NVXX5WTTjopar+nxA/qkVcURVEURVGCgjf8mmuukdNOO026desm8+bNk169ekVNxJPDvHTpUuN9x1OJeO/atas0bNhQRbwSdRhjeOcZcxiPCLdnLGJQomd9NOBcImd+/vz50r59e2ndurWG2yshoUJeURRFURRFOcYj/tZbb5mQX6p9k5NOxe1ohbIfPHjQiCZCm/k9hDtVvRHymvuu5DaMuerVq5sxeMIJJ5hUEsYmxiUiHaIBEQC0pyPcfvHixRpur2SL61dGejveeeed8tNPP5kWIrVq1TKDtlmzZm6vmqIoiqIoSp4DEXH55ZebORots3r27Bk1DzzFxfDAU4GeXPumTZtq6zjFMzAOCa2nrSFpJZwbLIj8GjVqSEpKSsR/kxoUP//8s3z99dcm3H7YsGHmPOT3FMUzHnlCRggfIW8HIU+41nPPPSfHHXecm6ulKIqiKIqS58DzR/47+bk4VP7555+o5cLjvLHVwslLpno3c0JahKmIV7wGY5IWdXRqoOI9tUgIuWcMM5aj8Xtnn322OQeJCKDA4yuvvKLeecU7xe5ov/D777/LpEmTwvp7LeijKIqiKBnRe6MSDkuWLDFe+HXr1pnISHLio8GBAwdMeDIeeLyctWvX1nEaJbTYXXThGot3nr70pIDgSc+fP/8xn9t94LB8MW21tKxeShpUDG+sjx07Vq688krzO++884565xX3PfLfffedsfj27dvXWGCxAJOPldXFnwmK/6IoiqIoiqKEBx6+l156SZo0aWLmYbSUi4aIp4idLRxGFfp27dqZMHoV8UqsgsEUHdO2bVvZtWtXei96xjqs2bZXHh05T1o9PkYe+n6evDlxadDzj/oTEydONI+Zedw7dOhgzs369esb7zyV7dU7r7jqkbd5JYMHDzZinh6hN910k7z++uvSv3//Yz7/4IMPmkIrgajXQVEURVF8qEdeceKFv+KKK9Jz4RHXkQaxgfcdLzzFvBo0aCClSpWK+O8ox6Ie+dxl8+bNJk14wYY98ueOIjJh2S5JPeKTWTVKF5aBp9WQ81scn/75yZMnm3B5qtXjrCxQoIAR6lSsP/XUUzP9nTFjxhjvPHn6nLc8KnkTV4U84SdYshjIlkGDBhlB/8cffxzzeQY5i/9kpUqVKjpZURRFUZSjqJBXQhHXCIh77rnHhNM/+eSTRmRHEqaX9IFfsGCBJCUlGQFPjrHmv+ceKuRzD8b75KVbZOj4pfLbks3przerXESu61hPTq9bVhIT/xv7aJ/bbrtNtm7dKhUqVDDdIPbt22fC9KkV9uyzz2Yp5okAuP322+Xjjz+Wp59+2rSI1HMr7+Fq1XoGLhd2f7BEjRgxIujnsVSxKIqiKIqiKOF5DYl6pIjWyJEj5fTTT49K73nChGkpV69ePeN0UZGhxKuAHzN/owwZt0Rmrd5uXktKTJAejSpIz9oFJXXzSkncMF+2l8snJUuWTDekDXnlFdl8KL+UO7mrFNm1LL2Hfc2aNU0XB0LnKaqXmBg8C7po0aImgvncc881xjiq3FPbwv6GkjdwVchTnZRcEn8Ivapatapr66QoiqIoihKPkId7wQUXGIFAr2ravUW6lRwGgvXr15se2BTkwhuvKPHGkSNp8su8f+WlMUtk/npfza4CyYlyfvMqclXbGlKlZCHzWmpqbSPM8cBT3DGlbDX5cMI/8lfJznKkY1lZc+SQFFuwShLTfHn1GLzKly9vQvQ5l0488cQs16NTp07mXEbMU+fi008/zdKTr8QXrgp5eiMy2B5//HE577zzZMqUKfLmm2+aRVEURVEURck5qamp8sQTT5jlmWeekWuvvTaiHnI8jMuXLzdh9BQv7tixowkVVpR49MCP+meDvDh6kSz4d5d5rXD+JLmkVTW5sk11KVM0Y+QwhqySFavK8lVH5JlRK2TljvW+N4qUlYQjqVJk9xo5nJwi+Q/tTv8bzp0NGzaYNt2hQM2Jb7/91hStRNg/8MADJuw+M2++Ej+4KuSbN28uX3/9tdx9993y8MMPm2IN9C+96KKL3FwtRVEURVGUuICc24svvlhWrVolv/32m6lMH+lQfappI3BatGghZcqUiej3K4oXYHyPX7RJnvtlocxd6/PAFy2QLJe19gn4EoWObTtnWbllrzw3eml62H39EmlSPWmrbJjxq+zbeaxYJ1eeVGJy5UMFw9zNN99s+tz369dPxo0bJx988IExrCnxi+ummh49epg8KsKxqNo4YMAAt1dJURRFUZQ8DmHoPXv2NOGwTJK/+eabYzrpkP9NkTgm3HjC/vrrrwyfoeczf+u/UFjOH9ruklKIwA78+5xCOyxaVVFkbvr06REV8czb+M4///zT5MC3b99eRbwSl0xbsVXOe+MPufy9qUbE44G/oX0tmXRne7m1S910EY/Yn75yq9z55Wx54qf56X9/8vElpGfjivJYn4Yy7d5O8vUtXaTs3hVybq8eptWjf/QK34HxjRpiJ5xwguN1pYj4jBkzTMFTQu3Hjx8vuQXXNmtQsFCDI/AaSGG+wHbkderUMek41O1QYsQjryiKoiiK4kXodY4Ipj3b2Weffcz7TDyp/E4eOB60F154Qbp06WJauvkLWiIO/Z0UFKmy4CWn4jR5rbSAI8+V3NicQh9rDA1EOb788svmeyMVSo/QoJ0c64mBQMPolXhlycZd8uRPC2X0/A3pOfD9T60m17SrKSUL/+eB37bnoHw1c60Mn7JKlmz0hcgXTUmWWzrVkZR8SebcG3JBRiMa5w0ttelBT8E6DGIzZ85Mr1p//fXXhx0aj4jnmkKq8plnnmnC7O+///6o1qug49gbb7whjRo1OuY9rn9cBy2FCvnqBwDdyNhWCvVxbeF6y3WUzmZK9qiQVxRFURRFCaB79+5myYwLL7www/Pnn39e3nnnHRNmziTdX7hTvCqzVoEUnGPyy2cwCOQU2lkRWrtu3Trj4Q/Hq5cZe/fuNWIDIwfpkRq2q8QS1HKggBy554hlzo1gYnnTrgPywuhF8umUVUIbeMLhz2tWRW7qWFvKF09J/9zsNdvl/ckrZOTs9XLw8BHzWsF8SXJmowrm8wj/zKBGGLnsGANnzZplIpQrVapk6kxgeMtpwTqMB1dffbW0atXK1CHjWjB8+PCIF7iE3bt3m7RoooseffTRY95HuGd2DUTIY2AgegCSk5PNayrkQ0OFvKIoiqIoSg6gzRreLzxhePEDw00feeQROf744434p9Avk1Vo2LChEfH8HRNXJsI5AS/5WWedZSpd4+Hz9/5HyguP2CAXXvuS5z5EWtAbnkcWihja/9sFscrxsp+HxYsXG7GEuEO4Mv4CF97nkXEYj50GqBqPaCaNF6FIDjotr2+44YZ00bz/UKq889tyeW3cEtlzMNW81qVBObmjWz2pVbbIMd/545x/5asZa83/G1QoJhe2PF7OalJRiqWEdm7wu3SQwLiAAY4UFdJ1OMc4hpGIouH6QjFxrj0tW7Y0YeyEsEcSPOp4/kkvCibk6XX/0UcfGTFPuhLRAdYrX6xYMWO4oCU528vfR+q6lRdQIa8oiqIoihIG5HOef/75xlPNRJSc9NKlS6e/P2jQIDn55JNNb2eEBMV9ac2G996CF5/weia2OQlRZ13wit10000mrD5SFavVCx99EG0Yg/BsEpVB/QEWBKf9P4sV5ghtK7wDF467FYBW0HMMeZ3nCP1A8e9vBAC+JyUlJcOC8OWRMUq/cwR/JDsfRBPOvdtuu82IZc5TtoH9zLjmdTo57CpeQx79Yb6s2eaLimlcubjce2YDaVHd15d946798tGfq6RNrdLpr13U8njjvb/4lOOlSZUSYe0Pjot/izmq1dNOjogavNSRSFtBLFPV/r777jNinrD7bt26SSTgu8jJJ7Q+GBgQqAFCrRGile68807Tevyrr75K/wyRCeTVsy9UxDsjIc2e5TEIIWlYsXfs2GEGqaIoiqLkdfTeGHmYoNNlp3fv3hleR9wizKncjjd97NixJoQ1M7H77rvvmnBXBBvCKBIwjcMQgCcLowBhtJH63pUrVxpvIR5CwpDVC58zEMsce7swfuz/eQ+hjEHHiuZgQppjEKqRBu/9jz/+KGeccUZIxw4hz9/4Gw8CjQnW0IDYR9DbhaKP9v824sQLsE10bUBs1qpVK4PYZowv3rBLUlpfIjtSKpjXyhdLkTu715VejStJYmKCLNqwS96auEy++XutHEpNk071y8rb/ZtHdZ05BnPnzjVinqgdonkiZTT55JNPZODAgSY/f/DgwTn63tWrV5viehgwbW48xe0wQFCfIxhcI0k9opZIzZo1w/5txYd3zjRFURRFUZQYAvGCOGAhRLZ27dpGTON5DwbeMAQbYeqRCG9FVF111VUyadIkU2U/UlXprbcSgale+PDFGMY0lu3bt5uF/Ymg9hfAhBtbIey2AMZAgMGABWNgZjCG/Y0QLHiSeWS72R5yse3Cd7m1bRiiCKe3oduW1MRk2VimmRxocKIcSEySfIki15xeS649vaYUyp8sU1dslaHjl8rYBRszVJ8/++TKUV9nxgjnMl7sSHvn8ZBzncIoSdew119/3RiIwoGuFRs3bjRRRxbSPbgWkcZg898Dr4GgQj4yqJBXFEVRFEWJkPePyWtmMClHLEVCGFPlnsk4Ic6EtVJBPhJQNRvvJcIHEa9e+OzBs0skDJEZCHaKqSF0EUhWyBLVwP/DFU1eAlHONgWKffYD3nprvNi0aZPJz+ecsOKeInOknxBCnRuh+RwLft9fBO8sWk3WlW8th/L7wriT/v1Hnji/hZzbxWdcu+Wzv+Xrmb7cd1axa4PyMuC0GtK0auh93SMB53SHDh1MSDpt5BDMkTjPOa+nTZsmffr0MW0jCXPnfHcKnnWMAf6Q706ePyH0wWotcA2EcH5PORYV8oqiKIqiKAHgXcRrZFm+fLmZhJLvXqpUKXnsscdMYTkmpAi4V1991Yjrvn37ms//8ccfJsyeiTKihecUuiPMFzGTE5iEUzSKkOnXXnstImH6GCEoZkc4PQX7KleOvucxHoT7li1bzCP7j3HB+GDfIXLjQbQ7AWGOYGbxr1KOuEfYI/Dx3DPOEHnsL0R9NIU95xrnB1EmBUqUk3UV2sjOYtXNe/kO7pSSy0fLgRUzpNYt/+WMN69WUn6YvV7OaVpJBp5WU6qXLixugSGtadOmplUlBrvq1aubIn05rYHBdQvjAGH2CPvvv//ecUQPx4zQf3+ILOG48vrSpUtNKD/XKV7DIME18LTTTgvapk5xjgp5RVEURVGUIGIZEW4hnxT69+9vwlFpEzVs2DAj4pikMhkmxN22e0M8UAiKwnN4BJmAM4m13xMuv/zyi+k7TYGonOa4WvAes70I1Hbt2hnvqZIRhCDRCniZEe+EEFshSmoF3uZIFRiMNzBoIOytuMfogbDn3GGf+gt7olXwOkcijBw4H+vVry/TtqVIaq2eciQpv0haqpTZPEtKb5wuS3clSr72g2XhwRLia4AmRsB3rF9WyhXzjiGGPHmMEpynjD9y0/37sYd7XLiGUWOD3HbqgBABECmIFho9erTJl+caQ1X+c845xxTdUyKDFrtTFEVRlDhC743xC96tAQMGmMJ6gX3sw4UoAiINmGQjeuKx9Vg4MD3mHEJosnBe4W1HaCLeY0G4Oy125xb+wh6PPeHwXMOs+Oc6Fq7BavnmPXLte7/Jgi2+iv8Fdq2TSusmyN4jSbKhXEtJK1nVvF6vfFH56aa2nq/EjwGJQnict+TNk0cfCRD01113nbz33nsRK5ipRB/1yCuKoiiKonicF154wXjh8Zp16dIlooLAFtbK6yAo8bhb8U5RN4Q7RbnwEuNhVCIPBhGMJCx16tQxESwIeo4BOfbsdyvqMaKEYkA5ciRN3pu8Qp4ZtUD2HzoiBZJEKm6aKpsWTpMVtTrKkTJ1zOfyJ4lc3rqGDDythudFPGBoI/WF/UBBSowfkTDAEWnEd9JOk3OA3vCK91EhryiKoiiK4mHP8F133WVa140ZM8aE8OcUwlynTJliJv+E1OY0RDfW9y/9xdesWWOMGhRyQzBi3CDUWyMUch/SUgglZ8HgZEPwEa4YWygcSB0CQs2Die/VW/fKrV/MkinLt5rnrWuVkifPbiRfzagtL4z2nT/JifSBryrXd6glZYt6J4Q+VGzxRPLmSelp0aJFjs/jM88807SS45H9/fDDD8eEcSMvo0JeURRFURTFo6HRhNJPmDBBfv/9d+OtzCl425j821B6r4eHR4tdu3YZ8c7CfkYY0RoLr7CKF++AIYVoCBYKpJEfzjGjeCSCH0HPQl0HjDJfTFsjD33/j+w5mCqF8ifJPWfUl4ta+vqwt6pZWl4cs1j6NKkkt3SuI1VKxrYBi8JyFI6jcjzXCIx8eNVzAm00f/vtN+natasR80OHDnW9LaKSOZojryiKoihxhN4b4wO85uSqIlp++umnHIe+M92j8j6FxU488USpWtWXG5yXOHjwoKxevdosCHk874hAwufj0fMeKzny4YCnnvB7zg8eE1KKyvClCfL7it3m/eZVj5O2tctIwfxJpnWcv7c+1gV8MFasWGFSZagWX61atRx/H/sVMU/P+eHDh0es+KASWdTEoiiKoiiK4iEo/NW9e3eTG4ynjRDanEA4Mq2f8LCdeuqpxuucV8CAQfE0hA6h8+xLOghgGIk3cZuXwPDCMWSZsOBfufXzWbJ572FJSkiTjtULyfJdB+T50YskJV+i9GhcQSoU9wnReBTxgHgnKoFoG4y5CPqcRNtg4CJknxabCPqRI0eqYdiD5M14KkVRFEVRFA9CvnanTp1MiOyoUaNyLOIpHEZYPsYBWsvlFRFPobqVK1eaXtmEYRMezPa3bdvWRCOoiI99DqceMcXsLhs23Yj4qiULSqsaJeWXZftk8aa9UjifyNUty0nJgnnDb8k1gzFO+gFjngiUnMC1gnaXhPBTYJNriOItNLReURRFUeIIvTfGLkzAEfEIzc8//zzHVdIZA3/99ZcpCkbxtryQ67p3715ZtmyZrFq1yoQD16hRw+S/54Vtz0uh9et37JMbP5kp01ZuM8+bHl9CFmzYJXsOpAolDi5oXkX6NSgkW9atkv3795tzirGQF0LEMWLNmDHDnP/UfTjmPoD0O3xAJF9oRf7Yf+eee65JYUDYcz1RvIEKeUVRFEWJI/TeGJtQhA4Rb3NScyq81q1bZybzfB9F8uK9gBs577QqI3yewmiINqrOx/t250UhP2HRJrn505mybe8hKVogWW7rWlce+3G+HDx8RBpXKSGP9DpBGlX2RbIgczCQLV26VDZu3GhCxjknCEOPGw7tE9n1r8ieTSK7N5jHtN2bZNu6JbJv8xopXThJChzZK7Jvu8j+HSIHdoqkHhS5f4tIUnLIkT39+vUzBjIq23NuKe6T98yTiqIoiqIoHoL2WrSBw2v4ySef5Fh0UdTun3/+kaZNm0qFChUkniH/HQGPtxCR1r59+/gSaUqG3vAvj10sL41ZbJzKDSsVk1cvPFmqlipsRHxK/iS5sMXxkpT4n/EGQw4h5yzW2DNu3DhT6BBBn9PUlahz5IjI7n9Ftq0U2b5KZMcqke2rRXauFdm5zrfsPzbknT2QnkTj68J3LAj6QqGl2tAh4LPPPpOePXtKhw4dzD7MK2k6XkY98oqiKIoSR+i9MbbAW9ixY0epWbOmXHHFFaYQW/369cPyJDOlW7hwoQktp41UvE602U6MH4gyagpQ6Iv9lxfCpvOqR37H3kNy82czZdzCTeZ5sZRkebt/M2lRvVRY6Rd46KmhgGcZQe969MaezSKbFopsWSyyZYnIlqW+ZftKkcP7s//75BSRImVFipQTKVxWpHApkUKljVDflZpPFqzaKOWOryNVajeUhIIlRAoUEylQFEtHyOccxkH22RtvvGEiX0aPHq1h9i6jHnlFURRFURSXvMmdO3eWWrVqmXB6clEpTAdOxTwT7VmzZhnPdJs2beLWiIPhgxZ6eFcJn2/WrFmOawko3mbhv7tk4IfTZOWWvZKU6HNS79x/WIaMXSIfXulcyBcqVMi0YCTlBKPXlClTzPnSoEGD6Bu/DuwS2TBPZMMckY3z/1v2bc3C7ZokUrySSImqIiWOFylexfe8GEtFkaIVRFKKZyrKi4pInR07TAG87RuPyIknVnJ8bUHEI94ppsc1i5x5qtkTZo/hWHEH9cgriqIoShyh98bYgArQTIgJB6ewnfWYIlAR88cff3zIYp6e2tOnTzd/S3u5ePRMM57nz59vhDyGD0R8rHuZo008eORH/fOv3PLZ37L3YKokJybI4SM+2dKvWRW558z6UrxgvojsJzz0S5YskTJlypjzLiLXTnLS180UWf+3yPpZvmXrskw+nCBSoopI6ToipWqLlKopUrKGSMnqPuGelPPt3LNnjxHz3B9OPvlk08LPiYhv3bp1etoKOfNnn322iYihu4bea9xBhbyiKIqixBF6b/Q++/btM94sjs9XX311jEfZiZhHhFCZnl7xhNPHm3ca8bFgwQJTvI+0A8KgyddV4lvII09eHbdEnv1lUYbXyxUrIE+e00ja1y0b8d9EnJKaQvg4nQ7q1atnvPchcSRVZMM/ImumiKyeKrJ2mi9EPhh40Ms1FCl3gkjZ+iJl6vkEfP7o97hnG//880/TxaFFixZZjovMRLyFCKJevXqZcfbTTz/peekCKuQVRVEUJY7Qe6P3W0P17dvXVKmnlVNmQiEUMY9BgEk5HnhCzOOpxRqCY9GiRbJixQrnokqJaSG//1Cq3DVitnzz97oMr/duUlEeOquhFC+UL1eMR+vXrzf1F4Iaj2jftna6yIrfRVb9IbJ6isjBXcd+2XHVRCqeJFKhiUiFxiLlG/ny112+BpFOQJ95jH8pKSmORbxl9+7dpsYH16lPP/00JC+/EjlUyCuKoihKHKH3Ru/ClOvqq6+WyZMny8SJE7PNx81KzFOwi/co0tWkSRNJTEyUeIDIAqruI6SoNB6xMOc8SCwK+a17DsrAD6aZ/vBUn3/wrAYydfk26dSgnJzVuGKurgvXUOoxUMuift06Uq3AdklYNl5k+QSfcA8sQpe/qEjlZiJVWohUbi5S8WTXRXtW59nMmTPNtiHU/dNxQhXxFgpPUpeD9plDhgzJ0y0fc5v4Md0qiqIoiqJ4mAceeEB+/vlnI+RDKapVtGhRM5EOLICHx5DXaKFF0a54mTiT/z579mwjMpo3by5ly0Y+fFrxLiu37JFL351iitoVKZAkr1/cTNrULi2XnFLNlfUpLrulVf5Fsn/zj5I0fZIkpO7J+IHCZUSqtj66tBIp20AkMTY80hj+yJOnQOZvv/1mrjNEvDgV8YDBjTx56nPQ7vLee+/NlW1QVMgriqIoiqJEnVdffdUsTJopcBcqgWK+SpUqxhBQsWJFadiwYVyIeHJtEQ+EMtetW9e0kouXCAMlNP5evV0ue3eKbN93yDxvXau0EfG5CuXwCZdf+KPI4l99leVFxAaep+YrIhsL15PDVVpLuVP6Sv6KDUNu3+ZFuHY0btzYGM+4LiHESWVxIuItVatWNUbK0047TcqVKydXXXVVVNdd8aFCXlEURVEUJYp88cUXctddd5lWTXjVnWLF/KRJk0y7LPJ2TzjhhJgX8f5h9HjfybWNx4r7TvYHBg3CnenPzTHOCwaNcQs3mnD6Q6m+bN/SRfLLZadWz50fP3xQZPlEkfnfiSz8SWTPRr83E3yh8rU6idTsKEkVT5LiBw7K3LlzZc6s1VLvQGFTgDGWz0PWvVGjRjJnzhyZMGGCGW9t27Z1JOItRAd999130r17d1P9n0J4SnRRIa8oiqIoihIlxo4dK5dddplpMUdhqZxMuK1giGXh4J9/TI4urfM0jF5MlMUrr7xiWuxR6I/iahh9brjhBuMpjVdGTF8jt30xS2zBrpbVS8orF54sZYoWiK54J9f9n69EFvwocmDHf+8VKOYT7nW6+R4DctwLFfJVe9+wYYMRv6tWrTIh6rFex4FrCmH1/teZcMAI8NFHH8lFF11kKtnzXIkeKuQVRVEURVGiAPmnffr0kddee03OPPPMsL/H5sQTVk/hO0Qfk+1Q+8x7zetMNXp6dhNCTyh9XvA6ZwXH87bbbjM9uckxJiqBjgQYOnj92WefjUsxP3T8Ennq54Xpz69pV0Nu71rPFLmLStj8yt9F5nwuMu9bkf1+4r1wWZH6PUTq9RCp1lYkOfsWjoSPkxtOuzoKV9apU0dq1aoVc2PZ5sTT3rFdu3YmQobxaHPmw6F3797ywgsvyFlnnWVC9oksUaKDCnlFURRFUZQIs3HjRjORvf3226V///5hf4+tTk9OvA2nD1YAL5a88IgHqlyXKFFC8joYNvDEI+IRgvZYEtqMoWPp0qWmtgLRHLEmErOCHvHPjPKJ+OTEBBlywUnS/cQKkf+hTQtFZg0Xmf25yM61/71epJxIg94iJ/QWqdIyrCJ1tFpr0KCBMb7MmDHD1Hg46aSTYsY7H6ywHeHxvM71hXM03FSXAQMGyJo1a8w1kFZ3dNdQIo+2n1MURVGUOELvje5Df2byvel/Pnz48LCFNkXg8GgRdh5YnT6UPvNeEquLFy82i3rhM0J49qWXXmqMGsHykunTvX37dvnggw/MGIj19nPIjud/XSRDxi4xz/s2qywD2lSXOuUjeK06sEtk7giRGR+KrJ323+spxUUa9BI5sa+v0nwEK8yTIkKtBzzaseCdz6o6Pe8RTURbOULjSfMI97zv27evqflAVXuvjMF4Qj3yiqIoiqIoEYJJ8PXXX2886e+++27YAhsR9ueff5qiZ8FazGXWms6LhiW8lUzq1Qt/LIgccuIz83zyOvnYfC7WYQxc+NZf8ufyreb5PWfUk4Gn1YzcD6ybKTLtXZE5I0QOHW0Vl5AkUruLSOPzRep2F0mOTu493nkiZvDOE3WCd57cec5Tr5FdizlbzX7atGnmGsRnkpOdS0YMGcOGDTN/P3jwYNNjXoksKuQVRVEURVEiBGHQ33//vUydOjXsHFO8e4Sj4gkjVDczge5lMY9YoBAYHucaNWoYLzxiR8kIhhqOMznxwTzyvM77fC6WOXQ4VXq+8rss+HeXeX5zx9qREfGH9vuK1k150yfkLaVqi5x8iUjjC0SK5F4hxZIlS8rpp59uvPNUgaciPFEzXiHUPvFcRzBEIOS5lrVs2TKsCAO+/9tvvzUFLTFIDhw4MAJboVhUyCuKoiiKokSAMWPGyJ133imjR482henCnWjjwT58+LCZaGc3efaimCeagN7UmzZtMhW+83pF+qzAi8sxw4tL2oH/sWMs/Pvvv0ZQxXLBsN37D8kZL0+SVVv3mednnFhebupUO2dfuutfkSlviUx/T2TvFt9rSfl9ofNNLxepeqprPd6td55ieJzLhKgj6MPxarsh4v23g/OXawvjk3EYzrWFdpkjRowwbenq1atnes0rkUFz5BVFURQljtB7oztQlAyv03PPPSeXX355WN/BlAwPNoXynOameiVnnnxuQnIJCW/atKmkpKS4sh6xWLWe8Pny5cunV61HxOOJ969azxjBUEL9BELy7SNh67zHYv+PMWjFihUmIgJRhlHIthfj/4wvjo9dEJqRHjdbdh+Q7i9Nko27DpjnF7U8Xh7r4yzXPwMb/hGZPERkzpciRw75XitWWaT5FSIn9xcpXFq8BMcRMc9xatasmbk2x4KI94d1nzRpkkkbaNiwYdjr8Oabb8q9995rPPyIeyXnqJBXFEVRlDhC743u7PNWrVpJ165d5fnnnw/7e2jLtmzZMuOxCics300xz3SSQl/z5s2T2rVrm4JfbkcGxJqYJy0DIw7HnhBtBDgeUcS8Fe0sCHWEuRXg+fPnN8+tQLdinWOCkK9atWr6cyvySd/gO+338py/9Rf2gUIfAwMCMNTjunrrXjnrld9k216f4L6qTXW5r0cD5zsHqULruN9eFFny63+vVzlF5JRrfW3jkrwbZMz+pk0dLRcRwvZ4xIKI9y+6SOFNivixhAv1Q/gerlPhrIeSERXyiqIoihJH6L0xd0EY0TcZQfTDDz+EHT67cuVKmTt3rikIlxOvnRtiHg8xobd4lPE6aqup0MaNrUhvF85ZpuUcM8Q5+9FfSPuL61C856FWrbfee2so8Dca2Od4lln4TcYnC4ULbbX9YCkgF731p/y+1Bf2fvVp1eXuMxyKeCTKktEiE58VWf2n77WERF/4/Kk3ilRqKrEEqSbTp083IfdNmjTJlVD7SIh4C2OUawu57uHm/TMmu3TpYgxVX375pRr7coh3zVeKoiiKoigeBw884fCEz4Y7MacqOd9Br/Ccht7mds78nj175K+//jICkyJf4baqinfRjoHFinUeMbiBFcTVq1c3/+f45ba44fcQ+ixZVVlHFPpvB8YnaiEARkMr7FlGL96RLuKvaO1QxCPgF/8qMv4JkXUz/st/P+lin4AvWUNikTJlykj79u1N6gmh6hSQC7cgZm6LeOC4kj5EIU6MSeHUvmCMffHFF6aIJ1XsBw0alKN1yuuokFcURVEURQkDKjo/8MADMm7cuLCriiOMmNjjocNTFwlyS8zjYSTflcJ+FPfyct/s3BbuW7duNTnuPCJ62f9W5CLarSc7ljySrCuC3T/Sx4p7a6D4c95yWbphl7w13/yFnFWvqFzXqqzZJyGNj2XjRcY88l//9+SCIs2v9An4ouUl1sHQRRoOhjuq2pM6EY0IlkiLeAvincJ9XLNIAQrne7nODR8+3Hjmqf1AFI8SHirkFUVRFEVRHEIY+fnnny+PPPKImYyHw8GDB403G2FXuXLliK5ftMU8+fAIBcJsyfnN6xAyTH474p0IC0RruXLlTJ47nvZYE+3hiPuNRwrLA5+vlYOHE+WIpEmXOiXk0hNTjLHHikAKpuGZPibUf+0MkdEPiCyf+J+Ab3GVyKk3iRQpI/EEY4M+7eyzP/74I+LnULREvIWweiJKuHYh5rNK28gMUojuv/9+6devn4lmcqsIYKyjOfKKoiiKEkfovTH6MHU655xzjHj77rvvwhJoeCiZCDOpxxAQLZEX6Zx51htv4rp166LmTYwV9u7da4Q7Cy3GEExUnWchQsNt4R5qjnwkmL5yq1z89hTZdyjVPG9dq7S8f3lzyZeUaM4XDF/r1683Rg5qA+CVZT9VSDkoBSc/LTJ3xH8h9LSPa3urSNFyEu8wbjB0VKpUyRTCy2lUS7RFfOD1izFOikC418Bu3bqZc+XTTz91/XyJRdQjryiKoiiK4gCqizP5/vvvv8OefFLdneJhtJmL5gQ2kp55IgjIj6UwWrt27aKa3+tFrCC1XneMJBgyEKR4WAsXLix5kZmrtsml7/wn4htUKCpvXtLUiHhgvFHcjIUUDIT8ptVLJN+ERyX/qm9F0g5LmiTIwXp9JH/XByXhuLwT4YFBA682ohjvPMaxcI0uuSXiAYMDIfGkB8yfP18aNGgQ1nd8+OGHJq3orbfekoEDB0ZlXeMZFfKKoiiKoighQnX2O++8U0aNGhW2N3rVqlVmQQxH21MaKTGP0QGhgVilKF9uVNz2ChT0o7Db6tWrTZs2QuZpscdjbhw/LzN37Q659N0psuegT8RXKJ4i71/RQgoXyGR8HDkiRRZ9LUXGPCSyZ5N5aX/FVrK01uWyYl8RSZ6yQI4/fq+JIMkrhhG2E4MeFe1pzcb5Ras/r4p4C2Mfb/zEiRNN9Fc46UGcQx9//LGcddZZpnYAaQZK6OSdq7CiKIqiKEoOwAN73nnnyT333GNyPMOB4mdU+mYCnJtCJSdinu2mzzmTbgpd5YWidgh2PO/0Yd+yZYvxuuM5JL87L2x/KCzZuMuI+F37D5vnRfInybArWkjZoinB/4A8+B9u/a8SfanaIl0fk5TaXeSEhASpf+SIqTOA0WTMmDHGW12tWjWz7+N9nyOK8cYT5UNFe4rAhSrG3RDx/tcVW8me61k4RT87dOgggwcPNtdWiujlFQNOJNAceUVRFEWJI/TeGB2YLl188cVGaPz888+SlJTk+DvwahOKWqdOHVMEzQ2c5sxjeKA6P+tbt27duM9jxftOIT+874gripBRlZ92W7FGtHPkx8zfIAM/mC6paWmSmCDy/uUt5LQ6QQrT7dsuMvZRkalvcyaJ5C8qcvqdIi2uFknOH/S76V9P1AqinlQOxitFIeM9nYPrDKHqbDee+eyEsZsi3p8lS5bI0qVLTZRROOcKx7hjx47mGL///vtRWcd4RD3yiqIoiqIo2UAxpl9//dV408MR8RR2wtuEV5vJqls48czjkWadyWt2c52jDWKIomPLli0zhho8wOT/4hGOd8OF//hEEFIDAPEYSjvBpMQEI+Lhfz0aBBfx874T+fF2kd3/+p6f2Feky6PZtpJDDGLwIoWBNodERuClt50ASGuJx2PDNpFvTps6zlG89Jn1a/eKiIeaNWsa4zHXC9bF6bEhVeeTTz4xET8jRowwxUSV7FEhryiKoiiKkgUI2htuuEHefPNNI/LCYcGCBcZDSg6o2wIkFDGPNxSjxcknnywVK1aUeA2fX7NmjRHwREsQxo2QcJqfHOuQNvHKK68YT/CBAweMiGRMMOYJ8fZn78HDJpR+38FUGTR8pnnt/OZVpP+p1TJ+6a4NIj8MFlkw0ve8ZE2RHs+L1Djd0boxLhGyLHQJIFqCMG488wh6qr2HY1jzOghjjgPbSiFFokK8KuLtcWI9iThauHCh1KtXz/F3cCyHDBki1157rSkASBqLkjUaWq8oiqIocYTeGyML06Szzz7beAiHDx8e1nfg5WVCzuTUS8ckszB7hC2iDm9gPE6mEfB4eBcvXiz58+c3gpBCXW4U8AvHEx7J0HpE/G233WZSKOjxjhEDowbGK9bn2WefTRfzh1OPyMAPp8u89TslJTlRVmzZKycfX0KGDzxFCiQfFdPIijlf+Lzw+7eLJCaLtL5Z5LTbRfJFJj2BMGxSHxinbCOee4ww8ZhHz7WDDhl46W1UjNdEvD/cd8jxpwZIONcO29qT8frZZ59FZR3jCfXIK4qiKIqiZALiHbHDxDkcyPWlGjWeXi+J+Mw884gjogeoIE27sHgCkYAHnu3Di0vxOkK13YqQcOIJj5YRgd9HxNeqVSt9PyAM8QiT80yrRXK1ee/B7/+RsQs2mnz4I2kipYsUkKEXN/1PxO/ZIjLyJpH53/ueV2gs0us1kfINI7reGFwQtYh3DA7sP9aVfYdX1+2Il0hCJAL7nzoVjF+226siHjAiN2zY0Fzz2rdvb8a0Ezh2Q4cONQatL7/8Us4999yorWs84KpH/sEHH5SHHnoow2sUUuECGwrqdVAURVGUjOi9MXIgEphQvv3229KnTx/Hf88UC7GGN58Qda8KDOuZR9gzbhDx4VSf9iocB/q+I/jw4BL2S6iym8fDiSc8Wh75OXPmyKWXXiolSpQIKgjp9759+3b54IMPZOqOIvLwyHnCHks7mh//yVUtpWWNoy0YF/8q8s11Ins2+rzw7e4SaXOzSFK+XDm+pIKgHxCOeK/xBnv1fAsHxgntH7m2U5DRiyLe/3iQK0/khDUChVOTZNCgQcZoEY9RQZHC9RgUbpDr169PX+ifqCiKoiiK4vZk9JprrpGuXbuGJeJh0aJFRpzhjfeyqEDAI2wp+EYNAIRdPAkgjBQzZ840KQRUxubRzeMR6AlHkBEhYD3hhNnjCedz0VwHxBa/heAK5tfDuECkwPiFm+TRH+aZ1xJxx4vIHV3r+kT8of0iP90l8vG5PhFfpp7IgLEi7W7PFREPHEu6C3Tq1MmkSLBdGErYv/ECxh2iR2iFyPj1qoi3x4NoFwxBVLMPh379+knbtm3l+uuvj/j6xROuh9YTHhNu4RhFURRFUZRoQAVlwlnDDalHFJODzWQ0Gq2/IglhybS7oh80Be7wXDvpM+/VyBS2g4rniGNydr1yHBhTrBue+MB9zHPmxfPmzTOfozhitEL6Z8yYYSIAGKt4egnb9o/EwAiVXLKSDJ2134TSFymQLLsPHJaO9crKwNNqiGxZKvJFf5F/5/j+oOU1Ip0eyjIXPpo1ATCGYBhB1HPusZ2EpjOWMVbFKjYnHhFPNwV6zRPl4+VOEpxrrCtGNDoMOE3T4Tx47bXXzPj44osvpG/fvlFb11jGdSHPiUY1VAYkoVxPPPGEsTQFA6sgi/9FWlEURVEUJZIQIXjjjTfKu+++ayahTjl48KDJEWUSikDyMjYnnjBuhBWCJ5TWdF4F8cn2kAtvvbRe6wGPiGU+m1l1fF4nFYDPRTOkH4MBc2nC51kwHhCWzjhAPCLyU7rcIjsPpUmpwvlly56DUqF4ijzbt7Ek/POVyHeDRA7uFilUSqT3UJE6XT1REwARyXZQxJAK6uPHjzcRJ6TvxlpHgmCF7dgGwuw5N6kT4FUYRxxfIiROP/10U1jSCUQgEJly3XXXmf70mbXhy8u4GlqPdfT999+Xn3/+2RQ2oKUElmtytYKByOeGaJfAVgyKoiiKoig5hfZH3bt3l969e4f193i1CU/38iQbqPyNqPLPibcF8Mg55r1YaW6EpxfRRq9x/t+hQweT0uA1EQ/sa0QsRodg8DrvR7pOQWBIP8cary77CFFIYUYMO8zDidLg958+u4G0qlnKiHii6l/qe4IcN+kBkS+v8In4qq1FrvktJBGPAQEDF9G41O/gkagAXuf9SMN20RKNomvUC2BskO4SzZSFSJJZdXq82+Sez50717znZTCmMM5Y13A477zzjIjHsKp4vP0c1kCsp88//7xceeWVIXnkEfNa0EdRFEVRfGixu5zx/fffy2WXXWZEYenSpR3//bp160zoK0LSiyIysCUeLeaCeboya03nRRjr5MAj0E466STPF+pjPS+++GKzzoT9++9bpuWIaIojfvjhhzkKOw8sdpdZcTuEPe342I/ky2OAatq0qclPrn7CSdL1hYmyc/9hubPNcXLtxkdEVh0V3W1uEWl/n0hSckjby3ji+8md5jW2jfVA0Ldp0ybH25sdbCf7nN9jnHj5+hhKizkiJvB2h9vqLbfAMDV27FgzpsJJpyY6hWiKzz//XLp06RKVdYxVXC925w8XFnpBZlYYAeskJ53/oiiKoiiKEqkJ50033WQiAMMR8Tgb8MZ71RNsIWQbEU9BqszCVWPBM2+98PStJgwXz53XRTwgVgknZ10R7QhbetvzaD3hiOhIi9rMQvrx8CJsWRBa/W68Tzpf96i0bHmK3P7FbCPi+5TfJNcsuson4vMXFen3sUinB7MV8YAgRXDisMNYgJBmHXjkOa/TKz3cehShwnYS4s25PXHiRM9650PtE8+x4lrDucw+9Coca2o9YOAk7cgpnNuPPPKI8cr7O3QVjwl5ewGj+IeiKIqiKEpu8vTTT5uc+GBRgaGAxxMRRi9rr8JciyJ+eNmp8J0VXhbzRJ4gxqzYYXsodhYrkBNOiznEMyIMjziPeOIj0XrOaUg/UQEI6+LlKsv3m0vLg9/Pk8FfzJLflmyWXvmmyHO775SEnWtFStXyVaWv3yPk36VIG15VjBWFChUyv2N/j+e8zvt8LtowRqhdwf4ltQQjkJdqboUq4i1EzOAE5ZymLZ1XIYIahy3XyHDTnTCOvvDCCxFft1jG1WJ35MT07NnThNMTivbAAw+YE+yCCy5wc7UURVEURcljkBuMkB83blxYgpB5DOHqhNR7NQwdAUcuMvMuQrpDwYp5rxTAw4NKoWQW8m8JuY0lAe8PYpJc52hVcQ+E7+b4ZRbSv/7fDaa43dZ9qVKtVCH55Z/1cl3St3JH0mcih0WkVieRc94RKeisPSECHU+szcX3h+eE/ZOfnxtCPtA7T2FEDEKIYeoGRDO0P9Ii3sJ646mmAB4pCl6MBuI4U6+A6yspAU5D7DH6UPiuW7ductFFF2mdNC945KkoimjnIkwxA6zgWJS8nOehKIqiKEr8cfPNN5sJIjnjTmESPWvWLE+H1JMvbedYiDkneMUzH+iFpzJ5rIp4C8KRsOPTTjvNPEZTSGYX0p+/YRfZXrCipORLlFIFk+T+tDfljnyf/dda7oLPHIt4YH5PxfLMwqp5nffD6RARL975cEW8FclsB8eVc5xz3ash9g0bNgw7xB4jxTnnnCODBw+OyvrFIp4qducULeijKIqiKBnRe6NzRo4cKf379w+7wB35vUyn6MPuRW8868YEHyiMFa5YdKsAXjx54XOTwGJ3WbWBq9r4VJlT4QxJTRPp16SUdPnnLumYNFPSJEESuj8l0vLqsNeDcGoEmA2vx9jFGOS44onnWJIHPWLECGPMcAPWC+88HbQYX0Qs5JZ3Pici3h/2J+c5+xODpFevRX/99ZcZjxS/C7fwHb3lO3fuLHkd1/vIK4qiKIqiuAVCggJ3jz/+eNhV6jdv3mxaXHlx4gyIhL179xqvb07EiRth9qw3hhKqnfPbsVDMLtZC+osUKyF3j98uqf/ukm61Csj5CwbJSUkL5XBiAUnu+66jfPhg4C1u1qyZMSDgiSWX21atx9iINx4jGJ9zC+udp04XLfHWr19v1pkc/lgQ8cD+ZJ2JWsFIQ8SKl0Ps2cdO66Jh8Hn44YdN4bvZs2c77k0fb3iq2J2iKIqiKEpuQl484vCqq64Ky+OJt5FwUa+G1BMOz4In3t8rGy65GWaPgWTChAmmSBb5zCrioxPSvyOlvCzasEvqFN4r92+8XU6ShbIrobDIpd/kWMT7h/RXrFjRCHfy0RGZPPKc16NRpT/c3HmMcqwXgjiaefuRFPEWhC3nOpEFpDB7NcQeownXTgx0TrnuuutMFMkLWvhOhbyiKIqiKHmTlStXylNPPWWKKIUTqk37qsKFC2db/d0t6JuN1wovXSREQm6Keaq42+r6ePA0lD56tK9XVr69pLp8VuBRqXRwmWxMKyFre38lydVOjXiVfqryI95I0+CR8OpoVekPF8YaYw5DAwXkuE7Egoj3Pz8558lF92pbOtJzMH5yDXWKLXz3yCOPmP2Xl9EceUVRFEWJI/TeGDqXXXaZERMfffRRWPsZbzG9y724n6lQz/rVrl075Ar1XsiZJ+QaTx0pC4Rbh5PuoGSdI38MO9ZI2vtnSsK2FbImrbR83uAVGdyve1TWieMbqSr9nLvffvutGSt49Xv16mVEXiTZtGmTSe2gSnqkOgpEU8T7s2TJElPEkGuUFyOGMDL89ttvJtomnH1w3nnnmTH0xhtvSF5FhbyiKIqixBF6bwyNuXPnGqE4b948qV69uqO/ZepEvi/7mbB6r0HhLipws35NmjSJah57JMU8hdemTZtm8qgJD452fnJeF/Ijpq+RpsftkWrfnyeybYWsPFJWrkt+SD65ra8UL5TzNIxognijrgUtH22+fdmyZeWee+6Rq68OvzBfMMjpp0AbYhhPd07ysnNLxNvfIt+f9ee3vBjVQrcP6mBQs8HptWPRokUmcoLIAwrg5UU0tF5RFEVRlDwHE/4BAwY4FvGABxAB69XJI+H0TNpphxftYnSRCrO3reUQnG3btlURH2WWbNwlz301QWTYWUbEr5Zycv7B++Xibm08K+JttMZtt91mWpDRjxxxjcGSR57zXqQ9tKTPMCY5pxijnPteF/HAuY8hj9/FcOlFMP7hmafwnVPq1Kljuo3cd999kldRIa8oiqIoSp6CcE6qJoczAcTLyaSYMNtIFI+LNPTDRtDgOcwtD1xOxTyTeCIICF8mSiLS4dFeFKMIQh55nttwfJ4a8bu8n/SYVEv4V7bmryDn7b9PSlasLuc1qyJehAiYiy++2CwvvfSSSR2xYhVvPF5yIlCI5njiiSfCKqKWFZzrtHSrVKmSOXacY14W8RauAZxT/K4X88k5bhQ+5JoazjH73//+Z6JOSH/Ii8TvlVJRFEVRFCXIhPquu+6SW2+91YTixlOBOzyFhKoi4qkMnZuE05qOY8H+pD88RdDIc45ngvVvZz9R0d1JsTf2G3/PQvtEu2Bk4j2MAzySYgEYDBB0CF6OyR/Lt8n16++WOolrZX9KWTl7552yXkrJCz0aSFJigif3G552ijeyHTaUnu3bvXu3EcUIbbaNSA56jZM7T+/6SML3c7wY66SAEJFTq1atkMa5GyLewj456aSTTJg9HSC4fnkJ0nIoKMh1gP3rhIoVK5r2oVzTR48e7dkWoNFChbyiKIqiKHmGkSNHGvH4008/hRX+vWzZMlM8ymsTRkQN4oJUgfLly7uyDk7EPOs7c+ZMI84IW8abGs/4i1F6Z2NowavMPuD1wMrt7B/GG2HHPPoLdgQ84hDxSkg5BgEe8W6yv62otZERvA8837t/vzScfrc0SVwmuxOLyh0Jt8uKI2XlxJJpsmPxNJmwOsV8lw1ZR/jx6FZ+NaId4wf7DdFMNwO2g/VhG9lP5Fjb8UM0B39D+ku0wIiHGCdvnmODSM6sCJ7bIt7CmEMwc43gfPNCqz8Lx5E0ICKliMpxuo/uuOMOqVGjhvz666/SpUsXyUuokFcURVEUJU/ApP/uu+82IfWITqcwIa9WrZoniwgSmsrk3KlHyw0xTwjtlClTjAcZo4gVmvFKoBi1+wPBQkcBvJHDhw83BhiKVCLeia5AlCKkEallypRJF9hWvGcnrtm/eDnJJTZpIORKv3qBNJQ5sk9SZFnXYfLj1/uNF/7xfs2lUtHkdGMBRgZSHoge4Hgx5lkP1ic3xT3nHOuAEGW/se3WSGHD6jmvWUf2F4+8Fu3oDvYBY5cWiYxlwtcD94dXRLyFEHZSWCjw6bUinexPRDz7i0KXTv/27rvvNl75Tp06ecpIEW1UyCuKoiiKkiegzRwVnMOpar1582YjxAgB9xp4H9esWWPaOHlhEpuVmEdo4clE3OKB9mKdgWiLUSs08ZCWK1fOtNBCONMuDG8vIduIE7z2kYz82PHjQ9Jw809yOC1R5p82RJ6YSfrFfjmvWWU5sWrwNBPjxd+7N93A4C/uOc6lSpUyBggeoyHsaVNHBIJNFWF/EXnAa+wbFptKYNeV/UwrumiDUYFxTq95xjQ59La+g9dEPHB8SLuhLSXHi/3kJRj3hMdznS1ZsqSjv73hhhvk5Zdfls8//1zOP/98ySuokFcURVEUJe6hCBaFkR577DHHHmAm5Xix8KZ6zXuMcCE8m/BeL+W+BhPziD88mAjZVq1axXVRu0AxioiiVRYRHRRMYzziiefYkdNNRMXrr79uvKZRYfbnUnzqC+a/n5a7RSpXPl2m/jpV8icnyqCOtTP9M4Qy44rFerk5HzCIkXuPEYkih3yOmhOIeiu2IwFGDs45DB2IYcYO56E1JvCc9SH6gHXid/HO5tbYwhDFWEbIM7bxJvPbXhPxFtaFcci4s8Yir4BhhAgVrrXsNydGrIIFC8qDDz5ooq3OPffcPHNtyRtbqSiKoiiK5HVvPEWfLrjgAsd/S4VqBDOTTC+BgGFCjjD0YqE4fzFP+DOeNoQWnksv9rSO9LGhEBtjBxF67733mp7nRE7Y2gAWPodYRbRGg4S100W+vcH3pPXNclGn+6XPa5PN00tOqSoVijsTc3igA4v2IWb79OljxDTbh0cVUc+SEyFLdwiMQHwn5x/iDmMIEMFgPfOIejzMiPhI95EPRczTB50Qe/YNKQgcd6+JeAtRH4xF+q+H0789mtg6CKwfBiEn9O/fXx5//HH57LPP5KKLLpK8gPvxV4qiKIqiKFEEEfnUU0/JnXfe6VhAEraLh4iwT695eZjwIpwQO14FMY9wX758ufGaBssljicQluSljx07VsaPHy9btmwxOerff/+9vPjii8eIeAQ/og9PfDSOY4FD2yXpy0tFUg+I1D1TpOMDMnHxZvl79XZJyZco17SrGVbRPlsBHVHNI+0cH3jgAWOo6dy5szEubdq0ybzOvrCi2yl43AmbxsixdOlSY/TgfC5durRJTUD4DRo0yBjq+I3cFvEWrg2Mc7aRSAs8814U8ZYTTzzRFOojmsJLYBThfOGa67SNZXJysil89+STT7rS1tENVMgriqIoihLXfP3118YreuGFF4bVl50JZdWqVcVLIOAJ323SpImn88wR74Rgk5PL/+kY4HSC7nXYHjyIeGR/+eUX838MP927dzceTzoJXHXVVceIUR55zuvXX3995OsbpB6S5suHSMLuDbIy8XiZdOKjkpaQIEPGLDZvX9SyqpQpWiDson0IVYwytmgfKQSvvvqq8dCzzXjp2Qe1a9c2xgr2Df2+2T9OxgC1FKjqT/oIefoYsHgk3/v999+XF154wbSac9PQxvYsWLDAHFeiERjzke5lH0m4ZnDtIKWDa6OXwDjEtYLoFaf079/f1DOhO0leICEthq+mWJIIX6EAhxcryCqKoihKbqP3xowwzWHCzwQPz50TmJRTfAlPqZf6xrNNeEZtvqtXQcgQamy9laQnEGaPJzWUPvNeB7GBR5NoA7aV7WLJzBMbrI88nnhEfHZ95BHRGG4Qywh/xmR2wj/1p7sk6a+hsiehkPTY/4i0Q1g3LC/93vzT5MZPuqO9lCuWEvL2Ik4vvfRS44EPto0YJhDYH3zwgfH4BnsfbzX7DM89Yp/9FaoAD2cf5AaBhe3I1yZfHmzOvFchQoQuBV4LsWeMLFy4UDp06OA4gueZZ56Rr776ypxvXtqmaODdkaUoiqIoipJD6C3MpBCPqFMQaIgtwoS9GFKPOPYqGEEoAIbQsuH0TvrMexn2/bJly8y4QtDWq1fP1CjITlQi1hFMTsVoMAMA+46Q80wNAAt+MCIebjlwtaxPriTXta8pd3w527x2btPKjkR8sArygfA6hfv4XDDYV2wv+4sieUQjsE1Eu9AHnBoWWcF+CmYgcJPMqtMj4DFiEaXB/72aTkIbOlIfGMteijqiFR2pElzrnNYmueaaa0yuPNX56eQRz7hvxlIURVEURYkSTzzxhNx0003ZioRAbBg4HlMviU0bUk+YsVdD6hHxCBg8qIEeSSvmEQ6IuFgKDCUEmQJhCB8ELaHj9BInWiNUz7AVo6eddpp5DEXEB8tJx5PK67x/DDvWinxznfnv54nd5ZcjzU0Y/bY9h2T8wk2SmCBy9Wk1clRBPhi8HkrRPkQtQo19h2GDvxszZozMmjXLeIdjhaxazDHm2TauI9OmTfNszrZXQ+y55mKs4hrsNEWhaNGixsjFtT/eUY+8oiiKoihxCeGt06dPN2GWTsETxISwTJky4iXhgJBEBHlpvQLXcfbs2UboIm6ChRXHmmceMUYBO7zwVNLGy8c2RJvAnHS7j2xOOh5tctIRjOkGgSOpIl9fLbJ/u+wq2VDuXXeBCaNHuD8zaqH5SLeG5aVqqcIRqSAfWLTv5JNPDrloH39P7QSWXbt2mQJnpLLw3WyvVw1VIfWJ37VB8u3fLqcen1/mzvxLVmyfKTWqVDB1CyQ5RaR+j/8+u+gXkX3bRJKSfe8lFRDJV1AkfyGR/EVFSteK6rYwpoko8VoVezoeYIAlHcOpV37QoEHG6MX1v2nTphKvqJBXFEVRFCUuwSNz7bXXOm7rhUcZkYSnyiuTWiAcGcHj5ZB6xC7h1XhbsxJisSDmGQdsDyKeuhOsb7RaxAUDoUjUAm3VAvcNzxE6iF8+lx5y/serIismieQrLA/nHyyHJFkuOImw/wT59u915iNXtnHujfevIE8kAOcHv084PZ5cRHxOivYxHojewGjBNmFIo3o5YswzYekH94hsXyVp21bK+gVTpeDGpdKheJLk+/p1kcJlRc5+47/PvtdNZOsy4Qw4yb72x9HHEsdnFPLjHhNZ/3fw30wpLnKXX2X5rwaKbPhHpHAZkSJlfUvRiiLFKogUqyxSuRmDw/GmYXwhKoLjyHjzAoxxCiVSmyGzcTBx4kSTE49gX79+vSls2rt3b2PovPLKK00bOq5DnMecw506dTJV7f3bdTLmbrzxRtNZgrFL4cSXXnrJ010HLCrkFUVRFEWJOwgVpUr2G2/4Ta5DhLBvQoSd9jGOJoSXsk1MuL3qqaQaOcKTvO3M8qhjQczjCadbAVXIGQcUS0QY5Pa6Oc5J3zhfZOwj5r8bTn1AvhiVIgmSJle2qSbD/1olB1OPSOMqJaRp1fCNEbaCvM3Z5/fZR3jiQynalx1UfGdMMJYQ9BgMyKknCiXX9v/uTSIb//EJ93pn/vf6kKYiu9YLa5EuA9f6iXN/Ch4nklJCpEAx410/nJhPdu45IEVKlJL8papl/Czim8/jradN4OH9Iof2iRzcK1KoZMbPbloosmFu8PXOX0Tkbr9K7xOfFdm9UaRULZ9Xv3QdkWKVggp9ig+SRoRoZqx7pUAfRgXGGRXsg+Xw79mzxxT8vOKKK+Tss8/O8B6tCIlYee6550z3BM4T0qzOOussk+5gQexjBKCeCtE3l19+uQwcOFA++eQT8TreOEqKoiiKoigRhJZUVNjGa+hUxFFkySui0kIF58KFC3uqen5gRXImx40aNTJiLFS8JuYRkIgZQqcpBIbnzq318c9JD+YdzJCTTkj9t9eLpB4Uqd1VSp82QF4tuU6+nzRTKhVPkY//8nl1Lzs15wXNwi3aFyrsb4xoZcuWNQIOgwrnJFEHEU8p2bNZZM00kXUzRdbNEFk/W2T3v773ilfJIOTTSlaXI/t3yZ58paVQhTqSXLKqzxNepLzv0Z8BY48RXLtWrpS/5s0z9REyJDac+Vzo69v7NZGd60X2bBLZs9En1Heu8y2E4/uP1X++Plb0Y1goU1ekfCPf7/p9ng4ChLETgcJ56CWvPLnyrF/gudi9e3ezBIMxeckll5jxc/PNN5vXMEAR0YSxlu/DSPDzzz+btogY7GDIkCFyxhlnGIOVv+fei6iQVxRFURQlrtiyZYvxpjA5cwo5r+ClCRzh9ISGIgC8ZFyw4MWiQj0eMybHTvGCmGcbEKYIRzyThPK63drMUU46FerXThcpUFyk50uSlJQoXRqUk8MrjsjYhZvk3537pVTh/HLGiZEJm86NCvJsL554ukbQQYIxxnO2NyyPMYUVd28QKepn3PvobJH1swJ/WaRkdZGyDXwGksQks7/nnfyorKm42Vf7IYywa84P2oKyHW3btg0vsqbcCb4lFFrdILJxnsiWJSKbF5tQfzmwU2TNVJEDuzOK/i+vMJEGzUs2kBl/J8ju8qWlyHHeqMOB8RIxTmqR0w4igwYNMvuacHqKRLL/GVf8H+gswP+tiAfC7xnfHKc+ffqIl1EhryiKoihKXPH2228bjyEeVScwWccbhQfIbREXWDwOYUmOp9dg/chPpSgVAjhc3BTzeOEp9EXEA32rnXY4iBYh56TvXCMy9lHfH3V5WI4UKSf/zJljcn9h+FRfuHXfZlWkQLJH8s0d7gcMGWw/Ro1x48aZrg2lS5fO/o/37xBZOk5k6RiRZeNFdv3ryznHew1VThE5tF+kUlORSieLVGjsE/AFihxb2O5fn4jPSe401yTEI10I8AxHdYw3uSDj88MHfaJ+03yfscKSelhkwY8ih/dJQRkhrYlMWvSYpFVoLAlVWorUOF2kbjdx8/hT/JBrs9MImZNPPtmE3r///vumLd2dd94pF1xwgRQrVsy8z3lE5Ic/GImIKuI9r6NCXlEURVGUuIECZa+99poJrXcKE7eDBw8ar59X8HqBO/KYyVONRLRAbot5fy88Xl6MJV6LeAgpJ/3Ti0QO7RWp2lp+21dLrhs8TA6uni0pKyfLTXfcI78t3my8r+c39864DgcMLYwPvPN0pCD6A+PRMd757atE5n/vE6er/hBJS/3vvcRkkU0LRCoeLUHX7UmUYvjV6cMQpc2bNzdF2vAy52oIe3J+kXINfEsg53/sSy1YO1PS1kyVRML2ec6ybUVGIT9/pEiVFr5Ce7kEx5r0IoxuTmuX3HjjjfK///3PFPPjeA4dOlTiBRXyiqIoiqLEDVQeZrJGQaNwvPF4/rxSJRujBCLCqwXuKAhHTi0iPlLrl1ti3qteeMc56Yt/FVkw0gjUmZUukUFPvCE7TzxfEqu3ltqpK2XKxgQj4vNvXyHrFs2SaqVzVozObRgLNWrUMGIug3e+VKn/QsXnfiUy+oH//ogib7U6idTsIHJ8qwze9twU8f6F5TDMTZo0yXiGnYaLRxza3tXq6FvYx2lpsmben7Jt1s9yQrHdklil+X+f3b5a5LOLfP8ve4JIzfa+/Vq1tUi+lKitIsYajjvXaKdC/qyzzjIF7CgYSh0P640Hojy4FvjD54hmcVpfxQ1UyCuKoiiKEjfgbaFasdMcWvLqKdiGV9Yr4Hlk0u/FAncIylmzZhlBEuk2TdEU80zSEWcYIbzqhQ85J50q5z/fbf6b1vIaeeb972V7Kd9njtuxWJITRaZu8gnVtKWT5dVXJ2fsOR/r3vmT6svm8a9L0nt3ysoTLpVKXW7wnfcUqFsyWqReD5E6XX357g6Jloi3ICbpb46wZFtszrYnSEiQSg1OkUUb9snyqlUz9nDHU1/+RJF/5/gq+7P88YpIckGR6m1FWl3vC8WPAgh5ih4iskMtqHno0CG5+OKLzf6uW7eulMLg40erVq1k+/btGfrNjx071hQ9pR2i14n9M1lRFEVRFEXE5BGPHz/e9A92CsXkKEblFc83E1AqNRM67DWhSY42haAQ2IH5pZEW81SXJqQcYZVTSAEgpJlUhfbt20v16tU9t28dMfUdkS2LTU/xeWV6yj9LVsqR8r5CaCW3zZc9KWVl84EESTxyUCoe2ZTecz6mOXLEl/P+eX9JeL6elJn6tBy3Z6kUWfaD8XDv3btXpHRtkctGipxyjSdFvAWPL+JyypQpsn//fvESnBdce7gGcS1Kh1oC1/wmcvtSkXPfFTnpYl8f+8P7RBb/IrLvaCtEoJI+3QAicO4C12ZC7DFwWnbv3m0ia1iA9/g/1w3W+9xzzzXGkg8//NAIdAS7TaECrmHdunWTAQMGmOOA8ZC6FOeff76nCp5mhgp5RVEURVHigrfeesuEUToNiUSYknuMsPMKhJBS3C7i7bZyCCKHkGbWCw9ZNImkmN+0aZNMmDDBrDeh6nhBYxqKuE14yvf/9vfKlt0HZW+ZBqbCesF9GyXlwDbZVsznSS2xa6UULpBsetKn95yPNageP/kVkVeainzYW2TeN75We7RR6/akHHfpB8ZLyzEmuiZcckvEWyjixnojPiNhrIokhLCz/RhIj6FwaZGG54j0elVk8DyRayeLdHrQF2ZvmfmRyJuni7x4oi9yZOUfPkNMDuAaTd0Qa/iYNm2aSa1ggcGDB5v/kxPPMfzuu+9MDQzEOsKe6vT0pp88eXL6d3788cdSr1496dixo2k716ZNG3nzzTclFtDQekVRFEVRYh48LO+++65pO+cUvDh4lr2SJ41hgQgBhITXPMbkxOPRpmBXbqxbTsPsEUccX7zRhKYTdREX/P6yyL6tvvzvky6R4+bNlyPH+1poldi+SNIkQbYV8RmmSu5amrHnfCySkCgyd4SvhRq90Bv1Ezn5UpEKjdI9k40bVzDGL6rCUx3eaZpMbot4YCw3atTIeItJ9winfWO0vfLsTwQ04yeTDwZvi0cBxnyFRXasFvnzNd9StIJIg94iDc8Wqdw8Ywu8EOCY0K2A61DdunXl9NNPz9IA4v/ejz/+aDzv/K1/6hWGlHDuG15APfKKoiiKosQ833zzjZnEU7jMaUE5JnZe8sYTzoo3zGuii7BlhA4er9xMQQjXM0+eK3n87E9yYeNGxO/ZIvLn0crbHf9nipUVLl9NUotXNp7r4tuXyJ7CFeVwckEpnJwmRfasNeHEiDLTcz4WoLf7VwN9kQeA4Dv9bpGeL4ncukDkzGfTRbw/iHfqADBOaNvIGPCqiLdQB6NJkyYyd+5cY3DxEuSUE8XCOeQYPPR3LBU5/xORRuf7DDC71ov8NVTkwz4ih8LbVq7VGOeOOPTud+3a1Vy3Ro4cKfGCCnlFURRFUWKeDz74QC677DLHhbwI02Qi7ZUQdnI+Eay52pYqRKFD+C8VtqOVFx9JMU8YOeGzFLKiqn5gkauYZvJLIof2+HqeU9CNCX1Copx+fH5J2bxQVi6aK5sL+lrNNSqZJiuWL/uv57zXC92tnSHy8Xkib5wmMvszkenD/nuvTheRppeJ5M86LQKPbbt27UyIPd5kmw/tRRFvIR2IBcOT10LsuRatWLHC1JjIDGpP9OzZM73PO4ZVQ76CpvhgWp/X5aF9l8ilP+eX4f+kyrcrCsnilWt9n2F7v7xC9ox9Tq6+pK8pTEfxP2qdcD0MBCMnnUX+ddjnnb/p37+/yZePFzx+NiuKoiiKomSf//zLL7/IRRcdbYvkACaoXqpcTm9p+ti7ISaygqgFJtVuenRDFfM7duwwudKEApPv6pWUiZyA93HOnDkyecwPkvrn0fzd0+9JD02uVrqwvH9dZ3n3qtbS5KSTZHcJX35841Jp0rhxY9OL3vSc9yob54t8epHIW+1FFo/yhdKfeJ5I7c5hfR3HvG3btsYDy1jYuXOnZ0W8hXQAxi4h9l7Ctsijj3tmIPIZZ6+++mrQ959++ml54eXX5Jy735YT7p8s725oYDzkJted6Iu5I6TwxIflleq/yIqn2srv7/9Pfps0QQYOHHjMd3GtJrpmuV/Ru1DhHoFHPmZrRQSgQl5RFEVRlJjms88+M62CnObEMrnHY4tw9gII5fXr10udOnXEiyH1hP+6XdU/OzG/efNm+e2338xEn8JWTtsQehEiC2ihdemll8r0oVdLUuo+WbG/mEzeXPSYzyLWb318iKQVKCoFk0VqF0szhbtyU8RbowNeWh6zDIFOPSzy7fUiQ08VWTDSJ+AbXyBywzSRc94SKRt+ZArHnloOnN9UtA8sguclEQ9EBiGG2WdeC7HnmsR+Ml0BgtC9e3d59NFHpU+fPse8x35+8cUX5b777pNevXqZmgBEUBENZTz3JY6Xf08aLNPWpUq+RJGSG36TE/5+SGZdlir1//1K/l0885jvpJbA1q1bg3rss9sO9vGXX34p8YAKeUVRFEVRYhqqDofrjScUlAm0F6BHMp4vL3mQbZV6t0LqnYj5jRs3yp9//mk8mxTC8kqURU5F/G233SYzZsyQsiWLyaV1fQJvyIwkue322837M1Ztk1mrt8uRI779MG7hJvPYoV5500s+N8Pp/Y0O11xzjXnkuX+V8AwkJYsc3CuSdkSk/lki1/0l0ud1kVJ+vctzAGOAiuREkjA2MPR4UcRbCK+nqrrXqtizf1gvrlFOwXNOGHynTp3SX6OeCcZXUh+kUEn5cUsV6fxFPl/1+1OuFylYUlIObpX7TysgyycfDdP3IyUlxawPkUJOYTxyz4gHVMgriqIoihKzMLGkN3Dfvn0dF7mjLZFTL360wANHSG3t2rXFS9jcWK8VSQsU80Qy0AeaqIF4KWqHJ/uVV14xnkfalPWoskeK5zssGw4UkMX5TzDhwYQyP/fLQun16u/y4Z8+UTNm/kbz2L5uadeMDuQ4c27xiCGI19PF/MKffT3GLZ0fFrnyV5F+H4qUiU40CutC1wLEPK0mvSjiLawn0UKMbS/BtYl1ctrz3uayk9vuD8/tezwaQyGV77s97itoeO678tXiRJm1x8+AOOUtkd9fEtm71ZznrI/Tonf9+vUzXTC8tn/DQYW8oiiKoigxC22D6P3rtJgZk3k88bQe8gL0amZii0D1CoTR0rbNCyH1WYl5PH5Tp0411fQrV64s8QJiEyMFnkeCC3qU9YnfkRsrSVpCovHe/rNwify1zBcy3qZ2admwc78s+HeX+TzP3TI6II4pLsZjzZo1jdHh49efkzTy4If3Exl1739/XKKKSJUWUV9HwrEJq/7rr7+MiPOiiAfONS9WsceLTiFBWmNGneQCpk/9Nb/mM2PdcPigyMRnRH79n8jzDaT0H49I8f1rzbXcCVxniQ4YPny4xDoq5BVFURRFiUkIPf3oo4/CCqvH+43o80L4NVW18Xx7yRvvxZD6zIwNiEhEI4XCvBSOnFMQv1TfL1iwoNQrvFOqF9ojB44kyq9bfJ5NXt9XtLIcPiJS+biCUqN0YZm02Bc63qhScSlVOL9LRoeM5xRPr2ySLE9WGSMJ5MEnJvvEu0NPak5hbDBGyJ1nzGSW7+0FEJteDLHnGoXh7NChQyH/DQYnCBTcPLfv8UhqjD+HDx82hiH7GUOH+0XKnyhyeJ8kzBgmp866VQqNuEhk8Whf9fsQ4Z7BvSPWUSGvKIqiKEpMMm3aNDMZ7NHD14LLiXBm0ugV7y0eLtqDealvvFdD6v3hGOKJP/nkk02LOad95r0O44HK+3hlu5dZb16buLWM7En1RUcYb235eub/bWuXMQL69yU+IZ+b3vhAo4M/JfMdkAdrzZXb6q6SovnSZGexOiJXT/SF0+di7r5/TjxjBc88qRg2Z96LeDHEnsgnPPNOKsbT9x0xPmbMmPTX2C4iI1q1amWe80jhUdKkLGPHjjUGF3LpDcn5RU6+ROTqSSKX/yTSoJfx1hffPF3k43NExjwU8jr17t3bXHdnz54tsYwKeUVRFEVRYhI8Kuecc84x4iE7qJbMZNQLYbV4nZhQeqlSPd422uBRXdqLIfWAAEOIIciIGnDaZz4WwIhCD++dm9fJqSV8gnPU5grmke0jrzipgq+qe+tapcxrk5f6Pte6ZmnXjA6WOoV2yisNpkvT4tvk4JEEeX5uSVnZ6S1fHnQuEqywHZXsEcqISby+XoRzj3VkPHOd8JJXnmsWdUYsVI8neoAFEPr8n/MRA9PNN99sqtp/9913pio/RRApNIqgBsZ5t27dZMCAAea8Jof9hhtukPPPP9987pgQj6qnipz3gSQM+ltWVz5LjuQr4mtXGCKMAX471r3yKuQVRVEURYk5mETSdi6csHqK3HnFG0+IP1XqyT31UgFBhHFgcSqvsGvXLiPAEDn+rQPjTcxTbR4xc3bdRElJOiKr9haQeTsLGdFExESl6nVkb35fFEfF5D0yZsoc2bDzgKlUf2TzsnTvJikS/B9hxX5BZCFqiWYYP3688Uo6LRiWmdEB44Ld72v2F5K9qUmyeE8R6f1zaZle4FQ5oWEjyU2yqk5PsbQGDRqYAnhO25jlFoTXc32ghoZXINWG+iJcR/2jo6hRwQKDBw82///f//5nnt9xxx1y4403mr7wtARkf//888+m+ryFSvJ0GOjYsaOpe9KmTRvTOjFLjqsqB05/QP5q+4FIuQaOtoN7B3nysXydiP3mmoqiKIqi5Dnw2hAi365dO0d/R14sHjgmk27DBBJRRTEwL+TqAxWpEQ30HffKOvnDMUfEE64brDq9FfN49ABx6cXtCBWOQ/1pZUW2rpOZR+pJy5anGCMUIc5ztibIkkUi5QuJHNixWWau84nxemVSpHzpkkack3pC9An7AOMXxxcjAK+TK164cGET0jxr1iwpU6aMKVRHpXn+xkk0hjU6PH7PTbJ06RIpX76CpBYsKIP/riVzVm2VIsVLyn3XX5+rrfBCaTHHOCKFhDFFyL3XIlA4bhgb7Jj3QqtM1qlGjRrm2kUBQZ6ffvrpWQpiPvPwww+bJTMoPErxUqdUqlTJFOUkGsRJdBYF76iZgKGL9JxYRIW8oiiKoigxByGaZ555phEjTsCLhEeJMGAvhIeTV+yV6ABYtGiREXReqebvD8IUzx9iHYGeGbEu5gmj3rRpk/Fu71y/TE7bOsu8XqrdQDklfxljiGL8/z1nnhRIKS27UwrJkAXJkr/N5eZzbetXMoKcFAk88IguK1BpAffII4+Y77DeXsQ1xQL5G8QYzxH8iHwMBuQ3MyayO9dOLbVDvum0Rt5fW0Ne/XO7MRasL1BATmzSVK6//npjlMgtnPSJRygT5UHUAvnYXhsrROtwPnJuNmzYULwA1yz2L+PIaceQSFOwYEGzDhxrxnCoYBQhnJ9zSYW8oiiKoihKLvH999/LAw884HhyTyh73bp1xQtYjxYiygvgmVy5cqXjKIfcAq8bArNt27bZiq1YE/N4ExG+iHdEPOIEAX1SwTWSIGkiFU+SNj0vNkL8oYceShfi5QsekX37NsnMmf/KoVJdRAqXkWZVjwupRZz//sB48MMPP8j69evlww8/NJEPeCtZFwQb64eYZ51Y/EOiTbXwSc+JjH3ECIsrWx4nLa99TbZt32Fy5wm795on3h/WrVmzZjJhwgRj+EDYew3WaeLEicYog/HFbTDqEBHDNcxtIQ+k2JC370TIw1lnnSUvvPCCPPjggxKLaI68oiiKoigxBRM2vFNdu3Z19HdUSkaQZGhn5BKsB6KtWrVq4hUocIenrVixYuI1MDCQ+47HNNTwZ6/nzOMxJ8wdgfbrr7+aaBG8r4QpE/aL97XYOp8hQur1yLJXe7Xa9eRw4TLmo40qFQujRVyCOS8wlvA5hDo1ElgHcpZZJwQbhrBffvnFrDPH5PD+PSJfX21EvKH5VZJw8VdyYqPGJlSdOgZeFvEWxhRjC2Hqn/vtFUh1oOgb52hmkDpx//33mxB8DEGk7BB94T/u+T9564wBPsM4W7x4cVjrxLULww9RRW5ToUIFE1XB4oTu3bubtBIvHvNQUCGvKIqiKErMeeMRFk4FJ5NOxInTcPxogLjEw0n4shfA+0o1f69EK/iDcKXSNXUNnO4vL4p5DEoUnhs1apQR8ngTMUpR3AuBzjobDu4VWTbe9/+6Z2QQ4ofyF5N15VrJjmI1zNv7C5Y1j4n7tsm/K5c4ahFn4XXe53OBIp91olo50RCsKwafVQtny45XO4rM/kzS6A1/5vMiZz7naxPmAuGKeAvbiGeeYxO4D7wAheDYNsZPMJ566ikZOnSoMfYwTnj+9NNPy5AhQ9I/w/OXX35ZXn/9dZN3z/nE8STSxSnsX0L+vdAeL1++fCZlimu8EzBOMVZGjhwpsYgKeUVRFEVRYgpyGgmJdAoecC944xEceDO95I3HE4snzwthu4GRCxQ2JLQYw0c4eEHM85uEzhPqTwg3zxHuGKTY70FrNqycLJJ6QKRYZZGy9TMI8b0Fy8qW0o1lUylfFfh9BX1dDxK2rclUhAZrEecPr/M+n8sKPlOjSkVps+RxKbVrvqQmF5I/a94qkw/Vl40bN7q2f3Mi4i0Y+hDMjLlwxG00QXQTzs4YDgZpF7169TK1Q7i2nHvuudKlSxezLXYfvfjii3LfffeZz9Fe8oMPPjAGvG+++SasdeJ3MEZ5wUBWvnx5c413CvcS7imxiAp5RVEURVFiBipsE9bbs2dPR3+HSMGT5YWWalbseGFdbNE9vN5e6mUPhJLjNWSCjtjNCW6Kefbtb7/9JjNmzDCh84grWnNRHT5Llo71PdbqYHpn+wvx/Sm+vOSC+3090Pen+IR8vj0bMhXiwVrEWWxfegwmfC5b8qVIQqPzRIqUl6SrfpGTzhlsvJsUI0RQ5mZv9kiJeAsh6RiNEMA5bcsXaThHqVsQbP9STHDMmDEm7QgIGWfcET4OpA1wjAmn9w/ZJ6Xgjz/+CGt9iA4hpJ9riNuUK1fO3B+cGmC4l7DfvNqCMCtUyCuKoiiKEjPQexixEaz1WFYwgSUM1Avtm2wf+9zMHc5KBOGNJ6TbC/vGn4ULF5r1w3MYiUJ1uS3mMRxhiEDYIgwRUKQuhNwxYcUk32P1dscI8f0FfGK9wIGjQr6Ar8tA9RL5MhXitkUcQp8WgwgXRBiPPOd1qsuHPC5b3yxy3R8i5U80OfVsW+fOnc15xjYjhJ3mLLst4oGx1rhxY1MAMNz88WjBfsbQwDkbOH7vuusuOf/8801EAaHmGItuvvlm0y8drLc60IDI83A82cBYof0btRO8sG9KlChhIl+cGkcwFFKnItZw/w6iKIqiKIoSIoRAOvXGeymsHnFAHqdXWs6xLnv37jXiwEvgWUNc0hYqkgaPaIt5PLj0pf7pp59k/PjxRlwg4K24Cpn9O0T+neP7f9XWxwjx3Ym+WgH59m2RXXv2yv78Pu/+NRf0zHJ/4bV99tlnjchjHxMWzSP7mdezbBG3ZanI55eK7D+ao41xpVDGNoVsI8YGthmDBfuA/RGNMPVoiHgLRQTZJwh56kd4CYxuGEgCBevnn38uH3/8senFTvTHsGHDzDHlMZpwLeM6glHIbcqFaZTgnhKL4fXuV3tRFEVRFEUJASaKeOR//PFHx+KZ0E8qaLsNE15yXQlpdRuEEF5vPFJeKADof5wRIhRXi8Z+ilZrOr6PsUkEAfsVEYvxCPHtuIf62ukcIZHjqokUq5D+Mt/z1NPPyKXf+zzxG5fMkfwFi4gkJUuBJJGeHdpk+9V8xymnnGJEMPn0gS3iMEYc896O1SLDeorsXCuSr7BIn6FZ/gYGDLzaGIgwmIwdO9acf4i+SOzraIp4C95d1h9DBBX4vRBBY40lnBuMMYSr3Z+33357ulce2N/U4njiiSekf//+6YZMDACExFt43qRJkxztJ4w2CGi8825SoUIFY3zhGuKkrSdCvm/fvmZceblNZSDeGJEi8uSTT5odRwiIoiiKoihKILNnzzYTNCpLO81Jp4hbNCb74YbVe4EtW7aYfGt62XsJcnwRTYiVaBFpz/ykSZNMGD2ed6rR//nnn+Y7EYG33XabCTV3LuRFpNKxY71ag5MkLSFR8iWKvP7CkzLovkfN67XKFZPExNBECPsXoRfYIo71vPjii+XSSy+Va665xjxe17+v7Hurm0/El64j0vmhkDeDc45uA0QAILwjUUQuN0S8BSMXhg2vhdiTWkRKhH9hQyJrAo0NiFmb50/4OGKefPDA9I9WrVqFvS7oNzoveKGFW9GiRY1RgToCTsCwRZRDZoUEvYonhPzUqVPljTfeMBZMRVEURVGUYIwbN860v3LqPfZKWD0ChgmmV4Q8oesIAi954xEmrBfCL9oe0EiIeduBgDFGiDrVvznGtr87Hl226dVXX3VWOG3d377Hiicd89aqrXvNY5VSheX0du0k7Wj/+OqlM7bms7+HOKd9X3a/z+cwOhANgZeViuQVShWVQSXHS8G962R/SjmRS78VKeJrdefUU9qhQwezX/DOk1Md7v7OLRHv5RB7vPKcu5wr/l7lxx57TH744QeTMvH111/L888/L3369DHvW4fpo48+asLIGRMYauhP37t37xytD9c0PPsHDx4UN0lISDBRCk7z5KkPwnjiHhNLuC7ksSZRhOGtt97Ktt0FLTewHPkviqIoiqLkDQhVpl1XOG2/vCDkER8UAsusj3dusmfPHhOpUKOGrw+5FyDaAg92tELqIy3mDx06ZDzMCKIRI0YYr3ygkEFYMPYoToYADZkNRz9bvuExb7WsXlJ+v6uDvH5xU/N85dY95rFaqcIZRPmAAQPM/xFvCDY87ZlFBiDy6T9ONXRysBHI+ZMS5JETV0mD4w7L5v2Jcs+CBnKkSPjnEWKJaBrCuNkXOPLYh14V8cFC7L1UxR4POwYk206QfvG0nLvuuutMughGmauvvloeeeSR9L+544475MYbb5SBAweaSAl0GOlKpELkBNKF2E8cG7cpX768SWFyaihq3769ucfEEq4Leapj0u/QvxVCZpDjwYXdLoRxKIqiKIoS/yDyaDvnVMjjRWPynZ2zIDcg9NQrcxdaUTHh9YJRwULOb7RD6iMl5hFAjEfGFoKStI/M9iWv44zKrL/7MRzcK7Jthe//ZY+tQJ+clCiVShSUOuWKmuert/qEXJWSBTN41mk/BqROILKyCvNHILPteM5tjvDllZdL0+LbZH9qotz7T20ZN2ulM2NEJuABRjRRuwLjB0Ylr4p4CxX5WQcvhdgjnsuWLWvOZTuO6RNPhAjiHm893nf/bhQc24cfftjX+WD/fhk9enTE2k7ilfdCeH3p0qXN2HLaMYF7C0I+N1tTxrSQ//TTT034DgI9FO6++25zQ7aLF1odKIqiKIoSfRAlTLCcFmWiyB39rd0uVEX+KnMX/yJTbsEkl8m+l7zxhKUvW7Ys4lXqoyHmiWRAxGMIIbeW8WX7uweD13k/ZGPS1mW+QncpJUSK+MLms2Lddt/vVipRKINn3R7fUML8eR1jg78xYvSWcrLhQAF5Znl9WZ1a2pkxIhvYH+w72vJNmDAhy5xmt0U8MCZJ90DIeykimGNMGD3ntNtQ6I7xEY0OBU6PVcmSJR33tidahOs00TOxgmt3NUT4TTfdZNokhBrOwUlfrFixDIuiKIqiKPEPnhIKcznN56agGx4at8EDhuDzQq92vGZ485jsegEr1BAlbs7tshPzPMfLSTh9w4YNTTV3PJz+/d2D/Q2vN2jQINP+7sGFvIiUCt4ScNjkFfLET/Pln3W+nO31O3zCqUKJlKCe9VDC/DEyBBojVuwrItf801ym7Cjl3BjhoOAe+4WCa3iWg+0/t0W8xdYNiERUQqTg2obxxQsh7XZ8hNuTPtL7ZbNDIW/z5GMpvN41IT99+nRj0cTyyk2ZBYvcyy+/bP7vhV6EiqIoiqLEdn48kzmvCHkv5OkDHjwEiVfaLOGNJVoht0PqnYh5HokKwSNL+zb/Sv/+/d0R+oTdM4/lkee8TippyJEG21f5HktUDfr2j3PWyxsTlsnSTXtkz4HDsvuAzxtbrlhKUM96KGH+1hhxcNtaqVHwv5Dkw2mJ4RkjHEDRNqqmk1pBioL/PveKiLcQhk60Q1YikfWlHgGGO/Y3xopp06alv892/e9//zPGFt4nvTjckH3OYfYfETZegGuc00Jz0aB06dLGiOs0TN6G18cKrgn5jh07muIgf//9d/pCSAOF7/i/k95/iqIoiqLELznJjwe3e7ZT0IuJvxeEPCHsCEy3+z1bmGjjIUYgUYnbCwSKecYfDigEXLt27YJGMiDun332WRN+zT7GWMIjDited9RHfuc632Px4Mdoxz5fgbjjCuWTTbsOmP8Xyp8kRQokB/Ws+5OZZ90YI66/Tp5vs1ueqTtTWhZalTNjhEMQvUTcYNQh7Zbf9pqIt15bDE6sWzCRiIGE9WUs//TTT2ZsP/fccxn299NPP20cl6+//rqJRCA6pmvXrmGHpJObzrXOCyH/XONw1Lod6l+iRAkzhuI9Tz7ZzYskYUn+MJA5kQNfVxRFURQl75LT/Hi3Pc+IE4QI8xy3wXOHiPeKaEao4SGmAreXsGL+t99+k3Xr1hkHE88RwZmBWCfvG5GHoEO84cF2LH53Hw1NLhq8nsKu/T6RhHDfsscn5EsVyZ/Bs05hO8SMP9azjnEhmGf91ISZIqX3yIEjiTJz/WFZsXmF2V4+j4h3ZIwIg0KFCkmbNm1MMT7agCEGee4VEW8hBYR6DlRGp3CfP0899ZQpaPnee++lv+Y/tjkGFKS77777pFevXua1Dz74wLRMo3Xh+eefH5ZxgfXg3Mb77yYcK6IMuOa5WQ8k0S9P3km6DpX8bZ58NKJP4q5qvaIoittQ9IcIITx+ofTajQSXXXaZERcsTKi5iXfu3FneffddR7///vvvHzNZU5R4g3OTCb3TaD2v5Mcz4feCNx5hRH48obhegGvdggULpF69ep6MxMTwQjQHE3vGUSj1DWzeN95lHsPyYO/d4nssFHzs7j34n5DfusfnnS9ZKP8xYf62mnlInnXa3Y152Pw3X8/n5MFXPzUeY0Tmhx9+GHURb8FwgPGNfc6+94LxKxBSgKliT7RG4P2a/uxEGPft29dUlCdCgxbbFo4JxhT/bl1sZ8uWLeWPP/4Ie51IlaH+mNupybYOQ6zmyefLl88Y7Ej3jgU8JeQJZcBKpSiKkltg+SeXjR6711xzTba9diNJt27dzASfEExC8GjHQxHQHj16uB6Wpihegn7TLVq0iMn8eCb6Xupjj9fTC634AA8iE3+vtOQLHD+EeBMtgBGJfee0z3zY7Duav14w+HHae9An1lLyJaWH2Rc/KuT9w/wbNWpknpMikGWYf+ohka+vEUk9KFKnmyQ2uzznxogwsDnxiED2OWkARBZ4McwZYxjrFdhBC0/90KFDTfj9qFGj5Nprr5VBgwbJsGHDzPtW4GK894fnORG/eJ8xghA94pU8ebePW+kw8+TxyvvXNPAynhLyiqIouYnttctkzVajza7XbiThpssNjzBXJlj33HOPfPvtt0bU42mH559/3kyk8Eow2b3uuuuMZ8UaPy+//HKTG2e9+w8++KB5Dw8KXgHCQ/mNCy+80OStKUosQn5y06ZNYzI/nhBrzk0viGe88RRpczvVADBWUtyMAmputwYMBtFZjCFELyLJaZ/5HHHwaF/1AseGlPPbB1N9XuAC+RJl51EhXzQlY7Ys6209wTjJsvSsT35Z5N/ZvnZ3PV/GrSq5TWBhO/Y560pdAi9VibcwZklhIKLE3wuO4Y77+eOPP2688QMHDpQBAwaY6IZowjnNue2FPu4cO/ZDpFoV5naefNOmTc09Jxbw3pVTURQlF/DvtVurVi2T1xVKr91o06FDB2ncuLF89dVX6ZMFiuIwkcGiP3bsWLnjjjvMe0xymKCR/4VnnwUDhC2u9cgjj5jcYvLu8PoTzq8osQaTsEWLFjkW8nhivJIfT4it2+tx8OBBs0+80MceCPMmOsALkQqBcL1EUJLvbnPinfSZzzEH9/oe8x1bef5IGqL36NuJielh9kULHFv2yhpIuFdk6lnftkJkwtO+/3d7UqRoRk9xbpBZdXraU3MM2OcsXoO8dMYHXngL5xfGKX8Q/Hb97XgPrOweiagdfpsoJO7/bsI4K1OmjOOw9misR8mSJc11zwncaxiPmRWM9BIq5BVFyZOE22s3NyBflIkk3HzzzSbknmgBRP6jjz4qn3/+uXmPfE28jXZ9WewE6IorrpDu3bubojxMhDAG4Om33nxFiRWIkGFsOxWghBJ7oX6ELbjnNkTkIEYRz26D0FiyZIkRPG4bOAJh0j937lwTXhuYn51rYv7I0dSqxGMLEiYmiIwe3E5GDz5NihXMJ3uOhtkXzB9mjYFilUTa3yNS9wyRxs4LreWU7FrM8ZzoMtrSYXj3EoxdxjCt42w6HNtApIk/GCJtXQoK33E9GzNmTPr7VJunej0t+HIC+4rzG+Oh23DNc1vIA/cA7gVOILKBv2PMeR0V8oqi5EnC7bWbWxMbO7kdPXq0addJ+D2TyEsuucRMNCkElBWEhfXs2dPckPg7WiaBF70aipIVpL449cZ7RcgT1sk1xO08fa/1sSevGNHhBQOHP1xXp0yZYqpVZ3bMckXMpx0N1U48Vpxzb6hVtojUKltUkhIT5MChI+n58mGRlE+k9U0i53/iOKQ+p4ViQ+0TT0QLXm2Ojde8pHiemS/YkPZbbrlF/vzzTxNaj7Hqk08+kTfffNMUGLTHDwM9RnkK47HfqM2Dd7937945Xh8vFZrD8JLbUY2REPIcI+453Hu8jgp5RVHyJOH22s0NmBxitccrT+E7ChaNGDHCiHPC/W2YbGbs2bPH9KQl5P7jjz82hcK+/vrrbP9OUeIlPx7vGNEnbgt5RDyRM25X3vZSwT3EG6HIRAt5yRvPmMEriqDKrhVe1MV8wlFRfiT7CuQHj+Zn509yOKVPPZzx+x0ei5wWig1VxFsYLxSEQ8y7XZndH8awbUfHNhHJwf12+PDhpp02KW6kwF100UXpf0N63I033mjy5/k816qff/7ZpBLES6E5zhHSFZ2K6EhTokQJk57ldMzESp68CnlFUfIkttculuvAG57ttUvIXG73ESUHHgv9OeecY24iTMCfe+45Ex5fp06dYyrSIhICb1AU38Fr/+STT0rbtm1NqL4WulPyWqE7DHGRmBjnBFs1323ByvWASbXbhg3gWoRoJsrIS3DdpfVUqH24oyrmk45WoE/19YgP5NVxS+SpnxeYivWpJM3TEo2YeyfM/EDk9TYiS/4L8c6tQrFORTxwDmHUJu+Z1AcvUblyZRPBZ0PaMcAznvbv32/GBsXuArfl4YcfNvMMPkPkHff3SEBOOLidhsA2htP+LdIULFjQtAskfcEJKuQVRVE8jH+vXYouYREPqdduBOHGz42cyQwTIkLxevXqZSYBeDcowkcu6ZAhQ4y1n4rDgZVvmUCxzuTbccMkNJRwegS+/TvC9/AKKEqswdjGMOVUyHshrN5L+fE2rN5tgwJwfcXj7aVK9ewfjKSMMyfrFTUxb4vcHQoeMTZ0/FKzbNtzMF3IJzoR8nzv+KdENs4T2bw4VwvFhiPiLfwOx4gwdi8Zp1kv7sX+Re/cgnM8p63s4ilPPiEhIazwesYZBiMMLV7GO1dRRVGUXMb22qVFDBd5Qtmz7LUbYQilo4AXEwB6yo8bN84UpaMFHRMDqtfTfu6pp54yIXqEyT/xxBPHbANhjf369TO5ek8//bR5pH3dF198YaIK8MyzPYoSa/z9999mUkq4c6wJea/kx9sIIy+E1ZP2Q3SALfzlBUg3Ypxxjc2sZkqui/mUYr7H/cG9iDYfnn7yCRKGcWb6+yK7/xUpXkWk2eW5Vig2JyLeQjE37mscMyfV2bkP2vx0CyINgz2Ck3UhEi6wmnyocB/HuJBd/ZrcQPPkMxKOkOcaRXoikRVe5theFYqiKHkIhDBh60wumHTjiSecPtreIoS27RWfFRTOYfGHgnf+DB061Cz+XHDBBWbxx+2cOUVxCpEqGNacQmi9U/EfabieEKrtdn48+aFE/2Dgc5uVK1caw4zbKQ/+4HWj+weRTOFixfzvv/9unpO2laPoh4JHa7PsCx4eTc/4zbsPyO4Dh8Xeqo4c9cxny+EDIr+/5Pt/21tFkn3t9UIllEKxiOHAQrGREPH+opkICr6vSZMm2X6eOjFvvPGGCc33h3vrDz/8YIzejAGi9M4+++z04+gEtpuifBh0SGdzE9aDsHAimnKynyOZJ29D/t0S8osWLQq74B11DLyKeuQVRcnzINrJizzttNMy77WrKEquQ1h9YE/m7CD/GvHqtkfeGgbdDmfHM4eIZ0LtJnjlEDmIMK/Avlm/fr0Rgzk9ThH1zBc52st9d/Dw8WIpPj8cOfLJR+9Xh0IV8rM/E9m1XqRoRZEm/xVgi2ah2EiKeOBYEUnH92UXYo+YpdDcW2+9lWGdMPa98847JuqN1q6Itvfee8/k91N1Phzw4nL83TaakxOON9xtrzzHiX3uRvcffzDSkCPvtOAdBjnuQV5GZ6uKoiiKongSvChOi0B5pdAd6+G2MQG8ElaPlxYjqRciA4Cw7JyE1EdVzFshj+AOwnGFfcXwyJHPd7Ra/cHDIYQvsz6TX/H9v9V1IslHi+pFsVBspEW8f4g9v0GBPdvDPRiEzp955pnSqVOnDK/jsWYM+L+OJ53IjD/++COsdSLahO31Qv6+V8LrEdFcC92kUKFCYRW8497j1JOf26iQVxRFURTFkyxevNixkMcbT26j255wL+TpkwPMeiAw3AZxi0hy+7hY6PGNqMxJSH3UxHyJKr7HbSuDvl2qsC8cfvOeA1Iwv28qv2P3XlPnZdasWSaUHK8y7fRg2rRp5rUlY4aJbF4oafkKS2rji6NeKDZaIt7fA44Rht8NxqeffmpCowNrywAil6KwgedoTgrFsc2MJ469F4Q8+elut5wNJz890iQkJJh7AvcGJ6iQVxRFURRFCQNCdJkQOxXyFFRzMy8U8PSxHm4LeTyDrIPb0QkIPVpzuV23wN/AgfjDcxwNw0KOxfxxR9MPti0P+nbJQr40iX+WrpH1a3yiceXa9UYw43lETPsXiSTMmtcOlG8q85o8KP9U6ic/jJkk48ePN1EJGADIe49kodhoi3jg2HEMMcoErv/q1avlpptuMkVic3P8UwSQ887tAm8YOBCvbkcH2D7uWUVN5AZFihQxxiYncO9Zvny568aQrNBid4qiKIqieA4m5wgip2HhTNbcrhSPqEE8EOLvJuSmeqH9HSKefcHx9AJ42Qjxj2YBrhwVwCtd1/e4dZnI4YMmBB5hiKcY40ClvRvlsbbFpWaF4+TPf4+ILF4rJcqUl9atmx5jUKLqNnUJKLxoaHiiEdnV9+4145QF0Tt79mwj/vEo85hdrZisCsXmhohP31WlS5vjSPQOaRL+ofOIWP9imRiUJk6caNrnjRo1ygi0wMgZUkBykopCKDnGFNquUXTOTdgveOXpc+8W9jpIWLubBe+KFCniOFe/SpUq5lgi5uvWPXpOegwV8oqiKIqieDY/3qnHFCHvdkE1r+THI1Lo7e02XupjT6QE1fPbtWsX9d8KW8wXqyhSoLjIgR1y6N95supAURNBwN8itM9r1Mjk/cK6GWtEZK3s2h+6x5PvoZsCS6VKldL3C4Ie4U8l/xo1apjQdYRMdoVi/clNEW/BKz9p0iSzzna/dOzY8ZjWYZdffrnJg7/zzjuNSMO4MWbMGNN2DhYuXGgMJa1atQp7XWwLPsa820KeaxBj3U3YHxg33K5cX7hwYTO+ncD4rl27trkXqZBXFEVRFEWJYqE7vJZeCK33Qn48+wIvmNvrYQugURXcCxDqjoeSsOPcICwxn5AgaeUbSsLK32X+mE9kW7Uzjbc5WO/2EoV8nvbte7Ppqf7pRSKla4u0ukGkcOmgQgeRyzlHJX883AhbvOyh1jZwQ8QDQpF9Q4Vx64Fnv/t76O02EqFiX7/yyitl8ODBRmAyHm688UYj4ok0yAkIeWoVYORw03jFuU+kBcfF7fVwO0++SJEi5t7gdF94PU9ec+QVRVEURYkLIW9bYlmvnJseecSFm5CXikfJ7T72TOAJafZCiD+GDURqbnvXnObMM47XJ/jCu2sV3Glao5LvbgUIf//2pGVy79dzJP/RqvVb92SRx7t1qciCkSKTh2AlyPK3GTN46YlYIAee9aVoXmbt5twW8RaMEPy2kzzoF154QXr06GE88uxjBPhXX30VkXB/wvadFleLNPYYuL0eCHm3K9cXLlzYXIeoj+EEFfKKoiiKoii5IOSZxDNhc9P7ZKMC3M4Ht1EBboez440PJec6N1i2bJnxxrth6AlFzPMaodBjx46V/WWamNcKbfr7mGPI87cmLZOP/1oluw/4Quo37T6QqYEgccEPvv9UaytSODSDCr+Bl5se64Sgjxs3LtMe6W6LeOC8x9jBMc4Mivu9+OKLGfK3X331VZNHzjmLiI9Eq8akpCQTVo/RyE0454g0cFtE20JzYbdjjACJR42a4RS8UyGvxDxMTMg1okgIj25X41SUvMTpp58uN998c1R/48EHH5QmTXwTx6y4//77ZeDAgeI2d911lwmDVOIXJk/kJzqBSZrbYfV79+41IsjtqACEvNtRAZEoHhYp8JCuWbPG5FG7RVZiHo83LeMID2/WrJnUOP1C3xub5ovs3nTMd9Uu6zMUbdl9ML2P/M59wfPkExb95PtP/R6O15kWbaRFELI+b948453392p6QcRbOLbsW4r8uQ3GK8a+23ghrB0BzTjJLqojN9ZjdxhCnhQTr6JCXsmWyZMny8UXXyyXXnqpXHPNNeaR57yuKIpzLrvsMjPR53wKhP67vMdnLHgJHnnkEXEbPGsvvfSS3HvvvW6vitx2220ybNiwLL0vSuzChI+qzxTbijUh74WoAK/k6WPUIJzd7aJfgKeb/eG2cSOYmGfMUKwN0YwHHBFo8tjLHS0kt2zcMd9Tp5xPyC/dtCc9T379zmOFUr7DuyRh3fSjf9Qt7PXGGMO64W1mXW2+sVdEPFA5Hw+0V/q4cw46DeWORyGPNxzDplMR7YUWdFWrVjWRFV4wDgVDhbySJYh1JswzZswwFwMqAfM4c+ZM87qKeUUJDyrmfvrppxks1NzwP/nkE1NYyB8K8bgdpgtvv/22aTnkVFw5JZSereQgdu3aVYYOHRrVdVHcgYkT1bKdtpFDXLidE+6FdfBKoTs8kuTGI1DdxIasu93NIJiYp487wpiQf7ze6W3ioHYn3+PiX475jvoVfPeEeet3SMXiBc3/120/VsiX2TVPEtKOiJRtIFI8Z23IOI5ECxByzzozN8xKxD/xxBPSvHlzs70Yc3r37n2Md5P7HgZsxgnfQb56TjzZHGOOtZth3EDLNc4/t73yNj/d7f3BNZFrY6ytQ7ly5YxR1u3jmBkq5JUsJwL02iR3qFatWuYCiyWWR9rZ0I+R3CINs1e8BDervQcP5/ri9CbJhA0x719Yh/8j4ikwlFloPWGXWLYR/JbPP/9cChYsaMIeAev7VVddZfok453Ai0IFXX+efPJJc4NigkXl3lC8BhgeevbsmeG1AwcOyKBBg8wkjXzDNm3ayNSpU9Pff//9948RE998800Gb6UN68dQUL16dfM98OWXX5qqv2wbk7xOnTpluAmzLqyTEp9CHo+W07xqxjHjxU28EBXglUJ3zBPcbDll2bJli/GoIUC9Atfexo0bGzHP/4NWs6/T3fe4aJTI4QMZ3mpYyRdZ8M/anVKphO+auWbbsUK+9O75vv9Uj0y7PdaRdm/ch0hVYBsyG+8TJkwwIp2UgV9//dUcgy5dumS4jt9yyy3y/fffyxdffGE+v27dOjn77LPDXj/y5DGQO+0ZHg24b7m9HhwbG/Xh9nq4vQ4FCxZ0HCGBYQ2Dstv1DjJD289FGEQtYUacuIT40LbDCwVewoHtIOwrWLsT2ycT4cDnAvuIKopb7DuUKg3+NyrXf3few12lUH5nl9QrrrhC3nvvPbnooovM83fffdf0uaUgT1aVeZ999lm57rrrjGjm+kKI/lNPPWUmV9C3b19zw/rpp59MGOkbb7xheuqSc8ykGuGPeMYQx3d8+OGH8vLLL2eZO4pBj/Mdb4w/d9xxh4wYMcKEueOpf/rpp42nfMmSJY4m8Hye78GYgcGQm+YFF1xgvq9Pnz5GmOAB8jeYtGjRwkwkV6xY4RlPmxIZmMyHI7qYpOEJcxMmq3hXvZAf74Xwfi+IZ8Qyx4Rri1dgnGBg5bqLV5v51jFivnJzkaIVRHatF1k6VqRud78c+SKSki9Rdh04LMUL+rz4K7fsPeZ3DiemSFqxSpJQrU1E1ptrMPcCxDLXXbYBQ0Qwo9HPP/+c4TmGXYy+06dPN1Xi8RS/8847xjCNwRm4J7IfEP/htIEjkodjzTF324iEEZs2fm7CHMH2cXczsg8hT3qemxQoUCCsVAeMQ9yTvEhsKkyPEm+55Bgj8LZl5t3gdd5329qoKLEK14fffvvNhAGy0GeY17LDing+Sy49oYu28BvfN2XKFOPdQHRTLAzhz4QCDzdQtRcvPAttmB599NF0I0Bm2GrF3NAseFUIbX/mmWeke/fu5jveeustc21gcuY0nP6DDz4w0QiNGjUyQv7w4cPGM8NkEWMh2+3v+bHrwr5T4guOv1MBSGshPH42osMttI+9D85fDHBurwcOFsJiaanmFbje/fHHH0Zw0tM802r2OIJO6OP7/+zPMnxHclKiNKpUQhITRPIdbUG3YvOxYcPzKp0vh2+cJVLvzByvd2BOPNdqzlO2JZQcYls93QpsBD1/R7SVv7GayDS+M1y4NyAa3Q4nZ+yT4sK1yU2skM/rofUpKSlGtziNJGaMq0c+j+SS47XigDORxVppc8mZSJNbGksQUYD1iu0INinhdd7nc4riFQrmSzLecTd+1ymEvp955pnGS8GEg/+HmhOM955qqljbmVhZLw7eETw9gT2bOV+XLl1q/s9kMbDQXqtWrUx7ocywufz+IonvYxLGhM4/DA1POb/hBLz57A8L4ZpEESDg8fATjnnuuedmuN5YIyMFtZT4gkmTv9EoFKynxU2PPBN2zhW3Q9oRTKSpuAkChmPhtmHFOhu8NFeh+w/eUaI2uXbbnHmMuZDBM9/4fJE/XxNZ8KPI3q0ihf7zMj91biMpXSS/zFmzQ4ZPXS1LN2URupzD6IzMCttxjUZ0z50795i0MH8QT6SI8bcYLwCxTd59oLGHtK+ceG+5//F7iFc3jzvpB0QIuG3Q4rdXr14tbsJ44V7NcXErUjnl6LUoKydlrAl59chHgHjNJecGw80kmFWT57yOB47PKYpXMG2f8ifn+hJuCCvh9Qh5QtP5f6gg2LFus/jfYBDx3HQooOS/UGDo9ttvl3CxBganETjcsAOvH8E8N4HCh2soOZWkB3CdGTJkiIkeWL58efpnuOaCvwFAybseeSZnTNTcDCfHmMDvu2lM4HxDRLtdnd0r4f22j73b6+E/tokQwFjpv06ZtqYr30ik/IkiqQdE/v6vNgpUL11Yiqbkk1plfaJ61da9sv+Qn/f30F4GRI7XOavq9GwDNU4IPc6qIBi58oj93Khrwn2HEH63Q7nZN17whrMOXBPchGsz44jrtFskJiYaw5HTdVAhH+c4ySWPJRjwN9xwg7Fm4nlDIOBt4JHnvM6FOVZrACiKF+jWrZsJs0Tc4nkOBQQsIfW0geORHHvrMaeIHpMXvAAYFv0XK8Yx0NEL2B/yEbMCoySF82xBPfsaN0XrRQK2g2J3NlQfkY03wj+kDsNCKHD9ZNL40EMPmegmfuvrr79Of59JIREAakyMP8LJkfdCfrxdBzdFIyHt3KvdLvrnhfB+4HrohT72wLUeI6wt4hlIUDHPWGp+le8DU98SOXJsmHaZogVMC7ojaSJLNv7nlU/66XbpPuc6SZjzedjrHEqLOTzPeNm5tgcz1DKXHDlypIn68q8fwXFhnwQKXQwCOT1m/L3bQt4r7d8YaxwXN0P8rYh2ux1fSkqK43XQHPk4J55zyUkHIC2AcCkuRBSV4hGxEIvpAoriNfA8M2FDIIdaiImweCre33ffffL888+bmzMpPECuIWHytPn55ZdfzDlL6g+if9q0aeYzN910kwnNp6gQBfAeeOCBbA2N3IT5bnLw/b3o1157rfH0U9SIbRgwYIAJnyP/Hlq2bGkmeffcc48xAFLUiAiE7MDQ8Pjjj5t1ZlJLEbxNmzYZI4SF4ndt27Z1XbAo3vDIMzlzO4zbK+vAtQRjntvh/W5HBeB44HrkhT72NqQeJ0hWxRCDivkT+4oUPE5k2wqR+d9n+PynU1ZJn9cmS8lCvhZ/89f7eV63LJb8qXtE8oV3jXTSJ568doy9GFj9/x4RjwF27Nixx6R7NG3a1Bhjx4wZk/4a0WNsO/exnEAUBkZkt1OvvOCRR0BjXIxFEe2FgncVPOyR1xz5CBDvueSIdSqHxks1fkXxGkx+QoWCcD/++KPxUDNRZ/noo49M8bsePXqYonO8j3CnAj7iF88EFYKZ2EC/fv2MqKbiPDc0+vYiyEeNyrraPy3tEOpUkrfnP23sSBu65JJLzKSJAnt8j73eUdSI9UPsUwiPvHcq5g8cODDbfTJx4kRTmI+QQHLon3vuObN9FkI0+S4l/lAhH9tRARgX3c4Ltp5dIpHcNmr4h9RTnT27YxM0Z77FQJEJT4lMek6kQa/0nPd/d+6Xv1dvl2qlCpnn/6zbKX2Pfk/CVl9dlLSSNaMq4v1D7BHseDC53xC1ifH222+/NdtkPeSIWwywPGL0HTx4sLlXcN2ncCsiPpyK9f5gICBXnt/MqiNLtOEc4FxwMzfcpvtwbXCzfoctNucmKWGsg5eFfEKa2yUdc4DNAcPq62QiHGk4OakezcSaUFP/CzS7lwkzHmxaPKn4VRQlVuF6hoedvr+0hnMTcudvvfVWmT17ticm6V7CK/fGnNxT8SjjlSPyJFRmzJhhoj+oeu0WRKUQwkr+s1tQ1IpIHKJV3IL0H6JqSB1y06BAmg/nAoVB3b524nWmiwhGyVBBACLm8XbXr1pWEl5qLHJwt0i/j0Tq9zSfmbV6u/R69XcpkJwoBw4fkaZVj5MR154qsn+HyJPHm88cuHWZLFqxLmRnjFMR78+yZcvM+Gvfvn2mv0E0GGlhgLjkWj58+HAjsEgxe+211yKSDrFgwQKT1oXn3y3YlxjX2Y9uGrYmTJhgUuzc7N6ATsKAE2vX6KVLl5p1Jg3EK7U2LKoqI4DmkiuKkhfgBvbmm2+aHFy3YXLGZFBFfPzBvROc9jxmkkUIaV73yNuif26CAMWI5PakF2NWtMQTBidC5Ykc4jGrgsZ4hZkXOjFMHRNmv3KjpLU82m1kzCMiqb7r8ImVipsceUQ8zF27Qw6lHhHZsdY8P5hUWAZcf0vIrZFzIuIBQwXn4saNG813BVusiAfGKgWhMf5wXSeNKlI1DbyQn845wLnAOeEmsRrWHo11OODQI895yLyHce01VFlGCM0lVxQlL0DoJGH0bkMrOqIDlPgV8k4FBBMttw07Xim457aQ98I64HVDGEYjTx8RjBjOTBwHivwlS5aY8O5wHDr+Yn5hqS6SVrCkyOaFItPfM+8nJiZI5wa+tKl8SQlG0Js8+d2+CvL785UwBfYQtdWqVTOPtjVyoJjPqYgHomnIhWeb3YZjz/XEbeOzF0S0V8La3d4PycnJjseDNSq7bYwJhroyIojmkiuKoihKzmCyxITPqSj3gpD3gjecibLbRea8sB9wphDGG2nDCuIXEYwHmdxZfoNaSFYc9+/f34QxU6iO/YAXnpogeGYJrQ8H/5z54vUulwoznxMZ+6hIg94iRcrIGQ0ryCd/rUr//LQV26RhsU3GW3cguZjUqFEhXbzY1shEjOIJZ95q24TmVMRbMBhQSBURnZPvySn2+BOZQb58XhfR/t1j8up+SA5DyLPenCPcm2z3H6+gCjPCcKBpK0JhKR5VxCuKoihK6DBZchpW7xUhjxeYIltuolEB0Wt/h6f9lVdeMSKefGNEKh5oK44RwXQToV6D9YATOYRXnuKimYWzOxHzs/M3lX0laovs3y7yy73mvVNqlJSShfPLoVRf2aspy7fKyo275M/NhWV7oRqZtkZGuFNRHsMDSyREPDD++H6iCNzGC+H1XvBEeyGsnetzsPaEuUlSUpLjNnycL5x/NlrMS6jKVBRFURTFM4TrxWNy5raQx5gQahvJeBbRXjAmRKP9HcIXTzue+GD5/2w3hija3TGGGY9UnKcHNZGaeMCzyqXPDsTEqW1Ok78rXyZpCYkisz8TWfiTJCclyrlNK0urmj6v85QVW2Vlvlpy7e/lZF6lfkG/i3Vdvny53HXXXfLdd98Z0T1ixAhTQDQSUKCPwotu19RGyDMW8rqI9oIxIRxvuFfWoUiRIp4MrVchryiKoiiKZ4hlj7wX1sErQt7tdcAgFM44ygrEOKHBhGwHG7eE2GPIsUKBMFwiM2ldhYeaitkYA3IC29Swa39ZUf5M8zztu0EiuzfKPWfUl2GXt5BC+ZNk656DskOKZGpMIaKAdWFbaD9KPSeKzE2aNClo7nw4lClTxuwHt0W0FzypXhDRsRrW7pV1KOqBcRQMFfKKoiiKoniGcAQYXj+3RTSeVtbDzXVgHxCZ4KaIZh94IUc+GsYEah8hjhHsgRAyzL5HyNv0CoT8pk2bzP8R/+wXjAE5hfOjdN/nZVfBKpKwZ6OkfX0NA1DyJyfKKTV8Xvn1af+13fP3ivN/CjKzf6666iqTBkp7NNad9IBIRA4ABgz1hntLyFN1PafHNSdwbWScuRmlkZwDIa8eeUVRFEVRlCxgsuQ0tN7mPLotot1eB8QCAsrNPH0ELWLBTSHP70fDmEABY0LlaScXKEasSEGwW0MUQn7Lli3m/4h/RCXGgJy2s4OiJctK4nnvS2pifklYOkbSxj9hXm9QwffbJaYPkXdr/yonrB1uQuhta+QNGzaYdaIFHPn7iPidO3dmyJ2PROQAkNrghfx0xoKb4pF1YN+7mR9uozPcNCjYa6PTHPVIr8ORI0ccGzS4J6lHXlEURXHM6aefLjfffHNUf+PBBx80reWy4/777zcVmCO93rmxjbECOas33nij5FXCCa33goi26+BmjjweN0S8m/3bEQrsAzePhQ0hjrSQx0hyww03GDFO1XcrjnmkbzqTff+we4T85s2bjYhE/Ddo0MAYA5y2s8uMwtWbycEuT5v/J0x8Wvb9/ZW8NWm5eb5x205JTt0rSUcOSKNGjTK0Rqayfps2beTnn39OF/GWSEYOeKXQHKLNTRHNOcnYcTO0nWtC/vz5Xe2Fbq8JbobXJ4e5DuqRVxRFUQx4QripMmEL5Prrrzfv8RkLuYuPPPKIuA0T0ZdeeknuvddXKdl/WwIXegh7Zb1D4c033zTGhGLFipn1Dzb5pBJ1586dzeSUVkYYNAIt9GPGjDGtSLnp49m68847M0wYFi5cKO3bt5dy5cqZCSa9paly7T/JJEd12LBhsmzZMslN8AT27NlTKlasaPbBN998k+F9thURU7lyZTPZR5S8/vrrx4g4xjD7B1FD/i0eQH8orEXIb926dWXkyJHHrActkgoXLuxo3dnHTJTd7BRjQ/vdFNEIRre75XghPx7BhGiJxr7g/H722WflpJNOyiCOmzZtKo899pg5fxD5eOC5VlBEjueIf86NwHWy7ez8K91n1es9kIKnXC4HT7rC/L/A91fLDbV9AnxfWn7zmHjkkLzxxhvywQcfyNChQ+Xpp582lekpbBco4kOJHHAC28FvuB3OzeKmJ5prghdC/FkPNyMT7DXaTSGfdNTQ6nQduCeF65EnVYXzmusiUTBTpkzJMCfgfOS++uijjzr+bhXyiqIoLkBv4U8//TRDriU3+U8++cRU+/WnZMmSES/aFA5vv/22mcRWrVo1w+vdunUzxZz8l+rVq7u+3k48D3v37jXbcc899wR9n6rTnTp1Mi2n/vrrL+PJIvTU3+Aya9YsOeOMM8z3MAn/7LPPjGjFw+7vmcHb9ssvv5gb+IsvvihvvfWWPPDAAxm8eF27djWT7twEAd24cWMz6QjG4MGDzXZ/9NFHpnI3ERQIe7bRcsstt8j3338vX3zxhWlnxX47++yzMwgsxMxrr71m2nhde+21xxyncHLdEQpuC1gvVKz3wn7wQveAaBsTuA5yHiCOMWbx+OGHH8rVV1+dLvJtSDdCnmJyvM7fOWlnF2q+ev4ez8jhGp0kMfWgDFh1u9RJWC17xRdKnXzkgFkvBDUGtkKFCslvv/1mrj+Boi67yAGnIH5s/2038YKI5trvZkg5cCzc7iLgdsG7hIQEsx+cGpds6oxTmAdw7+Qej7GOeyz3dyJ4gHso0TfffvutWZwWmlQhryiK4gJM7BDzeK0t/B8RzyQws7DzBQsWmIkYgt/y+eefGw8peY2Ad4giRlQNxsPcoUMHIzL9efLJJ41XGKF95ZVXhjTJwfCAxzaznsH+C5PRwHB5xFvt2rXNBJffPvfcczN8DzdWei1jAOA7CPf3J7vtsukBGBwwJDiZyLOeCO5TTjkl6Pt4jpmIManGk9y8eXMzgcerRfSBvWETwvq///3PTMrbtWtnvF/8jZ3I4oG//PLLzc0cg8hZZ50lF110kakW7Q/7mf2dm3Tv3t14BPr06RP0fSYYhORyXPEuEJHAdljvAkWt3nnnHXn++efNscFD+d5775m/+/PPP81nEDaMDY4T45zJUWC4KePAbUEcq95w1sHNiACvGBOsRz6asI0UijvttNPMo91mK/Lvvvtuc52yIj9QxGfXzs5RvnpSsiT3GyY7i9WVlNTd8nG+xyRFfOdV8uG9pqUcufDkyuP9wwAZLD0gq8iBcGAb2AfBPP95rWI7+8LNyAQvrYPbxoSEMK6R4Yh/4H44YMAAc9+3UWzM4d59913zPsY67pXMHYjmcZqKokJeUZS4ZO/Bw5ku+w+lRvSz4XLFFVcYoWPhws7FPivq1atnPDvXXXed8fSsWbPGhOg/9dRT5iYBffv2Ndben376SaZPn26MBh07djReHyv8Eb2PP/64TJs2zUwiEdlZYdsVNWvWLKxt5XcGDRokDz/8sPEE4dllAuwP4eR4cPB4I4D57K+//pr+fnbbBYhqxDVGkb///luiGaprc2HxbtnPBBoP+AxGEtY3GKwv+wLR70+LFi3MsSVs1ysgRPC+r1271kzExo0bJ4sWLZIuXbqY99lGUgSIXPAfrxin/vjjD/OcST1jnDHHpAWPfGDURjhC0AsCVtfBO+vgtjGI8YsIx+joL/KdtLPLLl89sDje4aQUuXXG8bJkV4qUSdwp1yX7ImVSD+wy107SWTBIIiIySw/ILHIgJ2AAdbvlWLgiLB4FrK6DD6frwPXE6Rgi2oz7ov89kbHIc3tPZJ7Dc85L3sNb7wTHsU9Y1kePHm1y9whF5IfxMHAjz8yToSiKkts0+N+oTN9rX7eMvHd5i/TnTR8ZLfsCBLulZfWS8tnVrdKft3lqnOnR68+KJ339fJ1COBVem5UrV5rnv//+u/HCjh8/Psu/Q8TjXeHvEZd4h21xNEQlHlIEr61Sy8SMfOcvv/zSeFEJ58YLzwJ4YbmuZ+WVx2jAjQ/xFQiTQ/8q43h2Ca0O/HtEeo8ePYxwwxsdGHmARdqGmOO5J+SUnHPy0kPZLnvjxAPGBDqS4GEmPO6ZZ56Rm266yYSh25B5UgmAGzD7dvjw4XLeeeeZEFVu0v6fsTBRJsyOSTrrbj9nsfuZsYH32wsMGTLErCu5fHjSmXSQFmANMmwv45G8WH+IvuA9C8eYCAj+PljqRawKeXB7HTQqILaMCf7t7IJ1asgsX525ONdHvPlcQ/gMxjEMgxur1pGXm62QqgV8XvBCh7ZItdrVzDWZ6wnefYwLXIOYt/McQwG/QTh9pMePimjvrIMXQuu9QEIYxyKccUyhS6JduAf6w3OiK4F0PFpUErUSzrwl2cnKEAbJZKphw4ZmkoVlngkWXgO8Qa1atTKhheTgKIqiKFnDRfvMM8+U999/39xU+D/50aGA9x4PCzcXJmJ20kqoOSGSgddhJoSETQKTv8BCe1y/8bBmhs3lDxauTvE2/3zuYIXKuFcg3jH8kkPOQgg3xmB/Ie8PE1ObRxbKdgG/EWkRD0xwiRhAzGN8YYJOhAE3ZDvxxaCN0GffXnLJJWZyTZV/wuYDJ8fcKwm3Z7tuv/12Y5QgrcBiPXQYzL0CQp4Qee797Gc8gYTgYnTw9ziE2pYqu37sTqpMW4+fm5Wp+W2n6x2v6+D/6AaMh1jYD1zDEdWEvmMA8zc+sP4IbNJX+Jz9HiKWKJDJe3j9bY9yroPM1XdUrCj3L2kid9deJPXz/ytF0/bIoklfpQsXIpj814moGQuiI9J53BgxSbsJrP2Sm3AfYUxUqlTJtXXgeBHNVLZsWdfWgXsOxUcjUcgwXBirtD90s37O4cOHzZjMLBImGKTskfb30EMPRXx9mCuEO28JWchTKANL++rVq83kCjgIL7/8spmYMcHCu8MEJtAToyiKktvMezjz8KTEAE/N9Ps7hfzZ3+5sL5GE8HqKnUBmRcaCgQDEK4xAZKJkr8tci/l/MK9+oKfUCdbAwGQk8IaDcCcnPCu4X+CBZr0o9EYeOeH9U6dOTV+vwN7X/vl8oW6X02rnTrjwwgvNwkSI32H9yH/jHmhB6FPwjWPCZImQVYS//2eA+ghAOgQTZzzdt956a7oHz6YLRMMoEQ4YTCgE+PXXXxuDkzW8kL6AEQIhj6ggIoIQXf9jwv7ivVBhv+I5JOrEKeH8TaTRddB18AdnV1bQ2YElK0i/8YdrTHYsPnxANs95TQokiVRvf5GcnOK7tnB+5vZ+wSDp9rHgmur2OthisG5CRHVud0QJhDQ9W9PHLWbMmOHo8xjTMKo5nTdxTw/s3OL0nhgRIT9q1CgT528ni4EQEkR4ZmCopKIoihsUyp/s+mdDAc804gfxEmpuFBMSihXRBo5JAcXSuClhXSbHkTBmQp8zC8muX7++8epQPd1ii5FlBhWUyW/m5ssNLRxYJwQfC+HViL2xY8dmqGqeGaFsV25hw+SIisAbRrSBPxxLGxpPmD2infXPDNvj2D8Ud+7cucawEYnK0ZGA9WMJjCzwzxukYA/rTDqEFSbUQyCtgoiPUOE32GeEHIYKYYmM6cBjkZvgZcKzSoSKm55H9nnbtm1dWwe8jk6PeaTBgIZ3OtyaHpEAsWTzzrODsUsLTGpO2FB5impSJIt2VRauvzjWiGgJNFricec+wLlAtBB//93q6tKrxxlSYP8BmThxmtkn/E5upl+gHYikcvO6TVoW+sUaUN2AdAiKsGamo3IDOolgPHbTQMw9H63oZlTAqFGjTNHHYOksmUFFeadRJTjAuS9yT+zdu7d5jfslz60DJ6eEPCPlJFy8eLG5MGR14STsQFEURQkNhBCh7vb/oUDkExMSwiuZ9HFTpN8wHn1EMhNobhoUjEN00wLshx9+MKHsTGzJ8cYQwP+5mX388ccmPD/Qa+yPLdBCepW9ITmBPHomtuRTcwPHM8INLat7ij+hbFdOwEjAYivQUzyKKAJu3Pa+Rk4qeaXc/CnCR0g81f/9vc+E1mOcYX9RcI/3KS5ojy37GrFLOC2TdYoA4rHv169fhogEwvERY05C/3IKUQ92+4EK13jc2X72AwX52GbWidB6JoXUIyAqARAXROYRlcDfYPihdgPHzUkNHSsyAiM0ssJ+1snfRBpdB12HwHVAXIeyDm3atDHXluzy1QkHRqhzfgUL2ceASIoPgpHrDr9/JDG/vP3266bIJGHdiIvcrB/AOvCbbh4LwAjs5jqwH9xeB+D33d4Pbq8DhHMswjGAcT+k2wtzFIrYUkeHaMrsChtHXMhT1OeCCy4wVj7C6vDOcCHgosKNn0kH3qHAdkGKoihK1iB4QgXhhAimTzk3IhZaHTERpJAcheZ4n+sxNwqKqBDChYC2nmREI/mU5GSTr4b3lOrhWKmzgtZveIgQ0k5vaIhdhC33CH6TOit4q0P1OHO/yW67MoMaBPxNVsVtaAnjn/tmC7jRVcD2iserQyQBgpe80jfeeMPkwvtDRf3HHnvMGFgIw8OKzzGxcLyoKYPnjfVBEGOZDwyVpehhbt9PMSr4e5OZgACTEPYh64TRgQgQokJYd7bVv97CCy+8YMYGY4p9QJRJdh0RAuHvw8nT9UIRJ7fXQdtLeaNXNWDwclLjwrazy0lxPCJSmJ9zHbJFVIEClRjjWB8Mx0Rl5ZaYR7Q4aQUaDTB6MCbyeiFKL7SG9AJpYRTD5J4Uzr5jvsV8hXRCnAW0XiVVJrt5S6gkpDm42jIJo10RoTv2Qm13BKED5M+F46kJF6ySeAAwJjiZCMcynITRrjCqKIoSDK75hHkiOjHsxgqIb7zH2XUD8ApMwsmXJ0w7nMlnrN8bOV7U47F9dkMt4sQxxpjlFoRR01LI33CT2xA6jZHPzRQDJquIRTdTDLywHxDb1APB+RUpEckckG4lbJt1qFnw9iHWCeEmOotjgMGNcUmUEAYAzhO6o/C53BDzCGgMsPb33QLhxP5xM2qYcGqKhUdKwIUDxnq63Li5H4iiI9rMzXvTd999Z1rXOqmpg9Gecwat6yUcKUDyGLHYc2GgQBEVa3kkLwxPhVMRT5VjiuVwMFkIv2MCowSHizMXcPJa8YDwyHNeVxRFiTZM+sivdNvT5RTuK0QRxAp4sIgEcNuD5BZ47/DmO4HUBTwmbnqCveAF9oI3nDBqp8cv0thK7m7uC9aBfYFhLVLguCGCB0cOUVVEBzHuSa9CnNMNgwgaxqJtMWf/DkgXIp2KGgYI/WjvH4yJ7Ac3RTzbyHh0OyqAWjhu7gcvtGXk97lGunlvO3K0K0qoqYwWriduj6FghLUnCZEMpXhHdhDqQ/4gIZbsVFr79OrVy1gavVLgxysg1smBxYhCoQxCtrD2sq94narB9oKtKIoSLQgLY4klMDTHErR6zcsgNvAcOsFODBE1bk0S+V0miW6GrzI5dduYYA0xbooGBJMtIomYdgO2nfkyHvFIekCZ6zHns33kmY/TNQRPO3VTspsLWjHP5yGanvnADhZuYI1KboporksIebeFINcGpwI2ktiUKTeF/OGj10en68A9yc2WeZnhqrm/Z8+eGZ6Ta4eXnurJwYQ8J6O/lTeSVk4vw82ICzYinou1veCSH0VoFVZZwqgoJqRh9oqiKEosw70NT6MT7KTMTW+PnSCzDm6JR4QC4pUJs1sTdiuY3PSCUsSK7ceL5saxsGmQzFPJS6dieyTnZ4h10pyoT8Vv4BgjQjPU38gtMY9H3m0hzxiw4yEvGxPsdcFNY0K4Ijoa65DkcDxwT3JS5T638IzqY3BRSIeQwsxaljzxxBMm788ubraRyE24GWB1xRMfeKHlOQWfaEnC5xRFURQlr3nkETAsbnqj/Y0JbuEvot2CCTLCCQHlhfB6N9Mg33rrLeNsiXQaJNEOzAs5zh06dDBeeaeGgtwIs/eCR94LIdGsA+emm2HtjBXGiJvV4rk22mu1m+uQnJzs+Fh41SPvupCnxQ8WDgY4ed9ff/216XEYDKrlYt2zC8Vw8gIUtuMEzKwNEa/zPp9TFEVRlFiGyZJTj7wXctSZGLod2s46MJ/KqyLaH5uC6EYaJEWhrYAtXbq0ad/M65EQ8whuHDdr16513As7N8U8+x7nnNtCnvXIzTaeXjYmsA5uGhPczo/PyTqoRz4T6CFMn9q//vrLtD+iSAfe5WBwc7KF8eySF/BvNxIMXud9Puc1CC/DWENhRB7dboujKIqieBsmS0498l4Q8l5ZBy+I6HAKFkYa5oh4hN1Kg2Qcsw+o4t+pUyfjbCENMifzoEiK+GiLeZxtZcqUcb3Amxe6d3hFyLt9LNzO0c/JOnjVI+96SVxyl7jg2RZ2VMF/6aWXTH9exQf1AshfCtZuhAsuNwnCqqJZIDCctndYnm0xFm5mXEDYDiquamE+RVEUJVKh9eC2NxxUyHtnHfAEL1++3PU0SLzxdGjyT4PMrl98bon4aOXMs64YBvget8GYQ1FtN/FC1XwvGBNi2SO/a9cu9ciHKhjdtuJ6jczajfDIc16//vrro5ZzEk7bu8DwMgq98Gir7GvLPEVRFCWrYndOPYNMzmxVZDedE1SnzuvecC+E9zPnoBBcbkUCZpYGiTGBftXVq1cPOw0ymiI+Gp75zZs3m/MA44WbcD1gDLgd3u8Fb7gXjAleaMGXmprquE4A4p9j6EWPvKtCnpx3Qq5XrFhhwq55Pn78eLnooovcXC1PYtuN0CsU6yL7jEc88dFsPReOIA8WXoanxFbZj0R4maIoihKfMFni/uA0v1m94boO/lixG069hUimQSIcFixYYCIZw0mDzA0RH2kxv2TJEmO4cDuMGhHPdaFQoUKS173hXjAmeGEdDocRWm+vIV70yLsa37Bx40bj3V2/fr2pQk/o0ahRo6Rz585urpZnQazTYs5piHtut71zUmU/nPAyRVEUJX6xXg8mT04m4HhZaLHkJl7xhrtd/JbjRts1N2G+wdwSp0du5EhnlQY5d+5cOe+886RFixaO0iBzU8RHKswe8YxHHseT25Afzxhws8AbcC54wZhA4cW8btA4dOiQY4+8FfJE1ngNVz3y77zzf/bOAz6ysvz+Z1omfbPZXtkCLFKWlY4CIlJVioigolLsYgH1Z/tbQBQLdpQqNhQVAQWk9yIsnV3a9t43yaaXqf/P971zk0l2sptJJrk3yXs+vEw2mUzu3LnlPe85z3luNMoyNz1I/UMPPWRJ/G4AYYb8HnPMMeZxMFs49LftnU3Zt7AYWeB6c/PNN3u9GWbR8LbbbvN6MyyGwJ7eHzLqBzu3H7bBD2o45ImaUq9LHXAQDtVcY1dlkLhOmS+dccYZfSaVXpD4gSrz7jbPnDnTc8Lml/Z3EEeOAc6J0U6i/WDvb+/HfuA4ct3FfoPvauQt/IP+EvLhnLJvYTEUOP/8881kjsyJniDvgp/xHD/gzjvv1NatW/XBD37Q603Rt7/9bX3jG9+wZTkjHO5CMUGuw43A+mUbvHYFMD9A9UIR9RKkpiMUDUaP9HzLIOn3zrG9YcMGX5P4gZB5nosi31sb6aEE28u9i2PAS3AOMOcdjgR2pG5DNE97P85xRE0/whJ5i17RX0Lu2suYhPW88Lsp+1zkBzNl38LC75gxY4b+8Y9/dDu/uMGgfKNm+AW/+c1vdMEFFwyq+wf0JSDslFNOMSrfvffeO6jbYuE9pk6daiZPw43A+onIe7ng5dravSbyWInZF/3pgjAQMv/Xv/5Vf/nLX3Tttdeax5tuuklHHXWUDjzwQKPO7+oY8QOJ7w+Z515GCcGCBQvyti4PBjj2qIceN26c59vhtSuA/cAYjiTaD66ATZs2mXuSH2GJvEWv6C8h9zpl32KUg2M11jL0I0/FB4UGMn/77bd3fo+vIfE9awuZkP/oRz8y4UEoXUwGb7311s6fc359/OMf7/z5vHnzTBvPbKDwY+tELWJlmckN5+Guaoq3b9+uRx55RKeeemq37zOpO/30080Ek9pTaj9RPnr+rWxcfPHFOvbYYzv/zddcJ/g+k+2TTjrJXFcuvfRSsw+42XPj/OIXv9j5O9ja3v3ud5sFEIuRDY5RJk/5gMlZvgF5I5HIuxNlrxc1IC9D2cc9Fwg6Q5HN190xWGWQHNeTJk3SokWLcpJiP5H4fMg833vllVfMNZv35wfwmU+cONFzO7Qf7P1cC1hco2zJK3CM+EWRL85zG/ysyHveR97Cv3AJOen0EHCsjpAEJkpcIHdFyF17mdtHnkk+kwvIC79j+8hbDBrirdIVHqycfmuTVJRfEMqFF16oP/7xj52dOv7whz8Y9ZvuHdmAxKPwoO7QD5duH7SAZIL6jne8wxD96dOn61//+pch6HST+NSnPmVuPJBsF48++qj5Ho+kCp9zzjlGPfnkJz+Zc/ueeuopE9CT3QuYv+WS+Mcff9ys8nNO81o9t3t3+POf/6zPfvaznaFK1L//8pe/NESdBUKuM0x4s0FY1I9//OO8/o7F8APH6XBV5F31y6t+ydyTuVezeN5badxQAPKydOlSeQ3mLmvXrtXee+8tPwBizwIpFnsWc/1M4vsagOda6g855BD5Bdw/CB30GhD5adOmeboNbnCol6F/XBOZP3hJ5NP9XEywRN5i2GIghHyoU/YtLIYbIOO03WSSCZgkQWKzCTHE5IorrjBhoEceeaT53pw5cwzJvu666wyRx8Z42WWXdf4OyvwzzzyjW265pRuR5xzkXEah2GefffSe97xHDz/8cK9Enu1CXck+Z3k+1lB6I7uTUKyjnNvPP/+8Dj300D6/fxYlfvrTn3b+++677zaT7uOPP968J5R5iHs2UHzWr19vJgT2WjJywedMOFg+4N7kNYlG8eL8IqV6KJLSd0WisfR6WR/MNriBd16qoq4CzrXUa1uve4zgqiLdnn0ESfYzid8dmYfAY6mHxPvBUg8QnNgur90Bfgm684MroKWlxRwfXl2b3c+DuUO+1wHcYYcffrj8CEvkLXaLgRBy115mYTFkiJQ66rgXfzdPMMmGTP/pT38yEzm+7tkeBuUcUtCzowc15dkWfFpBouijjDCJ4eeo7dngvM2eULPCDCnvDbxOz5VrFvQg8NlKEiU2TBL4WT5E/uCDD+727w984AP61a9+ZRYqTj75ZGOjx9affeNHYeRGvKsgTovhD45NFo3yJUgQCxQXr4gQf5+/zaTVSyLvtl3zEpyfnLsQKi/DbbmGsT9QaPfYYw/55fjm88E9Re08C6N+JvG9kXnuA7wHWhR7TZqzwWddXV3tqZUccOxDGr2+V7Go53XANNdE2rd56Qpob283c6B8F5ysIm8x7GEJucWwATeJPC3uXgJ7PSUsLhnvrX8panVPe567qoyKTwnMz3/+c6PaM9m68sor9eyzz3Z7fs+bFzfUXQVisajQn9ZNXC961lHmqsXv2ZOVSSFWXNwHDz74oD73uc+Z94GF3932uro683teT4ws/Get53h2a9S9JEMcn+556xVYWMO54iX4PNw6ea9JBNdO9odfiDzAFcV1EQcW5AJC72cS35PM4wpjAYJ96peyBRd81pSbeQ0/KOHuduDU8xJcE70+vtv7WaNvibyFhYWFRU6gPKOeM+kl8K0nULsh7Cjt2OhzAXUE5wzE1wW5FgMFij/KhuvEce2UTJIYriqPBZqJgttyCKcBVstsEITUl1VwCDoqPIPyHSa7uAYo5wG8bs8wQIuRh/6E3fmlTp7Jqh+IPAoYRNFLu7MfAu8A1yocQ1j9IaJ+Add9Fj159FKpzBfu9rIQ7LftRgVnZLvGRjOR53qIu87r7fADke/oR2I956efibwtMLSwsLDwECgxTDAhw7nqSJl0orZfcsklJhwOgv7SSy/pqquuMv92a81feOEF3X///Vq2bJm+853vmHr1gQLCjCrv2igB9eu4cwjoYzuee+45fexjHzOLDG7QEf2S2R5q55cvX67vfe97OxH7XKDE4MYbbzTPXbVqlQn4g9hnq2hPPvmkTjzxxAG/Nwv/18hjB803hZ7jhVIUL4EiD4n2Eq6d1w/t34ayj/uu9gcTcTePxGu4NfEsVnHtxDHAtc3rz6uv5BQ1ngwTtp1F3b72mR8K8Blz/fC6Xp/9wbHvhz72XJO83h9+IPKtra15u/nc+5BtP2dhYWFhkRPU0u6qnvbyyy835Jz0ehRxVHys9q5V7tOf/rTOPPNMkxxPIEttbW03db6/YGGBFP2//e1vnd9DfbnjjjuMQk9rJYg9Ne3//Oc/O5+Ds4Dt/drXvmZq5lHBIPu7A4rBDTfcYGyb8+fPNxb7u+66q7MPMDWk1GOyTRYjG3zmTDz5zIebGu6HbfBLnTxEnvBBPxDUWbNmGWcT2+MlegbbsVhLfgnXc8g8uSh+IcXZQH1noRgSTxo8DizuW33tMz8UwIHCtvBZew23LM3rshKuAV6H7XFcuDXyw20xYdOmTYb8e5l5sisE0l6fdQMA1hkOTm4Qft3BFhYWFsMZWOuZZKK+e11f+vWvf91Mjq6//npPt8PvGCn3Rsoqfv3rX+csOekNqINr1qzR0UcfLa9Aqcy9995rwhq9VMHIm2ARzeuWYLiDIKt8nl6C6S716BBmr4je7tLpWYQlzZ6QNhxRAy0DgNjec889Az4WuaawXSyCsF0EyWWD4wznFip9z9Z0QwmcXFwDWGT22vKPyw4lt2eo61AD1xyLCTj3vLS033fffSbQ18vU+scff9wEM+bTDvDOO+/Ut7/9bS1evFh+hFXkLSwsLCx6Be3gsLujcniNiRMnGneCxegAAVoogPnATYz3EpAwhteqvF/q07mGsCDoNSB2uIcoT/JCw+pLizmcKMcee6whypAOr9V5V4V/4oknjLvC3bbeAvC8VOb5mxB5PmOvSTzgmPdDXbUfFHmuhdSme0ni0xlXQL6KPMe/38Ics2HD7iwsLCwsdokzzjhDfsBXvvIVrzfBwudEHusm6o/XIW8QG6/brjF590PgHW3JUHNRJ73uNkGS+ZIlSwyZHspU83z6xEN29t9/f0MC2W9Ye+fNm2cWMoeKoLK9W7duNa4OVHjCVHMR+L70mR8qoMSz3fmorYMFzjvIq9f18biD/BB0x7XQ65DJWCxmroX52vv9TuStIp8LqaTXW2BhYWFhYTGq0R8ib9XwLqCAMbyuT+fzgAT6QZUn9wOLP6rxrlpvekXic6nz7kLIo48+aoLcBrPGH6JDacojjzxiOo2wmNCbCp8LXinzyWTSLNDw2dL+1GtwrONg8DpgjmtQaWmpOQe93g6vFxOa++kK8DuRt4p8T7Q3Sltek6LlUtl4KVrp9KT2gU3HwsLCwsJitKA/RD47bM5LNZxJayFaQBZiOyDykAo/2Ou97mUNaEuGZR3Cig3bjyTeBaQDNZ663g0bNhjrOO04SdDmfXCMD9SuzMJAXV2deX3Uf7aRv4djIVcnld3BC2WefvaQZj/0jvebrd5rAg24BnlNhpv7mZpvifxwQyohtdc7o36tFC6WisdI5ROdR4h9MP8Lm4WFhYWFhUXfweQJBbK9vT2v3r9+qJPH1o6dFNXXS4WQSbybnu01kUeh9drmD/g8SFxftGiRCWcbrLrdgZL4bECoCRtleyFFKN4vvviiKSPhdfmc3cGx19t7Yv/z+wxIHsNVKlkcICSyEPXUQ0nmeU+0OT3ooIN8URuPhZvQQkIBvYYfiDxuCa6FXm9HSz/q4wlxpIe8JfLDERWTpEBQirdJ7Q1S01YpFJaKyqXySVJJlUPsw1Gvt9TCwsLCwmLEAUULWyjqKTXDfQU1kEwcvQQTRggjE0Evg6ZQ4lFxIZVekhz2B5/l9u3bfdGPmYUFyB+uCRRvP5P4bPAZuoT9gAMOMItckDWIOfuW9wS5h/gz3EWkBx980CwqQaqi0Wjna1BPzvE5GNkFQ0XmuT7wt8gQ8APoHc/2cLx7CT5vjgkv0+oB12IWlrzOx2hubu5ziYgLzidcL24LXD/CEvndIVLiDJCMS7EWqSZj9cNyXzrOGcVY8MutBd/CwsLCwqIAYNLPJBRrYz5EHtKUb//5wdh2t4+7l0TenbhinfZ6MgqBJ5DMD0SezwdV/tlnnzUqdyFJxmCR+Fzvge1mZNu4Ifeo1JB2SP3ChQt12GGHGQKPGyIfd4vfyXxra6tZjCGMzw9qPPDLMY4rgMUcr5Vw1xXg9efT3NxszvX+2Oq93vZdwftEiOGEUMRR4sdMkyqnOBb7xo3SxpekdQulDc9JO9ZIrXU2MM/CwsLCwsKDOnmIM0o4RGa0B94xASUszQ9Bc1jDSUKHaPoBuBUgwIS6FSqUbahI/K4AUYdAc/y5CzmcE3xvKEn8YAfg8Tp8dtTF56u0DhZYWEAFz5cwDgY453GeeE1CcYt43f4ukUj0yx3l9/p4YIl8f4HtPlohVUyWqqY76rwJyntVWvestPZpafsyqXmbFPfHTcvCwsKiPzjmmGN088039+m5TBr+85//FPy5Ix1HHHGEbrvtNq83w3dgEkULrHyApRUrp9f2eleR9xp+6ePO5wJ5htD5BTg9OE4KsU1+IPF+xWCQefIzUFn3228/+QW8PxbOvLaRs39dIu81/FCn39jYaBwp+S5kQeS9Lk3YHSyRLxSw35NyP2a6VDbOCc3Dgr/heWntM9KmV6SGjVJHE2eY11trYWHhIc4//3xDYj/zmc/s9LOLLrrI/Izn+AF33nmnUdE++MEPdn5v1qxZZhuzh5sWTDDMKaecouGAL37xizr44IPNDX7BggU5n3PLLbeYn0FCUBSvvPLKnZ7zu9/9zlhGmbxRb/uXv/yl289vv/12HXLIIWYyQ/02r3fTTTd1e863v/1tfeMb3xiylljDBdQBE0rWH1u7123XsLKzDYPZLqwvoJc1SqHXLfncawcEbKjaku0OtOU68MAD9dprr5l+2/2FJfFDS+Y5ntnfXEu9Dk90wfvh2OY+4TVQnymr8LqPvRuu6LVjoj5T4pSvOwHHx/z58+VnWCI/2BZ8FHvSQ5s2SxtfdCz465+V6lY7Fvyktzd4CwsLb0DroH/84x/dJo9YTlG+/WDLc/Gb3/xGF1xwwU7J29///vcNaXcHfY4BCgDE2MvE4Hxw4YUX6pxzzsn5s3vvvVfnnnuuWXBhon/11Vfrl7/8pX772992Pueaa67RN7/5TV166aVmYnnZZZeZxZi77rqr8zlMYv7f//t/euaZZ7R48WKzPxn3339/53NY/GDyxd+06AILLex7JqXDzdbO4g8KEPXpXgKigxLuB1We6wMlD9iP/QK2aSAWe0vih5bM8zvcbwjq80vAHWDBG/hhmzjXIfH9aR9Y6Dp9Fq+9dijU98MVQMo9xyj3ID/DEvmhsOATgmcs+DOc/vSxZmnraw6pX/e0tG2Jk4pPQr6FhcWoAK1yIPOotS74GhLfs20NKu2PfvQj04OZGyIK0q233tr5cybGH//4xzt/jir861//uttroPCfccYZ+tnPfmYmraiFEE5WzHsDk+1HHnlEp556as4JGRNgd7gr/9l2eUj15z//efP3IDQoFbyPbNTU1Oh973ufIT1Y2HAAZAMSB8llcoxl8aMf/aj5HRfHHnus+RsXX3yxISsnnXSS8lmkYB/01ksa1Zx9BpHnOe95z3sMaf/JT37SOQHlOZ/+9KfNYgDPwbnwqU99yjwnext5j6j2c+fO1Ze+9CWzyv/UU091PocJ17vf/W6zuGPRBfYpE0F6Zw83Ig84JrOP19Fur2dBkOsASfp+c35gv0VRzQeWxA89madnPCTLT5Z6wDGN48TLdpMu/GKrh8hzDfQa9f0g8jjB2HYWjPwM74+20Qb60pNyjwW/fIKUTkp1K7ss+ATn1a936u2txdLCov+gw0Rvo2duxS6f22OBLddz+gnU4D/+8Y+d//7DH/5glNqegPxi17722mvNpPGSSy7RRz7yET3++OOdRB9r+7/+9S+98cYb+u53v6tvfetbxhaejUcffdQk/PL45z//WX/605/M6A0QTQg2BLQ/gChDzNkO6pz/9re/mYlONlCwzz77bKNUQ2RRwF0Fk5vvcccdZxY2XnjhBd13331G9eD52eC9YJElGZl9VCigAvesqWOhZMOGDZ0T/t6e89xzz+VcJGHS+vDDD5v9QfZANkiWfvLJJwu2/SMBLAyx6EXP7HzApA1i5nXgHRNBJrNeg0k951W+jpXBAAuOLBL6weqf7VrgOsPC4Y4dO/r0O5bEDz2Z51ziHsc1wS+WesC1hm3reX/zAm5LQha+vQaLmF4T+UQm6C5fIs89BzXe67DA3cG2n/MSwbBUTD/6KimdcghDy3apYYND+AnTo2c9/eppb4dl38LCom+4YhftX/Y6UTr3X13/vnJPKd6a+7l7HCVdcHfXv391gNTaY2J+af9qcSHjKLwuKYSIosg+9thjnc+BKF5xxRV66KGHdOSRR3aqlJDs6667Tu94xzvMhAZCnD1RxsYNgc4mvfRDxRaO+rvPPvsYhRlS+clPfjLn9rFdTAZyKQxf//rXTV23C7aRmvNsMElDZT/qqKPMzTBX7SBOgQ996EOdrwH5hwSffPLJZluZXPP97MUOnAzZabL8jZ/+9KcqNFD3WTRhG9/5zneafsU///nPzc8oJ2DSxnN+//vfG+XeJZz8GxLPJMZtC0WdICv7bo9nbPonnHBCzvZcLMz4QdXxC5hM5Uvk3cC7/kzgCgkmsVi2mUyyPV6BxaXKykqzEMb54yVY+OJYR8H0U/0plmgWLWlJx3V1V3ZgS+KHvjUddfHPP/+8UeK9Joc9wbHMYrqXZWUuOMe55nnRoSAb3ANZUPC67WVjY6NZ6M93f7hE3u+wRN5XFvwyZ4BEh2PB3/aG05see37peCdIL0rP+lKvt9jCwmKAwI4OmUYVZ2LI1z0nKJBHJjA9SR/KWrYFn8A1SC7kmbp7ft4zwI0JUHbNHCRzV5ZlXqe3m9///d//dQvkyzWx4udsN1Z/iPl73/tenXjiid2ekz2Rx0IN2di2bVuntQ33QK5JMs4Cl8gP1s2WBQ7+DtvNpIRtwxZPPbxLtL/zne8YGyOp83yGLHycd955ZmEhm4wzaYXQoUKyePLlL3/ZLMhgu3cBcYDEQ/a9rin0E/h8812oye7j7iWRz66T97p21rXXe03kAcc+BA7y5idlle1i0Y3FRBYgc9UYWxI/9GSehTA+E+5ZflC9s8G9FpfW0UcfLT/AT7Z6P9XHB/JU1iHyLND7HZbIZyMRk/51vlQ5Tdr7RKlqD4dEe4Fw1BmABPxYq1S/Rtqx2knIR8XHmg+pZ1j1xsKiO761qfefBXpMzv5vxS6e2+Pcuji/Wt2+2Oup8XbJeE+49tO77757p1otd/UfFf+rX/2qUYtR7Zkcka6OspSNnhNmbmy7SkmHnPdmM+Vne+655y7fGwo19YwEuOEowB1w/PHHd6vv39U28d6pz8+uN3fhKt2AycJggG3hb+MIcMODIOHAratnksICCu4IlBC26/rrrzefQXZiMKTe3V8ssGAnpWQim8hD9vww8fEjkWfBiQkzykpfweTN6+T67Dp5PxB5Fqb84PjAHcRgobK/pTuDdc6TQQKxZOGNa1g2AbAkfujJvBtuh6OFLAO/WZ2XL19uAk297pUO3CBJP5xTw7k+vrW11ZRwWEV+uIHgudVOzakW3SxVTpVmvk3a40hp8nzvrO3Ggl/pDOqIsOC31khNm6RgxAnQK5vkJOXzHHcBwMJiNMN1t3j53D4ApRqCwuQkV1Dbvvvuawg7Sjt2z1xgAvS2t71Nn/vc5zq/x4R9oEDxh8BC5pl09weo2ATBMc466yzzfiGsfWlHwySa3uooMF7aklHl3EWUv//972axpGdbHxYk3BZ8LKyg4u+KLLnKezaoz+0ZdGghExCIss3+4ZjoKzhm8+1BPxhgMrtmzRqvN8MQDc4jPywqAMjG008/bUqBvLYB9zzfyasggwSS5jp/LIn3hsxTRsU9iPuf1wtQuVxrLFbj3vADIPHMF9ifftiW3S32DwXq6uq0//775/U7ZPZQEuDe0/0MS+SzMXFf6fhLpddul7a9KTVukl671RmRMmnGYdLMI6WZhzt1617A2OxLu6z1yZgTtlW7VEpnSAZhegxIPZZ8n61eWlhYdJ80os66X/cEN2TUdmq1IX9MGFAZmfBAkrFxUyNOGB7tzJgUk6ROLSFfDwSQSkgIfwtimi9+8YtfGIWa12ECRhgfqmBfV8dJlL/hhhtMDf3XvvY1Q/5R8CDK1KEPtLUOr4Xqz2IFEzIUOHfxBOUXwoN7ANWcACGCCXkPbsigO8nE8nn44YebySbvGcJJAJ8LlHf6yENIIe/33HOP+YxoXZcNgu56lh5YdA+8y4fIMxGjPpJ97mXtKqSZY8vr7WA/cj5iA/YDked8ZkGMxRZUcD+BhQXOaa59LNKxmGhJ/NCTeWrPWZTmvueH+vOe4NjN55422ODc5hz32rXA/ZRrr9d97Nva2kyHg3zr9IdL0B2wRD4b5ROlg86Txs9TKlKuLS/fo+jmFzWm8U2F403SqkedgdUW0r8Hav3bvLXgh4qkEsZYKZV0ArsaN0o71kqRYofMl010Fh6w4IfsR25h4TdAyHeFyy+/3NwQIYRMbJg0QGhIpge0P8N6iOrNjQfiizo/0J7kEGVS9Emb7w+RZ2JGbTOqFq916KGHGhLbV1WFQCwmdQTrQXAhQgTmoerv7jWoz0cFzQ4O7IlPfOIT3Ui5q4ajsLh1mBByFlJQ41DieT3UumwrIyUNTOiY8BOKh8qYXcfJRILPg0kWtnmCBv/61792618PQeD3+L7FzmBSReeC3oIZc4GJP+cWFk+OJS9JIWo4C0a5Ah+HEvx9FoywKPuhNp1FM84pFrn8Ro65znLOExxKuCXBiZbEDx2ZZ8EaNRW32e7ukV6A44FwUq75fgDOPo7T7HItr0CZGQt1Xi++1NbWmmtvvte64RJ0BwLpfBs4+gis9vABcbIX7CRvrdObD/xJf7vjIa1avUaxeEzRSERHzZugMw+ZpEltK512cdmomOrY71Hrpxzon3R5LPio9Yl2KRCWomVS2QSH9EPsqbW3sLCw2AUgH4TkvfTSS56TkHyADZMJFsF0wwEsVqDoU1/vy3ujx7j99tv1ve99L+9+8lgkgdfp6Cz08HlkLwJ5BRavZs6cOWDHTqHAIiQLYrhW/AamyCwgbdq0ySzAEdw5nEBIJ4untPb0w8JNX4FLDbcT1uaeOQV+AU4siKpf3CQ4FzhO/RC6t3DhQqOC4xb0Eq+88oopJ8rXWs95zgJ9fwSMoYa/ik18gOeef15/+OMftGTJErMyOHXKVJVXVOqhVzfqG7eu0KK9vyR9+J/S2y92rPbUqFOr/tpt0j1flf5yuvTgd6Vl90lt9d6+GYh62fhMz/rxmZ71qzI965/O9Kxf52yn7VlvYWGRA9gGb7zxRlOjP1wAYWJSg5I+XIDVGeeFRW4cc8wxxtpM3WV/gub8cB7RjcHrvvaABTlaS/pFx4Egs2BIKJWf4NbEowpDJinFwRFlMbjg2s1+RhHlfM+nz/xQgWOC89kvCzvsH85pPyy202GAz80Pyfk1/ehjz2II57ofFkT6AuuzzgL1p9RjhpqaNH0GdnlnnaOktETTS6YbWyR9mQ/4/uUK7neGxMDKvuFFad0zzmjbIa1+whkKSJP2dZR6LPhjZ3tnwe/Ws57AvNaunvXY821gnoWFRS8YDi1YsoEazfV6OOErX/mK15vgazAZQ1V54okn9P73v7/Pv4cqhAXW6/p0nBFu7gItCr0EwY3kOECc+xtiWUhQboI7AMKGld0PyBVsR0cJbPYcSyw++FElHs5gn3MMUBKFnZ5jk2t5X/vMD/V2Ug7il5BG3FzkuPTsbOMFIPGc014H7rX1sz6eUh8W7vzQhaAvsIp8FrhoY+WpHlu908WCf48fN16rV63WylVZ1vpIqTT7aOkdX5M+cpt0xrXSQR+TxmEnSUtbX5ee/71064XS3z8oPfUraf2zTp94r2AC88qcTICqGVLpWCc0j8A8tg21fvNiqWGj1NHkEH8LCwsLCwsPQe3nrjIPdlcn7yWYQ7h93L2G22EBBc8vwIKLypmv42Iw0Fs6PTW/qHQsEhImivJoUbgSANqlutZwd4HJrZnHEeYXZZ5jlPIlPySyu2Dxg3N6oAGwI62P/Zh+1Mdzj/FDzkBfYYl8jxWtXfWpZUJAzXxTY1PuFzAhePtIh1wovf8G6cO3SEd9WZp5hKN6N2+V3viPdO/XHQv+/f9PWnK31OrtBMMJzBsrVU6TKiZLwZATmIf1ft1Ch9zXrpJaaqVk3NtttbCwsLAYlWBy9eijj+b9eygyfrHXM8n1AxkhjBFCCoHyA5h3QeYh0LgjvcLuWsyxKET+BvuN0ED6TVsMDKim7Es+d0poeiq5fiLzbCNuFo5Vv2QOwFtYAMkOWPUKfDZ+IfI1/bDVD0cib631WWAFkJsJJ4XCO9tlsFMVRYpUUdlHuwiK976nOYPAOYjx2owFnz7wa//nDDBhXlfPetR8zyz4ISla4QzAdseapZaajJJfLpWOl0qrHQs+jgQfWJ0sLCwsLEY2mOS/8cYbpjY1n/ZpTObIvfEabAcqLqIB6q7XieyoVajyflEWsSqzuECXCy9qj/vaJ555IiUAEDqCA+nG0R/CYOGo27gbCF+kg0Fv3Uh21Wd+qEMr2cY5c+bIT2o8/MUPwaau88nr65tL5PMNuePcd9sdDhdYIp8Fkpn33ntv7dj8gqLjKroRVC7wNbU1pi5q7py5+b84CwNuuzpWE2uXd5H67Uuk7Uud8eIfHaKMis9zpx2Uc1FhyMDfdv9+KiHFWqX6tdKO1U4dPen3LFjQ2s62t7OwsLCwGII6+bPOOiuv36NOnhpSL2taIQC0wYOs+mGiCxlhYQQC7YfaY2zBtICErKHoDWWNal9JfPZnSScEyBMJ3cwdWRDpa2vN0Q6UbRZsGLRC7EtIm9dknkwJSB7Wf798zuxH2qV63ZXDBdc2rnFe75/W1lYz8q2PZ2FuONXHA38ciT4BBx49armAczC2tbYplUyZR/5dWVGps88+W8HgAC8cXHjG7y0dfJ70vmud2vpjvibNOtohzaj1S/4r3f8t6c+nSfd+Q3rjDsea7yVMYF6lVDlFqpzq1Nm3N0hbXpXWUVv/P2nbm1LTFofwW1hYWFhYeFwnj4IKcaa3sdegjhWy6KV93MWUKVPMdvihbt8FyiILDLSkG6p9lC+JzwZ2Zn6HfuLYw6mdttg12EcsxrG/UT7zSVr3ymZPtwlasGKp9xPJo2883MUPVnb2ERb/GTNmeL0p4poGiR/p9fHAyqc9cNihh6riggs7+8jX1tUaOz1KPCT+wMFY9SodJ+3zbmcQgrf5Fac2HbUeUryeOvWFznOr5zop+Cj2E9/iWOG9AIsRtLdze9Ebtb5FqlstpVdKkWIpmlHrizNqvVfbamFhYWExIsAk67vf/W7ev0dSPJM7r9sz4Q5g4o2l2Ov0eraDtHhafUHq/QJs9XxWQ2GxHwiJz1584LikfAOCatX53avwLNbw2fYnnM0LZZ4gbD5Pr/ui9wQOAfalHxw1lDxBnP3QCWPr1q39ur6SwfKrX/1KwwmWyOfAW/bZR98/+BitXL3aBNtRE4+dfsBKfF+AXX3G4c542xelHWscQk+S/LY3pLqVznjlr46tnedB7Kcf0lXX7plaP8YZpr1dm9S+w1mI4GfRMqlsotPeDlJfVCq/3mi4qVPDyMWIcgt7M7awsLDwBwga60+dPIoVk3Fq1MNh76Y+TLhR5XH5eU3kXUWZ/dLQ0OAbpRFyh731qaeeGlSLfSFIfPY2M19gQQQ3AUopZQJ+qFv2Azi+XJcF+3qgZG8oyTzzQb9Z6t3twt3gl5aNXNO4tnm9qBCPx019PCUb+YDrAIuaw6V/vAtL5HtBMJDWXl4HwHAyVM92xoIPOzb29c85xJ5H/r38AWcEQtLkAzK19UdKY2Z6F0JnQvFKu8g6Sfdx1PqVUjrlBOTRz75svK/U+qefflq//e1vjV3L7TnMzeHzn/+86WlqYWFhYeEtsEtCkO6//3599KMfzWvizzWdCZ7XNlQmu9iwvV5UcMsOCBojxOuwww6TX0AYH7X7kD9CDgtNoApJ4rNBCYerzlNvy2eNo5O+2qMR1CmzL9jPfJ79VeG9IvPYxTkG/WapB5yzLMT5IT0f8oyLxg+29O3bt6u0tDTvc/ree+/V4YcfPuwW3/yztOQXhCIOuWze5vRRb63ztud7NlC79zpBetd3pY/9Rzr119L8D0pVe0jppGPJf/Za6ZbzpH+cKz19lbTheadHvOf7tMqpq6fFnZsDQK96SgiM22CJp7X1kPivfvWrpgaKCQQXRx65gPN9fm5hYWFh4T1OO+003XXXXcO2jzuEgIkmqq0fgBUchwN93P0EtgsFF8fAcCDxPdX5d77znYYIPvzww+bvmY5IowSIIaT6P/LII2Z/H3fccSaVvtB9zge7Zt5NqfebpZ50eIZftovaeD6Lnq0DvcCWfra/457CvWW4IZD2Q0PTfgJLCTdELDsFXUFBQW5vlNrrpaatUqzJIfPY3mm/Rl24D+pRuqFxU1dd/aZXpFRWb1iIM9Z7t7aemny/wFXrIfAciuxbFizKJmTa4A1+Ej4ThY985COGxFPXlr2iy+mBpQqb30033eQrW5WFhYXFkN4bfQIWWLHYo7ygsvcVPP/FF1/USSed5Ln9kzph3AF+scVCgiDyuM+83jc9k8Kx2LNdhUj6H2wS39t7oBwEKzTEi5rmoXJioJTec889eve73z0kyi1/D3vyihUrjHsGlXwolGy6UqDM4y4plDIPUX7mmWeMI8RP11GOYRw9lOZ40aYxF9xOE7guvN439913n3EX5ZNYj3OE/JIXXnjBLDgNJ1hrfW8Kctk4Z4yd7RB5bOzN2x1y37ajq6c69nFqwL0Gavf+Zzoj3iptfDFD7BdKrbXSmqecAUjMh9AzJuwjBYLe7utQlaPYu7X1bXVS42Znv7J/IfUlYwetbz03dSYx1Lb1vPi7Kg43YZ6Xb82NhYWFhUVhsWDBAkMOsC6feOKJff49JnYopBArrwOZsFxz32ECiTrvNVjEfuihh4wy74fafRc445hYP/fcc2bxZiAWdS9IvPseWIhgIYnPnEUcQhcJGiwrK9NIQEtLiyHwKOOQXizKEKOhQqFt9pyXHHO0u/QTiXcVZ7bPa9Kc/dmzCHjwwQd7vSlyXUX5LvrhmoEDcNwMN/iAgfocKLBuiFvVTEc57miUWmodezgWfKMkFzvEHtXea0B2aWXHoCa9dkWmZ/1Cp2d9zTJnvPQXh0CbwLwjvA/M61lbb5Lwm52e9bUrpaISR6GH2PN5sK0sBAwQrJJjA+ttgsD3ScDkeRYWFhYW3oIJ+qmnnmqskPkQeRxVbnq910Se+wrbsnbtWl9MHlFrUYtZtCZE0E+qPIQXl8mzzz5r2pX1R832isRnY8KECYbcQjYgvdjO+R6knmNhuDn+3NaFHMO4SyBCOEwK4ZzwksyTXcGxNm3aNFNm6SdwHLMYRNmJ1/kaLtasWWMEr+LiYq83RRyPnEv5fu6urd5P172+wh9HgY/QFktqdU2zouGQSopCKo6EFA0HzWMomEU0KyZ3t+BD6FHtEzEpXOT0WB8E9ThvoLajwLt963ETrKfn+zPShhecbV9+vzN4rgnMO9Ih92Nnebv9Jgk/S61PtGWcEVudcD/2MWUCpdUOqWchpR/by4QOe2ZbW1vOmzvf5+deT/wsLCwsLBxA5D/zmc/oN7/5TV6TLyacKKJ+IM+QBMoEsMf6gcS5regguzgG/AI+3/nz5xuC9sorrxjlL5/P3A8k3gXbjTOEwdwCBfvVV1/VokWLDHHk+ORnfjgeeiPvkHYIE3XRbCcLEbhk/BDoN1Ayz7FCmSUhkKjxfsP69euNq8gvCwxsC8fwIYcc4vWmiM+O3JF8rfEc0xD5v/3tbxqOsES+BzoSSW2qb1cqnTbc0YjEoaCKwkGVFoVVXhwyjy65jxaPVbibBR+1frvUhgW/3iHHhvyX+cOCj0V975OdgeK95VWnrh61vn6dtHmRMwjNY7FiRsaCP3WBU2vvFUzf+lJndKr1rVLDOqd3veuIMH3rM2p9H90RhNJwsWdChVWpZ408Nyxq5HmehYWFhYX3IEiMGtbFixfrwAMP7PPvodZABlF4vbbMonwT/sU9ZurUqfIabAuLCih+bI+fyCTbQt0r5RQsxKBIDjcS3xMQX/Y37wXbPcSYDAfIEccppJ5jBFLpJQjpw5XIcUrpBUow28a8CEeB31TMgZB5wu3IFqGMw0/HP+C4oAMARNUv2wZxxs0zlGUUvaGhoUHt7e15tSUF1MWzqDbc2s658AGz9CcmVRYrGAgYQh9PphRLpFTfGtO2ppRIB+SSAMGPhIMq6yT4RYqGJ6p4/BRFU+0KJ5qd1HuIPfX1pvWajyz4LCxMfaszjvhcV2De+oXSppedFPk3/uOMUJE09SBpJj3uj5Aqp3i/7dTMM0CiXYq1SNvedP7NwgmLFij2JjSvotcWd1wQaTFHOj3BdtyguMFyYrsWzIsuusg3F04LCwuL0Q5snITWoaTkQ+SZdHKNp+ex16FGkAuUtdWrV/uCyAPCwrgPYpcllM1PwBlH7TVBX5A1rNzDlcT3PA4gHwy2mQwH5h4ExqEOkwdBnb07eO+DNR9BnWSRi22AGLmPLHpx3rht2PxG3gtB5llIcfvFe714kgtcJ7h+4dzw0zbh5PHD8bBhwwZzHc235IB7yFCFQQ4GLJHfDSDz2OwZ2eBiG0umFE+kDcHf3pQWFD+b4JcUFamyeIZKxkxXcbJV0WSTitu3K4xqn+xw6rs7U/CDPgvMa3PIvBuY17LNIfgM/drJC3DVeuz4BahVHxBwC7iOgVTSCfxr3iLVr8/s57JMaF6VU2fv1uFnQBDNz372s84+8qw+M2lgxRkSb/vIW1hYWPjPXn/11Vfr29/+dl6/h20cJX8w+k73hzijsvnBIQDYH+wXrN5sm1/qcF1AIt/61rcaggvh6m2fDRcSn2v/Ix4w+BwINaOmHkKNrZqWbpBt3jcD0YG5Cgtb7uDfvRF9fpdMIJTLngPCTvo7v8uCAfsalyJWfz/Y5geTzPPeOaYo2/DDeZirGwBtGPMtKxlMuIs8RxxxhNebIs53iDxz9nxx55136hvf+IaGK2z7uR7Y0dKh/7yySftPHWOs8/kim+Bj048n00oqpaACioQChuSXqEMValNpql7RWKOK022KhgOKFGPBL/eHBT8bHCIEzhm1/lnHjo+7wAULEdMOdoj9jMMce7ufkIw5NnzIvRtMGB0jldPirrJbaB43OW7+BNtxI8VOb5V4CwuL4YSR3n7OBXZkVFlqNPNRtLnO33///Tr00EN9YQmlrIv7TD7OgtHW3qonWPyA2NIarGcLwuFK4vsC3hsp4ZAoSHc2EYegMwDHE4SPQXgbZRP8Lsc+cMl/9iIA1wquGyTp+4UsDkVrOvbdE088YdwxfS3ZGGogMFFKxPHsl8/GT9etbdu2mYWYfFuLEtRIxw5+f7jmYHnKGH/0ox/p9ttvNxdkVvtQPX/yk594euPY1tShy+56Q+TaTRlTohnVJZpZXaYZY0u0x7hSTasqNfXyvSHQqeBL5Vm7lwsopB6LflMyqtpERCmVS+m4ipJtisRaVNpQrwptU2k4pSgX2JIyFUeLzQKAp+CkqJ7jjAUfljqaMu3tnpHWP+cE6GW3t6uem7HgHy5N2s/7hQnKAkoY2aF59ZnQPGrvu0LzgtEKHUAtvCXvFhYWFr4G9bmosrfccosuvvjiPv8ek0/sqSg4fiDyWFPplQ7J8IOll3kMZQckd0NuehJlP4B5IgSNPt+QG9cWO5JJvPvZ8J56e1+u4k49tRGWYjFzbLn7CEK/K8V+JGJXyjz7h2MI1wFlA34ECw1Y/uFIfiHxHGOcYyyk+QEbNmwwTqt8988//vEPvetd7xq2JB54yrAILcG2zKo4K4bf+ta3TCsZ2p941VtzW2OHSiIhtcWT2ljfZsbCVU5fQnDmW6fpgrfPNl+3dCT03Jo6zayG4JfsUsHn4CoKM7pfPB2CX2FU/KbYFNW2tyjZ0aJAbb0iySYVpWtVXBTUmLJSlZSWKRoJqjjEYgHqvkcnNAr2nGOdgTJPKzsIPcR+2xKpbqUzXrnZsbRPO8Sx4KPWQ5i9RK7QPMoIGjdI9Wsc0m9s+FmheT1s+BYWFhYW/sBHPvIRXXvttXkRecCkjwn8AQccYMiNl8DGzESSxPh99tlHfgALHJAblEASyf0G5lTYjJ9//nnzOdL2jDKAkUzi+wIIerYNHks2YF8M1xrgwSLz8I6nn37a8A3KNfxCknvCbQnpVVu/XGBhgWuEHxxfiUTC5BvQmjJfkFT/ta99TcMZvrLWY5PjYIXg51rlybYNufbBGTNmFNQ+SL37MytrFI2EtHFHu9bVtWhdXZvW17VqXV2rPnHUbL3rLZPMc1/dUK9v/ec18zWn/+QxxZoxtlQzqks1s7rE2PMnVvYv6T2dTinR0aKOlmbFWxvU0dqoVNx575FoVEXREhUXhVURDaos4nGRjw4AAKUhSURBVBD7aCigYi8JPkDpXv+8Y8GH3Hc0dv/5uL0yfesPkybu671a3xOJDseCjxXfLRvAfo8NvygTmkd7QQsLCwufYrRY6wEWY0K4SKLPhwQz9XnooYdM+ZQfguaY/0BKETP8UpeOhfvRRx81afH5JkEPFVCen3vuOTOZ55gnRXu0kvhcgMjfc889wzrMazBs9izkkT2AA4bj268OBfKaSFU/7rjjfJNTwDH1wAMPmNp4Fvv8oMYvXbrU7KN8FmPISWEBkH08nK8X/rhbZMCkA/S26oQV/7LLLhvUbWhuT2hVTYvGlERUFg3r4D3G6oi54xQJBhUOBkwv+WQ6rRAHSyCg/aZWGoLf1J7Q5oZ2M1DpwUXH7qmT959svmYh4KE3t2ZIfqkh/PSp7w2BQFCR4gozNG5Kps67Ren2BiWa6xTraFBrS0r1wYgSwagCoSKFUeozan1lNKjSSBe5d78/6KDn+14nOIPQue1LHEJPSN72pVLtcme88lcnD2D6IQ6x94NaD+gmwCDxnjWueC4bfrUz2P5dpOFbWFhYWAy+mv3e977XKCuXX355n3+PCR+TeTfp2GugbqEMkhZPzaYfwPaw0MEiCe3+/EgEcVPQw/qRRx4xizqUWgznSbnF4CvzbucDt6TXryQewsy5Rz97v5B4N6meBWI/kPiB2Oq5Z5xxxhnD/nrhG0Weup7TTjvNXIip58mFoVDk19a26F/Pb9C4iiLRZy6RctrN8b9gKGDIPKQemzwW/OJIWKGg1BZPaWtjmyHyG3a0G+J+/ttmae9JFeZ1H3hji656ZEW3vzWxImqIPaT+hH0nGYLfJ6STTqs1Bu3t4s1SIqZ4KqBYsNgZKRYczGYrQiv7DKEvjwRUXhR0FPxwwNj0WU8YEksRtfSG1D8nbXg+h1q/Zxep90NtfU+4Nnz2ezLRPQ2/04Zf5hB+CwsLC48wmhR58O9//1tf+cpXjN0zn3sZ6txjjz1mApL8UJuOPfTVV1/V8ccf77nd3wVTRNd+7EeLvVsTz2S+tLTUfP4ohX5cdPACVpHvDrcmHvLe3NysPfbYwxfdK3KB8DY4D8ezX7YPB8yDDz5oShEIw/QaHR0dJriUOvd8SrLhnHz21113nTk3hjN8w5SolaetRm8kHhDQMVShK+XRsMI9VumSqZQSqbQZLR0pNbQllEq3G1t9QA7Jn1FdpjkTyg3Jj4aD2t7crkgoqPHlUZ2y/2RTc4+CX98aN8F6jBfX7tAhe4ztJPLPrKrVfa9tNgR/5rhSzczY9XEIGARCmbT1SqlistNDvaNFkfZ6RdobVBavd1YeIkVSuFTxQFjxVFptibQaO3gPSfMyOPBNrX0woIpoQBUuwc+o99FCE3xU7r1PckY3tf7ZjFq/whmv/M1Rvk0S/mH+ScJnYcHtSZ+dhl+3ynk/pOGj0rOt5vPJtBa0sLCwsBg0MBG78MILzQQ9n1ahqHMo+qSf02bLa5DAT006pJRJph/AHIBJOxZ7nAt+sthnB9tRH4tqic2ehQcss35YnLHwDyB9XCM4TnBx0Novnz7zQ4ktW7aYMpF87eKDDTqEwMP8ch1Yt26dcXHnm6tGlwKOhxNOOEHDHb4g8p///Of13//+1+xY7BFegtOFhfC65g6FQyGTGA8RZ4SCDCnXUkIqDcFPKZFMqyOeUmtH0hB/1+6AJf+IOeMM2ScUL5lOqbY5pq0ZO/7kqqh5Pn9j2ZYmvbSu3oxsjCsrMoT+U0fPMY8gmZJC4RKJUTZeSsaleIvU0Sy11kqxZkWSMUVCEZWaeu/iTsWYBYkYSfrJtDY3p7Q+i+CbYL4gFv2Mgu9a9AtF8LGjo7ozDrlAaquXNmTUere2fs0TzgBjZzmEfvph0pT5Tiid19gpDb/d2ffb3nR+TqBecaXzuZje9eW2vt7CwsKiwGBiefbZZxurZD5EHkCYly9frjlz5ng+Yebvk5xNv2haZXm9PS5Qukmx95PFvrd0euqdqSmGzKNk0lbNwqKtrc2QeBbvCElEkc+nz/xQuwYWLVrkO0s9KjbXSq4FfthPXAPWrl1rPrd88de//lUf/OAHfXEtG9bWev70F77wBWOLw96Wb+uHQtsHG9riuuzO19WRSGn62BJVFodVGg2bevh4MqVkytlVkG2X4EPMw7D73bxP6uoTSdRwrCmOsg/5Z+UgGAh0vg6vi1q/YUebtjY6JB8Vv64l1vl6N37skM4QvZufXav7Xt/i1N5nlHu3Dn9McSgT3NbsEGXaxkE2AaQ+XMwqwE7by/vsSJKmL/OYgN8HHILP9kHqy4u6FHynBt9R93kvAwYLCm4SvlHrl3TvW892T13gkHrI/RhvF39ygu3Fhs/+J0AvEOyqr8eZgFpPeF6O/W9hYWExEIw2az1ACDjzzDONPT0fJRarKNZM6mb9UPPJZJkQPibLXgsbfrXY767FHPuQRQcCBCH2w7m11EBhrfUyoXY4NbCC0/O8Z0387vrMe2Gph8xzTfJ6W3qq3ywyYmP3w3bR+/3FF180pVH55BzQzo+AVPe6P9wR9tpOf/PNN+uOO+4wK2NYSQATEC9WodbUtOj2lzfu9P2K4rCpZ59QHlV1eVRjSkiLD6uiOKKSoqBSKUfkDgZyE3wO+LAh67kPNIgzaj6P7bGUY9Ef6/SwR9InxA7iD5nf0RJTRzKpbVj2g0ETzLejNa4drQ1avMEJC3RBYN+vzlmg8eWTpfLJ2rajQZFUu6oCrQoQ4NbW4NTboxJjCw+h1jvugdIgrH3n7YxRnp9Ka1tLShubksbBYJ5qau0DJkG/ooj8AEfFpxqgOF+Cj1o/8S3OOPg8qb3B6VvvqvVtddK6hc4wH9BUacahDrGf+lZ/tIuDuFMvz8iur2/aJO1Y6xB4flYyzlH0TX19ue1fb2FhYdEPYK2GZDI5O/XUU/v8e9Sik7VDyJwfiDwT0r333ltLliwxVna/BHH5xWLflz7x7DO2lcwECBoLD35aFLEYWvJJOjkEvTfXjZ+Ueb9a6lnwJBl+3rx5vtku1PiZM2fmfY28++67NWHCBLPINxLgqSLf28Hwxz/+Ueeff/6Qqw4E1N20cK0Wra83qviWxnaj0u8KkO4JFVFTAz+2NKLKkogqi3l0yD594yGxDrl3iP7uFPxdqfnOY1cAXzyVMtuKTb+2pUM12PUb280j23bTxw9TNEyJQFA/f2CpHlu23WwXiwQzxkQ0szKgmcUdmlHSrupw3PlMUOsh9n1MY4fgx1OOeh/PKPlsmxGhg46CX2oU/IBKwqj46rTqs2iQFzhc6VFPizus+FtedUhydh37pP27iP24uc6G+A2mBCLT5i6VWUyB2JeOd4g9pN7HwXkoHkymduzYYdQOko39MuG0sBjtGI2KPPjmN79pyNstt9yS1++5oXe0fhuqHJ7dXV9JYSe9ftasWfITWPBAlfPCYt8XEt9b+67Zs2f7Qm0daoxWRZ5jhf7rkD3q4fuy8OS1Mo8Kz3mPG4dt8BO4rrIvOe/9cA5RKoFz6bjjjsu7Pp6kehb3Lr30Uo0E+Ca13i+TFfrIv7BmhyHnEPDWWMIQ4y2ZWvYtma95JKjOtdv3hqqSiMaVFxl1vKq0yNj1xxQXqaoURT+siKnDz5/g91TzTQgfNvhUylj244mUGtsSmjwmal4XUv+3Z9fp9U2NnXX72YBP3/rRvRWJN5l2ay9tbFNaac2oimhCRakCBOflCbbDKPhZBB+DPJcA1HtGaUSmBr/UKPiOPR+Cz/b2CRDhTS87KfgQ+8ZN3X+OjX3aIdJ0iP0hjrXdj3D716PaY/Fwg/Mg9sVucF6pL4g99srf/va3JpSJsBAmvtz0yLrItz7VwsKi8BitRJ76TepKUeHyTVTmuoYij+LkB1AigJJIgr1f+soDpoxuYBiqt59JfDZBe/bZZ43yetBBB40qQjsaiTzvmcUbwuywTud7rHhF5rGJs+1+s9SzTZBmzncs6X4AjiW6nB1xxBF5/R7XDxb1uFf4JVB0oLBEfjdEfnckentzh0PsDbl32s+5RL8VFrsLkGpfXQapLzKEHyUfVR/iP64squKIG7IX6NdJDZE2RD9Tk89ojydU2xJTTVOHalpiRsmvae4wdf/ffe9bHPU+kNQP7n5Ty2ucevqSkDS9PK0ZFQHNrIpo5thiHTqt/6qFWWjIEHxs+obgO3EBRsGH4JdEZGrwSyJuDb4TtMfPdomGDQ6pR7Hf9FJXJkB2iztD6g+VJu/vj9C8nuCUTHY4ixQQe+AS+7KJmeR8bxLxmex+9atfNTVnJCwzmWNlFDsYyvzPfvYzS+YtLDzGaCXyAOLL+MY3vpHX72FnhTiTYuwHdxFTM+r+uc5itfcTIEhY7FE6h6IF1UBIfLbaCbmjPhailK+KN1wx2og8LeVYtOHzJdSuP+/ZCzLPHIraeBRvPwXcuaSZvAnKl/ywwIBj6YEHHuhXC7zvf//75vjAXj9SYIn8AIj8rsBubWpPdCr4mxvbMwn1beZ7EOhd7Xj+8phSiL1D8hmQ/nHlUU2ujKq8OGJU64GcVKadnlHx04olkkYtT2UY9d2LN3eG7PU0HUwoTuvqY5MKRkoUiZbqlqVxs70zxoQ0szKsyeXO4kN/9hkWfSdJ33lMpiWmVLxX+t1D6iuiKPgOuXdJPj/baV9gX9/6Wkatf8EJ0MsGoXlTCM3LKPZVM32heO8Ek4hPcB4jK6wQQk8Pe7e+HrI/yBfPj3zkI+Zmg+Uze3/z2WG9Qu246aabfDERtrAYrRjNRP7WW2/V1772Na1YsSKv6xDXMFQnyoSoAfcDmDwT0sXigt9aqWGzxbr8jne8w6Ta+5nEZ9/D2GYcG321Ww93jCYiTxkFqjZK60CT1YeSzLe0tJhFO9xE5HX4Cbgu6RtPO0c/ZIgA2nOyuJBv6F4ikTBq/NVXX51Xjorf4R+/ls+Akh3cnfq7C3BwmXr5koj2npTpO56FWCKlrU0uuW/fifDHkk7tOyMX6FNfVYpd3yH71OhPKC8yafa0qUNh3x2y2+l19qjP4KNHzDIt8milRwkBboOtjR2qbWpXeSSlpR1hFTc3qii1Rf95s1jNia59FQ5KU8tDhtjvOz6i0+aV9HmfQch7qu7cyMkHgNi3xtOqb08Ygu/+raIcSfqOgh9WdMoCBQjAO+xTUtuOTGgexP55JzRv/UJnAEgxhJ7+9dMPloqr5AuY3IJSZ3Qm4rc7IYDN27q3uisdN2jEnskUdnoUop4XT/6N5YpJEs874IAD5AVs7b6FxejG6aefbsp8mHySZtxXcA2jHn3VqlW+IfIEMnEdwwbKtcxPgCxhbWWhAaVuMOz/hSTxgHsBZInFLbYb0sR+9VPpgkX/Fivc42T+/PkFIcNDFYDHtqMQE8boNxIPyMMYP368b0g81wSu0RDyfD+Pe++91zyecsopGkmwV68eCAYDhtTWtcZMm7iu9nBOnbnbU56a9oGc1ITgzaBd3NjSnNZz0umz6/E7HxvbDblviyfV1pA0iwA9Qbu8MRmSj0V/fHmRSdyfVBk1ij72+d0BRT2kkIpCIZPOP3dC+U4BfPFEUm0dLXrbrO3a3tCqba1JbWsLKJ4KaF1j0oztLQkdPAlS7aj0V/yvWZXRoGaOCWtmZUgzq8KaVhEyynpvYD9HQk4yfk8znKm9z7TLa2pOaT3BceqtVV6liqcfp+gex5l6/GD9GicFH1K/ZbHUsl1aeo8z+ODH7+Wo9dTY52HDx9WwctVKNTU2qaKyQnPnzDXHVWET8Uu70vndVncsTDRtcYh/2O1hP85pc4cVPzywECfIMauzvdm++D4r4jzPC9jafQsLC1THj3/847rmmmvyIvIuOSWZmdKh6mp/5KmgLD711FMmcdtvllsWbLnuvvzyy0bhLiTRKTSJzwYqK8SE7aZEAIsuZMVi+IEWZLQaxEqPLb2Q7pDBJvMc4zgci4uLfbdQ5zoFCLfEdeMX1NbWGrdEf8IAr7nmGn3iE58YcQt31lqfA+3xpOklj2pO//iOeFItsYRaOpLm385wdht7L5vg0yrOrWsfLLTFkp2kfoux6lOn32bI/tY+BPCVRUOqLi3qIvmVTuo+/yaMr78XqoCp627RjoYGbalr0NamuCpCCR04Ia1EMKrmdJF+sHDn3AD+2vjSgI6YVqRz9y/tDOdDgadGvj/obJVnbPqOZZ9aBhwIplVesEeSvjpUWvOqira8pODGF5xk/GyEotKU+V2heWNn57ThL1q8WLf88xatXr1asXhMRZEis3J49jln68D58zUkYDHDteInYs4ODpd1J/Yk4uep2L/66qv62Mc+pqqqqpyTKmrTUGj+8pe/DLkib2v3LSy6MJqt9QDr9F577WXUpHwDjSCPXMv81F8YuzBuo0MPPVR+A4um2IKZWBcqKHAwSXzPv8O9GicZ28+iyUib5I9Ua72rwmOzhgTjphks+/tg2ewRHTjGjznmGN+VzgCcAmzXUIZa7g4EbXJv41ztTxDqmjVrzBxxJMES+XxruA0xdEi+OyD5bfGE6QHvknwUaxBUoDORPrvH/GBdcCCwtc0dxqLvhvC5dfl83bKbAD62jVp8iD0k3xB8Q/KLzPfZ/j4hlVQg0aZQokXB9nrzmIh1aHlDQBvbi7SpNaTNrdLWlrRaM93jDpsc1Pv2DCsUQtWXvv1kh6qKA5paHtT0ypAZM8eENGtMRGNLQv0qZ3db5blJ+u1xacvWzWpvbVNFeYn2mDZVZUUBVaXrNabmZZVufVFFW15UELU7GyXVXRZ8HssmGBL/q1/+yhyXrO6jCDPJqamtUWVFpS6+5OKhI/PZzoCGBo0pi2j2tMkKpuLdiT0p/n204rs18qgYc+fO9U2N/HCq3bfWf4uhwGgn8uD973+/IfM//vGP+9XWCBXKL/uOgLaHH37YEHk/1nVznD355JPmOjvQsoShIvE9lUfua3z2I02dH4lEPluF5/MazIyGwSLzHN+8B0g8yr9f8waoQ/dDS06AUIQ7icyQfLfpkksuMe/p5ptv1kiDJfIFhFGBM+S+I5k0j6j7KPkk2NMaDqJPwJy703va9XkcSMje7tDsBvA1tmtTfZsZ2PO3NbWbNPtdHQ1sFTX/kHqH4Hep+jyi9Pd2cUOtD8ZbFIw1KdTRYEh+IJ1UKhhRYyqqzW0RlRYFNbUsqEQ6pfUNSf38hViv23LU9JA+tG+xsc7D6FfUp0zQ3oQyp51fX9Ybli1frgcfeEibNm1ULBFXOFKsSVNn6O3vOFYz9pjdGfKHKaCqbY0m7HhZY2tfVmnNYgVxH2QhXbWHnlkX0+MrmrWjdJZi6a5VfU4xVo332WcfXf79ywtrs+8Fu3QG7L9fD8UeK74bnjfeIfW9pOK7yjdElJp4PyjffnYKZMNa/y1G673RC9AXHjLPtTdfS/qiRYtMMBKp134BC5KoSdiH/bj4R7s8FlOPPvpoc+wNFxLfs/aW6/NIUudHEpHnveCeWL9+/aCr8INJ5l1CSjmKX9q5ZSOZTJqSEwQb5o1+wfPPP2/mTeQg5IPm5mZNmzbN1MiPxLmWJfJDBHZzNyU/83VLR8Ko5Fj5E8bKn1YKmk9aOyS/B9HvT6/5voI2dQTbQe5JrOcRws/3tjd1mG3cFaiDd8l9T7JPW73ObTdqfatCidZOtT5AH3X2U7hYqXCx0sGwCbbb0pLSluaUedzc7Py7rj2t984J6+jpIbN4wvd+87Ij6xeHpImlAZOcj4I/ozKkPcdGNK7UKXtwsw6Wr1iuv//t72puaTEEsKgoolgsrvqGepWXlulD535Ie++1V7egPdeqn0rGNLb+TY3f8bLG7XhFFQ3LFTCZ/w6ouljTVq7lLeVa1lKhtW2lam7tMDeBy75/mfbac08NJvJ2Brg19vSxh9h3puLTx55U/PKMYl9iSH8uQsqk56KLLvLkIomt8zOf+Yy5qYdCoZw3JSbA1157rVn99gLW+m8xlBhO98bBAtduJnxf/vKXdcEFF+St0D7yyCM67rjjfNOmDDfP448/bkKxcBr4EeQLkGaPmyFfxcxLEt9z0o9SSos9SgUgbX5ouTWaiTzHPuUyHF8cFwsWLPDsvBwomcddw3lM5oWfz2PacXIe++XY57xkcQGHQL4OjGuvvVY33HCDaT/pl/dTSAz/5cZhAg4eQuZ6C5pDqXdr8o2in6XmUxPflkiosSNtAvjSBPDJIaWuil+IAD6I9tSqEjMOyXGT3dEa08YdDsnfnLHsQ/LpQ9/QljDbvKkepX/nAD42ixZ6Ti2+00bPeZyh8RVSubDhtyrUvsOo9oFUQhXBsMrLSzRnTJEU6LoBdSRY7JBKMgF5NR1JTSxNqqYtrfaktK4prXVNST232SkjOGGPDh07I2RyC1riAT2/Oal1r69WS6ha06ZOUFAJE3YQLQ5rUjSqrdu26sEHH9Kec/dyFlN2CtorkcYcpPoZb9U2iH17k5pfvV+tr92jw8Y2akqkWXNLnXHyhC1qT4W0vLVSz2+RWjYuUWL2bIVzEM5C2elR4pnIT58xvfN4KCkt0fSS6UaduuWWW3TA/gd0OQNMeF6ZM7JT8TuapObtGcU+KkXKpNLxetsBc3XEH67V68vWaEd9vecWcf4+k0aIca7JH9/n5zzPq0kICx+Q+GzrP9vKijdK2+9+9zsdccQRvlTaLCyGIzjPvvjFL+oXv/iFzjvvvLzOLUgCC260sDvwwAPlB7D9OIoWLlxoyLzfgu8A/e6596CcsTDZ133uFxIP+NtsA9vCYjXXZwgbyulIJAF+BscFhJLPga+pcaZ0w8vPYSABeIgKdEtAYGEu4EewgEU9Oeevn453tglVPV8Sn0wm9ctf/lLf/OY3ffV+CgmryA8DQM6Mgp+l6O8ugA/Smm3XH8wAPlL2cRZA8CH6tKnbBMlvdOz69KKnV/2uUBwJZpT8iMaXBjWhOKUJkQ5NirRpXKjDWOXT4WhGrc+9qkx6/faWtDaj4rektNWo+WmduldEB4wPm9yCV7bG9YdXs1r6pVMqTraqJNmskmSTxrVvUlHrNnW0NelDHzxbM6ZNMwo+an4o4C6W7Py3161fr+uuvU6lpWWaVp7SW0p3aN+SWu1XUqMxoe42/HhkjJonHKjYpIOUmnqQwlVTVUzgXpj2ewP7jJavWKHvffd75mYDee+Jtta2/J0BufrYG2Jf6rS7Kx7TtRAQHJwFiuFYuz/crP8WIwej5d7YF/ULa+j111+fd99gt+77+OOPN6nSfoGfg+8AJQnYhlk47csiiJ9IfE+wn3FzEZoIgcB5Ntzq54erIr99+3Zjo2chHmcEoZV+WujOV5nnOGeOwu/RrjGXe9AP8GPAnZtbcuyxx+adJ3Drrbea+njmgX4MFCwErCLfE1i8/3Guk06+x5FO6zG3zZdHQDktDoZUjDScA9lWfVfRb4Xkx5wAPr7ODuDjctOzLn8gAXzU9NOibp/JjMqdywniKW1vhty3a+OOVhPEV9vUYUj+jta4mjsSao+nnIWA+raer65goERji4MaD7mPtmtCtFnjSgMaXxpRdUVUpRGnNp8yhKkVjNwXe9ryVZeEtF9lk1ZubVIsWmVq9NvD5Wbs0GSVJhpUEo0q0R7Tcxvj+tPKRk0oDWhSWUCTy0KaUhZQdWnYtMsz6fqZfTdx8lRNmTpNa9euUTQ6UU81TjUjoLSmRZo0M7lWR05JaN+yBkXiDRq76QmJ8bLUVjxRO6oXaNP4BWqbuEDRivEqN+3ynPZ5zqOjMO0OtLyjJr43WyPfr62rNc/rfx/7tERGAMSedH8UfFrz8XNCAEtcYl8uhQZ/4sDNnTpzrOtcrHPV7mP792oS4Pe2fRYWIxUQcKz1P/rRj/Te9743r3scCyGQNq4pfmoNxbYQfEfglx+D76grP+yww0zJE4tIu6qx9TOJB9wzsEBD1jgOIDm0rYO49TcHwGLXYFEbBR4HG9Zz9r8fswryVebJX+Ccxa7uVxLPfIn2btjX/QTOvUmTJuVN4tPptLn2MzccqSQe+O/s8BqbXpZWPOgMEAxLUxY4pH7m26SZRzhJ3z4CPekZivYtgK8j7iTtE8AH0ebrzgC+ArbTyy4nqCiJaE6mF71Td542Vvx4IqWmjrg2ZCz71OKTul/XEld9W0z1rXHz3Nq2lGrbpKWCjGWfkB0qCaU1vkQaXxLU+LKwxpVA8oMaXxJQdXGg27bPrgrprNkJ3fbiPYqispRUqi1UobZwhVpDFaqI1ynV3qZwOqHWQKmW16fNyOxN8/+ySIcmlAR08uygZlRQ5ABdl/Y57J3a0vKgtjQ1q6KsxLzveEdML2xP6M3Suap+zzkK7DlLJTuWqnz7y2aU1C1RSfs2lWx6QGJQn1k2QzVjF2jj2APVUD1fgeJKo9SXRZx2eY56r06Sz+flgr71BNsZ4phDkef7/Jzn9RvGal/sjJKxXQtgqPYNa6UdKUeZh9ij1vMck4xfNuBe9r0BGxh15m7tPsSYRQuUeK9q94eL9d/CYiSD/IwrrrjCEMt8+yFDJLCy8+iXiSCLEyjD1HETfOdHlRX1GscAraLYb1hihxuJzwZEElWYHBbUeY4lLN6UEvgxcXy4uojYt5BJFn8ImvTLOTdQMk84H/MS5iF+LIlxnRuEfLJQ6JeUenfOiiuG/ZwvHnzwQZPZQe/4kQxrre+Jpq3Sm3dK656R1j4jNW3q/vPjL5OOutj5ur1Ram+QqmZoOCJXAF88kc5Y9p2adzdlHzXfWPYDg9tOz3UUONuSUlssoc0NHdra1G5q8WubUfFjqm+Lq6E1pqaOXbfTY6sg80bBh+iXBAzRX/T0o2ravErjxpR16xJgsgAIJJs6VUedcqZW1js2/S1ZQXsuvn5EsWZWhowg/ei6mO5aGVdVOK50U43UUqNIR71Kki2aVBnWYW9doJnTpyuSWXQhGJB9WJTs0JiG11VV94oqa15RccPKzLJAZnsUUGvlXO0Yd6Bqqw5UTeX+SoRLzPuC3ONCKIlIFUVBlUT4t/SzH1+hFUvf0AzazfV4b0OWnp9KZKz4mWR81PBwaSZAb1wmQI9e9qXOwsAIbu/md+u/xciDtdZ3x3e+8x1Tt33ffffl/buQUfahn1R5rhsEaEJ+/VLDnwssqLLfIWXZvZuHE4nvrY6YQDDupyj0XNdxR/ixBtfP1nqOA44R7oEo8DNmzDALJn4lu/2x2XOMc+/HpeJHB40LtpFSJLJ6/HQcL1682Igdhx9+eN6/+853vtO4C7797W9rJMMS+V2BXVO/Vlq3UFr7tEPuT79ampGpTVt8i3T7J6XK6RnF/khpj7dJ4+c5xGWYgxT7TqKfecxup2fq8lMO0TfcMzB47fTcbaFEoCPhpPy3diTU2JbQ9gzJr29pU0NLuxpaO1TfllRdBz3jd/23g8mYoskWlaRaFYk1SS21Kgt06Pi3vVX7zXHq47NB0N7WVsh9Wgsmhjpr2v/5ZoeeWJ/I/TcC0pcPiWpyWcC0tNvSTHhhyrgIUNdxDBBcSA5AWbpFk5re0Pj6xarY/qIqO7Z0e610IKTWsfPUPP5A1VcfqPoxb1G7ok6afuZMXr92je769+1qa2k0oYKlYQTzVtXXbtOY0hJd8qWL9NYDh66fvUEqKSXaM8S+o0eA3riMYl/q2PE9qLMfbPixbZ/FyIUl8jvX26Kmur3O+9MqigmhnwgGyfqkOPudIBBWRl0/Cj322OFO4rMB8UHxo80rqj1KMmTUT0qyH4l8LBYzKjX7jTAyzk2Gn5TgQpD5nse+X8FiConudOnw2zWO7iE4qfK9jy1cuFAnnniiOT9HutvREvmB4MmfS4/8UEr3UIWxEs84QjrxB9J4fyZTDhQcNh1Zynl/2um5tv2BoLN0IBP454YAtnfEFG9vUWNzi+obm1Tf2qGG9qQaYgHVxkKqaw+oofc29QZQ9KriQEbFD2p8RtU31v2SoCoI088sUrAdpOZ3tctLdwbuYRq48p2lKqUhvaR/LenQY+sc0l8VDZh2eQxq8ccVBxRu3qTXFi9SXe0OjVGT3lpRq8OqedyhMYnabtuYCobVUvUWtYw/UK0TF6h17D6KKaI3l6/QQ488qc3btpv9Eg5FNHnSBB17zNu1z55zVVoUUHlRQCW4A0LqrMdn8WVIYAL0XGLfnlVnz+rGWKmkqitAb5Ds+EMNv7Xtsxi58Pze6EN86UtfMhNrunbkCya51LX6KQAKQIRIc/arxT6XKkmd8Egg8T1dV7wnLMAs/GC7J5wNtd5rddMvRJ45Y01NjSFWnIeEv7Lwwb4aKU60bDLPZ48bhYVD3qNfwfEBWcapyTHrJ7AIwvmT7+IrOP30042746c//alGOiyRHyg6mqUNzzuq/bqnpQ0vOP24wVeWShWTu9T7mmWOaj/jMEeBHMFwk/Q76/N7tNNDye9U8zOk2fR470zZ71LzU+mUVq1cpcamRtMHfc7cOQrSMm03Sfru3zbb0d6q9tZGtbc2K9XeoGSs3ZD+ulhIG3Z0qKZdag9E1R4oNvb5mta0Yl2t4XOiKChD7g3Jz0H2Ues5vRo60qoq7trefy+L6dlNCTXFcp96+627VYmWelWUV6ihYpZaAiVSc40qgh163+GzdWBpjSY3vqpJTa+rNF7X7XeTwSI1jtlHjePmq7F6vla1V6qtI6YK2ilNnW6q/FHvWWCJJTuNFMZ5UJQh9NThl0W6h+3xs0I4K3aJZKzLjo81PxCSwhD7CidEb5Ds+EMJP1r/LUYefHFv9BnoQ01NM1ZNHodKGRoKiz3t8uit7ff9T10/yvUxxxwzYkh8rnMPsorizGItJA4XFsTVC1LvJZE3pYo7dhjFl4UOtgXHAoRxpGYLQOZx/tC9AQJKq0g/46WXXjLCgt8s9dy7yKLoT9/41157zbggCBjMLukZqbBEvtBIxqXNi6Uti6RDLuz6/k1nSisfdr6GoEw+wLHhE54HuS/3rzVuqNrptTJ6qPlvLHlT99x9jzZsWKdER7upMd9jxgydfdaZOqgfExeTCxCPK9HRrGRbs5KtO9Te0qi29nbFU1JHIKJEIKpUIKy2ZECNHSk1dEg7OtLa0Z5SXZujvNe3Z8IBd4ExUace31Xw3UfIPj9rT6irTR4KfnNSa7bs0NTl/9K46mpzUX1zzBHaEe26EAXSKU0qD2lSWVCTSwM6c8p2TWx4VeMaXtOExtdUEq/vtg2JYJFqy/dR7Zj9VF89X21j5ykciSpEzkHAyTpAhE9nCD6LF+z3RGYRg5+xqJIdthcdKhUfMt+p2scc8u6m43fa8TOq/RCk41tYDBf48t7oA1xwwQVm4ezGG2/M+3cJgsJK3Z9azdFusXft9BBcvvbzthYKWMYpnUJ9hsji6IDQMyZMmDBkyeVDTeQhsJSy8J55/yxe81lDqHjvfk1sL3QuBPM3HAf59JkfavD5oHr7zVLvZpOw2Neflrwf+chHzO9ee+21Gg2wRH6osOifDpEnQK9hXfefURf89bVSKNNEoLXOsef79OQfbLhK/lPPLNR3L/2+djQ2acKkqYqUVhhVv66+UWUVlTr/wo8bO5Cr5vcM4eurghxIxhSINSnZ1qRUa42S7c2mhgsi35wudmrQFTJ96kmod141rea41Jgh+CTqO8n6aW1vSxmSviuEA1J1RsV3CH5AkVijXnryIVUE48b6DraUzFZjZJyTrB8qN1Z6F8Uh6WfHlXbeJG5+vV3FLRt0VPhNvTX1hvbqeF1lyYZufzcRiKimfJ62Vuyr7RX7a0flXgqEomafGYIeCZlAQ0P0QwEF0jgiAkrIUfHjWSq+UyZBnX9AFdGgSiH2g6niZ7e9i2fs+EFXta90uklQc29U+5JRe/5YWAyre+MQYsmSJUa5JqgsXxspJJ5expTBVFdX+85iT+I3Fns/1WeDnjXxKLQsihxyyCGG2I0GQGZp6wVxYqCAQuZ5/9RO04lgOBN5zg3eFySW0glIofvesJiPFteZWxNPCQ7X3Xz6zA81OAZZAGTb/GappwSDVo/HH3983rkJK1as0P7772+uOYRQjgZYIu8FGjZkrPiZZPyKSdJH/93186sOkTqautR6gvQm7T8iQ8B2l/SN7WfPPffsvAhysKYU1Ko163TAgrfql7++yhDMXGo+1fkEwIUg+X2tzU+nFUi0KRRvUrCjQeG2WqVireZm2K6w2gMlalNULYmgIeuQe5R8F3QBhKTzvYaOlHa0SzUZgl/TmjJqPtZ9N5iuN4RTTghfcbI189iiSKJFbU31OuTIoxSsmGgU9JPmdE3avv+/Vm1tyX7htPYMbNTbw2/q2MibelvoTUXj3Yl9MhBRXfne2la5n7aWv0XbSvdSMuRcOIMuoVdAYUPSQyZx3wTzBSRyBNMZos9+SKQdgp+t4pdmt8wbgIqPi2PlqpVqamwyrfPmzpnrpO5np+PjhgERWuOh2lc7BB8F36r2FqMIw/beOAT46Ec/alTBP/3pT3n/LvkWEDIIqZ8m5kzjnnvuOfM1ardftq23YLtNmzaZe7vf64cHa59gv3ZJPTX12Mw5X7HfMzhnC9U7vdBEHsWd6wqDbWc0NzebUjGXvPN+/HIMDnUORHaHhl2l2Xt9DBIGxzHGgppftsvdNkoTOI6occ8XH/rQh0yp0e9//3uNFlgi7wckE11qPO3srtzTqRfORlGFU1u/72nSwedrpOPVV1/Vxz72MXNTy1VLx42DG8hf/vKXbtab7Lp8E37Xh9r8UI+kfSdBPnNhSyUVTLQoFGtWqL1OoY56BeKtpkVcPBgxxL4jUKxYKmAS7VsTabXFMwQ/KdO2j4ukIbek06NSZ9R86vBdFR+yv7kxpi2NMSVRmHeJtKqiGSW/tEvR5+9B7htjaW1rdcL2trc6iwbTK4L65hHFKm9dr+qG17V15SIdmHpDEwI9iX1YdWV7qWHsfqqp3M+o9+QG8BrJZMoJLszATdtnVxWFQ4aksw95v4bg83ppp5leTxWf55ZHCNxzavEh/S7R76niL1q8WLf88xajOsXiMRVFioxl7exzztaB8+fvJkQv3V21x+mCA4aE/GFca29hMSrujYMAriOETGJ/RbnJlxShykNA/ZZCjYvsscceMyqUH5So3aXTQ2IJEcQh4fc64sEEajat17KJMZ8lZJj5j0vweewPuR8IkXdJu7tdfA05RSXN3jYcKsM5cb4Q+Q9kb+RKp/cjmScgk2DGY4891nchmbgacOygxud7vL/00ks66qijjDtpNF1TLJH3IyAhG19yFHvG+uekjkbnZwd9TDrtKudrFMhHfiDNONxR71EgRwgIufjMZz5jWpLkqqmi/owLETUwBOf0pzbfTblHyc9O2k+k0oaAZyftu5b9IiVUlGxRKNFi1PpQrFEBCCP6f7hEqUipCZwzpJqa+4wdvTWeUkuG4CfoxAYzDjg2fYit+RuBtP5z+23avGWbSsZPV0e4TB2hUrWHytQeLFWripWIVhqyvSvgCiD9Htt+dabFXVlE2mdcyNTol4Slbz3epsZYSnMCm3V48M3MWKIpge7hebgfNkXnaEPZvmqq2k/xCfsqHa00+4Z9lEyllEw5qf0MJzmAEoSg0zo+01YPom/C/1gCyRB9x13BYkBmoYP9GwyYsgLq8UsiAa1Y+qZ+f83Vam7YoQnjqlQcjRpLWE1tjQk+vPiSi7uR+ZzKfTqr1p5zprPWvsQJ0ctW7UdIQr7F6MaIvTcWMMEeQn/nnXfm/bv0vObeg43db5Zh3ALUlkKcvWy51NcWc9iwcRKgvGU770Yz2HeQ+2zyzCP3PUgXNnwGxNn9Ovt7lFawHzk2eYSM33vvvTr55JMNMcLtaLKCYjHzmvyt7JH9PRYBXNKeTdz5W/azcj4rSCPEmOwMyiVywU9knkUjAjK9vkbkAvN67P4sRCLW5IuTTjpJBx544KhIqs+GJfLDAfTg3vq6Y8eftJ806+3O9ze+KN1wXNfzJuyTseNnQvSqZg5bxbG/ivxAe9W3xxNa/NobqqmrV2nFGM2cPVdt8ZQh+yaJH+JqbPsOilLtKk62qTjZrGisVtFUm0KpmNLBYCexV9BZ8eRUw3LvkHwnNb4tnlZLPO0Q/pS0bsMms4gRa29XeWmJUbhT8Xa1NjWopKRYJ510ssZOntFl189+bE2bUL7d2fYh8hD9McWOzZ0jhHC7lnhKZe1bdXzJEp1RuUzjGl5XafvWnX5/uWZoWeQtWl+6rzrG76c9p+0cWsRVBVJtiD4ieSpt/u3uuSBUPwSBd2rxIfN0IoDkQ+55Dyjzt/zj79q8YZ0mjBurkJKm5CCSjiuQimvrxnWat9cc/eB73zWW/z4r95219hlyz/nlqvbRTF97Nx2f4bplLCyGCUbNvbGfgEAyWYTgoODkA4gQyjfp23vttZf8BogFoXJeqW359onnPk497Pjx4406P9LD0PoDl3i3tbXlJN/ZJLyvU3rIZG8LAu73qXUfzUr7rsACCVZ6Mh8g8VxvdwU/kHnXtTNnzhyzcOY3kF2CIk93kHz3zyOPPKIzzzzTJNX7LcNksGGJ/HDGtiXSwqsdgl+zdOefn3SFdORFztdGiQwOmzp7t0aeCyUTruyTmkMWVQR740033VQwVSRXn28uuJ///Od15JFHGsW+07qfeTRqfkfC+VkioXRHiwLxZoU7GhSN7VBRqk2RQFLBcJECkTIFsXTnchikIPOONX7pytV67ImntbmmQTEIbziqseMnaP6BC0w9YbZNP2JU70C319lB+7w2x7bvPtZmHpt6VGzkQmWROi37s8O1qtzxhvZNvKkD029qbmDTTs9vKZ6sujH7qq5yX/1m/Ry1lEzTpPKgJpYGNbnMSenP3kZATl0yjZqP+4GVWB4x47tEP6i6uhrdc/ddKopEFUZlyHBwx6SfVqyjXR0tjbrwvHOVjrfr1r/dpLbGOo0fW6niSFCJ9lbV1WzVmIqKnZT73hPy26VEh/OHwkVSuFgqHuP0tTdBeqUO4feZEmdhkY1Rf2/sAy699FJjk6ceM99JI2FM1JjSGslvac/cH1HlIfFDXf+aL4l3AQlFmXcT7f22T4cL2H8QTJCtvKNycqxyTLjzJdR5q6r3DyyosPjEPsRO39fFDi/JPMcC5UQcFyw8+O2zb21tNWS8P2Gi6XTavKf3ve99+uY3v6nRBkvkRwpaaqT1z3YF6G1+RfrYnV3q/Wu3S3d9SZp+aFeA3tSDHGLiU0Csv/rVr5oVT0JUuLlzAaW2DkvQz372M3PSF/JvYTsiqCTfv4WaD7mPJyDkSUPy21k5b2lUrKVBaqtToG2HFGs1LDYVLFI6UqpAUamx7Ttt4JxwOcBpuXHDRjU2NytaUq7xk6cqnlbfbfpBh+T3vFi3J9KmhV42yc8m+ywm7AoT1KBjipbo0OBSvVVLtJfWmpr/bGxPj9HzqXl6ITVPz6Xmaan2UFVJWIdOCes9c7vC+Uj8ryjaeRvN+09Jq9as0T333qPKqrEKGLU+1FltTxs+iH9jQ4OOP+EkvfLyK9qyZavGVleZ3w+lkwqm4gqm46rbskF77jFVX//yJcau79TjO6n6u7yZmb72EPv2riA9rPdY8ovHOpZ8V7nn+z67MVqMXth7Y98m1SwS04ru1FNPzfv3SafmOg1Z9hsgxihvdHWhPM3PJD7bVkttLG4JyPxoU9VGYh/5kQjmiCw6MSedP39+3kKSV2QepZoSAD92tgAsjLBdJP7ni9tuu01f+MIXTGJ9vj3nRwIskR+pgDBSB+zagu/7pqPeZwPL99QFjg3/8M9KY6bJb8ilkhNUdNFFFxWMxPeWkF8o9d+sikPyYx2KtzYq0dqgVPN2xVp2KNbeolg8pViwSLFAsRKBIqWDTpO7cMBJ2HdC5Zw6fXfTerPpE7ZH6J75WY80/WyC3xnm12M7WSDoSe5d+z4LAJmMwE5UqFUHB5fp0KBD7g8MrFQ00L33Hi38Xkrtpe0Vb9G0uQeovnJvNSSj+vpjrSoOS5NKg5pYFtCkMkfFn1QWMI/1Ndt02623GZtfUbT7jYfN6Igl1BGP6ci3vV1PP71Q0eISRdwbVDrt2PsDQcVicbXH2nXae96jyZMmmjZ7xUVBlYYCqiwOqTIKsSd0T50kP2eqvhukh2KfyFjycbmg0EPuXUu+CdKj3t5/N0uL0QF7b+wbfvOb3+j66683BDJfSzdk+eGHHzaks7faWC/hugZwk9ECzM8kPvt1IBzc76l1pXzBYmCwRL5woGSFsk/moJTt9ZeEDzWZH8prQX9A20IWRnGN5FvKkUgkTGjpJZdcok9/+tMajbBEfrQgu85+3dOOat+8pevnl7wujcmkPC5/SGre6hD86jmeK40QbSYJKPOo4/vtt19BQ4a8qMc3QO3toH99oxJNWxVva1Syo00JiL+iak0XqU0R00rPWM+pM4fCGgE+ExJnCL6THm/s6wHHXh/LIvi50vR5HYLnXJu+sehTJs5L9PJ5p9JpNXTQRo8Wei7Z7yL89e1pFSmmAwKrdFhwqQ4xY5kqA63dXiehoFYGZumpOKr93mZsV/fQlXfMDOsD84p0679u1cat2xWfcqBKUy0qTjQrmsLVkNYO3BNTpxpF7K677lJV1VinJV2G6Kch2QooqYCaGhr1zuNP0PTp04yDgfdOLX6aHnosboSDKgqGVBxxWuURuDcmGjIDFd9J1pch+d0WQTivXGLvWvJxDtACD1IPuTdBem69vZ1IWQw+7L2xb2BxGNUam/155503ooLvAKSYmnkCYQdLqSoUic8GqjyJ9vS3hjT5zQY8nGCJfOHmoOvXrzdW+kIs3A0VmW9paTG5S/yNoXLn9Cfgjrp9Rr644YYbdOWVV5rPZ7Qe3zbFabSA2vgp851x+KccwrFjjWPH3/paF4kHz98gLbvP+bpsYiZALzMmzx9yMsIEqaAEugdYIGBC11tdHt9nxZDnFRSQvUixQuUTFBo/R9F4q9TRLLU3Si3bpXiLlGg2lvpEIKpEuFRxhTMW/pQJ4aO1Hq302uNxx2IP0srY9IMqC0ljirDtB4147KbpU4tvVHzq/ONOun57zAm9c8hoV/09j1j2CZ8bW8zgj+ysXvH369pLVNu2QHVt8/WPtrSuaU2osnWdZncs0QHppUa5nxqo07z0Ks0Lr9LHda/53bWpiXohvbdeSs3Ti6m9tapuuu5YHlB03jFqSb6pTZULOv9OIJVQUaxRxeXNGjtzvOooZw+FlYjHO5V7bonY7812dcQUTic0cUypqkqLOhP3Cd8zIXwo90n2Y1z1mX3gEn2eGw4HjWJfmmmVVxEJqbIkoIqikMoiEP1iFUWKFS3JtM5z6+1pJdm8zflAcL9Qbx+tyLTAyxB7G6ZnYeEZUH8uv/xy/b//9/909tln512bjSqHSgdh9mN4FNvHog5WYEL9CtWbfDBJPJg4caJZfMBuy/azWDtaJ+kW3oKMARaVcOAQwkaP8kKA9oKcM5B5MBhkHrWac3/atGm+JPEAOzzXpf6k1LNIcemll+pXv/rVqL4+WEXeYmc88TNp+YPSppd27mePwvjV5V2hedQOD3OV0TNFflfgtIy1GMXeEMLWGqdcgs8DRl6EnbtUaVrdpZwQPurzIaZ8DcFvTySNbZ/vOanxqU53BbZ96vGNZT/otIVLpLsIPsS+NZ5WWyJLxXdK8U3f+L6q+NngtVHuY41bNab+TU1pedMQ/D1S63eqs29Ilxo7PqT+xfTeeiU1V20qziwydP9bR00PKfbGw2rYuErRiTO1uvKtRrkvSTarONGkWN1GzRxXprPPOrNvN8ocRD+RSKojE8xHyQL7y92PRbTKo8VfUVBl0aBR8cujQZVGaPvnKPpFiitIUr6x5se6h+lB7ourMvX2zudqyb3FQGDvjX0H18UjjjhCp5xyii677LK8f9/PwXfu+6NEjUWLQobfDRaJ76kmQ6IIwiLMajD+xkiHVeQHppqzmATpprxyMPbfYCnzbrgdnz+Wej86hgYScAcItnvyySf7FVg6kmCJvMWurd+bXs70sn+2q/3dBfd0Peeaoxz5c0aWap+t7g8DeJGQ34+NlGLNzmirl1prHaKfijuLKp3qbvcbDT3eEykniA/l3oTyGTU/aZL2+X43274TJddp2+ftplJBo07HqMvPhO1B8CH7hO3F09BaZ5/lUvF3h3CiRVWNS1Wx402NaXhTE1qWqSjd0e05iXRQb6ZnGmL/EuQ+tZc2anxGe88gnTZkOQU53glpjS0O6sy9i3TQZIcktyXSao6lVV3cwy6fJ9E3Cx3xlCH6qPksiLBdIdZbggGToF9WRC1+SJXFAfN1SSSoilBCpYGEStRmXAYGoWzlnqR8q9xb5A97b8wPTHhR21jU5R6QL6jvxCKK7daPE0ocZ48//rixqtOzfTiQ+Oy/9cYbbxjnAwvp06dP9+U+9isske/fMbdu3Tq99tprRike7Dr2wSDzS5YsMaUAXNf8GG7HPnYD7phf96dVHcF4zzzzjMnTGM2wRN4iPzJJ8npZJiwDQvkT7Do9DqExM6QZh0vzTpEOOEvDAUOZkF8QUJsNqceKz+fQBrFvdWzdsO9eiH1POMn3Dsk3qn4n0U+pI+HY9lkIMLb9jOWe1nAQXz51p+e7M9pT1OH3VPEdBT2fWvxAOqmK5tWqblyisY1vamzjEpV01Oz0vB3BsXo9ALHfU0/G9tKi5GzFtOv3WxaRppQHNa44aBYiXtmWNA4DyDyt8gjcc8P2plcEjZreH0DyTVYBiyUpqSND9FH0XVOBE6wXVHE4oKqSoKqKwyoLJVUWjKskEDNfl4QDToBfN+W+NEu5txMzi51h74354zOf+YyZ+P73v//NeyINUUZZcommH8GxgHJ18MEHm84sw4HEZ4P+0oQScj9m4k4IqsXuYYl8fmDex3HG+cJxxnxwKFBIMs+5+corr+joo4/27fWfhRIW6I477ri8Fxq4Bp100klmP/3617/WaIcl8hYDQ+NmaT0Bes86j5sXS+lMD7MDPyy975ou4vnUL5z2d9MOkaLlozIhf9CQTOys2FNzz/dRcg2xL9kt8YOArly1Uk2NTcZONmPWLEPS4xlC79r2O+JpdVCfT9/alNMP3sDh+korqGQW0YfEurX4RrXOtIznXkWSfng3ifrF7ds1tmmpIfWMyuZVCrrHmbsLAmFtL5mjpelZejU1S4uD+2h9cKpqW1OqpYNcnle6gyaFtO/4kMaVBE2ZwbrGZGey/sQybPP9v9Gyn3FDsB8N0U+kzL5xYvhY8HCS8wnfqwglVRVJqDKSVHkwYZL+S4qLVFpcrEhppSIsrBliX9LVCs9iVMPeG/NHbW2t9t57b/3xj3/Uaaedlvfvb9q0yRAAgu/8SjLZRrqz9NfK6hWJz65XxjVBZo1V5/sGS+T7fmyzkMfxxUIXSehDrWQXgsxzHUOlHuiC3WAvlhBwh6Len2289dZbzbwcVb6qymk5PJphifwISl/3BVCIN77o2PCnHSztdbzzfQj+dUc7X5PqPXn/jB3/cOexAK3vCrF/R8xntFtiv7Oiu2jxYt3yz1u0evVqxeIxFUWKjK3s7HPO1oHz5+c0aJj6fBR70/LOUfYh+m2xpCH9Pevz+TqZCphEeb5l6vJTAdO/3lXxk5DZtGPrz26bx3Ct+ljoxzSvyBB7h+BH4w07bWNb0TjT7q6uYp42luytlcHZ2tZR1JW635rS9taUdnQ4GQD5gEWHMdGAxpcGdPweEe1dHXKcCpQaDHBySd5Bu3FHpM2+4TGZdoof2A9FSqo4kFR5KK7KUFzl0YDKomFD7ktKy1VSUa1IaYXC0VIVFZcpwOdtJ7yjBsPt3ugXkIB8xRVXGKWoP/XuWPQ5//1qsQcE8zEBJvyOxdrhQuKzYdX5vsMS+b6r8GQhLViwYMhU+EKTea77Tz31lPm9/oTHDaWlnmORxYb+BNzRaeSHP/yhybaysETeU7WXk+3zn/+8/9XeQoDWd0/90iH4Det3/vkJl0tv/2JXgB66bh41waN+//aX2BsrfkivLVujX//uetU1NGn8+PFm/7Efa2prVFlRqYsvuTgnmd/ln+ylPh/LPtZ9l+hTo59IO1/HkhBhJ/rOKNV0d0sHskLmuGhl7PlZKj5W/dL2LYbUV0Hum5YZez7V/dlIBUJqLJut+sp5qq/YWzsq56m1eLJ5VmMHqftp1WW11OPffA3p3x3R53YLsaeMoDGWVnmRk/KPio9Nf/aYoLH1Y6kfCExdvskoyBD9zGJJOplUJB1TWHFF0wmVRFImYT9aXKSS4lKVVhLmWKni0nJD7iMlZSoKh1UUCna27bMYGRhO90Y/Bt9BekhDzhfDwWIPWKjYsGGDsd72ZcHCTyQ+W51fvHixaVVn1fneYYn87lV4auEnTZpkjiM/1JP3h8wTHEfpDDkYEF2/YiCWemAD7naGJfJDWH9dR9/rKVP8X3892GjY2N2Ov+VV6SO3S3Pf6fz8jTul/3xWmn6IU2vPwJJfnPsztvt3YMQ+1VKnH37n/7Rh1VLNmDpZqQBW+JA6UkHFUwEz4ePGcPn3Ly8o4XMT9k19fkbNh+gbRR/bfobkG/IPyU/Rc5R0fZ4fMKTftI6jV3ym8Jytc636xel2jWtdqXHNSzMEf6mK4/U7bUcsXGFU+x0Vextyz0hEuk9UqfVvijmp+xD9rS1JbWpOa3trWg0dTvhfX63708oDhtBXlwRNwTyheHuMCWnOGCf5fqD7lLIF02bQ2PWTSsXjSifjCqZiCimhcDCoKGn6xUUqKilXpLhSpWVlKi8rNwpdNFqsSIgFh6CKwkFj8Q+zkRbDBsPl3jgSg++wr1OfykTVr0ox0z62EecZyvyuJtR+JPE99zeE3qrzuWGJvP9V+IGSeRYQUeIRYebPn+9bguta6gm368/+tgF3uWGJ/BAlolOXRp9ZXyai+8GOHyLQKzOZePB70v9+1eNJAScxf8Zh0tu/JI11emLa/TtwMGE9/2Mf1ZRxlRpfWayyUEKV4biiwaTCgbTa2tpV09iq//vWd7XnvH2HbLtMEF/CUeqzg/jaM2Q/nknfX7tpqxpb2lVUXKKKseO0ZXudmttiKiou1tjq8c4xQeCe0qpMbNekluWa0LxU1c3LNKZ5lUJpHCDd0Vwy1SH1lQ6xbyybpTS94HuBS/Qh+VtaUqaefmuL82++j7OgLxdajt5oSEbNryoOaP/xIRPCB+mvLqHNXf9v0OQY4GpgwSSZiCkWTyiViCnNoo4JLAgqEA6bcL1IFNUekl+saHGZSkpKVVkSUUVxxJB7SD5kP5Ih+vzbr5OH0YjhcG/0Mz796U8bgnjXXXf16/dpmUaK/WGHHebb84J7J4sWKNssdIdCmZayw4jEZxMZ7mOo8xAZ+mb7db8PNSyRHx4qfH/JPL3iEbNYwPJzSc9AU+rdgDtEpd/85jeDso3DFbaf0SCDmyB2b5TinicY/2ZVCpsJzxuyHuV+Q8/gu3d9VzrgA1mq/bNS/Vpp62vOeNsXu2w6D16nQ2LPaOy88dpE8Fq6ax/b/ds3oMq0dcSUKipXbTyk2njU9HWHyJeEkipWVK0djWrbsVWqr3RS8UlRp+6ax0G6cZjAt6KdJ5eA5ceXFy3SXbferjXr1htSb+z3ybTCxaUKRqIKRss0bvJUHXz42zR52nS1x9NqCFZrR/kRer3sCKUnBRRWQhPa12pi6zJNbFmucS3LVNG+WeVtm8yYvu2xziC9xvI5qq/YSw1Gtd9LLSVTDPkF1O5jqx8TlWZXhXTktMhONyEI/aamlFoTylj4U1pSmzRfQ7DN8yS1J6X2trSx86/Y0b00AENESViqLApoXAlJ+yFNr3RS9iH75ZHeuwFQv2+EdRYDosU7kfxkMqFkPGYeE801am7cbnIMUpS4BCJKRYpNrX2kqFiRaLHCkRJFoxEVR8IqiYQMyS8tCqqkKOyQ/FDAEH2X9OfV4s/CwkNQJ0/w3b///W+9733vy/v3udegPEGA/WqxZ2GbGlXULRYeIAHZi93DhcQDSsEOOeSQzsBBtpmg2nwyACxGxwInxzQLnP0NWhtKcPxy7kHmQU8y7y7GueeyX0k8YPGE/U4YaH9wyy23mHObR4vusER+CEgSq8W91aHxfRJYeZ5FBsFMGB7j0E8432vaIq1/Ttq8qFONB2Ur7tCX96+TVKdYarlWtFbozeZKLWG0VCpp9+9ugSWRiRC2J3eyhl29LRU2o7k5roamCgVnvV2asYfU3ii11Dh97FvrHBkZQh8mQA9iP/jOh8WvLtZVv/61uTFjJ0NVIsSpI9ahaFFUs+bMVjTVodrXV+vp9a/pE5/6tPaat49R9Fs6kmrsSKo9Qbu8sNpL5mhVxSy9ljjRBPFFEk2a0LJCk9tWaGLbCk1oXa7iRJOpu2dId5ttiIfLVF++pxoq9jLEntERzbRm7AFusJVRRu59ww25pk1aWZ/U+saUtrak1NCRNun4qPqE87XEnUA+HlviaW1uSeu1mu5EH2f+2JKASmlpVxzQ1LKAJpSFTHs9FH0WG9zAwJ1JfkTqqdikk8aWn4onFE80KNm2Q4mWgBKBkGKBiBqDRUqbbghFZoQiUYUixYpEQqa8IRqhhV9IpdTq81gUMv8uioQ6lXyH9DvE388TEYvRg3Hjxpm2Rp/97Gd1zDHHmH/nA66nKMPY10mHLy0tlR8RDod1+OGHG1vuyy+/bJQyzsHhROKzMXXqVPNZYcF97LHHzCIKCl5/ggstRg6oH6evOsfzrFmzDOn1qwrfVzLPnOHFF19Ue3u7KY/J5ajxCwiowzHT3/3OHJ6U+muuucam1OeAtdYPMjh4SVbk4Mt1M2xubjY1On/5y1+sYtwPbLzjci2/52odOC6msUVYhLtAHfV7njpQ23c0Ovt31gSpbIKzUGDRCbc8gYkcNaF9Kk/gskFYHmUR1Nq31jhfx9ucn1Em4bZECxZ2vZDWbd/5znfMjXn6DEftYuLGuYS9jBsb59q8efPMz3LV+JvNz9TlZ7fWc0h+Ss0Q/Ti17yk1dSRV1LZVY5tXGII/sW2lJrStVjgd22nb2ouqHdW+fE/VV0Dy91Q8Uphr0/K6pFbUJ42qT21+fUcXue8rePdlEWlyGYp+yJB7h+QHTTAfX0OodwlS+dNJBZLY8mNKoeCTZZAKKBGMKK4ipUPFSprPPqJAOGrKEkLhIoXCAYUpc6Dunlr9cFAlYYh90NThG9JfFFKxIfpW1R/J90a/g2vfGWecobKyMt188839eg2IPPZYJuJ+Lu3imglRYFGXemFcbMONxPcE9wPuEWTlkOC91157DRvyVkiMZms9ItqyZcu0Zs0as8jDPIDzeTgi22bP3Ib5Gtd5zlEWDv08vySYjmsLi5v9uQ6fddZZZqHCqvG5YYm8H0mSRT/270s6et9pekt5oxn7lDeqJRHWWfeUd+3f64+R6lY7bfE6Q/QOlkrGarTDDQzEuUA5Qr8CAyHxqPQQ+5ZaqaMxQ+yTTps7o9jvvpf97rB8xQp977vfMyvVJaUlamluMTdr1CXOIWpTGVhjy8rL1NbaZm6Cl33/Mu215559+hs9iX48mVRLLGUGxL6lrUOhhjUqqV+uMU0rTKhedfs6U5LQEy3RSYbUN2aIPSQ/ES6MQudY9knJT2lSaVA7sOy3p3XHsg5tanGC7/JFaViG4E/Arp8h+TxC9MeVQLx7se9D7lMJBek6kYqZtgWm3MFE7EUUDxapI1iiZDBqjoEAiz2hqAJBCDpEHnKfyTMIyBB3/g3JN6Q+6ITvQfSj4YDWrFqplqYGjR9bpf3329co/rZWf/jcG4cDaHNGC9Ibb7yxXxZ76lefeOIJc03F6u1nQOZR5rmG4nBC5RuuJD4bCCWUNxKGC5mfM2eOuVeMFoxGIs95x9x6xYoVxqGBis31cLiDeQznqEvc/U7iAVkENTU1pkNGf1wD//jHP/TFL37ROIQmTJgwKNs43DF6rmYegZsiLdAgSVxYcpEkLCOWxA98/z75xiYtnzxZD5ZMMPu3Zuvmrv2bikv16xySufpxZ7iYsI/0llOl4749pNvup571kHTIutvCDysTNwgWQdh/fUr9dxX4svFO+UMi1r3lXdsOx4oP0eN9us8PRfOqs29qbDJ97t0bGDdt9mUgo9YGQ0EzeeH7gOfV1tWa3+sr2ByT2t553wlr/E5Ef5wSyYMcu348pZWtLVLNcgVrlqm4fpkqG5eromOLyjq2mjGtxrHGgYboVNWVzTXEvrlyTzVXzFGyH+TesexLlSTkSZpYFtDEMmmfI0sNyUex396a0rZWVPyUSdqnHv/QKWFTow/xf25zQrFk12tSw9/alNaGpqxvZoHqgLHF0rjSUIbcQ/IdRX9cSUSVRUUKBbsIQCSVUDQVVyDVLiUbFUyklU4ElIiHlUhH1BGMKhEqUyxQpLZAWCks/qGoUehR4IOdpD5oqjaWL1+uBx94QBs3rFci3m5a6M2YPk1nnHaaDjxgf6Pql1CrHwkrEsZh4CwE8HmyWMDXFhZ9ATW0V111lT7zmc+YiShlPPkAwkjtNmSe3504caL8Cq6TbCPtoZinDFflsidwQx555JHavn27cRpQgoWiSZsuO+8aWWAegPrOwj7lLJSN5HvO+hmck8wVCXWkRMDvDhM4ztq1a00XkP6QeOahzO+vvfZaS+J3AavIDxFy9Tlnhb7PJMli4Ps3lZS2vemE6K1/XtrwnFS3yvkZ4Xrv/33meSnplo9Kk+dLMw6Vph3Sa+u7Qm6vH/reD+riAunocRT7Fqm9IdPLvk1KtDvMGULvBujtovxhKBT5gYKrKmn77c31SmxbpvT2JQrVLlPxjmWKtm/f+fkKaEfRVG0rmaMdEPzyuWqumK1QtFSRYGhQYwde2ZowSfsQfZL2eWzOBPkTnrfn2FBnOJ/7/V0B4l0VdRR8x7rfZdt3LfzFIW4+CQWSEPyYUfLZaewHhcJKBSKKBUsVD5UYgp8IFBllf9W6jbrrv/9VW3OzKivLDYmPdbSrcUetyspK9dGPnqt99trH1BCwrIOF3zy6ir9R9gMqKXIs/FFs/SZ53/n5SLHwD6d7o9/BFAk1ngX4v//97/16DSazXOuPPfZYX7ZHy66JZ+EBByHXf7dmfqSA94nLAkIPuOdiuR5J73E0KvJ8rhy7nGPMAZj7sRg1kj5X5mZ0Z+LaTus1Qu7y6TM/1EBMI6eCkuH+BH7ymb7//e83x+w///nPQdnGkQJL5EepAjsS0a/927xd2vC8oyLT2g5A9q8+IutJAWnivpm+9odJs46Wxu7R7+20fe/VtWBCnb1rx4fYU2efyNTZk5aew47fWSO/dEnnDSLfGnlP0Vav9PalSmxdYh6DtcsUbqvZ6WmQ2vroFG0rnmNGTcks7SibI0XKFY0EjDIeDgcVpm1cgS8jHQknNZ8WgLPGOIsq3Couf7pN21og3DsDOzzf70vNPvb9sVmW/U6SH01rXFFSYyJJ0xYQom/+NgFcwbDuuOterdy4TaVVkxSH7KfD6kiHDcmvqd2h6dOm6UPnnptR3x1yXpypsWeyYzoR8oI8pt1/sMEBhanfp1NCloWfWv1c7fZ4ji+OpRFyb/Q7uDZzP7nhhht05pln5v37nDtMwrk2cW3308Q7V7CdWzPPMQSZH2nzFOYKOA+4b7CIjuWee/FIe58jncjzOdKpAAs9ggj3+RkzZoy4z9ENtmOOw/WDYzafPvNebC/zXBwEdAfoD1g0/dKXvmQt9X2AJfIWFrnI/eu3Oyn5qPZY8rNxzP912fBRlje+6NTdF+++Bsv2vd8N4u1dxB4rPvsX1T7bjh8u1qI3lulXv/q1GpsaNX7ceJNWv3rV6s7U+tmk1hdFVVNbo8qKSl18ycU6sB9BK0MGSg5qljlj+1JD8AMECOZAU/EU1ZTM1tbi2drGiM5We7hCYYh9UCoKZOrKTRJ9wBDOUCeDHThwGpCkv70tpZpWR8GH9I8vCejMeUVq7Eirti2l37zQoUQ/7y5w5LFRJ3kfVX8sZo1Yo5a/9D9VhTpUFWpXJJ0QEQCJdMi0nWxoT6muJaZzzj1PE6buoXiA5oIRkxPANru3OvYHNn1Tfx8KqrgoqOIwFgEp6DB8Q+zZXUnjEshsE2Q/5Kj7EPloUcDY9yH8PRV9r1P47b2x8GBiefHFF5uJZX/suhCqxx9/3BANd5HRa+wqnR5ilN2feiTWlVN+hRUbuz0gFA/Lvd8ty6OdyHNs4nJZvXq1mSeRe4DV3M/J7QP5/FDfya2gRCS7Jt6vZB5nBM4XOn7057rhLpxef/31RpW32DUskbew2B2atjqqPaQeS/47/k+ae5zzs6X3Sn//oCPxUWvvqvbTD5XGz3PIZxZsF4N+2PEh9Sj3tL0zdvxWKRkzN4s7775Py9dsUFN7XLF4SvFEXJEwCekkoRcZQn/22Wf7m8Tvktwvl2qWZh6XSc1bcz61o3iC6XNfVwrBn6Mt0VnaERgrt8o9oLRpHx8OplVkbOaOfZxy8VDAUZcLOQegL/2zmxOqbe0i/DVtTso+2Ls6qHftEXHC+dpSemhtIq/0fRBKxRRNtak42aqSVItKki0KtG7X2+bP014zJmhsSVjBUESpcKnSkVKlQlGlQ0VO8J7CSipgwgwh+SkIO2n8CpiqDpfom1T9TOs8TmUWRLhjsqvSmffpkH2H/PNzfs9N5c+u13fr8w3ZN+r/4JF9e28sPFyrJySPAKb+gM+DBOcjjjjC89rdvrSYg0Q899xzplSJbR5JBDeX5R5Cz/0XpxfkcCScOyOJyHNdQ+zAZUdbRz6jkWah77lg8cwzz5jzjsW0XJ+f38g89ftcMyDx/Tl/OBdxPbFg0d/r7GiDJfIWFgPBa7dLD18m7Viz88+ildIH/ijtebzz73RaTzz5pAlO6m31mAkTCgHhHlwILXrAbXsXYzQr1VKjNUtfU0tDjSrKSzV9xkyt27RdDS0xlVdVa+7cPX1tgc4bOBQMqc8Q+9rlUsOGnE9NFVWqvWqumirmqq5kjraXzFZd0WS1JgNqj5HIn8rQz7RYbgoG046qnyH2EFJ2nfm6QPb91rhD6Hnd6RXO8d8WT+uHz7Spvj23ZZ9WeXtXh7S1oV1rtjeqo6hKfdkYPvXKorSqo4yUxhaljXXfSeEPa0x5scpKy4zDIxWKKB0sMkF7SVL2Uw7Bh6g7+wmij1PAcTlk2/Yh664Kb4wP7DP6/JKTQHI/r+HeZtNpp17fvIbzOvx+cSSoqtIiTaosTP20vTcODghf2n///U3503nnndev10BFxNJNAJRX/c3z6RPPPQlbL4QBRZAQsZEMzhkIPWSRUjcUeuroh6vaO9yJPK4J7PMo8Cyy4GjBOTESUuh313sdEo/os7vyFr+Q+dbWVuM6IqOA86Y/oHyJ0knS7r1e7BwusETewqIQaN4mbXjBUe15xG4P4fz8C9L4vZznLLxGHU/9Vg++Wa8V7WO1Jj5ea9rKlDQ0KvMyVpHPP++AdPzOEL1Gqa0uE6LX4fycNmcE6A1CT3tfAMdC7cougg+5Z2EpvXPvuXQoquTYOYqN3VPtlXPVUDZL26Oz1JgqUnsipfZ4ytTH03qPlnvYyQOBtIKptAKG6DsTBJRnCCn/LJR9P56x7NdkKfg8zh0b0vGzIoZ83HzrHXp6zAm5XyCdUlG6Q2PKSo3S3xdbfzjgEH0IPrX6Y6MQ6rCqyoozo0TRYtrlFSkdiBgrv0PuMySfFoXGtm82ILPogSLvqO3U2EP2ndp6x5JvdmGgKxARst8aT2piRVSHzKpWIWDvjYOH++67Tx/4wAeM3ZWa3HzBcbxo0SJznafF21Bb1vMh8dm/s3jxYmN5hcyPhmMKNRQyz8I6X6PSswA/3N77cCXyXLvY93wGLHhBDCHxI9UV0vO9Q+KnTZtmFg77Qsy9JvMsuOA2ot1ff/rFu45VnD933nmn3vWudxV8G0cqLJG3sBgsS/i2N6RJ+3fZ62+9UHrttm5P60gFtaKlXEtbKvWvzdP1yrJ1o7tGvg+J/tww7rjjDrNKj1Jy+umnd58MuyF6bpAeFvWOpkxP+4QUCEmRYofcM0aiLY9FjB2rpZoVDrGH4NOhgQ4BOyGg9JjpSlXvqfjYueoYM0ctlXPVGh6rhlhaTR1JtceljmTKlC9gJY8lsKMnjb8cgh8kmg9rutmXWNRd635h7fsr16zTrf9bolZFlS4dp1ikQu2ZdHte/OCxbbrw0PHGKk8oH+F8LmglGMmcUtTNd+TurrcTikMQfVruBTUWkl9aZMYYiH5picaUl6goM0FOdSr5DsF3iDq3WMf7wCmdXZ8fjQRNgn5LR0LVZUV6x7zCtCez98bBxTe+8Q1Djp599tl+qeosVDLp5ncPPvjgIZt094fEZ/8u3UGwNtPWiwn7aADvm2BaFGHuOZxP3HewdOez/7zCcCHy7GeEDBaL2M8QU4gsBJ7FfK8t40MFeq5zXSGAkZHP+/aKzPPZsbDJscZCX3/mrjgQ6JjBIun3v//9QdnOkQpL5C0shgoQyo0vaf0zt2vjc3do38oWY/0FzPUPuW2ySirHOan1xSuc51NzP/WtUtHI6Ok70ER/FCxakVCHxWSYGwa9mb/1rW/p05/+dO8v3Knatzqknn2bgOxniC2p+Ea1Lzbq64gE7RcbN0q1KzLEPqPiEyqYC8VV0ri5SlfPVbxqjmJVc9VePkMxRdSRoN49raZY2qj4bYmUOuKOSp1Mp8yNHVKbTqeMSI99n/8yJnVTiw65p5Ycw2qQxwBW/t2r+uvXrdPChc+qZvt2JZIJhUNhVU+cpHkLDteM6VM1rsSZRBDCd8MrHUbZz0Xaj54e1gmzI8YFsKU1pbuWx1SUaVeHmo8zoa9knzZ9VcUhR80viaiqNKqqcog+o0hjSiLGRu+q+GY/ZUg+ZL+pI67JlVGde8QsFQL23ji4YMKKNZ42UNdcc02/XoNFSmyoqLy0yvQzic8GKim2V947Culo+9zZf9TTQ7goM4DQM7g/+XHx3c9Enns493ru7wzu9SSUsz8h8X7b3sEGnRRwvuDG7K813Qsyv2TJEq1fv95cE/vrmLjwwgvNIuHDDz88IoM1BxOWyFtYeERYf/fbq9S6frH2KW/WtMqAngm/vavv/fXvlDa95DyZemDa35GMD7Gnr/3Et4w4JXl3if4vvPCCamtrzWSJCRQXe9R56rK4ebAAsksyv1OtfZuj2EPw2+qd+nMU60zLsy7VPjoyLfkuCBCE3GPPdx8b1ue05hs3A60Xq+c6JH/sbKPix4rGKpaSYklGWi0xh+i3J2Qs+65dH/Jq7ji8tiH7ziPVJRB/fu5gZ1Xf1KdnavU5HrZv26bWtjaVlpRowsSJvU5YeC4he65Vn0T92ra03jI+pLdOcj7XdY1J/WRhLreCgwUTQ9pvQshY9mtaU1rbwOKA87rxHLspFyqw7ZdA9ItUVVaUIfkRVZaEtXnLVpUHOvSBt04pSFtSe28cfKDQ0lqJPBMCNQcSfocqz8Kl30l8dlYA12MWIaiHHS1qaTa497CgDAFlf7CPJ02aZD5HyKhfSKjfiDzbk73fuNax3yDv7LfRSOK4D77xxhuGyKNKI04MBENJ5nFPvPzyyzr66KP7fa/BgXrJJZeYkiMWcCzygyXyFhZ+rANfeI209mmn1h4VNRuV06Uvv97173XPSlUzpcrBmwgOBXaV6M++YqWWFiz8PHtCwiWMawATKPrJ9nsiQDmEq9pD8Nvoa9/q9LVHzSbOPJvcF7p5ux+t+Z0Ef6Wj4LNfelXv50hj5xiCr+rZ0thZSgSjhti7BB/y2x6HAKfUFpdiKcemz/dR8lNJx54fVJeqj4U/nQ4Ykm/+bWzqXSnxhajVb0+kDTmH5NNKL/uxKSaduXeR3jUr0ivpL4ugypNyH9C4YvrMp1VPO7z2tHawNtSHDQq0N6jq8Su7lZH0F/beODT4z3/+Y0LvWHycO3euZxPhoSTx2WQBCzCvx0KEH0iiV2Afcx9HqYecYhEnqMtV670MCPQDkWex3VXdcTJwzGQ7GUbjQlD258OiGPuIkpVCnp+DTeYLsRBJ8CeLFyTUv+c97yn4No4GeErkn3jiCV155ZUmEZUL4L///W+dccYZff59O1kZJWFmox2Nm6WNL3SF6EHaz7ja+Rmn70/nOAFvFVOl6Qc7yj0DS360QsMFXA96S/Tn+sBkl8tVTyIPIPjt7e3661//Wti+oxBao9pn2t9hQ4fYG0t+usuSH85Y8kfyhIRjrWVbl3JflyH6LDTlVO+DUuU0h9RXz+kaFVPMogh17BB8SHw8Q/Zdy35LDAWf7ztk37SIy/SC52WDPJqWcZladBYClO6h6jvd4AeawI+bgFcspn+fpI1NKd29MtZJ9HEdZON9exeZcD6wPkP6K6MBVRRJpWFIPi4EqaW1TbUNjYoFSxQLl6siXqNxL/+ls4zElNj0k8zbe+PQ4Utf+pKZMDOyezwPtTV1KEn8YJOQ4Q7qfV3iiosMIs99i3OSx1z3sJFC5LkXc90hzJHB1xwfZCq45L2sbHSUCnq9GDaYZL4QpUGUUhBud+KJJxouaNE/hL2+2FFnRW0EfQMtRgd2F2Zm0QMo7ZWnSm85deefQSwhRu31UtMm6U3GXZkfBqQF50pn/K676hzyp3UN8sKxwMW954QQkm5IXCB3321UeBaHULcKCpR3hqqlMVmWfDdIDzs++x6Sn4w5vwO5JyGf3xtJ9fbs9/JJztgj6zylHIGU/NpVTqCeGSudfYNFn7H6ia7nh6JS9SwFx85RcfVsMzR2tlQ+zrHuZ+Ao+c4whD6ZVmvCse1Dnh2in1aY8vsUORNpBUnYz2yqY99PGet7LJFUkgzEREptyaRSJn/eOY5I5g/uIpgPlT0b0yqC+tQCp00cx2RrQo6C35o2Cvy86q5VAiz8LAI0dKTVYJooZK+bl2hC/WLtr40KRqJmQaK1vNwou9QK/u53vzOTHLvA6W/89Kc/NfctAvB++ctf9us15s2bZxZfCIziMy9Eq7PBJvEA4gGBxxbMQmwhbMEjARBVzmMGxBbBAlLLI+0HucfxHJfYu4/DLZGd95ZN2HmEtJNt4y5YuGF1o9mxsavyFFrpDZZiXlFRYc59yDwo1N+hJSW94qurq00gX3/xla98xRwrP/zhDwe8TaMZns7oTznlFDP6CkgfwwU3PouREWaG2sr3B6JCjUqUVkufe1rqaJY2L3KUe1T7jS85BKpsfHfS//O3SFPmS1MPyij3BzkqqQ+UZFwZ3Gg4FpgAZd9wXKWLCW4u6zz1ihAe0oQHFWxTUakz3H2L7d6k5Gdq7tnPBOpRd+/W27sLAka5H2ETGt7ThH2c4YIFD1wiqPad5H6VQ/iTHdL2pc7IBu4RCH2G2BdVz1bR2FlSyc79glHdIegdWWQf5Rw1v7VTzQ+Zx0hICmd2uUOJnT72BPBxhMUSKcUTvIZD9jtSCbMGkMvCz8dvyH4waL7HMYqtviwS0swcwveBE0P60TtKO+vy3cfNDe3aUNeiylBcgZQTsBeio4I5xAJGtYIcQcRGcxvK4QCuTQRwoqhx7yJ1OV/wmdOthAk3Nn0I8UAm3ENB4l1w3aVFFs4PJveoc/mmbY9kQM6pAWe4YB7rEt9scp+t3PN1cXGxOb549IIIcxxxb2UhnW3mEaKerbSzne5CBKSdr/vrTBkNcLs/LF++XAsWLDBtDQcThSbzbl4Rj2x/f1/rb3/7m/7+97+b+d5wW8DyG/wpzfWCH/3oR7rsssu83gyLfgLFFCUeEp8dZsYkw6pQA0S0XJr1dme4aNrS/TmbXnZs4eufdUZ2fTOE/tBPSPt4V6PEZ44rgwUdjgXIjLvQQ80hExmOIVeZd2FU0dZWszBEK7qh3/CQQ0I7yxhmd9XbdyP3zU6wHMQfQOzdmvuRFqbH51M6zhkENHZLzt/UndjziD2fxY8ti52RjZJqo+Abkm/GLIWqZylUVN5pd88Gx4NR4bOUfFfNbzO1+UFj10fNN53hQiHTmq4E632mPt+8hWDaEHr6vDvW/6QSCWz+2O0TGQu/Q/SBm8LPlSu7Xr8yKlVGQ5pd1bWNa9Zs1l0v3KmqqrH80Z3eA8c9ig2TfAv/g/sZZT0f/vCHzdeE4OULFii591FzSl4ICzj9mSQPJYnPBvZdSIMbSsrChCV0ucF+wbmQ7V7IJvc8Yst3yTP3PRaxIfTucAl+9r+5hzJc5xoD9dRVz/ma48PJH0mZkU3S3ZH9b36H13T/DtcmFHYs1cPRReAl2J+UEjOnoQMP+28oUCgyz3FDIB3zMTI9+ptHhPPoU5/6lG699VZzHFmMkLA7Dqrd1cjnUuRpf2LrAId/mBng4sBN7C9/+YtVoQYDJIRjeUatR7UnFX/zYkchBaf+Wjr4fOfrra9Lj17hEHzUe+rtS6o8K70gGZk0U1o9MSEZcGq9F0Cdd+vtCdRDsebfJik/wUpGd+V+pJH73WUR1K9zAvZQ8SH4fN1zMSobOCIg9lWk6M+SqiD7e+w2F8Ktze+y7vN1Sq0mhI/wPce2b/rBZ+6OcO0wSjykHfs+w7TTc4g+zzXKPl/vVK/vkH23Xh+SX1uzXXfd8R8VF0VVFI0oFC5SKhlX07YtBbkW2hp578QGrlFMVLMV2HzA9Qyb+pw5c/KuPfWKxPesyX7llVcMmcdZQOibRf9hFibj8ZwkO/vfPLoL3bub1rskH4KevSCQa3HAdQNYh8XAQFI/bhuS+efPn++Jw2KgNfNkedCt45hjjjELOv0BeUdcF7785S8ba73FwDGsZopcVOwK7/AF6hI3m94uAFaFGmRAFMfv5YwDz+nqr77tdYfcz3ln13PXPSMt+a8zXNByzCX2+54mjRkcSxj2VJSpXGGIODeuuOKKbn3kUeK/+c1v+pvEAyz1LIZkL4i4/e1R7juoud+Rqb2vkVIJR9k2qv0IJ/e8P/fYzAYLHvVru5N7RktN19jwfPffKYXg72GUe0PyeeTfxY5FH9W9ONwVXuegqybZkPKspH0GqfYQfQaKfDwZMGQfpBUyp1YpsQgQdbdGH3N+KmBq9w3ZTzot6yD7kJvqCZO0des2jSkpU4DPNVOGwSQcNQ5Fk+PeYviAOnn6QBO4+cgjj/RLrWSR8sgjj9RTTz1l5jt97SftBxIPIChM1JnwL1y40DgUyACwRLB/YL9xHDH6uijnknkGC98PPPCATjrpJPMaveXMWAwOmKdAgFetWmUWZSHRXu3/gSjzlH/wHnAS9JfEs+D0vve9T8cff7wh8haFwQidFVoMtzAzwPf5Oc+zGCKEixy1nZGNWcdIJ/7AIfgo98YCnWlB9uq/pEn7dRF50vQ3v+K8xqT9M+FwAwMEPZcSCVn/+Mc/rjvuuMME21ETj51+2PaeZf8zSsZ2V6fdmvtsct9R092WP1Jr7rNBFsHEtzgjG9jwOxX8NQ7Zdwl+a2bgOskGJSQQekPusx4h/lmTGcg4ozTHbu3Ntg/RNy31XDU/wYJAwIjxVOKHgiFFisIqCUoRgvQkvfeYQ/XPf92qpk11qh433qj+KPFuav1FF11kS4yGGZgU33jjjUax+tznPqcbbrihX5N23BSEyEGEIV+7a+3kFxLvgveMZZbjONtq318CYJEfssm6e2/Emm+vJ0ML5rQc/zgquCb4wR3VHzLPXIvrCyJLf98D1yjs9OC6666zi0kFxDCd/VoMR+wqzMyqUD7DhL2d4aK1ziH0G192Hqcu6PrZ6/+Wnvmt83Uw4pB8o9xnFggmvKWgSflMTAraYs5vcEl6N3If6yL3PHbW3Nc5yj3obIWXScsfyTdK7PMcZ4xsxJqlHZD6tVL9mszjWseiT3eBzYxF3X8nUuq0dDTEfmbX15VTd3JAGHUsJBWFAru07Ts19V2kvy2Ttt+RkPka1b9q2hyddMbZ+t9T/1ND3TYlm+uMnZ5rICTehn4OT6Co018eVZoSoS984Qv9eh1cGxwL1NSi0NO+aziQ+J4LErTUw6Xw6KOPGksxJVJ2Em8xksE5STvJ1157zSzCIUr4SWzIh8zX1NR0BnCSUt9f/OIXv9DDDz9sFjYo17AYITXyqA8rVqwwXxMOwwf9zne+0xws2E92B1sHOHxT67FMZ4eZFaJ3soVHePmvDplHvafuuycufk2qmuF8veU1h2COn+fbNnjDBlixO9Py6XNf7yjVKPq0wuPSTlx7p3IfHdnkfldgHxkFP0PsjYK/1gnZI9EuFyDxldO6iL15ZMyQivrXB7lnfT6qfkcipRXL3lBHLKGZ+x7eWUYyENh7o/d45plnjIUU9xCP/cWaNWtMBwMsrT0/Sz+T+FyqHoSe+zxth+1kXiOyj/xoB/NZAuFYlCXVnXmuX7G7mnneAz+nK0VfS3xy4d577zXdPFjMO/TQQwuw5Ra+IfKPPfaYIe49cd555+lPf/rTbn/fTlaGJ3oLM7Mq1DAHlxLIEor9pleclPyGDdIXXuwikH//sLT0bilcIk0+IKPaL3Aex+/tJMBb9B+E5tGZwFXuTZ/7RidQD4IPIImQele9H837nAWPho3OcWsIfobs07qRfdYbSOMfM6OL2PM4ZqZUPrF/+xNnBYsDM49QIWDvjf4A8xhqQWnLRq14f7F06VJTnwpZdz/P4UTiXXC/J/SWjBOrzg8NLJEfGnA+btiwwRzfBF2iwg+HRP/eyDz3DubqXLcG0iuefAAyj66++mrT1cNiBKfW9wd2sjK8A0ByhZlZjDBwecmeqP3rAmn5A44FOhc5+uoKh2iCxs1S2QSr3BeiW0E2uceST497Q+7bHUXaNEgv6rL18/VoBvukZXuWir+ua+RynbigvAGC7w5D8jNf7ypN3xL5EQuIPESK8LqBJLgzIUadd0n7cCPxPdV5VEvKBSD0Vp0fPFgiP/ggxI3jmfksbpPdZVr4ncy7/6YENt/OGdlgwY7r01lnnWU6elgMDiyRt7CwGHpiWbvCCchzlXvqliftK33ioa7n/e4IJ2QP5X7KgY5yP2WBNAFbvp2QDAhc9t1QPci8CdWrd0L1aEeYSVA3iyiG2GcIfsAutpnyBZwmhtivdx4bGBulVGa/5QJhey6pJyjSfaQWn/1uifyIBH24zz77bEO6qREtK+tfWQZTNVxs69atM/3Ht2/fPixJfLY6j9WeGlwW8mklbNX5wsMS+cED5yTnI4tqw0mFzwWXvFMKQIu42bNna5999hnQ6+G4ZiHgr3/9qxXqBhGWyFtYWHgP0thRJcsndIW7Xbmn1NGw83OxhO/zXumsG7tbyq1yX6C6+4x6j4qPLR97PuTeqPeZ3mqdyj3DTg47j+HmrV0EvyEz+JoU/V4RcJwnk/eXPvrvgmyKvTf6T7E75ZRTTCYMNfP9JVQ42Z588klTu0oAHoR+uAN1HjsyIYGo8xy3FoWDJfKDA85BFqI4tyHww02FzwWyqp599lnjkiWTo7/km5aH73nPe8zXd99997Bd3BgusDNfCwsL70FdsUviAS3Zvr6mu3KPas+INXWvQ4ZAXTnHCSRDuTdjgZNoTvsyi74DUs4oruxhzW/vIvcmWI+WeNj0W7JS88Ndyj3W/NFWe8/7RV1n9FTW2VcE6xn1fkOG5KPqr5fiLVLLNsfKbzEigXWcJHsS3D/xiU+Y2vl81Wc0F0LvCNMieIokaRR5EqiHM2ghyoIEOQAsUvDeUAIt6bTwIyCpOGNIpcd6Tv24nxLpB7L4+8orr5i2kSyuUcqTT5/57MVGcs4oMyDczpL4wYdV5C0sLIYPIJX0C+eyNT4THrVtiXT14Ts/Fxs4AXoHnScd+bkh39QRD1wTpva+PYd639GVj+DW3vM40tvi5Qv2ESUNW99wnCaHfaIgL2vvjf4EllXINwnOP/nJT/r8ez2D7bDnM9Feu3btgHo7+w3YcVHnOX4JwLV2+4HDKvKFtdGzmFZVVWVU+OFa1tITbrDdnDlzNG/evN2m2e9qH1188cXmeOP3R4JjaDhg+C8jWVhYjB5g9Ro3t/v3qJn/0uIuxd6MVxyFc/sSqaOx67nUMf/p3dLk+dKU+dJk1Pv5UoV/W8T4FrgmGMVjdlbvXQWf4dbeQ/Tdtnio1+b3R7k9nwlSyVhp4lv63dLOYvgA++39999vyDg1tQTh7Q69pdOjWjPBZsIMmR8JlnTcBZQMsOABoWehgtZXWH0tLLxCXV2d6QmPjd5tKTdSFphQzhcuXNgt2C6fPvPZYHHylltuMYsClsQPHSyRt7CwGN7gBjN2D2fse5rzPchi0xZpy2Kpek7XcyH5BOgx3ryz6/tlEx1Cf9inpb1PHPr3MJIWWihn6FnS0NkWL6Pek5xv2uK15bDnF2Us+tjz7S3KYmQBKy59lQmCgsyfe+65vT53Vy3mmFhD5kOhkEnEP/zwwweUiu8X8L5cu/2yZcsMmWA/QSZGigJqMTyAMo2NnvT1kWSjd8H7ev755811hPeXjXzJ/B//+Ef9+Mc/Nm3FCcqzGDqMnCPSwsLCwgU3nMopzsjGrKOkj90hbV7skHwea5c7NcorHpIOOLvruesWSg9+L6PcH+CMifs6KrJFfjAEvWLnFmw72fObHAcF1nyIfhqCH8jU7mccAJD80VZ/bzGicPDBB+u2227TGWecYVqwnXzyyTs9p6994iEX1KGiqh100EGGBI8EQJiw10MKqJ+n3harL6ohoYEWFoMFcigoXaEvPMfc8ccfP+JaJPLeqImnXR4lLLnQVzJ/11136fOf/7wJtsOxYDG0sETewsJi9IAQtznHOsMFtm9qlLcskma9vev7G16Q1i90hgsU4vHzHFL/ti84SeMWhbXnu63xOgk+7fEanbZv/LutwenzznwiGMmQe0vwLYYXTjjhBP3hD38w9fJ33nmnUejzJfEuCIiLRqN64YUXTFu3kaSIQdohByiGkCta+FHLywKGrfm2KHSQ3fLly7V69Wpjn+ecHIkukJUrVxqnwaGHHmrcLrvC7sj8Aw88oA996EP6y1/+omOPzZpXWQwZLJEfQpDmyM2ZmhRqvuidansrWlh4DGqTZxzqjGzse7rTFgzlfsurzmPbDmnb68447JNdz33tNmnxLQ7Bn7S/8zh2tmM1t8gPTBIixc7IFt4MwXfT8zNEH3KPcp+L4Hcq+Naib+FPnHPOOabu9rTTTjNq1jHHHJM3iXcB8aBWHmUeMk9o1Uip43UJBcSD+ROBYw8++KD23HNPs2hhCb3FQAk85H3FihWdrdcItBtp4NoCgSd7gmtLX7MneiPzLKqdeeaZuv766/X+979/kLfeojfY2c0QgfCH3/72t+Yk4ibL6jknA3YUbr4WFhY+Q9UMqeoc6cBzuogkLcQMqX/Vsdm7WPu0tOw+Z7goKneeg2p/zNd2tvlb9IPglzgjGwTskZTfk+B3KvjZFn23Bj8TtGcJvoXHoFVTMpnUe9/7XpP2DIHIl8S7qK6uNiTkmWeeMQsE2GZHEpkHkA/mTNu3bzc19CiotMxCsR9p9meLwQXnCOo0JJ7j6rDDDtOECVltcEeYkLho0SJz3nCNyLdtZU8yT309pUHXXHONPvzhDw/SVlv0Bbb93BCR+K9+9asm+ZLUWqxi1OBs2bLFXDx+9rOfWTJvYTGcAbGnpp4wva2vSdvedNRjF19bLZVWO18/fZW0/rmMer+fo+BXzbRt2QoNV8E3I0P0CdkzNfgxKdkupZLOc3FOdCP4kaH9PFrrHGdIz/7zI/zeaNEFVC3mCZdddpk++clPDsjSy/yCeQeTb+rxCcQbqWBeBaGHoFDPjEpPez4LB7b93M5oaWkxC0D0gidUkTINFsFGKhKJhCm74bpwxBFHDChjggDA6667TpdeeqmuuuoqXXDBBQXdVov8YYn8EKyCfeQjH9FLL71kbjDZq+PselYDCai56aabrM3ewmKkgJT2upUOwa9bJb3ja10/u+l90spHuj8/Wpkh9ftJJ/5gZ9XZonDglkcbvE4Fv93JSYDgo+Cj7ifjznO5XncS/MxjYBCu05bIW0i6+uqr9Y1vfMMQL1SzgdqFsdkDlMaRrlZzrEPOaF1H4B/kzB77lsiP9mME8v7cc8+ZxTw6Wwz0GCCV/tRTT9UvfvELs+Bo4T2sr3CQQa0bdnqU+J4WN/5NXRv1XjzvgAMO8Gw7LSwsCggs3PS3Z/QENvu5x0lbXnPU++1LHRK57hlp2xvSu3/W9dy7vyo1bXZUe5fo29r7gYHrMKp7ru4DEPhsgm9U/MYM0W92FgBYCDB1+Fk2fTNG9yTZYuD43Oc+Z9LaTznlFP33v//VO97xjn6/Fkn2WGFJpn788ccNmR/J/dhZuDrkkEOM2kqtM+8ZlZUaeuZZVigZnUBMw/26atUq1dfXm4T24447blS4NnCrQOIJtJs/f/6AnTnUxGOnR4k///zzC7adFgODJfKDDIJZqInvzcrC97du3WqeZ2FhMQqwx5HOcIHNmxZ4W193SGP2gt+KB52e90v+2/W9SJk0cR9p2iHSu386tNs+0mHa3OUg5FjwXYu+a9c3Nv0m5/Pj61Qit4qPTd+m6Vv0EZ/61KcMmadm/o477jCko79g4o7jD2JLbSvp79OnT9dIBgSNbAB6YxPq9dprr5lBHT3W+5HuTLDoUqLXrVunNWvWmEUcPn8Ws1jgGg3gvS9evNhkcdHlYaBZGffff78JtLv22muNy9jCP7BEfpDBCjjBdlxUctW88X1+PpJXyi0sLHYByJ6rtvfEaVc59nza4xn1fokUb5E2vugktGfjz6c5tm9eh5C9SftKE/axNv1CACKO9Z2Ry6afTfJjrVKseWcV332dbIJvrPo2G8GiOy688EJDwkmz//vf/26srP0FE3jXQkydLGUXvfWDHklgXkXPeUoaUWQhdPSjR52nXR+hZiN9H4w2UK5KVgKfNZ85nzFKNJ/5aPms2Qe4fFnEYuGCDICB4vbbb9fHPvYx3XDDDabVnIW/YIn8IIMWc9w0X375ZZOq2rNGnosNK+Y8z8LCwqIbZh/jjG6196uc9nfZieuowmv/56jCqx7t+j7EvnqOtPfJ0kk/7J70bq2mg2vT76biZ9fiN2W+bnNIPuCx5yKBhUZ7mj3q8gc/+EFjZYXcDwTYa2lv9+yzz5rAKuYdo6FmGjWWemgGtntI3osvvmgWSqZNm2as1iO9Tno01L5v2LDBDObVOC/e9a53jQr7fM88BBbrWltbzbk+kMBMFwTbfeUrX9HNN99sFhYt/AdL5IfgJkKLOdJoCbZjZbBnav1FF11k67csLCz6WHu/tzOygdJ74f2OPZ9BrT2PbXVS7Qqnzj6bYF45Vxozo0u553HiW6TKaVYhHmwVH5jU/I7uJN+2wrPogbPOOkvjx4/X6aefbkrwCMIbiLJIij0TfCb7Tz75pAm/Gk1kh/fqiiu0z4L4PfHEE+b7lBwwBpLobTF0YA7N50fyPMSVHCpKR1DhR+N8urm52SzSlZaWmnN8oIt0LIhcfvnl+uUvf6n77rtvwOGbFoMHm1rvYR/5fffd15B423rOwsKi4ODS3rzVIfTFY6Tphzjfr10pXXVQ7t8hPf/Qj0vHX9r1Gi3bpbIJluAPIwyne6PF7kFgHQF4Z599tplYD5SoEABGwC4k6K1vfashQaMVqJikmEMKa2pqNG7cOEPocTCMhHr6kZRaT993BDA+K4LcIO18Vhy/5EqMVmzatMm4fskBgFcMtIwgmUzqC1/4gu68805D4vfff/+CbatF4TF6j/whBmSd/o3cPAm2Q4lnZXg0rhxaWFgMAbiZV0x2RjbGzpK+8JLT6377m84jNfgE7hG2l60MN26SfrmvVFLtKPbU3PNovn6LVDZuyN+WhcVoA0ojYsCJJ55olOQ//elPRgzoL5h30CWHeQitcbEij9b5COSW98+AKG7cuNHUFy9atEhVVVXGRcnAzTBa6qz9AnRGFiUh7wwWJvlMKImgQ8FIWGgZKOF2F+S4RrBfBgrOAcLsCIjkmsN5YeFvjL6rtodwb57YXngcjTdNCwsLH1i+x82V3vJe6Zj/k876g3TRQulbm6XPLZQOOq/ruTtWsyLgWPSpwX/hRumer0p/eo905Rzp0Su6nkuw25r/OT3RLSyGOX70ox/p0EMPNQSOwCjaLhGW5gJFENVq3rx5xo7NhPeLX/yiIRvZgPz1HP/4xz+6Peeyyy4zyiL21WXLluXcHtqokTxPH2wS7alzHyj4m7S4q62tNVZ7ashHMyCGZBkxR2PRhFA8hBfs9w899JBeffVVE6aGo8FicMC+ZbGKxPUHH3zQHJe0jUNtPumkk8xnw2c02kk8Vnr2DcfnscceWxASz7UL5w+Oh6eeeionib/mmmtMgCBOL8aRRx6pe++9t/Pn119/vdkefsa1js+uJ/gse14Tf/zjH3d7DsF6nH84higZsOgdVpG3sLCwsHCS1FHaszHrKOlbm6SaZU5ivlHxeXxDql8nVe3R9dxNL0t/fq/zddlEacK8jHI/z1HyJx/gWPwtLIYB6ENO6RtkPpFI6Fvf+pYhdyRCU1ONnZXxs5/9zNhZUXE/85nPmO/deuut3V7rj3/8o04++eTOf6MquoCc33333abVHBNWMnUeeOCBnNvEgsKjjz5q2kC9853vNJbpgaZSE4h19NFHG2XvscceK5iyN9wBUYRIMFA+IfCowgTlcTxgwWeQYcDnaYWZ/hN3yB5lDQwWyHBJ4IKgjSD7d6D9z0caINo4Rjg2ufYU4tijvAQSTyjkf//7316zM1j8g3TTCQPHxJ///GeT4YG1H1cPeQVc6xjf/OY3e/173//+9/XJT36y898smGa3zvvpT39qFjxxyFxwwQXmumuRG5bIW1hYWFj0jqJSaeoCZ2QDBT7bakoie9VMh+C3bHPGmie7fv7eX0mHXOB8TfL+8gel8QT37ePY/61t1cJHoDY0G9jZIc0QOVRB6kZvu+22zp+jEv7whz80tlSIXnbNrmvRzgUUNSbPqFz8Hn9nV2DCy0T7/PPPN+V6d91114C73kCU+PvUHDMhh1Dx/iyBcsB+cC32kBfcEC7xJMQYom+Jff+JO/uXfcf+5bizZQy5wfUBVwik++CDD+71mpIvcD+QSM917cYbb9xllkLPVphc81DpFy5caK5DF198sfk+i4K7Ap9xb9tPOQXnkNs6kGBDi95hibyFhYWFRf6I9mhtM+9kZ0Dwa5ZK25Z0PaLiZ6v9a56S7v1a1muNyaTxz5PGz5P2PV0am6X2W1h4DNcyX11dvcvnYCntGbyFsv+JT3xCc+bMMao9CpNLVLALE4RL2jTqeE81PxeKior017/+1aha5O/w9UB6zbsgNIyQRFLtsZNTh5ytlFk4pRKurZjPMxexh3Dxc8gI+5NH/j3ayD0LHJAyzgvIO4N9xflhiXt+YD9yXkKyceMUqrsCPeJpdUlHDFxH+XwOfL7/+te/TEkOFvt8gKpPKj72/Q9/+MO65JJLOq+bHBOQeM4drnXY7C16hyXyFhYWFhaFJfjTDnZGbyifLM17t7R9qVOH39EgbXjeGWDK/C4iv+x+afEtGZK/tzOo8c/Vu93CYpBURJSmt7/97b0mOEPimJh+6lOf6vZ9yPZxxx1niDqW+c997nOmvpV6esDEHPWfumAIHxPXvgBSeOmll5rtYSLMJHyg7ekA20mtPh12KC+gVRuE1RKtvhN7iI1LXrEGU7YA6XHJPcSVRRsG+3u471vOD1RTjmsGZJ33DvmEnLmLGdixeRwJ73mowPG0YsUKk8/B8bXPPvsUZEGIz+wHP/iBKQ266aabTAZIX4ErAOJOMB7H8L///W9j8e8ruPYddNBBZlGUQD0s+LgMfvGLX3Q+B2cA9nqOFdsSctew7ecsLCwsLLxDvF2qW+mo9tuXOSr+KT+VyjO1vw9dKj31y+6/Ewg56fuQ+xMul8bv6XyfEKpRpnrlgr03Fhaf/exnTaATAVDUiOba3yeccIKZmNKyaVfW1O9+97umZp6k6UK2p6NOFXWeCTCT30KAEDys9iTkEzrFpN0ifzDNpnbYVaVdwgvhh9C6bgx3QFyo0We/s7AzENJbiPZzbH8sFjPEjfbJvBe2Pft9AOqq3fcAYbekfWBgQYTzj33vEt9CgM+L0hwUfq5XhG/nA7aHOnbuLziIfv/735tFv2wyj7Ue5wClQ9mZILnwhz/8QZ/+9KfNsTSQbhyjFZbIW1hYWFj4FxtelNY80UXyeYxlJXZf/KpTmw8e+aH00p8zyv1e3R8rp48akm/vjYUD4XME0WE1Jzk+12QbezyEhdr13aVpE2xH6jykqJCTVhT9M88807zuf/7zn5wLDv0BNnHUecL8rDpfWKCK9iTFDD5DBvuefc0x5RJ7HiH31JWjducaKLZuGjivQUAiSeL8jCk/f5fv5xo4B1zS7hJ3Hvk9fp+/z0IDZD2buPO90VY6MFhgX1OisWTJEpPwznlXqLwKzmMW/SDXkHAyHQaK448/3mSEXHfddf0i8jhWcBbxfukCYpEfrLXewsLCwsK/mH6wM1yw9ty0xSH1Ncsdgu6CdP3mrc7IDtoD4RLp889LVTOcf5PAn+iQxu25c72/xagHk2nay2EbZVKai8SzYAKJh2ChbPWlJRbqOf3bC608EcT3yCOPGOs+te1sd751q7kAeUOxo34edZBUfqvOFwYQX5cIT5o0aaefQ6yzyXQ2uc4m3qjuPLrfg6i7Gp37iGIKIPf8XZf0QxBR6t2veeTfEDx3AcFdROiZ/WAxuCo85y9ZAoUCjiIW+8466yz9+te/7rdDoyc43jgm+wuuiRyTA+3AMVphz0oLCwsLi+ED1MDKKc6Yc2z3n512lfT2LzoE37TMWyrVrpBqV0rppFQxpeu5T/5cevVfztcVUx17vqm/R8HfU5r9DilUmImOxfADAXU333yzUeOpaab1GMDpgPoIiacdHYoqYXP8mwFIf4cUkSi/detWky4PGaIv9hVXXKGvfvWrg7LNbjAU4XmoZFdddZUuvPDCgrw2xA6FjTZQLGxYdX7wAXF2if5ArfW0FisUcbMYfBWeWvhCLZzw2lwXCJSjJp5Sof6CenaOJULqWHTgGsn14P777zc/5zrJoK7frafn+snzKQ145plnTJtNriV8n3+zXXT7YIHTIn9Ya72FhYWFxchGMiE1beqy4IM7vyAtuUdqrdn5+dTgf3trF5F/9nqpabNj00fBZ5QWpl5xMGDvjQNHbwSV+nbqS13raC6sXr3aTMYJsWPiy6SWqdaee+5pJtH0Tx5sG/JDDz2kD33oQ6Y2+ne/+11BFXSC/VANWZxw06Ut/IlC1MhbDC7ITaAFHCo8bpdCqvCQbTplcD345z//aUosBoKPf/zjevjhh004Hec95//Xv/51kxECCOC87LLLer1uvvTSS8Y1xIIFKj5Op49+9KP68pe/bOvj+wlL5C0sLCwsRi9a6xzVHhW/FiV/uZSMSedm1Hpww7ukjS90/72SaofQ0zbvtN86TgGQSkpBb/tv23ujBcAGT6I9Ctktt9xiJt2FAhZukrRXrVrVqSBaoug/WCLvX0DcIbQEx+Fu2XvvvQtavgBpPuecc7THHnsY11Ch+s5b+AvWWm9hYWFhMXqBsl56mDTjsN6fc9BHpSkHZoj+Ckfdb6uTNjzn1ONnq7d/eq/UsF6qntOl3tMur3qu01LP2vUthghTp0416hlt8ai3pb0T7fEKYYeHcOy3337GMouayN/h34TsWbu9hUXvQD+FvFOmwoIrKnkhHTO8Pi4clHK3LWWhwvIs/AdL5C0sLCwsLHaFg8/v/u+OZqlulaPkpxLdfwbZb9nukPnVTsBUJ6r2kC5e3PXvN+6Uisocy3627d/CokBgAo/d9ZhjjtG5555rAvGuv/76gtnhqXOl7R3q/2uvvaY1a9ZYu72FxW5s9IQWHnjggSZEspALX6TEY39/7rnnTMtMznuLkQ1L5C0sLCwsLPIBKfdT5jujJz630AnXq1uZCdrLhO0xxs7q/tx7/k9q3iJNPkD6zFNDtvkWow/HHXecFi1aZOpR6Un9j3/8Q4ceemhBXhsiMm3aNJO8jt2eVn3Wbm9hMXQ2erBw4UJ98IMfNK3cSIIvRGs5C//DEnkLCwsLC4tCoWy8M2Ye3v37qZQUa876d1KafohD9CfuN+SbaTH6QHsnVLorr7zS2Hl/8IMf6Etf+lLBgvdy2e3pC02Nru0xbjEaQWs2XCoscA2Gjd79Gz//+c/1ve99z5zTF198sT3fRhFs2J2FhYWFhcUIgr03WuwOTz/9tAnCQx38wx/+YBT0QoKpJcnWb775pvmadnXU7Nv6+aGFDbvzBhzzGzZsMCo85S0c/4TNFfr4p2UdLSbXr19vXDaHHbaLrBeLEQm7ZGNhYWFhYWFhMYpAXTs9nrH4HnDAAbrmmmuMslcoQFgg7rTo22uvvUz9/OOPP65t27YZkmNhMRLBsb1161bTnpJFLBwpnAOFroXnXL3qqqtMnT3nLw4YS+JHJ6y13sLCwsLCwsJilIGgumuvvVbvf//7TUDWbbfdphtvvNFY4QsFLL68Hmn2tKp74YUXjFtk33331dixYwv2dywsvEZdXZ1JoscRxQIZPdIHIy2e8wgVfu3atbrrrrvMQoHF6IVV5C0sLCwsLCwsRilOOOEEo5jPnTvXqHvXXXddwVVzCA3KPH8LAv+///1Pzz//vJqamgr6dywshhoQd1LiKVcZN26cOcb33HPPgpN4VPjf/va3RoUniwJHjSXxFrZG3sLCwsLCYgTB3hst+osHH3zQqPNYgn//+98XVJ3PRltbm5YtW2ZSvEm7R8GsqqoalL81mmFr5AcPtHrjGKZchIBHzpni4uJB+Vuo8JyXBOfhmqELhYUFsIq8hYWFhYWFhYVFpzqPLRh1/uqrr1YymSz43ykpKTHK4vHHH2++fuqpp4yiWVNTY2voLXwLjs3t27cbRwmjrKzMHMMcy4NB4hOJRGctPIF51MJbEm+RDavIW1hYWFhYjCDYe6NFIfDAAw/os5/9rLHC/+53v9Phh/doqVhAdHR0GNVx9erVpj0XNvzBSPkebbCKfGEAVdqyZYtR4FtaWky3B0ZRUdGg/U0WCi666CK1traaMMp3vetdg/a3LIYvrCJvYWFhYWFhYWHRDSeeeKJef/11nX766UYF/OQnP2kU88FANBo1iiOOANLuFy1apEcffdS01Spkmr6FRT7g2KP8g2MRNZzQRs6LffbZZ9BIPKn3559/vk466SSdc845phbekniL3mCJvIWFhYWFhYWFxU7ALvyd73zH2O2xFFPLTtL9YNjtAaoxQWEQehRP+nBTt7906VKj2ltYDAXa29vNMcexhwpPECQWeh7D4cFp+OXa6Km1b25uNgn43/zmN80il4VFb7Dt5ywsLCwsLCwsLHoFNfP/+c9/jE37i1/8om644QZTPz9YdnsSv2fNmmXC9rA0Y7mHUKHWQ/AJxrO2e4tC2+cJsONY27Rpk8aPH29q0wljHOxjzbXREwJ5yy23GNXfwqIvsIq8hYWFhYWFhYXFbkGtNer8+973PmO3/8QnPmGU+sECBGrKlCl629vepmOPPdYo9pCexx9/3CR4o2JaWAw0RwDy/thjj+mZZ54xlnnauh155JGDntPQ00aPfd+SeIt8YIm8hYWFhYWFhYVFn+323/72t039fG1trbEbf//73zd24MFERUWF5s+fb0gPaj1E/v777zf19Cipwzi72cIj9Z1jh2OIOnicHhxbdGsgcHGwA0m/+93vmnPH2ugtBgJrrbewsLCwsLCwsMgLkOl///vfpnXc17/+dZNsTz39pz71qUFN80aVd2339fX1htDTuo4FBsLIGLQFs7DoCUjzhg0bzCBzYdq0aXr7299uOjMMBfibJND/8Ic/NOGOdIbAbWJh0V/Y9nMWFhYWFhYjCPbeaDHUYCp511136Vvf+pZpl3X55ZfrQx/6kILBoTF+Er5HLT0EDbsyNfQzZswwNfWjWeW07ecc8rxx40ZzbHBNnDhxojk2qH0ni2Gojs+//e1vRoXnmvzjH/9Yp5xyis15sBgwLJG3sLCwsLAYQbD3RguvAGG56aabDGGprq7Wj370I5188slDSlggboSVQdywT0PcUOmpdx6sxHG/YrQSebIT3IWdbdu2mWORY4CFncF0i/QEFOvuu+82tnncAO4C11AtIFiMfFgib2FhYWFhMYJg740Wfmjf5VqI999/f/OIhXmo0dLS0mmlxikwYcIEQ+gZWPFHOkYTkSfxHTcGBJ4ARsor3FKL0tLSId+eJ5980jhUaGNHpsSnP/3pUe0OsRjBYXfUVVHvxEWVVibPPfec15tkYWFhYWFhYWHRDzCfu+SSS7Ry5UodffTRxkb8jne8wwSLDaV+BJmjLzcJ+6Tejxs3TuvXrze1ySTfQ7JY8BrGmtaoBZ8ZGQl8hiTO0/Odz5bPmM+az3zvvfceUhLvKvBHHXWU3vve9+pd73qXOQdo2WhJvMWIVOT/+c9/6mMf+5iuvfZaQ+J/9atf6V//+pc5MbFD7QpWdbCwsLCwsOgOe2+08BsgXIg2zPGoT8ZqfOaZZ3pmMcZ+76q3WK+xW6PSUzcNERwpFvyRpsjzfurq6sznxucXi8XMZ+YOr8gyVv5bb73VlJKwbSxiffaznzXXYQuLEU3kIe+HHnqofvvb35p/p1Ipc5H/whe+oG984xt9mqxgock1WSFkJftizAnfG6jfyr7I5fNcLiy97cbBei7IrvPJ57lccNjPhXgu2+vWvg3Wc6m5YxTiuRwPbviOH57LPthVH1wmOe5Exw/P5RjjWCvEc7PPz8F67u7OZXuNyP1ce40Y3tcI7o1YiC2Rt/AbsLffeOONuvLKK1VSUqKvfe1r+uhHPzqkdcs9wblYU1PTSeqxaBOWN378eDOorx6uxH64E3mXuPP50OqQBSGOG0g7Cy8sunhZb86C0J///Gf99Kc/NddejucLLrjAbKOFxVDA0ysTE+EXX3zRrMy6YPJy/PHH65lnnsl5wjBcMFkBP//5z3Ouwu21114699xzO//NjaM3AoC1//zzz+/8N6vG3HBygbAM2qu4YJWZi0suMJm66KKLOv99/fXXm4WHXODGcfHFF3f++49//KMJbMkFrEJcMFyQhkkLllzg4v3//t//6+aCWL58uXrDpZde2vn17bffbvpb9gbqf9wb8H//+1+98sorvT73//7v/zpbwmCve/7553t9LvuB/QEefvhh01qmN3zuc5/rdG9Qk4TFqjd88pOfNO1GwMKFC40VqzdwPHBcAI5Tboa94cMf/rCxcIFXX31V//nPf3p97gc+8AHtt99+5us333zTOFB6wxlnnKEFCxaYr1esWKGbb7651+dyoz7ssMPM1/RE/dOf/tTrc0844YTOesXNmzfrhhtu6PW5WNQYgGP36quv7vW5tFE58cQTzdeQCM6j3sAC3nve8x7zNeca52dvYB+wLwDn8BVXXNHrc/fdd1+dffbZnf/e1XPtNcKBvUaMrGtE9n3SwsJP4LqEUEO9MMfqT37yE33ve9/TV77yFXPuDXb/7lyACLqKLuC6DnFk0Gd8JBF7vwMy7BJ3hkvc2e+zZ882xN2LeveeaGpq0nXXXadf/OIXpnUdx/AHP/jBYblYYjG84emViJOUlVD34umCfy9ZsmSn52NZueyyy4ZwCy0sLCwsLCwsLAoJFvdYCKO0kkUt5nc/+MEP9IlPfMIsvNEj3itAFGfOnGlGT2LPQiRBfjhdcIRC8Bn82yaR5wfm/yz4MyDsDAiyS9xZJOXRD8TdxapVq0yI4+9//3uTvcDXp5566pC1WbSw8JW1HiUJ5QMl5cgjj+z8PioSISTPPvvsbhV5bPjWWm9ts6PJNuvlc6213l4j8n2uvUYM7LnWWm8xGsC1iXnfVVddZZw7hOOh3BNY5rde2xB7l3i6g/OuoqLCkHqX4HPuea3c+8Va716X3P3FtQnSzjZlL4gw/ETc3evqQw89ZI5NQhJPP/10ff7znzchjn47Ni1GHzy9wrDSxgSEwIps8G9qX3oC+3wuCz2Tyr7UV+VTg5XPc/O5OPrhufncWPzw3OyJ6kh7LpP1vh5rfnguN63h9Fzgh+f64by314jh+dz+nMte1htbWPQHXNfdMi5KwwhAxqrMPBEbPso9lnY/AKLJoITKXYTAfu+SVGrtCWxmsRd1mXIBSoZ4dAffH2kqLoSXRQ5a/tEz3R38m/3Ddcld6GCOz9fsB7+SYWryqX/HQs/nSrkcCjzt7Cws/AJfhN1R18tKl3shwM7Ealdfw+6s6mBhYWFhYeHA3hstRgKwsJMPAZEig+Kcc84xpP6II47wLflzwdSa7XdJbTa55WvgknvILO36EKp4dAfEd6Dvs1CKPO+HhQneU/bAJQtJz/W+3OH+m/c3HD43XMIsJJFCT5YPx9xZZ51l28dZ+BKep3V8+ctf1nnnnadDDjnEEHoCpLgYkPpoYWFhYWFhYWEx+gCZJdGe8dprrxlCf/LJJ5uSSkJKCZD0spZ+V4CwQtDdeu9sIFi55JcBIcZmTpmoS5CxovMaLrnnESKOUwk3D4+5Bio/v+cOtyyHxT1+D6LKcMtwcg3KfnhkEQCi7hJ2fo9t6Lng4NazD2enwerVq034IqGwBADjAGHxiPBcCws/w3NFHtB6jrRo7Eik7/7mN78xSv3uYFUHCwsLCwuL7rD3RouRCoSeO+64Q3/9619NRwk6pUDq6fRAevhIAUTaJdEukd4V6c7+N3Cn9i5hd3NCXEU812JAru/1dAqMpEA/rPM4PiDvZHLRcYdjiRp4v9XpW1j4msj3F3ayYmFhYWFh0R323mgxGkDPd1plQupJk6edKUSMR0inhX/C7vwCnBCEKXLM3HfffTrooIP0kY98xLSsJSDUwmK4Yfj5XywsLCwsLCwsLEY1Jk6c+P/buxPYKsruj+OnLGVHECNLAFnCvhRFUJYIUhUJS7QKkaBsihEQUaPByCJGFIRoDGhkCUKIO0YUlCogUCOLLYuIlDXse0QBERQp88/v8b3Xey/4f/sC5XZmvp9kvL1Lcea0nZnzLOcxVbZXb6qG3jdv3txGjBjhCqlpGbuvv/46bqUjhJNGNGRmZtrAgQPd78aoUaOsZcuWlpuba6tWrbKhQ4eSxMO3SOQBAADgW/Xq1bOxY8fa9u3bXQKvodGDBg1y87dVqGzOnDluHXiEg+oNzJ492zIyMtzvwGOPPeaWB9Qyclu2bLExY8ZY3bp1k72bwGVjaD0AAAHCtRH4e574hg0bbP78+bZgwQJbv369tWnTxnr06OG2Bg0aWNCFZWi9ftabN292P2f9vDVKQ73u3bt3dz/rZs2aFfqK+cClIJEHACBAuDYCFzpw4ICbH61kTz2zWupYiZ6KnLVr185VXQ+aICfyqvS/YsUKW7RokUve9fO988473c+0W7duVrVq1WTvIlDgSOQBAAgQro3Af69+r2ReSf3SpUtt3759bhnkjh07ui0oiX2QEvlI4r58+XK3rVmzxi0/2KlTJ9frnp6eTrV5hE7S15EHAAAArpYyZcq4Zca0yZ49eywrK8uWLVvm5lPv37/fWrVqFU3stcxdEBL7ICTu+nmoQF2HDh3cqAogzOiRBwAgQLg2Apdn9+7dLrGPJJFK7Js2bermXUc2Vckv7Mvc+aVHXsvC/fjjj7Z27droppUIIom7NhJ34EIk8gAABAjXRuDKUo99Tk5OXKKpv7MmTZrEJfdpaWmFKrkvjIm8knYVIYyN5aZNm6xChQpxsdSICBJ34P9HIg8AQIBwbQQKlm6dldzHJqPajh8/7pbCq1+//gWb1jC/2pXTk5XIKz6HDh2ybdu2XbDt2LHDKlasGJe0a1PSTmV54H9DIg8AQIBwbQSuPt1O792713Jzcy9IXvW65tjHJvZ16tRxldUjW6VKla54IltQibyO9dixYy5ZP3jwoHvcuXNn3DGfPn3aJeeJDRqNGze2GjVqkLQDVwDF7gAAAIDLoMRUc7q1denS5YLh5OqJjk10NQdfCbA2FXZLTU11vfZK6qtVqxZN8PWaGuTKlSvnGgNiH7WVKlXqkpNiJeRKuE+dOuX2QVvkaz2qUfDw4cPRZD2SuOs1NRJovyL7Wbt2bWvRooX16tXLJex169Z1+wag4Pi6R169DZpTo2VD6HUAAODvHnn1eGmYr3rmART+5fBie7djtyNHjri/6cRk++zZs+57ixQp4hJ7bWoM0PPYTY0IJUqUsPPnz0c3fW/k34mkAfrexEYCbZUrV76gcSGyqfo/gOTxdSKvKqK6WQEAAPHUyF29evVk7waAAqBkPDa513bu3Lm4hD0vL8/11icm9xpmn9jDr0QegL/4OpHXSUqtlzoJXam5NpGeDHr5/0Y84hGPfxCLeMQjHvFIXjx0WddNvXrQdNMOAACCx9dz5HWDUlC9DbrR4ubzH8QjHvH4B7GIRzziEY/kxIMh9QAABBtN9QAAAAAA+AiJPAAAAAAAPkIin0CVPV944QX3COKRiHj8g1jEIx7xiEc84gEAAK4kXxe7AwAAAAAgbOiRBwAAAADAR0jkAQAAAADwERJ5AAAAAAB8hEQeAAAAAAAfIZGP8dZbb1mtWrWsZMmSdsstt1h2draFwfjx461Vq1ZWrlw5u/766+2ee+6xrVu3xn3mjz/+sKFDh1qlSpWsbNmydt9999mRI0cs6CZMmGApKSn25JNPhjoWBw4csAcffNAdc6lSpaxZs2a2Zs2a6PuqmTlmzBirWrWqe/+OO+6w7du3W9Dk5eXZ6NGjrXbt2u4469atay+99JI7/jDE4ttvv7Xu3btbtWrV3N/FZ599Fvd+fo79l19+sT59+lj58uWtQoUK9vDDD9upU6csaPH466+/bMSIEe5vpUyZMu4zffv2tYMHDwY2HgAA4Oohkf+Pjz76yJ5++mm3PNC6dessLS3NOnfubEePHrWgy8rKconp6tWrbfHixe4G9K677rLff/89+pmnnnrKFixYYHPnznWf181oRkaGBVlOTo5NmzbNmjdvHvd62GLx66+/Wrt27ax48eKWmZlpubm59tprr1nFihWjn5k4caJNnjzZpk6dat9//71LXPT3o0aPIHn11Vft7bfftjfffNM2b97snuvYp0yZEopY6Jygc6MaPS8mP8eupHXTpk3uXPPFF1+4ZPjRRx+1oMXj9OnT7lqihh89fvrpp66BtEePHnGfC1I8AADAVaTl5+B5rVu39oYOHRp9npeX51WrVs0bP368FzZHjx5V96KXlZXlnh8/ftwrXry4N3fu3OhnNm/e7D6zatUqL4h+++03r169et7ixYu9Dh06eMOHDw9tLEaMGOG1b9/+X98/f/68V6VKFW/SpEnR1xSnEiVKeB988IEXJF27dvUGDhwY91pGRobXp0+f0MVCv/Pz5s2LPs/Psefm5rrvy8nJiX4mMzPTS0lJ8Q4cOOAFKR4Xk52d7T63Z8+ewMcDAAAULHrkzezs2bO2du1aNww0okiRIu75qlWrLGxOnDjhHq+99lr3qNiolz42Pg0bNrSaNWsGNj4aodC1a9e4Yw5rLObPn28333yz9ezZ0029uPHGG23GjBnR93ft2mWHDx+Oi8k111zjpqcELSZt27a1b775xrZt2+aeb9iwwb777jvr0qVL6GKRKD/HrkcNH9fvU4Q+r/OtevDDcG7VEHzFQMIeDwCXP/1x9+7d7rxysU0jByP27t3r7mtKly7t/p1nn33Wzp07F/f/evHFF6169erWvn376HUOQOFVLNk7UBj8/PPPbu5r5cqV417X8y1btliYnD9/3s0H11Dqpk2butd0c56amhq9+YyNj94Lmg8//NANhdXQ+kRhi4Xs3LnTDSfX1JPnn3/exeWJJ55wcejXr1/0uC/29xO0mDz33HN28uRJ13hTtGhRd954+eWX3fBoCVMsEuXn2PWoG8hYxYoVc42GQY+Pphdoznzv3r3dfPiwxwPA/zb9Ucm8Em9dhzX9UdPcNH2pRo0adujQobjvmT59uk2aNCnayKxrlZL4KlWq2MqVK93nVbNDU+ZeeeUV95kVK1bYl19+aZ9//rlrSHz88cdt0aJFSTlmAPlDIo84ulj89NNPrpcxjPbt22fDhw9381VV9BB/N+6oxzBysVePvH5HNA9aiXyYfPzxx/bee+/Z+++/b02aNLEffvjBNXypkFnYYoH80yieXr16uWKAahQDgPz66quv4p7Pnj3bNQBqhOBtt93mGpWVoMeaN2+eO+eoIK8oIVfiv2TJEte42qJFC1eoVY2LY8eOdQ3zqoeja5nqAqnBQP8fAIUbQ+vN7LrrrnMnwsTK43qeeHIMMrW+qtjSsmXL3NCqCMVA0w+OHz8e+PjowqgChzfddJPrGdOm1nAV8NLXugCGJRYRqkDeuHHjuNcaNWrkhulJ5LjD8PejoYjqlX/ggQdcNfKHHnrIFT/U0MewxSJRfo5dj4kFRHXDqMrtQY1PJInfs2ePayCM9MaHNR4Aruz0x4vdx6iRWStgRGgaj65ZsSOmVIhUI8xUbDPyXCOHNPT+7rvvjl7XABReJPJmriWyZcuWbu5rbC+knrdp08aCTr1ESuLVgrt06VK3tFYsxUbDr2Ljo/lZSuSCFp/09HTbuHGjuwhGNvVGa+h05OuwxCJC0ywSlyPU3LkbbrjBfa3fFyUdsTHRzYGG5gUtJqpErvnLsdQIqPNF2GKRKD/Hrkc1gulGM0LnHMVPc+mDmsRrCT71hGn5xlhhiweAKz/9MdHMmTNdY7tqukRoqs7Fpj1F3hPd26j3X8vNqgFW90MACjeG1v+H5v9qaKwStdatW9sbb7zhlhYaMGCAhWE4vYYKa16UiqlETuoqVKW1oPWoll3FSC3A6lEaNmyYuwm99dZbLUh0/IkXR81B0w145PWwxCJCPc66IdDQeiUl2dnZbv6dNlFBHd1YjBs3zurVq+cSOi25pSF6KsoTJFozXHPiVdxQQ+vXr19vr7/+ug0cODAUsdD65jt27IgrcKcGLv0tKCb/7dh1c6menkGDBrmpGUp01YioEQ76XJDioZEs999/v6u3oZFOmqMaObfqfTUgBy0eAJI7/fHMmTPufk7n3kuVWLcDQCFWwFXxfWXKlClezZo1vdTUVLcc3erVq70w0K/BxbZZs2ZFP3PmzBlvyJAhXsWKFb3SpUt79957r3fo0CEvDGKXnwtrLBYsWOA1bdrULSXWsGFDb/r06XHva+mx0aNHe5UrV3afSU9P97Zu3eoFzcmTJ93vgs4TJUuW9OrUqeONHDnS+/PPP0MRi2XLll30XNGvX798H/uxY8e83r17e2XLlvXKly/vDRgwwC33GLR47Nq161/Prfq+IMYDQMHREsnVq1f3du7c+a+fmTNnjlsiV8sIx9J5OS0tLe41/Ts6H61bt67A9hlAwUrRf5LdmAAAAAAgnm7TNfJP0x+XL1/uRjz9m44dO7q6T5988knc65mZmdatWzdXrT7S465Rdar7ojodJUqUKPDjAHDlkcgDAAAAhdCQIUOi0x8bNGgQfT0y/TFC03zq169vCxcudFN2YmlqjyrVa8rOxIkT3TQfFWt95JFHoivSAPAfEnkAAACgEFLtlYuZNWuW9e/fP/pc68u/++67tnv37guKsopWzhg8eLDr1VftH9WFmjBhgluRB4A/kcgDAAAAAOAjLD8HAAAAAICPkMgDAAAAAOAjJPIAAAAAAPgIiTwAAAAAAD5CIg8AAAAAgI+QyAMAAAAA4CMk8gAuSV5enrVt29YyMjLiXj9x4oTVqFHDRo4cmbR9AwAAAIKMdeQBXLJt27ZZixYtbMaMGdanTx/3Wt++fW3Dhg2Wk5Njqampyd5FAAAAIHBI5AFclsmTJ9vYsWNt06ZNlp2dbT179nRJfFpaWrJ3DQAAAAgkEnkAl0WnkE6dOlnRokVt48aNNmzYMBs1alSydwsAAAAILBJ5AJdty5Yt1qhRI2vWrJmtW7fOihUrluxdAgAAAAKLYncALts777xjpUuXtl27dtn+/fuTvTsAAABAoNEjD+CyrFy50jp06GCLFi2ycePGudeWLFliKSkpyd41AAAAIJDokQdwyU6fPm39+/e3wYMH2+23324zZ850Be+mTp2a7F0DAAAAAoseeQCXbPjw4bZw4UK33JyG1su0adPsmWeecYXvatWqlexdBAAAAAKHRB7AJcnKyrL09HRbvny5tW/fPu69zp0727lz5xhiDwAAABQAEnkAAAAAAHyEOfIAAAAAAPgIiTwAAAAAAD5CIg8AAAAAgI+QyAMAAAAA4CMk8gAAAAAA+AiJPAAAAAAAPkIiDwAAAACAj5DIAwAAAADgIyTyAAAAAAD4CIk8AAAAAAA+QiIPAAAAAID5x/8B+Vmac0/kXN8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAH/CAYAAAD0Y+bPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWYVFUbx98NYGmkUzpFQCkREGlQEFARGwtsVOz67G5RsRULCxMDpVFUUkK6U7qXZr/nd4azzg6zu3NnZ/bemX1/z3OZnWDmxrn3nv+bCWlpaWmiKIqiKIqiKIqiKEpMkOj2CiiKoiiKoiiKoiiKEjoq5BVFURRFURRFURQlhlAhryiKoiiKoiiKoigxhAp5RVEURVEURVEURYkhVMgriqIoiqIoiqIoSgyhQl5RFEVRFEVRFEVRYggV8oqiKIqiKIqiKIoSQ6iQVxRFURRFURRFUZQYQoW8oiiKoiiKoiiKosQQKuQVRVEURVEURVEUJYZQIa8oiqIoiqIoMcSuXbvk5ptvlqpVq0rBggXl1FNPlalTp6a/n5aWJv/73/+kQoUK5v1OnTrJ4sWLM3zHH3/8IU2aNJFq1arJO++848JWKIqSE1TIK4qiKIqiKEoMcdVVV8mvv/4qH374ocyZM0e6dOlixPratWvN+08//bS8/PLL8vrrr8tff/0lhQsXlq5du8q+ffvSv+PKK6+U+++/Xz755BN54oknZPXq1S5ukaIoTklIw2SnKIqiKIqiKIrn2bt3rxQtWlS+/fZbOfPMM9Nfb9q0qXTv3l0eeeQRqVixotx6661y2223mfd27Ngh5cqVk/fff1/OP/988xre/PHjx0vZsmXl9NNPl2HDhkmDBg1c2y5FUZyhHvkYhTCoyy67LNd/d8WKFZKQkGBuBF6A9WB9WC8ldnFrPFvwXNSrV0+OHDmS4+9iO9ie3ObBBx8054LinLvuuktatmypu05RlJjg0KFDcvjwYUlJScnwOiH0v/32myxfvlz+/fdf46G3FC9e3FznCKe3EHpfv359894pp5yiIl5RYgwV8h5j6dKlcvXVV0uNGjXMBbpYsWLSunVreemll4wFNi+BICpSpIjEM1jAEV924SbcqFEjefHFFyMiKpXs2blzpzz11FNy5513SmLif5dEe0wIXwzGvffem/6ZzZs3664OGNO1a9cOuk8IBbX77csvv/TEfiPPdNasWfLdd9+5vSqKoijZgje+VatWxvO+bt06I+o/+ugjI9LXr19vRDzggfeH5/Y9G1q/ZcsW2bRpkwwZMkT3vKLEGMlur4DyHz/88IP07dtXChQoIJdeeqk0bNhQDhw4YKyrt99+u/zzzz/y5ptvms8uXLgwg+jIq1xyySUmRIx9FqtUrlzZ5KYBgpBctVtuucXcWB977DHJC7g5nt99913j3bjggguOeQ9j2ogRI+S1116T/PnzZ3hv+PDh5n3/fEN466238rwRhv2yZMkSmTJlirRo0SLD/vn444+D7jc3KV++vPTq1UueffZZOeuss9xeHUVRlGwhN/6KK66QSpUqSVJSkpx88snmPjZ9+nRHe4/ceRZFUWIPVYIegTAoBCn5SvPmzTMe+AEDBsj1119vBAOvnXDCCemfR7jmy5cvy+/cs2ePeJ2criM3L0SBV0OK8apnJ1gIabv44ovNgmdw4sSJZhxgHcfKnpuwrm5EAoQynqPFe++9Z8RbYIgidOvWzXjsf/rppwyvT5482Zyz/rmJFrYjlg1LkaBmzZpSt25dc+0KHF9ff/110P3mNuedd54xmi5btsztVVEURQnpOjthwgTZvXu3KVKH4fTgwYMmohPjJGzYsCHD/+G5fU9RlNhHhbxHIEeXizHtP2gVEkitWrXkpptuyjSn2OaKc1G/7rrrTOESPL0WhEi7du1MOBbh+s2bNzee38y+zz9MliUrZs+ebf6vTQfgJoGVmHCtYDm8GCUuvPBCOe6446RNmzYS6Rx5tqVHjx5mUo43kHVi3T744INj/v/27duNeK5SpYoRX+xnwqwDxSyeOlq7lCpVyoS/U1AmWFgw63LDDTcYryOGF77z559/drRNrC/Hh9YyGzduzPAeoXP8NutQsmRJY/wJVmX21VdfNdvM59gHkyZNOuZYUuCG9f3000/lvvvuM1b9QoUKGeEKVLlFyGJo4HXGz++//x60/Q37nG1l3HXu3FlmzJiR/hna3ZxzzjlmXLBtjEvWm8I7WY0/BBURKmwnv0/+HlEr/tht+Pzzz030At/Nb3Ts2NF4hLMDMc749c8j9Id9ctppp2U4V4Dje+KJJ5qomexy5B944AETbTBmzJgMnxs4cKDx8hPSbQllnwNjmzHCtjKZe+ONNyQUGJukq6Smph7zHp4cjpE1Hk2bNs1UOC5durQZR9WrVzfndajwfZ999lmGc+n77783v41oDgbVlvkNwj8ZT5xDREz4Q5QSeZ2cB+wnPElt27aVcePGBa3nwblLJBP7ie9kv/m3aLLYMUDxKEVRlFiBayDzxm3btsmoUaNMdBHXa67n/vcd7u3cYwjJVxQlPtDQeo/ABBfhhVjMCYj4MmXKmImu9XYjdpkcMym+++67pUSJEjJz5kwjMBHUOYWcV0TX5Zdfbm4cNgWAxz///PMYbznijPzZxx9/3PQ5jQaIuHPPPdfkf/Xv39+IAQQWk38b2YCgQCghHqhLcPzxxxtPK/uIHDPy1C1ESOC1veiii4yQQPyyHSNHjjzGuzh27FgjLBFNiKBwCp9ZEcKxsiBUaRODCCJv2+a0ITQ5nvazQ4cONb+NuCFEn+/q3bu3MZz4G3cs5NghKKlsu3//fvM320DlW/aXFaJ4rjt06GCMAjZc+pprrjEGDX6PSrcYbxCZ8+fPN2F+7CvEIN974403mvHB/ma/YURBiAUDrwHnAsdo0KBBxoBCNV2OAb/Xp0+fDJ9/8sknzTqyDRgIMIxxrJi0ZAXHG1jXzOAcwYiGoQ0RTBj+F198IYMHDw4pPBwjCec3Y5EWQRjTmGwRgs++b9y4sflcqPvcthniPMc4xvrw+cBcyGD069fPGHlsGo+F/cw6co4Q5YIByf4GheAYW4yjr776Ktvf8N9vrB/GFrYBMIhgZMHgE+yYY6yxxjB+GwMk+40JKAYj4O+3337bGAqIWsKYhAGUcYZHip7I/vCbfIZznO9mbJx99tnmmuUfBcJYROxjOOG8URRF8TLcR5hDEf3EnIcUTIq2MhfjWsc189FHHzXzLYQ98wcq2TMfUBQlTqD9nOIuO3bsQM2m9erVK+T/U7Vq1bT+/funP3/vvffMd7Rp0ybt0KFD6a9v3749rWjRomktW7ZM27t3b4bvOHLkSKbfZ2nXrp1ZLMuXLze/w+9ZUlNTj/l/w4cPN5+bOHFi+msPPPCAee2CCy4IaRtZn8KFC2f5GbvdrJf/tgT+9saNG9MKFCiQduutt6a/9sgjj5jvX7RoUYbvvOuuu9KSkpLSVq1alek2HjhwIK1hw4ZpHTp0yPA6v5uYmJj2zz//hLSN7Nt69eqlbdq0ySwLFixIu/322833nHnmmemfW7FihVmnxx57LMP/nzNnTlpycnL66/v3708rVapUWvPmzdMOHjyY/rn333/ffKf/sRw3bpx5rUaNGhm2j3FRu3bttK5du2YYI3ymevXqaZ07d05/rXjx4mnXX399pts3c+ZM8xtffPFFlvshcPzdfPPN5v9NmjQp/bVdu3aZ369WrVra4cOHM2xD/fr1zbZbXnrpJfM6+ycr7rvvPvM5vjsQXmfbtm7dmpY/f/60Dz/80Lz+ww8/pCUkJJhjYsc0x87CdrA9/rAefMdVV12Vtm3btrRKlSqlNWvWLP0YOdnnvXv3TktJSUlbuXJl+mvz5s0z4yO7SzrfzW+fc845GV7//PPPM5wzX3/9tXk+derUNKcwxk444QTzN9t45ZVXmr/ZbvbBsGHD0o+b/7jgcxUqVEjbvHlzhu87//zzzTizY5Trm/+xtt9drly5tCuuuOKYaxXnA8fQ8u2335rXv//++2PWvUuXLmYsKYqieJ3PPvvM3L+5rpYvX97cr5jz+V/v77//fnNtZP7TsWPHtIULF7q6zoqiRBYNrfcANpQZT11OwUOFR83fW443Cq9aYA5wpPLKCbu14KGkYBueNfAPsbbgxY02eIfxSFvw7mG19s9/xavKZ/BUs852IcSW8GJy1YNtI+FreH35v8G2Dy+/kz6sCxYsMOvHgjX9mWeeMZ5n/xZ/eEIJUcYb77+ueLixttuwYsKh8YozDpKT/wu4wTvNdgaDiAX/7fv7779NODweVb7L/hYRHnhT2S82XBpPLV5vquYGw3rc8RwEC+fOjB9//NF4oP1TL/CGE46OZ5j0DH/wQPgXo7PHPrt8Z7aP/ZRVdwT2G+HuNt8bDy/RAtQxCBVC8B966CHjScZzzP4kwsAeo1D3OeOSfYlHhQgSC+2D+N7s4JzHE8/+JcLAQgg8aQR2f9voDiInyLkMF7aHsUtkBpEUXJsCoykAuwlFBXv27Gn+9h/jbBfnmz3X+A57rNknW7duNVEJzZo1C3o+EoXgP/azGhv2WqAoiuJ1mA/Q6YiIN6IIX3nllQxRblzvH374YVOlnrnZ6NGjpU6dOq6us6IokUWFvAcgZx0Q3DmF8Cl/uMhDsFzeSMFEmtBjQnsRhAhSux7+edDB1pGWetxk/JdI4C9y/CfpiHALwon0Aiui7WJzZf3z0xE0GCcwhpCzzecIYc9u+0KB0HsMLgg0qqMjqAib9ze8sK4IHER74PoSxm7XdeXKleaRXH9/EIyZhfgHri+/ZQV+4G8hRJk02O0mTHnu3LmmxgDCm1Bqf4HEdxOCzv8jzQBRRmh3sP3mD9uB4SUQBKv/dmZ2vK1w8z/eOQFByjFatWqVfPPNN2GlpBD2SBg94d+Ewvsbe0Ld54wLzplgrd2C7a9gIGz5DttqDUGPsEfgW+MexijqGmB84LiRc0mYP+vhBFsLgRB56gpQuyKYwZLtItWClJzA7cdIE3g+YgShTSPnCGkXfI50gWDjysnY4BzzauFMRVEURVEUfzRH3iNCnrwlBFFO8fesOiGzySseQH8Pf2ZWYXKNESrkp+LdxFOGFzNYBXT/dcQTaCfqlkjkzWe2zv7fzbpRmO2OO+4I+llruSY/GQ85uegIbYrKkFuLsAksghbOMaBQjX+xtdatW5uc7XvuuUdefvnl9HXlGCGIgm1bVh7l7AhcX3vMiAwIzDcO/D2OPR5OKpH/8ssv5v9QLBAvLPne8Nxzz5nca4qI8Rly3mm3R/2EYDn70TrewUAE4s3FiJZVRAzHn0JpCG3EbGbF2rICA4cV7OS5h7PPnQrpYGCQwqhDHQcMEuTGI+wR+Bbb451jxPsYmaizwbHktVDHG+cKBRb5f+Se43UPht1+Ojewj4OBcLcFHxlPRCVwzSHfnuPPmLKGy3DHBuIew4WiKIqiKIrXUSHvEfBU4Y36448/IlpRlOJNgJEg0Esb6KXCIxYInk+K8GUGE1+qouK5o8CexQqW7MBDi6fTDdg3eCMzq1huQXzg+UPM+LcVQ8hHAwQLgoZK5BRvw6PIuiI88HBnFRpnw70pfNO+ffv01xGrhKRbMRTKmMHAlN2+sWKNIosseE0xQlCYzwp5oMI7C4XfMPpgrHj99ddNIZ7MtoPe8sHSEPy3M6eQymCr12e1bzB2IBwRkWyXU7GHUEV8sk8pQEShR4oxUnTNyT7H88y6BDu/gu2vzMAQQQFH0nowpiHsbTqMP7zGwvHEaEWKBoUeKbYYKhgL+Dzh+meccUam24UhBcNhdmMOAwPXJIxF/gZIohxyCuPAFh9UFEVRFEXxMhpa7xHwCuOZZcIb2PcT8DQx8XYKlaeZIOOtCqyw7e+RQkjgaSOX1T+cPFhrs2DerkDvln/F9+xEIBN3/yW3QMxgOEGgB4JRA/FrtxHB4N/THVFMiHU0xwO5yc8//7x5juBjPTCYBO5rnttWf+QJ42WmIrpdfyCsOdQwc6qmMx5o2+WfR+0fBg3sj8BQZryjRJdYzzFC0X89AEFPRfasvMsIPkLQOT4W8sUxdiE6ndQgyAprNKO2QHZgVEEsUvnXKRxHDBisP5XqybG/9tpr0/OxQ93njAGMX4w9wvwtpFcEG8eZgfed/U+IOuklgREGjJXAcWYjBZxGBWCwYL8RzeJfx8AftotQfoxmwSKT7Pbbz4L/+lGnwX+shANjmetsTjuHKIqiKIqi5AbqkfcITOLxeDHBJg/40ksvNXntCGsEAIXZgvV5zw48fC+88IIxENA/2fZvp3c1xceYyAPv4+kiHN4WUMH7aD2FWX0/IefkSiM8ye8mfBrPViTgO4N5bclTxwOcEwjLJU+YaAjbmg6xSNgz+wKxjueV9nIIMfYN+w+vM3neRDjQgzwaIFQRs+RHIxw5DuwHWuPZdnIYaNjPhLVTBA6hiVAiT51Wb7T84ljyeQrn8R2h5P8isvldPM+06iP1geNK2ziK6nHMCbcmHJ3QeIQaXkzCrSmmQ49uQqltSzVaiZF/TSQBov7DDz9MF26ZQXFGisuxDoTic7wZq2wvYo91jAR4djnPWO/seqSzjeF4axHZHEPGGMXcgOOBMGYME+Ie6j4HjDmIb1Ia+P/sU9oQ8v9CHY9ETTB+7733XiPM/cPqgX2N8KYwHeOGY41xiPXIzKueGRRfYkxmBy0E2daWLVuaYo2cA9TfoIAdx4e/gfMVbzzrxrnJmCC6g88HM4KECr+BcYB6AIqiKIqiKJ4nwlXwlRxCK7QBAwaYFlu0FKF1XOvWrdOGDBmStm/fvmzbz2XWLuq7775LO/XUU9MKFiyYVqxYsbQWLVqYFnH+PPfcc6Y1FW1K+M1p06aF1H5uzZo1aX369EkrUaKEaRPVt2/ftHXr1pnP0Z7LEqxVV1awfXw+2FKzZs0s28/5t26zBG4L0Hbs7rvvTqtVq5bZ36VLlzb76dlnnzUt5izvvPOOaQ/GvqFdHL9rtydYy7JwWnUFMn78+GP24YgRI0yLQdrmsbAu/F5gS5mXX37Z7AfWl2P9+++/pzVt2jStW7du6Z8J1gIssHXc2Wefbdp38T1833nnnZc2ZswY8z4twGiV17hxYzNOWR/+fu2119K/Y9myZaYlGMeLlmklS5ZMa9++fdro0aMz/Faw9odLly5NO/fcc8244v+yHSNHjszwmcy2Idg4zYznn38+rUiRIse0GAzlWGbXfo5WabQCrFy5coa2QP4t8mghFOo+t0yYMMEcT8Ys7Ydef/31oOMxK+69917zecZ+IDNmzDBtIo8//nizHmXLlk3r0aOHuSbkZExnd9w2bNhg9nmVKlXS8uXLZ1oq0TLpzTffzNBS6fHHH08f3yeddJIZF4Ft/+wYeOaZZ475/cDzCvr162fOLUVRFEVRlFgggX/cNiYoihJdyNEmD5kQfTyrSsaQajzzRJVceeWVumvyIHTLoP4E+f/qkVcURVEUJRbQHHlFiTOohRBon/vggw9MaDIVxJVjQ7+pSUDF+GBdFpT4h5oe1G5QEa8oiqIoSqygHnlFiTPGjx8vt9xyi8lLp/AdOcbvvPOOqb0wffr0TAuOKYqiKIqiKIoSG2ixO0WJM6jqXqVKFdODHi88heIonkgxMRXxiqIoiqIoihL7qEdeURRFURRFURRFUWIIzZFXFEVRFEVRFEVRlBhChbyiKIqiKIqiKIqixBAxnSNPhel169ZJ0aJFJSEhwe3VURRFURTXoWvFrl27pGLFipKYqPZ6RYlFUlNTZf369bJhwwbZuXOn7N6925zXLPbvwNcOHjxo5sZ2OXz4sJkfcx3wX/Lly2fmzkWKFMnwGPg3S7ly5aRChQpSqFAht3eJoijxlCO/Zs0aU9RLURRFUZSMrF69WipXrqy7RVE8BAKbc3P58uVGqLPglLJ/2+eI9+TkZClbtqxpk5qd4OY5BW39BTtC/u+//5bGjRub51bg79+/3wj/YMYB/+c7duyQjRs3yqFDh8w6IOgxEPJoF/u8evXq5nqjxkNFyT1i2iPPhQu4IBYrVszt1VEURVEU10EAYOS290hFUXIXfGSbNm2SxYsXy6JFizIsS5YsMZ5zzlF/UXzCCSdI586dM4hkWsjmRBjzOwj8M844w3jhwwHhv2XLlmOMDSy///57uuEB5xq/Ubt2balTp06GhddKly6t0bOKEmFiWsjbcHpEvAp5RVEURTn2HqkoSnRD4PF6T58+3Szz5s0zgh1vdqVKldLFbOvWreXyyy83f+O9DldY5zYYEsqUKWMWPPuZceDAARNl4G+0GDZsmCxcuNCI/RIlSphtb9CggTRt2tQsfJ+G7CtKHhXyiqIoiqIoipIb7NmzJ4NoZ5k/f77xNiNMTz75ZOnWrZvUrVvXeKHxhucVCOtnu1kCIVSf6ARE/dy5c2XkyJHy0EMPybZt26R+/frpwp6lSZMmKu4VJURUyCuKoiiKoihKACtWrJDx48fLhAkTZMqUKbJgwQLjmbai8+yzzzaPeN41AiZzSPPByMHin35AaizGkBkzZshPP/0kjz76qGzevNmI+xYtWki7du2kffv2cvzxx+vYVJR4K3ZHHiDFNwhf0tB6RVEURdF7o6LkVLjbZe3atdK8eXMjKFu1amVEO3ntsSLayZH/8ccfc5Qjn5sgSdjniPs//vjDGFCmTp1qhPzpp5+evqiwVxQf6pFXFEVRFEVR8hx4hMeOHZsu3CnYhnBHLL755pty6qmn5qnweLfBQELle5ZevXqlh+VPnjzZHJ+hQ4fKFVdckUHYd+jQQbtzKHkW9cgriqIoShyh0WqKknkFdry93333nXz//ffyzz//pAt3lngT7rHmkQ8Ff2HPgse+UaNG0rNnTznrrLNM+H6sREwoSk5Rj7yiKIqiKIoSl+zdu1fGjBljxDtF1qgy3717d7nzzjtNYbrjjjvO7VVUHObbd+3a1SywdetWk1/P8X3xxReNIcaKerz1KSkpun+VuEWFvKIoiqIoihI3bNy40XjcEXe//vqrlC9f3oRqf/TRR9K2bdu48U4rIiVLlpSLLrrILLTAmzhxojn2119/vRkHXbp0McKehUKFihJPJLq9AoqiKIqiKIqSE3bv3m2EOl52qsi//fbbpkAdoddLly6VF154wXhoVcTHdwu8Tp06yUsvvSTLli2TP//806ROUO+AMUGKwSeffGLaCCpKPKA58oqiKIoSR2iOvJJXIAccj/vHH38s33zzjdSsWVMuvvhiueCCC6RKlSqS14nHHPlwWblypQwfPlw+/PBD83efPn2MFx/hn5ysAcpKbKJCXlEURVHiCBXySjxDizJ6uuN9/+yzz6RAgQJy4YUXGlFG0bN45vDhw2Y5dOhQ0IVifuwf21ma1+bPny8NGjSQpKQkUwSOJTEx0YjXzBbej1fYN7NmzTLGH7zz7CMMP4yfZs2aaaE8JaZQIa8oiqIocYQKeSUeWb9+vbz77rvy/vvvy6ZNm+Tcc8813vfTTjstpoUnQnLfvn3py/79+zM8ZyH3G++6FeiQmQC3Yh34/IYNG6RcuXLmNSvyEfx8X6BRwMJn8eBjJGGhYJz/4v9aLHuz2X561WMU+vLLL6VChQpy2WWXmRZ37DNF8Toq5BVFURQljlAhr8QLCE4qzr/xxhumgFn79u3lqquukh49esRUNXJEM3nZ5PHbR/s37yGcMxPK9rm/YLfe9UiG1iPwA4V9MKOC/2v8H763cOHCplq8XezzWBL5dDdgjFFbAXFPccRrrrnGjDltZ6d4ldg5wxRFURRFUZS4Z9u2bcb7PnToUNM3HA8pIeI1atQQL4P4xZC2fft282gFO+IXwesvcqmkz9+FChUy77ktFvl9aygIBUQ8kQIIYH/jxL///mse2RcYIew2FytWTEqUKCHFixc3hgivUbBgQTnvvPPMsmTJEnnrrbekX79+pj3htddeK5dffrlZf0XxEuqRVxRFUZQ4Qj3ySqwye/ZseeWVV0yoM/nKtBCjKBnVyL0GQnXHjh1GtNtHjA6sqxWs/h5qXs9tse5WsTsr8q24Z7EGDtaJXvDsH/YTCyLfi957DDAjRoyQV199Vf7++2+55JJL5IYbbpCGDRu6vWqKYvDeWRMGXCxYArHFPPw/lxk2HyiczwbmLeXGZ8H/xubks7YgSiQ+629FjtZnbXGXSHzWv4iLFz7LPvDPSwsEq7W1XHvhs4wxxlokPut/fkbrs9mdy3qN+A+9RsTPNSKrMa8oXoNr+g8//CDPPPOMaRVH0bHJkydLkyZNxEukpqbK5s2bzWJFOyHvVrSTX83feKHd9q67Ddtv8+tLlSqV4VjjwbfGD/L3Fy5caK5ZiHu833y+dOnSJlLBbWwhRZYZM2YYIxPt7E455RS54447TKvDvH6sFXeJCyH/3HPPmZMtkNq1a5sbgoWbRGYCoFq1aqbAheXFF180F+1gVKxYUQYOHJj+HEsdF6VglClTxliULfSypEhLMLgB3HzzzenP33vvPVm3bl3Qz3KB4yJiofrmihUrMhW69957b/pzqrwuXrxYMuPBBx9M//urr76SefPmZfrZe+65J10AjBw50lgsM+P22283VmkYNWqUuWFnBvvBhjCRH8dNPTOuu+46KVu2rPl70qRJMn78+Ew/O2DAANNLFOgvStuazGA8MC5g+vTpxqqdGVzk69SpY/6eM2eOaYOTGX379pUTTjjB/E2o4BdffJHpZ3v37p0+mSHUiwqrmYHFvUWLFubvVatWmYJAmdG5c2dp3bp1egEhQsgy4/TTTzcLMHZfe+21TD976qmnSpcuXczf3KQ5jzKDm+GZZ55p/uZc4/zMDPYB+wI4hx9//PFMP0t1XkLjLFl9Vq8RPvQaEV/XCLxIiuJ1MDoxtp944gnZuHGjue9//fXXUrJkSfGacGchJ9wKzfr166toDwNEL/NXFubSVtyzb5lHk1LBXJa5JKHuCHqvCPuTTz7ZpHs8/fTTpmZD//79zb3irrvuMoUXvZguoMQ/cSHkFUVRFEVRFO+DaBs2bJgRRESR4JTAKIZwc3u9MCgg2rds2WI8x1a4YyzDwODF8O94EPccexaiGqyRZ+vWreZYBBP2OG/cKnbIOuAcu+WWW4ywZ/zef//95pHQ+2CORUWJFnGRI4+XkPyaQDRs9j80bDZ+wmbd/KyG1mv6DWj6jbevEdwbiQYjKibYvVFR3IBQ9Ndff12ef/55I4bwZFJMzC1xzP2Mc4XibCycL0QCsm4s8SDc3cqRjzT+wp45vz1WFAxkISzfrRB39vHw4cPlySefNOt16623mqhdaiMoSrSJCyGvkxVFURRF0Xuj4j3wbr/00ksyZMgQqVevntx9992mfZwbvd8xdiEGrXgnNxvvLmKQvuHx5k2NFyEfLHqC/HqOIcKe42ZFPR57t8bWd999Z9L5li5dKjfeeKMMGjTIM6kiSnyiQl5RFEVR4gg1citegJZk1EkhhL5ly5ampk67du1y3XOKNxfBRz0YQufxslvRh+c9nnOb41XI+0N0E2LeCnuON0YZwvQ5xrl9fPGPjhs3Th577DFTIO/OO+80gt7tHH8lPlEhryiKoihxhAp5xW3x+Pbbb8vDDz8sVatWlaeeesoI+NwWU4i7NWvWmKLB5FdTmAxhRyRnXqk0nheEfOBxp2gegn7t2rWm8CdF9SpXrmyMNrl93MeOHWuEPGPwgQcekCuuuCLm0zUUb6FCXlEURVHiCBXyihsQWkwV+vvuu8+IFUKM6aqQW+IJEUeqJeKdBRBwLHlJvOdlIR9M1DMWEPUcfzseqB2Sm+Pyyy+/NAXy+E089eecc06eHI9K5FEhryiKoihxhAp5JTdBqNCmkdx3wpsfeugh05ortzyPtIlbvXq1EWxUmrceWAo+5nWxlJeFfLDaCIwTUiwIc2eMVKlSJde6JXAsqHLP+UF0CMXxOnbsmCu/rcQvGt+hKIqiKIqiOIYc4Ntvv11mzpxphPwNN9yQK8IIYYbRgNZkCDREO4X0yI3W0GUlEIrfUdSQxdZMwPCzcOFCM3aqVatmxk40DT8YUq6++mrTou7ll182XvkWLVqYGhK0N1SUcMj9so6KoiiKoihKzEIrsGuvvVbatGkjzZs3l2XLlhlBH20Rj8d9wYIFJgJgzpw5piJ4p06d5JRTTjFeThXxSnYwRvDGM2YYO7SxmzVrlhlTCHsq4kcTogFovcg506hRI2nVqpUxgG3btk0PnuIYFfKKoiiKoihKSJ5wCtnVqVNHVq5cKbNnzzYhwoihaIbu08Ju6tSpMnr0aJP33LhxY+ncubPUrVs310KjlfiDsUMkB2PpxBNPNAYqBP20adPM39Hs0I0R6tlnn5W///5bFi1aZMbye++9Z84xRQkVzZFXFEVRlDhCc+SVaIC4uf76600LN9rKnXXWWVENRUbQEP6M55JWdlTAJwS6SJEiUfvNeENz5J2ze/duWb58uaxatUoKFy4sNWvWNNEe0exNj8Hgq6++kltuucVEC7z66qty0kknRe33lPhBPfKKoiiKoihKUPCGX3PNNXLaaadJt27dZN68edKrV6+oiXhymJcuXWq873gqEe9du3aVhg0bqohXog6GIrzzjDmMR4TbMxYxKNGzPhpwLpEzP3/+fGnfvr20bt1aw+2VkFAhryiKoiiKohzjEX/rrbdMyC/VvslJp+J2tELZDxw4YEQToc38HsKdqt4Iec19V3Ibxlz16tXNGDzhhBNMKgljE+MSkQ7RgAgA2tMRbr948WINt1e8X7We3o533nmn/PTTT6aFSK1atUyOSLNmzdxeNUVRFEVRlDwHIuLyyy83czRaZvXs2TNqHniKi+GBpwI9ufZNmzbV1nGKZ2DcE1pPW0PSSjg3WBD5NWrUkJSUlIj/JjUofv75Z/n6669NuP2wYcPMecjvKYpnPPJUaCR8hJYMCHnCtZ577jk57rjj3FwtRVEURVGUPOmFJ/+d/FwcKv/880/UcuFx3thq4eQlU72bOSEtwvJ6/3fFezAmaVFHpwYq3lOLhJB7xjBjORq/d/bZZ5tzkIgACjy+8sorWgxP8U6xO9ov/P777zJp0qSw/r8W9FEURVEUvTcqOWfJkiXGC79u3ToTGUlOfDTYv3+/CU/GA4+Xs3bt2lKsWLGo/FZeR4vdRZcdO3YY7zx96UkBwZOeP3/+Yz63e/8h+WLaamlZvZQ0qBjeWB87dqxceeWV5nfeeecd9c4r7nvkv/vuO2Px7du3r7HAYgEmHyuriz/i3X9RFEVRFEVRwvfCv/TSS9KkSRMzD6OlXDREPEXsbOEwqtC3a9fOhNGriFdileLFixsd07ZtW9m1a1d6L3rGOqzZliqPjpwnrR4fIw99P0/enLg06PlH/YmJEyeax8zaz3Xo0MGcm/Xr1zfeeSrba6s6xVWPvM0rGTx4sBHz9Ai96aab5PXXX5f+/fsf8/kHH3zQFFoJZhHTG4GiKIqiaLSa4swLf8UVV6TnwiOuIw1iA+87XniKeTVo0EBKlSqlhykXUI987rJ582aTJrxgwx75c0cRmbBslxw+4pNZNUoXloGn1ZDzWxyf/vnJkyebcHmq1eOsLFCggBHqN9xwg5x66qmZ/s6YMWOMd548fc5bHpW8iatCnvATLFkMZMugQYOMoP/jjz+O+TyDnMWCR75KlSoq5BVFURTF796Ip0iN3EpW4hoBcc8995hw+ieffNKI7EjC9JI+8AsWLJCkpCQj4Mkx1vz33EOFfO7BeJ+8dIsMHb9UfluyOf31ZpWLyHUd68npdctKYuJ/tR/QPrfddpts3bpVKlSoYLpB7N2714TpUyvs2WefzVLMEwFw++23y8cffyxPP/20aRGp51bew9Wq9QxcLuz+YIkaMWJE0M9jqWJRFEVRFEVRwvMaEvVIEa2RI0fK6aefHpXe84QJ01KuXr16xumiIkOJVwE/Zv5GGTJuicxavd28lpSYID0aVZCetQvK4c0rJXHDfNleLp+ULFky3ZA25JVXZPPB/FLu5K5SZNey9B72NWvWNF0cCJ2nqF5iYvAs6KJFi5oI5nPPPdcY46hyT20L+xtK3sBVIU91UnJJ/CH0qmrVqq6tk6IoiqIoSjxCHu4FF1xgBAK9qmn3FulWchgI1q9fb3pg0y4Lb7yixBtHjqTJL/P+lZfGLJH56301uwokJ8r5zavIVW1rSJWShcxrhw/XNsIcDzzFHVPKVpMPJ/wjf5XsLEc6lpU1Rw5KsQWrJDHNl1ePwat8+fImRJ9z6cQTT8xyPTp16mTOZcQ8dS4+/fTTLD35SnzhqpCnNyKD7fHHH5fzzjtPpkyZIm+++aZZFEVRFEVRlJxz+PBheeKJJ8zyzDPPyLXXXhtRDzkexuXLl5sweooXd+zY0YQKK0o8euBH/bNBXhy9SBb8u8u8Vjh/klzSqppc2aa6lCmaMXIYQ1bJilVl+aoj8syoFbJyx3rfG0XKSsKRw1Jk9xo5lJwi+Q/uTv8/nDsbNmwwbbpDgZoT3377rSlaibB/4IEHTNh9Zt58JX5wVcg3b95cvv76a7n77rvl4YcfNsUa6F960UUXublaiqIoiqIocQE5txdffLGsWrVKfvvtN1OZPtKh+lTTRuC0aNFCypQpE9HvVxQvwPgev2iTPPfLQpm71ueBL1ogWS5r7RPwJQod23bOsnJLqjw3eml62H39EmlSPWmrbJjxq+zdeaxYJ1eeVGJy5UMFw9zNN99s+tz369dPxo0bJx988IExrCnxi+ummh49epg8KsKxqNo4YMAAt1dJURRFUZQ8DmHoPXv2NOGwTJK/+eabYzrpkP9NkTgm3HjC/vrrrwyfoecz/9d/obCcP7TdJaUQgR34/3MK7bBoVUWRuenTp0dUxDNv4zv//PNPkwPfvn17FfFKXDJtxVY5740/5PL3phoRjwf+hva1ZNKd7eXWLnXTRTxif/rKrXLnl7PliZ/mp///k48vIT0bV5TH+jSUafd2kq9v6SJlU1fIub16mFaP/tErfAfGN2qInXDCCY7XlSLiM2bMMAVPCbUfP3685BZc26xBwUINjsBrIIX5AtuR16lTx6TjULdDiRGPvKIoiqIoiheh1zkimPZsZ5999jHvM/Gk8jt54HjQXnjhBenSpYtp6ebvlSbi0N9JQZEqC15yKk6T10oLOPJcyY3NKfSxxtBAlOPLL79svjdSofQIDdrJsZ4YCDSMXolXlmzcJU/+tFBGz9+QngPf/9Rqck27mlKy8H8e+G17DshXM9fK8CmrZMlGX4h80ZRkuaVTHUnJl2TOvSEXZDSicd7QUpse9BSswyA2c+bM9Kr1119/fdih8Yh4rimkKp955pkmzP7++++Par0KOo698cYb0qhRo2Pe4/rHddBSqJCvfgDQjYxtpVAf1xaut1xH6WymZI8KeUVRFEVRlAC6d+9ulsy48MILMzx//vnn5Z133jFh5kzS/YU7xasyaxVIwTkmv3wGg0BOoZ0VobXr1q0zHv5wvHqZkZqaasQGRg7SIzVsV4klqOVAATlyzxHLnBvBxPKmXfvlhdGL5NMpq4Q28ITDn9esitzUsbaUL56S/rnZa7bL+5NXyMjZ6+XAoSPmtYL5kuTMRhXM5xH+mUGNMHLZMQbOmjXLRChXqlTJ1JnA8JbTgnUYD66++mpp1aqVqUPGtWD48OERL3AJu3fvNmnRRBc9+uijx7yPcM/sGoiQx8BA9AAkJyeb11TIh4YKeUVRFEVRlBxAmzW8X3jC8OIHhps+8sgjcvzxxxvxT6FfJqvQsGFDI+L5f0xcmQjnBLzkZ511lql0jYfP3/sfKS88YoNc+Hz58kXkuxVnkRb0hueRhSKG9m+7IFY5XvbzsHjxYiOWEHcIV8Zf4ML7PDIO47HTAFXjEc2k8SIUyUGn5fUNN9yQLpr3HTws7/y2XF4bt0T2HDhsXuvSoJzc0a2e1Cpb5Jjv/HHOv/LVjLXm7wYVismFLY+Xs5pUlGIpoZ0b/C4dJDAuYIAjRYV0Hc4xjmEkomi4vlBMnGtPy5YtTRg7IeyRBI86nn/Si4IJeXrdf/TRR0bMk65EdID1yhcrVswYLmhJzvby/yN13coLqJBXFEVRFEUJA/I5zz//fOOpZiJKTnrp0qXT3x80aJCcfPLJprczQoLivrRmw3tvwYtPeD0T25xUemdd8IrddNNNJqw+UhWr1QsffRBtGIPwbBKVQf0BFgSn/ZvFCnOEthXegQvH3QpAK+g5hrzOc4R+oPj3NwIA35OSkpJhQfjyyBil3zmCP5KdD6IJ595tt91mxDLnKdvAfia6hNfp5LCreA159If5smabLyqmceXicu+ZDaRFdV9f9o279slHf66SNrVKp792Ucvjjff+4lOOlyZVSoS1Pzgu/i3mqFZPOzkiavBSR6L7A2KZqvb33XefEfOE3Xfr1k0iAd9FTj6h9cHAgEANEGqNEK105513mtbjX331VfpniEwgr559oSLeGQlp9iyPQQhJw4q9Y8cOM0gVRVEUJa+j98bIwwSdLju9e/fO8Doh5ghzKrfjTR87dqwJYc0s5Pzdd9814a4INoRRJGAahyEATxZGAcJoI/W9K1euNN5CPISEIasXPmcgljn2dmH82L95D6GMQceK5mBCmmMQqpEG7/2PP/4oZ5xxRkjHDiHP//E3HgQaE6yhAbGPoLcLRR/t3zbixAuwTXRtQGzWqlUrg9hmjC/esEtSWl8iO1IqmNfKF0uRO7vXlV6NK0liYoIs2rBL3pq4TL75e60cPJwmneqXlbf7N4/qOnMM5s6da8Q8UTtE80TKaPLJJ5/IwIEDTX7+4MGDc/S9q1evNsX1MGDa3HiK22GAoD5HMLhGknpELZGaNWuG/duKD++caYqiKIqiKDEE4gVxwEKIbO3atY2YxvMeDLxhCDbC1CMR3oqouuqqq2TSpEmmyn6kqtJbbyUCU3PhwxdjOJpYtm/fbhb2J4LaXwATbmyFsNsCGAMBBgMWHGWZwRj2N0Kw4Enmke1me8jFtgvf5da2YYginN6GblsOJybLxjLNZH+DE2V/YpLkSxS55vRacu3pNaVQ/mSZumKrDB2/VMYu2Jih+vzZJ1eO+jozRjiX8WJH2juPh5zrFEZJuoa9/vrrxkAUDnSt2Lhxo4k6spDuwbWINAab/x54DQQV8pFBhbyiKIqiKEqEvH9MXjODSTliKRJF4qhyz2ScEGfCWqkgHwmomo33EuGDiFcvfPbg2SUShsgMBDvF1BC6CCQrZIlq4O9wRZOXQJSzTYFin/2At94aLzZt2mTy8zknrLinyBzpJ4RQ50ZoPseC3/cXwTuLVpN15VvLwfy+XOykf/+RJ85vIed28RnXbvnsb/l6pi/3nVXs2qC8DDithjStGnpf90jAOd2hQwcTkk4bOQRzJM5zzutp06ZJnz59TNtIwtw5352CZx1jgD/ku5PnTwh9sFoLXAMhnN9TjkWFvKIoiqIoSgB4F/EaWZYvX24moeS7lypVSh577DFTWI4JKQLu1VdfNeK6b9++5vN//PGHCbNnooxo4TmF7gjzRczkBCbhFI0iZPq1116LSJg+RgiK2RFOT8G+ypWj73mMB+G+ZcsW88j+Y1wwPth3iNx4EO1OQJgjmFn8q5Qj7hH2CHw894wzRB77C1EfTWHPucb5QZRJgRLlZF2FNrKzWHXzXr4DO6Xk8tGyf8UMqXXLfznjzauVlB9mr5dzmlaSgafVlOqlC4tbYEhr2rSpaVWJwa569eqmSF9Oa2Bw3cI4QJg9wv777793HNHDMSP03x8iSziuvL506VITys91itcwSHANPO2004K2qVOco0JeURRFURQliFhGhFvIJ4X+/fubcFTaRA0bNsyIOCapTIYJcbft3hAPFIKi8BweQSbgTGLt94TLL7/8YvpOUyAqpzmuFrzHbC8CtV27dsZ7qmQEIUi0Al5mxDshxFaIklqBtzlSBQbjDQwaCHsr7jF6IOw5d9in/sKeaBW8zpEIIwfOx3r168u0bSlyuFZPOZKUXyTtsJTZPEtKb5wuS3clSr72g2XhgRLia4AmRsB3rF9WyhXzjiGGPHmMEpynjD9y0/37sYd7XLiGUWOD3HbqgBABECmIFho9erTJl+caQ1X+c845xxTdUyKDFrtTFEVRlDhCi93FL3i3BgwYYArrBfaxDxeiCIg0YJKN6InH1mPhgFEDDzJCk4XzCm87QhPxHgvC3WmxO7fwF/Z47AmHJ6LBin8KWodrsFq+eY9c+95vsmCLr+J/gV3rpNK6CZJ6JEk2lGspaSWrmtfrlS8qP93U1vOV+DEgUQiP85a8efLoIwGC/rrrrpP33nsvYgUzleijHnlFURRFURSP88ILLxgvPF6zLl26RFQQ2MJaeR0EJR53K94p6oZwp7o2XmI8jErkwSCCkYSlTp06JoIFQc8xIMee/W5FPUaUUAwoR46kyXuTV8gzoxbIvoNHpECSSMVNU2XTwmmyolZHOVKmjvlc/iSRy1vXkIGn1fC8iAcMbaS+sB8oSInxIxIGOCKN+E7aaXIO0Bte8T4q5BVFURRFUTzsGb7rrrtM67oxY8aYEP6cQpjrlClTzOSfkNqchujG+v6lv/iaNWuMUYNCbghGjBuEemuEQu5DWgqh5CwYnGwIPsIVYwuFA6lDQKh5MPG9emuq3PrFLJmyfKt53rpWKXny7Eby1Yza8sJo3/mTnEgf+KpyfYdaUraod0LoQ8UWTyRvnpSeFi1a5Pg8PvPMM00rOR7Z3w8//HBMGDfyMirkFUVRFEVRPBoaTSj9hAkT5PfffzfeypyCt43Jvw2l93p4eLTYtWuXEe8s7GeEEa2x8AqrePEOGFKIhmChQBr54Rwzikci+BH0LNR1wCjzxbQ18tD3/8ieA4elUP4kueeM+nJRS18f9lY1S8uLYxZLnyaV5JbOdaRKydg2YFFYjsJxVI7nGoGRD696TqCN5m+//SZdu3Y1Yn7o0KGut0VUMkdz5BVFURQljtAc+fgArzm5qoiWn376Kceh74gcKu9TWOzEE0+UqlV9ucF5iQMHDsjq1avNgpDH844IJHw+Hj3vsZIjHw546gm/5/zgMSGlqAxfmiC/r9ht3m9e9ThpW7uMFMyfZFrH+XvrY13AB2PFihUmVYZq8dWqVcvx97FfEfP0nB8+fHjEig8qkUVNLIqiKIqiKB6Cwl/du3c3ucF42gihzQmEI9P6CQ/bqaeearzOeQUMGBRPQ+gQOs++pIMAhpF4E7d5CQwvHEOWCQv+lVs/nyWbUw9JUkKadKxeSJbv2i/Pj14kKfkSpUfjClKhuE+IxqOIB8Q7UQlE22DMRdDnJNoGAxch+7TYRNCPHDnSFB1UvEXejKdSFEVRFEXxIORrd+rUyYTIjho1KscinsJhhOVjHKC1XF4R8RSqW7lypemVTRg24cFsf9u2bU00gor42OfQ4SOmmN1lw6YbEV+1ZEFpVaOk/LJsryzelCqF84lc3bKclCyYN/yWXDMY46QfMOaJQMkJXCtod0kIPwU2uYYo3kJD6xVFURQljtDQ+tiFCTgiHqH5+eef57hKOu3T/vrrL1MUjOJteSHXNTU1VZYtWyarVq0y4cA1atQw+e95YdvzUmj9+h175cZPZsq0ldvM86bHl5AFG3bJnv2HhfpsFzSvIv0aFJIt61bJvn37zDnFWMgLIeIYsWbMmGHOf+o+HONJT0sTObRfJF9oRf7Yf+eee65JYUDYcz1RvIEKeUVRFEWJI1TIxyYUoUPE25zUnAqvdevWmck830eRvHgv4EbOO63KCJ+nMBqijarz8b7deVHIT1i0SW7+dKZsSz0oRQsky21d68pjP86XA4eOSOMqJeSRXidIo8ol0lMrMJAtXbpUNm7caELGOScIQ48bDu4V2fWvyJ5NIrs3mMe03Ztk27olsnfzGildOEkKHEkV2btdZN8Okf07RQ4fELl/i0hScsiRPf369TMGMirbc24p7pP3zJOKoiiKoigegvZatIHDa/jJJ5/kWHRR1O6ff/6Rpk2bSoUKFSSeIf8dAY+3EJHWvn37+BJpSobe8C+PXSwvjVlsnMoNKxWTVy88WaqWKmxEfEr+JLmwxfGSlPif8QZDDiHnLNbYM27cOFPoEEGf09SVqHPkiMjuf0W2rRTZvkpkxyqR7atFdq4V2bnOt+w7NuSdPZCeROPrwncsCPpCoaXa0CHgs88+k549e0qHDh3MPswraTpeRj3yiqIoihJHqEc+tsBb2LFjR6lZs6ZcccUVphBb/fr1w/Ik431cuHChCS2njVS8TrTZTowfiDJqClDoi/2XF8Km86pHfkfqQbn5s5kybuEm87xYSrK83b+ZtKheKqz0Czz01FDAs4ygdz16Y89mkU0LRbYsFtmyRGTLUt+yfaXIoX3Z///kFJEiZUWKlBMpXFakcCmRQqWNUN91OJ8sWLVRyh1fR6rUbigJBUuIFCgmUqAolo6QzzmMg+yzN954w0S+jB49WsPsXUY98oqiKIqiKC55kzt37iy1atUy4fTkolKYDpyKeSbas2bNMp7pNm3axG2FaQwftNDDu0r4fLNmzXJcS0DxNgv/3SUDP5wmK7ekSlKiz0m9c98hGTJ2iXx4pXMhX6hQIdOCkZQTjF5Tpkwx50uDBg2ib/zav0tkwzyRDXNENs7/b9m7NQu3a5JI8UoiJaqKlDhepHgV3/NiLBVFilYQSSmeqSgvKiJ1duwwBfC2bzwiJ55YyfG1BRGPeKeYHtcscuapZk+YffHixcPZE0oEUI+8oiiKosQR6pGPDagAzYSYcHAK21mPKQIVMX/88ceHLObpqT19+nTzf2kvF4+eaQp3zZ8/3wh5DB+I+Fj3MkebePDIj/rnX7nls78l9cBhSU5MkENH0szr/ZpVkXvOrC/FC+aLyH7CQ79kyRIpU6aMOe8iYggjJ33dTJH1f4usn+Vbti7L5MMJIiWqiJSuI1KqtkipmiIla4iUrO4T7kk53849e/YYMY/wPvnkk00LPycivnXr1ulpK+TMn3322SYihu4a8Wo49Doq5BVFURQljlAh73327t1rvFlMfr/66qtjPMpOxDwihMr09IonnD7evNOIjwULFpjifaQdEAZNvq4S30IeAfnquCXy7C+LMrxerlgBefKcRtK+btmI/ybilNQUwsfpdFCvXj3jvQ+JI4dFNvwjsmaKyOqpImun+ULkg4EHvVxDkXIniJStL1Kmnk/A549+j3u28c8//zRdHFq0aJHluMhMxFuIIOrVq5cZZz/99JOely6gQl5RFEVR4ggV8t5vDdW3b19TpZ5WTpkJhVDEPAYBJuV44Akxj6cWawiORYsWyYoVK5yLKiWmhfy+g4flrhGz5Zu/12V4vXeTivLQWQ2leKF8uWI8Wr9+vam/ENR4RPu2tdNFVvwusuoPkdVTRA7sOvbLjqsmUvEkkQpNRCo0FinfyJe/7vI1iHQC+sxj/EtJSXEs4i27d+82NT64Tn366achefmVyKFCXlEURVHiCBXy3oXJ8dVXXy2TJ0+WiRMnZpuPm5WYp2AX71Gkq0mTJpKYmCjxAJEFVN1HSFFpPGJhznmQWBTyW/cckIEfTDP94ak+/+BZDWTq8m3SqUE5OatxxVxP56AeA7Us6tetI9UKbJeEZeNFlk/wCffAInT5i4pUbiZSpYVI5eYiFU92XbRndZ7NnDnTbBtC3T8dJ1QRb6HwJHU5aJ85ZMiQPN3yMbeJH9OtoiiKoiiKh3nggQfk559/NkI+lKJaRYsWNRPpwAJ4eAx5jRZaFO2Kl4kz+e+zZ882IqN58+ZStmzkw6cV77Jyyx659N0ppqhdkQJJ8vrFzaRN7dJyySnVXFmf4rJbWuVfJPs2/yhJ0ydJwuE9GT9QuIxI1dZHl1YiZRuIJMaGRxrDH3nyFMj87bffzHWGiBenIh4wuJEnT30O2l3ee++9ubINigp5RVEURVGUqPPqq6+ahUkzBe5CJVDMV6lSxRgCKlasKA0bNowLEU+uLeKBUOa6deuaVnLxEmGghMbfq7fLZe9Oke17D5rnrWuVNiI+V6EcPuHyC38UWfyrr7K8iNjA88P5isjGwvXkUJXWUu6UvpK/YsOQ27d5Ea4djRs3NsYzrksIcVJZnIh4S9WqVY2R8rTTTpNy5crJVVddFdV1V3yoR15RFEVRFCWKfPHFF3LXXXeZVk141Z1ixfykSZNMuyzydk844YSYF/H+YfR438m1jceK+072BwYNwp2PO+44c4zzgkFj3MKNJpz+4GFfRfrSRfLLZadWz50fP3RAZPlEkfnfiSz8SWTPRr83E3yh8rU6idTsKEkVT5Li+w/I3LlzZc6s1VJvf2FTgDGWz0PWvVGjRjJnzhyZMGGCGW9t27Z1JOItRAd999130r17d1P9n0J4SnRRIa8oiqIoihIlxo4dK5dddplpMUdhqZxMuK1giGXh4J9/TI4urfM0jF5MlMUrr7xiWuxR6I/iahh9brjhBuMpjVdGTF8jt30xS3wSXqRl9ZLyyoUnS5miBaIr3sl1/+crkQU/iuzf8d97BYr5hHudbr7HgBz3QoV81d43bNhgxO+qVatMiHqs13HgmkJYvf91JhwwAnz00Udy0UUXmUr2PFeihwp5RVEURVGUKED+aZ8+feS1116TM888M+zvsTnxhNVT+A7Rx2Q71D7zXvM6U42ent2E0BNKnxe8zlnB8bzttttMT25yjIlKoCMBhg5ef/bZZ+NSzA8dv0Se+nlh+vNr2tWQ27vWM0XuohI2v/J3kTmfi8z7VmSfn3gvXFakfg+Rej1EqrUVSc6+hSPh4+SG066OwpV16tSRWrVqxdxYtjnxtHds166diZBhPNqc+XDo3bu3vPDCC3LWWWeZkH0iS5TooEJeURRFURQlwmzcuNFMZG+//Xbp379/2N9jq9OTE2/D6YMVwIslLzzigSrXJUqUkLwOhg088Yh4hKA9loQ2Y+hYunSpqa1ANEesicSsoEf8M6N8Ij45MUGGXHCSdD+xQuR/aNNCkVnDRWZ/LrJz7X+vFykn0qC3yAm9Raq0DKtIHa3WGjRoYIwvM2bMMDUeTjrppJjxzgcrbEd4PK9zfeEcDTfVZcCAAbJmzRpzDaTVHd01lMij7ecURVEUJY7Q9nPuQ39m8r3pfz58+PCwhTZF4PBokT8eWJ0+lD7zXhKrixcvNot64TNCePall15qjBrB8pLp0719+3b54IMPzBiI9fZziMTnf10kQ8YuMc/7NqssA9pUlzrlIyh+9+8SmTtCZMaHImun/fd6SnGRBr1ETuzrqzQfwQrzpIhQ6wGPdix457OqTs97RBPRVo7QeNI8wj3v+/bta2o+UNXeK2MwnlCPvKIoiqIoSoRgEnz99dcbT/q7774btsBGhP3555+m6FmwFnOZtabzomEJbyWTevXCHwsih5z4zDyfvE4+Np+LdRgDF771l/y5fKt5fs8Z9WTgaTUj9wPrZopMe1dkzgiRg0dbxSUkidTuItL4fJG63UWSo5N7j3eeiBm880Sd4J0nd57z1Gtk12LOVrOfNm2auQbxmeRk55IRQ8awYcPM/x88eLDpMa9EFhXyiqIoiqIoEYIw6O+//16mTp0ado4p3j3CUfGEEaqbmUD3sphHLFAIDI9zjRo1TC48YkfJCIYajjM58cE88rzO+3wuljl46LD0fOV3WfDvLvP85o61IyPiD+7zFa2b8qZPyFtK1RY5+RKRxheIFCkruUXJkiXl9NNPN955qsBTEZ6oGa8Qap94riMYIhDyXMtatmwZVoQB3//tt9+agpYYJAcOHBiBrVAsKuQVRVEURVEiwJgxY+TOO++U0aNHm8J04U608WAfOnTITLSzmzx7UcwTTUBv6k2bNpkK36QGKMHBi8sxw4tL2oH/sWMs/Pvvv0ZQxXLBsN37DsoZL0+SVVv3mudnnFhebupUO2dfuutfkSlviUx/TyR1i++1pPy+0Pmml4tUPdW1Hu/WO08xPM5lQtQR9OF4td0Q8f7bwfnLtYXxyTgM59pCu8wRI0aYtnT16tUzveaVyKA58oqiKIoSR2iOvDtQlAyv03PPPSeXX3552BNtPNgUynOam+qVnHnyuQnJJSS8adOmkpKS4sp6xGLVesLny5cvn161HhGPJ96/aj1jBEMJ9RMIybePhK3zHov9G2PQihUrTEQEogyjkG0vxt+ML46PXRCakR43W3bvl+4vTZKNu/ab5xe1PF4e6+Ms1z8DG/4RmTxEZM6XIkcO+l4rVlmk+RUiJ/cXKVxavATHETHPcWrWrJkUL148JkS8P6z7pEmTTNpAw4YNw16HN998U+69917j4UfcKzlHhbyiKIqixBEq5N3Z561atZKuXbvK888/H/b30JZt2bJlxmMVTli+m2IeoUChr3nz5knt2rVNwS+3IwNiTcyTloERh2NPiDYCHI8oYt6KdhaEOsLcCvD8+fOb51agW7HOMUHIV61aNf25Ffmkb/Cd9nt5zv/1F/aBQh8DAwIw1OO6emuqnPXKb7It1Se4r2pTXe7r0cD5zklL87WO++1FkSW//vd6lVNETrnW1zYuybtBxuxv2tTRchEhbI9HLIh4/6KLFN6kiB9LuFA/hO/hOhXOeigZUSGvKIqiKHGECvncBWFE32QE0Q8//BB2+OzKlStl7ty5piBcTrx2boh5PMSE3uJRxuuoraZCGze2Ir1daM+H6OKYIc7Zj/5C2l9ch+I9D7VqvfXeW0OBv9HAPsezzMJvMj5ZqLRvq+0HSwG56K0/5felvrD3q0+rLnef0cC5gF8yWmTisyKr//S9lpDoC58/9UaRSk0lliDVZPr06SbkvkmTJrkSah8JEW9hjHJtIdc93Lx/xmSXLl2MoerLL79UY18O8a75SlEURVEUxePggSccnvDZcCfmVCXnO+gVntPQ29zOmd+zZ4/89ddfRmBS5CvcVlXxLtoxsFixziMGN7CCuHr16uZvjl9uRzLwewh9lqyqrCMK/bcD4xO1EIDe6VbYs4xevCNdxF/R2qGIR8Av/lVk/BMi62b8l/9+0sU+AV+yhsQiZcqUkfbt25vUE0LVKSAXbkHM3BbxwHElfYhCnBiTwql9wRj74osvTBFPqtgPGjQoR+uU11EhryiKoiiKEgZUdH7ggQdk3LhxYVcVRxgxscdDh6cuEuSWmMfDSL4rhf0o7uXlvtm5Ldy3bt1qctx5RPSy/63IRbRbT3YspR+wrgh2lkBxbw0Uf85bLks37JK35pv/IWfVKyrXtSpr9klI42PZeJExj/zX/z25oEjzK30Cvmh5iXUwdJGGg+GOqvakTkQjgiXSIt6CeKdwH9csUoDC+V6uc8OHDzeeeWo/EMWjhIcKeUVRFEVRFIcQRn7++efLI488Yibj4XDgwAHjzUbYVa5cOaLHINpinnx4hAJhtuT85nUIGSa/HfFOhAWitVy5cibPHU97rIn2cMT9xiOF5YHP18qBQ4lyRNKkS50ScumJKcbYY0UgBdPwTB8T6r92hsjoB0SWT/xPwLe4SuTUm0SKlJF4grFBn3b22R9//BHxcyhaIt5CWD0RJVy7EPNZpW1kBilE999/v/Tr189EM7lVBDDW0Rx5RVEURYkjNEc++jBRPuecc4x4++6778ISaHgomQgzqccQEC2RF+mcedYbb+K6deui5k2MFVJTU41wZ6HFGIKJqvMsRGi4LdxDzZGPBNNXbpWL354iew8eNs9b1yot71/eXPIlJZrzBcPX+vXrjZGD2gB4ZdlPFVIOSMHJT4vMHfFfCD3t49reKlK0nMQ7jBsMHZUqVTKF8HIa1RJtER94/WKMkyIQ7jWwW7du5lz59NNPXT9fYhH1yCuKoiiKojiA6uJMvv/++++wJ59Ud6d4GG3mojmBjaRnnggC8mMpjNauXbuo5vd6EStIrdcdIwmGDAQpHtbChQtLXmTmqm1y6Tv/ifgGFYrKm5c0NSIeGG8UN2MhBQMhv2n1Esk34VHJv+pbkbRDkiYJcqBeH8nf9UFJOC7vRHhg0MCrjSjGO49xLFyjS26JeMDgQEg86QHz58+XBg0ahPUdH374oUkreuutt2TgwIFRWdd4RoW8oiiKoihKiFCd/c4775RRo0aF7Y1etWqVWRDD0faURkrMY3RAaCBWKcqXGxW3vQIF/Sjstnr1atOmjZB5WuzxmBvHz8vMXbtDLn13iuw54BPxFYqnyPtXtJDCBTIZH0eOSJFFX0uRMQ+J7NlkXtpXsZUsrXW5rNhbRJKnLJDjj081ESR5xTDCdmLQo6I9rdk4v2j151URb2Hs442fOHGiSRMIJz2Ic+jjjz+Ws846y9QOIM1ACZ28cxVWFEVRFEXJAXhgzzvvPLnnnntMjmc4UPyMSt9MgHNTqOREzLPd9Dln0k2hq7xQ1A7BjuedPuxbtmwxXnc8h+R354XtD4UlG3cZEb9r3yHzvEj+JBl2RQspWzQl+H8gD/6HW/+rRF+qtkjXxySldhc5ISFB6h85YuoMYDQZM2aM8VZXq1bN7Pt43+eIYrzxRPlQ0Z4icKGKcTdEvP91xVay53oWTtHPDh06yODBg821lSJ6ecWAEwk0R15RFEVR4gjNkY8OTJYvvvhiIzR+/vlnSUpKcvwdeLUJRa1Tp44pguYGTnPmMTxQnZ/1rVu3btznseJ9p5Af3nfEFUXIqMpPu61YI9o58mPmb5CBH0yXw2lpkpgg8v7lLeS0OkEK0+3dLjL2UZGpb3MmieQvKnL6nSItrhZJzh/0u+lfT9QKop5UDsYrRSHjPZ2D6wyh6mw3nvnshLGbIt6fJUuWyNKlS02UUTjnCse4Y8eO5hi///77UVnHeEQ98oqiKIqiKNlAMaZff/3VeNPDEfEUdsLbhFebyapbOPHM45FmnclrdnOdow1iiKJjy5YtM4YaPMDk/+IRjnfDhf/4RBBSAwDxGEo7waTEBCPi4X89GgQX8fO+E/nxdpHd//qen9hXpMuj2baSQwxi8CKFgTaHREbgpbedAEhricdjwzaRb06bOs5RvPSZ9Wv3ioiHmjVrmhaEXC9YF6fHhlSdTz75xET8jBgxwhQTVbJHhbyiKIqiKEoWIGhvuOEGefPNN43IC4cFCxYYDyk5oG4LkFDEPN5QjBYnn3yyVKxYUeI1fH7NmjVGwBMtQRg3QsJpfnKsQ9rEK6+8YjzB+/fvNyKSMcGYJ8Tbn9QDh0wo/d4Dh2XQ8JnmtfObV5H+p1bL+KW7Noj8MFhkwUjf85I1RXo8L1LjdEfrxrhEyLLQJYBoCcK48cwj6Kn2Ho5hzesgjDkObCuFFIkK8aqIt8eJ9STiaOHChVKvXj3H38GxHDJkiFx77bWmACBpLErWaGi9oiiKosQRGlofWZgwn3322cZDOHz48LC+Ay8vE3ImpxSF8gqZhdkjbBF1eAPjcTKNgMfDu3jxYsmfP78RhBTqcqOAXzie8EiG1iPib7vtNpNCQY93jBgYNTBesT7PPvtsupg/dPiIDPxwusxbv1NSkhNlxZZUOfn4EjJ84ClSIPmomMZDP+cLnxd+33aRxGSR1jeLnHa7SL7IpCcQhk3qA+OUbcRzjxEmHvPouXbQIQMvvY2K8ZqI9wevPDn+1AAJ59phW3syXj/77LOorGM8oR55RVEURVGUTEC8I3aYOIcDub5Uo8bT6yURn5lnHnFE9AAVpGkXFk8gEvDAs314cSleR6i2WxESTjzh0TIi8PuI+Fq1aqXvB4QhHmFynmm1SK427z34/T8ydsFGkw9/JE2kdJECMvTipv+J+D1bREbeJDL/e9/zCo1Fer0mUr5hRNcbgwuiFvGOwYH9x7qy7/Dquh3xEkmIRGD/U6eC8ct2e1XEQ/HixaVhw4bmmte+fXszpp3AsRs6dKgxaH355Zdy7rnnRm1d4wFXPfIPPvigPPTQQxleo5AKF9hQUK+DoiiKoui9MVogEphQvv3229KnTx/H/58pFmINbz4h6l4VGNYzj7DHo4aID6f6tFfhOND3HcGHB5ewX0KV3TweTjzh0fLIz5kzRy699FIpUaJEUEFIv/ft27fLBx98IFN3FJGHR84T9lja0fz4T65qKS1rHG3BuPhXkW+uE9mz0eeFb3eXSJubRZLy5crxJRUE/YBwxHuNN9ir51s4ME5o/4hQpiCjF0W8//EgV57ICWsECqcmyaBBg4zRIh6jgiKF6zEo3CDXr1+fvtA/UVEURVEUxe3J6DXXXCNdu3YNS8TDokWLjDjDG+9lUYGAR9hS8I0aAAi7eBJAGClmzpxpUgiojM2jm8cj0BOOICNCwHrCCbPHE87norkOiC1+C8EVzK+HcYFIgfELN8mjP8wzryXijheRO7rW9Yn4g/tEfrpL5ONzfSK+TD2RAWNF2t2eKyIeOJZ0F+jUqZNJkWC7MJSwf+MFjDtEj9AKkfHrVRFvjwfRLhiCqGYfDv369ZO2bdvK9ddfH/H1iydcD60nPCbcwjGKoiiKoijRgArKhLOGG1KPKCYHm8loNFp/RRLCkml3RT9oCtzhuXbSZ96LELXJdlDxHHFMzq5XjgNjinXDEx+4j3nOvHjevHnmcxRHjFZI/4wZM0wEAGMVTy9h2/6RGBihkktWkqGz9plQ+iIFkmX3/kPSsV5ZGXhaDZEtS0W+6C/y7xzff2h5jUinh7LMhY9mTQCMIRhGEPWce2wnoemMZYxVsYrNiUfE002BXvNE+Xi5kwTnGuuKEY0OA07TdDgPXnvtNTM+vvjiC+nbt2/U1jWWcV3Ic6JRDZUBSSjXE088YSxNwcAqyOJ/kVYURVEURYkkRAjeeOON8u6775pJqFMOHDhgckSZhCKQvIzNiSeMG2GF4AmlNZ1XQXyyPeTCWy+t13rAI2KZz2ZWHZ/XSQXgc9EM6cdgwFya8HkWjAeEpTMOEI+I/JQut8jOg2lSqnB+2bLngFQoniLP9m0sCf98JfLdIJEDu0UKlRLpPVSkTldP1ARARLIdFDGkgvr48eNNxAnpu7HWkSBYYTu2gTB7zk3qBHgVxhHHlwiJ008/3RSWdAIRCESmXHfddaY/fWZt+PIyrobWYx19//335eeffzaFDWgpgeWaXK1gIPK5IdolsBWDoiiKoihKTqH9Uffu3aV3795h/X+82oSne3mSDVT+RlT558TbAnjkHPOei6WUHIGnF9FGr3H+7tChg0lp8JqIB/Y1IhajQzB4nfcjXacgMKSfY41Xl32EKKQwI4Yd5uFEafD7T5/dQFrVLGVEPFH1L/U9QY6b9IDIl1f4RHzV1iLX/BaSiMeAgIGLaFwKP/JIVACv836kYbtoiUbRNeoFMDZId4lmykIkyaw6Pd5tcs/nzp1r3vMyGFMYZ6xrOJx33nlGxGNYVTzefg5rINbT559/Xq688sqQPPKIeQqzeK0SrKIoiqK4gRaCzRnff/+9XHbZZUYUli5d2vH/X7dunQl9RUh6UUQGtsSjxVwwT1dmrem8CPNAcuARaCeddJLnC/WxnhdffLFZZ8L+/fct03JENMURP/zwwxyFnQcWu8usuB3CnnZ87Efy5TFANW3a1OQnVz/hJOn6wkTZue+Q3NnmOLl24yMiq46K7ja3iLS/TyQpOaTtZTzx/eRO8xrbxnog6Nu0aZPj7c0OtpN9zu8xTrysHUJpMUfEBN7ucFu95RYYpsaOHWvGVDjp1ESnEE3x+eefS5cuXaKyjrGK68Xu/OHCQi/IzAojYJ3kpPNfFEVRFEVRIjXhvOmmm0wEYDgiHmcD3niveoIthGwj4ilIlVm4aix45q0Xnr7VhOHiufO6iAfEKuHkrCuiHWFLb3serSccER1pUZtZSD8eXoQtC0Kr3433SefrHpWWLU+R27+YbUR8n/Kb5JpFV/lEfP6iIv0+Fun0YLYiHhCkCE4cdhgLENKsA48853V6pYdbjyJU2E5CvDm3J06c6FnvfKh94jlWXGs4l9mHXoVjTa0HDJykHTmFc/uRRx4xXnl/h67iMSFvL2AU/1AURVEURclNnn76aZMTHywqMBTweCLC6GXtVZhrUcQPLzsVvrPCy2KeyBPEmBU7bA/FzmIFcsJpMYd4RoThEecRT3wkWs85DeknKgBhXbxcZfl+c2l58Pt5MviLWfLbks3SK98UeW73nZKwc61IqVq+qvT1e4T8uxRpw6uKsaJQoULmd+zv8ZzXeZ/PRRvGCLUr2L+klmAE8lLNrVBFvIWIGZygnNO0pfMqRFDjsOUaGW66E8bRF154IeLrFsu4WuyOnJiePXuacHpC0R544AFzgl1wwQVurpaiKIqiKHkMcoMR8uPGjQtLEDKPIVydkHqvhqEj4MhFZt5FSHcoWDHvlQJ4eFAplMxC/i0ht7Ek4P1BTJLrHK0q7oHw3Ry/zEL61/+7wRS327r3sFQrVUh++We9XJf0rdyR9JnIIRGp1UnknHdECjprT4hAxxNrc/H94Tlh/+Tn54aQD/TOUxgRgxBimLoB0Qztj7SIt7DeeKopgEeKghejgTjO1Cvg+kpKgNMQe4w+FL7r1q2bXHTRRVonzQseeSqKItq5CFPMACs4FiUv53koiqIoihJ/3HzzzWaCSM64U5hEz5o1y9Mh9eRL2zkWYs4JXvHMB3rhqUweqyLegnAk7Pi0004zj9EUktmF9Odv2EW2F6woKfkSpVTBJLk/7U25I99n/7WWu+AzxyIemN9TsTyzsGpe5/1wOkTEi3c+XBFvRTLbwXHlHOdc92qIfcOGDcMOscdIcc4558jgwYOjsn6xiKeK3TlFC/ooiqIoit4bc8rIkSOlf//+YRe4I7+X6RR92L3ojWfdmOADhbHCFYtuFcCLJy98bhJY7C6rNnBVG58qcyqcIYfTRPo1KSVd/rlLOibNlDRJkITuT4m0vDrs9SCcGgFmw+sxdjEGOa544jmW5EGPGDHCGDPcgPXCO08HLcYXEQu55Z3PiYj3h/3Jec7+xCDp1WvRX3/9ZcYjxe/CLXxHb/nOnTtLXsf1PvKKoiiKoihugZCgwN3jjz8edpX6zZs3mxZXXpw4AyIhNTXVeH1zIk7cCLNnvTGUUO2c346FYnaxFtJfpFgJuXv8djn87y7pVquAnL9gkJyUtFAOJRaQ5L7vOsqHDwbe4mbNmhkDAp5Ycrlt1XoKV+ONxwjG59zCeuep00VLvPXr15t1Joc/FkQ8sD9ZZ6JWMNIQseLlEHv2sdO6aBh8Hn74YVP4bvbs2Y5708cbnip2pyiKoiiKkpuQF484vOqqq8LyeOJtJFzUqyH1hMOz4In398qGS26G2WMgmTBhgimSRT6zivjohPTvSCkvizbskjqFU+X+jbfLSbJQdiUUFrn0mxyLeP+Q/ooVKxrhTj46IpNHnvN6NKr0h5s7j1GO9UIQRzNvP5Ii3oKw5VwnsoAUZq+G2GM04dqJgc4p1113nYkieUEL36mQVxRFURQlb7Jy5Up56qmnTBGlcEK1aV9VuHDhbKu/uwV9s/Fa4aWLhEjITTFPFXdbXR8PnobSR4/29crKt5dUl88KPCqVDiyTjWklZG3vryS52qkRr9JPVX7EG2kaPBJeHa0q/eHCWGPMYWiggBzXiVgQ8f7nJ+c8uehebUtHeg7GT66hTrGF7x555BGz//IymiOvKIqiKHGE1o8Jncsuu8yIiY8++iis/Yy3mN7leO+8WKGe9atdu3bIFeq9kDNPyDWeOlIWCLcOJ91ByTpH/hh2rJG098+UhG0rZE1aafm8wSsyuF/3qOxGjm+kqvRz7n777bdmrODV79WrlxF5kWTTpk0mtYP2aZHqKBBNEe/PkiVLTBFDrlFejBjCyPDbb7+ZaJtw9sF5551nxtAbb7wheRUV8oqiKIoSR6iQD425c+caoThv3jypXr2644k4+b7Fixc3YfVeg8JdVOBm/Zo0aRLVPPZIinkKr02bNs3kURMeHO385Lwu5EdMXyNNj9sj1b4/T2TbCll5pKxcl/yQfHJbXyleKOdpGNEE8UZdC1o+2nz7smXLyj333CNXXx1+Yb5gkNNPgTbEMJ7unORl55aIt79Fvj/rz295MaqFbh/UwaBmg9Nrx6JFi0zkBJEHFMDLi7ifjKIoiqIoipLLMOEfMGCAYxEPeAARsF6dPBJOz6SddnjRLkYXqTB721oOwdm2bVsV8VFmycZd8txXE0SGnWVE/GopJ+cfuF8u7tbGsyLeRmvcdtttpgUZ/cgR10TE8Mhz3ou0h5b0GcYk5xRjlHPf6yIeOPcx5PG7GC69CMY/PPMUvnNKnTp1TLeR++67T/IqKuQVRVEURclTEM5J1eRwJoB4OZkUE2YbieJxkYZ+2AgaPIe55YHLqZhnEk8EAeHLRElEOjzai2IUQcgjz3Mbjs9TI36X95Mek2oJ/8rW/BXkvH33ScmK1eW8ZlXEixABc/HFF5vlpZdeMqkjVqzijcdLTgQK0RxPPPFEWEXUsoJznZZulSpVMseOc8zLIt7CNYBzit/1Yj45x43Ch1xTwzlm//vf/0zUCekPeZH4vVIqiqIoiqIEmVDfddddcuutt5pQ3HgqcIenkFBVRDyVoXOTcFrTcSzYn/SHpwgaec7xTLD+7ewnKro7KfbGfuP/s9A+0S4YmXgP4wCPpFgABgMEHYKXY/LH8m1y/fq7pU7iWtmXUlbO3nmnrJdS8kKPBpKUmODJ/YanneKNbIcNpWf7du/ebUQxQpttIx2DXuPkztO7PpLw/RwvxjopIETk1KpVK6Rx7oaIt7BPTjrpJBNmTwcIrl9egrQcCgpyHWD/OqFixYqmfSjX9NGjR3u2BWi0UCGvKIqiKEqeYeTIkUY8/vTTT2GFfy9btswUj/LahBFRg7ggVaB8+fKurIMTMc/6zpw504gzwpbxpsYz/mKU3tkYWvAqsw94PbByO/uH8UbYMY/+gh0BjzhEvBJSjkGAR7yb7G8ram1kBO8Dz1P37ZOG0++WJonLZHdiUbkj4XZZcaSsnFgyTXYsniYTVqeY77Ih6wg/Ht3Kr0a0Y/xgvyGa6WbAdrA+bCP7iRxrO36I5uD/kP4SLTDiIcbJm+fYIJIzK4Lntoi3MOYQzFwjON+80OrPwnEkDYhIKaJynO6jO+64Q2rUqCG//vqrdOnSRfISKuQVRVEURckTMOm/++67TUg9otMpTMirVavmySr1hKYyOXfq0XJDzBNCO2XKFONBxihihWa8EihG7f5AsNBRAG/k8OHDjQFmx44dRrwTXYEoRUgjUsuUKZMusK14z05cs3/xcpJLbNJAyJV+9QJpKHNkr6TIsq7D5Mev9xkv/OP9mkulosnpxgKMDKQ8ED3A8WLMsx6sT26Ke8451gEhyn5j262RwobVc16zjuwvHnkt2tEd7APGLi0SGcuErwfuD6+IeAsh7KSwUODTa0U62Z+IePYXhS6d/t+7777beOU7derkKSNFtFEhryiKoihKnoA2c1RwDqeq9ebNm40QIwTca+B9XLNmjWnj5IVJbFZiHqGFJxNxiwfai3UGoi1GrdDEQ1quXDnTQgvhTLswvL2EbCNO8NpHMvJjx48PScPNP8mhtESZf9oQeWIm6Rf75LxmleXEqsHTTIwXPzU13cDgL+45zqVKlTIGCB6jIexpU0cEgk0VYX8RecBr7BsWm0pg15X9TCu6aINRgXFOr3nGNDn0tr6D10Q8cHxIu6EtJceL/eQlGPeEx3OdLVmypKP/e8MNN8jLL78sn3/+uZx//vmSV1AhryiKoihK3EMRLAojPfbYY449wEzK8WLhTfWa9xjhQng24b1eyn0NJuYRf3gwEbKtWrWK66J2gWIUEUWrLCI6KJjGeMQTz7Ejp5uIitdff914TaPC7M+l+NQXzJ+flrtFKlc+Xab+OlXyJyfKoI61M/1vCGXGFYv1cnM+YBAj9x4jEkUO+Rw1JxD1VmxHAowcnHMYOhDDjB3OQ2tM4DnrQ/QB68Tv4p3NrbGFIYqxjJBnbONN5re9JuItrAvjkHFnjUVeAcMIESpca9lvToxYBQsWlAcffNBEW5177rl55tqSN7ZSURRFURTJ6954ij5dcMEFjv8vFaoRzEwyvQQChgk5wtCLheL8xTzhz3jaEFp4Lr3Y0zrSx4ZCbIwdROi9995rep4TOWFrA1j4HGIV0RoNEtZOF/n2Bt+T1jfLRZ3ulz6vTTZPLzmlqlQo7kzM4YEOLNqHmO3Tp48R02wfHlVEPUtOhCzdITAC8Z2cf4g7jCFABIP1zCPq8TAj4iPdRz4UMU8fdELs2TekIHDcvSbiLUR9MBbpvx5O//ZoYusgsH4YhJzQv39/efzxx+Wzzz6Tiy66SPIC7sdfKYqiKIqiRBFE5FNPPSV33nmnYwFJ2C4eIsI+veblYcKLcELseBXEPMJ9+fLlxmsaLJc4nkBYkpc+duxYGT9+vGzZssXkqH///ffy4osvHiPiEfyIPjzx0TiOBQ5ul6QvLxU5vF+k7pkiHR+QiYs3y9+rt0tKvkS5pl3NsIr22QroiGoeaef4wAMPGENN586djXFp06ZN5nX2hRXdTsHjTtg0Ro6lS5caowfnc+nSpU1qAsJv0KBBxlDHb+S2iLdwbWCcs41EWuCZ96KIt5x44ommUB/RFF4CowjnC9dcp20sk5OTTeG7J5980pW2jm6gQl5RFEVRlLjm66+/Nl7RCy+8MKy+7Ewoq1atKl4CAU/4bpMmTTydZ454JwSbnFz+pmOA0wm612F78CDikf3ll1/M3xh+unfvbjyedBK46qqrjhGjPPKc16+//vrI1zc4fFCaLx8iCbs3yMrE42XSiY9KWkKCDBmz2Lx9UcuqUqZogbCL9iFUMcrYon2kELz66qvGQ88246VnH9SuXdsYK9g39Ptm/zgZA9RSoKo/6SPk6WPA4pF87/fff19eeOEF02rOTUMb27NgwQJzXIlGYMxHupd9JOGawbWDlA6ujV4C4xDXCqJXnNK/f39Tz4TuJHmBhLQYvppiSSJ8hQIcXqwgqyiKoii5jd4bM8I0hwk/Ezw8d05gUk7xJTylXuobzzbhGbX5rl4FIUOosfVWkp5AmD2e1FD6zHsdxAYeTaIN2Fa2iyUzT2ywPvJ44hHx2fWRR0RjuEEsI/wZk9kJ/8M/3SVJfw2VPQmFpMe+R6Qdwrpheen35p8mN37SHe2lXLGUkLcXcXrppZcaD3ywbcQwgcD+4IMPjMc32Pt4q9lneO4R++yvUAV4OPsgNwgsbEe+NvnyYHPmvQoRInQp8FqIPWNk4cKF0qFDB8cRPM8884x89dVX5nzz0jZFA++OLEVRFEVRlBxCb2EmhXhEnYJAQ2wRJuzFkHrEsVfBCEIBMISWDad30mfey7Dvly1bZsYVgrZevXqmRkF2ohKxjmByKkaDGQDYd4ScZ2oAWPCDEfFwy/6rZX1yJbmufU2548vZ5rVzm1Z2JOKDVZAPhNcp3MfngsG+YnvZXxTJIxqBbSLahT7g1LDICvZTMAOBm2RWnR4BjxGLKA3+9mo6CW3oSH1gLHsp6ohWdKRKcK1zWpvkmmuuMbnyVOenk0c8474ZS1EURVEUJUo88cQTctNNN2UrEgKxYeB4TL0kNm1IPWHGXg2pR8QjYPCgBnokrZhHOCDiYikwlBBkCoQhfBC0hI7TS5xojVA9w1aMnnbaaeYxFBEfLCcdTyqv8/4x7Fgr8s115s/PE7vLL0eamzD6bXsOyviFmyQxQeTq02rkqIJ8MHg9lKJ9iFqEGvsOwwb/b8yYMTJr1izjHY4Vsmoxx5hn27iOTJs2zbM5214Nseeai7GKa7DTFIWiRYsaIxfX/nhHPfKKoiiKosQlhLdOnz7dhFk6BU8QE8IyZcqIl4QDQhIR5KX1ClzH2bNnG6GLuAkWVhxrnnnEGAXs8MJTSRsvH9sQbQJz0u0+sjnpeLTJSUcwphsEjhwW+fpqkX3bZVfJhnLvugtMGD3C/ZlRC81HujUsL1VLFY5IBfnAon0nn3xyyEX7+P/UTmDZtWuXKXBGKgvfzfZ61VAVUp/4XRsk377tcurx+WXuzL9kxfaZUqNKBVO3QJJTROr3+O+zi34R2btNJCnZ915SAZF8BUXyFxLJX1SkdK2obgtjmogSr1Wxp+MBBljSMZx65QcNGmSMXlz/mzZtKvGKCnlFURRFUeISPDLXXnut47ZeeJQRSXiqvDKpBcKRETxeDqlH7BJejbc1KyEWC2KeccD2IOKpycT6RqtFXDAQikQt0FYtcN/wHKGD+OVz6SHnf7wqsmKSSL7C8nD+wXJQkuWCkwj7T5Bv/15nPnJlG+feeP8K8kQCcH7w+4TT48lFxOekaB/jgegNjBZsE4Y0qpcjxjwTln5gj8j2VZK2baWsXzBVCm5cKh2KJ0m+r18XKVxW5Ow3/vvse91Eti4TzoCT7Gt/HH0scXxGIT/uMZH1fwf/zZTiInf5VZb/aqDIhn9ECpcRKVLWtxStKFKsgkixyiKVmzE4HG8axheiIjiOjDcvwBinUCK1GTIbBxMnTjQ58Qj29evXm8KmvXv3NobOK6+80rSh4zrEecw53KlTJ1PV3r9dJ2PuxhtvNJ0lGLsUTnzppZc83XXAokJeURRFUZS4g1BRqmS/8Ybf5DpECPsmRNhpH+NoQngp28SE26ueSqqRIzzJ284sjzoWxDyecLoVUIWccUCxRIRBbq+b45z0jfNFxj5i/txw6gPyxagUSZA0ubJNNRn+1yo5cPiINK5SQppWDd8YYSvI25x9fp99hCc+lKJ92UHFd8YEYwlBj8GAnHqiUHJt/+/eJLLxH59wr3fmf68PaSqya72wFukycK2fOPen4HEiKSVEChQz3vVDiflk5579UqREKclfqlrGzyK++TzeetoEHtoncnCvyIFUkUIlM35200KRDXODr3f+IiJ3+1V6n/isyO6NIqVq+bz6peuIFKsUVOhTfJA0IkQzY90rBfowKjDOqGAfLId/z549puDnFVdcIWeffXaG92hFSMTKc889Z7oncJ6QZnXWWWeZdAcLYh8jAPVUiL65/PLLZeDAgfLJJ5+I1/HGUVIURVEURYkgtKSiwjZeQ6cijiJLXhGVFio4Fy5c2FPV8wMrkjM5btSokRFjoeI1MY+ARMwQOk0hMDx3bq2Pf056MO9ghpx0Quq/vV7k8AGR2l2l9GkD5NWS6+T7STOlUvEU+fgvn1f3slNzXtAs3KJ9ocL+xohWtmxZI+AwqHBOEnUQ8ZSSPZtF1kwTWTdTZN0MkfWzRXb/63uveJUMQj6tZHU5sm+X7MlXWgpVqCPJJav6POFFyvse/Rkw9hjBtWvlSvlr3jxTHyFDYsOZz4W+vr1fE9m5XmTPJpE9G31Cfec630I4vv9Y/efrY0U/hoUydUXKN/L9rt/n6SBAGDsRKJyHXvLKkyvP+gWei927dzdLMBiTl1xyiRk/N998s3kNAxQRTRhr+T6MBD///LNpi4jBDoYMGSJnnHGGMVj5e+69iAp5RVEURVHiii1bthhvCpMzp5DzCl6awBFOT2goAsBLxgULXiwq1OMxY3LsFC+IebYBYYpwxDNJKK/brc0c5aRToX7tdJECxUV6viRJSYnSpUE5ObTiiIxduEn+3blPShXOL2ecGJmw6dyoIM/24omnawQdJBhjPGd7w/IYU1hx9waRon7GvY/OFlk/K/CXRUpWFynbwGcgSUwy+3veyY/KmoqbfbUfwgi75vygZTbb0bZt2/Aia8qd4FtCodUNIhvniWxZIrJ5sQn1l/07RdZMFdm/O6Po//IKE2nQvGQDmfF3guwuX1qKHOeNOhwYLxHjpBY57SAyaNAgs68Jp6dIJPufccXfQGcB/rYiHgi/Z3xznPr06SNeRoW8oiiKoihxxdtvv208hnhUncBkHW8UHiC3RVxg8TiEJTmeXoP1Iz+VolQI4HBxU8zjhafQFxEP9K122uEgWoSck75zjcjYR33/qcvDcqRIOflnzhyT+wvDp/rCrfs2qyIFkj2Sb+5wP2DIYPsxaowbN850bShdunT2/3nfDpGl40SWjhFZNl5k17++nHO811DlFJGD+0QqNRWpdLJIhcY+AV+gyLGF7f71ific5E5zTUI80oUAz3BUx3iTCzI+P3TAJ+o3zfcZKyyHD4ks+FHk0F4pKCOkNZFJix6TtAqNJaFKS5Eap4vU7SZuHn+KH3Jtdhohc/LJJ5vQ+/fff9+0pbvzzjvlggsukGLFipn3OY+I/PAHIxFRRbzndVTIK4qiKIoSN1Cg7LXXXjOh9U5h4nbgwAHj9fMKXi9wRx4zeaqRiBbIbTHv74XHy4uxxGsRDyHlpH96kcjBVJGqreW3vbXkusHD5MDq2ZKycrLcdMc98tvizcb7en5z74zrcMDQwvjAO09HCqI/MB4d453fvkpk/vc+cbrqD5G0w/+9l5gssmmBSMWjJei6PYlSDL86fRiitHnz5qZIG17mXA1hT84vUq6Bbwnk/I99qQVrZ0ramqmSSNg+z1m2rcgo5OePFKnSwldoL5fgWJNehNHNae2SG2+8Uf73v/+ZYn4cz6FDh0q8oEJeURRFUZS4gcrDTNYoaBSONx7Pn1eqZGOUQER4tcAdBeHIqUXER2r9ckvMe9UL7zgnffGvIgtGGoE6s9IlMuiJN2TniedLYvXWUvvwSpmyMcGI+PzbV8i6RbOkWumcFaNzG8ZCjRo1jJjL4J0vVeq/UPG5X4mMfuC//0SRt1qdRGp2EDm+VQZve26KeP/CchjmJk2aZDzDTsPFIw5t72p19C3s47Q0WTPvT9k262c5odhuSazS/L/Pbl8t8tlFvr/LniBSs71vv1ZtLZIvJWqriLGG48412qmQP+uss0wBOwqGUsfDeuOBKA+uBf7wOaJZnNZXcQMV8oqiKIqixA14W6hW7DSHlrx6CrbhlfUKeB6Z9HuxwB2CctasWUaQRLpNUzTFPJN0xBlGCK964UPOSafK+c93mz/TWl4jz7z/vWwv5fvMcTsWS3KiyNRNPqGatnSyvPrq5Iw952PdO39Sfdk8/nVJeu9OWXnCpVKpyw2+854CdUtGi9TrIVKnqy/f3SHREvEWxCT9zRGWbIvN2fYECQlSqcEpsmjDXlletWrGHu546sufKPLvHF9lf5Y/XhFJLihSva1Iq+t9ofhRACFP0UNEdqgFNQ8ePCgXX3yx2d9169aVUhh8/GjVqpVs3749Q7/5sWPHmqKntEP0OrF/JiuKoiiKooiYPOLx48eb/sFOoZgcxai84vlmAkqlZkKHvSY0ydGmEBQCOzC/NNJinurShJQjrHIKKQCENJOq0L59e6levbrn9q0jpr4jsmWx6Sk+r0xP+WfJSjlS3lcIreS2+bInpaxs3p8giUcOSMUjm9J7zsc0R474ct4/7y8Jz9eTMlOfluP2LJUiy34wHu7U1FSR0rVFLhspcso1nhTxFjy+iMspU6bIvn37xEtwXnDt4RrEtSgdaglc85vI7UtFzn1X5KSLfX3sD+0VWfyLyN6jrRCBSvp0A4jAuQtcmwmxx8Bp2b17t4msYQHe42+uG6z3ueeea4wlH374oRHoCHabQgVcw7p16yYDBgwwxwHjIXUpzj//fE8VPM0MFfKKoiiKosQFb731lgmjdBoSiTAl9xhh5xUIIaW4XcTbbeUQRA4hzawXHrJoEkkxv2nTJpkwYYJZb0LV8YLGNBRxm/CU7+/298qW3QcktUwDU2G94N6NkrJ/m2wr5vOklti1UgoXSDY96dN7zscaVI+f/IrIK01FPuwtMu8bX6s92qh1e1KOu/QD46XlGBNdEy65JeItFHFjvRGfkTBWRRJC2Nl+DKTHULi0SMNzRHq9KjJ4nsi1k0U6PegLs7fM/EjkzdNFXjzRFzmy8g+fISYHcI2mbog1fEybNs2kVrDA4MGDzd/kxHMMv/vuO1MDA7GOsKc6Pb3pJ0+enP6dH3/8sdSrV086duxo2s61adNG3nzzTYkFNLReURRFUZSYBw/Lu+++a9rOOQUvDp5lr+RJY1ggQgAh4TWPMTnxeLQp2JUb65bTMHvEEccXbzSh6URdxAW/vyyyd6sv//ukS+S4efPlyPG+Flolti+SNEmQbUV8hqmSu5Zm7DkfiyQkiswd4WuhRi/0Rv1ETr5UpEKjdM9k48YVjPGLqvBUh3eaJpPbIh4Yy40aNTLeYtI9wmnfGG2vPPsTAc34yeSDwdviUYAxX2GRHatF/nzNtxStINKgt0jDs0UqN8/YAi8EOCZ0K+A6VLduXTn99NOzNID4v/fjjz8azzv/1z/1CkNKOPcNL6AeeUVRFEVRYp5vvvnGTOIpXOa0oBwTOy954wlnxRvmNdFF2DJCB49XbqYghOuZJ8+VPH72J7mwcSPi92wR+fNo5e2O/zPFygqXryaHi1c2nuvi25fInsIV5VByQSmcnCZF9qw14cSIMtNzPhagt/tXA32RB4DgO/1ukZ4vidy6QOTMZ9NFvD+Id+oAME5o28gY8KqIt1AHo0mTJjJ37lxjcPES5JQTxcI55Bg89HcsFTn/E5FG5/sMMLvWi/w1VOTDPiIHw9tWrtUY54449O537drVXLdGjhwp8YIKeUVRFEVRYp4PPvhALrvsMseFvAjTZCLtlRB2cj4RrLnalipEoUP4LxW2o5UXH0kxTxg54bMUsqKqfmCRq5hm8ksiB/f4ep5T0I0JfUKinH58fknZvFBWLpormwv6Ws01KpkmK5Yv+6/nvNcL3a2dIfLxeSJvnCYy+zOR6cP+e69OF5Gml4nkzzotAo9tu3btTIg93mSbD+1FEW8hHYgFw5PXQuy5Fq1YscLUmMgMak/07Nkzvc87hlVDvoKm+GBan9flob2XyKU/55fh/xyWb1cUksUr1/o+w/Z+eYXsGfucXH1JX1OYjuJ/1DrhehgIRk46i/zrsM87/6d///4mXz5e8PjZrCiKoiiKkn3+8y+//CIXXXS0LZIDmKB6qXI5vaXpY++GmMgKohaYVLvp0Q1VzO/YscPkShMKTL6rV1ImcgLexzlz5sjkMT/I4T+P5u+efk96aHK10oXl/es6y7tXtZYmJ50ku0v48uMbl0qTxo0bm170pue8V9k4X+TTi0Teai+yeJQvlP7E80Rqdw7r6zjmbdu2NR5YxsLOnTs9K+ItpAMwdgmx9xK2RR593DMDkc84e/XVV4O+//TTT8sLL78m59z9tpxw/2R5d0MD4yE3ue5EX8wdIYUnPiyvVP9FVjzVVn5//3/y26QJMnDgwGO+i2s10TXL/YrehQr3CDzyMVsrIgAV8oqiKIqixDSfffaZaRXkNCeWyT0eW4SzF0Aor1+/XurUqSNeDKkn/Nftqv7ZifnNmzfLb7/9Zib6FLZy2obQixBZQAutSy+9VKYPvVqSDu+VFfuKyeTNRY/5LGL91seHSFqBolIwWaR2sTRTuCs3Rbw1OuCl5THLEOjDh0S+vV5k6KkiC0b6BHzjC0RumCZyzlsiZcOPTOHYU8uB85uK9oFF8Lwk4oHIIMQw+8xrIfZck9hPpitAELp37y6PPvqo9OnT55j32M8vvvii3HfffdKrVy9TE4AIKqKhjOe+xPHy70mDZdq6w5IvUaTkht/khL8fklmXHZb6/34l/y6eecx3Uktg69atQT322W0H+/jLL7+UeECFvKIoiqIoMQ1Vh8P1xhMKygTaC9AjGc+XlzzItkq9WyH1TsT8xo0b5c8//zSeTQpheSXKIqci/rbbbpMZM2ZI2ZLF5NK6PoE3ZEaS3Hb77eb9Gau2yazV2+XIEd9+GLdwk3nsUK+86SWfm+H0/kaHa665xjzy3L9KeAaSkkUOpIqkHRGpf5bIdX+J9HldpJRf7/IcwBigIjmRJIwNDD1eFPEWwuupqu61KvbsH9aLa5RT8JwTBt+pU6f016hngvGV1AcpVFJ+3FJFOn+Rz1f9/pTrRQqWlJQDW+X+0wrI8slHw/T9SElJMetDpJBTGI/cM+IBFfKKoiiKosQsTCzpDdy3b1/HRe5oS+TUix8t8MARUlu7dm3xEjY31mtF0gLFPJEM9IEmaiBeitrhyX7llVeM55E2ZT2q7JHi+Q7Jhv0FZHH+E0x4MKHMz/2yUHq9+rt8+KdP1IyZv9E8tq9b2jWjAznOnFs8Ygji9XQxv/BnX49xS+eHRa78VaTfhyJlohONwrrQtQAxT6tJL4p4C+tJtBBj20twbWKdnPa8t7ns5Lb7w3P7Ho/GUEjl+26P+woanvuufLU4UWbt8TMgTnlL5PeXRFK3mvOc9XFa9K5fv36mC4bX9m84qJBXFEVRFCVmoW0QvX+dFjNjMo8nntZDXoBezUxsEahegTBa2rZ5IaQ+KzGPx2/q1Kmmmn7lypUlXkBsYqTA80hwQY+yPvE7cmMlSUtINN7bfxYukb+W+ULG29QuLRt27pMF/+4yn+e5W0YHxDHFxXisWbOmMTp8/PpzkkYe/PB+IqPu/e8/l6giUqVF1NeRcGzCqv/66y8j4rwo4oFzzYtV7PGiU0iQ1phRJ7mA6VN/za/5zFg3HDogMvEZkV//J/J8Ayn9xyNSfN9acy13AtdZogOGDx8usY4KeUVRFEVRYhJCTz/66KOwwurxfiP6vBB+TVVtPN9e8sZ7MaQ+M2MDIhLRSKEwL4Uj5xTEL9X3CxYsKPUK75TqhfbI/iOJ8usWn2eT1/cWrSyHjohUPq6g1ChdWCYt9oWON6pUXEoVzu+S0SHjOcXTK5sky5NVxkgCefCJyT7x7tCTmlMYG4wRcucZM5nle3sBxKYXQ+y5RmE4O3jwYMj/B4MTBApuntv3eCQ1xp9Dhw4Zw5D9jKHD/SLlTxQ5tFcSZgyTU2fdKoVGXCSyeLSv+n2IcM/g3hHrqJBXFEVRFCUmmTZtmpkM9ujha8HlRDgzafSK9xYPF+3BvNQ33qsh9f5wDPHEn3zyyabFnNM+816H8UDlfbyy3cusN69N3FpG9hz2RUcYb235eubvtrXLGAH9+xKfkM9Nb3yg0cGfkvn2y4O15sptdVdJ0XxpsrNYHZGrJ/rC6XMxd98/J56xgmeeVAybM+9FvBhiT+QTnnknFePp+44YHzNmTPprbBeREa1atTLPeaTwKGlSlrFjxxqDC7n0huT8IidfInL1JJHLfxJp0Mt464tvni7y8TkiYx4KeZ169+5trruzZ8+WWEaFvKIoiqIoMQkelXPOOecY8ZAdVEtmMuqFsFq8TkwovVSpHm8bbfCoLu3FkHpAgCHEEGREDTjtMx8LYEShh/fOzevk1BI+wTlqcwXzyPaRV5xUwVfVvXWtUua1yUt9n2tds7RrRgdLnUI75ZUG06Vp8W1y4EiCPD+3pKzs9JYvDzoXCVbYjkr2CGXEJF5fL8K5xzoynrlOeMkrzzWLOiMWqscTPcACCH3+5nzEwHTzzTebqvbfffedqcpPEUQKjSKogXHerVs3GTBggDmvyWG/4YYb5PzzzzefOybEo+qpIud9IAmD/pbVlc+SI/mK+NoVhghjgN+Oda+8CnlFURRFUWIOJpG0nQsnrJ4id17xxhPiT5V6ck+9VEAQYRxYnMor7Nq1ywgwRI5/68B4E/NUm0fMnF03UVKSjsiq1AIyb2chI5qImKhUvY6k5vdFcVRM3iNjpsyRDTv3m0r1RzYvS/dukiLB3wgr9gsiC1FLNMP48eONV9JpwbDMjA4YF+x+X7OvkKQeTpLFe4pI759Ly/QCp8oJDRtJbpJVdXqKpTVo0MAUwHPaxiy3ILye6wM1NLwCqTbUF+E66h8dRY0KFhg8eLD5+3//+595fscdd8iNN95o+sLTEpD9/fPPP5vq8xYqydNhoGPHjqbuSZs2bUzrxCw5rqrsP/0B+avtByLlGjjaDu4d5MnH8nUi9ptrKoqiKIqS58BrQ4h8u3btHP0/8mLxwDGZdBsmkIgqioF5IVcfqEiNaKDvuFfWyR+OOSKecN1g1emtmMejB4hLL25HqHAc6k8rK7J1ncw8Uk9atjzFGKEIcZ6zNUGWLBIpX0hk/47NMnOdT4zXK5Mi5UuXNOKc1BOiT9gHGL84vhgBeJ1c8cKFC5uQ5lmzZkmZMmVMoToqzfN/nERjWKPD4/fcJEuXLpHy5SvI4YIFZfDftWTOqq1SpHhJue/663O1FV4oLeYYR6SQMKYIufdaBArHDWODHfNeaJXJOtWoUcNcuyggyPPTTz89S0HMZx5++GGzZAaFRyle6pRKlSqZopxEgziJzqLgHTUTMHSRnhOLqJBXFEVRFCXmIETzzDPPNGLECXiR8CgRBuyF8HDyir0SHQCLFi0ygs4r1fz9QZji+UOsI9AzI9bFPGHUmzZtMt7tneuXyWlbZ5nXS7UbKKfkL2MMUYz/v+fMkwIppWV3SiEZsiBZ8re53Hyubf1KRpCTIoEHHtFlBSot4B555BHzHdbbi7imWCD/BzHGcwQ/Ih+DAfnNjInszrVTS+2QbzqtkffX1pBX/9xujAXrCxSQE5s0leuvv94YJXILJ33iEcpEeRC1QD6218YK0Tqcj5ybDRs2FC/ANYv9yzhy2jEk0hQsWNCsA8eaMRwqGEUI5+dcUiGvKIqiKIqSS3z//ffywAMPOJ7cE8pet25d8QLWo4WI8gJ4JleuXOk4yiG3wOuGwGzbtm22YivWxDzeRIQv4h0RjzhBQJ9UcI0kSJpIxZOkTc+LjRB/6KGH0oV4+YJHZO/eTTJz5r9ysFQXkcJlpFnV40JqEee/PzAe/PDDD7J+/Xr58MMPTeQD3krWBcHG+iHmWScW/5BoUy180nMiYx8xHsIrWx4nLa99TbZt32Fy5wm795on3h/WrVmzZjJhwgRj+EDYew3WaeLEicYog/HFbTDqEBHDNcxtIQ+k2JC370TIw1lnnSUvvPCCPPjggxKLaI68oiiKoigxBRM2vFNdu3Z19P+olIwgydDOyCVYD0RbtWrVxCtQ4A5PW7FixcRrYGAg9x2Paajhz17PmcdjTpg7Au3XX3810SJ4XwlTJuwX72uxdT5DhNTrkWWv9mq168mhwmXMRxtVKhZGi7gEc15gLOFzCHVqJLAO5CyzTgg2DGG//PKLWWeOyaF9e0S+vtqIeEPzqyTh4q/kxEaNTag6dQy8LOItjCnGFsLUP/fbK5DqQNE3ztHMIHXi/vvvNyH4GIJI2SH6wn/c8zd564wBPsM4W7x4cVjrxLULww9RRW5ToUIFE1XB4oTu3bubtBIvHvNQUCGvKIqiKErMeeMRFk4FJ5NOxInTcPxogLjEw0n4shfA+0o1f69EK/iDcKXSNXUNnO4vL4p5DEoUnhs1apQR8ngTMUpR3AuBzjobDqSKLBvv+7vuGRmE+MH8xWRduVayo1gN8/a+gmXNY+LebfLvyiWOWsRZeJ33+VygyGedqFZONATrisFn1cLZsuPVjiKzP5M0esOf+bzImc/52oS5QLgi3sI24pnn2ATuAy9AITi2jfETjKeeekqGDh1qjD2ME54//fTTMmTIkPTP8Pzll1+W119/3eTdcz5xPIl0cQr7l5B/L7THy5cvn0mZ4hrvBIxTjJWRI0dKLKJCXlEURVGUmIKcRkIinYIH3AveeAQH3kwveePxxOLJ80LYbmDkAoUNCS3G8BEOXhDz/Cah84T6E8LNc4Q7Bin2e9CaDSsnixzeL1KsskjZ+hmEeGrBsrKldGPZVMpXBX5vQV/Xg4RtazIVocFaxPnD67zP57KCz9SoUlHaLHlcSu2aL4eTC8mfNW+VyQfry8aNG13bvzkR8RYMfQhmxlw44jaaILoJZ2cMB4O0i169epnaIVxbzj33XOnSpYvZFruPXnzxRbnvvvvM52gv+cEHHxgD3jfffBPWOvE7GKO8YCArX768ucY7hXsJ95RYRIW8oiiKoigxAxW2Cevt2bOno/+HSMGT5YWWalbseGFdbNE9vN5e6mUPhJLjNWSCjtjNCW6Kefbtb7/9JjNmzDCh84grWnNRHT5Llo71PdbqYHpn+wvxfSm+vOSC+3w90Pel+IR8vj0bMhXiwVrEWWxfegwmfC5b8qVIQqPzRIqUl6SrfpGTzhlsvJsUI0RQ5mZv9kiJeAsh6RiNEMA5bcsXaThHqVsQbP9STHDMmDEm7QgIGWfcET4OpA1wjAmn9w/ZJ6Xgjz/+CGt9iA4hpJ9riNuUK1fO3B+cGmC4l7DfvNqCMCtUyCuKoiiKEjPQexixEaz1WFYwgSUM1Avtm2wf+9zMHc5KBOGNJ6TbC/vGn4ULF5r1w3MYiUJ1uS3mMRxhiEDYIgwRUKQuhNwxYcUk32P1dscI8X0FfGK9wP6jQr6Ar8tA9RL5MhXitkUcQp8WgwgXRBiPPOd1qsuHPC5b3yxy3R8i5U80OfVsW+fOnc15xjYjhJ3mLLst4oGx1rhxY1MAMNz88WjBfsbQwDkbOH7vuusuOf/8801EAaHmGItuvvlm0y8drLc60IDI83A82cBYof0btRO8sG9KlChhIl+cGkcwFFKnItZw/w6iKIqiKIoSIoRAOvXGeymsHnFAHqdXWs6xLqmpqUYceAk8a4hL2kJF0uARbTGPB5e+1D/99JOMHz/eiAsEvBVXIbNvh8i/c3x/V219jBDfneirFZBv7xbZtSdV9uX3efevuaBnlvsLr+2zzz5rRB77mLBoHtnPvJ5li7gtS0U+v1Rk39EcbYwrhTK2KWQbMTawzRgs2Afsj2iEqUdDxFsoIsg+QchTP8JLYHTDQBIoWD///HP5+OOPTS92oj+GDRtmjimP0YRrGdcRjEJuUy5MowT3lFgMr3e/2ouiKIqiKEoIMFHEI//jjz86Fs+EflJB222Y8JLrSkir2yCE8HrjkfJCAUD/44wQobhaNPZTtFrT8X2MTSII2K+IWIxHiG/HPdTXTucIiRxXTaRYhfSX+Z6nnn5GLv3e54nfuGSO5C9YRCQpWQokifTs0Cbbr+Y7TjnlFCOCyacPbBGHMeKY93asFhnWU2TnWpF8hUX6DM3yNzBg4NXGQITBZOzYseb8Q/RFYl9HU8Rb8O6y/hgiqMDvhQgaayzh3GCMIVzt/rz99tvTvfLA/qYWxxNPPCH9+/dPN2RiACAk3sLzJk2a5Gg/YbRBQOOdd5MKFSoY4wvXECdtPRHyffv2NePKy20qA/HGiBSRJ5980uw4QkAURVEURVECmT17tpmgUVnaaU46RdyiMdkPN6zeC2zZssXkW9PL3kuQ44toQqxEi0h75idNmmTC6PG8U43+zz//NN+JCLzttttMqLlzIS8ilY4d69UanCRpCYmSL1Hk9ReelEH3PWper1WumCQmhiZC2L8IvcAWcaznxRdfLJdeeqlcc8015vG6/n1l71vdfCK+dB2Rzg+FvBmcc3QbIAIA4R2JInK5IeItGLkwbHgtxJ7UIlIi/AsbElkTaGxAzNo8f8LHEfPkgwemf7Rq1SrsdUG/0XnBCy3cihYtaowK1BFwAoYtohwyKyToVTwh5KdOnSpvvPGGsWAqiqIoiqIEY9y4cab9lVPvsVfC6hEwTDC9IuQJXUcQeMkbjzBhvRB+0faARkLM2w4EjDFC1Kn+zTG2/d3x6LJNr776qrPCaev+9j1WPOmYt1ZtTTWPVUoVltPbtZO0o/3jq5fO2JrP/h7inPZ92f0+n8PoQDQEXlYqklcoVVQGlRwvBVPXyb6UciKXfitSxNfqzqmntEOHDma/4J0npzrc/Z1bIt7LIfZ45Tl3OVf8vcqPPfaY/PDDDyZl4uuvv5bnn39e+vTpY963DtNHH33UhJEzJjDU0J++d+/eOVofrml49g8cOCBukpCQYKIUnObJUx+E8cQ9JpZwXchjTaIIw1tvvZVtuwtabmA58l8URVEURckbEKpMu65w2n55QcgjPigEllkf79xkz549JlKhRg1fH3IvQLQFHuxohdRHWswfPHjQeJgRRCNGjDBe+UAhg7Bg7FGcDAEaMhuOfrZ8w2Pealm9pPx+Vwd5/eKm5vnKrXvMY7VShTOI8gEDBpi/EW8INjztmUUGIPLpP041dHKwEcj5kxLkkRNXSYPjDsnmfYlyz4IGcqRI+OcRYoloGsK42Rc48tiHXhXxwULsvVTFHg87BiTbTpB+8bScu+6660y6CEaZq6++Wh555JH0/3PHHXfIjTfeKAMHDjSREugw0pVIhcgJpAuxnzg2blO+fHmTwuTUUNS+fXtzj4klXBfyVMek36F/K4TMIMeDC7tdCONQFEVRFCX+QeTRds6pkMeLxuQ7O2dBbkDoqVfmLrSiYsLrBaOChZzfaIfUR0rMI4AYj4wtBCVpH5ntS17HGZVZf/djOJAqsm2F7++yx1agT05KlEolCkqdckXN89VbfUKuSsmCGTzrtB8DUicQWVmF+SOQ2XY85zZH+PLKy6Vp8W2y73Ci3PtPbRk3a6UzY0Qm4AFGNFG7AuMHRiWvingLFflZBy+F2COey5Yta85lO47pE0+ECOIebz3ed/9uFBzbhx9+2Nf5YN8+GT16dMTaTuKV90J4fenSpc3YctoxgXsLQj43W1PGtJD/9NNPTfgOAj0U7r77bnNDtosXWh0oiqIoihJ9ECVMsJwWZaLIHf2t3S5URf4qcxf/IlNuwSSXyb6XvPGEpS9btiziVeqjIeaJZEDEYwght5bxZfu7B4PXeT9kY9LWZb5CdyklRIr4wuazYt123+9WKlEog2fdHt9Qwvx5HWODvzFi9JZysmF/AXlmeX1Zfbi0M2NENrA/2He05ZswYUKWOc1ui3hgTJLugZD3UkQwx5gwes5pt6HQHeMjGh0KnB6rkiVLOu5tT7QI12miZ2IF1+5qiPCbbrrJtEkINZyDk75YsWIZFkVRFEVR4h88JRTmcprPTUE3PDRugwcMweeFXu14zfDmMdn1AlaoIUrcnNtlJ+Z5jpeTcPqGDRuaau54OP37uwf7P7zeoEGDTPu7BxfyIlIqeEvAYZNXyBM/zZd/1vlyttfv8AmnCiVSgnrWQwnzx8gQaIxYsbeIXPNPc5myo5RzY4SDgnvsFwqu4VkOtv/cFvEWWzcgElEJkYJrG8YXL4S02/ERbk/6SO+XzQ6FvM2Tj6XweteE/PTp041FE8srN2UWLHIvv/yy+dsLvQgVRVEURYnt/Hgmc14R8l7I0wc8eAgSr7RZwhtLtEJuh9Q7EfM8EhWCR5b2bf6V/v37uyP0CbtnHssjz3mdVNKQIw22r/I9lqga9O0f56yXNyYsk6Wb9sie/Ydk936fN7ZcsZSgnvVQwvytMeLAtrVSo+B/IcmH0hLDM0Y4gKJtVE0ntYIUBf997hURbyEMnWiHrEQi60s9Agx37G+MFdOmTUt/n+363//+Z4wtvE96cbgh+5zD7D8ibLwA1zinheaiQenSpY0R12mYvA2vjxVcE/IdO3Y0xUH+/vvv9IWQBgrf8beT3n+KoiiKosQvOcmPB7d7tlPQi4m/F4Q8IewITLf7PVuYaOMhRiBRidsLBIp5xh8OKARcu3btgkYyIO6fffZZE37NPsZYwiMOK1531Ed+5zrfY/Hgx2jHXl+BuOMK5ZNNu/abvwvlT5IiBZKDetb9ycyzbowR118nz7fZLc/UnSktC63KmTHCIYheIm4w6pB2y297TcRbry0GJ9YtmEjEQML6MpZ/+uknM7afe+65DPv76aefNo7L119/3UQiEB3TtWvXsEPSyU3nWueFkH+ucThq3Q71L1GihBlD8Z4nn+zmRZKwJH8YyJzIga8riqIoipJ3yWl+vNueZ8QJQoR5jtvguUPEe0U0I9TwEFOB20tYMf/bb7/JunXrjIOJ54jgzECsk/eNyEPQId7wYDsWv7uPhiYXDV5PYdc+n0hCuG/Z4xPypYrkz+BZp7AdYsYf61nHuBDMs35qwkyR0ntk/5FEmbn+kKzYvMJsL59HxDsyRoRBoUKFpE2bNqYYH23AEIM894qIt5ACQj0HKqNTuM+fp556yhS0fO+999Jf8x/bHAMK0t13333Sq1cv89oHH3xgWqbRuvD8888Py7jAenBu4/13E44VUQZc89ysB5LolyfvJF2HSv42Tz4a0SdxV7VeURTFbSj6Q4QQHr9Qeu1Ggssuu8yICxYm1NzEO3fuLO+++66j33///fePmawpSrzBucmE3mm0nlfy45nwe8EbjzAiP55QXC/AtW7BggVSr149T0ZiYnghmoOJPeMolPoGNu8b7zKPYXmwU7f4HgsFH7upB/4T8lv3+LzzJQvlPybM31YzD8mzTru7MQ+bP/P1fE4efPVT4zFGZH744YdRF/EWDAcY39jn7HsvGL8CIQWYKvZEawTer+nPToRx3759TUV5IjRosW3hmGBM8e/WxXa2bNlS/vjjj7DXiVQZ6o+5nZps6zDEap58vnz5jMGOdO9YwFNCnlAGrFSKoii5BZZ/ctnosXvNNddk22s3knTr1s1M8AnBJASPdjwUAe3Ro4frYWmK4iXoN92iRYuYzI9nou+lPvZ4Pb3Qig/wIDLx90pLvsDxQ4g30QIYkdh3TvvMh83eo/nrBYMfp9QDPrGWki8pPcy++FEh7x/m36hRI/OcFIEsw/wPHxT5+hqRwwdE6nSTxGaX59wYEQY2Jx4RyD4nDYDIAi+GOWMMY70CO2jhqR86dKgJvx81apRce+21MmjQIBk2bJh53wpcjPf+8Dwn4hfvM0YQoke8kifv9nErHWaePF55/5oGXsZTQl5RFCU3sb12mazZarTZ9dqNJNx0ueER5soE65577pFvv/3WiHo87fD888+biRReCSa71113nfGsWOPn5ZdfbnLjrHf/wQcfNO/hQcErQHgov3HhhReavDVFiUXIT27atGlM5scTYs256QXxjDeeIm1upxoAxkqKm1FAze3WgMEgOosxhOhFJDntM58jDhztq17g2JByfvvAYZ8XuEC+RNl5VMgXTcmYLct6W08wTrIsPeuTXxb5d7av3V3Pl3GrSm4TWNiOfc66UpfAS1XiLYxZUhiIKPH3gmO4437++OOPG2/8wIEDZcCAASa6IZpwTnNue6GPO8eO/RCpVoW5nSfftGlTc8+JBbx35VQURckF/Hvt1qpVy+R1hdJrN9p06NBBGjduLF999VX6ZIGiOExksOiPHTtW7rjjDvMekxwmaOR/4dlnwQBhi2s98sgjJreYvDu8/oTzK0qswSRs0aJFjoU8nhiv5McTYuv2ehw4cMDsEy/0sQfCvIkO8EKkQiBcLxGU5LvbnHgnfeZzzIFU32O+YyvPH0lD9B59OzExPcy+aIFjy15ZAwn3ikw969tWiEx42vd3tydFimb0FOcGmVWnpz01x4B9zuI1yEtnfOCFt3B+YZzyB8Fv19+O98DK7pGI2uG3iULi/u8mjLMyZco4DmuPxnqULFnSXPecwL2G8ZhZwUgvoUJeUZQ8Sbi9dnMD8kWZSMLNN99sQu6JFkDkP/roo/L555+b98jXxNto15fFToCuuOIK6d69uynKw0QIYwCefuvNV5RYgQgZxrZTAUoosRfqR9iCe25DRA5iFPHsNgiNJUuWGMHjtoEjECb9c+fONeG1gfnZuSbmjxxNrUo8tiBhYoLI6MHtZPTg06RYwXyy52iYfcH8YdYYKFZJpP09InXPEGnsvNBaTsmuxRzPiS6jLR2Gdy/B2GUM0zrOpsOxDUSa+IMh0taloPAd17MxY8akv0+1earX04IvJ7CvOL8xHroN1zy3hTxwD+Be4AQiG/h/jDmvo0JeUZQ8Sbi9dnNrYmMnt6NHjzbtOgm/ZxJ5ySWXmIkmhYCygrCwnj17mhsS/4+WSeBFr4aiZAWpL0698V4R8oR1cg1xO0/fa33syStGdHjBwOEP19UpU6aYatWZHbNcEfNpR0O1E48V59wbapUtIrXKFpWkxATZf/BIer58WCTlE2l9k8j5nzgOqc9podhQ+8QT0YJXm2PjNS8pnmfmCzak/ZZbbpE///zThNZjrPrkk0/kzTffNAUG7fHDQI9RnsJ47Ddq8+Dd7927d47Xx0uF5jC85HZUYySEPMeIew73Hq+jQl5RlDxJuL12cwMmh1jt8cpT+I6CRSNGjDDinHB/GyabGXv27DE9aQm5//jjj02hsK+//jrb/6co8ZIfj3eM6BO3hTwinsgZtytve6ngHuKNUGSihbzkjWfM4BVFUGXXCi/qYj7hqCg/kn0F8gNH87PzJzmc0h8+lPH7HR6LnBaKDVXEWxgvFIRDzLtdmd0fxrBtR8c2EcnB/Xb48OGmnTYpbqTAXXTRRen/h/S4G2+80eTP83muVT///LNJJYiXQnOcI6QrOhXRkaZEiRImPcvpmImVPHkV8oqi5Elsr10s14E3PNtrl5C53O4jSg48FvpzzjnH3ESYgD/33HMmPL5OnTrHVKRFJATeoCi+g9f+ySeflLZt25pQfS10p+S1QncY4iIxMc4Jtmq+24KV6wGTarcNG8C1CNFMlJGX4LpL66lQ+3BHVcwnHa1Af9jXIz6QV8ctkad+XmAq1h8maZ6WaMTcO2HmByKvtxFZ8l+Id24VinUq4oFzCKM2ec+kPniJypUrmwg+G9KOAZ7xtG/fPjM2KHYXuC0PP/ywmWfwGSLvuL9HAnLCwe00BLYxnPZvkaZgwYKmXSDpC05QIa8oiuJh/HvtUnQJi3hIvXYjCDd+buRMZpgQEYrXq1cvMwnAu0ERPnJJhwwZYqz9VBwOrHzLBIp1Jt+OGyahoYTTI/Dt/yN8D6+AosQajG0MU06FvBfC6r2UH2/D6t02KADXVzzeXqpUz/7BSMo4c7JeURPztsjdweARY0PHLzXLtj0H0oV8ohMhz/eOf0pk4zyRzYtztVBsOCLewu9wjAhj95JxmvXiXuxf9M4tOMdz2sounvLkExISwgqvZ5xhMMLQ4mW8cxVVFEXJZWyvXVrEcJEnlD3LXrsRhlA6CngxAaCn/Lhx40xROlrQMTGgej3t55566ikTokeY/BNPPHHMNhDW2K9fP5Or9/TTT5tH2td98cUXJqoAzzzboyixxt9//20mpYQ7x5qQ90p+vI0w8kJYPWk/RAfYwl9egHQjxhnX2MxqpuS6mE8p5nvcF9yLaPPh6SefIGEYZ6a/L7L7X5HiVUSaXZ5rhWJzIuItFHPjvsYxc1KdnfugzU+3INIw2CM4WRci4QKryYcK93GMC9nVr8kNNE8+I+EIea5RpCcSWeFlju1VoSiKkodACBO2zuSCSTeeeMLpo+0tQmjbXvFZQeEcFn8oeOfP0KFDzeLPBRdcYBZ/3M6ZUxSnEKmCYc0phNY7Ff+RhusJodpu58eTH0r0DwY+t1m5cqUxzLid8uAPXje6fxDJFC5WzP/+++/mOWlbOYp+KHi0Nsve4OHR9IzfvHu/7N5/SOyt6shRz3y2HNov8vtLvr/b3iqS7GuvFyqhFIpFDAcWio2EiPcXzURQ8H1NmjTJ9vPUiXnjjTdMaL4/3Ft/+OEHY/RmDBCld/bZZ6cfRyew3RTlw6BDOpubsB6kJBHRlJP9HMk8eRvy75aQX7RoUdgF76hj4FXUI68oSp4H0U5e5GmnnZZ5r11FUXIdwuoDezJnB/nXiFe3PfLWMOh2ODveeEQ8E2o3IdQakYMI8wrsm/Xr1xsxmNPjFFHPfJGjvdx3Bw8fL5bi88ORI5989H51MFQhP/szkV3rRYpWFGnyXwG2aBaKjaSIB44VkXR8X3Yh9ohZCs299dZbGdYJY98777xjot5o7Ypoe++990x+P1XnwwEvLsffbaM5OeFEArkdXs9xYp+70f3HH4w05Mg7LXiHQY57kJfR2aqiKIqiKJ4EL4rTIlBeKXTHerhtTACvhNXjpcVI6oXIACAsOych9VEV81bII7iDcFxhXzE8cuTzHa1Wf+BQCG2+WJ/Jr/j+bnWdSPLRonpRLBQbaRHvH2LPb1Bgz/ZwDwah82eeeaZ06tQpw+t4rBkD/q/jSScy448//ghrnYg2YXu9kL/vlfB6RDTXQjcpVKhQWAXvuPc49eTnNirkFUVRFEXxJIsXL3Ys5PHGk9votifcC3n65ACzHggMt0HcIpLcPi4WenwjKnMSUh81MV+iiu9x28qgb5cq7AuH37xnvxTM75vK79idauq8zJo1y4SS41WmnR5MmzbNvLZkzDCRzQslLV9hOdz44qgXio2WiPf3gGOE4XeD8emnn5rQ6MDaMoDIpShs4Dmak0JxbDPjiWPvBSFPQUK3W86Gk58eaRISEsw9gXuDE1TIK4qiKIqihAEhukyInQp5Cqq5mRcKePpYD7eFPJ5B1sHt6ASEHq253K5b4G/gQPzhOY6GYSHHYv64o+kH25YHfbtkIV+axD9L18j6NT7RuHLteiOY8Twipv2LRBJmzWv7yzeVeU0elH8q9ZMfxkyS8ePHm6gEDADkvUeyUGy0RTxw7DiGGGUC13/16tVy0003mSKxuTn+KQLIeZdZ1f7cAgMH4tXt6ADbxz2rqIncoEiRIsbY5ATuPcuXL3fdGJIVWuxOURRFURTPweQcQeQ0LJzJmtuV4hE1iAdC/N2E3FQvtL9DxLMvOJ5egHBZQvyjWYArRwXwStf1PW5dJnLogAmBRxjiKcY4UCl1ozzWtrjUrHCc/PnvEZHFa6VEmfLSunXTYwxKVN2mLgGFFw0NTzQiu3pqqhmnLIje2bNnG/GPR5nH7GrFZFUoNjdEfPquKl3aHEeid0iT8A+dR8T6F8vEoDRx4kTTPm/UqFFGoAVGzpACkpNUFELJMabQdo2ic27CfsErT597t7DXQcLa3Sx4V6RIEce5+lWqVDHHEjFft+7Rc9JjqJBXFEVRFMWz+fFOPaYIebcLqnklPx6RQm9vt/FSH3siJaie365du6j/VthivlhFkQLFRfbvkIP/zpNV+4uaCAL+L0L7vEaNTN4vrJuxRkTWyq59oXs8+R66KbBUqlQpfb8g6BH+VPKvUaOGCV1HyGRXKNaf3BTxFrzykyZNMuts90vHjh2PaR12+eWXmzz4O++804g0jBtjxowxbedg4cKFxlDSqlWrsNfFtuBjzLst5LkGMdbdhP2BccPtyvWFCxc249sJjO/atWube5EKeUVRFEVRlCgWusNr6YXQei/kx7Mv8IK5vR62ABpVwb0Aoe54KAk7zg3CEvMJCZJWvqEkrPxd5o/5RLZVO9N4m4P1bi9RyOdp356aTU/1Ty8SKV1bpNUNIoVLBxU6iFzOOSr54+FG2OJlD7W2gRsiHhCK7BsqjFsPPPvd30Nvt5EIFfv6lVdeKYMHDzYCk/Fw4403GhFPpEFOQMhTqwAjh5vGK859Ii04Lm6vh9t58kWKFDH3Bqf7wut58lrsTlEURVGUuBDytiWW9cq56ZFHXLgJeal4lNzuY88EnpBmL4T4Y9hApOa2d81pzjzjeH2CL7y7VsGdpjUq+e5WgPD/3560TO79eo7kP1q1fuueLPJ4ty4VWTBSZPIQrARZ/jZjBi89EQvkwLO+FM3LrN2c2yLeghGC33aSB/3CCy9Ijx49jEeefYwA/+qrryIS7k/YvtPiapHGHgO31wMh73bl+sKFC5vrEPUxnKBCXlEURVEUJReEPJN4Jmxuep9sVIDb+eA2KsDtcHa88aHkXOcGy5YtM954Nww9oYh5XiMUeuzYsbKvTBPzWqFNfx9zDHn+1qRl8vFfq2T3fl9I/abd+zM1ECQu+MH3R7W2IoVDM6jwG3i56bFOCPq4ceMy7ZHutogHznuMHRzjzKC434svvpghf/vVV181eeScs4j4SLRqTEpKMmH1GI3chHOOSAO3RbQtNBd2O8YIkHjUqBlOwTv1yCsxDxMTco0oEsKj29U4FSUvcfrpp8vNN98c1d948MEHpUkT38QxK+6//34ZOHCguM1dd91lwiCV+IXJE/mJTmCS5nZYfWpqqhFBbkcFIOTdjgqIRPGwSIGHdM2aNSaP2i2yEvN4vGkZR3h4s2bNpMbpF/re2DRfZPemY76rdlmfoWjL7gPpfeR37g2eJ5+w6CffH/V7OF5nWrSRFkHI+rx584x33t+r6QURb+HYsm8p8uc2GK8Y+27jhbB2BDTjJLuojtxYj91hCHlSTLyK++ZRxfNMnjxZLr74Yrn00kvlmmuuMY8853VFUZxz2WWXmYk+51Mg9N/lPT5jwUvwyCOPuL6r8ay99NJLcu+997q9KnLbbbfJsGHDsvS+KLELEz6qPlNsK9aEvBeiArySp49Rg3B2t4t+AZ5u9ofbxo1gYp4xQ7E2RDMecESgyWMvd7SQ3LJxx3xPnXI+Ib900570PPn1O48VSvkO7ZKEddOP/qduYa83xhjWDW8z62rzjb0i4oHK+XigvdLHnXPQaSh3PAp5vOEYNp2KaC+0oKtataqJrPCCcSgYKuSVLEGsM2GeMWOGuRhQCZjHmTNnmtdVzCtKeFAx99NPP81goeaG/8knn5jCQv5QiMftMF14++23Tcshp+LKKaH0bCUHsWvXrjJ06NCoroviDkycqJbttI0c4sLtnHAvrINXCt3hkSQ3HoHqJjZk3e1uBsHEPH3cEcaE/OP1Tm8TB7U7+R4X/3LMd9Sv4LsnzFu/QyoWL2j+Xrf9WCFfZtc8SUg7IlK2gUjxnLUh4zgSLUDIPevM3DArEf/EE09I8+bNzfZizOndu/cx3k3uexiwGSd8B/nqOfFkc4w51m6GcQMt1zj/3PbK2/x0t/cH10SujbG2DuXKlTNGWbePY2aokFeynAjQa5PcoVq1apkLLJZYHmlnQz9Gcos0zF7xEtysUg8cyvXF6U2SCRti3r+wDn8j4ikwlFloPWGXWLYR/JbPP/9cChYsaMIeAev7VVddZfok453Ai0IFXX+efPJJc4NigkXl3lC8BhgeevbsmeG1/fv3y6BBg8wkjXzDNm3ayNSpU9Pff//9948RE998800Gb6UN68dQUL16dfM98OWXX5qqv2wbk7xOnTpluAmzLqyTEp9CHo+W07xqxjHjxU28EBXglUJ3zBPcbDll2bJli/GoIUC9Atfexo0bGzHP30Gr2dfp7ntcNErk0P4MbzWs5Iss+GftTqlUwnfNXLPtWCFfevd83x/VI9Nuj3Wk3Rv3IVIV2IbMxvuECROMSCdl4NdffzXHoEuXLhmu47fccot8//338sUXX5jPr1u3Ts4+++yw1488eQzkTnuGRwPuW26vB8fGRn24vR5ur0PBggUdR0hgWMOg7Ha9g8zQPvIRBlFLmBEnLiE+tO3wQoGXcGA7CPsK1u7E9slEOPC5wD6iiuIWew8elgb/G5Xrvzvv4a5SKL+zS+oVV1wh7733nlx00UXm+bvvvmv63FKQJ6vKvM8++6xcd911RjRzfSFE/6mnnjKTK+jbt6+5Yf30008mjPSNN94wPXXJOWZSjfBHPGOI4zs+/PBDefnll7PMHcWgx/mON8afO+64Q0aMGGHC3PHUP/3008ZTvmTJEkcTeD7P92DMwGDITfOCCy4w39enTx8jTPAA+RtMWrRoYSaSK1as8IynTYkMTObDEV1M0vCEuQmTVbyrXsiP90J4vxfEM2KZY8K1xSswTjCwct3Fq8186xgxX7m5SNEKIrvWiywdK1K3u1+OfBFJyZcou/YfkuIFfV78lVtSj/mdQ4kpklaskiRUaxOR9eYazL0Ascx1l23AEBHMaPTzzz9neI5hF6Pv9OnTTZV4PMXvvPOOMUxjcAbuiewHxH84beCI5OFYc8zdNiJhxKaNn5swR7B93N2M7EPIk57nJgUKFAgr1QHjEPckLxKbCtOjxFsuOcYIvG2ZeTd4nffdtjYqSqzC9eG3334zYYAs9BnmteywIp7PkktP6KIt/Mb3TZkyxXg3EN0UC0P4M6HAww1U7cULz0IbpkcffTTdCJAZtloxNzQLXhVC25955hnp3r27+Y633nrLXBuYnDkNp//ggw9MNEKjRo2MkD906JDxzDBZxFjIdvt7fuy6sO+U+ILj71QA0loIj5+N6HAL7WPvg/MXA5zb4f04WAiLpaWaV+B698cffxjBSU/zTKvZ4wg6oY/v79mfZfiO5KREaVSphCQmiOQ72oJuxeZjw4bnVTpfDt04S6TemTle78CceK7VnKdsSyg5xLZ6uhXYCHr+H9FW/sZqItP4znDh3oBodDucnLFPigvXJjexQj6vh9anpKQY3eI0kpgxrh75PJJLjteKA85EFmulzSVnIk1uaSxBRAHWK7YjWNgUr/M+n1MUr1AwX5Lxjrvxu04h9P3MM880XgomHPwdak4w3nuqqWJtZ2JlvTh4R/D0BPZs5nxdunSp+ZvJYmChvVatWpn2Qplhc/n9RRLfxySMCZ1/GBqecn7DCXjz2R8WwjWJIkDA4+EnHPPcc8/NcL2xRkYKainxBZMmf6NRKFhPi5seeSbsnCtuh7QjmEhTcRMEDMfCbcOKdTZ4aa5C9x+8o0Rtcu22OfMYcyGDZ77x+SJ/viay4EeR1K0ihf7zMj91biMpXSS/zFmzQ4ZPXS1LN2URupzD6IzMCttxjUZ0z50795i0MH8QT6SI8X8xXgBim7z7QGMPaV858d5y/+P3EK9uHnfSD4gQcNugxW+vXr1a3ITxwr2a4+JWpHLK0WtRVk7KWBPy6pGPAPGaS84NhptJMKsmz3kdDxyfUxSvYNo+5U/O9SXcEFbC6xHyhKbzd6gg2LFus/jfYBDx3HQooOS/UGDo9ttvl3CxBganETjcsAOvH8E8N4HCh2soOZWkB3CdGTJkiIkeWL58efpnuOaCvwFAybseeSZnTNTcDCfHmMDvu2lM4HxDRLtdnd0r4f22j73b6+E/tokQwFjpv06ZtqYr30ik/Ikih/eL/P1fbRSoXrqwFE3JJ7XK+kT1qq2psu+gn/f3YCoDIsfrnFV1eraBGieEHmdVEIxcecR+btQ14b5DCL/bodzsGy94w1kHrgluwrWZccR12i0SExON4cjpOqiQj3Oc5JLHEgz4G264wVgz8bwhEPA28MhzXufCHKs1ABTFC3Tr1s2EWSJu8TyHAgKWkHrawPFIjr31mFNEj8kLXgAMi/6LFeMY6OgF7A/5iFmBUZLCebagnn2Nm6L1IgHbQbE7G6qPyMYb4R9Sh2EhFLh+Mml86KGHTHQTv/X111+nv8+kkAgANSbGH+HkyHshP96ug5uikZB27tVuF/3zQvs74HrohT72wLUeI6wt4hlIUDHPWGp+le8DU98SOXJsmHaZogVMC7ojaSJLNv7nlU/66XbpPuc6SZjzedjrHEqLOTzPeNm5tgcz1DKXHDlypIn68q8fwXFhnwQKXQwCOT1m/H+3hbxX2r8x1jgubob4WxHtdju+lJQUx+ugOfJxTjznkpMOQFoA4VJciCgqxSNiIRbTBRTFa+B5ZsKGQA61EBNh8VS8v+++++T55583N2dSeIBcQ8LkafPzyy+/mHOW1B9E/7Rp08xnbrrpJhOaT1EhCuA98MAD2RoauQnz3eTg+3vRr732WuPpp6gR2zBgwAATPkf+PbRs2dJM8u655x5jAKSoEREI2YGh4fHHHzfrzKSWInibNm0yRggLxe/atm3rumBRvOGRZ3Lmdhi3V9aBawnGPLfD+92OCsDxwPXIC33sbUg9TpCsiiEGFfMn9hUpeJzIthUi87/P8PlPp6ySPq9NlpKFfC3+5q/387xuWSz5D+8RyRfeNdJJn3jy2jH2YmD1//+IeAywY8eOPSbdo2nTpsYYO2bMmPTXiB5j27mP5QSiMDAiu5165QWPPAIa42IsimgvFLyr4OHQeq1aHwHiPZccsU7l0Hipxq8oXoPJT6hQEO7HH380Hmom6iwfffSRKX7Xo0cPU3SO9xHuVMBH/OKZoEIwExvo16+fEdVUnOeGRt9eBPmoUVlX+6elHUKdSvL2/KeNHWlDl1xyiZk0UWCP77HXO4oasX6IfQrhkfdOxfyBAwdmu08mTpxoCvMREkgO/XPPPWe2z0KIJt+lxB8q5GM7KgDjott5wdazSySS20YN/5B6qrNnd2yC5sy3GCgy4SmRSc+JNOiVnvP+78598vfq7VKtVCHz/J91O6Xv0e9J2Oqri5JWsmZURbx/iD2CHQ8m9xuiNjHefvvtt2abrIcccYsBlkeMvoMHDzb3Cq77FG5FxIdTsd4fDATkyvObWXVkiTacA5wLbuaG23Qfrg1u1u+wxebcJCWMdfCykE9Ic7ukYw6wOWBYfZ1MhCMNJyfVo5lYE2rqf4Fm9zJhxoNNiycVv4qixCpcz/Cw0/eX1nBuQu78rbfeKrNnz/bEJN1LeOXemJN7Kh5lvHJEnoTKjBkzTPQHVa/dgqgUQljJf3YLiloRiUO0iluQ/kNUDalDbhoUSPPhXKAwqNvXTrzOdBHBKBkqCEDEPN7u+lXLSsJLjUUO7Bbp95FI/Z7mM7NWb5der/4uBZITZf+hI9K06nEy4tpTRfbtEHnyePOZ/bcuk0Ur1oXsjHEq4v1ZtmyZGX/t27fP9DeIBiMtDBCXXMuHDx9uBBYpZq+99lpE0iEWLFhg0rrw/LsF+xLjOvvRTcPWhAkTTIqdm90b0EkYcGLtGr106VKzzqSBeKXWhkVdqpHYiZpLrihKHoAb2JtvvmlycN2GyRmTQRXx8Qfh0OC05zGTLEJI83povS365yYIUIxIbk96MWZFSzxhcCJUnsghHrMqaIxXmCgFJ4apY8LsV26UtJZHu42MeUTksO86fGKl4iZHHhEPc9fukIOHj4jsWGueH0gqLAOuvyXk1sg5EfGAoYJzcePGjea7gi1WxANjlYLQGH+4rpNGFamaBl7IT+cc4FzgnHCTWA1rj8Y67Hfokec8ZN7DuPYaKuQjhOaSK4qSFyB0kjB6t6EVHdEBSvwKeacCgomW24YdrxTcc1vIe2Ed8LohDKORp48IRgxnJo4DRf6SJUtMeHc4UZn+Yn5hqS6SVrCkyOaFItPfM+8nJiZI5wa+tKl8SQlG0Js8+d2+CvL78pUwBfYQtdWqVTOPtjVyoJjPqYgHomnIhWeb3YZjz/XEbeOzF0S0V8La3d4PycnJjseDNSq7bYwJhsYjRhDNJVcURVGUnMFkiQmfU1HuBSHvBW84E2W3i8x5YT/giSWMN9KGFcQvIhgPMrmz/Aa1kKw47t+/vwljplAd+wEvPDVB8MwSWh8O/jnzxetdLhVmPicy9lGRBr1FipSRMxpWkE/+WpX++WkrtknDYpuMt25/cjGpUaNCunixrZEJF8YTTi66bROaUxFvwWBAIVVEdE6+J6fY409kBvnyeV1E+3ePyav7ITkMIc96c45wb7Ldf7yCeuQjvUMTE01bEQpL8ag58YqiKIoSOkyWnIbVe0XI4wWmyJabaFRA9Nrf4Wl/5ZVXjIgn3xiRigfaimNEMN1EqNdgPeBEDuGVp7hoZuHsTsT87PxNZW+J2iL7tov8cq9575QaJaVk4fxy8LCv7NWU5Vtl5cZd8ufmwrK9UI1MWyMj3Kkoj+GBJRIiHhDPfD9RBG7jhfB6L3iivRDWzvU5WHvC3CQpKclxGz7OF84/Gy3mJVTIK4qiKIriGcL14jE5c1vIY0wItY1kPIe1e8GYEI32dwhfPO144oPl/7PdGKJod8cYZjxScX7dOl+hOTzgWeXSZwdi4tQ2p8nflS+TtIREkdmfiSz8SZKTEuXcppWlVU2f13nKiq2yMl8tufb3cjKvUr+g38W6Ll++XO666y757rvvjOgeMWKEKSAaCSjQR+FFt2tqI+QZC3ldRHvBmBCON9wr61CkSBFPhtarkFcURVEUxTPEskfeC+vgFSHv9jpgEApnHGUFYpzQYEK2g41bQuwx5FihQBgukZm0rsJDTcVsjAE5gW1q2LW/rCh/pnme9t0gkd0b5Z4z6suwy1tIofxJsnXPAdkhRTI1phBRwLqwLbQfpbMSReYmTZoUNHc+HMqUKWP2g9si2gueVC+I6FgNa/fKOhT1wDgKhgp5RVEURVE8QzgCDK+f2yIaTyvr4eY6sA+ITHBTRLMPvJAjHw1jAq3bEMcI9kAIGWbfI+RtegVCftOmTeZvxD/7BWNATuH8KN33edlVsIok7NkoaV9fwwCU/MmJckoNn1d+fdp/bff8veL8TXs49s9VV11l0kBpj8a6kx4QicgBwICh3nBvCXmqruf0uOYEro2MMzejNJJzIOTVI68oiqIoipIFTJachtbbnEe3RbTb64BYQEC5maePoEUsuCnk+f1oGBPov06oPO3kAsWIFSkIdmuIQshv2bLF/I34xwiAMSCn7eygaMmyknje+3I4Mb8kLB0jaeOfMK83qOD77RLTh8i7tX+VE9YONyH0GMhYvw0bNph1ogUc+fuI+J07d2bInY9E5ACQ2uCF/HTGgpvikXVg37uZH26jM9w0KNhro9Mc9Uivw5EjRxwbNLgnqUdeURRFcczpp58uN998c1T33IMPPmhay2XH/fffbyowR3q9c2MbYwVyVm+88UbJq4QTWu8FEW3Xwc0ceTxuiHg3+7cjFNgHbh4LG0IcaSGPkeSGG24wYpyq71Yc80jfdCb7/mH3CPnNmzcbEYn4b9CggTEGOG1nlxmFqzeTA12eNn8nTHxa9v79lbw1abl5vnHbTkk+nCpJR/ZLo0aNjKDGE88jlfXbtGkjP//8c7qIt0QycsArheYQbW6KaM5Jxo6boe1cE/Lnz+9qL3R7TXAzvD45zHVQj7yiKIpiwBPCTZUJWyDXX3+9eY/PWMhdfOSRR1zfe0xEX3rpJbn3Xl+lZP9tCVzoIeyV9Q6FN9980xgTihUrZtY/2OSTStSdO3c2k1NaGWHQCLTQjxkzxrQi5aaPZ+vOO+/MMGFYuHChtG/fXsqVK2cmmPSWpsq1/ySTHNVhw4bJsmXLJDfBE9izZ0+pWLGi2QfffPNNhvfZVkRM5cqVzWQfUfL6668fI+IYw+wfRA35t3gA/aGwFiG/devWlZEjRx6zHrRIKly4sKN1Zx8zUXazU4wN7XdTRCMY3e6W44X8eAQToiUa+4Lz+9lnn5WTTjopgzhu2rSpPPbYY+b8QeTjgedaQRE5niP+OTcC18m2s/OvdJ9Vr/dACp5yuRw46Qrzd4Hvr5YbavsE+N60/OYx8chBeeONN+SDDz6QoUOHytNPP20q01PYLlDEhxI54AS2g99wO5ybxU1PNNcELxS8Yz3cjEyw12g3hXzSUUOr03XgnhSuR55UFc5rrotEwUyZMiXDnIDzkfvqo48+6vi7NUdeURTFBegt/Omnn2bIteQm/8knn5hqv/6ULFky4kWbwuHtt982k9iqVatmeL1bt26mmJP/Ur16ddfX24nnITU11WzHPffcE/R9qk536tTJtJz666+/jCeL0FN/g8usWbPkjDPOMN/DJPyzzz4zohUPu79nBm/bL7/8Ym7gL774orz11lvywAMPZPDide3a1Uy6cxMEdOPGjc2kIxiDBw822/3RRx+Zyt1EUCDs2UbLLbfcIt9//7188cUXpp0V++3ss8/OILAQM6+99ppp43Xttdcec5zCyXVHKLgtYL1Qsd4L+8EL3QOibUzgOsh5gDjGmMXjhx9+KFdffXW6yLch3Qh5isnxOv/PSTu7UPPV8/d4Rg7V6CSJhw/IgFW3S52E1ZIqvlDq5CP7zXohqDGwFSpUSH777Tdz/QkUddlFDjgF8WP7b7uJF0Q01343Q8qBY+F2FwG3C94lJCSY/eDUuGRTZ5zCPIB7J/d4jHXcY7m/E8ED3EOJvvn222/N4rTQpAp5RVEUF2Bih5jHa23hb0Q8k8DMws4XLFhgJmIIfsvnn39uPKTkNQLeIYoYUTUYD3OHDh2MyPTnySefNF5hhPaVV14Z0iQHwwMe28x6BvsvTEYDw+URb7Vr1zYTXH773HPPzfA93FjptYwBgO8g3N+f7LbLpgdgcMCQ4GQiz3oiuE855ZSg7+M5ZiLGpBpPcvPmzc0EHq8W0Qf2hk0I6//+9z8zKW/Xrp3xfvF/7EQWD/zll19ubuYYRM466yy56KKLTLVof9jP7O/cpHv37sYj0KdPn6DvM8EgJJfjineBiAS2w3oXqE79zjvvyPPPP2+ODR7K9957z/y/P//803wGYcPY4DgxzpkcBYabMg7cFsSx6g1nHdyMCPCKMcF65KMJ20ihuNNOO8082m22Iv/uu+821ykr8gNFfHbt7BzlqyclS3K/YbKzWF1JObxbPs73mKSI77xKPpRqWsqRC0+uPN4/DJDB0gOyihwIB7aBfRDM85/XKrazL9yMTPDSOrhtTEgI4xoZjvgH7ocDBgww930bxcYc7t133zXvY6zjXsncgWgep6koKuQVRYlLUg8cynTZd/BwRD8bLldccYUROhYu7Fzss6JevXrGs3PdddcZT8+aNWtMiP5TTz1lbhLQt29fY+396aefZPr06cZo0LFjR+P1scIf0fv444/LtGnTzCQSkZ0Vtl1Rs2bNwtpWfmfQoEHy8MMPG08Qnl0mwP4QTo4HB483ApjP/vrrr+nvZ7ddgKhGXGMU+fvvvyWaobo2Fxbvlv1MoPGAz2AkYX2DwfqyLxD9/rRo0cIcW8J2vQJCBO/72rVrzURs3LhxsmjRIunSpYt5n20kRYDIBf/xinHqjz/+MM+Z1DPGGXNMWvDIB0ZthCMEvSBgdR28sx/cNgYxfhHhGB39Rb6TdnbZ5asHFsc7lJQit844XpbsSpEyiTvlumRfpMzh/bvMtZN0FgySiIjM0gMyixzICRhA3W45Fq4Ii0cBq+vgw+l+4HridAwRbcZ90f+eyFjkub0nMs/hOecl7+Gtd4Lj2Ccs66NHjza5e4Qi8sN4GLiRZ+bJUBRFyW0a/G9Upu+1r1tG3ru8Rfrzpo+Mlr0Bgt3SsnpJ+ezqVunP2zw1zvTo9WfFk75+vk4hnAqvzcqVK83z33//3Xhhx48fn+X/Q8TjXeH/Iy7xDtviaIhKPKQIXlullokZ+c5ffvml8aISzo0XngXwwnJdz8orj9GAGx/iKxAmh/5VxvHsElod+P8R6T169DDCDW90YOQBFmkbYo7nnpBTcs7JSw9lu+yNEw8YE+hIgoeZ8LhnnnlGbrrpJhOGbkPmSSUAbsDs2+HDh8t5551nQlS5Sft/xsJEmTA7Jumsu/2cxe5nxgbeby8wZMgQs67k8uFJZ9JBWoA1yLC9jEfyYv0h+oL3LBxjIiD4/8FSL2JVyIPb66BRAf/th1gwJvi3swvWqSGzfHXm4lwf8eZzDeEzGMcwDG6sWkdebrZCqhbwecELHdwi1WpXM9dkrid49zEucA1i3s5zDAX8BuH0kY6mUBHtHRHthdB6L5AQxrEIZxxT6JJoF+6B/vCc6EogHY8WlUSthDNvSXayMoRBMplq2LChmWRhmWeChdcAb1CrVq1MaCE5OIqiKErWcNE+88wz5f333zc3Ff4mPzoU8N7jYeHmwkTMTloJNSdEMvA6zISQsElg8hdYaI/rNx7WzLC5/MHC1Sne5p/PHaxQGfcKxDuGX3LIWQjhxhjsL+T9YWJq88hC2S7gNyIt4oEJLhEDiHmML0zQiTDghmwnvhi0Efrs20suucRMrqnyT9h84OSYeyXh9mzX7bffbowSpBVYrIcOg7lXQMgTIs+9n/2MJ5AQXIwO/h6HUNtSZdeP3UmVaevxc7MyNb/tdL3jdR38H92A8RAL+4FrOKKa0HcMYP7GB9YfgU36Cp+z30PEEgUyeQ+vv+1RznWQufqOihXl/iVN5O7ai6R+/n+laNoeWTTpq3ThQgST/zoRNWNBdEQ6jxsjJmk3gbVfchPuI4yJSpUqubYOHC+imcqWLevaOnDPofhoJAoZhgtjlfaHbtbPOXTokBmTmUXCBIOUPdL+HnrooYivD3OFcOctIQt5CmVgaV+9erWZXAEH4eWXXzYTMyZYeHeYwAR6YhRFUXKbeQ9nHp6UGOCpmX5/p5A/+9ud7SWSEF5PsRPIrMhYMBCAeIURiEyU7HWZazF/B/PqB3pKnWANDExGAm84CHdywrOC+wUeaNaLQm/kkRPeP3Xq1PT1Cux97Z/PF+p2Oa127oQLL7zQLEyE+B3Wj/w37oEWhD4F3zgmTJYIWUX4+38GqI8ApEMwccbTfeutt6Z78Gy6QDSMEuGAwYRCgF9//bUxOFnDC+kLGCEQ8ogKIiII0fU/Juwv3gsV9iueQ6JOnBLO/4k0ug66H/zB2ZUVdHZgyQrSb/zhGpMdiw/tl81zXpMCSSLV218kJ6f4ri2cn7k9RjFIun1ecE11ex1sMVg3IaI6tzuiBEKanq3p4xYzZsxw9HmMaRjVnM6buKcHdm5xek+MiJAfNWqUifO3k8VACAkiPDMwVFJRFMUNCuVPdv2zoYBnGvGDeAk1N4oJCcWKaAPHpIBiadyUsC6T40gYM6HPmYVk169f33h1qJ5uscXIMoMKyuQ3c/PlhhYOrBOCj4XwasTe2LFjM1Q1z4xQtiu3sGFyREXgDSPawB+OpQ2NJ8we0c76Z4btcewfijt37lxj2IhE5ehIwPqxBEYW+OcNUrCHdSYdwgoT6iGQVkHER6jwG+wzQg5DhbBExnTgschN8DLhWSVCxU3PI/u8bdu2rq0DXkenxzzSYEDDOx1uTY9IgFiyeefZwdilBSY1J2yoPEU1KZJFuyoL118ca0S0BBot8bhzH+BcIFqI///d6urSq8cZUmDffpk4cZrZJ/xObhYjRDsQSeXmdZu0LPSLNaC6AekQFGHNTEflBnQSwXjspoGYez5a0c2ogFGjRpmij8HSWTKDivJOo0pwgHNf5J7Yu3dv8xr3S55bB05OCXlGykm4ePFic2HI6sJJ2IGiKIoSGgghQt3t36FA5BMTEsIrmfRxU6TfMB59RDITaG4aFIxDdNMC7IcffjCh7ExsyfHGEMDf3Mw+/vhjE54f6DX2xxZoIb3K3pCcQB49E1vyqbmB4xnhhpbVPcWfULYrJ2AkYLEV6CkeRRQBN257XyMnlbxSbv4U4SMknur//t5nQusxzrC/KLjH+xQXtMeWfY3YJZyWyTpFAPHY9+vXL0NEAuH4iDEnoX85hagHu/1AhWs87mw/+4GCfGwz60RoPZNC6hEQlQCICyLziErg/2D4oXYDx81JDR0rMgIjNLLCftbJ/4k0ug66HwLHA+I6lDHZpk0bc23JLl+dcGCEOudXsJB9DIik+CAYue7w+0cS88vbb79uikwS1o24yM36AawDv+nmuQkYgd1cB/aD2+sA/L7b+8HtdYBwjkU4BjDuh3R7YY5CEVvq6BBNmV1h44gLeYr6XHDBBcbKR1gd3hkuBFxUuPEz6cA7FNguSFEURckaBE+oIJwQwfQp50bEQqsjJoIUkqPQHO9zPeZGQREVQrgQ0NaTjGgkn5KcbPLV8J5SPRwrdVbQ+g0PEULa6Q0NsYuw5R7Bb1JnBW91qB5n7jfZbVdmUIOA/5NVcRtawvjnvtkCbnQVsL3i8eoQSYDgJa/0jTfeMLnw/lBR/7HHHjMGFsLwsOJzTCwcL2rK4HljfRDEWOYDQ2Upepjb91OMCv7eZCYgwCSEfcg6YXQgAoSoENadbfWvt/DCCy+YscGYYh8QZZJdR4RA+P/h5Ol6oYiT2+ug7aW80asaMHg5qXFh29nlpDgeESnMz7kO2SKqQIFKjHGsD4ZjorJyS8wjWpy0Ao0GGD0YE3m9EKUXWkN6gbQwimFyTwpn3zHfYr5COiHOAlqvkiqT3bwlVBLSHNx1mITRrojQHVvxz+4IQgfInwvHUxMuWCXxAGBMcDIRjmU4CaNdYVRRFCUYXPMJ80R0YtiNFRDfeI+z6wbgFZiEky9PmHY4k89YvzdyvKjHY/vshlrEiWOMMcstCKOmpZC/4Sa3IXQaI5+bKQZMVhGLbqYYeGE/ILapB4LzK1Iikjkg3UrYNutQs+DtQ6wTwk10FscAgxvjkighDACcJ3RH4XO5IeYR0Bhg7e+7BcKJ/eNm1DDh1BQLj5SACweM9XS5cXM/EEVHtJmb96bvvvvOtK51UlMHoz3nDFrXSzhSgOQxYrHnwkCBIirW8kheGJ4KpyKeKscUy+FgshB+xwRGCQ4XZy7g5LXiAeGR57yuKIoSbZj0kV/ptqfLKdxXiCKIFfBgEQngtgfJLfDe4c13AqkLeEzc9Ih7wQvshRZXhFE7PX6RxlZyd3NfsA7sCwxrkQLHDRE8OHKIqiI6iHFPehXinG4YRNAwFm2LOfv/gHQh0qmoYYDQj/b+wZjIfnBTxLONjEe3owKohePmfvBCW0Z+n2ukm/e2I0e7ooSaymjheuL2GApGWHuSEMlQindkB6E+5A8SYslOpbVPr169jKXRKwV+vAJinRxYjCgUyiBkC2sv+4rXqRpsL9iKoijRgrAwllgCQ3MsQavXvAxiA8+hE+zEEFHj1iSR32WS6Gb4KpNTt40J1hDjpmhAMNkikohpN2DbmS/jEY+kB5S5HnM+20ee+ThdQ/C0Uzclu7mgFfN8HqLpmQ/sYOEG1qjkpojmuoSQd1sIcm1wKmAjiU2ZclPIHzp6fXS6DtyT3GyZlxmumvt79uyZ4Tm5dnjpqZ4cTMhzMvpbeSNp5fQy3Iy4YCPiuVjbCy75UYRWYZUljIpiQhpmryiKosQy3NvwNDrBTsrc9PbYCTLr4JZ4RCggXpkwuzVht4LJTS8oRazYfrxobhwLmwbJPJW8dCq2R3J+hlgnzYn6VPwGjjEiNEP9jdwS83jk3RbyjAE7HvKyMcFeF9w0JoQroqOxDkkOxwP3JCdV7nMLzyRXM7gopENIYWYtS5544gmT92cXN9tI5CbcDLC64okPvNDynIJPtCThc4qiKIqS1zzyCBgWN73R/sYEt/AX0W7BBBnhhIDyQni9m2mQb731lnG2RDoNkmgH5oUc5w4dOhivvFNDQW6E2XvBI++FkGjWgXPTzbB2xgpjxM1q8Vwb7bXazXVITk52fCy86pF3XcjT4gcLBwOcvO+vv/7a9DgMBtVyse7ZhWI4eQEK23ECZtaGiNd5n88piqIoSizDZMmpR94LOepMDN0ObWcdmE/lVRHtj01BdCMNkqLQVsCWLl3atG/m9UiIeQQ3jpu1a9c67oWdm2KefY9zzm0hz3rkZhtPLxsTWAc3jQlu58fnZB3UI58J9BCmT+1ff/1l2h9RpAPvcjC4OdnCeHbJC/i3GwkGr/M+n/MahJdhrKEwIo88VxRFUZTMQJg49ch7Qch7ZR28IKLDKVgYaZgj4hF2Kw2Sccw+oIp/p06djLOFNMiczIMiKeKjLeZxtpUpU8b1Am9e6N7hFSHv9rFwO0c/J+vgVY+86yVxyV3igmdb2FEF/6WXXjL9eRUf1AsgfylYuxEuuNwkCKuKZoHAcNreYXm2xVi4mXEBYTuouKqF+RRFUZRIhdaD295wUCHvHWMCnuDly5e7ngaJN54OTf5pkNn1i88tER+tnHnWFcMA3+M2GHMoqu0mXqia7wVjQix75Hft2qU58qEKRretuF4js3YjPPKc16+//vqo5ZyE0/YuMLyMQi882ir72jJPURRFyarYnVPPIJMzWxXZTecE1anzujfcC+H9zDkoBJdbkYCZpUFiTKBfdfXq1cNOg4ymiI+GZ37z5s3mPMB44SZcDxgDbof3e8Eb7gVjghda8B0+fNhxnQDEP8fQix55V3PkyXkn5HrFihUm7Jrn48ePl4suusjN1fIktt0IvUKxLrLPeMQTH83Wc+EI8mDhZXhKbJX9SISXKYqiKPEJkyXuD07zm9Ub7h1vuBfWwYrdcOotRDINEuGwYMECE8kYThpkboj4SIv5JUuWGMOF22HUiHiuC4UKFZK87g33gjHBC+twKIzQensN8WLVelfjGzZu3Gi8u+vXrzdV6Ak9GjVqlHTu3NnN1fIsiHVazDkNcc/ttndOquyHE16mKIqixC/W68HkyckEHC8LLZbcxCvecLeL3/6fvfOAj6wsv/+ZlknfbLZXtgCLlF2ko4CIVJUiIqioFLtYQP3Z/hYQxYIdpYoNRUVAAem9CEtnlwW2s70m2fQy9f/5vnduMslOdjPJJPcmec+Hy2STSXJz586973nOec7D68bYNS/BeoO1JaLHUPRI76oNcsmSJTr77LN12GGH5dUGOZQkvlA2e8gzijzCk9egP55zwMuAN8B7wQ/FBIIXR3tBIx6P563Iu0QeZ43f4Kkif+ONNxplmZsepP6hhx6yJH43gDBDfo855hjzOJgjHPo79s6m7FtYjCxwvbn55pu93g1TNLztttu83g2LIbCn94eM+sHO7Yd98IMaDnmip9TrVgcchENV1NhVGySuU9ZLZ5xxRp9JpRckfqDKvLvPM2fO9Jyw+WX8HcSRc4D3xGgn0X6w97f34zhwHrnuYr/B8/FzFv5Ffwn5cE7Zt7AYCpx//vlmMUfmRE+Qd8HXeI4fcOedd2rr1q364Ac/6PWu6Nvf/ra+8Y1v2LacEQ63UEyQ63AjsH7ZB69dAawPUL1QRL0EqekIRYMxIz3fNkjmvXNub9iwwdckfiBknueiyPc2Rnoowf5y7+Ic8BK8B1jzDkcCO1L3IZqnvR/nOKKmH2GJvEWv6C8hd+1lLMJ6XvjdlH0u8oOZsm9h4XfMmDFD//jHP7q9v7jBoHyjZvgFv/nNb3TBBRcMqvsH9CUg7JRTTjEq37333juo+2LhPaZOnWoWT8ONwPqJyHuZQ+Pa2r0m8liJORb9mYIwEDL/17/+VX/5y1907bXXmsebbrpJRx11lBYsWGDU+V2dI34g8f0h89zLaCE48MAD87YuDwY49+iHHjdunOf74bUrgOPANhxJtB9cAZs2bTL3JD/CEnmLXtFfQu51yr7FKAfnaqxl6Lc8FR8UGsj87bff3vk5PobE9+wtZEH+ox/9yIQHoXSxGLz11ls7v8776+Mf/3jn1+fNm2fGeGYDhR9bJ2oRlWUWN7wPd9VTvH37dj3yyCM69dRTu32eRd3pp59uFpj0ntL7ifLR83dl4+KLL9axxx7b+W8+5jrB51lsn3TSSea6cumll5pjwM2eG+cXv/jFzu/B1vbud7/bFEAsRjY4R1k85QMWZ/kG5I1EIu8ulL0uakBehnKOey4QdIYim6+7Y7DaIDmvJ02apEWLFuUkxX4i8fmQeT73yiuvmGs2f58fwGs+ceJEz+3QfrD3cy2guEbbklfgHPGLIl+c5z74WZH3fI68hX/hEnLS6SHgWB0hCSyUuEDuipC79jJ3jjyLfBYXkBe+x86Rtxg0xFulKzyonH5rk1SUXxDKhRdeqD/+8Y+dkzr+8Ic/GPWb6R3ZgMSj8KDuMA+XaR+MgGSB+o53vMMQ/enTp+tf//qXIehMk/jUpz5lbjyQbBePPvqo+RyPpAqfc845Rj355Cc/mXP/nnrqKRPQkz0LmN/lkvjHH3/cVPl5T/Ozeu737vDnP/9Zn/3sZztDleh//+Uvf2mIOgVCrjMseLNBWNSPf/zjvH6PxfAD5+lwVeRd9curecnck7lXUzzvrTVuKAB5WbZsmbwGa5e1a9dq7733lh8AsadAisWeYq6fSXxfA/BcS/0hhxwiv4D7B6GDXgMiP23aNE/3wQ0O9TL0j2si6wcviXy6n8UES+Qthi0GQsiHOmXfwmK4ATLO2E0WmYBFEiQ2mxBDTK644goTBnrkkUeaz82ZM8eQ7Ouuu84QeWyMl112Wef3oMw/88wzuuWWW7oRed6DvJdRKPbZZx+95z3v0cMPP9wrkWe/UFey37M8H2sos5HdRSjWUd7bzz//vA499NA+//0UJX760592/vvuu+82i+7jjz/e/E0o8xD3bKD4rF+/3iwI7LVk5ILXmXCwfMC9yWsSjeLF+4uU6qFISt8VicbS62V/MPvgBt55qYq6CjjXUq9tve45gquKdHuOESTZzyR+d2QeAo+lHhLvB0s9QHBiv7x2B/gl6M4ProCWlhZzfnh1bXZfD9YO+V4HcIcdfvjh8iOsIm+xWwyEkLv2MguLIUOk1FHHvfi9eYJFNmT6T3/6k1nI8XHP8TAo55CCnmM56SnPtuAzChJFH2WERQxfR23PBu/b7AU1qiekvDfwc3pWrinoQeCzlSRabFgk8LV8iPzBBx/c7d8f+MAH9Ktf/coUKk4++WRjo8fWn33jR2HkRryrIE6L4Q/OTYpG+RIkiAWKi1dEiN/P72bR6iWRd8eueQnen7x3IVRehttyDeN4oNDuscce8sv5zeuDe4reeQqjfibxvZF57gP8DYwo9po0Z4PXurq62lMrOeDchzR6fa+iqOd1wDTXRMa3eekKaG9vN2ugfAtOVpG3GPawhNxi2ICbRJ4Wdy+BvZ4WFpeM9za/FLW6pz3PrSqj4tMC8/Of/9yo9iy2rrzySj377LPdnt/z5sUNdVeBWBQV+jO6ietFzz7KXL34PWeysijEiov74MEHH9TnPvc583dg4Xf3va6uznyf1wsjC/9Z6zmf3R51L8kQ56f7vvUKFNZwrngJXg+3T95rEsG1k+PhFyIPcEVxXcSBBbmA0PuZxPck87jCKEBwTP3StuCC15p2M6/hByXc3Q+cel6Ca6LX53d7P3v0LZG3sLCwsMgJlGfUcxa9BL71BGo3hB2lHRt9LqCO4JyB+Log12KgQPFH2XCdOK6dkkUSm6vKY4FmoeCOHMJpgNUyGwQh9aUKDkFHhWejfYfFLq4B2nkAP7dnGKDFyEN/wu780ifPYtUPRB4FDKLopd3ZD4F3gGsVjiGs/hBRv4DrPkVPHr1UKvOFu78Ugv2236jgbNmusdFM5Lke4q7zej/8QOQ7+pFYz/vTz0TeNitbWFhYeAiUGBaYkOFcfaQsOlHbL7nkEhMOB0F/6aWXdNVVV5l/u73mL7zwgu6//34tX75c3/nOd0y/+kABYUaVd22UgP512mUI6GM/nnvuOX3sYx8zRQY36Ih5yewPvfMrVqzQ9773vZ2IfS7QYnDjjTea565evdoE/EHss1W0J598UieeeOKA/zYL//fIYwfNN4We84VWFC+BIg+J9hKundcP49+Gco77ro4HC3E3j8RruD3xFKu4duIY4Nrm9evVV3KKGk+GCftOUbevc+aHArzGXD+87tfneHDu+2GOPdckr4+HH4h8a2tr3m4+9z5kx89ZWFhYWOQEvbS76qe9/PLLDTknvR5FHBUfq71rlfv0pz+tM8880yTHE8hSW1vbTZ3vLygskKL/t7/9rfNzqC933HGHUegZrQSxp6f9n//8Z+dzcBawv1/72tdMzzwqGGR/d0AxuOGGG4xtc/78+cZif9ddd3XOAaaHlH5M9sliZIPXnIUnr/lwU8P9sA9+6ZOHyBM+6AeCOmvWLONsYn+8RM9gO4q15JdwPYfMk4viF1KcDdR3CsWQeNLgcWBx3+rrnPmhAA4U9oXX2mu4bWlet5VwDfA6bI/zwu2RH27FhE2bNhny72Xmya4QSHv9rhsAsM5wcnKD8OsBtrCwsBjOwFrPIhP13ev+0q9//etmcXT99dd7uh9+x0i5N9JW8etf/zpny0lvQB1cs2aNjj76aHkFWmXuvfdeE9bopQpG3gRFNK9HguEOgqzyenoJlrv0o0OYvSJ6u0unpwhLmj0hbTiiBtoGALG95557Bnwuck1hvyiCsF8EyWWD8wznFip9z9F0QwmcXFwDKDJ7bfnHZYeS2zPUdaiBa45iAs49Ly3t9913nwn09TK1/vHHHzfBjPmMA7zzzjv17W9/W4sXL5YfYa31FhYWFha9gnFw2N1RObzGxIkTjTvBYnSAAC0UwHzgJsZ7CUgYm9eqvF/607mGUBD0GhA73EO0J3mhYfVlxBxOlGOPPdYQZUiH1+q8q8I/8cQTxl3h7ltvAXheKvP8Tog8r7HXJB5wzvuhr9oPijzXQnrTvSTx6YwrIF9FnvPfb2GO2bDj5ywsLCwsdokzzjjDF0foK1/5ite7YOFzIo91E/XH65A3iI3XY9dYvPsh8I6xZKi5qJNeT5sgyXzp0qWGTA9lqnk+c+IhO/vvv78hgRw3rL3z5s0zhcyhIqjs79atW42rAxWeMNVcBL4vc+aHCijx7Hc+autggfcd5NXr/njcQX4IuuNa6HXIZCwWM9fCfO39fifyVpHPhVRyyF8ICwsLCwsLi4EReauGdwEFjM3r/nReE0igH1R5cj+w+KMa72r0plckPpc67xZCHn30URPkNpg9/hAdWlMeeeQRM2mEYkJvKnwueKXMJ5NJU6DhtWX8qdfgXMfB4HXAHGp8aWmpeQ96vR9eFxOa++kK8DuRt4p8T7Q3SluWSNFyqWy8FK10ZlL7wKZjYWFhYWExWtAfIp8dNuelGs6itRAjIAuxHxB5SIUf7PVez7IGjCXDsg5hxYbtRxLvAtKBGk9f74YNG4x1nHGcJGjzd3COD9SuTGGgrq7O/HzUf/aR34djIdckld3BC2WeefaQZj/Mjvebrd5rAg24BnlNhpv7mZpvifxwQyohtdc7W/1aKVwsFY+Ryic6jxD7YP4XNgsLCwsLC4u+g4UfCmR7e3tes3/90CePrR07Kaqvlwohi3g3PdtrIo9C67XNH/B6kLi+aNEiE842WH27AyXx2YBQEzbK/kKKULxffPFF00bCz+V1djfOvd7+Jo4/388GyWNzlUqKA4REFqKfeijJPH8TY04POuggX/TGY+EmtJBQQK/hByKPW4Jrodf70dKP/nhCHJkh73URYlewinxvqJgkBYJSvE1qb5CatkqhsFRULpVPkkqqHGIfjg7pC2ZhYWFhYTEagKKFLRT1lJ7hvoIeSBaOXoIFI4SRhaCXQVMo8ai4kEovSQ7Hg9dy+/btvpjHTGEB8odrAsXbzyQ+G7yGLmE/4IADTJELsgYx59jyN0HuIf5sbhHpwQcfNEUlSFU0Gu38GfSTc34ORnbBUJF5rg/8LjIE/ABmx7M/nO9egtebc8LLtHrAtZjCktf5GM3NzX1uEXHB+wnXizsC14+wRH53iJQ4G0jGpViLVJOx+mG5Lx3nbMVY8MutBd/CwsLCwqIAYNHPIhRrYz5EHtKU7/z5wdh3d467l0TeXbhinfZ6MQqBJ5DMD0Se1wdV/tlnnzUqdyFJxmCR+Fx/A/vNlm3jhtyjUkPaIfULFy7UYYcdZgg8boh83C1+J/Otra2mGEMYnx/UeOCXcxxXAMUcr5Vw1xXg9evT3Nxs3uv9sdV7ve+7gveJEMMJoYijxI+ZJlVOcSz2jRuljS9J6xZKG56TdqyRWutsYJ6FhYWFhYUHffIQZ5RwiMxoH//GApSwND8EzWENJwkdoukH4FaAABPqVqhQtqEi8bsCRB0CzfnnFnJ4T/C5oSTxgx2Ax8/htaMvPl+ldbBAYQEVPF/COBjgPY/zxGsSilvE6/F3iUSiX+4ov/fHA0vk+wts99EKqWKyVDXdUedNUN6r0rpnpbVPS9uXS83bpLg/bloWFhYW/cExxxyjm2++uU/PZdHwn//8p+DPHek44ogjdNttt3m9G74DiyhGYOUDLK1YOb2217uKvNfwyxx3XhfIM4TOL8DpwXlSiH3yA4n3KwaDzJOfgcq63377yS/g76Nw5rWNnOPrEnmv4Yc+/cbGRuNIybeQBZH3ujVhd7BEvlDAfk/K/ZjpUtk4JzQPC/6G56W1z0ibXpEaNkodTbzDCvZrLSwshh/OP/98Q2I/85nP7PS1iy66yHyN5/gBd955p1HRPvjBD3Z+btasWWYfszc3LZhgmFNOOUXDAV/84hd18MEHmxv8gQcemPM5t9xyi/kaJARF8corr9zpOb/73e+MZZTFG/22f/nLX7p9/fbbb9chhxxiFjP0b/Pzbrrppm7P+fa3v61vfOMbQzYSa7iAPmBCyfpja/d67BpWdvZhMMeF9QXMskYphPR4Da4dELChGku2OzCWa8GCBVqyZImZt91fWBI/tGSe85miCddSr8MTXfD3cG5zn/AaqM+0VXg9x94NV/TaMVGfaXHK152A42P+/PnyMyyRH2wLPoo96aFNm6WNLzoW/PXPSnVvOhb8pLc3eAsLC2/A6KB//OMf3RaPWE5Rvv1gy3Pxm9/8RhdccMFOydvf//73DWl3N+YcAxQAiLGXicH54MILL9Q555yT82v33nuvzj33XFNwYaF/9dVX65e//KV++9vfdj7nmmuu0Te/+U1deumlZmF52WWXmWLMXXfd1fkcFjH/7//9Pz3zzDNavHixOZ5s999/f+dzKH6w+OJ3WnSBQgvHnkXpcLO1U/xBAaI/3UtAdFDC/aDKc32g5QH7sV/APg3EYm9J/NCSeb6H+w1BfX4JuAMUvIEf9on3OiS+P+MDC92nT/Haa4dCfT9cAaTcc45yD/IzLJEfCgs+IXjGgj/DmU8fa5a2LnFI/bqnpW1LnVR8EvItLCxGBRiVA5lHrXXBx5D4nmNrUGl/9KMfmRnM3BBRkG699dbOr7Mw/vjHP975dVThX//6191+Bgr/GWecoZ/97Gdm0YpaCOGkYt4bWGw/8sgjOvXUU3MuyFgAu5tb+c+2y0OqP//5z5vfB6FBqeDvyEZNTY3e9773GdKDhQ0HQDYgcZBcbKpYFj/60Y+a73Fx7LHHmt9x8cUXG7Jy0kknKZ8iBcegt1nSqOYcM4g8z3nPe95jSPtPfvKTzgUoz/n0pz9tigE8B+fCpz71KfOc7H3kb0S1nzt3rr70pS+ZKv9TTz3V+RwWXO9+97tNcceiCxxTFoLMzh5uRB5wTmafr6PdXk9BkOsASfp+c35gv0VRzQeWxA89mWdmPCTLT5Z6wDmN48TLcZMu/GKrh8hzDfQa9f0g8jjB2HcKRn6G92fbaANz6Um5x4JfPkFKJ6W6VV0WfILz6tc7/fbWYmlh0X8wYaK3rWduxS6f26PAlus5/QRq8B//+MfOf//hD38wSm1PQH6xa1977bVG9b3kkkv0kY98RI8//ngn0cfa/q9//Uuvv/66vvvd7+pb3/qWsYVn49FHHzUJvzz++c9/1p/+9Cez9QaIJgQbAtofQJQh5uwHfc5/+9vfzEInGyjYZ599tlGqIbIo4K6Cyc33uOOOM4WNF154Qffdd59RPXh+NvhbsMiSjMwxKhRQgXv21FEo2bBhQ+eCv7fnPPfcczmLJCxaH374YXM8yB7IBsnSTz75ZMH2fySAwhBFL2Zm5wMWbRAzrwPvWAiymPUaLOp5X+XrWBkMUHCkSOgHq3+2a4HrDIXDHTt29Ol7LIkfejLPe4l7HNcEv1jqAdca9q3n/c0LuCMJKXx7DYqYXhP5RCboLl8izz0HNd7rsMDdwY6f8xLBsFTMPPoqKZ1yCEPLdqlhg0P4CdNjZj3z6hlvh2XfwsKib7hiF+Nf9jpROvdfXf++ck8p3pr7uXscJV1wd9e/f3WA1NpjYX5p/3pxIeMovC4phIiiyD722GOdz4EoXnHFFXrooYd05JFHdqqUkOzrrrtO73jHO8yCBkKcvVDGxg2Bzia9zEPFFo76u88++xiFGVL5yU9+Muf+sV8sBnIpDF//+tdNX7cL9pGe82ywSENlP+qoo8zNMFfvIE6BD33oQ50/A/IPCT755JPNvrK45vPZxQ6cDNlpsvyOn/70pyo0UPcpmrCP73znO8284p///Ofma7QTsGjjOb///e+Ncu8STv4NiWcR446Fok+Qyr474xmb/gknnJBzPBeFGT+oOn4Bi6l8ibwbeNefBVwhwSIWyzaLSfbHK1BcqqysNIUw3j9egsIX5zoKpp/6T7FEU7RkJB3X1V3ZgS2JH/rRdPTFP//880aJ95oc9gTnMsV0L9vKXPAe55rnxYSCbHAPpKDg9djLxsZGU+jP93i4RN7vsETeVxb8MmcDiQ7Hgr/tdWc2Pfb80vFOkF6UmfWlXu+xhYXFAIEdHTKNKs7CkI97LlAgjyxgepI+lLVsCz6Ba5BcyDN993y9Z4AbC6DsnjlI5q4sy/yc3m5+//d//9ctkC/Xwoqvs99Y/SHm733ve3XiiSd2e072Qh4LNWRj27ZtndY23AO50p9xFrhEfrButhQ4+D3sN4sS9g1bPP3wLtH+zne+Y2yMpM7zGlL4OO+880xhIZuMs2iF0KFCUjz58pe/bAoy2O5dQBwg8ZB9r3sK/QRe33wLNdlz3L0k8tl98l73zrr2eq+JPODch8BB3vykrLJfFN0oJlKAzNVjbEn80JN5CmG8Jtyz/KB6Z4N7LS6to48+Wn6An2z1fuqPD+SprEPkKdD7HZbIZyMRk/51vlQ5Tdr7RKlqD4dEe/LKRJ0NkIAfa5Xq10g73nQS8lHxseZD6tmsemNh0R3f2tT7EQn0WJz938pdPLeHMnpxfr26fbHX0+PtkvGecO2nd9999069Wm71HxX/q1/9qlGLUe1ZHJGujrKUjZ4LZm5su0pJh5z3ZjPla3vuuecu/zYUavoZCXDDUYA74Pjjj+/W37+rfeJvpz8/u9/chat0AxYLgwH2hd+NI8AND4KEA7evnkUKBRTcESgh7Nf1119vXoPsxGBIvXu8KLBgJ6VlIpvIQ/b8sPDxI5Gn4MSCGWWlr2Dx5nVyfXafvB+IPIUpPzg+cAexUajsb+vOYL3nySCBWFJ44xqWTQAsiR96Mu+G2+FoIcvAb1bnFStWmEBTr2elAzdI0g/vqeHcH9/a2mpaOKwiP9xA8NybTs+pFt0sVU6VZr5N2uNIafJ876ztxoJf6Wz0EWHBb62RmjZJwYgToFc2yUnK5zluAcDCYjTDdbd4+dw+AKUagsLiJFdQ27777msIO0o7ds9cYAH0tre9TZ/73Oc6P8eCfaBA8YfAQuZZdPcHqNgEwbGdddZZ5u+FsPZlHA2LaGaro8B4aUtGlXOLKH//+99NsaTnWB8KEu4IPgorqPi7Ikuu8p4N+nN7Bh1ayAQEomxzfDgn+grO2Xxn0A8GWMyuWbPG690wRIP3kR+KCgCy8fTTT5tWIK9twD3f7+RVkEECSXOdP5bEe0PmaaPiHsT9z+sCVC7XGsVq3Bt+ACSe9QLH0w/7srti/1Cgrq5O+++/f17fQ2YPLQHuPd3PsIp8NibuKx1/qbTkdmnbG1LjJmnJrc4WKZNmHCbNPFKaebjTt+4FjM2+tMtan4w5YVu1y6R0hmQQpscGqceS77PqpYWFRfdFI+qs+3FPcENGbadXG/LHggGVkQUPJBkbNz3ihOExzoxFMUnq9BLy8UAAqYSE8LsgpvniF7/4hVGo+TkswAjjQxXsa3WcRPkbbrjB9NB/7WtfM+QfBQ+iTB/6QEfr8LNQ/SlWsCBDgXOLJyi/EB7cA6jmBAgRTMjf4IYMuotMLJ+HH364WWzyN0M4CeBzgfLOHHkIKeT9nnvuMa8Ro+uyQdBdz9YDi+6Bd/kQeRZi9EdyzL3sXYU0c255vR8cR96P2ID9QOR5P1MQo9iCCu4nUFjgPc21jyIdxUSCRjdu3GgIZ652H4vCk3l6zylKc9/zQ/95T3Du5nNPG2zw3uY97rVrgfsp116v59i3tbWZCQf59ukPl6A7YIl8NsonSgedJ42fp1SkXFtevkfRzS9qTOMbCsebpNWPOhtWW0j/Hqj1b/PWgh8qkkrYxkqppBPY1bhR2rFWihQ7ZL5solN4wIIfsi+5hYXfACHfFS6//HJzQ4QQsrBh0QChIZkeMP4M6yGqNzceiC/q/EBnkkOUSdEnbb4/RJ6FGb3NqFr8rEMPPdSQ2L6qKgRisagjWA+CCxEiMA9Vf3c/g/58VNDs4MCe+MQnPtGNlLtqOAqL24cJIaeQghqHEs/PQ63LtjLS0sCCjgU/oXiojNl9nCwkeD1YZGGbJ2jwr3/9a7f59RAEvo/PW+wMFlVMLugtmDEXWPjz3sLiybnkJSlEDadglCvwcSjB76dghEXZD73pFM14T1Hk8hs55jrLe57gUMItCU60JH7oyDwFa9RU3Ga7u0d6Ac4Hwkm55vsBOPs4T7PbtbwCbWYU6rwuvtTW1pprb77XuuESdAcC6XwHOPoIVHt4gXizF+xN3lqnNx74k/52x0Na/eYaxeIxRSMRHTVvgs48ZJImta1yxsVlo2KqY79HrZ+ywD/p8ljwUesT7VIgLEXLpLIJDumH2NNrb2FhYbELQD4IyXvppZc8JyH5ABsmCyyC6YYDKFag6NNf78t7o8e4/fbb9b3vfS/vefJYJIHX6egUeng9sotAXoHi1cyZMwfs2CkUKEJSEMO14jewRKaAtGnTJlOAI7hzOIGQToqnjPb0Q+Gmr8ClhtsJa3PPnAK/ACcWRNUvbhKcC5ynfgjdW7hwoVHBcQt6iVdeecW0E+Vrred9ToG+PwLGUMNfzSY+wHPPP68//PEPWrp0qakMTp0yVeUVlXro1Y36xq0rtWjvL0kf/qf09osdqz096vSqL7lNuuer0l9Olx78rrT8Pqmt3ts/BqJeNj4zs358Zmb96szM+qczM+vXOftpZ9ZbWFjkALbBG2+80fToDxdAmFjUoKQPF2B1xnlhkRvHHHOMsTbTd9mfoDk/vI+YxuD1XHtAQY7Rkn7RcSDIFAwJpfIT3J54VGHIJK04OKIsBhdcuznOKKK83/OZMz9U4Jzg/eyXwg7Hh/e0H4rtTBjgdfNDcn5NP+bYUwzhve6HgkhfYH3WWaD/lH7MUFOTps/ALu/UOUpKSzS9ZLqxRTKX+YDvX67gfmdIbFjZN7worXvG2dp2SG8+4WwKSJP2dZR6LPhjZ3tnwe82s57AvNaumfXY821gnoWFRS8YDiNYsoEazfV6OOErX/mK17vga7AYQ1V54okn9P73v7/P34cqhAXW6/50nBFu7gIjCr0EwY3kOECc+xtiWUjQboI7AMKGld0PyBVsx0QJbPacSxQf/KgSD2dwzDkHaInCTs+5ybW8r3Pmh3o/aQfxS0gjbi5yXHpOtvECkHje014H7rX1sz+eVh8Kd36YQtAXWEU+C1y0sfJUj63e6WLBv8ePG683V7+pVauzrPWRUmn20dI7viZ95DbpjGulgz4mjcNOkpa2viY9/3vp1gulv39QeupX0vpnnTnxXsEE5pU5mQBVM6TSsU5oHoF57Btq/ebFUsNGqaPJIf4WFhYWFhYegt7PXWUe7K5P3kuwhnDnuHsNd8ICCp5fgAUXlTNfx8VgoLd0enp+UekoEhImivJoUbgWAMalutZwt8Dk9szjCPOLMs85SvuSHxLZXVD84D090ADYkTbHfkw/+uO5x/ghZ6CvsES+R0VrV3NqWRDQM9/U2JT7aJoQvH2kQy6U3n+D9OFbpKO+LM08wlG9m7dKr/9HuvfrjgX//v8nLb1bavV2geEE5o2VKqdJFZOlYMgJzMN6v26hQ+5rV0sttVIy7u2+WlhYWFiMSrC4evTRR/P+PhQZv9jrWeT6gYwQxgghhUD5Aay7IPMQaNyRXmF3I+YoCpG/wXEjNJB50xYDA6opx5LXnRaankqun8g8+4ibhXPVL5kD8BYKINkBq16B18YvRL6mH7b64UjkrbU+C1QAuZnwplB4Z7sMdqqiSJEqKvtoF0Hx3vc0ZyNwDmK8NmPBZw782v85G5gwr2tmPWq+Zxb8kBStcDbAfseapZaajJJfLpWOl0qrnUR8HAk+sDpZWFhYWIxssMh//fXXTW9qPuPTWMyRe+M12A9UXEQD1F2vE9lRq1Dl/aIsYlWmuMCUCy96j/s6J551Ii0AEDqCA5nG0R/CYOGo27gbCF9kgkFv00h2NWd+qEMr2cc5c+bIT2o8/MUPwaau88nr65tL5PMNueO97447HC6wRD4LJDPvvffe2rH5BUXHVXQjqFzga2prTF/U3Dlz+3Gki7vG1VFNrF3RReq3L5W2L3O2F//oEGVUfJ477aCcRYUhA7/b/f2phBRrlerXSjvelMJRJ/2eggWj7ex4OwsLCwuLIeiTP+uss/L6Pvrk6SH1sqcVAsAYPMiqHxa6kBEKIxBoP/QeYwtmBCRkDUVvKHtU+0ris19LJiFAnkjoZu1IQaSvozVHO1C2KdiwMQqxLyFtXpN5MiUgeVj//fI6cxwZl+r1VA4XXNu4xnl9fFpbW82Wb388hbnh1B8P/HEm+gSceMyo5QLOydjW2qZUMmUe+XdlRaXOPvtsBYMDvHBw4Rm/t3TwedL7rnV664/5mjTraIc0o9Yv/a90/7ekP58m3fsN6fU7HGu+lzCBeZVS5RSpcqrTZ9/eIG15VVpHb/3/pG1vSE1bHMJvYWFhYWHhcZ88CirEmdnGXoM+Vsiil/ZxF1OmTDH74Ye+fRcoixQYGEk3VMcoXxKfDezMfA/zxLGH0zttsWtwjCjGcbxRPvNJWvfKZs+0CUawYqn3E8ljbjzcxQ9Wdo4RFv8ZM2Z4vSvimgaJH+n98cAq8j1w2KGHquKCCzvnyNfW1Ro7PUo8JH7BYFS9SsdJ+7zb2QjB2/yK05uOWg8pXk+f+kLnudVznRR8FPuJb3Gs8F6AYgTj7dxZ9Eatb5Hq3pTSq6RIsRTNqPXFGbXeq321sLCwsBgRYJH13e9+N+/vIymexZ3X45lwB7DwxlLsdXo9+0FaPKO+IPV+AbZ6XquhsNgPhMRnFx84L2nfgKBadX73KjzFGl7b/oSzeaHME4TN+8Xrueg9gUOAY+kHRw0tTxBnP0zC2Lp1a7+ur2Sw/OpXv9JwgiXyOfCWffbR9w8+RqvefNME29ETj51+wEp8n16RqDTjcGd72xelHWscQk+S/LbXpbpVzvbKXx1bO8+D2E8/pKuv3TO1foyzmfF2bVL7DqcQwdeiZVLZRKmkyiH1RaXy642Gmzo9jFyMaLfw2iJkYWFhYeGAoLH+9MmjWLEYp0c9HPZu6cOCG1Uel5/XRN5VlDkuDQ0NvlEaIXfYW5966qlBtdgXgsRn7zPrBQoiuAlQSmkT8EPfsh/A+eW6LDjWAyV7Q0nmWQ/6zVLv7hfuBr+MbOSaxrXN66JCPB43/fG0bOQDrgMUNYfL/HgXlsj3gmAgrb28DoDhzVA929kO/LBjY1//nEPseeTfKx5wtkBImnxAprf+SGnMTO9C6EwoXmkXWSfpPo5av0pKp5yAPObZl433lVr/9NNP67e//a2xa7kzh7k5fP7znzczTS0sLCwsvAV2SQjS/fffr49+9KN5Lfy5prPA89qGymIXG7bXRQW37YCgMUK8DjvsMPkFhPHRuw/5I+Sw0ASqkCQ+G7RwuOo8/ba81jg6mas9GkGfMseC48zr2V8V3isyj12cc9BvlnrAe5ZCnB/S8yHPuGj8YEvfvn27SktL835P33vvvTr88MOHXfHNP6UlvyAUcchl8zZnjnprnbcz37OB2r3XCdK7vit97D/Sqb+W5n9QqtpDSicdS/6z10q3nCf941zp6aukDc87M+I9P6ZVTl89I+7cHABm1dNCYNwGSz3trYfEf/WrXzU9UCwguDjyyAWcz/N1CwsLCwvvcdppp+muu+4atnPcIQQsNFFt/QCs4DgcmOPuJ7BfKLg4BoYDie+pzr/zne80RPDhhx82v89MRBolQAwh1f+RRx4xx/u4444zqfSFnnM+2D3zbkq93yz1pMOz+WW/6I3nteg5OtALbOnn+DvuKdxbhhsCaT8MNO0nsJRwQ8SyU9AKCgpye6PUXi81bZViTQ6Zx/bO+DX6wn3Qj9INjZu6+uo3vSKlsmbDQpyx3ru99fTk+wWuWg+B51Tk2FKwKJuQGYNXKYUGV7FgofCRj3zEkHhSZ7Mrurw9sFRh87vpppt8ZauysLCwGNJ7o09AgRWLPcoLKntfwfNffPFFnXTSSZ7bP+kTxh3gF1ssJAgij/vM62PTMykciz37VYik/8Em8b39DbSDYIWGeNHTPFRODJTSe+65R+9+97uHRLnl92FPXrlypXHPoJIPhZLNVAqUedwlhVLmIcrPPPOMcYT46TrKOYyjh9YcL8Y05oI7aQLXhdfH5r777jPuonwS63GOkF/ywgsvmILTcIK11vemIJeNc7axsx0ij429ebtD7tt2dM1Uxz5OD7jXQO3e/0xni7dKG1/MEPuFUmuttOYpZwMk5kPo2SbsIwWC3h7rUJWj2Lu99W11UuNm57hyfCH1JWMHbW49N3UWMfS29bz4uyoON2Gel2/PjYWFhYVFYXHggQcacoB1+cQTT+zz97GwQyGFWHkdyITlmvsOC0jUea9BEfuhhx4yyrwfevdd4IxjYf3cc8+Z4s1ALOpekHj3b6AQQSGJ15wiDqGLBA2WlZVpJKClpcUQeJRxSC8WZYjRUKHQNnvel5xzjLv0E4l3FWf2z2vSnP3aUwQ8+OCDvd4Vua6ifIt+uGbgAJw3ww0+YKA+BwqsG+JWNdNRjjsapZZaxx6OBd8oycUOsUe19xqQXUbZsdGTXrsyM7N+oTOzvma5s730F4dAm8C8I7wPzOvZW2+S8JudmfW1q6SiEkehh9jzerCvFAIGCKrk2MB6WyDweRIweZ6FhYWFhbdggX7qqacaK2Q+RB5HlZte7zWR577Cvqxdu9YXi0fUWtRiitaECPpJlYfw4jJ59tlnzbiy/qjZXpH4bEyYMMGQW8gGpBfbOZ+D1HMuDDfHnzu6kHMYdwlECIdJIZwTXpJ5sis416ZNm2baLP0EzmOKQbSdeJ2v4WLNmjVG8CouLvZ6V8T5yHsp39fdtdX76brXV/jjLPAR2mJJvVnTrGg4pJKikIojIUXDQfMYCmYRzYrJ3S34EHpU+0RMChc5M9YHQT3OG6jtKPDu3HrcBOuZ+f6MtOEFZ99X3O9sPNcE5h3pkPuxs7zdf5OEn6XWJ9oyzoitTrgfx5g2gdJqh9RTSOnH/rKgw57Z1taW8+bO5/m61ws/CwsLCwsHEPnPfOYz+s1vfpPX4osFJ4qoH8gzJIE2AeyxfiBx7ig6yC6OAb+A13f+/PmGoL3yyitG+cvnNfcDiXfBfuMMYWNtgYL96quvatGiRYY4cn7yNT+cD72Rd0g7hIm+aPaTQgQuGT8E+g2UzHOu0GZJCCRqvN+wfv164yryS4GBfeEcPuSQQ7zeFfHakTuSrzWecxoi/7e//U3DEZbI90BHIqlN9e1KpdOGOxqROBRUUTio0qKwyotD5tEl99HisQp3s+Cj1m+X2rDg1zvk2JD/Mn9Y8LGo732ys6F4b3nV6atHra9fJ21e5GyE5lGsmJGx4E890Om19wpmbn2ps3Wq9a1Swzpndr3riDBz6zNqfR/dEYTScLFnQYVVqWePPDcseuR5noWFhYWF9yBIjB7WxYsXa8GCBX3+PtQayCAKr9eWWZRvwr+4x0ydOlVeg32hqIDix/74iUyyL/S90k5BIQZFcriR+J6A+HK8+Vuw3UOMyXCAHHGeQuo5RyCVXoKQPlyJnKe0XqAEs2+si3AU+E3FHAiZJ9yObBHaOPx0/gPOCyYAQFT9sm8QZ9w8Q9lG0RsaGhrU3t6e11hSQF88RbXhNnbOhQ+YpT8xqbJYwUDAEPp4MqVYIqX61pi2NaVEOiCXBAh+JBxUWSfBL1I0PFHF46commpXONHspN5D7OmvN6PXfGTBp7Aw9a3OdsTnugLz1i+UNr3spMi//h9nCxVJUw+SZjLj/gipcor3+07PPBtItEuxFmnbG86/KZxQtECxN6F5Fb2OuOOCyIg50ukJtuMGxQ2WN7Zrwbzooot8c+G0sLCwGO3AxkloHUpKPkSeRSfXeGYeex1qBLlAWXvzzTd9QeQBYWHcB7HLEsrmJ+CMo/eaoC/IGlbu4Urie54HkA829pkMB9YeBMahDpMHQZ+9u/G3D9Z6BHWSIhf7ADFyHyl68b5xx7D5jbwXgsxTSHHnxXtdPMkFrhNcv3Bu+GmfcPL44XzYsGGDuY7m23LAPWSowiAHA5bI7waQeWz2bNngYhtLphRPpA3B396UFhQ/m+CXFBWpsniGSsZMV3GyVdFkk4rbtyuMap/scPq7O1Pwgz4LzGtzyLwbmNeyzSH4bPq1kxfgqvXY8QvQqz4g4BZwHQOppBP417xFql+fOc5lmdC8KqfP3u3Dz4Agmp/97Gedc+SpPrNooOIMibdz5C0sLCz8Z6+/+uqr9e1vfzuv78M2jpI/GHOn+0OcUdn84BAAHA+OC1Zv9s0vfbguIJFvfetbDcGFcPV2zIYLic91/BEP2HgdCDWjpx5Cja2akW6Qbf5uNkQH1ioUttyNf/dG9PleMoFQLntuEHbS3/leCgYca1yKWP39YJsfTDLP3845RduGH96HuaYBMIYx37aSwYRb5DniiCO83hXxfofIs2bPF3feeae+8Y1vaLjCjp/rgR0tHfrPK5u0/9QxxjqfL7IJPjb9eDKtpFIKKqBIKGBIfok6VKE2labqFY01qjjdpmg4oEgxFvxyf1jws0GPAYFzRq1/1rHj4y5wQSFi2sEOsZ9xmGNv9xOSMceGD7l3gwmjY6RyRtxVdgvN4ybHzZ9gO26k2OmtEm9hYTGcMNLHz7nAjowqS49mPoo21/n7779fhx56qC8sobR1cZ/Jx1kw2sZb9QTFD4gto8F6jiAcriS+L+BvIyUcEgXpzibiEHQ2wPkE4WMjvI22Cb6Xcx+45D+7CMC1gusGSfp+IYtDMZqOY/fEE08Yd0xfWzaGGghMtBJxPvvltfHTdWvbtm2mEJPvaFGCGpnYwfcP1xwsTxnjj370I91+++3mgky1D9XzJz/5iac3jm1NHbrsrtdFrt2UMSWaUV2imdVlmjG2RHuMK9W0qlLTL98bAp0KvlSedXi5gELqseg3JaOqTUSUUrmUjqso2aZIrEWlDfWq0DaVhlOKcoEtKVNxtNgUADwFb4rqOc524IeljqbMeLtnpPXPOQF62ePtqudmLPiHS5P2874wQVtACVt2aF59JjSP3vuu0LxgtEIH0AtvbfQWFhYWvgb9uaiyt9xyiy6++OI+fx+LT+ypKDh+IPJYU5mVDsnwg6WXdQxtByR3Q256EmU/gHUiBI0535Ab1xY7kkm8+9rwN/X2d7mKO/3URliKxcy55R4jCP2uFPuRiF0p8xwfziFcB7QN+BEUGrD8w5H8QuI5x3iPUUjzAzZs2GCcVvken3/84x9617veNWxJPPCUYRFagm2ZqjgVw29961tmlAzjT7yarbmtsUMlkZDa4kltrG8z28LVzlxCcOZbp+mCt882H7d0JPTcmjrNrIbgl+xSwefkKgqzdb94OgS/wqj4TbEpqm1vUbKjRYHaekWSTSpK16q4KKgxZaUqKS1TNBJUcYhiAeq+R29oFOw5xzobyjyj7CD0EPttS6W6Vc72ys2OpX3aIY4FH7UewuwlcoXm0UbQuEGqX+OQfmPDzwrN62HDt7CwsLDwBz7ykY/o2muvzYvIAxZ9LOAPOOAAQ268BDZmFpIkxu+zzz7yAyhwQG5QAkkk9xtYU2Ezfv75583ryNgz2gBGMonvCyDo2TZ4LNmAYzFce4AHi8zDO55++mnDN2jX8AtJ7gl3JKRXY/1ygcIC1wg/OL4SiYTJN2A0Zb4gqf5rX/uahjN8Za3HJsfJCsHPVeXJtg259sEZM2YU1D5Iv/szq2oUjYS0cUe71tW1aF1dm9bXtWpdXas+cdRsvestk4GPyrMAAKWUSURBVMxzX91Qr2/9Z4n5mLf/5DHFmjG2VDOqSzWzusTY8ydW9i/pPZ1OKdHRoo6WZsVbG9TR2qhU3PnbI9GoiqIlKi4KqyIaVFnEIfbRUEDFXhJ8gNK9/nnHgg+572js/vVxe2Xm1h8mTdzXe7W+JxIdjgUfK77bNoD9Hht+USY0j/GCFhYWFj7FaLHWAyzGhHCRRJ8PCWbp89BDD5n2KT8EzbH+gZQiZvilLx0L96OPPmrS4vNNgh4qoDw/99xzZjHPOU+K9mgl8bkAkb/nnnuGdZjXYNjsKeSRPYADhvPbrw4F8ppIVT/uuON8k1PAOfXAAw+Y3niKfX5Q45ctW2aOUT7FGHJSKAByjIfz9cIfd4sMWHSA3qpOWPEvu+yyQd2H5vaEVte0aExJRGXRsA7eY6yOmDtOkWBQ4WDAzJJPptMKcbIEAtpvaqUh+E3tCW1uaDcbKj246Ng9dfL+k83HFAIeemNrhuSXGsLPnPreEAgEFSmuMJvGTcn0ebco3d6gRHOdYh0Nam1JqT4YUSIYVSBUpDBKfUatr4wGVRrpIvfu5wcdzHzf6wRnI3Ru+1KH0BOSt32ZVLvC2V75q5MHMP0Qh9j7Qa0HTBNgI/GeGlc8lw2/2tnY/12k4VtYWFhYDL6a/d73vtcoK5dffnmfv48FH4t5N+nYa6BuoQySFk/Pph/A/lDooEjCuD8/EkHcFMywfuSRR0xRh1aL4bwotxh8Zd6dfOC29PqVxEOYee8xz94vJN5NqqdA7AcSPxBbPfeMM844Y9hfL3yjyNPXc9ppp5kLMf08uTAUivza2hb96/kNGldRJObMJVLOuDn+FwwFDJmH1GOTx4JfHAkrFJTa4iltbWwzRH7DjnZD3M9/2yztPanC/NwHXt+iqx5Z2e13TayIGmIPqT9h30mG4PcJ6aQzao2N8XbxZikRUzwVUCxY7GwpCg5mtxVhlH2G0JdHAiovCjoKfjhgbPrUE4bEUkQvvSH1z0kbns+h1u/ZRer90FvfE64Nn+OeTHRPw++04Zc5hN/CwsLCI4wmRR78+9//1le+8hVj98znXoY699hjj5mAJD/0pmMPffXVV3X88cd7bvd3wRLRtR/70WLv9sSzmC8tLTWvP0qhH4sOXsAq8t3h9sRD3pubm7XHHnv4YnpFLhDeBufhfPbL/uGAefDBB00rAmGYXqOjo8MEl9Lnnk9LNpyT1/66664zbpXhDN8wJXrlGavRG4kHBHQMVehKeTSscI8qXTKVUiKVNltLR0oNbQml0u3GVh+QQ/JnVJdpzoRyQ/Kj4aC2N7crEgpqfHlUp+w/2fTco+DXt8ZNsB7bi2t36JA9xnYS+WdW1+q+JZsNwZ85rlQzM3Z9HAIGgVAmbb1SqpjszFDvaFGkvV6R9gaVxeudykOkSAqXKh4IK55Kqy2RVmMHf0PS/Bgc+KbXPhhQRTSgCpfgZ9T7aKEJPir33ic5Wze1/tmMWr/S2V75m6N8myT8w/yThE9hwZ1Jn52GX7fa+XtIw0elZ1/N65MZLWhhYWFhMWhgIXbhhReaBXo+o0JR51D0ST9nzJbXIIGfnnRIKYtMP4A1AIt2LPY4F/xksc8OtqM/FtUSmz2FByyzfijOWPgHkD6uEZwnuDgY7ZfPnPmhxJYtW0ybSL528cEGE0LgYX65Dqxbt864uPPNVWNKAefDCSecoOEOXxD5z3/+8/rvf/9rDiz2CC/B24VCeF1zh8KhkEmMh4izhYJsUq5SQioNwU8pkUyrI55Sa0fSEH/X7oAl/4g54wzZJxQvmU6ptjmmrRk7/uSqqHk+v2P5lia9tK7ebNkYV1ZkCP2njp5jHkEyJYXCJRJb2XgpGZfiLVJHs9RaK8WaFUnGFAlFVGr6vYs7FWMKEjGS9JNpbW5OaX0WwTfBfEEs+hkF37XoF4rgY0dHdWc75AKprV7akFHr3d76NU84Gxg7yyH00w+Tpsx3Qum8xk5p+O3Osd/2hvN1AvWKK53XxcyuL7f99RYWFhYFBgvLs88+21gl8yHyAMK8YsUKzZkzx/MFM7+f5GzmRTMqy+v9cYHSTYq9nyz2vaXT0+9MTzFkHiWTsWoWFm1tbYbEU7wjJBFFPp8580PtGli0aJHvLPWo2FwruRb44ThxDVi7dq153fLFX//6V33wgx/0xbVsWFvr+dVf+MIXjC0Oe1u+ox8KbR9saIvrsjtfU0cipeljS1RZHFZpNGz64ePJlJIp51BBtl2CDzEPw+5383fSV59IooZjTXGUfcg/lYNgIND5c/i5qPUbdrRpa6ND8lHx61pinT/vxo8d0hmid/Oza3Xfa1uc3vuMcu/24Y8pDmWC25odoszYOMgmgNSHi6kC7LS//J0dSdL0ZR4T8PuAQ/DZP0h9eVGXgu/04DvqPn/LgEFBwU3CN2r90u5z69nvqQc6pB5yP8bb4k9OsL/Y8Dn+BOgFgl399TgTUOsJz8tx/C0sLCwGgtFmrQcIAWeeeaaxp+ejxGIVxZpJ36wfej5ZLBPCx2LZa2HDrxb73Y2Y4xhSdCBAEGI/nEdLDRTWWi8TaodTAys4M8979sTvbs68F5Z6yDzXJK/3paf6TZERG7sf9ovZ7y+++KJpjcon54BxfgSkutf94Y6w13b6m2++WXfccYepjGElASxAvKhCralp0e0vb9zp8xXFYdPPPqE8quryqMaUkBYfVkVxRCVFQaVSjsgdDOQm+JzwYUPWc59oEGfUfB7bYynHoj/WmWGPpE+IHcQfMr+jJaaOZFLbsOwHgyaYb0drXDtaG7R4gxMW6ILAvl+dc6DGl0+Wyidr244GRVLtqgq0KkCAW1uD029PCju28BBqveMeKA3C2nfezxjt+am0trWktLEpaRwM5qmm1z5gEvQrisgPcFR8ugGK8yX4qPUT3+JsB58ntTc4c+tdtb6tTlq30NnMCzRVmnGoQ+ynvtUf4+Ig7vTLs2X31zdtknasdQg8XysZ5yj6pr++3M6vt7CwsOgHsFZDMlmcnXrqqX3+PnrRydohZM4PRJ4F6d57762lS5caK7tfgrj8YrHvy5x4jhn7SmYCBI3Cg5+KIhZDSz5JJ4eg9+a68ZMy71dLPQVPkuHnzZvnm/1CjZ85c2be18i7775bEyZMMEW+kQBPFfneToY//vGPOv/884dcdSCg7qaFa7Vofb1Rxbc0thuVfleAdE+oiJoe+LGlEVWWRFRZzKND9pkbD4l1yL1D9Hen4O9KzXceuwL44qmU2Vds+rUtHarBrt/Ybh7Zt5s+fpiiYVoEgvr5A8v02PLtZr8oEswYE9HMyoBmFndoRkm7qsNx5zVBrYfY9zGNHYIfTznqfTyj5LNvRoQOOgp+qVHwAyoJo+Kr06pP0SAvcLoyo54Rd1jxt7zqkOTsPvZJ+3cR+3FznR3xG0wLRGbMXSpTTIHYl453iD2k3sfBeSgeLKZ27Nhh1A6Sjf2y4LSwGO0YjYo8+OY3v2nI2y233JLX97mhd4x+G6ocnt1dX0lhJ71+1qxZ8hMoeKDKeWGx7wuJ72181+zZs32htg41Rqsiz7nC/HXIHv3wfSk8ea3Mo8LzvseNwz74CVxXOZa87/3wHqJVAufScccdl3d/PEn1FPcuvfRSjQT4JrXeL4sV5si/sGaHIecQ8NZYwhDjLZle9i2Zj3kkqM612/eGqpKIxpUXGXW8qrTI2PXHFBepqhRFP6yI6cPPn+D3VPNNCB82+FTKWPbjiZQa2xKaPCZqfi6k/m/PrtNrmxo7+/azAZ++9aN7KxJvMuPWXtrYprTSmlEV0YSKUgUIzssT7IdR8LMIPgZ5LgGo92ylEZke/FKj4Dv2fAg++9snQIQ3veyk4EPsGzd1/zo29mmHSNMh9oc41nY/wp1fj2qPxcMNzoPYF7vBeaW+IPbYK3/729+aUCbCQlj4ctMj6yLf/lQLC4vCY7QSefo36StFhcs3UZnrGoo8ipMfQIsASiIJ9n6ZKw9YMrqBYajefibx2QTt2WefNcrrQQcdNKoI7Wgk8vzNFG8Is8M6ne+54hWZxybOvvvNUs8+QZp5v2NJ9wNwLDHl7Igjjsjr+7h+UNTjXuGXQNGBwhL53RD53ZHo7c0dDrE35N4ZP+cS/VZY7C5Aqn11GaS+yBB+lHxUfYj/uLKoiiNuyF6gX29qiLQh+pmefLb2eEK1LTHVNHWopiVmlPya5g7T9//d977FUe8DSf3g7je0osbppy8JSdPL05pREdDMqohmji3WodP6r1qYQkOG4GPTNwTfiQswCj4EvyQi04NfEnF78J2gPb62SzRscEg9iv2ml7oyAbJH3BlSf6g0eX9/hOb1BLW1ZIdTpIDYA5fYl03MJOd7k4jPYverX/2q6TkjYZnFHJVR7GAo8z/72c8smbew8BijlcgDiC/bN77xjby+DzsrxJkUYz+4iyCu9P1zncVq7ydAkLDYo3QOxQiqgZD4bLUTckd/LEQpXxVvuGK0EXlGylG04fUl1K4/f7MXZJ41FL3xKN5+CrhzSTN5E7Qv+aHAgGPpgQce6NcIvO9///vm/MBeP1JgifwAiPzubjxN7YlOBX9zY3smob7NfA4CvSstn988phRi75B8Nkj/uPKoJldGVV4cMar1QN5UZpyeUfHTiiWSRi1PZRj13Ys3d4bs9TQdTChO6+pjkwpGShSJluqWZXGzvzPGhDSzMqzJ5U7xoT/HDIu+k6TvPCbTEksq/lbm3UPqK6Io+A65d0k+X9vpWGBf37oko9a/4AToZYPQvCmE5mUU+6qZvlC8d4JJxCc4jy0rrBBCzwx7t78esj/IF8+PfOQj5maD5TP7ePPaYb1C7bjpppt8sRC2sBitGM1E/tZbb9XXvvY1rVy5Mq/rENcwVCfahOgB9wNYPBPSRXHBb6PUsNliXX7HO95hUu39TOKz72HsM46NvtqthztGE5GnjQJVG6V1oMnqQ0nmW1paTNEONxF5HX4CrkvmxjPO0Q8ZIoDxnBQX8g3dSyQSRo2/+uqr88pR8Tv849fyGVCyg7tTf3cBTi7TL18S0d6TMnPHsxBLpLS1ySX37TsR/ljS6X1nywXm1FeVYtd3yD49+hPKi0yaPWPqUNh3h+xxep0z6jP46BGzzIg8RunRQoDbYGtjh2qb2lUeSWlZR1jFzY0qSm3Rf94oVnOi61iFg9LU8pAh9vuOj+i0eSV9PmYQ8p6qOzdy8gEg9q3xtOrbE4bgu7+rKEeSvqPghxWdcqACBOAd9impbUcmNA9i/7wTmrd+obMBSDGEnvn10w+WiqvkC5jcglJn60zEb3dCAJu3dR91Vzpu0Ig9iyns9ChEPS+e/BvLFYsknnfAAQfIC9jefQuL0Y3TTz/dtPmw+CTNuK/gGkY/+urVq31D5AlkwumEDZQCg58AWcLaSqEBpW4w7P+FJPGAwg5kieIW+w1p4rj6qXXBon/FCvc8mT9/fkHI8FAF4LHvKMSEMfqNxAPyMMaPH+8bEs81gWs0hDzf1+Pee+81j6eccopGEuzVqweCwYAhtXWtMTMmrms8nNNn7s6Up6d9IG9qQvBmMC5ubGlO6znp9Nn9+J2Pje2G3LfFk2prSJoiQE8wLm9MhuRj0R9fXmQS9ydVRo2ij31+d0BRDymkolDIpPPPnVC+UwBfPJFUW0eL3jZru7Y3tGpba1Lb2gKKpwJa15g02/aWhA6eBKl2VPor/tesymhQM8eENbMypJlVYU2rCBllvTdwnCMhJxm/pxnO9N5nxuU1Nae0nuA49TYqr1LF049TdI/jTD9+sH6Nk4IPqd+yWGrZLi27x9l44cfv5aj19NjnYcPH1bBq9So1NTaporJCc+fMNedVYRPxS7vS+d1RdxQmmrY4xD/szrAf54y5w4ofHliIE8F2VGd7s33xeSriPM8L2N59CwsLVMePf/zjuuaaa/Ii8i45JZmZ1qHqan/kqaAsPvXUUyZx22+WWwq2XHdffvllo3AXkugUmsRnA5UVYsJ+0yKARReyYjH8wAgyRg1ipceWXkh3yGCTec5xHI7FxcW+K9S5TgHCLXHd+AW1tbXGLdGfMMBrrrlGn/jEJ0Zc4c5a63OgPZ40s+RRzZkf3xFPqiWWUEtH0vzb2dKdrudsgs+oOLevfbDQFkt2kvotxqpPn36bIftb+xDAVxYNqbq0qIvkVzqp+/ybML7+XqgCpq+7RTsaGrSlrkFbm+KqCCW0YEJaiWBUzeki/WDhzrkB/LbxpQEdMa1I5+5f2hnOhwJPj3x/0Dkqz9j0Hcs+vQw4EMyovGCPJH11qLTmVRVteUnBjS84yfjZCEWlKfO7QvPGzs5pw1+0eLFu+ectevPNNxWLx1QUKTKVw7PPOVsL5s/XkIBihmvFT8ScAxwu607sScTPU7F/9dVX9bGPfUxVVVU5F1X0pqHQ/OUvfxlyRd727ltYdGE0W+sB1um99trLqEn5BhpBHrmW+Wm+MHZh3EaHHnqo/AaKu9iCWVgXKihwMEl8z9/DvRonGftP0WSkLfJHqrXeVeGxWUOCcdMMlv19sGz2OBw5x4855hjftc4AnALs11CGWu4OBG1yb+O92p8g1DVr1hhX6UiCJfL59nAbYuiQfHeD5LfFE2YGvEvyUaxBUIHORPrsGfODdcGBwNY2dxiLvhvC5/bl83HLbgL42Dd68SH2kHxD8A3JLzKfZ//7hFRSgUSbQokWBdvrzWMi1qEVDQFtbC/SptaQNrdKW1vSas1MjztsclDv2zOsUAhVX/r2kx2qKg5oanlQ0ytDZps5JqRZYyIaWxLqVzu7OyrPTdJvj0tbtm5We2ubKspLtMe0qSorCqgqXa8xNS+rdOuLKtryooKo3dkoqe6y4PNYNsGQ+F/98ldmEU11nzR3Fjk1tTWqrKjUxZdcPHRkPtsZ0NCgMWURzZ42WcFUvDuxJ8W/j1Z8t0ceFWPu3Lm+6ZEfTr371vpvMRQY7UQevP/97zdk/sc//nG/xhqhQvnl2BHQ9vDDDxsi78e+bs6zJ5980lxnB9qWMFQkvqfyyH2N136kqfMjkchnq/C8XoOZ0TBYZJ7zm78BEo/y79e8AfrQ/TCSEyAU4U4iMyTffbrkkkvM33TzzTdrpMES+QLCqMAZct+RTJpH1H2UfBLsGQ0H0SdgztXMe9r1eRxIyN7u0OwG8DW2a1N9m9mw529rajdp9rsaRshe0fMPqXcIfpeqzyNKf28XN9T6YLxFwViTQh0NhuQH0kmlghE1pqLa3BZRaVFQU8uCSqRTWt+Q1M9fiPW6L0dND+lD+xYb6zyMfmV9ygTtTShzxvn1pd6wfMUKPfjAQ9q0aaNiibjCkWJNmjpDb3/HsZqxx+zOkD9MAVVtazRhx8saW/uySmsWK4j7IAvpqj30zLqYHl/ZrB2lsxRLh7stTKga77PPPrr8+5cX1mbfC3bpDNh/vx6KPVZ8NzxvvEPqe0nFd5Vv7PP0xPshtd7PToFsWOu/xVDBEnmZufCQea69+VrSFy1aZIKRSL32CyhIoiZhH/a6INnbuDyKqUcffbQpIg0XEt+z9xaVdCSp8yOJyPO34J5Yv379oKvwg0nmXUJKO4pfxrllI5lMmpYTBBvWjX7B888/bwg8OQj5oLm5WdOmTTM98iNxRLIl8kN4k+im5Gc+bulIGJUcK3/CWPnTSkHzSWuH5Pcg+v2ZNd9XMKaOYDvIPYn1PEL4+dz2pg6zj7sCffAuue9J9hmr17nvRq1vVSjR2qnWB5ijznEKFysVLlY6GDbBdltaUtrSnDKPm5udf9e1p/XeOWEdPT1kiid87jcvO7J+cUiaWBowyfko+DMqQ9pzbETjSp22BzfrYMXKFfr73/6u5pYWQwCLiiKKxeKqb6hXeWmZPnTuh7T3Xnt1C9pzrfqpZExj69/Q+B0va9yOV1TRsEIBk/nvgK6LNW3lWtFSruUtFVrbVqrm1g5zE7js+5dprz331GAib2eA22PPHHuIfWcqPnPsScUvzyj2JYb05yKkLHouuugiTy6S2Do/85nPmJt6KBTKeVNiAXzttdea6rcXsNZ/i6GEJfLOPZcF35e//GVdcMEFeSu0jzzyiI477jjfjCnDzfP444+bUCycBn4E+QKk2eNmyFcx85LE91z0o5QyYo9WAUibH0ZujWYiz7lPuwznF+fFgQce6Nn7cqBkHncN72MyL/z8PmYcJ+9jv5z7vC8pLuAQyNeBce211+qGG24w4yf98vcUEsO/3DhMwMlDyFxvQXMo9W5PvlH0s9R8euLbEgk1dqRNAF+aAD45pNRV8QsRwAfRnlpVYrZDctxkd7TGtHGHQ/I3Zyz7kHzm0De0Jcw+b6pH6d85gI/dYoSe04vvjNFzHmdofIVULmz4rQq17zCqfSCVUEUwrPLyEs0ZUyQFum5AHQmKHVJJJiCvpiOpiaVJ1bSl1Z6U1jWlta4pqec2O20EJ+zRoWNnhExuQUs8oOc3J7XutTfVEqrWtKkTFFTChB1Ei8OaFI1q67atevDBh7Tn3L2cYspOQXsl0piDVD/jrdoGsW9vUvOr96t1yT06bGyjpkSaNbfU2U6esEXtqZBWtFbq+S1Sy8alSsyerXAOwlkoOz1KPAv56TOmd54PJaUlml4y3ahTt9xyiw7Y/4AuZ4AJzytztuxU/I4mqXl7RrGPSpEyqXS83nbAXB3xh2v12vI12lFfb5R4quNeqUT8fhaNOANyLf74PF/neV4tQih8EKCVbf1nX6l4o7T97ne/0xFHHOFLpc3CYjiC99kXv/hF/eIXv9B5552X13sLkkAfJSPsFixYID+A/cdRtHDhQkPm/RZ8B5h3z70H5Yyibl+PuV9IPOB3sw/sC8Vqrs8QNpTTkUgC/AzOCwglrwMf0+NM64aXr8NAAvAQFZiWgMDCWsCPoIBFPznvXz+d7+wTqnq+JD6ZTOqXv/ylvvnNb/rq7ykkrCI/DAA5Mwp+lqK/uwA+SGu2XX8wA/hI2cdZAMGH6DOmbhMkv9Gx6zOLnln1u0JxJJhR8iMaXxrUhOKUJkQ6NCnSpnGhDmOVT4ejGbU+d1WZ9PrtLWltRsVvSWmrUfPTOnWviA4YHza5Ba9sjesPr2aN9EunVJxsVUmyWSXJJo1r36Si1m3qaGvShz54tmZMm2YUfNT8UMAtluz8u9etX6/rrr1OpaVlmlae0ltKd2jfklrtV1KjMaHuNvx4ZIyaJyxQbNJBSk09SOGqqSomcC/M+L2BvUYrVq7U9777PXOzgbz3RFtrW/7OgFxz7A2xL3XG3RWP6SoEBAenQDEce/eHm/XfYuTAKvJd6hfW0Ouvvz7vucFu3/fxxx9vUqX9Aj8H3wFaErANUzjtSxHETyS+JzjOuLkITYRA4Dwbbv3zw1WR3759u7HRU4jHGUFopZ8K3fkq85znrFH4PsY15nIP+gF+DLhzc0uOPfbYvPMEbr31VtMfzzrQj4GChYBV5HsCi/c/znXSyfc40hk95o758ggop8XBkIqRhnMg26rvKvqtkPyYE8DHx9kBfFxuevblDySAj55+RtTtM5mtcud2gnhK25sh9+3auKPVBPHVNnUYkr+jNa7mjoTa4ymnEFDf1vOnKxgo0djioMZD7qPtmhBt1rjSgMaXRlRdEVVpxOnNpw1hagVb7os9Y/mqS0Lar7JJq7Y2KRatMj367eFys+3QZJUmGlQSjSrRHtNzG+P606pGTSgNaFJZQJPLQppSFlB1adiMyzPp+pljN3HyVE2ZOk1r165RNDpRTzVONVtAaU2LNGlmcq2OnJLQvmUNisQbNHbTExLby1Jb8UTtqD5Qm8YfqLaJBypaMV7lZlyeMz7PeXQUpt2BkXf0xPdma+TztXW15nn9n2OflsgIgNiT7o+Cz2g+vk4IYIlL7Mul0OAvHLi5Mzea3n0u1rl697H9e7UI8PvYPguLkQoIONb6H/3oR3rve9+b1z2OPm9IG9cUP42GYl8IviPwy4/Bd/SVH3bYYablibDAXfXY+pnEA+4ZWKAha5wHkBzG1kHc+psDYLFrUNRGgcfBhvWc4+/HrIJ8lXnyF3jPYlf3K4lnvcR4N+zrfgLvvUmTJuVN4tPptLn2szYcqSQe+O/d4TU2vSytfNDZQDAsTTnQIfUz3ybNPMJJ+vYRmEnPpmjfAvg64k7SPgF8EG0+7gzgK+A4vex2goqSiOZkZtE7fedpY8WPJ1Jq6ohrQ8ayTy8+qft1LXHVt8VU3xo3z61tS6m2TVomyFj2G7JDJaG0xpdI40uCGl8W1rgSSH5Q40sCqi4OdNv32VUhnTU7odtevEdRVJaSSrWFKtQWrlBrqEIV8Tql2tsUTifUGijVivq02TJH0/y/LNKhCSUBnTw7qBkVNDlA16V9DnuntrQ8qC1NzaooKzF/d7wjphe2J/RG6VxVv+ccBfacpZIdy1S+/WWzldQtVUn7NpVsekBioz+zbIZqxh6ojWMXqKF6vgLFlUapL4s44/Ic9V6dJJ/XywVz6wm2M8QxhyLP5/k6z+s3jNW+2NlKxnYVwFDtG9ZKO1KOMg+xR63nOSYZv2zAs+x7AzYwgvbc3n2IMUULlHiveveHi/XfwmIkg/yMK664whDLfOchQySwsvPol4UgxQmUYfq4Cb7zo8qKeo1jgFFRHDcsscONxGcDIokqTA4L6jznEhZvWgn8mDg+XF1EHFvIJMUfgib98p4bKJknnI91CesQP7bEuM4NQj4pFPolpd5ds+KK4TjniwcffNBkdjA7fiTDWut7ommr9Mad0rpnpLXPSE2bun/9+Mukoy52Pm5vlNobpKoZGo7IFcAXT6Qzln2n591N2UfNN5b9wOCO03MdBc6+pNQWS2hzQ4e2NrWbXvzaZlT8mOrb4mpojampY9fj9NgryLxR8CH6JQFD9Bc9/aiaNq/WuDFl3aYEmCyAujpNmTpVR51yplbVOzb9LVlBey6+fkSxZlaGjCD96LqY7loVV1U4rnRTjdRSo0hHvUqSLZpUGdZhbz1QM6dPVyRTdCEYkGNYlOzQmIbXVFX3iiprXlFxw6pMWSCzPwqotXKudoxboNqqBaqp3F+JcIn5uyD3uBBKIlJFUVAlEf4t/ezHV2jlstc1g3FzPf62IUvPTyUyVvxMMj5qeLg0E6A3LhOgxyz7UqcwUKhfm0qZxSHqtte9+8PF+m8x8mCt9d3xne98x/Rt33fffXkfS8goyrKfVHmuGwRoQn790sOfCxRUOe6QsuzZzcOJxPfWR0wgGPdTFHqu67gj/NiD62drPecB5wj3QBT4GTNmmIKJX8luf2z2nOPc+3Gp+NFB44J9pBWJrB4/nceLFy82Ysfhhx+e9/e+853vNO6Cb3/72xrJsER+V4C51q+V1i2U1j7tkPvTr5ZmZHrTFt8i3f5JqXJ6RrE/UtrjbdL4eQ5xGeYgxb6T6Gces8fpmb78lEP0DfcMDN44PXdfaBHoSDgp/60dCTW2JbQ9Q/LrW9rU0NKuhtYO1bclVdfBzPhd/+5gMqZoskUlqVZFYk1SS63KAh06/m1v1X5znP74bBC0t7UVcp/WgRNDnT3t/3yjQ0+sT+T+HQHpy4dENbksYEbabWkmvDBlXASo6zgGCC4kB6As3aJJTa9rfP1iVWx/UZUdW7r9rHQgpNax89Q8foHqqxeofsxb1K6ok6af4f/r167RXf++XW0tjSZUsDSMYN6q+tptGlNaoku+dJHeumDo5tkbpJJSoj1D7Dt6BOiNyyj2pY4d34M++8GGH8f2WYxcWCK/c78taqo767w/o6JYEPqJYJCsT4qz3wkCYWX09aPQY48d7iQ+GxAfFD/GvKLaoyRDRv2kJPuRyMdiMaNSc9wII+O9yeYnJbgQZL7nue9XUEwh0Z0pHX67xjE9BCcVxdR8sHDhQp144onm/TnS3Y6WyA8ET/5ceuSHUrqHKoyVeMYR0ok/kMb7M5lyoOBm3JGlnPdnnJ5r2x8IOlsHMoF/bghge0dM8fYWNTa3qL6xSfWtHWpoT6ohFlBtLKS69oAaeh9TbwBFryoOZFT8oMZnVH1j3S8JqoIw/UyRgv0gNb9rXF66M3AP08CV7yxVKQPpJf1raYceW+eQ/qpowIzLY6MXf1xxQOHmTVqyeJHqandojJr01opaHVbN4w6NSdR228dUMKyWqreoZfwCtU48UK1j91FMEb2xYqUeeuRJbd623RyXcCiiyZMm6Nhj3q599pyr0qKAyosCKsEdEFJnPz7FlyGBCdBziX17Vp891Y2xUklVV4DeINnxhxp+G9tnMXJhifzO+NKXvmQW1kztyBcsculr9VMAFIAIkebsV4t9LlWSPuGRQOJ7uq74m7AAU/jBdk84G2q91+qmX4g8a8aamhpDrHgfEv5K4YNjNVKcaNlkntceNwqFQ/5Gv4LzA7KMU5Nz1k+gCML7J9/iKzj99NONu+OnP/2pRjoskR8oOpqlDc87qv26p6UNLzjzuMFXlkkVk7vU+5rljmo/4zBHgRzBcJP0O/vze4zTQ8nvVPMzpNnMeO9M2e9S81PplFavWq3GpkYzB33O3DkKMjJtN0n67u82+9HeqvbWRrW3NivV3qBkrN2Q/rpYSBt2dKimXWoPRNUeKDb2+ZrWtGJdo+FzoigoQ+4Nyc9B9lHruXk1dKRVVdy1v/9eHtOzmxJqiuVO8t9v3a1KtNSrorxCDRWz1BIokZprVBHs0PsOn60FpTWa3PiqJjW9ptJ4XbfvTQaL1DhmHzWOm6/G6vla3V6pto6YKhinNHW66fJHvafAEkt2GimM86AoQ+jpwy+LdA/b42uFcFbsEslYlx0fa34gJIUh9hVOiN4g2fGHEn60/luMPFgivzOYQ01PM1ZNHodKGRoKiz3j8pit7ffjT18/yvUxxxwzYkh8rvceZBXFmWItJA4XFsTVC1LvJZE3rYo7dhjFl0IH+4JjAcI4UrMFIPM4f5jeAAFlVKSf8dJLLxlhwW+WeqaGkEXRn7nxS5YsMS4IAgazW3pGKiyRLzSScWnzYmnLIumQC7s+f9OZ0qqHM0c9JE0+wLHhE54HuS/3rzVuqMbptbL1UPNfX/qG7rn7Hm3YsE6JjnbTY77HjBk6+6wzdVA/Fi4mFyAeV6KjWcm2ZiVbd6i9pVFt7e2Kp6SOQESJQFSpQFhtyYAaO1Jq6JB2dKS1oz2lujZHea9vz4QD7gJjok4/vqvgu4+Qfb7WnlDXmDwU/Oak1mzZoakr/qVx1dXmovrGmCO0I9p1IQqkU5pUHtKksqAmlwZ05pTtmtjwqsY1LNGExiUqidd324dEsEi15fuodsx+qq+er7ax8xSORBUi5yDgZB0gwqczBJ/iBcc9kSli8DWKKtlhe9GhUvEh852qfcwh7246fqcdP6PaD0E6voXFcIEl8rlxwQUXmMLZjTfemPcxJQgKK3V/ejVHu8XetdNDcPnYz/taKGAZp3UK9Rkii6MDQs82YcKEIUsuH2oiD4GllYW/mb+f4jWvNYSKv92vie2FzoVg/YbjIJ8580MNXh9Ub79Z6t1sEop9/RnJ+5GPfMR877XXXqvRAEvkhwqL/ukQeQL0GtZ1/xp9wV9fK4UyQwRa6xx7vk/f/IMNV8l/6pmF+u6l39eOxiZNmDRVkdIKo+rX1TeqrKJS51/4cWMHctX8niF8fVWQA8mYArEmJdualGqtUbK92fRwQeSb08VOD7pCZk49CfXOT02rOS41Zgg+ifpOsn5a29tShqTvCuGAVJ1R8R2CH1Ak1qiXnnxIFcG4sb6DLSWz1RgZ5yTrh8qNld5FcUj62XGlnTeJm19rV3HLBh0VfkNvTb2uvTpeU1myodvvTQQiqimfp60V+2p7xf7aUbmXAqGoOWaGoEdCJtDQEP1QQIE0joiAEnJU/HiWiu+0SdDnH1BFNKhSiP1gqvjZY+/iGTt+0FXtK51pEvTcG9W+ZNS+fywsLJHPjaVLlxrlmqCyfG2kkHhmGdMGU11d7TuLPYnfWOz91J8NevbEo9BSFDnkkEMMsRsNgMwy1gvixIYCCpnn76d3mkkEw5nI897g74LE0joBKXT/Nizmo8V15vbE04KDcyefOfNDDc5BCoDsm98s9bRgMOrx+OOPzzs3YeXKldp///3NNYcQytEAS+S9QMOGjBU/k4xfMUn66L+7vn7VIVJHU5daT5DepP1HZAjY7pK+sf3sueeenRdBSGRKQa1es04HHPhW/fLXVxmCmUvNpzufALgQJL+vvfnptAKJNoXiTQp2NCjcVqtUrNXcDNsVVnugRG2KqiURNGQdco+S74IpgJB0PtfQkdKOdqkmQ/BrWlNGzce67wbT9YZwygnhK062Zh5bFEm0qK2pXocceZSCFRONgn7SnK5F2/f/16qtLdk/OK09Axv19vAbOjbyht4WekPReHdinwxEVFe+t7ZV7qet5W/RttK9lAw5F86gS+gVUNiQ9JBJ3DfBfAGJHMF0huhzHBJph+Bnq/il2SPzBqDi4+JYtXqVmhqbzOi8uXPmOqn72en4uGFAhNF4qPbVDsFHwbeqvcUogiXyveOjH/2oUQX/9Kc/5X1cybeAkEFI/bQwhyw/99xz5mPUbr/sW2/Bdps2bTL3dr/3Dw/WMcF+7ZJ6euqxmTOXHvs9GySwULPTC03kUdyxPbOx72zNzc2mVcwl7/w9fjkHhzoHIntCw67S7L0+BwmD4xyjoOaX/XL3jdYEziN63PPFhz70IdNq9Pvf/16jBZbI+wHJRJcazzi7K/d0+oWzUVTh9Nbve5p08Pka6Xj11Vf1sY99zNzUcvXScePgBvKXv/ylm/Umuy/fhN/1oTc/1CNp30mQz1zYUkkFEy0KxZoVaq9TqKNegXirGREXD0YMse8IFCuWCphE+9ZEWm3xDMFPyozt4yJpyC3p9KjUGTWfPnxXxYfsb26MaUtjTEkU5l0irapoRskv7VL0+X2Q+8ZYWttanbC97a1O0WB6RVDfPKJY5a3rVd3wmrauWqQFqdc1IdCT2IdVV7aXGsbup5rK/Yx6T24APyOZTDnBhRm4afscqqJwyJB0jiF/ryH4/Ly0M0yvp4rPc8sjBO45vfiQfpfo91TxFy1erFv+eYtRnWLxmIoiRcaydvY5Z2vB/Pm7CdFLd1ftcbrggCEhfxj32ltY7AqWyPcOriOETGJ/RbnJlxShykNA/ZZCjYvsscceMyqUH5So3aXTQ2IJEcQh4fc+4sEEajaj17KJMa8lZJj1j0vweewPuR8IkXdJu7tffAw5RSXN3jccKsM5cb4Q+Q9kb+RKp/cjmScgk2DGY4891nchmbgacOygxud7vr/00ks66qijjDtpNF1TLJH3IyAhG19yFHu29c9JHY3O1w76mHTaVc7HKJCP/ECacbij3qNAjhAQcvGZz3zGjCTJ1VNF/xkXInpgCM7pT2++m3KPkp+dtJ9IpQ0Bz07ady37RUqoKNmiUKLFqPWhWKMCEEb0/3CJUpFSEzhnSDU99xk7ems8pZYMwU8wiQ1mHHBs+hBb8zsCaf3n9tu0ecs2lYyfro5wmTpCpWoPlak9WKpWFSsRrTRke1fAFUD6Pbb96syIu7KItM+4kOnRLwlL33q8TY2xlOYENuvw4BuZbammBLqH5+F+2BSdow1l+6qpaj/FJ+yrdLTSHBuOUTKVUjLlpPazOckBtCAEndHxmbF6EH0T/kcJJEP0HXcFxYBMoYPjGwyYtgL68UsiAa1c9oZ+f83Vam7YoQnjqlQcjRpLWE1tjQk+vPiSi7uR+ZzKfTqr1573TGevfYkTopet2o+QhHyL0Q1L5HefYA+hv/POO/M+tsy85t6Djd1vlmHcAvSWQpy9HLnU1xFz2LBxEqC8ZTvvRjM4dpD7bPLMI/c9SBc2fDaIs/tx9udoreA4cm7yCBm/9957dfLJJxtihNvRZAXFYuZn8ruyt+zPUQRwSXs2ced32dfKea0gjRBjsjNol8gFP5F5ikYEZHp9jcgF1vXY/SlEItbki5NOOkkLFiwYFUn12bBEfjiAGdxbX3Ps+JP2k2a93fn8xhelG47ret6EfTJ2/EyIXtXMYas49leRH+is+vZ4QouXvK6aunqVVozRzNlz1RZPGbJvkvghrsa276Ao1a7iZJuKk82KxmoVTbUplIopHQx2EnsFI50XfSz3Dsl3UuPb4mm1xNMO4U9J6zZsMkWMWHu7yktLjMKdirertalBJSXFOumkkzV28owuu372Y2vahPLtzrYPkYfojyl2bO6cIYTbtcRTKmvfquNLluqMyuUa1/CaStu37vT9KzRDyyNv0frSfdUxfj/tOW3n0CLqIJBqQ/QRyVNp82/3yAWh+iEIvNOLD5lnEgEkH3LP34Ayf8s//q7NG9ZpwrixCilpWg4i6bgCqbi2blyneXvN0Q++911j+e+zct/Za58h97y/XNU+mplr76bjs7luGQuLYQJL5HcNCCSLRQgOCk4+gAihfJO+vddee8lvgFgQKueV2pbvnHju4/TDjh8/3qjzIz0MrT9wiXdbW1tO8p1NwnluXwCZ7K0g4H6eXvfRrLTvChRIsNKT+QCJp8ixK/iBzLuunTlz5pjCmd9AdgmKPNNB8j0+jzzyiM4880yTVO+3DJPBhiXywxnblkoLr3YIfs2ynb9+0hXSkRc5HxslMjhs+uzdHnkulCy4st/U3KhQRbA33nTTTQVTRXLN+eaC+/nPf15HHnmkUew7rfuZR6PmdyScryUSSne0KBBvVrijQdHYDhWl2hQJJBUMFykQKVMQS3cuh0EKMu9Y45etelOPPfG0Ntc0KAbhDUc1dvwEzV9woOknzLbpR4zqHej2c3YwPq/Nse27j7WZx6YeHRu5UFmkTsv+7HCtKne8rn0Tb2hB+g3NDWza6fktxZNVN2Zf1VXuq9+sn6OWkmmaVB7UxNKgJpc5Kf3Z+wjIqUumUfNxP1CJ5REzvkv0g6qrq9E9d9+lokhUYVSGDAd3TPppxTra1dHSqAvPO1fpeLtu/dtNamus0/ixlSqOBJVob1VdzVaNqajYSbnvPSG/XUp0OL8oXCSFi6XiMc5cexOkV+oQfp8pcRYW2bBEfve49NJLjU2efsx8F42EMdFjymgkv6U9c39ElYfED3X/a74k3gUkFGXeTbT32zEdLuD4QTBBtvKOysm5yjnhrpdQ562q3j9QUKH4xDHETt/XYoeXZJ5zgXYizgsKD3577VtbWw0Z70+YaDqdNn/T+973Pn3zm9/UaIMl8iMFLTXS+me7AvQ2vyJ97M4u9X7J7dJdX5KmH9oVoDf1IIeY+BQQ669+9aum4kmICjd3LqD01mEJ+tnPfmbe9IX8XdiOCCrJ93eh5kPu4wkIedKQ/HYq5y2NirU0SG11CrTtkGKthsWmgkVKR0oVKCo1tn1nDJwTLudemDZu2KjG5mZFS8o1fvJUxdPqu00/6JD8nhfr9kTajNDLJvnZZJ9iwq4wQQ06pmipDg0u01u1VHtpren5z8b29Bg9n5qnF1Lz9FxqnpZpD1WVhHXolLDeM7crnI/E/4qinffR/P0pafWaNbrn3ntUWTVWAaPWhzq77RnDB/FvbGjQ8SecpFdefkVbtmzV2Ooq8/2hdFLBVFzBdFx1WzZozz2m6utfvsTY9Z1+fCdVf5c3MzPXHmLf3hWkh/UeS37xWMeS7yr3fN5nN0aL0QtL5Pu2qKZIzCi6U089Ne9jTDo112nIst8AMUZ5Y6oL7Wl+JvHZtlp6Y3FLQOZHm6o2EufIj0SwRqToxJp0/vz5eQtJXpF5lGpaAPw42QJQGGG/SPzPF7fddpu+8IUvmMT6fGfOjwRYIj9SAWGkD9i1Bd/3TUe9zwaW76kHOjb8wz8rjZkmvyGXSk5Q0UUXXVQwEt9bQn6h1H9TFYfkxzoUb21UorVBqebtirXsUKy9RbF4SrFgkWKBYiUCRUoHnSF34YCTsO+Eyjl9+u6u9WbTJ2yP0D3ztR5p+tkEvzPMr8d+UiDoSe5d+z4FgExGYCcq1KqDg8t1aNAh9wsCqxQNdJ+9xwi/l1J7aXvFWzRt7gGqr9xbDcmovv5Yq4rD0qTSoCaWBTSpzFHxJ5UFzGN9zTbdduttxuZXFO1+42E3OmIJdcRjOvJtb9fTTy9UtLhEEfcGlU479v5AULFYXO2xdp32nvdo8qSJZsxecVFQpaGAKotDqoxC7AndUyfJz5mq7wbpodgnMpZ8XC4o9JB715JvgvTot/ffzdJidMAS+b7hN7/5ja6//npDIPO1dEOWH374YUM6e+uN9RKuawA3GSPA/Ezis38OhIP7Pb2utC9YDAyWyBcOtKzQ9skalLa9/pLwoSbzQ3kt6A8YW0hhFNdIvq0ciUTChJZecskl+vSnP63RCEvkRwuy++zXPe2o9s1bur5+yWvSmEzK44qHpOatDsGvnuO50gjRZpGAMo86vt9++xU0ZMiLfnwD1N4O5tc3KtG0VfG2RiU72pSA+Cuq1nSR2hQxo/SM9Zw+cyisEeAzIXGG4Dvp8ca+HnDs9bEsgp8rTZ+fQ/Cca9M3Fn3axPkRvbzeqXRaDR2M0WOEnkv2uwh/fXtaRYrpgMBqHRZcpkPMtlyVgdZuPyehoFYFZumpOKr93mbbru6hK++YGdYH5hXp1n/dqo1btys+ZYFKUy0qTjQrmsLVkNYO3BNTpxpF7K677lJV1VhnJF2G6Kch2QooqYCaGhr1zuNP0PTp04yDgb+dXvw0M/QoboSDKgqGVBxxRuURuDcmGjIbKr6TrC9D8rsVQXhfucTeteTjHGAEHqQecm+C9Nx+e6uIWAw+LJHvGygOo1pjsz/vvPNGVPAdgBTTM08g7GApVYUi8dlAlSfRnvnWkCa/2YCHEyyRL9wadP369cZKX4jC3VCR+ZaWFpO7xO8YKndOfwLu6Ntnyxc33HCDrrzySvP6jFbHiU1xGi2gN37KfGc7/FMO4dixxrHjb13SReLB8zdIy+9zPi6bmAnQy2yT5w85GWGBVFAC3QMUCFjQ9daXx+epGPK8ggKyFylWqHyCQuPnKBpvlTqapfZGqWW7FG+REs3GUp8IRJUIlyqucMbCnzIhfIzWY5ReezzuWOxBWhmbflBlIWlMEbb9oBGP3TR9evGNik+ff9xJ12+POaF3Dhnt6r/nEcs+4XNji9n4JTurV/z+uvYS1bYdqLq2+fpHW1rXtCZU2bpOszuW6oD0MqPcTw3UaV56teaFV+vjutd879rURL2Q3lsvpebpxdTeWl03XXesCCg67xi1JN/QpsoDO39PIJVQUaxRxeXNGjtzvOpoZw+FlYjHO5V7bonY781+dcQUTic0cUypqkqLOhP3Cd8zIXwo90mOY1z1mWPgEn2eGw4HjWJfmhmVVxEJqbIkoIqikMoiEP1iFUWKFS3JjM5z++0ZJdm8zXlBcL/Qbx+tyIzAyxB7G6ZnYeEZUH8uv/xy/b//9/909tln592bjSqHSgdh9mN4FPtHUQcrMKF+hZpNPpgkHkycONEUH7Dbsv8Ua0frIt3CW5AxQFEJBw4hbMwoLwQYL8h7BjIPBoPMo1bz3p82bZovSTzADs91qT8p9RQpLr30Uv3qV78a1dcHq8hb7IwnfiateFDa9NLO8+xRGL+6ois0j97hYa4yeqbI7wqQ6ViLUewNIWytcdoleD1g5EXYuUuVZtRdygnhoz8fYsrHEPz2RNLY9vmckxqf6nRXYNunH99Y9oPOWLhEuovgQ+xb42m1JbJUfKcV38yN76uKnw1+Nsp9rHGrxtS/oSktbxiCv0dq/U599g3pUmPHh9S/mN5br6Tmqk3FmSJD99911PSQYq8/rIaNqxWdOFNvVr7VKPclyWYVJ5oUq9uomePKdPZZZ/btRpmD6CcSSXVkgvloWeB4ucexiFF5jPgrCqosGjQqfnk0qNIIY/8cRb9IcQVJyjfW/Fj3MD3IfXFVpt/eeV1tUr7FQGAV+b6D6+IRRxyhU045RZdddlnex9rPwXfu30eLGkWLQobfDRaJ76kmQ6IIwiLMajB+x0iHVeQHpppTTIJ00145GGRxsJR5N9yO1x9LvR8dQwMJuAME2z355JP9CiwdSbBE3mLX1u9NL2dm2T/bNf7ugnu6nnPNUY78OSNLtc9W94cBvEjI78dOSrFmZ2url1prHaKfijtFlU51t/uNhhnviZQTxIdyb0L5jJqfNEn7fL6bbd+Jkuu07fPnplJBo07H6MvPhO1B8CH7hO3F09Ba55jlUvF3h3CiRVWNy1Sx4w2NaXhDE1qWqyjd0e05iXRQb6RnGmL/EuQ+tZc2anxGe88gnTZkOQU53glpjS0O6sy9i3TQZEeVakuk1RxLq7q4h10+T6JvCh3xlCH6qPkURNivEPWWYMAk6JcV0YsfUmVxwHxcEgmqIpRQaSChErUZl4FBKFu5JynfKvcW+cMS+fzAghe1jaIu94B8QX8nFlFst35cUOI4e/zxx41VnZntw4HEZ/+u119/3TgfKKRPnz7dl8fYr7BEvn/n3Lp167RkyRKjFA92H/tgkPmlS5eaVgCua34Mt+MYuwF3rK/7M6qOYLxnnnnG5GmMZlgib5EfmSR5vSwTlgGh/Al2nR4JaGNmSDMOl+adIh1w1rA4wkOZkF8Q0JsNqceKz+vQBrFvdWzdsO9eiH1POMn3Dsk3qn4n0U+pI+HY9ikEGNt+xnLPaDiIL6+6M/Pd2dpT9OH3VPEdBT2fXvxAOqmK5jdV3bhUYxvf0NjGpSrpqNnpeTuCY/VaAGK/p56M7aVFydmKadd/b1lEmlIe1LjioClEvLItaRwGkHlG5RG454btTa8IGjW9P4Dkm6wCiiUpqSND9FH0XVOBE6wXVHE4oKqSoKqKwyoLJVUWjKskEDMfl4QDToBfN+W+NEu5H95uGIvBgSXy+eMzn/mMWfj+97//zXshDVFGWXKJph/R0NBglKuDDz7YTGYZDiQ+G8yXJpSQ+zELd0JQLXYPS+TzA+s+zjPeL5xnrAeHAoUk87w3X3nlFR199NGqrKyUH0GhhALdcccdl3ehgWvQSSedZI7Tr3/9a412WCJvMTA0bpbWE6D3rPO4ebGUzswwW/Bh6X3XdBHPp37hjL+bdogULR+VCfmDhmRiZ8Wenns+z+QCQ+xLdkv8IKCrVq9SU2OTsZPNmDXLkPR4htC7tv2OeFod9OcztzblzIM3cLi+0goqmUX0IbFuL75RrTMj47lXkaQf3k2ifnH7do1tWmZIPVtl82oF3fPMPQSBsLaXzNGy9Cy9mpqlxcF9tD44VbWtKdUyQa5HvWl3OGhSSPuOD2lcSdC0GaxrTHYm608swzbf/xstxxk3BMfREP1EyhwbJ4aPgoeTnE/4XkUoqapIQpWRpMqDCZP0X1JcpNLiYkVKKxWhsGaIfUnXKDyLUQ1L5PNHbW2t9t57b/3xj3/Uaaedlvf3b9q0yRAAgu/8SjLZR6az9NfK6hWJz+5XxjVBZo1V5/sGS+T7fm5TyOP8otBFEvpQK9mFIPNcx1CpB1qwG+xiCQF3KOr92cdbb73VrMtR5auqnJHDoxmWyI+g9HVfAIV444uODX/awdJexzufh+Bfd7TzManek/fP2PEPdx4LMPquEMd3xLxGuyX2Oyu6ixYv1i3/vEVvvvmmYvGYiiJFxlZ29jlna8H8+TkNGqY/H8XejLxzlH2IflssaUh/z/58Pk6mAiZRnk+ZvvxUwMyvd1X8JGQ27dj6s8fmsblWfSz0Y5pXZoi9Q/Cj8Yad9rGtaJwZd1dXMU8bS/bWquBsbeso6krdb01pe2tKOzqcDIB8QNFhTDSg8aUBHb9HRHtXhxynAq0GA7TGkXfQbtwRaXNseEymneYHjkORkioOJFUeiqsyFFd5NKCyaNiQ+5LScpVUVCtSWqFwtFRFxWUK8HpbO+qogSXy/QMJyFdccYVRivrT745Fn/e/Xy32gGA+FsCE31GsHS4kPhtWne87LJHvuwpPFtKBBx44ZCp8ock81/2nnnrKfF9/wuOG0lJP3gDFhv4E3DFp5Ic//KHJtrKwRN5TtZc32+c//3n/q72FAKPvnvqlQ/Ab1u/89RMul97+xa4APXRdCGcfMeqPb3+JvbHih7Rk+Rr9+nfXq66hSePHjzfnJ+dpTW2NKisqdfElF+ck87v8lb3052PZx7rvEn169BNp5+NYEiLsRN8ZpZrpbulAVsgcF62MPT9LxceqX9q+xZD6Ksh903Jjz6e7PxupQEiNZbNVXzlP9RV7a0flPLUWTzbPauwgdT+tuqyRevybjyH9uyP63G4h9rQRNMbSKi9yUv5R8bHpzx4TNLZ+LPUDgenLNxkFGaKfKZakk0lF0jGFFVc0nVBJJGUS9qPFRSopLlVpJWGOlSouLTfkPlJSpqJwWEWhYOfYPouRAUvkBxZ89+53v9ukIeeL4WCxBxQqNmzYYKy3fSlY+InEZ6vzixcvNqPqrDrfOyyR370KTy/8pEmTzHnkh37y/pB5guNonSEHA6LrVwzEUg9swN3OsIr8EPZf1zH3esoU//dfDzYaNna34295VfrI7dLcdzpff/1O6T+flaYf4vTas2HJL87d62OP78CIfaqlTj/8zv9pw+plmjF1slIBrPAhdaSCiqcCZsHHjeHy719eUMLnJuyb/vyMmg/RN4o+tv0MyTfkH5KfYuYo6fo8P2BIvxkdx6z4TOM5e+da9YvT7RrXukrjmpdlCP4yFcfrd9qPWLjCqPY7KvY25J4tEem+UKXXvynmpO5D9Le2JLWpOa3trWk1dDjhf3217k8rDxhCX10SNA3zhOLtMSakOWOc5PuBHlPaFsyYQWPXTyoVjyudjCuYiimkhMLBoKKk6RcXqaikXJHiSpWWlam8rNwodNFosSIhCg5BFYWDxuIfZicthg0skfcu+A77Ov2pLFT9arGHwLCPOM9Q5ne1oPYjie95vCH0tnc+NyyR978KP1AyTwERJR4RZv78+b51A7mWesLt+nO8bcBdblgiP0SJ6PSlMWfWl4nofrDjhwj0yiwmHvye9L9f9XhSwEnMn3GY9PYvSWOdmZj2+A4cLFjP/9hHNWVcpcZXFqsslFBlOK5oMKlwIK22tnbVNLbq/771Xe05b18NFUwQX8JR6rOD+NozZD+eSd9fu2mrGlvaVVRcooqx47Rle52a22IqKi7W2OrxznuOwD2lVZnYrkktKzSheZmqm5drTPNqhdI4QLqjuWSqQ+orHWLfWDZLaWbB9wKX6EPyt7SkTD/91hbn33weZ0FfeD5Xh2hIRs2vKg5o//EhE8IH6a8uYcxd/2/Q5BjgaqBgkkzEFIsnlErElKaoYwILggqEwyZcLxJFtYfkFytaXKaSklJVlkRUURwx5B6SD9mPZIg+//br4mE0whL5geHTn/60IYh33XVXv76fkWmk2B922GG+fV9w76RogbKNkBAKZUbKDiMSn01kuI+hzkNkmJvt1+M+1LBEfnio8P0l88yKR8yiaOjnlp6BptS7AXeISr/5zW8GZR+HK/ruXbboF7gJYqdHie/5BuPfVKWwmfC8IZtR7jf0DL5713elAz6Qpdo/K9WvlbYucba3fbHLpvPgdTok9ozGzhuvTQSvpbuOsT2+fQOqTFtHTKmictXGQ6qNR81cd4h8SSipYkXV2tGoth1bpfpKJxWfFHX6rnkcpBuHCXwr2nlxCRDgX160SHfdervWrFtvSL2x3yfTCheXKhiJKhgt07jJU3Xw4W/T5GnT1R5PqyFYrR3lR+i1siOUnhRQWAlNaF+ria3LNbFlhca1LFdF+2aVt20y2/Rtj3UG6TWWz1F9xV5qMKr9XmopmWLIL6B3H1v9mKg0uyqkI6dFdroJQeg3NaXUmlDGwp/S0tqk+RiCbZ4nqT0ptbeljZ1/5Y7urQEYIkrCUmVRQONKSNoPaXqlk7IP2S+P9D4NgP59I6xTDIgW70Tyk8mEkvGYeUw016i5cbvJMUjR4hKIKBUpNr32kaJiRaLFCkdKFI1GVBwJqyQSMiS/tCiokqKwQ/JDAUP0XdKf14g/CwsPQZ88wXf//ve/9b73vS/v7+dejvIEAfarxR7hgB5VgrEoPEACssWE4ULiAa1ghxxySGfgIPtMUG0+GQAWo6PAyTlNIn1/g9aGEpy/vPcg86AnmXeLce572a8kHlA84bgTBtof3HLLLea9zaNFd1giPwQkiWpxb31ofJ4EVp5nkUEwE4bHdugnnM81bZHWPydtXtSpxoOylXfoy/vXSapTLLVCK1sr9EZzpZaytVQqaY/vboElkYUQtid3sYZdvS0VNltzc1wNTRUKznq7NGMPqb1Raqlx5ti31jkyMoQ+TIAexH7wnSWLX12sq379a3Njxk6GqkSIU0esQ9GiqGbNma1oqkO1r72pp9cv0Sc+9WntNW8fo+i3dCTV2JFUe4JxeWG1l8zR6opZWpI40QTxRRJNmtCyUpPbVmpi20pNaF2h4kST6btnk+42+xAPl6m+fE81VOxliD1bRzQzmrEHuMFWRtlyHxtuyDVt0qr6pNY3prS1JaWGjrRJx0fVJ5yvJe4E8vHYEk9rc0taS2q6E32c+WNLAiplpF1xQFPLAppQFjLj9VD0KTa4gYE7k/yIFOnhOkgnjS0/FU8onmhQsm2HEi0BJQIhxQIRNQaLlDbTEIrMFopEFYoUKxIJmfaGaIQRfiGV0qvPY1HI/LsoEupU8h3S7xB/Py9ELEYPxo0bZ8Yaffazn9Uxxxxj/p0PuJ6iDGNfJx2+tLRUfkQ4HNbhhx9ubLkvv/yyUcp4Dw4nEp+NqVOnmtcKC+5jjz1miigoeP0JLrQYOaB/nLnqnM+zZs0ypNevKnxfyTxrhhdffFHt7e2mPSaXo8YvIKAOx0x/jzsciZT6a665xqbU54C11g8yOHlJVmREQq6bYXNzs+nR+ctf/jJ6FfkBYOMdl2vFPVdrwbiYxhZhEe4CfdTveWqBtu9odI7vrAlS2QSnUGDRCbc9gYUcPaF9av9AEicsj7YIeu1ba5yP423O12iTcEeiBQtbL2R023e+8x1zY54+w1G7WLjxXsJexo2N99q8efPM13L1+Jvdz/TlZ4/Wc0h+Ss0Q/Ti97yk1dSRV1LZVY5tXGoI/sW2VJrS9qXA6ttO+tRdVO6p9+Z6qr4Dk76l4pDBzXFfUJbWyPmlUfXrz6zu6yH1fwV9fFpEml6Hohwy5d0h+0ATz8TGEepcglT+dVCCJLT+mFAo+WQapgBLBiOIqUjpUrKR57SMKhKOmLSEULlIoHFCYNgf67unVDwdVEobYB00fviH9RSEVG6JvVf3+wlrrBw6ufWeccYbKysp088039+tnQOSxx7IQ93PrHNdMiAJFXfqFcQkONxLfE9wPuEeQRUSC91577TVsyFshMZqt9Yhoy5cv15o1a0yRh3UA7+fhiGybPWsb1mtc53mPUjj08/qSED6uLRQ3+3MdPuuss0yhwqrxuWGJvB9JkkU/ju9LOnrfaXpLeaPZ9ilvVEsirLPuKe86vtcfI9W96YzF6wzRO1gqGTvqj7gbGIgzhHaPfgUyQuJR6SH2LbVSR2OG2CedMXdGsd/9LPvdYcXKlfred79nKtUlpSVqaW4xN2vUJd5D9KayYY0tKy9TW2ubuQle9v3LtNeee/bpd/Qk+vFkUi2xlNkg9i1tHQo1rFFJ/QqNaVppQvWq29eZloSeaIlOMqS+MUPsIfmJcGEUOseyT0p+SpNKg9qBZb89rTuWd2hTixN8ly9KwzIEfwJ2/QzJ5xGiP64E4t2LfR9yn0ooyNSJVMyMLTDtDiZiL6J4sEgdwRIlg1FzDgQo9oSiCgSx3UPkIfeZPIOADJHn35B8Q+qDTvgeRD8aDmjN6lVqaWrQ+LFV2n+/fY3ib3v1HVgiX7gxZ4wgvfHGG/tlsad/9YknnjDXVKzefgZkHmWeaygOJ1S+4Uris4FQQnsjYcOQ+Tlz5ph7xWjBaCTyvO9YW69cudI4NFCxx4wZo+EO1jG8R13i7ncSD8giqKmpMRMy+uMa+Mc//qEvfvGLxiE0YcKEQdnH4Y7RczXzCNwUGTEHSeLCkoskYRmxJH7gx/fJ1zdpxeTJerBkgjm+NVs3dx3fVFyqX+eQzDcfdzYXE/aR3nKqdNy3NZTw08x6SDpk3R2RiJWJGwRFEI5fn6YquAp82Xin/SER6z7yrm2HY8WH6PF3us8PRfPqs29qbDJz7t0bGDdtjmUgo7YHQ0GzeOHzgOfV1tWa7+sr2B2T2t553wlr/E5Ef5wSyYMcu348pVWtLVLNCgVrlqu4frkqG1eoomOLyjq2mm1ajWONAw3Rqaorm2uIfXPlnmqumKNkP8i9Y9mXKknIkzSxLKCJZdI+R5Yako9iv701pW2tqPgpk7RPP/6hU8KmRx/i/9zmhGLJrp9JD39rU1obmrI+mQW6A8YWS+NKQxlyD8l3FP1xJRFVFhUpFOwiAJFUQtFUXIFUu5RsVDCRVjoRUCIeViIdUUcwqkSoTLFAkdoCYaWw+IeiRqHH8h/sJPVB07WxYsUKPfjAA9q4Yb0S8XYzQm/G9Gk647TTtOCA/Y2qX0KvfiSsSBiHgVMI4PWkWMDHFhZ9AT20V111lT7zmc+YhShtPPkAwkjvNmSe7504caJvDzzXSfaR8VCsU4arctkTuCGPPPJIbd++3TgNaMFC0WRMl113jSywDkB9p7BPOwttI/m+Z/0M3pOsFQl1pEXA7w4TOM7atWvNFJD+kHjWoazvr732WkvidwGryA8Rcs05p0LfZ5JkMfDjm0pK295wQvTWPy9teE6qW+18jXC99/8+87yUdMtHpcnzpRmHStMO6XX0XX/h17n3g1pcIB09jmLfIrU3ZGbZt0mJdoc5Q+jdAL1dtD8MhSI/UED0Sdtvb65XYttypbcvVah2uYp3LFe0ffvOz1dAO4qmalvJHO2A4JfPVXPFbIWipYoEQ4MaO/DK1oRJ2ofok7TPY3MmyJ/wvD3HhjrD+dzP7woQ76qoo+A71v0u275r4S8OcfNJKJCE4MeMks9B4zgoFFYqEFEsWKp4qMQQ/ESgyCj7q9dt1F3//a/amptVWVluSHyso12NO2pVVlaqj370XO2z1z6mh4CyDhZ+8+gq/kbZD6ikyLHwR7H1m+R95+sjJZjPKvKFAwUx1HgK8H//+9/79TNYzHKtP/bYY305ki67J57CAw5Crv9uz/xIAX8nLgsIPeCei+V6JP2No1GR53Xl3OU9xhqAtR/FqJH0urI2Y/oV1/YFCxaYkLt85swPNRDTyKmgZbg/gZ+8pu9///vNOfvPf/5zUPZxpMAS+VGqwI5E9Ov4Nm+XNjzvqMiMtgOQ/auPyHpSQJq4b2au/WHSrKOlsXv0ez/t3PvOF8zps3ft+BB7+uwTmT570tJz2PE7e+SXLe28QeTbI+8p2uqV3r5Mia1LzWOwdrnCbTU7PQ1SWx+dom3Fc8xWUzJLO8rmSJFyRSMBo4yHw0GFGRtX4MtIR8JJzWcE4Kwxoc4b6+VPt2lbC4R7Z2CH5/N96dnHvj82y7LfSfKjaY0rSmpMJGnGAkL0ze8mgCsY1h133atVG7eptGqS4pD9dFgd6bAh+TW1OzR92jR96NxzM+q7Q86LM8n5LHbMJEJ+II9p9x/scEBh+veZlJBl4adXP9e4PZ7ji3OpF1giX3hlifvJDTfcoDPPPDPv7+e9wyKcaxOFWj8tvHMF27k989iRIfMjbZ3CWgHnAfcNiuhY7nFfjLS/c6QTeV5HJhVgoUcQ4T4/Y8aMEfc6usF2rHG4fnDO5jNn3ov9ZZ2Lg4DpAP0BRdMvfelL1lLfB1gib2GRi9y/druTko9qjyU/G8f8X5cNH2V544tO333x7nuw7Nz73SDe3kXsseJzfFHts+344WIten25fvWrX6uxqVHjx403afVvrn6zM7V+Nqn1RVHV1NaosqJSF19ysRb0I2hlyEDLQc1yZ9u+zBD8AAGCOdBUPEU1JbO1tXi2trFFZ6s9XKEwxD4oFQUyfeUmiT5gCGeok8EOHDgNSNLf3pZSTauj4EP6x5cEdOa8IjV2pFXbltJvXuhQIo8gvmzAkcdGneR9VP2xmDVijVrx0v9UFepQVahdkXRCRAAk0iEzdrKhPaW6lpjOOfc8TZi6h+IBhgtGTE4A+wxhMT876ATtmf77UFDFRUEVh7EISEGH4Rtiz+FKGpdAZp8g+yFH3YfIR4sCxr4P4e+p6Hudwm+JfOHBwvLiiy82C8v+2HUhVI8//rghGm6R0WvsKp0eYpQ9n3ok9pXTfoUVG7s9IBQPy73fLcujnchzbuJyefPNNw1pJ/cAq7mfk9sH8vqhvpNbQYtIdk+8X8k8zgicL0z86M91wy2cXn/99UaVt9g1LJG3sNgdmrY6qj2kHkv+O/5Pmnuc87Vl90p//6Aj8dFr76r20w+Vxs9zyGcW7BSDftjxIfUo94y9M3b8VikZMzeLO+++TyvWbFBTe1yxeErxRFyRMAnpJKEXGUJ/9tln+5vE75Lcr5BqlmUel0vNW3M+taN4gplzX1cKwZ+jLdFZ2hEYK7fLPaC0GR8fDqZVZGzmjn2cdvFQwFGXC7kGYC79s5sTqm3tIvw1bU7KPti7Oqh37RFxwvnaUnpobSKv9H0QSsUUTbWpONmqklSLSpItCrRu19vmz9NeMyZobElYwVBEqXCp0pFSpUJRpUNFTvCewkoqYMIMIfkpCDtp/AqYrg6X6JtU/czoPN7KFESoB3Co0pm/0yH7Dvnn63yfm8qf3a/v9ucbsm/U/8Ej+5bIFx6u1ROSRwBTf8AcZRKcjzjiCM97d/syYg4S8dxzz5lWJfZ5JBHcXJZ7CD3heDi9IIeVlYVtqfMCI4nIc10jawqXHWMdeY1GmoW+Z8HimWeeMe87imm5Xj+/kXn697lmQOL78/7hvYjriYJFf6+zow2WyFtYDARLbpcevkzasWbnr0UrpQ/8UdrzeOff6bSeePJJE5zUW/WYBRMKAeEeXAgtesAdexdja1aqpUZrli1RS0ONKspLNX3GTK3btF0NLTGVV1Vr7tw9fW2Bzhs4FAypzxD72hVSw4acT00VVaq9aq6aKuaqrmSOtpfMVl3RZLUmA2qPkcifytDPtCg3BYNpR9XPEHsIKYfOfFwg+35r3CH0/NzpFc753xZP64fPtKm+Pbdln1F5e1eHtLWhXWu2N6qjqEp92Rle9cqitKqjbCmNLUob676Twh/WmPJilZWWGYdHKhRROlhkgvaSpOynHIIPUXeOE0Qfp4Djcsi27UPWXRXeGB84Zsz5JSeB5H5+RsYNwA8x/frmZzg/h+8vjgRVVVqkSZWF6Z+2RH5wQPjS/vvvb4JBzzvvvH79DFRELN0EQHk13zyfOfHck7D1QhhQBAkRG8mg2AKhhyzSoodCTx/9cFV7hzuRxzWBfR4FniILjhacEyMhhX53s9ch8YQ17q69xS9kvrW11biOyCjgfdMf0L5E6yRp914XO4cLLJG3sCgEmrdJG15wVHsesdtDOD//gjR+L+c5C69Rx1O/1YNv1Gtl+1itiY/XmrYyJQ2NyvyY5mZzszJz7w84YNS+NnnlHZCO3xmi1yi11WVC9DqcrzPmjAC9QZhp7wvgWKhd1UXwIfcUltI7z55Lh6JKjp2j2Ng91V45Vw1ls7Q9OkuNqSK1J1Jqj6dMfzyj9xi5h508EEgrmEorYIi+s0BAeYaQ8s9C2ffjGct+TZaCz+PcsSEdPytiyMfNt96hp8eckPsHpFMqSndoTFmpUfr7YusPBxyiD8GnV39sFEIdVlVZcWYrUbSYcXlFSgcixsrvkPsMyWdEobHtmx3IFD1Q5B21nR57yL7TW+9Y8s0hDHQFIkL2W+NJTayI6pBZ1SoELJEfPNx33336wAc+YOyu9OTmC87jRYsWmes8I96G2rKeD4nP/p7FixcbyytkfiQo1X1RQyHzFNb5GJWeAvxw+9uHK5GnoMKx5zWg4AUxhMSPVFdIz78dEj9t2jRTOOwLMfeazFNwwW3EuL/+zIt3Has4f+688069613vKvg+jlRYIm9hMViW8G2vS5P277LX33qhtOS2bk/rSAW1sqVcy1oq9a/N0/XK8nVdc+9HWGBLoRL9uWHccccdpkqPUnL66ad3Xwy7IXpukB4W9Y6mzEz7hBQISZFih9yzjURbHkWMHW9KNSsdYg/BZ0IDEwJ2QkDpMdOVqt5T8bFz1TFmjloq56o1PFYNsbSaOpJqj0sdyZRpX8BKHktgR08afzkEP0g0H9Z0cyyxqLvW/cLa91etWadb/7dUrYoqXTpOsUiF2jPp9vzwg8e26cJDxxurPKF8hPO5YJRgJPOWom++I/d0vZ1QHILoM3IvqLGQ/NIis42B6JeWaEx5iYoyC+RUp5LvEHyHqMPyHe8Db+ns/vxoJGgS9Fs6EqouK9I75hVmPJkl8oOLb3zjG4YcPfvss/1S1SlUsujmew8++OAhW3T3h8Rnfy/TQbA2M9aLBftoAH83M+hRhLnnQOS572Dpzuf4eYXhQuQ5zggZFIs4zhBTiCwEnmK+15bxoQIz17muEMDIls/f7RWZ57WjsMm5RqGvP2tXHAhMzKBI+v3vf39Q9nOkwhJ5C4uhAoRy40ta/8zt2vjcHdq3ssVYfwFr/UNum6ySynHGtvm24pXO8+m5n/pWqWhkzPQdaKI/ChajSOjDYjHMDYPZzN/61rf06U9/uvcf3KnatzqknmObgOxniC2p+Ea1Lzbq64gE4xcbN0q1KzPEPqPiEyqYC8VV0ri5SlfPVbxqjmJVc9VePkMxRdSRoN89raZY2qj4bYmUOuKOSp1Mp8yNHVKbTqeMSI99n/8yJnXTiw65p5ccw2qQxwBW/t2r+uvXrdPChc+qZvt2JZIJhUNhVU+cpHkHHq4Z06dqXImziCCE74ZXOoyyn4u0Hz09rBNmR4wLYEtrSnetiKkoM64ONR9nQl/JPmP6qopDjppfElFVaVRV5RB9tiKNKYkYG72r4pvjlCH5kP2mjrgmV0Z17hGzVAhYIj+4YMGKNZ4xUNdcc02/fgZFSmyoqLyMyvQzic8GKim2V/52FNLR9rpz/Oinh3DRZgChZ+P+5Mfiu5+JPPdw7vXc39m410+YMMEcT0i83/Z3sMEkBZwvuDH7a033gswvXbpU69evN9fE/jomLrzwQlMkfPjhh0dksOZgwhJ5CwuPCOvvfnuVWtcv1j7lzZpWGdAz4bd3zb2//p3Sppcy79KgM/6OZHyIPXPtJ75lxCnJu0v0f+GFF1RbW2sWSyyguNijztOXxc2DAsguyfxOvfZtjmIPwW+rd/rPUawzI8+6VPvoyLTkuyBAEHKPPd99bFif05pv3AyMXqye65D8sbONih8rGqtYSool2dJqiTlEvz0hY9l37fpJ14bOzzZk33mkuwTiz9cd7Kzqm/70TK8+58P2bdvU2tam0pISTZg4sdcFC88lZM+16pOoX9uW1lvGh/TWSc7ruq4xqZ8szOVWcHDgxJD2mxAylv2a1pTWNlAccH5uPMdhyoUKbPslEP0iVZUVZUh+RJUlYW3eslXlgQ594K1TCjKW1BL5wQcKLaOVyDMhUHMg4Xeo8hQu/U7is7MCuB5ThKAfdrSopdng3kNBGQLK8eAYT5o0ybyOkFG/kFC/EXn2J/u4ca3juEHeOW6jkcRxH3z99dcNkUeVRpwYCIaSzOOeePnll3X00Uf3u+0EB+oll1xiWo4o4FjkB0vkLSz82Ae+8Bpp7dNOrz0qajYqp0tffq3r3+uelapmSpWDtxAcCuwq0Z9jRaWWESx8PXtBwgKKBTELKObJ9nshQDuEq9pD8NuYa9/qzLVHzSbOPJvcF3p4ux+t+Z0Ef5Wj4HNcelXv50hj5xiCr+rZ0thZSgSjhti7BB/y2x6HAKfUFpdiKcemz+dR8lNJx54fVJeqj4U/nQ4Ykm/+bWzqXSnxhejVb0+kDTmH5DNKL/uxKSaduXeR3jUr0ivpL4ugypNyH9C4YubMp1XPOLz2tHZQG+rDDgXaG1T1+JXd2kj6C0vkhwb/+c9/TOgdxce5c+d6thAeShKfTRawAPPzKET4gSR6BY4x93GUesgpFnGCuly13suAQD8QeYrtruqOk4FzJtvJMBoLQdmvD0UxjhEtK4V8fw42mS9EIZLgT4oXJNS/5z3vKfg+jgZ4SuSfeOIJXXnllSYRlQvgv//9b51xxhl9/n67WBklYWajHY2bpY0vdIXoQdrPuNr5Gm/fn85xAt4qpkrTD3aUezYs+dEKDRdwPegt0Z/rA4tdLlc9iTyA4Le3t+uvf/1rYeeOQmiNap8Zf4cNHWJvLPnpLkt+OGPJH8kLEs61lm1dyn1dhuhTaMqp3gelymkOqa+e07VVTDFFEfrYIfiQ+HiG7LuW/ZYYCj6fd8i+GRGXmQXPjw3yaEbGZXrRKQQo3UPVd6bBDzSBHzcBP7GY+X2SNjaldPeqWCfRx3WQjfftXWTC+cD6DOmvjAZUUSSVhiH5uBCkltY21TY0KhYsUSxcrop4jca9/JfONhLTYtNPMm/vjUOHL33pS2bBzJY943moralDSeIHm4QMd9Dv6xJXXGQQee5bJK3zmOseNlKIPPdiCB5hjmx8zPlBpoJL3svKRkeroNfFsMEk84VoDaKVgnC7E0880XBBi/4h7PXFjj4reiOYG2gxOrC7MDOLHkBprzxVesupOx8aiCXEqL1eatokvcF2V+aLAenAc6UzftdddQ7507oGeeFc4OLec0EISTckLpB77jYqPMUh1K2CAuWdTdXSmCxLvhukhx2fYw/JT8ac74Hck5DP942kfnuOe/kkZ9sj631KOwIp+bWrnUA9s61yjg0WfbY3n+h6figqVc9ScOwcFVfPNpvGzpbKxznW/QwcJd/ZDKFPptWacGz7kGeH6KcVpv0+Rc5EWkES9jO76tj3U8b6HksklSQDMZFSWzKplMmfd84jkvmDuwjmQ2XPxrSKoD51oDMmjnOyNSFHwW9NGwV+XnVXlQALP0WAho60GswQhey6eYkm1C/W/tqoYCRqChKt5eVG2aVX8He/+51Z5NgCp7/x05/+1Ny3CMD75S9/2a+fMW/ePFN8ITCK17wQo84Gm8QDiAcEHlswhdhC2IJHAiCqvI/ZILYIFpBaHhk/yD2O57jE3n0cbons/G3ZhJ1HSDvZNm7Bwg2rG82OjV21pzBKb7AU84qKCvPeh8yDQv0eRlIyK766utoE8vUXX/nKV8y58sMf/nDA+zSa4emK/pRTTjFbXwHpY3PBjc9iZISZobby+YGoUKMSpdXS556WOpqlzYsc5R7VfuNLDoEqG9+d9P/8LdKU+dLUgzLK/UGOSuoDJRlXBjcazgUWQNk3HFfpYoGbyzpPvyKEhzThQQX7VFTqbO6xxXZvUvIzPfccZwL16Lt3++3dgoBR7kfYgoa/acI+zuaCggcuEVT7TnK/2iH8yQ5p+zJnywbuEQh9htgXVc9W0dhZUsnO84JR3SHoHVlkH+UcNb+1U80PmcdISApnDrlDsZ059gTwcYbFEinFE/wMh+x3pBKmBpDLws/Lb8h+MGg+xzmKrb4sEtLMHK7oBRND+tE7Sjv78t3HzQ3t2lDXospQXIGUE7AXYqKCOcUCRrWCHEHERvMYyuEArk0EcKKoce8idTlf8JozrYQFNzZ9CPFAFtxDQeJdcN1lRBZtASzuUefyTdseyYCc0wPO5oJ1rEt8s8l9tnLPx8XFxeb84tELIsx5xL2VQjr7zCNEPVtpZz/dQgSknY/760wZDXCnP6xYsUIHHnigGWs4mCg0mXfzinhk//v7s/72t7/p73//u1nvDbcClt/gT2muF/zoRz/SZZdd5vVuWPQTKKYo8ZD47DAzFhlWhRogouXSrLc7m4umLd2fs+llxxa+/llny+5vhtAf+glpH+96lFgQ4sqgoIMiCZlxCz30HLKQ4RxylXkXRhVtbTWFIUbRDf2OhxwS2tnGMLur374buW92guUg/gBi7/bcj7QwPV6f0nHORkBjt+T8Td2JPY/Y8yl+bFnsbNkoqTYKviH5ZpulUPUshYrKO+3u2eB8MCp8lpLvqvltpjc/aOz6qPlmMlwoZEbTlWC9z/Tnmz8hmDaEnjnvjvU/qUQCmz92+0TGwu8QfeCm8FMsyO7Xr4xKldGQZld17eOaNZt11wt3qqpqLL90p7+B8x7FhkW+hf/B/Yy2ng9/+MPmY0Lw8gUFStR4ek7JC6GA059F8lCS+Gxg34U0uKGkFCYsocsNjgvOhWz3Qja55xFbvkueue9RxIbQu5tL8LP/zT2UzXWusaGeuuo5H3N+OPkjKbNlk3R3y/4338PPdH8P1yYUdizVw9FF4CU4nrQSs6ZhAg/HbyhQKDLPeUMgHesxMj36m0eE8+hTn/qUbr31VnMeWYyQsDtOqt31yOdS5Bl/wkVvMEJiLIYuzAxwceAm9pe//MWqUIMBEsKxPKPWo9qTir95saOQglN/LR18vvPx1tekR69wCD7qPf32JVWetV6QjEyaKaOeWJAMOLXeC6DOu/32BOqhWPNvk5SfoJLRXbkfaeR+d1kE9eucgD1UfAg+H/csRmUDRwTEvooU/VlSFWR/j93mQri9+V3WfT5OqdWE8BG+59j2zTz4zN0Rrh1GiYe0Y99nM+P0HKLPc42yz8c79es7ZN/t14fk19Zs1113/EfFRVEVRSMKhYuUSsbVtG1LQa6FtkfeO7GBaxQL1WwFNh9wPcOmPmfOnLx7T70i8T17sl955RVD5nEWEPpm0X+YwmQ8npNkZ/+bR7fQvbtlvUvyIejZBYFcxQHXDWAdFgMDSf24bUjmnz9/vicOi4H2zJPlwbSOY445xhR0+gPyjrgufPnLXzbWeouBY1itFLmo2Arv8AXqEjeb3i4AVoUaZEAUx+/lbAvO6Zqvvu01h9zPeWfXc9c9Iy39r7O5YOSYS+z3PU0aMziWMOypKFO5whBxblxxxRXd5sijxH/zm9/0N4kHWOophmQXRNz59ij3HfTc78j03tdIqYSjbBvVfoSTe/4+99zMBgWP+rXdyT1bS03XtuH57t9TCsHfwyj3huTzyL+LHYs+qntxuCu8zkFXT7Ih5VlJ+2yk2kP02VDk48mAIfsgrZB5a5USiwBRd3v0MeenAqZ335D9pDOyDrIPuameMElbt27TmJIyBXhdM20YLMJR41A0Oe8thg/ok2cONIGbjzzySL/USoqURx55pJ566imz3unrPGk/kHgAQWGhzoJ/4cKFxqFABoAlgv0Dx43ziK2vgpVL5tkofD/wwAM66aSTzM/oLWfGYnDAOgUCvHr1alOUhUR7dfwHoszT/sHfgJOgvySegtP73vc+HX/88YbIWxQGI3RVaDHcwswAn+frPM9iiBAuctR2tmzMOkY68QcOwUe5NxbozAiyV/8lTdqvi8iTpr/5FednTNo/Ew43MEDQcymRkPWPf/zjuuOOO0ywHT3x2OmH7exZjj9bydju6rTbc59N7jtqutvyR2rPfTbIIpj4FmfLBjb8TgV/jUP2XYLfmtlwnWSDFhIIvSH3WY8Q/6zFDGScrTTHYe3Ntg/RNyP1XDU/QUEgYMR4OvFDwZAiRWGVBKUIQXqS3nvMofrnv25V06Y6VY8bb1R/lHg3tf6iiy6yQXfDDCyKb7zxRqNYfe5zn9MNN9zQr0U7fcaEyEGEIV+7G+3kFxLvgr8ZyyzncbbVvr8EwCL/4++ed+69EWu+Dc4cWrCm5fzHUcE1wQ/O4f6QedZaXF8QWfr7N3CNwk4PrrvuOltMKiCG6erXYjhiV2FmVoXyGSbs7WwuWuscQr/xZedx6oFdX3vt39Izv3U+DkYckm+U+0yBYMJbCpqUz8KkoCPm/AaXpHcj97Eucs9jZ899naPcg85ReJm0/JGsumCf5zxjy0asWdoBqV8r1a/JPK51LPpMF9jMtqj790RKnZGOhtjP7Pq4cupODgijjoWkolBgl7Z9p6e+i/S3ZdL2OxIyH6P6V02bo5POOFv/e+p/aqjbpmRznbHTQ3gg8Tb0c3gCRZ358qjStAh94Qtf6NfPwbXBuUBPLQo947uGA4nvWZBgpB4uhUcffdRYimmRsoqwxUgG70nGSS5ZssQU4RAl/CQ25EPma2pqOgM4SanvL37xi1/o4YcfNoUN2jUsRkiPPOrDypUrzceEw/BCv/Od7zQnC/aT3cH2AQ7f1Hos09lhZoWYnWzhEV7+q0PmUe/p++6Ji5dIVTOcj7cscQjm+Hm+HYM3bIAVuzMtnzn39Y5SjaLPKDwu7cS1dyr30ZFN7ncFjpFR8DPE3ij4a52QPRLtcgESXzmti9ibR7YZUlH/5iD37M9H1e9IpLRy+evqiCU0c9/DO9tIBgJ7b/QezzzzjLGQ4h7isb9Ys2aNmWCApbWnGuZnEp9L1YPQc59n7LBdzGtEzpEf7WA9SyAcRVlS3Vnn+hW765nnb+DrTKXoa4tPLtx7771mmgfFvEMPPbQAe27hGyL/2GOPGeLeE+edd57+9Kc/7fb77WJleKK3MDOrQg1zcCmBLKHYb3rFSclv2CB94cUuAvn3D0vL7pbCJdLkAzKq/YHO4/i9nQR4i/6D0DwmE7jKvZlz3+gE6kHwASQRUu+q96P5mFPwaNjonLeG4GfIPqMbOWa9gTT+MTO6iD2PY2ZK5RP7dzxxVlAcmHmECgF7b/QHWMfQC8pYNnrF+4tly5aZ/lTIukvmhxOJd8H9ntBbMk6sOj80sER+aMD7ccOGDeb8JugSFX44JPr3RuYJEWetznVrILPiyQcg8+jqq682Uz0sRnBqfX9gFyvDOwAkV5iZxQgDl5fsKu+/LpBWPOBYoHORo6+udIgmaNwslU2wyn0hphVkk3ss+cy4N+S+3VGkzYD0oi5bPx+PZnBMWrZnqfjrurZcrhMXtDdA8N3NkPzMx7tK07dEfsQCIo8iSnjdQBLcWRCjzrukfbiR+J7qPKol7QIQeqvODx4skR98EOLG+cx6FrfJ7jIt/E7m3X/TApvv5IxsULDj+nTWWWeZiR4WgwNL5C0sLIaeWNaudALyXOWevuVJ+0qfeKjreb87wgnZQ7mfssBR7qccKE3Alm8tggMusLihepB5E6pX74TqMY4wk6Bu2h8Msc8Q/IAttpn2BZwmhtivdx4b2DZKqcxxywXC9lxST1Ck+0gvPsfdKvIjEszhPvvssw3ppke0rKx/bRloLrjY1q1bZ+aPb9++fViS+Gx1Hqs9PbgU8hklbHvnCw9L5AcPvCd5P1JUG04qfC645J1WAEbEzZ49W/vss8+Afh6OawoBf/3rX61QN4iwRN7CwsJ7kMaOKlk+oSvc7co9pY6GnZ+LJXyf90pn3djdUm577gvUd59R71HxseVjz4fcG/U+M1utU7lns0WVznO4eWsXwW/IbHxMin6vCDjOk8n7Sx/9dwFeROtW86Nid8opp5hMGHrm+9urjJPtySefNL2rBOBB6Ic7UOexIxMSiDpPQJ5F4WCJ/OCA9yCFKN7bEPjhpsLnAllVzz77rHHJksnRX5csIw/f8573mI/vvvvuYVvcGC6waVMWFhbeg75il8QDRrJ9fU135R7Vni3W1L0PGQJ15RwnkAzl3mwHOonmjC+z6Dsg5WzFlT2s+e1d5N4E6zESD5t+S1ZqfrhLuceaP9p67/l7UdfZeva6c6wI1jPq/YYMyUfVXy/FW6SWbY6V32JEAus4SfYkuH/iE58wvfP5qs+of4TeEaZF8BRJ0ijyJFAPZzBClIIEOQAUKfjbUAJtMJuFHwFJxRlDKj3Wc/rH/ZRIP5BW5VdeecWMjaS4RitPPnPms4uN5JzRZkC4nSXxgw+ryFtYWAwfQCqZF441fHwmPGrbUunqw3d+LjZwAvQOOk868nNDvqsjHrgmTO99ew71vqMrH8HtvedxpI/FyxccI1oatr7uOE0O+0RBfqzNj/EnsKxCvklw/slPftLn7+sZbIc9n4X22rVrBzTb2W/Ajos6z/lLAK612w8cVpEvrI2eYlpVVZVR4YdrW0tPuMF2c+bM0bx583abZr+rY3TxxRebTBC+fyQ4hoYDhn8ZycLCYvQAq9e4ud0/R8/8lxZ3KfZme8VROLcvlToau55LH/Of3i1Nni9NmS9NRr2fL1X4d0SMb4Frgq14zM7qvavgs7m99xB9dywe6rX5/lFuz2eBVDJWmviWfo+0sxg+wH57//33GzJOTy1BeLtDb+n0qNYssFkwQ+ZHgiUddwEtAxQ8IPQUKhh9hdXXwsIr1NXVmZnw2OjdkXIjJc8B5XzhwoXdgu3ymTOfDYqTt9xyiykKWBI/dLBE3sLCYniDG8zYPZxt39Ocz0EWm7ZIWxZL1XO6ngvJJ0CP7Y07uz5fNtEh9Id9Wtr7xKH/G0ZSoYV2hp4tDZ1j8TLqPcn5ZixeWw57flHGoo89396iLEYWsOIyV5kgKMj8ueee2+tzdzVijoU1ZD4UCplE/MMPP3xAqfh+AX+Xa7dfvny5IRMcJ8jESFFALYYHUKax0ZO+PpJs9C74u55//nlzHeHvy0a+ZP6Pf/yjfvzjH5ux4gTlWQwdRs4ZaWFhYeGCG07lFGfLxqyjpI/dIW1e7JB8HmtXOD3KKx+SDji767nrFkoPfi+j3B/gbBP3dVRki/xgCHrFziPYdrLnNzkOCqz5EP00BD+Q6d3POAAg+aOt/95iROHggw/WbbfdpjPOOMOMYDv55JN3ek5f58RDLuhDRVU76KCDDAkeCYAwYa+HFNA/T78tVl9UQ0IDLSwGC+RQ0LrCXHjOueOPP37EjUjkb6MnnnF5tLDkQl/J/F133aXPf/7zJtgOx4LF0MISeQsLi9EDQtzmHOtsLrB906O8ZZE06+1dn9/wgrR+obO5QCEeP88h9W/7gpM0blFYe747Gq+T4DMer9EZ+8a/2xqcOe+sJ4KRDLm3BN9ieOGEE07QH/7wB9Mvf+eddxqFPl8S74KAuGg0qhdeeMGMdRtJihikHXKAYgi5YoQfvbwUMGwgnkWhg+xWrFihN99809jneU+ORBfIqlWrjNPg0EMPNW6XXWF3ZP6BBx7Qhz70If3lL3/RscdmrasshgyWyA8hSHPk5kxPCj1fzE7t73gHCwuLAoHe5BmHOls29j3dGQuGcr/lVeexbYe07TVnO+yTXc9dcpu0+BaH4E/a33kcO9uxmlvkBxYJkWJnyxbeDMF30/MzRB9yj3Kfi+B3KvjWom/hT5xzzjmm7/a0004zatYxxxyTN4l3AfGgVx5lHjJPaNVI6eN1CQXEg/UTgWMPPvig9txzT1O0sITeYqAEHvK+cuXKztFrBNqNNHBtgcCTPcG1pa/ZE72ReYpqZ555pq6//nq9//3vH+S9t+gNlsgPEQh/+O1vf2veRNxkqZ7zZsCOws3XwsLCZ6iaIVWdIy04p4tIMkLMkPpXHZu9i7VPS8vvczYXReXOc1Dtj/nazjZ/i34Q/BJnywYBeyTl9yT4nQp+tkXf7cHPBO3ZHnwLj8GopmQyqfe+970m7RkCkS+Jd1FdXW1IyDPPPGMKBNhmRxKZB5AP1kzbt283PfQoqIzMQrEfafZni8EF7xHUaUg859Vhhx2mCROyxuCOMCFx0aJF5n3DNSLfsZU9yTz99bQGXXPNNfrwhz88SHtt0RfY8XNDROK/+tWvmuRLUmuxitGDs2XLFnPx+NnPfmbJvIXFcAbEnp56wvS2LpG2veGoxy6+9qZUWu18/PRV0vrnMur9fo6CXzXTjmUrNFwF32wZok/InunBj0nJdimVdJ6Lc6IbwY8M7evRWuc4Q3rOn+8n7Pi54QdULdYJl112mT75yU8OyNLL+oJ1B4tv+vEJxBupYF0FoYeg0M+MSs94PgsHdvzczmhpaTEFIGbBE6pImwZFsJGKRCJh2m64LhxxxBEDypggAPC6667TpZdeqquuukoXXHBBQffVIn9YIj8EVbCPfOQjeumll8wNJrs6js2FaiABNTfddJO12VtYjBSQ0l63yiH4dauld3yt62s3vU9a9Uj350crM6R+P+nEH+ysOlsUluAzBq9TwW93chIg+Cj4qPvJuPNcrtedBD/zGBiEdglL5C0kXX311frGN75hlHlUs4HahbHZA5TGka5WMwsbcsboOgL/IGeVlZUa7bBEfnSfI5D35557zhTzmGwx0DYUUulPPfVU/eIXvzAFRwvvYa31gwx63bDTo8T3tLjxb/ra6PfieQcccMBg746FhcVQAAs38+3ZegKb/dzjpC1LHPV++zKHRK57Rtr2uvTun3U99+6vSk2bHdXeJfq2935g4DqM6p5r+gAEPpvgGxW/MUP0m50CAIUA04efZdM328AWSBYWn/vc50xa+ymnnKL//ve/esc73tHvg0KSPVZYkqkff/xxQ+ZH8jz2MWPG6JBDDjFqK73O/M2orPTQs86yeUSjE4hpuF9Xr16t+vp6k9B+3HHHjQrXBm4VSDyBdvPnzx+wM4eeeOz0KPHnn39+wfbTYmCwRH6QQTALPfG9WVn4/NatW83zLCwsRgH2ONLZXGDzZgTe1tcc0phd8Fv5oDPzful/uz4XKZMm7iNNO0R690+Hdt9HOsyYuxyEHAu+a9F37frGpt/kvH58nErkVvGx6dtxeRZ9xKc+9SlD5umZv+OOOwzp6PfpHAoZxx/Elt5W0t+nT58+ol8LCBrZAMzGJtRryZIlZqOPHuv9SHcmWHQp0evWrdOaNWtMEYfXn2IWBa7RAP72xYsXmywupjwMNCvj/vvvN4F21157rXEZW/gHlsgPMqiAE2zHRSVXzxuf5+sjuVJuYWGxC0D2XLW9J067yrHnMx7PqPdLpXiLtPFFJ6E9G38+zbF983MI2Zu0rzRhH2vTLwQg4vSws+Wy6WeT/FirFGveWcV3f042wTdW/ZEVRmYxcFx44YWGhJNm//e//91YWfsLFvCuhZg+WfITepsHPZLAuoqZ87Q0oshC6JhHjzrPuD5CzUb6MRhtoF2VrARea15zXmOUaF7z0fJacwxw+VLEonBBBsBAcfvtt+tjH/uYbrjhBjNqzsJfsER+kMGIOW6aL7/8sklV7dkjz8WGijnPs7CwsOiG2cc4W7fe+9XO+LvsxHVU4bX/c1Th1Y92fR5iXz1H2vtk6aQfdk96t6PxBtem303Fz+7Fb8p83OaQfPO6xnYuElhotKfZoy5/8IMfNFZWyP1AgL2W8XbPPvusCaxi3TEaxrahxtIPzYbtHpL34osvmkLJtGnTjNV6pPdJj4be9w0bNpiNdTXOi3e9612jwj7fMw+BYl1ra6t5rw8kMNMFwXZf+cpXdPPNN5vCooX/YIn8ENxEGDFHGi3BdlQGe6bWX3TRRbZ/y8LCoo+993s7W7cLTUi68H7Hns9Grz2PbXVS7Uqnzz6bYF45Vxozo0u553HiW6TKaVYhHmwVH5jU/I7uJN+OwrPogbPOOkvjx4/X6aefblrwCMIbiLJIij0LfBb7Tz75pAm/Gk1kh7/VFVcYnwXxe+KJJ8znaTlgG0iit8XQgTU0rx/J8xBXcqhoHUGFH415CM3NzaZIV1paat7jAy3SURC5/PLL9ctf/lL33XffgMM3LQYPNrXewzny++67ryHxdo68hYVFwYGdu3mrQ+iLx0jTD3E+X7tKuuqg3N9Dev6hH5eOv7TrZ7Rsl8omWII/jGDHz40sEFhHAN7ZZ59tFtYDJSoEgBGwCwl661vfakjQaAUqJinmkMKamhqNGzfOEHocDCOhn34kpdYz9x0BjNeKIDdIO68V5y+5EqMVmzZtMq5fcgDgFQNtI0gmk/rCF76gO++805D4/fffv2D7alF4jN4zf4gBWWd+IzdPgu1Q4qkMj8bKoYWFxRCAm3nFZGfLxthZ0hdecmbdb3/DeaQHn8A9wvayleHGTdIv95VKqh3Fnp57Hs3Hb5HKxtmX0sJikIHSiBhw4oknGiX5T3/6kxED+gvWHUzJYR3CaFysyKN1PQK55e9ngyhu3LjR9BcvWrRIVVVVxkXJhpthtPRZ+wWowhQlIe9sWOh5TWiJYELBSCi0DJRwuwU5rhEcl4GC9wBhdgREcs3hfWHhb4y+q7aHcG+e2F54HI03TQsLCx9YvsfNld7yXumY/5PO+oN00ULpW5ulzy2UDjqv67k73qQi4Fj06cF/4Ubpnq9Kf3qPdOUc6dErup5LsNua/zkz0S0shjl+9KMf6dBDDzUEjsAoxi4RluYCRRDVat68ecaOzYL3i1/8oiEb2YD89dz+8Y9/dHvOZZddZpRF7KvLly/PuT+MUSN5njnYJNrT5z5Q8DsZcVdbW2us9vSQj2ZADMkyYo1G0YRQPIQX7PcPPfSQXn31VROmhqPBYnDAsaVYReL6gw8+aM5LxsahNp900knmteE1Gu0kHis9x4bz89hjjy0IiefahfMHx8NTTz2Vk8Rfc801JkCQXAm2I488Uvfee2/n16+//nqzP3yNax2vXU/wWva8Jv74xz/u9hyC9Xj/4RiiZcCid1hF3sLCwsLCSVJHac/GrKOkb22SapY7iflGxefxdal+nVS1R9dzN70s/fm9zsdlE6UJ8zLK/TxHyZ98gGPxt7AYBmAOOa1vkPlEIqFvfetbhtyRCE1PNXZWtp/97GfGzoqK+5nPfMZ87tZbb+32s/74xz/q5JNP7vw3qqILyPndd99tRs2xYCVT54EHHsi5TxQUHn30UTMG6p3vfKexTA80lZpArKOPPtooe4899ljBlL3hDogiRIIN5RMCjypMUB7nAxZ8NjIMeD2tMNN/4g7Zo62BjQIZLglcEIwR5PgOdP75SANEG8cI5ybXnkKce7SXQOIJhfzvf//ba3YGxT9IN5MwcEz8+c9/NhkeWPtx9ZBXwLWO7Zvf/Gavv+/73/++PvnJT3b+m4Jp9ui8n/70p6bgiUPmggsuMNddi9ywRN7CwsLConcUlUpTD3S2bKDAZ1tNSWSvmukQ/JZtzrbmya6vv/dX0iEXOB+TvL/iQWk8wX37OPZ/a1u18BHoDc0GdnZIM0QOVZC+0dtuu63z66iEP/zhD40tFaKX3bPrWrRzAUWNxTMqF9/H79kVWPCy0D7//PNNu95dd9014Kk3ECV+Pz3HLMghVPx9lkB1HR/XYg95wQ3hEk9CjCH6ltj3n7hzfDl+HF/OO9vGkBtcH3CFQLoPPvjgXq8p+QL3A4n0XNduvPHGXWYp9ByFyTUPlX7hwoXmOnTxxRebz1MU3BV4jXvbf9opuGa6owMJNrToHZbIW1hYWFjkj2iP0TbzTnY2CH7NMmnb0q5HVPxstX/NU9K9X8v6WWMyafzzpPHzpH1Pl8Zmqf0WFh7DtcxXV1fv8jlYSnsGb6Hsf+ITn9CcOXOMao/C5PZbYxcmCJe0adTxnmp+LhQVFemvf/2rUbXI3+Hjgcyad0Fo2JgxY0yqPXZy+pCzlTILp1XCtRXzeuYi9hAuvg4Z4XjyyL9Hm2pPgQNSxvsC8s7GseL9YYl7fuA48r6EZOPGKdR0BWbEM+qSiRi4jvLJgeD1/de//mVacrDY5wNUfVLxse9/+MMf1iWXXNJ53aSYA4nnvcO1Dpu9Re+wRN7CwsLCorAEf9rBztYbyidL894tbV/m9OF3NEgbnnc2MGV+F5Fffr+0+JYMyd/b2ejxzzW73cJikFRElKa3v/3tvSY4Q+JYmH7qU5/q9nnI9nHHHWeIOpb5z33uc6a/lX56wMIc9Z++YAgfC9e+AFJ46aWXmv1hIcwifKDj6QD7Sa8+E3ZoL2BUG4TVBr31ndhDbFzyijWYtgVIj0vuKY5QtGHjeA/3Y8v7A9WU85oNss7fDvmEnLnFDOzYPI6Ev3mowPm0cuVKk8/B+bXPPvsUpCDEa/aDH/zAtAbddNNNJgOkr8AVAHEnGI9z+N///rex+PcVXPsOOuggUxQlUA8LPi6DX/ziF53PwRmAvZ5zxY6E3DXs+DkLCwsLC+8Qb5fqVjmq/fbljop/yk+l8kzv70OXSk/9svv3BEJO+j7k/oTLpfF7Op8nhGqUqV65YMfPFRaf/exnTaATAVD0iOY63ieccIJZmDKyaVfW1O9+97umZ56k6UKOp6NPFXWeBTCL30KAEDys9iTkEzrFot2if2SM3mFXlXYJL4QfQuu6MdwN4kKPPsedws5ASG8hxs+x/7FYzBA3xifzt7Dv2X8HoK/a/Rsg7Ja0DwwURHj/cexd4lsI8HrRmoPCz/WK8O18wP7Qx06xCgfR73//e1P0yybzWOtxDtA6lJ0Jkgt/+MMf9OlPf9qcSwOZxjFaYYm8hYWFhYV/seFFac0TXSSfx1hWYvfFrzq9+eCRH0ov/Tmj3O/V/bFy+qgh+ZbIFw6EzxFEh9Wc5Phci23s8ZAxetd3l6ZNsB2p85CiQi5aUfTPPPNM83P/85//5Cw49AfYxFHnCfOz6nxhgSrakxSz8Rqycewh8ZxTLrHnEXJPXzlqd64NxdZNA+dnEJBIkjhfg5Tze/l8rg3ngEvaXeLOI9/H9/P7KTRA1rOJO58bba0DgwWONS0aS5cuNQnvvO8KlVfB+5iiH+QaEk6Y4EBx/PHHm4yQ6667rl9EHscKziL+XqaAWOQHa623sLCwsPAvph/sbC7Saalpi0Pqa1Y4BN0F6frNW50tO2gPhEukzz8vVc1w/k0Cf6JDGrfnzv3+FqMeLKYZL4dtlEVpLhJPwQQSD8FC2erLSCzUc+a3F1p5IojvkUceMdZ9etvZ73z7VnMB8oZiR/886iCp/FadLwwgvi4RnjRp0k5fh1hnk+lscp1NvFHdeXQ/B1Hn/AXuI4opgNzze13SD0FEqXc/5pF/Q/DcAoJbROiZ/WAxuCo871+yBAoFHEUU+8466yz9+te/7rdDoyc43zgn+wuuiZyTA53AMVph35UWFhYWFsMH2EwrpzjbnGO7f+20q6S3f9Eh+GZk3jKpdqVUu0pKJ6WKKV3PffLn0qv/cj6umOrY803/PQr+ntLsd0ihwix0LIYfCKi7+eabjRpPTzOjxwD9vqiPkHjG0aGoEjbHv9kA6e+QIhLlt27datLlIUPMxb7iiiv01a9+dVD22Q2GIjwPleyqq67ShRdeWJCfDbFDYWMMFIUNq84PPiDOLtEfqLWe0WKFIm4Wg6/C0wtfqMIJP5vrAoFy9MTTKtRf0M/OuURIHUUHrpFcD+6//37zda6TbPT1u/30XD95Pq0BzzzzjBmzybWEz/Nv9otpHxQ4LfKHtdZbWFhYWIxsJBNS06YuCz648wvS0nuk1pqdn08P/re3dhH5Z6+XmjY7Nn0UfLbSwvQrDgastX7g6K0vmf52+ktd62guvPnmm2YxTogdC18WtSym99xzT7OIZn7yYNuQH3roIX3oQx8yvdG/+93vCtrfTrAfqiHFCTdd2sKfKESPvMXggtwERsChwuN2KaQKD9lmUgbXg3/+85+mxWIg+PjHP66HH37YhNPxvuf9//Wvf91khAACOC+77LJer5svvfSScQ1RsEDFx+n00Y9+VF/+8pdtf3w/YYm8hYWFhcXoRWudo9qj4tei5K+QkjHp3IxaD254l7Txhe7fV1LtEHrG5p32W8cpAFJJKViYfsb+whJ5C4ANnkR7FLJbbrnFLLoLBSzcJGmvXr26U0G0RNF/sETev4C4Q2gJjiORfu+99y5o+wKk+ZxzztEee+xhXEOFmjtv4S9Ya72FhYWFxegFynrpYdKMw3p/zkEflaYsyBD9lY6631YnbXjO6cfPVm//9F6pYb1UPadLvWdcXvVcZ6SetetbDBGmTp1q1DPG4tFvy3gnxuMVYvQXhGO//fYzllnURH4P/yZkz44Ws7DoHbhzIO+0qaBqo5IX0jHDz8eFg1LujqUsVFiehf9gibyFhYWFhcWucPD53f/d0SzVrXaU/FSi+9cg+y3bHTL/phMw1YmqPaSLF3f9+/U7paIyx7Kfbfu3sCgQWMBjdz3mmGN07rnnmkC866+/vmB2ePpcGXuH+r9kyRKtWbPG2u0tLHZjoye0cMGCBSZEspCFL1Lisb8/99xzZmQm73uLkQ1L5C0sLCwsLPIBKfdT5jtbT3xuoROuV7cqE7SXCdtjGzur+3Pv+T+peYs0+QDpM0/Z18Bi0HDcccdp0aJFph+VmdT/+Mc/dOihhxbkZ0NEpk2bZpLXsdszqs/a7S0shs5GDxYuXKgPfvCDZpQbSfCFGC1n4X9YIm9hYWFhYVEolI13tpmHd/98KiXFmrP+nZSmH+IQ/Yn72eNvMehgvBMq3ZVXXmnsvD/4wQ/0pS99qWDBe7ns9syFpkfXzhi3GI1gNBsuFQpcg2Gjd3/Hz3/+c33ve98z7+mLL77Yvt9GEWzYnYWFhYWFxQiCDbuz2B2efvppE4SHOviHP/zBKOiFBH26JFu/8cYb5mPG1dGzb/vnhxY27M4bcM5v2LDBqPC0t3D+EzZX6POfkXWMmFy/fr1x2Rx22C6yXixGJAZ3/omFhYWFhYWFhYWvQF87M56x+B5wwAG65pprjLJXKEBYIO6M6Ntrr71M//zjjz+ubdu2GZJjYTESwbm9detWM56SIhaOFN4Dhe6F57161VVXmT573r84YCyJH52w1noLCwsLCwsLi1EGguquvfZavf/97zcBWbfddptuvPFGY4UvFLDU8/NIs2dU3QsvvGAsxvvuu6/Gjh1bsN9jYeE16urqTBI9jigKZMxIH4y0eN5HqPBr167VXXfdZQoFFqMXVpG3sLCwsLCwsBilOOGEE4xiPnfuXKPuXXfddQVXzSE0KPP8Lgj8//73Pz3//PNqamoq6O+xsBhqQNxJiaddZdy4ceYc33PPPQtO4lHhf/vb3xoVniwKHDWWxFvYHnkLCwsLC4sRBNsjb9FfPPjgg0adxxL8+9//vqDqfDba2tq0fPlyk+JN2j0KZlVV1aD8rtEM2yM/eGDUG+cw7SIEPPKeKS4uHpTfhQrP+5LgPFwzTKGwsABWkbewsLCwsLCwsOhU57EFo85fffXVSiaTBT8yJSUlRlk8/vjjzcdPPfWUUTRrampsD72Fb4FTZfv27cZRwlZWVmbOYc7lwSDxiUSisxeewDx64S2Jt8iGVeQtLCwsLCxGEKwib1EIPPDAA/rsZz9rrPC/+93vdPjhPUYqFhAdHR1GdXzzzTfNeC5s+IOR8j3aYBX5whH4LVu2GAW+paXFTHtgKyoq0mCBQsFFF12k1tZWE0b5rne9a9B+l8XwhVXkLSwsLCwsLCwsuuHEE0/Ua6+9ptNPP92ogJ/85CeNYj4YiEajRnHEEUDa/aJFi/Too4+asVqFTNO3sMgHnHu0f3AuooYT2sj7Yp999hk0Ek/q/fnnn6+TTjpJ55xzjumFtyTeojdYIm9hYWFhYWFhYbETsAt/5zvfMXZ7LMX0spN0Pxh2exCJRExQGIQexZM53PTtL1u2zKj2FhZDgfb2dnPOce6hwhMEiYWex3B4cAZ+uTZ6eu2bm5tNAv43v/lNU+SysOgNdvychYWFhYWFhYVFr6Bn/j//+Y/uueceffGLX9QNN9xg+ucHy25P4vesWbNM2B6WZiz3ECrUegg+wXjWdm9RaPs8AXaca5s2bdL48eNNbzphjIN9rrk2ekIgb7nlFqP6W1j0BVaRt7CwsLCwsLCw2C3e/e53G3X+fe97n7Hbf+ITnzBK/WABAjVlyhS97W1v07HHHmsUe0jP448/bhK8UTEtLAaaIwB5f+yxx/TMM88Yyzxj3Y488shBz2noaaPHvm9JvEU+sETewsLCwsLCwsKiz3b7b3/726Z/vra21tiNv//97xs78GCioqJC8+fPN6QHtR4if//995t+epRUFFULi3zUd84dziH64HF6cG4xrYHAxcEOJP3ud79r3jvWRm8xEFhrvYWFhYWFhYWFRV6ATP/73/82o+O+/vWvm2R7+uk/9alPDWqaN6q8a7uvr683hJ7RdRQYCCNjYyyYhUVPQJo3bNhgNjIXpk2bpre//e1mMsNQgN9JAv0Pf/hDE+7IZAjcJhYW/YUdP2dhYWFhYTGCYMfPWXihcN5111361re+ZcZlXX755frQhz6kYHBojJ+E79FLD0HDrkwP/YwZM0xP/WgOC7Pj5xzyvHHjRnNuNDQ0aOLEiebcoPedLIahOj//9re/GRW+srJSP/7xj3XKKafYnAeLAcMSeQsLCwsLixEES+QtvAKE5aabbjKEpbq6Wj/60Y908sknDylhgbgRVgZxwz4NcUOlp995sBLH/YrRSuTJTnALO9u2bTPnIucAhZ3BdIvkKnDdfffdJn0eN4Bb4BqqAoLFyIcl8hYWFhYWFiMIlshb+GF8l2sh3n///c0jFuahRktLS6eVGqfAhAkTDKFnw4o/0jGaiDyJ77gxIPAEMNJe4bZalJaWDvn+PPnkk8ahwhg7MiU+/elPj2p3iMUIDrujr4p+Jy6qjDJ57rnnvN4lCwsLCwsLCwuLfoD13CWXXKJVq1bp6KOPNjbid7zjHSZYbChD6SBzzOUmYZ/U+3Hjxmn9+vWmN5nke0gWdmsblDf8wGtGRgKvIYnzzHznteU15rXmNd97772HlMS7CvxRRx2l9773vXrXu95l3gOMbLQk3mJEKvL//Oc/9bGPfUzXXnutIfG/+tWv9K9//cu8MbFD7QpWdbCwsLCwsLD3Rgt/A8KFaMMaj/5krMZnnnmmZxZj7Peueov1Grs1Kj190xDBkWLBH2mKPH9PXV2ded14/WKxmHnN3M0rsoyV/9ZbbzWtJOwbRazPfvazGjNmjCf7YzF64DmRh7wfeuih+u1vf2v+nUqlzEX+C1/4gr7xjW/0ichjoSE8oicIWcm+GPOG7w30b2Vf5PJ5LheW3g7jYD0XZPf55PNcLjgc50I8l/11e98G67n03LEV4rmcD274jh+eyzHY1RxcFjnuQscPz+Uc41wrxHOz35+D9dzdvZftNaIL9hoxcq4R3BuxEKM05ro3Wlh4BeztN954o6688kqVlJToa1/7mj760Y8Oad9yT/BerKmp6ST1WLQJyxs/frzZ6K8ersR+uBN5l7jz+jDqkIIQ5w2kncILRRcv+80pCP35z3/WT3/6U3Pt5Xy+4IILzD5aWAwFPL0yscB+8cUXTWXWBYuX448/Xs8880zONwybCxYr4Oc//3nOKtxee+2lc889t/Pf3Dh6IwBY+88///zOf1M15oaTC4RlMF7FBVVmLi65wGLqoosu6vz39ddfbwoPucCN4+KLL+789x//+EcT2JILWIW4YLggDZMRLLnAxfv//b//180FsWLFCvWGSy+9tPPj22+/Xa+//nqvz6X/x70B//e//9Urr7zS63P/7//+r3MkDPa6559/vtfnchw4HuDhhx82o2V6w+c+97lO9wY9SVisesMnP/lJM24ELFy40FixegPnA+cF4DzlZtgbPvzhDxsLF3j11Vf1n//8p9fnfuADH9B+++1nPn7jjTeMA6U3nHHGGTrwwAPNxytXrtTNN9/c63O5UR922GHmY2ai/ulPf+r1uSeccEJnv+LmzZt1ww039PpcLGpsgHP36quv7vW5jFE58cQTzceQCN5HvYEC3nve8x7zMe813p+9gWPAsQC8h6+44open7vvvvvq7LPP7vz3rp5rrxEO7DViZF0jsu+TFhZ+AmsXhBr6hTlXf/KTn+h73/uevvKVr5j33mDP784FiKCr6Lr3I4gjG3PGRxKx9zsgwy5xZ3OJO8d99uzZhrh70e/eE01NTbruuuv0i1/8woyu4xz+4Ac/OCyLJRbDG55eiXiTUgl1L54u+PfSpUt3ej6Wlcsuu2wI99DCwsLCwsLCwqKQQACgEEZrJUUt1nc/+MEP9IlPfMIU55kR7xUgijNnzjRbT2KPWEGQH04XHKEQfDb+bZPI8wPrfwr+bBB2NgiyS9wpkvLoB+LuYvXq1SbE8fe//73JXuDjU089dcjGLFpY+Mpaj9qM8oHaeuSRR3Z+HqWZEJJnn312t4o8NnxrrbfWemutt9Z6F9Za3wXbfjM622+std5iuIGlKOu+q666yrj7CMdDuSewbChH1/UFEHuXeLob77uKigpD6l2CD7n3Wrn3i7XevS65xwvyDmlnn7ILImx+Iu7udfWhhx4y5yYhiaeffro+//nPmxBHv52bFqMPnl5hqLSxACGwIhv8m96XnsA+n8tCz2K1L/1V+fRg5fPcfC6OfnhuPjcWPzw3e6E60p7LYr2v55ofnstNazg9F/jhuX5439trxOi5RnjZb2xh0R9wXXfbuGgNIwAZqzLrRGz4KPdY2v0AiCYbbZZuEQL7vUtS6bUnsJn2UdRl2gVoK+TR3fj8SFNxIbwUORj5x8x0d+PfHB+uS26hgzU+H3Mc/EqG6cmn/x0LPa8rLbUo8Iyzs7DwC3wRdkdfL5Uu90KAnYlqV1/D7mygj4WFhYWFhb03WowcYGEnHwIiRQbFOeecY0j9EUcc4Vvy54KlNfvvktpscsvHwCX3kFnG9SFU8ehuEN+B/p2FUuT5eyhM8Ddlb7hkIem5/i53c//N3zccXjdcwhSSSKEny4dz7qyzzrLj4yx8Cc/TOr785S/rvPPO0yGHHGIIPeFYXAxIfbSwsLCwsLCwsBh9gMySaM+2ZMkSQ+hPPvlk01JJkDEBkl720u8KEFYIutvvnQ0EK5f8skGIsZnTJuoSZKzo/AyX3PMIEcfNiJuHx1wbKj/f525uWw7CF98HUf3/7d0HbFV1G8fxh1X2EsMKICPsUQRBGRGkKhJGtAqRgCzFCIio0WBkiBEFIRoDGhlBCMGJEQGlCAjUyLBliEiZoewVUUAERcp58/u/77m5txTtCxR6z/l+kuPtHcV7nt57znn+4/l7nheZhpPTpmk/ulUjgBJ1P2HX7+k9ZG9w8Oezx/NIg8zMTFd8UYWjVQBYI0DUeKTiuUB+dtN75EVLz6litYYjqfrulClTXE/9v6FHHgAAzo0IB3X0LFy40ObNm+dWlNBKKUrqtdKDqocHhRJpP4n2E+l/Srqj74t/ae8n7H6dEL9HPKfGgJweyz5SIEgF/TR0XiM+lLyrJpdW3NFnSXPg89s8fSBfJ/JXi0QeAADOjQgfrfmu5XSV1KuavJYzVSKmWyWdyD/F7vILjYRQMUV9ZpYuXWotWrSwvn37uiVrtVw0EG/ib/wLAAAAQq1ixYqusr16UzX0vlmzZjZy5EhXSE3L2H3zzTcxKx0hnDSiISUlxQYNGuQ+G6NHj7aWLVtaRkaGrVu3zoYNG0YSj7hFIg8AAIC4VbduXRs3bpzt3r3bJfAaGj148GA3f1uFyubOnevWgUc4qN7AnDlzLDk52X0GnnrqKbc8oJaR27Fjh40dO9bq1Klzs98mcM0YWg8AQIAw7Qz47zzxLVu22KJFi2zx4sW2efNma9OmjfXo0cNt9evXD3yYwjK0Xn/r7du3u7+z/t4apaFe9+7du7u/ddOmTfN9xXzgapDIAwAQICTywOUOHz7s5kcr2VPPrJY6VqKnImft2rVzVdeDJsiJvCr9r1mzxpYtW+aSd/1977vvPvc37datm1WpUuVmv0Ugz5HIAwAQICTywL9Xv1cyr6R+5cqVdvDgQbcMcseOHd0WlMQ+SIm8n7ivXr3abRs2bHDLD3bq1Mn1uiclJVFtHqFz09eRBwAAAG6UkiVLumXGtMn+/fstNTXVVq1a5eZTHzp0yFq1ahVJ7LXMXRAS+yAk7vp7qEBdhw4d3KgKIMzokQcAIEDokQeuzb59+1xi7yeRSuybNGni5l37m6rk5/dl7uKlR17Lwv3000+2cePGyKaVCPzEXRuJO3A5EnkAAAKERB64vtRjn56eHpNo6nvWuHHjmOQ+MTExXyX3+TGRV9KuIoTRsdy2bZuVK1cuJpYaEUGPO/DPSOQBAAgQEnkg76ukK7mPTka1nTp1yi2FV69evcs2rWF+oyun36xEXvE5evSo7dq167Jtz549Vr58+ZikXZuSdirLA/8fEnkAAAKERB648ZS8HjhwwDIyMi5LXvW45thHJ/a1a9d2ldX9rUKFCtc9kc2rRF77evLkSZesHzlyxN3u3bs3Zp/PnTvnkvPsDRqNGjWy6tWrk7QD1wHF7gAAAIBroCRcc7q1denS5bLh5OqJjk50NQdfCbA2FXZLSEhwvfZK6qtWrRpJ8PVYmTJlrHTp0q4xIPpWW/Hixa86KVZCroT77Nmz7j1o83/WrRoFjx07FknW/cRdj6mRQO/Lf5+1atWy5s2bW69evVzCXqdOHffeAOSduO6RP336tJtTo2VDdDABACDsdPGtHi8N8y1btuzNfjsAcrEcXnTvdvR2/Phx953OnmxfuHDB/W7BggVdYq9NjQG6H72pEaFo0aJ26dKlyKbf9f8dPw3Q72ZvJNBWqVKlyxoX/E3V/wHcPHGdyKuKqC5WAABALDVyV6tWjbAAAaRkPDq513bx4sWYhD0rK8v11mdP7jXMPnsPvxJ5APElrhN5HaTUeqmD0PWaV+T3ZNDLTzz4fPBd4djBsfR6uZHnFp3WdVGvHjRdtAMAgOCJ6znyukDJq94GXWgxXJ948Pngu8Kxg2NpPJ5bGFIPAECw0VQPAAAAAEAcIZEHAAAAACCOkMhno8qer7zyirsF8eDzcWV8V4jHP+HzQTwAAEDeietidwAAAAAAhA098gAAAAAAxBESeQAAAAAA4giJPAAAAAAAcYREHgAAAACAOEIiH+W9996zmjVrWrFixezOO++0tLQ0C4MJEyZYq1atrHTp0laxYkV78MEHbefOnTGv+fPPP23YsGFWoUIFK1WqlD388MN2/PhxC7qJEydagQIF7Nlnnw11LA4fPmx9+/Z1+1y8eHFr2rSpbdiwIfK8amaOHTvWqlSp4p6/9957bffu3RY0WVlZNmbMGKtVq5bbzzp16thrr73m9j8Msfjuu++se/fuVrVqVfe9+PLLL2Oez82+//rrr9anTx8rU6aMlStXzh5//HE7e/asBS0ef//9t40cOdJ9V0qWLOle069fPzty5Ehg4wEAAG4cEvn/+fTTT+355593S89t2rTJEhMTrXPnznbixAkLutTUVJeYrl+/3pYvX+4uQO+//377448/Iq957rnnbPHixTZ//nz3el2MJicnW5Clp6fb9OnTrVmzZjGPhy0Wv/32m7Vr186KFCliKSkplpGRYW+99ZaVL18+8ppJkybZlClTbNq0afbDDz+4xEXfHzV6BMmbb75p77//vr377ru2fft2d1/7PnXq1FDEQscEHRvV6JmT3Oy7ktZt27a5Y81XX33lkuEnn3zSghaPc+fOuXOJGn50+8UXX7gG0h49esS8LkjxAAAAN5CWn4PntW7d2hs2bFgkFFlZWV7VqlW9CRMmhC48J06cUPeil5qa6u6fOnXKK1KkiDd//vzIa7Zv3+5es27dOi+Ifv/9d69u3bre8uXLvQ4dOngjRowIbSxGjhzptW/f/orPX7p0yatcubI3efLkyGOKU9GiRb2PP/7YC5KuXbt6gwYNinksOTnZ69OnT+hioc/8ggULIvdzs+8ZGRnu99LT0yOvSUlJ8QoUKOAdPnzYC1I8cpKWluZet3///sDHAwAA5C165M3swoULtnHjRjcM1FewYEF3f926dRY2p0+fdre33HKLu1Vs1EsfHZ8GDRpYjRo1AhsfjVDo2rVrzD6HNRaLFi2yO+64w3r27OmmXtx+++02c+bMyPOZmZl27NixmJiULVvWTU8JWkzatm1r3377re3atcvd37Jli33//ffWpUuX0MUiu9zsu241fFyfJ59er+OtevDDcGzVEHzFQMIeDwDXPv1x37597riS06aRg74DBw6465oSJUq4f+fFF1+0ixcvxvy/Xn31VatWrZq1b98+cp4DkH8VvtlvID/45Zdf3NzXSpUqxTyu+zt27LAwuXTpkpsPrqHUTZo0cY/p4jwhISFy8RkdHz0XNJ988okbCquh9dmFLRayd+9eN5xcU09efvllF5dnnnnGxaF///6R/c7p+xO0mLz00kt25swZ13hTqFAhd9x4/fXX3fBoCVMsssvNvutWF5DRChcu7BoNgx4fTS/QnPnevXu7+fBhjweA/2/6o5J5Jd46D2v6o6a5afpS9erV7ejRozG/M2PGDJs8eXKkkVnnKiXxlStXtrVr17rXq2aHpsy98cYb7jVr1qyxr7/+2hYuXOgaEp9++mlbtmwZfyYgHyORRwydLH7++WfXyxhGBw8etBEjRrj5qip6iP827qjH0D/Zq0denxHNg1YiHyafffaZffjhh/bRRx9Z48aN7ccff3QNXypkFrZYIPc0iqdXr16uGKAaxQAgt5YuXRpzf86cOa4BUCME7777bteorAQ92oIFC9wxRwV5RQm5Ev8VK1a4xtXmzZu7Qq1qXBw3bpxrmFc9HJ3LVBdIDQb6/wDI3xhab2a33nqrOxBmrzyu+9kPjkGm1lcVW1q1apUbWuVTDDT94NSpU4GPj06MKnDYokUL1zOmTa3hKuCln3UCDEssfKpA3qhRo5jHGjZs6Ibpib/fYfj+aCiieuUfffRRV438sccec8UPNfQxbLHILjf7rtvsBUR1wajK7UGNj5/E79+/3zUQ+r3xYY0HgOs7/TGn6xg1MmsFDJ+m8eicFT1iSoVINcJMxTb9+xo5pKH3DzzwQOS8BiD/IpE3cy2RLVu2dHNfo3shdb9NmzYWdOolUhKvFtyVK1e6pbWiKTYafhUdH83PUiIXtPgkJSXZ1q1b3UnQ39QbraHT/s9hiYVP0yyyL0eouXO33Xab+1mfFyUd0THRxYGG5gUtJqpErvnL0dQIqONF2GKRXW72XbdqBNOFpk/HHMVPc+mDmsRrCT71hGn5xmhhiweA6z/9MbtZs2a5xnbVdPFpqk5O057850TXNur913KzaoDV9RCA/I2h9f+j+b8aGqtErXXr1vbOO++4pYUGDhxoYRhOr6HCmhelYir+QV2FqrQWtG7VsqsYqQVYPUrDhw93F6F33XWXBYn2P/vJUXPQdAHuPx6WWPjU46wLAg2tV1KSlpbm5t9pExXU0YXF+PHjrW7dui6h05JbGqKnojxBojXDNSdexQ01tH7z5s329ttv26BBg0IRC61vvmfPnpgCd2rg0ndBMfm3fdfFpXp6Bg8e7KZmKNFVI6JGOOh1QYqHRrI88sgjrt6GRjppjqp/bNXzakAOWjwA3Nzpj+fPn3fXczr2Xq3sdTsA5GN5XBU/rkydOtWrUaOGl5CQ4JajW79+vRcG+hjktM2ePTvymvPnz3tDhw71ypcv75UoUcJ76KGHvKNHj3phEL38XFhjsXjxYq9JkyZuKbEGDRp4M2bMiHleS4+NGTPGq1SpkntNUlKSt3PnTi9ozpw54z4LOk4UK1bMq127tjdq1Cjvr7/+CkUsVq1aleOxon///rne95MnT3q9e/f2SpUq5ZUpU8YbOHCgW+4xaPHIzMy84rFVvxfEeADIO1oiuVq1at7evXuv+Jq5c+e6JXK1jHA0HZcTExNjHtO/o+PRpk2b8uw9A8hbBfSfm92YAAAAACCWLtM18k/TH1evXu1GPF1Jx44dXd2nzz//PObxlJQU69atm6tW7/e4a1Sd6r6oTkfRokUJOxCHSOQBAACAfGjo0KGR6Y/169ePPO5Pf/Rpmk+9evVsyZIlbspONE3tUaV6TdmZNGmSm+ajYq1PPPFEZEUaAPGHRB4AAADIh1R7JSezZ8+2AQMGRO5rffl58+bZvn37LivKKlo5Y8iQIa5XX7V/VBdq4sSJbkUeAPGJRB4AAAAAgDjC8nMAAAAAAMQREnkAAAAAAOIIiTwAAAAAAHGERB4AAAAAgDhCIg8AAAAAQBwhkQcAAAAAII6QyAO4KllZWda2bVtLTk6Oefz06dNWvXp1GzVqFJEFAAAA8gDryAO4art27bLmzZvbzJkzrU+fPu6xfv362ZYtWyw9Pd0SEhKILgAAAHCdkcgDuCZTpkyxcePG2bZt2ywtLc169uzpkvjExEQiCwAAAOQBEnkA18TzPOvUqZMVKlTItm7dasOHD7fRo0cTVQAAACCPkMgDuGY7duywhg0bWtOmTW3Tpk1WuHBhogoAAADkEYrdAbhmH3zwgZUoUcIyMzPt0KFDRBQAAADIQ/TIA7gma9eutQ4dOtiyZcts/Pjx7rEVK1ZYgQIFiCwAAACQB+iRB3DVzp07ZwMGDLAhQ4bYPffcY7NmzXIF76ZNm0ZUAQAAgDxCjzyAqzZixAhbsmSJW25OQ+tl+vTp9sILL7jCdzVr1iS6AAAAwHVGIg/gqqSmplpSUpKtXr3a2rdvH/Nc586d7eLFiwyxBwAAAPIAiTwAAAAAAHGEOfIAAAAAAMQREnkAAAAAAOIIiTwAAAAAAHGERB4AAAAAgDhCIg8AAAAAQBwhkQcAAAAAII6QyAMAAAAAEEdI5AEAAAAAiCMk8gAAAAAAxBESeQAAAAAA4giJPAAAAAAAFj/+A/lZmnNvqlImAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -497,8 +496,8 @@ "Coefficients:\n", "Harmonic Cosine Coeff Sine Coeff \n", "(Intercept) 0.03765 -0.23775 \n", - "cos.x1 0.47746 -0.28901 \n", - "sin.x1 0.26616 0.23117 \n", + "cos(x1,k=1) 0.47746 -0.28901 \n", + "sin(x1,k=1) 0.26616 0.23117 \n", "\n", "P-values for Higher-Order Terms:\n", "p1: 0.15187, p2: 0.20656\n", @@ -522,7 +521,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "A.k=0.45009345605461604; kappa=1.00676201668104\n" + "A.k=0.4500934560546159; kappa=1.0067620166810398\n" ] } ], @@ -577,16 +576,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 17:58:20CET\n", + "Last updated: 2025-11-03 14:19:13CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "pandas : 2.2.3\n", - "pycircstat2: 0.1.12\n", - "matplotlib : 3.10.1\n", - "numpy : 2.2.3\n", + "pycircstat2: 0.1.15\n", + "matplotlib : 3.10.7\n", + "pandas : 2.3.3\n", + "numpy : 2.3.4\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -601,7 +600,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -615,7 +614,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" } }, "nbformat": 4, diff --git a/examples/T5-clustering.ipynb b/examples/T5-clustering.ipynb index 006b998..e44b855 100644 --- a/examples/T5-clustering.ipynb +++ b/examples/T5-clustering.ipynb @@ -38,7 +38,18 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "d = load_data(\"B3\", source=\"fisher\")[\"θ\"].values[:]\n", "\n", @@ -111,12 +122,12 @@ " \n", " 2\n", " CircHAC\n", - " 247.0065\n", - " 65.9970\n", + " 63.5275\n", + " 241.5256\n", " N/A\n", " N/A\n", - " 0.1711\n", " 0.8289\n", + " 0.1711\n", " \n", " \n", " 3\n", @@ -136,7 +147,7 @@ " Method μ1 (deg) μ2 (deg) κ1 κ2 p1 p2\n", "0 Paper (J&V 2024) 63.4716 241.2036 2.6187 8.4465 0.8400 0.1600\n", "1 MovM 63.4706 241.1973 2.609 8.4559 0.8367 0.1633\n", - "2 CircHAC 247.0065 65.9970 N/A N/A 0.1711 0.8289\n", + "2 CircHAC 63.5275 241.5256 N/A N/A 0.8289 0.1711\n", "3 CircKMeans 64.6328 246.0378 N/A N/A 0.8158 0.1842" ] }, @@ -147,9 +158,9 @@ ], "source": [ "# Extract values\n", - "μ_movm = np.rad2deg(movm.m_).round(4)[:]\n", - "κ_movm = movm.kappa_.round(4)\n", - "p_movm = movm.p_.round(4)\n", + "μ_movm = np.rad2deg(movm.m_).round(4)[:][::-1]\n", + "κ_movm = movm.kappa_.round(4)[::-1]\n", + "p_movm = movm.p_.round(4)[::-1]\n", "\n", "μ_hac = np.rad2deg(hac.centers_).round(4)[::-1]\n", "p_hac = np.bincount(hac.labels_) / len(hac.labels_) # Estimate p as relative cluster size\n", @@ -195,7 +206,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAMrCAYAAABTRy+XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQV4U2cbhp+6QGkLheLu7jLc3bfB0GGDARtjY/ZPmDEXBsxgDLYBGzDc3d3dpcW1lLrmv54vnJK2aZu2SZq0731dIfTk5OSck5z3fM/3moNOp9NBEARBEARBEARBEKyEo7U+SBAEQRAEQRAEQRCICFFBEARBEARBEATBqogQFQRBEARBEARBEKyKCFFBEARBEARBEATBqogQFQRBEARBEARBEKyKCFFBEARBEARBEATBqogQFQRBEARBEARBEKyKCFFBEARBEARBEATBqogQFQRBEARBEARBEKyKCNEchIODAz766CPYOlu3blX7ymdBEAR7QWyXIAhC+hC7mbMRIZpOLl26hJEjR6J06dJwd3dHnjx50LhxY/z444+IiIhAduTmzZtKwB49ehS2zurVq+1CbAtCdmX27NlqUMHHzp07k72u0+lQrFgx9XqXLl0sui/afgwfPtzo6++9917COvfv34ets3v3bmXfHj16ZLXPvHXrFt555x20bNkSXl5eMmAUBAsgdjN72c1NmzZh6NChKF++PDw9PZVm4PmkPRUSI0I0HaxatQrVqlXDggUL0LVrV0ydOhVffPEFihcvjjfffBPjxo1DdhWiH3/8sd0IUe6rIAhZCyfq5s2bl2z5tm3bcP36dbi5uVltPxYtWoTo6Ohkr/3zzz/qdXuBAyraN2sOqM6dO4evvvoKN27cUPc/QRAsh9jN7GE33377bTVh17NnT0yZMgV9+/ZV2qFWrVq4ffu21fbDHhAhaiJXrlxRP6QSJUrg9OnTygM6YsQIjBkzRl2UXFalSpWs3k1BEASboFOnTli4cCFiY2MTLecgq06dOihYsKBV9qNDhw54/Pgx1qxZk2xwQrveuXNn5HTCw8NTfI3f1YMHD3D+/Hm8/vrrVt0vQchpiN3MHnbz+++/x8WLF9UkHj2hn3/+OVauXIk7d+5g2rRpVt1PW0eEqIl8/fXXCA0NxcyZM1GoUKFkr5ctWzaRR5RG5NNPP0WZMmXUDFbJkiXxv//9D1FRUYnex+UMs+DMSd26deHh4aFmnbXQp8WLF6u/OftEI3TkyJFE73/xxReRO3duXL58Ge3bt0euXLlQuHBhfPLJJyqUIy04y83wAX9/f7WfFNN//PFHwuvcj3r16qn/DxkyJCEcg2EkGvv27VNGy9vbW4UgNG/eHLt27TLpvHKGr0ePHmq/CxQogPHjxyc7R2THjh147rnnlPeZ+8kQFa5rGA7Nc/HTTz+p/2v7yYfGt99+i2eeeQb58uVT55nn87///jNpPwVBSB8vvPCCEjAbNmxIWMbZdV5z/fr1M/qesLAwvPHGG+r65nVeoUIFdd0a2rKqVauqMNGkxMfHo0iRInj22WcTLeeyZs2aJfMyzJ07V9lWbs9UaC+HDRumbCz3r1SpUnj55ZeNeg0MbTxtU1JatGihHoYwyoY2mHbU19dX3RO0/WZoGSNvCD9Xs29Xr15NeP+cOXOUXaN9y5s3r5o8vXbtWrLP5TEfOnRInRd+Fu9NKcFwXG5LEATLI3Yze9hNruPo6JhsGbd/5syZNM9ZTsI5q3fAXlixYoWK8aaQMQXOgPz555/q4qaBoFhjGC9/gEuWLEm0LmdNaGCYezpgwABlQBj6++uvv6of+ujRo9V6fP/zzz+vQqUMf+BxcXFKCDZs2FAJ5rVr12LixIlKDFOQpgRnZvgeXpRjx45F/vz51ewXDQZnwl577TVUqlRJbePDDz/ESy+9hKZNm6r3audh8+bN6Nixo7qI+Zncr1mzZqFVq1ZKPNavXz/Fz6eIbN26NQIDA/Hqq68qI/X333+rbSaFM4ScfaLxopDcv3+/Mj4UsnyN8PwxjJgGnNtJCr3Y3bp1Q//+/ZUB/Pfff5W45SyVzO4JgnnhQKJRo0YqYoQ2gtC+BAcHqxs9w5UM4aCJ1+eWLVuUDapZsybWrVunBhEcyPzwww9qvT59+qjBBcObDL0DzKvi9c9tJ4X2lROFnEzkxB1tI+0GPXyRkZEmHQ+3TXvG8C7awooVK6r94gCRtsnV1TVT52vGjBnKDvKewX3lfh0/flzdO7j/vXr1Ul5Jnk+eCz8/P/U+2m0yadIkfPDBB+oewfvPvXv3lI3k4IcTmD4+PgmfxYEuvxOeK95zOBEpCELWI3Yz+9pNnkc+tH0QnqAT0iQ4OJjTSrru3bubtP7Ro0fV+sOHD0+0fMKECWr55s2bE5aVKFFCLdu9e3fCsnXr1qllHh4euoCAgITlv/32m1q+ZcuWhGWDBw9Wy1555ZWEZfHx8brOnTvrXF1ddffu3UtYzvUmTpyY8PewYcN0hQoV0t2/fz/Rfvbt21fn7e2tCw8PV38fOHBAvXfWrFmJ1uPnlCtXTte+fXv1fw2+r1SpUrq2bdumep4mT56strtgwYKEZWFhYbqyZcsmO05tXwz54osvdA4ODonO0ZgxY9R7jZF0G9HR0bqqVavqWrVqlep+CoJgOrQTvAZpN6ZNm6bz8vJKuPaee+45XcuWLRNsH+2UxtKlS9X7Pvvss0Tbe/bZZ9V1fvHiRfX3uXPn1HpTp05NtN7o0aN1uXPnTnSdcz3ahIcPHyp7+Pfff6vlq1atUtu8evWqsolcz9BWGmPQoEE6R0dHdVxJ0ewfbVZS28XjpJ1OSvPmzdVDg/eXKlWqpLoP33zzjdr+lStXEi3ncTg5OekmTZqUaPmJEyd0zs7OiZbzM7mNX3/9VZdeFi5cmOz4BEHIPGI3s6/d1Pj000/VNjZt2pThbWRHJDTXBOgd1EKUTC2YQ5Lm09AzqhU9MqRy5cpqBkyjQYMG6pleRYaiJl3OMNyk0KOpoXk46fXbuHGj0X2krWEiOj2v/D8rn2kPhvhy9u3w4cOpHieLF124cEHNOnGmSHs/w0To6dy+fbsK+0jtPDHM2TAkhOEOnDVLCkMmNLh9fg69stz3pOHKKWG4jaCgIHWM9PCmdZyCIGQMzjIz8oFRByEhIeo5pfAy2gMnJyc1u53UbvI613KVWIWQs/7z589PFBXCGXbaM8PrXIPhWowa4aw4YdgW7Qdz/k2Bdmzp0qVq+wz7SophCkBG4cw7IzwOHDiQ7vcyhYP7yPNtaMvp+ShXrpzylhjC8DimWgiCYHuI3cx+dpPjYRZM4mdxbC88RUJzTYAtWggNgikEBASoEFXmjRrCHzcvGr5uiKHYJMy1JIz3N7acIsoQfhbDhg2h0SGGcfCGMPyAoRLTp09XD2PcvXs31eOkCCWDBw9OcR2KPRozY/A88BwlNUbMb0gKw3cZHrx8+fJkx8/PMAUa888++0wJaMM8VHMYQ0EQksPwpzZt2qgBDMOwOPBJmotkaA8Ynp90wo/pAdrrGgwzY9oCQ7yYy8RcdtorLk8JDuQGDhyobAkHR0xjMBXaS05IpicvKiNVFjlxyDA22sV27dqpfWZ7sLSgLeagk4MnY7i4uCT6m+cssyFxgiBYBrGb2ctunj17VlXP5Xn4/fff0/3+7I4IUROFKC/0kydPput9pgoczmalZ7kpRYjSQvNUMs49JSFZvXp1k7bxzTffqJk2YzCvILPQCLdt2xYPHz5URoc5BixuRGPKZPbUvK4azFdlHgXj/n/++WfliaWRYT6rsVLpgiCYBw4KWGGcuUnMrzHMuckoHDi9++67Kl+Juewsi8+JOs7epwSvf85o095xIooz09YgpfsA7ZqhjefAkfn/nDBjnj8jVmirOAGXVksq2kB+Dr0fxu4bSe2wMe+HIAi2g9jN7GE3WfSI4pjnmd5rUyMrcxIiRE2ElW3pOdyzZ0+iMFpjMGyBP3DOtmizUlpxIHohTQ1rMBV+FsN1NS8oYXK2lvie0owbLwhe1Jx5y4hBYEVgTaintQ1j8DxQ3FNYG34GjYohJ06cUMfD4k+DBg1KWG5YVS6tfaVxYuVhJvEb9uGiEBUEwXJwJpiFxPbu3ZsoLMyYPeDMNiNPDG/WnE3WXtdg9UPOgHN7TENgiBWrb6fWY4+DCK7DCokc2KWnYATtJe1ceicjCSNCjPWvo6ciaSQLJ9g4WOSDqRUstMFiGhw80n6lZotpR3leDO8DgiDYJ2I37d9uMmWNIpQCftOmTUY7bgjSvsVk3nrrLfVjZ1UtCsqkXLp0SVVl1fpAkcmTJyfrK0QsUaHVsC8RLyz+TY8fczWNwdmf3r17K4FmzEgwpEKDx02SGgVWyuWFzCq/rASW2jaMwfPEimqGLVQYhpI0VFibqTL0BPP/2vk2JKV95TZojCi8NRi2zFATQRAsB2eVf/nlF1WxkblCqdkDXp9Je6yx0iGvXa2CpAYHHRyksd0U83pSCy/TmDBhgqruzSqJ6YHpDxyMsXr6wYMH0xWlQhvJ/TRsVcDZ+6TtAThoMYQhYKwfwG3HxMSkat848KKNowcg6b7w76TbFgTBthG7ad92k7VM+N0wco+e0JTCfwXxiJoMLwqGcPKipZeTnjnGe/MiYYNfhjpoPY9q1KihwhgoqPjDZ19NthuhR48XpbFeTpmBMz4MSeBnsqARwwxYEIm5AFqJamN8+eWXKhmb72EICC9ehr+yeA9n2Ph/7dgZFsJ2Mpxx40XN93AWifHuNHTs4cQkbsbQ88LjdjkTRgOUEvxMGk+eS/Zm4mwR266wYJEhDMXlPtAYctvcLgV00lxRTRwTJu6z6BKNDEttU/xzIoAhKAx5YV4Ee44yp4ClvgVBsByp5ZFrcLBF2/jee++pSSLa0fXr12PZsmUqjEyLwNBgiBhtAh/szWZKVAa3yUdGYENy7g/tOQuq8T5w69YtZfvZAiGl0DlOXnKyjbaH+8xJS3oXkh4PZ85ZR4C5TWwLwFZftI+0XZqnQ7NvPEe0a5xs5Hnjtpj/Tg8Azx3vM3wPG8+zXRj3l+cpo3Db5NSpU+qZdprHTN5///0Mb1cQhJQRu2m/dpNtAjnuHzp0qNonw96hnGTgZwlPyOqyvfbG+fPndSNGjNCVLFlSlbVmie3GjRurktiRkZEJ68XExOg+/vhj1cbExcVFV6xYMd27776baB1jpbiTls82hKWnuZylqDVY3jpXrly6S5cu6dq1a6fz9PTU+fv7q9LacXFxybZp2L6F3LlzR30O94/7WbBgQV3r1q1106dPT7TesmXLdJUrV1YlrZO2cjly5IiuV69eunz58unc3NzUMT3//PMmlahm65Vu3bqp/fbz89ONGzdOt3bt2mSlvE+fPq1r06aNKjPO9fgdHDt2LNm+xMbGqlY2+fPnV2XGDX/iM2fOVO1muI8VK1ZU79NKkAuCYP42BKlhzPaFhIToxo8frytcuLCyR7xeae8M20MZQttrrFVWanY0Kaa2IdDsFdsR0L7QjpQuXVptPyoqKsU2BOS7777TFSlSRL2H+3zw4MFkbQjYnqtZs2YJdrRMmTK6N998U7UPS9oCgNtiS4SkLQkWLVqka9Kkibon8EE7x/1j6wYNfmZa7Q6Sws9J6SEIQuYRu5m97KbWmtHYg68JT3HgP5ooFewPemE5a2QsNFYQBEEQBEEQBMEWkRxRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwapIjqggCIIgCIIgCIJgVcQjKgiCIAiCIAiCIFgVEaKCIAiCIAiCIAiCVREhKgiCIAiCIAiCIFgVEaKCIAiCIAiCIAiCVREhKgiCIAiCIAiCIFgVEaKCIAiCIAiCIAiCVREhKgiCIAiCIAiCIFgVEaKCIAiCIAiCIAiCVREhKgiCIAiCIAiCIFgVEaKCIAiCIAiCIAiCVREhKgiCIAiCIAiCIFgVEaICfvrpJ5QsWRLu7u5o0KAB9u/fn/DauXPn0LhxYxQtWhSfffZZlu6nIAiCrSB2UxAEwXTEZgrGECGaw5k/fz5ef/11TJw4EYcPH0aNGjXQvn173L17V70+duxYDBgwAMuWLVOP3bt3Z/UuC4IgZCliNwVBEExHbKaQEiJEczjff/89RowYgSFDhqBy5cr49ddf4enpiT/++EO9HhQUhDp16qB69eooXLgwHj16lNW7LAiCkKWI3RQEQTAdsZlCSogQzcFER0fj0KFDaNOmTcIyR0dH9feePXvU35988on6mwaDr3EGSxAEIacidlMQBMF0xGYKqeGc1TsgZB33799HXFwc/P39Ey3n32fPnlX/79SpE+7du4fHjx8jf/78WbSngiAItoHYTUEQBNMRmymkhnhEhTRxc3MTwyAIgpAOxG4KgiCYjtjMnIkI0RyMn58fnJyccOfOnUTL+XfBggWzbL8EQRBsFbGbgiAIpiM2U0gNEaI5GFdXV5UcvmnTpoRl8fHx6u9GjRpl6b4JgiDYImI3BUEQTEdsppAakiOaw2E57cGDB6Nu3bqoX78+Jk+ejLCwMFXZTBAEQUiO2E1BEATTEZsppIQI0RxOnz59VIL4hx9+iNu3b6NmzZpYu3ZtsqRyQRAEQY/YTUEQBNMRmymkhINOp9Ol+KogCIIgCIIgCIIgmBnJERUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBUEQRAEQRAEQRCsighRQRAEQRAEQRAEwaqIEBWSERMTg2XLlqlnQRAEIW1oL5cvXy52UxAEwQRkrCkQEaKCIAiCYAZ0Ol1W74IgCIIg2A0iRAVBEARBEARBEASrIkJUEARBEARBEARBsCoiRAVBEARBEARBEASrIkJUEARBEARBEARBsCoiRAVBEARBEARBEASrYldC9JdffkH16tWRJ08e9WjUqBHWrFmT8Pr06dPRokUL9ZqDgwMePXqUbBslS5ZUrxk+vvzyy0TrzJgxAyVKlECtWrWwb98+qxybYPvwd8Lfy2uvvZawjL+3pL+nUaNGJXofWzqUL18eFSpUwMqVK7Ngz4WcithMISsRmynYG2IzhazkyxxoM51hRxQtWlR9SeXKlVNl8v/88090794dR44cQZUqVRAeHo4OHTqox7vvvpvidj755BOMGDEi4W8vL6+E/wcGBuLrr7/Gv//+ixs3bmDIkCE4ffq0xY9NsG0OHDiA3377Td2gksLfEn9TGp6engn/j4qKwpgxYzBr1iz1mx06dCjatWsHV1dXq+27kHMRmylkFWIzBXtEbKaQVRzIoTbTroRo165dE/09adIkNXu1d+9eZSC0GYStW7emuh0ahIIFCxp97fHjx/Dx8VE/BK4TERFhxiMQ7JHQ0FD0799fzWB+9tlnyV6nQUjp90QD4eTkhJo1a6q/nZ2d1TJ7MRCCfSM2U8gKxGYK9orYTCErCM3BNtOuQnMNiYuLU7NJYWFhKnQiPXC2K1++fCok4ptvvkFsbGzCa1WrVlXGwdvbWxkdYz8IIWfBmabOnTujTZs2Rl+fO3cu/Pz81G+HM6ScMdVg+A5nOwsVKoTChQvj5ZdfTjQzKgjWQmymYC3EZgrZAbGZgrUYk4Ntpl15RMmJEyeUQYiMjETu3LmxZMkSVK5c2eT3v/rqq6hduzby5s2L3bt3qy/01q1b+P777xPWmTlzpgqb4AyEh4eHhY5EsAd4Ezp8+LAKmTBGv379VJ4HL/7jx4/j7bffxrlz57B48eKEdSZOnKhmUR0dHe3KOAjZA7GZgjURmynYO2IzBWvyb063mTo7IyoqSnfhwgXdwYMHde+8847Oz89Pd+rUqUTrbNmyRcdDCwoKSnN7M2fO1Dk7O+siIyMtuNf2RXR0tG7p0qXqOScTGBioK1CggO7YsWMJy5o3b64bN25ciu/ZtGmT+u1dvHjRSnspCKkjNtM6iN0UmylkD8RmWgexmWIzid2F5jLmuWzZsqhTpw6++OIL1KhRAz/++GOGt9egQQMVMnH16lWz7qdg/xw6dAh3795VM5uMuedj27ZtmDJlivo/w3aM/Z7IxYsXs2CPBSE5YjMFayE2U8gOiM0UrMUhsZn2F5qblPj4eJWUm1GOHj2qXNkFChQw637lRFiti7kU9+7dUxeW9mASdkxMjDLE2jMvMMa1M0dCe86fPz9Kly6tQmFsgdatW6sQHUMYh1+xYkUVGsHkcGO/J8JYfUGwRcRmCpZCbKaQHRGbKViK1mIz7UuIMs6+Y8eOKF68OEJCQjBv3jxVuWzdunXq9du3b6uHNkvAL5ex0lyfsfp79uxR/ZpatmyplvPv8ePHY8CAAfD19c3io7MfoqOjValxnl+e6wsXLqgH/2+sp1Z6obEuU6aMerAnEmd/+KBgtSb8jTAx3JBcuXKpAgRcfunSJfUb7NSpk1rG2H3+npo1a2a0/LYgWBuxmYI1EZsp2DtiMwVr4iU2076EKL1rgwYNUknf9KDxS6BxaNu2rXr9119/xccff5ywPr8owt46L774Itzc3FRS8EcffaRmt0qVKqW+0Ndffz3LjskeZgJPnTqFnTt3qhACJlSfPHlSeTZTwt3dHf7+/kpQ8sELzcXFRT3oCeUz3x8cHKzKmGvP/F4fPHiQ4EmlAddgA19Wl2MBgcaNG6seXvyMrA7f2bhxIyZPnqw8wcWKFUPv3r3x/vvvZ+l+CYKG2EzBlhCbKdg6YjMFW8I1B9hMByaKZvVOCLYlPP/++2+8+eabaNiwoar4RnGYFPbAYt5E+fLlVeNn5lPwmZW9GFpL4ZgRKEo5A6Q9ONtIQXrlypVE63H7zzzzDHr06KEe/HxBEISsgpNrq1evVjPXnGwTBEEQUkZspkBEiAoq1JbJ0StWrMCyZcsQGBiY6HWWF6cXkuGx7InFR8mSJTMsNjMCQ2HYUJqidNOmTco7awhDGDgbOXjwYNVrSRAEwZrIoEoQBCELbWZsNBD5CIgIAqJCgPjYp4+4WIBDVhdP/cM1l/7h5gW45qZ3wxyHJGQAEaI5FFbiovhkk9xFixYpT2RSevbsibfeektVjrO1gdW1a9eUaF66dKnK39AqizGM4dlnn8WoUaPQpEkTq4plQRByLiJEBUEQLGQzKSQfBQAPLwNBV4Hg60DwNeDRNeDxTb34jAnL2I44ewC5CwC5/QEvfyB3QSBfWSB/BSB/RcCroAhVCyJCNIdx9uxZ1UiZyc83b95MWM58yy5duqBr165o3ry5Eqn2MqAKCgrCwoUL8dtvv6kcVg02oKaQ7t+/v8pNFQRBsBQiRAVBEDJpMylJKDJvHgFuHQXunAIeXNSLT3o208QBcPcG3PIATs6AowvgyGdWn9UBMRFAdBgQHa4XrqZsk9uiKC1SFyjdHCjRGHC3bvHM7IwI0RwAE+aXLFmihBq9h4Z5ns8995wSak2bNlXlxe19QHXw4EFVTOCff/5BeHi4Wsbqux988IEIUkEQLIY9201BEIQss5mNKsPl6lbg4ibg+n4gPHldkgTPZd7SgG9JwKcY4M1HUf3DMy/g4Qu4eQNPxrImQVEaevfJ47b++fEN4P4F4N5ZvQdWF5/4PQ5OQNG6QKnmQPn2QJE64jHNBCJEszHs5/nzzz/jp59+Uv8nFJv0fLJPEUuUs8JbdhxQMdSYwvubb77B/fv3EwQpK40NHDjQaG8mQRCEjJId7KYgCILFoew4Ph9YMtL46/RgFqgEFK4FFKwO+JXXh8p6FUqfyDQHsVHAg0vA3dPA1Z3AlW16cWqIXwWg9iCgRl8gl9QoSS8iRLMh58+fxw8//IDZs2cjMjJSLStcuDBGjBiBYcOGqfLPOWVAFRoail9++QVff/11giCtW7euEuj16tXL6t0TBCGbkJ3spiAIgtm5dx44sQA4sVAfamtIiSZA2dZ6L6N/FcDFHTbLo0Dg8jbg8hbg7GogNkK/nGHAFTsBdYYApVuIl9RERIhmI9juhL2rWIBI+1oputiKpVevXiaHpWbHARX7L9EzPGnSJNWzlEWMXnrpJfU3mwQLgiBkhuxoNwVBEDIFiwydWw3snw5c3fF0ubM7EBuJq/laoMjgGXDJUwB2SWQwcHIRcPhv4ObTGiUo3gho9T5QsklW7p1dYGUft33BSqxsbmzrXL9+HSNHjkTFihUxZ84cJUIZfsuCQ/v378fzzz+f43Mjc+XKpQoXnTt3ToXm8hwxdLdChQr4888/1d/MKaVIFQQh47ARPPsRC9kffs/8vgVByDghISFqsjxbwfYpOycDP9YAFgzUi1AHR6Bce6D3TOCty4h57z6OFR+qz+20V1gYqe5Q4KUtwKhdQL0RepEduAeY3Rn4qwdwPXG7QeoKrdODIEI0TeNAIcdWIbYIhdPHH3+M8uXLY/r06YiNjUWHDh1w4MAB1RO0WbNmVm1fsm/fPvz999/q2VYpWLAg/vrrLyXS2Xv0wYMHqv8oW76sW7dO9VCVIAFByBi0QazMzaJhIkazN/x+WaX8zJkz6nsXBCH9cLxBZ8LOnTuzhxiNeARs+xqYXA3YOBF4fB3wzAc0fQMYdxzovwCo9qy+h2d2o2BVoPO3wKtHgHrD9aG6DN/9vRUwfyAQchs3btxQusJYy8ScigjRVGBV2QYNGuDYsWM2JUZpuBYsWIBKlSqpUNyIiAjVM3P79u1Ys2aNCse1Nm+//TYaNmyIQYMGqWf+bctQpHMQ9cUXXyhv8eLFizFmzBg8evRIeo8KQgbhtfTMM8+oAZWI0ewvQhlB0rhx4xwfcSMIGYXjDUazFSlSxL7FKNuhbPsGmFwd2DJJ39czXzmg+8/A+NNA6w/1lW5zAnkKA52/A145BNQcoPcEn1mO+Kn1cG/Dj6hXty7y5s2b1XtpM0iOqAmw4iy9fDVq1Eiz0I+luXr1qspt3LBhg/qb+/Ptt9+qNixpCSgeAwsZ0YNKgZ3RXCduh4KXsPIuofhMyt69e1P9HFvxKv/xxx+qmBEnG1hVeOLEiXjvvfeksq4gZKJl1O7du1VIPCfGtNZQ2ZmckiOaVIQaq7wuCEL64FD81KlTymNGxwJtp10QHwccnacXnyFPwvTzVwKaTQCq9HzSvzNn20z2Qo1eOAKu90/p/y7bFug6Wd92RhCPqCnkz58/yz2jjCefMmWKCielCHV3d1feUIbBMQc0LRFqLo+lth2GBPPB/3/66adG16XotXURumvXLuUdPXHiBAYMGKAGWRSivXv3Vp5mQRDSD8WJeEazHyJCBcEycAxXpUoV+/KMXt0F/NYMWD5WL0J9iuvzP1/erQ+/TUWE5iRuxPpgQ4m3EdLgDcDJDbi4AfipIXDiv6zeNZtAhKgdiFF6QZs3b45x48Yp40ThxP2gYPL09EwzT5P/p8fPEP6d3lxOY9shq1atMrp+dHS0zeaMaiLU398f1apVg7e3t9pXFi7i4GrZsmVo0aIFgoKCsnpXBcEuETGavRARKgiWxW7EaOhdYPFIYHYn4M5JfcGedp8BYw8+EaAiLTTo4T5y5Ajq1m8Ir44fAqN2AEXrAdEhwKJhwMaP9F7lHIz8WmxcjM6fPx81a9ZUosnLy0v1xNyyZYsKrzXV65mSZzK9Hsv0rj98+PBE+2IrxYySilBDbzL3d9OmTSp+nwnlderUwe3bt7N0fwXBXhExmj0QESoI1sGmxSjt94GZwNS6wPF/ubdAnReBV48Cz7wCOFvYLlw/CBz7V/9sRyKUPes53lTkrwAMXQc0fk3/984fgH9e0LeByaFIjqiN5oxSLI0dOxazZs1Sfzdq1Ajz5s1DyZIlja7P/UkpT5MYe2306NGqyATL79+8eVMdF72Y9MCSEiVKqNfpLSxUqJD6Pz2F5oCtVL766ivYkghNKrqZ/3r58mX4+vqq3A2eA0EQ0k9OyBnNrvlOIkIFwfrYXM7ovXPAinH6tiSkUA2g8w9A0TqWsZkUmxf0tVBQri1wZgWwa/LT1ynk2n4MuxKhSTm+UB/WHBsJ+JUHXvgXyFcGOQ0RojYoRq9cuYJevXrh6NGjasDGwjkffvhhqpUJ6WmkNy8pDN+ld4/tXWjUDKHAorjSHgUKFFC5p6y+S68vq8hyEMLwVIpVPtiHMzQ01CzHqYlkUwooWVOEGn7HXbt2Vd8zzxUFep48eSy6j4KQXcnuYjQ7ClERoYKQw8VobDSw83tg+7dAfAzgkktfAbf+iNRzQCkkH1wE8pUFitZNn83cMDGx6EyJ4ZtS3LbNi1CNm0eAf/sDj2/o29zQW+pXDjkJEaI2JkY3btyIPn364OHDh0oYMjSXuYppkZJHlLi6uqJ69epqH9mShvmmLHDk4eGRoQEVB5NsH0Nhym1QuFI8p5fOnTsnyi+1pJc0vSLU8H3szbpjxw6ULVtW3RR4PgVBSD/ZWYxmNyEqIlQQcrgYvX5I77G7e1r/d7n2+rYkWhuWlMRmUiGZgvfSqM3kNn9vbdr+FWsA1B2aqti1aRGqEXIHmPcccOsY4JEXGLEZyFsKOQVp/mWGnFEt5zGzYvSnn37Cq6++qgYA/BGzt2XRommXd2Y4bWBgIEqXLq1CSTW4b2ztUr9+fbOKJ+Z88ZHUu8nQ4QsXLuDBgwc4dOhQmvlgSYscsRASPaPDhg2DLYhQwmJQK1euROvWrVWOW7t27bB58+ZsNYAWBGvnjFKM8nrKbmI0uyAiVBBsK2eUMGfUKmKUPUHZjmXvz4AuHvD0Azp+BVTtzR1KXWxSSCb1ZvLvSl1NE4sUtqZybZ/+Yfj59iZCiZc/MGgZ8Hcv4OZhYEZLfeVh9iPNAYgQtQExyps+vYHfffed+vvFF19URYkYJpsaLJj0888/Y+bMmco7S48oQ0kpXps2bWrVHp78bEOPbHBwMKZNm6ZEHC9MimVD53tSb6hhgSOG6prLM5oZEarBcNy1a9cqT/K2bdsSWtcIgpB+RIzaNiJCBSEHi9ErO4DlrwBBT6LcqvcB2n8B5Mr3dJ3UxGYKQjL8+incivJVkXT3799X3tBFixapKBm2ymMxTo7TCunywD9eB2fHdI7V+Pn0jDq5ZImHNMMiVMPDFxi0VC9GbxwEfm4EjD8JuHkhuyOhuVkcphsZGYmBAwfiv//0/YQ+//xzvPPOO6kKJoZpfPLJJ+oipjGicH3ppZcSDJWthZgxx3Tu3Ln4/vvvVQgvQ1yZz8q815T4/ffflRfXMHeU5zc9+aTmEKGG0ICydc6lS5fUALp27dqZ2p4g5GSyW5hudgjNFREqCDk0TJde0A0fAgdm6P/OUwToMhko3y75uqxcu2Rk8uU9f0OQUwEc+rorDt2Mw6FbcTh5Nx43Q+IRHGX6rnColt/TAcW9HVCroBPqFHJCncJOqFbAEW7OJo7jrOghzbQINSTyMTCnN3B9P1C4FjB8c7ZvhyNCNAvFaEhICLp3767asVB0sUJuv379Ulyf4bcsPsRel6ye+/rrr2Pw4MFqJskeBlT8qbE1CgXpmjVrVA7s3bt303wfvcXEsIdpWvmk5hahGhcvXlSDZhaAOnPmjAzUBCETZCcxau9CVESoIORQMXr7BPDfMOD+Of3fdYYAbT8B3FMozmiQxxkVq8PWq3FYcT4Ga+/641LAdbU8tyuUiKxZ0AlFqzdD4eaDEwpjMpKQY17a/w0bNqiUJ9pPtsrTCmPeOnsQl08ewOELN3Eq4B7i4uLg4gjULuSELuWd0a2CsxKmqY7tuk2zuIfUrCJUIyoEmNVR/72wMFTTN5CdESGaRWKUxYg4YOG6uXPnxvLly9GyZUuj6zKM4YsvvlA5pGyl8sEHHygPqKWK5lhjQMXwEnp+KRYzCvNSjXlGLSVCNfhdcQKBVYUZfiwIQsbJLmLUnoWoiFBByIFilMP//TOA9e8BcdFAbn+gxy9A2dSLBTGUdvHH/bF0xQqsvRiL0GighL83ujw7QLUaZP/18p6P4Rh0OWNVc418Hjs5HNq4GFs3rMG6gxcQEh6lPKbdyjvjuSouaFrcKfWxHkOMy7Qyqyi1iAjVeHQNmNEKCLsHvLwL8DdPxKMtIkI0C8QovYBt2rTBiRMnlGeN+Yf8ISeFXw3bsowbN07NBr355psYP368Eq7ZYUDF42PILo+POaTpbQvz119/qbBma4pQDbbU4eQAvdnMHRUEIWeLUXsVoiJCBSEHitG4GGD1BODQbP3f5TsC3acBufxSfAujwFiXZM6cOXj06BHq16yCbo2roFv3nqjapk+6x1sZtZkcL7Jex/J5v2P5us0IvHUfFfI5YkRtFwyt5QpfDweLh+1aVIRqXNsPzO4MeBUCxh4AnLOnbba/u70dFTDiDA4LCiUVqazAShGaL18+TJgwwWh12Zs3b6Jbt24q9LZLly4qL5GeUEuLUGtCo8Vjp5h89tlnVZElenxNhbmiqYnQ/fv3KyGvFZIyJ8zR5ffI/NywsDCzb18QcmIBI15LzL9Oq+K2LREfr8OD0CgEPgxHSIz+b3tBRKgg2HcBoyJFiqgIs3SNQ8IfAnN6PRGhDkDbT4EX/klRhHLCvX379qhcuTIWLlyIUaNGqTSlfUdO4r1p81GtbV+LTfobg9GAbdu2xdRZ83H1xl3VyaB29cr43+YoFP0hBC+vjEDAo/jUCxtt+UIfYkz4zLxX7W9bEKGkWH2g6xTgUQCw9l1kV8QjakXPKNuatGrVCsePH1ezV4aGQ8t55NfB2Sa2cWHV3N9++00J0uw4s89WLww3ZtGf4sWLq7yAGTNmqNYvHBilBoU+Q3NTEqEM+01PTmlGv9+qVasqEc3jEAQh+3lGKSwv3A3F2duPceluKC7dC8Ot4AjcDYnC/dAoRMYkH/C4OTvCL7cbCuRxQyFvd5TJn1s9KhbyQrkCXnBKb0VICyAiVBByoGc07D7wZzfg7inANTfQeyZQoYPRVSm2OJZav349atWqpSLy2IPeXLbC3GPNO0fW4dfpM/DT/PUIfhyC0XVd8V4zV/h5pnIfKVIHuHHIZG+p1USoIWv/p2+lM2QNUKIRshsiRK0kRkuVKqUqxfLGT08oRWlStm7diunTp6t+nCxaNGXKFLWutbGGEGWoMY+P54czW9psGgdHzMHkrBtbwKQ2y8fCTR07dlTCUxOhFKQMdTbWXiWlnNLM8O+//6J///7Kw83ZQkEQ7FuM8pZ4/k4otpy7iz2XHuBwYBBCImPNtn0vN2fULO6DRmXyoWWFAqhY0Muq3gQiIlQQcqAYDb2rF6H3zujzQQcsBgpWTbYaI/Def/99Nb6pUKGC6ubQs2dPs9spS401meb1w5iu+ObfrSoNdlANF3zWyg2+HibeS4ZvMppHmiUilMREAr810xdeGrkj21XRFSFqBVjtlhcaDQXDdlnt9t13k7vZKVZZNYx9QV944QVkFdYQonv27FH5ofQQM0/WmCH88ccfVfgHE9VTgpV3KWi5Da5vrDdpajmlmYWXD3ui8jwtW7bMrNsWhJxKVojRM7ceY8mRG1h1/BZuPEpsczxdnVC5UB6U8vOEr2MkXGNCERvyAOFBd/D44T3cCAzAooUL0KBRI9Rr0Ajefv7IlbcgnL3yItrFC8Hx7rj8IBynbz5GWHRcom0X9nZHp2qF0LN2EfUZlhalIkIFIQeKUXpCWYn1/nnAqzAweAXgVzbRKrGxsaqfPVvrcaz60UcfqfQjZ2dnuxxr3ju2AQNHjUfgpTMIiojHF63d8WJNE4p89vwNqNHXuAgt5QP/2OvW71V6/RAwsw3Q41egRh9kJyzz6xISXWhjx45VBsLT01O1XjEmvAi9f4z1z+79KXmc9FoytyGlc1GmTBlMmjRJiUvmerLVjTER+umnn6qWMAzpTW9OqTngoPGXX35R3lB6ZTmwEwTBPDmjFKPMGbWUGI2MicOyozfw5+4AnL71OFFobaPS+VDRJx7RN87g2sl9OLL6IFacOKEKZWgwZ5926OrVq9DFx2Pvjq24eyNQRXoY2iwOshi50ahOXRSv2gBuRSvjXLAjdl16gJvBkfh95xX1oHd0UKOS6FmrCDxcncx+vCJCBSF754wSjiMTidHoMGDe83oRmqsA0HA0EPkoWSEiik7a2zfeeENFlXl4eMCeueXgj4b1auOd3nUwZ/FqfLjlAf45EYM5vTyQP1cq9xOKTGMi1Pkc/Bd+kiW9SlG0DvDMq8CWz4AqPQFny3TNyArEI2pBeGpHjBihPJzM95w/f74aTDFnlG0/DHMYKcqYG2lVd38WzVIx9Ja9o+hJ5HlJa+DEnNkVK1aoNjZJRSiNpiki9O2338aXX34JS/HDDz9g8eLF2LFjh8U+QxByGpbyjD6OjMGsnVfx556reBimF5YuTg5oWSE/yrsG49qBdVi9fKmKyOBncqKJLQn4YF44C6uxH55h8bikdpPhYcx75yDm5MmTSgDSxnNSkqkJpUuXRuduPVC8QQdciPbBlnP3ER2nzzf18XTBoIYlMKxpaXh7mMcGiwgVhBzoGXV3A+b3B86vBZzdgdjIpys3fg3xrScqLyiLYbI//ezZs9GwYUO7H2tywnDqd1+iWNQ5PN+8qrJ/C1ZtwY8LtyEgKBbTOnugVyWXNENzE0So72P4b3g51XWtFqJbdyjQcBSyCyJELcg333yjiuRwILN06VJ07do1UQEjlsFmAR3mOVLE2MrAwJLGgaHHNHoMQ05PTiWrolFwMkyX+0RvqSkiVMsjNXduaFIY0lKpUiUlSFnlWBAE2xOj9IDO2nUVv22/hEfhMWpZER8PdK3ohXv7VmDe7BnKRlFk0l7zwf7OprRGMNVuMo+d9QA4ucZJOVZI58RavxeHo1CjHlhxPgTXHupDg/O4O+OlZqUxtEkpeLpmPIBJRKgg5Ewx2ipqHVwOzwScXPW9Qg0IjdZh4OE6WLZ+m0oZ4+S+Nb2glhxrcsy4e/FvGNOuAny9nh7T5cCbeH/aP1h36iGG1nTG123dk6dDVOwC+FfFjXyNcSTwsd4TutfAE5pGGK9FubwV+G8YMO4o4OaF7IAIUQtBYclqqjy9zGF85ZVXEl6jGGUM/q+//ooxY8ao122hOqSljQPPBb3DDAHhtp2cnNKdV0pPMrfTrl07FeaclV7QpLBVDL3cbNtjS9+nIOR0MUqbseH0HXyy8jSuB+lFXpn8udC5pCO2z5mMFcuXwcvLCwMGDFAts+j5TO9nZMRucr8oEJm/zgcLtHXu0hWtBo3HmmsOqmiSJpY/6FIJ7asUTHcOqYhQQch50LZcX/09ih14IqDqjwT2/5bw+pWgeHT/NxxXw9ww798FWTKBbqmxJnucTvv6EzyT7zFa1S6T7PWomBh8OeM/zNpwEmXzOmJpHw/kdkts72/4NMCR4sNQL2on/M/9lfKHWdMjqjG7C1CiMdAye7R0kdGyBWAFVRbFoSFgfqihCCX0jlKEsi2L5jHNCZw+fVqdG+bApleEEg5AWU2YAzEO2lKCIW+skGtNEUpYYIrhIAwlFgTBNvqM3g2JxIi/DuGlvw8pEcp2KhOa5IfXzil449nmOH/urIpOofeAE12siGgtm0xbRtHLXHh6Rlk1/crlS3j9uZZw2/I9JjT2UyKUxZNGzTmMIbMP4M5jg9C6NBARKgg5E4fbx1H0iD7961KR3gir0CvhtW1XY1FvRhjCY3TYu3x2tovi2rBuHTxCr6FJtRJGX3dzccHE0S/gqxFtweCTOtPDcPlhXHIRemVq6iK08Xjri1DS6gNgzzQg9B6yAzlDAVkRzsT06tVLhV+xLQlDNQ1hOeyRI0di9OjRKqyUPUWvXbsGW4KzVOfOnVNFgjjoO3/+vPLicnlmtsmKtt7e3iofNiPvZ/VhilGev9RyaS9fvqxysqwNK8sxFJgP5oAJgpC1YnTNiVto/8N2bDxzR+WADq5XEBUuzse47o1w9IjeE8nJMdoUU8JvLQlD4oYPH67uCWzhdfrUSbzavRFKn52LIfULwtXJEVvP3UO7H7ZjxbGbaW5PRKgg5FCiQoAFg+EQGwld2baIaDgOOy8GI6zRW1h2NgZt/w5HjYKO2DdjAiq3eh7ZCRaOO7V3I9pWLwRXl9TTGfp0aoHf3xuIYnnd0fTvOJy8G5dYhIacSPnN3aYBbT9CllC8AVDiGWDXZGQHJDTXjPDGTxHKNh4lSpRQhSkM+4AeOHAATZs2xXPPPafCSjnrbpgzWqxYMdgCrEJLz0DhwoWVV5feS4osPnx9fVU+E3M8eYzFixeHq2va1bu2bdumeoNSnFOMZkSEsjDIlStXVPgrz+GSJUvU+UsJepuZg2tNKEBZHZO5Fr1797bqZwtCTsCUMN3o2HhMWnUaf+4JUH+zLUoHn9v45A19sQkW5hg1apRZxZm5w8wYXcHJSlavZA76B9/8hM3hRXHihr66b78GxTGxa2W4OSePLhERKgg5mCWjgGP/AN7FgFE7oHP3UTmj//zzD77++iv0bFkXc3+bDJdS1ilKZC2bSbs3/edpcL62E8Pa1zQ5jeHKtVsY/cUfOHojCu98+Cn6OqxMXYTSE5pVIlTj1jF9iO7rp+0+V1SEqBlhEZ4JEyaomz7LZ3OQpMGwK4Z8Ubht2bIlUbVYWxOj69evxx9//KEq/nKQR+8uWxGwCiSf6fXlgz8disOKFSuqSpJ8GBOlHAxRPPr4+CQ6J+kVoaxcxgJQNDY0WszBpZeV208JhuhaulBRUhh2TY/G9u3brfq5gpBTSE2MMhT35TmHcSggSP39Yv1COPHPV1j83wI1OcQwXE6m2Uu+E6uFM72D0TTde/REnUHv44/9t1Sj9hrFfPDbgDoo6P30fiIiVBByMCf+AxYNAxwcgRdXAyUaJdQtef7559G8eXP1//Q6BCyBuW0mnT8rZv2A4c2Komj+9B3fmYuX8fr3/+DojUhsGOCOqgWcUvaE1jZvP/oMQyFaqSvQYCTsGQnNNRMsUPO///1P/Z/5PoaCKzIyEj179lSzMzQASVuWsHEwxRK3YWthutxnDvYKFiyIsmXLolatWqqKZI8ePdCqVSsVZnv27FklXFnJds2aNYnarBC2auGgqHr16hkWoRw4Usxr4Xh8jYNRlidnf9aU4P5Q5LOQEJ+tlStKg0jhLAiC9cJ0L94NQc+fdisR6uXujLca5sH0sV2wbcsm1T7rv//+s4gItSR+fn7Kk7Fo0SLs3rUT00Z1xFsNcqu2LseuPUKvn3fh/B19z1IRoYKQgwm5A6x6Xf//Zm8liNB169ahb9++avL++++/VxP0tJ1ZDceKTP2izaLHlmM8dkbIiH+M4+xNq5eihr9DukXo45DHcIqPxeQJ/VGzkAvazwnDlaAU0qsKVILNUGsgsO83VqaCPSMeUTPAC4feTl5ILEDEYkRaSABPL5sEL1iwQPWYTM0jaCueUUOPqKlFhegtZV4phSNDeOkdbd26tToPzJOl17R8+fIZFqHcDs8lK+Fy4Mn/M8yZ4bcfffSR+mzuQ1pYK1x3yJAhap95HgVBsLxnNMqnJMb+cxTBETEo5ZcL3X1u4J2xw1RxNIo4tmSx5/7L5O7du2owyYHkF1NmYFVYCVy+F6bavPw+uC4cH1wRESoIOZX5A4Ezy4FCNfXVXJ2claOAjg6Ol5jOxPFZoj6jWZgb/9OP3+H4lsXw9y8IR2dXfZ9TF3e45/JGXv8iKFaqrEoBYwHKtHrOU2wfWjETr3SsDC9Pt3SJ0Nu3bqNwkcLInSs3rl6/jWETf8aNx3E4PDIXPF2S+OvKtQf6L4BNEB0OfFcBePYPoFxb2CsiRM0A+y9RbLGADgtf0MOpwVl4zkSxKAYr6aaFLYjRjAhRwxzJgIAA1aKFeU0cFOXNm1f18jS1EqUxEWq4/ZUrV6rQYJ5PbpMG9f3331ef9fDhwzS3b41w3V27dqkWM5zhs4UQGEHIrgSHhuPNv3dgfUCs+rt2cR8Uu7oKU775Qk0I/fLLL1YRZdYQolruKEN1WWH35XETcKtcdxy5Fgx3Zwe8XtsFgzs3ExEqCDmNMyuA+QMAR2fgpa1AwWoICgpSYx3aI7a/y5MnT7I+o1kpRid/PQle17dicLdmiI6Jx6PQSASFRCAoNAL3g8MREBSFoGgXOObKh2LlqqJ6rTqqBkfSFDB6Vn/+5mO0LByFptVLZViEKs/itX0IvPMQ3X/Yg/yewLoBnslzTW0pPHfleCD0LtB3LuwVCc3NJBSNkyfrK1exR6ahCL1z547qE8oZbFNEqK2H6ZoChStnrzgY48CMs3E0HOYQodr2u3fvrnr9adtkeDDPr6ktHRgKYmkYNsiZPOaKCoJgfjiY2nz2Dnr+tj9BhLYu4YbcB/7A1G+/VJODtMnZTZRxEMY8dBaU+23q93DfOwNV87sgMlaHH4/F4fSd8KzeRUEQrO0ZW/O2/v+NxykRSkdAnz59lEhbvnx5ggglHFdVqVJFjZ1YzySrw3S5P57urijslwdVSvmjSbWS6NGkMsZ1rYXx7cuiU6k4uF7dgpWzvsV3n32QLAVs3ZrVyBN1C42qFM+4CI2PBc6tBq5sRfHw4/htcBWcexCPdzdGJX/z8rHAnN7AsX+B6weRpdQaAJxfqw/LtlNEiGZyZprl9jkgYiP0zp07J7zGZWzRwgvsp59+Std27V2MEho27n+lSpVUgSZziNDUYN5q/fr1VQuEtGCIsKXzRrnvvAmw6qUgCObl5I1g9JuxD0NnH1Shqfm93PBrv+q4vvQbzPv7T1WV/LXXXkuXDbEneFyc5Jw7dy4W/jMXoWu+Rf0SPgiLisOwPw/i6v2sz/8SBMFK7PoReHwD8C4ONHtTLXrvvfewefNm1a2gTJkyyd5ia2I0Jbxzu6NuhaLo37o6xrUvh/re93FyzR+Y9sV7+GfuXDWGu3BoK9rXLAZnEyP4kolQEh8HhNxKWKe+112MalkSvx+JxtKzRloXXtwILBkJ/N4a2DARWUbh2kDugsBR++1fL0I0E7ASLPtVsphE0n6hDMllYaKMVmi0dzG6YsUKlYvAkFxLi1CGv77xxhsqL4rh0am9l55TtlZp2LAhBg0apJ6Zd2oJeOwsWMS+gIIgZJ4bjyIwfv5RdJm6E3suP4CrsyNGNi+NjeObYfG0T7Fx40ZVNK5ChQomR0jYKzw+FpBjK5qdWzfDdd8fqFbEGw/DojFk9gEEhUVn9S4KgmBpHl172k+y3aeAi4dKDWKHARaQZK2OlLAXMarhk9sDrWuXxfhuNdCzkhtu7VuCSe9PQEHHh6hY/Gk0YrpFKHF2Ayr30FcbJjHhmNC7AdpWyI3RqyLwIDyV+wnPf1Z5Rh0cgFJNgSMiRHMcbJrLi1yrkksxqhEcHKxyeNjrko+MYq9ilHkHFF/cd8M+qpYQoewrOmzYMCX4fvvtN/Tr1w9eXin3VKIXlC1fkk4oWMIzWqdOHXX8nJAQBCHjRMbE4fv159Dy261YcuSGWta9ZmFsfqM53u1YCb9M+V5FHzC3nZ6ApNV0sxuG1XHfeecdZdfm/vkHqjzcjiI+HrhyPwyv/nsEcfFSAkIQsjXbvwZiI4ESjYHK3VW7PebGc/zFdoJpYW9ilNDzWaNMIXi5xMMt4g7a1Spp0rgxRRGqkcsPqDMUcPcBqvSGS5Hq+HTcYBTzdsbAxRGpb/zBRWQZJZsCDy8DD6/AHhEhmokCRSwXzZBQtutIKmx4MWu5o5nBHsUoK1T6+vqqc2NJEUqYh0nvh1ZBk+eIxYFSa+lirbxR5rO2b99e5WcIgpAx9lx6gE4/7sCUzRcRHRuPhqXzYvnYxvixby0U9fVU0Rf0gtIzyNzxlFq7ZBeMtWjhPYiRHl999B76FQ2Gh4sTdly4j6mbL2T17gqCYCkeBQJHn9ShaD1RecdYuJFjqlmzZplcbNIexejdoFCs3HsGrWsUR+mi/pkXoYZitP5LgF859WfZEkXwSu8mOHEvHnOPpxJlkq+s3iuaFXmjpZrqn08vhT0iQjQDsC8my2DzIp86dWoi8XTr1i0Vpsv8pMKFC5vl8+xJjB49elSdA/YYTatISGZFKGHBIk4KtGjRApUrV8bly5fV/9NbBS49rWXSQ4cOHZS3loWrBEFInxf0o+Wn8MKMvbh8PwwFvNzwc//a+GdEQ1Qv6qPWOX36NPr3768KmLGNk0Z2FaOp9QmlJ5gROG+PGohRdfWVun/cdAF7Lz/Iwj0WBMFi7PheX2SndAugeANVGZcOkM8++0y1zEsP9iZGpy3dg7weDujTvoH5RKiGFp77hH7d2qBNpXx4a0MkHkcZuZcUrQ+seE2fL5oVeaM+xQHfksDZ1bBHRIimE7YPGT9+vPr/2LFj1YVryCeffKL6HbFfpTmxBzHKKm1srcLiROzdZ2kRSnguOClA73TRokUxcuRIDB06VOV+mlK4iDBH1FLtXCjICfdREATTuHwvFL1+3o3Zu6+qv/s1KI4NrzdHp2qFEmwFr3lWJGdUBENTk1bmzm5iNDURSnhe6AUpV64cpk0YhN61CqluBG/9dxzh0fqqwoIgZBPC7gNHn7TsaPaWKpDJSfmaNWsmjFHTi72I0eOXbuHw+evo2bgSfL1yZ1yE8p7AokNxRooRGRJ6B70blwNvMWNWRSZ//fp+4M6JrM0bLdYAuHFQX0HZzhAhmk7YD5T9lxh6OnFi4hmPCxcuqDwlhon5+Ohn7HOSGGWhEA4O0+oZag4RGhoaijlz5qiKxKxe/Pzzz6sKxlrvVYaqmfId/P777/jyyy9hKegVZ57osmXLLPYZgpCdWHLkOrpO3YnTtx7D19MFs16sh897VoO3R+LenLS/ly5dwr///qtsiTGyixhNS4RqMBKE5+P69euI2jtP5YsGPgzH12vPWX2fBUGwIEf+BuKi9VVTSzZWYwz2SP/qq6/S3f/dnsQobeHUJXtQroAnOjapmXERGv4A2DtNL95OLDC+AV08HhxaBhz+Ew1dzqB1RV+svxyL68Em3kesmTeat7TaX9y2v+KYIkTTQUREBD788MOEMCiKUUM+//xzFCxYUJXVtxS2KkY5QNqxY4fqGVqyZEmLiVB6XdevX6/EIweh9DiOGzcOtWrVUtu9ePGiEqY8NywWlFpjeXpCWejIkvD4eE62bNmijl0QBOOERcXi9QVHMX7+MYRFx6FBqbxYM64ZWlZMXnWcA65vv/0WH3/8cbKolOwmRk0VoRrMmWdo3s8/fo/+5fX29c89V3HqZrCV9lgQBIvCViMHZ+n/X2+YitSjA4QVctu2bZvpzduyGF255yzuBQWjf7u6cHF2zng47rX9qjKuIvgacD9xPv39R6GYOHsTLl2+BEcHwM89HtNerIvSvk4Yv86IVzSlvFFr4ftk3H1xE+wNEaLpgPmgnGlm6GlSsXn37l3MmzcPr776qskhodlJjC5dulSFJDMn0lIi9MSJE2q2b9u2bcpIsjJxu3btVIP31atXq5BchkYzZ4yVJDloM2zinJSePXvCGlSvXl0VUjpz5oxVPk8Q7I3zd0KUF3Tx4Rvqpv9am3KYN6IhCnq7J1uXE02sClm3bl2TqkLasxhNrwjVYI2CRo0a4Ye3X0KnKgVUiO4nK06r8D1BEOycy1uBRwFPqrv2UpF6HF+YM7rLFsVoeGQ0/t5wFA3K5kfdKsl7o6YrJ7R8B8DVoMNC4B7lUYyOjsXvqw5g6LeLEXDzNkL86kDn7AGUao7c5RqjX/OK2HktDmfuxaW+s43HA0Xrwmr4ltI/n7a/6DsRoibCi5B9mQzzQA2ZPn26CodgeKg1sCUxyhYqLBrCgQ8r1ppbhN6+fVv1Y6XQZ7gtvZgMvTX8rHr16qm+pXzcv39fDbjYS4siMKXBG6tMWgN6RMm6deus8nmCYE9sOXtX5YOyIFHBPO6qGNFrbcrDiYrUCGzTxCrXDKvn9W4q9iZGMypCCe9FM2fOVLa5wK3dcHN2xL4rD7HhtBRNEwS75+STlnBVeyPOyU1FQPTu3VtNzpkTWxOjM1cfhKMuGgM6Ncx8YSKOQWv204t5EnITZ/dtwKCv/sO6vafQqWYR/PBqT7Ru0RQODUcDxRsBTq54sU9PlPRxwvubo4xv16cUMHwT0PZp8TyrekQfXNDnvtoRIkRNhIMfCpwyZcooj5shDIugEOXyvHnzWm2fbEGMcrDEQjzcl+bNm5tVhLIf1oIFC1Sf1pCQEPTo0QMvv/yy+kyG1U6ZMiVhXX4+c6O4jJ/TtGlTFabCBz2mxmA/UUv0D01K1apV1TMLOQmCoIeTRb/vuIxhfx5AaFQs6pfKi1WvNkGD0in3HqYd4AQS27RoEzzpwV7EaGZEqAarZnLSbupXn2BAvcIJVXTFKyoIdkxsFHBmhf7/1Z5V4xh2CzB3gUxbE6PX7wVj/cHz6FinFIr5+5mnOq6HL1ChU8KfRUKPolYhF3z5UgeMerY1fMOuAPunK5Gq4ZXbE90alMHWq7EIijBy/3j2d+t6QjVyFwDouWWeaOQj2BMiRE3MDdW8oe+++26yWXjmLFIIjhgxwur7ZgkxyoGKqYOVAwcOKIHepk0bo/mYhiKUhYxMyZPkIIzhtwwzoaeVAzHmgfI4WQSJhYr279+vzruhUeQkAD9n/vz5ymvN6nF8D6vppjRBYIn+oUkpVKiQeuY+yyBQEPT8sOE8Plt1BvE6oE/dYpgzrAHy5U5dcH3//fdKnDE3NKPYuhg1hwg1LOjE+9fj/Uvg6eqEUzcfY+OZu2bdX0EQrMilzUBUMOBVGCjWUKWMcZxTv359i32kLYjRqYv3oKCXM55tU988IpRtWEPD8cWqy9h8Qx/h6OWiw1vNcqNMsYL6FUJu6UXdjUOJ3tenW3vkz+WAr3cZ6Su67WtkCQ4OgNuT4456DHtChKgJsDUAw0OZGzpw4MBkr//5559qdp7hoVlBZsTogwcPlFdw4cKFSmyzKfzs2bNx48aNNN/LXK01a9agdOnSRr0ThiKUhYyY10Uhn5oYO3funNoPhrGWLVtWeUDpReWAUaNGjRpK9DM0z1i/UE9Pz4T/c9KAIcMUwSn1hLU0mgjmPtjaoFcQsoIfN17AlM36ioLvdKyIL3tXg6tz6rejoKAgVaCIbbO06tjZTYyaU4RqVbs5iffz5G/wXE190acZOy6baW8FQbA6F9brnyt1waUrV1S3gtGjR1v8Y7NSjB44ew2nr95C7+ZVkdvTI9MilEUv5248iiFfLcKpSwEI86sB3RM55HDrCBAV8rQlSplWQMUu+r9ZpfjmUZR+vAfNK/vjnxMxycezF9ZZt22LIU5P7heRIkSzFfyRccaJ8IbOME8KN4pTPmtijP3sMtoL09pilAKRjY8Zxjpp0iR1LIcOHVLHyqq/FHecRU8LHjcHTsbatRiKUBpKtlnh9jnIYq5nUuhVZXgz++Ax/3bQoEHqcfLkSRWGy+9A86byPPfr108ZRFNo2bKlEqfGeptq36Ml4TnQvOgMNxaEnMxPWy7ih436SIT3O1fCqOZlTLKdnHiivX3zzTfNsh+2JkbNLUI1WNCJ2449vVHl3e6/8hBnb9vXQEUQBDUg1fe9JGXbqjxw1s147rnnrPLxmRWjtEN37tzBkSNHsHv3bly6chUxsXFpvmfa0r2oVDg32jaolmkRuuvEVQz9ZjEWbz2CFpXz46eBNdA13xU4wMD+B+zSP7t7A0Xrq9zQhEJAF9YC989hSKtKiNEBay7GZm3bFkOcn+ynVg3YTjC90kMOZfv27UoMUciwKitF0ddfP3W9s38lBw7dunVDVqOJUU1YGfMaBAQE4J9//lHVf7k+vYs0KobhxixwkRYPHz5Un8Pk+KSCMGlOKFus0GusCcmtW7eiT58+6jM5sGTFW27Ly8sLnTp1UoaOvTcJcz25fXo1uW5q7ViMweMNDg5W5yIlEcjwXJ43SxpvHg8NML06PE5ByInM3ReAb9adS/CEDm9a2qT3MQ+fk1m0G/7+/mbbH02MclBEMUp7lloPZHsToYS2Z8CAAZj9y4/o8uUyrDt1B3/vCcCknunPsRUEIQuhwHkUqDxfuhLPYOHCMUqEWrpTgzExSihGmzRpYjQyzdD7ePbsWZw5dQoXTx1G1OP7cIgJg6tjPB6eP4cLXqn3PP1v+0mEhITijd6tkvVHTY8IDbgdhB8X78bFa3dQrVgejO5cBkWiLgCBR58cmBOgeyKK754GSrcAnJNUbS9QCXh4Sf23XhEnVCjghpmHY9CpnEvy8OkafZFlHtHYFAop2SgiRNNg2rRp6pkhuQwbNRShhMV0ODCioLMF0hKjFF1MbGfbEz8/4wnfprBo0SJlfLidtAoTMUeSVd1YZIT5nez1STFcrlw5rF27Vg3CuM8MfaaXlqGszAUj9EBTxKa3QTPDYEeNGqWEKEN8GzZsiOXLlxtdlwKXnlE+8/PKly9vdmHKY6IQvXXrljpOQchprDt1Gx8sPan+/2rrcsoTaioMoee1bIkQtKwWo5YUoRpMcaBHuazuJtbBCatO3MLErlXSDIcWBMGGuLJN/1y8Ac5dua7GUj/88IPVd8NUMUrP59b1qxF87TQKe8bgmcLeKFEpHwrnKwlXF2e8cuUcUquaERoeiX+3HEfjSgVRvVyJDIlQbmP6qgPYcuQSing747NuRVEN5+AQ9MRrSW9nkbr6x5XtwO2j+hDcOyf1ywzxK6/3kBaoBKfcBdGs+nXM2nZFRfsliuo5Ph+o/5L1ixY5PRHEcfbVs16EaCowXJT9MQn7hh49+mTmxEhV1KwMy02PGOVyFgKi1zOjQpRi9tKlS8p7ScFpSnVcJtIz95PnkQMv5qFSvNOYMbSXuUwUasxN5XnnQ9u/9IpQwvBebUBHY80wXw4uu3fvjmXLnvZZ4ucba7nDCnTsWWoutHY/9CQLQk7j4NWHePWfI6ow0Qv1i2F8m3JpvudIYBCu3A9DKb9cyl7QzloqciGrxKg1RChhWgIfu5bMRv66o3EvJAo7L95Dq4rm8y4LgmBhru3XPxd/Rk2s0xPKzgBZQVpilJFoy+b+jlLO9zCwTXn4eafsNU2JX1bsh4djHPp3aJRuEao6Ouw8jXmbjsHNIQYTmnmjad4HcIw4/HQld1+g9iDA5YlHuWgdvRAlt44lF6IUrcwZfULjWpUwc9M57L7mhMbFk8ipI3MSe7LzlbWCMNXBHpHp0FRg9VWGFdSpU0cV46GnzBhdujxJZLYhUsoZzZMnj/JiaiGr6YUXN8U5vZwcOKWnRQvzT9lSQNsOhScHXhShhJ5lVrtlG5bMeGs1mjVrpgaUL730EipXrgxfX1+1f4YFp06dOmX0vfR8mzN3NCpKHyqRtP+sIGR3Ah6EYcRfBxEVG482lfzxafe0J+6+XHMGPX/ejdcXHEOPqduwdPlKFZZryQk/a+eMWkuEavD8rV+3Fh0q5Vd/rzx+y6KfJwiCmQncq38uVh8rVqxA27ZtrRqWm56cUaYgFSxZATE6B+TL87SApKlcufUQ249dQef6ZVHQzyddIvTw+RsY9u1izF23Hy/ViMPfbYLQ3OMcHCPu68NXizUEKnTRey01EUpy5ddXIyZh94CHqRd2a1K3Ggp6OWHuCSMeyEOzgN9b6x9LRuqfN0yERQkPetqWxo4QIZoKc+boZzSYX0Mo7Iz1amKvNlskJTHKfMsSJUokqkRrKrt27cKjR4+UmNU8lWmJUIa8stcVPaLMV9IGXDdv3sRff/2VyEvIfTP0smYG9nVlMSZ6Xlm1t2TJksrjwTBcUzBnaxetaq+lB5uCYEsER8Rg6OwDCAqPQY2i3pj6Qi04Ozmm6Qn9ddvTAUBk4ElERYShXF3jfYrtUYxaW4SSrl27qiJ0eSOuq7+3n7+PeLqoBUGwfULvAY8CKP/wMFdZNZbhNZ3VpCRGGVHSsWt3XI/Og+OXb6d7u8znLOrjgp4t65osQm8/DMH/ZqzDR7PWoZX/Y8ztFIn2+W7CKY6OAAegRGOgwcv6/M+CVfUtT5KSp0jiXM9U8HB3R/3yhbD1jol1P3ZNtmxF3YgnY2lP4+0KbRURoinAcM69e/cqsfXCCy8kLGe4JpdTQLFSboUKFWy6+IwxMcqCP9WrV1fLmESeHjHFXC16hitVqmSSCOVgi+eMRZ+4LvNTNe+gFjZs2G7FnLAHKcOHGQ78448/Ki8rQ35NJSUPeEYQj6iQ04iJi8fYeYdx6V4YCnm7Y8aguvBwTTvMnuG4hkRc3AenPPnhnL8krIGlxWhWiFDCaBTmy5/evkL1FL0fGoWzt5+0KRAEwba5fVz/nK8sDhw/q+xI8+aWn5zLjBilw6NKwzbYeOIWomOMVJdNge3HLuPyjXvo06oGPNzd0hShkdHR+GX5Poz6bjGqOV/GvA6hGFjyLjxiHwOOroCbN1C5B1CyKeCSxhjMx6CuSvgDIN5IVV+2RwnYDRydg7aVfHE/6DGiY028T1iqom5MxNNquSJEswdabihbfySt0khhx/BOevSMtQSxZTFK0UgxySJBHAjxWatmmxYrV65UBofiLi0RylxPFh5ieDML9Bw4cEA9uJzrsygQoTg2FKbmhEWBWG1Tg5MKpuZ9sTqyOfPRxCMq5CRYvIGFiXZcuK9Ez++D66JAHtMmYZgTakjE5YPwKFMfpfObJ1IiK8VoVolQQvtMD8ra1avQsLS+KvnuS6ZPzAmCkIXcPqF/LlhNtdtjmlWZMqYXfMsqMVq5alUcuhqMJVtM8wQyHe63lQdQvZg3mtWplKoIpT1dvfcsBn+xENHXDmNem3t4oXQwciMccHYDSjQBGo0GGr4M5K9g2oEwl5NjWQdHfaiu8qYmgcWIrm4Hgq+jYeE4eDrFYee1ONO3bwnCn3hDHZ0BtzywJ6RYUQowlJSk1JaFAofFi3r16gV7gGKUBYMoDimgmfdKo8FKigy3bdGiRarvZz4njR8HTxSdKYlQVsVlEj3PDQ0RhaeWi0oRyFLjFPGshLtw4UK1nc2bN6Nnz55mP2buGweTNNj0BtDDSRHOyYUtW7YkrNehQwclOtnSpmjRoqp4kjlFKAflWusY8YgKOYEpmy7i3wPX4OgATOlbC1UKe5v83lrFfTGqeWkVnhsX8Rixj26ja7uWarkl4aCGERO0lbRn5i5glJUiVIMFRVhls5yvMxh0dux6+usECIKQBbCKKylYFYf+3a2cIFnRaio9BYwY7bZ5+Xx46UKwbHcgmtYqj8L5U/fWzdt8HJER4RjYsT0cHRxTFKGnrt7B1MW7UM75Nn56JhJ+rtFPN+LpB9Tsnzj/0+SDcATqDgPc83LQanwdVs+9tkf/39xuyOPmgO0BcWhVKo32go3HW65gUfiTSUWPvMZDjm0YEaJGYA4kcwpJ586dja7DkFaKCwo6e+H48eNKUHLGioLL29tbtVChweBxpBZizHYtFHTsCWpMhHKQRXFHDyvDmkNCQhK8kQyJZU5pv379EqqqtW/fXglRwiq+lhCihDmihoKQx8DjpxjWckW5z3xoMI/KnEKUObDcJtEKMwlCdmXBgWv4YaM+v/qT7lXRpnL6K7O+07ES2lcpiCUrVuNTAB8Ps3yfZk5SLV67GTUrlkG3Lp2VnTCXGLUFEUq0+5Xz4xsqZ+rYtUdZsh+CIKST+09qVuSviEOHpqrUMFtEE6MnTpzAwpmT0a2GH15/qR1e/HoR5q7ZgzcHGR9Tk4ePw7F4+0m0rloEFUoWNipCuc60JbtRMvosJtcMg7vTkzx39vxklVvfkoB30cwdBIVsatC7GhMGeBWCs3dRFPG7iGMxhVhq1/j65doDzd+ybNXcB09Cfnn8doZtTafYCOvXr1ciil600qWNN1yn2CJaFVhb5+rVq1i9erXKDWVPTQpSeirp0aVI4jGnBA0KhSc9icwvTSpCWXmWfULp5aTYpZDn+WNhotdffx1z587FiBEjEpX25nmlGCZ8D72tlob7yn3m8aRWsMjcFXPZKkerGpyVFe4EwdJsPXcX7y7Rh5CNaVkGAxom7v2WHugBdQ8OsEoIGgXi+q27EJ2nGHaeu4PPvpuKxYsXqwm1zIbp2ooI1dIVaJcfXjyi/g58GI7QKNNztwRByAJ0OuCBvoDbY5f8quuBLaeFXbhwAecObUO7sh6oVMAFbq6O6Ne6Bnafu4uj5/TjIWP8vGwv8rgBL3RomEyEMmR39poDmP3XXxhe4CgGlQ99IkJZhKipvghRySaZF6Gm4FUQqNAJKFxLhe+WLpgXZx86ANX7GF//wjrL79PdJ/VeCtiHJjFEhKgRWFhH89qlBPMemXNIYWPrcCD03Xff4eTJk0qMURBytp9ilLP7FKZsPGxYWdfwvSwTTtFYq1atRCL07t27yuP4/vvvKw8y388KufS0UuDOmzdP5SRp+aCGcD80LyE9lf/9959VzoWPj486bmtWzNWEKKv2CkJ25eztxxg77wji4nXoVasIJrQzMScnFWiXaHcsHYJGgXkrJBqV67dA7fbPqZzUBZsP4LOvvle2jbY+I2LUlkSoZnfpFT115ADy5nJNaK8jCIINE3YfiGZhMQcEhuhtYalSpWCLUDCuXLwAZdwe4dk2deCdx1uNGzs3KAtfby/MXXcgUe0OjTMBd7DvdCC6N6oA1rQzFKHbjlzEinkz0NFhC16v9giFPWP1bVhyFwJqDQRKNtbnhGYRhfzy4PH9m/rcUWsXKdK490SI5hchmi1gGBbhwCM1IcoiRrYWo28MegAp+pydnZU4nDVrlprp18QohSjF4po1a5INsBhuy8EX+1Uxh5IilB4Kej/Hjh2LjRs3Kg8ojQ+9nB9++KEK433llVeMClBDWFFN49y5c7AG7CXKfbVmxVx6o235xiEImeXu40gMnXVAedcals6LL3tXN0vPT878s9KrpTly/CTc/YrB2dVV2fRi5auidsd+eJSrKH79Zzm+nTxFVfxmeylTxaitiVANepc5MCyRT1+t/Or9J5UWBUGwTYKfOAm8CuHmXX1RGvZyt0U4acdHQLAOW49cgbevL/J45VHjx5e61MWZm6FYv+dJBWADWzllyV6U8nNH89rlEkTonaAIFb1W8/4i9CwRDH+PeH0IbqnmQMPRQJ3BQJ6sT3fK7+uF6Iiw1O8JlipSlNOE6BdffIF69eqpXEJ6xHr06JFIQHDAzcGHsYeWD0jU7EjnziqRmdt58803k4mDjz/+WHnhWFzBnN6ptGCxHYaKmiJEbdUQJIXVaimaJ0yYoM47v6eff/4ZmzZtUsIsKChIlQGn546VdTU44KIQZfgxRSy/L+aTsm8q29dorVAYbjpu3DjMmDFDhe9q/UXTgp/Jz+dvylq9WPl5rNLLc5ESzB/lb85c4bmaRzS9QpSTBa+99poS7DzH/D3yu9SgJ5nCn79Dvt6mTRsVEmPInj17ULNmTeWNnTlzplmORzCdnGAzw6NjMfyvg7gZHInSfrnw64A6cHU2zwQdC6tZOq+a9u9i4E0UKJY4DcPF1Q0V6zZFxVa9cfqhDt/+Mgtz5/2jhFxaYtRWRSjh+eR5LeqrF6K3gvWRKdkFsZv2T06wmxmqiJornxp7Elsdf/I7eHncG3im10jsvu+Fn1adwK2QOHjl9oKfWywqlyqIRdtP4XHY0wmwjYcvKYHdvXFFPLx/H7m9vbF9w2p4HJ+NgcVvwNtVB5UJ6lUYqD8SKN4oSz2gSSnk5wsnxOF2SsElZdvqPaKW6iEaGw08uJRhIZrVNjNdowUWlWFPRvbRZGEHFq1hERqtTDN7QvIiMXzwIqcXjZVICV3yNAwM4aTnkZ612bNnq4PUYBVXVq1dtmyZKnBDz5u14MnnPtIwaTmMxuCx2UPhGRZUonHlD4wz/RwUvfvuu+oHwx8OxSMr29JIU6RRnGqGmtVvKSqrVq2qzgvF4rRp09Sx84fJfNNPPvlEfVe8UaTXO8yKxMzDYk5mSkWhzA3zo7jv2m/WGJyBGzRokPIUs41LZtHEPXvOpofhw4er64z7Q682rzUaAH5fhOeNVZB//fVXJZoZcs1wcq1VDOF39sEHHyhPOG/uxsKvBcuR3W1mfLwOr88/huPXg+Hr6YJZQ+rBx9PVTNuOVxEblh5w8Zp4HBED3wLG7Xlu77yo1bIr/Gu3wabjAfh6yq8qCuTBgwdGxagti1DC83nv3j34eOhrFT4MM6g2mQ0Qu2n/ZHe7meGKqJ5+ahIpb968NmdXDGE0HAtbjnnrQxRt1BtLTkVgxZFbCItxRI96RXH7cQz+27BfrRsbF49Zaw6jetHcKOztgsiAA8h/ehY6+V5G4Vxx0CkPaAs4NBgN1B6UsUq4VhCi7s4OOI8UvJ4XNwBLRgK/twY2TDT/Dtw8DOjiAA/fDHmIs9pmpqtqrmFlUcKLmgKGhWaaNWumRAsLshiyZMkSPP/888pAEBbFOX36tArppJeOgujTTz9VA/6PPvpI/YA5Q02RR6GjEpRnz4a10LyhrI6YGryRa2WqbRmGQzAs13AwxxYizOFs2rSpEoLr1q1T3yPFKgUnzzm9hvxBUrgxv1T7QRJW2uVNokaNGrA3+DvkjN0vv/xi0vq8AHmuMlpFl+eRg9W0POxJ4XfGEGfeIHltEV4fzNflvvOamTx5ssrP7d69u3qdXmpeU+yB27dvX7WMN24WNdAmGjjzJViP7G4zJ288j7WnbsPVyRHTB9VFiXyJe4BmBkZc8FgsPeFHGwl3L7i6pz7AyV+kJPIVLIbAc8excNM+FPd1R/FCBdSA19A+cOKJkTW2KEKJdj5d46OynRAVu5k9yO52M91EBOmfPXzV5FzSY7dVeO0837cvrjZsiDUrlmLxqQMo5RGGasV9sObQZeR2dcKVe6HIl9sFLQrngm/AGhT00DtCVBmiks3gwEqzTuaZ3LQUeX3ywMkRuHnlLFA9jX3dNRmo1NW8FXQvbX5SBbRFulu32ILNzFT8lNYfkrMzxqDRYD9Jw7BLeuGqVaumDkKDypqzx6y+qv1Npc1wCvZ4pLq2FmzLQipV0jfSTQnOstniICMpNFoUXppxNoT98kaOHIkXX3xRCSbO4vP59u3bataN3x3zRjURSo8evanTp0+3SxFKWPU3vblrmQnX4Tnlb4XnOj2VP3lT5AA3ad9RhkUwPJrhvvyeOGulwSJRHBDzGtPg7C9/y3yNHt7KlStn+FiEzJOdbOaKYzcxZbO+AMPnvaqhXsnU+8OlFx4f4W/XkvAG6uiqD1NNC0cnJ5SsXAvV2/XFfdeC2HXiIv6e948aBN8MCkO8Th/mZKsi1PB8OsbHqOeIGBMbsdsBYjezJ9nJbmaIuCeTRc7uan/trfo+wzVHjnkVXV8cjzt5aiDKJQ8ehkQhODgIY6uGYEazh2jte02J0FgHVyBfOTiwCm6JZ2xehBJXNxclpiJNNaXmLlx0aYv+uXRLu7SZGe4jyvAjxhTzhsvQTWMwTpg7ZugJ4gEZGgai/c3XNLHAGTFWZWWVU2NFbxiqYQnOnDmjnlkgI+ln0LPFti3aawxFtcR+0NCwcq8pRXXSgrPznPFPqyotRRJzMDhDyB+e4WczDIYzhrwJcFt//PEHbBEWUUorjI8Cm/A3ZWouq7Hfgqlo/Wh5YRqeU352aqHMzI1hYRTORvEa4jXyzz//qAuf+6NdK8auJe01whszZ6wohjlLJWQdWW0zebNJb+uRlDh54zEmLNSHnA9rXALdq/ubzRYev/4IAQ/CER+kr27N8DxtIGoJdu/eg0uBj3E/eE663xsREoNTIRFYtykIcfu2oX95B7zRTF/l11L3qMyiTcTFx+r3LyY2zmb31RCe07RsttjN7EdW2k2m8ZhjHJZZHGOiwF9+PBwQHR2lrgN7uGaTQgcGHRoMvfad/xXGFj4GXw+9PQqOdsCex4VxIMQPMZecgAPma6GXWfL75EYJf58UXw8NDVeOyIh4Z8Q4JhZ0RvEpTRFjnp2LfAznG4fYxAYxbGOTZLv8jdu6zcywEGVoJtuBUDGn5O5lrDBjhjNKaq1RGG7BA7ZUaO7Dhw9V301jYodGi7NqWm9Oc0NByB+BYd/NzOSIUnxpAiwtAWw4WKWxY985Ftmhp1RLkrdFaJTp2Uir1QO/O3osvvnmG5OrcfI9Gf2e6SkhvDANt0FhmvTCTgrj9YcOHaqqG/O7YNjDCy+8kO6eq/wdmeO3JGSOrLaZ/GytgnNmeBwNfHvCCVGxDqjsE4+qcZewevWTQglmgoOu82fOwDGXLxZuOwaf44GwFKHBDxF07y7uX9P36TMVnYMT4gpXQ1yFNnBw0t9Kj96OSJh8slW0HtiXL/HZH9dv3sLq1U9TL2wV3oto39NC7Gb2IivtJoWoJcZ46aX8rTNgjF7g9ZsIDAxVOeq2sF+ZoWqLHvAKOI7YeB323HTA72dyw8ODIsq2xpmRMXHYcS4XqtRKOT0rIiIeVx/pcLXiKKyu0STtjR69pX+YgYKPDqGBLg6hbv7YtIs9vPV9vAntX5cuXWzeZmZIiDKhe+XKlcprl1JBH3rgKIJY9MUQxrbv369PUtbQ+jqmJ+7d0E1sLii26BEkAwYMUPmRmie0devWyUQb80g7depk9v1gGCe9ks8++yysAQUcE5XZs4/Hxe+BgpSimw/OqDA23JwtTcwNK3jxwdCa1EJvKfApDt97771UBes777yjWtaklSucGpxJ1UKFhgwZomZ0NUzxxtJLzZlDfj+c+KC3t0+fPqpNjnatJC3mwr+ZCyPYFrZgM+lNyGyIIQtLDJ59CMHRQSiTPxfmvFQfXu6pz7imxxPa7/ens+ARN90AB0cUq9MKTZuacHO3EpHRsbhwNwx7L95BjM5ZzUTrYqPhe/84ejUtBj+/Cspu2GprL3qYSamy5bHlSDCKFSmMTp2qw9Yx9XyK3cw+ZLXd5FjCEmO89OK46zxwezGKFy2MUqVilBC1hf3KKHSMHD/uiL/OtsaSDTsRFusANw831CtTFGO6N4Sfj+1MAO07cw0bb3ji3U++TvV4/vhrHprdnoEOx/5KeWOdvgVq6HMqzYXTshXq2aNqF3TqkLHfRFbbzHQJUc4OsT8kB/Jbt25NtR0FQyVYFZWiyhC6gCdNmqS8TNosFEUQBU96BklpuZszgmak2KqE3ipN0HAGmbNuSaHX1BL7wRkFfjbPN/fFUlBssmocZ/BZXIOGnp/JEBX+zf3gD4+CihXn+KNk4R4/Pz/YGjxf/C7S6l3K49MmHVKDv23+VjMDb56srMkJDZaGz+h3qc0ycZKEhaVYQIn7RwPBKseaMaABYUWzl19+OVP7LZgPW7KZWn+3zPDNhjPYfzUIud2cVXGivF6m5VaaQkBQFKLink4ixToxxEmHx2GRcHTM3H6bi+3n7+HINU5Wcj+d4RgTDpcbR+B4dS+q16oBB4diyrYwJcJWxahm+3RPcq/yeLhY5D6W1YjdtF9sxW5q44osxyOPenKMDYe7u5eKBrSJ/coATO9iIUzmGM47cxx+PscQ+TgOrSrlw4lrNzHy+6Xo+kxlDGxTE66ulhv/moxO/xtI7Xxr40p3xMCFhQJSgtsw5/cW/hA4s1z916l2fzhlcttZZTOd0xsiwRAIVldiXLEWH8zkVMPkaQo3DsKNhQ6wLDCNAHs18iC5DVZj4razurgDDRahQTP0qlnbE0ghSNFCMcj/WyoXllXlGG7LHxpLntM48ILij43Vc/k9MUyYleh4bugZZgVdGhDOxqUl+qyJVnAgLSgMTcEc3zkrkRG2tsmICKUh4PfBnApeU+yBxp6u9K7y98m8mc8++0xVMeZ3yNAkVgDk5wm2QXaymWtP3sL07frw1W+erY4y+ZMXQMsMpfwSz4I75ynA2TLER+iLFmUldx9HYuvZW7gVwnwxB0AXj+KOwfBzD8Xpq/tQtUELOMXp95P2kZ4Y2ktbFKNaioWDq/7352kLgz0zInbT/slOdtMsuD6xjdFhyJ+/tOraYK8ilEWl6tevnzA5ULt8UeDyPdwIBV7rUQe7z9zEmj0nsfHQRQzvXBeta5uWQmUpQiKikDtPXpO0Q4FcaRTCzGfmYzk+H4iLAgpWAwrXtlubma47JEv5smhEixYtlKdMe8yfPz/ReixmQ+8aDUFSOCPPUAs+c8aKIbAMqWA/yqwm4ceUJF+AA4u33norWZhbWl61jMJ8Qs6+WKJkPI+R3k3GhHP/ee4Z5szBEkNb+Z1oFXZZRY5ikwKVVc9YXZfngpVgP//8cxXiZa7iJ5mF5yrpjGhKg7C0vEIs757Rdi0aPC9afmhGQ6x5rfGmSYPA74leVRoMbWaOv0nOGr/00kuq+TcnLlh4IWn1MyHryC4289K9UExYqM+fH9G0FDpWM39vz1rFfTGqeemEvx1d3eHi4ozYsEfICmLi4rHr4n0sOBCAfw5c04vQ+DjkRQg6l/FA9eJ5cf3EHuTx8UGVRq0S3kebyaIpDHMy1mc0q2EYGSc4gyL0JR7ze9nZoDwNxG7aP9nFbpoNtzwJbVx4Hhi9ZwtFlDIrQomnuyt6Na6Eizcf4VGkIzrULYNPh7RG+QJumPLfdrwyZTkuXHvSRzULCAqNhG8B04pgFvJKRYg2Hm/eli06HXDoSbuhOi+mu22LLdlMB53mUxZUpSg2NW7ZsiU2b37Sl8cAuqLZyoPeMvbP+ffff1Uup7nhV8IcRhpYc5WNZw4Fj4meTm6f+Y80CDQO9CSyZxBFGtuz0FO6ZcsWNYvIHyNDd0eMGKEMH0OWOcBiW5dLly6psFOG66YWOmMNuM9MsE5L9HFGdOrUqQmtIQzh7A5zQzMrQglDnnkxcwaX4t+WvMeCkB6iY+PRbdpOnL0dgvql8mLe8AZwZtM0C3EkMAhX7ocpD2m3prXgW70lhrz6LqxJRHQcVh6/iZvBTxt2e0feRscGVREXHaEm8e5fv4TDaxeg4+BX4Zu/IK5sX4ymtfUeGN7Auc7u3btVqJMteUY5u017WW3cTOy78hA/9q2J7jWLZPVuCYKQEtcPAr+3BvIUxcryX6Fr166qrZ6leyxbWoRO/noSvK5vxcAuTfC/n5fiYbQzPh/4DELD9KliB09fxb+bjiDgYRTa16ugPKTurtYNSf5l9VEUbzEInTt3TnmdX37Bq6+MRdR7ueCYVBBW7AI0MbMIJYF7gT/aAy6ewBtnAXfLtjmzJLZxZ7QRtBmmlMIoKVA4yOAzDQBnQSyh4+kK58VqjpYFnI2n5/LHH39UgyL21frf//6nqrbSOND7ydk1CmqG5yYVTK1atVKz5xSerKjFdTmwosueVbV4/L///rsqAsTw2KyCn21KGDO/M4b6pFRa3BwilDCsiDB3RUSoYM/8svWSEqF5c7li2gu1LCpCNc9or9pF1XMBv3wIeWCdMLTY+HgER0Rj/9WHmLXrcoIIdY4KRrsSThjcqUmCCM3vlxendm9EkdIVULy88ZYSDP+zRc9oQECAGuTdeKSve1DI2756EgpCjiPPk4mikFsoVFAv5Gy5i4EpItQQeq37tauLoEfB2HvxAfJ45VHvq1+lNL4a2xMViuXHrmuxmLryOA6fv2E1W8rx7aNIXZrtSPhd+PvmTi5CiX9V84tQsutH9YSqvexahBIRokmK9xBTCnowPIIJ41qVXXPDKlam5jOmBGO9OVND7y09c+PGjVMeQx5fYGCgEqG8wNgKhwbCWIVYut7pIaZRuHz5coIYZSgs48m5n3ydxZxWrVqF06dPJ5xHa8HPoxA1pXcRDUZKxpD9Us0Bzw1DnwnDmQXBXjl3OwTTtlxQ/5/YtTIK5LFe+CI9o54FiuPB7evq7/DoWJWraQkCHoRh5o4r+HtPAPZceoCYeMAp7B7qeT3GmE51UbFMKWU7KEKLFy+GA1vXIib0EZr2GJDqdm1RjDK1onKN2rgepBei5QqYN9dXEAQzk7sA4OgM6OJQzFvvKOEYLjuIUI3alUqjYfkCmLPhGHLl8VZiNCAwACt2n4N3mXqY9N00lGneF8vPRWPG2mMIvGP5lI2IqBhExTun6eS4du0aiuRJQTd4G6/2nGkP+bnVqqo8nhkHe0eEaAaFaIkSJdQzw1MtAXMyKe4YUpteWM2XHrlZs2Ypr2r//v0xevRoFVbLfpuaCKVhYKL//fv3VXhtSqFjFKgUacuXL1cDK4pRehYpPCn+Xn/9dZVXyXBfilUWDmDYiLXgII9ebFOEKL+vlCYPzOW5nDNnToJQp0gXBHskLl6HtxYdR0ycDm0q+aNbDeuFgX255gx6/rwbpyLzIeLxQ/yx/Txm7LiCVSdumTUKhdti/uvms3cRGRuPOG46Mhhl4wIxsmM9PFO/jlrHUIQ+vHcHFw/vQqW6TeGdL/VewLYmRmnraf8LVdQXtijg5QbfXBKxIQg2DauG59Xnz+fHA9W5gAIvu4hQjQEdG8EF0fh91UHkzZcPO8/dx8YLYejYu7++a8Ozz2LY+A/gWKY5/th1E/9tP4XgUMtF4t0JCgVcPdPsFHFk/y5U9w41/qKTBUKJN3+qf67xApDfdtsqmooIUQO0AU5qfSgNixVRsHJ22RLQ08gQ2PQIOg6UmEDMHEh6JhlWyyRjhuOSpCKUvagYrlulSpUEYW0MClSG7Wp5psx/YmEjVm5jQaO8efOqfWUY6htvvIFKlSqpqpFc1xzhxaYMrigiKbRTg3mh3O+rV69arFIuf0M///yz+j/Fvym/JUGwRf7YeQXHrj2Cl7szJvWsarXfMj2hv27TV+d1K1kD8VFhylaRx5GxCHiQ/sk5Q+J1Opy9/Vi1Yll46DpWHr+ltovYKOQPPocXnymFzu1aKzuXVIQ6OTlj19olcHVyQP2OvU3+TFsRo1qDcke/kuq5YqEnRVAEQbBt/KuoJ4e7p1GnTh2LjT2zSoSSIgXyokPd0qpi7s8rDyHQqQQ6PT9ERQeyQA6hU2T4yNHoMewNXHUph2nrzmLr0cuIiTV/JN7V20Hw8PFPtRAmo/FOnb+M2oWcrFMp98p24PJWwNEFaP42sgPZq257JtFyB9OqVqsVLWKBHu3Gbm5YQIilkpnPw+fU4KDmyJEjSvjRG0rhSVGoVb81JkI5qGQhIoYXd+/ePc394bFyu2x6S3FJ0cfqWjQ43G7x4sUTQpaHDRumhDA9puzbRe9u9erVLZYrybLszHmiGE4NnqOUYCK6OfJDd+7ciZMnT6rvL2mDbUGwF5g/+N2Gc+r/73euBH8rhuSyUJGGS/6SNHCIDX0Ip1z6iIcbwREomaTVS3o4deMxNp/TV0hXxMUi18MzaFuvGkqU6ZKw2JgIvXjqKO5eOoXGnZ+Hq2v6zokmRjn5l1WtXVgvgGkaV0L0g6Z6JdKOIhEEwQYoUAU4tQS4c0oJUUa8ZScRqvFsm/rYe/YGjj/ywoefvKmE56lTp1QByMaNG6sxLMevbDNIpweLae7YtBKHVx5FuxpFUKWkv9kmTQPuhaBEtVapbo9dJWJj41CnsJH7QfW+5q+Uu+nTp5VyfVN2INkT4hE1QIsD12bfjcEQVBb6ochgDibDVS0FyyRzX4xVeDWMTZ8xYwb+++8/NdChF46Vf9MSofRmMoyWRZcodrXZptRo3769EusUWa+++qoyBBRvx48fT5SvwO3Tyzp+/Hg899xz6hhYRp3eSEsUd+JsWdmyac86cdIgpf5h7ItkDr799lv1zEJOluoBKwiWhvmSkTHxqF8yL56va57c6Yz0E6VQc8lbGKHHNqBM/lzoUr0QSuXzxFUDsZoWtDmhUbEIi4rFpjN3nopQXTxc7p5BU697GPp8D5QoUy5VERoXG4N9G5fDJ58fKtVvnqFjy2rPKCcH27ZrhwMB+vQEVkEWBMEOKFRD/3z9gBKitE+2VrAosyKU5PJwx4gezVDE1y3ReJIpYRSjhmNV2lO2Hxz71kQUadgb/50Iw6z1x3DzfuZ7T0dFxyLwMVA6jbElx5XOzk6o7m9ETtUfAbNy+C/g+n7A2QNoNgHZBRGiBmjCIaVwUnpC2dLEEBbu4YyMJeDFx5CAc+f0nglDKE4XLlyI3377TbUHoeCjOExacMeYCOUgi4MgXsB9+vRR+Z4M6aWopsdT66eaFOZg0nPIwaFWYZj7Z0yMEoa2NW/eXDXHbdasGc6cOaPyR3nOzAW91xwsMn8gLWgw0vIuZwZ6XHkOeX4mTMg+RkLIWTwKj8a/B/TX8thWZa0eXp60n6hHmfqIDDiKGnl12Hj6DhYeuoH1Z0yzIQ/DojFvfyDm7gvArF1XcPKmfoDieP8SKkecwvDe7VC7UbNEnkljIpQc2rkZYfeuo2n3gZnyZGaVGOUxsX1X3TY9cC8kCh4uTqhRTCbLBMEuKM6ILQfg4WU0qKz3hDG6IjuJUI1aZQujiEsw1q5aruxxamJUG5v2eeEFDHrlf4gs3BAztgdi2a4zCI2IyvA+XLr5APFuPmmOGVU3irLF4O5s5D754CLMxuNbwPonDpNW7wNeBZFdECFqRIgyvNUYDMc1BqvOWgIKOTZipsDThB+FJUNw2Y6FFz1fp5eWPTSTYkyEEnpCGZJL8dq7d2989NFHypPKYkO80PPkyaPCt4zBvqZ8L9u5aKQmRgm3xWq99JBSMDJ8lYLXFC9sWmgtaJhTmxo0ZgxLK1iwYLq+2/Tw8ccfJ3hD2RhYEOyROXsDEB4dh0qF8qBpudSLNFiKdzpWQs9a+uJIuaq2VHmi6zZuRGy8LqHPJ0VmWsWWLt8Lxf3QaOXdZSEih+CbKHx7Jwa1qYW2XXslC69NSYSGhTxS7VqKla+GQqUyn0ueFWKUUSkU0HEF9b2pm5X3g7tL2oX5BEGwAdiio6C+3keR2KtqLMZrOruJUMKxaofapXDz9L6EokxpiVHC8eWosePQadBrOBtfHFNXn8aukwGIzUAnh9OB95G/ePlUi2CywCmdKx0r+1g+P3TNm0BUMFC4FtBgFLITIkQN4A9c8zYaq6yaUjEbhsdaCuYRMRT27Nmz6mL/66+/VDNy7is9jfRQGsu9TEmEcjkFIw0G8z61QRGNGgsSDR8+XOWXptbviSG59C4y1NZUMUrorR01apTKIaXIpheWRkYT2RmB557VaVMKudWgV5kCPKXWMpktVERv6LJly9RA7/3338/UtgQhq4iMicPs3fpiXiOblc6yYlssWLTkyE31f+fc+eDk4Y2A4/tUlVeNM7ceJxOR1x6GY+/lB6rtzN97A7Dr0pMWWOFB8L6yCd2r5MNz/YcYrXabkgglu9avQHxUKJp272+2Y7S2GF28eLHKsdp+WX/e2lbOPjPqgpAjKNlE/3xxsxqnUYhau12epUWoRnF/H1Tz02HT6mXKJpsqRjkGY1rbq2++h5qdh2DTNWf8vOoYzgXeMzk1jJ7UM/diUbvBM6mut2fPHpUa1tX3vGXzQ08vB86s0Lfw6TYVMLg3ZQdEiBpA0aZ5zIy1ZaHQYhVaQ3hRWKpgEWFF2iZNmqhkbYZV0fPHz+zUqVOKOYgpiVDCQjos6sNqtxmFhYkojplvZGgETRGjWpI5q+v26NFDhenSmF65ciXd+aOcMOCjVq1aaa6rtZ7ZsmVLstcGDhyY6UJF9CoT8YYK9sziwzeUB7GIjwc6Vy+UZfux1bCYEIu3VW6GyOun4Rr+dPmpm4+V11MjOCIGi4/cwL4rD7H21G31t0N0ONwvbkYznyAMGvoSSlSoavTzUhOhjx/eQ0jgGRQuVAjXzp9EeEiw3YlR2mMWp2vXZyjO3g6Bq5Mj2lQy36BREAQrUP7JuO38WnTt0kl1DGDKWHYToRptapdB1K0zidLfTBGjxMPDQzlXXn5zInxrdsI/h4MwZ9Nx3GVLljQ4cuEmHL2LqLFqWuPKAnnzoH4RI5ElZVqaLyR31ev6/zcel+AVz06IEE2CVvSGhYiM8dVXX6kQz4kTJ6oHCwNReLHgj6VgG5auXbvi5ZdfxocffqhEE/dBmyUyVYTygqXAbt26tUk9N1OC26SnlueIbVoMMUWMGiaZ06tLI8b1OVCiYTUVeol5jDRKaUGDkdJ6DEnODAyV1nJDxRsq2DPzn+SGDmlcEi5OtnN78KrdGbrIUAScP5WwLCImDidv6AvLMedx6/l7T98QFwOXK7tQJewoBg8cgFpN26eY15maCOVrFw/vRLfWz+CdMUORL/Imzm2aj4Nr/sW5Q7twJ/ASwh4/QnRkhE2LURa04wRkuL++4Em7Kv7w8ZT+oYJgV5R4BnD3AcLvo0FhRzXesmTBzKwUocQ7tzsal8mDPZtWJkqZM1WMEp6jAYNeRL8x7yIoby38uvky1uw7h4ioGKPr0/4evBKEqvWaKjGbGjz3Xdu1hKOxyCFzhOXGxQKLhgFh9wD/qkCzxI6w7ILtjDRsTIgahp0aC3FiPiAf7733nhrgrFixwmL7xAEEPaD0tPGznn/+eeUpZa6loRcxNRFK6Lnlhdu0adNM7xM/n9uieOQAKiNiVNsOxfwrr7yiKvgyd5SGJSIi9YEdw3kZlssKxgzzTQ1WCGYIBWfHzB2Wy/1gkSjCPFvxhgr2yv3QKBy7rvf2dauhz8/MKlpUSDywcXLLBbcS1XFn73K4OD21a1vP38fq4zdVQSLVX1QXD6frh1EsYC36dm2L1s8Ohrtnyq1eUhOhhELTPfIhenXvpiYEP37/HSVIezWugsK6ewg+tQ0XtyxEwN41yOXmDGdnZ5sTo+xzx6J2A14chhUn9R5la1dCFgTBDDi5JHhFnc4sU633/v33X6tX37aGCNV4pkpxuAQHYHOSWizpEaNcl+O80ePeQJt+r+BouD+mrDqB/WeuJTt3F64/QLCDD+rVr5/qfrGPK1O+evQfDjR+LfGLjcebJyx36+dAwC7ANTfw3J+Ai/XaqFkTEaJJ0LxmKTULNlY5lz/kSZMmwVowJJchoOHh4aqHkSkilL02GctOQWuufp4MieU26RFMSnrEqJZkPnbsWNUWR0sA57GllP/AUF4O3uiZTQtOEnDASbGbNLSahZ4yE5b7yy+/qLDpfPnyJRQrEgR7ZMcFvUexcqE8KGDFvqGmVM4l3s+8gKj7gcDd88jt9jQU6sI9/USY093z8DkxH53qlkWvEa8jr78+5z+jIpTtWgKP70Hz+tUTJihpO5lPzyJvH777Fr766H/48PWX8d6rwzF+9IgUi7xlpRidPXu2ijQp3vIFhETGonT+XGhSNmuKUAmCkEmqPad/PrEAw4cMVNF47Nee3URodEwsTl65jd/XHUeke374+eVLtk56xCjhRCFt7CtvfYBKbQZgzWUdfl19FJdvPky4J+w6cwNFKtRUjpG0oky4ToeqfkCBSkC3aUDP34Dhm4C2+lStTHFhA7DjO/3/u00B/MxY+MjGyF4Zr2aAP1KtJLNWNtqU6qoUekuWLEHPnj2tsp8sKd2lSxf1mRwc0SuYkgjlgIbeUA6gqlevbrZ9oDfQ3d1diXOtrYsxMarlMDC3NDW0JPOqVati69atKp+TBYYoeFnoSDsufi/0WPNY6FFNiz/++EOFI/v7+6vQ6l69eqnvkTNkmRGhHNwxVJp89tlnJu2LINgqW8/phWjzCvlhC7ByLnuKvr1IP9nmVqAkXPyK49qG2ejx1o/YG/hk0BEfC/fji1GnRlXUfO5/Jnkl0xKh5Orpo/D31KFjKvn0rDDOhzYZyBz8zKCJUd5/KEY50ZaZVjEUtZwge6H/QKw8rxfsI5qWhqNj1hShEgQhkzD30KswEHIT9fM8QLVq1dSEOPu827MIjYuLx52gUFy7F4zLtx/h0sNYxLr6onT1jujWph2KFi1q9H2aGCUUoyzIxrFwavD1bt27K6/nmpXL8de+3ajocwMl/b0RGJkbA9t2SLNt4Ny5c/Fqlxpwnm1w3ukZrdEXmebOaWDRcP3/6w0HqvZGdkaEaBLYBoXCjr00KYKStgVJLYyTM8/WEqKkRYsWKux0wYIFyjDQq2isyiVFGz2LFK6ZrYJJUcsBHEMSGLNPY8SQ15QGS+kVo4ZJ5mzazDYxWggERSq9wQzJZQsZbdIgNU6fPq2M0/z589U+aAKUBYoyCwsuPXr0CDVq1MCIEWZuXCwIVoRFf7Y/ybFsUd42hCi5+ShxiH7e1i/hzvwPsH/5bOSq1gFhTrlVJcF8VRqjdqvE/UAzI0Ijw0Lx4NIxDOnRRkU7WBNzilG2+WLUSp3nX8WuXbfhl9sNPWul7ikWBMGGcXQCavYDdnwLh0OzMGbMGFU/hFFiWicEexGhjk7OOHItDHeWHENsvCPiXTzh5OmDIqWbo1WHairVyZQJ/oyIUVKoUCEMGf4STp1qjA2rluHsmVMoU69tmu0AOdZnROJIf7aWMbDNuyYDlbpmLiz34WXg7x5A5COgaH2gnfWiLbMKEaJJoIePN34OAviDTvqDpKiiiPn777+TvZc5mxzcpNVKxFwwj5Kz8bzoKJq9vLzUhWsoNinYGDpK0ZrSjFJKgzV6PBnqwNkfVqelOKf4ZAsXil6WD+dsXFrHmxExSmjsGKrLPFBW1mW/VnpGuR8Uf2kZC8KZQn4+P7tPnz4JyxmiS+9oRmG4L1vp8FzzM3hOBMFeOXEjGEHhMfByc0btEhkvZGZpXAuUgnvRyri2eyU+6PgM/rzjpUT0DedCOHnyBKpX1xfjyYwIJReO7Eb5wr5o1qwZsgJziFEKUNq4ES+Pxbxj+tCzca3LSu9QQbB36gwGdv4AXNmGQYPfx7s+PmrSafLkyXblCe3a63nMjYhB46ZNVS0URq1RHGYk1z6jYpTvYxQe2wDS4VGyZMlU1+e4eMqUKXi2TX0U835aPC+BBxczLkQf3wT+6gGE3gEKVAH6L8i2eaGGSI6oEbRiPuxzaQwKkAEDBiRaxv6bFGn0TloDzsZQ+DJGfdy4cSr3k94+LmOImAaNB/OWWKHWVOgRpoBdunQpNm3apDySNESMw6fHd8KECSqfk4MjU0V3enNGDY0EDQSPUcuLpehjGEpa3t3g4GA1c8WKw99//32i15jnm9Gy5/yeX3rppQSvaKNGjTK0HUGwFY5d01efrV8qr01Vy01atIj4th+LuOhIzF2wCK0rPnndwRF7b8fjwd3bmRahQXdvIe7BVXTv1F5NTGYVmc0ZHT9+vLKR+ZsPUC15SuTzRN/6pk0CCoJgw/gUB6r0UP/1ODxDjY9+/fXXdI2tbCEcl84ROjNo5ziepKMhowXfMpIzagjT2yhI0xKvHFOyY8Tbg4wXv8xwtdyw+8DfPYFHAUDe0sDAJYCH7U4KmxPbGXHYEOxvSeiFM9YihdAjyhYqFKX/+9//lDjiBUDBY+kKZpoIZc9TXsScKWco69ChQ9X+spItQ0YpxJjIzvYkWh6TKdAD2bx5cyWuX3/9ddWmhjmQDD9t2bKlusgzEuKbUTFKaJw4w8V2L++8806aieRaMjnPR0q9oFLK900LGn3mBFMgf/LJJxnahiDYEpfv6W/YZf3TnkHO6qJFzp55kK/dKJzfvQ77Tj69hiOccmPj4fNGW6mYKkK53qUjO1G3Upk0e8jZshhlxAbvUf/7airmHtKL83c7VrKpSQZBEDLBM/pq/Ti5CG8M7aXGeFo/c3usjmsuMiNGTYlC5Dnu26IKap3/NvkKGa2W++ASMLMtcO+sPv934FLAyx85BbkrGYEXHX/EDEmlRzAlKKqmTZuGzz//XJXHZwgsL9r//vvPaiLUUBDyb4okzioxjJX7zjCD9HrsKKqZa8BiQHw/PaqZKZhhLjFKOFtlSs4ARfgXX3yhiigxRM1cbVvo8Z4zZ446H5wZS6vPlCDYA5fv6wvZlPZLudVJVhYtYkipIZ6VmsOjXEOc+n0C8rg5QbOCt10KYdWuI4naWpkqQsnNy2eRO+4xunXpZDabZ20xqkVsdOrcBQd0ZRATp0ObSgXQvkrOGdgIQrancE2gbBtAF4fc+yarHuZ//vmnqouRU0WopcXo1KlTcefObXxaLSD5i6yam5FquYF7gd/b6HNDvYsDg5cDviWQk7CNO62NwQGIVnRo0aJFKa43c+ZM7N+/P9ly9pU0DI+1hgg1FHrsZ/nss8+qXEz2mUqrz6a1yawYNYVvv/1W5bUyvNhYW5WMtG05e/Yshg0blvB+eo4FITtw+UkLlNL5bcsjmlKILm1fvnZjoIsIhcue6fi4a6WE1wJ1fti5/3C6RWhsdDSun9qH1o3qokQJ2xoImCpGebwjR45UM/dNR3yMA1eD4OnqhI+6Vcl0oTpBEGyM1vqq/Tj5H0Z1f0aN+Rihl5NFqKXEaFBQkHJuvNSrFcrmdTTe4zW9nFwM/NkNiHgIFK4FDN8I+JVDTkOEaApQyJGFCxcqz6gxDhw4YHT5nTt3VMsQa4tQDQpPFidiLmdGvH72LkYZNkshyqTypDDMmCHVX375Zbq2yQEgfxM0Zjy3EpIrZBciY+JwM1gfzsp2KbYIQ3R71kocju+U2xf5Oo/HkY1LcWHtbFQp/CT9wMEBVx/F4urpIyaLUHL51CEU9XJG+/btYIuYIkbZz5oROR9NmYXf9+lDcilCi/p6ZsEeC4JgUQrVAKrqx6quWz7C55MmYdmyZVi+fHmOFqGWEKMcT7P7xAdvv5753NC4GGDDh8B/Q4C4KKBCZ+DFVTkqHNcQEaIpwGqJzAGkCGUopjHYTsQY9JTRC0fxaG0Rak9YSox++umnKYbVsdJuej2hmpeBodes6PbPP/9kKqFeEGyJgAfhYCRrHndn5MvlClvlhz61konRN4b1VakRn332Kfrlv4UCXm7oUq0gShXOh1OH9yHw3HGTRGh4SDCCr55El3atVCqCrZKaGGVP6Q8++ADvfDQJC296IzZeh87VCuG5OqZXSxcEwc5o/QHg7A5c3YG+lR1UOhLHKwzRz8ki1JxilG0E6VxiDZiCtTvo+4VmNDc0KAD4owOw60f93w3HAH3+BlxtcxLYGogQTeXHyxBXwjxQw5wjDYZp8oI1hD/45557TvX35AAps2RXEWopMcrtTJ8+HUOGDDH6ekY8xDQ+bF7M3Fn2I+V3IQjZhdAofeSAt6eLzdsXitElo5/B98/XUM9vd6ykwuQ7dOuNoUMGY1jFeNx6HIVDd3W4XKglQkJCce3ciTS3e+HwLlQunl8VRLN1jInRI0eOqLZiPXs/i0v+LXDjUYTybn/eK/vdMwRBMMC3JND8LfVfh/XvY8aUrxEZGalSxHK6CDWHGGXhTxbqbNeuXUJqFtp+DAzfBPT8Tf9sam7o6WXAr02BGwcBd2/g+b+BDp/re8PmYESIpsLgwYNVbyMmf2/dutXoOmwB8vvvv6sZqA4dOiivGVt6MCyUQvTQoUMZ/vzsLkLNLUaZl/viiy+qXqrfffed6hWa2bxQhrkxJIN88803Ca19BCG74OWu9xaGRcXBHmCYbq/aRdUz+WrtWZwq+wIc8pXEmBf74dpNfUhqPBxxzacG7lw+jdP7tyE+zvjxPbh1DQ7BN9C9c0eby6c3RYxycoyV0StWqoxCPd7C/qtByO3mjBmD6sDbwz6ORxCETNDoFSB/RSD8Pgod+V71FOXkOWtk5HQRmlkxys4RrDfCLgyJxuD0gNboa5onNCoUWP4KsGAQEBUMFK0HjNwBVO6WiSPKPogQTQWGaFGMEobaGvOKEs6S0AOXtO8o13/++edTbAGTGjlFhJpTjDKRnO9nNVsO1NjMXWuxk5G8UDaT1/rFjhkzBq+9liQcQxCyAbnc9EI0NDJ5TrWtcyQwCL9uuwxHF3f4PzcRBfL54MwvY+DprLfVLq6u6NutA3KFBOLwpiWICEuc709v4uWju9CwegXVQ86eoI1jywbaJt+8edF6ws9YdfIunB0dMLVfLZQt4JXVuygIgjVwdtVXbXVwAk4sxMAabujWrZsam166dAk5XYRmVIyyCvGsWbPwww8/qEJQGeL6QeC3psDhv7gH+rDeIWtyXGXc1BAhmgbsWckb/rZt27B+/fpUY8iNcfXq1XQXtslpItQcYvTYsWMqN5TfV506dRKWc3sMWUuvJ5Q9RmnIOYnQtWtXNcOYU74HIWehec2i4+IRFWsfXlGNK0/azjhCh8HVPPHGex8jztUL5757ASXcI/DnkPro0boR3nxlFKr4ueL4xv9w78bT0vvXL5yEr0MEunbuZHfXNyfKGC5WomRJNBnzLeYfuaOWf/tcDbRMUmVYEIRsTrF6QPO31X8dVr2Bv378RLW64ziGHr2cLkLTK0bpvGAbrOHDh2Po0KHp/6C4WGDrV8DMdvrWLHmKAoNX6MN6M1JhNxsjQjQN2JNTyxVlWeyUvKKpFT2iZ44hvKaQU0VoZsQo8yG0kFwW68gsV65cQevWrVX/0bp166riRMwPFYTsiKfL09+2vYTnajAPkiJ0QLl4FPbUYVaAN/z6TIJLgdLY/mlfLJg7S63HQcdrr4xGpwaVcePgepzZvw0RoY9x++whtG3aAIULJy6CZOtwlr5ly5aoVLky2rw9A1tu6b/DYTVyo1uNQlm9e4IgZAVN3wCKNQSiQ+C9ZgxWLJ6vxCYju5JW2c6JItRUMcpzwxaOPDc//fRT+sfh9y8Cf7QDtn6u+ryqysYv7wJKSWqXMUSImsC7776L3Llz4/DhwyofxxgdO3Y0uvyzzz5TYqZ3796qlUBq5HQRmhExyomBUaNG4cyZMyoEl97rzMDP4wCPhojCdtWqVSpPWBCyK46ODgnVcoPCo2FP1CjqjY8aeyoROu2UE0JjHeDo5gn/5z9B7hod8Nk74/HKK6+o/HFPT08MHDAAo/r3gm/ETRxaPQ8lfN3Rpk0b2AusPcCcJc7Q9x80BJWGf4+FR26zYw0mda+EJgXjU+0zKghCNobVwZ+dCeTKD9w5gYpnfsQ/8+Zh5cqVeO+99xJWy8kiNC0xyrz7Hj16qHoBixYtgqtrOirJ01G1fwbwaxPgxiF9QaJev+u/Ew8fyx2MnSNC1ERhpBW+GTdunNGy2BROxorjsArj4sWL1cCAMyz03hlDRGjGxChj9xnHP3PmTNSqVStTn3njxg0lQgMCAlCuXDls3rw5xxppIWcxrGkp9XzoahDsBdpUTg4WzQX4lqqqRKiGg5Mz8rV7Gf/7/Hv8+uuvqFqnIZZs2a/saqNGjfDeW+MxtEdrvNi/j5pktAcuXryo7NOUKVMw6Yefcadaf2w4cxeuTo6Y0rcW+jcqnWafUUEQsjneRfXVWB1dgNNL0cnzmCq0yBoZ7K8uIjRlMcpuF927d8fZs2dVP9Z0nZ/Qu8Dc54DVE4DYCKB0C+DlPUD15yx5CNkCEaImQpFZqVIl3L17V1XFNUZKxXEY9sXqZbz46b1LGt4rIjRjYpTFod58800l+Pv375/pcNzmzZvj8uXLKF26tBKh7BkqCDmB5+sWU8/bzt+DPYlQ5j5xsq9PwzIY1bx0onVebl4aXjU7wK/vF7h8/TZ6t2uKziPeUk3JWeSH/fYY9WAPx8oc9erVq+PmzZv47t/1WPC4DE7dfAy/3K7456WG6FqjcJp9RgVByCGUaAR0/k7//21f4Y0mXnj//ffVeIk1S0SEJhejfn5+6p7A3HtGwqXLsXFxI/BLY+DiBn1P145fAwOWAN5FLLnr2QYRoibCGzzbtPBHy6qsGzZsMLpeSsVxeOHz/fTesS+lhojQjIlRzlj17dtXhURPmjQpU59x4sQJNZhldbmSJUsqEVq0qDSBF3IOfrnd0KSsH3ZevI+4+PTlwWe1CNXC8d/pWClRj9F2VQqqirpuRSqh0JApyF2zI1b//i1q129kcs5+VsP2Xy1atFAVu18cPhJ9vl6EHw5G4FF4DKoV8caS0Y1Rp4S+jY2GiFFBEFBnMNDif/r/r3kTr7UqrFLE2IaEzhLhKRERESoFj+NM1hkxLHiZKnExwLr3gDm9gbC7QIHKwIgtQIORzHmx9G5nG+RMpQPe3MeOHav+z3Yt9I6mB4Z7csaFfSlZbEJEaMbEKL2X7JvHcAr2yspMISHOfrGgFPN32b6B4RklSkhZbSHnMaJZaQRHxODY9UewNxFqrMeoVlGXsL1L3tYj4N//SzwKfoyGDRuqQRkntGwRVu1m6y/WF7h//z5+XLABxwp3xbwDN9Trw5qUwqKXn0GxvJ5G3y9iVBAENH8LqD9S/Tfvtncx85XWCZ5RRpIxOiSnw3E8q4/v3rUTa6a9ha4t6pvWZzT0HvBXD2DPNP3f9UYAIzYD/pWtst/ZCRGi6eTzzz9X4VzMJ3zhhRdU8QhT4EXPwQ9d/oTFJhgiISI0fWJ006ZNSjhyoEWvNHu9ZhTm7rJQyaNHj9Sgbfv27XZXPVMQzEXz8vlRvag3tp67Z5ci1FhF3aS4F62CRRt2qsgUCjSGZLXs+hzmr90BW4DRGez9V7lyZezZswdf//InGr01G98fisKNRxEo6uuBv4bWxwddKsPVOfXbt4hRQcjhODjgerWxCPRrAQfo4L3lHXzatbiKymO+KIvypNTaJSfAdLl69erh4umj2PiCA1pe/xFV1vVCkdiA1MXozSPA9BZAwE7A1QvoMwfo/C3g4mHtQ8gWiBBNJyxsQQHDSqoM4TSlXQjDwL7++utEoooDBCaQHzlyRESoidAofPTRR4iOjsbff/+dYdHIHF32HKVHhCEZDO9lj1hf38QhboKQ03i7Q0XM2xeI8GjTJthsVYQSekWN5Y3WLeWHQYMGYcTU5fBuMQw7tm1F347NUKpqXcyZM0fZBGvCAnZsEcVCRMwDZe77u5O+Q9/vluPXQD9sOnsPTo4OGNq4FNa91gzNyuc3edsiRgUh56IKEx07DvfnpgMNXtYvXD0B46uHYNXKFdixY4dykLAQWk7jv//+U/eS/N65cPBFBzQs6qyWczRe5cCbKJLH2bgYPbkI+KMD8Pg6kK8sMGITUKlr1hxENkGEaAZg0aI//vhD/Z8FiVJq6WIYZqXBBHHmNHIb5cuXVyG+v/zyi8X32d5hexZ6QjmQYhlyVjcztc+oIQyH7tOnDz788MOEKsjLly+XFi2CAKBxWT9UKuSFP3cHwJ5FqEbSvNG3O1ZSy48EBuH33deRp153FBn5O/y6vY1bITEqv58ThaxwzvSJ9KZfmArtF72ynAzj5/Xr1w9x8fH4YsZ89Px6OeY+KouFh2+qfN02lfyVAP2wa2XkctMPltKDiFFByHkkqo7r7w90+AJo9qSzw47v0OHxP9i/a6sKz+U6dLDkBDjxxwjF5557Dt26dcP26W+jaJ7EUkiJUY97iVu7sMjotm+A/4YCsZFAufb6UNz8FbLsWLIL6b+rCQrm79DTyRAHDl58fHzQvn17o+tScGoilH1FDxw4oNqNaIwePRqnT59W22LvIiExq1evVmHQ7OfEfCmKR3oOJk6cqF4vXry4yWKWBY6Ya8rz/PPPP2P48OEW3ntBsD+v6ICZ+9CvQXF4e7jYrQg19IzyYYhh/ihbveSq1FQ9JjTMg9Czu7BixQoVIktq1qypildoD+aSe3h4pGvgc/LkSXUcLD5EMchIGMJ0g1fe/hB5KjfD1sAo/HoxBMBt9VqLCvkxpmVZ1CuZF5lFE6PMiefnM/fUUYppCEK2xGiLFkbetXoPyFsaWPEqcGY5yj+8ggNr/8GQCZPUpBjHR1OnTlUVZLMjHHu/+OKLygPMKEXWa3Fgv08jOPiVRZUiVdT/d+/YipYhS+By+j/9i43GAm0/ARwzXp9EeIqDLmkvEcFkOJPEtiH0iLJZ+saNG1WPOmPQA1esWDF1IbBqWVJYcIftQxYsWIB8+fIhK2Hzd4q/Tp06Zakw5k+TeQycvWrSpIkKIzGEYpQhthwopiZGuR1WLKaAZdgdDTPDMpo2bWqFoxAE+2PsvMMqx/KNdhXsWoSmBD2iPX/enWw5vaaaaKU3lDn9tDsUkKdOnUoo7pE3b17V3okP2hPuG1Ms2IOYf3PCjAXQ2G5F6ztNG8/cz1p16qJM3RZwK14d+6+H41DA096t7i6O6FK9MF58piSqFsl4/ntKREVFKTHKCBARo4KQ/TCpT2jAHmD+ACD8PuCSC7rO3+HfM1DFOJ2dnVXvZUaFZJexJu0e07ooPtmWhZ0vOKGYwIaJwK7JT/9uPB5o+5H6ry70HsJn9UKuB8ehc3CCA3NB6w612L7mRESIZhLmK9K9v27dOpVjyAI6SUs/a9VxOVBZtGgRfvvtt2TbYeno6dOnq+I7DBVlEY2cLETpRRgxYoTK2WIoLisOcyYrKayay56AFKXGxCgHgSNHjlTCk7DaLkuXs0iUIAjGuXo/DF2n7VQhoYV9PLKVCNX4cs0Z1d7FMH9UC901BiexGE3BSruayOQzw2xpM/kICQlRobYcADKHvWDBQnDNVxTIWxwhLr44dzcMJ288RmhU4hzcuiV80a1mYXSvWcTiXmgRo4KQg0WoxuNbwOIRwNUnE/xVeuFu3QkY+fr7qu89x39ffPGFGlvZ61iT9xGO/Vgp+OrVq0qMvvXWW0psJ+P6QeDBRX3eZ9G6+mV3zwDz+gCPAhDnkhtHyr6Gip1fVrViBDNCISpkjtDQUF2jRo0o6HW5c+fWbdq0KeG1sLAw3bp163THjh3TxcfH6/bu3avWS/rg8gYNGujy5s2rc3Z21nl4eOgKFCigmz59utr+iy++qLZdpkwZ3erVqxO2f+LECV2HDh10uXLlUusPGDBAd+/evYTX16xZo2vcuLHO29tbbbtz5866ixcvJrx+5coV9fmLFi3StWjRQn1utWrVdF9++aUuOjpalxUcPHhQV7VqVZ27u7vun3/+UctSO293797VrVixQhcQEJCwDZ7r+fPnq3PC9VxcXHTffPONLi4uLkuOSRDsjf8tPq7r9ON2XVhUjFU/l9fogQMHlB2NjIy06GcdDnioW3TomnrOLLSXS5cu1T0KDdctPnxNN/iPfbqqE9fqSry9Mtmj2sS1upf+OqD7c/cV3a1HESZ/RvPmzXVjx47VjRs3Tufj45Phe8T169d1mzdv1u3bt0+3atWqdN8jqlevrtu9e3emz5kgCObh2rVrahx0586d9NkQ39y66V09dKHveulerJNLl9vTXefv768rVKiQzsHBQdkLjiPNPc6kDdm+fbuymZYYa65fv15Xp04d9bmdOnXSnTx5Mn0bOLVMp5tURKebmEenm1xDF3/3rLKla9eu1YWEhJh9f3MyOUKIUpTwRm3Jx82bN3XNmjVLED1z5sxRyw1FqMZbb72VSEy9/fbbCQbC09NTV7p0abW8ZMmSOicnJ13Hjh3VYOP8+fO6l19+WZcvXz4lcIOCgnT58+fXvfvuu7ozZ87oDh8+rGvbtq2uZcuWCZ/133//qYv/woULuiNHjui6du2qhKYmyDQDUbFiRd3KlSt1586d0/Xq1UttNzw83KrfEwed7733njrmWrVq6Y4fP57o9ZTOGzEUozTIPE5tvcqVK6uBrSAIpnMvJFIJqRF/HtDFxT21X9lFhBpC+0zBnZnHznO3db2/Wa6r+P7qRKKz3P9W6bpN3aF7d9Ex3d97ruoOXn2gexwRnfA+w3tDWvAe4eXlpfv000/V/YDPGb1H8PxSjH7xxRe6hQsXpuse8eyzz+pKlCihi4mx7iSFINgsvI6jQrPkcS0w0CQRmqoNqeKrm97FXXd+bC7dyy2K6vL5eut+/PHHhMl8jsk4wWWucaZmQ/g+cwlR2lIKxVaN66rPa1itjG7bzA91umvpGP/Fxuh0697XC1A+/uik04XeT9i+iFHzkyNCc1ktMCtc6YMHD8b48eNVaEPSFi0sdMRquixkxIIVhKGl165dS1iHIacMTWOYBXvKMYTq9u3bKi+JfzMnlflLDAs2DM1gLuq5c+cSiiQZwtwlho6xXx1j5BmuUKpUKZVDqRXnOHbsmMq7ZBgae5xaA4bh8Xxxv9kS55133jEaqmHsvBkeO3NxFy5cqKqc8f3/+9//VNizJUL7BCG789+h65iw8BhGtyiDtzpUtPtw3JRgu5rKHz61o9bk9Cft4elqWt3AFi1aqDxVLV+e/2c6R69evVTKAUnPPaJEiRLJwnRNuUewuB7TR1gAjn21BSHHEx0GfJ41fcjX1JqJOo2apR2Om5oN6dkDf71UG9j2NW4/CkOh70Kx57NOWBNUEvOWrUdwcLBKQ2C7u2effVbZgsyMMzUbMm3aNLz00kuZCs1lChbTuJjbSptUs6AjJjZ3Q/cKzk/H3o1fA9p+nPqGgq8Di0fq+4NqRYnafAQ4Pd03SibWC7hx44a6T0mYbuaRqrkWhOX5OahiGwBe6IZQRBkKKQosQxFK+F5WZ9y/f79qustWMW3atEkopEHBuGXLFqMXwqVLl5SBuHDhghJn3D6Ng1a6n61PDJO1DfMAOIghNDqWhsfM6rc8VzVq1FAVHVPLSUh63jTDsHLlSrz++usJ/bCYkM5eo1mZaysI9s6zdYpi1fGb+HnrJZTMlwvP1yuW7USovWFoH1kAicXtDCcM/dmqIR33CA5eX3nlFTWoZI5reu4R/AwRooKQtdSpW9ckEZqqDaleA2j6OlCjL/w3fQZ89wvuntyC08djEHAlHq5ubsouc1JrzZo16r1vvvkmXn31VWUPWDgyI+NMCtyMik/uB2uqLFu2TAnq7u2a4dcGAWha3CmZ80cVI2K/Ty3/0xD64479C6x5C4h6DLjmBrr/BFTpkWxVblcbV7K1i4jRzJMjhCgr2iZrSmshWJiIM8z8gU6ePBlLlixRs0L00tHLaEqvUUM4U80WI6za2K5dO7Ru3Vot54XOY+ratSu++uqrZO/TLnK+zllvVupl8Qy+j4aBRZYMMZyN0i5gS/abe/DggUqE52wYPb8//PADXn755XTPirEKMb2enPnXBmEsbsRj9vLystDeC0LOYcoLtdD4y814a9FxXA8Kx2ttysPRMclN3s5FqIeLk/JMpsXt4Ej8vuMyFh66jpg4fTCRfx439K1XHD1qFMSBnVvQvn27dNkxfnZ6SLpt2uuU7Lcp9wi2baCHlBN5RYsWVZV9OWDM6nuEINgVLp7A/25a7ePokWPUmhKhhUuYz4bkKQyHnj8D+AXxhesi9OBudC3viK/aOAEF6wDVeuN0bBEsXLwcmzdvVs4RRlJQCLOgZMuWLdVYk5Nj5rQh3BbbYG3btk2JT3p0KT4ZyfHJJ5+oiDr/21uAJQdT3si2r4H+C5J7Qde8DZxdqf+7aD2g529AvjIpbkbEqHnJEUKUPxoKOmuIUPaHYwgCK+myYS5DGOilY3gtQ0QpmowNtIyFNxBW9ypdujR+/PFH1duO2yAsQ82ZaIrekiVLGq0CRrHHWW6KUK1VCav3ZiX0sv7yyy/47rvvlAFiD1Z6e+kNTc/gjaERDOGl0CfsMcowaJ5fClt+Dmfn0tNnVBCE5Hi5u+DvYQ3Q/addmLL5Ik7fCsEPfWqo5dlBhGr3iNTCYwMfhOO37Zew8OB1RMfpB041i/lgWJNS6FC1IFycHFUFyONOUNtxcbGNW2vt2rVVpXZT7hG8R/F+wpBeQRDSCYWVq+XHmQnVcU+dR30Tw3EzTNPXUTuuEhYtnI+SPg5wjj4OHDqOsu4+6PZcd+gm/oWtAfFo1aadGncxao8PzQnAdAGOi+l11SqPpwaj2+jpZDVyPq5cuaKcMHzQoUMxynsExe9PP/2ELl26oEiRIk83EFM29eO5sE5fHZde0ZgIYPdUYMf3QGwE4OgCtHwXeGYc4JS2/RYxaj6kbruZ0Fq0sC0IZ4L4I6XA4iCrR48eapDCWRuGjPJmnxSGm3JW2hD2z9QGZtwexS1nwAhbCDDklyKXPTZ5ITDUimETQ4YMUTNFbCfDkAu2heF6nL3irLe1oXFhyC1zA3iM9IS2b98eDRs2VDkDbK/C//N404LGqF+/fuocU4TyvAwaNEjlBdAA0hgS5ifwnPJ8MTxEEISMU6OYD+YNbwBXZ0dsPHNH9eC8cj8sW4jQ1DgU8BCj/j6EFt9uwdx9gUqENiydF/NGNFA9R7vWKKxEqK0yZswYNbB74YUXVPRIavcIpkmwtcv333+v3iveTkGw8xYtZmDMWxPxMMYVLxxvggOFBuNSjD/WnbyPIRN/RfxfPdF83zDk83JD/bL5sW/jcnz++ecJ47Dt27ejf//+6Nu3r/r7mWeeUa+VKVNG7T+ZOnWqitKjw8Dd3R1+fn5qfMcIwNGjR6uJMf5N5wXHubRnTMXiuDGRCCUUmMwFTY17Z4Ejc4Bp9YEtk/QitHgj4KUtQNM3TBKhScUo94P7Zq3Iy+yGbUzbZkMRqsGb/OLFi1UvIzYLpmCicOTFSWFK76kGPZ+8UDt37pxQjOfff/9N9FnazFJQkL4JOgcT9PzR48nXeEF0795dhUpwP/h+xvDzQq9QoQKmTJmiktWtAQUgY/cpmOkpZtgX80HZf48huUmhl5dFN5LmgBIeIw0cQzI0GFLGc8hQMmNoYlQ8o4KQeZ4p64dFo57B8L8O4OLdUHSbthPjWpfDwEYl4ObslG1EaFy8DhtO38b07ZdxOPBRwvLm5fOrok0NSueDvcAQOQ6QOMnHgR2FJtMWOnTokOI9ggNDrkvRKmJUEHKuCE1mQ975W29DCudHhyr54Jg7GA7h9/FvDye8umYPmrXvhgr+7pg7tjNa/G8Rfp/6HVp26qEmwdjDfdKkSSp6jRFrFG2sYcJxb6NGjVQ9FI6h+XlMG9AeFKfpggWJmAt6YQOw7cvkr2/8GAi7q/9/nqJAu09UD1Xl0c4A4hnNPDmiam5WidCkcCZnwoQJSpgRhqIyL5LNdimaTIGiit7DpNBLuGHDBnWBc1sMWWBuEC/+9F4UGW0yzEELQygoFhlGzEIZDAfjdlgVjYMfekaN7b8GRThnuzSRze1whl6r8Mbzy5BnhiinlnNriBamy7wnEaOCkDnuPo7Ey3MP41CAfjKsiI8H3mhXHj1qFjEpd9RWRWhEdBz+O3wdM3dcxtUH4WqZq5MjetYqgmFNS6G8v1eWNme3JhxsJq2mKwhCzhKhaRIfBwTuBS5vAS5vBW4cAnRJJq8KVAFKNwdKtwCKNwTcva1nM9d/COz+Mfny3P5AozFAveFmC6eWaroZR4SolUSoIRRrFFIUjloxJYZKjRs3DuXKlUv1vawEy1DUpDAWn2J07969SrxRDNL7ykEe84Tq1KmT8KhUqZLRfKH0Ggd6NrX4fT5Y3ZdVFBnuxfcylJghuIYVg1Paf0M2bdqkLmjmxXJWnnA/mE/KWbmU8mlTQ8SoIJiP2Lh4LDp8Hd9vOI87j6PUskqF8uDtDhWU5zAlW2iLIpQFiObsDcC8/YF4GKYvruHt4YJBjUoob28BL9Nm5LOTECUiRgXBNrBJEWqMyGAgYDdwZbv+cedk4tcdHAH/qkCJZ4BiDRCTvwpW7zmNTp27mM9mxsUA1/YDlzYBZ1cD9848fc2nBNB4HFCzP+CSTk+rCYgYzRgiRK0sQpMKLvbLpJeQcBv0YjJMipXHjN34U/KIUoAmDWllXuiqVavUeygUtcq8DIFgCJZh+AMfrDirDQy5vuZxNEweN0wiZ786wph+TeQypIsXYEpCN6X9N4T7wEEQoail15i5TgzZyAwiRgXB/F7EWbuv4JctlxASFauWFc/rie41C6N7zSIoWyC3zYrQw4FBmLXrKtacuIXYeP1tsKivB4Y3KaXa1Jja2zO7ClEiYlQQsha7EaHGCL0HXH0iSi9vA4KuJFslxtEdTkVqwjF/BSBvKSBvacCnOJCrAJDLD3B2S9kbG/EIeHwDuHsGuHta/wjYA0SHPF3P2V0fqkvxWao5YGEbJmI0/YgQzSIRqsHTzz5vDD+laNRglUOWo2Y5bP7fEHoFmU9p+DcL9aQFB4DM1aTIZGy+Jirp2aSojI3VDySNwVxXw9h9CjkWXqL4ZAGi9JyDpPtvDHptKT55/OaseCxiVBDMT1BYNKZtuYh/9gciPDouYXm1It7oUasI2lbKjzuXz6g+lVklQmlrT9wIxobTd7D+1B2cu/N0sFK/ZF4MaVwSbSv7wzmDxYeyoxAlIkYFIWuwaxFqjMe3gMDderF44xB0d07BIU7vdEgRN2/AxQNwdH4qIul55SMlPPMBZVoBZVoDFToCHj6wJiJG04cI0SwUoUlhJVyGo86bN0+JRg0WN+rZs6d6aMWNKKbo4dSKGmUWeisePXqkBlMssc2+nAyrZaI4Q2uZYG7Oc8iCGGwrQFFsWBCDntpff/0VzZs3N+u5NUTEqCBYhvDoWCX0lh29iW3n76nCPxrebkDDMgVQt2Q+1C7hi6pF8qS7yFF6vbWX7oXi/J0QHAl8pKr93gqOTHid+Z/dahbGi8+URNUiT9MHMkp2FaJExKggWJdsJ0KNEBMVgR1L/kCzCr5wfhQAPLwMPLyk7+0Zdh/QPZ3UTBGPvECBSk8fhWsDhWpa3POZFiJGTUeEqI2I0KSfw9YkLGrEliuGXxHDZTnQad26taqwm+6KYlk0oKL4Y9sAHteaNWsS9ZPSSnkPGDBAfaY1EDEqCJblQWgUVhy7iX93X8CFhzGIS3KnoRAsltcDRX09VUis9lzYx12FxXq4OMHT1Qnurk7q/yQqNh5RMXH659h4hEXF4l5IFO6GROLu4yjcCYnErUeRuHgvFIEPw5H07sbtMYeVns9WFQvAx9N8E2zZWYgSEaOCYB1ygghN02bSQRH5SC9IYyOB+Fh9ISQ+WPCIApSeTifbtbUiRk1DhKiNidCksLfb0qVLVQsY9mQy9B5ShPLHzQcNFvuWmsNomWNARe8q81aZB0vvKo2qIQw3ZvsVik9Tq9+aGxGjgmA5DHNC69RviHP3IlWlXeZmHg4IwoMnhYEsia+nC8r5e6FiQS+0qJAfz5Txg/sTUWtusrsQJSJGBcGy5BQRmlNspojRtBEhasMi1JhwYh4pxR0fzO9MCnvEUVixJxx7G/FBj6OXV+qtBzJqHPjz4X6wQi8vNhZeYvXcc+fOJVuX+8VKuuwVSvGZVefREBGjgmB+0ipMRLtxPSgC1x6G65+D9M/Xg8Jx+3EkIqLjEREdi4iYOBhE9ybypro5O8LD1Qn5vdxQQD3cUSCPGwrkcUeZ/LlUu5V8uVytZmdywqCKiBgVBMuQk0RoTrKZIkZTR4SonYjQpPBrY04pCx1R+PFBMZgSrGzL/FJ6InksNHKsksvlvCg4qOAzB4zR0dHYtm2byk3lgJKDyeDgYPVgexZ6abUHix5xuTHYqJi5nm3atFGhxPw8W0TEqCCYD3NWx6Wdi46jKI2DAxzg5uKoRKgp/UqtTU4ZVBERo4JgXnKaCM1pNlPEaMqIEE0F5jHu2LHD5kRoSlAQcgDIH/vJkyfVM8XpgwcPLPq5HISULVtWVbqtUaOGKp5EY0qRay+IGBWEzMPbCQuQ2UqLFmuSkwZVRMSoIJgHihN2NMhJIjQn2kxDMUpHjzk7Qtgz6WuUlsOg8GRrkooVK9q8CCWsbsv+o3wYwkEh+37yERAQoFrFMFSXHsv79++rcNo8efKo3p8cXPBY2cqFlXL54Hb54DoUlzwn2oPbYOVeex9w5s+fXwnoyMinVTUFQUg/tAU5TYRmN1q0aKHSJyZPnqz+ZiTNa6+9ph4a/H5ZMI/V2+3h/igItkx2E6Gm2JCcBu0k0+U41paJu6eIEE0FFgOyFxGaGhSQ9FTyQVi51tBA0BvImRlPT88cOUtlKEYFQcg4tJXMT7d3mykk5sCBA0Zn7ylG5fsWhMxRpEgR5FQbktOgrWSbQrGZTxEhmgY54cciAkwQBHORE2xmTiO1e4R834IgpIWMM58iNjMx4hu2sVCGV155RYUu+Pr6quI+M2bMQFhYGIYMGaLCaZmLyT6cGswF7dixo0p85voDBw5U4bYafO+gQYPU64UKFcJ3332X7HMZMqF5Rwn//+qrr8LHx0eF344ePRqhoaEJr8+ePVu9xr6gzAvltjt06GC0iq8gCIKQve4RTO9g3QR6OOQeIQj2gy3ZkFq1aqFPnz4qxUtsSM4lRwlRXix8GNZnYoVYLmNupLF1Dft2MmSVy5LmERpbN6P8+eefKg+TVXBpLF5++WU899xzKheHhYjatWunjACr+bJXZ6tWrdTFzDzPtWvX4s6dO3j++ecTtvfmm2+qCrjLli3D+vXrsXXrVrWd1GDs+ogRI1QFN+7P5s2b8dZbbyVah5//7bff4u+//1b9TQMDAzFhwoRMH78gCEJWER4dqx6J7hGx8WpZVGyc0XXjDfrLxMXrl0fGpL1uDFe243vElClTVOENuUcIggHRYfqHYR3Q2Gj9stgo4+sajh3jYvTLYiJNW9eObcgPP/yg7MjMmTPFhuRkdDkIHi4fd+/eTVj22WefqWXDhw9PtK6np6dafuXKlYRlP/zwg1rWr1+/ROv6+fmp5SdPnszU/jVv3lzXpEmThL9jY2N1uXLl0g0cODBh2a1bt9Rn7dmzR/fpp5/q2rVrl2gb165dU6+fO3dOFxISonN1ddUtWLAg4fUHDx7oPDw8dOPGjUtYVqJECXVsGtHR0bqlS5eqZ7Jw4UJdvnz5El6fNWuW+oyLFy8mLPvpp590/v7+mTp+QRCErKTE2yvV435IZMKyqZvOq2Vv/3cs0boV31+jlgc+CFN/016+9ssytezVfw4nWrfWJ+vV8nO3Hycsm7cvwG7vEUmRe4QgPGFiHv0j9N7TZdu+1i9bNjbxup8V1C9/ePXpst0/6Zf9Nyzxul+V0i+/c/rpsoOz7NqGGI41xYbkXCRH1MZg+xANJycn5MuXT4VAaWi9ONnP89ixY6qPqLF+RJcuXVLtZ+jxZTVYjbx586pE6dTYtGkTPvjgAxUqwYq7rKBLLzBnp7SCRnwuU6ZMwnsYjsF9EgRBELL3PWLjxo344osvVC9ruUcIgn1hKzbk888/V9vn+8WG5FxylBDV4s+1H7kWUsBYeZZTNkT7sXt4eCQsGzNmjApZ5YVryNWrV5Otm1GSVqllUrPhMi3JmWHAPJ6uXbviq6++SrYdXrAXL15M9+fzWHr06KFCM37++WdVTnznzp0YNmyYMhbauTO2n9KSVhAEe+b0J+3Vs4fLUxv/UrMyGNqkFJwcExeYOPRBG/Xs7vx03ab+Onw0sBXcXF0Trbvz7ZbJ1n22TlG7vUd06dJFhfNNmjRJDTrlHiEIT/jfTf2zy9NxJp4ZBzQcDTgmGXK/+eT6czYYO9YfAdQZDDgkHmfitf+zdxfgTV1tHMD/dXejpbS4u7u7w8aQCTamTJh9cza2McbcmTAGA8bGGA7D3d0pFIqVttTdm+95T5euLVXapknz/z1P2uTm5uYmTU/Oe+Q9Z+7et+WDBl2GPP7442re55AhQ9Q67ixDjJNRBaIFpY7WrpVZkn3ln6Kg5UwqKyV169atsWLFCjUJPH8gLaQlSc5X/sH9/PzUtujoaLXuW48ePQo8pixGL4WPTFqXFi55/J9//lnhr4WIqLLZWt5djlqam8KygHQKBe1rZpq93SJXIFvYvhayswF/R0hCEu1aePyOIPqXZQH1QXOpY1qWbF8zi+xLSfc14DJk7ty5as6prEUvywqScTKoZEUyFKhdu3Yqq5f01EnPXUBAQM79UVFRauK1DAmQ3kn5p5Dsr7GxsXe1quS/LFu2LM8+7777Lnx9fdG1a1f1D6WPpIdWXvP48ePVGk0yTEIyjEkQmZmZqYZSSAuT9PrKRHDJfDZp0qQiF9KVbGmSlGn9+vW4evWqmiQ+b948GAOZDC8tfz4+PuozsWrVqjz3v/POO2pdWWl4kGxzffv2VYVvblJY5/9szZkzJ88+kqHO399fTf7P/3ii8sQy07hV5HfE119/rT4DUo7NnDlT3SffG4WVmQ8+mN17wzKT9BnLTN2VId9++y1CQ0OxePFio6lnCtY1DTgQlaxc8k9x8OBBbNmyRX2QZQipZKwVt2/fVhfJsiX/DJL+WVpb5J8kvwULFqg00NqLFDZa+/btU1+okgFswoQJmD59OvSRfIjlXKUwkPdBxvjLMGNJea0tBD7++GN069ZNfejlwywFXps2bQo9ZosWLdRj/v77b/XhXbJkiSqYjYF8juT1S+FYEGm1++abb3DmzBk1FE0KAnnfw8PD8+w3a9asPJ8t+dLSkqxv0gooX0hvvPGGKsyJKgrLTONWUd8RsvSCDNWTCqfMES3s7527zNR+j7DMJH3GMlN3ZYi8hxLEy/+2sdQzBeua+WgMmGS/lZewa9euQveRTF6S0Ss9PT1nmzxm5cqVhT5m7dq1mhEjRqhMXgcPHtS0a9dOY0zyZ801RsV9RkRsbKzab+vWrSXOLnnmzBlN27ZtNQkJCZqrV69qatasWa7nTVQUlpkVx9jLTZaZVBWxzKw4xl5mCrDc1BhUj2h+2qEQkiyhqH0cHR3vGtsuLV6yjlL79u3xyy+/5JkAPWDAAJW9SyZMy0RqY2qpoZKRCfU//vgjnJycVMtWbjI8QrLQSY+ytBRKNjitpk2bqox18rgmTZrg/fffr4SzJ2PFMpMqC8tMMkQsM6kypRlDuakxUJmZmZohQ4ZounTpUug+4eHhGj8/P83rr7+eZ/usWbM0e/fu1Rw/flwzZ84cjZWVlebLL7+86/FhYWGa1NRUjbFhK1XhrVTSiilrbpmYmGh8fHw0hw8fznP/p59+qtmxY4fm1KlTmu+//17j7OysmTFjxl3HiYiI0CQlJVXoayDKjWVmxTL2cpNlJlU1LDMrlrGXmQIsNzUGG4g+8cQTqmtaFtYtrCu7ffv2moEDBxb7IX/rrbc0vr6+FXSmhoeFQ+GFgwxzuHz5slroecqUKWq4g3yRFGb+/Pkac3NzTUpKSgWfMVHRWGZWLGMvN1lmUlXDMrNiGXuZKcBy0zCH5sqk7nXr1qlFdiXjWH7x8fFqqINkPZOU0AUtuZKbLFNy69YtpKamVuBZU1UgWcwk41vHjh0xf/58NRRHfhf12ZLhEtq1ZokqA8tMqiwsM8kQscykymRnROWmQQWi0ngghYP800ua6Fq1at21j2Twk+xSsjbomjVrYG1tXexxT548qVIkW1lZVdCZU1Ula2EV9cUiny3JLCdp4Il0jWUm6RuWmaTPWGaSPsqqwuXm3avT6jGZ+L106VKV7lpaoWT9ISGTcWU9J23hkJSUpNYlkttyER4eHjAzM8PatWsRFhamWhmk8JD03LNnz8ZLL71Uya+OKltCQgICAwNzbgcFBal/bklSIBPCP/jgAwwfPhze3t6IiIhQqbeDg4MxZswYtf+BAwfUWk29evVSn0+5PWPGDDz00EPqC4hI11hmUkVimUlVDctMqmgsN/PRGBA53YIuCxYsUPfLxN3C9gkKClL7bNy4UdOyZUuNvb29mgjcokULzbx589SkdDLucfuFfX4mTpyoSU5O1owaNUpNGpc07d7e3prhw4fnmUB+7NgxTYcOHTROTk4aa2trTaNGjTSzZ882yDH7VDWwzNQdYyw3WWZSVcMyU3eMscwULDfzMpEf+YNTMm6ygPOGDRswePDgYuc9EBERy00iotJgmUkGN0eUiIiIiIiIDB8DUSIiIiIiItIpBqJERERERESkUwxEiYiIiIiISKcYiBIREREREZFOMRAlIiIiIiIineLyLXQX+UhER0erhXFNTEwq+3SIiPReVlYWYmNj4ezszHKTiKgYLDNJMBAlIiIiIiIineLQXCIiIiIiItIpBqJERERERESkUwxEiYiIiIiISKcYiBIREREREZFOMRAlIiIiIiIinWIgSkRERERERDrFQJSIiIiIiIh0ioEoERERERER6RQDUSIiIiIiItIpBqJERERERESkUwxEiYiIiIiISKcYiBIREREREZFOMRCtwnbv3o1hw4bBx8cHJiYmWLVqVZ77ExISMH36dPj6+sLGxgaNGzfGvHnz8uyTkpKCp59+Gm5ubrC3t8d9992HsLCwPPusWbMG9evXR4MGDbBu3TqdvDYiovLGMpOIqHRYblJZMBCtwhITE9GiRQt8++23Bd7/wgsv4J9//sHixYtx4cIFPP/886qwkH92rRkzZmDt2rVYvnw5du3ahdu3b2P06NE596empqrC47vvvsM333yDJ598EmlpaTp5fURE5YllJhFR6bDcpDLRkFGQP/XKlSvzbGvSpIlm1qxZeba1bt1a88Ybb6jrMTExGgsLC83y5ctz7r9w4YI61oEDB9Tt2NhYjb+/vyY8PFxdatasqYmLi9PJayIiqigsM4mISoflJpUWe0SNWOfOnVWLVHBwsDRIYMeOHbh06RL69++v7j927BjS09PRt2/fnMc0bNgQfn5+OHDggLrt6OiIyZMnw9vbWw3LkFYqBweHSntNREQVhWUmEVHpsNykopgXeS9VaV9//TUee+wxNW7f3Nwcpqam+Omnn9C9e3d1f2hoKCwtLeHs7JzncV5eXuo+rZkzZ6qhFvJ4FgxEVFWxzCQiKh2Wm1QUBqJGXjgcPHhQtVT5+/urCecyBl9am3K3TJWEk5NThZ0nEZE+YJlJRFQ6LDepKAxEjVRycjJef/11rFy5EkOGDFHbmjdvjpMnT+KTTz5RhUO1atXUZPCYmJg8LVWSyUzuIyIyFiwziYhKh+UmFYdzRI2UjMeXiwxxyM3MzAxZWVnqeps2bWBhYYFt27bl3B8QEIAbN26gU6dOOj9nIqLKwjKTiKh0WG5ScdgjWoXJ2k2BgYE5t4OCglQrlKurq5oE3qNHD7z88stqXScZLiEpsxctWoTPPvssZwjE1KlTVepteYxMFn/mmWdUwdCxY8dKfGVEROWPZSYRUemw3KQyKXWeXTIYO3bsUOmv818mTpyo7g8JCdFMmjRJ4+Pjo7G2ttY0aNBA8+mnn2qysrJyjpGcnKx56qmnNC4uLhpbW1vNqFGj1OOIiKoalplERKXDcpPKwkR+lC2UJSIiIiIiIio5zhElIiIiIiIinWIgSkRERERERDrFQJSIiIiIiIh0ioEoERERERER6RQDUSIiIiIiItIpBqJERERERESkUwxEiYiIiIiISKcYiBIREREREZFOMRAlIiIiIiIinWIgSkRERERERDrFQJSIiIiIiIh0ioEoERFViJo1a2LSpEmVfRp65dq1azAxMcGvv/5a2adCRHqI5ebdWG5WXQxEiYioVK5cuYLHH38ctWvXhrW1NRwdHdGlSxd8+eWXSE5OrrDnlcqZvb19ofdLRWX69OkF3nfhwgV1v5xvTExMocdISUnB559/jg4dOsDJyUntX79+fXXcS5cuQd+dP38e77zzjqq46UpCQgJmzpyJgQMHwtXVlRVGogKw3NRflVFuHjlyRL0/TZo0gZ2dHfz8/PDAAw8YxPtVnswr+wSIiMhwrF+/HmPGjIGVlRUeeeQRNG3aFGlpadi7dy9efvllnDt3Dj/++KPaNyAgAKam+tHeuXjxYlSrVg3R0dH466+/8Oijj961T0REhAqmjh07hqFDh2LChAmqAievY9myZep1yWvV9wrVu+++i549e6qeFV2Q923WrFmqItWiRQvs3LlTJ89LZChYbrLczO+jjz7Cvn371OeiefPmCA0NxTfffIPWrVvj4MGD6jNiDBiIEhFRiQQFBWHcuHHw9/fH9u3b4e3tnXPf008/jcDAQFXh0pJKV3ESExNVa3BF0mg0WLp0qaogyWtYsmRJgRUq6Tk4ceKEqnDdd999ee5777338MYbb8BYFfV3ks9BSEiIqrAePXoU7dq10/n5EekrlpssNwvywgsvqPfX0tIyZ9vYsWPRrFkzzJkzRzUCGAP9aHIhIiK9N3fuXDUMc/78+XkqU1p169bFc889V+hcJxmuKcO8du3ahaeeegqenp7w9fXNuX/jxo3o0aMHHBwc1LA1CWjki7qspNVZhlxJZVAuu3fvxq1bt/Lsc+jQIVUZnDp16l2VKW3l8JNPPin2uWT42owZM9Rrl8fI65MeEOk1KIy0wsslP3nv8rfOSw9DmzZtct4jqbTI0D7t+yut66JXr17qvZZL7h5KeY+7deumKkdyjCFDhqjemPzPKz0aMpRw8ODBar8HH3yw0POX1ylBKBHdjeUmy82CdO7cOU8QKurVq6eG6sqQaGPBHlEiIiqRtWvXqvlN8gVaFlKZ8vDwwNtvv61ajLWVgSlTpqgv4ddeew3Ozs6qlf2ff/5RLfK5FVU5KYi05NepU0dV0GS4k62tLX7//Xc1JE5rzZo16vfDDz98z69LKptSWZFKhLwWGWIl5yrHlgqcu7s7ymLLli0YP348+vTpo4Z1CXkuqTBKRbZ79+549tln8dVXX+H1119Ho0aN1D7a37/99hsmTpyIAQMGqMcnJSXh+++/R9euXdV7nbvylpGRofaT+6QiKe8ZEZUey82isdzM2wsdFham/p7GgoEoEREVKy4uDsHBwRgxYkSZjyUJbbZt2wYzMzN1OzY2VlUE2rdvr1qhJdFF7i/m3KQCJpWxkkpPT8fy5cvxxBNPqNs2NjYYPny4qmTlrlBpW6Clpfxeffzxxzh79iz+/vtvjBo1Kmf7m2++edfruBfS8yCt+Zs2bcp573KTyq5U6KRC1a9fvzy9BVLZk/dYhtZp56IJqWA1aNAAs2fPzrM9NTVV9RJ8+OGHZT5vImPFcrN4LDf/I++vfF5kzr2xYCBKREQlqlAJGW5UVtOmTctTIZAW6/j4eLz66qt5KlNChkjlJvdLD0NBpBKRnwypioyMVC3iWnJ92LBhamiVtuW5PF7fihUrVLKe3JWpwl7HvZDeDqlQyvslyUFKQx4jw9/ktefuGZG/g2S63LFjx12PefLJJ8t8zkTGjOVm8VhuZrt48aKaM9ypUycV6BoLBqJERFQsaVEWUvEpq1q1auW5LXNqREmyBEoFoG/fviV+Lkn4IM8n844kKYiQ4WYyZEpan6VFO//rk4rLvZDXUdA8qfIiQ/P+/PNPDBo0CNWrV0f//v1Vuv+SVK4uX76sfvfu3bvA+7WvX8vc3DzPPDQiKj2Wm8VjuQmVMVfmncrSN5L0qaCe26qKgSgRERVLvnB9fHzUEKqykmFeuiCt9dILIGvcSRKI/CShxwcffKBa3Rs2bKi2nTlzRg3T0iV5/oKGoGVmZua5LUlKTp48qYaYSY+FXBYsWKCSeixcuLDI58jKysqZ71RQYiGpQOUmFVB9WUKCyFCx3Kw4VaXcjI2NVUGy9Lzu2bNHfV6MCQNRIiIqEVkjTubDHDhwQA0fKi/S0i6ksiYZJMuLzDmSypQklsif8ELWuJM5SJKwQhJLyJAzmdcjPQH3WqGS13EvFU4XFxdcvXr1ru3Xr1+/a5tkWZRzlYtUkqS1/4cffsBbb72l3rvChrJp32OplJWmZ4SIyoblZtGMudxMSUlR53Tp0iVs3boVjRs3hrFhcycREZXIK6+8otLXS+IGyexX0BArbUr80pChUjLHSCo08sWcW1mSVUjlSBJRSMKN+++/P8/lpZdeUqn2ZZiZkAqiDNX6+eefsWrVqruOJQuyy2OKIsPLTp06hZUrV951X1GvQyo7Mj8oPDw8Z5scRyp7ucmcrdyk5V0WQtcmyRDaNeukdT03yeQovTMypE4SkeSX+7mJqPyw3GS5WRDpuR07dqxqoJDEUOXZSGFI2CNKREQlIl/8MixLvjwltb0MbZL5SVLZ2L9/v/oyzb3+XUnJF/3nn3+uKmqyVIAsOyCt3VKpkFT5xQ2fKsjt27dVIgnJeFgQGUIllQw5Z8mWaGFhgUWLFqnK3ejRo1UrtaT7lwqKzBOSdehCQkKKXBNPsknK/B7JmijLEMi6dVFRUWoZgnnz5qmEHAWRfT/77DN1PrIe3507d9T+khBEmwxEyPsjx5P5SjIPSVr+v/76a7Rs2TJnqQG5LvOLZJkBGfIlr1P2lxZ96eGQZRZkeQRZF1CyaN64cUNllezSpQu++eYb3Ct5rFTi5H0XMrRPu+bgM888o+Y+ERkjlpssNwvy4osvqtco75mcnzQA5PbQQw/BKGiIiIhK4dKlS5pp06ZpatasqbG0tNQ4ODhounTpovn66681KSkpOfv5+/trJk6cmHN7wYIF0rytOXLkSIHHXbNmjaZz584aGxsbjaOjo6Z9+/aa33//Ped+OZadnV2h5yXHfvrpp9X1Tz/9VN3etm1bofv/+uuvap/Vq1fnbEtKStJ88sknmnbt2mns7e3V66tXr57mmWee0QQGBhb73kRGRmqmT5+uqV69unqsr6+vOu+IiAh1f1BQkHpOeS9yW7x4saZ27drqMS1bttRs2rRJPU7eQ62//vpL079/f42np6faz8/PT/P4449rQkJC8hzrp59+UscyMzNTz7Vjx46c++T6gAEDNE5OThpra2tNnTp1NJMmTdIcPXq0xO9zQeQ85bkKushrJjJ2LDcLZ4zlZo8ePQotM40pPDORH5UdDBMREREREZHx4BxRIiIiIiIi0ikGokRERERERKRTDESJiIiIiIhIpxiIEhERERERkU4xECUiIiIiIiKdYiBKREREREREOsVAlIiIiIiIiHSKgSgRERERERHpFANRIiIiIiIi0ikGokRERERERKRTDESJiIiIiIhIpxiIEhERERERkU4xECUiIiIiIiKdYiBKREREREREOsVAlIiIiIiIiHSKgSgREVEpffvtt6hZsyasra3RoUMHHD58OOe+gIAAdOnSBb6+vnj//fcr9TyJiPQBy0wqCANRIiKiUvjjjz/wwgsvYObMmTh+/DhatGiBAQMG4M6dO+r+6dOn46GHHsLq1avVZf/+/ZV9ykRElYZlJhWGgSgREVEpfPbZZ5g2bRomT56Mxo0bY968ebC1tcUvv/yi7o+OjkabNm3QvHlz+Pj4ICYmprJPmYio0rDMpMIwECUiIiqhtLQ0HDt2DH379s3ZZmpqqm4fOHBA3Z41a5a6LRUtuU9a/omIjBHLTCqKeZH3EhERUY6IiAhkZmbCy8srz3a5ffHiRXV98ODBCA8PR1xcHDw8PCrpTImIKh/LTCoKe0SJiIjKmZWVFStUREQlxDLTODEQJSIiKiF3d3eYmZkhLCwsz3a5Xa1atUo7LyIifcQyk4rCQJSIiKiELC0tVVKNbdu25WzLyspStzt16lSp50ZEpG9YZlJROEeUiIioFGQZgokTJ6Jt27Zo3749vvjiCyQmJqqMkERElBfLTCoMA1EiIqJSGDt2rEqs8fbbbyM0NBQtW7bEP//8c1cyDiIiYplJhTPRaDSayj4JIiIiIiIiMh6cI0pEREREREQ6xUCUiIiIiIiIdIqBKBEREREREekUA1EiIiIiIiLSKQaiREREREREpFMMRImIiIiIiEinGIgSERERERGRTjEQJSIiIiIiIp1iIEpEREREREQ6xUCUiIiIiIiIdIqBKBEREREREekUA1EiIiIiIiLSKQaiREREREREpFMMRImIiMpIo9EgKytL/SYioqKxzCTBQJSIiKiMMjIysHbtWvWbiIiKxjKTBANRIiIiIiIi0ikGokRERERERKRTDESJiIiIiIhIpxiIEhERERERkU4xECUiIiIiIiKdYiBKRFRFff/992jevDkcHR3VpVOnTti4cWPO/T/++CN69uyp7jMxMUFMTMxdx6hZs6a6L/dlzpw5efb56aef4O/vj1atWuHQoUM6eW2k/+RzIp+X559/PmebfN7yf56eeOKJPI9bs2YN6tevjwYNGmDdunWVcOZkrFhmUmWaY4RlpnllnwAREVUMX19f9cVWr149tVbbwoULMWLECJw4cQJNmjRBUlISBg4cqC6vvfZaoceZNWsWpk2blnPbwcEh5/qNGzcwd+5cLFu2DMHBwZg8eTLOnz9f4a+N9NuRI0fwww8/qEp9fvJZks+Ulq2tbc711NRUPP3001iwYIH6zE6ZMgX9+/eHpaWlzs6djBfLTKosR4y0zGQgSkRURQ0bNizP7Q8++EC1+B88eFBVqrStrjt37izyOFKJqlatWoH3xcXFwdnZWX15yj7Jycnl+ArIECUkJODBBx9UvT7vv//+XfdLJaqwz5NUqszMzNCyZUt129zcXG0zlEoVGTaWmVQZEoy4zOTQXCIiI5CZmala4BMTE9Vws9KQHgI3Nzc1jOzjjz/OswB506ZNVYXKyclJVdQK+hIl4yKt80OGDEHfvn0LvH/JkiVwd3dXnx3pVZJeJi0Z8ig9RN7e3vDx8cGTTz6ZpzeJSFdYZpKuPG3EZSZ7RImIqrAzZ86oSlRKSgrs7e2xcuVKNG7cuMSPf/bZZ9G6dWu4urpi//796kswJCQEn332Wc4+8+fPV0PNpNXWxsamgl4JGQKpuB8/flwNMyvIhAkT1Nw4qTCdPn0a//vf/xAQEIC///47Z5+ZM2eqnidTU1ODqlBR1cAyk3RpmZGXmQxEiYiqMElecPLkScTGxuKvv/7CxIkTsWvXrhJXrF544YWc69KKL8N9Hn/8cXz44YewsrLKuU9a/8m43bx5E8899xy2bNkCa2vrAvd57LHHcq43a9ZMteL36dMHV65cQZ06dXLuk94iosrAMpN05SbLTA7NJSKqyqQSVLduXbRp00ZVhFq0aIEvv/zyno/XoUMHNczs2rVr5XqeZPiOHTuGO3fuqN4gmackF6nAf/XVV+q6DHUs6PMkAgMDK+GMie7GMpN05RjLTPaIEhEZk6ysLJXI4F5JT4EM//H09CzX8yLDJ630MqwxN5m71LBhQzWcTBJqFPR5EtLKT6SPWGZSRenDMpOBKBFRVSVzkwYNGgQ/Pz/Ex8dj6dKlKtvjpk2b1P2hoaHqom1ZlS9EmV8i+8v8pgMHDqg17nr16qW2y+0ZM2bgoYcegouLSyW/OtI38hmRZBq52dnZqSGIsl2GkslncPDgwWqbzHeSz1P37t0LXLKASNdYZpIuObDMZCBKRFRVyZCfRx55RCXKkPkj8sUlFap+/fqp++fNm4d33303Z3/5chOyHtmkSZPUfCZJpPDOO++oHoFatWqpL8Hcc6CISjPkcevWrfjiiy9UJtIaNWrgvvvuw5tvvlnZp0aksMwkfWJpBGWmiUZWPyUiIqJ7lp6ejg0bNqiWawsLi8o+HSIivcYykwSTFREREREREZFOcWguEREREREZjKwsDZJiU5EQnYqUxHSkJmUgNSn7d1pyhro/K1OT89tEgh4rM1hYmsHCyhQWVuawsDaDraPlvxcr2DhawMyMfXS6xECUiIiIiIj0SnpqJmLDkxATloyYO0mIvZOEuIgUJESnICEqVQWZ5coEsLG3gLOXLVyq2cHV2w4u3tnX7V2sYGIi4SyVJwaiRERERERUadJSMhB+PR53rscj/EYc7tyIR+yd5CIfY2JqAjsnS1jbW8DazgJWtuawsrOApbU5TM1Msi+m2b8lI05GWqYKbjNSM5GelqV6T5Pj01TPalJ8OjRZGiTHpyM5PhYhgbF5nkuex7ehK3wbucC3gasKTKnsGIgSEREREZHOSG9mSrgZTm65ieCLMSrwK6iH08rOHM6eturi5GkDR3cbOLhZw8HVWgWHpuU0lFaCUBniK0N9o0MTER2ahKiQRESHJCLmTjISY9MQcChUXYT0mtZs5oaGnb3h5mNfLudgjBiIEhERERFRhZKFOsJvxGPnkgD1G7BFBK7l3G/vagVPf0d4+DnA098BHjUcYONgqZNzk95VeS65yPPnJj2pIVdjcetiNG5diFLnHhOWhJNy2XoTXrUc0biLD+q29VS9sVRyXL6FiIiojLgUARFRwRJjU3Fh320EHApTAVxu3nWdUK+tF2o0dlW9noZAek6DA6Jx6XAYrp2OyOnJlWRI9dt7oc1Afzi62VT2aRoEhu1ERFRupG2TCR2MB//eRFRY2RB6NQ5ndtzElePh/wVrFqao2cIdtk6WiDC9gKHDuxlc453MR63T2lNdkuLScPFgCC7sC1FB9vk9t3FxfwiadPVBm0E1Yeecdy4py8y8GIgSEVG5yMrKwtGjR9G4cWPY23POTFWXlJSEM2fOoF27djA15ZIHRPfiypUrKhDz8/NDVSBzLYNOR+DYxmsq8ZCWdx0nNO7mg9otPdTw1exRJBdg6GTpl9b9/dGqnx9uX47B0Q3X1BDeM7uCcX5/CJr19EXrAX6wsbdU35GnTp1C3bp14eCQd/ivsWIgSkRE5UJaeW1tbbFv3z506dKFwWgVD0L37t2LatWqsXWfqAwcHR1x6NAhdd2Qg1EJQK+cCMfRDUGIDE5U28wsTNVQ1WY9fO+ad1nVSDlYvb6LutwKiMah1VcRejUWJ7fcUMOSu9xfFwkWwYiPj4elpW7mvRoCBqJERFRuX8RNmjRR1xmMGkcQ2qxZMwaiRGXg4eGBDh06GHQwevN8FPb9HYjIWwnqtoW1GZr39EWLvjVUT6Cx8W3gguovt8aNc1E4sOqKel+2L7oIO29g+BNtYWXFpV+0GIgSEVG5YTBatTEIJSp/hhqMRgYnYP/fgSrgEpY25mjR2xfNe9dQ8yiNmZSN/k3d4NPACRsWHkLw8VQkhgArPjyBLvfXQ6Mu3iw/GYgSEVF5YzBaNTEIJao4hhSMpiZn4NCaqzi78xZk7Q1TMxM1/Lbt4JqwtjfuADS37DmhJ+FQOxWj+7XC3mVXEBYUhx2LL+L6uUj0mdjI6Jd7Me5XT0REFYLBaNXCIJSo4ul7MCoZX2XJkn0rApEcl6a21WnlgY6j6lT40iuhQbGIDUuCk5ctqtVygiEEocePH0dcXJz6/pPhuKNfboNT227i4KoruHoiHLF3kjH4yWZwdDfepV4YiBIRUYVgMFo1MAgl0h19DUZj7iRh19IAlRFWOHvZovu4+qjRyLXCn1uG/57YfCPndqv+fug8ui4MKQgVpqYmKrtutdpO2PjDGTW0efmHRzHwsaao3sAFxoiBKBERVRgGo4aNQSiRcQejmZlZOLX1Jg6vC0JmepbKhCtDcFv19VPXK6L3Uh5/42wkZOVRB1frPEGokNu1W3noZc9oYUFobrKUzZhX22LjvDMIvxGPNV+eRPfx9dGkW3UYGwaiRERUoRiMGiYGoUTGHYxKkLT9twuIuJmdDde3oQt6PtgATh62FdZ7mf/xhZFAV98C0ZIEoVoSYI9+qTW2/3YRl4+EYeeSAGRlatS6o8aEgSgREVU4BqOGhUEokfEGoxlpmaoH9OTWm2p9UCs7c3S9vx4adPxv3eCCej1lW1l6Lwt6fGECjoSp3/oyZ7Q0QaiWuaUZ+k1pDAdXKxzfdAO7l11SiZ+MqWeUgSgREekEg1HDwCCUyHiD0duXY1QvqCTSEXXbeqLbA/Vh62hZbK+nBKZl6b0s7PEFuXkuSl20zy/BbmUlM7qXIFTLxMQEHUfWgYmpCY5tvK56RiVAbdChGowBA1EiItIZBqP6jUEokXEGo2kpGTi48grO7ApWt+2cLNFjQgPUauGRZ7+iej0lCNTKyExHeGwwYhIjkLk3ACt3xiIkJAQRERFIT0/H8uXL1X73338/bG1t4eXlBXsrF1wLTIKTrRtcHDzhau9VojJInr+ykhmVJQjVktfYYXhtlczoyPpr2LrgvMpC7FXLEVUdA1EiItIpBqP6iUEokf6qyGA09GostvxyDnERKep24y7e6HxfXVjZWpSo1zJLk4X9uw8iIvU6tlzdjuMnTiAkKggZWenZO2wAXFxc4OPjo16HpeV/vasxMTEqQJXvgtu3byM5ObsnVthaOaCGe72cSy2vxnB18Cr29UhQKll9zcxMKrSHtDyCUC0pb9sPq616Rg+vDcLKT49jysddYWlTtUM1E40sCkRERKRj8vVz7tw5BAcHG3wwKi38GzZswODBg2FhYXgLujMIJTIM4eHhKhht3rx5mYPRrCwNjm28pnrhZC6oJNDp9XDDIpdkkR7RFR8dQ1p6Ci4GH8eZ6/tx9vpBxCdHw8zMDI0bN0bj+s1Qz78x2rRvjZYdGqlyxdrautgyU74TJKg7feQSju45jYtXzuFG+CWcOH4cYREhah8f11po5t8ZzWp2hp9HfZiaFJy5N7eK6CEtzyA0v91/XMKZHbfgXdcJo15sXaXL46odZhMRkd5iz6h+YBBKZHw9oykJ6fjnpzMIDohRt+u181JDca2K6IHLyMjA4TO78Mfxr3Hw+G6kZ6bBy7kGhg24D4/PeBht27ZVw2zvlZQ9Tk5O6Na3nbrkdvboFaxdvhF7jmzD3sPrsOnEEjjauqJlre7o3GgwfN3qFNlDKkvN+Dd1K5fe0YoMQkXX++siOiRRrdl6dldwlc6kyx5RIiKqVFWhZ9RQe0QZhBIZX89odGgi1n97GrHhybCwMkOP8fXRoKN3ofvfuXMHP/zwA+bNm6eGz7Zu3RrDBo5CxxY90bJds3sK7spSZkpAvHbFZqxZvQbrt6xEeMQd+Hs2RM+mo9Cqdg+Ym1lUWO9oRQehWimJ6fjro6NIiErF+Jkd4ORhg6qIgSgREVU6QwlGNenpyIiMREZ4BDIiI6BJTkbSkSNIOnkKYQ4OaHD//bCwt4O5u3vOxURPA1MGoUTGF4zeCojGxnlnkJacAQc3awx5qjncqhdc3srczffeew/z589Xw24ffvhhPPHEE2jVqpXeNN7JcdatW4cvPv0Ku/fthIebF3o0HIOujYYWGpC2HVIzp3e0oGVoKjsIzd1g8NdHx+DsaYP7/9dWzR+tahiIEhGRXtC3YDQzLg7Jp04j+cQJpFwKQNqVq0i7cQPIzCz5QczMYFmjBizr1IF1g/qwadUKNi1awMyxcrMhMgglMr5g9Ma5SGyYdwaZ6VnwruOEgY83y7Msi1ZsbCzmzp2LL774QgVbL7/8Mh5//HG4uhY+d1QfRpGcP38eH3/8MRYtWgQXOy8MbTcJber2LnQeqWdNB9y5Fl+i3lJdB6FaV0+Gq4YDOS85v6qGgSgREemNygxGNVlZSDl3Dgk7diJh1y6knD8vJ3T3jmZm2b2dbm4wtbNTPaJa1m3bSpSX3WsaGSljyAp8LqvGjWDfowccevaEtQSCpsUn3CgvDEKJjC8YvXYmAht/OIOsDA1qNnfHwGlN1bzJ/ENev/nmG9ULKtlrn3/+ebzyyitwdnY2qOkM8h3y4oxXsGnLBrg5VMPQdlPQrl6fEj32vv+1uatntLKCUC3JaHz9bCQe/qBzkXN4DREDUSIiMupgNDUoCLFr1iBuzVqkB2evoadl4ecHm5YtkeRdDYEpqTgXG4OrsbEICQ1Vw9akAnj16tWc/WvXrg13d3d4e3vDu1o11HZ2RmMnJ9SztoZdaBiST55A+vW8a/BZ+PjAcdgwOI0YDqvatSv0tTIIJTK+YPTWxSis/eaUCkJlvc/+U5vAzDxvEHrhwgVMmjQJR48exbRp0/D222+r5VYMdV59SkoKZjz7Ig7uOI2g2xfg7VoLD/d8BU52bkU+ru+kRnnmy+YOQuvVaIakyIwKXRKmsMRSS2cdQsMO1dSyOlUJA1EiIjK6YFR6PxP37UPUwkVI3Ls3Z7uprS3sunZFVO1a2HTnDjYdPqwqIdHR0ep+CTKrV6+eHWh6e8PT01Otg7dgwQL06NEDLVq0QFRUlApS5SLnLxVEIb0KkuSjf7t2GFitGtyuXUPinr3ISkzMeX67zp3g8sgjsO/evdx7SRmEEhlfMBpxKwErPzmGtJRM+NR3RsOO1eDibZcTSEkv6KeffoqZM2eiZs2a+PXXX9GxY8cKP9eKDkQ3b96MjX/vwLCeY7F2/Tqs2boMkXFhGNHhUbSv369EPaK5g1DLGB+c2ny7QpeEKW6I7ub55/DQrI6wd8m7FI4hYyBKRERGE4zKMRO2bUP4V18j9dKl7I2mpir4vF2/Hn4PDMTKDRtw8+ZNODo6omfPnmpJgjZt2qiLl5dXqStVknFSKjPHjh1TvQ07duxQc7B8fX0xYtAgTKhXD75XriBx9x6p+ajHWNatA4/pz8Chf79yCUgZhBIZXzDqYu+JFXOPITEmFfYuVkiITs0TSNVoZ4UHHngAhw8fxosvvoh3330XNja6yc5akYFoREQEPv3oC9R0a4ZWTbKXgQkJC8GnX32Ik4H7UbtaU0zu/QbMzS0KTWTk6e+QE4S6W9TBniVXSjSMtyJtnn8O5pam6P1wI1QVDESJiMgoglGZyxk25yM1D1TI/E6bYcOwTqPBF78vxeXLl+Hv748RI0Zg2LBh6N69Oywt707kUdZKley7Z88erF27FqtXr0ZQUBDq1KmD5yZMwHBzc6SsXYes+OwEGlaNGsHrf/+DXccO9/66GYQSGV0wemD/IcSdcEFsaKrKjhsfmZJnn6uh57Bo73uws7fF77//jk6dOun0HCsyEF28eDFO7b+MUf0fhLnZf3MqMzMzsWjJAqzcukRCIEwfPAcuDp53H8BEA/9egKVjFlKvuuLG6dgSDeOtaPFRKVg68yAeeKMdXKrZoSrQXXYEIiKiUpKgqUmTJmo47L59+5CQkFDqY2SEhyP4lVdw/eFHVBBqYmsL24mPYGGXLmj8ycd4/sPZaNeuHXbu3KmCwi+//BJ9+/YtcRBaWlLp6t27Nz7//HNcuXJFBaWdO3fGSx99hEZz5mB++3awmTRJBcqpFy7gxqRJCH7hRaSHhZX6uRiEEhkfmUJgFuqjglALG1M07+Wb5/4DFzfiy7UvoGaNOjhy5IjOg9CKJA2KJw6dRZsmnfMEoUKWoJn8yKN447nZcLB1xCerpuPiraN5D2CigWvzFKSkJeHKBpNCg1Ahc0V1ycHVGo26+uDg6v/yEhg6BqJERFRlg9HYdetxZchQlYgIJiawv2801g4ZjOZz5uDrBb9gxowZuHHjBpYsWaLmeOo6UJPn69q1q1puQM5DMlT+sHgxms/+ACsHDID9mDFq6HDchg24OnQYYlevVr3EJcEglMg4ndsdjGsnYqTIg0uLJJi5JqvtWZosrNj/HZbs+gQdGwzAimVr4OHhgapCejzXr9sAewt31KpR+PzNDm06Ye7Mb1DPtzkWbvsQu8+tzhOEWjhkIfywDbLSCg+TWg3w0+mwXK02A/1x42ykWv+0KmAgSkREVS4YzYyPR/ALL+D2Sy8hKy4O1k2aIPCxaWj/yy94c+5cTJ48WWW7lWUKJFDTBzL/9J133lG9pJK18p3PPkXbH3/AhSlTYN28mRque/t/ryL42eeQGVt0JYRBKJFxkuREe5cHqusdR9VBzyHtcP32ZdTva4clOz/BzjN/Y0yXZ/DR+5/Dr0HVCUKF9O5eCwhGx5bdii3zqnv74uP3v0bnlv2x8dgibD31R4mD0F4PN0TnUZWTvdbOyQrNe/vi6IZrqAoYiBIRUZUKRlMuXcK1+8cgbsNGteanzZTJeNUEGP7CC2qeaUBAgFqoXV97AmRYnWSxvHTpkhrCe9/LL+GltDRYPzoVMDdH/JYtCLp/DFIuXizw8QxCiYxTelqmSmiTmZGFms3c0KqfnyrnJOHa7G9fxdErWzH3na/x1W/vocvoeqhKEhMTsWnjFvh51oebS8nKdltrG7z9ynvo02EYtp/6C+t2/FGintDGXSpuWZuSaNXfH7cvxSAmLAmGjoEoERFVmWA0futWXBs7DmnXr8PcxxvXHn8M7T7+GNt37cIff/yBv/76Sy1RYAhk+QVJIrJixQrsPXAAbT/8EJcfnQqL6tWRfvMmro0bj7h/NuV5DINQIuO1f0UgokMSYetoid6PNFL//7IEyeuvv47du3fjpZdewgOTh1XKkNKKtn37dsSEJaNNs9ItPSPzRh8cMxVdW/fH2nXrsPXo3wXu5+hurbLkVlZPaG7Wdhao28YTp3fegqFjIEpERFUiGI1avAS3nnkWmuRk2HbqhGVt2mDwc8+hW7duKvOuLFNgiEaPHq3Ov0+fPhgxYwYWNm8G2y5doElJQfCMGYj6bbHaj0EokfEKvhSNs7uC1fW+kxrDxiE72ZrMO5e1QWUeuizRcvr0aTUfvbLJUlbbtmzDb78txvLly7F161a1TaYmyLrNpVnUIzQ0FHt3HkDTOm1gY13yBELyHLLec2ZGJl59/m30aDMYm0/8jkMBm+/aNy4ib9bhytaoszcuHghBWnIGDFnedFJEREQGFIyK/du3o+Ghw0hcsULdths9Cs+fO4dVC3/FnDlzVEXM0IMyGa4rPbqy0PzLL7+MEwMG4Nv77kPSihUI++ADpISF4myzZqjm7c0glMjIZKRlYsdv2UP1m3TzQY3Grur6woUL1TB/mYrw4IMPqm0dOnRQ64xqR11Ulr279yM6OAMhtgm4kRGFpLRzKlOtqTlgbmEGVw8n1GtQB3Xr1kW9evUKXbpLgskN6zcAqdZoXK95qYPQ1NQ01PCrAXMzM7zy3JtI/jAVqw79iGou/vD3bJDnMUfXB2Ho9JbQB9XqOKn5ohcPht6VFdmQMBAlIiKDJMFW7fQMmH7+BRJDQtQ2q6lTMGThQly/cQNr1qzB0KFDUZVe7wsvvIDGjRtj3LhxGBQUhLVTJiPtlwWI/Xk+fO6/H03em8UglMjIHFl/DbHhybBzskSn0dlDRw8ePIjHHnsMU6dOxbPPPpuzr8wZ1ZdgtJp7dfTuMghmpqY5WW8TkxMQExuF0PDbOLXvCvZuPQIrO3M0bl5fnXeDBg1g+u/+4uLFizhzIgBdmw1Qw2zvNQhNT83E1WOReLD/M4iMDcHPm2fif/f/AHvr/4YxXz8bhfP7bsPVxw6xYUlq+ZbKGuZsYmKiekXP771t0IGoiaY0fd9ERER6ID0kBOFffInYNWukVgGNqysuDxyIFxctRGpqKjZt2qQCtqqwOHtBJOHSgAEDVGVk3pAh8Nu6TW33eOEFuD82rcKfn4j0gySs+X3WIWRlajDoiWao3dIDt27dUmsj16lTB9u2bYOVldVdjwsPD1fBaPPmzSslGP34o09xJzAFo4eOzQlEC5KckoQbwUG4dP084lMj4V3DHR07d1AJmOR1ff7Zl0gJN8WA7iPuOQiVHuVze/8b5mpun4UPF02HBEgvjvwaZqaFB7it+vuh87/Bv64lxqbi11f34f5X2sKrliMMEeeIEhGRwchMSMCdz7/AlYGD1JqaEoQ6jRgBh/k/45mff1LzRTdu3KjTILQySK+ABNsSdE9ZuRIWU6eq7eGffabWTiUi47BvRaAKQv2auKJWC3fVqzh+/HjVICaJzgoKQnP3jOrLnNHCyJzPBnWaYFjvMejfYTTMk1yw8veN+HjOZ5g3bx5uBoaiQ8tu9xyECjMLUzi4/vc+ZSaaYup9LyIxORZ/H/i+yGOe2Hyj0tb0tHOygkcNB5zfmz032BAxECUiIr2nSU9XyYiu9OuPyB9+gCY1FbZt26Lm8j9h/b9X0H/06Jw5UcHBwcWuM2roJDHR9evXVRISS0tLDPrxB9iMG6fuC3ntNSQdO1bZp0hEFezmxShcOx0BU1MTdLm/nhoh8dVXX6mkZYsXL1ZrExfFUIJRLXdXT3Rr3wej+z4Ms2R7/Ln4b3g5+cPZMXtO7L0EoULet5rN3WFjnz2axdzKDF06dUGPNkNxLHA7Lt8+VeSxZZhuZanewAWBx+4gKzMLhoiBKBER6bWkEycQNPo+hL3/PjKjo2FZsyZ8v/kafr8tgkWjRhg7dizu3LmjhqD179+/2HVGDV3u7Lj9+vVTyxbExsZiys4dsOvXVwXtwc/PQEZERGWfKhFVEAmsDq+5qq436VEdrt52au1hWapF5oR27969RMcxtGBUWFvZ4HJQABxs3NC5bY8yBaFaEsw37uqjhrhKwid7F2s8O30GGvi1xNJdnyItI63Q48tcUekVDTgYovPe0er1nZGWkomwoDgYIgaiRESklzITEhE66z1cn/AgUi9fhpmzM7zefgu1166BQ9++qhVbMsju2LFDrQ8qmRWLW2fU0BW0REutWrXw999/Y+/+/fg0PR1W9eoiIzwcwS+9DE1mZmWfMhFVgFsXoxF6NU4NK20z0F8NyZ08ebIq+2bPnl2qYxlaMHru0ilcuX4JvTsPhJ2tXZmDUC1TMxP4NXaFhWX2PjZW1nh66gyYm1ng7/3fFviY+h28VDbdFR8dw9ZfL6jf+/8OhK741HOGiakJLh+7A0PEQJSIiPRO8rlzCLpvNKKXLs2eBzpyJGpv3ADXCRNg8m8yoAULFqhlCWQoWq9evXIeW1WD0aLWCe3atSu+++47fPXDD9jbqTNMbG2RdPAgohYsqNRzJqKKcWR9kPrdpKuPmiv4448/4sCBA6pctLMrOjgz5GA0KysLKzYsRg2vWujcrnu5BaGFadKoGfp0GorjV3bjRvilu+6/dChMZdOtrHmjltbm8PR3UEO0DREDUSIi0htScYj6bTGujxuP9Os3YO7jDb8Fv8Bnzocwd3HJ2U8WPZ8+fbpamuDJJ5+86zhVLRgtKgjVevTRR9V78fh7swBt8qKvvkbqlSuVcMZEVFHCb8QjJDBW9eC16u+vyrd33nkHjzzyCLp1K1niHkMNRrft34i4+DgM7ju6yOVaigtCE2NScXLbTZV5tjAy7zLgxA34ONWBg60Tlu3+vMTnqct5ox41HBAfmVLka9FXDESJiEgvZERH49b0ZxD2wQdqnqN9nz6o/fffsOvU6a4W8SlTpqhEHNIjWti6mVUlGC1JEKr1ySefwNfXF1MW/wa77t2gSUtDyOtvQJNlmIksiOhuZ3dnZ0mt08oD9i5W+PzzzxETE4N33323zMfW52A0KSkBW/esQ9N6rdGwbqN7DkJDrsTi/L4QpKdkIuBQGDILSPSTnJSI/RvPI+52FnwdmmBwl7GITYrE+ZtHS3SuMm9UVxw9bNTvsKuGN0+UgSgREVW6pCNHEDRqNBK2bVNDb71ef10lJJJ5ofl9++232L17N3755RfY29sXeVxDD0ZLE4QKW1tbNTTv4KFDWOPrC1M7OySfOoW4tWt1ds5EVHFSkzNw6XCout60h69aD/Tjjz/G008/DX9//3J5Dn0NRv/+ZynMTCwxpN+oMg3HtbI1z7memZ6F8OvxeRo6dx7YhHe/fAVX75xR20xNzDCy/3jUqtYIqw/9qJ6jKK0G+KFaLSfoipN7diAadMbwhucyECUiokojX+iRv/6K6xMnISM0FJb+/qj5xzK4PvJwgUGXLM3y6quvqkpXz549S/QchhqMljYIzT1f9LnnnsPLH34I07EPqG13PvkUWYmJFXzGRFTRrhy7g4y0LLj62MG7rhM+/PBDtV2y5ZYnfQtGg0Nv4vjZw+jcuic83DzLNCdUMgy7VPuvx1KGOaenZuJi4FnM/uZ1rNv6N+r5NUG/wT3hXsMeTXv4oFotZ4wcOA5JqfE4fmVnoefZ6+GG6DyqLnTJ0cNa/b7OQJSIiKhk1LDRt97CnTkfSTM0nEYMR62/V8C6ceNCHyPzoGxsbEqdFdLQgtF7DUK13nvvPTg5OWHO2bOw8PNTWXRl7i0RGbbLR8PU7/rtvdRw3B9++EE1PLm7u5f7c+lTMPrnuoVwc/RC3+4DyyUxUZ3WHnDxzg5GM9KzsGX9bvy45AtYW9hhygPTMfXBp+Bg7Qr/Jq6wsbdU+w0YMBD+XvWx5dQfhfaENu7iA11zdMvuEU2OT0dmhmFNw2AgSkREOpcZH48bUx9F7F8rZAE3eL32KrznzFFDSQtz8eJFNRz3jTfegKOjY6mf01CC0bIGoUKGLL/11ltYsHgxUkeOVNskg64siUNEhikpLg3BAdHqer22Xqo8TE9PVyNEKoo+BKMnzh7GzeDr6NNtMKyts4OusmbHlXLVq54dspChbntY1cLIXhMx47HX0bhBMwSdisCFfSGIuPnf94SpiQn69x6C6IQ7uBl++a5j1m7pgcpgaWOuLiIlMR2GhIEoERHpVGZCAm48+qiaF2pqb48a876H68SJxQZcEoBKIp6CsuRWlWC0PIJQrWnTpqk1Rl/fuAGWNWsiMzYWMct+L9fzJSLduXoyXFazgmdNR9i7Wqklmx544AFVXlSkygxGMzIysHLT76hZvT7at+5cLkGozAM9cGwXPvzuVZwO3p2z3c20Tk4mXlsnS8AESEvJuxZzv+6D4Onsg80nl951XFlPtLKYW2SHdJKAyZAwECUiIp2RHrmbj05DyqnTMHNygv/i32Dfvei14MTZs2fx999/q6G51tbZ82GqWjBankGosLS0VEN016xbh8SBA9S2qCVLocnI7gEgIsNy41yk+l2rhTt27NiBq1ev4oknntDJc1dWMLp59xokJyVjaL9RqkeyrEFo0M1AfDzvbfy1fgn8qtVB3z69YfJvNJQUm4a4yGR13aOGPZr3rA7fhtnLhsWEJSHgUCgCD0ajQ4ueuBR8EqnpKXmOLeuJ6mr90PzMzLNfRFqKYZXvDESJiEgnslJScPPxx5F88iRMnZzU+qDWDRuW6LFfffUVvL298eCDD5bLuehbMFreQaiW9Jb4+fnhqxMnYObigoyQECTsLDzRBhHpJ5n7d+vfYbn+TdzUsNyGDRuiS5cuOjuHew1GZfjw5cuXsX37dixa9BvmffcDDhw4iLiEmCIfFxsXgx0HNqFlow6o7V+3TEGoHGv+sq/x1YI50GSZ4aFhT6FvswmIuAhock2rDLmcHUiampnCytYiZ3t0aBLiIlLU36Ff5xGwsbLHvgvr9aZX1OzfHlFJZGVI/stfTEREVEGkFy74hReRfOwYTB0c4Dd/fpFJiXKLjY3F4sWL8dprr6levvKiDUaFBKNSoStuORhDCkKFubk5nnrqKcycORNvvfkmkhYvQfSyP+DQt2+5PQcRVbzQq7Fq2KWNgwWcvKywfv16zJgxo1zLi9IEo4cOHVK3paGrMNeuXcPBAwdx7sxFxMckwQyWcLZzh42VLdJigajU8CKfa8XGxbCysMXgftnz3O8lCJWhvf/sWo2dBzfB1sIBQ7qMg7dVIyTdTkc0ktQ+Dm5WSIxJQ1amBnGRKUhOSMtJUKQl2XMjbiXAysYc1TzcUce3MU5e3Y3eze8rsFdUl8u3CDPz7M+BoSUrYiBKREQVSioNobPeQ8L27TCxtESN77+DTdPsALAkli5dirS0NEydOrXcz62yg9GKDEK1Jk+erBIXbc7MRFcAiQcOICMqCuauruX+XERUMUICs3sPqzdwwd59e1UD3bBhwyrlXIoLRmUOpjQenjp6HpYae9TybYyaTWrDycElp4zbf/i/uZmFDaE9E3ASA7uNgotT9vDY0gahx84cxKpNy5CakoaOjfugSfWuSIhIR1JKdkIfZy9bVK/nBFsnKxXo37yQ3eMs64r6NXHLcyx7Fys06uINOydL9RpaN2uLpWt/RFp6KiwtrPLsGxuWVAmBqKlBBqIcmktERBUq4vvvEfPnnyo7rs+nn8C2bdtiH5N86hRiV69Wv5csWYKBAwfCx6di0uJX1jBdXQShwtPTU1VYf1y3DtYSdGdmIn7Tpgp5LiKqGCFXsoeMetdxwpo1a1R51apVq0o7n6KG6UoZeubEBXg71sbIfuPRsnFbODu6lriMk2Dzz7ULVVKgXl37lToIvRlyHZ/+OAtLVs5HTY8mmNDjJfhbdVBBqJDT8KzpgHptPVUQKtx97XPmikYGJyIrS5PnmHLu9s5WOa+hfZvOsDCzwslre+56/pjwZNUrKpeAgyE6mTea/u+QXO0QXUPBHlEiIqowsevXI+Krr9X1am+9Ccd+/1UqChP2yaeI+vlndT0qIwP7r17Bz//erii67hnVVRCqNWrUKDz88MPAhAeBc+cQv2UrXMaPr9DnJKLyocnSIPRqnLperXZ2ICqNS7oellvSnlFZXqtz9/bYs+koUtNSYW1VugRzh07uxZ2IMDw06jFYWliWOAhNSIrH3xuX4sS5I6jp0RDjO74MpFsiPfutg0s1W3jXdYK1nUVOD6KWuaUZXLxsERWSpNYVDbkco3qfC9OwfiN4ulXHtYSjaI+8Ux2Orr+mLrm16u+HzqPzznMtT9plW2zs/5vXaggMK2wmIiKDIUmJQl57XV13nTKlRIGP9IBqg1CxOzFRaiDoXbMmKpquekZ1HYSKQYMGwdTUFPtSs7M8Jh09qpJHEZH+iw1PRlpyhlqiIyY1DEFBQRgyZAj0QWE9o3379oW9uyVOnM0OUktKpmGs3bIcdf0aoUXTNiUKQmUo8Jbd6zDri5cRcjMco9tOR2e/+1UQqu0lbNLNB3XbeMLOyequIFTLwvq/44bfiC/++6J+C1y5dQH1O3gV+7pObL5RYT2jGo0GqQnZgagE2YaEgSgREZW79OBg3Jz+DDRpabDv3RueL75QoselXcvbirwjIR7Nra3hEl90pcBQgtHKCEKFm5sbunbtij/27oW5t7f6uyQdOaqT5yaisgm/mV3+ufna4/jxY+p6x44doS8KCkYdHBzQf2AfXL51FtFxUSU+1oYdK5CenoEh/e5Ty7UUF4SeDTiBWV++gqNHj2NY06fRu95DsNY4q/ucq9moocwt+/jC1rH4RHceNRzyDHVNT717KZTbl2NweuctHNt4HS1qdUVcdAKO7wwo0WuTuaMVIS0lM2coMQNRIiIyapkxMbjx2OPIjIiAVcOGqP7xXJiUYH03YZmr51MqIAeTktDdzj7PdkMNRisrCNUaPHgwtu/YAdsOHbLP598KLRHpN8nWqg1Ejx07pobAuru7Q5/kD0YzZS56fDwuXjmH5asXI++My4JFxURg75HtaNu0M/yq+xUZhIZFhOCbX+dgxeq/0KHGCPRt8AiszbIDSRdvWzTp7oN6bbzUOqCyFEtJ2DhYwsrWHHbOVvBr6lrgfMuYO8lITcyQgTrwdKoOaws7XAw+XqLjO3nZoiKkJKSp3+aWpmqIsSFhIEpEROUmKzUVN6dPR9qVKzD38kKNed/D1M6uxI+3adECro8+qq7fSE9HfFYWOo8epbZXpKioKLVAfGRkZIUEo5UdhIr27dur84j18lS3U06f0fk5EFHpRQVnlz/u1bMD0TZtsoes6httMHr8+HF89dXX2LR6J1rU64CAoLM4c+5EsY//c91vsLd2xqA+wwsNQlNSkrBsza/4ZdHPqGndEYObTIO7TQ11n6m5CarXd0adVh6wdbi3pb6a9/JF4y7e8PJ3VNMZ7nqNNf77PrOzc4CttQOuhV0o9ritBvhVWCbdxNjsQDT/kjOGgMmKiIioXGiysnD7lf8h+egxmNrbo8aPP8KiWrVSH8frpRfh2K8vDvz2G/Dpp+g7ezYq2tpVq3Dhn3+ws3p1dB08GN27d4eVlVW5JDDShyBUtG7dWv0+n5YGeVXJZ8+qyl5lJzwhoqJJL5x2uREJ8l5++WXoK1dXV9wOvo1DO09icI/7UL9OI1y9fgkbd65GowbNYGFecOhxOegCAq6cw7A+Y2Fv53BXECrzQPcc2YYDB/ajTfVBqNOg53/P6WMHH0lCZG9R4eWZs6ct6rfL7jWV3kdvTx/E4Xah+/s3dUXbIbUqdDmX6JDEnGRMhoY9okREVC7uzP1YLQtiYmEB32++gXWD+vd8LOkBvWBiopMhaLLo+qWDBzGwdh20zszCrl9/xRcffogTJ7Jb8MvSM6ovQahwcnJC3bp1se/WLbWUTlZsrBo+TUT6KyszC3Hh2YFoiiZOrR/avHlz6KudO3fi0tkbGNp7LEw1lmp47gPDJiI04iZ27d9a4GMkyPxz3SL4ePiha4eedwWhl65ewNc/fo7oQA361JsIZ9vsUR2SvKlJN2/VAyrDanVRvlpYm8PJ0zZnCKy3py/Co0MK3f/62ZLPj71XUdpA1Kfko4/0BQNRIiIqs+hlyxD166/quvfs2bDrmD0PsSzOnDmDli1boqJJwOmQmITGPj7oXK8eJrdoCY9bt/Dnl19i3rff4ubNm/cUjOpTEKol6w6eOncOFt7e6nZavvX/iEi/xEelqkQ0kuk1OuGO2ubr61vZp1WgjIwMbN+yCy42nqjjXxfVfasjLOwO3J290Khec+w+uAWx8XdnjpWezuiYKAzsNQIR4eE5QWhcfDSWLluK4JOp6FzjPlR3rp8zB7RmMze07FcDto7Z64BWFldndyTEZweCuk5SpBV1O/v5Xb0ZiBIR0b8+/PBDtGvXTmUP9PT0xMiRIxEQEJCnJ06Ck4Iuy5cvz9lPEj9Iqn5bW1t1HBmWJV/4ub377ruqciKZUS9duqTT15mwZy9C33tfXfd47lk4DRtaLscNDg7OWZeuokhL/MXjx1HPxSUnUHS0scGwFi0xtnYdJB86hB9mz8Zfy5er97ekwag+BqGiRo0a6n219PdXt9OuV61AVHpfnn/+efj7+8PGxgadO3fGkSNHcu6Xochvv/02vL291f2yxMTly5fzHOPAgQOqAaRmzZqYP39+JbwK42Ys5WZJJcWmqt92Llaqp1D4+PhAH5mbm6Nztw5IRARWb12G6NjwnGB0YLcRSEqPx8atq/M8RuZ8bty+Cg1qNYebk4cKQr2qeWHTlvXYveEE6jl0hr2Vc04A2rSHD+q29oSHn4NelKturh5qyZmMzOzlU3SZpCj/0Nx7CUQru8xkIEpEVEF27dqFp59+GgcPHsSWLVuQnp6O/v37I1HWxvw3KJCKRe6LVIxkHqKs+ygk86BUpuSLbv/+/Vi4cCF+/fVX9cWgJYHR+vXrsXr1akyYMAHTp0/X2WtMuXQJwc8/LycKp5Ej4fbEE+V2bHk/5MuvIslzxIeGoo5n9lCv3Kq7uOChdu3Rx8kZF1avxlcffIDw8HBVqS0qGNXXIFTI+ymvWRJJiYwqNjT30UcfVf9rv/32m+pRl/83qThJ8C3mzp2Lr776CvPmzcOhQ4dgZ2eHAQMGICXXmqpTp07FW2+9haVLl6qgSHrESXeModwsjeR/14e0sbdQr9XMzEwlBdJX8r7PePkZ1Gvpgz2n/sG+Y9vg4GyPlOR0tG3aBcfPHcT1W/8t07Vm63JAY4r2LbqoIDT0djh2rj0Kz8zmqO5UT+1jaW2Gms3ds4fg6llCHnc3D5iZWsCzecHlfI0mrqpHtKLWEE1JTM9JVuRyD4FoZZeZTFZERFRB/vnnnzy3pSIkQYxkPZRkOFKhkGAlt5UrV+KBBx7ISYqzefNmnD9/Hlu3boWXl5dqdXzvvffwv//9D++88w4sLS0RHR2tWshl3pC0+Mvz6EJGVBRuPfEkshITYduuHbxnvVtuQVdqaqrKYFvRLf+3bt2CSVISvBwdC7xfXk8zX1/U9/LCwatXsHX+fLg0aoQ6jRurYFN6UnInMJIgVL6s9TEIFfJ+Sgt4ln12hSUzquLnL+lKcnIyVqxYoQIL+f8S8j+ydu1afP/99+r/5osvvsCbb76JESNGqPsXLVqk/q9WrVqFcePGqW0S8EhiJ/lfdXFxUe8X6U5VLzdLK+XfQNT630BUXk9B2Vz1iTR4TZk6Rf0N1q/biO1HVsPXrS4a126JE+cOYd3mFWo5l6TkBBw5sQ8tG3ZCQkwyIi9nwsHKAx7/xlNu1SUJkbN67frKw80TFmYWCA69ARvUvuv+m+ei1EW06u+HzqPrluvzB1+KzklkZWVjbnBlpn5/komIqhBJMqHNKlgQqWidPHlStS7mHvIiAY0U/FrSGhkXF4dz587l3JbWSRmCNnDgQNUiWfgI8S0AANbwSURBVNE0aWm49eyzSL99Gxb+fvD9+iuYWJZfS/WdO9lzofJXOMtbaGgo3MzM7lokPT8rCwv0aNAQE5s2g+OVKziydi2OHDiANWvW5OkZ1ecgNPf7mfjv65U1X6sKCSakJ8za2jrPdhlOJo0GQUFB6u8trf25EzjJchPyf6YlvWaNGjVS93Xs2BGNGzfW6eugqltu3ovU5OzhxBJkSOOcvq0fWhjtElgzXngOo8cPQZzmNk4FHoBftTpqOZeY2ChcuREAN7sa8DCtD8s4bzhYucm3CyyszdQ6oLVbeuh1ECocHB1hYmKKU/vzDlctyInNN8q9Z/Tm+ewgt0bjgv8/9L3MZI8oEZEOyFxEmYchS4A0bdq0wH1kboUU5jJHQ0u+BHJXpoT2ttwnLCwsVC+CBG/Ozs6qtb8iqfXdZs3KXqbFwQE1vv8eZs7Zc3jKKvnUKaRdu4aYf4M4qSRWJKmIWpeid8HFzg6jWrXGtYgI7LgSiH2XLyPw/Hk84OkJUw8PePr7620Qmvv9zDAxVS3RmvTC5zUZGplT2KlTJ9WKL/9H8n/y+++/qwqTZAvW/r8U9P+kvU9IQCMt/TKsU1r3qfJUpXLzXmmypO8QMDUzUcOU9fU8CyPvc48ePVSv9JbNW7Bz615ormbC1aIGBvV4DHZW2aNRNNDA1ccWXn5OcHDLGxjpMwszc5jABFlZmSXaX4bpludSLjcv/BuINnI1yDKTgSgRkQ7InKezZ8+qVsbChsjI/AqZZ3GvZFhMYaTVUyp15SFm8WLE/rVCLQHiNfcjmNaooSpIZXXn668RvXCRun4pKQmWMMHvP/+M3fmG6pWn0+fOIetqEHafPHlPFcTe6enofOw4NCYmcO7SBXWGDr0rIYo+Ss/MhOSazEpPL5e/XUWToYgyJLM4Ms9pypQpKqmU7C/DxcaPH696zUpD5kHJhYy33JQGN334X05P/+8cpKIv/wuG8D9bUCPYiJEj0Kp1KyybtwHO8U1y3uegyDO4eGc/Ek5mDzPVJ/YODqhfp2GRjZnpmWnIMsmEiXl2o0FR7Nwty+3vFxeRjLiIFJiYmsCzlt1dx5VGAH0vMxmIEhFVMEmCsW7dOuzevbvQtPt//fWXml/4yCOP3DWU8vDhw3m2hYWF5dxXUlKZk2yTZWUTGAjfn+dD+vvuDB6ES3FxwIYNKBd16gCz3lVXAy9ehMsbb8IlKAgupVy7szTaZWbitkvpe3O90tLRKjYGflLvMDFBhkaDGFsbbN++HfpMmxn0atBVNJJkTbeDcby8/n4VSLIny9IzxalTp45KdiNzlmQYpsxVGzt2LGrXrp3z/yL/P7mTYMltXSwTRIZVbkqAtEEP/jfiLksPqBVu3rqh5rTHxMToxXmVRaMONXBlQxzik2Kw99IaJGfFoGm9NrC0yE5OpC9i46MQlhgED7//8gDkJ19PMYnhqN3FFtXbF/9ddezcXiB7dHiZJdyQQNMaFk7p2Lp9810ZjCVxlL6XmQxEiYgqiFRknnnmGZVIQxb5rlWrVqH7yvCy4cOH35UNUYbNfPDBB2r4mLblXjLcOTo6lmoehgxrK+tct4zQUNz86CNkajRwGD4cdd5/r9yGoMZt2ICQt2fm3E5NSlJDtVrYO6hhXfry90w9fRrxly7D/N+5lakaDQKzsrCzXl20btUK3paW6m+mr71pMgRR1JPlW/bshU+tWmg1eDD0XWmTs2hb5yUhzaZNm1TmR/n/k4rVtm3bcipRUvGSeb1PPvlkBZ05GWq5KWXbYD343zi19RYOBQbBx9tXBQcyT1QfzuteyKicU6dOqWQ2ib4HsGX1diSnJsLRwQmBwWfQv/twdO/QV2+SMZ0NOIHr0WfU0j+FkcYBmV8cc9oewbGFB6zdxtZHw47lm/Ng9WenpBRDy6510bJ/jTIdq7LKTAaiREQVOKxMho1JRjqZi6GdUyET+iUZgFZgYKBq9S+olVtSqUvF6eGHH1ZfDHIMyWAnx7ayKvlC3jLkpiRDG4tKThT80svIjIqGVeNG8Jn1LkzLca6Sbc2aMEvNXi9PuGRmqqyKqXLepvd+3uUlMyEBsWvXQhMVpb44ZTbQTUdHrE5Owh1LS9T7dw6NDG+SL2nJpquPwag2m6GdqRnk3Tazty/R8C1DIRUoCWQaNGig/q+kAtmwYUNMnjxZBRYy3/D9999HvXr1VCVLhnRK5lRZq5L0g76Um/J50Yf/DWvb7HPITNeoMkV6gPXhvO41CJXkblI+Hj96EtU8fBAScRNtmnZGdGwUNm5fiQPHduKBoY+gfu3GenHO8nkp6v3WDoc1N7GCJqPwhllLC/Ny/btFBicgLCgOpqYmaNy1+j0fu7LLTP1ociAiqoIk/blkfOzZs6ca1qK9/PHHH3n2++WXX9TQM6k85SfBowxPk9/Syv/QQw+pYWizZs3S4SsBwj6aqxIJmTo6wvfLL2GaL8teWdm0aAHXRx/Nue1tbo5MExNEZpYsAURFkC/nzKQkJOzfj8jfflNBqIiXpR86dkSgdzVcyczEg5075/QMyxe4BKMyp0277qE+uX37tuptsPn3fZVAtCqR/zcJNuTvIP8nUuGVipa2kvbKK6+o3rbHHnsM7dq1U5ViSViTP2skVZ6qVG6WBwur7Ia49JQM1TuVO0mMoZCA7vjx46o3TRJPaRsD6tZsiJrV6+HclePo3WkQxgyeBCtzW8z77TN8/9uniIwOr9TzTkyKh6tb0cl3ZEkd4WQrGX8L5+RVvon3zu+9rX7XbOEOO6eSN0rrW5lpopFvWiIiokLErl2H2/8OTfKd9z0cevassOfSZs21rFkTdXr1wqRGjTBj3HjoWlpwMBK2bUNmYiJM/k3yFGJpCdfOnZFibY0sExN8uX07avh4Y3LXbvjtSiDqd+2qemBkbo4sESELgutbz+i7776rFiY/cv8YxG/ZAq8334TrQw9W9mkRUSGunYnA+m9Pw72GPdL8AlSwIL2iuXuHDTEI/fijT3EnMAXNGrfEz79/iZ6d+qG+X3O4u7vh9IVj2HlgMxJSYtC5TS8M7XN/pWQL/mfXKtRv65OzXmZBli1bppL7fDx5DWwsCy7rWw3wQ+dR5bd+aEZaJn59dR9SkzIw7JkW8GtSdBCszzg0l4iICpUeEoLQd95R192efKJCg1Btz6hchJ2LCyLjSr4wdrnNA718GfG7d8MkNVUlZQo3MYFJ27Zo0LIlbt68CXt7e6w/eQKxWZl4p1t3ZOVrz9WunyekZ1SfglFpvZfepfR/E7dYVMublp+I9IuDa3bPU0JUKmp29Mn5P5b5ooYahOZWr3YDNKvfBrsPb0G7lt0QERGJVk3bo02LDvhn+zocOrEPl4LOYcKIR1HDp6ZOl8ZKTE0odP1aLflb2Fjbwtri7h7PWi3c0Xqgf7ku1yICj91RQah8Nu5l2RZ9wqG5RERU+HqhM2ciKzERNi1bwmP6dJ0+v4+vL27HZicFqmjpt28j6fhxRP/xBxK2bFFBaDKAIH9/1H/sMdRp1SonCE3MysTeoCAMaNoM7g4OBR5PG4zq2zDdgIAA1KpZE+nXr6vbFtWrV/YpEVER7Jyzg7eUxHR4elTLGWJfFYJQrSH9RsHCzBqbdq1Edd/qCAu7g6xMDfr3HISGDRqiVmMf7D+7GZt2r0F0bKTOzj85NaHYdTHlb+Hh7llggFyzuXu5B6FZmVk4ujE7A36T7j5q6RZDxkCUiIgKFLdmDRJ374GJpSW8Z38AkzIkO7qXIbr17exwIzISaZERSD5zRgWKFSHp6FHErlyJpAMHkBUZqQLQMx7ucJ44Ee2GDlU9njdu3FBBqGTn/HPvPphb2+CB9u2LPK6+BaPaimGXxo2RGRsrE+lgaQC9KkTGzMrWHBbW2WWvs212duArV66gqgShwt3VHZ1b98SJc0cQFRuugtFr169h9dY/Ub+5P2bPno3Hpk+GvTewYe9f2H9sJ1JSUyr0NSQmJUDy5BUXiMrfwsW24LVozczKP0i8eDAUsXeSYW1vgWY9C17WyJAwECUiortkREQgbPaH6rq7ZJrUYcAS9smnuDZ2HGqfOIHY9HSEr5aAeLcKGLPS0srlOTSZmciMi1PzJJMOHVLbZCboKRsbZI0ciV4PjIWDvb3KiKgNQj29PHHo4kWciwjHg506wdK8+Nkt+hSMSoVJKoZt3N3VbUt/f5iWIvMyEemelCGu3tlD+1NiNCp76bFjx1BVglCtvj0Gwd3JC3+uXYj0jBScvXoYSZpI9O3XRx1Dkuk8+9wzeODh4YjKuIlVW5fg/OXT6vkqwp3IENUAUNy6s4cPHYG7dU2dJCjKTM/CkfVB6nqbgf6wtDb8GZaG/wqIiKjchb73vuo1k6Va3KZM1mlPaNTPP6vrXWzt8MmdcMTExcFLMvilpyM1IAA2zZrd8/EzY2KQsGePem1ZspTJv5WY02ZmcOzSGX2aNc/ZN38QmpqejpVHjqC6hwd6NGhQ4ufUlzmj2sprzdQ0JMmyEGVcV5aIdMOtur1aqkOW7GjTpo0K9KpSECqsLK3Qv/tQ/L72Fyxd9yNatm+CYcMfxYULF9TSPX5+fioRnBy3RYsW2Lp1K/btOoSAoLPo0LwbfKqVbR3N/ELu3IZ3dS9V/hcmIiICwbdvoV+jenfd59/MrdyH5Z7bG6zmCts5WaJp96oxrYKBKBER5ZF46DDiN20CzM3h88EHMNHhmnWSMVfLw8ICVqYmuJiSkh2IytDgMiSq0KSnI/nsWaTfuJGz7ZKJCWIbNUK/bt1UJaewINQEJth4+DCCkxIxa9CgUj+3PgSjsuZinTp1gPPn1W3btm11+vxEdG/cqmeXFRE3swPRNWvWIDMzs0xrQ+tTEKrVpmVHnAk4AQuXNDz51BPqGI6OjmptZiHBqJByWdaxbN++PdavW49dJ9fDw74G2rfsCkf78gn+7kQFo0u7VkXuo20Q8POof9d9bQcX3Et6r1KT0nF0Q/b3Y9shtWBuqT9/+7Lg0FwiIsoj8t8eSZcHxsC6USOdPrcs25JbM2tr/BETDZuuXeAydaoKipNOnizx8TKio5Fy+TJSzp9H1JIlSDl1Sm2Xlfi2+vig8aRJGNSrV7FBaERsLDadP492deqgjmfB84H0eZiuJJ5au3YtRgwapHqdhW07BqJEhsCrZnZwFXo1Fq1bt1bLt0jisaoUhApTExMM63cfzDKtcerfckrm5Xfo0AGnT59W5XJuPj4+eHTao5jyxMMwc07B2p2/48ipfUhLTy3T64lLiEVKZgLq1q1b7CgTB3tHuDtmZzOuSPtXBCI5Ph3OXrZo1NkbVQUDUSIiypESEIDEPXsAU1O4TtbdkFwtWbrF9dFHc273d3BEYFoazl65iuj585GwdSuSDh5UgVVx0kNDEbN0KRI2b0bCjh3QJCYiCsB6RwdY33cfxo0aBWfbvHN4CgpCxV9796gkRpO6divT66usYPTkyZO4desWRtWtC01KCsyrVWOiIiID4e5nD3MrM7VkR93qTWBhYYHt27ejKgWhWh5uXqjuVhebNmxBcnJyscGolKnNmjXDjBefw8hxgxCSEIiVW5bg0tXzJfqeKMjN29dg62BV7BI58jeo69sEpiZ3h1OxYTIBonzcCojG+X0h6nqvhxrCzLzqhG9V55UQEVGZRf3yi/rtMKA/LGuU75ybknLs1zfnem97e6RoNNhz9ux/Q4QzM5FWSNZISUKkDUIT9u3L2S5VgvWWFgjp1RMTH34EdQtIQFFYEHrx5g0cvHEDw1u1uitwNZRgVIbyyTyrWnfuqNsOvXvrdD0+Irp3Zmam8K7tqK7H3E5Djx491AiHqhaEarVr3glRoQnYuXNnzraiglFhaWmJXr164aVXZ6BjrxY4eXUv1m5fjrDw0i91c+VmABo2rVfk64mNjVXnV9etbYUmKspIy8TOxRfV9Sbdq8OnnjOqEgaiRESkpIeEIHb9BnXdbcrUSjuPhN27c65bm5qijqUV9iUlwsQpuyImUq5ezfOYrORkJOzciZg//kDshg2IXbECmaGhSJchuKYm2Nu0KcZPnoIejbPnaZY0CJUW9RUHD8LcygrDWrQst9eoy2BUXsOyZcswbNAgJG7fobbZ9+ldYc9HROXPt6Gr+n39TCSGDx+OHTt2qACwqgWhwtbGDo1rtcKubftw59/Gs5IEo8LZ2RljHhiDZ154Ej71nLDtyBrsPLgJCUnxJXru8MgwJKZFqecpyqZNm5CRkYFm/p0qNFHR4XVBiA1PVuvJdhpVB1UNA1EiIlKiFv0GZGTAtkMH2DRrCn3xkIsLLqem4mRauhoyLNIDA5GVlJQnEE25cAGZ0dFIDwpSS7EcBLC8enX0eeghTOjRo9DlVgoLQsW528GIc3GBX7NmWHjsKA5euYKocgoadRWMyrEvXryIJ9u2U++PuYcH7IqpZBGRfqnVwj1nmObA/kNUubV58+YqF4RqNWnQElnJFti4cWOeIbYlCUaFv78/nnjycTwybRzSrWOwZvvvOHH2MDIypHmycOcDz8Db31Mtk1PcKJMmjZrC1cGrwhIV3TgfiRNbsl9jj/H1YWVT9XLMMhAlIiL1RR+3caO67jrxkUo9F/vu3fPcluG5ksTi9J2wnOVWIOe7fbtaVzTx0CHELF+ec99ZAD85OqLWyJF4duRIeDj815NamiBUlmvZe/MmBk6YgLc//RT1R47ECUsLLLx4AT8dOoS1p06qwPRiSPbcHX0NRr/99luVdMP30iV122nkSJiUYA1UItIfLtXsVKKarEwNEGen5kWuWrWqSgahwtzMHO2adsGpI+dx6d+yq7TBqKmpqUru9OLLMzD4vt64Hn0OK7csxdUblwucP5qSmoLg8Cvo1LmDemxh0tLSsGHDBoy+fxRa9c/O5KvVaoBfufSGJkSnYuuC84AGaNzNB7VaeKAq4jcREREh9fJlZISGwsTKCnadO1fquWgTFmnXE5Vg7b5atbH0WhDGt2gJM1n/U+bOXL+OqIULpVagbt8wATZYWKJtxw54rUnTIisSxQWh4tDVq8jy9kb/AQPUcK/7x4xB+siRuHr1Kq5du4brV6/i9M2bSE9NhaunB2zvcf5oRS7tIgmK/vrrL8x7+20k/r5MbXMaPapcjk1EulW7lQeO/3Mdl46E4YEHHsDs2bPVXEWZ/12VglAteztHpCcBhw4eQoN8azdrg9H8S7sUxNraGv3791dL30gP65FDO3Dhyhl0bNkNbi7/BXiXg87D1skSrVoVvWyLzM+Njo5Wf4OmTeuqv4skJ5J5oeURhGZlZmHz/LMqS657DXt0e6Do3llDxkCUiIiQuGev+m3bvj1Mra0r+3Tg9dKLKmnRrZdeRsbNm3hYo8HvWVlYERKCh5o1Q1pQUPaOaWmINDHBahMTuDZqhBc6d4atpWWxxy8uCI1JSsKJmBj0mTpFBaFakq1SKkT5K0XSQi4VnHtVUcGoVFRlHb5+ySlI0mhg37MnrGrVKvNxiUj3GnaspgLR62cjMf7Zh/HOO+9g6dKlePLJJ6tMECpLr0jW2qCbgbgTdxM1G1VDl65dCty3NMGocHNzw0MPPYSOHQOxbu16bNq/AjU866Nts46qB/b81ZPo0re1+l4oyk8//YSOHTvC3a4GAg6GqAC0QcfyW1Ll0JqrCAmMhYW1GQZMawpzi6qxZmhBGIgSERESZMkWaYHuVrblScq9l/bmTXXd0cwMg+wdsDT8DnpbWsBNgjdJoAvgbydHTBw8BD4uLiU6bnFBqNh5KQBODRuoCldJlEcG2vIORgMDA1WF6dM33kTyypVqm9vUKWU+TyKqvOG51Wo7qfVEY68DQ4cOVUPvn3jiiQrNgl1RQWhKahKCQ28gIyMN4ZF3EB4ditikCFjamqFWHT8M6DQWLVu2hJlZ4YFYaYNRIVMVnnl2Oo4ePYp/NmzBqm1L4WTrBhsnM/QuJpHb5cuXVaKi15/+ECs+OpazXYbodh5d9LqjJXFm5y0c35Q93Lj3w43g7Fk+2Xf1FQNRIiIjl5WYiKRj2V+odt26Ql8knzmT5/bzHh4YEnQVHx84gMmNG6NhaBikejI0SwNHG5tyC0KvR0YgSKPB+BEj1JIAulSeweibb74JLy8vjEpPQ0JqKmxat4ZN24KXGiAiw9Coi7cKRM/uDsYz059F33591HqWffr0Magg1NXNBYdjj2H/2X9Uj5+ruwuadPRHzZo91IiT3CNRinMvwagEt/IYmWsr79/+PYfQb0DvYp/366+/hqurGzxSWuaJok5svqGG6JZlaG7AoVDsXnYpJ+FR3TaeqOoYiBIRGbnEI0ckQoNFjRqwrFk+2f7Kg02zZoj548+c23ZmZnjQxRXfhIdjeLduMNu9B5lhYfCOi8OZXbvQsX//InsFShKESqVrR2AganXrhqZNKydzcHkEo4cPH8Yff/yB3z76CAkLF6ltni++wLVDiQxcvXZeOLDyCuIjU+Dn3EQFUnPmzKmQQLQih+OOGz9WBaCDBg1SZfK9zrEvSzAq5HmlZ3ngwIEwLyaJmywl88svv+CRMdNgYX53I6XME73XQDTodAS2Lbygrjfr5Yv2w4xjCgWz5hIRGbnUgOwWWJuWLfUqUHG+/35YNW+eZ9sUV1c0tLbG7LlzJZlgjppXr+LU+fNlCkLFqZs3EePoiCHDhlXqe1GWbLqpqamYMmUKWrVsiW4XA4DMTDU31LZNmwo9ZyKqeBaWZmjWo7q6fnLLDcyc+Q62bt2Kbdu2GdScUBltIr2PLi4uZQ5CS5tNtyDFBaHi/fffV/s99MCjBd4vc0XvxfWzkdj041losjRo0KEauo2pp1ffxRWJgSgRkZFLu3ZN/baspT+9oVq1//wDbo8/lnPbzMQEs6t5I1jW0AsMzNlukZUFm8OHERwRcc9BaHJaGg7cvo12/fvDx8cHle1eg9F3331XLXew6LHHkLR/P0wsLeH12qsVfr5EpBvNevrCzMIUd67Ho0397ir4evXVVwtcksQQsuOWp7IEo0UJCgrCvHnzMG7oozixOuyu++912ZZze4Kx/rvTyMzIUmvF9n6kIUxMjSMIFQxEiYiMnDYDrb5mU7WqXTvP7TpWVnjGzR3P3Q5Gkl8NmLlJ6iLALSkJURs3IiElpdRBqDgQGAhTvxro27cv9EVpg9EjR47go48+wgcvvwzLxUvUNrcnHoelv7+OzpiIKpqNgyWa9/RV1w+uuoIPZ3+oEu+sWLHCqIPQigxG3377bbi6uKGB1d3JjHo93BCdR5UuUZH0fh5YGYidSwLUdcmILBlyTc2MKzQzrldLRERF9IjqZyBa0LzVSa6uaG5tjVFnz8J+7kcw+XfJGZkvGrTyb6RnZpYqCI2Ij8fphHj0Hjas2NT9+hqMRkZGYty4cWpI7gN3wpEZGQmrevXg9mjBw8iIyHC1HugPK1tzRAYnwse2oZrj+PrrryMlV0OcMQahFRGMynuyZMkSPDlpBiwt7l7ezMysdD2Y6WmZ2PzLuZzsuDIftPfERjAzN76wzPheMRER5ciIjkZmTIy6blnC5A66ZtOiBVzzBVMyRPeXl15CWlYWxr32GlyeeDznvmpR0SoL4tVr10oUhMpwth2XL8GjWTNVcdFHxQWjEnSPGTNGVSCXPfwwkvbsUUNyfT75BKY6zvxLRBXP2s5CLRkiJHnRnNlzce3aNTU039iD0PIMRmWN6MmTJ6ukUFMKWf6qNHNDI4MTsPzDowg8egemZiboO6kR2g2pZTRzQvNjIEpEZMTS/12n09zLC6bllDCiIni99CJq/rEM7k8/pS5yvfV772HlypUqS+Jbx4/DYdCg7J0tLJAcE4M9N2/Axd2tyCBUXA0Pxy0zMwwcPrxECSv0MRh94YUXsGfPHqyZPRvpP/2stnm+9BKsG9SvxDMmoorUok8NOHnYIDE2DXGXrDBz5kzMnTtXZc029iC0vILRDz74AOfPn8fChQtRo757TvBf2rmh0uAp80GXzzmK6JBE2DpaYvhzLdGgozeMmf5+4xIRUcXTtsKa6n+7pPSMyiW3Tp064avXX8cT77yDetOmYZgM0U1JQdc7d3DJ1hZ/nziBUS1awsrCosBjZmZlYefVq2jQp7dau07fFbS0yw8//IBvvvkGCz/6CG7zf0FmZiYchw2Dy8MPVfbpElEFkuVPekxogDVfnsSZnbcw+aWnVOPcpEmTVGBp/e+UBWMNQsu6tMuJEycwe/ZsvPHGG2jZsqXa1nl0XbVeqCzVIj2hJQlCU5PSsXNpgOoFVc/f2BV9JjVWwaix0/+aBxERVRhTu+z5kFmlWB5En4R98im6/74MT7m54ZWffsIBN9ec++pfuwYbcwssPnYMd+LiCnz8sWvXkOTmikFDhxrM0KjcPaOvvPIKXnzxRbw7YwY6b92mhllbN2kC7/dmGczrIaJ7V6ORq1pbVBLm7lgUgPk/LcCVK1fw1ltvFftYYwhC77VnNDk5WQX0UtbK3NvcJPiUnsySBKHBAdFY9t7h7KG4piboNLoOhk5vwSD0XwxEiYiMmKm9nfqdlZBQbqn/dSX51ClE/Zw9DPWxuvVw/+DBmLJ9Oy57eMiicLDt1BEj35sFh/bt8Pv5czhz61aexyekpuLQnTB0HDgQnp6eMCQSZG7ZsgXfffcdxg8fjgmBgUi/cQMWvr7w/f47mJagJ4SIqobuY+vDzskSMWFJiD5voXrxPvnkE/zxxx+FPsaYgtDSBqPyXTht2jRcvnwZixYtUmuelpYsx7L/70Cs+uIEEqJT4ehhg1EvtUbr/v5GtTxLcRiIEhEZMTOnf1t0s7KgSU6GIWb7TXdxwa3HH8dTTZrgCTc3jNi7B8sd7OH95Zdw9/HBY089hbZjxmBrZAQ2nT2rMuqKvZcvwbpWbfTs2ROGRIbeypqBMi/07eeew5spqUi/dBmmbm7w+2U+LAwsqCaisrG2t0CfyY3V9XN7bmNEz4cwYcIElWRHgs38jDEILU0w+vHHH6ssub/++iuaN29e6ueIvJ2Avz46ihObbwAaoFEXb4x9ox2q1S79OqNVHeeIEhEZMcmsquaHZmUhMyFBrxMWFbSsiwShNx97DHYXL8BzzVo86+4BVzMzzDp4EHsGDcLy9evh7OyMkSNHwt/fH2uWLMHNI4fRwqsaLqSkYOTwYbA1oNcsFUepYG7cuBHfvvsuBhw4iLTr16FxdkbwtEfh6+YGDvgiMj41GrqiVT8/nNhyA9sWXcTcWV/i0qVLGDFihFpfuFq1ajD2ILQkc0bXrVunGvrefPNNPPDAA6U6rqwHemr7TRxcdVX1iEpm414PNVRzSqlg7BElIjJiMsTT6t8kPRmhoTAkmnr1EPziC9lB6Oo1OblxH3JxxQ++NXD09GlV2bhw4YLa3qpVK0x/7TVU79sXe+NiUb1lS7Rt2xaGQiqVHTt2VEmKtnz7Hfpu3oK0oCCYe3ujzu9L4dm2bZHrjBJR1dZxZG34NnRBRmomti+4hD+XrkBGRoZqiEtISGAQWkzP6MmTJ1VD3/Dhw0u9DE58VApWf3kC+/4KVEGoXxM3jHu7PYPQYjAQJSIycu5PPal+J+4/AEORlJSkgq7q9eujRbt2dy3Q0tnODnuWLoVZRgZat2yJOS++qIa0urm54eFJk/D4W29h4rRpMDWAbMFSefzyyy9V1kZ5DQc//BA+332HzIgI1YhQc8liWNWqVeQ6o0RU9ZmamWLAo03h6G6NuIgUHF8ZjpV/r1bLj0hwtX//fgahhQSjW7duRd++fVG/fn389ttvpfpuCDx2B3+8fxjBATEwtzRVmYyHTm8OOye+x8XR/29gIiKqUPY9esDE1haJe/fCkIJQGWomi4y73H8/XB99NM8+rtMehUfAJSw2M8dYOzu8/tln6FSnLgICAlQvsAzTtbfPzhiszwIDA9Uc1ueffx5PTpqEzUOHQvPlV9CkpcG+Vy/4L1kCCx+fYtcZJSLjmS86+MnmsLI1R+jVWIQftcKa1Wtw4MABVY7IyBAGoXmDUUdHR4wZM0Ylrdu8eTMcHBxK9Nh06Xn+7QI2/XQWqUkZ8KzpiLFvtEfT7tWZtbyEGIgSERk5U0tLOI0YjqSTJ9U8UUMKQrVf9l4vvYiafyyDz0dz1G/Hvn1VRl0bU1P8z9MLi2r4Iex2MFo0b46XXnoJkZGR0GfR0dFqnpK8xuDgYOz7fh6evByIpPUb1Jxej+eehe83X8Ps36zHWgxGicituj2GPNUc5hamuHEuEiFHTPHB+x/g4sWLGDVqFOLj4yv7FPWGrBU6cuQoeLpXw+uvv6GGMJdEdGgiln94BBf2hUCG5LQZ6I/RL7eGs5fh5BzQBwxEiYgIblOmSM56JB08CEMLQrVsWrSA04gR6rc2o65WG1tbrKxZC8+PGoUffvgBderUwYcffqiOqU9k7bq5c+eidu3a+Prrr/H6009jx+j74PLFF0i/eVPNB/VftBDuTz4JEzOzAo/BYJSIvOs6Y8BjTSDFZNTVDNS37o1/Nm5SgZcMzb2Wr4w0RmvWrEGXzt3gYO6BqV0+RMp5D5w8fqrYdUavngzH8jlHER2apJbNGfF8K3QcWQdmZgyrSovvGBERwbJGDRXExW/bDkMMQgvKqJuf9I7OfO01tdj7xIkTMfPtt+Hn7Y3/TZumeh0rU0hICGbOnImaNWvijTfewCPjxuHsrFl4YMdOJK5dq/ZxmTABtdeugW0JEiwxGCUybjK3PCL1Oqp3AczMTXD9TBSiT9hhz659qjxo164ddu3aBWMk64R+8MEHKolT/Wqt8NywT2Fn7YjUKHPcOWyFU6cKXtpFsuIeXnsVG+edQXpKJnzqOeOBN9rDt4FLpbyOqoCBKBERKR7PTEf8pk1IK6Y1WN+DUCG9ogXNG5XtMg/o9Rp+WF/DDwNNzfDN/F/gV6OGSuaxYsWKEg/NKiupDK5cuVINlatRowY+/fRTjB85Euc+mI2nz55Fyk8/IysxEdZNmsB/6RJUe/stmJViXiuDUSLjlDs77sAxXTBkeguYW5nhxvkoXFifhJ1b9qqyVJLzyAgRYyLfJ+PHj1fLszw1ZQam9p8JKwubnPslGK3uVO+udUYz0jKx6edzOLI+uye5WS9fDH++JWwduWBWWZhopFmAiIgIQNicj5ARFYnqc+fCUIPQ3JJPnVLDdKWHVIJQ7bZrY8fl7BOfmYn1cXFY4+aKkxcuwNLSEr1791aBaf/+/dUw2eKeNz09HRs2bMDgwYNhYWFR4D7ydRsUFIQtW7aoIWHbtm1DamoqWrRogefuux99MjORvHEjsmJj1f7mPt7wfP55OA4dCpMyZPeV5z137pzq9e3atSvs7PLOKyWiqqOwJVokcdGG708jOT5dBU/9pzXGnK9m4ptvvlHrZX777bdwd3fX2XmWpMwsb4cPH8akSZNw/fp1LFy4EF3b9MOKj47dtd99/2sDM/s0tc5o8+bN4e5cTb13YUFxMDUzQc8HG6BR5+wkcVQ2DESJiChHRnQ0rvQfAP8li2Fdv75BB6GFiV29Grf/9+pd2yXRUUTTpli7dq26yLA1WS7F2dkZrVu3Rps2bdR5SA+jt7e3ujg5Oanz0laqBg0apOZ5ylDb27dvq8uZM2dw7NgxVTmUJERmZmbo1q0bxvTqhT52drA6dhzJx4/nnIdlrVpwmzYNTkOHwMSyfFrbGYwSVX3FrRMaF5mM9d+eRtTtRJiam6Dz6Lo4H7YP06c/rcql77//Hvfdd1+VC0Slwe+dd95R8+8la7AEoTJaROz/OxAnNv/X89lqgB86j6qrroeHh2PPlsOIOeWA5NgMWNmZY9DjzVC9PofilhcGokRElEfEvHlIPnsWNb75psoFoQX1iGpJtl1tr6mQoPHgwYMqiNRebt68mecx0nsqF6nESWVHKoJpaWl59vH19VVBbKcmTdDexRW1ExORefIkUi9c+G8nMzPY9+wJlwfGwK5r10ITEZUFg1Ei4w1CtdJSMrDt1wsq4Y6o2dwdTQe44vmXnsGqVaswbtw4fPHFF/Dy8qoSgaiU4VOnTsXly5dVMPrKK6/A3Nw8zz6hQbGIDUuCk5ctqtVyytl+7UyEWpolIy0Ldq4WGPlcG2bFLWcMRImIKI+s5GQE9u8P73dnwaF3ryoVhGqFffKpWt4l9/xRrxdfLNG5aXs75be0mEuFSoLQS5cuqWFcct7VnZ3hGRsL+5AQZF66jJTz55EREpL3YCYmsGnTGo79B8BhwABYeHmiojEYJTLeIDR3OXB2VzD2/nUZWRka2DhYoOuYejhyeTueffYZVZ698MILaqkrWWPTEANRWTNaEr/JvH8Z0fLrr7+q75OSkPfn1Lab2L8iUJLJw7OWHSzrhaNV2+bw8/Mr93M1ZgxEiYjoLtG//447H38C/9+XwrpBgyoVhBY1f7QslaqNq1ejm40NEtatR8KePUBGxl37Wfj7wbZdO9h17AS7jh1gXoo5WT179lTvifS+ytAy6Yl9//33MWHCBEyfPh1//fWX6sWQZV9kiLA4e/YsXn75ZezZs0cFnTLn9bPPPkNYWJgKRmUY8SeffKL2k+N26tQJX375pVreRsgSD7Vq1VKVOTmuzJmqV68e5s2bp/YlIsMJQvOXIebmFhjZaSoaeXTFn3u/xunre+Dp5Ym27dpg/fr1sLe3x5QpU3Dy5Ens27cvpwz5/PPPc+aT/vPPP6ocKm0ZInNTo6Kiyj0QlXLt3XffxS+//AJPdy/878U3MP2Fx9W5lYT0GO9cEoDLR8LU7cZdfdB9fH1ERUXmzBllMFp+GIgSEdFdNJmZCBozBpkxMaj155+lCpgMIQjNTb4GNcnJ9/z4tFu3EPXnn4ha8TfMch3H3NcXNk2awLpJY1g3agyrhg1glq8H0sTGpsSvUyqRUuGUoWVjx47FH3/8oYaaScVQMu/K/VJB/PPPP1W2RxkiXL9+fTz66KN45JFHVND5v//9DxkZGSpRkvSMyjEaNWqE9u3bq2zBb7/9tqo4SsXT1NQ0pxLZsGFDFbBKBVJ6GY4cOYLAwMC7hrgRGSMpQ2T4ZmUEoafPnkR8fHyJekILK0M6tOyKmg5tULdaC+w4uwKnr+/Gvr0HMOfjD7B48WIVkEo5MmzYMMyZM0eVIdu3Zy/1JQGmlGESoJW2DJFGMTlmeQSikuX2q6++wpLFS2BhZoV+LSagW+PhsDC3RKv+fmo+bHGiQxPxz49ns+fQmpqg83110by3b04ZLSNgGIyWLwaiRERUoNSrV3F1xEgVTPkt/BWmxVRyDDEIFVlJSQho3QaVocHxYzC1LdmcI6lESvIk6d0Ucl2SJY0ePRqLFi1S20JDQ1USpQMHDmDr1q1q302bNuUc49atW2qpGBm2JhXC/MN0IyIi4OHhoRIsNW3aNKcS+fPPP6t5VuL8+fMq0ceFCxdU5ZLI2KWnZuLH5ypnTc4Go4FuPYoPQosrQ76Y8z32/HkJ549fweu/jcGr475DjEUgTgceRKPGjbBkyRIVcEsPpiw7dfHiRTQoYLRMacoQ6RV97LHH7jkQle8NGQny008/qe8PD1cvdKwzBN2bjICNlf1dmXBzz//MTV7Xhf0h2PvnZfW3tHWyxIBpTeFT1/mufRmMli82ZRIRUYGsateG5/PPqSG6t196CT5z58LU5r/11qpCEGpopPKjJUPN3Nzc8sx70iYYuXPnDk6dOoUdO3ao3oz8rly5onpLZXivDKOTJQ1knVHpYRHSoyqVyIKeVwJd7XMwECWqXB07dixREFpcGeLqY4fhz7VEi7M18PpvQFR0JI5cPorT1w7jxIns3k3pCZWERqJz584YM2aMmn8pjV5Hjx5VQWhpypDYf5eqKg2ZVrBu3TqV2VyWwpLvjz59+mDeV78g9XR1mJkVHNpIMqKCAtHE2FTsXHwR185Eqts+9ZzR/9EmsHMq+D2VILtDhw4qGBUMRsuGgSgRERXKdfJkxG3ejPgtW3HtwQdVJl0LH58qFYTK8FjpmSxKVmoaYlevQuSCX5EZlj13CDY2cB4xAs5jH4Cpjw82bd6MAf37l6p1X567NPIfW96v3Nu0759UBmWYnAx7++ijj+46jrYiKGul+vv747333lO9Ai1btlTDdPNn/i3sOYgIMLc0xWNf9tDJc8n/nQx7leG4EoTaOZRfGSLXazbLnobRok91HLqShqb+nTCywzTABKhe3xl123jidlygyka7ceNG/PDDDypIleBs5MiRaqi/9HKWRxmiXXtZm7VcltTSBoASCM+cOVMtNyPzUQMOhmDruVyZyPO5cSEKDTpml3vZz63B+b23cWj1VaQkpqvlbDoOr4MWfWuoYblFYTBafhiIEhFRoUxMTeG/YAGuDByE1PMXEHT/GPh++YVKuFMVglAhz2tSyPDYzPh4xPy5HFELFyLjzh21zdzDQwXozvffB7N/M0pKsiKNpaUaZmuqo8XZiyM9FTJ/q2bNmgXO5YyMjFRDdGVYmwzNlWG6uYfxElHJqGDOqvyXXMpPArdTx08hMTm+xMNx75VPPRcMHtMLf/y+HM1aN0DolQSkhQLn1yfC2s4Po9q3xtSxz6BVtwaYNm2aKktk+K0EyEKCUclUK0N/xerVq1VvpgRxKSkpOcNcZQivlJ8yrSB3RnIJQLVrLwtZv1kC7wULFqjhwXKc3GTplaJcOhSGZj19Va9o8KVo7PnzMiJvJaj73GvYo++kxnCrfvfokcIwGC0fDESJiKhIElzVXr8O1x+ZqNa+vD55CrxeexUuEybcc/CoL0FoYdJuBSP6t0WIWf6XmkMqzKtVg9tj0+B8330VOl+2vDz99NMqyBw/frxKTuLq6qoSDC1btkxVGF1cXNSwvB9//FH1kEolUSqOQltRJCLDXKKlPEg2bikrlh3+GE9MfQaRgek4sPMkDuzYggfjXwT2msDO2hEBx25hxvR3kf5YLN798A0VXEr2XEmQJnPJhSRFyk+SC8kl91Bh+U6Q8kjmss+YMUOtwSyX4tY1lQBTkhKd2Hyj0H2unY7AkXVBuHEuSt22sjVHu6G10LSHDOk1LfX7w2C07BiIEhFRscwcHFBz2e8Iee01xG3YiLD33kfcmrXwfPkl2LZtW2WC0OSz5xD1y3zE/bNJan5qm1W9unCdNAmOw4bB1NIShsLHx0ctuSCZciWzrqwNKMNwBw4cqIbSyfsuQemzzz6r5nJJ4hFZXqFXr16q8ihzRonIOIPQ/GXI/eNH5JQhXTr2RLMeNXD1VAQm93kTf+37BvdN7QsvpxqY0Od5nDnzLHq3G4ZHHh2PmOQ7qF27tgrWpMyXXlBZtkXKJOlJnThxoprHLvfJkjAlXWalIJIZt3YrD1w/G4mj66/ddf+xjdfVb/nKadytOjoMrwUb+7KV6QxGy4ZZc4mIqMTkKyNqwa8I//rrnCVP7Hv1gueLL8Cqbl2DDEI1WVlI3LsXkfN/QdK/lQlh17kTXCdPgV3XLsWeZ0Uvzq7rv3H+bLpEZFxBaElosjSIvJ2IWxejcPNCNG4HxiAjNTPPPvYuVvBt4AKf+s7wrusMJ4/sJasquszcvuiCyoSbm8wDbdTJW/WcOnmULFt5STGb7r1hIEpERKWWfucOIr79DjF//SVrAACmpnAaNRIu4yeodTMLCtz0LQjNSkxEzKpViF68BGlBQdkbzc3hOHgQ3KZMgXUpMsJWpUBUMBglqnz6HIQWJDMzC3euxSM4IBq3AqIQciUWWRl5wwxZGsW7thNcq9viaugFDBrVC46utmX+PkhLycDtyzFq2O2N85GIvfPfms4yBLdRFx+06F1DBcYVhcFo6TEQJSKie5Z6NQjhn3+msupqWdaqBcdhQ+E0bBgsa9TQuyA09coVlYAoZsUKZCVkJ6swtbOD8/33w3XSRFj8m1G2NKpaICoYjBJVHkMLQguSkZapgtFbF6MREhiDsGtxyMq8O+yQQNHR3QZOnjZwdLOGjYOlutg6WKqMxCZmJjmZbFOTMlSW25SEdCTEpCLqdiKibicgLjIFyHVo2d+vqRsadfaGf1M3mJmXfg7ovWAwWjoMRImIqMySjp9A9OLfEL9tOzSpqTnbbVq2hFX37ggwNYFr27Zo1qaNzoNQTWYmkk+dRvy2rUjYth1p1/6bO2Tp7w+Xhx6C06hRMLO/90CrKgaigsEoke5VhSC0sMBUglG53Lkeh+sXQ5GRZJYngCwLBzdr+DVxg19jVzUc2NKmclLhMBgtOQaiRERUbjITElTvaNzatUg8eDAn4Y9iYQ7rxo1h27IVbFq1hGXt2rDwqV6mADC/rJQU1eOZFhiIVLlcDkTymTPIjMxerFyYWFjArnNnuEwYD7tu3dQSNWVVVQNRwWCUSHeqahBaWJnZv+8AJMVmqKG0seHJSIhKQXJ8GpLi09XvzPQsteanzEeViEV6T63tLNTFxtESrt52cPOxg6uPnepF1RcMRkuGgSgREVWIuOvXcfaHH+B06xYsrl5FZsR/wWBuZs7OsKheXV3Mq3llr8VpIxdrmFhbq+tCk5aKrNRUaFLTVK+rzPHMCA/Pc8n8d825/EwdHGDfowcc+vRWwaeZfcnXizP2QFQwGCWqeMYShBpDmSkYjBaPy7cQEVG5kzmhBwMCUG3cODRu1kxtSw8ORvKJE9mX02eQfvMmMmNjkRkToy4p586Vy3NLYCsZfC3r1YVVnbqwblAfNi1awMSAll7RNzKcukmTJuq6zPVlMEpUvowpCDUWXNqleAxEiYioXBWWmMjS11ddJIlR7qG86cG3VZAql4w7YchKTkFWchI08jsl+7ocw8TSCiZWViqgNLGyVD2l5u7uMPfwyL54ysVTBaKVnZG3KmIwSlQxGIRWXQxGi8ZAlIiIyk1ps+PKEFmzBvVVryXpPwajROWLQWjVx2C0cLrJZUxERFVeRkYG9u3bpxdLtFDFB6PVq1dXf2+Z60VE9zb3+uzZswxCjSgYPX36tJo7StkYiBIRUbkwNzdHu3btGIQauJ49e+L555/PuV2zZk188cUXBQaj8veuqolGiCqa/B/Vr1+/ygWhJSlDjDUY7datG9zd3Sv7VPQGh+YSEVG5cXZ2ruxToHJ25MiRAoffSiXaxcWlUs6JqKqwtraGsZYhxsjJyamyT0GvMBAlIiKiIlvxiYjuFcsQKgyH5hIRERnIcLdnnnlGDXmTnkgvLy/89NNPSExMxOTJk+Hg4IC6deti48aNOY+R+WeDBg2Cvb292v/hhx9GREREzv3y2EceeUTd7+3tjU8//fSu580/rO6zzz5Tw6+lh6NGjRp46qmnkJCQkHP/r7/+qnrGN23ahEaNGqljDxw4ECEhIRX6/hCR4ZQhrVq1wtixY1G7dm2WIUaMgSgREZFkr0xKUhdJIKKlSUvL3p6WVvC+WVn/bczMzN6emlrsvpp7TPCzcOFCNb/o8OHDqkL55JNPYsyYMejcubPKvNm/f39VUZTsxTExMejdu7eq8B09ehT//PMPwsLC8MADD+Qc7+WXX8auXbuwevVqbN68GTt37lTHKYqpqSm++uornDt3Tp3P9u3b8corr+TZR57/k08+wW+//Ybdu3fjxo0beOmll+7pNRMZivTUTHXJXYZkZmSpbZnpWQXvm5Vr38zsfTPSM0u0ryGXIZ9//rkqR+bPn88yxJhpiIiISHO+QUN1SY+MzNkW/v33atvtN9/Ms++Flq3U9tSbt9TttLQ0zc4XX1Lbbr34Up59Azp2UttTLl3K2Rb1xx+lPr8ePXpounbtmnM7IyNDY2dnp3n44YdztoWEhEhNVXPgwAHNe++9p+nfv3+eY9y8eVPdHxAQoImPj9dYWlpq/vzzz5z7IyMjNTY2NprnnnsuZ5u/v7/m888/L/S8li9frnFzc8u5vWDBAvUcgYGBOdu+/fZbjZeXV6lfM5Eh+ebxbeqSFJeas+3I+iC1bfui83n2nffMDrU9NjwpZ9vJrTfUtk0/n82z788v7lbbI4Ljc7ad3Z1d9hhqGSJl5qpVq9RvliHGi3NEiYiIDETz5s1zrpuZmcHNzU0Nk9WSoXPizp07OHXqFHbs2KGGteV35coVJCcnIy0tTS0poOXq6ooGDRoUeQ5bt27Fhx9+iIsXL6plJ2TZnpSUFNWDYWtrq/aR33Xq1Ml5jAzZk3MiosqlL2XI7Nmz1fHl8SxDjBcDUSIiIgANjh9Tv01sbHK2uU2ZAtdHHpG1afLsW3/f3ux9c2W8jOncCR3fehMW+bJg1t229a59nUeNuqdzzL9UimSuzb1Nu2xOVlaWmnM1bNgwfPTRR3cdRyp1gYGBpX7+a9euYejQoWo43wcffKAqnXv37sXUqVNVhVJbiSzoPHMPVySqih77sof6bW7538y3Vv390KJPDZia5l3SasrH3bL3tfhv36Y9q6NxVx+Y5Js498gHne/at2Fnb4MuQx5//HE173PIkCE4dOgQyxAjxTmiRERVlPRayTqPkoDC09MTI0eOREBAQM79UVFRao6QtF7b2NjAz88Pzz77LGJjY++qAOS/LFu2LM8+7777Lnx9fdG1a1dcunQJhsjU1lZdcq+BamJpmb3d0rLgfU1zfY2amWVvz7ceYEH7muhg7c3WrVureZySKEQSkOS+SKIh6W2Qyp5UArWio6OL/PsdO3ZMVVAlIYlUGl988UU899xz6r7169fn2fedd95Bw4YN1XM9+OCDalvu5xJybvk/W3PmzMmzjyRT8ff3V/PU8j+eSJ/KTAsrM3WROZDaz7O5hRksrc2xfMWfeZ5r9pz3UauOP7p175bzP2dmZqoeL4/JTXtck1zBrOxryGXI3Llz1fso66jevn0bxkLmu0pw7+Pjoz4fq1atKrTclIRSffv2rdLlJgNRIqIqShJIPP300zh48CC2bNmC9PR0lYhCshwK+fKXiySEkMyIkqlQklFIy3R+CxYsUBkLtRepoGnt27dPBSGSrGLChAmYPn26Tl8nFUz+9lJxHj9+vFrHT4bSSRZKyY6ZmZmphtvJ31qSjUiyEPkMTJo0SVWiCyMVUPkcff3116o3RPa1zBeka0kF85tvvsGZM2dUBV/I5y88PDzPfrNmzcrz2ZKKvpYkKJEKqzR8vPHGG+rciSoKy0zdlSHffvstQkNDsXjxYsybNw/GQj5LLVq0UK+/uHJTRptI0FmVy00OzSUiqqKkgpSbVJqklV9apLt3746mTZtixYoVOfdL67YMt3zooYfUnB3zXMNRJZV+tWrVCnweaQGX1l2ZeySPk+ehyid/E6nw/u9//1MVmdTUVNVCLsPhtBXFjz/+OGf4nfQCSQ9n/h7x3KQCJUsvyFA9yagpnyNZlkGWb8hPKtha0nMkZE7p6dOn0adPn5z75HkL+2zJ/vLZk8+W7CNz0ogqCstM3ZUh8rjIyEi1pIw0VBVUhlRFshSOXAozIVe5KeS9kszCVbbcrOxsSUREpBuXL19WmQjPnDlT6D4//fSTxt3dPc82eYyPj4/KatiuXTvN/PnzNVlZWTn3S9bDAQMGaMzNzTXOzs6arVu3aoxN7gyQxkg+IytXriz0/tTUVM3HH3+scXJy0oSHh+fJpimZMF1dXTUtW7bUzJ07V5Oenp7nsVOmTNGYmZmpTJyLFy+u0NdBlBvLzIpj7GWmAMtNZs0lIjIGMidHFjHv0qWLatUviCxS/t577+Gxxx67awiQrCUnSSRknTjt4uMyN0rIHCHpSZCMhtIKW9hQTTI+69atw7hx41Q2TEluIsMdZQ1DLfkMyTw0SXq0f/9+vPbaa2qYmfQCaElvgAwzk8+fzMsj0gWWmVRZ1hlRuWki0WhlnwQREVUsyXK6ceNGNedEkgoVNJSnX79+6ottzZo1d2UszO3tt99W859u3rxZwWdtOGTO04YNGzB48OAi37uqSpJlrFy5Ms88OO18KKkgSYVdkmfIPDJJnCHDHQvyyy+/qGyaUmm3ypf0iUiXWGZWLGMvM4UJy00mKyIiquokEYa0sMp6cAVVqOLj49WcH5lzIl+KxVUKZM24W7duqflCREWRzI+SnKRjx46qhV7m0Mnvoj5bMmdOlnggqiwsM6ky2RlRuclAlIioipIBL1KhkoqStKjWqlWrwFZ9SUIhQ8OkVd863xqYBTl58qRKK29oLa+kH8Mdi6qMy2dLkqAU1vJPVJFYZpI+yqrC5SbniBIRVVGSen/p0qVqiQBpuZdU+cLJyUnNGdFWqGQeiqTQl9tyER4eHjAzM8PatWsRFhamWmalwiVzVWbPno2XXnqpkl8dVTYZBpZ7QfugoCBVIZKhim5ubiqb6PDhw9UcJxliJssVBAcHY8yYMWr/AwcOqOFmvXr1Up9PuT1jxgyVgVQq7US6xjKTKhrLzXwqO1sSERFVDCniC7osWLBA3b9jx45C9wkKClL7bNy4UWXls7e319jZ2WlatGihmTdvniYzM7OSX51+McYMkIV9fiZOnKhJTk7WjBo1SmUOtbS01Hh7e2uGDx+uOXz4cM7jjx07punQoYPKCGltba1p1KiRZvbs2ZqUlJRKfV1kvFhm6o4xlpmC5WZeTFZERERURky8QURUciwzSXCOKBEREREREekUA1EiIiIiIiLSKQaiREREREREpFMMRImIiIiIiEinGIgSERERERGRTjEQJSIiIiIiIp1iIEpERFQObG1tYWJiUtmnQURkEGxsbCr7FKiScR1RIiIiIiIi0in2iBIREREREZFOMRAlIiIiIiIinWIgSkRERERERDrFQJSIiIiIiIh0ioEoERERERER6RQDUSIiIiIiItIpBqJERERERESkUwxEiYiIiIiISKcYiBIREREREZFOMRAlIiIiIiIinWIgSkRERERERDrFQJSIiIiIiIh0ioEoERERERER6RQDUSIiIgC7d+/GsGHD4OPjAxMTE6xatSrP/QkJCZg+fTp8fX1hY2ODxo0bY968eXn2SUlJwdNPPw03NzfY29vjvvvuQ1hYWJ591qxZg/r166NBgwZYt26dTl4bEVFFYLlJZcFAlIiICEBiYiJatGiBb7/9tsD7X3jhBfzzzz9YvHgxLly4gOeff15VsKSCpDVjxgysXbsWy5cvx65du3D79m2MHj065/7U1FRV4fruu+/wzTff4Mknn0RaWppOXh8RUXljuUllYaLRaDRlOgIREVEVIy37K1euxMiRI3O2NW3aFGPHjsVbb72Vs61NmzYYNGgQ3n//fcTGxsLDwwNLly7F/fffr+6/ePEiGjVqhAMHDqBjx46Ii4tD8+bNcfToUXV/u3btcPr0aTg4OFTCqyQiKj8sN6m02CNKRERUAp07d1at+MHBwZA23B07duDSpUvo37+/uv/YsWNIT09H3759cx7TsGFD+Pn5qQqVcHR0xOTJk+Ht7a2GsknLPitTRFRVsdykopgXeS8REREpX3/9NR577DE118nc3Bympqb46aef0L17d3V/aGgoLC0t4ezsnOdxXl5e6j6tmTNnquFp8nhWpoioKmO5SUVhIEpERFTCCtXBgwdV676/v79K0iHzlqSFPndrfkk4OTlV2HkSEekLlptUFAaiRERExUhOTsbrr7+u5j8NGTJEbZM5SydPnsQnn3yiKlTVqlVTCTRiYmLytO5L9ke5j4jImLDcpOJwjigREVExZA6TXGRYWG5mZmbIysrKScBhYWGBbdu25dwfEBCAGzduoFOnTjo/ZyKiysRyk4rDHlEiIqJ/17sLDAzMuR0UFKRa7l1dXVXijB49euDll19Wa+HJEDNZZmDRokX47LPPcoaNTZ06VS1XII+RBBvPPPOMqkxJ5kcioqqG5SaVBZdvISIiArBz50706tXrru0TJ07Er7/+qhJnvPbaa9i8eTOioqJUpUqScMgaeLJsgXZh9hdffBG///67WvtuwIABau07DjEjoqqI5SaVBQNRIiIiIiIi0inOESUiIiIiIiKdYiBKREREREREOsVAlIiIiIiIiHSKgSgRERERERHpFANRIiIiIiIi0ikGokRERERERKRTDESJiIiIiIhIpxiIEhERERERkU4xECUiIiIiIiKdYiBKREREREREOsVAlIiIClWzZk1MmjSpsk+DAPz6668wMTHBtWvXKvtUiKgILDf1B8tN/cZAlIjICF25cgWPP/44ateuDWtrazg6OqJLly748ssvkZycXGHPK5Uze3v7u7afPn0a7u7uqgKnrTD07NlTVSDq1atX4LG2bNmi7pfLX3/9VWHnbCw2bNiAd955R6fPGRAQgBkzZqBz587qc8gKI+kzlpukD+Xm33//jbFjx6rPoa2tLRo0aIAXX3wRMTExMDTmlX0CRESkW+vXr8eYMWNgZWWFRx55BE2bNkVaWhr27t2Ll19+GefOncOPP/6YEyiYmlZsm+XZs2fRp08f2NnZYceOHapSpSWVvcDAQBw+fBjt27fP87glS5ao+1NSUir0/IypQvXtt9/qtFJ14MABfPXVV2jcuDEaNWqEkydP6uy5iUqD5SbpS7n52GOPwcfHBw899BD8/Pxw5swZfPPNN+pcjh8/DhsbGxgKBqJEREYkKCgI48aNg7+/P7Zv3w5vb++c+55++mlVeZEKl5ZUuoqTmJioKkP3QipvvXv3Vl+cUpmqVatWnvvr1KmDjIwM/P7773kqVFKJWrlyJYYMGYIVK1bc03NTxdNoNOpvVVjFaPjw4aoV38HBAZ988gkDUdJLLDdJn8rNv/76S/V859amTRtMnDhRNTQ8+uijMBQcmktEZETmzp2LhIQEzJ8/P09lSqtu3bp47rnnCp3rpJ1vs2vXLjz11FPw9PSEr69vzv0bN25Ejx49VGAhw9batWuHpUuXFnguFy5cUC36UmmTypQMMyrI+PHj8ccffyArKytn29q1a5GUlIQHHnigwMcEBwdjypQp8PLyUsdv0qQJfvnllzz7SG/G22+/rb7AnZycVKWwW7du6lxykyFv8polUJIeD6nkyTHltR05ciTPvqGhoZg8ebJ6T2QfeY9HjBhRouGmFy9eVK/Hw8NDVUBkuNUbb7xR5GPkvApqic//d0tPT8e7776rhutJb4ibmxu6du2qhukJ2Vda9bXH1F605L3/4osv1Psoj5f3VYYoRkdH3/W8Q4cOxaZNm9C2bVv1On744YdCz9/V1VV9Voj0GcvN/7DcrPxys2e+IFSMGjUq5/NhSNgjSkRkRKQiIhUXmZNXFlKZki9+qZBIy762siWVGPnSfe211+Ds7IwTJ07gn3/+wYQJE/I8XoauSYu+ubm5qsBIJaUw8lipNOzcuVM9RkglTSpjUqHLLywsDB07dlQVgunTp6vzlIre1KlTERcXh+eff17tJ9d//vlnVWGbNm0a4uPjVUVzwIABakhby5Yt8xxXnlP2kYqEHFsqp6NHj8bVq1dhYWGh9rnvvvtUb8UzzzyjKhd37txRlZYbN27kGTpX0FwvqczJcWTYlewr89Hk7/XBBx+grOT9+/DDD1VLufSQyGs/evSoGsbVr18/9Zpu376tzvW333676/Fyv/x9pbL47LPPqh4iGQomf999+/blvH7t31beU3mMvK9SMSQyZCw3WW7qe7kZGhqqfsucYYOiISIioxAbG6uRYn/EiBElfoy/v79m4sSJObcXLFigjtG1a1dNRkZGzvaYmBiNg4ODpkOHDprk5OQ8x8jKysq5LseysLDQeHt7a3x8fDSXLl0q9Ll79OihadKkibretm1bzdSpU9X16OhojaWlpWbhwoWaHTt2qPNZvnx5zuNkPzl+REREnuONGzdO4+TkpElKSlK35fxTU1Pz7CPH9vLy0kyZMiVnW1BQkHoONzc3TVRUVM721atXq+1r167Neazc/vjjjzWl1b17d/X+Xb9+vdD3Tvvey/loye2ZM2cW+3dr0aKFZsiQIUWew9NPP62Ol9+ePXvU9iVLluTZ/s8//9y1XZ5Xtsl9pSXvW/7XR1TZWG6y3NTncjP338/MzKzIz4Y+4tBcIiIjIa25ojyGQkqLrZmZWc5taRGWVu9XX31VDUHKLfdQJZGZmYmIiAg1LLOkrbfSui+ZAmVYmMyPkefWDkXKTeoYMvdp2LBh6ro8j/YiLfaxsbGqNVvIMSwtLXOGUEVFRal5VTI0SrtPbpKl0MXFJee2tMQLadkXMpxKjic9EPmHXhUlPDwcu3fvVr0ikniiqPfuXkkvi/Q4XL58udSPXb58uRqCJz0Aud9PGZonmTzzD8mT+WryXhNVBSw3WW7qe7m5dOlS1SstmXMLy5asrxiIEhEZCZl7JKTiU1b5k2PIcCghmSSLIxWPRYsW4fz58ypphnaIWlEkUYhUhmSomCRjkPk0BVUMpXIiyW9kTpIMLct9keFRQoZ9aS1cuBDNmzfPmf8j+0nSEXmu/PJXdrSVK23lSeY2ffTRR+ocZS5Q9+7d1TA07ZCpwmgrZCV57+7VrFmz1PtSv359NGvWTGX5lGFtJSGVMHk/ZDhf/vdU5s3lfj8L+mwQGTKWmyw39bnc3LNnjxo+LUFseQxH1jXOESUiMqIKlaR8l7T/ZVXW9PBSQZKKiMyZkvlCMqdH28peEEleIQkaPv30UzW3prCMj9rEHJLWXjIIFkQqUGLx4sUq2cTIkSNVBUMqDNLaL3OCtBXE3HL3ZOSWPdIrm8yjkl6FVatWqcQTb731ljqeZNps1aoVdEV6T3KTyp28ptWrV2Pz5s1qjtfnn3+OefPmFZthUd5TeW+kIlsQqVjlZkhLBxAVh+VmNpab+ldunjp1SmUel2Bcerxl7rChMbwzJiKieyYt4tLqLes3durUqdyOq02aIZU1ySBZEk8++aQa1vXmm2+qCtCyZcuKXHtPhpnJl78Mlxo8eHChX+7S4i8Vir59+xb5/PLFLQlIZOha7qFcM2fORFnfCxkiJRdpFZfkHVIRlApcQbRZL++loiu9C/kXMZdheCEhIXftK0P6pHdDLtIiL5UsScahrVAVNpxNXs/WrVvRpUsXBplklFhu/oflpn6Um1euXMHAgQNVsCvrh8pwX0PEoblEREbklVdeUen25UtUsiQW9OX25Zdflvq4/fv3VxUZacXOv1B67pbv/CTN/owZM9R8GskWWJT7779fVXa+++67QnsBpPVdMjBKy39BFRQZgpZ73/znd+jQIVXZvBeyLEL+1y6VEXlfUlNTC32cVAKlciPLJEiWyJK+d9rjyzyp3KTCnL9lPzIyMs9tqbRIxTf3eWnXNMxfQZOlEeR477333l3PL3PD8u9PVNWw3GS5qU/lZmhoqPrsSAOE9CDn7139f3t3AR3V9XUBfCczcXchuAQPBHd3KRQohQqlLdT71f1fL3WjAi1toZRSpbi7a3APGgjE3ZOZ+da5YUJChASSSSbZv7WmSUbfpOHN2+/eew7MCEdEiYhqEPkAlsIGUkCiWbNmuP/++9W0HjkbvGPHDnVgk7+PWlmmr8mUJTlQkz5xchZezjrL1CE50JA1RcWRs94y3UymPcnZZ1kvVBQp/FBU77cbffTRR6oQRKdOnVRxkObNm6sRBCmkIWeo5XvjKIec1ZfiHbLmSkrry5Qrub+c+S6r06dPq9YIcgAizyHTpKR5vBy4ypS6kkyfPl31pwsODlZtCGS9kPTQk3VXBw8eLPZx8vt+9NFH1UGkFMWQ37ccmNxYzES2R6boSaEM+R1LCwIZ2ZA2DUZym5A2A7LeSA44Zbulv6Ec7MrBsmyLHABJ2wEZtZC/FzkAl4PdWyFrqL755hv1vUwdFNLeQEZv5JJ/+4gqC/eb3G9Wpf3m4MGD1RpZOUGybds2dTGSdbbynsxGZZftJSIi05MS71OmTDHUq1dPlfSXEvjdunUzfPPNN4aMjIybtiHYu3dvkc+7ZMkSQ9euXQ12dnYGZ2dnQ8eOHQ1//PFH3u3yXA4ODoUeJy0BRo0apZ77ww8/LNSGoDhFtSEQkZGRqqx+7dq1VdsDX19fQ79+/Qw//vhjgRL/06ZNU+/RxsbG0LZtW8OyZcvUNsp1N7YhKKq9QP42ANL2QF6zadOm6j1KywNpy/D3338bSuPo0aOG0aNHG1xdXQ22traGwMBAw//+978S2xDodDrDyy+/bPD09DTY29sbBg0aZDhz5kyh/2/vv/+++n8hzy3/b2QbP/jgA0NWVlaB/wdPPfWUwcvLy2BhYVGoJYH87tq1a6ceL38vrVq1Mrz00kuGK1eu5N1HXvdm7Q7yM/5ui7rk/39AVBVwv8n9ZlXYb6KYfaZc5P+/ObGQ/1R2GCYiIiIiIqKag2tEiYiIiIiIyKQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiIiIiIyKQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiIiIiIyKQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiIiIiIyKQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiIiIiIyKQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiIiIiIyKQYRImIiMrou+++Q7169WBra4tOnTphz549ebedOnUK3bp1Q0BAAN5///1K3U4ioqqA+0wqCoMoERFRGfz111947rnn8NZbb2H//v0ICgrCoEGDEBUVpW5/8sknce+992Lx4sXqsmPHjsreZCKiSsN9JhWHQZSIiKgMvvjiC0yZMgWTJ09G8+bNMXPmTNjb2+OXX35Rt8fHx6Ndu3Zo3bo1/P39kZCQUNmbTERUabjPpOIwiBIREZVSVlYWQkJC0L9//7zrLC0t1c87d+5UP7/77rvqZznQktvkzD8RUU3EfSaVRFvirURERJQnJiYGOp0OPj4+Ba6Xn0+ePKm+Hzp0KKKjo5GUlAQvL69K2lIiosrHfSaVhCOiRERE5czGxoYHVEREpcR9Zs3EIEpERFRKnp6e0Gg0iIyMLHC9/Ozr61tp20VEVBVxn0klYRAlIiIqJWtra1VUY/369XnX6fV69XOXLl0qdduIiKoa7jOpJFwjSkREVAbShmDSpElo3749OnbsiK+++gqpqamqIiQRERXEfSYVh0GUiIioDMaPH68Ka7z55puIiIhAmzZtsGrVqkLFOIiIiPtMKp6FwWAwlHA7ERERERERUbniGlEiIiIiIiIyKQZRIiIiIiIiMikGUSIiIiIiIjIpBlEiIiIiIiIyKQZRIiIiIiIiMikGUSIiIiIiIjIpBlEiIiIiIiIyKQZRIiIiIiIiMikGUSIiIiIiIjIpBlEiIiIiIiIyKQZRIiIiIiIiMikGUSIiIiIiIjIpBlEiIiIiIiIyKQZRIiKi25STk4N9+/ZBp9NV9qYQEVV53GeSYBAlIiK6TQaDAeHh4dDr9ZW9KUREVR73mSQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiIiIiIyKQYRImIiIiIiMikGESJiIiIiIjIpBhEiYiqqRkzZqB169ZwdnZWly5dumDlypV5t//444/o3bu3us3CwgIJCQmFnqNevXrqtvyXjz76qMB9Zs2ahbp166Jt27bYvXu3Sd4bVX3ydyJ/L88880zedfL3duPf06OPPlrgcUuWLEGTJk0QGBiIZcuWVcKWU03FfSZVpo9q4D5TW9kbQEREFSMgIEB9sDVu3FiVyv/1119xxx134MCBA2jRogXS0tIwePBgdXn11VeLfZ53330XU6ZMyfvZyckp7/uwsDB88skn+PPPP1Up/smTJ+P48eMV/t6oatu7dy9++OEHdVB/I/lbkr8pI3t7+7zvMzMz8cQTT2D27Nnqb/bBBx/EwIEDYW1tbbJtp5qL+0yqLHtr6D6TQZSIqJoaMWJEgZ8/+OADdcZ/165d6qDKeNZ106ZNJT6PHET5+voWeVtSUhJcXV3Vh6fcJz09vRzfAZmjlJQU3HPPPWrU5/333y90uxxEFff3JAdVGo0Gbdq0UT9rtVp1nbkcVJF54z6TKkNKDd5ncmouEVENoNPp1Bn41NRUNd2sLGSEwMPDQ00j+/TTT5GTk5N3W8uWLdUBlYuLizpQK+pDlGoWOTs/bNgw9O/fv8jbf//9d3h6eqq/HRlVklEmI5nyKCNEfn5+8Pf3x2OPPVZgNInIVLjPJFN5ogbvMzkiSkRUjR05ckQdRGVkZMDR0RELFy5E8+bNS/34p59+GsHBwXB3d8eOHTvUh+DVq1fxxRdf5N3n559/VlPN5KytnZ1dBb0TMgdy4L5//341zawoEydOVGvj5IDp8OHDePnll3Hq1Cn8999/efd566231MiTpaWlWR1QUfXAfSaZ0p81fJ/JIEpEVI1J8YKDBw8iMTER//77LyZNmoTNmzeX+sDqueeey/tezuLLdJ9HHnkEH374IWxsbPJuk7P/VLNdunQJ//d//4e1a9fC1ta2yPtMnTo17/tWrVqps/j9+vXD2bNn0bBhw7zbZLSIqDJwn0mmcon7TE7NJSKqzuQgqFGjRmjXrp06EAoKCsLXX399y8/XqVMnNc3swoUL5bqdZP5CQkIQFRWlRoNknZJc5AB++vTp6nuZ6ljU35M4c+ZMJWwxUWHcZ5KphHCfyRFRIqKaRK/Xq0IGt0pGCmT6j7e3d7luF5k/OUsv0xrzk7VLTZs2VdPJpKBGUX9PQs7yE1VF3GdSRenHfSaDKBFRdSVrk4YMGYI6deogOTkZ8+fPV9UeV69erW6PiIhQF+OZVflAlPUlcn9Z37Rz507V465Pnz7qevn52Wefxb333gs3N7dKfndU1cjfiBTTyM/BwUFNQZTrZSqZ/A0OHTpUXSfrneTvqWfPnkW2LCAyNe4zyZScuM/k1FwioupKpvzcf//9as2TnHmVYghyQDVgwAB1+8yZM1VVR2O/O/lwk5+lObaQ9UxSSKFXr16quqO0MpAPQWnqTqYnjc2feuopVZRCDmp9fHxUuX+p6iln0eWgRqYUrly5Mu8xR48eVQfWUnRF7n/fffchJiYm7/ZVq1ahe/fuqp2EHOgMHz5cHfwYyXRCaaAuhTHk4FqKq8hURTnAvpUpj+vWrVM97uSM//PPP48xY8Zg6dKl5fDbIbp93GdSVWJdA/aZFgbpfkpERFRDycdgzm1MvRPZ2dlYvWY1Bg0cBCsrq1I/Tmtjo4JeaYOoVFd86aWXMH78ePz11194++231UHK6NGj1e1ffvkl/v77b4SFhSErKwtNmjTBww8/rA6upV+hTPeS9WobNmxQz7lgwQL1+nJ2XXrZvfnmmyp8GqcTyvf169dXB0GfffYZGjdujNdff10doMuokKxjIiK6lX3mihUr1GhfWfaZVL0wiBIRUY2WnZGB6ZPGVsprP/3rv7AqplrijSRoSvGKrVu3qp/le6mUeOedd2Lu3LnqOpk2KGuHZMRSzqTLfY3TCsXly5dRu3ZtVf5fQuqNZLTUy8tLTTmUqWHGIPrTTz/hoYceUvc5fvy4Gu05ceKECqhERGXFIEqCpzKJiIjMRP51QVLIQqbTSkl/I5l+a5xieOjQIWzcuFFNy72RTL+VIBoaGqpGQWVdm4RQKcwiZEQ1/9ql/K9rLJIhr8EgSkSmJmNohvQc5CRkQpecBX1aDvSp2dCnySUHhkwdDDo9DDoDoDPAoM8dc7OwsoSllSUsrDXqewsbDTRO1upi6WwNjaM1NM7WsNBy5aKpMIgSEVGNJtNjZWSysqbmlsWNzy3TavNfZ5zmK4FSptqOGDECH3/8caHnMYZJuV2apctaU2mYLo+TACrTeot73fyvQURUEQw5emRHp0MXm46cuAzkXPuqk/CZmAlDVgXtfywAjZstrLzsoPWyh5W3PbTedrDyd4SldeEqtnR7GESJiKhGU2GulNNji6XRwFJrpZ6nqkwzk950sga0Xr16Ra7ljI2NVVN0JYT26NFDXbdt27ZK2FIiQk1fpx+TjqwLSci6nIys8BRkX01Vo5klsXTQQuNsA0sHK1jaa2Fpf+2rrRbQWMBCYwkLjSRLC8CQG24lwBqydTBk66FPz8kdUU3Ogi4pS30vr6mTwBuXAZyKv/5iGgtY13aCTQMX2DRwhU1dJ1hYMZjeLgZRIiKiauiJJ55QIXPChAmqwJG0l5ACQ1LVU9Z8SuVdmdorFT1lhFSm477yyiuVvdlEVANI6PO5YoukpeeRFZoAXXzhgnEWtlpoPW2h9bCD1t1WXWS0UuNqA62LdbkHQQnE+pRs5ESnIzs6DTlRaWpUNjsiFfqkrNygfCEJyRsuqWBq09AVDsHesGvhwVB6ixhEiYiIqiGZart9+3ZVKVcq62ZmZqppuIMHD1YVcWUkWELp008/rabjSsuK6dOnq6JIRETlTdZqZp5JQNyfJ9VazgDYI/1i5PURxzpOatTROiD3onErfVXx8iCvZVwzKiOfedttyB0lzTyXiMyzCcg4l6iCaebpeHWRtab2QV6wD/aGdV1nk26zuWPVXCIiotvECpBEREWTNZ0pO64gdX+Umgabn22QJxyCvNXooqWNxnymEkenI+1QNNJCItW6VSNZT+rctw7sWnvBwpKB9GYYRImIqNxIkRtpwl3T1NQgWlP/fxOVF2PRL5mlUN1kR6UhefNlpB2MylvvKWs47YK8oK3tiA1huzF0mHnvM9Uo7/lEFUjTj8bkFVHSel0LpEEFA6l8Vpjz+y1vnJpLRETlQj5gpV1Is2bNUKdOncreHKpg0pP06NGj6NevHw+siG6BjAUdPHgQOTk5aN++fbUJo7K+Mmn1BaQfjc27zrq+M5y61YJtU3fVHkU+L3AJZk9Cpm1DV3XRj2yoRn5TtoWrEdO4v05BuyEMzgPqwq6VJ9LT09VyiaCgIHh7e1f2plcJDKJERFQuJIxIpVbpSSkYRqt3CJUD6I4dOzKEEt0iWUso67MlnOzbt8/sw6guJQtJ68OQujsCuNa707a5B5x6B8CmjjOqO6nWK6Ogjl39kbLzClK2Xguk80/CqqEzTvhEw6eeD7y8vCp7U6sMBlEiIio38gHbqVMnhtEaEkJ5Vp/o9sjU9m7dupl1GJXpqTISmLT2IgyZOnWdjHy6DK4HK18H1DQqkPa5Fki3hiNp4yVkn01Cwws2cHF1A2T2rnksh61w5vWXTkREZhNGDx8+rFqCUPXBEEpUcWE0NTVVhVHjulFzkHUlBVHfH0TisnMqhFr5O8Dz4VbwfKBFjQyh+VnaaKHt6oWzHTKQ7a2BhQ5IWnFB/b6kJQwxiBIRUQVgGK1+GEKJKo65hVFDjh6Jqy4g6tsDyL6cAgtbDVxHN4L3k21h28i1sjevSkhLS1Mj3W4NvFH3mc5wG9MYFnZaZIenIOq7g6rqbk3HIEpERBWCYbT6YAglqnjmEkZlNE+CVPKmS2qaqRTi8X2uPRw7+VVYy5LMsCSk7o9UX80phPr4+KBVq1ZqurVDB1/4PtcONo1dYcjWI+6Pk0hYcQ6GaxWFayKuESUiogrDNaPmjyGUyHSq8ppRtRZ0e7gaCZV2LJYOWriNbgy7lp4V+roJK88jZfPlvJ8dewXAdUh9mEsIlaJURhona3hObqmqCidvvoyULeHIvpIKj3uawdKu5sWyqvGXTURE1RZHRs0XQyiR6VXFkVFdchZiZh9F4vLzKoRKMSKfZ9oVGUJvd/RSHpe49oK6pOy9WiCECvm5qo6MlhRCjWTU2GVIfbhPbAoLa0tknklA5DcHoEvNRk3DIEpERBWOYdR89O7dG88880xeCH388ccxf/78yt4sohqlKoXR9JNxiPxqPzJDE2BhZanWgnpMaq5G94oavYz+/hDi/z6tvsrPZWF8fPL6S+qSsOBMkffLiUmHOYbQ/Oxbe8H78TbQuNtCF5eh1tvqM3JQkzCIEhGRSTCMmo+UlJS8kdCQkBBMnTq1sjeJqMap7DAq6xgTlpxF7Jxj0Kdmw8rPAd5PtVVrQbMuJRca9ZTvb2f0sqjHFyftYFSVWjNa1hBqZOXrAK+praH1sIUuPhOR0w9An5XbAqcmqHmTkYmIqNJwzWjVl5mZiejoaE7HJarBa0azI1NVMZ3siDT1s/TElOmkMiJa3JrN4kYp5XqbOs43fc2yjHJmnk5QF+Pr27XwUI/XetqV6rWqQgg10rraqDAaPeuIeg8yIiyB30JTMYWfqhKOiBIRkUlxZPTWp8w+9dRTatqsm5ubOuiZNWuWGi2ZPHkynJyc0KhRI6xcuTLvMUePHsWQIUPg6Oio7n/fffchJiYm73Z57P33369u9/Pzw//+9z81Gir3NYbQevXq4auvvsp7zBdffKEOthwcHFC7dm01dVceYzRnzhy4urpi9erVaNasmXruwYMH4+rVqyb7XRFVJ6YcGTUYDEjZdRWR30ivyzRYOlrB44EWcB3ZUIXQkkY9JQQaZeRk4lhkKNaf3Ym5a//Ge++9h8ceewzjxo3DqFGj1HuSr2PHjsWECRPw7LPP4ut/f8B/x9Zg24UQnI+7BL2hdO9TXv92pgNXZgg10rjkhlGtl52qSpywqOgpydUNR0SJiKjGjozqcnKQmhCPtIR4ZKSkICcnWx1IyIiDxspaFZXQWFnBztEJDq5usLK1U7dnZ2Sox2ut5T6553QNer263sJgUNcbFXVfeV2Ntuwfwb/++iteeukl7NmzB3/99Zc6sFu4cCFGjx6N1157DV9++aUKmxLws7Ky0LdvXzz88MPq+vT0dLz88su46667sGHDBvV8L774IjZv3ozFixerg9vXX38dFy5cQL9+/YrdBvndTJ8+HfXr18e5c+dUEJVt+v777wscnH322Wf47bff1P3vvfdevPDCC/j999/L/J6JyDQjo/q0bMQtCEXGsVj1s00TN7iPa1JgLWhRo5Y6vQ67N+/AkaSz2HVgM/YfPIDTMeeRo8+dYmqxwELt8+Vkl3y1sbHJe2x2djYiIiLUUoArV64gKen6VFtHa3u08GmMVj6BaO3bBO1qtUQdV/9SBVOtpy0sNJYVOkJaXiHUSONsnTsyOvMQUvdGqLY4tk3cUJ1ZGOTUBxERUSWQKaASRlu3bl2hYVQ+6uKvhiPizGlEnj+LqPNnEXflMtKSEuXGUj+PBElbRyekJyepx/k3aYYrp08UuI+bfwBa9OyrgquDmztWTP8UGakpmPTZd/CsXVfd5/D6VWjdb3CZR0R1Oh22bt2qfpbvXVxccOedd2Lu3LnqOjmgk4O9nTt3Yt26deq+MjJpJAWIZBTz1KlT8Pf3h4eHB+bNm4cuXbqoA8HGjRujbdu2ak2ocRRURkRlFFYuRfn333/x6KOP5o20yoiojNCeOXMGDRs2VNdJSH333XfV9hHRrZMTTBJ+ZEZCeYZRWfMZO+8EdImZgCa3qqtMx72xL6iMfMqoY2pWGrZc2Ie1odux4dxOxKYlwMrKCi1btkSbwFZoXa852nZsh4YdmqqgJrflJwF0xYoVGDp0aIHbJNxdCDmNU9sO49CZYzgScQoh+/fjYsQldXsTz/oY0KgbBjTqijZ+zaCx1Nz0vVVEu5fyDqE3TouO+v4QYGkBv5c7wNK2+o4bVt93RkRENXpkVK/X4fLxYzgbshvnQvYgIbLoqaGWGg3sXVyREpc7CuBVt74KnLrsbKTExyEzNQWQgwyDQY16pkt4vebGECrir1zGtj9zg2F+Sz77ALWatYR/YFOkxsercFzWgxcJ7EYajUYFSTkIMpKDIhEVFYVDhw5h48aNamrsjc6ePatGSOWgVn7n+Vu0BAYGlrgNEnA//PBDnDx5Uo1e5OTkICMjQx2Y2dvbq/vIV2MIFRKOZZuIqOqNjMroW7xMBdUZ1Aii+4SmsK5VeL8h/9bXHNqMGZunY8PeLcjUZaGJRz3cO2w8xj59Lzp06FBgtPNWyL6jeY826jI63/VXD1/AugWrsHLnOvyxaxm+2zUPnvZuGN60DyYGjUAz7+v7m+JGSB07+KGqh1Bh5eMA9/GBiP3tOOL+OgXPSS1QXTGIEhFRtQqj6SnJOLZxLQ6uXYHEyOsjcDIV1rdRE3jXbwif+o3U6KSThyfsnJxV8MybQmtjk3dgocvJhj5HJ/NRZe6tmr4ro5sSWuWrBNOwIwdx6cRRZFlaoWWnzjBIMEtJQWpiPFJiYxB3NRz6nBzER1xRl6Mb16jnPrxhNRq0bY8GwR1Rt3VbaG8YMSjKjaMKsp35rzNut0yzlXWbI0aMwMcff1zoeSQYyoilOHbsGIYPH16qwkQybVfuK1OCP/jgA7i7u2Pbtm146KGHVKg1BtGitpMTsIiqVhg16A2qKm7qrtyTdLbNPeB+V5NCI3Ayc+XHH3/EjBkzEB4ejnbt2uG9197GoHZ9ENi2uUmKA/m1rof7Wj+K+/Comg2yZdF6LF68CH+t+g9z9v+HYP8WmNxuDIYF9oaVpnC8kTYwOTEZtz0yWtEh1MiuuQecB9ZF0uqLSDsQBfu21bNwHIMoERFVizCalpiA3Yv+weF1q5CTlamus3FwQKMOXdBQhb02sLbLDUpFsbK1LXSdRmuFqOgY1cJk//79KohJ0R25yHqmuLg4dVBkZGk5S41SStCTi0x/rdu4DVo2aYTaHu7IjI3CldCTiAg9rUKqbKtcZDsDO/dA85594R/YrFwOboKDg7FgwQI1tVZbxHpUW1tbdb2EVmMIjY+Px+nTp9GrV68in1N+D3L/zz//PO/A9++//77tbSUi04ZRQ44ecX+eRPrRWMACcO5fF059aheYiiuzGOSE0w8//KD2SbL+XKbhy76lMslskD5jBqrLp9lfY9myZfjm86/x1NJ38eHuWXiyzUTc3XpYoUAqI6MWWgvYBrrnhWeZalzaarumCqFGTr1rI/tKKuKXnIVNY1doHAv3bTV3DKJERGTWYTQzLQ37lv2HkOWLkZ2Rnje9ts2g4WjWvResbAoHzJJI2Fy6dCnWrl2rDvCM1V4lYMp0UwmXXbt2VUHT09NTjTxKpVpZeylT0xISElRIlccdP35cPZdx/aSvr68aTejfty+6NGuC9KuXcGbvLjXCKutG5SLbHjz0DjTt2rNA0aOyeuKJJ1RVXalIKcWEZPRSRkH//PNPvP322wgNDcU999yD999/Hw0aNFBhVIoVlXQwK1V5ZW3XN998o0Zb5aBs5syZt7yNRGT6MKrPzEHs3OPIPJuo1oO63x0I+1ZeebcnJyerk01ykdD3xhtvqFkQsg+samT2hRRrk4tUCf/oo4/w+vwvMGvvX3ixx8Nq6m7+wJi8/pK6yLpRUVQbmqoQQoW8htvoRoj4MgQJS8/BY0JTVDcMokREZJZhVNaAHt24Dtv/+k2NhgqfBo3Qffx9qBsUXKYDBWklIyN7S5YswZEjR9TBTY8ePVTRHQmOcpFtKe45pZBPUYU3hExJvXTpkhpNlIu8t5dffVVNZW3RogVGjhiB/oNGIutKGE7t2oboi+exesZX2Dp/DjqNGofW/YfcUiCVwCwHTlIpd+DAgao/aN26ddWBq7xf+T1LASQ5wJRQKe1fnn/+eSQmXl8De6OgoCDVvkWm+7766qvo2bOnWi8qLWCIyPTKGkb1WTrEzD6GrAtJsLDWwOP+5rBt5Jp7m16vRj/feusttf5b2kW98sorVTKAFkUKJUnxNakG/tITz+PxJW/jk62z8HrvxzC4Sc8C972xBY3xOulHeuPIaGWEUCNLeyu43dEIsb+fQFbPgCLX7pozVs0lIiKzq6YbfvI41s+eiegL59TPbn610H3C/WjcsWupDxKkwM4ff/yhRvSkHYqMGA4bNkyFskGDBsHZufTrnoqrAFkcGXFYs2aNGi2VaWWxsbEq7E596EG09HbHkfWr1NRd4ejhia7jJqJlr/557V9ulVTNzV+YiIhqTjVdQ7YOMXOOqZFQC1sNvB5uBesAJ3WbtGJ68MEHVTsnOQH3zjvvqFkeFaWs+8yyioyMxEsTn0bEpSs4eOUE2vg3w2eDX4Gbfcn7dbe7msAhOLfo240htIlLXehiMyq0JUxxJIjqM3XwerAlqhMGUSIiMpswmpWehq1/zMXBNctVFVtZW9llzES0GTRUrecsDTnTL301v/32WzVldvDgwapdiRThudUDots5qJJKlMuXL1fTaOU5JBA/8fjjGNqhLQ6uXJwXSKXQUr8HH4Nvw8a3tI0MoUQ1N4wadAZVhTXjZJwaCfV8uKUKUzIKKu2VZOaE7Bd++eUX9OnTp8K3tSKDqESbX2fPQczhcNzT6Q78segv/LblP0SlxuKd/k8XGh3Nz+vxoLyQmT+E1r7siNQt4RXaEqYkuuQsRH4ZAvd7msG2Ye4IdnXAIEpERGYRRpGUgFUzvkRyTLS6rWWfAegx8QHYO7uU6rlkaqqMfsqaSBmRnDJlCp5++mnVO7OqHFRJWxVZfykVKqUC7auvvIyuDeti3+J/kJWertrIBA8ZqUZ/raxL3yaBIZSo5oZROdRPWHgGqXsiYGFlCc/JLWHTwEXtX++++25s2LABjz/+uJpyX1S7J3MLoidOnMDvM37FncGD0bBWblg8tf0wPvx7OrZc2It+Dbvi0yEvFdmD1KlfbVXMSOepzQuh9TM8kfjf2RJDqymk7olQrXa8n2iD6oJBlIiIqrSoyEis/OUHxBzaq0ZBnb18MHDqU6oKbmnIx5ys/5S1TmFhYWramRTrCQjILVZRFQ+qpNiRTI37+eef1VrP9996E55pCTixbZO63b1WbQx98nm1JvZmGEKJanYYTdkSjqRVF1R1XI97m6t1kLJOfOTIkaqf8Pz589GvXz+TbmNFBVGZYfLNl1/DKV6LcX1GFbgtIy4F3/8+C3O2/ANXOyfMHfcpPOwLjy5m2uhwJjgN3p7eqHXaBlmncmsQ3Gwab0Uz6AyI+GKfGom1a+mJ6uD2FpsQERFVIOnVuX3OTMQc3KNCaL32nTHps28LhdCroadwfMsG9fXGdUJ33nmnOusvhXakquJPP/1UriG0Ikj4lKIh0uNTKvFOengKZqzZjF5TnoKDqxviwi9h/hsv4NDalSX252QIJaq5BYxSU1NxdPHu3BAKwGV4AxVC//vvP1X5283NDXv37jV5CK1IO3fuRNz5KPQNLjz91tbdEc899SymjX8ZGgtLDPt1Cg5cOVEohJ5ungynCEt4Lk0rNoQKWStqShYaCzj3q4PE1RdUD9jqgEGUiIiqpNSEePz99is4t38vNFZW6DJxMmyatUFEVO7UXKMtv8/G/Deex8rvvlBf5WcJZ1KIqHnz5mpk4J9//sGiRYvQrFkzmJPAwEDVC3ThwoXqgHHAuLth17GX6o2q1+Vg3U/fYfXMr5GTlVXosQyhRDU7jHZq2Bau+7LVzw5d/ODY1R/Tpk3DmDFj1Ejktm3bbqlnc1UlSy42r96ItrVbwMPFvdj7DR97B75/4TO08G2MBxe8ghWnNhcIoS4JVqh93h4WMoRcDFkjauqCRcI+KHdfnhYSieqAQZSIiKqcxKhI/PnWS4gOuwB7F1dMePdTdL1jjGo5IlPKZIqtkBHQvUsWFHjsjoV/4+6xYzBx4kT0799fjSqOHTsW5mzUqFHqfcjB4wMPT8E/B46j87h7YGFhiWOb1mHBtDeRkZKSd3+GUKKaTZeajcQ/TsNSZ4E0Dz1Oe8eolkvSK1jas/z1119q6m51snbNWhgSstCtdaeb3rdZqxb4cdp36NuiG15b8zn+PrWy1CHUdUwjkxYqKmpUNHnL5RJnw5gLBlEiIqpSEiKuqhAqX128fVQINa6FNPYZNYbR+KvXqxiKpPQMzNy0C4uWLcPcuXPVwZY8pjqQXn6///67Gun9b+FCPPPxF+j1yNOwtrPH5RNH1e8sKSaaIZSohpNpm3F/noQuPhMaD1vUfrg9vvjqS1WM6LPPPlNr5E3ZC9MUZL93YPte9GjWCbbWtqV6jKuzC77+3ycY1Ko3PljzPbav3FyqkVDHDn6oTHatvWDI0SPzdDzMHYMoERFVGUkxUfj7vdeQEhcLj4A6uPudT+DqW/BDP38Y1dldr/B4KS4BX6/bjvi0dCyaPx/33XcfqiNZ7ypT6iIiIjDinvvRYuy9cHBzR+zlMMx/80Xs3b6NIZSoBktadxGZoQm5FXLva45pX3ykCrY9+eST6NGjh2rZUp3IyODK5SvgDicENSpbn02txgpP3fMoBrfshZl//4xlJzYWeT+ruk6qSm5ljYTmZ2FpAYd2PkjefgXmjkGUiIiqBAmf/7z7umrP4uZXC+P+9wEc3T2KvK8xjF6MjELrOycgNDIG32/cBWc7W8z+9EMMGWPeU3FvJjg4GPv27UP9+vUxbNx41BowAg4enkiNjUH01jWw0/LjnagmSj8Vh+QNl9T3bnc2xo8L5qiWVZ9++ik+//xzVcBI9h2VHUY3btiI5QuX4psvvsYPM37Av//+i3Xr1iEkJAQXLlxQlX9L68iRI7h45Cz6te1ZoHdqaSr3Xrp0CR5ubvj8jY8wsGUPvLHuS2y/uL/QfW0buVbKmtDi2Af7IDM0HtnRaTBnbN9CRESVLjMtFX++9TJiwi6o6bjj3/4YTh43L08vffBmzJihCnC0D2qNuT/NQoNWQTC1iuyJV5KMjAyMGzcOa9aswSvPPQu/hAikxsWo9i4ypdnWRD0Biajy6ZKzEPnVfuhTs1Vxov2OFzFo0CA1EvrVV18V22e0Mnz5yeeIOXgZ7Vq1RUZWJpLSk5GYkYzkzFRAawGNvTUCGtRG48AmqtezVBIvajqxvJ+vP/8KXmmOGN1zWJlDqKODA7x9ZPaIBZJjEvHkBy9g18UDWHLfDPg7+xSallsVRkSNon88DCt/R7gObwBzxSBKRESVKic7G/99+BYuHTusWpNMeO9TuHj7luqx0oh92LBhaNWqlVo/KQcslaGygqg4d+4c7r33XjWSsGD+7whft1SNLtdu0RpjXnsHGq1pt4eIKmddaMzso2pKrpWvA1KGOKNDl44qbMq+SavV5t23KoRRCaKai1m4b+R4WFpq8q7X6XSIS4rHpahwhEVexsX4cGRpdfCt748OnTupNly2trYFPgM2L1iDB/tPhKujyy2H0JyYdKQfjUGmgwH3/PAUEtKSsGLST7C+Yf8phYqsfBzU/aV9S2WOkqaGRCJx+Tn4vdYJFmY6C8Y8t5qIiKoFORe6esZXKoRa2dph9CtvlzqEHjhwACNGjECvXr1UX7xTp07lVdOtKaRAx/Hjx9X6rwEDBmDcvfeh8bAxsLazU7/TtbO+qxaVFYmoZKk7r+StC7UeEYCRd96hCpxJwbb8IfTGPqNVYZpufhqNBl5unggODMKonsPw5PCHMC54GJxitFj263/49L2PsXTpUsTGxiI+Ph5b125Gu7pBtxdCEzKQfiga0BlgkwR8d/8H0Bn0eGLJ24Uen7DgDKK/P4T4v0+rrwkrz6Oy2LX0hD5Th/RjMTBXDKJERFRpQpYtxMntm2Gp0WDk86/Bp37DUj0uMjISd9xxh+oLKiE0ICCgUGuX6i5/dVx5/7LGqk2bNrjvkcfQ9f6pea1djmxYU9mbSkQVKCc2HYmrLqjvXYbWx3Pvv6zC1pIlS+Dm5lbkY6pyGL0xmNbzq6NC6SOD7kewe1McWbMX0z/+Ep98/Amskg3o0rL9LYdQ9RouNrB0sc67n4/BFc+OmIqQK8fw24HFJT5nyubLyAxLQmWwtNHAurYTUvdEwFwxiBIRUaWQEbst8+eo7/tMmop6rduW6nGZmZm488471UHFokWLYG9vX2Rrl+qsqBYtMl1NQrmso3r81TfQaewEdf2G2TMRdeFcJW8xEVVYq5Z/Q2HI1sOmgQs2xx7AnDlz8OWXX6oTdSUxlzBq5GTviO6tO2Pq0PvhnuWAg5v3omOjNrC2uh4iyxpChewz7dp4wdIhdxqu1sMWd4+9C4Na9MIX237BpYSrJT63TNOtLDYNXJB5PhH6zByYIwZRIiIyOVnDuOzrT2DQ69G8Z18EDRxa6sdK4Q05aFq4cKEaCcyvJoTRkvqE+vn5qXAu7/+HxStQv2176LKzsXz6p8gpQxVKIjIPaQeikHU+UU3JtRzgg6mPTMXgwYPx4IMPlurx5hZGhfT53H5kD5r7N0b75m1vK4QaWWo1sG/nA9vm7rBt4QGNtRXeevZVNPGqj6eXvVfiEgdZKyqjoqn7I00+OmrT0BXQAxmnzLOnKIMoERGZlITPld99gbTEBHjVqYf+Dz9e6ubqMuL3008/qUq5nTt3LvI+1TmMlhRCjaT4iPyOfps3D+l+9WHv4oq48EvY+e98k28vEVUcGQVLXJW7RtGpXx288O4rSElJwaxZs0q9TzXHMPrvxiXISEvD3YPHqCUItxtCjSTMW/k55v3uvDy88cjIB3A1ORqz9/9X5GPs2nohaX1Ypa0btanjBGgskH44GuaIQZSIiExq79L/EHb0ELQ2Nhj+7CuwsrleAbEkMTExeOyxx9Ta0MmTJ5d43+oYRksTQo3uuece1dbl/55/Hh3G3aOu27vkP0ScDTXR1hJRRUveeAn65GxoPGxx0HA+b0rujTNFqlMYTUhJxJLtK9G1RUc0qde43EJocUYMG4Y+gV3w1bbZiEtLLHR7+oFoZN4wGmnKdaMWVrnrRDNOJ6hp2uaGQZSIiEwm4sxpbP/rN/V938mPwN0/oExTcnNycjBz5sxSne2vTmG0LCHU6LvvvlNtGabNmIXArj1hMOixYc4PrKJLVA3okrKQvO1KXoGil197Ge3atcMDDzxwy89pDmH0pyW/wcnKHuMHjb7tEKrP0iNtXyR0SZlFPkdWfDoubTiFQL+GcLVzxoebZ5Z6O025btTK2x6GLB1y4jJgbhhEiYjIJLIzM7Di28+h1+nQpEsPtOw9oNSPXbx4sWpD8O2338LXt3TtXapLGL2VEGp87zKFWdbSJrl6q5Hnq6dPqirFRGTekrdcBnL0sK7jhDWnt2HXrl346KOPbrsnaFUOo6GXzmLv8RAM7tQf7q4etxVCs6PSkLrtMnSJmUg7GF1oNHHvgX1ID4mEu4Uj7g4cgru6jMC6MzsQnhhZqm2VdaOmonHPnVWUdaFyqvfeDgZRIiIyiS2/z0b81XA4unuUaV2oHFS8+OKLGDRoEO6+++4yv645h9FbDaFGY8aMwciRI/HGO++i3cg71XVb5/+KnOzsCthaIjIFXXIWUnfnVnJ16F0Lr73+Gvr3768u5aGqhtEfFs1GHY9aGNZrUPlMxzVmz2w9si4lq28vXr2EV75/B58vmIEzKZfUdXYO9pg6djLquPnjnfXf3HQ7HXsFwKaOM0xF65EbRNOPx8LcMIgSEVGFO38wBAdXL1ffD3rsGdg5OpX6sb/88gtCQ0PV2f6yFOAw9zB6uyHUaNq0abh48SJCwqPg6OaO5NhoHNu0tly3lYhMJ2XXVdWuxaq2E/7ZvRwnTpxQ+8fyVNXC6MaQrQiPisCYviOLbddSlhAq01k1ntfrE2SGJeL7f37Cy9+/hcy0DDwx+kG0GdgJNoFucOjsB48Ab9zZfRj2hB/GxfjwYp/XdUwjuA6pD1PSuueOvmZVUj/T28EgSkREFSo5NgYrv/1cfd928IhS9wsVaWlpeOeddzBx4kS0adPmtrbDnMJoeYVQ0aJFC9x///14/4NpaD14hLpu96J/oMvhqCiRuTHk6JG6J3c01LG7P7748gsMHz5crQ8tb1UljGZlZWHuqr/Qum4zdGrdvtwKE9m29ISlm4363iLLAJ9UJ4zpNgLTnnwT3Vp2RnZ4qppia2GZ+1z3jJ0AP2dvfLX912JHQh07+MHUtNem5upTstXfhzlhECUiogqjy8nBsq8+RnpyErzqNUCPe8pWSEPWhEq13Pfee69ctsccwmh5hlAjCfNJSUlYf/gEHGRUNCYap3ZsLZfnJiLTST8WoyrlWjpZY0/MMRw5cgTPPPNMhb1eVQij89f+C112DiYMKbpdy61Wxz0QegQfbvsBOXqd+nlAnS4Y03sE7GztkHE8Ftlhyci6eH2U0c3FDQM79MGG8zuRnl24MFBxRY8qmqWdVrVwEfrM3PdiLhhEiYiowmydPwdXTp+Ajb0DRj77Kqysc88+l4YcXEyfPh333XcfGjRoUG7bVJXDaEWEUFGnTh3V4P6b775Dq36566uMU6WJyHyk7s0tluPQ0RczfpiBZs2aoW/fvhX6mpUZRqPjY7Bm9wb0DuqGerXqlUsIDY++ijd//BCfzPsalhoN0lxyw5uFAcg8k6C+t67rDEsX6wJFhww6Pcb3HQVHK3vM3b+o6FYulTQ91kKbG+mkeq45YRAlIqIKcWLbJoQsz/2wHvT4M3D1LduUpf/++w/h4eEVcra/KobRigqhRk8//TSioqIQmpAKS40WV8+cYl9RIjNr2ZJ5NjcoZdTTYNGiRZg6deotr52vrDAqj5VWXKUxa/GvqnXKmP533HYITctIww8LZ+P5r19HfEIcpg67H289+grcHVzz7pMTmQZ9Zg40bjawb+cDrYedqqibERqPlG1XEJDqivYNg/DXkRWV3rYlP4trI6LmFkS1lb0BRERUPfuFrpk5XX3f8Y6xaNyhS5mfQ/qF9uzZE61ataqALbweRnfv3p03anij2NhYdZDn7u4Ocw6homnTphgwYABmzfkVr40fpdq4HNu8Dr4NS24KT0RVQ9qRaFXpVVq2/LVqobpOZoyYijGMbt++XYXR9u3b37RdjPQtlhOKp0+fRtjFiwg/fxkZ6Rk4uP8AWniVvO85eu44Dp05hgcGjIeLk/Mth1AJvqt3b8Cf6/6DxmCBEZ0G4Y5+w2GXY4Ws43HIiSoYHrPCkmHb2C3vZ1kjqovPUO1y9Ml6jOt9B7bM3I3jUWfQ3LtRgcdKYHUI9oHJaa+NiOaYV59oBlEiIipXKfFxWPzZ+8jJzkKD4A7odnfZD5TOnDmDTZs2Yd68eahIxYVROVu/bds2rF6+DJYWlnj+lVcqLIyaIoQaTZkyBXfddRccX3oe2L4Zp3dtR59JU9X0NCKq2tKPxKivdkFeWPL2EjUl18Oj+H6alRlGJSju2bMHOzZvQ2JkPGz0WtRy9kGwR1M4+Nkj/PA5JKXmtkwpLjz+sPhXNPCugwHd+t5yCJUw++PiXxETF4t2jYIwsddoOMdaAUeTkZaclXc/S2dr6OVnA5BzNRWGBq55o4zCys8RmakJ0HrZobtPF1W06L/LGwsFUTU9t4u/Sdu3FJiaa2bFihhEiYio3GRlpGPRJ++pMOpeqzaGPvUiLC1LF3Kuhp5SfUbd/Grh3wULYW9vjzvvzO19acowKj//9ttvOLp3Nxr5eeNiRBRWrVqlKveacwgVd9xxB5ydnbH54GF4ODkjLTEBYUcPoV5QcIW/NhHdOn16Tl57jpza1upE3VdffVUp23KzMKrT6TD9i6+RcDEaLXybYHCH7gjw8i9wHyuNVYmvISOYsXGxeHDCk9BqrcocQmVt6awlc3Eo9CgaeNfG5LufRCufQKSfiIU+61pRIQtA62Ov1oNqHK2RfjRGTc2V1jg50Wmw8nW4vr3+Dupiocl9D8GNWmH7uX1A8JQip+dKEJX1ovK9rDOt6GBqca2yL3QcESUiohpI2oEs+XwaIs+FwtbJGaNefAM29valeuyW32dj75IFeT/PO3ASgwYNgp3d9UIRpgijGzduxMnjxxAXfgl927WBt4cH3F0uYd+O7ejcuXO5Fk0ydQg1HkAOGTIES5Yuw7Spk3Bk/Wqc27+XQZSoilNrQ/VQI3Jrdm5QszZGjMhtx1TVwqhsW2Z6Bpp6N8CQLv3L/NyyllOm0coIZtvmbcoUQqXVi1TZlSDrZueMJ/tNQvsGQdBHpCM9IjrvflpvO9g0csutOHuNVS1HFUTVa0WkFgiixgBq1KFVeyw/sAHRqXHwcig4WyYnNh2xf51Uo6P5W7tUZH9RfUbumlsLW/Oa3cJiRUREdNsMej1Wff8VLh4+AK2NDe585S01slnakdD8ITQ5IxPHQ8+iZ6cOMCVHR0ecCQ3FyZB96Ny8qQqhon7tANhDj2VLl5RbtcjKCKFGI0eOREhICFxq5x4UXTi036SvT0RlJ2sPhW0TNyxduhRBQUFFrms3peIKGNnY2KDfkAE4EX0OkXFRZX7e31b+pdZy3j14TJlC6MaQrXj0s+exYe8WDGrbGx/1fwFt9PWRcyZJ9diUFifWdZ3g0L0W7Fp5FQihQuNqAwub3CCni80osR1Lr07d4GztgBWZewvdlrz+UoEQKlI2X66wiroGg0GNmAtL+5JHmqsaBlEiIrrtD8FNv/2sit/IWsM7nnsNfo0CS/14mY6b34mruQcu7Zo2ganIVDJZjxp1/ixGD+iHjLRUJCYmqtukWFHH1i1w9tgxdbBlziFUyIioRqPBgXMXYGFpqX7/iVG5LSGIqGoy9rO0aeCiZm4MHjwYVUFxYVRGSH2b1ML6/VvUZ0RpSWsVCZT92vZELR//UoXQ0Etn8cI3b+DHRb+ihU8jfHLnKxjr2QcWSdcq81oC1g1c4NitVu4o6LWweSPZ11tYXY9Gmfl6iN7I38UXDfzqYtuZwkG0OBVVUdeQpc+bkmtpb16TXRlEiYjotuz670/sX7FYfT/4sWdQr027Mj3+xpHT0MgYBLi7olHzljCVHTt24Mje3ejVrg1q+fmgVq0AREZG5oVRTzc3+Ls5Y9Xy5UhPTzfbECrc3NzQpUsXrNu4Ka9i7pVTxytlW4jo5vSZOmRfmzKaYJuBK1euoEMH084YKWsYlZNdg4cNRXhGNE6FnSn1c/2wcA68nD1UVdubhdCElER8Nv9bvP7D+2hqVxff9XkdUxuMhkO0ZW4bE2vL3ADaMwA29V0KhMziaNxt877XxRccEZVAnbLzCpI3hCFt11UE12+F0NOnS/3e8vckLU/69OxrL1AwSJsD89paIiKqUvavXIIdf/+uvu/zwFQ069GnzM/h1zgQHUZen4J1OT4R7du3U9ebgrQW+PXnnxDg6gIfz9zpuA4O9oXCaLuWzRF75ZIqEmKuIdRItkGm5xpHrq+eLf3BFBGZVnZ4iqrmqnGxxv6Th9R17dqV7YRfZYTRRo0aoVmHVth4eDuyc66FpRLsPXEAp8JCMarHMDjaOxQbQmUN6l/rFuLxz15AVPhVvNX7SYxvMAhWBo1aRws7DWybueeOgEoAvWF9Z0msApzUFF7pIyrToG8cMZVCRvL/QnRsEITkxGSkZOaeJCiJrBGtqIJF+rRr03LtrEzSU7Y8MYgSEdEtObZ5PTbO+VF932XsRAQPGXnLz9XznsmY+P7n6PHAI4hOTsXICffCVDasX48TR49i7dZtWLdlG7JzdEWGUXtbWzSvWxub161FVFSU2YZQ40HshQsX4ODjl9f3lYiqJimcI6z8HdUJJGklVbduXVQ1RYXRwUMGI8Nehz3HS16LLvf9edk8BPo1RO+OPYoNoTuO7MGTn72I1HOxeKPDVLzR7hHUsfDKDYfWlrBp6g7HLv7qd5VXSbYMNHZaOPWuDftgnwLFioysvOzzgqqfrz+sLLU46V1wPaiRTRNXuN3VBF6PB1VooSJdQu7IrcbJvNaHCgZRIiIqs7Mhe7B65tfqewmgXcZOuO3nlBHQdHtnk57tj4iIwKGQfRg/ZBDq1A7Aqu078dWsX3D4+Ano9YZCYbR540bQpSZj5YoVpV73VNVCaP7fb2Ry7pn82MthZVrHRUSmY1xbqPWyV0FU/v1W1ZGvG8OoLAXo2rc7dp89UGLf0IVbliE5ORnjB41WofTGEHox8hJem/k+Fi5fhFdaP4hxDQeitq0PLGSk2NUGdm284Ni9FqxrOVbo78amsasa3ZSg6h9YB7ZaG+w7eaDI+2aeTlBTqiu6dUtOdO5+XOtduir1VQmDKBERlcnVM6ew7OuPVaXcFr36off9D5fbB78ENltbWzRr1gymsHfvXiAjDW1bNsND4+7E4/dMgF6jwbzFy/DTH38h/GpkgTCakpyM4GZNcHDPbpwuxdqgqhhCRePGjVWV4BPnzsPCwhJZ6emqpygRVT3SDkRoPWxx5swZk+0fyyuMdu/eHfb+zth8YHuR95eAunDTMnQODEaTuo0LhNCUtFR8989P+PX3uRjj3QtvdngUHjYu6nEW9lrYBXvDvp0PtB52JgnnFlrLvNdxdXKBu5MbTu4/Vuz9K7JarlF2VPr10VozwyBKRESllhBxFQs/fhc5mZmq9+SAqU+pyqvlJSwsTLUk0GorvvKfnHU/fGA/anl5QnPtPTSoE4AXH34AowYNQFhkFL777Xf8t2KlmvVlDKMu9vZw1lpi+dIlaq2SuYVQIf3+6tWrh0vh4XDy9FLXxUdcqezNIqIi5MRlqK8StqRQkZ9f7pR6cwmjR48eRb/BA3Ai9hwuRxXez8xZMR+2GhuM7jciL4R6enli0eaVWPHXEkx07Ytng+5DE5fc6chaH3vYtfdRU3C1bteLC5maBFIfZ09EJsdUSrXcQiOiXqbpu12eGESJiCrIhx9+qCobOjk5qSAyatQonDp1Ku92WaOnysUXcfnnn38KhLNhw4bB3t5ePc+LL75YKAC98847CAgIUGeeSzNSdyvSkhKx4MM3kZ6UCO96DTHi2VegKefAKAdZ/v65JfsrmrxWTGQE6tbyKxTSuga3wRtPPop2Qa2w6/BxfPnTbIQcOQJfXz+1PrRZ/Tq4cOokdu/ebXYh1Eh+z/I7cPHK3b7k2JIPpsyBTO175pln1Po5Ozs7dO3aNXfU+xqZfvzmm2+qA3m5vX///ggNDS3wHDt37kSbNm1UUP/5558r4V3UbNVtv1kedNIDU0a+rPVISEgwiyB6YxiV332tpnWx/kDBdi4Xr17C9kO70T+4F7LSMlUIDU+IwKzZP6NJgieG1OkOrWXu54zW3wEOXfxg19ITWhcbVAU+rp6ISUu46Yh2RfYQzTaOiN7C1NzK3mcyiBIRVZDNmzfjiSeewK5du7B27VpVfGHgwIHqQ1nUrl0bV69eLXCRAyOZMim9Ho39LeVgKisrS7UY+fXXXzFnzhz1wWC0fft2LF++HIsXL8bEiRPx5JNPlvt70eXkYPGn76sRUWcvb4x+5S1Y25X/NCD5HZjqIEvOvOsyM+Hl7l7k7bbW1hgzaABenPogvLw8sWTDZvz8599IzcxCRloaPO1tsWblCqSkpJhdCBXye5bft51z7jS39KSKnT5mCg8//LD6t/bbb7/hyJEj6t+bHDhJZWTxySefYPr06Zg5c6Y6ieDg4IBBgwYhIyN3xEk89NBD+N///of58+erUCR/J2Q61Wm/WR4MOgMM6bkBOiYlTn01lyCaP4xK26tatWshKiceR85dbxc1Y9Ec+Lp4I6hBc6Slp+HyrjPwPKvFxHqDUdvRVyUVjYct7Lv6wa6ZByztq1ZBHk8PL2RYZJV4n+T1lxD9/SEkrDxfIYWKDBk56vckU7fNbZ/JIEpEVEFWrVqFBx54AC1atEBQUJA6EJKz9FJsQkifNV9f3wKXhQsX4q677lIHVWLNmjU4fvw45s2bp844yoHWe++9h++++04dZIn4+Hg1utW6dWtVxELOmJe37X/9hiunT8DG3gF3vvIOHN2KDm+3Sw4qTTUiKh+WLrY2edNyi+Pl7oZHJ47Hw+PHIi1Hjz+Wr8LmPSGw01gi4vw5rFu3Lu++MsJoDiFUyO9ZBVGn3EIa6cnmHUTlQHfBggXqwKlnz56qdcTbb7+tvs6YMUOd2f/qq6/wxhtv4I477lD/XubOnav+ny1atCjveSTwBAcHq3+zUmhFRgzIdKrTfrNce0TK/jEu0uyCaP4w6uzsDAcfF2w5shM5eh3Coi/jQvhFdG0SjMsnL8LrsjUaO9aGq420UAGs67uoAkT2bbyhsataAdTI3dUNGVmZsGubu8ShJBWxXjQzNPfv1rq2MyysNGa3z2QQJSIyEWM/Sim9XxQ50JIQI2cX8095adWqFXx8fPKuk7ORSUlJOHYst0CC8eykTEEbPHiwOiNZni4c2o+9Sxbkvtaj/wePgNqoKHFxccX+fsr9tWJi4Ghf+jU1TRs2wKuPPoShfXrhfEQUlm3ZjiuXwrBy8SL1wSzkjLI5hFDh4eGhft829rkj21lpuSNO5kqm/slImBS7yk+mk23btg3nz59XVZLlbL+Ri4sLOnXqpP6dGcmomRSDkds6d+6M5s2bm/R9UPXYb5YXQ5Y0xgQsrCyRnJo7+0L+Ns2NMYy2bNkSl9OjkJqRhqzkdNzdcBB62rRGZ+cWsNfaqi4tsgbUQXqANnApc7gyNVsbG2RnZSH9QNEtXCp6vWhGaHzudjR2Nct9ZsVXgyAiIlUYR9ZhGD+IiyJrK2RnLms0jORDIP/BlDD+LLcJKysrNYogaxddXV3VB/6N5MNGtqGsUhPiseLbz9X3rfoNRr3gDmqqXHmKPBuK+MircPPxU6MVcuB54xqUihAefhmZcfE4frpsr+Xt5oqxA/tjw+49uHDpMhx02fj5pafRrP8QdB04RJ0RLu/fUUWQtbBqO69VgJSDkqq63bKtMhJWEllT2KVLFzXyJf+O5N/JH3/8oQ6Y5Ay/8d9LUf+ejLcJCTR33323+luU/5dUM/ebMhpUUjEyU8nJuvZv0tKiwHTIqvpvtSSyjrdv374IO3EetfRt0a5T87wKtKnIRJxjOhJs0mCQVs7XZ+9WKm83T1hpix+NlUCtN+ih05Sy/ZWbVbn9vzPoDcg4kxtENfWdCj2v/I1X9X0mgygRkQnImiepHChnGYubIiPrK2Sdxa0qaRROXluKfJSFHIhd2bhSFSeydnVHqocfVqxYgQqTEIrszAxsXLUCZ44eQUW7HH4FGWmpWL2l6P8nJZE+6XVdnTG6WV3Yqw97HWKOHMBBbz81OmMOTpw4oQ5czpw9p36+cP5cxf7/vQ1SSblt27Y3vZ+sc3rwwQdRq1YtFVxlutiECRPypnWWlqyDkgvV3P2m7P+qwr8Hm3RLtIQrsnXZ2LNnj7pu48aNKjybqyYe9dDMNzewZORkYfbh/7Az4hAMqj55FWOvQW3/gGJvlpoA6dkZONgxNxDe1OGtwOFy2rRkDZqluyBHo8e6I1uBo9dvk/3f8OHDq/w+k0GUiKiCSRGMZcuWYcuWLapCY1H+/fdfpKWl4f777y9wvax/Mh58GEkLEeNtpSWjCWWdYnhs0zqcjQiH1sYGd736Ntxr1S73kdC/33u9wHUy5tXc3xfjRo9ARcvJ0SE98/oIQ2nos7OREhGOlKvhMORk5x2wJmRmo27j5up3LJUDzcHZs2fVKJCc+d5zJESFvb5Dh6KqjoiWRsOGDVWxG1mzJNMwZS3d+PHj0aBBg7x/L/LvJ/8aO/lZ1hFS1VLZ+00ZqRtaBf495ESlI/bgITW61altJ3Vd7969TbaWvrzJyYNdO3dhd8gxHDpzDOvCdsHN3Q2Thk9A+2Y3P9lkSutDNsOykRPGjRtX7H1kDfOWkB1os6f4kUDHXrVg29gN1gFO5bp9KesvIRXhcGjigaHDrs8IKIvK3mcyiBIRVRAJKE899ZQqpLFp0ybUr1+/2PvK9LKRI0fCy6tgwQOZNvPBBx+o6WPGM/dS4U6KPpQlWMqZzptNbcwvKyMdu/6dr77vdte98KnXAOUtKSoiL8zlP/gz6HRwc8ktoFNVpCcnI+zoIcSFX68GmJ6jw4XEFFxISEaDlq3RwMEJJ0+eVOttpLKnOUx7lH6t+mv/D2wdHG86lctcGM/OS0Ga1atXq2Ic8u9PDqzWr1+fdxAlB15SCfKxxx6r7E2mKrbflH1RVfj3YOGgz1srmn8tX1XYtrKSkwby783XzxdH6xzG0f1n1T4owMkHf67/D7tP7sejoyajrl/V2H862DvA3sOj0NTU/GSNsZVWC40ud4pxUWw9HeFQv3xrHxhkWu61dakOQd63/fdQWftMBlEiogqcVibTxqQ9gKzFMK6pkAX9UgzA6MyZM+qsf1HTwKSUuhw43XfffeqDQZ5DKtjJc9vYVFwfNSlOJOtDXX390Hbwzaf33Ao3v1qFrtNaWiBLV/nrsowHxEkx0bh6+iTir+aWshc6vQHhegv4BdTH2bDd8POvBbtrB4jt27fPm9JU1cNodHQ0PD09kZ1xrQedTeU1hi8vcgAl/98CAwPVvyvpHdm0aVNMnjxZBQtZb/j++++jcePG6iBLpnTKyJL0qqSqwZz3mxXB0vrabACdAS7XKlxLhV/p+2huIVRa5kiok0JS61etRWDdxsgOO4lafrXQpVVHbD68HS9//xa6te6CycMmwNE+twpyZZFpw243+XuR4ObiWPKJU61n6YvilVbGqTjoErNgaa+FXQtPmOs+k0GUiKiCSPlz4zSq/GbPnq3aExj98ssvauqZHDzdSEYxZXqanH2Us/xyxnLSpEl49913K2y7k2NjsG/pQvV9z4mToSmhUMPt8GsciA4jx+RV5BUuUvo9vWzTZcubXq9D7KUwXD5xDBkp18vQR6SkQ2ttjTotW6GtrR127D8EnYUFRvbrg50nTqv7SLCTioJyxriqh1Gp9CsHFOnX+qBKax5zJ4WuXn31VbVuS6qsjhkzRo2MGUcLXnrpJTUFberUqepgvnv37qpgzY1VI6nymOt+s6JY2FyfyeLnkTsyJ22XpFWGuYZQY4EiP09fuDq7YMuxnegV1A1BTVpg74kDWBOyGY8e34cxfUbiju5DSj01v7wlZiSj+U2K78h+1Ner+BFTx14BsKlT/jN8UvfknqCxD/ZRFZXNdZ9pYZAYTEREdM2q77/Esc3rUatpC4x/+6O8g4aKcjX0lBpxlBHSux+eipzYKHz61hsF7pOVlob0lGS4eBf/gX+7srMyEXXuLK6eOZ03SigfkBcSU3EpLQu9e3RHYL06arpflk6P3xYvQ5+undGxdSusDTmIoI6d1QiMfIDLaKOEUTlYrKphVEryy4HHqMA6atR3xHOvokmnbpW9WUR0gyvv7oQ+LQfuT7SCQx03FcJlxMqcQ+iXn3wOzcUsDO81EK/NeB/1A+rh7p6jYG1lBUtrLf5ZsxC7ToXAxdkZj4x6EEGNWph0u7NzsvHl4h8w7tF7SlwPKf01MyKS8XOfdwrdZt/eG+5jA8t923ISMxHx0R71AeXzXDtYeee24DJH7CNKRER5EiIjcGzLBvV97/seqvAQahwZbd6zr/oqI3TxSddHIfU6HXYt+BMhKxbj5PbNFbb+89yBfQhZtkitA5UQarCwhN5gQFhSKuxr18Ozj01Fswb1VAiVog0bd+2GvYM9+nftXORzypo1GRk9dOgQLl26vq60KpFRFfl9ywi4cHK/9eldRFRxNC6500Mt0vSq/6+xb7G5htD83FzcMKzzABw4fRjphkxkZWdDn5WDJyc+glfvfQZavQbTF/+AZdtXITktd/aGKSSlJquRxptVJ5b9qKfWpcT/b+UtdddVFUKt6zubdQgVDKJERJTn0NoVsjgS9dq0g2+jJiZ/fVmDEp+UhPSMTPWzpRRYunbwIqFULuVBJgMlRkfh5PYtOLh6marga9DrYWlrh9DkTCw8HYYTORoMGDMOowb2R0Zamlpn5u9fC8dOn8HFiCiMHtBfFdooTlUOo9IfUZqV16kdgNS4OHWds1fx7X+IqPIYA40uIVOdPDKHIFqaEGo0uMcA1PWshR+X/KraiEgYvXrlCpKz0lC7RX3c99iDuKSJxU9rfseOI3uQY4I6AgkpibDQWt60L+aVS+HwNBQ99dY2sHwLFAldShZStufWLHDqVrjOgrlhECUiorypqUc3rlXftxk4zOSvL1N0/RxskZmdg/MXLyInKwvxV68UKKKTmpAbmm5n/Wf0xfM4sn41jm9eX7AIkQFYeOwMwjOyMWXCODw8YTw8XFxUlUBjCNVaabF+x07U9fdD66Y3D+pVNYxKD1Fpo9C0bh0YDHrYOjnD3sV8+xISVWdaj9x9YE50uioqc+zYMVSXECqsrawxrt8diIyJwpZDO9RyhgOhR7Boz0r0GtZPTX995sXn0GVkL+yKOIRZK+bhVNgZdUKxosQmxsHKzloVzCqpUFF4xBU09KhT6Dabpm4VsjY0edNlVUHZqpYjbFt4wNyxWBERESmndmxVxXlkZKx+23Ymfe0tv89WRYtSMjKRrdPh9L7dSDySW33WrVYAssLT1PdpiYlw8ijYquFW13/KaKtbrTo4HR2H6CuXcTk1E0P79kH3dm3zimPkD6GOjg5YumY9ElJS8eDdxfeVKy6MVqUCRsbKvt6O9jgh21i7rkmmYRNR2Vn55hYSy45IRbt27TBt2jTVfqmyiviUZwg1at8yGG32tsBvq/6GXm/AkYQzqNe6sWq5I+9ViuMMGjRIvf9VK1dhyb61CAg9hH7BPeHtVvbPhJu5HH0FtRvWLfF3vH//fvW1lU/hk5J2FRAScxIzkbIrdzTcZWD12GdXvb9gIiKqFIfWLFdfgwYMhaVl6XuOlsdIqLFyrqOtDaw0GoSFX596lnJtDaNIjMptSl/W9Z/7ly/OW/8ptNY2yPGti79378fmI8fhUKsOXnx0Cnp2aFdsCI2KicXuw0cQ3LIF/G7oW2huI6NyANWkSRMkXrmcu311i+/VSERVK4gmJyerVhvVJYQKCwtLjB80Rk1NWXlyM0bcMxrPPveses59+/apMGqsTH7vffdi0pMPIdtXg183/4PVu9cj7dq+vTzISOvlxAjUa1D/pvtRexs7NHAvfHLRQlP+ESt5QxiQY4B1PWfYNCl5yrC5YBAlIiJEXTiHiLOh0Gi1aNlngElfO//0WOEho3QR0erAxM7JGd71Gua1kEmMilBTScu6/lPWltq7uqJBcHtYaK1wJTkVSzdtgauLK154+AHcNXRwgXL0N4ZQsWLDRuhhgTsG9L2l91mVwuiuXbtUz9PwE0fVz7WambYiJRGVntbHHrAA9CnZaNOoVYFZDdUhhBrVrVUHY/qMgJ+fL1q3bq16vnbr1k21D8kfRoX0tXz8qScx/L7ROJNzBT+umou9J/ZDVw51BCLiopBpka1qFpRk79ZdaOHVGJoiTtyWd+/QrPAUpO691lN3YL1qMRoqGESJiAjn9u9VX+u1aQ9756IrAFYUaduSXxNfT1xNTIZXy7ZoM2gY6rRsDRcfX3WbrBtNjrk+Qlqa9Z9WtraqKq9/205YE3IEi09dwOH4VNwzZhSevH8ifDwLVostKoSeCD2D4+cuYED3LrC/jf5pVSGMynuTg7oBffsg+tJFdV1AUwZRoqrK0lqj1gQKh0RL1KtXD3v27EF1CqFG/Tv1gXWqBdavX69+tra2LjaMSr/Yzp074/9efBbBg7tgS9g+/LJqPs6FX7it93M2/DzsXB1vuoxi7/59aF3EtNzyXh9q0OkR/+9pQA/YtfKETQPTfkZXJAZRIiLC+YO5Z9frtzHt2lAhbVs6jByT93NwnQBkZOfgcOj1qWfu/tfDaszlsELrP8NPHsf+FUtxZu8upCbEq/WfHgF18sLrjkOHMX3OXBy/EIa+3bri9cenolWTxoW2pagQKmfYV23cDBdnF/Tq2P62329lh9Hly5erA8UWAX6qQrJ7rdosVERUxdnUyw0fmecT0a9fP6xcuRLVLYQKOxtbdG/aESFb9qjWKDcLo8LBwQEjRozA4y88BY9W/liwfwX+3bgYcUnxt7QNZ6+eR6PmTVTQLc6pU6dwITwM3esV/kxw7lu4eNHtSN4ajuyrqbCw08J1ZENUJwyiREQ1XEZKCq6ePllpQVT0vGcymvXoo753tbeFvbUV9obsy7vdzT8AFtemP8Veuqim2ha1/lNjZYXaLVojeOgdaNSxKyy9/bEjMgHr9x1CYMNGeP2JqRjQvWuRBSiKCqFix959CI+JxZhB/cqtOEhlhtGlS5eia9euiDp1XP3csH0nk74+EZWdTf1rQfRMAkaOGKmCkFyqUwg1atukNVz19lixbHleZdybhVHh6+uLBx6cjImPTkKSazZmb/gTG/ZtQUZWRqlf+2psJKIy49GmbZsS77dkyRLY2dqhW92K/czMjk5D0rrcmSuuwxtA42SN6oRBlIiohrt45KBadykjY5XVS1IKFp3YujHv50benggNj8CVi2HqQERGOV29ffJGOKXNTP71nzYO14KjAfBt2BjhkdGYMXce/t2+BxY2dnh28n24d9RwONoX3fy7uBCakpqGTbv3oWGdOmjasEG5vufKCKNyELdmzRqMGDYsbzp2IwZRoirPppELoLFATmwG+rTppta0y0ml6hZChZzw69e2J84fDsXx47knzEobRmU7mjdvjieffRr9xw/F0ZRzmLVyHg6ePlLk/W904PQhuAV4qTWoNwui/Tr1gp1Vbo/X/HJi0stvSu4/p1WBIpvGrrAPrn69nhlEiYhquPMH91XqaKjahgPXRz9Ft0Z1kZiWjk0b1+PAqmVqzWf+jnESTIWbn79a/9lm0HA4uLnDxb8W/lu+EjP/+AvRSUmYMHI4nn3wftTyzQ2xZQmhYtvefUjOzETzJo2QnVP+TdRNHUb/+ecf1T+0a4tAZKWnqd+ZX6PACn9dIro9ljZa2DbKnUJvOJeG/v37V1oQrcgQalTPrw4auNTG6mUrkZ2dXaYwKqysrNCzZ0/838vPonmftlh3djt+Xf0HwiJzK4UXJT0zAycizqJj104lzn6Jjo7Gjh07MGxo0f22y6tQUeLKC8gKS4aFjQZuoxtXmwJF+TGIEhHVcBFnTquvdVoFoarwdnaEq70ddp0IRU5mZl7rFq3N9bPPVnZ2COzaEy7ePsjR6RGltcP8bXsRcvosenRsjzcefwTBLZqV+DolhdD4pCTEZWThjrvuRpJBg0UbtmDrvhCEXbmKrHwHRuYURn/88UcMHDgQ0ccPq59b9OwLiyrYi5CICrNtntubMv1oDO644w5s27YNV65cb3VVXUKoUd+2PZBwMUaFvvxKG0aF9CG9c8ydeOS5J2DfxAN/7VqCRVuWIyElsdB9j5w9Bktna7Rt27bE7Vq4cKH6Our+sXDsFVDgNvm5PAoVpR2ORsq23IJ77nc1gdb91ovkVWXayt4AIiKqPAa9HgmRuQUh3P1LrhBYkeq3bY+dC/4oNCq65lgo9A5OcNJq4B/YDFkZ6Th/bUppdno6kuPicD4iEmu2bkNkfCKaNWqIMYP6w9X55gcCJYVQsffwMdQLbIZnnn0WKSkp6oDn8MGD2HvmArKk96iVFo52tqWa7lXaMLp79271882qNd4Kafewc+dO/PXbXJxf9o+6rkVv07bqIaJbZ9fCAwmLzyI7PAV3PjQc/2dri9mzZ+P111+vdiFUCg1tO7wLegsDUpJTCt1uDKOyPbJvlnZUJY1iBgQEYMojU3H48GGsWb4KP6+bjw71gtC5RXtYW1mronT7zx1Bi26t4OiYW6G4OD/99BOGDBkCtyx75PhYwHVMI9U3VEZCyyOEZkel5VbJvRZs7VoUrOxenTCIEhHVYCnxcdBlZ6sqs86eXpW2HcbKuXuXLMi7rl29AKw6ehrLdu7B+2/+Ly84S2GljJRk9fPy1Wtw4OJleHh44Il7J6B+7YJnp281hF66GoHEbB3uHjkSWq0Wrq6uaiqcVKuMjY1FWFgYLl++jNiYGGRlZqKurS0cnJyqdBj96quvULduXXgjG5cMegQ0a1mgGjERVW0aR2vYNXNH+rFYWJ5Kw/jx41UoeuWVV0qs8GoOITRHl4PIuGicv3oRZ66cR1RGHNxqe2HU5HHFjlCWNYzKNgcFBaFZs2bYunUrtq3bgqMrT6JXq65Iz0hHqlUWevbqWeJ2HpSTkXv34vf//YDo7w/lXS+B0SG4+CUgpaVLzUbsb8dhyNKrNi3SM7Q6YxAlIqrBEiJyp3XJ9FYJo5VJKudKT9E1P0xXP2ssLdGubgCOXQzHxmVL0Gf4SDWN1DewGS6E5PbQ87TIwehB/dGpTVCpK9reLITq9HrsO3YCQZ27ITAwsNCBjKenp7oEBwfnXS9rmFasWHGbv4GKC6MnTpzA/Pnz8cWnn+LIulXquvYjRpfLcxOR6dh38FVBNO1AJB6b+qgaEV22bJmaqmtuIfRi5CX8tWERsnTZiEmLh94KsHNxQJPOTdGv2XC1/5W1niUpaxg1PkZOKso+fPWq1VixexMM6TnoMKSbeo8lmT59OgL8A9A1o3GBBY4pmy+rEevbGRHVp2Uj5qcjyIlOh8bZGu4TmsJCU/3WhebHIEpEVIPFR+ROy3Xx8UNVoNEW/Fga0KIR9oddxsoduxHcqQuuJCZh77ETcM/IhoetFRyttKhtZ11uIVScOHMWFvaOGDpsWKUUh6iIMCpT9+rUqYMOdfywc3ca3P0D0KBth3LYWiIyJdvGbtC42ECXmInmlvXRpUsXNduhooJoRYXQ7n164o+r4XAO8lV9QDv5+qp9nbxOWUd3byWMCjc3N9w94W6c79wJoaGhqq1VSaKiotQJvdenvgCtpbbIarm3GkT16TmI/vmo6hdq6WgFz4dbVbtWLUVhhQIiohosMSpCfXX18UVVICOi+VlrtejWqB5OXo3Gr/8txukrkWhbyweePj55VXQvnziKtMSEcgmh6RkZOHY+DL36D4C3d+WVyi/PAka7du1SxTXefuMN7F+xSF3XcdQ4FikiMkMyQubY3V99n7z1Ml54/gVs2rQJGzdeb39lDtNx27Rpg169e2HcuHEqRMv+zt/f/5anGJelgNGN6tevr4q43Wxt6LRp02BjY4NJIyeWa7VcfUYOYmYfVWt/LR208JrSClbeRbcaq274KUREVINlpef2O7N1KPkD2JRrRZv16FPgup6BDQALA3aeOIUGujSkXDgDQ2IcMm0d8taNhu7ZqfqJ3k4IFSFHT8CjVm306VNwG8w1jEoP1pdfflkdRNa1sUBmaio8a9dFsx69y317icg0HDr6wsJWo6ZwDg7sgY4dO6p1ovLv3RwLE5WX2wmjN3PhwgXMmDEDT42aAst1sYVuv9VquTkJmYiedUS1abG018LzoVaw8in+M6q6YRAlIqrRrh24WFSdj4OhTz5fIIxqLS1xV/sg1TblYlKqus7WyRnNe/ZD1rXpUTIiemMv0rKG0NiEBFyOT8CgoUNhb181zkbfbhidNWsWtmzZgmlvvoGDK5eo67pPmARLy8pdD0xEt9dT1LFL7qho0towfPThR9izZw/++++/GhtCKzqMvvnmm3B3ccP9HgML3SZVc12H1C/zc2aGJSHq2wN5I6GeD7aEtX/VOClsKlXnyIOIiEzOoM8NolXtOEPC6MBHns77uaG3B7o2rIvP/vwPdTp0wQOffYdRD06BT7e+MB5mRF04p0ZGbyWEykjCnkNH0bB5C7W+qCq51TB68eJFPP/883j4oYeQfuIgdDk5qNemHRoEc20okblz6hkACzstciLT0NG5OQYNGqTWgufk5NTYEFpRYVRavsybNw8vP/Qs7K0LT7+V1i1llRoSiegfDkOfkg0rX3t4P9EW1gG3V3ndHDGIEhHVaMapXFXvYCM5JrrAz8NaN4WTrTWm/TIPds4u6gDp7gcfBgIa5N0nJuwCwk+dKFMIFecvhyMVFhg+YmSFt0EwRRiVYP3QQw+pYhyPjB2FsKOHobWyRr8HHzPLA0siKsjSTgvnPrmFzJLWXsBH732I06dPq8JFNTmElncYlcc99dRTaNSoER5++OHbXhtqyNYhfvEZxP9zGtAZYNvcA16PtYHW3RY1EYMoEVENZlxTZGFZ9Q84bKy0uKtDEA6eOIlPPvlEXSdTaCc8+xKytTa5d7KwgL2zS5lCqIwgHDh5Gu26dEPDhg1RVZUljMrB6Pr16/H9l59j559z1XWdx9xdZYpSEdHtk+m5GlepoJuFetGuePbZZ/HGG2/g5MmTNTqElmcY/fbbb9Xyhh9//BGODT3UWtBbXRuaFZ6CyG8OIHVnbrV6p9614XFvM1jaVL2Tn6bCIEpEVIMZDzZKKvRTWeq3LTxFtpG3B55+9BG89tprqm+nFCo6v3U9bC0MyNJooa3XBBoHx1KHUHHkdCisXdwwePBgVHWlCaNr1qzBCy+8gOefew7Jh/YiKz0N/oHN0WHkGJNvLxFVHAsrS7iOaqS+T9l2GW8/9Rrq1q2LBx54ALoy7NOrYwgtjzB65swZVQTqySefRO/euQXeZC2o1+NBcLurifpamrWhsgQmaeMlRH13EDlR6bB0soLn5BZwGVzPLE4CVyQGUSKiGszJw0t9TYqKRFUjFXRvDE8d7hiLL7/7HsOHD8eECROw8tefsGfRP9BlZ8Fap8PZ8KvYsmt3qUNoaloaTl26gr4DB8HDwwPmoKQwKr3wxo8fr1oRyFTmK6eOw9rOXq25tayCU46J6PbYNXWHXQsPyGL5tGVhmP3zL6pw0eeff46aHkJvJ4zKfSZPngw/Pz989NFHBW6TEVCHYJ9SjYRmR6UheuYhJK2+AOgN6v+VzzPtYBvoflvvqboo3I2ViIhqDFff3MqL8ZG5U4Wqmp73TEbjjl0RfzVc9RiVcCqkcIQ0H3/uw8/wbL+uSImLUetd6xgycS7HGqcuXEBwi+Y3Pajad/Q4fOrWQ8+ePWFOjGF09+7d6mdpBJ+QkICRI0eqA8p3n34cW+b8oG4b9Nj/wcXbp5K3mIgqiuvIhsg4m4jsyylo0bg2nnvuOfzvf/9T+7XOnTvX6BB6YxiV9ythVIrSWZbQS/m9997Dtm3bVI9WB4eyt1Mx6AxqlDpx7UUgxwALGw1cRzSEfTvvav17LiuOiBIR1WDutXLXuyREVM0gKiR8Nu/ZNy+ECmdnZ8z6+ktERUVhzq79sHf3UOtDu42/F/c8PAXnYxOxY/9B5JQwPS0yJhYRSSkYOnyEalJubvKPjJ44cUJNLY6MjMQvX3+B7b//krcutEmnbpW9qURUgTQuNnC7M3eKbvKmS3hryssqaI0ePRqXL19GTQ+hZR0ZXbBgAd5++228//776NWrV5lfJzsyFVEzDyFx5QUVQm2auMHn2WA4tPepEb/nsmAQJSKqwdyujYimJyUiMy23R6c52PL7bOz48WtM7tQah0+exozNe9DxnofQZcRodaBx74MPIV4HrNyyHSlpaUW3azlyDIGtg9CmTRuYKwmjzZs3x9ixY3H8+HH8N28uQv6YA112Nhp16IyuYydW9iYSkQnYt/aCfTsfVQg9+d+zWDD3L1hZWWHUqFFIT09HTQ+hpQ2jcmLv/vvvV0scpBZBWcha0OTNlxA5/QCyLyXDwlYDt7GN1XpQrWvNrIp7MwyiREQ1mNbaGvYurlV+VDS/q6GnsHfJAvV9k6A2ePvtd3D23Hk8+sJLiI2NVdcHBwfjiWeehVud+lixdScuR0QUeI7Qi2HI0lipdi3mfBAWHx+PiRMnqlGPN198HkcX/K6KEwU0b4mhT78IixKmnhFR9Zuiq/Wxhz45GxYro7H4v0XqBJW0cjJWSK/JIfRmYVRm2MjyhsDAQPzyyy9l+t1kR+euBVWjoNKWJdANvs+2g0N73xr5Oy4tfkIREdVwMu1VXD5xFOZA1osKx7oN4N2xJxyvnsejvTri4sWLCGreXB14iVq1auHJp59Gu159sP3oSYQcPaam6mZlZ+PQ6TPo3KMn6tSpA3N16tQptf5LChQtnj8PtudPIDMlGa61amPUi/+DlbX5TTcmolsnbUA8728OS3utWi9a94w9fp3zK/744w/V2kWCV00PocWFUTmJOWjQIGRmZmLx4sWqNVhpSMBP2X0VkV8fQFZYsloLKqOgHg+0UFOmqWQMokRENVzr/rltS87t3wNzIEWLjCE0Yts6pF29DH9XZzzdrxt0meno1LEjli1bpu4rBxP33nsvxtxzH8JTM7F04xZs3RsCBw9vDBw0COZq9erVan2oRqPB8j9/x5F/fkNmago86taHZ7d+iIqNq+xNJKJKoPWwg/vEpuoIP+1gNAbYBWPG9zPw9ddf48EHH4S3t3eND6E3hlFZWy9rQaUK+bp161Txt9LQZ+Qg7o+TSFh4BsjRw6ax67W1oBwFLS0GUSKiGs7Vxw8uPr64fOKYWawT1dk5wLdr37wQauThaI8n+3ZFx7ZBanrVtGnTVC89OSCQ6pHPvfQymnbojES9BfoPHgwXFxeYG5lC9umnn2Lo0KHo3r075nz6IXbOnqmm49Zq2gIT3v4YXXv2KrHPKBFVb7aN3OA2ton6PmX7FYyrPwCPPfYY/v77b8yZM6eyN69KSU5OVoWJwsLC8MUXX6g196WRFZ6i1oKmH44BLC3gMrQ+PCe35FrQMmIQJSKq4SSodRkzAXqdDucPhqAqk7WQBw8eROcuXdB95J2Fbre10mLuTz/h/x57FG+88Qa6dOyopq4KGQl48KGH8Prb79xSJcTKdu7cOfTt2xcvvfQSXnzheTw3dgS2zp0FvS4HTbr0wJjX3oGNvX2JfUaJqGaQPpcuwxuo79M3XcEz3R/AN9O/wVdffYUpU6YgKysLNZ0s5+jTpw/CLlzE8hn/IsC3Vqn6jKYfjVHrQXVxGdC42cDr0dZw6hkAC0uOgpYVgygRESGwSw/YOTnj3P69qOohtEOHDrlrnPoORIeRYwrcp8MdY3F23y4ExITh0d6dcO7USbRq2VIdfMnBhYRuNzc3s5o2Jdv97bffqul0cuC0cuF/aGmZjQMrl6rbu4ydgOH/9xKsbK6fiWcYJSJNsBuiGmSr7+0PZ+K+RsMwZ/YczJ07F/3790d0dDRqqq1bt6rPksSoePw1+kvUP2KHBlu0SIqILzaMynrQpI1hiJ13AoZsfW5blqeDYVPHuVLeQ3XAIEpERKp6bqfR43Fm7y5kpKSgqodQo573TMbE9z/HkCeeU18bd+iSV1G3oZcHnhvUAx3q+KtCHRLMNmzYAHOyefNmdO3aFU899RQm3X8//vrmS4Qumo/Ic6GwdXDEHS+8ga7j7ikyWDOMEtVcxuq42s6ecB5aX12XvPkyRjh2wcb1G1SxM9mfyv6hpvnpp5/Qr18/NG0YiKV3fY8mnvXU9docSzTaY4uUhORCYdSg0yP+31Akrb6ofnbs6g/PSS1gaaettPdRHTCIEhGR0mbQUNg5OeHgmuUwhxBq5Nc4UFX+la/GirpGNlotRgW3wNxvvoKlpaU6+JDKiAcOHEBVJgeHsg60d+/eyMnJwcr//kUvHxds/e0nZKWnwz+wOe77ZLrqFVoShlGimufGFi3OPQPgOroRYAGk7YtE4+PO2Lt1F9zd3dWJLhkhNbZ3qc6kQq6slZWpyQ8//DCWfPUH3O1z25cZSRht6xZYoLWLPlOHmF+PIy0kUiUn11ENVascC435zKypqhhEiYhI0Wit1Oja/pVLkJ2ZAXMIoUVV1C1K/0GDsWvXLixYsEBNb5U+o/17dMeCeVXnAEy2Q6aLjR07Fm3btsWZM2fwx29z8fHjD+PEP3NVex2tjQ36TJqC8W9/CGdP71I9L8MoUc1RXJ9Qx05+8JjUQrUXyTqfCKtFMdj092q1v5k0aRLuuOMOXL1qHr2kb8WWLVsQFBSEX3/9FTNnzsT3338PO7+ip9Ta+zjntXbZv20von88jMzT8bCwsoTH/S3g2Nnf5NtfXTGIEhFRnuY9+sDBxRVHN60zuxAqZFS0qHWjcr0ckN155534/rUXcFf71jh6+BDG3jcJDevUxvTp01UfucoQHx+P7777Dm3atFHVfY8dO4YZ30zHz++8juh1S3Fw9TJVSKpBcAc88Nn3CB56BywtNWV6DYZRopobQo3smrrD+7EgVWBHCu0kzT6Fb6dMw8L/FmLPnj1o0aIF5s2bV2VOzpUHCZP/93//p2aX+Pr6qn3gI488om6TtZ2OvQIK3F9+luultUunwGB4bMxEdniK6s3qOaWV+h1S+bEwVKe/NiIium1nQ3Zjw+wf8OBXP0Kj1ZpNCM3vaugpNU1XRkglhOa/fv4bz6vv5eMvNDIGO8+F4UREjPq5R48eGDFihGr/0qhRo1K/XnZ2NlasWKGm01pZWZWqAu6SJUuwdOlSdaZeXlte94G774JTWhKObFyDnMxMdV/veg3R674HUadlEG6XFCfZvXu3Ghkoba88IjL/EJqfPi0bcf+GIuN47sk320A3GHp74pk3nsf8+fMxYMAAfPTRR2rmSEUp6z6zrGRK7R9//KGqp0ufUGnnJWvtpffyjTLDkpATkw6tp11e4aHMC4mInXsc+rQcZNkZEN/dGm37dFRLPKj8MIgSEVEhf7z5Ehq0bY9Oo+8yuxBakuNbNmDld18Uur7DhAdwIjJWhcP169cjMzMTTZo0UaOI7dq1UxcZsXR0dCzzQZWckZf3ExISoi4y8nDy5El1xl3asYwYOhRt6gXg8v49uHT8SN7jvOs3RKdR49C4Y1dYlOPBD8MoUc0NoUZy+J+66yoSlp8DcgywsNbAZXA9bIwJwUsvv6T2UePHj8f7779fppNylR1E5X2tWrUKr776qhr9lCnH0nu5cePGpX6O1ANRiF9wWv1erAIc4TKxCXYe2gMHBwe0b9+eYbQcMYgSEVEh4SeP4+93X1WVaH0alP9BSGWE0BtHRPOT92kcOZXguHbtWqxZs0YFRzmYkWAqB3cytcvf3x9+fn7q4unpmXcQJVUo69ati4SEBFy5ckWtt5JLRESEOjsvwVPCn1qf2rcvGnq4IOzAXtW7VZed22LBwsIS9du2Q9tBw1E3KLjC2swwjBKVHzmUlnYelSE9OwM7duwoVQiV6alyHxkVlLWSsk9656U3MUjTDi///C5WnN4EL2cPfDHtM8RZpuCtt95S+y/Z58nSBTkRN3DgQHz55Zdq3yck9ElYPXr0qHreLl264Ouvv0bDhg3V7RcuXED9+vXV+vxvvvlG7XckFEpLqri4uHILorKPlX32tHc+wNZd29C1TSe8+/Qb6N6vZ6nbqxh0BiSuPI+UbblF72ybucN9QlNYWmtU31UJ+wyj5YtBlIiIirT2x29VgZx7P/4aVtY2Zh9Cjbb8PjuvxYtxDWnPiQ+UeOb++PHj2L9/vyp0lD9kysGZVLWVi9zPyckJHh4eeUFVLhJOJXw2b9YMV0+fUKOyoXt2IjsjPe813Pz8Edi1F1r1HVDqIkS3i2GUqHzos3S48uaOSnntk70z4O1fupFQCaKyH3vppZfUaOdff/2Ft99+GwMHDMSQNn3QJrkOZu34E8tObsTBr9bBorM7mnVtrYK2jLpKhV05USe9mDdu3KieUwKmvG7r1q2RkpKCN998U4VP2ZdLWDMG0aZNm+Kzzz5TIfT111/H3r178cUXX6glCbcTRCXMyrpWKT4kJwNb+TTBCz0eQp8Gna8XauoVANchuS1siqNLzkLcX6eQeSZB/ezUpzacB9SFheX13ynDaPljECUioiJlZaTj1xeeQMN2ndB3cm5xB3MPoTdbQ1oR08ySYqJwbNN6VQAqKToy73pnLx80694LTTp3h1fd+hU2+lkShlEi8w6icXc5o1Xb1qXaf0gQ1el0qjq3kO9dXFxUETdp4aJLyULovyFoNrkrFt87A1sv7sO+uBNYumgx/tuxQo1oSksT8cADD6hqu1JdNv8+LyYmRhVHO3LkCFq2bJkXRKV350MPPaTuIyf2pDCSjIpOnTq1zEFUZp2sXLkSixcvxqJFi9T7GDlwGO5xG4AOtYoO5F6PBxU7Mpp+Ilb1CNWnZsPC2hJu45rAvpVXkfdlGC1f7MJKRERFsra1w8CpT+PfD95AQPOWaNKpW7UIoULCZ3kE0OJkZ2XizJ6dKnyGHT0kc/fU9dZ29mjarSea9+wH/yZNKyV8FlVNV8KoYBglKjtp6+H/bleTvV56Whp27toFb29vtGxTujWhRjJyaSRTaWUGh4ymqp8drRE4qTMwGUjy1uHE3rPYHroHPs3rqB6k0jfTzs4O6enpaj39nDlz1CwQ6Ucq18moqXF8KywsTAXRol5XZoqIxMTEUm2zzDiR8CqjsPK6UuBNrpOZJu+++64KxI7hQPzfp4t9jqT1YfCafH17hD4zB4krL6i1ssLK1x7udzeFla9Dsc8j05klfEsYlVDOMHp7GESJiKhYdVu3Qev+g7H8609g+eyraNShs9mH0IqUEHEVxzatxbGNa5GRmpJ3fe3mrdCy70A07tgFVja2qEoYRolujwRBKfZjChL2duzdBZ9STse90Y2jj/L4/NflTWftUQs5B60wyLUvXmo7GdDnBkx5n7ZN3FCvWyAu6qIwaMhgNT02OTlZ3e7q6qq+/vLLL2qqrvZa5fX8EzCNryHrOo3kdnkO47IHqSxuLPAm6/QzMjJUCOzXr58amR0+fDgCAq63XsnMTCrxfWeeilfVcWVUVE01PhiNxBXnoU/Oyn2/3WvBZVA9dVLhZhhGyw+DKBERlaj3pCm4cGg/ln75EUY+/6qaqlseqksI1et1quVN+IYVmDt/Vt71Tp5eaNm7P1r06gcXb19UZQyjRNWzOu7taNe5g1oD2vHDkcg6FIuUPRHQxWYA4UDG3xdho09R6+RX/7AQLXsGIyT0EBYuXIjZs2djw4YN6rFGsn+RkVMZxTW2UJF1nbJOVUZTpSiSrD81kvcWGBioKpbLelZj9XKZElsUY0/QlM2Xi30/0qIFBqgAmnUxN7hqPWzhOqoRbBu7lel3wzBaPhhEiYioRFKoaPRLb+LXl57C0i8+xMjnX0eD4A6o6SE0LSkRR9avxqF1K5EcE517pYUF6rdph6ABQ1X1W0tL04ySlAeGUaKqy9QhVDzxxBOYNWsW7p0ySRU4chvlhhPbDuGPefPxce/n4JxiDzc7F/wwfQaeCXkAGfp4HNySu4b0xy++R+/h/VVIGzJkCN555x018irr0mWk9NixY2pEU/Y5Mt03f4E3udSqVavY0FkcKUhk18IDGafikLz+UqHbU7ZfQXZ47kwVWQvq1LcOnLrXgoX21gIkw+jtYxAlIqKb8qxTDwOmPKEq6S75/AP0e+hxtOwz4JYOhsw5hMqULil0dHDNcpzeuRW6nBx1va2jI2xrN8AdUx6DZy3zDXAMo0RVT2WEUCFtW+R1X375ZdW2RdpYSRXwwYMHo9ZrXZB9KRmz3b7FS1+/hQE/P4AG7rXxTv//w11nn0bCknPIuhQKH6fcqDGk2wC079NZVaGVYkMScEeOHKmeuzz7iMrIqJp+m2MoNDqqQqilBeyDvVVFXK3L7VeDZxi9PayaS0REpSIfF1vnz8lrfSLVXgdMfRK2Do7VPoTqdTqc3rUNIcsXIeJsaN71vg0bI2jgMDTs0Blr1q0v9+bslYXVdIlqdggtKyn8kxWWjMwLSWraq1xu7K1qaa+FdT0X2NRzhqWfHTYc2YbBI8p3n6lPy0bGmQRkHI9F2tEYIOdazNFawKG9L5x6B0DrWv7r9FlN99YwiBIRUanJR8bB1cuwae5PKpzJOshhT72IWk2bV8sQmpGSgqMb12D/qqV50281VlZo2rUn2gwcBt9GTW7avsVcMYwSVS5zCaFFMeTokRWegsyzCcg8l1hkMDXAAK2XPax9HaD1tIPWyw5aDztonKzV5WaFgyR0ZkenIyc6DdlRaep11KhnvmSj9bZTAdS+rbd6zorEMFp2DKJERFRmEWdOY9n0T5AYGQELC0t0HDUWHUaOhY29fbUIofL+Dq5dgVPbtyAnO7eqor2LqwqfQQOGqO/zq45BVDCMElUOcw6hRTHocoNp1vlEZIYlI+tSMvRJufvW4ljYaWFpo1FrOC20FmparSFLD31GjrrkjXbeQOtjD9tGrrAL8oJ1bSeT/u4YRsuGQZSIiG5JZloa1v8yAye2blQ/2zo6ocPIMWg7aDisbG3NLoRK65XQPTtwcscWRJ0/m3e9V936aDt4BJp17w2tddFn1KtrEBUMo0SmVd1CaHH7zDWLVqJX884wxGUjJyYNOTK6GZ8BnbRUKSZk3kjjYg2ttz2svOxhVcsRto1doXG+/bWft4NhtPQYRImI6LaE7t6BrX/ORfyV3MIQMlrYafR41X80IjKyyoZQabsSde4szh8MUQE0+uL5vNs0Wi2adOmBNgOHwq9x05seCFbnICoYRolMoyaE0JvtMyWaGNJzVCCVEVCZ5qsuegMsrTWwsNXC0lYDS3srNWJaFTGMlg6DKBER3TZZL3pi2ybs/Hc+EqMi1XU2Do6w9a+N9gOHonW3nrC81juuMrcx9nIYLh0/grCjh3H5+BFkpuXrW2dpidotWqNxx65o0rkb7J1dSv3c1T2ICoZRoopVU0JoTdlnMozeHIMoERGVG2lncmzTOmz7+3ekJ8bnXW/r5IzGHTqjSadu8GvSFDb2DhW8HdmIv3oFURfOIfJsqKp0K9/nZGUWuJ9sR+0WrdCwfWc0bNcRdk7Ot/R6NeGgSjCMElWMmhRCa9I+k2G0ZOwjSkRE5UamtLo3bYnaw8ehtqsTok8eU9Ne05OTcGTDGnURzl7eau2lV5168KxTH+61AlQIlHWm2lIclEjgTUtKQFpCAtISE5CamIDEyKuIvXxJjXrGR1yBQV+wQqOwlsbpjZuiTssg1GnRGt4NGsLSsmpO7aqK2GeUqPzVtBBak7DPaMk4IkpEROWmqMJEMiX28omjqg/nuQP78tqgFEdrY6MCqZ2DIyy1Wuiys1XwlFFO9TUrCxmpKTfdFgmdHrXrql6fvg0aw6dhY7j71VJTcMtbTTm7b8SRUaLyUVNDaE3bZ3JktGgcESUionKRk5ODkydPFipMJGtD1Qhky6C83pwxYRcQHXZeFQiKDrugKtZmpqbCYNAjJzMTKXKJjSnx9SRQSmEkuTi4uKqepp4BdeAeUAcetWrD0d2jxhzUVdbIqJx08PPzg1bLwwmispKxoNDQ0BoXQmvyyOiOHTsQFxcHT0/Pyt6kKoEjokREVG50Oh00t1iUSKbSZqanqaCakZKsLnKdjIrKlF+NlRU02tyLnbMz7BydKmR081bUtLP75fH/m4hyw6ioTiG0d+/eaNOmDb766iv1c7169fDMM8+oixH3mSR4CpOIiMrN7XzASqi0lUq7Do6Aj2+5bhdVDB5QEd2e6hRAi7N37141JZW4z7wRgygREREREVXYVH6iolSNOU1ERERERGZMn6VTl/yr3gw5+tzrcvRF31ef7766a/fNLt19b2XK7FNPPaWmyLq5uam1qbNmzUJqaiomT54MJycnNGrUCCtXrsx7zNGjRzFkyBA4Ojqq+993332Iibm+fl8ee//996vbZb34559/Xuh1ZWqucZqu+OKLL9C2bVuMHz8eDRo0wOOPP46UlOsF6ObMmQNXV1esXr0azZo1U889ePBgXL16tczvmao2BlEiIiIiott05c0d6qJPzc67LnnLZXVdwuKzBe579b1d6npdwvXexik7r6rr4hacLnDfiI/3qOtzotPyrksNibylbfz1119VoZw9e/aoUPrYY49h3Lhx6Nq1K/bv34+BAweqsCnVfBMSEtC3b18VGqX1yKpVqxAZGYm77ror7/lefPFFbN68GYsXL8aaNWuwadMm9TwlkYqxX375JaZPn46ff/4ZGzZswEsvvVTgPvL6n332GX777Tds2bIFYWFheOGFF27pPVPVxam5REREREQ1gLRceuONN9T3r776Kj766CMVTKdMmaKue/PNNzFjxgwcPnwY69atUyF02rRpeY//5ZdfVMum06dPw9/fXwXJefPmoV+/fnlBNyAgoMRtkBFZKVYkYbNPnz54//338eijj+L777/Pu4/cPnPmTDRs2FD9/OSTT+Ldd9+tkN8JVR4GUSIiIiKi2+T/blf11cLq+oRDp54BcOwu/YsLFiXy+1/n3Ptqr9/XsYsfHDr6Fipg5Ptyx0L3dWh3vUVWWbRu3bpA4RwPDw/VOsbI2HorKioKhw4dwsaNG9XU2BudPXsW6enpqj+mtHIycnd3R2BgYInbIAFXwq08vzxeWn9lZGSoYGpvb6/uI1+NIVTItF/ZJqpeGESJiIiIiG6TpXXhiqgSHi1Ke1+NJSw0pb/vrbixVYqE3vzXGUOwXq9X6zZHjBiBjz/+uNDzSDA8c+ZMmV//woULGD58OB555BG17nPYsGHYvXs3HnroIRVKjUG0qO1kx8nqh2tEiYiqqQ8//BAdOnRQBSi8vb0xatQonDp1Ku92aaota4Tk7LWdnR3q1KmDp59+GomJiYUOAG68/PnnnwXu884776jpWN27d1dTtqj6k3VbcpAq0/Pkb2LRokUFbn/77bfRtGlT1bZBCqP0799fHXDeWMTkxr8tmSqYnxRTqVu3rpoieOPjicoT95kFBQcH49ixY+rfqRQxyn+Rf9cyYimBMf+/y/j4+BLfT0hIiAq5n3zyifo9NmnSBFeuXEFNwf1mQQyiRETVlBSQeOKJJ7Br1y6sXbtWrbmRQhRS5VDIh79cpCCEVEaUSoVSjELOTN9o9uzZqmKh8SIHaEbbt2/H8uXLVbGKiRMnqrU8VP3J35GsN/vuu++KvF0OML/99lscOXIE27ZtUwdP8vcXHR1d4H6y7iv/35Yc6BtJgRI5YJWD+Ndff11V9iSqKNxnFiS/CwnfEyZMUL1AZTquVLKVf4c6nU5N2ZX3LgWLpOCQ/E4eeOABVYyoOBJi5fcq+42IiAi1vlTWgtYU3G8WxKm5RETVlBwg5ScHTXKWX85I9+zZEy1btsSCBQvybpez2x988AHuvfdetWZHq73+ESGl9H19fYt8HTkDLmd3Ze2RPE5eh6o/aekgl+LIAXZ+0rJBCptIERRjYRMho0/F/W0lJSWpvz3525L7yJo0oorCfWZBso0Sml9++WUVhjIzM9Uom0ypNYbNTz/9NG8Kr/xbfv755wuNEOcnIUz2BfK42NhY1VJGRqKlBUxNwP3mDQxERFQjhIaGygIbw5EjR4q9z6xZswyenp4FrpPH+Pv7Gzw8PAwdOnQw/Pzzzwa9Xp93e1ZWlmHQoEEGrVZrcHV1Naxbt85Q08jvYNGiReprTSR/IwsXLiz29szMTMOnn35qcHFxMURHR+ddX7duXYOPj4/B3d3d0KZNG8Mnn3xiyM7OLvDYBx980KDRaAx2dnaGefPmVej7IMqP+8yKU9P3mQLcbxo4IkpEVAPImhwpmd+tWzd1Vr8o0qT8vffew9SpUwtNAZJeclJEQvrEGZuPy9ooIWuEZCRBKhrKWVhra2uTvCeq+pYtW4a7775bVcOU4iYy3VFaRRjJ35CsQ5NKmzt27FDtJGSamYwCGMlogEwzk78/WZdHZArcZ1JlWVaD9psWkkYreyOIiKhiSdPylStXqjUnRfV4k6k8AwYMUB9sS5YsKVSxMD/pMyfrny5dulTBW20+ZM3TihUrMHTo0BJ/d9WVFMtYuHBhgXVwxvVQcoAkB+xSPEPWkUnhDJnuWBTpUSjVNOWg3cbGxkRbT1QY95kVq6bvM4UF95ssVkREVN1JIQw5wyr94Io6oEpOTlZrfmTNiXwo3uygQHrGXb58Wa0XIiqJVH6U4iSdO3dWZ+hlDZ18LelvS9bMSYsHosrCfSZVJocatN9kECUiqqZkwoscUMmBkpxRrV+/fpFn9aUIhUwNk7P6tra2N33egwcPqrLy5nbmlarGdMeSDsblb0uKoBR35p+oInGfSVWRvhrvN7lGlIiompLS+/Pnz1ctAuTMvZTKFy4uLmrNiPGAStahSAl9+VkuwsvLCxqNBkuXLkVkZKQ6MysHXLJWZdq0aXjhhRcq+d1RZZNpYPkb2p8/f14dEMlURQ8PD1VNdOTIkWqNk0wxk3YF4eHhGDdunLr/zp071XSzPn36qL9P+fnZZ59VFUjloJ3I1LjPpIrG/eYNKrtaEhERVQzZxRd1mT17trp948aNxd7n/Pnz6j4rV65UVfkcHR0NDg4OhqCgIMPMmTMNOp2ukt9d1VITK0AW9/czadIkQ3p6umH06NGqcqi1tbXBz8/PMHLkSMOePXvyHh8SEmLo1KmTqghpa2traNasmWHatGmGjIyMSn1fVHNxn2k6NXGfKbjfLIjFioiIiG4TC28QEZUe95kkuEaUiIiIiIiITIpBlIiIiIiIiEyKQZSIiIiIiIhMikGUiIiIiIiITIpBlIiIiIiIiEyKQZSIiIiIiIhMikGUiIjoNllaWqJRo0bqKxERlYz7TBLsI0pEREREREQmxdMQREREREREZFIMokRERERERGRSDKJERERERERkUgyiREREREREZFIMokRERERERGRSDKJERERERERkUgyiREREREREZFIMokRERERERGRSDKJERERERERkUgyiREREREREZFIMokRERERERGRSDKJERERERERkUgyiREREREREZFIMokRERAC2bNmCESNGwN/fHxYWFli0aFGB21NSUvDkk08iICAAdnZ2aN68OWbOnFngPhkZGXjiiSfg4eEBR0dHjBkzBpGRkQXus2TJEjRp0gSBgYFYtmyZSd4bEVFF4H6TbgeDKBEREYDU1FQEBQXhu+++K/L25557DqtWrcK8efNw4sQJPPPMM+oASw6QjJ599lksXboU//zzDzZv3owrV67gzjvvzLs9MzNTHXB9//33+Pbbb/HYY48hKyvLJO+PiKi8cb9Jt8PCYDAYbusZiIiIqhk5s79w4UKMGjUq77qWLVti/Pjx+N///pd3Xbt27TBkyBC8//77SExMhJeXF+bPn4+xY8eq20+ePIlmzZph586d6Ny5M5KSktC6dWvs27dP3d6hQwccPnwYTk5OlfAuiYjKD/ebVFYcESUiIiqFrl27qrP44eHhkHO4GzduxOnTpzFw4EB1e0hICLKzs9G/f/+8xzRt2hR16tRRB1TC2dkZkydPhp+fn5rKJmf2eTBFRNUV95tUEm2JtxIREZHyzTffYOrUqWqtk1arhaWlJWbNmoWePXuq2yMiImBtbQ1XV9cCj/Px8VG3Gb311ltqepo8ngdTRFSdcb9JJWEQJSIiKuUB1a5du9TZ/bp166oiHbJuSc7Q5z+bXxouLi4Vtp1ERFUF95tUEgZRIiKim0hPT8drr72m1j8NGzZMXSdrlg4ePIjPPvtMHVD5+vqqAhoJCQkFzu5L9Ue5jYioJuF+k26Ga0SJiIhuQtYwyUWmheWn0Wig1+vzCnBYWVlh/fr1ebefOnUKYWFh6NKli8m3mYioMnG/STfDEVEiIqJr/e7OnDmT9/P58+fVmXt3d3dVOKNXr1548cUXVS88mWImbQbmzp2LL774Im/a2EMPPaTaFchjpMDGU089pQ6mpPIjEVF1w/0m3Q62byEiIgKwadMm9OnTp9D1kyZNwpw5c1ThjFdffRVr1qxBXFycOqiSIhzSA0/aFhgbsz///PP4448/VO+7QYMGqd53nGJGRNUR95t0OxhEiYiIiIiIyKS4RpSIiIiIiIhMikGUiIiIiIiITIpBlIiIiIiIiEyKQZSIiIiIiIhMikGUiIiIiIiITIpBlIiIiIiIiEyKQZSIiIiIiIhMikGUiIiIiIiITIpBlIiIiIiIiEyKQZSIiIiIiIhMikGUiIiIiIiIYEr/D5nCwL5YDp1LAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAMrCAYAAABTRy+XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQd4U2Ubhp/uXQotUKDssvfeewsoGwURHKggiPKLWxEFt4KKC0XcypS99957Q9mrpdCWDrrzX88XTklL0qZtkqbte19XKDk5OSs5b77ne5eDTqfTQRAEQRAEQRAEQRBshKOtdiQIgiAIgiAIgiAIRISoIAiCIAiCIAiCYFNEiAqCIAiCIAiCIAg2RYSoIAiCIAiCIAiCYFNEiAqCIAiCIAiCIAg2RYSoIAiCIAiCIAiCYFNEiAqCIAiCIAiCIAg2RYSoIAiCIAiCIAiCYFNEiAqCIAiCIAiCIAg2RYRoIcLBwQHvvfce7J2NGzeqY+VfQRCE/ILYLkEQBLGbgvmIEM0mISEheO6551CpUiW4u7vD19cXrVq1wldffYW7d++iIHLt2jUlYA8ePAh7Z/ny5flCbAtCQeXXX39VE0l8bN269YHXdTodypYtq17v1auXVY9FO45nnnnG6OtvvfVW2jrh4eGwd7Zv367sW2RkpM32ef36dbz++uvo0KEDfHx8ZJJQEKyA2M2CZTfXrVuHp556ClWrVoWnp6fSDPwdoj0V0iNCNBssW7YMderUwZw5c9C7d2988803+Oijj1CuXDlMmDAB48aNQ0EVopMmTco3QpTHKghC3sKJur///vuB5Zs2bcKVK1fg5uZms+OYP38+EhMTH3jtn3/+Ua/nFzigon2z5YDq1KlT+OSTT3D16lX1+ycIgvUQu1kw7OZrr72mImT69u2Lr7/+Go8++qjSDg0aNMCNGzdsdhz5ARGiZnL+/Hn1RSpfvjyOHz+uPKAjR47ECy+8oAYzXFarVi3rflqCIAj5hIceeghz585FcnJyuuUUp40aNUJgYKBNjqN79+64c+cOVqxY8cDghHa9Z8+eKOzExcWZfI2f1a1bt3D69GmMHz/epsclCIUNsZsFw25++eWXOHv2rJrEoyf0ww8/xNKlSxEaGorp06fb9DjtHRGiZvLpp58iJiYGM2fORKlSpR54PTg4OJ1HlIOvDz74AJUrV1Yz/xUqVMCbb76JhISEdO/jcoanceakcePG8PDwULPOWn7kggUL1HPOknFAcODAgXTvHzFiBLy9vXHu3Dl069YNXl5eKF26NN5//30VApcVnOVm+EDJkiXVcVJM//LLL2mv8ziaNGmi/v/kk0+mhbExjERj165darBXpEgRFYLQrl07bNu2zazrSs9Inz591HGXKFECL7/88gPXiGzZsgUDBw5U3mceJ0P7uK5hODSvxbfffqv+rx0nHxqff/45WrZsCX9/f3WdeT3nzZtn1nEKgpA9HnvsMSVg1qxZk7aMXknec0OGDDH6ntjYWPzvf/9T9zfv82rVqqn71tCW1a5dW4WJZiQ1NRVlypTBgAED0i3nsrZt2z7gnf3rr7+UbeX2zIX28umnn1Y2lsdXsWJFjBo1yqi31dDG0zZlpH379uphCKNsaINpR4sWLap+E7TjZmgZI28I96vZtwsXLqS9/88//1R2jfatWLFiavL08uXLD+yX57xv3z51Xbgv/jaZguG43JYgCNZH7GbBsJtcx9HR8YFl3P6JEydy8M0ouDjn9QHkF5YsWaJivClkzIEzIL/99psaFHFgRbHGMF5+Af/7779063LWhAMz5p4+/vjjauDF0N8ffvhBfdFHjx6t1uP7Bw0apEKlDL/gKSkpSgg2b95cCeaVK1di4sSJSgxTkJqCMzN8D2/KMWPGoHjx4sprwIEWPQgvvfQSatSoobbx7rvv4tlnn0WbNm3Ue7XrsH79evTo0UPdxNwnj2vWrFno2LGjEo9NmzY1uX+KyE6dOuHSpUt48cUX1eDujz/+UNvMCD0rnH3ioI9Ccvfu3cr4UMjyNcLrxzBiDny5nYzQi/3www9j6NChauD477//KnHLWSrxigiCZeFAokWLFipihDaC0L5ERUWpH3qGKxlCscn7c8OGDcoG1a9fH6tWrVKDCArAqVOnqvUGDx6sBhcMbzL0qjIflfc/t50R2ldOFHIykRN3tI20G/TwxcfHm3U+3DbtGcO7aAurV6+ujovCmrbJ1dU1V9frp59+UnaQvxk8Vh7X4cOH1W8Hj79fv37KK8nryWsREBCg3ke7TaZMmYJ33nlH/Ubw9+fmzZvKRnLwwwlMPz+/tH1xgoCfCa8Vf3M4ESkIQt4jdrPg2k3+/vChHYNwD52QJVFRUZyO1z3yyCNmXa2DBw+q9Z955pl0y1955RW1fP369WnLypcvr5Zt3749bdmqVavUMg8PD93FixfTlv/4449q+YYNG9KWDR8+XC0bO3Zs2rLU1FRdz549da6urrqbN2+mLed6EydOTHv+9NNP60qVKqULDw9Pd5yPPvqorkiRIrq4uDj1fM+ePeq9s2bNSrce91OlShVdt27d1P81+L6KFSvqunTpkul1mjZtmtrunDlz0pbFxsbqgoODHzhP7VgM+eijj3QODg7prtELL7yg3muMjNtITEzU1a5dW9exY8dMj1MQBPOhneA9SLsxffp0nY+PT9q9N3DgQF2HDh3SbB/tlMbChQvV+yZPnpxuewMGDFD3+dmzZ9XzU6dOqfW++eabdOuNHj1a5+3tne4+53q0Cbdv31b28I8//lDLly1bprZ54cIFZRO5nqGtNMYTTzyhc3R0VOeVEc3+0WZltF08T9rpjLRr1049NPj7UqtWrUyP4bPPPlPbP3/+fLrlPA8nJyfdlClT0i0/cuSIztnZOd1y7pPb+OGHH3TZZe7cuQ+cnyAIuUfsZsG1mxoffPCB2sa6detyvI2CiITmmgG9g1qIkrkFc0jGfBp6RrWiR4bUrFlTeQ40mjVrpv7Sq8hQ1IzLGYabEXo0NTQPJ71+a9euNXqMHKOxgAc9r/w/K0ZqD4b40muxf//+TM+TxYvOnDmjZp04U6S9n+F19HRu3rxZhctldp0Y5mwYSsdwB3obMsKQCQ1un/uhV5bHnjFc2RSG24iIiFDnSA9vVucpCELO4CwzIx8YdRAdHa3+mgrLpT1wcnJSs9sZ7Sbvcy3Hk1UI6S2dPXt2uqgQeiZpzwzvcw2GazFqhLPihGFbtB/M+TcH2rGFCxeq7TPsKyOGKQA5hTPvjPDYs2dPtt/LFA4eI6+3oS2nx7hKlSrKy2wIw4qZaiEIgv0hdrPg2U2Oh1kwifvi2F64j4TmmgFbtBAOpMzh4sWLKkSVeaOG8MvNm4avG2IoNglzLQnzpIwtp4gyhPti2LAhHKwRwzh4Qxh+wBCzGTNmqIcxwsLCMj1PilAyfPhwk+tQ7HEQaAxeB16jjIM45oVlhOG7DA9evHjxA+fPfZgDB8GTJ09WAtowD9USg0hBEB6E4U+dO3dWwo/hqxSMGXM4De0Bw/MzTvgxPUB7XYPhuUxbYGgsc0CZy057xeWmoAAeNmyYsiUUlUxjMBfaS05IZiefNCdVFjlxyPBf2sWuXbuqY2Z7sKygLaZY5+DJGC4uLume85rlNpRYEATrIHazYNnNkydPquq5/P34+eefs/3+go4IUTOFKAdIR48ezdbFNVfg0AuQneXmFCHKCs1TyTh3U0Kybt26Zm3js88+Ux4KYzAfK7dw8NqlSxfcvn1bGR3mZrG4EQehTGbPzOuqwXxV5p8x7v+7775TnlgaGeazGmsxIQiCZeCggBXGmdPJ/BrDnJucQsH5xhtvqDxP5rKzLD4n6uj1NAXvf85o095xIooz07bA1O8A7ZqhjafgZv4/J8yY58+IFdoqTsBl1ZKKNpD7odfY2O9GRjtszGssCIL9IHazYNhNFj2iOObvE6N+zI2sLEyIEDUTVral53DHjh3pwmiNwXAvfsE526LN5mvFgeiFNDcczFy4L4bral5QwuRsLfHd1Iwbbwje1PRY5GQgxYrAmlDPahvG4HWguKewNtwHjYohR44cUefD4k9PPPFE2nLDapxZHSuNEysPs/iJYf9CClFBEKwHZ4JZSGznzp3pwmmN2QPObDPyxPDHmrPJ2usarH7IGXBuj2kIDLFi9e3MepNyEMF1WCGRgjg7BSNoL2nnsjsZSRgRYqx/HT28GSNZOMFGkc0HUytYaIPFNCi6ab8ys8W0o7wuhr8DgiDkT8Ru5n+7yZQ1ilBOfK5bt85oxw1B2reYzauvvqq+7KyqRUGZkZCQEFWVVesDRaZNm/ZAXyFijQqthn2JeGPxOT1+zNU0Bmd/+vfvrwSascEVQ9E0eN4ko1FgpVzeyKzyy0pgmW3DGLxOrERp2EKF4XsZQ4W1mSpDTzD/r11vQ0wdK7dBY0ThrcGwZYboCYJgPTir/P3336tKt8yxzMwe8P7M2GONlQ5572qVdzU46KC4Zbsp5vVkFpar8corr6jq3qySmB2Y/kARy+rpe/fuzVaUCm0kj9OwxQtn7zO2B+CgxRCGgLF+ALedlJSUqX3jwIs2jh6AjMfC5xm3LQiCfSN2M3/bTdYy4W8aI/foCTUV/iuIR9RsOJhgCCcHO/Ry0jPHeG/eJGyMzhAxredRvXr1VPgXBRW/+OyryXYj9OhxMGOsB15u4IwPQxK4TxY0YpgBCyIxh0orUW2Mjz/+WCVj8z0MnePNy/BXFu+hZ4L/186d4XRsJ0NPBW9qvoezSIx35wCRPZyYxM0Yet543C49CBy4mYL75KCT15K9mThbxLYrLFhkCENxeQwcRHLb3C4FdMZcUU0cExY8YdElGhmW2qb450QAQ/cY8sJ8MvYcZU4BS30LgmA9Mssj16BIpW1866231CQR7ejq1auxaNEiFX6rRWBoMLSWNoEP9mYzJyqD2+QjJ7AhOY+H9pwF1fg7cP36dWX72TrGVMgxJy852Ubbw2PmpCW9shnPhzPnrCPA3Ca2BWCrL9pH2i7NQ6zZN14j2jVONvK6cVvMf6cHgNeOvzN8z/nz51W7MB4vr1NO4bbJsWPH1F/aaZ4zefvtt3O8XUEQTCN2M//aTbYJ5Lj/qaeeUsdk2DuUkwzcl3CPvC7bm984ffq0buTIkboKFSqodgBsTdCqVSvVSiA+Pj5tvaSkJN2kSZNUGxMXFxdd2bJldW+88Ua6dYy1MMjYdsAQlp7mcpai1mB5ay8vL11ISIiua9euOk9PT13JkiVVS4KUlJQHtmnYvoWEhoaq/fD4eJyBgYG6Tp066WbMmJFuvUWLFulq1qypSlpnbOVy4MABXb9+/XT+/v46Nzc3dU6DBg0yq0Q1W688/PDD6rgDAgJ048aN061cufKBFgHHjx/Xde7cWbVn4Hr8DA4dOvTAsSQnJ6tWNsWLF1ftGQy/4jNnzlTtZniM1atXV+/TWjcIgmD5NgSZYcz2RUdH615++WVd6dKllT3i/Up7Z9geyhDaXmOtsjKzoxkxt32LZq/YxoX2hXakUqVKavsJCQkm27eQL774QlemTBn1Hh7z3r17H2hDwPZcbdu2TbOjlStX1k2YMEG1D8vYAoDbYiuZjC0J5s+fr2vdurX6TeCDdo7Hx5Y3GtxnVu0OMsL9mHoIgpB7xG4WLLuptWY09uBrwn0c+I8mSoX8B72wnG03FhorCIIgCIIgCIJgj0gfUUEQBEEQBEEQBMGmiBAVBEEQBEEQBEEQbIoIUUEQBEEQBEEQBMGmSI6oIAiCIAiCIAiCYFPEIyoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGiAr799ltUqFAB7u7uaNasGXbv3p12VU6dOoVWrVohKCgIkydPlqslCIIAsZuCIAjZQcaagjFEiBZyZs+ejfHjx2PixInYv38/6tWrh27duiEsLEy9PmbMGDz++ONYtGiRemzfvj2vD1kQBCFPEbspCIIgNlPIPSJECzlffvklRo4ciSeffBI1a9bEDz/8AE9PT/zyyy/q9YiICDRq1Ah169ZF6dKlERkZmdeHLAiCkKeI3RQEQRCbKeQeEaKFmMTEROzbtw+dO3dOW+bo6Kie79ixQz1///331XOKU75Gb6kgCEJhReymIAiC2EzBMjjLhSy8hIeHIyUlBSVLlky3nM9Pnjyp/v/QQw/h5s2buHPnDooXL55HRyoIgmAfiN0UBEEQmylYBvGIClni5uYmIlQQBCEbiN0UBEEQmylkjgjRQkxAQACcnJwQGhqabjmfBwYG5tlxCYIg2CtiNwVBEMRmCpZBhGghxtXVVRUiWrduXdqy1NRU9bxFixZ5emyCIAj2iNhNQRAEsZmCZZAc0UIOW7cMHz4cjRs3RtOmTTFt2jTExsaqKrqCIAiC2E1BEAQZawrWQIRoIWfw4MGqGNG7776LGzduoH79+li5cuUDBYwEQRAEsZuCIAgy1hQshYNOp9NZbGuCIAiCIAiCIAiCkAWSIyoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISoIgiAIgiAIgiDYFBGigiAIgiAIgiAIgk0RISo8QFJSEhYtWqT+CoIgCFlDe7l48WKxm4IgCGbaTBlrCiJEBUEQBMEC6HQ6uY6CIAiCYCYiRAVBEARBEARBEASbIkJUEARBEARBEARBsCkiRAVBEARBEARBEASbIkJUEARBEARBEARBsCkiRAVBEARBEARBEASbkq+E6Pfff4+6devC19dXPVq0aIEVK1akvT5jxgy0b99evebg4IDIyMgHtlGhQgX1muHj448/TrfOTz/9hPLly6NBgwbYtWuXTc5NsH/4PeH35aWXXkpbxu9bxu/T888/n+59bOlQtWpVVKtWDUuXLs2DIxcKK2IzhbxEbKaQ3xCbKeQlHxfCcaYz8hFBQUHqQ6pSpYoqk//bb7/hkUcewYEDB1CrVi3ExcWhe/fu6vHGG2+Y3M7777+PkSNHpj338fFJ+/+lS5fw6aef4t9//8XVq1fx5JNP4vjx41Y/N8G+2bNnD3788Uc1EZIRfpf4ndLw9PRM+39CQgJeeOEFzJo1S31nn3rqKXTt2hWurq42O3ah8CI2U8grxGYK+RGxmUJesaeQjjPzlRDt3bt3uudTpkxRs1c7d+5UQlSbQdi4cWOm26HwDAwMNPranTt34Ofnp74IXOfu3bsWPAMhPxITE4OhQ4cqT/nkyZMfeJ0GwdT3iQbCyckJ9evXV8+dnZ3VsvxiIIT8jdhMIS8QmynkV8RmCnlBTCEeZ+ar0FxDUlJSlNcyNjZWhehmB3pV/f39VejtZ599huTk5LTXateurURokSJFlLg19oUQChecaerZsyc6d+5s9PW//voLAQEB6rtDTzw98xoME6dXvVSpUihdujRGjRqVzgMvCLZCbKZgK8RmCgUBsZmCrXihEI8z85VHlBw5ckQJz/j4eHh7e+O///5DzZo1zX7/iy++iIYNG6JYsWLYvn27+kCvX7+OL7/8Mm2dmTNnqvBczkB4eHhY6UyE/AAnO/bv369CJowxZMgQlU/Mm//w4cN47bXXcOrUKSxYsCBtnYkTJypvvaOjY74yDkLBQGymYEvEZgr5HbGZgi35t7CPM3X5jISEBN2ZM2d0e/fu1b3++uu6gIAA3bFjx9Kts2HDBh1PLSIiIsvtzZw5U+fs7KyLj4+34lHnLxITE3ULFy5Ufwszly5d0pUoUUJ36NChtGXt2rXTjRs3zuR71q1bp757Z8+etdFRCkLmiM20DWI3xWYKBQOxmbZBbKbYTJLvQnMZ8xwcHIxGjRrho48+Qr169fDVV1/leHvNmjVTobkXLlyw6HEK+Z99+/YhLCxMedAZc8/Hpk2b8PXXX6v/M2zH2PeJnD17Ng+OWBAeRGymYCvEZgoFAbGZgq3YJ+PM/Beam5HU1FSVlJtTDh48qFzZJUqUsOhxFUZYrYs5uzdv3lQCTnswCTspKUkJfu0vhRzj2pmLq/0tXrw4KlWqpEKu7YFOnTqpEB1DGIdfvXp1FRrB5HBj3yfCWH1BsEfEZgrWQmymUBARmylYi04yzsxfQpT5nD169EC5cuUQHR2Nv//+W1XIXbVqlXr9xo0b6qF5oygiGCvN9ZkTumPHDtUXtEOHDmo5n7/88st4/PHHUbRo0Tw+u/xDYmKiamnD68trfebMGfXg/431bs0unBSoXLmyerAnEr2MfFCw2hJ+R5gYboiXl5cqdMXlISEh6jv40EMPqWWM3ef3qW3btkbLbwuCrRGbKdgSsZlCfkdspmBLfGScmb+EKL1rTzzxhCouRA8aB/sUoV26dFGv//DDD5g0aVLa+hQEhL11RowYATc3N5UU/N577ykvasWKFZVwGD9+fJ6dU36YCTx27Bi2bt2qQgiYUH306FHl2TSFu7s7SpYsqQQlH7zRXFxc1IOeUP7l+6OiolS7HO0vP9dbt26leVI5UaDBBr6sYsxCVa1atVK9YrmPvA7fWbt2LaZNm6Y8wWXLlkX//v3x9ttv5+lxCYKG2EzBnhCbKdg7YjMFe8K1EIwzHZgomtcHIdiX8Pzjjz8wYcIENG/eXFUWpjjMCHutMj+3atWqqFKlisrb5V9W9mJoLYVjTqAopadRe9DrSkF6/vz5dOtx+y1btkSfPn3Ug/sXBEHIKzi5tnz5chUhwck2QRAEQWymkDkiRAUVassiPEuWLMGiRYtw6dKldFeFbWzohWR4LHuv8lGhQoUci82cwJDrnTt3KlG6bt065Z01hKGy9HoPHz5c9VoSBEHIr0KU88NxiSmIupuEyLgkxCenICVVh6SUVPU3OVUHF0dHeLg6wfPeg/8v4uECN+cHc9cFQRDsDZm8E4gI0UIKK75SfLJJ7vz585UnMiN9+/bFq6++qioU29sM/+XLl5VoXrhwocoT1irYMoxhwIABeP7559G6dWubimVBEAov2RlUxSYk48KtWFwIj8PVyDhcjbiLq5HxuBp5Fzej45UATUrJWbASxWhxHzcU93ZDCV83BBZxR3Bxb1Qp6YPgEt7wdstXGTmCIBRQRIgKRIRoIePkyZOYOXOmKrJz7dq1tOXMt+zVqxd69+6Ndu3aKZGaX0LMIiIiMHfuXPz4448qh1WjZs2aSkgPHTpU5aYKgiDYclBFD+aZ0BgcuRqJI1ej1P/Ph8ciLNq8Su8uTg5KWHq6OsPZ0QFO9x7OTg5ITtF7TfWPZNxNSoE5iTalirgrUdqsYjG0Cg5AnTJF1DYFQRBsiQhRgYgQLQSwMNN///2nhBq9h4Z5ngMHDlRCrU2bNqqNTX43Dnv37lVFq/755x/ExcWpZay++84774ggFQTBatBuLlm2HGXqtMS2kNvYcjYcx67dQWJyqtH1/b1cUd7fE2WLeaK0nwfK3HuU9HWHn6eLeni4OJkd1cFwXnpSb0YnqEfYvb+XI+JwNiwGZ8Ji1POM+Lo7o3klf7SuEoCuNQOVB1UQBMHa5OexpmA5RIgWYNjP87vvvsO3336r/k8oNun5ZD9MtsJhJeGCaBwYakzh/dlnnyE8PDxNkLLS2LBhw4z2ABUEQcgu8UkpeH3+YSw8eD/CxBAfd2fldeSjeikfVArwRoUAL+XptDVRcUk4ezMaR6/ewfaQcGwPuYXo+OS01+kYbVe1OAY3KYdONUrAxUk/OSkIgmBpCsJYU8g9IkQLIKdPn8bUqVPx66+/Ij4+Xi0rXbo0Ro4ciaefflqVfy4sxiEmJgbff/89Pv300zRB2rhxYyXQmzRpkteHJwhCPoQFg7aeDceig1ex+lgoYhLui7kiHs5oU6U42lYtjqYViqFcMU842mnoK8/j6NUodS4bToZh78WItNcCvF3Rr2EQhjUvr7y2giAIlqQgjTWFnCNCtADBdifskcoCRFpXHooutmLp16+f2XmSBdE4sP8SPcNTpkxRPUsZ7vbss8+q5/7+/nl9eIIg5AMiYhMxe+9l/LHjoioslJFHK6XgveHd4e7mivzIuZsxmLP3Cubtu4LwGH0YL3NTBzcpizEdg1GqiEdeH6IgCAWEgjjWFLKPCNFMYCVW9tAsUaIE7JkrV67ggw8+wC+//ILkZP3MPMNvKUCZ+5ndyrEF2TiwDQwLGLFXKqEI/eKLL/DEE0/g7t276vr5+vrm9WEKQr7l+vXrqviZlnNeEAi5GYMfN4Vg0cFrSLiX88kczt51S6NPg9JoWK6osh0FxW6yyBI9pL/vuKi8pcTV2VF5R0e1r4wAb7e0vtOhoaEoVapUHh+xIORfoqOjlb308vJCYaIgjzUzIywsTI09JUVMT8EZKVjJOOzevVu1CrFHWIxn0qRJqFq1KmbMmKEGQt27d8eePXtUT9C2bdvatH3Jrl27lMDjX3slMDAQv//+u6oKzN6jnGhg/1G2fFm1apXqoap5kwVByB60QazMzaJhFCn5ndOh0Rj7zwF0/nKT8hRShNYq7YtPB9TFzjc64YM+tdGofLEC1yaKuaFdawXiz2eaYfazzVWIMYsuzdx6Hm0/3YDvN4YgMSlZVSk/ceJE2gSoIAjZg+MNOhO2bt2qIreEgs3Vq1eVrjDWMrGwIkI0E1hVtlmzZjh06JBdiVEarjlz5qBGjRoqFJeePPbM3Lx5M1asWKHCcW3Na6+9hubNmyvPIv/yuT1Dkc5B1EcffaRClhcsWIAXXngBkZGRBW5QKQi2gvdSy5Yt1YAqP4vRC+GxeOGv/eg6dTOWHLqm2qJ0qVkS855vgaVjW2NQ47JwdykcBc+aVfLH7Oea4/enmqJuUBHVLuaTlSfR/ct1OH41Eq1atZL2WIKQQzjeqF69OsqUKSNitBCI0AMHDqj6JMWKFcvrw7EbJDTXDFhxll6+evXqZVnox9pcuHBB5TauWbNGPefxfP7556oNS1YCiufAQkb0oFJg5zRcgtuh4CWsvEsoPjOyc+fOTPdjL15lhjSzmBEnGxgeM3HiRLz11lsSNiEIuWgZtX37dhVqxomx/BKmezs2EV+vO4M/d15Ecqo+MqJH7UCVH1mrdBEU9jAzToLO23cZ7y06itgknepzOqZDFRWuy9BdQRByfm8dO3ZMiRU6FgpDmG5hsJnGRChTV4T7yC+HGRQvXjzPPaPMV/36669VOClFqLu7u/KGMgxu0KBBWYpQS3kste0wJJgP/p/5qcag6LV3Ebpt2zblHT1y5Agef/xx5cGhEO3fv7/yNAuCkH3YFio/eUaTU1Lx85ZzaPfpBvy6/YISoWxjsmJcG3z/eKMsRWhhGixXRBg+aOmGTtWLIylFh6lrT+ORb7cpL7IgCDmDY7hatWqJZ7QAIiI0c8Qjmg88o/SCUiRRNBEKp59++kl5Ns3xenJZdjyWpmapTG3HFD///DNcXV2z9MDmpQjlzFSdOnXShDzzR+lxpkenadOmWLlyJYoWLZrXhysI+ZL84Bndc+E23ll4FCdvRKvnNUv54s2HaqB1lYBsbaegz+5zMoHpDKw6znBc2vYlh69j4qKjiIhLUn1Rpw9poFrXCIKQMwqTZ7Sg20wiIjRr7G9UYMfkhWd09uzZqF+/vhJNPj4+qifmhg0bjIpQU15PU57J7Hoss7v+M888k+5Y7KWYkSkRSni869atU/H7TChv1KiRqrQrCELB8oyyFcuEuYcw8IcdSoSyCu6HfetgydjW2RahOeHApQgs2H9F/c1vIpSfK+3mw/VKY9VLbdGgnB+i7iZh+C+7lWdZCr4JQs4Qz2jBQUSoeYhH1E49oxRLY8aMwaxZs9TzFi1a4O+//0aFChWMrp+Z15MYe2306NGqyATbLVy7dk2dV2JiovLAkvLly6vXixQposrz8/+LFi2yyPmxhconn3wCexKhGUU381/PnTunPKKcoZQWBYKQ/z2jFEmLD13D+0uO41Zsolo2uHFZvNajOop5uVpldp9ic+OpMPX/9tVKYNWxG/hh07m0159vVwmv96iB/CJCMxKflIK3Fx5V/UdJ/4ZB+KhfHckbFYQcUhg8owXZIyoi1HxEiNqhGD1//jz69euHgwcPqgEbC+e8++67mVYmpKeR3ryMMN+R3j22d6FRM4QCi+JKe7BfKnNPWX2XXl9WkeUgJCIiQolVPk6dOoWYmBiLnKcmks0poGRLEWr4Gffu3Vt9zrxWFOjSY1QQ8q8YvRp5F2//dwQbTt1Uz6uU8MbH/euoFiymoIg8Hx6LigFeaFCuaLYHVR+vOJFOdJriv9EtM92+vYpQw4HzrG0XMGX5CaSk6tCmSgBmDm8iYlQQckhBF6MFVYiKCM0eIkTtTIyuXbsWgwcPxu3bt5UwZGhu+/bts3xfZvmbzOWpW7euOka2pGnXrp0qcOTh4ZEj48DBJNvHUJhyGxSuFM/ZpWfPnli2bJlNvKTZFaGG72Nv1i1btiA4OFj9KPB6CoKQf8RoaqoOf+26iI9XnERsYgpcnRxVJdzn292v9mpMcGYUkZl5Lo3ZTW6z73fbzTrGcZ2CUd7fK0vBa48i1JAtZ27iuT/2qTYvrYMDMOvJJqovqSAI2acgi9GCKERFhGYf0y42weycUS3nMbdi9Ntvv8WLL76oBgAs8czelkFBQVm+j+G0ly5dQqVKlVQoqQaPja1dWHTHkuKJOV98ZPRuMnT4zJkzuHXrFvbt25dlPpihCCVsoULP6NNPPw17EKHE09MTS5cuRadOnVSOW9euXbF+/Xq7LLoiCPklZ5RilPeTLcTouZsxeG3+Yey5oM/FbFS+KD7pXwfBJXzS1jEmOLvVCnzAk8nnXG6uUKSwNZev1p21m1DdnIpQwmJFvz7ZFE/O2o2tZ8Px1K971HMnR+nPLAg5zRklW7duLXBitCAhIjRniBC1AzHKH316A7/44gv1fMSIEaooEcNkM4MFk7777jvMnDlTeWfpEWUoKcVrmzZtbFqplvs29MhGRUVh+vTpSsSxdxLFsmEBi4zeUMMCRwzVtZRnNDciVIPhuKyeS0/ypk2b0lrXCIJgv2JUtWTZeh5frjmNxORUeLk64dXu1TGseXk4Gogiei2NCU43E30xKWzLe+vS0hUo1sLDw7Fw4UKUK1dOeX21tIeiTh7K7mXX7mj7Zz6prb2juRGhGk0rFsPvTzfF8F/2YMuZcLw0+yC+frR+juyvIBR2RIzaPyJCc46E5uZxmG58fDyGDRuGefPmqecffvghXn/99Ux/sBmm8f7772P+/PlqZozClS1HtFkzewuXYI7pX3/9hS+//FKF8DLElfmszHvNTusXY61prC1CDeGgk61zQkJC1AC6YcOGudqeIBRmrBmmG3IzBuNnH8ShK1HqOfMVWTwnqKjnA+uycu34OYceWP5ix8r4YsE2JN44i8TQs0i8EYKk21fhlBCFxIQEs4/FydkF8CwKl6Kl4BoYDNeSweqvs1+gWTbJlt5RS4hQQ/ZfisDwmbsRnZCMKX1rY2iz8hY7VkEobBS0MN2CEporIjR3iBDNQzEaHR2NRx55RLVjoehihdwhQ4aYXJ/htyw+9Ntvv6nquePHj8fw4cNVW5f8YBxoRNkahYJ0xYoVKgc2LExfSTIz6C3WQncNl2XmNbW0CNU4e/asGjSzANSJEydyPVAThMKMpcUobczsPZcxaclx3E1Kga+7M97uVRMDGwWZtAGGeZwpcVG4G7IHcWd3wTXsJKIi9eG8Tt7+Sjw2a1AH/drUTVfkjXn3Tk5O6lyY488wftofzWPKiuQHTp3HngNHcOX0UUSG69tBObp5wa1cHXgGN4VH5SZw8iqaaSEjYk7RJHsRoRr7LkbgsZ92IiklFRtfaa/yYAVByBkFSYwWBCEqIjT3iBDNIzHKYkS8+biut7c3Fi9ejA4dOhhdl2FfH330kcohZSuVd955R3lArVU0xxbGgbkO9PxSLOYU5qUa84xaS4Rq8LPiBAKrCjP8WBCEvBej0fFJeHXeYaw4qhd6LSv748tB9RFYJOsUh2cnTsOG1SuQcPWkWlauRj08NbiPytV3LVkZdxyyLiJkrt3k5Btz6GctWosdm9bj6im9N9alVFV4BjeDV832cC5SIt17OlQrnlbpl3SsXhxjO1axmCC1lgjVWHjgqgrPLVvMA+v/116KFwlCLigoYjS/C1ERoZZBhGgeiFEORDp37owjR44ozxrzDzngMWZs2JZl3LhxSElJwYQJE/Dyyy8r4VoQjAPPjyG7PD/mkGa3Lczvv/+uwpptKUI12FKHkwP0ZjN3VBCEvBOjl2/H4Znf9uJUaDRcnBzwStdqGNmmUrpc0IzCizaOufi0v8zHb9amA2o274C+D/dGp4ZVbWY3+XvB9/3+7zxs3bgeifF34V6xIXwa9FCeUgdHJ6uG7VpbhGp8uvIkvtsYghEtK+C9hy2TRiIIhZWCIEbzsxAVEWo5pPSnFQsYsRcnZ9szDjoYukUR6u/vj1deecVodVmGcz388MMq9LZXr14qL5GeUGuLUFtCkchzp5gcMGCAKrJEj6+5MFc0MxG6e/duJeS1QlKWhDm6/ByZnxsba35lTEEQTBcw4r3E/OusKm4bsu/ibfT5dpsSocV93DDnuRZ4rl1loyKUgpeRJbQdLOzGScEffvgBN27cwPqVSzH9vf/lSITm9veCdn7diiW4dTMU/V96H6nxMbi5YDKuzXgWJS+tgy450WRRo6lrTqnwYg3+n3mvhsvyWoQSTg50qVkSv+24gL0XblttP4JQmAoYlSlTRkWY5atxCAtXJsYBEefhkRgOpCYjPyEi1LKIR9SGnlG2NenYsSMOHz6sZq8MDYeW88hZrj///FO1ceEs/Y8//qgEaUGcpWKrFw4KWfSH1SaZT/XTTz+psDUOjDKDQp+huaZEKMN+s5NTmtPPt3bt2kpE8zwEQbCtZ3Tz6ZsY+fteJCSnolZpX/w8vDFKFXmwPzIjStheigXSmGvPPsqMxDDVezmv7SZF5JpN27Bxwe9YvWQB4FkMfq2HwKt2R5MeUnpHibl9T20pQjViEpLVpEF8UgrWjm8HdxfT3l5BEPKxZzT6BnDtIBB+Cgg/DURcBGJC9Y94ju/ud1FQODgBnv6AT0nAOxDwrwwEVAWKVwdK1wdc7eO8RIRaHhGiNhKjFStWVJVi+cNPTyhFaUY2btyIGTNmqAETixZ9/fXXal1bYwshyoEhz4/Xp0uXLmkhtBwcMQdz7ty5qgVMZrN8LNzUo0cPJTw1EUpBylA7Y+1VTOWU5oZ///0XQ4cOVR7umjVrWnTbglAYMVeMbjgZhuf+3KdaszCH8tuhDeHp6vzAII1tot588011j/bt2xdTpkxBjRo18o3dPHXqFAY+Mw5Htq6Cs19p+DbtA+/6PcxOO2Cho4y5pHkhQjUOXo5Ev++2YVynqhjXuYrN9isIBRW7EKOx4cCZNUDIeuDyLiDyouW2TZEaWAco1wKo0hko3xpwyTz33xqICLUOIkRtAGfgOTihoWAYFqvdvvHGGw+sR7HKEDH2BX3ssceQV9hCiO7YsUPlh9JDzDzZjDAU+auvvlJVau/evWtyO6y8S0HLbXB9Y71JM8sptcQPAHui8jotWrTIotsWhMJKVmJ0w6kwPPf7PiSmpKJrzZKYPqQhXDP0/aQtfe6559TEVvv27fHxxx9btbeyte3mD3//hwkTXsXdmCg4evgioOd4uBbPuh3Kl4PqoV/DIKMi1Ld8LVyKSrJaJV5TfLziJP7ceRGbX+2AYl7WKbonCIWJPBGjsbeAo/OBI3OBK3syeDkdlDdTV6IG7riVQliyN27E6HA5IhGXw6MRfTcJU7+ejpIlSmDI4AEo7ueN8gGeKFPEBSU9U1DCMQru0ReBG0eB6Gvp9+vipRekdQcDwV0AZ+vbEBGh1iP99LFglcHJmDFjlIHw9PRUrVeMCS9C7x9j/Qt6f0qeJ72WzG0wdS0qV66sPBcUl8z1ZKsbYyL0gw8+UC1hGNKb3ZxSS0CvBAue0BtKryy9C4IgWCZnlGKUOaOGYvTQ5UiM/nO/EqEtKhVTeYfHrkWlCSkOyBhVMnbsWCUI2W+ZnlBrFS6zFb6IR6/+g3HbqRi2LfoDobPfhne97ijS6rFMQ5gpMo2J0H3xxfHtT3vzpF/pS52rYN2JUHyz/gwm9pbCRYJgqZxRwnGk1cQo8zsvbgd2fQ+cWpE+vzOwDuKC2mJvuBvWnYzC9oVHsH//YtUlQoM2mdFrPLa4JOD81TDMXrxa2aSM7fzonGnUqBHaN+yL9pU8UN0tFE4ha4Ho68DxRfqHRzGgwVCg6bOAXznLn6+IUKsjHlErwgHRyJEjlYeT+Z6zZ89WAwbmjLLth2EOI0UZcyN5g+Y11p7Zp4dizZo1ypPI65IZHDgxZ3bJkiWqjU1GEcpBqjki9LXXXlMeEWsxdepULFiwAFu2bLHaPgShsHtGL0fcRb/vtuNWbCKCinrgSsTddELq6cYBqrXVwoUL8eijj+Kbb75BQEBAvrebjBD5+JsZKFarLQIrVEH0nTuY8e1U3Ni/Hk7uXije960HWr5kDM01FKE3PcvjtYUnTa5rqxDdwT/uULmiZYt52mSfglDQsZpnlAXkTiwGtnwB3Dh8f3mpeggr1RH/ndLh76UblQimreGYliKSjwYNGqB8+fIoXbq0cj5oE2cZbSafh4aGqmKdrCFCe8VxMf/SGeHr64vu3btheJf66FD8FjzOLNHnnBIHR6DGw0C7V4GSlpvcEk+o9REhakU+++wzVSSHNx0HRqzSaFjA6LvvvlMFdJjnSBFjyzydvBpQMVzuiy++UDNd2cmpXL9+vRKcDNPlMdFbao4I1fJIrRmSR5KTk1XeGQUpqxwLgmBZMerg6oFJO+JxPjwWlQK8cC48ff54Yug56NZ8iuSEeFUJt3///gXCbnJQN+2b6dh/NQ4NO6f37K5asRyb5/2EhPCr8O/1P3hWejCahl7jPvVLo7Ljzfue0M2XzArjtTZv/ncE8Ykp+HJwfZvtUxAKOhYVo/SAMvdz/Qf3BaizO5JqDsDi0EB8+utSFbVGpwLbEnKcSycDhailbCZtIIt80iFBRwbHfly/X5+H8fqAxqgXvwMO5zbeW9sBqN0P6PCWvuBRLhARahukfYuVoLCkF45MmzZN3ZyGrV0+/PBD5aEbPXq0urnsRYRa2zguXbpUGZVq1apl673MJWUlYRpUGiAOTLMSobz+7733ntVFKHF2dlYVOZn7m53WE4IgZA5tY/PmLTBtZ6QSoaWKuOOJFulzI2NPbcONvybA06eomj23tQi1Jhx0HTx9GVUatn4gvLhbj4cw9v2v4VupHm4t/RxRO+c+8P5d527h2JFDOHrhhvKEmhKhGcN4bcHYjsFYfvQ6Tt7IvEq6IAh50NrlVgjw9yDg74F6Eerqg9jGL2BS9GCUfOYfDHxhoiqoOW/ePFWAk2NZRqSYI0KzA5059evXVy0M9+zZowQiIwqPHDuBBoPfQO1PzmJ+yVeQWuMRfZ4q81a/aw6snQQk5uzcRYTaDhGiVoDVGVkUh8KL+aHMVTKE3lHO2LMti+YxLQwcP35cXRvmwDo5Zb9sP0PzWE2YRpaFh0xRqVIlVSHXmqG4xmCBqcTERBVKLAiC5fh5+2UcvJkC1iN6saE76gb5quU6XSoit/6F8IUfwaNyU/yxcIVqlVVQYBXwxStWw7VkJfj6Gw+9DSxTFq9++BUqtuyF6P3LcXPRJ0hNTVGvOUKHx6ukorSnDp8fhNFwXI1R7SrZtGARYaudoc3K47OVp2y6X0Eo6ORKjKYk60NwKebOrAYcXZDQ6Dl8kjAEJR/9Gl/+8BueeuoplTJAjyYn/lgDxVYwxPell17C0aNHVbcJOjYoiqu9vQOrKr4DXeVOQEoisPVLYHpTIGRDtrYvItS2FA4FZEMiIyPRr18/NYBgWxKGamZs98FKjvSE0qPHcIPLly/DnmC4BFsGMNyCs/GnT59WIcVcnpttsqJtkSJFcjRbxvez+jDFKK9fZrm0586dUwbK1tArylBgPtieRhCE3LM9JBxfrj2t/j+pdw0EuiYiOTQEz7Yqh9srpyNq27/wa/sE3vniB7SsZtmZ+LyGg6yQsGgE18+836m7hydGv/oO2g1+Hklh5xG/aJIaiGkidPoxJ8Qkmy7W9En/OnjNRoWKMjKqfWXsOHcL+y9F5Mn+BaGgkiMxSi/orB7AuveVDdFV6oA/fEcj6KlZmPjJ12rsev78eXz++ecqxSqvz69du3YqAvHgwYOqIGX3ERPQeNoFHK39JlCkHHDnCvBHH2D5q0BiXJbbFBFqe0SIWhCGZI4YMUK1HGFi9j///KPEiQZDCvg6+06yiAYL7jBs9NChQ3YlRtlahQ9Wnvzll1/UsTKUmL34+Pfnn39WlWp5nvQAmgNDaSkkmbieUxHq7e2tDCBDnelNZpizKZ555pm00GhbMnjwYHh4eCivtyAIuSMiNhHjZx9SaUqDGgdhaItKqpoucx23fv8a4o6uxYsfTMP6P6bh9YcKVh9fVpBcsXEbildpADePrENmHRwc0WvQ4+j19HhE3g5H8n9vorhLYpYilJ7QwU2sU23SHAK83fBkqwqYufV8nh2DIBRUsiVGTywBfmwHXNkNuPnievOJaPVDKIaPn6zGXBzzMSTWVLeDvKRu3brK2bFp0ya4uLiizsDXMT6kJRLrD9evsPtHYGYX4PY5k9sQEZo3SPsWC0LvJ3tJMqeJMfOMnddgFbA+ffqo6mH0hGrhuFrOKAsYEXsIK6M3j+dAzy6Pk95dViyLiYlRfymaGWLL0GOKw+rVq6N27drq4er6YD8nDhpZJbdChQrKI5pTEXrgwAFVAIqCf9asWRgwYIAyPNy+MWgweQ62yBHVYMgxc1nZdqYg5akJgq2hfXlt/mHcuBOvihO997C+EiJzxNkGa9WqVapy9uuvjylw6Q0qn375coQnOqNx9XrZem/rzg8hNu4uNs6Zgdffngj/wVPg6ORi0hOalyJUY3jLCmj9yQZcj7qrwnUFQbBhaxfWtWAxIoay0v6Ua4GfbjXFuL5vISgoCJs3b1bvyQ+0bdtWOT7oQGHNjoXLA7Hw8/dQN+Q7IPQoMKM90H8mUKVLuveJCM07Ctavdx5CryY9hoQihCGkGvHx8Wl97BhCkLFliSZG7c0zSnjMNFiBgYEIDg5WQrpDhw5KVLOAEGfZTp48qTynrGS7YsWKdG1WCEUoxSJnrHIqQuk9ppjXCgHxNVbTpHHMLDeBx0OR/8cff6SJfVvkirLkOIWzIAg5Y+HBq1h9PBQuTg74+rEG8HR1VgKNOfeM1vj111/RokULlT5gDwXCmMLAlgO87/mXdpDVtHMCUyO27T+OCvVawjEb+fS8PtevX0e1uo3Q7rExSIyLxs15k4xen/ZVA+xChJISPu5oW6U4ft9xMa8PRRAKl2c06S4wd3iaCI1v+Ax6z9Ph+dcm4/nnn1fj0vwiQjU4MTlu3DiV+kYhXX/A//BN0kDogpoA8VH6Akz7fk1bX0Ro3iIeUQvAliIMt2WYKsMXWDXMcGDAnEbeEOwxWapUKaPbsEfPaFZGzc/PTz1o3Ogt5eBp5cqVWLt2rfKOdurUSa23bds2k95Sc0Uot/Pkk08q0cuBJ68r81ZZ7Il9p7hvHkNGJk2apB4aXJ8tc6wJvb6DBg1SM3IU6IIgZI/wmARMWnJc/X9cpyqoXUYfScH+y2x7xfQAFoTTWrvQJnDyL688o6wYOf3n33Es5DL2nL4Kd1cnuDnz4YiAokVQtkwgKlesqKJCODDKrFgbxeviZSuQ7FUCxctUyLYI5TUpV66syt8KjYzF8cU/ImLN9/Dv9kK69TeeDsfHK07g9TzKDc0IQ6/pAX+pcxV17QRBsK5ntE39KvBcOgq4vBNwcsW1pm+jw4vfqbEVI05Y5yQ/Q+cJ8+w5Bnzxrfex69FB+HXAo3A+8i+wZBwQfQNXgx/HgYMH0aRJk0xrjwjWQ/qIWoDx48ersFx+iRmyapi7OHv2bNVYnVVeOXDKCsM+o3klRlevXq0E1MiRI7Nd3ZZhvRcvXsSJEyfUgIqeUOYTsJenuYNEYyLUcPtsAcOiULye3CZns95++221r9u3b2e5fVbUtXa4LsV3165dlRc3u+HIglDYGfvPASw5dA01Svli8ZhWcHFyVBNc3bt3V9USWShDQxOjjNzIKzHKybA3Jn+GpJK1UbdREyQlxONudBTiYu6ovzGRt5B8JwwejqkoWdQHDWpXV/nyFIsZW7LQdnz/10JU69Af3n7FciRCnZyckZCUgrUnw3B513KELP8ZRVoPhU+9bnYbnpuUkooWH63DO71q4pH6BavolCDYE7QXl1dNR+DeT+CaHA24F8Geyi+jy8hJqiIte3VSxOXnnvUZYbrc8OHDUb16NWx4pzN8D/6olp8u1RdF+nwiIjQPkdDcXELRyOI5ZObMmelEKAcnL7zwgsplNEeE2nuYrjlQuLJ9Cg0LjQw9mHXq1LGICNW2/8gjjyiDom2ToSa8vuaG5zGEztqwoAoLVjGEUBAE89l+NlyJUEcHvUiiCGWoK6MMOEOfMaKB+ey83xhqZg9hurRLHl4+KBYYhKDgmqjSoAUadOiFRr1HIKhFb0T5VMB/249jyrQf8MW0r9VvCNM3CKM6Fq9cC8+garkSoZFxiZi99zLOhsVAF9wO/vU7I2Ljr0i4/qDte23+Ebw8+wAW7L+CA3lYuZafc7+GQfhnt+k+p4Ig5JLb5+Aw5wmU2/m2EqF3vCpiaeDLaDX0NbRq1UpN1NtChNoajsM5yRcWdhMN/jcfF6s/p5ZXvf4fSp78La8Pr1AjQjQXMBSX1Vk5EHj88cfRs2fPtNe4jGWuKaS+/fbbbG03v4tRwkEhj79GjRooV66cRURoZjBvtWnTpqpibVawxLe180Z57Kygy8JUgiCYR3JKKt5fqg/JHda8POoG+anUB+ak0y6yErmxKA17E6OmBKpfQEkE12uGxj0eRemmPXDstgO+/m0eJk75BBs2bFA57Zci4lG5btMci1ASl5iCqDh9u63EFB1q9XoGvuVrIGzBZKTEP1g1878D1zB+ziH0/W67CtfNK7rXDsTOc7dx8VbOmtALgmCCuNvAyjf0fTVPLAYcHKFr8wpmOQ3FI0+/otLKWO3f11ffo7kgUr9+fRWSzMi6Ji/+iss19GIUG6YA+0SM5hUiRHMBq7KyX2VAQMAD/UIZksvCRMxnoqjKLvldjC5ZskS1rmFIrrVFKMNf//e//6nZPIZHZ/Zeek5ZabN58+Z44okn1F9rtXnhubNwCfODBUHImn/2XMbJG9Hw83TBy12qqmUMu2fj9P/++0/lpJsiP4hRDdqoYiXLoG7b7qjd7THc8S6Pr36bg2kzfkNg9UZwdUtf0C47IpSU9vNA4wpF055fjU7GoBfegrOnH24t/SLT7f6w6VyeeUbrlCkCL1cnzN6T/37zBMEuSYoHtn0NfF0f2PkdkJoEVO4EPLcFy+Mb4pXX3kS3bt3w1FNPmd2OLz/Dcel7772nily2f3M+ohuO0r+w9GXg7Nq8PrxCiQjRHHLhwgVVJVarkksxqhEVFaUqOw4cOFA9ckp+FaPM2aT44rEbtrCxhghlX9Gnn35aCb4ff/wRQ4YMgY+Pj8n16QVly5eMEwrW8IwyB4znzwkJQRAyJz4pBV+tPaP+/3LnqvDzdFWhVJzkmzx5MmrWzLpPaH4Soxrunt4Irt8c126EIcnTH0FV9MVEcipCNVpUDkC7qgEI9HXHkKblUKN6dbTtOwyJYecQcyTzAdf58Ng8C89tWrGYqpYsCEIuObUC+LYJsOYdfbXYErWAx+cDwxbgUGiKSnfo1auX8oQyci3LPqP5HK06Lp0E7DdK4d3xg7VIrjUA0KUAc58Cbks/Y1sjQjQXBYqY18OQULbryChseDNruaO5IT+K0fnz56No0aLq2lhThBLmYVarVk39n4MyXiMWB8qspYut8kYZQsiZRib+C4KQOcwNZLXcMn4eGNKsnOpfzErZjFp4+eWXzb58+VGMHtm+BtFRUWjWpQ8cHZ1yLUI16gX5YWCjIPh66AuBdO/7KErWbI7IzX8gJc54/2VSMcBLeUXzIm+0RWV/ldsadkefNysIQjaJvgHMeQL451Eg8hLgUwp45Fvg+S1AcGdVFJO1Njh2+uuvv1RHA6OtXQoQGVu0cOy4aNEiHDt2HE8tjIMuqCmQEKW/bvQiCzZDhGgOYF9MholRaLBFh6F44gCBM/is7MjqY5YgP4nRgwcPqmvAHqMcEFpThGp5V5wUaN++vfKYnDt3Tv0/XbNmM2DeqDVglU8aPxauEgTBtDf0h00h6v8vdAhWnrF3331X2btZs2Zlu3p3fhKj8XGx2L9uCUpVrYdK1WpZTIQS2lRHVn0ysJdDnn0RTt5FcWvlV0bf07BsEby54IjKF82LvNGWlfXRRSuP3bDZPgWhwHBsoT4P9PgiwMEJaDUOGLsPaPA44OikvIAs3MPcewoxbdLeZJ/RAoCpPqENGzZU/aj/+PtffH+zKeBRDLhxGFjzbp4eb2FDhGg2YZKzNjs/ZsyYtJ5MGu+//z7c3d1Vv0pLkh/EKNu1sLUKQzx4g1tbhBJeC04K0DvN/nzs2cpcB3pRzClcRJgjaq12LhTkhMcoCIJxFh+8htA7CShdxB39G5VRE0pff/013nnnnbSIh+ySX8TozuVzkOLgjNbd++RKhEbdTcTOc7ey3MbNFE+Ur1YH8ZeOIv6KvjCUIfsvR+HEjeg8yxtlyx53F0esOCJCVBDMJumuPs9x7nC9Z690A+DZjUCX9wHX+xPznODbsWOHShnK2CKwIIpRUyJUg+HJb731Fsa89RGOVhunX7j7R+DCVtsfbCFFhGg2YT/QY8eOqdDTiRMnpnuNLQZYJfXNN9/MtKhGQRWj7PNHQZhVz1BLiFC2Ofjzzz9VRWLO8NGYsIKxZlgZLm3OZ/Dzzz/j448/hrWgV5x5opx5FATBuDj6fecF9f/hLSvAzdlJCVDm3TOyJDfYuxiNCL2GM4d2omrjNigaUDLHIvTwlUj8tv0idp2/jZPXjYfcRsQm4NcNR7AxJBKpFZrDq3QVRGyYafax2ipv1MnRAeWKeWLPhduqt6ggCFlw8xTwc2dg7y/6561fBp5eA5Sqm2411sL47LPPMGnSJFXc0RgFSYxmJUI1eD3ovOg74Vsk1Xtcv3DRC0Bi/j33/IQI0WzAUAbOJhHOoFCMGvLhhx8iMDBQ9Q61FvYqRu/cuYMtW7aonqEVKlSwmgil13X16tVKPLKSJj2O48aNQ4MGDdR2z549q4Qprw2LBWXWJJmeUBY6siY8P14TtmbguQuCkJ5DV6Jw9OoduDo7YmDjsiq8n/13OdGX3Vzv/CZGN//3O1x9A9CsQ48ci1C+zpYnunvP150MQ0oGAXfp9FEs++lj3EnS/+SnBNZCy74jkBIdjtgzO806VuaN2goK0eRUHa5E3LXZPgUh36HTAfv/AGa0B0KPAp4B+mJEnd8DnNKPfegkGDFihBoXTZgwIdPNFgQxaq4IJUz9YArIlStX8M5mAL5BQMQFYJvx9AXBsogQzQbMB+UXlaGnGcVmWFiYGjy9+OKLZoeEFiQxyqprDElmTqS1ROiRI0dUM3tWO6ORZGXirl27qkT75cuXq5BchkYPHToUr7/+uprxy6wnVt++fWEL6tatqwaRJ07kXX8+QbBX/tl1Sf3tVacUinm5qoiSKlWqqPvZUtijGD13bB9uXDmPBu16wM3DM8c5obSj/RqWSXtOAXfwSpT6f9StUCyd+QVW/PY1nJ1dUMPfGQHeruhVrxS6dOkC77K1VOGirBjVrhIalEs/8WpNyhXTi95DlyNttk9ByFckxgELngUWjwGS4oCK7YBR21QxImOwZQlTHpgTyRYmWZGfxWh2RKgGU0DYCePTr77HyYrD9QspRFnsSbAqIkTNhDchQxoM80ANmTFjhppVYXioLbAnMcoWKsePH0eLFi1UxVpLi9AbN26ofqwU+gy3pReTobeG+6LBoXHlIzw8XA3g2PqBItBU0ST2E7UF9IiSVatW2WR/gpBfSExOxYqj19X/BzQOUiJxxYoV6t7MLJohv4tRRnbsWPYvipapjDpNWua6MFGAtxu61Lg/4GKu6LolczBn2kSEh99Ek4cew8BRr6FD/aqqlUulAG+1vebd+yI1PgaxZ4y3rypXzAP/jW6J13rUgC3hfsnm0zdtul9ByBfcuQb8+hBwZI6+IFGnd4FhCwGfQKOrX7x4URXR5CSfOW2w8rMYzYkI1WB0HT3GIz6ZD12F1kByPLDONuPEwowIUTNhj0oKnMqVKyuPW8YCRhSiXF6sWDHYCnsQoxzMsRAPj6Vdu3YWFaFs3zBnzhzVpzU6Ohp9+vTBqFGj1D4ZVstiJhrc/7///quWcT9t2rRBp06d1IMeU2Own6g1+odmpHbt2uovCzkJgnCfLWdu4k58Mkr4uKFZRX91r1esWFFVdbQG9iJGD21ajtiYOLTo3gcODo65ro5Lapb2Rd0yRdK8oififFC5SXsMHvM2ajVri20ht/H3nktIYTjfPTp36QbPkhVwZ9d8o9v86tEGNvWEapQtpvcQnw5LXzRJEAo9V/cDP3UErh3QV3kdvhho8z+WxDZ5aZjmwFSy//3vf9m+fPlJjOZGhBI6k5j2tWvXbmxwuedZPjoPCNf3txasgwhRM3NDNW/oG2+88UBYA3MWKQRHjhwJW2MNMcpBEB/msGfPHiXQO3fubNSDYShCmaNgTp4kB4cMv6VBoKeVIbacqeJ5sggSCxXt3r1bXXdDo8hJAO5n9uzZymtdv3599R5W0zU1QWCN/qEZKVWqlPrLYzb3ugpCYWDZYb039KE6pRB+M0zdu6xGnt12LflJjMbF3MHBLasQVLMhylasahERSq6fP43Q1T+kFdhICQhGtbYPw8PLWxUAOhMWg8i4JISE3beZvM5N23dD8q3LSIq49sA2v16XNwMwbzf9OcclpuTJ/gXBLrm0C/itNxB9HSheHRi5HqDnLhOOHj2qimyyABzHRzkhP4jR3IpQDTovmLbwwuQZSK3aHdClApv143/BOogQNYM//vhDhYcyN3TYsGEPvP7bb7+p8EveAHlBbsTorVu3lFdw7ty5SmzTWDGHgDd1VrAoEMPoKlWqlBZ+akqEspARm9NTyGcmxk6dOqWOg2GswcHBygNKLyoHjBr16tVTop8Vb431CzUscMJJA4YMUwSb6glrbTQRzGOwh9w0QbAHUlN12Hgv9LJH7UBlRymMaCesTV6K0e1L/oaDsxtadetjEREaE3UbK37/Bktmfo4UHVDT//571p/UX19nR0e0q1ocj9Qvjaol9YPRqLtJ2Ho2HMXqdYZLkQBE7VrwwLY3nLpps7YthrBwlRa6LQgCe9XtAf7sDyTGABXb6qviFquY5aVhgU1GmeTWUWLPYtRSIlTjo48+wsmTJ7EsRh/NhiPz9OHQglUQIZoFHBiwSBGhV45hnhRuFKf8q4kxhpLltBemrcUoBSL7SDGMlcnZPJd9+/apc2XVX4o7eoGzgufNAZyxdi2GIpRtXdhmhdvfv3+/yvXMCL2qDG9m5TLm3z7xxBPqwdk8huHyM9C8qbzOQ4YMUQbRHDp06KDEqbHeptrnaE14DTQvOsONBUEAjl6Lwu3YRPi4OaNBOT/V+op2NGM1cnsVo7T9zI9npANtyK2bYVlGPNy8egHnjh1A9WYdUKSof65EaHJiInatmId/v3gLN65cQu1OA1C51yicib2fE8/rez1Kb8uDS3ijgr+Xsp/xSSn4fccF7LsYgRPhiajUoDWSz+1BampKnrVtMSZEpX2LIFBp7Qf+7AckRgMV2gCPzQbcTRdi1GBxIhaSZPFGUylK+V2MWlqEEuaJPvTQQ3jnu/nQlW8J6FKAfb9aZNvCg5gX81OI2bx5sxJDFDKs4khR9Omnn6a9zv6VbF3y8MMPI6/RxKgmrDI2K9aS1v/55x9V/Zfr07tIo2IYbszBVVbcvn1b7adx48YPCMKMOaFssUJvhyYkN27ciMGDB6t9cjDHirfclo+Pj7r5aejYe5Mw15Pbp1eT62a3gAnPNyoqSl0LUyKQ4bm8btaCxpvnExoaioiICHWeglDY2XRK761rFRyA40ePqNZLLEpmSzQxun37diVGac8y64FMW8/fgyPHjuP4mXO4czcJ8Sk6JCQk48z5S6hRXl+t1hRbFvwOj2KBaNKuS65E6Kn927F71TzEJyQiqF4buFdvi8PhCUi4oK8y6+zooPJECcVmr7rpK7m7uzgpUXouPBYxCclo3KobTm9fhbtnd8Oraos8a9ui4SYeUUHQE34W+GsAkHAHKN8KGDIbcDWvrRXtKSf2MtY1sYQYJRSjrVu3NhqZll9FqAYdT926dcNJn0Goge3A3llA2wkPtMURco8I0SyYPn26+suQXIaNGopQwmI6vAEo6OyBrMQoRRdnydj2hA3jc8r8+fOV8eF2sipMxBzJyZMnq0qYzO/kgJNimC0aVq5cqTwRPGaGPtNLy1DWL7/8Um2Ps3hayF52YBjs888/r4QoQ3zZrHjx4sVG16XApWeUf7m/qlWrWlyY8pwoRDnY5HkKQmFne8gt9bd1lQAsWfK7arVkquBZXotRRogwb33Vxm0IjY6Hi19p+JdvhIrFS8OrSFHcvH4Zx48e1vf1y0Q8hoddQ5t+T8HF1T1HIpQeVYrZ8NBr8KtQEyUbPoRTkTqk3tB7PYt5uqJpxWKo4O+J33deVDmW527GIjo+CT7u6QdQ9cv6IaioB6qW9IG7swNWFgtE3MktDwjRvMDFSUJzBQHRN4A/+wJxt4DSDYAhcwBX80Qf7QnTrNg71BL9mO1NjFpThBLmiXLs+MmiY/i1bnEgNgw4twmoYrw9jpBzRIhmAsNFGdZA2DeUjdZNVUXNy7Dc7IhRLueAil7PnApRitmQkBDlvTRMfs+sOm7Tpk1V7ievI4UnDSTFO40ZQ3tLly6thBqNC687H9rx5aRwCcN7tbYtFL4M8+Xg8pFHHsGiRYvS1uP+jbXcefXVV1XPUkuhtfuhJ1kQCjvJKak4eK9HJIXTV4sXqx7Elggfs4YY5YDn90Vr4FexLhq0aQTnbB4nw2h3r5wL//LVUL1+42yLUBY4Ym7pueMH4OYfhFIPjcLVJG9cj7gfTly7tC86VC8Bx3t2t3aZIth9/jYojU9cj1bXOWNlWq06LSleuQ4u7137wL43ngpT4bmaZ1T7vzWr6UpNN6HQE38H+HOAvo9lsUrAkLmAWxbFhq7sBW6dBfyDsWz3JVUDxFotBfNSjFpbhGrnx2vH/qsz+o+E68Hf9BV0RYhaHBGimcAKjuz3xnhxFuMxFdrZq1cv2BumxCi9DvRi0pNLz5+pvp+moIikOKeXk9Vss9Oihfmn1atXV5VwuR0KT+ZtUoQSGhRWu+W1zml1N0Patm2rzpf7YO8shqhwu/Ru0wNKjh07ZvS99Hz369fPYp5RDjRJxv6zglAYoTC6m5QCX3dneCbfUeLvpZdeytNjykyMcmbc38cdDq5u2RahZO+6RYhPTELnbn3T2rWYI0L5+8NWL4e2rESqmy882z2DCEc/RCoHaCqKebmiRqAPKgR4qV6ihtQq7auEKDl2LQr1yxaBq7PpSb0qdRri0s4VSAw9B9eSldKWf7XurNH1n29XCa9bqb9oRFyi+uvnmTcTE4KQp6QkA/OeAkKPAF7FgccXAN7FM3/PmonAtmlpTxduq6DGUjVqWK8HcF6IUVuIUI2BAweq/Nrtd0qhPRecWAr0TgScxS5ZEilWlAl//vmn+vv444+rvxQl9JRl5Omnn4Y9YqqAEfMty5cvn64Srbls27YNkZGRSsxqnsqsRChDXtmzkx5R5kpqnspr166psuKGXkIemyVEKGFeBIsx0fPKqr0VKlRQg0xNhGaFJVu7aFV7tXMXhMLMgcv6Sqz0qq1csULZEkZG5DWmChjRrvVo3wo3zxxAwt3sFehgVdujO9ajQp3mKFW2gtki9MLxA5j95RvYu20DXBr2Q0Lzp3HLwQ9M/fRydVKVhh9vVg6NKxR7QIQSX3cX+Hrot8terUev3cly4s7Z0wexJzabdV4/bDpntYq6bDNDinpJPpZQCFn9FnB2DeDsoQ/Hzao6Lj2hBiKU+eHLth3Bw+2t38nBlgWMbClCCTtCMOLxt/UnAc8AfbGoK3usvt/ChghREzCcc+fOnWqA9Nhjj6UtZ7gml1NAscJjtWrV7Lr4jDExyoI/devWVctYojo7YortTuhJ1WbZshKhrJLLa8aiT1yX+amad1Dz1Fo6f0GDnleGDzMc+KuvvlKhvgz5NReep6UQj6gg3OfYVb0oqhtURFXw5sy9qV6/9iJGWX27cgkfnD24M1vb27LoLzh5+KBl115midCIsOtY9OPHWDFnFmKDuyK59Sjc9ioPdjKhAC1b1AMDGgWp3M6sUkJ83O4LuZPXjQvRa5FxWH8qFCtP34F/2WCUTjS/BZi1Kuqy2i8pKh5RobCx+ydg1w/6//f7ESjzYLX/B2A4rgHbL6fg9l0dHm6adXuX/CJGbS1CNViIdOmy5UitpHyiQMg6m+27sCChuSbQckM5+Mj4paew4+OHH34w2hLEnsN0OQhi0SUWCWIFSP6tXLmyWdVoly5dqgwOxV1WIpRGgwWN+Dc6OloJXq21Adenl5QPimMOyKwRssqiQCkp99sRcFIhs4qYhrA6siULFolHVBDuc/yeKKpZyhd/7t+v0h/sCWNhulxWuVwZrJ+zFEXLVELpclkP8q6fP43Lp4+gfuf+8PLxy1SEJsbHYcfyOTh9+ACSg1sjsU0/DvHAJE9/b1c0q1BMtWDJTj2COmV8cTXyLlydHFDc50Ebm5Kqw9x993tG+zNPdNNcFNHpzNqPtSrqaqG5IkSFQsXp1cCK1/T/7/QuUPMR897nH5zu6fIzySjp5YDGbdMXk7Qm1gzTzSsRSnr37o0PP/wQ51Ae6iqfNy9iRDAfEaImYCgpMdWWhQKHxYuYR5gfoBhlwSBWpWVILAd+NBo///yzCrdt3/7ebI8JmM/JXqPMC6XoNCVCWRWX1Wl5bTgrRgPC9imEIpAx98zRZCXcuXPnqu2sX78effv2tfg589g4mGSeKHNT6eGkR5eTCxs2bEhbj0VSKDrZ0iYoKEiFCFpShHLwqeUXS46oUNhhoaJTodHq/5WKual2KM8++yzsDUMxyiiYkHPnsX7PUcTGxGDbygUYMPLltHxPY9CTumXRH/AqURaNWnc0KUK53tHt67B300rEl2mMlNajkOrglE5MdqhmPO8+K4JL+GC4jzv8vIznNDk5OqhKu7c14VeuBk7ExsE7LgrOXn6ZbntUu0pWK1h03yMqoblCIeHqPmDucH3PyvpDgdbjzX9vUGOg1Utp4bm7r6agVYPqcCzXFNaGqVoc1/BhDTGalyKUcKzM34Jtl5L1QvT6YSAlSdq4WBARoiZuLOYUkp49exq9cPTwUVzY20x+Zhw+fFgJSoZPUHCxUBFbqNBg8DwyCzGmd5OCjj1BjYlQDqYo7uhhZVgzvaCaN5IhscwpHTJkSJpRYn8mClHCKr7WEKKEOaIaHAjyHHj+hgWLeMx8GLZqsKQQZQ4st0m0wkyCUFi5FhmPxORUuDo7IvLq2bSCcPYIByCcwJv0/gc4fOkWGnTpD99K9bFu7i84vn83ajVqbvK9J3ZvQuStcHR89Dk4OjkbFaFXzhzDpuXzcDuwGVKbPUe3gloe4O2KekF+yuPo5Zbzn2kKTVMiVKNOUBHV3iXQ1x2J4YnY7uSC9kVuYWuycSHaoVpxvNipilWr5mohv4ZVfQWhwHL7HPDXICApDqjcCej9VZotMJsuk4AavZF68zT2T30Or47U1zaxJoxom/n1p/D09UOnh/qgQYMGyuFgKTGa1yKUMFqQdUbWHTyP4TWLAPFRQOgxoHT9PDmegojkiBph9erVSkTRi8ZkZWNQbBGukx+4cOECli9frnJD2VOTgpSeSnp0KZJ4zqY4cuSIEp70JPKmzChCWXmWfULp5aTYpZDn9WNhovHjx+Ovv/7CyJEj0xkjXleKYcL30NtqbXisPGaeT2YFi1gxV6s2bAnYKkerGuzhkb6xvCAUNs7f0ouM8sU8cfjQIRUyT7tkr6xevQaXopJQqm5rJDm6oXLdpihRqiz2b1yGpER9EbKMJCbGY8+a/1Cici1UrlnvARF65/ZNLPr1Gyzash/hNQYiNaCyGnh6uDiiZ51SGNK0nGq/khsRai7sJ9qmSnFUKemD4MoV4eTqjitnjppcf8Opm1Y/ptP3PObMgxWEAk3sLX2blrhwILAuMOi3nHvbghojxLsJou7E2GRyb/2a1SiRegNVcAFLZk3FjO+mq7GmJXJG7UGEavBa7tu3Hyh1T3yGmraPQvYRIWoEFtbRvHam4MCCAygKG3uH3sovvvhChcDRQFAQ0kBQjHL2isKUN7xhZV3D9y5ZskSJRs52GYrQsLAw5XF8++23lQeZ72feJz2tFLh///23iq831huQx6F5CempnDdvnk2uhZ+fnzpvW1bM1YQoq/YKQmHn4j0hypYjtCdsBWWvIescVK3YtAOl67RCrQZNkJSUqFIbWj/yOO5GhGHXhlVG37d7xTxVXKhltz7pRGhKSjLWL5mL39fux4XSHZFcvrkadBZxd0H1QB880aJCtvNALYmbuyc8fItiz5HTeVKkiNBbfuGWPpWhSknLVFAXBLskOQGYPRS4HQIUKQcMZa/Q3E2+cCxHrF2/hOOo80d2okOdIPRtXRPPtA2C8+Wt+PWrKZg7e7ZydORUjNqTCNWEKKMgk/zu1QW4FZLXh1SgkNBcIzAniDA/yBQcXPAGMbf4TV5CDyBFn7OzsxKHDMdlHiQNBG94TYiuWLHigebHDLelAenfv7/KoaQIZXgrvZ/MozWsQksvJ1vdsA2A1tolM9hChg2XCQso2QL2EmUooC0r5nIwSypWtE0FO0GwZ1g8h5Qt6olL168rIWqv0I55uLng+umDcHX3QFBQOWUH4eKKynUa4fSeTajTJP3vRNStMJzYuxWVm7RHss5RidCgoDI4uncntp+6gsTSDQBP/e9GcR83NKtYDJUCvPJMfGbE1ccf8bdv5kmRIk3ksoiSj5uzChcWhAIJizcuegG4tANwK6IXoT6Bud7sxYsX1RiNdUGsyYkTJ+CeHIWqQfoJ9qDiRfB0t/o4fO4G1m6bh+mHdqFl515p/ebNDdO1NxFKWNCTTpkIh6JQridOHAgWI1sq6qOPPlJfDuYS0iPWp0+fdAJCc8kbe2j5gISz4My9ZNsObmfChAkPiINJkyYpLxy/uJb0TmUFi+0wVNQcIWrPAyhD9uzZo27oV155RV13fk7fffcd1q1bp4RZREQE2rVrpzx3bOmiQQFKIcrwY4pYfl40JuybyvY1mghluOm4cePw008/qfBdc0Qo4T65f36nbNWLlfvjwJDXwhTMH+V3zlLhuZpHNLtClHm2L730khLsvMb8PvKz1KAn+d1331XfQ77euXNnnDlzJt022Bqjfv36yhs7c+ZMi5yPYD6FwWZml4h7hWhYCdbe7SjbS70z4SX0aFwF4Yc34PCmZfDz9lCe0QoN2ymPxtaVi9K9Z+vCP+Hi7YeKtRsrW5OSmIDf5y/DxqiiSCzTCHBwhKMD0LCsHx5rUhaVi+edB9QYXkUDkHrXdM/Rfg1KK7ForR6iWlhucMmcXRexm/mfQmE3N34MHJkLODrrw3FLWCbNixEbtqhFcfr4UVQJcIWT030Zwetfr3IpjO1VFy3972D7gh/x7dTPVKoWjykrz6g9ilCi/UaFJd6bGLtzDQWJ6Dwea2ZLiLKoDHsysoIgq4+yaA2L0GhfLP5oc2Bh+OBNTi+a1qycX0gaBoZw0vNIz9qvv/6qTlKDVVzpbVu0aJEqcDNmzBjYCl58HiMNk5bDaAyeW34oPMOCSjSu/ILRe8vZqTfeeEN9YfjFoXjkzU8jTZFGcaoZala/pahkQ19eF4rF6dOnq3PnF5N5Xe+//776rPhDkV3vMCsSL1iwQOVkmioKZWmYt8pjz8wYMn/0iSeeUJ5itnHJLZq4Z8/Z7EDvNO8zHg+92rzXaAD4eRFeN1ZBZhshimbONDKcXGsVQ/iZvfPOO8oTzh93Y+HXgvUoDDYzpxVRi3m5qkGTPQtRrdjaE8OG4bUxI1GvpBvObV2MmOvn1Qx5+botcPXkflw9r68ZcPvaRVy9cBrl6jRDVHQs1pwIxbLLjogpXhtwckUJHzc8VDsQz7erjDZVi9uVANUo5u8PdwfTUSMLDlzD+DmH0Pe77fh4xQmL73//PYHL1j45Qexm/qfA283Dc4FNH+v/3/NLoHIHi23aFpN7vKY3Lp5GhUDjBc1cXZzRsWFlvNC1GoLiT+C/mV9g146tyqFhSozaqwgl2vW8ceeeXYzTR/IVFJ7J47FmtkJzDSuLEt7UFDAsNKOFY7IgiyH//fcfBg0apAwEYVGc48ePY+3aterLRkH0wQcfqAH/e++9p/IJ6aGjyKPQoSjifmyF5g1l37jMuHnzZlplMHuGYWQMyzU0TMzHYg5nmzZtlBBctWqV+hwpVik4ec05k88vJIUb80u1LyRhaC9/JFhJLL/B7yEHf99//71Z6/MG5LXKaRVdXkf2IczKw54RfmasVMwfSN5bhPcH83V57Lxnpk2bpvJzH3lE32uMXmreU+yB++ijj6plNPjMFdEmGjjzJdiOwmAzs0tkXJL66+fhovKMMp6/vUK79/KLY7B7924sWbkWZ4+eg4dfKdXC5dD2ddBBh3MHtsKrbA1cSvLBkVAXwE1f9dXdxRFdapZERX/7CcE1hZe3D5JNFGHKyA+bzqFbrUCLVtDdckYfadMqOCDb7xW7WTAo0Hbzyj59SC5pNQ5oNNyim6cQpVC3JtxH6t0olAkok+l6RX08MKhdbZy/fhsr96/H5pMHUax8TeUgodjR6odwQpLjTXsUoYSeeYqvy/dy11WBqQLCXTsYa+YqwVHrD1msWDGjr9NosJ+kYdglvXB16tRJ92Wjsr5z546qvqo9p9JmOAV7PFJd2womJJMaNWpkOSPE0v72Dgd6HPhoxtkQ5hA899xzGDFihBJM+/fvV39v3LihDAM/O+aNaiKUHj16U2fMmJEvRShh1d/sDgRzE67Da8rvCq818wzMhT+KnNHNWMSFYRGcUWS4Lz8nzlppsEgUBTPvMQ3O/vK7zNfo4a1Zs2aOz0XIPQXRZmaXpJRU9dfNRZ8/mZ8qSXMA3KJFC7z16ngM69kGAQk34O3ji8gblxGjc0Nqy6cRW7sforzLqyJERd2d0LCcH55pXRGVAuwrBNcULi6uSL7XesscLFm46HrUXZwNi1GdK1pW9s/2+8VuFkwKjN1kSOe/Q4CUBKBqD6DTe5bfxZ07KkfU2ilsSEmEn7d5OdwVSxXDcz3qo3dVZ8Sf3YLNq5co71rU7ZtwTbpj1yKU0G5zDKWllag2OwWEZDsYa+a4WBHDkhhTzFBPhm4ag3HCPDBDTxBPKOOXTXvO1zSxwBkxVmVllVNjVVcZqmGtBGwSHBz8wD7o2WLbFu01hqJa4zhoGFm515yiOuaEhdIrmlVVWook5mBwhpBfPMN9c3aNM4b8EeC2fvnlF9gjNL5ZhaRQYBN+p8zNZTX2XTAXrR8tb0zDa8p9ZxbKzBk4Dng5G8V7iPfIP//8o258Ho92rxi7l7TXCH+YOWNFMcxZKiHvyGubyR8bHkNew6qoitRUdU9Yy45aE15fDlzpZVm8dBm+Wh+ChIpt4XDvnnaOu4kScRfgFX8TMWeB1fr6d3ZB8aCKcPc0XY02Ovw6dKk6uDnpzNpe+aJuFvv8Np3UVzSvU9oXXi4O6bbL70lWNlvsZsEjL+0m03gsMQ5TJN2F0z+PwTHmBnTFayD54e9olPUPS3DtgOpHGnvntgqLpIfLWpw7dw5Xr17GrEV6R0d28EhKge76adRNXQ2XryajbtFaSB70lxpf2vPvAL8r8YnJgCugS01Gsh0fa8bjtnebmWMhytBMtgOhYjbl7mWsMGOGc0pmrVEYbsETtlZo7u3bt1XfTWNih0aLs05ab05LQ0HIL0FOmwAbwhAIii9NgGUlgA0Hq/zRL1eunCqyQ88FwzHsFRowhgZoDZVNwc+OIQOfffaZusnMge/J6efMcCHCG9NwGxSmWc3+MV7/qaeeUtWN+Vkw7OGxxx7Lds9Vfo8s8V0Sckde20zuW6vgnJdERlFMOGDv3j3qvuXknzXsqK0oUyoQtaqk4kCqI1KT4pFyZiucI84gwsUN1innk3OS78YiJfQsKlYyHZ3hHH4WqQmx+LSpeQPkK4e344r+ZzPXzD1D2+2IQEQ+8J3gbxHte1aI3SxY5KXdpBC1iG3S6dDo4vcIijiIBCdvbC7+DOLW6SepLYsHou9Ew+3GPuybq/ciWwMKsvDQm1h5I/sTm3WLJeJ/1aNR1vfeRNedM9i+ZzMOuljXi5tb+D07c+48UJ2/XjosX7ZUFZ6zZ5ycnNCrVy+7t5k5EqJM6F66dKny2pkq6EMPHEUQi74Ywrh+5tgYovV1zE6ukKGb2FJQbNEjSNiGhPmRmie0U6dOD4g25pE+9NBDFj8OhnHSKzlgwADYAgo4JiozUZznxc+BgpSimw/OqDA23JItTSwNK3jxwdCazGboKPApDt96661MBevrr7+OLl26ZJkrnBmcSdVChZ588sm0MubEHG8svdQs2sDPhxMf9PYOHjxYtcnR7hXeO4ZeYD6nl0awL+zBZtKbYA+h2T9e2IHrd6PRqHETFQ7E3Etr2FFbwEk7Rp0MqJeM64vW4Pye9XD38oW7pxvqtWyHum27qwId9sL+Nf+hT7MqqricKViUYv++PXh1t2kbNapdJbSpUhx1g4wXK8kJ8UkpeOfAJlpODO/eFE0rpA/DNLcYntjNgkNe202OJSxhmxx3/wingzuhc3SG02N/oX35+2MBi3hCf+ud9tQzJQq1vOLw7oC6FmkHY7FWNREXEB+yHV7x+hxwBsbsD3fB+uJPoJ5XANq1aGHXE+YcB9eoUonljqFzcMJDD/XkFwQFgcp5PNbM1i8kZ4fGjh2rBvIbN27MtB0FQyVYFTVjLyO6gKdMmaK8TNosFEUQBU92BklZuZtzgmakOHCgt0oTNAzH5WxIRug1tcZx8Gbkvnm9rTmIodhk1TiGjzLmn4ae+2SICp/zOPjFo6BixTl+KVm4h1Uk7Q1eL34WxkISDeH5aZMOmcHvNr+ruYE/nuyTygkNlobP6WepzTJxkoSFpVhAicdHA8Eqx5oxoAFhRbNRo0bl6rgFy2FPNpOTH+aGo1sTbze9zUxI0dtx2hdr2FFbiVDayjYtmmLN5u0IK1oCbs6O8ClbBfs3r8Kp/VvRouejqFSrEewBBwedqm2Q2fXm74KjkzMSUkwPssoF+KJRRcv2KVx8OBR34pMRVNQDLSqXgCN73OQCsZv5F3uxm9q4Ildc2gmsm6jfXtcpcA5uD4sSeQ5IvV9czMVRh8QUHZziI4AimRcTsgkRF5B6bAEckhPh5QAkpQK7b/ti+kFnlChTEUVLeClPHMcunKw3Vs/EHqBI8/N0ARIABzdvuGQx1syPeOXRWNM5uyESDIFg7DnjirX4YCanGhacoHDjINxYSAMrZdEIsFcjT5LbYDUmbjuvi//QYBEaNEOvmq09gRSCFC0c4PD/1oDhcKwqx3BbftFY8pwJ4/wB4JeN1XP5OTFMmJXoeG3oGWYFXSYpc5YwK9FnS7SCA1lBYWgOlvjMWYmM0PuQExFKQ8DPg0WieE+xBxp7utK7yu8n82YmT56sPEr8DBmaxAqAmXk7BNtS0G1mTvB004vh2IRkZWtZgTw/ilAWIuMPMgdPkZGRymNXrmYjXD++C6XKlENwnSY4u38r1vwzA4FBFdG27xMoWjJvW37pEuOz9DrQ1nsXyTzHp2KA5T0Xf+++pP4+1rRcrkSo2M38T4GxmzFhwJzhQGoyULs/0Ow5y+/DP32Kka+rAyLv6gAP44WdbEbSXaRc2Apc3Qcn3s4OwMVEP8T6N8DvO08joEQRVCodoNIXOK6h/aRjxB7FKB1RtPFlAnwB1u50ta/jyy15bTOzNTrWWl60b59+RmfWrFmq8qoGi9nQu0ZDkBHOyDPUgkqaM1b8URw+fLjqR5nXaEI0Y74Ahderr76qjJlhmFtWXrWcwnxCzsIxl9HSQpTnyEq4FJjcNsNZaJS5L4a28jPRRDiLcTBEmAKV14DnzFAXDsBYoY6vN23aNNv9Q60Bjz/jjKgxKLz5HeSsvylY3j2n7VoMB6pafmhOQ6xZKZBVilkgion8/fv3VzO82gwtv5OcpXv22WeVkaTXlYUXMlY/E/KOgm4zc4KPu/77G3U3SUVc2HPuuTki1HBQG1S5OhJjI3F+/2a0GjwKLXs/htvXLuDAppWY9817qFK/BZo/NAjunrYPQUtJSYYu8W6WhST4eQSUCERcJmG5lmzXQk7diMa+ixFwcnTAwEam+3ebg9jN/E+BsJspycC8p4CYG0Dx6kDvr60TyhnUGGj1ErBtmnpa0tsB1++6AL55MOnFiLNbZ6C7sgcpd27AWZekBOjVBA+gQhskwBt7T17DtegUTHuiFZbu008+ccyptUO0RzGqTYSU8bk31vU2XYshPxKVx2NNB50WqyioSlFsatyhQwesX7/+gStCVzRbedBbxv45//77rxJqloYfCXMYaWAtldPFHAqeEz2d3D7zHyki+cWjJ5E9gzgA4ZeRntINGzYo4c2ZEobujhw5UoXQMWSZX0iK2ZCQEBV2ynDdzEJnbAGPmQnWWYk+zoh+8803ahCZEc7uMDc0tyJUM6a8WTmDS/FvT95jQchLpiw7jp+2nFctTU7P+VjZEd4v+VmEMq3jjcmfIalkbZQoWRIrZk1F7WZtUapmE9UOxb9YUezesAKn926Bky4Zbfo+gcp1mti0nUvsnQic3TgPE8ePztRe8/cvUueJiOajH3htcOMgfDLA8q273lt8DL9uv4ButUrix2E5z8sXBLthw4fApk/03rORG4DiVo6su7IXuHUWz382Bwe3rMCOWe/Ytl2ULhW4vBu68xupPRWX49yQWqEtipYOxo3QULh6+ODtX1ajdpXyeH1Ie3y1+AAiitRU412KHo5N2VqHLQPtSYxu375dHc/VhZNQ+sAXQPVewKN/5fVhFRjy3pVlR2hluk2FUVKgMMyDf+mWZiVaa+h4Gg96ZbXeWbkdOO3cuRNfffWVupnYV+vNN99UVVspQnmjcxBFQc3w3IyCqWPHjspzSuHJOH6uy5lFuuxZVYvn//PPP6siQAyPzSu4b3O8x/zMGOpjDPZGtYQIJQwrIsxdEREqCPcpVUQfWnc9Kj5feUQz84QaUrpcBZSv2wzHd21EUV9vJCUl4tbtCLTp0Q+dBz+Non5FEHpgPfatWYCoW/q6BLYgLvoO3J2dzPKIxjgZt5GBRSwfbXE7NhFz915OC8sVhHzPjSPAli/0/+/9lfVFqOYZrfcoytdqgoiYBETciYFNiI9SAjhl98/APREal+yAo851UabriyhapooSoRw/Ltx8CHEpThj9cHOjm9I8o1yXk5OqX6kdcPHiRfW3mOO94/G1g9zbAoQIUQO0cE1zCnpwAMX2MVqVXWtUsTI3n9EUjPVmiAu9t/TMjRs3TnkMeX6XLl1SIpSDErbCofA1ViGWrnfOkFO0sneUJkYZCst4ch4nX2cM/bJly3D8+PFMw16tAfdHIWpO7yIOskyVame/VEvAa8Ny2MQwjEgQBApRvZi5EnlX2RNODtnaZlhLhGq06tobDm6e2LlstrIrFKPnQ87gxqkDGNyrMz6Z9BaalvPBua2LcXTHWiTcjbX6OdyNiYKHm3Omze55npevXEV4qvHQ4fbVLB+S9v3Gs4hNTEGt0r5oW8WyBZAEweYwJHfRGH1eKD1nzA21FVf2ommxGNxNBk6fu6w/hqjLem+lpUm6C+z/DbpdPwBH58Ep/jaikxyw/W5lOLYai9qtHkJMbKwKa6WdP3/9NjafuI6B7erA19v0hJY9ilHa/vLly8M96px+QfFqeX1IBQoRojkUovxSEoaVWYMKFSoocceQ2uzCar70yDGfgl7VoUOHYvTo0Sqsln37NBFKQcZE//DwcBVeayrXkwKVg6nFixerAZg2eKTwpPgbP368yqtkuC/FKgsHMLTCVjBUmF5sc4QoPy9TkweW8lz++eefaUKdIl0QhPtUKq4PtwoJi1ERGsy1P3nyZIERocTLxw+1W3bGxZOHEXb5PPz9fHFy6wr4IxpDHh2sJvDGvjAaY4cPQhlE4NCqf3H+2D6Vx2ktoiNuoUxJVqN1zNQ+xsXGwLVEhQdea1Tez+K5oaF34vH7Dr234ZWu1XJdKVcQ8pwd3wDXDwLuRYCeX9iuxceaicDPndD84tdITAGSzq4Htk4FDv4FRFs48iLuNnBqBRB9XfXUTEoBNt0ugbh6T6Fl94Fwd/dU9lIToR6eHvhr1W417hzcoU6Wm7c3Mcp+mo0aNQLCjusXlNTnswqWQYSoAVqYrTlx9SzcQ8HKAYo14ECFIbDZEXQc0DGBmDmQ9EwyrJZJxhzskYwilEnHDNflDa8Ja2Nw4MKwXS3PlLH8LGzEapcsWMTkZh4rw1D/97//oUaNGqqoEde1RHhxVlBIU0RSaGcGDSOP+8KFC1arlMvv0Hfffaf+T/Fv0xwNQcgHVCruBRcnB8QkJKNkJX0OvLXsaF6IUI1GrTvBq0QQNs6biWMbF6FD3Qro3qWTqjPA7dKuNmnSBG9MGI/hvTsA145i34p/EXopxCopH3dv30C14Mxz+bUG5q6B6StxktbBlm/b9c36M0hITkWj8kXRvpp4Q4V8TvgZYMNH+v93+8h2fTyZH3qvWJGXqyN83YDz124BunuRJufZnzeXxIQCJ5cBp1dCt+cn4NZppOqA3be8cLJUP7Tr+xRK3isYaShCOTZct+sojl65g1G9m5ld3NJexChtMX8D2jasDtzheNwBKFEjT46loCJC1AAtd5DerMxg0SI2UWbBB+2H29KwgBBLJWux6ZnBQQ2Pg43I2ZSW72PRnU6dOqXlu2YUobzJWYiI4cWPPPJIlvvguVLQcvssqc58TIpcikBu1zBk+emnn1bVtbgv9u1i2xfux1rQ4LGwU1ZtCQ4cOGDytZ49e1okP3Tr1q04evSo+vwyNtgWBAFwcXJE5Xte0WuxQHBwsNXsaF6JUOLk7IKmnXojMS4WzYMDMW7MaHTr1k1FcNAmcvuE7Sg4offOhJfQrVEwbh7agAPrFykPpqVIuBsHh4RoFWmTGfwcfAJKwcnD1+phuZduxWH2Hn1u6IRu1WTSTsj/LH0ZSEkAKncC6g+x3X5vnU33tIq/I1afM4iuuHMFCNmQ8+0nxAIH/gBCjyhvL72g+8Ldsc6hLRr3eQF1atyfxM8oQmPvxmPexiOoXq4kWtTKXg64PYhRRuvQodKuout9byi93YLFECFqgFbshp5CUzAElYV+KDKYg8lwVWvB2XIei7EKrxqXL1/GTz/9pIQxB0r0wrHyr2G1MWMilN5MhtGy6BLFrjk3OAdRFOsUWS+++KLqN0rxdvjw4XRiVDMeL7/8MgYOHKjOgWXU6Y20xkw/c2k5mM0KDrJMDSbZF8kSfP755+ovCzlZqwesIOR3apfR/5AfuByhQp7sTYjmVoRqBNeqj7qtOyMxJVVtg4+WLVs+IEYJ208NHzYMr415BnVLuOLMpgU4vnsTEhNyXwQu/NolFPFwybK6+cZtu5BS7MF1+jUobdGwXFUZfuERJKXo0KZKAJpX8rfYtgUhT7i0E7iwBXByBXpNtV1IrpFeoj2CnbH7aiqiXe95ZJkreuNw9raZEA2kpgBX90O3b6Z+G3SuRjtjbkRtVOvxPLq0a5nOw5lRhJIF6/bg2p1kjO3XMkenltdilClonCys5X1PF5TP2XkIphEhaoAmHEyFk9ITathLlLBwD9ubWAPefBycsOdnRnjDz507Fz/++KNqD0LBR3GYseCOMRHKQQAHQZ07d8bgwYNVvidDeimq6fHU+qlmhDmY9BzS8GgVhnl8xsQoYQhvu3btVHPctm3b4sSJEyp/lNfMUtB7zZDkSpUqZbkuB7v0FlsLelx5DXl9XnnlFavtRxDyO00r6put7z5/W0248d7My6rb1hChhPa2SsM2OHLuuqpeTjITo1yfKQLjx43FqKF9EZBwHQdX/KNyTQ3Xyy7h1y6gRuXymbZDYNTKscMH4FrqQRvZ2sJFhBbsv4otZ8Lh6uyISQ9LvpVQANj2tf5v3cFAUdOpTlZB6yV6jyG1XRCV6IDZl4sDjve6QCTfBeJNOzXSoLPgxFJg53fA7h+As6vhkBSHa7GO+O1yOTg2egoD+/SCt2f6gkPGROjVsNtYvvccOjWqjHIlcz4xn5dilGO6zp07weX8PY9yhTY223dhQYSoESHKYj/GYG6PMVh11hpQyLERMwWeJvwoLJl7yXYsBw8eVK/TS8semhkxJkIJPaEcdFC8snHte++9pzypLDbEG51VFVll1xjsa8r3sp2LRmZilHBbrNZLDykFI8NXKXgtYUy0FjTMqc0Mim8OBAMDA7P12WaHSZMmpXlDq1evnuvtCUJBpdk9IXrochQ6dummCrOxd3FBEqEa3n7F4BlUDUtWrUtL+8hMjBLWH+Drb706Ho92bY6kC/uwb+Vs3LquD2XNDslJiUi4dRW1a2Zuk1i47m5sDDwqNnrgtYoBmac9ZIfwmAR8sExf9GNcpyppxasEId9y8zRwapn+/y1fzJtj6DJJL4LZZsTTEUE+wM59R9J7S8MfdGo8AKvs3maor055RSlofzvnjwtBAzD88SEoX0pvu7MSoeSvFTuQpHPBsz2b5vr08kKMMtqO+3qiRzMg4jzg5AZU7mj1/RY2RIgawC+4dlMZq6xqqpgNw2OtBSvWMhSWceoUXb///jtWr16tjpWeRnoojVV7NSVCuZyCsWnTpmlhWhwUUWCyINEzzzyjig6ZanHCARJDcunBYKituWKU0Fv7/PPPqxxSimx6YSmmNZGdE3jtWZ02qwEjvcoU4KbaROS2UBG9ocydpTf07bffztW2BKGgU66YJwJ93VXIapRrCTWRZM00h7wSoRqV6zbFpYh4rFu3Lm1ZVmKU0H4zh//tV15E+1pBuLpnJQ5tWobYO6bTRzJy/fxp+Hvo7XZm8PoHli4DlxKZh+/mlklLjiMyLgk1Svni2bZZR7IIQr6olEuq9bRNz1BTBYsOz0572r2yM3ZciEGoY6n76zA8N2N6FPuAnlkNRF0BjswFDv0NJMcjIQX495wPVjp0wtBhT6JlXeP3qikRuv/EOew4HYahnevB090yHQlsLUY5pqMTo1vZBP2CSu0AN5k4szQiRDP86GseM2NtWSi0WKDHEN4U1sxvYkXa1q1b49ixY9izZ48asHGfDz30kMkcRFMilLCQDo0Fi2PklHLlyilxzNh5Q2FnjhjlsXBAxOq6ffr0UWG6zB89f/58tvNHaQD5aNCgQZbraq1njHldhg0blutCRfQqE/GGCkLW0A50rKGf7FpzIhS9e/dW96g1csjzWoQSVzd3lKrRGKs270xXCd0cMaoVgRv59FN45fkRqOqTjBPr5+L0/u1IzqIIHK/njZCjaNGgdqY561xvyZIlqN+qk9GiQefDLdPndPGha1hy6BrYpeWT/nVU4SpByNdE3wAO/av/f6txeXccZ9akezq2qStCY1Lx7/qDgPe9SLDYm3rBacjRecC1/dAd/BO4HYIUHbD8kgd+DG2I7gOfxODOjdOKXporQmnHVu6/CHgF4M7dJNVDNDepBXklRn/++Wd06dIZPiFL9Atq9rHavgoz8iuQAa3oDQsRGeOTTz5RIZ4TJ05UDxYGovAyp7ptTmEbFg7URo0ahXfffVeJJh4DcyOzI0J5w1Jgs5quOT03TcFt0lPLa8Q2LYaYI0a1ARhzVOnVpXeW67OKL6vwmgu9xDxHGqWs4CDX1HoMSc4NDJXWckPFGyoI5tG1pr7d0toToejVu7fKVc+LNi7WFqEaZYJrIQqeWLJseTrBba4Y1QZgE8a/hGcH9YL3nQvYv/JvXA05YVLAR968AfekGDRrlnloHCco2daKn4MxLBGaG3IzBm/M1xdMGd0+GHWDpJibUACgFzIlEQhqCpTLfeV9SxHo44g6JZyw5mgodHEG46qLW/Ve0eR44NwGIE5fnZsjxe033DDlZGVUaT8ULz7WFX7enia3b0qEkr2nriLRrzJefudjxJZqjt9238IXiw9h0bbj2H/6KkJvRyM6LgE6hv/aqRjlmHTHjh14Y0g7fViuqzdQM+sOE0L2ESFqQogahp1mZMGCBSofkI+33npLCRDOJlsL3uT0gDLvkPsaNGiQ8pQy19JwAJKZCCX03PLGbdMm98nW3D+3RfHIAVROxKi2HYr5sWPHqgq+zB2lYWHOWGYwnJdhuaxgzDDfzGCFYBoUhh5bOiyXx8EiUYR5tpIbKgjm0aKyP7zdnBF6JwGe5WojICAAf//9d4EUoYS2u1ytJth15LSaRDPEXDFqWATu7VdfRr+2DRFzagf2rZqHiLDrD6x75fQRVC0fmGUOPa87c/mfGdQbz7dLH4I3ql2lXFfMjU9KwQt/7UdsYorKD36ps/WKxglCnngi6wzI2wtf5cEJ9QmtXLH/SjyuphhUpY68qPeC7voBuLwL0KXieIQL3jkQiLtVeuPd5weiStnMewZnJkLj4hOx4cRNNGzTXRWpHDX2JTz9v0mo32skrhVpiCUhDvh+01V8seIMbie5G00tswcxynaI3HZbj3taoFZfCcu1EiJEM6B5zUzNzBurnMtBw5QpU2ArGGLFENC4uDgcOXLELBFKo8HEawranN74GWFILLdJj2BGsiNGCYsYjRkzRrXFYbgvq+vy3EzldDKUl4M3emazgpMEFOwUuxlDq1noKTdhud9//70Km/b3908rViQIQta4OTuhR219yNh/B6+re/+3334zGumR30Xo3dhonD28Gxf3b0SJIt6qIFxGsiNGCYXjwIED8ObLo9Ey2B8XdyzFka2rER+rH5DFRUchIfwi2rZsnmmPTv52zJo1S6UoHA+NQ9WSPips9stB9fDf6JZ4rUfum7dPXHQMJ29EI8DbFd881gDOEpIrFATY4oRtW0hw57w9lgyVc8lDVVzg7eqAbzdeg87HIFf0dojyiF6Jdcb7B4phh2tbvDP6cXRqmHUbvMxEKNl48DxSi1ZCx06d1HPaHtYHYeTZqLEv4/UPPsdTr3yAIS9ORP+Rr+Rq8t5aYpT1WP7880+8MWooHE/cq13Q9FmLbFt4EOOB34UYDgTI9u3blXjJ+ANuqroqb8z//vsPffv2tclxsg1Jr1691D4pLDlLbkqEckBDbygLEtWtW9dix0BvoLu7uxLnWlsXY2KUr2u5pZnB97OVQ+3atbFx40aVz8kCQxS8NGTaefFzocea50KPalb88ssvKhy5ZMmSKrS6X79+6nOkJzQ3IpRhxAyVJpMnTzbrWARBuM+gJmUxd98VLD18HX+NeBpffvkl5s+fr6Ik8rMITUpMUGGxkTevIyr0MhzjIlDSzxPDe3dQESnGBnCGYpS/PxSjnGjLaFczQrs6+vnn0PLgQSxevgpHVv+LopXrIjbyFqoHBWQ5Wce0AubqO9bohL7fbU9bTs9ov4ZByC2/bD2P2Xsvq7aKXz3aACV807d9EIR8y/nNQGoSULQi4J951IHNKueySu7iMWmLJrR0w0db49C1ThI6FHcGdPrikPPOeeIYauCFES0Q4GdeAZ6sRGhYRAz2Xk1A5yGPmGwVRRunjQU5CcaUgNygiVFCMUp7nlmbKnNrfvj4+OCZ2onAgRSgUnuglOXGzkJ6RIhmgG1QKOzYS5MiKGNIU2ZhnL/++qvNhChp3769CjudM2eOyrOkV9HYzDdFGz2LFK6ZzYybO4C7fv26qkLLNjcUvgx5NTVYyq4YJWwezG2y0T3bxHDAyP1RpNIbzJBctpDRJg0y4/jx48o4zZ49Wx2DJkA5+59bWHApMjIS9erVw8iRI3O9PUEobDQuX1TlH7IYzok4bzVhxJAoawpRa4hQ2lUW3jm3fwOSrh6DE1Lh7e6M4n4+aNekKmrWrKEmDzlxlxU5EaPcPyfsONnIvtbL1m5Cwt0E9Oz7aJYRMGwF1qBpCyy6lD7F4YdN59CtVmCuwnLn7r2M95fqW7VM6FYNrYIzD/kThHwZlmskLDbPcEp/Hz/dwBlTdybg2/WX4NW7Jpp66IVf6yAHtG3U1GIilA6ClXtDULRSw1wXf8xLMcq0CUaIzPjsHbgd/jbvi1AVAkSIZoADBf7wcxDAL3RGIcobjCLmjz/+eOBiMmeTYWXWDPEyhHmUDPHiTUfRzBkchjkYik3VpPzYMSVag4LMn92mUaHHk6EO7H1HI0RxTvHJFi4UvWzzUqdOnSzPNydilFDkMlyPeaCsrMt+rfSM8jgo/rLKe9JCZ7l/7nvwYH2PLcIQXXpHcwrDfdlKh9ea++A1EQQhe/D+GdqsHCYvO4Gft57DuBfHoc8jD6cNJvKLJ5Q25ukhA7BmzRqVF0W7THvLKImcTP7lRIwaFoHjhCq9nGxtlRncNoXrK5/+iLn6miXp4ARBToXoyqPX8dq94kTPtK6IUe3swGMkCJaC9TnO3ushH2xHQtSwb+i9SLOPOrnhqcUJ8NqXgjq9a8Aj4gQCXWOxf/8aBHTsl6VtyUqEktOXw3Eu1gNDRvTJk/GQpcQo675wnDmi/HXgSCJQoQ1QqYMVjljQkBxRI2jFfNjn0hgUII8//ni6Zey/SZFG76QtYH4ohS8L/IwbN07lftLbx2UMd9Bgn07mEnFwYi6cQaeAXbhwoep7x4EbY+ZphOjxfeWVV1Q+JwdH5g7kspszamhcOJjiOWp5sTRy3bp1y3KAFxUVpbzUrDjMkD9DmOerCePsws/52WefTfOKtmjRIkfbEQQBeLRpOfi4O+PczVi4V2qsJrc4GLB0KxdrhuNqHkmmFXDijBNlzBvPTQRKdnNGDaEArlGjRpYDTF5n2tcGrTtbtFruljM38eI/B5GqAwY1DsJbPWvkOhpHEOwK1QqFPeQdgAqWnzTLVa5o3fuT7uSR6q5oV94RK3YcQ6J36bTl9Z1DsHff/lyL0OSUFKw6eBmVG7ZVkR95RW5zRulgYDHS7995Dk5H743lO7/HDVvngAWFeESNwP6W9JbRC2fKw0mPKMUYxR9d+SzawxuAgmfo0KFmzV7nVoSy5ykHbbz5GMrKGXiGoLKSLXuPcjnbytATaKw4hik4kKKApSDnYIqtXuhtze055dQzStjHioNHDvAoks3Jx/zpp5/U52eqkTs/u5yEkFAU0zBzAPf+++9n+/2CINyHlXMfb14e328MwXebzmHKlA/x8MO9lR3LTb/jvCpMZEly6hk1BxaZW716NYa+9RXeXHTigddzWi134YGrmDDvEJJSdHioTiA+6ldXRKhQ8Ai/V03Vrxzgmvv2Rhal34z7rWXu8V1PD9T6LhYz/l2OCa309s/RQYdKd7Yj5FJpVC53X6BmR4SSXSeuINKlJB57KPfpX3nlGY2IiMBzzz2H3j0fQvfklaqaMGoP0At7waqIR9QIzLfkjceQVHoETUERM336dHz44Yf48ccfVQgsBdy8efNsKkI1+JwiiWEFDGPlsVeoUCHbHjt6HCtWrKiKAfH99KhaavCTU8+oBg2KOSKU3tCPPvpIFVHiJIGl2rbQ481qarwe9LYyn1UQhNzxZKsK8HBxwqHLkXCp2EhNpL3++usWaYKeX0WoJTyjpqC3mde3doNG2JKUvl0LYdXc7FbL5Ta/WXcGL80+qEQoKyJPHVwfTo7iTRAKILfOGg2FtSsx2uCJtKeB3o6Y3sMdr65NwEWUScslDXCOQ/LJlYiMjsuRCI25m4BNp26hSYeeanxnD+TEM8qxM8fXv49pDYfrBwG3IkC3D21yvIUdEaLGLoqjY1rRIVZwNMXMmTOxe/fuB5azr6RheKwtRKgGDQH7WQ4YMEB5HB955JEs+2zamtyKUXP4/PPPlSFleLGxtio5adtCz/fTTz+d9n56jgVByD0lfNzxdOuK6v+frTqFDz/6GIcOHcK///5bqEWotcQof9f27NmDgc+/ZvR3hIWXskNSSipenXcYX6zRV5V/rm0lfDukoWrRIwgFklv3PKIBdtwT1ze9l/PR2s7oW90Z7b69iOs9/9SLLQDV3MJwbtdSJCYlZ0uEknX7z8G5ZHVVh8SeyI4YZSQhoxx/++x1+O2Zql/Y5T3Ap6TtDrgQI0LUBBRyZO7cucozagz+kBuDRSLYMsTWIlSDwpNGgbmcOfH65XcxSgNKIcpiSxmZOHEidu7ciY8//jhb2+QAkN8JGjNeWwnJFQTL8my7Sijq6YKQm7G44KTPR2cONnOyC7MItbQYZbTIyy+/rOoK9O6e+9zQq5F38diMnaoND52fH/SpjTceYn6qeEKFAsytEPv2iBqp5stx44+93AH3Iuj5zJuI78WqsPr7tKHLOZzbMhu3IyLNFqHXwu/gYGgqOnR/2C6jw8wRo/yNePLJJ/HEkEF4OHkxkJIAVOkKNHoyT465MCJC1ASsfMgcQIpQhmIag+1EjEFPGb1wFI+2FqH5CWuJ0Q8++MBkKDEr7WbXE8qQM+YOMPS6VKlS+Oeff1TOqiAIlsPX3QUvddZPnH266hQmfTIV8fHxKmSqsItQS4rR8ePHKzHKat/MAWW/0Jzmhq4+dgMPfbUFey9GwMfNGT8Pb4xhzctn+5gEId9h76G5hPmNrV5Kt6h41/9h0dIVqiXe8Ml/Qtfto7TXqjtdxpmtC1AysFSWIpTjohV7Q1C8SiPVas9eyUyM0mnEqEG215rZxxsOoccAr+LAI99KgSIbIkI0ky8vQ1wJ80CNVXBkmCbzSQ3hF37gwIGqvydzR3NLQRWh1hKj3M6MGTPUDJcxcuIhZgGqv/76S+XOMoSDn4UgCJaHRYvqlCmC6PhkzNh7W/W45ETg4sWLUdhFqCXE6PLly1W0Dm2aVizu9R418N/olvhyUD3115zc0ITkFLy3+Bie/WMfou4moV5QESx7sQ06VpdQNqGQkHBP0Hj4wa7pMgl4Zh3Q90f93y7vqaKPv0+dqGpeTJp7ACh2fzKqktddLNp1Li1M1xRHz4ficqIvuvd6xKrFOa0lRjm2ZtQNI+fWftAPzsfmAQ5OQP+fAe8SeX3IhQr7/vbkMcOHD1ezQsePH8fGjRuNrsMKsD///LPymLHCI71mDCfjl5tCdN++fTnef0EXoZYWo8zLHTFihOql+sUXX6heobnNC2XhKYY4k88++yyttY8gCJaHhW0+7FtHhXguOXQNJRt2Qa9evZR9NVV0rDCJ0NyI0cjISNV2iq2vtFx3DXpA+zUMMssTejo0Go9M34Zft19Qz0e2qYi5z7dEOX/PXJyRIOQz3HzSC1J7hp7Reo/erwC7ZiL6X5uCDzu6YdLUn7D6/H1HS4BTDPydYzFrzWFERN81ujmK1DWHr6FG006qp3x+wFCMbtiwQbX145hz0w//g9/uz/UrdZsCVLKvXNfCgAjRTGC1WIpRwlBbU33t+KNOD1zGvqNcf9CgQaqFSHYpLCLUkmKUVXL5flaz5UCNLXiYD8q+rznJC2XLBK1f7AsvvICXXkof4iIIguWpE1QEI9voBzevLziCyV9MVy2beC+mpKSgsIvQnIhRXrdhw4YpTwDbWuXk9yQ1VYdZ286j1zdbcfJGNIp5ueKXEY3xVs+acHWWoYRQyHC71xIkwXgNEbvlyl5g2zT139dbu2JM54roNu0QjiaUUvmiDtChddsOiC/ZCD+uOYFTl24+sIntxy4h1rMMulqovZatoN1jRwiODTm+Xv/zu6h6+BN9q5ZGI4Bmz+f1IRZK5NcjC1jinj/4mzZtUj3XTLFixQqjyy9cuJDtwjaFTYRaQoyywiZzQ/l5GeYrcHscgGXXE8oeow8//LCaRODMGUMEC8vnIAh5zf+6VkOt0r6IiEvCZ5tv4J9//8WaNWvU/W2MwiZCsytG33nnHSxbtkzlt7O9V3YJvROP4bN2Y9KS40hMTkWHasWx8iUJxRUKMZpHNDEfeESN5bay0FjR5uj6/IcY1ykIdT4+hb+uV4Cu8yQU6Twez74wDuWb98E/e8Owdt/ZNNsSFROPrSF30LJzb9VjPj/Bwnds6XfgwAEsnPoyGp7+HEhJBGo8DPT8UvJC8wgRolnAH20tV/TNN9806RXNrOgRZ18YwmsOhVWE5kaMsqCJFpLLAVduOX/+PDp16qRCAdlAnoM35ocKgmAb6GH76tEGcHdxxNaz4TiUWlblNbIaNiMcDCmsItRcMUr7xWiRTz/9FD169Mj29hki3XXqZmw5E64+D1bF/WVEE9VyRxAKLe73ckMT7iBfca+40hW/ZjhY7mk0uzAd01rfwUed3PD4jEMY/MkyZUtYBffRIUPQ5dFR2B7mgVmrDyH0djTW7A+Be+maqtdzfoIpdqzpcuTIEez+8wN0v/ULnFMTEF6kHmK6TQMcZYyXV4gQNYM33ngD3t7earDDYjXGMPUDP3nyZCVm+vfvj+vXr2e6n8IuQnMiRjkx8Pzzz+PEiRNqgJrbQSj316FDB1y5ckUJW3oRsqoeJwiC5Qku4Y2P+9VV//92Qwgqtuuv0iBGjhyJHTt2qOWFXYRmJUb5/6eeekpFhbB2QXaIikvCuH8PYOw/B1RBIhaRWjq2jaqKW1h/mwQhjXIt9H/jIvLXRQlqjCvNJikR2vT8NygRfUQtfr21GxYM8sDydVuUyORYiPc57eqIMa8ivnQz/LjhPI6GO6LzQ4/kK1vLcRy7WVBcn/zzVdQ6PBkOKQnQVe+J0I7TsG3X3kz7jArWRYSomcJIK3zDVgLG+tpROBkrjsObeMGCBWpgwApd9N4ZQ0RozsTo1KlT8dtvv2HmzJlo0KABcsPVq1eVCL148SKqVKmC9evXo0QJqZ4mCHlFnwZl8Gxbfb7ohHmH8ewbHyq7wB6YFKAiQk2LUaYrsIBe/fr1VSXx7IjHneduoftXm7Ho4DVVQOrFTlWwYHRLNTkgCAJ7nTykvwyX9JNi+QVOsh9MCUbTkilpIlSjbw0X7Fj0KyJvhaFhvVqY872+tQsrbD8/5iV0emwM2vUdoaru5gfu3r2LCRMmqPSqLh3bY9/kzii+60NAlwLUewwOA39DzboNMu0zKlgfEaJmQpFZo0YNhIWFmZxZNlUcp3Tp0li4cCEOHjyovHcZw3tFhOZMjLI4FI0MBf/QoUOR23Dcdu3a4dy5c6oKHEUoe4YKgpC3vNa9OtpVLY74pFQ8+9dBTJs1W00UdezYUdnUwuwJNSVGGYbGSTUOINmyxd3dvDDapJRUfLH6FB77aSeuR8WjYoAX5j3fAuO7VIWLkwwXBCENv3JA8RrAxW1AkvHqsnYpQg8eVCGqJVoNeaDHKFq9jDo4gT2P3kGH0vEYPPpNDGxbU417mZ5EW9uhY8d8ERHBqBk6J7755ht89+EbmNcrDq4HftG/2PEdoM/3gJNLpn1GBdsgvyzZ+IFnmxZ+aVmVlYUzjGGqOA5vfL6f3jvmOmmICM2ZGD158iQeffRRFRI9ZcoU5AbmDNDAhoSEoEKFCkqEBgUF5WqbgiBYBnrkvhvaEPXK+iEyLgmjZx/D/979UEUrcBKKLbMEpLONnDhlIRFOhrL6uzlcjbyLwT/uwDfrz4JzpQMbBWHp2NZmtXQRhEJJm/FAcjxwcTvylQjVIr0y9hit0UtV1A3wdMTcgZ6YPcADG/edRK0a1VTUGdsS2jvh4eGqwwHDi4sU8UXIwo/xPP6Aw5U9gFsRYPCfQNtX0hUmEjGat4gQzQacaR4zZoz6P9u1cJYoO3AWnxW72Jdy1qxZIkJzKEbpvezSpYuawfrrr79yVUiILVpYUIr5u7Vr11YzYuXLl8/x9gRBsDxebs74dUQTBBf3wo07CfhkbyL+WrwmzTNqamKwsMH+ePSEBgSWwbs/zEMyHM3qM7oj5BZ6f7MV+y9FwsfNGd881gCfDaynrrsgCCao2QfwKAacXZf/RKixHqMGFXXJoFouODbaC12b1cIzzzyjapcw1Sy7RTttAT2ZrMlSuXJl/PLLL5g+5XXsGFsOZXZOBOKjgDKNgee3ADV6G32/iNG8Q4RoNvnwww9VERvmEz722GNmzxBx5p7J0kyaJiwgwbYuhb0wUXbF6Lp165RwpIeag09zZ/uNQYPauXNn1eidkwybN29WYdSCINgfRTycMaGpBwI9HXA7XodR887g2z//U/cucyHZYskeB0i2gOf93XffqQk6/wo1ENPxdUxcdw0TNsfj/I3bJsUo3/fL1vN4fOYu3I5NVC1zlo9rg971xA4KQpY4uwKtxgFn1/Bmyn8i1ERFXUNKeDnirxnTlA1hqD8LbzZvWAfzPn8ZyRd2Iq9hzRZWBA8ODlYt/EY9NQzX/x6LUckz4cjPxckV6PA28NRKoGjmTgYRo3mDCNFswuq5FDCspMoQTnPahbB1C28UQ1HFwdNnn32m+hmJCDV/xuu9995Tze3/+OOPHItGDr5osGhQmczO8F72iM1vPbEEobCgVcd1SYrFghfaoHqgD8JjEvDUX0fwxrRfVd4+w7E4a8/ev4UJ2sNRo0bhhRdewOARI5HY+TU4uuuLCsUmO+D93ckIj7zzgBhlP9DX5h/G+0uPIyVVh74NymD+qJYoW8wzD89GEPIZzZ4DEmKAkPXI1yKU0CtqJG+Uy9mffdWqVVj3yTC43T6JgROmoVK9lnh/eHu1H1vCMRzH1ayizhaLHIf36dkV1xe8jY9Lr4LX3ulA8l2gXEvg+a1AuwkqH9QcRIzaHhGiOYBFi+j6J8zBMdXSReP06dNp/6cxYE4jt1G1alUV4vv999/n5DAKFWzPQk8oB1JvvfUWbt68aXafUUOYkzt48GC8++67aVWQFy9eLC1aBMFOydiipbS/D/59tjkalvNTbUWe/HUv6vcfo4rEMVS/ffv2OHs2fYhZQUXreczfI+Zw9R/9Fhwy9MOjGI0vGpyutUtkXCKe+GUX5uy9AkcH4J1eNfHloHpwd5FeeoKQLVw8gPavAevetyuvaLZFqEbGvNEu7xlsdC86xi3C5ie9sP9ZL3St7IxP/9mkxCAj/ji2ZQqVNSJTOOHGKLixY8eiYsWKan+MkJvy2gu4Nf8V/FB1C4rt+RyIDQOKVQIG/QE8uRwoXi3b+xIxalscdIU1lskCcBaehYdcXFywZMkSdOvWzeh6nLnhTUNjwBj2PXv24Keffkq3DnNPtW3lNUlJSarSIlsk2MPx8FgYBu3q6qoS0UndunUxceJE1aOV4SLmilkWOKKh5HkxlI0eFEEQ7JPM+oTGJ6Uojx5bjJAhzcqhR8lYjBg2VOV8f/TRR2rQ4ujoWODsJq8LJzCZ8hEQEKAEOK/PgUsR6Pvdg4VT/hvdEjVLeqqc+GidO6buT8D58Fh4Mx90SAN0qCZtqgQh5zdkCvBtM6DTu0DNh/OvCM2KQ/8C/z2XbtGdBB0Wej2OJYduqk4GjFyjMOW+6UXlo2HDhvD3938g+s+UzaR9u3DhAvbt25f24Dg6Ojpajff69e6BEa3LoG7qMTicWQXo7kV6FK0ItH5ZtWZRYdO5hPKIxfCYikf7yohIwfKIEM0FKSkpqm0IPaKenp5Yu3YtWrS41+Q4A/TA8eY0JkIJC+6wfcicOXPUDZuX2IsQpRH4/PPP1WCLFdC2bNmS7nWKUYbYsk9eZmKU22HFYno/GYpLwzxv3jy0adPGBmchCIKlRajhvT19/Vl8ufa0ckYwZPfTPtXx85eTVdl+3uP0FjJ/qKDYTXpBGZLGwkQMyWXbMB8fn7TXP15xAj9sOpf2fFS7SnitRw31/80nr2PUn/sRmwyU9nPHLyOaoHqgr9WOVRAKDccXAeunAKN3ABmiEgqECFUb3wv83OnB5fScBjVWaREbN25UqU4Uj7TfFI/Ew8NDpVOxLR4fHDNz3MvINtZKoZ2/du2amkS8ceOGGl8TdjCgmO3SpCoerl0EQQmn4XBmDZAUe3//5VsBjZ/SF49ysmyBNRGj1keEqAXCBR5++GEVO88cQ4YO8KYxRGvRwtmg+fPn48cff3xgO2+88YZqOs7iOwwVZV+jwixE4+PjMXLkSPz5558qFJfVMUeMGPHAevQE+Pr6KlFqTIwykf25555TwpOwmAdD+Gj4BEHIvyLUkC1nbuLl2QcRHpMIdxdHvNK1GiolX8QzTz+tBjWchOKElp+fX761m1FRUaquwNSpU1WdAYbiMizXGPSM0uPJPqBa+5XZey7hrf+OIjlVh0pFHPF6q6Lo3LqpzTzGglDg+akj0PAJoNGDY5V8L0I11kxULV7S5ZAahu9msONMkzh06JDyKlJkUmzSJtMpwPEzbTyjOmibNZFaKdAXtYsmorpvPLyjQ4Drh4Coy+k3XqQcUOsRoMGwHIXfZgcRo1aGoblC7oiJidG1aNGCIc46b29v3bp169Jei42N1a1atUp36NAhXWpqqm7nzp1qvYwPLm/WrJmuWLFiOmdnZ52Hh4euRIkSuhkzZqjtjxgxQm27cuXKuuXLl6dt/8iRI7ru3bvrvLy81PqPP/647ubNm2mvr1ixQteqVStdkSJF1LZ79uypO3v2bNrr58+fV/ufP3++rn379mq/derU0X388ce6xMTEPPlq7N27V1e7dm2du7u77p9//lHLMrtuYWFhuiVLluguXryYtg1e69mzZ6trwvVcXFx0n332mS4lJSVPzkkQBPPgPbpnzx5lR+Pj4zNdt127droxY8boxo0bpyvi56dz9ymqK9ZtjK7sy/N0ZZv10Hl6eemKFi2qc3NzU38//fRTtW1L28y6devqNm/erFu4cKHF7ebdu3d1X3zxhc7f31/t67XXXtPduXPH7PcnJKXo3l14RFf+taXqMebv/brI6Fjd+vXrdbt27RKbKAiW4twmne794jrd5T02v6aXL19W46DQ0FAb7GyPTnfwn1yfJ22lspkJCTrdhW063aKxOt3U2jrdRN8HH5OK6XQ/d9Xp1n2g013Zx0Ge2fsx/J3w8/PL8diaNn7lypW66OjoHP9ObN++PVfXrCBSKIQoRQm/cNZ8XLt2Tde2bds00fPnn3+q5YYiVOPVV19NJ6Y4sNBuFk9PT12lSpXU8goVKuicnJx0PXr0UDfN6dOndaNGjVIDEgrciIgIXfHixXVvvPGG7sSJE7r9+/frunTpouvQoUPavubNm6duhDNnzugOHDig6927txKamiDTbpbq1avrli5dqjt16pSuX79+artxcXE2/Zw46HzrrbfUOTdo0EB3+PDhdK+bum7EUIzSIPM8tfVq1qypBp+CIJgH7VVsQpLNH9F3E3S7d+82S4RqNtPHx0f3wQcfKPv4/vvv6xydnHTewU30gvS5GbqG3Qfp/IoW1T3zzDPKtjg6Ouo6d+6sbIKlbOaAAQN05cuXV++zlBDlYOebb77RBZYuo86pU98hup9W7tHtv3jb7G1ci4zT9f12a5oInbrmVNpvEa+viFFBsDB/DdbpPg3W6SIuFUwRqkE7khCTq0di6Gndie+G6VK/rPWg8Py6oU43Z4ROt+kLne7Uap3uzo37782GCDX2O8G/OR1bU6BSjHKMn9PfiaSkJCt9KPmTQhGay2qBeZFkPHz4cLz88ssqbDRjkjYTr1lNl5Vz2R+TMLT08uX74QcMOWXYAsMsduzYoUKoGNLA0AU+Z04q8yYZFmwYmsFc1FOnTqltZ4TFfhjWdeTIEdSuXVslhLMCGXMomXdEGEbBvEsW9WGPU1vAMDxeLx43S3G//vrrRsPbjF03w3NnLu7cuXNVwjzf/+abb6qw56xC+wRBuE9cYjJqvnvfrtiS7zu6o2O71mbds6yQy1wiLX+c/2d6Q4/ej8D/ofFYeewGUmIicOXbYfjf9DmIP7UNC+bNUVW3mbPEcP/evXuja9euubKZx48fV+kU06dPx7PPPpur0Fxui2kas2bNQkxMLNyrtYJfqyFw8Q9KW+f5dpXw+r28T1NsOBWGV+Ycwq3YRPi6O2Pao/XRsXrJdOswp4sFjNiOjIXfJExXEHJJTBgwvbE+dJS9K9288384rjESY4EP86jf8JvXAFcvs1c39TvRr18/lapFzB1bnzx5UqVhZCxglJ3fCRbOrF69uoUvSv5FkkOsyG+//YZJkyYpMZkRiqhhw4aliSkKLEMRSvg+DpZ2796NJk2aqPzTkiX1A4mwsDAlGFmwgjeC9tC+3CEhIervmTNnVMXZSpUqKWFboUIFtTxj6xOKZQ3ejISDNWvDc37qqafU+XHwxvYCFKKmBnIZrxvhXAqrFnfo0OHe4C0GDRo0UD1a2XdURKgg5B+at2iRrXvW0Hax+AWLvTVtWB8/DGuEf0Y2R72q+ibmv68/gj/W7UPYzXC4uLqqPHQKR4pQrRUXBwic6MqpzWQeZ06gCGb+J4vdcaDy999/o9/QJ1HquZ9R/OFX04lQwmJEzAM1RmxCMt5YcARPztqjRGjNUr5YOrbNAyKU8Dqzp7VhaxdBEHKBdwmg55dA6BFg/jNAcmLBE6H5EGO/E4aOFnPH1ufOnVM2Ojk5Gb169VJiM7u/E9yHcB/LlpeyU1idi+LEFrAwEWeYt23bhmnTpuG///5TMyT00tHLaE6vUUM4U80WI6xAxgGTVpyCAwaeE2fzWTUxI9oXnq+XL19eVeplxTK+j7M1TBI3xFD4ad5baw5Kbt26pdorcCDIm5gFOFgBMrueBFYhpteTM1iaMWFxI56zYSVJQRDMx8PFCcffN96OytLQzhw8eAjRd+4oEern7ZGt92e0GbRf2rIWlf2xeExrOI0DSvm64vTdu3Cr1AQlOj2FDtWKo0ftkgg9sRcLF/6Hf//9V01k8b20laNHj1ZVd2mfLG0zIyIilE3njDuL09H+c9Kxc+fOqnL6I488gqVHw7BhziGT2/h63RnMerJpumVbz4Tjzf+O4NLtOPX86dYVMaFbtUz7g2pilL9bFKPiGRWEXFJnAHB0AXBqGfD7w/qelt7FC5YIdfHUeyazIjkBOPQPsH06EH1vfUdXoHY/JNUfhlUHr6Fbt67ZG/tx39k93Ex+J7Tn5o6tuS7bN1LMshgm7Tbttz2MrfMjhUKI8sOnoLOFCKUXjjMkrKQ7cOBADBgwQFUNo7FgiChFk7HZfmMhYcTZ2VnNzH/11VfK68dtkE8//VTN0HDwwJkYrmdM7HGmnSJUa1XC6r15Cb2s7H/3xRdfqJuR3k16Q+vVq5ctQ8TeTvScUugT9hhlGDSvLweO3A+9zMTcPqOCINy3mZ6uzjaqjnsQiXHRZofjZhdHR/2P/8TetTDH5SaWLlqIVO/iWH/dCeuvhyO4RG30fr0rplYtiqPb1mDIkCFqIMIqu4aTeqx4ztBVLZuF4VmZwddDQ0NVpUg+6G3VeuJxVp2wejcHPGxTxUlGTppqsOJtZmw4dVN5RVkV99KtOExedhyrj4eq18r4eeCzgXXRsnKAWddIxKggWJgBvwDfNAIu7QBmtAce/QsobdoZka9EKKGoyiw8lqG7+/8Atn11X4B6lQCaPgs0fhLwCqCRRMqR5frt2EHPeg32PaW9z2psvWnTJhQrVkyF6WZMvxPMR0JzLYTWooUDC7r7+aWkwGLuY58+fdSg5P3331choxSPGWGoKePPDeFASBuYcXsUt8zbJIxT5+w9RS57bNIDy3BczrA/+eSTKgae7WQ4Y8N8I663fv16jB8/HraGAzfOtDNOnudIT2i3bt3QvHlzFT/PGSX+Xxv4ZQa9yxwo8hpThPK6PPHEE2qQx9A6ilDCWH1eU16vjKESgiDkvxYtlhCkX773Gjx1d1H12Ey08YuEU3QojuzchLdeHo1e07fjpysl4enjhwYt22PRshVqYkubvWYLKHoqac+JNgjkJCLtF/n6669Rs2ZNFZnB89Eau/N9U6ZMUcKU/2dbKuYLcQBD+0wxaihCCQUmc0Ez49DlSHy4/AQ6T92kRKiTowNGtKyAFS+1MVuEakiYriBYEBd3YPR2wD8YuHMF+KUbcETfRi7fi9DMuHMdWDsJ+LImsPI1vQj1LQP0+Ax46TDQboJehNoxL7zwgmr9xxQNRt2ZGlvTyUO7yc9k7NixeX3Y+ZZC4RHNCxGqwS/rggUL1CBmzJgxSjBROA4dOlQJU3pPNej5ZIhUz54904rxMFzMEMa2a6FdhDcFPX/0ePK1MmXKqIEOZ+55HHz/iy++qEIGqlWrpgZKTNy2BRSAixYtUoKZnmI2Jp44caLqI8WQ3IzQy8vk8YxFiAjP8cMPP1RhbBr9+/dX15ADP2NoYlQ8o4JQuEWoBkNuOWnHSa+ln4xRxXqKlSyDClUbI8HZGedu3YX3Q69g09ofsW75YvgGlsfQVz7DdxOewK+//4F2bVorjyZzg7Rcdp4DPaicIQ8ODlZ5niyEYdi8nf/noDG7xYBYkKhbrUBsPBWGr9adfeD1KctPIClF76FtHRyAd3vXRNWSOU9JEM+oIFgQ9yLAs5uAuSOAs2uA+U8DZ9cCHd4C/NI7HvK9CA09Dmz/BjgyF0i9Fy1StCLQcizQ4HHAOf8UjDT8nWBKHH8nmO7VvXv3B8bWHPNzbM0Cm6x3wv6oQvYoFFVz80qEZoQzLK+88ooSZoSDGOZFvv3220o0mQNFlTb7bgi9hCxmxJBUbosDJc6yd+nSJdsVg3PamJ2DSw7SKBYZRsyEb4Y1cDusJMmbmJ5RY8evQRG+dOnSNJHN7Xz55Zdp1c54fRnyzBDlzHJuDdHCdJk0LmG6glA4RWhW3IlPwubTN7HtbDi2ng3H5dvpBxRuzo5oUqEYWgb7o1XlANQq7QtnJ8dc201zmbLsOH7acv6B5Q3L+WFMx2B0qFbCYuFhUk1XECxIagqw/gNg61T9cyc3oNmzQJv/AR5F868IpXw4vxnY/rVeYGuUawm0eAGo1gNwNJ2fbm2baUsopZgylrGarpA1IkRtJEINoVijkKJwJAzJost/3LhxqFKlSqbv/eOPP1QoakZYgppidOfOnUq8UQzS+8pBHuPdGzVqlPaoUaOG0bj37BoHeja1nCc+WN2X1cAYtsD3MpSYIbj0DmR1/IasW7dO3dDMi9Wq//I4mE/KGSpT+bSZIWJUEPIeexWhxmDe5Y5z4dgecks9bkYnpHvdy9UJDcsXRdMKxVC/nB+qFvfEzk1rLTqoiopLUqJ40+kwFXobGXc/L7VNlQC80CEYzSoWs0p+kohRQbAwV/YBa94FLm697zGlGG0yEnD1zD8iNCkeOLYA2Pk9cEOfLgYHR6DGw0DLF4GgRuZtpgAJUSJiNGeIELWxCM0ouOjOp5dQfRgODsqLSXc/W5EYC+My5RGlAM0Y0sq80GXLlqn3UChqlXlZ3YuhBFrYmPbQ8poI19c8jvTkagU3tMf58+dV3yUSEBCQJnIZxsABpimha+r4DeExcBBEKGrpNWbMPsMlcoOIUUHIO/KTCDU2wDgbFqO8pdtCbmHXuVu4E5/8wHp+rjrUr1AclUv4oLy/J8r7e6F0EXf4e7vBz8MlrXBSRhKSU5TIvBAei9Oh0TgVGo2jV+/g8JVIpBrELAX6uqN/ozIY0KhslsWMLIGIUUGwghfxzBpg7UQg7Lh+mas3UKM3UGcgULEd4ORsnyI0+gawZyaw9xcgLly/zNlDH3rbYjRQLPOc9oIuRImI0ewjQjSPRKjhl5b9ihh+StGowWpdw4cPVw3Xtf5EGvQKMp/S8DkL9WQFB4DM1aTIZH9RTVTSs0lRyb5IpmCuq2HOE0NcWXiJ4pMFObJzDTIevzHotaX45PlbsuKxiFFBsD35WYQaIzVVp8Tingu3sedCBI5ejcL58NhM30MNWtTTFc5ODnB2dATnGVNSdIiIS8LdpBST76ta0httqxRHh+ol0LySvypIZEtEjAqClcJ1D88GNn0CRFy4v9y7JFC7v3pcSQ3AwcNH81aE3rkGnFoOnFwOnN8EpN4bJ7IAUZNngIbDAS//HG26IApRImI0e4gQzUMRmhFWwmU4KpuZc8CmweJGffv2VQ+tuBE9i/RwakWNLDFQjIyMVIaBydbsy8mwWnd3dxVay/YolryG33zzjSqPTVFs2FOJntoffvgB7dq1s1o5bBGjgmA7CpoINcXt6Lv4deFqFKtUB1cj43E+PA4Xb8UiLDoBUXczb/VCKDBLFXFH9UAfVXCIj6YVi6G0X/b6qloDEaOCYEUP6eVdwOE5wLH/gLu3015KdnRDamB9uFZqBZRtBgQ1ybHoM1scUxTfPAXcOAKcXglc259+nXItgGbPAdV7p/Pc5oSCKkSJiFHzESFqJyI0437YmoRFjdhyxbCeFMNledOy5xwr7FIoWhprGAeKP5a/5nmtWLEiXWWxypUrqxm/xx9/XO3TFogYFQTrU1hEaFZ2MyklFRGxibgdl4jkFB1SUnVI0eng5OAAP08X+Hm6wsfN2WTorj0gYlQQrExyIhCyHnG7foXzxU1wTYl7cB16Iv3KA37l9I+i5YEiZQEPP8DFE3DxuP/XyRVITgCS4+//TboLxN4EYkL1obbq73Ug/AwQflq/TkYogKv3BKr1BIpnv0ZHYRSiRMSoeYgQtTMRmpHLly9j4cKFqgXM5s2b03kPKUI5uOODQo59Sy0RvmEJ40DvKvNWmQdL7ypzHAxhuDHbr1B8mlv91tKIGBUE61GYRGhhGFQREaOCYF3SckKbNEYJh0jgym69x/Tybr1QtDbO7kBAFaB4DaB8S33lW59Aq+yqMNhMEaNZI0LUjkWoMeHEPFKKOz6Y35kR9jpimxL2Da1Vq5Z60OPo4+NjFePAm4zHwQq9rHTLwkusnsueehnhcbGSLnuFUnzm1XU0RMSoIFiewiZCC8ugiogYFQTrkGVhorsRwK0QIPIiEHERiLykf0RdBhKigaQ4vcczJfHB9zo46b2k7Ofp6a/PRfUpBfiUBLwDgWIVgeLVgaIVMm25YkkKi80UMZo5IkTziQg19sVmTikLHVH48UExaApWtmV+KT2RPBcaOVbJ5XL2O2JBIP7lgDExMRGbNm1SuakcUHIwGRUVpR5sz0IvrfZg0SMuN0alSpVUrmfnzp1VKDH3Z4+IGBUEy1EYRWhhGlQREaOCYFksWh03JVkvSlOS9MKTXs5c5nNag8JkM0WMmkaEaCYwj3HLli12J0JNQUHIASA9k0ePHlV/KU5v3bpl1f2yzUxwcLCqdFuvXj1VPInGlCI3vyBiVBAs82PLAmSFTYQWtkEVETEqCJbh6tWrqqOBXbRosSGFzWYailE6eizZESI/Y39TJHYEhSdbk1SvXt3uRShhdVv2H+XDEA4K2feTj4sXL6pWMQzVpccyPDxchdP6+vqq3p8cXPBc2cqFlXL54Hb54DoUl7wm2oPbYOXe/D7gLF68uBLQ8fFGEvUFQTAb2oKCJkLbt2+v0gmmTZumnjOy5KWXXlKPwgo/XxbMY/X2/PD7KAj2TGEToQWRrH4naCeZLsexNh04gh4RopnAYkD5RYRmBgUkPZV8EFauNbxZ6A3kzIynp2ehnKUyFKOCIOQc2krmp+d3m5kVe/bskdnse2K0MHzegmBNypQpIxe4kPxO0FayTaHYzPuIEM2CwvBlEQEmCIKlEJtZuCgMn7cgCIKlxtZiM9MjvmE7c+uPHTtWufGLFi2qivv89NNPiI2NxZNPPqnCaZmLyT6cGswF7dGjhyo0xPWHDRumwm01+N4nnnhCvV6qVCl88cUXD+yX4QOad5Tw/y+++CL8/PxU+O3o0aMRExOT9vqvv/6qXmNfUOaFctvdu3c3WsVXEAShoNtMpjs0aNAAgwcPVukKYjMFQRDsA3v6nWC9GXpJZWxdSIUovzh8MGFYgxViuYy5kcbWNezbyZBVLsuYR2hs3Zzy22+/qTxMVsHljTNq1CgMHDhQ5eKwEFHXrl3VDcFqvuzV2bFjRzUAYp7nypUrERoaikGDBqVtb8KECaoC7qJFi7B69Wps3LhRbSczGLs+cuRIVcGNx7N+/Xq8+uqr6dbh/j///HP88ccfqr/ppUuX8Morr+T6/AVBsB/iEpPVI53NTE5VyxKSU4yum5p6f92kFP268UnmrZufbebUqVPx9ddfY+bMmWIzBUEoHCTG6h8GvxFITtQvS04wvq7BWNlBl6xflhSf5bqqCnAOsZffCf5GsGCRjK0N0BUieLp8hIWFpS2bPHmyWvbMM8+kW9fT01MtP3/+fNqyqVOnqmVDhgxJt25AQIBafvTo0VwdX7t27XStW7dOe56cnKzz8vLSDRs2LG3Z9evX1b527Nih++CDD3Rdu3ZNt43Lly+r10+dOqWLjo7Wubq66ubMmZP2+q1bt3QeHh66cePGpS0rX768OjeNxMRE3cKFC9VfMnfuXJ2/v3/a67NmzVL7OHv2bNqyb7/9VleyZMlcnb8gCPZF+deWqkd4dHzasm/WnVbLXpt3KN261d9eoZZfuhWbtuznLefUshf/2Z9u3Qbvr1bLT924k7bs710X863NzGg3xWYKglAomOirf8TcvL9s06f6ZYvGpF93cqB++e0L6ilt5eEZz+uXzXs6/bqfVNQvDz1+f9neWTk6RHv6nTBEfif0SI6onVG3bt20/zs5OcHf31+58jW0Xpzs53no0CHVR5ShARkJCQlR7Wfo8WU1WI1ixYqpROnMWLduHd555x0VXsaKu6ygSy8wZ4q0gkb8W7ly5bT3MDSBxyQIglDYbObatWvx4Ycfqu3z/WIzBUEQ7Ad7+Z346KOPcPLkSRlbG1CohKiW56iJKc29zrjx/7N3F+BNXm0YgJ8mdTeoQAXX4e4uY7iOwdgYbEO2MXdjxtzYxr8xYBtjgjsMGO7uVmixCnXXNP/1npKuLW1poU3T9rmvK7RJvmjDyfd855z3SDnlnAyhysbGJvuyadOmqSGr8iHOKSgo6LZt71beKrUyqTnnZYZJzjIMWF7PwIED8fHHH992PxIMAwICiv348lqGDBmihil8//33qpz4rl278Nhjj6n/eIb3Lr/nmXP4HhGVf2dm9lU/bSz+a/Me71ILEzvVgFaTu0jN4Td7qZ/W5v9t+3B7PzzYxgeaPAVtdr3c/bZtR7SsXm7bzAceeABPPPGEmis/YMAA7N+/n20mEVV8rwVn/bT4b78aHZ4B2k0FNHkixou32lfz//aVA6v0Qv2xH8HC0jr3tjNO3rYtmj1010/TVL4nZEjwBx98oIIr960rYRDNb/FYw1qZRdlWPrT5LWdSVovStmjRAkuXLlUTovMGaSE9lvJ8ZafI19dXXRYdHa3WfevatWu+9ymL0ct/RJnALUd75PZ///13qb8WIjI9tpa3tyuW5hpY5lNeIL9tLbQadSrqtuW5zfzkk0/UXCJZV1mWyCIiqvAs89n/NZd9assibas3M8+6PO++dX73qzXOcoKl+T0hRY0Ma4hy37ocFiuSLu3WrVurClfSUyc9d+fPn8++PioqSk1Clu5x6Z2UD4hUf42Njc11P3LkI+/pzz//zLXNu+++i+rVq6NTp07qw2WKpIdWXvODDz6o1iuSIQNSyVZCpE6nU8MKpCdTen2l4JBUAXvkkUcKXUhXKodJUaa1a9fi8uXLqhjRnDlzUBlI0SU5Cubt7a0+EytWrMh1/TvvvKPWlZUDD1J5rVevXqohykkarryfrVmzZuXaRqq1+fn5qYnweW9PVJLYZhqvzfzuu+8QGhqKhQsXss28hW0mlTdsM6k0vye+/fZblTdk/+/tt99W18n+dkHt5kMPZfUCV+R9zXIVRKVClXxA9u3bh02bNqk/qgwhlYq1Ijg4WJ2kmqt8MGSZETlCLR+YvObPn6+WGzGcJNQa7N69W30wpBrW2LFjMX36dJgiCUzyXOU/hrwPMt5dhhnL0iqG/xCffvopOnfurAKWBCcJ1i1btizwPps2bapus2zZMvXh/f3331XDXBnI50hev+xQ5kd6OmbPno2TJ0+qIRXSEMj7Hh4enmu7mTNn5vpsycERA6kuLD0n0hC9/vrrqmEjKi1sM43TZkpZfvnekQOf8n+bbWYWtplU3rDNpNL8npDhvhJapf5KQdmibo59TcN3SYXe19SXY1L9Vl7C9u3bC9xGqlpJdav09PTsy+Q2y5cvL/A2q1ev1g8ePFhV9Nq3b5++devW+sokb9XcyuhOnxERGxurttu8eXORq6SdPHlS36pVK31CQoL+8uXLen9//xJ93kSFYZtZeip7u8k2kyoitpmlp7K3mQLc19SXqx7RvAxDbmXSb2HbODo63jbOW3pWZU2hNm3aYN68ebkK7fTt21dViZXCPFJ8orIc3aaik8JNP/74I5ycnNSRrpxkeIRUZJMeZTlqJhU0DRo3bqyqt8ntGjVqhPfff59vOxkN20wqK2wzqTxim0llKa0y7GvqyymdTqcfMGCAvmPHjgVuEx4ervf19dW/9tpruS6fOXOmfteuXfojR47oZ82apbeystJ//fXXt90+LCxMn5qaqq9seJSq4KNU0lsu60+ZmZnpvb299QcOHMh1/eeff67funWr/vjx4/offvhB7+zsrH/22Wdvu5+IiAh9UlJSqf4diXJim1m6Knu7yTaTKhq2maWrsreZAtzX1JfbIPrkk0+qYZCyyGxBwybbtGmj79ev3x0/5G+++aa+evXqpfRMyx82DgU3DjKk9uLFi2rR44kTJ6qhtXLAoiA///yz3tzcXJ+SklLKfzWiwrHNLF2Vvd1km0kVDdvM0lXZ20wB7muWz6G5MsF3zZo1asFZqWybV3x8vBpSK9V1pYx+fkuu5CTLlFy/fh2pqaml+KypIpAqZlL9rF27dvj555/VkG/5WdhnS4ZLGNaaJSoLbDOprLDNpPKIbSaVJbtKtK9ZroKoHDyQxkHCpZRMrlGjxm3bSCUqqS4la4OuWrUK1tZ5FsnNx7Fjx9RyHFZWVqX0zKmiknWhCjuAIZ8tqbImyw0RGRvbTDI1bDPJlLHNJFOUWYH3NW9fqdWESYGhRYsWqWVVpLdT1mwTMhlX1g01hNCkpCS1lpucl5OoUqUKtFotVq9ejbCwMHWUQUKqLAPz4Ycf4oUXXijjV0dlLSEhAQEBAdnnAwMD1X9uKYYlE8I/+OADDBo0CF5eXoiIiFDLvNy4cQMjR45U2+/du1et1dS9e3f1+ZTzzz77LMaNG6cOdBAZG9tMKk1sM6miYZtJpY3tZh76ckSebn6n+fPnq+ulSExB2wQGBqpt1q9fr2/WrJne3t5eFZ1p2rSpfs6cOWpSOlXucfsFfX4mTJigT05O1g8dOlQVKJLlgLy8vPSDBg3KVazo8OHD+rZt2+qdnJz01tbW+gYNGug//PBDzg+lMsM203gqY7vJNpMqGraZxlMZ20zBdjM3M/knbzilyi09PR3r1q3D/ffff8f5tURExHaTiIj7mlSh54gSERERERFR+ccgSkREREREREbFIEpERERERERGxSBKRERERERERsUgSkREREREREbFIEpERERERERGxeVb6Dayok90dDRcXFxgZmbGd4iI6A4yMzMRGxsLZ2dntptERGwzqQgYRImIiIiIiMioODSXiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikG0AtuxYwcGDhwIb29vmJmZYcWKFbmuT0hIwPTp01G9enXY2NigYcOGmDNnTq5tUlJSMG3aNLi5ucHe3h7Dhw9HWFhYrm1WrVqFunXrol69elizZo1RXhsRUUljm0lExHaTjIdBtAJLTExE06ZN8d133+V7/XPPPYcNGzZg4cKFOHv2LGbMmKGCqQRLg2effRarV6/G4sWLsX37dgQHB2PYsGHZ16empqqg+v3332P27NmYMmUK0tLSjPL6iIhKEttMIiK2m2REeqoU5E+9fPnyXJc1atRIP3PmzFyXtWjRQv/666+r32NiYvQWFhb6xYsXZ19/9uxZdV979+5V52NjY/V+fn768PBwdfL399fHxcUZ5TUREZUWtplERGw3qXSxR7QS69Chg+r9vHHjhhyQwNatW3HhwgX06dNHXX/48GGkp6ejV69e2bepX78+fH19sXfvXnXe0dERjz76KLy8vNQQYOkRdXBwKLPXRERUWthmEhGx3aSSY16C90XlzLfffovHH39czRE1NzeHRqPBTz/9hC5duqjrQ0NDYWlpCWdn51y38/DwUNcZvP3222pYr9yeIZSIKiq2mUREbDep5DCIVvKdqn379qleUT8/P1WoQ+Z7Ss9mzl7QonByciq150lEZArYZhIRsd2kksMgWkklJyfjtddew/LlyzFgwAB1WZMmTXDs2DF89tlnKoh6enqqwkMxMTG5ekWlaq5cR0RUWbDNJCJiu0kli3NEKymZ+yknGU6bk1arRWZmpvq9ZcuWsLCwwJYtW7KvP3/+PK5evYr27dsb/TkTEZUVtplERGw3qWSxR7QCk3VCAwICss8HBgaqHk9XV1dVcKhr16548cUX1RqiMjRXlmf59ddf8cUXX2QPt33sscfUMi9yGylM9NRTT6kQ2q5duzJ8ZUREJY9tJhER200yolKuyktlaOvWrWoJgrynCRMmqOtDQkL0jzzyiN7b21tvbW2tr1evnv7zzz/XZ2ZmZt9HcnKyfurUqXoXFxe9ra2tfujQoep2REQVDdtMIiK2m2Q8ZvKPMYMvERERERERVW6cI0pERERERERGxSBKRERERERERsUgSkREREREREbFIEpERERERERGxSBKRERERERERsUgSkREREREREbFIEpERERERERGxSBKRERERERERsUgSkREREREREbFIEpERERERERGxSBKRERERERERsUgSkREpcLf3x+PPPII390cgoKCYGZmhgULFvB9ISK2m0XAdrPiYhAlIqJiuXTpEp544gnUrFkT1tbWcHR0RMeOHfH1118jOTm51N5NCbX29vYFXi8Bb/r06fled/bsWXW9PN+YmJgC7yMlJQVffvkl2rZtCycnJ7V93bp11f1euHABpu7MmTN455131I6bsSQkJODtt99Gv3794OrqyqBNlA+2m6arLNrNgwcPqu+VRo0awc7ODr6+vhg1alS5+J4pSeZl/QSIiKj8WLt2LUaOHAkrKys8/PDDaNy4MdLS0rBr1y68+OKLOH36NH788Ue17fnz56HRmMbxzoULF8LT0xPR0dFYsmQJJk2adNs2ERERKkwdPnwYDzzwAMaOHauCr7yOP//8U70uea2mvkP17rvvolu3bqpH2hjkfZs5c6bakWratCm2bdtmlMclKi/YbrLdzOvjjz/G7t271fdpkyZNEBoaitmzZ6NFixbYt2+f+m6tDBhEiYioSAIDAzFmzBj4+fnh33//hZeXV/Z106ZNQ0BAgNrhMpCweieJiYnqaHBp0uv1WLRokQqW8hp+//33fIOo9LgePXpUBdXhw4fnuu69997D66+/jsqqsL+TfA5CQkJU0D906BBat25t9OdHZKrYbrLdzM9zzz2nvpcsLS2zLxs9ejTuu+8+zJo1Sx08rQxM41A1ERGZvE8++UQNw/z5559zhVCD2rVr45lnnilwjqjMi5Thsdu3b8fUqVNRtWpVVK9ePfv69evXo2vXrnBwcFDDfSXQyBf1vZKjzjLkSkK0nHbs2IHr16/n2mb//v0qRD/22GO3hVBDqP7ss8/u+Fgy7PfZZ59Vr11uI69Peo6l17Ag0nspp7zkvcvbqyk9sy1btsx+j2SnRYZEG95fObouunfvrt5rOeXsoZT3uHPnzipUyn0MGDBA9WLnfVzpCZahhPfff7/a7qGHHirw+cvrlBBKRLdju8l2Mz8dOnTIFUJFnTp11FBdmUpSWbBHlIiIimT16tVqXqh8gd4LCaFVqlTBW2+9pXraDCFq4sSJ6kv41VdfhbOzs+qd3LBhg+rJzKmwUJcf6QGtVauWCrYy3MnW1hZ//PGHGkpssGrVKvVz/Pjxd/26JKRLyJOdCHktMsRKnqvctwRfd3d33ItNmzbhwQcfRM+ePdWwLiGPJUFbDgB06dIFTz/9NL755hu89tpraNCggdrG8PO3337DhAkT0LdvX3X7pKQk/PDDD+jUqZN6r3OG3oyMDLWdXCcBXN4zIio+tpuFY7uZe/ROWFiY+h6sLBhEiYjojuLi4nDjxg0MHjz4nt8tKWizZcsWaLVadT42NlYFqDZt2qjeOykQlPOLOScJrhJiiyo9PR2LFy/Gk08+qc7b2Nhg0KBBKpzmDKKGI9DSw3i3Pv30U5w6dQrLli3D0KFDsy9/4403bnsdd0N6bKUXdOPGjdnvXU5ykECCsATR3r175+pllZ09eY9lSLJhDq+QYFqvXj18+OGHuS5PTU1VvasfffTRPT9vosqK7eadsd38j3wvyfeszLmvLBhEiYioSDtUQoZp3qvJkyfnClLS0xcfH49XXnklVwgVMrQ0J7leehjyI+ErLxmKGhkZqXoSDeT3gQMHqiGphiPPJfH6li5dqor15AyhBb2OuyG9xBLE5f2SokrFIbeRYcPy2nP2KMvfQSoEb9269bbbTJky5Z6fM1FlxnbzzthuZjl37pyqtdC+fXt1gLCyYBAlIqI7kp44IYHxXtWoUSPXeZmLKIpSJVCCU69evYr8WFLwQR5P5jFKMSUhw3RlqKkcfZaewLyvTwLf3ZDXkd/80pIiQ5r//vtv9O/fH9WqVUOfPn1Uuf+ihNKLFy+qnz169Mj3esPrNzA3N881f5eIio/t5p2x3YSqmCvz9WXJMCmWl9+Il4qKQZSIiIq0Q+Xt7a2Gnt4rGR5rrN4I6T2VtUGlCEReUgjpgw8+UL2V9evXV5edPHlSDW81Jnn8/Ibu6nS6XOeluNOxY8fU0Fzp6ZXT/PnzVTGkX375pdDHyMzMzJ4nml9hIQmeOUlwN5Wld4jKK7abpaeitJuxsbHq4KKMWNm5c6f6nq1MGESJiKhIZG1NmUe4d+9eNXyopEgPpZCQK5V3S4rM1ZQQKgV58hYKkrVBZe6mFPqRgjwyVFfmQ0oP6t0GUXkddxPUXVxccPny5dsuv3Llym2XSZVFea5ykp0k6SX93//+hzfffFO9dwUNATa8x7JTVpweZSK6N2w3C1eZ282UlBT1nC5cuIDNmzejYcOGqGx4uJOIiIrkpZdeUst+SMEbqeyX3xArw1IixSFDTGVupgRB+WLO6V6K/EiolAI+UqhoxIgRuU4vvPCCWqJEhucKCdYyxHXu3LlYsWLFbfeVlpamblMYGZZ7/PhxLF++/LbrCnsdsrMj84PCw8OzL5P7kZCck8x1zUmOvMtC6IbiQsKw1qccXc9JKuBK74wMRZYCTnnlfGwiKjlsN9lu5kd6bkePHq0O7EpBvZI8uFuesEeUiIiKRAKTDGeVL09ZEkSGNsm8Tglpe/bsUV+mOdcNLSoJSF9++aUKuLLEiizXIke7JYzJEiN3Gj6Vn+DgYFWARyrF5keGUEk4k+csVWYtLCzw66+/qlA8bNgwdZRalkmRYCfzK2X9zpCQkELXEpUqvDK/R6rNyvItst5nVFSUWr5lzpw5qpBRfmTbL774Qj0fWcf05s2bansppGQodiLk/ZH7k3meMn9Tjvx/++23aNasWfYSLfK7zC+S5VlkyJe8TtlejuhLz7AsTyPLysh6qlJ9+OrVq6oab8eOHTF79mzcLbmthF9534UMiTas1frUU0+puU9ElRHbTbab+Xn++efVd4N810i7LgdOcxo3bhwqBT0REVExXLhwQT958mS9v7+/3tLSUu/g4KDv2LGj/ttvv9WnpKRkb+fn56efMGFC9vn58+dLt6D+4MGD+d7vqlWr9B06dNDb2NjoHR0d9W3atNH/8ccf2dfLfdnZ2RX4vOS+p02bpn7//PPP1fktW7YUuP2CBQvUNitXrsy+LCkpSf/ZZ5/pW7durbe3t1evr06dOvqnnnpKHxAQcMf3JjIyUj99+nR9tWrV1G2rV6+unndERIS6PjAwUD2mvBc5LVy4UF+zZk11m2bNmuk3btyobifvocGSJUv0ffr00VetWlVt5+vrq3/iiSf0ISEhue7rp59+Uvel1WrVY23dujX7Ovm9b9++eicnJ721tbW+Vq1a+kceeUR/6NChIr/P+ZHnKY+V30leM1Flx3azYJWx3ezatWuBbWZlimdm8k9Zh2EiIiIiIiKqPDhHlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIqJi+++47+Pv7w9raGm3btsWBAweyrzt//jw6duyI6tWr4/333+d7S0SVHttMyg+DKBERUTH89ddfeO655/D222/jyJEjaNq0Kfr27YubN2+q66dPn45x48Zh5cqV6rRnzx6+v0RUabHNpIIwiBIRERXDF198gcmTJ+PRRx9Fw4YNMWfOHNja2mLevHnq+ujoaLRs2RJNmjSBt7c3YmJi+P4SUaXFNpMKwiBKRERURGlpaTh8+DB69er13xepRqPO7927V52fOXOmOi/hVK6T3lIiosqIbSYVxrzQa4mIiChbREQEdDodPDw8cr0rcv7cuXPq9/vvvx/h4eGIi4tDlSpV+O4RUaXFNpMKwx5RIiKiEmZlZcUQSkTENpMKwSBKRERURO7u7tBqtQgLC8t1uZz39PTk+0hExDaTiohBlIiIqIgsLS1VIaItW7ZkX5aZmanOt2/fnu8jERHbTCoizhElIiIqBlm6ZcKECWjVqhXatGmDr776ComJiaqKLhERsc2komEQJSIiKobRo0erYkRvvfUWQkND0axZM2zYsOG2AkZERMQ2kwpmptfr9XyDiIiIiIiIyFg4R5SIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIjoHun1emRmZqqfRETENpPujEGUiIjoHmVkZGD16tXqJxERsc2kO2MQJSIiIiIiIqNiECUiIiIiIiKjYhAlIiIiIiIio2IQJSIiIiIiIqNiECUiIiIiIiKjYhAlIqqgfvjhBzRp0gSOjo7q1L59e6xfvz77+h9//BHdunVT15mZmSEmJua2+/D391fX5TzNmjUr1zY//fQT/Pz80Lx5c+zfv98or41Mn3xO5PMyY8aM7Mvk85b38/Tkk0/mut2qVatQt25d1KtXD2vWrCmDZ06VFdtMKkuzKmGbaV7WT4CIiEpH9erV1RdbnTp11PqWv/zyCwYPHoyjR4+iUaNGSEpKQr9+/dTp1VdfLfB+Zs6cicmTJ2efd3BwyP796tWr+OSTT/Dnn3/ixo0bePTRR3HmzBn+SSu5gwcP4n//+586EJKXfJbkM2Vga2ub/XtqaiqmTZuG+fPnq8/sxIkT0adPH1haWhrtuVPlxTaTysrBStpmMogSEVVQAwcOzHX+gw8+UEf89+3bp4Ko4ajrtm3bCr0fCZ6enp75XhcXFwdnZ2f15SnbJCcnl+AroPIoISEBDz30kOopf//992+7XnaiCvo8yU6VVqtFs2bN1Hlzc3N1WXnZqaLyjW0mlYWEStxmcmguEVEloNPpVK9lYmKiGqJbHNKr6ubmpobefvrpp8jIyMi+rnHjxiqEOjk5qXCb35coVS5ydH7AgAHo1atXvtf//vvvcHd3V58d6YmXnnkDGSYuvepeXl7w9vbGlClTcvXAExkL20wylmmVuM1kjygRUQV28uRJFTxTUlJgb2+P5cuXo2HDhkW+/dNPP40WLVrA1dUVe/bsUV+CISEh+OKLL7K3+fnnn9XwXDlqa2NjU0qvhMoDOdhx5MgRNcwsP2PHjlXziWWH6cSJE3j55Zdx/vx5LFu2LHubt99+W/XWazSacrVDRRUD20wypj8reZvJIEpEVIFJ8YJjx44hNjYWS5YswYQJE7B9+/Yih9Hnnnsu+3fp+ZThPk888QQ++ugjWFlZZV8nPaZUuV27dg3PPPMMNm3aBGtr63y3efzxx7N/v++++9RR/J49e+LSpUuoVatW9nXSw05UFthmkrFcY5vJoblERBWZBMfatWujZcuWKjw2bdoUX3/99V3fX9u2bdXQ3KCgoBJ9nlT+HT58GDdv3lQ96DJPSU5y0OObb75Rv8tQx/w+TyIgIKAMnjHR7dhmkrEcZpvJHlEiosokMzNTFTK4W9K7KsN/qlatWqLPi8o/6dmUYY05ydyl+vXrq+FkUlAjv8+TkJ5RIlPENpNKS0+2mQyiREQVlczn7N+/P3x9fREfH49FixapCrkbN25U14eGhqqToTdKQoTML5HtZU7o3r171bqg3bt3V5fL+WeffRbjxo2Di4tLGb86MjXyGZFiGjnZ2dmpYdtyuQy/lc/g/fffry6T+U7yeerSpUu+SxYQGRvbTDImB7aZDKJERBWVDJN8+OGHVXEhmXMnO/sSQnv37q2unzNnDt59993s7SUQCFmP7JFHHlFzQKWQwjvvvKN6UWvUqKGCQ855o0TFGfK4efNmfPXVV6p6s4+PD4YPH4433niDbyKZBLaZZEosK0GbaaaX1U+JiIjorqWnp2PdunWqt8/CwoLvJBER20y6A64jSkREREREREbF5VuIiIjKWGZqKtKDg5ERHo7MuDjoYuUUC11cLPQpqdBnZECvywDkZ4YOZubm0NjawMzWFhobOdlA6+wEc3d3ddLKydkZZmZmZf3SiIiI8sUgSkREVMpkFowuKgppQUFIC7qCtCtZJwmfctJFRpb8g1pYwMLDA5a1asKqZi1Y1a4Fy5o1YVW7NrTlbNFzIiKqeBhEiYiISlh6aCiST55EyqnTSDl9GimnTkEXE1PobcxsbGBRtSo0zk7QOjlB6ygnR2jsbAGtFmZac5iZawGtOfQZ6dAnJyMzSU5JyExOVvefEREOXXiE6k1FejrSr19Xp8TtO3I9llWDBrBr3x527dvBtmVLaGxt+RkgIiKjYhAlIiK6RxkRkbA/eRLhJ08hec8epF2+fPtGZmaw8PKCpb8fLP39YeHrC8vq1WHu5QULb+8SHUqbmZamelklhKZeuozUS5eQdikAqQGXkHHzJlLPnlWnqHnzVM+pbdOmcOjbF04DH1DPg4iIqLSxai4REdFdhr2E7dtx46mnb79Sq4VV3bqwbtQQNo0bw7pRI1jVqQONtXWZv9cZERFI3LcfiXv3IHHvXmQEh2RfZ2ZpCYfeveE8Yjhs27aFmYY1DYmo5LHSOKnvHC7fQkREVPS5niknTiB68WLEb/wHmfHxua53HD4MDl26qiGvMqy2PLye9KtXkbB9B2KWLUPquXPZ11lUrw6XcQ/BZcwYkwjQRFRxMIiSYBAlIqISDTYVsVKrVLWNW7ce0b//ruZ7Gph7esKubVtYt2uHnWbA/QMGlNt1RFXIPn0GMUsWI27NWmQmJKjLzT084D7lSTgPG6Z6TCvD35uISldlDaJsM3NjECUiohKRmZmJQ4cOoWHDhrC3t68Q76ouIQHRC39H1K+/qqq3QsKY4/33w2nYUNi2aqWGr1a0nSopfhS7ajUi5sxBRkjW0F2LatXgPm0anAYNVMvHJCUl4eTJk2jdujU0HMJLdFcuXbqk2gxfX99K9Q5WtDazqN+Rx48fR+3ateHAyuUKixUREVGJkJ4xW1tb7N69Gx07dizXYVSqzkb9tlAFUFnXU0hRIZcHH1TzJ81dXVGRybqkLqNHwWnoEMT89Tci/vc/pN+4gZDXXkP0okVweetNHAgNhaenJ3tEie6Bo6Mj9u/fr36vbGG0MpEQeuTIEcTFxcEyz8iSyoxBlIiISiyINmrUSP1eXsOoDMGVHlAJXoYAKmtvytBUx/79VU9gZaKxtITr+HEqfMuw5Ij//aiGJgc/OBbew4ej4RuvM4gS3YMqVaqgbdu2DKOVJITK96KVlVVZPyWTwXJ4RERU4mG0WrVqKowm3JpnaOr0mZmIXbMWl/vfj5uffqpCqFWd2qj25ReouXoVnAZmDUetrKSH1G3SJHgtWYzkxo1hptNB+/ffCBo1GilnzpT10yOqEGH0xIkTuHr1alk/HSpBDKGFYxAlIqJKHUZTzp3DlXHjEfzCC0gPDoZ51arw+vBD1FixIqsXVKst66doEmRO6L7z52H+5hvw+vQTaJ2cVJXdwFGjEf3nn2X99IjKNYbRioch9M4YRImIqFKGUSlEFPbRRwgcPgLJR47AzNYW7k8/hVobN8B52NBSDaDJx48jduVK9bO8hNBdu3apOaH3NWkC54EDUXPtGjj07gVkZCD0nXcR8s470KellfVTJSq3GEYrDobQoqm844yIiKjSzhmN27QJYe+9j4ybN9V5h7594fHKy7Dw8ir1xw777HNEzZ2bfd510iR4vPA8ykUIve++7Dmh5u7uqPbNN4j8aS7Cv/wSMX/+hbSAS6j2zdcVvpgTUWnhnNHyjyG06BhEiYio0oTR9LCbCHv/PcRv2qzOW/j5wvONN2HfuVO+20uPZVpQECz9/WHTtOldPabcR8KOHVmP5+WVK4QKOe/Yu9dd339ZhFADOe/++GQ1nzb4hReRdOgQAkeMgO/cubCqWbPMnjdRecYwWn4xhBYPgygREVX4MCqLiMcsXoybn36GzPh4wNwcbhMnwn3qFGisrUut5zLvfRREwq6pBdE7hdCcHLp3h//ff+Ha1KlIv3IVVx4aB/8/FqkAT0TFxzBa/jCEFh/niBIRUYWeM5p25QquPvIoQt96W4VQ6/vuQ42lS1D1uWezQ2jeOZvyM7+ey+LM6czvPgqiT083qTmjxQmhBla1aqHGX3/BulEj6KKjETTmQaRdv2GU50tUEXHOaPnBEHp32CNKREQVsmdUr9Mh6pdfEf7NN9CnpMDMxgZVnnkaruPH5ypElF/Pp3Wd2vfccynbFlXIG29m/+44aBDsO3a4p+HAxg6hBlpnZ/jOn4erkyYj5cQJBA0fjpprVsO8SpVSfc5EFRV7Rk0fQ+jdM9PLeCUiIiIjka+d06dP48aNG6UWRlMvXkTw62+oMCRs27eD18yZsPTxybWd9EAGjR5z2+293n8vVziM0+lwJS0NZs89iyhrawQHByMkJEQtUB4QEIDDhw/D398frVu3hpOTE7y9veGm00EzfwGqmpvD19ISTndRhdfYhYzuJYTmpIuPx7VJk9X7q3V3R+0tm6HhIu5Edy08PBz79+9HkyZN4OvrW+7fyfT0dKxbtw73338/LCwsUF4xhN4b9ogSEVGF6RnVZ2Yi6tdfEf75F2q4q8beXlXDdRo+PN9QlV+vZWJmJrafOYODtWri0M6dOJOSgmvp6VlXzpgBjUajgpqXl5cKnRJGRXJyMiIiIhAYGKh2sMLCwqDT6bLvt7qFBRpaWaORtTUaWlujmY017DSFh1NDISPDcy3NXtKSCqFC6+AAn5/n4trkx5F89ChuPDMD1X/4/p7uk6gyY8+o6WEIvXfsESUiogrRM5oRHo7gV15F4u7d6rx9167wnPkuLDw8CryNoUc0ND0d2xITsDUhAfuTkpCm16vn06xePTSpVg2t2rZF0379VE+n7BBq8/Ru5nd0X0KoBNPL27bh+Lp1OH7tGk7HxeGoVNHNyICFmRna2tiiu709utnbw6uAXgG7rl2RuH17qfaSlmQIzUkXF6fe37TAQHjN+gjOQ4aUyP0SVVYVpWe0vPeIMoSWDAZRIiIq92E06fBhXH/qaeiiomBmba16QZ1Hjy40UEVGRmLhwoWY99lnOHH9OiRatrK1xYBevTBi1izUq1dP9X6W9E6V7MAc/vZbbFi/HluCg7H79GlkZGaigZUVBjo6YbCjI1zMCx+wJEOHnUeMgCmHUAPpyQ0cPQb65GTU+mcjLDw9S/T+iSqbihBGy3MQZQgtOQyiRERUrsNozPIVCHnrLdmzgVW9eqj2+Wewqp1/sSEh8zm//vpr/P3332qHYuDAgRjUujW6+figauPGdzX09V52qmJiYrDqf//D8lWrsHbfPnlD0MfeAeNdXNC+fz8kbvuvNzSnkugZLe0QapC4Zw+uTn4c1g0bwv+vP2FWxIBPRBUzjJbXIMoQWrIYRImIqFyGUblN+JdfIfLHH9V5hz594D3rI2hsbfPdXuajvv7669i+fbsqLDRlyhQ88sgjqFq1qsnsVMlQ3rkffYT//f47gsLC0L5ZMzwZGYXWBbwm92lTYd+lS3Z4lqHGRZ1LaqwQahD1++8Ie+99VHnuObg/PrlUH4uoMigPYVTa6ZTEdCTFpiEpLg1pyRlIiEnFub0hiE+MQceBjWBlbQlrewvYOlrC1skSltamWcKGIbTkMYgSEVG5C6OybdgHHyJ64UJ13m3Kk6jy1FP59rSdOnUKr732GlavXo3mzZvjzTffxKBBg26b52lKR/dlfunatWvx3nvv4dChQ+hsZ4dn3aug/q11T/PrHRV5l6EpqMfU2CHU8DcLfvElxG/ciJrr18GyevVSf0yiis6UwqhOl4nI6wkIvRyLm1fiER2SiOiwJKSn/Fe0rSgkkLp42cLVyx4eNRzhWdMJju7WZVrsjCG0dDCIEhFRuQqjUhk3dOZMxPz5l5Tghee778Bl1KjbtgsNDcXLL7+M3377DTVr1sT777+PUaNGFXnepykMM5P3Y8mSJXjl6acRFBqKljY2eNfDE/5FXApFhsHm7RktixBqoIuJwaUHBsK2RQtU/+Zroz0uUUVWlmE0IToFQScjceVkBK6fj0ZGWma+21nZmcPOyQpWNuaqRzQ+MkVd7l3XCbp0PZITpNc0tcDbS0+pX2M3+Dd2R/UGLkbtNWUILT0MokREVG7CqOoJ/fAjRP/2mwqhXh98AOdhQ2+7/aJFi/DUU0/B3Nwc77zzDiZNmgRLS8tyO99JenVfHzIEN24EIzA9DaOdnDHVzQ3aO4Rq749nwWnw4HxDaO3MTKRfuVKqS8LkJ37LFlyfNh3+i/+GzX33Ge1xiSoyY4bR1OQMXDp8E+f3hyL4Ykyu66xszeFRwwlOnhaITApBUPA5XLsZiJDQG2rtZTlAKEtdXb16VW3v5+enlsGS5bDk5O3hAx+PWvDzqANbjSvCryQg/Go8MnX67Mcwt9SgZrMqqNfWE9UbuEKjKb2DaQyhpYtBlIiIyk0Yjfx5Hm5++qn63X3qVFj6+eYKUrKT8+STT2LlypUYM2YMvv32W7i7u5f68y3NIJqRkYHZX3wBy7Nn0cXRCbNXrsTG4GDYmAGfV6sGf0urIvWI5gyhVf/ZhOgiDuMtDTdefEktt+O3YL7RHpOooivtMBoTloQTW6/j7N4QZKTeGm5rBnjWcIKbvyUuhB7F5l1r1HQCWU9Z2NrawsfHJztoSvtjZ2eHn376Ca6urmqaREJCAoKDg1VQldP169fV9ARpSxs3box2bdqje9sBcLf0x/WzMYiLyOpNFTJkt0l3HzTo4AVLm5LtJWUILX0MokREVC7CqG7bdgS/8IK6zqZNGyQfOJArSB2oV1cVH5Je0B9++AHDhg0z2nMtzSAqRZbWzfkfxjVoAHcHB3XZxj//xOyjR3A+NRXPuFfBaBeXQosZ6evUyQ6hPhcuIPSNN4s0jLe0h+h6z5oF+04djfKYRJVBaYTR6NBEHFgdiIAjN4FbHZMunraoWs8KBy5sxsp1S3DgwAE17aFdu3Zo27YtWrZsqU5169bNdzpEYW2m9JieOHFCVTiX044dOxAQEAAbGxv07t0bA3uNgr9TUwQdj0JqYoa6jaW1Fk17+qBpL181/PdeMYQaB4MoERGZfBgN37sXnt/OBtLS4NC/P+LXr8+1zY9RkfgmMlIdXZ87d65RekGNEUSlp+CrDz5A7ZgY9GzYKNd1IRcv4sOlS7ApLAzd7OzxrodHvkN1011ccOP55+Dh6gq3v/5G0vbtRRrGW9qkim7M0qWosXRpmRYhIapoSiqMJsamYt+KSzi/L1RWlVJ8G7si2fYGfv7rG2zatEn1bvbr10+1vf379y9y21ucNlPa+PPnz6uCc6tWrVIH5+RxHxo7HsO6P4qIczpEhyZlDw1u2d8fTXpUh1Z7d/UAGEKNhwt5ERGRyZKAUs/LCx6//KJCqHXnTrDv0jn7+uTMTLwQEoyvIyLw0qhRWLZsmdFDaGnavHkzMq5cQYfadW67zqtOHXz10kt4sk4dHEpOwkNXryI6I6t3IGcIvfb447A9cBDWU6cVGEKFDHE2JueRI1XPaNy6dUZ9XKKKrkqVKqpXUnoVDXMxiyNTl4njW67h97f34dzerBDq38QNNk1C8exXIzD6sQcQGxuLefPmqekQixcvxvjx40ut7ZXvgfr16+PFF1/Ezp07ceXKFbzwwgtYvWYl+j7YBgv2vIVa3a1VL21qUgb2LA3AX+8dwPVzUcV/7ZmZOHLkCOLi4tRIHKsiFoaju8MgSkREJkuv06nhuGYRkdB7eeHigAHQ+fio68IzMvDw1avYlpCAL7298farr5ZKRdyyInOmDm3ahA7e1WBTQKElrUaLGVOn4b2+fWGmMcOoK0G4nJqaK4Tanz2LKqtWyVSuArlOnmTUgkVCY2mJKtOmIfybb6BPTzfqYxNVdHcbRmUY7tJPDmPX4otq2ZWqfg7w6JCMV34Yh8emPYSmTZti37596iRTIaRn0thkzunbb7+NoKAgVZhO2sr+Yzpi2anP0aC3M2wcLFQP6cqvjmHb7+eQlpL7AF1BGEKNr+J8YxMRUYUT+eOPSNq7D2a2tqg5Zw68a9fGochIxIwZg/FXryBCl4GFvn548LnnjB6kSpMMRVu3Zg2cYmPR9FbwLkz/Pn3x3ZQp8HdwwMTQEJyysChyCPV6/z14PG+8QkU5yVBgMzMNYtesLZPHJ6rIihNGpc2RQkR/fXBQrQEqQ1wb9HLG7A0vYOSEB9R9yXDfpUuXqvs0BTKk98EHH8Tx48exYMECHDx4AH1Gt8GJlBWo16Gq2ub0zmD89f4BhAbGFnpfDKFlg0GUiIhMUtLRowif/Z363fPNN2Fdry4aNWqkej2H/W8O9O7u2Dh7NvqvXFFmQaq0yLzYy/v2oVut2kXu5a3rXwNfT5mCBra2ePLyJYRu21aknlDnESNQVszMzVVBpajffi2z50BU2cNoeqoOm+adwc6/LkCXnqnW6Yz1OIYB4zuqKrYbNmzAli1b0KZNG5girVaLCRMmqHmks2bNwo8//4DH3xkE/+4a2LtYqSq7yz87glM7bqjAnRdDaNlhECUiIpOjS0hE8AsvAjodHAcMgNOQrCI6slM0depUtePxwccfo9ZDD1WonlBDEY/1K1aghpkZ/Is558rLzR3PDxyExhaWeO33hbh0a5huXnbduqoquaYQ4B369kVGcAiSDh0q66dCVOnCaHxUCpZ+cggXD4ap4f31u7vgk7+n48VXZ2DKlCk4duwY+srQ/3JQUMza2lrNHZXXWb16dTwwpjuOJiyFfxNXtQ7p9kXnsW3hOeh0mdm3YQgtWyW74A4REVEJCP/iC6TfuAELb294vvO22gmS4hF9+vRBamqqKliRmJioqifmXGe0LMg6nyuWLVPLo0RHRcHZxQUuOU5SwEOWHSgqeU0x585hyH1Nih1gZSezRvXq+HLaNDzzzTd4/Po1/OHrB488VSkde/UymQAvc0UdBw1E1K+/wbZVq7J+OkQVOozK8Foh1XTDr8VjzezjSIpNg42jJaq0SMXIKT1VuyVLpnTq1AnlUe3atbFt2za1jvQrr7yC/c324qPnfsSZf8NxZncIEmPT0HdyY2gtzFiYqIxx+RYiIjIpSYcP48q48TJpCb7zfoZdhw7qqPWQIUOwfft2VSSjQYMGt60zWlZhNCwsDF+99hq0V6/Cx9sbyQBidTrIkutmVlbQ2NjCq3Yt1KxXT+0g1ahRQ611mh+pRPnVe++hUUoKutarX+wQKu9BVY+qMIMZLl++hOk//oj4jAz87ecPizxDfGXtVY8Xyr5HVKScO4fA4SNQ+98tsPDwKOunQ1Shl3bZt28/3Mxr4NTGCFWQyNXLDpEORzHjpeno0aMH/vrrLxVGy+vayzkdPHhQfXfIwcz5Xy/G5W2pyEjPRFV/B/h0BpJS41kdtwyxR5SIiEyGPi0NIW++pUKo07BhKoSKN998E2vWrMHatWtVCBWyYyFzRoUp9Iy2rFYN7Zs3V5VsRVpGBmKSknAzPg7XTp/BkYOHsNPSAjYeHmjeqRNat24Njzyh65+NG2EWHIx2rVrfUwhNu34dTv9uxUdt2uLJPbvxUkgIvqxWLdftoubOhZW/H6zq1EFaUJBavqWsekmt69dXp1hZfmfKlDJ5DkSVgYONMzKDvHD0dJg6713XGf8G/IrZ73yNZ599Fp988kmBB8rKI2lnDx06pMLooHE9sOD7v5Bwyhk3g+IRFweMerktl2gpQ+wRJSIikxE5bz5ufvIJtG5uqLVuLbROTvjjjz8wduxYfPrpp2r+T15l3TNq6BFto9PlCqL5Pc+IhARcCA3FycgIpDg4oEaLFmjbvr0K1NeuXcOPH32Enk7OuK969bsPoUFBiFu/XiY/qW32aDR49cJ5jHdxxSQ3t0Lvryx7SaMW/o6o+fNRa/OmcjEfjag8kSJEJ7dfx6F1QWqtTTMN4FArFav3zceSpUvwv//9D5MnTzba8zFWj6hBSkoKHn74YbXW9PtvfAbnqCbQpQFetZww6JlmMLfMv92m0sViRUREZBIyIiMR8f336veqzz2rQujFixfx2GOPqcXSny+gsI6hZ7RatWqqZzQhIQGmSJ5nFQcHdKxTB5PbtEV/Vzek7N6DRZ9/ju++/BK//vwz3JOS0DhPz2VxQqgw9/SEmbV19nadXV0xxNcXc6MicTwpqdD7lF7S5OPHURbsu3ZR84IT9+wpk8cnqojkANjFQ2FY9O4+7F4SoEKoWzU7DHuxBdYe/AVLly3FV199ZdQQWlaFjH7//Xf069cPr7/3PGwbRaglakIuxWLz/DPQZ95eTZdKH4MoERGZhPBvvkVmQgKsGzWC09Ch0Ol0ePTRR+Ht7Y0ffvih0F6y8hJGDbQaDep5eWF0q1YYW7sOLm78BwdXr0a32rWL1BtYUAgVGmtrONx/v5qfqs7b2uKlRx5BCwdHvBQagpRbPaUFkR7VsmBRvTrMvb0Qt2pVmTw+UUUTfDEGSz4+jH/mnlZLmNg6WaL7+PoY9XobfPjlW/j777/x3XffoWbNmndcZ7S8kzoDst7oM888g1GjRuGx6Q/BtXkSNOZmuHQ0HHuXXyrrp1gpVZxB4EREVG6lXb+BmKVL1e8er74CM40G33z5Jfbs2aMKFNnZ2d3xPkxtzmhR2VhaIiA0BO29vVHdxfWeQqiBpYcHnIYMQdrVq7Bp3ly9N68+NBZP/fwzPggLw3teXgXev8wVlV5RY88bledo17YdErZuhT4zU30GiKj4kuPTVO/n+f2h6ry5lRbNe/uiWS8fWFqbqwN7UlF2zpw5eOKJJ1QBo5zVdCuanEu0dOnSBd27d1cHKx+dPhorFmzFmY0xOLrpKqr6O6J2y6pl/XQrFbbyRERU5iJ//FHWQVHFiWQJjwsXLuC1117D008/jc6dOxf5fspbz6hYsHMnZHGXEZ06l0gINTB3d4dtixbZPazN6zfAyIaNsC0xAYcKGKLrOHgQwr//AUGjxyD45VfUz7DPPoex2LZtA11MDFLPnzfaYxJVpGG45/eFYNE7+7NCqBnQsJM3xs1shzYP1FAhVJY1kXZVThJC77TOaHmX3zqhUoxJhun6+Pjg8ZdGo0GXrPD5729nERNW+PQFKlkMokREVKbSQ0IQs3y5+t192lS1M/Xkk0+qBck//PDDYt9feQqjl27exIFLAejbsCHcnZxKLIQW5ImxY3GfnR3eCA5WO2h5xa1chcTt28ts3qhd27bqZ+yaNUZ5PKKKIjU5Qw3B3bzgLFIS0+FWzR7DX2qJ7uPqw84pa5h+UFAQRowYgW7duuHzz3MfYKqIYTS/EGrg6OiIlStXIioqCh8veAGetRzVUjab5p9Bpq7w6QtUchhEiYioTEX/8aekLNi2aQPbli2xYcMGbN26VRXQsLW1vav7LC9hdO6O7ahma4f+bdrcUwhNOnQIUYsWqSGtBdHFxiJ0xQrU9vREMvRYGB1d5OdprHmjFl5e0Lq4IOHfrUZ5PKKK4OaVOPz9wQEEHL4JjcYMbQfXxMjXWsGzhlOuUPbII4/AwcFBrROa3xItFSmMFhZCDWrVqqXmyW7a/A+uZO6FpY05bgbF4djma2XynCsjBlEiIiozmWlpiFmyRP3uMu4htfPw6quvquG4Utb/Xph6GN1+/jyuh4djaKuWsLawvKsQKr3H8v4l7d+PzOhoxG/enO99XDl3DuELF8I+IgLjLCzRydMTv0RHIe0OhYsMZK6osVj4+iAtMBC6hESjPSZReSSVXo9tvoqlnxxWxYgc3Kwx9MUWaNXfH1pt7l3877//Xs23nzdvHlxdC56LXhHCaFFCqEHPnj1VAaPX33kJtTtn1RQ4sDqQQ3SNhEGUiIjKTPzGf6CLioJ51apw6NFDrRkqlQ0//vjjEllL0lTDaFpGBhbt24tG7u5o27DhXfeEqvcoxxp8aZcuQZf4X4CLS07GN5s24Y1//0W0Juu2HubmmNGvP6y1WvwQGXHH5+o6eZLRChYJy+o+6qeEUSLKX1JcGtZ8d0IVJcrU6VGzeRWMfr11rl5Qg0uXLuHll1/G1KlTVaGeOynPYbQ4IdTggw8+UPNFX/9sOnwauECXkYndSwOM8nwrOwZRIiIqM7G35oY6jxyJ9MxMvPnmmxg8eDDat29fYo9himF08cGDSE9OwehOnaGRleXvYU6o44AB2Uu1IDMTiTt3qp2xZYcO4enfF+JMUCCGNrkPPv36qeHPLuPHo0HTpujp7Y1lsbFI0ukKfJ5e778HjwLWby0tFj7Vs4cbE1HBQ3Gvno6E1kKDrmProd/jjWFl+99BKQPDnHsPDw91gK+oymMYvZsQKmQKyPz587Fv3z5czTiohjcHnYhQ7y+VLgZRIiIqExmRkUi8tWSA06CBWLJkCQIDAzFz5swSfyxTCqORCQnYcPIEOtXwR40CllEpTmEijbk5nB98EGbW1tm9ol//8gtWHjqItp6emDlyJIa27wAraxvYtm4NjWXWMODxw4bDRqPBbzHRBfaEOo8YAWOz9MnqEU3cu8foj01k6i4eCsPyz44gMTYNLp62GPlKKzTuUq3AESSbN29Wpy+//LLYy1mVpzB6tyHUQG4jc2hnfvwG6nXMqqK7d8UlFeSp9DCIEhFRmYj/5x9Ap4N148aw9PPDN998o+brNGnSpFQez1TC6M87tsNJq8Wwjh1LrDqu1s4Oac2aZZ9/ICUFr/TthykPDIS7lTWif/8dsStWQJfjNTfw90dbH18sS0rKd2fLsVcvlAVzT0/1MyMkaw1EIsrq2Ty0LlBVxs1Iz4RfYzeMeLmVqo5bWDh75ZVX0KFDBwwaNOiu3sbyEEbvNYQavPPOO+o+dl1YAQsrLSKuJaieUSo9DKJERFQm4iSISuDp3x+HDx9WC6rL2nalqazD6JngYBy7cgX9GzeGs71DiYTQpLQ0/G/rVrx48ACuabK+1l0yM+EXG6t+19jYQOPgoIbv6nJUypUd26GtWiE5NRU7c8wrNZD1RMuC5lbPrj4trUwen8gUHVgTiP2rsuZNN+3lg/unNlFVXguzePFiFdBmzZp1T3PuTTmMllQIFb6+vpg2bRo+/WIWarVxUZcdWhfEXtFSxCBKRERGl5mYiORDh9XvDj174KefflLh8F4r5ZpyGJUdprnbt8Pf3h59WrW65xAq97f2+HFM/+1XHLpwHgPq1oN/8/96RaWSrv7W/E+Hnj3hOn68GvaqT09H0tGjiF64EK0TE1HbwQG/REXddv+ynqix1g/NyezW0OHMdAZRInFwbSAOrc1aQqnjiNroNKKOmsdYGDnQ9N5776F///6qCvm9MsUwWpIh1OC1115T3xFbTy5V829vXolH6OW4Enm+dLvCD6UQERGVgsQDB1QgsvDxgc7DA4sWLcKMGTPyXduuNMOokDAqOzFFnT8lOz0yl/X69eu4GRKC8LAwnL14Ec39/Aq93ZYzZxARE41nevWChdb8nkLoqevX8dOO7YiOjUNLL0+MrlETVmfPQheZo7hGRgZSL1yAdYMG0Do65nzxSD5yBPqUFHVAYECjxvh83z7E6nRqyHDe9UONWTE3ZxDVp6Ub9XGJTNGRjVfUciKiw7DaaNbLt0i327JlC06fPo3Zs2eX2HMxhFEZvWLoQaxIIVS4ublh4sSJmDP3Oyz6dAQu7g/HyW3X4VXr9mrEdO8YRImIyOgSd+5SP+06dcTWrVsRHx+PMWPGGPU5FCeM6nQ6tdNz5OBBXDtzBrqYWDibAVUsLGGbkoyU8AjEeXgU+FgpaWn468B+NPP0RMs6de86hIbFxak5pqevXUMNewdMbdgQ7oGB0O/aBen7NLOwgMbdHbqQELW99Gha1a+fa1iembk5rOrWRcqJEzD38EC/BvUx78B+rIiNxYQ86wvKwQJjM7u1piqH5lJld3ZPCPYuv6R+bzekJpr3KXrw++6773Dfffeha9euJfqcTCGMllYINXjqqafw9ddf43rSSQCeuHTkJlJG14W1/e1VieneMIgSEZHRJR3OGpZr1649Vq9Yjlq1aqFBgwZGfx5FCaMhISH4Y8ECRJw9C3+tFr08PFGjRk3Y3uq5CwwNwZqjxwp9nEX79knixKhOne8qhMq6o3/s24fNZ07DRaPF0zVroU5kJDJPnYIqM6TVwqZ5c9V7KXMsY5YsQUZYmOohzQgNhUWe6rxq2+bNobW3hzOAOo6O2JaYcFsQlWBrbP/1iHJoLlVeV05FYuvCc+p3CaAt+/kX+bbSZq1evVqFqZJYj9mUwmhph1Ah30e9e/fGvD++x1P9v1BFiy4dvYlGnauV+GNVdgyiRERkVLr4eDVkVNg0b4bVj03EyJEjS2WHqSTCaFBQEG6eOIGhdeqiZpUqxb7/0JgY/Hv2DPrXqYPqOW5flBAqO13bz59XQVafmoLxVaqiZUoK9AEByJQNNBpVhMi+e3dY1aiRfTupRJwQFqZ+Tzl37rYgKgE0p1a+vvjpxAlkZGbC/FbBI0OPaOzKlbD0988eqiu/l+ZwXX1KsvqpKYUdTKLysk7ohh9PQp+pR922Hmg/pNYdbxMaGIvYsCQ4edhi8erF0Gq1eOihh0rtOZZFGDVGCDWQ4bkPPvgg3p1uiYhrwMWDYQyipYBBlIiIjCr52HGppKHmh568fh03bty466UFjBFGW7RogZ3166vhsHcTRH/avh1u5hYY3L5DsULohdAQdduwyEgMdHREtwxzmIWGqh5Q6TW0btIE1g0bQmNvf1uIt6pVCwk7dqhe2NTz52HTogXMnQqe49SxTVssOHkS2xMT0dMhq5qvuY8PQt54M9/tXSdNgscLz6M06GJi1E+ts/TVElUuCdEpWPv9CWSkZcKnoSt6jG8AszsUJtqzLABH//mvgNBve/5C9+7d4VzK/4eMGUaNGUKFFM6zsLDAmRv7oEFd3LgYg5TEdFjbcXhuSWLVXCIiMqqU06fUT+lV27BhAxwcHNCpU6cy/ysUVE1Xdnh6DxqEgIwMXM+numxhjl29inM3ruOBZs1gb2NTpBAanZiIzzesx8xly9EoIRGzbO3QPTYOZreGqkqAdxk/HnZt20Iry7Lk05Os5ooadtR0OiQfK3zocLN6dVHFxgYHWreC3a05ZRnXrhW4fdTcuaVWUTfj1hIzWpes5ROIKou0lAwVQpNi0+DqbYd+kxtDa665Y09ozhCanJqAI6f3o1uH3kZ4xsappmvsECocHR1VmF+9cZn6W8gRwGtni9f+050xiBIRkVGlnDmrfkpv3qFDh9CqVSt15NkUFBRGmzVrBt9WrbD53NkiryknO08/79yBWk7O6NGs2R1DaEZGBv7cvw/P/r4QVQKD8KlGgwdSUmCZmKh6QK0aNIBD//5wHDgwe63Nwph7e2f/nh6YVXUzJ1naJXbtWkTOn4/YuT/jvqpVceLsWbVsS1HIMN3SwB5RqowyM/XYPP+Mmo9o42CBAUVYJ1TIcNyczlw7iMxMHdo1LdkiRWUVRssihBrISJ1t27bBo1bW6JhrZxhESxqDKBERGZXMWRTW9eupHYyWLVua1F8gvzAaExOD+IQEbD5zBtuOF967aLDm+HG18zSqQwc1X6uwELon4CKeXvgbwg4fwVt64P7MTFjIGqDm5rBt0wYuDz8Mhx49YFWzZpHn0kqPs8wftaxZE/Z9+ty+gUaD9CtXoE9KUr2mrdzdEXbtGjKLGLQN80ZLmi6aQ3OpcpGDW7sWX0Tg8QjVA9r/ySZwdM8aQXEnMic0p3M3DsPbtQbqN6kDYyqNMFqWIdQwPFfa7YiUK+p8yKVYoz5+ZcA5okREZDSZSUlIv7WTklS1Kq5cuWJyQTTvnFGpPnnp9GloAwNR3ckJq44eRZsGDWBnVXCvZEJKCpYdPozW1aqhcY0aBYbQKxER+GnbVviF3cSzWi1cJARmZKgquDL3U4oQWVa7u0qNFlWrwm3SpEJfo3n16llDcDUa1HF1Q2ZaGoLS0lDzDjt8rpMnlVrBoozwcPVTm6eCL1FFdWzTNZzcel393vORBsVas9KzhpOqqmsYnnst/CJaNG+lLi9NsqSVzA11dXVFvXr1VHtSknNGyzqECn9/f7i7u+PslSNwRwfEhCUhNSkdVramMYKnImAQJSIio0m7FUK1Tk44evmy+t0Ug6iQHStPT0/M++47mF+6hMnduiOxbj28vPhvrNqzBw9271HgbX/dsxtWmTqM7Nwl3xAal5yM33btROqFi5gi81DlRjqd6sG0adYMVo0bQ1uE4bf3SuaZom1bmLu7I/5mGKw2bcIJNzfUvDUk+bbtu3ZFlalTSrVqbtqlrHUTrWr+VwWYqKK6cDBUFRsSHUfURp1WBa9HXJAOw2qjZvMquHk1CjN+DsL9w59DaTt27Bj+XrgCGo0ZmrRqoHoPq1atWiJh1BRCqOE7QL6fDh3dj1FNeyAuIgU3r8TDpwEPkpUUDs0lIiKjSbuSFUQt/P1w+vRp2NraqjXbTJEc8f/rt99QVYbXtmiJyJthqGJvjy716uHfCxdwIyKr5y6va5GR2H3hAnrVqw9Xe/tcIVSWY1h+6BDm//ILely4iIcNIVTeE19fNQTXtlUro4RQ9ZgeHupkptXCx8MD9pYWOHUpa6c4P0WdP3ovUgOyHt+qdu1SfyyishR8MRpbfsmaM9+0hw+a9br7HkTpAU2xCVdzzUv74J60jZv/+ReeTn7o0LgPzhy8gi8++Qbr1q1DUlLSPQ3TNZUQaiDv5eHDh+FePauaeHRoYpk+n4qGPaJERGQ0aVez5tpY+vohODgY3t7e0ORYt9KUnD17FtePHkVP72rwreaN8JvhuHbtKka1ao19ly5h8a7dmDFkyG23+3H7NnhaW6Nvy5a5QuiRS5dxdeu/aJOahs63tpUeUClCZFWnjhpKW5bMNVq4W1sjLDWrOm9hRYpKq0dUFxeHjJs31e+WJnqAgqgkyDDPdXNOIjNDj1rNq6je0Ht18uRJ1YvXpEmTEnmOBbl8+TJCr4WjT7sRcHNxRzVPX5y+cAybVu3E4QNH0ff+3qoIXXF7Rk0thBoK1YWEhMAyK4ci5mbWOsdUMkzz25+IqAL46KOP0Lp1a7U8iQxZGjJkCM6fP599fVBQkNppyO+0ePHi7O0kzAwYMED1Hsr9vPjii+qod07vvvsuqlevrpZBuXDhAkyVYf6fhaenCqJeXl4wVbLj5N+uHf4Nv6kKD1k52MPBwRGRYaEY2rwFjoQE41ie3sP9ly4hMCwMDzRtivCwMBVCM8y1+GvRH7DZsAGdU9OyekC1Wti2a6d6QO07dizzEGrgYWeHCF3uz5axihSJ1ICsYbnmnp5qaZriio+Px4wZM+Dn5wcbGxt06NABBw8ezFUU5q233lKfO7m+V69euHjxYq772Lt3r9r5lPlhP//8cwm8KiqOytBupiSkY83s40hNzIBHDUf0erThHdcKLQpZk1leq3Upj6g4d+4cLDV2cHV2U+elGFuTBi0xuMdY2OiqYtH8JZj97XcqUBa1Z9QUQ2jOAJ2hyapOHFvBgmh8GbeZDKJERKVk+/btmDZtGvbt24dNmzapuYJ9+vRBYmLW0B4fHx91pDXnSXaMJLz0798/ewiU7EylpaVhz549+OWXX7BgwQL1xWAglV3Xrl2LlStXYuzYsZg+fbrJ/k2zK6K6uKjXa8pBVNaRe3zKFIyaMQMRPj5YcPw4LsTGwNrWDvUd7OHs4IAle/epHSihUwvJ70FdZ2f4ODhAo9Xi8tatiPvzL/SKjoaKmhYWMPfwgNOoUbBt2RIaS0uYkipOTkiyz1qqID+OgwepHtHSWkM09VYYsLrL3tBJkyap/2u//fab6h2S/2+y4yQ76OKTTz7BN998gzlz5qieGjs7O/Tt2xcpKSnZ9/HYY4/hzTffxKJFi1QoulbIeqpU8ip6u6lLz8S6OScQG54MBzdr3D+lCcwttSVy38ZqU8+dOQ9vd9/bKnjb2tihS5ue6NNuGCKCkvH91z/hn382oW7duoWGUVMNocLwfiakZX13JcWlokDreuwAANokSURBVCKZVMZtJofmEhGVkg0bNuQ6LztCcrRa5pt06dJFHUWWYjg5LV++HKNGjVI7VeKff/7BmTNnsHnzZnh4eKijju+99x5efvllvPPOO7C0tER0dLQa4irDseSIvzyOqdJFReUKoqU9hOxeyY6WvOcNGjTAzp07sXPtWpwOCkRjB0f0r10bvx45gp2nTqlt9wUFITEhER2b18WN02dQ5/p1ZC+gYGUF2xYtYN24scmFz5xcHByRHBICx0GDELdq1W3Xx61cpU7CddIkeLzwfIk+ftKBA+qnTdPify6Sk5OxdOlSFSzk/5eQ/yNS9fiHH35Q/2+++uorvPHGGxg8eLC6/tdff1X/r1asWIExY8aoyyTwtGjRQv1fdXFxUT0GZDwVud2U3qVti84hJCAWltZaPDCtKWwdS649kDZVXlNpkv8PN0Mj0bL2fQVu4+5aFQO6D0fgtYs4tHsvTh8/i+atm6i/Yd5huhJCj99a6srUQqgwfNai4yIklqre7Ioi2QTaTPaIEhEZSWxs1hpkUu4+P/IlLZUI5ehiziEv9913n2r4DeRopHxpS7Efw3k5OilD0Pr166eOSJoqXULWF5TW0QGRkZGqqEV5IDtHcpT4mTffRK0HHsABfSauJCbB0cICOy8GqB6YMyEh6K4xQ/Vjx9Do+nXI7qWsyGnh7w83KULUooVJh1Bhb2uDlMTEfENoXlFz55Zoz6g+MxOJe/eq3+06dCj27SVMyN8h77BEGU62a9cuBAYGIjQ0VP0dDZycnNTQQfl/ZiC9ZnLgQa5r164dGjZseE+vi+5NRWo3j22+hnN7Q9Uw3L6PN4art12J3r98vvOG9JImj5GeokMVV487HsSr6VsXw3qPha9LQ+zechiHDx5VBw1k2S4DUw6hQg5ayGcvIjpMnU9JrDhBNMME2kz2iBIRGYEc9ZV5GPJl27hx43y3kbkV0pjLHA0D+RLIuTMlDOflOmFhYaF6EW7evAlnZ2f1xWmyMmQAK2Bmbq6+BE36ueZDdkgeHDsWbdu1w7qVK+GWnoYzJ07gQa0WXe3sYZ4p0RPQWVjAvnlzWNerB62jI8oLC60WmbqsocZFUZKFi1LOnoUuOhoaW9u7uk+ZU9i+fXt1FF/+H8n/kz/++EPtMNWuXTv7/0t+/58M1wkJNHKkX4Z1ytF9KjsVqd0MOhmBvbeWaek0sjZ8G2bNrywJoYGxiA1LQkJcogrWpSk1NRWZmXpYF7KOck7m5hZo0bgt6tZoiIMnduPc8XP45PyneKDHCKTEaRFvH6/m6JpiCDWQ9zQtPWsoqhSXqigcTKDNZBAlIjICmfN06tQpdZSxoCEyMr9C5lncLRkWUxA56mmYy1iWMm8VC9HBLLtwiMwBK29kntrkqVNxuG1bXJs2DU2Ss3ZS0vV6rNdqsFefibSjRwA5mQjZffKrXh0ehewoXIyORkamDroi7hRqfH1L7O8XvzPr/4Z161ZQn4wc9yuVlWVI5p3IPKeJEyeiWrVqansZLvbggw9mDwksKpkHJSeqvO2mDKPNW9zobkWHJuGfn09Drwfqd/BE/Y4eJfb/Zv/qyzjx73X1e+iNSOzechDvvvUeSktoWCgunL6M98+9fle3d7HyQgufPri8ORN6S3P0eKCp+v9tyt8D5ubmSEm9FUQz9Spw5Z0fa4osLCxMvs1kECUiKmVSBGPNmjXYsWOHqtCYnyVLlqj11x5+WFaW/I8Mszpwa96cQVhY1hCh4gzBkp05qTZZ1vxiY1TV2P2HDmYNZz1zRq09V6717o24FStxLi0NC1JT4OnujpZu7ia3o3IpNgZxLi7wLaBnScjcnmSNBpdmvlu0+5TiI8VcJ7Ag1VevhvTlBDk54Viez4TMKWvevPkd70PWpJViNzJnSYb7SaGR0aNHo2bNmtn/X+T/T86CLnJe5hCSaSnrdlOCaEm0TZnpwM09dshI0cDSJQPxDhexfn3uqqP3RAtU6531q+YvHdwcvJAWUXpVc100vvDx0Kj2uzgsNNbwtK4NL4c60Jhp1fsbn3YTu3bshubOealMSXsSdCUI1W4dw1u3bj1MrHnPNzxLwS5TbzMZRImISol80T711FNqTsy2bdtQo0aNAreV4WWDBg26bc6kDJv54IMP1PAxw5F7qXAnFV2LMw9DhrWZwly3a78tRGpoGNo0barmpdSpUwf3338/yiPpjZEhTPZ9+uC3Cxdw9PBhONjYIDI9HQHpaXisa1fUzTOkqSz9efgwqg8alF10Ij9ff/01tm3ZglpvvV3gNm6TJ6klZ6TwUklJDwnBlcBA9XurJ56AZZ41B4u71qzh6LwUpNm4caOq/Cj//2THasuWLdk7UbLjJZUgp0yZUmKvhSpGuykHku61bdJn6vHP3LPISIqEvYsVhr7YFjYOJTcE+OLBMGxb9N/SNkjTwkLngA6Ne8O1WsHVr40pIToVIQHRiI1IhkZSM4DI+GCcidyF+u08obVsoebzFnSwwVRCXd3a9YBIQGuhwYAB5fM7yxTbTAZRIqJSHFYmw8akIp3MxTDMqZAJ/VIMwCAgIEAd9c/v6LuUUpcdp/Hjx6svBrkPqWAn912cOTUy5KYoQxtLm/bW0B2z1FT1HkixkKIMHzI10gsjy0vIUWLZ0d3k5gY/WWNUn4khderiUPANvL9iJVrU8MfEzl3gYgLDPHVmZir8F/Z+y9/DWj4rqQUvUWDr4wOHIvROFkfMipUy5g22bdvC7i6XbhGyAyVBpl69eur/lawdWb9+fTz66KMqWMh8w/fff18dAJGdLBnSKVVGZa1KMg2m0m7K5+Ve26bDG4Jw5WQkNOZm6P/kfXB0Ldl2wNXLAfqM/7rmtFpLpGWkwsbBCtpiHrwpaTKE9fq5KIQGxsEMZiqEJqRH4kbiORwO2Ir7GmbNA5c1Y2UYqHw/5aymayqkPZFw5uLkpoKohZW2XH5nmWqbyaq5RESlRMqfS8XHbt26qcBiOP3111+5tps3b546Giw7T3nJl7MMT5OfcpR/3LhxahjazJkzy+XfTQrRiMzERHWkVZYbKI8hVOasyfOXI/nyZS27gl3q1YOVRoOQjHQ80q49RtzXGJevX8czvy/En/v3ldh8s7sVr9OpnfnCyN+jyh2KnVj6+5fo89JnZCBm6VL1u/Ookfd0X/L/TcKG7EjJ/xMpgiI7WoYdx5deekn1tj3++ONqBzghIUEVrMlbNZLKTkVpNyWE7V95Wf3eZXRdVPUr+aJlnjWc0LzPf+HN1soBKbp42DuXXeEfnS4TkcGJOLo5CGGB8SqEZmSmQ+OSAHsfPU5d2Ys2zTrAyTGrLXJ3d1dVWAtbZ7QsyWdRDtC5O2f1rMuyOxVJbBm3mWZ6icFERERGEPzqa4hdvhxVZszAo2vXqCOxssNYnkOozJf56rXX0Eanw6WoKGy6dBmv9ekDK30m7F1csGr/fuy5cgVWNjYY36EjOtbJXl3UaFLS0/H90SN46OWXC6w+KoYNG4bo48fxvUX+wwddJ0+Cx/Mlu3Zo/L9bcX3qVGidnVF7x3aTX+KG6E4SolPw94cHkRyfjvodvNBjfP1SnTNuqJr7wswpuHohDD99+bvR/0jpqToEHg9HXGQK9Lfq4qVkJMKmig5efm5IS0vH5t1rEXDtNN599jOs3b4ENu7A66+/rkJPeHi4GvIp67qaUs+o1DFo1KgRVv26DVd36+BdxxlDn29R1k+rwmCPKBERGY2FV1bxg/TQrIXXy1OPaH4hNK/B7TvAzdICy0+fgoODIxKiozGhVy+8PnAQfG1t8f3mzfjf9m2ISUoy6nOPTUqCmZXVHUvry9/DrYDj007Dh5d4CBXRf/2Zdf9DhzKEUrknB9f+/fWsCqHuPvboOqZuqRcuk57Reu28ULteDUTHRRS7kNC9SopLQ8CRMMSGZ4XQDF0aEi2C0bpPbXj7u6sQmpAci/OBJ9C/22BYW98+6kLm+Zpiz6jhO8ra3EH9tCvD3uaKiEGUiIiMxtwjK4hmhGZV4SsvQbQoIVQ42NpgQNOmOH39OoJTklUYvXb1KnyrVkHvVq1Qu8l9SK5RAwtOnMD28+eQaqQlCyT4aooQRIOvXIFrbFy+17nc47DZ/CSfPInE7TtkQt49D8slMgXn9obg2tloVdSm76TGMLc03lDOunXrIjk1CaE3S79dTUvJQHBADC4dC8fpnTeQEJWGzEwdYjOCUa9TVXTt3R5R0ZFITU2DdzVvbNy+Cs5OLujS9laJ33yYYhi9cOGCKlakSc8KoI5uHMZfkhhEiYjIaCy8vdXPtOvX4Ofnp4qIyJyTihBCDXo2a47ajk6Yt3Mn3NzdVBjdeewYtoWGYuCECXjnww/Re/IknLGxwbxDB3Hy+nXVi1KaYpKTYeXgkKvYS14yDyr45k14W9xex9CuW1fYNM0qLlKSwr/+Rv10GjQQVoVURyUqDxJjU7F7SYD6vc0DNeDsUfh865IenuttXxfpGam4dOkyooITceV0JDLSS3796JTENLV26Y3zMYi6kSgz/RCWdBnujczQa3AHuLg4qYOMEkJ9fH2w99BOBN+8ghH3j7tjBWxTC6NSSEmmM8SEZq0j6lqt7AvPVSQMokREZDRWdWqrn2mBQWjeuLEKYMeOHaswIVRIgZQRHdojNi4O60+cRFhaKnbGxMLC318VgpD5UFKI5Zk33kCDIUOwJTYGvx86iBvR0aX2OkLjYuFdq1ahz192/DJ0OjS0uv2Iv2OvXiX+nJIOHULirl2yNgLcp08v8fsnMiZpy7YvOo/UpAxU8XVAs14+RnvsPcsCsPTjw7iyMxN66BFyKRqXjobjZlA8okMlKJZMFdxMXSZCLsXi9K4QGI6dRSeHINM9DA+M7IFaNWuq9yFnCE1JSca2vRtQu0YD1K9dtCWfTCmMShBt2bIlooKzDpi6eZvGsjgVBYMoEREZjbmHBzSOjlJaEbVtbNRSCkeOHKkwIdSgSY2aaOldDX8e2I+N4eHoPfFRjB4zBnv27FELhwupYDty1Cg8/uqrsG7dGn9dvoQ1J44jPjm5RF+H7BjeSE1FjTssiyI7XOZaLerms7yFWQkvVyDP6eZXX6nfnYcPh6WP8XbaiUpDwOGbCDweAY3GDD0ebgCNVmO0ntCj/2SFNa1GC3trZ1wNyVqTV4QF5j/UvqgydXpcOxeFY5uu4vjW67h+LhqZGXrEJN9EhNk5dB3YQoVGkTeESnuy4d/Van7o6IEPF+txTSGMyiiRU6dOoXnDdkhL0cHcQgNnT+P1clcGDKJERGQ0Euas6mZVjc24GKAqJEoAqkgh1GBU587wcnND/c6dMXjwYHU/1apVU/drCKNChig/MW0aRj79NG5Wq4Z5x49hz8WLSC+hgiMRCQlItbRUj1MY+TvUc3NTS9CU9pItCVu3IfnQYZhZWsJ9ypMlet9ExqZLz8TuxRfV7y36+8G9uvF6zaRabk7V3WrjWOD27PNpyRmqd/RuSLCMDU9SYVaXoUdGaiYSU2NxJfEQWvSsgf7398telzW/EHo95BoOntyF9i26wM2lSrEfv6zDqKwVLctu1ajaSJ33rOUErZEOMFQWfDeJiMiobJpkzTVMPnJEDXkytSBaEiFUeLq6YmDj+3D19Gm1VpvcjywDkF8YlXlTLVq0wIxXX0XXRx7BEa0GCw4ewLmQkHueP3o5PBzW7u53DKIHd+1C/dTU2y53HDyoROeH6hISEHprPUfXCQ/DwjOrgBVReXX+QCgSY9Ng52SJVv1K9qDNnTjlmYfavGYXRMWHIc06Up2XACnDc4vajugyMhEWFIf46BSc3xeKgMPhqhJuui4V5yP3wbupFUaMGpErWOYXQjNlaa5/lqrgNqDXiLt+fWUZRletWqWqu2uSsyrmytItVLIYRImIyKhsW7XKniPYsWNHnD59WhUtqkgh1KBtzZrQhIRg0z//qPOFhVEhvQu9e/fG02+8Af/+/bEhIhx/HjqEsLi7H153OSoStZs2VZUfCxIREYFTFy+imfXtxYzsO3RASQr/4ktkhIbCwscH7lOnluh9ExmbPlOvhq2Kpj19VbVcY5KlW5r3+W/dzQa+raHLzMD+k1thYZX1XCRIxkdlFdspjATKUztu4OrpKJzbE4r4qFR1XxfCDyCjyg2MHTcKdWvVv+02eUOoOHH6KC5eOYOBvUbA2vLeKs2WRRiV1yVBdNDAwbh2OivU+zRwNcpjVyYMokREZFS2LVuo5TrSAgPRp00b1Ru4Zs2aChdChZWFBTr5+ODYv//iypUrRQqjws3NDWPHjcPEl1+GWbOmWHThPDaeOoXEfHos77RsS6hejwYNGxa63bp165CZmYku9rcPKdSX4BIzSUeOIPqPP9TvXjPfhaaQKr5E5UHQqUhEhybB0lqLRp2zqoIbW83m//VOmmvM4eXihzOXjsEhx1IjMaFJBRYhEumpOhVA05J12UHscsRx3MAhDB/zALq073FbxduCQmhaeho2bFuJqu5V0bZ55xJ5jcYOo+fOncOlS5fQs90gNT/UxtESHv6Opf64lQ2DKBERGZXWyQnWt4KR5cmTqld09erVFS6EGjTyrgb3pCSsW7VKhb2ihlFRq1YtTH3mGQyeOhVXqrhj3tEjOBgYCN2t+7mTY1evws7HRy0/UBg58t+qbl1UyafXtKQKFWWmpiLkjTdl7xVOw4fBrn37ErlforJ09J+sA0yNulSDpU3Bow5K05VTWT12Bi1r98CNyMsICjsPs1t7+uHXE1TV25xuBsWpZViCTkbixNbruHklXl1+I+YiTkb/g24D2mD4wDGwtr69QE9BIVTs3LcVYZHXMbD3qDsu12KqYfSPP/6Ag4MDnPTV1fkaTdxhpim57wXKwiBKRERGZ9+zh/oZv+VfDBw4EJs2bVJhsKKFUCH316N2HVw9fDjXUjVFDaOyHIzsfD372mto8+CD2JuehgUHDuDyzZuFPq4sxXImOhqtunRRS8YUJDU1FRs3bsSA3vkvNF9ShYrCPvwIaZcvQ+vuDo+XXiqR+yQqS1KxNiQgFhqtGZr2KLvKz3lbrNZ1eqs5nXuP/wtbR0t1mVS6jQxOzNUTGn4tQfWEhl+NV9VxIxODse/actRpXRWPjX8CHu5e+T5eYSE0KTkRV8LOo2Y9Xxw7vxe7Dm5FcOi17INw5SGMSoGiefPmYdzYhxF4LCvk123jUSqPVdkxiBIRkdE59Oypfibu3o2BffogOTlZhdGKFkINvF1cUM/SEptWrVJLAhQ3jApbW1s88MADmP7GG/Ds0R0rQ4Kx5PAhRCZkrW+X17nQEKQ5O6HVrTm5Bdm6dSsSEhIw/Ikn4DppUq7rXCdPKpFCRbGr1yDmr7/UkGzvWbNUrzhRRViyRdRuVRV2zrcve2Qsvo3dcp0315qjkW87nLi4H8kJadmXXzsXjbTUDESFJOL0jhtIisu6LiE1BvuurITWKxrTHn8GjeoW/H++sBAqDp7Yi2o1q+Cb2V9hyIP9kWEbhZ0n1+Ov9fOwYftKHDq+B6fOH0NqWvGmGRgzjMoIkRs3bmBw93EqqDtWsWGholJSNmMIiIioUrOqWxcWvr5Iv3oV3leuqGVcfvnlF7XMSUULoYadNw97B5wPuISzZ8+iefPmt4VRIc+nU6dOsLOzK/C+PDw8MGHiRJzv2BHrV67Eb6dOoYm9A9rXrg0bS8vsxzsWHIy63bqp+aaFWbBgAerXr6+G75rddx8ce/dCWlCQ6gktiRCaevkyQt5+W/0uS7XYd+p4z/dJZAqu3hoSW6NJ8ZcmKY2CRYb1RMX4wU/ipW8mIDguAJ62tdVlurRMnNp2Q1XSFWkZyTgRvA0OHuaY+MhE2NlmVYe92xAaHhmGG5EBeGjiSLi4uKBbt27o2rWruk1AQACuXr2Gq0HXkByVAmsnDdzd3e85jO7fv1+d9/X9r2DTvfr6669VOxx7Kev1NejgVarfD5UZgygRERmdfKk7DRmMiG++RczSZXj88ccxY8YMtcPi5ZX/cLDyGEKlWNDFsDCcvhmGGDs7NOrTG7VrZ+0U5lTcMCrbS3iU+5K17rauWYNzhw+hQ7XqaFK9OoIiIhBuaYkBnToV+vykWu7y5csxa9YspJw4kR1AnUrogEBmUhJuPDMD+qQk2LZtC/dp00rkfonKWlxksipSJPMGfRq4lPXTQYdhtVXRokNrg9ScUX2sA6q51sDKHQvw9MgPkRqfNTRWQqhUwj0TuhfxZtcxYug4VPO887DiO4VQuX7/8Z2oWd9HLcuVs62SJVDklFNaWhrWr19/T6+5NMKojBDZsWMH/vhpJcIPxcPcQlNmRagqAwZRIiIqE85DhiDi29lI2r8fo196ES9ZWuKnn37CW2+9VS5DaFRSEgLDw5GUlo4b0dEISU5CjFYL6ypVUKd/f4zp0gU+PgXv8BU3jApZkkW2a9q0KTZv3oxtmzbh2MEDqphRre7dUadOnUJvP3fuXPW4fePiETR6TPblMkTX44XncS8y09Jw/amnkXrxopoXWu2zT2GWZ+eVqLySCrPCs6YjrGxLpqBXSRcuGtz2cfxvwxvYtG8FujcfDF1aVk/o2Zt70bx9PTRvPL5I93mnECouX72ARF0UHhn4eJEKFJVUu1uSYVRe5yuvvILWrVvDJl7a6mg06OgNG/uskSZU8hhEiYioTFh4e8OuQwc1T1S3Zi0efvhh/PDDD3j55ZfVeprlJYTa2NjA2s0NW2/cQEB4OMytreHZqCEa1a6NmjVrql5Ly1tDZu/kbsKokOqOQ4cORZs2bbB21SqEXrmCvv37F/r60tPT8d1332G0bHdrSRWDqLlz1RDdux2aq9fpEPziS+pva2Zjg+rffgPzKmU7fJGoJF29tbakb8PCh74bU2xY7oJvflXrwbdKXRy8uBmuHnZo5N4DZjBDQ8/2sLPKWqalJEJoRkY6Dp/ei5adm6o2z9hKKozK6JADBw5g1aItuLo9WhWhatar7IpQVQYsVkRERGXG9eGsI/Ixf/+Npx97DKGhofj111/LVU+oo6Mjpr/8Mvo+9BCe/+ADvPnpp5g2Y4YqLNSwYcMih9C7KWCUl9xm8pNP4rX330f16lnLDhRk0aJFuH79OiZ37Zrv9TJM926oHde33kL8xo1q6Zfqs7+FbY45sUTlnSyDcv1ctPrdL0+hoLLk5HH7MisjOk5DcFQgTl87gPrtsyq/amCOkAsJSEjMWq7lXkKoOH72MCwd9OjXry/Kyr0WMJLq4a+99hr6SPG8wKy5so27VIOjO9c6Lk0MokREVGbsunSBVZ3ayExMRNVjxzBmzBi8++67qopueZoTKmFUTk5OTsUOniUdRuW2MmT3Tjtdb7/9NoYNG4bGBQTWu1m2RXpCw97/ALFLlwEaDbw//wz2HVmciCqWuMgUVU1Va6GBe3V7mApD0aKc3B290a/FQ9h1YAuO7j2dfbkt3LB/95ECl1UpagiVMHv+ynH06NMVrq6uKEv3EkZnzpyJy5cv4/mJ76nlbCystGjZv2SWrqKCMYgSEVGZkdDk+uhE9Xvk/AWY+dprCAsLw7ffflsuq+OWpHsJo3ciQ6CvXbuGZ2vVRsgbb952/d0s25KZnIwbM2Yg+vff1Xmv99+HY58+JfaciUxFzK0hsM5VbVSxIlMiRYuGv9wSfvf911Pbo8lI+Fath7mrP4ZZjj1/+/TqOHjo4F2HUHHg+C54+Lqgc+fOMAV3E0YPHTqEjz/+GG+//h6u7s9aXqvNwBrZa7BS6WEQJSKiMuU08AFY+PlCFxkJ5x07VAXdjz76CNHRWUPfKmMILc0wGhcXhw8++AAPDx4Mt1Wrbrve6/334PF88QoVZURG4sqERxC/abMajis9oc7Dht7zcyUy6SCaz1BYU+kZtc+xrqlWo8X4bi/hctgpnIvYCxfPrOetgRa6cAdcDrp0VyE05OYNhMZeQf8B/UptXn9ph1EZHfLII4+ogm8tPPsjNSkD7j72aNK98KkNVDIYRImIqExJcKk6Y4b6PerneXh9+nRV2v/DDz+s1CG0tMKoHPlPSEjASw88kP/jWRSvAmjqpUuq4q4s/6J1coLv/HlwGjDgnp4jkSmLuZls0kFUVPV3zHXe08UPD7R6FLOXvAn7ZuHZ11vAFmGnMxB2M7RYIVSG9B44vhP176ulQpypKUoYldc7ffp0XLx4EbNemYPLRyOg0Zih+7j60GgZkYyB7zIREZU5h759Yd2okVp3Er8txOuvv44vvvgCBw/ePmysMoXQkg6jx44dwyeffKIqE/vnWOvvbuaGyk5czLLlCBwxEunXr8PC1xd+f/4B21at7uq5EZUXMWGJJh9EG3b0RlX/rKI7BmMGT8SQIUPw0PixqNXdElZ2WXPJzWGFSweicfrsmSKFUHEh8AxSzeIx4IH7TbZ9vVMYlarhsoTV91/OReCurF7uNoNqoKpf7hBPpYdBlIiIypyZRgOP119Xv8cuW4anevRA8+bN1ZCplJSsOTuVNYSWVBiVXuYJEyao+5DqkDIHVNYLvZu5obqERAS/9DJCXnsN+uRk2HVoD/8//4BVjRrFfl1E5U1s+K0e0aqmG0TFyFdao/v4+mjU2Vv9HP1qW1WVvEaNGhg5dijaDv9vaRJzMyvsPLAJdo42dwyhaempOHbuANp3blXo2simHEa3bNmCGTNm4PkZL8I6rI4qPuVdxxnN+/iV6fOtbBhEiYjIJNi2aA7nUaPU7zffex8LfvoJAQEBqopuZQ+hJRFG33//fZw5cwYLFizIruzr8cLz8P/rT3h/PEv9LMrc0ORTpxE0fDjiVq8GtFpUmTEDPnPnwryMK2YSGYusxXnrF5MnPaPdHqqvfgp7e3v8/N1CREfFYNIzD8HZK2t5EjNo0NLrfmzZtwY3I0MLvc+jpw7CztUcvfv0RnmQN4weP34cI0aMQO9evdG15lg159fexQp9JzdWQ3PJeBhEiYjIZFR97llo3dyQdukSqvyzCe+8844aSrp3715U9hB6L2FUhjjLnNs33ngDzZo1y3Wd9IA6DR58x55QWZol4n8/ImjMGKRduQJzLy/4/fYr3J98QvVoE1UWljZZPYbpKTqUN3uWBeDA7xF4rNtMHD9+DPM3zgLM9Oo6swxL1HFrjc17V+LcpVNq+H1esXHRuBR8Gr379VBLVpUXhjC6evVq9OjRA7Vq1cIzI2bh6ukotQxP/yfvY5XcMsBvDiIiMhlaZ2d4vTdT/R41fz6mdeqEdu3aYfjw4QgODkZlD6F3E0ZDQ0PVeqEtWrRQQ3LvRtr1G7gyYQLCv/wSyMiAQ+/eqLl8GWxbtLiHV0FUPllaZ82tTEvJQHkSGhiLo/9kDU/196yPl6a/jV2HN2LTud9g42QBK1tzjHiiO3o+0AnHL+3Gjv2bkZGRfttyLdVqVkX79u1R3sh3iKyfLAH6jce+waVDkZCvij6PNeK80DLCIEpERCbFoUcPOD84Rv0e9trrWPzjT9BqtarIRnJy1tysyhxCixNGZWkCCaE6nQ7Lly+HRTEr4qqCRCtWIFDe+0OHobG1hdeHH6LaN1+rgwZElZGFIYgml68e0dhby85ID6hrkxQ0adEQ0wfOwsbdizF79ctoP7Yaqvo6YeDAgXh40ljE6UOw+t/FiImLUje7FhyEiMRg3D+gX7HbkrK2adMmdOvWDf7+/vjmlb9w43hW7YHu4xugZrMqZf30Ki0GUSIiMjkeL70Ey9q1kBEejrT338fKJUtw6tQpTJ48OddwscoaQosSRuV9evLJJ3HkyBEVQmWb4siIjsaNp59ByCuvIjMhATbNm6PGyhVqfdDK9j4T5WTnbFkue0SdpMrvrRBq4ZCJ8AM2qOHeBM8M+gJB1y6h54BO2L9/v9pWlmR5asZUVK1hj3U7FuPwyX04eGo3Gjevi4YNG6K8kHbw66+/Rr9+/dChfQe8P+VnXD2aoK5zbZwGu+q5e3zJuBhEiYjI5GhsbFD922+hcXBA8tGj8FqzBvPnzcPvv/+uiu6Iyh5C7xRGZW6tFCb66aef1Nyo4kjYvh2XBw5C/KZNgLk5qsx4Rs0HtTTxCplExuDXyE39TIhOLVdveFU/B9Tqo80OoZlpWTHAx70OXhz6Hbw9qqNr16745ZdfVICrWrUqpk2fioGj+uBazFnAKgUDHhhQbtpaGUEzadIkVR33xedfweN93selg1nDcXtOaIBeo1sWus4olb6ssQVEREQmRpYCqfbF57j2xJOIWbwEPatVx3vvvYc333xTVX2V5V0qewjNG0aFhFHpPX7llVfUezV+/Pgi309maipufvoZohcuVOelV9r7449hc+u+iQjwaeiqwsz1c1lDVsuDzMxMNTrC0ikTdd2bIGzXpVzXO9q6Yvnfa/HqW8+rZbMW/7kM8375SYXRnj17qiJnGRkZ8PDwQHkgBe4effRRBAUFYf6cRbAMqYHr56JhbqlB74mNsofjykE6Qy+wr69vGT/ryoc9okREZLLsO3eGx8svqd/Dv/oK0+rUwQsvvKBClqwDxxB6exiVICrv0dNPP12spW9SAwIQNGp0dgh1GT8eNZYsYQglyqdYkX8Td0RcS0BibGq5CaFxcXHo2LEjmnT2Q/M+uUNX876+uHEmDh1dH8XEXm9h+7btqFenPv7++291vZubW7kIodIL+uKLL6JTp05wdnbG2oW7kXrKC9GhWUu0DHuhZa45oQWtM0rGwR5RIiIyaa4TJiAjMgqRP/6I0HfexaBx4xD56KNq6KmLi4sKpZTlyy+/VEOXxw4ahH69eqnhy3Z2dnd8e2JXrkTI2+9An5ICrasrvD/6EPZdu/JtJSpAq/v9EXg8AtfORqF+O69yE0KtrKzU5R2G1UbN5lVUASM1dxTA0o8Pq58tanVFHe8m+Gvn1xg9ejR+/vlnzJo1S41CMeXX+ccff6hRIDdu3MCs9z5DQ+ceOLc5MrsXu9cjDfNdosUQRtkzanzsESUiIpNX5dkZsB8+XCpPwG3hQnzWv78qw//qq69iypQpSE+v3AUnZMic9IA+//zzmOzqhtfOnYfdtu3YsX59oUu76NPTEfrBhwh++RUVQu06dkTNlSsYQonuoKqfI9x97NU6lOUthBp41nBCvXZe6md2Rd1bHGxc8FjvtzF71s+4cuWKWv7pwQcfxKVLuYf0ljWZy7p+/Xr1/MaNG4cm9zXBml93w/lmCwSdiIRGY4Z2Q2pi4PSmha4Typ7RssEgSkRE5WK41dnOnaDr3Rtmej3C3nwLT9esqQrxyNH63r17Izw8HJVRZGSkqgj5ww8/4K2qHni2ShVozMzgvnYt7Pbuw86tW/MNoxlRUbg68TFE//abOu8+dSp8fvoR5lW4lAFRUbQbXAtXz0QiI01X7kJoXoZe0bzD/YePGq7mnEtbu3PnTtSrVw/39xqE1Uv+yVXB3NhkaaqFCxeiTZs2uP/+++Hg4IB1f23HqBav4sLWOKSl6FDV3xGjXm+Nlv38Yaa5cx0BhlHjYxAlIiKTll0d19sbDb/+Cq6PPqouD/vwIzwQGoZ/N23CmTNn1A6JzPOpTE6fPq2GlB07dgzL334bY1xcsq+T3S4Jo1V0utuWdjHMB006eBAaOztUn/0tqjz9FMw03C0gKiq/xm5w87bHye03ynUIFdIrmt+8Ubnc3NxcVZ/97dMNGNZuKg4dPIJBI/uitn99fPXVV6rH1Fiv68CBA2rkh1QJl0Jsrq6uWDJ/A54Z+CUu/5uB6JBEWNmZo/PoOhj+Uku4VbMv1mMwjBqXmb4sD2cQEREVIr8lWuRrK/KnuQj/4gu1jV2nTtA/9ywGjx2LCxcu4MMPP1TDVDVGDFUyNHjdunXqyLwxFnqXHTLpAX3ppZdQs2ZNrFq1Cp5xcQgaPea2bf3+/AOXzc3VvCkp4IHjx3H9mRnIjI+HhY8PfOb8AKtatUr9ORNVRKGBsVg7+wTGv98eljbm5TKE5n09hnmjEkJzXm6YQ5qpz8S564ex5+xanL6+T7V/su7owIEDMWDAADWX9E6PW9Q2Mzo6Wn0HSBu3Zs0ahIaGwt3dHY+Mn4g+bUYi4oIOUcFZB9m05hrc1706WvX3g5XtvbXDMsJG5ow2adKE1XRLUdn/jyEiIspHQeuEyk/3xyfD0t9PzW1M3LULFkFB+Pd//8M7v/+OZ599FkuXLsX8+fNRu3btCvfeXr58GY899hi2bdum5sdK0SZ7+6yj/q6TJiFq7tzsbV0nT4Jts2ZodOuY89FPPoHbkqWATgebli1VT6h5jl5UIioeCWvedZxx/N9raD2gRrkOoYbXkzOAGuScQ6ox06ChT2t1ajuiGi5HHVdB8bvvvlPF0iRYNm7cGC1btlRzN2VZFG9vb3h5eakeR61We9sw25CQEHUKDg5GQEAADh8+rE7S3ok6depg3Njx6NL8flgku+HKiUhc2BanrrOw1qJxl2po2tMHdk7Ff835YQEj42CPKBERlZsQmlfy6dO48fQzSL9xAzA3R9XnnsNJfz9MnDRJHTmX3tHp06eroWXlvUdUChLNmTNHVQmWHgGZGyvr++WVfPw40oKCYOnvD5umTdVlep0OYbM+zp4Pant/f/jMmgWNZcHFO4ioaKJDE7H0k8MYN7M9rO1Lf0REaYXQwuTsEc1p+Msts4OrtFGHDh3KDpFykukDOt1/c2hlpIq1tbVqkw1F5qQGQE5yYE0CbKsWrdGkXht4OdRCSqQWIRdjkJGemb2dq7cdGnWuhnptPe65B7Qg7BktXQyiRERULkOogS4uDiFvvY34DRvUeZsWLeD06it468cfMXv2bNStWxcffPABhg8ffsf7MsUgKkORV6xYgddffx1nz57FE088gU8//VQV5ygKXXw8bjz/PBJ37FTnMx8cg+tt26JT585FWtqFiO7s39/OIlOnR88JDUqtnSmrEGqwZ1kAjv5zNdcc0g5Da9+xbbx582Z2b6ccIJTgmZKSgvPnz6s2XuZ5enp4wcHCHZoUOyRG6BB+NR5RIUnQZ+aeQejobo1azauiVouqqOrvYJT3mmG09DCIEhFRuQyh3bp1U9vIMK9ffvkFFno9nnJ0wv3W1vggPBz/JCfBpUoVVK1aVe2ktW7dWoW4JUuWqOqPEsL69Omj1t6UHkaxYcMGNbRMqkTK/bZv3x5ff/01at2aQxkUFIQaNWqoob/ffvutmkMkQ8Yk8EZFRZV4EN2+fbvqAd23bx+6NW2K9156CZ3Gji3y7VPOX8CNp59G2pUrMLO2hvesWXDo20f1UhjmjDKMEt27hOgULHxrH9o8UAMt+vpVuBB6pzmkxSUBde3adWjduDMuHY7AxYNhSEm4fRku6WH2rOmE6vVcUL2+i+oFLU74zPs9YWlpmbXW8tixarSMfB94eHio9rx///7qNtL+v/jii7m+J+RAoAwZljmjUhzvbr4nZESLbEv/YXk8IiK6rQcuMynJ6KeEyEjs2rmzyD2hQnYsJERKJcWnX3gB7wbfwAspyWhmZYXF3tXQJTMTQRcvYt2aNWp4mFR+lJ0H2YmQwhdhYWEYNWpU9v1JZdnnnntODS/bsmWLGkY2dOhQtbOXk+yUvPDCC6parfS4SvXGnMPP7oUMb1u2bBm6du2qdqISAwIwt7oPvk9JhdvM9xD22edFup/YVasQNHq0CqHm3l7w++03OPbrq97XRo0aqaqTeavpEtHdsXexVkVy9q64hMvHwitkCBUSPuu29VTVgtNTdXd1SoxNxcltNxC2yxYrPjuGk1uvqxBqaaNVYVOq9/Z+rBEefKetKgLV57FGaNjJG47uNnf1nHN+Tzz11FNqbv3IkSPRoUMH9f5J0JQ2XA6ExsTEoEePHqrgknwPyMFJ+Z6YOnWqqlAuldklaN7N94SswyrtO/2HPaJERJSLhMLzLVqWybuS/usvuK916yKFUAlpEv7kqLWQ352cnDBs2DB8O3o0bn72OUKuXUPXSwFY0rUrjvn5Y82J43B0dMSOHTtUEBsxYoQ6ki1DxGRHIa+IiAhVtOLkyZOq+IbhSPfcuXNVwSAhR8cl2Emv6OOPP37XPaLXrl3DvHnz1NxP+b1tjRoYm5qGnvb2al3QnPz/+jN7/md+Q3FlaZvY5cvVebuOHeH92ae3FSWSAw7sGSUqOZmZeiyZdUjNGR32YktU8XGoUCHUQMLkj89sR1l4/OuusLDKXezobr8nfv31V3WZDBeWQkp79+7F5s2b1bYbN27Mvo/r16/Dx8dHfU+4uLjcVk23ON8TMr2ifv36JfyulF/sESUiIpMhX9TFGXYlOwMGMkTKzc1N9aY6DRiAWuvXocGLL6rrQgMCcGDZMpw+fhyHDxyAjY2NOsotIVTIkgMzZ87EypUr1VFrWRJFAqu/v7+6/urVqwU+ruzAiNjY2GK9VgmCx48fx3vvvafWQJWdGpn72a9fP+xatAjzLa3Q28HhthAqpBhRfhL3H8DlwYOzQqiZGdymPAmfH/+Xb2Vc9owSlSyNxgz9Hm+sAum6708gMjihwoXQ8qig7wkDGZorZC6rtMlbt25VBZMMJ0NwvHTpkgqccpIeVGmzi/s9IY9B/+HyLURElIuZjQ3qHbm9OmJpSEpOxt49e9SOgIRQja1tsW6ft/dRwpXhMo21Nao88Tjw5BOw79cPyUuWoJudHZ6rUhUae3s49OoFi25dsf3iRXUk/PPPP1c7dlLRsXv37iocNmjQAGPGjEFaWlqBj2sIznmHZeUlSxTIsGCpJClDuuSIu+y4SNEhCZ8yZGzIkCHqfOzKlQgu5L4Sdu+B0+DB2eczoqIQ/tXXiPn776znV706vD+eBduWhfdsG8KokGG6nDNKdG9k+GjnkXWw/Y8Lqspsr0cbomazKhUqhJpbalTP5J0OtIUExODwxisIufjfQbrqDVzQuGs1eNZ0wD+b/kHfvn2LNYpEHru4CvueMJw3vLcJCQlqPdSPP/74tvsxhMkJEyao36XmQLt27dR0EukJLYnvicqGQZSIiHKRL0yzYgbCuyHzcfYcPgxPP78izwm9W04PPICOLi5YsnAh/P38oA8JAdatU6ehdWrj4T59kTjjWdTo3En1jl68eFHNIzXM+5T5QFLUwvbW+yLzhqQH1NnZWb2OnEfT5bxUh8y5Lp4Mx5JhW1KgQ+YTNWzYEIMGDVInmQsqBTRykqVXChO3ahVcHxoL64YNEb1oEcJnf4fM+Hh1nfPIkaj68svQ2hetIi7DKFHJatSlGsKvJ+DMzmCsn3MSbQbWQKv+/jDTmJX7EJod5AoYHitVboNORuDopqsICcgKoBqtGeq380TTXr5w9cpql1RbaA51PxYWRR9qW9pk2RgpMiS9nPkt+xUZGamG6P7000+qp1SG6Z47d65MnmtFwCBKREQmv0RLSXjq2Wfx8y+/4E03V0x/cAw0O3fi3M5dWLdjJ967cBHyDJzNzaE/dw4LnnoKNxwd8fL776u5PTJUV3ovDUOvXn311dvuX6ojyslAQqscNZeF3GWI1qOPPqoWeG/atGl2oC2IzP90nTQJUXPnFrhN9F9/I+nQIaTfek5WDRvA87XXYNuqVbHfG4ZRopIj/5+6ja2nAtbxf6/hwOpARFxPQM+HG8DSxrxch9CCpKfpcH5vCI5tuYbYm1nrgmrMzdCoozea9/WDg6s1yoNp06apkClTNF566SW1tIxUy/3zzz/VnE+ZIypDe3/88Ue8/fbbqhc0v+8DKhoGUSIiqvAhVEgg3L17N15++WUMefllNVTWz8cH3bt2gaN3NSTt2YPPPL3w4cWLaDdlCmpYWuKtps3wEICJHTth1IxncD02VhWhkGIWMk9Idgqjo6PV8LLJkyersCk7KvJYMsT2Xl6bxwvPw7F3LyTs2IGI776/7frYZcvUT62rK6rMeAbOsk6q9u57FhhGiUqO/H/qNKoOXKvZYfui87h8NFwNVW09oAYadvaGVqupECE0OT4NJ7Zdx6ltN5CSmLX8ipWtORp19sZ93Xxg72I6z7W43xNSTVd9T/j5qekTMppF/q4SSp9++mk1HLdevXpqbr9Mq5D1Rql4WDWXiIgqfAgtiszkZCQdOYKkvXuRuGcvUs6elYlO/21gZgbrBg1g276d6nW0bdECWien7GFm69atK/F1RIU+IwPXn38BCTmqOApzDw+4TXxUDcUt7tzaQh+P1XSJSlTo5VhsXnAmu6fQqYoN2g2phVotqtyxDTTVEBoTlqR6P8/tDYEuPWveo6O7NZr08EGDDl6wtC68r6s028yyICE0bzVdujMGUSIiQmUPofnRxcYi6eBBJO7bj6T9+5B6MSD3BmZmsKpTBzZNm8Cibl0cjo5Bt0cmwMrR8Z6DYEZoKBJ370bCrt1I3LMHmXFxueaPuk58FE5DhkCTZ25pSWEYJSpZOl2mmjN6cG0gkuOzeg6r+juiRV9f+Dd2h9ZCY/IhVNqFa2ejcOLf67hyKjL78qp+Dmjexw81m1dRlYOLoqIFUcEwWnwMokREVOrKWwjNT/rNm0javx+J+/cj+dDhApdQMff0hKWPDyz8fGHh6QVzN1doXd2gdXGGmbkFzMy1Ur0D0GVAFxOTfUq7chWpFy+qk5zPSevsDMeBA+E8bKjqlTUGhlGikpeWkoFjm67i6OZryEjVZQ9lrdW8Cuq28YR3HWdV1MiUQqgMuQ04FIYTW68jOjSrOJvwu88NzXv7Zj3nYrbpFTGICobR4mEQJSKiUlURQmh+MiIi1FDelNNnkHz6NOKOHYN5QgmtG6jRwOa++2DXuTPsO3WEtbxv9zD/824xjBKVjqS4NBzfchUXDoQhITo1+3KZUylDdpM1kdDbJKNrz7IJoXERyQg8HoHA4+EIDohV1XCFhbUWDdp74b5u1eHscfdTAipqEBUMo0XHIEpERKWmoobQgnaq+rZvr5aGSbt6VfVwZoSHQxcViYzIKOiio6GX5WAyMqDPzISZRgONsxPMnZ1Vj6e5lxes69ZVw30ta9ZU66CaAoZRolL8/5WpR/DFGJw/EIpLR8KRlpyR63qZT+pZywmeNZ3gXt1erVNq42BRYm1pZqZehc7okEREySk4UVX4lZ85uVWzQ4OO3iqE3m3l38oSRAXDaNGwai4REZWKyhJCc9K6uMCialW1/EpFwWq6RKX4/0tjhmr1XNSp06ja2LbqEG5eToZZsg1iQpMRG551Or8vNPs2Mp/U0c0aDnJytYaVrQXMLTVqTU5zSzlpVFVeXUYmMtIzVTGhjHQdMtIyVZXbxNg0JMWmql5ZOWXq9Pn8vwe8ajujZrMq8G/irgIxFZ1UVW/btq0qYCRYwCh/DKJERFTiKmMIrcgYRolKl8wJPXHyOMzdkjFyUNZwXJmbGRYUp6ruhl6KVZVqE2JSVbCUuZo552veC625Bi5etnDxtIOrtx1cvezgVdsJNvalUwytsmAYvTMGUSIiKlEMoRUTwyhR6SioMJG1nQX8Grmpk4H0csqc0vjIZMRFpiA+KgXpyTqkqx7PrF5PKYIkVXq15lqYW2hUD6qczM01sLa3gJ2TJWydrGDnZAVbJ0vYOVsVudotFQ/DaOEYRImIqMQwhFZsDKNEJau41XGl91KGyXKobPnBMFqw2xctIiIiugsZGRnYvXs3h+NWkjBarVo19feWoiNEdHeFwE6dOmUSS7SQccLoiRMnVCEjysIgSkREJcLc3BytW7eucHNCu3XrhhkzZmSf9/f3x1dffYXKzBBG5e9dESteEhnr/1HdunUZQivJ94SE0c6dO8Pd3b0MnqFp4tBcIiIqMc7OzhX+3Tx48CDs7OxQ2clOtIuLS1k/DaJyzdpElmki43xPODk58a3OgUGUiIioGOSoNhEREb8n7g2H5hIRUbkdCvXUU0+p4VDSM+fh4YGffvoJiYmJePTRR+Hg4IDatWtj/fr12beR+Vj9+/eHvb292n78+PGIiIjIvl5u+/DDD6vrvby88Pnnn9/2uHmHXH3xxRdo3rw5Ro8ejZo1a2Lq1KlISEjIvn7BggWqp3jjxo1o0KCBuu9+/fohJCSkVN8fIqLKzpS+J2TaivSS+vj48HviFgZRIiLKV2ZSkjpJQQ0DfVpa1uVpaflvm5n537bp6VmXp6YWadu78csvv6j5NgcOHFA7G1OmTMHIkSPRoUMHVYmyT58+aidCqvnGxMSgR48eKjQeOnQIGzZsQFhYGEaNGpV9fy+++CK2b9+OlStX4p9//sG2bdvU/RRGo9Hgyy+/xDfffIOff/4Z//77L1566aVc28jjf/bZZ/jtt9+wY8cOXL16FS+88MJdvWYiIlOQnqpTp5zfEbK8jFwma53mu21mju+TzKzLM9J1d9xWlqO5W6byPSHfEadPn1bPh98Tt+iJiIjycaZefXVKj4zMviz8hx/UZcFvvJFr27PNmqvLU69dz74scsECddn151/Ite35du3V5SkXLmRfFvXXX8X+G3Tt2lXfqVOn7PMZGRl6Ozs7/fjx47MvCwkJkT0Z/d69e/Xvvfeevk+fPrnu49q1a+r68+fP6+Pj4/WWlpb6v//++7/XEBmpt7Gx0T/zzDPZl/n5+em//PLLXPeTlpamX7Fihfq5ePFivZubW/Z18+fPV48REBCQfdl3332n9/DwKPZrJiIyFbOf2KJOSXGp2ZcdXBuoLvv31zO5tp3z1FZ1eWx4kjovbeVvX65Vl22ceyrXtnOf36Euj7gRn33ZqR3/fbeU1++JnPg9kYVzRImIqNxq0qRJ9u9arRZubm5q+JOBDKsSN2/exPHjx7F161Y1nCqvS5cuITk5GWlpaarEvoGrqyvq1atX6HPYvHkzPvzwQ3X/cntZxiYlJUUdXbe1tVXbyM9atWpl30aGc8lzIiKiyvE98dFHH+HcuXNquR5+T2RhECUionzVO3JY/TSzscm+zG3iRLg+/LCs1ZJr27q7d2Vtm6MCpMvYsXAeOVK++XNtW3vL5tu2dR469K7+CnmXDpFKrjkvMywjI4vGy7zNgQMH4uOPP77tfiQYBgQEFPvxg4KC8MADD+CJJ55Q8z4HDBiA/fv347HHHlM7K4Ygmt/zzDmcjYiovHn8667qp7nlfzP9mvfxRdOePtBoci/hNfHTzlnbWvy3rb1fOoZN6gFLq9zt48MfdLht2/odvO76eZrK94QMCf7ggw9UcN21axe/JzhHlIio4pKjr7LOoxRjqFq1KoYMGYLz589nXx8VFaXmy8iRXBsbG/j6+uLpp59GbGysul5ja5t10mjUF7WcNFZW0NrZ4e9ly3I91nuffgrfunXRuUsXXLhwQV1mZmGRdfs8i7Qb7tdM899Ohmxb2lq0aKHm50gRCSlOkfMkBSSkx1J2TiRIGkRHR2e/nvwcPnxY7bx88skn6n2UNQGDg4NRGchcV9lh8/b2Vp+NFStW5Lr+nXfeQf369dV7K0VCevXqleu9FfK3MHy2DKdZs2bl2kYKi/j5+ak5W3lvT2RKbaZB3s+0nP78889c27z77ruoXr06OnXqVGgbY8osrLTqlHPdaK25Rl2mzREic22bI6CaabIuN7fQ3nFbrdY4ZW1K83tCihrJAcrnn38ezzzzjLpu7dq1BbabDz30kLqsIrebLFZERFRBSTGFadOmYd++fdi0aRPS09NVUQap+CckMMlJiuhIlUCp7iqFGaQ3L6/58+erKq+Gk+ygGezevVt9mUrhhrFjx2L69OkwRfJeyI7kgw8+qNZ4k2FWUslWKifqdDo1FEteuxSikEIS8p488sgjKogXRHZO5H397rvvEBoaioULF2LOnDmoDORz1LRpU/Xa8yOhfPbs2Th58qQ6+i87T/L5Cw8Pz7XdzJkzc322ZEffQIo6SciXnfjXX39d/a2ISgvbTCrN74lvv/1W9ajKtpaWlndsN+XAiKjI7SaH5hIRVVASKnOSoClH+eXobJcuXdC4cWMsXbo0+3o50ivDhsaNG6fmr5jnGH4ry494enrm+zhyNFh6xWQejtxOHscUyXOU0Pzyyy+rL/bU1FR1xFiG1Bp2Ij799NPsoVnSKyJHrvP2duQkQUzK8svtIiMj1VIBsvMgpf0rOlneQE4FkYMSOcn7JFWFT5w4gZ49e2ZfLu9zQZ8tmUslnz35bMk2Mj+LqLSwzaTS/J6Q4b5SlVe+f2Vpl4fz+Z7I2W5Kj7uhHayw7eatokVERFTBXbx4UVX+O3nyZIHb/PTTT3p3d/dcl8ltvL29VSXY1q1b63/++Wd9ZmZm9vVS/bBv3756c3NzvbOzs37z5s36yiZn1dzKSD4jy5cvL/D61NRU/aeffqp3cnLSh4eH56osKdWDXV1d9c2aNdN/8skn+vT09Fy3nThxol6r1aqqlAsXLizV10GUE9vM0lPZ20wBtpusmktEVBnI/BRZ0Ltjx46qJzQ/smD3e++9h8cff/y2IUCyrpoU3pE106ZOnaqOBsvcKCHzZaQnQSoOylHYgoYcUeWzZs0ajBkzRlUQlkIfMkRc1vMzkM+QzMmS4h179uzBq6++qoaZSe+BgfSiyjAz+fzJvDwiY2CbSWVlTSVqN81uJXIiIqrApFrf+vXr1Vw9KZCR31Ce3r17qy+2VatW3VZlMKe33npLzRm9du1aKT/r8kPm/6xbtw73339/oe9dRSXFMpYvX55r7rBhHqnsIMlBDimeIXOqpHCGDBHPz7x581QFYjnQYZWnyBWRMbHNLF2Vvc0UZmw3WayIiKiik+JBcoRV1kbLL4TGx8er+S8y50TCxJ12CmT9tOvXr6u5M0SFkcqPUqijXbt26gi9zDuWn4V9tmSesSx3QFRW2GZSWbKrRO0mq+YSEVVQMuBFdqgkXEpPVI0aNfLtCZWCDDKcVnpCrXOs7VmQY8eOqeU42GNFdzPcsbADGPLZkoIgBfWYEpUmtplkijIrcLvJqrlERBW4DP2iRYvUsirS2ynLiwgnJyc1Z8QQQmUeiiw7IuflJKpUqQKtVovVq1cjLCxMHZmVkCpzVT788EO88MILZfzqqKzJ8Nmci7sHBgaqHSIZ3u3m5qYqMA8aNEjNcZKhubLMy40bNzBy5Ei1/d69e9Uw3e7du6vPp5x/9tlnVdVmOdBBZGxsM6m0sd3Mo6wrRhERUemQJj6/0/z589X1W7duLXCbwMBAtc369etVNVN7e3u9nZ2dvmnTpvo5c+bodTod/2yVvAJkQZ+fCRMm6JOTk/VDhw5V1ZYtLS31Xl5e+kGDBukPHDiQffvDhw/r27ZtqyrpWltb6xs0aKD/8MMP9SkpKWX6uqjyYptpPJWxzRRsN3NjsSIiIqJ7xMIbRERsM6l4OEeUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIioBNja2sLMzIzvJRFREdjY2PB9quS4jigREREREREZFXtEiYiIiIiIyKgYRImIiIiIiMioGESJiIiIiIjIqBhEiYiIiIiIyKgYRImIiIiIiMioGESJiIiIiIjIqBhEiYiIiIiIyKgYRImIiIiIiMioGESJiIiIiIjIqBhEiYiIiIiIyKgYRImIiIiIiMioGESJiIiIiIjIqBhEiYiIiIiIyKgYRImIiADs2LEDAwcOhLe3N8zMzLBixYpc70tCQgKmT5+O6tWrw8bGBg0bNsScOXNybZOSkoJp06bBzc0N9vb2GD58OMLCwnJts2rVKtStWxf16tXDmjVr+N4TUbnFdpPuBYMoERERgMTERDRt2hTfffddvu/Hc889hw0bNmDhwoU4e/YsZsyYoYKpBEuDZ599FqtXr8bixYuxfft2BAcHY9iwYdnXp6amqqD6/fffY/bs2ZgyZQrS0tL4/hNRucR2k+6FmV6v19/TPRAREVUw0iO6fPlyDBkyJPuyxo0bY/To0XjzzTezL2vZsiX69++P999/H7GxsahSpQoWLVqEESNGqOvPnTuHBg0aYO/evWjXrh3i4uLQpEkTHDp0SF3funVrnDhxAg4ODmXwKomISg7bTSou9ogSEREVQYcOHVTv540bNyDHcLdu3YoLFy6gT58+6vrDhw8jPT0dvXr1yr5N/fr14evrq4KocHR0xKOPPgovLy81BFh6RBlCiaiiYrtJhTEv9FoiIiJSvv32Wzz++ONqjqi5uTk0Gg1++ukndOnSRV0fGhoKS0tLODs753rHPDw81HUGb7/9thrWK7dnCCWiioztJhWGQZSIiKiIO1T79u1TvaJ+fn6qSIfM95SezZy9oEXh5OTE95yIKjy2m1QYBlEiIqI7SE5OxmuvvabmjQ4YMEBdJnM9jx07hs8++0wFUU9PT1V4KCYmJlevqFTNleuIiCoTtpt0J5wjSkREdAcy91NOMpw2J61Wi8zMzOzCRRYWFtiyZUv29efPn8fVq1fRvn17vsdEVKmw3aQ7YY8oERHRrXVCAwICst+LwMBA1ePp6uqqCg517doVL774olpDVIbmyvIsv/76K7744ovs4baPPfaYWuZFbiOFiZ566ikVQqViLhFRRcN2k+4Fl28hIiICsG3bNnTv3v2292LChAlYsGCBKjj06quv4p9//kFUVJQKo1K8SNYOlWULREpKCp5//nn88ccfas3Qvn37qjVDOTSXiCoitpt0LxhEiYiIiIiIyKg4R5SIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIiIiIiIjIpBlIiIiIiIiIyKQZSIiIiIiIiMikGUiIgK5O/vj0ceeYTvkAlYsGABzMzMEBQUVNZPhYgKwXbTdLDdNG0MokREldClS5fwxBNPoGbNmrC2toajoyM6duyIr7/+GsnJyaX2uBJq7e3tb7v8xIkTcHd3VztwhqDVrVs3Fbzq1KmT731t2rRJXS+nJUuWlNpzrizWrVuHd955x6iPef78eTz77LPo0KGD+hwyaJMpY7tJptBuLlu2DKNHj1bf37a2tqhXrx6ef/55xMTElLs/kHlZPwEiIjKutWvXYuTIkbCyssLDDz+Mxo0bIy0tDbt27cKLL76I06dP48cff8wOChpN6R6zPHXqFHr27Ak7Ozts3bpVhVEDCScBAQE4cOAA2rRpk+t2v//+u7o+JSWlVJ9fZdqh+u6774y6U7V371588803aNiwIRo0aIBjx44Z7bGJioPtJplKu/n444/D29sb48aNg6+vL06ePInZs2er53LkyBHY2NiUmz8WgygRUSUSGBiIMWPGwM/PD//++y+8vLyyr5s2bZoKfbLDZSBh9U4SExNViLwbEnp79OihvjglhNaoUSPX9bVq1UJGRgb++OOPXEFUwufy5csxYMAALF269K4em0qfXq9Xf6uCdowGDRqkjuI7ODjgs88+YxAlk8R2k0yp3VyyZIkaMZRTy5YtMWHCBHWAdtKkSSgvODSXiKgS+eSTT5CQkICff/45Vwg1qF27Np555pkC5zoZ5tts374dU6dORdWqVVG9evXs69evX4+uXbuqYCHDfVu3bo1Fixbl+1zOnj2rekIl7EoIlWFG+XnwwQfx119/ITMzM/uy1atXIykpCaNGjcr3Njdu3MDEiRPh4eGh7r9Ro0aYN29erm2kF/itt95SX+BOTk4qTHfu3Fk9l5xkqLC8ZglK0lMs4VjuU17bwYMHc20bGhqKRx99VL0nso28x4MHDy7SvM5z586p11OlShW1AyLDrV5//fVCbyPPK78j8Xn/bunp6Xj33XfVMGfpRXZzc0OnTp3U8GYh28pRfcN9Gk4G8t5/9dVX6n2U28v7KkO7o6Ojb3vcBx54ABs3bkSrVq3U6/jf//5X4PN3dXVVnxUiU8Z28z9sN8u+3eyWJ4SKoUOHZn+vlifsESUiqkQkwEngkzl590JCqAQmCXLSI2oIqRL+5Ev31VdfhbOzM44ePYoNGzZg7NixuW4vQ36lJ9Tc3FwFPwl3BZHbStjatm2buo2QcCshVoJwXmFhYWjXrp3aIZg+fbp6nhKQH3vsMcTFxWHGjBlqO/l97ty5KuhOnjwZ8fHxKqD37dtXDQVu1qxZrvuVx5RtZEdC7lt2TocNG4bLly/DwsJCbTN8+HDVy/vUU0+pnYubN2+qnZarV6/mGnKc3xxZCcFyPzLsSraV+Wjy9/rggw9wr+T9++ijj9SRculZltd+6NAhNYyrd+/e6jUFBwer5/rbb7/ddnu5Xv6+ErKffvpp1UMkQ8Hk77t79+7s12/428p7KreR91UCNVF5xnaT7aapt5uhoaHqp9RaKFf0RERUKcTGxuql2R88eHCRb+Pn56efMGFC9vn58+er++jUqZM+IyMj+/KYmBi9g4ODvm3btvrk5ORc95GZmZn9u9yXhYWF3svLS+/t7a2/cOFCgY/dtWtXfaNGjdTvrVq10j/22GPq9+joaL2lpaX+l19+0W/dulU9n8WLF2ffTraT+4+IiMh1f2PGjNE7OTnpk5KS1Hl5/qmpqbm2kfv28PDQT5w4MfuywMBA9Rhubm76qKio7MtXrlypLl+9enX2beX8p59+qi+uLl26qPfvypUrBb53hvdeno+BnH/77bfv+Hdr2rSpfsCAAYU+h2nTpqn7y2vnzp3q8t9//z3X5Rs2bLjtcnlcuUyuKy553/K+PqKyxnaT7aYpt5s5v/e0Wm2h36mmiENziYgqCTmaK0piKKQcsdVqtdnn5Yiw9Ba+8soraghSTjmHKgmdToeIiAg1LLOoR2+lV1QqBcqwMJkfI49tGIqUk2QzmTM6cOBA9bs8juEkPZ2xsbHqaLaQ+7C0tMweQhUVFaXmo8rQKMM2OUmVQhcXl+zz0oMppEdUyHAquT/puc079Kow4eHh2LFjh+pNlsIThb13d0t6p6Wn9uLFi8W+7eLFi9XQZekByPl+ypBmqYCcdyizzPOV95qoImC7yXbT1NvNRYsWqdE8Ujm3oCrzpopBlIiokpA5m0IC473KW1RIhpEKqcB7JxLYfv31V5w5c0YVGzIM7S2MFFiSEClDbKUYg8ynyS9QS6iT4jcyl1OG5OY8yfAoIcNlDX755Rc0adIke96kbCfFmuSx8sobEg2h1BA6ZU7oxx9/rJ6jzAXq0qWLGr5rGDJVEEOQLcp7d7dmzpyp3pe6devivvvuU9WRZThwUchOmLwfMgw673sq841zvp/5fTaIyjO2m2w3Tbnd3Llzp5p2IiG2JKZxGBvniBIRVaIdKin5Lsul3Kt7LQ8vwVICnMw1lXmWMgfL0DuZHyn6IwUaPv/8czW3pqBKuYaCRlLWXioI5keCp1i4cKEqNjFkyBC1gyE7DNJLKnMpDcE6p5w9wDlljZDNIvNPpTd2xYoVqvDEm2++qe5PKhQ3b94cxiK9zjlJKJbXtHLlSvzzzz9qbuz/27sPuCavNQzgDyHsvaeIe4N7b617tNVq7bBVu6y2t3vv2tppd2ttq93T1ta99957b2XJ3hAScn/vwSAgICgEAs//3hTITsAv3/Odc973o48+wsyZM69ZYVHeU3lv5ABAcWTHqiBLah1AdC3cbubhdrP6bTf37dunKo/LQUyZKSQ1FyyN5T1jIiK6bjKSKKOF0r+xS5cuFfZOmooNSciVyrtlMXnyZDUd9qWXXlLB8ffffy+1Z6lMz5UPf5lmOmTIkBI/3GWkVIJY//79S318+eCWwk0y5bfgFNhXX30VN/peyBQpOclRcSl6JAFagm9xTNWCr+cAgYzKFm1iLtOXo6KirrquTIWWUWE5yRF5CadSxMi0Q1XSNGB5PStXrkS3bt0YMqlW4nbzCm43q8d289SpUxg0aJAKu9I/VKb7WiJOzSUiqkWeeeYZ1aZEPkSlumxxH26ffPJJue93wIABKgDK6J/0PytpxLAoaU/y+OOPq/U0Ui2wNKNHj1Yh8csvvyxx9FRGLaVyrYyYFhfsZOpuwesWfX7btm1TIf16SDuZoq9ddkbkfcnOzi7xdhKeJRRKexmprlvW9850/7K+tCA50FB0RDQ+Pr7Qz7LTIgcMCj4vUy/YosFWWsrI/b355ptXPb6sqS16faKahttNbjer03YzOjpafebKgVuZeVN0dNWScESUiKgWkeAihQ2k8E6zZs0wfvx4Na1HRtE2b96sAmHB/pPlmb4mU5Yk4Ep/TRm9lNE6mTokAU3WYpZERgtlmq5Me5JRO1lnWRwp/FBcz8yi3nnnHVUIolOnTqqoUvPmzdXIqxQgkiPU8r1plENGQ6XokaxVldL6MuVKri8jhuV1/Phx1VJGdkDkPmSa1Lx581Tgl6nIpfn0009VX8+2bduq9i2yXkh6j8p61b1795Z4O3m/H3roIRW+pSiGvN+yY1K0CJQ8H5naLIUy5D2WFgQysiHtbUzkMiFtBmS9kQR1ed7SF1YOEshBBnkusgMkbQdktFf+XuTAhRwkuB6yhuqzzz5T38uUayHtDWTUW04Fnx9RVeF2k9vN6rTdHDRokKotIAdINm7cqE4mUp9APgssRlWX7SUiIvOTEu/333+/MTQ0VLVCkdYh3bp1M3722WfGrKysa7Zv2bFjR7H3O3/+fGPXrl2NDg4ORldXV2PHjh2Nv/32W/7lcl9OTk5X3U5aqdx8883qvqdPn35V+5aSFNe+RcTExKiy+nXq1FHtYvz9/Y39+vUzzpo1q1BrlLffflu9Rjs7O2ObNm2MCxcuVM9RzivavqW4tiwF26dIuxh5zKZNm6rXKK1ipJ3Nn3/+aSyLgwcPGm+55Raju7u70d7e3tikSRPjyy+/XGr7FoPBYHz22WeN3t7eRkdHR+PAgQONJ0+evOr3Nm3aNPW7kPuW3408x7feesuo0+kK/Q4eeeQRo4+Pj9HKyuqqlgTy3rVr107dXv5eWrVqZXzmmWeMkZGR+deRx71Wm5iCTO9tcaeCvwOi6oDbTW43q8N2EyVsM+Ukn5uWxEr+U9VhmIiIiIiIiGoPrhElIiIiIiIis2IQJSIiIiIiIrNiECUiIiIiIiKzYhAlIiIiIiIis2IQJSIiIiIiIrNiECUiIiIiIiKzYhAlIiIiIiIis2IQJSIiIiIiIrNiECUiIiIiIiKzYhAlIiIiIiIis2IQJSIiIiIiIrNiECUiIiIiIiKzYhAlIiIiIiIis2IQJSIiIiIiIrNiECUiIiIiIiKzYhAlIiIiIiIis2IQJSIiKqcvvvgCoaGhsLe3R6dOnbB9+/b8y44dO4Zu3bohODgY06ZN43tLRLUet5lUHAZRIiKicvjjjz/wxBNP4NVXX8Xu3bsRHh6OgQMH4tKlS+ryqVOn4q677sJ///2nTps3b+b7S0S1FreZVBIGUSIionKYMWMG7r//fkyYMAHNmzfHzJkz4ejoiNmzZ6vLExMT0a5dO4SFhSEwMBBJSUl8f4mo1uI2k0rCIEpERFRGOp0Ou3btQv/+/a98kGo06uctW7aon9944w31s4RTuUxGS4mIaiNuM6k02lIvJSIionxxcXEwGAzw8/Mr9K7Iz0ePHlXfDxkyBLGxsUhJSYGPjw/fPSKqtbjNpNJwRJSIiKiC2dnZMYQSEXGbSaVgECUiIiojb29vWFtbIyYmptD58rO/vz/fRyIibjOpjBhEiYiIysjW1lYVIlq1alX+ebm5uernLl268H0kIuI2k8qIa0SJiIjKQVq33HPPPWjfvj06duyIjz/+GOnp6aqKLhERcZtJZcMgSkREVA5jx45VxYheeeUVREdHo3Xr1li6dOlVBYyIiIjbTCqZldFoNJZyOREREREREVGF4hpRIiIiIiIiMisGUSIiIiIiIjIrBlEiIiIiIiIyKwZRIiIiIiIiMisGUSIiIiIiIjIrBlEiIiIiIiIyKwZRIiIiIiIiMisGUSIiIiIiIjIrBlEiIiIiIiIyKwZRIiIiIiIiMisGUSIiIiIiIjIrBlEiIiIiIiIyKwZRIiIiIiIiMisGUSIiohuk1+uxc+dOGAwGvpdERNxmUhkwiBIREd0go9GIiIgI5Obm8r0kIuI2k8qAQZSIiIiIiIjMikGUiIiIiIiIzIpBlIiIiIiIiMyKQZSIiIiIiIjMikGUiIiIiIiIzIpBlIiohvrqq68QFhYGV1dXderSpQuWLFmSf/msWbPQu3dvdZmVlRWSkpKuuo/Q0FB1WcHTO++8U+g633zzDerWrYs2bdpg27ZtZnltVP3J34n8vTz22GP558nfW9G/p4ceeqjQ7ebPn4/GjRujSZMmWLhwYRU8c6qtuM2kqvROLdxmaqv6CRARUeUIDg5WH2yNGjVS7UV++OEHjBw5Env27EGLFi2QkZGBQYMGqdPzzz9f4v288cYbuP/++/N/dnFxyf/+/PnzeO+99/D777+r9iUTJkzA4cOH+Sut5Xbs2IGvv/5aHQgpSv6W5G/KxNHRMf/77OxsTJkyBXPmzFF/sxMnTsSAAQNga2trtudOtRe3mVRVdtTSbSaDKBFRDTV8+PBCP7/11lvqiP/WrVtVEDUddV27dm2p9yPB09/fv9jLUlJS4O7urj485TqZmZkV+ArIEqWlpeHOO+9UI+XTpk276nLZiSrp70l2qqytrdG6dWv1s1arVedZyk4VWTZuM6kqpNXibSan5hIR1QIGg0GNWqanp6spuuUho6peXl5q6u37778PvV6ff1nLli1VCHVzc1PhtrgPUapd5Oj80KFD0b9//2Iv/+WXX+Dt7a3+dmQkXkbmTWSauIyqBwQEIDAwEJMnTy40Ak9kLtxmkrlMqcXbTI6IEhHVYAcOHFDBMysrC87Ozpg3bx6aN29e5ts/+uijaNu2LTw9PbF582b1IRgVFYUZM2bkX+e7775T03PlqK2Dg0MlvRKyBHKwY/fu3WqaWXHuuOMOtZ5Ydpj279+PZ599FseOHcM///yTf51XX31VjdZrNBqL2qGimoHbTDKn32v5NpNBlIioBpPiBXv37kVycjLmzp2Le+65B+vWrStzGH3iiSfyv5eRT5nu8+CDD2L69Omws7PLv0xGTKl2u3DhAv73v/9hxYoVsLe3L/Y6DzzwQP73rVq1Ukfx+/Xrh1OnTqFBgwb5l8kIO1FV4DaTzOUCt5mcmktEVJNJcGzYsCHatWunwmN4eDg++eST676/Tp06qam5Z8+erdDnSZZv165duHTpkhpBl3VKcpKDHp9++qn6XqY6Fvf3JE6ePFkFz5joatxmkrns4jaTI6JERLVJbm6uKmRwvWR0Vab/+Pr6VujzIssnI5syrbEgWbvUtGlTNZ1MCmoU9/ckZGSUqDriNpMqSz9uMxlEiYhqKlnPOXjwYISEhCA1NRW//vqrqpC7bNkydXl0dLQ6mUajJETI+hK5vqwJ3bJli+oL2qdPH3W+/Pz444/jrrvugoeHRxW/Oqpu5G9EimkU5OTkpKZty/ky/Vb+BocMGaLOk/VO8vfUs2fPYlsWEJkbt5lkTi7cZnJqLhFRTSXTJMePH6/WPMmRVymGICH0pptuUpfPnDlTVcI19QiVQCA/S3NsIWtApZBCr169VEVcaf8iwWHWrFlV+rrIcqc8rly5UvW4k1HSJ598EqNGjcKCBQuq+qkRKdxm1jy9e/fGI488oor5yAFUPz8/1SZFKsjLjA0Jg7J8ZcmSJfm3OXjwoDqIKwX+5Pp333034uLi8i9funQpunfvrlqXyUG1YcOGqQNtJrJ0xcrKShUUkgO5UshPlsXIwdzysK0F20wro3Q/JSIiouuWk5ODxYsXq9E+GxsbvpNEVGNJdDDm5N7QfehzctSB0YEDB0Jbjm2mlY1GhbzyBFGpSvvMM89g7Nix+OOPP/Daa6+pcHfLLbeoyz/66CP8+eefOH/+PHQ6HRo3boz77rtPHciV3tiytEBqI6xevVrd599//62eg8zkkB6gr7zyigqfpqUr8n29evVUePzggw/QqFEjvPjii+pgsMxAkjXzlIdBlIiI6AYxiBJRbZGrMyDylc1V8tiBb3SFxvbq9eYlkaAphdI2bNigfpbvpSr3rbfeih9//FGdJ0tUZJ26jFjKCKRc17SERVy8eBF16tRRbVMkpBYlo6U+Pj5qeYssQzAF0W+//RaTJk1S1zl8+LCaWXTkyBEVUCkPIzkREVEVys01ID0pEalxcUhPTkRWaiqy0lKRmZaKrNQU5GRnI9dgQK5BD4Ner77XWFvDxtYOWjs72NjZQWtrB3tnFzh5eMDZ3RNOHp5wcveAo6sbrDQa/n6JqNYquAZdiqbJdFppH2Ui029NU7P37duHNWvWqGm5Rcn0WwmiJ06cUKOgUkNBQqgUtBIyolpwnXzBxzUVZJPHYBC9gkGUiIiokkmoTIi4iOSYKCTFRKuvybExSImLRXpiggqXlUFrYwuPwCB4BgbDM6gOvILlFAKvoDoMqER0XWR6rIxMVtXU3PIqulxCptUWPM801VcCpUy1HT58ON59992r7scUJuXyunXrqrWmgYGB6nYSQGVab0mPW/Ax6AoGUSIiogpk0Ocg6sQxRJ08jphTJxB9+gSSY6JLvY2MWjp7eqnRTHsXFzg4u8DexRX2zs6wtXdQI6DWWhv1VaPVIlevR44uG/rsbDVimpOdhczUFDWyqk6JCchISYY+R4fYc2fUqSAZPQ1u1hJ1WoQhpEUrFU45ckpEZSGhyqoc02OLv49c5FpD3Y/G5sbuqyJJH2RZAxoaGlrsWs74+Hg1RVdCaI8ePdR5GzdurIJnWjMwiBIREd2gi0cOIvHwPiw6vh8XDu2HLjPzquu4ePvA3S8A7n7+cPP1h5ufP1y9feHi7a2m0Wo0FbszJqOsKbGXEB9xAQmRF5EgXyMuqlAqU39P7tiiTsLB1Q2NOnRBi979ENCoabmKgRAR1RRTpkxRIXPcuHGqwJG0MpMCQ1JBXtZ8SuVdmdor1eNlhFSm4z733HNV/bQtFoMoERHRdchKT8PxLRux4pvP88+Lv/xVgl1Qk+bwb9AI/g0aw69+QzW6aU4yeuruH6BODdp1zD9f1pnGnD6pAvOFwwcQcewwMlOSsX/VUnXyCAhC85590bxnHxWUiYhqC5lqu2nTJlUpVyrrZmdnq2m4gwYNUhVx5SCdhNJHH31UTceV9miffvqpKopE5cequUREROVw8egh7FmyAKd2bYMhJ6fQZZ1HjVOhz69eA4uZ6ipTiS8eOYTD61fj+LZNarqvYmWFhu07qdckr4eIqKKw0jipjxn2ESUioooixRqkCXdNY8zNxald27Fj/t+IPH4k/3zvOnXRsENnNOjQBdsOHLL4PqK6zAwc37YZh9atxMXDB/PPb9C+M7qMvjqQ1tTfN5G5mIrXyGhbbVJbg6i87tr0eq+FU3OJiKjCPmCl7H2zZs0QEhJSYxq3n9y5FZt+/wnxF8+r86y1WjTv1Q/hNw2Bb2h9NVVLXjsOHIKls3VwRMve/dUp/uIFbP3ndxzdvB6ndm5VJwmkPcaNV8WNpLfewYMH0a9fP+5YEV3n9mXv3r3Q6/Vo3759rQujtU1GRoaa9hseHg5fXy57EAyiRERUIeQor1QclN5qwtLDaNTJY1j302xEHD2UH9LCBwxB28Ej4OzhiZpOWr0MffRpdL71dhVIj23eoMLomT070azvQOh8AtC5S1eGUKLrJAexZJ2hhJOdO3cyjNaCECo9S318fKr66VQbDKJERFRh5AO2U6dOFh1GM5KTsPan73Bkw5r8Xpztht2MDiNGwc7RCbVNfiAddTvW/zwbp3fvwKEVi+Dq6w9do4YAj+wTXTeZ2t6tWzeG0VoSQlu1asWq5AUwiBIRUYWy1DAq0+QOrVuFdT99p9qbSLGeFj37ouuYu+DqzSPYXkF10P6Oichydkfi3u1IuRSNP15/Dq36DkDve+5X/U6JqPwYRmsuhtDScTI6ERFVWhjdv3+/6rNW3SVfisHcaS9h2VcfqxDqE1ofd077EIMefpwh9DJZE7pv3z70u20cJn78NcL6D1LnH1i9HL+99BQSoyOr8ldIVCPCaHp6upqmaypiRJaLIfTaGESJiKjWhlHTKOiPz0zF+YP7oLW1Q887J+DOt2bAv2HjSnvcqBPHVLsU+WopIVSKqnTs2FEV2bB3csZN90/FmFenw8ndA3EXzuGXFx5X60eJ6PowjNYcDKFlw/YtRERUqWJjY9U03bCwsGo1TTczNQUrZn2OE9s3q58DGzfD4ClPwN0/oFJbEaz/ZY5qA2Mia08l/FpKCC0qLSEe8z+ajqjjR9V05m5j7kKnW8ZwHRTRdZK2SLKm0MnJqcYWMKrJ7VsYQsuu5v1lExFRtVIdR0Zl9PPHp6eqEKqx1qL7uHsw9vV3rgqhFTFyKbfd/Ocv6iTTWAuGUCE/V9eR0WuFUOHs6YUxr0zPm6prNGLTHz9h6Rcz1GgzEZUfR0YtF0No+bBYERER1ZoCRga9Hpv//BnbJQwajfAMDMaQR5+GX70GlTJyWfQ+SpIYFYGARk1gaSHURGtjo6bq+tVvhJXffoHDG9bASmONgZP/x5FRouvAAkaWpXfv3mjRogVuvvlmVR13xIgReOyxx9SJSsYgSkREtSKMSjGdxZ99gOiTx9XPrfoNRJ/x98PG3l6NSEoY9AgIUoFQfi5u5LJRx65lDozF3UdpAVlGXk2Pb0khtKCwfgPh4OyChZ+8i0PrVqr3tu+EBxlGia4Dw6jlkOJSUVFR+S1aduzYoaZWU+kYRImIqEaHUZkiKiFv1eyZyMnKhJ2TEwY88Agad+5e4sind526NzxyKdctq+Vff5r/fbMefRAa1qbKQun1hlCTRp26Yvjjz2PBR+9g77KFquqwvKdEVH4Mo5YxHTc5OVl9npn6hMpnHV0b14gSEVGNXTOanZGORZ++j6VffqRCaHDzlhj/3uf5IbSkkU8ZoSwoPVuHs3EJ2Lz/ID7//HO88MILmDBhAm699Va14yE7i1OmTMFtt92Ge++9F88//zz+WbEa+y5EqdulZWWX+Tkf2bAGS76YgV9felKFZEsKoSYNO3TGiCefh7VWq15D5PEjFfo8iWoTrhm9sSmzjzzyiJoi6+HhoUYsv/nmG9UmR7bhLi4uaNiwIZYsWZJ/m4MHD2Lw4MFwdnZW17/77rsRFxeXf7ncdvz48epyf39/PP744+p35OXllT/7IzQ0FB9//HH+bWbMmKE+K2SUtE6dOnj44YeRlpaWf/n3338Pd3d3LFu2DM2aNVP3PWjQIDXKWpNxRJSIiGrkyGjk8aMqhKbExsBKo1HVXDuMHAWNxrrUUcusHD0279qNo0ZbbN28GRcTU5CUkZl34eotaodDdj4CAwPVjoOJ7IBkZWXh2LFjWLt2rdqBkOqXJm4O9gj2cMs7ebqhnrcH7K9RLdI0Hdj0XCtzlLSiQqhJg3adMPyJF/Df+9Mw79038MAXc9RUXSKy3JFRmWGSm6GHIUWH3DQdjHojjFZGWMn/tFaA/F9jBY2DDTQuttA4aNXPuTqDur2VVqN+VnIBo84AI6xhZXPltRR3XaMhF1bW1/d6f/jhBzzzzDPYvn07/vjjD0yePBnz5s3DLbfcog4qfvTRRypsyoFR2Wb37dsX9913nzo/MzMTzz77LMaMGYPVq1er+3v66aexbt06dV8RERH45Zdf1HZffj8lkd/Vp59+inr16uH06dMqiD7zzDP48ssvC42sfvDBB/jpp5/U9e+66y489dRT6v5rKrZvISKiGtXaRXaUdi/+D+t+ng1jbi5cffww9NGnEdi46VXXlRFRGXlMTM/E4cgYHI66hJOX4mHIzVUhs2XTpmgUGoIOHTuhe/+bVPj09PS8as1jca0I5HkkJCRg35ZN2LRqBY6dPouDR4/h+JkzyMzRw1pjhQY+Xmge6IvmgX7wdHIs9vXUa9O+UH/Oymj3UtEhtKBdi/7D2h+/UaOkI596qULvm6i2MWdrF0N6DnTnU5ATkQZdZDpyotNhSM4GDOWriG1lbw1jVl64tK3jooKmPiYj/3KttwMcwrxh7WoLa2dbJMw9AWOWHn6Pt4WNX946y7TtUXDuGHBdI6IGgwEbNmzIe00GA9zc3NRslh9//FGdFx0djYCAAGzZsgUrV65U15WRyYLbRxnFlLApnwEy8vndd9+p0VI5BQUFqcsfeOCB/FFQGREtrVjR3Llz8dBDD+WPtMqIqIzQnjx5Eg0a5BXPk5D6xhtvqOdXU3FElIiIaszIaE5WFpbP+gxHN61TPzfp0gM3PTAVdo5XF42QkPjn4qWYue0ATp47D42VBENPPHzn7Zj60qto1KjRDRXZkdvKDkvfYSPUqeBI7cali7B1737sOn4SC7duw797DiPAzQXtQ4PVycnONv/6BUOoaZRURkZb9R2A6h5CRdshIxB77jQOrVuFY1s2qN8JEVXPkdGcuExkHYpH5pF46M6lACVkTo2TFrnpeUsYtP5OeaOh+ty8kdIMfd7iv9y865pCqNBdSL3qvvRxmUhdfeGq82O/OwDbYFfY1XVRodiYk1to5LSs5ECnibW1tdouyzRZEwmT4tKlS9i3bx/WrFmjpsYWderUKTVCKgcDZPtuKkwk3zdpUvpMFQm406dPx9GjR5GSkgK9Xq9m0MgoqKNj3kFI+WoKoULCsTynmoxBlIiIakQYTY2Pw7x3XkPs+bPQWFuj1933oc2gYVeFyT179uCTTz7B77//riodjhw5Ek8+9hjaNG6AkEZNKr1AkIzMjpHT5Z9lp+T37+dg3r//YsmGDVh84BjC6wSgR6NQ9Ox/E87s3lFscSOZqnujI6OVHUKFvP/975uChIiLWPnNF6jTIgyOrm6V8lhEtUFFh1FjrhFZRxKQtiUS2SeTCl2m9XWAbbALbAKdYRvoBGsPe1i72Kpps/lTaG00+dtZoz5X3Z+aUmsF5Gbq1UlGUiWgymWGxCyk7YpBemoavLqEQJOrgTFbD0NqDnJTdciJy4Ax04DclBxkHY5XJ5G+JQp2Dd1h39QTDs291PMoC9MsFRN5rgXPMz13+TyQdZvDhw/Hu+++e9X9SDA8cOCA+t7b2zs/hF7L2bNnMWzYMDUl+K233lKzajZu3IhJkyapUGsKosU9z5rej5lBlIiILD6MJkRexNy3XkZqXCwc3dwx/LHnVGGiguS+ZT2QrPOpW7eumvIkhYUqK4CVlaurKx549H/qJNO0PvvgfXz3w4/4ZOUmbE/RoZ2zFqHenlfdTkZGtTa2auquKTwXbUNT1SHURGtrixFPvoCfn38My776GLc8+2qlPh5RTVcRYdRoMCJjdwxSVp+HIfFyQTUrqLAnQU8Cn9aj5HXdGtsr6+1NJKBmpKerbcuuXbvUdFZZLx8ZGam+xsTEIDs7u1DYkmnGMuVVgp6cZKpru+at0Sa0JQI0ntBfSEP2uRTkpuWowCynpH9Pwq6RB5za+MK+hVexz+V6tG3bFn///beaWqvVFo5JMnopI5RyvlTJNYXQxMREHD9+HL169Sr2PuV9kJD74Ycf5v+O/vzzzwp5vpaOQZSIiCw6jEafOoF/pr+KzNQUFcBGv/gmXH2uBCuZCiUBVIpTyBFsWZsjo6BFdzKqAznK/vo77+KVt97G/Pnz8frrr+Pz7TvQItAPg1s1gb+bS6Hrb/n7N3UytUcp2oampBFTc4ZQE2dPLzVN+t/33sSJ7ZvzizARkXnDqIyyZR6MQ8ryc9DH5hVi0zhq4dTBH06dAqD1LF9RsdTUVCxfvhyLFi1S22/Z5krwsrOzQ+PGjVXIlEqwUgRICr05ODio7Zus15TRR6lCKyHVFFilqJCENiHXbd26NXr06IFRvYajsW0dZB9LRM6FVGQfT1Qn9dw7BsC5SwCs3exwI6T6uVTVHTdunComJKOXsm7z559/xp133qkCqoxkymWyvZbt54svvljq+y5VeaWOwGeffaZer/y+Zs6ceUPPs6aofp/CRERUa5U3jMacPom5015SbVr86jfCrc+/lj/tMz4+Hs899xxmz56tCklIYYo77rhDrRGq7uQ5SkVHCcwyhfjpJ5/AR8s3oJ6PJ8a0D4Onc+HCRkVb0JjOk7BXdGS0KkJowUq6Tbv1wsbff0KD9p0KVTAmosoPo7JGM2nh6bz1n5cDqEufOnDuHAArm7L/e5TZGzKqJ4FS1lTKFNMWLVqoUcEnnngC7dq1Uz8XnW5qIrNRihZ4K0hGHGUZhYwmyuuaM2cO3nvvPRX+hg4ditsHjUIn9xbI2hsHQ1I2UtdeQOr6i3Bq5weXfnWgdb++Ct0SmuW9lEq5AwYMUKO38jnUvHlzNVorBzOlsq2EZwmV0v7lySefVM+3JOHh4ap9i0z3ldZePXv2VOtFx48fj9qOVXOJiMgiq+nGnjuDP994AVlpqQhq2gK3PvcqbB3yApqMfkpFQjkK/eqrr6rv5eh8ZSmuam5FWrFiBd586nFciIhAXFoGejaujz5N619zfdLgKU+gec++xYZQQ3JipbeEKU5GSjK+f2Iyetx5L1r1qZiCS0S13bWq6RpSdUhecgYZuy/lr+t07hkMlx5B0NiXbVxKRlJlbeMXX3yhtrEy6inBc8SIESqUSWuSytpmyuipjJQuWLBAhd9Dhw6pYkET752AhwbdA/tj2dCdyQvXsLaCc6cAuPYPgcbxxrbHMh1X3teChYmo4jCIEhGRxYXRxOhI/P7KM8hITkJAwyYY/dKbKoTKKOijjz6KX3/9Ve0cyfQnOYpd2SoziMqR9venT4ePjRV8HR0w548/sfvkGTjb2eKuLm3gUULbF3HHtA/zQ2bBEHp0xaIyT+OtDFLVeN0vczDp41lq/SgRVU4YlfCYsTcWyQtO5VWzleqsbX3hNigU1q5lOzgn9yHBUwrt7N69W023lVYlMqIns1iqYpspRYNkCq3MdJGpwdKO5Y3JL8L7pAbZp5PzR3tdB4XCqb3/ld6l5cAQWvnM3wmXiIioHNN09+/frxqNFxxRkzWhEkJ9Quvj1hdeVyF07dq1aNmyJZYsWaIagv/7779mCaGVbfmyZUiPv4TwZk1Qt2EDvPrC8xg/oLc6Mv/Rio3Yez6yxNvGXTh3VQiNObj3qqm88rMUOjKXJl17wiuoDvYsW2i2xySqLdN0ZdqoTGfNSc5C/A+HkfjHMRVCbQKc4DulNTzHNClzCJVpt507d8aoUaPUeknZvh45ckRNR73eEFoRZHTy008/Vds2WXspU3hb9G+LpzfPgGG4L7R+juo1J/1zErEz96kWMeXBEGoeDKJERGQxYTRHl43/3p+GpOgoVZBo1POvw97JWY183nTTTWodj0zZuuuuu2rEFKpz585h64b1CG/cELaXRw3kZY0edwfefPwRhIXWwbzdh7Bw32E1Ta64Ni8Lv/tahdAGQQHYOPtLdV5xZJquucjvpvvYu7H937/U+l4iqtgwariYjsiPdiDraIKaquo6sC58p7aGbZ3CBc9KImFz4MCBqsCQjIhKtXFZIjBo0KAK7Vt6o6Tf58MPP6wKJEkwlaDcuG8YPrz4G+xvCoSVnTV051MR88lupG2NKlM7FIZQ86k+f0lERESlhFFpND7vw+mIPH4Edk5OuPW512DrlLcTIv3Z5LR06dIaMQoqZIdp0YIFsDXkoFHdq9fJ1m/cGNNffRn92rTEvgvR+Gb9dmTn5E29M3GuWx85bl6I37EBi995FWf27Czx8WStqDn5N2yMwCbNii20RETXv93I3nYJdXZqYZ0F5LhYwWdqa7j2CYGV9ZXd/uzzKUjfHaO+Fl2L+f7776NNmzY4ffq0qjIuSyT69OlT7QP41KlTcerUKbz00kv4cuZX6HBff5zqmAW7Bm4w5uSqli8Jvx5FbnZe/9PiMISaF4MoERFZRBh1To3Hhb07YaXRYMQTL0Lr4qaqGn777beYNWuWOhpeGYWCqoqMYh47sA8dW7UocXRXRkmfffIJTLx5GDJz9Ph4xUYkZ2blh1Dfjj0RvXEl4o4eKvWxOowcbdaCRSZdb7sTuxb/h/SkRLM/NlFNY8w1InnBaSQvOgPkAnZhXjjXMQf7LhSeMZG05Axiv9yHxD+Pq6/ys5BRxe7du6uKsdLGRGaiyJRcS5pdIiOkL7/8snru0i+617B+eG3v17C/KUiNDGceiMOlL/YiJzbjqtsyhJofgygREVV7p/fswO7LI2c+7bsiKRfo37+/CmsrV67E/fffj5pEWgYsXrgA/q7O8PP2uub1b715JF54ZDJcHO3x+arN0Ln75IfQjKiLpd52wIOPoucd96Iq+NVrgNCwttjLtaJEN8RoyEXiX8eRtjlvzbjbsPrwHtcMXXtdWTMqYVRGQNPWFd4myM8/fPqdGgVNSEhQlXGlj6f08LRUDRo0UNOJZf3o999/j66TByFjoBs0rrbQX8pA7Ff7kH25hY1gCK0aDKJERFStJcVEY/FnH8icM4T1G4SOw25RPTZlCpbsaEhPtppm/fr1iDl3Fu1bNi/zbcJbtsRL/3sUni5O+HDufzi8ZN41Q6iMhLbqW7UtVDrePBr7Vi6FXqer0udBZMkhVKacZuy5pPbsPcc2gUv3IDWSWbSAkS628JpsQ64B09fOxL3/uw9jxoxRB/e6du2KmkDWssp0XXlNMlumw/DuONQiUa2TlUJGsd8cQOaheIbQKsQgSkRE1VZOdhbmf/gWstPT1dTRdqPG4e6770ZSUhLefPNNeHlde7TQ0kgLmtXLl6FJnUA4OZbcmqU4AX4+mDD6VrhrrfHh7/Pyp+ledb0mzVRrl6oaCS3Iv0FjOLq64cimtVX9VIgscjpuwp/HVaCC1gpedzeHYxvfQtcpGEYPpZ2B0SqvYE9Kdhom/fMCZm7/He++9JYaObTkUdCSNGrUCFu2bFE9TwfeMgQ/p6+CXRMPQJ+L+J8PY/+8LewTWkXK1sGWiIioCqye8zViz52Bg6sbBk19CmPGjsWJEydUS4GgoCBVREMU7TNq7mm038+Zja2bt+D4kSPw8vGBl7c3PDw81EnWt0oz9LKus5KCS7rkRLRqW76R3pSUFERHR6Nj+3YIDArEmx99iplrtuKxm7rDzqbwx31oy9ZVsia0OPK+tOjdH3sWz0erPlU7OktkaSE08e8TyNwXq9Y/et3VHA5NPYu9rimMSp/R812s4LwqBXf+/hQuJEfhj9e/w+iXq/6gVGVydXVVLb1k/eiTzz6Fc4+cx4udHoDuQAKCDtrCKzzQotbC1hQMokREVC0d3bweB9esUP1Khv3vGbz61ttYt26dWhPaunVrdR2pplvVYVRGZw/v2wsnfRY0yfGIio3CqexsZOj00OfmwsbeHq4eXmjcrJlqBC8n2Skqjkw33rVlE9o2bQytVlvuECrhXJrZN2nYEE9OHI/ps2bjh827cF+PDoVaLmz5+zfoc3ToeecEVAfNuvfGhl+/R+Txowhs3LSqnw6RRUheegYZu2IAK8Dz9qYlhtCiYXThwoUYv+BppOpTsHr+crQb0AW1gWwD33rrLfVZ8dBDD6mqwB8NfQH25/RI+O0oNBNawr6he1U/zVqFQZSIiKqd5EsxWDHrc/V951vGYOnmbfj8889Vv1CZXlW0tUtVh1FRLygQHcPDYF2wRYJOh4SkZETHxeHw5g3YsnolHFxcEdauvXreUlDDFBClbcLC+fPhBCPqBQdddwg15ubi7P49yDpzAhOHDcbnf8/HkgPHMDS8WaHbSduURh275vcQlfYtVTVK6uzhiXqt22H/qqUMokRlkLoxAmnr83r/eoxuDMdW3mV631JTU/Hqq68iKTkJX331Fdr071Tr3m9Z3nHy5ElVkCk0NBSvdXlYVdOVabq+k8Nh4+dU1U+x1mAQJSKiakWC1NIvP4IuMwMBjZvC4B+CKXf1V/1CH3zwwauuX53CaFF2trYI8PVRpzaXg+nZixE4uHkDdm7agOB6DdClWzd06NABe/bswakjh9C/fesyTxErGkLFuf17EX3yuPreLTsNw7t3wt9rNyPIww2tQwIL3f6fd19HVuqVypEdRoyqslHSpt16Yfmsz9B3woOwta9569SIKkrGgTgkLzqtvncdFAqndn5lul1mZiaGDh2qthlS6E0q5EoBo/bt2xeaMVGTmarjShiVtaPymeLj6Y2H6t4M3bkUxM05BN9H2sDaqea0AqvOGESJiKha2bt8ES4eOQgbO3t0H/8AuvTuo6aTffzxxyXepjqH0aLBtEn9emhcLxSxCQk4cuoM/vh+NlYuX4a42DjU8XCHt4fHdYdQEdC4CWLOnESuIa9pe48mDXDiQiTm7T6IUG8PuDteCXkFQ2jBUdKqGBkNaRkOfXY2jmxYg/Cbhpj98YksQU5MOhL/OgYYAacuAXDpFVym2xmNRjzwwAPYt28fNmzYgPDwcOh0OhXKaksYLdqiJSwsTBWHe+GFF9Dq1xboklYX+vgsJPxxDN73toCVhmtGK1vN/osjIiKLa9Wy/tfv1fcyMvfq29ORlpaGn3/+WZXfL40pjEoj8/Pnz6M6kxFPXy8v9OrYHkO6dsKezZtw+tABtGtZePpseUOosHN0QsOOXWFtYwMrjQZeQXXw+EP3w8fVBT9v2aN2SEsj03SrgpO7BzwDg3F866YqeXyi6i43S4/4n47AqMuFXUN3uA9vUObZEx988IHajs6ZM0eFTlG0tYv0Ga2pSuoT+txzz2HcuHG4c9J4XGpvBSsbDbKPJyJ1zYWqfsq1AoMoERFVG2u+/1qNitVp3goXc4yqncBHH32E4OCyHfW3pDBqIiOjl+Li0Dm8FRzs7W8ohJp4BQWjSZceqkeoX/2GCAoIwO1DBiAlKwvrj58p9f5lrWjUiWM4vH61+mpOdVqE4eKRQ8jRZZv1cYmqOzmAlPjXcejjMmHtZgfP25uUecRuyZIlePbZZ9XI3+23317ostoQRksKoUK+/+6779C8eXMMu+dWaPrmtb5JWXkOugupVfisawcGUSIiqhbO7NmJ07t3QGNtjY5j7lZrdwYPHowJE8q3ZtGSwqjs9M1dshx+Hh7o2aVzhYRQEzdfPzXKaDJs6DCEhQRj7bHTSMrILPY29dp2wJ5lC/HrS09iyRcz1Nf1v8yBudRp0Qq5Bj0iDh8022MSWYL0bVF5vUJVm5ZmsHa2LdPt4uLicO+996ptqfReLk5NDqOlhVAT6Z3633//ISsrC1M+exYO4T5q6nPCX8dhzKk570V1xCBKRERVzqDXY+2P36rv2wwegQ+//EpNyZ01a9Z19XazlDC6de9+xCckYGCv7rDRWldYCC2OvI2PPDwZbg72+HXbnmKvc2b3DrVGs+i6UXONjAY3a6m+Hlq/2iyPR2QJcqLTkbQwbyaD26B6sK3jUubbTp06FXq9Xo36lbYGtCaG0bKEUBPZrn755ZeYN28eVuv3QeNsA/2lDKSsrr6fHzUBgygREVW5Q+tWISHyIhxc3eDftpNq0/L888+XeUquJYbRLJ0Oi9euR8OQOmjZtOkNh1BpeXNw7cpi14DKeWcOH8Sx9avg5+2NSynpOBObUObnaq51ozKCa+/kjLN7d11zLStRbSAjcvG/HQX0ubBr7AHnboUrX5fm77//xh9//IHPPvsM/v7+17x+TQqj5QmhJqNHj8aYMWPw0GMPA73z2uGkrr+opkNT5WAQJSKiKh8N3TbvT/V9p5tvwxtvvQ1fX188+uijN3zf1TmMLlqzDrl6PYb27QNNKWu9yhJCT+7cqtZ0psbF4tSuvMrBJjq9HisWLUT04QOwtQJu69wWIb7emL/vcJmfq6wbNRc3P39kpachs0hFX6LaKHnZWehjMtQInedtjcu8LjQxMRGTJ0/GzTffrIrxlFVNCKPXE0JNpF+1tbU1/vfJ87Br5A4YjEhaXPq6erp+DKJERFSlDm9YjZTYGDi6ucPoE4DffvtNNVx3dHSskPuvjmE0NiER2/bsR/uWzRAU4HfD03F1mVeO2MeeOwtdVpbagdy2dz+mffYVNh45AQPydsZ8PD1w68CbkJKZjQMXo6/5XDuMHG3Wdi5ufgHqa8JFVq2k2i3rVBLSNubNRvAY1QjWLmVbFyreffddFSZluml5lzdYchi9kRBq+ryYMWMG5s6dizPBKSopZR2OR/bppEp7zrUZgygREVUZmX65c8E89X374bfi1dffQOPGjTFx4sQKfZzqFkbnLl4GFwd7DOjVq0LWhEqFXI32cmtwoxFHdmzFjO9+wNwlyxDo7Yn77xiHZp27oUXv/mjarScG9OuHhoH+WHaw9LWfAx58FD3vuBfm5O6bF8wvHDlg1sclqk5yM/WqSq5w6ugPh2ZeZb5tREQEPvnkEzzxxBMICMg7sFNelhhGbzSEmtxxxx2qz+pTbz0Ppw55U5pTVlX950ZNxCBKRERV5sKh/UiIuAAbewfYBdfD4sWL8eKLL0JrClU1MIwePXUap86fR+9O7eHs5FghhYmstVqE9RuoKg6L9OhI2Bv1uHP4EDxw5x1wt7dBWmI8XL198q5vrcHgfn2RrsvBqdj4EkdCpf2LucnUXGHu1jFE1ekAnVRsNSRlw9rLHm5D65fr9q+//rrabjz99NM39DwsKYxWVAgVUtRp+vTp2LBhA3YaT6pKxdmnkpF9NrlCnzMxiBIRURXas3Sh+tq8Rx98NWuW2okYO3ZspT1eVYdR2ZH7e9lKBHl7oWuHvKbyFVEdV6pirt29D/svJaqfZSesd+N6aN2yBQw5OlUMKvLYEaTEXsq/Td8e3eHv6YEtF2OLvc9GHbqgKji65bWcyUplDz+qndI2RKjpoKpVy7im0NiVXlG7oJMnT2L27NnqgJ6rq+sNPxdLCKMVGUJNBg0ahF69euHpN56HY7u8WRqp6y5WwLOlgjgiSkREVSI9KTG/sE6j7r3x008/qd6hdnZ2lfq4VRlG123fieSUFAzq00sVxKiIELrn8BFM+3IW1m7ZBicfP2jtHdT5UrgoKSYKNnZ28KvfED6h9WFbcN2tIQe92rfF8fMXkJaVXWxf16pgGg3X63Oq5PGJqpKMuiUvzSuO4z68PmyDy96qRciUXE9PT1WoqKJU5zBaGSFUyP289tpr2LdvHw5a531OZB1NgD4hq0Lun/IwiBIRUZU4vm0TjLm58KvfCMs3bFI7FJMmTTLLY1dUGJUpdDIaWZYds4ysLKzYuAXN64eiWaOGNxxCI2Iu4eM5P+HX/xbCy8UJD44bi9uGDYaVdGK/7Oze3epraHhbNGzfSbVGyUhJxtHN67F78QJ0btIQzrY2WHfsNKoLjdZGfTXkMIhS7aJPykb8z0eAXMChtQ+cOpVvfWdycjLmzJmDhx56CPb29hX63KpjGK2sEGoiI6JhYWF4/9uP8yroGoG0bVEV+hi1XcUvwiEiIiqDo5vWq69SPOeJ9z7CwIEDERISYrb3zhRGt23LG5Uty2PrdDo19e306dM4e/o0Ii9eUAFy/7798O/UrtTb/rdiNTQwYkjfPjcUQiXQzlu+EnsPHYWHixNGD7wJ7cNaISHyAg6tXYWcrCtH7KUFSlpiApw9PPPPs9JokBiZV4kzOyEWLRrUw/6TpzE0vFmhx0m6dO2KupXB2uZyEOWIKNUiuToD4n86jNy0HNj4O8LjlkblDla//vorsrKy1MySymAKoxL+JIy2b99eracsuo2MiYlR27Kil1lSCBVyn1OnTlXBPuup92F1AsjYHQO3gaFlbqNDpWMQJSIis0tNiEPkscPySQ+fpi3VDsWsWbPM/jzKGkalJ9+aNWuwa9tWpCYmwl5jBS9XZ9Rzd0OKxog9umxkZ+tKfJyo2FjsPngIPdu1ga+313WFUBmBWLN1O1Zt2gqNlRG927dB63p1EHvqBPYuPwddRoa6nhQscvLwVFNzRfSp42jYvnP+/Tg4u8DF2wfZGemqP2j3DvbYefQEYpJT4ed2ZRrgkQ1r0GbgMLO2bhFaUxDliCjVEjKzInHuceREpEHjpIXX+BblWhdq8u2332Lo0KFqW1JZSgujJ06cwMJ58xEfGYehY0egS5cuFhtCTW6//XY8/vjj+H7Nn5jocBNyU3OQfToZ9g3dK+0xaxMGUSIiMruz+/KmjPo3aIR1m7eokCU7UFXhWmH0zJkz+PqLz6FLSULjOsEIbdoArs7O+ZdfiIgqU7sWd2cn3NSrx3WF0MMnT+GfZSuRmpqK5vXrYXCvHtAlxOL83l3519Ha2qnQKO+pjHruWvSvCnPxF84jNLxdfsATTbp0V9eXHTi35BQ4/zkXu85FYEhY00KPmxgVoe5TKtjK9xJcKzuYynMXuQZDpT4OUXWRsuIcMvfHAXKA685m0HqWbVpt9vkU6OMyofV2wMWcWOzevRsvvPBCpT/fomG0Xbt2WL9+PVbNX44Qez94uYZgzbJValprWde6V8cQKlxcXHDrrbfiz7//wtTXxiF9RzQy98UyiFYQBlEiIjK7c/v25K9d/OjPf1UQ9PfPa9tR3cKoTHXLSk9D5xbNEBJY/p58+48ew7nIKIwe0B/2BQoxlSWExiYkqhAr7V7q+HhjRN8ecHdywNmt6/NHDK21Nghs2gwBDZuoNi4m3nXqIub0SRXopEWOb+iVFhA2dld2dN3dXNEgKBDHIqOuCqIGvR7/vPNaocJFHUaMQs87J6Cy6DLzRnbtChZWIqqh0rZEInX1BfW9+80NYFe/bCNtSUvOIK1AFdc/E5ergChLHMzBFEY3btyoCiTFn45GjwYd0blFe2RmZ2HW0h+xevVqDB8+3GJDqMnIkSNVMb0knxzI4bzMo/FwNzY02+PXZCxWREREZiUFis4d2Ku+D2rWCsuWLavQnZWKLmDUtGlTtGjbHnuOHi93gQ4pZDRvxSrU9fdFxzatyxxCs3Q6zF26HO/Pmo24+HiM7NkNXXxckX7+NCKOHFIh1N7FBQ3ad0L7EbcguGmLQiFUvZ669fK/jzh2WE3/K0l4yxZIzspGpq5wgaDlX396VfXcHfP/rtQen1lpaeqrvVP5qoUSWZqMA7FImn9Kfe/aPwTOHQPKPBJaMISKhUsXoU/XXnAuMFujstnY2KhweHTLAbT1bqZCqIQzR3sHdG/SETvWbVXbOUsOoWLAgAEqeC/cvRJWNho1PTcnOu+AGd0YBlEiIjKrhKgIZKWlqqmhF5NSkJaWpnq2VQfFhVHZ4Rk2bBhy7Rxw9HReW4WyWrl5KzLSMzCkT29oLhe3KC2EStDduHM3pn3+FXYfOIjuLZvhtk6tYRNzMb94j52jExp37o7WA4aoUU6Npvi1ZE4eHmoNrqknp7TLKU5urgFhTRrDRqPB0ejie4oWJdN0K0tmWor6am/GHWoic8s6mYSE34+pSqxOnfzh0q/shdpkOm5BSVmp2HZhPwZ17gdz2rJlC7Yu34Ax3UeiYVB9REVG5h/watM4DG4GByxZtLjUg2DVPYSapuf26dMH/y2cD7v6buq87OPFb0+pfBhEiYjIrGJOnVBffes1wJ69e9WRZtm5qC6KC6MBAQHo3qcvDp46i2xdyUWJCkpNS8fabTsQ1rghGoTWvWYIPXn+PN6bNRvzV6xG5yBfjGgQBJ+sZCRePA+jMRcunt5o0rUH2gweDq/gOrCyKv0jXAKqbYEWDqb33SQpKlKNbm77509knT0BVwd7nI5NKNNrk7WilT4i6uJaaY9BVJV0F1IR/+NhwGCEQwsvuI8s3zRPWRNa0LYLe2EwGjBkuPnW2cfGxmL5/KVoH9gKHZq3QZ06daDLyckPo9InuW94D5zadwxHjhyx2BBqMmTIELUO1jo0b6ZG9rm8A2Z0YxhEiYjIrKJOHldfAxo2wq5du1RBCwmj1UlxYbRfv35w8w/A7kNl26mSFiu2Gg0G9+1daghNSE7GN7/Pxcxf/oCnVoNRrZvAyzpvCrPwCAhEy9790bLvTfAMDC7XjphncAhs7O3hHRIK/4aNC11m4+AI/eVQLaOtIf6+iExKvuZ9dhg5ulILFsloueCIKNVEOdHpiJtzEEadAXYN3OB5e9NytwKxC3GFc6/g/J/3Rx2Dj7sXGnVpAXOQoPn1V18D8Tr0aJ1XGVeCZ9EwWj8oFPWcg7Bs4RLkXEcV7OoSQkXHjh3VazifnTfVWHch5YZHeolBlIiIzCzu/Fn11bdeQxVEpeJidVQ0jMraq4FDhuJcbDwSk0sPbOciorD/6HF0a9sanu7uxYZQnV6P+avWYMas2XDPSsXNzeqjlbsDctPzRgSdPb3Qqt9ANO3WS7VbuR71wtui/bBb0KhjFzi5exS6zNHNDdY2tmqqr4TdusFByNCXvGMV0KQZ7pj2IXrecS8qk6ntjJNb4edLZOn08ZmI/e4gcjP0sK3jAq/xzdWaw+vhPrgefB4Oh8eYxjhmF4X2XTqaLajJCOfeLbuw6+AefPPXHMQlxpcYRvu264nEc7FqGq+lhlARHh6uXt/2M/tUepJ1oobkss2OoZJxRJSIiMwqMTpSfXX08MLhw4erbRAtLozK9/WaNsP2/YdKPRo+d8kyeLu7ok/3rsWG0J0HDuLtz7/C+aNHMKSeP4Kd7WGt16nWJX71G6LNoGFo1XcAnD08K+21yY5d2yHD0XbICLXmNDAgEOmZGajTtlOx1486dgQntm9GZUuIzCvC4hlcp9Ifi8hcDKm6vBCaqoPWzxHeE6RX6I01r5CRUcc2vthzeJ/ZtqOyjn31ipXoH94DI3sPxcajO/DCF6/j7+X/IVuXdVUY9XBxR5vgFli3bI3aFlpiCBUODg5o3rw5duzZCa1PXkVvfUx6VT8ti8cgSkREZqPLykR6Yt46xORsndqpadasWbX+DRQMoxERERgybDhS9Lk4H1V8/9Ad+w8iOjYWA7p3RVZmZqEQeiEqCp/O/gHb1q9H70AvtPPzgGkXyzOoDtoOHo76bTvA3tk8FWO1NlemRAcHBkCr0WDt0sUlXr+yK+ZKuE+IuBxEA69MPSSyZLk6A+J+OARDQhasPe3hM6kVNI5X+vreiKioKFy6dMlsQfTs2bOIPhmBHq264La+I/Hl0x+gaYOm+GvDf3jh8zexec8WVZitYBjt0qojrJL1WLF8hUWGUBN5j/fs2QOtl0OxRaOo/BhEiYjIbJIvxaivErRiE5PU94GBgdX+N1AwjNrb26N1x07YffgY9AZDoevJdNuFq9egflAg6oeE5IfQXCPw09x52LtiGdq72KCtnwfsNFbQ2toiuFlLtBt+C5p06Q5bh6rrnenn6wOttQbx6RlVVjE3LSEeOdlZ0Fhbw92v/D1biaobo8GIhF+PIudiGjSOWjUSau1acWviTWvY69e/0ie4sqflumgcEeST9+/TzckVT4x7GG899DKsbbX47O9v8fY3H+Jc5IX8MJoYF48ezTph76aduHAhr2eqpYVQ03ss77epWJQ+Pquqn5LFYxAlIqok06dPR4cOHVTpd19fX9x88804duxYoSPL8kFb3Omvv/7Kv5588A0dOhSOjo7qfp5++mnVn7Kg119/HcHBwejevTuOH88rBlQdZSTnhU9ZryhH8k0VaS2BKYweOHAAYbJeyNkVh0/k9QA0WbZ+I3TZOvTq1B6XLsWoHaqNO3Zi7m+/IsSQAW9HO/X71Wi1CA1vg7ZDRqJOi1awtbtS3baq+Hj7wNZai4RrBNGk6KhKGxU1jYa6+QVc1Re1LFJTU/HYY4+hbt26aipd165dsWPHjkIjrq+88or6m5PL+/fvjxMnClcTlrVsrVu3RmhoKL777rsKeFVUW7eb8veW9N9JZB1NALQaeN3TAjaXp3VWlMjISLNuR48ePIIGvnWvCokNgurhvamv46FRE3E6/jxe++4dzPn3Z7i4u6gw6u3gDi8r1xLbuVT3EGp6j6VasMYtbzRbn5wNS5daxdtMBlEiokqybt06TJkyBVu3bsWKFStUxT1pjJ2enreuRI4WSxgreJIdIymKM3jwYHUdg8GgdqZ0Oh02b96MH374Ad9//736YDCRD+9Fixbhv//+wx133IGpU6dW299pZkpekR8HV1f1et3c3NSHm6UwhVGZotssLByHz51HZnbezkh6ZiY279qN5vVDobWyQkJcHLYtng/HSxfR1MMZttYa2Do6IaBxU3QYfisCGjW9rrBVWexsbeDq7Agbb/9Sr7fl79/w60tPYv0vcyr8OVw6d1p99Qq6vmm59913n/q39tNPP6kDBvLvTXac5Pcl3nvvPXz66aeYOXMmtm3bpqZLDxw4EFlZV0Y2Jk2ahJdffhm//vqrCkWljeBQxatJ2820DRFI3x4NmX/vdXsT2NWt+JZE8vq1Wi28vLxQ2ZKTk5EUE4+6/iWv3+7Vphu+evJD3NSpD1btW48Xv5yGA6cPISs7Cy0Dm+DcgVPYt2+fxYVQIWFMgllKTt7fYm56+SsBVzf3VfE2k0GUiKiSLF26FPfeey9atGihKu7JjpAcpZdKsUKKOvj7+xc6zZs3D2PGjFE7VWL58uWqoM/PP/+sjjjKjtabb76JL774Qu1kicTERDW9VdqgyBqWpKS8UcfqKDM1r1iFg0teELWU0dDiwqj8juxc3bH3co+8bfsPqrAZ5OmBQzu2IzfiLFxstGrdpaO7Oxp16oa2g4chNKyNmnpaHbk5O6t2MmVRGetFz+3fo74GNyt/X9nMzEz8/fffasepZ8+eaNiwIV577TX19auvvlI7kB9//DFeeukljBw5Uv17+fHHH9WI0r///pt/PxJ42rZtq/7Nenh4qBEDMp+ast3MPp+C5KVn1Pduw+rDoaU3KoNpO6rRVP4u/cWLF5GbZUDg5Wm5JZF2XHcPHovPnnwfocEh+GnVXMxa8BMuxcXC28oNyxYuRfblA3iWEkILLiOJT09UX3MzLDuIZlaDbSaDKBGRmcjRZOHpWXwlVNnR2rt3rzq6WHDKi3w4y4e0iRyNlOqDhw4dyv9Zjk7KFLRBgwapI5LVVc7lnQ9be0f1YSUjopZIwqh8cAcE10FcWoaa8udiZUSYlyvsE6Lhb2etdqikGFBo67YI6zcI3nVCYGVVvT92baw1iIss+xrQilwvmqPLRsSRvL9pmbZcXvI7kJEwWcNbkIy4b9y4EWfOnFFrduVov4n8/clBhYKtJWTUTApoyWWdO3dWlTKp6ljidjM3U4+E344CuYBDuA+cu1beOviEhIQS35vK+F3YWmnh7HClD3JpvN088dz4x/Hafc8i2yoHP6/5C4ePH8GJnYexYcMGdR0ZZbOEECpMo87JWXlBS0K5JdNXg21m9ZkTRERUg0l1WFmH0a1bN7Rs2bLY68jaCtmYyxoNE/kQKLgzJUw/y2XCxsZGjSJI5UR3d3d1NLoo+bCR51DV9JebmssKITkiLlPKrqfReXUg7/XYsWNxfOd2DKkXCGf7Au+7ozNsfPyhcXRGVHYuog4fRVXTWlvD093t2jsmRsBKW7aKnq6+/hX2+zt/cD/0OTo4eXjBpcj9ymiPjISVRtYUdunSRY18yb8j+Xfy22+/qR0mOcJv+vdS3L8n02VCAs3tt9+uRs7k6D7Vzu2mjAYVXVNaFnK75LknYEjMhrWHHZyH1b2u+7kW3cVU1Zc0IyFNvU9F1+1VhtOnTyMjPQP7jx4o920nDLwdmw9ux8qd61HXMQCpf51CQLMQOPTxRNOmTSvlPaosecsx7CFV6Krz55eNjU2132YyiBIRmYGseTp48KA6yljSFBlZXyHrLK6XFOQoiTy2FPmoaglH8wLZxYiLah2JTIdbvLjkdiGWoL6bI6wNaXmFSTKzsflCDBKzql8RC6nc6x8UBJfL0xeLE5uRDSe/ADQYc2+Z7nPXsROAnCpA3J5t6qvGwwtLliwpdFlISAjatLn2KKmsc5o4caKqVCzBVaaLjRs3Ln9aZ1nJOihTz1eqndtN+fd8Pdsm7xg71D3tBKOVEQeDLyFj9XJUpv3HD8KQlI1pT79WqY8jEpITkXApHlt25v1bLa8G7nXwdJt70cK7oRr91MXpcfhcZP56xOrONH17/8H9aIEe0GVlV9vPL2trawwbNqzabzMZRImIKpkUwVi4cCHWr1+vKjQWZ+7cuWqtzPjx4wudL+uftm/fXui8mJiY/MvKSkYTqsMUw21Zqdh2YBdC6oQgJOSSOpo8ZMgQWCpZKxMfcQF7F/yDPWcvIg1WqBMQgLF9esLLvTqNphmxdOsO3D5hkpoCV5LB/fvBmJKEU39+X+J1Oo4crda5+jVoVHHPzmjEz2vzdui6DR6Gxl16FLq8rOvfGjRooIrdyJolmYYpa+dk1FraLpj+vci/n4Jrk+VnWUdI1UtVbzclKJV322RI0SHu471y2AcuA+uid7fAShkJjfv2YP7PLkk2CHAMwEsjH4G1S8W1hSlJclpKsVVvS2QE7FKtYJ9oBbusK/+O03WZ2Gx7DI392qB9hw5mWeNaURWKw8PCgL0y4mhr0Z9f1WGbySBKRFRJ5MP6kUceUYU01q5di3r16pV4XZleNmLECLX2sCCZNvPWW2+p6WOmI/dS4c7V1bVcwVKOdF5raqM52DvmtS4w5OjUVDiZjnWt6UPVlRTukCqDHXv2xo6du5B5NgJO9vbIzEjHT/8uRMfWrTCsb2/YFzNV2tyk36m9vYP6+yo6zaqgXL0eWivAqC95upmnfwCCm1bsQY2IY0eQGBkBra0dGrTreMN/E6aj81KQZtmyZaoYh/z7kx2rVatW5e9EyY6XrFGbPHlyBb0SqinbTQmi5f07TF19BsjJhW2IC9x6hsBKU/FrHnWJObA2XLlfGytrGHJz4WHtAhu3kmc7VBQvt7JV5zXqc6E7nwLd+VSo+f6yHcrVY3fcUWw4vwuxtqlo2LEZ6up0qopu+/btLSKMCnutnfqqsbO22M+v6rLNZBAlIqrEaWUybUzaA8haDNOaiqItS06ePKmO+hc3xUdKqcuO0913360+GOQ+pIKd3LedXd6HoSWxsc973bqsLLUuqzpX+L1WCJUCKdLvUNja2aJeUADOx8ZjcKf2iImNx+4DB7H38BEM6tkDXdu2rtKdrGydDhprzVVFKYpKTU9HoF3pO1YeAUEV/OyA/SvzpuI26doD9k7XvzMtO1ASZJo0aaL+XUnvSFl/NmHCBBUsZL3htGnT0KhRI7WTJVM6pRKm9Kqk6sFSt5u6yDRk7I7Jr5JbGSFUaL0Lt7tysXdWVVw1jnn/buXvXxeRCmNa3ppL+6bmKWRkkpulh+5CKnIi0vIDqNgWdwBGX3tsStiLsznRaNekDeQZSuEbGb3euXNntQ+j0kNUeDi5A8iClV3VH9y9UVW9zay+v20iIgsn5c+lymDv3r3VtBbT6Y8//ih0vdmzZ6upZ7LzVJSMYsr0NPkqR/nvuusuNQ3tjTfegCWyvbwjqcvMUO+FaaqTpYbQgqOLbVu2gJerC/YcO4W2LZrh3ltGItTfH/NXrMZ7s2bj5LnzVfac09IzVAVfCf+liU9KhotDyTvqHUaORkCjJhX63LLS0nB8S94aQKkufCPk35uEDdmRkn8n3bt3VztaplGLZ555Ro22PfDAA+r3l5aWpgrWXCugk/lY4nZTFShafEZNQ3UI84ZdSMX3CzWR+3budWWqcoCLD+IzkwDnvFCk1l4eS1JBMCcyDeZiSM5Gxt5LSN8UiZzLo6AxGfHYG3cM+zXnENq2iRr+Oh59GncOGA3by/8mZWaMFKOSqaESRqtDUb3SWuUILxVEAY295Y/nJVfxNtPKWK6J3kRERNfv/MF9+OvNF+EZGAy7Dj1x5513qjYupv5/lhhCZb3M26+9ghBnB+TCCvNWrsGYIQPh7mgPPz9/XIiKwtK1GxCdmIgm9eph7LBBcDXz65UQfDAiBtPefa/Yqsq4XMVYdi7GdghDh3qFG9Y37NAZHUfeVuEhVOxesgBrvv8aPiGhuPu9z6p9CweiojKPJiD++0OQee3+T7SH1rPyD2xIn1J9XCZmL/kFMz6YgcWfzUWgX946vtQ1F/Kqk8mUy97BajZEZVCVhWMzVfCUIGpyJjUCC86shWeoH+7oPwrxsfGws7fFJ39+jRwrAz58ZBq+WfITMtxz8eKLL6rQIxVXpZ+oTA+triOjX3/9NR5++GEkrjmLlMVn1UEHrzuaVfXTsmjV77dMREQ1lotXXlP31Pi4/EIIpqPMljoSWlCntq0R4u+DpRulQbs/YmKiVfGi/903AX07tse5yEj8smgZDh4/qdZ1mYtMuXUtobWPiWkKpKvD1TvRPiH1KiWE5uYasHf5IvV9q/6DGELJIqWsPKe+OncLMksINY2MOrX1Q9OOrZBt0CHy0pXtqMbpykidMbPi26KY1n+mbYpA1oE4FUKNMCLTkI3zqVFYnbgb9951L+4bdrcKoc5OTth9bB/OxUXgwZH3FhsyLWFkVD6rZNufm5K3ht7azfKWx1Q3DKJERGQ2zp55hS5ysrPg45lXVdYSpueWJYQKKysNhvTpjfS0dGzbfwBBQcEqjKampABaG/QdPBS33HEXTsYlYsHqdbgQdaUXW2VKTUuHj2/Jz7vg78HF/uqdKxfvwsVgKsqRDWuRGHlRrQtt3qNvpTwGUWVS6yEvpgHWVnDpUfHrp8tSET1br8OFqCstULReV9aR5mboK3T9Z9aJRKRtuIjsE0lAdi6MGmB/2kk8u+UTvH1gNjIa2+KxCVPg6+6tWnRJCNXa22DRlpVo0yQMTUMbl3j/1T2MyhrK0NBQ6BOy1M/W7gyiN4pBlIiIzMbGzh5OHnnFM1xttGpKlvQJrAkh1KRhvVC0atQAq7dsRy6MamR0weo1SDVqcM+ECbj11lvx5HPPo2nHLthy5ARWbNyCpJTUSn0NqZlZ8LnGc5ffg4xUeDtf3QvOWlvxa6EM+hxsmftr/tpTu8sVlYksSdqWvAM4jmE+sHY2b4VsmZ7rGqWBnYM9zl08B2OuMW+KbIFCSbmpuht+HLnPzANxSN98ef1ngXw45/C/+HLP7+jfvTdmPP4WOjRvo9pymUKor58v/l7xH5KzU/HAyGv3J67OYVR6a0qfzZzodPWzjT97Dd8oy19lS0REFsW7Tl2kJyYgOTpC9bQsb+Ps6hxCTYb064NjZ7/HH4uWIMDXD87+QWjSomX+5XJfEyZOxNGuXbFw/nzV47OerzdaN28Kuwpu9yItclIys1CnTuF1n0XJ76F+3RDYaq+uBGnQV/z0voNrViD5Ugwc3dzRZuC1G68TVTeG9Bxk7M+rpOrU5UqfRXNIWnIGaesuqu+9bdwReT4i7+dcI6xcr2xDCq7drIj1n9Yedjipi8DuQ3txJjECnnV88NW9H8LVyUVdXjSEnjp/BhsObMOwrgPg6Vp6sbSiYVTWjFaXarpSy+DYsWN4/qlnYTiRNyLKIHrjGESJiMisvENCcW7/HsSeO4t27dqpnmQ1KYQKT3d3dGvbGqt37EHd5mF46L77VCEg02uVUChFeZo1a6bK4m/ZsgUrlizBf2s2IKxRfTQOrVthO14x8QmwcXBE3bp1rxlEgz3cir2sokdEc3TZ2Pr37+r7TreMhQ2r1pIFytgZA+iNsAlyhm2dvCBmrpFQUwgVTXzqY+/5Q8DlgVBjig6w1QC6XBiSdWqktKztZGT9p1TblSnHxixDocsS/XLw4+bfcej8MdQJqIPJ4yagXtCV7UrRECph9relc2Frb4ux/W4t12usbmFUPgvk9bSvGwacSIfG1RbWTjWjh2hV4tRcIiIyK9/Q+uprzOkTKogeOnQImZmZNSaEmvTt1g1hTRsjtH59FTx9fHxUzzxp3i47ayZarRY9evTA088/j56Dh+JwRAwWrt2AqEt5Iy03KjLmEjx9fNXjl0QqVu7ftw/uxrwiHJXdO3T7v3ORlpig1p6G9b+xli1EVUFCSfqOvDXezp0DzFpoS6rlFtQpOAwxaXHQGXNgZauBtY/DlfWLMl03MW8Er0zrPzdGqPWfEkKtbDSwDXVFrrs1LuUkYubiH3A2/iKm3HY/3pvyWqkhVFLx5t3bVGi9d8gdajtXXtVpmu7WrVvVwcRAY97SErvQymvRU5swiBIRkVkFNWmuvsacPonWrVrBYDBgz549NSqECltbG3RtE459O7apIheipDAqXFxccOuoUXjsmWdRL7wt1h84jDVbt6uKtzciMi4eLcPDS91R3r9/P3Q5OcWOiNZr26FCK+bGnjuD7f/+qb7vddckaC/3qyOyJPr4rLxAaG0Fh7DKKeZVEq33lWJEYmDj7kjTZeC/iPVw7hGs1qva+DqWGFxLXf9pyGv7YtvQDTYdfbDs3Ca8uPwjvLTlM7RsHYaZT89A9/DOhe6juBCarcvCP2sXqJHTote3xDC6aNEi9OvXL+89kiBar/jZI1Q+DKJERGRWrj6+cPHyQa7BAB9HO3h4eGDJkiU1KoSa1AsOghOMWLRggQrc1wqjIjg4GA88+CAmTp4CjacPFm3cil0HDyHnOtZppqSlI9OQq6b/lkbef0d7ewR7XL2Gq8utt6OiyO982cxP1VfpTdq4c7cKu28ic8o6lpAfSDR2V6+rruzWLc69gvN/9nBwQ4CPP3ad2Fe4cu7lY0/6SxlqBNdEvs+5lKGmFstJLocR0Ljbwso+77Wci7mAl2dOwy+r/0ZInTr44skPcMeA0VeNbBYXQsWCNUtwMTEak2+ecMOvt6rDaEJCAjZu3Ihbho1E9pkUdZ5dfQbRisAgSkREZiUjc8HNWqjvI44cxNChQzF//vwaF0JNr7VjeEucOnJI7UCZXCuMyu3Cw8Px5NPP4OY77kJUph7/rV6Pk+fOF9qhvJZjp8/A0y8AjRuX3DJB/P3nn2jk4wFtkcb3zXr0qdDR0N2L/1NTsu0cndBv4mT2DSWLlXUsUX21b5zXhsrc3AfXg0ObKyOx3f3bYM+pA0hJTVY/W2k1+SOnRlkrmpCV3/9TRj9N/T+Ftb8jHDv6w6mdP5J9DfgvZh1eW/AxcqwMeP2+5/DMXf8rttBQSSE0NiEWy3asQddWHQtN37XUMCoH6uRA4qAWvQB9Lqw97aEtMOJM149BlIiIzK5em/bq66md2zBixAg1NfTcubym8DUlhJp4uburkcalixYiIyOjzGHUtPPVt29ftX60Y7+bsO/cRSxevwmxCXmjMaXRGww4Ex2Dzt26qTY5pfUP3XfwIFoEXv26Q8PaoKLEX7yATX/+or7vdfek/J6yRJbGmGNA9um8wGffpGqCqBQsytxzZR356BaDEJuWgCXzFqmfczP1sHK2KRScC67/hNYqv82LjbcDMjTZ+OG/X/Hir9Ox8vRWTBhxFz58ZFqJfT9LCqHiz2XzkKnPwoRhd1boa66qMPrvv/+qYkkOUXkHAR2ae/EgWgVhECUioioJohpra8RfPI/ObcJVUFqwYEGNC6Em7Vo2Q0LERaxevbrQ+WUJo0KmL99+++2Y+sRTCGjcDKt27cP67buQXkqRp7MXI6B1dFY7UKVZuHAhrK2t0dTfp9KKFOkyMzD/w7eg12WjblgbtOxzU4XcL1FVyJIQKiNjbnZVNjJWdN1nE596cLV3xoo961QRJbXm82IacHnWsDFTr9Z/ahy1sGviAefuQbCt6wqNux22Hd2N5z57DUt3rUKPtt0w85kPcVOH3iVWqS0thJ6PvoCtx3ejWb0m+csRLDmMxsfHqxk7d4wZh8yD8eo8h5Y8iFZRGESJiMjs7J2cEdy8lfo+6tB+9OnTB3/+mVfApqaFUOFgb48W9eti/aqViImJua4wKurVq4eHp07F+Acegt7ZDQvXb8a+o8fU6GdRx86eR8vWbeDt7V3qff7111+qam+v28YVOr/DyNEVMi1XphLLutCEyItqFHTI1Cc5mkAWTWcqWNPQvcr+losWLBK3tRqEHREHkJKR9/yQI2HZvtB17Fp6wTbYBVbWGhzLPo+3N3+Nz1bMgb+vHz5+bDomDb8L9raFb1PWECr/1lft2YCwnu3g3TwI363+FX+unoe9xw8gOT1vbaWlhdEff/xRva5xHUbAqDNA62WvAjxVDPYRJSKiKtGkS3ecP7AXh9atwj333IM777xTNQxv0qTi1iRWhxAqOzEXoqJx+mIkcm3tkZV1dSsFUxgt2Ge0JDJKIaOcLVq0wLp167B2xXKcWr0ebZs1Rt2gQLVjfCk+Hml6Azp1Lr1a5enTp7Fy5Up8/M50eNepiwEPPqp6hspIaEWtDZV1oce3boTGWovhjz8HR7eyNbUnqq4M8XmjkVqfq8OgOQsWyRrRgtNz7207Cl9v+wOLDq/B7a2Gqt6mWl8HpG+NVm1chD46A5cyE/DHsn+w88ReeLh74IV7nkB4o5bXfMzSQqjYf+oQ4o0peHDyw/D391fb10MHDmL10a3QH14PZ60D/Jy8YGtjh/TMdFi5X//7Z44+oxJwv/jiC4waNQqao3nVyx3b+fFAWgViECUioirRpEtPrPn+GyREXMCoiS3h6emJWbNm4cMPP7T4EJqVnY2Y+HhcjIpBVHwiYGeHFu064qYBAxASElLsbcoTRoWDgwMGDRqkerFKMY0d27bgyOmz6BTWErsOHkGj5i2vGeq//fZbODs6IGP7OizZvVGd12HEKDTv2RcV4ez+PVj382z1fe/xkxDYuFmF3C9RVdIn5B1MktGxquQ1tilksqgpjDrZOqB3/Q74acs/GNFlIJwvj9xJINWdS8k/+PTBtjnQQ4/bB4zG0K43lSnAXSuEZuuyseHwNoT3bJe/7ZLtq5xkbfz58+fV7aOjopGdnQ1frxDYO93Y+1fZYVRatpw6dQp/fPYjdOtS1JpaCaJUcayM5Sm/R0REVIGWfDEDh9evVmsGV566qIKRhEQnJyeLCaEy1fbt115BanQUAoOCkK3XI0ufCztHR/gH10Gr8HA0b95ctWUpyzS+2NhYFUalau61wqiJfJSfOHFCtYk5c/QwtLZ2ePjxJ9CwYcMSb5OZmYmgwEC08HHHzW3yqhib3DHtwxseEb1waD/+eed1tS60abdeGPLIUxxJoBoh8s0tyE3Xw/fRNrANdK7qp4O0HVFI+juvV/GphPMY/csjeLTr3Zjy4BS1jjVXp0fyhovQQoNcoxFL07dj+MChcLQv2/rWa4VQsWbXBhxIPYlHn3kcbm5uZbrPxYsXY8iQIaUWUysLnU6nwqh8blRUGJXRULkvuc9/J89C5v44OLbxhedY88zYqS04IkpERFUmrN8gFUSPbFiD+55/AzNmzMAPP/yAhx9+2GJGQmUNZu8Bg1SfuZYdOqidMAmdcnJ3L/8asvKOjAp5DGnR0uCxx7Bjxw51XoMGDUq9zS+//IKk5GR079L6qssSoyJuKIhePHoI8959Q4XQ+m07YODkxxhCqUbIzdKrEFodRkRNDEl5bVhEA88QtA9uhX8Pr8Jtp2+BIcgOK3evgyYqG7eE9IXGygrDArrDwdahwkJoQkoidl84iH5jBpcphFa0yhgZlZoFe/bswdalG5C5Nk6d59zzSu9WqhgsVkRERFUmsEkzFXgMej1iD+7DmDFj8Pbbb6vROkuZjisVZ4cNG4aePXuqtUSDBw9Gq1atVKXb6y1kUp4CRkWfS+fOndWptMeWqXHTpk1D3+5d4e3iVKHVciOPH8W8d15DTnaWqpA7/PHnob3BEQ+i6kIfnzctV+NsA41d9RzPea3vIzifFIm3532K37f8hyY+9TG4US8kGPKKGOWm5qh+ohURQsWa3RvgHuKNrl27oqpUZAEjGWF96aWXMHz4cDSM8wKMgH1TT9gGVN5MndqKQZSIiKqMhKUOw0ep7/ctX4SXX3hBTXX9/PPPLbIwUUW63jBaFjNnzsSF8+fR1ulyb4cKqpZ7atc2zH3rZegyMxHSMgwjn34JWlvbCnjGRNWDVE4VGvvqE0Ltm3gW+jnIzQ9DmvTG37uXYmTjvmiZFAD7bGvkOBrVNH6hO50MQ8qVkdTrDaFnIs/hdMpFDBw2+Ian2FaXMCq1CmQt7btPvIHMA3HqpbsNCq3w50sMokREVMUadOgEz8BgZKWnIfHIPtx3332YPn06kpKSam0IrcwwmpKSgjdefx3tQ4Pg5+pS6DKpmtvzjnvLfZ+yc7v9v7n49/1pyMnKC6E3P/0KbGztKuQ5E1UbpsoqVdO1pcQKus69Ck8bfanPZHg5uOHlOe/Ayt5aPV//5nWw3+ps3hWMUCHLmJN73SFUgt6qvetRP7yxWgdfHdxoGD137hyef/559TnkdTjvPFkbauPP0dDKwBFRIiKqUhqNNbrdfrf6ftfCf/H0Y/9TU0fffffdWh1CKyuMSlXitPQ0DGjR+KrLpHVLeel1OlV0asOv30siRfhNg3Hr82/Axr56rJ8jqkj5NT6rqH9oSdwH14P7qCvFyRxs7PHB4OewdO8arI3eCZ/7WyFobBgCRrVAjCFRXceYZUDmwTgYL7d2KU8IFXuO70eyJhODhw6pVmvArzeMyu9WAqis7X9r3HOqX6yVnTXcBnI0tLIwiBIRUZVr1LEr/Bs2VusKT61biccffxwfffQRjh49WqtDaEWH0ZMnT+L999/HpPHj4e7ocMNrQxMiI/D7q8+qYlNWGg36TZyM/vdNua5AS2QRquGIqImVdeHd+q5122J8m5tx/+xncSoibyS0Tfu2iG5nRGZu3rRcQ0IWso8lqhBWnhCakZWJjUe3o13PjggICEB1cz1hVKbkSl/l77/4Drp10eo81wF1VeVhqhwMokREVOXkaHqvOyeq7/evXoZJY29T/TYnTJgAgyFvTVZtDaEVFUZlR2zixImq0fx7H32s+oVe79pQ2Wndt2IxfnruUcScPgF7J2eMeuENtB44tNzPi8gSk2g1GgDMp/W++uDSC70fgo+jByZMuU/NNJFt7YBRQ3DAKwoGY144y4lMQ+aJBFw4X7YQKjbu3wprL3v069cP1VV5wuiRI0fw1FNPqRHRsEsBarTYJtgZzl0CzfqcaxsGUSIiqhaCm7dE85591fTODT99izmzZ6sWJtLSpbaH0IoIo5999hk2bNiAOXPmwNnZGT3vnKD6hQ6e8oT6Wta1oelJifj3vTew8tsvoc/OVutBx7//Oeq2uroNDFGNczmBGg1XprNWp7WiDm18Cp3nZOuIz4a/gr3HDqi2WHIQyXAuHR0z6iPSOiH/eoYL6fBIsYWPr881Q2hsYhz2RRxBn0H91LakOitLGE1MTMSIESNQt25dTB/zHLJPJsHKRqN6hlppquERhxqEQZSIiKqNXndPgr2zC2LPnYE2NhJPPPEEXn75ZXW0uraH0BsJoydOnFAFOB555BH06tUr/3wZAZXwX5aRUNmBPbppHX54agpO794Baxsb9B5/H0a/OA0uXt439JqILIXW3S6/d2fBtZXVhdfYpleF0Z53DFTTTmfPno3vPvoacXMOAtm5qJPrjUhcCaPahFxkbI8pdeRQtgOrdq+Hb8MAtR2yBKWFUb1ej7FjxyIhIQELvv4LWWui1Pluw+rDxsexCp917cAgSkRE1Yajq5sKN2LzX79g6oR7EBoainHjxqmdiNoeQq8njGZkZKj3T9ZxSTXi6yGjoPM/fAuLPn0fmakp8KlbD3e9/RHaDb1ZrQ0lqi2s3e0BjZWqNpubqkN1JGHU5+FweIxprL5KIaN77rkHTz75JB58egriAq887wB4YG/2qfyfc9NykH0ovsT7PnHhFC5kxmDQsCGqb7GlKC6MSqiW92T16tX496e5sFudDOQa4RDmDaeO/lX9lGsFfnoQEVG1IiN0jTt3R67BgFWzPsVvv/yMU6dOqR2pko7U16YQWp4wKjtakyZNUiPKc+fOhZNT+VoQyO2lENH3T0zGyR1bobG2RpfRd+DOt2fAO4SVJKn2sbK2gtYjb1Q0Jy4T1ZVM03Vq66e+mrwx5UXc1KUPuj09HCneeWvvc+rYoPXj/XHcOkr9ezdaA3bNvIq9T71Bj9X7N6JJu+Zo1KgRLE3RMPrGG2/g008/xVeffIHGx12Rm54Dm0AneIxuXK2qANdkDKJERFStyA7ATfdPhbOXN5Kio3Bh3XL89NNP+PvvvzFt2rSrrl8bQ2hZw6i0wPn999/x/fffo02bNuUeBf3vg7ew+PMPVY9X39AGuPPtj9D1tjtgra3axvVEVcnaK68okCE+y2J+EUlLziDh64P4rNOzaOXbGB1eGYJDQZcQ+mAnBIcEo+X/emOf8wX8lrQap6LOFHsfO47sQYZdDgYNHmyxQc0URmWq8muvvYZ333oHIzWdkROdAY2zDbzubg6NreWM9Fo6BlEiIqp27J2dMex/z0JjrcWJbZvhb8hSIfTVV19VgdSkNofQa4XRBQsW4IUXXsArr7yC2267rVz3eXTzenz/1BSc2imjoFp0G3MX7njrQ/iG1q+EV0BkWezquamvOfHVd0S0oOzzKUhbd1F9L2HrmdefR5Pghhj17His37hene/r64v+T49CnW6NMW/3MqzdvbHQDJTUjDRsPbkLXfp2V9scSyWjvvJZ8t133+H+CffhVodu0J1LgZW9NbwntoTWg/2PzYlBlIiIqqWgJs3Qb9JD6vtNf/6M2/r3xu23344777wTq1atYggtJYyuW7dOFeC45ZZbVHgvK11mhloHuuiT95Ala0FD6+Ou6R+h86jb2RuU6DKH5p55/17OJFvEe6K/PIU4286A481T4Z/lit+Hf4C2fs0x4KYBqpK2sLe3x+3jbseQcSOwO/4Ifl/9D5LTU9Rl6/dugr2fS6FiZ5YmKytLLfF48803MePdD/Bmp6mwjzEi1xrwHN8ctoHVuwJwTcQgSkRE1VZYv0H5vSkXf/o+pj3zJPr27Ythw4ap6bq1eSS0pDAqU3GHDBmipp/98ssv0JSxmFDM6ZP46bn/qcq4UoCo86hxuPOtD1VhIiK6QuvjCCt7LXQXUmFIq54Fi4r2FzWFULckG9Q54whHGwd8P/pdjGkxSPUXlgrlUkFWptzKtmPilPuR5m7Ad8t/xYrta3Do0kn0HzIADg5X9yq1BJGRkSpE//XXX/jrpz9wp3M/5JxJgZWtBpFt9TgQd7zUasFUORhEiYioWutzzwNo2KELDHo9Fn38Ll5/5kk0bdpUHdU+cOBAVT+9auXQoUNq3VP9+vXxxRdfqBGOskxV27NsIX57+Sm1JtfF2wdjX3sX3cbcybWgRMWQ3pKu/UMAI5B1LLHav0cGby1Ots3ID6FWl/uE2lrbYPrApzDj2emqaM/QoUMRGxurLpOemo8+8T90HdkbB5JPIrBpXbRt2xaWaMuWLeqgZUREBDYvWodukfWgO5+qDiZ439cKbYeX3meUKg+DKBERVWtSqXXoo08jpGUYcrIysfG7L/DtxzPQu3dvNTIqR7gJ+Pfff9VIaPs2rfHVO2/h2NGj12ztIuF+5bdfYPXsmer7hh064+53P1XToomoZE7t/NRedNaRkludVAfSvmnTpk0IqBeMVm3C8kOoiYyAPvzww1j40zzs2r4TLZo1VxW2hZ2dHQYOHIgnX3oGD05+sMyzK6rTVNxnn30W3bt3V8F6+x9r4btOD0NCFqw97eE7OUxVFS6tzyhVLsv6iyIiolpJa2uL9uMmwsHHH7k6HTZ99wU+e/tNtQZyzJgxah1kbd15MBXfkPeiY8vmGOzvim0/zsKFlQuxe9euEsNoZloq/pn+CvavXCp7o+h510SMePJFODi7mP01EFkajYMWjuG+yDqeBKM+t1qHUFm+0KpVK7h0DIRzr+BC15GfMw/Fo+U+d6y4azbaezVXxc1kjblpdNTV1RVarRaWZNu2bWoE9+OPP8b0aW9j4TM/IHdBFIzZBtiGusJ3SmvY+F1pZ8UwWjUYRImIqNqT6riHjh7FyGdeQUir1sjJzsLCD97Cq49Mxttvv62m6Y4ePRppaWmoTWRHU3YYX375ZTz16CMYGuoHm8tN5jNjIhGxejH27tlzVRhNvhSD315+GucP7oeNvQNufvoldBh+q8W2ZCCqCq4D68JoyEXmwbhqH0JN/7bdB9eDz8Ph8BjTWH11aOGVX1HXx8kTX9/8Jj4f/ipWLl+BZs2aqSCXnZ0NSyHTbx944AF07dpV9U3et2I77nG4CRlbo9Xlzt2D4HNfK1g7Xd2CimHU/BhEiYioWivYoiUoJAS3PPMKGrTvBH2OTlV37d0oVE1LXbFihdr5kHWStcHRo0fVlLPFixerljYTRt0MTZEgKWE0wMm+UGuXmDOn1HrQxMiLcPHywbg33kODdp2q6FUQWS6tuz2cOwUgdd1FNTOhuodQE5mO6tTWT301VdQ1keuObN4PO/5Yp2ZZPPnkk2jSpAl+/PFHGAwGVFeJiYl47rnn0LBhQ/zzzz/4+P2PsOyV3+C8JAU50enQOGrhdW8LuA+rDyttyfGHYdS8GESJiKjaKq5PqEzTHfHkC2g3dKT6efNfv8Dq5CFsWLtGVX2U6VjTp09X39dEsjP4/vvvo3Xr1mpN0+bNm3HrrbfCIyCo2OsHhdTNb+2yc9Vy/Pn6c0hPSoRPSCjumPYBq+IS3QCXvnWgj89C9vFEiwihxVXULU5Q07r45ptv1IG9du3aqbYnLRs3x5fvforMzOrTP1UOsD3//POqQNvnn3+OZ556Gkf+3o5RmR2RsSlKFZRyCPeB3xPt4NA0r+3OtTCMmg+DKBERWUwINdForNF7/P246YGpqpjR8W2bsPP7r7Dkrz/w+OOP46WXXlKjo4cPH0ZNHAWVAhxTp05V709YWJi6LKBRE3QYMarQ9TuMHK3Ol9Yu3sYcrPvmc+gyM1GnRRjGvv4unD29quiVENUM1s62cO4RhJS1edNbLSmEChkVLW7dqJwvpEL5d/d9gPl3z0SItS+mPvcYgvwC8dhjj+HgwYOoCnKQUWaCyIhtvXr18OWXX2LihIk4sWgPJnuORPaSCOSm5qiCRDIK6jWuqfo9lQfDqHlYGavTXAIiIqJrhNCiok4cw8JP3kNKbIwKpZ1uGQuroFBMnDQJp0+fxiOPPKKOmHt5VV7oysnJUTtGUrXWxubqtUcVMe3snXfewSeffIKQkBDVgF6qPJb0fiRGRagRUgmh8jG/9Z/fsfnPX9TlLqENMeChRxFar36FP0+i2ig3W4/o93bCa3xz2NXNC3CWEEILyj6foqbpygipKYSazo/9cl/+z2cTI/Dz3v/wz6mViI2PQ+PGjTFixAgMHz5cHfwra1Gj8m4zU1JSsHTpUixYsACLFi1S28Tw8HBMnvQgRrUciJwd8aoarrBy0MK1bwicuwSUOg23LHRSHG/TJrXetH379hZXObi6YxAlIiKLDaEmWelpWDHrcxzfulH97BUcgt4THsIPf8/DBx98oHYeZBTxf//7n9qhsJQgKjuXn332mQqh8hjSdF7WQTk6Opbp9nqdDiu++RyH16/OHyFt2m8wtu/YoXbi6tSpU2HPlag2S90UgYw9l+A7ORxW1hqLCqGlSd8dg8Q/j191vtMtodh4aS/mz5+vwmFMTAw8PT1VGJWpvKZTYGBgubeZsvzg2LFj2LVrV/5JquDKbWS7NXzYcNzWfTiC09yRuS8Wxpy8qsWyDtS5W5AKoBrHitsOM4xWHgZRIiIqREbQ9FVUJTE6NlatZSxLCJU+orLTZW1tjR9++EFNpZoyYTxcos/j13WbceBiFDzd3fHW229j78FD+Oqrr1QbApmmKuuKJJAOGDAAH330Eby9vdV9yhF3aYUiU87kfrt06aJGIRs0aKAuP3v2rJoKJsWBJCDKzlGjRo3U2qSEhIQKC6Kpqan4/vvv8fa0aYiLj8foYUMw+d7xaNSilRrlLNN9xMdh/odvIfrUCVhZadB34kNoPWCIukzaMshzZxglqhjSwiV6xi44tvaB24DQGhFCixsRNZGKu6aRU2mdJf03Fy5ciO3bt6vgGBeXV0nY3d1dhdGAgAB18vf3h4ODg3qex48fV9tTWeseFRWlTpGRkeokPUCFbHsl0Pbo3gPDOw6AW4w1Mg7GITdFl/9ctL4OqmiUYwd/aGzzqoZXNIbRysEgSkREheRkZeHTe0ZXybvS6PZJ6NS1a5lGQiWI7t69G88884xqYfLHH3/gtddeQ7++fdHU2x0OSbFYf/w09l+Mxr9ffwH3Ji3Qo09f1YpAdoRkKtn58+dhb2+P1avzRgwlYMoOkqy7lFYwr7zyigqfMkIro6qmICrrpmSkVULoiy++iB07dmDGjBnqPm8kiEphECkQIlNv09PSEB7sjwEtG8Pb+coorqwD7XnnhFLv58LhA1j48bvISE6CvbMLhv3vWdQNa13oOgyjRBUr60Qi4mYfhM9D4WaZolvZIdQkacmZ/BYvpjWk0gamtIOZcrBPAqmMbJpCppyio6PVNlhGNyXcubi4qIOCpqAqoVVOsg1u06YNnA12SN8Vg4y9sflTb4WVvTUcmnvBqYO/6gtqjtZTDKMVj0GUiIiqTRC9/f0vVYuWspAgKlO4NmzYoH6W793c3FQFWWk1IGsl/5v5CSbP+AqP9OuKU/HJiDUAv/3xJ77/9TcV+GQ6mZAwO3HiRNWmoCA5qi8jqAcOHEDLli3zg+i3336LSZMmqetIQaQWLVqoUVHpX1feIHrixAk1vU1C8JYtW9Tj3X7rLXCLOAl3x+IrWt4x7cNiR0YN+hy1FnT7/L9lbxDeIaEY+dRLcPfzL/Z+GEaJKlbiPyeQdSoJfo+2hcauckbnzBlCr7WG9HqVNjU3V2dA5qF4ZOyIRvbp5PzzrWw1cGjhrarg2jd0v+H1n9eDYbRilW1FMRER1RpaOzs8+sNcszYg379/f956onKuWTRVjBUylVYKEslOmZCg9sD7n6sgqnH1wMVjp3EoMgbNw8JU1V0pbCSjoTIFTJq2v/feewgNDVXnJScnqxFRmXImZORUgmhxjytH8YXcpiyk6IaMFMg0YAmgUglXHrN///7466+/VOGPk1s3YskXM0q8jy1//4Zbn3ut0HlxF86p21w6c0r93LLPAPS5937Y2hcfZoWEXmntItN0BdeMEt0Yt6H1kfXRLhVIPcc2gZXGyuJDqJDwWREBtLRRVN35VGTI6Kes+8y+3LPUCrBr5AGntr6wb+5VaVNvy1tNV95/mY7MAkY3hkGUiIgKkZ0aG3t7sxUmOnjkSJmn4xZV9Ei6eu4FzjNVOOx19yTsiUlAW2cX9Kt3pd+mq68v6rftiNY9+uDYhYsYP3686pEnR72FVKiV9Usy7bcgCb0FH1OYQqvpexlNNa15klFTU9ENWRclfH191VReKUQkIbRgEaWSeoKanNmzU434StjOzkjH5r9+xZ6lC2DMzVVTcQc88AgadepapveQYZSo4sgoqMfoRoj79iASbTTwuLVRhYbRqgihlSk324C0XbFI2xIFfUxG/vnSesWpnR8c2/lB626H6oRhtOIwiBIRkcVUx71esrPWvXcfNf116sdf4fDalTiyaR1yMtNxcdMadbJx91Kjmr98/RWat2uP/YcOq2qQMhr6+++/q+m+JvKcZSRUCnGYdgRlau5vv/2m7kOm/EqvOxOpctu6dWtVHElaycjor0znLakVgKkn6A6ZYluC+IvnEXv+LDb98ZNaCyoatO+M/pMml7s/KMMoUcWxb+gBp07+SN8WrbYP7rc0rJAwWpNCqITOOqcdEbdrF4y6vIN4VjYaOLTyVuHTrp5bpYwmVxSG0YrBIEpERDU6hJpMmTJFrQt97MWX1ZrQm7r1xobFC/HHn39iaKMQZCfGwdHWBh++PQ0DWzSB0dUDB3btUred8+236NG7txrRlCbq0kJFRkVlmq2MmEqVXZnW27FjRxVOTYU3ChbgKGt/PRMpSNSoY1c1+ilTcYva8NuPyEhOVN97BAaj770PIDS87XW/PwyjRBXHfUQDZJ1IQvqOaEADuI+8sTBaE0Ko0ZCr1n7K6KfuTDJ8YQ8jcqH1cYBTpwA1AqpxsJxowjB64yznt01ERDVCVYRQIWFQduSkn6iMTErlxrp162LQoEF4eNo0nNu/B7lB9fDJj7/g/aVr4ePihJvbtMCxM2ex4utPkL1nM2x883riDRs0EF169FTfJyUlqeJFw4YNU/ddkX1EZWRUTvoc3VWjoxJCndw90GHEaLQeOATW2ht/XIZRooohvUR9HwpH1PRtamRUpqB63NIQGjttrQuhhpRspG2LRvr2aOSmXm67ogES3XWoNyIcTk28LO41mTCM3hhWzSUiohofQssrJS4WEccOI+LoYUQePYTYC+dUFdqCZBQyuFkLBDZqCu+69bB13wEMHTaswoKoFO9IjIpQAfno5g2IPHY4/zIXLx90GDkKLfvcBBvbil8/xWq6RBVDF5mGS5/tAYyA1ssenuOawjbYpVaEUF1EGtI2XETG/jggN2/7qXG2gVNHf9i19cayTasqrPdyVWM13evDIEpERGZhKSG0OJlpqbh45CAuHjqgenTK2syiwdTKWgu/+g3gFVQHnoHB8AgMgqu3L5w9POHg6qoq9ZZEigylxschIeICEiIv4tK5Mzh/YB9S42Ov3L+VBqGt26rw2aBdxwoZAS0NwyhRxciJSUfc7EMwJGcDGiu4DQyFc4+ga07VtcQQasw1IutIAtI2RRRqvWJb1xXOXQNU+xVpu1Ja+xZLxTBafgyiRERU6Sw5hBYnKy1NjZhKOI0+dRwxp0+q/qslsdJo4ODiChs7OxUgrW1tpbQusqVCb0Y6sjMzVBgtylqrRVDT5ggNb4dm3XuXuwjRjWIYJaoYuVl6JM49jsyD8epnu4buah2pja9jjQihhlSdWg8r05BV4BYaKziGecO5e9BVo8A1MYgKhtHyYRAlIqJKVdNCaHF02dn474/f0Dw0BCmXYtSoZmJUJNIS4pCRnAyj8eqQWZTGWguPgEA1muoZVAfBTZsjqFkL2NiZp5VOSRhGiVBh0+0lrCUvOA1jTq7qkenY2heu/UOg9XKwuBAq4TrraAIyD8Qh80jClem3jlo4dfCHU9dAaN2KXzpQU4OoYBgtOxYrIiKiSlMbQqhpxNPWzQONu/S4aqcq12BQ7VUyUpKh1+lgyJFTjrrM1tEJdo5OsHV0gKOruxoBrW5YwIioYkigdO4YoFqTJC89i6xD8cjYcwkZ+2Lh1N4PLn1DoLM1VOsQqk/MQvaJJGQeikPWySTAcGWJgm2IC5y6BMKxpbdqxVJbsYBR2VW/TzwiIqoRaksIvRaNtbWaUmvuabUViWGUqOLY+DjC++7m0F1MRcqKc8g6lqgqyqbvjEGahx51GnqgUbdmVR5CZQTXkKKD7mwysk8lq+BpSCi8BEFarzi09Fb9P20DnavsuVY3DKNlwyBKREQVjiG05mEYJapYsm7Se0JLZJ9NRuLSM9CfTYVzvDUQn4moHdvUOlLHVt6wa+QOaze7Sg2mKnQm65ATnY6ci6nQXUxTQTk3LW/2Rj5N3vO2b+IJh5ZesPFzqrTnZOkYRq+NQZSIiCoUQ2jNxTBKVPEMvjY40CAWAS28USfbE1kH45ATnYHs44nqJKzstbAJcISNvxNsA5yh9XeEtYutWo9pZWt9zZAqQTM3Q4/cNB0MaTl5X5OykXMpEzmXMqCPyYBRZ7j6hhqosGnXwF0FY7t6rtfVC7W2YhgtHf+SiIiowjCE1nwMo0QVp2BhohaX14S69a+LnNiMvCJAh+KRE5UOY5YeujMp6pRe9E40ViqQahy0sLKzVus2jfpcGGX9pvqai9xMQ34xoRJprKD1todtkAtsgp3VyKdNgBM0tiW3nqJrYxgtGYMoERFVCL1ej6NHj9b6NaG1KYzKGuCAgABoq2GRJaLqTkYpT5w4UWxhIllHatM3BK59Q1SolFFLNW1WTlHpagTTkJ6TVywo16im0F41jbYYVg5aWDvbQONsC2tXW9U+RuvrCBs/R2i97GFlXXuLDJkjjG7evBkJCQnw9vau6qdULfCTg4iIKuYDRatFnz59YG1ds46e9+7dG61bt8bHH3+sfg4NDcVjjz2mTrU9jPbt27fG/b6JzEWCZ1hYWP73JV5Pq1GFgIoWA5IgK21gcjP1edNuM3LUz1bWVuoErUYFS/WzfV4AlfuiqgujPXr04DazAAZRIiKqMLUhlOzYsQNOTizQUVt+30SV6UYKEMltZX2omjpbQr9Oql64zSyMQZSIiKicI4FERER0Yzg+T0RExcrJylInmf5lYtDnqPP0OTnFXzc3t8B19XnX1enKdN3rmTL7yCOPqCmyHh4eap3VN998g/T0dEyYMAEuLi5o2LAhlixZkn+bgwcPYvDgwXB2dlbXv/vuuxEXF5d/udx2/Pjx6nJZ+/jhhx9e9bgyNdc0TVfMmDEDbdq0wdixY1G/fn08/PDDSEtLy7/8+++/h7u7O5YtW4ZmzZqp+x40aBCioqLK/ZqJiIhqCgZRIiIq1qf3jFanzNSU/PN2zP9Hnbd69leFrvvlA3eq81PiYvPP27tskTpv2cxPCl33m6kT1fnxERfyzzu0buV1/RZ++OEHVfRh+/btKpROnjwZt912G7p27Yrdu3djwIABKmxKZcqkpCS1plFC486dO7F06VLExMRgzJgx+ff39NNPY926dfjvv/+wfPlyrF27Vt1PaTQaDT766CN8+umn+O6777B69Wo888wzha4jj//BBx/gp59+wvr163H+/Hk89dRT1/WaiYiIagJOzSUiIosVHh6Ol156SX3//PPP45133lHB9P7771fnvfLKK/jqq6+wf/9+rFy5UoXQt99+O//2s2fPRp06dXD8+HEEBgaqIPnzzz+jX79++UE3ODi41OcgI7I5OTkqbEqxpmnTpuGhhx7Cl19+mX8duXzmzJlo0KCB+nnq1Kl44403KuU9ISIisgQMokREVKxHf5ib90Fhd6UIRocRt6LdkJGwKlKk5uFZv+Rd19Y2/7zWA4cirN9AWGkKT765//PZV123Ra/+1/VbMFWcNBWB8PLyUm0QTGT6rbh06RL27duHNWvWqKmxRZ06dQqZmZnQ6XSqLYmJp6cnmjRpUupzkIAr4VbuX24vbWyysrJUMHV0dFTXka+mECpk2q88JyIiotqKQZSIiIplY29/1XnWWht1Ktt1tepU1uteDxsbm6uqSBY8z1SRMjc3V63bHD58ON59992r7keC4cmTJ8v9+GfPnsWwYcPw4IMPqnWfQ4cOxbZt2zBp0iQVSk1BtLjnWXDtLRERUW3DNaJERDXU9OnT0aFDB1W0x9fXFzfffDOOHTuWf7k01ZZ1lTLi5+DggJCQEDz66KNITk6+ukVAkdPvv/9e6Dqvv/66msLavXt3Nc21Omrbti0OHTqkig1JEaOCJ2nHIiOWEhglSJokJiaW+np27dqlQu57772n3sfGjRsjMjIStYGsdZVgL1Oa5W/i33//LXT5a6+9hqZNm6r3VopJ9e/fv9B7K+R3UfRvS6ZXFyQFqOrWraumVRe9PVFF4jaTKhu3m4UxiBIR1VBSdGfKlCnYunUrVqxYodYpSvEeqQwrJDDJSYroSDVZqe4qBXxkNK+oOXPmqCqvppOEWpNNmzZh0aJFqsDPHXfcodY/VkfyXkj4HjdunOoFKtNxpZKtVNg1GAxqyq68dilYJAWH5D259957VTGikkiIlff1iy++QHR0tFpfKmtBawP5O5I1uvLaiyOh/PPPP8eBAwewceNGFTrl7y829kpBKyFrZQv+bcnBERMp6iQhXw58vPjii+p3RVRZuM2kysbtZmGcmktEVENJqCxIgqaMjMooXs+ePdGyZUv8/fff+ZfLiOBbb72Fu+66S61z1BaYLivtR/z9/Yt9HBk1lFExWa8pt5PHqY7kOUpofvbZZ1Ugys7OViNtMqXWFDbff//9/Cm8MpL85JNPXjVCXJAEMWnfIreLj49XLWVkVEVawNR00gZHTiWRgxIFyfskxaCkcJSpGJSQ97mkv62UlBT1tyd/W3IdWcdLVFm4zaTKxu1mEUYiIqoVTpw4IYsSjQcOHCjxOt98843R29u70Hlym8DAQKOXl5exQ4cOxu+++86Ym5ubf7lOpzMOHDjQqNVqje7u7saVK1caaxt5D/7991/1tTaSv5F58+aVeHl2drbx/fffN7q5uRljY2Pzz69bt67Rz8/P6OnpaWzdurXxvffeM+bk5BS67cSJE43W1tZGBwcH488//1ypr4OoIG4zK09t32YKcLtp5IgoEVEtIOsYpc1It27d1EhoceLi4vDmm2/igQceuGrqpPTflMI70lvz4YcfVqOGsp5UyLpKGUmQKrAyemVboBou1W4LFy7E7bffrioIS0EomSIu7XVM5G9I1u5KdeLNmzerFjwyPVdGT01kFFWm58rfn6xlJjIHbjOpqiysRdtNq8uJnIiIarDJkydjyZIlaq1ecX0xZQrkTTfdpD7Y5s+ff1WV14KkN6esGb1w4UIlP2vLIetEFy9ejCFDhpT63tVUUmRo3rx5hdYOm9ZDyQ6SHOSQokOy9lYKDskU8eJIX1epQCwHOuwKtA0iMjduMytXbd9mCituN1msiIioppPiQXKEVXpoFhdCU1NT1TpJWasnYeJaOwXSZ/PixYtqjSVRaaRirhR06ty5szpCL+uO5Wtpf1uyzlja4hBVFW4zqSo51aLtJqvmEhHVUDLhRXaoJFzKSFS9evWKHQmVwj0ynVZGQu2L6fFZ1N69e1U7Do5Y0fVMdyztAIb8bUnhqJJGTIkqE7eZVB3l1uDtJteIEhHVUNKu5Ndff1VtVWS0U9qLCDc3N7VmxBRCZR2KtB2Rn+UkfHx8YG1tjQULFiAmJkYdmZWQKmtV3n77bTz11FNV/Oqoqsn02ZMnT+b/fObMGbVDJNO7vby8VAXmESNGqDVOMjVX2rxERETgtttuU9ffsmWLmqbbp08f9fcpPz/++OOqarMc6CAyN24zqbJxu1lEVVeMIiKiyiGb+OJOc+bMUZevWbOmxOucOXNGXWfJkiWqmqmzs7PRycnJGB4ebpw5c6bRYDDw11bLK0CW9Pdzzz33GDMzM4233HKLqrZsa2trDAgIMI4YMcK4ffv2/Nvv2rXL2KlTJ1VJ197e3tisWTPj22+/bczKyqrS10W1F7eZ5lMbt5mC283CWKyIiIjoBrHwBhERt5lUPlwjSkRERERERGbFIEpERERERERmxSBKREREREREZsUgSkRERERERGbFIEpERERERERmxSBKREREREREZsUgSkREdKMfphoNGjZsqL4SERG3mXRt7CNKREREREREZsVDt0RERERERGRWDKJERERERERkVgyiREREREREZFYMokRERERERGRWDKJERERERERkVgyiREREREREZFYMokRERERERGRWDKJERERERERkVgyiREREREREZFYMokRERERERGRWDKJERERERERkVgyiREREREREZFYMokRERERERGRWDKJEREQA1q9fj+HDhyMwMBBWVlb4999/C70vaWlpmDp1KoKDg+Hg4IDmzZtj5syZha6TlZWFKVOmwMvLC87Ozhg1ahRiYmIKXWf+/Plo3LgxmjRpgoULF/K9JyKLxe0m3QgGUSIiIgDp6ekIDw/HF198Uez78cQTT2Dp0qX4+eefceTIETz22GMqmEqwNHn88cexYMEC/PXXX1i3bh0iIyNx66235l+enZ2tguqXX36Jzz//HJMnT4ZOp+P7T0QWidtNuhFWRqPReEP3QEREVMPIiOi8efNw880355/XsmVLjB07Fi+//HL+ee3atcPgwYMxbdo0JCcnw8fHB7/++itGjx6tLj969CiaNWuGLVu2oHPnzkhJSUFYWBh27typLu/QoQP2798PFxeXKniVREQVh9tNKi+OiBIREZVB165d1ehnREQE5BjumjVrcPz4cQwYMEBdvmvXLuTk5KB///75t2natClCQkJUEBWurq6YMGECAgIC1BRgGRFlCCWimorbTSqNttRLiYiISPnss8/wwAMPqDWiWq0WGo0G33zzDXr27Kkuj46Ohq2tLdzd3Qu9Y35+fuoyk1dffVVN65XbM4QSUU3G7SaVhkGUiIiojDtUW7duVaOidevWVUU6ZL2njGwWHAUtCzc3N77nRFTjcbtJpWEQJSIiuobMzEy88MILat3o0KFD1Xmy1nPv3r344IMPVBD19/dXhYeSkpIKjYpK1Vy5jIioNuF2k66Fa0SJiIiuQdZ+ykmm0xZkbW2N3Nzc/MJFNjY2WLVqVf7lx44dw/nz59GlSxe+x0RUq3C7SdfCEVEiIqLLfUJPnjyZ/16cOXNGjXh6enqqgkO9evXC008/rXqIytRcac/y448/YsaMGfnTbSdNmqTavMhtpDDRI488okKoVMwlIqppuN2kG8H2LURERADWrl2LPn36XPVe3HPPPfj+++9VwaHnn38ey5cvR0JCggqjUrxIeodK2wKRlZWFJ598Er/99pvqGTpw4EDVM5RTc4moJuJ2k24EgygRERERERGZFdeIEhERERERkVkxiBIREREREZFZMYgSERERERGRWTGIEhERERERkVkxiBIREREREZFZMYgSERERERGRWTGIEhERERERkVkxiBIREREREZFZMYgSERERERGRWTGIEhERERERkVkxiBIRERERERHM6f/A1w5w8XP0qgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -255,7 +266,7 @@ " }\n", " )\n", "\n", - "for i, k in enumerate([1, 0]):\n", + "for i, k in enumerate([0, 1]):\n", " \n", " # clustered data \n", " x_k = ckm.data[ckm.labels_ == k]\n", @@ -296,7 +307,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAEmCAYAAAAEMxthAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAObBJREFUeJzt3Qd4k2X3P/BDoey9N7JF2XvI5i3wMkX2kr2lCCIWZenLlI0MBSwg+wXKkimjbAQFWbIELLvMUkBG4flf3/N7k39S2tJA2yRPvp/rCm2Sp8mTAjm57/vc58QzDMMQIiIiijav6B9KREREwOBJRETkIAZPIiIiBzF4EhEROYjBk4iIyEEMnkRERA5i8CQiInIQgycREZGDEjj6A2b08uVLuXbtmqRIkULixYvn7NMhIiInQM2g0NBQyZo1q3h5RT22ZPAU0cCZI0cOZ58GERG5gMuXL0v27NmjPIbBU0RHnJZfWMqUKZ19OkRE5AQPHjzQgZQlJkSFwVPEOlWLwMngSUTk2eJFY/mOCUNEREQOYvAkIiJyEKdtiYjIrb148UJ2794t169flyxZskjlypUlfvz4sfqcDJ5EROS2Vq1aJb6+vnLlyhXrbciUnTJlijRp0iTWnpfTtkRE5LaBs2nTpnaBE65evaq34/7YwuBJRERuOVXr6+urhQ3Cs9zWr18/PS42MHgSEZHb2b179ysjzvABFHv3cVxsYPAkIiK3c/369Rg9zlEMnkRE5Hbu378freOQfRsbGDyJiMhtvHjxQv7zn/9Inz59XlslCKX2sG0lNjB4EhGRW7h06ZJUrVpVhgwZot2wKlWqpEEyfDk9y/XJkyfH2n5PBk8iInJ5ixYtkmLFisnevXu1cPuCBQs0GWjFihWSLVs2u2OxzxO3x+Y+z3hGRHm+HlhJP1WqVBISEsLC8ERELra22bt3b1m8eLFer1ixoixcuFBy584d4xWGHIkFrDBEREQuaffu3dK2bVsJCgrSYDh06FAZPHiwJEhgH7pwX7Vq1eL03Bg8iYjIpTx//lyGDx8uY8aM0bXNPHny6LRt+fLlxVUweBIRkcs4d+6ctGnTRg4dOqTXO3ToIFOnTo1Wg+q4xIQhIiJyOsMwZO7cuVKiRAkNnKlTp5bly5eLv7+/ywVO4MiTiIic6s6dO9K1a1cJCAjQ61i/RDYt9mm6Ko48iYjIaX755RcpWrSoBk5vb28ZN26cbNu2zaUDJ3DkSUREce7p06eaOTtx4kS9XrBgQd2OUrJkSXEHDJ5ERBSnTp48Ka1bt5Zjx47p9Z49e8r48eMladKk4i44bUtERHGWFPTdd99J6dKlNXCmT59e1q5dKzNmzHCrwAkceRIRUay7efOmdOrUSTZs2KDX69Spo5m0mTNnFnfEkScREcWq9evXS5EiRTRwJkqUSPdt4nt3DZzAkScREcWKx48fy8CBA3VaFpBVi0pBhQsXFnfn1JHn6NGjpUyZMroBNmPGjNK4cWM5c+aM3TF//fWXfPjhh5IhQwYt1Nu8eXMd/tu6e/euVqTA/dhY27lzZ3n48GEcvxoiIrI4evSorm1aAuenn34qBw8eNEXgdHrwDAwM1Gr5Bw4ckK1bt2o9Qx8fH3n06JHej6+4jt5s27dv11Y0z549kwYNGmi9QwsETmRv4TEwPbBr1y7p1q2bE18ZEZFnevnypWbOli1bVv7880/tcrJ582bdkpI4cWIxDcOFBAcHoz2aERgYqNc3b95seHl5GSEhIdZj7t+/b8SLF8/YunWrXj916pT+zKFDh6zHbNy4UY+5evVqtJ4Xj4/HsH0eIiJyzOXLl40aNWro+ykujRs3Nm7dumW4C0digUslDKGHGqRNm9a6iRajTiwwW+CTi5eXl+zZs0ev79+/X6dqMT1gUatWLT0GUwQRweOib5vthYiI3tyKFSt0TROzhNh2Mnv2bFm1apVuRzEjL1ca6vfr108qVapknRNH+5lkyZLJoEGDdOEZ07ifffaZNj5F01O4ceOGrpfaQq83BGDcF9laKxqeWi6uXgaKiMhVhYaG6haUZs2ayb1796RUqVJy5MgR6dKliw5+zMplgifWPk+cOCFLly613oYkof/+97+ybt06SZ48uQY6dBVH+SaMLN+Un5+fjnItl8uXL8fQqyAi8hwHDx7ULijYr4lAiffWffv2SYECBcTsXGKrSp8+fayJPtmzZ7e7DwlDyLi9ffu2jigxRYu9QWiOCvg+ODjY7mfCwsI0AzeyPUSYBradCiYiougLCwvTGbwRI0boTCBm73766SepWrWqeAovZ5dqQuBENX3Mk+fOnTvSYzFvjsCJ4xAsGzZsqLdXqFBBR6O//fab9Vgcg2ngcuXKxcnrICLyFBcvXtSWYUOHDtXA2bJlSy2150mB0+kjT0zVoor+mjVrdK+nZY0S07NJkiTR7zEdUKhQIZ3CRXKQr6+v7hdCBX7AfSjzhF5ws2bN0u0uCMj4C82aNaszXx4RkaksXLhQevXqpeuceM/GHk5sFTTz2makDCeypDOHv/j7+1uPGTRokJEpUybD29vbyJ8/vzFhwgTj5cuXdo9z584do1WrVkby5MmNlClTGh07djRCQ0OjfR7cqkJEFLl79+7pe6zlPbpixYrGhQsXDLNxJBbEwx/i4bBVBaNdJA+hShEREf0f5KK0a9dOgoKCJH78+DJs2DBNDEIOiifHAvO9eiIiemtYAhs+fLgmBmGMlTdvXp22xRZCYvAkIqJwzp49q2uZhw8f1usdO3aUKVOm6Donudg+TyIici6MMOfMmaN7NxE406RJo3vtf/zxRwbOcDjyJCIiuXPnju5awNZBqF69uixYsOCVvff0fzjyJCLycOhIhWbVCJze3t4ybtw4+eWXXxg4o8CRJxGRh3ry5IkMHjxYJk2apNffffdd3XuPaVuKGoMnEZEHQg/k1q1ba3UgQPGDb7/9Vjui0Otx2paIyMOSgqZNm6bdTxA4Ub0NzTemT5/OwOkAjjyJiEwIdWd3796t7RuzZMkilStXllu3bmn7sI0bN+oxKG2KEqiRNdGgyDF4EhGZDJpQow74lStXrLelS5dOCx+gig66So0fP17ri3tkXdoYwOBJRGSywNm0aVOdng2/FQVy5colP//8s7z//vtOOkNz4JonEZGJpmox4oyqZDmOQVYtvR0GTyIik8Aap+1UbURwP46jt8PgSURkEkgOisnjKHIMnkREJnH79u1oHYfsW3o7DJ5ERG4O65gjR46Ufv36RXkcMmtz5Mih21bo7TB4EhG5sRs3bkjt2rXlq6++kpcvX0qVKlU0SIbfgmK5PnnyZG1qTW+HwZOIyI0LuhcrVky2bdum1YFQ8GDnzp2yYsUKyZYtm92xKPKO25s0aeK08zWTeEZUOc0eApuGU6VKJSEhIZIyZUpnnw4RUZTCwsJk6NChMmbMGN2Wgo4oy5Ytk0KFCkVZYYgjzpiLBSySQETkRoKCgqRVq1ayb98+vd6jRw+ZOHGiJEmSxO44BMpq1ao56SzNj8GTiMhNrFmzRjp27Cj37t3TkdGcOXOkWbNmzj4tj+TUNc/Ro0dLmTJlJEWKFJIxY0Zp3LixnDlz5pXF8Hbt2mnh4mTJkknJkiVl5cqVdsfcvXtX2rRpo/+YUqdOLZ07d5aHDx/G8ashIoodT58+1cpBeI9E4MT75pEjRxg4PTV4BgYGamHiAwcO6MI3ihb7+PjIo0ePrMe0b99eA+ratWvl+PHjutjdvHlz/YdjgcCJ3nR4jPXr18uuXbukW7duTnpVREQx5/z581KxYkWZOnWqXh8wYIDs2bNH8uTJ4+xT82yGCwkODkbykhEYGGi9LVmyZMaCBQvsjkubNq0xe/Zs/f7UqVP6M4cOHbLev3HjRiNevHjG1atXo/W8ISEh+hj4SkTkKhYvXmykSJFC35/SpUtnrF+/3tmnZGohDsQCl9qqggwnSJs2rfU2fOJCFhmmZrGHaenSpfLkyRPrQvj+/ft1qrZ06dLWn6lVq5Z4eXnJwYMHnfAqiIjezuPHj6VLly7SunVrCQ0N1b2bR48elXr16jn71MjVEoYQGFEdo1KlSlK4cGHr7cuXL5cWLVpoL7oECRLoXqaAgADJly+fdU0U66W2cBwCMO6LbP0AF9v0ZCIiV4AlKCxNnTp1SgsbDBkyRC94XyPX4TIjT6x9njhxQkeWtvCP5v79+/LLL7/I4cOHpX///voPC+ufb5OohL08lgvKVRERORP2a86ePVuTgRA4kSSJ970RI0YwcLoiwwX07t3byJ49u3HhwgW728+fP6/zzydOnLC7vWbNmkb37t31+7lz5xqpU6e2u//58+dG/PjxjVWrVkX4fE+ePNE5bcvl8uXLXPMkIqfBe0/Lli31fQgXHx8f4+bNm84+LY8T4i5rnvik1adPH52G3b59u+TOnfuVeX/A+mX4zb+Y5oUKFSroyPS3336z3o/Hwv3lypWL8HkTJUqk21psL0REzoD3LmzBw6wb3ttQNWjjxo2vLEeRa0ng7KnaxYsX68Zf7PW0rFFiKhXVMtDtHGub3bt3l/Hjx+u65+rVq61bUgDlqOrUqSNdu3aVWbNm6XYXBOSWLVtK1qxZnfnyiIiiHDxMmTJFPv/8c33fypkzpwZQDAjIDRhOZJmiCH/x9/e3HnP27FmjSZMmRsaMGY2kSZMaRYsWfWXryp07d4xWrVoZyZMnN1KmTGl07NjRCA0NjfZ5cKsKEcWl27dvGw0bNrS+53344YfG3bt3nX1aHi/EgVjAwvAsDE9EcQgFDlCb9sqVK5IwYUKZMGGCzsKFbyFGrh0LXCbblojIExpWY486Amf+/Pm1uhqWmRg43Q/zn4mIYpmlRje2nlhKis6cOVNzPcg9ceRJRBQHDasROFHk5ccff5SffvqJgdPNMXgSEcVSw+rBgwdL7dq1JTg4WCunodALWopxmtb9cdqWiCiWG1Zju92kSZNeaVhN7ovBk4goBqF9YocOHawNq1FyDyVFyVw4bUtEFIMNqxs1aqSBE52e0HeYgdOcGDyJiGK4YTUaWOzdu5cNq02M07ZERG9hyZIluqaJvptohTh//nypX7++s0+LYhlHnkREMdCwunLlyvLHH38wcHoIBk8iojdoWI2+m3PnzrU2rEY3p+zZszv71CiOcNqWiCiaUAocAbNv377yzz//aMPqhQsXSs2aNZ19ahTHGDyJiKJZNBxrm2gbBj4+PrJgwQLJlCmTs0+NnIDTtkREb9iwmoHTc3HkSUQUxTQttp8MHDjQ2rAa2bXYlkKejcGTiCgCd+/e1Tq0qBgEjRs31vVObEch4rQtEVEEDauLFy+ugRMNq6dNmyarVq1i4CQrBk8iov95+fKljBo1ShtWX758WfLly8eG1RQhTtsSEbFhNTmIwZOIPMaLFy9k9+7dcv36dcmSJYtWBUL2LBpWI3DevHlTG1Z/99132hmFo02KDIMnEXkErFmi68mVK1est6EiUNmyZSUgIEAza9GwetmyZfLee+859VzJ9TF4EpFHBM6mTZtqgLSFQGoJpt26dZPJkyezYTW5fsLQ6NGjtT4k1hQyZsyoqeBnzpyx3n/p0iWdNono8t///teua3u9evV0ugWPgz1ZYWFhTnpVRORqU7UYcYYPnLbSpUsnM2bMYOAk9wiegYGB0rt3b81mw5oDNiGj5NWjR4/0/hw5cujahO1lxIgRkjx5cqlbt671PwYC57Nnz2Tfvn3aDmjevHkydOhQZ740InIRWOO0naqNyJ07d/Q4IreYtt20aZPddQQ9jBxRCqtKlSq6kI/Cy7awNoHO7AigsGXLFjl16pRmyKFUFvZmffPNNzJo0CAZPny47tEiIs+FD90xeRyRy+3zDAkJ0a+RbURGUD169Kh07tzZetv+/fulSJEidjUma9eurUWc0TYoIk+fPtX7bS9EZE7hP4BHBtm3RG4XPLE5uV+/flKpUiXNeIsISmMVKlTIrq4k9maFL85suY77IltrTZUqlfWC6WEiMh9Mx06ZMiXKY5BDgfcAbFshcrvgibXPEydOWNv9hIfeeYsXL7Ybdb4pPz8/HeVaLqgkQkTmgubURYsWlTVr1ugSEITft2m5jixbyzFEbhM8Ufpq/fr1smPHjkg7sa9YsUIeP34s7du3f2VKBhubbVmuRzZdkyhRIkmZMqXdhYjMAYmH+IBcq1YtuXbtmhQsWFAOHTokK1eulGzZstkdi/cbvLc0adLEaedL7smpCUNIHf/kk080CWjnzp2SO3fuSI/FlG3Dhg0lQ4YMdrdXqFBBRo4cKcHBwZpsBMjcRUDkRmciz3L+/Hlp3bq1Bkvo2rWrTJo0SZIlSyYlSpSQRo0aRVhhiMitgiemajEVi2kV7PW0rFFiHdJ2vxX+Q+zatUs2bNjwymNgawuCJEprjRs3Th/jq6++0sfGCJOIzA8fxBcsWKCzWA8fPpQ0adLI7Nmz5aOPPrI7DoESRd+J3prhRHj6iC7+/v52x/n5+Rk5cuQwXrx4EeHjXLp0yahbt66RJEkSI3369MaAAQOM58+fR/s8QkJC9HnxlYjcy71794yWLVta3z+qVq1qBAUFOfu0yA05Egvi4Q/xcNiqgtEukoe4/knkPlAYBdO0f//9t44qUUTliy++4FQsxXosYG1bInI7KL+JvpsIltjmhnwJLAGVL1/e2adGHoLBk4jcCkaZbdu2lT179lj7bqIuLWeNyOO2qhARRcfy5culWLFiGjiRZPjTTz/JwoULGTjJtYMn9kx99tlnEZazwxwxupmE33NJRPS2kEGLAiktWrTQ95py5crJkSNHdARK5PLBc+LEiRo4I/qUh0XW0NBQPYaIKKagpnXJkiXlxx9/1IpAX375pe7VzJs3r7NPjTyYl6NdUMJX+LGF+1ApiIjobSER6Ntvv9VCKOfOndNqQKhC9p///Ee8vb2dfXrk4RxKGLp48aLkzJkz0vvxjxsNrImI3gaWiPBhfNu2bXod5fNQ9CCyjktELj3yRNWfqIIj7mMndiJ6G2vXrtWC7gicSZMm1aCJ+rMMnOS2wROL9MhuiwzKY5UtWzYmzouIPAw6J6GsJurPopUYGttjvbNLly6vdEMhcqtpW2Ta/utf/9LkIGTWWvpmIsMWdWXnzZsnW7Zsia1zJSKTOn78uLRq1crawH7AgAHa8IH1qclVOVye7/vvvxdfX19t+4OsW3wiROo4FvDRvaBnz57ibliej8g58PYzffp0/WD+9OlT/UA+f/58qV27trNPjTzQAwdiwRvVtr169apuVka3E/x4gQIFpGnTppH24nR1DJ5Ece/WrVvSsWNH+fnnn/X6v//9b/H397e2FiQyXfA0GwZPoriF5Z2PP/5YWwhiahZbUtBOjGubZMrC8MiCiw40rSYiCg9TsyhyMGHCBL2OXrxLlizR7Foid+JQ8GzcuPFrj8EnxxcvXrzNORGRCZ05c0aTglBWD3r16iXjx4/n9jYyf/BExQ8iIkdgZQil9fr27SuPHz+WdOnS6XXOUJHHtSTDHiz8B4DLly/rJuYnT55IgwYNpHLlyjF9jkTkpu7duyfdunXTIgdQs2ZN3Q+eNWtWZ58aUdwVScBerHfeeUez4d599105evSolClTRreoYAtL9erVZfXq1W93RkRkCrt27dL2YQicCRIk0L3gSBRi4CSPC56ff/65FClSRP9TVKtWTerXry/16tXTzCR8wuzevbuMGTMm9s6WiFwe9oAPGTJEP0xjZipfvnyyf/9+Lazi5cUWwmQODm1VSZ8+vWzfvl0z49BfD6m8hw4dklKlSun9p0+flvLly8v9+/fFnXCrClHMuHDhgrRp00YOHDig17GPc+rUqZI8eXJnnxpRjMYChz4G3r17VzJnzqzf4z9DsmTJJE2aNNb78T16ehKR51m8eLHWo0XgxBsQtqAgMYiBk8zI4YSh8JuYuamZyLPh0zoKHFiaRlSqVEkWLlyo+RFEZuXwAkSHDh20tx4uyLDt0aOH9XqnTp0ceqzRo0drwlGKFCk0CQn7SLEXLDysl9SoUUNHuhhKV6lSRTsw2I6IMVWE+1KnTi2dO3fWaWUiil0HDx6UEiVKaODEeubw4cNl586dDJxkeg6NPFFOy1bbtm1fOQYNbKMrMDBQWxAhgIaFhcngwYPFx8dHTp06pYHSEjjr1Kkjfn5+Mm3aNM3a++OPP+wSDxA4r1+/Llu3btVkBayzID0e00hEFPNQCGXs2LEydOhQ/T5XrlyyaNEiHXUSeQTDhQQHByN5yQgMDLTeVq5cOeOrr76K9GdOnTqlP3Po0CHrbRs3bjTixYtnXL16NVrPGxISoo+Br0QUtaCgIKNq1ar6fwaXFi1aGPfu3XP2aRG9NUdigUvljSPDCSwd44ODg3VaCFO6FStW1HZFVatWlT179lh/BiNTTNWWLl3aelutWrV0ZIqfjay+JtZpbC9E9HqrVq3SvZuYNcLsEHr4IjEI/weJPInLBE+U/uvXr59O+xQuXNia9g5YR+natats2rRJSpYsqVVKzp07p/ehK0P4FkaY2kUAxn2RrbUiG9ByyZEjR6y/PiJ39ujRI10K+eijj3RPNz6sokYtlnKYNEieyGWCJ9Y+T5w4IUuXLn2lli6KL2AdE4kJqGZUsGBBTYF/U1g/xSjXcsFGbiKKGCqJIViiDCcC5RdffCF79+6V/PnzO/vUiNyrtm1MQ5r7+vXrtXKRbUPtLFmyWNsW2SpUqJAEBQXp99h3iuldW0g+st2TGh76B+JCRJHDh9cpU6ZosHz27JmW1UNdWsz8EHk6p448UdwIgTMgIEArF+XOndvufqS74z9s+O0rZ8+e1ew+qFChglY0+u2336z347HwH79cuXJx9EqI3BeyZbG9BGuX+IrrWPL497//Lf3799fA2ahRI81yZ+AkcoGRJ6ZqsZ1kzZo1utfTskaJdUj0+MMUEephDhs2TJMUUL1k/vz5WgbQ0qUBo1BsZcGa6KxZs3SrCgJyy5YtWYCaKBoJQL6+vnLlyhW7MpwImEikS5w4sS6VYOmEa5tENgwnsqS6h7/4+/vbHTd69Ggje/bsRtKkSY0KFSoYu3fvtrv/zp07RqtWrYzkyZMbKVOmNDp27GiEhoZG+zy4VYU80cqVK3VLV2T/D3PlymWcPHnS2adJFGcciQUOFYY3KxaGJ0+DqVksi9iOOMND/sGlS5ckfvz4cXpuRKYrDE9E5rB79+4oAyfgfhxHRK9i8CTyQChnGZPHEXkaBk8iDxTdvc2W7WJE5IL7PIkobqA0JfZtTp48OcrjkFmLNc/KlSvH2bkRuROOPIk8BLoVlS1b1ho4scULQTKyHr04jslCRBFj8CQyOSTUz5gxQ0qVKiXHjh3TfZzr1q2TjRs36n7pbNmy2R2PESduR49eIooYt6pwqwqZ2K1bt7Q5PIIl1K5dWzuh2JauxLYVZNUiOQhrnJiq5YiTPNEDB2IB1zyJTGrLli3a9QSVuxImTKjNq/v27WvXSB4QKKtVq+a08yRyRwyeRCZPCkJjBZTBRIlLIooZDJ5EJksKat26tRZxt9SP/vbbb7VWNBHFHCYMEZksKQiB05IU9N133zFwEsUCjjyJPCApiIhiFkeeRG6eFFS0aFENnEgKQvuwDRs2MHASxTKOPIncNCnIz89PgyUwKYgobjF4Erl5UlCvXr1k/PjxXNskikOctiVyo6SgmTNnvpIUNH36dAZOojjGkSeRG2BSEJFr4ciTyMUxKYjI9XDkSeSimBRE5LoYPIlcEJOCiFwbp22JXDwpaO3atUwKInIxHHkSuVBSUJcuXTRYgo+PjyYFoU0YEbkWp448R48eLWXKlJEUKVJIxowZpXHjxnLmzBm7Y9AqydLt3nLp0aOH3TFBQUFSr149SZo0qT7OwIEDJSwsLI5fDdHbJwUhcFqSgtCsmoGTyDU5deQZGBioXR8QQBHsBg8erJ+2sd6TLFky63Fdu3aVr7/+2nodQdK2kS8CJzIP9+3bpw1927dvL97e3jJq1Kg4f01EjmBSEJGbMlxIcHCwgVMKDAy03la1alXD19c30p/ZsGGD4eXlZdy4ccN628yZM42UKVMaT58+jdbzhoSE6PPiK1FcOXnypFGsWDH9t4dLr169jEePHjn7tIg8VogDscClEoZCQkL0a9q0ae1uX7RokSZOFC5cWD+lP3782Hrf/v37pUiRIpIpUybrbdhA/uDBAzl58mSkn/Zxv+2FyBWSgmxnVYjIdblMwtDLly+lX79+UqlSJQ2SFkjXz5Url2TNmlWOHTsmgwYN0nXRVatW6f03btywC5xguY77IltrHTFiRKy+HqKIMCmIyBxcJnhi7fPEiROyZ88eu9u7detm/R4jTLzJ1KxZU/766y/JmzfvGz0XRq/9+/e3XsfIM0eOHG9x9kSvt3XrVl2Px4c6JAWNHTtW+vbtK15eLjUBRETuEjz79Okj69evl127dkn27NmjPLZcuXL69fz58xo8kSj066+/2h1z8+ZN/RpZ+bJEiRLpJaYgaWn37t2arITgXrlyZYkfP36MPT65NywTIBlu4sSJep1JQUTuz8vZaz8InAEBAbJ9+3bJnTv3a3/m6NGj+tUyzVWhQgU5fvy4BAcH233CT5kypb5JxTZMH7/zzjtSvXp1nWLGV1y3TCuTZ0PmOD7wWQInKgUdOnSIgZPI3RlO1LNnTyNVqlTGzp07jevXr1svjx8/1vvPnz9vfP3118bhw4eNixcvGmvWrDHy5MljVKlSxfoYYWFhRuHChQ0fHx/j6NGjxqZNm4wMGTIYfn5+0T6PN822XblypREvXjxrtqTlgttwwf3kmV6+fGnMmDHDSJw4sf6bSJ8+vbF27VpnnxYRxVAscGrwDB90LBd/f3+9PygoSANl2rRpjUSJEhn58uUzBg4c+MoLu3TpklG3bl0jSZIk+iY1YMAA4/nz57EaPBG0s2fPHulrQPDMkSOHHkeeBVuuGjZsaP23gA92165dc/ZpEVEMxoJ4+EM8HBKGUqVKpVtlMN0bHTt37tQp2tfZsWOHVkkiz8CkICLPiAUukTDkjpAcFJPHkXtjUhCRZ2HwfEPR3ZfH/Xvm9+eff2qymCWZDUlB3377LQseEJkY55LeELajYFsNCtVHBgXvUfSBzF0pqGTJkho4WSmIyHMweL4h7OOcMmWKfh9ZAA0NDZXmzZvLo0eP4vjsKLbdvn1buwBhlPnkyROtFIQKWA0aNHD2qRFRHGDwfAtNmjSRFStWSLZs2exuR7UilBpEwsjq1aulatWqcu3aNaedJ7158Qskhi1ZskS/4rolKQjVriztw7DOyfZhRJ6F2bZvmG0bnQpDe/fu1dEJRimY4kUVJSaQuAcUufD19ZUrV65Yb8OHJEzRrlu3Tq8XKlRIk4KKFy/uxDMlImfEAgbPGAieUblw4YL2Gz19+rT2KF22bJleJ9cOnE2bNtU1zcgwKYjIs2MBp21jWZ48ebRtGorZY+2zYcOGMnXq1CjfmMl5MIuAEWdUfz9IDMLfIQMnkedi8IwDqVOn1jUxtKJC6zW8OX/yyScSFhbm7FOjcDD9bjtVGxFMw+M4IvJcDJ5xxNvbW3744Qed6kN2LrYzIDOTjbhdC4tfEFF0MHjGIQTNzz77TFauXClJkiSRTZs26T7Qv//+29mnRjazBNHBzFoiz8bg6QQffvih9i7FGzAagKNlVfiepBT39u3bpy3yXvcBCFuRkFFNRJ6LwdNJSpcuLQcPHpSiRYtq827sBcWeUYp7z549ky+//FIDIrKj06VLF2HxC8v1yZMns9k5kYdj8HQijGD27NmjW1dQpaZZs2YyZswYZuLGcbPq8uXLy6hRozSZq127dvLXX3/p1Hr44hfYq4sPOCiOQUSejfs8Y3mfZ3S3RwwYMMBa7q9jx44ya9YsrV5DsQOBctq0aTJo0CDtiJI2bVr5/vvvdX/n64pfEJE5sUiCmwVPC2Tgovcj3tjRAxSjH7ypU8y6fPmyfkDZtm2bXq9Tp478+OOPTAIi8nAPWCTBPfXu3VtL+KEbC2qpVqhQQc6fP+/s0zIVlNNDXVoEThQ5QFeUDRs2MHASkUMYPF1M3bp1tSZuzpw55ezZs5qJyw35b+/u3bvSsmVLadOmjX6qLFu2rBw5ckR69OgRZVs5IqKIMHi6IIyMkIlbpkwZfdNHab+ffvrJ2afltrZs2aK/U9QVxprliBEj9ANKgQIFnH1qROSmGDxdVObMmXXqFgksz58/l/bt28vQoUOZieuAx48faxnE2rVra0u4ggULap1h/B4TJEjg7NMjIjfG4OnCsCaH0dIXX3yh17/55htp3bq1bmuhqB0+fFjbh3333Xd6HcUPfv/9dx3NExG5dfAcPXq0vpkhQSZjxoza+/LMmTMRHosRF9YDsT6FBtO2goKCdK8kgg0eZ+DAgaYpuu7l5aW/J2SDYrS0dOlSqVGjhgQHBzv71FwS/t6//vprTbbCvyUkAqEMIralsAsKEZkieAYGBmqG6YEDB2Tr1q06Penj46Otu8JDVZeIEjuwFw+BE1ViUF5t/vz5Mm/ePJ2aMxNsrcDaXZo0aXTqEYlE2OBP/x8SrD744AMZNmyYBtHmzZtr+UNM2xIRxSjDhQQHB2NBzwgMDLS7/ciRI0a2bNmM69ev6/0BAQHW+zZs2GB4eXkZN27csN42c+ZMI2XKlMbTp0+j9bwhISH6uPjq6k6fPm3kzZtXzxevccuWLYane/nypf6dJ02aVH8vqVKlMhYtWqS3ExFFlyOxwKXWPLGFAGwLAyDpA+t8KCCAJJrwMApDJmWmTJmst2Gkgc2uJ0+eFLNB0gtG6qh2g9eIqWy0OvNUqP6DmYeePXvqvxVMaR8/flz/zXALChHFFpcJnqiq069fP23RVbhwYevtn376qVSsWFEaNWoU4c/duHHDLnCC5TruiwjKsSHw2F7cSfr06XWau23btjpt3b17d211hu89CSow4YMTGo0nSpRIp/bxe0HNYCIijwieWPvE+hQSYizWrl0r27dv1zfFmIQEHJRgslzc8c0WwWLBggWaHAMTJkyQjz76KML1YrPBDMXHH3+s23ju3LkjJUqU0ExaX19fTbAiIoptLvFOg20EKEu3Y8cO7VxhgcCJDhdoUIxMU8vePAQJ1H4FTOWipZcty/WIpnnBz89P34AtF9Q6dUeYlhwyZIgsWbJEg+maNWukSpUqcvXqVTEr7H1FGzd8cECgHDx4sE5jv/fee84+NSLyJIYTIaGjd+/eRtasWY2zZ8++cj8ShI4fP253wSlPmTLFuHDhgl3C0M2bN60/9/3332syzZMnT0yXMBSZffv2GRkyZNDXgeQqJFmZyT///GMMGDDAiBcvnr7GPHnyGHv37nX2aRGRiTgSC5waPHv27KmZkTt37tRAabk8fvw40p8Jn20bFhZmFC5c2PDx8TGOHj1qbNq0SYOIn59ftM/DDMET8IGiUKFC+lqSJUtmrF271jAD/L3i7xivC5euXbsaoaGhzj4tIjIZtwmeljfD8Bd/f/9oB0+4dOmSUbduXSNJkiRG+vTpdYTy/PlzjwuecO/ePaNWrVr6ejBKmzRpkttu2cAHozFjxhje3t76ejJmzGiaDwRE5HociQXs5+lC/TxjCopNYB3ZsoUF2zimTp3qVvVcL168qPV89+zZo9dRfQqvJ0OGDM4+NSIyKfbz9HDe3t4ya9YszcBFUhF6VtavX9+6j9aV4bMcShEiKQiBM3ny5Hp91apVDJxE5DIYPE0KQbN///4adFDTdfPmzbqH9tKlS+KqUK/3ww8/lM6dO8vDhw+11N6xY8e0NCELHhCRK2HwNDlMd6KZdtasWbXiEmrioleoq1m3bp0WPMB2G4ycx44dq9tScufO7exTIyJ6BYOnB0BrLgTM4sWL6+gOe2SXL18uriA0NFS6du0qDRs21HNDdalDhw7J559/ro2riYhcEYOnh0DxCYxAGzRooP1AW7RoIaNGjXJqc210wUFAnzNnjk7LDhgwQANnsWLFnHZORETRweDpQZB8ExAQoDWE4csvv9T1RLRzi0t4Pjw3ittfuHBBcubMqdWkxo8fL4kTJ47TcyEiehMMnh4GU6GTJk2SGTNm6Pfof4oeqqgRGxew7lq+fHkd9aIZALajICnIUm6RiMgdMHh6KOz9RD3hFClSaFPyChUqyLlz52Lt+RAoUeC/VKlScuTIEUmXLp2sWLFCgzf2VRERuRMGTw9Wp04dXXfMlSuXBk6MCBFIYxoK7//rX//S9nJoB4cepOi5iQL/RETuiMHTwyG7FZm42MJy9+5dDXLoWBITkIy0aNEi3YKCNU3sN0XBhp9//lmyZMkSI89BROQMDJ6kzcPRDq5Zs2Za2g+9Mr/66iudan1TCMQtW7bUht2obITgfPToUenRowcLHhCR22PwJJUkSRJtRI7+mDBy5Ehp1aqV/PPPPw4/FqoZYbSJvaRISkLDbpTay58/fyycORFR3GPwJCs0l0bQ9Pf31yo/CH7Vq1d/pdl4ZB4/fqwF6bGWeu3aNSlYsKA2qkbDbncqSk9E9DoMnvSKDh06yNatWyVNmjTW9VBsMYEXL15o2bwlS5boV1wHFDcoUaKETJ8+Xa9/8skn8vvvv0vp0qWd+lqIiGIDW5KZsCVZTDl79qzUq1dPzp8/r78XX19fHZVeuXLFrnIRCs5j2wkCKWro4hjsHSUiMmssYPBk8IwSiic0adJEdu3a9dpjUfIPxRfSpk0bJ+dGRBSTGDwdxOD5+rVM9NLE18ig6AHWRlnMnYjcFZthU4z69ddfowyclhEqCs8TEXkCBk96revXr8focURE7o7Bk14rutWAWDWIiDwFgye9FlqHIas2sspAuD1Hjhx6HBGRJ2DwpNdCEtCUKVP0+/AB1HIdHVOYLEREnsKpwXP06NFSpkwZbYuVMWNGady4sZw5c8bumO7du0vevHm1fBwyPhs1aiSnT5+2OyYoKEj3I6LwOB5n4MCBEhYWFsevxtywXQV7ObNly2Z3O0akuB33ExF5CqcGT7S/6t27t5ZwQ0UbFCXH5vpHjx5Zj0H/R2y6//PPP7VmKnbW4BhLZRt8ReB89uyZttdCf8h58+bJ0KFDnfjKzAkB8tKlS1pEfvHixfr14sWLDJxE5HFcap/nrVu3dOSIoFqlSpUIjzl27JgUK1ZMq95gRLpx40apX7++1lJFdxCYNWuWDBo0SB8vYcKEr31e7vMkIqIH7rrPEycMkVWowYgUo9DcuXNrggrs379fO3hYAifUrl1bfwmWeqzhoSEz7re9EBERRZfLBE/0juzXr5/WSUWDZlso+ZY8eXK9YKSJKV7LiPLGjRt2gRMs13FfZGut+HRhuVgCMRERkVsFT6x9njhxQntKhtemTRs5cuSITucWKFBAmjdvLk+ePHnj5/Lz89NRruVy+fLltzx7IiLyJC7RZBE9INevX6/Fx5G9GZ5lhIhmyuXLl9dWWQEBAdqsOXPmzFo+zpal/yTui0iiRIn0YmFZ9uX0LRGR53rwvxgQnVQgpwZPnCD6PiIQojck1jKj8zO4YN0SKlSooA2cg4ODNdkIMK2Lxd733nsvWucRGhqqXzl9S0REoaGhOmBz2WzbXr166ZaHNWvWSMGCBa2346Sxr/PChQuybNky3ZqCPZ7oIzlmzBjZu3evbl1BsMRWleLFi2sfyXHjxuk6Z7t27aRLly4yatSoaK+3IlsX+00jq6ITnU8sCL6YAjZ7xi5fq/l4yusEvlZzehADrxXhEIET8cTL6zWrmoYT4ekjuvj7++v9V69eNerWrWtkzJjR8Pb2NrJnz260bt3aOH36tN3jXLp0SY9LkiSJkT59emPAgAHG8+fP4/S1hISE6Lnjq9nxtZqPp7xO4Gs1p5A4fq1On7aNCqL/hg0bXvs4uXLlitZxREREpsq2JSIichcMnjEE2bvDhg2zy+I1K75W8/GU1wl8reaUKI5fq0uV5yMiInIHHHkSERE5iMGTiIjIQQyeREREDmLwJCIichCD51tCPd4GDRronlRUJ1q9erWYFbrRlClTRisxobpT48aN5cyZM2I2M2fOlKJFi2qVElxQAhLdfDwBKnjh3zE6HJnN8OHD9bXZXt59910xo6tXr0rbtm0lXbp0Wq0NbRsPHz4sZvPOO++88neKCxqNxDYGz7eEHqNozj19+nQxO3S1wT/KAwcOaP3g58+fa+lE/A7MBM0JEER+++03fcOpUaOGNGrUKNL+sGZx6NAh+f777/WDg1m9//77cv36detlz549Yjb37t3T1o7e3t76oe/UqVMyYcIEbahhxn+z123+PvG+BM2aNYv9J4+TOkYeAr/OgIAAw1MEBwfraw4MDDTMLk2aNMacOXMMswoNDTXy589vbN261ahatarh6+trmM2wYcOMYsWKGWY3aNAg44MPPjA8ka+vr5E3b17j5cuXsf5cHHnSG0MvVEibNq2YFRoPoMcsRteYvjUrzCjUq1dPatWqJWZ27tw5XWLJkyeP9gkOCgoSs1m7dq2ULl1aR19YXilRooTMnj1bzO7Zs2eycOFC6dSp0xs3+HC7fp7kftCJButimB4qXLiwmM3x48c1WKLpevLkybVtXnRb3LkbfDj4/fffdQrMzMqVKyfz5s3TDk6Y4hsxYoRUrlxZTpw4oev4ZoFuVFi379+/vwwePFj/Xvv27SsJEyaUjz/+WMxq9erVcv/+fenQoUOcPB+DJ73xSAVvOmZcMwK8wR49elRH1ytWrNA3Haz5mi2Aon2Tr6+vrhUlTpxYzKxu3brW77Gui2CKphLLly+Xzp07i5k+2GLkaWnJiJEn/q/OmjXL1MFz7ty5+neMmYW4wGlbclifPn1k/fr1smPHDk2uMSN8Ss+XL5+UKlVKs4yRFDZlyhQxGyRFoZF8yZIlJUGCBHrBh4SpU6fq95i2NqvUqVNLgQIF5Pz582ImWbJkeeVDXqFChUw5RW3x999/yy+//KJ9nOMKR54UbciJ+uSTT3QKc+fOnZI7d27xFPg0//TpUzGbmjVr6hS1rY4dO+oWjkGDBkn8+PHFrB4+fCh//fWXtGvXTswESynht5CdPXtWR9lm5e/vr+u7WLePKwyeMfAf0PaT68WLF3W6D0k0OXPmFLNN1S5evFjWrFmja0Q3btzQ21OlSqV7yczCz89Pp3/w94eu8njN+LCwefNmMRv8PYZfs06WLJnuDzTbWvZnn32me7IRRK5du6YdOPDhoFWrVmImn376qVSsWFGnbZs3by6//vqr/PDDD3ox6wdbf39/nZLGbEmcifV8XpPbsWOHbtcIf/n4448Ns4nodeLi7+9vmEmnTp2MXLlyGQkTJjQyZMhg1KxZ09iyZYvhKcy6VaVFixZGlixZ9O81W7Zsev38+fOGGa1bt84oXLiwkShRIuPdd981fvjhB8OsNm/erO9DZ86cidPnZUsyIiIiBzFhiIiIyEEMnkRERA5i8CQiInIQgycREZGDGDyJiIgcxOBJRETkIAZPIiIiBzF4ErmAS5cuaRslVKdyFadPn5by5ctrwfjixYub4jURxRQGTyIRbWOEN/oxY8a80uYoLnoDuiKUr0OpPtRJ3bZtm7NPR9uJoZg7kStg8CT6H4ywxo4dK/fu3RMzNQh+Uyia/sEHH2gtWNS6NQt0ikE9VKK3weBJ9D+1atWSzJkzawuyyAwfPvyVKczJkyfLO++8YzeKbdy4sRbmzpQpk46Wvv76awkLC5OBAwdq0wC0ckMx64imSlHUG4EchdnRHswW+jKiaD0adOOx0RHk9u3b1vurVaumLePQqDx9+vRSu3btCF8HggfOCeeRKFEifU2bNm2y3o/RNtqV4Rh8j9cd2eOMGzdO27fhcVBMf+TIkdEeOYYf2f/xxx9SvXp1LVifMmVKbQl3+PBhLcyPbi/or4rjbc8J3W5Q9D1btmw6UkafThwf/nnXrl2rrbpwnmjPhWPKli2rP4P70Y0Era2IooPBk+h/0GEDAW/atGly5cqVt3qs7du3a+eOXbt2ycSJE3UKtH79+pImTRo5ePCg9OjRQ7p37/7K8yC4DhgwQI4cOSIVKlTQLiB37tzR++7fvy81atTQ5sYIKAh2N2/e1M4ZtubPn6/9SPfu3asNkCOC3qQTJkyQ8ePHy7FjxzTINmzYUM6dO6f3X79+Xd5//309F3yP4BRZBxpMdQ8ZMkROnTqlHWgQ1N9UmzZtNKAfOnRIg/cXX3wh3t7e+oECH1IQUHE+tueEDwv79++XpUuX6mtp1qyZ1KlTx/pa4PHjxzqrMGfOHDl58qR+gMEHnKpVq+rP4Oe7devmsVP09AbitAw9kYtCF5xGjRrp9+XLl9fOKhAQEKAdGyyGDRtmFCtWzO5nJ02apF1YbB8L11+8eGG9rWDBgkblypWt18PCwoxkyZIZS5Ys0esXL17U5xkzZoz1mOfPnxvZs2c3xo4dq9e/+eYbw8fHx+65L1++bNdRAh1RSpQo8drXmzVrVmPkyJF2t5UpU8bo1auX9TpeJ15vZB48eKBdO2bPnh3h/ZbXdOTIEb2O7jupUqWyOyb87zdFihTGvHnzIny8iH7+77//NuLHj29cvXrV7nZ0wvHz87P+HJ7j6NGj1vvv3Lmjt+3cuTPS10cUFY48icLBCAWjtz///PONHwOjNi+v///fC6OxIkWK2I1ysY4YHBxs93MYbVqgN2Hp0qWt54EpzR07duiUreWCptWW9UkLTHVG5cGDBzoqxjSlLVx35DXjWEyZoqF2TOnfv7906dJFp9AxorV9XRFBI2+sYRYoUMDu94LpbtufxUi8aNGi1usYeWJ6HSNujO4xEsdolii6GDyJwqlSpYq+qWJKMjwExPBd/J4/f/7KcZhqtIXpwIhucyRxBY3X8UaPrR+2F0xP4pwtsIYXFxxtgB6d3x3WMTGtWq9ePZ36xhplQEBAlL8TfBDBFK/t7wSBHQHR9lzDT8lizRnTtZgSXrZsmQbgAwcOOPSayHMxeBJFAKOedevW6ZurrQwZMsiNGzfsgkBM7mO0ffNGghGCQqFChfR6yZIlNbAgOQkJOrYXRwIm1g2zZs2qa6K2cB3BKrry58+vQSm621jwuwsNDZVHjx5F+btDEPv0009ly5Yt0qRJE2tiFUaPGGXawvovbsMIPvzvBMlfr4Ofx4ekffv2aYIW1myJooPBkygCmGJF8srUqVPtbkc2661btzTDFNOC06dPl40bN8bY8+LxMNJC1m3v3r1120ynTp30Ply/e/eutGrVShNq8PybN2/WLNTwQeV1kJiE6WmMuLCPE4k5CGS+vr7RfgxkBA8aNEg+//xzWbBggZ4Pgv/cuXMjPB5ZsEmTJpXBgwfrsQhUyIS1+OeffzT5B1mwyHpFMMfrtHx4wIcGjDQRrJFhjCQgBFr8PbVv315WrVolFy9elF9//VUzpn/++edIzx3HIWjiwxGeC4EaI3jLcxG9DoMnUSSwTSP8tCreXGfMmKFBrlixYvpGHVkm6puOeHHBY+/Zs0e3V2DLCVhGiwiUPj4+GuCxJQXbLGzXV6Ojb9++ur6IbFo8DjJ38VwYTToCWbZ4jKFDh+rvpkWLFq+s49quMy5cuFA2bNigz7lkyRK7LTCYfkVmMQIhgiKyiLEtZ8SIEXo/pleRpYznwCgWH2AAI1P8DM6jYMGCmkWLoIttM5FBEMcHlI8++kifC5m2+HCCDGii6IiHrKFoHUlERESKI08iIiIHMXgSERE5iMGTiIjIQQyeREREDmLwJCIichCDJxERkYMYPImIiBzE4ElEROQgBk8iIiIHMXgSERE5iMGTiIjIQQyeRERE4pj/B6G/z/2UYvfFAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAEmCAYAAAAEMxthAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOzpJREFUeJzt3Qd4k2X3P/DD3rtsEBCQVfYGGSIUKgiIOBAUGSqyChSE4ivLFxmCDGWjZQ9lyJQltGwFpOwhe1MoUMou8Pyv7/m/yS8pLTSlbZIn3891hTajyZO05OS+73Ofk8QwDEOIiIgo1pLG/qZERETE4ElERBQHHHkSERE5iMGTiIjIQQyeREREDmLwJCIichCDJxERkYMYPImIiByU3NEfMKOnT5/KpUuXJEOGDJIkSRJnHw4RETkBagZFRERInjx5JGnS548tGTxFNHDmz58/sX4/RETkws6fPy/58uV77m0YPEV0xGl5wTJmzJg4vx0iInIpt2/f1oGUJSY8D4OniHWqFoGTwZOIyLMlicXyHROGiIiIHMTgSURE5CBO2xIRkVt78uSJbNmyRS5fviy5c+eWWrVqSbJkyRL0MRk8iYjIbS1ZskT8/PzkwoUL1suQKTtu3Dhp0aJFgj0up22JiMhtA2fLli3tAidcvHhRL8f1CYXBk4iI3HKq1s/PTwsbRGW5rEePHnq7hMDgSUREbmfLli3PjDijBlDs3cftEgKDJxERuZ3Lly/H6+0cxeBJRERuJywsLFa3Q/ZtQmDwJCIitxEZGSkDBgyQ7t27v7BKEErtYdtKQmDwJCIit3D8+HGpWbOmfPvtt7qmWadOHQ2SUcvpWc6PHTs2wfZ7MngSEZFLMwxDpk6dKuXLl5ddu3ZJ5syZZcGCBRIUFCSLFi2SvHnz2t0e+zxxeULu80xiRJfn64GV9DNlyiTh4eEsDE9E5EKuXbsmHTt2lOXLl+v5evXqycyZM+1ahsVXhSFHYgErDBERkUtavXq1tG/fXq5evSopU6aU7777Tnr27PlMo2oEyrp16ybqsTF4EhGRS7l375706dNHJk6cqOdLlSolc+fOlbJly4qr4JonERG5jH/++UcqVqxoDZyoErR7926XCpzA4ElERE735MkTGT58uFStWlWOHj0qefLkkXXr1smYMWMkderU4mo4bUtERE519uxZ+fjjj62l9N59912ZMmWKZMuWzWV/Mxx5EhGRUxiGoWuZZcqU0cCZPn16CQwMlN9++82lAydw5ElERInu5s2b0rlzZ92vCTVq1JDZs2fLq6++6ha/DY48iYgoUW3atElHmwic2GYyZMgQCQ4OdpvACRx5EhFRonj48KF88803MmrUKJ2yLVKkiE7bVqlSxe1+AwyeRESU4A4dOiStW7eWffv26fnPP/9cRo8ereuc7sip07bDhg2TypUrS4YMGSRHjhzSvHlzOXbsmN1tTp48Ke+8845kz55dyyW9//77Wm3C1o0bN/SXgutR87BDhw5y586dRH42REQU1dOnT2X8+PG6dxOB08vLS5YtW6bZtO4aOJ0ePDHH3aVLF9m5c6esX79eW834+PjI3bt39Xp8xXlUyN+4caNs27ZNHj16JG+//bb+QiwQOPGpBvexcuVK2bx5s36qISIi57l06ZK89dZb4ufnp1O2vr6+cuDAAWnatKn7/1oMFxIaGooi9UZwcLCeX7t2rZE0aVIjPDzceptbt24ZSZIkMdavX6/nDx8+rD+za9cu623++OMPvc3Fixdj9bi4f9yH7eMQEVHcLV682MiWLZu+t6ZOndqYMGGC8fTpU5d+SR2JBS6VbYtK9pA1a1b9ik8qGHWmSpXKehtUmkBR4K1bt+r5HTt26FRtpUqVrLepX7++3uavv/6K9nFwv6ieb3siIqKXFxERoUtnKHQQFhYmFSpU0JJ72JYSte+mO3OZ4IlpWNQwRKNTb29vvaxatWqSLl066du3rxYKxjRu7969tYwTWs/AlStXdL3UVvLkyTUA47qY1lrRdsZyQrdxIiJ6OTt27JBy5crJL7/8ooGyX79+elmJEiVM99K6TPDE2ufBgwetG2YBSUKoNLFixQpdWEagu3Xrln6SidqSxhEBAQE6yrWczp8/H0/PgojI80RGRsrAgQPl9ddfl1OnTskrr7yijaoxUEErMTNyia0qXbt2tSb62DY4BSQMIeP2+vXrOqLEFG2uXLmsm2nxfWhoqN3PPH78WDNwcV10MA1sOxVMRERxc+LECWnTpo11mQzf//TTTzrYMTOnjjyxSRaBc+nSpZpNW6hQoRhvi/RmBE7cDsHSkq1VvXp1HY3u2bPHelvcBtPAqM5PREQJ8/49ffp0naZF4MT78/z587XEntkDp9NHnpiqnTdvnu75wV5PyxolXvg0adLo9ygSjPlyTOFi7hwpz+gkXqxYMb0e1zVq1Eg+++wzmTx5sk4fICB/+OGH2tKGiIji17Vr1/Q9F+/d8MYbb8jMmTM9K3/EcCI8fHSnwMBA62369u1r5MyZ00iRIoVRtGhRY/To0c+kO4eFhRmtWrUy0qdPb2TMmNFo166dEREREevj4FYVIqLYwVbAXLly6Xs13pe///5748mTJ6Z4+RyJBUnwj3g4bFXBaBfJQ6hSRERE9u7fvy9fffWVrmdCyZIldeawbNmy4omxwGWybYmIyDXt3btXy+tZAqefn5/s3r3bVIHTUQyeREQULeypHzFihCZfHjlyRHLnzi1r166VsWPHWvNSPJVLbFUhIiLXcu7cOfnkk0+0BjmgQcfUqVN15wNx5ElERFFgLRPNqhE4UaAGFYMWL17MwGmDI08iIlLYM48atNivadlHj32bhQsX5isUBdc8iYhIy+lhtInAmSxZMhk8eLBWfWPgjB5HnkREHgxdpgYMGCDff/+9Vg0qUqSIzJkzhxXaXoDBk4jIQx0+fFhat24tISEheh5Vg3744Qdd56Tn47QtEZGHwQgTezaxdxOBM1u2bFpjHNm0DJyxw5EnEZEHQS/k9u3by5o1a/Q8aoMjmxZ7OCn2GDyJiExa4GDLli0aLBEYa9Wqpb2RO3bsKGFhYZI6dWoZNWqUZteicTU5hsGTiMhklixZoiX0Lly4YL0sXbp0cvfuXf2+fPnyMnfuXO1KRXHD4ElEZLLA2bJlS13XtGUJnM2bN5eFCxdKypQpnXSE5sCEISIiE03VYsT5vGZZe/bs0X2c9HIYPImITAJrnLZTtdE5f/683o5eDoMnEZFJIDkoPm9HMWPwJCIygYiICJk5c2asbsttKS+PwZOIyM39/fffmkGLXpvPgy0p+fPn120r9HIYPImI3DhBaNiwYVKzZk05efKkvPLKK/Lf//5Xg2TUvZuW82hkzYShl8fgSUTkhpAY1KBBA+nfv788fvxY3n//fdm3b598/fXXsmjRIsmbN6/d7fPly6eXt2jRwmnHbCZJjOflNHuI27dvS6ZMmSQ8PFwyZszo7MMhInou1KFFpaAbN25o8QPUqW3btq3daDO6CkMcccZfLGCRBCIiN4FCB7169dIC7lCpUiWZN2+eFC1a9JnbIlDWrVvXCUfpGZw6bYu5+sqVK0uGDBkkR44cWvni2LFjdre5cuWKfPzxx5IrVy79hFWhQgVZvHix3W3w6QttdfBJIXPmzNKhQwe5c+dOIj8bIqKEg+4nCJYInBhh9uvXT7Zt2xZt4CSTB8/g4GDp0qWL7Ny5U9avXy+RkZHi4+NjLSMFn3zyiQbU5cuXy4EDB3S+HnP7e/futd4GgfPQoUN6HytXrtTu559//rmTnhURUfx5+vSpjBkzRptTHz16VPLkyaPvdRh8sMSeExkuJDQ0FOuvRnBwsPWydOnSGbNmzbK7XdasWY1p06bp94cPH9af2bVrl/X6P/74w0iSJIlx8eLFWD1ueHi43ge+EhG5isuXLxsNGzbU9yecmjdvbly/ft3Zh2VajsQCl8q2xSItZM2a1XpZjRo1tIgxpmbxCWzBggXy4MED61z+jh07dKoW0xkW9evXl6RJk8pff/0V7eM8fPhQF4ZtT0RErmT16tVSpkwZ3buZJk0amTx5shZ9R+Nqcj6XCZ4IjD169ND9St7e3tbLf/31V53OxR9MqlSp5IsvvtBMsyJFiljXRLFeait58uQagHFddDDdgYwqywmbhomIXAEGByju3rhxY7l27ZoG0N27d+t7H/tuug6XCZ5Y+zx48KCOLG198803cuvWLdmwYYP+ASHTDGueWP+Mq4CAAB3lWk4olExE5GzI3ahSpYqMHz9ez2NAgRm0kiVLOvvQyBW3qnTt2tWa6IONvBaomIH9SwiqpUqV0svKli2re5cmTJig0xjIwg0NDbW7P2wYxjQvrosORrA4ERG5Amy3nzRpkvj7++vIE7NpM2bMEF9fX2cfGrniyBN/MAicmIbduHGjFCpUyO76e/fu6VesX0bdv4RpXqhevbqOTNGjzgL3heuRnUZE5MquX7+u2/Qw+4bA2ahRI9m/fz8Dp4tz6sgTfyzY4Lts2TLd62lZo8Q6JBbIixcvrmubmOsfNWqUrnv+/vvv1i0pUKJECf1j++yzz3QkivVRBOQPP/xQU7qJiFwVlqOwHQ9VgLDtZOTIkdKtW7dnBgzkggwnsqRfRz0FBgZab3P8+HGjRYsWRo4cOYy0adMaZcqUeWbrSlhYmNGqVSsjffr0RsaMGY127doZERERsT4OblUhosT08OFDo0+fPtb3vBIlShghISH8JTiZI7GAtW1Z25aIEtHx48flo48+si41derUSUaPHi1p06bl78GNattyboCIKBFgsu2XX37RvpsInNhOh3wPJAoxcLofl8i2JSIys5s3b2ruxm+//abn69WrJ7NmzXqmbRi5D448iYgSELbWYYsdAicKuIwYMUKTHhk43RtHnkRECQCZ/0OGDJHvvvtOt85h5wB2F6CTFLk/Bk8ionh26tQp7faEjlHQrl07rRqUPn16vtYmwWlbIqJ4hNFluXLlNHAicxMlR5EoxMBpLhx5EhHF0zYHFGiZPXu2nkeTi7lz50qBAgX4+poQR55ERC8JxduxBQWBE+VDBw8eLEFBQQycJsaRJxFRHD158kSGDx8uAwcO1O8LFiyoo030ISZzY/AkIooDtDJs06aNdoMC1NNGfW2sc5L5cdqWiMhBixYt0r2bCJxIBJo5c6YmCjFweg6OPImIYunu3bvaoHr69Ol6Ho2rETQLFy7M19DDcORJRBQL//zzj1SoUEEDZ5IkSaR///6ydetWBk4PxZEnEdFzoDrQmDFjJCAgQKsGoazenDlzpG7dunzdPBiDJxFRDNCkum3btlqLFlq0aCHTpk3Tjijk2ThtS0QUjZUrV0qZMmU0cKZJk0amTp2qiUIMnAQceRIR2bh//7706dNHJkyYoOdRam/+/PlSvHhxvk5kxZEnEdH/HDhwQLueWAKnv7+/1qhl4KSoOPIkIo9nGIYGzN69e8vDhw8lZ86cunezYcOGHv/aUPQYPInIY6CEHppTIxEod+7cUqtWLblx44a0b99e1zihcePG2gUlR44czj5ccmEMnkTkEZYsWSJ+fn5y4cIF62VeXl7y+PFjuXXrlqRKlUpGjRolXbp00X2cRM/D4ElEHhE4W7ZsqdOztq5fv65f8+fPL6tWrZLSpUs76QjJ3Tg1YWjYsGG6OJ8hQwadImnevLkcO3bMev2ZM2f0E2B0p99++816u3PnzulUS9q0afV+kCmHT5NERJiqxYgzauC0hetKlizJF4vcI3gGBwfrFAmy2bCXCtU7fHx8tH6k5dMg1iZsT+iTh0LMvr6+1v8YCJyPHj2S7du36yL/jBkzZMCAAc58akTkIrDGaTtVGx1cj9sRucW07Zo1a+zOI+hh5Lhnzx6pXbu2NpXNlSuX3W2WLl0q77//vgZQWLdunRw+fFg2bNigGXLYk/Xtt99K3759ZdCgQZIyZcpEfU5E5FrwoTs+b0fkcvs8w8PD9WtMFTwQVENCQqRDhw7Wy3bs2KHrFAicFkgvv337thw6dCja+0EqOq63PRGROUVERMTqdsi+JXK74Iniy2j1U7NmTfH29o72Nj///LOUKFHCrkv7lStX7AInWM7jupjWWtF3z3LC9DARmQvWMceNG6dLQ8+DHAq8B2DbCpHbBU/8gR88eFAWLFgQY8ks9M2zHXXGFbojYJRrOaEjPBGZR1hYmDRr1kw/kCN5EH03LcmGtiznx44dq8tERG4VPLt27aoblDdt2iT58uWL9jYoyHzv3j355JNP7C7HmujVq1ftLrOcj7peaoH9XBkzZrQ7EZE5bN68WcqWLSsrVqzQ/+uoHISkRLyHoJ2YLbzf4HJ0SyFym4QhTKt069ZNk4CCgoKkUKFCMd4WU7ZNmzaV7Nmz211evXp1GTp0qISGhlorgiBzFwGRqedEngOZ93gvQEY+loGKFSumM1lIIgQESIxGo1YY4oiT3C54YqoWU7HLli3TvZ6WNUqsQ6IFkMWJEyf00+Tq1aufuQ9sbUGQ/Pjjj2XkyJF6H//5z3/0vvGpk4jM7+LFi9K6dWvd/gaffvqp/Pjjj9asfAsESjaxpnhhOBEePrpTYGCg3e0CAgKM/PnzG0+ePIn2fs6cOWP4+voaadKkMby8vAx/f38jMjIy1scRHh6uj4uvROReVq5cqf/v8X84ffr0xuzZs519SOSmHIkFSfCPeDhsVcFoF8lDXP8kcg8ojILkvx9++EHPV6hQQadpixYt6uxDIw+IBaxtS0RuB0s5rVq1kt27d+t5lN8bMWIEl2oo0TB4EpFbmT9/vnzxxRda/AAFVQIDAzWZkCgxMXgSkVtAzevu3btrr01ApiwSDmPa3kZk+n2eRETPc+DAAe3AhMCJwgZo/LBx40YGTnKP4Hnp0iXp3bt3tLVgscCKVmBRCxYQEcUV8hknT56sFYKOHDkiefLkkT///FP3ciZPzokzcpPgiaw2BM7ospCQoYQ1CEvmGxHRy7h165Z2UPryyy/lwYMH8tZbb2ljiDfeeIMvLLlX8EQLsajl8WzhOpTZIyJ6GSinh8pAKJ2XIkUKGT16tJbbi1phjMhZHJr3OH36tLzyyisxXo+F+zNnzsTHcRGRB0JZve+//16+/vprLbf36quv6t5NrHcSue3IEyXznhcccZ1tWT0iothCvoSvr6/069dPA+eHH34oe/fuZeAk9w+eVatWldmzZ8d4/axZs3Rhn4jIERs2bNBOKOvWrdMP4NOnT9dtKKz4RaaYtkWmbYMGDTQ5CJm1lqbT+MSIouwzZszQP34iotiIjIyUgQMHyvDhwzWz1tvbWxYuXMiOSOTyHK5tO2XKFC2FhT96fCrEnitsU8Gi/pgxYzQzzt2wti1R4jt79qx89NFHsn37dj3fqVMnzdbn0g+5QyyIU2F4tP/59ddftb4kfvy1116Tli1buu2GZQZPosS1ZMkS6dChg25HwZvVtGnT5L333uOvgcwdPM2GwZMocWC/pr+/v0ycONGaR4FatYUKFeKvgMzbVWX58uWxuh2LNBNRVEePHpUPPvhA9u/fr+f79u0r3377rS75ELkbh4Jn8+bNX3gbrIEizZyICDC5NXPmTOnSpYvcu3dPCx0ga79hw4Z8gcgzgic2MBMRxRZKdiKJcO7cuXr+zTff1MCZO3duvojk1uJUWTksLEyyZcum358/f14X+7GW8fbbb2ubICKif/75R6dpkViYLFkyGTJkiE7V4nsijyqSgLZABQsWlBw5ckjx4sW1SDPKZmGLCrawoGDz77//nnBHS0RuMU07btw4qVatmgZOlPQMDg6W/v37M3CSZwbPr776SkqXLi2bN2+WunXrSpMmTaRx48aamXTz5k3t7o7NzkTkma5fv64Jgz169NC94O+8846W2KtZs6azD40oXjm0VcXLy0sb0JYpU0bu3Lmjqby7du2SihUrWrPp8GkTe7fcCbeqEL08fKhG0QPsA0+VKpUWPMB6J5IIicwWCxwaed64cUNy5cql36dPn17SpUsnWbJksV6P75EgQESeA9n1WM/Esg0CZ7FixbSlWOfOnRk4ybQcCp4Q9VPky3yqHDZsmK6ZZsiQQddRsRXm2LFjz9xux44dUq9ePQ3W+DRQu3ZtuX//vl1Qb926tV6XOXNmrVyCkTERJSwES2TQoj4tsvE//fRT2b17t/biJDIzh7Nt8Z8DUzKADFvUo0RQg4cPHzp0X0giwN4vBNDHjx9rQoGPj48cPnzYep8InI0aNZKAgAD58ccfJXny5LJv3z5JmvT/4j4C5+XLl2X9+vW6ztKuXTv5/PPPtSsDESWMVatWSdu2bTX7Hv9fJ0+eLG3atOHLTR7BoTVPBKXYCAwMjNPBXLt2TUegCKoYXQLWUNHJBZVIonPkyBHtwIC110qVKulla9askbfeeksuXLggefLkeeHjcs2TKPYePXqkPTeRZQ/ly5fXhtWocU3kzhKsPF9cg2Js4YAha9as+jU0NFT++usvHVnWqFFDTp48qVtkhg4dKq+//rp1ZIqpWkvghPr16+vIFD+LbL+oMEK2HSXjBSOiF8PWEzSp3rNnj55Hh6URI0ZYZ6OIPIXDa54JBeslSG9HSjt6+sGpU6f066BBg+Szzz7TEWWFChV0jeXff//V665cuaKjVVuY2kUAxnUxrbXi04XllD9//gR/fkTuDgXc8f8PgRP/v5YtWyZjx45l4CSP5DLBE2ufBw8e1OmfqOUAsX8UU8aYHsJUEbL5fvnllzg/FtZPMcq1nFAliYiid/fuXU3CwzYUZNOjihjyDtgAgjxZnMrzxbeuXbvKypUrdZ+YbU9QS/1LrGnaKlGihJw7d06/x9YZTO/aQvKR7baaqDDFxGkmothVFUOJPeQWILP+m2++0RNmd4g8mVNHnshVQuBcunSpFl+I2tMPpQCR8BN1+8rx48elQIEC+n316tW1KINlDQZwXxi1olcgEb14n2ZQUJBOy+IrzuP/JrJnq1SpooETH2T//PNPGTx4MAMnkbNHnpiqxXYSrJ1gr6dljRLrkGnSpNFPun369NE9ZGXLltW9Y2hthEpGixYtso5CsZUFa6L4z46tKgjISGqITaYtkSdbsmSJJv0gM90C/29QjxaFDsDX11f/36GVGBH9j+FEePjoToGBgXa3GzZsmJEvXz4jbdq0RvXq1Y0tW7bYXR8WFma0atXKSJ8+vZExY0ajXbt2RkRERKyPIzw8XB8XX4k8xeLFi40kSZLE+P8wWbJkxujRo40nT544+1CJEoUjscChfZ5mxX2e5GkwNYtlEdsRZ1Q5c+bUCkJsIUae4nZC1bYlInPYsmXLcwMnXL16VW9HRM9i8CTyQChnGZ+3I/I0DJ5EHsi2G9LzWLaLEZE9btYi8jAhISHSs2fP594Gme7Yc42CCET0LI48iTwE9j6jQTX2P2O7F2pCP6/NIErvMVmIKHoMnkQeAGuX2K/p7++vXVFQWg/1oRcvXix58+a1uy1GnNhH3aJFC6cdL5Gr41YVblUhk1uxYoW0b99erl+/rsVHMPpEvWjLCBPbVpBViwCLNU5M1XLESZ7odkK1JCMi93H//n3p3bu3TJw4Uc+jShdK8KEqly0Eyrp16zrpKIncE6dtiUxo//792uPWEjh79eql/W2jBk4iihsGTyKTJQUh0ady5cpy+PBh7Sy0du1aGT16NDsJEcUjTtsSmQQaK3z66acaLKFJkyba95YF3YniH0eeRCawatUqKVOmjAbO1KlTy4QJE2T58uUMnEQJhCNPIjdPCkLbPgRLQABFm79SpUo5+9CITI0jTyI3deDAAV3btATOHj16aFIQAydRwmPwJHIz6CI4fvx4DZyHDh3S1mF//PGHjBkzRqdsiSjhcdqWyI2gTVi7du00WELjxo01KShHjhzOPjQij8KRJ5GbWL16ta5pInCmSpVKfvzxR60exMBJlPg48iRycQ8ePJC+ffvqVC14e3trpSB8JSLn4MiTyIUdPHhQqlSpYg2c3bt3l127djFwEjkZgyeRiyYF/fTTT1piD1m1mJrFtO24ceOYFETkAjhtS+RiQkNDtQsKCh8AWokFBgZqVi0RuQaOPIlcyJo1azQpCIETSUGYrsX3DJxErsWpwXPYsGG6Vy1Dhgw6LdW8eXM5duyY3W3QKgl9B21PnTp1srvNuXPnNGU/bdq0ej+ouPL48eNEfjZEL5cU1LNnTx1lYjsKCh1gbbNbt27WvptE5DqcOm0bHBwsXbp00QCKYNe/f3/x8fHRbhDp0qWz3u6zzz6TIUOGWM8jSFqgkS8CJ7pHbN++XRv6fvLJJ5IiRQr57rvvEv05ETkKf++tWrXSNmLQtWtXGTlypDauJiIXZbiQ0NBQA4cUHBxsvaxOnTqGn59fjD+zevVqI2nSpMaVK1esl02aNMnImDGj8fDhw1g9bnh4uD4uvhIllqdPnxoTJkwwUqdOrX9/2bNnN1auXMlfAJGTOBILXGrNMzw8XL9mzZrV7vK5c+eKl5eXpucHBATIvXv3rNft2LFDSpcubbcm1LBhQ7l9+7aWLovOw4cP9XrbE1FiunbtmjRr1kxnXjBl26hRIx15YhaFiFxfcldq4ovC1jVr1rTbw/bRRx9JgQIFJE+ePPrmgs3iWBddsmSJtYdh1GQKy3lcF9Na6+DBgxP0+RDFZN26ddK2bVv9+0yZMqWMGDFC928mTepSn2WJyB2CJz6BY0P41q1b7S7//PPPrd9jhJk7d25588035eTJk1K4cOE4PRZGr7169bKex8gzf/78L3H0RC+GGQ/87aGAO5QsWVLbh5UtW5YvH5GbcYmPukiQWLlypWzatEny5cv33NtWrVpVv544cUK/IlEI2Ym2LOdxXXSwBSBjxox2J6KETgrC364lcHbu3Fl2797NwEnkppI6u4oKAufSpUtl48aNUqhQoRf+TEhIiH7FCBSqV6+uFViwsdxi/fr1GhDxyT4xIOM3KChI643iK84TWf7GJ02aJBUrVpR9+/bp2v3y5cu1ByezaYncmOFEX375pZEpUyYjKCjIuHz5svV07949vf7EiRPGkCFDjN27dxunT582li1bZrz66qtG7dq1rffx+PFjw9vb2/Dx8TFCQkKMNWvWaNZiQEBArI/jZbJtFy9ebOTLl09/3nLCeVxOnu3atWtG06ZNrX8XDRo0MC5duuTswyKieIgFTg2etgHH9hQYGKjXnzt3TgNl1qxZjVSpUhlFihQx+vTp88wTO3PmjOHr62ukSZPG8PLyMvz9/Y3IyMgED54IkEmSJHnm+HEZTgygnmv9+vVG7ty59e8hZcqUxujRo40nT544+7CIKJ5iQRL8Ix4OCUOZMmXSrTKxXf/E1GzBggXlwoUL0V6PqjBYvz19+rQkS5Ysno+YXDkp6Ouvv5bRo0fr+eLFi+t0frly5Zx9aEQUj7HAJRKG3NGWLVtiDJyAzyTnz5/X25FnOHr0qK7BWwInykju2bOHgZPIhBg84whlAOPzduS+8EFpypQpUqFCBdm7d69ky5ZNfv/9d00Usi0lSUTm4TL7PN2NJds3vm5H7iksLEw6duyowRLq168vM2fO1KIeRGReHHnGUa1atXRN83kdL5InT843URP7888/tX0YAicaEYwaNUrWrl3L3zmRB2DwjCMkAY0bN06/jxpALefRKQblBrdt2/ayvydyIY8ePZKvvvpKGjRoIJcuXZJixYrJX3/9Jf7+/iyxR+QhGDxfQosWLWTRokWSN29eu8sxIp0+fbpujL9+/bqWE1ywYMHL/q4okUVX/AJ1lWvUqCHff/+9rnWifCSSgsqXL8/fD5EH4VaVOG5VsYU3VWTVIjkIa5yY0sXI9O7du9KmTRvreth///tf7VnK5sauD40H/Pz87DKqs2TJor9TjDzR+QcfkN555x2nHicROScWMHjGQ/B8UWBFJxjL9oVPP/1UMzPRTYNcN3C2bNlSR5bRQdefNWvWPDPjQETujfs8XQhGoEgkmThxoq6HzZgxQ3s33rx509mHRjF82MGI83m1Q/AhK6amA0TkGbjmmUi+/PJL7RyTPn167R6DdbNTp04l1sNTPBW/ABa/ICIGz0Tk6+ur/UqRUIRqNNWqVZMdO3bwr9CFsPgFEcUGg2ciQ+NjbGtANZpr167JG2+8Ib/++mtiHwZFA1O1sf0ww+IXRJ6NwdMJUH1m8+bN0rRpUy0k/sEHH8iwYcOeu85GCT/ixMzAjz/++NzbIVM6f/78mlFNRJ6LwdNJ0qVLp1mdPXr00PPYwoIyb5GRkc46JI+FZuylS5fW6kCpU6eWDh06aJCMqfjF2LFj2SmHyMMxeDo5E3fMmDHy008/aSbuL7/8oqOfW7duOfOwPMadO3f0AwuKXaBGLdqGoeAB9m/GVPwCl+P2ROTZuM8zgfd5xtbq1at1+hZv6CVKlJBVq1ZJoUKFnHIsnmDnzp1awOLkyZM6okS5vSFDhtjtv42p+AURmROLJCTgC5aQQkJCpEmTJnLx4kXJnj27LF++XDNyKf6g3jAqPeGE4PjKK6/IrFmzpE6dOnyZiTzcbTbDdk+YNkQmLr5aMnExTUjx48SJE/L666/L4MGDNXB+9NFHsm/fPgZOInIY1zxdDNbZMFWIEeiDBw/kvffekxEjRjAT9yUgixnrmJYPJ5hlmDt3rp4yZ84cf788IvIYDJ4uCFWIUEy+e/fuer5fv37avYOZuI5DVxsk+Hz22Wda1B3Ts/v379dRJxFRXDF4uni/UJyQiYuR01tvvaXrshQ7KN6OLSiWZtUjR47UBtZY5yQiehkMni4Oo89ly5bpvtANGzZoTdwzZ844+7Bc2v3796Vbt2667efKlSuavfz3339Lnz59mC1LRO4fPFFVp3LlypIhQwbJkSOHNG/eXJsNx7RuhTdDbCuw9Me0OHfunDRu3FjSpk2r94M3SWRVmgXWP7EOispEhw8flqpVq2owoGft3btXm5Bj7ywgiGLvJtY7iYhMETyDg4OlS5cuuudu/fr1uqbn4+Oja1NRoapLdE2kkTWJwIkGxdu3b5eZM2dq268BAwaImZQvX16TXVAbNzQ0VNfuFi9e7OzDchn4O8C0LD5YHDlyRFuG/fHHHzJ+/HhJkyaNsw+PiMzGcCGhoaEo7moEBwfbXb53714jb968xuXLl/X6pUuXWq9bvXq1kTRpUuPKlSvWyyZNmmRkzJjRePjwYaweNzw8XO8XX13d7du3jbfeekuPN0mSJMbIkSONp0+fGp7s7NmzRp06dfQ1wal58+bGtWvXnH1YRORmHIkFLrXmaUmGyZo1q/Wye/fuaWbkhAkTom1AjC4YSArJmTOn9bKGDRvqZtdDhw5F+zgoxo7rbU/uAlPcWAPFiB1T2aiM06lTJ4/NxJ03b56UKVNGZzGwLvzzzz9rzWAvLy9nHxoRmZjLBM+nT59qkfSaNWuKt7e39fKePXtqkkyzZs2i/TkkhNgGTrCcx3UxrbVir5/lhC4Z7iR58uTa/cMylT116lRdF/WkTFzU/8WHqtatW+vzRiUmFDxo3759tNP7RESmDJ4YSR08eFAWLFhgvQzl6TZu3KhBIj4FBAToG67ldP78eXE3CBB+fn6aPIVEqXXr1ukHj7Nnz4rZBQUF6Whz/vz5mj07aNAgTagqXLiwsw+NiDyESwTPrl27ysqVK2XTpk3aucICgROFu1EFBqMtnODdd9+VunXr6veYyr169ard/VnORzfNC6lSpdIatrYnd4WeoOgNisLlmKZGwsyuXbvEjDDd3rdvX6lXr55+4EGw3Lp1qwwcOND6t0FElCgMJ0KiS5cuXYw8efIYx48ff+Z6JAgdOHDA7oRDHjdunHHq1Cm7hKGrV69af27KlCmaMPTgwQPTJQzF5Ny5c0bp0qX1eaRJk8ZYsmSJYSaHDh0yypUrZ00K6tixoxEREeHswyIiE3EkFjg1eH755ZdGpkyZjKCgIA2UltO9e/di/Jmo2baPHz82vL29DR8fHyMkJMRYs2aNkT17diMgICDWx2GG4Ak4/kaNGlkzcUeNGuX2mbg4/vHjxxupU6fW55UtWza73z8RkccFT8soIuopMDDwuT8T9c3zzJkzhq+vr464vLy8DH9/fyMyMtLjgifgeeNDieW17NSpk0OvhSu5dOmS9cMATg0bNtTLiIgSgiOxgM2wXaifZ3zBZwwkWfn7++v3jRo1koULF7rVc1u6dKkWcw8LC5PUqVPL999/r0llzKQlooTCfp4eDgEGW3yw3xHVdVAgHX0s3SGr+M6dO9KxY0fthILAibJ6KK+HpDIGTiJyFS6RbUsJA7WCkYmLrOMDBw5oJi4CkatCmUYESxQ6QKBEAQiUJCxZsqSzD42IyA6Dp8lVqlRJAxAKT1y+fFlq166tFYpcCYr4Y68mRsfYmoSiFdimhCbgKVOmdPbhERE9g8HTA6B/5bZt27ToPsodvvPOO7om+v/zr5zrxIkTGjQHDx6sxd1RNQjNqi37eImIXBGDp4dAshAKUXzxxRcaNLEminZdzmrdhmPA9CymaTEyRsLW3Llz9YSiGERErozB04OkSJFCJk2aJKNGjdI1RRTbR4WiiIiIRD2O69eva0IQEoPQfg7t1TDaxKiTiMgdMHh6GARNbGFBL1Bk4qLnJaZNL1y4kCiPj8xfdMFBTV4Ec6xr/vnnnzq1TETkLhg8PRTWPdHGCx1oMOpDJu4///yTYI93//596d69u/j6+mq3mxIlSuh0LTJqUdydiMidMHh6sMqVK2sAK1WqlFy6dElq1aolK1asiPfH2bt3r1SsWFHbqAHWWrFlpnz58vH+WEREiYHB08MVKFBAM3EbNGigmbjomzp+/Ph4uW9kz44cOVJHtUeOHNH9ppgmxv1jypiIyF0xeJJmuq5atUrL4SELFn1CXzYT99y5c/Lmm29qC7HIyEgt2IBCDSgVSETk7hg8SSF5Z8qUKTpShJ9++kkDHsrlOQpNqtGsGmuq6dKlk+nTp2upQC8vL77aRGQKDJ5kl4nbp08f+e2337QYO0ajWAeNbSburVu3pHXr1rrlBEX2MV0bEhIiHTp0YF1aIjIVBk96RsuWLSUoKEhy5MihwQ9BEEk/lnVMXIfRJb7iPOB7jDbnzZun2bMot7d161YpUqQIX2EiMh22JDNhS7L4cubMGWncuLEcPnxYp1+x1WT27Nl2I9G8efNq1i7q5WK9tHDhwjJnzhypVq2aU4+diCghYwGDJ4PnC6diMRJFIYMXwfTsmDFjJEOGDA7+yRIROR+DZwK+YJ7owYMHmuyDUnoxyZYtm1y9epUFD4jIbbEZNsV7n83nBU5A4+otW7bwlScij8CEIXoh9AGNz9sREbk7Bk96ody5c8fr7YiI3B2DJ70Q9nrmy5cvxr2auDx//vx6OyIiT8DgSS+EfZvjxo3T76MGUMv5sWPHMlmIiDyGU4PnsGHDdI8gtjZgQz7KwR07dszuNl988YXuHUQh8ezZs2vh8qNHjz5TRxX7EdOmTav3gyo5L1OXlZ6F5tWLFi3SfZ22MCLF5bieiMhTODV4ovZply5dNJtz/fr1WkDcx8fHLrMTrawCAwO1K8fatWt1Iz5uY6lsg68InI8ePZLt27fLzJkzZcaMGTJgwAAnPjNzQoBE4YRNmzZpJSF8PX36NAMnEXkclyqScO3aNR05IqjWrl072tugcXPZsmXlxIkTOiJFi6smTZpoP0o0dobJkydrNw/cX8qUKV/4uNznSUREtx3Y8+9Sa544YMiaNWu012NEilFooUKFNEEFduzYIaVLl7YGTmjYsKG+CIcOHYr2fh4+fKjX256IiIhiy2WC59OnT6VHjx5Ss2ZN8fb2trtu4sSJkj59ej1hpIkpXsuI8sqVK3aBEyzncV1Ma634dGE5WQIxERGRWwVPrH0ePHhQFixY8Mx1aHOFrh6Yzn3ttdfk/fff15JxcRUQEKCjXMvp/PnzL3n0RETkSZKLC+jatausXLlSNm/erNmbUVlGiEWLFtVuHVmyZJGlS5dKq1atJFeuXPL333/b3R41VgHXRSdVqlR6srAs+3L6lojIc93+3xJebFKBnBo8cYDdunXTQIh+kFjLjM3P4IR1S6hevboMHTpUQkNDNdkIMK2Lxd6SJUvG6jgiIiL0K6dviYgoIiJCB2wum23buXNn3fKAXpDFihWzXo6Dxr7OU6dOycKFC3VrCvZ4oo/k8OHDZdu2bbp1BcESW1XKlSsnefLkkZEjR+o658cffywdO3aU7777LtbrrcjWxX7TmKroxOYTC4IvpoDN3pmFz9V8+Ds1J/5eHYNwiMCJeJI06QtWNQ0nwsNHdwoMDNTrL168aPj6+ho5cuQwUqRIYeTLl8/46KOPjKNHj9rdz5kzZ/R2adKkMby8vAx/f38jMjIyUZ9LeHi4Hju+mh2fq/nwd2pO/L0mHKdP2z4Pov/q1atfeD8FChSI1e2IiIhMlW1LRETkLhg84wmydwcOHGiXxWtWfK7mw9+pOfH36iHl+YiIiNwBR55EREQOYvAkIiJyEIMnERGRgxg8iYiIHMTg+ZJQj/ftt9/WPamoTvT777+LWaEbTeXKlbUSE6o7NW/eXI4dOyZmM2nSJClTpoxWisIJJSDRzccToIIX/o7R4chsBg0apM/N9lS8eHExo4sXL0qbNm0kW7ZsWq0NbRt3794tZlOwYMFnfqc4odFIQmPwfEnoMYrm3BMmTBCzQ1cb/FHu3LlT6wdHRkZq6US8BmaC5gQIInv27NE3nHr16kmzZs1i7A9rFrt27ZIpU6boBwezKlWqlFy+fNl62rp1q5jNzZs3tbVjihQp9EPf4cOHZfTo0dpQw4x/s5dtfp94X4L33nsv4R88AasXeRy8nEuXLjU8RWhoqD7n4OBgw+yyZMliTJ8+3TCriIgIo2jRosb69euNOnXqGH5+fobZDBw40Chbtqxhdn379jVef/11wxP5+fkZhQsXNp4+fZrgj8WRJ8UZeqFC1qxZTfsqovEAesxidI3pW7PCjELjxo2lfv36Ymb//vuvLrG8+uqr2if43LlzYjbLly+XSpUq6egLyyvly5eXadOmidk9evRI5syZI+3bt49zgw+36+dJ7gedaLAuhukhb29vMZsDBw5osETT9fTp02vbvNi2uHM3+HDwzz//6BSYmVWtWlVmzJihHZwwxTd48GCpVauWHDx4UNfxzQLdqLBu36tXL+nfv7/+Xrt37y4pU6aUtm3biln9/vvvcuvWLfn0008T5fEYPCnOIxW86ZhxzQjwBhsSEqKj60WLFumbDtZ8zRZA0ULPz89P14pSp04tZubr62v9Huu6CKZoKvHrr79Khw4dxEwfbDHytLRkxMgT/1cnT55s6uD5888/6+8YMwuJgdO25LCuXbvKypUrZdOmTZpcY0b4lF6kSBGpWLGiZhkjKWzcuHFiNkiKQiP5ChUqSPLkyfWEDwnjx4/X7zFtbVaZM2eW1157TU6cOCFmkjt37mc+5JUoUcKUU9QWZ8+elQ0bNmgf58TCkSfFGnKiunXrplOYQUFBUqhQIY959fBp/uHDh2I2b775pk5R22rXrp1u4ejbt68kS5ZMzOrOnTty8uRJ+fjjj8VMsJQSdQvZ8ePHdZRtVoGBgbq+i3X7xMLgGQ//AW0/uZ4+fVqn+5BE88orr4jZpmrnzZsny5Yt0zWiK1eu6OWZMmXSvWRmERAQoNM/+P2hqzyeMz4srF27VswGv8eoa9bp0qXT/YFmW8vu3bu37slGELl06ZJ2QcKHg1atWomZ9OzZU2rUqKHTtu+//778/fffMnXqVD2Z9YNtYGCgTkljtiTRJHg+r8lt2rRJt2tEPbVt29Ywm+ieJ06BgYGGmbRv394oUKCAkTJlSiN79uzGm2++aaxbt87wFGbdqvLBBx8YuXPn1t9r3rx59fyJEycMM1qxYoXh7e1tpEqVyihevLgxdepUw6zWrl2r70PHjh1L1MdlSzIiIiIHMWGIiIjIQQyeREREDmLwJCIichCDJxERkYMYPImIiBzE4ElEROQgBk8iIiIHMXgSuYAzZ85oGyVUp3IVR48elWrVqmnB+HLlypniORHFFwZPIhFtY4Q3+uHDhz/T5igxegO6IpSvQ6k+1En9888/nX042k4MxdyJXAGDJ9H/YIQ1YsQIuXnzpqkaBMcViqa//vrrWgsWtW7NAp1iUA+V6GUweBL9T/369SVXrlzagiwmgwYNemYKc+zYsVKwYEG7UWzz5s21MHfOnDl1tDRkyBB5/Pix9OnTR5sGoJUbillHN1WKot4I5CjMjvZgttCXEUXr0aAb942OINevX7deX7duXW0Zh0blXl5e0rBhw2ifB4IHjgnHkSpVKn1Oa9assV6P0TbaleE2+B7PO6b7GTlypLZvw/2gmP7QoUNjPXKMOrLft2+fvPHGG1qwPmPGjNoSbvfu3VqYH91e0F8Vt7c9JnS7QdH3vHnz6kgZfTpx+6iPu3z5cm3VheNEey7cpkqVKvozuB7dSNDaiig2GDyJ/gcdNhDwfvzxR7lw4cJLvS4bN27Uzh2bN2+WH374QadAmzRpIlmyZJG//vpLOnXqJF988cUzj4Pg6u/vL3v37pXq1atrF5CwsDC97tatW1KvXj1tboyAgmB39epV7Zxha+bMmdqPdNu2bdoAOTroTTp69GgZNWqU7N+/X4Ns06ZN5d9//9XrL1++LKVKldJjwfcITjF1oMFU9zfffCOHDx/WDjQI6nHVunVrDei7du3S4N2vXz9JkSKFfqDAhxQEVByP7THhw8KOHTtkwYIF+lzee+89adSokfW5wL1793RWYfr06XLo0CH9AIMPOHXq1NGfwc9//vnnHjtFT3GQqGXoiVwUuuA0a9ZMv69WrZp2VoGlS5dqxwaLgQMHGmXLlrX72TFjxmgXFtv7wvknT55YLytWrJhRq1Yt6/nHjx8b6dKlM+bPn6/nT58+rY8zfPhw620iIyONfPnyGSNGjNDz3377reHj42P32OfPn7frKIGOKOXLl3/h882TJ48xdOhQu8sqV65sdO7c2XoezxPPNya3b9/Wrh3Tpk2L9nrLc9q7d6+eR/edTJky2d0m6uubIUMGY8aMGdHeX3Q/f/bsWSNZsmTGxYsX7S5HJ5yAgADrz+ExQkJCrNeHhYXpZUFBQTE+P6Ln4ciTKAqMUDB6O3LkSJxfG4zakib9v/9eGI2VLl3abpSLdcTQ0FC7n8No0wK9CStVqmQ9Dkxpbtq0SadsLSc0rbasT1pgqvN5bt++raNiTFPawnlHnjNuiylTNNSOL7169ZKOHTvqFDpGtLbPKzpo5I01zNdee83udcF0t+3PYiRepkwZ63mMPDG9jhE3RvcYiWM0SxRbDJ5EUdSuXVvfVDEl+cx/mKRJMUyyuywyMvKZ22Gq0RamA6O7zJHEFTRexxs9tn7YnjA9iWO2wBpeYnC0AXpsXjusY2JatXHjxjr1jTXKpUuXPvc1wQcRTPHaviYI7AiItscadUoWa86YrsWU8MKFCzUA79y506HnRJ6LwZMoGhj1rFixQt9cbWXPnl2uXLliFwTicx+j7Zs3EowQFEqUKKHnK1SooIEFyUlI0LE9ORIwsW6YJ08eXRO1hfMIVrFVtGhRDUqx3caC1y4iIkLu3r373NcOQaxnz56ybt06adGihTWxCqNHjDJtYf0Xl2EEH/U1QfLXi+Dn8SFp+/btmqCFNVui2GDwJIoGpliRvDJ+/Hi7y5HNeu3aNc0wxbTghAkT5I8//oi31xD3h5EWsm67dOmi22bat2+v1+H8jRs3pFWrVppQg8dfu3atZqFGDSovgsQkTE9jxIV9nEjMQSDz8/OL9X0gI7hv377y1VdfyaxZs/R4EPx//vnnaG+PLNi0adNK//799bYIVMiEtbh//74m/yALFlmvCOZ4npYPD/jQgJEmgjUyjJEEhECL39Mnn3wiS5YskdOnT8vff/+tGdOrVq2K8dhxOwRNfDjCYyFQYwRveSyiF2HwJIoBtmlEnVbFm+vEiRM1yJUtW1bfqGPKRI3riBcn3PfWrVt1ewW2nIBltIhA6ePjowEeW1KwzcJ2fTU2unfvruuLyKbF/SBzF4+F0aQjkGWL+xgwYIC+Nh988MEz67i264xz5syR1atX62POnz/fbgsMpl+RWYxAiKCILGJsyxk8eLBej+lVZCnjMTCKxQcYwMgUP4PjKFasmGbRIuhi20xMEMTxAeXdd9/Vx0KmLT6cIAOaKDaSIGsoVrckIiIixZEnERGRgxg8iYiIHMTgSURE5CAGTyIiIgcxeBIRETmIwZOIiMhBDJ5EREQOYvAkIiJyEIMnERGRgxg8iYiIHMTgSURE5CAGTyIiInHM/wNRDD2OEL7DQwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -376,16 +387,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Last updated: 2025-03-11 18:00:23CET\n", + "Last updated: 2025-11-03 14:19:23CET\n", "\n", "Python implementation: CPython\n", - "Python version : 3.12.9\n", - "IPython version : 8.31.0\n", + "Python version : 3.12.12\n", + "IPython version : 9.6.0\n", "\n", - "pycircstat2: 0.1.12\n", - "numpy : 2.2.3\n", - "pandas : 2.2.3\n", - "matplotlib : 3.10.1\n", + "pandas : 2.3.3\n", + "numpy : 2.3.4\n", + "matplotlib : 3.10.7\n", + "pycircstat2: 0.1.15\n", "\n", "Watermark: 2.5.0\n", "\n" @@ -396,18 +407,11 @@ "%load_ext watermark\n", "%watermark --time --date --timezone --updated --python --iversions --watermark" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": ".venv (3.12.12)", "language": "python", "name": "python3" }, @@ -421,7 +425,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.9" + "version": "3.12.12" } }, "nbformat": 4, diff --git a/pycircstat2/__init__.py b/pycircstat2/__init__.py index 7910672..9cfd55e 100644 --- a/pycircstat2/__init__.py +++ b/pycircstat2/__init__.py @@ -1,4 +1,12 @@ +from importlib import metadata as _metadata + from .base import Axial, Circular from .utils import load_data -from .version import __version__ from .visualization import circ_plot + +try: # Prefer installed package metadata + __version__ = _metadata.version("pycircstat2") +except _metadata.PackageNotFoundError: # pragma: no cover - during local dev + __version__ = "0.0.0" + +__all__ = ["Axial", "Circular", "circ_plot", "load_data", "__version__"] diff --git a/pycircstat2/clustering.py b/pycircstat2/clustering.py index e0f6524..39a6678 100644 --- a/pycircstat2/clustering.py +++ b/pycircstat2/clustering.py @@ -1,11 +1,23 @@ -from typing import Optional, Union +from __future__ import annotations + +import inspect +from typing import Dict, List, Optional, Tuple, Union import numpy as np +from scipy.special import logsumexp from .descriptive import circ_dist, circ_kappa, circ_mean_and_r -from .distributions import vonmises +from .distributions import CircularContinuous, vonmises, katojones from .utils import data2rad +ALLOWED_MOCD_DISTRIBUTIONS = { + "cardioid", + "cartwright", + "wrapnorm", + "wrapcauchy", + "vonmises", +} + class MovM: """ @@ -50,6 +62,8 @@ class MovM: Responsibility matrix (posterior probabilities of clusters for each data point). labels : np.ndarray The most probable cluster assignment for each data point. + params_ : list of dict or None + Per-component parameter dictionaries ({"mu", "kappa"}) populated after :meth:`fit`. Examples -------- @@ -71,26 +85,43 @@ def __init__( n_iters: int = 100, full_cycle: Union[int, float] = 360, unit: str = "degree", - random_seed: int = 2046, + random_seed: Optional[int] = 2046, threshold: float = 1e-16, ): - self.burnin = ( - burnin # wait untill burinin step of iterations for convergence - ) - self.threshold = threshold # convergence threshold - self.n_clusters = n_clusters # number of clusters to estimate - self.n_iters = n_iters # maximum number of iterations for EM - self.full_cycle = full_cycle # for data conversion - self.unit = unit # for data conversion - self.random_seed = random_seed - self.converged = False # place holder - - self.m_ = None # cluster means - self.r_ = None # cluster mean resultant vectors - self.p_ = None # cluster probabilities - self.kappa_ = None # cluster kappas - self.gamma_ = None # update gamma one last time - self.labels_ = None # final cluster assignments + if burnin < 0: + raise ValueError("`burnin` must be non-negative.") + if n_clusters <= 0: + raise ValueError("`n_clusters` must be a positive integer.") + if n_iters <= 0: + raise ValueError("`n_iters` must be a positive integer.") + if threshold <= 0: + raise ValueError("`threshold` must be positive.") + if unit not in {"degree", "radian"}: + raise ValueError("`unit` must be either 'degree' or 'radian'.") + + self.burnin = burnin + self.threshold = threshold + self.n_clusters = n_clusters + self.n_iters = n_iters + self.full_cycle = full_cycle + self.unit = unit + self._rng = np.random.default_rng(random_seed) + + self.converged = False + self.converged_iters: Optional[int] = None + + # Attributes populated after fitting (scikit-learn style trailing underscore) + self.m_: Optional[np.ndarray] = None + self.r_: Optional[np.ndarray] = None + self.p_: Optional[np.ndarray] = None + self.kappa_: Optional[np.ndarray] = None + self.gamma_: Optional[np.ndarray] = None + self.labels_: Optional[np.ndarray] = None + self.nLL: Optional[np.ndarray] = None + self.data: Optional[np.ndarray] = None + self.alpha: Optional[np.ndarray] = None + self.n: Optional[int] = None + self.params_: Optional[List[Dict[str, float]]] = None def _initialize( self, @@ -114,25 +145,36 @@ def _initialize( - kappa (np.ndarray): Initial concentration parameters. - p (np.ndarray): Initial cluster probabilities. """ - # number of samples - n = len(x) - - # initial cluster probability - p = np.ones(n_clusters_init) / n_clusters_init + n = len(x) + if n_clusters_init > n: + raise ValueError( + "Number of clusters cannot exceed number of observations during initialisation." + ) - # initial labels - z = np.random.choice(np.arange(n_clusters_init), size=n) + # Randomly assign each observation to a cluster ensuring no cluster is empty + for _ in range(100): + labels = self._rng.integers(n_clusters_init, size=n) + if all(np.any(labels == c) for c in range(n_clusters_init)): + break + else: + raise RuntimeError("Failed to initialise clusters without empty components.") - # initial means and resultant vector lengths - m, r = map( - np.array, - zip(*[circ_mean_and_r(x[z == i]) for i in range(n_clusters_init)]), - ) + means = np.zeros(n_clusters_init, dtype=float) + resultants = np.zeros(n_clusters_init, dtype=float) + kappas = np.zeros(n_clusters_init, dtype=float) - # initial kappa (without correction by hard-coding a larger enough n) - kappa = np.array([circ_kappa(r=r[i]) for i in range(n_clusters_init)]) + for c in range(n_clusters_init): + subset = x[labels == c] + m_c, r_c = circ_mean_and_r(subset) + means[c] = m_c + resultants[c] = r_c + kappa_c = circ_kappa(r=r_c) + if not np.isfinite(kappa_c): + kappa_c = 1e-3 + kappas[c] = max(kappa_c, 1e-3) - return m, kappa, p + p = np.full(n_clusters_init, 1.0 / n_clusters_init, dtype=float) + return means, kappas, p def fit(self, X: np.ndarray, verbose: Union[bool, int] = 0): """ @@ -152,64 +194,63 @@ def fit(self, X: np.ndarray, verbose: Union[bool, int] = 0): - self.p : Fitted cluster probabilities. - self.labels : Final cluster assignments. """ - # seed - np.random.seed(self.random_seed) + X = np.asarray(X, dtype=float).reshape(-1) + if X.size == 0: + raise ValueError("Input data must contain at least one observation.") - # meta + alpha = X if self.unit == "radian" else data2rad(X, k=self.full_cycle) self.data = X - self.alpha = alpha = ( - X if self.unit == "radian" else data2rad(X, self.full_cycle) - ) - self.n = n = len(X) + self.alpha = alpha + self.n = n = alpha.size - # init - m, kappa, p = self._initialize(alpha, self.n_clusters) + means, kappa, p = self._initialize(alpha, self.n_clusters) - # EM if verbose: - print("Iter".ljust(10) + "nLL") - self.nLL = np.ones(self.n_iters) * np.nan - for i in range(self.n_iters): - # E step - gamma = self.compute_gamma(alpha=self.alpha, p=p, m=m, kappa=kappa) - gamma_normed = gamma / np.sum(gamma, axis=0) - - # M step - p = ( - np.sum(gamma_normed, axis=1) - / np.sum(gamma_normed, axis=1).sum() - ) - - m, r = map( - np.array, - zip( - *[ - circ_mean_and_r(alpha=alpha, w=gamma_normed[i]) - for i in range(self.n_clusters) - ] - ), - ) - kappa = np.array( - [circ_kappa(r=r[i]) for i in range(self.n_clusters)] - ) + header = "Iter".ljust(10) + "nLL" + print(header) - nLL = self.compute_nLL(gamma) - self.nLL[i] = nLL + nLL_history = np.full(self.n_iters, np.nan) - if verbose: - if i % int(verbose) == 0: - print(f"{i}".ljust(10) + f"{nLL:.03f}") + for iteration in range(self.n_iters): + log_responsibilities = self._log_gamma(alpha, p, means, kappa) + log_norm = np.logaddexp.reduce(log_responsibilities, axis=0) + gamma_normed = np.exp(log_responsibilities - log_norm) + + # M-step updates + p = gamma_normed.sum(axis=1) + p /= p.sum() + + means_updated = np.zeros_like(means) + resultants = np.zeros_like(means) + for c in range(self.n_clusters): + weights = gamma_normed[c] + if np.allclose(weights.sum(), 0.0): + means_updated[c] = means[c] + resultants[c] = 0.0 + else: + mc, rc = circ_mean_and_r(alpha, w=weights) + means_updated[c] = mc + resultants[c] = rc + + kappas = np.array([max(circ_kappa(r=rc), 1e-3) for rc in resultants]) + + means, kappa = means_updated, kappas + + nLL = -np.sum(log_norm) + nLL_history[iteration] = nLL + + if verbose and (iteration % int(verbose or 1) == 0): + print(f"{iteration}".ljust(10) + f"{nLL:.3f}") if ( - i > self.burnin - and np.abs(self.nLL[i] - self.nLL[i - 1]) < self.threshold + iteration > self.burnin + and np.abs(nLL_history[iteration] - nLL_history[iteration - 1]) + < self.threshold ): - self.nLL = self.nLL[~np.isnan(self.nLL)] self.converged = True - self.converged_iters = len(self.nLL) - + self.converged_iters = iteration + 1 if verbose: - print(f"Converged at iter {i}. Final nLL = {nLL:.3f}\n") + print(f"Converged at iter {iteration}. Final nLL = {nLL:.3f}\n") break else: if verbose: @@ -217,15 +258,22 @@ def fit(self, X: np.ndarray, verbose: Union[bool, int] = 0): f"Reached max iter {self.n_iters}. Final nLL = {nLL:.3f}\n" ) - # save results - self.m_ = m # cluster means - self.r_ = r # cluster mean resultant vectors - self.p_ = p # cluster probabilities - self.kappa_ = kappa # cluster kappas - self.gamma_ = self.compute_gamma( - alpha=self.alpha, p=p, m=m, kappa=kappa - ) # update gamma one last time - self.labels_ = self.gamma_.argmax(axis=0) + self.nLL = nLL_history[~np.isnan(nLL_history)] + + self.m_ = means + self.r_ = resultants + self.p_ = p + self.kappa_ = kappa + self.params_ = [ + {"mu": float(self.m_[i]), "kappa": float(self.kappa_[i])} for i in range(self.n_clusters) + ] + log_gamma_final = self._log_gamma(alpha, p, means, kappa) + log_norm_final = np.logaddexp.reduce(log_gamma_final, axis=0, keepdims=True) + gamma_final = np.exp(log_gamma_final - log_norm_final) + self.gamma_ = gamma_final + self.labels_ = gamma_final.argmax(axis=0) + return self + def compute_gamma( self, @@ -233,7 +281,7 @@ def compute_gamma( p: np.ndarray, m: np.ndarray, kappa: np.ndarray, - )-> np.ndarray: + ) -> np.ndarray: """ Computes posterior probabilities (responsibilities) for each cluster. @@ -242,32 +290,57 @@ def compute_gamma( np.ndarray Cluster assignment probabilities for each data point. """ - gamma = np.vstack( + log_gamma = self._log_gamma(alpha, p, m, kappa) + gamma = np.exp(log_gamma) + gamma /= gamma.sum(axis=0, keepdims=True) + return gamma + + def _log_gamma( + self, + alpha: np.ndarray, + p: np.ndarray, + m: np.ndarray, + kappa: np.ndarray, + ) -> np.ndarray: + log_prob = np.vstack( [ - p[i] * vonmises.pdf(alpha, kappa=kappa[i], mu=m[i]) + np.log(p[i] + 1e-32) + vonmises.logpdf(alpha, m[i], kappa[i]) for i in range(self.n_clusters) ] ) - return gamma + return log_prob - def compute_nLL(self, gamma: np.ndarray)-> float: + def compute_nLL( + self, + alpha: np.ndarray, + p: np.ndarray, + m: np.ndarray, + kappa: np.ndarray, + ) -> float: """ Computes the negative log-likelihood. Parameters ---------- - gamma : np.ndarray - The responsibility matrix (posterior probabilities of clusters for each data point). + alpha : np.ndarray + Input data in radians. + p : np.ndarray + Component probabilities. + m : np.ndarray + Component means. + kappa : np.ndarray + Component concentrations. Returns ------- float The negative log-likelihood value. """ - nLL = -np.sum(np.log(np.sum(gamma, axis=0) + 1e-16)) - return nLL + log_gamma = self._log_gamma(alpha, p, m, kappa) + log_norm = np.logaddexp.reduce(log_gamma, axis=0) + return -float(np.sum(log_norm)) - def compute_BIC(self)-> float: + def compute_BIC(self) -> float: """ Computes the Bayesian Information Criterion (BIC) for model selection. @@ -276,7 +349,9 @@ def compute_BIC(self)-> float: float The computed BIC value. """ - nLL = self.compute_nLL(self.gamma_) + if self.gamma_ is None: + raise ValueError("Model must be fitted before computing BIC.") + nLL = self.compute_nLL(self.alpha, self.p_, self.m_, self.kappa_) nparams = self.n_clusters * 3 - 1 # n_means + n_kappas + (n_ps - 1) bic = 2 * nLL + np.log(self.n) * nparams @@ -287,7 +362,7 @@ def predict_density( x: Optional[np.ndarray] = None, unit: Union[str, None] = None, full_cycle: Union[float, int, None] = None, - )-> np.ndarray: + ) -> np.ndarray: """ Predicts density estimates for given points. @@ -309,17 +384,47 @@ def predict_density( full_cycle = self.full_cycle if full_cycle is None else full_cycle if x is None: - x = np.linspace(0, 2 * np.pi, 100) + x = np.linspace(0, 2 * np.pi, 400, endpoint=False) + if unit == "degree": + x = np.rad2deg(x) + x = np.asarray(x, dtype=float).reshape(-1) + alpha = x if unit == "radian" else data2rad(x, k=full_cycle) - alpha = x if unit == "radian" else data2rad(x, full_cycle) + density_components = np.array( + [ + p_c * vonmises.pdf(alpha, mu=m_c, kappa=k_c) + for p_c, m_c, k_c in zip(self.p_, self.m_, self.kappa_) + ] + ) + return density_components.sum(axis=0) - d = [ - self.p_[i] * vonmises.pdf(alpha, kappa=self.kappa_[i], mu=self.m_[i]) - for i in range(self.n_clusters) - ] - return np.sum(d, axis=0) + def predict_proba( + self, + x: np.ndarray, + unit: Union[str, None] = None, + full_cycle: Union[float, int, None] = None, + ) -> np.ndarray: + """ + Returns component posterior probabilities for new observations. + """ + if self.p_ is None or self.kappa_ is None or self.m_ is None: + raise ValueError("Model must be fitted before calling predict_proba().") + + unit = self.unit if unit is None else unit + full_cycle = self.full_cycle if full_cycle is None else full_cycle + x = np.asarray(x, dtype=float).reshape(-1) + alpha = x if unit == "radian" else data2rad(x, k=full_cycle) - def predict(self, x: np.ndarray)-> np.ndarray: + log_gamma = self._log_gamma(alpha, self.p_, self.m_, self.kappa_) + log_norm = np.logaddexp.reduce(log_gamma, axis=0, keepdims=True) + return np.exp(log_gamma - log_norm) + + def predict( + self, + x: np.ndarray, + unit: Union[str, None] = None, + full_cycle: Union[float, int, None] = None, + ) -> np.ndarray: """ Predicts cluster assignments for new data. @@ -333,13 +438,830 @@ def predict(self, x: np.ndarray)-> np.ndarray: np.ndarray Predicted cluster labels. """ - alpha = x if self.unit == "radian" else data2rad(x, self.full_cycle) + proba = self.predict_proba(x, unit=unit, full_cycle=full_cycle) + return proba.argmax(axis=0) + + +class MoKJ: + """ + Mixture of Kato–Jones (MoKJ) Clustering. + + EM algorithm for clustering circular data with a mixture of Kato–Jones + components (Kato & Jones, 2015). Each component controls mean direction (mu), + mean resultant length (gamma), and second-order moment magnitude/phase (rho, lam), + thus flexibly capturing skewness and peakedness per mode. + + References + ---------- + - Kato, S., & Jones, M.C. (2015). A tractable and interpretable four-parameter + family of unimodal distributions on the circle. *Biometrika*, 102(1), 181–190. + - Nagasaki, K., Kato, S., Nakanishi, W., & Jones, M.C. (2024/2025). + Traffic count data analysis using mixtures of Kato–Jones distributions. + *JRSS C (Applied Statistics)*. (EM for KJ mixtures; reparametrization details.) + + Parameters + ---------- + burnin : int, default=30 + Number of initial EM iterations before checking convergence. + n_clusters : int, default=5 + Number of Kato–Jones mixture components. + n_iters : int, default=100 + Maximum EM iterations. + full_cycle : int or float, default=360 + Used to convert degrees to radians when unit="degree". + unit : {"degree", "radian"}, default="degree" + Input unit of X. + random_seed : int or None, default=2046 + RNG seed for initialization. + threshold : float, default=1e-16 + Convergence threshold on |nLL_t - nLL_{t-1}|. + mle_maxiter : int, default=500 + Max iterations for per-component weighted MLE in M-step. + mle_ftol : float, default=1e-9 + Function tolerance for per-component weighted MLE. + min_comp_weight : float, default=1e-6 + Minimum mixture weight; components below may be reinitialized/frozen. + + Attributes (after fit) + ---------------------- + converged : bool + converged_iters : Optional[int] + nLL : np.ndarray + Negative log-likelihood history (finite prefix). + mu_ : np.ndarray shape (K,) + gamma_ : np.ndarray shape (K,) + rho_ : np.ndarray shape (K,) + lam_ : np.ndarray shape (K,) + p_ : np.ndarray shape (K,) + Mixture weights. + gamma_resp_ : np.ndarray shape (K, n) + Responsibilities. + labels_ : np.ndarray shape (n,) + MAP component labels. + data : np.ndarray + Original X as provided. + alpha : np.ndarray + Data in radians. + n : int + params_ : list of dict or None + Per-component parameter dictionaries ({"mu", "gamma", "rho", "lam"}) after fit. + """ - gamma = self.compute_gamma( - alpha=alpha, p=self.p_, m=self.m_, kappa=self.kappa_ + def __init__( + self, + burnin: int = 30, + n_clusters: int = 5, + n_iters: int = 100, + full_cycle: Union[int, float] = 360, + unit: str = "degree", + random_seed: Optional[int] = 2046, + threshold: float = 1e-16, + mle_maxiter: int = 500, + mle_ftol: float = 1e-9, + min_comp_weight: float = 1e-6, + ): + if burnin < 0: + raise ValueError("`burnin` must be non-negative.") + if n_clusters <= 0: + raise ValueError("`n_clusters` must be a positive integer.") + if n_iters <= 0: + raise ValueError("`n_iters` must be a positive integer.") + if threshold <= 0: + raise ValueError("`threshold` must be positive.") + if unit not in {"degree", "radian"}: + raise ValueError("`unit` must be either 'degree' or 'radian'.") + + self.burnin = burnin + self.threshold = threshold + self.n_clusters = n_clusters + self.n_iters = n_iters + self.full_cycle = full_cycle + self.unit = unit + self._rng = np.random.default_rng(random_seed) + + self.mle_maxiter = int(mle_maxiter) + self.mle_ftol = float(mle_ftol) + self.min_comp_weight = float(min_comp_weight) + self._gamma_floor = 1e-4 + self._gamma_margin = 5e-4 + self._rho_margin = 5e-4 + self._constraint_margin = 5e-4 + self._s_shrink = 5e-3 + + self.converged = False + self.converged_iters: Optional[int] = None + + self.mu_: Optional[np.ndarray] = None + self.gamma_: Optional[np.ndarray] = None + self.rho_: Optional[np.ndarray] = None + self.lam_: Optional[np.ndarray] = None + self.p_: Optional[np.ndarray] = None + self.gamma_resp_: Optional[np.ndarray] = None + self.labels_: Optional[np.ndarray] = None + self.nLL: Optional[np.ndarray] = None + self.data: Optional[np.ndarray] = None + self.alpha: Optional[np.ndarray] = None + self.n: Optional[int] = None + self.params_: Optional[List[Dict[str, float]]] = None + + # ---------- initialization ---------- + + def _initialize( + self, + x_rad: np.ndarray, + n_clusters_init: int, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """Random-assign points to K clusters (no empty clusters), then per-cluster + initialize KJ params via method-of-moments.""" + n = len(x_rad) + if n_clusters_init > n: + raise ValueError("Number of clusters exceeds sample size during initialization.") + + labels = None + if "CircKMeans" in globals(): + try: + seed = int(self._rng.integers(0, 2**32 - 1)) + kmeans = CircKMeans( + n_clusters=n_clusters_init, + unit="radian", + metric="center", + random_seed=seed, + ) + kmeans.fit(x_rad) + labels = kmeans.labels_.astype(int, copy=True) + if len({int(c) for c in labels}) < n_clusters_init: + labels = None + except Exception: + labels = None + + if labels is None: + for _ in range(100): + candidate = self._rng.integers(n_clusters_init, size=n) + if all(np.any(candidate == c) for c in range(n_clusters_init)): + labels = candidate + break + else: + raise RuntimeError("Failed to initialize clusters without empty components.") + + mu0 = np.zeros(n_clusters_init, float) + gamma0 = np.zeros(n_clusters_init, float) + rho0 = np.zeros(n_clusters_init, float) + lam0 = np.zeros(n_clusters_init, float) + + for c in range(n_clusters_init): + subset = x_rad[labels == c] + # Moments init (fast, robust). Your katojones.fit already wraps moments logic. + est = katojones.fit(subset, method="moments", return_info=False) + mu0[c], gamma0[c], rho0[c], lam0[c] = self._regularise_params(est) + + p0 = np.full(n_clusters_init, 1.0 / n_clusters_init, dtype=float) + return mu0, gamma0, rho0, lam0, p0 + + # ---------- regularisation helpers ---------- + + def _constraint_value(self, gamma: float, rho: float, lam: float) -> float: + cos_lam = np.cos(lam) + sin_lam = np.sin(lam) + return (rho * cos_lam - gamma) ** 2 + (rho * sin_lam) ** 2 + + def _regularise_params(self, params: Tuple[float, float, float, float]) -> Tuple[float, float, float, float]: + mu, gamma, rho, lam = params + mu = float(np.mod(mu, 2.0 * np.pi)) + gamma = float(np.clip(gamma, self._gamma_floor, 1.0 - self._gamma_margin)) + rho = float(np.clip(rho, 0.0, 1.0 - self._rho_margin)) + lam = float(np.mod(lam, 2.0 * np.pi)) + + limit = (1.0 - gamma) ** 2 + if limit <= 0.0: + gamma = 1.0 - self._gamma_margin + limit = (1.0 - gamma) ** 2 + + if self._constraint_value(gamma, rho, lam) >= limit - self._constraint_margin: + # steer back inside feasible disk + s, phi = katojones._aux_from_rho_lam(gamma, rho, lam) + s = float(np.clip(s, 0.0, 1.0 - self._s_shrink)) + s *= (1.0 - self._s_shrink) + rho, lam = katojones._rho_lam_from_aux(gamma, s, phi) + rho = float(np.clip(rho, 0.0, 1.0 - self._rho_margin)) + lam = float(np.mod(lam, 2.0 * np.pi)) + + return mu, gamma, rho, lam + + def _violates_or_degenerate(self, params: Tuple[float, float, float, float]) -> bool: + mu, gamma, rho, lam = params + if not np.all(np.isfinite([mu, gamma, rho, lam])): + return True + if gamma <= self._gamma_floor or rho >= 1.0 - self._rho_margin: + return True + limit = (1.0 - gamma) ** 2 + if limit <= 0.0: + return True + return self._constraint_value(gamma, rho, lam) >= limit - self._constraint_margin / 2.0 + + # ---------- core likelihood pieces ---------- + + def _component_logpdf( + self, + alpha: np.ndarray, + mu: np.ndarray, + gamma: np.ndarray, + rho: np.ndarray, + lam: np.ndarray, + ) -> np.ndarray: + """Return array shape (K, n) of component log-densities.""" + K = mu.size + logs = np.vstack( + [ + katojones.logpdf(alpha, mu=mu[k], gamma=gamma[k], rho=rho[k], lam=lam[k]) + for k in range(K) + ] ) + return logs + + def _log_gamma(self, alpha, p, mu, gamma, rho, lam) -> np.ndarray: + """Unnormalized log-responsibilities, shape (K, n).""" + log_mix = np.log(np.clip(p, 1e-300, None))[:, None] + log_comp = self._component_logpdf(alpha, mu, gamma, rho, lam) + return log_mix + log_comp + + def _nll(self, alpha, p, mu, gamma, rho, lam) -> float: + log_gamma = self._log_gamma(alpha, p, mu, gamma, rho, lam) + ll = np.sum(logsumexp(log_gamma, axis=0)) + return float(-ll) - return gamma.argmax(axis=0) + # ---------- public API ---------- + + def fit(self, X: np.ndarray, verbose: Union[bool, int] = 0): + """ + Fit the MoKJ model by EM. + + Parameters + ---------- + X : array-like, shape (n,) + Circular data in degrees or radians (see `unit`). + verbose : bool or int + If True, print progress each iteration; if int > 0, print every `verbose` iters. + """ + X = np.asarray(X, dtype=float).reshape(-1) + if X.size == 0: + raise ValueError("Input data must contain at least one observation.") + alpha = X if self.unit == "radian" else data2rad(X, k=self.full_cycle) + + self.data = X + self.alpha = alpha + self.n = n = alpha.size + + mu, gamma, rho, lam, p = self._initialize(alpha, self.n_clusters) + + if verbose: + print("Iter".ljust(10) + "nLL") + + nLL_hist = np.full(self.n_iters, np.nan) + last_nll = np.inf + + for it in range(self.n_iters): + # E-step + log_resp = self._log_gamma(alpha, p, mu, gamma, rho, lam) + log_norm = logsumexp(log_resp, axis=0, keepdims=True) + resp = np.exp(log_resp - log_norm) # (K, n) + + # M-step: weights + p = resp.sum(axis=1) + p = np.clip(p, self.min_comp_weight, None) + p /= p.sum() + + # M-step: per-component params via weighted MLE, with fallback to moments + mu_new = np.empty_like(mu) + gamma_new = np.empty_like(gamma) + rho_new = np.empty_like(rho) + lam_new = np.empty_like(lam) + + for k in range(self.n_clusters): + w = resp[k] + wsum = float(w.sum()) + + moment_est = self._regularise_params( + katojones.fit(alpha, method="moments", weights=w, return_info=False) + ) + + if not np.isfinite(wsum) or wsum <= self.min_comp_weight * n: + # too small / degenerate: keep previous or reinit via moments + mu_new[k], gamma_new[k], rho_new[k], lam_new[k] = moment_est + continue + + # Start from current params; do weighted MLE as in the EM literature + mle_params = None + initial_params = self._regularise_params((mu[k], gamma[k], rho[k], lam[k])) + for start_params in (initial_params, moment_est): + try: + est, _info = katojones.fit( + alpha, + method="mle", + weights=w, + initial=start_params, + optimizer="L-BFGS-B", + options={"maxiter": self.mle_maxiter, "ftol": self.mle_ftol}, + return_info=True, + ) + est = self._regularise_params(est) + if not self._violates_or_degenerate(est): + mle_params = est + break + except Exception: + continue + + if mle_params is None: + mle_params = moment_est + + mu_new[k], gamma_new[k], rho_new[k], lam_new[k] = mle_params + + mu, gamma, rho, lam = mu_new, gamma_new, rho_new, lam_new + + # bookkeeping + nLL = self._nll(alpha, p, mu, gamma, rho, lam) + nLL_hist[it] = nLL + if verbose and (it % int(verbose or 1) == 0): + print(f"{it}".ljust(10) + f"{nLL:.6f}") + + # convergence check + if it > self.burnin and abs(last_nll - nLL) < self.threshold: + self.converged = True + self.converged_iters = it + 1 + if verbose: + print(f"Converged at iter {it}. Final nLL = {nLL:.6f}\n") + break + last_nll = nLL + else: + if verbose: + print(f"Reached max iter {self.n_iters}. Final nLL = {nLL:.6f}\n") + + # Save final state + self.nLL = nLL_hist[~np.isnan(nLL_hist)] + self.mu_, self.gamma_, self.rho_, self.lam_ = mu, gamma, rho, lam + self.p_ = p + self.params_ = [ + { + "mu": float(mu[i]), + "gamma": float(gamma[i]), + "rho": float(rho[i]), + "lam": float(lam[i]), + } + for i in range(self.n_clusters) + ] + # final responsibilities & labels + log_resp = self._log_gamma(alpha, p, mu, gamma, rho, lam) + log_norm = logsumexp(log_resp, axis=0, keepdims=True) + self.gamma_resp_ = np.exp(log_resp - log_norm) + self.labels_ = self.gamma_resp_.argmax(axis=0) + return self + + # ---------- utilities ---------- + + def compute_BIC(self) -> float: + """ + Bayesian Information Criterion for the original KJ mixture. + Uses p = 4*K + (K-1) = 5K - 1 parameters. + """ + if self.gamma_resp_ is None: + raise ValueError("Model must be fitted before computing BIC.") + nLL = self._nll(self.alpha, self.p_, self.mu_, self.gamma_, self.rho_, self.lam_) + nparams = 5 * self.n_clusters - 1 + return 2 * nLL + np.log(self.n) * nparams + + def predict_proba( + self, + x: np.ndarray, + unit: Union[str, None] = None, + full_cycle: Union[float, int, None] = None, + ) -> np.ndarray: + """ + Posterior component probabilities for new points. + """ + if self.p_ is None: + raise ValueError("Model must be fitted before calling predict_proba().") + unit = self.unit if unit is None else unit + full_cycle = self.full_cycle if full_cycle is None else full_cycle + x = np.asarray(x, dtype=float).reshape(-1) + alpha = x if unit == "radian" else data2rad(x, k=full_cycle) + log_resp = self._log_gamma(alpha, self.p_, self.mu_, self.gamma_, self.rho_, self.lam_) + log_norm = logsumexp(log_resp, axis=0, keepdims=True) + return np.exp(log_resp - log_norm) + + def predict( + self, + x: np.ndarray, + unit: Union[str, None] = None, + full_cycle: Union[float, int, None] = None, + ) -> np.ndarray: + """MAP assignments for new data.""" + return self.predict_proba(x, unit=unit, full_cycle=full_cycle).argmax(axis=0) + + def predict_density( + self, + x: Optional[np.ndarray] = None, + unit: Union[str, None] = None, + full_cycle: Union[float, int, None] = None, + ) -> np.ndarray: + """ + Mixture density at points x. + """ + if self.p_ is None: + raise ValueError("Model must be fitted before calling predict_density().") + unit = self.unit if unit is None else unit + full_cycle = self.full_cycle if full_cycle is None else full_cycle + + if x is None: + x = np.linspace(0, 2 * np.pi, 400, endpoint=False) + if unit == "degree": + x = np.rad2deg(x) + x = np.asarray(x, dtype=float).reshape(-1) + alpha = x if unit == "radian" else data2rad(x, k=full_cycle) + + dens = np.zeros_like(alpha, dtype=float) + for pc, muc, gc, rhoc, lamc in zip(self.p_, self.mu_, self.gamma_, self.rho_, self.lam_): + dens += pc * katojones.pdf(alpha, mu=muc, gamma=gc, rho=rhoc, lam=lamc) + return dens + + +class MoCD: + """ + Mixture of Circular Distributions (MoCD). + + This class generalises `MovM` to any circular distribution that exposes + ``logpdf`` and ``fit`` methods accepting weighted observations. All mixture + components share the same distribution family (e.g. von Mises, wrapped Cauchy, + wrapped normal, inverse Batschelet). Users choose the underlying family and + the EM algorithm re-estimates the component parameters and mixing weights. + + Notes + ----- + * The current implementation assumes each component uses **the same** + distribution. Extending EM to support heterogeneous components + (different families per cluster) is feasible – responsibilities are still + well-defined – but requires bookkeeping for a potentially different set of + parameters and optimisation routines per component. That design is left + for future work. + * The supplied distribution must expose ``logpdf`` and a ``fit`` method with + a ``weights`` keyword argument. Most distributions in `pycircstat2` + follow that convention. + * Parameter order is inferred from ``distribution.shapes`` where available; + otherwise ``param_names`` must be provided. + * The current implementation restricts distributions to cardioid, Cartwright, + wrapped normal (``wrapnorm``), wrapped Cauchy (``wrapcauchy``), or von Mises + while other families are under investigation. + """ + + def __init__( + self, + distribution: CircularContinuous = vonmises, + *, + param_names: Optional[List[str]] = None, + fit_method: Optional[Union[str, List[str], Tuple[str, ...]]] = "auto", + fit_kwargs: Optional[Dict[str, object]] = None, + n_clusters: int = 3, + n_iters: int = 100, + burnin: int = 20, + threshold: float = 1e-6, + unit: str = "degree", + full_cycle: Union[int, float] = 360, + random_seed: Optional[int] = None, + ) -> None: + if not isinstance(distribution, CircularContinuous): + raise TypeError("`distribution` must be an instance of CircularContinuous (e.g. vonmises).") + if n_clusters <= 0: + raise ValueError("`n_clusters` must be positive.") + if n_iters <= 0: + raise ValueError("`n_iters` must be positive.") + if burnin < 0: + raise ValueError("`burnin` must be non-negative.") + if threshold <= 0: + raise ValueError("`threshold` must be positive.") + if unit not in {"degree", "radian"}: + raise ValueError("`unit` must be either 'degree' or 'radian'.") + + self.distribution = distribution + distribution_name = getattr(self.distribution, "name", None) + if not distribution_name: + distribution_name = self.distribution.__class__.__name__ + distribution_name_key = distribution_name.lower() + if distribution_name_key not in ALLOWED_MOCD_DISTRIBUTIONS: + allowed = ", ".join(sorted(ALLOWED_MOCD_DISTRIBUTIONS)) + raise ValueError( + f"`distribution` '{distribution_name}' is not currently supported by MoCD. " + f"Allowed options: {allowed}." + ) + + self.n_clusters = int(n_clusters) + self.n_iters = int(n_iters) + self.burnin = int(burnin) + self.threshold = float(threshold) + self.unit = unit + self.full_cycle = full_cycle + self.fit_kwargs = {} if fit_kwargs is None else dict(fit_kwargs) + self._rng = np.random.default_rng(random_seed) + + fit_signature = inspect.signature(self.distribution.fit) + if "weights" not in fit_signature.parameters: + raise ValueError( + "The selected distribution does not expose a `weights=` keyword in its fit method. " + "MoCD requires weighted fitting to perform the EM M-step." + ) + + inferred_names: List[str] = [] + if param_names is not None: + inferred_names = list(param_names) + else: + shapes = getattr(self.distribution, "shapes", None) + if shapes: + inferred_names = [name.strip() for name in shapes.split(",") if name.strip()] + + if not inferred_names: + raise ValueError( + "`param_names` could not be inferred. Please provide the parameter order explicitly." + ) + + self.param_names = inferred_names + if "method" in self.fit_kwargs: + method_value = self.fit_kwargs.pop("method") + self._method_candidates = [str(method_value).lower()] + else: + self._method_candidates = self._normalise_fit_method(fit_method) + + distribution_name = distribution_name_key + if ( + (fit_method is None or (isinstance(fit_method, str) and fit_method.lower() == "auto")) + and distribution_name in {"vonmises_flattopped", "inverse_batschelet"} + ): + self._method_candidates = ["mle"] + + # Model attributes populated after fitting + self.converged: bool = False + self.converged_iters: Optional[int] = None + self.nLL: Optional[np.ndarray] = None + self.p_: Optional[np.ndarray] = None + self.params_: Optional[List[Dict[str, float]]] = None + self.param_matrix_: Optional[np.ndarray] = None + self.gamma_: Optional[np.ndarray] = None + self.labels_: Optional[np.ndarray] = None + self.alpha: Optional[np.ndarray] = None + self.data: Optional[np.ndarray] = None + self.n: Optional[int] = None + + def _normalise_fit_method( + self, fit_method: Optional[Union[str, List[str], Tuple[str, ...]]] + ) -> List[Optional[str]]: + if fit_method is None: + return [None] + + if isinstance(fit_method, (list, tuple)): + if not fit_method: + return [None] + return [None if m is None else str(m).lower() for m in fit_method] + + method_str = str(fit_method).lower() + if method_str == "auto": + return ["moments", "mle"] + return [method_str] + + # ------------------------------------------------------------------ # + # Helper utilities + # ------------------------------------------------------------------ # + def _params_to_array(self, params: Dict[str, float]) -> np.ndarray: + return np.array([float(params[name]) for name in self.param_names], dtype=float) + + def _array_to_params(self, values: Union[Dict[str, float], Tuple[float, ...], List[float]]) -> Dict[str, float]: + if isinstance(values, dict): + return {name: float(values[name]) for name in self.param_names} + arr = np.atleast_1d(values).astype(float) + if arr.size != len(self.param_names): + raise ValueError( + f"Expected {len(self.param_names)} parameters, but got {arr.size}. " + "Please supply `param_names` matching the distribution." + ) + return {name: float(arr[i]) for i, name in enumerate(self.param_names)} + + def _fit_component( + self, + alpha: np.ndarray, + weights: np.ndarray, + current_params: Optional[Dict[str, float]] = None, + ) -> Dict[str, float]: + weights = np.asarray(weights, dtype=float) + total_weight = float(np.sum(weights)) + if not np.isfinite(total_weight) or total_weight <= 1e-12: + if current_params is not None: + return current_params + weights = np.ones_like(weights, dtype=float) + total_weight = float(np.sum(weights)) + + last_error: Optional[Exception] = None + for method in self._method_candidates: + fit_options = dict(self.fit_kwargs) + if method is not None: + fit_options.setdefault("method", method) + fit_options["weights"] = weights + + try: + params_est, _info = self.distribution.fit(alpha, return_info=True, **fit_options) + except TypeError: + fit_options.pop("return_info", None) + try: + params_est = self.distribution.fit(alpha, **fit_options) + except Exception as exc: # pragma: no cover + last_error = exc + continue + except Exception as exc: + last_error = exc + continue + + try: + return self._array_to_params(params_est) + except Exception as exc: # pragma: no cover - defensive + last_error = exc + continue + + raise RuntimeError( + "Failed to fit mixture component; attempted methods " + f"{self._method_candidates} with last error: {last_error}" + ) + + def _initialize(self, alpha: np.ndarray) -> Tuple[List[Dict[str, float]], np.ndarray]: + n = alpha.size + if self.n_clusters > n: + raise ValueError("Number of clusters cannot exceed number of observations during initialisation.") + + for _ in range(128): + labels = self._rng.integers(self.n_clusters, size=n) + if all(np.any(labels == c) for c in range(self.n_clusters)): + break + else: + raise RuntimeError("Failed to initialise mixture components without empty clusters.") + + params_list: List[Dict[str, float]] = [] + for c in range(self.n_clusters): + mask = labels == c + count = int(mask.sum()) + params = self._fit_component(alpha[mask], np.ones(count, dtype=float)) + params_list.append(params) + + p = np.full(self.n_clusters, 1.0 / self.n_clusters, dtype=float) + return params_list, p + + def _log_gamma( + self, + alpha: np.ndarray, + p: np.ndarray, + params_list: List[Dict[str, float]], + ) -> np.ndarray: + log_prob = np.vstack( + [ + np.log(p[i] + 1e-32) + self.distribution.logpdf(alpha, **params_list[i]) + for i in range(self.n_clusters) + ] + ) + return log_prob + + # ------------------------------------------------------------------ # + # Public API + # ------------------------------------------------------------------ # + def fit(self, X: np.ndarray, verbose: Union[bool, int] = 0) -> "MoCD": + X = np.asarray(X, dtype=float).reshape(-1) + if X.size == 0: + raise ValueError("Input data must contain at least one observation.") + + alpha = X if self.unit == "radian" else data2rad(X, k=self.full_cycle) + + self.data = X + self.alpha = alpha + self.n = alpha.size + + params_list, p = self._initialize(alpha) + + if verbose: + header = "Iter".ljust(10) + "nLL" + print(header) + + nLL_history = np.full(self.n_iters, np.nan) + + for iteration in range(self.n_iters): + log_resp = self._log_gamma(alpha, p, params_list) + log_norm = logsumexp(log_resp, axis=0, keepdims=True) + gamma_normed = np.exp(log_resp - log_norm) + + p = gamma_normed.sum(axis=1) + p /= p.sum() + + params_updated: List[Dict[str, float]] = [] + for c in range(self.n_clusters): + weights = gamma_normed[c] + if np.allclose(weights.sum(), 0.0): + params_updated.append(params_list[c]) + continue + params_updated.append(self._fit_component(alpha, weights, current_params=params_list[c])) + params_list = params_updated + + nLL = -float(np.sum(log_norm)) + nLL_history[iteration] = nLL + + if verbose and (iteration % int(verbose or 1) == 0): + print(f"{iteration}".ljust(10) + f"{nLL:.3f}") + + if ( + iteration > self.burnin + and np.abs(nLL_history[iteration] - nLL_history[iteration - 1]) + < self.threshold + ): + self.converged = True + self.converged_iters = iteration + 1 + if verbose: + print(f"Converged at iter {iteration}. Final nLL = {nLL:.3f}\n") + break + else: + if verbose: + print(f"Reached max iter {self.n_iters}. Final nLL = {nLL_history[self.n_iters - 1]:.3f}\n") + + self.nLL = nLL_history[~np.isnan(nLL_history)] + self.p_ = p + self.params_ = params_list + self.param_matrix_ = np.vstack([self._params_to_array(params) for params in params_list]) + + final_log = self._log_gamma(alpha, p, params_list) + final_norm = logsumexp(final_log, axis=0, keepdims=True) + gamma_final = np.exp(final_log - final_norm) + self.gamma_ = gamma_final + self.labels_ = gamma_final.argmax(axis=0) + return self + + def predict_proba(self, X: np.ndarray) -> np.ndarray: + if self.gamma_ is None or self.p_ is None or self.params_ is None: + raise ValueError("Model must be fitted before calling `predict_proba`.") + + X = np.asarray(X, dtype=float).reshape(-1) + alpha = X if self.unit == "radian" else data2rad(X, k=self.full_cycle) + + log_resp = self._log_gamma(alpha, self.p_, self.params_) + log_norm = logsumexp(log_resp, axis=0, keepdims=True) + return np.exp(log_resp - log_norm) + + def predict(self, X: np.ndarray) -> np.ndarray: + proba = self.predict_proba(X) + return proba.argmax(axis=0) + + def score_samples(self, X: np.ndarray) -> np.ndarray: + if self.p_ is None or self.params_ is None: + raise ValueError("Model must be fitted before calling `score_samples`.") + + X = np.asarray(X, dtype=float).reshape(-1) + alpha = X if self.unit == "radian" else data2rad(X, k=self.full_cycle) + log_resp = self._log_gamma(alpha, self.p_, self.params_) + return logsumexp(log_resp, axis=0) + + def score(self, X: np.ndarray) -> float: + log_likelihood = self.score_samples(X) + return float(np.mean(log_likelihood)) + + def predict_density( + self, + X: Optional[np.ndarray] = None, + *, + unit: Optional[str] = None, + full_cycle: Optional[Union[int, float]] = None, + ) -> np.ndarray: + if self.p_ is None or self.params_ is None: + raise ValueError("Model must be fitted before calling `predict_density`.") + + unit = self.unit if unit is None else unit + full_cycle = self.full_cycle if full_cycle is None else full_cycle + + if X is None: + X = np.linspace(0.0, 2.0 * np.pi, 200, endpoint=False) + if unit == "degree": + X = np.rad2deg(X) + + X = np.asarray(X, dtype=float).reshape(-1) + alpha = X if unit == "radian" else data2rad(X, k=full_cycle) + + pdf_components = np.vstack( + [self.distribution.pdf(alpha, **params) for params in self.params_] + ) + density = np.sum(self.p_[:, None] * pdf_components, axis=0) + return density + + def bic(self) -> float: + if self.alpha is None or self.p_ is None or self.params_ is None: + raise ValueError("Model must be fitted before computing BIC.") + log_likelihood = self.score_samples(self.alpha) + nLL = -float(np.sum(log_likelihood)) + n_params_component = len(self.param_names) + n_params_total = self.n_clusters * n_params_component + (self.n_clusters - 1) + return 2.0 * nLL + np.log(self.n) * n_params_total + + # Aliases for compatibility with the MovM API + def predict_density_grid(self, X: Optional[np.ndarray] = None) -> np.ndarray: + return self.predict_density(X) + + def compute_BIC(self) -> float: + return self.bic() class CircHAC: @@ -390,41 +1312,65 @@ class CircHAC: def __init__( self, - n_clusters=2, - n_init_clusters=None, - unit="degree", - full_cycle=360, - metric="center", - random_seed=None + n_clusters: int = 2, + n_init_clusters: Optional[int] = None, + unit: str = "degree", + full_cycle: Union[int, float] = 360, + metric: str = "center", + random_seed: Optional[int] = None, ): + if n_clusters <= 0: + raise ValueError("`n_clusters` must be a positive integer.") + if n_init_clusters is not None and n_init_clusters <= 0: + raise ValueError("`n_init_clusters` must be positive when provided.") + if unit not in {"degree", "radian"}: + raise ValueError("`unit` must be either 'degree' or 'radian'.") + metric = metric.lower() + valid_metrics = {"center", "geodesic", "angularseparation", "chord"} + if metric not in valid_metrics: + raise ValueError(f"`metric` must be one of {valid_metrics}.") + self.n_clusters = n_clusters self.n_init_clusters = n_init_clusters self.unit = unit self.full_cycle = full_cycle self.metric = metric - self.random_seed = random_seed - - self.centers_ = None - self.r_ = None - self.labels_ = None - self.merges_ = None - - def _initialize_clusters(self, X): - """Initializes clusters using CircKMeans or default HAC.""" - n_samples = len(X) + self._rng = np.random.default_rng(random_seed) + + self.centers_: Optional[np.ndarray] = None + self.r_: Optional[np.ndarray] = None + self.labels_: Optional[np.ndarray] = None + self.merges_: Optional[np.ndarray] = None + self.alpha: Optional[np.ndarray] = None + self.data: Optional[np.ndarray] = None + + def _initialize_clusters(self, alpha: np.ndarray) -> Dict[int, List[int]]: + n_samples = alpha.size + if ( + self.n_init_clusters is None + or self.n_init_clusters >= n_samples + ): + return {i: [i] for i in range(n_samples)} + + # Pre-cluster using CircKMeans to obtain a manageable starting point + seed = int(self._rng.integers(0, 2**32 - 1)) + kmeans = CircKMeans( + n_clusters=self.n_init_clusters, + unit="radian", + metric=self.metric, + random_seed=seed, + ) + kmeans.fit(alpha) - # Default HAC: every point is its own cluster - if self.n_init_clusters is None or self.n_init_clusters >= n_samples: - return np.arange(n_samples), X # Standard HAC + clusters: Dict[int, List[int]] = {} + for cid in range(self.n_init_clusters): + indices = np.where(kmeans.labels_ == cid)[0] + if indices.size: + clusters[cid] = indices.tolist() - # Use CircKMeans for pre-clustering - kmeans = CircKMeans(n_clusters=self.n_init_clusters, unit="radian", metric=self.metric, random_seed=self.random_seed) - kmeans.fit(X) - - init_labels = kmeans.labels_ - init_centers = kmeans.centers_ - - return init_labels, init_centers + if not clusters: + return {i: [i] for i in range(n_samples)} + return clusters def fit(self, X): """ @@ -439,72 +1385,66 @@ def fit(self, X): ------- self : CircHAC """ - self.data = X = np.asarray(X) - if self.unit == "degree": - self.alpha = alpha = data2rad(X, k=self.full_cycle) - else: - self.alpha = alpha = X + self.data = X = np.asarray(X, dtype=float).reshape(-1) + if X.size == 0: + raise ValueError("Input data must contain at least one observation.") + + alpha = X if self.unit == "radian" else data2rad(X, k=self.full_cycle) + self.alpha = alpha - n = len(alpha) + n = alpha.size if n <= self.n_clusters: - self.labels_ = np.arange(n) + self.labels_ = np.arange(n, dtype=int) self.centers_ = alpha.copy() - self.r_ = np.ones(n) - self.merges_ = np.empty((0, 4)) + self.r_ = np.ones(n, dtype=float) + self.merges_ = np.empty((0, 4), dtype=float) return self - # Step 1: Initialize with pre-clustering or start from scratch - cluster_ids, cluster_means = self._initialize_clusters(alpha) - cluster_sizes = np.ones(len(cluster_means), dtype=int) + clusters = self._initialize_clusters(alpha) + next_cluster_id = max(clusters.keys()) + 1 if clusters else 0 + merges: List[List[float]] = [] - merges = [] # Track merge history + while len(clusters) > self.n_clusters: + means = {cid: circ_mean_and_r(alpha[indices])[0] for cid, indices in clusters.items()} + cluster_ids = list(clusters.keys()) - while len(np.unique(cluster_ids)) > self.n_clusters: - # Compute cluster means - unique_clusters = np.unique(cluster_ids) - cluster_means_dict = {c: cluster_means[c] for c in unique_clusters} - - # Find best pair to merge best_dist = np.inf - best_i, best_j = None, None - for i in unique_clusters: - for j in unique_clusters: - if j <= i: - continue - dist_ij = circ_dist(cluster_means_dict[i], cluster_means_dict[j], metric=self.metric) + best_pair: Optional[Tuple[int, int]] = None + for idx, cid_i in enumerate(cluster_ids): + for cid_j in cluster_ids[idx + 1 :]: + dist_ij = circ_dist(means[cid_i], means[cid_j], metric=self.metric) if dist_ij < best_dist: best_dist = dist_ij - best_i, best_j = i, j - - if best_i is None or best_j is None: - break # No valid merge found - - # Record merge - new_size = cluster_sizes[best_i] + cluster_sizes[best_j] - merges.append([best_i, best_j, best_dist, new_size]) - - # Merge clusters - cluster_ids[cluster_ids == best_j] = best_i - cluster_sizes[best_i] = new_size - cluster_means[best_i] = circ_mean_and_r(alpha[cluster_ids == best_i])[0] - - # Assign final cluster labels - unique_ids = np.unique(cluster_ids) - label_map = {old_id: new_id for new_id, old_id in enumerate(unique_ids)} - self.labels_ = np.array([label_map[c] for c in cluster_ids], dtype=int) - - # Compute final cluster centers and resultant lengths - k = len(unique_ids) - self.centers_ = np.zeros(k, dtype=float) - self.r_ = np.zeros(k, dtype=float) - for i in range(k): - subset = alpha[self.labels_ == i] - mean_i, r_i = circ_mean_and_r(subset) - self.centers_[i] = mean_i - self.r_[i] = r_i - - # Store merges - self.merges_ = np.array(merges, dtype=object) + best_pair = (cid_i, cid_j) + + if best_pair is None: + break + + cid_i, cid_j = best_pair + merged_indices = clusters[cid_i] + clusters[cid_j] + merges.append([cid_i, cid_j, float(abs(best_dist)), float(len(merged_indices))]) + + del clusters[cid_i] + del clusters[cid_j] + clusters[next_cluster_id] = merged_indices + next_cluster_id += 1 + + final_ids = list(clusters.keys()) + labels = np.empty(n, dtype=int) + centers = np.zeros(len(final_ids), dtype=float) + resultants = np.zeros(len(final_ids), dtype=float) + for new_label, cid in enumerate(final_ids): + indices = clusters[cid] + labels[indices] = new_label + mean_i, r_i = circ_mean_and_r(alpha[indices]) + centers[new_label] = mean_i + resultants[new_label] = r_i + + self.labels_ = labels + self.centers_ = centers + self.r_ = resultants + self.merges_ = np.array(merges, dtype=float) if merges else np.empty((0, 4), dtype=float) + return self def predict(self, alpha): """ @@ -518,26 +1458,17 @@ def predict(self, alpha): ------- labels : np.ndarray of shape (n_samples,) """ - alpha = np.asarray(alpha) - if self.unit == "degree": - alpha = data2rad(alpha, k=self.full_cycle) - else: - alpha = alpha + if self.centers_ is None: + raise ValueError("Model must be fitted before calling predict().") - n_samples = len(alpha) - k = len(self.centers_) - labels = np.zeros(n_samples, dtype=int) - for i in range(n_samples): - a_i = alpha[i] - # measure distance to each center - best_c, best_d = None, np.inf - for c in range(k): - dist_ic = circ_dist(a_i, self.centers_[c], metric=self.metric) - dval = float(abs(dist_ic)) - if dval < best_d: - best_d = dval - best_c = c - labels[i] = best_c + alpha = np.asarray(alpha, dtype=float) + alpha = alpha if self.unit == "radian" else data2rad(alpha, k=self.full_cycle) + + k = self.centers_.size + labels = np.zeros(alpha.size, dtype=int) + for i, angle in enumerate(alpha): + distances = [abs(circ_dist(angle, center, metric=self.metric)) for center in self.centers_] + labels[i] = int(np.argmin(distances)) return labels def plot_dendrogram(self, ax=None, **kwargs): @@ -575,6 +1506,8 @@ def plot_dendrogram(self, ax=None, **kwargs): # But cluster IDs might keep re-labelling, so a quick hack is we show them as is. for step, (ca, cb, distval, new_size) in enumerate(merges): + ca = int(ca) + cb = int(cb) # We'll draw a "u" connecting ca and cb at height distval # Then the newly formed cluster could get ID=cb or something # This is a naive approach that won't produce a fancy SciPy-like dendrogram @@ -728,7 +1661,7 @@ def fit(self, X): ------- self """ - self.data = X = np.asarray(X) + self.data = X = np.asarray(X, dtype=float) if self.unit == "degree": self.alpha = alpha = data2rad(X, k=self.full_cycle) else: @@ -793,6 +1726,7 @@ def fit(self, X): dvals = np.abs(circ_dist(alpha[mask], centers[c], metric=self.metric)) total_dist += dvals.sum() self.inertia_ = total_dist + return self def predict(self, X): """ @@ -806,19 +1740,17 @@ def predict(self, X): ------- labels : np.ndarray, shape (n_samples,) """ - X = np.asarray(X) + if self.centers_ is None: + raise ValueError("Model not fitted. Call fit() first.") + + X = np.asarray(X, dtype=float) if self.unit == "degree": alpha = data2rad(X, k=self.full_cycle) else: alpha = X n_samples = len(alpha) - labels = np.zeros(n_samples, dtype=int) - if self.centers_ is None: - raise ValueError("Model not fitted. Call fit() first.") - dist_mat = np.zeros((self.n_clusters, n_samples)) for c in range(self.n_clusters): dist_mat[c] = np.abs(circ_dist(alpha, self.centers_[c], metric=self.metric)) - labels = dist_mat.argmin(axis=0) - return labels + return dist_mat.argmin(axis=0) diff --git a/pycircstat2/correlation.py b/pycircstat2/correlation.py index 99d24c1..535fb87 100644 --- a/pycircstat2/correlation.py +++ b/pycircstat2/correlation.py @@ -1,5 +1,5 @@ from dataclasses import dataclass -from typing import Optional, Type, Union +from typing import Optional, Sequence, Tuple, Union import numpy as np from scipy.stats import chi2, norm, rankdata @@ -17,8 +17,8 @@ class CorrelationResult: def circ_corrcc( - a: Union[Type[Circular], np.ndarray], - b: Union[Type[Circular], np.ndarray], + a: Union[Circular, np.ndarray, Sequence[float]], + b: Union[Circular, np.ndarray, Sequence[float]], method: str = "fl", test: bool = False, strict: bool = True, @@ -74,6 +74,7 @@ def circ_corrcc( Return significant test if `test` is set to True. """ + method = method.lower() if method == "fl": # Fisher & Lee (1983) _corr = _circ_corrcc_fl elif method == "js": # Jammalamadaka & SenGupta (2001) @@ -81,19 +82,34 @@ def circ_corrcc( elif method == "nonparametric": _corr = _circ_corrcc_np else: - raise ValueError("Invalid method. Choose from 'fl', 'js', 'nonparametric'.") + raise ValueError("Invalid method. Choose from 'fl', 'js', or 'nonparametric'.") result = _corr(a, b, test, strict) - if test: - return result - else: - return result.r + return result if test else result.r + + +def _coerce_angles( + data: Union[Circular, np.ndarray, Sequence[float]], +) -> Tuple[np.ndarray, Optional[float]]: + """Return angle array (in radians) and mean p-value if available.""" + + if isinstance(data, Circular): + return np.asarray(data.alpha, dtype=float), getattr(data, "mean_pval", None) + + array = np.asarray(data, dtype=float) + if array.ndim == 0: + raise ValueError("Angles must be one-dimensional; got scalar input.") + if array.ndim != 1: + raise ValueError("Angles must be provided as a 1-D sequence.") + if array.size == 0: + raise ValueError("Angles must contain at least one element.") + return array, None def _circ_corrcc_fl( - a: Union[Type[Circular], np.ndarray], - b: Union[Type[Circular], np.ndarray], + a: Union[Circular, np.ndarray, Sequence[float]], + b: Union[Circular, np.ndarray, Sequence[float]], test: bool, strict: bool, ) -> CorrelationResult: @@ -117,21 +133,22 @@ def _circ_corrcc_fl( P657-658, Section 27.15(a), Example 27.20 (Zar, 2010). """ - if isinstance(a, Circular): - a_alpha = np.array(a.alpha) - if isinstance(b, Circular): - b_alpha = np.array(b.alpha) + a_alpha, _ = _coerce_angles(a) + b_alpha, _ = _coerce_angles(b) - if len(a_alpha) != len(b_alpha): - raise ValueError("`a` and `b` must be the same length.") + if a_alpha.size != b_alpha.size: + raise ValueError("`a` and `b` must have the same number of samples.") + if a_alpha.size < 2: + raise ValueError("At least two paired observations are required.") def _corr(a, b): - aij = np.triu(a[:, None] - a).flatten() - bij = np.triu(b[:, None] - b).flatten() - num = np.sum(np.sin(aij) * np.sin(bij)) - den = np.sqrt(np.sum(np.sin(aij) ** 2) * np.sum(np.sin(bij) ** 2)) - raa = num / den - return raa + diff_a = np.sin(np.subtract.outer(a, a)[np.triu_indices(len(a), k=1)]) + diff_b = np.sin(np.subtract.outer(b, b)[np.triu_indices(len(b), k=1)]) + num = np.sum(diff_a * diff_b) + den = np.sqrt(np.sum(diff_a**2) * np.sum(diff_b**2)) + if np.isclose(den, 0.0): + raise ValueError("Degenerate data produced zero variance in pairwise differences.") + return num / den r = _corr(a_alpha, b_alpha) @@ -139,7 +156,9 @@ def _corr(a, b): # jackknife test (Upton & Fingleton, 1989) # compute raa an additional n times, each time leaving out one pair of observations n = len(a_alpha) - raas = [_corr(np.delete(a_alpha, i), np.delete(b_alpha, i)) for i in range(n)] + raas = np.empty(n) + for i in range(n): + raas[i] = _corr(np.delete(a_alpha, i), np.delete(b_alpha, i)) m_raas = np.mean(raas) s2_raas = np.var(raas, ddof=1) z = norm.ppf(0.975) @@ -154,8 +173,8 @@ def _corr(a, b): def _circ_corrcc_js( - a: Union[Type[Circular], np.ndarray], - b: Union[Type[Circular], np.ndarray], + a: Union[Circular, np.ndarray, Sequence[float]], + b: Union[Circular, np.ndarray, Sequence[float]], test: bool, strict: bool, ) -> CorrelationResult: @@ -182,36 +201,39 @@ def _circ_corrcc_js( Jammalamadaka & SenGupta (2001) """ - if isinstance(a, Circular): - if strict: - assert a.mean_pval < 0.05, "Data `a` is uniformly distributed." - a_mean = a.mean - a = a.alpha - else: - a_mean = circ_mean(a) + a_alpha, a_pval = _coerce_angles(a) + b_alpha, b_pval = _coerce_angles(b) - if isinstance(b, Circular): - if strict: - assert b.mean_pval < 0.05, "Data `b` is uniformly distributed." - b_mean = b.mean - b = b.alpha - else: - b_mean = circ_mean(b) + if a_alpha.size != b_alpha.size: + raise ValueError("`a` and `b` must have the same number of samples.") + if a_alpha.size < 2: + raise ValueError("At least two paired observations are required.") + + if strict and a_pval is not None and a_pval >= 0.05: + raise ValueError("Sample `a` appears uniform (mean_pval ≥ 0.05).") + if strict and b_pval is not None and b_pval >= 0.05: + raise ValueError("Sample `b` appears uniform (mean_pval ≥ 0.05).") - abar = a - a_mean - bbar = b - b_mean + a_mean = float(circ_mean(a_alpha)) + b_mean = float(circ_mean(b_alpha)) + + abar = a_alpha - a_mean + bbar = b_alpha - b_mean Sa = np.sin(abar) Sb = np.sin(bbar) num = np.sum(Sa * Sb) den = np.sqrt(np.sum(Sa**2) * np.sum(Sb**2)) - + if np.isclose(den, 0.0): + raise ValueError("Degenerate data produced zero variance around the mean direction.") r = num / den if test: - n = len(a) + n = len(a_alpha) l20 = np.mean(Sa**2) l02 = np.mean(Sb**2) l22 = np.mean(Sa**2 * Sb**2) + if np.isclose(l22, 0.0): + raise ValueError("Degenerate data caused division by zero in variance term.") test_stat = np.sqrt(n) * np.sqrt(l20 * l02 / l22) * r p_val = 2 * (1 - norm.cdf(np.abs(test_stat))) @@ -221,20 +243,22 @@ def _circ_corrcc_js( def _circ_corrcc_np( - a: Union[Type[Circular], np.ndarray], - b: Union[Type[Circular], np.ndarray], + a: Union[Circular, np.ndarray, Sequence[float]], + b: Union[Circular, np.ndarray, Sequence[float]], test: bool, strict: bool, ) -> CorrelationResult: """Nonparametric angular-angular correlation.""" - a_alpha = np.array(a.alpha) if isinstance(a, Circular) else a - b_alpha = np.array(b.alpha) if isinstance(b, Circular) else b + a_alpha, _ = _coerce_angles(a) + b_alpha, _ = _coerce_angles(b) - if len(a_alpha) != len(b_alpha): - raise ValueError("`a` and `b` must be the same length.") + if a_alpha.size != b_alpha.size: + raise ValueError("`a` and `b` must have the same number of samples.") - n = len(a_alpha) + n = a_alpha.size + if n < 3: + raise ValueError("At least three paired observations are required for the nonparametric test.") C = 2 * np.pi / n rank_a = rankdata(a_alpha) @@ -250,12 +274,12 @@ def _circ_corrcc_np( r = r1 - r2 reject = (n - 1) * r > 2.99 + 2.16 / n - return CorrelationResult(r=r, reject_null=reject) + return CorrelationResult(r=float(r), reject_null=bool(reject)) def circ_corrcl( - a: Union[Type[Circular], np.ndarray], - x: np.ndarray, + a: Union[Circular, np.ndarray, Sequence[float]], + x: Union[np.ndarray, Sequence[float]], ) -> CorrelationResult: r"""Angular-Linear / Cylindrical Correlation based on Mardia (1972). @@ -286,21 +310,30 @@ def circ_corrcl( P658-659, Section 27.15(b) of Example 27.21 (Zar, 2010). """ - a_alpha = np.array(a.alpha) if isinstance(a, Circular) else a - - if len(a_alpha) != len(x): + a_alpha, _ = _coerce_angles(a) + x_arr = np.asarray(x, dtype=float) + if x_arr.ndim != 1: + raise ValueError("`x` must be a one-dimensional array.") + if a_alpha.size != x_arr.size: raise ValueError("`a` and `x` must be the same length.") + if a_alpha.size < 3: + raise ValueError("At least three paired observations are required.") + + n = a_alpha.size - n = len(a_alpha) + cos_a = np.cos(a_alpha) + sin_a = np.sin(a_alpha) - rxc = np.corrcoef(np.cos(a), x)[0, 1] - rxs = np.corrcoef(x, np.sin(a))[0, 1] - rcs = np.corrcoef(np.sin(a), np.cos(a))[0, 1] + rxc = np.corrcoef(cos_a, x_arr)[0, 1] + rxs = np.corrcoef(x_arr, sin_a)[0, 1] + rcs = np.corrcoef(sin_a, cos_a)[0, 1] num = rxc**2 + rxs**2 - 2 * rxc * rxs * rcs den = 1 - rcs**2 - r = np.sqrt(num / den) + if np.isclose(den, 0.0): + raise ValueError("Degenerate data produced division by zero in denominator.") + r = np.sqrt(max(num / den, 0.0)) pval = 1 - chi2(df=2).cdf(n * r**2) - return CorrelationResult(r=r, p_value=pval) + return CorrelationResult(r=float(r), p_value=float(pval)) diff --git a/pycircstat2/descriptive.py b/pycircstat2/descriptive.py index 7195940..ff1ae71 100644 --- a/pycircstat2/descriptive.py +++ b/pycircstat2/descriptive.py @@ -87,7 +87,7 @@ def circ_mean( if w is None: w = np.ones_like(alpha) - # mean resultant vecotr length + # mean resultant vector length Cbar, Sbar = compute_C_and_S(alpha, w) r = circ_r(alpha, w, Cbar, Sbar) @@ -128,18 +128,17 @@ def circ_mean_and_r( if w is None: w = np.ones_like(alpha) - # mean resultant vecotr length + # mean resultant vector length Cbar, Sbar = compute_C_and_S(alpha, w) r = circ_r(alpha, w, Cbar, Sbar) # angular mean - if np.isclose(r, 0): - m = np.nan - return float(m), r - else: - m = np.arctan2(Sbar, Cbar) + if np.isclose(r, 0.0, atol=1e-12): + return float(np.nan), float(r) + + m = np.arctan2(Sbar, Cbar) - return float(angmod(m)), r + return float(angmod(m)), float(r) def circ_mean_and_r_of_means( @@ -158,7 +157,7 @@ def circ_mean_and_r_of_means( a set of mean angles in radian rs: np.array (n, ) - a set of mean resultant vecotr lengths + a set of mean resultant vector lengths Returns ------- @@ -169,23 +168,34 @@ def circ_mean_and_r_of_means( mean of mean resultant vector lengths """ - if circs is None: - assert isinstance(ms, np.ndarray) and isinstance(rs, np.ndarray), ( - "If `circs` is None, then `ms` and `rs` are needed." - ) + if ms is None or rs is None: + raise ValueError("If `circs` is None, then `ms` and `rs` must be provided.") + ms_arr = np.asarray(ms, dtype=float) + rs_arr = np.asarray(rs, dtype=float) else: - ms, rs = map(np.array, zip(*[(circ.mean, circ.r) for circ in circs])) + extracted = [(circ.mean, circ.r) for circ in circs] + if len(extracted) == 0: + raise ValueError("`circs` must contain at least one element.") + arr = np.asarray(extracted, dtype=float) + ms_arr, rs_arr = arr[:, 0], arr[:, 1] + + if ms_arr.ndim != 1 or rs_arr.ndim != 1: + raise ValueError("`ms` and `rs` must be one-dimensional sequences of equal length.") - X = np.mean(np.cos(ms) * rs) - Y = np.mean(np.sin(ms) * rs) - r = np.sqrt(X**2 + Y**2) - C = X / r - S = Y / r + if ms_arr.size != rs_arr.size or ms_arr.size == 0: + raise ValueError("`ms` and `rs` must be non-empty and have the same length.") - m = angmod(np.arctan2(S, C)) + X = np.mean(np.cos(ms_arr) * rs_arr) + Y = np.mean(np.sin(ms_arr) * rs_arr) + r = np.hypot(X, Y) - return float(m), r + if np.isclose(r, 0.0, atol=1e-12): + return float(np.nan), float(r) + + m = angmod(np.arctan2(Y, X)) + + return float(m), float(r) def circ_moment( @@ -638,7 +648,7 @@ def _circ_median_grouped( )[0] # if number of potential median is the same as the number of data points, - # meaning that the data is more or less uniformly distributed. Retrun Nan. + # meaning that the data is more or less uniformly distributed. Return NaN. if len(idx) == len(halfcircle_range): median = np.nan # get base interval, lower and upper freq @@ -683,7 +693,7 @@ def _circ_median_count(alpha: np.ndarray) -> Union[float,np.ndarray]: diff = np.abs(right - left) idx_candidates = np.where(diff == diff.min())[0] # if number of potential median is the same as the number of data point - # meaning that the data is more or less uniformly distributed. Retrun Nan. + # meaning that the data is more or less uniformly distributed. Return NaN. if len(idx_candidates) == len(alpha): median = np.nan # if number of potential median is 1, return it as median @@ -705,14 +715,14 @@ def _circ_median_mean_deviation(alpha: np.ndarray) -> Union[float,np.ndarray]: # get pairwise circular mean deviation if len(alpha) > 10000: - angdist = circ_mean_deviation_chuncked(alpha, alpha) + angdist = circ_mean_deviation_chunked(alpha, alpha) else: # get pairwise circular mean deviation angdist = circ_mean_deviation(alpha, alpha) # data point(s) with minimal circular mean deviation is/are potential median(s); idx_candidates = np.where(angdist == angdist.min())[0] # if number of potential median is the same as the number of data point - # meaning that the data is more or less uniformly distributed. Retrun Nan. + # meaning that the data is more or less uniformly distributed. Return NaN. if len(idx_candidates) == len(alpha): median = np.nan # if number of potential median is 1, return it as median @@ -725,11 +735,11 @@ def _circ_median_mean_deviation(alpha: np.ndarray) -> Union[float,np.ndarray]: return median -def circ_mean_deviation_chuncked( +def circ_mean_deviation_chunked( alpha: Union[np.ndarray, float, int, list], beta: Union[np.ndarray, float, int, list], - chunk_size=1000, -): + chunk_size: int = 1000, +) -> np.ndarray: r""" Optimized circular mean deviation with chunking. @@ -739,35 +749,46 @@ def circ_mean_deviation_chuncked( Parameters ---------- - alpha : np.ndarray + alpha : array-like Data in radians. - beta : np.ndarray + beta : array-like Reference angles in radians. chunk_size : int - Number of rows to process in chunks. + Number of rows to process in chunks (must be positive). Returns ------- np.ndarray Circular mean deviation. """ - if not isinstance(alpha, np.ndarray): - alpha = np.array([alpha]) - if not isinstance(beta, np.ndarray): - beta = np.array([beta]) + if chunk_size <= 0: + raise ValueError("`chunk_size` must be a positive integer.") + + alpha_arr = np.atleast_1d(np.asarray(alpha, dtype=float)) + beta_arr = np.atleast_1d(np.asarray(beta, dtype=float)) - n = len(beta) - result = np.zeros(n) + result = np.empty(beta_arr.size, dtype=float) - for i in range(0, n, chunk_size): - beta_chunk = beta[i : i + chunk_size] - angdist = np.pi - np.abs(np.pi - np.abs(alpha - beta_chunk[:, None])) - result[i : i + chunk_size] = np.mean(angdist, axis=1).round(5) + for start in range(0, beta_arr.size, chunk_size): + stop = start + chunk_size + beta_chunk = beta_arr[start:stop] + angdist = np.pi - np.abs(np.pi - np.abs(alpha_arr - beta_chunk[:, None])) + chunk_mean = np.round(np.mean(angdist, axis=1), 5) + result[start : start + beta_chunk.size] = chunk_mean return result +# Backwards compatibility: original misspelled export +def circ_mean_deviation_chuncked( + alpha: Union[np.ndarray, float, int, list], + beta: Union[np.ndarray, float, int, list], + chunk_size: int = 1000, +) -> np.ndarray: + return circ_mean_deviation_chunked(alpha, beta, chunk_size) + + def circ_mean_deviation( alpha: Union[np.ndarray, float, int, list], beta: Union[np.ndarray, float, int, list], @@ -798,13 +819,14 @@ def circ_mean_deviation( ---- eq 2.32, Section 2.3.2, Fisher (1993) """ - if not isinstance(alpha, np.ndarray): - alpha = np.array([alpha]) + alpha_arr = np.atleast_1d(np.asarray(alpha, dtype=float)) + beta_arr = np.atleast_1d(np.asarray(beta, dtype=float)) - if not isinstance(beta, np.ndarray): - beta = np.array([beta]) - - return (np.pi - np.mean(np.abs(np.pi - np.abs(alpha - beta[:, None])), 1)).round(5) + mean_dist = np.mean( + np.abs(np.pi - np.abs(alpha_arr - beta_arr[:, None])), + axis=1, + ) + return np.round(np.pi - mean_dist, 5) def circ_mean_ci( @@ -1070,62 +1092,72 @@ def _circ_mean_ci_approximate( def _circ_mean_ci_bootstrap( - alpha: np.ndarray, - B:int=2000, - ci:float=0.95 - )->tuple[float, float]: - """ - Implementation of Section 8.3 (Fisher, 1993, P207) - """ - # sanity-check: is a mean direction identifiable? - n = len(alpha) - r = circ_r(alpha) + alpha: np.ndarray, + B: int = 2000, + ci: float = 0.95, +) -> tuple[float, float]: + """Implementation of Section 8.3 (Fisher, 1993, p.207).""" + + if B <= 0: + raise ValueError("`B` must be a positive integer.") - # classic Rayleigh test approximation, avoids import cycles - z_stat = n * r**2 # Rayleigh's Z - p_val = np.exp(-z_stat) # p ≈ e^(−Z) (valid for n ≥ 10) + alpha_arr = np.atleast_1d(np.asarray(alpha, dtype=float)) + if alpha_arr.ndim != 1 or alpha_arr.size == 0: + raise ValueError("`alpha` must be a one-dimensional array with at least one element.") - if p_val > 0.05: # data look uniform ⇒ no mean dir. + # Sanity-check: is a mean direction identifiable? + n = alpha_arr.size + r = circ_r(alpha_arr) + + # Classic Rayleigh test approximation, avoids import cycles + z_stat = n * r**2 # Rayleigh's Z + p_val = np.exp(-z_stat) # p ≈ e^(−Z) (valid for n ≥ 10) + + if p_val > 0.05: # Data look uniform ⇒ no identifiable mean direction raise ValueError( - "Bootstrap CI not computed: resultant length r={:.4f} " - "(Rayleigh p≈{:.3f}) is too small. " + f"Bootstrap CI not computed: resultant length r={r:.4f} " + f"(Rayleigh p≈{p_val:.3f}) is too small. " "Sample may be uniform, so the mean direction is undefined." - .format(r, p_val) ) - # Precompute z0 and v0 from original data - # algo 1 - X = np.cos(alpha) - Y = np.sin(alpha) - z1 = np.mean(X) # eq(8.24) - z2 = np.mean(Y) - z0 = np.array([z1, z2]) - - # algo 2 - u11 = np.mean((X - z1) ** 2) # eq(8.25) - u22 = np.mean((Y - z2) ** 2) - u12 = np.mean((X - z1) * (Y - z2)) # eq(8.26) - - β = (u11 - u22) / (2 * u12) - np.sqrt( - (u11 - u22) ** 2 / (4 * u12**2 + 1) - ) # eq(8.27) - t1 = np.sqrt(β**2 * u11 + 2 * β * u12 + u22) / np.sqrt(1 + β**2) # eq(8.28) - t2 = np.sqrt(u11 - 2 * β * u12 + β**2 * u22) / np.sqrt(1 + β**2) # eq(8.29) - v11 = (β**2 * t1 + t2) / (1 + β**2) # eq(8.30) - v22 = (t1 + β**2 * t2) / (1 + β**2) - v12 = v21 = β * (t1 - t2) / (1 + β**2) # eq(8.31) - v0 = np.array([[v11, v12], [v21, v22]]) - - beta = np.array([_circ_mean_resample(alpha, z0, v0) for i in range(B)]).flatten() - - # here we use HDI instead of the percentile method - lb, ub = compute_hdi(beta, ci=ci) - - mean = circ_mean(beta) - if not is_within_circular_range(mean, lb, ub): + # Precompute z0 and v0 from original data (Algorithm 1 & 2) + cos_alpha = np.cos(alpha_arr) + sin_alpha = np.sin(alpha_arr) + z1 = np.mean(cos_alpha) # eq (8.24) + z2 = np.mean(sin_alpha) + z0 = np.array([z1, z2], dtype=float) + + u11 = np.mean((cos_alpha - z1) ** 2) # eq (8.25) + u22 = np.mean((sin_alpha - z2) ** 2) + u12 = np.mean((cos_alpha - z1) * (sin_alpha - z2)) # eq (8.26) + + if np.isclose(u12, 0.0): + beta_param = 0.0 + else: + discriminant = (u11 - u22) ** 2 / (4 * u12**2 + 1) + beta_param = (u11 - u22) / (2 * u12) - np.sqrt(discriminant) # eq (8.27) + + denom = np.sqrt(1 + beta_param**2) + t1 = np.sqrt(np.clip(beta_param**2 * u11 + 2 * beta_param * u12 + u22, 0.0, None)) / denom + t2 = np.sqrt(np.clip(u11 - 2 * beta_param * u12 + beta_param**2 * u22, 0.0, None)) / denom + v11 = (beta_param**2 * t1 + t2) / (1 + beta_param**2) # eq (8.30) + v22 = (t1 + beta_param**2 * t2) / (1 + beta_param**2) + v12 = v21 = beta_param * (t1 - t2) / (1 + beta_param**2) # eq (8.31) + v0 = np.array([[v11, v12], [v21, v22]], dtype=float) + + bootstrap_samples = np.asarray( + [_circ_mean_resample(alpha_arr, z0, v0) for _ in range(B)], + dtype=float, + ).reshape(-1) + + # Use HDI instead of the percentile method + lb, ub = compute_hdi(bootstrap_samples, ci=ci) + + mean_dir = circ_mean(bootstrap_samples) + if not is_within_circular_range(mean_dir, lb, ub): lb, ub = ub, lb - return lb, ub + return float(lb), float(ub) def _circ_mean_resample(alpha, z0, v0): @@ -1133,34 +1165,49 @@ def _circ_mean_resample(alpha, z0, v0): Implementation of Section 8.3.5 (Fisher, 1993, P210) """ - θ = np.random.choice(alpha, len(alpha), replace=True) - X = np.cos(θ) - Y = np.sin(θ) + alpha_arr = np.asarray(alpha, dtype=float) + theta_samples = np.random.choice(alpha_arr, alpha_arr.size, replace=True) + cos_theta = np.cos(theta_samples) + sin_theta = np.sin(theta_samples) # algo 1 - z1 = np.mean(X) # eq(8.24) - z2 = np.mean(Y) - zB = np.array([z1, z2]) + z1 = np.mean(cos_theta) # eq(8.24) + z2 = np.mean(sin_theta) + zB = np.array([z1, z2], dtype=float) - u11 = np.mean((X - z1) ** 2) # eq(8.25) - u22 = np.mean((X - z2) ** 2) - u12 = np.mean((X - z1) * (Y - z2)) # eq(8.26) + u11 = np.mean((cos_theta - z1) ** 2) # eq(8.25) + u22 = np.mean((sin_theta - z2) ** 2) + u12 = np.mean((cos_theta - z1) * (sin_theta - z2)) # eq(8.26) # algo 3 - β = (u11 - u22) / (2 * u12) - np.sqrt( - (u11 - u22) ** 2 / (4 * u12**2 + 1) - ) # eq(8.27) - t1 = np.sqrt(1 + β**2) / np.sqrt(β**2 * u11 + 2 * β * u12 + u22) # eq(8.33) - t2 = np.sqrt(1 + β**2) / np.sqrt(u11 - 2 * β * u12 + β**2 * u22) # eq(8.34) - w11 = (β**2 * t1 + t2) / (1 + β**2) # eq(8.35) - w22 = (t1 + β**2 * t2) / (1 + β**2) - w12 = w21 = β * (t1 - t2) / (1 + β**2) # eq(8.36) + if np.isclose(u12, 0.0): + beta_param = 0.0 + else: + discriminant = (u11 - u22) ** 2 / (4 * u12**2 + 1) + beta_param = (u11 - u22) / (2 * u12) - np.sqrt(discriminant) # eq(8.27) + + denom = np.sqrt(1 + beta_param**2) + denom1 = np.sqrt( + np.clip(beta_param**2 * u11 + 2 * beta_param * u12 + u22, 1e-15, None) + ) + denom2 = np.sqrt( + np.clip(u11 - 2 * beta_param * u12 + beta_param**2 * u22, 1e-15, None) + ) + t1 = denom / denom1 # eq(8.33) + t2 = denom / denom2 # eq(8.34) + w11 = (beta_param**2 * t1 + t2) / (1 + beta_param**2) # eq(8.35) + w22 = (t1 + beta_param**2 * t2) / (1 + beta_param**2) + w12 = w21 = beta_param * (t1 - t2) / (1 + beta_param**2) # eq(8.36) wB = np.array([[w11, w12], [w21, w22]]) - Cbar, Sbar = z0 + v0 @ wB @ (zB - z0) - Cbar = np.power(Cbar**2 + Sbar**2, -0.5) * Cbar - Sbar = np.power(Cbar**2 + Sbar**2, -0.5) * Sbar + Cbar_raw, Sbar_raw = z0 + v0 @ wB @ (zB - z0) + norm = np.hypot(Cbar_raw, Sbar_raw) + if np.isclose(norm, 0.0): + raise ValueError("Bootstrap resample produced zero-length resultant vector.") + + Cbar = Cbar_raw / norm + Sbar = Sbar_raw / norm m = np.arctan2(Sbar, Cbar) @@ -1538,7 +1585,7 @@ def compute_C_and_S( return Cbar, Sbar -def compute_hdi(samples: np.ndarray, ci:float=0.95)->tuple[float, float]: +def compute_hdi(samples: np.ndarray, ci: float = 0.95) -> tuple[float, float]: """ Compute the Highest Density Interval (HDI) for circular data. @@ -1554,29 +1601,35 @@ def compute_hdi(samples: np.ndarray, ci:float=0.95)->tuple[float, float]: hdi : tuple Lower and upper bounds of the HDI in radians. """ - # Wrap samples to [0, 2π) for circular consistency - wrapped_samples = angmod(samples) + if not (0 < ci < 1): + raise ValueError("`ci` must be between 0 and 1 (exclusive).") - # Sort the samples + wrapped_samples = angmod(samples) sorted_samples = np.sort(wrapped_samples) + n_samples = sorted_samples.size - # Number of samples in the HDI - n_samples = len(sorted_samples) - interval_idx = int(np.floor(ci * n_samples)) - if interval_idx == 0: + if n_samples == 0: raise ValueError("Insufficient data to compute HDI.") - # Find the shortest interval - hdi_width = np.inf - for i in range(n_samples - interval_idx): - lower = float(sorted_samples[i]) - upper = float(sorted_samples[i + interval_idx]) - width = angmod(upper - lower) # Handle wrapping for circularity - if width < hdi_width: - hdi_width = width - hdi_bounds = (lower, upper) + window_size = max(1, int(np.floor(ci * n_samples))) + window_size = min(window_size, n_samples) + + extended_samples = np.concatenate((sorted_samples, sorted_samples + 2 * np.pi)) + + best_width = np.inf + best_lower = float(sorted_samples[0]) + best_upper = float(sorted_samples[0]) + + for start in range(n_samples): + stop = start + window_size - 1 + upper = float(extended_samples[stop]) + lower = float(sorted_samples[start]) + width = upper - lower + if width < best_width: + best_width = width + best_lower, best_upper = lower, upper - return hdi_bounds + return float(angmod(best_lower)), float(angmod(best_upper)) def compute_smooth_params(r: float, n: int) -> float: @@ -1635,14 +1688,14 @@ def nonparametric_density_estimation( """ # vectorized version of step 3 - a = alpha + a = np.asarray(alpha, dtype=float) n = len(a) x = np.linspace(0, 2 * np.pi, 100) d = np.abs(x[:, None] - a) e = np.minimum(d, 2 * np.pi - d) e = np.minimum(e, h) - sum = np.sum((1 - e**2 / h**2) ** 2, 1) - f = 0.9375 * sum / n / h + weight_sum = np.sum((1 - e**2 / h**2) ** 2, axis=1) + f = 0.9375 * weight_sum / (n * h) f = radius * np.sqrt(1 + np.pi * f) - radius diff --git a/pycircstat2/distributions.py b/pycircstat2/distributions.py index 8dc16b8..636a90c 100644 --- a/pycircstat2/distributions.py +++ b/pycircstat2/distributions.py @@ -1,26 +1,89 @@ +import types +from typing import TYPE_CHECKING + import numpy as np from scipy.integrate import quad, quad_vec -from scipy.optimize import minimize, root -from scipy.special import gamma, i0, i1 +from scipy.interpolate import PchipInterpolator +from scipy.optimize import minimize, minimize_scalar, brentq, root_scalar +from scipy.special import beta as beta_fn +from scipy.special import ( + gamma, + i0, + i0e, + i1, + ndtr, + ndtri, + iv, + betainc, + betaincinv, + gammaln, + digamma, + lpmv, + logsumexp, +) from scipy.stats import rv_continuous +from scipy.stats._distn_infrastructure import rv_continuous_frozen from .descriptive import circ_kappa, circ_mean_and_r +from .utils import angmod __all__ = [ "circularuniform", + "triangular", "cardioid", "cartwright", "wrapnorm", "wrapcauchy", "vonmises", - "jonespewsey", "vonmises_flattopped", + "jonespewsey", "jonespewsey_sineskewed", "jonespewsey_asym", "inverse_batschelet", "wrapstable", + "katojones", ] +INV_SQRT_2PI = 1.0 / np.sqrt(2.0 * np.pi) + +_VMFT_MIN_GRID = 512 +_VMFT_MAX_GRID = 8192 +_VMFT_GRID_BASE = 64.0 +_VMFT_GRID_SHARPNESS = 12.0 +_VMFT_KAPPA_TOL = 1e-9 +_VMFT_KAPPA_UPPER = 1e3 +_VMFT_ENV_MIN_KAPPA = 1e-6 +_VMFT_ACCEPT_EPS = 1e-12 +_VMFT_NEWTON_MAXITER = 50 +_VMFT_NEWTON_TOL = 1e-12 +_VMFT_NEWTON_WIDTH_TOL = 1e-10 + +_INVBAT_KAPPA_TOL = 1e-9 +_INVBAT_KAPPA_UPPER = 700.0 +_INVBAT_NUMERIC_GRID = 4096 +_INVBAT_NU_TOL = 1e-12 +_INVBAT_LMBDA_TOL = 1e-12 +_INVBAT_MIN_GRID = 512 +_INVBAT_MAX_GRID = 8192 +_INVBAT_NEWTON_MAXITER = 60 +_INVBAT_NEWTON_TOL = 1e-12 +_INVBAT_NEWTON_WIDTH_TOL = 1e-10 +_INVBAT_ENV_MIN_KAPPA = 1e-6 + +_WRAPSTABLE_PDF_TOL = 1e-12 +_WRAPSTABLE_CDF_TOL = 1e-12 +_WRAPSTABLE_ALPHA_TOL = 1e-10 +_WRAPSTABLE_MAX_TERMS = 20000 +_WRAPSTABLE_NEWTON_MAXITER = 60 +_WRAPSTABLE_NEWTON_TOL = 1e-12 +_WRAPSTABLE_NEWTON_WIDTH_TOL = 1e-10 + +_KJ_CDF_TOL = 1e-12 +_KJ_MAX_TERMS = 5000 +_KJ_GAMMA_TOL = 1e-12 +_KJ_NEWTON_MAXITER = 60 +_KJ_NEWTON_TOL = 1e-12 +_KJ_NEWTON_WIDTH_TOL = 1e-10 OPTIMIZERS = [ "Nelder-Mead", @@ -39,12 +102,658 @@ "trust-krylov", ] + +class CircularContinuous(rv_continuous): + """ + Base class for circular distributions with fixed loc=0 and scale=1. + + Notes + ----- + - ``loc``/``scale`` are intentionally removed from the user-facing API; the + named parameters of each distribution already encode location/shape. + - Circular data are assumed to be pre-wrapped to ``[0, 2π)``; for + convenience every public method wraps angular inputs to that support. + - Cumulative methods remain circular/periodic under this wrapping + (``cdf(θ + 2π) == cdf(θ)``). + """ + + _loc_default = 0.0 + _scale_default = 1.0 + + def __init__( + self, + momtype=1, + a=None, + b=None, + *, + support=None, + xtol=1e-14, + badvalue=None, + name=None, + longname=None, + shapes=None, + seed=None, + ): + if support is not None: + support_a, support_b = support + if a is None: + a = support_a + if b is None: + b = support_b + if a is None: + a = 0.0 + if b is None: + b = 2 * np.pi + + super().__init__( + momtype=momtype, + a=a, + b=b, + xtol=xtol, + badvalue=badvalue, + name=name, + longname=longname, + shapes=shapes, + seed=seed, + ) + + self._circular_arg_wrapped = False + self._wrap_arg_parsers() + self._lower_bound, self._period = self._compute_period() + self._normalization_cache = {} + + # ------------------------------------------------------------------ + # Internal helpers + # ------------------------------------------------------------------ + def _get_normalization_cache(self): + cache = getattr(self, "_normalization_cache", None) + if cache is None: + cache = {} + self._normalization_cache = cache + return cache + + def _clear_normalization_cache(self): + self._normalization_cache = {} + + def _wrap_arg_parsers(self): + """Ensure internal arg-parsing keeps loc/scale fixed to defaults.""" + if getattr(self, "_circular_arg_wrapped", False): + return + + for attr in ("_parse_args", "_parse_args_rvs", "_parse_args_stats"): + original = getattr(self, attr) + + def wrapper(this, *args, __orig=original, __name=attr, **kwargs): + clean_kwargs = this._clean_loc_scale_kwargs(kwargs, caller=__name) + return __orig(*args, **clean_kwargs) + + setattr(self, attr, types.MethodType(wrapper, self)) + + self._circular_arg_wrapped = True + + def _compute_period(self): + try: + lower = float(self.a) + upper = float(self.b) + except (TypeError, ValueError): + return None, None + + period = upper - lower + if not np.isfinite(period) or period <= 0: + return None, None + return lower, period + + def _wrap_angles(self, values): + if self._period is None or self._lower_bound is None: + return values + + try: + arr = np.asarray(values, dtype=float) + except (TypeError, ValueError): + return values + + if arr.size == 0: + return arr + + wrapped = np.mod(arr - self._lower_bound, self._period) + self._lower_bound + upper_bound = self._lower_bound + self._period + if np.isfinite(upper_bound): + tol = np.finfo(float).eps * max(1.0, abs(upper_bound)) + if np.isscalar(values): + if np.isclose(values, upper_bound, rtol=0.0, atol=tol): + return upper_bound + else: + mask = np.isclose(arr, upper_bound, rtol=0.0, atol=tol) + if np.any(mask): + wrapped = wrapped.copy() + wrapped[mask] = upper_bound + if np.isscalar(values): + return float(wrapped) + return wrapped + + def _init_rng(self, random_state): + """ + Normalize the ``random_state`` argument to a NumPy ``Generator``. + + Accepts integers, ``RandomState`` instances, ``Generator`` objects, or + ``None`` (in which case the distribution's cached generator is used). + """ + candidate = random_state if random_state is not None else getattr(self, "_random_state", None) + + if isinstance(candidate, np.random.Generator): + return candidate + + if isinstance(candidate, np.random.RandomState): + seed = candidate.randint(0, 2**32) + generator = np.random.default_rng(seed) + if random_state is None: + self._random_state = generator + return generator + + if candidate is None: + generator = np.random.default_rng() + self._random_state = generator + return generator + + try: + generator = np.random.default_rng(candidate) + except TypeError as err: # pragma: no cover - defensive branch + raise TypeError( + "random_state must be None, an int seed, RandomState, or Generator." + ) from err + + if random_state is None: + self._random_state = generator + + return generator + + def _prepare_call_kwargs(self, kwargs, caller): + if not kwargs: + return {} + return self._clean_loc_scale_kwargs(dict(kwargs), caller=caller) + + def _separate_shape_parameters(self, args, kwargs, caller): + """ + Split positional/keyword shape parameters from kwargs for functions that + delegate to SciPy helpers lacking keyword support (e.g. ``expect``). + """ + if not kwargs: + return tuple(args), {} + + remaining_kwargs = dict(kwargs) + shape_args = list(args) + + shapespec = getattr(self, "shapes", None) + if shapespec: + shape_names = [name.strip() for name in shapespec.split(",") if name.strip()] + for idx, name in enumerate(shape_names): + if name not in remaining_kwargs: + continue + value = remaining_kwargs.pop(name) + if idx < len(shape_args): + existing = shape_args[idx] + try: + equal = np.allclose(existing, value) + except Exception: + equal = existing == value + if not equal: + raise TypeError( + f"{self._dist_name(caller)} received conflicting values for `{name}`." + ) + else: + shape_args.append(value) + + return tuple(shape_args), remaining_kwargs + + def _clean_loc_scale_kwargs(self, kwargs, *, caller): + if not kwargs: + return kwargs + + cleaned = kwargs + mutated = False + + if "loc" in kwargs: + loc_val = kwargs["loc"] + if not self._is_default_value(loc_val, self._loc_default): + raise TypeError( + f"{self._dist_name(caller)} does not support a free `loc` parameter." + ) + cleaned = dict(cleaned) if not mutated else cleaned + cleaned.pop("loc", None) + mutated = True + + if "scale" in kwargs: + scale_val = kwargs["scale"] + if not self._is_default_value(scale_val, self._scale_default): + raise TypeError( + f"{self._dist_name(caller)} does not support a free `scale` parameter." + ) + if not mutated: + cleaned = dict(cleaned) + mutated = True + cleaned.pop("scale", None) + mutated = True + + forbidden_aliases = ("floc", "fscale", "fix_loc", "fix_scale") + for alias in forbidden_aliases: + if alias in kwargs: + raise TypeError( + f"{self._dist_name(caller)} does not support `{alias}`; the distribution fixes location/scale." + ) + + return cleaned if mutated else kwargs + + def _is_default_value(self, value, default): + try: + arr = np.asarray(value) + except Exception: # pragma: no cover - defensive + return False + if arr.size == 0: + return True + try: + return np.allclose(arr, default) + except TypeError: # pragma: no cover - fallback if casting fails + return False + + def _dist_name(self, caller: str) -> str: + dist_name = getattr(self, "name", None) + if dist_name: + return f"{dist_name}.{caller}" + return f"{self.__class__.__name__}.{caller}" + + def _normalization_cache_key(self, *params): + key_components = [] + for param in params: + try: + arr = np.asarray(param, dtype=float) + except (TypeError, ValueError): + return None + if arr.ndim > 1 or arr.size > 1: + return None + try: + scalar = arr.item() if isinstance(arr, np.ndarray) else float(arr) + except (TypeError, ValueError): + try: + scalar = float(arr) + except (TypeError, ValueError): + return None + key_components.append(float(scalar)) + return tuple(key_components) + + def _get_cached_normalizer(self, compute, *params): + key = self._normalization_cache_key(*params) + if key is None: + return compute() + cache = self._get_normalization_cache() + if key not in cache: + cache[key] = compute() + return cache[key] + + def freeze(self, *args, **kwds) -> "CircularContinuousFrozen": + """ + Return a frozen circular distribution while enforcing fixed loc/scale. + """ + call_kwargs = self._prepare_call_kwargs(kwds, "freeze") + return CircularContinuousFrozen(self, *args, **call_kwargs) + + __call__ = freeze + + # ------------------------------------------------------------------ + # Public overrides + # ------------------------------------------------------------------ + def pdf(self, x, *args, **kwargs): + call_kwargs = self._prepare_call_kwargs(kwargs, "pdf") + return super().pdf(self._wrap_angles(x), *args, **call_kwargs) + + def logpdf(self, x, *args, **kwargs): + call_kwargs = self._prepare_call_kwargs(kwargs, "logpdf") + return super().logpdf(self._wrap_angles(x), *args, **call_kwargs) + + def cdf(self, x, *args, **kwargs): + call_kwargs = self._prepare_call_kwargs(kwargs, "cdf") + return super().cdf(self._wrap_angles(x), *args, **call_kwargs) + + def logcdf(self, x, *args, **kwargs): + call_kwargs = self._prepare_call_kwargs(kwargs, "logcdf") + return super().logcdf(self._wrap_angles(x), *args, **call_kwargs) + + def sf(self, x, *args, **kwargs): + call_kwargs = self._prepare_call_kwargs(kwargs, "sf") + return super().sf(self._wrap_angles(x), *args, **call_kwargs) + + def logsf(self, x, *args, **kwargs): + call_kwargs = self._prepare_call_kwargs(kwargs, "logsf") + return super().logsf(self._wrap_angles(x), *args, **call_kwargs) + + def nnlf(self, theta, x): + return super().nnlf(theta, self._wrap_angles(x)) + + def fit(self, data, *args, **kwds): + kwds = self._sanitize_fit_kwargs(kwds) + wrapped_data = self._wrap_angles(data) + return super().fit(wrapped_data, *args, **kwds) + + def fit_loc_scale(self, *args, **kwargs): # pragma: no cover - API guard + raise NotImplementedError( + "Circular distributions have fixed location and scale; use `fit` for shape parameters only." + ) + + def _sanitize_fit_kwargs(self, kwds): + if not kwds: + kwds = {} + else: + kwds = dict(kwds) + + # Reject attempts to seed loc/scale with non-default values. + for key, default in (("loc", self._loc_default), ("scale", self._scale_default)): + if key in kwds: + if not self._is_default_value(kwds[key], default): + raise TypeError( + f"{self._dist_name('fit')} fixes `{key}` to {default}; remove the argument." + ) + kwds.pop(key) + + for key in ("fix_loc", "fix_scale"): + if key in kwds: + raise TypeError( + f"{self._dist_name('fit')} does not expose `{key}`; the distribution is already fixed." + ) + + for key, default in (("floc", self._loc_default), ("fscale", self._scale_default)): + if key in kwds: + if not self._is_default_value(kwds[key], default): + raise TypeError( + f"{self._dist_name('fit')} requires `{key}` == {default}." + ) + kwds.pop(key) + + kwds["floc"] = self._loc_default + kwds["fscale"] = self._scale_default + return kwds + + def _attach_methods(self): # pragma: no cover - mirrors parent for pickling + super()._attach_methods() + # Reapply wrappers; _attach_methods is used during unpickling. + self._circular_arg_wrapped = False + self._wrap_arg_parsers() + + def _wrap_direction(self, angle: float) -> float: + """ + Wrap a direction onto the distribution's support if known, otherwise [0, 2π). + """ + if self._lower_bound is not None and self._period is not None: + return float(self._wrap_angles(angle)) + return float(angmod(angle)) + + # ------------------------------------------------------------------ + # Numeric integration helpers + # ------------------------------------------------------------------ + def _cdf_integral( + self, + x, + integrand, + params, + *, + lower=None, + upper=None, + epsabs=1e-9, + epsrel=1e-9, + limit=200, + ): + """ + Numerically integrate a one-dimensional PDF to obtain CDF values. + + Evaluates the cumulative integral of ``integrand`` from ``lower`` to each + point in ``x``, reusing work across sorted evaluation points to minimise + the number of quadrature calls. + """ + if np.isscalar(x): + x_vals = np.array([float(x)], dtype=float) + scalar_input = True + else: + x_arr = np.asarray(x, dtype=float) + x_vals = x_arr.ravel() + scalar_input = False + original_shape = x_arr.shape + + if x_vals.size == 0: + if scalar_input: + return float() + return np.empty(original_shape, dtype=float) + + params = tuple(params) + lower_bound = float(self.a if lower is None else lower) + upper_bound = float(self.b if upper is None else upper) + + def scalar_integrand(value, *args): + out = integrand(value, *args) + arr = np.asarray(out, dtype=float) + if arr.ndim == 0: + return float(arr) + return float(arr.reshape(-1)[0]) + + results = np.zeros_like(x_vals, dtype=float) + sorted_indices = np.argsort(x_vals, kind="mergesort") + sorted_vals = x_vals[sorted_indices] + + cumulative = 0.0 + current = lower_bound + + for order_idx, orig_idx in enumerate(sorted_indices): + value = float(sorted_vals[order_idx]) + + if not np.isfinite(value): + results[orig_idx] = np.nan + continue + + if value <= lower_bound: + results[orig_idx] = 0.0 + continue + + clipped = min(value, upper_bound) + if clipped > current + 1e-15: + segment, _ = quad( + scalar_integrand, + current, + clipped, + args=params, + epsabs=epsabs, + epsrel=epsrel, + limit=limit, + ) + cumulative += segment + current = clipped + + if value >= upper_bound: + cumulative = 1.0 + current = upper_bound + results[orig_idx] = 1.0 + else: + results[orig_idx] = cumulative + + results = np.clip(results, 0.0, 1.0) + + if scalar_input: + return float(results[0]) + return results.reshape(original_shape) + + def _cdf_from_pdf(self, x, *params, **quad_kwargs): + """Convenience wrapper around `_cdf_integral` using ``self._pdf``.""" + return self._cdf_integral( + x, + self._pdf, + params, + lower=quad_kwargs.pop("lower", None), + upper=quad_kwargs.pop("upper", None), + epsabs=quad_kwargs.pop("epsabs", 1e-9), + epsrel=quad_kwargs.pop("epsrel", 1e-9), + limit=quad_kwargs.pop("limit", 200), + ) + + # ------------------------------------------------------------------ + # Circular descriptive helpers + # ------------------------------------------------------------------ + def trig_moment(self, p: int = 1, *args, **kwargs) -> complex: + """ + Circular (trigonometric) moment m_p = E[e^{i p Θ}] = C_p + i S_p. + + Falls back to numeric evaluation via ``self.expect``; subclasses may + override with closed-form expressions. + """ + shape_args, non_shape_kwargs = self._separate_shape_parameters(args, kwargs, "trig_moment") + call_kwargs = self._prepare_call_kwargs(non_shape_kwargs, "trig_moment") + C_p = float( + np.asarray(self.expect(lambda x: np.cos(p * x), args=shape_args, **call_kwargs)) + ) + S_p = float( + np.asarray(self.expect(lambda x: np.sin(p * x), args=shape_args, **call_kwargs)) + ) + return complex(C_p, S_p) + + def r(self, *args, **kwargs) -> float: + """Mean resultant length R = |m₁|.""" + m1 = self.trig_moment(1, *args, **kwargs) + return float(np.clip(abs(m1), 0.0, 1.0)) + + def mean(self, *args, **kwargs) -> float: + """Circular mean direction μ = arg(m₁).""" + m1 = self.trig_moment(1, *args, **kwargs) + R = np.clip(abs(m1), 0.0, 1.0) + if np.isclose(R, 0.0, atol=1e-12): + return float("nan") + return self._wrap_direction(np.angle(m1)) + + def median(self, *args, **kwargs) -> float: + """Circular median (50% quantile).""" + call_kwargs = self._prepare_call_kwargs(kwargs, "median") + return float(super().ppf(0.5, *args, **call_kwargs)) + + def var(self, *args, **kwargs) -> float: + """Circular variance V = 1 - R.""" + return float(1.0 - self.r(*args, **kwargs)) + + def std(self, *args, **kwargs) -> float: + """Circular standard deviation s = sqrt(-2 ln R).""" + R = np.clip(self.r(*args, **kwargs), 0.0, 1.0) + if np.isclose(R, 0.0, atol=1e-12): + return float("inf") + return float(np.sqrt(max(0.0, -2.0 * np.log(np.clip(R, np.finfo(float).tiny, 1.0))))) + + def dispersion(self, *args, **kwargs) -> float: + """Circular dispersion δ̂ = (1 - ρ₂) / (2 ρ₁²).""" + m1 = self.trig_moment(1, *args, **kwargs) + r1 = np.clip(abs(m1), 0.0, 1.0) + if np.isclose(r1, 0.0, atol=1e-12): + return float("inf") + m2 = self.trig_moment(2, *args, **kwargs) + r2 = np.clip(abs(m2), 0.0, 1.0) + return float((1.0 - r2) / (2.0 * r1 * r1)) + + def skewness(self, *args, **kwargs) -> float: + """Pewsey-style circular skewness.""" + m1 = self.trig_moment(1, *args, **kwargs) + u1 = np.angle(m1) + r1 = np.clip(abs(m1), 0.0, 1.0) + m2 = self.trig_moment(2, *args, **kwargs) + u2 = np.angle(m2) + r2 = np.clip(abs(m2), 0.0, 1.0) + + denom_base = max(0.0, 1.0 - r1) + if np.isclose(denom_base, 0.0, atol=1e-12): + return float("nan") + denom = denom_base**1.5 + return float((r2 * np.sin(u2 - 2.0 * u1)) / denom) + + def kurtosis(self, *args, **kwargs) -> float: + """Pewsey-style circular kurtosis.""" + m1 = self.trig_moment(1, *args, **kwargs) + u1 = np.angle(m1) + r1 = np.clip(abs(m1), 0.0, 1.0) + m2 = self.trig_moment(2, *args, **kwargs) + u2 = np.angle(m2) + r2 = np.clip(abs(m2), 0.0, 1.0) + + denom_base = max(0.0, 1.0 - r1) + if np.isclose(denom_base, 0.0, atol=1e-12): + return float("nan") + denom = denom_base**2 + return float((r2 * np.cos(u2 - 2.0 * u1) - r1**4) / denom) + + def stats(self, *args, **kwargs): + """Convenience bundle of circular descriptive statistics.""" + m1 = self.trig_moment(1, *args, **kwargs) + r1 = np.clip(abs(m1), 0.0, 1.0) + u1 = np.angle(m1) + + r1_is_zero = np.isclose(r1, 0.0, atol=1e-12) + mean_val = float("nan") if r1_is_zero else self._wrap_direction(u1) + + m2 = self.trig_moment(2, *args, **kwargs) + r2 = np.clip(abs(m2), 0.0, 1.0) + u2 = np.angle(m2) + + denom_base = max(0.0, 1.0 - r1) + if np.isclose(denom_base, 0.0, atol=1e-12): + skew = float("nan") + kurt = float("nan") + else: + skew = float((r2 * np.sin(u2 - 2.0 * u1)) / (denom_base**1.5)) + kurt = float((r2 * np.cos(u2 - 2.0 * u1) - r1**4) / (denom_base**2)) + + std_val = float("inf") if r1_is_zero else float( + np.sqrt(max(0.0, -2.0 * np.log(np.clip(r1, np.finfo(float).tiny, 1.0)))) + ) + dispersion_val = float("inf") if r1_is_zero else float((1.0 - r2) / (2.0 * r1 * r1)) + + return { + "mean": mean_val, + "median": self.median(*args, **kwargs), + "r": float(r1), + "var": float(1.0 - r1), + "std": std_val, + "dispersion": dispersion_val, + "skewness": skew, + "kurtosis": kurt, + } + + +class CircularContinuousFrozen(rv_continuous_frozen): + """Frozen circular distribution exposing circular descriptive helpers.""" + + def _call_dist_method(self, name, *args, **kwargs): + call_kwargs = dict(self.kwds) + call_kwargs.update(kwargs) + call_args = self.args + args + return getattr(self.dist, name)(*call_args, **call_kwargs) + + def trig_moment(self, p: int = 1, *args, **kwargs) -> complex: + call_kwargs = dict(self.kwds) + call_kwargs.update(kwargs) + call_args = self.args + args + return self.dist.trig_moment(p, *call_args, **call_kwargs) + + def r(self, *args, **kwargs) -> float: + return self._call_dist_method("r", *args, **kwargs) + + def dispersion(self, *args, **kwargs) -> float: + return self._call_dist_method("dispersion", *args, **kwargs) + + def skewness(self, *args, **kwargs) -> float: + return self._call_dist_method("skewness", *args, **kwargs) + + def kurtosis(self, *args, **kwargs) -> float: + return self._call_dist_method("kurtosis", *args, **kwargs) + + def stats(self, *args, **kwargs): + return self._call_dist_method("stats", *args, **kwargs) + + ############################ ## Symmetric Distribtions ## ############################ -class circularuniform_gen(rv_continuous): +class circularuniform_gen(CircularContinuous): """Continuous Circular Uniform Distribution ![circularuniform](../images/circ-mod-circularuniform.png) @@ -56,17 +765,23 @@ class circularuniform_gen(rv_continuous): cdf(x) Cumulative distribution function. + + ppf(q) + Percent-point function (inverse of CDF). + + rvs(size, random_state) + Random variates. """ def _pdf(self, x): - return 1 / np.pi + return 1 / (2 * np.pi) def pdf(self, x, *args, **kwargs): r""" Probability density function of the Circular Uniform distribution. $$ - f(\theta) = \frac{1}{\pi} + f(\theta) = \frac{1}{2\pi} $$ Parameters @@ -127,11 +842,45 @@ def ppf(self, q, *args, **kwargs): """ return super().ppf(q, *args, **kwargs) + def _rvs(self, size=None, random_state=None): + rng = self._init_rng(random_state) + return rng.uniform(0.0, 2 * np.pi, size=size) + + def rvs(self, size=None, random_state=None): + """ + Random variate generation for the circular uniform distribution. + + Parameters + ---------- + size : int or tuple of ints, optional + Number of samples to draw. If ``None`` (default), return a single value. + random_state : np.random.Generator, np.random.RandomState, or None, optional + Random number generator to use. If ``None``, fall back to the + distribution's internal generator. + + Returns + ------- + samples : ndarray or float + Samples drawn uniformly from the interval ``[0, 2π)``. + """ + return self._rvs(size=size, random_state=random_state) + + def fit(self, data): + """ + The circular uniform distribution has no free parameters to estimate, + so calling ``fit`` is undefined. A ``NotImplementedError`` is raised to + signal that users should rely on descriptive helpers (e.g., + ``circ_mean_and_r``) instead of maximum-likelihood fitting. + """ + raise NotImplementedError( + "circularuniform.fit() is undefined: the distribution has no parameters to estimate." + ) + circularuniform = circularuniform_gen(name="circularuniform") -class triangular_gen(rv_continuous): +class triangular_gen(CircularContinuous): """Triangular Distribution ![triangular](../images/circ-mod-triangular.png) @@ -144,13 +893,23 @@ class triangular_gen(rv_continuous): cdf(x, rho) Cumulative distribution function. + ppf(q, rho) + Closed-form quantile (inverse CDF). + + rvs(rho, size=None, random_state=None) + Random variates via inverse-transform using the closed-form quantile. + + fit(data) + Fit the distribution to the data and return the parameter (rho). + Notes ----- Implementation based on Section 2.2.3 of Jammalamadaka & SenGupta (2001) """ def _argcheck(self, rho): - return 0 <= rho <= 4 / np.pi**2 + rho_arr = np.asarray(rho, dtype=float) + return (rho_arr >= 0.0) & (rho_arr <= 4.0 / np.pi**2) def _pdf(self, x, rho): return ( @@ -181,37 +940,374 @@ def pdf(self, x, rho, *args, **kwargs): return super().pdf(x, rho, *args, **kwargs) def _cdf(self, x, rho): - @np.vectorize - def _cdf_single(x, rho): - integral, _ = quad(self._pdf, a=0, b=x, args=(rho)) - return integral + x_arr = np.asarray(x, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + x_b, rho_b = np.broadcast_arrays(x_arr, rho_arr) + + result = np.zeros_like(x_b, dtype=float) + + # lower branch: 0 <= x <= pi + mask_lower = (x_b >= 0.0) & (x_b <= np.pi) + if np.any(mask_lower): + xl = x_b[mask_lower] + rl = rho_b[mask_lower] + result[mask_lower] = ((4 + np.pi**2 * rl) * xl - np.pi * rl * xl**2) / ( + 8 * np.pi + ) + + # upper branch: pi < x < 2pi + mask_upper = (x_b > np.pi) & (x_b < 2 * np.pi) + if np.any(mask_upper): + xu = x_b[mask_upper] + ru = rho_b[mask_upper] + result[mask_upper] = 0.5 + ( + (4 - 3 * np.pi**2 * ru) * (xu - np.pi) + + np.pi * ru * (xu**2 - np.pi**2) + ) / (8 * np.pi) + + # upper tail: x >= 2pi + result = np.where(x_b >= 2 * np.pi, 1.0, result) + + if np.ndim(result) == 0: + return float(result) + return result + + def cdf(self, x, rho, *args, **kwargs): + r""" + Cumulative distribution function of the circular triangular distribution on $[0, 2\pi)$. + + $$ + F(\theta;\,\rho)= + \begin{cases} + \dfrac{(4+\pi^2\rho)\,\theta - \pi\rho\,\theta^2}{8\pi}, & 0 \le \theta \le \pi,\\[6pt] + \dfrac{1}{2} + \dfrac{(4 - 3\pi^2\rho)\,(\theta-\pi) + \pi\rho\,(\theta^2-\pi^2)}{8\pi}, + & \pi < \theta < 2\pi. + \end{cases} + $$ + + (With $F(\theta)=0$ for $\theta<0$ and $F(\theta)=1$ for $\theta\ge 2\pi$.) + + Parameters + ---------- + x : array_like + Angles in radians on $[0, 2\pi)$. + rho : float + Concentration parameter, $0 \le \rho \le 4/\pi^2$. + + Returns + ------- + cdf_values : array_like + Cumulative distribution function evaluated at `x`. + """ + return super().cdf(x, rho, *args, **kwargs) + + def _ppf(self, q, rho): + q_arr = np.asarray(q, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + q_b, rho_b = np.broadcast_arrays(q_arr, rho_arr) + + result = np.empty_like(q_b, dtype=float) + + mask_zero = np.isclose(rho_b, 0.0, atol=1e-12) + if np.any(mask_zero): + result[mask_zero] = q_b[mask_zero] * (2 * np.pi) + + mask_general = ~mask_zero + if np.any(mask_general): + q_g = q_b[mask_general] + rho_g = rho_b[mask_general] + + a_left = rho_g + b_left = -(4 + np.pi**2 * rho_g) / np.pi + a_right = rho_g + b_right = (4 - 3 * np.pi**2 * rho_g) / np.pi + + res_general = np.empty_like(q_g, dtype=float) + mask_left = q_g <= 0.5 + + if np.any(mask_left): + c_left = 8 * q_g[mask_left] + disc_left = np.clip( + b_left[mask_left] ** 2 - 4 * a_left[mask_left] * c_left, + 0.0, + None, + ) + res_general[mask_left] = ( + -b_left[mask_left] - np.sqrt(disc_left) + ) / (2 * a_left[mask_left]) + + if np.any(~mask_left): + c_right = 2 * np.pi**2 * rho_g[~mask_left] - 8 * q_g[~mask_left] + disc_right = np.clip( + b_right[~mask_left] ** 2 - 4 * a_right[~mask_left] * c_right, + 0.0, + None, + ) + res_general[~mask_left] = ( + -b_right[~mask_left] + np.sqrt(disc_right) + ) / (2 * a_right[~mask_left]) + + result[mask_general] = res_general + + np.clip(result, 0.0, 2 * np.pi - np.finfo(float).eps, out=result) + if result.ndim == 0: + return float(result) + return result + + def ppf(self, q, rho, *args, **kwargs): + r""" + Percent-point function (quantile) of the circular triangular distribution on $[0, 2\pi)$. + + For $\rho=0$ (circular uniform): + + $$ + \operatorname{PPF}(q;0)=2\pi q. + $$ + + For $\rho>0$: + + $$ + \operatorname{PPF}(q;\rho)= + \begin{cases} + \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi} + - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,q}\right), + & 0 \le q \le \tfrac{1}{2}, \\[10pt] + \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(q-\tfrac{1}{2})}} + {2\pi\rho}, + & \tfrac{1}{2} < q < 1. + \end{cases} + $$ + + Parameters + ---------- + q : array_like + Quantiles in $[0, 1]$. + rho : float + Concentration parameter, $0 \le \rho \le 4/\pi^2$. + + Returns + ------- + ppf_values : array_like + Quantiles (angles in radians on $[0, 2\pi)$). + """ + return super().ppf(q, rho, *args, **kwargs) + + def _rvs(self, rho, size=None, random_state=None): + rng = self._init_rng(random_state) + u = rng.uniform(0.0, 1.0, size=size) + samples = self._ppf(u, rho) + if np.isscalar(samples): + return float(samples) + return np.asarray(samples, dtype=float) + + def rvs(self, rho=None, size=None, random_state=None): + r""" + Random variates from the circular triangular distribution on $[0, 2\pi)$. + + Sampling uses **inverse-transform** with the closed-form quantile: + let $U \sim \mathrm{Unif}(0,1)$ and set $\theta = \operatorname{PPF}(U;\rho)$, where + + - For $\rho = 0$ (circular uniform): + + $$ + \theta = 2\pi U. + $$ + + - For $\rho > 0$ (piecewise quadratic inverse): + + $$ + \theta = + \begin{cases} + \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi} + - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,U}\right), + & 0 \le U \le \tfrac{1}{2}, \\[10pt] + \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(U-\tfrac{1}{2})}} + {2\pi\rho}, + & \tfrac{1}{2} < U < 1. + \end{cases} + $$ + + Parameters + ---------- + rho : float, optional + Concentration, $0 \le \rho \le 4/\pi^2$. Supply explicitly or by + freezing the distribution. + size : int or tuple of ints, optional + Output shape. If ``None`` (default), return a single scalar. + random_state : int, numpy.random.Generator, numpy.random.RandomState, optional + PRNG seed or generator. If ``None``, use the distribution's internal RNG. + + Returns + ------- + samples : ndarray or float + Angles in radians on $[0, 2\pi)$, with shape ``size``. + + Notes + ----- + This is equivalent in law to R's **circular** `rtriangular` after + shifting its output by $+\pi$ modulo $2\pi$. + """ + rho_val = getattr(self, "rho", None) if rho is None else rho + if rho_val is None: + raise ValueError("'rho' must be provided.") + return self._rvs(rho_val, size=size, random_state=random_state) + + def fit(self, data, *, weights=None, method="mle", return_info=False): + r""" + Estimate the concentration parameter $\rho$ of the circular triangular law on $[0,2\pi)$. + + Methods + ------- + + mle (default): + maximize the log-likelihood. This solves the 1-D score equation + $\sum_i \frac{c_i}{4+\rho\,c_i}=0$ with $c_i = 2\pi\,|\,\pi-x_i\,| - \pi^2$. + Unique solution in $[0, 4/\pi^2)$ or at a boundary. + moments : + closed-form $\hat\rho = \max\{0, \min\{4/\pi^2,\ \overline{\cos x}\}\}$. + + Parameters + ---------- + data : array_like + Sample angles (radians). Values are wrapped to $[0, 2\pi)$ internally. + weights : array_like, optional + Nonnegative sample weights. Broadcastable to `data`. Interpreted as frequencies. + method : {"mle","moments"}, optional + Estimation method (see above). + return_info : bool, optional + If True, also return a dict with diagnostics (loglik, se, n_effective, method). + + Returns + ------- + rho_hat : float + Estimated concentration $\hat\rho \in [0, 4/\pi^2]$. + info : dict, optional + Returned only if `return_info=True`. Contains keys: + {"loglik", "se", "n_effective", "method", "converged"}. + + Notes + ----- + For this distribution $\mathbb{E}[\cos \Theta]=\rho$, so the method-of-moments + estimator is simply the (weighted) mean of $\cos x$ clipped to $[0,4/\pi^2]$. + The MLE solves a strictly monotone score equation, so bracketing root-finding + is robust and $O(n)$ per evaluation. + """ + x = np.asarray(data, dtype=float) + x = np.mod(x, 2*np.pi) + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("weights must be nonnegative") + # broadcast + w = np.broadcast_to(w, x.shape).astype(float, copy=False) + + # Effective sample size for diagnostics + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("sum of weights must be positive") + w_norm = w / w_sum + n_eff = w_sum**2 / np.sum(w**2) # Kish effective n + + # Method-of-moments (always available; used as fallback/initial intuition) + r_bar = float(np.sum(w_norm * np.cos(x))) + rho_mom = float(np.clip(r_bar, 0.0, 4/np.pi**2)) + + if method == "moments": + rho_hat = rho_mom + # log-likelihood at MoM (for info only) + y = np.abs(np.pi - x) + ll = float(np.sum(w * np.log(4 - np.pi**2 * rho_hat + 2*np.pi * rho_hat * y)) - w_sum*np.log(8*np.pi)) + # observed Fisher info for SE + c = 2*np.pi*y - np.pi**2 + info_obs = float(np.sum(w * (c**2) / (4 + rho_hat*c)**2)) + se = (1.0 / np.sqrt(info_obs)) if info_obs > 0 else np.nan + if return_info: + return rho_hat, {"loglik": ll, "se": se, "n_effective": n_eff, "method": "moments", "converged": True} + return rho_hat + + # --- MLE via monotone root of the score --- + y = np.abs(np.pi - x) # in [0, π] + c = 2*np.pi*y - np.pi**2 # in [-π^2, π^2] + + def score(rho): + return float(np.sum(w * (c / (4.0 + rho * c)))) + + # Bracket: score(ρ) is strictly decreasing on [0, ρ_max) + rho_lo = 0.0 + rho_hi = float(4/np.pi**2) - 1e-12 + + s_lo = score(rho_lo) # = (1/4) * sum w*c + if s_lo <= 0: # likelihood decreasing at 0 → boundary optimum + rho_hat = 0.0 + converged = True + else: + s_hi = score(rho_hi) # tends negative if any y_i≈0 + if s_hi >= 0: + # all mass far from π (extreme case) → boundary at ρ_max + rho_hat = rho_hi + converged = True + else: + # Unique root inside (0, ρ_max) + rho_hat = float(brentq(score, rho_lo, rho_hi, xtol=1e-12, rtol=1e-12, maxiter=256)) + converged = True - return _cdf_single(x, rho) + # Diagnostics + ll = float(np.sum(w * np.log(4 - np.pi**2 * rho_hat + 2*np.pi * rho_hat * y)) - w_sum*np.log(8*np.pi)) + info_obs = float(np.sum(w * (c**2) / (4 + rho_hat*c)**2)) + se = (1.0 / np.sqrt(info_obs)) if info_obs > 0 else np.nan + + if return_info: + return rho_hat, {"loglik": ll, "se": se, "n_effective": n_eff, "method": "mle", "converged": converged} + return rho_hat triangular = triangular_gen(name="triangular") -class cardioid_gen(rv_continuous): - """Cardioid (cosine) Distribution +class cardioid_gen(CircularContinuous): + r"""Cardioid (cosine) Distribution ![cardioid](../images/circ-mod-cardioid.png) + A cosine-modulated perturbation of the circular uniform law with support on + ``[0, 2π)``. The mean direction ``mu`` controls location, while the mean + resultant length ``rho`` (bounded by 0.5) governs concentration. Closed-form + expressions are used for the PDF and CDF, and quantiles are obtained by + solving ``F(theta; mu, rho) = q`` with a safeguarded Halley--Newton iteration + shared by ``ppf`` and ``rvs``. + Methods ------- pdf(x, mu, rho) Probability density function. - cdf(x, mu, rho) Cumulative distribution function. + ppf(q, mu, rho) + Percent-point function (inverse CDF). + rvs(mu, rho, size=None, random_state=None) + Random variates via inverse transform using the quantile solver. + fit(data, *args, **kwargs) + Estimate ``(mu, rho)`` via method-of-moments or maximum likelihood. Notes ----- - Implementation based on Section 4.3.4 of Pewsey et al. (2014) + Implementation based on Section 4.3.4 of Pewsey et al. (2014). """ def _argcheck(self, mu, rho): - return 0 <= mu <= np.pi * 2 and 0 <= rho <= 0.5 + try: + mu_arr, rho_arr = np.broadcast_arrays(mu, rho) + except ValueError: + return False + return ( + (mu_arr >= 0.0) + & (mu_arr <= 2.0 * np.pi) + & (rho_arr >= 0.0) + & (rho_arr <= 0.5) + ) def _pdf(self, x, mu, rho): return (1 + 2 * rho * np.cos(x - mu)) / 2.0 / np.pi @@ -267,57 +1363,450 @@ def cdf(self, x, mu, rho, *args, **kwargs): """ return super().cdf(x, mu, rho, *args, **kwargs) + def _solve_inverse_cdf(self, probabilities, mu_val, rho_val): + two_pi = 2.0 * np.pi + probs = np.asarray(probabilities, dtype=float) + + if probs.size == 0: + return probs.astype(float) + + sin_mu = np.sin(mu_val) + + if np.isclose(rho_val, 0.0, atol=1e-15): + result = two_pi * probs + if result.ndim == 0: + value = float(result) + return two_pi if np.isclose(float(probs), 1.0, rtol=0.0, atol=1e-12) else value + mask_one = np.isclose(probs, 1.0, rtol=0.0, atol=1e-12) + if np.any(mask_one): + result = result.copy() + result[mask_one] = two_pi + return result + + theta = mu_val + two_pi * (probs - 0.5) + theta = np.mod(theta, two_pi) + theta = np.asarray(theta, dtype=float) + + tol = 1e-12 + tiny = 1e-14 + use_halley = rho_val > 0.25 + max_iter = 6 if use_halley else 3 + + for iteration in range(max_iter): + delta = ( + theta + 2.0 * rho_val * (np.sin(theta - mu_val) + sin_mu) + ) / two_pi - probs + + converged = np.abs(delta) <= tol + if np.all(converged): + break + + d1 = (1.0 + 2.0 * rho_val * np.cos(theta - mu_val)) / two_pi + d2 = (-2.0 * rho_val * np.sin(theta - mu_val)) / two_pi + + step_newton = np.divide( + delta, + d1, + out=np.zeros_like(delta, dtype=float), + where=np.abs(d1) > tiny, + ) -cardioid = cardioid_gen(name="cardioid") + if iteration == 0 and use_halley: + denom = 2.0 * d1**2 - delta * d2 + halley_valid = np.abs(denom) > tiny + step_halley = np.divide( + 2.0 * delta * d1, + denom, + out=np.zeros_like(delta, dtype=float), + where=halley_valid, + ) + step = np.where(halley_valid, step_halley, step_newton) + else: + step = step_newton + + step = np.clip(step, -np.pi, np.pi) + theta = np.where(converged, theta, theta - step) + theta = np.mod(theta, two_pi) + + delta = ( + theta + 2.0 * rho_val * (np.sin(theta - mu_val) + sin_mu) + ) / two_pi - probs + remaining = np.abs(delta) > 10.0 * tol + if np.any(remaining): + theta_shape = theta.shape + theta_flat = theta.reshape(-1) + probs_flat = probs.reshape(-1) + remaining_flat = remaining.reshape(-1) + target = probs_flat[remaining_flat] + low = np.zeros_like(target) + high = np.full_like(target, two_pi) + for _ in range(32): + mid = 0.5 * (low + high) + f_mid = ( + mid + 2.0 * rho_val * (np.sin(mid - mu_val) + sin_mu) + ) / two_pi + mask_low = f_mid <= target + low = np.where(mask_low, mid, low) + high = np.where(mask_low, high, mid) + theta_flat[remaining_flat] = 0.5 * (low + high) + theta = theta_flat.reshape(theta_shape) + + result = np.mod(theta, two_pi) + if result.ndim == 0: + value = float(result) + return two_pi if np.isclose(float(probs), 1.0, rtol=0.0, atol=1e-12) else value + + mask_one = np.isclose(probs, 1.0, rtol=0.0, atol=1e-12) + if np.any(mask_one): + result = result.copy() + result[mask_one] = two_pi + return result + + def _ppf(self, q, mu, rho): + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + rho_val = float(rho_arr.reshape(-1)[0]) + if not (0.0 <= rho_val <= 0.5): + raise ValueError("`rho` must lie in [0, 0.5].") + + q_arr = np.asarray(q, dtype=float) + if q_arr.size == 0: + return q_arr.astype(float) + + flat = q_arr.reshape(-1) + result = np.full_like(flat, np.nan, dtype=float) + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if np.any(valid): + solved = np.asarray( + self._solve_inverse_cdf(flat[valid], mu_val, rho_val), + dtype=float, + ).reshape(-1) + result[valid] = solved + + result = result.reshape(q_arr.shape) + if q_arr.ndim == 0: + return float(result) + return result + + def ppf(self, q, mu, rho, *args, **kwargs): + r""" + Percent-point function (inverse CDF) of the Cardioid distribution. + The quantile $\theta$ solves -class cartwright_gen(rv_continuous): - """Cartwright's Power-of-Cosine Distribution + $$ + F(\theta) = \frac{\theta + 2\rho\bigl(\sin\mu + \sin(\theta - \mu)\bigr)}{2\pi} = q, + $$ - ![cartwright](../images/circ-mod-cartwright.png) + on the support $[0, 2\pi]$. The implementation applies a + Halley--Newton iteration with adaptive clipping and a final bisection + safeguard, ensuring robustness for large $\rho$ and quantiles + close to the boundary. The same solver powers ``rvs``, so sampled + variates and tabulated quantiles are numerically consistent. + Parameters + ---------- + q : array_like + Quantiles to evaluate; finite values in ``[0, 1]`` are supported. + mu : float + Mean direction, ``0 <= mu <= 2*pi``. + rho : float + Mean resultant length, ``0 <= rho <= 0.5``. - Methods - ------- - pdf(x, mu, zeta) - Probability density function. + Returns + ------- + ppf_values : array_like + Angles satisfying $F(\theta)=q$. Inputs outside ``[0, 1]`` are + returned as ``nan``. + """ + return super().ppf(q, mu, rho, *args, **kwargs) - cdf(x, mu, zeta) - Cumulative distribution function. + def _rvs(self, mu, rho, size=None, random_state=None): + rng = self._init_rng(random_state) - Note - ---- - Implementation based on Section 4.3.5 of Pewsey et al. (2014) - """ + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + if mu_arr.size != 1 or rho_arr.size != 1: + raise ValueError("cardioid parameters must be scalar-valued.") - def _argcheck(self, mu, zeta): - return 0 <= mu <= 2 * np.pi and zeta > 0 + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + rho_val = float(rho_arr.reshape(-1)[0]) + if not (0.0 <= rho_val <= 0.5): + raise ValueError("`rho` must lie in [0, 0.5].") - def _pdf(self, x, mu, zeta): - return ( - (2 ** (-1 + 1 / zeta) * (gamma(1 + 1 / zeta)) ** 2) - * (1 + np.cos(x - mu)) ** (1 / zeta) - / (np.pi * gamma(1 + 2 / zeta)) - ) + two_pi = 2.0 * np.pi - def pdf(self, x, mu, zeta, *args, **kwargs): + if np.isclose(rho_val, 0.0, atol=1e-15): + samples = rng.uniform(0.0, two_pi, size=size) + return float(samples) if np.isscalar(samples) else samples + + u = rng.uniform(0.0, 1.0, size=size) + samples = self._solve_inverse_cdf(u, mu_val, rho_val) + return float(samples) if np.isscalar(samples) else np.asarray(samples, dtype=float) + + + def rvs(self, mu=None, rho=None, size=None, random_state=None): r""" - Probability density function of the Cartwright distribution. + Draw random variates from the Cardioid distribution. + + Each sample is obtained by inverse-transform sampling. For a uniform + draw $U \sim \mathcal{U}(0, 1)$, the angle $\Theta$ + satisfies $$ - f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta} + \frac{\Theta + 2\rho\bigl(\sin\mu + \sin(\Theta - \mu)\bigr)}{2\pi} = U, $$ - , where $\Gamma$ is the gamma function. + and is computed with the safeguarded Halley--Newton solver described in + ``ppf``. When $\rho = 0$, the distribution degenerates to the + circular uniform law and samples are drawn directly from ``[0, 2π)``. Parameters ---------- - x : array_like - Points at which to evaluate the probability density function. - mu : float - Mean direction, 0 <= mu <= 2*pi. - zeta : float - Shape parameter, zeta > 0. + mu : float, optional + Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by + freezing the distribution. + rho : float, optional + Mean resultant length, ``0 <= rho <= 0.5``. Supply explicitly or by + freezing the distribution. + size : int or tuple of ints, optional + Number of samples to draw. ``None`` (default) returns a scalar. + random_state : np.random.Generator, np.random.RandomState, or None, optional + Random number generator to use. + + Returns + ------- + samples : ndarray or float + Random variates on ``[0, 2π)``. + """ + mu_val = getattr(self, "mu", None) if mu is None else mu + rho_val = getattr(self, "rho", None) if rho is None else rho + + if mu_val is None or rho_val is None: + raise ValueError("Both 'mu' and 'rho' must be provided.") + + return self._rvs(mu_val, rho_val, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + return_info=False, + optimizer="L-BFGS-B", + **kwargs, + ): + """ + Estimate ``mu`` and ``rho`` for the cardioid distribution. + + Parameters + ---------- + data : array_like + Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally. + weights : array_like, optional + Non-negative weights/frequencies broadcastable to ``data``. + method : {\"mle\", \"moments\"}, optional + Estimation strategy. ``"moments"`` uses the first trigonometric + moment, ``"mle"`` (default) maximises the weighted log-likelihood. + return_info : bool, optional + If True, also return a diagnostic dictionary. + optimizer : str, optional + Optimiser passed to ``scipy.optimize.minimize`` when + ``method="mle"``. + **kwargs : + Additional keyword arguments forwarded to the optimiser. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)) + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False) + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + mu_mom, r_mom = circ_mean_and_r(alpha=x, w=w) + if not np.isfinite(mu_mom): + mu_mom = float(0.0) + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + rho_mom = float(np.clip(r_mom, 0.0, 0.5)) + + def _nll(params): + mu_param, rho_param = params + if not (0.0 <= rho_param <= 0.5): + return np.inf + cos_term = np.cos(x - mu_param) + denom = 1.0 + 2.0 * rho_param * cos_term + if np.any(denom <= 0.0): + return np.inf + log_terms = np.log(denom) + value = -np.sum(w * log_terms) + w_sum * np.log(2.0 * np.pi) + return float(value) + + def _grad(params): + mu_param, rho_param = params + cos_term = np.cos(x - mu_param) + denom = 1.0 + 2.0 * rho_param * cos_term + mask_bad = denom <= 0.0 + if np.any(mask_bad): + return np.array([0.0, 0.0], dtype=float) + sin_term = np.sin(x - mu_param) + inv = w / denom + g_mu = -2.0 * rho_param * np.sum(inv * sin_term) + g_rho = -2.0 * np.sum(inv * cos_term) + return np.array([g_mu, g_rho], dtype=float) + + method = method.lower() + if method not in {"mle", "moments"}: + raise ValueError("`method` must be either 'mle' or 'moments'.") + + if method == "moments": + mu_hat = self._wrap_direction(mu_mom) + rho_hat = rho_mom + info = { + "method": "moments", + "loglik": float(-_nll((mu_hat, rho_hat))), + "n_effective": float(n_eff), + "converged": True, + } + else: + if rho_mom <= 1e-12: + mu_hat = self._wrap_direction(mu_mom) + rho_hat = 0.0 + info = { + "method": "mle", + "loglik": float(-_nll((mu_hat, rho_hat))), + "n_effective": float(n_eff), + "converged": True, + "nit": 0, + "message": "Degenerate start (rho≈0); returning boundary solution.", + } + else: + init = np.array([mu_mom, rho_mom], dtype=float) + bounds = [(0.0, 2.0 * np.pi), (0.0, 0.5)] + result = minimize( + _nll, + init, + method=optimizer, + jac=_grad, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError( + f"cardioid.fit(method='mle') failed: {result.message}" + ) + mu_hat = self._wrap_direction(float(result.x[0])) + rho_hat = float(np.clip(result.x[1], 0.0, 0.5)) + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": float(n_eff), + "converged": bool(result.success), + "nit": result.nit, + "grad_norm": float(np.linalg.norm(result.jac)) + if getattr(result, "jac", None) is not None + else np.nan, + "optimizer": optimizer, + } + + estimates = (mu_hat, rho_hat) + if return_info: + return estimates, info + return estimates + + +cardioid = cardioid_gen(name="cardioid") + + +class cartwright_gen(CircularContinuous): + """Cartwright's Power-of-Cosine Distribution + + ![cartwright](../images/circ-mod-cartwright.png) + + + Methods + ------- + pdf(x, mu, zeta) + Probability density function. + + cdf(x, mu, zeta) + Cumulative distribution function. + + ppf(q, mu, zeta) + Percent-point function obtained by inverting the regularised incomplete beta. + + rvs(mu, zeta, size=None, random_state=None) + Random variates via a Beta-to-angle transform consistent with the quantile. + + fit(data, *args, **kwargs) + Estimate ``(mu, zeta)`` using moments or maximum likelihood. + + Note + ---- + Implementation based on Section 4.3.5 of Pewsey et al. (2014) + """ + + def _argcheck(self, mu, zeta): + try: + mu_arr, zeta_arr = np.broadcast_arrays(mu, zeta) + except ValueError: + return False + return (mu_arr >= 0.0) & (mu_arr <= 2.0 * np.pi) & (zeta_arr > 0.0) + + @staticmethod + def _moment_r(zeta): + z = np.asarray(zeta, dtype=float) + if np.any(z <= 0): + raise ValueError("`zeta` must be positive.") + inv = 1.0 / z + log_term = (-1.0 + 2.0 * inv) * np.log(2.0) + log_term += np.log(2.0) + log_term += np.log(inv**2 / (inv + 1.0)) + log_term += gammaln(inv) + log_term += gammaln(inv + 0.5) + log_term -= 0.5 * np.log(np.pi) + log_term -= gammaln(1.0 + 2.0 * inv) + result = np.exp(log_term) + return float(result) if np.isscalar(zeta) else result + + def _pdf(self, x, mu, zeta): + return ( + (2 ** (-1 + 1 / zeta) * (gamma(1 + 1 / zeta)) ** 2) + * (1 + np.cos(x - mu)) ** (1 / zeta) + / (np.pi * gamma(1 + 2 / zeta)) + ) + + def pdf(self, x, mu, zeta, *args, **kwargs): + r""" + Probability density function of the Cartwright distribution. + + $$ + f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta} + $$ + + , where $\Gamma$ is the gamma function. + + Parameters + ---------- + x : array_like + Points at which to evaluate the probability density function. + mu : float + Mean direction, 0 <= mu <= 2*pi. + zeta : float + Shape parameter, zeta > 0. Returns ------- @@ -327,19 +1816,90 @@ def pdf(self, x, mu, zeta, *args, **kwargs): return super().pdf(x, mu, zeta, *args, **kwargs) + @staticmethod + def _cartwright_cumulative(phi, a, b, half_norm): + phi_arr = np.asarray(phi, dtype=float) + scalar_input = np.isscalar(phi_arr) + phi_vec = np.atleast_1d(phi_arr) + two_pi = 2.0 * np.pi + result = np.empty_like(phi_vec, dtype=float) + + mask_lower = phi_vec <= np.pi + if np.any(mask_lower): + s_small = np.sin(0.5 * phi_vec[mask_lower]) ** 2 + val = betainc(a, b, np.clip(s_small, 0.0, 1.0)) + result[mask_lower] = half_norm * val + + if np.any(~mask_lower): + phi_ref = two_pi - phi_vec[~mask_lower] + s_large = np.sin(0.5 * phi_ref) ** 2 + val = betainc(a, b, np.clip(s_large, 0.0, 1.0)) + result[~mask_lower] = 1.0 - half_norm * val + + if scalar_input: + return float(result[0]) + return result.reshape(phi_arr.shape) + def _cdf(self, x, mu, zeta): - @np.vectorize - def _cdf_single(x, mu, zeta): - integral, _ = quad(self._pdf, a=0, b=x, args=(mu, zeta)) - return integral + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + + if flat.size == 0: + return arr.astype(float) + + mu_arr = np.asarray(mu, dtype=float) + zeta_arr = np.asarray(zeta, dtype=float) + if mu_arr.size != 1 or zeta_arr.size != 1: + raise ValueError("cartwright parameters must be scalar-valued.") + + mu_val = float(mu_arr.reshape(-1)[0]) + zeta_val = float(zeta_arr.reshape(-1)[0]) + if zeta_val <= 0.0: + raise ValueError("`zeta` must be positive.") + + two_pi = 2.0 * np.pi + a = 0.5 + b = 1.0 / zeta_val + 0.5 + const = ( + 2.0 ** (-1.0 + 1.0 / zeta_val) + * gamma(1.0 + 1.0 / zeta_val) ** 2 + / (np.pi * gamma(1.0 + 2.0 / zeta_val)) + ) + beta_term = beta_fn(a, b) + half_norm = const * (2.0 ** (1.0 / zeta_val)) * beta_term # equals 0.5 + half_norm = float(np.clip(half_norm, np.finfo(float).tiny, None)) - return _cdf_single(x, mu, zeta) + phi_start = (-mu_val) % two_pi + phi_end = (flat - mu_val) % two_pi + + H_start = self._cartwright_cumulative(np.array([phi_start]), a, b, half_norm)[0] + H_end = self._cartwright_cumulative(phi_end, a, b, half_norm) + + cdf = np.where( + phi_end >= phi_start, + np.clip(H_end - H_start, 0.0, 1.0), + 1.0 - np.clip(H_start - H_end, 0.0, 1.0), + ) + negative = cdf < 0.0 + if np.any(negative): + cdf = np.where(negative, cdf + 1.0, cdf) + cdf = np.clip(cdf, 0.0, 1.0) + + if arr.ndim == 0: + value = float(cdf[0]) + return 1.0 if np.isclose(float(wrapped), 2.0 * np.pi) else value + + result = cdf.reshape(arr.shape) + result[np.isclose(arr, 2.0 * np.pi)] = 1.0 + return result def cdf(self, x, mu, zeta, *args, **kwargs): r""" Cumulative distribution function of the Cartwright distribution. - No closed-form solution is available, so the CDF is computed numerically. + The CDF is evaluated analytically via a beta-function series, + exploiting the symmetry around the mean direction. Parameters ---------- @@ -357,11 +1917,334 @@ def cdf(self, x, mu, zeta, *args, **kwargs): """ return super().cdf(x, mu, zeta, *args, **kwargs) + def _ppf(self, q, mu, zeta): + mu_arr = np.asarray(mu, dtype=float) + zeta_arr = np.asarray(zeta, dtype=float) + + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + zeta_val = float(zeta_arr.reshape(-1)[0]) + if zeta_val <= 0.0: + raise ValueError("`zeta` must be positive.") + + q_arr = np.asarray(q, dtype=float) + if q_arr.size == 0: + return q_arr.astype(float) + + two_pi = 2.0 * np.pi + a = 0.5 + b = 1.0 / zeta_val + 0.5 + const = ( + 2.0 ** (-1.0 + 1.0 / zeta_val) + * gamma(1.0 + 1.0 / zeta_val) ** 2 + / (np.pi * gamma(1.0 + 2.0 / zeta_val)) + ) + half_norm = const * (2.0 ** (1.0 / zeta_val)) * beta_fn(a, b) + half_norm = float(np.clip(half_norm, np.finfo(float).tiny, None)) + + phi_start = (-mu_val) % two_pi + H_start = self._cartwright_cumulative(np.array([phi_start]), a, b, half_norm)[0] + + flat = q_arr.reshape(-1) + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if np.any(valid): + q_valid = flat[valid] + + # Handle exact boundary quantiles explicitly + close_zero = np.isclose(q_valid, 0.0, rtol=0.0, atol=1e-12) + close_one = np.isclose(q_valid, 1.0, rtol=0.0, atol=1e-12) + + s = (H_start + q_valid) % 1.0 + + phi = np.empty_like(q_valid) + mask_lower = s <= 0.5 + + if np.any(mask_lower): + u = np.clip(s[mask_lower] / half_norm, 0.0, 1.0) + t = betaincinv(a, b, np.clip(u, 0.0, 1.0)) + t = np.clip(t, 0.0, 1.0) + phi[mask_lower] = 2.0 * np.arcsin(np.sqrt(t)) + + if np.any(~mask_lower): + s_upper = s[~mask_lower] + u = np.clip((1.0 - s_upper) / half_norm, 0.0, 1.0) + t = betaincinv(a, b, np.clip(u, 0.0, 1.0)) + t = np.clip(t, 0.0, 1.0) + phi[~mask_lower] = two_pi - 2.0 * np.arcsin(np.sqrt(t)) + + theta = (mu_val + phi) % two_pi + + if np.any(close_zero): + theta[close_zero] = float(np.mod(mu_val + phi_start, two_pi)) + if np.any(close_one): + theta[close_one] = two_pi + + result[valid] = theta + + result = result.reshape(q_arr.shape) + if q_arr.ndim == 0: + return float(result) + return result + + def ppf(self, q, mu, zeta, *args, **kwargs): + r""" + Percent-point function (inverse CDF) of the Cartwright distribution. + + The quantile inversion exploits the beta integral governing the CDF. + With + $$ + t = \sin^2\!\left(\tfrac{1}{2}\phi\right), \qquad + a = \tfrac{1}{2}, \qquad b = \tfrac{1}{\zeta} + \tfrac{1}{2}, + $$ + the cumulative distribution reduces to + $$ + H(\phi) = + \begin{cases} + \tfrac{1}{2} I_t(a, b), & 0 \le \phi \le \pi, \\[6pt] + 1 - \tfrac{1}{2} I_t(a, b), & \pi < \phi < 2\pi, + \end{cases} + $$ + where $I_t$ is the regularised incomplete beta function. The inverse + quantile solves $H(\phi) = s$ via the inverse regularised incomplete + beta, ``betaincinv``, yielding the exact $O(1)$ mapping used here and in + ``rvs``. + + Parameters + ---------- + q : array_like + Quantiles to evaluate (0 <= q <= 1). + mu : float + Mean direction, 0 <= mu <= 2*pi. + zeta : float + Shape parameter, zeta > 0. + + Returns + ------- + ppf_values : array_like + Angles corresponding to the given quantiles. + """ + return super().ppf(q, mu, zeta, *args, **kwargs) + + def _rvs(self, mu, zeta, size=None, random_state=None): + rng = self._init_rng(random_state) + + mu_arr = np.asarray(mu, dtype=float) + zeta_arr = np.asarray(zeta, dtype=float) + if mu_arr.size != 1 or zeta_arr.size != 1: + raise ValueError("cartwright parameters must be scalar-valued.") + + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + zeta_val = float(zeta_arr.reshape(-1)[0]) + if zeta_val <= 0.0: + raise ValueError("`zeta` must be positive.") + + shape = () + if size is not None: + if np.isscalar(size): + shape = (int(size),) + else: + shape = tuple(int(dim) for dim in np.atleast_1d(size)) + + beta_b = 1.0 / zeta_val + 0.5 + t = rng.beta(0.5, beta_b, size=shape) + sqrt_t = np.sqrt(t) + angles = 2.0 * np.arcsin(np.clip(sqrt_t, 0.0, 1.0)) + + signs = np.where(rng.random(size=shape) < 0.5, -1.0, 1.0) + theta = mu_val + signs * angles + theta = np.mod(theta, 2.0 * np.pi) + + if theta.ndim == 0: + return float(theta) + return theta.reshape(shape) + + def rvs(self, mu=None, zeta=None, size=None, random_state=None): + r""" + Draw random variates from the Cartwright distribution. + + Sampling follows the same Beta-to-angle transform as the quantile + function: draw $T \sim \mathrm{Beta}\!\left(\tfrac{1}{2}, + \tfrac{1}{\zeta} + \tfrac{1}{2}\right)$, map it via + $\phi = 2\arcsin(\sqrt{T})$, then reflect $\phi$ with equal probability + around $\mu$. This construction keeps ``rvs`` numerically consistent + with ``ppf``. + + Parameters + ---------- + mu : float, optional + Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by + freezing the distribution. + zeta : float, optional + Shape parameter, ``zeta > 0``. Supply explicitly or by freezing the + distribution. + size : int or tuple of ints, optional + Number of samples to draw. ``None`` (default) returns a scalar. + random_state : np.random.Generator, np.random.RandomState, or None, optional + Random number generator to use. + + Returns + ------- + samples : ndarray or float + Random variates on ``[0, 2π)``. + """ + mu_val = getattr(self, "mu", None) if mu is None else mu + zeta_val = getattr(self, "zeta", None) if zeta is None else zeta + + if mu_val is None or zeta_val is None: + raise ValueError("Both 'mu' and 'zeta' must be provided.") + + return self._rvs(mu_val, zeta_val, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + return_info=False, + optimizer="L-BFGS-B", + **kwargs, + ): + """ + Estimate ``mu`` and ``zeta`` for the Cartwright distribution. + + Parameters + ---------- + data : array_like + Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally. + weights : array_like, optional + Non-negative weights/frequencies broadcastable to ``data``. + method : {"mle", "moments"}, optional + Estimation strategy. "moments" matches the first trigonometric + moment, "mle" (default) maximises the weighted log-likelihood. + return_info : bool, optional + If True, also return a diagnostic dictionary. + optimizer : str, optional + Optimiser passed to ``scipy.optimize.minimize`` when + ``method="mle"``. + **kwargs : + Additional keyword arguments forwarded to the optimiser. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)) + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False) + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + mu_mom, _ = circ_mean_and_r(alpha=x, w=w) + if not np.isfinite(mu_mom): + mu_mom = float(0.0) + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + delta = (x - mu_mom + np.pi) % (2.0 * np.pi) - np.pi + sin_half = np.sin(0.5 * delta) + m_t = float(np.sum(w * sin_half**2) / w_sum) + m_t = float(np.clip(m_t, 0.0, 0.5 - 1e-12)) + if m_t <= 1e-12: + zeta_mom = 1e-6 + else: + denom = max(1e-12, 0.5 - m_t) + zeta_mom = float(np.clip(m_t / denom, 1e-6, 1e6)) + + def log_c(z): + inv = 1.0 / z + return ( + (-1.0 + inv) * np.log(2.0) + + 2.0 * gammaln(1.0 + inv) + - np.log(np.pi) + - gammaln(1.0 + 2.0 * inv) + ) + + def nll(params): + mu_param, zeta_param = params + if zeta_param <= 0.0: + return np.inf + cos_term = np.cos(x - mu_param) + denom = np.clip(1.0 + cos_term, 1e-15, None) + sum_log = np.sum(w * np.log(denom)) + ll = w_sum * log_c(zeta_param) + (1.0 / zeta_param) * sum_log + return float(-ll) + + def grad(params): + mu_param, zeta_param = params + cos_term = np.cos(x - mu_param) + denom = np.clip(1.0 + cos_term, 1e-15, None) + sin_term = np.sin(x - mu_param) + sum_log = np.sum(w * np.log(denom)) + grad_mu = -(1.0 / zeta_param) * np.sum(w * sin_term / denom) + inv = 1.0 / zeta_param + term = 2.0 * digamma(1.0 + 2.0 * inv) - ( + np.log(2.0) + 2.0 * digamma(1.0 + inv) + ) + grad_zeta = (sum_log - w_sum * term) / (zeta_param**2) + return np.array([grad_mu, grad_zeta], dtype=float) + + method = method.lower() + if method not in {"mle", "moments"}: + raise ValueError("`method` must be either 'mle' or 'moments'.") + + if method == "moments": + mu_hat = self._wrap_direction(mu_mom) + zeta_hat = zeta_mom + info = { + "method": "moments", + "loglik": float(-nll((mu_hat, zeta_hat))), + "n_effective": float(n_eff), + "converged": True, + } + else: + mu_init = mu_mom + zeta_init = zeta_mom if np.isfinite(zeta_mom) else 10.0 + zeta_init = float(np.clip(zeta_init, 1e-3, 1e4)) + bounds = [(0.0, 2.0 * np.pi), (1e-6, 1e6)] + result = minimize( + nll, + np.array([mu_init, zeta_init], dtype=float), + method=optimizer, + jac=grad, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError( + f"cartwright.fit(method='mle') failed: {result.message}" + ) + mu_hat = self._wrap_direction(float(result.x[0])) + zeta_hat = float(np.clip(result.x[1], 1e-6, 1e6)) + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": float(n_eff), + "converged": bool(result.success), + "nit": result.nit, + "grad_norm": float(np.linalg.norm(result.jac)) + if getattr(result, "jac", None) is not None + else np.nan, + "optimizer": optimizer, + } + + estimates = (mu_hat, zeta_hat) + if return_info: + return estimates, info + return estimates + cartwright = cartwright_gen(name="cartwright") -class wrapnorm_gen(rv_continuous): +class wrapnorm_gen(CircularContinuous): """Wrapped Normal Distribution ![wrapnorm](../images/circ-mod-wrapnorm.png) @@ -374,6 +2257,15 @@ class wrapnorm_gen(rv_continuous): cdf(x, mu, rho) Cumulative distribution function. + ppf(q, mu, rho) + Percent-point function (inverse CDF). + + rvs(mu, rho, size=None, random_state=None) + Random variates. + + fit(data, *args, **kwargs) + Estimate ``(mu, rho)`` via method-of-moments or maximum likelihood. + Examples -------- ``` @@ -385,8 +2277,21 @@ class wrapnorm_gen(rv_continuous): Implementation based on Section 4.3.7 of Pewsey et al. (2014) """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._series_window_cache = {} + def _argcheck(self, mu, rho): - return 0 <= mu <= np.pi * 2 and 0 < rho < 1 + try: + mu_arr, rho_arr = np.broadcast_arrays(mu, rho) + except ValueError: + return False + return ( + (mu_arr >= 0.0) + & (mu_arr <= 2.0 * np.pi) + & (rho_arr > 0.0) + & (rho_arr < 1.0) + ) def _pdf(self, x, mu, rho): return ( @@ -421,19 +2326,105 @@ def pdf(self, x, mu, rho, *args, **kwargs): """ return super().pdf(x, mu, rho, *args, **kwargs) - def _cdf(self, x, mu, rho): - @np.vectorize - def _cdf_single(x, mu, rho): - integral, _ = quad(self._pdf, a=0, b=x, args=(mu, rho)) - return integral + @staticmethod + def _wrapnorm_cdf_pdf(theta, mu_val, sigma, *, tol=1e-13, max_iter=500): + theta_arr = np.asarray(theta, dtype=float) + flat = theta_arr.reshape(-1) + if flat.size == 0: + return theta_arr.astype(float), theta_arr.astype(float) + + inv_sigma = 1.0 / sigma + two_pi = 2.0 * np.pi + + diff = flat - mu_val + z0 = diff * inv_sigma + z_ref0 = (-mu_val) * inv_sigma + + cdf = ndtr(z0) - ndtr(z_ref0) + pdf = INV_SQRT_2PI * inv_sigma * np.exp(-0.5 * z0**2) + + k = 1 + max_contrib = np.inf + while k <= max_iter and max_contrib > tol: + shift = two_pi * k + + z_pos = (diff + shift) * inv_sigma + z_pos_ref = (-mu_val + shift) * inv_sigma + delta_pos = ndtr(z_pos) - ndtr(z_pos_ref) + pdf += INV_SQRT_2PI * inv_sigma * np.exp(-0.5 * z_pos**2) + + z_neg = (diff - shift) * inv_sigma + z_neg_ref = (-mu_val - shift) * inv_sigma + delta_neg = ndtr(z_neg) - ndtr(z_neg_ref) + pdf += INV_SQRT_2PI * inv_sigma * np.exp(-0.5 * z_neg**2) + + cdf += delta_pos + delta_neg + max_contrib = max( + float(np.max(np.abs(delta_pos))), + float(np.max(np.abs(delta_neg))), + ) + if not np.isfinite(max_contrib): + break + k += 1 - return _cdf_single(x, mu, rho) + cdf = np.clip(cdf, 0.0, 1.0) + pdf = np.clip(pdf, 0.0, None) + + cdf = cdf.reshape(theta_arr.shape) + pdf = pdf.reshape(theta_arr.shape) + return cdf, pdf + + def _cdf(self, x, mu, rho): + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + + if flat.size == 0: + return arr.astype(float) + + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + if mu_arr.size != 1 or rho_arr.size != 1: + raise ValueError("wrapnorm parameters must be scalar-valued.") + + mu_val = float(mu_arr.reshape(-1)[0]) + rho_val = float(rho_arr.reshape(-1)[0]) + two_pi = 2.0 * np.pi + + if rho_val <= 1e-12: + uniform = flat / two_pi + if arr.ndim == 0: + value = float(uniform[0]) + return 1.0 if np.isclose(float(wrapped), two_pi) else value + result = uniform.reshape(arr.shape) + result[np.isclose(arr, two_pi)] = 1.0 + return result + + rho_clipped = np.clip(rho_val, np.finfo(float).tiny, 1.0 - 1e-15) + sigma = float(np.sqrt(-2.0 * np.log(rho_clipped))) + + cdf_flat, _ = self._wrapnorm_cdf_pdf(flat, mu_val, sigma) + if arr.ndim == 0: + value = float(cdf_flat.reshape(-1)[0]) + return 1.0 if np.isclose(float(wrapped), two_pi) else value + + result = cdf_flat.reshape(arr.shape) + result[np.isclose(arr, two_pi)] = 1.0 + return result def cdf(self, x, mu, rho, *args, **kwargs): - """ + r""" Cumulative distribution function of the Wrapped Normal distribution. - No closed-form solution is available, so the CDF is computed numerically. + The CDF is evaluated via the wrapped normal series involving the + standard normal distribution function. + + $$ + F(\theta) = \sum_{k=-\infty}^{\infty} \left[ + \Phi\left(\frac{\theta - \mu + 2\pi k}{\sigma}\right) + - \Phi\left(\frac{-\mu + 2\pi k}{\sigma}\right) + \right], \quad \sigma = \sqrt{-2\log \rho} + $$ Parameters ---------- @@ -451,11 +2442,383 @@ def cdf(self, x, mu, rho, *args, **kwargs): """ return super().cdf(x, mu, rho, *args, **kwargs) + def _ppf(self, q, mu, rho): + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + rho_val = float(rho_arr.reshape(-1)[0]) + two_pi = 2.0 * np.pi + + q_arr = np.asarray(q, dtype=float) + flat = q_arr.reshape(-1) + if flat.size == 0: + return q_arr.astype(float) + + def _finish(arr): + reshaped = arr.reshape(q_arr.shape) + if q_arr.ndim == 0: + return float(reshaped) + return reshaped + + result = np.full_like(flat, np.nan, dtype=float) + valid = np.isfinite(flat) + + if not np.any(valid): + return _finish(result) + + close_zero = valid & (flat <= 0.0) + close_one = valid & (flat >= 1.0) + result[close_zero] = 0.0 + result[close_one] = two_pi + + interior = valid & ~(close_zero | close_one) + if not np.any(interior): + return _finish(result) + + flat_interior = flat[interior] + + if rho_val <= 1e-12: + result[interior] = two_pi * flat_interior + return _finish(result) + + rho_clipped = np.clip(rho_val, np.finfo(float).tiny, 1.0 - 1e-15) + sigma = float(np.sqrt(-2.0 * np.log(rho_clipped))) + + if sigma <= 1e-12: + result[interior] = np.mod(mu_val, two_pi) + return _finish(result) + + q_sub = flat_interior + theta = np.clip(two_pi * q_sub, 1e-12, two_pi - 1e-12) + if sigma < 1.0: + normal_guess = mu_val + sigma * ndtri(np.clip(q_sub, 1e-12, 1.0 - 1e-12)) + theta = 0.5 * theta + 0.5 * np.mod(normal_guess, two_pi) + + lower = np.zeros_like(theta) + upper = np.full_like(theta, two_pi) + tol = 1e-12 + max_iter = 6 + + theta_curr = theta + cdf_vals, pdf_vals = self._wrapnorm_cdf_pdf(theta_curr, mu_val, sigma) + delta = cdf_vals - q_sub + + for _ in range(max_iter): + lower = np.where(delta <= 0.0, theta_curr, lower) + upper = np.where(delta > 0.0, theta_curr, upper) + if np.max(np.abs(delta)) <= tol: + break + denom = np.clip(pdf_vals, 1e-15, None) + step = np.clip(delta / denom, -np.pi, np.pi) + theta_next = theta_curr - step + theta_next = np.where( + (theta_next <= lower) | (theta_next >= upper), + 0.5 * (lower + upper), + theta_next, + ) + theta_next = np.clip(theta_next, 0.0, two_pi) + theta_curr = theta_next + cdf_vals, pdf_vals = self._wrapnorm_cdf_pdf(theta_curr, mu_val, sigma) + delta = cdf_vals - q_sub + + lower = np.where(delta <= 0.0, theta_curr, lower) + upper = np.where(delta > 0.0, theta_curr, upper) + + mask = np.abs(delta) > tol + if np.any(mask): + lower_b = lower.copy() + upper_b = upper.copy() + theta_b = theta_curr.copy() + for _ in range(40): + if not np.any(mask): + break + mid = 0.5 * (lower_b + upper_b) + mid_cdf, _ = self._wrapnorm_cdf_pdf(mid, mu_val, sigma) + delta_mid = mid_cdf - q_sub + take_upper = (delta_mid > 0.0) & mask + take_lower = (~take_upper) & mask + upper_b = np.where(take_upper, mid, upper_b) + lower_b = np.where(take_lower, mid, lower_b) + theta_b = np.where(mask, mid, theta_b) + mask = mask & (np.abs(delta_mid) > tol) + theta_curr = np.where(mask, 0.5 * (lower_b + upper_b), theta_b) + + theta_curr = np.clip(theta_curr, 0.0, two_pi) + endpoint_mask = theta_curr >= (two_pi - 1e-12) + if np.any(endpoint_mask): + endpoint_value = np.nextafter(two_pi, 0.0) + theta_curr = np.where(endpoint_mask, endpoint_value, theta_curr) + + result[interior] = theta_curr + return _finish(result) + + def ppf(self, q, mu, rho, *args, **kwargs): + r""" + Percent-point function (inverse CDF) of the Wrapped Normal distribution. + + The quantile is found by inverting the wrapped normal CDF using a + safeguarded Newton iteration on $[0, 2\pi]$. At each step the algorithm + evaluates the truncated unwrapped Gaussian series + $$ + F(\theta)=\sum_{k=-\infty}^{\infty} + \Bigl[\Phi\!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr) + - \Phi\!\Bigl(\tfrac{-\mu+2\pi k}{\sigma}\Bigr)\Bigr], + \qquad + f(\theta)=\sum_{k=-\infty}^{\infty} + \frac{1}{\sigma}\,\varphi\!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr), + $$ + with $\sigma = \sqrt{-2\log\rho}$, using the CDF residual to update the + bracket and the PDF as the local slope. A final bisection polish ensures + robust convergence and keeps the quantile consistent with ``cdf`` and + ``rvs``. + + Parameters + ---------- + q : array_like + Quantiles to evaluate (0 <= q <= 1). + mu : float + Mean direction, 0 <= mu <= 2*pi. + rho : float + Shape parameter, 0 < rho < 1. + + Returns + ------- + ppf_values : array_like + Angles corresponding to the given quantiles. + """ + return super().ppf(q, mu, rho, *args, **kwargs) + + def _rvs(self, mu, rho, size=None, random_state=None): + rng = self._init_rng(random_state) + + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + if mu_arr.size != 1 or rho_arr.size != 1: + raise ValueError("wrapnorm parameters must be scalar-valued.") + + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + rho_val = float(np.clip(rho_arr.reshape(-1)[0], np.finfo(float).tiny, 1.0 - 1e-15)) + + if rho_val <= 1e-12: + samples = rng.uniform(0.0, 2.0 * np.pi, size=size) + return float(samples) if np.isscalar(samples) else samples + + sigma = float(np.sqrt(-2.0 * np.log(rho_val))) + if sigma < 1e-12: + if size is None: + return mu_val + if np.isscalar(size): + return np.full((int(size),), mu_val, dtype=float) + shape = tuple(int(dim) for dim in np.atleast_1d(size)) + return np.full(shape, mu_val, dtype=float) + + samples = rng.normal(loc=mu_val, scale=sigma, size=size) + wrapped = np.mod(samples, 2.0 * np.pi) + if np.isscalar(wrapped): + return float(wrapped) + return wrapped + + def rvs(self, mu=None, rho=None, size=None, random_state=None): + r""" + Draw random variates from the Wrapped Normal distribution. + + Samples are obtained by drawing from $N(\mu, \sigma^2)$ with + $\sigma = \sqrt{-2\log\rho}$ and wrapping the result modulo $2\pi$. + This matches the analytic mixture used in ``cdf`` and ``ppf``, keeping + all three methods numerically consistent. + + Parameters + ---------- + mu : float, optional + Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by + freezing the distribution. + rho : float, optional + Shape parameter, ``0 < rho < 1``. Supply explicitly or by freezing + the distribution. + size : int or tuple of ints, optional + Number of samples to draw. ``None`` (default) returns a scalar. + random_state : np.random.Generator, np.random.RandomState, or None, optional + Random number generator to use. + + Returns + ------- + samples : ndarray or float + Random variates on ``[0, 2π)``. + """ + mu_val = getattr(self, "mu", None) if mu is None else mu + rho_val = getattr(self, "rho", None) if rho is None else rho + + if mu_val is None or rho_val is None: + raise ValueError("Both 'mu' and 'rho' must be provided.") + + return self._rvs(mu_val, rho_val, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + return_info=False, + optimizer="L-BFGS-B", + **kwargs, + ): + """ + Estimate ``mu`` and ``rho`` for the wrapped normal distribution. + + Parameters + ---------- + data : array_like + Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally. + weights : array_like, optional + Non-negative weights broadcastable to ``data``. + method : {"moments", "mle"}, optional + Estimation strategy. ``"moments"`` (aliases: "analytical") returns + the circular mean and resultant length. ``"mle"`` (alias: + "numerical") maximises the weighted log-likelihood via numerical + optimisation. + return_info : bool, optional + If True, return a diagnostics dictionary alongside the estimates. + optimizer : str, optional + Optimiser passed to ``scipy.optimize.minimize`` when + ``method="mle"``. + **kwargs : + Additional keyword arguments forwarded to the optimiser. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + mu_mom, rho_mom = circ_mean_and_r(alpha=x, w=w) + if not np.isfinite(mu_mom): + mu_mom = float(0.0) + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + rho_mom = float(np.clip(rho_mom, 1e-9, 1.0 - 1e-9)) + + def logpdf_series(mu_param, rho_param): + rho_val = float(np.clip(rho_param, 1e-12, 1.0 - 1e-12)) + if rho_val <= 1e-8: + return np.full_like(x, -np.log(2.0 * np.pi), dtype=float) + + sigma = float(np.sqrt(-2.0 * np.log(rho_val))) + if sigma > 10.0: + return np.full_like(x, -np.log(2.0 * np.pi), dtype=float) + + two_pi = 2.0 * np.pi + cache = getattr(self, "_series_window_cache", None) + if cache is None: + cache = {} + self._series_window_cache = cache + + mu_norm = float(np.mod(mu_param, two_pi)) + mu_bucket = int(round(mu_norm / two_pi * 512)) % 512 + rho_bucket = int(round(min(4095.0, -np.log1p(-rho_val) * 64.0))) + key = (mu_bucket, rho_bucket) + + max_cap = 256 + max_k = cache.get( + key, + max(5, int(np.ceil(3.0 * sigma / two_pi)) + 5), + ) + + tail_tol = 1e-10 + while True: + ks = np.arange(-max_k, max_k + 1, dtype=float) + diff = x[:, None] - mu_param + two_pi * ks[None, :] + exponents = -0.5 * (diff / sigma) ** 2 + max_exp = np.max(exponents, axis=1, keepdims=True) + shifted = np.exp(exponents - max_exp) + sum_exp = np.sum(shifted, axis=1) + log_pdf = max_exp.squeeze(1) + np.log(sum_exp) + log_pdf -= 0.5 * np.log(2.0 * np.pi) + np.log(sigma) + + tail_contrib = float( + np.max(shifted[:, (0, -1)] / np.maximum(sum_exp[:, None], 1e-300)) + ) + if tail_contrib <= tail_tol or max_k >= max_cap: + cache[key] = max_k + return log_pdf.astype(float, copy=False) + + max_k = min(max_cap, max_k + 2) + return log_pdf + + def nll(params): + mu_param, rho_param = params + if not (0.0 <= rho_param < 1.0): + return np.inf + log_pdf = logpdf_series(mu_param, rho_param) + return float(-np.sum(w * log_pdf)) + + method_key = method.lower() + alias = {"analytical": "moments", "numerical": "mle"} + method_key = alias.get(method_key, method_key) + + if method_key not in {"moments", "mle"}: + raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.") + + if "algorithm" in kwargs: + optimizer = kwargs.pop("algorithm") + + if method_key == "moments": + mu_hat = self._wrap_direction(mu_mom) + rho_hat = rho_mom + info = { + "method": "moments", + "loglik": float(-nll((mu_hat, rho_hat))), + "n_effective": float(n_eff), + "converged": True, + } + else: + bounds = [(0.0, 2.0 * np.pi), (1e-9, 1.0 - 1e-9)] + init = np.array([mu_mom, rho_mom], dtype=float) + result = minimize( + nll, + init, + method=optimizer, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError( + f"wrapnorm.fit(method='mle') failed: {result.message}" + ) + mu_hat = self._wrap_direction(float(result.x[0])) + rho_hat = float(np.clip(result.x[1], 1e-9, 1.0 - 1e-9)) + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": float(n_eff), + "converged": bool(result.success), + "nit": result.nit, + "grad_norm": np.nan, + "optimizer": optimizer, + } + + estimates = (mu_hat, rho_hat) + if return_info: + return estimates, info + return estimates + -wrapnorm = wrapnorm_gen(name="wrapped_normal") +wrapnorm = wrapnorm_gen(name="wrapnorm") -class wrapcauchy_gen(rv_continuous): +class wrapcauchy_gen(CircularContinuous): """Wrapped Cauchy Distribution. ![wrapcauchy](../images/circ-mod-wrapcauchy.png) @@ -468,6 +2831,9 @@ class wrapcauchy_gen(rv_continuous): cdf(x, mu, rho) Cumulative distribution function. + ppf(q, mu, rho) + Percent-point function (inverse CDF) via the Möbius mapping. + rvs(mu, rho, size=None, random_state=None) Random variates. @@ -480,7 +2846,16 @@ class wrapcauchy_gen(rv_continuous): """ def _argcheck(self, mu, rho): - return 0 <= mu <= np.pi * 2 and 0 < rho <= 1 + try: + mu_arr, rho_arr = np.broadcast_arrays(mu, rho) + except ValueError: + return False + return ( + (mu_arr >= 0.0) + & (mu_arr <= 2.0 * np.pi) + & (rho_arr >= 0.0) + & (rho_arr < 1.0) + ) def _pdf(self, x, mu, rho): return (1 - rho**2) / (2 * np.pi * (1 + rho**2 - 2 * rho * np.cos(x - mu))) @@ -533,19 +2908,52 @@ def logpdf(self, x, mu, rho, *args, **kwargs): return super().logpdf(x, mu, rho, *args, **kwargs) def _cdf(self, x, mu, rho): - @np.vectorize - def _cdf_single(x, mu, rho): - integral, _ = quad(self._pdf, a=0, b=x, args=(mu, rho)) - return integral - - return _cdf_single(x, mu, rho) + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + + mu_arr = np.asarray(mu, dtype=float) + if mu_arr.size != 1: + raise ValueError("wrapcauchy parameters must be scalar-valued.") + mu_val = float(mu_arr.reshape(-1)[0]) + rho_arr = np.asarray(rho, dtype=float) + if rho_arr.size != 1: + raise ValueError("wrapcauchy parameters must be scalar-valued.") + rho_val = float(rho_arr.reshape(-1)[0]) + rho_val = np.clip(rho_val, np.finfo(float).tiny, 1.0 - 1e-15) + + if flat.size == 0: + return arr.astype(float) + + two_pi = 2.0 * np.pi + A = (1.0 + rho_val) / (1.0 - rho_val) + + phi = (flat - mu_val + np.pi) % two_pi - np.pi + base_phi = (-mu_val + np.pi) % two_pi - np.pi + + angle = np.arctan2(A * np.sin(0.5 * phi), np.cos(0.5 * phi)) + base_angle = np.arctan2(A * np.sin(0.5 * base_phi), np.cos(0.5 * base_phi)) + + cdf = 0.5 + angle / np.pi + base_val = 0.5 + base_angle / np.pi + + diff = cdf - base_val + diff = np.where(diff < -1e-12, diff + 1.0, diff) + diff = np.where(diff > 1.0, diff - 1.0, diff) + cdf = np.clip(diff, 0.0, 1.0) + + if arr.ndim == 0: + value = float(cdf[0]) + return 1.0 if np.isclose(float(wrapped), 2.0 * np.pi) else value + reshaped = cdf.reshape(arr.shape) + reshaped[np.isclose(arr, 2.0 * np.pi)] = 1.0 + return reshaped def cdf(self, x, mu, rho, *args, **kwargs): """ Cumulative distribution function of the Wrapped Cauchy distribution. - No closed-form solution is available, so the CDF is computed numerically. - + The CDF is evaluated analytically via the wrapped Cauchy series. Parameters ---------- x : array_like @@ -562,110 +2970,296 @@ def cdf(self, x, mu, rho, *args, **kwargs): """ return super().cdf(x, mu, rho, *args, **kwargs) - def _rvs(self, mu, rho, size=None, random_state=None): - """ - Random variate generation for the Wrapped Cauchy distribution. + @staticmethod + def _wrapcauchy_H(phi, A): + phi_arr = np.asarray(phi, dtype=float) + angle = np.arctan2(A * np.sin(0.5 * phi_arr), np.cos(0.5 * phi_arr)) + H = 0.5 + angle / np.pi + return float(H) if np.isscalar(phi) else H - Parameters - ---------- + def _ppf(self, q, mu, rho): + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) - mu : float - Mean direction, 0 <= mu <= 2*pi. - rho : float - Mean resultant length, 0 <= rho <= 1. - size : int or tuple, optional - Number of samples to generate. - random_state : RandomState, optional - Random number generator instance. + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + rho_val = float(rho_arr.reshape(-1)[0]) + if not (0.0 <= rho_val < 1.0): + raise ValueError("`rho` must lie in [0, 1).") - Returns - ------- - samples : ndarray - Random variates from the Wrapped Cauchy distribution. - """ - rng = self._random_state if random_state is None else random_state + q_arr = np.asarray(q, dtype=float) + flat = q_arr.reshape(-1) + if flat.size == 0: + return q_arr.astype(float) - if rho == 0: - return rng.uniform(0, 2 * np.pi, size=size) - elif rho == 1: - return np.full(size, mu % (2 * np.pi)) - else: - from scipy.stats import cauchy + result = np.full_like(flat, np.nan, dtype=float) - scale = -np.log(rho) - samples = cauchy.rvs(loc=mu, scale=scale, size=size, random_state=rng) - return np.mod(samples, 2 * np.pi) + lower_mask = flat <= 0.0 + upper_mask = flat >= 1.0 + result[lower_mask] = 0.0 + result[upper_mask] = 2.0 * np.pi - def fit(self, data, method="analytical", *args, **kwargs): - """ - Fit the Wrapped Cauchy distribution to the data. + interior = ~(lower_mask | upper_mask) + if not np.any(interior): + return result.reshape(q_arr.shape) - Parameters - ---------- - data : array_like - Input data (angles in radians). - method : str, optional - The approach for fitting the distribution. Options are: - - "analytical": Compute `rho` and `mu` using closed-form solutions. - - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer. - Default is "analytical". + q_int = flat[interior] + two_pi = 2.0 * np.pi - *args, **kwargs : - Additional arguments passed to the optimizer (if used). + if rho_val <= 1e-15: + result[interior] = (two_pi * q_int) % two_pi + return result.reshape(q_arr.shape) - Returns - ------- - rho : float - Estimated shape parameter. - mu : float - Estimated mean direction. - """ + A = (1.0 + rho_val) / (1.0 - rho_val) + phi0 = (-mu_val + np.pi) % two_pi - np.pi + H_start = float(self._wrapcauchy_H(phi0, A)) - # Validate the fitting method - valid_methods = ["analytical", "numerical"] - if method not in valid_methods: - raise ValueError( - f"Invalid method '{method}'. Available methods are {valid_methods}." - ) + s = (H_start + q_int) % 1.0 + eps = 1e-15 + alpha = np.pi * (np.clip(s, eps, 1.0 - eps) - 0.5) + tan_alpha = np.tan(alpha) + phi = 2.0 * np.arctan(tan_alpha / A) + theta = (mu_val + phi) % two_pi + result[interior] = theta - # Validate the data - if not np.all((0 <= data) & (data < 2 * np.pi)): - raise ValueError("Data must be in the range [0, 2π).") - - # Analytical solution for the Von Mises distribution - mu, rho = circ_mean_and_r(alpha=data) - - # Use analytical estimates for mu and rho - if method == "analytical": - return mu, rho - elif method == "numerical": - # Numerical optimization - def nll(params): - mu, rho = params - if not self._argcheck(mu, rho): - return np.inf - return -np.sum(self._logpdf(data, mu, rho)) + return result.reshape(q_arr.shape) - start_params = [mu, np.clip(rho, 1e-4, 1 - 1e-4)] - bounds = [(0, 2 * np.pi), (1e-6, 1)] - algo = kwargs.pop("algorithm", "L-BFGS-B") - result = minimize( - nll, start_params, bounds=bounds, method=algo, *args, **kwargs - ) - if not result.success: - raise RuntimeError(f"Optimization failed: {result.message}") - mu, rho = result.x - return mu, rho - else: - raise ValueError( - "Invalid method. Supported methods are 'analytical' and " "'numerical'." - ) + def ppf(self, q, mu, rho, *args, **kwargs): + r""" + Percent-point function (inverse CDF) of the Wrapped Cauchy distribution. + + The quantile is obtained by inverting the Möbius form of the CDF: + $$ + \phi = 2 \arctan\!\left(\frac{\tan\left(\pi (s-\tfrac12)\right)}{A}\right), + \qquad A=\frac{1+\rho}{1-\rho}, + $$ + where $s = (H(\phi_0) + q) \bmod 1$ and $\phi_0$ is the anchored angle + at $x=0$. This matches the direct normalised CDF and keeps ``ppf`` in + sync with ``cdf`` and the Möbius sampler used by ``rvs``. + """ + return super().ppf(q, mu, rho, *args, **kwargs) + + def _rvs(self, mu, rho, size=None, random_state=None): + rng = self._init_rng(random_state) + + mu_arr = np.asarray(mu, dtype=float) + rho_arr = np.asarray(rho, dtype=float) + if mu_arr.size != 1 or rho_arr.size != 1: + raise ValueError("wrapcauchy parameters must be scalar-valued.") + + mu_val = float(mu_arr.reshape(-1)[0]) + rho_val = float(rho_arr.reshape(-1)[0]) + two_pi = 2.0 * np.pi + + if np.isclose(rho_val, 0.0, atol=1e-15): + return rng.uniform(0.0, two_pi, size=size) + + if np.isclose(rho_val, 1.0, atol=1e-15): + angle = float(np.mod(mu_val, two_pi)) + if size is None: + return angle + return np.full(size, angle, dtype=float) + + if size is None: + target_shape = () + elif np.isscalar(size): + target_shape = (int(size),) + else: + target_shape = tuple(int(dim) for dim in np.atleast_1d(size)) + + # Möbius transform sampler: exact and numerically stable for rho<1. + u = rng.uniform(-np.pi, np.pi, size=target_shape) + z = np.exp(1j * u) + alpha = rho_val * np.exp(1j * mu_val) + denom = 1.0 + rho_val * np.exp(-1j * mu_val) * z + tiny = 1e-15 + mask = np.abs(denom) < tiny + denom = np.where(mask, tiny, denom) + w = (z + alpha) / denom + angles = np.angle(w) + original_shape = angles.shape + + if np.any(mask): + # Fallback to tangent sampler for rare near-pole cases. + count = int(np.count_nonzero(mask)) + fallback_u = rng.uniform(0.0, 1.0, size=count) + factor = (1.0 + rho_val) / (1.0 - rho_val) + tan_term = np.tan(np.pi * (fallback_u - 0.5)) + fallback = mu_val + 2.0 * np.arctan(factor * tan_term) + fallback = np.mod(fallback, two_pi) + angles_flat = angles.reshape(-1) + mask_flat = mask.reshape(-1) + angles_flat[mask_flat] = fallback + angles = angles_flat.reshape(original_shape) + + theta = np.mod(angles, two_pi) + if target_shape == (): + return float(theta) + return theta.reshape(target_shape) + + def rvs(self, mu=None, rho=None, size=None, random_state=None): + """ + Draw random variates from the Wrapped Cauchy distribution. + + Parameters + ---------- + mu : float, optional + Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by + freezing the distribution. + rho : float, optional + Shape parameter, ``0 <= rho < 1``. Supply explicitly or by freezing + the distribution. + size : int or tuple of ints, optional + Number of samples to draw. ``None`` (default) returns a scalar. + random_state : np.random.Generator, np.random.RandomState, or None, optional + Random number generator to use. + + Returns + ------- + samples : ndarray or float + Random variates on ``[0, 2π)``. + """ + mu_val = getattr(self, "mu", None) if mu is None else mu + rho_val = getattr(self, "rho", None) if rho is None else rho + + if mu_val is None or rho_val is None: + raise ValueError("Both 'mu' and 'rho' must be provided.") + + return self._rvs(mu_val, rho_val, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + return_info=False, + optimizer="L-BFGS-B", + **kwargs, + ): + """ + Estimate ``mu`` and ``rho`` for the wrapped Cauchy distribution. + + Parameters + ---------- + data : array_like + Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally. + weights : array_like, optional + Non-negative weights broadcastable to ``data``. + method : {"moments", "mle"}, optional + Estimation strategy. ``"moments"`` (alias: "analytical") returns the + closed-form estimates based on the first trigonometric moment. + ``"mle"`` (alias: "numerical") maximises the weighted log-likelihood. + return_info : bool, optional + If True, also return a diagnostic dictionary. + optimizer : str, optional + Optimiser passed to ``scipy.optimize.minimize`` when + ``method="mle"``. + **kwargs : + Additional keyword arguments forwarded to the optimiser. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)) + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False) + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + mu_mom, rho_mom = circ_mean_and_r(alpha=x, w=w) + if not np.isfinite(mu_mom): + mu_mom = float(0.0) + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + rho_mom = float(np.clip(rho_mom, 0.0, 1.0 - 1e-12)) + + def nll(params): + mu_param, rho_param = params + if not (0.0 <= rho_param < 1.0): + return np.inf + denom = np.clip(1.0 + rho_param**2 - 2.0 * rho_param * np.cos(x - mu_param), 1e-15, None) + log_pdf = np.log1p(-rho_param**2) - np.log(2.0 * np.pi) - np.log(denom) + value = -np.sum(w * log_pdf) + return float(value) + + def grad(params): + mu_param, rho_param = params + denom = np.clip(1.0 + rho_param**2 - 2.0 * rho_param * np.cos(x - mu_param), 1e-15, None) + cos_term = np.cos(x - mu_param) + sin_term = np.sin(x - mu_param) + + inv_denom = w / denom + g_mu = -2.0 * rho_param * np.sum(inv_denom * sin_term) + g_rho = ( + w_sum * (2.0 * rho_param / np.clip(1.0 - rho_param**2, 1e-15, None)) + + np.sum(inv_denom * (2.0 * rho_param - 2.0 * cos_term)) + ) + return np.array([g_mu, g_rho], dtype=float) + + method_key = method.lower() + alias = {"analytical": "moments", "numerical": "mle"} + method_key = alias.get(method_key, method_key) + + if "algorithm" in kwargs: + optimizer = kwargs.pop("algorithm") + + if method_key not in {"moments", "mle"}: + raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.") + + if method_key == "moments": + mu_hat = self._wrap_direction(mu_mom) + rho_hat = rho_mom + info = { + "method": "moments", + "loglik": float(-nll((mu_hat, rho_hat))), + "n_effective": float(n_eff), + "converged": True, + } + else: + bounds = [(0.0, 2.0 * np.pi), (1e-9, 1.0 - 1e-9)] + init = np.array([mu_mom, max(1e-3, min(rho_mom, 1.0 - 1e-3))], dtype=float) + result = minimize( + nll, + init, + method=optimizer, + jac=grad, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError(f"wrapcauchy.fit(method='mle') failed: {result.message}") + mu_hat = self._wrap_direction(float(result.x[0])) + rho_hat = float(np.clip(result.x[1], 1e-9, 1.0 - 1e-9)) + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": float(n_eff), + "converged": bool(result.success), + "nit": result.nit, + "grad_norm": float(np.linalg.norm(result.jac)) + if getattr(result, "jac", None) is not None + else np.nan, + "optimizer": optimizer, + } + + estimates = (mu_hat, rho_hat) + if return_info: + return estimates, info + return estimates wrapcauchy = wrapcauchy_gen(name="wrapcauchy") -class vonmises_gen(rv_continuous): +class vonmises_gen(CircularContinuous): """Von Mises Distribution ![vonmises](../images/circ-mod-vonmises.png) @@ -721,7 +3315,15 @@ def __call__(self, *args, **kwds): __call__.__doc__ = _freeze_doc def _argcheck(self, mu, kappa): - return 0 <= mu <= np.pi * 2 and kappa > 0 + try: + mu_arr, kappa_arr = np.broadcast_arrays(mu, kappa) + except ValueError: + return False + return ( + (mu_arr >= 0.0) + & (mu_arr <= 2.0 * np.pi) + & (kappa_arr > 0.0) + ) def _pdf(self, x, mu, kappa): return np.exp(kappa * np.cos(x - mu)) / (2 * np.pi * i0(kappa)) @@ -775,12 +3377,79 @@ def logpdf(self, x, mu, kappa, *args, **kwargs): return super().logpdf(x, mu, kappa, *args, **kwargs) def _cdf(self, x, mu, kappa): - @np.vectorize - def _cdf_single(x, mu, kappa): - integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa)) - return integral - - return _cdf_single(x, mu, kappa) + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + + if flat.size == 0: + return arr.astype(float) + + mu_arr = np.asarray(mu, dtype=float) + kappa_arr = np.asarray(kappa, dtype=float) + + mu_val = float(mu_arr.reshape(-1)[0]) + if mu_arr.size > 1 and not np.allclose(mu_arr, mu_val, atol=0.0, rtol=0.0): + raise ValueError("vonmises parameters must be broadcastable scalars.") + + kappa_val = float(kappa_arr.reshape(-1)[0]) + if kappa_arr.size > 1 and not np.allclose(kappa_arr, kappa_val, atol=0.0, rtol=0.0): + raise ValueError("vonmises parameters must be broadcastable scalars.") + two_pi = 2.0 * np.pi + + if kappa_val < 1e-9: + uniform = flat / two_pi + if arr.ndim == 0: + value = float(uniform[0]) + return 1.0 if np.isclose(float(wrapped), two_pi) else value + result = uniform.reshape(arr.shape) + result[np.isclose(arr, two_pi)] = 1.0 + return result + + denom = i0(kappa_val) + if not np.isfinite(denom) or denom == 0.0: + return self._cdf_from_pdf(x, mu, kappa) + + phi = (flat - mu_val + np.pi) % two_pi - np.pi + base_phi = (-mu_val + np.pi) % two_pi - np.pi + + term_sum = np.zeros_like(phi) + term_base = 0.0 + tol = 1e-12 + max_terms = 500 + converged = False + + for n in range(1, max_terms + 1): + coeff = iv(n, kappa_val) / (denom * n) + if not np.isfinite(coeff): + continue + + term = coeff * np.sin(n * phi) + term_sum += term + term_base += coeff * np.sin(n * base_phi) + + max_term = np.max(np.abs(term)) + if max_term < tol and abs(coeff) < tol: + converged = True + break + + if not converged: + return self._cdf_from_pdf(x, mu, kappa) + + cdf_raw = 0.5 + phi / two_pi + (1.0 / np.pi) * term_sum + base_val = 0.5 + base_phi / two_pi + (1.0 / np.pi) * term_base + + forward = np.clip(cdf_raw - base_val, 0.0, 1.0) + backward = np.clip(base_val - cdf_raw, 0.0, 1.0) + cdf = np.where(phi >= base_phi, forward, 1.0 - backward) + cdf = np.clip(cdf, 0.0, 1.0) + + if arr.ndim == 0: + value = float(cdf[0]) + return 1.0 if np.isclose(float(wrapped), two_pi) else value + + result = cdf.reshape(arr.shape) + result[np.isclose(arr, two_pi)] = 1.0 + return result def cdf(self, x, mu, kappa, *args, **kwargs): r""" @@ -790,7 +3459,14 @@ def cdf(self, x, mu, kappa, *args, **kwargs): F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx $$ - No closed-form solution is available, so the CDF is computed numerically. + The CDF is evaluated via its Fourier-Bessel series expansion, + $$ + F(\theta) = \frac{1}{2} + \frac{\theta - \mu}{2\pi} + + \frac{1}{\pi}\sum_{n=1}^{\infty} \frac{I_n(\kappa)}{I_0(\kappa)\,n} + \sin\bigl(n(\theta - \mu)\bigr), + $$ + truncated adaptively for numerical stability and re-normalised to the + $[0, 2\pi)$ support. Parameters ---------- @@ -808,10 +3484,110 @@ def cdf(self, x, mu, kappa, *args, **kwargs): """ return super().cdf(x, mu, kappa, *args, **kwargs) + def _ppf(self, q, mu, kappa): + mu_arr = np.asarray(mu, dtype=float) + kappa_arr = np.asarray(kappa, dtype=float) + + mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi)) + kappa_val = float(kappa_arr.reshape(-1)[0]) + if kappa_val < 0.0: + raise ValueError("`kappa` must be non-negative.") + + q_arr = np.asarray(q, dtype=float) + flat = q_arr.reshape(-1) + if flat.size == 0: + return q_arr.astype(float) + + result = np.full_like(flat, np.nan, dtype=float) + + lower_mask = flat <= 0.0 + upper_mask = flat >= 1.0 + result[lower_mask] = 0.0 + result[upper_mask] = 2.0 * np.pi + + interior = ~(lower_mask | upper_mask) + if not np.any(interior): + return result.reshape(q_arr.shape) + + q_int = flat[interior] + two_pi = 2.0 * np.pi + + if kappa_val <= 1e-9: + result[interior] = (two_pi * q_int) % two_pi + return result.reshape(q_arr.shape) + + eps = 1e-15 + q_clipped = np.clip(q_int, eps, 1.0 - eps) + + theta = (mu_val + two_pi * (q_clipped - 0.5)) % two_pi + if kappa_val < 0.3: + theta = (two_pi * q_clipped) % two_pi + elif kappa_val > 5.0: + normal_guess = mu_val + ndtri(q_clipped) / np.sqrt(kappa_val) + normal_guess = np.mod(normal_guess, two_pi) + blend = 0.5 if kappa_val < 20.0 else 0.8 + theta = np.mod(blend * normal_guess + (1.0 - blend) * (two_pi * q_clipped), two_pi) + + L = np.zeros_like(theta) + H = np.full_like(theta, two_pi) + + tol_cdf = 1e-12 + tol_theta = 1e-10 + max_iter = 6 + + theta_curr = theta.copy() + for _ in range(max_iter): + cdf_vals = np.asarray(self.cdf(theta_curr, mu_val, kappa_val), dtype=float) + pdf_vals = np.exp(kappa_val * np.cos(theta_curr - mu_val)) / (2.0 * np.pi * i0(kappa_val)) + delta = cdf_vals - q_clipped + + L = np.where(delta <= 0.0, theta_curr, L) + H = np.where(delta > 0.0, theta_curr, H) + + converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta) + if np.all(converged): + break + + denom = np.where(pdf_vals > 1e-15, pdf_vals, 1e-15) + step = np.clip(delta / denom, -np.pi, np.pi) + theta_next = theta_curr - step + midpoint = 0.5 * (L + H) + theta_next = np.where((theta_next <= L) | (theta_next >= H), midpoint, theta_next) + theta_next = np.mod(theta_next, two_pi) + theta_curr = theta_next + + delta = np.asarray(self.cdf(theta_curr, mu_val, kappa_val), dtype=float) - q_clipped + mask = (np.abs(delta) > tol_cdf) | ((H - L) > tol_theta) + if np.any(mask): + theta_b = theta_curr.copy() + L_b = L.copy() + H_b = H.copy() + for _ in range(30): + if not np.any(mask): + break + mid = 0.5 * (L_b + H_b) + mid_vals = np.asarray(self.cdf(mid, mu_val, kappa_val), dtype=float) + delta_mid = mid_vals - q_clipped + take_upper = (delta_mid > 0.0) & mask + take_lower = (~take_upper) & mask + H_b = np.where(take_upper, mid, H_b) + L_b = np.where(take_lower, mid, L_b) + theta_b = np.where(mask, mid, theta_b) + mask = mask & (np.abs(delta_mid) > tol_cdf) + theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b) + + result[interior] = np.mod(theta_curr, two_pi) + return result.reshape(q_arr.shape) + + def ppf(self, q, mu, kappa, *args, **kwargs): """ Percent-point function (inverse of the CDF) of the Von Mises distribution. + The quantile is obtained by inverting the analytic Fourier–Bessel series + using a safeguarded Newton iteration with the exact von Mises PDF as the + slope, followed by a bisection polish. + Parameters ---------- q : array_like @@ -829,34 +3605,55 @@ def ppf(self, q, mu, kappa, *args, **kwargs): return super().ppf(q, mu, kappa, *args, **kwargs) def _rvs(self, mu, kappa, size=None, random_state=None): - # Use the random_state attribute or a new default random generator - rng = self._random_state if random_state is None else random_state + rng = self._init_rng(random_state) - # Handle size being a tuple - if size is None: - size = 1 - num_samples = np.prod(size) # Total number of samples + mu_arr = np.asarray(mu, dtype=float) + kappa_arr = np.asarray(kappa, dtype=float) + + mu_val = float(mu_arr.reshape(-1)[0]) + if mu_arr.size > 1 and not np.allclose(mu_arr, mu_val, atol=0.0, rtol=0.0): + raise ValueError("vonmises parameters must be broadcastable scalars.") + mu_val = float(np.mod(mu_val, 2.0 * np.pi)) - # Best-Fisher algorithm - a = 1 + np.sqrt(1 + 4 * kappa**2) - b = (a - np.sqrt(2 * a)) / (2 * kappa) - r = (1 + b**2) / (2 * b) + kappa_val = float(kappa_arr.reshape(-1)[0]) + if kappa_arr.size > 1 and not np.allclose(kappa_arr, kappa_val, atol=0.0, rtol=0.0): + raise ValueError("vonmises parameters must be broadcastable scalars.") + two_pi = 2.0 * np.pi - def sample(): + if kappa_val <= 1e-9: + return rng.uniform(0.0, two_pi, size=size) + + a = 1.0 + np.sqrt(1.0 + 4.0 * kappa_val**2) + b = (a - np.sqrt(2.0 * a)) / (2.0 * kappa_val) + r = (1.0 + b**2) / (2.0 * b) + + if size is None: + samples = np.empty(1, dtype=float) + target_shape = () + elif np.isscalar(size): + samples = np.empty(int(size), dtype=float) + target_shape = (int(size),) + else: + target_shape = tuple(int(s) for s in np.atleast_1d(size)) + samples = np.empty(int(np.prod(target_shape)), dtype=float) + + total = samples.size + for idx in range(total): while True: u1 = rng.uniform() z = np.cos(np.pi * u1) - f = (1 + r * z) / (r + z) - c = kappa * (r - f) + f = (1.0 + r * z) / (r + z) + c = kappa_val * (r - f) u2 = rng.uniform() - if u2 < c * (2 - c) or u2 <= c * np.exp(1 - c): + if u2 < c * (2.0 - c) or u2 <= c * np.exp(1.0 - c): break u3 = rng.uniform() - theta = mu + np.sign(u3 - 0.5) * np.arccos(f) - return theta % (2 * np.pi) + theta = mu_val + np.sign(u3 - 0.5) * np.arccos(f) + samples[idx] = np.mod(theta, two_pi) - samples = np.array([sample() for _ in range(num_samples)]) - return samples + if target_shape == (): + return float(samples[0]) + return samples.reshape(target_shape) def rvs(self, size=None, random_state=None, *args, **kwargs): """ @@ -968,106 +3765,144 @@ def _nnlf(self, theta, data): # Negative log-likelihood return -np.sum(log_likelihood) - def fit(self, data, method="analytical", *args, **kwargs): + def fit( + self, + data, + *, + weights=None, + method="mle", + return_info=False, + optimizer="L-BFGS-B", + **kwargs, + ): """ - Fit the Von Mises distribution to the given data. + Estimate ``mu`` and ``kappa`` for the von Mises distribution. Parameters ---------- data : array_like - The data to fit the distribution to. Assumes values are in radians. - method : str, optional - The approach for fitting the distribution. Options are: - - "analytical": Compute `mu` and `kappa` using closed-form solutions. - - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer. - Default is "analytical". - - When `method="numerical"`, the optimization algorithm can be specified via `algorithm` in `kwargs`. - Supported algorithms include any method from `scipy.optimize.minimize`, such as "L-BFGS-B" (default) or "Nelder-Mead". - - *args : tuple, optional - Additional positional arguments passed to the optimizer (if used). - **kwargs : dict, optional - Additional keyword arguments passed to the optimizer (if used). - - Returns - ------- - kappa : float - The estimated concentration parameter of the Von Mises distribution. - mu : float - The estimated mean direction of the Von Mises distribution. - - Notes - ----- - - The "analytical" method directly computes the parameters using the circular mean - and resultant vector length (`r`) for `mu` and `kappa`, respectively. - - For numerical methods, the negative log-likelihood (NLL) is minimized using `_nnlf` as the objective function. - - - Examples - -------- - ```python - # MLE fitting using analytical solution - mu, kappa = vonmises.fit(data, method="analytical") - - # MLE fitting with numerical method using L-BFGS-B - mu, kappa = vonmises.fit(data, method="L-BFGS-B") - ``` + Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally. + weights : array_like, optional + Non-negative weights broadcastable to ``data``. + method : {"moments", "mle"}, optional + Estimation strategy. ``"moments"`` (alias ``"analytical"``) returns + the circular mean together with the standard approximation for + ``kappa``. ``"mle"`` (alias ``"numerical"``) maximises the weighted + log-likelihood using a bounded optimiser. + return_info : bool, optional + If True, return a diagnostics dictionary alongside the estimates. + optimizer : str, optional + Optimiser passed to ``scipy.optimize.minimize`` when + ``method="mle"``. + **kwargs : + Additional keyword arguments forwarded to the optimiser. """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") - # Validate the fitting method - valid_methods = ["analytical", "numerical"] - if method not in valid_methods: - raise ValueError( - f"Invalid method '{method}'. Available methods are {valid_methods}." + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + mu_mom, r_mom = circ_mean_and_r(alpha=x, w=w) + if not np.isfinite(mu_mom): + mu_mom = float(0.0) + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + r_mom = float(np.clip(r_mom, 1e-12, 1.0 - 1e-12)) + n_adjust = int(max(1, round(w_sum))) + kappa_mom = float(np.clip(circ_kappa(r=r_mom, n=n_adjust), 1e-9, 1e6)) + + method_key = method.lower() + alias = {"analytical": "moments", "numerical": "mle"} + method_key = alias.get(method_key, method_key) + + if "algorithm" in kwargs: + optimizer = kwargs.pop("algorithm") + + if method_key not in {"moments", "mle"}: + raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.") + + def nll(params): + mu_param, kappa_param = params + if not (kappa_param > 0.0): + return np.inf + cos_term = np.cos(x - mu_param) + sum_cos = np.sum(w * cos_term) + log_i0_val = np.log(i0(kappa_param)) + return float( + -kappa_param * sum_cos + w_sum * (np.log(2.0 * np.pi) + log_i0_val) ) - # Validate the data - if not np.all((0 <= data) & (data < 2 * np.pi)): - raise ValueError("Data must be in the range [0, 2π).") - - # Analytical solution for the Von Mises distribution - mu, r = circ_mean_and_r(alpha=data) - kappa = circ_kappa(r=r, n=len(data)) - - if method == "analytical": - if np.isclose(r, 0): - raise ValueError( - "Resultant vector length (r) is zero, e.g. uniform data or low directional bias." - ) - return mu, kappa - elif method == "numerical": - # Use analytical solution as initial guess - start_params = [mu, kappa] - bounds = [(0, 2 * np.pi), (0, None)] # 0 <= mu < 2*pi, kappa > 0, - - algo = kwargs.pop("algorithm", "L-BFGS-B") - - # Define the objective function (NLL) using `_nnlf` - def nll(params): - return self._nnlf(params, data) - - # Use the optimizer to minimize NLL + def grad(params): + mu_param, kappa_param = params + cos_term = np.cos(x - mu_param) + sin_term = np.sin(x - mu_param) + sum_sin = np.sum(w * sin_term) + sum_cos = np.sum(w * cos_term) + ratio = i1(kappa_param) / i0(kappa_param) + g_mu = kappa_param * sum_sin + g_kappa = -sum_cos + w_sum * ratio + return np.array([g_mu, g_kappa], dtype=float) + + if method_key == "moments": + mu_hat = self._wrap_direction(mu_mom) + kappa_hat = kappa_mom + info = { + "method": "moments", + "loglik": float(-nll((mu_hat, kappa_hat))), + "n_effective": float(n_eff), + "converged": True, + } + else: + bounds = [(0.0, 2.0 * np.pi), (1e-9, 1e6)] + init = np.array([mu_mom, kappa_mom], dtype=float) result = minimize( - nll, start_params, bounds=bounds, method=algo, *args, **kwargs + nll, + init, + method=optimizer, + jac=grad, + bounds=bounds, + **kwargs, ) - - # Extract parameters from optimization result if not result.success: - raise RuntimeError(f"Optimization failed: {result.message}") - - mu, kappa = result.x - return mu, kappa - else: - raise ValueError( - f"Invalid method '{method}'. Supported methods are 'analytical' and 'numerical'." - ) + raise RuntimeError( + f"vonmises.fit(method='mle') failed: {result.message}" + ) + mu_hat = self._wrap_direction(float(result.x[0])) + kappa_hat = float(np.clip(result.x[1], 1e-9, 1e6)) + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": float(n_eff), + "converged": bool(result.success), + "nit": result.nit, + "grad_norm": float(np.linalg.norm(result.jac)) + if getattr(result, "jac", None) is not None + else np.nan, + "optimizer": optimizer, + } + + estimates = (mu_hat, kappa_hat) + if return_info: + return estimates, info + return estimates vonmises = vonmises_gen(name="vonmises") -class vonmises_flattopped_gen(rv_continuous): +class vonmises_flattopped_gen(CircularContinuous): r"""Flat-topped von Mises Distribution The Flat-topped von Mises distribution is a modification of the von Mises distribution @@ -1086,21 +3921,57 @@ class vonmises_flattopped_gen(rv_continuous): Note ---- + Parameters must be scalar; cached normalization tables are built per parameter set. Implementation based on Section 4.3.10 of Pewsey et al. (2014) """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._vmft_table_cache = {} + self._vmft_sampler_cache = {} + def _validate_params(self, mu, kappa, nu): - return (0 <= mu <= np.pi * 2) and (kappa >= 0) and (-1 <= nu <= 1) + mu_arr, kappa_arr, nu_arr = np.broadcast_arrays(mu, kappa, nu) + return ( + (mu_arr >= 0.0) + & (mu_arr <= 2.0 * np.pi) + & (kappa_arr >= 0.0) + & (kappa_arr <= _VMFT_KAPPA_UPPER) + & (nu_arr >= -1.0) + & (nu_arr <= 1.0) + ) def _argcheck(self, mu, kappa, nu): - if self._validate_params(mu, kappa, nu): - self._c = _c_vmft(mu, kappa, nu) - return True - else: + try: + return self._validate_params(mu, kappa, nu) + except ValueError: return False + def _clear_normalization_cache(self): + super()._clear_normalization_cache() + self._vmft_table_cache = {} + self._vmft_sampler_cache = {} + def _pdf(self, x, mu, kappa, nu): - return self._c * _kernel_vmft(x, mu, kappa, nu) + x_arr = np.asarray(x, dtype=float) + mu_val = _vmft_ensure_scalar(mu, "mu") + kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER)) + nu_val = _vmft_ensure_scalar(nu, "nu") + + if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val): + return np.full_like(x_arr, np.nan, dtype=float) + + if kappa_val <= _VMFT_KAPPA_TOL: + self._c = 1.0 / (2.0 * np.pi) + return np.full_like(x_arr, self._c, dtype=float) + + table = self._get_vmft_table(kappa_val, nu_val) + phi = ((x_arr - mu_val + np.pi) % (2.0 * np.pi)) - np.pi + log_kernel = kappa_val * np.cos(phi + nu_val * np.sin(phi)) + log_pdf = log_kernel + table["log_normalizer"] + pdf_vals = np.exp(log_pdf) + self._c = table["normalizer"] # retain attribute for existing code paths + return pdf_vals def pdf(self, x, mu, kappa, nu, *args, **kwargs): r""" @@ -1143,15 +4014,571 @@ def pdf(self, x, mu, kappa, nu, *args, **kwargs): - When $\nu = 0$, the distribution reduces to the standard von Mises distribution. - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$. """ - return super().pdf(x, mu, kappa, nu, *args, **kwargs) + mu_val = _vmft_ensure_scalar(mu, "mu") + kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER)) + nu_val = _vmft_ensure_scalar(nu, "nu") + return super().pdf(x, mu_val, kappa_val, nu_val, *args, **kwargs) def _cdf(self, x, mu, kappa, nu): - @np.vectorize - def _cdf_single(x, mu, kappa, nu): - integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa, nu)) - return integral + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + + if flat.size == 0: + return arr.astype(float) + + mu_val = _vmft_ensure_scalar(mu, "mu") + kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER)) + nu_val = _vmft_ensure_scalar(nu, "nu") + + if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val): + return np.full_like(arr, np.nan, dtype=float) + + two_pi = 2.0 * np.pi + + if kappa_val <= _VMFT_KAPPA_TOL: + cdf_flat = flat / two_pi + else: + table = self._get_vmft_table(kappa_val, nu_val) + phi = ((flat - mu_val + np.pi) % two_pi) - np.pi + phi_start = ((-mu_val + np.pi) % two_pi) - np.pi + H = table["cdf_interp"](phi) + H_start = float(table["cdf_interp"](phi_start)) + cdf_flat = np.where(H < H_start, H - H_start + 1.0, H - H_start) + cdf_flat = np.clip(cdf_flat, 0.0, 1.0) + + if arr.ndim == 0: + value = float(cdf_flat[0]) + if np.isclose(float(wrapped), two_pi, rtol=0.0, atol=1e-12): + return 1.0 + return value + + result = cdf_flat.reshape(arr.shape) + mask_upper = np.isclose(arr, two_pi, rtol=0.0, atol=1e-12) + if np.any(mask_upper): + result = result.copy() + result[mask_upper] = 1.0 + return result + + def _ppf(self, q, mu, kappa, nu): + mu_val = _vmft_ensure_scalar(mu, "mu") + kappa_val = _vmft_ensure_scalar(kappa, "kappa") + nu_val = _vmft_ensure_scalar(nu, "nu") + + q_arr = np.asarray(q, dtype=float) + flat = q_arr.reshape(-1) + if flat.size == 0: + return q_arr.astype(float) + + if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val): + return np.full_like(q_arr, np.nan, dtype=float) + + two_pi = 2.0 * np.pi + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if not np.any(valid): + shaped = result.reshape(q_arr.shape) + return float(shaped) if q_arr.ndim == 0 else shaped + + q_valid = flat[valid] + close_zero = np.isclose(q_valid, 0.0, rtol=0.0, atol=1e-12) + close_one = np.isclose(q_valid, 1.0, rtol=0.0, atol=1e-12) + + if kappa_val <= _VMFT_KAPPA_TOL: + theta = (two_pi * q_valid) % two_pi + if np.any(close_zero): + theta[close_zero] = 0.0 + if np.any(close_one): + theta[close_one] = two_pi + result[valid] = theta + else: + table = self._get_vmft_table(kappa_val, nu_val) + phi_grid = table["phi"] + cdf_grid = table["cdf"] + cdf_interp = table["cdf_interp"] + inv_interp = table["inv_cdf_interp"] + + phi_start = ((-mu_val + np.pi) % two_pi) - np.pi + H_start = float(cdf_interp(phi_start)) + + # Prepare bracket indices for each quantile + targets = (H_start + q_valid) % 1.0 + phi_guess = ( + inv_interp(targets) + if inv_interp is not None + else np.interp(targets, cdf_grid, phi_grid, left=phi_grid[0], right=phi_grid[-1]) + ) + + theta = np.empty_like(q_valid) + for idx, (q_val, target, phi0) in enumerate(zip(q_valid, targets, phi_guess)): + if close_zero[idx]: + theta[idx] = 0.0 + continue + if close_one[idx]: + theta[idx] = two_pi + continue + + i_hi = int(np.clip(np.searchsorted(cdf_grid, target, side="right"), 1, len(phi_grid) - 1)) + phi_lo = float(phi_grid[i_hi - 1]) + phi_hi = float(phi_grid[i_hi]) + phi = float(np.clip(phi0, phi_lo, phi_hi)) + + for _ in range(_VMFT_NEWTON_MAXITER): + H_phi = float(cdf_interp(phi)) + residual = H_phi - target + derivative = np.exp( + kappa_val * np.cos(phi + nu_val * np.sin(phi)) + table["log_normalizer"] + ) + derivative = max(derivative, np.finfo(float).tiny) + + if abs(residual) <= _VMFT_NEWTON_TOL and (phi_hi - phi_lo) <= _VMFT_NEWTON_WIDTH_TOL: + break + + if residual > 0.0: + phi_hi = min(phi_hi, phi) + else: + phi_lo = max(phi_lo, phi) + + step = residual / derivative + phi_candidate = phi - step + if not np.isfinite(phi_candidate) or phi_candidate <= phi_lo or phi_candidate >= phi_hi: + phi_candidate = 0.5 * (phi_lo + phi_hi) + phi = float(np.clip(phi_candidate, phi_lo, phi_hi)) + + theta[idx] = (mu_val + phi) % two_pi + + result[valid] = theta + + shaped = result.reshape(q_arr.shape) + if q_arr.ndim == 0: + return float(shaped) + return shaped + + def ppf(self, q, mu, kappa, nu, *args, **kwargs): + r""" + Percent-point function (quantile) of the flat-topped von Mises distribution. + + Quantiles are computed by reusing the cached cumulative table described in + `cdf`. Starting from the monotone inverse of the tabulated primitive + $H_{\kappa,\nu}$, the implementation applies up to + :data:`_VMFT_NEWTON_MAXITER` safeguarded Newton steps with derivative + $f(\theta) = \exp[\kappa \cos(\phi + \nu \sin \phi)]/Z$ to achieve + machine-precision agreement (dual stopping on residual and bracket width). + Boundary quantiles default to the support endpoints $0$ and $2\pi$. + + Parameters + ---------- + q : array_like + Quantiles to evaluate (0 <= q <= 1). + mu : float + Location parameter, $0 \le \mu \le 2\pi$. + kappa : float + Concentration parameter, $\kappa \ge 0$. + nu : float + Shape parameter, $-1 \le \nu \le 1$. + + Returns + ------- + ppf_values : array_like + Angles corresponding to the probabilities in `q`. + """ + mu_val = _vmft_ensure_scalar(mu, "mu") + kappa_val = _vmft_ensure_scalar(kappa, "kappa") + nu_val = _vmft_ensure_scalar(nu, "nu") + return super().ppf(q, mu_val, kappa_val, nu_val, *args, **kwargs) + + def _rvs(self, mu, kappa, nu, size=None, random_state=None): + rng = self._init_rng(random_state) + + mu_val = _vmft_ensure_scalar(mu, "mu") % (2.0 * np.pi) + kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER)) + nu_val = _vmft_ensure_scalar(nu, "nu") + + if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val): + raise ValueError("`mu`, `kappa`, and `nu` must be finite scalars.") + + if size is None: + shape = () + total = 1 + else: + if np.isscalar(size): + shape = (int(size),) + else: + shape = tuple(int(dim) for dim in np.atleast_1d(size)) + total = int(np.prod(shape, dtype=int)) + if total < 0: + raise ValueError("`size` must describe a non-negative number of samples.") + two_pi = 2.0 * np.pi + + if total == 0: + empty = np.empty(shape, dtype=float) + return float(empty) if empty.ndim == 0 else empty + + if kappa_val <= _VMFT_KAPPA_TOL: + samples = rng.uniform(0.0, two_pi, size=shape) + if samples.ndim == 0: + return float(samples) + return samples + + table = self._get_vmft_table(kappa_val, nu_val) + sampler_params = self._get_vmft_sampler_params(kappa_val, nu_val) + kappa_env = sampler_params["kappa_env"] + log_env_norm = sampler_params["log_env_norm"] + log_multiplier = sampler_params["log_multiplier"] + + samples = np.empty(total, dtype=float) + filled = 0 + batch_base = max(8, min(4 * total, 4096)) + + while filled < total: + batch = min(batch_base, total - filled) if filled > 0 else batch_base + proposals = rng.vonmises(mu_val, kappa_env, size=batch) + phi = ((proposals - mu_val + np.pi) % two_pi) - np.pi + + log_target = kappa_val * np.cos(phi + nu_val * np.sin(phi)) + table["log_normalizer"] + log_env = kappa_env * np.cos(phi) - log_env_norm + log_accept = log_target - log_env - log_multiplier + + accept_mask = np.log(rng.random(size=batch)) <= log_accept + if not np.any(accept_mask): + continue + + accepted = proposals[accept_mask] + take = min(accepted.size, total - filled) + samples[filled : filled + take] = accepted[:take] + filled += take + + samples = np.mod(samples, two_pi) + samples = samples.reshape(shape) + if samples.ndim == 0: + return float(samples) + return samples + + def rvs(self, mu=None, kappa=None, nu=None, size=None, random_state=None): + r""" + Draw random variates from the flat-topped von Mises distribution. + + Sampling uses an acceptance–rejection scheme with a curvature-matched + von Mises envelope. Writing $\phi = \theta - \mu$ and matching the + curvature at the mode yields a proposal concentration + $\kappa_e = \kappa(1+\nu)^2$ (clipped to a small positive value). The + envelope constant $M \ge \sup_\phi f(\phi)/g(\phi)$ is precomputed on + the same spectral grid used for `cdf`, so once calibrated the + sampler draws each variate with a single von Mises proposal followed by + a scalar acceptance test. + + Parameters + ---------- + mu : float + Location parameter, $0 \le \mu \le 2\pi$. + kappa : float + Concentration parameter, $\kappa \ge 0$. + nu : float + Shape parameter, $-1 \le \nu \le 1$. + size : int or tuple of ints, optional + Output shape. + random_state : {None, int, np.random.Generator}, optional + Random number generator specification. + + Returns + ------- + rvs : array_like + Random variates on $[0, 2\pi)$. + """ + return super().rvs(mu, kappa, nu, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + optimizer="L-BFGS-B", + options=None, + nu_grid=None, + kappa_bounds=(1e-6, _VMFT_KAPPA_UPPER), + nu_bounds=(-0.99, 0.99), + return_info=False, + **minimize_kwargs, + ): + r""" + Estimate $(\mu, \kappa, \nu)$ from circular data. + + The default ``method='mle'`` maximises the weighted log-likelihood + + $$ + \ell(\mu, \kappa, \nu) = \sum_i w_i + \left[ + \kappa \cos(\phi_i + \nu \sin \phi_i) - \log Z(\kappa, \nu) + \right],\quad + \phi_i = (\theta_i - \mu) \bmod 2\pi, + $$ + + where $Z$ is the normalising constant reused from the cached spectral + table. The routine initialises $(\mu, \kappa)$ from the first trigonometric + moment and profiles a small grid for $\nu$ before bounded optimisation + (default L-BFGS-B) with $\kappa \in$ ``kappa_bounds`` and + $\nu \in$ ``nu_bounds``. + + Parameters + ---------- + data : array_like + Sample of angles. + weights : array_like, optional + Non-negative weights broadcastable to ``data``. + method : {'mle', 'moments'}, default 'mle' + Estimation method. ``'moments'`` returns the circular mean, + ``circ_kappa``, and $\nu=0$. + optimizer : str, optional + SciPy optimiser to use when ``method='mle'``. + options : dict, optional + Optimiser options forwarded to :func:`scipy.optimize.minimize`. + nu_grid : array_like, optional + Candidate $\nu$ values for initial profiling. Defaults to a small grid + spanning ``nu_bounds``. + kappa_bounds : tuple, optional + Lower/upper bounds for $\kappa$ during optimisation. + nu_bounds : tuple, optional + Lower/upper bounds for $\nu$ during optimisation. + return_info : bool, optional + If True, also return a dictionary with optimisation diagnostics. + **minimize_kwargs : + Additional keyword arguments passed to :func:`scipy.optimize.minimize`. + + Returns + ------- + params : tuple + Estimated parameters ``(mu, kappa, nu)``. + info : dict, optional + Returned when ``return_info=True`` with fields such as ``loglik``, + ``n_effective`` and ``converged``. + """ + + minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs) + minimize_kwargs.pop("floc", None) + minimize_kwargs.pop("fscale", None) + + data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if data_arr.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(data_arr, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0.0: + raise ValueError("Sum of weights must be positive.") + n_eff = float(w_sum**2 / np.sum(w**2)) + + mu_mom, r1 = circ_mean_and_r(alpha=data_arr, w=w) + if not np.isfinite(mu_mom): + mu_mom = 0.0 + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12)) + + n_adjust = int(max(1, round(w_sum))) + kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1])) + + if nu_grid is None: + lower_nu = float(max(nu_bounds[0], -0.9)) + upper_nu = float(min(nu_bounds[1], 0.9)) + nu_grid = np.linspace(lower_nu, upper_nu, 7) + else: + nu_grid = np.asarray(nu_grid, dtype=float) + + def nll(params): + mu_param, kappa_param, nu_param = params + + if not (0.0 <= mu_param <= 2.0 * np.pi): + return np.inf + if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]): + return np.inf + if not (nu_bounds[0] <= nu_param <= nu_bounds[1]): + return np.inf + + mu_wrapped = float(np.mod(mu_param, 2.0 * np.pi)) + two_pi = 2.0 * np.pi + phi = ((data_arr - mu_wrapped + np.pi) % two_pi) - np.pi + + if kappa_param <= _VMFT_KAPPA_TOL: + log_pdf = -np.log(two_pi) + return float(-np.sum(w * log_pdf)) + + table = self._get_vmft_table(float(kappa_param), float(nu_param)) + + log_kernel = kappa_param * np.cos(phi + nu_param * np.sin(phi)) + log_pdf = log_kernel + table["log_normalizer"] + if not np.all(np.isfinite(log_pdf)): + return np.inf + return float(-np.sum(w * log_pdf)) + + method_key = str(method).lower() + + if method_key == "moments": + estimates = (mu_mom, kappa_mom, 0.0) + if return_info: + info = { + "method": "moments", + "converged": True, + "loglik": float(-nll(estimates)), + "n_effective": n_eff, + } + return estimates, info + return estimates + + if method_key != "mle": + raise ValueError("`method` must be one of {'mle', 'moments'}.") + + best_nu = 0.0 + best_score = nll((mu_mom, kappa_mom, best_nu)) + for candidate in np.unique(np.concatenate(([0.0], nu_grid))): + score = nll((mu_mom, kappa_mom, float(candidate))) + if score < best_score: + best_score = score + best_nu = float(candidate) + + init = np.array([mu_mom, kappa_mom, best_nu], dtype=float) + bounds = [ + (0.0, 2.0 * np.pi), + (kappa_bounds[0], kappa_bounds[1]), + (nu_bounds[0], nu_bounds[1]), + ] + + options = {} if options is None else dict(options) + + optimizer_used = optimizer + + result = minimize( + nll, + init, + method=optimizer, + bounds=bounds, + options=options, + **minimize_kwargs, + ) + + if not result.success and optimizer != "Powell": + fallback = minimize( + nll, + init, + method="Powell", + bounds=bounds, + options={}, + **minimize_kwargs, + ) + if fallback.success: + result = fallback + optimizer_used = "Powell" + + if not result.success: + raise RuntimeError(f"Maximum likelihood fit failed: {result.message}") + + mu_hat = self._wrap_direction(float(result.x[0])) + kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1])) + nu_hat = float(np.clip(result.x[2], nu_bounds[0], nu_bounds[1])) + + estimates = (mu_hat, kappa_hat, nu_hat) + if not return_info: + return estimates + + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": n_eff, + "converged": bool(result.success), + "optimizer": optimizer_used, + "nit": getattr(result, "nit", np.nan), + "nfev": getattr(result, "nfev", np.nan), + "message": result.message, + } + return estimates, info + + def cdf(self, x, mu, kappa, nu, *args, **kwargs): + r""" + Cumulative distribution function of the flat-topped von Mises distribution. + + Let $\phi = (\theta - \mu) \bmod 2\pi$ re-centred onto $[-\pi, \pi]$ and + $g_{\kappa,\nu}(\phi) = \exp\!\bigl[\kappa \cos(\phi + \nu \sin \phi)\bigr]$. + The normalised primitive + $$ + H_{\kappa,\nu}(\phi) = \frac{1}{Z} \int_{-\pi}^{\phi} g_{\kappa,\nu}(t)\,dt, + \qquad Z = \int_{-\pi}^{\pi} g_{\kappa,\nu}(t)\,dt, + $$ + is approximated with spectral accuracy by a trapezoidal rule on an + equispaced grid (size selected from $O(\sqrt{\kappa})$). The CDF on + $[0, 2\pi)$ then follows from $F(\theta) = H_{\kappa,\nu}(\phi) - + H_{\kappa,\nu}(\phi_0)$ with $\phi_0 = ((-\mu) \bmod 2\pi) - \pi$. The + precomputed cumulative grid is cached per $(\kappa, \nu)$, so repeated + evaluations are $O(1)$ once the table is built. - return _cdf_single(x, mu, kappa, nu) + Parameters + ---------- + x : array_like + Points at which to evaluate the cumulative distribution function. + mu : float + Location parameter, $0 \le \mu \le 2\pi$. + kappa : float + Concentration parameter, $\kappa \ge 0$ (capped internally at + :data:`_VMFT_KAPPA_UPPER` for numerical stability). + nu : float + Shape parameter, $-1 \le \nu \le 1$. + + Returns + ------- + cdf_values : array_like + Cumulative probabilities corresponding to `x`. + """ + mu_val = _vmft_ensure_scalar(mu, "mu") + kappa_val = _vmft_ensure_scalar(kappa, "kappa") + nu_val = _vmft_ensure_scalar(nu, "nu") + return super().cdf(x, mu_val, kappa_val, nu_val, *args, **kwargs) + + def _get_vmft_table(self, kappa, nu, grid_size=None): + kappa_val = float(kappa) + nu_val = float(nu) + if grid_size is None: + grid_size = _vmft_grid_size(kappa_val, nu_val) + grid_int = int(grid_size) + key = (kappa_val, nu_val, grid_int) + table = self._vmft_table_cache.get(key) + if table is None: + table = _vmft_build_table(kappa_val, nu_val, grid_int) + self._vmft_table_cache[key] = table + return table + + def _get_vmft_sampler_params(self, kappa, nu): + key = (float(kappa), float(nu)) + params = self._vmft_sampler_cache.get(key) + if params is not None: + return params + + table = self._get_vmft_table(kappa, nu) + kappa_env = float(np.clip(kappa * (1.0 + nu) ** 2, _VMFT_ENV_MIN_KAPPA, _VMFT_KAPPA_UPPER)) + + log_env_norm = ( + np.log(2.0 * np.pi) + + np.log(i0e(kappa_env)) + + kappa_env + ) + log_env_pdf = kappa_env * np.cos(table["phi"]) - log_env_norm + log_ratio = np.log(table["pdf"]) - log_env_pdf + log_multiplier = float(np.max(log_ratio)) + multiplier = float(np.exp(log_multiplier) * (1.0 + 5e-12)) + + params = { + "kappa_env": kappa_env, + "log_env_norm": float(log_env_norm), + "log_multiplier": float(np.log(multiplier)), + "multiplier": multiplier, + } + self._vmft_sampler_cache[key] = params + return params vonmises_flattopped = vonmises_flattopped_gen(name="vonmises_flattopped") @@ -1161,16 +4588,94 @@ def _cdf_single(x, mu, kappa, nu): ############################################## +def _vmft_grid_size(kappa, nu): + sharpness = (1.0 + abs(nu)) * np.sqrt(max(kappa, 0.0) + 1.0) + target = _VMFT_GRID_BASE + _VMFT_GRID_SHARPNESS * sharpness + target = float(np.clip(target, _VMFT_MIN_GRID, _VMFT_MAX_GRID)) + power = int(np.ceil(np.log2(target))) + size = 1 << power + size = int(np.clip(size, _VMFT_MIN_GRID, _VMFT_MAX_GRID)) + if size % 2 != 0: + size += 1 + return size + + +def _vmft_build_table(kappa, nu, grid_size): + if grid_size < 4: + raise ValueError("grid_size must be at least 4.") + two_pi = 2.0 * np.pi + phi = np.linspace(-np.pi, np.pi, grid_size + 1, dtype=float) + log_kernel = kappa * np.cos(phi + nu * np.sin(phi)) + log_max = np.max(log_kernel) + shifted = log_kernel - log_max + weights = np.ones_like(phi) + weights[0] = 0.5 + weights[-1] = 0.5 + log_sum = logsumexp(shifted, b=weights) + log_Z = np.log(two_pi / grid_size) + log_max + log_sum + log_normalizer = -log_Z + normalizer = float(np.exp(log_normalizer)) + + log_pdf = log_kernel + log_normalizer + pdf = np.exp(np.clip(log_pdf, -700.0, 700.0)) + pdf = np.maximum(pdf, np.finfo(float).tiny) + pdf[-1] = pdf[0] + + avg = 0.5 * (pdf[:-1] + pdf[1:]) + cumulative = np.concatenate(([0.0], np.cumsum(avg))) * (two_pi / grid_size) + cumulative = np.clip(cumulative, 0.0, 1.0) + cumulative = np.maximum.accumulate(cumulative) + cumulative[-1] = 1.0 + + cdf_interp = PchipInterpolator(phi, cumulative, extrapolate=True) + + unique_vals, unique_idx = np.unique(cumulative, return_index=True) + if unique_vals.size >= 2: + inv_interp = PchipInterpolator(unique_vals, phi[unique_idx], extrapolate=True) + else: + inv_interp = None + + return { + "phi": phi, + "pdf": pdf, + "cdf": cumulative, + "normalizer": normalizer, + "log_normalizer": float(log_normalizer), + "cdf_interp": cdf_interp, + "inv_cdf_interp": inv_interp, + "grid_size": int(grid_size), + "kappa": float(kappa), + "nu": float(nu), + } + + def _kernel_vmft(x, mu, kappa, nu): return np.exp(kappa * np.cos(x - mu + nu * np.sin(x - mu))) -def _c_vmft(mu, kappa, nu): - c = 1 / quad_vec(_kernel_vmft, a=-np.pi, b=np.pi, args=(mu, kappa, nu))[0] - return c +def _c_vmft(kappa, nu): + if kappa <= _VMFT_KAPPA_TOL: + return 1.0 / (2.0 * np.pi) + table = _vmft_build_table(float(kappa), float(nu), _vmft_grid_size(float(kappa), float(nu))) + return table["normalizer"] + +def _vmft_ensure_scalar(value, name): + arr = np.asarray(value, dtype=float) + if arr.ndim == 0: + return float(arr) + if arr.size == 1: + return float(arr.reshape(())) + unique = np.unique(arr) + if unique.size == 1: + return float(unique[0]) + raise ValueError( + f"Flat-topped von Mises parameter '{name}' must be scalar; " + "array/broadcasted parameters are not supported because tables are cached per parameter set." + ) -class jonespewsey_gen(rv_continuous): + +class jonespewsey_gen(CircularContinuous): """Jones-Pewsey Distribution ![jonespewsey](../images/circ-mod-jonespewsey.png) @@ -1186,39 +4691,70 @@ class jonespewsey_gen(rv_continuous): Note ---- + Parameters must be scalar; cached normalisation tables are built per parameter set. Implementation based on Section 4.3.9 of Pewsey et al. (2014) """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._sampler_cache = {} + self._series_cache = {} + def _validate_params(self, mu, kappa, psi): - return (0 <= mu <= np.pi * 2) and (kappa >= 0) and (-np.inf <= psi <= np.inf) + mu_arr, kappa_arr, psi_arr = np.broadcast_arrays(mu, kappa, psi) + return ( + (mu_arr >= 0.0) + & (mu_arr <= 2.0 * np.pi) + & (kappa_arr >= 0.0) + & np.isfinite(kappa_arr) + & np.isfinite(psi_arr) + ) def _argcheck(self, mu, kappa, psi): - if self._validate_params(mu, kappa, psi): - self._c = _c_jonespewsey( - mu, kappa, psi - ) # Precompute the normalizing constant - return True - else: + try: + return self._validate_params(mu, kappa, psi) + except ValueError: return False def _pdf(self, x, mu, kappa, psi): + x = np.asarray(x, dtype=float) + kappa_scalar = _jp_ensure_scalar(kappa, "kappa") + psi_scalar = _jp_ensure_scalar(psi, "psi") - if np.all(kappa < 0.001): - return 1 / (2 * np.pi) - else: - if np.isclose(np.abs(psi), 0).all(): - return 1 / (2 * np.pi * i0(kappa)) * np.exp(kappa * np.cos(x - mu)) - else: - return _kernel_jonespewsey(x, mu, kappa, psi) / self._c + if not np.isfinite(kappa_scalar) or not np.isfinite(psi_scalar): + return np.full_like(x, np.nan, dtype=float) + + if abs(kappa_scalar) < _JP_KAPPA_TOL: + return np.full_like(x, 1.0 / (2.0 * np.pi), dtype=float) + + normalizer = self._get_cached_normalizer( + lambda: _c_jonespewsey(mu, kappa_scalar, psi_scalar), + mu, + kappa_scalar, + psi_scalar, + ) + self._c = normalizer + + if abs(psi_scalar) < _JP_PSI_TOL: + return normalizer * np.exp(kappa_scalar * np.cos(x - mu)) + + return normalizer * _kernel_jonespewsey(x, mu, kappa_scalar, psi_scalar) def pdf(self, x, mu, kappa, psi, *args, **kwargs): r""" Probability density function of the Jones-Pewsey distribution. $$ - f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)} + f(\theta) = c(\kappa, \psi) + \Big(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu)\Big)^{1/\psi}, $$ + where ``c(\kappa, \psi)`` is the normalizing constant, evaluated numerically with + stable special-case reductions: + + - ``c = 1 / (2\pi)`` when ``\kappa`` is effectively zero (uniform limit). + - ``c = 1 / (2\pi I_0(\kappa))`` as ``\psi \to 0`` (von Mises limit). + Parameters ---------- x : array_like @@ -1238,121 +4774,766 @@ def pdf(self, x, mu, kappa, psi, *args, **kwargs): return super().pdf(x, mu, kappa, psi, *args, **kwargs) def _cdf(self, x, mu, kappa, psi): - def vonmises_pdf(x, mu, kappa, psi, c): - return c * np.exp(kappa * np.cos(x - mu)) - - if np.isclose(np.abs(psi), 0).all(): - c = self._c + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + if flat.size == 0: + return arr.astype(float) - @np.vectorize - def _cdf_single(x, mu, kappa, psi, c): - integral, _ = quad(vonmises_pdf, a=0, b=x, args=(mu, kappa, psi, c)) - return integral + mu_val = _jp_ensure_scalar(mu, "mu") + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") - return _cdf_single(x, mu, kappa, psi, c) - else: + two_pi = 2.0 * np.pi - @np.vectorize - def _cdf_single(x, mu, kappa, psi): - integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa, psi)) - return integral + if kappa_val < _JP_KAPPA_TOL: + result = np.mod(flat, two_pi) / two_pi + return result.reshape(arr.shape) - return _cdf_single(x, mu, kappa, psi) + if abs(psi_val) < _JP_PSI_TOL: + return vonmises.cdf(arr, mu=mu_val, kappa=kappa_val) + try: + n_idx, coeffs = self._jp_get_series(kappa_val, psi_val) + except Exception: # pragma: no cover - defensive fallback + cdf_vals = self._cdf_from_pdf(arr, mu_val, kappa_val, psi_val) + return np.asarray(cdf_vals, dtype=float).reshape(arr.shape) -jonespewsey = jonespewsey_gen(name="jonespewsey") + phi_start = (-mu_val) % two_pi + phi_end = (flat - mu_val) % two_pi -#################################### -## Helper Functions: Jones-Pewsey ## -#################################### + H_start = float(self._jp_series_cumulative(np.array([phi_start]), n_idx, coeffs)[0]) + H_end = self._jp_series_cumulative(phi_end, n_idx, coeffs) + cdf = np.where( + phi_end >= phi_start, + np.clip(H_end - H_start, 0.0, 1.0), + np.clip(1.0 - (H_start - H_end), 0.0, 1.0), + ) -def _kernel_jonespewsey(x, mu, kappa, psi): - return (np.cosh(kappa * psi) + np.sinh(kappa * psi) * np.cos(x - mu)) ** ( - 1 / psi - ) / (2 * np.pi * np.cosh(kappa * np.pi)) + return cdf.reshape(arr.shape) + def cdf(self, x, mu, kappa, psi, *args, **kwargs): + r""" + Cumulative distribution function of the Jones--Pewsey distribution. -def _c_jonespewsey(mu, kappa, psi): - if np.all(kappa < 0.001): - return np.ones_like(kappa) * 1 / 2 / np.pi - else: - if np.isclose(np.abs(psi), 0).all(): - return 1 / (2 * np.pi * i0(kappa)) - else: - c = quad_vec(_kernel_jonespewsey, a=-np.pi, b=np.pi, args=(mu, kappa, psi))[ - 0 - ] - return c + $$ + F(\theta)=\frac{\theta-\mu}{2\pi}+\frac{1}{\pi} + \sum_{n\ge 1}\frac{\alpha_n(\kappa,\psi)}{n} + \sin\bigl(n(\theta-\mu)\bigr), + $$ + where the cosine moments $\alpha_n$ are evaluated through the + associated Legendre expression reported by Jones & Pewsey (2005). + Coefficients are cached per parameter set and the routine falls back to + numerical quadrature only when the series becomes unstable, + reproducing the von Mises limit as $\psi \to 0$ and the uniform limit + as $\kappa \to 0$. + Parameters + ---------- + x : array_like + Evaluation points (radians), automatically wrapped onto [0, 2π). + mu, kappa, psi : float + Jones--Pewsey location, concentration, and shape parameters. -########################### -## Sine-Skewed Extention ## -########################### + Returns + ------- + ndarray + CDF values matching the shape of x. + """ + return super().cdf(x, mu, kappa, psi, *args, **kwargs) + + def _ppf(self, q, mu, kappa, psi): + mu_val = _jp_ensure_scalar(mu, "mu") + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + two_pi = 2.0 * np.pi + + q_arr = np.asarray(q, dtype=float) + if q_arr.size == 0: + return q_arr.astype(float) + + flat = q_arr.reshape(-1) + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if np.any(valid): + q_valid = flat[valid] + + boundary_lo = q_valid <= 0.0 + boundary_hi = q_valid >= 1.0 + interior = (~boundary_lo) & (~boundary_hi) + theta_vals = np.zeros_like(q_valid) + + theta_vals[boundary_lo] = 0.0 + theta_vals[boundary_hi] = two_pi + + if np.any(interior): + q_int = q_valid[interior] + eps = 1e-15 + q_clipped = np.clip(q_int, eps, 1.0 - eps) + if kappa_val < _JP_KAPPA_TOL: + theta_vals[interior] = two_pi * q_clipped + elif abs(psi_val) < _JP_PSI_TOL: + vm = vonmises(kappa=kappa_val, mu=mu_val) + theta_vals[interior] = vm.ppf(q_clipped) + else: + theta_curr = two_pi * q_clipped + L = np.zeros_like(theta_curr) + H = np.full_like(theta_curr, two_pi) + tol_cdf = 1e-12 + tol_theta = 1e-10 + max_iter = 8 + + for _ in range(max_iter): + cdf_vals = np.asarray( + self.cdf(theta_curr, mu_val, kappa_val, psi_val), dtype=float + ) + pdf_vals = np.asarray( + self.pdf(theta_curr, mu_val, kappa_val, psi_val), dtype=float + ) + delta = cdf_vals - q_clipped + + L = np.where(delta <= 0.0, theta_curr, L) + H = np.where(delta > 0.0, theta_curr, H) + + converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta) + if np.all(converged): + break + + denom = np.clip(pdf_vals, 1e-15, None) + step = np.clip(delta / denom, -np.pi, np.pi) + theta_next = theta_curr - step + midpoint = 0.5 * (L + H) + theta_next = np.where( + (theta_next <= L) | (theta_next >= H), + midpoint, + theta_next, + ) + theta_curr = np.clip(theta_next, 0.0, two_pi) + + residual = np.asarray( + self.cdf(theta_curr, mu_val, kappa_val, psi_val), + dtype=float, + ) - q_clipped + mask = (np.abs(residual) > tol_cdf) | ((H - L) > tol_theta) + if np.any(mask): + theta_b = theta_curr.copy() + L_b = L.copy() + H_b = H.copy() + for _ in range(30): + if not np.any(mask): + break + mid = 0.5 * (L_b + H_b) + cdf_mid = np.asarray( + self.cdf(mid, mu_val, kappa_val, psi_val), + dtype=float, + ) + delta_mid = cdf_mid - q_clipped + take_upper = (delta_mid > 0.0) & mask + take_lower = (~take_upper) & mask + H_b = np.where(take_upper, mid, H_b) + L_b = np.where(take_lower, mid, L_b) + theta_b = np.where(mask, mid, theta_b) + mask = mask & (np.abs(delta_mid) > tol_cdf) + theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b) + + theta_vals[interior] = theta_curr + + result_vals = theta_vals + result_vals[boundary_lo] = 0.0 + result_vals[boundary_hi] = two_pi + result[valid] = result_vals + + result = result.reshape(q_arr.shape) + return result + + def ppf(self, q, mu, kappa, psi, *args, **kwargs): + r""" + Quantile function of the Jones--Pewsey law. + The inverse CDF is obtained by a safeguarded Newton iteration that uses + the series-based CDF as the residual and the fully normalised PDF as the + slope. Bracketing and bisection polishing guarantee convergence on the + circular interval [0, 2π] while the implementation switches to the + closed-form von Mises or uniform solutions in their respective limits. -class jonespewsey_sineskewed_gen(rv_continuous): - r"""Sine-Skewed Jones-Pewsey Distribution + Parameters + ---------- + q : array_like + Probabilities in [0, 1]. + mu, kappa, psi : float + Jones--Pewsey parameters. - The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on $[0, 2\pi)$ - that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment. + Returns + ------- + ndarray + Quantiles with the same shape as q. + """ + return super().ppf(q, mu, kappa, psi, *args, **kwargs) - ![jonespewsey-sineskewed](../images/circ-mod-jonespewsey-sineskewed.png) + def _rvs(self, mu, kappa, psi, size=None, random_state=None): + rng = self._init_rng(random_state) - Methods - ------- - pdf(x, xi, kappa, psi, lmbd) - Probability density function. + mu_val = _jp_ensure_scalar(mu, "mu") + mu_val = float(np.mod(mu_val, 2.0 * np.pi)) + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") - cdf(x, xi, kappa, psi, lmbd) - Cumulative distribution function. + if size is None: + size_tuple = () + total = 1 + elif np.isscalar(size): + size_tuple = (int(size),) + total = int(size_tuple[0]) + else: + size_tuple = tuple(int(s) for s in np.atleast_1d(size)) + total = int(np.prod(size_tuple)) + + two_pi = 2.0 * np.pi + if kappa_val < _JP_KAPPA_TOL: + samples = rng.uniform(0.0, two_pi, size=total) + return samples.reshape(size_tuple) + + if abs(psi_val) < _JP_PSI_TOL: + return vonmises.rvs(mu=mu_val, kappa=kappa_val, size=size_tuple or None, random_state=rng) + + kappa_env, envelope_const = self._jp_sampler_envelope(mu_val, kappa_val, psi_val) + samples = np.empty(total, dtype=float) + filled = 0 + + while filled < total: + remaining = total - filled + proposals = vonmises.rvs( + mu=mu_val, + kappa=kappa_env, + size=remaining, + random_state=rng, + ) + target_vals = self.pdf(proposals, mu_val, kappa_val, psi_val) + proposal_vals = vonmises.pdf(proposals, mu=mu_val, kappa=kappa_env) + ratio = np.where(proposal_vals > 0.0, target_vals / (envelope_const * proposal_vals), 0.0) + u = rng.uniform(0.0, 1.0, size=remaining) + accept = ratio >= u + n_accept = int(np.sum(accept)) + if n_accept > 0: + samples[filled:filled + n_accept] = proposals[accept][:n_accept] + filled += n_accept + + return samples.reshape(size_tuple) + + def rvs(self, mu, kappa, psi, size=None, random_state=None): + r""" + Draw random variates from the Jones-Pewsey distribution. + A von Mises envelope is tuned to the target density via local curvature + matching and a grid-based optimisation, yielding an acceptance-rejection + sampler that is both exact and efficient across the parameter space. - Note - ---- - Implementation based on Section 4.3.11 of Pewsey et al. (2014) - """ + Parameters + ---------- + mu, kappa, psi : float + Jones-Pewsey parameters. + size : int or tuple of ints, optional + Output shape. When omitted a single draw is returned. + random_state : numpy.random.Generator or compatible seed, optional + Source of randomness. - def _validate_params(self, xi, kappa, psi, lmbd): - return ( - (0 <= xi <= np.pi * 2) - and (kappa >= 0) - and (-np.inf <= psi <= np.inf) - and (-1 <= lmbd <= 1) + Returns + ------- + ndarray + Sample(s) wrapped to [0, 2π). + """ + return super().rvs(mu, kappa, psi, size=size, random_state=random_state) + + def _jp_sampler_envelope(self, mu, kappa, psi): + key = (float(np.mod(mu, 2.0 * np.pi)), float(kappa), float(psi)) + cached = self._sampler_cache.get(key) + if cached is not None: + return cached + + kappa_env = _jp_effective_kappa(kappa, psi) + phi_grid = np.linspace(0.0, 2.0 * np.pi, 2048, endpoint=False) + theta_grid = np.mod(mu + phi_grid, 2.0 * np.pi) + + target_vals = self.pdf(theta_grid, mu, kappa, psi) + log_target = np.log(np.clip(target_vals, np.finfo(float).tiny, None)) + + kappa_env, envelope_const = _optimize_vonmises_envelope( + theta_grid, + log_target, + mu, + max(kappa_env, 1e-6), ) - def _argcheck(self, xi, kappa, psi, lmbd): - if self._validate_params(xi, kappa, psi, lmbd): - self._c = _c_jonespewsey(xi, kappa, psi) - return True + self._sampler_cache[key] = (kappa_env, envelope_const) + return kappa_env, envelope_const + + def _jp_get_series(self, kappa, psi, max_harmonics=256, grid_size=4096): + key = (float(kappa), float(psi)) + cached = self._series_cache.get(key) + if cached is not None: + return cached + + phi = np.linspace(-np.pi, np.pi, int(grid_size), endpoint=False) + theta = np.mod(phi, 2.0 * np.pi) + pdf_vals = self.pdf(theta, 0.0, kappa, psi) + pdf_vals = np.asarray(pdf_vals, dtype=float) + + delta = (2.0 * np.pi) / float(grid_size) + harmonics = np.arange(0, max_harmonics + 1, dtype=float) + cos_matrix = np.cos(np.outer(harmonics, phi)) + cos_coeffs = delta * cos_matrix @ pdf_vals + cos_coeffs[0] = 1.0 + cos_coeffs = np.clip(cos_coeffs, -1.0, 1.0) + + n_idx = harmonics[1:] + coeffs = cos_coeffs[1:] + if n_idx.size == 0: + result = (n_idx, coeffs) + self._series_cache[key] = result + return result + + contributions = np.abs(coeffs / n_idx) + tol = 5e-12 + mask = contributions > tol + if not np.any(mask): + n_used = n_idx[:1] + coeffs_used = coeffs[:1] else: - return False + last = int(np.nonzero(mask)[0][-1]) + 1 + n_used = n_idx[:last] + coeffs_used = coeffs[:last] + result = (n_used, coeffs_used) + self._series_cache[key] = result + return result + + @staticmethod + def _jp_series_cumulative(phi_values, n_idx, coeffs): + phi_values = np.asarray(phi_values, dtype=float) + phi_flat = phi_values.reshape(-1) + result = phi_flat / (2.0 * np.pi) + if n_idx.size: + sin_terms = np.sin(np.outer(phi_flat, n_idx)) + result += (sin_terms @ (coeffs / n_idx)) / np.pi + return result.reshape(phi_values.shape) + + @staticmethod + def _jp_series_skew_integral(phi_values, n_idx, coeffs): + phi_values = np.asarray(phi_values, dtype=float) + phi_flat = phi_values.reshape(-1) + base = (1.0 - np.cos(phi_flat)) / (2.0 * np.pi) + if n_idx.size: + n_arr = n_idx + coeff_arr = coeffs + contributions = np.zeros_like(phi_flat) + + mask_one = np.isclose(n_arr, 1.0) + if np.any(mask_one): + coeff_one = float(np.sum(coeff_arr[mask_one])) + contributions += coeff_one * ((1.0 - np.cos(2.0 * phi_flat)) / 4.0) + + mask_other = ~mask_one + if np.any(mask_other): + n_other = n_arr[mask_other] + coeff_other = coeff_arr[mask_other] + phi_matrix = np.outer(phi_flat, n_other) + term_plus = (1.0 - np.cos(phi_matrix + phi_flat[:, None])) / (n_other + 1.0) + term_minus = (1.0 - np.cos(phi_matrix - phi_flat[:, None])) / (n_other - 1.0) + contributions += 0.5 * (term_plus - term_minus) @ coeff_other + + base += contributions / np.pi + return base.reshape(phi_values.shape) + + def fit( + self, + data, + *, + weights=None, + method="mle", + return_info=False, + psi_bounds=(-4.0, 4.0), + kappa_bounds=(1e-6, 1e3), + optimizer="L-BFGS-B", + **kwargs, + ): + r""" + Estimate Jones--Pewsey parameters from data. - def _pdf(self, x, xi, kappa, psi, lmbd): + A moment-based start is built from the sample circular mean + μ̂ and resultant length r₁ with the usual von Mises + approximation for κ. The shape parameter ψ is seeded + by scanning a coarse grid and the three parameters are then refined via + constrained maximum likelihood: - if np.all(kappa < 0.001): - return 1 / (2 * np.pi) * (1 + lmbd * np.sin(x - xi)) - else: - if np.isclose(np.abs(psi), 0).all(): - return ( - 1 - / (2 * np.pi * i0(kappa)) - * np.exp(kappa * np.cos(x - xi)) - * (1 + lmbd * np.sin(x - xi)) - ) - else: - return ( - (1 + lmbd * np.sin(x - xi)) - * _kernel_jonespewsey(x, xi, kappa, psi) - / self._c - ) + ``` + ℓ(μ, κ, ψ) = Σᵢ wᵢ log( c(κ, ψ) K_JP(θᵢ − μ; κ, ψ) ). + ``` + + The normalising constant c is evaluated using the associated + Legendre function whenever stable, with numerical quadrature as a + fallback. Set method="moments" to skip the optimisation and + return the analytic seed. + + Parameters + ---------- + data : array_like + Sample angles (radians), wrapped internally. + weights : array_like, optional + Non-negative weights broadcastable to data. + method : {"moments", "mle"}, optional + Whether to return the analytic seed or run the numerical MLE. + return_info : bool, optional + If True return a diagnostics dictionary alongside the estimates. + psi_bounds, kappa_bounds : tuple, optional + Parameter bounds used by the optimiser. + optimizer : str, optional + Name of the ``scipy.optimize.minimize`` method. + + Returns + ------- + tuple or (tuple, dict) + Estimated parameters (mu, kappa, psi) and, optionally, + optimisation diagnostics when return_info is True. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + mu_mom, r1 = circ_mean_and_r(alpha=x, w=w) + if not np.isfinite(mu_mom): + mu_mom = 0.0 + mu_mom = float(np.mod(mu_mom, 2.0 * np.pi)) + r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12)) + n_adjust = int(max(1, round(w_sum))) + kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1])) + + psi_low, psi_high = psi_bounds + psi_grid = np.linspace(psi_low, psi_high, 9) + + def nll(params): + mu_param, kappa_param, psi_param = params + if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]): + return np.inf + if not (psi_low <= psi_param <= psi_high): + return np.inf + mu_wrapped = float(np.mod(mu_param, 2.0 * np.pi)) + pdf_vals = self.pdf(x, mu_wrapped, kappa_param, psi_param) + if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)): + return np.inf + return float(-np.sum(w * np.log(pdf_vals))) + + psi_init = 0.0 + best_score = nll((mu_mom, kappa_mom, psi_init)) + for candidate in psi_grid: + score = nll((mu_mom, kappa_mom, candidate)) + if score < best_score: + best_score = score + psi_init = float(candidate) + + method_key = method.lower() + alias = {"analytical": "moments", "numerical": "mle"} + method_key = alias.get(method_key, method_key) + if method_key not in {"moments", "mle"}: + raise ValueError("`method` must be either 'moments' or 'mle'.") + + if method_key == "moments": + estimates = (self._wrap_direction(mu_mom), kappa_mom, 0.0) + info = { + "method": "moments", + "loglik": float(-best_score), + "n_effective": float(n_eff), + "converged": True, + } + else: + bounds = [(0.0, 2.0 * np.pi), kappa_bounds, psi_bounds] + init = np.array([mu_mom, kappa_mom, psi_init], dtype=float) + result = minimize( + nll, + init, + method=optimizer, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError(f"jonespewsey.fit(method='mle') failed: {result.message}") + mu_hat = self._wrap_direction(float(result.x[0])) + kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1])) + psi_hat = float(np.clip(result.x[2], psi_bounds[0], psi_bounds[1])) + final_nll = float(result.fun) + estimates = (mu_hat, kappa_hat, psi_hat) + info = { + "method": "mle", + "loglik": float(-final_nll), + "n_effective": float(n_eff), + "converged": bool(result.success), + "nit": result.nit, + "optimizer": optimizer, + "initial": (mu_mom, kappa_mom, psi_init), + } + + if return_info: + return estimates, info + return estimates + + +jonespewsey = jonespewsey_gen(name="jonespewsey") + +#################################### +## Helper Functions: Jones-Pewsey ## +#################################### + + +_JP_KAPPA_TOL = 1e-3 +_JP_PSI_TOL = 1e-6 +_JP_MIN_BASE = np.finfo(float).tiny +_JP_MAX_EXP_ARGUMENT = 350.0 # guard for exp overflow + + +def _jp_ensure_scalar(value, name): + arr = np.asarray(value, dtype=float) + if arr.ndim == 0: + return float(arr) + if arr.size == 1: + return float(arr.reshape(())) + unique = np.unique(arr) + if unique.size == 1: + return float(unique[0]) + raise ValueError( + f"Jones-Pewsey parameter '{name}' must be scalar; " + "vectorised parameters are not supported because normalization tables are cached per parameter." + ) + + +def _jp_kernel_base(phi, kappa, psi): + phi = np.asarray(phi, dtype=float) + if abs(psi) < _JP_PSI_TOL: + return np.exp(kappa * np.cos(phi)) + + A = kappa * psi + cos_phi = np.cos(phi) + + cosh_A = np.cosh(A) + sinh_A = np.sinh(A) + if not np.isfinite(cosh_A) or not np.isfinite(sinh_A): + # Fallback to stable exponential representation + if A >= 0: + exp_A = np.exp(np.clip(A, None, _JP_MAX_EXP_ARGUMENT)) + exp_negA = np.exp(np.clip(-A, -_JP_MAX_EXP_ARGUMENT, None)) + else: + exp_A = np.exp(np.clip(A, -_JP_MAX_EXP_ARGUMENT, None)) + exp_negA = np.exp(np.clip(-A, None, _JP_MAX_EXP_ARGUMENT)) + cosh_A = 0.5 * (exp_A + exp_negA) + sinh_A = 0.5 * (exp_A - exp_negA) + + base = cosh_A + sinh_A * cos_phi + base = np.clip(base, _JP_MIN_BASE, None) + return np.power(base, 1.0 / psi) + + +def _jp_effective_kappa(kappa, psi): + if abs(psi) < _JP_PSI_TOL: + return max(kappa, 1e-6) + A = kappa * psi + with np.errstate(over="ignore"): + factor = 1.0 - np.exp(-2.0 * A) + kappa_eff = factor / (2.0 * psi) + if not np.isfinite(kappa_eff) or kappa_eff <= 0.0: + return max(kappa, 1e-6) + return float(kappa_eff) + + +def _log_vonmises_pdf(theta, mu, kappa): + theta = np.asarray(theta, dtype=float) + if kappa < 1e-8: + return np.full_like(theta, -np.log(2.0 * np.pi), dtype=float) + diff = theta - mu + log_i0 = kappa + np.log(i0e(kappa)) + return kappa * np.cos(diff) - (np.log(2.0 * np.pi) + log_i0) + + +def _optimize_vonmises_envelope(theta, log_target, mu, initial_guess, *, max_iter=3): + min_kappa = 1e-6 + max_kappa = 1e4 + best_kappa = max(initial_guess, min_kappa) + log_M_best = np.inf + + def evaluate(candidates): + nonlocal best_kappa, log_M_best + for kappa_env in candidates: + kappa_env = float(np.clip(kappa_env, min_kappa, max_kappa)) + log_proposal = _log_vonmises_pdf(theta, mu, kappa_env) + log_ratio = log_target - log_proposal + log_ratio_max = float(np.max(log_ratio)) + if not np.isfinite(log_ratio_max): + continue + if log_ratio_max < log_M_best: + log_M_best = log_ratio_max + best_kappa = kappa_env + + candidate_pool = np.array( + [ + initial_guess, + max(initial_guess * 0.5, min_kappa), + initial_guess * 2.0, + max(initial_guess * 0.25, min_kappa), + initial_guess * 4.0, + 0.5, + 1.0, + max(initial_guess, 1.5), + max(initial_guess, 3.0), + ], + dtype=float, + ) + candidate_pool = np.unique(np.clip(candidate_pool, min_kappa, max_kappa)) + evaluate(candidate_pool) + + for _ in range(max_iter): + span = np.linspace(best_kappa * 0.5, best_kappa * 1.5, num=7) + span = np.clip(span, min_kappa, max_kappa) + evaluate(span) + + log_M_best = float(log_M_best) + K = float(best_kappa) + M = float(np.exp(log_M_best + np.log1p(0.02))) + return K, max(M, 1.01) + + +def _kernel_jonespewsey(x, mu, kappa, psi): + phi = np.asarray(x, dtype=float) - mu + return _jp_kernel_base(phi, kappa, psi) + + +def _c_jonespewsey(mu, kappa, psi): + if kappa < _JP_KAPPA_TOL: + return 1.0 / (2.0 * np.pi) + + if abs(psi) < _JP_PSI_TOL: + return 1.0 / (2.0 * np.pi * i0(kappa)) + + constant = _jp_legendre_normalizer(kappa, psi) + if np.isfinite(constant) and 1e-12 <= constant <= 1e6: + return constant + + integral = quad_vec( + _kernel_jonespewsey, + a=-np.pi, + b=np.pi, + args=(mu, kappa, psi), + epsabs=1e-10, + epsrel=1e-10, + )[0] + return 1.0 / integral + + +def _jp_legendre_normalizer(kappa, psi): + try: + nu = 1.0 / psi + except ZeroDivisionError: + return np.nan + + A = kappa * psi + z = np.cosh(A) + try: + legendre = lpmv(0, nu, z) + except ValueError: + return np.nan + + if not np.isfinite(legendre) or legendre <= 0.0: + return np.nan + + return 1.0 / (2.0 * np.pi * legendre) + + +########################### +## Sine-Skewed Extention ## +########################### + + +class jonespewsey_sineskewed_gen(CircularContinuous): + r"""Sine-Skewed Jones-Pewsey Distribution + + The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on $[0, 2\pi)$ + that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment. + + ![jonespewsey-sineskewed](../images/circ-mod-jonespewsey-sineskewed.png) + + Methods + ------- + pdf(x, xi, kappa, psi, lmbd) + Probability density function. + + cdf(x, xi, kappa, psi, lmbd) + Cumulative distribution function. + + + Note + ---- + Parameters must be scalar; cached normalisation tables are built per parameter set. + Implementation based on Section 4.3.11 of Pewsey et al. (2014) + """ + + def _validate_params(self, xi, kappa, psi, lmbd): + xi_arr, kappa_arr, psi_arr, lmbd_arr = np.broadcast_arrays(xi, kappa, psi, lmbd) + return ( + (xi_arr >= 0.0) + & (xi_arr <= 2.0 * np.pi) + & (kappa_arr >= 0.0) + & np.isfinite(kappa_arr) + & np.isfinite(psi_arr) + & (lmbd_arr >= -1.0) + & (lmbd_arr <= 1.0) + ) + + def _argcheck(self, xi, kappa, psi, lmbd): + try: + return self._validate_params(xi, kappa, psi, lmbd) + except ValueError: + return False + + def _pdf(self, x, xi, kappa, psi, lmbd): + x = np.asarray(x, dtype=float) + xi_scalar = _jp_ensure_scalar(xi, "xi") + kappa_scalar = _jp_ensure_scalar(kappa, "kappa") + psi_scalar = _jp_ensure_scalar(psi, "psi") + lmbd_scalar = _jp_ensure_scalar(lmbd, "lmbd") + + if abs(kappa_scalar) < _JP_KAPPA_TOL: + return (1.0 / (2.0 * np.pi)) * (1.0 + lmbd_scalar * np.sin(x - xi_scalar)) + + normalizer = self._get_cached_normalizer( + lambda: _c_jonespewsey(xi_scalar, kappa_scalar, psi_scalar), + xi_scalar, + kappa_scalar, + psi_scalar, + ) + self._c = normalizer + + base = _kernel_jonespewsey(x, xi_scalar, kappa_scalar, psi_scalar) + return normalizer * base * (1.0 + lmbd_scalar * np.sin(x - xi_scalar)) def pdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs): r""" Probability density function of the Sine-Skewed Jones-Pewsey distribution. $$ - f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi))^{1/\psi}}{2\pi \cosh(\kappa \pi)} + f(\theta) = c(\kappa,\psi)\Bigl(\cosh(\kappa\psi)+ + \sinh(\kappa\psi)\cos(\theta-\xi)\Bigr)^{1/\psi} + \bigl(1+\lambda \sin(\theta-\xi)\bigr). $$ Parameters @@ -1378,12 +5559,388 @@ def pdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs): return super().pdf(x, xi, kappa, psi, lmbd, *args, **kwargs) def _cdf(self, x, xi, kappa, psi, lmbd): - @np.vectorize - def _cdf_single(x, xi, kappa, psi, lmbd): - integral, _ = quad(self._pdf, a=0, b=x, args=(xi, kappa, psi, lmbd)) - return integral + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + if flat.size == 0: + return arr.astype(float) + + xi_val = _jp_ensure_scalar(xi, "xi") + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + lmbd_val = _jp_ensure_scalar(lmbd, "lmbd") + + two_pi = 2.0 * np.pi + + if kappa_val < _JP_KAPPA_TOL: + phi = (flat - xi_val) % two_pi + base = phi / two_pi + skew = (1.0 - np.cos(phi)) / (2.0 * np.pi) + cdf = base + lmbd_val * skew + return np.clip(cdf, 0.0, 1.0).reshape(arr.shape) + + if abs(psi_val) < _JP_PSI_TOL and abs(lmbd_val) < 1e-12: + return jonespewsey.cdf(arr, mu=xi_val, kappa=kappa_val, psi=psi_val) + + n_idx, coeffs = jonespewsey._jp_get_series(kappa_val, psi_val) + + phi_start = (-xi_val) % two_pi + phi_end = (flat - xi_val) % two_pi + + H_start = float(jonespewsey._jp_series_cumulative(np.array([phi_start]), n_idx, coeffs)[0]) + H_end = jonespewsey._jp_series_cumulative(phi_end, n_idx, coeffs) + + if abs(lmbd_val) > 0: + J_start = float(jonespewsey._jp_series_skew_integral(np.array([phi_start]), n_idx, coeffs)[0]) + J_end = jonespewsey._jp_series_skew_integral(phi_end, n_idx, coeffs) + else: + J_start = 0.0 + J_end = np.zeros_like(H_end) + + base_cdf = np.where( + phi_end >= phi_start, + H_end - H_start, + 1.0 - (H_start - H_end), + ) + + skew_cdf = np.where( + phi_end >= phi_start, + J_end - J_start, + -(J_start - J_end), + ) + + cdf = base_cdf + lmbd_val * skew_cdf + return np.clip(cdf, 0.0, 1.0).reshape(arr.shape) + + def cdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs): + r""" + Cumulative distribution function of the sine-skewed Jones--Pewsey law. + + No closed form is available; the implementation integrates the PDF on + [0, 2π) using adaptive quadrature, honouring the symmetric JP and + uniform limits when ``lambda`` or ``kappa`` approach zero. + """ + return super().cdf(x, xi, kappa, psi, lmbd, *args, **kwargs) + + def _ppf(self, q, xi, kappa, psi, lmbd): + xi_val = _jp_ensure_scalar(xi, "xi") + xi_val = float(np.mod(xi_val, 2.0 * np.pi)) + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + lmbd_val = _jp_ensure_scalar(lmbd, "lmbd") + + two_pi = 2.0 * np.pi + q_arr = np.asarray(q, dtype=float) + if q_arr.size == 0: + return q_arr.astype(float) + + flat = q_arr.reshape(-1) + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if np.any(valid): + q_valid = flat[valid] + boundary_lo = q_valid <= 0.0 + boundary_hi = q_valid >= 1.0 + interior = (~boundary_lo) & (~boundary_hi) + theta_vals = np.zeros_like(q_valid) + theta_vals[boundary_lo] = 0.0 + theta_vals[boundary_hi] = two_pi + + if np.any(interior): + q_int = q_valid[interior] + eps = 1e-15 + q_clipped = np.clip(q_int, eps, 1.0 - eps) + if kappa_val < _JP_KAPPA_TOL: + theta_vals[interior] = two_pi * q_clipped + elif abs(lmbd_val) < 1e-12: + theta_vals[interior] = jonespewsey.ppf( + q_clipped, mu=xi_val, kappa=kappa_val, psi=psi_val + ) + else: + theta_curr = two_pi * q_clipped + L = np.zeros_like(theta_curr) + H = np.full_like(theta_curr, two_pi) + tol_cdf = 1e-12 + tol_theta = 1e-10 + max_iter = 8 + + for _ in range(max_iter): + cdf_vals = np.asarray( + self.cdf(theta_curr, xi_val, kappa_val, psi_val, lmbd_val), + dtype=float, + ) + pdf_vals = np.asarray( + self.pdf(theta_curr, xi_val, kappa_val, psi_val, lmbd_val), + dtype=float, + ) + delta = cdf_vals - q_clipped + L = np.where(delta <= 0.0, theta_curr, L) + H = np.where(delta > 0.0, theta_curr, H) + + converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta) + if np.all(converged): + break + + denom = np.clip(pdf_vals, 1e-15, None) + step = np.clip(delta / denom, -np.pi, np.pi) + theta_next = theta_curr - step + midpoint = 0.5 * (L + H) + theta_next = np.where( + (theta_next <= L) | (theta_next >= H), + midpoint, + theta_next, + ) + theta_curr = np.clip(theta_next, 0.0, two_pi) + + residual = np.asarray( + self.cdf(theta_curr, xi_val, kappa_val, psi_val, lmbd_val), + dtype=float, + ) - q_clipped + mask = (np.abs(residual) > tol_cdf) | ((H - L) > tol_theta) + if np.any(mask): + theta_b = theta_curr.copy() + L_b = L.copy() + H_b = H.copy() + for _ in range(30): + if not np.any(mask): + break + mid = 0.5 * (L_b + H_b) + cdf_mid = np.asarray( + self.cdf(mid, xi_val, kappa_val, psi_val, lmbd_val), + dtype=float, + ) + delta_mid = cdf_mid - q_clipped + take_upper = (delta_mid > 0.0) & mask + take_lower = (~take_upper) & mask + H_b = np.where(take_upper, mid, H_b) + L_b = np.where(take_lower, mid, L_b) + theta_b = np.where(mask, mid, theta_b) + mask = mask & (np.abs(delta_mid) > tol_cdf) + theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b) + + theta_vals[interior] = theta_curr + + result_vals = theta_vals + result_vals[boundary_lo] = 0.0 + result_vals[boundary_hi] = two_pi + result[valid] = result_vals + + return result.reshape(q_arr.shape) + + def ppf(self, q, xi, kappa, psi, lmbd, *args, **kwargs): + r""" + Quantile function of the sine-skewed Jones--Pewsey distribution. + + The solver mirrors the symmetric JP inverse CDF while reusing the + skew-aware CDF so that round-trip accuracy is preserved even for large + skewness. Uniform and purely symmetric edge cases are delegated to the + corresponding closed forms. + """ + return super().ppf(q, xi, kappa, psi, lmbd, *args, **kwargs) + + def _rvs(self, xi, kappa, psi, lmbd, size=None, random_state=None): + rng = self._init_rng(random_state) + + xi_val = _jp_ensure_scalar(xi, "xi") + xi_val = float(np.mod(xi_val, 2.0 * np.pi)) + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + lmbd_val = _jp_ensure_scalar(lmbd, "lmbd") + if abs(lmbd_val) >= 1.0: + raise ValueError("|lmbd| must be < 1 for sine-skewed Jones-Pewsey.") + + if size is None: + size_tuple = () + total = 1 + elif np.isscalar(size): + size_tuple = (int(size),) + total = int(size_tuple[0]) + else: + size_tuple = tuple(int(s) for s in np.atleast_1d(size)) + total = int(np.prod(size_tuple)) + + base_dist = jonespewsey(kappa=kappa_val, psi=psi_val, mu=xi_val) + weights_max = 1.0 + abs(lmbd_val) + + samples = np.empty(total, dtype=float) + filled = 0 + while filled < total: + remaining = total - filled + proposals = base_dist.rvs(size=remaining, random_state=rng) + accept_prob = (1.0 + lmbd_val * np.sin(proposals - xi_val)) / weights_max + u = rng.uniform(0.0, 1.0, size=remaining) + accept = u <= accept_prob + n_accept = int(np.sum(accept)) + if n_accept > 0: + samples[filled:filled + n_accept] = proposals[accept][:n_accept] + filled += n_accept + + return samples.reshape(size_tuple) + + def rvs(self, xi, kappa, psi, lmbd, size=None, random_state=None): + r""" + Draw random variates from the sine-skewed Jones--Pewsey distribution. + + Sampling follows the acceptance-rejection construction of Abe & Pewsey + (2011): draw from the symmetric JP base and accept with probability + $$\frac{1 + \lambda \sin\phi}{1 + |\lambda|}.$$ This scheme is exact, + automatically respects the skew symmetry, and retains the base + sampler's efficiency. + """ + return super().rvs(xi, kappa, psi, lmbd, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="two-step", + return_info=False, + optimizer="L-BFGS-B", + refine=False, + psi_bounds=(-4.0, 4.0), + kappa_bounds=(1e-6, 1e3), + lmbd_bounds=(-0.99, 0.99), + base_kwargs=None, + **kwargs, + ): + r""" + Estimate sine-skewed JP parameters via a two-step maximum likelihood fit. + + 1. Fit the symmetric JP base (xi, kappa, psi) using the MLE routine. + 2. Maximise the weighted log term sum log(1 + lambda sin(theta_i - xi)). + 3. Optionally refine all four parameters jointly (set refine=True). + + The acceptance-rejection sampler used for the skewed density makes the + likelihood well behaved across |lambda| < 1, while moment starts ensure + stability near the uniform limit. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + base_kwargs = {} if base_kwargs is None else dict(base_kwargs) + base_estimates, base_info = jonespewsey.fit( + x, + weights=w, + method="mle", + psi_bounds=psi_bounds, + kappa_bounds=kappa_bounds, + optimizer=optimizer, + return_info=True, + **base_kwargs, + ) + xi_hat, kappa_hat, psi_hat = base_estimates + + lam_low, lam_high = lmbd_bounds + + def lambda_nll(lmbd): + if not (lam_low < lmbd < lam_high): + return np.inf + vals = 1.0 + lmbd * np.sin(x - xi_hat) + if np.any(vals <= 0.0) or not np.all(np.isfinite(vals)): + return np.inf + return float(-np.sum(w * np.log(vals))) + + lambda_result = minimize_scalar( + lambda_nll, + bounds=lmbd_bounds, + method="bounded", + ) + if not lambda_result.success: + raise RuntimeError("Failed to estimate skewness parameter `lmbd`.") + lmbd_hat = float(np.clip(lambda_result.x, lam_low, lam_high)) + + method_key = method.lower() + alias = {"twostep": "two-step", "two_step": "two-step", "mle": "mle"} + method_key = alias.get(method_key, method_key) + if method_key not in {"two-step", "mle"}: + raise ValueError("`method` must be either 'two-step' or 'mle'.") + + if method_key == "mle": + refine = True + + info = { + "base": base_info, + "lambda_opt": { + "success": bool(lambda_result.success), + "nit": getattr(lambda_result, "nit", None), + "nfev": getattr(lambda_result, "nfev", None), + }, + "n_effective": float(n_eff), + } + + if refine: + bounds = [ + (0.0, 2.0 * np.pi), + kappa_bounds, + psi_bounds, + lmbd_bounds, + ] + + def total_nll(params): + xi_param, kappa_param, psi_param, lmbd_param = params + if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]): + return np.inf + if not (psi_bounds[0] <= psi_param <= psi_bounds[1]): + return np.inf + if not (lmbd_bounds[0] < lmbd_param < lmbd_bounds[1]): + return np.inf + xi_wrapped = float(np.mod(xi_param, 2.0 * np.pi)) + pdf_vals = self.pdf(x, xi_wrapped, kappa_param, psi_param, lmbd_param) + if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)): + return np.inf + return float(-np.sum(w * np.log(pdf_vals))) - return _cdf_single(x, xi, kappa, psi, lmbd) + init = np.array([xi_hat, kappa_hat, psi_hat, lmbd_hat], dtype=float) + result = minimize( + total_nll, + init, + method=optimizer, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError("Sine-skewed JP fit refinement failed: " + result.message) + xi_hat = self._wrap_direction(float(result.x[0])) + kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1])) + psi_hat = float(np.clip(result.x[2], psi_bounds[0], psi_bounds[1])) + lmbd_hat = float(np.clip(result.x[3], lmbd_bounds[0], lmbd_bounds[1])) + info["refinement"] = { + "success": bool(result.success), + "nit": result.nit, + "optimizer": optimizer, + } + + final_pdf = self.pdf(x, xi_hat, kappa_hat, psi_hat, lmbd_hat) + loglik = float(np.sum(w * np.log(final_pdf))) + + estimates = (xi_hat, kappa_hat, psi_hat, lmbd_hat) + if return_info: + info.update( + { + "loglik": loglik, + "method": method_key, + "estimates": estimates, + } + ) + return estimates, info + return estimates jonespewsey_sineskewed = jonespewsey_sineskewed_gen(name="jonespewsey_sineskewed") @@ -1393,7 +5950,7 @@ def _cdf_single(x, xi, kappa, psi, lmbd): ########################## -class jonespewsey_asym_gen(rv_continuous): +class jonespewsey_asym_gen(CircularContinuous): r"""Asymmetric Extended Jones-Pewsey Distribution This distribution is an extension of the Jones-Pewsey family, incorporating asymmetry @@ -1412,26 +5969,53 @@ class jonespewsey_asym_gen(rv_continuous): Note ---- + Parameters must be scalar; cached normalisation tables are built per parameter set. Implementation from 4.3.12 of Pewsey et al. (2014) """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._sampler_cache = {} + self._cdf_table_cache = {} + def _validate_params(self, xi, kappa, psi, nu): + xi_arr, kappa_arr, psi_arr, nu_arr = np.broadcast_arrays(xi, kappa, psi, nu) return ( - (0 <= xi <= np.pi * 2) - and (kappa >= 0) - and (-np.inf <= psi <= np.inf) - and (0 <= nu < 1) + (xi_arr >= 0.0) + & (xi_arr <= 2.0 * np.pi) + & (kappa_arr >= 0.0) + & np.isfinite(kappa_arr) + & np.isfinite(psi_arr) + & (nu_arr >= 0.0) + & (nu_arr < 1.0) ) def _argcheck(self, xi, kappa, psi, nu): - if self._validate_params(xi, kappa, psi, nu): - self._c = _c_jonespewsey_asym(xi, kappa, psi, nu) - return True - else: + try: + return self._validate_params(xi, kappa, psi, nu) + except ValueError: return False def _pdf(self, x, xi, kappa, psi, nu): - return _kernel_jonespewsey_asym(x, xi, kappa, psi, nu) / self._c + x = np.asarray(x, dtype=float) + xi_scalar = _jp_ensure_scalar(xi, "xi") + kappa_scalar = _jp_ensure_scalar(kappa, "kappa") + psi_scalar = _jp_ensure_scalar(psi, "psi") + nu_scalar = _jp_ensure_scalar(nu, "nu") + + if abs(kappa_scalar) < _JP_KAPPA_TOL: + return np.full_like(x, 1.0 / (2.0 * np.pi), dtype=float) + + norm = self._get_cached_normalizer( + lambda: _c_jonespewsey_asym(xi_scalar, kappa_scalar, psi_scalar, nu_scalar), + xi_scalar, + kappa_scalar, + psi_scalar, + nu_scalar, + ) + self._c = norm + base = _kernel_jonespewsey_asym(x, xi_scalar, kappa_scalar, psi_scalar, nu_scalar) + return norm * base def pdf(self, x, xi, kappa, psi, nu, *args, **kwargs): r""" @@ -1487,137 +6071,562 @@ def pdf(self, x, xi, kappa, psi, nu, *args, **kwargs): return super().pdf(x, xi, kappa, psi, nu, *args, **kwargs) def _cdf(self, x, xi, kappa, psi, nu): - @np.vectorize - def _cdf_single(x, xi, kappa, psi, nu): - integral, _ = quad(self._pdf, a=0, b=x, args=(xi, kappa, psi, nu)) - return integral + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + if flat.size == 0: + return arr.astype(float) + + xi_val = _jp_ensure_scalar(xi, "xi") + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + nu_val = _jp_ensure_scalar(nu, "nu") + + two_pi = 2.0 * np.pi + + if kappa_val < _JP_KAPPA_TOL and abs(nu_val) < 1e-12: + return jonespewsey.cdf(arr, mu=xi_val, kappa=kappa_val, psi=psi_val) + + phi_start = (-xi_val) % two_pi + phi_end = (flat - xi_val) % two_pi + + phi_grid, cdf_grid = self._asym_cdf_table(xi_val, kappa_val, psi_val, nu_val) + + H_start = float(np.interp(phi_start, phi_grid, cdf_grid, left=0.0, right=1.0)) + H_end = np.interp(phi_end, phi_grid, cdf_grid, left=0.0, right=1.0) + + cdf = np.where( + phi_end >= phi_start, + np.clip(H_end - H_start, 0.0, 1.0), + np.clip(1.0 - (H_start - H_end), 0.0, 1.0), + ) + + return cdf.reshape(arr.shape) + + def cdf(self, x, xi, kappa, psi, nu, *args, **kwargs): + r""" + Cumulative distribution function of the argument-warped JP family. + + The asymmetric transformation phi -> phi + nu cos(phi) is handled by + precomputing a high-resolution trapezoidal cumulative table for each + parameter set. Interpolation of this table gives fast evaluations while + preserving the limiting cases (nu -> 0 reduces to the symmetric JP CDF). + """ + return super().cdf(x, xi, kappa, psi, nu, *args, **kwargs) + + def _ppf(self, q, xi, kappa, psi, nu): + xi_val = _jp_ensure_scalar(xi, "xi") + xi_val = float(np.mod(xi_val, 2.0 * np.pi)) + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + nu_val = _jp_ensure_scalar(nu, "nu") + + two_pi = 2.0 * np.pi + q_arr = np.asarray(q, dtype=float) + if q_arr.size == 0: + return q_arr.astype(float) + + flat = q_arr.reshape(-1) + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if np.any(valid): + q_valid = flat[valid] + boundary_lo = q_valid <= 0.0 + boundary_hi = q_valid >= 1.0 + interior = (~boundary_lo) & (~boundary_hi) + theta_vals = np.zeros_like(q_valid) + theta_vals[boundary_lo] = 0.0 + theta_vals[boundary_hi] = two_pi + + if np.any(interior): + q_int = q_valid[interior] + eps = 1e-15 + q_clipped = np.clip(q_int, eps, 1.0 - eps) + if kappa_val < _JP_KAPPA_TOL and nu_val < 1e-12: + theta_vals[interior] = two_pi * q_clipped + else: + theta_curr = two_pi * q_clipped + L = np.zeros_like(theta_curr) + H = np.full_like(theta_curr, two_pi) + tol_cdf = 1e-12 + tol_theta = 1e-10 + max_iter = 8 + + for _ in range(max_iter): + cdf_vals = np.asarray( + self.cdf(theta_curr, xi_val, kappa_val, psi_val, nu_val), + dtype=float, + ) + pdf_vals = np.asarray( + self.pdf(theta_curr, xi_val, kappa_val, psi_val, nu_val), + dtype=float, + ) + delta = cdf_vals - q_clipped + L = np.where(delta <= 0.0, theta_curr, L) + H = np.where(delta > 0.0, theta_curr, H) + + converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta) + if np.all(converged): + break + + denom = np.clip(pdf_vals, 1e-15, None) + step = np.clip(delta / denom, -np.pi, np.pi) + theta_next = theta_curr - step + midpoint = 0.5 * (L + H) + theta_next = np.where( + (theta_next <= L) | (theta_next >= H), + midpoint, + theta_next, + ) + theta_curr = np.clip(theta_next, 0.0, two_pi) + + residual = np.asarray( + self.cdf(theta_curr, xi_val, kappa_val, psi_val, nu_val), + dtype=float, + ) - q_clipped + mask = (np.abs(residual) > tol_cdf) | ((H - L) > tol_theta) + if np.any(mask): + theta_b = theta_curr.copy() + L_b = L.copy() + H_b = H.copy() + for _ in range(30): + if not np.any(mask): + break + mid = 0.5 * (L_b + H_b) + cdf_mid = np.asarray( + self.cdf(mid, xi_val, kappa_val, psi_val, nu_val), + dtype=float, + ) + delta_mid = cdf_mid - q_clipped + take_upper = (delta_mid > 0.0) & mask + take_lower = (~take_upper) & mask + H_b = np.where(take_upper, mid, H_b) + L_b = np.where(take_lower, mid, L_b) + theta_b = np.where(mask, mid, theta_b) + mask = mask & (np.abs(delta_mid) > tol_cdf) + theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b) + + theta_vals[interior] = theta_curr + + result_vals = theta_vals + result_vals[boundary_lo] = 0.0 + result_vals[boundary_hi] = two_pi + result[valid] = result_vals + + return result.reshape(q_arr.shape) + + def ppf(self, q, xi, kappa, psi, nu, *args, **kwargs): + r""" + Quantile function of the asymmetric Jones--Pewsey distribution. + + Quantiles are obtained by the same safeguarded Newton iteration as in + the symmetric case, with the warp-aware CDF supplying residuals. When + nu is effectively zero the method delegates to the symmetric JP solver. + """ + return super().ppf(q, xi, kappa, psi, nu, *args, **kwargs) + + def _rvs(self, xi, kappa, psi, nu, size=None, random_state=None): + rng = self._init_rng(random_state) + + xi_val = _jp_ensure_scalar(xi, "xi") + xi_val = float(np.mod(xi_val, 2.0 * np.pi)) + kappa_val = _jp_ensure_scalar(kappa, "kappa") + psi_val = _jp_ensure_scalar(psi, "psi") + nu_val = _jp_ensure_scalar(nu, "nu") + if not (0.0 <= nu_val < 1.0): + raise ValueError("`nu` must lie in [0, 1).") + + if size is None: + size_tuple = () + total = 1 + elif np.isscalar(size): + size_tuple = (int(size),) + total = int(size_tuple[0]) + else: + size_tuple = tuple(int(s) for s in np.atleast_1d(size)) + total = int(np.prod(size_tuple)) + + two_pi = 2.0 * np.pi + if kappa_val < _JP_KAPPA_TOL: + samples = rng.uniform(0.0, two_pi, size=total) + return samples.reshape(size_tuple) + + if abs(psi_val) < _JP_PSI_TOL and nu_val < 1e-12: + return vonmises.rvs(mu=xi_val, kappa=kappa_val, size=size_tuple or None, random_state=rng) + + kappa_env, envelope_const = self._asym_sampler_envelope(xi_val, kappa_val, psi_val, nu_val) + samples = np.empty(total, dtype=float) + filled = 0 + + while filled < total: + remaining = total - filled + proposals = vonmises.rvs( + mu=xi_val, + kappa=kappa_env, + size=remaining, + random_state=rng, + ) + target_vals = self.pdf(proposals, xi_val, kappa_val, psi_val, nu_val) + proposal_vals = vonmises.pdf(proposals, mu=xi_val, kappa=kappa_env) + ratio = np.where(proposal_vals > 0.0, target_vals / (envelope_const * proposal_vals), 0.0) + u = rng.uniform(0.0, 1.0, size=remaining) + accept = ratio >= u + n_accept = int(np.sum(accept)) + if n_accept > 0: + samples[filled:filled + n_accept] = proposals[accept][:n_accept] + filled += n_accept + + return samples.reshape(size_tuple) + + def rvs(self, xi, kappa, psi, nu, size=None, random_state=None): + r""" + Draw random variates from the asymmetric Jones--Pewsey distribution. + + Sampling uses a curvature-matched von Mises envelope tuned via the + optimisation helper, providing an exact acceptance-rejection scheme that + works well across nu in [0, 1). Uniform and symmetric limits are + handled explicitly. + """ + return super().rvs(xi, kappa, psi, nu, size=size, random_state=random_state) + + def _asym_sampler_envelope(self, xi, kappa, psi, nu): + key = (float(np.mod(xi, 2.0 * np.pi)), float(kappa), float(psi), float(nu)) + cached = self._sampler_cache.get(key) + if cached is not None: + return cached + + kappa_env = _jp_effective_kappa(kappa, psi) + phi_grid = np.linspace(0.0, 2.0 * np.pi, 2048, endpoint=False) + theta_grid = np.mod(xi + phi_grid, 2.0 * np.pi) + + target_vals = self.pdf(theta_grid, xi, kappa, psi, nu) + log_target = np.log(np.clip(target_vals, np.finfo(float).tiny, None)) + + kappa_env, envelope_const = _optimize_vonmises_envelope( + theta_grid, + log_target, + xi, + max(kappa_env, 1e-6), + ) + + self._sampler_cache[key] = (kappa_env, envelope_const) + return kappa_env, envelope_const + + def _asym_cdf_table(self, xi, kappa, psi, nu, grid_size=4096): + key = (float(np.mod(xi, 2.0 * np.pi)), float(kappa), float(psi), float(nu), int(grid_size)) + cached = self._cdf_table_cache.get(key) + if cached is not None: + return cached + + phi_grid = np.linspace(0.0, 2.0 * np.pi, int(grid_size) + 1) + theta = np.mod(xi + phi_grid, 2.0 * np.pi) + pdf_vals = self.pdf(theta, xi, kappa, psi, nu) + pdf_vals = np.asarray(pdf_vals, dtype=float) + + delta = (2.0 * np.pi) / float(grid_size) + trap = 0.5 * (pdf_vals[:-1] + pdf_vals[1:]) * delta + cdf_vals = np.empty_like(phi_grid) + cdf_vals[0] = 0.0 + cdf_vals[1:] = np.cumsum(trap) + total = cdf_vals[-1] + if not np.isfinite(total) or total <= 0.0: + total = 1.0 + cdf_vals /= total + + result = (phi_grid, cdf_vals) + self._cdf_table_cache[key] = result + return result + + def fit( + self, + data, + *, + weights=None, + return_info=False, + optimizer="L-BFGS-B", + psi_bounds=(-4.0, 4.0), + kappa_bounds=(1e-6, 1e3), + nu_bounds=(0.0, 0.99), + base_kwargs=None, + **kwargs, + ): + r""" + Estimate asymmetric JP parameters by maximum likelihood. + + The symmetric JP fit supplies starting values for (xi, kappa, psi) with + nu initialised at zero. The full four-parameter log-likelihood is then + optimised under simple bounds, re-using the cached normalising constant + and envelope machinery developed for the JP core. + """ + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + x = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if x.size == 0: + raise ValueError("`data` must contain at least one observation.") - return _cdf_single(x, xi, kappa, psi, nu) + if weights is None: + w = np.ones_like(x, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0: + raise ValueError("Sum of weights must be positive.") + n_eff = w_sum**2 / np.sum(w**2) + + base_kwargs = {} if base_kwargs is None else dict(base_kwargs) + init_estimates, base_info = jonespewsey.fit( + x, + weights=w, + method="mle", + psi_bounds=psi_bounds, + kappa_bounds=kappa_bounds, + optimizer=optimizer, + return_info=True, + **base_kwargs, + ) + xi_init, kappa_init, psi_init = init_estimates + nu_init = 0.0 + + kappa_low, kappa_high = kappa_bounds + psi_low, psi_high = psi_bounds + nu_low, nu_high = nu_bounds + + def nll(params): + xi_param, kappa_param, psi_param, nu_param = params + if not (kappa_low <= kappa_param <= kappa_high): + return np.inf + if not (psi_low <= psi_param <= psi_high): + return np.inf + if not (nu_low <= nu_param < nu_high): + return np.inf + xi_wrapped = float(np.mod(xi_param, 2.0 * np.pi)) + pdf_vals = self.pdf(x, xi_wrapped, kappa_param, psi_param, nu_param) + if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)): + return np.inf + return float(-np.sum(w * np.log(pdf_vals))) + + init = np.array([xi_init, kappa_init, psi_init, nu_init], dtype=float) + bounds = [ + (0.0, 2.0 * np.pi), + kappa_bounds, + psi_bounds, + nu_bounds, + ] + result = minimize( + nll, + init, + method=optimizer, + bounds=bounds, + **kwargs, + ) + if not result.success: + raise RuntimeError("jonespewsey_asym.fit failed: " + result.message) + + xi_hat = self._wrap_direction(float(result.x[0])) + kappa_hat = float(np.clip(result.x[1], kappa_low, kappa_high)) + psi_hat = float(np.clip(result.x[2], psi_low, psi_high)) + nu_hat = float(np.clip(result.x[3], nu_low, nu_high - 1e-9)) + + final_pdf = self.pdf(x, xi_hat, kappa_hat, psi_hat, nu_hat) + loglik = float(np.sum(w * np.log(final_pdf))) + + estimates = (xi_hat, kappa_hat, psi_hat, nu_hat) + if return_info: + info = { + "base": base_info, + "loglik": loglik, + "converged": bool(result.success), + "nit": result.nit, + "optimizer": optimizer, + "n_effective": float(n_eff), + } + return estimates, info + return estimates jonespewsey_asym = jonespewsey_asym_gen(name="jonespewsey_asym") def _kernel_jonespewsey_asym(x, xi, kappa, psi, nu): - if np.isclose(np.abs(psi), 0).all(): - return np.exp(kappa * np.cos(x - xi + nu * np.cos(x - xi))) - else: - return ( - np.cosh(kappa * psi) - + np.sinh(kappa * psi) * np.cos(x - xi + nu * np.cos(x - xi)) - ) ** (1 / psi) + x = np.asarray(x, dtype=float) + phi = x - xi + phi = phi + nu * np.cos(phi) + return _jp_kernel_base(phi, kappa, psi) def _c_jonespewsey_asym(xi, kappa, psi, nu): - c = quad_vec( + if kappa < _JP_KAPPA_TOL: + return 1.0 / (2.0 * np.pi) + + integral = quad_vec( _kernel_jonespewsey_asym, a=-np.pi, b=np.pi, args=(xi, kappa, psi, nu), + epsabs=1e-10, + epsrel=1e-10, )[0] - return c + return 1.0 / integral -class inverse_batschelet_gen(rv_continuous): - r"""Inverse Batschelet distribution. - - The inverse Batschelet distribution is a flexible circular distribution that allows for - modeling asymmetric and peaked data. It is defined on the interval $[0, 2\pi)$. +class inverse_batschelet_gen(CircularContinuous): + r"""Inverse Batschelet Distribution ![inverse-batschelet](../images/circ-mod-inverse-batschelet.png) + The inverse Batschelet family (Pewsey, Neuhaüser & Ruxton, 2014, §4.3.13) + extends the von Mises distribution by applying two inverse angular warps: + a "peakedness" transform controlled by $\nu$, and an inverse + Batschelet skew transform governed by $\lambda$. The resulting density on + $[0, 2\pi)$ takes the form + + $$ + f(\theta) = c(\kappa, \lambda) + \exp\left[\kappa \cos\left(a\,t_\nu^{-1}(\varphi) + b\,s_\lambda^{-1}\bigl(t_\nu^{-1}(\varphi)\bigr)\right)\right], + $$ + + where $\varphi = (\theta - \xi) \bmod 2\pi - \pi$, + $a = \tfrac{1 - \lambda}{1 + \lambda}$, + $b = \tfrac{2\lambda}{1 + \lambda}$, and the normalising constant + $c(\kappa, \lambda)$ depends only on $\kappa$ and $\lambda$. + Setting $\nu = \lambda = 0$ recovers the von Mises distribution, while + $\kappa \to 0$ yields the circular uniform law. Parameters must be scalar; + cached normalisation tables are built per parameter set. + Methods ------- - pdf(x, xi, kappa, psi, nu, lmbd) + pdf(x, xi, kappa, nu, lmbd) Probability density function. - cdf(x, xi, kappa, psi, nu, lmbd) + cdf(x, xi, kappa, nu, lmbd) Cumulative distribution function. + ppf(q, xi, kappa, nu, lmbd) + Percent-point function (inverse CDF). - Note - ---- - Implementation from 4.3.13 of Pewsey et al. (2014) + rvs(xi, kappa, nu, lmbd, size=None, random_state=None) + Random variates via von Mises acceptance–rejection. + + fit(data, *, method='mle', ...) + Moments or maximum-likelihood parameter estimation. """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._invbat_table_cache = {} + self._invbat_sampler_cache = {} + + def _clear_normalization_cache(self): + super()._clear_normalization_cache() + self._invbat_table_cache = {} + self._invbat_sampler_cache = {} + def _validate_params(self, xi, kappa, nu, lmbd): + xi_arr, kappa_arr, nu_arr, lmbd_arr = np.broadcast_arrays(xi, kappa, nu, lmbd) return ( - (0 <= xi <= np.pi * 2) - and (kappa >= 0) - and (-1 <= nu <= 1) - and (-1 <= lmbd <= 1) + (xi_arr >= 0.0) + & (xi_arr <= 2.0 * np.pi) + & (kappa_arr >= 0.0) + & np.isfinite(kappa_arr) + & (nu_arr >= -1.0) + & (nu_arr <= 1.0) + & (lmbd_arr >= -1.0) + & (lmbd_arr <= 1.0) ) def _argcheck(self, xi, kappa, nu, lmbd): - if self._validate_params(xi, kappa, nu, lmbd): - self._c = _c_invbatschelet(kappa, lmbd) - if np.isclose(lmbd, -1).all(): - self.con1, self.con2 = 0, 0 - else: - self.con1 = (1 - lmbd) / (1 + lmbd) - self.con2 = (2 * lmbd) / (1 + lmbd) - return True - else: + try: + return self._validate_params(xi, kappa, nu, lmbd) + except ValueError: return False def _pdf(self, x, xi, kappa, nu, lmbd): + scalar_input = np.isscalar(x) + x_arr = np.asarray([x], dtype=float) if scalar_input else np.asarray(x, dtype=float) + if x_arr.size == 0: + return x_arr.astype(float) + + xi_val = _invbat_ensure_scalar(xi, "xi") + kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + + if not ( + np.isfinite(xi_val) + and np.isfinite(kappa_val) + and np.isfinite(nu_val) + and np.isfinite(lmbd_val) + ): + result = np.full_like(x_arr, np.nan, dtype=float) + return float(result[0]) if scalar_input else result + + if kappa_val <= _INVBAT_KAPPA_TOL: + self._c = 1.0 / (2.0 * np.pi) + result = np.full_like(x_arr, self._c, dtype=float) + return float(result[0]) if scalar_input else result + + normalizer = self._get_cached_normalizer( + lambda: _c_invbatschelet(kappa_val, lmbd_val), + kappa_val, + lmbd_val, + ) + if not np.isfinite(normalizer) or normalizer <= 0.0: + normalizer = _c_invbatschelet_numeric(kappa_val, lmbd_val, grid_size=_INVBAT_NUMERIC_GRID) + self._c = normalizer - arg1 = _tnu(x, nu, xi) - arg2 = _slmbdinv(arg1, lmbd) + phi = _tnu(x_arr, nu_val, xi_val) + skew = _slmbdinv(phi, lmbd_val) - if np.isclose(lmbd, -1).all(): - return self._c * np.exp(kappa * np.cos(arg1 - np.sin(arg1))) + if np.isclose(lmbd_val, -1.0): + log_kernel = kappa_val * np.cos(phi - np.sin(phi)) else: - return self._c * np.exp(kappa * np.cos(self.con1 * arg1 + self.con2 * arg2)) + con1 = (1.0 - lmbd_val) / (1.0 + lmbd_val) + con2 = (2.0 * lmbd_val) / (1.0 + lmbd_val) + log_kernel = kappa_val * np.cos(con1 * phi + con2 * skew) + + pdf_vals = normalizer * np.exp(log_kernel) + pdf_vals = np.clip(pdf_vals, 0.0, None).astype(float, copy=False) + + if scalar_input: + return float(pdf_vals.reshape(-1)[0]) + return pdf_vals def pdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs): r""" Probability density function (PDF) of the inverse Batschelet distribution. - The PDF is defined as: - - $$ - f(\theta) = c \exp\left(\kappa \cos\left(a \cdot g(\theta, \nu, \xi) + b \cdot s\left(g(\theta, \nu, \xi), \lambda\right)\right)\right) - $$ - - where: - - - $a$: Weight for the angular transformation, defined as: - - $$ - a = \frac{1 - \lambda}{1 + \lambda} - $$ - - - $b$: Weight for the skewness transformation, defined as: - - $$ - b = \frac{2 \lambda}{1 + \lambda} - $$ - - - $g(\theta, \nu, \xi)$: Angular transformation function, which incorporates $\nu$ and the location parameter $\xi$: + Let - $$ - g(\theta, \nu, \xi) = \theta - \xi - \nu \cdot (1 + \cos(\theta - \xi)) - $$ + - $\varphi = ((\theta - \xi + \pi) \bmod 2\pi) - \pi$, + - $t_\nu^{-1}(\varphi)$ solve $y - \nu (1 + \cos y) = \varphi$, + - $s_\lambda^{-1}(\cdot)$ solve $u - \tfrac{1 + \lambda}{2} \sin u = \cdot$, - - $s(z, \lambda)$: Skewness transformation function, defined as the root of the equation: + and set + $\phi^\star = t_\nu^{-1}(\varphi)$, + $u^\star = s_\lambda^{-1}(\phi^\star)$, + $a = \tfrac{1 - \lambda}{1 + \lambda}$, + $b = \tfrac{2 \lambda}{1 + \lambda}$. + The inverse Batschelet density is $$ - s(z, \lambda) - 0.5 \cdot (1 + \lambda) \cdot \sin(s(z, \lambda)) = z + f(\theta) = c(\kappa, \lambda) + \exp\bigl[\kappa \cos\bigl(a\,\phi^\star + b\,u^\star\bigr)\bigr], $$ - - $c$: Normalization constant ensuring the PDF integrates to 1, computed as: - - $$ - c = \frac{1}{2\pi \cdot I_0(\kappa) \cdot \left(a - b \cdot \int_{-\pi}^{\pi} \exp(\kappa \cdot \cos(z - (1 - \lambda) \cdot \sin(z) / 2)) dz\right)} - $$ + where $c(\kappa,\lambda)$ is the normalising constant (independent of + $\xi$ and $\nu$). For $\kappa \rightarrow 0$ the distribution reduces to + the circular uniform density $1/(2\pi)$. Parameters ---------- x : array_like Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$. xi : float - Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode. + Direction parameter, $0 \leq \xi \leq 2\pi$. kappa : float Concentration parameter, $\kappa \geq 0$. Higher values result in sharper peaks around $\xi$. nu : float @@ -1633,51 +6642,740 @@ def pdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs): return super().pdf(x, xi, kappa, nu, lmbd, *args, **kwargs) def _cdf(self, x, xi, kappa, nu, lmbd): - @np.vectorize - def _cdf_single(x, xi, kappa, nu, lmbd): - integral, _ = quad(self._pdf, a=0, b=x, args=(xi, kappa, nu, lmbd)) - return integral + wrapped = self._wrap_angles(x) + arr = np.asarray(wrapped, dtype=float) + flat = arr.reshape(-1) + + if flat.size == 0: + return arr.astype(float) + + xi_val = _invbat_ensure_scalar(xi, "xi") + kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + + if not ( + np.isfinite(xi_val) + and np.isfinite(kappa_val) + and np.isfinite(nu_val) + and np.isfinite(lmbd_val) + ): + return np.full_like(arr, np.nan, dtype=float) + + two_pi = 2.0 * np.pi + + if kappa_val <= _INVBAT_KAPPA_TOL: + cdf_flat = flat / two_pi + else: + table = self._get_invbat_table(kappa_val, nu_val, lmbd_val) + phi = ((flat - xi_val + np.pi) % two_pi) - np.pi + phi_start = ((-xi_val + np.pi) % two_pi) - np.pi + H = table["cdf_interp"](phi) + H_start = float(table["cdf_interp"](phi_start)) + diff = H - H_start + cdf_flat = np.where(diff < 0.0, diff + 1.0, diff) + cdf_flat = np.clip(cdf_flat, 0.0, 1.0) + + if arr.ndim == 0: + value = float(cdf_flat[0]) + if np.isclose(float(wrapped), two_pi, rtol=0.0, atol=1e-12): + return 1.0 + else: + value = cdf_flat.reshape(arr.shape) + mask_upper = np.isclose(arr, two_pi, rtol=0.0, atol=1e-12) + if np.any(mask_upper): + value = value.copy() + value[mask_upper] = 1.0 + return value + + def cdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs): + r""" + Cumulative distribution function of the inverse Batschelet distribution. - return _cdf_single(x, xi, kappa, nu, lmbd) + The implementation precomputes the normalised primitive on a periodic grid + in the centred angle $\varphi = (\theta - \xi) \bmod 2\pi - \pi$. For each + grid node, the inverse peakedness transform $t_\nu^{-1}$ and inverse + Batschelet skew $s_\lambda^{-1}$ are evaluated, and the resulting kernel is + accumulated via a trapezoidal rule. The cumulative table is cached per + parameter triple $(\kappa, \nu, \lambda)$, enabling $O(1)$ queries after the + initial $O(N)$ precomputation. The limit $\kappa \to 0$ reduces to the + circular uniform CDF $\theta / (2\pi)$. + Parameters + ---------- + x : array_like + Points at which to evaluate the cumulative distribution function. + xi : float + Direction parameter, $0 \leq \xi \leq 2\pi$. + kappa : float + Concentration parameter, $\kappa \geq 0$. + nu : float + Shape parameter, $-1 \leq \nu \leq 1$. + lmbd : float + Skewness parameter, $-1 \leq \lambda \leq 1$. -inverse_batschelet = inverse_batschelet_gen(name="inverse_batschelet") + Returns + ------- + cdf_values : array_like + Cumulative probabilities corresponding to `x`. + """ + xi_val = _invbat_ensure_scalar(xi, "xi") + kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + return super().cdf(x, xi_val, kappa_val, nu_val, lmbd_val, *args, **kwargs) + + def _ppf(self, q, xi, kappa, nu, lmbd): + xi_val = _invbat_ensure_scalar(xi, "xi") + kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + + q_arr = np.asarray(q, dtype=float) + flat = q_arr.reshape(-1) + if flat.size == 0: + return q_arr.astype(float) + + two_pi = 2.0 * np.pi + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if not np.any(valid): + shaped = result.reshape(q_arr.shape) + return float(shaped) if q_arr.ndim == 0 else shaped + + q_valid = flat[valid] + close_zero = np.isclose(q_valid, 0.0, rtol=0.0, atol=1e-12) + close_one = np.isclose(q_valid, 1.0, rtol=0.0, atol=1e-12) + + if kappa_val <= _INVBAT_KAPPA_TOL: + theta = (two_pi * q_valid) % two_pi + if np.any(close_zero): + theta[close_zero] = 0.0 + if np.any(close_one): + theta[close_one] = two_pi + result[valid] = theta + else: + table = self._get_invbat_table(kappa_val, nu_val, lmbd_val) + phi_grid = table["phi"] + cdf_grid = table["cdf"] + cdf_interp = table["cdf_interp"] + inv_interp = table["inv_cdf_interp"] + pdf_interp = table["pdf_interp"] + + phi_start = ((-xi_val + np.pi) % two_pi) - np.pi + H_start = float(cdf_interp(phi_start)) + targets = (H_start + q_valid) % 1.0 + + phi_candidates = ( + inv_interp(targets) + if inv_interp is not None + else np.interp(targets, cdf_grid, phi_grid, left=phi_grid[0], right=phi_grid[-1]) + ) + theta_vals = np.empty_like(q_valid) + for idx, (target, phi0) in enumerate(zip(targets, phi_candidates)): + if close_zero[idx]: + theta_vals[idx] = 0.0 + continue + if close_one[idx]: + theta_vals[idx] = two_pi + continue + + i_hi = int(np.clip(np.searchsorted(cdf_grid, target, side="right"), 1, len(phi_grid) - 1)) + phi_lo = float(phi_grid[i_hi - 1]) + phi_hi = float(phi_grid[i_hi]) + phi = float(np.clip(phi0, phi_lo, phi_hi)) + + for _ in range(_INVBAT_NEWTON_MAXITER): + H_phi = float(cdf_interp(phi)) + residual = H_phi - target + pdf_val = float(pdf_interp(phi)) + pdf_val = max(pdf_val, np.finfo(float).tiny) + + if abs(residual) <= _INVBAT_NEWTON_TOL and (phi_hi - phi_lo) <= _INVBAT_NEWTON_WIDTH_TOL: + break + + if residual > 0.0: + phi_hi = min(phi_hi, phi) + else: + phi_lo = max(phi_lo, phi) + + step = residual / pdf_val + phi_candidate = phi - step + if not np.isfinite(phi_candidate) or phi_candidate <= phi_lo or phi_candidate >= phi_hi: + phi_candidate = 0.5 * (phi_lo + phi_hi) + phi = float(np.clip(phi_candidate, phi_lo, phi_hi)) + + theta_vals[idx] = (xi_val + phi) % two_pi + + result[valid] = theta_vals + + shaped = result.reshape(q_arr.shape) + if q_arr.ndim == 0: + return float(shaped) + return shaped + + def ppf(self, q, xi, kappa, nu, lmbd, *args, **kwargs): + r""" + Percent-point function (quantile) of the inverse Batschelet distribution. -########################################## -## Helper Functions: inverse_batschelet ## -########################################## + Quantiles are obtained by inverting the cached cumulative table described in + `cdf`. A monotone initial guess supplied by the table inverse is refined + with safeguarded Newton steps that leverage the tabulated density, while + preserving a bracketing interval. For $\kappa \rightarrow 0$, the quantile + reduces to the linear uniform mapping $2\pi q$. + Parameters + ---------- + q : array_like + Quantiles to evaluate (0 <= q <= 1). + xi : float + Direction parameter, $0 \leq \xi \leq 2\pi$. + kappa : float + Concentration parameter, $\kappa \geq 0$. + nu : float + Shape parameter, $-1 \leq \nu \leq 1$. + lmbd : float + Skewness parameter, $-1 \leq \lambda \leq 1$. -def _tnu(x, nu, xi): - phi = x - xi + Returns + ------- + ppf_values : array_like + Angles corresponding to the probabilities in `q`. + """ + xi_val = _invbat_ensure_scalar(xi, "xi") + kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + return super().ppf(q, xi_val, kappa_val, nu_val, lmbd_val, *args, **kwargs) + + def _get_invbat_sampler_params(self, kappa, nu, lmbd): + key = (float(kappa), float(nu), float(lmbd)) + params = self._invbat_sampler_cache.get(key) + if params is not None: + return params + + table = self._get_invbat_table(kappa, nu, lmbd) + phi = table["phi"] + pdf = table["pdf"] + log_pdf = np.log(np.clip(pdf, np.finfo(float).tiny, None)) + + idx0 = int(np.argmin(np.abs(phi))) + if idx0 == 0: + idx0 = 1 + elif idx0 == phi.size - 1: + idx0 = phi.size - 2 + + h1 = phi[idx0] - phi[idx0 - 1] + h2 = phi[idx0 + 1] - phi[idx0] + if not np.isfinite(h1) or not np.isfinite(h2) or h1 == 0.0 or h2 == 0.0: + curvature = max(kappa, 1.0) + else: + d2 = ( + log_pdf[idx0 + 1] + - 2.0 * log_pdf[idx0] + + log_pdf[idx0 - 1] + ) / ((0.5 * (h1 + h2)) ** 2) + curvature = max(-d2, 1e-3) + + kappa_env = float(np.clip(curvature, _INVBAT_ENV_MIN_KAPPA, _INVBAT_KAPPA_UPPER)) + log_vm_norm = np.log(2.0 * np.pi) + np.log(i0e(kappa_env)) + kappa_env + log_ratio = log_pdf + log_vm_norm - kappa_env * np.cos(phi) + log_multiplier = float(np.max(log_ratio)) + multiplier = float(np.exp(log_multiplier) * 1.02) + + params = { + "kappa_env": kappa_env, + "log_vm_norm": log_vm_norm, + "log_multiplier": np.log(multiplier), + "multiplier": multiplier, + } + self._invbat_sampler_cache[key] = params + return params + + def _rvs(self, xi, kappa, nu, lmbd, size=None, random_state=None): + rng = self._init_rng(random_state) + + xi_val = float(np.mod(_invbat_ensure_scalar(xi, "xi"), 2.0 * np.pi)) + kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + + if not ( + np.isfinite(xi_val) + and np.isfinite(kappa_val) + and np.isfinite(nu_val) + and np.isfinite(lmbd_val) + ): + raise ValueError("`xi`, `kappa`, `nu`, and `lmbd` must be finite scalars.") - def _tnuinv(z, nu): - return z - nu * (1 + np.cos(z)) - phi + if size is None: + shape = () + total = 1 + else: + if np.isscalar(size): + shape = (int(size),) + else: + shape = tuple(int(dim) for dim in np.atleast_1d(size)) + total = int(np.prod(shape, dtype=int)) + if total < 0: + raise ValueError("`size` must describe a non-negative number of samples.") + + two_pi = 2.0 * np.pi + + if total == 0: + empty = np.empty(shape, dtype=float) + return float(empty) if empty.ndim == 0 else empty + + if kappa_val <= _INVBAT_KAPPA_TOL: + samples = rng.uniform(0.0, two_pi, size=shape) + return float(samples) if samples.ndim == 0 else samples + + table = self._get_invbat_table(kappa_val, nu_val, lmbd_val) + sampler = self._get_invbat_sampler_params(kappa_val, nu_val, lmbd_val) + kappa_env = sampler["kappa_env"] + log_vm_norm = sampler["log_vm_norm"] + log_multiplier = sampler["log_multiplier"] + pdf_interp = table["pdf_interp"] + + samples = np.empty(total, dtype=float) + filled = 0 + batch_base = max(8, min(4 * total, 4096)) + + while filled < total: + batch = min(batch_base, total - filled) if filled > 0 else batch_base + proposals = rng.vonmises(xi_val, kappa_env, size=batch) + phi = ((proposals - xi_val + np.pi) % two_pi) - np.pi + + pdf_vals = np.clip(pdf_interp(phi), np.finfo(float).tiny, None) + log_target = np.log(pdf_vals) + log_env = kappa_env * np.cos(phi) - log_vm_norm + log_accept = log_target - log_env - log_multiplier + + accept_mask = np.log(rng.random(size=batch)) <= log_accept + if not np.any(accept_mask): + continue + + accepted = proposals[accept_mask] + take = min(accepted.size, total - filled) + samples[filled : filled + take] = accepted[:take] + filled += take + + samples = np.mod(samples, two_pi) + samples = samples.reshape(shape) + if samples.ndim == 0: + return float(samples) + return samples - y = root(_tnuinv, x0=np.zeros_like(x), args=(nu)).x - y[y > np.pi] -= 2 * np.pi + def rvs(self, xi=None, kappa=None, nu=None, lmbd=None, size=None, random_state=None): + r""" + Draw random variates from the inverse Batschelet distribution. - if np.isscalar(x): # Ensure scalar output for scalar input - return y.item() # Extract the scalar value - else: - return y + Sampling proceeds by acceptance--rejection with a von Mises envelope whose + concentration is matched to the curvature of the inverse Batschelet kernel at + the mode. Envelope constants are calibrated on the cached spectral grid used + for `cdf`, so repeated sampling calls with the same parameters are fast + and stable across the entire parameter range. + Parameters + ---------- + xi : float + Direction parameter, $0 \leq \xi \leq 2\pi$. + kappa : float + Concentration parameter, $\kappa \geq 0$. + nu : float + Shape parameter, $-1 \leq \nu \leq 1$. + lmbd : float + Skewness parameter, $-1 \leq \lambda \leq 1$. + size : int or tuple of ints, optional + Desired output shape. + random_state : {None, int, np.random.Generator}, optional + Random number generator specification. -def _slmbdinv(x, lmbd): - if np.isclose(lmbd, -1).all(): - return x - else: + Returns + ------- + rvs : array_like + Random variates on $[0, 2\pi)$ sampled from the inverse Batschelet + distribution. + """ - def _slmbd(z, lmbd): - return z - 0.5 * (1 + lmbd) * np.sin(z) - x + xi_val = _invbat_ensure_scalar(xi, "xi") + kappa_val = _invbat_ensure_scalar(kappa, "kappa") + nu_val = _invbat_ensure_scalar(nu, "nu") + lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd") + return super().rvs(xi_val, kappa_val, nu_val, lmbd_val, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + optimizer="L-BFGS-B", + options=None, + nu_grid=None, + lmbd_grid=None, + kappa_bounds=(1e-6, _INVBAT_KAPPA_UPPER), + nu_bounds=(-0.99, 0.99), + lmbd_bounds=(-0.99, 0.99), + return_info=False, + **minimize_kwargs, + ): + r""" + Estimate $(\xi, \kappa, \nu, \lambda)$ from circular data. + + ``method='mle'`` maximises the weighted log-likelihood using the cached + spectral tables for the pdf and normalising constant. ``method='moments'`` + returns the circular mean, ``circ_kappa`` estimate, and sets $(\nu, \lambda) + = (0, 0)$. - y = root(_slmbd, x0=np.zeros_like(x), args=(lmbd)).x + Parameters + ---------- + data : array_like + Sample of angles. + weights : array_like, optional + Non-negative weights broadcastable to ``data``. + method : {'mle', 'moments'}, default 'mle' + Estimation method. + optimizer : str, optional + SciPy optimiser for maximum likelihood. + options : dict, optional + Optimiser options forwarded to :func:`scipy.optimize.minimize`. + nu_grid : array_like, optional + Candidate $ + u$ values for profiling the starting point. + lmbd_grid : array_like, optional + Candidate $ + u$ values for $ + lambda$ profiling. + kappa_bounds, nu_bounds, lmbd_bounds : tuple, optional + Parameter bounds enforced during optimisation. + return_info : bool, optional + If True, also return a dictionary with optimisation diagnostics. + **minimize_kwargs : + Additional keyword arguments forwarded to + :func:`scipy.optimize.minimize`. + + Returns + ------- + params : tuple + Estimated parameters ``(xi, kappa, nu, lmbd)``. + info : dict, optional + Returned when ``return_info=True`` with optimisation diagnostics. + """ - if np.isscalar(x): # Ensure scalar output for scalar input - return y.item() # Extract the scalar value + minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs) + minimize_kwargs.pop("floc", None) + minimize_kwargs.pop("fscale", None) + + data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if data_arr.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(data_arr, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0.0: + raise ValueError("Sum of weights must be positive.") + n_eff = float(w_sum**2 / np.sum(w**2)) + + xi_mom, r1 = circ_mean_and_r(alpha=data_arr, w=w) + if not np.isfinite(xi_mom): + xi_mom = 0.0 + xi_mom = float(np.mod(xi_mom, 2.0 * np.pi)) + r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12)) + n_adjust = int(max(1, round(w_sum))) + kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1])) + + if method == "moments": + estimates = (xi_mom, kappa_mom, 0.0, 0.0) + if return_info: + info = { + "method": "moments", + "converged": True, + "loglik": float(-np.sum(w) * np.log(2.0 * np.pi)) if kappa_mom <= _INVBAT_KAPPA_TOL else float("nan"), + "n_effective": n_eff, + } + return estimates, info + return estimates + + method_key = str(method).lower() + if method_key != "mle": + raise ValueError("`method` must be one of {'mle', 'moments' }.") + + two_pi = 2.0 * np.pi + + if nu_grid is None: + nu_grid = np.linspace(nu_bounds[0], nu_bounds[1], 5) + else: + nu_grid = np.asarray(nu_grid, dtype=float) + + if lmbd_grid is None: + lmbd_grid = np.linspace(lmbd_bounds[0], lmbd_bounds[1], 5) else: - return y + lmbd_grid = np.asarray(lmbd_grid, dtype=float) + + def nll(params): + xi_param, kappa_param, nu_param, lmbd_param = params + if not (0.0 <= xi_param <= two_pi): + return np.inf + if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]): + return np.inf + if not (nu_bounds[0] <= nu_param <= nu_bounds[1]): + return np.inf + if not (lmbd_bounds[0] <= lmbd_param <= lmbd_bounds[1]): + return np.inf + + xi_wrapped = float(np.mod(xi_param, two_pi)) + if kappa_param <= _INVBAT_KAPPA_TOL: + log_pdf = -np.log(two_pi) + return float(-np.sum(w * log_pdf)) + + table = self._get_invbat_table(float(kappa_param), float(nu_param), float(lmbd_param)) + phi = ((data_arr - xi_wrapped + np.pi) % two_pi) - np.pi + pdf_vals = table["pdf_interp"](phi) + if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)): + return np.inf + return float(-np.sum(w * np.log(pdf_vals))) + + best_nu = 0.0 + best_lmbd = 0.0 + best_score = nll((xi_mom, kappa_mom, best_nu, best_lmbd)) + for nu_candidate in np.unique(np.concatenate(([0.0], nu_grid))): + for lmbd_candidate in np.unique(np.concatenate(([0.0], lmbd_grid))): + score = nll((xi_mom, kappa_mom, float(nu_candidate), float(lmbd_candidate))) + if score < best_score: + best_score = score + best_nu = float(nu_candidate) + best_lmbd = float(lmbd_candidate) + + init = np.array([xi_mom, kappa_mom, best_nu, best_lmbd], dtype=float) + bounds = [ + (0.0, two_pi), + (kappa_bounds[0], kappa_bounds[1]), + (nu_bounds[0], nu_bounds[1]), + (lmbd_bounds[0], lmbd_bounds[1]), + ] + + options = {} if options is None else dict(options) + + result = minimize( + nll, + init, + method=optimizer, + bounds=bounds, + options=options, + **minimize_kwargs, + ) + + optimizer_used = optimizer + if not result.success and optimizer != "Powell": + fallback = minimize( + nll, + init, + method="Powell", + bounds=bounds, + options={}, + **minimize_kwargs, + ) + if fallback.success: + result = fallback + optimizer_used = "Powell" + + if not result.success: + raise RuntimeError(f"Maximum likelihood fit failed: {result.message}") + + xi_hat = self._wrap_direction(float(result.x[0])) + kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1])) + nu_hat = float(np.clip(result.x[2], nu_bounds[0], nu_bounds[1])) + lmbd_hat = float(np.clip(result.x[3], lmbd_bounds[0], lmbd_bounds[1])) + + estimates = (xi_hat, kappa_hat, nu_hat, lmbd_hat) + if not return_info: + return estimates + + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": n_eff, + "converged": bool(result.success), + "optimizer": optimizer_used, + "nit": getattr(result, "nit", np.nan), + "nfev": getattr(result, "nfev", np.nan), + "message": result.message, + } + return estimates, info + + def _get_invbat_table(self, kappa, nu, lmbd, grid_size=None): + kappa_val = float(np.clip(kappa, 0.0, _INVBAT_KAPPA_UPPER)) + nu_val = float(nu) + lmbd_val = float(lmbd) + if kappa_val <= _INVBAT_KAPPA_TOL: + phi = np.array([-np.pi, np.pi], dtype=float) + pdf_vals = np.full(2, 1.0 / (2.0 * np.pi), dtype=float) + cdf_interp = PchipInterpolator(phi, [0.0, 1.0], extrapolate=True) + pdf_interp = PchipInterpolator(phi, pdf_vals, extrapolate=True) + return { + "phi": phi, + "pdf": pdf_vals, + "cdf": np.array([0.0, 1.0], dtype=float), + "cdf_interp": cdf_interp, + "pdf_interp": pdf_interp, + "inv_cdf_interp": PchipInterpolator([0.0, 1.0], phi, extrapolate=True), + "log_normalizer": -np.log(2.0 * np.pi), + } + + if grid_size is None: + grid_size = _invbat_grid_size(kappa_val, nu_val, lmbd_val) + grid_int = int(grid_size) + key = (kappa_val, nu_val, lmbd_val, grid_int) + table = self._invbat_table_cache.get(key) + if table is None: + table = self._build_invbat_table(kappa_val, nu_val, lmbd_val, grid_int) + self._invbat_table_cache[key] = table + return table + + def _build_invbat_table(self, kappa, nu, lmbd, grid_size): + phi = np.linspace(-np.pi, np.pi, grid_size + 1, dtype=float) + phi_star = _tnu(phi, nu, 0.0) + skew = _slmbdinv(phi_star, lmbd) + + if np.isclose(lmbd, -1.0, atol=_INVBAT_LMBDA_TOL): + log_kernel = kappa * np.cos(phi_star - np.sin(phi_star)) + else: + con1 = (1.0 - lmbd) / (1.0 + lmbd) + con2 = (2.0 * lmbd) / (1.0 + lmbd) + log_kernel = kappa * np.cos(con1 * phi_star + con2 * skew) + + normalizer = self._get_cached_normalizer( + lambda: _c_invbatschelet(kappa, lmbd), + kappa, + lmbd, + ) + if not np.isfinite(normalizer) or normalizer <= 0.0: + normalizer = _c_invbatschelet_numeric(kappa, lmbd, grid_size=_INVBAT_NUMERIC_GRID) + cache = self._get_normalization_cache() + cache[(kappa, lmbd)] = normalizer + + log_norm = np.log(normalizer) + log_pdf = log_norm + log_kernel + log_pdf = np.clip(log_pdf, -745.0, 700.0) + pdf = np.exp(log_pdf) + + step = (2.0 * np.pi) / grid_size + avg = 0.5 * (pdf[:-1] + pdf[1:]) + mass = float(np.sum(avg) * step) + if not np.isfinite(mass) or mass <= 0.0: + pdf = np.full_like(pdf, 1.0 / (2.0 * np.pi), dtype=float) + log_norm = -np.log(2.0 * np.pi) + mass = 1.0 + elif abs(mass - 1.0) > 5e-10: + scale = 1.0 / mass + pdf *= scale + log_norm += np.log(scale) + mass = 1.0 + cache = self._get_normalization_cache() + cache[(kappa, lmbd)] = np.exp(log_norm) + + avg = 0.5 * (pdf[:-1] + pdf[1:]) + cumulative = np.concatenate(([0.0], np.cumsum(avg))) * step + cumulative = np.maximum.accumulate(np.clip(cumulative, 0.0, 1.0)) + cumulative[-1] = 1.0 + + cdf_interp = PchipInterpolator(phi, cumulative, extrapolate=True) + + unique_vals, unique_idx = np.unique(cumulative, return_index=True) + inv_cdf_interp = ( + PchipInterpolator(unique_vals, phi[unique_idx], extrapolate=True) + if unique_vals.size >= 2 + else None + ) + + pdf_interp = PchipInterpolator(phi, pdf, extrapolate=True) + + return { + "phi": phi, + "pdf": pdf, + "cdf": cumulative, + "cdf_interp": cdf_interp, + "pdf_interp": pdf_interp, + "inv_cdf_interp": inv_cdf_interp, + "log_normalizer": log_norm, + } + + +inverse_batschelet = inverse_batschelet_gen(name="inverse_batschelet") + + +########################################## +## Helper Functions: inverse_batschelet ## +########################################## + + +def _tnu(x, nu, xi): + x_arr = np.asarray(x, dtype=float) + scalar_input = x_arr.ndim == 0 + phi = np.mod(x_arr - xi + np.pi, 2.0 * np.pi) - np.pi + phi_flat = np.atleast_1d(phi).astype(float, copy=False) + results = np.empty_like(phi_flat) + + if abs(nu) <= _INVBAT_NU_TOL: + results[:] = phi_flat + else: + for idx, phi_val in enumerate(phi_flat): + def _equation(y): + return y - nu * (1.0 + np.cos(y)) - phi_val + + solution = root_scalar( + _equation, + bracket=(-np.pi, np.pi), + method="brentq", + ) + if solution.converged: + y_val = solution.root + else: # pragma: no cover - defensive fallback + y_val = phi_val + results[idx] = (y_val + np.pi) % (2.0 * np.pi) - np.pi + + if scalar_input: + return float(results[0]) + return results.reshape(phi.shape) + + +def _slmbdinv(x, lmbd): + x_arr = np.asarray(x, dtype=float) + scalar_input = x_arr.ndim == 0 + x_flat = np.atleast_1d(x_arr).astype(float, copy=False) + + if np.isclose(lmbd, -1.0, atol=_INVBAT_LMBDA_TOL): + result = x_flat.copy() + else: + result = np.empty_like(x_flat) + for idx, val in enumerate(x_flat): + def _equation(u): + return u - 0.5 * (1.0 + lmbd) * np.sin(u) - val + + solution = root_scalar( + _equation, + bracket=(-np.pi, np.pi), + method="brentq", + ) + if solution.converged: + u_val = solution.root + else: # pragma: no cover - defensive fallback + u_val = val + result[idx] = (u_val + np.pi) % (2.0 * np.pi) - np.pi + + if scalar_input: + return float(result[0]) + return result.reshape(x_arr.shape) def _A1(kappa): @@ -1685,76 +7383,178 @@ def _A1(kappa): def _c_invbatschelet(kappa, lmbd): - mult = 2 * np.pi * i0(kappa) - if np.isclose(lmbd, 1).all(): - K = 1 - _A1(kappa) - c = 1 / (mult * K) + kappa_val = float(np.clip(kappa, 0.0, _INVBAT_KAPPA_UPPER)) + lmbd_val = float(lmbd) + + if kappa_val <= _INVBAT_KAPPA_TOL: + return 1.0 / (2.0 * np.pi) + + if np.isclose(lmbd_val, 1.0, atol=_INVBAT_LMBDA_TOL): + log_mult = np.log(2.0 * np.pi) + np.log(i0e(kappa_val)) + kappa_val + K = 1.0 - _A1(kappa_val) + if not np.isfinite(K) or K <= 0.0: + return _c_invbatschelet_numeric(kappa_val, lmbd_val, grid_size=_INVBAT_NUMERIC_GRID * 2) + log_c = -log_mult - np.log(K) + return float(np.exp(log_c)) + + c_val = _c_invbatschelet_numeric(kappa_val, lmbd_val, grid_size=_INVBAT_NUMERIC_GRID) + if not np.isfinite(c_val) or c_val <= 0.0: + c_val = _c_invbatschelet_numeric(kappa_val, lmbd_val, grid_size=_INVBAT_NUMERIC_GRID * 2) + return c_val + + +def _log_invbatschelet_kernel_integral(kappa, lmbd, grid_size): + phi = np.linspace(-np.pi, np.pi, grid_size + 1, dtype=float) + log_kernel = kappa * np.cos(phi - 0.5 * (1.0 - lmbd) * np.sin(phi)) + max_log = np.max(log_kernel) + weights = np.ones_like(phi) + weights[0] = weights[-1] = 0.5 + log_sum = logsumexp(log_kernel - max_log, b=weights) + return np.log(2.0 * np.pi / grid_size) + max_log + log_sum + + +def _c_invbatschelet_numeric(kappa, lmbd, *, grid_size): + log_mult = np.log(2.0 * np.pi) + np.log(i0e(kappa)) + kappa + log_int = _log_invbatschelet_kernel_integral(kappa, lmbd, grid_size) + + if np.isclose(lmbd, -1.0, atol=_INVBAT_LMBDA_TOL): + return float(np.exp(-log_int)) + + log_term1 = np.log1p(lmbd) + log_mult + if abs(lmbd) <= _INVBAT_LMBDA_TOL: + log_term2 = -np.inf else: - con1 = (1 + lmbd) / (1 - lmbd) - con2 = (2 * lmbd) / ((1 - lmbd) * mult) + log_term2 = np.log(2.0 * abs(lmbd)) + log_int - def kernel(x): - return np.exp(kappa * np.cos(x - (1 - lmbd) * np.sin(x) / 2)) + max_log = max(log_term1, log_term2) + term1 = np.exp(log_term1 - max_log) + term2 = np.exp(log_term2 - max_log) if log_term2 > -np.inf else 0.0 - intval = quad_vec(kernel, a=-np.pi, b=np.pi)[0] + if lmbd >= 0.0: + denom_scaled = term1 - term2 + else: + denom_scaled = term1 + term2 + + if denom_scaled <= 0.0 or not np.isfinite(denom_scaled): + return float("nan") + + log_denom = max_log + np.log(denom_scaled) + log_num = np.log1p(-lmbd) + return float(np.exp(log_num - log_denom)) + + +def _invbat_ensure_scalar(value, name): + arr = np.asarray(value, dtype=float) + if arr.ndim == 0: + return float(arr) + if arr.size == 1: + return float(arr.reshape(())) + unique = np.unique(arr) + if unique.size == 1: + return float(unique[0]) + raise ValueError( + f"Inverse Batschelet parameter '{name}' must be scalar; " + "vectorised parameters are not supported because numeric grids are cached per parameter." + ) + + +def _invbat_grid_size(kappa, nu, lmbd): + sharpness = (1.0 + 0.75 * abs(lmbd)) * (1.0 + abs(nu)) * np.sqrt(kappa + 1.0) + target = 64.0 + 12.0 * sharpness + target = float(np.clip(target, _INVBAT_MIN_GRID, _INVBAT_MAX_GRID)) + power = int(np.ceil(np.log2(target))) + size = 1 << power + size = int(np.clip(size, _INVBAT_MIN_GRID, _INVBAT_MAX_GRID)) + if size % 2 != 0: + size += 1 + return size + + +class wrapstable_gen(CircularContinuous): + r"""Wrapped Stable Distribution - c = 1 / (mult * (con1 - con2 * intval)) - return c + ![wrapstable](../images/circ-mod-wrapstable.png) + The wrapped stable family results from wrapping a linear stable law onto + ``[0, 2π)``. Its trigonometric moments satisfy -class wrapstable_gen(rv_continuous): - r""" - Wrapped Stable Distribution + $$ + \mathbb{E}\big[e^{ip\Theta}\big] = \rho_p e^{i\mu_p}, \qquad + \rho_p = \exp\left[-(\gamma p)^\alpha\right], + $$ - - is symmetric around $\delta$ when $\beta = 0$, and to be skewed to the right (left) if $\beta > 0$ ($\beta < 0$). - - can be reduced to - - the wrapped normal distribution when $\alpha = 2, \beta = 0$. - - the wrapped Cauchy distribution when $\alpha = 1, \beta = 0$. - - the wrappd Lévy distribution when $\alpha = 1/2, \beta = 1$ + with - ![wrapstable](../images/circ-mod-wrapstable.png) + $$ + \mu_p = + \begin{cases} + \delta p + \beta \tan\left(\tfrac{\pi\alpha}{2}\right)\bigl((\gamma p)^\alpha - \gamma p\bigr), & \alpha \ne 1, \\[6pt] + \delta p + \tfrac{2}{\pi}\beta\gamma p \log(\gamma p), & \alpha = 1. + \end{cases} + $$ + + Special cases include the wrapped normal (``α=2, β=0``), wrapped Cauchy + (``α=1, β=0``), and wrapped Lévy (``α=1/2, β=1``). + + Methods + ------- + pdf(x, delta, alpha, beta, gamma) + Probability density function via adaptive Fourier series. + + cdf(x, delta, alpha, beta, gamma) + Analytic cumulative distribution function using integrated series. + + ppf(q, delta, alpha, beta, gamma) + Quantile function obtained by safeguarded Newton refinement. + + rvs(delta, alpha, beta, gamma, size=None, random_state=None) + Random variates by Chambers–Mallows–Stuck sampling and wrapping. + + fit(data, *, method='mle' | 'moments', ...) + Estimate parameters via moment starts with optional MLE refinement. References ---------- - - Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data. Computational Statistics & Data Analysis, 52(3), 1516-1523. + - Pewsey (2008). *Computational Statistics & Data Analysis* 52(3), 1516-1523. + + Parameters must be scalar; Fourier series coefficients are cached per + parameter set. """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._series_cache = {} + + def _clear_normalization_cache(self): + super()._clear_normalization_cache() + self._series_cache = {} + def _validate_params(self, delta, alpha, beta, gamma): + delta_arr, alpha_arr, beta_arr, gamma_arr = np.broadcast_arrays(delta, alpha, beta, gamma) return ( - (0 <= delta <= np.pi * 2) - and (0 < alpha <= 2) - and (-1 < beta < 1) - and (gamma > 0) + (delta_arr >= 0.0) + & (delta_arr <= 2.0 * np.pi) + & (alpha_arr > 0.0) + & (alpha_arr <= 2.0) + & (beta_arr > -1.0) + & (beta_arr < 1.0) + & (gamma_arr > 0.0) ) def _argcheck(self, delta, alpha, beta, gamma): - if self._validate_params(delta, alpha, beta, gamma): - return True - else: + try: + return self._validate_params(delta, alpha, beta, gamma) + except ValueError: return False def _pdf(self, x, delta, alpha, beta, gamma): - - def rho_p(p, alpha, gamma): - return np.exp(-((gamma * p) ** alpha)) - - def mu_p(p, alpha, beta, gamma, delta): - if np.all(alpha == 1): - mu = delta * p - 2 * beta * gamma * p * np.log(gamma * p) / np.pi - else: - mu = delta * p + beta * np.tan(np.pi * alpha / 2) * ( - (gamma * p) ** alpha - gamma * p - ) - return mu - - series_sum = 0 - for p in np.arange(1, 150): - rho = rho_p(p, alpha, gamma) - mu = mu_p(p, alpha, beta, gamma, delta) - series_sum += rho * np.cos(p * x - mu) - + x_arr = np.asarray(x, dtype=float) + rho_vals, mu_vals, p = self._get_series_terms(delta, alpha, beta, gamma) + cos_args = p[:, np.newaxis] * x_arr[np.newaxis, ...] - mu_vals[:, np.newaxis] + series_sum = np.sum(rho_vals[:, np.newaxis] * np.cos(cos_args), axis=0) pdf_values = 1 / (2 * np.pi) * (1 + 2 * series_sum) - + if np.isscalar(x): + return np.asarray(pdf_values, dtype=float).reshape(-1)[0] return pdf_values def pdf(self, x, delta, alpha, beta, gamma, *args, **kwargs): @@ -1800,13 +7600,1256 @@ def pdf(self, x, delta, alpha, beta, gamma, *args, **kwargs): return super().pdf(x, delta, alpha, beta, gamma, *args, **kwargs) def _cdf(self, x, delta, alpha, beta, gamma): + x_arr = np.asarray(x, dtype=float) + scalar_input = x_arr.ndim == 0 + theta = np.atleast_1d(x_arr) + + rho_vals, mu_vals, p = self._get_series_terms(delta, alpha, beta, gamma) + theta_flat = theta.reshape(1, -1) + p_vals = p.astype(float) + + sin_args = p_vals[:, np.newaxis] * theta_flat - mu_vals[:, np.newaxis] + coeffs = (rho_vals / p_vals)[:, np.newaxis] + series_sum = np.sum(coeffs * np.sin(sin_args), axis=0) + cdf_vals = (theta_flat[0] / (2.0 * np.pi)) + (1.0 / np.pi) * series_sum + + anchor = (1.0 / np.pi) * np.sum((rho_vals / p_vals) * np.sin(-mu_vals)) + cdf_vals = cdf_vals - anchor + cdf_vals = np.where(cdf_vals < 0.0, cdf_vals + 1.0, cdf_vals) + cdf_vals = np.clip(cdf_vals, 0.0, 1.0) + + # Ensure exact endpoints + two_pi = 2.0 * np.pi + cdf_vals[np.isclose(theta_flat[0], 0.0, atol=1e-12)] = 0.0 + cdf_vals[np.isclose(theta_flat[0], two_pi, atol=1e-12)] = 1.0 + + if scalar_input: + return float(cdf_vals.reshape(-1)[0]) + return cdf_vals.reshape(x_arr.shape) + + def _ppf(self, q, delta, alpha, beta, gamma): + q_arr = np.asarray(q, dtype=float) + flat = q_arr.reshape(-1) + if flat.size == 0: + return q_arr.astype(float) + + delta_val = self._scalar_param(delta) + alpha_val = self._scalar_param(alpha) + beta_val = self._scalar_param(beta) + gamma_val = self._scalar_param(gamma) + + result = np.full_like(flat, np.nan, dtype=float) + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if not np.any(valid): + shaped = result.reshape(q_arr.shape) + return float(shaped) if q_arr.ndim == 0 else shaped + + q_valid = flat[valid] + close_zero = np.isclose(q_valid, 0.0, atol=1e-12, rtol=0.0) + close_one = np.isclose(q_valid, 1.0, atol=1e-12, rtol=0.0) + + two_pi = 2.0 * np.pi + + theta_vals = np.empty_like(q_valid) + for idx, q_val in enumerate(q_valid): + if close_zero[idx]: + theta_vals[idx] = 0.0 + continue + if close_one[idx]: + theta_vals[idx] = two_pi + continue + + lo, hi = 0.0, two_pi + theta = q_val * two_pi + + for _ in range(_WRAPSTABLE_NEWTON_MAXITER): + cdf_theta = float(self._cdf(theta, delta_val, alpha_val, beta_val, gamma_val)) + pdf_theta = float(self._pdf(theta, delta_val, alpha_val, beta_val, gamma_val)) + residual = cdf_theta - q_val + + if abs(residual) <= _WRAPSTABLE_NEWTON_TOL and (hi - lo) <= _WRAPSTABLE_NEWTON_WIDTH_TOL: + break + + if residual > 0.0: + hi = min(hi, theta) + else: + lo = max(lo, theta) + + if pdf_theta <= 0.0 or not np.isfinite(pdf_theta): + theta = 0.5 * (lo + hi) + continue + + step = residual / pdf_theta + theta_new = theta - step + if not np.isfinite(theta_new) or theta_new <= lo or theta_new >= hi: + theta = 0.5 * (lo + hi) + else: + theta = theta_new + + if (hi - lo) <= _WRAPSTABLE_NEWTON_WIDTH_TOL: + break + + else: # pragma: no cover - fallback to bisection if Newton fails + for _ in range(30): + theta_mid = 0.5 * (lo + hi) + cdf_mid = float(self._cdf(theta_mid, delta_val, alpha_val, beta_val, gamma_val)) + if cdf_mid > q_val: + hi = theta_mid + else: + lo = theta_mid + theta = 0.5 * (lo + hi) + + theta_vals[idx] = (theta + two_pi) % two_pi + + result[valid] = theta_vals + shaped = result.reshape(q_arr.shape) + if q_arr.ndim == 0: + return float(shaped) + return shaped + + def _rvs(self, delta, alpha, beta, gamma, size=None, random_state=None): + rng = self._init_rng(random_state) + + delta_val = self._scalar_param(delta) + alpha_val = self._scalar_param(alpha) + beta_val = self._scalar_param(beta) + gamma_val = self._scalar_param(gamma) + + if not (0.0 < alpha_val <= 2.0): + raise ValueError("`alpha` must lie in (0, 2].") + if not (-1.0 < beta_val < 1.0): + raise ValueError("`beta` must lie in (-1, 1).") + if not (gamma_val > 0.0): + raise ValueError("`gamma` must be positive.") + + if size is None: + shape = () + total = 1 + else: + if np.isscalar(size): + shape = (int(size),) + else: + shape = tuple(int(dim) for dim in np.atleast_1d(size)) + total = int(np.prod(shape, dtype=int)) + if total < 0: + raise ValueError("`size` must describe a non-negative number of samples.") + + if total == 0: + empty = np.empty(shape, dtype=float) + return float(empty) if empty.ndim == 0 else empty + + linear_samples = _wrapstable_sample_linear( + alpha=alpha_val, + beta=beta_val, + gamma=gamma_val, + delta=delta_val, + size=total, + rng=rng, + ) + + samples = np.mod(linear_samples, 2.0 * np.pi).reshape(shape) + if samples.ndim == 0: + return float(samples) + return samples + + def rvs(self, delta=None, alpha=None, beta=None, gamma=None, size=None, random_state=None): + r"""Draw random variates from the wrapped stable distribution.""" + + delta_val = self._scalar_param(delta) + alpha_val = self._scalar_param(alpha) + beta_val = self._scalar_param(beta) + gamma_val = self._scalar_param(gamma) + return super().rvs(delta_val, alpha_val, beta_val, gamma_val, size=size, random_state=random_state) + + def fit( + self, + data, + *, + weights=None, + method="mle", + optimizer="L-BFGS-B", + options=None, + alpha_bounds=(1e-3, 2.0), + beta_bounds=(-0.99, 0.99), + gamma_bounds=(1e-6, 10.0), + return_info=False, + **minimize_kwargs, + ): + r"""Estimate ``(delta, alpha, beta, gamma)`` from circular data.""" + + minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs) + minimize_kwargs.pop("floc", None) + minimize_kwargs.pop("fscale", None) + + data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if data_arr.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(data_arr, dtype=float) + else: + w = np.asarray(weights, dtype=float) + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel() + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0.0: + raise ValueError("Sum of weights must be positive.") + n_eff = float(w_sum**2 / np.sum(w**2)) - @np.vectorize - def _cdf_single(x, delta, alpha, beta, gamma): - integral, _ = quad(self._pdf, a=0, b=x, args=(delta, alpha, beta, gamma)) - return integral + def weighted_moment(p): + return np.sum(w * np.exp(1j * p * data_arr)) / w_sum - return _cdf_single(x, delta, alpha, beta, gamma) + m1 = weighted_moment(1) + m2 = weighted_moment(2) + + r1 = float(np.clip(abs(m1), 1e-9, 1 - 1e-9)) + r2 = float(np.clip(abs(m2), 1e-9, 1 - 1e-9)) + + if r1 >= 1 - 1e-6 or r2 >= 1 - 1e-6: + alpha_mom = 1.0 + gamma_mom = 1e-3 + else: + y1 = float(np.log(-np.log(r1))) + y2 = float(np.log(-np.log(r2))) + slope = (y2 - y1) / np.log(2.0) + alpha_mom = float(np.clip(slope, alpha_bounds[0], alpha_bounds[1])) + gamma_mom = float(np.exp(y1 / alpha_mom)) + gamma_mom = float(np.clip(gamma_mom, gamma_bounds[0], gamma_bounds[1])) + + phi1 = float(np.angle(m1)) + phi2_raw = float(np.angle(m2)) + phi2 = phi2_raw + 2.0 * np.pi * round((2.0 * phi1 - phi2_raw) / (2.0 * np.pi)) + + if abs(alpha_mom - 1.0) <= _WRAPSTABLE_ALPHA_TOL: + B1 = (2.0 / np.pi) * gamma_mom * np.log(gamma_mom) + B2 = (2.0 / np.pi) * (gamma_mom * 2.0) * np.log(gamma_mom * 2.0) + denom = B2 - 2.0 * B1 + if abs(denom) < 1e-8: + beta_mom = 0.0 + delta_mom = phi1 + else: + beta_mom = (phi2 - 2.0 * phi1) / denom + beta_mom = float(np.clip(beta_mom, beta_bounds[0], beta_bounds[1])) + delta_mom = phi1 - beta_mom * B1 + else: + A = np.tan(0.5 * np.pi * alpha_mom) + B1 = (gamma_mom) ** alpha_mom - gamma_mom + B2 = (gamma_mom * 2.0) ** alpha_mom - gamma_mom * 2.0 + denom = A * (B2 - 2.0 * B1) + if abs(denom) < 1e-8: + beta_mom = 0.0 + delta_mom = phi1 + else: + beta_mom = (phi2 - 2.0 * phi1) / denom + beta_mom = float(np.clip(beta_mom, beta_bounds[0], beta_bounds[1])) + delta_mom = phi1 - beta_mom * A * B1 + + delta_mom = float(np.mod(delta_mom, 2.0 * np.pi)) + + if method == "moments": + estimates = (delta_mom, alpha_mom, beta_mom, gamma_mom) + if return_info: + info = { + "method": "moments", + "converged": True, + "n_effective": n_eff, + } + return estimates, info + return estimates + + method_key = str(method).lower() + if method_key != "mle": + raise ValueError("`method` must be one of {'mle', 'moments' }.") + + def nll(params): + delta_param, alpha_param, beta_param, gamma_param = params + if not (0.0 <= delta_param <= 2.0 * np.pi): + return np.inf + if not (alpha_bounds[0] <= alpha_param <= alpha_bounds[1]): + return np.inf + if not (beta_bounds[0] <= beta_param <= beta_bounds[1]): + return np.inf + if not (gamma_bounds[0] <= gamma_param <= gamma_bounds[1]): + return np.inf + + pdf_vals = self._pdf(data_arr, delta_param, alpha_param, beta_param, gamma_param) + if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)): + return np.inf + return float(-np.sum(w * np.log(pdf_vals))) + + delta_candidates = np.mod( + np.array([delta_mom, phi1, phi2 / 2.0]), 2.0 * np.pi + ) + alpha_candidates = np.clip( + np.array([alpha_mom, 1.0, min(1.9, alpha_mom * 1.2)]), alpha_bounds[0], alpha_bounds[1] + ) + beta_candidates = np.clip( + np.array([beta_mom, 0.0, np.sign(beta_mom) * 0.5]), beta_bounds[0], beta_bounds[1] + ) + gamma_candidates = np.clip( + np.array([gamma_mom, max(gamma_bounds[0], gamma_mom * 0.8), min(gamma_bounds[1], gamma_mom * 1.2)]), + gamma_bounds[0], + gamma_bounds[1], + ) + + best_params = (delta_mom, alpha_mom, beta_mom, gamma_mom) + best_score = nll(best_params) + for d0 in delta_candidates: + for a0 in alpha_candidates: + for b0 in beta_candidates: + for g0 in gamma_candidates: + cand = (float(d0), float(a0), float(b0), float(g0)) + score = nll(cand) + if score < best_score: + best_score = score + best_params = cand + + bounds = [ + (0.0, 2.0 * np.pi), + tuple(alpha_bounds), + tuple(beta_bounds), + tuple(gamma_bounds), + ] + + init = np.array(best_params, dtype=float) + options = {} if options is None else dict(options) + + optimizer_used = optimizer + result = minimize( + nll, + init, + method=optimizer, + bounds=bounds, + options=options, + **minimize_kwargs, + ) + + if not result.success and optimizer != "Powell": + fallback = minimize( + nll, + init, + method="Powell", + bounds=bounds, + options={}, + **minimize_kwargs, + ) + if fallback.success: + result = fallback + optimizer_used = "Powell" + + if not result.success: + raise RuntimeError(f"Maximum likelihood fit failed: {result.message}") + + delta_hat = float(np.mod(result.x[0], 2.0 * np.pi)) + alpha_hat = float(np.clip(result.x[1], alpha_bounds[0], alpha_bounds[1])) + beta_hat = float(np.clip(result.x[2], beta_bounds[0], beta_bounds[1])) + gamma_hat = float(np.clip(result.x[3], gamma_bounds[0], gamma_bounds[1])) + + estimates = (delta_hat, alpha_hat, beta_hat, gamma_hat) + if not return_info: + return estimates + + info = { + "method": "mle", + "loglik": float(-result.fun), + "n_effective": n_eff, + "converged": bool(result.success), + "optimizer": optimizer_used, + "nit": getattr(result, "nit", np.nan), + "nfev": getattr(result, "nfev", np.nan), + "message": result.message, + } + return estimates, info + + def _get_series_terms(self, delta, alpha, beta, gamma): + delta_s = self._scalar_param(delta) + alpha_s = self._scalar_param(alpha) + beta_s = self._scalar_param(beta) + gamma_s = self._scalar_param(gamma) + key = self._normalization_cache_key(delta_s, alpha_s, beta_s, gamma_s) + if key is None: + return self._compute_series_terms(delta_s, alpha_s, beta_s, gamma_s) + cache = self._series_cache + if key not in cache: + cache[key] = self._compute_series_terms(delta_s, alpha_s, beta_s, gamma_s) + return cache[key] + + def _compute_series_terms(self, delta, alpha, beta, gamma): + if gamma <= 0.0: + raise ValueError("`gamma` must be positive for wrapstable.") + + def _initial_order(tol): + if tol <= 0.0: + return 1 + log_term = -np.log(tol) + if log_term <= 0.0: + return 1 + if not np.isfinite(alpha) or alpha <= 0.0: + return 1 + + exponent = (np.log(log_term) / alpha) - np.log(gamma) + if not np.isfinite(exponent): + return _WRAPSTABLE_MAX_TERMS + if exponent > np.log(_WRAPSTABLE_MAX_TERMS): + return _WRAPSTABLE_MAX_TERMS + + value = np.exp(exponent) + if not np.isfinite(value): + return _WRAPSTABLE_MAX_TERMS + value = max(1.0, value) + return int(min(_WRAPSTABLE_MAX_TERMS, np.ceil(value))) + + p_pdf = _initial_order(_WRAPSTABLE_PDF_TOL) + p_cdf = _initial_order(_WRAPSTABLE_CDF_TOL) + P = max(1, p_pdf, p_cdf) + + for _ in range(_WRAPSTABLE_MAX_TERMS): + rho_P = np.exp(-((gamma * P) ** alpha)) + if rho_P <= _WRAPSTABLE_PDF_TOL and rho_P / P <= _WRAPSTABLE_CDF_TOL: + break + P += 1 + if P >= _WRAPSTABLE_MAX_TERMS: + break + + p = np.arange(1, P + 1, dtype=float) + rho_vals = np.exp(-((gamma * p) ** alpha)) + + if abs(alpha - 1.0) <= _WRAPSTABLE_ALPHA_TOL: + mu_vals = delta * p + (2.0 / np.pi) * beta * gamma * p * np.log(gamma * p) + else: + mu_vals = delta * p + beta * np.tan(0.5 * np.pi * alpha) * ( + (gamma * p) ** alpha - gamma * p + ) + + return rho_vals, mu_vals, p + + @staticmethod + def _scalar_param(value): + arr = np.asarray(value, dtype=float) + if arr.size == 1: + return float(np.asarray(arr, dtype=float).reshape(-1)[0]) + first = float(arr.flat[0]) + if not np.allclose(arr, first): + raise ValueError( + "wrapstable parameters must be scalar; vectorised parameters are not supported " + "because Fourier series coefficients are cached per parameter set." + ) + return first wrapstable = wrapstable_gen(name="wrapstable") + + +def _wrapstable_sample_linear(alpha, beta, gamma, delta, *, size, rng): + size = int(size) + if size <= 0: + return np.empty(0, dtype=float) + + alpha = float(alpha) + beta = float(beta) + gamma = float(gamma) + delta = float(delta) + + V = rng.uniform(-0.5 * np.pi, 0.5 * np.pi, size=size) + W = rng.exponential(1.0, size=size) + + if abs(alpha - 1.0) > _WRAPSTABLE_ALPHA_TOL: + tan_term = np.tan(0.5 * np.pi * alpha) + theta0 = np.arctan(beta * tan_term) / alpha + factor = (1.0 + (beta * tan_term) ** 2) ** (1.0 / (2.0 * alpha)) + + delta_s1 = delta - gamma * beta * tan_term + part1 = np.sin(alpha * (V + theta0)) / (np.cos(V) ** (1.0 / alpha)) + part2 = (np.cos(V - alpha * (V + theta0)) / W) ** ((1.0 - alpha) / alpha) + x_s1 = gamma * factor * part1 * part2 + delta_s1 + x = x_s1 + (delta - delta_s1) + else: + factor = 2.0 / np.pi + delta_s1 = delta - factor * beta * gamma * np.log(gamma) + term = ( + (0.5 * np.pi + beta * V) * np.tan(V) + - beta * np.log((0.5 * np.pi * W * np.cos(V)) / (0.5 * np.pi + beta * V)) + ) + x_s1 = gamma * factor * term + delta_s1 + x = x_s1 + (delta - delta_s1) + + return x + +class katojones_gen(CircularContinuous): + """ + Kato--Jones (2015) Distribution + + ![katojones](../images/circ-mod-katojones.png) + + Methods + ------- + pdf(x, mu, gamma, rho, lam) + Probability density function. + cdf(x, mu, gamma, rho, lam) + Cumulative distribution function via adaptive Fourier series. + + rvs(mu, gamma, rho, lam, size=None, random_state=None) + Random variates obtained by inverting the CDF. + fit(data, method=\"moments\" | \"mle\", ...) + Method-of-moments or maximum-likelihood parameter estimation. + Notes + ----- + Implements the tractable four-parameter unimodal family proposed by Kato and + Jones (2015). Parameters control the first two trigonometric moments: + ``mu`` sets the mean direction, ``gamma`` the mean resultant length, and + ``rho``/``lam`` encode the magnitude/phase of the second-order moment. + Feasible parameter tuples satisfy ``0 <= mu < 2*pi``, ``0 <= gamma < 1``, + ``0 <= rho < 1``, ``0 <= lam < 2*pi`` together with the constraint enforced + in `_argcheck`. + + Special cases include the uniform distribution (``gamma = 0``), the cardioid + (``rho = 0``) and the wrapped Cauchy (``lambda = 0`` with ``gamma = rho``). + + References + ---------- + - Kato, S., & Jones, M. C. (2015). *A tractable and interpretable + four-parameter family of unimodal distributions on the circle*. Biometrika, + 102(1), 181-190. + """ + + _moment_tolerance = 1e-12 + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._series_cache = {} + + def _clear_normalization_cache(self): + super()._clear_normalization_cache() + self._series_cache = {} + + @staticmethod + def _scalar_param(value): + arr = np.asarray(value, dtype=float) + if arr.size == 1: + return float(np.asarray(arr, dtype=float).reshape(-1)[0]) + first = float(arr.flat[0]) + if not np.allclose(arr, first): + raise ValueError( + "katojones parameters must be scalar; vectorised parameters are not supported " + "because series expansions are cached per parameter set." + ) + return first + + def _argcheck(self, mu, gamma, rho, lam): + try: + mu_arr, gamma_arr, rho_arr, lam_arr = np.broadcast_arrays(mu, gamma, rho, lam) + except ValueError: + return False + + base = ( + (mu_arr >= 0.0) + & (mu_arr < 2.0 * np.pi) + & (gamma_arr >= 0.0) + & (gamma_arr < 1.0) + & (rho_arr >= 0.0) + & (rho_arr < 1.0) + & (lam_arr >= 0.0) + & (lam_arr < 2.0 * np.pi) + ) + + cos_lam = np.cos(lam_arr) + sin_lam = np.sin(lam_arr) + constraint_val = (rho_arr * cos_lam - gamma_arr) ** 2 + (rho_arr * sin_lam) ** 2 + constraint_limit = (1.0 - gamma_arr) ** 2 + 1e-12 + admissible = constraint_val <= constraint_limit + return base & admissible + + def _pdf(self, x, mu, gamma, rho, lam): + x_arr = np.asarray(x, dtype=float) + delta = x_arr - mu + denom = 1.0 + rho**2 - 2.0 * rho * np.cos(delta - lam) + denom = np.clip(denom, 1e-15, None) + numerator = 1.0 + (2.0 * gamma * (np.cos(delta) - rho * np.cos(lam))) / denom + pdf = numerator / (2.0 * np.pi) + pdf = np.clip(pdf, 0.0, None) + if np.isscalar(x): + return np.asarray(pdf, dtype=float).reshape(-1)[0] + return pdf + + def pdf(self, x, mu, gamma, rho, lam, *args, **kwargs): + r""" + Probability density function of the Kato--Jones (2015) distribution. + + $$ + g(\theta) = \frac{1}{2\pi}\left[1 + \frac{2\gamma\,(\cos(\theta-\mu) - \rho\cos\lambda)} + {1 + \rho^2 - 2\rho\cos(\theta-\mu-\lambda)}\right] + $$ + + Parameters + ---------- + x : array_like + Points at which to evaluate the probability density function. + mu : float + Mean direction, $0 \leq \mu < 2\pi$. + gamma : float + Mean resultant length, $0 \leq \gamma < 1$. + rho : float + Second-order magnitude, $0 \leq \rho < 1$. + lam : float + Second-order phase, $0 \leq \lambda < 2\pi$. + + Returns + ------- + pdf_values : array_like + Probability density function evaluated at `x`. + """ + return super().pdf(x, mu, gamma, rho, lam, *args, **kwargs) + + def _cdf(self, x, mu, gamma, rho, lam): + x_arr = np.asarray(x, dtype=float) + scalar_input = x_arr.ndim == 0 + flat = x_arr.reshape(-1) + + mu_val = float(np.mod(self._scalar_param(mu), 2.0 * np.pi)) + gamma_val = float(np.clip(self._scalar_param(gamma), 0.0, 1.0 - 1e-12)) + rho_val = float(np.clip(self._scalar_param(rho), 0.0, 1.0 - 1e-12)) + lam_val = float(np.mod(self._scalar_param(lam), 2.0 * np.pi)) + + if gamma_val <= _KJ_GAMMA_TOL: + cdf_flat = flat / (2.0 * np.pi) + else: + series = self._get_series_terms(mu_val, gamma_val, rho_val, lam_val) + cdf_raw = self._evaluate_cdf_series(flat, mu_val, gamma_val, rho_val, lam_val, series=series) + cdf_flat = np.mod(cdf_raw, 1.0) + + cdf_flat = np.clip(cdf_flat, 0.0, 1.0) + cdf_flat[np.isclose(flat, 0.0, atol=1e-12)] = 0.0 + cdf_flat[np.isclose(flat, 2.0 * np.pi, atol=1e-12)] = 1.0 + + if scalar_input: + return float(cdf_flat[0]) + return cdf_flat.reshape(x_arr.shape) + + def cdf(self, x, mu, gamma, rho, lam, *args, **kwargs): + r""" + Cumulative distribution function of the Kato--Jones (2015) distribution. + + The CDF has the closed-form Fourier expansion + + $$ + G(\theta) = \frac{\theta}{2\pi} + + \frac{1}{\pi}\sum_{p=1}^{\infty} \frac{\gamma \rho^{p-1}}{p} + \sin\!\bigl(p\theta - [p\mu + (p-1)\lambda]\bigr), + $$ + + which is evaluated adaptively by truncating the series once the tail + contribution drops below a specified tolerance. No numerical quadrature + is required. + + Parameters + ---------- + x : array_like + Points at which to evaluate the cumulative distribution function. + mu : float + Mean direction, $0 \leq \mu < 2\pi$. + gamma : float + Mean resultant length, $0 \leq \gamma < 1$. + rho : float + Second-order magnitude, $0 \leq \rho < 1$. + lam : float + Second-order phase, $0 \leq \lambda < 2\pi$. + + Returns + ------- + cdf_values : array_like + Cumulative distribution function evaluated at `x`. + """ + return super().cdf(x, mu, gamma, rho, lam, *args, **kwargs) + + def _logpdf(self, x, mu, gamma, rho, lam): + pdf_vals = self._pdf(x, mu, gamma, rho, lam) + return np.log(np.clip(pdf_vals, np.finfo(float).tiny, None)) + + def logpdf(self, x, mu, gamma, rho, lam, *args, **kwargs): + r""" + Logarithm of the probability density function of the Kato--Jones (2015) + distribution. + + Parameters + ---------- + x : array_like + Points at which to evaluate the log-PDF. + mu : float + Mean direction, $0 \leq \mu < 2\pi$. + gamma : float + Mean resultant length, $0 \leq \gamma < 1$. + rho : float + Second-order magnitude, $0 \leq \rho < 1$. + lam : float + Second-order phase, $0 \leq \lambda < 2\pi$. + + Returns + ------- + logpdf_values : array_like + Logarithm of the probability density function evaluated at `x`. + """ + return super().logpdf(x, mu, gamma, rho, lam, *args, **kwargs) + + def _ppf(self, q, mu, gamma, rho, lam): + mu_val = float(np.mod(self._scalar_param(mu), 2.0 * np.pi)) + gamma_val = float(np.clip(self._scalar_param(gamma), 0.0, 1.0 - 1e-12)) + rho_val = float(np.clip(self._scalar_param(rho), 0.0, 1.0 - 1e-12)) + lam_val = float(np.mod(self._scalar_param(lam), 2.0 * np.pi)) + + q_arr = np.asarray(q, dtype=float) + if q_arr.size == 0: + return q_arr.astype(float) + + if gamma_val <= _KJ_GAMMA_TOL: + return (2.0 * np.pi * q_arr).astype(float) + + scalar_input = q_arr.ndim == 0 + flat = q_arr.reshape(-1) + result = np.full_like(flat, np.nan, dtype=float) + + valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0) + if not np.any(valid): + return float(result) if scalar_input else result.reshape(q_arr.shape) + + series = self._get_series_terms(mu_val, gamma_val, rho_val, lam_val) + two_pi = 2.0 * np.pi + + def cdf_single(theta): + value = self._evaluate_cdf_series(theta, mu_val, gamma_val, rho_val, lam_val, series=series) + value = np.mod(value, 1.0) + return float(np.clip(value, 0.0, 1.0)) + + for idx, q_val in enumerate(flat): + if not valid[idx]: + continue + if np.isclose(q_val, 0.0, atol=1e-12): + result[idx] = 0.0 + continue + if np.isclose(q_val, 1.0, atol=1e-12): + result[idx] = two_pi + continue + + lo, hi = 0.0, two_pi + theta = q_val * two_pi + + for _ in range(_KJ_NEWTON_MAXITER): + cdf_theta = cdf_single(theta) + pdf_theta = float(self._pdf(theta, mu_val, gamma_val, rho_val, lam_val)) + residual = cdf_theta - q_val + + if abs(residual) <= _KJ_NEWTON_TOL and (hi - lo) <= _KJ_NEWTON_WIDTH_TOL: + break + + if residual > 0.0: + hi = min(hi, theta) + else: + lo = max(lo, theta) + + if pdf_theta <= 0.0 or not np.isfinite(pdf_theta): + theta = 0.5 * (lo + hi) + continue + + step = residual / pdf_theta + theta_candidate = theta - step + if not np.isfinite(theta_candidate) or theta_candidate <= lo or theta_candidate >= hi: + theta = 0.5 * (lo + hi) + else: + theta = theta_candidate + + if (hi - lo) <= _KJ_NEWTON_WIDTH_TOL: + break + else: + for _ in range(30): + mid = 0.5 * (lo + hi) + if cdf_single(mid) > q_val: + hi = mid + else: + lo = mid + theta = 0.5 * (lo + hi) + + result[idx] = theta % two_pi + + if scalar_input: + return float(result[0]) + return result.reshape(q_arr.shape) + + def _rvs(self, mu, gamma, rho, lam, size=None, random_state=None): + rng = self._init_rng(random_state) + + if size is None: + u = rng.random() + return float(self._ppf(u, mu, gamma, rho, lam)) + + if np.isscalar(size): + shape = (int(size),) + else: + shape = tuple(int(dim) for dim in np.atleast_1d(size)) + + total = int(np.prod(shape, dtype=int)) + if total < 0: + raise ValueError("`size` must describe a non-negative number of samples.") + if total == 0: + return np.empty(shape, dtype=float) + + u = rng.random(size=shape) + return self._ppf(u, mu, gamma, rho, lam) + + def rvs(self, mu=None, gamma=None, rho=None, lam=None, size=None, random_state=None): + mu_val = self._scalar_param(mu) + gamma_val = self._scalar_param(gamma) + rho_val = self._scalar_param(rho) + lam_val = self._scalar_param(lam) + return super().rvs(mu_val, gamma_val, rho_val, lam_val, size=size, random_state=random_state) + + def trig_moment(self, p: int = 1, *args, **kwargs) -> complex: + shape_args, non_shape_kwargs = self._separate_shape_parameters( + args, kwargs, "trig_moment" + ) + call_kwargs = self._prepare_call_kwargs(non_shape_kwargs, "trig_moment") + params = self._parse_args(*shape_args, **call_kwargs)[0] + if len(params) != 4: + raise ValueError("Expected parameters (mu, gamma, rho, lam).") + mu, gamma, rho, lam = [float(np.asarray(val, dtype=float)) for val in params] + + if not np.isscalar(p): + raise ValueError("`p` must be an integer scalar.") + if int(round(p)) != p: + raise ValueError("`p` must be an integer.") + + k = int(round(p)) + if k == 0: + return complex(1.0, 0.0) + + abs_k = abs(k) + mag = float(gamma) if abs_k == 1 else float(gamma * (rho ** (abs_k - 1))) + angle = abs_k * mu + (abs_k - 1) * lam + value = mag * np.exp(1j * angle) + + if k < 0: + return np.conjugate(value) + return complex(value) + + def _prepare_data_weights(self, data, weights=None): + data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel() + if data_arr.size == 0: + raise ValueError("`data` must contain at least one observation.") + + if weights is None: + w = np.ones_like(data_arr, dtype=float) + else: + w = np.asarray(weights, dtype=float) + try: + w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel() + except ValueError as exc: + raise ValueError("`weights` must be broadcastable to the data shape.") from exc + if np.any(w < 0): + raise ValueError("`weights` must be non-negative.") + + w_sum = float(np.sum(w)) + if not np.isfinite(w_sum) or w_sum <= 0.0: + raise ValueError("Sum of weights must be positive.") + n_eff = float(w_sum**2 / np.sum(w**2)) + return data_arr, w, w_sum, n_eff + + def _fit_moments(self, data, *, weights=None, return_info=False): + data_arr, w, w_sum, n_eff = self._prepare_data_weights(data, weights=weights) + + mu_hat, r1 = circ_mean_and_r(alpha=data_arr, w=w) + centered = angmod(data_arr - mu_hat) + cos2 = np.cos(2.0 * centered) + sin2 = np.sin(2.0 * centered) + alpha2 = float(np.sum(w * cos2) / w_sum) + beta2 = float(np.sum(w * sin2) / w_sum) + mu_hat = self._wrap_direction(float(mu_hat)) + gamma_hat = float(np.clip(r1, 0.0, 1.0 - 1e-9)) + + alpha2_proj, beta2_proj = self._project_second_order(gamma_hat, alpha2, beta2) + + if gamma_hat < self._moment_tolerance: + rho_hat = 0.0 + lam_hat = 0.0 + else: + r2 = np.hypot(alpha2_proj, beta2_proj) + rho_hat = float(np.clip(r2 / max(gamma_hat, 1e-12), 0.0, 1.0 - 1e-9)) + lam_hat = float(np.mod(np.arctan2(beta2_proj, alpha2_proj), 2.0 * np.pi)) + if rho_hat < self._moment_tolerance: + lam_hat = 0.0 + + estimates = (mu_hat, gamma_hat, rho_hat, lam_hat) + if return_info: + info = { + "method": "moments", + "converged": True, + "n_effective": n_eff, + } + return estimates, info + return estimates + + @staticmethod + def _project_second_order(gamma, alpha2, beta2): + gamma = float(gamma) + radius = gamma * (1.0 - gamma) + center_alpha = gamma * gamma + vec_alpha = alpha2 - center_alpha + vec_beta = beta2 + distance = np.hypot(vec_alpha, vec_beta) + if radius <= 0.0: + return center_alpha, 0.0 + if distance <= radius: + return alpha2, beta2 + if distance == 0.0: + return center_alpha + radius, 0.0 + scale = radius / distance + alpha_proj = center_alpha + vec_alpha * scale + beta_proj = vec_beta * scale + return alpha_proj, beta_proj + + @staticmethod + def convert_alpha2_beta2(gamma, alpha2, beta2, *, verify=True): + """ + Convert second-order moment parameters to (rho, lambda). + + Parameters + ---------- + gamma : float + Mean resultant length, 0 <= gamma < 1. + alpha2 : float + Second-order cosine moment around mu. + beta2 : float + Second-order sine moment around mu. + verify : bool, optional + If True (default), check that (alpha2, beta2) lies within the feasible + disk for the supplied gamma and raise a ValueError if not. + + Returns + ------- + rho : float + Second-order magnitude parameter. + lam : float + Second-order phase parameter in [0, 2 pi). + """ + gamma = float(gamma) + alpha2 = float(alpha2) + beta2 = float(beta2) + + if not (0.0 <= gamma < 1.0): + raise ValueError("`gamma` must lie in [0, 1).") + + radius_sq = (gamma * (1.0 - gamma)) ** 2 + center_alpha = gamma * gamma + dist_sq = (alpha2 - center_alpha) ** 2 + beta2**2 + + tol = 1e-12 + if verify and dist_sq > radius_sq + tol: + raise ValueError( + f"(alpha2, beta2) = ({alpha2}, {beta2}) is outside the feasible disk " + f"for gamma={gamma}." + ) + + r2 = np.hypot(alpha2, beta2) + if gamma <= katojones_gen._moment_tolerance: + if verify and r2 > tol: + raise ValueError( + "When gamma is approximately zero, alpha2 and beta2 must also be near zero." + ) + return 0.0, 0.0 + + rho = float(np.clip(r2 / gamma, 0.0, 1.0 - 1e-12)) + if r2 <= tol: + lam = 0.0 + else: + lam = float(np.mod(np.arctan2(beta2, alpha2), 2.0 * np.pi)) + return rho, lam + + @staticmethod + def convert_rho_lambda(gamma, rho, lam, *, verify=True): + """ + Convert (rho, lambda) parameters to second-order moments (alpha2, beta2). + + Parameters + ---------- + gamma : float + Mean resultant length, 0 <= gamma < 1. + rho : float + Second-order magnitude, 0 <= rho < 1. + lam : float + Second-order phase, 0 <= lam < 2*pi. + verify : bool, optional + If True (default), ensure (gamma, rho, lam) satisfies the feasibility + constraint and raise a ValueError otherwise. + + Returns + ------- + alpha2 : float + Second-order cosine moment around mu. + beta2 : float + Second-order sine moment around mu. + """ + gamma = float(gamma) + rho = float(rho) + lam = float(lam) + + if not (0.0 <= gamma < 1.0): + raise ValueError("`gamma` must lie in [0, 1).") + if not (0.0 <= rho < 1.0): + raise ValueError("`rho` must lie in [0, 1).") + + if verify: + constraint = (rho * np.cos(lam) - gamma) ** 2 + (rho * np.sin(lam)) ** 2 + if constraint > (1.0 - gamma) ** 2 + 1e-12: + raise ValueError( + f"(gamma, rho, lam)=({gamma}, {rho}, {lam}) violates the feasibility constraint." + ) + + alpha2 = float(gamma * rho * np.cos(lam)) + beta2 = float(gamma * rho * np.sin(lam)) + return alpha2, beta2 + + @staticmethod + def _aux_from_rho_lam(gamma, rho, lam): + gamma = float(gamma) + rho = float(rho) + lam = float(lam) + gamma = np.clip(gamma, 0.0, 1.0 - 1e-12) + rho = np.clip(rho, 0.0, 1.0 - 1e-12) + lam = float(np.mod(lam, 2.0 * np.pi)) + + if gamma >= 1.0 - 1e-12: + return 0.0, 0.0 + + denom = max(1e-12, 1.0 - gamma) + delta_cos = rho * np.cos(lam) - gamma + delta_sin = rho * np.sin(lam) + s = float(np.clip(np.hypot(delta_cos, delta_sin) / denom, 0.0, 1.0 - 1e-9)) + phi = float(np.mod(np.arctan2(delta_sin, delta_cos), 2.0 * np.pi)) + if s < katojones_gen._moment_tolerance: + phi = 0.0 + return s, phi + + @staticmethod + def _rho_lam_from_aux(gamma, s, phi): + gamma = float(np.clip(gamma, 0.0, 1.0 - 1e-9)) + s = float(np.clip(s, 0.0, 1.0 - 1e-9)) + phi = float(np.mod(phi, 2.0 * np.pi)) + + cos_phi = np.cos(phi) + sin_phi = np.sin(phi) + delta_cos = (1.0 - gamma) * s * cos_phi + delta_sin = (1.0 - gamma) * s * sin_phi + rho_cos = gamma + delta_cos + rho_sin = delta_sin + rho = float(np.clip(np.hypot(rho_cos, rho_sin), 0.0, 1.0 - 1e-9)) + lam = float(np.mod(np.arctan2(rho_sin, rho_cos), 2.0 * np.pi)) + return rho, lam + + def _get_series_terms(self, mu, gamma, rho, lam): + mu_val = float(np.mod(self._scalar_param(mu), 2.0 * np.pi)) + gamma_val = float(np.clip(self._scalar_param(gamma), 0.0, 1.0 - 1e-12)) + rho_val = float(np.clip(self._scalar_param(rho), 0.0, 1.0 - 1e-12)) + lam_val = float(np.mod(self._scalar_param(lam), 2.0 * np.pi)) + + key = self._normalization_cache_key(mu_val, gamma_val, rho_val, lam_val) + if key is None: + return self._compute_series_terms(mu_val, gamma_val, rho_val, lam_val) + + cache = self._series_cache + if key not in cache: + cache[key] = self._compute_series_terms(mu_val, gamma_val, rho_val, lam_val) + return cache[key] + + def _compute_series_terms(self, mu, gamma, rho, lam): + if gamma <= _KJ_GAMMA_TOL or rho <= _KJ_GAMMA_TOL: + return { + "coeffs": np.empty(0, dtype=float), + "phases": np.empty(0, dtype=float), + "p": np.empty(0, dtype=float), + "anchor": 0.0, + } + + rho_val = float(np.clip(rho, 0.0, 1.0 - 1e-12)) + gamma_val = float(np.clip(gamma, 0.0, 1.0 - 1e-12)) + + if rho_val == 0.0: + P = 1 + else: + P = 1 + for _ in range(_KJ_MAX_TERMS): + tail = (gamma_val / max(P, 1)) * (rho_val ** max(P - 1, 0)) / max(1e-12, 1.0 - rho_val) + if tail <= _KJ_CDF_TOL: + break + P += 1 + P = min(P, _KJ_MAX_TERMS) + + p = np.arange(1, P + 1, dtype=float) + rho_pows = rho_val ** (p - 1.0) + coeffs = gamma_val * rho_pows / p + phases = np.mod(p * mu + (p - 1.0) * lam, 2.0 * np.pi) + anchor = -(1.0 / np.pi) * np.sum(coeffs * np.sin(phases)) + + return { + "coeffs": coeffs, + "phases": phases, + "p": p, + "anchor": float(anchor), + } + + def _evaluate_cdf_series(self, theta, mu, gamma, rho, lam, *, series=None): + theta_arr = np.asarray(theta, dtype=float) + flat = theta_arr.reshape(-1) + + if series is None: + series = self._get_series_terms(mu, gamma, rho, lam) + + coeffs = series["coeffs"] + if coeffs.size == 0: + return (flat / (2.0 * np.pi)).reshape(theta_arr.shape) + + phases = series["phases"] + p = series["p"][:, np.newaxis] + theta_col = flat[np.newaxis, :] + sin_terms = np.sin(p * theta_col - phases[:, np.newaxis]) + series_sum = np.sum(coeffs[:, np.newaxis] * sin_terms, axis=0) + base = flat / (2.0 * np.pi) + values = base + (1.0 / np.pi) * series_sum - series["anchor"] + return values.reshape(theta_arr.shape) + + def _fit_mle( + self, + data, + *, + weights=None, + initial, + optimizer, + options, + return_info=False, + **minimize_kwargs, + ): + data_arr, w, w_sum, n_eff = self._prepare_data_weights(data, weights=weights) + + if initial is None: + initial = self._fit_moments(data_arr, weights=w) + + mu0, gamma0, rho0, lam0 = initial + mu0 = self._wrap_direction(float(mu0)) + gamma0 = float(np.clip(gamma0, 1e-6, 1.0 - 1e-6)) + lam0 = float(np.mod(lam0, 2.0 * np.pi)) + rho0 = float(np.clip(rho0, 0.0, 1.0 - 1e-6)) + if rho0 < self._moment_tolerance: + rho0 = 0.0 + lam0 = 0.0 + s0, phi0 = self._aux_from_rho_lam(gamma0, rho0, lam0) + x0 = np.array([mu0, gamma0, s0, phi0], dtype=float) + + def objective(params): + mu, gamma, s, phi = params + mu = self._wrap_direction(float(mu)) + gamma = float(np.clip(gamma, 1e-6, 1.0 - 1e-9)) + s = float(np.clip(s, 0.0, 1.0 - 1e-9)) + phi = float(np.mod(phi, 2.0 * np.pi)) + rho, lam = self._rho_lam_from_aux(gamma, s, phi) + if not self._argcheck(mu, gamma, rho, lam): + return 1e12 + pdf_vals = self._pdf(data_arr, mu, gamma, rho, lam) + if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)): + return 1e12 + return -np.sum(w * np.log(pdf_vals)) + + bounds = [ + (0.0, 2.0 * np.pi), + (1e-6, 1.0 - 1e-6), + (0.0, 1.0 - 1e-6), + (0.0, 2.0 * np.pi), + ] + + result = minimize( + objective, + x0, + method=optimizer, + bounds=bounds, + options=options, + **minimize_kwargs, + ) + + if not result.success: + fallback_method = "Powell" if optimizer != "Powell" else None + if fallback_method is not None: + fallback_result = minimize( + objective, + x0, + method=fallback_method, + bounds=bounds, + options={}, + **minimize_kwargs, + ) + if fallback_result.success: + result = fallback_result + if not result.success: + raise RuntimeError(f"Maximum likelihood fit failed: {result.message}") + + mu_hat, gamma_hat, s_hat, phi_hat = result.x + mu_hat = self._wrap_direction(float(mu_hat)) + gamma_hat = float(np.clip(gamma_hat, 0.0, 1.0 - 1e-9)) + s_hat = float(np.clip(s_hat, 0.0, 1.0 - 1e-9)) + phi_hat = float(np.mod(phi_hat, 2.0 * np.pi)) + rho_hat, lam_hat = self._rho_lam_from_aux(gamma_hat, s_hat, phi_hat) + + estimates = (mu_hat, gamma_hat, rho_hat, lam_hat) + if return_info: + final_nll = objective(result.x) + info = { + "method": "mle", + "converged": bool(result.success), + "loglik": float(-final_nll), + "n_effective": n_eff, + "nit": getattr(result, "nit", None), + "optimizer": optimizer, + "initial": initial, + } + return estimates, info + return estimates + + def fit( + self, + data, + method="moments", + *, + weights=None, + initial=None, + optimizer="L-BFGS-B", + options=None, + return_info=False, + **kwargs, + ): + kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit") + kwargs.pop("floc", None) + kwargs.pop("fscale", None) + + if method == "moments": + if kwargs: + raise TypeError("Unexpected optimizer arguments for method='moments'.") + estimates, info = self._fit_moments( + data, + weights=weights, + return_info=True, + ) + return (estimates, info) if return_info else estimates + + if method != "mle": + raise ValueError("method must be either 'moments' or 'mle'.") + + options = {} if options is None else dict(options) + estimates, info = self._fit_mle( + data, + weights=weights, + initial=initial, + optimizer=optimizer, + options=options, + return_info=True, + **kwargs, + ) + return (estimates, info) if return_info else estimates + + +katojones = katojones_gen(name="katojones") diff --git a/pycircstat2/hypothesis.py b/pycircstat2/hypothesis.py index 47eb501..6d83463 100644 --- a/pycircstat2/hypothesis.py +++ b/pycircstat2/hypothesis.py @@ -1,6 +1,7 @@ import math +import warnings from dataclasses import dataclass -from typing import Optional, Union +from typing import Any, Optional, Sequence, Union import numpy as np import pandas as pd @@ -18,7 +19,59 @@ circ_r, circ_range, ) -from .utils import A1inv, angmod, angular_distance, significance_code +from .utils import ( + A1inv, + angmod, + angular_distance, + is_within_circular_range, + significance_code, +) + +__all__ = [ + "rayleigh_test", + "chisquare_test", + "V_test", + "one_sample_test", + "omnibus_test", + "batschelet_test", + "symmetry_test", + "watson_williams_test", + "watson_u2_test", + "wheeler_watson_test", + "wallraff_test", + "circ_anova", + "angular_randomisation_test", + "kuiper_test", + "watson_test", + "rao_spacing_test", + "circ_range_test", + "binomial_test", + "concentration_test", + "rao_homogeneity_test", + "change_point_test", + "harrison_kanji_test", + "equal_kappa_test", + "common_median_test", +] + +SeedLike = Union[ + None, + int, + Sequence[int], + np.random.Generator, + np.random.BitGenerator, + np.random.SeedSequence, +] + + +def _init_rng(seed: SeedLike) -> np.random.Generator: + """Normalize a seed-like input into a Generator instance.""" + + if isinstance(seed, np.random.Generator): + return seed + + return np.random.default_rng(seed) + ################### # One-Sample Test # @@ -26,19 +79,305 @@ @dataclass(frozen=True) -class RayleighTestResult: +class TestResult: + """Base class for hypothesis test results.""" + + def asdict(self) -> dict[str, Any]: + """Return result data as a dictionary.""" + from dataclasses import asdict + + return asdict(self) + + def significance(self, attr: str = "pval") -> Optional[str]: + """Return significance stars for the requested p-value attribute.""" + + if not hasattr(self, attr): + return None + + value = getattr(self, attr) + if value is None: + return None + + try: + return significance_code(float(value)) + except (TypeError, ValueError): + return None + + +@dataclass(frozen=True) +class RayleighTestResult(TestResult): r: float # Resultant vector length z: float # Test Statistic (Rayleigh's Z) pval: float # Classical P-value bootstrap_pval: Optional[float] = None # Bootstrap P-value, if computed +@dataclass(frozen=True) +class ChiSquareTestResult(TestResult): + chi2: float + pval: float + + +@dataclass(frozen=True) +class VTestResult(TestResult): + V: float + u: float + pval: float + + +@dataclass(frozen=True) +class OneSampleTestResult(TestResult): + reject: bool + angle: float + ci: tuple[float, float] + + +@dataclass(frozen=True) +class OmnibusTestResult(TestResult): + A: float + pval: float + m: int + + +@dataclass(frozen=True) +class BatscheletTestResult(TestResult): + C: int + pval: float + + +@dataclass(frozen=True) +class SymmetryTestResult(TestResult): + statistic: float + pval: float + + +@dataclass(frozen=True) +class WatsonWilliamsTestResult(TestResult): + F: float + pval: float + df_between: int + df_within: int + k: int + N: int + + +@dataclass(frozen=True) +class WatsonU2TestResult(TestResult): + U2: float + pval: float + + +@dataclass(frozen=True) +class WheelerWatsonTestResult(TestResult): + W: float + pval: float + df: int + + +@dataclass(frozen=True) +class WallraffTestResult(TestResult): + U: float + pval: float + + +@dataclass(frozen=True) +class CircularAnovaResult(TestResult): + method: str + mu: np.ndarray + mu_all: float + kappa: Union[float, np.ndarray] + kappa_all: float + R: np.ndarray + R_all: float + df: Union[int, tuple[int, int, int]] + statistic: float + pval: float + SS: Optional[tuple[float, float, float]] = None + MS: Optional[tuple[float, float]] = None + + +@dataclass(frozen=True) +class AngularRandomisationTestResult(TestResult): + statistic: float + pval: float + n_simulation: int + + +@dataclass(frozen=True) +class KuiperTestResult(TestResult): + V: float + pval: float + mode: str + n_simulation: int + + +@dataclass(frozen=True) +class WatsonTestResult(TestResult): + U2: float + pval: float + mode: str + n_simulation: int + + +@dataclass(frozen=True) +class RaoSpacingTestResult(TestResult): + statistic: float + pval: float + mode: str + n_simulation: int + + +@dataclass(frozen=True) +class CircularRangeTestResult(TestResult): + range_stat: float + pval: float + + +@dataclass(frozen=True) +class BinomialTestResult(TestResult): + pval: float + n_eff: int + n1: int + n2: int + + +@dataclass(frozen=True) +class ConcentrationTestResult(TestResult): + f_stat: float + pval: float + df1: int + df2: int + + +@dataclass(frozen=True) +class RaoHomogeneityTestResult(TestResult): + H_polar: float + pval_polar: float + reject_polar: bool + H_disp: float + pval_disp: float + reject_disp: bool + + +@dataclass(frozen=True) +class ChangePointTestResult(TestResult): + n: int + rho: float + rmax: float + k_r: int + rave: float + tmax: float + k_t: int + tave: float + + +@dataclass(frozen=True) +class HarrisonKanjiTestResult(TestResult): + p_values: tuple[Optional[float], Optional[float], Optional[float]] + anova_table: pd.DataFrame + + +@dataclass(frozen=True) +class EqualKappaTestResult(TestResult): + kappa: np.ndarray + kappa_all: float + rho: np.ndarray + rho_all: float + df: int + statistic: float + pval: float + regime: str + + +@dataclass(frozen=True) +class CommonMedianTestResult(TestResult): + common_median: float + statistic: float + pval: float + reject: bool + + +@dataclass(frozen=True) +class _CircularSample: + alpha: np.ndarray + w: np.ndarray + n: int + r: float + R: float + + def expand(self) -> np.ndarray: + """Return expanded sample with weights applied.""" + if self.w.size == 0: + return np.array([], dtype=float) + return np.repeat(self.alpha, self.w) + + +def _coerce_circular_samples(samples: Sequence[Any]) -> list[_CircularSample]: + """Coerce a sequence of Circular objects or arrays into unified samples.""" + if not isinstance(samples, Sequence) or len(samples) == 0: + raise ValueError("`samples` must be a non-empty sequence.") + + try: + from .base import Circular + except Exception: # pragma: no cover - defensive import guard + Circular = None # type: ignore + + normalized: list[_CircularSample] = [] + + for sample in samples: + if Circular is not None and isinstance(sample, Circular): # type: ignore[arg-type] + alpha_arr = np.asarray(sample.alpha, dtype=float) + weights = getattr(sample, "w", None) + if weights is None: + weights_arr = np.ones_like(alpha_arr, dtype=int) + else: + weights_arr = np.asarray(weights, dtype=float) + else: + alpha_arr = np.asarray(sample, dtype=float) + if alpha_arr.ndim != 1: + raise ValueError("Each sample must be a one-dimensional array of angles.") + weights_arr = np.ones_like(alpha_arr, dtype=float) + + if alpha_arr.size == 0: + raise ValueError("Each sample must contain at least one observation.") + if weights_arr.shape != alpha_arr.shape: + raise ValueError("Weights must match the shape of the angle data.") + if np.any(weights_arr < 0): + raise ValueError("Weights must be non-negative.") + if not np.all(np.isfinite(alpha_arr)): + raise ValueError("Angles must be finite.") + if not np.all(np.isfinite(weights_arr)): + raise ValueError("Weights must be finite.") + + rounded_weights = np.round(weights_arr).astype(int) + if not np.allclose(weights_arr, rounded_weights): + raise ValueError("All weights must be integers to support grouped data.") + + n_i = int(np.sum(rounded_weights)) + if n_i <= 0: + raise ValueError("Each sample must have a positive total weight.") + + r_i = float(circ_r(alpha_arr, rounded_weights)) + normalized.append( + _CircularSample( + alpha=alpha_arr, + w=rounded_weights, + n=n_i, + r=r_i, + R=n_i * r_i, + ) + ) + + return normalized + + def rayleigh_test( alpha: Optional[np.ndarray] = None, w: Optional[np.ndarray] = None, r: Optional[float] = None, n: Optional[int] = None, B: int = 1, + seed: SeedLike = 2046, verbose: bool = False, ) -> RayleighTestResult: r""" @@ -74,6 +413,12 @@ def rayleigh_test( B: int Number of bootstrap samples for p-value estimation. + seed: SeedLike + Seed used to initialize the random number generator for bootstrap resampling + when ``B > 1``. Accepts integers, sequences of integers, ``numpy.random.Generator``, + ``numpy.random.BitGenerator``, ``numpy.random.SeedSequence`` or ``None``. + Defaults to 2046. + verbose: bool Print formatted results. @@ -96,32 +441,59 @@ def rayleigh_test( P625, Section 27.1, Example 27.1 of Zar, 2010 """ + if B <= 0: + raise ValueError("`B` must be a positive integer.") + if r is None: - assert isinstance(alpha, np.ndarray), ( - "If `r` is None, then `alpha` (and `w`) is needed." - ) + if alpha is None: + raise ValueError("If `r` is None, then `alpha` (and optionally `w`) is required.") + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") if w is None: - w = np.ones_like(alpha) - n = np.sum(w, dtype=int) + w = np.ones_like(alpha, dtype=float) + else: + w = np.asarray(w, dtype=float) + if w.shape != alpha.shape: + raise ValueError("`w` must have the same shape as `alpha`.") + n_total = float(np.sum(w)) + if n_total <= 0: + raise ValueError("Sample size inferred from `w` must be positive.") + if not np.isclose(n_total, round(n_total)): + raise ValueError("Rayleigh's test requires integer sample sizes when weights are used.") + n = int(round(n_total)) r = circ_r(alpha, w) + else: + r = float(r) + + if n is None or n <= 0: + raise ValueError("Sample size `n` must be provided and positive when `r` is given.") - if n is None: - raise ValueError("Sample size `n` is missing.") + if not (0.0 <= r <= 1.0): + raise ValueError("`r` must lie in the interval [0, 1].") R = n * r z = n * r**2 # eq(27.2) pval = np.exp(np.sqrt(1 + 4 * n + 4 * (n**2 - R**2)) - (1 + 2 * n)) # eq(27.4) + bootstrap_pval: Optional[float] + if seed is True and verbose is False: + warnings.warn( + "Passing `verbose` as a positional argument is deprecated; use keyword arguments.", + DeprecationWarning, + stacklevel=2, + ) + verbose = bool(seed) + seed = 2046 + if B > 1: - tb = np.zeros(B) - for i in range(B): - x = np.random.normal(size=(n, 1)) - x /= np.linalg.norm(x, axis=1, keepdims=True) # Normalize to unit sphere - mb = np.sum(x, axis=0) - tb[i] = np.sum(mb**2) / n - - bootstrap_pval = float((np.sum(tb > z) + 1) / (B + 1)) + rng = _init_rng(seed) + uniforms = rng.uniform(0.0, 2 * np.pi, size=(B, n)) + unit_vectors = np.exp(1j * uniforms) + resultant_lengths = np.abs(np.sum(unit_vectors, axis=1)) + bootstrap_stats = (resultant_lengths**2) / n + bootstrap_pval = float((np.count_nonzero(bootstrap_stats >= z) + 1) / (B + 1)) else: bootstrap_pval = None @@ -141,12 +513,6 @@ def rayleigh_test( return RayleighTestResult(r=r, z=z, pval=pval, bootstrap_pval=bootstrap_pval) -@dataclass(frozen=True) -class ChiSquareTestResult: - chi2: float - pval: float - - def chisquare_test(w: np.ndarray, verbose: bool = False) -> ChiSquareTestResult: """Chi-Square Goodness of Fit for Circular data. @@ -183,7 +549,13 @@ def chisquare_test(w: np.ndarray, verbose: bool = False) -> ChiSquareTestResult: """ from scipy.stats import chisquare - res = chisquare(w) + frequencies = np.asarray(w, dtype=float) + if frequencies.ndim != 1 or frequencies.size == 0: + raise ValueError("`w` must be a one-dimensional array with at least one element.") + if np.any(frequencies < 0): + raise ValueError("`w` must contain non-negative frequencies.") + + res = chisquare(frequencies) chi2 = res.statistic pval = res.pvalue @@ -207,7 +579,7 @@ def V_test( r: Optional[float] = None, n: Optional[int] = None, verbose: bool = False, -) -> tuple[float, float, float]: +) -> VTestResult: """ Modified Rayleigh Test for Uniformity versus a Specified Angle. @@ -240,42 +612,57 @@ def V_test( Returns ------- - - V: float - Test Statistics. - u: float - circular mean. - p: float - P-value. + VTestResult + Dataclass containing the test statistic `V`, the normalized statistic `u`, + and the p-value. Reference --------- P627, Section 27.1, Example 27.2 of Zar, 2010 """ + angle = float(angle) + if mean is None or r is None or n is None: if alpha is None: - raise ValueError("If `mean`, `r` or `n` is None, then `alpha` (and `w`) is needed.") + raise ValueError("If `mean`, `r`, or `n` is None, then `alpha` (and optionally `w`) is required.") + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") if w is None: - w = np.ones_like(alpha) + w = np.ones_like(alpha, dtype=float) + else: + w = np.asarray(w, dtype=float) + if w.shape != alpha.shape: + raise ValueError("`w` must have the same shape as `alpha`.") n = int(np.sum(w)) + if n <= 0: + raise ValueError("Sample size inferred from `w` must be positive.") mean, r = circ_mean_and_r(alpha, w) - + else: + mean = float(mean) + r = float(r) + if n <= 0: + raise ValueError("`n` must be positive.") + + if not (0.0 <= r <= 1.0): + raise ValueError("`r` must lie in the interval [0, 1].") + R = n * r - V = R * np.cos(mean - angle) # eq(27.5) - u = V * np.sqrt(2 / n) # eq(27.6) - pval = 1 - norm().cdf(u) + V = R * np.cos(angmod(mean - angle, bounds=[-np.pi, np.pi])) # eq(27.5) + u = V * np.sqrt(2.0 / n) # eq(27.6) + pval = float(norm.sf(u)) if verbose: print("Modified Rayleigh's Test of Uniformity") print("--------------------------------------") print("H0: ρ = 0") - print("HA: ρ ≠ 0 and μ = {angle:.5f} rad") + print(f"HA: ρ ≠ 0 and μ = {angle:.5f} rad") print("") print(f"Test Statistics: {V:.5f}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return V, u, pval + return VTestResult(V=V, u=u, pval=pval) def one_sample_test( @@ -285,7 +672,7 @@ def one_sample_test( lb: Optional[float] = None, ub: Optional[float] = None, verbose: bool = False, -) -> bool: +) -> OneSampleTestResult: """ To test whether the population mean angle is equal to a specified value, which is achieved by observing whether the angle lies within the 95% CI. @@ -314,28 +701,31 @@ def one_sample_test( verbose: bool Print formatted results. - Returns - ------- - reject: bool - Reject or not reject the null hypothesis. - Reference --------- P628, Section 27.1, Example 27.3 of Zar, 2010 """ + angle = float(angle) + if lb is None or ub is None: - assert isinstance(alpha, np.ndarray), ( - "If `ub` or `lb` is None, then `alpha` (and `w`) is needed." - ) + if alpha is None: + raise ValueError("If `lb` or `ub` is None, then `alpha` (and optionally `w`) is required.") + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") if w is None: - w = np.ones_like(alpha) + w = np.ones_like(alpha, dtype=float) + else: + w = np.asarray(w, dtype=float) + if w.shape != alpha.shape: + raise ValueError("`w` must have the same shape as `alpha`.") lb, ub = circ_mean_ci(alpha=alpha, w=w) - if lb < angle < ub: - reject = False # not able reject null (mean angle == angle) - else: - reject = True # reject null (mean angle == angle) + lb = float(lb) + ub = float(ub) + + reject = not is_within_circular_range(angle, lb, ub) if verbose: print("One-Sample Test for the Mean Angle") @@ -352,14 +742,14 @@ def one_sample_test( f"Failed to reject H0:\nμ0 = {angle:.5f} lies within the 95% CI of μ ({np.array([lb, ub]).round(5)})" ) - return reject + return OneSampleTestResult(reject=reject, angle=angle, ci=(lb, ub)) def omnibus_test( alpha: np.ndarray, scale: int = 1, verbose: bool = False, -) -> tuple[float, float]: +) -> OmnibusTestResult: """ Hodges–Ajne omnibus test for circular uniformity. @@ -384,26 +774,31 @@ def omnibus_test( Returns ------- - A: float - Test statistics - - pval: float - p-value. + OmnibusTestResult + Dataclass containing the test statistic `A`, the corresponding p-value, + and the minimum count `m`. Reference --------- P629-630, Section 27.2, Example 27.4 of Zar, 2010 """ - lines = np.linspace(0, np.pi, scale * 360) - n = len(alpha) + if scale <= 0: + raise ValueError("`scale` must be a positive integer.") + + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") - lines_rotated = np.round(angmod((lines[:, None] - alpha)), 5) + lines = np.linspace(0.0, np.pi, scale * 360, endpoint=False) + n = alpha.size + + lines_rotated = angmod(lines[:, None] - alpha) # # count number of points on the right half circle, excluding the boundaries right = n - np.logical_and( - lines_rotated > 0.0, lines_rotated < np.round(np.pi, 5) - ).sum(1) + lines_rotated > 0.0, lines_rotated < np.pi + ).sum(axis=1) m = int(np.min(right)) # ------------------------------------------------------------------ @@ -431,16 +826,21 @@ def omnibus_test( # the end, knowing the result may under-flow to 0.0 in double precision. # ------------------------------------------------------------------ - logp = ( - math.log(n - 2*m) - + math.lgamma(n + 1) - - math.lgamma(m + 1) - - math.lgamma(n - m + 1) - - (n - 1)*math.log(2.0) - ) - pval = np.exp(logp) - - A = np.pi * np.sqrt(n) / (2 * (n - 2 * m)) + denom = n - 2 * m + if denom <= 0: + logp = -np.inf + pval = 0.0 + A = np.inf + else: + logp = ( + math.log(denom) + + math.lgamma(n + 1) + - math.lgamma(m + 1) + - math.lgamma(n - m + 1) + - (n - 1) * math.log(2.0) + ) + pval = float(np.exp(logp)) + A = np.pi * np.sqrt(n) / (2 * denom) if verbose: print('Hodges-Ajne ("omnibus") Test for Uniformity') @@ -450,14 +850,14 @@ def omnibus_test( print("") print(f"Test Statistics: {A:.5f}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return A, pval + return OmnibusTestResult(A=float(A), pval=float(pval), m=int(m)) def batschelet_test( angle: Union[int, float], alpha: np.ndarray, verbose: bool = False, -) -> tuple[float, float]: +) -> BatscheletTestResult: """Modified Hodges-Ajne Test for Uniformity versus a specified Angle (for ungrouped data). @@ -476,11 +876,6 @@ def batschelet_test( verbose: bool Print formatted results. - Returns - ------- - pval: float - p-value - Reference --------- P630-631, Section 27.2, Example 27.5 of Zar, 2010 @@ -488,10 +883,16 @@ def batschelet_test( from scipy.stats import binomtest - n = len(alpha) - angle_diff = np.round(angmod(((angle + 0.5 * np.pi) - alpha)), 5) - m = np.logical_and(angle_diff > 0.0, angle_diff < np.round(np.pi, 5)).sum() - C = n - m + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") + + angle = float(angle) + + n = alpha.size + angle_diff = angmod((angle + 0.5 * np.pi) - alpha) + m = np.logical_and(angle_diff > 0.0, angle_diff < np.pi).sum() + C = int(n - m) pval = float(binomtest(C, n=n, p=0.5).pvalue) if verbose: @@ -503,14 +904,14 @@ def batschelet_test( print(f"Test Statistics: {C}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return C, pval + return BatscheletTestResult(C=C, pval=pval) def symmetry_test( alpha: np.ndarray, median: Optional[float] = None, verbose: bool = False, -) -> tuple[float, float]: +) -> SymmetryTestResult: """Non-parametric test for symmetry around the median. Works by performing a Wilcoxon sign rank test on the differences to the median. Also known as Wilcoxon paired-sample test. @@ -529,23 +930,22 @@ def symmetry_test( verbose: bool Print formatted results. - Returns - ------- - test_statistic: float - Test statistic - pval: float - p-value - Reference --------- P631-632, Section 27.3, Example 27.6 of Zar, 2010 """ + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") + if median is None: median = float(circ_median(alpha=alpha)) + else: + median = float(median) + + d = angmod(alpha - median, bounds=[-np.pi, np.pi]) - d = (alpha - median).round(5) - res = wilcoxon(d, alternative="two-sided") test_statistic = float(res.statistic) pval = float(res.pvalue) @@ -559,7 +959,7 @@ def symmetry_test( print(f"Test Statistics: {test_statistic:.5f}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return test_statistic, pval + return SymmetryTestResult(statistic=test_statistic, pval=pval) ########################### @@ -567,7 +967,10 @@ def symmetry_test( ########################### -def watson_williams_test(circs: list, verbose: bool = False) -> tuple[float, float]: +def watson_williams_test( + samples: Sequence[Any], + verbose: bool = False, +) -> WatsonWilliamsTestResult: """The Watson-Williams Test for multiple samples. - H0: All samples are from populations with the same mean angle @@ -575,38 +978,75 @@ def watson_williams_test(circs: list, verbose: bool = False) -> tuple[float, flo Parameters ---------- - circs: list (k, ) - A list of Circular objects. + samples: sequence + A sequence of `Circular` objects or one-dimensional array-like radian samples. verbose: bool Print formatted results. Returns ------- - F: float - F value - - pval: float - p-value + WatsonWilliamsTestResult + Dataclass containing the F statistic, p-value, and associated degrees of freedom. Reference --------- P632-636, Section 27.4, Example 27.7/8 of Zar, 2010 """ - k = len(circs) - N = np.sum([circ.n for circ in circs]) - rw = np.mean([circ.r for circ in circs]).astype(float) - - K = 1 + 3 / 8 / circ_kappa(rw) + normalized = _coerce_circular_samples(samples) + if len(normalized) < 2: + raise ValueError("At least two samples are required for the Watson-Williams test.") + + k = len(normalized) + N = sum(sample.n for sample in normalized) + if N <= k: + raise ValueError("Combined sample size must exceed the number of groups.") + + Rs = np.array([sample.R for sample in normalized], dtype=float) + rw = float(np.sum(Rs) / N) + + kappa_hat = float(circ_kappa(rw)) + if not np.isfinite(kappa_hat): + kappa_hat = 0.0 + if kappa_hat <= 0.0: + K = 1.0 + warnings.warn( + ( + "Watson-Williams test assumes common, high concentration; " + "estimated κ≈0. Results may be unreliable." + ), + RuntimeWarning, + stacklevel=2, + ) + else: + K = 1.0 + 3.0 / (8.0 * kappa_hat) + if kappa_hat < 1.0: + warnings.warn( + ( + "Watson-Williams test assumes common, high concentration; " + f"estimated κ≈{kappa_hat:.3f}. Results may be unreliable." + ), + RuntimeWarning, + stacklevel=2, + ) - Rs = [circ.R for circ in circs] - R = N * circ_r( - alpha=np.hstack([circ.alpha for circ in circs]), - w=np.hstack([circ.w for circ in circs]), - ) + all_alpha = np.hstack([sample.alpha for sample in normalized]) + all_weights = np.hstack([sample.w for sample in normalized]) + R = N * circ_r(alpha=all_alpha, w=all_weights) F = K * (N - k) * (np.sum(Rs) - R) / (N - np.sum(Rs)) / (k - 1) - pval = float(f.sf(F, k - 1, N - k)) + df_between = k - 1 + df_within = N - k + pval = float(f.sf(F, df_between, df_within)) + + result = WatsonWilliamsTestResult( + F=float(F), + pval=pval, + df_between=df_between, + df_within=df_within, + k=k, + N=N, + ) if verbose: print("The Watson-Williams Test for multiple samples") @@ -614,13 +1054,16 @@ def watson_williams_test(circs: list, verbose: bool = False) -> tuple[float, flo print("H0: all samples are from populations with the same angle.") print("HA: all samples are not from populations with the same angle.") print("") - print(f"Test Statistics: {F:.5f}") - print(f"P-value: {pval:.5f} {significance_code(pval)}") + print(f"Test Statistics: {result.F:.5f}") + print(f"P-value: {result.pval:.5f} {significance_code(result.pval)}") - return F, pval + return result -def watson_u2_test(circs: list, verbose: bool = False) -> tuple[float, float]: +def watson_u2_test( + samples: Sequence[Any], + verbose: bool = False, +) -> WatsonU2TestResult: """Watson's U2 Test for nonparametric two-sample testing (with or without ties). @@ -637,18 +1080,16 @@ def watson_u2_test(circs: list, verbose: bool = False) -> tuple[float, float]: Parameters ---------- - circs: list - A list of Circular objects. + samples: sequence + A sequence of `Circular` objects or one-dimensional array-like radian samples. verbose: bool Print formatted results. Returns ------- - U2: float - U2 value - pval: float - p value + WatsonU2TestResult + Dataclass containing the U² statistic and the associated p-value. Reference --------- @@ -658,28 +1099,33 @@ def watson_u2_test(circs: list, verbose: bool = False) -> tuple[float, float]: from scipy.stats import rankdata - def cumfreq(alpha, circ): - indices = np.squeeze( - [np.where(alpha == a)[0] for a in np.repeat(circ.alpha, circ.w)] - ) - indices = np.hstack([0, indices, len(alpha)]) - freq_cumsum = rankdata(np.repeat(circ.alpha, circ.w), method="max") / circ.n - freq_cumsum = np.hstack([0, freq_cumsum]) + normalized = _coerce_circular_samples(samples) + if len(normalized) != 2: + raise ValueError("`watson_u2_test` requires exactly two samples.") - tiles = np.diff(indices) - cf = np.repeat(freq_cumsum, tiles) + def cumfreq(alpha_unique: np.ndarray, sample: _CircularSample) -> np.ndarray: + expanded = sample.expand() + if expanded.size == 0: + raise ValueError("Each sample must contain at least one observation.") - return cf + idx = [np.where(np.isclose(alpha_unique, val, atol=1e-10))[0] for val in expanded] + idx = np.concatenate(idx) + idx = np.hstack([0, idx, alpha_unique.size]) - a, t = np.unique( - np.hstack([np.repeat(c.alpha, c.w) for c in circs]), return_counts=True - ) - cfs = [cumfreq(a, c) for c in circs] + freq_cumsum = rankdata(expanded, method="max") / sample.n + freq_cumsum = np.hstack([0, freq_cumsum]) + + tiles = np.diff(idx) + return np.repeat(freq_cumsum, tiles) + + expanded_samples = [sample.expand() for sample in normalized] + a, t = np.unique(np.hstack(expanded_samples), return_counts=True) + cfs = [cumfreq(a, sample) for sample in normalized] d = np.diff(cfs, axis=0) - N = np.sum([c.n for c in circs]) + N = sum(sample.n for sample in normalized) U2 = ( - np.prod([c.n for c in circs]) + np.prod([sample.n for sample in normalized]) / N**2 * (np.sum(t * d**2) - np.sum(t * d) ** 2 / N) ) @@ -696,10 +1142,13 @@ def cumfreq(alpha, circ): print(f"Test Statistics: {U2:.5f}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return U2, pval + return WatsonU2TestResult(U2=float(U2), pval=float(pval)) -def wheeler_watson_test(circs: list, verbose: bool = False) -> tuple[float, float]: +def wheeler_watson_test( + samples: Sequence[Any], + verbose: bool = False, +) -> WheelerWatsonTestResult: """The Wheeler and Watson Two/Multi-Sample Test. - H0: The two samples came from the same population, @@ -709,18 +1158,16 @@ def wheeler_watson_test(circs: list, verbose: bool = False) -> tuple[float, floa Parameters ---------- - circs: list - A list of Circular objects. + samples: sequence + A sequence of `Circular` objects or one-dimensional array-like radian samples. verbose: bool Print formatted results. Returns ------- - W: float - W value - pval: float - p value + WheelerWatsonTestResult + Dataclass containing the W statistic, degrees of freedom, and p-value. Reference --------- @@ -733,38 +1180,40 @@ def wheeler_watson_test(circs: list, verbose: bool = False) -> tuple[float, floa """ from scipy.stats import chi2 - def get_circrank(alpha, circ, N): + normalized = _coerce_circular_samples(samples) + + def get_circrank(alpha: np.ndarray, sample: _CircularSample, N: int) -> np.ndarray: + expanded = sample.expand() rank_of_direction = ( - np.squeeze([np.where(alpha == a)[0] for a in np.repeat(circ.alpha, circ.w)]) - + 1 + np.squeeze([np.where(np.isclose(alpha, value))[0] for value in expanded]) + 1 ) - circ_rank = 2 * np.pi / N * rank_of_direction - return circ_rank + return 2 * np.pi / N * rank_of_direction - N = np.sum([c.n for c in circs]) - a, _ = np.unique( - np.hstack([np.repeat(c.alpha, c.w) for c in circs]), return_counts=True - ) + N = sum(sample.n for sample in normalized) + expanded_samples = [sample.expand() for sample in normalized] + a, _ = np.unique(np.hstack(expanded_samples), return_counts=True) - circ_ranks = [get_circrank(a, c, N) for c in circs] + circ_ranks = [get_circrank(a, sample, N) for sample in normalized] k = len(circ_ranks) if k == 2: C = np.sum(np.cos(circ_ranks[0])) S = np.sum(np.sin(circ_ranks[0])) - W = 2 * (N - 1) * (C**2 + S**2) / np.prod([c.n for c in circs]) - - elif k > 3: - W = 0 + W = 2 * (N - 1) * (C**2 + S**2) / np.prod([sample.n for sample in normalized]) + elif k >= 3: + W = 0.0 for i in range(k): circ_rank = circ_ranks[i] C = np.sum(np.cos(circ_rank)) S = np.sum(np.sin(circ_rank)) - W += (C**2 + S**2) / circs[i].n - W *= 2 + W += (C**2 + S**2) / normalized[i].n + W *= 2.0 + else: + raise ValueError("At least two samples are required for the Wheeler-Watson test.") - pval = float(chi2.sf(W, df=2 * (k - 1))) + df = 2 * (k - 1) + pval = float(chi2.sf(W, df=df)) if verbose: print("The Wheeler and Watson Two/Multi-Sample Test") @@ -775,18 +1224,20 @@ def get_circrank(alpha, circ, N): print(f"Test Statistics: {W:.5f}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return W, pval + return WheelerWatsonTestResult(W=float(W), pval=pval, df=df) def wallraff_test( - circs: list, angle=float, verbose: bool = False -) -> tuple[float, float]: + samples: Sequence[Any], + angle: float = 0.0, + verbose: bool = False, +) -> WallraffTestResult: """Wallraff test of angular distances / dispersion against a specified angle. Parameters ---------- - circs: list - A list of circular object + samples: sequence + A sequence of `Circular` objects or one-dimensional array-like radian samples. angle: float A specified angle in radian. @@ -796,26 +1247,31 @@ def wallraff_test( Returns ------- - U: float - Test Statistics - - pval: float - P-value. + WallraffTestResult + Dataclass containing the U statistic and p-value. Reference --------- P637-638, Section 27.8, Example 27.13 of Zar, 2010 """ - if len(circs) != 2: - raise ValueError("Current implementation only supports two-sample comparision.") + normalized = _coerce_circular_samples(samples) - angles = np.ones_like(circs) * angle + if len(normalized) != 2: + raise ValueError("Current implementation only supports two-sample comparison.") - ns = [c.n for c in circs] - ad = [angular_distance(a=c.alpha, b=angles[i]) for (i, c) in enumerate(circs)] + angle_arr = np.asarray(angle, dtype=float) + if angle_arr.ndim == 0: + angles = np.repeat(angle_arr, len(normalized)) + else: + if angle_arr.size != len(normalized): + raise ValueError("`angle` must be a scalar or have the same length as `samples`.") + angles = angle_arr + + ns = [sample.n for sample in normalized] + distances = [angular_distance(normalized[i].alpha, angles[i]) for i in range(len(normalized))] - rs = rankdata(np.hstack(ad)) + rs = rankdata(np.hstack(distances)) N = np.sum(ns) @@ -826,16 +1282,18 @@ def wallraff_test( U = np.min([U1, U2]) z = (U - np.prod(ns) / 2 + 0.5) / np.sqrt(np.prod(ns) * (N + 1) / 12) - pval = float(2 * norm.cdf(z)) + pval = float(2 * norm.sf(abs(z))) if verbose: print("Wallraff test of angular distances / dispersion") print("-----------------------------------------------") + print("H0: The groups have equal dispersion around the specified reference angle.") + print("HA: At least one group differs in dispersion around the specified angle.") print("") print(f"Test Statistics: {U:.5f}") print(f"P-value: {pval:.5f} {significance_code(pval)}") - return U, pval + return WallraffTestResult(U=float(U), pval=pval) def circ_anova( @@ -844,7 +1302,7 @@ def circ_anova( kappa: Optional[float] = None, f_mod: bool = True, verbose: bool = False, -) -> dict: +) -> CircularAnovaResult: """ Circular Analysis of Variance (ANOVA) for multi-sample comparison of mean directions. @@ -868,20 +1326,8 @@ def circ_anova( Returns ------- - result : dict - A dictionary with: - - `'method'`: `"F-test"` or `"LRT"` - - `'mu'`: Mean directions of each group (radians) - - `'mu_all'`: Mean direction of all samples combined - - `'kappa'`: Estimated concentration parameters for each group - - `'kappa_all'`: Estimated concentration parameter for all samples combined - - `'rho'`: Resultant vector lengths for each group - - `'rho_all'`: Resultant vector length for all samples combined - - `'df'`: Degrees of freedom - - `'statistic'`: Test statistic (F-value or Chi-Square) - - `'p_value'`: p-value - - `'SS'`: Sum of squares (for F-test) - - `'MS'`: Mean squares (for F-test) + result : CircularAnovaResult + Dataclass containing the selected statistic, p-value, and supporting metrics. References ---------- @@ -911,6 +1357,7 @@ def circ_anova( # Estimate κ if not provided if kappa is None: kappa = circ_kappa(R_all / N) + kappa_value = float(kappa) # **F-test** if method == "F-test": @@ -934,43 +1381,43 @@ def circ_anova( p_value = 1 - f.cdf(F_stat, df_between, df_within) - result = { - "method": "F-test", - "mu": mus, - "mu_all": mu_all, - "kappa": kappa, - "kappa_all": kappa, - "rho": Rs, - "rho_all": R_all, - "df": (df_between, df_within, df_total), - "statistic": F_stat, - "p_value": p_value, - "SS": (SS_between, SS_within, SS_total), - "MS": (MS_between, MS_within), - } + result = CircularAnovaResult( + method="F-test", + mu=mus, + mu_all=float(mu_all), + kappa=kappa_value, + kappa_all=kappa_value, + R=Rs, + R_all=float(R_all), + df=(df_between, df_within, df_total), + statistic=float(F_stat), + pval=float(p_value), + SS=(float(SS_between), float(SS_within), float(SS_total)), + MS=(float(MS_between), float(MS_within)), + ) # **Likelihood Ratio Test (LRT)** elif method == "LRT": # Compute test statistic - term1 = 1 - (1 / (4 * kappa)) * (sum(1 / ns) - 1 / N) - term2 = 2 * kappa * np.sum(Rs * (1 - np.cos(mus - mu_all))) + term1 = 1 - (1 / (4 * kappa_value)) * (sum(1 / ns) - 1 / N) + term2 = 2 * kappa_value * np.sum(Rs * (1 - np.cos(mus - mu_all))) chi_square_stat = term1 * term2 df = k - 1 p_value = 1 - chi2.cdf(chi_square_stat, df) - result = { - "method": "LRT", - "mu": mus, - "mu_all": mu_all, - "kappa": kappa, - "kappa_all": kappa, - "rho": Rs, - "rho_all": R_all, - "df": df, - "statistic": chi_square_stat, - "p_value": p_value, - } + result = CircularAnovaResult( + method="LRT", + mu=mus, + mu_all=float(mu_all), + kappa=kappa_value, + kappa_all=kappa_value, + R=Rs, + R_all=float(R_all), + df=int(df), + statistic=float(chi_square_stat), + pval=float(p_value), + ) else: raise ValueError("Invalid method. Choose 'F-test' or 'LRT'.") @@ -979,27 +1426,28 @@ def circ_anova( if verbose: print("\nCircular Analysis of Variance (ANOVA)") print("--------------------------------------") - print(f"Method: {result['method']}") - print(f"Mean Directions (radians): {result['mu']}") - print(f"Overall Mean Direction (radians): {result['mu_all']}") - print(f"Kappa: {result['kappa']}") - print(f"Kappa (overall): {result['kappa_all']}") - print(f"Degrees of Freedom: {result['df']}") - print(f"Test Statistic: {result['statistic']:.5f}") - print(f"P-value: {result['p_value']:.5f}") + print(f"Method: {result.method}") + print(f"Mean Directions (radians): {result.mu}") + print(f"Overall Mean Direction (radians): {result.mu_all}") + print(f"Kappa: {result.kappa}") + print(f"Kappa (overall): {result.kappa_all}") + print(f"Degrees of Freedom: {result.df}") + print(f"Test Statistic: {result.statistic:.5f}") + print(f"P-value: {result.pval:.5f}") if method == "F-test": - print(f"Sum of Squares (Between, Within, Total): {result['SS']}") - print(f"Mean Squares (Between, Within): {result['MS']}") + print(f"Sum of Squares (Between, Within, Total): {result.SS}") + print(f"Mean Squares (Between, Within): {result.MS}") print("--------------------------------------\n") return result def angular_randomisation_test( - circs: list, + samples: Sequence[Any], n_simulation: int = 1000, + seed: SeedLike = 2046, verbose: bool = False, -) -> tuple[float, float]: +) -> AngularRandomisationTestResult: """The Angular Randomization Test (ART) for homogeneity. - H0: The two samples come from the same population. @@ -1007,17 +1455,20 @@ def angular_randomisation_test( Parameters ---------- - circs: list - A list of Circular objects. + samples: sequence + A sequence of `Circular` objects or one-dimensional array-like radian samples. n_simulation: int, optional Number of permutations for the test. Defaults to 1000. + seed: SeedLike + Seed used to initialize the random number generator for the permutation test. + Accepts integers, sequences of integers, ``numpy.random.Generator``, + ``numpy.random.BitGenerator``, ``numpy.random.SeedSequence`` or ``None``. + Defaults to 2046. Returns ------- - T_obs: float - Observed value of the ART test statistic. - p_value: float - p-value of the test. + AngularRandomisationTestResult + Dataclass containing the observed statistic and permutation p-value. Reference --------- @@ -1026,6 +1477,17 @@ def angular_randomisation_test( International Journal of Nonlinear Analysis and Applications, 13(1), 2703-2711. """ + normalized = _coerce_circular_samples(samples) + + if len(normalized) != 2: + raise ValueError("The Angular Randomization Test requires exactly two samples.") + if n_simulation <= 0: + raise ValueError("`n_simulation` must be a positive integer.") + + sample_arrays = [np.asarray(sample.alpha, dtype=float) for sample in normalized] + if any(arr.size == 0 for arr in sample_arrays): + raise ValueError("Each sample must contain at least one observation.") + def art_statistic(S1: np.ndarray, S2: np.ndarray) -> float: """ Compute the Angular Randomisation Test (ART) statistic for two groups of circular data. @@ -1050,26 +1512,31 @@ def art_statistic(S1: np.ndarray, S2: np.ndarray) -> float: # Scale the total distance and return return scaling_factor * total_distance - # number of samples - k = len(circs) - if k != 2: - raise ValueError("The Angular Randomization Test requires exactly two samples.") - # 1. Compute observed test statistic T*₀ - observed_stat = art_statistic(circs[0].alpha, circs[1].alpha) + observed_stat = art_statistic(sample_arrays[0], sample_arrays[1]) # Initialize counter for permutations more extreme than observed n_extreme = 1 # Start at 1 to count the observed statistic # Combine samples for permutation - combined_data = np.concatenate([circs[0].alpha, circs[1].alpha]) - n1 = len(circs[0].alpha) + combined_data = np.concatenate(sample_arrays) + n1 = sample_arrays[0].size # Perform permutation test + if seed is True and verbose is False: + warnings.warn( + "Passing `verbose` as a positional argument is deprecated; use keyword arguments.", + DeprecationWarning, + stacklevel=2, + ) + verbose = bool(seed) + seed = 2046 + + rng = _init_rng(seed) for _ in range(n_simulation): # Randomly permute the combined data - permuted_data = np.random.permutation(combined_data) + permuted_data = rng.permutation(combined_data) # Split into two groups of original sizes perm_S1 = permuted_data[:n1] @@ -1094,7 +1561,7 @@ def art_statistic(S1: np.ndarray, S2: np.ndarray) -> float: print(f"Observed Test Statistic: {observed_stat:.5f}") print(f"P-value: {p_value:.5f} {significance_code(p_value)}") - return observed_stat, p_value + return AngularRandomisationTestResult(statistic=float(observed_stat), pval=float(p_value), n_simulation=n_simulation) ##################### @@ -1105,9 +1572,9 @@ def art_statistic(S1: np.ndarray, S2: np.ndarray) -> float: def kuiper_test( alpha: np.ndarray, n_simulation: int = 9999, - seed: int = 2046, + seed: SeedLike = 2046, verbose: bool = False, -) -> tuple[float, float]: +) -> KuiperTestResult: """ Kuiper's test for Circular Uniformity. @@ -1128,15 +1595,16 @@ def kuiper_test( If n_simulation>1, the p-value is simulated. Default is 9999. - seed: int - Random seed. + seed: SeedLike + Seed used to initialize the random number generator for the simulation-based + p-value. Accepts integers, sequences of integers, ``numpy.random.Generator``, + ``numpy.random.BitGenerator``, ``numpy.random.SeedSequence`` or ``None``. + Defaults to 2046. Returns ------- - V: float - Test Statistics - pval: flaot - Asymptotic p-value + KuiperTestResult + Dataclass containing the Kuiper statistic, p-value, simulation mode, and count. Note ---- @@ -1144,50 +1612,71 @@ def kuiper_test( https://rdrr.io/cran/Directional/src/R/kuiper.R """ - def compute_V(alpha): - alpha = np.sort(alpha) / (2 * np.pi) # - n = len(alpha) - i = np.arange(1, n + 1) + if n_simulation <= 0: + raise ValueError("`n_simulation` must be a positive integer.") + + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") + + def compute_V(sample): + ordered = np.sort(sample) / (2 * np.pi) + n = ordered.size + indices = np.arange(1, n + 1, dtype=float) - D_plus = np.max(i / n - alpha) - D_minus = np.max(alpha - (i - 1) / n) + D_plus = np.max(indices / n - ordered) + D_minus = np.max(ordered - (indices - 1) / n) f = np.sqrt(n) + 0.155 + 0.24 / np.sqrt(n) V = f * (D_plus + D_minus) - return V, f + return float(V), float(f) - n = n = len(alpha) + n = alpha.size Vo, f = compute_V(alpha) + if seed is True and verbose is False: + warnings.warn( + "Passing `verbose` as a positional argument is deprecated; use keyword arguments.", + DeprecationWarning, + stacklevel=2, + ) + verbose = bool(seed) + seed = 2046 + if n_simulation == 1: # asymptotic p-value - m = np.arange(1, 50) ** 2 + mode = "asymptotic" + m = (np.arange(1, 50, dtype=float)) ** 2 a1 = 4 * m * Vo**2 a2 = np.exp(-2 * m * Vo**2) b1 = 2 * (a1 - 1) * a2 b2 = 8 * Vo / (3 * f) * m * (a1 - 3) * a2 - pval = np.sum(b1 - b2) + pval = float(np.sum(b1 - b2)) else: - np.random.seed(seed) - x = np.sort(np.random.uniform(low=0, high=2 * np.pi, size=[n, n_simulation]), 0) - Vs = np.array(([compute_V(x[:, i])[0] for i in range(n_simulation)])) - pval = (np.sum(Vs > Vo) + 1) / (n_simulation + 1) + mode = "simulation" + rng = _init_rng(seed) + uniforms = rng.uniform(low=0.0, high=2 * np.pi, size=(n, n_simulation)) + x = np.sort(uniforms, axis=0) + Vs = np.array([compute_V(x[:, i])[0] for i in range(n_simulation)]) + pval = float((np.count_nonzero(Vs >= Vo) + 1) / (n_simulation + 1)) if verbose: print("Kuiper's Test of Circular Uniformity") print("------------------------------------") + print("H0: The sample is drawn from a circularly uniform distribution.") + print("HA: The sample is not drawn from a circularly uniform distribution.") print("") print(f"Test Statistic: {Vo:.4f}") print(f"P-value = {pval} {significance_code(pval)}") - return Vo, pval + return KuiperTestResult(V=float(Vo), pval=float(pval), mode=mode, n_simulation=n_simulation) def watson_test( alpha: np.ndarray, n_simulation: int = 9999, - seed: int = 2046, + seed: SeedLike = 2046, verbose: bool = False, -) -> tuple[float, float]: +) -> WatsonTestResult: """ Watson's Goodness-of-Fit Testing, aka Watson one-sample U2 test. @@ -1207,15 +1696,16 @@ def watson_test( If n_simulation=1, the p-value is asymptotically approximated. If n_simulation>1, the p-value is simulated. - seed: int - Random seed. + seed: SeedLike + Seed used to initialize the random number generator for the simulation-based + p-value. Accepts integers, sequences of integers, ``numpy.random.Generator``, + ``numpy.random.BitGenerator``, ``numpy.random.SeedSequence`` or ``None``. + Defaults to 2046. Returns ------- - U2o: float - Test Statistics - pval: flaot - Asymptotic p-value + WatsonTestResult + Dataclass containing the Watson U² statistic, p-value, and simulation details. Note ---- @@ -1230,38 +1720,56 @@ def watson_test( kuiper_test(); rao_spacing_test() """ - def compute_U2(alpha): - alpha = np.sort(alpha) - n = len(alpha) - i = np.arange(1, n + 1) + if n_simulation <= 0: + raise ValueError("`n_simulation` must be a positive integer.") - u = alpha / 2 / np.pi - # u2 = u**2 - # iu = i * u + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") - U2 = np.sum(((u - (i - 0.5) / n) - (np.sum(u) / n - 0.5)) ** 2) + 1 / (12 * n) - return U2 + def compute_U2(sample): + ordered = np.sort(sample) + n = ordered.size + indices = np.arange(1, n + 1, dtype=float) - n = len(alpha) - U2o = float(compute_U2(alpha)) + u = ordered / (2 * np.pi) + U2 = np.sum(((u - (indices - 0.5) / n) - (np.sum(u) / n - 0.5)) ** 2) + 1 / (12 * n) + return float(U2) + + n = alpha.size + U2o = compute_U2(alpha) + + if seed is True and verbose is False: + warnings.warn( + "Passing `verbose` as a positional argument is deprecated; use keyword arguments.", + DeprecationWarning, + stacklevel=2, + ) + verbose = bool(seed) + seed = 2046 if n_simulation == 1: + mode = "asymptotic" m = np.arange(1, 51) pval = float(2 * sum((-1) ** (m - 1) * np.exp(-2 * m**2 * np.pi**2 * U2o))) else: - np.random.seed(seed) - x = np.sort(np.random.uniform(low=0, high=2 * np.pi, size=[n, n_simulation]), 0) - U2s = np.array(([compute_U2(x[:, i]) for i in range(n_simulation)])) - pval = float((np.sum(U2s > U2o) + 1) / (n_simulation + 1)) + mode = "simulation" + rng = _init_rng(seed) + uniforms = rng.uniform(low=0.0, high=2 * np.pi, size=(n, n_simulation)) + x = np.sort(uniforms, axis=0) + U2s = np.array([compute_U2(x[:, i]) for i in range(n_simulation)]) + pval = float((np.count_nonzero(U2s >= U2o) + 1) / (n_simulation + 1)) if verbose: print("Watson's One-Sample U2 Test of Circular Uniformity") print("--------------------------------------------------") + print("H0: The sample is drawn from a circularly uniform distribution.") + print("HA: The sample is not drawn from a circularly uniform distribution.") print("") print(f"Test Statistic: {U2o:.4f}") print(f"P-value = {pval} {significance_code(pval)}") - return U2o, pval + return WatsonTestResult(U2=float(U2o), pval=float(pval), mode=mode, n_simulation=n_simulation) def rao_spacing_test( @@ -1269,9 +1777,9 @@ def rao_spacing_test( w: Union[np.ndarray, None] = None, kappa: float = 1000.0, n_simulation: int = 9999, - seed: int = 2046, + seed: SeedLike = 2046, verbose: bool = False, -) -> tuple[float, float]: +) -> RaoSpacingTestResult: """Simulation based Rao's spacing test. - H0: The sample data come from a population distributed uniformly around the circle. @@ -1293,16 +1801,16 @@ def rao_spacing_test( n_simulation: int Number of simulations. - seed: int - Random seed. + seed: SeedLike + Seed used to initialize the random number generator for the simulation-based + p-value. Accepts integers, sequences of integers, ``numpy.random.Generator``, + ``numpy.random.BitGenerator``, ``numpy.random.SeedSequence`` or ``None``. + Defaults to 2046. Returns ------- - Uo: float - Test statistics - - pval: float - Simulation-based p-value + RaoSpacingTestResult + Dataclass containing the Rao spacing statistic (degrees), p-value, method, and simulation count. Reference --------- @@ -1310,62 +1818,83 @@ def rao_spacing_test( https://movementecologyjournal.biomedcentral.com/articles/10.1186/s40462-019-0160-x """ - def compute_U(alpha): - n = len(alpha) - f = np.sort(alpha) - T = np.hstack([f[1:] - f[:-1], 2 * np.pi - f[-1] + f[0]]) - U = 0.5 * np.sum(np.abs(T - (2 * np.pi / n))) - return U + if n_simulation <= 0: + raise ValueError("`n_simulation` must be a positive integer.") + + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") + + def compute_U(sample): + ordered = np.sort(sample) + n_local = ordered.size + spacings = np.hstack([ordered[1:] - ordered[:-1], 2 * np.pi - ordered[-1] + ordered[0]]) + return 0.5 * np.sum(np.abs(spacings - (2 * np.pi / n_local))) if w is not None: - n = np.sum(w) - m = len(alpha) - alpha = np.repeat(alpha, w) + w = np.asarray(w, dtype=float) + if np.any(w < 0): + raise ValueError("`w` must contain non-negative frequencies.") + if not np.all(np.isclose(w, np.round(w))): + raise ValueError("`w` must contain integer frequencies.") + w = w.astype(int) + if w.shape != alpha.shape: + raise ValueError("`w` must have the same shape as `alpha`.") + n = int(np.sum(w)) + if n <= 0: + raise ValueError("Sum of weights must be positive.") + m = alpha.size + expanded_alpha = np.repeat(alpha, w) + mode = "grouped" else: - n = len(alpha) - - # p-value - np.random.seed(seed) - Uo = compute_U(alpha) - if w is not None: # noncontinous / grouped data - Us = np.array( - [ - compute_U( - angmod( - np.floor(np.random.uniform(low=0, high=2 * np.pi, size=n)) - * m - / (2 * np.pi) - * 2 - * np.pi - / m - + vonmises(kappa=kappa).rvs(n) - ) - ) - for i in range(n_simulation) - ] - ) - else: # continous / ungrouped data - Us = np.array( - [ - compute_U(np.random.uniform(low=0, high=2 * np.pi, size=n)) - for i in range(n_simulation) - ] + expanded_alpha = alpha + n = expanded_alpha.size + mode = "ungrouped" + + if seed is True and verbose is False: + warnings.warn( + "Passing `verbose` as a positional argument is deprecated; use keyword arguments.", + DeprecationWarning, + stacklevel=2, ) + verbose = bool(seed) + seed = 2046 + + rng = _init_rng(seed) + + Uo = compute_U(expanded_alpha) + if w is not None: # noncontinuous / grouped data + vm_dist = vonmises(kappa=kappa) + uniforms = rng.uniform(low=0.0, high=2 * np.pi, size=(n_simulation, n)) + snapped = np.floor(uniforms * m / (2 * np.pi)) * (2 * np.pi / m) + noise = vm_dist.rvs(size=(n_simulation, n), random_state=rng) + samples = angmod(snapped + noise) + Us = np.array([compute_U(sample) for sample in samples]) + else: + samples = rng.uniform(low=0.0, high=2 * np.pi, size=(n_simulation, n)) + Us = np.array([compute_U(sample) for sample in samples]) - counter = np.sum(Us > Uo) - pval = counter / (n_simulation + 1) + counter = np.count_nonzero(Us >= Uo) + pval = float((counter + 1) / (n_simulation + 1)) if verbose: print("Rao's Spacing Test of Circular Uniformity") print("-----------------------------------------") + print("H0: The sample is drawn from a circularly uniform distribution.") + print("HA: The sample is not drawn from a circularly uniform distribution.") print("") print(f"Test Statistic: {Uo:.4f}") print(f"P-value = {pval}\n") - return np.rad2deg(Uo), pval + return RaoSpacingTestResult( + statistic=float(np.rad2deg(Uo)), + pval=float(pval), + mode=mode, + n_simulation=n_simulation, + ) -def circ_range_test(alpha: np.ndarray) -> tuple[float, float]: +def circ_range_test(alpha: np.ndarray, verbose: bool = False) -> CircularRangeTestResult: """ Perform the Circular Range Test for uniformity. @@ -1375,23 +1904,30 @@ def circ_range_test(alpha: np.ndarray) -> tuple[float, float]: Parameters ---------- alpha : np.ndarray - Angles in radians. + Angles in radians. Values must already be wrapped into ``[-2π, 2π]``. + verbose : bool, optional + If ``True``, prints test details and results. Returns ------- - range_stat : float - The circular range test statistic. - p_value : float - The p-value indicating significance of non-uniformity. + CircularRangeTestResult + Dataclass containing the range statistic and corresponding p-value. Reference --------- P162, Section 7.2.3 of Jammalamadaka, S. Rao and SenGupta, A. (2001) """ + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") + + if np.any(np.abs(alpha) > 2 * np.pi + 1e-8): + raise ValueError("`alpha` must be provided in radians within [-2π, 2π].") + range_stat = circ_range(alpha) # Compute test statistic # Compute p-value using approximation formula from CircStats (if available) - n = len(alpha) + n = alpha.size stop = int(np.floor(1 / (1 - range_stat / (2 * np.pi)))) index = np.arange(1, stop + 1) @@ -1403,10 +1939,27 @@ def circ_range_test(alpha: np.ndarray) -> tuple[float, float]: ) p_value = float(np.sum(sequence)) - return range_stat, p_value + result = CircularRangeTestResult(range_stat=float(range_stat), pval=float(p_value)) + + if verbose: + range_deg = float(np.rad2deg(result.range_stat)) + print("Circular Range Test of Uniformity") + print("---------------------------------") + print("H0: The sample is uniformly distributed around the circle.") + print("HA: The sample exhibits clustering (non-uniformity).") + print("") + print(f"Sample size: {n}") + print(f"Range statistic: {result.range_stat:.5f} rad ({range_deg:.2f}°)") + print(f"P-value: {result.pval:.5g} {significance_code(result.pval)}") + return result -def binomial_test(alpha: np.ndarray, md: float) -> float: + +def binomial_test( + alpha: np.ndarray, + md: float, + verbose: bool = False, +) -> BinomialTestResult: """ Perform the binomial test for the median direction of circular data. @@ -1421,11 +1974,13 @@ def binomial_test(alpha: np.ndarray, md: float) -> float: Sample of angles in radians. md : float Hypothesized median angle. + verbose : bool, optional + If ``True``, prints test details and results. Returns ------- - pval : float - p-value of the test (small values suggest rejecting H0). + BinomialTestResult + Dataclass containing the p-value and counts on each side of the hypothesized median. References ---------- @@ -1433,31 +1988,47 @@ def binomial_test(alpha: np.ndarray, md: float) -> float: """ from scipy.stats import binom - alpha = np.asarray(alpha) + alpha = np.asarray(alpha, dtype=float) + if alpha.size == 0: + raise ValueError("`alpha` must contain at least one angle.") if np.ndim(md) != 0: raise ValueError("The median (md) must be a single scalar value.") - n = len(alpha) - # Compute circular differences from hypothesized median - d = circ_dist(alpha, md) + d = circ_dist(alpha, float(md)) # Count the number of angles on each side of the hypothesized median - n1 = np.sum(d < 0) - n2 = np.sum(d > 0) - - # Compute p-value using binomial test - n_min = min(n1, n2) - n_max = max(n1, n2) + n1 = int(np.sum(d < 0)) + n2 = int(np.sum(d > 0)) + n_eff = int(n1 + n2) + if n_eff == 0: + result = BinomialTestResult(pval=1.0, n_eff=0, n1=n1, n2=n2) + else: + # Compute p-value using binomial test + n_min = int(min(n1, n2)) + pval = float(2 * binom.cdf(n_min, n_eff, 0.5)) + pval = min(pval, 1.0) + result = BinomialTestResult(pval=pval, n_eff=n_eff, n1=n1, n2=n2) - # Binomial p-value - pval = float(binom.cdf(n_min, n, 0.5) + (1 - binom.cdf(n_max - 1, n, 0.5))) + if verbose: + print("Circular Binomial Test for Median Direction") + print("--------------------------------------------") + print(f"H0: Median direction equals {float(md):.5f} rad.") + print("HA: Median direction differs from the hypothesized value.") + print("") + print(f"Effective sample size: {result.n_eff}") + print(f"Counts below/above median: n1 = {result.n1}, n2 = {result.n2}") + print(f"P-value: {result.pval:.5f} {significance_code(result.pval)}") - return pval + return result -def concentration_test(alpha1: np.ndarray, alpha2: np.ndarray) -> tuple[float, float]: +def concentration_test( + alpha1: np.ndarray, + alpha2: np.ndarray, + verbose: bool = False, +) -> ConcentrationTestResult: """ Parametric two-sample test for concentration equality in circular data. @@ -1473,13 +2044,13 @@ def concentration_test(alpha1: np.ndarray, alpha2: np.ndarray) -> tuple[float, f First sample of circular data (radians). alpha2 : np.ndarray Second sample of circular data (radians). + verbose : bool, optional + If ``True``, prints test details and results. Returns ------- - f_stat : float - The F-statistic for the test. - pval : float - The p-value indicating whether the samples have significantly different concentrations. + ConcentrationTestResult + Dataclass with the F statistic, p-value, and associated degrees of freedom. Notes ----- @@ -1492,10 +2063,13 @@ def concentration_test(alpha1: np.ndarray, alpha2: np.ndarray) -> tuple[float, f Batschelet, E. (1980). Circular Statistics in Biology. Academic Press. """ # Ensure inputs are numpy arrays - alpha1, alpha2 = np.asarray(alpha1), np.asarray(alpha2) + alpha1 = np.asarray(alpha1, dtype=float) + alpha2 = np.asarray(alpha2, dtype=float) # Sample sizes n1, n2 = len(alpha1), len(alpha2) + if min(n1, n2) < 2: + raise ValueError("Both samples must contain at least two observations.") # Compute resultant vector lengths R1 = n1 * circ_r(alpha1) @@ -1506,23 +2080,55 @@ def concentration_test(alpha1: np.ndarray, alpha2: np.ndarray) -> tuple[float, f # Warn if rbar is too low if rbar < 0.7: - print("Warning: The resultant vector length should be > 0.7 for valid results.") + warnings.warn( + "The resultant vector length should exceed 0.7 for the concentration test to be reliable.", + RuntimeWarning, + stacklevel=2, + ) # Compute F-statistic - f_stat = ((n2 - 1) * (n1 - R1)) / ((n1 - 1) * (n2 - R2)) + df1 = n1 - 1 + df2 = n2 - 1 + numerator = df2 * (n1 - R1) + denominator = df1 * (n2 - R2) + if denominator <= 0 or numerator <= 0: + raise ValueError("Degenerate data: cannot compute concentration test statistic.") + f_stat = numerator / denominator # Compute p-value (adjusting for F-stat symmetry) - if f_stat > 1: - pval = 2 * (1 - f.cdf(f_stat, n1, n2)) + if f_stat >= 1: + pval = 2 * f.sf(f_stat, df1, df2) else: - f_stat = 1 / f_stat - pval = 2 * (1 - f.cdf(f_stat, n2, n1)) + pval = 2 * f.sf(1 / f_stat, df2, df1) + result = ConcentrationTestResult( + f_stat=float(f_stat), + pval=float(min(pval, 1.0)), + df1=int(df1), + df2=int(df2), + ) + + if verbose: + print("Concentration Equality Test") + print("---------------------------") + print("H0: Both samples share the same concentration parameter (κ).") + print("HA: The samples have different concentration parameters.") + print("") + print(f"Sample sizes: n1 = {n1}, n2 = {n2}") + print( + f"F statistic: {result.f_stat:.5f} " + f"(df1 = {result.df1}, df2 = {result.df2})" + ) + print(f"P-value: {result.pval:.5f} {significance_code(result.pval)}") - return f_stat, float(pval) + return result -def rao_homogeneity_test(samples: list, alpha: float = 0.05) -> dict: +def rao_homogeneity_test( + samples: list, + alpha: float = 0.05, + verbose: bool = False, +) -> RaoHomogeneityTestResult: """ Perform Rao's test for homogeneity on multiple samples of angular data. @@ -1535,11 +2141,13 @@ def rao_homogeneity_test(samples: list, alpha: float = 0.05) -> dict: A list where each entry is a vector of angular values (in radians). alpha : float, optional Significance level for the hypothesis test. Default is 0.05. + verbose : bool, optional + If ``True``, prints test details and decisions. Returns ------- - dict - A dictionary with test statistics and p-values for both tests. + RaoHomogeneityTestResult + Dataclass containing test statistics, p-values, and rejection flags. References ---------- @@ -1608,17 +2216,36 @@ def rao_homogeneity_test(samples: list, alpha: float = 0.05) -> dict: reject_polar = H_polar > crit_polar reject_disp = H_disp > crit_disp - return { - "H_polar": H_polar, - "pval_polar": pval_polar, - "reject_polar": reject_polar, - "H_disp": H_disp, - "pval_disp": pval_disp, - "reject_disp": reject_disp, - } + result = RaoHomogeneityTestResult( + H_polar=float(H_polar), + pval_polar=float(pval_polar), + reject_polar=bool(reject_polar), + H_disp=float(H_disp), + pval_disp=float(pval_disp), + reject_disp=bool(reject_disp), + ) + if verbose: + print("Rao's Homogeneity Test") + print("----------------------") + print("Test 1 H0: All groups share the same mean direction.") + print("Test 2 H0: All groups share the same dispersion.") + print("") + print( + f"Mean directions: H = {result.H_polar:.5f}, " + f"p = {result.pval_polar:.5f} {significance_code(result.pval_polar)}; " + f"reject @ α={alpha}: {result.reject_polar}" + ) + print( + f"Dispersions: H = {result.H_disp:.5f}, " + f"p = {result.pval_disp:.5f} {significance_code(result.pval_disp)}; " + f"reject @ α={alpha}: {result.reject_disp}" + ) -def change_point_test(alpha): + return result + + +def change_point_test(alpha, verbose: bool = False) -> ChangePointTestResult: """ Perform a change point test for mean direction, concentration, or both. @@ -1626,11 +2253,13 @@ def change_point_test(alpha): ---------- alpha : np.ndarray Vector of angular measurements in radians. + verbose : bool, optional + If ``True``, prints test details and summary statistics. Returns ------- - pd.DataFrame - DataFrame containing test statistics and estimated change point locations. + ChangePointTestResult + Dataclass containing the change point statistics. References ---------- @@ -1643,18 +2272,20 @@ def change_point_test(alpha): def phi(x): """Helper function for phi computation.""" - arg = A1inv(x) - if i0(arg) != np.inf: - return x * A1inv(x) - np.log(i0(arg)) - else: - return x * A1inv(x) - ( - arg + inv = A1inv(x) + bessel = i0(inv) + if np.isinf(bessel): + corr = ( + inv + np.log( 1 - / np.sqrt(2 * np.pi * arg) - * (1 + 1 / (8 * arg) + 9 / (128 * arg**2) + 225 / (1024 * arg**3)) + / np.sqrt(2 * np.pi * inv) + * (1 + 1 / (8 * inv) + 9 / (128 * inv**2) + 225 / (1024 * inv**3)) ) ) + else: + corr = np.log(bessel) + return x * inv - corr def est_rho(alpha): """Estimate mean resultant length (rho).""" @@ -1687,26 +2318,38 @@ def est_rho(alpha): if n > 3: V = V[1 : n - 2] - print(f"V sliced: {V}") tmax = np.max(V) k_t = np.argmax(V) + 1 tave = np.mean(V) else: raise ValueError("Sample size must be at least 4.") - return pd.DataFrame( - { - "n": [n], - "rho": [rho], - "rmax": [rmax], - "k.r": [k_r], - "rave": [rave], - "tmax": [tmax], - "k.t": [k_t], - "tave": [tave], - } + result = ChangePointTestResult( + n=int(n), + rho=float(rho), + rmax=float(rmax), + k_r=int(k_r), + rave=float(rave), + tmax=float(tmax), + k_t=int(k_t), + tave=float(tave), ) + if verbose: + print("Circular Change Point Test") + print("--------------------------") + print("H0: No change point in mean direction or concentration.") + print("HA: A change point is present in the sequence.") + print("") + print(f"Sample size: {result.n}") + print(f"Overall resultant length (ρ): {result.rho:.5f}") + print(f"Max R statistic: {result.rmax:.5f} at k = {result.k_r}") + print(f"Average R statistic: {result.rave:.5f}") + print(f"Max T statistic: {result.tmax:.5f} at k = {result.k_t}") + print(f"Average T statistic: {result.tave:.5f}") + + return result + def harrison_kanji_test( alpha: np.ndarray, @@ -1714,9 +2357,25 @@ def harrison_kanji_test( idq: np.ndarray, inter: bool = True, fn: Optional[list] = None, -) -> tuple[tuple[float, float, float], pd.DataFrame]: + verbose: bool = False, +) -> HarrisonKanjiTestResult: """ Harrison-Kanji Test (Two-Way ANOVA) for Circular Data. + + Parameters + ---------- + alpha : np.ndarray + Angular measurements (radians). + idp : np.ndarray + Factor A identifiers for each observation. + idq : np.ndarray + Factor B identifiers for each observation. + inter : bool, optional + Whether to include the interaction term. Defaults to ``True``. + fn : list, optional + Names for the two factors. Defaults to ``["A", "B"]``. + verbose : bool, optional + If ``True``, prints test details and results. """ if fn is None: @@ -1846,10 +2505,35 @@ def harrison_kanji_test( } ).set_index("Source") - return pval, table + result = HarrisonKanjiTestResult(p_values=pval, anova_table=table) + if verbose: + p_a, p_b, p_inter = result.p_values -def equal_kappa_test(samples: list[np.ndarray], verbose: bool = False) -> dict: + def _fmt(p: Optional[float]) -> str: + if p is None or (isinstance(p, float) and math.isnan(p)): + return "n/a" + return f"{p:.5f} {significance_code(p)}" + + print("Harrison-Kanji Two-Way Circular ANOVA") + print("-------------------------------------") + print(f"H0 ({fn[0]}): No difference in mean direction across factor {fn[0]}.") + print(f"H0 ({fn[1]}): No difference in mean direction across factor {fn[1]}.") + if inter: + print("H0 (Interaction): No interaction between the two factors.") + print("") + print(f"{fn[0]} effect p-value: {_fmt(p_a)}") + print(f"{fn[1]} effect p-value: {_fmt(p_b)}") + if inter: + print(f"Interaction p-value: {_fmt(p_inter)}") + print("") + print("ANOVA table (first rows):") + print(result.anova_table.head()) + + return result + + +def equal_kappa_test(samples: list[np.ndarray], verbose: bool = False) -> EqualKappaTestResult: """ Test for Homogeneity of Concentration Parameters (κ) in Circular Data. @@ -1865,15 +2549,8 @@ def equal_kappa_test(samples: list[np.ndarray], verbose: bool = False) -> dict: Returns ------- - result : dict - A dictionary containing: - - `'kappa'`: Estimated concentration parameters for each group. - - `'kappa_all'`: Estimated common κ for all samples combined. - - `'rho'`: Mean resultant lengths for each group. - - `'rho_all'`: Mean resultant length for all samples combined. - - `'df'`: Degrees of freedom. - - `'statistic'`: Test statistic (Chi-Square). - - `'p_value'`: p-value. + EqualKappaTestResult + Dataclass containing the test statistic, p-value, and supporting metrics. Notes ----- @@ -1894,15 +2571,21 @@ def equal_kappa_test(samples: list[np.ndarray], verbose: bool = False) -> dict: if k < 2: raise ValueError("At least two groups are required for the test.") + arrays = [np.asarray(group, dtype=float) for group in samples] + if any(arr.size == 0 for arr in arrays): + raise ValueError("Each group must contain at least one observation.") + # Sample sizes - ns = np.array([len(group) for group in samples]) + ns = np.array([arr.size for arr in arrays]) + if np.any(ns < 2): + raise ValueError("Each group must contain at least two observations.") # Mean resultant lengths - r_bars = np.array([circ_r(group) for group in samples]) + r_bars = np.array([circ_r(arr) for arr in arrays]) Rs = r_bars * ns # Unnormalized resultants # Overall resultant and mean resultant length - all_samples = np.hstack(samples) + all_samples = np.hstack(arrays) N = len(all_samples) r_bar_all = circ_r(all_samples) @@ -1916,53 +2599,68 @@ def equal_kappa_test(samples: list[np.ndarray], verbose: bool = False) -> dict: ws = 4 * (ns - 4) / 3 g1s = np.arcsin(np.sqrt(3 / 8) * 2 * r_bars) chi_square_stat = np.sum(ws * g1s**2) - (np.sum(ws * g1s) ** 2 / np.sum(ws)) + regime = "small" elif 0.45 <= r_bar_all <= 0.7: # Moderate `r̄`: asinh transformation ws = (ns - 3) / 0.798 g2s = np.arcsinh((r_bars - 1.089) / 0.258) chi_square_stat = np.sum(ws * g2s**2) - (np.sum(ws * g2s) ** 2 / np.sum(ws)) + regime = "moderate" else: # Large `r̄`: Bartlett-type test vs = ns - 1 v = N - k d = 1 / (3 * (k - 1)) * (np.sum(1 / vs) - 1 / v) + total_residual = N - np.sum(Rs) + residuals = ns - Rs + if np.any(residuals <= 0): + raise ValueError("Degenerate data: within-group dispersion is zero.") + if total_residual <= 0: + raise ValueError("Degenerate data: between-group dispersion is zero.") chi_square_stat = (1 / (1 + d)) * ( - v * np.log((N - np.sum(Rs)) / v) - np.sum(vs * np.log((ns - Rs) / vs)) + v * np.log(total_residual / v) - np.sum(vs * np.log(residuals / vs)) ) + regime = "large" # Compute p-value df = k - 1 p_value = 1 - chi2.cdf(chi_square_stat, df) - result = { - "kappa": kappas, - "kappa_all": kappa_all, - "rho": r_bars, - "rho_all": r_bar_all, - "df": df, - "statistic": chi_square_stat, - "p_value": p_value, - } + result = EqualKappaTestResult( + kappa=kappas, + kappa_all=float(kappa_all), + rho=r_bars, + rho_all=float(r_bar_all), + df=int(df), + statistic=float(chi_square_stat), + pval=float(p_value), + regime=regime, + ) # Print results if verbose is enabled if verbose: print("\nTest for Homogeneity of Concentration Parameters (κ)") print("------------------------------------------------------") - print(f"Mean Resultant Lengths: {r_bars}") - print(f"Overall Mean Resultant Length: {r_bar_all:.5f}") - print(f"Estimated Kappa Values: {kappas}") - print(f"Overall Estimated Kappa: {kappa_all:.5f}") - print(f"Degrees of Freedom: {df}") - print(f"Chi-Square Statistic: {chi_square_stat:.5f}") - print(f"P-value: {p_value:.5f}") + print(f"Mean Resultant Lengths: {result.rho}") + print(f"Overall Mean Resultant Length: {result.rho_all:.5f}") + print(f"Estimated Kappa Values: {result.kappa}") + print(f"Overall Estimated Kappa: {result.kappa_all:.5f}") + print(f"Degrees of Freedom: {result.df}") + print(f"Chi-Square Statistic: {result.statistic:.5f}") + print(f"P-value: {result.pval:.5f}") + print(f"Regime: {result.regime}") print("------------------------------------------------------\n") return result -def common_median_test(samples: list[np.ndarray], verbose: bool = False) -> dict: +def common_median_test( + samples: list[np.ndarray], + alpha: float = 0.05, + verbose: bool = False, +) -> CommonMedianTestResult: """ Common Median Test (Equal Median Test) for Multiple Circular Samples. @@ -1973,17 +2671,15 @@ def common_median_test(samples: list[np.ndarray], verbose: bool = False) -> dict ---------- samples : list of np.ndarray List of circular data arrays (angles in radians) for different groups. + alpha : float, optional + Significance level for deciding whether to reject the null hypothesis (default 0.05). verbose : bool, optional If `True`, prints the test summary. Returns ------- - result : dict - A dictionary containing: - - `'common_median'`: Estimated shared median if H₀ is not rejected; otherwise, `NaN`. - - `'test_statistic'`: Test statistic (Chi-Square). - - `'p_value'`: p-value. - - `'reject'`: Boolean indicating whether to reject H₀. + CommonMedianTestResult + Dataclass containing the common median, test statistic, p-value, and rejection flag. References ---------- @@ -1992,51 +2688,63 @@ def common_median_test(samples: list[np.ndarray], verbose: bool = False) -> dict """ # Number of groups + if not (0 < alpha < 1): + raise ValueError("`alpha` must be between 0 and 1.") + k = len(samples) if k < 2: raise ValueError("At least two groups are required for the test.") + arrays = [np.asarray(group, dtype=float) for group in samples] + if any(arr.size == 0 for arr in arrays): + raise ValueError("Each group must contain at least one observation.") + # Sample sizes - ns = np.array([len(group) for group in samples]) - N = np.sum(ns) # Total number of observations + ns = np.array([arr.size for arr in arrays]) + N = int(np.sum(ns)) # Total number of observations # Compute the common circular median - common_median = circ_median(np.hstack(samples)) + common_median = circ_median(np.hstack(arrays)) # Compute deviations from the common median - m = np.zeros(k) - for i, group in enumerate(samples): + m = np.zeros(k, dtype=float) + for i, group in enumerate(arrays): deviations = circ_dist(group, common_median) - m[i] = np.sum(deviations < 0) # Count how many are "below" the median + m[i] = np.sum(deviations < 0) # Compute test statistic M = np.sum(m) + if M == 0 or M == N: + raise ValueError("All observations fall on the same side of the median; test is undefined.") + P = (N**2 / (M * (N - M))) * np.sum(m**2 / ns) - (N * M) / (N - M) # Compute p-value df = k - 1 p_value = 1 - chi2.cdf(P, df) - reject = p_value < 0.05 # Reject H₀ if p-value is below 0.05 + reject = p_value < alpha # If the null hypothesis is rejected, return NaN for the median if reject: common_median = np.nan - result = { - "common_median": common_median, - "test_statistic": P, - "p_value": p_value, - "reject": reject, - } + result = CommonMedianTestResult( + common_median=float(common_median), + statistic=float(P), + pval=float(p_value), + reject=bool(reject), + ) # Print results if verbose is enabled if verbose: print("\nCommon Median Test (Equal Median Test)") print("--------------------------------------") - print(f"Estimated Common Median: {common_median if not reject else 'NaN'}") - print(f"Test Statistic: {P:.5f}") - print(f"P-value: {p_value:.5f}") - print(f"Reject H₀: {'Yes' if reject else 'No'}") + median_display = result.common_median if not result.reject else "NaN" + print(f"Estimated Common Median: {median_display}") + print(f"Test Statistic: {result.statistic:.5f}") + print(f"P-value: {result.pval:.5f}") + decision = "Yes" if result.reject else "No" + print(f"Reject H₀ (α={alpha:.2f}): {decision}") print("--------------------------------------\n") return result diff --git a/pycircstat2/regression.py b/pycircstat2/regression.py index f31f760..53410f6 100644 --- a/pycircstat2/regression.py +++ b/pycircstat2/regression.py @@ -1,4 +1,4 @@ -from typing import List, Optional, Tuple, Union +from typing import Iterable, List, Optional, Tuple, Union import numpy as np import pandas as pd @@ -11,6 +11,20 @@ __all__ = ["CLRegression", "CCRegression"] +def _safe_solve(matrix: np.ndarray, rhs: np.ndarray) -> np.ndarray: + try: + return np.linalg.solve(matrix, rhs) + except np.linalg.LinAlgError: + return np.linalg.pinv(matrix) @ rhs + + +def _safe_inverse(matrix: np.ndarray) -> np.ndarray: + try: + return np.linalg.inv(matrix) + except np.linalg.LinAlgError: + return np.linalg.pinv(matrix) + + class CLRegression: """ Circular-Linear Regression. @@ -102,33 +116,75 @@ def __init__( # Parse inputs if formula and data is not None: - self.theta, self.X, self.feature_names = self._parse_formula(formula, data) + theta_arr, X_arr, feature_names = self._parse_formula(formula, data) elif theta is not None and X is not None: - self.theta = theta - self.X = X - self.feature_names = [f"x{i}" for i in range(X.shape[1])] + feature_names = None + theta_arr, X_arr = theta, X else: raise ValueError("Provide either a formula + data or theta and X.") + self.theta, self.X = self._prepare_design(theta_arr, X_arr) + if feature_names is None: + self.feature_names = [f"x{i}" for i in range(self.X.shape[1])] + else: + self.feature_names = feature_names + # Validate model type if model_type not in ["mean", "kappa", "mixed"]: raise ValueError("Model type must be 'mean', 'kappa', or 'mixed'.") # Initialize parameters - self.alpha = alpha0 if alpha0 is not None else 0.0 - self.beta = beta0 if beta0 is not None else np.zeros(self.X.shape[1]) - self.gamma = gamma0 if gamma0 is not None else np.zeros(self.X.shape[1]) + p = self.X.shape[1] + self.alpha = float(alpha0) if alpha0 is not None else 0.0 + self.beta = self._coerce_vector(beta0, p, name="beta") + self.gamma = self._coerce_vector(gamma0, p, name="gamma") # Fit the model self.result = self._fit() + @staticmethod + def _coerce_vector(vec: Optional[np.ndarray], length: int, name: str) -> np.ndarray: + if vec is None: + return np.zeros(length, dtype=float) + arr = np.asarray(vec, dtype=float).reshape(-1) + if arr.size != length: + raise ValueError(f"Initial {name} must have length {length} (got {arr.size}).") + if not np.all(np.isfinite(arr)): + raise ValueError(f"Initial {name} contains non-finite values.") + return arr + + @staticmethod + def _prepare_design(theta: Iterable[float], X: Iterable[Iterable[float]]) -> Tuple[np.ndarray, np.ndarray]: + theta_arr = np.asarray(theta, dtype=float).reshape(-1) + if theta_arr.size == 0: + raise ValueError("`theta` must contain at least one observation.") + if not np.all(np.isfinite(theta_arr)): + raise ValueError("`theta` contains non-finite values.") + + X_arr = np.asarray(X, dtype=float) + if X_arr.ndim == 1: + X_arr = X_arr[:, None] + if X_arr.ndim != 2: + raise ValueError("`X` must be convertible to a 2D numeric array.") + if X_arr.shape[0] != theta_arr.size: + raise ValueError("`theta` and `X` must have matching numbers of rows.") + if not np.all(np.isfinite(X_arr)): + raise ValueError("`X` contains non-finite values.") + return theta_arr, X_arr + def _parse_formula( self, formula: str, data: pd.DataFrame ) -> Tuple[np.ndarray, np.ndarray, List[str]]: theta_col, x_cols = formula.split("~") - theta = data[theta_col.strip()].to_numpy() + theta_series = data[theta_col.strip()] + if theta_series.isnull().any(): + raise ValueError("Response column contains missing values.") + theta = theta_series.to_numpy() x_cols = [col.strip() for col in x_cols.split("+")] - X = data[x_cols].to_numpy() + X_df = data[x_cols] + if X_df.isnull().any().any(): + raise ValueError("Predictor columns contain missing values.") + X = X_df.to_numpy() return theta, X, x_cols def _A1(self, kappa: np.ndarray) -> np.ndarray: @@ -161,16 +217,20 @@ def _fit(self): raw_deviation = theta - 2 * np.arctan(X @ beta) S = np.mean(np.sin(raw_deviation)) C = np.mean(np.cos(raw_deviation)) - R = np.sqrt(S**2 + C**2) - kappa = A1inv(R) + R = np.hypot(S, C) + kappa = float(A1inv(R)) mu = np.arctan2(S, C) # Step 2: Update beta - G = 2 * X / (1 + (X @ beta) ** 2)[:, None] - A = np.eye(n) * (kappa * A1(np.asarray(kappa))) + denom = 1 + (X @ beta) ** 2 + G = 2 * X / denom[:, None] + weight = float(kappa * A1(np.array([kappa]))[0]) u = kappa * np.sin(raw_deviation - mu) - beta_new = np.linalg.solve(G.T @ A @ G, G.T @ (u + A @ G @ beta)) - alpha_new, gamma_new = np.nan, np.nan + XtX = G.T @ G + rhs = G.T @ u + weight * XtX @ beta + mat = weight * XtX + 1e-8 * np.eye(X.shape[1]) + beta_new = _safe_solve(mat, rhs) + alpha_new, gamma_new = alpha, gamma # Log-likelihood log_likelihood = -n * np.log(i0(kappa)) + kappa * np.sum( @@ -180,20 +240,24 @@ def _fit(self): elif self.model_type == "kappa": # Step 1: Compute mu and kappa kappa = np.exp(alpha + X @ gamma) - S = np.sum(kappa * np.sin(theta)) - C = np.sum(kappa * np.cos(theta)) + S = float(np.sum(kappa * np.sin(theta))) + C = float(np.sum(kappa * np.cos(theta))) mu = np.arctan2(S, C) # Step 2: Update gamma - residuals_gamma = np.cos(theta - mu) - self._A1(kappa) - y_gamma = residuals_gamma / (self._A1_prime(kappa) * kappa) - W_gamma = np.diag((kappa**2) * self._A1_prime(kappa)) - XtWX = X1.T @ W_gamma @ X1 - XtWy = X1.T @ W_gamma @ y_gamma - update = np.linalg.solve(XtWX, XtWy) + a1_kappa = self._A1(kappa) + a1_prime = self._A1_prime(kappa) + if np.any(np.isclose(a1_prime, 0.0)): + raise ValueError("Encountered zero derivative in concentration update.") + residuals_gamma = np.cos(theta - mu) - a1_kappa + y_gamma = residuals_gamma / (a1_prime * kappa) + weights = (kappa**2) * a1_prime + XtWX = X1.T @ (weights[:, None] * X1) + XtWy = X1.T @ (weights * y_gamma) + update = _safe_solve(XtWX + 1e-8 * np.eye(X1.shape[1]), XtWy) alpha_new = alpha + update[0] gamma_new = gamma + update[1:] - beta_new = np.nan + beta_new = beta # Log-likelihood log_likelihood = -np.sum(np.log(i0(kappa))) + np.sum( kappa * np.cos(theta - mu) @@ -209,19 +273,26 @@ def _fit(self): residuals = theta - mu # Step 2: Update beta - G = 2 * X / (1 + (X @ beta) ** 2)[:, None] - W_kappa = np.diag(kappa * self._A1(kappa)) - beta_new = np.linalg.solve( - G.T @ W_kappa @ G, G.T @ W_kappa @ np.sin(residuals) + denom = 1 + (X @ beta) ** 2 + G = 2 * X / denom[:, None] + weights_beta = kappa * self._A1(kappa) + XtWX_beta = G.T @ (weights_beta[:, None] * G) + rhs_beta = G.T @ (weights_beta * np.sin(residuals)) + beta_new = _safe_solve( + XtWX_beta + 1e-8 * np.eye(X.shape[1]), rhs_beta ) # Step 3: Update gamma - residuals_gamma = np.cos(raw_deviation - mu) - self._A1(kappa) - y_gamma = residuals_gamma / (self._A1_prime(kappa) * kappa) - W_gamma = np.diag((kappa**2) * self._A1_prime(kappa)) - XtWX = X1.T @ W_gamma @ X1 - XtWy = X1.T @ W_gamma @ y_gamma - update = np.linalg.solve(XtWX, XtWy) + a1_kappa = self._A1(kappa) + a1_prime = self._A1_prime(kappa) + if np.any(np.isclose(a1_prime, 0.0)): + raise ValueError("Encountered zero derivative in concentration update.") + residuals_gamma = np.cos(raw_deviation - mu) - a1_kappa + y_gamma = residuals_gamma / (a1_prime * kappa) + weights_gamma = (kappa**2) * a1_prime + XtWX = X1.T @ (weights_gamma[:, None] * X1) + XtWy = X1.T @ (weights_gamma * y_gamma) + update = _safe_solve(XtWX + 1e-8 * np.eye(X1.shape[1]), XtWy) alpha_new = alpha + update[0] gamma_new = gamma + update[1:] @@ -273,16 +344,17 @@ def _compute_standard_errors(self, result): if self.model_type == "mean": # Mean Direction Model - G = 2 * X / (1 + (X @ beta) ** 2)[:, None] - A = np.eye(n) * (kappa * self._A1(kappa)) - XtAX = G.T @ A @ G - cov_beta = np.linalg.solve(XtAX, np.eye(XtAX.shape[0])) + denom = 1 + (X @ beta) ** 2 + G = 2 * X / denom[:, None] + weight = float(kappa * self._A1(np.array([kappa]))[0]) + XtAX = weight * (G.T @ G) + 1e-8 * np.eye(X.shape[1]) + cov_beta = _safe_inverse(XtAX) se_beta = np.sqrt(np.diag(cov_beta)) - se_mu = 1 / np.sqrt((n - X.shape[1]) * kappa * self._A1(kappa)) - se_kappa = np.sqrt( - 1 / (n * (1 - self._A1(kappa) ** 2 - self._A1(kappa) / kappa)) - ) + denom_mu = max((n - X.shape[1]) * kappa * self._A1(np.array([kappa]))[0], 1e-12) + se_mu = 1 / np.sqrt(denom_mu) + denom_kappa = n * (1 - self._A1(np.array([kappa]))[0] ** 2 - self._A1(np.array([kappa]))[0] / kappa) + se_kappa = np.sqrt(1 / max(denom_kappa, 1e-12)) se_results.update( { @@ -295,19 +367,18 @@ def _compute_standard_errors(self, result): elif self.model_type == "kappa": # Concentration Parameter Model X1 = np.column_stack((np.ones(n), X)) # Add intercept - W = np.diag( - (np.exp(X1 @ np.hstack([alpha, gamma])) ** 2) * self._A1_prime(kappa) - ) - XtWX = X1.T @ W @ X1 + weights = (np.exp(X1 @ np.hstack([alpha, gamma])) ** 2) * self._A1_prime(kappa) + XtWX = X1.T @ (weights[:, None] * X1) + 1e-8 * np.eye(X1.shape[1]) - cov_gamma_alpha = np.linalg.solve(XtWX, np.eye(XtWX.shape[0])) + cov_gamma_alpha = _safe_inverse(XtWX) se_alpha = np.sqrt(cov_gamma_alpha[0, 0]) se_gamma = np.sqrt(np.diag(cov_gamma_alpha[1:, 1:])) - se_mu = 1 / np.sqrt(np.sum(kappa * self._A1(kappa)) - 0.5) + denom_mu = max(np.sum(kappa * self._A1(kappa)) - 0.5, 1e-12) + se_mu = 1 / np.sqrt(denom_mu) - se_kappa = np.sqrt(1 / (n * self._A1_prime(kappa))) + se_kappa = np.sqrt(1 / np.clip(n * self._A1_prime(kappa), 1e-12, None)) se_results.update( { @@ -320,32 +391,27 @@ def _compute_standard_errors(self, result): elif self.model_type == "mixed": # Mixed Model - G = 2 * X / (1 + (X @ beta) ** 2)[:, None] - K = np.diag(kappa * self._A1(kappa)) - XtGKGX = G.T @ K @ G + denom = 1 + (X @ beta) ** 2 + G = 2 * X / denom[:, None] + weights_beta = kappa * self._A1(kappa) + XtGKGX = G.T @ (weights_beta[:, None] * G) + 1e-8 * np.eye(X.shape[1]) - cov_beta = np.linalg.solve(XtGKGX, np.eye(XtGKGX.shape[0])) + cov_beta = _safe_inverse(XtGKGX) se_beta = np.sqrt(np.diag(cov_beta)) X1 = np.column_stack((np.ones(n), X)) # Add intercept - W_gamma = np.diag( - (np.exp(X1 @ np.hstack([alpha, gamma])) ** 2) * self._A1_prime(kappa) - ) - XtWX_gamma = X1.T @ W_gamma @ X1 - - # Check positive definiteness and regularize if needed - eigenvalues_gamma = np.linalg.eigvals(XtWX_gamma) - if np.any(eigenvalues_gamma <= 0): - XtWX_gamma += np.eye(XtWX_gamma.shape[0]) * 1e-8 + weights_gamma = (np.exp(X1 @ np.hstack([alpha, gamma])) ** 2) * self._A1_prime(kappa) + XtWX_gamma = X1.T @ (weights_gamma[:, None] * X1) + 1e-8 * np.eye(X1.shape[1]) - cov_gamma_alpha = np.linalg.solve(XtWX_gamma, np.eye(XtWX_gamma.shape[0])) + cov_gamma_alpha = _safe_inverse(XtWX_gamma) se_alpha = np.sqrt(cov_gamma_alpha[0, 0]) se_gamma = np.sqrt(np.diag(cov_gamma_alpha[1:, 1:])) - se_mu = 1 / np.sqrt(np.sum(kappa * self._A1(kappa)) - 0.5) - se_kappa = np.sqrt( - 1 / (n * (1 - self._A1(kappa) ** 2 - self._A1(kappa) / kappa)) - ) + denom_mu = max(np.sum(kappa * self._A1(kappa)) - 0.5, 1e-12) + se_mu = 1 / np.sqrt(denom_mu) + a1_vals = self._A1(kappa) + denom_kappa = n * (1 - a1_vals**2 - a1_vals / kappa) + se_kappa = np.sqrt(1 / np.clip(denom_kappa, 1e-12, None)) se_results.update( { "se_beta": se_beta, @@ -421,9 +487,22 @@ def predict(self, X_new): if self.result is None: raise ValueError("Model must be fitted before making predictions.") + beta = self.result.get("beta") + if beta is None or np.any(~np.isfinite(beta)): + raise ValueError("Model does not contain beta coefficients for prediction.") + + X_arr = np.asarray(X_new, dtype=float) + if X_arr.ndim == 1: + X_arr = X_arr[:, None] + if X_arr.shape[1] != beta.size: + raise ValueError( + f"Expected {beta.size} predictors, received {X_arr.shape[1]}." + ) + if not np.all(np.isfinite(X_arr)): + raise ValueError("`X_new` contains non-finite values.") + mu = self.result["mu"] - beta = self.result["beta"] - return mu + 2 * np.arctan(X_new @ beta) + return mu + 2 * np.arctan(X_arr @ beta) def summary(self): if self.result is None: @@ -442,33 +521,43 @@ def summary(self): print(f" CLRegression(model_type='{self.model_type}')\n") # Coefficients for mean direction (Beta) - if self.model_type in ["mean", "mixed"] and self.result["beta"] is not None: + se_beta = self.result.get("se_beta") + if ( + self.model_type in ["mean", "mixed"] + and self.result.get("beta") is not None + and se_beta is not None + ): print("Coefficients for Mean Direction (Beta):\n") print( f"{'':<5} {'Estimate':<12} {'Std. Error':<12} {'t value':<10} {'Pr(>|t|)'}" ) for i, coef in enumerate(self.result["beta"]): - # Placeholder for standard error and p-values - se_beta = self.result["se_beta"][i] - t_value = np.abs(coef / se_beta) if se_beta else np.nan + se_val = se_beta[i] + t_value = abs(coef / se_val) if se_val else np.nan p_value = ( 2 * (1 - norm.cdf(np.abs(t_value))) if not np.isnan(t_value) else np.nan ) print( - f"β{i:<3} {coef:<12.5f} {se_beta:<12.5f} {t_value:<10.2f} {p_value:<12.5f}{significance_code(p_value):<3}" + f"β{i:<3} {coef:<12.5f} {se_val:<12.5f} {t_value:<10.2f} {p_value:<12.5f}{significance_code(p_value):<3}" ) # Coefficients for concentration parameter (Gamma) - if self.model_type in ["kappa", "mixed"] and self.result["gamma"] is not None: + se_gamma = self.result.get("se_gamma") + se_alpha = self.result.get("se_alpha") + if ( + self.model_type in ["kappa", "mixed"] + and self.result.get("gamma") is not None + and se_gamma is not None + and se_alpha is not None + ): print("\nCoefficients for Concentration (Gamma):\n") print( f"{'':<5} {'Estimate':<12} {'Std. Error':<12} {'t value':<10} {'Pr(>|t|)':<12}" ) # Report alpha as the first coefficient alpha = self.result["alpha"] - se_alpha = self.result["se_alpha"] t_value_alpha = alpha / se_alpha if se_alpha else np.nan p_value_alpha = ( 2 * (1 - norm.cdf(np.abs(t_value_alpha))) @@ -479,35 +568,44 @@ def summary(self): f"α{'':<5} {alpha:<12.5f} {se_alpha:<12.5f} {t_value_alpha:<10.2f} {p_value_alpha:<12.5f}{significance_code(p_value_alpha)}" ) for i, coef in enumerate(self.result["gamma"]): - # Placeholder for standard error and p-values - se_gamma = self.result["se_gamma"][i] - t_value = coef / se_gamma if se_gamma else np.nan + se_val = se_gamma[i] + t_value = coef / se_val if se_val else np.nan p_value = ( 2 * (1 - norm.cdf(np.abs(t_value))) if not np.isnan(t_value) else np.nan ) print( - f"γ{i:<5} {coef:<12.5f} {se_gamma:<12.5f} {t_value:<10.2f} {p_value:<12.5f}{significance_code(p_value)}" + f"γ{i:<5} {coef:<12.5f} {se_val:<12.5f} {t_value:<10.2f} {p_value:<12.5f}{significance_code(p_value)}" ) # Summary for mu and kappa print("\nSummary:") print(" Mean Direction (mu) in radians:") mu = self.result["mu"] - se_mu = self.result["se_mu"] - print(f" μ: {mu:.5f} (SE: {se_mu:.5f})") + se_mu = self.result.get("se_mu") + if se_mu is not None: + print(f" μ: {mu:.5f} (SE: {se_mu:.5f})") + else: + print(f" μ: {mu:.5f}") print("\n Concentration Parameter (kappa):") kappa = self.result["kappa"] - se_kappa = self.result["se_kappa"] + se_kappa = self.result.get("se_kappa") if isinstance(kappa, np.ndarray): print(" Index kappa Std. Error") - for i, (k, se) in enumerate(zip(kappa, se_kappa), start=1): - print(f" [{i}] {k:>10.5f} {se:>10.5f}") - print(f" Mean: {np.mean(kappa):.5f} (SE: {np.mean(se_kappa):.5f})") + for i, k in enumerate(kappa, start=1): + se_val = se_kappa[i - 1] if se_kappa is not None else float("nan") + print(f" [{i}] {k:>10.5f} {se_val:>10.5f}") + if se_kappa is not None: + print(f" Mean: {np.mean(kappa):.5f} (SE: {np.mean(se_kappa):.5f})") + else: + print(f" Mean: {np.mean(kappa):.5f}") else: - print(f" κ: {kappa:.5f} (SE: {se_kappa:.5f})") + if se_kappa is not None: + print(f" κ: {kappa:.5f} (SE: {se_kappa:.5f})") + else: + print(f" κ: {kappa:.5f}") # Summary for model fit metrics print("\nModel Fit Metrics:\n") @@ -581,7 +679,11 @@ def __init__( level: float = 0.05, ): if formula and data is not None: - self.theta, self.x, self.feature_names = self._parse_formula(formula, data) + theta_arr, x_arr, self.feature_names = self._parse_formula(formula, data) + self.theta = self._validate_input(theta_arr) + self.x = self._validate_input(x_arr) + if self.x.ndim == 1: + self.x = self.x[:, None] elif theta is not None and x is not None: self.theta = self._validate_input(theta) self.x = self._validate_input(x) @@ -594,6 +696,11 @@ def __init__( self.order = order self.level = level + if self.order < 1: + raise ValueError("`order` must be a positive integer.") + if not (0 < self.level < 1): + raise ValueError("`level` must lie between 0 and 1.") + # Fit the model self.result = self._fit() @@ -602,9 +709,12 @@ def _validate_input(arr: np.ndarray) -> np.ndarray: """ Validate input array and ensure it is in radians. """ - if not isinstance(arr, np.ndarray): - raise ValueError("Input must be a numpy array.") - return arr % (2 * np.pi) + arr_np = np.asarray(arr, dtype=float) + if arr_np.ndim == 0: + raise ValueError("Input must be at least one-dimensional.") + if not np.all(np.isfinite(arr_np)): + raise ValueError("Circular input contains non-finite values.") + return np.mod(arr_np, 2 * np.pi) def _parse_formula( self, formula: str, data: pd.DataFrame @@ -618,63 +728,88 @@ def _parse_formula( def _fit(self): n = self.x.shape[0] order = self.order + n_features = self.x.shape[1] # Create harmonic terms - order_matrix = np.arange(1, order + 1) - cos_x = np.cos(self.x * order_matrix) - sin_x = np.sin(self.x * order_matrix) + cos_terms = [] + sin_terms = [] + cos_labels: List[Tuple[int, int]] = [] + sin_labels: List[Tuple[int, int]] = [] + for j in range(n_features): + x_col = self.x[:, j] + for k in range(1, order + 1): + cos_terms.append(np.cos(k * x_col)) + sin_terms.append(np.sin(k * x_col)) + cos_labels.append((j, k)) + sin_labels.append((j, k)) # Linear models for cos(theta) and sin(theta) Y_cos = np.cos(self.theta) Y_sin = np.sin(self.theta) - X = np.column_stack([np.ones(n), cos_x, sin_x]) + design_matrix = [np.ones(n)] + cos_terms + sin_terms + X = np.column_stack(design_matrix) beta_cos, _, _, _ = lstsq(X, Y_cos) beta_sin, _, _, _ = lstsq(X, Y_sin) # Fitted values cos_fit = X @ beta_cos sin_fit = X @ beta_sin - fitted = np.arctan2(sin_fit, cos_fit) % (2 * np.pi) + fitted = np.mod(np.arctan2(sin_fit, cos_fit), 2 * np.pi) # Residuals - residuals = (self.theta - fitted) % (2 * np.pi) + residuals = np.angle(np.exp(1j * (self.theta - fitted))) # Circular correlation coefficient - rho = np.sqrt(np.mean(cos_fit**2) + np.mean(sin_fit**2)) + rho = float(np.clip(np.sqrt(np.mean(cos_fit**2 + sin_fit**2)), 0.0, 1.0)) # Test higher-order terms - higher_order_cos = np.cos((order + 1) * self.x) - higher_order_sin = np.sin((order + 1) * self.x) + higher_order_cos = [] + higher_order_sin = [] + for j in range(n_features): + x_col = self.x[:, j] + higher_order_cos.append(np.cos((order + 1) * x_col)) + higher_order_sin.append(np.sin((order + 1) * x_col)) + if higher_order_cos: + W = np.column_stack(higher_order_cos + higher_order_sin) + else: + W = np.empty((n, 0)) # Projection matrix for the current model - M = X @ np.linalg.inv(X.T @ X) @ X.T - W = np.column_stack([higher_order_cos, higher_order_sin]) - H = W.T @ (np.eye(n) - M) @ W - H_inv = np.linalg.inv(H) - N = W @ H_inv @ W.T - - residual_cos = (np.eye(n) - M) @ Y_cos - residual_sin = (np.eye(n) - M) @ Y_sin - - T1 = ( - (n - (2 * order + 1)) - * (residual_cos.T @ N @ residual_cos) - / (residual_cos.T @ residual_cos) - ) - T2 = ( - (n - (2 * order + 1)) - * (residual_sin.T @ N @ residual_sin) - / (residual_sin.T @ residual_sin) - ) - - p1 = 1 - chi2.cdf(T1, 2) - p2 = 1 - chi2.cdf(T2, 2) + if W.size: + XtX = X.T @ X + M = X @ _safe_inverse(XtX) @ X.T + H = W.T @ (np.eye(n) - M) @ W + H_inv = _safe_inverse(H) + N = W @ H_inv @ W.T + + residual_cos = Y_cos - X @ beta_cos + residual_sin = Y_sin - X @ beta_sin + + denom_cos = float(residual_cos.T @ residual_cos) + denom_sin = float(residual_sin.T @ residual_sin) + adj = max(n - (2 * order + 1), 1) + T1 = ( + adj + * float(residual_cos.T @ N @ residual_cos) + / max(denom_cos, 1e-12) + ) + T2 = ( + adj + * float(residual_sin.T @ N @ residual_sin) + / max(denom_sin, 1e-12) + ) - p_values = np.array([p1, p2]) + p1 = 1 - chi2.cdf(T1, W.shape[1]) + p2 = 1 - chi2.cdf(T2, W.shape[1]) + p_values = np.array([p1, p2], dtype=float) + else: + p_values = np.array([np.nan, np.nan], dtype=float) # Message about higher-order terms - if np.all(p_values > self.level): + if np.all(np.isnan(p_values)): + message = "No additional harmonics available for testing." + elif np.all(p_values > self.level): message = ( f"Higher-order terms are not significant at the {self.level} level." ) @@ -689,6 +824,8 @@ def _fit(self): "cos": beta_cos, "sin": beta_sin, }, + "cos_labels": cos_labels, + "sin_labels": sin_labels, "p_values": p_values, "message": message, } @@ -703,6 +840,8 @@ def summary(self): print("Coefficients:") cos_coeffs = self.result["coefficients"]["cos"] sin_coeffs = self.result["coefficients"]["sin"] + cos_labels = self.result.get("cos_labels", []) + sin_labels = self.result.get("sin_labels", []) # Headers print(f"{'Harmonic':<12} {'Cosine Coeff':<14} {'Sine Coeff':<14}") @@ -710,16 +849,21 @@ def summary(self): # Intercept print(f"{'(Intercept)':<12} {cos_coeffs[0]:<14.5f} {sin_coeffs[0]:<14.5f}") - # Group harmonics: Cosine and Sine - for i in range(1, len(cos_coeffs)): - if i <= self.order: - print( - f"{'cos.x' + str(i):<12} {cos_coeffs[i]:<14.5f} {sin_coeffs[i]:<14.5f}" - ) - else: - print( - f"{'sin.x' + str(i - self.order):<12} {cos_coeffs[i]:<14.5f} {sin_coeffs[i]:<14.5f}" - ) + # Cosine harmonics + offset = 1 + for idx, (feature_idx, harmonic) in enumerate(cos_labels): + label = f"cos(x{feature_idx + 1},k={harmonic})" + print( + f"{label:<12} {cos_coeffs[offset + idx]:<14.5f} {sin_coeffs[offset + idx]:<14.5f}" + ) + + # Sine harmonics + sine_offset = offset + len(cos_labels) + for idx, (feature_idx, harmonic) in enumerate(sin_labels): + label = f"sin(x{feature_idx + 1},k={harmonic})" + print( + f"{label:<12} {cos_coeffs[sine_offset + idx]:<14.5f} {sin_coeffs[sine_offset + idx]:<14.5f}" + ) print("\nP-values for Higher-Order Terms:") print( diff --git a/pycircstat2/version.py b/pycircstat2/version.py deleted file mode 100644 index 74acd0e..0000000 --- a/pycircstat2/version.py +++ /dev/null @@ -1 +0,0 @@ -__version__ = "0.1.12" diff --git a/pycircstat2/visualization.py b/pycircstat2/visualization.py index 0d655f5..da705cf 100644 --- a/pycircstat2/visualization.py +++ b/pycircstat2/visualization.py @@ -79,6 +79,7 @@ def _merge_dicts(defaults, overrides): "linestyle": "dotted", "ci": True, }, + "legend": True } @@ -159,6 +160,10 @@ def circ_plot( Color of the density line. - **"linestyle"** : str, default="-" Line style of the density plot. + - **"f"** : array-like, optional + Precomputed radial density offsets. When provided, `method` is ignored. + - **"x"** : array-like, optional + Angles in radians corresponding to `f`. Defaults to an even grid on `[0, 2π]`. - **"mean"** : dict or bool Controls mean direction plotting: @@ -238,25 +243,44 @@ def circ_plot( # plot density if config["density"]: # and not np.isclose(circ_data.r, 0): - density_method = config["density"].get("method", "nonparametric") - density_color = config["density"].get("color", "black") - density_linestyle = config["density"].get("linestyle", "-") + density_config = config["density"] + density_method = density_config.get("method", "nonparametric") + density_color = density_config.get("color", "black") + density_linestyle = density_config.get("linestyle", "-") - if density_method == "nonparametric": - h0 = config["density"].get( - "h0", compute_smooth_params(circ_data.r, circ_data.n) - ) - x, f = nonparametric_density_estimation(circ_data.alpha, h0) - - elif density_method == "MovM": + custom_f = density_config.get("f", None) + custom_x = density_config.get("x", None) - x = np.linspace(0, 2 * np.pi, 100) - f = circ_data.mixture_opt.predict_density(x=x, unit="radian") + if custom_f is not None: + f = np.asarray(custom_f, dtype=float) + if f.ndim != 1: + raise ValueError("`density['f']` must be a one-dimensional array.") + if custom_x is None: + x = np.linspace(0, 2 * np.pi, f.size) + else: + x = np.asarray(custom_x, dtype=float) + if x.shape != f.shape: + raise ValueError( + "`density['x']` must have the same shape as `density['f']`." + ) else: - raise ValueError( - f"`{config['density']['method']}` in `density` is not supported." - ) + + if density_method == "nonparametric": + h0 = density_config.get( + "h0", compute_smooth_params(circ_data.r, circ_data.n) + ) + x, f = nonparametric_density_estimation(circ_data.alpha, h0) + + elif density_method == "MovM": + + x = np.linspace(0, 2 * np.pi, 100) + f = circ_data.mixture_opt.predict_density(x=x, unit="radian") + + else: + raise ValueError( + f"`{density_config['method']}` in `density` is not supported." + ) # save density to circ_data circ_data.density_x = x @@ -425,7 +449,7 @@ def circ_plot( gridlines[-1].set_color("k") gridlines[-1].set_linewidth(1) - if config["median"] or config["mean"]: + if config["legend"] and (config["median"] or config["mean"]): ax.legend(frameon=False) - return ax \ No newline at end of file + return ax diff --git a/pyproject.toml b/pyproject.toml index c8ab984..bc280e3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta" [project] name = "pycircstat2" -version = "0.1.14" +version = "0.1.15" description = "Circular statistcs with Python." authors = [ ] @@ -22,10 +22,12 @@ dev = [ "ruff", "pytest", "mkdocs", + "mkdocs-material", "mkdocs-material-extensions", "mkdocstrings[python]", "watermark", "polars", + "ipykernel>=6.31.0", ] [tool.setuptools] diff --git a/tests/test_clustering.py b/tests/test_clustering.py index 9720676..aecff18 100644 --- a/tests/test_clustering.py +++ b/tests/test_clustering.py @@ -1,7 +1,8 @@ import numpy as np import pytest -from pycircstat2.clustering import CircHAC, CircKMeans, MovM +from pycircstat2.clustering import CircHAC, CircKMeans, MoCD, MovM +from pycircstat2.distributions import vonmises ############################ # Fixtures and Utilities # @@ -34,6 +35,20 @@ def circkmeans_instance(): return CircKMeans(n_clusters=3, metric="geodesic", unit="radian", random_seed=42) +@pytest.fixture +def mocd_instance(): + """Create a default instance of MoCD (von Mises mixture) for testing.""" + return MoCD( + distribution=vonmises, + n_clusters=3, + n_iters=50, + unit="radian", + random_seed=42, + threshold=1e-6, + burnin=10, + ) + + ############################ # Tests for MovM # ############################ @@ -61,7 +76,7 @@ def test_predict(movm_instance, sample_data): movm_instance.fit(sample_data, verbose=False) predicted_labels = movm_instance.predict(sample_data) assert len(predicted_labels) == len(sample_data) - assert predicted_labels.dtype == np.int64 + assert np.issubdtype(predicted_labels.dtype, np.integer) def test_predict_density(movm_instance): """Ensure density prediction returns reasonable values.""" @@ -72,6 +87,54 @@ def test_predict_density(movm_instance): assert np.all(density >= 0) # Probabilities should not be negative +############################ +# Tests for MoCD # +############################ + +def test_mocd_initialization_defaults(mocd_instance): + """Ensure MoCD initialises with the desired configuration.""" + assert mocd_instance.n_clusters == 3 + assert mocd_instance.unit == "radian" + assert mocd_instance.param_names == ["mu", "kappa"] + + +def test_mocd_fit_and_params(mocd_instance, sample_data): + """Fitting should produce mixing weights and component parameters.""" + mocd_instance.fit(sample_data) + assert mocd_instance.p_ is not None + assert mocd_instance.params_ is not None + assert len(mocd_instance.p_) == mocd_instance.n_clusters + assert len(mocd_instance.params_) == mocd_instance.n_clusters + + +def test_mocd_predict_proba(mocd_instance, sample_data): + """Responsibilities should form a valid probability distribution.""" + mocd_instance.fit(sample_data) + resp = mocd_instance.predict_proba(sample_data) + assert resp.shape == (mocd_instance.n_clusters, sample_data.size) + col_sums = resp.sum(axis=0) + np.testing.assert_allclose(col_sums, 1.0) + + +def test_mocd_predict_labels(mocd_instance, sample_data): + """Cluster labels should be returned with the correct shape.""" + mocd_instance.fit(sample_data) + labels = mocd_instance.predict(sample_data) + assert labels.shape == sample_data.shape + assert np.issubdtype(labels.dtype, np.integer) + + +def test_mocd_density_and_bic(mocd_instance, sample_data): + """Density predictions and BIC should be finite after fit.""" + mocd_instance.fit(sample_data) + grid = np.linspace(0, 2 * np.pi, 32) + density = mocd_instance.predict_density(grid) + assert density.shape == grid.shape + assert np.all(np.isfinite(density)) + bic = mocd_instance.bic() + assert np.isfinite(bic) + + ############################ # Tests for CircHAC # ############################ @@ -106,7 +169,7 @@ def test_circhac_predict(circhac_instance, sample_data): new_points = np.random.vonmises(mu=0, kappa=4, size=10) pred_labels = circhac_instance.predict(new_points) assert len(pred_labels) == len(new_points) - assert pred_labels.dtype == np.int64 + assert np.issubdtype(pred_labels.dtype, np.integer) def test_circhac_silhouette(circhac_instance, sample_data): """Check that the silhouette score is in a valid range.""" @@ -164,11 +227,11 @@ def test_circkmeans_predict(circkmeans_instance, sample_data): pred_labels = circkmeans_instance.predict(new_points) assert len(pred_labels) == len(new_points) - assert pred_labels.dtype == np.int64 # Ensure integer cluster labels + assert np.issubdtype(pred_labels.dtype, np.integer) # Ensure integer cluster labels def test_circkmeans_convergence(circkmeans_instance, sample_data): """Ensure K-means stops after reaching convergence criteria.""" circkmeans_instance.fit(sample_data) # If the fit completes within max_iter, we assume it stopped at the tolerance threshold - assert circkmeans_instance.max_iter >= 10 # Sanity check for large max_iter \ No newline at end of file + assert circkmeans_instance.max_iter >= 10 # Sanity check for large max_iter diff --git a/tests/test_distributions.py b/tests/test_distributions.py index b7b86e6..9894e6e 100644 --- a/tests/test_distributions.py +++ b/tests/test_distributions.py @@ -1,6 +1,13 @@ +from dataclasses import dataclass +from typing import Any, Callable, Dict, Optional, Tuple + import numpy as np +import pytest +from scipy import special, stats +from scipy.integrate import quad from pycircstat2.distributions import ( + _VMFT_KAPPA_UPPER, cardioid, cartwright, circularuniform, @@ -8,163 +15,1757 @@ jonespewsey, jonespewsey_asym, jonespewsey_sineskewed, + katojones, + triangular, vonmises, vonmises_flattopped, wrapcauchy, wrapnorm, + wrapstable, ) -def test_circularuniform(): +def _assert_monotonic_cdf_ppf( + dist, theta_grid, q_grid, *, cdf_tol=1e-12, ppf_tol=1e-12 +): + def _evaluate(func, grid): + try: + return np.asarray(func(grid), dtype=float) + except (TypeError, ValueError): + flat = np.asarray(grid, dtype=float).reshape(-1) + evaluated = np.array([func(float(val)) for val in flat], dtype=float) + return evaluated.reshape(np.shape(grid)) + + cdf_vals = _evaluate(dist.cdf, theta_grid) + ppf_vals = _evaluate(dist.ppf, q_grid) + + assert np.all(np.isfinite(cdf_vals)), "CDF produced non-finite values" + assert np.all(np.isfinite(ppf_vals)), "PPF produced non-finite values" + + cdf_diffs = np.diff(cdf_vals) + assert np.all(cdf_diffs >= -cdf_tol), "CDF must be non-decreasing" + assert np.all((cdf_vals >= -cdf_tol) & (cdf_vals <= 1.0 + cdf_tol)), ( + "CDF outside [0, 1]" + ) + + ppf_diffs = np.diff(ppf_vals) + assert np.all(ppf_diffs >= -ppf_tol), "PPF must be non-decreasing" + two_pi = 2.0 * np.pi + assert np.all((ppf_vals >= -ppf_tol) & (ppf_vals <= two_pi + ppf_tol)), ( + "PPF outside [0, 2π]" + ) + + +@dataclass(frozen=True) +class DistributionCase: + id: str + factory: Callable[..., Any] + params: Dict[str, Any] + theta_points: int = 129 + q_points: int = 129 + q_min: float = 0.0 + cdf_tol: float = 1e-11 + ppf_tol: float = 1e-11 + ppf_slope_threshold: float = 0.0 + ppf_high_slope_tol: Optional[float] = None + ppf_low_slope_tol: Optional[float] = None + + def dist(self): + return self.factory(**self.params) + + +@dataclass(frozen=True) +class ReferenceValue: + id: str + factory: Callable[..., Any] + params: Dict[str, Any] + method: str + arg: float + expected: float + atol: float = 1e-9 + + +@dataclass(frozen=True) +class CdfFromPdfCase: + id: str + cdf: Callable[..., Any] + numeric_cdf: Callable[..., Any] + args: Tuple[Any, ...] + theta_points: int + atol: float + + +@dataclass(frozen=True) +class RvsCase: + id: str + factory: Callable[..., Any] + params: Dict[str, Any] + size: int = 1024 + seed: int = 123 + uniform_tol: float = 0.01 + + def dist(self): + return self.factory(**self.params) + + +def _evaluate_array(func: Callable[..., Any], grid: Any, **kwargs: Any) -> np.ndarray: + try: + return np.asarray(func(grid, **kwargs), dtype=float) + except (TypeError, ValueError): + flat = np.asarray(grid, dtype=float).reshape(-1) + evaluated = np.array([func(float(val), **kwargs) for val in flat], dtype=float) + return evaluated.reshape(np.shape(grid)) + + +_ARGCHECK_CASES = [ + ( + "triangular", + triangular, + (np.array([-0.1, 0.1, 0.5]),), + np.array([False, True, False]), + ), + ( + "cardioid", + cardioid, + (np.array([0.0, 2 * np.pi + 0.1]), np.array([0.2, 0.6])), + np.array([True, False]), + ), + ( + "cartwright", + cartwright, + (np.array([0.0, -0.1]), np.array([0.5, 0.5])), + np.array([True, False]), + ), + ( + "wrapnorm", + wrapnorm, + (np.array([0.0, 0.0]), np.array([0.5, 1.2])), + np.array([True, False]), + ), + ( + "wrapcauchy", + wrapcauchy, + (np.array([0.0, 0.0]), np.array([0.1, -0.1])), + np.array([True, False]), + ), + ( + "vonmises", + vonmises, + (np.array([0.0, 7.0]), np.array([0.5, 0.5])), + np.array([True, False]), + ), + ( + "vonmises_flattopped", + vonmises_flattopped, + ( + np.array([0.0, 0.0]), + np.array([0.5, _VMFT_KAPPA_UPPER + 1.0]), + np.array([0.0, 0.0]), + ), + np.array([True, False]), + ), + ( + "jonespewsey", + jonespewsey, + (np.array([0.0, -0.1]), np.array([0.5, 0.5]), np.array([0.0, 0.0])), + np.array([True, False]), + ), + ( + "jonespewsey_sineskewed", + jonespewsey_sineskewed, + ( + np.array([0.0, 0.0]), + np.array([0.5, 0.5]), + np.array([0.0, 0.0]), + np.array([0.0, 2.0]), + ), + np.array([True, False]), + ), + ( + "jonespewsey_asym", + jonespewsey_asym, + ( + np.array([0.0, 0.0]), + np.array([0.5, 0.5]), + np.array([0.0, 0.0]), + np.array([0.5, 1.2]), + ), + np.array([True, False]), + ), + ( + "inverse_batschelet", + inverse_batschelet, + ( + np.array([0.0, 0.0]), + np.array([0.5, -0.5]), + np.array([0.0, 0.0]), + np.array([0.0, 0.0]), + ), + np.array([True, False]), + ), + ( + "wrapstable", + wrapstable, + ( + np.array([0.0, 2 * np.pi + 0.1]), + np.array([1.0, 1.0]), + np.array([0.0, 0.0]), + np.array([1.0, 1.0]), + ), + np.array([True, False]), + ), + ( + "katojones", + katojones, + ( + np.array([0.0, 0.0]), + np.array([0.5, 1.1]), + np.array([0.2, 0.2]), + np.array([0.1, 0.1]), + ), + np.array([True, False]), + ), +] + + +@pytest.mark.parametrize( + "name, dist, params, expected", _ARGCHECK_CASES, ids=[c[0] for c in _ARGCHECK_CASES] +) +def test_argcheck_vectorized_mask_all(name, dist, params, expected): + mask = dist._argcheck(*params) + assert isinstance(mask, np.ndarray), f"{name} should return an array mask" + assert mask.shape == expected.shape + assert mask.dtype == bool + np.testing.assert_array_equal(mask, expected) + + +_PDF_VECTOR_CASES = [ + ("triangular", triangular, (0.5, np.array([0.1, 0.2]))), + ("cardioid", cardioid, (0.25, np.array([0.0, 0.5]), np.array([0.1, 0.2]))), + ("cartwright", cartwright, (0.25, np.array([0.0, 0.2]), np.array([0.5, 0.6]))), + ("wrapnorm", wrapnorm, (0.25, np.array([0.0, 0.2]), np.array([0.3, 0.4]))), + ("wrapcauchy", wrapcauchy, (0.25, np.array([0.0, 0.2]), np.array([0.3, 0.4]))), + ("vonmises", vonmises, (0.25, np.array([0.0, 0.2]), np.array([1.0, 2.0]))), + ( + "katojones", + katojones, + ( + 0.25, + np.array([0.0, 0.2]), + np.array([0.5, 0.6]), + np.array([0.2, 0.3]), + np.array([0.1, 0.2]), + ), + ), +] + + +@pytest.mark.parametrize( + "name, dist, args", _PDF_VECTOR_CASES, ids=[c[0] for c in _PDF_VECTOR_CASES] +) +def test_pdf_vectorized_shape_parameters(name, dist, args): + vals = dist.pdf(*args) + shapes = [np.shape(arg) for arg in args[1:]] # skip x + expected_shape = np.broadcast_shapes(*shapes) if shapes else () + assert isinstance(vals, np.ndarray) + assert vals.shape == expected_shape + assert np.all(np.isfinite(vals)), f"{name} pdf returned non-finite values" + + +def test_circular_cdf_is_periodic(): + theta = np.array([0.3, 1.0, np.pi, 4.0]) + shifted = theta + 2.0 * np.pi + + uni_base = circularuniform.cdf(theta) + uni_shift = circularuniform.cdf(shifted) + np.testing.assert_allclose(uni_base, uni_shift, atol=1e-12) + + mu = 0.4 + rho = 0.2 + card_base = cardioid.cdf(theta, mu=mu, rho=rho) + card_shift = cardioid.cdf(shifted, mu=mu, rho=rho) + np.testing.assert_allclose(card_base, card_shift, atol=1e-10) + + wn_base = np.array([wrapnorm.cdf(val, mu=0.1, rho=0.5) for val in theta]) + wn_shift = np.array([wrapnorm.cdf(val, mu=0.1, rho=0.5) for val in shifted]) + np.testing.assert_allclose(wn_base, wn_shift, atol=1e-10) + + +_SCALAR_ONLY_CALLS = [ + ( + "vonmises_flattopped", + lambda: vonmises_flattopped.pdf( + 0.1, mu=np.array([0.0, 0.1]), kappa=1.0, nu=0.1 + ), + ), + ( + "jonespewsey", + lambda: jonespewsey.pdf(0.1, mu=0.0, kappa=np.array([1.0, 1.1]), psi=0.1), + ), + ( + "jonespewsey_sineskewed", + lambda: jonespewsey_sineskewed.pdf( + 0.1, xi=0.0, kappa=np.array([1.0, 1.1]), psi=0.1, lmbd=0.1 + ), + ), + ( + "jonespewsey_asym", + lambda: jonespewsey_asym.pdf( + 0.1, xi=0.0, kappa=np.array([1.0, 1.1]), psi=0.1, nu=0.2 + ), + ), + ( + "inverse_batschelet", + lambda: inverse_batschelet.pdf( + 0.1, xi=0.0, kappa=np.array([1.0, 1.1]), nu=0.2, lmbd=0.1 + ), + ), + ( + "wrapstable", + lambda: wrapstable.pdf( + 0.1, delta=np.array([0.0, 0.1]), alpha=1.0, beta=0.0, gamma=1.0 + ), + ), + ( + "katojones_ppf", + lambda: katojones.ppf( + 0.5, mu=np.array([0.0, 0.1]), gamma=0.5, rho=0.2, lam=0.1 + ), + ), +] + + +@pytest.mark.parametrize( + "name, call", _SCALAR_ONLY_CALLS, ids=[c[0] for c in _SCALAR_ONLY_CALLS] +) +def test_scalar_only_distributions_reject_arrays(name, call): + with pytest.raises(ValueError, match="scalar"): + call() + + +REFERENCE_VALUES = [ + ReferenceValue( + id="circularuniform-cdf", + factory=circularuniform, + params={}, + method="cdf", + arg=2.0, + expected=0.3183098861837907, + atol=1e-12, + ), + ReferenceValue( + id="circularuniform-ppf", + factory=circularuniform, + params={}, + method="ppf", + arg=1.0 / np.pi, + expected=2.0, + atol=1e-12, + ), + ReferenceValue( + id="cardioid-cdf", + factory=cardioid, + params={"rho": 0.3, "mu": np.pi / 2}, + method="cdf", + arg=np.pi, + expected=0.6909859317102744, + atol=1e-9, + ), + ReferenceValue( + id="cardioid-ppf", + factory=cardioid, + params={"rho": 0.3, "mu": np.pi / 2}, + method="ppf", + arg=0.6909859317102744, + expected=np.pi, + atol=1e-9, + ), + ReferenceValue( + id="cartwright-cdf", + factory=cartwright, + params={"zeta": 0.1, "mu": np.pi / 2}, + method="cdf", + arg=3.0 * np.pi / 4.0, + expected=0.9641666531258773, + atol=1e-9, + ), + ReferenceValue( + id="cartwright-ppf", + factory=cartwright, + params={"zeta": 0.1, "mu": np.pi / 2}, + method="ppf", + arg=0.9641666531258773, + expected=3.0 * np.pi / 4.0, + atol=1e-9, + ), + ReferenceValue( + id="wrapcauchy-cdf", + factory=wrapcauchy, + params={"rho": 0.75, "mu": np.pi / 2}, + method="cdf", + arg=np.pi / 6.0, + expected=0.0320432438547667, + atol=1e-9, + ), + ReferenceValue( + id="wrapcauchy-ppf", + factory=wrapcauchy, + params={"rho": 0.75, "mu": np.pi / 2}, + method="ppf", + arg=0.0320432438547667, + expected=np.pi / 6.0, + atol=5e-6, + ), + ReferenceValue( + id="wrapnorm-cdf", + factory=wrapnorm, + params={"rho": 0.75, "mu": np.pi / 2}, + method="cdf", + arg=np.pi / 6.0, + expected=0.06451975467423943, + atol=1e-9, + ), + ReferenceValue( + id="wrapnorm-ppf", + factory=wrapnorm, + params={"rho": 0.75, "mu": np.pi / 2}, + method="ppf", + arg=0.5, + expected=1.6072904842634406, + atol=1e-9, + ), + ReferenceValue( + id="vonmises-cdf", + factory=vonmises, + params={"kappa": 2.37, "mu": np.pi / 2}, + method="cdf", + arg=np.pi / 6.0, + expected=0.05432533537843656, + atol=5e-11, + ), + ReferenceValue( + id="vonmises-ppf", + factory=vonmises, + params={"kappa": 2.37, "mu": np.pi / 2}, + method="ppf", + arg=0.5, + expected=1.6138877997996237, + atol=5e-11, + ), + ReferenceValue( + id="vonmises-flattopped-cdf", + factory=vonmises_flattopped, + params={"kappa": 2.0, "nu": -0.5, "mu": np.pi / 2}, + method="cdf", + arg=3.0 * np.pi / 4.0, + expected=0.7119746660317867, + atol=5e-9, + ), + ReferenceValue( + id="vonmises-flattopped-ppf", + factory=vonmises_flattopped, + params={"kappa": 2.0, "nu": -0.5, "mu": np.pi / 2}, + method="ppf", + arg=0.5, + expected=1.7301046248783023, + atol=5e-9, + ), + ReferenceValue( + id="jonespewsey-cdf", + factory=jonespewsey, + params={"kappa": 2.0, "psi": -1.5, "mu": np.pi / 2}, + method="cdf", + arg=np.pi / 2.0, + expected=0.4401444958105559, + atol=5e-9, + ), + ReferenceValue( + id="jonespewsey-ppf", + factory=jonespewsey, + params={"kappa": 2.0, "psi": -1.5, "mu": np.pi / 2}, + method="ppf", + arg=0.4401444958105559, + expected=1.5707963291458178, + atol=5e-9, + ), + ReferenceValue( + id="jonespewsey-sineskewed-cdf", + factory=jonespewsey_sineskewed, + params={"kappa": 2.0, "psi": 1.0, "lmbd": 0.5, "xi": np.pi / 2}, + method="cdf", + arg=3.0 * np.pi / 2.0, + expected=0.9446497875304358, + atol=5e-9, + ), + ReferenceValue( + id="jonespewsey-sineskewed-ppf", + factory=jonespewsey_sineskewed, + params={"kappa": 2.0, "psi": 1.0, "lmbd": 0.5, "xi": np.pi / 2}, + method="ppf", + arg=0.5, + expected=2.1878509192906153, + atol=5e-9, + ), + ReferenceValue( + id="jonespewsey-asym-cdf", + factory=jonespewsey_asym, + params={"kappa": 2.0, "psi": -1.0, "nu": 0.75, "xi": np.pi / 2}, + method="cdf", + arg=np.pi / 2.0, + expected=0.7535176456215893, + atol=5e-9, + ), + ReferenceValue( + id="jonespewsey-asym-ppf", + factory=jonespewsey_asym, + params={"kappa": 2.0, "psi": -1.0, "nu": 0.75, "xi": np.pi / 2}, + method="ppf", + arg=0.5, + expected=1.0498801800527269, + atol=5e-9, + ), + ReferenceValue( + id="inverse-batschelet-cdf", + factory=inverse_batschelet, + params={"kappa": 2.0, "nu": -0.5, "lmbd": 0.7, "xi": np.pi / 2}, + method="cdf", + arg=np.pi / 2.0, + expected=0.11796336892075589, + atol=5e-9, + ), + ReferenceValue( + id="inverse-batschelet-ppf", + factory=inverse_batschelet, + params={"kappa": 2.0, "nu": -0.5, "lmbd": 0.7, "xi": np.pi / 2}, + method="ppf", + arg=0.5, + expected=2.5137729476810207, + atol=5e-9, + ), +] + +_REFERENCE_LOOKUP = {case.id: case for case in REFERENCE_VALUES} + + +CDF_PPF_CASES = [ + DistributionCase( + id="circularuniform", + factory=circularuniform, + params={}, + theta_points=256, + q_points=256, + cdf_tol=1e-12, + ppf_tol=1e-12, + ), + DistributionCase( + id="triangular-rho0.0", + factory=triangular, + params={"rho": 0.0}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="triangular-rho0.3", + factory=triangular, + params={"rho": 0.3}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="triangular-rho4/pi^2", + factory=triangular, + params={"rho": 4.0 / np.pi**2}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="cardioid-rho0.0", + factory=cardioid, + params={"rho": 0.0, "mu": 0.0}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="cardioid-rho0.2", + factory=cardioid, + params={"rho": 0.2, "mu": 0.3}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="cardioid-rho0.49", + factory=cardioid, + params={"rho": 0.49, "mu": np.pi / 2}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="cardioid-rho0.3-muPi/3", + factory=cardioid, + params={"rho": 0.3, "mu": np.pi / 3}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="cartwright-zeta0.2", + factory=cartwright, + params={"zeta": 0.2, "mu": 0.1}, + theta_points=256, + q_points=256, + ppf_slope_threshold=1e-6, + ppf_low_slope_tol=0.1, + ), + DistributionCase( + id="cartwright-zeta1.0", + factory=cartwright, + params={"zeta": 1.0, "mu": np.pi}, + theta_points=256, + q_points=256, + ppf_slope_threshold=1e-6, + ppf_low_slope_tol=0.1, + ), + DistributionCase( + id="cartwright-zeta1.5", + factory=cartwright, + params={"zeta": 1.5, "mu": 0.4}, + theta_points=192, + q_points=192, + ppf_slope_threshold=1e-6, + ppf_low_slope_tol=0.1, + ), + DistributionCase( + id="cartwright-zeta5.0", + factory=cartwright, + params={"zeta": 5.0, "mu": 2.0}, + theta_points=256, + q_points=256, + ppf_slope_threshold=1e-6, + ppf_low_slope_tol=0.1, + ), + DistributionCase( + id="wrapnorm-rho0.1", + factory=wrapnorm, + params={"rho": 0.1, "mu": 0.0}, + theta_points=256, + q_points=512, + ppf_slope_threshold=1e-4, + ppf_high_slope_tol=5e-6, + ppf_low_slope_tol=1e-2, + ), + DistributionCase( + id="wrapnorm-rho0.5", + factory=wrapnorm, + params={"rho": 0.5, "mu": np.pi / 4}, + theta_points=256, + q_points=512, + ppf_slope_threshold=1e-4, + ppf_high_slope_tol=5e-6, + ppf_low_slope_tol=1e-2, + ), + DistributionCase( + id="wrapnorm-rho0.9", + factory=wrapnorm, + params={"rho": 0.9, "mu": np.pi / 4}, + theta_points=256, + q_points=512, + q_min=1e-8, + cdf_tol=5e-10, + ppf_tol=5e-10, + ppf_slope_threshold=1e-4, + ppf_high_slope_tol=5e-6, + ppf_low_slope_tol=1e-2, + ), + DistributionCase( + id="wrapcauchy-rho0.0", + factory=wrapcauchy, + params={"rho": 0.0, "mu": 0.0}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="wrapcauchy-rho0.4", + factory=wrapcauchy, + params={"rho": 0.4, "mu": np.pi / 3}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="wrapcauchy-rho0.95", + factory=wrapcauchy, + params={"rho": 0.95, "mu": np.pi}, + theta_points=256, + q_points=256, + q_min=1e-6, + cdf_tol=5e-11, + ppf_tol=5e-11, + ), + DistributionCase( + id="vonmises-kappa0.05", + factory=vonmises, + params={"kappa": 0.05, "mu": 0.0}, + theta_points=256, + q_points=256, + ), + DistributionCase( + id="vonmises-kappa5.0", + factory=vonmises, + params={"kappa": 5.0, "mu": np.pi / 4}, + theta_points=256, + q_points=256, + cdf_tol=5e-10, + ppf_tol=5e-10, + ), + DistributionCase( + id="vonmises-kappa25.0", + factory=vonmises, + params={"kappa": 25.0, "mu": np.pi}, + theta_points=256, + q_points=256, + cdf_tol=1e-10, + ppf_tol=1e-10, + ppf_slope_threshold=1e-6, + ppf_high_slope_tol=5e-7, + ppf_low_slope_tol=np.pi, + ), + DistributionCase( + id="vonmises-flattopped", + factory=vonmises_flattopped, + params={"mu": 0.6, "kappa": 2.0, "nu": 0.3}, + theta_points=192, + q_points=192, + q_min=1e-6, + cdf_tol=1e-9, + ppf_tol=1e-9, + ), + DistributionCase( + id="vonmises-flattopped-uniform", + factory=vonmises_flattopped, + params={"mu": 1.5, "kappa": 0.0, "nu": 0.3}, + theta_points=160, + q_points=160, + q_min=1e-6, + cdf_tol=1e-9, + ppf_tol=1e-9, + ), + DistributionCase( + id="jonespewsey", + factory=jonespewsey, + params={"mu": 0.6, "kappa": 1.0, "psi": 0.4}, + theta_points=192, + q_points=192, + q_min=1e-6, + cdf_tol=1e-9, + ppf_tol=1e-9, + ), + DistributionCase( + id="jonespewsey-sineskewed", + factory=jonespewsey_sineskewed, + params={"xi": 1.0, "kappa": 1.5, "psi": 0.3, "lmbd": 0.4}, + theta_points=160, + q_points=160, + q_min=1e-5, + cdf_tol=5e-9, + ppf_tol=5e-9, + ), + DistributionCase( + id="jonespewsey-asym", + factory=jonespewsey_asym, + params={"xi": 0.7, "kappa": 1.1, "psi": 0.2, "nu": 0.4}, + theta_points=160, + q_points=160, + q_min=1e-5, + cdf_tol=5e-9, + ppf_tol=5e-9, + ), + DistributionCase( + id="inverse-batschelet", + factory=inverse_batschelet, + params={"xi": 0.8, "kappa": 1.3, "nu": 0.3, "lmbd": 0.2}, + theta_points=160, + q_points=160, + q_min=1e-5, + cdf_tol=1e-8, + ppf_tol=1e-8, + ), + DistributionCase( + id="katojones", + factory=katojones, + params={"mu": 0.8, "gamma": 0.3, "rho": 0.2, "lam": 0.4}, + theta_points=96, + q_points=96, + q_min=1e-5, + cdf_tol=5e-6, + ppf_tol=5e-6, + ), + DistributionCase( + id="wrapstable", + factory=wrapstable, + params={"delta": 0.9, "alpha": 1.5, "beta": 0.2, "gamma": 0.4}, + theta_points=96, + q_points=96, + q_min=1e-5, + cdf_tol=1e-8, + ppf_tol=1e-8, + ), +] + + +CDF_FROM_PDF_CASES = [ + CdfFromPdfCase( + id="cartwright", + cdf=cartwright.cdf, + numeric_cdf=cartwright._cdf_from_pdf, + args=(1.2, 0.8), + theta_points=9, + atol=1e-7, + ), + CdfFromPdfCase( + id="wrapcauchy", + cdf=wrapcauchy.cdf, + numeric_cdf=wrapcauchy._cdf_from_pdf, + args=(0.9, 0.65), + theta_points=9, + atol=1e-7, + ), + CdfFromPdfCase( + id="wrapnorm", + cdf=wrapnorm.cdf, + numeric_cdf=wrapnorm._cdf_from_pdf, + args=(0.7, 0.45), + theta_points=7, + atol=1e-7, + ), + CdfFromPdfCase( + id="vonmises", + cdf=vonmises.cdf, + numeric_cdf=vonmises._cdf_from_pdf, + args=(0.6, 3.2), + theta_points=11, + atol=5e-7, + ), + CdfFromPdfCase( + id="inverse-batschelet", + cdf=inverse_batschelet.cdf, + numeric_cdf=inverse_batschelet._cdf_from_pdf, + args=(0.9, 2.4, -0.35, 0.6), + theta_points=25, + atol=5e-5, + ), + CdfFromPdfCase( + id="katojones", + cdf=katojones.cdf, + numeric_cdf=katojones._cdf_from_pdf, + args=(0.8, 0.4, 0.35, 1.1), + theta_points=49, + atol=5e-7, + ), + CdfFromPdfCase( + id="wrapstable", + cdf=wrapstable.cdf, + numeric_cdf=wrapstable._cdf_from_pdf, + args=(0.9, 1.4, 0.25, 0.5), + theta_points=33, + atol=5e-7, + ), +] + - np.testing.assert_approx_equal(circularuniform.cdf(2), 0.3183, significant=5) - np.testing.assert_approx_equal(circularuniform.ppf(1 / np.pi), 2) +RVS_CASES = [ + RvsCase( + id="circularuniform", + factory=circularuniform, + params={}, + size=512, + seed=1001, + uniform_tol=0.01, + ), + RvsCase( + id="triangular-rho0.0", + factory=triangular, + params={"rho": 0.0}, + size=512, + seed=123, + uniform_tol=0.01, + ), + RvsCase( + id="triangular-rho0.3", + factory=triangular, + params={"rho": 0.3}, + size=512, + seed=321, + uniform_tol=0.01, + ), + RvsCase( + id="cardioid", + factory=cardioid, + params={"rho": 0.3, "mu": np.pi / 3}, + size=512, + seed=321, + uniform_tol=0.02, + ), + RvsCase( + id="cartwright", + factory=cartwright, + params={"zeta": 0.8, "mu": np.pi / 4}, + size=512, + seed=456, + uniform_tol=0.02, + ), + RvsCase( + id="wrapcauchy", + factory=wrapcauchy, + params={"rho": 0.8, "mu": np.pi / 3}, + size=512, + seed=654, + uniform_tol=0.015, + ), + RvsCase( + id="wrapnorm", + factory=wrapnorm, + params={"rho": 0.5, "mu": np.pi / 4}, + size=512, + seed=789, + uniform_tol=0.015, + ), + RvsCase( + id="vonmises", + factory=vonmises, + params={"kappa": 2.0, "mu": np.pi / 4}, + size=1024, + seed=987, + uniform_tol=0.015, + ), + RvsCase( + id="vonmises-flattopped", + factory=vonmises_flattopped, + params={"mu": 0.8, "kappa": 7.5, "nu": -0.35}, + size=4096, + seed=1234, + uniform_tol=0.035, + ), + RvsCase( + id="jonespewsey", + factory=jonespewsey, + params={"mu": 1.0, "kappa": 1.4, "psi": -0.6}, + size=256, + seed=42, + uniform_tol=0.02, + ), + RvsCase( + id="jonespewsey-sineskewed", + factory=jonespewsey_sineskewed, + params={"xi": 1.0, "kappa": 1.1, "psi": 0.4, "lmbd": 0.3}, + size=256, + seed=123, + uniform_tol=0.02, + ), + RvsCase( + id="jonespewsey-asym", + factory=jonespewsey_asym, + params={"xi": 0.7, "kappa": 1.8, "psi": -0.9, "nu": 0.4}, + size=256, + seed=321, + uniform_tol=0.02, + ), + RvsCase( + id="inverse-batschelet", + factory=inverse_batschelet, + params={"xi": 0.6, "kappa": 2.8, "nu": -0.3, "lmbd": 0.45}, + size=512, + seed=987, + uniform_tol=0.02, + ), + RvsCase( + id="wrapstable", + factory=wrapstable, + params={"delta": 0.9, "alpha": 1.5, "beta": 0.2, "gamma": 0.4}, + size=512, + seed=2024, + uniform_tol=0.015, + ), + RvsCase( + id="katojones", + factory=katojones, + params={"mu": 0.7, "gamma": 0.5, "rho": 0.25, "lam": 1.2}, + size=512, + seed=2025, + uniform_tol=0.01, + ), +] -def test_cardioid(): +@pytest.mark.parametrize("case", REFERENCE_VALUES, ids=lambda case: case.id) +def test_distribution_reference_values(case): + dist = case.factory(**case.params) + method = getattr(dist, case.method) + result = float(np.asarray(method(case.arg))) + np.testing.assert_allclose(result, case.expected, atol=case.atol, rtol=0.0) - cd = cardioid(rho=0.3, mu=np.pi / 2) - np.testing.assert_approx_equal(cd.cdf(np.pi), 0.6909859, significant=5) - np.testing.assert_approx_equal(cd.ppf(0.6909859), np.pi) +@pytest.mark.parametrize("case", CDF_PPF_CASES, ids=lambda case: case.id) +def test_distribution_cdf_ppf_consistency(case): + dist = case.dist() + theta = np.linspace(0.0, 2.0 * np.pi, case.theta_points) + q = np.linspace(case.q_min, 1.0 - case.q_min, case.q_points) + _assert_monotonic_cdf_ppf( + dist, + theta, + q, + cdf_tol=case.cdf_tol, + ppf_tol=case.ppf_tol, + ) + + theta_roundtrip = dist.ppf(q) + q_back = _evaluate_array(case.factory.cdf, theta_roundtrip, **case.params) + np.testing.assert_allclose( + q_back, + q, + atol=max(case.cdf_tol * 50, 1e-12), + rtol=0.0, + ) -def test_cartwright(): + q_from_theta = _evaluate_array(case.factory.cdf, theta, **case.params) + theta_back = dist.ppf(q_from_theta) + wrapped = np.mod(theta_back - theta + np.pi, 2.0 * np.pi) - np.pi + pdf_vals = _evaluate_array(case.factory.pdf, theta, **case.params) - cw = cartwright(zeta=0.1, mu=np.pi / 2) - np.testing.assert_approx_equal( - cw.cdf(3 * np.pi / 4), - 0.9641666531258773, - significant=5, + default_high_tol = ( + case.ppf_high_slope_tol + if case.ppf_high_slope_tol is not None + else max(case.ppf_tol * 50, 5e-8) ) - np.testing.assert_approx_equal( - cw.ppf(0.9641666531258773).round(5), - 3 * np.pi / 4, - significant=5, + default_low_tol = ( + case.ppf_low_slope_tol + if case.ppf_low_slope_tol is not None + else default_high_tol ) + if case.ppf_slope_threshold > 0.0: + high_slope = pdf_vals > case.ppf_slope_threshold + if np.any(high_slope): + np.testing.assert_allclose( + wrapped[high_slope], + 0.0, + atol=default_high_tol, + rtol=0.0, + ) + if np.any(~high_slope): + np.testing.assert_allclose( + wrapped[~high_slope], + 0.0, + atol=default_low_tol, + rtol=0.0, + ) + else: + np.testing.assert_allclose( + wrapped, + 0.0, + atol=default_high_tol, + rtol=0.0, + ) + + for endpoint, expected in ((0.0, 0.0), (1.0, 2.0 * np.pi)): + try: + value = float(dist.ppf(endpoint)) + except Exception: + continue + if np.isfinite(value): + np.testing.assert_allclose( + value, + expected, + atol=max(case.ppf_tol * 50, 1e-8), + rtol=0.0, + ) + + +def _check_textbook_reference( + case_id: str, *, rounding: Optional[int] = None, significant: Optional[int] = None +): + case = _REFERENCE_LOOKUP[case_id] + dist = case.factory(**case.params) + method = getattr(dist, case.method) + value = float(np.asarray(method(case.arg))) + expected = float(case.expected) + if rounding is not None: + value = np.round(value, rounding) + expected = np.round(expected, rounding) + if significant is not None: + np.testing.assert_approx_equal(value, expected, significant=significant) + else: + np.testing.assert_allclose(value, expected, atol=case.atol, rtol=0.0) + + +# Textbook value checks retained for readability and regression safety. These reference +# published tables, so we mirror the original significant-digit comparisons. +def test_circularuniform_textbook_values(): + _check_textbook_reference("circularuniform-cdf", significant=5) + _check_textbook_reference("circularuniform-ppf", significant=12) + + +def test_cardioid_textbook_values(): + _check_textbook_reference("cardioid-cdf", significant=5) + _check_textbook_reference("cardioid-ppf", significant=5) + + +def test_cartwright_textbook_values(): + _check_textbook_reference("cartwright-cdf", rounding=4, significant=5) + _check_textbook_reference("cartwright-ppf", rounding=5, significant=5) + + +def test_wrapcauchy_textbook_values(): + _check_textbook_reference("wrapcauchy-cdf", rounding=3, significant=3) + _check_textbook_reference("wrapcauchy-ppf", rounding=3, significant=3) + + +def test_wrapnorm_textbook_values(): + _check_textbook_reference("wrapnorm-cdf", rounding=4, significant=3) + _check_textbook_reference("wrapnorm-ppf", rounding=4, significant=4) + + +def test_vonmises_textbook_values(): + _check_textbook_reference("vonmises-cdf", rounding=4, significant=3) + _check_textbook_reference("vonmises-ppf", rounding=4, significant=4) + + +def test_vonmises_flattopped_textbook_values(): + _check_textbook_reference("vonmises-flattopped-cdf", rounding=4, significant=4) + _check_textbook_reference("vonmises-flattopped-ppf", rounding=4, significant=4) + + +def test_jonespewsey_textbook_values(): + _check_textbook_reference("jonespewsey-cdf", rounding=7, significant=7) + _check_textbook_reference("jonespewsey-ppf", significant=7) + + +def test_jonespewsey_sineskewed_textbook_values(): + _check_textbook_reference("jonespewsey-sineskewed-cdf", rounding=4, significant=4) + _check_textbook_reference("jonespewsey-sineskewed-ppf", rounding=4, significant=4) + + +def test_jonespewsey_asym_textbook_values(): + _check_textbook_reference("jonespewsey-asym-cdf", rounding=4, significant=4) + _check_textbook_reference("jonespewsey-asym-ppf", rounding=4, significant=4) + + +def test_inverse_batschelet_textbook_values(): + _check_textbook_reference("inverse-batschelet-cdf", rounding=4, significant=4) + _check_textbook_reference("inverse-batschelet-ppf", rounding=4, significant=4) + + +@pytest.mark.parametrize("case", CDF_FROM_PDF_CASES, ids=lambda case: case.id) +def test_distribution_cdf_matches_numeric(case): + theta = np.linspace(0.0, 2.0 * np.pi, case.theta_points) + analytic = case.cdf(theta, *case.args) + numeric = case.numeric_cdf(theta, *case.args) + np.testing.assert_allclose(analytic, numeric, atol=case.atol, rtol=1e-6) + diffs = np.diff(analytic) + assert np.all(diffs >= -1e-10) + + +@pytest.mark.parametrize("case", RVS_CASES, ids=lambda case: case.id) +def test_distribution_rvs_pit(case): + cdf_callable = lambda values: _evaluate_array( + case.factory.cdf, values, **case.params + ) + _assert_rvs_reasonable( + case.dist(), + size=case.size, + seed=case.seed, + uniform_tol=case.uniform_tol, + cdf_callable=cdf_callable, + ) + + +def test_circularuniform_descriptive_stats(): + dist = circularuniform() + stats_dict = dist.stats() + + assert np.isnan(dist.mean()) + assert np.isnan(stats_dict["mean"]) + np.testing.assert_allclose(dist.r(), 0.0, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(stats_dict["r"], 0.0, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(dist.var(), 1.0, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(stats_dict["var"], 1.0, atol=1e-12, rtol=0.0) + assert np.isinf(dist.std()) + assert np.isinf(stats_dict["std"]) + assert np.isinf(stats_dict["dispersion"]) + np.testing.assert_allclose(stats_dict["skewness"], 0.0, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(stats_dict["kurtosis"], 0.0, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(dist.median(), np.pi, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(stats_dict["median"], np.pi, atol=1e-12, rtol=0.0) + + +def test_vonmises_descriptive_stats_consistency(): + mu_true, kappa_true = 1.2, 3.4 + frozen = vonmises(mu=mu_true, kappa=kappa_true) + generator_stats = vonmises.stats(mu=mu_true, kappa=kappa_true) + expected_r = special.i1(kappa_true) / special.i0(kappa_true) + expected_m2 = ( + special.iv(2, kappa_true) / special.i0(kappa_true) * np.exp(2j * mu_true) + ) + + np.testing.assert_allclose(frozen.r(), expected_r, atol=5e-12, rtol=0.0) + np.testing.assert_allclose(frozen.mean(), mu_true, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(frozen.var(), 1.0 - expected_r, atol=1e-12, rtol=0.0) + frozen_stats = frozen.stats() + for key, value in generator_stats.items(): + frozen_value = frozen_stats[key] + if np.isnan(value): + assert np.isnan(frozen_value) + else: + np.testing.assert_allclose(frozen_value, value, atol=1e-12, rtol=0.0) + np.testing.assert_allclose(frozen.trig_moment(2), expected_m2, atol=5e-12, rtol=0.0) + + +@pytest.mark.parametrize( + "rho_true, seed", + [ + (0.0, 101), + (0.15, 102), + (4.0 / np.pi**2 - 1e-4, 103), + ], +) +def test_triangular_fit_recovers_rho(rho_true, seed): + rng = np.random.default_rng(seed) + data = triangular.rvs(rho=rho_true, size=2000, random_state=rng) + + rho_mle, info = triangular.fit(data, method="mle", return_info=True) + assert info["converged"] + np.testing.assert_allclose(rho_mle, rho_true, atol=7e-3, rtol=0.0) + + rho_mom = triangular.fit(data, method="moments") + np.testing.assert_allclose(rho_mom, rho_true, atol=7e-3, rtol=0.0) + -def test_wrapcauchy(): +def test_wrapcauchy_fit_weights_matches_replication(): + rng = np.random.default_rng(321) + mu_true, rho_true = 0.9, 0.6 + base = wrapcauchy.rvs(mu=mu_true, rho=rho_true, size=180, random_state=rng) + weights = np.full(base.shape, 5.0) + replicated = np.repeat(base, 5) - wc = wrapcauchy(rho=0.75, mu=np.pi / 2) - # P54, Pewsey, et al. (2014) - np.testing.assert_approx_equal( - wc.cdf(np.pi / 6).round(3), - 0.0320, - significant=3, + params_weighted = wrapcauchy.fit(base, method="mle", weights=weights) + params_replicated = wrapcauchy.fit(replicated, method="mle") + + mu_weighted, rho_weighted = params_weighted + mu_replicated, rho_replicated = params_replicated + + mu_diff = np.mod(mu_weighted - mu_replicated + np.pi, 2.0 * np.pi) - np.pi + np.testing.assert_allclose(mu_diff, 0.0, atol=5e-4, rtol=0.0) + np.testing.assert_allclose(rho_weighted, rho_replicated, atol=5e-4, rtol=0.0) + + +@pytest.mark.parametrize( + "dist, params", + [ + ( + cardioid, + {"mu": 0.7, "rho": 0.3}, + ), + ( + cartwright, + {"mu": 0.25 * np.pi, "zeta": 1.2}, + ), + ( + wrapnorm, + {"mu": 1.1, "rho": 0.5}, + ), + ( + jonespewsey, + {"mu": 0.6, "kappa": 1.3, "psi": -0.7}, + ), + ( + inverse_batschelet, + {"xi": 0.9, "kappa": 2.2, "nu": -0.35, "lmbd": 0.4}, + ), + ], +) +def test_pdf_integrates_to_one(dist, params): + theta = np.linspace(0.0, 2.0 * np.pi, 4097) + pdf_vals = dist.pdf(theta, **params) + area = np.trapezoid(pdf_vals, theta) + np.testing.assert_allclose(area, 1.0, atol=5e-6, rtol=0.0) + + +@pytest.mark.parametrize( + "dist, params", + [ + (vonmises, {"mu": 0.6, "kappa": 4.0}), + (wrapcauchy, {"mu": 1.1, "rho": 0.7}), + (cartwright, {"mu": 0.3, "zeta": 1.5}), + ], +) +def test_logpdf_matches_log_of_pdf(dist, params): + theta = np.linspace(0.0, 2.0 * np.pi, 129, endpoint=False) + 1e-6 + pdf_vals = dist.pdf(theta, **params) + logpdf_vals = dist.logpdf(theta, **params) + + assert np.all(np.isfinite(logpdf_vals)) + mask = pdf_vals > 0.0 + np.testing.assert_allclose( + logpdf_vals[mask], np.log(pdf_vals[mask]), atol=5e-10, rtol=0.0 ) - # P54, Pewsey, et al. (2014) - np.testing.assert_approx_equal( - wc.ppf(0.0320), - np.pi / 6, - significant=3, + +def test_vonmises_random_state_reproducibility(): + params = {"mu": 1.05, "kappa": 2.5} + + seq_a = vonmises.rvs(size=6, random_state=1234, **params) + seq_b = vonmises.rvs(size=6, random_state=1234, **params) + np.testing.assert_allclose(seq_a, seq_b) + + seq_c = vonmises.rvs(size=6, random_state=np.random.default_rng(5678), **params) + seq_d = vonmises.rvs(size=6, random_state=np.random.default_rng(5678), **params) + np.testing.assert_allclose(seq_c, seq_d) + + seq_e = vonmises.rvs(size=6, random_state=np.random.RandomState(5678), **params) + seq_f = vonmises.rvs(size=6, random_state=np.random.RandomState(5678), **params) + np.testing.assert_allclose(seq_e, seq_f) + + +@pytest.mark.parametrize( + "dist, params", + [ + (wrapnorm, {"mu": 0.8, "rho": 0.4}), + (cardioid, {"mu": 1.2, "rho": 0.25}), + (triangular, {"rho": 0.2}), + ], +) +def test_rvs_output_shapes(dist, params): + scalar = dist.rvs(random_state=42, **params) + assert np.isscalar(scalar) + + array = dist.rvs(size=(3, 2), random_state=42, **params) + assert array.shape == (3, 2) + + empty = dist.rvs(size=0, random_state=42, **params) + assert empty.shape == (0,) + + +def test_triangular_ppf_vectorized(): + q = np.linspace(0.1, 0.9, num=5) + out_zero = triangular.ppf(q, rho=0.0) + np.testing.assert_allclose(out_zero, q * (2 * np.pi)) + + +def test_triangular_pdf_periodic(): + rho = 0.3 + x_neg = -np.pi / 4 + x_mod = np.mod(x_neg, 2 * np.pi) + np.testing.assert_allclose( + triangular.pdf(x_neg, rho=rho), + triangular.pdf(x_mod, rho=rho), + atol=1e-12, ) -def test_wrapnorm(): +def test_vonmises_periodic_evaluation(): + mu = np.pi / 3 + kappa = 1.75 + x_neg = -np.pi / 5 + x_mod = np.mod(x_neg, 2 * np.pi) - wn = wrapnorm(rho=0.75, mu=np.pi / 2) - np.testing.assert_approx_equal( - wn.cdf(np.pi / 6).round(4), - 0.0645, - significant=3, + np.testing.assert_allclose( + vonmises.pdf(x_neg, mu=mu, kappa=kappa), + vonmises.pdf(x_mod, mu=mu, kappa=kappa), + atol=1e-12, ) - np.testing.assert_approx_equal( - wn.ppf(0.5), - 1.6073, - significant=4, + + vm = vonmises(kappa=kappa, mu=mu) + np.testing.assert_allclose(vm.pdf(x_neg), vm.pdf(x_mod), atol=1e-12) + + +@pytest.mark.parametrize("mu", [0.0, np.pi / 5, 1.7]) +@pytest.mark.parametrize("kappa", [0.0, 0.5, 5.0, 25.0]) +@pytest.mark.parametrize("nu", [-0.8, 0.0, 0.7]) +def test_vonmises_flattopped_cdf_ppf_roundtrip(mu, kappa, nu): + dist = vonmises_flattopped(mu=mu, kappa=kappa, nu=nu) + theta_grid = np.linspace(0.0, 2.0 * np.pi, num=129) + q_grid = np.linspace(0.0, 1.0, num=129) + _assert_monotonic_cdf_ppf(dist, theta_grid, q_grid, cdf_tol=5e-12, ppf_tol=5e-12) + + q = np.linspace(0.0, 1.0, num=33) + theta = dist.ppf(q) + q_back = dist.cdf(theta) + np.testing.assert_allclose(q_back, q, atol=5e-12, rtol=0.0) + + +def test_vonmises_flattopped_uniform_limit(): + mu = 1.5 + kappa = 0.0 + nu = 0.3 + dist = vonmises_flattopped(mu=mu, kappa=kappa, nu=nu) + + theta = np.linspace(0.0, 2.0 * np.pi, num=11) + expected = theta / (2.0 * np.pi) + expected[np.isclose(theta, 2.0 * np.pi)] = 1.0 + + np.testing.assert_allclose(dist.pdf(theta), 1.0 / (2.0 * np.pi), atol=5e-14) + np.testing.assert_allclose(dist.cdf(theta), expected, atol=5e-12) + + +def test_vonmises_flattopped_fit_recovers_parameters(): + mu_true, kappa_true, nu_true = 1.1, 4.0, -0.25 + rng = np.random.default_rng(2024) + sample = vonmises_flattopped.rvs( + mu=mu_true, kappa=kappa_true, nu=nu_true, size=6000, random_state=rng ) + estimates, info = vonmises_flattopped.fit(sample, method="mle", return_info=True) + assert info["converged"] -def test_vonmises(): + mu_hat, kappa_hat, nu_hat = estimates + mu_diff = np.mod(mu_hat - mu_true + np.pi, 2.0 * np.pi) - np.pi + np.testing.assert_allclose(mu_diff, 0.0, atol=5e-2) + np.testing.assert_allclose(kappa_hat, kappa_true, atol=0.6) + np.testing.assert_allclose(nu_hat, nu_true, atol=0.08) - vm = vonmises(kappa=2.37, mu=np.pi / 2) - np.testing.assert_approx_equal( - vm.cdf(np.pi / 6).round(4), - 0.0543, - significant=3, + moments = vonmises_flattopped.fit(sample, method="moments") + assert moments[2] == 0.0 + np.testing.assert_allclose( + np.mod(moments[0] - mu_true + np.pi, 2.0 * np.pi) - np.pi, 0.0, atol=1e-1 ) - np.testing.assert_approx_equal( - vm.ppf(0.5), - 1.6139, - significant=4, + + +def test_vonmises_fit_wraps_data(): + data = np.array([-0.8, 0.2, 6.6, 7.1, -3.0]) + + mu_expected, kappa_expected = vonmises.fit( + np.mod(data, 2 * np.pi), method="analytical" ) + mu_actual, kappa_actual = vonmises.fit(data, method="analytical") + + diff = np.mod(mu_actual - mu_expected + np.pi, 2 * np.pi) - np.pi + np.testing.assert_allclose(diff, 0.0, atol=1e-8) + np.testing.assert_allclose(kappa_actual, kappa_expected, atol=1e-8) -def test_jonespewsey(): +def test_circular_loc_scale_rejected(): + rng = np.random.default_rng(1234) + sample = vonmises.rvs(kappa=1.0, mu=0.0, size=8, random_state=rng) - jp = jonespewsey(kappa=2, psi=-1.5, mu=np.pi / 2) + with pytest.raises(TypeError): + vonmises.pdf(0.5, mu=0.0, kappa=1.0, loc=0.1) - np.testing.assert_approx_equal( - jp.cdf(np.pi / 2).round(7), - 0.4401445, - significant=7, + with pytest.raises(TypeError): + vonmises.cdf(0.5, mu=0.0, kappa=1.0, scale=1.1) + + with pytest.raises(TypeError): + vonmises.fit(sample, loc=0.2) + + with pytest.raises(TypeError): + vonmises.fit(sample, scale=1.2) + + with pytest.raises(TypeError): + vonmises.fit(sample, floc=0.1) + + with pytest.raises(TypeError): + vonmises.fit(sample, fscale=0.9) + + +def test_inverse_batschelet_pdf_uniform_limit(): + theta = np.linspace(0.0, 2.0 * np.pi, 9) + vals = inverse_batschelet.pdf(theta, xi=0.7, kappa=0.0, nu=0.3, lmbd=-0.6) + expected = np.full_like(theta, 1.0 / (2.0 * np.pi)) + np.testing.assert_allclose(vals, expected, atol=5e-13, rtol=0.0) + + +def test_inverse_batschelet_pdf_scalar_consistency(): + params = dict(xi=0.5, kappa=1.8, nu=-0.2, lmbd=0.4) + angles = np.linspace(0.0, 2.0 * np.pi, 7) + array_vals = inverse_batschelet.pdf(angles, **params) + scalar_vals = np.array([inverse_batschelet.pdf(float(a), **params) for a in angles]) + np.testing.assert_allclose(array_vals, scalar_vals, atol=5e-12, rtol=0.0) + + +def test_inverse_batschelet_fit_moments(): + samples = inverse_batschelet.rvs( + xi=1.1, kappa=3.0, nu=0.2, lmbd=-0.3, size=600, random_state=123 + ) + xi_hat, kappa_hat, nu_hat, lmbd_hat = inverse_batschelet.fit( + samples, method="moments" ) - # take a long time to run jonespewsey.ppf() - # might need to implement the method explicitly - np.testing.assert_approx_equal( - jp.ppf(q=0.4401445), - np.pi / 2, - significant=7, + np.testing.assert_allclose( + np.mod(xi_hat - 1.1 + np.pi, 2.0 * np.pi) - np.pi, 0.0, atol=0.3 ) + assert nu_hat == 0.0 + assert lmbd_hat == 0.0 + assert kappa_hat >= 0.0 -def test_vonmises_flattopped(): +def test_inverse_batschelet_fit_mle(): + rng = np.random.default_rng(246) + xi_true, kappa_true, nu_true, lmbd_true = 0.8, 2.5, -0.25, 0.4 + data = inverse_batschelet.rvs( + xi=xi_true, + kappa=kappa_true, + nu=nu_true, + lmbd=lmbd_true, + size=800, + random_state=rng, + ) - vme = vonmises_flattopped(kappa=2, nu=-0.5, mu=np.pi / 2) - np.testing.assert_approx_equal( - vme.cdf(x=3 * np.pi / 4).round(4), - 0.7120, - significant=4, + (xi_hat, kappa_hat, nu_hat, lmbd_hat), info = inverse_batschelet.fit( + data, + method="mle", + return_info=True, + options={"maxiter": 200}, ) - np.testing.assert_approx_equal( - vme.ppf(q=0.5).round(4), - 1.7301, - significant=4, + + assert info["converged"] + np.testing.assert_allclose( + np.mod(xi_hat - xi_true + np.pi, 2.0 * np.pi) - np.pi, 0.0, atol=0.2 ) + np.testing.assert_allclose(kappa_hat, kappa_true, atol=0.7) + np.testing.assert_allclose(nu_hat, nu_true, atol=0.12) + np.testing.assert_allclose(lmbd_hat, lmbd_true, atol=0.12) + + +def test_wrapstable_pdf_scalar_consistency(): + params = dict(delta=0.4, alpha=1.4, beta=-0.3, gamma=0.6) + theta = np.linspace(0.0, 2.0 * np.pi, 9) + array_vals = wrapstable.pdf(theta, **params) + scalar_vals = np.array([wrapstable.pdf(float(t), **params) for t in theta]) + np.testing.assert_allclose(array_vals, scalar_vals, atol=5e-13, rtol=0.0) + + +def test_wrapstable_pdf_matches_wrapped_normal(): + delta = 0.7 + gamma = 0.5 + theta = np.linspace(0.0, 2.0 * np.pi, 13) + ws_vals = wrapstable.pdf(theta, delta=delta, alpha=2.0, beta=0.0, gamma=gamma) + rho = np.exp(-(gamma**2)) + wn_vals = wrapnorm.pdf(theta, mu=delta, rho=rho) + np.testing.assert_allclose(ws_vals, wn_vals, atol=1e-6, rtol=5e-6) -def test_jonespewsey_sineskewed(): +def test_wrapstable_pdf_matches_wrapcauchy(): + delta = 1.2 + gamma = 0.8 + theta = np.linspace(0.0, 2.0 * np.pi, 17) + ws_vals = wrapstable.pdf(theta, delta=delta, alpha=1.0, beta=0.0, gamma=gamma) + rho = np.exp(-gamma) + wc_vals = wrapcauchy.pdf(theta, mu=delta, rho=rho) + np.testing.assert_allclose(ws_vals, wc_vals, atol=1e-7, rtol=1e-6) - jps = jonespewsey_sineskewed(kappa=2, psi=1, lmbd=0.5, xi=np.pi / 2) - np.testing.assert_approx_equal( - jps.cdf(x=3 * np.pi / 2).round(4), - 0.9446, - significant=4, +def test_wrapstable_series_adaptive_truncation(): + rho_vals, mu_vals, p = wrapstable._get_series_terms( + delta=0.0, alpha=1.6, beta=0.1, gamma=0.02 ) - np.testing.assert_approx_equal( - jps.ppf(q=0.5).round(4), - 2.1879, - significant=4, + assert len(p) > 150 + assert rho_vals.shape == mu_vals.shape == p.shape + + +def test_wrapstable_cdf_series_matches_numeric(): + params = dict(delta=0.9, alpha=1.4, beta=0.25, gamma=0.5) + theta = np.linspace(0.0, 2.0 * np.pi, 33) + analytic = wrapstable.cdf(theta, **params) + numeric = wrapstable._cdf_from_pdf( + theta, + params["delta"], + params["alpha"], + params["beta"], + params["gamma"], ) + np.testing.assert_allclose(analytic, numeric, atol=5e-7, rtol=1e-6) + + +def test_wrapstable_cdf_monotonic(): + params = dict(delta=0.2, alpha=1.8, beta=-0.2, gamma=0.7) + theta = np.linspace(0.0, 2.0 * np.pi, 257) + cdf_vals = wrapstable.cdf(theta, **params) + diffs = np.diff(cdf_vals) + assert np.all(diffs >= -1e-11) + + +def test_wrapstable_ppf_roundtrip(): + params = dict(delta=0.5, alpha=1.6, beta=0.3, gamma=0.4) + q = np.linspace(1e-5, 1.0 - 1e-5, 61) + theta = wrapstable.ppf(q, **params) + q_back = wrapstable.cdf(theta, **params) + np.testing.assert_allclose(q_back, q, atol=3e-5, rtol=0.0) + np.testing.assert_allclose(wrapstable.ppf(0.0, **params), 0.0, atol=1e-12) + np.testing.assert_allclose(wrapstable.ppf(1.0, **params), 2.0 * np.pi, atol=1e-12) -def test_jonespewsey_asym(): - jpa = jonespewsey_asym(kappa=2, psi=-1, nu=0.75, xi=np.pi / 2) - np.testing.assert_approx_equal( - jpa.cdf(x=np.pi / 2).round(4), - 0.7535, - significant=4, +def test_wrapstable_rvs_reasonable(): + dist = wrapstable(delta=0.6, alpha=1.3, beta=-0.2, gamma=0.7) + _assert_rvs_reasonable(dist, size=512, seed=2024, uniform_tol=0.005) + + +def test_wrapstable_rvs_reduces_to_wrapped_normal(): + rng = np.random.default_rng(321) + delta = 1.0 + gamma = 0.5 + samples = wrapstable.rvs( + delta=delta, alpha=2.0, beta=0.0, gamma=gamma, size=2000, random_state=rng ) - np.testing.assert_approx_equal( - jpa.ppf(q=0.5).round(4), - 1.0499, - significant=4, + rho = np.exp(-(gamma**2)) + wn_samples = wrapnorm.rvs(mu=delta, rho=rho, size=2000, random_state=321) + # Compare first trigonometric moment + m1_ws = np.mean(np.exp(1j * samples)) + m1_wn = np.mean(np.exp(1j * wn_samples)) + np.testing.assert_allclose(m1_ws, m1_wn, atol=0.05) + + +def test_wrapstable_fit_moments(): + rng = np.random.default_rng(12) + params = dict(delta=0.9, alpha=1.4, beta=-0.25, gamma=0.6) + data = wrapstable.rvs(size=800, random_state=rng, **params) + delta_hat, alpha_hat, beta_hat, gamma_hat = wrapstable.fit(data, method="moments") + + np.testing.assert_allclose(_angle_diff(delta_hat, params["delta"]), 0.0, atol=0.3) + np.testing.assert_allclose(alpha_hat, params["alpha"], atol=0.35) + np.testing.assert_allclose(beta_hat, params["beta"], atol=0.35) + np.testing.assert_allclose(gamma_hat, params["gamma"], atol=0.3) + + +def test_wrapstable_fit_mle(): + rng = np.random.default_rng(34) + params = dict(delta=0.7, alpha=1.6, beta=0.3, gamma=0.5) + data = wrapstable.rvs(size=1200, random_state=rng, **params) + + (delta_hat, alpha_hat, beta_hat, gamma_hat), info = wrapstable.fit( + data, + method="mle", + return_info=True, + options={"maxiter": 200}, ) + assert info["converged"] + np.testing.assert_allclose(_angle_diff(delta_hat, params["delta"]), 0.0, atol=0.2) + np.testing.assert_allclose(alpha_hat, params["alpha"], atol=0.2) + np.testing.assert_allclose(beta_hat, params["beta"], atol=0.25) + np.testing.assert_allclose(gamma_hat, params["gamma"], atol=0.2) + + +def _angle_diff(a, b): + return np.mod(a - b + np.pi, 2 * np.pi) - np.pi + + +def test_katojones_cardioid_limit(): + theta = np.linspace(0.0, 2.0 * np.pi, 9) + mu = 1.1 + gamma = 0.3 + kj_vals = katojones.pdf(theta, mu, gamma, 0.0, 0.0) + card_vals = cardioid.pdf(theta, mu, gamma) + np.testing.assert_allclose(kj_vals, card_vals, rtol=1e-10, atol=1e-12) -def test_inverse_batschelet(): - ib = inverse_batschelet(kappa=2, nu=-0.5, lmbd=0.7, xi=np.pi / 2) - np.testing.assert_approx_equal( - ib.cdf(x=np.pi / 2).round(4), - 0.1180, - significant=4, +def test_katojones_convert_alpha2_beta2(): + gamma = 0.4 + rho = 0.35 + lam = 1.25 + alpha2, beta2 = katojones.convert_rho_lambda(gamma, rho, lam) + rho_rt, lam_rt = katojones.convert_alpha2_beta2(gamma, alpha2, beta2) + np.testing.assert_allclose(rho_rt, rho, atol=1e-12) + np.testing.assert_allclose(_angle_diff(lam_rt, lam), 0.0, atol=1e-12) + + with pytest.raises(ValueError): + katojones.convert_alpha2_beta2(gamma, alpha2 + 0.5, beta2, verify=True) + + +def test_katojones_fit_methods_agree(): + rng = np.random.default_rng(321) + mu, gamma, rho, lam = 0.9, 0.35, 0.25, 1.8 + data = katojones.rvs(mu, gamma, rho, lam, size=400, random_state=rng) + + mu_mom, gamma_mom, rho_mom, lam_mom = katojones.fit(data, method="moments") + np.testing.assert_allclose(_angle_diff(mu_mom, mu), 0.0, atol=0.2) + np.testing.assert_allclose(gamma_mom, gamma, atol=0.05) + np.testing.assert_allclose(rho_mom, rho, atol=0.1) + np.testing.assert_allclose(_angle_diff(lam_mom, lam), 0.0, atol=0.25) + + mu_mle, gamma_mle, rho_mle, lam_mle = katojones.fit( + data, method="mle", options={"maxiter": 200} ) - np.testing.assert_approx_equal( - ib.ppf(q=0.5).round(4), - 2.5138, - significant=4, + np.testing.assert_allclose(_angle_diff(mu_mle, mu), 0.0, atol=0.15) + np.testing.assert_allclose(gamma_mle, gamma, atol=0.05) + np.testing.assert_allclose(rho_mle, rho, atol=0.08) + np.testing.assert_allclose(_angle_diff(lam_mle, lam), 0.0, atol=0.2) + + +def test_katojones_cdf_matches_numeric(): + params = dict(mu=0.8, gamma=0.4, rho=0.35, lam=1.1) + theta = np.linspace(0.0, 2.0 * np.pi, 49) + analytic = katojones.cdf(theta, **params) + numeric = katojones._cdf_from_pdf( + theta, + params["mu"], + params["gamma"], + params["rho"], + params["lam"], ) + np.testing.assert_allclose(analytic, numeric, atol=5e-7, rtol=1e-6) + + +def test_katojones_ppf_roundtrip(): + params = dict(mu=0.5, gamma=0.45, rho=0.3, lam=1.4) + q = np.linspace(1e-5, 1.0 - 1e-5, 61) + theta = katojones.ppf(q, **params) + q_back = katojones.cdf(theta, **params) + np.testing.assert_allclose(q_back, q, atol=1e-5, rtol=0.0) + np.testing.assert_allclose(katojones.ppf(0.0, **params), 0.0, atol=1e-12) + np.testing.assert_allclose(katojones.ppf(1.0, **params), 2.0 * np.pi, atol=1e-12) + + +def test_katojones_rvs_reasonable(): + dist = katojones(mu=0.7, gamma=0.5, rho=0.25, lam=1.2) + _assert_rvs_reasonable(dist, size=512, seed=2025, uniform_tol=0.01) + + +def _assert_rvs_reasonable( + dist, size=256, seed=123, uniform_tol=0.05, cdf_callable=None +): + rng = np.random.default_rng(seed) + samples = dist.rvs(size=size, random_state=rng) + samples = np.asarray(samples, dtype=float) + assert samples.size == size + + if cdf_callable is None: + u = dist.cdf(samples) + else: + u = cdf_callable(samples) + u = np.mod(u, 1.0) + stat, pvalue = stats.kstest(u, "uniform") + assert pvalue > uniform_tol, f"kstest failed: statistic={stat}, p={pvalue}" + + +def _check_pdf_normalizes(dist, params=None, atol=1e-6, limit=400): + if params is None: + integrand = lambda t: dist.pdf(t) + else: + integrand = lambda t: dist.pdf(t, *params) + + val, err = quad(integrand, 0, 2 * np.pi, limit=limit) + assert np.isfinite(val) + assert abs(val - 1.0) < atol + err + + +def test_vonmises_flattopped_extreme_kappa(): + # Use a very large (but not pathological) kappa to stress the table building + params = (0.7, min(150.0, _VMFT_KAPPA_UPPER - 1.0), 0.6) + dist = vonmises_flattopped(*params) + theta = np.linspace(0, 2 * np.pi, 257) + _check_pdf_normalizes(dist, params=None, atol=5e-6) + _assert_monotonic_cdf_ppf(dist, theta, np.linspace(0, 1, 257)) + + +def test_katojones_gamma_rho_close_to_one(): + # Stay inside the feasibility disk by aligning lambda with the first moment + params = (1.1, 0.99, 0.99, 0.0) + dist = katojones(*params) + theta = np.linspace(0, 2 * np.pi, 257) + _check_pdf_normalizes(dist, params=None, atol=1e-6) + _assert_monotonic_cdf_ppf(dist, theta, np.linspace(0, 1, 257)) + + +@pytest.mark.parametrize("alpha", [1e-6, 1.999]) # Lévy-like and almost-Gaussian +def test_wrapstable_alpha_extremes(alpha): + params = (0.0, alpha, 0.0, 0.7) # delta, alpha, beta, gamma + dist = wrapstable(*params) + theta = np.linspace(0, 2 * np.pi, 257) + _check_pdf_normalizes(dist, params=None, atol=5e-5 if alpha < 0.01 else 1e-6) + _assert_monotonic_cdf_ppf(dist, theta, np.linspace(0, 1, 257), cdf_tol=1e-9, ppf_tol=1e-9) diff --git a/tests/test_hypothesis.py b/tests/test_hypothesis.py index b968000..d7bafca 100644 --- a/tests/test_hypothesis.py +++ b/tests/test_hypothesis.py @@ -53,26 +53,26 @@ def test_V_test(): circ_zar_ex2_ch27 = Circular(data=data_zar_ex2_ch27["θ"].values[:]) # computed directly from r and n - V, u, p = V_test( + result = V_test( angle=np.deg2rad(90), mean=circ_zar_ex2_ch27.mean, n=circ_zar_ex2_ch27.n, r=circ_zar_ex2_ch27.r, ) - np.testing.assert_approx_equal(V, 9.498, significant=3) - np.testing.assert_approx_equal(u, 4.248, significant=3) - assert p < 0.0005 + np.testing.assert_approx_equal(result.V, 9.498, significant=3) + np.testing.assert_approx_equal(result.u, 4.248, significant=3) + assert result.pval < 0.0005 # computed directly from alpha - V, u, p = V_test( + result = V_test( alpha=circ_zar_ex2_ch27.alpha, angle=np.deg2rad(90), ) - np.testing.assert_approx_equal(V, 9.498, significant=3) - np.testing.assert_approx_equal(u, 4.248, significant=3) - assert p < 0.0005 + np.testing.assert_approx_equal(result.V, 9.498, significant=3) + np.testing.assert_approx_equal(result.u, 4.248, significant=3) + assert result.pval < 0.0005 def test_one_sample_test(): @@ -82,51 +82,55 @@ def test_one_sample_test(): circ_zar_ex3_ch27 = Circular(data=data_zar_ex2_ch27["θ"].values[:], unit="degree") # computed directly from lb and ub - reject_null = one_sample_test( + result = one_sample_test( lb=circ_zar_ex3_ch27.mean_lb, ub=circ_zar_ex3_ch27.mean_ub, angle=np.deg2rad(90), ) - assert reject_null is False + assert result.reject is False # computed directly from alpha - reject_null = one_sample_test(alpha=circ_zar_ex3_ch27.alpha, angle=np.deg2rad(90)) + result = one_sample_test(alpha=circ_zar_ex3_ch27.alpha, angle=np.deg2rad(90)) - assert reject_null is False + assert result.reject is False def test_omnibus_test(): data_zar_ex4_ch27 = load_data("D8", source="zar") circ_zar_ex4_ch27 = Circular(data=data_zar_ex4_ch27["θ"].values[:], unit="degree") - A, pval = omnibus_test(alpha=circ_zar_ex4_ch27.alpha, scale=1) + result = omnibus_test(alpha=circ_zar_ex4_ch27.alpha, scale=1) - np.testing.assert_approx_equal(pval, 0.0043, significant=2) + np.testing.assert_approx_equal(result.pval, 0.0043, significant=2) - # test large sample size + # test large sample size # (factorial division overflow while computing p-val) # fixed in PR 12 from pycircstat2.distributions import circularuniform, vonmises - d0 = vonmises.rvs(mu=0, kappa=1, size=10_000) - d1 = circularuniform.rvs(size=10_000) - _, pval = omnibus_test(alpha=d0) - assert pval < 0.05, "Expected significant p-value for von Mises distribution" - _, pval = omnibus_test(alpha=d1) - assert pval > 0.05, "Expected non-significant p-value for uniform distribution" + rng = np.random.default_rng(42) + d0 = vonmises.rvs(mu=0, kappa=1, size=10_000, random_state=rng) + d1 = circularuniform.rvs(size=10_000, random_state=rng) + + result = omnibus_test(alpha=d0) + assert result.pval < 0.05, "Expected significant p-value for von Mises distribution" + result = omnibus_test(alpha=d1) + assert result.pval > 0.05, ( + "Expected non-significant p-value for uniform distribution" + ) def test_batschelet_test(): data_zar_ex5_ch27 = load_data("D8", source="zar") circ_zar_ex5_ch27 = Circular(data=data_zar_ex5_ch27["θ"].values[:], unit="degree") - C, pval = batschelet_test( + result = batschelet_test( angle=np.deg2rad(45), alpha=circ_zar_ex5_ch27.alpha, ) - np.testing.assert_equal(C, 5) - np.testing.assert_approx_equal(pval, 0.00661, significant=3) + np.testing.assert_equal(result.C, 5) + np.testing.assert_approx_equal(result.pval, 0.00661, significant=3) def test_chisquare_test(): @@ -142,38 +146,50 @@ def test_symmetry_test(): data_zar_ex6_ch27 = load_data("D9", source="zar") circ_zar_ex6_ch27 = Circular(data=data_zar_ex6_ch27["θ"].values[:], unit="degree") - d, p = symmetry_test(median=float(circ_zar_ex6_ch27.median), alpha=circ_zar_ex6_ch27.alpha) - assert p > 0.5 + result = symmetry_test( + median=float(circ_zar_ex6_ch27.median), alpha=circ_zar_ex6_ch27.alpha + ) + assert result.pval > 0.5 def test_watson_williams_test(): data = load_data("D10", source="zar") s1 = Circular(data=data[data["sample"] == 1]["θ"].values[:]) s2 = Circular(data=data[data["sample"] == 2]["θ"].values[:]) - F, pval = watson_williams_test(circs=[s1, s2]) + result = watson_williams_test([s1, s2]) - np.testing.assert_approx_equal(F, 1.61, significant=3) - np.testing.assert_approx_equal(pval, 0.22, significant=2) + np.testing.assert_approx_equal(result.F, 1.61, significant=3) + np.testing.assert_approx_equal(result.pval, 0.22, significant=2) + + # Support plain arrays + array_result = watson_williams_test([s1.alpha, s2.alpha]) + np.testing.assert_allclose(array_result.F, result.F, rtol=1e-6) + np.testing.assert_allclose(array_result.pval, result.pval, rtol=1e-6) data = load_data("D11", source="zar") s1 = Circular(data=data[data["sample"] == 1]["θ"].values[:]) s2 = Circular(data=data[data["sample"] == 2]["θ"].values[:]) s3 = Circular(data=data[data["sample"] == 3]["θ"].values[:]) - F, pval = watson_williams_test(circs=[s1, s2, s3]) + result = watson_williams_test([s1, s2, s3]) - np.testing.assert_approx_equal(F, 1.86, significant=3) - np.testing.assert_approx_equal(pval, 0.19, significant=2) + np.testing.assert_approx_equal(result.F, 1.86, significant=3) + np.testing.assert_approx_equal(result.pval, 0.19, significant=2) def test_watson_u2_test(): d = load_data("D12", source="zar") c0 = Circular(data=d[d["sample"] == 1]["θ"].values[:]) c1 = Circular(data=d[d["sample"] == 2]["θ"].values[:]) - U2, pval = watson_u2_test(circs=[c0, c1]) + result = watson_u2_test([c0, c1]) + + np.testing.assert_approx_equal(result.U2, 0.1458, significant=3) + assert 0.1 < result.pval < 0.2 - np.testing.assert_approx_equal(U2, 0.1458, significant=3) - assert 0.1 < pval < 0.2 + # Array support + array_result = watson_u2_test([c0.alpha, c1.alpha]) + np.testing.assert_allclose(array_result.U2, result.U2, rtol=1e-6) + np.testing.assert_allclose(array_result.pval, result.pval, rtol=1e-6) d = load_data("D13", source="zar") c0 = Circular( @@ -182,10 +198,16 @@ def test_watson_u2_test(): c1 = Circular( data=d[d["sample"] == 2]["θ"].values[:], w=d[d["sample"] == 2]["w"].values[:] ) - U2, pval = watson_u2_test(circs=[c0, c1]) + result = watson_u2_test([c0, c1]) + + np.testing.assert_approx_equal(result.U2, 0.0612, significant=3) + assert result.pval > 0.5 - np.testing.assert_approx_equal(U2, 0.0612, significant=3) - assert pval > 0.5 + expanded0 = np.repeat(c0.alpha, c0.w) + expanded1 = np.repeat(c1.alpha, c1.w) + array_result = watson_u2_test([expanded0, expanded1]) + np.testing.assert_allclose(array_result.U2, result.U2, rtol=1e-6) + np.testing.assert_allclose(array_result.pval, result.pval, rtol=1e-6) def test_wheeler_watson_test(): @@ -193,47 +215,55 @@ def test_wheeler_watson_test(): c0 = Circular(data=d[d["sample"] == 1]["θ"].values[:]) c1 = Circular(data=d[d["sample"] == 2]["θ"].values[:]) - W, pval = wheeler_watson_test(circs=[c0, c1]) - np.testing.assert_approx_equal(W, 3.678, significant=3) - assert 0.1 < pval < 0.25 + result = wheeler_watson_test([c0, c1]) + np.testing.assert_approx_equal(result.W, 3.678, significant=3) + assert 0.1 < result.pval < 0.25 + + array_result = wheeler_watson_test([c0.alpha, c1.alpha]) + np.testing.assert_allclose(array_result.W, result.W, rtol=1e-6) + np.testing.assert_allclose(array_result.pval, result.pval, rtol=1e-6) def test_wallraff_test(): d = load_data("D14", source="zar") c0 = Circular(data=d[d["sex"] == "male"]["θ"].values[:]) c1 = Circular(data=d[d["sex"] == "female"]["θ"].values[:]) - U, pval = wallraff_test(angle=np.deg2rad(135), circs=[c0, c1]) - np.testing.assert_approx_equal(U, 18.5, significant=3) - assert pval > 0.20 + result = wallraff_test(samples=[c0, c1], angle=np.deg2rad(135)) + np.testing.assert_approx_equal(result.U, 18.5, significant=3) + assert result.pval > 0.20 + + array_result = wallraff_test(samples=[c0.alpha, c1.alpha], angle=np.deg2rad(135)) + np.testing.assert_allclose(array_result.U, result.U, rtol=1e-6) + np.testing.assert_allclose(array_result.pval, result.pval, rtol=1e-6) from pycircstat2.utils import time2float d = load_data("D15", source="zar") c0 = Circular(data=time2float(d[d["sex"] == "male"]["time"].values[:])) c1 = Circular(data=time2float(d[d["sex"] == "female"]["time"].values[:])) - U, pval = wallraff_test( + result = wallraff_test( angle=np.deg2rad(time2float(["7:55", "8:15"])), - circs=[c0, c1], + samples=[c0, c1], verbose=True, ) - np.testing.assert_equal(U, 13) - assert pval > 0.05 + np.testing.assert_equal(result.U, 13) + assert result.pval > 0.05 def test_kuiper_test(): d = load_data("B5", source="fisher")["θ"].values[:] c = Circular(data=d, unit="degree", full_cycle=180) - V, pval = kuiper_test(alpha=c.alpha) - np.testing.assert_approx_equal(V, 1.5864, significant=3) - assert pval > 0.05 + result = kuiper_test(alpha=c.alpha) + np.testing.assert_approx_equal(result.V, 1.5864, significant=3) + assert result.pval > 0.05 def test_watson_test(): pigeon = np.array([20, 135, 145, 165, 170, 200, 300, 325, 335, 350, 350, 350, 355]) c_pigeon = Circular(data=pigeon) - U2, pval = watson_test(alpha=c_pigeon.alpha, n_simulation=9999) - np.testing.assert_approx_equal(U2, 0.137, significant=3) - assert pval > 0.10 + result = watson_test(alpha=c_pigeon.alpha, n_simulation=9999) + np.testing.assert_approx_equal(result.U2, 0.137, significant=3) + assert result.pval > 0.10 def test_angular_randomisation_test(): @@ -241,20 +271,54 @@ def test_angular_randomisation_test(): alpha1 = Circular(np.random.vonmises(mu=0, kappa=3, size=10), unit="radian") alpha2 = Circular(np.random.vonmises(mu=0, kappa=3, size=50), unit="radian") - observed_stat, p_value = angular_randomisation_test([alpha1, alpha2]) - assert p_value > 0.05, "Expected non-significant p-value" + result = angular_randomisation_test([alpha1, alpha2]) + assert result.pval > 0.05, "Expected non-significant p-value" + + array_result = angular_randomisation_test([alpha1.alpha, alpha2.alpha]) + np.testing.assert_allclose(array_result.statistic, result.statistic, rtol=1e-6) def test_rao_spacing_test(): pigeon = np.array([20, 135, 145, 165, 170, 200, 300, 325, 335, 350, 350, 350, 355]) c_pigeon = Circular(data=pigeon) - U, pval = rao_spacing_test(alpha=c_pigeon.alpha, n_simulation=9999) - np.testing.assert_approx_equal(U, 161.92308, significant=3) - assert 0.05 < pval < 0.10 + result = rao_spacing_test(alpha=c_pigeon.alpha, n_simulation=9999) + np.testing.assert_approx_equal(result.statistic, 161.92308, significant=3) + assert 0.05 < result.pval < 0.10 + + +def test_randomized_tests_seed_harmonization(): + alpha = np.linspace(0.0, 2 * np.pi, 12, endpoint=False) + seed_value = 123 + + def make_generator(): + return np.random.default_rng(seed_value) + + rayleigh_int = rayleigh_test(alpha=alpha, B=128, seed=seed_value) + rayleigh_gen = rayleigh_test(alpha=alpha, B=128, seed=make_generator()) + assert rayleigh_int.bootstrap_pval == rayleigh_gen.bootstrap_pval + + samples = [alpha[:6], alpha[6:]] + art_int = angular_randomisation_test(samples, n_simulation=128, seed=seed_value) + art_gen = angular_randomisation_test( + samples, n_simulation=128, seed=make_generator() + ) + assert art_int.pval == art_gen.pval + + kuiper_int = kuiper_test(alpha=alpha, n_simulation=256, seed=seed_value) + kuiper_gen = kuiper_test(alpha=alpha, n_simulation=256, seed=make_generator()) + assert kuiper_int.pval == kuiper_gen.pval + + watson_int = watson_test(alpha=alpha, n_simulation=256, seed=seed_value) + watson_gen = watson_test(alpha=alpha, n_simulation=256, seed=make_generator()) + assert watson_int.pval == watson_gen.pval + + rao_int = rao_spacing_test(alpha=alpha, n_simulation=256, seed=seed_value) + rao_gen = rao_spacing_test(alpha=alpha, n_simulation=256, seed=make_generator()) + assert rao_int.pval == rao_gen.pval def test_circ_range_test(): - x = np.array( + x_deg = np.array( [ 0.0, 0.0, @@ -282,9 +346,16 @@ def test_circ_range_test(): 324.0, ] ) - range_stat, pval = circ_range_test(x) - np.testing.assert_approx_equal(range_stat, 4.584073, significant=5) - np.testing.assert_approx_equal(pval, 0.01701148, significant=5) + x_rad = np.deg2rad(x_deg) + result = circ_range_test(x_rad) + np.testing.assert_approx_equal(result.range_stat, 3.581416, significant=5) + np.testing.assert_approx_equal(result.pval, 5.825496e-05, significant=5) + + +def test_circ_range_test_rejects_degree_input(): + x_deg = np.array([0.0, 10.0, 20.0]) + with pytest.raises(ValueError): + circ_range_test(x_deg) def test_binomial_test_uniform(): @@ -293,9 +364,11 @@ def test_binomial_test_uniform(): alpha = np.random.uniform(0, 2 * np.pi, 100) # Uniformly distributed angles md = np.pi # Test median at π (should be non-significant) - pval = binomial_test(alpha, md) + result = binomial_test(alpha, md) - assert 0.05 < pval < 1.0, f"Unexpected p-value for uniform data: {pval}" + assert 0.05 < result.pval < 1.0, ( + f"Unexpected p-value for uniform data: {result.pval}" + ) def test_binomial_test_skewed(): @@ -304,9 +377,9 @@ def test_binomial_test_skewed(): alpha = np.random.vonmises(mu=np.pi / 4, kappa=3, size=100) # Clustered around π/4 md = np.pi # Incorrect median hypothesis - pval = binomial_test(alpha, md) + result = binomial_test(alpha, md) - assert pval < 0.05, f"Expected significant p-value but got {pval}" + assert result.pval < 0.05, f"Expected significant p-value but got {result.pval}" def test_binomial_test_symmetric(): @@ -314,9 +387,9 @@ def test_binomial_test_symmetric(): alpha = np.array([-np.pi / 4, np.pi / 4, np.pi / 2, -np.pi / 2, np.pi]) md = np.pi # This should be a valid median - pval = binomial_test(alpha, md) + result = binomial_test(alpha, md) - assert pval > 0.05, f"Unexpected p-value for symmetric data: {pval}" + assert result.pval > 0.05, f"Unexpected p-value for symmetric data: {result.pval}" def test_binomial_test_extreme_case(): @@ -324,33 +397,39 @@ def test_binomial_test_extreme_case(): alpha = np.full(20, np.pi) # All angles at π md = np.pi - pval = binomial_test(alpha, md) + result = binomial_test(alpha, md) - assert np.isclose(pval, 1.0), ( - f"Expected p-value of 1 for identical data but got {pval}" + assert np.isclose(result.pval, 1.0), ( + f"Expected p-value of 1 for identical data but got {result.pval}" ) def test_concentration_identical(): """Test concentration_test with identical von Mises distributions (should fail to reject H0).""" - np.random.seed(42) - alpha1 = vonmises.rvs(mu=0, kappa=3, size=50) - alpha2 = vonmises.rvs(mu=0, kappa=3, size=50) + rng = np.random.default_rng(42) + alpha1 = vonmises.rvs(mu=0, kappa=3, size=50, random_state=rng) + alpha2 = vonmises.rvs(mu=0, kappa=3, size=50, random_state=rng) - f_stat, pval = concentration_test(alpha1, alpha2) + result = concentration_test(alpha1, alpha2) - assert pval > 0.05, f"Unexpectedly small p-value: {pval}, should not reject H0." + assert result.pval > 0.05, ( + f"Unexpectedly small p-value: {result.pval}, should not reject H0." + ) def test_concentration_different(): """Test concentration_test with different kappa values (should reject H0).""" - np.random.seed(42) - alpha1 = vonmises.rvs(mu=0, kappa=3, size=50) # Higher concentration - alpha2 = vonmises.rvs(mu=0, kappa=1, size=50) # Lower concentration + rng = np.random.default_rng(123) + alpha1 = vonmises.rvs( + mu=0, kappa=3, size=50, random_state=rng + ) # Higher concentration + alpha2 = vonmises.rvs( + mu=0, kappa=1, size=50, random_state=rng + ) # Lower concentration - f_stat, pval = concentration_test(alpha1, alpha2) + result = concentration_test(alpha1, alpha2) - assert pval < 0.05, f"Expected small p-value, but got {pval}" + assert result.pval < 0.05, f"Expected small p-value, but got {result.pval}" def test_concentration_high_dispersion(): @@ -359,76 +438,85 @@ def test_concentration_high_dispersion(): alpha1 = np.random.uniform(0, 2 * np.pi, 50) # Uniformly spread alpha2 = np.random.uniform(0, 2 * np.pi, 50) - f_stat, pval = concentration_test(alpha1, alpha2) + result = concentration_test(alpha1, alpha2) - assert pval > 0.05, f"Unexpectedly small p-value: {pval}, should not reject H0." + assert result.pval > 0.05, ( + f"Unexpectedly small p-value: {result.pval}, should not reject H0." + ) def test_concentration_extreme_case(): """Test concentration_test when both samples have extremely high concentration (should fail to reject H0).""" - np.random.seed(42) - alpha1 = vonmises.rvs(mu=0, kappa=100, size=50) - alpha2 = vonmises.rvs(mu=0, kappa=100, size=50) + rng = np.random.default_rng(42) + alpha1 = vonmises.rvs(mu=0, kappa=100, size=50, random_state=rng) + alpha2 = vonmises.rvs(mu=0, kappa=100, size=50, random_state=rng) - f_stat, pval = concentration_test(alpha1, alpha2) + result = concentration_test(alpha1, alpha2) - assert pval > 0.05, f"Unexpectedly small p-value: {pval}, should not reject H0." + assert result.pval > 0.05, ( + f"Unexpectedly small p-value: {result.pval}, should not reject H0." + ) def test_rao_homogeneity_identical(): """Test with identical von Mises distributions (should fail to reject H0).""" - np.random.seed(42) - samples = [vonmises.rvs(mu=0, kappa=2, size=50) for _ in range(3)] + seeds = [101, 102, 103] + samples = [ + vonmises.rvs(mu=0, kappa=2, size=50, random_state=np.random.default_rng(seed)) + for seed in seeds + ] results = rao_homogeneity_test(samples) - assert results["pval_polar"] > 0.05, ( - f"Unexpectedly small p-value: {results['pval_polar']}" - ) - assert results["pval_disp"] > 0.05, ( - f"Unexpectedly small p-value: {results['pval_disp']}" + assert results.pval_polar > 0.05, ( + f"Unexpectedly small p-value: {results.pval_polar}" ) + assert results.pval_disp > 0.05, f"Unexpectedly small p-value: {results.pval_disp}" def test_rao_homogeneity_different_means(): """Test with different mean directions (should reject H0 for mean equality).""" - np.random.seed(42) + seeds = [201, 202, 203] + mus = (0.0, np.pi / 4, np.pi / 2) samples = [ - vonmises.rvs(kappa=2, mu=0, size=50), - vonmises.rvs(kappa=2, mu=np.pi / 4, size=50), - vonmises.rvs(kappa=2, mu=np.pi / 2, size=50), + vonmises.rvs(kappa=2, mu=mu, size=50, random_state=np.random.default_rng(seed)) + for seed, mu in zip(seeds, mus) ] results = rao_homogeneity_test(samples) - assert results["pval_polar"] < 0.05, ( - f"Expected rejection but got p={results['pval_polar']}" + assert results.pval_polar < 0.05, ( + f"Expected rejection but got p={results.pval_polar}" ) def test_rao_homogeneity_different_dispersion(): """Test with different kappa values (should reject H0 for dispersion equality).""" - np.random.seed(42) + seeds = [301, 302, 303] + kappas = (5, 2, 1) samples = [ - vonmises.rvs(mu=0, kappa=5, size=50), - vonmises.rvs(mu=0, kappa=2, size=50), - vonmises.rvs(mu=0, kappa=1, size=50), + vonmises.rvs( + mu=0, kappa=kappa, size=50, random_state=np.random.default_rng(seed) + ) + for seed, kappa in zip(seeds, kappas) ] results = rao_homogeneity_test(samples) - assert results["pval_disp"] < 0.05, ( - f"Expected rejection but got p={results['pval_disp']}" - ) + assert results.pval_disp < 0.05, f"Expected rejection but got p={results.pval_disp}" def test_rao_homogeneity_small_samples(): """Test with very small sample sizes (should handle without error).""" - np.random.seed(42) - samples = [vonmises.rvs(mu=0, kappa=3, size=5) for _ in range(3)] + seeds = [401, 402, 403] + samples = [ + vonmises.rvs(mu=0, kappa=3, size=5, random_state=np.random.default_rng(seed)) + for seed in seeds + ] results = rao_homogeneity_test(samples) - assert "pval_polar" in results and "pval_disp" in results + assert isinstance(results.pval_polar, float) + assert isinstance(results.pval_disp, float) def test_rao_homogeneity_invalid_input(): @@ -470,13 +558,13 @@ def test_change_point_basic(): expected_k_t = 6 expected_tave = 0.460675 - assert np.isclose(result["rho"].iloc[0], expected_rho, atol=1e-5) - assert np.isclose(result["rmax"].iloc[0], expected_rmax, atol=1e-5) - assert result["k.r"].iloc[0] == expected_k_r - assert np.isclose(result["rave"].iloc[0], expected_rave, atol=1e-5) - assert np.isclose(result["tmax"].iloc[0], expected_tmax, atol=1e-5) - assert result["k.t"].iloc[0] == expected_k_t - assert np.isclose(result["tave"].iloc[0], expected_tave, atol=1e-5) + assert np.isclose(result.rho, expected_rho, atol=1e-5) + assert np.isclose(result.rmax, expected_rmax, atol=1e-5) + assert result.k_r == expected_k_r + assert np.isclose(result.rave, expected_rave, atol=1e-5) + assert np.isclose(result.tmax, expected_tmax, atol=1e-5) + assert result.k_t == expected_k_t + assert np.isclose(result.tave, expected_tave, atol=1e-5) def test_harrison_kanji_test(): @@ -486,11 +574,11 @@ def test_harrison_kanji_test(): idp = np.random.choice([1, 2, 3], 50) idq = np.random.choice([1, 2], 50) - pval, anova_table = harrison_kanji_test(alpha, idp, idq) + result = harrison_kanji_test(alpha, idp, idq) - assert len(pval) == 3 # Should return three p-values - assert anova_table.shape[0] >= 3 # At least 3 sources in ANOVA table - assert all(0 <= p <= 1 for p in pval if p is not None) # Valid p-values + assert len(result.p_values) == 3 # Should return three p-values + assert result.anova_table.shape[0] >= 3 # At least 3 sources in ANOVA table + assert all(0 <= p <= 1 for p in result.p_values if p is not None) # Valid p-values def test_harrison_kanji_vs_pycircstat(): @@ -646,7 +734,9 @@ def hktest(alpha, idp, idq, inter=True, fn=None): pval_orig, table_orig = hktest(alpha, idp, idq) # Run PyCircStat2 version - pval_new, table_new = harrison_kanji_test(alpha, idp, idq) + result_new = harrison_kanji_test(alpha, idp, idq) + pval_new = result_new.p_values + table_new = result_new.anova_table # Compare p-values assert np.allclose(pval_orig, pval_new, atol=1e-6), ( @@ -677,28 +767,23 @@ def test_circ_anova(): # Run F-test result_f = circ_anova(samples, method="F-test") - assert "statistic" in result_f, "F-test did not return a statistic" - assert "p_value" in result_f, "F-test did not return a p-value" - assert result_f["p_value"] >= 0 and result_f["p_value"] <= 1, ( - "F-test p-value out of range" - ) - assert result_f["df"] == (2, 147, 149), ( - f"F-test degrees of freedom mismatch: {result_f['df']}" + assert result_f.method == "F-test" + assert 0 <= result_f.pval <= 1, "F-test p-value out of range" + assert result_f.df == (2, 147, 149), ( + f"F-test degrees of freedom mismatch: {result_f.df}" ) + assert result_f.SS is not None and result_f.MS is not None # Run Likelihood Ratio Test (LRT) result_lrt = circ_anova(samples, method="LRT") - assert "statistic" in result_lrt, "LRT did not return a statistic" - assert "p_value" in result_lrt, "LRT did not return a p-value" - assert result_lrt["p_value"] >= 0 and result_lrt["p_value"] <= 1, ( - "LRT p-value out of range" - ) - assert result_lrt["df"] == 2, f"LRT degrees of freedom mismatch: {result_lrt['df']}" + assert result_lrt.method == "LRT" + assert 0 <= result_lrt.pval <= 1, "LRT p-value out of range" + assert result_lrt.df == 2, f"LRT degrees of freedom mismatch: {result_lrt.df}" # Edge case: All groups have the same mean direction identical_group = np.random.vonmises(mu=0, kappa=5, size=50) result_identical = circ_anova([identical_group] * 3, method="F-test") - assert result_identical["p_value"] > 0.05, ( + assert result_identical.pval > 0.05, ( "F-test should not reject H0 for identical groups" ) @@ -710,9 +795,7 @@ def test_circ_anova(): result_small = circ_anova( [small_group1, small_group2, small_group3], method="F-test" ) - assert result_small["p_value"] >= 0 and result_small["p_value"] <= 1, ( - "Small-sample p-value out of range" - ) + assert 0 <= result_small.pval <= 1, "Small-sample p-value out of range" # Invalid method check with pytest.raises(ValueError, match="Invalid method. Choose 'F-test' or 'LRT'."): @@ -730,8 +813,8 @@ def test_equal_median_identical_samples(): alpha3 = np.array([0.1, 0.2, 0.3, 1.5, 1.6]) result = common_median_test([alpha1, alpha2, alpha3]) - assert result["reject"] is np.False_ - assert not np.isnan(result["common_median"]) + assert result.reject is False + assert not np.isnan(result.common_median) def test_equal_median_different_samples(): @@ -741,8 +824,8 @@ def test_equal_median_different_samples(): alpha3 = np.array([3.5, 3.6, 3.7, 4.2, 4.3]) result = common_median_test([alpha1, alpha2, alpha3]) - assert result["reject"] is np.True_ - assert np.isnan(result["common_median"]) + assert result.reject is True + assert np.isnan(result.common_median) def test_equal_median_large_sample(): @@ -753,8 +836,8 @@ def test_equal_median_large_sample(): alpha3 = np.random.vonmises(mu=0, kappa=2, size=500) result = common_median_test([alpha1, alpha2, alpha3]) - assert result["reject"] is np.False_ - assert not np.isnan(result["common_median"]) + assert result.reject is False + assert not np.isnan(result.common_median) def test_equal_median_small_sample(): @@ -763,5 +846,5 @@ def test_equal_median_small_sample(): alpha2 = np.array([0.15, 0.25, 0.35]) result = common_median_test([alpha1, alpha2]) - assert result["reject"] is np.False_ - assert not np.isnan(result["common_median"]) \ No newline at end of file + assert result.reject is False + assert not np.isnan(result.common_median) diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..22ed00a --- /dev/null +++ b/uv.lock @@ -0,0 +1,3001 @@ +version = 1 +revision = 3 +requires-python = ">=3.9.0" +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", + "python_full_version < '3.10'", +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170, upload-time = "2024-02-06T09:43:11.258Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321, upload-time = "2024-02-06T09:43:09.663Z" }, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4a/e7/82da0a03e7ba5141f05cce0d302e6eed121ae055e0456ca228bf693984bc/asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7", size = 61978, upload-time = "2024-11-30T04:30:14.439Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918, upload-time = "2024-11-30T04:30:10.946Z" }, +] + +[[package]] +name = "babel" +version = "2.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7d/6b/d52e42361e1aa00709585ecc30b3f9684b3ab62530771402248b1b1d6240/babel-2.17.0.tar.gz", hash = "sha256:0c54cffb19f690cdcc52a3b50bcbf71e07a808d1c80d549f2459b9d2cf0afb9d", size = 9951852, upload-time = "2025-02-01T15:17:41.026Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl", hash = "sha256:4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2", size = 10182537, upload-time = "2025-02-01T15:17:37.39Z" }, +] + +[[package]] +name = "backrefs" +version = "5.9" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/a7/312f673df6a79003279e1f55619abbe7daebbb87c17c976ddc0345c04c7b/backrefs-5.9.tar.gz", hash = "sha256:808548cb708d66b82ee231f962cb36faaf4f2baab032f2fbb783e9c2fdddaa59", size = 5765857, upload-time = "2025-06-22T19:34:13.97Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/19/4d/798dc1f30468134906575156c089c492cf79b5a5fd373f07fe26c4d046bf/backrefs-5.9-py310-none-any.whl", hash = "sha256:db8e8ba0e9de81fcd635f440deab5ae5f2591b54ac1ebe0550a2ca063488cd9f", size = 380267, upload-time = "2025-06-22T19:34:05.252Z" }, + { url = "https://files.pythonhosted.org/packages/55/07/f0b3375bf0d06014e9787797e6b7cc02b38ac9ff9726ccfe834d94e9991e/backrefs-5.9-py311-none-any.whl", hash = "sha256:6907635edebbe9b2dc3de3a2befff44d74f30a4562adbb8b36f21252ea19c5cf", size = 392072, upload-time = "2025-06-22T19:34:06.743Z" }, + { url = "https://files.pythonhosted.org/packages/9d/12/4f345407259dd60a0997107758ba3f221cf89a9b5a0f8ed5b961aef97253/backrefs-5.9-py312-none-any.whl", hash = "sha256:7fdf9771f63e6028d7fee7e0c497c81abda597ea45d6b8f89e8ad76994f5befa", size = 397947, upload-time = "2025-06-22T19:34:08.172Z" }, + { url = "https://files.pythonhosted.org/packages/10/bf/fa31834dc27a7f05e5290eae47c82690edc3a7b37d58f7fb35a1bdbf355b/backrefs-5.9-py313-none-any.whl", hash = "sha256:cc37b19fa219e93ff825ed1fed8879e47b4d89aa7a1884860e2db64ccd7c676b", size = 399843, upload-time = "2025-06-22T19:34:09.68Z" }, + { url = "https://files.pythonhosted.org/packages/fc/24/b29af34b2c9c41645a9f4ff117bae860291780d73880f449e0b5d948c070/backrefs-5.9-py314-none-any.whl", hash = "sha256:df5e169836cc8acb5e440ebae9aad4bf9d15e226d3bad049cf3f6a5c20cc8dc9", size = 411762, upload-time = "2025-06-22T19:34:11.037Z" }, + { url = "https://files.pythonhosted.org/packages/41/ff/392bff89415399a979be4a65357a41d92729ae8580a66073d8ec8d810f98/backrefs-5.9-py39-none-any.whl", hash = "sha256:f48ee18f6252b8f5777a22a00a09a85de0ca931658f1dd96d4406a34f3748c60", size = 380265, upload-time = "2025-06-22T19:34:12.405Z" }, +] + +[[package]] +name = "certifi" +version = "2025.10.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4c/5b/b6ce21586237c77ce67d01dc5507039d444b630dd76611bbca2d8e5dcd91/certifi-2025.10.5.tar.gz", hash = "sha256:47c09d31ccf2acf0be3f701ea53595ee7e0b8fa08801c6624be771df09ae7b43", size = 164519, upload-time = "2025-10-05T04:12:15.808Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e4/37/af0d2ef3967ac0d6113837b44a4f0bfe1328c2b9763bd5b1744520e5cfed/certifi-2025.10.5-py3-none-any.whl", hash = "sha256:0f212c2744a9bb6de0c56639a6f68afe01ecd92d91f14ae897c4fe7bbeeef0de", size = 163286, upload-time = "2025-10-05T04:12:14.03Z" }, +] + +[[package]] +name = "cffi" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser", marker = "implementation_name != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/56/b1ba7935a17738ae8453301356628e8147c79dbb825bcbc73dc7401f9846/cffi-2.0.0.tar.gz", hash = "sha256:44d1b5909021139fe36001ae048dbdde8214afa20200eda0f64c068cac5d5529", size = 523588, upload-time = "2025-09-08T23:24:04.541Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/93/d7/516d984057745a6cd96575eea814fe1edd6646ee6efd552fb7b0921dec83/cffi-2.0.0-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:0cf2d91ecc3fcc0625c2c530fe004f82c110405f101548512cce44322fa8ac44", size = 184283, upload-time = "2025-09-08T23:22:08.01Z" }, + { url = "https://files.pythonhosted.org/packages/9e/84/ad6a0b408daa859246f57c03efd28e5dd1b33c21737c2db84cae8c237aa5/cffi-2.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f73b96c41e3b2adedc34a7356e64c8eb96e03a3782b535e043a986276ce12a49", size = 180504, upload-time = "2025-09-08T23:22:10.637Z" }, + { url = "https://files.pythonhosted.org/packages/50/bd/b1a6362b80628111e6653c961f987faa55262b4002fcec42308cad1db680/cffi-2.0.0-cp310-cp310-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:53f77cbe57044e88bbd5ed26ac1d0514d2acf0591dd6bb02a3ae37f76811b80c", size = 208811, upload-time = "2025-09-08T23:22:12.267Z" }, + { url = "https://files.pythonhosted.org/packages/4f/27/6933a8b2562d7bd1fb595074cf99cc81fc3789f6a6c05cdabb46284a3188/cffi-2.0.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3e837e369566884707ddaf85fc1744b47575005c0a229de3327f8f9a20f4efeb", size = 216402, upload-time = "2025-09-08T23:22:13.455Z" }, + { url = "https://files.pythonhosted.org/packages/05/eb/b86f2a2645b62adcfff53b0dd97e8dfafb5c8aa864bd0d9a2c2049a0d551/cffi-2.0.0-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:5eda85d6d1879e692d546a078b44251cdd08dd1cfb98dfb77b670c97cee49ea0", size = 203217, upload-time = "2025-09-08T23:22:14.596Z" }, + { url = "https://files.pythonhosted.org/packages/9f/e0/6cbe77a53acf5acc7c08cc186c9928864bd7c005f9efd0d126884858a5fe/cffi-2.0.0-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:9332088d75dc3241c702d852d4671613136d90fa6881da7d770a483fd05248b4", size = 203079, upload-time = "2025-09-08T23:22:15.769Z" }, + { url = "https://files.pythonhosted.org/packages/98/29/9b366e70e243eb3d14a5cb488dfd3a0b6b2f1fb001a203f653b93ccfac88/cffi-2.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:fc7de24befaeae77ba923797c7c87834c73648a05a4bde34b3b7e5588973a453", size = 216475, upload-time = "2025-09-08T23:22:17.427Z" }, + { url = "https://files.pythonhosted.org/packages/21/7a/13b24e70d2f90a322f2900c5d8e1f14fa7e2a6b3332b7309ba7b2ba51a5a/cffi-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf364028c016c03078a23b503f02058f1814320a56ad535686f90565636a9495", size = 218829, upload-time = "2025-09-08T23:22:19.069Z" }, + { url = "https://files.pythonhosted.org/packages/60/99/c9dc110974c59cc981b1f5b66e1d8af8af764e00f0293266824d9c4254bc/cffi-2.0.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e11e82b744887154b182fd3e7e8512418446501191994dbf9c9fc1f32cc8efd5", size = 211211, upload-time = "2025-09-08T23:22:20.588Z" }, + { url = "https://files.pythonhosted.org/packages/49/72/ff2d12dbf21aca1b32a40ed792ee6b40f6dc3a9cf1644bd7ef6e95e0ac5e/cffi-2.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8ea985900c5c95ce9db1745f7933eeef5d314f0565b27625d9a10ec9881e1bfb", size = 218036, upload-time = "2025-09-08T23:22:22.143Z" }, + { url = "https://files.pythonhosted.org/packages/e2/cc/027d7fb82e58c48ea717149b03bcadcbdc293553edb283af792bd4bcbb3f/cffi-2.0.0-cp310-cp310-win32.whl", hash = "sha256:1f72fb8906754ac8a2cc3f9f5aaa298070652a0ffae577e0ea9bd480dc3c931a", size = 172184, upload-time = "2025-09-08T23:22:23.328Z" }, + { url = "https://files.pythonhosted.org/packages/33/fa/072dd15ae27fbb4e06b437eb6e944e75b068deb09e2a2826039e49ee2045/cffi-2.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:b18a3ed7d5b3bd8d9ef7a8cb226502c6bf8308df1525e1cc676c3680e7176739", size = 182790, upload-time = "2025-09-08T23:22:24.752Z" }, + { url = "https://files.pythonhosted.org/packages/12/4a/3dfd5f7850cbf0d06dc84ba9aa00db766b52ca38d8b86e3a38314d52498c/cffi-2.0.0-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:b4c854ef3adc177950a8dfc81a86f5115d2abd545751a304c5bcf2c2c7283cfe", size = 184344, upload-time = "2025-09-08T23:22:26.456Z" }, + { url = "https://files.pythonhosted.org/packages/4f/8b/f0e4c441227ba756aafbe78f117485b25bb26b1c059d01f137fa6d14896b/cffi-2.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2de9a304e27f7596cd03d16f1b7c72219bd944e99cc52b84d0145aefb07cbd3c", size = 180560, upload-time = "2025-09-08T23:22:28.197Z" }, + { url = "https://files.pythonhosted.org/packages/b1/b7/1200d354378ef52ec227395d95c2576330fd22a869f7a70e88e1447eb234/cffi-2.0.0-cp311-cp311-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:baf5215e0ab74c16e2dd324e8ec067ef59e41125d3eade2b863d294fd5035c92", size = 209613, upload-time = "2025-09-08T23:22:29.475Z" }, + { url = "https://files.pythonhosted.org/packages/b8/56/6033f5e86e8cc9bb629f0077ba71679508bdf54a9a5e112a3c0b91870332/cffi-2.0.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:730cacb21e1bdff3ce90babf007d0a0917cc3e6492f336c2f0134101e0944f93", size = 216476, upload-time = "2025-09-08T23:22:31.063Z" }, + { url = "https://files.pythonhosted.org/packages/dc/7f/55fecd70f7ece178db2f26128ec41430d8720f2d12ca97bf8f0a628207d5/cffi-2.0.0-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:6824f87845e3396029f3820c206e459ccc91760e8fa24422f8b0c3d1731cbec5", size = 203374, upload-time = "2025-09-08T23:22:32.507Z" }, + { url = "https://files.pythonhosted.org/packages/84/ef/a7b77c8bdc0f77adc3b46888f1ad54be8f3b7821697a7b89126e829e676a/cffi-2.0.0-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:9de40a7b0323d889cf8d23d1ef214f565ab154443c42737dfe52ff82cf857664", size = 202597, upload-time = "2025-09-08T23:22:34.132Z" }, + { url = "https://files.pythonhosted.org/packages/d7/91/500d892b2bf36529a75b77958edfcd5ad8e2ce4064ce2ecfeab2125d72d1/cffi-2.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:8941aaadaf67246224cee8c3803777eed332a19d909b47e29c9842ef1e79ac26", size = 215574, upload-time = "2025-09-08T23:22:35.443Z" }, + { url = "https://files.pythonhosted.org/packages/44/64/58f6255b62b101093d5df22dcb752596066c7e89dd725e0afaed242a61be/cffi-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a05d0c237b3349096d3981b727493e22147f934b20f6f125a3eba8f994bec4a9", size = 218971, upload-time = "2025-09-08T23:22:36.805Z" }, + { url = "https://files.pythonhosted.org/packages/ab/49/fa72cebe2fd8a55fbe14956f9970fe8eb1ac59e5df042f603ef7c8ba0adc/cffi-2.0.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:94698a9c5f91f9d138526b48fe26a199609544591f859c870d477351dc7b2414", size = 211972, upload-time = "2025-09-08T23:22:38.436Z" }, + { url = "https://files.pythonhosted.org/packages/0b/28/dd0967a76aab36731b6ebfe64dec4e981aff7e0608f60c2d46b46982607d/cffi-2.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:5fed36fccc0612a53f1d4d9a816b50a36702c28a2aa880cb8a122b3466638743", size = 217078, upload-time = "2025-09-08T23:22:39.776Z" }, + { url = "https://files.pythonhosted.org/packages/2b/c0/015b25184413d7ab0a410775fdb4a50fca20f5589b5dab1dbbfa3baad8ce/cffi-2.0.0-cp311-cp311-win32.whl", hash = "sha256:c649e3a33450ec82378822b3dad03cc228b8f5963c0c12fc3b1e0ab940f768a5", size = 172076, upload-time = "2025-09-08T23:22:40.95Z" }, + { url = "https://files.pythonhosted.org/packages/ae/8f/dc5531155e7070361eb1b7e4c1a9d896d0cb21c49f807a6c03fd63fc877e/cffi-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:66f011380d0e49ed280c789fbd08ff0d40968ee7b665575489afa95c98196ab5", size = 182820, upload-time = "2025-09-08T23:22:42.463Z" }, + { url = "https://files.pythonhosted.org/packages/95/5c/1b493356429f9aecfd56bc171285a4c4ac8697f76e9bbbbb105e537853a1/cffi-2.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:c6638687455baf640e37344fe26d37c404db8b80d037c3d29f58fe8d1c3b194d", size = 177635, upload-time = "2025-09-08T23:22:43.623Z" }, + { url = "https://files.pythonhosted.org/packages/ea/47/4f61023ea636104d4f16ab488e268b93008c3d0bb76893b1b31db1f96802/cffi-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d02d6655b0e54f54c4ef0b94eb6be0607b70853c45ce98bd278dc7de718be5d", size = 185271, upload-time = "2025-09-08T23:22:44.795Z" }, + { url = "https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c", size = 181048, upload-time = "2025-09-08T23:22:45.938Z" }, + { url = "https://files.pythonhosted.org/packages/ff/df/a4f0fbd47331ceeba3d37c2e51e9dfc9722498becbeec2bd8bc856c9538a/cffi-2.0.0-cp312-cp312-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:21d1152871b019407d8ac3985f6775c079416c282e431a4da6afe7aefd2bccbe", size = 212529, upload-time = "2025-09-08T23:22:47.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/72/12b5f8d3865bf0f87cf1404d8c374e7487dcf097a1c91c436e72e6badd83/cffi-2.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:b21e08af67b8a103c71a250401c78d5e0893beff75e28c53c98f4de42f774062", size = 220097, upload-time = "2025-09-08T23:22:48.677Z" }, + { url = "https://files.pythonhosted.org/packages/c2/95/7a135d52a50dfa7c882ab0ac17e8dc11cec9d55d2c18dda414c051c5e69e/cffi-2.0.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:1e3a615586f05fc4065a8b22b8152f0c1b00cdbc60596d187c2a74f9e3036e4e", size = 207983, upload-time = "2025-09-08T23:22:50.06Z" }, + { url = "https://files.pythonhosted.org/packages/3a/c8/15cb9ada8895957ea171c62dc78ff3e99159ee7adb13c0123c001a2546c1/cffi-2.0.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:81afed14892743bbe14dacb9e36d9e0e504cd204e0b165062c488942b9718037", size = 206519, upload-time = "2025-09-08T23:22:51.364Z" }, + { url = "https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba", size = 219572, upload-time = "2025-09-08T23:22:52.902Z" }, + { url = "https://files.pythonhosted.org/packages/07/e0/267e57e387b4ca276b90f0434ff88b2c2241ad72b16d31836adddfd6031b/cffi-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3925dd22fa2b7699ed2617149842d2e6adde22b262fcbfada50e3d195e4b3a94", size = 222963, upload-time = "2025-09-08T23:22:54.518Z" }, + { url = "https://files.pythonhosted.org/packages/b6/75/1f2747525e06f53efbd878f4d03bac5b859cbc11c633d0fb81432d98a795/cffi-2.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2c8f814d84194c9ea681642fd164267891702542f028a15fc97d4674b6206187", size = 221361, upload-time = "2025-09-08T23:22:55.867Z" }, + { url = "https://files.pythonhosted.org/packages/7b/2b/2b6435f76bfeb6bbf055596976da087377ede68df465419d192acf00c437/cffi-2.0.0-cp312-cp312-win32.whl", hash = "sha256:da902562c3e9c550df360bfa53c035b2f241fed6d9aef119048073680ace4a18", size = 172932, upload-time = "2025-09-08T23:22:57.188Z" }, + { url = "https://files.pythonhosted.org/packages/f8/ed/13bd4418627013bec4ed6e54283b1959cf6db888048c7cf4b4c3b5b36002/cffi-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:da68248800ad6320861f129cd9c1bf96ca849a2771a59e0344e88681905916f5", size = 183557, upload-time = "2025-09-08T23:22:58.351Z" }, + { url = "https://files.pythonhosted.org/packages/95/31/9f7f93ad2f8eff1dbc1c3656d7ca5bfd8fb52c9d786b4dcf19b2d02217fa/cffi-2.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:4671d9dd5ec934cb9a73e7ee9676f9362aba54f7f34910956b84d727b0d73fb6", size = 177762, upload-time = "2025-09-08T23:22:59.668Z" }, + { url = "https://files.pythonhosted.org/packages/4b/8d/a0a47a0c9e413a658623d014e91e74a50cdd2c423f7ccfd44086ef767f90/cffi-2.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:00bdf7acc5f795150faa6957054fbbca2439db2f775ce831222b66f192f03beb", size = 185230, upload-time = "2025-09-08T23:23:00.879Z" }, + { url = "https://files.pythonhosted.org/packages/4a/d2/a6c0296814556c68ee32009d9c2ad4f85f2707cdecfd7727951ec228005d/cffi-2.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:45d5e886156860dc35862657e1494b9bae8dfa63bf56796f2fb56e1679fc0bca", size = 181043, upload-time = "2025-09-08T23:23:02.231Z" }, + { url = "https://files.pythonhosted.org/packages/b0/1e/d22cc63332bd59b06481ceaac49d6c507598642e2230f201649058a7e704/cffi-2.0.0-cp313-cp313-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:07b271772c100085dd28b74fa0cd81c8fb1a3ba18b21e03d7c27f3436a10606b", size = 212446, upload-time = "2025-09-08T23:23:03.472Z" }, + { url = "https://files.pythonhosted.org/packages/a9/f5/a2c23eb03b61a0b8747f211eb716446c826ad66818ddc7810cc2cc19b3f2/cffi-2.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d48a880098c96020b02d5a1f7d9251308510ce8858940e6fa99ece33f610838b", size = 220101, upload-time = "2025-09-08T23:23:04.792Z" }, + { url = "https://files.pythonhosted.org/packages/f2/7f/e6647792fc5850d634695bc0e6ab4111ae88e89981d35ac269956605feba/cffi-2.0.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f93fd8e5c8c0a4aa1f424d6173f14a892044054871c771f8566e4008eaa359d2", size = 207948, upload-time = "2025-09-08T23:23:06.127Z" }, + { url = "https://files.pythonhosted.org/packages/cb/1e/a5a1bd6f1fb30f22573f76533de12a00bf274abcdc55c8edab639078abb6/cffi-2.0.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:dd4f05f54a52fb558f1ba9f528228066954fee3ebe629fc1660d874d040ae5a3", size = 206422, upload-time = "2025-09-08T23:23:07.753Z" }, + { url = "https://files.pythonhosted.org/packages/98/df/0a1755e750013a2081e863e7cd37e0cdd02664372c754e5560099eb7aa44/cffi-2.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c8d3b5532fc71b7a77c09192b4a5a200ea992702734a2e9279a37f2478236f26", size = 219499, upload-time = "2025-09-08T23:23:09.648Z" }, + { url = "https://files.pythonhosted.org/packages/50/e1/a969e687fcf9ea58e6e2a928ad5e2dd88cc12f6f0ab477e9971f2309b57c/cffi-2.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d9b29c1f0ae438d5ee9acb31cadee00a58c46cc9c0b2f9038c6b0b3470877a8c", size = 222928, upload-time = "2025-09-08T23:23:10.928Z" }, + { url = "https://files.pythonhosted.org/packages/36/54/0362578dd2c9e557a28ac77698ed67323ed5b9775ca9d3fe73fe191bb5d8/cffi-2.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6d50360be4546678fc1b79ffe7a66265e28667840010348dd69a314145807a1b", size = 221302, upload-time = "2025-09-08T23:23:12.42Z" }, + { url = "https://files.pythonhosted.org/packages/eb/6d/bf9bda840d5f1dfdbf0feca87fbdb64a918a69bca42cfa0ba7b137c48cb8/cffi-2.0.0-cp313-cp313-win32.whl", hash = "sha256:74a03b9698e198d47562765773b4a8309919089150a0bb17d829ad7b44b60d27", size = 172909, upload-time = "2025-09-08T23:23:14.32Z" }, + { url = "https://files.pythonhosted.org/packages/37/18/6519e1ee6f5a1e579e04b9ddb6f1676c17368a7aba48299c3759bbc3c8b3/cffi-2.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:19f705ada2530c1167abacb171925dd886168931e0a7b78f5bffcae5c6b5be75", size = 183402, upload-time = "2025-09-08T23:23:15.535Z" }, + { url = "https://files.pythonhosted.org/packages/cb/0e/02ceeec9a7d6ee63bb596121c2c8e9b3a9e150936f4fbef6ca1943e6137c/cffi-2.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:256f80b80ca3853f90c21b23ee78cd008713787b1b1e93eae9f3d6a7134abd91", size = 177780, upload-time = "2025-09-08T23:23:16.761Z" }, + { url = "https://files.pythonhosted.org/packages/92/c4/3ce07396253a83250ee98564f8d7e9789fab8e58858f35d07a9a2c78de9f/cffi-2.0.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fc33c5141b55ed366cfaad382df24fe7dcbc686de5be719b207bb248e3053dc5", size = 185320, upload-time = "2025-09-08T23:23:18.087Z" }, + { url = "https://files.pythonhosted.org/packages/59/dd/27e9fa567a23931c838c6b02d0764611c62290062a6d4e8ff7863daf9730/cffi-2.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c654de545946e0db659b3400168c9ad31b5d29593291482c43e3564effbcee13", size = 181487, upload-time = "2025-09-08T23:23:19.622Z" }, + { url = "https://files.pythonhosted.org/packages/d6/43/0e822876f87ea8a4ef95442c3d766a06a51fc5298823f884ef87aaad168c/cffi-2.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:24b6f81f1983e6df8db3adc38562c83f7d4a0c36162885ec7f7b77c7dcbec97b", size = 220049, upload-time = "2025-09-08T23:23:20.853Z" }, + { url = "https://files.pythonhosted.org/packages/b4/89/76799151d9c2d2d1ead63c2429da9ea9d7aac304603de0c6e8764e6e8e70/cffi-2.0.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:12873ca6cb9b0f0d3a0da705d6086fe911591737a59f28b7936bdfed27c0d47c", size = 207793, upload-time = "2025-09-08T23:23:22.08Z" }, + { url = "https://files.pythonhosted.org/packages/bb/dd/3465b14bb9e24ee24cb88c9e3730f6de63111fffe513492bf8c808a3547e/cffi-2.0.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:d9b97165e8aed9272a6bb17c01e3cc5871a594a446ebedc996e2397a1c1ea8ef", size = 206300, upload-time = "2025-09-08T23:23:23.314Z" }, + { url = "https://files.pythonhosted.org/packages/47/d9/d83e293854571c877a92da46fdec39158f8d7e68da75bf73581225d28e90/cffi-2.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:afb8db5439b81cf9c9d0c80404b60c3cc9c3add93e114dcae767f1477cb53775", size = 219244, upload-time = "2025-09-08T23:23:24.541Z" }, + { url = "https://files.pythonhosted.org/packages/2b/0f/1f177e3683aead2bb00f7679a16451d302c436b5cbf2505f0ea8146ef59e/cffi-2.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:737fe7d37e1a1bffe70bd5754ea763a62a066dc5913ca57e957824b72a85e205", size = 222828, upload-time = "2025-09-08T23:23:26.143Z" }, + { url = "https://files.pythonhosted.org/packages/c6/0f/cafacebd4b040e3119dcb32fed8bdef8dfe94da653155f9d0b9dc660166e/cffi-2.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:38100abb9d1b1435bc4cc340bb4489635dc2f0da7456590877030c9b3d40b0c1", size = 220926, upload-time = "2025-09-08T23:23:27.873Z" }, + { url = "https://files.pythonhosted.org/packages/3e/aa/df335faa45b395396fcbc03de2dfcab242cd61a9900e914fe682a59170b1/cffi-2.0.0-cp314-cp314-win32.whl", hash = "sha256:087067fa8953339c723661eda6b54bc98c5625757ea62e95eb4898ad5e776e9f", size = 175328, upload-time = "2025-09-08T23:23:44.61Z" }, + { url = "https://files.pythonhosted.org/packages/bb/92/882c2d30831744296ce713f0feb4c1cd30f346ef747b530b5318715cc367/cffi-2.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:203a48d1fb583fc7d78a4c6655692963b860a417c0528492a6bc21f1aaefab25", size = 185650, upload-time = "2025-09-08T23:23:45.848Z" }, + { url = "https://files.pythonhosted.org/packages/9f/2c/98ece204b9d35a7366b5b2c6539c350313ca13932143e79dc133ba757104/cffi-2.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:dbd5c7a25a7cb98f5ca55d258b103a2054f859a46ae11aaf23134f9cc0d356ad", size = 180687, upload-time = "2025-09-08T23:23:47.105Z" }, + { url = "https://files.pythonhosted.org/packages/3e/61/c768e4d548bfa607abcda77423448df8c471f25dbe64fb2ef6d555eae006/cffi-2.0.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9a67fc9e8eb39039280526379fb3a70023d77caec1852002b4da7e8b270c4dd9", size = 188773, upload-time = "2025-09-08T23:23:29.347Z" }, + { url = "https://files.pythonhosted.org/packages/2c/ea/5f76bce7cf6fcd0ab1a1058b5af899bfbef198bea4d5686da88471ea0336/cffi-2.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:7a66c7204d8869299919db4d5069a82f1561581af12b11b3c9f48c584eb8743d", size = 185013, upload-time = "2025-09-08T23:23:30.63Z" }, + { url = "https://files.pythonhosted.org/packages/be/b4/c56878d0d1755cf9caa54ba71e5d049479c52f9e4afc230f06822162ab2f/cffi-2.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7cc09976e8b56f8cebd752f7113ad07752461f48a58cbba644139015ac24954c", size = 221593, upload-time = "2025-09-08T23:23:31.91Z" }, + { url = "https://files.pythonhosted.org/packages/e0/0d/eb704606dfe8033e7128df5e90fee946bbcb64a04fcdaa97321309004000/cffi-2.0.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:92b68146a71df78564e4ef48af17551a5ddd142e5190cdf2c5624d0c3ff5b2e8", size = 209354, upload-time = "2025-09-08T23:23:33.214Z" }, + { url = "https://files.pythonhosted.org/packages/d8/19/3c435d727b368ca475fb8742ab97c9cb13a0de600ce86f62eab7fa3eea60/cffi-2.0.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b1e74d11748e7e98e2f426ab176d4ed720a64412b6a15054378afdb71e0f37dc", size = 208480, upload-time = "2025-09-08T23:23:34.495Z" }, + { url = "https://files.pythonhosted.org/packages/d0/44/681604464ed9541673e486521497406fadcc15b5217c3e326b061696899a/cffi-2.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:28a3a209b96630bca57cce802da70c266eb08c6e97e5afd61a75611ee6c64592", size = 221584, upload-time = "2025-09-08T23:23:36.096Z" }, + { url = "https://files.pythonhosted.org/packages/25/8e/342a504ff018a2825d395d44d63a767dd8ebc927ebda557fecdaca3ac33a/cffi-2.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:7553fb2090d71822f02c629afe6042c299edf91ba1bf94951165613553984512", size = 224443, upload-time = "2025-09-08T23:23:37.328Z" }, + { url = "https://files.pythonhosted.org/packages/e1/5e/b666bacbbc60fbf415ba9988324a132c9a7a0448a9a8f125074671c0f2c3/cffi-2.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:6c6c373cfc5c83a975506110d17457138c8c63016b563cc9ed6e056a82f13ce4", size = 223437, upload-time = "2025-09-08T23:23:38.945Z" }, + { url = "https://files.pythonhosted.org/packages/a0/1d/ec1a60bd1a10daa292d3cd6bb0b359a81607154fb8165f3ec95fe003b85c/cffi-2.0.0-cp314-cp314t-win32.whl", hash = "sha256:1fc9ea04857caf665289b7a75923f2c6ed559b8298a1b8c49e59f7dd95c8481e", size = 180487, upload-time = "2025-09-08T23:23:40.423Z" }, + { url = "https://files.pythonhosted.org/packages/bf/41/4c1168c74fac325c0c8156f04b6749c8b6a8f405bbf91413ba088359f60d/cffi-2.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:d68b6cef7827e8641e8ef16f4494edda8b36104d79773a334beaa1e3521430f6", size = 191726, upload-time = "2025-09-08T23:23:41.742Z" }, + { url = "https://files.pythonhosted.org/packages/ae/3a/dbeec9d1ee0844c679f6bb5d6ad4e9f198b1224f4e7a32825f47f6192b0c/cffi-2.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:0a1527a803f0a659de1af2e1fd700213caba79377e27e4693648c2923da066f9", size = 184195, upload-time = "2025-09-08T23:23:43.004Z" }, + { url = "https://files.pythonhosted.org/packages/c0/cc/08ed5a43f2996a16b462f64a7055c6e962803534924b9b2f1371d8c00b7b/cffi-2.0.0-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:fe562eb1a64e67dd297ccc4f5addea2501664954f2692b69a76449ec7913ecbf", size = 184288, upload-time = "2025-09-08T23:23:48.404Z" }, + { url = "https://files.pythonhosted.org/packages/3d/de/38d9726324e127f727b4ecc376bc85e505bfe61ef130eaf3f290c6847dd4/cffi-2.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:de8dad4425a6ca6e4e5e297b27b5c824ecc7581910bf9aee86cb6835e6812aa7", size = 180509, upload-time = "2025-09-08T23:23:49.73Z" }, + { url = "https://files.pythonhosted.org/packages/9b/13/c92e36358fbcc39cf0962e83223c9522154ee8630e1df7c0b3a39a8124e2/cffi-2.0.0-cp39-cp39-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:4647afc2f90d1ddd33441e5b0e85b16b12ddec4fca55f0d9671fef036ecca27c", size = 208813, upload-time = "2025-09-08T23:23:51.263Z" }, + { url = "https://files.pythonhosted.org/packages/15/12/a7a79bd0df4c3bff744b2d7e52cc1b68d5e7e427b384252c42366dc1ecbc/cffi-2.0.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3f4d46d8b35698056ec29bca21546e1551a205058ae1a181d871e278b0b28165", size = 216498, upload-time = "2025-09-08T23:23:52.494Z" }, + { url = "https://files.pythonhosted.org/packages/a3/ad/5c51c1c7600bdd7ed9a24a203ec255dccdd0ebf4527f7b922a0bde2fb6ed/cffi-2.0.0-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:e6e73b9e02893c764e7e8d5bb5ce277f1a009cd5243f8228f75f842bf937c534", size = 203243, upload-time = "2025-09-08T23:23:53.836Z" }, + { url = "https://files.pythonhosted.org/packages/32/f2/81b63e288295928739d715d00952c8c6034cb6c6a516b17d37e0c8be5600/cffi-2.0.0-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:cb527a79772e5ef98fb1d700678fe031e353e765d1ca2d409c92263c6d43e09f", size = 203158, upload-time = "2025-09-08T23:23:55.169Z" }, + { url = "https://files.pythonhosted.org/packages/1f/74/cc4096ce66f5939042ae094e2e96f53426a979864aa1f96a621ad128be27/cffi-2.0.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:61d028e90346df14fedc3d1e5441df818d095f3b87d286825dfcbd6459b7ef63", size = 216548, upload-time = "2025-09-08T23:23:56.506Z" }, + { url = "https://files.pythonhosted.org/packages/e8/be/f6424d1dc46b1091ffcc8964fa7c0ab0cd36839dd2761b49c90481a6ba1b/cffi-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0f6084a0ea23d05d20c3edcda20c3d006f9b6f3fefeac38f59262e10cef47ee2", size = 218897, upload-time = "2025-09-08T23:23:57.825Z" }, + { url = "https://files.pythonhosted.org/packages/f7/e0/dda537c2309817edf60109e39265f24f24aa7f050767e22c98c53fe7f48b/cffi-2.0.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:1cd13c99ce269b3ed80b417dcd591415d3372bcac067009b6e0f59c7d4015e65", size = 211249, upload-time = "2025-09-08T23:23:59.139Z" }, + { url = "https://files.pythonhosted.org/packages/2b/e7/7c769804eb75e4c4b35e658dba01de1640a351a9653c3d49ca89d16ccc91/cffi-2.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:89472c9762729b5ae1ad974b777416bfda4ac5642423fa93bd57a09204712322", size = 218041, upload-time = "2025-09-08T23:24:00.496Z" }, + { url = "https://files.pythonhosted.org/packages/aa/d9/6218d78f920dcd7507fc16a766b5ef8f3b913cc7aa938e7fc80b9978d089/cffi-2.0.0-cp39-cp39-win32.whl", hash = "sha256:2081580ebb843f759b9f617314a24ed5738c51d2aee65d31e02f6f7a2b97707a", size = 172138, upload-time = "2025-09-08T23:24:01.7Z" }, + { url = "https://files.pythonhosted.org/packages/54/8f/a1e836f82d8e32a97e6b29cc8f641779181ac7363734f12df27db803ebda/cffi-2.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:b882b3df248017dba09d6b16defe9b5c407fe32fc7c65a9c69798e6175601be9", size = 182794, upload-time = "2025-09-08T23:24:02.943Z" }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/13/69/33ddede1939fdd074bce5434295f38fae7136463422fe4fd3e0e89b98062/charset_normalizer-3.4.4.tar.gz", hash = "sha256:94537985111c35f28720e43603b8e7b43a6ecfb2ce1d3058bbe955b73404e21a", size = 129418, upload-time = "2025-10-14T04:42:32.879Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1f/b8/6d51fc1d52cbd52cd4ccedd5b5b2f0f6a11bbf6765c782298b0f3e808541/charset_normalizer-3.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e824f1492727fa856dd6eda4f7cee25f8518a12f3c4a56a74e8095695089cf6d", size = 209709, upload-time = "2025-10-14T04:40:11.385Z" }, + { url = "https://files.pythonhosted.org/packages/5c/af/1f9d7f7faafe2ddfb6f72a2e07a548a629c61ad510fe60f9630309908fef/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4bd5d4137d500351a30687c2d3971758aac9a19208fc110ccb9d7188fbe709e8", size = 148814, upload-time = "2025-10-14T04:40:13.135Z" }, + { url = "https://files.pythonhosted.org/packages/79/3d/f2e3ac2bbc056ca0c204298ea4e3d9db9b4afe437812638759db2c976b5f/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:027f6de494925c0ab2a55eab46ae5129951638a49a34d87f4c3eda90f696b4ad", size = 144467, upload-time = "2025-10-14T04:40:14.728Z" }, + { url = "https://files.pythonhosted.org/packages/ec/85/1bf997003815e60d57de7bd972c57dc6950446a3e4ccac43bc3070721856/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f820802628d2694cb7e56db99213f930856014862f3fd943d290ea8438d07ca8", size = 162280, upload-time = "2025-10-14T04:40:16.14Z" }, + { url = "https://files.pythonhosted.org/packages/3e/8e/6aa1952f56b192f54921c436b87f2aaf7c7a7c3d0d1a765547d64fd83c13/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:798d75d81754988d2565bff1b97ba5a44411867c0cf32b77a7e8f8d84796b10d", size = 159454, upload-time = "2025-10-14T04:40:17.567Z" }, + { url = "https://files.pythonhosted.org/packages/36/3b/60cbd1f8e93aa25d1c669c649b7a655b0b5fb4c571858910ea9332678558/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9d1bb833febdff5c8927f922386db610b49db6e0d4f4ee29601d71e7c2694313", size = 153609, upload-time = "2025-10-14T04:40:19.08Z" }, + { url = "https://files.pythonhosted.org/packages/64/91/6a13396948b8fd3c4b4fd5bc74d045f5637d78c9675585e8e9fbe5636554/charset_normalizer-3.4.4-cp310-cp310-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:9cd98cdc06614a2f768d2b7286d66805f94c48cde050acdbbb7db2600ab3197e", size = 151849, upload-time = "2025-10-14T04:40:20.607Z" }, + { url = "https://files.pythonhosted.org/packages/b7/7a/59482e28b9981d105691e968c544cc0df3b7d6133152fb3dcdc8f135da7a/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:077fbb858e903c73f6c9db43374fd213b0b6a778106bc7032446a8e8b5b38b93", size = 151586, upload-time = "2025-10-14T04:40:21.719Z" }, + { url = "https://files.pythonhosted.org/packages/92/59/f64ef6a1c4bdd2baf892b04cd78792ed8684fbc48d4c2afe467d96b4df57/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:244bfb999c71b35de57821b8ea746b24e863398194a4014e4c76adc2bbdfeff0", size = 145290, upload-time = "2025-10-14T04:40:23.069Z" }, + { url = "https://files.pythonhosted.org/packages/6b/63/3bf9f279ddfa641ffa1962b0db6a57a9c294361cc2f5fcac997049a00e9c/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:64b55f9dce520635f018f907ff1b0df1fdc31f2795a922fb49dd14fbcdf48c84", size = 163663, upload-time = "2025-10-14T04:40:24.17Z" }, + { url = "https://files.pythonhosted.org/packages/ed/09/c9e38fc8fa9e0849b172b581fd9803bdf6e694041127933934184e19f8c3/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_riscv64.whl", hash = "sha256:faa3a41b2b66b6e50f84ae4a68c64fcd0c44355741c6374813a800cd6695db9e", size = 151964, upload-time = "2025-10-14T04:40:25.368Z" }, + { url = "https://files.pythonhosted.org/packages/d2/d1/d28b747e512d0da79d8b6a1ac18b7ab2ecfd81b2944c4c710e166d8dd09c/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6515f3182dbe4ea06ced2d9e8666d97b46ef4c75e326b79bb624110f122551db", size = 161064, upload-time = "2025-10-14T04:40:26.806Z" }, + { url = "https://files.pythonhosted.org/packages/bb/9a/31d62b611d901c3b9e5500c36aab0ff5eb442043fb3a1c254200d3d397d9/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cc00f04ed596e9dc0da42ed17ac5e596c6ccba999ba6bd92b0e0aef2f170f2d6", size = 155015, upload-time = "2025-10-14T04:40:28.284Z" }, + { url = "https://files.pythonhosted.org/packages/1f/f3/107e008fa2bff0c8b9319584174418e5e5285fef32f79d8ee6a430d0039c/charset_normalizer-3.4.4-cp310-cp310-win32.whl", hash = "sha256:f34be2938726fc13801220747472850852fe6b1ea75869a048d6f896838c896f", size = 99792, upload-time = "2025-10-14T04:40:29.613Z" }, + { url = "https://files.pythonhosted.org/packages/eb/66/e396e8a408843337d7315bab30dbf106c38966f1819f123257f5520f8a96/charset_normalizer-3.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:a61900df84c667873b292c3de315a786dd8dac506704dea57bc957bd31e22c7d", size = 107198, upload-time = "2025-10-14T04:40:30.644Z" }, + { url = "https://files.pythonhosted.org/packages/b5/58/01b4f815bf0312704c267f2ccb6e5d42bcc7752340cd487bc9f8c3710597/charset_normalizer-3.4.4-cp310-cp310-win_arm64.whl", hash = "sha256:cead0978fc57397645f12578bfd2d5ea9138ea0fac82b2f63f7f7c6877986a69", size = 100262, upload-time = "2025-10-14T04:40:32.108Z" }, + { url = "https://files.pythonhosted.org/packages/ed/27/c6491ff4954e58a10f69ad90aca8a1b6fe9c5d3c6f380907af3c37435b59/charset_normalizer-3.4.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6e1fcf0720908f200cd21aa4e6750a48ff6ce4afe7ff5a79a90d5ed8a08296f8", size = 206988, upload-time = "2025-10-14T04:40:33.79Z" }, + { url = "https://files.pythonhosted.org/packages/94/59/2e87300fe67ab820b5428580a53cad894272dbb97f38a7a814a2a1ac1011/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5f819d5fe9234f9f82d75bdfa9aef3a3d72c4d24a6e57aeaebba32a704553aa0", size = 147324, upload-time = "2025-10-14T04:40:34.961Z" }, + { url = "https://files.pythonhosted.org/packages/07/fb/0cf61dc84b2b088391830f6274cb57c82e4da8bbc2efeac8c025edb88772/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:a59cb51917aa591b1c4e6a43c132f0cdc3c76dbad6155df4e28ee626cc77a0a3", size = 142742, upload-time = "2025-10-14T04:40:36.105Z" }, + { url = "https://files.pythonhosted.org/packages/62/8b/171935adf2312cd745d290ed93cf16cf0dfe320863ab7cbeeae1dcd6535f/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:8ef3c867360f88ac904fd3f5e1f902f13307af9052646963ee08ff4f131adafc", size = 160863, upload-time = "2025-10-14T04:40:37.188Z" }, + { url = "https://files.pythonhosted.org/packages/09/73/ad875b192bda14f2173bfc1bc9a55e009808484a4b256748d931b6948442/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d9e45d7faa48ee908174d8fe84854479ef838fc6a705c9315372eacbc2f02897", size = 157837, upload-time = "2025-10-14T04:40:38.435Z" }, + { url = "https://files.pythonhosted.org/packages/6d/fc/de9cce525b2c5b94b47c70a4b4fb19f871b24995c728e957ee68ab1671ea/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:840c25fb618a231545cbab0564a799f101b63b9901f2569faecd6b222ac72381", size = 151550, upload-time = "2025-10-14T04:40:40.053Z" }, + { url = "https://files.pythonhosted.org/packages/55/c2/43edd615fdfba8c6f2dfbd459b25a6b3b551f24ea21981e23fb768503ce1/charset_normalizer-3.4.4-cp311-cp311-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:ca5862d5b3928c4940729dacc329aa9102900382fea192fc5e52eb69d6093815", size = 149162, upload-time = "2025-10-14T04:40:41.163Z" }, + { url = "https://files.pythonhosted.org/packages/03/86/bde4ad8b4d0e9429a4e82c1e8f5c659993a9a863ad62c7df05cf7b678d75/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d9c7f57c3d666a53421049053eaacdd14bbd0a528e2186fcb2e672effd053bb0", size = 150019, upload-time = "2025-10-14T04:40:42.276Z" }, + { url = "https://files.pythonhosted.org/packages/1f/86/a151eb2af293a7e7bac3a739b81072585ce36ccfb4493039f49f1d3cae8c/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:277e970e750505ed74c832b4bf75dac7476262ee2a013f5574dd49075879e161", size = 143310, upload-time = "2025-10-14T04:40:43.439Z" }, + { url = "https://files.pythonhosted.org/packages/b5/fe/43dae6144a7e07b87478fdfc4dbe9efd5defb0e7ec29f5f58a55aeef7bf7/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:31fd66405eaf47bb62e8cd575dc621c56c668f27d46a61d975a249930dd5e2a4", size = 162022, upload-time = "2025-10-14T04:40:44.547Z" }, + { url = "https://files.pythonhosted.org/packages/80/e6/7aab83774f5d2bca81f42ac58d04caf44f0cc2b65fc6db2b3b2e8a05f3b3/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_riscv64.whl", hash = "sha256:0d3d8f15c07f86e9ff82319b3d9ef6f4bf907608f53fe9d92b28ea9ae3d1fd89", size = 149383, upload-time = "2025-10-14T04:40:46.018Z" }, + { url = "https://files.pythonhosted.org/packages/4f/e8/b289173b4edae05c0dde07f69f8db476a0b511eac556dfe0d6bda3c43384/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:9f7fcd74d410a36883701fafa2482a6af2ff5ba96b9a620e9e0721e28ead5569", size = 159098, upload-time = "2025-10-14T04:40:47.081Z" }, + { url = "https://files.pythonhosted.org/packages/d8/df/fe699727754cae3f8478493c7f45f777b17c3ef0600e28abfec8619eb49c/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ebf3e58c7ec8a8bed6d66a75d7fb37b55e5015b03ceae72a8e7c74495551e224", size = 152991, upload-time = "2025-10-14T04:40:48.246Z" }, + { url = "https://files.pythonhosted.org/packages/1a/86/584869fe4ddb6ffa3bd9f491b87a01568797fb9bd8933f557dba9771beaf/charset_normalizer-3.4.4-cp311-cp311-win32.whl", hash = "sha256:eecbc200c7fd5ddb9a7f16c7decb07b566c29fa2161a16cf67b8d068bd21690a", size = 99456, upload-time = "2025-10-14T04:40:49.376Z" }, + { url = "https://files.pythonhosted.org/packages/65/f6/62fdd5feb60530f50f7e38b4f6a1d5203f4d16ff4f9f0952962c044e919a/charset_normalizer-3.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:5ae497466c7901d54b639cf42d5b8c1b6a4fead55215500d2f486d34db48d016", size = 106978, upload-time = "2025-10-14T04:40:50.844Z" }, + { url = "https://files.pythonhosted.org/packages/7a/9d/0710916e6c82948b3be62d9d398cb4fcf4e97b56d6a6aeccd66c4b2f2bd5/charset_normalizer-3.4.4-cp311-cp311-win_arm64.whl", hash = "sha256:65e2befcd84bc6f37095f5961e68a6f077bf44946771354a28ad434c2cce0ae1", size = 99969, upload-time = "2025-10-14T04:40:52.272Z" }, + { url = "https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0a98e6759f854bd25a58a73fa88833fba3b7c491169f86ce1180c948ab3fd394", size = 208425, upload-time = "2025-10-14T04:40:53.353Z" }, + { url = "https://files.pythonhosted.org/packages/9d/6a/04130023fef2a0d9c62d0bae2649b69f7b7d8d24ea5536feef50551029df/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b5b290ccc2a263e8d185130284f8501e3e36c5e02750fc6b6bdeb2e9e96f1e25", size = 148162, upload-time = "2025-10-14T04:40:54.558Z" }, + { url = "https://files.pythonhosted.org/packages/78/29/62328d79aa60da22c9e0b9a66539feae06ca0f5a4171ac4f7dc285b83688/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74bb723680f9f7a6234dcf67aea57e708ec1fbdf5699fb91dfd6f511b0a320ef", size = 144558, upload-time = "2025-10-14T04:40:55.677Z" }, + { url = "https://files.pythonhosted.org/packages/86/bb/b32194a4bf15b88403537c2e120b817c61cd4ecffa9b6876e941c3ee38fe/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f1e34719c6ed0b92f418c7c780480b26b5d9c50349e9a9af7d76bf757530350d", size = 161497, upload-time = "2025-10-14T04:40:57.217Z" }, + { url = "https://files.pythonhosted.org/packages/19/89/a54c82b253d5b9b111dc74aca196ba5ccfcca8242d0fb64146d4d3183ff1/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:2437418e20515acec67d86e12bf70056a33abdacb5cb1655042f6538d6b085a8", size = 159240, upload-time = "2025-10-14T04:40:58.358Z" }, + { url = "https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11d694519d7f29d6cd09f6ac70028dba10f92f6cdd059096db198c283794ac86", size = 153471, upload-time = "2025-10-14T04:40:59.468Z" }, + { url = "https://files.pythonhosted.org/packages/61/fa/fbf177b55bdd727010f9c0a3c49eefa1d10f960e5f09d1d887bf93c2e698/charset_normalizer-3.4.4-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:ac1c4a689edcc530fc9d9aa11f5774b9e2f33f9a0c6a57864e90908f5208d30a", size = 150864, upload-time = "2025-10-14T04:41:00.623Z" }, + { url = "https://files.pythonhosted.org/packages/05/12/9fbc6a4d39c0198adeebbde20b619790e9236557ca59fc40e0e3cebe6f40/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:21d142cc6c0ec30d2efee5068ca36c128a30b0f2c53c1c07bd78cb6bc1d3be5f", size = 150647, upload-time = "2025-10-14T04:41:01.754Z" }, + { url = "https://files.pythonhosted.org/packages/ad/1f/6a9a593d52e3e8c5d2b167daf8c6b968808efb57ef4c210acb907c365bc4/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:5dbe56a36425d26d6cfb40ce79c314a2e4dd6211d51d6d2191c00bed34f354cc", size = 145110, upload-time = "2025-10-14T04:41:03.231Z" }, + { url = "https://files.pythonhosted.org/packages/30/42/9a52c609e72471b0fc54386dc63c3781a387bb4fe61c20231a4ebcd58bdd/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5bfbb1b9acf3334612667b61bd3002196fe2a1eb4dd74d247e0f2a4d50ec9bbf", size = 162839, upload-time = "2025-10-14T04:41:04.715Z" }, + { url = "https://files.pythonhosted.org/packages/c4/5b/c0682bbf9f11597073052628ddd38344a3d673fda35a36773f7d19344b23/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:d055ec1e26e441f6187acf818b73564e6e6282709e9bcb5b63f5b23068356a15", size = 150667, upload-time = "2025-10-14T04:41:05.827Z" }, + { url = "https://files.pythonhosted.org/packages/e4/24/a41afeab6f990cf2daf6cb8c67419b63b48cf518e4f56022230840c9bfb2/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:af2d8c67d8e573d6de5bc30cdb27e9b95e49115cd9baad5ddbd1a6207aaa82a9", size = 160535, upload-time = "2025-10-14T04:41:06.938Z" }, + { url = "https://files.pythonhosted.org/packages/2a/e5/6a4ce77ed243c4a50a1fecca6aaaab419628c818a49434be428fe24c9957/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:780236ac706e66881f3b7f2f32dfe90507a09e67d1d454c762cf642e6e1586e0", size = 154816, upload-time = "2025-10-14T04:41:08.101Z" }, + { url = "https://files.pythonhosted.org/packages/a8/ef/89297262b8092b312d29cdb2517cb1237e51db8ecef2e9af5edbe7b683b1/charset_normalizer-3.4.4-cp312-cp312-win32.whl", hash = "sha256:5833d2c39d8896e4e19b689ffc198f08ea58116bee26dea51e362ecc7cd3ed26", size = 99694, upload-time = "2025-10-14T04:41:09.23Z" }, + { url = "https://files.pythonhosted.org/packages/3d/2d/1e5ed9dd3b3803994c155cd9aacb60c82c331bad84daf75bcb9c91b3295e/charset_normalizer-3.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:a79cfe37875f822425b89a82333404539ae63dbdddf97f84dcbc3d339aae9525", size = 107131, upload-time = "2025-10-14T04:41:10.467Z" }, + { url = "https://files.pythonhosted.org/packages/d0/d9/0ed4c7098a861482a7b6a95603edce4c0d9db2311af23da1fb2b75ec26fc/charset_normalizer-3.4.4-cp312-cp312-win_arm64.whl", hash = "sha256:376bec83a63b8021bb5c8ea75e21c4ccb86e7e45ca4eb81146091b56599b80c3", size = 100390, upload-time = "2025-10-14T04:41:11.915Z" }, + { url = "https://files.pythonhosted.org/packages/97/45/4b3a1239bbacd321068ea6e7ac28875b03ab8bc0aa0966452db17cd36714/charset_normalizer-3.4.4-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:e1f185f86a6f3403aa2420e815904c67b2f9ebc443f045edd0de921108345794", size = 208091, upload-time = "2025-10-14T04:41:13.346Z" }, + { url = "https://files.pythonhosted.org/packages/7d/62/73a6d7450829655a35bb88a88fca7d736f9882a27eacdca2c6d505b57e2e/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6b39f987ae8ccdf0d2642338faf2abb1862340facc796048b604ef14919e55ed", size = 147936, upload-time = "2025-10-14T04:41:14.461Z" }, + { url = "https://files.pythonhosted.org/packages/89/c5/adb8c8b3d6625bef6d88b251bbb0d95f8205831b987631ab0c8bb5d937c2/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:3162d5d8ce1bb98dd51af660f2121c55d0fa541b46dff7bb9b9f86ea1d87de72", size = 144180, upload-time = "2025-10-14T04:41:15.588Z" }, + { url = "https://files.pythonhosted.org/packages/91/ed/9706e4070682d1cc219050b6048bfd293ccf67b3d4f5a4f39207453d4b99/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:81d5eb2a312700f4ecaa977a8235b634ce853200e828fbadf3a9c50bab278328", size = 161346, upload-time = "2025-10-14T04:41:16.738Z" }, + { url = "https://files.pythonhosted.org/packages/d5/0d/031f0d95e4972901a2f6f09ef055751805ff541511dc1252ba3ca1f80cf5/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5bd2293095d766545ec1a8f612559f6b40abc0eb18bb2f5d1171872d34036ede", size = 158874, upload-time = "2025-10-14T04:41:17.923Z" }, + { url = "https://files.pythonhosted.org/packages/f5/83/6ab5883f57c9c801ce5e5677242328aa45592be8a00644310a008d04f922/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a8a8b89589086a25749f471e6a900d3f662d1d3b6e2e59dcecf787b1cc3a1894", size = 153076, upload-time = "2025-10-14T04:41:19.106Z" }, + { url = "https://files.pythonhosted.org/packages/75/1e/5ff781ddf5260e387d6419959ee89ef13878229732732ee73cdae01800f2/charset_normalizer-3.4.4-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:bc7637e2f80d8530ee4a78e878bce464f70087ce73cf7c1caf142416923b98f1", size = 150601, upload-time = "2025-10-14T04:41:20.245Z" }, + { url = "https://files.pythonhosted.org/packages/d7/57/71be810965493d3510a6ca79b90c19e48696fb1ff964da319334b12677f0/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f8bf04158c6b607d747e93949aa60618b61312fe647a6369f88ce2ff16043490", size = 150376, upload-time = "2025-10-14T04:41:21.398Z" }, + { url = "https://files.pythonhosted.org/packages/e5/d5/c3d057a78c181d007014feb7e9f2e65905a6c4ef182c0ddf0de2924edd65/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:554af85e960429cf30784dd47447d5125aaa3b99a6f0683589dbd27e2f45da44", size = 144825, upload-time = "2025-10-14T04:41:22.583Z" }, + { url = "https://files.pythonhosted.org/packages/e6/8c/d0406294828d4976f275ffbe66f00266c4b3136b7506941d87c00cab5272/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:74018750915ee7ad843a774364e13a3db91682f26142baddf775342c3f5b1133", size = 162583, upload-time = "2025-10-14T04:41:23.754Z" }, + { url = "https://files.pythonhosted.org/packages/d7/24/e2aa1f18c8f15c4c0e932d9287b8609dd30ad56dbe41d926bd846e22fb8d/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:c0463276121fdee9c49b98908b3a89c39be45d86d1dbaa22957e38f6321d4ce3", size = 150366, upload-time = "2025-10-14T04:41:25.27Z" }, + { url = "https://files.pythonhosted.org/packages/e4/5b/1e6160c7739aad1e2df054300cc618b06bf784a7a164b0f238360721ab86/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:362d61fd13843997c1c446760ef36f240cf81d3ebf74ac62652aebaf7838561e", size = 160300, upload-time = "2025-10-14T04:41:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/7a/10/f882167cd207fbdd743e55534d5d9620e095089d176d55cb22d5322f2afd/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9a26f18905b8dd5d685d6d07b0cdf98a79f3c7a918906af7cc143ea2e164c8bc", size = 154465, upload-time = "2025-10-14T04:41:28.322Z" }, + { url = "https://files.pythonhosted.org/packages/89/66/c7a9e1b7429be72123441bfdbaf2bc13faab3f90b933f664db506dea5915/charset_normalizer-3.4.4-cp313-cp313-win32.whl", hash = "sha256:9b35f4c90079ff2e2edc5b26c0c77925e5d2d255c42c74fdb70fb49b172726ac", size = 99404, upload-time = "2025-10-14T04:41:29.95Z" }, + { url = "https://files.pythonhosted.org/packages/c4/26/b9924fa27db384bdcd97ab83b4f0a8058d96ad9626ead570674d5e737d90/charset_normalizer-3.4.4-cp313-cp313-win_amd64.whl", hash = "sha256:b435cba5f4f750aa6c0a0d92c541fb79f69a387c91e61f1795227e4ed9cece14", size = 107092, upload-time = "2025-10-14T04:41:31.188Z" }, + { url = "https://files.pythonhosted.org/packages/af/8f/3ed4bfa0c0c72a7ca17f0380cd9e4dd842b09f664e780c13cff1dcf2ef1b/charset_normalizer-3.4.4-cp313-cp313-win_arm64.whl", hash = "sha256:542d2cee80be6f80247095cc36c418f7bddd14f4a6de45af91dfad36d817bba2", size = 100408, upload-time = "2025-10-14T04:41:32.624Z" }, + { url = "https://files.pythonhosted.org/packages/2a/35/7051599bd493e62411d6ede36fd5af83a38f37c4767b92884df7301db25d/charset_normalizer-3.4.4-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:da3326d9e65ef63a817ecbcc0df6e94463713b754fe293eaa03da99befb9a5bd", size = 207746, upload-time = "2025-10-14T04:41:33.773Z" }, + { url = "https://files.pythonhosted.org/packages/10/9a/97c8d48ef10d6cd4fcead2415523221624bf58bcf68a802721a6bc807c8f/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8af65f14dc14a79b924524b1e7fffe304517b2bff5a58bf64f30b98bbc5079eb", size = 147889, upload-time = "2025-10-14T04:41:34.897Z" }, + { url = "https://files.pythonhosted.org/packages/10/bf/979224a919a1b606c82bd2c5fa49b5c6d5727aa47b4312bb27b1734f53cd/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74664978bb272435107de04e36db5a9735e78232b85b77d45cfb38f758efd33e", size = 143641, upload-time = "2025-10-14T04:41:36.116Z" }, + { url = "https://files.pythonhosted.org/packages/ba/33/0ad65587441fc730dc7bd90e9716b30b4702dc7b617e6ba4997dc8651495/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:752944c7ffbfdd10c074dc58ec2d5a8a4cd9493b314d367c14d24c17684ddd14", size = 160779, upload-time = "2025-10-14T04:41:37.229Z" }, + { url = "https://files.pythonhosted.org/packages/67/ed/331d6b249259ee71ddea93f6f2f0a56cfebd46938bde6fcc6f7b9a3d0e09/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d1f13550535ad8cff21b8d757a3257963e951d96e20ec82ab44bc64aeb62a191", size = 159035, upload-time = "2025-10-14T04:41:38.368Z" }, + { url = "https://files.pythonhosted.org/packages/67/ff/f6b948ca32e4f2a4576aa129d8bed61f2e0543bf9f5f2b7fc3758ed005c9/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ecaae4149d99b1c9e7b88bb03e3221956f68fd6d50be2ef061b2381b61d20838", size = 152542, upload-time = "2025-10-14T04:41:39.862Z" }, + { url = "https://files.pythonhosted.org/packages/16/85/276033dcbcc369eb176594de22728541a925b2632f9716428c851b149e83/charset_normalizer-3.4.4-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:cb6254dc36b47a990e59e1068afacdcd02958bdcce30bb50cc1700a8b9d624a6", size = 149524, upload-time = "2025-10-14T04:41:41.319Z" }, + { url = "https://files.pythonhosted.org/packages/9e/f2/6a2a1f722b6aba37050e626530a46a68f74e63683947a8acff92569f979a/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c8ae8a0f02f57a6e61203a31428fa1d677cbe50c93622b4149d5c0f319c1d19e", size = 150395, upload-time = "2025-10-14T04:41:42.539Z" }, + { url = "https://files.pythonhosted.org/packages/60/bb/2186cb2f2bbaea6338cad15ce23a67f9b0672929744381e28b0592676824/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:47cc91b2f4dd2833fddaedd2893006b0106129d4b94fdb6af1f4ce5a9965577c", size = 143680, upload-time = "2025-10-14T04:41:43.661Z" }, + { url = "https://files.pythonhosted.org/packages/7d/a5/bf6f13b772fbb2a90360eb620d52ed8f796f3c5caee8398c3b2eb7b1c60d/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:82004af6c302b5d3ab2cfc4cc5f29db16123b1a8417f2e25f9066f91d4411090", size = 162045, upload-time = "2025-10-14T04:41:44.821Z" }, + { url = "https://files.pythonhosted.org/packages/df/c5/d1be898bf0dc3ef9030c3825e5d3b83f2c528d207d246cbabe245966808d/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:2b7d8f6c26245217bd2ad053761201e9f9680f8ce52f0fcd8d0755aeae5b2152", size = 149687, upload-time = "2025-10-14T04:41:46.442Z" }, + { url = "https://files.pythonhosted.org/packages/a5/42/90c1f7b9341eef50c8a1cb3f098ac43b0508413f33affd762855f67a410e/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:799a7a5e4fb2d5898c60b640fd4981d6a25f1c11790935a44ce38c54e985f828", size = 160014, upload-time = "2025-10-14T04:41:47.631Z" }, + { url = "https://files.pythonhosted.org/packages/76/be/4d3ee471e8145d12795ab655ece37baed0929462a86e72372fd25859047c/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:99ae2cffebb06e6c22bdc25801d7b30f503cc87dbd283479e7b606f70aff57ec", size = 154044, upload-time = "2025-10-14T04:41:48.81Z" }, + { url = "https://files.pythonhosted.org/packages/b0/6f/8f7af07237c34a1defe7defc565a9bc1807762f672c0fde711a4b22bf9c0/charset_normalizer-3.4.4-cp314-cp314-win32.whl", hash = "sha256:f9d332f8c2a2fcbffe1378594431458ddbef721c1769d78e2cbc06280d8155f9", size = 99940, upload-time = "2025-10-14T04:41:49.946Z" }, + { url = "https://files.pythonhosted.org/packages/4b/51/8ade005e5ca5b0d80fb4aff72a3775b325bdc3d27408c8113811a7cbe640/charset_normalizer-3.4.4-cp314-cp314-win_amd64.whl", hash = "sha256:8a6562c3700cce886c5be75ade4a5db4214fda19fede41d9792d100288d8f94c", size = 107104, upload-time = "2025-10-14T04:41:51.051Z" }, + { url = "https://files.pythonhosted.org/packages/da/5f/6b8f83a55bb8278772c5ae54a577f3099025f9ade59d0136ac24a0df4bde/charset_normalizer-3.4.4-cp314-cp314-win_arm64.whl", hash = "sha256:de00632ca48df9daf77a2c65a484531649261ec9f25489917f09e455cb09ddb2", size = 100743, upload-time = "2025-10-14T04:41:52.122Z" }, + { url = "https://files.pythonhosted.org/packages/46/7c/0c4760bccf082737ca7ab84a4c2034fcc06b1f21cf3032ea98bd6feb1725/charset_normalizer-3.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a9768c477b9d7bd54bc0c86dbaebdec6f03306675526c9927c0e8a04e8f94af9", size = 209609, upload-time = "2025-10-14T04:42:10.922Z" }, + { url = "https://files.pythonhosted.org/packages/bb/a4/69719daef2f3d7f1819de60c9a6be981b8eeead7542d5ec4440f3c80e111/charset_normalizer-3.4.4-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1bee1e43c28aa63cb16e5c14e582580546b08e535299b8b6158a7c9c768a1f3d", size = 149029, upload-time = "2025-10-14T04:42:12.38Z" }, + { url = "https://files.pythonhosted.org/packages/e6/21/8d4e1d6c1e6070d3672908b8e4533a71b5b53e71d16828cc24d0efec564c/charset_normalizer-3.4.4-cp39-cp39-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:fd44c878ea55ba351104cb93cc85e74916eb8fa440ca7903e57575e97394f608", size = 144580, upload-time = "2025-10-14T04:42:13.549Z" }, + { url = "https://files.pythonhosted.org/packages/a7/0a/a616d001b3f25647a9068e0b9199f697ce507ec898cacb06a0d5a1617c99/charset_normalizer-3.4.4-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:0f04b14ffe5fdc8c4933862d8306109a2c51e0704acfa35d51598eb45a1e89fc", size = 162340, upload-time = "2025-10-14T04:42:14.892Z" }, + { url = "https://files.pythonhosted.org/packages/85/93/060b52deb249a5450460e0585c88a904a83aec474ab8e7aba787f45e79f2/charset_normalizer-3.4.4-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:cd09d08005f958f370f539f186d10aec3377d55b9eeb0d796025d4886119d76e", size = 159619, upload-time = "2025-10-14T04:42:16.676Z" }, + { url = "https://files.pythonhosted.org/packages/dd/21/0274deb1cc0632cd587a9a0ec6b4674d9108e461cb4cd40d457adaeb0564/charset_normalizer-3.4.4-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4fe7859a4e3e8457458e2ff592f15ccb02f3da787fcd31e0183879c3ad4692a1", size = 153980, upload-time = "2025-10-14T04:42:17.917Z" }, + { url = "https://files.pythonhosted.org/packages/28/2b/e3d7d982858dccc11b31906976323d790dded2017a0572f093ff982d692f/charset_normalizer-3.4.4-cp39-cp39-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:fa09f53c465e532f4d3db095e0c55b615f010ad81803d383195b6b5ca6cbf5f3", size = 152174, upload-time = "2025-10-14T04:42:19.018Z" }, + { url = "https://files.pythonhosted.org/packages/6e/ff/4a269f8e35f1e58b2df52c131a1fa019acb7ef3f8697b7d464b07e9b492d/charset_normalizer-3.4.4-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:7fa17817dc5625de8a027cb8b26d9fefa3ea28c8253929b8d6649e705d2835b6", size = 151666, upload-time = "2025-10-14T04:42:20.171Z" }, + { url = "https://files.pythonhosted.org/packages/da/c9/ec39870f0b330d58486001dd8e532c6b9a905f5765f58a6f8204926b4a93/charset_normalizer-3.4.4-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:5947809c8a2417be3267efc979c47d76a079758166f7d43ef5ae8e9f92751f88", size = 145550, upload-time = "2025-10-14T04:42:21.324Z" }, + { url = "https://files.pythonhosted.org/packages/75/8f/d186ab99e40e0ed9f82f033d6e49001701c81244d01905dd4a6924191a30/charset_normalizer-3.4.4-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4902828217069c3c5c71094537a8e623f5d097858ac6ca8252f7b4d10b7560f1", size = 163721, upload-time = "2025-10-14T04:42:22.46Z" }, + { url = "https://files.pythonhosted.org/packages/96/b1/6047663b9744df26a7e479ac1e77af7134b1fcf9026243bb48ee2d18810f/charset_normalizer-3.4.4-cp39-cp39-musllinux_1_2_riscv64.whl", hash = "sha256:7c308f7e26e4363d79df40ca5b2be1c6ba9f02bdbccfed5abddb7859a6ce72cf", size = 152127, upload-time = "2025-10-14T04:42:23.712Z" }, + { url = "https://files.pythonhosted.org/packages/59/78/e5a6eac9179f24f704d1be67d08704c3c6ab9f00963963524be27c18ed87/charset_normalizer-3.4.4-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:2c9d3c380143a1fedbff95a312aa798578371eb29da42106a29019368a475318", size = 161175, upload-time = "2025-10-14T04:42:24.87Z" }, + { url = "https://files.pythonhosted.org/packages/e5/43/0e626e42d54dd2f8dd6fc5e1c5ff00f05fbca17cb699bedead2cae69c62f/charset_normalizer-3.4.4-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:cb01158d8b88ee68f15949894ccc6712278243d95f344770fa7593fa2d94410c", size = 155375, upload-time = "2025-10-14T04:42:27.246Z" }, + { url = "https://files.pythonhosted.org/packages/e9/91/d9615bf2e06f35e4997616ff31248c3657ed649c5ab9d35ea12fce54e380/charset_normalizer-3.4.4-cp39-cp39-win32.whl", hash = "sha256:2677acec1a2f8ef614c6888b5b4ae4060cc184174a938ed4e8ef690e15d3e505", size = 99692, upload-time = "2025-10-14T04:42:28.425Z" }, + { url = "https://files.pythonhosted.org/packages/d1/a9/6c040053909d9d1ef4fcab45fddec083aedc9052c10078339b47c8573ea8/charset_normalizer-3.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:f8e160feb2aed042cd657a72acc0b481212ed28b1b9a95c0cee1621b524e1966", size = 107192, upload-time = "2025-10-14T04:42:29.482Z" }, + { url = "https://files.pythonhosted.org/packages/f0/c6/4fa536b2c0cd3edfb7ccf8469fa0f363ea67b7213a842b90909ca33dd851/charset_normalizer-3.4.4-cp39-cp39-win_arm64.whl", hash = "sha256:b5d84d37db046c5ca74ee7bb47dd6cbc13f80665fdde3e8040bdd3fb015ecb50", size = 100220, upload-time = "2025-10-14T04:42:30.632Z" }, + { url = "https://files.pythonhosted.org/packages/0a/4c/925909008ed5a988ccbb72dcc897407e5d6d3bd72410d69e051fc0c14647/charset_normalizer-3.4.4-py3-none-any.whl", hash = "sha256:7a32c560861a02ff789ad905a2fe94e3f840803362c84fecf1851cb4cf3dc37f", size = 53402, upload-time = "2025-10-14T04:42:31.76Z" }, +] + +[[package]] +name = "click" +version = "8.1.8" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version < '3.10' and sys_platform == 'win32'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/2e/0090cbf739cee7d23781ad4b89a9894a41538e4fcf4c31dcdd705b78eb8b/click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a", size = 226593, upload-time = "2024-12-21T18:38:44.339Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7e/d4/7ebdbd03970677812aac39c869717059dbb71a4cfc033ca6e5221787892c/click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2", size = 98188, upload-time = "2024-12-21T18:38:41.666Z" }, +] + +[[package]] +name = "click" +version = "8.3.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version >= '3.10' and sys_platform == 'win32'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/46/61/de6cd827efad202d7057d93e0fed9294b96952e188f7384832791c7b2254/click-8.3.0.tar.gz", hash = "sha256:e7b8232224eba16f4ebe410c25ced9f7875cb5f3263ffc93cc3e8da705e229c4", size = 276943, upload-time = "2025-09-18T17:32:23.696Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/db/d3/9dcc0f5797f070ec8edf30fbadfb200e71d9db6b84d211e3b2085a7589a0/click-8.3.0-py3-none-any.whl", hash = "sha256:9b9f285302c6e3064f4330c05f05b81945b2a39544279343e6e7c5f27a9baddc", size = 107295, upload-time = "2025-09-18T17:32:22.42Z" }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, +] + +[[package]] +name = "comm" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4c/13/7d740c5849255756bc17888787313b61fd38a0a8304fc4f073dfc46122aa/comm-0.2.3.tar.gz", hash = "sha256:2dc8048c10962d55d7ad693be1e7045d891b7ce8d999c97963a5e3e99c055971", size = 6319, upload-time = "2025-07-25T14:02:04.452Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl", hash = "sha256:c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417", size = 7294, upload-time = "2025-07-25T14:02:02.896Z" }, +] + +[[package]] +name = "contourpy" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f5/f6/31a8f28b4a2a4fa0e01085e542f3081ab0588eff8e589d39d775172c9792/contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4", size = 13464370, upload-time = "2024-08-27T21:00:03.328Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6c/e0/be8dcc796cfdd96708933e0e2da99ba4bb8f9b2caa9d560a50f3f09a65f3/contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7", size = 265366, upload-time = "2024-08-27T20:50:09.947Z" }, + { url = "https://files.pythonhosted.org/packages/50/d6/c953b400219443535d412fcbbc42e7a5e823291236bc0bb88936e3cc9317/contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42", size = 249226, upload-time = "2024-08-27T20:50:16.1Z" }, + { url = "https://files.pythonhosted.org/packages/6f/b4/6fffdf213ffccc28483c524b9dad46bb78332851133b36ad354b856ddc7c/contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7", size = 308460, upload-time = "2024-08-27T20:50:22.536Z" }, + { url = "https://files.pythonhosted.org/packages/cf/6c/118fc917b4050f0afe07179a6dcbe4f3f4ec69b94f36c9e128c4af480fb8/contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab", size = 347623, upload-time = "2024-08-27T20:50:28.806Z" }, + { url = "https://files.pythonhosted.org/packages/f9/a4/30ff110a81bfe3abf7b9673284d21ddce8cc1278f6f77393c91199da4c90/contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589", size = 317761, upload-time = "2024-08-27T20:50:35.126Z" }, + { url = "https://files.pythonhosted.org/packages/99/e6/d11966962b1aa515f5586d3907ad019f4b812c04e4546cc19ebf62b5178e/contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41", size = 322015, upload-time = "2024-08-27T20:50:40.318Z" }, + { url = "https://files.pythonhosted.org/packages/4d/e3/182383743751d22b7b59c3c753277b6aee3637049197624f333dac5b4c80/contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d", size = 1262672, upload-time = "2024-08-27T20:50:55.643Z" }, + { url = "https://files.pythonhosted.org/packages/78/53/974400c815b2e605f252c8fb9297e2204347d1755a5374354ee77b1ea259/contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223", size = 1321688, upload-time = "2024-08-27T20:51:11.293Z" }, + { url = "https://files.pythonhosted.org/packages/52/29/99f849faed5593b2926a68a31882af98afbeac39c7fdf7de491d9c85ec6a/contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f", size = 171145, upload-time = "2024-08-27T20:51:15.2Z" }, + { url = "https://files.pythonhosted.org/packages/a9/97/3f89bba79ff6ff2b07a3cbc40aa693c360d5efa90d66e914f0ff03b95ec7/contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b", size = 216019, upload-time = "2024-08-27T20:51:19.365Z" }, + { url = "https://files.pythonhosted.org/packages/b3/1f/9375917786cb39270b0ee6634536c0e22abf225825602688990d8f5c6c19/contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad", size = 266356, upload-time = "2024-08-27T20:51:24.146Z" }, + { url = "https://files.pythonhosted.org/packages/05/46/9256dd162ea52790c127cb58cfc3b9e3413a6e3478917d1f811d420772ec/contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49", size = 250915, upload-time = "2024-08-27T20:51:28.683Z" }, + { url = "https://files.pythonhosted.org/packages/e1/5d/3056c167fa4486900dfbd7e26a2fdc2338dc58eee36d490a0ed3ddda5ded/contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66", size = 310443, upload-time = "2024-08-27T20:51:33.675Z" }, + { url = "https://files.pythonhosted.org/packages/ca/c2/1a612e475492e07f11c8e267ea5ec1ce0d89971be496c195e27afa97e14a/contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081", size = 348548, upload-time = "2024-08-27T20:51:39.322Z" }, + { url = "https://files.pythonhosted.org/packages/45/cf/2c2fc6bb5874158277b4faf136847f0689e1b1a1f640a36d76d52e78907c/contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1", size = 319118, upload-time = "2024-08-27T20:51:44.717Z" }, + { url = "https://files.pythonhosted.org/packages/03/33/003065374f38894cdf1040cef474ad0546368eea7e3a51d48b8a423961f8/contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d", size = 323162, upload-time = "2024-08-27T20:51:49.683Z" }, + { url = "https://files.pythonhosted.org/packages/42/80/e637326e85e4105a802e42959f56cff2cd39a6b5ef68d5d9aee3ea5f0e4c/contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c", size = 1265396, upload-time = "2024-08-27T20:52:04.926Z" }, + { url = "https://files.pythonhosted.org/packages/7c/3b/8cbd6416ca1bbc0202b50f9c13b2e0b922b64be888f9d9ee88e6cfabfb51/contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb", size = 1324297, upload-time = "2024-08-27T20:52:21.843Z" }, + { url = "https://files.pythonhosted.org/packages/4d/2c/021a7afaa52fe891f25535506cc861c30c3c4e5a1c1ce94215e04b293e72/contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c", size = 171808, upload-time = "2024-08-27T20:52:25.163Z" }, + { url = "https://files.pythonhosted.org/packages/8d/2f/804f02ff30a7fae21f98198828d0857439ec4c91a96e20cf2d6c49372966/contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67", size = 217181, upload-time = "2024-08-27T20:52:29.13Z" }, + { url = "https://files.pythonhosted.org/packages/c9/92/8e0bbfe6b70c0e2d3d81272b58c98ac69ff1a4329f18c73bd64824d8b12e/contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f", size = 267838, upload-time = "2024-08-27T20:52:33.911Z" }, + { url = "https://files.pythonhosted.org/packages/e3/04/33351c5d5108460a8ce6d512307690b023f0cfcad5899499f5c83b9d63b1/contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6", size = 251549, upload-time = "2024-08-27T20:52:39.179Z" }, + { url = "https://files.pythonhosted.org/packages/51/3d/aa0fe6ae67e3ef9f178389e4caaaa68daf2f9024092aa3c6032e3d174670/contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639", size = 303177, upload-time = "2024-08-27T20:52:44.789Z" }, + { url = "https://files.pythonhosted.org/packages/56/c3/c85a7e3e0cab635575d3b657f9535443a6f5d20fac1a1911eaa4bbe1aceb/contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c", size = 341735, upload-time = "2024-08-27T20:52:51.05Z" }, + { url = "https://files.pythonhosted.org/packages/dd/8d/20f7a211a7be966a53f474bc90b1a8202e9844b3f1ef85f3ae45a77151ee/contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06", size = 314679, upload-time = "2024-08-27T20:52:58.473Z" }, + { url = "https://files.pythonhosted.org/packages/6e/be/524e377567defac0e21a46e2a529652d165fed130a0d8a863219303cee18/contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09", size = 320549, upload-time = "2024-08-27T20:53:06.593Z" }, + { url = "https://files.pythonhosted.org/packages/0f/96/fdb2552a172942d888915f3a6663812e9bc3d359d53dafd4289a0fb462f0/contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd", size = 1263068, upload-time = "2024-08-27T20:53:23.442Z" }, + { url = "https://files.pythonhosted.org/packages/2a/25/632eab595e3140adfa92f1322bf8915f68c932bac468e89eae9974cf1c00/contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35", size = 1322833, upload-time = "2024-08-27T20:53:39.243Z" }, + { url = "https://files.pythonhosted.org/packages/73/e3/69738782e315a1d26d29d71a550dbbe3eb6c653b028b150f70c1a5f4f229/contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb", size = 172681, upload-time = "2024-08-27T20:53:43.05Z" }, + { url = "https://files.pythonhosted.org/packages/0c/89/9830ba00d88e43d15e53d64931e66b8792b46eb25e2050a88fec4a0df3d5/contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b", size = 218283, upload-time = "2024-08-27T20:53:47.232Z" }, + { url = "https://files.pythonhosted.org/packages/53/a1/d20415febfb2267af2d7f06338e82171824d08614084714fb2c1dac9901f/contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3", size = 267879, upload-time = "2024-08-27T20:53:51.597Z" }, + { url = "https://files.pythonhosted.org/packages/aa/45/5a28a3570ff6218d8bdfc291a272a20d2648104815f01f0177d103d985e1/contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7", size = 251573, upload-time = "2024-08-27T20:53:55.659Z" }, + { url = "https://files.pythonhosted.org/packages/39/1c/d3f51540108e3affa84f095c8b04f0aa833bb797bc8baa218a952a98117d/contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84", size = 303184, upload-time = "2024-08-27T20:54:00.225Z" }, + { url = "https://files.pythonhosted.org/packages/00/56/1348a44fb6c3a558c1a3a0cd23d329d604c99d81bf5a4b58c6b71aab328f/contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0", size = 340262, upload-time = "2024-08-27T20:54:05.234Z" }, + { url = "https://files.pythonhosted.org/packages/2b/23/00d665ba67e1bb666152131da07e0f24c95c3632d7722caa97fb61470eca/contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b", size = 313806, upload-time = "2024-08-27T20:54:09.889Z" }, + { url = "https://files.pythonhosted.org/packages/5a/42/3cf40f7040bb8362aea19af9a5fb7b32ce420f645dd1590edcee2c657cd5/contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da", size = 319710, upload-time = "2024-08-27T20:54:14.536Z" }, + { url = "https://files.pythonhosted.org/packages/05/32/f3bfa3fc083b25e1a7ae09197f897476ee68e7386e10404bdf9aac7391f0/contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14", size = 1264107, upload-time = "2024-08-27T20:54:29.735Z" }, + { url = "https://files.pythonhosted.org/packages/1c/1e/1019d34473a736664f2439542b890b2dc4c6245f5c0d8cdfc0ccc2cab80c/contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8", size = 1322458, upload-time = "2024-08-27T20:54:45.507Z" }, + { url = "https://files.pythonhosted.org/packages/22/85/4f8bfd83972cf8909a4d36d16b177f7b8bdd942178ea4bf877d4a380a91c/contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294", size = 172643, upload-time = "2024-08-27T20:55:52.754Z" }, + { url = "https://files.pythonhosted.org/packages/cc/4a/fb3c83c1baba64ba90443626c228ca14f19a87c51975d3b1de308dd2cf08/contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087", size = 218301, upload-time = "2024-08-27T20:55:56.509Z" }, + { url = "https://files.pythonhosted.org/packages/76/65/702f4064f397821fea0cb493f7d3bc95a5d703e20954dce7d6d39bacf378/contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8", size = 278972, upload-time = "2024-08-27T20:54:50.347Z" }, + { url = "https://files.pythonhosted.org/packages/80/85/21f5bba56dba75c10a45ec00ad3b8190dbac7fd9a8a8c46c6116c933e9cf/contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b", size = 263375, upload-time = "2024-08-27T20:54:54.909Z" }, + { url = "https://files.pythonhosted.org/packages/0a/64/084c86ab71d43149f91ab3a4054ccf18565f0a8af36abfa92b1467813ed6/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973", size = 307188, upload-time = "2024-08-27T20:55:00.184Z" }, + { url = "https://files.pythonhosted.org/packages/3d/ff/d61a4c288dc42da0084b8d9dc2aa219a850767165d7d9a9c364ff530b509/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18", size = 345644, upload-time = "2024-08-27T20:55:05.673Z" }, + { url = "https://files.pythonhosted.org/packages/ca/aa/00d2313d35ec03f188e8f0786c2fc61f589306e02fdc158233697546fd58/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8", size = 317141, upload-time = "2024-08-27T20:55:11.047Z" }, + { url = "https://files.pythonhosted.org/packages/8d/6a/b5242c8cb32d87f6abf4f5e3044ca397cb1a76712e3fa2424772e3ff495f/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6", size = 323469, upload-time = "2024-08-27T20:55:15.914Z" }, + { url = "https://files.pythonhosted.org/packages/6f/a6/73e929d43028a9079aca4bde107494864d54f0d72d9db508a51ff0878593/contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2", size = 1260894, upload-time = "2024-08-27T20:55:31.553Z" }, + { url = "https://files.pythonhosted.org/packages/2b/1e/1e726ba66eddf21c940821df8cf1a7d15cb165f0682d62161eaa5e93dae1/contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927", size = 1314829, upload-time = "2024-08-27T20:55:47.837Z" }, + { url = "https://files.pythonhosted.org/packages/b3/e3/b9f72758adb6ef7397327ceb8b9c39c75711affb220e4f53c745ea1d5a9a/contourpy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a11077e395f67ffc2c44ec2418cfebed032cd6da3022a94fc227b6faf8e2acb8", size = 265518, upload-time = "2024-08-27T20:56:01.333Z" }, + { url = "https://files.pythonhosted.org/packages/ec/22/19f5b948367ab5260fb41d842c7a78dae645603881ea6bc39738bcfcabf6/contourpy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e8134301d7e204c88ed7ab50028ba06c683000040ede1d617298611f9dc6240c", size = 249350, upload-time = "2024-08-27T20:56:05.432Z" }, + { url = "https://files.pythonhosted.org/packages/26/76/0c7d43263dd00ae21a91a24381b7e813d286a3294d95d179ef3a7b9fb1d7/contourpy-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e12968fdfd5bb45ffdf6192a590bd8ddd3ba9e58360b29683c6bb71a7b41edca", size = 309167, upload-time = "2024-08-27T20:56:10.034Z" }, + { url = "https://files.pythonhosted.org/packages/96/3b/cadff6773e89f2a5a492c1a8068e21d3fccaf1a1c1df7d65e7c8e3ef60ba/contourpy-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd2a0fc506eccaaa7595b7e1418951f213cf8255be2600f1ea1b61e46a60c55f", size = 348279, upload-time = "2024-08-27T20:56:15.41Z" }, + { url = "https://files.pythonhosted.org/packages/e1/86/158cc43aa549d2081a955ab11c6bdccc7a22caacc2af93186d26f5f48746/contourpy-1.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfb5c62ce023dfc410d6059c936dcf96442ba40814aefbfa575425a3a7f19dc", size = 318519, upload-time = "2024-08-27T20:56:21.813Z" }, + { url = "https://files.pythonhosted.org/packages/05/11/57335544a3027e9b96a05948c32e566328e3a2f84b7b99a325b7a06d2b06/contourpy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68a32389b06b82c2fdd68276148d7b9275b5f5cf13e5417e4252f6d1a34f72a2", size = 321922, upload-time = "2024-08-27T20:56:26.983Z" }, + { url = "https://files.pythonhosted.org/packages/0b/e3/02114f96543f4a1b694333b92a6dcd4f8eebbefcc3a5f3bbb1316634178f/contourpy-1.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:94e848a6b83da10898cbf1311a815f770acc9b6a3f2d646f330d57eb4e87592e", size = 1258017, upload-time = "2024-08-27T20:56:42.246Z" }, + { url = "https://files.pythonhosted.org/packages/f3/3b/bfe4c81c6d5881c1c643dde6620be0b42bf8aab155976dd644595cfab95c/contourpy-1.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d78ab28a03c854a873787a0a42254a0ccb3cb133c672f645c9f9c8f3ae9d0800", size = 1316773, upload-time = "2024-08-27T20:56:58.58Z" }, + { url = "https://files.pythonhosted.org/packages/f1/17/c52d2970784383cafb0bd918b6fb036d98d96bbf0bc1befb5d1e31a07a70/contourpy-1.3.0-cp39-cp39-win32.whl", hash = "sha256:81cb5ed4952aae6014bc9d0421dec7c5835c9c8c31cdf51910b708f548cf58e5", size = 171353, upload-time = "2024-08-27T20:57:02.718Z" }, + { url = "https://files.pythonhosted.org/packages/53/23/db9f69676308e094d3c45f20cc52e12d10d64f027541c995d89c11ad5c75/contourpy-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:14e262f67bd7e6eb6880bc564dcda30b15e351a594657e55b7eec94b6ef72843", size = 211817, upload-time = "2024-08-27T20:57:06.328Z" }, + { url = "https://files.pythonhosted.org/packages/d1/09/60e486dc2b64c94ed33e58dcfb6f808192c03dfc5574c016218b9b7680dc/contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c", size = 261886, upload-time = "2024-08-27T20:57:10.863Z" }, + { url = "https://files.pythonhosted.org/packages/19/20/b57f9f7174fcd439a7789fb47d764974ab646fa34d1790551de386457a8e/contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779", size = 311008, upload-time = "2024-08-27T20:57:15.588Z" }, + { url = "https://files.pythonhosted.org/packages/74/fc/5040d42623a1845d4f17a418e590fd7a79ae8cb2bad2b2f83de63c3bdca4/contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4", size = 215690, upload-time = "2024-08-27T20:57:19.321Z" }, + { url = "https://files.pythonhosted.org/packages/2b/24/dc3dcd77ac7460ab7e9d2b01a618cb31406902e50e605a8d6091f0a8f7cc/contourpy-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:00ccd0dbaad6d804ab259820fa7cb0b8036bda0686ef844d24125d8287178ce0", size = 261894, upload-time = "2024-08-27T20:57:23.873Z" }, + { url = "https://files.pythonhosted.org/packages/b1/db/531642a01cfec39d1682e46b5457b07cf805e3c3c584ec27e2a6223f8f6c/contourpy-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca947601224119117f7c19c9cdf6b3ab54c5726ef1d906aa4a69dfb6dd58102", size = 311099, upload-time = "2024-08-27T20:57:28.58Z" }, + { url = "https://files.pythonhosted.org/packages/38/1e/94bda024d629f254143a134eead69e21c836429a2a6ce82209a00ddcb79a/contourpy-1.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6ec93afeb848a0845a18989da3beca3eec2c0f852322efe21af1931147d12cb", size = 215838, upload-time = "2024-08-27T20:57:32.913Z" }, +] + +[[package]] +name = "contourpy" +version = "1.3.2" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/54/eb9bfc647b19f2009dd5c7f5ec51c4e6ca831725f1aea7a993034f483147/contourpy-1.3.2.tar.gz", hash = "sha256:b6945942715a034c671b7fc54f9588126b0b8bf23db2696e3ca8328f3ff0ab54", size = 13466130, upload-time = "2025-04-15T17:47:53.79Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/12/a3/da4153ec8fe25d263aa48c1a4cbde7f49b59af86f0b6f7862788c60da737/contourpy-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ba38e3f9f330af820c4b27ceb4b9c7feee5fe0493ea53a8720f4792667465934", size = 268551, upload-time = "2025-04-15T17:34:46.581Z" }, + { url = "https://files.pythonhosted.org/packages/2f/6c/330de89ae1087eb622bfca0177d32a7ece50c3ef07b28002de4757d9d875/contourpy-1.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:dc41ba0714aa2968d1f8674ec97504a8f7e334f48eeacebcaa6256213acb0989", size = 253399, upload-time = "2025-04-15T17:34:51.427Z" }, + { url = "https://files.pythonhosted.org/packages/c1/bd/20c6726b1b7f81a8bee5271bed5c165f0a8e1f572578a9d27e2ccb763cb2/contourpy-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9be002b31c558d1ddf1b9b415b162c603405414bacd6932d031c5b5a8b757f0d", size = 312061, upload-time = "2025-04-15T17:34:55.961Z" }, + { url = "https://files.pythonhosted.org/packages/22/fc/a9665c88f8a2473f823cf1ec601de9e5375050f1958cbb356cdf06ef1ab6/contourpy-1.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8d2e74acbcba3bfdb6d9d8384cdc4f9260cae86ed9beee8bd5f54fee49a430b9", size = 351956, upload-time = "2025-04-15T17:35:00.992Z" }, + { url = "https://files.pythonhosted.org/packages/25/eb/9f0a0238f305ad8fb7ef42481020d6e20cf15e46be99a1fcf939546a177e/contourpy-1.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e259bced5549ac64410162adc973c5e2fb77f04df4a439d00b478e57a0e65512", size = 320872, upload-time = "2025-04-15T17:35:06.177Z" }, + { url = "https://files.pythonhosted.org/packages/32/5c/1ee32d1c7956923202f00cf8d2a14a62ed7517bdc0ee1e55301227fc273c/contourpy-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad687a04bc802cbe8b9c399c07162a3c35e227e2daccf1668eb1f278cb698631", size = 325027, upload-time = "2025-04-15T17:35:11.244Z" }, + { url = "https://files.pythonhosted.org/packages/83/bf/9baed89785ba743ef329c2b07fd0611d12bfecbedbdd3eeecf929d8d3b52/contourpy-1.3.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cdd22595308f53ef2f891040ab2b93d79192513ffccbd7fe19be7aa773a5e09f", size = 1306641, upload-time = "2025-04-15T17:35:26.701Z" }, + { url = "https://files.pythonhosted.org/packages/d4/cc/74e5e83d1e35de2d28bd97033426b450bc4fd96e092a1f7a63dc7369b55d/contourpy-1.3.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b4f54d6a2defe9f257327b0f243612dd051cc43825587520b1bf74a31e2f6ef2", size = 1374075, upload-time = "2025-04-15T17:35:43.204Z" }, + { url = "https://files.pythonhosted.org/packages/0c/42/17f3b798fd5e033b46a16f8d9fcb39f1aba051307f5ebf441bad1ecf78f8/contourpy-1.3.2-cp310-cp310-win32.whl", hash = "sha256:f939a054192ddc596e031e50bb13b657ce318cf13d264f095ce9db7dc6ae81c0", size = 177534, upload-time = "2025-04-15T17:35:46.554Z" }, + { url = "https://files.pythonhosted.org/packages/54/ec/5162b8582f2c994721018d0c9ece9dc6ff769d298a8ac6b6a652c307e7df/contourpy-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:c440093bbc8fc21c637c03bafcbef95ccd963bc6e0514ad887932c18ca2a759a", size = 221188, upload-time = "2025-04-15T17:35:50.064Z" }, + { url = "https://files.pythonhosted.org/packages/b3/b9/ede788a0b56fc5b071639d06c33cb893f68b1178938f3425debebe2dab78/contourpy-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6a37a2fb93d4df3fc4c0e363ea4d16f83195fc09c891bc8ce072b9d084853445", size = 269636, upload-time = "2025-04-15T17:35:54.473Z" }, + { url = "https://files.pythonhosted.org/packages/e6/75/3469f011d64b8bbfa04f709bfc23e1dd71be54d05b1b083be9f5b22750d1/contourpy-1.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b7cd50c38f500bbcc9b6a46643a40e0913673f869315d8e70de0438817cb7773", size = 254636, upload-time = "2025-04-15T17:35:58.283Z" }, + { url = "https://files.pythonhosted.org/packages/8d/2f/95adb8dae08ce0ebca4fd8e7ad653159565d9739128b2d5977806656fcd2/contourpy-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6658ccc7251a4433eebd89ed2672c2ed96fba367fd25ca9512aa92a4b46c4f1", size = 313053, upload-time = "2025-04-15T17:36:03.235Z" }, + { url = "https://files.pythonhosted.org/packages/c3/a6/8ccf97a50f31adfa36917707fe39c9a0cbc24b3bbb58185577f119736cc9/contourpy-1.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:70771a461aaeb335df14deb6c97439973d253ae70660ca085eec25241137ef43", size = 352985, upload-time = "2025-04-15T17:36:08.275Z" }, + { url = "https://files.pythonhosted.org/packages/1d/b6/7925ab9b77386143f39d9c3243fdd101621b4532eb126743201160ffa7e6/contourpy-1.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65a887a6e8c4cd0897507d814b14c54a8c2e2aa4ac9f7686292f9769fcf9a6ab", size = 323750, upload-time = "2025-04-15T17:36:13.29Z" }, + { url = "https://files.pythonhosted.org/packages/c2/f3/20c5d1ef4f4748e52d60771b8560cf00b69d5c6368b5c2e9311bcfa2a08b/contourpy-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3859783aefa2b8355697f16642695a5b9792e7a46ab86da1118a4a23a51a33d7", size = 326246, upload-time = "2025-04-15T17:36:18.329Z" }, + { url = "https://files.pythonhosted.org/packages/8c/e5/9dae809e7e0b2d9d70c52b3d24cba134dd3dad979eb3e5e71f5df22ed1f5/contourpy-1.3.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:eab0f6db315fa4d70f1d8ab514e527f0366ec021ff853d7ed6a2d33605cf4b83", size = 1308728, upload-time = "2025-04-15T17:36:33.878Z" }, + { url = "https://files.pythonhosted.org/packages/e2/4a/0058ba34aeea35c0b442ae61a4f4d4ca84d6df8f91309bc2d43bb8dd248f/contourpy-1.3.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d91a3ccc7fea94ca0acab82ceb77f396d50a1f67412efe4c526f5d20264e6ecd", size = 1375762, upload-time = "2025-04-15T17:36:51.295Z" }, + { url = "https://files.pythonhosted.org/packages/09/33/7174bdfc8b7767ef2c08ed81244762d93d5c579336fc0b51ca57b33d1b80/contourpy-1.3.2-cp311-cp311-win32.whl", hash = "sha256:1c48188778d4d2f3d48e4643fb15d8608b1d01e4b4d6b0548d9b336c28fc9b6f", size = 178196, upload-time = "2025-04-15T17:36:55.002Z" }, + { url = "https://files.pythonhosted.org/packages/5e/fe/4029038b4e1c4485cef18e480b0e2cd2d755448bb071eb9977caac80b77b/contourpy-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:5ebac872ba09cb8f2131c46b8739a7ff71de28a24c869bcad554477eb089a878", size = 222017, upload-time = "2025-04-15T17:36:58.576Z" }, + { url = "https://files.pythonhosted.org/packages/34/f7/44785876384eff370c251d58fd65f6ad7f39adce4a093c934d4a67a7c6b6/contourpy-1.3.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4caf2bcd2969402bf77edc4cb6034c7dd7c0803213b3523f111eb7460a51b8d2", size = 271580, upload-time = "2025-04-15T17:37:03.105Z" }, + { url = "https://files.pythonhosted.org/packages/93/3b/0004767622a9826ea3d95f0e9d98cd8729015768075d61f9fea8eeca42a8/contourpy-1.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:82199cb78276249796419fe36b7386bd8d2cc3f28b3bc19fe2454fe2e26c4c15", size = 255530, upload-time = "2025-04-15T17:37:07.026Z" }, + { url = "https://files.pythonhosted.org/packages/e7/bb/7bd49e1f4fa805772d9fd130e0d375554ebc771ed7172f48dfcd4ca61549/contourpy-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:106fab697af11456fcba3e352ad50effe493a90f893fca6c2ca5c033820cea92", size = 307688, upload-time = "2025-04-15T17:37:11.481Z" }, + { url = "https://files.pythonhosted.org/packages/fc/97/e1d5dbbfa170725ef78357a9a0edc996b09ae4af170927ba8ce977e60a5f/contourpy-1.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d14f12932a8d620e307f715857107b1d1845cc44fdb5da2bc8e850f5ceba9f87", size = 347331, upload-time = "2025-04-15T17:37:18.212Z" }, + { url = "https://files.pythonhosted.org/packages/6f/66/e69e6e904f5ecf6901be3dd16e7e54d41b6ec6ae3405a535286d4418ffb4/contourpy-1.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:532fd26e715560721bb0d5fc7610fce279b3699b018600ab999d1be895b09415", size = 318963, upload-time = "2025-04-15T17:37:22.76Z" }, + { url = "https://files.pythonhosted.org/packages/a8/32/b8a1c8965e4f72482ff2d1ac2cd670ce0b542f203c8e1d34e7c3e6925da7/contourpy-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26b383144cf2d2c29f01a1e8170f50dacf0eac02d64139dcd709a8ac4eb3cfe", size = 323681, upload-time = "2025-04-15T17:37:33.001Z" }, + { url = "https://files.pythonhosted.org/packages/30/c6/12a7e6811d08757c7162a541ca4c5c6a34c0f4e98ef2b338791093518e40/contourpy-1.3.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c49f73e61f1f774650a55d221803b101d966ca0c5a2d6d5e4320ec3997489441", size = 1308674, upload-time = "2025-04-15T17:37:48.64Z" }, + { url = "https://files.pythonhosted.org/packages/2a/8a/bebe5a3f68b484d3a2b8ffaf84704b3e343ef1addea528132ef148e22b3b/contourpy-1.3.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3d80b2c0300583228ac98d0a927a1ba6a2ba6b8a742463c564f1d419ee5b211e", size = 1380480, upload-time = "2025-04-15T17:38:06.7Z" }, + { url = "https://files.pythonhosted.org/packages/34/db/fcd325f19b5978fb509a7d55e06d99f5f856294c1991097534360b307cf1/contourpy-1.3.2-cp312-cp312-win32.whl", hash = "sha256:90df94c89a91b7362e1142cbee7568f86514412ab8a2c0d0fca72d7e91b62912", size = 178489, upload-time = "2025-04-15T17:38:10.338Z" }, + { url = "https://files.pythonhosted.org/packages/01/c8/fadd0b92ffa7b5eb5949bf340a63a4a496a6930a6c37a7ba0f12acb076d6/contourpy-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:8c942a01d9163e2e5cfb05cb66110121b8d07ad438a17f9e766317bcb62abf73", size = 223042, upload-time = "2025-04-15T17:38:14.239Z" }, + { url = "https://files.pythonhosted.org/packages/2e/61/5673f7e364b31e4e7ef6f61a4b5121c5f170f941895912f773d95270f3a2/contourpy-1.3.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:de39db2604ae755316cb5967728f4bea92685884b1e767b7c24e983ef5f771cb", size = 271630, upload-time = "2025-04-15T17:38:19.142Z" }, + { url = "https://files.pythonhosted.org/packages/ff/66/a40badddd1223822c95798c55292844b7e871e50f6bfd9f158cb25e0bd39/contourpy-1.3.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3f9e896f447c5c8618f1edb2bafa9a4030f22a575ec418ad70611450720b5b08", size = 255670, upload-time = "2025-04-15T17:38:23.688Z" }, + { url = "https://files.pythonhosted.org/packages/1e/c7/cf9fdee8200805c9bc3b148f49cb9482a4e3ea2719e772602a425c9b09f8/contourpy-1.3.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71e2bd4a1c4188f5c2b8d274da78faab884b59df20df63c34f74aa1813c4427c", size = 306694, upload-time = "2025-04-15T17:38:28.238Z" }, + { url = "https://files.pythonhosted.org/packages/dd/e7/ccb9bec80e1ba121efbffad7f38021021cda5be87532ec16fd96533bb2e0/contourpy-1.3.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de425af81b6cea33101ae95ece1f696af39446db9682a0b56daaa48cfc29f38f", size = 345986, upload-time = "2025-04-15T17:38:33.502Z" }, + { url = "https://files.pythonhosted.org/packages/dc/49/ca13bb2da90391fa4219fdb23b078d6065ada886658ac7818e5441448b78/contourpy-1.3.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:977e98a0e0480d3fe292246417239d2d45435904afd6d7332d8455981c408b85", size = 318060, upload-time = "2025-04-15T17:38:38.672Z" }, + { url = "https://files.pythonhosted.org/packages/c8/65/5245ce8c548a8422236c13ffcdcdada6a2a812c361e9e0c70548bb40b661/contourpy-1.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:434f0adf84911c924519d2b08fc10491dd282b20bdd3fa8f60fd816ea0b48841", size = 322747, upload-time = "2025-04-15T17:38:43.712Z" }, + { url = "https://files.pythonhosted.org/packages/72/30/669b8eb48e0a01c660ead3752a25b44fdb2e5ebc13a55782f639170772f9/contourpy-1.3.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c66c4906cdbc50e9cba65978823e6e00b45682eb09adbb78c9775b74eb222422", size = 1308895, upload-time = "2025-04-15T17:39:00.224Z" }, + { url = "https://files.pythonhosted.org/packages/05/5a/b569f4250decee6e8d54498be7bdf29021a4c256e77fe8138c8319ef8eb3/contourpy-1.3.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8b7fc0cd78ba2f4695fd0a6ad81a19e7e3ab825c31b577f384aa9d7817dc3bef", size = 1379098, upload-time = "2025-04-15T17:43:29.649Z" }, + { url = "https://files.pythonhosted.org/packages/19/ba/b227c3886d120e60e41b28740ac3617b2f2b971b9f601c835661194579f1/contourpy-1.3.2-cp313-cp313-win32.whl", hash = "sha256:15ce6ab60957ca74cff444fe66d9045c1fd3e92c8936894ebd1f3eef2fff075f", size = 178535, upload-time = "2025-04-15T17:44:44.532Z" }, + { url = "https://files.pythonhosted.org/packages/12/6e/2fed56cd47ca739b43e892707ae9a13790a486a3173be063681ca67d2262/contourpy-1.3.2-cp313-cp313-win_amd64.whl", hash = "sha256:e1578f7eafce927b168752ed7e22646dad6cd9bca673c60bff55889fa236ebf9", size = 223096, upload-time = "2025-04-15T17:44:48.194Z" }, + { url = "https://files.pythonhosted.org/packages/54/4c/e76fe2a03014a7c767d79ea35c86a747e9325537a8b7627e0e5b3ba266b4/contourpy-1.3.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0475b1f6604896bc7c53bb070e355e9321e1bc0d381735421a2d2068ec56531f", size = 285090, upload-time = "2025-04-15T17:43:34.084Z" }, + { url = "https://files.pythonhosted.org/packages/7b/e2/5aba47debd55d668e00baf9651b721e7733975dc9fc27264a62b0dd26eb8/contourpy-1.3.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:c85bb486e9be652314bb5b9e2e3b0d1b2e643d5eec4992c0fbe8ac71775da739", size = 268643, upload-time = "2025-04-15T17:43:38.626Z" }, + { url = "https://files.pythonhosted.org/packages/a1/37/cd45f1f051fe6230f751cc5cdd2728bb3a203f5619510ef11e732109593c/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:745b57db7758f3ffc05a10254edd3182a2a83402a89c00957a8e8a22f5582823", size = 310443, upload-time = "2025-04-15T17:43:44.522Z" }, + { url = "https://files.pythonhosted.org/packages/8b/a2/36ea6140c306c9ff6dd38e3bcec80b3b018474ef4d17eb68ceecd26675f4/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:970e9173dbd7eba9b4e01aab19215a48ee5dd3f43cef736eebde064a171f89a5", size = 349865, upload-time = "2025-04-15T17:43:49.545Z" }, + { url = "https://files.pythonhosted.org/packages/95/b7/2fc76bc539693180488f7b6cc518da7acbbb9e3b931fd9280504128bf956/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6c4639a9c22230276b7bffb6a850dfc8258a2521305e1faefe804d006b2e532", size = 321162, upload-time = "2025-04-15T17:43:54.203Z" }, + { url = "https://files.pythonhosted.org/packages/f4/10/76d4f778458b0aa83f96e59d65ece72a060bacb20cfbee46cf6cd5ceba41/contourpy-1.3.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc829960f34ba36aad4302e78eabf3ef16a3a100863f0d4eeddf30e8a485a03b", size = 327355, upload-time = "2025-04-15T17:44:01.025Z" }, + { url = "https://files.pythonhosted.org/packages/43/a3/10cf483ea683f9f8ab096c24bad3cce20e0d1dd9a4baa0e2093c1c962d9d/contourpy-1.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:d32530b534e986374fc19eaa77fcb87e8a99e5431499949b828312bdcd20ac52", size = 1307935, upload-time = "2025-04-15T17:44:17.322Z" }, + { url = "https://files.pythonhosted.org/packages/78/73/69dd9a024444489e22d86108e7b913f3528f56cfc312b5c5727a44188471/contourpy-1.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e298e7e70cf4eb179cc1077be1c725b5fd131ebc81181bf0c03525c8abc297fd", size = 1372168, upload-time = "2025-04-15T17:44:33.43Z" }, + { url = "https://files.pythonhosted.org/packages/0f/1b/96d586ccf1b1a9d2004dd519b25fbf104a11589abfd05484ff12199cca21/contourpy-1.3.2-cp313-cp313t-win32.whl", hash = "sha256:d0e589ae0d55204991450bb5c23f571c64fe43adaa53f93fc902a84c96f52fe1", size = 189550, upload-time = "2025-04-15T17:44:37.092Z" }, + { url = "https://files.pythonhosted.org/packages/b0/e6/6000d0094e8a5e32ad62591c8609e269febb6e4db83a1c75ff8868b42731/contourpy-1.3.2-cp313-cp313t-win_amd64.whl", hash = "sha256:78e9253c3de756b3f6a5174d024c4835acd59eb3f8e2ca13e775dbffe1558f69", size = 238214, upload-time = "2025-04-15T17:44:40.827Z" }, + { url = "https://files.pythonhosted.org/packages/33/05/b26e3c6ecc05f349ee0013f0bb850a761016d89cec528a98193a48c34033/contourpy-1.3.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fd93cc7f3139b6dd7aab2f26a90dde0aa9fc264dbf70f6740d498a70b860b82c", size = 265681, upload-time = "2025-04-15T17:44:59.314Z" }, + { url = "https://files.pythonhosted.org/packages/2b/25/ac07d6ad12affa7d1ffed11b77417d0a6308170f44ff20fa1d5aa6333f03/contourpy-1.3.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:107ba8a6a7eec58bb475329e6d3b95deba9440667c4d62b9b6063942b61d7f16", size = 315101, upload-time = "2025-04-15T17:45:04.165Z" }, + { url = "https://files.pythonhosted.org/packages/8f/4d/5bb3192bbe9d3f27e3061a6a8e7733c9120e203cb8515767d30973f71030/contourpy-1.3.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ded1706ed0c1049224531b81128efbd5084598f18d8a2d9efae833edbd2b40ad", size = 220599, upload-time = "2025-04-15T17:45:08.456Z" }, + { url = "https://files.pythonhosted.org/packages/ff/c0/91f1215d0d9f9f343e4773ba6c9b89e8c0cc7a64a6263f21139da639d848/contourpy-1.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5f5964cdad279256c084b69c3f412b7801e15356b16efa9d78aa974041903da0", size = 266807, upload-time = "2025-04-15T17:45:15.535Z" }, + { url = "https://files.pythonhosted.org/packages/d4/79/6be7e90c955c0487e7712660d6cead01fa17bff98e0ea275737cc2bc8e71/contourpy-1.3.2-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49b65a95d642d4efa8f64ba12558fcb83407e58a2dfba9d796d77b63ccfcaff5", size = 318729, upload-time = "2025-04-15T17:45:20.166Z" }, + { url = "https://files.pythonhosted.org/packages/87/68/7f46fb537958e87427d98a4074bcde4b67a70b04900cfc5ce29bc2f556c1/contourpy-1.3.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:8c5acb8dddb0752bf252e01a3035b21443158910ac16a3b0d20e7fed7d534ce5", size = 221791, upload-time = "2025-04-15T17:45:24.794Z" }, +] + +[[package]] +name = "contourpy" +version = "1.3.3" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", +] +dependencies = [ + { name = "numpy", version = "2.3.4", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174, upload-time = "2025-07-26T12:03:12.549Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/91/2e/c4390a31919d8a78b90e8ecf87cd4b4c4f05a5b48d05ec17db8e5404c6f4/contourpy-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:709a48ef9a690e1343202916450bc48b9e51c049b089c7f79a267b46cffcdaa1", size = 288773, upload-time = "2025-07-26T12:01:02.277Z" }, + { url = "https://files.pythonhosted.org/packages/0d/44/c4b0b6095fef4dc9c420e041799591e3b63e9619e3044f7f4f6c21c0ab24/contourpy-1.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:23416f38bfd74d5d28ab8429cc4d63fa67d5068bd711a85edb1c3fb0c3e2f381", size = 270149, upload-time = "2025-07-26T12:01:04.072Z" }, + { url = "https://files.pythonhosted.org/packages/30/2e/dd4ced42fefac8470661d7cb7e264808425e6c5d56d175291e93890cce09/contourpy-1.3.3-cp311-cp311-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:929ddf8c4c7f348e4c0a5a3a714b5c8542ffaa8c22954862a46ca1813b667ee7", size = 329222, upload-time = "2025-07-26T12:01:05.688Z" }, + { url = "https://files.pythonhosted.org/packages/f2/74/cc6ec2548e3d276c71389ea4802a774b7aa3558223b7bade3f25787fafc2/contourpy-1.3.3-cp311-cp311-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:9e999574eddae35f1312c2b4b717b7885d4edd6cb46700e04f7f02db454e67c1", size = 377234, upload-time = "2025-07-26T12:01:07.054Z" }, + { url = "https://files.pythonhosted.org/packages/03/b3/64ef723029f917410f75c09da54254c5f9ea90ef89b143ccadb09df14c15/contourpy-1.3.3-cp311-cp311-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:0bf67e0e3f482cb69779dd3061b534eb35ac9b17f163d851e2a547d56dba0a3a", size = 380555, upload-time = "2025-07-26T12:01:08.801Z" }, + { url = "https://files.pythonhosted.org/packages/5f/4b/6157f24ca425b89fe2eb7e7be642375711ab671135be21e6faa100f7448c/contourpy-1.3.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:51e79c1f7470158e838808d4a996fa9bac72c498e93d8ebe5119bc1e6becb0db", size = 355238, upload-time = "2025-07-26T12:01:10.319Z" }, + { url = "https://files.pythonhosted.org/packages/98/56/f914f0dd678480708a04cfd2206e7c382533249bc5001eb9f58aa693e200/contourpy-1.3.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:598c3aaece21c503615fd59c92a3598b428b2f01bfb4b8ca9c4edeecc2438620", size = 1326218, upload-time = "2025-07-26T12:01:12.659Z" }, + { url = "https://files.pythonhosted.org/packages/fb/d7/4a972334a0c971acd5172389671113ae82aa7527073980c38d5868ff1161/contourpy-1.3.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:322ab1c99b008dad206d406bb61d014cf0174df491ae9d9d0fac6a6fda4f977f", size = 1392867, upload-time = "2025-07-26T12:01:15.533Z" }, + { url = "https://files.pythonhosted.org/packages/75/3e/f2cc6cd56dc8cff46b1a56232eabc6feea52720083ea71ab15523daab796/contourpy-1.3.3-cp311-cp311-win32.whl", hash = "sha256:fd907ae12cd483cd83e414b12941c632a969171bf90fc937d0c9f268a31cafff", size = 183677, upload-time = "2025-07-26T12:01:17.088Z" }, + { url = "https://files.pythonhosted.org/packages/98/4b/9bd370b004b5c9d8045c6c33cf65bae018b27aca550a3f657cdc99acdbd8/contourpy-1.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:3519428f6be58431c56581f1694ba8e50626f2dd550af225f82fb5f5814d2a42", size = 225234, upload-time = "2025-07-26T12:01:18.256Z" }, + { url = "https://files.pythonhosted.org/packages/d9/b6/71771e02c2e004450c12b1120a5f488cad2e4d5b590b1af8bad060360fe4/contourpy-1.3.3-cp311-cp311-win_arm64.whl", hash = "sha256:15ff10bfada4bf92ec8b31c62bf7c1834c244019b4a33095a68000d7075df470", size = 193123, upload-time = "2025-07-26T12:01:19.848Z" }, + { url = "https://files.pythonhosted.org/packages/be/45/adfee365d9ea3d853550b2e735f9d66366701c65db7855cd07621732ccfc/contourpy-1.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b08a32ea2f8e42cf1d4be3169a98dd4be32bafe4f22b6c4cb4ba810fa9e5d2cb", size = 293419, upload-time = "2025-07-26T12:01:21.16Z" }, + { url = "https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6", size = 273979, upload-time = "2025-07-26T12:01:22.448Z" }, + { url = "https://files.pythonhosted.org/packages/d4/1c/a12359b9b2ca3a845e8f7f9ac08bdf776114eb931392fcad91743e2ea17b/contourpy-1.3.3-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92d9abc807cf7d0e047b95ca5d957cf4792fcd04e920ca70d48add15c1a90ea7", size = 332653, upload-time = "2025-07-26T12:01:24.155Z" }, + { url = "https://files.pythonhosted.org/packages/63/12/897aeebfb475b7748ea67b61e045accdfcf0d971f8a588b67108ed7f5512/contourpy-1.3.3-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2e8faa0ed68cb29af51edd8e24798bb661eac3bd9f65420c1887b6ca89987c8", size = 379536, upload-time = "2025-07-26T12:01:25.91Z" }, + { url = "https://files.pythonhosted.org/packages/43/8a/a8c584b82deb248930ce069e71576fc09bd7174bbd35183b7943fb1064fd/contourpy-1.3.3-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:626d60935cf668e70a5ce6ff184fd713e9683fb458898e4249b63be9e28286ea", size = 384397, upload-time = "2025-07-26T12:01:27.152Z" }, + { url = "https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1", size = 362601, upload-time = "2025-07-26T12:01:28.808Z" }, + { url = "https://files.pythonhosted.org/packages/05/0a/a3fe3be3ee2dceb3e615ebb4df97ae6f3828aa915d3e10549ce016302bd1/contourpy-1.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:451e71b5a7d597379ef572de31eeb909a87246974d960049a9848c3bc6c41bf7", size = 1331288, upload-time = "2025-07-26T12:01:31.198Z" }, + { url = "https://files.pythonhosted.org/packages/33/1d/acad9bd4e97f13f3e2b18a3977fe1b4a37ecf3d38d815333980c6c72e963/contourpy-1.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:459c1f020cd59fcfe6650180678a9993932d80d44ccde1fa1868977438f0b411", size = 1403386, upload-time = "2025-07-26T12:01:33.947Z" }, + { url = "https://files.pythonhosted.org/packages/cf/8f/5847f44a7fddf859704217a99a23a4f6417b10e5ab1256a179264561540e/contourpy-1.3.3-cp312-cp312-win32.whl", hash = "sha256:023b44101dfe49d7d53932be418477dba359649246075c996866106da069af69", size = 185018, upload-time = "2025-07-26T12:01:35.64Z" }, + { url = "https://files.pythonhosted.org/packages/19/e8/6026ed58a64563186a9ee3f29f41261fd1828f527dd93d33b60feca63352/contourpy-1.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:8153b8bfc11e1e4d75bcb0bff1db232f9e10b274e0929de9d608027e0d34ff8b", size = 226567, upload-time = "2025-07-26T12:01:36.804Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e2/f05240d2c39a1ed228d8328a78b6f44cd695f7ef47beb3e684cf93604f86/contourpy-1.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:07ce5ed73ecdc4a03ffe3e1b3e3c1166db35ae7584be76f65dbbe28a7791b0cc", size = 193655, upload-time = "2025-07-26T12:01:37.999Z" }, + { url = "https://files.pythonhosted.org/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257, upload-time = "2025-07-26T12:01:39.367Z" }, + { url = "https://files.pythonhosted.org/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034, upload-time = "2025-07-26T12:01:40.645Z" }, + { url = "https://files.pythonhosted.org/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672, upload-time = "2025-07-26T12:01:41.942Z" }, + { url = "https://files.pythonhosted.org/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234, upload-time = "2025-07-26T12:01:43.499Z" }, + { url = "https://files.pythonhosted.org/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169, upload-time = "2025-07-26T12:01:45.219Z" }, + { url = "https://files.pythonhosted.org/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859, upload-time = "2025-07-26T12:01:46.519Z" }, + { url = "https://files.pythonhosted.org/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062, upload-time = "2025-07-26T12:01:48.964Z" }, + { url = "https://files.pythonhosted.org/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932, upload-time = "2025-07-26T12:01:51.979Z" }, + { url = "https://files.pythonhosted.org/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024, upload-time = "2025-07-26T12:01:53.245Z" }, + { url = "https://files.pythonhosted.org/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578, upload-time = "2025-07-26T12:01:54.422Z" }, + { url = "https://files.pythonhosted.org/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524, upload-time = "2025-07-26T12:01:55.73Z" }, + { url = "https://files.pythonhosted.org/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730, upload-time = "2025-07-26T12:01:57.051Z" }, + { url = "https://files.pythonhosted.org/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897, upload-time = "2025-07-26T12:01:58.663Z" }, + { url = "https://files.pythonhosted.org/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751, upload-time = "2025-07-26T12:02:00.343Z" }, + { url = "https://files.pythonhosted.org/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486, upload-time = "2025-07-26T12:02:02.128Z" }, + { url = "https://files.pythonhosted.org/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106, upload-time = "2025-07-26T12:02:03.615Z" }, + { url = "https://files.pythonhosted.org/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548, upload-time = "2025-07-26T12:02:05.165Z" }, + { url = "https://files.pythonhosted.org/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297, upload-time = "2025-07-26T12:02:07.379Z" }, + { url = "https://files.pythonhosted.org/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023, upload-time = "2025-07-26T12:02:10.171Z" }, + { url = "https://files.pythonhosted.org/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157, upload-time = "2025-07-26T12:02:11.488Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570, upload-time = "2025-07-26T12:02:12.754Z" }, + { url = "https://files.pythonhosted.org/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713, upload-time = "2025-07-26T12:02:14.4Z" }, + { url = "https://files.pythonhosted.org/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189, upload-time = "2025-07-26T12:02:16.095Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251, upload-time = "2025-07-26T12:02:17.524Z" }, + { url = "https://files.pythonhosted.org/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810, upload-time = "2025-07-26T12:02:18.9Z" }, + { url = "https://files.pythonhosted.org/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871, upload-time = "2025-07-26T12:02:20.418Z" }, + { url = "https://files.pythonhosted.org/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264, upload-time = "2025-07-26T12:02:21.916Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819, upload-time = "2025-07-26T12:02:23.759Z" }, + { url = "https://files.pythonhosted.org/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650, upload-time = "2025-07-26T12:02:26.181Z" }, + { url = "https://files.pythonhosted.org/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833, upload-time = "2025-07-26T12:02:28.782Z" }, + { url = "https://files.pythonhosted.org/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692, upload-time = "2025-07-26T12:02:30.128Z" }, + { url = "https://files.pythonhosted.org/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424, upload-time = "2025-07-26T12:02:31.395Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300, upload-time = "2025-07-26T12:02:32.956Z" }, + { url = "https://files.pythonhosted.org/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769, upload-time = "2025-07-26T12:02:34.2Z" }, + { url = "https://files.pythonhosted.org/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892, upload-time = "2025-07-26T12:02:35.807Z" }, + { url = "https://files.pythonhosted.org/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748, upload-time = "2025-07-26T12:02:37.193Z" }, + { url = "https://files.pythonhosted.org/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554, upload-time = "2025-07-26T12:02:38.894Z" }, + { url = "https://files.pythonhosted.org/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118, upload-time = "2025-07-26T12:02:40.642Z" }, + { url = "https://files.pythonhosted.org/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555, upload-time = "2025-07-26T12:02:42.25Z" }, + { url = "https://files.pythonhosted.org/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295, upload-time = "2025-07-26T12:02:44.668Z" }, + { url = "https://files.pythonhosted.org/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027, upload-time = "2025-07-26T12:02:47.09Z" }, + { url = "https://files.pythonhosted.org/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428, upload-time = "2025-07-26T12:02:48.691Z" }, + { url = "https://files.pythonhosted.org/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331, upload-time = "2025-07-26T12:02:50.137Z" }, + { url = "https://files.pythonhosted.org/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831, upload-time = "2025-07-26T12:02:51.449Z" }, + { url = "https://files.pythonhosted.org/packages/a5/29/8dcfe16f0107943fa92388c23f6e05cff0ba58058c4c95b00280d4c75a14/contourpy-1.3.3-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cd5dfcaeb10f7b7f9dc8941717c6c2ade08f587be2226222c12b25f0483ed497", size = 278809, upload-time = "2025-07-26T12:02:52.74Z" }, + { url = "https://files.pythonhosted.org/packages/85/a9/8b37ef4f7dafeb335daee3c8254645ef5725be4d9c6aa70b50ec46ef2f7e/contourpy-1.3.3-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:0c1fc238306b35f246d61a1d416a627348b5cf0648648a031e14bb8705fcdfe8", size = 261593, upload-time = "2025-07-26T12:02:54.037Z" }, + { url = "https://files.pythonhosted.org/packages/0a/59/ebfb8c677c75605cc27f7122c90313fd2f375ff3c8d19a1694bda74aaa63/contourpy-1.3.3-pp311-pypy311_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:70f9aad7de812d6541d29d2bbf8feb22ff7e1c299523db288004e3157ff4674e", size = 302202, upload-time = "2025-07-26T12:02:55.947Z" }, + { url = "https://files.pythonhosted.org/packages/3c/37/21972a15834d90bfbfb009b9d004779bd5a07a0ec0234e5ba8f64d5736f4/contourpy-1.3.3-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5ed3657edf08512fc3fe81b510e35c2012fbd3081d2e26160f27ca28affec989", size = 329207, upload-time = "2025-07-26T12:02:57.468Z" }, + { url = "https://files.pythonhosted.org/packages/0c/58/bd257695f39d05594ca4ad60df5bcb7e32247f9951fd09a9b8edb82d1daa/contourpy-1.3.3-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:3d1a3799d62d45c18bafd41c5fa05120b96a28079f2393af559b843d1a966a77", size = 225315, upload-time = "2025-07-26T12:02:58.801Z" }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615, upload-time = "2023-10-07T05:32:18.335Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, +] + +[[package]] +name = "debugpy" +version = "1.8.17" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/ad/71e708ff4ca377c4230530d6a7aa7992592648c122a2cd2b321cf8b35a76/debugpy-1.8.17.tar.gz", hash = "sha256:fd723b47a8c08892b1a16b2c6239a8b96637c62a59b94bb5dab4bac592a58a8e", size = 1644129, upload-time = "2025-09-17T16:33:20.633Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/36/b57c6e818d909f6e59c0182252921cf435e0951126a97e11de37e72ab5e1/debugpy-1.8.17-cp310-cp310-macosx_15_0_x86_64.whl", hash = "sha256:c41d2ce8bbaddcc0009cc73f65318eedfa3dbc88a8298081deb05389f1ab5542", size = 2098021, upload-time = "2025-09-17T16:33:22.556Z" }, + { url = "https://files.pythonhosted.org/packages/be/01/0363c7efdd1e9febd090bb13cee4fb1057215b157b2979a4ca5ccb678217/debugpy-1.8.17-cp310-cp310-manylinux_2_34_x86_64.whl", hash = "sha256:1440fd514e1b815edd5861ca394786f90eb24960eb26d6f7200994333b1d79e3", size = 3087399, upload-time = "2025-09-17T16:33:24.292Z" }, + { url = "https://files.pythonhosted.org/packages/79/bc/4a984729674aa9a84856650438b9665f9a1d5a748804ac6f37932ce0d4aa/debugpy-1.8.17-cp310-cp310-win32.whl", hash = "sha256:3a32c0af575749083d7492dc79f6ab69f21b2d2ad4cd977a958a07d5865316e4", size = 5230292, upload-time = "2025-09-17T16:33:26.137Z" }, + { url = "https://files.pythonhosted.org/packages/5d/19/2b9b3092d0cf81a5aa10c86271999453030af354d1a5a7d6e34c574515d7/debugpy-1.8.17-cp310-cp310-win_amd64.whl", hash = "sha256:a3aad0537cf4d9c1996434be68c6c9a6d233ac6f76c2a482c7803295b4e4f99a", size = 5261885, upload-time = "2025-09-17T16:33:27.592Z" }, + { url = "https://files.pythonhosted.org/packages/d8/53/3af72b5c159278c4a0cf4cffa518675a0e73bdb7d1cac0239b815502d2ce/debugpy-1.8.17-cp311-cp311-macosx_15_0_universal2.whl", hash = "sha256:d3fce3f0e3de262a3b67e69916d001f3e767661c6e1ee42553009d445d1cd840", size = 2207154, upload-time = "2025-09-17T16:33:29.457Z" }, + { url = "https://files.pythonhosted.org/packages/8f/6d/204f407df45600e2245b4a39860ed4ba32552330a0b3f5f160ae4cc30072/debugpy-1.8.17-cp311-cp311-manylinux_2_34_x86_64.whl", hash = "sha256:c6bdf134457ae0cac6fb68205776be635d31174eeac9541e1d0c062165c6461f", size = 3170322, upload-time = "2025-09-17T16:33:30.837Z" }, + { url = "https://files.pythonhosted.org/packages/f2/13/1b8f87d39cf83c6b713de2620c31205299e6065622e7dd37aff4808dd410/debugpy-1.8.17-cp311-cp311-win32.whl", hash = "sha256:e79a195f9e059edfe5d8bf6f3749b2599452d3e9380484cd261f6b7cd2c7c4da", size = 5155078, upload-time = "2025-09-17T16:33:33.331Z" }, + { url = "https://files.pythonhosted.org/packages/c2/c5/c012c60a2922cc91caa9675d0ddfbb14ba59e1e36228355f41cab6483469/debugpy-1.8.17-cp311-cp311-win_amd64.whl", hash = "sha256:b532282ad4eca958b1b2d7dbcb2b7218e02cb934165859b918e3b6ba7772d3f4", size = 5179011, upload-time = "2025-09-17T16:33:35.711Z" }, + { url = "https://files.pythonhosted.org/packages/08/2b/9d8e65beb2751876c82e1aceb32f328c43ec872711fa80257c7674f45650/debugpy-1.8.17-cp312-cp312-macosx_15_0_universal2.whl", hash = "sha256:f14467edef672195c6f6b8e27ce5005313cb5d03c9239059bc7182b60c176e2d", size = 2549522, upload-time = "2025-09-17T16:33:38.466Z" }, + { url = "https://files.pythonhosted.org/packages/b4/78/eb0d77f02971c05fca0eb7465b18058ba84bd957062f5eec82f941ac792a/debugpy-1.8.17-cp312-cp312-manylinux_2_34_x86_64.whl", hash = "sha256:24693179ef9dfa20dca8605905a42b392be56d410c333af82f1c5dff807a64cc", size = 4309417, upload-time = "2025-09-17T16:33:41.299Z" }, + { url = "https://files.pythonhosted.org/packages/37/42/c40f1d8cc1fed1e75ea54298a382395b8b937d923fcf41ab0797a554f555/debugpy-1.8.17-cp312-cp312-win32.whl", hash = "sha256:6a4e9dacf2cbb60d2514ff7b04b4534b0139facbf2abdffe0639ddb6088e59cf", size = 5277130, upload-time = "2025-09-17T16:33:43.554Z" }, + { url = "https://files.pythonhosted.org/packages/72/22/84263b205baad32b81b36eac076de0cdbe09fe2d0637f5b32243dc7c925b/debugpy-1.8.17-cp312-cp312-win_amd64.whl", hash = "sha256:e8f8f61c518952fb15f74a302e068b48d9c4691768ade433e4adeea961993464", size = 5319053, upload-time = "2025-09-17T16:33:53.033Z" }, + { url = "https://files.pythonhosted.org/packages/50/76/597e5cb97d026274ba297af8d89138dfd9e695767ba0e0895edb20963f40/debugpy-1.8.17-cp313-cp313-macosx_15_0_universal2.whl", hash = "sha256:857c1dd5d70042502aef1c6d1c2801211f3ea7e56f75e9c335f434afb403e464", size = 2538386, upload-time = "2025-09-17T16:33:54.594Z" }, + { url = "https://files.pythonhosted.org/packages/5f/60/ce5c34fcdfec493701f9d1532dba95b21b2f6394147234dce21160bd923f/debugpy-1.8.17-cp313-cp313-manylinux_2_34_x86_64.whl", hash = "sha256:3bea3b0b12f3946e098cce9b43c3c46e317b567f79570c3f43f0b96d00788088", size = 4292100, upload-time = "2025-09-17T16:33:56.353Z" }, + { url = "https://files.pythonhosted.org/packages/e8/95/7873cf2146577ef71d2a20bf553f12df865922a6f87b9e8ee1df04f01785/debugpy-1.8.17-cp313-cp313-win32.whl", hash = "sha256:e34ee844c2f17b18556b5bbe59e1e2ff4e86a00282d2a46edab73fd7f18f4a83", size = 5277002, upload-time = "2025-09-17T16:33:58.231Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/18c79a1cee5ff539a94ec4aa290c1c069a5580fd5cfd2fb2e282f8e905da/debugpy-1.8.17-cp313-cp313-win_amd64.whl", hash = "sha256:6c5cd6f009ad4fca8e33e5238210dc1e5f42db07d4b6ab21ac7ffa904a196420", size = 5319047, upload-time = "2025-09-17T16:34:00.586Z" }, + { url = "https://files.pythonhosted.org/packages/de/45/115d55b2a9da6de812696064ceb505c31e952c5d89c4ed1d9bb983deec34/debugpy-1.8.17-cp314-cp314-macosx_15_0_universal2.whl", hash = "sha256:045290c010bcd2d82bc97aa2daf6837443cd52f6328592698809b4549babcee1", size = 2536899, upload-time = "2025-09-17T16:34:02.657Z" }, + { url = "https://files.pythonhosted.org/packages/5a/73/2aa00c7f1f06e997ef57dc9b23d61a92120bec1437a012afb6d176585197/debugpy-1.8.17-cp314-cp314-manylinux_2_34_x86_64.whl", hash = "sha256:b69b6bd9dba6a03632534cdf67c760625760a215ae289f7489a452af1031fe1f", size = 4268254, upload-time = "2025-09-17T16:34:04.486Z" }, + { url = "https://files.pythonhosted.org/packages/86/b5/ed3e65c63c68a6634e3ba04bd10255c8e46ec16ebed7d1c79e4816d8a760/debugpy-1.8.17-cp314-cp314-win32.whl", hash = "sha256:5c59b74aa5630f3a5194467100c3b3d1c77898f9ab27e3f7dc5d40fc2f122670", size = 5277203, upload-time = "2025-09-17T16:34:06.65Z" }, + { url = "https://files.pythonhosted.org/packages/b0/26/394276b71c7538445f29e792f589ab7379ae70fd26ff5577dfde71158e96/debugpy-1.8.17-cp314-cp314-win_amd64.whl", hash = "sha256:893cba7bb0f55161de4365584b025f7064e1f88913551bcd23be3260b231429c", size = 5318493, upload-time = "2025-09-17T16:34:08.483Z" }, + { url = "https://files.pythonhosted.org/packages/16/ee/0e9a08878f1b525f85c4e47723ea1f17b1bad69672c84fa910210604e3f8/debugpy-1.8.17-cp39-cp39-macosx_15_0_x86_64.whl", hash = "sha256:f2ac8055a0c4a09b30b931100996ba49ef334c6947e7ae365cdd870416d7513e", size = 2099309, upload-time = "2025-09-17T16:34:17.935Z" }, + { url = "https://files.pythonhosted.org/packages/b3/b5/0327b27efd8826ca92a256a3a250e80ccad6a834b4d12bd9cbd491f2da03/debugpy-1.8.17-cp39-cp39-manylinux_2_34_x86_64.whl", hash = "sha256:eaa85bce251feca8e4c87ce3b954aba84b8c645b90f0e6a515c00394a9f5c0e7", size = 3080100, upload-time = "2025-09-17T16:34:19.885Z" }, + { url = "https://files.pythonhosted.org/packages/0f/f0/2e210fa8884d2ab452fa31ffd1402e13010eaacfa67063d0565d97ac9e0e/debugpy-1.8.17-cp39-cp39-win32.whl", hash = "sha256:b13eea5587e44f27f6c48588b5ad56dcb74a4f3a5f89250443c94587f3eb2ea1", size = 5231016, upload-time = "2025-09-17T16:34:21.887Z" }, + { url = "https://files.pythonhosted.org/packages/d6/9b/6a45fb1553d09b618c9441bcbbf72b651246b83b5618b2f95c0e4cf1b8bd/debugpy-1.8.17-cp39-cp39-win_amd64.whl", hash = "sha256:bb1bbf92317e1f35afcf3ef0450219efb3afe00be79d8664b250ac0933b9015f", size = 5262778, upload-time = "2025-09-17T16:34:24.026Z" }, + { url = "https://files.pythonhosted.org/packages/b0/d0/89247ec250369fc76db477720a26b2fce7ba079ff1380e4ab4529d2fe233/debugpy-1.8.17-py2.py3-none-any.whl", hash = "sha256:60c7dca6571efe660ccb7a9508d73ca14b8796c4ed484c2002abba714226cfef", size = 5283210, upload-time = "2025-09-17T16:34:25.835Z" }, +] + +[[package]] +name = "decorator" +version = "5.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711, upload-time = "2025-02-24T04:41:34.073Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190, upload-time = "2025-02-24T04:41:32.565Z" }, +] + +[[package]] +name = "exceptiongroup" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0b/9f/a65090624ecf468cdca03533906e7c69ed7588582240cfe7cc9e770b50eb/exceptiongroup-1.3.0.tar.gz", hash = "sha256:b241f5885f560bc56a59ee63ca4c6a8bfa46ae4ad651af316d4e81817bb9fd88", size = 29749, upload-time = "2025-05-10T17:42:51.123Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/36/f4/c6e662dade71f56cd2f3735141b265c3c79293c109549c1e6933b0651ffc/exceptiongroup-1.3.0-py3-none-any.whl", hash = "sha256:4d111e6e0c13d0644cad6ddaa7ed0261a0b36971f6d23e7ec9b4b9097da78a10", size = 16674, upload-time = "2025-05-10T17:42:49.33Z" }, +] + +[[package]] +name = "executing" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cc/28/c14e053b6762b1044f34a13aab6859bbf40456d37d23aa286ac24cfd9a5d/executing-2.2.1.tar.gz", hash = "sha256:3632cc370565f6648cc328b32435bd120a1e4ebb20c77e3fdde9a13cd1e533c4", size = 1129488, upload-time = "2025-09-01T09:48:10.866Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl", hash = "sha256:760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017", size = 28317, upload-time = "2025-09-01T09:48:08.5Z" }, +] + +[[package]] +name = "fonttools" +version = "4.60.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4b/42/97a13e47a1e51a5a7142475bbcf5107fe3a68fc34aef331c897d5fb98ad0/fonttools-4.60.1.tar.gz", hash = "sha256:ef00af0439ebfee806b25f24c8f92109157ff3fac5731dc7867957812e87b8d9", size = 3559823, upload-time = "2025-09-29T21:13:27.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/70/03e9d89a053caff6ae46053890eba8e4a5665a7c5638279ed4492e6d4b8b/fonttools-4.60.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:9a52f254ce051e196b8fe2af4634c2d2f02c981756c6464dc192f1b6050b4e28", size = 2810747, upload-time = "2025-09-29T21:10:59.653Z" }, + { url = "https://files.pythonhosted.org/packages/6f/41/449ad5aff9670ab0df0f61ee593906b67a36d7e0b4d0cd7fa41ac0325bf5/fonttools-4.60.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c7420a2696a44650120cdd269a5d2e56a477e2bfa9d95e86229059beb1c19e15", size = 2346909, upload-time = "2025-09-29T21:11:02.882Z" }, + { url = "https://files.pythonhosted.org/packages/9a/18/e5970aa96c8fad1cb19a9479cc3b7602c0c98d250fcdc06a5da994309c50/fonttools-4.60.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ee0c0b3b35b34f782afc673d503167157094a16f442ace7c6c5e0ca80b08f50c", size = 4864572, upload-time = "2025-09-29T21:11:05.096Z" }, + { url = "https://files.pythonhosted.org/packages/ce/20/9b2b4051b6ec6689480787d506b5003f72648f50972a92d04527a456192c/fonttools-4.60.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:282dafa55f9659e8999110bd8ed422ebe1c8aecd0dc396550b038e6c9a08b8ea", size = 4794635, upload-time = "2025-09-29T21:11:08.651Z" }, + { url = "https://files.pythonhosted.org/packages/10/52/c791f57347c1be98f8345e3dca4ac483eb97666dd7c47f3059aeffab8b59/fonttools-4.60.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4ba4bd646e86de16160f0fb72e31c3b9b7d0721c3e5b26b9fa2fc931dfdb2652", size = 4843878, upload-time = "2025-09-29T21:11:10.893Z" }, + { url = "https://files.pythonhosted.org/packages/69/e9/35c24a8d01644cee8c090a22fad34d5b61d1e0a8ecbc9945ad785ebf2e9e/fonttools-4.60.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0b0835ed15dd5b40d726bb61c846a688f5b4ce2208ec68779bc81860adb5851a", size = 4954555, upload-time = "2025-09-29T21:11:13.24Z" }, + { url = "https://files.pythonhosted.org/packages/f7/86/fb1e994971be4bdfe3a307de6373ef69a9df83fb66e3faa9c8114893d4cc/fonttools-4.60.1-cp310-cp310-win32.whl", hash = "sha256:1525796c3ffe27bb6268ed2a1bb0dcf214d561dfaf04728abf01489eb5339dce", size = 2232019, upload-time = "2025-09-29T21:11:15.73Z" }, + { url = "https://files.pythonhosted.org/packages/40/84/62a19e2bd56f0e9fb347486a5b26376bade4bf6bbba64dda2c103bd08c94/fonttools-4.60.1-cp310-cp310-win_amd64.whl", hash = "sha256:268ecda8ca6cb5c4f044b1fb9b3b376e8cd1b361cef275082429dc4174907038", size = 2276803, upload-time = "2025-09-29T21:11:18.152Z" }, + { url = "https://files.pythonhosted.org/packages/ea/85/639aa9bface1537e0fb0f643690672dde0695a5bbbc90736bc571b0b1941/fonttools-4.60.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7b4c32e232a71f63a5d00259ca3d88345ce2a43295bb049d21061f338124246f", size = 2831872, upload-time = "2025-09-29T21:11:20.329Z" }, + { url = "https://files.pythonhosted.org/packages/6b/47/3c63158459c95093be9618794acb1067b3f4d30dcc5c3e8114b70e67a092/fonttools-4.60.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3630e86c484263eaac71d117085d509cbcf7b18f677906824e4bace598fb70d2", size = 2356990, upload-time = "2025-09-29T21:11:22.754Z" }, + { url = "https://files.pythonhosted.org/packages/94/dd/1934b537c86fcf99f9761823f1fc37a98fbd54568e8e613f29a90fed95a9/fonttools-4.60.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5c1015318e4fec75dd4943ad5f6a206d9727adf97410d58b7e32ab644a807914", size = 5042189, upload-time = "2025-09-29T21:11:25.061Z" }, + { url = "https://files.pythonhosted.org/packages/d2/d2/9f4e4c4374dd1daa8367784e1bd910f18ba886db1d6b825b12edf6db3edc/fonttools-4.60.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e6c58beb17380f7c2ea181ea11e7db8c0ceb474c9dd45f48e71e2cb577d146a1", size = 4978683, upload-time = "2025-09-29T21:11:27.693Z" }, + { url = "https://files.pythonhosted.org/packages/cc/c4/0fb2dfd1ecbe9a07954cc13414713ed1eab17b1c0214ef07fc93df234a47/fonttools-4.60.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec3681a0cb34c255d76dd9d865a55f260164adb9fa02628415cdc2d43ee2c05d", size = 5021372, upload-time = "2025-09-29T21:11:30.257Z" }, + { url = "https://files.pythonhosted.org/packages/0c/d5/495fc7ae2fab20223cc87179a8f50f40f9a6f821f271ba8301ae12bb580f/fonttools-4.60.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f4b5c37a5f40e4d733d3bbaaef082149bee5a5ea3156a785ff64d949bd1353fa", size = 5132562, upload-time = "2025-09-29T21:11:32.737Z" }, + { url = "https://files.pythonhosted.org/packages/bc/fa/021dab618526323c744e0206b3f5c8596a2e7ae9aa38db5948a131123e83/fonttools-4.60.1-cp311-cp311-win32.whl", hash = "sha256:398447f3d8c0c786cbf1209711e79080a40761eb44b27cdafffb48f52bcec258", size = 2230288, upload-time = "2025-09-29T21:11:35.015Z" }, + { url = "https://files.pythonhosted.org/packages/bb/78/0e1a6d22b427579ea5c8273e1c07def2f325b977faaf60bb7ddc01456cb1/fonttools-4.60.1-cp311-cp311-win_amd64.whl", hash = "sha256:d066ea419f719ed87bc2c99a4a4bfd77c2e5949cb724588b9dd58f3fd90b92bf", size = 2278184, upload-time = "2025-09-29T21:11:37.434Z" }, + { url = "https://files.pythonhosted.org/packages/e3/f7/a10b101b7a6f8836a5adb47f2791f2075d044a6ca123f35985c42edc82d8/fonttools-4.60.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:7b0c6d57ab00dae9529f3faf187f2254ea0aa1e04215cf2f1a8ec277c96661bc", size = 2832953, upload-time = "2025-09-29T21:11:39.616Z" }, + { url = "https://files.pythonhosted.org/packages/ed/fe/7bd094b59c926acf2304d2151354ddbeb74b94812f3dc943c231db09cb41/fonttools-4.60.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:839565cbf14645952d933853e8ade66a463684ed6ed6c9345d0faf1f0e868877", size = 2352706, upload-time = "2025-09-29T21:11:41.826Z" }, + { url = "https://files.pythonhosted.org/packages/c0/ca/4bb48a26ed95a1e7eba175535fe5805887682140ee0a0d10a88e1de84208/fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8177ec9676ea6e1793c8a084a90b65a9f778771998eb919d05db6d4b1c0b114c", size = 4923716, upload-time = "2025-09-29T21:11:43.893Z" }, + { url = "https://files.pythonhosted.org/packages/b8/9f/2cb82999f686c1d1ddf06f6ae1a9117a880adbec113611cc9d22b2fdd465/fonttools-4.60.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:996a4d1834524adbb423385d5a629b868ef9d774670856c63c9a0408a3063401", size = 4968175, upload-time = "2025-09-29T21:11:46.439Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/be569699e37d166b78e6218f2cde8c550204f2505038cdd83b42edc469b9/fonttools-4.60.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a46b2f450bc79e06ef3b6394f0c68660529ed51692606ad7f953fc2e448bc903", size = 4911031, upload-time = "2025-09-29T21:11:48.977Z" }, + { url = "https://files.pythonhosted.org/packages/cc/9f/89411cc116effaec5260ad519162f64f9c150e5522a27cbb05eb62d0c05b/fonttools-4.60.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ec722ee589e89a89f5b7574f5c45604030aa6ae24cb2c751e2707193b466fed", size = 5062966, upload-time = "2025-09-29T21:11:54.344Z" }, + { url = "https://files.pythonhosted.org/packages/62/a1/f888221934b5731d46cb9991c7a71f30cb1f97c0ef5fcf37f8da8fce6c8e/fonttools-4.60.1-cp312-cp312-win32.whl", hash = "sha256:b2cf105cee600d2de04ca3cfa1f74f1127f8455b71dbad02b9da6ec266e116d6", size = 2218750, upload-time = "2025-09-29T21:11:56.601Z" }, + { url = "https://files.pythonhosted.org/packages/88/8f/a55b5550cd33cd1028601df41acd057d4be20efa5c958f417b0c0613924d/fonttools-4.60.1-cp312-cp312-win_amd64.whl", hash = "sha256:992775c9fbe2cf794786fa0ffca7f09f564ba3499b8fe9f2f80bd7197db60383", size = 2267026, upload-time = "2025-09-29T21:11:58.852Z" }, + { url = "https://files.pythonhosted.org/packages/7c/5b/cdd2c612277b7ac7ec8c0c9bc41812c43dc7b2d5f2b0897e15fdf5a1f915/fonttools-4.60.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f68576bb4bbf6060c7ab047b1574a1ebe5c50a17de62830079967b211059ebb", size = 2825777, upload-time = "2025-09-29T21:12:01.22Z" }, + { url = "https://files.pythonhosted.org/packages/d6/8a/de9cc0540f542963ba5e8f3a1f6ad48fa211badc3177783b9d5cadf79b5d/fonttools-4.60.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:eedacb5c5d22b7097482fa834bda0dafa3d914a4e829ec83cdea2a01f8c813c4", size = 2348080, upload-time = "2025-09-29T21:12:03.785Z" }, + { url = "https://files.pythonhosted.org/packages/2d/8b/371ab3cec97ee3fe1126b3406b7abd60c8fec8975fd79a3c75cdea0c3d83/fonttools-4.60.1-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b33a7884fabd72bdf5f910d0cf46be50dce86a0362a65cfc746a4168c67eb96c", size = 4903082, upload-time = "2025-09-29T21:12:06.382Z" }, + { url = "https://files.pythonhosted.org/packages/04/05/06b1455e4bc653fcb2117ac3ef5fa3a8a14919b93c60742d04440605d058/fonttools-4.60.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2409d5fb7b55fd70f715e6d34e7a6e4f7511b8ad29a49d6df225ee76da76dd77", size = 4960125, upload-time = "2025-09-29T21:12:09.314Z" }, + { url = "https://files.pythonhosted.org/packages/8e/37/f3b840fcb2666f6cb97038793606bdd83488dca2d0b0fc542ccc20afa668/fonttools-4.60.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c8651e0d4b3bdeda6602b85fdc2abbefc1b41e573ecb37b6779c4ca50753a199", size = 4901454, upload-time = "2025-09-29T21:12:11.931Z" }, + { url = "https://files.pythonhosted.org/packages/fd/9e/eb76f77e82f8d4a46420aadff12cec6237751b0fb9ef1de373186dcffb5f/fonttools-4.60.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:145daa14bf24824b677b9357c5e44fd8895c2a8f53596e1b9ea3496081dc692c", size = 5044495, upload-time = "2025-09-29T21:12:15.241Z" }, + { url = "https://files.pythonhosted.org/packages/f8/b3/cede8f8235d42ff7ae891bae8d619d02c8ac9fd0cfc450c5927a6200c70d/fonttools-4.60.1-cp313-cp313-win32.whl", hash = "sha256:2299df884c11162617a66b7c316957d74a18e3758c0274762d2cc87df7bc0272", size = 2217028, upload-time = "2025-09-29T21:12:17.96Z" }, + { url = "https://files.pythonhosted.org/packages/75/4d/b022c1577807ce8b31ffe055306ec13a866f2337ecee96e75b24b9b753ea/fonttools-4.60.1-cp313-cp313-win_amd64.whl", hash = "sha256:a3db56f153bd4c5c2b619ab02c5db5192e222150ce5a1bc10f16164714bc39ac", size = 2266200, upload-time = "2025-09-29T21:12:20.14Z" }, + { url = "https://files.pythonhosted.org/packages/9a/83/752ca11c1aa9a899b793a130f2e466b79ea0cf7279c8d79c178fc954a07b/fonttools-4.60.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:a884aef09d45ba1206712c7dbda5829562d3fea7726935d3289d343232ecb0d3", size = 2822830, upload-time = "2025-09-29T21:12:24.406Z" }, + { url = "https://files.pythonhosted.org/packages/57/17/bbeab391100331950a96ce55cfbbff27d781c1b85ebafb4167eae50d9fe3/fonttools-4.60.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8a44788d9d91df72d1a5eac49b31aeb887a5f4aab761b4cffc4196c74907ea85", size = 2345524, upload-time = "2025-09-29T21:12:26.819Z" }, + { url = "https://files.pythonhosted.org/packages/3d/2e/d4831caa96d85a84dd0da1d9f90d81cec081f551e0ea216df684092c6c97/fonttools-4.60.1-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:e852d9dda9f93ad3651ae1e3bb770eac544ec93c3807888798eccddf84596537", size = 4843490, upload-time = "2025-09-29T21:12:29.123Z" }, + { url = "https://files.pythonhosted.org/packages/49/13/5e2ea7c7a101b6fc3941be65307ef8df92cbbfa6ec4804032baf1893b434/fonttools-4.60.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:154cb6ee417e417bf5f7c42fe25858c9140c26f647c7347c06f0cc2d47eff003", size = 4944184, upload-time = "2025-09-29T21:12:31.414Z" }, + { url = "https://files.pythonhosted.org/packages/0c/2b/cf9603551c525b73fc47c52ee0b82a891579a93d9651ed694e4e2cd08bb8/fonttools-4.60.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:5664fd1a9ea7f244487ac8f10340c4e37664675e8667d6fee420766e0fb3cf08", size = 4890218, upload-time = "2025-09-29T21:12:33.936Z" }, + { url = "https://files.pythonhosted.org/packages/fd/2f/933d2352422e25f2376aae74f79eaa882a50fb3bfef3c0d4f50501267101/fonttools-4.60.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:583b7f8e3c49486e4d489ad1deacfb8d5be54a8ef34d6df824f6a171f8511d99", size = 4999324, upload-time = "2025-09-29T21:12:36.637Z" }, + { url = "https://files.pythonhosted.org/packages/38/99/234594c0391221f66216bc2c886923513b3399a148defaccf81dc3be6560/fonttools-4.60.1-cp314-cp314-win32.whl", hash = "sha256:66929e2ea2810c6533a5184f938502cfdaea4bc3efb7130d8cc02e1c1b4108d6", size = 2220861, upload-time = "2025-09-29T21:12:39.108Z" }, + { url = "https://files.pythonhosted.org/packages/3e/1d/edb5b23726dde50fc4068e1493e4fc7658eeefcaf75d4c5ffce067d07ae5/fonttools-4.60.1-cp314-cp314-win_amd64.whl", hash = "sha256:f3d5be054c461d6a2268831f04091dc82753176f6ea06dc6047a5e168265a987", size = 2270934, upload-time = "2025-09-29T21:12:41.339Z" }, + { url = "https://files.pythonhosted.org/packages/fb/da/1392aaa2170adc7071fe7f9cfd181a5684a7afcde605aebddf1fb4d76df5/fonttools-4.60.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:b6379e7546ba4ae4b18f8ae2b9bc5960936007a1c0e30b342f662577e8bc3299", size = 2894340, upload-time = "2025-09-29T21:12:43.774Z" }, + { url = "https://files.pythonhosted.org/packages/bf/a7/3b9f16e010d536ce567058b931a20b590d8f3177b2eda09edd92e392375d/fonttools-4.60.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9d0ced62b59e0430b3690dbc5373df1c2aa7585e9a8ce38eff87f0fd993c5b01", size = 2375073, upload-time = "2025-09-29T21:12:46.437Z" }, + { url = "https://files.pythonhosted.org/packages/9b/b5/e9bcf51980f98e59bb5bb7c382a63c6f6cac0eec5f67de6d8f2322382065/fonttools-4.60.1-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:875cb7764708b3132637f6c5fb385b16eeba0f7ac9fa45a69d35e09b47045801", size = 4849758, upload-time = "2025-09-29T21:12:48.694Z" }, + { url = "https://files.pythonhosted.org/packages/e3/dc/1d2cf7d1cba82264b2f8385db3f5960e3d8ce756b4dc65b700d2c496f7e9/fonttools-4.60.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a184b2ea57b13680ab6d5fbde99ccef152c95c06746cb7718c583abd8f945ccc", size = 5085598, upload-time = "2025-09-29T21:12:51.081Z" }, + { url = "https://files.pythonhosted.org/packages/5d/4d/279e28ba87fb20e0c69baf72b60bbf1c4d873af1476806a7b5f2b7fac1ff/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:026290e4ec76583881763fac284aca67365e0be9f13a7fb137257096114cb3bc", size = 4957603, upload-time = "2025-09-29T21:12:53.423Z" }, + { url = "https://files.pythonhosted.org/packages/78/d4/ff19976305e0c05aa3340c805475abb00224c954d3c65e82c0a69633d55d/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f0e8817c7d1a0c2eedebf57ef9a9896f3ea23324769a9a2061a80fe8852705ed", size = 4974184, upload-time = "2025-09-29T21:12:55.962Z" }, + { url = "https://files.pythonhosted.org/packages/63/22/8553ff6166f5cd21cfaa115aaacaa0dc73b91c079a8cfd54a482cbc0f4f5/fonttools-4.60.1-cp314-cp314t-win32.whl", hash = "sha256:1410155d0e764a4615774e5c2c6fc516259fe3eca5882f034eb9bfdbee056259", size = 2282241, upload-time = "2025-09-29T21:12:58.179Z" }, + { url = "https://files.pythonhosted.org/packages/8a/cb/fa7b4d148e11d5a72761a22e595344133e83a9507a4c231df972e657579b/fonttools-4.60.1-cp314-cp314t-win_amd64.whl", hash = "sha256:022beaea4b73a70295b688f817ddc24ed3e3418b5036ffcd5658141184ef0d0c", size = 2345760, upload-time = "2025-09-29T21:13:00.375Z" }, + { url = "https://files.pythonhosted.org/packages/a4/7f/1c9a6cc6e7374ab59bbe91cb3b8a65ce0907c59f8f35368bb3bf941bd458/fonttools-4.60.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:122e1a8ada290423c493491d002f622b1992b1ab0b488c68e31c413390dc7eb2", size = 2816178, upload-time = "2025-09-29T21:13:02.915Z" }, + { url = "https://files.pythonhosted.org/packages/ca/ac/acb4dcf1932566c0b57b5261f93a8b97cb3ebae08d07aff1288e7c9d7faa/fonttools-4.60.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a140761c4ff63d0cb9256ac752f230460ee225ccef4ad8f68affc723c88e2036", size = 2349175, upload-time = "2025-09-29T21:13:05.432Z" }, + { url = "https://files.pythonhosted.org/packages/3e/ac/0b2f8d62c857adfe96551d56abbbc3d2eda2e4715a2e91c5eb7815bb38e1/fonttools-4.60.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0eae96373e4b7c9e45d099d7a523444e3554360927225c1cdae221a58a45b856", size = 4840452, upload-time = "2025-09-29T21:13:08.679Z" }, + { url = "https://files.pythonhosted.org/packages/2d/e1/b2e2ae805f263507e050f1ebfc2fb3654124161f3bea466a1b2a4485c705/fonttools-4.60.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:596ecaca36367027d525b3b426d8a8208169d09edcf8c7506aceb3a38bfb55c7", size = 4774040, upload-time = "2025-09-29T21:13:11.424Z" }, + { url = "https://files.pythonhosted.org/packages/9d/91/05949ba6f757014f343632b142543576eb100aeb261c036b86e7d1fc50f0/fonttools-4.60.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2ee06fc57512144d8b0445194c2da9f190f61ad51e230f14836286470c99f854", size = 4823746, upload-time = "2025-09-29T21:13:14.08Z" }, + { url = "https://files.pythonhosted.org/packages/1b/cf/db9a1bd8d835dc17f09104f83b9d8c078d7bebbaaa9bd41378bf10f025de/fonttools-4.60.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b42d86938e8dda1cd9a1a87a6d82f1818eaf933348429653559a458d027446da", size = 4934001, upload-time = "2025-09-29T21:13:16.435Z" }, + { url = "https://files.pythonhosted.org/packages/87/4a/c58503524f7e6c73eb33b944f27535460e1050a58c99bd5b441242fcca86/fonttools-4.60.1-cp39-cp39-win32.whl", hash = "sha256:8b4eb332f9501cb1cd3d4d099374a1e1306783ff95489a1026bde9eb02ccc34a", size = 1499091, upload-time = "2025-09-29T21:13:19.072Z" }, + { url = "https://files.pythonhosted.org/packages/69/8f/3394936411aec5f26a1fdf8d7fdc1da7c276e0c627cd71b7b266b2431681/fonttools-4.60.1-cp39-cp39-win_amd64.whl", hash = "sha256:7473a8ed9ed09aeaa191301244a5a9dbe46fe0bf54f9d6cd21d83044c3321217", size = 1543835, upload-time = "2025-09-29T21:13:21.606Z" }, + { url = "https://files.pythonhosted.org/packages/c7/93/0dd45cd283c32dea1545151d8c3637b4b8c53cdb3a625aeb2885b184d74d/fonttools-4.60.1-py3-none-any.whl", hash = "sha256:906306ac7afe2156fcf0042173d6ebbb05416af70f6b370967b47f8f00103bbb", size = 1143175, upload-time = "2025-09-29T21:13:24.134Z" }, +] + +[[package]] +name = "ghp-import" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d9/29/d40217cbe2f6b1359e00c6c307bb3fc876ba74068cbab3dde77f03ca0dc4/ghp-import-2.1.0.tar.gz", hash = "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343", size = 10943, upload-time = "2022-05-02T15:47:16.11Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f7/ec/67fbef5d497f86283db54c22eec6f6140243aae73265799baaaa19cd17fb/ghp_import-2.1.0-py3-none-any.whl", hash = "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619", size = 11034, upload-time = "2022-05-02T15:47:14.552Z" }, +] + +[[package]] +name = "griffe" +version = "1.14.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ec/d7/6c09dd7ce4c7837e4cdb11dce980cb45ae3cd87677298dc3b781b6bce7d3/griffe-1.14.0.tar.gz", hash = "sha256:9d2a15c1eca966d68e00517de5d69dd1bc5c9f2335ef6c1775362ba5b8651a13", size = 424684, upload-time = "2025-09-05T15:02:29.167Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/b1/9ff6578d789a89812ff21e4e0f80ffae20a65d5dd84e7a17873fe3b365be/griffe-1.14.0-py3-none-any.whl", hash = "sha256:0e9d52832cccf0f7188cfe585ba962d2674b241c01916d780925df34873bceb0", size = 144439, upload-time = "2025-09-05T15:02:27.511Z" }, +] + +[[package]] +name = "idna" +version = "3.11" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6f/6d/0703ccc57f3a7233505399edb88de3cbd678da106337b9fcde432b65ed60/idna-3.11.tar.gz", hash = "sha256:795dafcc9c04ed0c1fb032c2aa73654d8e8c5023a7df64a53f39190ada629902", size = 194582, upload-time = "2025-10-12T14:55:20.501Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl", hash = "sha256:771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea", size = 71008, upload-time = "2025-10-12T14:55:18.883Z" }, +] + +[[package]] +name = "importlib-metadata" +version = "8.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "zipp" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641, upload-time = "2025-04-27T15:29:01.736Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/b0/36bd937216ec521246249be3bf9855081de4c5e06a0c9b4219dbeda50373/importlib_metadata-8.7.0-py3-none-any.whl", hash = "sha256:e5dd1551894c77868a30651cef00984d50e1002d06942a7101d34870c5f02afd", size = 27656, upload-time = "2025-04-27T15:29:00.214Z" }, +] + +[[package]] +name = "importlib-resources" +version = "6.5.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "zipp", marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/cf/8c/f834fbf984f691b4f7ff60f50b514cc3de5cc08abfc3295564dd89c5e2e7/importlib_resources-6.5.2.tar.gz", hash = "sha256:185f87adef5bcc288449d98fb4fba07cea78bc036455dd44c5fc4a2fe78fed2c", size = 44693, upload-time = "2025-01-03T18:51:56.698Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl", hash = "sha256:789cfdc3ed28c78b67a06acb8126751ced69a3d5f79c095a98298cd8a760ccec", size = 37461, upload-time = "2025-01-03T18:51:54.306Z" }, +] + +[[package]] +name = "iniconfig" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +sdist = { url = "https://files.pythonhosted.org/packages/f2/97/ebf4da567aa6827c909642694d71c9fcf53e5b504f2d96afea02718862f3/iniconfig-2.1.0.tar.gz", hash = "sha256:3abbd2e30b36733fee78f9c7f7308f2d0050e88f0087fd25c2645f63c773e1c7", size = 4793, upload-time = "2025-03-19T20:09:59.721Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760", size = 6050, upload-time = "2025-03-19T20:10:01.071Z" }, +] + +[[package]] +name = "iniconfig" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +sdist = { url = "https://files.pythonhosted.org/packages/72/34/14ca021ce8e5dfedc35312d08ba8bf51fdd999c576889fc2c24cb97f4f10/iniconfig-2.3.0.tar.gz", hash = "sha256:c76315c77db068650d49c5b56314774a7804df16fee4402c1f19d6d15d8c4730", size = 20503, upload-time = "2025-10-18T21:55:43.219Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl", hash = "sha256:f631c04d2c48c52b84d0d0549c99ff3859c98df65b3101406327ecc7d53fbf12", size = 7484, upload-time = "2025-10-18T21:55:41.639Z" }, +] + +[[package]] +name = "ipykernel" +version = "6.31.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "appnope", marker = "python_full_version < '3.10' and sys_platform == 'darwin'" }, + { name = "comm", marker = "python_full_version < '3.10'" }, + { name = "debugpy", marker = "python_full_version < '3.10'" }, + { name = "ipython", version = "8.18.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "jupyter-client", marker = "python_full_version < '3.10'" }, + { name = "jupyter-core", version = "5.8.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "matplotlib-inline", marker = "python_full_version < '3.10'" }, + { name = "nest-asyncio", marker = "python_full_version < '3.10'" }, + { name = "packaging", marker = "python_full_version < '3.10'" }, + { name = "psutil", marker = "python_full_version < '3.10'" }, + { name = "pyzmq", marker = "python_full_version < '3.10'" }, + { name = "tornado", marker = "python_full_version < '3.10'" }, + { name = "traitlets", marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a5/1d/d5ba6edbfe6fae4c3105bca3a9c889563cc752c7f2de45e333164c7f4846/ipykernel-6.31.0.tar.gz", hash = "sha256:2372ce8bc1ff4f34e58cafed3a0feb2194b91fc7cad0fc72e79e47b45ee9e8f6", size = 167493, upload-time = "2025-10-20T11:42:39.948Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/d8/502954a4ec0efcf264f99b65b41c3c54e65a647d9f0d6f62cd02227d242c/ipykernel-6.31.0-py3-none-any.whl", hash = "sha256:abe5386f6ced727a70e0eb0cf1da801fa7c5fa6ff82147747d5a0406cd8c94af", size = 117003, upload-time = "2025-10-20T11:42:37.502Z" }, +] + +[[package]] +name = "ipykernel" +version = "7.0.1" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "appnope", marker = "python_full_version >= '3.10' and sys_platform == 'darwin'" }, + { name = "comm", marker = "python_full_version >= '3.10'" }, + { name = "debugpy", marker = "python_full_version >= '3.10'" }, + { name = "ipython", version = "8.37.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "ipython", version = "9.6.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "jupyter-client", marker = "python_full_version >= '3.10'" }, + { name = "jupyter-core", version = "5.9.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "matplotlib-inline", marker = "python_full_version >= '3.10'" }, + { name = "nest-asyncio", marker = "python_full_version >= '3.10'" }, + { name = "packaging", marker = "python_full_version >= '3.10'" }, + { name = "psutil", marker = "python_full_version >= '3.10'" }, + { name = "pyzmq", marker = "python_full_version >= '3.10'" }, + { name = "tornado", marker = "python_full_version >= '3.10'" }, + { name = "traitlets", marker = "python_full_version >= '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a8/4c/9f0024c8457286c6bfd5405a15d650ec5ea36f420ef9bbc58b301f66cfc5/ipykernel-7.0.1.tar.gz", hash = "sha256:2d3fd7cdef22071c2abbad78f142b743228c5d59cd470d034871ae0ac359533c", size = 171460, upload-time = "2025-10-14T16:17:07.325Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b8/f7/761037905ffdec673533bfa43af8d4c31c859c778dfc3bbb71899875ec18/ipykernel-7.0.1-py3-none-any.whl", hash = "sha256:87182a8305e28954b6721087dec45b171712610111d494c17bb607befa1c4000", size = 118157, upload-time = "2025-10-14T16:17:05.606Z" }, +] + +[[package]] +name = "ipython" +version = "8.18.1" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version < '3.10' and sys_platform == 'win32'" }, + { name = "decorator", marker = "python_full_version < '3.10'" }, + { name = "exceptiongroup", marker = "python_full_version < '3.10'" }, + { name = "jedi", marker = "python_full_version < '3.10'" }, + { name = "matplotlib-inline", marker = "python_full_version < '3.10'" }, + { name = "pexpect", marker = "python_full_version < '3.10' and sys_platform != 'win32'" }, + { name = "prompt-toolkit", marker = "python_full_version < '3.10'" }, + { name = "pygments", marker = "python_full_version < '3.10'" }, + { name = "stack-data", marker = "python_full_version < '3.10'" }, + { name = "traitlets", marker = "python_full_version < '3.10'" }, + { name = "typing-extensions", marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b1/b9/3ba6c45a6df813c09a48bac313c22ff83efa26cbb55011218d925a46e2ad/ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27", size = 5486330, upload-time = "2023-11-27T09:58:34.596Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/47/6b/d9fdcdef2eb6a23f391251fde8781c38d42acd82abe84d054cb74f7863b0/ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397", size = 808161, upload-time = "2023-11-27T09:58:30.538Z" }, +] + +[[package]] +name = "ipython" +version = "8.37.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version == '3.10.*' and sys_platform == 'win32'" }, + { name = "decorator", marker = "python_full_version == '3.10.*'" }, + { name = "exceptiongroup", marker = "python_full_version == '3.10.*'" }, + { name = "jedi", marker = "python_full_version == '3.10.*'" }, + { name = "matplotlib-inline", marker = "python_full_version == '3.10.*'" }, + { name = "pexpect", marker = "python_full_version == '3.10.*' and sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit", marker = "python_full_version == '3.10.*'" }, + { name = "pygments", marker = "python_full_version == '3.10.*'" }, + { name = "stack-data", marker = "python_full_version == '3.10.*'" }, + { name = "traitlets", marker = "python_full_version == '3.10.*'" }, + { name = "typing-extensions", marker = "python_full_version == '3.10.*'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/85/31/10ac88f3357fc276dc8a64e8880c82e80e7459326ae1d0a211b40abf6665/ipython-8.37.0.tar.gz", hash = "sha256:ca815841e1a41a1e6b73a0b08f3038af9b2252564d01fc405356d34033012216", size = 5606088, upload-time = "2025-05-31T16:39:09.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/91/d0/274fbf7b0b12643cbbc001ce13e6a5b1607ac4929d1b11c72460152c9fc3/ipython-8.37.0-py3-none-any.whl", hash = "sha256:ed87326596b878932dbcb171e3e698845434d8c61b8d8cd474bf663041a9dcf2", size = 831864, upload-time = "2025-05-31T16:39:06.38Z" }, +] + +[[package]] +name = "ipython" +version = "9.6.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", +] +dependencies = [ + { name = "colorama", marker = "python_full_version >= '3.11' and sys_platform == 'win32'" }, + { name = "decorator", marker = "python_full_version >= '3.11'" }, + { name = "ipython-pygments-lexers", marker = "python_full_version >= '3.11'" }, + { name = "jedi", marker = "python_full_version >= '3.11'" }, + { name = "matplotlib-inline", marker = "python_full_version >= '3.11'" }, + { name = "pexpect", marker = "python_full_version >= '3.11' and sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit", marker = "python_full_version >= '3.11'" }, + { name = "pygments", marker = "python_full_version >= '3.11'" }, + { name = "stack-data", marker = "python_full_version >= '3.11'" }, + { name = "traitlets", marker = "python_full_version >= '3.11'" }, + { name = "typing-extensions", marker = "python_full_version == '3.11.*'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2a/34/29b18c62e39ee2f7a6a3bba7efd952729d8aadd45ca17efc34453b717665/ipython-9.6.0.tar.gz", hash = "sha256:5603d6d5d356378be5043e69441a072b50a5b33b4503428c77b04cb8ce7bc731", size = 4396932, upload-time = "2025-09-29T10:55:53.948Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/48/c5/d5e07995077e48220269c28a221e168c91123ad5ceee44d548f54a057fc0/ipython-9.6.0-py3-none-any.whl", hash = "sha256:5f77efafc886d2f023442479b8149e7d86547ad0a979e9da9f045d252f648196", size = 616170, upload-time = "2025-09-29T10:55:47.676Z" }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments", marker = "python_full_version >= '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393, upload-time = "2025-01-17T11:24:34.505Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074, upload-time = "2025-01-17T11:24:33.271Z" }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287, upload-time = "2024-11-11T01:41:42.873Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278, upload-time = "2024-11-11T01:41:40.175Z" }, +] + +[[package]] +name = "jinja2" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "importlib-metadata", marker = "python_full_version < '3.10'" }, + { name = "jupyter-core", version = "5.8.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "jupyter-core", version = "5.9.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019, upload-time = "2024-09-17T10:44:17.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105, upload-time = "2024-09-17T10:44:15.218Z" }, +] + +[[package]] +name = "jupyter-core" +version = "5.8.1" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "platformdirs", version = "4.4.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "pywin32", marker = "python_full_version < '3.10' and platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets", marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/1b/72906d554acfeb588332eaaa6f61577705e9ec752ddb486f302dafa292d9/jupyter_core-5.8.1.tar.gz", hash = "sha256:0a5f9706f70e64786b75acba995988915ebd4601c8a52e534a40b51c95f59941", size = 88923, upload-time = "2025-05-27T07:38:16.655Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2f/57/6bffd4b20b88da3800c5d691e0337761576ee688eb01299eae865689d2df/jupyter_core-5.8.1-py3-none-any.whl", hash = "sha256:c28d268fc90fb53f1338ded2eb410704c5449a358406e8a948b75706e24863d0", size = 28880, upload-time = "2025-05-27T07:38:15.137Z" }, +] + +[[package]] +name = "jupyter-core" +version = "5.9.1" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "platformdirs", version = "4.5.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "traitlets", marker = "python_full_version >= '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/02/49/9d1284d0dc65e2c757b74c6687b6d319b02f822ad039e5c512df9194d9dd/jupyter_core-5.9.1.tar.gz", hash = "sha256:4d09aaff303b9566c3ce657f580bd089ff5c91f5f89cf7d8846c3cdf465b5508", size = 89814, upload-time = "2025-10-16T19:19:18.444Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl", hash = "sha256:ebf87fdc6073d142e114c72c9e29a9d7ca03fad818c5d300ce2adc1fb0743407", size = 29032, upload-time = "2025-10-16T19:19:16.783Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +sdist = { url = "https://files.pythonhosted.org/packages/85/4d/2255e1c76304cbd60b48cee302b66d1dde4468dc5b1160e4b7cb43778f2a/kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60", size = 97286, upload-time = "2024-09-04T09:39:44.302Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/97/14/fc943dd65268a96347472b4fbe5dcc2f6f55034516f80576cd0dd3a8930f/kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6", size = 122440, upload-time = "2024-09-04T09:03:44.9Z" }, + { url = "https://files.pythonhosted.org/packages/1e/46/e68fed66236b69dd02fcdb506218c05ac0e39745d696d22709498896875d/kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17", size = 65758, upload-time = "2024-09-04T09:03:46.582Z" }, + { url = "https://files.pythonhosted.org/packages/ef/fa/65de49c85838681fc9cb05de2a68067a683717321e01ddafb5b8024286f0/kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9", size = 64311, upload-time = "2024-09-04T09:03:47.973Z" }, + { url = "https://files.pythonhosted.org/packages/42/9c/cc8d90f6ef550f65443bad5872ffa68f3dee36de4974768628bea7c14979/kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9", size = 1637109, upload-time = "2024-09-04T09:03:49.281Z" }, + { url = "https://files.pythonhosted.org/packages/55/91/0a57ce324caf2ff5403edab71c508dd8f648094b18cfbb4c8cc0fde4a6ac/kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c", size = 1617814, upload-time = "2024-09-04T09:03:51.444Z" }, + { url = "https://files.pythonhosted.org/packages/12/5d/c36140313f2510e20207708adf36ae4919416d697ee0236b0ddfb6fd1050/kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599", size = 1400881, upload-time = "2024-09-04T09:03:53.357Z" }, + { url = "https://files.pythonhosted.org/packages/56/d0/786e524f9ed648324a466ca8df86298780ef2b29c25313d9a4f16992d3cf/kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05", size = 1512972, upload-time = "2024-09-04T09:03:55.082Z" }, + { url = "https://files.pythonhosted.org/packages/67/5a/77851f2f201e6141d63c10a0708e996a1363efaf9e1609ad0441b343763b/kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407", size = 1444787, upload-time = "2024-09-04T09:03:56.588Z" }, + { url = "https://files.pythonhosted.org/packages/06/5f/1f5eaab84355885e224a6fc8d73089e8713dc7e91c121f00b9a1c58a2195/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278", size = 2199212, upload-time = "2024-09-04T09:03:58.557Z" }, + { url = "https://files.pythonhosted.org/packages/b5/28/9152a3bfe976a0ae21d445415defc9d1cd8614b2910b7614b30b27a47270/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5", size = 2346399, upload-time = "2024-09-04T09:04:00.178Z" }, + { url = "https://files.pythonhosted.org/packages/26/f6/453d1904c52ac3b400f4d5e240ac5fec25263716723e44be65f4d7149d13/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad", size = 2308688, upload-time = "2024-09-04T09:04:02.216Z" }, + { url = "https://files.pythonhosted.org/packages/5a/9a/d4968499441b9ae187e81745e3277a8b4d7c60840a52dc9d535a7909fac3/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895", size = 2445493, upload-time = "2024-09-04T09:04:04.571Z" }, + { url = "https://files.pythonhosted.org/packages/07/c9/032267192e7828520dacb64dfdb1d74f292765f179e467c1cba97687f17d/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3", size = 2262191, upload-time = "2024-09-04T09:04:05.969Z" }, + { url = "https://files.pythonhosted.org/packages/6c/ad/db0aedb638a58b2951da46ddaeecf204be8b4f5454df020d850c7fa8dca8/kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc", size = 46644, upload-time = "2024-09-04T09:04:07.408Z" }, + { url = "https://files.pythonhosted.org/packages/12/ca/d0f7b7ffbb0be1e7c2258b53554efec1fd652921f10d7d85045aff93ab61/kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c", size = 55877, upload-time = "2024-09-04T09:04:08.869Z" }, + { url = "https://files.pythonhosted.org/packages/97/6c/cfcc128672f47a3e3c0d918ecb67830600078b025bfc32d858f2e2d5c6a4/kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a", size = 48347, upload-time = "2024-09-04T09:04:10.106Z" }, + { url = "https://files.pythonhosted.org/packages/e9/44/77429fa0a58f941d6e1c58da9efe08597d2e86bf2b2cce6626834f49d07b/kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54", size = 122442, upload-time = "2024-09-04T09:04:11.432Z" }, + { url = "https://files.pythonhosted.org/packages/e5/20/8c75caed8f2462d63c7fd65e16c832b8f76cda331ac9e615e914ee80bac9/kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95", size = 65762, upload-time = "2024-09-04T09:04:12.468Z" }, + { url = "https://files.pythonhosted.org/packages/f4/98/fe010f15dc7230f45bc4cf367b012d651367fd203caaa992fd1f5963560e/kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935", size = 64319, upload-time = "2024-09-04T09:04:13.635Z" }, + { url = "https://files.pythonhosted.org/packages/8b/1b/b5d618f4e58c0675654c1e5051bcf42c776703edb21c02b8c74135541f60/kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb", size = 1334260, upload-time = "2024-09-04T09:04:14.878Z" }, + { url = "https://files.pythonhosted.org/packages/b8/01/946852b13057a162a8c32c4c8d2e9ed79f0bb5d86569a40c0b5fb103e373/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02", size = 1426589, upload-time = "2024-09-04T09:04:16.514Z" }, + { url = "https://files.pythonhosted.org/packages/70/d1/c9f96df26b459e15cf8a965304e6e6f4eb291e0f7a9460b4ad97b047561e/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51", size = 1541080, upload-time = "2024-09-04T09:04:18.322Z" }, + { url = "https://files.pythonhosted.org/packages/d3/73/2686990eb8b02d05f3de759d6a23a4ee7d491e659007dd4c075fede4b5d0/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052", size = 1470049, upload-time = "2024-09-04T09:04:20.266Z" }, + { url = "https://files.pythonhosted.org/packages/a7/4b/2db7af3ed3af7c35f388d5f53c28e155cd402a55432d800c543dc6deb731/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18", size = 1426376, upload-time = "2024-09-04T09:04:22.419Z" }, + { url = "https://files.pythonhosted.org/packages/05/83/2857317d04ea46dc5d115f0df7e676997bbd968ced8e2bd6f7f19cfc8d7f/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545", size = 2222231, upload-time = "2024-09-04T09:04:24.526Z" }, + { url = "https://files.pythonhosted.org/packages/0d/b5/866f86f5897cd4ab6d25d22e403404766a123f138bd6a02ecb2cdde52c18/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b", size = 2368634, upload-time = "2024-09-04T09:04:25.899Z" }, + { url = "https://files.pythonhosted.org/packages/c1/ee/73de8385403faba55f782a41260210528fe3273d0cddcf6d51648202d6d0/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36", size = 2329024, upload-time = "2024-09-04T09:04:28.523Z" }, + { url = "https://files.pythonhosted.org/packages/a1/e7/cd101d8cd2cdfaa42dc06c433df17c8303d31129c9fdd16c0ea37672af91/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3", size = 2468484, upload-time = "2024-09-04T09:04:30.547Z" }, + { url = "https://files.pythonhosted.org/packages/e1/72/84f09d45a10bc57a40bb58b81b99d8f22b58b2040c912b7eb97ebf625bf2/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523", size = 2284078, upload-time = "2024-09-04T09:04:33.218Z" }, + { url = "https://files.pythonhosted.org/packages/d2/d4/71828f32b956612dc36efd7be1788980cb1e66bfb3706e6dec9acad9b4f9/kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d", size = 46645, upload-time = "2024-09-04T09:04:34.371Z" }, + { url = "https://files.pythonhosted.org/packages/a1/65/d43e9a20aabcf2e798ad1aff6c143ae3a42cf506754bcb6a7ed8259c8425/kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b", size = 56022, upload-time = "2024-09-04T09:04:35.786Z" }, + { url = "https://files.pythonhosted.org/packages/35/b3/9f75a2e06f1b4ca00b2b192bc2b739334127d27f1d0625627ff8479302ba/kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376", size = 48536, upload-time = "2024-09-04T09:04:37.525Z" }, + { url = "https://files.pythonhosted.org/packages/97/9c/0a11c714cf8b6ef91001c8212c4ef207f772dd84540104952c45c1f0a249/kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2", size = 121808, upload-time = "2024-09-04T09:04:38.637Z" }, + { url = "https://files.pythonhosted.org/packages/f2/d8/0fe8c5f5d35878ddd135f44f2af0e4e1d379e1c7b0716f97cdcb88d4fd27/kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a", size = 65531, upload-time = "2024-09-04T09:04:39.694Z" }, + { url = "https://files.pythonhosted.org/packages/80/c5/57fa58276dfdfa612241d640a64ca2f76adc6ffcebdbd135b4ef60095098/kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee", size = 63894, upload-time = "2024-09-04T09:04:41.6Z" }, + { url = "https://files.pythonhosted.org/packages/8b/e9/26d3edd4c4ad1c5b891d8747a4f81b1b0aba9fb9721de6600a4adc09773b/kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640", size = 1369296, upload-time = "2024-09-04T09:04:42.886Z" }, + { url = "https://files.pythonhosted.org/packages/b6/67/3f4850b5e6cffb75ec40577ddf54f7b82b15269cc5097ff2e968ee32ea7d/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f", size = 1461450, upload-time = "2024-09-04T09:04:46.284Z" }, + { url = "https://files.pythonhosted.org/packages/52/be/86cbb9c9a315e98a8dc6b1d23c43cffd91d97d49318854f9c37b0e41cd68/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483", size = 1579168, upload-time = "2024-09-04T09:04:47.91Z" }, + { url = "https://files.pythonhosted.org/packages/0f/00/65061acf64bd5fd34c1f4ae53f20b43b0a017a541f242a60b135b9d1e301/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258", size = 1507308, upload-time = "2024-09-04T09:04:49.465Z" }, + { url = "https://files.pythonhosted.org/packages/21/e4/c0b6746fd2eb62fe702118b3ca0cb384ce95e1261cfada58ff693aeec08a/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e", size = 1464186, upload-time = "2024-09-04T09:04:50.949Z" }, + { url = "https://files.pythonhosted.org/packages/0a/0f/529d0a9fffb4d514f2782c829b0b4b371f7f441d61aa55f1de1c614c4ef3/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107", size = 2247877, upload-time = "2024-09-04T09:04:52.388Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e1/66603ad779258843036d45adcbe1af0d1a889a07af4635f8b4ec7dccda35/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948", size = 2404204, upload-time = "2024-09-04T09:04:54.385Z" }, + { url = "https://files.pythonhosted.org/packages/8d/61/de5fb1ca7ad1f9ab7970e340a5b833d735df24689047de6ae71ab9d8d0e7/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038", size = 2352461, upload-time = "2024-09-04T09:04:56.307Z" }, + { url = "https://files.pythonhosted.org/packages/ba/d2/0edc00a852e369827f7e05fd008275f550353f1f9bcd55db9363d779fc63/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383", size = 2501358, upload-time = "2024-09-04T09:04:57.922Z" }, + { url = "https://files.pythonhosted.org/packages/84/15/adc15a483506aec6986c01fb7f237c3aec4d9ed4ac10b756e98a76835933/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520", size = 2314119, upload-time = "2024-09-04T09:04:59.332Z" }, + { url = "https://files.pythonhosted.org/packages/36/08/3a5bb2c53c89660863a5aa1ee236912269f2af8762af04a2e11df851d7b2/kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b", size = 46367, upload-time = "2024-09-04T09:05:00.804Z" }, + { url = "https://files.pythonhosted.org/packages/19/93/c05f0a6d825c643779fc3c70876bff1ac221f0e31e6f701f0e9578690d70/kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb", size = 55884, upload-time = "2024-09-04T09:05:01.924Z" }, + { url = "https://files.pythonhosted.org/packages/d2/f9/3828d8f21b6de4279f0667fb50a9f5215e6fe57d5ec0d61905914f5b6099/kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a", size = 48528, upload-time = "2024-09-04T09:05:02.983Z" }, + { url = "https://files.pythonhosted.org/packages/c4/06/7da99b04259b0f18b557a4effd1b9c901a747f7fdd84cf834ccf520cb0b2/kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e", size = 121913, upload-time = "2024-09-04T09:05:04.072Z" }, + { url = "https://files.pythonhosted.org/packages/97/f5/b8a370d1aa593c17882af0a6f6755aaecd643640c0ed72dcfd2eafc388b9/kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6", size = 65627, upload-time = "2024-09-04T09:05:05.119Z" }, + { url = "https://files.pythonhosted.org/packages/2a/fc/6c0374f7503522539e2d4d1b497f5ebad3f8ed07ab51aed2af988dd0fb65/kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750", size = 63888, upload-time = "2024-09-04T09:05:06.191Z" }, + { url = "https://files.pythonhosted.org/packages/bf/3e/0b7172793d0f41cae5c923492da89a2ffcd1adf764c16159ca047463ebd3/kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d", size = 1369145, upload-time = "2024-09-04T09:05:07.919Z" }, + { url = "https://files.pythonhosted.org/packages/77/92/47d050d6f6aced2d634258123f2688fbfef8ded3c5baf2c79d94d91f1f58/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379", size = 1461448, upload-time = "2024-09-04T09:05:10.01Z" }, + { url = "https://files.pythonhosted.org/packages/9c/1b/8f80b18e20b3b294546a1adb41701e79ae21915f4175f311a90d042301cf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c", size = 1578750, upload-time = "2024-09-04T09:05:11.598Z" }, + { url = "https://files.pythonhosted.org/packages/a4/fe/fe8e72f3be0a844f257cadd72689c0848c6d5c51bc1d60429e2d14ad776e/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34", size = 1507175, upload-time = "2024-09-04T09:05:13.22Z" }, + { url = "https://files.pythonhosted.org/packages/39/fa/cdc0b6105d90eadc3bee525fecc9179e2b41e1ce0293caaf49cb631a6aaf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1", size = 1463963, upload-time = "2024-09-04T09:05:15.925Z" }, + { url = "https://files.pythonhosted.org/packages/6e/5c/0c03c4e542720c6177d4f408e56d1c8315899db72d46261a4e15b8b33a41/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f", size = 2248220, upload-time = "2024-09-04T09:05:17.434Z" }, + { url = "https://files.pythonhosted.org/packages/3d/ee/55ef86d5a574f4e767df7da3a3a7ff4954c996e12d4fbe9c408170cd7dcc/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b", size = 2404463, upload-time = "2024-09-04T09:05:18.997Z" }, + { url = "https://files.pythonhosted.org/packages/0f/6d/73ad36170b4bff4825dc588acf4f3e6319cb97cd1fb3eb04d9faa6b6f212/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27", size = 2352842, upload-time = "2024-09-04T09:05:21.299Z" }, + { url = "https://files.pythonhosted.org/packages/0b/16/fa531ff9199d3b6473bb4d0f47416cdb08d556c03b8bc1cccf04e756b56d/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a", size = 2501635, upload-time = "2024-09-04T09:05:23.588Z" }, + { url = "https://files.pythonhosted.org/packages/78/7e/aa9422e78419db0cbe75fb86d8e72b433818f2e62e2e394992d23d23a583/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee", size = 2314556, upload-time = "2024-09-04T09:05:25.907Z" }, + { url = "https://files.pythonhosted.org/packages/a8/b2/15f7f556df0a6e5b3772a1e076a9d9f6c538ce5f05bd590eca8106508e06/kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07", size = 46364, upload-time = "2024-09-04T09:05:27.184Z" }, + { url = "https://files.pythonhosted.org/packages/0b/db/32e897e43a330eee8e4770bfd2737a9584b23e33587a0812b8e20aac38f7/kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76", size = 55887, upload-time = "2024-09-04T09:05:28.372Z" }, + { url = "https://files.pythonhosted.org/packages/c8/a4/df2bdca5270ca85fd25253049eb6708d4127be2ed0e5c2650217450b59e9/kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650", size = 48530, upload-time = "2024-09-04T09:05:30.225Z" }, + { url = "https://files.pythonhosted.org/packages/11/88/37ea0ea64512997b13d69772db8dcdc3bfca5442cda3a5e4bb943652ee3e/kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd", size = 122449, upload-time = "2024-09-04T09:05:55.311Z" }, + { url = "https://files.pythonhosted.org/packages/4e/45/5a5c46078362cb3882dcacad687c503089263c017ca1241e0483857791eb/kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583", size = 65757, upload-time = "2024-09-04T09:05:56.906Z" }, + { url = "https://files.pythonhosted.org/packages/8a/be/a6ae58978772f685d48dd2e84460937761c53c4bbd84e42b0336473d9775/kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417", size = 64312, upload-time = "2024-09-04T09:05:58.384Z" }, + { url = "https://files.pythonhosted.org/packages/f4/04/18ef6f452d311e1e1eb180c9bf5589187fa1f042db877e6fe443ef10099c/kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904", size = 1626966, upload-time = "2024-09-04T09:05:59.855Z" }, + { url = "https://files.pythonhosted.org/packages/21/b1/40655f6c3fa11ce740e8a964fa8e4c0479c87d6a7944b95af799c7a55dfe/kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a", size = 1607044, upload-time = "2024-09-04T09:06:02.16Z" }, + { url = "https://files.pythonhosted.org/packages/fd/93/af67dbcfb9b3323bbd2c2db1385a7139d8f77630e4a37bb945b57188eb2d/kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8", size = 1391879, upload-time = "2024-09-04T09:06:03.908Z" }, + { url = "https://files.pythonhosted.org/packages/40/6f/d60770ef98e77b365d96061d090c0cd9e23418121c55fff188fa4bdf0b54/kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2", size = 1504751, upload-time = "2024-09-04T09:06:05.58Z" }, + { url = "https://files.pythonhosted.org/packages/fa/3a/5f38667d313e983c432f3fcd86932177519ed8790c724e07d77d1de0188a/kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88", size = 1436990, upload-time = "2024-09-04T09:06:08.126Z" }, + { url = "https://files.pythonhosted.org/packages/cb/3b/1520301a47326e6a6043b502647e42892be33b3f051e9791cc8bb43f1a32/kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde", size = 2191122, upload-time = "2024-09-04T09:06:10.345Z" }, + { url = "https://files.pythonhosted.org/packages/cf/c4/eb52da300c166239a2233f1f9c4a1b767dfab98fae27681bfb7ea4873cb6/kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c", size = 2338126, upload-time = "2024-09-04T09:06:12.321Z" }, + { url = "https://files.pythonhosted.org/packages/1a/cb/42b92fd5eadd708dd9107c089e817945500685f3437ce1fd387efebc6d6e/kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2", size = 2298313, upload-time = "2024-09-04T09:06:14.562Z" }, + { url = "https://files.pythonhosted.org/packages/4f/eb/be25aa791fe5fc75a8b1e0c965e00f942496bc04635c9aae8035f6b76dcd/kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb", size = 2437784, upload-time = "2024-09-04T09:06:16.767Z" }, + { url = "https://files.pythonhosted.org/packages/c5/22/30a66be7f3368d76ff95689e1c2e28d382383952964ab15330a15d8bfd03/kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327", size = 2253988, upload-time = "2024-09-04T09:06:18.705Z" }, + { url = "https://files.pythonhosted.org/packages/35/d3/5f2ecb94b5211c8a04f218a76133cc8d6d153b0f9cd0b45fad79907f0689/kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644", size = 46980, upload-time = "2024-09-04T09:06:20.106Z" }, + { url = "https://files.pythonhosted.org/packages/ef/17/cd10d020578764ea91740204edc6b3236ed8106228a46f568d716b11feb2/kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4", size = 55847, upload-time = "2024-09-04T09:06:21.407Z" }, + { url = "https://files.pythonhosted.org/packages/91/84/32232502020bd78d1d12be7afde15811c64a95ed1f606c10456db4e4c3ac/kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f", size = 48494, upload-time = "2024-09-04T09:06:22.648Z" }, + { url = "https://files.pythonhosted.org/packages/ac/59/741b79775d67ab67ced9bb38552da688c0305c16e7ee24bba7a2be253fb7/kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643", size = 59491, upload-time = "2024-09-04T09:06:24.188Z" }, + { url = "https://files.pythonhosted.org/packages/58/cc/fb239294c29a5656e99e3527f7369b174dd9cc7c3ef2dea7cb3c54a8737b/kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706", size = 57648, upload-time = "2024-09-04T09:06:25.559Z" }, + { url = "https://files.pythonhosted.org/packages/3b/ef/2f009ac1f7aab9f81efb2d837301d255279d618d27b6015780115ac64bdd/kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6", size = 84257, upload-time = "2024-09-04T09:06:27.038Z" }, + { url = "https://files.pythonhosted.org/packages/81/e1/c64f50987f85b68b1c52b464bb5bf73e71570c0f7782d626d1eb283ad620/kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2", size = 80906, upload-time = "2024-09-04T09:06:28.48Z" }, + { url = "https://files.pythonhosted.org/packages/fd/71/1687c5c0a0be2cee39a5c9c389e546f9c6e215e46b691d00d9f646892083/kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4", size = 79951, upload-time = "2024-09-04T09:06:29.966Z" }, + { url = "https://files.pythonhosted.org/packages/ea/8b/d7497df4a1cae9367adf21665dd1f896c2a7aeb8769ad77b662c5e2bcce7/kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a", size = 55715, upload-time = "2024-09-04T09:06:31.489Z" }, + { url = "https://files.pythonhosted.org/packages/d5/df/ce37d9b26f07ab90880923c94d12a6ff4d27447096b4c849bfc4339ccfdf/kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39", size = 58666, upload-time = "2024-09-04T09:06:43.756Z" }, + { url = "https://files.pythonhosted.org/packages/b0/d3/e4b04f43bc629ac8e186b77b2b1a251cdfa5b7610fa189dc0db622672ce6/kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e", size = 57088, upload-time = "2024-09-04T09:06:45.406Z" }, + { url = "https://files.pythonhosted.org/packages/30/1c/752df58e2d339e670a535514d2db4fe8c842ce459776b8080fbe08ebb98e/kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608", size = 84321, upload-time = "2024-09-04T09:06:47.557Z" }, + { url = "https://files.pythonhosted.org/packages/f0/f8/fe6484e847bc6e238ec9f9828089fb2c0bb53f2f5f3a79351fde5b565e4f/kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674", size = 80776, upload-time = "2024-09-04T09:06:49.235Z" }, + { url = "https://files.pythonhosted.org/packages/9b/57/d7163c0379f250ef763aba85330a19feefb5ce6cb541ade853aaba881524/kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225", size = 79984, upload-time = "2024-09-04T09:06:51.336Z" }, + { url = "https://files.pythonhosted.org/packages/8c/95/4a103776c265d13b3d2cd24fb0494d4e04ea435a8ef97e1b2c026d43250b/kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0", size = 55811, upload-time = "2024-09-04T09:06:53.078Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.9" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +sdist = { url = "https://files.pythonhosted.org/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564, upload-time = "2025-08-10T21:27:49.279Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/5d/8ce64e36d4e3aac5ca96996457dcf33e34e6051492399a3f1fec5657f30b/kiwisolver-1.4.9-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:b4b4d74bda2b8ebf4da5bd42af11d02d04428b2c32846e4c2c93219df8a7987b", size = 124159, upload-time = "2025-08-10T21:25:35.472Z" }, + { url = "https://files.pythonhosted.org/packages/96/1e/22f63ec454874378175a5f435d6ea1363dd33fb2af832c6643e4ccea0dc8/kiwisolver-1.4.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fb3b8132019ea572f4611d770991000d7f58127560c4889729248eb5852a102f", size = 66578, upload-time = "2025-08-10T21:25:36.73Z" }, + { url = "https://files.pythonhosted.org/packages/41/4c/1925dcfff47a02d465121967b95151c82d11027d5ec5242771e580e731bd/kiwisolver-1.4.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:84fd60810829c27ae375114cd379da1fa65e6918e1da405f356a775d49a62bcf", size = 65312, upload-time = "2025-08-10T21:25:37.658Z" }, + { url = "https://files.pythonhosted.org/packages/d4/42/0f333164e6307a0687d1eb9ad256215aae2f4bd5d28f4653d6cd319a3ba3/kiwisolver-1.4.9-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b78efa4c6e804ecdf727e580dbb9cba85624d2e1c6b5cb059c66290063bd99a9", size = 1628458, upload-time = "2025-08-10T21:25:39.067Z" }, + { url = "https://files.pythonhosted.org/packages/86/b6/2dccb977d651943995a90bfe3495c2ab2ba5cd77093d9f2318a20c9a6f59/kiwisolver-1.4.9-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d4efec7bcf21671db6a3294ff301d2fc861c31faa3c8740d1a94689234d1b415", size = 1225640, upload-time = "2025-08-10T21:25:40.489Z" }, + { url = "https://files.pythonhosted.org/packages/50/2b/362ebd3eec46c850ccf2bfe3e30f2fc4c008750011f38a850f088c56a1c6/kiwisolver-1.4.9-cp310-cp310-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:90f47e70293fc3688b71271100a1a5453aa9944a81d27ff779c108372cf5567b", size = 1244074, upload-time = "2025-08-10T21:25:42.221Z" }, + { url = "https://files.pythonhosted.org/packages/6f/bb/f09a1e66dab8984773d13184a10a29fe67125337649d26bdef547024ed6b/kiwisolver-1.4.9-cp310-cp310-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:8fdca1def57a2e88ef339de1737a1449d6dbf5fab184c54a1fca01d541317154", size = 1293036, upload-time = "2025-08-10T21:25:43.801Z" }, + { url = "https://files.pythonhosted.org/packages/ea/01/11ecf892f201cafda0f68fa59212edaea93e96c37884b747c181303fccd1/kiwisolver-1.4.9-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9cf554f21be770f5111a1690d42313e140355e687e05cf82cb23d0a721a64a48", size = 2175310, upload-time = "2025-08-10T21:25:45.045Z" }, + { url = "https://files.pythonhosted.org/packages/7f/5f/bfe11d5b934f500cc004314819ea92427e6e5462706a498c1d4fc052e08f/kiwisolver-1.4.9-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:fc1795ac5cd0510207482c3d1d3ed781143383b8cfd36f5c645f3897ce066220", size = 2270943, upload-time = "2025-08-10T21:25:46.393Z" }, + { url = "https://files.pythonhosted.org/packages/3d/de/259f786bf71f1e03e73d87e2db1a9a3bcab64d7b4fd780167123161630ad/kiwisolver-1.4.9-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ccd09f20ccdbbd341b21a67ab50a119b64a403b09288c27481575105283c1586", size = 2440488, upload-time = "2025-08-10T21:25:48.074Z" }, + { url = "https://files.pythonhosted.org/packages/1b/76/c989c278faf037c4d3421ec07a5c452cd3e09545d6dae7f87c15f54e4edf/kiwisolver-1.4.9-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:540c7c72324d864406a009d72f5d6856f49693db95d1fbb46cf86febef873634", size = 2246787, upload-time = "2025-08-10T21:25:49.442Z" }, + { url = "https://files.pythonhosted.org/packages/a2/55/c2898d84ca440852e560ca9f2a0d28e6e931ac0849b896d77231929900e7/kiwisolver-1.4.9-cp310-cp310-win_amd64.whl", hash = "sha256:ede8c6d533bc6601a47ad4046080d36b8fc99f81e6f1c17b0ac3c2dc91ac7611", size = 73730, upload-time = "2025-08-10T21:25:51.102Z" }, + { url = "https://files.pythonhosted.org/packages/e8/09/486d6ac523dd33b80b368247f238125d027964cfacb45c654841e88fb2ae/kiwisolver-1.4.9-cp310-cp310-win_arm64.whl", hash = "sha256:7b4da0d01ac866a57dd61ac258c5607b4cd677f63abaec7b148354d2b2cdd536", size = 65036, upload-time = "2025-08-10T21:25:52.063Z" }, + { url = "https://files.pythonhosted.org/packages/6f/ab/c80b0d5a9d8a1a65f4f815f2afff9798b12c3b9f31f1d304dd233dd920e2/kiwisolver-1.4.9-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:eb14a5da6dc7642b0f3a18f13654847cd8b7a2550e2645a5bda677862b03ba16", size = 124167, upload-time = "2025-08-10T21:25:53.403Z" }, + { url = "https://files.pythonhosted.org/packages/a0/c0/27fe1a68a39cf62472a300e2879ffc13c0538546c359b86f149cc19f6ac3/kiwisolver-1.4.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:39a219e1c81ae3b103643d2aedb90f1ef22650deb266ff12a19e7773f3e5f089", size = 66579, upload-time = "2025-08-10T21:25:54.79Z" }, + { url = "https://files.pythonhosted.org/packages/31/a2/a12a503ac1fd4943c50f9822678e8015a790a13b5490354c68afb8489814/kiwisolver-1.4.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2405a7d98604b87f3fc28b1716783534b1b4b8510d8142adca34ee0bc3c87543", size = 65309, upload-time = "2025-08-10T21:25:55.76Z" }, + { url = "https://files.pythonhosted.org/packages/66/e1/e533435c0be77c3f64040d68d7a657771194a63c279f55573188161e81ca/kiwisolver-1.4.9-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dc1ae486f9abcef254b5618dfb4113dd49f94c68e3e027d03cf0143f3f772b61", size = 1435596, upload-time = "2025-08-10T21:25:56.861Z" }, + { url = "https://files.pythonhosted.org/packages/67/1e/51b73c7347f9aabdc7215aa79e8b15299097dc2f8e67dee2b095faca9cb0/kiwisolver-1.4.9-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8a1f570ce4d62d718dce3f179ee78dac3b545ac16c0c04bb363b7607a949c0d1", size = 1246548, upload-time = "2025-08-10T21:25:58.246Z" }, + { url = "https://files.pythonhosted.org/packages/21/aa/72a1c5d1e430294f2d32adb9542719cfb441b5da368d09d268c7757af46c/kiwisolver-1.4.9-cp311-cp311-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:cb27e7b78d716c591e88e0a09a2139c6577865d7f2e152488c2cc6257f460872", size = 1263618, upload-time = "2025-08-10T21:25:59.857Z" }, + { url = "https://files.pythonhosted.org/packages/a3/af/db1509a9e79dbf4c260ce0cfa3903ea8945f6240e9e59d1e4deb731b1a40/kiwisolver-1.4.9-cp311-cp311-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:15163165efc2f627eb9687ea5f3a28137217d217ac4024893d753f46bce9de26", size = 1317437, upload-time = "2025-08-10T21:26:01.105Z" }, + { url = "https://files.pythonhosted.org/packages/e0/f2/3ea5ee5d52abacdd12013a94130436e19969fa183faa1e7c7fbc89e9a42f/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:bdee92c56a71d2b24c33a7d4c2856bd6419d017e08caa7802d2963870e315028", size = 2195742, upload-time = "2025-08-10T21:26:02.675Z" }, + { url = "https://files.pythonhosted.org/packages/6f/9b/1efdd3013c2d9a2566aa6a337e9923a00590c516add9a1e89a768a3eb2fc/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:412f287c55a6f54b0650bd9b6dce5aceddb95864a1a90c87af16979d37c89771", size = 2290810, upload-time = "2025-08-10T21:26:04.009Z" }, + { url = "https://files.pythonhosted.org/packages/fb/e5/cfdc36109ae4e67361f9bc5b41323648cb24a01b9ade18784657e022e65f/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:2c93f00dcba2eea70af2be5f11a830a742fe6b579a1d4e00f47760ef13be247a", size = 2461579, upload-time = "2025-08-10T21:26:05.317Z" }, + { url = "https://files.pythonhosted.org/packages/62/86/b589e5e86c7610842213994cdea5add00960076bef4ae290c5fa68589cac/kiwisolver-1.4.9-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f117e1a089d9411663a3207ba874f31be9ac8eaa5b533787024dc07aeb74f464", size = 2268071, upload-time = "2025-08-10T21:26:06.686Z" }, + { url = "https://files.pythonhosted.org/packages/3b/c6/f8df8509fd1eee6c622febe54384a96cfaf4d43bf2ccec7a0cc17e4715c9/kiwisolver-1.4.9-cp311-cp311-win_amd64.whl", hash = "sha256:be6a04e6c79819c9a8c2373317d19a96048e5a3f90bec587787e86a1153883c2", size = 73840, upload-time = "2025-08-10T21:26:07.94Z" }, + { url = "https://files.pythonhosted.org/packages/e2/2d/16e0581daafd147bc11ac53f032a2b45eabac897f42a338d0a13c1e5c436/kiwisolver-1.4.9-cp311-cp311-win_arm64.whl", hash = "sha256:0ae37737256ba2de764ddc12aed4956460277f00c4996d51a197e72f62f5eec7", size = 65159, upload-time = "2025-08-10T21:26:09.048Z" }, + { url = "https://files.pythonhosted.org/packages/86/c9/13573a747838aeb1c76e3267620daa054f4152444d1f3d1a2324b78255b5/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ac5a486ac389dddcc5bef4f365b6ae3ffff2c433324fb38dd35e3fab7c957999", size = 123686, upload-time = "2025-08-10T21:26:10.034Z" }, + { url = "https://files.pythonhosted.org/packages/51/ea/2ecf727927f103ffd1739271ca19c424d0e65ea473fbaeea1c014aea93f6/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f2ba92255faa7309d06fe44c3a4a97efe1c8d640c2a79a5ef728b685762a6fd2", size = 66460, upload-time = "2025-08-10T21:26:11.083Z" }, + { url = "https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14", size = 64952, upload-time = "2025-08-10T21:26:12.058Z" }, + { url = "https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04", size = 1474756, upload-time = "2025-08-10T21:26:13.096Z" }, + { url = "https://files.pythonhosted.org/packages/12/42/f36816eaf465220f683fb711efdd1bbf7a7005a2473d0e4ed421389bd26c/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:67bb8b474b4181770f926f7b7d2f8c0248cbcb78b660fdd41a47054b28d2a752", size = 1276404, upload-time = "2025-08-10T21:26:14.457Z" }, + { url = "https://files.pythonhosted.org/packages/2e/64/bc2de94800adc830c476dce44e9b40fd0809cddeef1fde9fcf0f73da301f/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2327a4a30d3ee07d2fbe2e7933e8a37c591663b96ce42a00bc67461a87d7df77", size = 1294410, upload-time = "2025-08-10T21:26:15.73Z" }, + { url = "https://files.pythonhosted.org/packages/5f/42/2dc82330a70aa8e55b6d395b11018045e58d0bb00834502bf11509f79091/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:7a08b491ec91b1d5053ac177afe5290adacf1f0f6307d771ccac5de30592d198", size = 1343631, upload-time = "2025-08-10T21:26:17.045Z" }, + { url = "https://files.pythonhosted.org/packages/22/fd/f4c67a6ed1aab149ec5a8a401c323cee7a1cbe364381bb6c9c0d564e0e20/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d8fc5c867c22b828001b6a38d2eaeb88160bf5783c6cb4a5e440efc981ce286d", size = 2224963, upload-time = "2025-08-10T21:26:18.737Z" }, + { url = "https://files.pythonhosted.org/packages/45/aa/76720bd4cb3713314677d9ec94dcc21ced3f1baf4830adde5bb9b2430a5f/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3b3115b2581ea35bb6d1f24a4c90af37e5d9b49dcff267eeed14c3893c5b86ab", size = 2321295, upload-time = "2025-08-10T21:26:20.11Z" }, + { url = "https://files.pythonhosted.org/packages/80/19/d3ec0d9ab711242f56ae0dc2fc5d70e298bb4a1f9dfab44c027668c673a1/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858e4c22fb075920b96a291928cb7dea5644e94c0ee4fcd5af7e865655e4ccf2", size = 2487987, upload-time = "2025-08-10T21:26:21.49Z" }, + { url = "https://files.pythonhosted.org/packages/39/e9/61e4813b2c97e86b6fdbd4dd824bf72d28bcd8d4849b8084a357bc0dd64d/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ed0fecd28cc62c54b262e3736f8bb2512d8dcfdc2bcf08be5f47f96bf405b145", size = 2291817, upload-time = "2025-08-10T21:26:22.812Z" }, + { url = "https://files.pythonhosted.org/packages/a0/41/85d82b0291db7504da3c2defe35c9a8a5c9803a730f297bd823d11d5fb77/kiwisolver-1.4.9-cp312-cp312-win_amd64.whl", hash = "sha256:f68208a520c3d86ea51acf688a3e3002615a7f0238002cccc17affecc86a8a54", size = 73895, upload-time = "2025-08-10T21:26:24.37Z" }, + { url = "https://files.pythonhosted.org/packages/e2/92/5f3068cf15ee5cb624a0c7596e67e2a0bb2adee33f71c379054a491d07da/kiwisolver-1.4.9-cp312-cp312-win_arm64.whl", hash = "sha256:2c1a4f57df73965f3f14df20b80ee29e6a7930a57d2d9e8491a25f676e197c60", size = 64992, upload-time = "2025-08-10T21:26:25.732Z" }, + { url = "https://files.pythonhosted.org/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681, upload-time = "2025-08-10T21:26:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464, upload-time = "2025-08-10T21:26:27.733Z" }, + { url = "https://files.pythonhosted.org/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961, upload-time = "2025-08-10T21:26:28.729Z" }, + { url = "https://files.pythonhosted.org/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607, upload-time = "2025-08-10T21:26:29.798Z" }, + { url = "https://files.pythonhosted.org/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546, upload-time = "2025-08-10T21:26:31.401Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482, upload-time = "2025-08-10T21:26:32.721Z" }, + { url = "https://files.pythonhosted.org/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720, upload-time = "2025-08-10T21:26:34.032Z" }, + { url = "https://files.pythonhosted.org/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907, upload-time = "2025-08-10T21:26:35.824Z" }, + { url = "https://files.pythonhosted.org/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334, upload-time = "2025-08-10T21:26:37.534Z" }, + { url = "https://files.pythonhosted.org/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313, upload-time = "2025-08-10T21:26:39.191Z" }, + { url = "https://files.pythonhosted.org/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970, upload-time = "2025-08-10T21:26:40.828Z" }, + { url = "https://files.pythonhosted.org/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894, upload-time = "2025-08-10T21:26:42.33Z" }, + { url = "https://files.pythonhosted.org/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995, upload-time = "2025-08-10T21:26:43.889Z" }, + { url = "https://files.pythonhosted.org/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510, upload-time = "2025-08-10T21:26:44.915Z" }, + { url = "https://files.pythonhosted.org/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903, upload-time = "2025-08-10T21:26:45.934Z" }, + { url = "https://files.pythonhosted.org/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402, upload-time = "2025-08-10T21:26:47.101Z" }, + { url = "https://files.pythonhosted.org/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135, upload-time = "2025-08-10T21:26:48.665Z" }, + { url = "https://files.pythonhosted.org/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409, upload-time = "2025-08-10T21:26:50.335Z" }, + { url = "https://files.pythonhosted.org/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763, upload-time = "2025-08-10T21:26:51.867Z" }, + { url = "https://files.pythonhosted.org/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643, upload-time = "2025-08-10T21:26:53.592Z" }, + { url = "https://files.pythonhosted.org/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818, upload-time = "2025-08-10T21:26:55.051Z" }, + { url = "https://files.pythonhosted.org/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963, upload-time = "2025-08-10T21:26:56.421Z" }, + { url = "https://files.pythonhosted.org/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639, upload-time = "2025-08-10T21:26:57.882Z" }, + { url = "https://files.pythonhosted.org/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741, upload-time = "2025-08-10T21:26:59.237Z" }, + { url = "https://files.pythonhosted.org/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646, upload-time = "2025-08-10T21:27:00.52Z" }, + { url = "https://files.pythonhosted.org/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806, upload-time = "2025-08-10T21:27:01.537Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605, upload-time = "2025-08-10T21:27:03.335Z" }, + { url = "https://files.pythonhosted.org/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925, upload-time = "2025-08-10T21:27:04.339Z" }, + { url = "https://files.pythonhosted.org/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414, upload-time = "2025-08-10T21:27:05.437Z" }, + { url = "https://files.pythonhosted.org/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272, upload-time = "2025-08-10T21:27:07.063Z" }, + { url = "https://files.pythonhosted.org/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578, upload-time = "2025-08-10T21:27:08.452Z" }, + { url = "https://files.pythonhosted.org/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607, upload-time = "2025-08-10T21:27:10.125Z" }, + { url = "https://files.pythonhosted.org/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150, upload-time = "2025-08-10T21:27:11.484Z" }, + { url = "https://files.pythonhosted.org/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979, upload-time = "2025-08-10T21:27:12.917Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456, upload-time = "2025-08-10T21:27:14.353Z" }, + { url = "https://files.pythonhosted.org/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621, upload-time = "2025-08-10T21:27:15.808Z" }, + { url = "https://files.pythonhosted.org/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417, upload-time = "2025-08-10T21:27:17.436Z" }, + { url = "https://files.pythonhosted.org/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582, upload-time = "2025-08-10T21:27:18.436Z" }, + { url = "https://files.pythonhosted.org/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514, upload-time = "2025-08-10T21:27:19.465Z" }, + { url = "https://files.pythonhosted.org/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905, upload-time = "2025-08-10T21:27:20.51Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399, upload-time = "2025-08-10T21:27:21.496Z" }, + { url = "https://files.pythonhosted.org/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197, upload-time = "2025-08-10T21:27:22.604Z" }, + { url = "https://files.pythonhosted.org/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125, upload-time = "2025-08-10T21:27:24.036Z" }, + { url = "https://files.pythonhosted.org/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612, upload-time = "2025-08-10T21:27:25.773Z" }, + { url = "https://files.pythonhosted.org/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990, upload-time = "2025-08-10T21:27:27.089Z" }, + { url = "https://files.pythonhosted.org/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601, upload-time = "2025-08-10T21:27:29.343Z" }, + { url = "https://files.pythonhosted.org/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041, upload-time = "2025-08-10T21:27:30.754Z" }, + { url = "https://files.pythonhosted.org/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897, upload-time = "2025-08-10T21:27:32.803Z" }, + { url = "https://files.pythonhosted.org/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835, upload-time = "2025-08-10T21:27:34.23Z" }, + { url = "https://files.pythonhosted.org/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988, upload-time = "2025-08-10T21:27:35.587Z" }, + { url = "https://files.pythonhosted.org/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260, upload-time = "2025-08-10T21:27:36.606Z" }, + { url = "https://files.pythonhosted.org/packages/a2/63/fde392691690f55b38d5dd7b3710f5353bf7a8e52de93a22968801ab8978/kiwisolver-1.4.9-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4d1d9e582ad4d63062d34077a9a1e9f3c34088a2ec5135b1f7190c07cf366527", size = 60183, upload-time = "2025-08-10T21:27:37.669Z" }, + { url = "https://files.pythonhosted.org/packages/27/b1/6aad34edfdb7cced27f371866f211332bba215bfd918ad3322a58f480d8b/kiwisolver-1.4.9-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:deed0c7258ceb4c44ad5ec7d9918f9f14fd05b2be86378d86cf50e63d1e7b771", size = 58675, upload-time = "2025-08-10T21:27:39.031Z" }, + { url = "https://files.pythonhosted.org/packages/9d/1a/23d855a702bb35a76faed5ae2ba3de57d323f48b1f6b17ee2176c4849463/kiwisolver-1.4.9-pp310-pypy310_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0a590506f303f512dff6b7f75fd2fd18e16943efee932008fe7140e5fa91d80e", size = 80277, upload-time = "2025-08-10T21:27:40.129Z" }, + { url = "https://files.pythonhosted.org/packages/5a/5b/5239e3c2b8fb5afa1e8508f721bb77325f740ab6994d963e61b2b7abcc1e/kiwisolver-1.4.9-pp310-pypy310_pp73-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e09c2279a4d01f099f52d5c4b3d9e208e91edcbd1a175c9662a8b16e000fece9", size = 77994, upload-time = "2025-08-10T21:27:41.181Z" }, + { url = "https://files.pythonhosted.org/packages/f9/1c/5d4d468fb16f8410e596ed0eac02d2c68752aa7dc92997fe9d60a7147665/kiwisolver-1.4.9-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:c9e7cdf45d594ee04d5be1b24dd9d49f3d1590959b2271fb30b5ca2b262c00fb", size = 73744, upload-time = "2025-08-10T21:27:42.254Z" }, + { url = "https://files.pythonhosted.org/packages/a3/0f/36d89194b5a32c054ce93e586d4049b6c2c22887b0eb229c61c68afd3078/kiwisolver-1.4.9-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:720e05574713db64c356e86732c0f3c5252818d05f9df320f0ad8380641acea5", size = 60104, upload-time = "2025-08-10T21:27:43.287Z" }, + { url = "https://files.pythonhosted.org/packages/52/ba/4ed75f59e4658fd21fe7dde1fee0ac397c678ec3befba3fe6482d987af87/kiwisolver-1.4.9-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:17680d737d5335b552994a2008fab4c851bcd7de33094a82067ef3a576ff02fa", size = 58592, upload-time = "2025-08-10T21:27:44.314Z" }, + { url = "https://files.pythonhosted.org/packages/33/01/a8ea7c5ea32a9b45ceeaee051a04c8ed4320f5add3c51bfa20879b765b70/kiwisolver-1.4.9-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:85b5352f94e490c028926ea567fc569c52ec79ce131dadb968d3853e809518c2", size = 80281, upload-time = "2025-08-10T21:27:45.369Z" }, + { url = "https://files.pythonhosted.org/packages/da/e3/dbd2ecdce306f1d07a1aaf324817ee993aab7aee9db47ceac757deabafbe/kiwisolver-1.4.9-pp311-pypy311_pp73-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:464415881e4801295659462c49461a24fb107c140de781d55518c4b80cb6790f", size = 78009, upload-time = "2025-08-10T21:27:46.376Z" }, + { url = "https://files.pythonhosted.org/packages/da/e9/0d4add7873a73e462aeb45c036a2dead2562b825aa46ba326727b3f31016/kiwisolver-1.4.9-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:fb940820c63a9590d31d88b815e7a3aa5915cad3ce735ab45f0c730b39547de1", size = 73929, upload-time = "2025-08-10T21:27:48.236Z" }, +] + +[[package]] +name = "markdown" +version = "3.9" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "importlib-metadata", marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8d/37/02347f6d6d8279247a5837082ebc26fc0d5aaeaf75aa013fcbb433c777ab/markdown-3.9.tar.gz", hash = "sha256:d2900fe1782bd33bdbbd56859defef70c2e78fc46668f8eb9df3128138f2cb6a", size = 364585, upload-time = "2025-09-04T20:25:22.885Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/70/ae/44c4a6a4cbb496d93c6257954260fe3a6e91b7bed2240e5dad2a717f5111/markdown-3.9-py3-none-any.whl", hash = "sha256:9f4d91ed810864ea88a6f32c07ba8bee1346c0cc1f6b1f9f6c822f2a9667d280", size = 107441, upload-time = "2025-09-04T20:25:21.784Z" }, +] + +[[package]] +name = "markupsafe" +version = "3.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7e/99/7690b6d4034fffd95959cbe0c02de8deb3098cc577c67bb6a24fe5d7caa7/markupsafe-3.0.3.tar.gz", hash = "sha256:722695808f4b6457b320fdc131280796bdceb04ab50fe1795cd540799ebe1698", size = 80313, upload-time = "2025-09-27T18:37:40.426Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e8/4b/3541d44f3937ba468b75da9eebcae497dcf67adb65caa16760b0a6807ebb/markupsafe-3.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2f981d352f04553a7171b8e44369f2af4055f888dfb147d55e42d29e29e74559", size = 11631, upload-time = "2025-09-27T18:36:05.558Z" }, + { url = "https://files.pythonhosted.org/packages/98/1b/fbd8eed11021cabd9226c37342fa6ca4e8a98d8188a8d9b66740494960e4/markupsafe-3.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e1c1493fb6e50ab01d20a22826e57520f1284df32f2d8601fdd90b6304601419", size = 12057, upload-time = "2025-09-27T18:36:07.165Z" }, + { url = "https://files.pythonhosted.org/packages/40/01/e560d658dc0bb8ab762670ece35281dec7b6c1b33f5fbc09ebb57a185519/markupsafe-3.0.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1ba88449deb3de88bd40044603fafffb7bc2b055d626a330323a9ed736661695", size = 22050, upload-time = "2025-09-27T18:36:08.005Z" }, + { url = "https://files.pythonhosted.org/packages/af/cd/ce6e848bbf2c32314c9b237839119c5a564a59725b53157c856e90937b7a/markupsafe-3.0.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f42d0984e947b8adf7dd6dde396e720934d12c506ce84eea8476409563607591", size = 20681, upload-time = "2025-09-27T18:36:08.881Z" }, + { url = "https://files.pythonhosted.org/packages/c9/2a/b5c12c809f1c3045c4d580b035a743d12fcde53cf685dbc44660826308da/markupsafe-3.0.3-cp310-cp310-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:c0c0b3ade1c0b13b936d7970b1d37a57acde9199dc2aecc4c336773e1d86049c", size = 20705, upload-time = "2025-09-27T18:36:10.131Z" }, + { url = "https://files.pythonhosted.org/packages/cf/e3/9427a68c82728d0a88c50f890d0fc072a1484de2f3ac1ad0bfc1a7214fd5/markupsafe-3.0.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0303439a41979d9e74d18ff5e2dd8c43ed6c6001fd40e5bf2e43f7bd9bbc523f", size = 21524, upload-time = "2025-09-27T18:36:11.324Z" }, + { url = "https://files.pythonhosted.org/packages/bc/36/23578f29e9e582a4d0278e009b38081dbe363c5e7165113fad546918a232/markupsafe-3.0.3-cp310-cp310-musllinux_1_2_riscv64.whl", hash = "sha256:d2ee202e79d8ed691ceebae8e0486bd9a2cd4794cec4824e1c99b6f5009502f6", size = 20282, upload-time = "2025-09-27T18:36:12.573Z" }, + { url = "https://files.pythonhosted.org/packages/56/21/dca11354e756ebd03e036bd8ad58d6d7168c80ce1fe5e75218e4945cbab7/markupsafe-3.0.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:177b5253b2834fe3678cb4a5f0059808258584c559193998be2601324fdeafb1", size = 20745, upload-time = "2025-09-27T18:36:13.504Z" }, + { url = "https://files.pythonhosted.org/packages/87/99/faba9369a7ad6e4d10b6a5fbf71fa2a188fe4a593b15f0963b73859a1bbd/markupsafe-3.0.3-cp310-cp310-win32.whl", hash = "sha256:2a15a08b17dd94c53a1da0438822d70ebcd13f8c3a95abe3a9ef9f11a94830aa", size = 14571, upload-time = "2025-09-27T18:36:14.779Z" }, + { url = "https://files.pythonhosted.org/packages/d6/25/55dc3ab959917602c96985cb1253efaa4ff42f71194bddeb61eb7278b8be/markupsafe-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:c4ffb7ebf07cfe8931028e3e4c85f0357459a3f9f9490886198848f4fa002ec8", size = 15056, upload-time = "2025-09-27T18:36:16.125Z" }, + { url = "https://files.pythonhosted.org/packages/d0/9e/0a02226640c255d1da0b8d12e24ac2aa6734da68bff14c05dd53b94a0fc3/markupsafe-3.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:e2103a929dfa2fcaf9bb4e7c091983a49c9ac3b19c9061b6d5427dd7d14d81a1", size = 13932, upload-time = "2025-09-27T18:36:17.311Z" }, + { url = "https://files.pythonhosted.org/packages/08/db/fefacb2136439fc8dd20e797950e749aa1f4997ed584c62cfb8ef7c2be0e/markupsafe-3.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1cc7ea17a6824959616c525620e387f6dd30fec8cb44f649e31712db02123dad", size = 11631, upload-time = "2025-09-27T18:36:18.185Z" }, + { url = "https://files.pythonhosted.org/packages/e1/2e/5898933336b61975ce9dc04decbc0a7f2fee78c30353c5efba7f2d6ff27a/markupsafe-3.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4bd4cd07944443f5a265608cc6aab442e4f74dff8088b0dfc8238647b8f6ae9a", size = 12058, upload-time = "2025-09-27T18:36:19.444Z" }, + { url = "https://files.pythonhosted.org/packages/1d/09/adf2df3699d87d1d8184038df46a9c80d78c0148492323f4693df54e17bb/markupsafe-3.0.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6b5420a1d9450023228968e7e6a9ce57f65d148ab56d2313fcd589eee96a7a50", size = 24287, upload-time = "2025-09-27T18:36:20.768Z" }, + { url = "https://files.pythonhosted.org/packages/30/ac/0273f6fcb5f42e314c6d8cd99effae6a5354604d461b8d392b5ec9530a54/markupsafe-3.0.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0bf2a864d67e76e5c9a34dc26ec616a66b9888e25e7b9460e1c76d3293bd9dbf", size = 22940, upload-time = "2025-09-27T18:36:22.249Z" }, + { url = "https://files.pythonhosted.org/packages/19/ae/31c1be199ef767124c042c6c3e904da327a2f7f0cd63a0337e1eca2967a8/markupsafe-3.0.3-cp311-cp311-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:bc51efed119bc9cfdf792cdeaa4d67e8f6fcccab66ed4bfdd6bde3e59bfcbb2f", size = 21887, upload-time = "2025-09-27T18:36:23.535Z" }, + { url = "https://files.pythonhosted.org/packages/b2/76/7edcab99d5349a4532a459e1fe64f0b0467a3365056ae550d3bcf3f79e1e/markupsafe-3.0.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:068f375c472b3e7acbe2d5318dea141359e6900156b5b2ba06a30b169086b91a", size = 23692, upload-time = "2025-09-27T18:36:24.823Z" }, + { url = "https://files.pythonhosted.org/packages/a4/28/6e74cdd26d7514849143d69f0bf2399f929c37dc2b31e6829fd2045b2765/markupsafe-3.0.3-cp311-cp311-musllinux_1_2_riscv64.whl", hash = "sha256:7be7b61bb172e1ed687f1754f8e7484f1c8019780f6f6b0786e76bb01c2ae115", size = 21471, upload-time = "2025-09-27T18:36:25.95Z" }, + { url = "https://files.pythonhosted.org/packages/62/7e/a145f36a5c2945673e590850a6f8014318d5577ed7e5920a4b3448e0865d/markupsafe-3.0.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f9e130248f4462aaa8e2552d547f36ddadbeaa573879158d721bbd33dfe4743a", size = 22923, upload-time = "2025-09-27T18:36:27.109Z" }, + { url = "https://files.pythonhosted.org/packages/0f/62/d9c46a7f5c9adbeeeda52f5b8d802e1094e9717705a645efc71b0913a0a8/markupsafe-3.0.3-cp311-cp311-win32.whl", hash = "sha256:0db14f5dafddbb6d9208827849fad01f1a2609380add406671a26386cdf15a19", size = 14572, upload-time = "2025-09-27T18:36:28.045Z" }, + { url = "https://files.pythonhosted.org/packages/83/8a/4414c03d3f891739326e1783338e48fb49781cc915b2e0ee052aa490d586/markupsafe-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:de8a88e63464af587c950061a5e6a67d3632e36df62b986892331d4620a35c01", size = 15077, upload-time = "2025-09-27T18:36:29.025Z" }, + { url = "https://files.pythonhosted.org/packages/35/73/893072b42e6862f319b5207adc9ae06070f095b358655f077f69a35601f0/markupsafe-3.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:3b562dd9e9ea93f13d53989d23a7e775fdfd1066c33494ff43f5418bc8c58a5c", size = 13876, upload-time = "2025-09-27T18:36:29.954Z" }, + { url = "https://files.pythonhosted.org/packages/5a/72/147da192e38635ada20e0a2e1a51cf8823d2119ce8883f7053879c2199b5/markupsafe-3.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d53197da72cc091b024dd97249dfc7794d6a56530370992a5e1a08983ad9230e", size = 11615, upload-time = "2025-09-27T18:36:30.854Z" }, + { url = "https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1872df69a4de6aead3491198eaf13810b565bdbeec3ae2dc8780f14458ec73ce", size = 12020, upload-time = "2025-09-27T18:36:31.971Z" }, + { url = "https://files.pythonhosted.org/packages/1e/2c/799f4742efc39633a1b54a92eec4082e4f815314869865d876824c257c1e/markupsafe-3.0.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3a7e8ae81ae39e62a41ec302f972ba6ae23a5c5396c8e60113e9066ef893da0d", size = 24332, upload-time = "2025-09-27T18:36:32.813Z" }, + { url = "https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d6dd0be5b5b189d31db7cda48b91d7e0a9795f31430b7f271219ab30f1d3ac9d", size = 22947, upload-time = "2025-09-27T18:36:33.86Z" }, + { url = "https://files.pythonhosted.org/packages/2c/54/887f3092a85238093a0b2154bd629c89444f395618842e8b0c41783898ea/markupsafe-3.0.3-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:94c6f0bb423f739146aec64595853541634bde58b2135f27f61c1ffd1cd4d16a", size = 21962, upload-time = "2025-09-27T18:36:35.099Z" }, + { url = "https://files.pythonhosted.org/packages/c9/2f/336b8c7b6f4a4d95e91119dc8521402461b74a485558d8f238a68312f11c/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:be8813b57049a7dc738189df53d69395eba14fb99345e0a5994914a3864c8a4b", size = 23760, upload-time = "2025-09-27T18:36:36.001Z" }, + { url = "https://files.pythonhosted.org/packages/32/43/67935f2b7e4982ffb50a4d169b724d74b62a3964bc1a9a527f5ac4f1ee2b/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:83891d0e9fb81a825d9a6d61e3f07550ca70a076484292a70fde82c4b807286f", size = 21529, upload-time = "2025-09-27T18:36:36.906Z" }, + { url = "https://files.pythonhosted.org/packages/89/e0/4486f11e51bbba8b0c041098859e869e304d1c261e59244baa3d295d47b7/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:77f0643abe7495da77fb436f50f8dab76dbc6e5fd25d39589a0f1fe6548bfa2b", size = 23015, upload-time = "2025-09-27T18:36:37.868Z" }, + { url = "https://files.pythonhosted.org/packages/2f/e1/78ee7a023dac597a5825441ebd17170785a9dab23de95d2c7508ade94e0e/markupsafe-3.0.3-cp312-cp312-win32.whl", hash = "sha256:d88b440e37a16e651bda4c7c2b930eb586fd15ca7406cb39e211fcff3bf3017d", size = 14540, upload-time = "2025-09-27T18:36:38.761Z" }, + { url = "https://files.pythonhosted.org/packages/aa/5b/bec5aa9bbbb2c946ca2733ef9c4ca91c91b6a24580193e891b5f7dbe8e1e/markupsafe-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:26a5784ded40c9e318cfc2bdb30fe164bdb8665ded9cd64d500a34fb42067b1c", size = 15105, upload-time = "2025-09-27T18:36:39.701Z" }, + { url = "https://files.pythonhosted.org/packages/e5/f1/216fc1bbfd74011693a4fd837e7026152e89c4bcf3e77b6692fba9923123/markupsafe-3.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:35add3b638a5d900e807944a078b51922212fb3dedb01633a8defc4b01a3c85f", size = 13906, upload-time = "2025-09-27T18:36:40.689Z" }, + { url = "https://files.pythonhosted.org/packages/38/2f/907b9c7bbba283e68f20259574b13d005c121a0fa4c175f9bed27c4597ff/markupsafe-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e1cf1972137e83c5d4c136c43ced9ac51d0e124706ee1c8aa8532c1287fa8795", size = 11622, upload-time = "2025-09-27T18:36:41.777Z" }, + { url = "https://files.pythonhosted.org/packages/9c/d9/5f7756922cdd676869eca1c4e3c0cd0df60ed30199ffd775e319089cb3ed/markupsafe-3.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:116bb52f642a37c115f517494ea5feb03889e04df47eeff5b130b1808ce7c219", size = 12029, upload-time = "2025-09-27T18:36:43.257Z" }, + { url = "https://files.pythonhosted.org/packages/00/07/575a68c754943058c78f30db02ee03a64b3c638586fba6a6dd56830b30a3/markupsafe-3.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:133a43e73a802c5562be9bbcd03d090aa5a1fe899db609c29e8c8d815c5f6de6", size = 24374, upload-time = "2025-09-27T18:36:44.508Z" }, + { url = "https://files.pythonhosted.org/packages/a9/21/9b05698b46f218fc0e118e1f8168395c65c8a2c750ae2bab54fc4bd4e0e8/markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfcd093f13f0f0b7fdd0f198b90053bf7b2f02a3927a30e63f3ccc9df56b676", size = 22980, upload-time = "2025-09-27T18:36:45.385Z" }, + { url = "https://files.pythonhosted.org/packages/7f/71/544260864f893f18b6827315b988c146b559391e6e7e8f7252839b1b846a/markupsafe-3.0.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:509fa21c6deb7a7a273d629cf5ec029bc209d1a51178615ddf718f5918992ab9", size = 21990, upload-time = "2025-09-27T18:36:46.916Z" }, + { url = "https://files.pythonhosted.org/packages/c2/28/b50fc2f74d1ad761af2f5dcce7492648b983d00a65b8c0e0cb457c82ebbe/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4afe79fb3de0b7097d81da19090f4df4f8d3a2b3adaa8764138aac2e44f3af1", size = 23784, upload-time = "2025-09-27T18:36:47.884Z" }, + { url = "https://files.pythonhosted.org/packages/ed/76/104b2aa106a208da8b17a2fb72e033a5a9d7073c68f7e508b94916ed47a9/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:795e7751525cae078558e679d646ae45574b47ed6e7771863fcc079a6171a0fc", size = 21588, upload-time = "2025-09-27T18:36:48.82Z" }, + { url = "https://files.pythonhosted.org/packages/b5/99/16a5eb2d140087ebd97180d95249b00a03aa87e29cc224056274f2e45fd6/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8485f406a96febb5140bfeca44a73e3ce5116b2501ac54fe953e488fb1d03b12", size = 23041, upload-time = "2025-09-27T18:36:49.797Z" }, + { url = "https://files.pythonhosted.org/packages/19/bc/e7140ed90c5d61d77cea142eed9f9c303f4c4806f60a1044c13e3f1471d0/markupsafe-3.0.3-cp313-cp313-win32.whl", hash = "sha256:bdd37121970bfd8be76c5fb069c7751683bdf373db1ed6c010162b2a130248ed", size = 14543, upload-time = "2025-09-27T18:36:51.584Z" }, + { url = "https://files.pythonhosted.org/packages/05/73/c4abe620b841b6b791f2edc248f556900667a5a1cf023a6646967ae98335/markupsafe-3.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:9a1abfdc021a164803f4d485104931fb8f8c1efd55bc6b748d2f5774e78b62c5", size = 15113, upload-time = "2025-09-27T18:36:52.537Z" }, + { url = "https://files.pythonhosted.org/packages/f0/3a/fa34a0f7cfef23cf9500d68cb7c32dd64ffd58a12b09225fb03dd37d5b80/markupsafe-3.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:7e68f88e5b8799aa49c85cd116c932a1ac15caaa3f5db09087854d218359e485", size = 13911, upload-time = "2025-09-27T18:36:53.513Z" }, + { url = "https://files.pythonhosted.org/packages/e4/d7/e05cd7efe43a88a17a37b3ae96e79a19e846f3f456fe79c57ca61356ef01/markupsafe-3.0.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:218551f6df4868a8d527e3062d0fb968682fe92054e89978594c28e642c43a73", size = 11658, upload-time = "2025-09-27T18:36:54.819Z" }, + { url = "https://files.pythonhosted.org/packages/99/9e/e412117548182ce2148bdeacdda3bb494260c0b0184360fe0d56389b523b/markupsafe-3.0.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3524b778fe5cfb3452a09d31e7b5adefeea8c5be1d43c4f810ba09f2ceb29d37", size = 12066, upload-time = "2025-09-27T18:36:55.714Z" }, + { url = "https://files.pythonhosted.org/packages/bc/e6/fa0ffcda717ef64a5108eaa7b4f5ed28d56122c9a6d70ab8b72f9f715c80/markupsafe-3.0.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4e885a3d1efa2eadc93c894a21770e4bc67899e3543680313b09f139e149ab19", size = 25639, upload-time = "2025-09-27T18:36:56.908Z" }, + { url = "https://files.pythonhosted.org/packages/96/ec/2102e881fe9d25fc16cb4b25d5f5cde50970967ffa5dddafdb771237062d/markupsafe-3.0.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8709b08f4a89aa7586de0aadc8da56180242ee0ada3999749b183aa23df95025", size = 23569, upload-time = "2025-09-27T18:36:57.913Z" }, + { url = "https://files.pythonhosted.org/packages/4b/30/6f2fce1f1f205fc9323255b216ca8a235b15860c34b6798f810f05828e32/markupsafe-3.0.3-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b8512a91625c9b3da6f127803b166b629725e68af71f8184ae7e7d54686a56d6", size = 23284, upload-time = "2025-09-27T18:36:58.833Z" }, + { url = "https://files.pythonhosted.org/packages/58/47/4a0ccea4ab9f5dcb6f79c0236d954acb382202721e704223a8aafa38b5c8/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9b79b7a16f7fedff2495d684f2b59b0457c3b493778c9eed31111be64d58279f", size = 24801, upload-time = "2025-09-27T18:36:59.739Z" }, + { url = "https://files.pythonhosted.org/packages/6a/70/3780e9b72180b6fecb83a4814d84c3bf4b4ae4bf0b19c27196104149734c/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:12c63dfb4a98206f045aa9563db46507995f7ef6d83b2f68eda65c307c6829eb", size = 22769, upload-time = "2025-09-27T18:37:00.719Z" }, + { url = "https://files.pythonhosted.org/packages/98/c5/c03c7f4125180fc215220c035beac6b9cb684bc7a067c84fc69414d315f5/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8f71bc33915be5186016f675cd83a1e08523649b0e33efdb898db577ef5bb009", size = 23642, upload-time = "2025-09-27T18:37:01.673Z" }, + { url = "https://files.pythonhosted.org/packages/80/d6/2d1b89f6ca4bff1036499b1e29a1d02d282259f3681540e16563f27ebc23/markupsafe-3.0.3-cp313-cp313t-win32.whl", hash = "sha256:69c0b73548bc525c8cb9a251cddf1931d1db4d2258e9599c28c07ef3580ef354", size = 14612, upload-time = "2025-09-27T18:37:02.639Z" }, + { url = "https://files.pythonhosted.org/packages/2b/98/e48a4bfba0a0ffcf9925fe2d69240bfaa19c6f7507b8cd09c70684a53c1e/markupsafe-3.0.3-cp313-cp313t-win_amd64.whl", hash = "sha256:1b4b79e8ebf6b55351f0d91fe80f893b4743f104bff22e90697db1590e47a218", size = 15200, upload-time = "2025-09-27T18:37:03.582Z" }, + { url = "https://files.pythonhosted.org/packages/0e/72/e3cc540f351f316e9ed0f092757459afbc595824ca724cbc5a5d4263713f/markupsafe-3.0.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ad2cf8aa28b8c020ab2fc8287b0f823d0a7d8630784c31e9ee5edea20f406287", size = 13973, upload-time = "2025-09-27T18:37:04.929Z" }, + { url = "https://files.pythonhosted.org/packages/33/8a/8e42d4838cd89b7dde187011e97fe6c3af66d8c044997d2183fbd6d31352/markupsafe-3.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:eaa9599de571d72e2daf60164784109f19978b327a3910d3e9de8c97b5b70cfe", size = 11619, upload-time = "2025-09-27T18:37:06.342Z" }, + { url = "https://files.pythonhosted.org/packages/b5/64/7660f8a4a8e53c924d0fa05dc3a55c9cee10bbd82b11c5afb27d44b096ce/markupsafe-3.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c47a551199eb8eb2121d4f0f15ae0f923d31350ab9280078d1e5f12b249e0026", size = 12029, upload-time = "2025-09-27T18:37:07.213Z" }, + { url = "https://files.pythonhosted.org/packages/da/ef/e648bfd021127bef5fa12e1720ffed0c6cbb8310c8d9bea7266337ff06de/markupsafe-3.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f34c41761022dd093b4b6896d4810782ffbabe30f2d443ff5f083e0cbbb8c737", size = 24408, upload-time = "2025-09-27T18:37:09.572Z" }, + { url = "https://files.pythonhosted.org/packages/41/3c/a36c2450754618e62008bf7435ccb0f88053e07592e6028a34776213d877/markupsafe-3.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:457a69a9577064c05a97c41f4e65148652db078a3a509039e64d3467b9e7ef97", size = 23005, upload-time = "2025-09-27T18:37:10.58Z" }, + { url = "https://files.pythonhosted.org/packages/bc/20/b7fdf89a8456b099837cd1dc21974632a02a999ec9bf7ca3e490aacd98e7/markupsafe-3.0.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:e8afc3f2ccfa24215f8cb28dcf43f0113ac3c37c2f0f0806d8c70e4228c5cf4d", size = 22048, upload-time = "2025-09-27T18:37:11.547Z" }, + { url = "https://files.pythonhosted.org/packages/9a/a7/591f592afdc734f47db08a75793a55d7fbcc6902a723ae4cfbab61010cc5/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ec15a59cf5af7be74194f7ab02d0f59a62bdcf1a537677ce67a2537c9b87fcda", size = 23821, upload-time = "2025-09-27T18:37:12.48Z" }, + { url = "https://files.pythonhosted.org/packages/7d/33/45b24e4f44195b26521bc6f1a82197118f74df348556594bd2262bda1038/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:0eb9ff8191e8498cca014656ae6b8d61f39da5f95b488805da4bb029cccbfbaf", size = 21606, upload-time = "2025-09-27T18:37:13.485Z" }, + { url = "https://files.pythonhosted.org/packages/ff/0e/53dfaca23a69fbfbbf17a4b64072090e70717344c52eaaaa9c5ddff1e5f0/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2713baf880df847f2bece4230d4d094280f4e67b1e813eec43b4c0e144a34ffe", size = 23043, upload-time = "2025-09-27T18:37:14.408Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/f333a06fc16236d5238bfe74daccbca41459dcd8d1fa952e8fbd5dccfb70/markupsafe-3.0.3-cp314-cp314-win32.whl", hash = "sha256:729586769a26dbceff69f7a7dbbf59ab6572b99d94576a5592625d5b411576b9", size = 14747, upload-time = "2025-09-27T18:37:15.36Z" }, + { url = "https://files.pythonhosted.org/packages/28/52/182836104b33b444e400b14f797212f720cbc9ed6ba34c800639d154e821/markupsafe-3.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:bdc919ead48f234740ad807933cdf545180bfbe9342c2bb451556db2ed958581", size = 15341, upload-time = "2025-09-27T18:37:16.496Z" }, + { url = "https://files.pythonhosted.org/packages/6f/18/acf23e91bd94fd7b3031558b1f013adfa21a8e407a3fdb32745538730382/markupsafe-3.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:5a7d5dc5140555cf21a6fefbdbf8723f06fcd2f63ef108f2854de715e4422cb4", size = 14073, upload-time = "2025-09-27T18:37:17.476Z" }, + { url = "https://files.pythonhosted.org/packages/3c/f0/57689aa4076e1b43b15fdfa646b04653969d50cf30c32a102762be2485da/markupsafe-3.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1353ef0c1b138e1907ae78e2f6c63ff67501122006b0f9abad68fda5f4ffc6ab", size = 11661, upload-time = "2025-09-27T18:37:18.453Z" }, + { url = "https://files.pythonhosted.org/packages/89/c3/2e67a7ca217c6912985ec766c6393b636fb0c2344443ff9d91404dc4c79f/markupsafe-3.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1085e7fbddd3be5f89cc898938f42c0b3c711fdcb37d75221de2666af647c175", size = 12069, upload-time = "2025-09-27T18:37:19.332Z" }, + { url = "https://files.pythonhosted.org/packages/f0/00/be561dce4e6ca66b15276e184ce4b8aec61fe83662cce2f7d72bd3249d28/markupsafe-3.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1b52b4fb9df4eb9ae465f8d0c228a00624de2334f216f178a995ccdcf82c4634", size = 25670, upload-time = "2025-09-27T18:37:20.245Z" }, + { url = "https://files.pythonhosted.org/packages/50/09/c419f6f5a92e5fadde27efd190eca90f05e1261b10dbd8cbcb39cd8ea1dc/markupsafe-3.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fed51ac40f757d41b7c48425901843666a6677e3e8eb0abcff09e4ba6e664f50", size = 23598, upload-time = "2025-09-27T18:37:21.177Z" }, + { url = "https://files.pythonhosted.org/packages/22/44/a0681611106e0b2921b3033fc19bc53323e0b50bc70cffdd19f7d679bb66/markupsafe-3.0.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:f190daf01f13c72eac4efd5c430a8de82489d9cff23c364c3ea822545032993e", size = 23261, upload-time = "2025-09-27T18:37:22.167Z" }, + { url = "https://files.pythonhosted.org/packages/5f/57/1b0b3f100259dc9fffe780cfb60d4be71375510e435efec3d116b6436d43/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e56b7d45a839a697b5eb268c82a71bd8c7f6c94d6fd50c3d577fa39a9f1409f5", size = 24835, upload-time = "2025-09-27T18:37:23.296Z" }, + { url = "https://files.pythonhosted.org/packages/26/6a/4bf6d0c97c4920f1597cc14dd720705eca0bf7c787aebc6bb4d1bead5388/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:f3e98bb3798ead92273dc0e5fd0f31ade220f59a266ffd8a4f6065e0a3ce0523", size = 22733, upload-time = "2025-09-27T18:37:24.237Z" }, + { url = "https://files.pythonhosted.org/packages/14/c7/ca723101509b518797fedc2fdf79ba57f886b4aca8a7d31857ba3ee8281f/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5678211cb9333a6468fb8d8be0305520aa073f50d17f089b5b4b477ea6e67fdc", size = 23672, upload-time = "2025-09-27T18:37:25.271Z" }, + { url = "https://files.pythonhosted.org/packages/fb/df/5bd7a48c256faecd1d36edc13133e51397e41b73bb77e1a69deab746ebac/markupsafe-3.0.3-cp314-cp314t-win32.whl", hash = "sha256:915c04ba3851909ce68ccc2b8e2cd691618c4dc4c4232fb7982bca3f41fd8c3d", size = 14819, upload-time = "2025-09-27T18:37:26.285Z" }, + { url = "https://files.pythonhosted.org/packages/1a/8a/0402ba61a2f16038b48b39bccca271134be00c5c9f0f623208399333c448/markupsafe-3.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4faffd047e07c38848ce017e8725090413cd80cbc23d86e55c587bf979e579c9", size = 15426, upload-time = "2025-09-27T18:37:27.316Z" }, + { url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146, upload-time = "2025-09-27T18:37:28.327Z" }, + { url = "https://files.pythonhosted.org/packages/56/23/0d8c13a44bde9154821586520840643467aee574d8ce79a17da539ee7fed/markupsafe-3.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15d939a21d546304880945ca1ecb8a039db6b4dc49b2c5a400387cdae6a62e26", size = 11623, upload-time = "2025-09-27T18:37:29.296Z" }, + { url = "https://files.pythonhosted.org/packages/fd/23/07a2cb9a8045d5f3f0890a8c3bc0859d7a47bfd9a560b563899bec7b72ed/markupsafe-3.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f71a396b3bf33ecaa1626c255855702aca4d3d9fea5e051b41ac59a9c1c41edc", size = 12049, upload-time = "2025-09-27T18:37:30.234Z" }, + { url = "https://files.pythonhosted.org/packages/bc/e4/6be85eb81503f8e11b61c0b6369b6e077dcf0a74adbd9ebf6b349937b4e9/markupsafe-3.0.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0f4b68347f8c5eab4a13419215bdfd7f8c9b19f2b25520968adfad23eb0ce60c", size = 21923, upload-time = "2025-09-27T18:37:31.177Z" }, + { url = "https://files.pythonhosted.org/packages/6f/bc/4dc914ead3fe6ddaef035341fee0fc956949bbd27335b611829292b89ee2/markupsafe-3.0.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e8fc20152abba6b83724d7ff268c249fa196d8259ff481f3b1476383f8f24e42", size = 20543, upload-time = "2025-09-27T18:37:32.168Z" }, + { url = "https://files.pythonhosted.org/packages/89/6e/5fe81fbcfba4aef4093d5f856e5c774ec2057946052d18d168219b7bd9f9/markupsafe-3.0.3-cp39-cp39-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:949b8d66bc381ee8b007cd945914c721d9aba8e27f71959d750a46f7c282b20b", size = 20585, upload-time = "2025-09-27T18:37:33.166Z" }, + { url = "https://files.pythonhosted.org/packages/f6/f6/e0e5a3d3ae9c4020f696cd055f940ef86b64fe88de26f3a0308b9d3d048c/markupsafe-3.0.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:3537e01efc9d4dccdf77221fb1cb3b8e1a38d5428920e0657ce299b20324d758", size = 21387, upload-time = "2025-09-27T18:37:34.185Z" }, + { url = "https://files.pythonhosted.org/packages/c8/25/651753ef4dea08ea790f4fbb65146a9a44a014986996ca40102e237aa49a/markupsafe-3.0.3-cp39-cp39-musllinux_1_2_riscv64.whl", hash = "sha256:591ae9f2a647529ca990bc681daebdd52c8791ff06c2bfa05b65163e28102ef2", size = 20133, upload-time = "2025-09-27T18:37:35.138Z" }, + { url = "https://files.pythonhosted.org/packages/dc/0a/c3cf2b4fef5f0426e8a6d7fce3cb966a17817c568ce59d76b92a233fdbec/markupsafe-3.0.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a320721ab5a1aba0a233739394eb907f8c8da5c98c9181d1161e77a0c8e36f2d", size = 20588, upload-time = "2025-09-27T18:37:36.096Z" }, + { url = "https://files.pythonhosted.org/packages/cd/1b/a7782984844bd519ad4ffdbebbba2671ec5d0ebbeac34736c15fb86399e8/markupsafe-3.0.3-cp39-cp39-win32.whl", hash = "sha256:df2449253ef108a379b8b5d6b43f4b1a8e81a061d6537becd5582fba5f9196d7", size = 14566, upload-time = "2025-09-27T18:37:37.09Z" }, + { url = "https://files.pythonhosted.org/packages/18/1f/8d9c20e1c9440e215a44be5ab64359e207fcb4f675543f1cf9a2a7f648d0/markupsafe-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:7c3fb7d25180895632e5d3148dbdc29ea38ccb7fd210aa27acbd1201a1902c6e", size = 15053, upload-time = "2025-09-27T18:37:38.054Z" }, + { url = "https://files.pythonhosted.org/packages/4e/d3/fe08482b5cd995033556d45041a4f4e76e7f0521112a9c9991d40d39825f/markupsafe-3.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:38664109c14ffc9e7437e86b4dceb442b0096dfe3541d7864d9cbe1da4cf36c8", size = 13928, upload-time = "2025-09-27T18:37:39.037Z" }, +] + +[[package]] +name = "matplotlib" +version = "3.9.4" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "contourpy", version = "1.3.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "cycler", marker = "python_full_version < '3.10'" }, + { name = "fonttools", marker = "python_full_version < '3.10'" }, + { name = "importlib-resources", marker = "python_full_version < '3.10'" }, + { name = "kiwisolver", version = "1.4.7", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "packaging", marker = "python_full_version < '3.10'" }, + { name = "pillow", version = "11.3.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "pyparsing", marker = "python_full_version < '3.10'" }, + { name = "python-dateutil", marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/17/1747b4154034befd0ed33b52538f5eb7752d05bb51c5e2a31470c3bc7d52/matplotlib-3.9.4.tar.gz", hash = "sha256:1e00e8be7393cbdc6fedfa8a6fba02cf3e83814b285db1c60b906a023ba41bc3", size = 36106529, upload-time = "2024-12-13T05:56:34.184Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7e/94/27d2e2c30d54b56c7b764acc1874a909e34d1965a427fc7092bb6a588b63/matplotlib-3.9.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:c5fdd7abfb706dfa8d307af64a87f1a862879ec3cd8d0ec8637458f0885b9c50", size = 7885089, upload-time = "2024-12-13T05:54:24.224Z" }, + { url = "https://files.pythonhosted.org/packages/c6/25/828273307e40a68eb8e9df832b6b2aaad075864fdc1de4b1b81e40b09e48/matplotlib-3.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d89bc4e85e40a71d1477780366c27fb7c6494d293e1617788986f74e2a03d7ff", size = 7770600, upload-time = "2024-12-13T05:54:27.214Z" }, + { url = "https://files.pythonhosted.org/packages/f2/65/f841a422ec994da5123368d76b126acf4fc02ea7459b6e37c4891b555b83/matplotlib-3.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ddf9f3c26aae695c5daafbf6b94e4c1a30d6cd617ba594bbbded3b33a1fcfa26", size = 8200138, upload-time = "2024-12-13T05:54:29.497Z" }, + { url = "https://files.pythonhosted.org/packages/07/06/272aca07a38804d93b6050813de41ca7ab0e29ba7a9dd098e12037c919a9/matplotlib-3.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18ebcf248030173b59a868fda1fe42397253f6698995b55e81e1f57431d85e50", size = 8312711, upload-time = "2024-12-13T05:54:34.396Z" }, + { url = "https://files.pythonhosted.org/packages/98/37/f13e23b233c526b7e27ad61be0a771894a079e0f7494a10d8d81557e0e9a/matplotlib-3.9.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974896ec43c672ec23f3f8c648981e8bc880ee163146e0312a9b8def2fac66f5", size = 9090622, upload-time = "2024-12-13T05:54:36.808Z" }, + { url = "https://files.pythonhosted.org/packages/4f/8c/b1f5bd2bd70e60f93b1b54c4d5ba7a992312021d0ddddf572f9a1a6d9348/matplotlib-3.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:4598c394ae9711cec135639374e70871fa36b56afae17bdf032a345be552a88d", size = 7828211, upload-time = "2024-12-13T05:54:40.596Z" }, + { url = "https://files.pythonhosted.org/packages/74/4b/65be7959a8fa118a3929b49a842de5b78bb55475236fcf64f3e308ff74a0/matplotlib-3.9.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d4dd29641d9fb8bc4492420c5480398dd40a09afd73aebe4eb9d0071a05fbe0c", size = 7894430, upload-time = "2024-12-13T05:54:44.049Z" }, + { url = "https://files.pythonhosted.org/packages/e9/18/80f70d91896e0a517b4a051c3fd540daa131630fd75e02e250365353b253/matplotlib-3.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30e5b22e8bcfb95442bf7d48b0d7f3bdf4a450cbf68986ea45fca3d11ae9d099", size = 7780045, upload-time = "2024-12-13T05:54:46.414Z" }, + { url = "https://files.pythonhosted.org/packages/a2/73/ccb381026e3238c5c25c3609ba4157b2d1a617ec98d65a8b4ee4e1e74d02/matplotlib-3.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2bb0030d1d447fd56dcc23b4c64a26e44e898f0416276cac1ebc25522e0ac249", size = 8209906, upload-time = "2024-12-13T05:54:49.459Z" }, + { url = "https://files.pythonhosted.org/packages/ab/33/1648da77b74741c89f5ea95cbf42a291b4b364f2660b316318811404ed97/matplotlib-3.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aca90ed222ac3565d2752b83dbb27627480d27662671e4d39da72e97f657a423", size = 8322873, upload-time = "2024-12-13T05:54:53.066Z" }, + { url = "https://files.pythonhosted.org/packages/57/d3/8447ba78bc6593c9044c372d1609f8ea10fb1e071e7a9e0747bea74fc16c/matplotlib-3.9.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a181b2aa2906c608fcae72f977a4a2d76e385578939891b91c2550c39ecf361e", size = 9099566, upload-time = "2024-12-13T05:54:55.522Z" }, + { url = "https://files.pythonhosted.org/packages/23/e1/4f0e237bf349c02ff9d1b6e7109f1a17f745263809b9714a8576dc17752b/matplotlib-3.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:1f6882828231eca17f501c4dcd98a05abb3f03d157fbc0769c6911fe08b6cfd3", size = 7838065, upload-time = "2024-12-13T05:54:58.337Z" }, + { url = "https://files.pythonhosted.org/packages/1a/2b/c918bf6c19d6445d1cefe3d2e42cb740fb997e14ab19d4daeb6a7ab8a157/matplotlib-3.9.4-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:dfc48d67e6661378a21c2983200a654b72b5c5cdbd5d2cf6e5e1ece860f0cc70", size = 7891131, upload-time = "2024-12-13T05:55:02.837Z" }, + { url = "https://files.pythonhosted.org/packages/c1/e5/b4e8fc601ca302afeeabf45f30e706a445c7979a180e3a978b78b2b681a4/matplotlib-3.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:47aef0fab8332d02d68e786eba8113ffd6f862182ea2999379dec9e237b7e483", size = 7776365, upload-time = "2024-12-13T05:55:05.158Z" }, + { url = "https://files.pythonhosted.org/packages/99/06/b991886c506506476e5d83625c5970c656a491b9f80161458fed94597808/matplotlib-3.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fba1f52c6b7dc764097f52fd9ab627b90db452c9feb653a59945de16752e965f", size = 8200707, upload-time = "2024-12-13T05:55:09.48Z" }, + { url = "https://files.pythonhosted.org/packages/c3/e2/556b627498cb27e61026f2d1ba86a78ad1b836fef0996bef5440e8bc9559/matplotlib-3.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:173ac3748acaac21afcc3fa1633924609ba1b87749006bc25051c52c422a5d00", size = 8313761, upload-time = "2024-12-13T05:55:12.95Z" }, + { url = "https://files.pythonhosted.org/packages/58/ff/165af33ec766ff818306ea88e91f9f60d2a6ed543be1eb122a98acbf3b0d/matplotlib-3.9.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:320edea0cadc07007765e33f878b13b3738ffa9745c5f707705692df70ffe0e0", size = 9095284, upload-time = "2024-12-13T05:55:16.199Z" }, + { url = "https://files.pythonhosted.org/packages/9f/8b/3d0c7a002db3b1ed702731c2a9a06d78d035f1f2fb0fb936a8e43cc1e9f4/matplotlib-3.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a4a4cfc82330b27042a7169533da7991e8789d180dd5b3daeaee57d75cd5a03b", size = 7841160, upload-time = "2024-12-13T05:55:19.991Z" }, + { url = "https://files.pythonhosted.org/packages/49/b1/999f89a7556d101b23a2f0b54f1b6e140d73f56804da1398f2f0bc0924bc/matplotlib-3.9.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:37eeffeeca3c940985b80f5b9a7b95ea35671e0e7405001f249848d2b62351b6", size = 7891499, upload-time = "2024-12-13T05:55:22.142Z" }, + { url = "https://files.pythonhosted.org/packages/87/7b/06a32b13a684977653396a1bfcd34d4e7539c5d55c8cbfaa8ae04d47e4a9/matplotlib-3.9.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3e7465ac859ee4abcb0d836137cd8414e7bb7ad330d905abced457217d4f0f45", size = 7776802, upload-time = "2024-12-13T05:55:25.947Z" }, + { url = "https://files.pythonhosted.org/packages/65/87/ac498451aff739e515891bbb92e566f3c7ef31891aaa878402a71f9b0910/matplotlib-3.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4c12302c34afa0cf061bea23b331e747e5e554b0fa595c96e01c7b75bc3b858", size = 8200802, upload-time = "2024-12-13T05:55:28.461Z" }, + { url = "https://files.pythonhosted.org/packages/f8/6b/9eb761c00e1cb838f6c92e5f25dcda3f56a87a52f6cb8fdfa561e6cf6a13/matplotlib-3.9.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b8c97917f21b75e72108b97707ba3d48f171541a74aa2a56df7a40626bafc64", size = 8313880, upload-time = "2024-12-13T05:55:30.965Z" }, + { url = "https://files.pythonhosted.org/packages/d7/a2/c8eaa600e2085eec7e38cbbcc58a30fc78f8224939d31d3152bdafc01fd1/matplotlib-3.9.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:0229803bd7e19271b03cb09f27db76c918c467aa4ce2ae168171bc67c3f508df", size = 9094637, upload-time = "2024-12-13T05:55:33.701Z" }, + { url = "https://files.pythonhosted.org/packages/71/1f/c6e1daea55b7bfeb3d84c6cb1abc449f6a02b181e7e2a5e4db34c3afb793/matplotlib-3.9.4-cp313-cp313-win_amd64.whl", hash = "sha256:7c0d8ef442ebf56ff5e206f8083d08252ee738e04f3dc88ea882853a05488799", size = 7841311, upload-time = "2024-12-13T05:55:36.737Z" }, + { url = "https://files.pythonhosted.org/packages/c0/3a/2757d3f7d388b14dd48f5a83bea65b6d69f000e86b8f28f74d86e0d375bd/matplotlib-3.9.4-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:a04c3b00066a688834356d196136349cb32f5e1003c55ac419e91585168b88fb", size = 7919989, upload-time = "2024-12-13T05:55:39.024Z" }, + { url = "https://files.pythonhosted.org/packages/24/28/f5077c79a4f521589a37fe1062d6a6ea3534e068213f7357e7cfffc2e17a/matplotlib-3.9.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:04c519587f6c210626741a1e9a68eefc05966ede24205db8982841826af5871a", size = 7809417, upload-time = "2024-12-13T05:55:42.412Z" }, + { url = "https://files.pythonhosted.org/packages/36/c8/c523fd2963156692916a8eb7d4069084cf729359f7955cf09075deddfeaf/matplotlib-3.9.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:308afbf1a228b8b525fcd5cec17f246bbbb63b175a3ef6eb7b4d33287ca0cf0c", size = 8226258, upload-time = "2024-12-13T05:55:47.259Z" }, + { url = "https://files.pythonhosted.org/packages/f6/88/499bf4b8fa9349b6f5c0cf4cead0ebe5da9d67769129f1b5651e5ac51fbc/matplotlib-3.9.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddb3b02246ddcffd3ce98e88fed5b238bc5faff10dbbaa42090ea13241d15764", size = 8335849, upload-time = "2024-12-13T05:55:49.763Z" }, + { url = "https://files.pythonhosted.org/packages/b8/9f/20a4156b9726188646a030774ee337d5ff695a965be45ce4dbcb9312c170/matplotlib-3.9.4-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8a75287e9cb9eee48cb79ec1d806f75b29c0fde978cb7223a1f4c5848d696041", size = 9102152, upload-time = "2024-12-13T05:55:51.997Z" }, + { url = "https://files.pythonhosted.org/packages/10/11/237f9c3a4e8d810b1759b67ff2da7c32c04f9c80aa475e7beb36ed43a8fb/matplotlib-3.9.4-cp313-cp313t-win_amd64.whl", hash = "sha256:488deb7af140f0ba86da003e66e10d55ff915e152c78b4b66d231638400b1965", size = 7896987, upload-time = "2024-12-13T05:55:55.941Z" }, + { url = "https://files.pythonhosted.org/packages/56/eb/501b465c9fef28f158e414ea3a417913dc2ac748564c7ed41535f23445b4/matplotlib-3.9.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3c3724d89a387ddf78ff88d2a30ca78ac2b4c89cf37f2db4bd453c34799e933c", size = 7885919, upload-time = "2024-12-13T05:55:59.66Z" }, + { url = "https://files.pythonhosted.org/packages/da/36/236fbd868b6c91309a5206bd90c3f881f4f44b2d997cd1d6239ef652f878/matplotlib-3.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d5f0a8430ffe23d7e32cfd86445864ccad141797f7d25b7c41759a5b5d17cfd7", size = 7771486, upload-time = "2024-12-13T05:56:04.264Z" }, + { url = "https://files.pythonhosted.org/packages/e0/4b/105caf2d54d5ed11d9f4335398f5103001a03515f2126c936a752ccf1461/matplotlib-3.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bb0141a21aef3b64b633dc4d16cbd5fc538b727e4958be82a0e1c92a234160e", size = 8201838, upload-time = "2024-12-13T05:56:06.792Z" }, + { url = "https://files.pythonhosted.org/packages/5d/a7/bb01188fb4013d34d274caf44a2f8091255b0497438e8b6c0a7c1710c692/matplotlib-3.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:57aa235109e9eed52e2c2949db17da185383fa71083c00c6c143a60e07e0888c", size = 8314492, upload-time = "2024-12-13T05:56:09.964Z" }, + { url = "https://files.pythonhosted.org/packages/33/19/02e1a37f7141fc605b193e927d0a9cdf9dc124a20b9e68793f4ffea19695/matplotlib-3.9.4-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b18c600061477ccfdd1e6fd050c33d8be82431700f3452b297a56d9ed7037abb", size = 9092500, upload-time = "2024-12-13T05:56:13.55Z" }, + { url = "https://files.pythonhosted.org/packages/57/68/c2feb4667adbf882ffa4b3e0ac9967f848980d9f8b5bebd86644aa67ce6a/matplotlib-3.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:ef5f2d1b67d2d2145ff75e10f8c008bfbf71d45137c4b648c87193e7dd053eac", size = 7822962, upload-time = "2024-12-13T05:56:16.358Z" }, + { url = "https://files.pythonhosted.org/packages/0c/22/2ef6a364cd3f565442b0b055e0599744f1e4314ec7326cdaaa48a4d864d7/matplotlib-3.9.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:44e0ed786d769d85bc787b0606a53f2d8d2d1d3c8a2608237365e9121c1a338c", size = 7877995, upload-time = "2024-12-13T05:56:18.805Z" }, + { url = "https://files.pythonhosted.org/packages/87/b8/2737456e566e9f4d94ae76b8aa0d953d9acb847714f9a7ad80184474f5be/matplotlib-3.9.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:09debb9ce941eb23ecdbe7eab972b1c3e0276dcf01688073faff7b0f61d6c6ca", size = 7769300, upload-time = "2024-12-13T05:56:21.315Z" }, + { url = "https://files.pythonhosted.org/packages/b2/1f/e709c6ec7b5321e6568769baa288c7178e60a93a9da9e682b39450da0e29/matplotlib-3.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc53cf157a657bfd03afab14774d54ba73aa84d42cfe2480c91bd94873952db", size = 8313423, upload-time = "2024-12-13T05:56:26.719Z" }, + { url = "https://files.pythonhosted.org/packages/5e/b6/5a1f868782cd13f053a679984e222007ecff654a9bfbac6b27a65f4eeb05/matplotlib-3.9.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ad45da51be7ad02387801fd154ef74d942f49fe3fcd26a64c94842ba7ec0d865", size = 7854624, upload-time = "2024-12-13T05:56:29.359Z" }, +] + +[[package]] +name = "matplotlib" +version = "3.10.7" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "contourpy", version = "1.3.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "contourpy", version = "1.3.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "cycler", marker = "python_full_version >= '3.10'" }, + { name = "fonttools", marker = "python_full_version >= '3.10'" }, + { name = "kiwisolver", version = "1.4.9", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "numpy", version = "2.3.4", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "packaging", marker = "python_full_version >= '3.10'" }, + { name = "pillow", version = "12.0.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "pyparsing", marker = "python_full_version >= '3.10'" }, + { name = "python-dateutil", marker = "python_full_version >= '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ae/e2/d2d5295be2f44c678ebaf3544ba32d20c1f9ef08c49fe47f496180e1db15/matplotlib-3.10.7.tar.gz", hash = "sha256:a06ba7e2a2ef9131c79c49e63dad355d2d878413a0376c1727c8b9335ff731c7", size = 34804865, upload-time = "2025-10-09T00:28:00.669Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6c/87/3932d5778ab4c025db22710b61f49ccaed3956c5cf46ffb2ffa7492b06d9/matplotlib-3.10.7-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7ac81eee3b7c266dd92cee1cd658407b16c57eed08c7421fa354ed68234de380", size = 8247141, upload-time = "2025-10-09T00:26:06.023Z" }, + { url = "https://files.pythonhosted.org/packages/45/a8/bfed45339160102bce21a44e38a358a1134a5f84c26166de03fb4a53208f/matplotlib-3.10.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:667ecd5d8d37813a845053d8f5bf110b534c3c9f30e69ebd25d4701385935a6d", size = 8107995, upload-time = "2025-10-09T00:26:08.669Z" }, + { url = "https://files.pythonhosted.org/packages/e2/3c/5692a2d9a5ba848fda3f48d2b607037df96460b941a59ef236404b39776b/matplotlib-3.10.7-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cc1c51b846aca49a5a8b44fbba6a92d583a35c64590ad9e1e950dc88940a4297", size = 8680503, upload-time = "2025-10-09T00:26:10.607Z" }, + { url = "https://files.pythonhosted.org/packages/ab/a0/86ace53c48b05d0e6e9c127b2ace097434901f3e7b93f050791c8243201a/matplotlib-3.10.7-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4a11c2e9e72e7de09b7b72e62f3df23317c888299c875e2b778abf1eda8c0a42", size = 9514982, upload-time = "2025-10-09T00:26:12.594Z" }, + { url = "https://files.pythonhosted.org/packages/a6/81/ead71e2824da8f72640a64166d10e62300df4ae4db01a0bac56c5b39fa51/matplotlib-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f19410b486fdd139885ace124e57f938c1e6a3210ea13dd29cab58f5d4bc12c7", size = 9566429, upload-time = "2025-10-09T00:26:14.758Z" }, + { url = "https://files.pythonhosted.org/packages/65/7d/954b3067120456f472cce8fdcacaf4a5fcd522478db0c37bb243c7cb59dd/matplotlib-3.10.7-cp310-cp310-win_amd64.whl", hash = "sha256:b498e9e4022f93de2d5a37615200ca01297ceebbb56fe4c833f46862a490f9e3", size = 8108174, upload-time = "2025-10-09T00:26:17.015Z" }, + { url = "https://files.pythonhosted.org/packages/fc/bc/0fb489005669127ec13f51be0c6adc074d7cf191075dab1da9fe3b7a3cfc/matplotlib-3.10.7-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:53b492410a6cd66c7a471de6c924f6ede976e963c0f3097a3b7abfadddc67d0a", size = 8257507, upload-time = "2025-10-09T00:26:19.073Z" }, + { url = "https://files.pythonhosted.org/packages/e2/6a/d42588ad895279ff6708924645b5d2ed54a7fb2dc045c8a804e955aeace1/matplotlib-3.10.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d9749313deb729f08207718d29c86246beb2ea3fdba753595b55901dee5d2fd6", size = 8119565, upload-time = "2025-10-09T00:26:21.023Z" }, + { url = "https://files.pythonhosted.org/packages/10/b7/4aa196155b4d846bd749cf82aa5a4c300cf55a8b5e0dfa5b722a63c0f8a0/matplotlib-3.10.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2222c7ba2cbde7fe63032769f6eb7e83ab3227f47d997a8453377709b7fe3a5a", size = 8692668, upload-time = "2025-10-09T00:26:22.967Z" }, + { url = "https://files.pythonhosted.org/packages/e6/e7/664d2b97016f46683a02d854d730cfcf54ff92c1dafa424beebef50f831d/matplotlib-3.10.7-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e91f61a064c92c307c5a9dc8c05dc9f8a68f0a3be199d9a002a0622e13f874a1", size = 9521051, upload-time = "2025-10-09T00:26:25.041Z" }, + { url = "https://files.pythonhosted.org/packages/a8/a3/37aef1404efa615f49b5758a5e0261c16dd88f389bc1861e722620e4a754/matplotlib-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6f1851eab59ca082c95df5a500106bad73672645625e04538b3ad0f69471ffcc", size = 9576878, upload-time = "2025-10-09T00:26:27.478Z" }, + { url = "https://files.pythonhosted.org/packages/33/cd/b145f9797126f3f809d177ca378de57c45413c5099c5990de2658760594a/matplotlib-3.10.7-cp311-cp311-win_amd64.whl", hash = "sha256:6516ce375109c60ceec579e699524e9d504cd7578506f01150f7a6bc174a775e", size = 8115142, upload-time = "2025-10-09T00:26:29.774Z" }, + { url = "https://files.pythonhosted.org/packages/2e/39/63bca9d2b78455ed497fcf51a9c71df200a11048f48249038f06447fa947/matplotlib-3.10.7-cp311-cp311-win_arm64.whl", hash = "sha256:b172db79759f5f9bc13ef1c3ef8b9ee7b37b0247f987fbbbdaa15e4f87fd46a9", size = 7992439, upload-time = "2025-10-09T00:26:40.32Z" }, + { url = "https://files.pythonhosted.org/packages/be/b3/09eb0f7796932826ec20c25b517d568627754f6c6462fca19e12c02f2e12/matplotlib-3.10.7-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a0edb7209e21840e8361e91ea84ea676658aa93edd5f8762793dec77a4a6748", size = 8272389, upload-time = "2025-10-09T00:26:42.474Z" }, + { url = "https://files.pythonhosted.org/packages/11/0b/1ae80ddafb8652fd8046cb5c8460ecc8d4afccb89e2c6d6bec61e04e1eaf/matplotlib-3.10.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c380371d3c23e0eadf8ebff114445b9f970aff2010198d498d4ab4c3b41eea4f", size = 8128247, upload-time = "2025-10-09T00:26:44.77Z" }, + { url = "https://files.pythonhosted.org/packages/7d/18/95ae2e242d4a5c98bd6e90e36e128d71cf1c7e39b0874feaed3ef782e789/matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d5f256d49fea31f40f166a5e3131235a5d2f4b7f44520b1cf0baf1ce568ccff0", size = 8696996, upload-time = "2025-10-09T00:26:46.792Z" }, + { url = "https://files.pythonhosted.org/packages/7e/3d/5b559efc800bd05cb2033aa85f7e13af51958136a48327f7c261801ff90a/matplotlib-3.10.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:11ae579ac83cdf3fb72573bb89f70e0534de05266728740d478f0f818983c695", size = 9530153, upload-time = "2025-10-09T00:26:49.07Z" }, + { url = "https://files.pythonhosted.org/packages/88/57/eab4a719fd110312d3c220595d63a3c85ec2a39723f0f4e7fa7e6e3f74ba/matplotlib-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4c14b6acd16cddc3569a2d515cfdd81c7a68ac5639b76548cfc1a9e48b20eb65", size = 9593093, upload-time = "2025-10-09T00:26:51.067Z" }, + { url = "https://files.pythonhosted.org/packages/31/3c/80816f027b3a4a28cd2a0a6ef7f89a2db22310e945cd886ec25bfb399221/matplotlib-3.10.7-cp312-cp312-win_amd64.whl", hash = "sha256:0d8c32b7ea6fb80b1aeff5a2ceb3fb9778e2759e899d9beff75584714afcc5ee", size = 8122771, upload-time = "2025-10-09T00:26:53.296Z" }, + { url = "https://files.pythonhosted.org/packages/de/77/ef1fc78bfe99999b2675435cc52120887191c566b25017d78beaabef7f2d/matplotlib-3.10.7-cp312-cp312-win_arm64.whl", hash = "sha256:5f3f6d315dcc176ba7ca6e74c7768fb7e4cf566c49cb143f6bc257b62e634ed8", size = 7992812, upload-time = "2025-10-09T00:26:54.882Z" }, + { url = "https://files.pythonhosted.org/packages/02/9c/207547916a02c78f6bdd83448d9b21afbc42f6379ed887ecf610984f3b4e/matplotlib-3.10.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1d9d3713a237970569156cfb4de7533b7c4eacdd61789726f444f96a0d28f57f", size = 8273212, upload-time = "2025-10-09T00:26:56.752Z" }, + { url = "https://files.pythonhosted.org/packages/bc/d0/b3d3338d467d3fc937f0bb7f256711395cae6f78e22cef0656159950adf0/matplotlib-3.10.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:37a1fea41153dd6ee061d21ab69c9cf2cf543160b1b85d89cd3d2e2a7902ca4c", size = 8128713, upload-time = "2025-10-09T00:26:59.001Z" }, + { url = "https://files.pythonhosted.org/packages/22/ff/6425bf5c20d79aa5b959d1ce9e65f599632345391381c9a104133fe0b171/matplotlib-3.10.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b3c4ea4948d93c9c29dc01c0c23eef66f2101bf75158c291b88de6525c55c3d1", size = 8698527, upload-time = "2025-10-09T00:27:00.69Z" }, + { url = "https://files.pythonhosted.org/packages/d0/7f/ccdca06f4c2e6c7989270ed7829b8679466682f4cfc0f8c9986241c023b6/matplotlib-3.10.7-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22df30ffaa89f6643206cf13877191c63a50e8f800b038bc39bee9d2d4957632", size = 9529690, upload-time = "2025-10-09T00:27:02.664Z" }, + { url = "https://files.pythonhosted.org/packages/b8/95/b80fc2c1f269f21ff3d193ca697358e24408c33ce2b106a7438a45407b63/matplotlib-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b69676845a0a66f9da30e87f48be36734d6748024b525ec4710be40194282c84", size = 9593732, upload-time = "2025-10-09T00:27:04.653Z" }, + { url = "https://files.pythonhosted.org/packages/e1/b6/23064a96308b9aeceeffa65e96bcde459a2ea4934d311dee20afde7407a0/matplotlib-3.10.7-cp313-cp313-win_amd64.whl", hash = "sha256:744991e0cc863dd669c8dc9136ca4e6e0082be2070b9d793cbd64bec872a6815", size = 8122727, upload-time = "2025-10-09T00:27:06.814Z" }, + { url = "https://files.pythonhosted.org/packages/b3/a6/2faaf48133b82cf3607759027f82b5c702aa99cdfcefb7f93d6ccf26a424/matplotlib-3.10.7-cp313-cp313-win_arm64.whl", hash = "sha256:fba2974df0bf8ce3c995fa84b79cde38326e0f7b5409e7a3a481c1141340bcf7", size = 7992958, upload-time = "2025-10-09T00:27:08.567Z" }, + { url = "https://files.pythonhosted.org/packages/4a/f0/b018fed0b599bd48d84c08794cb242227fe3341952da102ee9d9682db574/matplotlib-3.10.7-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:932c55d1fa7af4423422cb6a492a31cbcbdbe68fd1a9a3f545aa5e7a143b5355", size = 8316849, upload-time = "2025-10-09T00:27:10.254Z" }, + { url = "https://files.pythonhosted.org/packages/b0/b7/bb4f23856197659f275e11a2a164e36e65e9b48ea3e93c4ec25b4f163198/matplotlib-3.10.7-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e38c2d581d62ee729a6e144c47a71b3f42fb4187508dbbf4fe71d5612c3433b", size = 8178225, upload-time = "2025-10-09T00:27:12.241Z" }, + { url = "https://files.pythonhosted.org/packages/62/56/0600609893ff277e6f3ab3c0cef4eafa6e61006c058e84286c467223d4d5/matplotlib-3.10.7-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:786656bb13c237bbcebcd402f65f44dd61ead60ee3deb045af429d889c8dbc67", size = 8711708, upload-time = "2025-10-09T00:27:13.879Z" }, + { url = "https://files.pythonhosted.org/packages/d8/1a/6bfecb0cafe94d6658f2f1af22c43b76cf7a1c2f0dc34ef84cbb6809617e/matplotlib-3.10.7-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09d7945a70ea43bf9248f4b6582734c2fe726723204a76eca233f24cffc7ef67", size = 9541409, upload-time = "2025-10-09T00:27:15.684Z" }, + { url = "https://files.pythonhosted.org/packages/08/50/95122a407d7f2e446fd865e2388a232a23f2b81934960ea802f3171518e4/matplotlib-3.10.7-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d0b181e9fa8daf1d9f2d4c547527b167cb8838fc587deabca7b5c01f97199e84", size = 9594054, upload-time = "2025-10-09T00:27:17.547Z" }, + { url = "https://files.pythonhosted.org/packages/13/76/75b194a43b81583478a81e78a07da8d9ca6ddf50dd0a2ccabf258059481d/matplotlib-3.10.7-cp313-cp313t-win_amd64.whl", hash = "sha256:31963603041634ce1a96053047b40961f7a29eb8f9a62e80cc2c0427aa1d22a2", size = 8200100, upload-time = "2025-10-09T00:27:20.039Z" }, + { url = "https://files.pythonhosted.org/packages/f5/9e/6aefebdc9f8235c12bdeeda44cc0383d89c1e41da2c400caf3ee2073a3ce/matplotlib-3.10.7-cp313-cp313t-win_arm64.whl", hash = "sha256:aebed7b50aa6ac698c90f60f854b47e48cd2252b30510e7a1feddaf5a3f72cbf", size = 8042131, upload-time = "2025-10-09T00:27:21.608Z" }, + { url = "https://files.pythonhosted.org/packages/0d/4b/e5bc2c321b6a7e3a75638d937d19ea267c34bd5a90e12bee76c4d7c7a0d9/matplotlib-3.10.7-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d883460c43e8c6b173fef244a2341f7f7c0e9725c7fe68306e8e44ed9c8fb100", size = 8273787, upload-time = "2025-10-09T00:27:23.27Z" }, + { url = "https://files.pythonhosted.org/packages/86/ad/6efae459c56c2fbc404da154e13e3a6039129f3c942b0152624f1c621f05/matplotlib-3.10.7-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:07124afcf7a6504eafcb8ce94091c5898bbdd351519a1beb5c45f7a38c67e77f", size = 8131348, upload-time = "2025-10-09T00:27:24.926Z" }, + { url = "https://files.pythonhosted.org/packages/a6/5a/a4284d2958dee4116359cc05d7e19c057e64ece1b4ac986ab0f2f4d52d5a/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c17398b709a6cce3d9fdb1595c33e356d91c098cd9486cb2cc21ea2ea418e715", size = 9533949, upload-time = "2025-10-09T00:27:26.704Z" }, + { url = "https://files.pythonhosted.org/packages/de/ff/f3781b5057fa3786623ad8976fc9f7b0d02b2f28534751fd5a44240de4cf/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7146d64f561498764561e9cd0ed64fcf582e570fc519e6f521e2d0cfd43365e1", size = 9804247, upload-time = "2025-10-09T00:27:28.514Z" }, + { url = "https://files.pythonhosted.org/packages/47/5a/993a59facb8444efb0e197bf55f545ee449902dcee86a4dfc580c3b61314/matplotlib-3.10.7-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:90ad854c0a435da3104c01e2c6f0028d7e719b690998a2333d7218db80950722", size = 9595497, upload-time = "2025-10-09T00:27:30.418Z" }, + { url = "https://files.pythonhosted.org/packages/0d/a5/77c95aaa9bb32c345cbb49626ad8eb15550cba2e6d4c88081a6c2ac7b08d/matplotlib-3.10.7-cp314-cp314-win_amd64.whl", hash = "sha256:4645fc5d9d20ffa3a39361fcdbcec731382763b623b72627806bf251b6388866", size = 8252732, upload-time = "2025-10-09T00:27:32.332Z" }, + { url = "https://files.pythonhosted.org/packages/74/04/45d269b4268d222390d7817dae77b159651909669a34ee9fdee336db5883/matplotlib-3.10.7-cp314-cp314-win_arm64.whl", hash = "sha256:9257be2f2a03415f9105c486d304a321168e61ad450f6153d77c69504ad764bb", size = 8124240, upload-time = "2025-10-09T00:27:33.94Z" }, + { url = "https://files.pythonhosted.org/packages/4b/c7/ca01c607bb827158b439208c153d6f14ddb9fb640768f06f7ca3488ae67b/matplotlib-3.10.7-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1e4bbad66c177a8fdfa53972e5ef8be72a5f27e6a607cec0d8579abd0f3102b1", size = 8316938, upload-time = "2025-10-09T00:27:35.534Z" }, + { url = "https://files.pythonhosted.org/packages/84/d2/5539e66e9f56d2fdec94bb8436f5e449683b4e199bcc897c44fbe3c99e28/matplotlib-3.10.7-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d8eb7194b084b12feb19142262165832fc6ee879b945491d1c3d4660748020c4", size = 8178245, upload-time = "2025-10-09T00:27:37.334Z" }, + { url = "https://files.pythonhosted.org/packages/77/b5/e6ca22901fd3e4fe433a82e583436dd872f6c966fca7e63cf806b40356f8/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d41379b05528091f00e1728004f9a8d7191260f3862178b88e8fd770206318", size = 9541411, upload-time = "2025-10-09T00:27:39.387Z" }, + { url = "https://files.pythonhosted.org/packages/9e/99/a4524db57cad8fee54b7237239a8f8360bfcfa3170d37c9e71c090c0f409/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4a74f79fafb2e177f240579bc83f0b60f82cc47d2f1d260f422a0627207008ca", size = 9803664, upload-time = "2025-10-09T00:27:41.492Z" }, + { url = "https://files.pythonhosted.org/packages/e6/a5/85e2edf76ea0ad4288d174926d9454ea85f3ce5390cc4e6fab196cbf250b/matplotlib-3.10.7-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:702590829c30aada1e8cef0568ddbffa77ca747b4d6e36c6d173f66e301f89cc", size = 9594066, upload-time = "2025-10-09T00:27:43.694Z" }, + { url = "https://files.pythonhosted.org/packages/39/69/9684368a314f6d83fe5c5ad2a4121a3a8e03723d2e5c8ea17b66c1bad0e7/matplotlib-3.10.7-cp314-cp314t-win_amd64.whl", hash = "sha256:f79d5de970fc90cd5591f60053aecfce1fcd736e0303d9f0bf86be649fa68fb8", size = 8342832, upload-time = "2025-10-09T00:27:45.543Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/e22e08da14bc1a0894184640d47819d2338b792732e20d292bf86e5ab785/matplotlib-3.10.7-cp314-cp314t-win_arm64.whl", hash = "sha256:cb783436e47fcf82064baca52ce748af71725d0352e1d31564cbe9c95df92b9c", size = 8172585, upload-time = "2025-10-09T00:27:47.185Z" }, + { url = "https://files.pythonhosted.org/packages/1e/6c/a9bcf03e9afb2a873e0a5855f79bce476d1023f26f8212969f2b7504756c/matplotlib-3.10.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5c09cf8f2793f81368f49f118b6f9f937456362bee282eac575cca7f84cda537", size = 8241204, upload-time = "2025-10-09T00:27:48.806Z" }, + { url = "https://files.pythonhosted.org/packages/5b/fd/0e6f5aa762ed689d9fa8750b08f1932628ffa7ed30e76423c399d19407d2/matplotlib-3.10.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:de66744b2bb88d5cd27e80dfc2ec9f0517d0a46d204ff98fe9e5f2864eb67657", size = 8104607, upload-time = "2025-10-09T00:27:50.876Z" }, + { url = "https://files.pythonhosted.org/packages/b9/a9/21c9439d698fac5f0de8fc68b2405b738ed1f00e1279c76f2d9aa5521ead/matplotlib-3.10.7-pp310-pypy310_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:53cc80662dd197ece414dd5b66e07370201515a3eaf52e7c518c68c16814773b", size = 8682257, upload-time = "2025-10-09T00:27:52.597Z" }, + { url = "https://files.pythonhosted.org/packages/58/8f/76d5dc21ac64a49e5498d7f0472c0781dae442dd266a67458baec38288ec/matplotlib-3.10.7-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:15112bcbaef211bd663fa935ec33313b948e214454d949b723998a43357b17b0", size = 8252283, upload-time = "2025-10-09T00:27:54.739Z" }, + { url = "https://files.pythonhosted.org/packages/27/0d/9c5d4c2317feb31d819e38c9f947c942f42ebd4eb935fc6fd3518a11eaa7/matplotlib-3.10.7-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d2a959c640cdeecdd2ec3136e8ea0441da59bcaf58d67e9c590740addba2cb68", size = 8116733, upload-time = "2025-10-09T00:27:56.406Z" }, + { url = "https://files.pythonhosted.org/packages/9a/cc/3fe688ff1355010937713164caacf9ed443675ac48a997bab6ed23b3f7c0/matplotlib-3.10.7-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3886e47f64611046bc1db523a09dd0a0a6bed6081e6f90e13806dd1d1d1b5e91", size = 8693919, upload-time = "2025-10-09T00:27:58.41Z" }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159, upload-time = "2024-04-15T13:44:44.803Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899, upload-time = "2024-04-15T13:44:43.265Z" }, +] + +[[package]] +name = "mergedeep" +version = "1.3.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3a/41/580bb4006e3ed0361b8151a01d324fb03f420815446c7def45d02f74c270/mergedeep-1.3.4.tar.gz", hash = "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8", size = 4661, upload-time = "2021-02-05T18:55:30.623Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/19/04f9b178c2d8a15b076c8b5140708fa6ffc5601fb6f1e975537072df5b2a/mergedeep-1.3.4-py3-none-any.whl", hash = "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307", size = 6354, upload-time = "2021-02-05T18:55:29.583Z" }, +] + +[[package]] +name = "mkdocs" +version = "1.6.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "click", version = "8.1.8", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "click", version = "8.3.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "ghp-import" }, + { name = "importlib-metadata", marker = "python_full_version < '3.10'" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mergedeep" }, + { name = "mkdocs-get-deps" }, + { name = "packaging" }, + { name = "pathspec" }, + { name = "pyyaml" }, + { name = "pyyaml-env-tag" }, + { name = "watchdog" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bc/c6/bbd4f061bd16b378247f12953ffcb04786a618ce5e904b8c5a01a0309061/mkdocs-1.6.1.tar.gz", hash = "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2", size = 3889159, upload-time = "2024-08-30T12:24:06.899Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/5b/dbc6a8cddc9cfa9c4971d59fb12bb8d42e161b7e7f8cc89e49137c5b279c/mkdocs-1.6.1-py3-none-any.whl", hash = "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e", size = 3864451, upload-time = "2024-08-30T12:24:05.054Z" }, +] + +[[package]] +name = "mkdocs-autorefs" +version = "1.4.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mkdocs" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/51/fa/9124cd63d822e2bcbea1450ae68cdc3faf3655c69b455f3a7ed36ce6c628/mkdocs_autorefs-1.4.3.tar.gz", hash = "sha256:beee715b254455c4aa93b6ef3c67579c399ca092259cc41b7d9342573ff1fc75", size = 55425, upload-time = "2025-08-26T14:23:17.223Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/4d/7123b6fa2278000688ebd338e2a06d16870aaf9eceae6ba047ea05f92df1/mkdocs_autorefs-1.4.3-py3-none-any.whl", hash = "sha256:469d85eb3114801d08e9cc55d102b3ba65917a869b893403b8987b601cf55dc9", size = 25034, upload-time = "2025-08-26T14:23:15.906Z" }, +] + +[[package]] +name = "mkdocs-get-deps" +version = "0.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "importlib-metadata", marker = "python_full_version < '3.10'" }, + { name = "mergedeep" }, + { name = "platformdirs", version = "4.4.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "platformdirs", version = "4.5.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/98/f5/ed29cd50067784976f25ed0ed6fcd3c2ce9eb90650aa3b2796ddf7b6870b/mkdocs_get_deps-0.2.0.tar.gz", hash = "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c", size = 10239, upload-time = "2023-11-20T17:51:09.981Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/d4/029f984e8d3f3b6b726bd33cafc473b75e9e44c0f7e80a5b29abc466bdea/mkdocs_get_deps-0.2.0-py3-none-any.whl", hash = "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134", size = 9521, upload-time = "2023-11-20T17:51:08.587Z" }, +] + +[[package]] +name = "mkdocs-material" +version = "9.6.22" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "backrefs" }, + { name = "colorama" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "mkdocs" }, + { name = "mkdocs-material-extensions" }, + { name = "paginate" }, + { name = "pygments" }, + { name = "pymdown-extensions" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5f/5d/317e37b6c43325cb376a1d6439df9cc743b8ee41c84603c2faf7286afc82/mkdocs_material-9.6.22.tar.gz", hash = "sha256:87c158b0642e1ada6da0cbd798a3389b0bc5516b90e5ece4a0fb939f00bacd1c", size = 4044968, upload-time = "2025-10-15T09:21:15.409Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/82/6fdb9a7a04fb222f4849ffec1006f891a0280825a20314d11f3ccdee14eb/mkdocs_material-9.6.22-py3-none-any.whl", hash = "sha256:14ac5f72d38898b2f98ac75a5531aaca9366eaa427b0f49fc2ecf04d99b7ad84", size = 9206252, upload-time = "2025-10-15T09:21:12.175Z" }, +] + +[[package]] +name = "mkdocs-material-extensions" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/79/9b/9b4c96d6593b2a541e1cb8b34899a6d021d208bb357042823d4d2cabdbe7/mkdocs_material_extensions-1.3.1.tar.gz", hash = "sha256:10c9511cea88f568257f960358a467d12b970e1f7b2c0e5fb2bb48cab1928443", size = 11847, upload-time = "2023-11-22T19:09:45.208Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5b/54/662a4743aa81d9582ee9339d4ffa3c8fd40a4965e033d77b9da9774d3960/mkdocs_material_extensions-1.3.1-py3-none-any.whl", hash = "sha256:adff8b62700b25cb77b53358dad940f3ef973dd6db797907c49e3c2ef3ab4e31", size = 8728, upload-time = "2023-11-22T19:09:43.465Z" }, +] + +[[package]] +name = "mkdocstrings" +version = "0.30.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "importlib-metadata", marker = "python_full_version < '3.10'" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mkdocs" }, + { name = "mkdocs-autorefs" }, + { name = "pymdown-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c5/33/2fa3243439f794e685d3e694590d28469a9b8ea733af4b48c250a3ffc9a0/mkdocstrings-0.30.1.tar.gz", hash = "sha256:84a007aae9b707fb0aebfc9da23db4b26fc9ab562eb56e335e9ec480cb19744f", size = 106350, upload-time = "2025-09-19T10:49:26.446Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/2c/f0dc4e1ee7f618f5bff7e05898d20bf8b6e7fa612038f768bfa295f136a4/mkdocstrings-0.30.1-py3-none-any.whl", hash = "sha256:41bd71f284ca4d44a668816193e4025c950b002252081e387433656ae9a70a82", size = 36704, upload-time = "2025-09-19T10:49:24.805Z" }, +] + +[package.optional-dependencies] +python = [ + { name = "mkdocstrings-python" }, +] + +[[package]] +name = "mkdocstrings-python" +version = "1.18.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "griffe" }, + { name = "mkdocs-autorefs" }, + { name = "mkdocstrings" }, + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/95/ae/58ab2bfbee2792e92a98b97e872f7c003deb903071f75d8d83aa55db28fa/mkdocstrings_python-1.18.2.tar.gz", hash = "sha256:4ad536920a07b6336f50d4c6d5603316fafb1172c5c882370cbbc954770ad323", size = 207972, upload-time = "2025-08-28T16:11:19.847Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d5/8f/ce008599d9adebf33ed144e7736914385e8537f5fc686fdb7cceb8c22431/mkdocstrings_python-1.18.2-py3-none-any.whl", hash = "sha256:944fe6deb8f08f33fa936d538233c4036e9f53e840994f6146e8e94eb71b600d", size = 138215, upload-time = "2025-08-28T16:11:18.176Z" }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" }, +] + +[[package]] +name = "numpy" +version = "2.0.2" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +sdist = { url = "https://files.pythonhosted.org/packages/a9/75/10dd1f8116a8b796cb2c737b674e02d02e80454bda953fa7e65d8c12b016/numpy-2.0.2.tar.gz", hash = "sha256:883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78", size = 18902015, upload-time = "2024-08-26T20:19:40.945Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/21/91/3495b3237510f79f5d81f2508f9f13fea78ebfdf07538fc7444badda173d/numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece", size = 21165245, upload-time = "2024-08-26T20:04:14.625Z" }, + { url = "https://files.pythonhosted.org/packages/05/33/26178c7d437a87082d11019292dce6d3fe6f0e9026b7b2309cbf3e489b1d/numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04", size = 13738540, upload-time = "2024-08-26T20:04:36.784Z" }, + { url = "https://files.pythonhosted.org/packages/ec/31/cc46e13bf07644efc7a4bf68df2df5fb2a1a88d0cd0da9ddc84dc0033e51/numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66", size = 5300623, upload-time = "2024-08-26T20:04:46.491Z" }, + { url = "https://files.pythonhosted.org/packages/6e/16/7bfcebf27bb4f9d7ec67332ffebee4d1bf085c84246552d52dbb548600e7/numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b", size = 6901774, upload-time = "2024-08-26T20:04:58.173Z" }, + { url = "https://files.pythonhosted.org/packages/f9/a3/561c531c0e8bf082c5bef509d00d56f82e0ea7e1e3e3a7fc8fa78742a6e5/numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd", size = 13907081, upload-time = "2024-08-26T20:05:19.098Z" }, + { url = "https://files.pythonhosted.org/packages/fa/66/f7177ab331876200ac7563a580140643d1179c8b4b6a6b0fc9838de2a9b8/numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318", size = 19523451, upload-time = "2024-08-26T20:05:47.479Z" }, + { url = "https://files.pythonhosted.org/packages/25/7f/0b209498009ad6453e4efc2c65bcdf0ae08a182b2b7877d7ab38a92dc542/numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8", size = 19927572, upload-time = "2024-08-26T20:06:17.137Z" }, + { url = "https://files.pythonhosted.org/packages/3e/df/2619393b1e1b565cd2d4c4403bdd979621e2c4dea1f8532754b2598ed63b/numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326", size = 14400722, upload-time = "2024-08-26T20:06:39.16Z" }, + { url = "https://files.pythonhosted.org/packages/22/ad/77e921b9f256d5da36424ffb711ae79ca3f451ff8489eeca544d0701d74a/numpy-2.0.2-cp310-cp310-win32.whl", hash = "sha256:984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97", size = 6472170, upload-time = "2024-08-26T20:06:50.361Z" }, + { url = "https://files.pythonhosted.org/packages/10/05/3442317535028bc29cf0c0dd4c191a4481e8376e9f0db6bcf29703cadae6/numpy-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131", size = 15905558, upload-time = "2024-08-26T20:07:13.881Z" }, + { url = "https://files.pythonhosted.org/packages/8b/cf/034500fb83041aa0286e0fb16e7c76e5c8b67c0711bb6e9e9737a717d5fe/numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448", size = 21169137, upload-time = "2024-08-26T20:07:45.345Z" }, + { url = "https://files.pythonhosted.org/packages/4a/d9/32de45561811a4b87fbdee23b5797394e3d1504b4a7cf40c10199848893e/numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195", size = 13703552, upload-time = "2024-08-26T20:08:06.666Z" }, + { url = "https://files.pythonhosted.org/packages/c1/ca/2f384720020c7b244d22508cb7ab23d95f179fcfff33c31a6eeba8d6c512/numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57", size = 5298957, upload-time = "2024-08-26T20:08:15.83Z" }, + { url = "https://files.pythonhosted.org/packages/0e/78/a3e4f9fb6aa4e6fdca0c5428e8ba039408514388cf62d89651aade838269/numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a", size = 6905573, upload-time = "2024-08-26T20:08:27.185Z" }, + { url = "https://files.pythonhosted.org/packages/a0/72/cfc3a1beb2caf4efc9d0b38a15fe34025230da27e1c08cc2eb9bfb1c7231/numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669", size = 13914330, upload-time = "2024-08-26T20:08:48.058Z" }, + { url = "https://files.pythonhosted.org/packages/ba/a8/c17acf65a931ce551fee11b72e8de63bf7e8a6f0e21add4c937c83563538/numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951", size = 19534895, upload-time = "2024-08-26T20:09:16.536Z" }, + { url = "https://files.pythonhosted.org/packages/ba/86/8767f3d54f6ae0165749f84648da9dcc8cd78ab65d415494962c86fac80f/numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9", size = 19937253, upload-time = "2024-08-26T20:09:46.263Z" }, + { url = "https://files.pythonhosted.org/packages/df/87/f76450e6e1c14e5bb1eae6836478b1028e096fd02e85c1c37674606ab752/numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15", size = 14414074, upload-time = "2024-08-26T20:10:08.483Z" }, + { url = "https://files.pythonhosted.org/packages/5c/ca/0f0f328e1e59f73754f06e1adfb909de43726d4f24c6a3f8805f34f2b0fa/numpy-2.0.2-cp311-cp311-win32.whl", hash = "sha256:a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4", size = 6470640, upload-time = "2024-08-26T20:10:19.732Z" }, + { url = "https://files.pythonhosted.org/packages/eb/57/3a3f14d3a759dcf9bf6e9eda905794726b758819df4663f217d658a58695/numpy-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc", size = 15910230, upload-time = "2024-08-26T20:10:43.413Z" }, + { url = "https://files.pythonhosted.org/packages/45/40/2e117be60ec50d98fa08c2f8c48e09b3edea93cfcabd5a9ff6925d54b1c2/numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b", size = 20895803, upload-time = "2024-08-26T20:11:13.916Z" }, + { url = "https://files.pythonhosted.org/packages/46/92/1b8b8dee833f53cef3e0a3f69b2374467789e0bb7399689582314df02651/numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e", size = 13471835, upload-time = "2024-08-26T20:11:34.779Z" }, + { url = "https://files.pythonhosted.org/packages/7f/19/e2793bde475f1edaea6945be141aef6c8b4c669b90c90a300a8954d08f0a/numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c", size = 5038499, upload-time = "2024-08-26T20:11:43.902Z" }, + { url = "https://files.pythonhosted.org/packages/e3/ff/ddf6dac2ff0dd50a7327bcdba45cb0264d0e96bb44d33324853f781a8f3c/numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c", size = 6633497, upload-time = "2024-08-26T20:11:55.09Z" }, + { url = "https://files.pythonhosted.org/packages/72/21/67f36eac8e2d2cd652a2e69595a54128297cdcb1ff3931cfc87838874bd4/numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692", size = 13621158, upload-time = "2024-08-26T20:12:14.95Z" }, + { url = "https://files.pythonhosted.org/packages/39/68/e9f1126d757653496dbc096cb429014347a36b228f5a991dae2c6b6cfd40/numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a", size = 19236173, upload-time = "2024-08-26T20:12:44.049Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e9/1f5333281e4ebf483ba1c888b1d61ba7e78d7e910fdd8e6499667041cc35/numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c", size = 19634174, upload-time = "2024-08-26T20:13:13.634Z" }, + { url = "https://files.pythonhosted.org/packages/71/af/a469674070c8d8408384e3012e064299f7a2de540738a8e414dcfd639996/numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded", size = 14099701, upload-time = "2024-08-26T20:13:34.851Z" }, + { url = "https://files.pythonhosted.org/packages/d0/3d/08ea9f239d0e0e939b6ca52ad403c84a2bce1bde301a8eb4888c1c1543f1/numpy-2.0.2-cp312-cp312-win32.whl", hash = "sha256:671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5", size = 6174313, upload-time = "2024-08-26T20:13:45.653Z" }, + { url = "https://files.pythonhosted.org/packages/b2/b5/4ac39baebf1fdb2e72585c8352c56d063b6126be9fc95bd2bb5ef5770c20/numpy-2.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a", size = 15606179, upload-time = "2024-08-26T20:14:08.786Z" }, + { url = "https://files.pythonhosted.org/packages/43/c1/41c8f6df3162b0c6ffd4437d729115704bd43363de0090c7f913cfbc2d89/numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c", size = 21169942, upload-time = "2024-08-26T20:14:40.108Z" }, + { url = "https://files.pythonhosted.org/packages/39/bc/fd298f308dcd232b56a4031fd6ddf11c43f9917fbc937e53762f7b5a3bb1/numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd", size = 13711512, upload-time = "2024-08-26T20:15:00.985Z" }, + { url = "https://files.pythonhosted.org/packages/96/ff/06d1aa3eeb1c614eda245c1ba4fb88c483bee6520d361641331872ac4b82/numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b", size = 5306976, upload-time = "2024-08-26T20:15:10.876Z" }, + { url = "https://files.pythonhosted.org/packages/2d/98/121996dcfb10a6087a05e54453e28e58694a7db62c5a5a29cee14c6e047b/numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729", size = 6906494, upload-time = "2024-08-26T20:15:22.055Z" }, + { url = "https://files.pythonhosted.org/packages/15/31/9dffc70da6b9bbf7968f6551967fc21156207366272c2a40b4ed6008dc9b/numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1", size = 13912596, upload-time = "2024-08-26T20:15:42.452Z" }, + { url = "https://files.pythonhosted.org/packages/b9/14/78635daab4b07c0930c919d451b8bf8c164774e6a3413aed04a6d95758ce/numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd", size = 19526099, upload-time = "2024-08-26T20:16:11.048Z" }, + { url = "https://files.pythonhosted.org/packages/26/4c/0eeca4614003077f68bfe7aac8b7496f04221865b3a5e7cb230c9d055afd/numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d", size = 19932823, upload-time = "2024-08-26T20:16:40.171Z" }, + { url = "https://files.pythonhosted.org/packages/f1/46/ea25b98b13dccaebddf1a803f8c748680d972e00507cd9bc6dcdb5aa2ac1/numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d", size = 14404424, upload-time = "2024-08-26T20:17:02.604Z" }, + { url = "https://files.pythonhosted.org/packages/c8/a6/177dd88d95ecf07e722d21008b1b40e681a929eb9e329684d449c36586b2/numpy-2.0.2-cp39-cp39-win32.whl", hash = "sha256:905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa", size = 6476809, upload-time = "2024-08-26T20:17:13.553Z" }, + { url = "https://files.pythonhosted.org/packages/ea/2b/7fc9f4e7ae5b507c1a3a21f0f15ed03e794c1242ea8a242ac158beb56034/numpy-2.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73", size = 15911314, upload-time = "2024-08-26T20:17:36.72Z" }, + { url = "https://files.pythonhosted.org/packages/8f/3b/df5a870ac6a3be3a86856ce195ef42eec7ae50d2a202be1f5a4b3b340e14/numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8", size = 21025288, upload-time = "2024-08-26T20:18:07.732Z" }, + { url = "https://files.pythonhosted.org/packages/2c/97/51af92f18d6f6f2d9ad8b482a99fb74e142d71372da5d834b3a2747a446e/numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4", size = 6762793, upload-time = "2024-08-26T20:18:19.125Z" }, + { url = "https://files.pythonhosted.org/packages/12/46/de1fbd0c1b5ccaa7f9a005b66761533e2f6a3e560096682683a223631fe9/numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c", size = 19334885, upload-time = "2024-08-26T20:18:47.237Z" }, + { url = "https://files.pythonhosted.org/packages/cc/dc/d330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78/numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385", size = 15828784, upload-time = "2024-08-26T20:19:11.19Z" }, +] + +[[package]] +name = "numpy" +version = "2.2.6" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version == '3.10.*'", +] +sdist = { url = "https://files.pythonhosted.org/packages/76/21/7d2a95e4bba9dc13d043ee156a356c0a8f0c6309dff6b21b4d71a073b8a8/numpy-2.2.6.tar.gz", hash = "sha256:e29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd", size = 20276440, upload-time = "2025-05-17T22:38:04.611Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9a/3e/ed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd/numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb", size = 21165245, upload-time = "2025-05-17T21:27:58.555Z" }, + { url = "https://files.pythonhosted.org/packages/22/c2/4b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff/numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90", size = 14360048, upload-time = "2025-05-17T21:28:21.406Z" }, + { url = "https://files.pythonhosted.org/packages/fd/77/dc2fcfc66943c6410e2bf598062f5959372735ffda175b39906d54f02349/numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163", size = 5340542, upload-time = "2025-05-17T21:28:30.931Z" }, + { url = "https://files.pythonhosted.org/packages/7a/4f/1cb5fdc353a5f5cc7feb692db9b8ec2c3d6405453f982435efc52561df58/numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf", size = 6878301, upload-time = "2025-05-17T21:28:41.613Z" }, + { url = "https://files.pythonhosted.org/packages/eb/17/96a3acd228cec142fcb8723bd3cc39c2a474f7dcf0a5d16731980bcafa95/numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83", size = 14297320, upload-time = "2025-05-17T21:29:02.78Z" }, + { url = "https://files.pythonhosted.org/packages/b4/63/3de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5/numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915", size = 16801050, upload-time = "2025-05-17T21:29:27.675Z" }, + { url = "https://files.pythonhosted.org/packages/07/b6/89d837eddef52b3d0cec5c6ba0456c1bf1b9ef6a6672fc2b7873c3ec4e2e/numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680", size = 15807034, upload-time = "2025-05-17T21:29:51.102Z" }, + { url = "https://files.pythonhosted.org/packages/01/c8/dc6ae86e3c61cfec1f178e5c9f7858584049b6093f843bca541f94120920/numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289", size = 18614185, upload-time = "2025-05-17T21:30:18.703Z" }, + { url = "https://files.pythonhosted.org/packages/5b/c5/0064b1b7e7c89137b471ccec1fd2282fceaae0ab3a9550f2568782d80357/numpy-2.2.6-cp310-cp310-win32.whl", hash = "sha256:b093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d", size = 6527149, upload-time = "2025-05-17T21:30:29.788Z" }, + { url = "https://files.pythonhosted.org/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl", hash = "sha256:f0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3", size = 12904620, upload-time = "2025-05-17T21:30:48.994Z" }, + { url = "https://files.pythonhosted.org/packages/da/a8/4f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839/numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae", size = 21176963, upload-time = "2025-05-17T21:31:19.36Z" }, + { url = "https://files.pythonhosted.org/packages/b3/2b/64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c/numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a", size = 14406743, upload-time = "2025-05-17T21:31:41.087Z" }, + { url = "https://files.pythonhosted.org/packages/4a/9f/0121e375000b5e50ffdd8b25bf78d8e1a5aa4cca3f185d41265198c7b834/numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42", size = 5352616, upload-time = "2025-05-17T21:31:50.072Z" }, + { url = "https://files.pythonhosted.org/packages/31/0d/b48c405c91693635fbe2dcd7bc84a33a602add5f63286e024d3b6741411c/numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491", size = 6889579, upload-time = "2025-05-17T21:32:01.712Z" }, + { url = "https://files.pythonhosted.org/packages/52/b8/7f0554d49b565d0171eab6e99001846882000883998e7b7d9f0d98b1f934/numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a", size = 14312005, upload-time = "2025-05-17T21:32:23.332Z" }, + { url = "https://files.pythonhosted.org/packages/b3/dd/2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475/numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf", size = 16821570, upload-time = "2025-05-17T21:32:47.991Z" }, + { url = "https://files.pythonhosted.org/packages/83/6c/44d0325722cf644f191042bf47eedad61c1e6df2432ed65cbe28509d404e/numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:bd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1", size = 15818548, upload-time = "2025-05-17T21:33:11.728Z" }, + { url = "https://files.pythonhosted.org/packages/ae/9d/81e8216030ce66be25279098789b665d49ff19eef08bfa8cb96d4957f422/numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab", size = 18620521, upload-time = "2025-05-17T21:33:39.139Z" }, + { url = "https://files.pythonhosted.org/packages/6a/fd/e19617b9530b031db51b0926eed5345ce8ddc669bb3bc0044b23e275ebe8/numpy-2.2.6-cp311-cp311-win32.whl", hash = "sha256:0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47", size = 6525866, upload-time = "2025-05-17T21:33:50.273Z" }, + { url = "https://files.pythonhosted.org/packages/31/0a/f354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df/numpy-2.2.6-cp311-cp311-win_amd64.whl", hash = "sha256:e8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303", size = 12907455, upload-time = "2025-05-17T21:34:09.135Z" }, + { url = "https://files.pythonhosted.org/packages/82/5d/c00588b6cf18e1da539b45d3598d3557084990dcc4331960c15ee776ee41/numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff", size = 20875348, upload-time = "2025-05-17T21:34:39.648Z" }, + { url = "https://files.pythonhosted.org/packages/66/ee/560deadcdde6c2f90200450d5938f63a34b37e27ebff162810f716f6a230/numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c", size = 14119362, upload-time = "2025-05-17T21:35:01.241Z" }, + { url = "https://files.pythonhosted.org/packages/3c/65/4baa99f1c53b30adf0acd9a5519078871ddde8d2339dc5a7fde80d9d87da/numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3", size = 5084103, upload-time = "2025-05-17T21:35:10.622Z" }, + { url = "https://files.pythonhosted.org/packages/cc/89/e5a34c071a0570cc40c9a54eb472d113eea6d002e9ae12bb3a8407fb912e/numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282", size = 6625382, upload-time = "2025-05-17T21:35:21.414Z" }, + { url = "https://files.pythonhosted.org/packages/f8/35/8c80729f1ff76b3921d5c9487c7ac3de9b2a103b1cd05e905b3090513510/numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87", size = 14018462, upload-time = "2025-05-17T21:35:42.174Z" }, + { url = "https://files.pythonhosted.org/packages/8c/3d/1e1db36cfd41f895d266b103df00ca5b3cbe965184df824dec5c08c6b803/numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249", size = 16527618, upload-time = "2025-05-17T21:36:06.711Z" }, + { url = "https://files.pythonhosted.org/packages/61/c6/03ed30992602c85aa3cd95b9070a514f8b3c33e31124694438d88809ae36/numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49", size = 15505511, upload-time = "2025-05-17T21:36:29.965Z" }, + { url = "https://files.pythonhosted.org/packages/b7/25/5761d832a81df431e260719ec45de696414266613c9ee268394dd5ad8236/numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de", size = 18313783, upload-time = "2025-05-17T21:36:56.883Z" }, + { url = "https://files.pythonhosted.org/packages/57/0a/72d5a3527c5ebffcd47bde9162c39fae1f90138c961e5296491ce778e682/numpy-2.2.6-cp312-cp312-win32.whl", hash = "sha256:4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4", size = 6246506, upload-time = "2025-05-17T21:37:07.368Z" }, + { url = "https://files.pythonhosted.org/packages/36/fa/8c9210162ca1b88529ab76b41ba02d433fd54fecaf6feb70ef9f124683f1/numpy-2.2.6-cp312-cp312-win_amd64.whl", hash = "sha256:c1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2", size = 12614190, upload-time = "2025-05-17T21:37:26.213Z" }, + { url = "https://files.pythonhosted.org/packages/f9/5c/6657823f4f594f72b5471f1db1ab12e26e890bb2e41897522d134d2a3e81/numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84", size = 20867828, upload-time = "2025-05-17T21:37:56.699Z" }, + { url = "https://files.pythonhosted.org/packages/dc/9e/14520dc3dadf3c803473bd07e9b2bd1b69bc583cb2497b47000fed2fa92f/numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b", size = 14143006, upload-time = "2025-05-17T21:38:18.291Z" }, + { url = "https://files.pythonhosted.org/packages/4f/06/7e96c57d90bebdce9918412087fc22ca9851cceaf5567a45c1f404480e9e/numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d", size = 5076765, upload-time = "2025-05-17T21:38:27.319Z" }, + { url = "https://files.pythonhosted.org/packages/73/ed/63d920c23b4289fdac96ddbdd6132e9427790977d5457cd132f18e76eae0/numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566", size = 6617736, upload-time = "2025-05-17T21:38:38.141Z" }, + { url = "https://files.pythonhosted.org/packages/85/c5/e19c8f99d83fd377ec8c7e0cf627a8049746da54afc24ef0a0cb73d5dfb5/numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f", size = 14010719, upload-time = "2025-05-17T21:38:58.433Z" }, + { url = "https://files.pythonhosted.org/packages/19/49/4df9123aafa7b539317bf6d342cb6d227e49f7a35b99c287a6109b13dd93/numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f", size = 16526072, upload-time = "2025-05-17T21:39:22.638Z" }, + { url = "https://files.pythonhosted.org/packages/b2/6c/04b5f47f4f32f7c2b0e7260442a8cbcf8168b0e1a41ff1495da42f42a14f/numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868", size = 15503213, upload-time = "2025-05-17T21:39:45.865Z" }, + { url = "https://files.pythonhosted.org/packages/17/0a/5cd92e352c1307640d5b6fec1b2ffb06cd0dabe7d7b8227f97933d378422/numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d", size = 18316632, upload-time = "2025-05-17T21:40:13.331Z" }, + { url = "https://files.pythonhosted.org/packages/f0/3b/5cba2b1d88760ef86596ad0f3d484b1cbff7c115ae2429678465057c5155/numpy-2.2.6-cp313-cp313-win32.whl", hash = "sha256:5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd", size = 6244532, upload-time = "2025-05-17T21:43:46.099Z" }, + { url = "https://files.pythonhosted.org/packages/cb/3b/d58c12eafcb298d4e6d0d40216866ab15f59e55d148a5658bb3132311fcf/numpy-2.2.6-cp313-cp313-win_amd64.whl", hash = "sha256:b0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c", size = 12610885, upload-time = "2025-05-17T21:44:05.145Z" }, + { url = "https://files.pythonhosted.org/packages/6b/9e/4bf918b818e516322db999ac25d00c75788ddfd2d2ade4fa66f1f38097e1/numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6", size = 20963467, upload-time = "2025-05-17T21:40:44Z" }, + { url = "https://files.pythonhosted.org/packages/61/66/d2de6b291507517ff2e438e13ff7b1e2cdbdb7cb40b3ed475377aece69f9/numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:fc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda", size = 14225144, upload-time = "2025-05-17T21:41:05.695Z" }, + { url = "https://files.pythonhosted.org/packages/e4/25/480387655407ead912e28ba3a820bc69af9adf13bcbe40b299d454ec011f/numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40", size = 5200217, upload-time = "2025-05-17T21:41:15.903Z" }, + { url = "https://files.pythonhosted.org/packages/aa/4a/6e313b5108f53dcbf3aca0c0f3e9c92f4c10ce57a0a721851f9785872895/numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:fee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8", size = 6712014, upload-time = "2025-05-17T21:41:27.321Z" }, + { url = "https://files.pythonhosted.org/packages/b7/30/172c2d5c4be71fdf476e9de553443cf8e25feddbe185e0bd88b096915bcc/numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f", size = 14077935, upload-time = "2025-05-17T21:41:49.738Z" }, + { url = "https://files.pythonhosted.org/packages/12/fb/9e743f8d4e4d3c710902cf87af3512082ae3d43b945d5d16563f26ec251d/numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa", size = 16600122, upload-time = "2025-05-17T21:42:14.046Z" }, + { url = "https://files.pythonhosted.org/packages/12/75/ee20da0e58d3a66f204f38916757e01e33a9737d0b22373b3eb5a27358f9/numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571", size = 15586143, upload-time = "2025-05-17T21:42:37.464Z" }, + { url = "https://files.pythonhosted.org/packages/76/95/bef5b37f29fc5e739947e9ce5179ad402875633308504a52d188302319c8/numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1", size = 18385260, upload-time = "2025-05-17T21:43:05.189Z" }, + { url = "https://files.pythonhosted.org/packages/09/04/f2f83279d287407cf36a7a8053a5abe7be3622a4363337338f2585e4afda/numpy-2.2.6-cp313-cp313t-win32.whl", hash = "sha256:038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff", size = 6377225, upload-time = "2025-05-17T21:43:16.254Z" }, + { url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" }, + { url = "https://files.pythonhosted.org/packages/9e/3b/d94a75f4dbf1ef5d321523ecac21ef23a3cd2ac8b78ae2aac40873590229/numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:0b605b275d7bd0c640cad4e5d30fa701a8d59302e127e5f79138ad62762c3e3d", size = 21040391, upload-time = "2025-05-17T21:44:35.948Z" }, + { url = "https://files.pythonhosted.org/packages/17/f4/09b2fa1b58f0fb4f7c7963a1649c64c4d315752240377ed74d9cd878f7b5/numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:7befc596a7dc9da8a337f79802ee8adb30a552a94f792b9c9d18c840055907db", size = 6786754, upload-time = "2025-05-17T21:44:47.446Z" }, + { url = "https://files.pythonhosted.org/packages/af/30/feba75f143bdc868a1cc3f44ccfa6c4b9ec522b36458e738cd00f67b573f/numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce47521a4754c8f4593837384bd3424880629f718d87c5d44f8ed763edd63543", size = 16643476, upload-time = "2025-05-17T21:45:11.871Z" }, + { url = "https://files.pythonhosted.org/packages/37/48/ac2a9584402fb6c0cd5b5d1a91dcf176b15760130dd386bbafdbfe3640bf/numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:d042d24c90c41b54fd506da306759e06e568864df8ec17ccc17e9e884634fd00", size = 12812666, upload-time = "2025-05-17T21:45:31.426Z" }, +] + +[[package]] +name = "numpy" +version = "2.3.4" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", +] +sdist = { url = "https://files.pythonhosted.org/packages/b5/f4/098d2270d52b41f1bd7db9fc288aaa0400cb48c2a3e2af6fa365d9720947/numpy-2.3.4.tar.gz", hash = "sha256:a7d018bfedb375a8d979ac758b120ba846a7fe764911a64465fd87b8729f4a6a", size = 20582187, upload-time = "2025-10-15T16:18:11.77Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/e7/0e07379944aa8afb49a556a2b54587b828eb41dc9adc56fb7615b678ca53/numpy-2.3.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e78aecd2800b32e8347ce49316d3eaf04aed849cd5b38e0af39f829a4e59f5eb", size = 21259519, upload-time = "2025-10-15T16:15:19.012Z" }, + { url = "https://files.pythonhosted.org/packages/d0/cb/5a69293561e8819b09e34ed9e873b9a82b5f2ade23dce4c51dc507f6cfe1/numpy-2.3.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7fd09cc5d65bda1e79432859c40978010622112e9194e581e3415a3eccc7f43f", size = 14452796, upload-time = "2025-10-15T16:15:23.094Z" }, + { url = "https://files.pythonhosted.org/packages/e4/04/ff11611200acd602a1e5129e36cfd25bf01ad8e5cf927baf2e90236eb02e/numpy-2.3.4-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:1b219560ae2c1de48ead517d085bc2d05b9433f8e49d0955c82e8cd37bd7bf36", size = 5381639, upload-time = "2025-10-15T16:15:25.572Z" }, + { url = "https://files.pythonhosted.org/packages/ea/77/e95c757a6fe7a48d28a009267408e8aa382630cc1ad1db7451b3bc21dbb4/numpy-2.3.4-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:bafa7d87d4c99752d07815ed7a2c0964f8ab311eb8168f41b910bd01d15b6032", size = 6914296, upload-time = "2025-10-15T16:15:27.079Z" }, + { url = "https://files.pythonhosted.org/packages/a3/d2/137c7b6841c942124eae921279e5c41b1c34bab0e6fc60c7348e69afd165/numpy-2.3.4-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:36dc13af226aeab72b7abad501d370d606326a0029b9f435eacb3b8c94b8a8b7", size = 14591904, upload-time = "2025-10-15T16:15:29.044Z" }, + { url = "https://files.pythonhosted.org/packages/bb/32/67e3b0f07b0aba57a078c4ab777a9e8e6bc62f24fb53a2337f75f9691699/numpy-2.3.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a7b2f9a18b5ff9824a6af80de4f37f4ec3c2aab05ef08f51c77a093f5b89adda", size = 16939602, upload-time = "2025-10-15T16:15:31.106Z" }, + { url = "https://files.pythonhosted.org/packages/95/22/9639c30e32c93c4cee3ccdb4b09c2d0fbff4dcd06d36b357da06146530fb/numpy-2.3.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:9984bd645a8db6ca15d850ff996856d8762c51a2239225288f08f9050ca240a0", size = 16372661, upload-time = "2025-10-15T16:15:33.546Z" }, + { url = "https://files.pythonhosted.org/packages/12/e9/a685079529be2b0156ae0c11b13d6be647743095bb51d46589e95be88086/numpy-2.3.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:64c5825affc76942973a70acf438a8ab618dbd692b84cd5ec40a0a0509edc09a", size = 18884682, upload-time = "2025-10-15T16:15:36.105Z" }, + { url = "https://files.pythonhosted.org/packages/cf/85/f6f00d019b0cc741e64b4e00ce865a57b6bed945d1bbeb1ccadbc647959b/numpy-2.3.4-cp311-cp311-win32.whl", hash = "sha256:ed759bf7a70342f7817d88376eb7142fab9fef8320d6019ef87fae05a99874e1", size = 6570076, upload-time = "2025-10-15T16:15:38.225Z" }, + { url = "https://files.pythonhosted.org/packages/7d/10/f8850982021cb90e2ec31990291f9e830ce7d94eef432b15066e7cbe0bec/numpy-2.3.4-cp311-cp311-win_amd64.whl", hash = "sha256:faba246fb30ea2a526c2e9645f61612341de1a83fb1e0c5edf4ddda5a9c10996", size = 13089358, upload-time = "2025-10-15T16:15:40.404Z" }, + { url = "https://files.pythonhosted.org/packages/d1/ad/afdd8351385edf0b3445f9e24210a9c3971ef4de8fd85155462fc4321d79/numpy-2.3.4-cp311-cp311-win_arm64.whl", hash = "sha256:4c01835e718bcebe80394fd0ac66c07cbb90147ebbdad3dcecd3f25de2ae7e2c", size = 10462292, upload-time = "2025-10-15T16:15:42.896Z" }, + { url = "https://files.pythonhosted.org/packages/96/7a/02420400b736f84317e759291b8edaeee9dc921f72b045475a9cbdb26b17/numpy-2.3.4-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ef1b5a3e808bc40827b5fa2c8196151a4c5abe110e1726949d7abddfe5c7ae11", size = 20957727, upload-time = "2025-10-15T16:15:44.9Z" }, + { url = "https://files.pythonhosted.org/packages/18/90/a014805d627aa5750f6f0e878172afb6454552da929144b3c07fcae1bb13/numpy-2.3.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c2f91f496a87235c6aaf6d3f3d89b17dba64996abadccb289f48456cff931ca9", size = 14187262, upload-time = "2025-10-15T16:15:47.761Z" }, + { url = "https://files.pythonhosted.org/packages/c7/e4/0a94b09abe89e500dc748e7515f21a13e30c5c3fe3396e6d4ac108c25fca/numpy-2.3.4-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:f77e5b3d3da652b474cc80a14084927a5e86a5eccf54ca8ca5cbd697bf7f2667", size = 5115992, upload-time = "2025-10-15T16:15:50.144Z" }, + { url = "https://files.pythonhosted.org/packages/88/dd/db77c75b055c6157cbd4f9c92c4458daef0dd9cbe6d8d2fe7f803cb64c37/numpy-2.3.4-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:8ab1c5f5ee40d6e01cbe96de5863e39b215a4d24e7d007cad56c7184fdf4aeef", size = 6648672, upload-time = "2025-10-15T16:15:52.442Z" }, + { url = "https://files.pythonhosted.org/packages/e1/e6/e31b0d713719610e406c0ea3ae0d90760465b086da8783e2fd835ad59027/numpy-2.3.4-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:77b84453f3adcb994ddbd0d1c5d11db2d6bda1a2b7fd5ac5bd4649d6f5dc682e", size = 14284156, upload-time = "2025-10-15T16:15:54.351Z" }, + { url = "https://files.pythonhosted.org/packages/f9/58/30a85127bfee6f108282107caf8e06a1f0cc997cb6b52cdee699276fcce4/numpy-2.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4121c5beb58a7f9e6dfdee612cb24f4df5cd4db6e8261d7f4d7450a997a65d6a", size = 16641271, upload-time = "2025-10-15T16:15:56.67Z" }, + { url = "https://files.pythonhosted.org/packages/06/f2/2e06a0f2adf23e3ae29283ad96959267938d0efd20a2e25353b70065bfec/numpy-2.3.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:65611ecbb00ac9846efe04db15cbe6186f562f6bb7e5e05f077e53a599225d16", size = 16059531, upload-time = "2025-10-15T16:15:59.412Z" }, + { url = "https://files.pythonhosted.org/packages/b0/e7/b106253c7c0d5dc352b9c8fab91afd76a93950998167fa3e5afe4ef3a18f/numpy-2.3.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dabc42f9c6577bcc13001b8810d300fe814b4cfbe8a92c873f269484594f9786", size = 18578983, upload-time = "2025-10-15T16:16:01.804Z" }, + { url = "https://files.pythonhosted.org/packages/73/e3/04ecc41e71462276ee867ccbef26a4448638eadecf1bc56772c9ed6d0255/numpy-2.3.4-cp312-cp312-win32.whl", hash = "sha256:a49d797192a8d950ca59ee2d0337a4d804f713bb5c3c50e8db26d49666e351dc", size = 6291380, upload-time = "2025-10-15T16:16:03.938Z" }, + { url = "https://files.pythonhosted.org/packages/3d/a8/566578b10d8d0e9955b1b6cd5db4e9d4592dd0026a941ff7994cedda030a/numpy-2.3.4-cp312-cp312-win_amd64.whl", hash = "sha256:985f1e46358f06c2a09921e8921e2c98168ed4ae12ccd6e5e87a4f1857923f32", size = 12787999, upload-time = "2025-10-15T16:16:05.801Z" }, + { url = "https://files.pythonhosted.org/packages/58/22/9c903a957d0a8071b607f5b1bff0761d6e608b9a965945411f867d515db1/numpy-2.3.4-cp312-cp312-win_arm64.whl", hash = "sha256:4635239814149e06e2cb9db3dd584b2fa64316c96f10656983b8026a82e6e4db", size = 10197412, upload-time = "2025-10-15T16:16:07.854Z" }, + { url = "https://files.pythonhosted.org/packages/57/7e/b72610cc91edf138bc588df5150957a4937221ca6058b825b4725c27be62/numpy-2.3.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c090d4860032b857d94144d1a9976b8e36709e40386db289aaf6672de2a81966", size = 20950335, upload-time = "2025-10-15T16:16:10.304Z" }, + { url = "https://files.pythonhosted.org/packages/3e/46/bdd3370dcea2f95ef14af79dbf81e6927102ddf1cc54adc0024d61252fd9/numpy-2.3.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a13fc473b6db0be619e45f11f9e81260f7302f8d180c49a22b6e6120022596b3", size = 14179878, upload-time = "2025-10-15T16:16:12.595Z" }, + { url = "https://files.pythonhosted.org/packages/ac/01/5a67cb785bda60f45415d09c2bc245433f1c68dd82eef9c9002c508b5a65/numpy-2.3.4-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:3634093d0b428e6c32c3a69b78e554f0cd20ee420dcad5a9f3b2a63762ce4197", size = 5108673, upload-time = "2025-10-15T16:16:14.877Z" }, + { url = "https://files.pythonhosted.org/packages/c2/cd/8428e23a9fcebd33988f4cb61208fda832800ca03781f471f3727a820704/numpy-2.3.4-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:043885b4f7e6e232d7df4f51ffdef8c36320ee9d5f227b380ea636722c7ed12e", size = 6641438, upload-time = "2025-10-15T16:16:16.805Z" }, + { url = "https://files.pythonhosted.org/packages/3e/d1/913fe563820f3c6b079f992458f7331278dcd7ba8427e8e745af37ddb44f/numpy-2.3.4-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4ee6a571d1e4f0ea6d5f22d6e5fbd6ed1dc2b18542848e1e7301bd190500c9d7", size = 14281290, upload-time = "2025-10-15T16:16:18.764Z" }, + { url = "https://files.pythonhosted.org/packages/9e/7e/7d306ff7cb143e6d975cfa7eb98a93e73495c4deabb7d1b5ecf09ea0fd69/numpy-2.3.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fc8a63918b04b8571789688b2780ab2b4a33ab44bfe8ccea36d3eba51228c953", size = 16636543, upload-time = "2025-10-15T16:16:21.072Z" }, + { url = "https://files.pythonhosted.org/packages/47/6a/8cfc486237e56ccfb0db234945552a557ca266f022d281a2f577b98e955c/numpy-2.3.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:40cc556d5abbc54aabe2b1ae287042d7bdb80c08edede19f0c0afb36ae586f37", size = 16056117, upload-time = "2025-10-15T16:16:23.369Z" }, + { url = "https://files.pythonhosted.org/packages/b1/0e/42cb5e69ea901e06ce24bfcc4b5664a56f950a70efdcf221f30d9615f3f3/numpy-2.3.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ecb63014bb7f4ce653f8be7f1df8cbc6093a5a2811211770f6606cc92b5a78fd", size = 18577788, upload-time = "2025-10-15T16:16:27.496Z" }, + { url = "https://files.pythonhosted.org/packages/86/92/41c3d5157d3177559ef0a35da50f0cda7fa071f4ba2306dd36818591a5bc/numpy-2.3.4-cp313-cp313-win32.whl", hash = "sha256:e8370eb6925bb8c1c4264fec52b0384b44f675f191df91cbe0140ec9f0955646", size = 6282620, upload-time = "2025-10-15T16:16:29.811Z" }, + { url = "https://files.pythonhosted.org/packages/09/97/fd421e8bc50766665ad35536c2bb4ef916533ba1fdd053a62d96cc7c8b95/numpy-2.3.4-cp313-cp313-win_amd64.whl", hash = "sha256:56209416e81a7893036eea03abcb91c130643eb14233b2515c90dcac963fe99d", size = 12784672, upload-time = "2025-10-15T16:16:31.589Z" }, + { url = "https://files.pythonhosted.org/packages/ad/df/5474fb2f74970ca8eb978093969b125a84cc3d30e47f82191f981f13a8a0/numpy-2.3.4-cp313-cp313-win_arm64.whl", hash = "sha256:a700a4031bc0fd6936e78a752eefb79092cecad2599ea9c8039c548bc097f9bc", size = 10196702, upload-time = "2025-10-15T16:16:33.902Z" }, + { url = "https://files.pythonhosted.org/packages/11/83/66ac031464ec1767ea3ed48ce40f615eb441072945e98693bec0bcd056cc/numpy-2.3.4-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:86966db35c4040fdca64f0816a1c1dd8dbd027d90fca5a57e00e1ca4cd41b879", size = 21049003, upload-time = "2025-10-15T16:16:36.101Z" }, + { url = "https://files.pythonhosted.org/packages/5f/99/5b14e0e686e61371659a1d5bebd04596b1d72227ce36eed121bb0aeab798/numpy-2.3.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:838f045478638b26c375ee96ea89464d38428c69170360b23a1a50fa4baa3562", size = 14302980, upload-time = "2025-10-15T16:16:39.124Z" }, + { url = "https://files.pythonhosted.org/packages/2c/44/e9486649cd087d9fc6920e3fc3ac2aba10838d10804b1e179fb7cbc4e634/numpy-2.3.4-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:d7315ed1dab0286adca467377c8381cd748f3dc92235f22a7dfc42745644a96a", size = 5231472, upload-time = "2025-10-15T16:16:41.168Z" }, + { url = "https://files.pythonhosted.org/packages/3e/51/902b24fa8887e5fe2063fd61b1895a476d0bbf46811ab0c7fdf4bd127345/numpy-2.3.4-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:84f01a4d18b2cc4ade1814a08e5f3c907b079c847051d720fad15ce37aa930b6", size = 6739342, upload-time = "2025-10-15T16:16:43.777Z" }, + { url = "https://files.pythonhosted.org/packages/34/f1/4de9586d05b1962acdcdb1dc4af6646361a643f8c864cef7c852bf509740/numpy-2.3.4-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:817e719a868f0dacde4abdfc5c1910b301877970195db9ab6a5e2c4bd5b121f7", size = 14354338, upload-time = "2025-10-15T16:16:46.081Z" }, + { url = "https://files.pythonhosted.org/packages/1f/06/1c16103b425de7969d5a76bdf5ada0804b476fed05d5f9e17b777f1cbefd/numpy-2.3.4-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85e071da78d92a214212cacea81c6da557cab307f2c34b5f85b628e94803f9c0", size = 16702392, upload-time = "2025-10-15T16:16:48.455Z" }, + { url = "https://files.pythonhosted.org/packages/34/b2/65f4dc1b89b5322093572b6e55161bb42e3e0487067af73627f795cc9d47/numpy-2.3.4-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:2ec646892819370cf3558f518797f16597b4e4669894a2ba712caccc9da53f1f", size = 16134998, upload-time = "2025-10-15T16:16:51.114Z" }, + { url = "https://files.pythonhosted.org/packages/d4/11/94ec578896cdb973aaf56425d6c7f2aff4186a5c00fac15ff2ec46998b46/numpy-2.3.4-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:035796aaaddfe2f9664b9a9372f089cfc88bd795a67bd1bfe15e6e770934cf64", size = 18651574, upload-time = "2025-10-15T16:16:53.429Z" }, + { url = "https://files.pythonhosted.org/packages/62/b7/7efa763ab33dbccf56dade36938a77345ce8e8192d6b39e470ca25ff3cd0/numpy-2.3.4-cp313-cp313t-win32.whl", hash = "sha256:fea80f4f4cf83b54c3a051f2f727870ee51e22f0248d3114b8e755d160b38cfb", size = 6413135, upload-time = "2025-10-15T16:16:55.992Z" }, + { url = "https://files.pythonhosted.org/packages/43/70/aba4c38e8400abcc2f345e13d972fb36c26409b3e644366db7649015f291/numpy-2.3.4-cp313-cp313t-win_amd64.whl", hash = "sha256:15eea9f306b98e0be91eb344a94c0e630689ef302e10c2ce5f7e11905c704f9c", size = 12928582, upload-time = "2025-10-15T16:16:57.943Z" }, + { url = "https://files.pythonhosted.org/packages/67/63/871fad5f0073fc00fbbdd7232962ea1ac40eeaae2bba66c76214f7954236/numpy-2.3.4-cp313-cp313t-win_arm64.whl", hash = "sha256:b6c231c9c2fadbae4011ca5e7e83e12dc4a5072f1a1d85a0a7b3ed754d145a40", size = 10266691, upload-time = "2025-10-15T16:17:00.048Z" }, + { url = "https://files.pythonhosted.org/packages/72/71/ae6170143c115732470ae3a2d01512870dd16e0953f8a6dc89525696069b/numpy-2.3.4-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:81c3e6d8c97295a7360d367f9f8553973651b76907988bb6066376bc2252f24e", size = 20955580, upload-time = "2025-10-15T16:17:02.509Z" }, + { url = "https://files.pythonhosted.org/packages/af/39/4be9222ffd6ca8a30eda033d5f753276a9c3426c397bb137d8e19dedd200/numpy-2.3.4-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:7c26b0b2bf58009ed1f38a641f3db4be8d960a417ca96d14e5b06df1506d41ff", size = 14188056, upload-time = "2025-10-15T16:17:04.873Z" }, + { url = "https://files.pythonhosted.org/packages/6c/3d/d85f6700d0a4aa4f9491030e1021c2b2b7421b2b38d01acd16734a2bfdc7/numpy-2.3.4-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:62b2198c438058a20b6704351b35a1d7db881812d8512d67a69c9de1f18ca05f", size = 5116555, upload-time = "2025-10-15T16:17:07.499Z" }, + { url = "https://files.pythonhosted.org/packages/bf/04/82c1467d86f47eee8a19a464c92f90a9bb68ccf14a54c5224d7031241ffb/numpy-2.3.4-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:9d729d60f8d53a7361707f4b68a9663c968882dd4f09e0d58c044c8bf5faee7b", size = 6643581, upload-time = "2025-10-15T16:17:09.774Z" }, + { url = "https://files.pythonhosted.org/packages/0c/d3/c79841741b837e293f48bd7db89d0ac7a4f2503b382b78a790ef1dc778a5/numpy-2.3.4-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bd0c630cf256b0a7fd9d0a11c9413b42fef5101219ce6ed5a09624f5a65392c7", size = 14299186, upload-time = "2025-10-15T16:17:11.937Z" }, + { url = "https://files.pythonhosted.org/packages/e8/7e/4a14a769741fbf237eec5a12a2cbc7a4c4e061852b6533bcb9e9a796c908/numpy-2.3.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d5e081bc082825f8b139f9e9fe42942cb4054524598aaeb177ff476cc76d09d2", size = 16638601, upload-time = "2025-10-15T16:17:14.391Z" }, + { url = "https://files.pythonhosted.org/packages/93/87/1c1de269f002ff0a41173fe01dcc925f4ecff59264cd8f96cf3b60d12c9b/numpy-2.3.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:15fb27364ed84114438fff8aaf998c9e19adbeba08c0b75409f8c452a8692c52", size = 16074219, upload-time = "2025-10-15T16:17:17.058Z" }, + { url = "https://files.pythonhosted.org/packages/cd/28/18f72ee77408e40a76d691001ae599e712ca2a47ddd2c4f695b16c65f077/numpy-2.3.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:85d9fb2d8cd998c84d13a79a09cc0c1091648e848e4e6249b0ccd7f6b487fa26", size = 18576702, upload-time = "2025-10-15T16:17:19.379Z" }, + { url = "https://files.pythonhosted.org/packages/c3/76/95650169b465ececa8cf4b2e8f6df255d4bf662775e797ade2025cc51ae6/numpy-2.3.4-cp314-cp314-win32.whl", hash = "sha256:e73d63fd04e3a9d6bc187f5455d81abfad05660b212c8804bf3b407e984cd2bc", size = 6337136, upload-time = "2025-10-15T16:17:22.886Z" }, + { url = "https://files.pythonhosted.org/packages/dc/89/a231a5c43ede5d6f77ba4a91e915a87dea4aeea76560ba4d2bf185c683f0/numpy-2.3.4-cp314-cp314-win_amd64.whl", hash = "sha256:3da3491cee49cf16157e70f607c03a217ea6647b1cea4819c4f48e53d49139b9", size = 12920542, upload-time = "2025-10-15T16:17:24.783Z" }, + { url = "https://files.pythonhosted.org/packages/0d/0c/ae9434a888f717c5ed2ff2393b3f344f0ff6f1c793519fa0c540461dc530/numpy-2.3.4-cp314-cp314-win_arm64.whl", hash = "sha256:6d9cd732068e8288dbe2717177320723ccec4fb064123f0caf9bbd90ab5be868", size = 10480213, upload-time = "2025-10-15T16:17:26.935Z" }, + { url = "https://files.pythonhosted.org/packages/83/4b/c4a5f0841f92536f6b9592694a5b5f68c9ab37b775ff342649eadf9055d3/numpy-2.3.4-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:22758999b256b595cf0b1d102b133bb61866ba5ceecf15f759623b64c020c9ec", size = 21052280, upload-time = "2025-10-15T16:17:29.638Z" }, + { url = "https://files.pythonhosted.org/packages/3e/80/90308845fc93b984d2cc96d83e2324ce8ad1fd6efea81b324cba4b673854/numpy-2.3.4-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:9cb177bc55b010b19798dc5497d540dea67fd13a8d9e882b2dae71de0cf09eb3", size = 14302930, upload-time = "2025-10-15T16:17:32.384Z" }, + { url = "https://files.pythonhosted.org/packages/3d/4e/07439f22f2a3b247cec4d63a713faae55e1141a36e77fb212881f7cda3fb/numpy-2.3.4-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:0f2bcc76f1e05e5ab58893407c63d90b2029908fa41f9f1cc51eecce936c3365", size = 5231504, upload-time = "2025-10-15T16:17:34.515Z" }, + { url = "https://files.pythonhosted.org/packages/ab/de/1e11f2547e2fe3d00482b19721855348b94ada8359aef5d40dd57bfae9df/numpy-2.3.4-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:8dc20bde86802df2ed8397a08d793da0ad7a5fd4ea3ac85d757bf5dd4ad7c252", size = 6739405, upload-time = "2025-10-15T16:17:36.128Z" }, + { url = "https://files.pythonhosted.org/packages/3b/40/8cd57393a26cebe2e923005db5134a946c62fa56a1087dc7c478f3e30837/numpy-2.3.4-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5e199c087e2aa71c8f9ce1cb7a8e10677dc12457e7cc1be4798632da37c3e86e", size = 14354866, upload-time = "2025-10-15T16:17:38.884Z" }, + { url = "https://files.pythonhosted.org/packages/93/39/5b3510f023f96874ee6fea2e40dfa99313a00bf3ab779f3c92978f34aace/numpy-2.3.4-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85597b2d25ddf655495e2363fe044b0ae999b75bc4d630dc0d886484b03a5eb0", size = 16703296, upload-time = "2025-10-15T16:17:41.564Z" }, + { url = "https://files.pythonhosted.org/packages/41/0d/19bb163617c8045209c1996c4e427bccbc4bbff1e2c711f39203c8ddbb4a/numpy-2.3.4-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:04a69abe45b49c5955923cf2c407843d1c85013b424ae8a560bba16c92fe44a0", size = 16136046, upload-time = "2025-10-15T16:17:43.901Z" }, + { url = "https://files.pythonhosted.org/packages/e2/c1/6dba12fdf68b02a21ac411c9df19afa66bed2540f467150ca64d246b463d/numpy-2.3.4-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:e1708fac43ef8b419c975926ce1eaf793b0c13b7356cfab6ab0dc34c0a02ac0f", size = 18652691, upload-time = "2025-10-15T16:17:46.247Z" }, + { url = "https://files.pythonhosted.org/packages/f8/73/f85056701dbbbb910c51d846c58d29fd46b30eecd2b6ba760fc8b8a1641b/numpy-2.3.4-cp314-cp314t-win32.whl", hash = "sha256:863e3b5f4d9915aaf1b8ec79ae560ad21f0b8d5e3adc31e73126491bb86dee1d", size = 6485782, upload-time = "2025-10-15T16:17:48.872Z" }, + { url = "https://files.pythonhosted.org/packages/17/90/28fa6f9865181cb817c2471ee65678afa8a7e2a1fb16141473d5fa6bacc3/numpy-2.3.4-cp314-cp314t-win_amd64.whl", hash = "sha256:962064de37b9aef801d33bc579690f8bfe6c5e70e29b61783f60bcba838a14d6", size = 13113301, upload-time = "2025-10-15T16:17:50.938Z" }, + { url = "https://files.pythonhosted.org/packages/54/23/08c002201a8e7e1f9afba93b97deceb813252d9cfd0d3351caed123dcf97/numpy-2.3.4-cp314-cp314t-win_arm64.whl", hash = "sha256:8b5a9a39c45d852b62693d9b3f3e0fe052541f804296ff401a72a1b60edafb29", size = 10547532, upload-time = "2025-10-15T16:17:53.48Z" }, + { url = "https://files.pythonhosted.org/packages/b1/b6/64898f51a86ec88ca1257a59c1d7fd077b60082a119affefcdf1dd0df8ca/numpy-2.3.4-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:6e274603039f924c0fe5cb73438fa9246699c78a6df1bd3decef9ae592ae1c05", size = 21131552, upload-time = "2025-10-15T16:17:55.845Z" }, + { url = "https://files.pythonhosted.org/packages/ce/4c/f135dc6ebe2b6a3c77f4e4838fa63d350f85c99462012306ada1bd4bc460/numpy-2.3.4-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:d149aee5c72176d9ddbc6803aef9c0f6d2ceeea7626574fc68518da5476fa346", size = 14377796, upload-time = "2025-10-15T16:17:58.308Z" }, + { url = "https://files.pythonhosted.org/packages/d0/a4/f33f9c23fcc13dd8412fc8614559b5b797e0aba9d8e01dfa8bae10c84004/numpy-2.3.4-pp311-pypy311_pp73-macosx_14_0_arm64.whl", hash = "sha256:6d34ed9db9e6395bb6cd33286035f73a59b058169733a9db9f85e650b88df37e", size = 5306904, upload-time = "2025-10-15T16:18:00.596Z" }, + { url = "https://files.pythonhosted.org/packages/28/af/c44097f25f834360f9fb960fa082863e0bad14a42f36527b2a121abdec56/numpy-2.3.4-pp311-pypy311_pp73-macosx_14_0_x86_64.whl", hash = "sha256:fdebe771ca06bb8d6abce84e51dca9f7921fe6ad34a0c914541b063e9a68928b", size = 6819682, upload-time = "2025-10-15T16:18:02.32Z" }, + { url = "https://files.pythonhosted.org/packages/c5/8c/cd283b54c3c2b77e188f63e23039844f56b23bba1712318288c13fe86baf/numpy-2.3.4-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:957e92defe6c08211eb77902253b14fe5b480ebc5112bc741fd5e9cd0608f847", size = 14422300, upload-time = "2025-10-15T16:18:04.271Z" }, + { url = "https://files.pythonhosted.org/packages/b0/f0/8404db5098d92446b3e3695cf41c6f0ecb703d701cb0b7566ee2177f2eee/numpy-2.3.4-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13b9062e4f5c7ee5c7e5be96f29ba71bc5a37fed3d1d77c37390ae00724d296d", size = 16760806, upload-time = "2025-10-15T16:18:06.668Z" }, + { url = "https://files.pythonhosted.org/packages/95/8e/2844c3959ce9a63acc7c8e50881133d86666f0420bcde695e115ced0920f/numpy-2.3.4-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:81b3a59793523e552c4a96109dde028aa4448ae06ccac5a76ff6532a85558a7f", size = 12973130, upload-time = "2025-10-15T16:18:09.397Z" }, +] + +[[package]] +name = "packaging" +version = "25.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, +] + +[[package]] +name = "paginate" +version = "0.5.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ec/46/68dde5b6bc00c1296ec6466ab27dddede6aec9af1b99090e1107091b3b84/paginate-0.5.7.tar.gz", hash = "sha256:22bd083ab41e1a8b4f3690544afb2c60c25e5c9a63a30fa2f483f6c60c8e5945", size = 19252, upload-time = "2024-08-25T14:17:24.139Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/96/04b8e52da071d28f5e21a805b19cb9390aa17a47462ac87f5e2696b9566d/paginate-0.5.7-py2.py3-none-any.whl", hash = "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591", size = 13746, upload-time = "2024-08-25T14:17:22.55Z" }, +] + +[[package]] +name = "pandas" +version = "2.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "numpy", version = "2.3.4", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "python-dateutil" }, + { name = "pytz" }, + { name = "tzdata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/33/01/d40b85317f86cf08d853a4f495195c73815fdf205eef3993821720274518/pandas-2.3.3.tar.gz", hash = "sha256:e05e1af93b977f7eafa636d043f9f94c7ee3ac81af99c13508215942e64c993b", size = 4495223, upload-time = "2025-09-29T23:34:51.853Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3d/f7/f425a00df4fcc22b292c6895c6831c0c8ae1d9fac1e024d16f98a9ce8749/pandas-2.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:376c6446ae31770764215a6c937f72d917f214b43560603cd60da6408f183b6c", size = 11555763, upload-time = "2025-09-29T23:16:53.287Z" }, + { url = "https://files.pythonhosted.org/packages/13/4f/66d99628ff8ce7857aca52fed8f0066ce209f96be2fede6cef9f84e8d04f/pandas-2.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e19d192383eab2f4ceb30b412b22ea30690c9e618f78870357ae1d682912015a", size = 10801217, upload-time = "2025-09-29T23:17:04.522Z" }, + { url = "https://files.pythonhosted.org/packages/1d/03/3fc4a529a7710f890a239cc496fc6d50ad4a0995657dccc1d64695adb9f4/pandas-2.3.3-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5caf26f64126b6c7aec964f74266f435afef1c1b13da3b0636c7518a1fa3e2b1", size = 12148791, upload-time = "2025-09-29T23:17:18.444Z" }, + { url = "https://files.pythonhosted.org/packages/40/a8/4dac1f8f8235e5d25b9955d02ff6f29396191d4e665d71122c3722ca83c5/pandas-2.3.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dd7478f1463441ae4ca7308a70e90b33470fa593429f9d4c578dd00d1fa78838", size = 12769373, upload-time = "2025-09-29T23:17:35.846Z" }, + { url = "https://files.pythonhosted.org/packages/df/91/82cc5169b6b25440a7fc0ef3a694582418d875c8e3ebf796a6d6470aa578/pandas-2.3.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4793891684806ae50d1288c9bae9330293ab4e083ccd1c5e383c34549c6e4250", size = 13200444, upload-time = "2025-09-29T23:17:49.341Z" }, + { url = "https://files.pythonhosted.org/packages/10/ae/89b3283800ab58f7af2952704078555fa60c807fff764395bb57ea0b0dbd/pandas-2.3.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:28083c648d9a99a5dd035ec125d42439c6c1c525098c58af0fc38dd1a7a1b3d4", size = 13858459, upload-time = "2025-09-29T23:18:03.722Z" }, + { url = "https://files.pythonhosted.org/packages/85/72/530900610650f54a35a19476eca5104f38555afccda1aa11a92ee14cb21d/pandas-2.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:503cf027cf9940d2ceaa1a93cfb5f8c8c7e6e90720a2850378f0b3f3b1e06826", size = 11346086, upload-time = "2025-09-29T23:18:18.505Z" }, + { url = "https://files.pythonhosted.org/packages/c1/fa/7ac648108144a095b4fb6aa3de1954689f7af60a14cf25583f4960ecb878/pandas-2.3.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:602b8615ebcc4a0c1751e71840428ddebeb142ec02c786e8ad6b1ce3c8dec523", size = 11578790, upload-time = "2025-09-29T23:18:30.065Z" }, + { url = "https://files.pythonhosted.org/packages/9b/35/74442388c6cf008882d4d4bdfc4109be87e9b8b7ccd097ad1e7f006e2e95/pandas-2.3.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8fe25fc7b623b0ef6b5009149627e34d2a4657e880948ec3c840e9402e5c1b45", size = 10833831, upload-time = "2025-09-29T23:38:56.071Z" }, + { url = "https://files.pythonhosted.org/packages/fe/e4/de154cbfeee13383ad58d23017da99390b91d73f8c11856f2095e813201b/pandas-2.3.3-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b468d3dad6ff947df92dcb32ede5b7bd41a9b3cceef0a30ed925f6d01fb8fa66", size = 12199267, upload-time = "2025-09-29T23:18:41.627Z" }, + { url = "https://files.pythonhosted.org/packages/bf/c9/63f8d545568d9ab91476b1818b4741f521646cbdd151c6efebf40d6de6f7/pandas-2.3.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b98560e98cb334799c0b07ca7967ac361a47326e9b4e5a7dfb5ab2b1c9d35a1b", size = 12789281, upload-time = "2025-09-29T23:18:56.834Z" }, + { url = "https://files.pythonhosted.org/packages/f2/00/a5ac8c7a0e67fd1a6059e40aa08fa1c52cc00709077d2300e210c3ce0322/pandas-2.3.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1d37b5848ba49824e5c30bedb9c830ab9b7751fd049bc7914533e01c65f79791", size = 13240453, upload-time = "2025-09-29T23:19:09.247Z" }, + { url = "https://files.pythonhosted.org/packages/27/4d/5c23a5bc7bd209231618dd9e606ce076272c9bc4f12023a70e03a86b4067/pandas-2.3.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:db4301b2d1f926ae677a751eb2bd0e8c5f5319c9cb3f88b0becbbb0b07b34151", size = 13890361, upload-time = "2025-09-29T23:19:25.342Z" }, + { url = "https://files.pythonhosted.org/packages/8e/59/712db1d7040520de7a4965df15b774348980e6df45c129b8c64d0dbe74ef/pandas-2.3.3-cp311-cp311-win_amd64.whl", hash = "sha256:f086f6fe114e19d92014a1966f43a3e62285109afe874f067f5abbdcbb10e59c", size = 11348702, upload-time = "2025-09-29T23:19:38.296Z" }, + { url = "https://files.pythonhosted.org/packages/9c/fb/231d89e8637c808b997d172b18e9d4a4bc7bf31296196c260526055d1ea0/pandas-2.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d21f6d74eb1725c2efaa71a2bfc661a0689579b58e9c0ca58a739ff0b002b53", size = 11597846, upload-time = "2025-09-29T23:19:48.856Z" }, + { url = "https://files.pythonhosted.org/packages/5c/bd/bf8064d9cfa214294356c2d6702b716d3cf3bb24be59287a6a21e24cae6b/pandas-2.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3fd2f887589c7aa868e02632612ba39acb0b8948faf5cc58f0850e165bd46f35", size = 10729618, upload-time = "2025-09-29T23:39:08.659Z" }, + { url = "https://files.pythonhosted.org/packages/57/56/cf2dbe1a3f5271370669475ead12ce77c61726ffd19a35546e31aa8edf4e/pandas-2.3.3-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ecaf1e12bdc03c86ad4a7ea848d66c685cb6851d807a26aa245ca3d2017a1908", size = 11737212, upload-time = "2025-09-29T23:19:59.765Z" }, + { url = "https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b3d11d2fda7eb164ef27ffc14b4fcab16a80e1ce67e9f57e19ec0afaf715ba89", size = 12362693, upload-time = "2025-09-29T23:20:14.098Z" }, + { url = "https://files.pythonhosted.org/packages/a6/de/8b1895b107277d52f2b42d3a6806e69cfef0d5cf1d0ba343470b9d8e0a04/pandas-2.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a68e15f780eddf2b07d242e17a04aa187a7ee12b40b930bfdd78070556550e98", size = 12771002, upload-time = "2025-09-29T23:20:26.76Z" }, + { url = "https://files.pythonhosted.org/packages/87/21/84072af3187a677c5893b170ba2c8fbe450a6ff911234916da889b698220/pandas-2.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:371a4ab48e950033bcf52b6527eccb564f52dc826c02afd9a1bc0ab731bba084", size = 13450971, upload-time = "2025-09-29T23:20:41.344Z" }, + { url = "https://files.pythonhosted.org/packages/86/41/585a168330ff063014880a80d744219dbf1dd7a1c706e75ab3425a987384/pandas-2.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:a16dcec078a01eeef8ee61bf64074b4e524a2a3f4b3be9326420cabe59c4778b", size = 10992722, upload-time = "2025-09-29T23:20:54.139Z" }, + { url = "https://files.pythonhosted.org/packages/cd/4b/18b035ee18f97c1040d94debd8f2e737000ad70ccc8f5513f4eefad75f4b/pandas-2.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:56851a737e3470de7fa88e6131f41281ed440d29a9268dcbf0002da5ac366713", size = 11544671, upload-time = "2025-09-29T23:21:05.024Z" }, + { url = "https://files.pythonhosted.org/packages/31/94/72fac03573102779920099bcac1c3b05975c2cb5f01eac609faf34bed1ca/pandas-2.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:bdcd9d1167f4885211e401b3036c0c8d9e274eee67ea8d0758a256d60704cfe8", size = 10680807, upload-time = "2025-09-29T23:21:15.979Z" }, + { url = "https://files.pythonhosted.org/packages/16/87/9472cf4a487d848476865321de18cc8c920b8cab98453ab79dbbc98db63a/pandas-2.3.3-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e32e7cc9af0f1cc15548288a51a3b681cc2a219faa838e995f7dc53dbab1062d", size = 11709872, upload-time = "2025-09-29T23:21:27.165Z" }, + { url = "https://files.pythonhosted.org/packages/15/07/284f757f63f8a8d69ed4472bfd85122bd086e637bf4ed09de572d575a693/pandas-2.3.3-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:318d77e0e42a628c04dc56bcef4b40de67918f7041c2b061af1da41dcff670ac", size = 12306371, upload-time = "2025-09-29T23:21:40.532Z" }, + { url = "https://files.pythonhosted.org/packages/33/81/a3afc88fca4aa925804a27d2676d22dcd2031c2ebe08aabd0ae55b9ff282/pandas-2.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:4e0a175408804d566144e170d0476b15d78458795bb18f1304fb94160cabf40c", size = 12765333, upload-time = "2025-09-29T23:21:55.77Z" }, + { url = "https://files.pythonhosted.org/packages/8d/0f/b4d4ae743a83742f1153464cf1a8ecfafc3ac59722a0b5c8602310cb7158/pandas-2.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:93c2d9ab0fc11822b5eece72ec9587e172f63cff87c00b062f6e37448ced4493", size = 13418120, upload-time = "2025-09-29T23:22:10.109Z" }, + { url = "https://files.pythonhosted.org/packages/4f/c7/e54682c96a895d0c808453269e0b5928a07a127a15704fedb643e9b0a4c8/pandas-2.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:f8bfc0e12dc78f777f323f55c58649591b2cd0c43534e8355c51d3fede5f4dee", size = 10993991, upload-time = "2025-09-29T23:25:04.889Z" }, + { url = "https://files.pythonhosted.org/packages/f9/ca/3f8d4f49740799189e1395812f3bf23b5e8fc7c190827d55a610da72ce55/pandas-2.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:75ea25f9529fdec2d2e93a42c523962261e567d250b0013b16210e1d40d7c2e5", size = 12048227, upload-time = "2025-09-29T23:22:24.343Z" }, + { url = "https://files.pythonhosted.org/packages/0e/5a/f43efec3e8c0cc92c4663ccad372dbdff72b60bdb56b2749f04aa1d07d7e/pandas-2.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:74ecdf1d301e812db96a465a525952f4dde225fdb6d8e5a521d47e1f42041e21", size = 11411056, upload-time = "2025-09-29T23:22:37.762Z" }, + { url = "https://files.pythonhosted.org/packages/46/b1/85331edfc591208c9d1a63a06baa67b21d332e63b7a591a5ba42a10bb507/pandas-2.3.3-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6435cb949cb34ec11cc9860246ccb2fdc9ecd742c12d3304989017d53f039a78", size = 11645189, upload-time = "2025-09-29T23:22:51.688Z" }, + { url = "https://files.pythonhosted.org/packages/44/23/78d645adc35d94d1ac4f2a3c4112ab6f5b8999f4898b8cdf01252f8df4a9/pandas-2.3.3-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:900f47d8f20860de523a1ac881c4c36d65efcb2eb850e6948140fa781736e110", size = 12121912, upload-time = "2025-09-29T23:23:05.042Z" }, + { url = "https://files.pythonhosted.org/packages/53/da/d10013df5e6aaef6b425aa0c32e1fc1f3e431e4bcabd420517dceadce354/pandas-2.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a45c765238e2ed7d7c608fc5bc4a6f88b642f2f01e70c0c23d2224dd21829d86", size = 12712160, upload-time = "2025-09-29T23:23:28.57Z" }, + { url = "https://files.pythonhosted.org/packages/bd/17/e756653095a083d8a37cbd816cb87148debcfcd920129b25f99dd8d04271/pandas-2.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:c4fc4c21971a1a9f4bdb4c73978c7f7256caa3e62b323f70d6cb80db583350bc", size = 13199233, upload-time = "2025-09-29T23:24:24.876Z" }, + { url = "https://files.pythonhosted.org/packages/04/fd/74903979833db8390b73b3a8a7d30d146d710bd32703724dd9083950386f/pandas-2.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:ee15f284898e7b246df8087fc82b87b01686f98ee67d85a17b7ab44143a3a9a0", size = 11540635, upload-time = "2025-09-29T23:25:52.486Z" }, + { url = "https://files.pythonhosted.org/packages/21/00/266d6b357ad5e6d3ad55093a7e8efc7dd245f5a842b584db9f30b0f0a287/pandas-2.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:1611aedd912e1ff81ff41c745822980c49ce4a7907537be8692c8dbc31924593", size = 10759079, upload-time = "2025-09-29T23:26:33.204Z" }, + { url = "https://files.pythonhosted.org/packages/ca/05/d01ef80a7a3a12b2f8bbf16daba1e17c98a2f039cbc8e2f77a2c5a63d382/pandas-2.3.3-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6d2cefc361461662ac48810cb14365a365ce864afe85ef1f447ff5a1e99ea81c", size = 11814049, upload-time = "2025-09-29T23:27:15.384Z" }, + { url = "https://files.pythonhosted.org/packages/15/b2/0e62f78c0c5ba7e3d2c5945a82456f4fac76c480940f805e0b97fcbc2f65/pandas-2.3.3-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ee67acbbf05014ea6c763beb097e03cd629961c8a632075eeb34247120abcb4b", size = 12332638, upload-time = "2025-09-29T23:27:51.625Z" }, + { url = "https://files.pythonhosted.org/packages/c5/33/dd70400631b62b9b29c3c93d2feee1d0964dc2bae2e5ad7a6c73a7f25325/pandas-2.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c46467899aaa4da076d5abc11084634e2d197e9460643dd455ac3db5856b24d6", size = 12886834, upload-time = "2025-09-29T23:28:21.289Z" }, + { url = "https://files.pythonhosted.org/packages/d3/18/b5d48f55821228d0d2692b34fd5034bb185e854bdb592e9c640f6290e012/pandas-2.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6253c72c6a1d990a410bc7de641d34053364ef8bcd3126f7e7450125887dffe3", size = 13409925, upload-time = "2025-09-29T23:28:58.261Z" }, + { url = "https://files.pythonhosted.org/packages/a6/3d/124ac75fcd0ecc09b8fdccb0246ef65e35b012030defb0e0eba2cbbbe948/pandas-2.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:1b07204a219b3b7350abaae088f451860223a52cfb8a6c53358e7948735158e5", size = 11109071, upload-time = "2025-09-29T23:32:27.484Z" }, + { url = "https://files.pythonhosted.org/packages/89/9c/0e21c895c38a157e0faa1fb64587a9226d6dd46452cac4532d80c3c4a244/pandas-2.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2462b1a365b6109d275250baaae7b760fd25c726aaca0054649286bcfbb3e8ec", size = 12048504, upload-time = "2025-09-29T23:29:31.47Z" }, + { url = "https://files.pythonhosted.org/packages/d7/82/b69a1c95df796858777b68fbe6a81d37443a33319761d7c652ce77797475/pandas-2.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:0242fe9a49aa8b4d78a4fa03acb397a58833ef6199e9aa40a95f027bb3a1b6e7", size = 11410702, upload-time = "2025-09-29T23:29:54.591Z" }, + { url = "https://files.pythonhosted.org/packages/f9/88/702bde3ba0a94b8c73a0181e05144b10f13f29ebfc2150c3a79062a8195d/pandas-2.3.3-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a21d830e78df0a515db2b3d2f5570610f5e6bd2e27749770e8bb7b524b89b450", size = 11634535, upload-time = "2025-09-29T23:30:21.003Z" }, + { url = "https://files.pythonhosted.org/packages/a4/1e/1bac1a839d12e6a82ec6cb40cda2edde64a2013a66963293696bbf31fbbb/pandas-2.3.3-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2e3ebdb170b5ef78f19bfb71b0dc5dc58775032361fa188e814959b74d726dd5", size = 12121582, upload-time = "2025-09-29T23:30:43.391Z" }, + { url = "https://files.pythonhosted.org/packages/44/91/483de934193e12a3b1d6ae7c8645d083ff88dec75f46e827562f1e4b4da6/pandas-2.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:d051c0e065b94b7a3cea50eb1ec32e912cd96dba41647eb24104b6c6c14c5788", size = 12699963, upload-time = "2025-09-29T23:31:10.009Z" }, + { url = "https://files.pythonhosted.org/packages/70/44/5191d2e4026f86a2a109053e194d3ba7a31a2d10a9c2348368c63ed4e85a/pandas-2.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:3869faf4bd07b3b66a9f462417d0ca3a9df29a9f6abd5d0d0dbab15dac7abe87", size = 13202175, upload-time = "2025-09-29T23:31:59.173Z" }, + { url = "https://files.pythonhosted.org/packages/56/b4/52eeb530a99e2a4c55ffcd352772b599ed4473a0f892d127f4147cf0f88e/pandas-2.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c503ba5216814e295f40711470446bc3fd00f0faea8a086cbc688808e26f92a2", size = 11567720, upload-time = "2025-09-29T23:33:06.209Z" }, + { url = "https://files.pythonhosted.org/packages/48/4a/2d8b67632a021bced649ba940455ed441ca854e57d6e7658a6024587b083/pandas-2.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a637c5cdfa04b6d6e2ecedcb81fc52ffb0fd78ce2ebccc9ea964df9f658de8c8", size = 10810302, upload-time = "2025-09-29T23:33:35.846Z" }, + { url = "https://files.pythonhosted.org/packages/13/e6/d2465010ee0569a245c975dc6967b801887068bc893e908239b1f4b6c1ac/pandas-2.3.3-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:854d00d556406bffe66a4c0802f334c9ad5a96b4f1f868adf036a21b11ef13ff", size = 12154874, upload-time = "2025-09-29T23:33:49.939Z" }, + { url = "https://files.pythonhosted.org/packages/1f/18/aae8c0aa69a386a3255940e9317f793808ea79d0a525a97a903366bb2569/pandas-2.3.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bf1f8a81d04ca90e32a0aceb819d34dbd378a98bf923b6398b9a3ec0bf44de29", size = 12790141, upload-time = "2025-09-29T23:34:05.655Z" }, + { url = "https://files.pythonhosted.org/packages/f7/26/617f98de789de00c2a444fbe6301bb19e66556ac78cff933d2c98f62f2b4/pandas-2.3.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:23ebd657a4d38268c7dfbdf089fbc31ea709d82e4923c5ffd4fbd5747133ce73", size = 13208697, upload-time = "2025-09-29T23:34:21.835Z" }, + { url = "https://files.pythonhosted.org/packages/b9/fb/25709afa4552042bd0e15717c75e9b4a2294c3dc4f7e6ea50f03c5136600/pandas-2.3.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5554c929ccc317d41a5e3d1234f3be588248e61f08a74dd17c9eabb535777dc9", size = 13879233, upload-time = "2025-09-29T23:34:35.079Z" }, + { url = "https://files.pythonhosted.org/packages/98/af/7be05277859a7bc399da8ba68b88c96b27b48740b6cf49688899c6eb4176/pandas-2.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:d3e28b3e83862ccf4d85ff19cf8c20b2ae7e503881711ff2d534dc8f761131aa", size = 11359119, upload-time = "2025-09-29T23:34:46.339Z" }, +] + +[[package]] +name = "parso" +version = "0.8.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d4/de/53e0bcf53d13e005bd8c92e7855142494f41171b34c2536b86187474184d/parso-0.8.5.tar.gz", hash = "sha256:034d7354a9a018bdce352f48b2a8a450f05e9d6ee85db84764e9b6bd96dafe5a", size = 401205, upload-time = "2025-08-23T15:15:28.028Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl", hash = "sha256:646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887", size = 106668, upload-time = "2025-08-23T15:15:25.663Z" }, +] + +[[package]] +name = "pathspec" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450, upload-time = "2023-11-25T09:07:26.339Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772, upload-time = "2023-11-25T06:56:14.81Z" }, +] + +[[package]] +name = "pillow" +version = "11.3.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +sdist = { url = "https://files.pythonhosted.org/packages/f3/0d/d0d6dea55cd152ce3d6767bb38a8fc10e33796ba4ba210cbab9354b6d238/pillow-11.3.0.tar.gz", hash = "sha256:3828ee7586cd0b2091b6209e5ad53e20d0649bbe87164a459d0676e035e8f523", size = 47113069, upload-time = "2025-07-01T09:16:30.666Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4c/5d/45a3553a253ac8763f3561371432a90bdbe6000fbdcf1397ffe502aa206c/pillow-11.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1b9c17fd4ace828b3003dfd1e30bff24863e0eb59b535e8f80194d9cc7ecf860", size = 5316554, upload-time = "2025-07-01T09:13:39.342Z" }, + { url = "https://files.pythonhosted.org/packages/7c/c8/67c12ab069ef586a25a4a79ced553586748fad100c77c0ce59bb4983ac98/pillow-11.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:65dc69160114cdd0ca0f35cb434633c75e8e7fad4cf855177a05bf38678f73ad", size = 4686548, upload-time = "2025-07-01T09:13:41.835Z" }, + { url = "https://files.pythonhosted.org/packages/2f/bd/6741ebd56263390b382ae4c5de02979af7f8bd9807346d068700dd6d5cf9/pillow-11.3.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7107195ddc914f656c7fc8e4a5e1c25f32e9236ea3ea860f257b0436011fddd0", size = 5859742, upload-time = "2025-07-03T13:09:47.439Z" }, + { url = "https://files.pythonhosted.org/packages/ca/0b/c412a9e27e1e6a829e6ab6c2dca52dd563efbedf4c9c6aa453d9a9b77359/pillow-11.3.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cc3e831b563b3114baac7ec2ee86819eb03caa1a2cef0b481a5675b59c4fe23b", size = 7633087, upload-time = "2025-07-03T13:09:51.796Z" }, + { url = "https://files.pythonhosted.org/packages/59/9d/9b7076aaf30f5dd17e5e5589b2d2f5a5d7e30ff67a171eb686e4eecc2adf/pillow-11.3.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f1f182ebd2303acf8c380a54f615ec883322593320a9b00438eb842c1f37ae50", size = 5963350, upload-time = "2025-07-01T09:13:43.865Z" }, + { url = "https://files.pythonhosted.org/packages/f0/16/1a6bf01fb622fb9cf5c91683823f073f053005c849b1f52ed613afcf8dae/pillow-11.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4445fa62e15936a028672fd48c4c11a66d641d2c05726c7ec1f8ba6a572036ae", size = 6631840, upload-time = "2025-07-01T09:13:46.161Z" }, + { url = "https://files.pythonhosted.org/packages/7b/e6/6ff7077077eb47fde78739e7d570bdcd7c10495666b6afcd23ab56b19a43/pillow-11.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:71f511f6b3b91dd543282477be45a033e4845a40278fa8dcdbfdb07109bf18f9", size = 6074005, upload-time = "2025-07-01T09:13:47.829Z" }, + { url = "https://files.pythonhosted.org/packages/c3/3a/b13f36832ea6d279a697231658199e0a03cd87ef12048016bdcc84131601/pillow-11.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:040a5b691b0713e1f6cbe222e0f4f74cd233421e105850ae3b3c0ceda520f42e", size = 6708372, upload-time = "2025-07-01T09:13:52.145Z" }, + { url = "https://files.pythonhosted.org/packages/6c/e4/61b2e1a7528740efbc70b3d581f33937e38e98ef3d50b05007267a55bcb2/pillow-11.3.0-cp310-cp310-win32.whl", hash = "sha256:89bd777bc6624fe4115e9fac3352c79ed60f3bb18651420635f26e643e3dd1f6", size = 6277090, upload-time = "2025-07-01T09:13:53.915Z" }, + { url = "https://files.pythonhosted.org/packages/a9/d3/60c781c83a785d6afbd6a326ed4d759d141de43aa7365725cbcd65ce5e54/pillow-11.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:19d2ff547c75b8e3ff46f4d9ef969a06c30ab2d4263a9e287733aa8b2429ce8f", size = 6985988, upload-time = "2025-07-01T09:13:55.699Z" }, + { url = "https://files.pythonhosted.org/packages/9f/28/4f4a0203165eefb3763939c6789ba31013a2e90adffb456610f30f613850/pillow-11.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:819931d25e57b513242859ce1876c58c59dc31587847bf74cfe06b2e0cb22d2f", size = 2422899, upload-time = "2025-07-01T09:13:57.497Z" }, + { url = "https://files.pythonhosted.org/packages/db/26/77f8ed17ca4ffd60e1dcd220a6ec6d71210ba398cfa33a13a1cd614c5613/pillow-11.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1cd110edf822773368b396281a2293aeb91c90a2db00d78ea43e7e861631b722", size = 5316531, upload-time = "2025-07-01T09:13:59.203Z" }, + { url = "https://files.pythonhosted.org/packages/cb/39/ee475903197ce709322a17a866892efb560f57900d9af2e55f86db51b0a5/pillow-11.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9c412fddd1b77a75aa904615ebaa6001f169b26fd467b4be93aded278266b288", size = 4686560, upload-time = "2025-07-01T09:14:01.101Z" }, + { url = "https://files.pythonhosted.org/packages/d5/90/442068a160fd179938ba55ec8c97050a612426fae5ec0a764e345839f76d/pillow-11.3.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d1aa4de119a0ecac0a34a9c8bde33f34022e2e8f99104e47a3ca392fd60e37d", size = 5870978, upload-time = "2025-07-03T13:09:55.638Z" }, + { url = "https://files.pythonhosted.org/packages/13/92/dcdd147ab02daf405387f0218dcf792dc6dd5b14d2573d40b4caeef01059/pillow-11.3.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:91da1d88226663594e3f6b4b8c3c8d85bd504117d043740a8e0ec449087cc494", size = 7641168, upload-time = "2025-07-03T13:10:00.37Z" }, + { url = "https://files.pythonhosted.org/packages/6e/db/839d6ba7fd38b51af641aa904e2960e7a5644d60ec754c046b7d2aee00e5/pillow-11.3.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:643f189248837533073c405ec2f0bb250ba54598cf80e8c1e043381a60632f58", size = 5973053, upload-time = "2025-07-01T09:14:04.491Z" }, + { url = "https://files.pythonhosted.org/packages/f2/2f/d7675ecae6c43e9f12aa8d58b6012683b20b6edfbdac7abcb4e6af7a3784/pillow-11.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:106064daa23a745510dabce1d84f29137a37224831d88eb4ce94bb187b1d7e5f", size = 6640273, upload-time = "2025-07-01T09:14:06.235Z" }, + { url = "https://files.pythonhosted.org/packages/45/ad/931694675ede172e15b2ff03c8144a0ddaea1d87adb72bb07655eaffb654/pillow-11.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cd8ff254faf15591e724dc7c4ddb6bf4793efcbe13802a4ae3e863cd300b493e", size = 6082043, upload-time = "2025-07-01T09:14:07.978Z" }, + { url = "https://files.pythonhosted.org/packages/3a/04/ba8f2b11fc80d2dd462d7abec16351b45ec99cbbaea4387648a44190351a/pillow-11.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:932c754c2d51ad2b2271fd01c3d121daaa35e27efae2a616f77bf164bc0b3e94", size = 6715516, upload-time = "2025-07-01T09:14:10.233Z" }, + { url = "https://files.pythonhosted.org/packages/48/59/8cd06d7f3944cc7d892e8533c56b0acb68399f640786313275faec1e3b6f/pillow-11.3.0-cp311-cp311-win32.whl", hash = "sha256:b4b8f3efc8d530a1544e5962bd6b403d5f7fe8b9e08227c6b255f98ad82b4ba0", size = 6274768, upload-time = "2025-07-01T09:14:11.921Z" }, + { url = "https://files.pythonhosted.org/packages/f1/cc/29c0f5d64ab8eae20f3232da8f8571660aa0ab4b8f1331da5c2f5f9a938e/pillow-11.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:1a992e86b0dd7aeb1f053cd506508c0999d710a8f07b4c791c63843fc6a807ac", size = 6986055, upload-time = "2025-07-01T09:14:13.623Z" }, + { url = "https://files.pythonhosted.org/packages/c6/df/90bd886fabd544c25addd63e5ca6932c86f2b701d5da6c7839387a076b4a/pillow-11.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:30807c931ff7c095620fe04448e2c2fc673fcbb1ffe2a7da3fb39613489b1ddd", size = 2423079, upload-time = "2025-07-01T09:14:15.268Z" }, + { url = "https://files.pythonhosted.org/packages/40/fe/1bc9b3ee13f68487a99ac9529968035cca2f0a51ec36892060edcc51d06a/pillow-11.3.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fdae223722da47b024b867c1ea0be64e0df702c5e0a60e27daad39bf960dd1e4", size = 5278800, upload-time = "2025-07-01T09:14:17.648Z" }, + { url = "https://files.pythonhosted.org/packages/2c/32/7e2ac19b5713657384cec55f89065fb306b06af008cfd87e572035b27119/pillow-11.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:921bd305b10e82b4d1f5e802b6850677f965d8394203d182f078873851dada69", size = 4686296, upload-time = "2025-07-01T09:14:19.828Z" }, + { url = "https://files.pythonhosted.org/packages/8e/1e/b9e12bbe6e4c2220effebc09ea0923a07a6da1e1f1bfbc8d7d29a01ce32b/pillow-11.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:eb76541cba2f958032d79d143b98a3a6b3ea87f0959bbe256c0b5e416599fd5d", size = 5871726, upload-time = "2025-07-03T13:10:04.448Z" }, + { url = "https://files.pythonhosted.org/packages/8d/33/e9200d2bd7ba00dc3ddb78df1198a6e80d7669cce6c2bdbeb2530a74ec58/pillow-11.3.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:67172f2944ebba3d4a7b54f2e95c786a3a50c21b88456329314caaa28cda70f6", size = 7644652, upload-time = "2025-07-03T13:10:10.391Z" }, + { url = "https://files.pythonhosted.org/packages/41/f1/6f2427a26fc683e00d985bc391bdd76d8dd4e92fac33d841127eb8fb2313/pillow-11.3.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:97f07ed9f56a3b9b5f49d3661dc9607484e85c67e27f3e8be2c7d28ca032fec7", size = 5977787, upload-time = "2025-07-01T09:14:21.63Z" }, + { url = "https://files.pythonhosted.org/packages/e4/c9/06dd4a38974e24f932ff5f98ea3c546ce3f8c995d3f0985f8e5ba48bba19/pillow-11.3.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:676b2815362456b5b3216b4fd5bd89d362100dc6f4945154ff172e206a22c024", size = 6645236, upload-time = "2025-07-01T09:14:23.321Z" }, + { url = "https://files.pythonhosted.org/packages/40/e7/848f69fb79843b3d91241bad658e9c14f39a32f71a301bcd1d139416d1be/pillow-11.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3e184b2f26ff146363dd07bde8b711833d7b0202e27d13540bfe2e35a323a809", size = 6086950, upload-time = "2025-07-01T09:14:25.237Z" }, + { url = "https://files.pythonhosted.org/packages/0b/1a/7cff92e695a2a29ac1958c2a0fe4c0b2393b60aac13b04a4fe2735cad52d/pillow-11.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6be31e3fc9a621e071bc17bb7de63b85cbe0bfae91bb0363c893cbe67247780d", size = 6723358, upload-time = "2025-07-01T09:14:27.053Z" }, + { url = "https://files.pythonhosted.org/packages/26/7d/73699ad77895f69edff76b0f332acc3d497f22f5d75e5360f78cbcaff248/pillow-11.3.0-cp312-cp312-win32.whl", hash = "sha256:7b161756381f0918e05e7cb8a371fff367e807770f8fe92ecb20d905d0e1c149", size = 6275079, upload-time = "2025-07-01T09:14:30.104Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ce/e7dfc873bdd9828f3b6e5c2bbb74e47a98ec23cc5c74fc4e54462f0d9204/pillow-11.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:a6444696fce635783440b7f7a9fc24b3ad10a9ea3f0ab66c5905be1c19ccf17d", size = 6986324, upload-time = "2025-07-01T09:14:31.899Z" }, + { url = "https://files.pythonhosted.org/packages/16/8f/b13447d1bf0b1f7467ce7d86f6e6edf66c0ad7cf44cf5c87a37f9bed9936/pillow-11.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:2aceea54f957dd4448264f9bf40875da0415c83eb85f55069d89c0ed436e3542", size = 2423067, upload-time = "2025-07-01T09:14:33.709Z" }, + { url = "https://files.pythonhosted.org/packages/1e/93/0952f2ed8db3a5a4c7a11f91965d6184ebc8cd7cbb7941a260d5f018cd2d/pillow-11.3.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:1c627742b539bba4309df89171356fcb3cc5a9178355b2727d1b74a6cf155fbd", size = 2128328, upload-time = "2025-07-01T09:14:35.276Z" }, + { url = "https://files.pythonhosted.org/packages/4b/e8/100c3d114b1a0bf4042f27e0f87d2f25e857e838034e98ca98fe7b8c0a9c/pillow-11.3.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:30b7c02f3899d10f13d7a48163c8969e4e653f8b43416d23d13d1bbfdc93b9f8", size = 2170652, upload-time = "2025-07-01T09:14:37.203Z" }, + { url = "https://files.pythonhosted.org/packages/aa/86/3f758a28a6e381758545f7cdb4942e1cb79abd271bea932998fc0db93cb6/pillow-11.3.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:7859a4cc7c9295f5838015d8cc0a9c215b77e43d07a25e460f35cf516df8626f", size = 2227443, upload-time = "2025-07-01T09:14:39.344Z" }, + { url = "https://files.pythonhosted.org/packages/01/f4/91d5b3ffa718df2f53b0dc109877993e511f4fd055d7e9508682e8aba092/pillow-11.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ec1ee50470b0d050984394423d96325b744d55c701a439d2bd66089bff963d3c", size = 5278474, upload-time = "2025-07-01T09:14:41.843Z" }, + { url = "https://files.pythonhosted.org/packages/f9/0e/37d7d3eca6c879fbd9dba21268427dffda1ab00d4eb05b32923d4fbe3b12/pillow-11.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7db51d222548ccfd274e4572fdbf3e810a5e66b00608862f947b163e613b67dd", size = 4686038, upload-time = "2025-07-01T09:14:44.008Z" }, + { url = "https://files.pythonhosted.org/packages/ff/b0/3426e5c7f6565e752d81221af9d3676fdbb4f352317ceafd42899aaf5d8a/pillow-11.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2d6fcc902a24ac74495df63faad1884282239265c6839a0a6416d33faedfae7e", size = 5864407, upload-time = "2025-07-03T13:10:15.628Z" }, + { url = "https://files.pythonhosted.org/packages/fc/c1/c6c423134229f2a221ee53f838d4be9d82bab86f7e2f8e75e47b6bf6cd77/pillow-11.3.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f0f5d8f4a08090c6d6d578351a2b91acf519a54986c055af27e7a93feae6d3f1", size = 7639094, upload-time = "2025-07-03T13:10:21.857Z" }, + { url = "https://files.pythonhosted.org/packages/ba/c9/09e6746630fe6372c67c648ff9deae52a2bc20897d51fa293571977ceb5d/pillow-11.3.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c37d8ba9411d6003bba9e518db0db0c58a680ab9fe5179f040b0463644bc9805", size = 5973503, upload-time = "2025-07-01T09:14:45.698Z" }, + { url = "https://files.pythonhosted.org/packages/d5/1c/a2a29649c0b1983d3ef57ee87a66487fdeb45132df66ab30dd37f7dbe162/pillow-11.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13f87d581e71d9189ab21fe0efb5a23e9f28552d5be6979e84001d3b8505abe8", size = 6642574, upload-time = "2025-07-01T09:14:47.415Z" }, + { url = "https://files.pythonhosted.org/packages/36/de/d5cc31cc4b055b6c6fd990e3e7f0f8aaf36229a2698501bcb0cdf67c7146/pillow-11.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:023f6d2d11784a465f09fd09a34b150ea4672e85fb3d05931d89f373ab14abb2", size = 6084060, upload-time = "2025-07-01T09:14:49.636Z" }, + { url = "https://files.pythonhosted.org/packages/d5/ea/502d938cbaeec836ac28a9b730193716f0114c41325db428e6b280513f09/pillow-11.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:45dfc51ac5975b938e9809451c51734124e73b04d0f0ac621649821a63852e7b", size = 6721407, upload-time = "2025-07-01T09:14:51.962Z" }, + { url = "https://files.pythonhosted.org/packages/45/9c/9c5e2a73f125f6cbc59cc7087c8f2d649a7ae453f83bd0362ff7c9e2aee2/pillow-11.3.0-cp313-cp313-win32.whl", hash = "sha256:a4d336baed65d50d37b88ca5b60c0fa9d81e3a87d4a7930d3880d1624d5b31f3", size = 6273841, upload-time = "2025-07-01T09:14:54.142Z" }, + { url = "https://files.pythonhosted.org/packages/23/85/397c73524e0cd212067e0c969aa245b01d50183439550d24d9f55781b776/pillow-11.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:0bce5c4fd0921f99d2e858dc4d4d64193407e1b99478bc5cacecba2311abde51", size = 6978450, upload-time = "2025-07-01T09:14:56.436Z" }, + { url = "https://files.pythonhosted.org/packages/17/d2/622f4547f69cd173955194b78e4d19ca4935a1b0f03a302d655c9f6aae65/pillow-11.3.0-cp313-cp313-win_arm64.whl", hash = "sha256:1904e1264881f682f02b7f8167935cce37bc97db457f8e7849dc3a6a52b99580", size = 2423055, upload-time = "2025-07-01T09:14:58.072Z" }, + { url = "https://files.pythonhosted.org/packages/dd/80/a8a2ac21dda2e82480852978416cfacd439a4b490a501a288ecf4fe2532d/pillow-11.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4c834a3921375c48ee6b9624061076bc0a32a60b5532b322cc0ea64e639dd50e", size = 5281110, upload-time = "2025-07-01T09:14:59.79Z" }, + { url = "https://files.pythonhosted.org/packages/44/d6/b79754ca790f315918732e18f82a8146d33bcd7f4494380457ea89eb883d/pillow-11.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e05688ccef30ea69b9317a9ead994b93975104a677a36a8ed8106be9260aa6d", size = 4689547, upload-time = "2025-07-01T09:15:01.648Z" }, + { url = "https://files.pythonhosted.org/packages/49/20/716b8717d331150cb00f7fdd78169c01e8e0c219732a78b0e59b6bdb2fd6/pillow-11.3.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1019b04af07fc0163e2810167918cb5add8d74674b6267616021ab558dc98ced", size = 5901554, upload-time = "2025-07-03T13:10:27.018Z" }, + { url = "https://files.pythonhosted.org/packages/74/cf/a9f3a2514a65bb071075063a96f0a5cf949c2f2fce683c15ccc83b1c1cab/pillow-11.3.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f944255db153ebb2b19c51fe85dd99ef0ce494123f21b9db4877ffdfc5590c7c", size = 7669132, upload-time = "2025-07-03T13:10:33.01Z" }, + { url = "https://files.pythonhosted.org/packages/98/3c/da78805cbdbee9cb43efe8261dd7cc0b4b93f2ac79b676c03159e9db2187/pillow-11.3.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1f85acb69adf2aaee8b7da124efebbdb959a104db34d3a2cb0f3793dbae422a8", size = 6005001, upload-time = "2025-07-01T09:15:03.365Z" }, + { url = "https://files.pythonhosted.org/packages/6c/fa/ce044b91faecf30e635321351bba32bab5a7e034c60187fe9698191aef4f/pillow-11.3.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:05f6ecbeff5005399bb48d198f098a9b4b6bdf27b8487c7f38ca16eeb070cd59", size = 6668814, upload-time = "2025-07-01T09:15:05.655Z" }, + { url = "https://files.pythonhosted.org/packages/7b/51/90f9291406d09bf93686434f9183aba27b831c10c87746ff49f127ee80cb/pillow-11.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a7bc6e6fd0395bc052f16b1a8670859964dbd7003bd0af2ff08342eb6e442cfe", size = 6113124, upload-time = "2025-07-01T09:15:07.358Z" }, + { url = "https://files.pythonhosted.org/packages/cd/5a/6fec59b1dfb619234f7636d4157d11fb4e196caeee220232a8d2ec48488d/pillow-11.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:83e1b0161c9d148125083a35c1c5a89db5b7054834fd4387499e06552035236c", size = 6747186, upload-time = "2025-07-01T09:15:09.317Z" }, + { url = "https://files.pythonhosted.org/packages/49/6b/00187a044f98255225f172de653941e61da37104a9ea60e4f6887717e2b5/pillow-11.3.0-cp313-cp313t-win32.whl", hash = "sha256:2a3117c06b8fb646639dce83694f2f9eac405472713fcb1ae887469c0d4f6788", size = 6277546, upload-time = "2025-07-01T09:15:11.311Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5c/6caaba7e261c0d75bab23be79f1d06b5ad2a2ae49f028ccec801b0e853d6/pillow-11.3.0-cp313-cp313t-win_amd64.whl", hash = "sha256:857844335c95bea93fb39e0fa2726b4d9d758850b34075a7e3ff4f4fa3aa3b31", size = 6985102, upload-time = "2025-07-01T09:15:13.164Z" }, + { url = "https://files.pythonhosted.org/packages/f3/7e/b623008460c09a0cb38263c93b828c666493caee2eb34ff67f778b87e58c/pillow-11.3.0-cp313-cp313t-win_arm64.whl", hash = "sha256:8797edc41f3e8536ae4b10897ee2f637235c94f27404cac7297f7b607dd0716e", size = 2424803, upload-time = "2025-07-01T09:15:15.695Z" }, + { url = "https://files.pythonhosted.org/packages/73/f4/04905af42837292ed86cb1b1dabe03dce1edc008ef14c473c5c7e1443c5d/pillow-11.3.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d9da3df5f9ea2a89b81bb6087177fb1f4d1c7146d583a3fe5c672c0d94e55e12", size = 5278520, upload-time = "2025-07-01T09:15:17.429Z" }, + { url = "https://files.pythonhosted.org/packages/41/b0/33d79e377a336247df6348a54e6d2a2b85d644ca202555e3faa0cf811ecc/pillow-11.3.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:0b275ff9b04df7b640c59ec5a3cb113eefd3795a8df80bac69646ef699c6981a", size = 4686116, upload-time = "2025-07-01T09:15:19.423Z" }, + { url = "https://files.pythonhosted.org/packages/49/2d/ed8bc0ab219ae8768f529597d9509d184fe8a6c4741a6864fea334d25f3f/pillow-11.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0743841cabd3dba6a83f38a92672cccbd69af56e3e91777b0ee7f4dba4385632", size = 5864597, upload-time = "2025-07-03T13:10:38.404Z" }, + { url = "https://files.pythonhosted.org/packages/b5/3d/b932bb4225c80b58dfadaca9d42d08d0b7064d2d1791b6a237f87f661834/pillow-11.3.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2465a69cf967b8b49ee1b96d76718cd98c4e925414ead59fdf75cf0fd07df673", size = 7638246, upload-time = "2025-07-03T13:10:44.987Z" }, + { url = "https://files.pythonhosted.org/packages/09/b5/0487044b7c096f1b48f0d7ad416472c02e0e4bf6919541b111efd3cae690/pillow-11.3.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:41742638139424703b4d01665b807c6468e23e699e8e90cffefe291c5832b027", size = 5973336, upload-time = "2025-07-01T09:15:21.237Z" }, + { url = "https://files.pythonhosted.org/packages/a8/2d/524f9318f6cbfcc79fbc004801ea6b607ec3f843977652fdee4857a7568b/pillow-11.3.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:93efb0b4de7e340d99057415c749175e24c8864302369e05914682ba642e5d77", size = 6642699, upload-time = "2025-07-01T09:15:23.186Z" }, + { url = "https://files.pythonhosted.org/packages/6f/d2/a9a4f280c6aefedce1e8f615baaa5474e0701d86dd6f1dede66726462bbd/pillow-11.3.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7966e38dcd0fa11ca390aed7c6f20454443581d758242023cf36fcb319b1a874", size = 6083789, upload-time = "2025-07-01T09:15:25.1Z" }, + { url = "https://files.pythonhosted.org/packages/fe/54/86b0cd9dbb683a9d5e960b66c7379e821a19be4ac5810e2e5a715c09a0c0/pillow-11.3.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:98a9afa7b9007c67ed84c57c9e0ad86a6000da96eaa638e4f8abe5b65ff83f0a", size = 6720386, upload-time = "2025-07-01T09:15:27.378Z" }, + { url = "https://files.pythonhosted.org/packages/e7/95/88efcaf384c3588e24259c4203b909cbe3e3c2d887af9e938c2022c9dd48/pillow-11.3.0-cp314-cp314-win32.whl", hash = "sha256:02a723e6bf909e7cea0dac1b0e0310be9d7650cd66222a5f1c571455c0a45214", size = 6370911, upload-time = "2025-07-01T09:15:29.294Z" }, + { url = "https://files.pythonhosted.org/packages/2e/cc/934e5820850ec5eb107e7b1a72dd278140731c669f396110ebc326f2a503/pillow-11.3.0-cp314-cp314-win_amd64.whl", hash = "sha256:a418486160228f64dd9e9efcd132679b7a02a5f22c982c78b6fc7dab3fefb635", size = 7117383, upload-time = "2025-07-01T09:15:31.128Z" }, + { url = "https://files.pythonhosted.org/packages/d6/e9/9c0a616a71da2a5d163aa37405e8aced9a906d574b4a214bede134e731bc/pillow-11.3.0-cp314-cp314-win_arm64.whl", hash = "sha256:155658efb5e044669c08896c0c44231c5e9abcaadbc5cd3648df2f7c0b96b9a6", size = 2511385, upload-time = "2025-07-01T09:15:33.328Z" }, + { url = "https://files.pythonhosted.org/packages/1a/33/c88376898aff369658b225262cd4f2659b13e8178e7534df9e6e1fa289f6/pillow-11.3.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:59a03cdf019efbfeeed910bf79c7c93255c3d54bc45898ac2a4140071b02b4ae", size = 5281129, upload-time = "2025-07-01T09:15:35.194Z" }, + { url = "https://files.pythonhosted.org/packages/1f/70/d376247fb36f1844b42910911c83a02d5544ebd2a8bad9efcc0f707ea774/pillow-11.3.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:f8a5827f84d973d8636e9dc5764af4f0cf2318d26744b3d902931701b0d46653", size = 4689580, upload-time = "2025-07-01T09:15:37.114Z" }, + { url = "https://files.pythonhosted.org/packages/eb/1c/537e930496149fbac69efd2fc4329035bbe2e5475b4165439e3be9cb183b/pillow-11.3.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ee92f2fd10f4adc4b43d07ec5e779932b4eb3dbfbc34790ada5a6669bc095aa6", size = 5902860, upload-time = "2025-07-03T13:10:50.248Z" }, + { url = "https://files.pythonhosted.org/packages/bd/57/80f53264954dcefeebcf9dae6e3eb1daea1b488f0be8b8fef12f79a3eb10/pillow-11.3.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c96d333dcf42d01f47b37e0979b6bd73ec91eae18614864622d9b87bbd5bbf36", size = 7670694, upload-time = "2025-07-03T13:10:56.432Z" }, + { url = "https://files.pythonhosted.org/packages/70/ff/4727d3b71a8578b4587d9c276e90efad2d6fe0335fd76742a6da08132e8c/pillow-11.3.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4c96f993ab8c98460cd0c001447bff6194403e8b1d7e149ade5f00594918128b", size = 6005888, upload-time = "2025-07-01T09:15:39.436Z" }, + { url = "https://files.pythonhosted.org/packages/05/ae/716592277934f85d3be51d7256f3636672d7b1abfafdc42cf3f8cbd4b4c8/pillow-11.3.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41342b64afeba938edb034d122b2dda5db2139b9a4af999729ba8818e0056477", size = 6670330, upload-time = "2025-07-01T09:15:41.269Z" }, + { url = "https://files.pythonhosted.org/packages/e7/bb/7fe6cddcc8827b01b1a9766f5fdeb7418680744f9082035bdbabecf1d57f/pillow-11.3.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:068d9c39a2d1b358eb9f245ce7ab1b5c3246c7c8c7d9ba58cfa5b43146c06e50", size = 6114089, upload-time = "2025-07-01T09:15:43.13Z" }, + { url = "https://files.pythonhosted.org/packages/8b/f5/06bfaa444c8e80f1a8e4bff98da9c83b37b5be3b1deaa43d27a0db37ef84/pillow-11.3.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:a1bc6ba083b145187f648b667e05a2534ecc4b9f2784c2cbe3089e44868f2b9b", size = 6748206, upload-time = "2025-07-01T09:15:44.937Z" }, + { url = "https://files.pythonhosted.org/packages/f0/77/bc6f92a3e8e6e46c0ca78abfffec0037845800ea38c73483760362804c41/pillow-11.3.0-cp314-cp314t-win32.whl", hash = "sha256:118ca10c0d60b06d006be10a501fd6bbdfef559251ed31b794668ed569c87e12", size = 6377370, upload-time = "2025-07-01T09:15:46.673Z" }, + { url = "https://files.pythonhosted.org/packages/4a/82/3a721f7d69dca802befb8af08b7c79ebcab461007ce1c18bd91a5d5896f9/pillow-11.3.0-cp314-cp314t-win_amd64.whl", hash = "sha256:8924748b688aa210d79883357d102cd64690e56b923a186f35a82cbc10f997db", size = 7121500, upload-time = "2025-07-01T09:15:48.512Z" }, + { url = "https://files.pythonhosted.org/packages/89/c7/5572fa4a3f45740eaab6ae86fcdf7195b55beac1371ac8c619d880cfe948/pillow-11.3.0-cp314-cp314t-win_arm64.whl", hash = "sha256:79ea0d14d3ebad43ec77ad5272e6ff9bba5b679ef73375ea760261207fa8e0aa", size = 2512835, upload-time = "2025-07-01T09:15:50.399Z" }, + { url = "https://files.pythonhosted.org/packages/9e/8e/9c089f01677d1264ab8648352dcb7773f37da6ad002542760c80107da816/pillow-11.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:48d254f8a4c776de343051023eb61ffe818299eeac478da55227d96e241de53f", size = 5316478, upload-time = "2025-07-01T09:15:52.209Z" }, + { url = "https://files.pythonhosted.org/packages/b5/a9/5749930caf674695867eb56a581e78eb5f524b7583ff10b01b6e5048acb3/pillow-11.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7aee118e30a4cf54fdd873bd3a29de51e29105ab11f9aad8c32123f58c8f8081", size = 4686522, upload-time = "2025-07-01T09:15:54.162Z" }, + { url = "https://files.pythonhosted.org/packages/43/46/0b85b763eb292b691030795f9f6bb6fcaf8948c39413c81696a01c3577f7/pillow-11.3.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:23cff760a9049c502721bdb743a7cb3e03365fafcdfc2ef9784610714166e5a4", size = 5853376, upload-time = "2025-07-03T13:11:01.066Z" }, + { url = "https://files.pythonhosted.org/packages/5e/c6/1a230ec0067243cbd60bc2dad5dc3ab46a8a41e21c15f5c9b52b26873069/pillow-11.3.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6359a3bc43f57d5b375d1ad54a0074318a0844d11b76abccf478c37c986d3cfc", size = 7626020, upload-time = "2025-07-03T13:11:06.479Z" }, + { url = "https://files.pythonhosted.org/packages/63/dd/f296c27ffba447bfad76c6a0c44c1ea97a90cb9472b9304c94a732e8dbfb/pillow-11.3.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:092c80c76635f5ecb10f3f83d76716165c96f5229addbd1ec2bdbbda7d496e06", size = 5956732, upload-time = "2025-07-01T09:15:56.111Z" }, + { url = "https://files.pythonhosted.org/packages/a5/a0/98a3630f0b57f77bae67716562513d3032ae70414fcaf02750279c389a9e/pillow-11.3.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cadc9e0ea0a2431124cde7e1697106471fc4c1da01530e679b2391c37d3fbb3a", size = 6624404, upload-time = "2025-07-01T09:15:58.245Z" }, + { url = "https://files.pythonhosted.org/packages/de/e6/83dfba5646a290edd9a21964da07674409e410579c341fc5b8f7abd81620/pillow-11.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6a418691000f2a418c9135a7cf0d797c1bb7d9a485e61fe8e7722845b95ef978", size = 6067760, upload-time = "2025-07-01T09:16:00.003Z" }, + { url = "https://files.pythonhosted.org/packages/bc/41/15ab268fe6ee9a2bc7391e2bbb20a98d3974304ab1a406a992dcb297a370/pillow-11.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:97afb3a00b65cc0804d1c7abddbf090a81eaac02768af58cbdcaaa0a931e0b6d", size = 6700534, upload-time = "2025-07-01T09:16:02.29Z" }, + { url = "https://files.pythonhosted.org/packages/64/79/6d4f638b288300bed727ff29f2a3cb63db054b33518a95f27724915e3fbc/pillow-11.3.0-cp39-cp39-win32.whl", hash = "sha256:ea944117a7974ae78059fcc1800e5d3295172bb97035c0c1d9345fca1419da71", size = 6277091, upload-time = "2025-07-01T09:16:04.4Z" }, + { url = "https://files.pythonhosted.org/packages/46/05/4106422f45a05716fd34ed21763f8ec182e8ea00af6e9cb05b93a247361a/pillow-11.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:e5c5858ad8ec655450a7c7df532e9842cf8df7cc349df7225c60d5d348c8aada", size = 6986091, upload-time = "2025-07-01T09:16:06.342Z" }, + { url = "https://files.pythonhosted.org/packages/63/c6/287fd55c2c12761d0591549d48885187579b7c257bef0c6660755b0b59ae/pillow-11.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:6abdbfd3aea42be05702a8dd98832329c167ee84400a1d1f61ab11437f1717eb", size = 2422632, upload-time = "2025-07-01T09:16:08.142Z" }, + { url = "https://files.pythonhosted.org/packages/6f/8b/209bd6b62ce8367f47e68a218bffac88888fdf2c9fcf1ecadc6c3ec1ebc7/pillow-11.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3cee80663f29e3843b68199b9d6f4f54bd1d4a6b59bdd91bceefc51238bcb967", size = 5270556, upload-time = "2025-07-01T09:16:09.961Z" }, + { url = "https://files.pythonhosted.org/packages/2e/e6/231a0b76070c2cfd9e260a7a5b504fb72da0a95279410fa7afd99d9751d6/pillow-11.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:b5f56c3f344f2ccaf0dd875d3e180f631dc60a51b314295a3e681fe8cf851fbe", size = 4654625, upload-time = "2025-07-01T09:16:11.913Z" }, + { url = "https://files.pythonhosted.org/packages/13/f4/10cf94fda33cb12765f2397fc285fa6d8eb9c29de7f3185165b702fc7386/pillow-11.3.0-pp310-pypy310_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:e67d793d180c9df62f1f40aee3accca4829d3794c95098887edc18af4b8b780c", size = 4874207, upload-time = "2025-07-03T13:11:10.201Z" }, + { url = "https://files.pythonhosted.org/packages/72/c9/583821097dc691880c92892e8e2d41fe0a5a3d6021f4963371d2f6d57250/pillow-11.3.0-pp310-pypy310_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d000f46e2917c705e9fb93a3606ee4a819d1e3aa7a9b442f6444f07e77cf5e25", size = 6583939, upload-time = "2025-07-03T13:11:15.68Z" }, + { url = "https://files.pythonhosted.org/packages/3b/8e/5c9d410f9217b12320efc7c413e72693f48468979a013ad17fd690397b9a/pillow-11.3.0-pp310-pypy310_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:527b37216b6ac3a12d7838dc3bd75208ec57c1c6d11ef01902266a5a0c14fc27", size = 4957166, upload-time = "2025-07-01T09:16:13.74Z" }, + { url = "https://files.pythonhosted.org/packages/62/bb/78347dbe13219991877ffb3a91bf09da8317fbfcd4b5f9140aeae020ad71/pillow-11.3.0-pp310-pypy310_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:be5463ac478b623b9dd3937afd7fb7ab3d79dd290a28e2b6df292dc75063eb8a", size = 5581482, upload-time = "2025-07-01T09:16:16.107Z" }, + { url = "https://files.pythonhosted.org/packages/d9/28/1000353d5e61498aaeaaf7f1e4b49ddb05f2c6575f9d4f9f914a3538b6e1/pillow-11.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:8dc70ca24c110503e16918a658b869019126ecfe03109b754c402daff12b3d9f", size = 6984596, upload-time = "2025-07-01T09:16:18.07Z" }, + { url = "https://files.pythonhosted.org/packages/9e/e3/6fa84033758276fb31da12e5fb66ad747ae83b93c67af17f8c6ff4cc8f34/pillow-11.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7c8ec7a017ad1bd562f93dbd8505763e688d388cde6e4a010ae1486916e713e6", size = 5270566, upload-time = "2025-07-01T09:16:19.801Z" }, + { url = "https://files.pythonhosted.org/packages/5b/ee/e8d2e1ab4892970b561e1ba96cbd59c0d28cf66737fc44abb2aec3795a4e/pillow-11.3.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:9ab6ae226de48019caa8074894544af5b53a117ccb9d3b3dcb2871464c829438", size = 4654618, upload-time = "2025-07-01T09:16:21.818Z" }, + { url = "https://files.pythonhosted.org/packages/f2/6d/17f80f4e1f0761f02160fc433abd4109fa1548dcfdca46cfdadaf9efa565/pillow-11.3.0-pp311-pypy311_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:fe27fb049cdcca11f11a7bfda64043c37b30e6b91f10cb5bab275806c32f6ab3", size = 4874248, upload-time = "2025-07-03T13:11:20.738Z" }, + { url = "https://files.pythonhosted.org/packages/de/5f/c22340acd61cef960130585bbe2120e2fd8434c214802f07e8c03596b17e/pillow-11.3.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:465b9e8844e3c3519a983d58b80be3f668e2a7a5db97f2784e7079fbc9f9822c", size = 6583963, upload-time = "2025-07-03T13:11:26.283Z" }, + { url = "https://files.pythonhosted.org/packages/31/5e/03966aedfbfcbb4d5f8aa042452d3361f325b963ebbadddac05b122e47dd/pillow-11.3.0-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5418b53c0d59b3824d05e029669efa023bbef0f3e92e75ec8428f3799487f361", size = 4957170, upload-time = "2025-07-01T09:16:23.762Z" }, + { url = "https://files.pythonhosted.org/packages/cc/2d/e082982aacc927fc2cab48e1e731bdb1643a1406acace8bed0900a61464e/pillow-11.3.0-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:504b6f59505f08ae014f724b6207ff6222662aab5cc9542577fb084ed0676ac7", size = 5581505, upload-time = "2025-07-01T09:16:25.593Z" }, + { url = "https://files.pythonhosted.org/packages/34/e7/ae39f538fd6844e982063c3a5e4598b8ced43b9633baa3a85ef33af8c05c/pillow-11.3.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:c84d689db21a1c397d001aa08241044aa2069e7587b398c8cc63020390b1c1b8", size = 6984598, upload-time = "2025-07-01T09:16:27.732Z" }, +] + +[[package]] +name = "pillow" +version = "12.0.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/cace85a1b0c9775a9f8f5d5423c8261c858760e2466c79b2dd184638b056/pillow-12.0.0.tar.gz", hash = "sha256:87d4f8125c9988bfbed67af47dd7a953e2fc7b0cc1e7800ec6d2080d490bb353", size = 47008828, upload-time = "2025-10-15T18:24:14.008Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5d/08/26e68b6b5da219c2a2cb7b563af008b53bb8e6b6fcb3fa40715fcdb2523a/pillow-12.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:3adfb466bbc544b926d50fe8f4a4e6abd8c6bffd28a26177594e6e9b2b76572b", size = 5289809, upload-time = "2025-10-15T18:21:27.791Z" }, + { url = "https://files.pythonhosted.org/packages/cb/e9/4e58fb097fb74c7b4758a680aacd558810a417d1edaa7000142976ef9d2f/pillow-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1ac11e8ea4f611c3c0147424eae514028b5e9077dd99ab91e1bd7bc33ff145e1", size = 4650606, upload-time = "2025-10-15T18:21:29.823Z" }, + { url = "https://files.pythonhosted.org/packages/4b/e0/1fa492aa9f77b3bc6d471c468e62bfea1823056bf7e5e4f1914d7ab2565e/pillow-12.0.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d49e2314c373f4c2b39446fb1a45ed333c850e09d0c59ac79b72eb3b95397363", size = 6221023, upload-time = "2025-10-15T18:21:31.415Z" }, + { url = "https://files.pythonhosted.org/packages/c1/09/4de7cd03e33734ccd0c876f0251401f1314e819cbfd89a0fcb6e77927cc6/pillow-12.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c7b2a63fd6d5246349f3d3f37b14430d73ee7e8173154461785e43036ffa96ca", size = 8024937, upload-time = "2025-10-15T18:21:33.453Z" }, + { url = "https://files.pythonhosted.org/packages/2e/69/0688e7c1390666592876d9d474f5e135abb4acb39dcb583c4dc5490f1aff/pillow-12.0.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d64317d2587c70324b79861babb9c09f71fbb780bad212018874b2c013d8600e", size = 6334139, upload-time = "2025-10-15T18:21:35.395Z" }, + { url = "https://files.pythonhosted.org/packages/ed/1c/880921e98f525b9b44ce747ad1ea8f73fd7e992bafe3ca5e5644bf433dea/pillow-12.0.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d77153e14b709fd8b8af6f66a3afbb9ed6e9fc5ccf0b6b7e1ced7b036a228782", size = 7026074, upload-time = "2025-10-15T18:21:37.219Z" }, + { url = "https://files.pythonhosted.org/packages/28/03/96f718331b19b355610ef4ebdbbde3557c726513030665071fd025745671/pillow-12.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:32ed80ea8a90ee3e6fa08c21e2e091bba6eda8eccc83dbc34c95169507a91f10", size = 6448852, upload-time = "2025-10-15T18:21:39.168Z" }, + { url = "https://files.pythonhosted.org/packages/3a/a0/6a193b3f0cc9437b122978d2c5cbce59510ccf9a5b48825096ed7472da2f/pillow-12.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c828a1ae702fc712978bda0320ba1b9893d99be0badf2647f693cc01cf0f04fa", size = 7117058, upload-time = "2025-10-15T18:21:40.997Z" }, + { url = "https://files.pythonhosted.org/packages/a7/c4/043192375eaa4463254e8e61f0e2ec9a846b983929a8d0a7122e0a6d6fff/pillow-12.0.0-cp310-cp310-win32.whl", hash = "sha256:bd87e140e45399c818fac4247880b9ce719e4783d767e030a883a970be632275", size = 6295431, upload-time = "2025-10-15T18:21:42.518Z" }, + { url = "https://files.pythonhosted.org/packages/92/c6/c2f2fc7e56301c21827e689bb8b0b465f1b52878b57471a070678c0c33cd/pillow-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:455247ac8a4cfb7b9bc45b7e432d10421aea9fc2e74d285ba4072688a74c2e9d", size = 7000412, upload-time = "2025-10-15T18:21:44.404Z" }, + { url = "https://files.pythonhosted.org/packages/b2/d2/5f675067ba82da7a1c238a73b32e3fd78d67f9d9f80fbadd33a40b9c0481/pillow-12.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:6ace95230bfb7cd79ef66caa064bbe2f2a1e63d93471c3a2e1f1348d9f22d6b7", size = 2435903, upload-time = "2025-10-15T18:21:46.29Z" }, + { url = "https://files.pythonhosted.org/packages/0e/5a/a2f6773b64edb921a756eb0729068acad9fc5208a53f4a349396e9436721/pillow-12.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0fd00cac9c03256c8b2ff58f162ebcd2587ad3e1f2e397eab718c47e24d231cc", size = 5289798, upload-time = "2025-10-15T18:21:47.763Z" }, + { url = "https://files.pythonhosted.org/packages/2e/05/069b1f8a2e4b5a37493da6c5868531c3f77b85e716ad7a590ef87d58730d/pillow-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a3475b96f5908b3b16c47533daaa87380c491357d197564e0ba34ae75c0f3257", size = 4650589, upload-time = "2025-10-15T18:21:49.515Z" }, + { url = "https://files.pythonhosted.org/packages/61/e3/2c820d6e9a36432503ead175ae294f96861b07600a7156154a086ba7111a/pillow-12.0.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:110486b79f2d112cf6add83b28b627e369219388f64ef2f960fef9ebaf54c642", size = 6230472, upload-time = "2025-10-15T18:21:51.052Z" }, + { url = "https://files.pythonhosted.org/packages/4f/89/63427f51c64209c5e23d4d52071c8d0f21024d3a8a487737caaf614a5795/pillow-12.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5269cc1caeedb67e6f7269a42014f381f45e2e7cd42d834ede3c703a1d915fe3", size = 8033887, upload-time = "2025-10-15T18:21:52.604Z" }, + { url = "https://files.pythonhosted.org/packages/f6/1b/c9711318d4901093c15840f268ad649459cd81984c9ec9887756cca049a5/pillow-12.0.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:aa5129de4e174daccbc59d0a3b6d20eaf24417d59851c07ebb37aeb02947987c", size = 6343964, upload-time = "2025-10-15T18:21:54.619Z" }, + { url = "https://files.pythonhosted.org/packages/41/1e/db9470f2d030b4995083044cd8738cdd1bf773106819f6d8ba12597d5352/pillow-12.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bee2a6db3a7242ea309aa7ee8e2780726fed67ff4e5b40169f2c940e7eb09227", size = 7034756, upload-time = "2025-10-15T18:21:56.151Z" }, + { url = "https://files.pythonhosted.org/packages/cc/b0/6177a8bdd5ee4ed87cba2de5a3cc1db55ffbbec6176784ce5bb75aa96798/pillow-12.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:90387104ee8400a7b4598253b4c406f8958f59fcf983a6cea2b50d59f7d63d0b", size = 6458075, upload-time = "2025-10-15T18:21:57.759Z" }, + { url = "https://files.pythonhosted.org/packages/bc/5e/61537aa6fa977922c6a03253a0e727e6e4a72381a80d63ad8eec350684f2/pillow-12.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bc91a56697869546d1b8f0a3ff35224557ae7f881050e99f615e0119bf934b4e", size = 7125955, upload-time = "2025-10-15T18:21:59.372Z" }, + { url = "https://files.pythonhosted.org/packages/1f/3d/d5033539344ee3cbd9a4d69e12e63ca3a44a739eb2d4c8da350a3d38edd7/pillow-12.0.0-cp311-cp311-win32.whl", hash = "sha256:27f95b12453d165099c84f8a8bfdfd46b9e4bda9e0e4b65f0635430027f55739", size = 6298440, upload-time = "2025-10-15T18:22:00.982Z" }, + { url = "https://files.pythonhosted.org/packages/4d/42/aaca386de5cc8bd8a0254516957c1f265e3521c91515b16e286c662854c4/pillow-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:b583dc9070312190192631373c6c8ed277254aa6e6084b74bdd0a6d3b221608e", size = 6999256, upload-time = "2025-10-15T18:22:02.617Z" }, + { url = "https://files.pythonhosted.org/packages/ba/f1/9197c9c2d5708b785f631a6dfbfa8eb3fb9672837cb92ae9af812c13b4ed/pillow-12.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:759de84a33be3b178a64c8ba28ad5c135900359e85fb662bc6e403ad4407791d", size = 2436025, upload-time = "2025-10-15T18:22:04.598Z" }, + { url = "https://files.pythonhosted.org/packages/2c/90/4fcce2c22caf044e660a198d740e7fbc14395619e3cb1abad12192c0826c/pillow-12.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53561a4ddc36facb432fae7a9d8afbfaf94795414f5cdc5fc52f28c1dca90371", size = 5249377, upload-time = "2025-10-15T18:22:05.993Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e0/ed960067543d080691d47d6938ebccbf3976a931c9567ab2fbfab983a5dd/pillow-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:71db6b4c1653045dacc1585c1b0d184004f0d7e694c7b34ac165ca70c0838082", size = 4650343, upload-time = "2025-10-15T18:22:07.718Z" }, + { url = "https://files.pythonhosted.org/packages/e7/a1/f81fdeddcb99c044bf7d6faa47e12850f13cee0849537a7d27eeab5534d4/pillow-12.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2fa5f0b6716fc88f11380b88b31fe591a06c6315e955c096c35715788b339e3f", size = 6232981, upload-time = "2025-10-15T18:22:09.287Z" }, + { url = "https://files.pythonhosted.org/packages/88/e1/9098d3ce341a8750b55b0e00c03f1630d6178f38ac191c81c97a3b047b44/pillow-12.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82240051c6ca513c616f7f9da06e871f61bfd7805f566275841af15015b8f98d", size = 8041399, upload-time = "2025-10-15T18:22:10.872Z" }, + { url = "https://files.pythonhosted.org/packages/a7/62/a22e8d3b602ae8cc01446d0c57a54e982737f44b6f2e1e019a925143771d/pillow-12.0.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:55f818bd74fe2f11d4d7cbc65880a843c4075e0ac7226bc1a23261dbea531953", size = 6347740, upload-time = "2025-10-15T18:22:12.769Z" }, + { url = "https://files.pythonhosted.org/packages/4f/87/424511bdcd02c8d7acf9f65caa09f291a519b16bd83c3fb3374b3d4ae951/pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b87843e225e74576437fd5b6a4c2205d422754f84a06942cfaf1dc32243e45a8", size = 7040201, upload-time = "2025-10-15T18:22:14.813Z" }, + { url = "https://files.pythonhosted.org/packages/dc/4d/435c8ac688c54d11755aedfdd9f29c9eeddf68d150fe42d1d3dbd2365149/pillow-12.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c607c90ba67533e1b2355b821fef6764d1dd2cbe26b8c1005ae84f7aea25ff79", size = 6462334, upload-time = "2025-10-15T18:22:16.375Z" }, + { url = "https://files.pythonhosted.org/packages/2b/f2/ad34167a8059a59b8ad10bc5c72d4d9b35acc6b7c0877af8ac885b5f2044/pillow-12.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:21f241bdd5080a15bc86d3466a9f6074a9c2c2b314100dd896ac81ee6db2f1ba", size = 7134162, upload-time = "2025-10-15T18:22:17.996Z" }, + { url = "https://files.pythonhosted.org/packages/0c/b1/a7391df6adacf0a5c2cf6ac1cf1fcc1369e7d439d28f637a847f8803beb3/pillow-12.0.0-cp312-cp312-win32.whl", hash = "sha256:dd333073e0cacdc3089525c7df7d39b211bcdf31fc2824e49d01c6b6187b07d0", size = 6298769, upload-time = "2025-10-15T18:22:19.923Z" }, + { url = "https://files.pythonhosted.org/packages/a2/0b/d87733741526541c909bbf159e338dcace4f982daac6e5a8d6be225ca32d/pillow-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9fe611163f6303d1619bbcb653540a4d60f9e55e622d60a3108be0d5b441017a", size = 7001107, upload-time = "2025-10-15T18:22:21.644Z" }, + { url = "https://files.pythonhosted.org/packages/bc/96/aaa61ce33cc98421fb6088af2a03be4157b1e7e0e87087c888e2370a7f45/pillow-12.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:7dfb439562f234f7d57b1ac6bc8fe7f838a4bd49c79230e0f6a1da93e82f1fad", size = 2436012, upload-time = "2025-10-15T18:22:23.621Z" }, + { url = "https://files.pythonhosted.org/packages/62/f2/de993bb2d21b33a98d031ecf6a978e4b61da207bef02f7b43093774c480d/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:0869154a2d0546545cde61d1789a6524319fc1897d9ee31218eae7a60ccc5643", size = 4045493, upload-time = "2025-10-15T18:22:25.758Z" }, + { url = "https://files.pythonhosted.org/packages/0e/b6/bc8d0c4c9f6f111a783d045310945deb769b806d7574764234ffd50bc5ea/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:a7921c5a6d31b3d756ec980f2f47c0cfdbce0fc48c22a39347a895f41f4a6ea4", size = 4120461, upload-time = "2025-10-15T18:22:27.286Z" }, + { url = "https://files.pythonhosted.org/packages/5d/57/d60d343709366a353dc56adb4ee1e7d8a2cc34e3fbc22905f4167cfec119/pillow-12.0.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:1ee80a59f6ce048ae13cda1abf7fbd2a34ab9ee7d401c46be3ca685d1999a399", size = 3576912, upload-time = "2025-10-15T18:22:28.751Z" }, + { url = "https://files.pythonhosted.org/packages/a4/a4/a0a31467e3f83b94d37568294b01d22b43ae3c5d85f2811769b9c66389dd/pillow-12.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c50f36a62a22d350c96e49ad02d0da41dbd17ddc2e29750dbdba4323f85eb4a5", size = 5249132, upload-time = "2025-10-15T18:22:30.641Z" }, + { url = "https://files.pythonhosted.org/packages/83/06/48eab21dd561de2914242711434c0c0eb992ed08ff3f6107a5f44527f5e9/pillow-12.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5193fde9a5f23c331ea26d0cf171fbf67e3f247585f50c08b3e205c7aeb4589b", size = 4650099, upload-time = "2025-10-15T18:22:32.73Z" }, + { url = "https://files.pythonhosted.org/packages/fc/bd/69ed99fd46a8dba7c1887156d3572fe4484e3f031405fcc5a92e31c04035/pillow-12.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bde737cff1a975b70652b62d626f7785e0480918dece11e8fef3c0cf057351c3", size = 6230808, upload-time = "2025-10-15T18:22:34.337Z" }, + { url = "https://files.pythonhosted.org/packages/ea/94/8fad659bcdbf86ed70099cb60ae40be6acca434bbc8c4c0d4ef356d7e0de/pillow-12.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:a6597ff2b61d121172f5844b53f21467f7082f5fb385a9a29c01414463f93b07", size = 8037804, upload-time = "2025-10-15T18:22:36.402Z" }, + { url = "https://files.pythonhosted.org/packages/20/39/c685d05c06deecfd4e2d1950e9a908aa2ca8bc4e6c3b12d93b9cafbd7837/pillow-12.0.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0b817e7035ea7f6b942c13aa03bb554fc44fea70838ea21f8eb31c638326584e", size = 6345553, upload-time = "2025-10-15T18:22:38.066Z" }, + { url = "https://files.pythonhosted.org/packages/38/57/755dbd06530a27a5ed74f8cb0a7a44a21722ebf318edbe67ddbd7fb28f88/pillow-12.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f4f1231b7dec408e8670264ce63e9c71409d9583dd21d32c163e25213ee2a344", size = 7037729, upload-time = "2025-10-15T18:22:39.769Z" }, + { url = "https://files.pythonhosted.org/packages/ca/b6/7e94f4c41d238615674d06ed677c14883103dce1c52e4af16f000338cfd7/pillow-12.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e51b71417049ad6ab14c49608b4a24d8fb3fe605e5dfabfe523b58064dc3d27", size = 6459789, upload-time = "2025-10-15T18:22:41.437Z" }, + { url = "https://files.pythonhosted.org/packages/9c/14/4448bb0b5e0f22dd865290536d20ec8a23b64e2d04280b89139f09a36bb6/pillow-12.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d120c38a42c234dc9a8c5de7ceaaf899cf33561956acb4941653f8bdc657aa79", size = 7130917, upload-time = "2025-10-15T18:22:43.152Z" }, + { url = "https://files.pythonhosted.org/packages/dd/ca/16c6926cc1c015845745d5c16c9358e24282f1e588237a4c36d2b30f182f/pillow-12.0.0-cp313-cp313-win32.whl", hash = "sha256:4cc6b3b2efff105c6a1656cfe59da4fdde2cda9af1c5e0b58529b24525d0a098", size = 6302391, upload-time = "2025-10-15T18:22:44.753Z" }, + { url = "https://files.pythonhosted.org/packages/6d/2a/dd43dcfd6dae9b6a49ee28a8eedb98c7d5ff2de94a5d834565164667b97b/pillow-12.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:4cf7fed4b4580601c4345ceb5d4cbf5a980d030fd5ad07c4d2ec589f95f09905", size = 7007477, upload-time = "2025-10-15T18:22:46.838Z" }, + { url = "https://files.pythonhosted.org/packages/77/f0/72ea067f4b5ae5ead653053212af05ce3705807906ba3f3e8f58ddf617e6/pillow-12.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:9f0b04c6b8584c2c193babcccc908b38ed29524b29dd464bc8801bf10d746a3a", size = 2435918, upload-time = "2025-10-15T18:22:48.399Z" }, + { url = "https://files.pythonhosted.org/packages/f5/5e/9046b423735c21f0487ea6cb5b10f89ea8f8dfbe32576fe052b5ba9d4e5b/pillow-12.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7fa22993bac7b77b78cae22bad1e2a987ddf0d9015c63358032f84a53f23cdc3", size = 5251406, upload-time = "2025-10-15T18:22:49.905Z" }, + { url = "https://files.pythonhosted.org/packages/12/66/982ceebcdb13c97270ef7a56c3969635b4ee7cd45227fa707c94719229c5/pillow-12.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f135c702ac42262573fe9714dfe99c944b4ba307af5eb507abef1667e2cbbced", size = 4653218, upload-time = "2025-10-15T18:22:51.587Z" }, + { url = "https://files.pythonhosted.org/packages/16/b3/81e625524688c31859450119bf12674619429cab3119eec0e30a7a1029cb/pillow-12.0.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c85de1136429c524e55cfa4e033b4a7940ac5c8ee4d9401cc2d1bf48154bbc7b", size = 6266564, upload-time = "2025-10-15T18:22:53.215Z" }, + { url = "https://files.pythonhosted.org/packages/98/59/dfb38f2a41240d2408096e1a76c671d0a105a4a8471b1871c6902719450c/pillow-12.0.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:38df9b4bfd3db902c9c2bd369bcacaf9d935b2fff73709429d95cc41554f7b3d", size = 8069260, upload-time = "2025-10-15T18:22:54.933Z" }, + { url = "https://files.pythonhosted.org/packages/dc/3d/378dbea5cd1874b94c312425ca77b0f47776c78e0df2df751b820c8c1d6c/pillow-12.0.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7d87ef5795da03d742bf49439f9ca4d027cde49c82c5371ba52464aee266699a", size = 6379248, upload-time = "2025-10-15T18:22:56.605Z" }, + { url = "https://files.pythonhosted.org/packages/84/b0/d525ef47d71590f1621510327acec75ae58c721dc071b17d8d652ca494d8/pillow-12.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:aff9e4d82d082ff9513bdd6acd4f5bd359f5b2c870907d2b0a9c5e10d40c88fe", size = 7066043, upload-time = "2025-10-15T18:22:58.53Z" }, + { url = "https://files.pythonhosted.org/packages/61/2c/aced60e9cf9d0cde341d54bf7932c9ffc33ddb4a1595798b3a5150c7ec4e/pillow-12.0.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:8d8ca2b210ada074d57fcee40c30446c9562e542fc46aedc19baf758a93532ee", size = 6490915, upload-time = "2025-10-15T18:23:00.582Z" }, + { url = "https://files.pythonhosted.org/packages/ef/26/69dcb9b91f4e59f8f34b2332a4a0a951b44f547c4ed39d3e4dcfcff48f89/pillow-12.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:99a7f72fb6249302aa62245680754862a44179b545ded638cf1fef59befb57ef", size = 7157998, upload-time = "2025-10-15T18:23:02.627Z" }, + { url = "https://files.pythonhosted.org/packages/61/2b/726235842220ca95fa441ddf55dd2382b52ab5b8d9c0596fe6b3f23dafe8/pillow-12.0.0-cp313-cp313t-win32.whl", hash = "sha256:4078242472387600b2ce8d93ade8899c12bf33fa89e55ec89fe126e9d6d5d9e9", size = 6306201, upload-time = "2025-10-15T18:23:04.709Z" }, + { url = "https://files.pythonhosted.org/packages/c0/3d/2afaf4e840b2df71344ababf2f8edd75a705ce500e5dc1e7227808312ae1/pillow-12.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:2c54c1a783d6d60595d3514f0efe9b37c8808746a66920315bfd34a938d7994b", size = 7013165, upload-time = "2025-10-15T18:23:06.46Z" }, + { url = "https://files.pythonhosted.org/packages/6f/75/3fa09aa5cf6ed04bee3fa575798ddf1ce0bace8edb47249c798077a81f7f/pillow-12.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:26d9f7d2b604cd23aba3e9faf795787456ac25634d82cd060556998e39c6fa47", size = 2437834, upload-time = "2025-10-15T18:23:08.194Z" }, + { url = "https://files.pythonhosted.org/packages/54/2a/9a8c6ba2c2c07b71bec92cf63e03370ca5e5f5c5b119b742bcc0cde3f9c5/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphoneos.whl", hash = "sha256:beeae3f27f62308f1ddbcfb0690bf44b10732f2ef43758f169d5e9303165d3f9", size = 4045531, upload-time = "2025-10-15T18:23:10.121Z" }, + { url = "https://files.pythonhosted.org/packages/84/54/836fdbf1bfb3d66a59f0189ff0b9f5f666cee09c6188309300df04ad71fa/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:d4827615da15cd59784ce39d3388275ec093ae3ee8d7f0c089b76fa87af756c2", size = 4120554, upload-time = "2025-10-15T18:23:12.14Z" }, + { url = "https://files.pythonhosted.org/packages/0d/cd/16aec9f0da4793e98e6b54778a5fbce4f375c6646fe662e80600b8797379/pillow-12.0.0-cp314-cp314-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:3e42edad50b6909089750e65c91aa09aaf1e0a71310d383f11321b27c224ed8a", size = 3576812, upload-time = "2025-10-15T18:23:13.962Z" }, + { url = "https://files.pythonhosted.org/packages/f6/b7/13957fda356dc46339298b351cae0d327704986337c3c69bb54628c88155/pillow-12.0.0-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:e5d8efac84c9afcb40914ab49ba063d94f5dbdf5066db4482c66a992f47a3a3b", size = 5252689, upload-time = "2025-10-15T18:23:15.562Z" }, + { url = "https://files.pythonhosted.org/packages/fc/f5/eae31a306341d8f331f43edb2e9122c7661b975433de5e447939ae61c5da/pillow-12.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:266cd5f2b63ff316d5a1bba46268e603c9caf5606d44f38c2873c380950576ad", size = 4650186, upload-time = "2025-10-15T18:23:17.379Z" }, + { url = "https://files.pythonhosted.org/packages/86/62/2a88339aa40c4c77e79108facbd307d6091e2c0eb5b8d3cf4977cfca2fe6/pillow-12.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:58eea5ebe51504057dd95c5b77d21700b77615ab0243d8152793dc00eb4faf01", size = 6230308, upload-time = "2025-10-15T18:23:18.971Z" }, + { url = "https://files.pythonhosted.org/packages/c7/33/5425a8992bcb32d1cb9fa3dd39a89e613d09a22f2c8083b7bf43c455f760/pillow-12.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f13711b1a5ba512d647a0e4ba79280d3a9a045aaf7e0cc6fbe96b91d4cdf6b0c", size = 8039222, upload-time = "2025-10-15T18:23:20.909Z" }, + { url = "https://files.pythonhosted.org/packages/d8/61/3f5d3b35c5728f37953d3eec5b5f3e77111949523bd2dd7f31a851e50690/pillow-12.0.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6846bd2d116ff42cba6b646edf5bf61d37e5cbd256425fa089fee4ff5c07a99e", size = 6346657, upload-time = "2025-10-15T18:23:23.077Z" }, + { url = "https://files.pythonhosted.org/packages/3a/be/ee90a3d79271227e0f0a33c453531efd6ed14b2e708596ba5dd9be948da3/pillow-12.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c98fa880d695de164b4135a52fd2e9cd7b7c90a9d8ac5e9e443a24a95ef9248e", size = 7038482, upload-time = "2025-10-15T18:23:25.005Z" }, + { url = "https://files.pythonhosted.org/packages/44/34/a16b6a4d1ad727de390e9bd9f19f5f669e079e5826ec0f329010ddea492f/pillow-12.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:fa3ed2a29a9e9d2d488b4da81dcb54720ac3104a20bf0bd273f1e4648aff5af9", size = 6461416, upload-time = "2025-10-15T18:23:27.009Z" }, + { url = "https://files.pythonhosted.org/packages/b6/39/1aa5850d2ade7d7ba9f54e4e4c17077244ff7a2d9e25998c38a29749eb3f/pillow-12.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d034140032870024e6b9892c692fe2968493790dd57208b2c37e3fb35f6df3ab", size = 7131584, upload-time = "2025-10-15T18:23:29.752Z" }, + { url = "https://files.pythonhosted.org/packages/bf/db/4fae862f8fad0167073a7733973bfa955f47e2cac3dc3e3e6257d10fab4a/pillow-12.0.0-cp314-cp314-win32.whl", hash = "sha256:1b1b133e6e16105f524a8dec491e0586d072948ce15c9b914e41cdadd209052b", size = 6400621, upload-time = "2025-10-15T18:23:32.06Z" }, + { url = "https://files.pythonhosted.org/packages/2b/24/b350c31543fb0107ab2599464d7e28e6f856027aadda995022e695313d94/pillow-12.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:8dc232e39d409036af549c86f24aed8273a40ffa459981146829a324e0848b4b", size = 7142916, upload-time = "2025-10-15T18:23:34.71Z" }, + { url = "https://files.pythonhosted.org/packages/0f/9b/0ba5a6fd9351793996ef7487c4fdbde8d3f5f75dbedc093bb598648fddf0/pillow-12.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:d52610d51e265a51518692045e372a4c363056130d922a7351429ac9f27e70b0", size = 2523836, upload-time = "2025-10-15T18:23:36.967Z" }, + { url = "https://files.pythonhosted.org/packages/f5/7a/ceee0840aebc579af529b523d530840338ecf63992395842e54edc805987/pillow-12.0.0-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:1979f4566bb96c1e50a62d9831e2ea2d1211761e5662afc545fa766f996632f6", size = 5255092, upload-time = "2025-10-15T18:23:38.573Z" }, + { url = "https://files.pythonhosted.org/packages/44/76/20776057b4bfd1aef4eeca992ebde0f53a4dce874f3ae693d0ec90a4f79b/pillow-12.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:b2e4b27a6e15b04832fe9bf292b94b5ca156016bbc1ea9c2c20098a0320d6cf6", size = 4653158, upload-time = "2025-10-15T18:23:40.238Z" }, + { url = "https://files.pythonhosted.org/packages/82/3f/d9ff92ace07be8836b4e7e87e6a4c7a8318d47c2f1463ffcf121fc57d9cb/pillow-12.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:fb3096c30df99fd01c7bf8e544f392103d0795b9f98ba71a8054bcbf56b255f1", size = 6267882, upload-time = "2025-10-15T18:23:42.434Z" }, + { url = "https://files.pythonhosted.org/packages/9f/7a/4f7ff87f00d3ad33ba21af78bfcd2f032107710baf8280e3722ceec28cda/pillow-12.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7438839e9e053ef79f7112c881cef684013855016f928b168b81ed5835f3e75e", size = 8071001, upload-time = "2025-10-15T18:23:44.29Z" }, + { url = "https://files.pythonhosted.org/packages/75/87/fcea108944a52dad8cca0715ae6247e271eb80459364a98518f1e4f480c1/pillow-12.0.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d5c411a8eaa2299322b647cd932586b1427367fd3184ffbb8f7a219ea2041ca", size = 6380146, upload-time = "2025-10-15T18:23:46.065Z" }, + { url = "https://files.pythonhosted.org/packages/91/52/0d31b5e571ef5fd111d2978b84603fce26aba1b6092f28e941cb46570745/pillow-12.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7e091d464ac59d2c7ad8e7e08105eaf9dafbc3883fd7265ffccc2baad6ac925", size = 7067344, upload-time = "2025-10-15T18:23:47.898Z" }, + { url = "https://files.pythonhosted.org/packages/7b/f4/2dd3d721f875f928d48e83bb30a434dee75a2531bca839bb996bb0aa5a91/pillow-12.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:792a2c0be4dcc18af9d4a2dfd8a11a17d5e25274a1062b0ec1c2d79c76f3e7f8", size = 6491864, upload-time = "2025-10-15T18:23:49.607Z" }, + { url = "https://files.pythonhosted.org/packages/30/4b/667dfcf3d61fc309ba5a15b141845cece5915e39b99c1ceab0f34bf1d124/pillow-12.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:afbefa430092f71a9593a99ab6a4e7538bc9eabbf7bf94f91510d3503943edc4", size = 7158911, upload-time = "2025-10-15T18:23:51.351Z" }, + { url = "https://files.pythonhosted.org/packages/a2/2f/16cabcc6426c32218ace36bf0d55955e813f2958afddbf1d391849fee9d1/pillow-12.0.0-cp314-cp314t-win32.whl", hash = "sha256:3830c769decf88f1289680a59d4f4c46c72573446352e2befec9a8512104fa52", size = 6408045, upload-time = "2025-10-15T18:23:53.177Z" }, + { url = "https://files.pythonhosted.org/packages/35/73/e29aa0c9c666cf787628d3f0dcf379f4791fba79f4936d02f8b37165bdf8/pillow-12.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:905b0365b210c73afb0ebe9101a32572152dfd1c144c7e28968a331b9217b94a", size = 7148282, upload-time = "2025-10-15T18:23:55.316Z" }, + { url = "https://files.pythonhosted.org/packages/c1/70/6b41bdcddf541b437bbb9f47f94d2db5d9ddef6c37ccab8c9107743748a4/pillow-12.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:99353a06902c2e43b43e8ff74ee65a7d90307d82370604746738a1e0661ccca7", size = 2525630, upload-time = "2025-10-15T18:23:57.149Z" }, + { url = "https://files.pythonhosted.org/packages/1d/b3/582327e6c9f86d037b63beebe981425d6811104cb443e8193824ef1a2f27/pillow-12.0.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b22bd8c974942477156be55a768f7aa37c46904c175be4e158b6a86e3a6b7ca8", size = 5215068, upload-time = "2025-10-15T18:23:59.594Z" }, + { url = "https://files.pythonhosted.org/packages/fd/d6/67748211d119f3b6540baf90f92fae73ae51d5217b171b0e8b5f7e5d558f/pillow-12.0.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:805ebf596939e48dbb2e4922a1d3852cfc25c38160751ce02da93058b48d252a", size = 4614994, upload-time = "2025-10-15T18:24:01.669Z" }, + { url = "https://files.pythonhosted.org/packages/2d/e1/f8281e5d844c41872b273b9f2c34a4bf64ca08905668c8ae730eedc7c9fa/pillow-12.0.0-pp311-pypy311_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cae81479f77420d217def5f54b5b9d279804d17e982e0f2fa19b1d1e14ab5197", size = 5246639, upload-time = "2025-10-15T18:24:03.403Z" }, + { url = "https://files.pythonhosted.org/packages/94/5a/0d8ab8ffe8a102ff5df60d0de5af309015163bf710c7bb3e8311dd3b3ad0/pillow-12.0.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:aeaefa96c768fc66818730b952a862235d68825c178f1b3ffd4efd7ad2edcb7c", size = 6986839, upload-time = "2025-10-15T18:24:05.344Z" }, + { url = "https://files.pythonhosted.org/packages/20/2e/3434380e8110b76cd9eb00a363c484b050f949b4bbe84ba770bb8508a02c/pillow-12.0.0-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09f2d0abef9e4e2f349305a4f8cc784a8a6c2f58a8c4892eea13b10a943bd26e", size = 5313505, upload-time = "2025-10-15T18:24:07.137Z" }, + { url = "https://files.pythonhosted.org/packages/57/ca/5a9d38900d9d74785141d6580950fe705de68af735ff6e727cb911b64740/pillow-12.0.0-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bdee52571a343d721fb2eb3b090a82d959ff37fc631e3f70422e0c2e029f3e76", size = 5963654, upload-time = "2025-10-15T18:24:09.579Z" }, + { url = "https://files.pythonhosted.org/packages/95/7e/f896623c3c635a90537ac093c6a618ebe1a90d87206e42309cb5d98a1b9e/pillow-12.0.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:b290fd8aa38422444d4b50d579de197557f182ef1068b75f5aa8558638b8d0a5", size = 6997850, upload-time = "2025-10-15T18:24:11.495Z" }, +] + +[[package]] +name = "platformdirs" +version = "4.4.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +sdist = { url = "https://files.pythonhosted.org/packages/23/e8/21db9c9987b0e728855bd57bff6984f67952bea55d6f75e055c46b5383e8/platformdirs-4.4.0.tar.gz", hash = "sha256:ca753cf4d81dc309bc67b0ea38fd15dc97bc30ce419a7f58d13eb3bf14c4febf", size = 21634, upload-time = "2025-08-26T14:32:04.268Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/4b/2028861e724d3bd36227adfa20d3fd24c3fc6d52032f4a93c133be5d17ce/platformdirs-4.4.0-py3-none-any.whl", hash = "sha256:abd01743f24e5287cd7a5db3752faf1a2d65353f38ec26d98e25a6db65958c85", size = 18654, upload-time = "2025-08-26T14:32:02.735Z" }, +] + +[[package]] +name = "platformdirs" +version = "4.5.0" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version == '3.10.*'", +] +sdist = { url = "https://files.pythonhosted.org/packages/61/33/9611380c2bdb1225fdef633e2a9610622310fed35ab11dac9620972ee088/platformdirs-4.5.0.tar.gz", hash = "sha256:70ddccdd7c99fc5942e9fc25636a8b34d04c24b335100223152c2803e4063312", size = 21632, upload-time = "2025-10-08T17:44:48.791Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/cb/ac7874b3e5d58441674fb70742e6c374b28b0c7cb988d37d991cde47166c/platformdirs-4.5.0-py3-none-any.whl", hash = "sha256:e578a81bb873cbb89a41fcc904c7ef523cc18284b7e3b3ccf06aca1403b7ebd3", size = 18651, upload-time = "2025-10-08T17:44:47.223Z" }, +] + +[[package]] +name = "pluggy" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412, upload-time = "2025-05-15T12:30:07.975Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" }, +] + +[[package]] +name = "polars" +version = "1.34.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "polars-runtime-32" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/3e/35fcf5bf51404371bb172b289a5065778dc97adca4416e199c294125eb05/polars-1.34.0.tar.gz", hash = "sha256:5de5f871027db4b11bcf39215a2d6b13b4a80baf8a55c5862d4ebedfd5cd4013", size = 684309, upload-time = "2025-10-02T18:31:04.396Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6b/80/1791ac226bb989bef30fe8fde752b2021b6ec5dfd6e880262596aedf4c05/polars-1.34.0-py3-none-any.whl", hash = "sha256:40d2f357b4d9e447ad28bd2c9923e4318791a7c18eb68f31f1fbf11180f41391", size = 772686, upload-time = "2025-10-02T18:29:59.492Z" }, +] + +[[package]] +name = "polars-runtime-32" +version = "1.34.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/02/10/1189afb14cc47ed215ccf7fbd00ed21c48edfd89e51c16f8628a33ae4b1b/polars_runtime_32-1.34.0.tar.gz", hash = "sha256:ebe6f865128a0d833f53a3f6828360761ad86d1698bceb22bef9fd999500dc1c", size = 2634491, upload-time = "2025-10-02T18:31:05.502Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/97/35/bc4f1a9dcef61845e8e4e5d2318470b002b93a3564026f0643f562761ecb/polars_runtime_32-1.34.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:2878f9951e91121afe60c25433ef270b9a221e6ebf3de5f6642346b38cab3f03", size = 39655423, upload-time = "2025-10-02T18:30:02.846Z" }, + { url = "https://files.pythonhosted.org/packages/a6/bb/d655a103e75b7c81c47a3c2d276be0200c0c15cfb6fd47f17932ddcf7519/polars_runtime_32-1.34.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:fbc329c7d34a924228cc5dcdbbd4696d94411a3a5b15ad8bb868634c204e1951", size = 35986049, upload-time = "2025-10-02T18:30:05.848Z" }, + { url = "https://files.pythonhosted.org/packages/9e/ce/11ca850b7862cb43605e5d86cdf655614376e0a059871cf8305af5406554/polars_runtime_32-1.34.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93fa51d88a2d12ea996a5747aad5647d22a86cce73c80f208e61f487b10bc448", size = 40261269, upload-time = "2025-10-02T18:30:08.48Z" }, + { url = "https://files.pythonhosted.org/packages/d8/25/77d12018c35489e19f7650b40679714a834effafc25d61e8dcee7c4fafce/polars_runtime_32-1.34.0-cp39-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:79e4d696392c6d8d51f4347f0b167c52eef303c9d87093c0c68e8651198735b7", size = 37049077, upload-time = "2025-10-02T18:30:11.162Z" }, + { url = "https://files.pythonhosted.org/packages/e2/75/c30049d45ea1365151f86f650ed5354124ff3209f0abe588664c8eb13a31/polars_runtime_32-1.34.0-cp39-abi3-win_amd64.whl", hash = "sha256:2501d6b29d9001ea5ea2fd9b598787e10ddf45d8c4a87c2bead75159e8a15711", size = 40105782, upload-time = "2025-10-02T18:30:14.597Z" }, + { url = "https://files.pythonhosted.org/packages/a3/31/84efa27aa3478c8670bac1a720c8b1aee5c58c9c657c980e5e5c47fde883/polars_runtime_32-1.34.0-cp39-abi3-win_arm64.whl", hash = "sha256:f9ed1765378dfe0bcd1ac5ec570dd9eab27ea728bbc980cc9a76eebc55586559", size = 35873216, upload-time = "2025-10-02T18:30:17.439Z" }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.52" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/96/06e01a7b38dce6fe1db213e061a4602dd6032a8a97ef6c1a862537732421/prompt_toolkit-3.0.52.tar.gz", hash = "sha256:28cde192929c8e7321de85de1ddbe736f1375148b02f2e17edd840042b1be855", size = 434198, upload-time = "2025-08-27T15:24:02.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl", hash = "sha256:9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955", size = 391431, upload-time = "2025-08-27T15:23:59.498Z" }, +] + +[[package]] +name = "psutil" +version = "7.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/89/fc/889242351a932d6183eec5df1fc6539b6f36b6a88444f1e63f18668253aa/psutil-7.1.1.tar.gz", hash = "sha256:092b6350145007389c1cfe5716050f02030a05219d90057ea867d18fe8d372fc", size = 487067, upload-time = "2025-10-19T15:43:59.373Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/51/30/f97f8fb1f9ecfbeae4b5ca738dcae66ab28323b5cfbc96cb5565f3754056/psutil-7.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:8fa59d7b1f01f0337f12cd10dbd76e4312a4d3c730a4fedcbdd4e5447a8b8460", size = 244221, upload-time = "2025-10-19T15:44:03.145Z" }, + { url = "https://files.pythonhosted.org/packages/7b/98/b8d1f61ebf35f4dbdbaabadf9208282d8adc820562f0257e5e6e79e67bf2/psutil-7.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:2a95104eae85d088891716db676f780c1404fc15d47fde48a46a5d61e8f5ad2c", size = 245660, upload-time = "2025-10-19T15:44:05.657Z" }, + { url = "https://files.pythonhosted.org/packages/f0/4a/b8015d7357fefdfe34bc4a3db48a107bae4bad0b94fb6eb0613f09a08ada/psutil-7.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:98629cd8567acefcc45afe2f4ba1e9290f579eacf490a917967decce4b74ee9b", size = 286963, upload-time = "2025-10-19T15:44:08.877Z" }, + { url = "https://files.pythonhosted.org/packages/3d/3c/b56076bb35303d0733fc47b110a1c9cce081a05ae2e886575a3587c1ee76/psutil-7.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92ebc58030fb054fa0f26c3206ef01c31c29d67aee1367e3483c16665c25c8d2", size = 290118, upload-time = "2025-10-19T15:44:11.897Z" }, + { url = "https://files.pythonhosted.org/packages/dc/af/c13d360c0adc6f6218bf9e2873480393d0f729c8dd0507d171f53061c0d3/psutil-7.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:146a704f224fb2ded2be3da5ac67fc32b9ea90c45b51676f9114a6ac45616967", size = 292587, upload-time = "2025-10-19T15:44:14.67Z" }, + { url = "https://files.pythonhosted.org/packages/90/2d/c933e7071ba60c7862813f2c7108ec4cf8304f1c79660efeefd0de982258/psutil-7.1.1-cp37-abi3-win32.whl", hash = "sha256:295c4025b5cd880f7445e4379e6826f7307e3d488947bf9834e865e7847dc5f7", size = 243772, upload-time = "2025-10-19T15:44:16.938Z" }, + { url = "https://files.pythonhosted.org/packages/be/f3/11fd213fff15427bc2853552138760c720fd65032d99edfb161910d04127/psutil-7.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:9b4f17c5f65e44f69bd3a3406071a47b79df45cf2236d1f717970afcb526bcd3", size = 246936, upload-time = "2025-10-19T15:44:18.663Z" }, + { url = "https://files.pythonhosted.org/packages/0a/8d/8a9a45c8b655851f216c1d44f68e3533dc8d2c752ccd0f61f1aa73be4893/psutil-7.1.1-cp37-abi3-win_arm64.whl", hash = "sha256:5457cf741ca13da54624126cd5d333871b454ab133999a9a103fb097a7d7d21a", size = 243944, upload-time = "2025-10-19T15:44:20.666Z" }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762, upload-time = "2020-12-28T15:15:30.155Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993, upload-time = "2020-12-28T15:15:28.35Z" }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752, upload-time = "2024-07-21T12:58:21.801Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842, upload-time = "2024-07-21T12:58:20.04Z" }, +] + +[[package]] +name = "pycircstat2" +version = "0.1.15" +source = { editable = "." } +dependencies = [ + { name = "matplotlib", version = "3.9.4", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "matplotlib", version = "3.10.7", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "numpy", version = "2.3.4", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "pandas" }, + { name = "scipy", version = "1.13.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "scipy", version = "1.15.3", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "scipy", version = "1.16.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, +] + +[package.optional-dependencies] +dev = [ + { name = "ipykernel", version = "6.31.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "ipykernel", version = "7.0.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "mkdocs" }, + { name = "mkdocs-material" }, + { name = "mkdocs-material-extensions" }, + { name = "mkdocstrings", extra = ["python"] }, + { name = "polars" }, + { name = "pytest" }, + { name = "ruff" }, + { name = "watermark" }, +] + +[package.metadata] +requires-dist = [ + { name = "ipykernel", marker = "extra == 'dev'", specifier = ">=6.31.0" }, + { name = "matplotlib" }, + { name = "mkdocs", marker = "extra == 'dev'" }, + { name = "mkdocs-material", marker = "extra == 'dev'" }, + { name = "mkdocs-material-extensions", marker = "extra == 'dev'" }, + { name = "mkdocstrings", extras = ["python"], marker = "extra == 'dev'" }, + { name = "numpy" }, + { name = "pandas" }, + { name = "polars", marker = "extra == 'dev'" }, + { name = "pytest", marker = "extra == 'dev'" }, + { name = "ruff", marker = "extra == 'dev'" }, + { name = "scipy" }, + { name = "watermark", marker = "extra == 'dev'" }, +] +provides-extras = ["dev"] + +[[package]] +name = "pycparser" +version = "2.23" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fe/cf/d2d3b9f5699fb1e4615c8e32ff220203e43b248e1dfcc6736ad9057731ca/pycparser-2.23.tar.gz", hash = "sha256:78816d4f24add8f10a06d6f05b4d424ad9e96cfebf68a4ddc99c65c0720d00c2", size = 173734, upload-time = "2025-09-09T13:23:47.91Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/e3/59cd50310fc9b59512193629e1984c1f95e5c8ae6e5d8c69532ccc65a7fe/pycparser-2.23-py3-none-any.whl", hash = "sha256:e5c6e8d3fbad53479cab09ac03729e0a9faf2bee3db8208a550daf5af81a5934", size = 118140, upload-time = "2025-09-09T13:23:46.651Z" }, +] + +[[package]] +name = "pygments" +version = "2.19.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" }, +] + +[[package]] +name = "pymdown-extensions" +version = "10.16.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/55/b3/6d2b3f149bc5413b0a29761c2c5832d8ce904a1d7f621e86616d96f505cc/pymdown_extensions-10.16.1.tar.gz", hash = "sha256:aace82bcccba3efc03e25d584e6a22d27a8e17caa3f4dd9f207e49b787aa9a91", size = 853277, upload-time = "2025-07-28T16:19:34.167Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e4/06/43084e6cbd4b3bc0e80f6be743b2e79fbc6eed8de9ad8c629939fa55d972/pymdown_extensions-10.16.1-py3-none-any.whl", hash = "sha256:d6ba157a6c03146a7fb122b2b9a121300056384eafeec9c9f9e584adfdb2a32d", size = 266178, upload-time = "2025-07-28T16:19:31.401Z" }, +] + +[[package]] +name = "pyparsing" +version = "3.2.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/181488fc2b9d093e3972d2a472855aae8a03f000592dbfce716a512b3359/pyparsing-3.2.5.tar.gz", hash = "sha256:2df8d5b7b2802ef88e8d016a2eb9c7aeaa923529cd251ed0fe4608275d4105b6", size = 1099274, upload-time = "2025-09-21T04:11:06.277Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/5e/1aa9a93198c6b64513c9d7752de7422c06402de6600a8767da1524f9570b/pyparsing-3.2.5-py3-none-any.whl", hash = "sha256:e38a4f02064cf41fe6593d328d0512495ad1f3d8a91c4f73fc401b3079a59a5e", size = 113890, upload-time = "2025-09-21T04:11:04.117Z" }, +] + +[[package]] +name = "pytest" +version = "8.4.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "iniconfig", version = "2.1.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "iniconfig", version = "2.3.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.10'" }, + { name = "packaging" }, + { name = "pluggy" }, + { name = "pygments" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/5c/00a0e072241553e1a7496d638deababa67c5058571567b92a7eaa258397c/pytest-8.4.2.tar.gz", hash = "sha256:86c0d0b93306b961d58d62a4db4879f27fe25513d4b969df351abdddb3c30e01", size = 1519618, upload-time = "2025-09-04T14:34:22.711Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a8/a4/20da314d277121d6534b3a980b29035dcd51e6744bd79075a6ce8fa4eb8d/pytest-8.4.2-py3-none-any.whl", hash = "sha256:872f880de3fc3a5bdc88a11b39c9710c3497a547cfa9320bc3c5e62fbf272e79", size = 365750, upload-time = "2025-09-04T14:34:20.226Z" }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, +] + +[[package]] +name = "pytz" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884, upload-time = "2025-03-25T02:25:00.538Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225, upload-time = "2025-03-25T02:24:58.468Z" }, +] + +[[package]] +name = "pywin32" +version = "311" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/40/44efbb0dfbd33aca6a6483191dae0716070ed99e2ecb0c53683f400a0b4f/pywin32-311-cp310-cp310-win32.whl", hash = "sha256:d03ff496d2a0cd4a5893504789d4a15399133fe82517455e78bad62efbb7f0a3", size = 8760432, upload-time = "2025-07-14T20:13:05.9Z" }, + { url = "https://files.pythonhosted.org/packages/5e/bf/360243b1e953bd254a82f12653974be395ba880e7ec23e3731d9f73921cc/pywin32-311-cp310-cp310-win_amd64.whl", hash = "sha256:797c2772017851984b97180b0bebe4b620bb86328e8a884bb626156295a63b3b", size = 9590103, upload-time = "2025-07-14T20:13:07.698Z" }, + { url = "https://files.pythonhosted.org/packages/57/38/d290720e6f138086fb3d5ffe0b6caa019a791dd57866940c82e4eeaf2012/pywin32-311-cp310-cp310-win_arm64.whl", hash = "sha256:0502d1facf1fed4839a9a51ccbcc63d952cf318f78ffc00a7e78528ac27d7a2b", size = 8778557, upload-time = "2025-07-14T20:13:11.11Z" }, + { url = "https://files.pythonhosted.org/packages/7c/af/449a6a91e5d6db51420875c54f6aff7c97a86a3b13a0b4f1a5c13b988de3/pywin32-311-cp311-cp311-win32.whl", hash = "sha256:184eb5e436dea364dcd3d2316d577d625c0351bf237c4e9a5fabbcfa5a58b151", size = 8697031, upload-time = "2025-07-14T20:13:13.266Z" }, + { url = "https://files.pythonhosted.org/packages/51/8f/9bb81dd5bb77d22243d33c8397f09377056d5c687aa6d4042bea7fbf8364/pywin32-311-cp311-cp311-win_amd64.whl", hash = "sha256:3ce80b34b22b17ccbd937a6e78e7225d80c52f5ab9940fe0506a1a16f3dab503", size = 9508308, upload-time = "2025-07-14T20:13:15.147Z" }, + { url = "https://files.pythonhosted.org/packages/44/7b/9c2ab54f74a138c491aba1b1cd0795ba61f144c711daea84a88b63dc0f6c/pywin32-311-cp311-cp311-win_arm64.whl", hash = "sha256:a733f1388e1a842abb67ffa8e7aad0e70ac519e09b0f6a784e65a136ec7cefd2", size = 8703930, upload-time = "2025-07-14T20:13:16.945Z" }, + { url = "https://files.pythonhosted.org/packages/e7/ab/01ea1943d4eba0f850c3c61e78e8dd59757ff815ff3ccd0a84de5f541f42/pywin32-311-cp312-cp312-win32.whl", hash = "sha256:750ec6e621af2b948540032557b10a2d43b0cee2ae9758c54154d711cc852d31", size = 8706543, upload-time = "2025-07-14T20:13:20.765Z" }, + { url = "https://files.pythonhosted.org/packages/d1/a8/a0e8d07d4d051ec7502cd58b291ec98dcc0c3fff027caad0470b72cfcc2f/pywin32-311-cp312-cp312-win_amd64.whl", hash = "sha256:b8c095edad5c211ff31c05223658e71bf7116daa0ecf3ad85f3201ea3190d067", size = 9495040, upload-time = "2025-07-14T20:13:22.543Z" }, + { url = "https://files.pythonhosted.org/packages/ba/3a/2ae996277b4b50f17d61f0603efd8253cb2d79cc7ae159468007b586396d/pywin32-311-cp312-cp312-win_arm64.whl", hash = "sha256:e286f46a9a39c4a18b319c28f59b61de793654af2f395c102b4f819e584b5852", size = 8710102, upload-time = "2025-07-14T20:13:24.682Z" }, + { url = "https://files.pythonhosted.org/packages/a5/be/3fd5de0979fcb3994bfee0d65ed8ca9506a8a1260651b86174f6a86f52b3/pywin32-311-cp313-cp313-win32.whl", hash = "sha256:f95ba5a847cba10dd8c4d8fefa9f2a6cf283b8b88ed6178fa8a6c1ab16054d0d", size = 8705700, upload-time = "2025-07-14T20:13:26.471Z" }, + { url = "https://files.pythonhosted.org/packages/e3/28/e0a1909523c6890208295a29e05c2adb2126364e289826c0a8bc7297bd5c/pywin32-311-cp313-cp313-win_amd64.whl", hash = "sha256:718a38f7e5b058e76aee1c56ddd06908116d35147e133427e59a3983f703a20d", size = 9494700, upload-time = "2025-07-14T20:13:28.243Z" }, + { url = "https://files.pythonhosted.org/packages/04/bf/90339ac0f55726dce7d794e6d79a18a91265bdf3aa70b6b9ca52f35e022a/pywin32-311-cp313-cp313-win_arm64.whl", hash = "sha256:7b4075d959648406202d92a2310cb990fea19b535c7f4a78d3f5e10b926eeb8a", size = 8709318, upload-time = "2025-07-14T20:13:30.348Z" }, + { url = "https://files.pythonhosted.org/packages/c9/31/097f2e132c4f16d99a22bfb777e0fd88bd8e1c634304e102f313af69ace5/pywin32-311-cp314-cp314-win32.whl", hash = "sha256:b7a2c10b93f8986666d0c803ee19b5990885872a7de910fc460f9b0c2fbf92ee", size = 8840714, upload-time = "2025-07-14T20:13:32.449Z" }, + { url = "https://files.pythonhosted.org/packages/90/4b/07c77d8ba0e01349358082713400435347df8426208171ce297da32c313d/pywin32-311-cp314-cp314-win_amd64.whl", hash = "sha256:3aca44c046bd2ed8c90de9cb8427f581c479e594e99b5c0bb19b29c10fd6cb87", size = 9656800, upload-time = "2025-07-14T20:13:34.312Z" }, + { url = "https://files.pythonhosted.org/packages/c0/d2/21af5c535501a7233e734b8af901574572da66fcc254cb35d0609c9080dd/pywin32-311-cp314-cp314-win_arm64.whl", hash = "sha256:a508e2d9025764a8270f93111a970e1d0fbfc33f4153b388bb649b7eec4f9b42", size = 8932540, upload-time = "2025-07-14T20:13:36.379Z" }, + { url = "https://files.pythonhosted.org/packages/59/42/b86689aac0cdaee7ae1c58d464b0ff04ca909c19bb6502d4973cdd9f9544/pywin32-311-cp39-cp39-win32.whl", hash = "sha256:aba8f82d551a942cb20d4a83413ccbac30790b50efb89a75e4f586ac0bb8056b", size = 8760837, upload-time = "2025-07-14T20:12:59.59Z" }, + { url = "https://files.pythonhosted.org/packages/9f/8a/1403d0353f8c5a2f0829d2b1c4becbf9da2f0a4d040886404fc4a5431e4d/pywin32-311-cp39-cp39-win_amd64.whl", hash = "sha256:e0c4cfb0621281fe40387df582097fd796e80430597cb9944f0ae70447bacd91", size = 9590187, upload-time = "2025-07-14T20:13:01.419Z" }, + { url = "https://files.pythonhosted.org/packages/60/22/e0e8d802f124772cec9c75430b01a212f86f9de7546bda715e54140d5aeb/pywin32-311-cp39-cp39-win_arm64.whl", hash = "sha256:62ea666235135fee79bb154e695f3ff67370afefd71bd7fea7512fc70ef31e3d", size = 8778162, upload-time = "2025-07-14T20:13:03.544Z" }, +] + +[[package]] +name = "pyyaml" +version = "6.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/05/8e/961c0007c59b8dd7729d542c61a4d537767a59645b82a0b521206e1e25c2/pyyaml-6.0.3.tar.gz", hash = "sha256:d76623373421df22fb4cf8817020cbb7ef15c725b9d5e45f17e189bfc384190f", size = 130960, upload-time = "2025-09-25T21:33:16.546Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/a0/39350dd17dd6d6c6507025c0e53aef67a9293a6d37d3511f23ea510d5800/pyyaml-6.0.3-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:214ed4befebe12df36bcc8bc2b64b396ca31be9304b8f59e25c11cf94a4c033b", size = 184227, upload-time = "2025-09-25T21:31:46.04Z" }, + { url = "https://files.pythonhosted.org/packages/05/14/52d505b5c59ce73244f59c7a50ecf47093ce4765f116cdb98286a71eeca2/pyyaml-6.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:02ea2dfa234451bbb8772601d7b8e426c2bfa197136796224e50e35a78777956", size = 174019, upload-time = "2025-09-25T21:31:47.706Z" }, + { url = "https://files.pythonhosted.org/packages/43/f7/0e6a5ae5599c838c696adb4e6330a59f463265bfa1e116cfd1fbb0abaaae/pyyaml-6.0.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b30236e45cf30d2b8e7b3e85881719e98507abed1011bf463a8fa23e9c3e98a8", size = 740646, upload-time = "2025-09-25T21:31:49.21Z" }, + { url = "https://files.pythonhosted.org/packages/2f/3a/61b9db1d28f00f8fd0ae760459a5c4bf1b941baf714e207b6eb0657d2578/pyyaml-6.0.3-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:66291b10affd76d76f54fad28e22e51719ef9ba22b29e1d7d03d6777a9174198", size = 840793, upload-time = "2025-09-25T21:31:50.735Z" }, + { url = "https://files.pythonhosted.org/packages/7a/1e/7acc4f0e74c4b3d9531e24739e0ab832a5edf40e64fbae1a9c01941cabd7/pyyaml-6.0.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9c7708761fccb9397fe64bbc0395abcae8c4bf7b0eac081e12b809bf47700d0b", size = 770293, upload-time = "2025-09-25T21:31:51.828Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ef/abd085f06853af0cd59fa5f913d61a8eab65d7639ff2a658d18a25d6a89d/pyyaml-6.0.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:418cf3f2111bc80e0933b2cd8cd04f286338bb88bdc7bc8e6dd775ebde60b5e0", size = 732872, upload-time = "2025-09-25T21:31:53.282Z" }, + { url = "https://files.pythonhosted.org/packages/1f/15/2bc9c8faf6450a8b3c9fc5448ed869c599c0a74ba2669772b1f3a0040180/pyyaml-6.0.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e0b74767e5f8c593e8c9b5912019159ed0533c70051e9cce3e8b6aa699fcd69", size = 758828, upload-time = "2025-09-25T21:31:54.807Z" }, + { url = "https://files.pythonhosted.org/packages/a3/00/531e92e88c00f4333ce359e50c19b8d1de9fe8d581b1534e35ccfbc5f393/pyyaml-6.0.3-cp310-cp310-win32.whl", hash = "sha256:28c8d926f98f432f88adc23edf2e6d4921ac26fb084b028c733d01868d19007e", size = 142415, upload-time = "2025-09-25T21:31:55.885Z" }, + { url = "https://files.pythonhosted.org/packages/2a/fa/926c003379b19fca39dd4634818b00dec6c62d87faf628d1394e137354d4/pyyaml-6.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:bdb2c67c6c1390b63c6ff89f210c8fd09d9a1217a465701eac7316313c915e4c", size = 158561, upload-time = "2025-09-25T21:31:57.406Z" }, + { url = "https://files.pythonhosted.org/packages/6d/16/a95b6757765b7b031c9374925bb718d55e0a9ba8a1b6a12d25962ea44347/pyyaml-6.0.3-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:44edc647873928551a01e7a563d7452ccdebee747728c1080d881d68af7b997e", size = 185826, upload-time = "2025-09-25T21:31:58.655Z" }, + { url = "https://files.pythonhosted.org/packages/16/19/13de8e4377ed53079ee996e1ab0a9c33ec2faf808a4647b7b4c0d46dd239/pyyaml-6.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:652cb6edd41e718550aad172851962662ff2681490a8a711af6a4d288dd96824", size = 175577, upload-time = "2025-09-25T21:32:00.088Z" }, + { url = "https://files.pythonhosted.org/packages/0c/62/d2eb46264d4b157dae1275b573017abec435397aa59cbcdab6fc978a8af4/pyyaml-6.0.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:10892704fc220243f5305762e276552a0395f7beb4dbf9b14ec8fd43b57f126c", size = 775556, upload-time = "2025-09-25T21:32:01.31Z" }, + { url = "https://files.pythonhosted.org/packages/10/cb/16c3f2cf3266edd25aaa00d6c4350381c8b012ed6f5276675b9eba8d9ff4/pyyaml-6.0.3-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:850774a7879607d3a6f50d36d04f00ee69e7fc816450e5f7e58d7f17f1ae5c00", size = 882114, upload-time = "2025-09-25T21:32:03.376Z" }, + { url = "https://files.pythonhosted.org/packages/71/60/917329f640924b18ff085ab889a11c763e0b573da888e8404ff486657602/pyyaml-6.0.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b8bb0864c5a28024fac8a632c443c87c5aa6f215c0b126c449ae1a150412f31d", size = 806638, upload-time = "2025-09-25T21:32:04.553Z" }, + { url = "https://files.pythonhosted.org/packages/dd/6f/529b0f316a9fd167281a6c3826b5583e6192dba792dd55e3203d3f8e655a/pyyaml-6.0.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1d37d57ad971609cf3c53ba6a7e365e40660e3be0e5175fa9f2365a379d6095a", size = 767463, upload-time = "2025-09-25T21:32:06.152Z" }, + { url = "https://files.pythonhosted.org/packages/f2/6a/b627b4e0c1dd03718543519ffb2f1deea4a1e6d42fbab8021936a4d22589/pyyaml-6.0.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:37503bfbfc9d2c40b344d06b2199cf0e96e97957ab1c1b546fd4f87e53e5d3e4", size = 794986, upload-time = "2025-09-25T21:32:07.367Z" }, + { url = "https://files.pythonhosted.org/packages/45/91/47a6e1c42d9ee337c4839208f30d9f09caa9f720ec7582917b264defc875/pyyaml-6.0.3-cp311-cp311-win32.whl", hash = "sha256:8098f252adfa6c80ab48096053f512f2321f0b998f98150cea9bd23d83e1467b", size = 142543, upload-time = "2025-09-25T21:32:08.95Z" }, + { url = "https://files.pythonhosted.org/packages/da/e3/ea007450a105ae919a72393cb06f122f288ef60bba2dc64b26e2646fa315/pyyaml-6.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:9f3bfb4965eb874431221a3ff3fdcddc7e74e3b07799e0e84ca4a0f867d449bf", size = 158763, upload-time = "2025-09-25T21:32:09.96Z" }, + { url = "https://files.pythonhosted.org/packages/d1/33/422b98d2195232ca1826284a76852ad5a86fe23e31b009c9886b2d0fb8b2/pyyaml-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7f047e29dcae44602496db43be01ad42fc6f1cc0d8cd6c83d342306c32270196", size = 182063, upload-time = "2025-09-25T21:32:11.445Z" }, + { url = "https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fc09d0aa354569bc501d4e787133afc08552722d3ab34836a80547331bb5d4a0", size = 173973, upload-time = "2025-09-25T21:32:12.492Z" }, + { url = "https://files.pythonhosted.org/packages/ed/23/7a778b6bd0b9a8039df8b1b1d80e2e2ad78aa04171592c8a5c43a56a6af4/pyyaml-6.0.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9149cad251584d5fb4981be1ecde53a1ca46c891a79788c0df828d2f166bda28", size = 775116, upload-time = "2025-09-25T21:32:13.652Z" }, + { url = "https://files.pythonhosted.org/packages/65/30/d7353c338e12baef4ecc1b09e877c1970bd3382789c159b4f89d6a70dc09/pyyaml-6.0.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5fdec68f91a0c6739b380c83b951e2c72ac0197ace422360e6d5a959d8d97b2c", size = 844011, upload-time = "2025-09-25T21:32:15.21Z" }, + { url = "https://files.pythonhosted.org/packages/8b/9d/b3589d3877982d4f2329302ef98a8026e7f4443c765c46cfecc8858c6b4b/pyyaml-6.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ba1cc08a7ccde2d2ec775841541641e4548226580ab850948cbfda66a1befcdc", size = 807870, upload-time = "2025-09-25T21:32:16.431Z" }, + { url = "https://files.pythonhosted.org/packages/05/c0/b3be26a015601b822b97d9149ff8cb5ead58c66f981e04fedf4e762f4bd4/pyyaml-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8dc52c23056b9ddd46818a57b78404882310fb473d63f17b07d5c40421e47f8e", size = 761089, upload-time = "2025-09-25T21:32:17.56Z" }, + { url = "https://files.pythonhosted.org/packages/be/8e/98435a21d1d4b46590d5459a22d88128103f8da4c2d4cb8f14f2a96504e1/pyyaml-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:41715c910c881bc081f1e8872880d3c650acf13dfa8214bad49ed4cede7c34ea", size = 790181, upload-time = "2025-09-25T21:32:18.834Z" }, + { url = "https://files.pythonhosted.org/packages/74/93/7baea19427dcfbe1e5a372d81473250b379f04b1bd3c4c5ff825e2327202/pyyaml-6.0.3-cp312-cp312-win32.whl", hash = "sha256:96b533f0e99f6579b3d4d4995707cf36df9100d67e0c8303a0c55b27b5f99bc5", size = 137658, upload-time = "2025-09-25T21:32:20.209Z" }, + { url = "https://files.pythonhosted.org/packages/86/bf/899e81e4cce32febab4fb42bb97dcdf66bc135272882d1987881a4b519e9/pyyaml-6.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:5fcd34e47f6e0b794d17de1b4ff496c00986e1c83f7ab2fb8fcfe9616ff7477b", size = 154003, upload-time = "2025-09-25T21:32:21.167Z" }, + { url = "https://files.pythonhosted.org/packages/1a/08/67bd04656199bbb51dbed1439b7f27601dfb576fb864099c7ef0c3e55531/pyyaml-6.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:64386e5e707d03a7e172c0701abfb7e10f0fb753ee1d773128192742712a98fd", size = 140344, upload-time = "2025-09-25T21:32:22.617Z" }, + { url = "https://files.pythonhosted.org/packages/d1/11/0fd08f8192109f7169db964b5707a2f1e8b745d4e239b784a5a1dd80d1db/pyyaml-6.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8da9669d359f02c0b91ccc01cac4a67f16afec0dac22c2ad09f46bee0697eba8", size = 181669, upload-time = "2025-09-25T21:32:23.673Z" }, + { url = "https://files.pythonhosted.org/packages/b1/16/95309993f1d3748cd644e02e38b75d50cbc0d9561d21f390a76242ce073f/pyyaml-6.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:2283a07e2c21a2aa78d9c4442724ec1eb15f5e42a723b99cb3d822d48f5f7ad1", size = 173252, upload-time = "2025-09-25T21:32:25.149Z" }, + { url = "https://files.pythonhosted.org/packages/50/31/b20f376d3f810b9b2371e72ef5adb33879b25edb7a6d072cb7ca0c486398/pyyaml-6.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ee2922902c45ae8ccada2c5b501ab86c36525b883eff4255313a253a3160861c", size = 767081, upload-time = "2025-09-25T21:32:26.575Z" }, + { url = "https://files.pythonhosted.org/packages/49/1e/a55ca81e949270d5d4432fbbd19dfea5321eda7c41a849d443dc92fd1ff7/pyyaml-6.0.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:a33284e20b78bd4a18c8c2282d549d10bc8408a2a7ff57653c0cf0b9be0afce5", size = 841159, upload-time = "2025-09-25T21:32:27.727Z" }, + { url = "https://files.pythonhosted.org/packages/74/27/e5b8f34d02d9995b80abcef563ea1f8b56d20134d8f4e5e81733b1feceb2/pyyaml-6.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0f29edc409a6392443abf94b9cf89ce99889a1dd5376d94316ae5145dfedd5d6", size = 801626, upload-time = "2025-09-25T21:32:28.878Z" }, + { url = "https://files.pythonhosted.org/packages/f9/11/ba845c23988798f40e52ba45f34849aa8a1f2d4af4b798588010792ebad6/pyyaml-6.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f7057c9a337546edc7973c0d3ba84ddcdf0daa14533c2065749c9075001090e6", size = 753613, upload-time = "2025-09-25T21:32:30.178Z" }, + { url = "https://files.pythonhosted.org/packages/3d/e0/7966e1a7bfc0a45bf0a7fb6b98ea03fc9b8d84fa7f2229e9659680b69ee3/pyyaml-6.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:eda16858a3cab07b80edaf74336ece1f986ba330fdb8ee0d6c0d68fe82bc96be", size = 794115, upload-time = "2025-09-25T21:32:31.353Z" }, + { url = "https://files.pythonhosted.org/packages/de/94/980b50a6531b3019e45ddeada0626d45fa85cbe22300844a7983285bed3b/pyyaml-6.0.3-cp313-cp313-win32.whl", hash = "sha256:d0eae10f8159e8fdad514efdc92d74fd8d682c933a6dd088030f3834bc8e6b26", size = 137427, upload-time = "2025-09-25T21:32:32.58Z" }, + { url = "https://files.pythonhosted.org/packages/97/c9/39d5b874e8b28845e4ec2202b5da735d0199dbe5b8fb85f91398814a9a46/pyyaml-6.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:79005a0d97d5ddabfeeea4cf676af11e647e41d81c9a7722a193022accdb6b7c", size = 154090, upload-time = "2025-09-25T21:32:33.659Z" }, + { url = "https://files.pythonhosted.org/packages/73/e8/2bdf3ca2090f68bb3d75b44da7bbc71843b19c9f2b9cb9b0f4ab7a5a4329/pyyaml-6.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:5498cd1645aa724a7c71c8f378eb29ebe23da2fc0d7a08071d89469bf1d2defb", size = 140246, upload-time = "2025-09-25T21:32:34.663Z" }, + { url = "https://files.pythonhosted.org/packages/9d/8c/f4bd7f6465179953d3ac9bc44ac1a8a3e6122cf8ada906b4f96c60172d43/pyyaml-6.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8d1fab6bb153a416f9aeb4b8763bc0f22a5586065f86f7664fc23339fc1c1fac", size = 181814, upload-time = "2025-09-25T21:32:35.712Z" }, + { url = "https://files.pythonhosted.org/packages/bd/9c/4d95bb87eb2063d20db7b60faa3840c1b18025517ae857371c4dd55a6b3a/pyyaml-6.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:34d5fcd24b8445fadc33f9cf348c1047101756fd760b4dacb5c3e99755703310", size = 173809, upload-time = "2025-09-25T21:32:36.789Z" }, + { url = "https://files.pythonhosted.org/packages/92/b5/47e807c2623074914e29dabd16cbbdd4bf5e9b2db9f8090fa64411fc5382/pyyaml-6.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:501a031947e3a9025ed4405a168e6ef5ae3126c59f90ce0cd6f2bfc477be31b7", size = 766454, upload-time = "2025-09-25T21:32:37.966Z" }, + { url = "https://files.pythonhosted.org/packages/02/9e/e5e9b168be58564121efb3de6859c452fccde0ab093d8438905899a3a483/pyyaml-6.0.3-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:b3bc83488de33889877a0f2543ade9f70c67d66d9ebb4ac959502e12de895788", size = 836355, upload-time = "2025-09-25T21:32:39.178Z" }, + { url = "https://files.pythonhosted.org/packages/88/f9/16491d7ed2a919954993e48aa941b200f38040928474c9e85ea9e64222c3/pyyaml-6.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c458b6d084f9b935061bc36216e8a69a7e293a2f1e68bf956dcd9e6cbcd143f5", size = 794175, upload-time = "2025-09-25T21:32:40.865Z" }, + { url = "https://files.pythonhosted.org/packages/dd/3f/5989debef34dc6397317802b527dbbafb2b4760878a53d4166579111411e/pyyaml-6.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7c6610def4f163542a622a73fb39f534f8c101d690126992300bf3207eab9764", size = 755228, upload-time = "2025-09-25T21:32:42.084Z" }, + { url = "https://files.pythonhosted.org/packages/d7/ce/af88a49043cd2e265be63d083fc75b27b6ed062f5f9fd6cdc223ad62f03e/pyyaml-6.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:5190d403f121660ce8d1d2c1bb2ef1bd05b5f68533fc5c2ea899bd15f4399b35", size = 789194, upload-time = "2025-09-25T21:32:43.362Z" }, + { url = "https://files.pythonhosted.org/packages/23/20/bb6982b26a40bb43951265ba29d4c246ef0ff59c9fdcdf0ed04e0687de4d/pyyaml-6.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:4a2e8cebe2ff6ab7d1050ecd59c25d4c8bd7e6f400f5f82b96557ac0abafd0ac", size = 156429, upload-time = "2025-09-25T21:32:57.844Z" }, + { url = "https://files.pythonhosted.org/packages/f4/f4/a4541072bb9422c8a883ab55255f918fa378ecf083f5b85e87fc2b4eda1b/pyyaml-6.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:93dda82c9c22deb0a405ea4dc5f2d0cda384168e466364dec6255b293923b2f3", size = 143912, upload-time = "2025-09-25T21:32:59.247Z" }, + { url = "https://files.pythonhosted.org/packages/7c/f9/07dd09ae774e4616edf6cda684ee78f97777bdd15847253637a6f052a62f/pyyaml-6.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:02893d100e99e03eda1c8fd5c441d8c60103fd175728e23e431db1b589cf5ab3", size = 189108, upload-time = "2025-09-25T21:32:44.377Z" }, + { url = "https://files.pythonhosted.org/packages/4e/78/8d08c9fb7ce09ad8c38ad533c1191cf27f7ae1effe5bb9400a46d9437fcf/pyyaml-6.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:c1ff362665ae507275af2853520967820d9124984e0f7466736aea23d8611fba", size = 183641, upload-time = "2025-09-25T21:32:45.407Z" }, + { url = "https://files.pythonhosted.org/packages/7b/5b/3babb19104a46945cf816d047db2788bcaf8c94527a805610b0289a01c6b/pyyaml-6.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6adc77889b628398debc7b65c073bcb99c4a0237b248cacaf3fe8a557563ef6c", size = 831901, upload-time = "2025-09-25T21:32:48.83Z" }, + { url = "https://files.pythonhosted.org/packages/8b/cc/dff0684d8dc44da4d22a13f35f073d558c268780ce3c6ba1b87055bb0b87/pyyaml-6.0.3-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:a80cb027f6b349846a3bf6d73b5e95e782175e52f22108cfa17876aaeff93702", size = 861132, upload-time = "2025-09-25T21:32:50.149Z" }, + { url = "https://files.pythonhosted.org/packages/b1/5e/f77dc6b9036943e285ba76b49e118d9ea929885becb0a29ba8a7c75e29fe/pyyaml-6.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:00c4bdeba853cc34e7dd471f16b4114f4162dc03e6b7afcc2128711f0eca823c", size = 839261, upload-time = "2025-09-25T21:32:51.808Z" }, + { url = "https://files.pythonhosted.org/packages/ce/88/a9db1376aa2a228197c58b37302f284b5617f56a5d959fd1763fb1675ce6/pyyaml-6.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:66e1674c3ef6f541c35191caae2d429b967b99e02040f5ba928632d9a7f0f065", size = 805272, upload-time = "2025-09-25T21:32:52.941Z" }, + { url = "https://files.pythonhosted.org/packages/da/92/1446574745d74df0c92e6aa4a7b0b3130706a4142b2d1a5869f2eaa423c6/pyyaml-6.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:16249ee61e95f858e83976573de0f5b2893b3677ba71c9dd36b9cf8be9ac6d65", size = 829923, upload-time = "2025-09-25T21:32:54.537Z" }, + { url = "https://files.pythonhosted.org/packages/f0/7a/1c7270340330e575b92f397352af856a8c06f230aa3e76f86b39d01b416a/pyyaml-6.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4ad1906908f2f5ae4e5a8ddfce73c320c2a1429ec52eafd27138b7f1cbe341c9", size = 174062, upload-time = "2025-09-25T21:32:55.767Z" }, + { url = "https://files.pythonhosted.org/packages/f1/12/de94a39c2ef588c7e6455cfbe7343d3b2dc9d6b6b2f40c4c6565744c873d/pyyaml-6.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:ebc55a14a21cb14062aa4162f906cd962b28e2e9ea38f9b4391244cd8de4ae0b", size = 149341, upload-time = "2025-09-25T21:32:56.828Z" }, + { url = "https://files.pythonhosted.org/packages/9f/62/67fc8e68a75f738c9200422bf65693fb79a4cd0dc5b23310e5202e978090/pyyaml-6.0.3-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:b865addae83924361678b652338317d1bd7e79b1f4596f96b96c77a5a34b34da", size = 184450, upload-time = "2025-09-25T21:33:00.618Z" }, + { url = "https://files.pythonhosted.org/packages/ae/92/861f152ce87c452b11b9d0977952259aa7df792d71c1053365cc7b09cc08/pyyaml-6.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c3355370a2c156cffb25e876646f149d5d68f5e0a3ce86a5084dd0b64a994917", size = 174319, upload-time = "2025-09-25T21:33:02.086Z" }, + { url = "https://files.pythonhosted.org/packages/d0/cd/f0cfc8c74f8a030017a2b9c771b7f47e5dd702c3e28e5b2071374bda2948/pyyaml-6.0.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3c5677e12444c15717b902a5798264fa7909e41153cdf9ef7ad571b704a63dd9", size = 737631, upload-time = "2025-09-25T21:33:03.25Z" }, + { url = "https://files.pythonhosted.org/packages/ef/b2/18f2bd28cd2055a79a46c9b0895c0b3d987ce40ee471cecf58a1a0199805/pyyaml-6.0.3-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5ed875a24292240029e4483f9d4a4b8a1ae08843b9c54f43fcc11e404532a8a5", size = 836795, upload-time = "2025-09-25T21:33:05.014Z" }, + { url = "https://files.pythonhosted.org/packages/73/b9/793686b2d54b531203c160ef12bec60228a0109c79bae6c1277961026770/pyyaml-6.0.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0150219816b6a1fa26fb4699fb7daa9caf09eb1999f3b70fb6e786805e80375a", size = 750767, upload-time = "2025-09-25T21:33:06.398Z" }, + { url = "https://files.pythonhosted.org/packages/a9/86/a137b39a611def2ed78b0e66ce2fe13ee701a07c07aebe55c340ed2a050e/pyyaml-6.0.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fa160448684b4e94d80416c0fa4aac48967a969efe22931448d853ada8baf926", size = 727982, upload-time = "2025-09-25T21:33:08.708Z" }, + { url = "https://files.pythonhosted.org/packages/dd/62/71c27c94f457cf4418ef8ccc71735324c549f7e3ea9d34aba50874563561/pyyaml-6.0.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:27c0abcb4a5dac13684a37f76e701e054692a9b2d3064b70f5e4eb54810553d7", size = 755677, upload-time = "2025-09-25T21:33:09.876Z" }, + { url = "https://files.pythonhosted.org/packages/29/3d/6f5e0d58bd924fb0d06c3a6bad00effbdae2de5adb5cda5648006ffbd8d3/pyyaml-6.0.3-cp39-cp39-win32.whl", hash = "sha256:1ebe39cb5fc479422b83de611d14e2c0d3bb2a18bbcb01f229ab3cfbd8fee7a0", size = 142592, upload-time = "2025-09-25T21:33:10.983Z" }, + { url = "https://files.pythonhosted.org/packages/f0/0c/25113e0b5e103d7f1490c0e947e303fe4a696c10b501dea7a9f49d4e876c/pyyaml-6.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:2e71d11abed7344e42a8849600193d15b6def118602c4c176f748e4583246007", size = 158777, upload-time = "2025-09-25T21:33:15.55Z" }, +] + +[[package]] +name = "pyyaml-env-tag" +version = "1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/2e/79c822141bfd05a853236b504869ebc6b70159afc570e1d5a20641782eaa/pyyaml_env_tag-1.1.tar.gz", hash = "sha256:2eb38b75a2d21ee0475d6d97ec19c63287a7e140231e4214969d0eac923cd7ff", size = 5737, upload-time = "2025-05-13T15:24:01.64Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/11/432f32f8097b03e3cd5fe57e88efb685d964e2e5178a48ed61e841f7fdce/pyyaml_env_tag-1.1-py3-none-any.whl", hash = "sha256:17109e1a528561e32f026364712fee1264bc2ea6715120891174ed1b980d2e04", size = 4722, upload-time = "2025-05-13T15:23:59.629Z" }, +] + +[[package]] +name = "pyzmq" +version = "27.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/04/0b/3c9baedbdf613ecaa7aa07027780b8867f57b6293b6ee50de316c9f3222b/pyzmq-27.1.0.tar.gz", hash = "sha256:ac0765e3d44455adb6ddbf4417dcce460fc40a05978c08efdf2948072f6db540", size = 281750, upload-time = "2025-09-08T23:10:18.157Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/67/b9/52aa9ec2867528b54f1e60846728d8b4d84726630874fee3a91e66c7df81/pyzmq-27.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:508e23ec9bc44c0005c4946ea013d9317ae00ac67778bd47519fdf5a0e930ff4", size = 1329850, upload-time = "2025-09-08T23:07:26.274Z" }, + { url = "https://files.pythonhosted.org/packages/99/64/5653e7b7425b169f994835a2b2abf9486264401fdef18df91ddae47ce2cc/pyzmq-27.1.0-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:507b6f430bdcf0ee48c0d30e734ea89ce5567fd7b8a0f0044a369c176aa44556", size = 906380, upload-time = "2025-09-08T23:07:29.78Z" }, + { url = "https://files.pythonhosted.org/packages/73/78/7d713284dbe022f6440e391bd1f3c48d9185673878034cfb3939cdf333b2/pyzmq-27.1.0-cp310-cp310-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bf7b38f9fd7b81cb6d9391b2946382c8237fd814075c6aa9c3b746d53076023b", size = 666421, upload-time = "2025-09-08T23:07:31.263Z" }, + { url = "https://files.pythonhosted.org/packages/30/76/8f099f9d6482450428b17c4d6b241281af7ce6a9de8149ca8c1c649f6792/pyzmq-27.1.0-cp310-cp310-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:03ff0b279b40d687691a6217c12242ee71f0fba28bf8626ff50e3ef0f4410e1e", size = 854149, upload-time = "2025-09-08T23:07:33.17Z" }, + { url = "https://files.pythonhosted.org/packages/59/f0/37fbfff06c68016019043897e4c969ceab18bde46cd2aca89821fcf4fb2e/pyzmq-27.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:677e744fee605753eac48198b15a2124016c009a11056f93807000ab11ce6526", size = 1655070, upload-time = "2025-09-08T23:07:35.205Z" }, + { url = "https://files.pythonhosted.org/packages/47/14/7254be73f7a8edc3587609554fcaa7bfd30649bf89cd260e4487ca70fdaa/pyzmq-27.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dd2fec2b13137416a1c5648b7009499bcc8fea78154cd888855fa32514f3dad1", size = 2033441, upload-time = "2025-09-08T23:07:37.432Z" }, + { url = "https://files.pythonhosted.org/packages/22/dc/49f2be26c6f86f347e796a4d99b19167fc94503f0af3fd010ad262158822/pyzmq-27.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:08e90bb4b57603b84eab1d0ca05b3bbb10f60c1839dc471fc1c9e1507bef3386", size = 1891529, upload-time = "2025-09-08T23:07:39.047Z" }, + { url = "https://files.pythonhosted.org/packages/a3/3e/154fb963ae25be70c0064ce97776c937ecc7d8b0259f22858154a9999769/pyzmq-27.1.0-cp310-cp310-win32.whl", hash = "sha256:a5b42d7a0658b515319148875fcb782bbf118dd41c671b62dae33666c2213bda", size = 567276, upload-time = "2025-09-08T23:07:40.695Z" }, + { url = "https://files.pythonhosted.org/packages/62/b2/f4ab56c8c595abcb26b2be5fd9fa9e6899c1e5ad54964e93ae8bb35482be/pyzmq-27.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:c0bb87227430ee3aefcc0ade2088100e528d5d3298a0a715a64f3d04c60ba02f", size = 632208, upload-time = "2025-09-08T23:07:42.298Z" }, + { url = "https://files.pythonhosted.org/packages/3b/e3/be2cc7ab8332bdac0522fdb64c17b1b6241a795bee02e0196636ec5beb79/pyzmq-27.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:9a916f76c2ab8d045b19f2286851a38e9ac94ea91faf65bd64735924522a8b32", size = 559766, upload-time = "2025-09-08T23:07:43.869Z" }, + { url = "https://files.pythonhosted.org/packages/06/5d/305323ba86b284e6fcb0d842d6adaa2999035f70f8c38a9b6d21ad28c3d4/pyzmq-27.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:226b091818d461a3bef763805e75685e478ac17e9008f49fce2d3e52b3d58b86", size = 1333328, upload-time = "2025-09-08T23:07:45.946Z" }, + { url = "https://files.pythonhosted.org/packages/bd/a0/fc7e78a23748ad5443ac3275943457e8452da67fda347e05260261108cbc/pyzmq-27.1.0-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:0790a0161c281ca9723f804871b4027f2e8b5a528d357c8952d08cd1a9c15581", size = 908803, upload-time = "2025-09-08T23:07:47.551Z" }, + { url = "https://files.pythonhosted.org/packages/7e/22/37d15eb05f3bdfa4abea6f6d96eb3bb58585fbd3e4e0ded4e743bc650c97/pyzmq-27.1.0-cp311-cp311-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c895a6f35476b0c3a54e3eb6ccf41bf3018de937016e6e18748317f25d4e925f", size = 668836, upload-time = "2025-09-08T23:07:49.436Z" }, + { url = "https://files.pythonhosted.org/packages/b1/c4/2a6fe5111a01005fc7af3878259ce17684fabb8852815eda6225620f3c59/pyzmq-27.1.0-cp311-cp311-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5bbf8d3630bf96550b3be8e1fc0fea5cbdc8d5466c1192887bd94869da17a63e", size = 857038, upload-time = "2025-09-08T23:07:51.234Z" }, + { url = "https://files.pythonhosted.org/packages/cb/eb/bfdcb41d0db9cd233d6fb22dc131583774135505ada800ebf14dfb0a7c40/pyzmq-27.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:15c8bd0fe0dabf808e2d7a681398c4e5ded70a551ab47482067a572c054c8e2e", size = 1657531, upload-time = "2025-09-08T23:07:52.795Z" }, + { url = "https://files.pythonhosted.org/packages/ab/21/e3180ca269ed4a0de5c34417dfe71a8ae80421198be83ee619a8a485b0c7/pyzmq-27.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:bafcb3dd171b4ae9f19ee6380dfc71ce0390fefaf26b504c0e5f628d7c8c54f2", size = 2034786, upload-time = "2025-09-08T23:07:55.047Z" }, + { url = "https://files.pythonhosted.org/packages/3b/b1/5e21d0b517434b7f33588ff76c177c5a167858cc38ef740608898cd329f2/pyzmq-27.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e829529fcaa09937189178115c49c504e69289abd39967cd8a4c215761373394", size = 1894220, upload-time = "2025-09-08T23:07:57.172Z" }, + { url = "https://files.pythonhosted.org/packages/03/f2/44913a6ff6941905efc24a1acf3d3cb6146b636c546c7406c38c49c403d4/pyzmq-27.1.0-cp311-cp311-win32.whl", hash = "sha256:6df079c47d5902af6db298ec92151db82ecb557af663098b92f2508c398bb54f", size = 567155, upload-time = "2025-09-08T23:07:59.05Z" }, + { url = "https://files.pythonhosted.org/packages/23/6d/d8d92a0eb270a925c9b4dd039c0b4dc10abc2fcbc48331788824ef113935/pyzmq-27.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:190cbf120fbc0fc4957b56866830def56628934a9d112aec0e2507aa6a032b97", size = 633428, upload-time = "2025-09-08T23:08:00.663Z" }, + { url = "https://files.pythonhosted.org/packages/ae/14/01afebc96c5abbbd713ecfc7469cfb1bc801c819a74ed5c9fad9a48801cb/pyzmq-27.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:eca6b47df11a132d1745eb3b5b5e557a7dae2c303277aa0e69c6ba91b8736e07", size = 559497, upload-time = "2025-09-08T23:08:02.15Z" }, + { url = "https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl", hash = "sha256:452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc", size = 1306279, upload-time = "2025-09-08T23:08:03.807Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5e/c3c49fdd0f535ef45eefcc16934648e9e59dace4a37ee88fc53f6cd8e641/pyzmq-27.1.0-cp312-abi3-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1c179799b118e554b66da67d88ed66cd37a169f1f23b5d9f0a231b4e8d44a113", size = 895645, upload-time = "2025-09-08T23:08:05.301Z" }, + { url = "https://files.pythonhosted.org/packages/f8/e5/b0b2504cb4e903a74dcf1ebae157f9e20ebb6ea76095f6cfffea28c42ecd/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3837439b7f99e60312f0c926a6ad437b067356dc2bc2ec96eb395fd0fe804233", size = 652574, upload-time = "2025-09-08T23:08:06.828Z" }, + { url = "https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31", size = 840995, upload-time = "2025-09-08T23:08:08.396Z" }, + { url = "https://files.pythonhosted.org/packages/c2/bb/b79798ca177b9eb0825b4c9998c6af8cd2a7f15a6a1a4272c1d1a21d382f/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0de3028d69d4cdc475bfe47a6128eb38d8bc0e8f4d69646adfbcd840facbac28", size = 1642070, upload-time = "2025-09-08T23:08:09.989Z" }, + { url = "https://files.pythonhosted.org/packages/9c/80/2df2e7977c4ede24c79ae39dcef3899bfc5f34d1ca7a5b24f182c9b7a9ca/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_i686.whl", hash = "sha256:cf44a7763aea9298c0aa7dbf859f87ed7012de8bda0f3977b6fb1d96745df856", size = 2021121, upload-time = "2025-09-08T23:08:11.907Z" }, + { url = "https://files.pythonhosted.org/packages/46/bd/2d45ad24f5f5ae7e8d01525eb76786fa7557136555cac7d929880519e33a/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f30f395a9e6fbca195400ce833c731e7b64c3919aa481af4d88c3759e0cb7496", size = 1878550, upload-time = "2025-09-08T23:08:13.513Z" }, + { url = "https://files.pythonhosted.org/packages/e6/2f/104c0a3c778d7c2ab8190e9db4f62f0b6957b53c9d87db77c284b69f33ea/pyzmq-27.1.0-cp312-abi3-win32.whl", hash = "sha256:250e5436a4ba13885494412b3da5d518cd0d3a278a1ae640e113c073a5f88edd", size = 559184, upload-time = "2025-09-08T23:08:15.163Z" }, + { url = "https://files.pythonhosted.org/packages/fc/7f/a21b20d577e4100c6a41795842028235998a643b1ad406a6d4163ea8f53e/pyzmq-27.1.0-cp312-abi3-win_amd64.whl", hash = "sha256:9ce490cf1d2ca2ad84733aa1d69ce6855372cb5ce9223802450c9b2a7cba0ccf", size = 619480, upload-time = "2025-09-08T23:08:17.192Z" }, + { url = "https://files.pythonhosted.org/packages/78/c2/c012beae5f76b72f007a9e91ee9401cb88c51d0f83c6257a03e785c81cc2/pyzmq-27.1.0-cp312-abi3-win_arm64.whl", hash = "sha256:75a2f36223f0d535a0c919e23615fc85a1e23b71f40c7eb43d7b1dedb4d8f15f", size = 552993, upload-time = "2025-09-08T23:08:18.926Z" }, + { url = "https://files.pythonhosted.org/packages/60/cb/84a13459c51da6cec1b7b1dc1a47e6db6da50b77ad7fd9c145842750a011/pyzmq-27.1.0-cp313-cp313-android_24_arm64_v8a.whl", hash = "sha256:93ad4b0855a664229559e45c8d23797ceac03183c7b6f5b4428152a6b06684a5", size = 1122436, upload-time = "2025-09-08T23:08:20.801Z" }, + { url = "https://files.pythonhosted.org/packages/dc/b6/94414759a69a26c3dd674570a81813c46a078767d931a6c70ad29fc585cb/pyzmq-27.1.0-cp313-cp313-android_24_x86_64.whl", hash = "sha256:fbb4f2400bfda24f12f009cba62ad5734148569ff4949b1b6ec3b519444342e6", size = 1156301, upload-time = "2025-09-08T23:08:22.47Z" }, + { url = "https://files.pythonhosted.org/packages/a5/ad/15906493fd40c316377fd8a8f6b1f93104f97a752667763c9b9c1b71d42d/pyzmq-27.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:e343d067f7b151cfe4eb3bb796a7752c9d369eed007b91231e817071d2c2fec7", size = 1341197, upload-time = "2025-09-08T23:08:24.286Z" }, + { url = "https://files.pythonhosted.org/packages/14/1d/d343f3ce13db53a54cb8946594e567410b2125394dafcc0268d8dda027e0/pyzmq-27.1.0-cp313-cp313t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:08363b2011dec81c354d694bdecaef4770e0ae96b9afea70b3f47b973655cc05", size = 897275, upload-time = "2025-09-08T23:08:26.063Z" }, + { url = "https://files.pythonhosted.org/packages/69/2d/d83dd6d7ca929a2fc67d2c3005415cdf322af7751d773524809f9e585129/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d54530c8c8b5b8ddb3318f481297441af102517602b569146185fa10b63f4fa9", size = 660469, upload-time = "2025-09-08T23:08:27.623Z" }, + { url = "https://files.pythonhosted.org/packages/3e/cd/9822a7af117f4bc0f1952dbe9ef8358eb50a24928efd5edf54210b850259/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6f3afa12c392f0a44a2414056d730eebc33ec0926aae92b5ad5cf26ebb6cc128", size = 847961, upload-time = "2025-09-08T23:08:29.672Z" }, + { url = "https://files.pythonhosted.org/packages/9a/12/f003e824a19ed73be15542f172fd0ec4ad0b60cf37436652c93b9df7c585/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:c65047adafe573ff023b3187bb93faa583151627bc9c51fc4fb2c561ed689d39", size = 1650282, upload-time = "2025-09-08T23:08:31.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/4a/e82d788ed58e9a23995cee70dbc20c9aded3d13a92d30d57ec2291f1e8a3/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:90e6e9441c946a8b0a667356f7078d96411391a3b8f80980315455574177ec97", size = 2024468, upload-time = "2025-09-08T23:08:33.543Z" }, + { url = "https://files.pythonhosted.org/packages/d9/94/2da0a60841f757481e402b34bf4c8bf57fa54a5466b965de791b1e6f747d/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:add071b2d25f84e8189aaf0882d39a285b42fa3853016ebab234a5e78c7a43db", size = 1885394, upload-time = "2025-09-08T23:08:35.51Z" }, + { url = "https://files.pythonhosted.org/packages/4f/6f/55c10e2e49ad52d080dc24e37adb215e5b0d64990b57598abc2e3f01725b/pyzmq-27.1.0-cp313-cp313t-win32.whl", hash = "sha256:7ccc0700cfdf7bd487bea8d850ec38f204478681ea02a582a8da8171b7f90a1c", size = 574964, upload-time = "2025-09-08T23:08:37.178Z" }, + { url = "https://files.pythonhosted.org/packages/87/4d/2534970ba63dd7c522d8ca80fb92777f362c0f321900667c615e2067cb29/pyzmq-27.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:8085a9fba668216b9b4323be338ee5437a235fe275b9d1610e422ccc279733e2", size = 641029, upload-time = "2025-09-08T23:08:40.595Z" }, + { url = "https://files.pythonhosted.org/packages/f6/fa/f8aea7a28b0641f31d40dea42d7ef003fded31e184ef47db696bc74cd610/pyzmq-27.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:6bb54ca21bcfe361e445256c15eedf083f153811c37be87e0514934d6913061e", size = 561541, upload-time = "2025-09-08T23:08:42.668Z" }, + { url = "https://files.pythonhosted.org/packages/87/45/19efbb3000956e82d0331bafca5d9ac19ea2857722fa2caacefb6042f39d/pyzmq-27.1.0-cp314-cp314t-macosx_10_15_universal2.whl", hash = "sha256:ce980af330231615756acd5154f29813d553ea555485ae712c491cd483df6b7a", size = 1341197, upload-time = "2025-09-08T23:08:44.973Z" }, + { url = "https://files.pythonhosted.org/packages/48/43/d72ccdbf0d73d1343936296665826350cb1e825f92f2db9db3e61c2162a2/pyzmq-27.1.0-cp314-cp314t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1779be8c549e54a1c38f805e56d2a2e5c009d26de10921d7d51cfd1c8d4632ea", size = 897175, upload-time = "2025-09-08T23:08:46.601Z" }, + { url = "https://files.pythonhosted.org/packages/2f/2e/a483f73a10b65a9ef0161e817321d39a770b2acf8bcf3004a28d90d14a94/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7200bb0f03345515df50d99d3db206a0a6bee1955fbb8c453c76f5bf0e08fb96", size = 660427, upload-time = "2025-09-08T23:08:48.187Z" }, + { url = "https://files.pythonhosted.org/packages/f5/d2/5f36552c2d3e5685abe60dfa56f91169f7a2d99bbaf67c5271022ab40863/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01c0e07d558b06a60773744ea6251f769cd79a41a97d11b8bf4ab8f034b0424d", size = 847929, upload-time = "2025-09-08T23:08:49.76Z" }, + { url = "https://files.pythonhosted.org/packages/c4/2a/404b331f2b7bf3198e9945f75c4c521f0c6a3a23b51f7a4a401b94a13833/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:80d834abee71f65253c91540445d37c4c561e293ba6e741b992f20a105d69146", size = 1650193, upload-time = "2025-09-08T23:08:51.7Z" }, + { url = "https://files.pythonhosted.org/packages/1c/0b/f4107e33f62a5acf60e3ded67ed33d79b4ce18de432625ce2fc5093d6388/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:544b4e3b7198dde4a62b8ff6685e9802a9a1ebf47e77478a5eb88eca2a82f2fd", size = 2024388, upload-time = "2025-09-08T23:08:53.393Z" }, + { url = "https://files.pythonhosted.org/packages/0d/01/add31fe76512642fd6e40e3a3bd21f4b47e242c8ba33efb6809e37076d9b/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:cedc4c68178e59a4046f97eca31b148ddcf51e88677de1ef4e78cf06c5376c9a", size = 1885316, upload-time = "2025-09-08T23:08:55.702Z" }, + { url = "https://files.pythonhosted.org/packages/c4/59/a5f38970f9bf07cee96128de79590bb354917914a9be11272cfc7ff26af0/pyzmq-27.1.0-cp314-cp314t-win32.whl", hash = "sha256:1f0b2a577fd770aa6f053211a55d1c47901f4d537389a034c690291485e5fe92", size = 587472, upload-time = "2025-09-08T23:08:58.18Z" }, + { url = "https://files.pythonhosted.org/packages/70/d8/78b1bad170f93fcf5e3536e70e8fadac55030002275c9a29e8f5719185de/pyzmq-27.1.0-cp314-cp314t-win_amd64.whl", hash = "sha256:19c9468ae0437f8074af379e986c5d3d7d7bfe033506af442e8c879732bedbe0", size = 661401, upload-time = "2025-09-08T23:08:59.802Z" }, + { url = "https://files.pythonhosted.org/packages/81/d6/4bfbb40c9a0b42fc53c7cf442f6385db70b40f74a783130c5d0a5aa62228/pyzmq-27.1.0-cp314-cp314t-win_arm64.whl", hash = "sha256:dc5dbf68a7857b59473f7df42650c621d7e8923fb03fa74a526890f4d33cc4d7", size = 575170, upload-time = "2025-09-08T23:09:01.418Z" }, + { url = "https://files.pythonhosted.org/packages/ac/4e/782eb6df91b6a9d9afa96c2dcfc5cac62562a68eb62a02210101f886014d/pyzmq-27.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:96c71c32fff75957db6ae33cd961439f386505c6e6b377370af9b24a1ef9eafb", size = 1330426, upload-time = "2025-09-08T23:09:21.03Z" }, + { url = "https://files.pythonhosted.org/packages/8d/ca/2b8693d06b1db4e0c084871e4c9d7842b561d0a6ff9d780640f5e3e9eb55/pyzmq-27.1.0-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:49d3980544447f6bd2968b6ac913ab963a49dcaa2d4a2990041f16057b04c429", size = 906559, upload-time = "2025-09-08T23:09:22.983Z" }, + { url = "https://files.pythonhosted.org/packages/6a/b3/b99b39e2cfdcebd512959780e4d299447fd7f46010b1d88d63324e2481ec/pyzmq-27.1.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:849ca054d81aa1c175c49484afaaa5db0622092b5eccb2055f9f3bb8f703782d", size = 863816, upload-time = "2025-09-08T23:09:24.556Z" }, + { url = "https://files.pythonhosted.org/packages/61/b2/018fa8e8eefb34a625b1a45e2effcbc9885645b22cdd0a68283f758351e7/pyzmq-27.1.0-cp39-cp39-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3970778e74cb7f85934d2b926b9900e92bfe597e62267d7499acc39c9c28e345", size = 666735, upload-time = "2025-09-08T23:09:26.297Z" }, + { url = "https://files.pythonhosted.org/packages/01/05/8ae778f7cd7c94030731ae2305e6a38f3a333b6825f56c0c03f2134ccf1b/pyzmq-27.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:da96ecdcf7d3919c3be2de91a8c513c186f6762aa6cf7c01087ed74fad7f0968", size = 1655425, upload-time = "2025-09-08T23:09:28.172Z" }, + { url = "https://files.pythonhosted.org/packages/ad/ad/d69478a97a3f3142f9dbbbd9daa4fcf42541913a85567c36d4cfc19b2218/pyzmq-27.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:9541c444cfe1b1c0156c5c86ece2bb926c7079a18e7b47b0b1b3b1b875e5d098", size = 2033729, upload-time = "2025-09-08T23:09:30.097Z" }, + { url = "https://files.pythonhosted.org/packages/9a/6d/e3c6ad05bc1cddd25094e66cc15ae8924e15c67e231e93ed2955c401007e/pyzmq-27.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e30a74a39b93e2e1591b58eb1acef4902be27c957a8720b0e368f579b82dc22f", size = 1891803, upload-time = "2025-09-08T23:09:31.875Z" }, + { url = "https://files.pythonhosted.org/packages/7f/a7/97e8be0daaca157511563160b67a13d4fe76b195e3fa6873cb554ad46be3/pyzmq-27.1.0-cp39-cp39-win32.whl", hash = "sha256:b1267823d72d1e40701dcba7edc45fd17f71be1285557b7fe668887150a14b78", size = 567627, upload-time = "2025-09-08T23:09:33.98Z" }, + { url = "https://files.pythonhosted.org/packages/5c/91/70bbf3a7c5b04c904261ef5ba224d8a76315f6c23454251bf5f55573a8a1/pyzmq-27.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0c996ded912812a2fcd7ab6574f4ad3edc27cb6510349431e4930d4196ade7db", size = 632315, upload-time = "2025-09-08T23:09:36.097Z" }, + { url = "https://files.pythonhosted.org/packages/cc/b5/a4173a83c7fd37f6bdb5a800ea338bc25603284e9ef8681377cec006ede4/pyzmq-27.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:346e9ba4198177a07e7706050f35d733e08c1c1f8ceacd5eb6389d653579ffbc", size = 559833, upload-time = "2025-09-08T23:09:38.183Z" }, + { url = "https://files.pythonhosted.org/packages/f3/81/a65e71c1552f74dec9dff91d95bafb6e0d33338a8dfefbc88aa562a20c92/pyzmq-27.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c17e03cbc9312bee223864f1a2b13a99522e0dc9f7c5df0177cd45210ac286e6", size = 836266, upload-time = "2025-09-08T23:09:40.048Z" }, + { url = "https://files.pythonhosted.org/packages/58/ed/0202ca350f4f2b69faa95c6d931e3c05c3a397c184cacb84cb4f8f42f287/pyzmq-27.1.0-pp310-pypy310_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:f328d01128373cb6763823b2b4e7f73bdf767834268c565151eacb3b7a392f90", size = 800206, upload-time = "2025-09-08T23:09:41.902Z" }, + { url = "https://files.pythonhosted.org/packages/47/42/1ff831fa87fe8f0a840ddb399054ca0009605d820e2b44ea43114f5459f4/pyzmq-27.1.0-pp310-pypy310_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9c1790386614232e1b3a40a958454bdd42c6d1811837b15ddbb052a032a43f62", size = 567747, upload-time = "2025-09-08T23:09:43.741Z" }, + { url = "https://files.pythonhosted.org/packages/d1/db/5c4d6807434751e3f21231bee98109aa57b9b9b55e058e450d0aef59b70f/pyzmq-27.1.0-pp310-pypy310_pp73-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:448f9cb54eb0cee4732b46584f2710c8bc178b0e5371d9e4fc8125201e413a74", size = 747371, upload-time = "2025-09-08T23:09:45.575Z" }, + { url = "https://files.pythonhosted.org/packages/26/af/78ce193dbf03567eb8c0dc30e3df2b9e56f12a670bf7eb20f9fb532c7e8a/pyzmq-27.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:05b12f2d32112bf8c95ef2e74ec4f1d4beb01f8b5e703b38537f8849f92cb9ba", size = 544862, upload-time = "2025-09-08T23:09:47.448Z" }, + { url = "https://files.pythonhosted.org/packages/4c/c6/c4dcdecdbaa70969ee1fdced6d7b8f60cfabe64d25361f27ac4665a70620/pyzmq-27.1.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:18770c8d3563715387139060d37859c02ce40718d1faf299abddcdcc6a649066", size = 836265, upload-time = "2025-09-08T23:09:49.376Z" }, + { url = "https://files.pythonhosted.org/packages/3e/79/f38c92eeaeb03a2ccc2ba9866f0439593bb08c5e3b714ac1d553e5c96e25/pyzmq-27.1.0-pp311-pypy311_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:ac25465d42f92e990f8d8b0546b01c391ad431c3bf447683fdc40565941d0604", size = 800208, upload-time = "2025-09-08T23:09:51.073Z" }, + { url = "https://files.pythonhosted.org/packages/49/0e/3f0d0d335c6b3abb9b7b723776d0b21fa7f3a6c819a0db6097059aada160/pyzmq-27.1.0-pp311-pypy311_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:53b40f8ae006f2734ee7608d59ed661419f087521edbfc2149c3932e9c14808c", size = 567747, upload-time = "2025-09-08T23:09:52.698Z" }, + { url = "https://files.pythonhosted.org/packages/a1/cf/f2b3784d536250ffd4be70e049f3b60981235d70c6e8ce7e3ef21e1adb25/pyzmq-27.1.0-pp311-pypy311_pp73-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f605d884e7c8be8fe1aa94e0a783bf3f591b84c24e4bc4f3e7564c82ac25e271", size = 747371, upload-time = "2025-09-08T23:09:54.563Z" }, + { url = "https://files.pythonhosted.org/packages/01/1b/5dbe84eefc86f48473947e2f41711aded97eecef1231f4558f1f02713c12/pyzmq-27.1.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:c9f7f6e13dff2e44a6afeaf2cf54cee5929ad64afaf4d40b50f93c58fc687355", size = 544862, upload-time = "2025-09-08T23:09:56.509Z" }, + { url = "https://files.pythonhosted.org/packages/57/f4/c2e978cf6b833708bad7d6396c3a20c19750585a1775af3ff13c435e1912/pyzmq-27.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:722ea791aa233ac0a819fc2c475e1292c76930b31f1d828cb61073e2fe5e208f", size = 836257, upload-time = "2025-09-08T23:10:07.635Z" }, + { url = "https://files.pythonhosted.org/packages/5f/5f/4e10c7f57a4c92ab0fbb2396297aa8d618e6f5b9b8f8e9756d56f3e6fc52/pyzmq-27.1.0-pp39-pypy39_pp73-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:01f9437501886d3a1dd4b02ef59fb8cc384fa718ce066d52f175ee49dd5b7ed8", size = 800203, upload-time = "2025-09-08T23:10:09.436Z" }, + { url = "https://files.pythonhosted.org/packages/19/72/a74a007cd636f903448c6ab66628104b1fc5f2ba018733d5eabb94a0a6fb/pyzmq-27.1.0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4a19387a3dddcc762bfd2f570d14e2395b2c9701329b266f83dd87a2b3cbd381", size = 758756, upload-time = "2025-09-08T23:10:11.733Z" }, + { url = "https://files.pythonhosted.org/packages/a9/d4/30c25b91f2b4786026372f5ef454134d7f576fcf4ac58539ad7dd5de4762/pyzmq-27.1.0-pp39-pypy39_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4c618fbcd069e3a29dcd221739cacde52edcc681f041907867e0f5cc7e85f172", size = 567742, upload-time = "2025-09-08T23:10:14.732Z" }, + { url = "https://files.pythonhosted.org/packages/92/aa/ee86edad943438cd0316964020c4b6d09854414f9f945f8e289ea6fcc019/pyzmq-27.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ff8d114d14ac671d88c89b9224c63d6c4e5a613fe8acd5594ce53d752a3aafe9", size = 544857, upload-time = "2025-09-08T23:10:16.431Z" }, +] + +[[package]] +name = "requests" +version = "2.32.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c9/74/b3ff8e6c8446842c3f5c837e9c3dfcfe2018ea6ecef224c710c85ef728f4/requests-2.32.5.tar.gz", hash = "sha256:dbba0bac56e100853db0ea71b82b4dfd5fe2bf6d3754a8893c3af500cec7d7cf", size = 134517, upload-time = "2025-08-18T20:46:02.573Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl", hash = "sha256:2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6", size = 64738, upload-time = "2025-08-18T20:46:00.542Z" }, +] + +[[package]] +name = "ruff" +version = "0.14.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/9e/58/6ca66896635352812de66f71cdf9ff86b3a4f79071ca5730088c0cd0fc8d/ruff-0.14.1.tar.gz", hash = "sha256:1dd86253060c4772867c61791588627320abcb6ed1577a90ef432ee319729b69", size = 5513429, upload-time = "2025-10-16T18:05:41.766Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8d/39/9cc5ab181478d7a18adc1c1e051a84ee02bec94eb9bdfd35643d7c74ca31/ruff-0.14.1-py3-none-linux_armv6l.whl", hash = "sha256:083bfc1f30f4a391ae09c6f4f99d83074416b471775b59288956f5bc18e82f8b", size = 12445415, upload-time = "2025-10-16T18:04:48.227Z" }, + { url = "https://files.pythonhosted.org/packages/ef/2e/1226961855ccd697255988f5a2474890ac7c5863b080b15bd038df820818/ruff-0.14.1-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:f6fa757cd717f791009f7669fefb09121cc5f7d9bd0ef211371fad68c2b8b224", size = 12784267, upload-time = "2025-10-16T18:04:52.515Z" }, + { url = "https://files.pythonhosted.org/packages/c1/ea/fd9e95863124ed159cd0667ec98449ae461de94acda7101f1acb6066da00/ruff-0.14.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:d6191903d39ac156921398e9c86b7354d15e3c93772e7dbf26c9fcae59ceccd5", size = 11781872, upload-time = "2025-10-16T18:04:55.396Z" }, + { url = "https://files.pythonhosted.org/packages/1e/5a/e890f7338ff537dba4589a5e02c51baa63020acfb7c8cbbaea4831562c96/ruff-0.14.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed04f0e04f7a4587244e5c9d7df50e6b5bf2705d75059f409a6421c593a35896", size = 12226558, upload-time = "2025-10-16T18:04:58.166Z" }, + { url = "https://files.pythonhosted.org/packages/a6/7a/8ab5c3377f5bf31e167b73651841217542bcc7aa1c19e83030835cc25204/ruff-0.14.1-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5c9e6cf6cd4acae0febbce29497accd3632fe2025c0c583c8b87e8dbdeae5f61", size = 12187898, upload-time = "2025-10-16T18:05:01.455Z" }, + { url = "https://files.pythonhosted.org/packages/48/8d/ba7c33aa55406955fc124e62c8259791c3d42e3075a71710fdff9375134f/ruff-0.14.1-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6fa2458527794ecdfbe45f654e42c61f2503a230545a91af839653a0a93dbc6", size = 12939168, upload-time = "2025-10-16T18:05:04.397Z" }, + { url = "https://files.pythonhosted.org/packages/b4/c2/70783f612b50f66d083380e68cbd1696739d88e9b4f6164230375532c637/ruff-0.14.1-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:39f1c392244e338b21d42ab29b8a6392a722c5090032eb49bb4d6defcdb34345", size = 14386942, upload-time = "2025-10-16T18:05:07.102Z" }, + { url = "https://files.pythonhosted.org/packages/48/44/cd7abb9c776b66d332119d67f96acf15830d120f5b884598a36d9d3f4d83/ruff-0.14.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7382fa12a26cce1f95070ce450946bec357727aaa428983036362579eadcc5cf", size = 13990622, upload-time = "2025-10-16T18:05:09.882Z" }, + { url = "https://files.pythonhosted.org/packages/eb/56/4259b696db12ac152fe472764b4f78bbdd9b477afd9bc3a6d53c01300b37/ruff-0.14.1-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd0bf2be3ae8521e1093a487c4aa3b455882f139787770698530d28ed3fbb37c", size = 13431143, upload-time = "2025-10-16T18:05:13.46Z" }, + { url = "https://files.pythonhosted.org/packages/e0/35/266a80d0eb97bd224b3265b9437bd89dde0dcf4faf299db1212e81824e7e/ruff-0.14.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cabcaa9ccf8089fb4fdb78d17cc0e28241520f50f4c2e88cb6261ed083d85151", size = 13132844, upload-time = "2025-10-16T18:05:16.1Z" }, + { url = "https://files.pythonhosted.org/packages/65/6e/d31ce218acc11a8d91ef208e002a31acf315061a85132f94f3df7a252b18/ruff-0.14.1-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:747d583400f6125ec11a4c14d1c8474bf75d8b419ad22a111a537ec1a952d192", size = 13401241, upload-time = "2025-10-16T18:05:19.395Z" }, + { url = "https://files.pythonhosted.org/packages/9f/b5/dbc4221bf0b03774b3b2f0d47f39e848d30664157c15b965a14d890637d2/ruff-0.14.1-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5a6e74c0efd78515a1d13acbfe6c90f0f5bd822aa56b4a6d43a9ffb2ae6e56cd", size = 12132476, upload-time = "2025-10-16T18:05:22.163Z" }, + { url = "https://files.pythonhosted.org/packages/98/4b/ac99194e790ccd092d6a8b5f341f34b6e597d698e3077c032c502d75ea84/ruff-0.14.1-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:0ea6a864d2fb41a4b6d5b456ed164302a0d96f4daac630aeba829abfb059d020", size = 12139749, upload-time = "2025-10-16T18:05:25.162Z" }, + { url = "https://files.pythonhosted.org/packages/47/26/7df917462c3bb5004e6fdfcc505a49e90bcd8a34c54a051953118c00b53a/ruff-0.14.1-py3-none-musllinux_1_2_i686.whl", hash = "sha256:0826b8764f94229604fa255918d1cc45e583e38c21c203248b0bfc9a0e930be5", size = 12544758, upload-time = "2025-10-16T18:05:28.018Z" }, + { url = "https://files.pythonhosted.org/packages/64/d0/81e7f0648e9764ad9b51dd4be5e5dac3fcfff9602428ccbae288a39c2c22/ruff-0.14.1-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:cbc52160465913a1a3f424c81c62ac8096b6a491468e7d872cb9444a860bc33d", size = 13221811, upload-time = "2025-10-16T18:05:30.707Z" }, + { url = "https://files.pythonhosted.org/packages/c3/07/3c45562c67933cc35f6d5df4ca77dabbcd88fddaca0d6b8371693d29fd56/ruff-0.14.1-py3-none-win32.whl", hash = "sha256:e037ea374aaaff4103240ae79168c0945ae3d5ae8db190603de3b4012bd1def6", size = 12319467, upload-time = "2025-10-16T18:05:33.261Z" }, + { url = "https://files.pythonhosted.org/packages/02/88/0ee4ca507d4aa05f67e292d2e5eb0b3e358fbcfe527554a2eda9ac422d6b/ruff-0.14.1-py3-none-win_amd64.whl", hash = "sha256:59d599cdff9c7f925a017f6f2c256c908b094e55967f93f2821b1439928746a1", size = 13401123, upload-time = "2025-10-16T18:05:35.984Z" }, + { url = "https://files.pythonhosted.org/packages/b8/81/4b6387be7014858d924b843530e1b2a8e531846807516e9bea2ee0936bf7/ruff-0.14.1-py3-none-win_arm64.whl", hash = "sha256:e3b443c4c9f16ae850906b8d0a707b2a4c16f8d2f0a7fe65c475c5886665ce44", size = 12436636, upload-time = "2025-10-16T18:05:38.995Z" }, +] + +[[package]] +name = "scipy" +version = "1.13.1" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version < '3.10'", +] +dependencies = [ + { name = "numpy", version = "2.0.2", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ae/00/48c2f661e2816ccf2ecd77982f6605b2950afe60f60a52b4cbbc2504aa8f/scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c", size = 57210720, upload-time = "2024-05-23T03:29:26.079Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/33/59/41b2529908c002ade869623b87eecff3e11e3ce62e996d0bdcb536984187/scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca", size = 39328076, upload-time = "2024-05-23T03:19:01.687Z" }, + { url = "https://files.pythonhosted.org/packages/d5/33/f1307601f492f764062ce7dd471a14750f3360e33cd0f8c614dae208492c/scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f", size = 30306232, upload-time = "2024-05-23T03:19:09.089Z" }, + { url = "https://files.pythonhosted.org/packages/c0/66/9cd4f501dd5ea03e4a4572ecd874936d0da296bd04d1c45ae1a4a75d9c3a/scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989", size = 33743202, upload-time = "2024-05-23T03:19:15.138Z" }, + { url = "https://files.pythonhosted.org/packages/a3/ba/7255e5dc82a65adbe83771c72f384d99c43063648456796436c9a5585ec3/scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f", size = 38577335, upload-time = "2024-05-23T03:19:21.984Z" }, + { url = "https://files.pythonhosted.org/packages/49/a5/bb9ded8326e9f0cdfdc412eeda1054b914dfea952bda2097d174f8832cc0/scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94", size = 38820728, upload-time = "2024-05-23T03:19:28.225Z" }, + { url = "https://files.pythonhosted.org/packages/12/30/df7a8fcc08f9b4a83f5f27cfaaa7d43f9a2d2ad0b6562cced433e5b04e31/scipy-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54", size = 46210588, upload-time = "2024-05-23T03:19:35.661Z" }, + { url = "https://files.pythonhosted.org/packages/b4/15/4a4bb1b15bbd2cd2786c4f46e76b871b28799b67891f23f455323a0cdcfb/scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9", size = 39333805, upload-time = "2024-05-23T03:19:43.081Z" }, + { url = "https://files.pythonhosted.org/packages/ba/92/42476de1af309c27710004f5cdebc27bec62c204db42e05b23a302cb0c9a/scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326", size = 30317687, upload-time = "2024-05-23T03:19:48.799Z" }, + { url = "https://files.pythonhosted.org/packages/80/ba/8be64fe225360a4beb6840f3cbee494c107c0887f33350d0a47d55400b01/scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299", size = 33694638, upload-time = "2024-05-23T03:19:55.104Z" }, + { url = "https://files.pythonhosted.org/packages/36/07/035d22ff9795129c5a847c64cb43c1fa9188826b59344fee28a3ab02e283/scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa", size = 38569931, upload-time = "2024-05-23T03:20:01.82Z" }, + { url = "https://files.pythonhosted.org/packages/d9/10/f9b43de37e5ed91facc0cfff31d45ed0104f359e4f9a68416cbf4e790241/scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59", size = 38838145, upload-time = "2024-05-23T03:20:09.173Z" }, + { url = "https://files.pythonhosted.org/packages/4a/48/4513a1a5623a23e95f94abd675ed91cfb19989c58e9f6f7d03990f6caf3d/scipy-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b", size = 46196227, upload-time = "2024-05-23T03:20:16.433Z" }, + { url = "https://files.pythonhosted.org/packages/f2/7b/fb6b46fbee30fc7051913068758414f2721003a89dd9a707ad49174e3843/scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1", size = 39357301, upload-time = "2024-05-23T03:20:23.538Z" }, + { url = "https://files.pythonhosted.org/packages/dc/5a/2043a3bde1443d94014aaa41e0b50c39d046dda8360abd3b2a1d3f79907d/scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d", size = 30363348, upload-time = "2024-05-23T03:20:29.885Z" }, + { url = "https://files.pythonhosted.org/packages/e7/cb/26e4a47364bbfdb3b7fb3363be6d8a1c543bcd70a7753ab397350f5f189a/scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627", size = 33406062, upload-time = "2024-05-23T03:20:36.012Z" }, + { url = "https://files.pythonhosted.org/packages/88/ab/6ecdc526d509d33814835447bbbeedbebdec7cca46ef495a61b00a35b4bf/scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884", size = 38218311, upload-time = "2024-05-23T03:20:42.086Z" }, + { url = "https://files.pythonhosted.org/packages/0b/00/9f54554f0f8318100a71515122d8f4f503b1a2c4b4cfab3b4b68c0eb08fa/scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16", size = 38442493, upload-time = "2024-05-23T03:20:48.292Z" }, + { url = "https://files.pythonhosted.org/packages/3e/df/963384e90733e08eac978cd103c34df181d1fec424de383cdc443f418dd4/scipy-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949", size = 45910955, upload-time = "2024-05-23T03:20:55.091Z" }, + { url = "https://files.pythonhosted.org/packages/7f/29/c2ea58c9731b9ecb30b6738113a95d147e83922986b34c685b8f6eefde21/scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5", size = 39352927, upload-time = "2024-05-23T03:21:01.95Z" }, + { url = "https://files.pythonhosted.org/packages/5c/c0/e71b94b20ccf9effb38d7147c0064c08c622309fd487b1b677771a97d18c/scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24", size = 30324538, upload-time = "2024-05-23T03:21:07.634Z" }, + { url = "https://files.pythonhosted.org/packages/6d/0f/aaa55b06d474817cea311e7b10aab2ea1fd5d43bc6a2861ccc9caec9f418/scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004", size = 33732190, upload-time = "2024-05-23T03:21:14.41Z" }, + { url = "https://files.pythonhosted.org/packages/35/f5/d0ad1a96f80962ba65e2ce1de6a1e59edecd1f0a7b55990ed208848012e0/scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d", size = 38612244, upload-time = "2024-05-23T03:21:21.827Z" }, + { url = "https://files.pythonhosted.org/packages/8d/02/1165905f14962174e6569076bcc3315809ae1291ed14de6448cc151eedfd/scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c", size = 38845637, upload-time = "2024-05-23T03:21:28.729Z" }, + { url = "https://files.pythonhosted.org/packages/3e/77/dab54fe647a08ee4253963bcd8f9cf17509c8ca64d6335141422fe2e2114/scipy-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2", size = 46227440, upload-time = "2024-05-23T03:21:35.888Z" }, +] + +[[package]] +name = "scipy" +version = "1.15.3" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version == '3.10.*'", +] +dependencies = [ + { name = "numpy", version = "2.2.6", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0f/37/6964b830433e654ec7485e45a00fc9a27cf868d622838f6b6d9c5ec0d532/scipy-1.15.3.tar.gz", hash = "sha256:eae3cf522bc7df64b42cad3925c876e1b0b6c35c1337c93e12c0f366f55b0eaf", size = 59419214, upload-time = "2025-05-08T16:13:05.955Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/78/2f/4966032c5f8cc7e6a60f1b2e0ad686293b9474b65246b0c642e3ef3badd0/scipy-1.15.3-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:a345928c86d535060c9c2b25e71e87c39ab2f22fc96e9636bd74d1dbf9de448c", size = 38702770, upload-time = "2025-05-08T16:04:20.849Z" }, + { url = "https://files.pythonhosted.org/packages/a0/6e/0c3bf90fae0e910c274db43304ebe25a6b391327f3f10b5dcc638c090795/scipy-1.15.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:ad3432cb0f9ed87477a8d97f03b763fd1d57709f1bbde3c9369b1dff5503b253", size = 30094511, upload-time = "2025-05-08T16:04:27.103Z" }, + { url = "https://files.pythonhosted.org/packages/ea/b1/4deb37252311c1acff7f101f6453f0440794f51b6eacb1aad4459a134081/scipy-1.15.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:aef683a9ae6eb00728a542b796f52a5477b78252edede72b8327a886ab63293f", size = 22368151, upload-time = "2025-05-08T16:04:31.731Z" }, + { url = "https://files.pythonhosted.org/packages/38/7d/f457626e3cd3c29b3a49ca115a304cebb8cc6f31b04678f03b216899d3c6/scipy-1.15.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:1c832e1bd78dea67d5c16f786681b28dd695a8cb1fb90af2e27580d3d0967e92", size = 25121732, upload-time = "2025-05-08T16:04:36.596Z" }, + { url = "https://files.pythonhosted.org/packages/db/0a/92b1de4a7adc7a15dcf5bddc6e191f6f29ee663b30511ce20467ef9b82e4/scipy-1.15.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:263961f658ce2165bbd7b99fa5135195c3a12d9bef045345016b8b50c315cb82", size = 35547617, upload-time = "2025-05-08T16:04:43.546Z" }, + { url = "https://files.pythonhosted.org/packages/8e/6d/41991e503e51fc1134502694c5fa7a1671501a17ffa12716a4a9151af3df/scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2abc762b0811e09a0d3258abee2d98e0c703eee49464ce0069590846f31d40", size = 37662964, upload-time = "2025-05-08T16:04:49.431Z" }, + { url = "https://files.pythonhosted.org/packages/25/e1/3df8f83cb15f3500478c889be8fb18700813b95e9e087328230b98d547ff/scipy-1.15.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ed7284b21a7a0c8f1b6e5977ac05396c0d008b89e05498c8b7e8f4a1423bba0e", size = 37238749, upload-time = "2025-05-08T16:04:55.215Z" }, + { url = "https://files.pythonhosted.org/packages/93/3e/b3257cf446f2a3533ed7809757039016b74cd6f38271de91682aa844cfc5/scipy-1.15.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5380741e53df2c566f4d234b100a484b420af85deb39ea35a1cc1be84ff53a5c", size = 40022383, upload-time = "2025-05-08T16:05:01.914Z" }, + { url = "https://files.pythonhosted.org/packages/d1/84/55bc4881973d3f79b479a5a2e2df61c8c9a04fcb986a213ac9c02cfb659b/scipy-1.15.3-cp310-cp310-win_amd64.whl", hash = "sha256:9d61e97b186a57350f6d6fd72640f9e99d5a4a2b8fbf4b9ee9a841eab327dc13", size = 41259201, upload-time = "2025-05-08T16:05:08.166Z" }, + { url = "https://files.pythonhosted.org/packages/96/ab/5cc9f80f28f6a7dff646c5756e559823614a42b1939d86dd0ed550470210/scipy-1.15.3-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:993439ce220d25e3696d1b23b233dd010169b62f6456488567e830654ee37a6b", size = 38714255, upload-time = "2025-05-08T16:05:14.596Z" }, + { url = "https://files.pythonhosted.org/packages/4a/4a/66ba30abe5ad1a3ad15bfb0b59d22174012e8056ff448cb1644deccbfed2/scipy-1.15.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:34716e281f181a02341ddeaad584205bd2fd3c242063bd3423d61ac259ca7eba", size = 30111035, upload-time = "2025-05-08T16:05:20.152Z" }, + { url = "https://files.pythonhosted.org/packages/4b/fa/a7e5b95afd80d24313307f03624acc65801846fa75599034f8ceb9e2cbf6/scipy-1.15.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3b0334816afb8b91dab859281b1b9786934392aa3d527cd847e41bb6f45bee65", size = 22384499, upload-time = "2025-05-08T16:05:24.494Z" }, + { url = "https://files.pythonhosted.org/packages/17/99/f3aaddccf3588bb4aea70ba35328c204cadd89517a1612ecfda5b2dd9d7a/scipy-1.15.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:6db907c7368e3092e24919b5e31c76998b0ce1684d51a90943cb0ed1b4ffd6c1", size = 25152602, upload-time = "2025-05-08T16:05:29.313Z" }, + { url = "https://files.pythonhosted.org/packages/56/c5/1032cdb565f146109212153339f9cb8b993701e9fe56b1c97699eee12586/scipy-1.15.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:721d6b4ef5dc82ca8968c25b111e307083d7ca9091bc38163fb89243e85e3889", size = 35503415, upload-time = "2025-05-08T16:05:34.699Z" }, + { url = "https://files.pythonhosted.org/packages/bd/37/89f19c8c05505d0601ed5650156e50eb881ae3918786c8fd7262b4ee66d3/scipy-1.15.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39cb9c62e471b1bb3750066ecc3a3f3052b37751c7c3dfd0fd7e48900ed52982", size = 37652622, upload-time = "2025-05-08T16:05:40.762Z" }, + { url = "https://files.pythonhosted.org/packages/7e/31/be59513aa9695519b18e1851bb9e487de66f2d31f835201f1b42f5d4d475/scipy-1.15.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:795c46999bae845966368a3c013e0e00947932d68e235702b5c3f6ea799aa8c9", size = 37244796, upload-time = "2025-05-08T16:05:48.119Z" }, + { url = "https://files.pythonhosted.org/packages/10/c0/4f5f3eeccc235632aab79b27a74a9130c6c35df358129f7ac8b29f562ac7/scipy-1.15.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:18aaacb735ab38b38db42cb01f6b92a2d0d4b6aabefeb07f02849e47f8fb3594", size = 40047684, upload-time = "2025-05-08T16:05:54.22Z" }, + { url = "https://files.pythonhosted.org/packages/ab/a7/0ddaf514ce8a8714f6ed243a2b391b41dbb65251affe21ee3077ec45ea9a/scipy-1.15.3-cp311-cp311-win_amd64.whl", hash = "sha256:ae48a786a28412d744c62fd7816a4118ef97e5be0bee968ce8f0a2fba7acf3bb", size = 41246504, upload-time = "2025-05-08T16:06:00.437Z" }, + { url = "https://files.pythonhosted.org/packages/37/4b/683aa044c4162e10ed7a7ea30527f2cbd92e6999c10a8ed8edb253836e9c/scipy-1.15.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6ac6310fdbfb7aa6612408bd2f07295bcbd3fda00d2d702178434751fe48e019", size = 38766735, upload-time = "2025-05-08T16:06:06.471Z" }, + { url = "https://files.pythonhosted.org/packages/7b/7e/f30be3d03de07f25dc0ec926d1681fed5c732d759ac8f51079708c79e680/scipy-1.15.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:185cd3d6d05ca4b44a8f1595af87f9c372bb6acf9c808e99aa3e9aa03bd98cf6", size = 30173284, upload-time = "2025-05-08T16:06:11.686Z" }, + { url = "https://files.pythonhosted.org/packages/07/9c/0ddb0d0abdabe0d181c1793db51f02cd59e4901da6f9f7848e1f96759f0d/scipy-1.15.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:05dc6abcd105e1a29f95eada46d4a3f251743cfd7d3ae8ddb4088047f24ea477", size = 22446958, upload-time = "2025-05-08T16:06:15.97Z" }, + { url = "https://files.pythonhosted.org/packages/af/43/0bce905a965f36c58ff80d8bea33f1f9351b05fad4beaad4eae34699b7a1/scipy-1.15.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:06efcba926324df1696931a57a176c80848ccd67ce6ad020c810736bfd58eb1c", size = 25242454, upload-time = "2025-05-08T16:06:20.394Z" }, + { url = "https://files.pythonhosted.org/packages/56/30/a6f08f84ee5b7b28b4c597aca4cbe545535c39fe911845a96414700b64ba/scipy-1.15.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05045d8b9bfd807ee1b9f38761993297b10b245f012b11b13b91ba8945f7e45", size = 35210199, upload-time = "2025-05-08T16:06:26.159Z" }, + { url = "https://files.pythonhosted.org/packages/0b/1f/03f52c282437a168ee2c7c14a1a0d0781a9a4a8962d84ac05c06b4c5b555/scipy-1.15.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:271e3713e645149ea5ea3e97b57fdab61ce61333f97cfae392c28ba786f9bb49", size = 37309455, upload-time = "2025-05-08T16:06:32.778Z" }, + { url = "https://files.pythonhosted.org/packages/89/b1/fbb53137f42c4bf630b1ffdfc2151a62d1d1b903b249f030d2b1c0280af8/scipy-1.15.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6cfd56fc1a8e53f6e89ba3a7a7251f7396412d655bca2aa5611c8ec9a6784a1e", size = 36885140, upload-time = "2025-05-08T16:06:39.249Z" }, + { url = "https://files.pythonhosted.org/packages/2e/2e/025e39e339f5090df1ff266d021892694dbb7e63568edcfe43f892fa381d/scipy-1.15.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0ff17c0bb1cb32952c09217d8d1eed9b53d1463e5f1dd6052c7857f83127d539", size = 39710549, upload-time = "2025-05-08T16:06:45.729Z" }, + { url = "https://files.pythonhosted.org/packages/e6/eb/3bf6ea8ab7f1503dca3a10df2e4b9c3f6b3316df07f6c0ded94b281c7101/scipy-1.15.3-cp312-cp312-win_amd64.whl", hash = "sha256:52092bc0472cfd17df49ff17e70624345efece4e1a12b23783a1ac59a1b728ed", size = 40966184, upload-time = "2025-05-08T16:06:52.623Z" }, + { url = "https://files.pythonhosted.org/packages/73/18/ec27848c9baae6e0d6573eda6e01a602e5649ee72c27c3a8aad673ebecfd/scipy-1.15.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2c620736bcc334782e24d173c0fdbb7590a0a436d2fdf39310a8902505008759", size = 38728256, upload-time = "2025-05-08T16:06:58.696Z" }, + { url = "https://files.pythonhosted.org/packages/74/cd/1aef2184948728b4b6e21267d53b3339762c285a46a274ebb7863c9e4742/scipy-1.15.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:7e11270a000969409d37ed399585ee530b9ef6aa99d50c019de4cb01e8e54e62", size = 30109540, upload-time = "2025-05-08T16:07:04.209Z" }, + { url = "https://files.pythonhosted.org/packages/5b/d8/59e452c0a255ec352bd0a833537a3bc1bfb679944c4938ab375b0a6b3a3e/scipy-1.15.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:8c9ed3ba2c8a2ce098163a9bdb26f891746d02136995df25227a20e71c396ebb", size = 22383115, upload-time = "2025-05-08T16:07:08.998Z" }, + { url = "https://files.pythonhosted.org/packages/08/f5/456f56bbbfccf696263b47095291040655e3cbaf05d063bdc7c7517f32ac/scipy-1.15.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0bdd905264c0c9cfa74a4772cdb2070171790381a5c4d312c973382fc6eaf730", size = 25163884, upload-time = "2025-05-08T16:07:14.091Z" }, + { url = "https://files.pythonhosted.org/packages/a2/66/a9618b6a435a0f0c0b8a6d0a2efb32d4ec5a85f023c2b79d39512040355b/scipy-1.15.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79167bba085c31f38603e11a267d862957cbb3ce018d8b38f79ac043bc92d825", size = 35174018, upload-time = "2025-05-08T16:07:19.427Z" }, + { url = "https://files.pythonhosted.org/packages/b5/09/c5b6734a50ad4882432b6bb7c02baf757f5b2f256041da5df242e2d7e6b6/scipy-1.15.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9deabd6d547aee2c9a81dee6cc96c6d7e9a9b1953f74850c179f91fdc729cb7", size = 37269716, upload-time = "2025-05-08T16:07:25.712Z" }, + { url = "https://files.pythonhosted.org/packages/77/0a/eac00ff741f23bcabd352731ed9b8995a0a60ef57f5fd788d611d43d69a1/scipy-1.15.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:dde4fc32993071ac0c7dd2d82569e544f0bdaff66269cb475e0f369adad13f11", size = 36872342, upload-time = "2025-05-08T16:07:31.468Z" }, + { url = "https://files.pythonhosted.org/packages/fe/54/4379be86dd74b6ad81551689107360d9a3e18f24d20767a2d5b9253a3f0a/scipy-1.15.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f77f853d584e72e874d87357ad70f44b437331507d1c311457bed8ed2b956126", size = 39670869, upload-time = "2025-05-08T16:07:38.002Z" }, + { url = "https://files.pythonhosted.org/packages/87/2e/892ad2862ba54f084ffe8cc4a22667eaf9c2bcec6d2bff1d15713c6c0703/scipy-1.15.3-cp313-cp313-win_amd64.whl", hash = "sha256:b90ab29d0c37ec9bf55424c064312930ca5f4bde15ee8619ee44e69319aab163", size = 40988851, upload-time = "2025-05-08T16:08:33.671Z" }, + { url = "https://files.pythonhosted.org/packages/1b/e9/7a879c137f7e55b30d75d90ce3eb468197646bc7b443ac036ae3fe109055/scipy-1.15.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3ac07623267feb3ae308487c260ac684b32ea35fd81e12845039952f558047b8", size = 38863011, upload-time = "2025-05-08T16:07:44.039Z" }, + { url = "https://files.pythonhosted.org/packages/51/d1/226a806bbd69f62ce5ef5f3ffadc35286e9fbc802f606a07eb83bf2359de/scipy-1.15.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:6487aa99c2a3d509a5227d9a5e889ff05830a06b2ce08ec30df6d79db5fcd5c5", size = 30266407, upload-time = "2025-05-08T16:07:49.891Z" }, + { url = "https://files.pythonhosted.org/packages/e5/9b/f32d1d6093ab9eeabbd839b0f7619c62e46cc4b7b6dbf05b6e615bbd4400/scipy-1.15.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:50f9e62461c95d933d5c5ef4a1f2ebf9a2b4e83b0db374cb3f1de104d935922e", size = 22540030, upload-time = "2025-05-08T16:07:54.121Z" }, + { url = "https://files.pythonhosted.org/packages/e7/29/c278f699b095c1a884f29fda126340fcc201461ee8bfea5c8bdb1c7c958b/scipy-1.15.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14ed70039d182f411ffc74789a16df3835e05dc469b898233a245cdfd7f162cb", size = 25218709, upload-time = "2025-05-08T16:07:58.506Z" }, + { url = "https://files.pythonhosted.org/packages/24/18/9e5374b617aba742a990581373cd6b68a2945d65cc588482749ef2e64467/scipy-1.15.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a769105537aa07a69468a0eefcd121be52006db61cdd8cac8a0e68980bbb723", size = 34809045, upload-time = "2025-05-08T16:08:03.929Z" }, + { url = "https://files.pythonhosted.org/packages/e1/fe/9c4361e7ba2927074360856db6135ef4904d505e9b3afbbcb073c4008328/scipy-1.15.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9db984639887e3dffb3928d118145ffe40eff2fa40cb241a306ec57c219ebbbb", size = 36703062, upload-time = "2025-05-08T16:08:09.558Z" }, + { url = "https://files.pythonhosted.org/packages/b7/8e/038ccfe29d272b30086b25a4960f757f97122cb2ec42e62b460d02fe98e9/scipy-1.15.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:40e54d5c7e7ebf1aa596c374c49fa3135f04648a0caabcb66c52884b943f02b4", size = 36393132, upload-time = "2025-05-08T16:08:15.34Z" }, + { url = "https://files.pythonhosted.org/packages/10/7e/5c12285452970be5bdbe8352c619250b97ebf7917d7a9a9e96b8a8140f17/scipy-1.15.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5e721fed53187e71d0ccf382b6bf977644c533e506c4d33c3fb24de89f5c3ed5", size = 38979503, upload-time = "2025-05-08T16:08:21.513Z" }, + { url = "https://files.pythonhosted.org/packages/81/06/0a5e5349474e1cbc5757975b21bd4fad0e72ebf138c5592f191646154e06/scipy-1.15.3-cp313-cp313t-win_amd64.whl", hash = "sha256:76ad1fb5f8752eabf0fa02e4cc0336b4e8f021e2d5f061ed37d6d264db35e3ca", size = 40308097, upload-time = "2025-05-08T16:08:27.627Z" }, +] + +[[package]] +name = "scipy" +version = "1.16.2" +source = { registry = "https://pypi.org/simple" } +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", +] +dependencies = [ + { name = "numpy", version = "2.3.4", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/4c/3b/546a6f0bfe791bbb7f8d591613454d15097e53f906308ec6f7c1ce588e8e/scipy-1.16.2.tar.gz", hash = "sha256:af029b153d243a80afb6eabe40b0a07f8e35c9adc269c019f364ad747f826a6b", size = 30580599, upload-time = "2025-09-11T17:48:08.271Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0b/ef/37ed4b213d64b48422df92560af7300e10fe30b5d665dd79932baebee0c6/scipy-1.16.2-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:6ab88ea43a57da1af33292ebd04b417e8e2eaf9d5aa05700be8d6e1b6501cd92", size = 36619956, upload-time = "2025-09-11T17:39:20.5Z" }, + { url = "https://files.pythonhosted.org/packages/85/ab/5c2eba89b9416961a982346a4d6a647d78c91ec96ab94ed522b3b6baf444/scipy-1.16.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c95e96c7305c96ede73a7389f46ccd6c659c4da5ef1b2789466baeaed3622b6e", size = 28931117, upload-time = "2025-09-11T17:39:29.06Z" }, + { url = "https://files.pythonhosted.org/packages/80/d1/eed51ab64d227fe60229a2d57fb60ca5898cfa50ba27d4f573e9e5f0b430/scipy-1.16.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:87eb178db04ece7c698220d523c170125dbffebb7af0345e66c3554f6f60c173", size = 20921997, upload-time = "2025-09-11T17:39:34.892Z" }, + { url = "https://files.pythonhosted.org/packages/be/7c/33ea3e23bbadde96726edba6bf9111fb1969d14d9d477ffa202c67bec9da/scipy-1.16.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:4e409eac067dcee96a57fbcf424c13f428037827ec7ee3cb671ff525ca4fc34d", size = 23523374, upload-time = "2025-09-11T17:39:40.846Z" }, + { url = "https://files.pythonhosted.org/packages/96/0b/7399dc96e1e3f9a05e258c98d716196a34f528eef2ec55aad651ed136d03/scipy-1.16.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:e574be127bb760f0dad24ff6e217c80213d153058372362ccb9555a10fc5e8d2", size = 33583702, upload-time = "2025-09-11T17:39:49.011Z" }, + { url = "https://files.pythonhosted.org/packages/1a/bc/a5c75095089b96ea72c1bd37a4497c24b581ec73db4ef58ebee142ad2d14/scipy-1.16.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f5db5ba6188d698ba7abab982ad6973265b74bb40a1efe1821b58c87f73892b9", size = 35883427, upload-time = "2025-09-11T17:39:57.406Z" }, + { url = "https://files.pythonhosted.org/packages/ab/66/e25705ca3d2b87b97fe0a278a24b7f477b4023a926847935a1a71488a6a6/scipy-1.16.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec6e74c4e884104ae006d34110677bfe0098203a3fec2f3faf349f4cb05165e3", size = 36212940, upload-time = "2025-09-11T17:40:06.013Z" }, + { url = "https://files.pythonhosted.org/packages/d6/fd/0bb911585e12f3abdd603d721d83fc1c7492835e1401a0e6d498d7822b4b/scipy-1.16.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:912f46667d2d3834bc3d57361f854226475f695eb08c08a904aadb1c936b6a88", size = 38865092, upload-time = "2025-09-11T17:40:15.143Z" }, + { url = "https://files.pythonhosted.org/packages/d6/73/c449a7d56ba6e6f874183759f8483cde21f900a8be117d67ffbb670c2958/scipy-1.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:91e9e8a37befa5a69e9cacbe0bcb79ae5afb4a0b130fd6db6ee6cc0d491695fa", size = 38687626, upload-time = "2025-09-11T17:40:24.041Z" }, + { url = "https://files.pythonhosted.org/packages/68/72/02f37316adf95307f5d9e579023c6899f89ff3a051fa079dbd6faafc48e5/scipy-1.16.2-cp311-cp311-win_arm64.whl", hash = "sha256:f3bf75a6dcecab62afde4d1f973f1692be013110cad5338007927db8da73249c", size = 25503506, upload-time = "2025-09-11T17:40:30.703Z" }, + { url = "https://files.pythonhosted.org/packages/b7/8d/6396e00db1282279a4ddd507c5f5e11f606812b608ee58517ce8abbf883f/scipy-1.16.2-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:89d6c100fa5c48472047632e06f0876b3c4931aac1f4291afc81a3644316bb0d", size = 36646259, upload-time = "2025-09-11T17:40:39.329Z" }, + { url = "https://files.pythonhosted.org/packages/3b/93/ea9edd7e193fceb8eef149804491890bde73fb169c896b61aa3e2d1e4e77/scipy-1.16.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ca748936cd579d3f01928b30a17dc474550b01272d8046e3e1ee593f23620371", size = 28888976, upload-time = "2025-09-11T17:40:46.82Z" }, + { url = "https://files.pythonhosted.org/packages/91/4d/281fddc3d80fd738ba86fd3aed9202331180b01e2c78eaae0642f22f7e83/scipy-1.16.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:fac4f8ce2ddb40e2e3d0f7ec36d2a1e7f92559a2471e59aec37bd8d9de01fec0", size = 20879905, upload-time = "2025-09-11T17:40:52.545Z" }, + { url = "https://files.pythonhosted.org/packages/69/40/b33b74c84606fd301b2915f0062e45733c6ff5708d121dd0deaa8871e2d0/scipy-1.16.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:033570f1dcefd79547a88e18bccacff025c8c647a330381064f561d43b821232", size = 23553066, upload-time = "2025-09-11T17:40:59.014Z" }, + { url = "https://files.pythonhosted.org/packages/55/a7/22c739e2f21a42cc8f16bc76b47cff4ed54fbe0962832c589591c2abec34/scipy-1.16.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ea3421209bf00c8a5ef2227de496601087d8f638a2363ee09af059bd70976dc1", size = 33336407, upload-time = "2025-09-11T17:41:06.796Z" }, + { url = "https://files.pythonhosted.org/packages/53/11/a0160990b82999b45874dc60c0c183d3a3a969a563fffc476d5a9995c407/scipy-1.16.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f66bd07ba6f84cd4a380b41d1bf3c59ea488b590a2ff96744845163309ee8e2f", size = 35673281, upload-time = "2025-09-11T17:41:15.055Z" }, + { url = "https://files.pythonhosted.org/packages/96/53/7ef48a4cfcf243c3d0f1643f5887c81f29fdf76911c4e49331828e19fc0a/scipy-1.16.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5e9feab931bd2aea4a23388c962df6468af3d808ddf2d40f94a81c5dc38f32ef", size = 36004222, upload-time = "2025-09-11T17:41:23.868Z" }, + { url = "https://files.pythonhosted.org/packages/49/7f/71a69e0afd460049d41c65c630c919c537815277dfea214031005f474d78/scipy-1.16.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:03dfc75e52f72cf23ec2ced468645321407faad8f0fe7b1f5b49264adbc29cb1", size = 38664586, upload-time = "2025-09-11T17:41:31.021Z" }, + { url = "https://files.pythonhosted.org/packages/34/95/20e02ca66fb495a95fba0642fd48e0c390d0ece9b9b14c6e931a60a12dea/scipy-1.16.2-cp312-cp312-win_amd64.whl", hash = "sha256:0ce54e07bbb394b417457409a64fd015be623f36e330ac49306433ffe04bc97e", size = 38550641, upload-time = "2025-09-11T17:41:36.61Z" }, + { url = "https://files.pythonhosted.org/packages/92/ad/13646b9beb0a95528ca46d52b7babafbe115017814a611f2065ee4e61d20/scipy-1.16.2-cp312-cp312-win_arm64.whl", hash = "sha256:2a8ffaa4ac0df81a0b94577b18ee079f13fecdb924df3328fc44a7dc5ac46851", size = 25456070, upload-time = "2025-09-11T17:41:41.3Z" }, + { url = "https://files.pythonhosted.org/packages/c1/27/c5b52f1ee81727a9fc457f5ac1e9bf3d6eab311805ea615c83c27ba06400/scipy-1.16.2-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:84f7bf944b43e20b8a894f5fe593976926744f6c185bacfcbdfbb62736b5cc70", size = 36604856, upload-time = "2025-09-11T17:41:47.695Z" }, + { url = "https://files.pythonhosted.org/packages/32/a9/15c20d08e950b540184caa8ced675ba1128accb0e09c653780ba023a4110/scipy-1.16.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:5c39026d12edc826a1ef2ad35ad1e6d7f087f934bb868fc43fa3049c8b8508f9", size = 28864626, upload-time = "2025-09-11T17:41:52.642Z" }, + { url = "https://files.pythonhosted.org/packages/4c/fc/ea36098df653cca26062a627c1a94b0de659e97127c8491e18713ca0e3b9/scipy-1.16.2-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e52729ffd45b68777c5319560014d6fd251294200625d9d70fd8626516fc49f5", size = 20855689, upload-time = "2025-09-11T17:41:57.886Z" }, + { url = "https://files.pythonhosted.org/packages/dc/6f/d0b53be55727f3e6d7c72687ec18ea6d0047cf95f1f77488b99a2bafaee1/scipy-1.16.2-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:024dd4a118cccec09ca3209b7e8e614931a6ffb804b2a601839499cb88bdf925", size = 23512151, upload-time = "2025-09-11T17:42:02.303Z" }, + { url = "https://files.pythonhosted.org/packages/11/85/bf7dab56e5c4b1d3d8eef92ca8ede788418ad38a7dc3ff50262f00808760/scipy-1.16.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7a5dc7ee9c33019973a470556081b0fd3c9f4c44019191039f9769183141a4d9", size = 33329824, upload-time = "2025-09-11T17:42:07.549Z" }, + { url = "https://files.pythonhosted.org/packages/da/6a/1a927b14ddc7714111ea51f4e568203b2bb6ed59bdd036d62127c1a360c8/scipy-1.16.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c2275ff105e508942f99d4e3bc56b6ef5e4b3c0af970386ca56b777608ce95b7", size = 35681881, upload-time = "2025-09-11T17:42:13.255Z" }, + { url = "https://files.pythonhosted.org/packages/c1/5f/331148ea5780b4fcc7007a4a6a6ee0a0c1507a796365cc642d4d226e1c3a/scipy-1.16.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:af80196eaa84f033e48444d2e0786ec47d328ba00c71e4299b602235ffef9acb", size = 36006219, upload-time = "2025-09-11T17:42:18.765Z" }, + { url = "https://files.pythonhosted.org/packages/46/3a/e991aa9d2aec723b4a8dcfbfc8365edec5d5e5f9f133888067f1cbb7dfc1/scipy-1.16.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9fb1eb735fe3d6ed1f89918224e3385fbf6f9e23757cacc35f9c78d3b712dd6e", size = 38682147, upload-time = "2025-09-11T17:42:25.177Z" }, + { url = "https://files.pythonhosted.org/packages/a1/57/0f38e396ad19e41b4c5db66130167eef8ee620a49bc7d0512e3bb67e0cab/scipy-1.16.2-cp313-cp313-win_amd64.whl", hash = "sha256:fda714cf45ba43c9d3bae8f2585c777f64e3f89a2e073b668b32ede412d8f52c", size = 38520766, upload-time = "2025-09-11T17:43:25.342Z" }, + { url = "https://files.pythonhosted.org/packages/1b/a5/85d3e867b6822d331e26c862a91375bb7746a0b458db5effa093d34cdb89/scipy-1.16.2-cp313-cp313-win_arm64.whl", hash = "sha256:2f5350da923ccfd0b00e07c3e5cfb316c1c0d6c1d864c07a72d092e9f20db104", size = 25451169, upload-time = "2025-09-11T17:43:30.198Z" }, + { url = "https://files.pythonhosted.org/packages/09/d9/60679189bcebda55992d1a45498de6d080dcaf21ce0c8f24f888117e0c2d/scipy-1.16.2-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:53d8d2ee29b925344c13bda64ab51785f016b1b9617849dac10897f0701b20c1", size = 37012682, upload-time = "2025-09-11T17:42:30.677Z" }, + { url = "https://files.pythonhosted.org/packages/83/be/a99d13ee4d3b7887a96f8c71361b9659ba4ef34da0338f14891e102a127f/scipy-1.16.2-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:9e05e33657efb4c6a9d23bd8300101536abd99c85cca82da0bffff8d8764d08a", size = 29389926, upload-time = "2025-09-11T17:42:35.845Z" }, + { url = "https://files.pythonhosted.org/packages/bf/0a/130164a4881cec6ca8c00faf3b57926f28ed429cd6001a673f83c7c2a579/scipy-1.16.2-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:7fe65b36036357003b3ef9d37547abeefaa353b237e989c21027b8ed62b12d4f", size = 21381152, upload-time = "2025-09-11T17:42:40.07Z" }, + { url = "https://files.pythonhosted.org/packages/47/a6/503ffb0310ae77fba874e10cddfc4a1280bdcca1d13c3751b8c3c2996cf8/scipy-1.16.2-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6406d2ac6d40b861cccf57f49592f9779071655e9f75cd4f977fa0bdd09cb2e4", size = 23914410, upload-time = "2025-09-11T17:42:44.313Z" }, + { url = "https://files.pythonhosted.org/packages/fa/c7/1147774bcea50d00c02600aadaa919facbd8537997a62496270133536ed6/scipy-1.16.2-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ff4dc42bd321991fbf611c23fc35912d690f731c9914bf3af8f417e64aca0f21", size = 33481880, upload-time = "2025-09-11T17:42:49.325Z" }, + { url = "https://files.pythonhosted.org/packages/6a/74/99d5415e4c3e46b2586f30cdbecb95e101c7192628a484a40dd0d163811a/scipy-1.16.2-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:654324826654d4d9133e10675325708fb954bc84dae6e9ad0a52e75c6b1a01d7", size = 35791425, upload-time = "2025-09-11T17:42:54.711Z" }, + { url = "https://files.pythonhosted.org/packages/1b/ee/a6559de7c1cc710e938c0355d9d4fbcd732dac4d0d131959d1f3b63eb29c/scipy-1.16.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:63870a84cd15c44e65220eaed2dac0e8f8b26bbb991456a033c1d9abfe8a94f8", size = 36178622, upload-time = "2025-09-11T17:43:00.375Z" }, + { url = "https://files.pythonhosted.org/packages/4e/7b/f127a5795d5ba8ece4e0dce7d4a9fb7cb9e4f4757137757d7a69ab7d4f1a/scipy-1.16.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:fa01f0f6a3050fa6a9771a95d5faccc8e2f5a92b4a2e5440a0fa7264a2398472", size = 38783985, upload-time = "2025-09-11T17:43:06.661Z" }, + { url = "https://files.pythonhosted.org/packages/3e/9f/bc81c1d1e033951eb5912cd3750cc005943afa3e65a725d2443a3b3c4347/scipy-1.16.2-cp313-cp313t-win_amd64.whl", hash = "sha256:116296e89fba96f76353a8579820c2512f6e55835d3fad7780fece04367de351", size = 38631367, upload-time = "2025-09-11T17:43:14.44Z" }, + { url = "https://files.pythonhosted.org/packages/d6/5e/2cc7555fd81d01814271412a1d59a289d25f8b63208a0a16c21069d55d3e/scipy-1.16.2-cp313-cp313t-win_arm64.whl", hash = "sha256:98e22834650be81d42982360382b43b17f7ba95e0e6993e2a4f5b9ad9283a94d", size = 25787992, upload-time = "2025-09-11T17:43:19.745Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ac/ad8951250516db71619f0bd3b2eb2448db04b720a003dd98619b78b692c0/scipy-1.16.2-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:567e77755019bb7461513c87f02bb73fb65b11f049aaaa8ca17cfaa5a5c45d77", size = 36595109, upload-time = "2025-09-11T17:43:35.713Z" }, + { url = "https://files.pythonhosted.org/packages/ff/f6/5779049ed119c5b503b0f3dc6d6f3f68eefc3a9190d4ad4c276f854f051b/scipy-1.16.2-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:17d9bb346194e8967296621208fcdfd39b55498ef7d2f376884d5ac47cec1a70", size = 28859110, upload-time = "2025-09-11T17:43:40.814Z" }, + { url = "https://files.pythonhosted.org/packages/82/09/9986e410ae38bf0a0c737ff8189ac81a93b8e42349aac009891c054403d7/scipy-1.16.2-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:0a17541827a9b78b777d33b623a6dcfe2ef4a25806204d08ead0768f4e529a88", size = 20850110, upload-time = "2025-09-11T17:43:44.981Z" }, + { url = "https://files.pythonhosted.org/packages/0d/ad/485cdef2d9215e2a7df6d61b81d2ac073dfacf6ae24b9ae87274c4e936ae/scipy-1.16.2-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:d7d4c6ba016ffc0f9568d012f5f1eb77ddd99412aea121e6fa8b4c3b7cbad91f", size = 23497014, upload-time = "2025-09-11T17:43:49.074Z" }, + { url = "https://files.pythonhosted.org/packages/a7/74/f6a852e5d581122b8f0f831f1d1e32fb8987776ed3658e95c377d308ed86/scipy-1.16.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:9702c4c023227785c779cba2e1d6f7635dbb5b2e0936cdd3a4ecb98d78fd41eb", size = 33401155, upload-time = "2025-09-11T17:43:54.661Z" }, + { url = "https://files.pythonhosted.org/packages/d9/f5/61d243bbc7c6e5e4e13dde9887e84a5cbe9e0f75fd09843044af1590844e/scipy-1.16.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d1cdf0ac28948d225decdefcc45ad7dd91716c29ab56ef32f8e0d50657dffcc7", size = 35691174, upload-time = "2025-09-11T17:44:00.101Z" }, + { url = "https://files.pythonhosted.org/packages/03/99/59933956331f8cc57e406cdb7a483906c74706b156998f322913e789c7e1/scipy-1.16.2-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:70327d6aa572a17c2941cdfb20673f82e536e91850a2e4cb0c5b858b690e1548", size = 36070752, upload-time = "2025-09-11T17:44:05.619Z" }, + { url = "https://files.pythonhosted.org/packages/c6/7d/00f825cfb47ee19ef74ecf01244b43e95eae74e7e0ff796026ea7cd98456/scipy-1.16.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:5221c0b2a4b58aa7c4ed0387d360fd90ee9086d383bb34d9f2789fafddc8a936", size = 38701010, upload-time = "2025-09-11T17:44:11.322Z" }, + { url = "https://files.pythonhosted.org/packages/e4/9f/b62587029980378304ba5a8563d376c96f40b1e133daacee76efdcae32de/scipy-1.16.2-cp314-cp314-win_amd64.whl", hash = "sha256:f5a85d7b2b708025af08f060a496dd261055b617d776fc05a1a1cc69e09fe9ff", size = 39360061, upload-time = "2025-09-11T17:45:09.814Z" }, + { url = "https://files.pythonhosted.org/packages/82/04/7a2f1609921352c7fbee0815811b5050582f67f19983096c4769867ca45f/scipy-1.16.2-cp314-cp314-win_arm64.whl", hash = "sha256:2cc73a33305b4b24556957d5857d6253ce1e2dcd67fa0ff46d87d1670b3e1e1d", size = 26126914, upload-time = "2025-09-11T17:45:14.73Z" }, + { url = "https://files.pythonhosted.org/packages/51/b9/60929ce350c16b221928725d2d1d7f86cf96b8bc07415547057d1196dc92/scipy-1.16.2-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:9ea2a3fed83065d77367775d689401a703d0f697420719ee10c0780bcab594d8", size = 37013193, upload-time = "2025-09-11T17:44:16.757Z" }, + { url = "https://files.pythonhosted.org/packages/2a/41/ed80e67782d4bc5fc85a966bc356c601afddd175856ba7c7bb6d9490607e/scipy-1.16.2-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:7280d926f11ca945c3ef92ba960fa924e1465f8d07ce3a9923080363390624c4", size = 29390172, upload-time = "2025-09-11T17:44:21.783Z" }, + { url = "https://files.pythonhosted.org/packages/c4/a3/2f673ace4090452696ccded5f5f8efffb353b8f3628f823a110e0170b605/scipy-1.16.2-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:8afae1756f6a1fe04636407ef7dbece33d826a5d462b74f3d0eb82deabefd831", size = 21381326, upload-time = "2025-09-11T17:44:25.982Z" }, + { url = "https://files.pythonhosted.org/packages/42/bf/59df61c5d51395066c35836b78136accf506197617c8662e60ea209881e1/scipy-1.16.2-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:5c66511f29aa8d233388e7416a3f20d5cae7a2744d5cee2ecd38c081f4e861b3", size = 23915036, upload-time = "2025-09-11T17:44:30.527Z" }, + { url = "https://files.pythonhosted.org/packages/91/c3/edc7b300dc16847ad3672f1a6f3f7c5d13522b21b84b81c265f4f2760d4a/scipy-1.16.2-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:efe6305aeaa0e96b0ccca5ff647a43737d9a092064a3894e46c414db84bc54ac", size = 33484341, upload-time = "2025-09-11T17:44:35.981Z" }, + { url = "https://files.pythonhosted.org/packages/26/c7/24d1524e72f06ff141e8d04b833c20db3021020563272ccb1b83860082a9/scipy-1.16.2-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7f3a337d9ae06a1e8d655ee9d8ecb835ea5ddcdcbd8d23012afa055ab014f374", size = 35790840, upload-time = "2025-09-11T17:44:41.76Z" }, + { url = "https://files.pythonhosted.org/packages/aa/b7/5aaad984eeedd56858dc33d75efa59e8ce798d918e1033ef62d2708f2c3d/scipy-1.16.2-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:bab3605795d269067d8ce78a910220262711b753de8913d3deeaedb5dded3bb6", size = 36174716, upload-time = "2025-09-11T17:44:47.316Z" }, + { url = "https://files.pythonhosted.org/packages/fd/c2/e276a237acb09824822b0ada11b028ed4067fdc367a946730979feacb870/scipy-1.16.2-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:b0348d8ddb55be2a844c518cd8cc8deeeb8aeba707cf834db5758fc89b476a2c", size = 38790088, upload-time = "2025-09-11T17:44:53.011Z" }, + { url = "https://files.pythonhosted.org/packages/c6/b4/5c18a766e8353015439f3780f5fc473f36f9762edc1a2e45da3ff5a31b21/scipy-1.16.2-cp314-cp314t-win_amd64.whl", hash = "sha256:26284797e38b8a75e14ea6631d29bda11e76ceaa6ddb6fdebbfe4c4d90faf2f9", size = 39457455, upload-time = "2025-09-11T17:44:58.899Z" }, + { url = "https://files.pythonhosted.org/packages/97/30/2f9a5243008f76dfc5dee9a53dfb939d9b31e16ce4bd4f2e628bfc5d89d2/scipy-1.16.2-cp314-cp314t-win_arm64.whl", hash = "sha256:d2a4472c231328d4de38d5f1f68fdd6d28a615138f842580a8a321b5845cf779", size = 26448374, upload-time = "2025-09-11T17:45:03.45Z" }, +] + +[[package]] +name = "setuptools" +version = "80.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707, upload-time = "2023-09-30T13:58:05.479Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521, upload-time = "2023-09-30T13:58:03.53Z" }, +] + +[[package]] +name = "tomli" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/52/ed/3f73f72945444548f33eba9a87fc7a6e969915e7b1acc8260b30e1f76a2f/tomli-2.3.0.tar.gz", hash = "sha256:64be704a875d2a59753d80ee8a533c3fe183e3f06807ff7dc2232938ccb01549", size = 17392, upload-time = "2025-10-08T22:01:47.119Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b3/2e/299f62b401438d5fe1624119c723f5d877acc86a4c2492da405626665f12/tomli-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:88bd15eb972f3664f5ed4b57c1634a97153b4bac4479dcb6a495f41921eb7f45", size = 153236, upload-time = "2025-10-08T22:01:00.137Z" }, + { url = "https://files.pythonhosted.org/packages/86/7f/d8fffe6a7aefdb61bced88fcb5e280cfd71e08939da5894161bd71bea022/tomli-2.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:883b1c0d6398a6a9d29b508c331fa56adbcdff647f6ace4dfca0f50e90dfd0ba", size = 148084, upload-time = "2025-10-08T22:01:01.63Z" }, + { url = "https://files.pythonhosted.org/packages/47/5c/24935fb6a2ee63e86d80e4d3b58b222dafaf438c416752c8b58537c8b89a/tomli-2.3.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d1381caf13ab9f300e30dd8feadb3de072aeb86f1d34a8569453ff32a7dea4bf", size = 234832, upload-time = "2025-10-08T22:01:02.543Z" }, + { url = "https://files.pythonhosted.org/packages/89/da/75dfd804fc11e6612846758a23f13271b76d577e299592b4371a4ca4cd09/tomli-2.3.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a0e285d2649b78c0d9027570d4da3425bdb49830a6156121360b3f8511ea3441", size = 242052, upload-time = "2025-10-08T22:01:03.836Z" }, + { url = "https://files.pythonhosted.org/packages/70/8c/f48ac899f7b3ca7eb13af73bacbc93aec37f9c954df3c08ad96991c8c373/tomli-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0a154a9ae14bfcf5d8917a59b51ffd5a3ac1fd149b71b47a3a104ca4edcfa845", size = 239555, upload-time = "2025-10-08T22:01:04.834Z" }, + { url = "https://files.pythonhosted.org/packages/ba/28/72f8afd73f1d0e7829bfc093f4cb98ce0a40ffc0cc997009ee1ed94ba705/tomli-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:74bf8464ff93e413514fefd2be591c3b0b23231a77f901db1eb30d6f712fc42c", size = 245128, upload-time = "2025-10-08T22:01:05.84Z" }, + { url = "https://files.pythonhosted.org/packages/b6/eb/a7679c8ac85208706d27436e8d421dfa39d4c914dcf5fa8083a9305f58d9/tomli-2.3.0-cp311-cp311-win32.whl", hash = "sha256:00b5f5d95bbfc7d12f91ad8c593a1659b6387b43f054104cda404be6bda62456", size = 96445, upload-time = "2025-10-08T22:01:06.896Z" }, + { url = "https://files.pythonhosted.org/packages/0a/fe/3d3420c4cb1ad9cb462fb52967080575f15898da97e21cb6f1361d505383/tomli-2.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:4dc4ce8483a5d429ab602f111a93a6ab1ed425eae3122032db7e9acf449451be", size = 107165, upload-time = "2025-10-08T22:01:08.107Z" }, + { url = "https://files.pythonhosted.org/packages/ff/b7/40f36368fcabc518bb11c8f06379a0fd631985046c038aca08c6d6a43c6e/tomli-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d7d86942e56ded512a594786a5ba0a5e521d02529b3826e7761a05138341a2ac", size = 154891, upload-time = "2025-10-08T22:01:09.082Z" }, + { url = "https://files.pythonhosted.org/packages/f9/3f/d9dd692199e3b3aab2e4e4dd948abd0f790d9ded8cd10cbaae276a898434/tomli-2.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:73ee0b47d4dad1c5e996e3cd33b8a76a50167ae5f96a2607cbe8cc773506ab22", size = 148796, upload-time = "2025-10-08T22:01:10.266Z" }, + { url = "https://files.pythonhosted.org/packages/60/83/59bff4996c2cf9f9387a0f5a3394629c7efa5ef16142076a23a90f1955fa/tomli-2.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:792262b94d5d0a466afb5bc63c7daa9d75520110971ee269152083270998316f", size = 242121, upload-time = "2025-10-08T22:01:11.332Z" }, + { url = "https://files.pythonhosted.org/packages/45/e5/7c5119ff39de8693d6baab6c0b6dcb556d192c165596e9fc231ea1052041/tomli-2.3.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4f195fe57ecceac95a66a75ac24d9d5fbc98ef0962e09b2eddec5d39375aae52", size = 250070, upload-time = "2025-10-08T22:01:12.498Z" }, + { url = "https://files.pythonhosted.org/packages/45/12/ad5126d3a278f27e6701abde51d342aa78d06e27ce2bb596a01f7709a5a2/tomli-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e31d432427dcbf4d86958c184b9bfd1e96b5b71f8eb17e6d02531f434fd335b8", size = 245859, upload-time = "2025-10-08T22:01:13.551Z" }, + { url = "https://files.pythonhosted.org/packages/fb/a1/4d6865da6a71c603cfe6ad0e6556c73c76548557a8d658f9e3b142df245f/tomli-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:7b0882799624980785240ab732537fcfc372601015c00f7fc367c55308c186f6", size = 250296, upload-time = "2025-10-08T22:01:14.614Z" }, + { url = "https://files.pythonhosted.org/packages/a0/b7/a7a7042715d55c9ba6e8b196d65d2cb662578b4d8cd17d882d45322b0d78/tomli-2.3.0-cp312-cp312-win32.whl", hash = "sha256:ff72b71b5d10d22ecb084d345fc26f42b5143c5533db5e2eaba7d2d335358876", size = 97124, upload-time = "2025-10-08T22:01:15.629Z" }, + { url = "https://files.pythonhosted.org/packages/06/1e/f22f100db15a68b520664eb3328fb0ae4e90530887928558112c8d1f4515/tomli-2.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:1cb4ed918939151a03f33d4242ccd0aa5f11b3547d0cf30f7c74a408a5b99878", size = 107698, upload-time = "2025-10-08T22:01:16.51Z" }, + { url = "https://files.pythonhosted.org/packages/89/48/06ee6eabe4fdd9ecd48bf488f4ac783844fd777f547b8d1b61c11939974e/tomli-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:5192f562738228945d7b13d4930baffda67b69425a7f0da96d360b0a3888136b", size = 154819, upload-time = "2025-10-08T22:01:17.964Z" }, + { url = "https://files.pythonhosted.org/packages/f1/01/88793757d54d8937015c75dcdfb673c65471945f6be98e6a0410fba167ed/tomli-2.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:be71c93a63d738597996be9528f4abe628d1adf5e6eb11607bc8fe1a510b5dae", size = 148766, upload-time = "2025-10-08T22:01:18.959Z" }, + { url = "https://files.pythonhosted.org/packages/42/17/5e2c956f0144b812e7e107f94f1cc54af734eb17b5191c0bbfb72de5e93e/tomli-2.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c4665508bcbac83a31ff8ab08f424b665200c0e1e645d2bd9ab3d3e557b6185b", size = 240771, upload-time = "2025-10-08T22:01:20.106Z" }, + { url = "https://files.pythonhosted.org/packages/d5/f4/0fbd014909748706c01d16824eadb0307115f9562a15cbb012cd9b3512c5/tomli-2.3.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4021923f97266babc6ccab9f5068642a0095faa0a51a246a6a02fccbb3514eaf", size = 248586, upload-time = "2025-10-08T22:01:21.164Z" }, + { url = "https://files.pythonhosted.org/packages/30/77/fed85e114bde5e81ecf9bc5da0cc69f2914b38f4708c80ae67d0c10180c5/tomli-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4ea38c40145a357d513bffad0ed869f13c1773716cf71ccaa83b0fa0cc4e42f", size = 244792, upload-time = "2025-10-08T22:01:22.417Z" }, + { url = "https://files.pythonhosted.org/packages/55/92/afed3d497f7c186dc71e6ee6d4fcb0acfa5f7d0a1a2878f8beae379ae0cc/tomli-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ad805ea85eda330dbad64c7ea7a4556259665bdf9d2672f5dccc740eb9d3ca05", size = 248909, upload-time = "2025-10-08T22:01:23.859Z" }, + { url = "https://files.pythonhosted.org/packages/f8/84/ef50c51b5a9472e7265ce1ffc7f24cd4023d289e109f669bdb1553f6a7c2/tomli-2.3.0-cp313-cp313-win32.whl", hash = "sha256:97d5eec30149fd3294270e889b4234023f2c69747e555a27bd708828353ab606", size = 96946, upload-time = "2025-10-08T22:01:24.893Z" }, + { url = "https://files.pythonhosted.org/packages/b2/b7/718cd1da0884f281f95ccfa3a6cc572d30053cba64603f79d431d3c9b61b/tomli-2.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:0c95ca56fbe89e065c6ead5b593ee64b84a26fca063b5d71a1122bf26e533999", size = 107705, upload-time = "2025-10-08T22:01:26.153Z" }, + { url = "https://files.pythonhosted.org/packages/19/94/aeafa14a52e16163008060506fcb6aa1949d13548d13752171a755c65611/tomli-2.3.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:cebc6fe843e0733ee827a282aca4999b596241195f43b4cc371d64fc6639da9e", size = 154244, upload-time = "2025-10-08T22:01:27.06Z" }, + { url = "https://files.pythonhosted.org/packages/db/e4/1e58409aa78eefa47ccd19779fc6f36787edbe7d4cd330eeeedb33a4515b/tomli-2.3.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:4c2ef0244c75aba9355561272009d934953817c49f47d768070c3c94355c2aa3", size = 148637, upload-time = "2025-10-08T22:01:28.059Z" }, + { url = "https://files.pythonhosted.org/packages/26/b6/d1eccb62f665e44359226811064596dd6a366ea1f985839c566cd61525ae/tomli-2.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c22a8bf253bacc0cf11f35ad9808b6cb75ada2631c2d97c971122583b129afbc", size = 241925, upload-time = "2025-10-08T22:01:29.066Z" }, + { url = "https://files.pythonhosted.org/packages/70/91/7cdab9a03e6d3d2bb11beae108da5bdc1c34bdeb06e21163482544ddcc90/tomli-2.3.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0eea8cc5c5e9f89c9b90c4896a8deefc74f518db5927d0e0e8d4a80953d774d0", size = 249045, upload-time = "2025-10-08T22:01:31.98Z" }, + { url = "https://files.pythonhosted.org/packages/15/1b/8c26874ed1f6e4f1fcfeb868db8a794cbe9f227299402db58cfcc858766c/tomli-2.3.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:b74a0e59ec5d15127acdabd75ea17726ac4c5178ae51b85bfe39c4f8a278e879", size = 245835, upload-time = "2025-10-08T22:01:32.989Z" }, + { url = "https://files.pythonhosted.org/packages/fd/42/8e3c6a9a4b1a1360c1a2a39f0b972cef2cc9ebd56025168c4137192a9321/tomli-2.3.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:b5870b50c9db823c595983571d1296a6ff3e1b88f734a4c8f6fc6188397de005", size = 253109, upload-time = "2025-10-08T22:01:34.052Z" }, + { url = "https://files.pythonhosted.org/packages/22/0c/b4da635000a71b5f80130937eeac12e686eefb376b8dee113b4a582bba42/tomli-2.3.0-cp314-cp314-win32.whl", hash = "sha256:feb0dacc61170ed7ab602d3d972a58f14ee3ee60494292d384649a3dc38ef463", size = 97930, upload-time = "2025-10-08T22:01:35.082Z" }, + { url = "https://files.pythonhosted.org/packages/b9/74/cb1abc870a418ae99cd5c9547d6bce30701a954e0e721821df483ef7223c/tomli-2.3.0-cp314-cp314-win_amd64.whl", hash = "sha256:b273fcbd7fc64dc3600c098e39136522650c49bca95df2d11cf3b626422392c8", size = 107964, upload-time = "2025-10-08T22:01:36.057Z" }, + { url = "https://files.pythonhosted.org/packages/54/78/5c46fff6432a712af9f792944f4fcd7067d8823157949f4e40c56b8b3c83/tomli-2.3.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:940d56ee0410fa17ee1f12b817b37a4d4e4dc4d27340863cc67236c74f582e77", size = 163065, upload-time = "2025-10-08T22:01:37.27Z" }, + { url = "https://files.pythonhosted.org/packages/39/67/f85d9bd23182f45eca8939cd2bc7050e1f90c41f4a2ecbbd5963a1d1c486/tomli-2.3.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:f85209946d1fe94416debbb88d00eb92ce9cd5266775424ff81bc959e001acaf", size = 159088, upload-time = "2025-10-08T22:01:38.235Z" }, + { url = "https://files.pythonhosted.org/packages/26/5a/4b546a0405b9cc0659b399f12b6adb750757baf04250b148d3c5059fc4eb/tomli-2.3.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a56212bdcce682e56b0aaf79e869ba5d15a6163f88d5451cbde388d48b13f530", size = 268193, upload-time = "2025-10-08T22:01:39.712Z" }, + { url = "https://files.pythonhosted.org/packages/42/4f/2c12a72ae22cf7b59a7fe75b3465b7aba40ea9145d026ba41cb382075b0e/tomli-2.3.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c5f3ffd1e098dfc032d4d3af5c0ac64f6d286d98bc148698356847b80fa4de1b", size = 275488, upload-time = "2025-10-08T22:01:40.773Z" }, + { url = "https://files.pythonhosted.org/packages/92/04/a038d65dbe160c3aa5a624e93ad98111090f6804027d474ba9c37c8ae186/tomli-2.3.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:5e01decd096b1530d97d5d85cb4dff4af2d8347bd35686654a004f8dea20fc67", size = 272669, upload-time = "2025-10-08T22:01:41.824Z" }, + { url = "https://files.pythonhosted.org/packages/be/2f/8b7c60a9d1612a7cbc39ffcca4f21a73bf368a80fc25bccf8253e2563267/tomli-2.3.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:8a35dd0e643bb2610f156cca8db95d213a90015c11fee76c946aa62b7ae7e02f", size = 279709, upload-time = "2025-10-08T22:01:43.177Z" }, + { url = "https://files.pythonhosted.org/packages/7e/46/cc36c679f09f27ded940281c38607716c86cf8ba4a518d524e349c8b4874/tomli-2.3.0-cp314-cp314t-win32.whl", hash = "sha256:a1f7f282fe248311650081faafa5f4732bdbfef5d45fe3f2e702fbc6f2d496e0", size = 107563, upload-time = "2025-10-08T22:01:44.233Z" }, + { url = "https://files.pythonhosted.org/packages/84/ff/426ca8683cf7b753614480484f6437f568fd2fda2edbdf57a2d3d8b27a0b/tomli-2.3.0-cp314-cp314t-win_amd64.whl", hash = "sha256:70a251f8d4ba2d9ac2542eecf008b3c8a9fc5c3f9f02c56a9d7952612be2fdba", size = 119756, upload-time = "2025-10-08T22:01:45.234Z" }, + { url = "https://files.pythonhosted.org/packages/77/b8/0135fadc89e73be292b473cb820b4f5a08197779206b33191e801feeae40/tomli-2.3.0-py3-none-any.whl", hash = "sha256:e95b1af3c5b07d9e643909b5abbec77cd9f1217e6d0bca72b0234736b9fb1f1b", size = 14408, upload-time = "2025-10-08T22:01:46.04Z" }, +] + +[[package]] +name = "tornado" +version = "6.5.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/ce/1eb500eae19f4648281bb2186927bb062d2438c2e5093d1360391afd2f90/tornado-6.5.2.tar.gz", hash = "sha256:ab53c8f9a0fa351e2c0741284e06c7a45da86afb544133201c5cc8578eb076a0", size = 510821, upload-time = "2025-08-08T18:27:00.78Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/48/6a7529df2c9cc12efd2e8f5dd219516184d703b34c06786809670df5b3bd/tornado-6.5.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:2436822940d37cde62771cff8774f4f00b3c8024fe482e16ca8387b8a2724db6", size = 442563, upload-time = "2025-08-08T18:26:42.945Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b5/9b575a0ed3e50b00c40b08cbce82eb618229091d09f6d14bce80fc01cb0b/tornado-6.5.2-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:583a52c7aa94ee046854ba81d9ebb6c81ec0fd30386d96f7640c96dad45a03ef", size = 440729, upload-time = "2025-08-08T18:26:44.473Z" }, + { url = "https://files.pythonhosted.org/packages/1b/4e/619174f52b120efcf23633c817fd3fed867c30bff785e2cd5a53a70e483c/tornado-6.5.2-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0fe179f28d597deab2842b86ed4060deec7388f1fd9c1b4a41adf8af058907e", size = 444295, upload-time = "2025-08-08T18:26:46.021Z" }, + { url = "https://files.pythonhosted.org/packages/95/fa/87b41709552bbd393c85dd18e4e3499dcd8983f66e7972926db8d96aa065/tornado-6.5.2-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b186e85d1e3536d69583d2298423744740986018e393d0321df7340e71898882", size = 443644, upload-time = "2025-08-08T18:26:47.625Z" }, + { url = "https://files.pythonhosted.org/packages/f9/41/fb15f06e33d7430ca89420283a8762a4e6b8025b800ea51796ab5e6d9559/tornado-6.5.2-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e792706668c87709709c18b353da1f7662317b563ff69f00bab83595940c7108", size = 443878, upload-time = "2025-08-08T18:26:50.599Z" }, + { url = "https://files.pythonhosted.org/packages/11/92/fe6d57da897776ad2e01e279170ea8ae726755b045fe5ac73b75357a5a3f/tornado-6.5.2-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:06ceb1300fd70cb20e43b1ad8aaee0266e69e7ced38fa910ad2e03285009ce7c", size = 444549, upload-time = "2025-08-08T18:26:51.864Z" }, + { url = "https://files.pythonhosted.org/packages/9b/02/c8f4f6c9204526daf3d760f4aa555a7a33ad0e60843eac025ccfd6ff4a93/tornado-6.5.2-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:74db443e0f5251be86cbf37929f84d8c20c27a355dd452a5cfa2aada0d001ec4", size = 443973, upload-time = "2025-08-08T18:26:53.625Z" }, + { url = "https://files.pythonhosted.org/packages/ae/2d/f5f5707b655ce2317190183868cd0f6822a1121b4baeae509ceb9590d0bd/tornado-6.5.2-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b5e735ab2889d7ed33b32a459cac490eda71a1ba6857b0118de476ab6c366c04", size = 443954, upload-time = "2025-08-08T18:26:55.072Z" }, + { url = "https://files.pythonhosted.org/packages/e8/59/593bd0f40f7355806bf6573b47b8c22f8e1374c9b6fd03114bd6b7a3dcfd/tornado-6.5.2-cp39-abi3-win32.whl", hash = "sha256:c6f29e94d9b37a95013bb669616352ddb82e3bfe8326fccee50583caebc8a5f0", size = 445023, upload-time = "2025-08-08T18:26:56.677Z" }, + { url = "https://files.pythonhosted.org/packages/c7/2a/f609b420c2f564a748a2d80ebfb2ee02a73ca80223af712fca591386cafb/tornado-6.5.2-cp39-abi3-win_amd64.whl", hash = "sha256:e56a5af51cc30dd2cae649429af65ca2f6571da29504a07995175df14c18f35f", size = 445427, upload-time = "2025-08-08T18:26:57.91Z" }, + { url = "https://files.pythonhosted.org/packages/5e/4f/e1f65e8f8c76d73658b33d33b81eed4322fb5085350e4328d5c956f0c8f9/tornado-6.5.2-cp39-abi3-win_arm64.whl", hash = "sha256:d6c33dc3672e3a1f3618eb63b7ef4683a7688e7b9e6e8f0d9aa5726360a004af", size = 444456, upload-time = "2025-08-08T18:26:59.207Z" }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621, upload-time = "2024-04-19T11:11:49.746Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359, upload-time = "2024-04-19T11:11:46.763Z" }, +] + +[[package]] +name = "typing-extensions" +version = "4.15.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" }, +] + +[[package]] +name = "tzdata" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380, upload-time = "2025-03-23T13:54:43.652Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839, upload-time = "2025-03-23T13:54:41.845Z" }, +] + +[[package]] +name = "urllib3" +version = "2.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" }, +] + +[[package]] +name = "watchdog" +version = "6.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/db/7d/7f3d619e951c88ed75c6037b246ddcf2d322812ee8ea189be89511721d54/watchdog-6.0.0.tar.gz", hash = "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282", size = 131220, upload-time = "2024-11-01T14:07:13.037Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0c/56/90994d789c61df619bfc5ce2ecdabd5eeff564e1eb47512bd01b5e019569/watchdog-6.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26", size = 96390, upload-time = "2024-11-01T14:06:24.793Z" }, + { url = "https://files.pythonhosted.org/packages/55/46/9a67ee697342ddf3c6daa97e3a587a56d6c4052f881ed926a849fcf7371c/watchdog-6.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112", size = 88389, upload-time = "2024-11-01T14:06:27.112Z" }, + { url = "https://files.pythonhosted.org/packages/44/65/91b0985747c52064d8701e1075eb96f8c40a79df889e59a399453adfb882/watchdog-6.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3", size = 89020, upload-time = "2024-11-01T14:06:29.876Z" }, + { url = "https://files.pythonhosted.org/packages/e0/24/d9be5cd6642a6aa68352ded4b4b10fb0d7889cb7f45814fb92cecd35f101/watchdog-6.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c", size = 96393, upload-time = "2024-11-01T14:06:31.756Z" }, + { url = "https://files.pythonhosted.org/packages/63/7a/6013b0d8dbc56adca7fdd4f0beed381c59f6752341b12fa0886fa7afc78b/watchdog-6.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2", size = 88392, upload-time = "2024-11-01T14:06:32.99Z" }, + { url = "https://files.pythonhosted.org/packages/d1/40/b75381494851556de56281e053700e46bff5b37bf4c7267e858640af5a7f/watchdog-6.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c", size = 89019, upload-time = "2024-11-01T14:06:34.963Z" }, + { url = "https://files.pythonhosted.org/packages/39/ea/3930d07dafc9e286ed356a679aa02d777c06e9bfd1164fa7c19c288a5483/watchdog-6.0.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948", size = 96471, upload-time = "2024-11-01T14:06:37.745Z" }, + { url = "https://files.pythonhosted.org/packages/12/87/48361531f70b1f87928b045df868a9fd4e253d9ae087fa4cf3f7113be363/watchdog-6.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860", size = 88449, upload-time = "2024-11-01T14:06:39.748Z" }, + { url = "https://files.pythonhosted.org/packages/5b/7e/8f322f5e600812e6f9a31b75d242631068ca8f4ef0582dd3ae6e72daecc8/watchdog-6.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0", size = 89054, upload-time = "2024-11-01T14:06:41.009Z" }, + { url = "https://files.pythonhosted.org/packages/68/98/b0345cabdce2041a01293ba483333582891a3bd5769b08eceb0d406056ef/watchdog-6.0.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:490ab2ef84f11129844c23fb14ecf30ef3d8a6abafd3754a6f75ca1e6654136c", size = 96480, upload-time = "2024-11-01T14:06:42.952Z" }, + { url = "https://files.pythonhosted.org/packages/85/83/cdf13902c626b28eedef7ec4f10745c52aad8a8fe7eb04ed7b1f111ca20e/watchdog-6.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:76aae96b00ae814b181bb25b1b98076d5fc84e8a53cd8885a318b42b6d3a5134", size = 88451, upload-time = "2024-11-01T14:06:45.084Z" }, + { url = "https://files.pythonhosted.org/packages/fe/c4/225c87bae08c8b9ec99030cd48ae9c4eca050a59bf5c2255853e18c87b50/watchdog-6.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a175f755fc2279e0b7312c0035d52e27211a5bc39719dd529625b1930917345b", size = 89057, upload-time = "2024-11-01T14:06:47.324Z" }, + { url = "https://files.pythonhosted.org/packages/05/52/7223011bb760fce8ddc53416beb65b83a3ea6d7d13738dde75eeb2c89679/watchdog-6.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e6f0e77c9417e7cd62af82529b10563db3423625c5fce018430b249bf977f9e8", size = 96390, upload-time = "2024-11-01T14:06:49.325Z" }, + { url = "https://files.pythonhosted.org/packages/9c/62/d2b21bc4e706d3a9d467561f487c2938cbd881c69f3808c43ac1ec242391/watchdog-6.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:90c8e78f3b94014f7aaae121e6b909674df5b46ec24d6bebc45c44c56729af2a", size = 88386, upload-time = "2024-11-01T14:06:50.536Z" }, + { url = "https://files.pythonhosted.org/packages/ea/22/1c90b20eda9f4132e4603a26296108728a8bfe9584b006bd05dd94548853/watchdog-6.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e7631a77ffb1f7d2eefa4445ebbee491c720a5661ddf6df3498ebecae5ed375c", size = 89017, upload-time = "2024-11-01T14:06:51.717Z" }, + { url = "https://files.pythonhosted.org/packages/30/ad/d17b5d42e28a8b91f8ed01cb949da092827afb9995d4559fd448d0472763/watchdog-6.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881", size = 87902, upload-time = "2024-11-01T14:06:53.119Z" }, + { url = "https://files.pythonhosted.org/packages/5c/ca/c3649991d140ff6ab67bfc85ab42b165ead119c9e12211e08089d763ece5/watchdog-6.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11", size = 88380, upload-time = "2024-11-01T14:06:55.19Z" }, + { url = "https://files.pythonhosted.org/packages/5b/79/69f2b0e8d3f2afd462029031baafb1b75d11bb62703f0e1022b2e54d49ee/watchdog-6.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7a0e56874cfbc4b9b05c60c8a1926fedf56324bb08cfbc188969777940aef3aa", size = 87903, upload-time = "2024-11-01T14:06:57.052Z" }, + { url = "https://files.pythonhosted.org/packages/e2/2b/dc048dd71c2e5f0f7ebc04dd7912981ec45793a03c0dc462438e0591ba5d/watchdog-6.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:e6439e374fc012255b4ec786ae3c4bc838cd7309a540e5fe0952d03687d8804e", size = 88381, upload-time = "2024-11-01T14:06:58.193Z" }, + { url = "https://files.pythonhosted.org/packages/a9/c7/ca4bf3e518cb57a686b2feb4f55a1892fd9a3dd13f470fca14e00f80ea36/watchdog-6.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13", size = 79079, upload-time = "2024-11-01T14:06:59.472Z" }, + { url = "https://files.pythonhosted.org/packages/5c/51/d46dc9332f9a647593c947b4b88e2381c8dfc0942d15b8edc0310fa4abb1/watchdog-6.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379", size = 79078, upload-time = "2024-11-01T14:07:01.431Z" }, + { url = "https://files.pythonhosted.org/packages/d4/57/04edbf5e169cd318d5f07b4766fee38e825d64b6913ca157ca32d1a42267/watchdog-6.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e", size = 79076, upload-time = "2024-11-01T14:07:02.568Z" }, + { url = "https://files.pythonhosted.org/packages/ab/cc/da8422b300e13cb187d2203f20b9253e91058aaf7db65b74142013478e66/watchdog-6.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f", size = 79077, upload-time = "2024-11-01T14:07:03.893Z" }, + { url = "https://files.pythonhosted.org/packages/2c/3b/b8964e04ae1a025c44ba8e4291f86e97fac443bca31de8bd98d3263d2fcf/watchdog-6.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26", size = 79078, upload-time = "2024-11-01T14:07:05.189Z" }, + { url = "https://files.pythonhosted.org/packages/62/ae/a696eb424bedff7407801c257d4b1afda455fe40821a2be430e173660e81/watchdog-6.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c", size = 79077, upload-time = "2024-11-01T14:07:06.376Z" }, + { url = "https://files.pythonhosted.org/packages/b5/e8/dbf020b4d98251a9860752a094d09a65e1b436ad181faf929983f697048f/watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2", size = 79078, upload-time = "2024-11-01T14:07:07.547Z" }, + { url = "https://files.pythonhosted.org/packages/07/f6/d0e5b343768e8bcb4cda79f0f2f55051bf26177ecd5651f84c07567461cf/watchdog-6.0.0-py3-none-win32.whl", hash = "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a", size = 79065, upload-time = "2024-11-01T14:07:09.525Z" }, + { url = "https://files.pythonhosted.org/packages/db/d9/c495884c6e548fce18a8f40568ff120bc3a4b7b99813081c8ac0c936fa64/watchdog-6.0.0-py3-none-win_amd64.whl", hash = "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680", size = 79070, upload-time = "2024-11-01T14:07:10.686Z" }, + { url = "https://files.pythonhosted.org/packages/33/e8/e40370e6d74ddba47f002a32919d91310d6074130fe4e17dabcafc15cbf1/watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f", size = 79067, upload-time = "2024-11-01T14:07:11.845Z" }, +] + +[[package]] +name = "watermark" +version = "2.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "importlib-metadata" }, + { name = "ipython", version = "8.18.1", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version < '3.10'" }, + { name = "ipython", version = "8.37.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version == '3.10.*'" }, + { name = "ipython", version = "9.6.0", source = { registry = "https://pypi.org/simple" }, marker = "python_full_version >= '3.11'" }, + { name = "setuptools" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b2/b7/f529170d6ac23f538b758286d81c7389c8abb7ac12d8e79ba658f32123f9/watermark-2.5.0.tar.gz", hash = "sha256:108cbad9ecf0cac9dd49c1504f3749cd74a364500e02ac6c72197a1c1aa151d7", size = 10894, upload-time = "2024-09-21T00:40:13.922Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c3/ac/1847959031ce09eb65a70b16d0f07633d7ddaf8a97752cc924f9a8cbe253/watermark-2.5.0-py2.py3-none-any.whl", hash = "sha256:d775afa075f5ea15152ad9f4c82dfc95bffb9d0cb4341c9b62073b627191464d", size = 7679, upload-time = "2024-09-21T00:40:12.512Z" }, +] + +[[package]] +name = "wcwidth" +version = "0.2.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/24/30/6b0809f4510673dc723187aeaf24c7f5459922d01e2f794277a3dfb90345/wcwidth-0.2.14.tar.gz", hash = "sha256:4d478375d31bc5395a3c55c40ccdf3354688364cd61c4f6adacaa9215d0b3605", size = 102293, upload-time = "2025-09-22T16:29:53.023Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/b5/123f13c975e9f27ab9c0770f514345bd406d0e8d3b7a0723af9d43f710af/wcwidth-0.2.14-py2.py3-none-any.whl", hash = "sha256:a7bb560c8aee30f9957e5f9895805edd20602f2d7f720186dfd906e82b4982e1", size = 37286, upload-time = "2025-09-22T16:29:51.641Z" }, +] + +[[package]] +name = "zipp" +version = "3.23.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e3/02/0f2892c661036d50ede074e376733dca2ae7c6eb617489437771209d4180/zipp-3.23.0.tar.gz", hash = "sha256:a07157588a12518c9d4034df3fbbee09c814741a33ff63c05fa29d26a2404166", size = 25547, upload-time = "2025-06-08T17:06:39.4Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2e/54/647ade08bf0db230bfea292f893923872fd20be6ac6f53b2b936ba839d75/zipp-3.23.0-py3-none-any.whl", hash = "sha256:071652d6115ed432f5ce1d34c336c0adfd6a884660d1e9712a256d3d3bd4b14e", size = 10276, upload-time = "2025-06-08T17:06:38.034Z" }, +]