diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000..e4e87fe --- /dev/null +++ b/Dockerfile @@ -0,0 +1,5 @@ +FROM tensorflow/serving + +RUN mkdir /models/mnist + +COPY 1 /models/mnist/1 diff --git a/TP3 Micro services _ Monomakhoff.ipynb b/TP3 Micro services _ Monomakhoff.ipynb new file mode 100644 index 0000000..b4a1485 --- /dev/null +++ b/TP3 Micro services _ Monomakhoff.ipynb @@ -0,0 +1,702 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# TP3 TensorFlow\n", + "## Microservices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports & Downloads" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.12.0\n" + ] + } + ], + "source": [ + "# TensorFlow and tf.keras\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "\n", + "# Helper libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "print(tf.__version__)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "fashion_mnist = keras.datasets.fashion_mnist\n", + "\n", + "(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tests" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(60000, 28, 28)" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_images.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "60000" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(train_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_labels" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10000, 28, 28)" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_images.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10000" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(test_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Preprocess & Initialisation of the Data" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAD8CAYAAAAfZJO2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHMdJREFUeJzt3X+QVfWZ5/H30013A03zS7BFJEENJiHJim5HiVoZE/NDU6khbjKW1qwxs1Zwd3UzTvmHGXa24v7hlpWNOs5kxh2MbLRK4zhRN4xDxR8kxphEBdEIwhhQMYD8RgGBhu57n/3jHjK3f5zn3O57u+89zedl3eL2ee73nm/f7n4853ue8/2auyMikldN9e6AiEg1lMREJNeUxEQk15TERCTXlMREJNeUxEQk15TERCTXlMREJNeUxEQk18aN5s5arc3H0z6auxQ5oXRziGN+1Kp5jy9+pt337itU9NqXXj36hLtfWs3+qlVVEjOzS4G7gGbgB+5+W/T68bRzvl1SzS5FJPCCr6z6PfbuK/DiEx+o6LXNszbOiOJmNge4H+gEHFjq7neZ2S3AN4HdyUuXuPuKpM1fAtcCBeBb7v5EtI9hJzEzawb+Dvg8sBVYZWbL3X39cN9TROrPgSLFWr1dL3CTu68xsw7gJTN7Kond6e7fK3+xmc0HrgQ+BpwKPG1mZ7l76qFhNUdi5wGb3P3NZOcPAYsAJTGRHHOcnvScMbT3ct8ObE+eHzSzDcDsoMki4CF3Pwq8ZWabKOWa36Q1qGZgfzawpezrrYN1zswWm9lqM1vdw9Eqdicio6VY4X9DYWZzgXOAF5JNN5jZq2a2zMymJdsqyivlRvzqpLsvdfcud+9qoW2kdyciVXKcglf2AGYcP0hJHosHe08zmwQ8Atzo7geAu4EzgQWUjtRuH25/qzmd3AbMKfv6tGSbiORckYrnGdzj7l3RC8yshVICe8DdHwVw951l8XuAx5Mvh5xXqjkSWwXMM7PTzayV0mDc8ireT0QagAMFvKJHFjMz4F5gg7vfUbZ9VtnLLgfWJc+XA1eaWZuZnQ7MA16M9jHsIzF37zWzG4AnKJVYLHP314b7fiLSOIZwJJblQuBqYK2ZvZJsWwJcZWYLKOXMzcB1AO7+mpk9TOkCYS9wfXRlEqqsE0vqOlZU8x4i0lgc6KnRtPXu/hwwWPFtat5w91uBWyvdx6hW7ItI4/MKTxUbhZKYiPTlUMhPDlMSE5G+ShX7+aEkJiL9GIVBh7Eak5KYiPRRGthXEhORnCrViSmJiUiOFXUkJiJ5pSMxEck1xyjkaOZ6JTERGUCnkyKSW45xzJvr3Y2KKYmJSB+lYledTopIjmlgXxqHZfwyVjlbQfNJ08P4u188KzU2+cHnq9p31vdm41pSY95zrLp9Vyvr5xKp0QwT6W9vFFxHYiKSY0UdiYlIXpUG9vOTGvLTUxEZFRrYF5HcK6hOTETyShX7IpJ7RV2dFJG8Kt0AriQmDcKa49tHvLc3jDctmB/GN1w3KW5/JD3Wcui8sO24I/EkyS1Prg7jVdWCZdWgZXyuWJwEqumbjQv+bOMfZ0Uco0e3HYlIXrmjYlcRyTNTsauI5JejIzERyTkN7ItIbjmmSRFFJL9KS7blJzXkp6ciMkpOoMVzzWwzcBAoAL3u3lWLTknthDVFZNeJbfni1DD+p5/6ZRj/1e4zUmNvt50StvUJYZhxn/tUGD/r77elxno3/z5+84w5u7I+tyzN06alBwuFsG3hwIH0YA2mGnNOvIr9z7j7nhq8j4g0iBPmSExExh53O6GOxBx40swc+Ad3X1qDPolIHZUG9k+c244ucvdtZnYy8JSZ/au7P1v+AjNbDCwGGM/EKncnIiMvX3PsV9VTd9+W/LsLeAwYcEevuy919y5372qhrZrdicgoKA3sW0WPLGY2x8x+bmbrzew1M/vzZPt0M3vKzDYm/05LtpuZ/Y2ZbTKzV83s3Kx9DDuJmVm7mXUcfw58AVg33PcTkcZRoKmiRwV6gZvcfT6wELjezOYD3wZWuvs8YGXyNcBlwLzksRi4O2sH1ZxOdgKPWWnKknHAg+7+0yreT0QaQC0r9t19O7A9eX7QzDYAs4FFwMXJy+4DngFuTrbf7+4OPG9mU81sVvI+gxp2EnP3N4Gzh9teRkexu7uq9sfOeT+Mf21KPKfX+Kae1NgvmuL5wrb9bE4YL/y7uG9v39GRGiu+fEHY9qR1ca3W5JdT/6YA2PPp2WF8979PL+jqzFiOc9rTb6TGbF9tCg6GsFDIDDMr/yVYmnaBz8zmAucALwCdZYlpB6WDIigluC1lzbYm22qfxERkbHKHnmLFSWxPJUXuZjYJeAS40d0PWNmkk+7uSYXDsCiJiUgfpdPJ2l2dNLMWSgnsAXd/NNm88/hpopnNAnYl27cB5YfgpyXbUuXnOqqIjJpCcv9k1iOLlQ657gU2uPsdZaHlwDXJ82uAn5Rt/3pylXIhsD8aDwMdiYlIP8dLLGrkQuBqYK2ZvZJsWwLcBjxsZtcCbwNXJLEVwJeATcBh4M+ydqAkJiL91O500t2fg9RDtksGeb0D1w9lH0piIjKA5tiX0RUtL5Yxpcz7VywM41+f/0wYf6NnZhg/rXVfauxPTn0pbMt/jOPff/2PwvihN6ekxpra489lx8L4SGTbovj79p54qp5pa9L/9Jqu2Rm2PXAsfXqjwsrq74opXZ08ce6dFJExRtNTi0ju6XRSRHKrxlcnR5ySmIgMcCJNiigiY4y70askJiJ5ptNJEcktjYnJ0EV1XiNs4c0vhvHPTFpf1fvPDtYQO+StYdv3Cu1h/Dvz/yWM7z4rfSqerMVhf7Axnqrn/aAGDaC5N/6ZLvxPL6fGvjp9Vdj2u498IjXW5IfCtpVSEhOR3FKdmIjknurERCS33KG38kkR605JTEQG0OmkiOSWxsREJPdcSUxE8kwD+zI0GXN+jaSN758cxvdOnhTGd/RODeMnNacvq9bRdCRsO7dlTxjfXUivAwNobklfEu6Yx/Nl/c+P/XMY7/5oSxhvsXjJtwvGv5Ma+5P1Xw/btvNmGK+Wu8bERCTXjIKuTopInmlMTERyS/dOiki+eV2HaYdMSUxEBtDVSRHJLdfAvojk3Zg6nTSzZcCXgV3u/vFk23TgH4G5wGbgCnd/d+S6KSNlZlt6HRfAeOsJ460Wr6/4Ts+01NjGIx8O2/7uQFzDdmnna2G8J6gFaw7mOYPsOq9TW+Jf926P68iiT/XCzrgO7JUwWht5ujpZyTHjD4FL+237NrDS3ecBK5OvRWQMcC8lsUoejSAzibn7s0D/ZZwXAfclz+8DvlLjfolIHRXdKno0guGOiXW6+/bk+Q6gs0b9EZEGMKbGxLK4u5tZ6rdsZouBxQDjmVjt7kRkhDlGMUdXJ4fb051mNgsg+XdX2gvdfam7d7l7Vwttw9ydiIwmr/DRCIabxJYD1yTPrwF+UpvuiEjdjbWBfTP7EfAb4MNmttXMrgVuAz5vZhuBzyVfi8hYkaNDscwxMXe/KiV0SY37cuLKWHfSmuO5r7w3vVareVp6nRbAH01dG8Z3FyaH8fcK8Tjn1ObDqbGDvePDtvuOxO/9kbbtYXzN4bmpsZmtcZ1X1G+AzcdmhPF5bTvC+Hd3pv/5zBnfvxigr95LPp0a8xd+E7atVK2OslLqTG8BvgnsTl62xN1XJLG/BK4FCsC33P2JrH2oYl9E+nCgWKzZqeIPge8D9/fbfqe7f698g5nNB64EPgacCjxtZme5e1h5nJ9LECIyOhxwq+yR9VaD15mmWQQ85O5H3f0tYBNwXlYjJTERGcC9skcVbjCzV81smZkdH/OYDWwpe83WZFtISUxEBqp8YH+Gma0ueyyu4N3vBs4EFgDbgdur6arGxESknyGVT+xx966hvLu77/zDnszuAR5PvtwGzCl76WnJtpCOxERkoBEssTheKJ+4HFiXPF8OXGlmbWZ2OjAPeDHr/XQk1ggyBhdsXPxjikostlz70bDtZyfGS5P9ujsekpg57mAYj6bDmdW2P2zb0dkdxrPKO6aPS59m6GBhQth2YtPRMJ71fZ/bGi839xdPn5sa6/j43rDt5Jbg2KMWFxUdvEZXJ5M604spnXZuBb4DXGxmC0p7YjNwHYC7v2ZmDwPrgV7g+qwrk6AkJiKDqk0SS6kzvTd4/a3ArUPZh5KYiAzUINX4lVASE5GBlMREJLeOF7vmhJKYiAxwQk2KKCJjUO3unRxxSmIiMkD6XM2NR0msAVhLaxgvdsf1UpEZa4+F8T2FeGmxqU3xlDStGUubHQvqxC6Y/lbYdndGLdeaI6eH8Y7mI6mxmU1xndeclrhWa233nDC+4tCHwvi1X346NfajpZ8P27b+9NepMfP451WRBporrBJKYiLST2UzVDQKJTERGUhHYiKSa8V6d6BySmIi0pfqxEQk73R1UkTyLUdJTPOJiUiu5etILFjazMbF9U7WnJGvm+J4sTuYX6qYOeVRyHviWq5q3PUP3w/jW3qnhvEdPXE8a2mzQjCly/NHpoRtxzf1hPGZ4w6E8QPFuM4scrAYLycXzZMG2X2/+aSNqbFH938ubDsadDopIvnl6LYjEck5HYmJSJ7pdFJE8k1JTERyTUlMRPLKXKeTIpJ3Y+nqpJktA74M7HL3jyfbbgG+CexOXrbE3VdU25lq1lfMqrXyuGynro4sOi+Mb/lKXIf2p+ekry+6o7cjbPvy4blhfEowJxdAe8b6jN2eXr/3zrFpYdusWqtoXUmAk4M6soLHdYHbeuK+Zcmqn9vaG6yJ+cfxXGdT7x9Wl4YkT0dilVTs/xC4dJDtd7r7guRRdQITkQYygiuA11rmkZi7P2tmc0e+KyLSEHI2JlbNvZM3mNmrZrbMzKo79haRxpKjI7HhJrG7gTOBBcB24Pa0F5rZYjNbbWare4jHT0SkMVixskcjGFYSc/ed7l5w9yJwD5A6Mu3uS929y927Wmgbbj9FRAY1rCRmZrPKvrwcWFeb7ohIQ8jR6WQlJRY/Ai4GZpjZVuA7wMVmtoDSt7EZuG4E+ygioylnA/uVXJ28apDN945AX8I6sGqNm3VKGO85vTOM7/voxNTY4VPiwsAFX9oQxr/R+X/D+O7C5DDeYumf25aek8K250zcHMZ/tn9+GN8zblIYj+rMLmhPn1ML4L1i+mcOcOq4d8P4zZu+lhrrnBjXYv3gg3HVUI/HA0Kv98RDJ/uL6fORfWv+z8O2jzEzjNfEWEpiInICUhITkbwyGufKYyWUxESkr5yNiWmhEBEZqEZXJ5Ni+F1mtq5s23Qze8rMNib/Tku2m5n9jZltSgrpz62kq0piIjJQ7UosfsjAe6+/Dax093nAyuRrgMuAecljMaWi+kxKYiIywPE5xbIeWdz9WWBfv82LgPuS5/cBXynbfr+XPA9M7VeTOqiGGhM7etknw/jJ//3N1NiCyVvDtvMnPBfGu4vxkm/RtDDrj8wO2x4utobxjcfi8o/9vXGpQXMwCrvrWDwVz+1vxcuDrTzv/4Txv3pnsAlO/k3ThPTf9L2FuDzjq5PiJdkg/pld94FnU2NntO4K2z5+KP7beSdjqp7Olv1hfG7L7tTYf+j4Xdh2DJRYdLr79uT5DuB4fdNsYEvZ67Ym27YTaKgkJiINwId0dXKGma0u+3qpuy+teFfublbdZQQlMREZqPK0ssfdu4b47jvNbJa7b09OF48fFm8D5pS97rRkW0hjYiIyQK3GxFIsB65Jnl8D/KRs+9eTq5QLgf1lp52pdCQmIgPVaEws5d7r24CHzexa4G3giuTlK4AvAZuAw8CfVbIPJTER6auGM1Sk3HsNcMkgr3Xg+qHuQ0lMRPow8lWxryQmIgMoiaWxeFm28//XqrD5JR2vpcYOezz1SVYdWFbdT2TKuHh5rqM98ce8qyeeaifLWW07UmOXT34lbPvs988P4xd1/7cw/sZn42mEVh5Jn3Jmd2/8fV/51mfD+JrfzwnjC+e+lRr7REd80SurNq+juTuMR9MjARwqpv++Pt8d18+NCiUxEck1JTERya2czWKhJCYiAymJiUieaVJEEck1nU6KSH410HJslVASE5GBlMQG13NyO+9cnbpYOLdM+duw/YP7FqbG5ozvP+9aXx9s3RPGz57wdhiPdDTFNUMfnhzXDD1+6LQw/sx7Hwnjs1reS4398vCZYduHbvnfYfwbf3FTGP/Uiv8cxg/MTZ9joLc9/kuZfPbeMP5X5/xLGG+1QmrsvUJcBza97VAYn9oc1wZmieoaO5rSl7kDaP7wh1JjtjmeN68SqtgXkdyzYn6ymJKYiPSlMTERyTudTopIvimJiUie6UhMRPJNSUxEcmtoqx3VXWYSM7M5wP2U1oZzSksy3WVm04F/BOYCm4Er3P3d6L2aemDizvRP5/EDC8K+nDEhfa2+PT3x+opPvP+JMH7ahLDrTGlOr935UDCfF8Ar3VPD+E93fyyMnzohXn9xZ8+U1Njenvaw7eFgXiuAe++8I4zfvjNet/Ly6WtSY2e3xnVg7xXjdWzWZ6zXebA4PjXW7fH8cvsz6sg6gt8HgB6P/7SaPf3vYGpTXIN24BMnpcYKO6s/LslbnVglqx31Aje5+3xgIXC9mc0nfSlyEck798oeDSAzibn7dndfkzw/CGygtCpv2lLkIpJzI7xkW00N6djTzOYC5wAvkL4UuYjk2VgtdjWzScAjwI3ufsDM/hCLliI3s8XAYoDW9uHPYy8ioydPA/sVrQBuZi2UEtgD7v5osnlnsgQ5/ZYi78Pdl7p7l7t3jWuLB5lFpDFYsbJHI8hMYlY65LoX2ODu5Zeq0pYiF5E8c3I1sF/J6eSFwNXAWjM7vv7XEtKXIk/VfKxIx5ajqfGiW2oM4Gd70qek6Rx/MGy7oGNLGH/9cHy5fu2RU1Nja8Z9IGw7obknjE9pjafyaR+X/pkBzGhJ/95Pbxv0APkPoulqAFZ1x9/bf5n5TBj/fW/6EMI/HzorbLv+cPpnDjAtY6m8tQfS2x/ubQ3bHi3EfxrdvXHJzpS2+Gf6yenpUz+9zqyw7e6zg+mNfhU2rVijDNpXIjOJuftzlEpHBjNgKXIRGQPGUhITkRNL3opdlcREpC93TYooIjmXnxymJCYiA+l0UkTyywGdTopIruUnh41yEnv/CE2/eDk1/E9PXhg2/x+L/ik19ouMZc0e3xHX9Rw4Fk9JM3Ni+hJek4M6LYDpLfHyX1My6p3GW7zk27u96XdCHG2Kp5wppFbPlOw4mj7ND8CvivPCeE+xOTV2NIhBdn3dvmMzwvipE/anxg72pk/TA7D54PQwvmf/pDDePTH+03qukL6U3qWnvBa2nbAr/WfWFP+qVEynkyKSa7W8Omlmm4GDQAHodfeu4cxHmKaieydF5ATiQ3hU7jPuvsDdu5KvazYfoZKYiPRRKnb1ih5VqNl8hEpiIjJQscIHzDCz1WWPxYO8mwNPmtlLZfGazUeoMTERGWAIR1l7yk4R01zk7tvM7GTgKTP71/JgNB9hJXQkJiJ91XhMzN23Jf/uAh4DzqPC+QgroSQmIv2U7p2s5JHFzNrNrOP4c+ALwDpqOB9hQ51OnnHzb8L437/6tfS2//X1sO1lp6wL42sOxPNm/T6oG/ptMNcYQEtTPAXmxJZjYXx8Rr1Ua3P6nGBNGf+7LGbUibU3x33Lmutselt6jVxHczznVlOVU4c2B9/7i/vnhm07J8a1fx+avCeM93p8fPCpKW+kxpa9dUHYtvNvf50a2+xxTWLFajfhYSfwWDKd/TjgQXf/qZmtYojzEaZpqCQmIg2ghovnuvubwNmDbN9LjeYjVBITkYEaZOrpSiiJichA+clhSmIiMpAVG2QpowooiYlIX87xQtZcUBITkT6Mqm8pGlVKYiIykJJYoCmYQ6oYr4E45YHnU2N7H4h3++OvfjGMn79kVRj/8tzfpsY+0rozbNuScWw+PuN6dntTXMvVHfzCZVUzP3dkThgvZLzDz979aBh/r2dCamzn4clh25ag/q0S0TqmR3rjedb2H4nnG2tuiv/Iu5+J5zp7a336/HdTVsS/i6NCSUxEcktjYiKSd7o6KSI55jqdFJEcc5TERCTn8nM2qSQmIgOpTkxE8m0sJTEzmwPcT2leIAeWuvtdZnYL8E1gd/LSJe6+InOPGbVgI6X9kRfC+LpH4vbrOD01Zp/847DtkVPSa6UA2vbGc3Id/GDcfvIb6XNINR2NFyIs/nZDGM/2fhVtD4TReBa16rRmxGdWvYffVf0OdeMOhfycT1ZyJNYL3OTua5IZGl8ys6eS2J3u/r2R656I1MVYOhJLViTZnjw/aGYbgNkj3TERqaMcJbEhzbFvZnOBc4Dj52Y3mNmrZrbMzKaltFl8fDmnHuLTJhFpAA4UvbJHA6g4iZnZJOAR4EZ3PwDcDZwJLKB0pHb7YO3cfam7d7l7VwttNeiyiIwsBy9W9mgAFV2dNLMWSgnsAXd/FMDdd5bF7wEeH5EeisjocnI1sJ95JGalZUruBTa4+x1l22eVvexySsswichY4F7ZowFUciR2IXA1sNbMXkm2LQGuMrMFlPL2ZuC6EelhDviqtWE8ntQl2+T0Fboy5ef/p9JQGiRBVaKSq5PPwaCLE2bXhIlIDjXOUVYlVLEvIn05oKl4RCTXdCQmIvk19m47EpETiYM3SA1YJZTERGSgBqnGr4SSmIgMpDExEcktd12dFJGc05GYiOSX44X6TF46HEpiItLX8al4cmJI84mJyAmihlPxmNmlZva6mW0ys2/Xuqs6EhORPhzwGh2JmVkz8HfA54GtwCozW+7u62uyA3QkJiL9eU0nRTwP2OTub7r7MeAhYFEtu6sjMREZoIYD+7OBLWVfbwXOr9WbwygnsYO8u+dp//HbZZtmAHtGsw9D0Kh9a9R+gfo2XLXs2werfYODvPvE0/7jGRW+fLyZrS77eqm7L622D0MxqknM3fss52dmq929azT7UKlG7Vuj9gvUt+FqtL65+6U1fLttwJyyr09LttWMxsREZCStAuaZ2elm1gpcCSyv5Q40JiYiI8bde83sBuAJoBlY5u6v1XIf9U5io3ruPESN2rdG7Reob8PVyH2rmruvYASnszfP0T1SIiL9aUxMRHKtLklspG9DqIaZbTaztWb2Sr9Lx/XoyzIz22Vm68q2TTezp8xsY/LvtAbq2y1mti357F4xsy/VqW9zzOznZrbezF4zsz9Pttf1swv61RCfW16N+ulkchvC7yi7DQG4qpa3IVTDzDYDXe5e95oiM/s08D5wv7t/PNn2XWCfu9+W/A9gmrvf3CB9uwV4392/N9r96de3WcAsd19jZh3AS8BXgG9Qx88u6NcVNMDnllf1OBIb8dsQxgp3fxbY12/zIuC+5Pl9lP4IRl1K3xqCu2939zXJ84PABkqV43X97IJ+SRXqkcQGuw2hkX6QDjxpZi+Z2eJ6d2YQne6+PXm+A+isZ2cGcYOZvZqcbtblVLecmc0FzgFeoIE+u379ggb73PJEA/sDXeTu5wKXAdcnp00NyUtjAY10eflu4ExgAbAduL2enTGzScAjwI3ufqA8Vs/PbpB+NdTnljf1SGIjfhtCNdx9W/LvLuAxSqe/jWRnMrZyfIxlV5378wfuvtPdC15a7+se6vjZmVkLpUTxgLs/mmyu+2c3WL8a6XPLo3oksRG/DWG4zKw9GXDFzNqBLwDr4lajbjlwTfL8GuAndexLH8cTROJy6vTZmZkB9wIb3P2OslBdP7u0fjXK55ZXdSl2TS4h/zX/dhvCraPeiUGY2RmUjr6gdDfDg/Xsm5n9CLiY0iwHO4HvAP8PeBj4APA2cIW7j/oAe0rfLqZ0SuTAZuC6sjGo0ezbRcAvgbXA8UmvllAaf6rbZxf06yoa4HPLK1Xsi0iuaWBfRHJNSUxEck1JTERyTUlMRHJNSUxEck1JTERyTUlMRHJNSUxEcu3/Azy+n45yqYZEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.imshow(train_images[0])\n", + "plt.colorbar()\n", + "plt.grid(False)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "train_images = train_images / 255.0\n", + "\n", + "test_images = test_images / 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# Edition des class_names\n", + "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', \n", + " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Affichage d'un tableau d'éléments" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAI/CAYAAACf7mYiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXecVcXZx3+jMRFBUKpUEaxBEZBiQcVeorFhr/FVkzeaaIrGmGgS3xSNscTYEtRoYo0KsSsqICiiFKmiSFWkuQIiiv28f+zd4TcP9wxnl727d/f8vp8PH55zZ+7cc8/MnHv2qS5JEgghhBBC5ImN6vsEhBBCCCHqGj0ACSGEECJ36AFICCGEELlDD0BCCCGEyB16ABJCCCFE7tADkBBCCCFyhx6AhBBCCJE79AAkhBBCiNyhByAhhBBC5I5vVKdz69atk65du5boVEQx5s+fj4qKClfb45bLXH766adefuedd7y85ZZbBv0222wzLzvnisp2vBUrVnj5W9/6VtBvq6228vLGG29c3dOuMRMnTqxIkqRNbY9bX/P55ZdfBscVFRVebtWqlZc32WSTDf6sTz75xMs8z0C4XuyaKBWNYW9+9tlnXl69enXQtnLlSi/zHuF5BcK9mbb/AOCjjz7y8kYbrf3bu2XLlkG/Nm1qfXtkohR7s1zus6Xkiy++8HJt7PPaIOtcVusBqGvXrpgwYULNz0pUm759+5Zk3NqYSy6jUtMfnZkzZ3r5ggsu8PIJJ5wQ9Ovdu7eXv/nNb3r5G98Il/CMGTO8PGzYMC9369Yt6HfJJZd4eYsttqjuadcY59yCUoxbX3tz2bJlwfFdd93l5TPOOMPL/MBZUyZPnuzlN998M2g77rjjvFxXN+Fy3ptZmTdvnpdffPHFoO3RRx/1Mj+knH766UG/Pn36eJnn5ZFHHgn6Pf/8815u2rSpl0877bSg33nnnZfp3GubUuzNPPxmLlq0yMsdOnSoxzNZS9a5lAlMCCGEELmjWhogkT9iWp40rc/rr78eHD/44INetn8VsmqdVfCXXXZZ0G/58uUZz3gt22+/vZenTJkStP3pT3/yMmsnDjnkkKDfz372My/vsssu1T6HxgjP02OPPRa0/etf//LyAw884GVr1mAtHmtsrBmGTTTvvvuul48++uigH6+j448/Pv4FcsbTTz/t5euvvz5oa9KkiZc///zzoG3TTTf18vz587180kknBf2WLl3qZTb3WO1s+/btvdyiRQsvP/zww0G/G264wcsHHnigl2+88UaIdPbff38vW/Nj69atvTxkyBAvZzXPsZYHAPbbbz8vr1mzxstdunQJ+j377LNeZq1fuSANkBBCCCFyhx6AhBBCCJE79AAkhBBCiNwhHyARJRbdtWrVKi9zxI/1t2E/ombNmgVt7IPAocw2NJ3DrT/88EMvcwiufV/s3Pv37+9lDt0dO3Zs0G/UqFFeHjhwYNB2zz33pI7fmOE5ZF8OALjqqqu8/Ic//MHLNmqL/UbYz8dG5G2++eZeZn+Qww8/POhnfYfyzpw5c7x83333edn6sbH/xtdffx20cah6586dvdy8efPUz+U9Z/cwv4/9vqyv0B577OHlhQsXepn98QDg2muvTT2PPMLzx+koAOC9997zMq8Bez8ePHiwl/n+9tVXXwX92D+M9yynOgDK0++HkQZICCGEELlDD0BCCCGEyB2NygTGphYg3QRi1XQvvfSSlw877LBM47NK0Kpws2LPl6mrbLYbwjHHHONlzuLcrl27oB9/F6tKTcvCbPvxteJMtLZf2ntisBmOVbtAeO5jxowJ2jiJ40477ZTpsxobbL4CQnX4+eef7+W//e1vQT/OzB0zge22225e/t73vudlDssG6i97cLnC5qHYtWGzic2uzXuT73HbbLNN0I/NoDyGvYfZtVJsbCDMLMxh2tOnTw/6PfHEE14+4ogjio6dJzhZJSe4BMJ7JqcUWbJkSdCP9ym7MkydOjXox+4KPF82S3i5Iw2QEEIIIXKHHoCEEEIIkTsalQnMRjGwCnf27Nlevv3224N+bAJhr3VrDuHIoZjZi00v9py4LTZGzLRTX0ycODE4ZrMXZxq1BTIZjjoBwuiEWEQKXyu+NhypYuHMtrY+FEcXderUqejnWOxn8TrKa0QKX0cgjD7ZeuutvWyvD8/7+++/72WbmZbXFY9t11hWc2deOOuss7zM2Z+tOYzN1dY1IK2mGmfxBsL5Y2y0mI3YTIPH54KsvE8Bmb0s3bt39/K4ceOCNv4ttIWh0+C9aM3/XPOL79tcsLghIA2QEEIIIXKHHoCEEEIIkTv0ACSEEEKI3NGofIBiIdYjRozw8nPPPRf04yynHKpp7ZnDhw/38rnnnuvlWNh3Wpg3EGavtf4lWe3ldcnIkSODY75WHP5qvwv781j785///Gcvc7VonhMgrEbM/ayvEPstsA+QzRQ8adIkL3OVaesjwSGe9ntxZfu8+gDF1vcHH3yQ2sa+PVtttZWX7Z5jX6FYlu+GkDaiLmF/Rc6s/Oijjwb9BgwY4GXrV8VzwSHW1geI9wz7Tdq55L3EofPLli1L+RahfwlnGRfrwqk47H2R9wf7udq5tOHuVVh/WPa543mNZQkvR6QBEkIIIUTu0AOQEEIIIXJHozKBWXUeM378eC/bLLKsLmT54IMPDvq9/vrrXr7kkku83Ldv36AfF5uzGYJfe+21oue05557Bv2q1NblFA7/8MMPB8dskuDrZkPJWRVui2eyKZFNjDbk/uyzz/by3//+dy/36NEj6MemOL52bdu2Dfr95Cc/8fItt9ziZVbn2vFsYT8u8Dlr1iwvb7/99sgLsezrvD7sOubw5pp8ljV5xVIv5J0f//jHXr7hhhuCNk5VYM2/vN7ZJB8zc/A82PG4LWY24WLHnJm/oZlX6ppYOg/ef+wawO4EANC7d28v8/W2KQisia0Ke38vd6QBEkIIIUTu0AOQEEIIIXJHgzeBxdTiHO01YcIEL1tV6scff+xlNmWwDAD9+vXz8rbbbutlG2E0duxYLw8dOjRoY9UkR2oMGTIk6FdlziunzJpcHA8II7VYxZpW9BAI1duWQw45xMvNmjUL2rjw6F/+8hcvc0FWAHj88ce9zCp3Vu0CYRQYz4m93hz5ZaPA+Pu/8sorXs6TCcyufZ57jhyxJjC+ltwWy+icZqoG1i3kmXd47fP6fvnll4N+v/rVr1LHYLMXR1fabO6cSZ/n0vbjCNA0E4ptO/LII1P7iRA2Z9ks3ryv2DRt+7FLAZsp7XyxqYv3fGxeyxFpgIQQQgiRO/QAJIQQQojcoQcgIYQQQuSOBuEDVNNKz5dffrmXFy9enNqP/T5iVXNfeuklL7NPkfU96tOnj5e32267oI3Hv+mmm7w8d+7coF9VlmFbbbuumTZtmpdtWGtamLP192BfAM4oa5kxY4aX7bXn+WO/Bbs22KbNbeyjY2HbOWecBuLZh9n3YfTo0V4+88wzUz+rsRGrys6y9Q2oST/2ZbH9yildRDlgw6CrsGHP3bp18/K8efOCNvbh4vuQ9YXjfjwv1o+Pq8bH5rJLly5Fz13E4fuzTfWy4447epnny94/bRqQKmI+RbweYqloyhFpgIQQQgiRO/QAJIQQQojc0SBMYDUtdLjlllt6mU0obLoAwjA+VgHaEF9WHbJZx54fm8o4JB4IVYdLly718qGHHpryLeqXq6++2ss2rJUzxcZCyfm6WVUqmxK5eOby5cuDfjwvfN3sePxZnPHUZh5+8MEHvbxixQov27XB77NtfE42c3VesOYLDp1ms1TMtBUrqJq2962JVNQMngd7v2PTBt8jrVme9xnvv5g5JDbnNmu7yAYXFbakFS+Nha3z3rOmbj7mfc6/uQ0BaYCEEEIIkTv0ACSEEEKI3KEHICGEEELkjgbhA1RT2Bcl5o/Avh1sR23VqlXQj0ML2T5uQwlj6eD5fWwHX7hwYfEvUc9wlXr2vQGA2bNne5lLXFgfIE4FYENoBwwY4GW+HrYfH/P82bDNtLBpGybN5VC4dAWXRbGfZee5Q4cOXj766KORR2I+BHzN7XzG9mMa7HdgfYDs2hRr4etr56Fjx45enjp1aur7+HrbMbgMCbfZ8iR8n2VfoYqKiqCfrTxehfVDSQv1F+H1rQ7s98Oy9dnia8/3RVtmqtyRBkgIIYQQuUMPQEIIIYTIHQ1Ch2hND6yaZdWcDePkrL6swrXhmRzGyf04zBsIzTxsHrMmHx7PZkNdtWqVl3fZZRcvW9NLVXh4fVeD/+EPf1hUBsLw8bffftvLt956a9Bv1KhRXraZoPkabLHFFl7mawjUrMpwLMMwq4h5Xnv27Bn0u++++6r9uY0dnndrWuRrzir0mlaJZpMKm0Csip/3CZteamoKyAtdu3b1sp1L3oM851tvvXXQj80hnMrChkRzP74H2/u7TFsbTtbUMbZf2v61/Xg/c5v9zSx3pAESQgghRO7QA5AQQgghckeD0DVa9RuratkExtl9gTD7MxeKs5FZPAabot55552gH2cd5syoVmXLkUn2szji4fzzz/fy5MmTg35V6v6aFoKtC1jF3b9/fy/bCJ0RI0Z42c4lX0e+9jbiw0aeVGGvT1qRPv4cIJxLNplw1JsoDs+vneuaqt6riJm7GWuuadGihZdl9soOZ+6OZWdOi8IE0qPArAmMi6FadwXGmr9F9cn6u2H78X03FkXL88zysmXLqnWe9Y00QEIIIYTIHXoAEkIIIUTu0AOQEEIIIXJHg/ABsv4gaVWGd9555+CY/RPYL8faM9n2zTZM60vAIdx8TjYbMfuyWDt4586dvcwh1hdffHHQb/fddwdQXmGF1l7M35vnxPp3cPXo2LWP+Y+khWfWlDTfEg7Ft8Ts4LVxTg0F/q72mtTV51qfLpFOmv8cEPp5sJ8kEO7pWJVv3jP8Huv/2K5dOy+zP1A53eMaCzX1AUoLb4/5CrE/JVdLaAhIAySEEEKI3KEHICGEEELkjlozgbGKLFbokPux6iyrmjbGYYcdFhxzFmYuxBcLs2Q1sDW9cbhnmhkOCM83VgSSiw9yGG+5Ys08PH9M9+7dg2MukJfVnJk1Q2lWYtm/mdg82LUcCxtuzMTMXrFw6dp8T2wuYsU/80jsenBmes72DIT3TM7wbOF7Jmfk5gzrQPpet3Np049UoQzR2YmZwGIFntPGyJqKRiYwIYQQQogyRw9AQgghhMgdNdYpxqJ5altVOXr06OD4kUce8fJLL73kZc5qCoQFSzlqxKrz+Hx5DPsdeQw2h9nxYlENbHrhfkOHDg36HXnkkaljlAtpRWlZdQ6E0Xh83YDQjMZRZVY1mxaRkDVzcKx4Jo+RV7NWdYit/bR5steV5ylrJFlMJc/HvMeUFTpuBmTzVY8ePYK2Ll26eJn3i72mS5cu9TKbuWzRVH4fm97at28f9HvvvfdSz1ekM2vWLC9bE3/WwsSxe2taP/795EoHDQFpgIQQQgiRO/QAJIQQQojcoQcgIYQQQuSOGjvrZPWVWL58eXC8aNEiL7PNkl8HQp8Y7geEPiVsz7S+Nxy62aFDBy9bGzb7nrA921a6Zjs4Vw3/6KOPgn5jxozxsrW/c5g1+7+MGzcODY20cHT7nWMZk2PZRtP61YYNm8+JfVBi/hJ5yvYcI3aNs6YryJqptibvzxpKL8J7lU1fwT48fM/kzO5AeP9buXKll61PJvsH2fs9w/dgzszftm3boJ/SHYTMnDnTy506dQra+Nrz75iF74WxPcb9+HdyyZIlQb+xY8d6mX8zywWtGiGEEELkDj0ACSGEECJ31NgE9sorrwTHV1xxhZe50B2rRIH0rK+2CCWb2KzKlVVurKaz4descnvwwQe93K9fv6Afh2SyqjeW1ZKzOK9evTpoY/WjNcux+pGLpja0DJrVgdXddp7TQqBjppWaYN/P5kdus5mqxbrURgHUrKbPNJOanSc+J81hunno3XffDfq98cYbXu7WrVvQxpmh2Z1g2223DfrxfWzu3LletgVU+T4bgzP4c8Hoiy66KOgns1fICy+84GVrfub1EDMdZjVhpxVNtWvj1ltv9bJMYEIIIYQQZYAegIQQQgiRO6ptAqtSNV944YXB62zmiBUDTcuSzFmWgdCcZU1bDBfcW7BgQdB26aWXFh2D1XJAmImUTWD7779/0I+jJN5++20v20KBbF6x6nhWHfJ1shEODYGsUVGxiEHOWMprJWYCi6lp09psZlQ2o8ZMK4yiwCqJZXhOM23FIrNi17Um0X98T+BCvHkizTz07LPPBsff/va3vWyztPO143trx44dg35vvvmml3k92Egkdhto166dl+39k01nnBWa77kAsN1220GshSOJbTUGvq9lje6KwXuR142NnOYosHJEGiAhhBBC5A49AAkhhBAid+gBSAghhBC5o1o+QBUVFbj77rsBrOtvwyGUHBZpsyRbe28V1veC7fjWlsw26DVr1niZ7coAcOaZZ3r5v//9r5dtpfV58+YVPfeJEycG/UaOHOnltEyYQOjPZH1PGLbT2n5V4aqx9zcU0jJ3A6HPQCw8M81Ph/2tbD+eI+tnYm3kVdi0DWJdOHO6nc80/wL7+ob6U9n54/GsL4tYC/vhAEDPnj29bOeS7z3WR5NJ85uL7WH2tbSh+ex7lOaHBMgHyMKpVGwKgqzh7bF7Zhq8bvj3GAgzQ/Masr+Z9YU0QEIIIYTIHXoAEkIIIUTuqJYJbJNNNvHh2tYsxaYuVm916dIltR+r0m2W0JYtW3qZi/LZMViVaoucsnnlmGOO8fIuu+wS9GPVIZvorJqOsxiz6cWGAnPhOWvCSgv1tiaCqgKwMdVzQyFr4dyaqGnTTFl2jJgJhufSqnDT3pNnYiG1NVGhZyU212mZvUVo4ueUH0BoLuQMzEA4z7yHY3sklgIl7V5mi6ay2YTdHbjCgAgzdQPh9bFpVfjap1VjAMI9mzUtCY998MEHB/3+85//eJldSsolK7Q0QEIIIYTIHXoAEkIIIUTuqLYJrMr0ZdWbnTt39jJHUlm1JZuR2rRpU1QGQvWrVZ1yG6twbVFSVse3atXKy1wAEAhVv2yys570/Fl8vlY1z+p428bqY1b1tmjRIug3efJkAGHx1IZK1uyiWU0mWU0csSzC3Mbq/cZwvUtNLDIxTYUey+JcE+xa4T3H9x8RRlnZ+zbfS+288v2O72PsumBhs4y996UVrN1mm22Cfpzxmd/DkcEAsHz5ci+zy0ReeP3111PbYr87sX3Jc87rIZbxnffeW2+9FfTj+Zs5c6aXZQITQgghhKgn9AAkhBBCiNyhByAhhBBC5I5q+QBtttlm6NWrF4AwrBwA/vnPf3q5Q4cOXuYK6kAYqs4+O9b+zDZLa3Nm+zGPZzOSsp2SQy1tKCjbRNnWacdj/6W0sH/bj2UgDJFn2ymHqgJrs1rbTMflRE3CnGvqC5Lm9xPzL4qFwfN5sL08q79SnuG9GsuwXdvh6Dxn1ieB98mcOXO83Lt371o9h4YI38fs/uP7ovV/4/su37fstef7J98XrR8K3ye5ynvfvn2DfqNHj/Yy36vt/Zj9jfLoA/TEE08Ex61bt/ay/d3gOeP5sn6zvGf5ett+nKGb55n9Wu3nTps2rci3qF+kARJCCCFE7tADkBBCCCFyR7VMYMxll10WHFeZxgDgL3/5i5etaYfDx9k8ZLOBsqrWhsGnhVPGsv3Gwj3Z3BYbj+E2e+6sBuZQTSBUP7K6kIsSAsBpp50GALjhhhtSz6G+yZq5mdXnsSyyjA3XTTN/WJW+fV/a+fG583hZTWp5ZtGiRaltPB9pIfFA9ozRaQVy7d5kNTybAkSY3d7e+/h+PH369KCN9yqn6bBj8LWPuTWwuwIXZf3Od74T9OPfBR7DZj5OK8KaF9jUC4S/O9YUlZYSxvZ7/PHHvXzEEUd4uUmTJkE/NpfaDOJp/WbMmJHar76QBkgIIYQQuUMPQEIIIYTIHXoAEkIIIUTuqLYPUJVN3tr0Dz/88KLyiBEjgn7sO8RV2G2ac7bxW78MDs+Mhd1yRVz2M7CV7Nk2zfbMrCHR7OMChD5B1kfloIMO8vJOO+3k5XJJDV5q7PVg/xueP9uPj9P8QuwYjPUzSQvHVxj8+uH9YlNU8HXma2nnJavfFYfzcj877+x7wuVsRFiOyK579gdZuXJl0MbXm1ObWN8eLhnUtGnT1M9Kw/qQ8Hi8nnhsAFi8eLGXd9hhh0yf1ZhgHx0AGDVqlJftfuP9Eiv3k+bPEyv3FOvH94pddtkl9XPrC2mAhBBCCJE79AAkhBBCiNxRbRNYWphxGvvvv39wPG7cuKL93nzzzeCY1ba2KvvChQu9vPXWW3vZmqJsFmpRu2QNC2f1OVd6BkKVKa8tu85Y7c5t9hz4OGsFa0Zh8Ounf//+Xp41a1bQxmYUVn9bWEXP85T1GrP5AwjXRB7NITE+/vhjL9uUHTa0nOHK4HxvteHnfK/msHr+XNuPZRvOnZbuwK4NDvvOI+eee25wfN5553nZmsDY1GkzeTNpv+82tQTvc14bq1atCvrx8YUXXpj6ufWFNEBCCCGEyB16ABJCCCFE7qhxJujaZscdd4weMzvvvHOpT0fUIqwutUX12DTFGWutKYojSrKas2JFTjkSkDPeWnV82jkA1TcHNxbYjHLGGWcEbSNHjvRyRUWFl605hM0osYK/PG88n127dg36sandmnnyDpudt9lmm6CNzVwWXu8cOWRNmxzBet9993nZmsoOOOCAomPbfcX3C57Lbt26Bf3222+/1HPPI5xd21YWYGzxbmbZsmVFX7cZo3nd8B61Zslnn33Wy+yuUi7k8w4uhBBCiFyjByAhhBBC5A49AAkhhBAid5SND5BoeGStBt+nTx8v9+jRI2jjys8x3x72E+BspbEq72kh9kDod8I+Bxzibcmrz4+Fr7H1BznssMOKvmf58uXBMfsUcBZ4O59bbbVVUTlriL1SFwC33HKLl22mXt5XJ554YtDG/nDsv/Huu+8G/divqG/fvpnO6bjjjkttO/744zONIUI407INgx8zZoyXZ86c6WVbqWGvvfYqOvYFF1wQHLOvEK8brgLRENAdXQghhBC5Qw9AQgghhMgdLq14ZNHOzr0PYEHpTkcUYeskSdqsv1v10FzWG5rPxoPmsnFR6/Opuaw3Ms1ltR6AhBBCCCEaAzKBCSGEECJ36AFICCGEELmjLB6AnHNHO+cS51x6/Yuw/3znXOsir68u1j8yTrX6R8Y5yznXYf09GzfOuVbOucmFf0ucc+/R8TfX895BzrknUtpud859O6XtIufcZua1S51zpxbWVdH3ifWj+cw3zrmvCnM9wzk3xTn3M+dcWfxm5Bnty9qjXBbzyQBeKvzfEDkLQO4fgJIk+SBJkl5JkvQCcBuA66uOkyT5fAPGPSdJkjfs6865jQFcBMAWfzoEwHAARwNokBuzHNB85p41hbnuAeAgAIcB+I3t5JxTPrk6RPuy9qj3ByDnXDMAAwH8D4CT6PVBzrlRzrmHnXNvOufudSarmXOuiXPuaefcuUXGvdg5N945N9U597vI519f+AvnBedcm8JrvZxz4wrvHeac2zLtdefcYAB9AdxbeAJvUisXphHjnNuX/mJ53Tm3eaGpWbH5LqyDvgV5tXPuWufcFAC/QuWD50jn3MhCe3MA3wSwHYDvArim8DndI/M6yjn310K/6c659GyIYh00n42fJEmWATgPwAWukrOcc48550YAeAEofs91zjV1zj1Z0CBNd86dWHj9KufcG4W+f6m3L9aI0b7MQJIk9foPwKkA7ijIYwHsVpAHAfgQQCdUPqi9AmBgoW0+gK4AngdwBo21uvD/wQD+AcAV3vsEgH2KfHYC4NSCfAWAmwryVAD7FuQrAdywntdHAehb39eynP4B+C2An6e0PQ5gr4LcDJUZyWPz7a9vYc5OoLHmA2hNx8cCuLIg3wVgMLXF5m9IQd4HwPT6vn7l9k/zmb9/VfdT89pKAO1QqfVeCKBl4fWi91wAx1XNRaFfCwCtALyFtVHIW9T3d22o/7QvN+xfvWuAUGn2eqAgP4DQDPZakiQLkyT5GsBkVD70VPEogH8mSfKvImMeXPj3OoBJAHZE5ZOq5WsADxbkewAMdM61QOWGfLHw+t0A9kl7PfO3FMzLAK5zzv0Yldf0y8Lrsfmu4isAj0TGPhTA0/bFDPN3PwAkSTIaQHPn3BYQWdF85pPnkiSpqnGSds+dBuAg59zVzrm9kyT5EJU/wJ8CuMM5dyyAT+r+1HOB9uV6qNcHIOdcSwD7A7jdOTcfwMUATqhSyQH4jLp/hbB22csADqW+wdAA/pSstYtumyTJHRlOSUmRSoBz7nxSxXZIkuQqAOcAaALgZbfW+T0231V8miTJV5GP6w/gtRqcpp17rYUUNJ/5xDnXDZXzWFUI6mNuRpF7bpIkswD0QeWD0O+dc1cUfoj7A3gYwBEAnqm7b9F40b6sPvWtARoM4N9JkmydJEnXJEk6A5gHYO8M770CwAoANxdpexbA2a7SvwjOuY7OubZF+m1UOAcAOAXAS4W/UFY456rO4XQAL6a9XpA/AlBlXxWGJEluphvjIudc9yRJpiVJcjWA8aj8a7Gm+GvvnOsB4E3auL5tPfMHAFW+CQMBfFjoL4qg+cwfrtI/8jZUugkU+9Eqes91ldGxnyRJcg+AawD0KfRpkSTJUwB+AmDXuvkWjRvty+pT3977JwO42rz2SOH1B9ftvg4XArjTOffnJEkuqXoxSZLhzrmdALxSUBCtBnAa1v7lUsXHAPo7535daKsqa3smgNtcZdjfXADfW8/rdxVeXwNgjyRJ1mQ49zxzkXNuP1SaIGegUpW6Rw3H+geAZ5xziwA8ifCvyQcADCmogAcjff4A4FPn3OsANgFwdg3PJa9oPhsnTZxzk1F5Db8E8G8A1xXrGLnnbotKB9mvAXwB4H9R+WP5qHNuU1Rqjn5a6i+SU7Qv14NKYYhGg3PuOVQ6xS+u5vtGodKRcEJJTkzUCM2nEOVHY9qX9a0BEqLWSJLkoPo+B1F7aD6FKD8a076UBkh+L/yFAAAgAElEQVQIIYQQuaO+naCFEEIIIeocPQAJIYQQInfoAUgIIYQQuUMPQEIIIYTIHdWKAmvdunXStWvXEp1KOl9++WVwvGrVKi9XVFR4eeONNw76bbrppl7eaKO1z3p2vI8/XpvQtGnTpl7u2LFj0I/HqCvmz5+PioqKYtmuN4j6msu8M3HixIokSdrU9rjlOJ8fffSRl7/1rW8Fbd/85jczjfHZZ2uT1n7yydqKCVtuueUGnt2Go73ZuCjF3tRc1g9Z57JaD0Bdu3bFhAnVC+G3UWbFK1fEWbYszF84YsQILw8ZMsTLW2wRlhXZaaedvMw34BUrVgT9XnnlFS/vvvvuXv7jH/8Y9GvSJFuhd/7ONfm+TN++fTfo/WnUZC7FhuOcW1CKcWtjPtMiQmu6hl98cW0C2O7duwdtnTp1yjTGvHnzvMzf7/jjj6/ROdUm2puNi1LsTc1l/ZB1LkuSByjrAwBrb/76178Gbc8//7yXP/3006CNtTSff/65l8ePHx/0Gzp0aNHP3WSTTYJj1vS8+uqrXt5zzz2Dfi1btvTyvvvu6+Uf/ehHQb9y+OtUiOrC+zam7Vy4cKGX77zzzqDt2muv9TJramsDPqfTTz89aLv66rUJ5S+88MJM43399dep4wshGj/a8UIIIYTIHXoAEkIIIUTu0AOQEEIIIXJHndcCmzNnjpePOOIIL2+11VZBP3Zotj47HO3Fzs3WKXH16tXrfQ8Q+hG9//77XrbRYhyR8txzz3n55ZdfDvp9//vf9/Kxxx4LIcqRrD4wvXv3Do7ffvttL/OeAIDNNtvMy7ynrR8f+8nxXl+8OKyvuGbNGi9zEIId7+c//7mXOXjhgAMOCPrdd999Xrbfl6+H/IHSsc7yadct5v8ZK8FUE6f7sWPHBsfsv/nWW295efvtt9/gz2rM1HYgRFZOO+00L//0pz8N2vr06eNlvt/Y3/GaoF0uhBBCiNyhByAhhBBC5I6SmMBi6rJf/vKXXm7fvr2Xbeg4m5/seN/4xtrTZpUdm7yAUEXGMpu8gDARIpvb+HOAMLEiq33teDfffLOXDz744KCtWbNmEKK+yBrqvscee3h5+vTpQVu7du28bNc+71Vus3tpyZIlXmazl821xQkT2ezFe9Ee873j/vvvD/pxMsX//ve/QRtfj9rM5ZUnsl6rmlzTUaNGBcfTpk3zMptlAeCyyy7zMs/l8OHDg361YUYpF7Ku2Vg/PuZ+WfP5ffHFF8Ex/57yfA0ePDjoN2vWLC/b33Hep7W9F6UBEkIIIUTu0AOQEEIIIXJHyaPAbFQHq76bN2/uZas6Y5U5q62B0GT11VdfednWAuNjVm/bCBIen/vFos/YlGXV8Xx+jz32WNB2yimnQIj6IqZCHjZsmJfHjRvn5c6dOwf92Pxr9y2PnyYD4d5n9bqNTEsz2dk9zOPzvu3SpUvQ79lnn/Xy008/HbQddthhqeebB7KaOezr9r6bxr/+9S8vc8mhMWPGBP1uvPFGL3fo0MHLU6ZMCfpxRBdHCgHADTfc4OVevXplOr+GTpr5KtaPfz8tvBdtRDSbqrmf/c0cPXq0l4855hgv21qAO+64o5fZhcRix99QpAESQgghRO7QA5AQQgghcocegIQQQgiRO0ruA7RixYrgmH2A2HZsM8qyX461MXN4bVroKhDaJtnuae2ZTMyOyn5JnDG6devWqefHVe0B+QCJuifmJ8dw1nJe0x999FHQL5alnX2CYnuO27JmXY71S7sP2DB9PvfDDz88aGN/Rc5ibc/dhvSLtcycOdPL9rpxGPuECRO8vHz58qDfmWee6eV9993Xy9bPh8dgGQh9TGbPnu3lbbfdNnr+jYWsPmyx+wG3xXxveO+9++67QRvvsc0339zL1vfo2muv9XLHjh2DtlKmpJAGSAghhBC5Qw9AQgghhMgdJdflTp06NThmtSibw2z4Kx/bMHMOjezevbuXu3btGvTjwowctte0adOgH6v32BTHmSsB4PHHHy863sqVK4N+nMmSQ+KFqA/S1NxHHXVUcMzmIU7zMH/+/NR+1iyVpiqPhdvWBPu5rBrn72vvK3xPsPcVNtGcdNJJRcdrzGQ1L9i0JFyIlE2HLVq0CPqdffbZXr7++uu9bE0eXAxz2bJlqefHodOTJk0K2rhYNc9zXkxgWQsdW5YuXeplNk1+8MEHQb+JEycWfY81e7Zs2dLLvDY+/PDDoJ8tZF5XSAMkhBBCiNyhByAhhBBC5I6Sm8BYlQwAe++9t5fvvfdeL9uCi1zMjlWdMaxqds2aNUVla5birLJsHrMRW3/605+83K9fPy+zKQ8I1exz587NdO5C1DWvvPJKapuNymRi6vRY9mcmlqk2C1mLONpz5Sg1m016/PjxXub7Vl6yQlszJV87vgaxotN8H7fFS//+9797+ZlnnvHyIYccknpObdu2TW1j8xibWgDgvffe8/Kdd97p5b322ivot/POO6eO35CJzeWcOXO8fNFFFwX92J2Do7ZmzJgR9GM3lDfeeMPLgwYNCvqxeZPvKbYIbSwyOys1MbNLAySEEEKI3KEHICGEEELkDj0ACSGEECJ3lNwH6JJLLgmO2Ra53377ebl3795Bv1WrVnnZ+gCxjZ+rSrdq1Srol5ax1tr0eTwOz7N+SRxCyf5LHDJsz8PaOvNOTasUp/kj1DRLL4eJZg0RtbA/CX9uQ/EZ4VQOQJg1OXYdeQ5jmaB5jJh9Pha2nrZeYqHpvCZsqDv7Idh0GPfdd5+XOTNtXoilFmDsuuE5GjFihJdPO+20oN9tt922oacYwKHZ/HsBALvttpuXOSu09W2z4d2NhVjmZk4dc9dddwVt9je0urRp0yY4Zj879rc68cQTg37sUxS793NbrFJDVqQBEkIIIUTu0AOQEEIIIXJHyU1gNsTxhRde8PIjjzzi5eHDhwf9uCDeLbfcErSxmYoL3dnwzDRTCavpgVBFyuo2q8LlsMCrrrrKy9bMteWWW3p56NChQRtnTbWhm3kgq3nIqjfT3pdV7WnX0O9//3svL1q0KNMYlpiauVyZMmWKl7mgLxBm7mXVNe8P22ZNTGmFV61pi9tiofNphRBjhY95Tdh+XJzZ7tu8FznNujf5PggA++yzT1HZwqlIeN1kTZdg+3HxWr7nAqFrxGGHHVb0PQCwYMGC1M/OA9bkxfuI93LWex27tQDhbzzP0Ysvvhj0+8UvfuHlrAVaLTUxZ0oDJIQQQojcoQcgIYQQQuQOPQAJIYQQIneU3Oh96aWXhh9IdnYOfdtpp52Cfo899piXr7zyytTx2TZpbfppfgbW1p/mH2RLZnBY/YABA7zMVW6B0A5qqw/n0e8nRpqNP6s/BocuA8DkyZO9/NBDD3nZ+qpwuObJJ5/s5fvvvz/T5wJh2Pif//xnL//617/OPEZdw2vd+uUw7E9nw6N5zmwaAm7j8a0vDvsX8PixMPiY/T+tnw2p5fuF/V4LFy5MHV+kk3UuGW6LzWsM9mGzqUjS1qH1E82731fM1zLm98P7nq/hGWecEfTjezB/FvvuAqF/mE2zwHDZjfPPPz9o47IbWZEGSAghhBC5Qw9AQgghhMgdJdf/HXPMMcExh8FPnDjRyxyqCADf/e53vcxVfwGgS5cuXmb1qw1vZ7VaLBMtq/C4krtVAX700Ude5vDJ66+/PujHbbYiMme8ttmvGyuxUNa0ENi33347OGZVKlcxt+kTunXr5uVOnTp52Ybuzp8/38tPPfVU2qlHeeCBB7z86quv1miMumbSpEleZhMekB5mbsPgWUVtzcRpanM7z2mZva1ZivdtLAN42v62r/M9wWatZTMKzyebu8W6pJmw7Ou8bmL349j9guG1d/fddwdtRxxxhJdPOeUUL1tTWczckgdqmrU+LXs+X3cgDH3nSvOcpgAInws6d+4ctNlniCo4pQUQukNwpYYY0gAJIYQQInfoAUgIIYQQuaPkJrCZM2cGx2xi4uip3XffPej38ssve3natGlBG6vtYpEGaRlmYwU50yIa7PmyWrVXr15Bv2222cbLVp23ww47pH52ORIrGsomFGsmYWJqVlaLXnbZZV5+8MEHg35cuLJ9+/Ze7t+/f9CPzaCffPKJl21B3ffee8/Ll19+eer5sfnVntNPf/pTL7/55pteZtMuEBZmrG947dt9wCaLrJlf7Rj8Ps4Ybc0haaat2N5k7JriIpec0dpG/bDpzH5HHuOGG27wcnUiA8udrBnWS00sUi+tn4WzGFt3ggkTJnj5+9//vpfnzJkT9Ntzzz3Xf7KNjKwmxti9Iuu64d8/diFZvnx50O/II49MHaNdu3Ze5j1rs07z70JWpAESQgghRO7QA5AQQgghcocegIQQQgiRO0ruA2Rtrmzvfffdd71ssynHwtE5lJFtkzarZ5o/T6ziNPuN2M9lfxA+P+tnwP4l7OMCAEuWLPEyh2yXEzHbLxPz+2E4xJGrAwNh6CJnye7Ro0fQj+f2ww8/9PKqVauCfhzWyn5D7BMAhOuNQyavueaa1PF22WWXoI19RtjfxYbclxM2DJhJq/5s55nXRMx/g4n56mUlFprP+4z3tw3152zu9px4TJ7PxkR9+fzEyJoJmrO8A8Cuu+7qZc7mDgBPPPGEl5999lkv2/VgfTTzQE3WQFrY+/qYMmWKl3v27OnlxYsXB/04pYi9p19xxRVe5t/agw46qEbnxEgDJIQQQojcoQcgIYQQQuSOkpvArAmFi1KyWcOaDdgUZdVvrLpmFbz9rLQQbtsvrYCfVZdyW+vWrZEGh/jZjLWLFi3ycrmawFhFmlU9feONN3r51ltvDdqWLl3qZaty3nnnnb3M64HfEzu/mDmT59Vm/bVq1ipsWOywYcNSz+P3v/+9l2+++WYvb7311kG/e+65J3WMuuaPf/yjl62Jl4/ZvGdDVjn8OGvYem3Ae92awHid8rnb7PBsAuR7DBCatf/73/96uVxCxxsTPJexe8zVV1/tZbsOf/CDH3j53//+d9DGa/Twww/3MmeAB7Kb8fNCWoi8/R1LKzRu9woXKOff+OrcN/7whz94mX+Djz/++MxjpCENkBBCCCFyhx6AhBBCCJE7Sm4Cs5EWaSYKLpoGhEULYyawmDo6ayboNNW/Vfvx53J2SjbrAaF60I7B2TDLBS6QCQDPPfecl9966y0v28gYNufx9+JIGyAsSsoRXEB4vW0bw+YJvqYxcyabP+wa4ugunj9b1JSzi9rCnx07dvTy9ttv72VrWhkyZAjKhblz53qZ1dNAOBds/rUmPf5+dWkCY2J7mNeiNYHFssizWaZr165F3yNqB75HWrPUb3/7Wy/zXm/btm3QjyNKt9tuu6CN553vUw3R5MVrnddsbO/Z+11No7jS3p+2J/r27Rscc7ZmjsaLYV1PeF/yvSjmhpIVaYCEEEIIkTv0ACSEEEKI3KEHICGEEELkjpL7AFnYpst2RJsJ2vpRpJHmU2Q/i22n1vbPx1mrFLP/RCz8Ppaduj5ZtmwZbrrpJgDA0KFDgzb2v4pl32U7O2ddtteDs3faOWLfHvYdsr5TvFbYF8l+Fvux8Dzwd7JjsM2ZK4kD4Xqwfmrsd8Ljl5ufF2cm5/O0NvS0LOh2ztIyrAPpYbQ21Nna+dPg8XmMWLgt+5LZNcv+XnaeeK++8847mc6vXLD3lazpK2r7s3le7BzzXp85c6aXL7744qAf+9NxtYBrr7026BfzzeKs0ez3tscee6S+p9TE0inEKrTXJC1JbRPzITr22GO9zNmeAeCf//xn0ffY32Ae39772feyd+/e6z/ZaiANkBBCCCFyhx6AhBBCCJE7Sm4CyxpCas0LVg3GpGV1tuamtHD52DnxGFatzJ/FpgQb9s1mGEu5FFls1aoVTj/9dABAv379graXX37Zy9OnT/fyggULgn5sQlixYoWXbegxX1Or+uQCsxUVFV6OmV1YtW4/Ky001BYBZZMdm0msipnXik13wOfB6n0bXv6d73zHy3/+85+Lnl8pGTNmTNHXY2YpNoHZ780Zea2JKU1dnzVdRU3ha85za9cRm2PtPYa/Z20Ub61LYqaRWLh0bVz7NLcB3hNAaIq97rrrvLz//vsH/TgVxUMPPVSjc+LvFTunuiSWtb4m8/Dmm28Gx3feeaeXrVnRZsKvImaK4t8qew/49a9/7eX333/fy9adIo2YSS2W9qZ79+6p76tJSg5pgIQQQgiRO/QAJIQQQojcUedRYFlh9ZtV76ZlxoyprWMqxrRiqNaUsXLlSi+zCcxmIeUIBGsiqK/MucWoOhcuSAoAAwYMKNrfmvbmzZvn5dmzZ3vZZnblTKzWBJg2l1YNysUNuagevw6E5kiO6LJmSlaFx9TibBaKzR1HVLEJBqj/TMK26GkVdn2nZZnldQ+EJoWY2TltX9ljPr/YNebPtdc0zWRnvzubaq2J236XxkJtr79YNFPMFMcZnjt06ODlqVOnBv0efPDBDTzDcO2xab2uM0EnSeLN9LGs9bz22LwEALfffruXbbQ0w/fjRx99NGjjjP5p52DPkfcRR+MBoWnyqaeeSj0n/p3k7Psx0xvvUSBcXwMHDkz9LJnAhBBCCCEyoAcgIYQQQuQOPQAJIYQQIneU3OjN/hpAGIYa89lh26G147OdORZOl5Zp09oK00LuY/47fO5dunQJ+k2YMMHL1s+iXDJBb7zxxt4vxlY5X7x4sZdjdtWWLVt6edCgQV62fj5pPihAul+HXRs8ZlpIPBCGxfN7eN0BYehmrHo4n7tdJ5w5mde59SWx1dTrmn333bfo69Y3JM0nwc4FX5OYHxGPb68dH7NvgL3+aSHWdjw+p1imah6/vrLqloKYXw77cC1dujTox3ud93CMrD5Fv/nNb4JjXlPs9zNs2LBM48VSo8Qy7rMPUF3jnIve/4oxadKk4JjnLHaPbNu2rZc5vQgAPP74414+8sgjo+dbjJNPPjk4PvTQQ70cC03nvZ2VJUuWBMfsU7nnnntWe7wY0gAJIYQQInfoAUgIIYQQuaMkJjA2S8SyXzZv3jx1DFZVx8JTefyY+jxreG3MvJam0u/atWvQj88jpoIvF2zYtj1Og82UMdMCm59sKH3a9bCmwrSCtbH38XxZU2zHjh29zGvDqtlj3ytt3djrxyG/9cGTTz5Z9HVr4uVjNhG2a9cutZ/dV2lr3147Np2lmc2A8BrH+vG8xTI6p81ZseOGRMws9cYbb3jZhjPzPdgWoK5J1mTO9jx27NigjU3SadnJY8RMtrG+9VnYdvXq1Rg9enTR8xg8eLCXec2yWdLCqT1s9QQ2N9l70IUXXujlmAmMOeqoo7w8Y8aMoM2G2dcmXMwYyL4OFQYvhBBCCJEBPQAJIYQQIneUxAQWKzzKKnI2Q1hiWV/TVJ9WBZYW+WXfn5ax1n4um+I4cshmgo6ZwMopE/SGwirXmLe/VdWKuuWZZ54p+ro1LbNZitf3rbfeGvQ79dRTvWxNmFx0lte+NbdxW2yvp73HRhryMavQbQQcF/S12cHTsJFT1iRYCqruE1kjrmJRYLUdORPj3HPP9fKsWbOCtieeeGKDxo5VBLDwWrFFQ+uSzz77DHPnzgUAfP/73w/aLr/8ci/zvmEzom3jiDJrzuT3xQqKXnLJJV4+55xzgn6/+MUvvDxy5EgvH3jggUE/m4G/NrEmQOu+kEZNMp5LAySEEEKI3KEHICGEEELkDj0ACSGEECJ3lDwTtLXLsS0yFh6cNZtrWphssfdVkbWacczGzH4GPXr0CNpiFeobkw+QaBhw6gG2p9uw57T9cswxxwTHP/7xj7183333BW3sO7R8+XIvt2/fPvWcGOvnwXuT/R9sZm9+34ABA7zM4b8A8OKLLxYdu9hnV/HYY48Fx+znUiqq688Q68/3nMMPPzxoY7+RSy+9NGg75ZRTMn32lVde6WX2N7vooouCfrvsskum8WoD/l2w1cXrklatWuGss84CAPzjH/8I2jg9AZ+j3YdcAZ7XPWf4BoDWrVt72frI8Rq45pprisoA0KZNGy+zX+fvfvc7pMG/cbHUBFmx3yurr15NPlsaICGEEELkDj0ACSGEECJ31LkJjFVxsSKRHJLLajkgVOPHsremFXSMFWHl87Nq+rTimrFwfnt+sYJ+QpQC3oNsosqqWrZcddVVReUYViXP58F7zt4v+JhD6WNZ5LMSy2LNmXm5kCRQehPYRx99hFGjRgFYN30A3/u4GLHN/Mv3T/4uLAPA7NmzvXzttdcGbRz6zIU2hw8fHvT761//6mUuqJp1bdSUmNmP7/G2YG99YSsGjBs3zstcUNsWeOY0DPy9ODweCH+vYteG05LErg2b3mLmy5qEn9vfVja32UzQaWkn7D3Fru0sSAMkhBBCiNyhByAhhBBC5A49AAkhhBAid5TEByitBIUlluKabYTW1sfhsB988IGXbWr/rCHtDNtYrZ/Bxx9/7GVO121tj3zu1ufH2neFKDV33HGHl4cOHeplXs9A7YezMnaP1MReXxuwHwZXvAdCnyi+5+y1114lPy/m888/x/z58wHA/1/FsmXLvMx+VHxPBEI/D74Pdu7cOeh32mmneblnz55B2/PPP+9lruw+bdq0oN/AgQO9zH5E1n+J74ul9sthn5JDDjmkpJ+VlV/+8pfB8f333+9lLmthf6v4d5J/k+w1ZF8c+7vD/m08vvWH5TVlU1wwG3qviP0e29/7NB+gmC9vVqQBEkIIIUTu0AOQEEIIIXJHSUxgnIXTqkGzmqUGDx7s5VWrVgVtHBbPnxULied+sarxrM6zJrUWLVp4uW/fvqmfxepoe058HkLUBWza4Wrotko477OsWYBjxFJP8HEsjDatzard+TgWVn/ooYd6+fbbbw/aOLXFd77zHS9zhey6gLMHZ4VdAQBg4cKFXuaM3Pw6EF4rXhtAaPbitWGzSfNasSY2pi7D0dkEdt1113mZK7DXNTaUnK89Z9C+4oorgn7jx4/3sv0trG323ntvL++3334l+5yY2YzXHZBeMaIm4ffrnMcGjyCEEEII0cDQA5AQQgghckdJTGBr1qzxckz1bYueMdZjviHBqjn7/WPfWYhSE8s4yxEg1lTCcPSYzUDMsJq7tqPKYrCZ2Zqxe/XqldrGJrALLrigRGdXGlq1ahU9zhsc7dcQ5pJNsyxbZs2a5eWJEycGbVOnTvUyF7kFQjMo/z7ZKga33XZb0c+1biMbup9j5tBLLrkkON5hhx2K9rPuNTVBGiAhhBBC5A49AAkhhBAid+gBSAghhBC5oyQ+QFylePvttw/aOExywIABqWPEQuRrI/ytlHBY6Lx584K23Xbbra5PRwgP76trrrkmaON92759+9QxyqW6dhqx+wOn0OBQaSD8XnXpsyRKy//93//V9ynUGvx7an9bTz755JJ9bm3/5sbGO/DAAzONEUt7kxXtciGEEELkDj0ACSGEECJ3uKxFQgHAOfc+gAXr7Shqk62TJGmz/m7VQ3NZb2g+Gw+ay8ZFrc+n5rLeyDSX1XoAEkIIIYRoDMgEJoQQQojcoQcgIYQQQuQOPQAJIYQQIneU7QOQc+4r59xk59x059xDzrnN1tP/Lufc4II8yjnXt27OVGTBOfcr59wM59zUwrymJ4Gq/tiDnHNP1NZ4Io72ZuOlFPs0y5xrXZQGzWecsn0AArAmSZJeSZLsDOBzAD+o7xOqwjm34RmYcoRzbg8ARwDokyRJTwAHAni3fs+qEudcSZKBNnK0Nxsh5bxPRfXRfK6fcn4AYsYA2NY519U5N73qRefcz51zv4290Tl3snNuWuGv1asLr/3AOXcN9TnLOXdTQT7NOfda4Wn571U3VOfcaufctc65KQD2KMF3bMy0B1CRJMlnAJAkSUWSJIucc/Odc79zzk0qzNGOAOCca+qcu7MwD687544qvN7VOTem0H+Sc25P+0HOuX6F93SPjHOWc+4x59wIAC/U3WVolGhvNh7S9ukVzrnxhXn6hyuk8S38lX91YU5mOef2LrzexDn3gHNupnNuGACfcts5d6tzbkJBK/G7+viSOULzuR7K/gGo8Bf6YQCm1eC9HQBcDWB/AL0A9HPOHQ3gEQDHUNcTATzgnNupIO+VJEkvAF8BOLXQpymAV5Mk2TVJkpdq+n1yynAAnQub6hbn3L7UVpEkSR8AtwL4eeG1XwEYkSRJfwD7AbjGOdcUwDIABxX6nwjgRv6QwgPRbQCOSpJkTmQcAOgDYHCSJHwuohpobzY60vbpTUmS9Cto/JqgUqtQxTcK++siAL8pvPa/AD5JkmSnwmtc/+dXSZL0BdATwL7OuZ6l/EI5R/O5Hsr5AaiJc24ygAkA3gFwRw3G6AdgVJIk7ydJ8iWAewHskyTJ+wDmOud2d861ArAjgJcBHIDKyR1f+OwDAHQrjPUVKm/OopokSbIaldf1PADvA3jQOXdWoXlo4f+JALoW5IMBXFqYg1EANgXQBcAmAIY456YBeAjAt+ljdgLwDwBHJknyznrGAYDnkiRZXmtfMl9obzZCIvt0P+fcq4V9tz+AHvS2Yvt3HwD3FMacCmAq9T/BOTcJwOuFcXgPi1pE87l+ytn/YU3hLz2Pc+5LhA9tm27A+A8AOAHAmwCGJUmSFFSBdydJ8ssi/T9NkuSrDfi8XFO4dqMAjCpsvDMLTZ8V/v8Ka9ejA3BckiRv8RgFk8pSALuich18Ss2LUbkeegNYtJ5xBgD4eIO/VH7R3mykFNmn30flX/d9kyR5t7AHeW6L7d+iOOe2QaWWt1+SJCucc3dhw9aJWA+azzjlrAEqxlIAbZ1zrZxz30KouivGa6hUy7Uu+AucDODFQtswAEcVXnug8NoLAAY759oCgHOupXNu69r+EnnDObeDc247eqkX4unhnwXwI7JN9y683gLA4iRJvgZwOgB2eF0J4DsA/uScGyK77i8AACAASURBVLSecUTto73ZwEnZp1V/PFQ455oBGJxhqNEATimMuTMqf3ABoDkq//D40DnXDpXmU1EiNJ/rp5w1QOuQJMkXzrkrUXnzfA+VfyHG+i92zl0KYCQqtQFPJknyaKFthXNuJoBvJ0nyWuG1N5xzvwYw3Dm3EYAvAJwP1XLZUJoB+JtzbgsAXwKYjUq1bNqP5P8BuAHA1MI8zCv0vQXAI865MwA8A6PFSZJkqXPuCABPO+fOjowjahntzUZB2j5dCWA6gCUAxmcY51YA/yzM4UxUmlOQJMkU59zrqFwb76LStClKh+ZzPagWmBBCCCFyR0MzgQkhhBBCbDB6ABJCCCFE7tADkBBCCCFyhx6AhBBCCJE79AAkhBBCiNxRrTD41q1bJ127di3JiXz99dfB8Xvvvefljz8Oc9a1atXKy23atCnJ+QDAihUrguOKigovN2/e3Mvt2rUr2TnMnz8fFRUVrrbHLeVclppPP12b/3DVqlVB28Ybr00NtNFGa5/vmzVrFvTbZJNNSnR2cSZOnFiRJEmtL9qGPJ8NFe3NxkUp9qbmsn7IOpfVegDq2rUrJkyYUPOzimAfci6//HIvjx07Nmg744wzvPzDH/6wJOcDAA899FBwfPvtt3v5sMPW5ny66KKLSnYOffv2Lcm4pZzLUvPWW2sTOz/zzDNBW8uWLb286aZrk5LuuWdYN7Vjx44bfB6cQqKQa3G9OOdKkremIc9nQ0V7s3FRir2puawfss6lTGBCCCGEyB31mgn6Bz/4gZdffPHFoI1NYtbExNqhG29cWxC8c+fOQb/ttlubBbxFixZeXr48rIHJGqbPP//cy9a80r59ey/feuutXn788ceDfkOGDPFyt27dILKRVaPyv//7v15+7bXXgrYvv/zSy5999hnSOOecc7w8ZcoUL3/yySdBv3322cfL1157bdDWpEkTL3/11dpSVGyGE0IIUZ5IAySEEEKI3KEHICGEEELkDj0ACSGEECJ31LkP0IgRI7w8b948L/fu3Tvox/43NkR+11139fL777/v5Tlz5gT9OLKMIzamTp0a9PvGN9ZehtatW6ee07Jly7y8zTbbeHnlypVBv5/97GdeHjZsGEQ2svoALVmyxMtbbrll0MY+XN/85je9bOfonnvu8TKH1dvw+BkzZniZ1wkQ+p/x57JvkBBCiPJEGiAhhBBC5A49AAkhhBAid9S5Cey5557zMmfItCHLbIr44osvgjY2U7FZgk0oQBiazKYMa6LgLMGbb765lzkbNQBsttlmRT+rU6dOQT8237300ktB28CBAyGKw6ZOzuIMhCamd955x8tNmzYN+nEYPJtAbSZoNp2xKZbNZkA4zz/5yU9Sz92erxBCiPJGd20hhBBC5A49AAkhhBAid9S5CWzRokVe5oKiMRMYm7JsXzZZWDMHm00Ym6mXTVacCZhNXnZ8NnnY8+MIJpnA4rCJyUb7MRw9yKYtNlnGxrBrgcfg9WTNrT179iz6HiCMRttqq61Sz0HmMSGEKD90ZxZCCCFE7tADkBBCCCFyhx6AhBBCCJE7Su4DZP0h2N+GK7SzDITZeS3sp8H+N6tXrw76cUg0+wpZPw8+R36PPXd+36abbpp6fuwDNGvWrNR+IrxWNgSdGT9+vJfZ32aLLbYI+r311ltFx7b+XJxBnGG/NAA46qijvDx8+PCgbbfddit6TjYdgxBCiPJDGiAhhBBC5A49AAkhhBAid5TcBMZZdoHQrLRmzRovW9MDZ+q1JquPPvrIy5wJ2oY6symCTWrWRMEh92wCs/3YpMKhzda8wths0iIkawHUkSNHFn3dmsAOOuggL8+dOzd1bDaB9erVy8uTJ08O+vGaOu6444K2rbfeuug52TQLIjvz588PjhcuXOhlpZAQQtQm0gAJIYQQInfoAUgIIYQQuaPkJrDFixcHx9/61re8zGYka25i84LNtMzZf/l9NgqMTVv8Wfw6EJrYuFCqNWVwlFL79u29bDME83m0atUqaGPTS5s2bZB3eG7ZnGlhcxZn6x43blzQr2XLll7mtWGjDAcNGuRlNrOcfPLJQb8//vGPqeeU1Xwn4jz00ENevvzyy4O2Qw891Mts7tx5551Lek733HOPl7fffvugrX///iX9bCFE3SANkBBCCCFyhx6AhBBCCJE79AAkhBBCiNxRch+gDz74IDhm35kPP/zQy6NHjw76nXrqqV7u0KFD0MZ+RVzJm/13gPTMwtbXhPtxGLzt17ZtWy+z74mt9r3TTjt5mTNfA8Cbb77pZfkApYeMjxkzJjhetmyZl9n/w66vFStWeJlTKdjMz5y5efbs2V7muRPVh9Nc8L6w6SB+/OMfF23r1q1b0G/q1KlePu+887w8duzYTOdj/QLvvPNOL1dUVARtnJajWbNmXrb3n8ZKLO1HjBtvvNHLffr08TLfL4Hwnsn3vp49ewb9OnbsmOlzs/KnP/3Jyz169Ajavvvd79bqZ4mGhTRAQgghhMgdegASQgghRO4ouQnMmh44izNn97X9Jk6c6OV99tknaGO1OIfGWpMXq+M59N1mjGazF2eMtuHtHJrP2Z9fffXVoB+P0alTp6BtypQpXt57772Rd9LU7ByGDITqeZ4vm2aAzaBpGb5tP+b4448Pjn/60596+brrrks9d4XEV5JWCHb58uXBMRet7dq1q5djZhO+R9j1sd9++3n5iSee8PKwYcOCfmzmsvvvzDPP9HKpw+zLEZtuJC0txfPPPx8cn3TSSV5m05a99pxlne+ft9xyS9CPzaD9+vXzMhcfBkJztc0g/sILL3h5wYIFXub5B2QCy4rd17wGeL66d++e+r5yvC9KAySEEEKI3KEHICGEEELkDj0ACSGEECJ3lNwH6JxzzgmOuVr3ypUrvcyhlEAYrsqh4wCw6aabepn9fqxvD4fhcrkLa8/kMdg2zf5KAPDaa695mdP3W98QDuu97bbbgjYuBZJHrJ9BWhj88OHDg2P29eHry2UxgHCe09IgAOuGz1dx+umnp57fUUcdFbQ9+uijXi5H+/aGwP5z9rvFvmvafO6yyy7BMZcsmTFjhpc5dQEQ+n3wnP3oRz8K+rGv3a677urln/3sZ0E/9u3hlByWNJ8zYN1SOg0JnlcgvEdan5+ZM2d6me93XDoGAJ566ikv8/zZ69SlS5ein2XL1PDxu+++6+Xx48cH/djfyJ77CSec4GVOmzJr1iw0VmrD34ZLDl155ZVeZj89AHjxxRe9fOSRR3qZfSY35DzSuOmmm7zcq1evoG3gwIHVHk8aICGEEELkDj0ACSGEECJ3lNwEZuFQ8qFDh6b2Y1W1zQrM6u60sFsLq36tGpjNMs2bN/eyNZNwP1bh//73v890DiKuEuX0BjasdZtttvEyZ/9mcygAdO7c2cuszrXZZW327ip4fQLAyy+/7GXOTt4YiJlD0q5PbXHNNdd4+YADDvAymxWBMCMzm1DatWsX9GPV+L777rvB58frtCGYvOx9kI9ZTjNRAsAzzzwTHF9//fVevuCCC7xss3WnmZWWLl0aHPM1ZdN106ZNg368LjldhV2vvDZs+gpev2xG40zxwLrmvHIk7TeuOqZpdg1gk/Njjz0W9GNzITNt2rTgmNMH8DW1v9U1SfXCKXAA4Ic//GHR8zj66KODfjKBCSGEEEJkQA9AQgghhMgdJTeBWfVdminKqpk5aoRVnUCo6uMxbLQGRwbEVPr8Ph6bI8KAUJUaw0Y6MTEVdB6IzQNHftn1wNFzrM61c87FL9lUZgtaclZh/qx33nkn6Hf55Zennu9ZZ53l5bvuuiu1X11RtddiqnDej7G5WLJkiZf//e9/B21PP/20l0eMGFHt8wSAAQMGeJkjdnhsINzDaaYRIIxSipnAeG9yMWYgXDucMXjRokVBv6pIJxuBWJ/Y+yzPLV83zsANADvssIOXf/e73wVtHInLWfHZHA0Ap512WrXPlyOAn3322aCNM0azGduayjjrsK0kwOY3nid7X6kLE1jV3MSKzcb2bE0iqex97LLLLvMyrwc2KwNhtBe7eWy++eZBPzadcTUGm/2bqyRwJK+dB470tue+1157eZldI6ZPn44NRRogIYQQQuQOPQAJIYQQInfoAUgIIYQQuaPkPkDWfsk+MDEfBOv3w3CGX668brOBsr0/zW/IngePZ23OsczCaeM1tgzBNYHnwfpAsZ8OZwO3WT7Zd4Ezfts5sbbqKlq3bh0cz5kzp+j5cRoEIPTtsSHyo0aN8jJXID/iiCOKnkNdYdd31jV40UUXeZmznttrwmGvHKIKrFvZOwt///vfvXz//fcHbXyN2f5vs7TffffdXmZfPc48D4Q+H6tWrQra2J+M7yXWX2G77bYDEPoM1RVp2X7tvZTnj+eL0wUAwP777+/lJ598Mmjj681+PuxvZUm7hhb2GznxxBODNj5mP4+bb7456Pfcc895mf0CgdBvi+8XNtN4XVA1T1n3od2/vM4qKiq8bH1lli9f7uW33347aOP0IJwpnf2tgPBeyHvZXrcDDzyw6Lnb+zHvN96XtmoD+3hyhm8g9OE6/PDDvWzTLLCfWlakARJCCCFE7tADkBBCCCFyR51ngmZY3WbVpazStG2skmb1oA2NZXMWv8eqGHl8Dn+16rztt9++yLdYl9ooSteYiIX+cxZtVpGyihwIVbhp5jBgXbNllnPi9WBNCbym2FwHhFmouSCkNa2ccsopmc5pQ6muqt3So0cPL997771erjL5VLHtttt62Ya9XnrppV62IbZp8N5k9TwQquH5+nNoLAD07t3by5xCwxZx7N+/f9HxLHxPsBnh27ZtCyD7WqsJVWsya7bfW2+9NThm8xXP66BBg4J+bEaybS+99JKX2fQQuw/y+cXCvrPeI9ksbtMR8O+HNYnyHuR7iXWtsOkxSon93UkL/WZTFhCma2BzkDX3s/nRXvtvf/vbXh49erSXOTQdCDOsV61zYN17GldjYKwZivczpz6we4d/x216CU67wIVy2cwLhObBrEgDJIQQQojcoQcgIYQQQuSOejWBxXjvvfe8bKMw2LTFWPVbWhFDa+ZIM7fFosXYu92qA7MWaG2sxK6bhaOsWFVts25zJBKbOGbPnh3044gXNn/YiJ2sBS7ZJGpVzhxBU5Pop9okSRJvDrQqZFYbx8wN5557rpc5GsuaRq644gov77777kEbZ/Xl8ex8jhs3zsuc7dfu7Z49e3q5X79+XrYqdDZncbTehAkTgn58HqySB0IzK69hmy24yhxUSvN2dYvR2nsQmwTZNGLNmVx02n7PPn36FG3jiB1L1kz3sWvHa2jIkCFePvTQQ4N+XITVRnlyFn9e//b8Sm0CW758Oe655x4AoXkYAM4++2wvc+STjbpkMxV/T2vO42zYNpKKzWocYWvXA9/vuACu/U1Ly7hvqyDY4rNVLFu2LDhm85W9N/NnTZo0ycu2YHZNkAZICCGEELlDD0BCCCGEyB16ABJCCCFE7qhXH6CYHfiVV17xsrUJcugz2+qtbZrtmdxm7cDcj30LbKVx7sc2TGt/53NqzNXfs2alZR5//PHgmH0L2AeIrzUQhmFyyKsNm+a1sWDBAi9b2zR/Fp9vLHttt27dguM77rgjtW9d89lnn/ns1ra6Ns9TrKI6+xSwL44Nded+NlXEeeed52X2O7CZevl9O+64Y/A9GPb7GD9+vJc7duyINDhseO+99w7apk6d6uUDDjggaOO1yHufK6YDa9dLOaW4sCHBab4XNnsup3Kwmc457Jwzp8fg67Z48eKgjeeFfTyt7yZ/7iOPPOJlm1aBsxNbnzD+zeC1Zv3jYvu9NmjevDkOO+ywop/Fc5a1sjn7Idp75Lx587xsP4v3Fb/PjsH3SZ5Lnjv7Pr5/2t9q3vfs22Tni+8psX3Fv+N2LU+cODH1fWlIAySEEEKI3KEHICGEEELkjno1gcVMJRzeHDNZscnDmsDSwttjZilW/XMopR2PsxFzuChQXqrxUlKT78kh1EAYqs4hmTZsmueFwx85Wy0QZqnl9TVy5MigH68HNgVZU03aOcSIZcAtFRtttJFXI7NJCQivCWefteG2rFLmEF0bKsuq9gsvvDBoO/roo73M+yJW/JALN1ozzLRp07zMZktrKuPxeQ5tUUgeY8yYMUEbm1PZVGgzEFdlyC2V+WT16tV+XQ8dOjRoa9++vZf5u9h7FZuVeN1asyeHGM+cOTNo43XMKQKeeeaZoF9aAVRr2kozNVtzCK9ffo+9J7zxxhtetvuWj9ksY8Ov/+d//gelxDnnP/+kk04K2uzxhsLf2f628n7h62HvVWn3OPubyWOwXJ+/fTYbeBakARJCCCFE7tADkBBCCCFyR52bwNIKT9qIK85qaU1bsYJ7TJp5zKqueYy0IplAqOpjE5ilullcGwOxgqIcvTN58uSgjTOWcj9bDJUL4nExTqv25EyhHFkwcODAoB9nIuZ1YqOaeK1xRtkY9aEG3mijjbx5gyNsgDAai6PpWrZsGfTjyCGeF2t64EyyXMQRCM1ebL7iiB0gjGbhbLzW3MQqeY5YsiYwPua1aDPicpSLnc8lS5Z4OVZYssrcVKp93qRJE5+h2c4lH3ORVi5iCYSmMr6GtqglZ+C115TNY3wNuIAxEJqxOcrK3tMZHs9eX143PEd2vnifxUzXXAjUXs8zzjgj9X21wcYbb+xNzfba8zGvS2tu4t+rWD/G3oN4bnkf2THsb14Vdo7Sfnft6zwey3at8VqJfS8ew5rVuXhrVvL3Sy2EEEKI3KMHICGEEELkDj0ACSGEECJ31LkPUJrt0NpHuQKuDV3k8F32AbFZKG323yqsbZrPid9j7aj8PluFnGHfgPoIia5N0my4QPg9Y/4Qv/jFL7zM9mcgvB7cZm31HPrO/WyWXrb3c1g3Z4UGwirYHBpu7c/sE2T9WMoJ9jWwc8H7JZY5nf1yeP+xLwgQhh/bNcF7lcPn7Z5L89mxvl8cEs2+TOzjAoRzyN/L+hqwH4n1gWJfGc46zGMDa33LSpXlfeONN/bX4cQTT8z0Hnuv4+/C4eh2Lvna23swr332sbH3sJUrVxYdz1Za533L68FmZ+bxuF+sSridC17znCLAZu23a6CU2LQT9ljUPdIACSGEECJ36AFICCGEELmjbExgNtSW1bGxkD4OhbP9WG2bFk5r38dZptkkAIThiGnqYSBU1VoTQTkWR7Vzwt+Hv2fWsN9rrrkmOOaQ83333TdoGzt2rJf52tiQV1aF8/nZgovWXFrF7bffnnpOHJpv1dL8WTakupxwzvm5steOUzbwfNqCmVzwkFMIxEJbLXy92GTF4dZAuIfZjG3H5vFioc48b7xO7frg+4zNnsymM74ncNi/Hb9csPcVzq7Mck1ChYVorJTfThZCCCGEKDF6ABJCCCFE7qjXYqiMjbTImrE2Zopis0nMBMZjcASCjTrg9/F4bDoAgNatW3s5lqm6XLCmQ5sNuQobacJZgP/2t795+frrrw/67bHHHl7mbLsAsOeee3qZszjbDM9p5omYOeKxxx7z8pFHHhm0PfXUU0XfY8fj+YtlguZ+9R3pd+yxxwbHbFbi4qB2Lth8OHfuXC/bYpW89m1Wdb5GvP84kzcQRtSxqdmacjjai9+T1Qxl1yx/R7u/2SwXM8cKIRoH0gAJIYQQInfoAUgIIYQQuUMPQEIIIYTIHWXjA8Qhs0Boj7d+Buxzwxlrrb2ffTHYD8JmpeWQX/YBsmHwPAZ/lvWlYB+ghsjDDz/s5e9973tetteNfUEY6zMxY8YML++2225B29SpU73cvXt3L0+fPj3ol5YR1l77YcOGedn6/TBpWcItvIZsZluG10a5pTpgfxnOnG2zaDdGYj5FQoh8Iw2QEEIIIXKHHoCEEEIIkTvKJhP0vHnzgmMbospwEbxu3bp52RY+ZNhsZotactg3j81ZoYEwFJtNHjZkm2kIYfA2W+7FF1/sZTY/sqkwhjUv8by88sorQdvuu+/uZQ69tp/F4ctc3PGYY44J+h199NGZzjEt1N+aTNh8ZAt1Mg1hnoUQQqxFGiAhhBBC5A49AAkhhBAid+gBSAghhBC5o2zC4K3vBZediPnisK8QV4YHQl8RDrO3afnt+6qwvix8jlx2I1b6IFY5u1zgkhFAeK222morL/P1BMLrwyHx9juzH431lRk/fryXO3Xq5OW+ffsG/bhMxvz58708dOhQpMG+R7xmgHXLO1SRthYAoF27dqltQgghGhbSAAkhhBAid+gBSAghhBC5o2xMYDYsmc1N1izRtm1bL7N5xZo5+H08nq0u/8knn3iZTSPWXJNm6rLV5ZmsVavrkzPOOCM4/s9//uPlmTNneplTBADpmbZjoeRNmjQJ2vh9c+bM8TKHvQNhhu6RI0cW+RbrYjOIM2lpFux7OAN1LA0AmwNjnyuEEKI8KP9fZyGEEEKIWkYPQEIIIYTIHWWjq581a1ZwzCYPa65YsWJFUdmayj744AMvr1q1ysuzZ88O+i1dutTLkydP9vIee+wR9GMTEJvH0rIKNxSsWeqFF17w8sKFC7181113Bf2efPJJL3OUViySKiu20OpTTz3l5UGDBm3w+Nttt13R13ndAWGm8R49eqSOV24FUIUQQsSRBkgIIYQQuUMPQEIIIYTIHXoAEkIIIUTuqHMfoLSwcJv5t6Kiwssc9g6E4e5t2rTxsvXDWLRoUVF5t912C/pxxuAFCxZ42Ya9b7bZZl5mXyHOlmxpCGHwMTg7869//eugzR5XYf25uMo7+2wBYUoC9rdJ89GpLbjifb9+/bxs1xqfX6tWrVLHU+i7EEI0LBr2r7MQQgghRA3QA5AQQgghcoez2Y6jnZ17H8CC9XYUtcnWSZK0WX+36qG5rDc0n40HzWXjotbnU3NZb2Say2o9AAkhhBBCNAZkAhNCCCFE7tADkBBCCCFyR70/ADnnWjnnJhf+LXHOvUfH0RoTzrlBzrknUtpud859O6XtIufcZua1S51zpzrnjk57n1g/heuXOOd2zNh/vnOudZHXVxfrHxmnWv0j45zlnOtQG2PlBefcr5xzM5xzUwv7dkAtjDnKOdd3Q/uI6qG5bPiUYg5p7NTf3IZIvScvSZLkAwC9AMA591sAq5Mk+UstjHtOsdedcxsDuAjAPQA+oaZDAJwA4BoATwB4Y0PPIaecDOClwv+/qedzqQlnAZgOYNF6+gkAzrk9ABwBoE+SJJ8VHmYbdnG8nKK5bPiU8xw6576RJMmX9X0eTL1rgLLinNuXNEOvO+c2LzQ1c8497Jx70zl3rytkL+S/KJxzq51z1zrnpgD4FYAOAEY650YW2pujcpFsB+C7AK4pfE5351wv59y4wtP0MOfcljT+Xwv9pjvn+tftFSk/nHPNAAwE8D8ATqLXBxWu1zrzRH2aOOeeds6dW2Tci51z4wtz8LvI519f+MvnBedcm8JrafO3zuvOucEA+gK4tzCvTdI+S3jaA6hIkuQzAEiSpCJJkkXOuSsKczbdOfcPsy+vds695pyb5Zzbu/B6E+fcA865mc65YQD8tXfO3eqcm1CY29T5FxuM5rLhkzaH851zv3POTXLOTXMFDb1zrqlz7s7CHL7unDuq8HpX59yYQv9Jzrk97Qc55/oV3tM9Ms5ZzrnHnHMjALxgx6h3kiQpm38Afgvg5yltjwPYqyA3Q6X2ahCADwF0QuXD3CsABhb6jALQtyAnAE6gseYDaE3HxwK4siDfBWAwtU0FsG9BvhLADTT+kIK8D4Dp9X396vsfgFMB3FGQxwLYrSDH5mk+gK4AngdwBo21uvD/wQD+AcAV3vsEgH2KfHYC4NSCfAWAm9Yzf7F57Vvf17Kh/CvsxckAZgG4ha5pS+rzbwBH0vW9tiAfDuD5gvxTAHcW5J4AvqT927Lw/8aF9/fUXGku9a9aczgfwI8K8g8B3F6Q/wjgtIK8ReF9TQFsBmDTwuvbAZhQkAcV7sF7ApgIoMt6xjkLwEJeQ+X0r8FogAC8DOA659yPAWyRrFWlvZYkycIkSb5G5cR3LfLerwA8Ehn7UABP2xedcy0Kn/Vi4aW7UfmwU8X9AJAkyWgAzZ1zW1Tj+zRGTgbwQEF+oHBcRWyeHgXwzyRJ/lVkzIML/14HMAnAjqjckJavATxYkO8BMDBt/jLMq8hIkiSrAewG4DwA7wN40Dl3FoD9nHOvOuemAdgfQA9629DC/xOxdh3sg8p5Q5IkU1H5gFrFCc65SahcAz0AyEevBGguGz6ROQSKz9XBAC51zk1G5UPopgC6ANgEwJDCnD+EcJ52QuUfpUcmSfLOesYBgOeSJFlea1+yFql3H6A0nHPnA6gyhxyeJMlVzrknUfmXxsvOuUMKbZ/R275C8e/0/+2debwV1ZXvf8shDlFRBBVBBkdQBAyIcR6DxDg8h25jEofYHdPmxajpNmonvkFNG595iSYd2yTmxdaEGDu2HZxxwgFxQEUGFRUFRVREkYiRBGW/P07dzW8vbm3OvdzhnFu/7+fDh3VO7VOnTu3au+qu31prLw8hfJL5urEAzmzHYfoiSpUtqmRmvVGbHHc3s4DaX3jBzFoW3cr10xQA481sQij+hOBdA7gshPDzNh5SZfuiqynG1mQAk4sJ8+uo/eU/JoTwutVi+zakj7RcC2XjNWJmQwD8E4A9QwhLzOw6ty/Rgagvm59W+vDUYlNrfWUAjg8hzOF9FP38NoCRqHnel9PmN1Hrtz2wKlaybD97AfhwrX9UJ9GwHqAQws9CCKOKfwvNbIcQwswQwuUAnkTNE9BePgCwKQCY2W4AXqAHpLgthLAUwJIWbRvAyQAepP2cWOxjPwBLi/ZV5QQAN4QQBoUQBocQtgPwKoD91/A5oCZZLQHws1a23Q3gdKvFF8HM+pvZVq20W6c4BgD4EoBHyvpvDf0a1JU+ywAAIABJREFU+1+sGTPbxczYIzcKQMskuLjotxNW/+RqPIRav8HMhqN20wWAzVCbQJea2dYAPt8hBy5WQ33Z/JT0Ya4S9d0AzqK4rj2K93sBeLPw2J+M2h+0LbwP4AsALjOzg9awn4amYT1ArXCOmR2MmtQxGzXJau927usXAO4ys4UAbgdwF227ETXX37dQG+ynArjGamnzrwD4KrVdbmbPoOYuPL2dx9JTOAnA5e69m4v3f79689U4G8D/M7P/E0L4TsubIYRJZjYMwNRibC0D8BUAi9znPwQw1sy+V2w7sXi/rP/K3r+ueP8jAHuHED6q49irzCYAflrIvx8DeBk19/v7qGXTvYXaHyxr4t8A/NrMngfwPGpueoQQni3G2AsAXkfNWyg6B/Vl81PWh0eWtL8EwJUAZpjZOqj90XokavFDN5vZKajdHxMvTgjhbTM7EsCdZnZ6Zj8NTeWXwjCze1ALvn2zjZ+bjFrA9rROOTAhhBBCdBrN5AHqFEIIn+vuYxBCCCFE11J5D5AQQgghqkfDBkELIYQQQnQWegASQgghROXQA5AQQgghKocegIQQQghROdqUBdanT58wePDgTjoU0Rrz5s3D4sWLbc0t20Z39eWHH6ZFQd99991or7feqstx3XXXTdoZrZ368cflCwp/6lOrFj7+85//XPqZFStWRHuXXXZZ02F3GE899dTiEELfjt5vI45NPue5/mxWesLY5CSYv/71r8m2jz5aVQLr05/+dLTXX3/9tf5e/i7+HgDo1avXWu+/PXTG2GyUcbly5cpo8/n2537jjTeONo9Rni+B9BrYaKPGWzO63r5s0wPQ4MGDMW2ayt50JWPGjOmU/XZXXz75ZFpH7frrVy3/teWWW0Z7003TYsz8cLR48eJo+xvpwIEDoz19+vRoL1qU1k185513ov3AAw/UdewdgZnlqrK2m0Ycm/xw629q3J+dic9y5dfrrLN2DvDuHpt8U/O/JbeN4QeR1157Ldk2e/bsaO+1117R3mabbdZ4bGti/vxVw+C5555Lto0fPz7a9T4o8+8F2te3nTE2O3NctuU3L1u2LNrcr2wDwIgRI6K9wQYbRPvNN9MyeVtvvXW0R44cWfq9PN668o+eevuy8nWARNcyefLk5PWsWbOizQPk1VdfTdrxAOYHoC222CJpxzfazTdftTZtnz59knbz5s2r/6BFAk9qd999d7LtpptuijY/WL799ttJu+XLVy0t9A//8A/RfuaZZ5J2PMk///zz0R46NF0J59prr402T+J+0uXX/uGo2bxSfLz13gy//vWvJ6//8pdVS/TxDQ9I++yqq65q9XuB1Duwxx6rVkDw3gV+6OWHHv/Hzl13rSrM//7770f76KOPTtodf/zx0W7vA2Azk/tdc+YkS3Lhgw8+iPaLL74Y7RkzZiTteP7kuZX7AUjHL4+jUaNGJe0afUz1zCtDCCGEECKDHoCEEEIIUTn0ACSEEEKIyqEYINGl+CywIUOGRPu9996L9nbbbZe0Y02fs7Y4hsG34xig3r17J+34cxwP1AgZG40AB6n+7d/+bbKN+3Dp0qXJNo5L4HPOWUR+/xwX5mO/GA465pgGAPjiF78YbY5POOOMM5J2F1xwQbR9fEJ3BWy2l3oDui+88MJoL1myJNm27bbbRttngfEY5H72AbF87s8888xo77333kk7Dpzl7/XxeRxTxFlJHF8GpEHb5557brKtiks8zZ07N9oLFixItg0aNCja3H9+/uQ+4rnQZ3FywgrHB/mA785KFOgo5AESQgghROXQA5AQQgghKockMNGlcAomkNbj4VR3L5Xx66222irauQKHLJN4lzh/7qGHHoq2JLAap512WrS9bMLpsV7aYimGZSRfroClTy5rcOihhybtNttss2j/6U9/ivYmm2yStCuTr+64446k3cSJE6P96KOPJtuaQfZicqner7zySrS51ISXllkC8b+f99m/f/9WPwOkUtR//Md/RJvlKyCVurhfP/nkk9LvZZtlMwCYOXNm6T5YsuFtXsrpSbAUxVIWkJY4GDBgQLRvuOGGpN0tt9wS7SOOOCLahx12WNJu2LBhrX6XLy/CpRAasWCiPEBCCCGEqBx6ABJCCCFE5ZAEJroUljuAVKbKZRdxRhG7tL20xftgl75327ME5iWeqvLLX/4y2lwF2Gfp8PnPZR9x3/i1hHidNnaNe+mT+y0nZfDrDTfcMNp9+6bLAbGMdvPNNyfbuLJwM5BbTuS+++6LNvcRn3cgPVe5NfZ4nPbr1y/ZxjL2rbfeGm1fFZglbpZG/DXE60yxzOfHOl9TDz/8cLLtoIMOKv1cM8Png2VOID2/vAwQkEqfLGe+/PLLSTteS5GzAhcuXJi0Y/mYJVDORANSue2kk05q9f3uRB4gIYQQQlQOPQAJIYQQonLoAUgIIYQQlaMyMUCcnnnNNdck23bbbbdocxruMccc0/kHVjF8bA/HE3AsAK8WDaRxOhy34CnT+31KLrfz31VVrr766mjz+fEpxgzHa/jPMbmqy4yPa+Hv5vgE347TfDmWxa+SzrFCPgW42WKAcvA1zefax1jxOfXniuHz5itG87nn8gS5dhy/42OAeHzzfMEVvoH0muJUfyCNAcrFSjUbHPfDsTdAOsftuOOOyTZe9X3s2LHR3mabbZJ2nMbOcVX8GQB44oknos3xRYccckjSjq+bKVOmRHvnnXdO2u2xxx7oDuQBEkIIIUTl0AOQEEIIISpHz/ENroHHHnss2n4hxSeffDLaP/3pT6N99tlnJ+2uvPLKNn+vdzlfeuml0eZU45///OdJOy8tNDOcysxpyEAqP7I73ksmXOX0jTfeiDanfgJphVl2CftUbq5e6hd3FKkc4qUM7s+ctJhLkef+LaseDaTyBW/zKdt8vCyh+Oqz3M5XreVUX191uNngdGQ+h74cAaeje2mZxyP3Ua6qOn+Xb8dyCLfzEhVfX/y9fKx+/5yK35PheZAr4vttfhyNGzcu2jxHctkC347lZy9tcZ9x//OC1kBaKZ6vPT/n7rTTTtH2Vd47E3mAhBBCCFE59AAkhBBCiMrR9BJYvQvdcQR6r169km0siXH2wFVXXZW0O/nkk6M9evTo0u9iVyTvDwDefffdaHNV1lNPPTVpd+CBB5buv9lgt+imm26abONKvezG9rILnyt273q3+L777httdp/7a4Pd/T2pUmxbOP3005PXfC75fL/++utJO3ah+ywSzvThPswttFnvApVlC1x6WLp56623km1cidxfiw8++GC0uWptM+ClLZYRWHbmcwOkcrJfKJXHCEuHuYrRftwyLG3V2+ec+eXlFT5eXxW5J8Hjks+vlw5ZbvLzIs+tfE4HDRqUtOO+5cwvrh4NALNnz452WeVu/zqXnblgwYJoDx06FF2FPEBCCCGEqBx6ABJCCCFE5dADkBBCCCEqR9PHAPnYAoY141dffTXaXmNkbZrjG3w1zTFjxkT7hBNOiPbAgQOTdj/60Y+iPWTIkGQbx0ywNr/llluW/Irmh6s4+xgEjgXhOAbfjmM+uMqtT1fm6qiDBw+Otk+H5n7uSSUH2sJZZ52VvJ40aVK0+fz7eALuJ1/mgeMSOM4jN055W65iNPcTxzsAabwKp+b7CsH8W/x3PfTQQ9Futhggn1bMMVw8xnzZCJ4jd9lll2Qbj7lcZXDeP8d21Fv9248/HqtPP/10tH2f83XIcZc9DY5bKyv3AKSxPb1790628T2Ox4A/b9dee22r+/CxdAzPFT4WjecDvkb9/M4lYRQDJIQQQgjRiegBSAghhBCVo+klsFy12QkTJkR78803j7ZPwWM3Haep+yq37CK+8847o+1lgGHDhkWb04KBdHE/dlNzGiAADB8+HD0Fds16NzbD7lPvqudKzuxa534FUrcwV/r1EiP3eS51tyfjFyDka5AXBvXpx9tvv320/YKMPEZ4bHp3fVkqNbvqgXQM8mf8dcRyMrvuBwwYkLTjbeeee26ybc8992z1mJoBloqA8mua5xygvIozUL5gqZ9zc/JmWbtcGnxZxWgv13A4gR/fPPZZCm9GeP5k269owHOh72fuM74n+XvcH//4x2hzCRd/Dvk+lktvZ7mNJbBRo0Yl7XISW2ciD5AQQgghKocegIQQQghROfQAJIQQQojK0fQxQDm+//3vR5uXv/ArkpetYMx6q9/GZdi9Bs4l9n0KMevbrLHzavUAMH78ePQU+Pz4dHSG9WO/XAmnvjNbbLFF8pqXAOAVhn2sCvetXxJBADfffHPpti996UvR9qtwcwwPx/34uJGyJWx8Ox5zuXgVvq44lumuu+4q+RU9C04j9nDMh49X5HIQuRRmHps+nb0s9T0X58Op735/fBx87H65C4438/uYPn16tJs9BojjbXh+8zFAvM2nmfvYuhb8/emwww6LNt/jfDse2zyX5r6X4418O96H78t6Y8zagzxAQgghhKgcegASQgghROVoSgmMXWTsHuNqz0CaWscpk17aYldvzhXH7diF71NOfRXOsn2wu3/q1Kmln2l2+DzmyhbwNu+y9WnxLfhq3c8++2y0WQLz6Z7sVq53ZWpRo2wcAKkUlSt/UFYV2PcFyys5GYaPI7daedm+gXxF6kZn7ty5yWuWkViu8CUNdt5552j7sVl2HnPnjT9T1sf++Pw1xFIOb/Pt+Hv9Mc2ZM6f0uxsdn8LOIRssHfn7HY8xXx6k7Nr29y4OBygbe0D5ePPXEEtnXNHat2NplkvRAGkJlI5GHiAhhBBCVA49AAkhhBCicjSFBOYj0DkzgN15F198cdKub9++0eZsB+/Oy7nWGXb7sQvXZxHxNp9Zwb+FXb2TJ08u/d5mh/vIZ++wNMXyic8uKsseYxc+AEyZMiXa7PpnCRRIq5J617rI47MoyyjL9ALKF7714yWXLcTw/nPVxpmcHNtsLFy4MHnN8mOuQjDPpV7yKpMB6x0v9Z5fXy2fZRnO8vTXBs/bXiL3i8M2E/6887XNUpEfh/48llGvZJXL2OXzzePSz+8vvvhitDk70/clj1lfFVoSmBBCCCFEB6IHICGEEEJUDj0ACSGEEKJyNGwMEOuKOS3y1ltvjfZ1112XbOMUadZLvU5Zllafa8fxJV57ZZ09t9I469svv/xysu3uu+9e7bh7Al7fZj2az6mPR/BpnS3suuuupd/F6ZQ+foTjw5ot5bm74VRqPzbL4gt83F29Kdb8mmMhfBwKxwrVGwvRk/Dp7T7GooVcDJ6Hzz2f71wsFm/zcx/3H491X/KCx2Munot/o6+K7GOimgnfd9xHZVWyAWDLLbeMtk8lLytV4Mcbn28e274vebzlyk5wzBLPub7Sf9mK952NPEBCCCGEqBx6ABJCCCFE5egwCYxdn2W2h13kXobIyRKXXXZZtC+55JJoDx06NGnHrjl24ebSLnPHW7YYo3cjsqvXp/+WyW3sEgZWVTT2aavNSM4tXraQnk/PLFuwdM8990xec19wf/l+KFukT6wZrujK5SWANI2W3elesipbQNNTJpH6ccHHweUlqoIvFcJjrqwaL5D2Ub0VtH1/8XdxP/s5jeF2fqzzHFHvApp+Xmnm0hb+2ubfwufey548p+X6KHfv4te8fy9F8j2Uj9efd/4uTm/3i/eyfCcJTAghhBCiE9EDkBBCCCEqR4dJYB29kODEiROj/Z3vfCfZxgvdjRw5Mtq5qpbsFveuXm7HLrucLJfLSMnJK2WLqPpsmhb3YzO7clvIZZBwVsOSJUtK25Vle5VlhwHp9ZBz7ysLrEaZPOthN7mXOXiRWe4b72ovk5pzLvSclMqvc9JLvb+xGfDZUwzLCCx7jRo1KmnHfeRlibKK+znZhLODyjLRgHS+82OTf9fWW28dbS/D8O/KLVzNx8HH16h4mZKvbR4fOek+V3md50UvKzK5cc7Zybw/Py5Z2uL7rL+GeP+vv/566TF1NPIACSGEEKJy6AFICCGEEJVDD0BCCCGEqBydXgnaV6S89957oz19+vRo33bbbUm7WbNmRduv+M2pz6xt+lRQ1jdz6e1MWaq7h/Vor8Wz/ur3wcfE3+X18pZ2zR6nAOT7iFf65RWc/TndbrvtWt23T48vq1CaK1WQ08HF6pTFJABp7An3RS5Nm/fhxwGPH+4z3598vfSkVd5zcMych89pWbwGkI/T4ba5c1rv3FqWfu3jRng8ciVhH/PCK4372Cbe56JFi6Ldv3//uo61O/F9wr+Ff7MfA9tss020+f4JpDGwuTTzsn72cyRX3uYVDaZNm5a044rPHM/l4834GvIxUJ1JNWYKIYQQQghCD0BCCCGEqBztlsAmT56cvL744oujzWls7H4EgG233Tbay5Yti7ZPcdx///2j7WUgdgnytpybjj/j23EVWXY/ehcjp27mKtlyaqmXCMoqoPK5AIC9994bAPC73/0OPYl33nkneV0mJXq3OC9sm4Ndvbw/X2aA3cBVrBzcGvWmiOcWLuSxxRKYv755/7lSD2WStP9e3uYr5JZ9b7Pz/vvvR9ufD56fuFLvoEGDknY8Rrxcz/vIyVxllYo9PjW77DM89jkVf/jw4Uk7vs/4OZ2PiWW0ZsCn6peVTuEUc7/NV5Mum+P8ueHzzWPWL8rN55vvd6+++mrSjsuXjB07Ntp33XVX0m733XePtr/WXnjhhWj71R7WFnmAhBBCCFE59AAkhBBCiMrRJglsxYoVMXr7zDPPTLaxS4wze9gGUjcrR4h7F2ZuITaG3bS5TJ8cLEXxd3nXLLsRWSrj7CV/HH7hVXZN5iSaAw44AED5IqDNBPeDzwZasGBBtHNZcT4TsAx2C7NE4M9jR1curxIso7DMDKQVXfm8+v7kbWUZYUA6X+QqH/O1U++ins1OTtYvm2cOP/zwpN2MGTOi7aUXnsdyVdV5//wZ35f8Od6fl+/4OPg37rTTTkm7m266KdpeYi3LJGsG/BzJ8yef6/322y9pV3YfA8plZi978rjMjSPeP8+zvo8Yfhbw8h33l5+POzMrTB4gIYQQQlQOPQAJIYQQonLoAUgIIYQQlaNNMUDvvPMOrr76agCrpylzPE+9lSY5/dzrtKx7+m2sEbKG6atYclwN7y+XMsrVRv1v5LTLt956K9pcgRMA+vXrF22vdXIsCh8T66jAKo21p1e1LdPnfSpk796969rfgAEDov38889H269mzPp2M6wQ3RWUxXz4vuD4Eh9DwOcyl95ellbtxxyPEe4zH9+Xi1Gp9xiaLRYsV6mefxu38zGJHJvlx1i9MUAcD8LtfMyW79sW/BzJ++A518e8cPq1jzHjeE2fwt3o+Hgu/i08j+VitnLw/Y/v2/67ORaJ79UA8MYbb7T6vdtvv31pu759+0bbx2zxteGr/udigNeWnn13FUIIIYRoBT0ACSGEEKJytEkCM7PoTvXSBUtH7JrzchO7N1lGyrmjvXzBblzen3cBlqVaelmJXbXssvOu04MOOijal1xySbTvvvvupB3/llxVT3YDduUCcN2J7yOWU/ia8ueNF9zLsdVWW0WbK4h6iZFfN8MCid2Jl7L4+vZjqV4pKrdQLVO2zcs/fO30hNIR9ZCTInnO5PktJ4HxfAykY47lEF9pm8ccb/NSDvcLL5L92muvJe1Y2uI50kuUfLxcSRhIf79PK290/L2QxwpLUb66M48BLxHzOCpbMNq/zi0+zO24v7zsyZX/WebiqtBAei37kjCdOZ7lARJCCCFE5dADkBBCCCEqR5sksH79+uGiiy4CsPqilvfff3+02TXpo8zZlcYuPO/CZckqt0gf275dmTzG7lff7tvf/na0zznnHNTDDTfckLzmLDDvOmQXNLufyzIkeho51yy7QX3WgXenl8EZJfwZf23w+c5l04h81qSXVMqytjxlFYO9zMHteH/+e9tT+bfZs8D4Gvay1NKlS6OdW3SZf3OuInPZgpxAei9g2fmzn/1s0q5MKvMSK1cX52P32bb82i+S+dJLL5Ueb6Pj50g+Pywx+VUWpk2bVtf+eez4c8/jiMeHDwdhidFfUwzf41nq3GWXXZJ2Dz30UKvHB6wevtCRyAMkhBBCiMqhByAhhBBCVA49AAkhhBCicrQ7+OEnP/lJ8prjWa688spoX3/99Uk7TjNfsmRJtH21R0598/EfnCbH3+tT8Pi7+DPf+973knb//M//jLWBV1QGUq3T67kc58KVMd9+++2kXYtuXVYxt5ng2AKfusm/j9NVt91223Z91+DBg6PN2r8vpcAoBqhG2bXWltW0y1Z29/E1ZenyudXgmVzsAo+xngzHXuTiMPj8Pv7448k2jiNZsGBBso3PKe/f9wn3Be/Pj3XeB3/GV4KeNWtWtDkV/5577kna8XzvY6A4jsTPrc2MTxFneI7Lpbdz//n7U1kMny9LwnM1jzcf88uxnHyv5tR5IF813scEdSTyAAkhhBCicugBSAghhBCVo92+f5/ezS6y8847r1Xbw6nzTz/9dLKN3aDz589PtnFaHLsEvavsm9/8ZrQvuOCC0uMoI1dZmvnBD36QvOaq2LmF7dgNOHr06Fb33Wypua3Brk/vcmWZil3a3kVaL5xqy+fOn0f+Xn9MIoVTqoH609bZ9vJa2QK03nXP7nr+3pzL3C+M2VNZtGhRtHfcccdkG8+RnFbuU8lZnvbzJ8sc3F++L8sk7txY522+5AVLrizr+HR2/q45c+Yk2/i6afY5lOfFgQMHRtunpj/33HPR9pWxy6RpP954G/e5DyFgWbFsZQa/D/4dubCD3OoJHY08QEIIIYSoHHoAEkIIIUTl0AOQEEIIISpHu2OAyuJh2sIhhxzSqt0o1PsbTz311E4+kuaGYzLKYj+AVKfmOKpcO6/vs1ad06Y57iCXIl8l6k2Dz53/sjGTW/E9p/Fz3EfuOiqLPerJlMXPAem1v3jx4mj7/uIYSp+2zuMiV46D442GDBlS2q5sfPv+4vIgfD3548vFG/Hvb7YyFxyzBQCvv/56tEeNGhVtHxs7b968aI8cOTLZxmOMz4c/93weuRSJXz6K23Ff+rgk3sYxa/465GPyy2x1ZoymPEBCCCGEqBx6ABJCCCFE5Wgu36Boeriyq4fdpbmKp+y29e5RrirLblUvzbALVhJYHi+B1ZtmziUgcjIXp+L6vuC+zvUT9y+77pt9xfccXD3fyyZcEZ3LGHh5gasze9mZ2/L59VX7WYpiKY7T6D18vL4dfxf3F1fYB1IZ1EuiPM/kZLlGZPjw4clrPn6utOxlqWOOOSbavho6jwOeF/34YOmQx68vhcErNfD84OdjnsdZivUlDY477rho+2s5FzaxtsgDJIQQQojKoQcgIYQQQlQOSWCi02FXOmcCAOniiVxRNid35CSwssqjXvpgGSe3kGSVKJOH/Plhtzm7tQFg4cKF0WZ3vc824X2wBOalSpbO+Nrx+2OZgKvIc4YSkJdgm43ddtst2l6+4gWav//970fbZ0SxjMJjEUilqZdeeinaEydOTNqx3Mb99+KLLybt+Nxzn48bNy5px33L/eePj2WZadOmJdu4kvy+++6LZsJXxvavW/CrJzC5BURzixtz/7EU5edZ3gfP256yBXC9nMmVzFle62zkARJCCCFE5dADkBBCCCEqhx6AhBBCCFE5FAMkOh1emfioo45KtnEsQO/evaN98MEHl+4vV6GbV7tmXdnHgnC1WY6lqDJlFXPHjx+fvL777rujzdVngTQmiGMDfBwRxxdwSqzvW47V4pgiv6o5p2Jvv/320c7F/DR7SjynS59//vnJtkceeSTaRx99dLQ5tbm9XHTRRWu9j46AY4DOPvvsZNt+++0X7WarBJ2D50sf58Nxkz4up6ysiE8x5/HG+/PnkOM6eS718UUcv8THUBbXBKwe39cRq06UIQ+QEEIIISqHHoCEEEIIUTkst8jdao3N3gEwf40NRUcyKITQd83N2ob6sttQf/Yc1Jc9iw7vT/Vlt1FXX7bpAUgIIYQQoicgCUwIIYQQlUMPQEIIIYSoHHoAEkIIIUTlaIgHIDP7b2YWzGxone3nmVmfVt5v06JObW2f2c9pZrZtR+yrp2JmW5rZ9OLfW2b2Br1e++IkosNZmz4zs4PM7LaSbdea2a4l284xs43dexeY2ZeLeaLVz4nOxcy+a2azzWxG0f97Zebho83sgpL9HGRm+3T+EYsyzGwbM7vRzOaa2VNmdoeZ7dzGfWxuZt/orGPsKhriAQjASQAeKf5vRk4DoAegDCGEd0MIo0IIowBcA+DHLa9DCH8FAKvRZdekmfWcCmmdQD191s79/n0I4Tn/vpmtC+AcABu7TYcDmATgvwHQA1AXY2Z7AzgSwGdCCCMAHAbg9bL2IYSJIYQftLKf9QAcBEAPQN2E1ap/3gJgcghhhxDCaAAXAti6jbvaHIAegNYWM9sEwH4A/g7AF+n9g8xsspn9wcxeMLPfmivdamYbmdmdZva1VvZ7npk9WfzF8r8z3//j4i+b+8ysb/HeKDN7rPjsLWa2Rdn7ZnYCgDEAflv8ZdR6yU3RKma2o5k9Z2a/BTAbQD8z+4qZzTSzWWb2L0W79czsffrcF83sWrJnmdmzZvYAtf+RmT1R9NffF+8fVlxXtwGY2eU/uAdiZgeSZ+gZM2tZznmT1sZvcf7HFPYyM/u/ZvYsgO+i9ofEA9SPmwH4FICdABwN4Irie3bIjNPJZnZV0W6WmY3t2jPS4+gHYHEI4S8AEEJYHEJYWGw7y8yeLsbrUCB6xP+1sK8zs2vM7HEANwH4BwDnFn2zfzf8lqpzMIAVIYRrWt4IITwL4BEzu6IYLzPN7ESgdn8u7o0tfXxM8bEfANih6Mcruv5ndBAhhG79B+DLAH5V2I8CGF3YBwFYCmAAag9qUwHsV2ybB2AwgHsBnEL7Wlb8Pw7ALwBY8dnbABywclU5AAAgAElEQVTQyncHAF8u7P8B4F8LewaAAwv7YgBXruH9yQDGdPe5bJZ/AP4XgH8q7B0BrGw5f0V/zwPQB8D6AB5E7a/P9QC8T/v4IoBrC/t5AFsX9ubF/98AcEFhbwDgGQADUfvrdRmAgd19HprpH/dZK9tuBbBvYW9S9FVu/MbxUozBv6V9zQPQh14fB+Diwr4OwAm0LTcef1nYBwCY1d3nr5n/FX06HcCLAK6mcz4PwFmF/Q0aj6fRXHpdMf+uu6brSP+6pC+/hZon179/PIB7AKyLmjfoNdQefNcDsFnRpg+Al1G7rw7uCeOq2z1AqMleNxb2jUhlsCdCCAtCCCtRG4CDadsfAfw6hHB9K/scV/x7BsDTAIai9hekZyWA3xf2bwDsZ2a9ULuJPli8/+8ADih7v+5fKXLMDSFMK+y9ANwfan9lrgAwAWs+z1MAXF94eVqu6XEAvmpm0wE8jprLtuUamBpCeK1Df0G1mQLgR2b2LdTGSMuCRbnx28InAG7O7Hs8gDv9m3WMx98BQAjhIQCbmdnmbfg9ggghLAMwGsAZAN4B8HszO63Y/J/F/0+h9f4FgP8IIXzSmcco1pr9APwuhPBJCOFt1P7w3BO1h51/MbMZqDkc+qPtclnD0q0xEGbWG8AhAHY3s4Da02cws/OKJn+h5p8gPd4pAMab2YRQPJ7yrgFcFkL4eRsPSVUhu4cP19wEK1Hr1xY2JPtrqD04HQngaTPbo2j7jRDCfbwTMzuszu8TJZjZf0ftnAPAESGEH5jZ7QCOADDFzA4vtuXGbwvL13BzHAvgzHYcph/LGttrQdFHkwFMNrOZAE4tNrX0cVn/AhpvjcRsACe0of2XAfRFTZlZYWbzkM69TU13e4BOAHBDCGFQCGFwCGE7AK8CqEcb/h8AlgD4WSvb7gZwehFfBDPrb2ZbtdJuHay6GL4E4JEQwlIAS0ifPhnAg2XvF/YHAFriHsTa8TiAg62WgbQealLXg4UXYYmZ7WS1QOlj6TPbhxAeA3ARatdEf9SugW8U+4CZ7aL4rI4hhPCzsCoYeqGZ7RBCmBlCuBzAk6h5XNtLHEtmthuAF+gBKW5bw3gEgJYYhv0ALC3ai3ZQjB32oI9C+5d30FzZvdwPYAMzO6PlDTMbAeB9ACea2bpWi4U9AMATAHoBWFQ8/BwMYFDxsR7Rj92dBXMSgMvdezcX7/9+9earcTaA/2dm/yeE8J2WN0MIk8xsGICpRdzlMgBfAbDIff5DAGPN7HvFthOL908FcI3V0nFfAfDVNbx/XfH+RwD2DiF8VMexi1YIISwws4tQ+2vTANwaQri92Hw+ag82i1BzuW9QvP9jMxtStJ8UQphlZs+jFvMzvbgGFgE4BqIzOKeYHFei9hfmnQD2bue+fgHgLjNbCOB2AHfRthsB/LKQ2k5A+XgEgOVm9gxqcWSnt/NYRI1NAPy0kBE/Ri0O5AzUPK5t5VYAfyiCac8KITzccYcp1kQIIZjZsQCuNLPzASxHLZbrHNT6+VnUvKXfCSG8ZbXklFsLr980AC8U+3nXzKaY2SwAd4YQzmvl6xoerQUmhGhIzOwe1JIc3mzj5yajFmg7bU1thRDVpbs9QEII0SohhM919zEIIXou8gAJIYQQonJ0dxC0EEIIIUSXowcgIYQQQlQOPQAJIYQQonK0KQi6T58+YfDgwZ10KOV88MEHyeu//GVVfbU+fVZbjLjDeOedd5LXG220qozMJpts0mnfy8ybNw+LFy+2NbdsG13ZlytXroz2Ous0xjM3x76ZdfjpLeWpp55aHELo29H77a6xWS8rVqxIXr//flzWDZ98sqoOoo9J3HTTVaVGumrM1UtPGJtiFZ0xNhulL997771o/+lPf4r2xx9/nLTj8cfjcr310kcFHovbbLNNhx1nR1FvX7bpAWjw4MGYNm3tMkvbc+N54IEHktevvPJKtP/u7/5urY4nx9VXX528HjFiRLT322+/TvteZsyYMZ2y347oy3r56KNVZZH4IbI74YHvB3dnYmbtLSCXpTP7sy2JEmVj+o033khe33bbbdFesmRJtP2D0sEHHxzt3Jgrm1f8sXfkw25PGJtiFZ0xNhulLydMmBDt++5bVRx/8eLFSTsef/yg5B0N++67b7TPO6/xSgDV25eN8ee4EEIIIUQX0jB1gPivQAA4/vjjS7etv/760Z4xY0a02WUHpHILyzDsDvS89dZb0V60KC0czfvbcMNVy6E88cQTpfsTqdfnr3/9a7KNz3f//v2jnfM6sEdp+fLlpdvefffdaPfu3TtpN2jQIIi1J+dRYS/PL37xi2Qb90ffvqs81TxOgdQL++KLL0b79NPT4s71ena6S/oUoiOoN5xgiy22SF4vXbpqJZhevXpF28tXH364atm2T3/609GeO3du0m7SpEnRvuiii6Lt52OmEceePEBCCCGEqBx6ABJCCCFE5dADkBBCCCEqR5fHAJVpf+eee27y+oUXXoj2TjvtlGxbd911o/3kk09Ge7vttkvacfr85z//+WhPnTo1accxKsuWLYs2p+D6733ppZeifd111yXtTjvtNIjW+frXv568vuuuVYt9b7755tH2MUAbbLBBtDlTwceM8PXF/e/bLVy4sC2HXWn8mOVz6bfdcsst0b7++uuj7bO7OH6B4w623HLLpN0OO+wQ7fvvvz/ao0ePTtqNHDmy1eNrlLILQnQEuev55Zdfjraf73i8cAmKrbfeunT/HFPLMa9AGkM5b968aF944YVJu8suuyzaPFf44+uucarZQQghhBCVQw9AQgghhKgc3ZoGz26wOXPmJNvYxeYrMnPaLLvpOE0WSNP4Jk+eXNqurBCed8txCne/fv2izW4+QBJYjlmzZiWvy6qIcrVvAHjzzTejzTKlT2ffbLPNos1u20YpwNiMeDky567m1HcuQ8D9BwBDhgyJNqfOPvjgg0k7Lo3AsuVPfvKTpN2//du/RftTn/pUtBvF1d5WWs55V6YL54pG5lKYeQ7m8+vbtadYZSOmTnc29RbvfPXVV5PXnI7O8yCQFiLlIrBcNgRI73F//vOfo+3DS3gfnHJ/5513Ju045f6CCy6Ith+H3SVbN8dsIIQQQgjRgegBSAghhBCVo1slsPPPPz/aXvJgNzZnAAFpNhZLG96dx2uZsGziXYz8euONN462ryzNrno+BpbaAODmm2+ONle0FmnlZyCtCMzn0Utj7MLdfvvto+2lLb5u2J4yZUo7j1i0RXoYOnRotLliux8HZVXVee0vIHXJc0V4L6VypdtcZelmkcDKzvnMmTOjzeeX5zegfeuU5fo5t43nwvbsv73f21PJ/WaugH7PPfck23i9Lr9219tvvx1tDvnwi6Gy5Mxrbvrri++FPG/7BYu5Avxjjz0W7f/6r/9K2pWt2uC3dTTNMRsIIYQQQnQgegASQgghROXQA5AQQgghKkeXxwCxvscVmVnDB1Id38cAMRy/42NxfLxJa8cAANtuu22r+/MxRfw51kB9u5/97GfRVgxQil8NnuMHOA6M43eAtGIpf8Zr2GWxJV5Xnz9/frS1MnzH8fzzz0f7vffei/aOO+6YtJs9e3a0OW7IxwJyKi6POV+lneP9cjFAzZBWvXLlyvi7b7rppmTbxIkToz1ixIho+ziJhx56KNoDBw6MNlcBBtLz5ivuc/kRPqce3ifP1f6YOKaS980V4IG0z3JzP/efn1d4XuBrypdU4ZiaRuWBBx6I9iOPPBJt31983jg+DEjvjTy3+jHA1fP33XffVt8HgAULFkSbY4r8uOR5m+eGSy65JGnHKfxKgxdCCCGE6ET0ACSEEEKIytHlEhi7t9idd8oppyTteJHTnIuU3aq+ojOnWHMKLVdx9p/jhRm9K45d8Lw/n7rr3dZVh8/bokWLkm3snmdpyy+eyS5cTn33LnKfrtmCX2STqwpLAqvB8hDbOZf0r371q+T1gAEDor3bbrtF20tRPAbZve4lTXb/77rrrqXHxGm1//iP/xhtL6XmFnJtFJYuXYpbb70VADB9+vRk26WXXhrthx9+ONq8qDCQyr+jRo2Ktq8ezFKJXySaU6k5jXrx4sVJOy4dwlIZL2gNpGOQ23FqP5COb577/VhnmY+rjgPpb2aJled3IF3UulG54YYbos33Ki/7Mf7a5nPH86w/p3w/5WvDlzr46le/Gu3XX3892n6VBZawuWI0y2HdiTxAQgghhKgcegASQgghROXo1krQzPXXX5+85uyp++67L9nG7k3OwMotsMbuV+8eZNmE5RovqXHGxIUXXhjtb3/72xDlcDaQP6fsFvWZBkxZNgi7+oG0j/i7fGVpn3Uo0nFRtsAlANx///3Rfuqpp5JtLF/w+ff74MUauS9YtgaAo446qtVtnIXiX5999tnRvuqqq5J2fBz1LjrZ1ay//voxM9VLD9OmTYv2E088EW1edNK/ZqnowAMPTNpxhXU/B48fPz7a8+bNi7Y/phNPPDHaLHGz/AGk8wBv83LIPvvsE22et728wmEIfl7h64szv1g2BFIpp1HhcAAel34O22GHHaKdm0sZLznza/4uPzZY3uTPsFQKpKELLKmxbNadyAMkhBBCiMqhByAhhBBCVA49AAkhhBCicnRrDBDH6PgYAV5RnfVnANhzzz2jzbqnryLLGj/rmbnqsMxzzz2XvGZdlVM/RR7W/v3q7T7dvQXuL0+umi9v4+/yVcJ9Kq9Iya3w/eijj0bbl6jgWC2OLxk+fHjSbs6cOa1u82UMOG6A07J9Ojen1XMcGF97QBpH5OeBelc172yWL18ezw+fQyCNneDzNnfu3KQdz5kzZsyIti/ZwdXyfbVuTi3nVb65dIWHyw5st912yTaeT/l3+Ur6DFcSbikN0No2f329/PLL0eaSKj42JvfdjQLPVXyf9PE2vKKBj5nkOB2+zv29r+w+6ctJ8HXI23wlaK74vssuu0Tbn3cuR+ArXHcm8gAJIYQQonLoAUgIIYQQlaPLJbCyCrNe8mA3Hbu+gdRNXla9Fiiv+upd3/zdvA/fTrJXx8NlB/wCfgzLm+zO9X3C/ZdbNDVXRbWq1LtQKEtMbHtYNmG5AgBee+21aHNKtP9edv9z2rOXzPk4uG99JeVDDjkk2o0qga233npRqvOV07mcA8te/rfw58o+A6QVtMeMGZNsY5lj5MiR0eYyCEAqR+6+++7RZukJSNPbJ0+eHG0voz799NPR5j7x9wiW+fwipyyx8P79PaJMgm8kylLa/RzGcqa/Z7JMlQsv4LCBspR4vz+2vbTF8zuPbX4fSCVRSWBCCCGEEJ2IHoCEEEIIUTn0ACSEEEKIytHlMUBlsQW5mIOyZRCAVMP1afC8TEJZSnxuf768ehmNWlK/UWCt2sdu8DnmmBGvEbOOz+mUvBwAkJbA537w39so8R6NBMeR8Pnx8RUcszN48OBkG2v5Q4YMibaPB+G+efPNN6PNMSRAGofCyyL4mC5Ot+WYF7/SOMcANeo4/eSTT+Kq5XwOAWD//fePNq8A72Mvhg0bFm0eEz51+pxzzom2j+3h+CtejmjfffctPSbu/yOOOCJp9+yzz0abl7846aSTknZlS3BwHBIAPPbYY9H25Q6YXXfdNdq8MjywemxaI8IlI/r27Rttf79j/D2J2/I9zo8BnidzcZI8/sriLv3+y8rNAOk4Peigg0rbdTTyAAkhhBCicugBSAghhBCVo2FWg8+5o316NKfdsSsul0bN7jzvimMZhmUApb13DFy2wFcUZXJp6yyDch/5FadZKuPrwUtgORm0qpS5qCdOnJi8Zjc8y5FAOpbY7c4yBJCmafP14aUMHoMsafvU4BbJCEglH04N9tQrcXc1H3/8cZSqWPYD0rR+Tv33cx+vFM7ngGUoADj00ENL98HSyw9/+MNo+3nxhhtuiDZLYH6ldZY2HnjggWj7a4jlvD/84Q/Rfv/995N2XLnaS+YLFy5sdX/+Oqx31fSuxI8BHh9c7dlLYDyn8XgA0vPD48OfN94Hz5l+PmZYUvOyGe+D7/H+fv/UU0+V7r8zkQdICCGEEJVDD0BCCCGEqBzd6gOut/Ksh12m7Or1rll227Fskqs6zdt69epV9zGJctjN6mUHdpHmJDCubMpuYE9ZZVf/vV46E+Vj0GeB8bjlir5A2p+DBg2KtpcvWJbhBRR91hZLmnx8XibgscoL3/rFVVk2yGWXdicbb7wxRo8eDSCt1Ayksg8vAPvggw8m7Vhi5EwvnwV2+eWXR9ufjyuuuCLanFl31VVXJe04W4wl7qlTpybtjjrqqGh/61vfira/hvja4MwvL5Xx4qicLQiki6OyLOMlwM9+9rNoNLhKOlC+ooGH5z4vZ/LcmpN+efzmVkUo+4yHvyuXBeZ/c1chD5AQQgghKocegIQQQghROfQAJIQQQojK0a2rwbe3EiunLrK26TVG1qM5FoBjDoDy1cW9tsmrUW+xxRal39uoFWa7i3pXXmfdOteXfO559eLOOKYqUVYde9asWcnrz3zmM9H2cSMvvvhitLnPBgwYkLTjMcJxHlwN3LPddttFe8GCBck2jjPj3+HH8EsvvRRtjhNpJNZZZ50Yx3TnnXcm23bbbbdocwXld999N2nHr/m8TZgwIWnHqfTz589PtnF8zA477BDtk08+OWn3n//5n9HmWBG+ToB01XiOxeJ5FUivDf4de+yxR9KOt/l9fP7zn4/2r3/962j7tO9cXEp34eO0eF7MVVbOpZnzOOA4Vx8PW3Y+/P74PPLx8dwMpPFcXI7A7y9XHqUzkQdICCGEEJVDD0BCCCGEqBwNsxiqT7Njl92vfvWrZBu77ThN1i8IyPtg26cBcvogS2C+iuyFF14Y7WuuuabVfYvV4f7KLeDH14aXqNjNyrKLT5fn72IpxKfH545DpJKCl6XYRe/T1lnO4tTpV155JWnHrnYuSeAXp+QUfJZQfHo79/sLL7wQbT82eVHWRpXAli9fHqswexmJf89zzz0XbV6QFEiv9ylTpkR7xIgRSTuuCswLlALAwIEDo/2b3/wm2lwhGkjT27lfHnnkkaQdj+FRo0ZF28vYXGmc5+Pbb789abfzzjtH+9xzz022sRTL14a//3gptRHwZSdyVZiZMqkMKJ8X/fioN3yD76G8b1+KhqWyXPgLl7PpSnTnFkIIIUTl0AOQEEIIISpHw6wGmHO93XfffcnrssrNHna/cZS5l0NYfmObK8oC3bdgW7PDfeSlTnaLsjvWS1ScXcDSSk4qy2V4lFWMFjX4vHKmEACMGzcu2lxxGEj7jTO/WKoGUhnt5ZdfjrbP0uEqw1xZ2svdPH/wgpc+Oyq3OGqjsOGGG2KnnXYCsPrv5GufKyPzgqRAeg6GDRsW7UsvvTRpt/fee0fbn5s77rgj2izL+KrLLHvxgrW//e1vk3bHHHNMq9/lqwCzLPfmm29G++ijj07a8bV2yy23JNv22muvaLdU1QZWr6zNMlqj4DPauM8Zn3HF7erNdvPzMd9bc/dk3sb78PP22LFjo83V2/287SvFdxXyAAkhhBCicugBSAghhBCVQw9AQgghhKgcTRED5CtjcluOL/Hp7ax7suboq9fy/nIaqF9htwzWRJUin+LPIZ9jPlc+zbl///7R5hWxvZbM+/jwww9Lj6Pe1NKqcvPNN0fbp8HzOffn+PHHH482VzH27TiOhMtL/P73v0/acYo0x+D5tNnDDjss2lwp/o033kjacRxRoxJCiDFqPr2dYzseeOCBaE+bNi1pt+2220ab43K23377pJ1PaWd4bB5yyCHR9jFhHB/Ec+vuu++etON4EI5t8nEjHPfF8ztXtAbSqt4+BoiP6dhjj422jyPyKeeNgI/74vPDfdKrV6+kHZcP8P3K6el8f/KxQWUxmbnK0nzP9MfeEssGpNeNj1HqrvlYd2chhBBCVA49AAkhhBCicnSrBFbvwqicCgmkUhe70nzaelkFUC9L8XGUVcwEUheeZK76KXPhAmlfcqkC7xJll/5WW20VbS+tsMTG/eelN6XB5+HqzF4C48VR+/Xrl2x75plnos197SvEsizD6by+n9ilzmPTu+45lZ6rSXsZhmWTRmXFihVxzuOUcCCda7i0gP+d/Lnrr78+2j6coHfv3tH2FZm5gjSPJU4xB9JUcu6vs846K2nHEmZukVOWpebNmxft+++/P2nHC576itmcVs1ztZfRGnExVB4bQHrd87w4dOjQpN2WW24ZbR9CwHJZrjJ22X3N3+PK5DE/r/L8wFXYffma3D7qDT1pD7pzCyGEEKJy6AFICCGEEJWjKSQwL3OUufN8FljZd3n4u3PHwbIAZ6H4ipwihSWwXNYB96XP8tl0002jzRKYd5eWXVNeUuO+FKvD58dn2rHszAuPAqlUkhtzPFa5Xa5SeG5scuYQyxw+Y8lLA43IuuuuGyUsv1gnV1AeM2ZMtFkiBoC5c+e2um3w4MFJO5aYfHbswQcfHG2+Brz0whV+WVLzchvvg+Wa+fPnJ+14Hyxn+mrBLNFxVWwAOOKII6LNC6PydQIAX/jCF9Bo+Ouc5zje5qurl1VnBtLxlgvfyK2swJQtLu7v1dzPfH1xpiaQyn4LFy5MtnVm5qY8QEIIIYSoHHoAEkIIIUTl0AOQEEIIISpHw1SCzsFVgIFUP2T90WunHD/Ato8H4c/lYg5Yi2XdWzFAefic+pidsgqgPlbDxy604NOEOT6lrPopUL/WXVVYh99nn32SbZyWOnPmzGQb929ubDJl4xRI+41tX6KCv5dTrDn1GkhjFHy8gi+j0Z20xFj4KslTp06NNqf0++ub42W4ErIfR48++mi0fSo9v+bj+OUvf5m04+uhT58+0fZjePz48dHm+KXLL788aTd79uxof+1rX4v2yJEjk3aXXXZZtH2pFL5HcBwVVyYGVo8RawR8LCv3Lc9bvgQFz6W5ciM8Vvw4KvveXBo8274SNN8bhw0bFm2uEg+kJRiWLFmSbFMMkBBCCCFEB6IHICGEEEJUjoZJg/ewq8+71crSm73bL5cGXc/3evcgHy+7XHfYYYe69i1Wl564X9jN7t3AfhHHFjhlFkjd7j5NVOTh0gN8Hv045RRrn1bcHnISGMMueV8dlqUMni94kVQAmDRpUrS9RNMoEtj6668f0799dWaWEXi8+BRxTgM/8MADo82VugFg7733jrYfY1wKgb/Ly2ic7s7n1Mt3XOGZq4nvtttuSTtOneZ9v/rqq0k7nne9BMjXA98HfFVz/q5GgSviA+nx8zn1oSEsifp9lFVu9tJW2XflFgbnfeQqPPN140MheB++BEpnIg+QEEIIISqHHoCEEEIIUTm6VQLLZYZwNk+uejC7Putd2C7Xjrd59yB/l5flRDnsLvVSZFl1UC+BlckTXuZiFzy7Y3MuV1GDJQp2r8+ZMydpx33oM1G4MjRXbPeUVV+vN9vEZ3BxhWQ+hr59+ybt2K3/3HPPJdu46nB3snz58njOb7zxxmQbV3Xm6uicfQUAEyZMiDZLlj7Ti2UlX3V63Lhx0WbpjLPsgNVlpRZ8Ng8vWMvSE2d9AelY53bTp09P2s2YMSPaPhuUrw+eS/xiuI899lirx96d+LmPxwdX0/YLu/L58dIp37ty993ccTA8t/L87r/XV3xu7Xg8HSGr14vuAkIIIYSoHHoAEkIIIUTl0AOQEEIIISpHw1aCzlWRLUtVz8UKMblK0DmtlGMQePVakYcrMvs+4VRbPt8c3wCUVyzNxaBwHID/3py+XVU4tuP111+Ptk+P5mq6t9xyS7KNY7p4nObiDridjw3gz3Gqty89wcfE146PSeB4hXpjBruaddZZJ/4GjsMB0thITiX3K7nvtdderW7j8Qak6eK+tABX0eZYO18+gOFz79Pbed71lZsZTn3n1ep9ivXAgQOj7eOSOA2c0699Cr9fRb4R8OUDGD4Hvs95W25+47nU3wt5THC73CoLjB9vZfvLxYLmrq+ORh4gIYQQQlQOPQAJIYQQonI0rA7ALjHvzmM3cL0pfUy9n8m5yH3aZb2fqzpDhgxJXnN6OpcWKKv87PHVUDmllvvZX0OSMFeH0+BZ8mBJAkj7ybu8cxWkmVwaLMNuc/7MaaedlrQ78sgjo/25z30u2iyTeOqtDt/VrFy5MkpTPo2fx8u9994b7T322CNpN3bs2GhzivzDDz+ctONSBV4e4zR2XlDVLzD72muvRZvDBDhlH0jlMZZYvZTDv5GvQ59SzfKVL7nAi20eeuih0eY0ciCV2BoFX+KBpUnexqUfgPormddbeb2sVEVuH15G5WuIx7Lvc5Ys+f7e2cgDJIQQQojKoQcgIYQQQlQOPQAJIYQQonI0bAwQ4/VCXi22PUsaeN2TtUlOJfRpl/xdvvQ80564pJ4Ml9v36aq8mjunOe+zzz517dvHeHCfsZbs4wcaUfvvbjiOgs+r1+S5n/x5rXeJi6222iraCxcujHZuaRMecz/+8Y+Tdt/97nejPXLkyGjvuOOOSTuOm+nKVafbwoYbbohdd90VwOrxIBzL9jd/8zfR9nMVL/PBpSJ82Qg+V7fddluyjeOPOA7Mxz8OHz482rx0hV9+hq8jjt3zx8TfxXOzvzY4joivJwAYNmxYtHmJD7+i/IknnohGw9+fOHaK4618n3MMkF+ehMdfWUkRII2zK1tBvrXXLfh+4DIL3Cf1rnjf2cgDJIQQQojKoQcgIYQQQlSOppDA2EXuyVUZLqPe1D/vtmf3M39vW/ZfRThd1afBb7PNNtF+5ZVXoj1q1Ki69j1ixIjk9RZbbBFtlnS8u/jwww+va/9VgtPb2XXtV/Vm6chLkOyiZ6nMn39OR37vvfei7SVS/m4ef96FXpYS7Vey53T5etOGu5qNNtoortruV2/vTE455ZQu+y5RPyyBsUTlq6FPmjQp2l7e5TASLneGJMwAAAdSSURBVP/gxyVTbyhHrsIzz+kHHnhgtH1ZEv6cL1XQmcgDJIQQQojKoQcgIYQQQlSObpXA6nWxcWYBsHoFzBb8Imr8miPLfZR52cJxvsptzl3IKAsshWUHtjsCdqsCwOTJk6Ody3YQq8Nucq72y5l6ADBgwIBoT5gwoXR/zz77bLS9jM1SFy+aedRRRyXteMzlFtrkbC/+zHHHHZe04+MYPXp06bEL0V34asrz58+PNktgPpyAZX1f8ZvvZbwPX5G9bPHSXLY1b/PSG2fz8oLFPrOUZfDFixeXfldHIw+QEEIIISqHHoCEEEIIUTn0ACSEEEKIytEUMUB+xW+uPsvp6D5WgVNluaKq11hZ92Q9k9N4gVS3zK0GL1I4rdGnL9cLn3uO2fLxW2VxPz5+i9MufaXxqsLxVFdeeWW0/Xi54oor6tofVxlmO4df1bw98DXg5w6eI3jVeCEaBR8nydXLOWbHV10+88wzW7UbkaOPPjp5zfPz8ccf32XHIQ+QEEIIISqHHoCEEEIIUTmsLVWLzewdAPPX2FB0JINCCH3X3KxtqC+7DfVnz0F92bPo8P5UX3YbdfVlmx6AhBBCCCF6ApLAhBBCCFE59AAkhBBCiMrRdA9AZvaJmU03s9lm9qyZ/aOZNd3vqBpmtmXRb9PN7C0ze4Nety83XjQ0ZraNmd1oZnPN7Ckzu8PMdm7jPjY3s2901jGK+qG591kze9rM9lnzp0SjoXG5iqaLATKzZSGETQp7KwATAEwJIfxP1269EMLHre1DdC9m9r8ALAsh/NC9b6hdkytb/WDHH4eukU6i6MtHAfx7COGa4r2RADYLITyc/XC6n8EAbgshDO+M4xT14+bewwH8cwjhwDV8TDQQGpcpTe05CSEsAnAGgG9ajdPMbKKZ3Q/gPgAws/PM7Ekzm2Fm/7t479Nmdnvxl8wsMzuxeP8HZvZc0faHpV8sOgwz27E4578FMBtAPzP7ipnNLPrmX4p265nZ+/S5L5rZtWTPKvrzAWr/IzN7oujPvy/eP8zMJpvZbQBmdvkPrg4HA1jRMskCQAjhWQCPmNkVRX/NpLG3iZndV3gWZprZMcXHfgBgh8LzUF8FRtEVbAZgCZDtO5jZRWY2x8weMbPfmdk/ddsRC0DjMqFbK0F3BCGEV8xsXQAtZTE/A2BECOE9MxsHYCcAYwEYgIlmdgCAvgAWhhC+AABm1svMtgRwLIChIYRgZpt3+Y+pLkMBnBJCmGZmAwBcCmAMgKUA7jWzIwHclfn8/wRwUAjhbeq3MwAsCiGMNbMNADxmZpOKbWMA7BpCeK1Tfo0AgOEAnmrl/eMAjAIwEkAfAE+a2UMA3gFwbAjhT2bWB7X+mgjgAgDDQwijuui4RTkbmdl0ABsC6AfgkOL95Wi978YAOB61vl4fwNNo/ZoQXYfGJdHUHqAS7gkhvFfY44p/z6A2+Iai9kA0E8DnzOxyM9s/hLAUtZvtcgC/MrPjAPy56w+9sswNIUwr7L0A3B9CWBxCWIGaxHnAGj4/BcD1hZen5ZoeB+CrxYT9OIDNUet7AJiqh59uYz8AvwshfBJCeBvAgwD2RO0PlH8xsxkA7gXQH8DW3XeYohU+CiGMCiEMBTAetTFnKO+7fQH8MYSwPITwAYBbu+vAxRqp5Lhseg+QmW0P4BMAi4q3PuTNAC4LIfy8lc99BsARAC41s/tCCBeb2VgAhwI4AcA3seovHNG5fLjmJliJWn+2sCHZX0PtwelIAE+b2R5F22+EEO7jnZjZYXV+n1g7ZqM2jurly6h5ZkeHEFaY2TykfSwaiBDC1MIj0Be1eVR91xxoXBJN7QEys74ArgHwr6H1aO67AZxuZi2Be/3NbCsz2xbAn0MIvwFwBYDPFG16hRDuAHAuaq5A0fU8DuBgq2WNrQfgiwAeLAKjl5jZTlbL+juWPrN9COExABehFpfQH7W+/0axD5jZLma2UZf+kmpzP4ANzOyMljfMbASA9wGcaGbrFuP3AABPAOiFmmS5wswOBjCo+NgHADbt2kMXa8LMhgJYF8C7KO+7KQCOMrMNi/n1yNb3JroQjUuiGT1ALTr0+gA+BnADgB+11jCEMMnMhgGYWvPUYhmArwDYEcAVZrYSwAoAZ6LWmX80sw1R8x58u7N/iFidEMICM7sIwGTU+uHWEMLtxebzUXuwWYSajt2yjPuPzWxI0X5SCGGWmT0PYCCA6UXfLwIQgzNF51LE0R0L4EozOx81eXkegHMAbALgWQABwHdCCG9ZLQj+VjObCWAagBeK/bxrZlPMbBaAO0MI53XDzxE1WuZeoDbWTg0hfJLpuyeLeJEZAN5GLfRgaTcctyjQuExpujR4IYQQzYGZbRJCWGZmGwN4CMAZIYSnu/u4hACa0wMkhBCiOfiFme2KWtzIv+vhRzQS8gAJIYQQonI0dRC0EEIIIUR70AOQEEIIISqHHoCEEEIIUTn0ACSEEEKIyqEHICGEEEJUDj0ACSGEEKJy/H/4B+F2RTSX5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,10))\n", + "for i in range(25):\n", + " plt.subplot(5,5,i+1)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " plt.grid(False)\n", + " plt.imshow(train_images[i], cmap=plt.cm.binary)\n", + " plt.xlabel(class_names[train_labels[i]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Build the model" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "#Setup the layers\n", + "model = keras.Sequential([\n", + " keras.layers.Flatten(input_shape=(28, 28)),\n", + " keras.layers.Dense(128, activation=tf.nn.relu),\n", + " keras.layers.Dense(10, activation=tf.nn.softmax)\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "#Compile the model\n", + "model.compile(optimizer=tf.train.AdamOptimizer(), \n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train the model" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "60000/60000 [==============================] - 4s 67us/step - loss: 0.4984 - acc: 0.8252\n", + "Epoch 2/5\n", + "60000/60000 [==============================] - 4s 68us/step - loss: 0.3727 - acc: 0.8663\n", + "Epoch 3/5\n", + "60000/60000 [==============================] - 4s 66us/step - loss: 0.3332 - acc: 0.8800\n", + "Epoch 4/5\n", + "60000/60000 [==============================] - 4s 70us/step - loss: 0.3124 - acc: 0.8858\n", + "Epoch 5/5\n", + "60000/60000 [==============================] - 4s 61us/step - loss: 0.2943 - acc: 0.8911\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.fit(train_images, train_labels, epochs=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10000/10000 [==============================] - 0s 37us/step\n", + "('Test accuracy:', 0.8824)\n" + ] + } + ], + "source": [ + "test_loss, test_acc = model.evaluate(test_images, test_labels)\n", + "\n", + "print('Test accuracy:', test_acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Make Prediction" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "predictions = model.predict(test_images)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([5.26537497e-06, 1.08125164e-07, 6.97463349e-07, 1.97318091e-08,\n", + " 7.95599647e-07, 7.19667505e-03, 3.13686314e-06, 2.96064708e-02,\n", + " 8.49939242e-05, 9.63101923e-01], dtype=float32)" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argmax(predictions[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_labels[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prediction & Prediction array tests" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_image(i, predictions_array, true_label, img):\n", + " predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]\n", + " plt.grid(False)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " \n", + " plt.imshow(img, cmap=plt.cm.binary)\n", + "\n", + " predicted_label = np.argmax(predictions_array)\n", + " if predicted_label == true_label:\n", + " color = 'blue'\n", + " else:\n", + " color = 'red'\n", + " \n", + " plt.xlabel(\"{} {:2.0f}% ({})\".format(class_names[predicted_label],\n", + " 100*np.max(predictions_array),\n", + " class_names[true_label]),\n", + " color=color)\n", + "\n", + "def plot_value_array(i, predictions_array, true_label):\n", + " predictions_array, true_label = predictions_array[i], true_label[i]\n", + " plt.grid(False)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " thisplot = plt.bar(range(10), predictions_array, color=\"#777777\")\n", + " plt.ylim([0, 1]) \n", + " predicted_label = np.argmax(predictions_array)\n", + " \n", + " thisplot[predicted_label].set_color('red')\n", + " thisplot[true_label].set_color('blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAC9CAYAAACEXQdzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADvdJREFUeJzt3W2MHdV9x/Hv3zbgR8A2D+HRq6a2SCIbUxyrTSBNA0IFKghNUuqiqIiob1BLWzWAXxT3IWpKkypRKhU5SaEthJCqrlGI2sYGmoB5MtgUP/FgVGGjYGywAa8xxoB9+mJmzXrnzHIv62UP3u9Hsrz3f8+dOXMt//bcOWfmRkoJSdLIGzPSHZAkVQxkSSqEgSxJhTCQJakQBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiHGjXQHpJF23HHHpZ6enpHuhg5Tq1ev3p5SOr6TtgayRr2enh5WrVo10t3QYSoiNnfa1lMWklQIA1mSCmEgS1IhDGRJKkRXk3rORms4bdq0ie3bt8dI90MC+MhHYNu2ztufeCJs3Tq0fXYVyM5GazjNmzdvpLsgHdBNGL+f9jmespCkQhjIklQIA1mSCmEgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgphIEtSIQxkSSqEgSxJhTCQJakQBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiEMZEkqhIEsSYUwkCWpEAayJBXCQJakQhjIklQIA1mSCmEgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgoxbqQ7oENn3759jdqYMfnfuRHR8Xb37t3bqB111FHZts8++2yjNnPmzI73JY1mjpAlqRAGsiQVwkCWpEIYyJJUCANZkgrhKotDJKXUUQ3yKx9eeOGFbNuHH364UbvwwguzbSdNmjRYF9+3thUVOUuXLm3Urr/++kPZHemw5QhZkgphIEtSIQxkSSqEgSxJhXBSbxi1Xbacs2LFimx95cqVjdqWLVuyba+55pqO99eNl156qVFbtmxZtu2UKVOGpQ/SaOAIWZIKYSBLUiEMZEkqhIEsSYUwkCWpEK6yOERyN4cfNy7/9j722GON2lNPPZVte+KJJzZquZvAA1x22WWN2tSpU7Nt33zzzUZtxowZ2bY7duxo1Hp7e7NtTznllGxd0ntzhCxJhTCQJakQBrIkFcJAlqRCOKn3Puzfv79Ry03g7d69O/v6JUuWNGpt9xzOTb7t2rUr27abezLn6hs2bMi2PfXUUxu1tsnC3OSmpM44QpakQhjIklQIA1mSCmEgS1IhDGRJKsSHbpVFbnVARGTb5lZDtLXN1dtWDIwdO3awLh6wePHibD13OfT48eOzbTdv3tyo5VZetG33nXfeybbNHW/bt1bnVoDs3Lkz23bv3r2NWttqk+H6lmzpw8oRsiQVwkCWpEIYyJJUCANZkgpRxKReNxN1bfWcbr71OTeB1+nkHcAdd9zRqG3dujXb9qyzzmrU2ibfXnvttUZt2rRp2bbTp09v1LZv355t+/rrr3fch5y2S7LfeOONRq3t/s1z587teH/SaOAIWZIKYSBLUiEMZEkqhIEsSYUoYlKvm4m63NV3uRrkJ+Xa9tXNBN4tt9zSqG3cuLFRO+2007Kvz31paNsk2Z49exq1ti8Szd0nue14J06c2Ki1XQHYzaRrzrJly7J1J/WkgzlClqRCGMiSVAgDWZIKYSBLUiEMZEkqxLCtsmhb+ZCTm7FvW3WQuxy6m0uk22zZsqVRW7p0abZtbuXDzJkzG7Xc5cmQv2dwbuUFwBFHHNGota1wyF223Cb3nrV983Wubdu9jHN9e/DBBzvulzSaOUKWpEIYyJJUCANZkgphIEtSIbqe1Bt43+C2S46HOtHWzaW5L7/8cra+adOmRu2ZZ57Jtn3xxRcbtSOPPDLb9uijj27Ucvct7u3tzb7+7bffbtRyE32Qf39zxwX5+xkfe+yx2ba5Y2v7UtfcBOuECROybXPbmDx5crbt+vXrD3qcmyyVRhNHyJJUCANZkgphIEtSIQxkSSqEgSxJheh6lUWnN3Lftm1bo7Z58+Zs2927d3dUg/xM/HPPPZdtm7uUeNy4/CFPmTKlUWu7/Hvnzp0d9attX7l+ta1ayF3O/NZbb2XbnnTSSY1a20qPXB+mTp2abZu7BPyVV17Jts2tqGj79u2B22hb5SGNFo6QJakQBrIkFcJAlqRCGMiSVIgh3w/5nnvuydZz9xdum+TKXfrcNsGTm1TsZqKu7R7FuYmntnsy5y5zzk2ItU0K5vrQdry5+w63XYqcu0y67bLybuSOre3S+NzkZtskZNu/mzRaOUKWpEIYyJJUCANZkgphIEtSIQxkSSpEV9Pcvb29LF++/KDazTffnG17xhlnNGq5S3uhu8uWh3pj9dy+IL8SoG0lwa5duzraV9sN13M33287htzqj9xl6QBPPvlko9a2wqGby5RzqzraLm0fP358R68HOOGEEw56nPuGbWk0cYQsSYUwkCWpEAayJBXCQJakQnQ1qTdp0iTmz59/UO2RRx7Jtl23bl2j9sADD3S8r7YJntyk3LRp07Jtc/Vjjjkm2zY3+dV26fSOHTsatdy3WefuOQz5exS3fcv2mjVrGrU5c+Zk2/b09DRqd999d7Zt7vLvbr4pvO2y55NPPrlRy31LNzQnR70fskY7R8iSVAgDWZIKYSBLUiEMZEkqhIEsSYXoapXF2LFjGzdBX7RoUcevb7s5/MqVKxu13KoFgIceeqhR27RpU7bt2rVrG7W2S35zKyraVj7kViPkVnTMnj07+/rzzz+/UbvooouybXOXInfjkksuydaff/75Rm369OnZtrlVEm2XoOdWX+S+ORtg1qxZBz0e6rFKH3aOkCWpEAayJBXCQJakQhjIklSID/Rrf9vui3veeed1VAO4+uqrD2mfDnd33XXXSHehY91cui0djvwfIEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgphIEtSIQxkSSqEgSxJhTCQJakQBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiEMZEkqhIEsSYUwkCWpEAayJBXCQJakQhjIklQIA1mSCmEgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgphIEtSIQxkSSrEuG4ar169entEbB6uzmjUmzHSHVC5Fi5c2HHbG2+8cRh7Mny6CuSU0vHD1RFJGu08ZSFJhTCQJakQXZ2ykKQ+o+Gc7gctUkpD30jweeBO4GMp8XQH7TcB81Ji+4D66ykxuYv9dtV+kO1cCSxPiS2Z584EFgOTgU3AFSnRWz83B/gucDSwH/gkkIAfA6cCN6XETXXb7wGLU+Lxlj58HpiTEn/dr/YE8HRK/G6HxzAvJf5wQP0vgddT4u/faxvvp/0g2+kBPpUSP6wfzwb+LCWuHMp2h0NEvAw4Wa3hMqPT+bdDNUJeADxQ//0Xh2ibH6QrgfXQDGTgn4CvpsR9EVwFXAvcEME44AfAl1NiTQTTgbeBi6nei68DDwI31aE+ti2Ma9cBl/Q9iOBjwFjg3AgmpcTuoR7kB6wH+D2oAjkl1kVwagSnp8TzI9qzAZysVimGfA45gsnAOcBX4N2RXASfjeDnESyJ4OkIbo8gBrx2QgT/HcEfZLZ7bQSPRbA2gr8aZP/fjmBDBPdGcHxdmxvBI/Vr74xgals9gi8C84DbI3giggkDdjELuL/++W7gC/XPFwBrU2INQErsSIl9VKE8ETgCDhzv14AbBjmGWcDeAZ8YFgC3AcuBS/u1/XkEfxfBoxFsjODczPYujuDhCI4bUP9oBD+NYHUEKyI4o6VLZ9avf7bv3yaCiOCbEayPYF0Elw9WB26k+mXyRAR/Wtd+Au892pdGq0MxqXcp8NOU2AjsiODsfs+dBfwJ8HHgl4BP93tuMtV/0DtS4vv9NxjBBcBMYD4wFzg7gs9k9j0JWJUSnwDu493R+a3A9SkxB1g3WD0llgCrqE5FzE2JPQP2sYF3A/FLwGn1z7OAFMGyCB6P4Lq6fjfV6PAR4B8iuAR4PHc6pJ9PQ2P0fDnwI+AOqnDub1xKzKd6bw/6RBLBZcBC4KKBp4SA7wF/lBJnA1+F6nRKxhzgc8CvAYsiOBn4bap/izOB84FvRnDSIPWFwIr6Pf12vd1V0PwFIqlyKE5ZLAC+U//8o/rx6vrxoynxCzhwPrSH6uM8VOdZv5ESt2e2eUH953/rx5OpAvr+Ae32A/9W//wDYGkExwDHpsR9df1fgX9vq3dwfFdRBesNwF3AW3V9HNUng08CbwD3RrA6Je6l+qhOBEcAy4BLI/gWcDpwa0rcNWAfJwEv9z2IYB6wPSWej+AF4JYIpqXEK3WTpfXfq6ne0z6foxrtX9B3nrvfNicDn6rfiz5HtRzzj+tfTHsi+BnVL8ZzqH557gO2RXBffext9d7Mdl8CTm7ZpzTqDSmQI5hGFQKzI0hU5zxTBNfWTfb2a75vwP4eBH4zgh+mxMCZxQD+NiW+22WXhj5DOXCD1STlBXDg1MLF9VO/AO7vG4VG8F/ArwD39nv51VSj8l8FdlKNev8HGoG8Bzim3+MFwBn15CdUk4ZfgAOfJPre14Hv6f9RfRKZRTUa7W8M8FpKzH2vY6b5Ph6q93U8ND6BSKoN9ZTFF4HbUmJGSvSkxGnAc3T2sXQR8Crwj5nnlgFX1aM6IjglghMy7cbUfYBqVPpASuwEXu13bvXLwH1t9frnXcCUXCf79hvBGODPqVZc9PVxdgQT6wm+Xwee7Pe6qcBvUQXyRKrRfILGOWqAp4Bf7ref3wFm1+9pD9Upk4GnLXI2UwX3rRF8ov8T9Yj5uQi+VO8n6snGnEsjGF9PVH4WeAxYAVwewdj6XP1ngEcHqefe01lUk6eSMoYayAuolrv19x90Fh4AfwxMiOAb/YspsZxqdv7hCNYBS8gH5m5gfgTrqUbqfUvGfp/qXOZaqvOb71X/F2Bxy6Teggg2Ak9TrcL457qPrwLfogqrJ6jOE/9nv9ctAv4mJfZThfe5VOetb8scx/3AWfWk57nACwPOOd8PfLw+NzuoekR/BdWpiY8OePoK4CsRrOHgc+MDrQV+RnUe/Gt1X+6s62uoRvnXpcTWQeprgX0RrOk3qfcbcNB7JKmfQ7IOWUMXwXeAn6TEPSPdl+EQwVFUn0jOSYl3Rro/Uom8dLocX6c6tXG4Oh1YaBhL7RwhS1IhHCFLUiEMZEkqhIEsSYUwkCWpEAayJBXi/wGpGvEUOeN0TgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Predictions & prediction array for the 0th\n", + "\n", + "i = 0\n", + "plt.figure(figsize=(6,3))\n", + "plt.subplot(1,2,1)\n", + "plot_image(i, predictions, test_labels, test_images)\n", + "plt.subplot(1,2,2)\n", + "plot_value_array(i, predictions, test_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAC9CAYAAACEXQdzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADXBJREFUeJzt3X+QVeV9x/H3lwX5IVghIEujsNFGMDpMp0FH/jDYH0Sbmlon9kcax2qmY36MTTttEu00U+tUrPkjNuoMmVgn2BhamdrooHXaNJkxsS0YfmiAVgWmVcNQga2CAivC7tM/7gGXPc+Fe9nduY/u+zVzZ3e/+z3nPucy89nDfc5zT6SUkCR13rhOD0CS1GAgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgoxvtMDkDpt5syZqaenp9PD0HvUhg0belNKs1rpNZA15vX09LB+/fpOD0PvURHxcqu9vmUhSYUwkCWpEAayJBXCQJakQrQ1qedstEbTSy+9RG9vb3R6HFKntBXIzkZrNC1atKjTQ5A6yrcsJKkQBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiEMZEkqhIEsSYUwkCWpEAayJBXCQJakQhjIklQIA1mSCmEgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgphIEtSIQxkSSqEgSxJhTCQJakQBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiEMZEkqhIEsSYUwkCWpEAayJBXCQJakQhjIklQIA1mSCmEgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgphIEtSIcZ3egAlW758eba+ZcuWlntblVLK1iNiWPuV9O7hGbIkFcJAlqRCGMiSVAgDWZIKYSBLUiGGfZVFX19ftj558uRh7eO000475TEd1dXV1XLvE088Uavt3Lkz23vWWWfVatdff32ttmzZsuz255xzTq3WztUU/f39Lfe28xpI6izPkCWpEAayJBXCQJakQhjIklSIYU/q5SazAG6++eZabcmSJdnediYAR0tu6fMll1yS7c1NOJ599tm12qpVq7Lb5yYFr7nmmmzvtGnTarVmE3W5yb5mS7KHyyXd0sjzDFmSCmEgS1IhDGRJKoSBLEmFMJAlqRBtXWUxMDDAgQMHjqvt2LEj27t69epa7eDBg9neiy66qFabMWNGtnfKlCnZceW88sortdqKFSuyvd3d3bXazJkzs72PP/54rXb11VfXanv37s1u/+STT9ZqL7zwQrb33HPPrdWWLl2a7Z03b162Ply5qzeavebjxtX/xrt8W2qNZ8iSVAgDWZIKYSBLUiEMZEmnprsbIlp7ZOZoVNfWpF5fX1/2jss5Qyf/AFauXJntXbhwYa3W7POQc/Xt27dnezdv3lyrvf3229neyy67rFbbuHFjtveKK66o1XKTjc2O4corr6zVdu/ene3dunVrrbZmzZps7wUXXFCrXXjhhdneRYsW1WqzZs3K9uYm5ZyoE7t2jU7vGOYZsiQVwkCWpEIYyJJUCANZkgrR1qRef39/bfXZa6+9lt/x+Pqu9+3bl+199NFHa7Xp06dnew8fPlyr5T4zGGDx4sW12vnnn5/tza0wy60gBOjt7a3VcqsQm602zL1muUlBgLlz57ZUA3jjjTdqtaeffjrbu27dupbHcOaZZ9ZqzVYF5j7recGCBdneiRMnZuvSWOUZsiQVwkCWpEIYyJJUCANZkgphIEtSIdq6ymLcuHGcfvrpx9VyS3sBbrzxxlqtp6cn25u76uCtt97K9uZm/CdNmpTtze1j06ZN2d6cqVOnZuu5qxFyS7JfffXV7Pa5JdVnnHFGtje339zVFJD//OZmV3rkNHvNc8u6d+7cme3NvTZ33HFHtve666477udmnx8tjRWeIUtSIQxkSSqEgSxJhTCQJakQbU3q7d27t3bz0jlz5mR7c5M+zSajcjfybLY8+MiRIy09F8ChQ4dqtdwNO5tpNsmUWwI+YcKEWi23jBjam9TLabbEefbs2bVas+PNTRY2mxzN1Zv9W+b+LSIi23v33Xcf9/MuPzNXY5xnyJJUCANZkgphIEtSIQxkSSqEgSxJhWjrKotDhw7V7vB83nnnZXtzH+7e7I7VO3bsqNXaWZo7MDCQ7c1p1pu76qDZHapzVw3kPmx9z5492e1zvZMnT8725q7eaCb3wfnNjvfNN9+s1ZpdVZLrbbasPLf8etu2bdneoc/X7PWWxgrPkCWpEAayJBXCQJakQhjIklSItj8Peeik2tq1a7O97SzNzfXm7uIM+SXGuc8BBti/f3+t1s7S6a6urmw9d0ftXC13J2vIL51uJjep12xCLfe5xc1ex9zS52afh5y703fueCG/tL3Zfm+//fbjfr7tttuyfdJY4RmyJBXCQJakQhjIklQIA1mSCmEgS1Ih2rrKYu7cudx33321Wk7ubse5pb2Qv8qi2ZUIuasGcnetBpg2bVqtlrsKAPJXRDS7kiC3HLmvr69Wa/bB7Llja7ZsuJ1xtdOb+/fJ3dEb8lfHNLub9fz582u1pUuXZnuHuvfee1vqk96rPEOWpEIYyJJUCANZkgphIEtSIdqa1Ovq6mL69OnH1e68884RHZAkjVWeIUtSIQxkSSqEgSxJhTCQJakQBrIkFaKtqywk6d3m1ltvbbn3rrvuGsWRnJxnyJJUCANZkgphIEtSIQxkSSqEgSxJhTCQJakQBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiEMZEnvCt3dENHao7u706M9NQaypHeFXbtGp7ckBrIkFcJAlqRCGMiSVAgDWZIKYSBLUiEMZEkqhIEsSYUwkCWpEAayJBXCQJakQhjIklQIA1mSCmEgS1IhDGRJKoSBLEmFMJAlqRAGsiQVwkCWpEIYyJJUCANZkgphIEtSIQxkSSqEgSxJhTCQJakQ49tp3rBhQ29EvDxag9GYN6/TA5A6qa1ATinNGq2BSNJY51sWklQIA1mSCmEgS1IhIqXU4RHEnwG/C/QDA8BnSOmZEdjvU8AXSWl92z0RDwJLgH1V5QZSem7Q7y8G1gC/Q0qPEDEf+DtgQjX+NUSMB/4Z+HVSOtjk+b8OfJeUfkTEVcBf0vgjOQG4h5S+2d5Bn0TEflKaOoztvw/8Jim9PnKD6ryI2AM4Wa3RMq/V+be2JvVGXMRi4CrgF0jpEBEzgdM6OqZ3fImUHqlVI7qArwLfG1T9DPCHwEvAPcAngM8B3zlBGL8PuJSU/oiICcD9wCWktIOIiUDPiB3JcEUEEMBDwOeBZZ0d0Mhyslql6PRbFnOAXlI6BEBKvaS0E4CIPydiHRFbiLi/CoXGWW3EV4n4MRFbibisqk8m4mEinifiUWDysWeJ+AYR64n4TyJuH+aY/wD4R2D3oNphYEr1OEzEmcDHgW+fYD+foHEGDTCNxh/H/wMgpUOk9GI19geJuJeI/yDiv4m4dtBxfal6jTYdd1wRjxGxoTrem2rPHDGTiDVE/FrT/UT0EPEiEd8GtgDnAKuBT7bwGkk6FSmlzj1gaoLnEmxNsDzBkkG/mzHo+4cSfLz6/qkEX6u+/1iC71ff/3GCb1XfL0xwJMGi4/YFXdX2Cwfta1FmXA8meDHBpgR/nWBiVX9/gh8mGFf1XFvV51b7WlM999cSXH6SY//bY8fU+PmBBLsT/H2CTyUYN2gs/1A954cSbK/qH01wf4KofvdEgo8MOd7JCbYkeF/18/4EsxM8k2DpCfcDPQkGElw6ZNzbju3Phw8fI/ro7BlySvuBDwM3AXuAVUTcUP32F4l4hojNwC8BFw7a8rvV1w2881/7jwDfqfa7Cdg0qP+3iNgIPFvt50MnGdmfAguAi4EZwC1V/evALaQ0MOQ4XiGly0lpMXAQOBt4noiHiFhFxPmZ55hTHfPRffw+8MvAj4EvAt8a1PsYKQ2Q0n8Bs6vaR6vHs8DGarwfrH73BSJ+AqylcWZ7tD4B+AHwZVL61xb28zIprR0y7t3Az2aOR9IwdfY9ZICU+oGngKeq8P09Ih4GlgOLSOmnRPwFMGnQVoeqr/2c7BgiPkAj4C4mpderCbtJJ9wmpf899jwRK6rtARYBD9N492Qm8DEijpDSY4O2XgZ8BfgC8ACN95XvBD415Fn6auNIaTOwmYiHgP8Bbjg2jkFHNOjrXzF04i/icuBXgMWkdLCauDz6PEdo/BG7AvjhSfbTAxygblI1dkkjrLNnyBHzifjgoMrP05jtPhogvURMBa6tbVv3IxpXa0DERcDCqn4GjWDZR8Rs4FdbGNec6msAv0HjPVRI6QOk1ENKPcAjwOePC+OIJcBOUtpG4/3kgeoxJfMszwM/V203tQrSo46+DifyL8Cnq9cHIt5PxFnAzwCvV2G8ALh00DYJ+DSwgIhbTrKfusbr0U3jj4ykEdbpM+SpwH3VJNgRYDtwEyntJeJvaAThq8C6Fvb1DWAFEc/TCLsNAKT0EyKeBV4Afgr8ewv7WknELBpnj88Bnz3pFo2w+grw21XlfmAljdf4c5kt/onG1RkPVM/zZSK+SePs8wDvnB3npfQ9Ii4A1lRn7PuB62hMFH62eh1epPG2xeDt+on4JLCaiDdJaXmT/fRnnvXDwFpSOnLCsUk6JZ2/Dnksi/g34CpS2tvpobQk4h5gNSn9oNNDkd6LOn3Z21j3J8DcTg+iDVsMY2n0eIYsSYXwDFmSCmEgS1IhDGRJKoSBLEmFMJAlqRD/Dz7Tq6B8plPMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Prediction & prediction array for the 12th\n", + "i = 12\n", + "plt.figure(figsize=(6,3))\n", + "plt.subplot(1,2,1)\n", + "plot_image(i, predictions, test_labels, test_images)\n", + "plt.subplot(1,2,2)\n", + "plot_value_array(i, predictions, test_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAI/CAYAAAB09R9kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcHVWd///3Ifu+70BCNkIgJIHIqoR9iQjiOAYcETdEGZ1BR7/wUwRnBgVx3B1URFwYQWUHBdmCQCALSejOQhZCFrJvZN8T6vdHVZ/+nJNbNzdJd7pv9+v5eOSRT906t27d7ntuVdf51Oe4JEkEAAAANHZH1PUOAAAAAPUBJ8YAAACAODEGAAAAJHFiDAAAAEjixBgAAACQxIkxAAAAIIkTYwAAAEASJ8YAAACAJE6MAQAAAElS07rega5duyb9+vWr691oVBYtWqS1a9e6mtoev8O6NXXq1LVJknSrqe3Vl9/ne++95+OtW7f6uF27dge1vW3btvn4iCOqrwm0bNnyoLZX0xrq77Gxaqi/z82bN/t41apVPm7dunXQbvfu3T5u0aKFj22/lqS9e/cWfJ1du3YFywMGDDjwna0B9eH3WFkp7dlTeF3TptLw4Ye+X41Bqb/LOj8x7tevn6ZMmVLXu9GojBo1qka3x++wbjnnFtfk9urL79MegCdPnuzj884776C2N23aNB+3bdvWx4MHDz6o7dW0cvk99uwpmfOhQI8e0sqVNf6SZalcfp+FJEniY+fCaygvvPCCj3/605/6eMSIEUG7leaDMHDgQB9v2bIlaLd+/XofN21afUqycOHCoN2jjz5a0r7XtPrwe3RFLmPt2SPVg6/rslDq75JUCgBAyfJOive3DgDKQZ1fMQbQeOzYsSNY/vGPf+zjBx54IFhnryStWbPGx61atcptV4xNmbCxvUolSWeddZaPr732Wh9ffPHFJb0OUO6KXTG+9dZbffzqq6/6+IknnsjdXvv27X1sU5okaY/JEbB9e/v27UG7v/71rz6+9NJLc18LOFRcMQbqoZ490+GzQv969qzrvQMAoGHixBiohxiuBgDg8OPEGAAAABA5xgBq2Y033ujju+++O1i3adMmH8flnmy+YadOnXwc5x62adPGx7b0ky0RFW/P5lDu3LkzaPe3v/3NxzZv8vTTTw/avfzyywIaIlvOMFZZWelj2y+7dQurYNkSi7Zfdu7cOWjXrFkzH9t+OX/+/KDdnDlzfEyOMWoTV4wBAAAAcWIMAAAASCKVAkAtsCkTd955p497RiU1bBpEXBbKDqvaWbTimersst1GPBy8J2fqqHh7dvKPJk2a+NiWppKkD33oQz5+8sknC24baGjsBB1du3b1sU2LksIZ7orNfGe3F6c/WUuWLDnwnQUOAleMAQAAAHFiDAAAAEgilQJALfjWt77lYzvrVZwuYe9WX7lyZe72Onbs6OM49cHOXGeHZeNZ9rp06VLwdeOZ72yVCpvO0aNHj6CdrUqxdu3aYJ0dYgbK2aoihdNt34n7tmXTmGwVCilMV7LbsN8bkrR69er97yxQA7hiDAAAAIgTYwAAAEASJ8YAAACAJHKMAdSCjRs3+tiWYLI5u1KYV/zFL34xWHfdddf5+KSTTvKxLfEmSUuXLvVxu3btfNy3b9+gnc2VtPtkny9Jffr0Kdhu8+bNQTs7A9+CBQuCdeQYo6GYOXNm7rrmzZv7OJ6R0uYO21zkuFyb/U7IK/Em7ZvHD9QWrhgDAAAA4sQYAAAAkEQqBYBaYEue2fJqcSqFdfvttwfLHTp08LEdYt22bVvQ7uyzz/bxiy++mLv94447zsdz5szxcTxj109+8hMf27Jz3bp1C9rZkm/jx48P1p1yyim5+wGUk8rKymDZpk/Yvh33S1su0aZW2bKJUliizX4/2O8Qad8UKqC2cMUYAAAAECfGAAAAgCRSKeqcHY494ojqv1OKzSIUDzHZu3ffeustHw8aNKgmdhHYr127duWus5/l+LNrffKTnwyWH3/88YLt1q9fHyzb9IlbbrnFx/HMWX/60598/O677/p48eLFQbuxY8f62KZS2L4qhXfaV1RUFNxXoNy9/vrrwbI9Ttn0iXgGSZs+YavKxH2lU6dOPrbHsjg146ijjjqQ3QYOGleMAQAAAHFiDAAAAEjixBgAAACQRI7xAbPlZGxs864kadmyZT6eMGGCjy+55JKg3cGUoIlnBLIeeeQRH994440HvG3gYCxfvjx3ne0b8exYVjwDXZ4HH3wwd93VV1/t41atWgXrbI7w8OHDfbxixYqgXdu2bUvaD8vm9gMNyezZs4PlZs2a+dj27S1btgTtevXq5eOJEyf6OL5/xpZitPGePXuCdp07dz6Q3QYOGleMAQAAAHFiDAAAAEgileKQxOkT1iuvvOLjSZMm+Tgecv63f/u3A37d1atXB8vPPPOMj9u1a3fA2wMO1Zo1a0pqFw+P2mHZuG/YYVVr9OjRudu/6KKLfLxw4cJgnR2Kffrpp31sZ86TwjQLm1YR70+TJk18vHLlytx9AsqZLbsmhZ/7YqkUH/nIR0ravv1OaN26dW67YiUhgZrEFWMAAABAnBgDAAAAkjgxBgAAACSRY3zAbMknOwVmPG2mLXHTo0cPH8dlna644gof26kxd+zYEbTr27evj9etWxes27Rpk4/79OlT/A0AtcCWJ4zZsoYxm1MY5+na/EW7jblz5wbtbFnCBQsW5L7Wcccd5+M5c+b4+J133gna3XXXXT62ZaZs/5TCsonF3j9QzlatWhUsl1pi9Kqrrir4eFxu1E7P3rVr19ztxVNEA7WFK8YAAACAODEGAAAAJJFKsV9xiSabPrF161YfP/TQQ0E7O1xk0yI2b94ctMubSS8efp41a5aPjzzyyGCdHeK1qR7A4VKsXJst7xSXa7PL8Yxz3/jGNwq2e/bZZ4N2lZWVPrb9xKYYSWH6hE2/GDt2bNCuoqKiwLvY97vAzuC1e/fugs8Byl08W6UtCVrseHPOOecUfPz0008Plu3MsPH3g9WlS5ei+wnUFK4YAwAAAOLEGAAAAJDUAFMpbAqCHeqUwqHQeJ1dtsNDdhg49stf/tLHtvKEJLVs2dLHixcv9nFcbcI+zw4jxftn7wSO7+q1MxPt3LnTxzbVI94GUJNWrFiRuy6vuoQUfuY7dOgQrLv99tsLbi9uZ/vQm2++mbsfPXv29PHatWt9bPtqMfGwsU2rKta22HcIUM5sClHcH+LjVJV+/foFy+PHj/dxsQo2cb8HagtXjAEAAABxYgwAAABI4sQYAAAAkFSmOcZxHpLNx41zcy2b6xgrNSfwgQce8LGdqWvkyJFBO5s7uWHDBh937tw5aGdL0Ni8xy1btuRuL2Z/HnZ2oHiWvREjRuRuAzgUxcq1Wc2bNw+Wzz33XB+/8sorwTpbltD2SZtHL4V9Ny75Ztk+ZPOS4+3ZbXTs2NHHcRm3uC9bixYt8vGAAQNy2wHlxh5jd+3a5eNSP+dxuVHbf4sdv4HDhSvGAAAAgDgxBgAAACSVaSpFseEWW5ItnqnKDsfG28hLn7j33nuD5Xnz5vn4qKOO8vG6deuCdja9wc4c1KdPn6CdnQnP7lPr1q2DdrbMW7FUEuuZZ54JlkmlQG2x6UIx+xmPP/+f+tSnfPz0008H6+I+UCXu1/FyHttPbFpFnEphy0595CMf8XHejHiF2LQoUinQkOTN/nr88ceX9PwxY8YEy3feeaePS+3LQG3iijEAAAAgTowBAAAASfU8lSJvWCVOHbCpBbbyRLEqFLHly5f7+JFHHvGxTYOQpEGDBvnYVo6Ih2NtakWzZs1y991WkbDifbezCMXr7Ix2dvuvvvpqwW0DNS1OJbJsH+revXuwrlOnTrnPs/2m2KyQpfbzvNkt4+3Zvnzqqafmbs++bjx7HkPCaKhs37HH3v79+5f0/OHDhwfLtrJFsepLzNyKw4UrxgAAAIA4MQYAAAAkcWIMAAAASKonOcZVOUtxybSDyR204tm47GxUc+fODdatWLHCx3Z2rvbt2wftbFmqTZs2+Xj37t1BO5unaN+X3QcpzKmys2zFM4Tl5XVJUqtWrQq2i2cBmzlzpqR986aBQxWXa7M5t7bUYJwnOHv27Nxt2rJQcf+ySp0ty/abYrNl2vdSamnIuE/acm1AOYtnqrMl2uwxunfv3iVtz/brGDnGqA+4YgwAAACIE2MAAABAUj1JpcibdW7VqlU+Xrx4sY/tUE68bNMEFi5cGLSzpdHi4Zx27dr52A6Rbty4MWhnt2+3EZdds+kNttSaLU0jSb169fKxTc2It2fLWtkycZL07rvv+timT6xcubJgO5tuAdSEUsuTHXvsscHy22+/ndvWpjHY7Rcr11hM3sx3tn/G24vLy1nFUiniNC6gXMV9YMGCBT62/cjOCltMnCZoFUuzyCttCtQ0rhgDAAAA4sQYAAAAkFRPUimqPP/888GynY3ODrHEw5Q2NcCmZRRLl4jTEWzagR0WjWe0sykNdig13p7dJ3s3bVwpwlaiKHX4NZ4tzN4ZbFM94rSNYsNUwKGIq0bkfdbiVIqXXnopd5t5d6jHaQu2HxarZGOfZ+O8VC4pvCM/vju/WOWJ+PsAKFennHJKsGwrydg0pIqKikN+rfh4a8UpT0Bt4YoxAAAAIE6MAQAAAEmcGAMAAACS6kGO8aZNm/Tss89Kkn7zm98E64YMGeJjW9bM5gpLYY6hLQUTlyWzeYXxNmw+rs1T3Lx5c+42bD5vXELKvrbNX7Yl6CTpzTffLLgPxUqqxXnKtlydnXEsbldVdqdZs2a52wYOhi1PKOXn7cY5wHPmzPFx/Lk81LKC8fPzZrsrlns/f/58H/fs2TNYZ/t1vO+UlkJDcdZZZwXLv/3tb31sj7dvvPHGQW3fficUm/mu1JlwgUPFJw0AAAAQJ8YAAACApHqQStGmTRtfDmbixInBuhkzZvh4/Pjxuduww5g2RaJz585BO7vcoUOHYJ1NY7DpEuvWrQvazZ0718d2uNTOWieFQ7WVlZU+PvHEE4N2/fr18/Fzzz3n47hsTbFhJDsU3Lt3bx+3b98+aFeVFsLMd6hpcTpC3mcsLutmZ21s3bp1sK7U2fSsOKUpj031KDZ8+/jjj/vY9lVJmjZtmo/j/rl+/fqS9gOo784444xg2abr2X5UbJbIYuxxqtgslgfzfQAcDK4YAwAAAOLEGAAAAJBUD1IpmjRp4md/u+WWW3Lb2ZmkJk2aFKyz6Q2vvfaajxctWhS0mz59uo9tJQcpHMKxw7HxEKlNxxg2bJiPzz///KDdmDFjfGyHnoq57LLLfPzOO+8E67p06eLjOEXCpo/YIe14pqDBgwcf0P4ApYr7yY4dOwq2s1UopDBlKP682rQLO2RbbLg1b3Y7KT/NotgQrf0OidOgHnroodxtxykjQLnq27dvsGyPP7b/xn1+wYIFPu7fv3/u9m0qZLF+QwogDheuGAMAAADixBgAAACQxIkxAAAAIKke5BiXys7idt555wXr7PL1119/2Pappj3xxBOH5XWYQQg1Lc4PzsvbjcuY2bzEeBulzp5nl/Nmt4uXi+Ui21KOEyZM8HFVjn4h8WvZWTGBhsTmFdtSh7bkqVR6jrGd1dbm9Hfq1CloR44xDhfOkAAAAABxYgwAAABIKqNUCgD1ly25JIWz2NlSi1/96leDds8//7yP4/SDUlN+8tInSp1FK36djRs3+vjss8/28aWXXhq0+8///E8fx2kf8cyVQDnJK18qSVdccYWP77//fh/H6VN2ttq4nKkVz3hZaB+kfVMrgNrCFWMAAABAnBgDAAAAkjgxBgAAACSRYwygBsRTrNuc22JTvnbr1s3Hb731VrDOlngqNm1zqfLyJuP8aFtSrnv37j7u2rVr7rbjPOXFixcf9H4Cda1YjvHll1/u49///vc+bt68edDu4Ycf9vG3v/3t3NeyZdiKlVuMyzkCtYUrxgAAAIA4MQYAAAAkkUoBoAaceeaZwbKdMa5ly5Y+jmePmzdvXu3uWA2yM3lJUrt27Xwcl2c75ZRTDss+AbWhWDnDSy65xMe2hFrcB0ott3jCCSf4eMaMGT623xuStGLFipK2BxwqrhgDAAAA4sQYAAAAkEQqBYAaEKcO2Fns7N3qpQ6v1kdxRQ07dLxr165gXZs2bQ7LPgG1IZ7JMU/fvn19PHHixGDdtm3bfPzaa6/5+Iwzzgja2aoUO3bs8HHcp9auXVvSPgGHqnyPUgAAAEAN4sQYAAAAECfGAAAAgCRyjIEaddNNN+Wuu+OOOw7jnhxeffr0CZZHjhzpY1t2qVju7Z49e4Jlm+doZ+Kqbfa17D4MHDgwaPfBD37Qxxs2bAjWnX766bW0d0Dti2edy3Pttdf6eMiQIcG6K6+80sdxXrF19dVX+3jjxo0+btu2bdDuAx/4QEn7BBwqrhgDAAAA4ooxIKnxXukF6kpN9Tn6LoCa5A7nEGXBHXBujaTFdboTjU/fJEm61dTG+B3WOX6fDQO/x4aF32fDwO+x4Sjpd1nnJ8YAAABAfUCOMQAAACBOjAEAAABJnBgDAAAAkko8MXZOH3ZOiXMasv/WknNa5Jy6Fnh8y4Hs3IG2L7KdTzmn3jnrhjunCc5phnN60jm1N+tOzNbNyta3dE4tnNPfndNM53S9aXu3czqpyD582DndEj1W4Zz+dADv4ecFHv+2c/paKds4mPZFttPPOX3cLA9zTr871O2i9jinvdlnbqZzetA5td5P+985p49m8T+c06jDs6f5/dI5NXdOv80er3ROZ2ePH3K/zPrGMvMzumw/+9jPOc3M4rOd019r4K0Xez36WAPhnLpkn7MK57TSfO4qnFPzut6/Ks7pDue01DltiB5v6Zweck7zs356tFl3c/b4HOd0fvZYD+f0atavPmTaPumcehZ5/a85p487p19mP5s3ndN287O6ojbe94FwTj9zTvmFmlF2Sr1ifJWk8dn/5ehTUuETY0n3SLopSTRM0qOSvi5JzqmppP+T9IUk0fGSzpa0W9JFSn8WJ0q6Oms7XFKTJNG0Ivvw/yTdVbXgnI6T1ETSB5xT/qwH9Vc/qfrEOEk0Q9KR9gsS9c72JNGIJNEJknZJ+kJd71AV59Qkeqhgv5R0rSRlj18g6QfO6QjVUL+U9KMk0QhJ/yzp3mzbdc45NaWPNRxJonVZXxwh6ZfKPnfZv12S5Jzc4fz8Zce82OOSTivw+OclrUwSDZT0v5Juz7ZxoqSPSBoq6YOSfpG9h3+R9DNJp0r6Stb2CkmTkkQrc/anmaRPSvpzkugL2c/qMklzzc/q0RLeQ63Jvrd+Lun/O5yvi9q1307nnNpKer+kz0q60jx+dnYV6aHsL8M/OicXPbeVc3raOV0bbVbO6evO6XXnNN05/WeR1/+RS6/YvuCcumWPjXBOE7PnPuqcOuU9nl3xGiXpj9lfmK2ilxgs6eUsfk7SP2XxhZKmJ4kqJf9FtlfpyXFrSc0k/37/W9K3iryHwZJ2JonWmoevknSfpGclXW7a/sM5fc85TXZO85zTPtP9OKcPZn+ld40eH5BdNZvqnF5x+Vf4q67GvVX1u8m+hL+f/UU/wzmNLfa4pDuUntRXOJd+0Ul6UuYzgnrtFUkD7VVPyV+h+XaxJzqnq7LPwkzn9L3ssS84p++bNn6Ewzl9Ivs8VzinX1WdBDunLc7pB86pUlI8VVxevxwqaZwkJYlWS9qgtH/XVL9Utu3ZkvZI6urMlfOq/d7Pz6ezc3os+x6a6NKRpyNcOpLW0bR7y6VX0ro5p4ez78PXndOZ2fpvO6f7nNOrSr8rJPpYg+acBrr0qugfJc2S1CvrP1X97btZu6bOXMV1Tlc6p3tMPNOlIyovmvY/zPrhdOf0uezx87Njzl8lzYj3J0k0QSp44nq5pN9n8V+U/mFa9fgDSaJdSaK3Jb0j6WRV98+Wkva69Kr4lyX9oMiP4wJJk7PjbrGf2cTsvU2R9MXsOPhS9j6fddlosXP6k3O61DxvS/b/US69ml2R/ZxPzR6/NNv2G87pgapzB5de4b/dOb0h6bIk0VxJ/ZxT52L7ifJRyl+jl0v6e5JonqR1zulks26kpBuUHqz6S+kXeqat0i/xB5JEv7YbdE4XShok6RRJIySd7JzOKvDabSRNya7YviTp1uzxP0i6MUl0otLOnPt4kughSVMk/Uv2F+b26DVmqfrE9J8lHZXFgyUlzukZ5zTNOf2/7PHnlF4tnSjppy4dbp2WJFpeYP+rnCntc9VqrKQ/SXpA+16Jb5okOkXpz/ZWu8Klf2XfJGlMgQP63ZK+nCQ6WdLXFF4Js06UdK7Sk5Fbsi+Ojyj9XQyXdL6k7zunXkUev0nSK9nP9EfZdqdI+57Io35x6VWVS1TgQFjCc3tL+p7Sz88ISe9zTh+W9LAUDGuOlfQnl46MjJV0ZnbFZ6/Sq0dS2r8nJYmGJ4nGRy+V1y8rJV2WHeiPUXrQPUo11y+r3uepkt6TtKbI8/P8p6Q3su+hb0j6Q5LoPaVX364w21+cJFol6SdKrxi+T+kfAPeYbQ2VdH6S+O8I+ljDN0Tp52Go0j/ybpN0jtLj7Zn25C7HrZLOSxINV3Wf/Lyk1dlx5X2S/tVVjzyMknR9kui4A9jHPpKWSFJ2hXtr9keffzyzNHvs/yR9VNIzkr4j6UuS7i1wPLbOlDS1xP1xSaJRSaKfKb0Cf1fW/x6T9MP9PPeTkh7Jvp9GSJrl0vSOr0k6J0k0UtIcpSfyVVYkiUaaK9YV2vePe5SpUoYdrlL6xS2lJ3JXqfrDOjlJtFRK82WVHpiqDnCPS7ozSfTHAtu8MPv3RrbcVumJ8stRu/ck/TmL/0/SI86pg6SOSaKXssd/L+nBvMdLeH+fUXog/ZakJ5QOMUvpz+b9Sr9Etkl6wTlNTRK9oCyFwKVDPc9Iutw5/VDS0UoPgk9Er9FL5gDr0lzNtUmid5zTMqVDtp2TRO9mTR7J/p+q9Gda5VylX2IXJok22Rdw6ZX9M7KfRZUWOe/58ewLaXt2ReGU7L0+kP11vso5vZS997zHNxXY7mrlp6yg7rXK+qmUXjH+jQ789/U+Sf9IkvTznF3ZOitJ9JhzWuCcTpP0ltKD+6uS/lXpyevr2eeyldLPiZSeJD+c8zp5/fJeSccpPUFcLOk1SXuTRHt0iP0y8xXn9AlJmyWNTRIlzulAvV/ZFe4k0TiX5pO2V/pddouk3yq96lv13Xa+pKHmddpn/VmSnohOHuhjDd/bSaIpWXyqpHFVF0Gc0/2SzpL09yLPf1XSH5zTg6o+llwo6Tjn/GhDB6XHXEmakCR6pybfQCxJtF7SGCnNr1aaevDR7Cp3R6XnCpOjp/VS9TnC/th7dUYpfb9Seh5w836eO1nSXS5NaXwsSTTdOV2s9I/SCVm/bC7pH+Y5f462Qb9sQIqeGGdDA+dKGuacEqU5sYlzPt9vp2m+N9req5Iudk73J4niWUScpNuTRL86wP2t8dlIkkRzlHUilw6tfjBbtVTSy+YL6SlJJ0l6wTz9eqVXqU+TtFHplbFx0j4H4O1Kv4iqXCVpiHNalC23V3ogrbqyXvVzjX+mbyu9Mj9Y8l+cVY6QtCH7q3d/4p9jTf1cW0pFrwCgbm2PPx/OaY/CkaOWh7D9P0n6mNKrK49mJ5VO0u+TpGAO3o68YdK8fpmdAFel7sg5vSZpXvT0g+2XUnql7n+ix/zPyKX5kgd7c9QEpekr3SR9WOmVQGXbPi1JtMM2zg7IW6Nt0Mcavvh3Xsh7UpC6aPvttUpPqC+VNM05jczaXp9d2PFcenNcKa8XW6Z0pGZllhbRJkm0IbvQc5Rpd2TW1rpVaZrTJyS9qLRf/kXpKJa1XaV/H5XyHmw/blYVJ4mec07nKP2O+aNzuk3pz/dvSaJPl/h69MsGZH+pFB+VdF+SqG+SqF+S6ChJC1XaUN4tktYrTcyPPSPpM1VXRZxTH+fUPWf/qnL7Pi5pfJJoo6T1rjr39mpJL+U9nsWbJbUrtJNVr5sd8G5WOgxTtY/DnFPrbOh5tKQ3zfM6Kf3i+YPS3Kn3lJ5gxjnMkjRb0kDzOh+TNCz7mfZTOmRcyo2Ni5WeQP/BOR1vV2RXkBc6p3/OXse59OajQi536V3FXZTeVPi60iuIY51Tk+zAfZbSv6TzHi/0Mx0sVeeroiysktQ9u6rZQtrvMO1kSaOdU1eX5gpfpep+9qiqP8tVV3BeUHplqKqfdXZOffe3U3n9MuuPbbL4Akl7kuTQ++V+LJJ8CtllSvOYi3lFWbqIS6tmrE0SbcouEDyqdGh3dpJoXdb+WZlhWueK/nFLH2tcJkk6J+ufTZWONLyUpeasd06Dsj5i05j6J4kmKs2vX680leEZSddn25BzOtbte7/NgXhC0jVZ/DGln+Gqx69yafWYAZL6yqRDuPS+l25Z6lRN9c/Y66o+b7DnAYtU3Y//SdkfFs6pn9LUiF8pvcI8UunI93nZOjmnts4V3Rf6ZQOyvxPjq6Twrk+lQ5+lVqf4d6XDt3faB5NEz0q6X+kwxQxJD6nwietWSae49OagcyX9V/b4NUpzXacrzQna3+O/k3y5l7gDXuWc5im9yrVc6TBn1dDPD5V2sgql+Yp/M8+7RdJ3si+oZ5T+sTBD1TfJWC9LGpldPfuApGVR7uPLSodSexV4biC7kvYvSlMmBkSr/0XSZ116M5PN0YxNV/qX+kRJ/53ty6PZ45VKr679v+xu4bzHpyu9iaLSVd98d44U/IxQzyWJdivtJ5OV5unO2U/7FUrzy19U+pmYmiR6PFu3XunBrG/VsGh20nqzpGezfvmctP/PuXL6paTuSq+CzZZ0o7IKFMbB9stifq30j4GqmwT3d3Xq20rvm5iu9CbVa8y6Pyu9UmaHYv9N0iiX3iz0popXC6GPNSJZquK3lA7jV0iaaI5DNyr9jL+mdISzyo+y4+oMSS8miWZK+pXSFKeK7Hj6C5WQSpmlIi1Smt6z1DmflnC30hsD5yvNF/5Gtr+VSvN6Z0t6SulV6vfMJr8j6ZtZfL/Sz/4kST8u8PJPKb0gdaC+KOlLWf/7iKTVxIhhAAAgAElEQVT/yB7/haQxWT8eKvnRqgskVbr0ZroPSfrf7HvuWkkPZdt5VTkn6c6ppdI/PqYfxL6iHnJJUuPZCSjAOf1E0pNJoufrel9qQ3a18SVJ78+Gu4F6r5z6JX0MjY1zekLSDUmiBXW9L3mc01VKr9J/p673BTWjXtTobCS+KxWfUKHMHa207iwHbJSTcuqX9DE0Njeq/t/Ulqi6QAEaAK4YAwAAAOKKMQAAACCJE2MAAABAEifGAAAAgKTSZr6rVV27dk369et32F93z57w/pU1a6onwGrSpImPjzgi/28H264Ym8fdtGn4I2/XrrpKnTuIKbYOxqJFi7R27doae7GD/R1WVkp7cm4jatpUGp5XhRmBqVOnrk2SpFtNba+u+mQxW7dWV0h77733gnXxch7brlmz6lLEbdu2LdT8sGsMv8fGpKH+PufOnetje8yKj1/2uNe8efOCj0vS7t27fVzseGufN2jQoNx2Na0+/B45VtaMUn+XdX5i3K9fP02ZEk/iVvvsibAk/epX1ZPwdezY0cetWuXXQO/QoXrSrPhLYe/e6gm9du3a5ePu3cN5TM4++2wf2y+P2jRq1Kga3d7B/g6L/R2wZ49UBx+LsuScW1yT2yv192lPNOMDWt5NvQf7x9+ECRN8vG3btmCd7V+238V27qyeqLNbt+rvxrPOOuug9qmm1dXvEbWjof4+7THLXhxq0aJF0G7HjuqJHO2JoH1cklatWuVje6Eo7st2+amnnjqwnT4E9eH3yLGyZpT6u6zzE+O68uCDDwbLt912m487derk4169wrkIFi5c6OM+ffr4ePDgwUG72bNn+7hly+pZLc8///ygnf1SuPrqeK4CoP6yJ7nFqtsUOxnevHmzj8eNGxesmzZtmo+ffvppHx977LG529+yZYuP161bF7Tr0qWLj+3B+TvfCcuPfuhDH/LxZZdd5uOjjz46510ADdemTZuC5VmzZvnY/oEZ2769eobkt99+28f2eCiFf1S3bl1dOdH+wbu/1wJqEjnGAAAAgDgxBgAAACRxYgwAAABIasQ5xvHNd/bmgGJ3xvbs2dPH9maAOJ9x48aNPm7fvr2Ply1bFrQbMmRIaTsM1DPFcozz8orvvvvuYNne4R5Xl7B9Y+zYsT6uqKgI2tmbfmy1mTgX2d7Y06ZNGx/H3wWLF1ffn/GVr3yl4HMk6Y477vBx7971fdZa4ODEN8vZvm2PgfHN43bZ3rcT31Rnc5jtsTeu3FDsRnigJnHFGAAAABAnxgAAAICkRpxKEac+2FIwtrRM586dg3a2vJQdmt2wYUPQzg4t5w0VSdKwYcMOZLeBesN+xouVZLvrrrt8/O677wbrjjnmGB/bSTekcMjV1v8ePXp00O6RRx7xsU11iod2bd+z/c6WgpPCyQNsrXKbYiFJN998s4/vvfdeoW707CmZqpeBHj2klSsP7/40NA8//HCwbI+dRx55pI/jFAmbGmXTneKUKVvWzaZC2XRESVq+fLmPp06d6uOTTz65+BsADhBXjAEAZSvvpHh/6wCgEE6MAQAAADXiVIq+ffsGy5WVlT6201zaWArvTLdDtfEwkh3SXb9+vY+L3XkPlJNiqRRLliwpGPfv3z9oZ2eqi9m+ZmeIHDBgQNDOLr/11ls+jtOgTj31VB+//PLLPo4rSti78O300/Fd8SvNGP19990XrLOzWJaacgLUR/fcc0+wbGeDtSlOq6LL802bVp9e2O8AO7udFB5j7ax49vmStHr1ah9PnjzZx6RSoKZxxRgAAAAQJ8YAAACAJE6MAQAAAEmNOMc4zvWz5ZtsbmM8o5ct5VYsd3jw4MEFXzfOj4zzqIByUWyGyPnz5/vY5hDackyS1LZtWx/v3LkzWGfz9m27uDTiJZdc4uPx48f7OM4Jtq9tY3s/gCRt3brVx7Y8465du4J2tgTVG2+8EayzOcbkFaOc2dkpJWnUqFE+tqXWdu/eHbSzx0Tbf+N+ZPuiLY9oYyn8vrGl24CaxhVjAAAAQJwYAwAAAJIacSpFPAx81FFH+Xjo0KE+jodBH3zwQR/bWbxmzZoVtDvrrLN8bMvJ9OnTJ2hnh5XiMjZAubL9wZZgitMlbKpS/Pm3Q7E2HcPOJCmF5aMuvPDCgs+JlwcOHFhwH6SwDJsd5rVl3GK2fBRQ7lasWOHjuBSpLdFmS6jFx1RbztSWa7PfB1KYZmHTMeK0K/s8m8YE1DSuGAMAAADixBgAAACQ1IhTKY477rhg+YUXXii4Lh6yOf744318yimn+Pjzn/980O7oo4/28ZFHHunjTp06Be3iO+eBhmDp0qU+bt++vY/jVAqrR48ewbKddc4OqzZr1ixoZ9M2bHUZWzVGCme4s3e1x1Uu7AxetmJFnC51zDHH+LhLly7BOpsiZYeUgXJg04mKpfjZNKT4WLZ27Vof20oWM2fODNrZ2S9tWkWcwpE3Qx5Q07hiDAAAAIgTYwAAAEASJ8YAAACApEacY2zzF6VwtjubXxXnBFs27zHOnbSlpmw+VDzTnS0BRQkalCublxuzOYRxPu+JJ57o4zh3OM4xrBKXYbP9xm4/nmHL5kPaslC2NFW8PbuNeN+teObL6dOn+9jmVwLlYN68eT6O+6U9VlpxaVPbr+yMsSNHjgza2Zn1+vbt6+M4N98eOzlWojZxxRgAAAAQJ8YAAACApEacShEPB9nUCjuDjy3rJIXpEyNGjPBxPIy0fft2H9vh2Hh4OB6mAsrRggULgmVbdsmmC23dujVoZ/uNnUlSCtMdis06lzdDXtwn7Sxddl28bfu69nvBvicpTJ+KU6QWLlzoY1IpUG7mzJnj47hcm+3Dtr/FqUbdunUruO3TTjstWK6oqPCx7ZdxeqJdRwlE1CauGAMAAADixBgAAACQxIkxAAAAIKkR5xjH01favOI4l9Cy6+KyM5bNTbSvFZeZIccYDcGSJUuCZVuiMC5lZi1evNjH/fr1C9bZPEKbm2/z/CWpXbt2Prb9yW473g+bExxPL2tfy5ZujO9LsK8V92NbggooN/Pnz/dxhw4dgnX2nhn7uY/vx/nUpz5VcNuf+cxnguVf/vKXPi72XWHzmeOSjUBN4ooxAAAAIE6MAQAAAEmNOJUiHoqxQ0K2LExc8ikvzSJOzbAln+wQbPy6DAmhIYiHUW1qUvv27X0cl2DavHlzwedIYcqE7SdxKoV9nt1+PCxrUy7Wr1/v4ziVwpZatPu+Zs2aoJ0dYo5fq7KyUkC52rRpk4/jY5s9JtrjnI0l6YYbbii47fe9732528srvSiFaYgcN1GbuGIMAAAAiBNjAAAAQFIjTqXo2rVrsJw3nGPvwJX2HXatYodpJSlJkoLP6dOnT9AuHj4GytGWLVuCZVtRolOnTj6OK0VcfvnluduwfdKmOsXpGHbZDufGs9HlzaQXp0vZ/jpkyBAfP/7440E723fjqhQ2HQMoN7bvxOmDtr/Yz3nPnj2Ddv379y/pteyx2B57O3fuHLRbt25dwdcFahpnZQAAAIA4MQYAAAAkcWIMAAAASGrEOca9evUKlm0usc0PtjPYSfuWpKkSl5CyJdpsyadiM/sA5crm7Ephiac419caOnSoj1955ZVgXV5pxDgvf8OGDT62+cxxO5sHbPfJ9vfY4MGDfRznNdrnxTNabty4MXebQH3XpUsXH8fHNsveF3DxxRcf1GvZ3GRbhi2+D+jdd9/1McdR1CauGAMAAADixBgAAACQ1IhTKVq3bp27bIdw4yEbO5xj2dQJKSwhZYdZ7RAVUM7sEGucYrR3714f25SDuKxZ7969C7aL2ZSmODVj69atPrb9Ky7DZpdtObmY3feBAwcW3Ie4Xfz+7RCzjfPSQ4D6xH5O7SyRUtjv58+f7+Mf/OAHuduzx9E4xemYY47x8dKlS33crVu3oJ3tb7YdUNO4YgwAAACIE2MAAABAUiNOpbB3v0phKoQd9onvyI2Hd6oMGjQoWLZ3sOfNuAWUs7Vr1/o4ToOwaQt2CDROpbD9K+5rNmXCVo2J0xFsGpTta3EVie7du/vY9v943+06m+pRbJZKW4VDCt//ypUrfWxTM4D6yqb/xccsmxpk+46tMBOz3wFxPzr++ON9vHDhQh/Hs8muWbPGx7b6DFDTuGIMAAAAiBNjAAAAQBInxgAAAICkRpxjHLP5jbYkW5z3mJfbFOdXLVmyxMebNm3ycZyLCJQrO+Nc3E9atmxZsN3RRx8dtLN5hLbsmiT16NGj4PbjEoo2J9jmQ8Y5xradzV+OS61t3rzZxzaf0u5PvD2bQymFuZerV6/2MTnGKAfDhg3z8aRJk4J1to/Ze2vsDHaxYvn5Y8aM8fFPf/pTH8flEW2ufufOnXO3BxwqrhgDAAAA4sQYAAAAkEQqhbdu3Tof2+Ghp59+Omh33XXXFXz+SSedFCxPnjzZx3369PFxPAwMlCtbkiwuoWbLPc2dO9fHQ4YMCdrZ58Uz2lnFZpmz+2FfN05bskPAdnvxDHk2lcqWcbTDy1KYchGnWNlt2nQMoByMHTvWx7/97W+Ddbaf2jTBcePGBe0uvPBCHxeb1dJ+Jxx11FE+jtMv7DZs3wNqGleMAQAAAHFiDAAAAEgilcJ76aWXfDx//nwfx6kU9913X8Hnn3DCCcGyHY79+c9/7uPhw4cH7U4++eQD31mgHrDpR3EahK0IsXHjRh/Hn387m5UdlpXCdASbPrFz586gnZ35zu5HPBRr98mmNMWz8dlqE++8846PBwwYELR77bXXCm5bCoeH4/cF1He2D8T9w6YG2XbxsdGmUhRLk+ratauPbeWJxYsX576urXoD1DSuGAMAAADixBgAAACQxIkxAAAAIKkR5xjH5WNs+SabY2xLt0n5uU1xDpXNq7Sl2+IZwoByNW3aNB/HObZ2edWqVT6Oy5pNmTLFxzZXWApzhG0czzLXvHlzH9v+Fbezy7asm42lsC9XVlb6uH379kE7Ww4ufv921i77Hj/60Y8KKCdxuUH7WbfHQ3ucO1i2pOLUqVODdfY+g7i/ATWJK8YAAACAODEGAAAAJDXiVIp4tqtdu3b52A7TxMOseezzpXDYx6ZVxLN2AeXKzgpnh0AladmyZT62s1TF5dpsqkLHjh2DdTYdwYrToGz5NpsuYUtJSeEsezb9Im5nvxsWLVrk48suuyxo99nPftbHH/vYx4J1Ni2kV69e+74JoEyceeaZwfL999/v486dO/vY9qmD1a9fPx+vX78+WJfXz4GaxhVjAAAAQJwYAwAAAJIacSpFzA4D2Zmq7HBxMfHsQPbOdps+0bNnz4PdRaBe+fSnP527zt7JvmDBAh/Hs8c98sgjPo4rVtht2Jnq4pSLtWvX+timNMXpHbZihY3jGfK6d+/u44kTJ/r4uuuuC9rZWftsmobEzFxoOL70pS8Fyw899JCPbd/ZsGFD0M72+/79+5f0Wu3atfOxTcGSwu+A+LsCqElcMQYAAADEiTEAAAAgiRNjAAAAQBI5xp6dxcrmJpaaKxiXqrElpWxuVE2UtAHqO5tze+KJJ/o4zhtct26dj23pJyk/Nz8u42a3Yftd3NdsPqQt/VSsT9rXqqioCNaNGTMm93lAQ9GnT59g2eb42/sA4pKldia8UnOM82axlMI+G78WUJO4YgwAAACIE2MAAABAEqkU3sqVK31sZ9WxaRDFxOWa7LCt3Z5N2QAaing2Ottv7Mxy48ePD9rZsoYxO3uc3d78+fODdnnDtLZPx9uw6VJxSUbbR+0w8ssvvxy0s6kU8fuPZ9YEyon9PMef5QsuuMDHDz/8sI/jlKTHH3/cx1deeWVJr2uPo8uXL8/dp1KPy8DB4IoxAAAAIE6MAQAAAEmcGAMAAACSyDH2evTo4ePVq1f72OZHFhNPUZlXGspONws0FHEeYl6/mTt3brBsSz/ZfiKF+cf2ecccc0zQzuYIL1u2LHd7Ni9x+/btPo7zg22upI3jnGUrfv/FcjSB+i7vHgEpzK2300PH988sXbr0gF+3Q4cOPo5Lstlj7LvvvnvA2wZKxRVjAAAAQJwYAwAAAJJIpfAuueQSH0+ZMsXHpaZStGvXLli2Q0K2NFTfvn0PdheBsmFLFNo+tHjx4qCdTXcYPHhwsM4+b8iQIT6OZ8h78803fWzTFuzMeVKYmmH7q+2rUjiEa/cvnnHPrmvRokWwjlQKlDObChh7//vf72NbznDDhg1BO5t6VFlZ6ePhw4fnbrt9+/Y+jvtbs2bNfGxTsICaxhVjAAAAQJwYAwAAAJJIpfBatmzpY5v6UGoqRcze9W6HhI488siD2h5QTvLSB7773e8Gy9///vd9/PTTTwfr7NCsrUQRz5Zn+5qt+rJ+/fqg3aZNmwqui6tN2GHarl27+vhLX/pS0C5On7CKDUUD9V2p6T9HH320jysqKoJ1NvXhueee83GxVIrNmzf72Pbr2KpVq0raP+BgcGIMAI3ATTfdlLvujjvuOIx7AgD1F5c1AAAAAHFiDAAAAEgilcL75Cc/6ePx48f72JZxOxCXXXZZwceHDRt2UNsDyklejm08O9Ytt9ySu4133nnHx7YkW5xfaHOH7YxdMZvzaGObJylJZ555po/btm2buz2gsfvmN7/p4549ewbrbB8bPXp0SdsbO3asj+1stFKY+3/eeecd0H4CB4ITYwBAychVBtCQkUoBAAAASHJ2hqY62QHn1khavN+GqEl9kyTpVlMb43dY5/h9Ngz8HhsWfp8NA7/HhqOk32WdnxgDAAAA9QGpFAAAAIA4MQYAAAAkcWIMAAAASKrhE2Pn1MU5VWT/VjqnZWa5eU2+1qFwTnc4p6XOaUP0eEvn9JBzmu+cJjino826m7PH5zin87PHejinV53TTOf0IdP2SecUFnUMX+drzunjzumX2c/mTee03fysrqiN930gnNPPnNMZdb0fqF+c0zed0yznND37rJ6aPb7IOXUt0P4y51SwvpdzOjvvM+acOjmnR7PXmeycTjDrLnZOc7P+eJN5/I9Z+++ax252Th8u8n5GOqffZHEP5/RX51SZ9cmnzH7+Nef59zinoTnrbnBOrc3y886pU96+oPHgWOnbcqxE/ZMkSa38k5JvS8nXCjzupOSI2nrdAq/XtMBjp0vJkVKyIXr836Tk51n8CSn5YxafKCXTpKS5lAyQkrek5Agp+aqUXCklbaRkXNb2Cim5ucj+NJOS6VLSxDw2UEoqDuQ91PLPrImUHCslTx7O1+Vf/f6X9ZsJUtIiW+4qJb2zeJGUdD2AbTXN+47I1n9fSm7N4iFS8kIWN5GSt6Wkf9YfK6VkaNZH78naPCclHaSk1/4+w1LyoJQMz+JfScm/m3UnZv+fLSV/PcCfVZP4ZyIl10jJN+v698i/+vWPY2Xu/nCs5F+d/DssqRTOaWD2l94fJc2S1Ms5fcI5zcj+gvxu1q6p/cvUOV3pnO4x8czsas6Lpv0PsytK053T57LHz3dO/8iu8syI9ydJNEHSygK7ermk32fxXyRdZB5/IEm0K0n0tqR3JJ0sabek1pJaStqb/aX/ZUk/KPLjuEDS5CTR3v38zCZm722KpC86pwHO6aXsfT7rnHpn7f7knC41z9uS/X9U9hd6RfZzrrqyd2m27Tec0wPOqVX2+ErndLtzekPSZUmiuZL6OafOxfYTjUovSWuTRDslKUm0Nkm03Kz/snOaln3ehkiSc/qUc/p5Fv8uu/IzSWn/+oKkr2Sf0Q9ErzVU0rjsdeYo/Sz2kHSKpPlJogVJol2S/qS0f+6W1Mo5HSGpmaS9kv5L0q15b8Y5tZN0YpKo0ry/pVXrk0TTTfO22RWyOdmVaZdt4x/OaVQWb3FOP3BOlZK+Kam3pBervq8kPSHpqiI/XzRyHCsDHCtRJw5njvEQST9KEg2V5CTdJukcSSMlnWk/sDlulXRekmi45IdPPi9pdZLoFEnvk/SvrnpIZ5Sk65NExx3APvaRtESSsoPuVufU0T6eWZo99n+SPirpGUnfkfQlSfcmibYXeY0zJU0tcX9ckmhUkuhnkn4p6a4k0YmSHpP0w/0895OSHkkSjZA0QtIslw5ZfU3SOUmikZLmKP1yqrIiSTQySfRotlwh6fQS9xUN37OSjnJO85zTXc4pnud1bZLoJEm/UPo5K+RISWckiT6i9DP9oyTRiCTRK1G7SkkfkSTndIqkvtlzC/bFJNFsSWskTZP0pKSBko5IEk0r8n5GSZpplv9X0m+c04suTRnpbdaNlHSD0hP2/kr7cayNpElJouFJov+StFxpXztHkpJE6yW1cE5diuwTwLEyxbESdeJwnhi/nSSaksWnShqXXXHaLel+SWft5/mvSvpD9pdu1X5fKOnTzqlC0iRJHSUNytZNSBK9U6PvIJIkWp8kGpMkGqX0r+2LJD3u0rzDh7IDeqyX0gN4Kf5k4lFK/zKX0r/U9/fzmizpC87pFknHJ4m2SHq/0gP7hOxnNlZSP/OcP0fbWC0FJwdoxLLP0MlKD7JrJP3ZOX3KNHkk+3+qws+V9eD+rgBl7pDUMfucflnSG1Lx5yWJbshOsn8g6b8lfSs7wf2Lc7q2wFOCvpgkekbpSe+vlZ6cvOGcqorBT04SLU0Svaf0IFjo/e2V9PB+3hd9CvvDsTLFsRJ1oulhfK2tJbR5T+lfyFVamvhapV8Sl0qa5pxGZm2vTxK9YDfi0oT/Ul4vtkzSUZJWZkM9bZJEG5zzj1c5Mmtr3ar0YPwJSS8qHTb9i6RLonbbo/dVTCnvYY+yLz/n1KwqThI955zOkfRBSX90Trcp/fn+LUn06RJfr2W2v4AkKTup/YekfzinGZKukfS7bPXO7P+9yv9uKalfJok2SennNEtbWChpgaRW2k9fdE6XKz05bytpQJLoY87pGef0xyTRNtN0n76YJHpX6cnH/dnw8lmS1pn3Vuz97SjhpJ8+hf3hWJniWIk6UVfl2iZJOseld+Y2lXSlpJeyqzHrndOgLFfQ3nHaP0k0UdK3JK1XOjzzjKTrs23IOR1blQd0kJ5QeqCXpI8pHTquevwq59TcOQ1QOqzrh3hcmk/ZLUk0Xmke1XuSEqngvsxWOsx7oF5XOhQlSVdLeimLFym9iidJ/yT53Md+Sod7fqX0r+aRksZLOi9bJ+fU1rmi+zJY4VAzGrGsfw0yD43QoU1tullSu5zX6uiq787/nKSXs5Pl1yUNck7HZOuvVNo/q57XTGnKw51K+1/V1J5NpH3u9g/6onM612VVJFyafzxAOqQracH7y07weyrts0ApOFYeOI6VOCSH84qxlyRa6py+pfTKk5P0ZJLob9nqG5V24tVKO1SL7PEfOadjsvbPJolmOqfZko6WVOHSv51XK03+L8o5/VBpZ27vnJZK+mWS6DZJd0v6P+c0X9JapV9CShJVOqfHlHbUPUr/8n7PbPI7kr6exfcrHVK+WekNOLGnpLQ81AH6oqR7s5/bSskPYf9C0mMuLUn1uKqHmy+Q9O/OabekTZI+kSRakQ0pP5SdVCRKf97z4xdzTi2VfqFOj9eh0Wor6WdZLuEepZ+bzx/C9p5U+lm8XNKXozzj4yT93jklSm9C+qwkJYn2OKcvKf2OaKI0T3GWed6/Svp9kmibc5ouqXV2ZfupJAlLTiWJ5jinDs6pXZJos9KD5s+d81eW7kkSve6czj7I93e3pL87p+VZnvHJkiYmifYc5PbQyHCs5FiJw8+lJUdwODmnJyTdkCRaUNf7ksc5XaX0ysN36npfgNrinL4iaXOSpHf01/Jr/UTSE/FwNoDCOFaiLjDzXd24UfU/UT+R9JO63gmglv1CYf5wbZrJSTFwQDhW4rDjijEAAAAgrhgDAAAAkjgxBgAAACRxYgwAAABIqqNybVbXrl2Tfv361fVuBPbura7R36RJk2Ddzp3V9+ns2VNddck5F7Szy61aHUq5yJq3aNEirV271u2/ZWnq4++wMZk6deraJEm67b9laer773PdunXB8tat1bX27T0Tcd9t2bJ6roCuXbvW0t4dvMb2e2zo+H02DPweQ5WV0p6cgpNNm0rDhx/e/TkQpf4u6/zEuF+/fpoyZcr+G9YAe9CMT2St9evX+7hTp07BurffftvHa9eu9XF8EG7RooWPhw0bduA7W4tGjRpVo9s7nL9D7Ms5dyiTbOzjcP4+33uvusRpfCNw3Keq/OEPfwiWJ0yY4GP7x2rcd4cMGeLjz3zmM7n7VOr3RN5zDuR50XPK9veIffH7bBj4PYaKfbXt2SPV57dW6u+SVAo0eD17pp250L+ePet67wAAQH1R51eMa5NNiZDCK1DxFR57hXf37t0+jtMgtm+vng69Y8eOBZ8jSc2aNfPxtdde6+M777yzpH1HzVm16uDWofYdcURpf5tPn149qdQ111wTrDv99NMLbs/2QUn60Y9+VHAb8ZVpe7W31KvHB3OFGDWjZ8/8ftyjh7Ry5eHdHwDljSvGAICyxR++AGoSJ8YAAACAODEGAAAAJDXwHOO8u9ol6c9//nOwfMstt/jY5jM++OCDQbuvf/3rPn7jjTd8/Pzzzwftzj//fB9ff/31Pt4T1Tlp2rT6V3Awd8MDDcWcOXOC5VVmHLx79+4+njRpUtDu1ltv9fHGjRt9HN8fcM899/j45Zdf9vH48eODdjfeeKOPmzdvXtK+AwAaBq4YAwAAAOLEGAAAAJDUwFMpirEpDJLUu3dvH998880+HjNmTNDu73//u48XLlyYu/277rrLx6XOckP6BBq6qVOnBsuPPfaYj5cvXx6sO/PMM328YcMGH3fu3Dlod+yxx/p49erVPo5TKYabKZl27drl4/bt2wftbEnF0aNH+/i4444L2tXH2fMAAIeGK8YAAACAODEGAAAAJJVpKkU8a51NQbBDpNOmTQva2eHYHTt2BOvmz5/v45kzZ/r4qaeeCtrZ2e569QBw+1YAACAASURBVOrl43nz5uXu79y5c328c+fOYJ1N4bCz5/Xo0SNoV+oMYUB9Y6s8nHfeecE6m45gUyIk6YQTTvDxokWLfHzfffcF7U4++WQfDx482MdxX3viiSd8fNFFF/k4TpGYOHGij221Gfu4JH34wx/28aBBgwQAKH+cbQEAAADixBgAAACQxIkxAAAAIKlMc4yLlTV78803ffz6668H62wOo81FlKQRI0b4eNmyZT7esmVL0M6Wlxo5cqSP165dG7Tbvn27j9u0aePjdevWBe3eeustH9tZtpo1axa0ozQUysmMGTN8bHN7v/e97wXtbCnDuIRi//79C7Zbv3590O7Tn/60jxcsWODjbdu2Be0qKip8fOqpp+a2s3n/ffr0Kfh8SfrhD3/o41/84hcCAJQ/rhgDAAAA4sQYAAAAkFSmqRTF2GHWgQMHButsWkS3bt2CdZs2bfJxly5dfBynMEyZMsXHkydP9rEtLSVJa9as8fHmzZt93KlTp6CdfS1bks2mYgDlxs5wZ2eLvPfee4N2jz/+uI9tX5DCMmpz5szx8ZNPPhm0s33XlnVbtWpV0M6mLdlyiLacohSmY9hZ9oYOHRq0++AHPygAQMPCFWMAAABAnBgDAAAAkhpIKoVNkbBpC3ZmOim8O37YsGHBungmvCpt27YNlu3MejbdIa4isXfvXh/bKhqtW7cO2tlle3d8fKc8UE7GjRvn42OOOcbHtvqLJHXo0MHHcV+z6UmLFy/2cdyvzz33XB+//fbbPrYzSUphpQybIhWnXNg0i3gb1tKlS30cV6WhigwAlCeuGAMAAADixBgAAACQxIkxAAAAIKmB5Bhv2LDBxzt37vRxz549g3Y2l9CWU5PC2emaNGni45YtWwbt2rdv72ObV5wkSdDOlp6yeZTvvfde0M4u2/zlOLfRvq8WLVoIqM9sCbUlS5b4eNSoUUE7my8c5/l37NjRx7YMY5zPP2jQIB9v3LjRx3E+vy3LZu9FsK8jhX1+9OjRPn744YeDdrb8WzyjJTnGAFCeuGIMAAAAiBNjAAAAQFIDTKVo3ry5j+MhUjvrnE1NiNfZtAg7G50UDve2atXKx3HKhW1ny7rFw7s2vWPPnj25+26HpuNZ+4D6Ji8N4qmnngra2c9yPNujTYWyM9rZOF62M+TZWeukcEa7z33ucz5evnx50K6iosLHL730ko9fe+21oJ3ty/H3CQCgPHHFGAAAABAnxgAAAIAkTowBAAAASQ0kx9jmJtocY1t2LW4XT+Fqcx1tXrGdzjnWtGn1j89OAS2FZdhseTX7HCnMTY7X5bUD6ruTTz7Zx9dcc42P4zxdm/f77rvvButWrFjhY5unbKeAl8J7DGwZtrhP2pJqdjpnW3ZNCqdjt98Tcak5m0cd5zMDAMoTV4wBAAAAcWIMAAAASGogqRS2NFqxWetsaTQ7NCuFw6J2yNXORieF6Q72tWwKhxSmY9i0CjtznhSWgxo5cqSP4xSOeGY9oD6ZMWNGsPzAAw/4+KqrrvJxPPOjLVFoZ4iUpLZt2xZcF/fJYjNGWnmzUcYpTLbv2n598cUXB+1Wrlzp4xdffDFYd/XVV+fuB1DfxDM32hQnm1okSe+8846PTzjhBB/ffffdQTvbB3r37u3juJ/bUqlW/F0Rl07NY4+VxVIhgTxcMQYAAADEiTEAAAAgqYGkUtihVDsbVZx+YGePs7NqSeGd7Xb4JR6+scOudqgnHrJp1qyZj+1wceyhhx7y8eDBg31sh56kMF0EqG+2bt0aLNs0g9/97nc+jme+u/XWW31sP/+S1KNHDx/bFIlly5YF7U4//XQf2/7avXv3oJ2tHDFo0KDcdjbN6oorrvDx7Nmzg3aVlZU+Pumkk4J1pFKgNuSl1OWlDMSVWWz637hx43z8s5/9LGj39ttv+zju2za9aMCAAT62qYqSNHr0aB///Oc/9/Hzzz8ftHviiSd8fNppp/m4WOqEPebHaYykT+BQccUYAAAAECfGAAAAgCROjAEAAABJDSTHeOfOnT62pV/ifKw5c+b4OC7lZmenszPkxTlall0X50PZ/GNbdir26KOP+vg//uM/fBznTcWzfQH1ydChQ4Pl22+/3ccXXnihj+0Mk5L08MMP+zgu43TkkUf62Pav+++/P2jXv39/H9vcSDtzniS98sorPrbfE0uWLAna2dnzrDFjxgTL55xzjo/j9w/UplJLmcWzv06bNs3HP/7xj3187LHHBu3Gjh3rYzuLpRSWNrX3DEyYMCFo9+tf/9rH7dq187G9d0AK8/iPOeYYH990001Bu8suu8zH8fERqElcMQYAAADEiTEAAAAgqYGkUtjyLHZmOZtiIUmLFi3ysR3aidva0mi27JoUDlnZOB6ysoqVkLNl42wZqhNPPDFoFw+dAfXJW2+9FSzPmzfPx7ZvrF69OmhnSxnGaUs2pcluI059mDVrlo9tulTc/23fs+Xf7ExekvTuu+/6+Pjjj/dxPARs3/P06dODdXH/BWpC1bGu2PGmGJsWYWe7s6UMD8Q111xTMI4tXLjQx7fddluwrqKiwsc2ZdCmY8Xb6NWrl49tf5XCfh5/p9jjaN73gSSde+65Bd4FGguuGAMAAADixBgAAACQVKapFPEscHa4xFaXsDPdxbZt2xYst2nTxsd2drs4lSIecqkSz25n0zvsHbTxrF3Lly/38dKlS3P3l1QK1GdxKoWt+mL7zF/+8peg3R133OFjm7YghXe/28+/TU2SpI9//OM+fuONNwrugxQOxV5yySU+tjPnSeHQ7Fe+8pWC25bC75D4e8LOpGnfB3Cwdu3a5Y8RNlVJCvtEq1atfBxXq7jhhht8bFONXnvttaCd/fzGx1vbn+2xd/LkyUE7O/ulTXEcMmRI0O6CCy7wsZ2R0lalkaTHHnvMx7bCTJwWaftifNy0x2m7zr5fSXrf+94nNF5cMQYAAADEiTEAAAAgiRNjAAAAQFKZ5hgXm43O5jLFeViWzcOSwtxku/14xjlbJsfmKBWb+c7mNfXp0ydoZ0tAxXmals1Zjt//wZbuAWrK1KlTg2Vb/smWhZo7d27Qzubzjxs3LlhnZ+Oy/fCll14K2o0cOdLHts/HeYN2P8466ywfxzN22XsCjj76aB/HOca2L69duzZYt2bNGh+TY4ya0KRJEz+Lapz3a0sO2ntV4uPSsGHDfPyb3/wm97Vs/nE8y5y9H6d79+4+/tjHPha0s7PY2fJqB+u6667zsb1/yH6HSPve72PZEm1x6VSLPtu4ccUYAAAAECfGAAAAgKQyTaWI2eEiW7Zm2rRpuc+JUynyZtmKyzDlpS3Ewzl2n4oN2VQNjUn7DjNbeakZxfYJOFzikmennXaaj2fOnOnj97///UG7Tp06+XjGjBnBul27dvk4b8YqKUwtsv3fpjPE7Wwfiksw2qFj2z/j8o92WHrz5s3BOjvEDNSEJk2a+CH+MWPG1PHe1C2bMgnUNK4YAwAAAOLEGAAAAJBUpqkU8dCnHWa11RvsDFaxeLacrVu3+tgO4cYVIOwwa7G7X216g03TiFMzunTp4uO8WfWk0lMzgLpQUVERLA8cOLDgurgqy4oVK3wczwpp72S3qQr2DnwpvAvfzm4XzyRpZ6pbtWpV7vZsnxw8eLCP7feCFM7MtXjx4mDd+vXrfdyhQwcBAMoDV4wBAAAAcWIMAAAASOLEGAAAAJBUpjnGca6fzTG2ZdNsbm8szvtbuXKlj20+bzzznZ0RyLazuc1SmC9s9y8uM2P3I851tOz7stsD6oO//vWvwbLNg//JT37i44suuihod/LJJ/s4nqXrpJNO8vGSJUt8fMoppwTtjj/+eB/bvhH3cXtPwPDhw30c34tgS8jZkm9f/epXg3a2vGKcH/2Nb3zDx/369RMAoDxwxRgAAAAQJ8YAAACApDJNpYjLlcVpDFVsKShJGjRoUO5zbHk1m7YQz2hnl20pt2Il1OIhYuu4447z8Zw5c3LbkUqB+ux//ud/gmU7E55NRxowYEDQbsOGDT6OyxW2bNnSx1UzfklSz549g3a2BJztG8uXLw/a2ZnrbP8/6qijgnY7duzwsU3b+tznPhe0s7P4xX0ynuEPAFAeuGIMAAAAiBNjAAAAQFIDT6WIqzzYmaribdhqEzZFIq5skTfLXjyUatcVq47Rtm3bgq8bz7hnUz2KzbgH1IUFCxYEyzYNwn6Wjz322KDdCy+84ONHHnkkWDdt2jQf27SI3/3ud0E7O8ucrV4xe/bsoJ1NkbDbi2ftW7dunY8vvPBCH9sKFVI4e15cKcemiHTr1k0AgPLAFWMAAABAnBgDAAAAkjgxBgAAACSVaY5xLC7zVCXO7R04cKCPbc6uJLVo0cLHNj84bmfXxXmFVvy8PG3atCm4v9u2bQva2XJtxV4XqAtbt24Nlm0+ro1HjRoVtLOz29lyilJY8qyystLHNn9Zkq688kofz5o1q+C2pTDX+eMf/3juPtmZ8C6++OKC25bCMnTx+y92XwEAoP7iijEAAAAgTowBAAAASWWaSmHLLkn5aQuLFi0Kls844wwfL1y4MFhnZ8lr1aqVjzt16hS0s2kbdmg2LqFm2+WlesSvtXHjxoLblvadgQ+oTzZv3hws27Jp8+fP93Hr1q2Dds8884yP48+87VMrV6708dChQ3P3w25/2LBhwTpbUs7OpNe9e/egnS3DZr8XbGlFKSwHGb//+DsKAFAeuGIMAAAAiBNjAAAAQBInxgAAAICkMs0xjvN586afjfP8bFmmeEro5s2bF9yGLd0khXmGdhrouFyTzTk84ojqvz/ifbIlpXr27Oljm6MphVPpFstZBupCnM972mmn+XjevHk+btasWdBu06ZNPrZ9UApz7idMmODjrl27Bu2ef/55H9sSav379w/aTZo0yccXXHCBj+O+Zu9NGDx4sI9Hjx4dtHvzzTd93L59+2DdgAEDBAAoP1wxBgAAAMSJMQAAACCpTFMp7Oxz8fLy5ct9HM8Q99GPfrR2d8zo0qVLSe1seocdBh43blzQzg5Vx2kbQF07+uijg+UXXnjBx7asmU0rkqTp06f7uHfv3sE6O/ujTW/o3Llz7n7YNKt49jm7bFOd4lkmbWqFTbmys2NKYVm3Pn36BOviMo8AgPLAFWMAAABAnBgD+P/Zu+94qapz/+OfhyIdqQpWFEVUBFSssSaxJLHE6L1eS2w3P2O81psYzVVjNImSa9QbTewxxl4SNVhiFyWJKEpHREBBEQRRUSlSZP3+2Gs2z17MzDnCgXM45/t+vc7rPLP3ml1mZs1es/ez1xIRERFgHU2lmD59euGxv3t93rx5eXzxxRevtW2qC2effXYeb7HFFoV5fuQv3xsG6LKt1L+0V4rrrrsuj1999dWKzzvhhBPyePjw4YV5fkRLn2aUpilNnTo1j32vF2mKhH/sUzrSlCtfn/r27ZvHPu0jfdyrV6/CvDTdS0RE1g06YywiIiIighrGIiIiIiKAGsYiIiIiIsA6mmPsR5+D4khwfgSq/fbbr9bL9N0y1Vd+4JFHHpnH6ShgfjQ+kYamRYviV8n3vve9PPYjOqb69etXNk6dcsopebzzzjsX5vn677t8S/N+e/bsmcfbbbddxXKHHnpo2W1I1+vzlDfddNPCPOUYi4ism9bJhrE0HRdccEHFeYMHD16LWyIidUl1W0QaIjWMRWpJB3IREZHGzXwKQb1sgNmHwPQaC0pd2jyE0L2uFqb3sN7p/Wwc9D42Lno/Gwe9j41Hrd7Lem8Yi4iIiIg0BOqVQkREREQENYxFRERERAA1jEVEREREgAbeMDajhxn3mTHVjNfNeMKMPquwnE5mnF5l/tlmjDdjghnnuOkDzRhuxmgzXjNj1zj9yFh2mBld47TeZtxfZR1mxvNmdFyT+2ZGdzOe/KrLEakNMy6Mn/2xsV7sFqdPM6NbmfKHmVG2Ow8z9jNjzwrzOpvxcFzPq2b0i9O3iest/X1WqrNm/CaWv8Mt53hfp8usp6cZj8W4rRl3mzEufh/8w4z2ZvQyY3yF519mxjcrzDvJjI3c4/vM2LrStkjTVqlu1cFyh5oxaFXKmHGGGVPMCL5+x+PZtXHeWDN2cvNONGNy/DsxTmtlxpOxXvnj1c3+uWXW/10zfh7jbeJ2jjZjohk3f7VXouI69it9B9SmjBmHmHFZXaxbGqgQQoP8g2AQXoZwmps2AMLeq7CsXhDGV5jXD8J4CG0htIDwLISt4rynIXwrxt+GMDTGQ2P54yGcGafdC2HrKtvwHQjXrI19g/AnCF+r7/dQf43rD8Ie8XPbKj7uBmGjGE+D0O0rLKsFhF9A+EmF+VdCuCTGfSE8V6ZMcwgfQNgcwvoQnonTb4WwA4Q2EJ6D0LLKdlwJ4fAY/wzC1W7eNhBaVfv+qLLc5vF7YpCbti+EW+r7fdRfw/urVrfqYNmFz+FXKQNhx/j5L9TveDz8ezyW7Q7hlTi9C4S34//OMe4M4TAIF0FoBuHlWHYAhD/WsF3/Kq0XwlOluhof71BHr89+EB6rbZm4z6MgtK3vz43+1sxfQz5jvD+wNARuLE0IgTEhMCz+Wr0y/vocZ8bRAPHsznNmjIzTD49PHQz0jr80r0zWsy3wSggsDIFlwItAadiuAJSG0lsfmBnj5UAroC2w1Iy9gQ9CYHKV/TkO+Nta2rdH4vpE6lJPYG4ILAYIgbkh5HUC4Ez3+ewL+VnT38f4djNuNOMV4AHgNODc+NndO1nXdsDzcT1vAr3M2DAp8w1gaghMJ6uTLc0wYr0EfgJcFwJLqexIyK+w9ATeL80IgUmlfQWam3FLPKP3tBlt3D4dFeNp8az1SOAYYBBwd9y/NsAw4Jtm6j9eVlKxbpnxczNGxGPCzfEzXjrL+5t4ReWtUh0yo028OjHRjIch+6zGeTdYdvVzghmX1rRRITAqBKaVmXU4cEdsRwwHOpnREzgIeCYEPg6BT4BngIPJ6mNboCVQGhbyl8DFldZt2RXUxSEw171GM9y2jYvlell29XZk/NszTt8vvkZ/MeNNy64GlV67g+O0kaw43mPGrma8bMYoM/5lxjZlXpMADAUOqeHlk3VUQ24Y9wNerzDve8BAYADwTeDKWCm/AI4IgZ3IGp9XxYpwAdkBdGAInJcsazywtxldzWgLfBsoje96Tlz2e8BvgZ/F6VcAzwKHAveSVe5f1rA/X3P7s6b37TVYqaEhsrqeBjaNB+Hrzdg3mT83fj5vIGuUlrMJsGcIfA+4EbgmfnaHJeXGEA9YlqUwbR6f6/0HWf0jBD4HngBGAbOAT4HdQuCRSjtjxhbAJ67xextwfjww/sqKaQ9bA38Ige2BeWQN6nI+CoGdQuAusnp4XNy/RSGwHJhCVrdFvGp16/chsEsI9CNr5PoGWYsQ2JXsWHVJnPYjYGEIbBun+bHMLwyBQUB/YF8z+q/i9m4MvOcez4jTKk1/BugFDAeuNeMwYGTywzr1NWCke3wN8LwZfzfjXDM6xelzgAPid8/RwLXuOTuSvTbbAVsCXzOjNXAL2fF7Z8CPWf8msHcI7Aj8HLi8wrbpGNuINeSGcTV7AfeGwJchMJvsLO8uZL9ELzdjLFnDdWNY6SxTQQhMBH5D9sX0JDAa+DLO/hFwbghsCpwL/DE+55kQ2DkEDiX75fwE0Cf+Mr0lNrBTXeLBe23s2xxYkdsoUhdCYD7ZgeRU4EPgfjNOckUeiv9fJzsIlvNgCHn9qmYw2Vmo0cCZZA3e/HlmrAccBjzotu9/YyP0x2Q/VH9uxg/MeMCMi8qso2fcj9LzR5MdPK8EugAjzNg2zn4nzq9p/yreZxCpbspKaqhb+5vxihnjgK8D27unlqtz+wB3xeWOBca68v8ez5KOisvZrs53powQWBYCx8YG54NkjdWrzLg6HjcPK/O0tH7+iewK74PAfsBwM1qRnYW+Jb4+D1Lcp1dDYEb8UTqa7DXqS1afJ8ezv3e58usDD1p2T8E1FF9rT/W4EWvIDeMJFH/p1sZxQHdg5xAYCMwGWtf0pBD4Y2zo7gN8ArwVZ53Iii+eByG7+a4kNoBPAv4AXBrL/4PyaQzLzPLXe03vW2tg0VdcvkiN4g+2oSFwCXAGxTOnpTOvX1J5uPkFtVzPZyFwcvysn0D22X/bFfkW2Rmn2elzzdiR7IfkJODfQuDfydKN0hvfFpHUoRCYHwIPhcDpZAfMbyf7trr7p7opZZWrW/Hs5vXAUSGwA9mZTv+ZrU2dA/IrJD8BvhEC/YHHqcXxsYL3WXFlFbKrOe9Xme6dDtwB7E52Zedo4Mdl1lGufs4MgdtC4HBgGdnV13PJjocDyNKX1nNPqW29Lfkl8EI8O39oun5H9bgRa8gN4+eBVmacWppgRv+YRzUMONqM5mZ0J/uF/CrZr705IbDUjP3JLr8CfA50qLQiMzaI/zcju3x7T5w1E/JLWl+HlXKIzwOujTmMbchykpdD2TPGk8jORq2NfesD5e+iF1lVlt0V7huXA1m9oU0r1kvLelspHeB+ALwUAp+5IscQ0yjKKOUutgSax2nl6uVbuDO/ZnzNjM4xXo/szFNd75/qpqykSt0qNczmmtEesnz2GrwEHBuX2w/ydImOZD/cPrUsX/9bq7HJQ4ATLLsnZnfg0xCYBTwFHGhZrzKdgQPjNOL2dCZLBbmDrD4uJztutklXAEwEtnLPPdiMljHuAXQla3SvD8yKZ4W/z4o6X0npnoXe8fExbt76rGjIn1RlGarHjViDbRjHSxxHkN2sMtWMCWS5vR8AD5NdHhpD1sj8aQh8ANwNDIqXVE4gqwCEwEfAPy27eSG9+Q7gr2a8ATwK/FcIzIvT/x/Z5Z4xZLlGviG7EbCry2G8DhhBdkPRPazscbLLP2tj3/aP6xOpS+2BP5vxRkzp2Q74xWos71HgCCt/8922wHgzJpEdwM8uzTCjHXAAK67m4OZ9F3gtnlmaB4yOdaZ1CIzxZUNgATDVLD/49gZejOVHkeUR/nU19u924Ma4f21iY2RRrM8iXtm6FT/Dt5A1wp4iO8bU5AagvRkTgcuI97PEz/8osmPHPcA/a1qQGWeZMYPszO9YM26Ns54gu4IzJW7f6XEdH5P9MB0R/y6L00p+Dvw6NmKfIsvTHQfcWWb1LwE7xntpIGtkj4/H46eA82Jduh44MU7vSw1XbULgC7Jj+eMxrWSOm/2/wBVmjKL62WUdYxsxy7ofkTUt3kB3RwgcsBbW9RJweLwrWEQqMOMIsvSkcjnIdb2uc4HPQsjuVRCR6sz4HfBoCDxb39tSEn/g3hMC36jvbZE1o8GeMW5s4mWmW8zy7t/WiJh+cbUaxSI1C4GHoWx3VGvCPODPa2ldIo3B5ZRPTaxPm1E+J1oaCZ0xFhERERFBZ4xFRERERAA1jEVEREREADWMRURERESAmju7XuO6desWevXqVd+b0aRMmzaNuXPnWs0la0fv4QpjxsCyZeXntWgBA9bAYMCvv/763BBC97paXkN8P997b8Uos4sWFfvV79KlSx4vX748j82KH/FPPllxP+qGG64YNHL99devs+1cHU3hfWxK9H42Dnofi+rjGFdXavte1nvDuFevXrz22mv1vRlNyqBBg+p0eXoPV7AqPzeWLYM18TKZ2eoMQrGShvh+nn123o0x48aNK8z7/ve/n8fz58/P4xYtil9vDz20ottjv7xDDjmkVtvgG90AzZrV7QW3pvA+NiV6PxsHvY9F9XGMqyu1fS/rvWEsIgIwdOjQwuPrr78+j1u1apXHH3/8caHcWWedlcfNm68Y9Kpt22IvT7vvvnseP/DAA3k8ZMiQQrnBgwfnsT8bXdcNYRERaXj0TS8iIiIighrGIiIiIiKAGsYiIiIiIoByjEVkLZo0aVLh8W9+85s8fuuttwrz+vfvn8cTJ07M4zZt2hTKdevWLY/nzp2bx/369SuU871S+BvzfP4ywDnnnJPHW221VR6fdtpphXIbbLABIiLSuOiMsYiIiIgIahiLiIiIiABKpRCROvDll18WHvtu02644YY8Hj58eKFcu3bt8njXXXctzGvfvn0ef/HFF3n85ptvFsr51Aqf3pBu04gRI/L4P//zP/O4c+fOhXKfffZZHs+aNSuPf/jDHxbK3XjjjXnsBwyBYp/H6uZNRGTdoW9sERERERHUMBYRERERAZRKISJ1wKdOpPwQzj169Kj4vHQIZ9+LxGGHHZbHb7zxRqGcT3e46qqr8viyyy4rlDvwwAPLrtenaUBxxLyOHTvmcTok9D333JPH5557bmGe0idERNZN+vYWEZG1rkcPMCv/l/x+EhFZa9QwFhGRtW727FWbJyKyJqlhLCIiIiKCcoxFZA3w+cE+h7d79+4Vyy1btqwwr0OHDnn84Ycf5vF+++1XKDfbnV584IEH8niLLbYolOvbt28eL1iwII+XLFlSKLd06dI89l3BpfnRM2bMyONq3dWJiMi6Q2eMRURERERQw1hEREREBFAqhYisAe+8807Z6WnXaIsXL87jNP3Aj3z37rvv5rEfmQ6gZ8+eeezTJz744INCuWnTpuWxT9NIR60zszz2KRKff/55oZzfl08//bQwr0uXLoiIyLpHZ4xFRERERFDDWEREREQEUCqFiKwB77//fh77lIM0vcH39JCmSEycODGP582bl8d+pDso9hzhy40aNapQrlu3bnnse6h47733CuV8+sT8+fPLbmvqzTffLDzec889K5YVEZGGS2eMRURERERQw1hEREREBFDDWEREREQEUI5xLoRQNm7WbPV/O7z00kt5vM8++6z28mrLj+4F0K5du7W2bmnafI5xq1at8jj9TPrR7rp27VqYN3369Dz2I+S1bt26UM4vf4MNNsjjbbfdtlCuZcuWZZeRdiHXp0+fPH722Wfz2HcfB8Wc5QkTJhTmKcdYpDx/fIXiVAcElQAAIABJREFUPQMbbbRRHqffFVdffXUen3HGGXmcHtfWW2+9iuv29w9odEqpRGeMRURERERQw1hEREREBFAqRc6PduXjas4666w89iNzAey99955/Nxzz+WxH5kLYNNNN63Vuvwl5xYtKr9tV155ZR4/+OCDhXnPP/88AMuXL6/VOkVWlU9P8F2eTZkypVBu0aJFedyrV6/CPJ9a4dMgPvroo0I5n2axcOHCPE5Hqttyyy3LLi+9pOpHsXv55ZfzuF+/foVyBx54YB6n+yXS1KQpEv44+vbbb+fxOeecUyh32mmn5fHIkSPz+Oyzzy6Uu//++/P48ccfz+N77rmnUO6QQw7J47Rrx7Zt2+bxqaeemsdpGle6L9K06IyxiIiIiAhqGIuIiIiIAGoYi4iIiIgAjTzHOM2lXZU8Yp8bBbDLLrvk8bHHHpvHO+20U6Gcz1v0+UtnnnlmodwjjzxSq+2olld855135vF9992Xxz63E1YMW5t2TyVS1/zwzr7bpfQz6XPu03m9e/fOY98l26uvvloo9+GHH+bxdtttV3F5S5cuzWOf2+zzDtNt+uMf/5jHF154YaGcz2dOu5YSaWqqHVN9fv+QIUMqlnvooYfy+IADDijM810iLl68OI/T+3RefPHFPE67dvSqHVOladMZYxERERER1DAWEREREQHWoVQK331Kesmm0rxqo9YtWbKk8PiDDz7I4x133DGP065lzj///Dzu379/Hk+bNq1Qzl9a9SNw+ZG0ADp37pzH//M//5PH3/3udwvlfPdS//jHPwrzrr/++rLlBgwYUCi38cYbr1RGZE3w9cGnQaRdox133HF5PHjw4MI8/zn1ddmnaUCx+7Y5c+bk8ZgxYwrlfH31o2P5rhCh2M2b70IuTbnwqRrq3kmkslJXoQBTp04tzNtss83y+Pbbb8/jdORKn3boR7tL2wO+i7a99tqrMM+v+9FHH83j448/vlDOj5AnTY/OGIuIiIiIoIaxiIiIiAiwDqVSVLvjtdK8YcOGVXzOJZdcUnhcSjOA4p3oac8WM2bMyOP07njP3/XuL7N+5zvfKZRbf/318/iGG27I49tuu61QrkOHDnk8d+7cwjx/KWqPPfbI41deeaVQrnQJWpeJZE3zlzO7deuWx/PmzSuU8/Vk6623LszzKQ6lHlVg5TQoX4d8CsfMmTML5b72ta+Vfc706dML5Xxd873SpCPp+Tve0x4wfI8VaQqGyKqqlLLjj4G+THr8SlOZKvF1z/fmUm0ZPj0J4IorrshjX4/SniJ69OiRxzfddFMe+x6goFiPvv71r+dxly5dCuV8qqHvsQaK6Rl//etf8zhNpVCPFU2bzhiLiIiIiKCGsYiIiIgIoIaxiIiIiAiwDuUYVzNlypQ89jmM9957b6Gcz1O8+OKLC/N892q+67Z0RCufe+VzpdK8XZ/b5Uea8yP2APzbv/1bHh922GF5PGnSpEI5381MOtLPN7/5zTz2uZP3339/oVwpB6y2o/6J1Faa9+sf+67W0nxb/zjN0/V1efPNNy87HYpdtPll+G4XoVgPfTm/bCh2B9e+ffs8TnMZfa6/z5OE4neIH/VLZHXU5ru7Wpna5ChDMce2tvm2vqs1KOb777DDDnmcHlP9yLA9e/bMY38/D8Dpp5+ex7Nnz87jvn37Fsr542HHjh0L80455ZQ89t8bd911V6FcmnMsTYvOGIuIiIiIoIaxiIiIiAjQAFIpFi9ezOTJkwG47777CvM22GCDPPaXQdNuk3x3Mv5y5/77718o57t/Sbta85d7/eWXtGsanzLx8ccf57G/dJpuo++SKk2l8PP8ZdttttmmUM6P4ONHy0u3w48O5C9RAUyYMAEovpYidcGnM0FxtDtfPz/99NNCOX/pNL1k69OW2rRpU3EZfuQ7X+ffeuutQrm0m8OSNL3D13m/Db4bt/Sx3wZY+TtKpC581REWa9s9W8p/7m+88cbCvFGjRuWx74rxpJNOKpTzXardc889efzGG28Uyvnvhz333LPiNv3hD3/I43PPPbfs9kDx+O27aIRi16Y+fu211yquV5oenTEWEREREUENYxERERERoAGkUsyZMycf8W3MmDGFef5yrJdecvU9MfiRbtJLrj41o127doV577zzTh6PHz8+j9M7Y/0d8T4NIk1PqDS6XLpP/hLxoEGD8njEiBGFcr///e/z2Kd9AGy//fZ57O8uTstttdVWZbdBZHWlPUVUSqXo379/oZzvzSGtaz61yPcika7Lf+b98kopWuW2w1+S9r1QQPEycvfu3fM4rU+V0qBg5e8ekbrwVXsUSo9DPrXCp92ldc+nJ6S9xZx44ol5/OKLL+axH1UOiqPd+eNyeqz0x+Vq/L77HiXSffSjTqY9ZRx44IF57OusT6sAePfdd2u1TdI46YyxiIiIiAhqGIuIiIiIAGoYi4iIiIgADSDHuHPnzhx11FHAyiNLvffee3n8ySef5HHaFdLMmTPz2Ocb+5F30nk+pxiKo/H4HOY0r9Avw3fz5Ef2gWK3Ub4rp4ceeqhQ7umnn6Y2/D77HKqUz50ujXRXUsoVq+1IRiK15XP+oHJXa+kIcT7vN8093HDDDfPYd3OYfn59ueeffz6P026h/Ah0vsvDdL1+e31OZlqffM6j3w8o5h+L1LVq3bb5UVerddc2evToPE7rQMuWLfP4vPPOK8zzI0r6483EiRML5Xx+vs9ZTrfdjzp32mmnVdxez9e36dOnF+b16dMnj9N7Gh5++OE8/v73v5/HAwcOLJQbN25crbZDGiedMRYRERERQQ1jERERERGgAaRStGnTJu9ubPPNNy/M86NieWn3LP4ykO8iJr28+/e//z2P01F6/CUXP2Jcevl0dR166KGFx08++WQeDxgwII/TFA5/SSztGspfmvIpIbNmzSqUK6VgpJd9RVZXOqqcHxXOf9622GKLQjl/+TXtFsqnT/gUDJ9iBcW0BZ+O5VMioHjZ18/zaR9QuTvDtN74cunlYY0uKWtC6XNWqTtQKKYapV0RTp06NY99CkKaCujTkM4///zCvAceeKDs8jfddNNCOX8cfeGFF/LYj0ALxeO0T4XyI+el/LFy9uzZhXlHH310HqfH229961t5fOyxx+Zxmp6p+tu06YyxiIiIiAhqGIuIiIiIAA0glaJ58+Z5Tw/pZZ/nnnsuj/3lTn/HLECnTp3yuF+/fnmc9t5wxhln5LG/Qx1gyZIleewvC6eXWDx/CTe9C91fWvWXtjbeeONCOX85dtiwYXnsLxVB8TJueqexv6zm9zm9NO0vbYnUpfTz37p167LzunXrVijnL6P6Hl+gmDLkR7tLe6Xw6UM+5eLjjz8ulPOXRz/44IM89t8fULnOpykX/nG6Tf77RKSulHpCqW3PQmmKz9/+9rc8njRpUh6nqQO+xwo/EiwUe1nyI9oNGTKkUO6cc87J46FDh+bxpZdeWijn6+Ivf/nLPE5TKfxoktVGy/PLS/lt8nyvGbBybxbStOiMsYiIiIgIahiLiIiIiABqGIuIiIiIAA0gx9hLu3tJH5dMmTKl8NjnME6ePDmPfV4iFLtA8/lVUOwaqmPHjnmc5jP70a58DmQ6ap/PCfZ5Xmn+kx8dyK/Lj16ULsOPApjy3WSl29S7d29g5W6sROqa//z7XNw0T3fChAl5nHZR6B/7uuzrIBRHsfPrTeuu/9z73P40Z9/nB/v6mt6X4KU5n9VGpxRZFQsWLODll18G4MYbbyzM8/eTVBu51c/zx4q0a1Ofd592+zl8+PA89l2g+mNoyuf++1zhlM9f3m233Qrz/HH+gAMOyGNf/wHuu+++PD777LML87beeus83mmnnfI4HT3vd7/7XcVtlMZPZ4xFRERERFDDWEREREQEaGCpFLW11VZb1apcOpqPiKwZaXqDT2PwKUd+pDuAPffcM4/79u1bmOfTGHy6g+8iCoqXh33XhenoYD7Nwl/OTbu08qNd+pSmdOQ7v02+ezpYOWVEZHW1adMm70bsBz/4QWGerxM+1S7tRtE/9l20peX8Z/uiiy4qzPN1wqcdpt2B+i7QfGrGj3/840I5n05YLeXi17/+dR7PmDEjj9MRcn19Tuf5dCo/Emb63aP627TpjLGIiIiICGoYi4iIiIgA62gqhYg0LGk6gk9v8GkWaU8pP/rRj/L47bffLswbOXJkHvvLrePGjSuUe+ONN8ouP02l8JdpfarHzJkzC+VOOOGEPN59993zOL20m26Hl/YGILK6mjVrll/+33vvvet5a9Y+3wOGyJqkb28REREREdQwFhEREREB1DAWEREREQGUYywidSDtrs3zub577bVXxXLpyHKVRprbd999Ky7DdyWVjsS1uiM++jxnqL7P6ciVIiKybtAZYxERERER1DAWEREREQGUSiEidaBVq1aFx5XSDHw3aam0ezU/+pbvDq5aCoPvJm1VUycqratDhw4Vty9NnViyZMkqrVtEROqXzhiLiIiIiKCGsYiIiIgIoIaxiIiIiAigHGMRqQNz584tPF66dGke+1xcP1T0V+FzfdPhp6vlHK8Kny/stz3NMfbdwaXzquVSi4hIw6UzxiIiIiIiqGEsIiIiIgIolUJE6kDa1ZpPJVi2bFke9+zZc7XXVdvUiWopF9W6f6uUSpF2/+bTRfw+wsqpFSIism5Qw1hERGrtggsuqDhv8ODBa3FLRETqnlIpRERERETQGWMRqQN+xDmAzz//PI/nzZuXx2nKhZeOHufTGFZFtZSLVenJIu1Rw+9L2gtFu3btvvLyRUSk/umMsYiIiIgIahiLiIiIiABqGIuIiIiIAMoxFpE6cPLJJxcev/7663nsc4x33nnnistY1VHx6lqaL12SdjXnH6fb3qlTp7rfMClLvWSISF3SGWMREREREdQwFhEREREBwNLRodb6Bph9CEyv141oejYPIXSvq4XpPax3ej8bB72PjYvez8ZB72PjUav3st4bxiIiIiIiDYFSKUREREREUMNYRERERARQw1hEREREBKjDhrEZF5oxwYyxZow2Y7e6WnZc/n5mPFaHy7vNjDlmjE+mdzHjGTMmx/+d43Qz41ozpsR93ClO38aM1+O0PeK0FmY8a0bbKuv/PzP2ifEhZowyY4wZb5jxw7raT7e++av5/GdLr4U0XWb0MOM+M6bGz/0TZvRZheV0MuP0KvPPjd8n482414zWcbqZ8Wsz3jJjohlnxelHxvLDzOgap/U24/4q6zAznjej45rcNzO6m/HkV12ONC1r6hhqxlAzBq1KGTPOiMe8YEY3N73s8TDOOzEePyebcWKc1sqMJ2N99nXjZv/cMuv/rhk/j/E2cTtHx7p/81d7JSquo8a2hS8Tj9eX1cW6pWGqk4ZxbBAeAuwUAv2BbwLv1cWy64JZ2YFMbgcOLjP9AuC5ENgaeC4+BvgWsHX8OxW4IU7/IXA28G3gJ3Haj4C7QmBhhe3pCuweAi+Z0RK4GTg0BAYAOwJDv8r+rUnxC7AZcCdUbshI42eGAQ8DQ0OgdwjsDPwM2HAVFteJCp8nMzYGzgIGhUA/oDnwH3H2ScCmQN8Q2Ba4L04/E9gFuAk4Nk77FXBRlW34NjAmBD5bk/sWAh8Cs8z42iosS5qABnwM/SfZtqS9KJQ9HprRBbgE2A3YFbgknlA5CPgH0B/4fiw7AGgeAiOrrP+nwPUxvha4JgQGxrp/3Wrv3ap5HDi02okvWbfV1RnjnsDcEFgMEAJzQ2AmgBnTzLjUjJFmjDOjb5zezrKztq/Gs6WHx+m94lmfkfFvz3RlZuwSn9O7ynJOMmOIGc+TNXALQuAl4OMy+3I48OcY/xn4rpt+RwiEEBgOdDKjJ7AUaBv/lprRCTgUuKPK63Uk5GeQOpCNQPhR3K7FITAp7sPt8Vf5v8x424yj3Gtwnhkj4q/1S930R+LZrglmnFrmtetmxstmfKfScuJ7MMmMO4DxZA2RIcAxVfZJGr/9gaUhcGNpQgiMCYFh8QfUlfGM0DgzjgYwo70Zz7n6f3h86mCgdzz7c2WZdbUA2sQftW0h+z4h+9F5WQgsj+ufE6cvB1qxoh7uDXwQApOr7M9xwN/W0r49EtcnUk61Y+jP43f0+HiG1eL0oWb8Jh773oqfecxoY9mVj4lmPAy0Ka3EjBvMeC0eHy5deTOKQmBUCEwrM6vS8fAg4JkQ+DgEPgGeITsBVTpOtoRs+4FfAhdXWrdlV2sWh8Bc9xrNcNs2LpYr22aIZ3mHmvEXM94042732h0cp40EvufWuWs8Po6Kx91tyrwmgezk1SE1vHyyrgrxk706fxDaQxgN4S0I10PY182bBuHMGJ8O4dYYXw7h+Bh3is9tB6EthNZx+tYQXovxfhAeg7AnhNchbFbDck6CMANClyrb3QvC+GTaPBdb6XFc915u3nMQBkHYDMJQCC9D6A/hKgj71fB6/RnCoe7xrRDmQLgXwnEQmsXpt0N4EEIzCNtBmBKnHwjh5rh9zeK27RPndYn/20AYD6FrfDwfwoYQXoFwQLXlxNdlOYTdk+2eXFqe/preH4SzIFxTYd6REJ6B0Dx+zt6F0BNCCwgdY5luEKbEz9tKdS9Z3tnxM/shhLvd9I8gXAjhNQh/h7B1nH5A/F54FML6EJ6uVvfjc6ZD6LA29g3CxhDG1fd7qL+G+Uf1Y2gXF99ZOnbE485VMf42hGdj/N8QbotxfwjLIAzyy4qf5aEQ+rtlDaqyfdMgdHOPKx0PfwLhIjf94jitBYR7IIyCcCyEwyD8oobX5OTS/rnHn8Z6fy6ETnF6tTbDpxA2ice3lyHsBaE1hPdiWYPwAITH4nM6QmgR429C+Ktb1mNuW46DcF19f270t2b+6uSMcQjMB3Ymu6TyIXC/GSe5Ig/F/68DvWJ8IHCBGaPJfn21BjYj+0V5ixnjgAeB7dxytmVF2sG7NSwH4i/X1divAFTt6DkE3g2B/UJgD2AhsAkw0Yw7zbjfyuco9iR7nUrL+AHwDeBVsnSM21zZR0JgeQi8wYrLugfGv1HASKAv2SUtgLPMGAMMJzvTW5rekuzM+U9D4JlaLGd6yM4EeHOAjaq9HtJk7QXcGwJfhsBs4EWy1AYDLjdjLPAssDE1pCdYdun1cGALss9bOzOOj7NbAV+EwCDgFmJdCYFnQmDnEDg0PvcJoE88W3SLlb/s2SUEPl9L+6a6IxXVcAzd34xX4jHx68D27qnljq37AHfF5Y4Fxrry/x7Pko6Ky/HH1zUmBJaFwLEhsCPZcf0c4Cozro519LAyT0uPk38iawM8COwHDDejFdXbDK+GwIyQXWEaTfYa9QXeCYHJ8Rh/lyu/PvCgZfceXUPxtfZUnxuxcrm3qyQEviRrmA6NH9ATyfJ4gezyEPClW6cBR4aYNlBixi+A2cAAslSPL9zsWWQN3x1ZcWm10nJ2Axaswq7MNqNnCMyKl4ZKl2rfJ2tolmwSp3m/JstpPAu4FZgGXM7Kl1AXxf3Iheyy0Dgz7gTegfxLcbErZu7/FSFwk1+GGfuR5YPtEQILzfIfCgDLyL48DyI7sFdbTi/Kv3at47ZL0zQBVqTz1NJxQHdg5xBYasY0ks9+Gd8kO3B9CGDGQ8CeZAewGaxoDDwM/Mk/MTaATyL7nD9Gdpn0qLgdtyTrWWZGs3jQXNP7projVZU7hppxH1mO7aAQeC8eH/1nrNyxtSwztiA78bJLCHxixu3UXBcrqXQ8fJ+s0eqnD02eezpZquHuwKfA0cDzZOl63iKyhmouZOkltwG3xcZrP7LUxUptBn/8rPE1IkvveCEEjojHwXTbS1SfG7G6uvluG7P8TCPAQGoe8vAp4EyX87NjnL4+MCserL5PduNNyTzgO8AVsRFYbTmraghZo574/29u+gkx33B34NMQmFV6khn7AjNDltPYlizncXmMUxOBreLz2rt9gdq/dqeY0T4uY2MzNiB77T6JjeK+ZF88JQE4Behrxvk1LGcl8fXtAWXzzaRpeB5oZS533Yz+MbdxGHC0Gc3N6E521upVss/knNhw3B/YPD71c7L8+nLeBXY3o2383H2DrM5Alqu7f4z3Bd5KnnsecG0ILCXLrQxUroeTgC3X0r71gWIPOCIlVY6hpYbr3Pg9XZsfby8Rb0A1ox/ZDW8AHclOeHxqxoZkN9CtqkrHw6eAA83oHK/8HBinEbenM1lu7h2sOE4GXB60kx8n43MPtuxmdczoAXQla4hXazOU8ybQy4ze8bG/d2Z9VpzwOqnKMlSfG7G6uvmuPfBny7oaG0t2KeMXNTznl2SXQMaaMSE+huzX8YkxHaAvyZnLeCnzEOAP8axwpeVUZca9wMvANmbMMOM/46zBwAFmTCY7czU4Tn8CeBuYQnbmyXc5Y2Rnikvrvhn4Hdndq78ts/rHWfGr2oCfWnaz22jgUqpXSELgaeAe4OV4ZuEvZAfiJ4EWZkyM2z08ed6XZF8CXzfj9CrLKWdnYHgILKu2bdJ4xcuORwDftKxLswnAFcAHZGdvxwJjyBqZPw2BD4C7gUHx83UC2UGJEPgI+KdlNxRdmaznFbLP4khgHNn3VKlrpsHAkXF5VwA/KD3PjI2AXUPgkTjpOmAEcBrZ5zyV18O1sG/7x/WJlFP2GBoC88iON+PJGpgjarGsG4D28ThwGdmVQkJgDFkKxZtk9eGfNS3IjLPMmEF25nesGbfGWWWPhzF18ZdxO0eQ3Sjr0xl/Dvw6NmKfAvYmq+N3lln9S8COpZNeZI3s8bFt8BRwXqyHVdsMqRD4gixl5fGYVjLHzf5fshNvo6h+dln1uRGzLJFc1jYz/gEcEr/4GjwzfgcMCWHlHj5E1kUxVeqOEDhgLazrJeDwkN2pLyK1EI87j4bAs/W9LSXxbPs9IfCN+t4WWTM08l39+TErbhJcF4xXo1gak3jp9xaLA3ysKTH94mo1ikW+ssspnwZVnzYjO35LI6UzxiIiIiIi6IyxiIiIiAighrGIiIiICKCGsYiIiIgIUIcDfKyqbt26hV69etX3ZjQp06ZNY+7cuVZzydrRe1i/Xn/99bkhhO51tbyG+H4uXryin/5WrVqt9vIWLVrRN3+bNuW6UF37GtP7OGYMLKvQsWOLFjBgwNrdnvrQmN7P2pg7d27h8bIKH4BmzYrn49Zbb7087tSpU91v2Gpqau9jY1bb97LeG8a9evXitddeq+/NaFIGDRpUp8vTe1i/zKymAWG+kobyfn755Zd5PG3atDzu3bt3mdLVnw/QvPmKfv/HjRuXx/369SuUM6uz34xfSWN6H6u9hMuWQQP4eK1xjen9rI1bbikOLDlv3oqeSH0juX379oVym2yySR4fccQRa2jrVl1Tex8bs9q+l0qlEBERERGhAZwxFhEpZ+nSpXn83nvv5XG1M8a++0l/hjg1c+bMPN5hhx1WdRNFGrS0O9ZKV0PScv4Mb8uWLQvz/JWYFi1WNCHSFKdK60qn+7Smgw8+OI///ve/l31+un1+G0Tqgs4Yi4iIiIighrGIiIhIk9ejR3Z/QKW/Hj3qewvXDjWMRURERJq42bNXb35joeQcEWmQWrdunce33nprHqddOg0cODCPq/Uo8be//S2Pf/e73+XxQQcdtFrbKdJQVcsxXr58eR6nXailecXeGWeckcc+r7hnz56Fcr4bti+++CKPlyxZUijXoUOHPB49enTF9Xo+r7ha7zMiq0JnjEVEREREUMNYRERERARQKoWINFC+u7Zhw4bl8YgRIwrl+vfvn8cnn3xyHl922WWFcv5ybjqoh0hjlKZI+DpVLV3iiSeeyOPf/va3hXlTp07N4y5duuRxmsa08cYb57HvHjFNffDP86kfaWrGeeedl8fnnHNOHit1QuqazhiLiIiIiKCGsYiIiIgIoFQKEWmg/KXeHq4DTT/qFcCbb76Zx//1X/+Vx75XC4DOnTvncffu3etsO0UaKt/zBFROnzjmmGMKjx944IE8bt++fWFe27Zt89inQcyfP79QbtasWWXX5Ue6A2jTpk0e+zSLxYsXF8pdeOGFeXzllVfm8XXXXVcod9RRR+Vx+l2hUfKkNnTGWEREREQENYxFRERERAA1jEVEREREAOUYi8g6wOchvv/++4V5fuQsPyqeH5ULit21tWvXrq43UWSd8sILL+TxI488Upi3+eab57Hv4g1WztstSUe0mzZtWh5vt912eZzmDs+bNy+P/X0B6T0Cvs76bTrllFMK5fxImFtttVVhnu8OrtoomdK06YyxiIiIiAhqGIuIiIiIAEqlEJF1gL8U60fegspdUKXTfSqFH5Urpcut0likI995N910Ux6no8f5dIl0pDpfP3x3cGl984/9yHdpilOl+uanp9vkl53u47nnnpvHjz76aGGe6rPUhs4Yi4iIiIighrGIiIiICKBUChFpINJLp/6yp78jPR29qtKl2A033LBQ7qOPPqq4LpGmwH/u//GPf+SxH80Oir0+pOkHfhm+XJoi4dMzfMrFggULCuV8jzN+2dXqqE+r6NixY2HeSy+9lMfjxo0rzNthhx0qLlOkRGeMRURERERQw1hEREREBFDDWEREREQEUI6xiDQQ1bpSmjJlSh5X64LKj6r1+eefF+Z17do1j6dPn75K2yGyLrv//vvz+OOPP87jNE/X5wSn9WH99dfP44ULF+ZxOkKe7+bN3yPglw3FOutHu6uW21xtun981VVXFebdfvvtZZch4umMsYiIiIgIahiLiIiIiABKpSjr+uuvz+Px48dXnFeNRs8SqTsvvPBCHm+22WaFeX4UrPQyrefr4ZtvvlmHWyeybvjXv/6Vx747tTQNwltvvfUKjxctWlT2eenId75LtU6dOlVcvj9W+vSLNGWq0jHVrweK+zVs2LCK6xWpRGeMRURERERQw1hEREREBFDDWEREREQEaGA5xj53CYpDRVbc0osnAAAYz0lEQVQrl+ZAVeJzj1KPPfZYHs+cOTOPN9hgg0K5E044IY9//etf5/Gmm25aKFcpr9jnUH2V7RNpaiZPnpzH3bt3z+N06FnPdyWV1kH/eNasWXWxiSLrlJEjR+axz+FNuzzzx9S0Hn3xxRd57LtXS3N9K9W3dHmVjt9LliypWM6vK912//2QDnUtUhs6YywiIiIighrGIiIiIiJAA0ul8GkKAGeccUYe77vvvnlcKcVidfhu2Hbdddc8Ti/zbLLJJnnsRxFKUy6OOOKIPO7QoUMep+kSPrWi0sg+NVF3cNIY+cu+/rJq+nmv1GWUv+QLxUvHM2bMqLPtFFlXTJ06NY/9sSg99vhuD9Nu01q0WNFsqJbS4Mv5ZaRdw6UpGJXWW6lcmp7o1zt//vyyzxGpRmeMRURERERQw1hEREREBGgAqRTLly9nwYIFwMqXN4cMGZLHCxcuzON+/foVynXp0iWP/V2o6ShY7777bh7/6U9/Kszr0aNHHnfr1i2PH3300UK5ww8/PI/nzZuXx0888UShnB9Za8stt8zjAw44oFBu880356tKLx1VuuylXi5kXfbKK6/ksf9cp59/fwm32p32PgWjZ8+eeTxlypRCua222moVt1ikYZs9e3Ye++NcbdMboFjHfJ1KU5z8MvwxKi3nl+fLpSPp+W2sbfrgtGnTCo8/++yzPO7YsWOtliFNj84Yi4iIiIighrGIiIiICKCGsUimRw8wK//n0mxERESk8ar3HONFixYxfvz4svNKuccAd999dx7379+/UM53qebjNHdw3LhxeZyOqrP33nvnse8m6qCDDiqU8znMfl0HH3xwodycOXPy+K233srjl19+uVBu2223zePtt98+jwcNGlQo50f+SnOHlUtcB1zu3VeaJ2vMhAkT8tjnIaZdKPoumXzuYbWRuHy+4kcffVQopxxjaax83r0/bqTHQ19X0pz+annFns8X9vnM/n6h9LHfpvQeIc9vU7VyqUmTJuXxLrvsUuvnSdOiM8YiIiIiIqhhLCIiIiICNIBUii+//DLv9uzjjz8uzPMj2Hz66ad5/PDDDxfKde7cOY/9JVI/4hzAHnvskcd9+vQpzPOXan13cHPnzi2U85d9fDdx6bb7lIvNNtusbAzF7mOGDRuWxyNGjKi4vE6dOhXm+S7f/Ah8ffv2LZRr1aoVIusK39WST59IUyT8Y/+dkV4ervScyZMnF+bttttuX3lbRRqi999/v+I8nwaxqqOuVuOX6dMd0vrrj9npaHeV+OekqVXV9uWdd97JY6VSSCU6YywiIiIighrGIiIiIiJAA0ilaNasGe3atQOKvTcAnHzyyXncq1evPE7TFr744os89mkGrVu3rlhu7NixFbepffv2eexTGKB4efaDDz7I4/Ryjh9Vxz/Hp05A8W5dn5qR8tvue7wAmDlzZtnt/dWvflUod/zxxwPFEftEGio/UuU222yTx+koXZ6/POzTKqDyCJG+txqRxsT3wlBN2rNDbVMaqvE9TPieX9JelPxx2m9HtW3y6RjpsbdaLxWzZs2qabNFdMZYRERERATUMBYRERERAdQwFhEREREBGkCO8bx58xgyZAgAPXv2LMzzubM+N3fLLbcslPNdoPncI/98gMWLF+dxOppPuk0lvps4gJYtW+ax7xqtWo6xl+Ysb7jhhmW3Ke1qyudhpbnT/rXx+5yOSnT11VcDMFsjuUkDlNZJn1fv8wurdcPm8wvTz7+v/z7P0d8rINKYvP3227Uql+bj+y7P0nrk62K1cp7vKjSt577O1na9Pk7LVcsx/vDDDyvOEynRGWMREREREdQwFhEREREBGkAqxeLFi5kyZQoAvXv3LszzI9CNHz8+j2fMmFEoV6m7smqXVNJ5/vKsj9PLNP6SkL8sk44q16ZNmzz26RcpP7Ke36bPP/+8UM6nd6TzfPdy/vJzOqJXaRnVLkWL1Jfp06dXnOfr9YIFCwrzfP2qdFk2fezTkXy3cCKNSdq1ZyXpcc6nO6Tdq9VWpZHv0nrp1+3jNOXCH2N9KkXafWO1423a1atIOTpjLCIiIiKCGsYiIiIiIkADSKVo1qxZfpl0+PDhhXn+kr+/9JmmAixcuDCPfW8QflQ5gPnz5+dxtV4p/KWj9G5d/9hfzkl7pfD8pR2f9gDFS11+P9IR8nyKRHrpyG+T75XDPwfg0ksvBeCSSy6puK0i9eXNN9+sOK/apVNf93y5tI77S7i+zrz//vtffWNF1gFTp06tOM/XlTRdYtGiRXlcLTWhGp8+sdFGG+WxHwUPisepaiNX+uN+586dKy7Pb2+6DPVKIbWhM8YiIiIiIqhhLCIiIiICqGEsIiIiIgI0gBzjzTbbjOuuuy6PvS5duuSx79YszTH2OYY+TzftmqVDhw557HNxoZhv5fOS0m7dfO6Vz4dKc4z9NlZadrV5ft8BOnXqlMfpyHe+7DbbbJPHBxxwAOVce+21ZaeL1Kfa5vqmdder1i2Uz032dTft/lCksfDHTSgeY3x9SI9zvlxajzw/Ly3nj22zZs2quK5Kz0mPlX4U2v333z+PH3/88UI5//2Q5ken+cgi5eiMsYiIiIgIahiLiIiIiAANIJWiefPmedcrl19+eT1vjYjUlzSlobaXff2lUz8vHc3L85dsq6VmiKzL0jrlUwt82uHmm29eKOfTDl955ZXCvI033jiPFy9enMfV6lu1eZ6vv76OQrG7Vc933QbFdIk0HaNaN60iJTpjLCIiIiJCAzhjLNLUXHDBBRXnDR48eC1uiYiIiHhqGItIg5D2SuEv+/pLrOnl0EqXadNLsf6xX56/HAzFtI1VHfVLpCFIUynatGmTx77XpoEDBxbK+RSEdERa3/tEtRQJX65aupJfRqU4XZ5Pn+jTp0+h3LPPPpvH6ei31XrEEClRKoWIiIiICGoYi4iIiIgAahiLiIiIiADKMRaRBuKzzz4rPG7VqlUeVxt9q3nz5mXLpTmKPsc4zT/2fO7lhhtuWGWLRRq2NB+/Us68H0kOYMKECRWXWa3ueL7++e7ffDdxsGrdJXbt2jWP0zxin2Ocbmu17xGREp0xFhERERFBDWOROtWjB5iV/+vRo763TkRERKpRKoVIHZo9e9XmycojW9W2qzR/edTHPsWi2vJ892wA8+bNy2OlUsi6zKcjQeWR3w4//PDC49GjR1dcZqVRKNO0BT/P18slS5YUyvnn+XJpN4reeuutl8f77LNPYd4VV1yRx2k6VceOHSsuU6REZ4xFRERERFDDWEREREQEUMNYRERERARQjrGINBBffPFF4XG7du3y2OdGpnmSPpfRd/2U5lf6nGOf57jFFltU3Q6RdZXPxU21b98+j9MuzxYsWJDHaZ6ur2+1HWLZD02d5iL7+lxtSGjP5wqn9dx/B6TbVynHWsTTGWMREREREdQwFhEREREBlEohIg3EP//5z8JjP1qW16ZNm4qP/aXjtHs2f2nWdwuVpk5MmjQpjwcMGFDTZos0WD4dCYpdIlZLGfJ1J01VqDSCZNo9oq9vPqUhTZHwj/3yWrQoNk9at26dx36UzHTETC/ddj9inkglOmMsIiIiIoIaxiIiIiIigFIpRKSBOO200wqP/QhWvhcJf4c7wKxZs/K4S5cueZyOaOfTLHyaxsKFCwvlOnfu/FU2W6TBeuKJJwqP586dm8eLFi2q+LwpU6bUavnVeovx6Uo+LSJNpfApGL5HCf/81NixY/P44osvrrhekVWhM8YiIiIiIuiMsYiIiMg67YILLqg4b/DgwWtxS9Z9OmMsIiIiIoLOGItIA3HZZZcVHu+www55/MYbb+RxmhvZp0+fPB44cGAep7nDbdu2zWPfJdsxxxyzilsssm5JR7irxOfj+27SoNiVm4/TnH6f6+uXUS0X2UvL+fsC+vbtW3HbRVaXzhiLiIiIiKAzxiIiIiJSR9b1fGer765NzOxDYHq9bkTTs3kIoXtdLUzvYb3T+9k46H1sXPR+Ng56HxuPWr2X9d4wFhERERFpCJRjLCIiIiKCGsYiIiIiIoAaxiIiIiIiwNpoGJtdiNkEzMZiNhqz3epouUMxG7RKZcxux+yduD2jMRuYzN8Fs2WYHRUfb4PZ63Ef9ojTWmD2LGZtV1r+iuX8H2b7xPgQzEZhNgazNzD74Vfa39owm7+az38Ws851tDWyjjHjSzNGmzHBjDFm/Nhs7fx4NqOvGS+bsdiMnyTzDjZjkhlTzLjATd/CjFfi9PvNWC9OP9OM8WY84abtZcY1VdbfxowXzWhuRi8zFpkxyoyJZrxqxklraNdL6/+tGV9fk+uQxsuMHmbcZ8ZUM16Pn/0+NT9zpeV0MuP0KvPPjnVrghnnuOm/MOP9+P0x2oxvx+lfM2OsGa+ZsbVbx9PVvlvM+IsZW8a4vRk3uX0basYqtSPM+B8Xr2fGS2bqnUuK1uxBL2tEHgLsRAj9gW8C763RddbeeYQwMP6NzqeaNQd+Azztyv4QOBv4NuQH7R8BdxFCcRSBFcvpCuxOCC9h1hK4GTiUEAYAOwJD63Z3VoOZYdYMuBMqfylKo7coBAaGwPbAAcC3gEvSQmvoQPIxcBbw22RdzYE/xG3ZDjjGjO3i7N8A14TAVsAnwH/G6ccB/YF/AQeZYcDFwC+rrP8U4KEQKI0qMDUEdgyBbYH/AM4x4+T0SXX4WlwHVO7jSKSC+Pl+GBgaAr1DYGfgZ8CGq7C4TlQ4BpjRD/h/wK7AAOAQM7ZyRa6J3x8DQ+CJOO3HZMfNc4DT4rSLgMtDYHmF9WwPNA+Bt+OkW8m+H7aO+3YyULuRSlaWN4xDYAnwHHD0Ki5LGqk1fTaoJzCXEBYDEMJcQpgJgNnPMRuB2XjMbsbM4vShmP0Gs1cxewuzveP0Npjdh9lEzB4G2uRrMbsBs9fimelLV3ObzwT+Csxx05YCbePfUsw6AYcCd1RZzpHAkzHuQNZn9EcAhLCYECbFbb8ds2sx+xdmb+dnqbN558XXaGxhv8weiWewJ2B26kprNuuG2cuYfaficsx6YTYJszuA8cCmwBBAw4AJITAHOBU4wwwz4yQzhpjxPNnBBDPOM2NEPCN0aZzWzozH4xnn8WbZQceMwWa8Ecv+ttz6QmAEWV3zdgWmhMDb8UB2H3B4bAx8HfhLLPdn4LsxNqAlpfoKxwN/D4GPq+zyccDfKrwWbwP/TdZwL50du9OMfwJ3xrPMV7rX4oexXM94Rmp0fC32jmVvj4/HmXFuXMd0oKsZPapso0g5+wNLQ+DG0oQQGBMCw2LdvdJ93kr1sb0Zz5kxMk4/PD51MNA7fmavTNazLfBKCCwMgWXAi8D3ati2wrHTjN7ApiFUPTGU18VYfjfgolJDOgTeCYHH4/z/jvs2PjmD/Ug8uzzBjFPjtMFAm7hvd8eij8T1iawQQlhzf9A+wOgAbwW4PsC+bl4XF98Z4NAYDw1wVYy/HeDZGP93gNti3D/AsgCDCsuC5vH5/d2yBpXZrtsDTAowNsA1AVrF6RsHeDFAs1jmqDh9s7isl+O6rwqwXw37/ud8n7LHtwaYE+DeAMcFaOa25cG4zu0CTInTDwxwcwCL8x4LsE+yv20CjA/QNT6eH2DDAK8EOKDqcqBXgOUBdk+2e3K+PP01qT8I88tMmwdhQwgnQZgBoUucfiCEmyEYhGYQHoOwD4QjIdzinr8+hK4QJkGI3UOGTlW24RcQfuIeHwXhVvf4+xB+D6EbhClu+qYQxrsyoyDcBaEDhOchtKyyzvUgfOAe9yoty03rBGGR28bXIbSJj0+FcFGMW0F4DcIWEH4M4cI4vXnclp0hPOOX6+JbIBxZ358D/a1bfxDOgnBNhXlHQngmfv42hPAuhJ4QWkDoGMt0gzAl1uWVPvtuWdtCeCvW57YQXoZwXZz3CwjTIIyFcBuEznH6QAjDIbwAYRMI90HYuob9eRHCDjE+DMLDFcrtDGEchHYQ2kOYAGHHOK/0PdUGwngIXePj+ckymkP4sL7fQ/01rL81e8Y4hPnAzmRnnj4E7sfspDh3f8xewWwc2Zmf7d0zH4r/Xwd6xXgf4K643LHAWFf+3zEbCYyKy9mO6n4G9AV2AboA58fp/wecTwjFSzwhvEsI+xHCHsBCYBNgImZ3YnY/ZuVyuXrGfS4t4wfAN4BXydIxbnNlHyGE5YTwBisufx0Y/0YBI+P2bh3nnYXZGGA42Zne0vSWZGfzfkoIz9RiOdMJYXiy3XOAjcrsj8gzYcVZ10qfq3HAAWb8xoy9Q+BT4FPgC+CPZnyPrA6tMSFwZ8jSII4HzgWuBb4V8xavKZPb2A2YV8NiLXk8JAQWxfhA4AQzRgOvAF3JXosRwMlm/ALYIQQ+B94GtjTjOjMOBj5zy1Tdk7q2F3BvCHwZArPJzvLuQvZ5vtyMscCzwMbUkHoRAhNZkWb4JDAa8tSjG4DewEBgFnBVfM7oENg9BPYHtozzzLJ7Au4yK7vO4rGz+r49HAILQmA+Wbth7zjvLDPKHSPTffoSWGJGh1qsT5qINZ90HsKXZPm0Q2Mj+ETM7gOuBwYRwnuY/QJo7Z61OP7/ssZtNNuCrKG5CyF8gtntybLKbdOsfD1mf2JF3vAg4D6yrI5uwLcxW0YIj7hn/5osR+osstynacDlrHw5ZtFK2xHCOGAcZncC70B+Q89iV8rc/ysI4aZkf/cjy9XegxAWYjbUrWcZ2Y+Jg8i+AKstpxewgJW1jtsuTVy8+eVLVqQV+c+LAVeEwE1lnrcTWV7hr8x4LgQuM2NXsh+GRwFnQK1vNHuf7MBWskmc9hHQyYwWIbusW5rut2MjYNe4/hfjOi+K2/GMK7pyXV3ZjsBE9zh9Lc4MgafSJ5mxD/Ad4HYzrg6BO8wYQFZHTwP+nSy/GVT3ZNVMIKtXX8VxQHdg5xBYasY0aq4DhMAfgT8CmHE5MCNOn10qY8YtwGP+eTH16SKyfP3rgJ+SnfQ6C7gwWY2vjxOAAWY0Dyvy/6syYz/iMTIEFpoxtIZ9a0X2w10EWPM3322Dmf+lNpBsKMTSh3QuZu2pXaV+CTg2Lrcf2c01AB3JDlKfYrYh2U06NW1Xz/jfyPISxwMQwhaE0IsQepHlLp5eaBSb7QvMJITJZDlTy+NfuZ4pJkK8McGsfWzQlpReh2qeAk6Jrw+YbYzZBsD6wCexUdwX2N09J5AdZPtidn4Ny1lZ9nr0IGvsSxNmRnfgRuD3IVBueMyngFPMaB/Lb2zGBrExujAE7gKuBHaKZdYP2Q0555LduFNbI4CtLeuBYj2yA+uQuE0vsOK740RWzhH+JfDzGLchqx8r1dcQ+ARoblb+4GlGL7KbAq+rsI1PAT8yo2Us3yfmWm8OzA6BW8h+RO9kRjegWQj8layhsJNbTh9K30Uitfc80KqUSwtgRn8z9gaGAUfH3PbuZFdeXyU7jsyJjeL9gc3jUz+HymdPzdgg/t+MLL/4nvi4pyt2BCt/jk8AnohXnGp97AyBqcBrwKWxcY0Zvcz4Tty375rR1ox2cb3D4r59EhvF6TFyaamexmV1BeaGsNK9DdKErekzxu2B6+LNasuAKcCphDAPs1vIKs8HZAe/mtwA/AmziWQV53UAQhiD2SjgTbIeL/5Zi2XdjVl3sjM9o1lxt2xlWaPxIlbcwXozcDfZa/ijMs94nKw3i1vjen6K2U1kv4YXQA3dP4XwNGbbAi/HM9jzyW4iehI4Lb4Ok8guFfnnfYnZMcAQzD4nhOsrLKfcr++dgeGEsKzqtklj1SamA7Qkq693AleXKxgCT5uxLfBy9rHKP1dbAVeasZzsxpsfkR1o/xYbnkZ2I1tBvOnsNbIfusvjjTTbhcBnZpxB1vhsDtwWAhPi084H7jPjV2QpHX90y9sxbufIOOkesjSP94D/LbNLT5Ndmn02Pu5txiiyH/GfA9eGwO3lXzZuJTv7NTIevD8k+8G9H3CeGUvj63MC2SXrP7l0jp/F7W0ZX7v/39798+ISBQEYfybRuB/CZxCd6FUategUEpWIP43oFXK1ovAFiBA60dAJuYiIKJQKt5a4xSjOISGvIPJaN+/zK7fY2Wx2c2ZnZ3aP3oghtZRJRjAM/I5gllL9vKF8CeIA6Af+UB4MZzK5rcNn2xGcUa65y7qvvxEcRnBOGVidfhVuvSaT/4CJzOcWpMUIemuMG8raB0AEvyjr3WDdtATsAg88Fbte2qHcO0/34hilNeM6gnvgDpjO5DiCNUqiD7CayUkEF8B4BK3WyBXgNILjTEYog4s7rc+sOlUdhlFbRBwAQ2S+17/4M0QsA1tk7jV9KNJ3qu0fk5mMNhR/GOjLZL6J+NJPEUE35W3QwEfbJ74QawOYy+SqnXH0f/HPd+01BfQ0fRCfcG5SrE5UK8v7Ub6b3IQu6sCS1MnqUOsC5e1K29TWrE2TYr1mxViSJEnCirEkSZIEmBhLkiRJgImxJEmSBJgYS5IkSYCJsSRJkgTAI5heQMKUyYDKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the first X test images, their predicted label, and the true label\n", + "# Color correct predictions in blue, incorrect predictions in red\n", + "num_rows = 5\n", + "num_cols = 3\n", + "num_images = num_rows*num_cols\n", + "plt.figure(figsize=(2*2*num_cols, 2*num_rows))\n", + "for i in range(num_images):\n", + " plt.subplot(num_rows, 2*num_cols, 2*i+1)\n", + " plot_image(i, predictions, test_labels, test_images)\n", + " plt.subplot(num_rows, 2*num_cols, 2*i+2)\n", + " plot_value_array(i, predictions, test_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(28, 28)\n" + ] + } + ], + "source": [ + "# Grab an image from the test dataset\n", + "img = test_images[0]\n", + "\n", + "print(img.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 28, 28)\n" + ] + } + ], + "source": [ + "# Add the image to a batch where it's the only member.\n", + "img = (np.expand_dims(img,0))\n", + "\n", + "print(img.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[5.26535496e-06 1.08125164e-07 6.97462667e-07 1.97318837e-08\n", + " 7.95597373e-07 7.19667785e-03 3.13685723e-06 2.96064429e-02\n", + " 8.49940843e-05 9.63101923e-01]]\n" + ] + } + ], + "source": [ + "predictions_single = model.predict(img)\n", + "\n", + "print(predictions_single)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAAEfCAYAAAB2/rwiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHc1JREFUeJzt3Xm4XVV5x/HvezMQpoQhgUAQAiSAoDgAhsigJoBEQAgQwkwUkGCiULAQKTSADFGrrVK0ICKDUKQqIE5QVBRQxMQBUVFwHipiK1KLipC3f7zv8W6OCbn3nr3PWdz8Ps9znpwpd+3xt9dea+19zN0REZHe6+v1BIiISFAgi4gUQoEsIlIIBbKISCEUyCIihVAgi4gUQoEsIlIIBbKISCEUyCIihVAgi4gUYuRgvjx+/HifPHlyQ5MiIjI8LVu27LfuPmFV3xtUIE+ePJmlS5cOfapERFZDZvbTgXxPTRYiIoVQIIuIFEKBLCJSCAWyiEghFMgiIoVQIIuIFEKBLCLPaRMnglmzj4kTuzMvCmQReU575JHhUQYokEVEiqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECqFAFhEphAJZRKQQCmQRkUIokEVECjGy1xMgIvVYtGhR42UsWbKk8TJWZ6ohi4gUQoEsIlIIBbKISCEUyCIihVCnngw76tyS5ypz94F/2exR4KfNTc4zjAd+26WyVHYZ5atslT1cy97C3Ses6kuDCuRuMrOl7r6zyl59ylfZKnt1KPvZqA1ZRKQQCmQRkUKUHMiXq+zVrnyVrbJXh7JXqtg2ZBGR1U3JNWQRkdWKAllEZADMrC//tabKUCAPQfsKaXIFDaR8aY6ZrdOt5W1mRV6ope0NzGx9YGy+fHFT5QyrQF7RhlP3xmRm5tnwbmanmtlu3sWGeDPrq5R/mJnt0HB53T7YbFB5vm03y17BtEwFrqXBHbBS1jhgl3y+t5lt33SZA9G2vY9d1fc7Kaepv12TPYAzzew84NqmDtTDKpDd3c1sLzM70cwWtt6ruwwAMzsI2B/4RZ1/fwDlL8/y9wROAP6rqbLadsa5Zja7qbKyjD5ghpm918zmEztAYyGwKu7+EPBjYJGZ7dhwcRsDe5rZLcAldO+K2GdVWf8LgA+Y2ci6gqj1d/LAd6yZja7j7zbB3T8BvAw4BXiju/+hiYrYsAjkyoqdBlxBnFoca2bXt3+npvK2Bt4KPOzuPzWzvi6e1pqZvRK4E7jJ3f/HzMY0UVZlZ3wLcCrwYNu01Lr9uPtyd/8oURu5CFjs7o+b2ag6y1mVXMZ9OU2nEaG8uIlQbm037v4DYBKx098I/LnusobKzGYCs4GT3f2pOoKodbDPbfntwALgIDNbo9O/XZcV7NPvJdbN0Wa2XRNlDotAzhX7MmAecI67v8vdXwZsYGbXtr4z1L+/ghXzSyL4dzezQzJIvKlQrv5dD3cCVwNn5Xt/MrMRDZU9Bdjf3acDP8/T6TOz3OU1lWGV52sAnwPuBi42s5Hu/pc6yhnotOQyXm5mGwK4+yLgu8B5dYZy2xnI8cAGxDodCZxqZpvmZ+O7eUrftj42BPYBXgBsVVcZub/sAfwbcCXwLWBPYG4JNeW2dXOImc0Fnnb3NwC/B842swlmdpKZHVdbucNlHLKZHQucA3wcuDBrVusCNwBHu/vvhvh3qyvmcOLU8jvA/cAM4HDgKne/uYbZWFX5s4FxwAPuvtTMrgF2BHZy96fNbIS7P11jeesADtwO/Ar4HXEQ3xW41d3f2klZKyjv+cDj7v7LfP3vwEh3n5M1qTXc/bZOyxzgdC0EpgE/Bz7o7j80s3OBHYCL3f3rHf79se7+eD7fHTiD2E4fN7MDgVcBPwLWASYCZ7j7nzopc4DTVV0fawF/BDbM6VsbeJ+7f6emss4A1nb3xXkgPp6oiV8BfLybB+KVMbM3A0cRlYTtiO1znpm9G9iI2BcOdvf7aynQ3Z+TD/oPJlsAa+XzvYhT+f2JjWga8ACwUQ3lnQR8GZgD/B9wILAeEchfIGqRTc7v6VnOWcBXgVfn+1cBPwP66lqm+XwhcYAbkRviO4Ed8rPZwOLq92so+++AL+WGfxkR/OsSB9ivA98Atu7StnViTstmwMPAR4A98rN3Eh19a3Tw91tNXmNyG7oZWAbsWvnOfrn8vwLs2I35XsH2djVwGzCd6Ng8B3hPXdOT+9BtwPaV9z5PtKG/sNvzvILpGwPcBEzJ16OB64Az8/V2dWTLM8rs9Ux3uMBmZThdlzvuFvne14BbiPaegzoso4+ooVydIX9MhsaI/HzdDOnn1Txv1XDcGLg+n/898OlqIBCnfVvVWPYbgHuBzVbw2ULi9PIFNZZ3NHBXPr+IOOBdWfn8UGByg9vRLhkOaxA10nfmOn8zcAewhDhLaIXy+A7L2zKD+MXAlNxurwFOqx50cttbu6n5fpbpOxK4PZ8vA96fz7cH3pGP0YP8m60K1E7ATGDzXN4XAf9AtJ1vS1SobgbO7sF8W9vrtYAvAvtV3psFvLuxaej2TNe48LYk2vVenit3PrAUmAAcANwDHFnHisn3zsoN5TayNpo7UKO1l5zPPqJWdiPwSWBUfnYMMKnGsvqIWsFHcxlOIDpbrsgDwXjgY52G8Qo2/B1zHS4gDqTjgB8SB9lRXdiWjgTua+14RE1oa+C2ynd+mOGxVh3zTRzILwQ+CEzOMLqWOFOY2vQ8t6/3ttdvJJpMTgM+Sx78M0AnMcgDUiWMZwE/AM4GHgF2Bl4KnElUAL4KPJ84AL+DrPR0aRlU1810YBticMC+ue5fnp+dmNvomBXlRMfT0c0V3+ECGwWsWdkwNgM+3PadfwJOyOevy51s5mAWXNuKWZAbi2Ugf60VRkSt+Nvk6UxD8zyVqJlvkoF4H9Fe3Jq/B1hBLbaDDbFV659HHNw+BbwtN8JLicAe8qn6CsobB4zN531ELXFWvn5b7qQTGly+fZXnFxIdiXPy9ebEqJJdgdcQB8IhH/xWtA0CzyNqh/9GhPI2xEF/AdF23u19bN8MmjcCdxEH5tbB/61EU8KQQohoe/8GcaB7NRHIDwIz8/MJwPr52Xep8QxskNP5ptzPryZq6/vk+v8l8L6ctu0bK78XMz2EhbQO0QM7DTgCeBfRfPAdKqc2uXEvrrw+Gth8iGWenjvojvl6zdwgr8md86/h3OB8TyFqpNNzgz0/Q+rynPcdaizrGOAC4CCi5rIDsH5+Njd30NpOn4G3ZPh8k+g02Yw46Fya8/lJam4GepZpWUjUxq8nxpXPzvfnE2daX+9kXVNpTiKGD34I+EeiKWp8Pr+UGMUwBdi0S/P9UvqbYdYl2qtH5Lr4MrAIeCFwHNFMNeAgyuA9GDiw8t42wG7A0nx9JvAkMCNfjyX6D2rbrge5PKYSTTQTieaKvXLdTyXOYLZvepvs+kwPYSGtl2Exhzil+VFlh5lK1FIvyc+/1Vq5QyinWnNbG/iP3Eg3y/LfmRvZVkR71yYNzvM29DeLvI4I//WJ2svOxMGptg0jg+du4LVEB+FJ+f4I4PVE+HfaTLFTLrf1iNEp9+UOeFjuhPOIA+4pwK2dljeI6do6d8LN8/URubwPzdcb0UHHDVFx+D5xmv4y4sB2NDH29hPE2c+GRDv1u+lSzZgYWncy0Ym2W753H7BePn8+0VR1BdGxNeCQzO33AaLi9GVgfuWzE4iRGgCvJGqh1c7MxpuoKmW19rFWk8pWwKfavnMuedbdlWnqVkEdLLQXETWXqcTA7M8RR66N8vOJRO3ibVQa3zsob9v89zMZDDcB5wH/SUON+TzzYLAdMXLidqKzZxzRXLJPQ+WNIk7FxhMHnjvob7qYlOGxXYfl7ZshdyxxgJsLXFv5fB/ge2RNssmdkr9tvx4N/DuwO/2n5+cBfwD27bCs/Yla4AziTOA2cjQOccZzLnGWMIkYg9xRZ+EQpm9DogP3VqJp7+J8f0z+u0H+O+AzI6IW+Q3ggHx9NBH8L87XexB9Ie8hho7uuqL10qX5bwXx5mQnZa6PqyvfuRC4oGvT1O2FMMQFtyA35vHEKfW1wNz8bBywcftCHmI5U4ia8QFELXkO2btPDEO6nmzHrnujqMzLSKIWeU4GxTuI4W6XNVDekUQN8Ezi1LzaifUmoibe0XA64BXAQ8AulfdeTLTRTau8dyWwe6frcBDzPplsE85lfA6wZb4+MENqyO3zGcbfor+mPYlol/9A5TsbEmdeN9ClDqz2ZUucpbyRqB0vJ5rkPg98GPgAcZY0mD6Y3YHlldf3E5Wbb+Y6HkFUqBaT/QXdfhAHn73y+d/levowUaNfj2gmvC23iW+RlbSuTFsvFsgAFtjfhADRqdDqBT+BqEUuAR4Fdq6p3I0ypK4CDq+831ppjY2NzJ3iU8TB5nVEzXVKhsNDxAUKG9cVVsTB5h6ixjqHOANo1WoOJ045O+7tJ3rqT8nnI/PfccSIhSVEW/I8oie7ow7KVUyHtU3TdzJ030L0D1yVO+VHcl0PubOWOGv7AnkQImuYRO3wx8DCyne7VjNuWwYzifbcjfP1yUTzwetzm5jMEMd9E6MpfkScbf1jvjeaGGFx+sqmqVsPollqOTGs8XKieeYFxIiXa4gO5pNyP+zo7HDQ09bthTGAhbVGhuKaRBvThfn+4cCStpX+BmDvGsr86/Ax4lRyTu6grR73d1Fzz2rbzvGaDMCtc54uJGoQrVElm1NjmzUx7vYu4t4ErYA8KwPpdqKtvpahbUT7/gWt9+hvt1s/y/xgPrrSkUO0U3+YGE64HdF+3Bro/5LcFjq6ACXn7XaiQ2wM0TRxJxH2XyIOrud1Y35XMn0LiRrxOcTBvtV+Pj+3i91qKGMm8BTPHMlyfHsg92DeW9vlwcATZNMZUQEaS4ws2aVn09fLhfMsC+1k4NdELWZavtdHtOeeu7KFPISV0vr3X4m7pm2arycSHU330GE74krK34XouW4F7nHA2ysbxqty562lxki0v+9KtGWOIzqSLidqca1RJKOJ2to21FhjyzLvoH+4Xh/9NeWFWd6gLjIY4nQY0R9xP3nqnO9vkeH0nprLOp047f0FcXA/gaiRts4K7qbBIX3PMm175Xa9NnE59M+Ax+hvvz+RmjqMiYrGw/l8CjHMrba+kA7WTWu/P4SoKb+i8vn15KCBnkxfLxfOChZWq/a0BTHs6WFgXOXzjYB/ptL2OJQVUnm+SeX5WcQtD1uhfEruPLUPQSJq/l8j7l0AMXLiq8ArK9+5FdizhrL2I4bu3EQ0S/yUOD3bjOi8uoQGa6e5459LtNPuVHn/8JyuxoYRseKxv63Lol9OfyfelsTBqc4moXWI4YqH8cyrKq8B9q6rnMEuA+KguwlRCbgj37uWGH5W+7ogOnSfICpXtVduhrpMKqF8FPAXYsjsIUTnclcvzHnGtPV64bRvOETtcSnRgXc2lUb1DJI3kx16HZb3JuIS5JuJGvloYtzlLzKIH6bGy5GzzBcCx+TzPYnT2OOIU9z5ubMeT1yp9HU6vAovd4Z7eWYN4FzgJ0S72UZE08hVwDYNrttJxFjbLxLNPxcQtaVuDW07lGgKelG+PoloUqiOrGh8uBnRFLaMBi8maiuvWvnYFnh+5fXZwIJ8fiLRf9HIdBHNFz2pda7swEecqbUyZw5RU/4QQ7xuobbp7WXhuTDWof/0cUaGZHUw+XnEMJrj8yh7Ch1e506ctn07g+KYDKnz87PDiNPL2hvzibbxj5OXdNM/DnMu0X58AHFZ5oda4dFBWRvkRtYaZjWmbZk+RLTT70hckDGx4fW8ZgbguRmITR4A1qo8P5VoF11M1IJbY6xPIM5Kpjc531nWJjkdHY/nHmL5pxHDRT9LDDnbgP4OrUuIs7XGxtVXpqOrHXhtB6RZuW9vS39TYbWmPIsujqZY6TT3tPD+K3M2zNfTM0TOb/veScTwoNfUsGJG54p5X+W9PTIIGzk6tpV/MDGcrdVc8aoM5aPy9V/bWGsod7888LSWb/XU+U7gJe3vP9cfOc//QhxspwEfyfffQpx1XF4J5WObWudt07RmTldXasZtZe8NfDqfX0AObcxQPoI4G+z5ndVqnuf2ZprTiGaqJXkQ3qv63W4fKJ512ns+AXHavBVwSL7eE/gTbTcGotLxM5gFSOUuYUQn0sXE4PW7qYyDJGqujbZxEU0uI4kxqtVQfgUxTvOIBsqcRQwpa10G3TpFv4Ue3Nax4eXbGvt7UL5eM4N5vzwAjSRq6A+0Qnm4P4jLo1/fCuPK+m/8zKCH8zw+/+0jOhNvyNenEmcJfUTneTFB3Hr05Fdu8xcJzOOXNn5jZvsCp5jZcne/ycxeDXzMzEa7+1UA7v5k6/97Lt0BlPMa4D1m9lJip9yVaO74Sd7cvfUjoT8nVtwDdc5n27RsRTS3PEjU4ACOynm+Pn+zrPbf53P3z+TN1pea2c7u/ru8mf9EYiTLsGBmE4mRDSe4+9fMbE3ibMuI9vLb3f0pM/sZcTnvTb2b2mZUby7fek0MPZsP/JaocLiZnQDMM7MDgMcGuj+VLud3AvBjMzvC3T9hZv8DPGrxc27rE014y83sMKIJ65EeTvLf6vGRbNPK89lEp0+rpjyT6J3dlCFcLUb/XaNal2ZeD/yG/pvZTyLarD9CXDpcW22RlXckHEqMEjmVuGJpf2I0yWFdWNaziOaLk4lA6sndtBqcvxWN/b2DqBG1rkK7kuis7epg/x4si1OIsd3nEMMcjybOCBcQN266nx7dwKfh+W61B88F/pv+C52W5Pxvn6+Py32htlvX1vXo6k845W+E7evuV2Yt+GLitnaXufsn86dr3kxcXnqDma3vQ/jpJTPbhxjKcxdwlrv/wOLXi68DnnL32ZXvGtGp+FTnc/jXvzmy9ffM7BCinfKf8/VBRLveA+7+/jw7+LbnzxY1ycz2J5pmXuI1/QxPKXI9nkbcF2MHIozvJoYxtW6f+ARwt7s/3KvpbIKZreXuT+Tz3Yn96jKiw3Yq0VY+nWgy25C4V8MPejS5XZH71Y3Ela7fIw7Qk4gre6cRlaDy9oEuH8FmEKcJi4lg2IkYfnY5/cPBDiV2pIm0XcAxwDJmEpdoHkWcwr6d/lsMjiWC+obB/M1BzuPeRPvwIqJWOo2okZxU+c55RAfT/CamYRXTN+QbrJf+YOVjf68mz7yG24P+TsxNibHdX+KZNzA6P/e1ng7nangZVK8GPIK8GjCz5HH675HycmIkU7HLotu/On0vcQ+DHYnOhWXufglx5dDuZvZ6j5+BP9jdf+25FFv/DtDjwDx3v45oDngS2M/MdvP4UckFxCnth+qbrZBH5QuJJoG1iWB4krhPxRvM7OT86oPEWOuut2N61qSGI3f/g7t/xd1vdPc/A5jZHKJm+M3eTl398oznIuAL7v4rYj9aj2gKw90fJe6q9jDwLjMbZWbD4pfmW8zsRcCnzGztfGsS0VxBZsk84BYzm+3uX3b3W939Z72Z2gHo0hGsVdOdkP/OItp331T5zolESNbSrkP/VX9TiVrCEvp/hmVdar4Cj/5xv612q82J9unWvZt3IzrRbiR2kJ6PeRzOD3o89rcL87eyGxjtTg9vYNSjZXEr+dNmRIVoXtvnhxAd9+tQw48BN/noWhuyme1HNB/sS3SuzSCunvqcu1+a35nkDbSlmtlU4qKM8cTPPn217jKynP2IS4Sne/yc+3XAl9z9svx8M+IGNt929580MQ0ScpTFDOD7PszajAHMbH3igH86cZHPIuJCo0eIg9GWxA/FLu7VNDYp+wz63P3pfP0x4mz0h/nv94A/59fvAZ5w9z/2YloHoyuBnB0NHwBe5+73mtlagBO1xtOBz7j7exuehu2IkRwfdPffNFjOLOJG+rcR7XpHufsfzWxEa+MR6dQqOjEPIIa5HUScoT3aq+lsQnV4X7USZ2aXEWfalxEduGOJsehnecnNFBXdCuQDiR90XErUEOcT185fQxzJH3X3pV2YjlHu/pculLMXMQRrosc46zHu/qemy5XVi5mtQwzzex5wi/e3m19DdF7f4d06Be6StjBeSHTeLyOuvP2umV1K3CTptfmd0V65hqF0tTfwm9n2Zja37e3fE+3GFxN3VjqDuDpvrLt/phthDNCNMM5y7iB6v79gZhspjKUJvvJOzB2AHw+3MIb+Dv4cPjqDuPrWgJPMbLq7LwD6zOzjlQtjnjNqvVLPzLYhxvpeUnlvhLvfaWYPA//r7r/Pq9a2JTrBhiWPK+RGA581s53jreG3g0gZzGwT4oKIE4m7IQ67dvOWbH48H7je3ZeZ2Y+Ii2EOz7zZ38w2zf3tObXP1VZDNrNtiWaIz7r7lfneKHd/2swmET3dv8/LNT9K/GJCV2rGveLutxD3NF6uMJaGPUZ07h3o7o3dAqAXzGzjtrceJ8ZWH5W14t8Rt3V9EnhtNhH+qtvTWYda2pDNbHti8P1jxG3+7nL3e/KzicSPJr7f3S/J+0qMdPf72q+9FxGpytrwd4nx1N9z98vz/TFEX9RM4CJ3/0q2qY9x99/2bII71HEg5/CiTwNXEGMBTyducflJd7/bzGYTV4dd1+nEisjqJYeK3kCMNZ5JDOu7Efi8u/9f3pRrLnCGu9/buymtR1015Inu/ut8vi3R8zkK+Ki7L6t8r8/dh227sYjUz8zeTVyBdxRxOfSRxE2TTieuut0U+Iq7/7xnE1mTWtqQK2Hc5+7fJ4bc/AU42MxeUfmewlhEBiRHSUBc9OLEhV2/Ji6Ff5D4HbzDiZvuP+fDGBoch2xmU4geXyPaeB5rpCARGbYylEcRtxLdirgh2SJ3vzlHdT3qQ7gjZKkavTAkL1nG3R9qrBARGfayKfSLwKXu/rZeT09TGr3zk7s/pDAWkU5lU+giYETeemFYGla34hORYe1e4jcCh62u/mKIiEgnqr+OMhwpkEVECqEmCxGRQiiQRUQKoUAWESmEAllEpBAKZBGRQiiQRUQKoUAWESnE/wOtYsZampO04AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_value_array(0, predictions_single, test_labels)\n", + "_ = plt.xticks(range(10), class_names, rotation=45)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.argmax(predictions_single[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/answers.md b/answers.md index bb3b84e..d29d802 100644 --- a/answers.md +++ b/answers.md @@ -1,14 +1,17 @@ # Answers -Nom: -Prénom: -NB: +Nom: Monomakhoff +Prénom: Victor +NB: 1 ## 1.3 Définir les objets suivants: -graph: -tensor: -layer: +graph: a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from mathematics. +tensor:a tensor in data science is an N-dimensional array of data. It could be a cube of numbers or even some higher-dimensional set of numbers. +layer:This is where the data arrives at your organization. It includes everything from your sales records, customer database, feedback, social media channels, marketing list, email archives and any data gleaned from monitoring or measuring aspects of your operations. ## 3 -answer: +answer: Différentes problèmatiques se trouvent quand on cherche à mettre un modèle en production : +1 - La complexité augmente avec les volumes de données -> augmenter la puissance de calcul +2 - Les données du modèle seront toujours légèrement inexactes -> toujours réévaluer les modèles et les réajuster, cela entraîne un ralentissement du process et beaucoup de flexibilité +