diff --git a/II_L/logic_and_set_theory.tex b/II_L/logic_and_set_theory.tex index 28bbf64..07d2bb3 100644 --- a/II_L/logic_and_set_theory.tex +++ b/II_L/logic_and_set_theory.tex @@ -127,7 +127,7 @@ \subsection{Semantic entailment} \begin{prop}\leavevmode \begin{enumerate} \item If $v$ and $v'$ are valuations with $v(p) = v'(p)$ for all $p\in P$, then $v = v'$. - \item For any function $w: P \to \{0, 1\}$, we can extend it to a valuation $v$ such that $v(p) = w(p)$ for all $p\in L$. + \item For any function $w: P \to \{0, 1\}$, we can extend it to a valuation $v$ such that $v(p) = w(p)$ for all $p\in P$. \end{enumerate} \end{prop}