-
Notifications
You must be signed in to change notification settings - Fork 109
Description
I have used Tensorflow optimization toolkit to prune the benchmark anamoly_detection.
The procedure I have followed is same as shown in the below link.
https://www.tensorflow.org/model_optimization/guide/combine/pqat_example
The output during training is like this:
Epoch 2/100
2412/2412 [==============================] - 20s 8ms/step - loss: 11.1539 - val_loss: 11.1307
Epoch 3/100
2412/2412 [==============================] - 20s 8ms/step - loss: 10.6982 - val_loss: 10.6691
Epoch 4/100
2412/2412 [==============================] - 20s 8ms/step - loss: 10.4117 - val_loss: 10.5804
Epoch 5/100
2412/2412 [==============================] - 20s 8ms/step - loss: 10.2858 - val_loss: 10.2876
Epoch 6/100
2412/2412 [==============================] - 20s 8ms/step - loss: 10.1822 - val_loss: 10.2884
Epoch 7/100
2412/2412 [==============================] - 20s 8ms/step - loss: 10.1250 - val_loss: 10.2690
Epoch 8/100
2412/2412 [==============================] - 20s 8ms/step - loss: 10.0805 - val_loss: 10.3325
Output during pruning is like this:
Epoch 1/100
2680/2680 [==============================] - 47s 16ms/step - loss: -291053.6562 - accuracy: 0.0359
Epoch 2/100
2680/2680 [==============================] - 42s 16ms/step - loss: -287242.3438 - accuracy: 0.0335
Epoch 3/100
2680/2680 [==============================] - 42s 16ms/step - loss: -294022.2500 - accuracy: 0.0341
Epoch 4/100
2680/2680 [==============================] - 41s 15ms/step - loss: -301931.7188 - accuracy: 0.0336
Epoch 5/100
2680/2680 [==============================] - 41s 15ms/step - loss: -311050.6875 - accuracy: 0.0294
Epoch 6/100
2680/2680 [==============================] - 42s 15ms/step - loss: -321004.3750 - accuracy: 0.0241
Epoch 7/100
2680/2680 [==============================] - 41s 15ms/step - loss: -331941.9375 - accuracy: 0.0177
Epoch 8/100
2680/2680 [==============================] - 42s 16ms/step - loss: -343348.4688 - accuracy: 0.0109
Epoch 9/100
2680/2680 [==============================] - 42s 16ms/step - loss: -355611.3438 - accuracy: 0.0080
Epoch 10/100
2680/2680 [==============================] - 42s 16ms/step - loss: -368586.7812 - accuracy: 0.0073
Epoch 11/100
2680/2680 [==============================] - 42s 16ms/step - loss: -382228.8125 - accuracy: 0.0068
Epoch 12/100
2680/2680 [==============================] - 42s 16ms/step - loss: -396485.6875 - accuracy: 0.0066
Epoch 13/100
2680/2680 [==============================] - 42s 16ms/step - loss: -411286.4062 - accuracy: 0.0065
Epoch 14/100
2680/2680 [==============================] - 41s 15ms/step - loss: -426653.8750 - accuracy: 0.0061
Epoch 15/100
2680/2680 [==============================] - 41s 15ms/step - loss: -442495.9062 - accuracy: 0.0056
Epoch 16/100
2680/2680 [==============================] - 41s 15ms/step - loss: -458785.0625 - accuracy: 0.0049
Can you help me with this issue?