Skip to content

code for converting counts into matrices of counts of counts for bayesplot::ppc_rootgram #78

@geryan

Description

@geryan
library(greta)
#> 
#> Attaching package: 'greta'
#> The following objects are masked from 'package:stats':
#> 
#>     binomial, cov2cor, poisson
#> The following objects are masked from 'package:base':
#> 
#>     %*%, apply, backsolve, beta, chol2inv, colMeans, colSums, diag,
#>     eigen, forwardsolve, gamma, identity, rowMeans, rowSums, sweep,
#>     tapply
data("warpbreaks")

X <- as_data(model.matrix(breaks ~ wool + tension, warpbreaks))
#> ℹ Initialising python and checking dependencies, this may take a moment.
#> ✔ Initialising python and checking dependencies ... done!
#> 
y <- as_data(warpbreaks$breaks)
#int <- variable()

int <- normal(mean = 0, sd = 2, truncation = c(0, Inf))
coefs <- normal(0, 5, dim = ncol(X) - 1)
beta <- c(int, coefs)

eta <- X %*% beta

distribution(y) <- poisson(exp(eta))


ycalc <- calculate(y, nsim = 10)

yrep <- ycalc$y[,,1] |>
  matrix(ncol = ncol(ycalc$y))

# m <- model(int, coefs)
# 
# opt(m)

library(bayesplot)
#> This is bayesplot version 1.13.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#>    * Does _not_ affect other ggplot2 plots
#>    * See ?bayesplot_theme_set for details on theme setting
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following object is masked from 'package:greta':
#> 
#>     slice
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(ggplot2)

z <- as.numeric(y)
zmax <- max(z)

y_rootgram_tab <- tibble(value = z) |>
  count(value) |>
  full_join(
    y = tibble(value = 0:zmax)
  ) |>
  arrange(value) |>
  mutate(ycount = ifelse(is.na(n), 0, n)) |>
  select(-n)
#> Joining with `by = join_by(value)`


yrepmax <- max(yrep)

counttabs <- apply(
  X = yrep,
  MARGIN = 1,
  FUN = function(x, yrepmax) {
    
    tibble(value = x) |>
      count(value) |>
      full_join(
        y = tibble(value = 0:yrepmax),
        by = "value"
      ) |>
      arrange(value) |>
      mutate(n = ifelse(is.na(n), 0, n))
    
  },
  yrepmax = yrepmax
)

vlist <- lapply(
  X = counttabs,
  FUN = function(x){x$n}
)

yreptab <- do.call(rbind, vlist) |>
  apply(
    MARGIN = 2,
    FUN = mean
  ) |>
  tibble(
    yrep_mean = _,
    value = 0:yrepmax
  )


rg_tab <- full_join(
  y_rootgram_tab,
  yreptab,
  by = "value"
) |>
  mutate(ycount = ifelse(is.na(ycount), 0, ycount))


ppc_rootogram(
  y = rg_tab$ycount,
  yrep = rg_tab$yrep_mean,
  prob = 0.9,
  style = "hanging"
)
#> Error in validate_predictions(yrep, length(y)): is.matrix(predictions) is not TRUE


yrm <- do.call(rbind, vlist)
yrmt <- yrm[,1:(zmax+1)]

ppc_rootogram(
  y = y_rootgram_tab$ycount,
  yrep = yrmt,
  prob = 0.9,
  style = "suspended"
)
#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
#> ℹ Please use `linewidth` instead.
#> ℹ The deprecated feature was likely used in the bayesplot package.
#>   Please report the issue at <https://github.com/stan-dev/bayesplot/issues/>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

ppc_rootogram(
  y = rg_tab$ycount,
  yrep = yrm,
  prob = 0.9,
  style = "suspended"
)

Created on 2025-10-17 with reprex v2.1.1

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions