Skip to content

polynomial regression formulae #1

@atulksharma-umanitoba

Description

@atulksharma-umanitoba

In Appendix B of the 4th report (NIH/NHLBI), the polynomial regression formulae are the same for SPB and DBP z-scores, with the exception of different beta coefficients e.g. the quartic polynomial in age has the form beta1*(age -10) + beta2*(age - 10)^2 + beta3*(age-10)^3 + beta4*(age-10)^4, where you provide the betas in in your table bplu.

This is in fact what you specify for female SBP , where each term has the form beta*(age-10)^x

    mu <- bplu$sbpf[1] +
    sum(bplu$sbpf[2]*(age[i]-10),bplu$sbpf[3]*(age[i]-10)^2,bplu$sbpf[4]*(age[i]-10)^3,bplu$sbpf[5]*(age[i]-10)^4) +
    sum(bplu$sbpf[6]*z_ht[i],bplu$sbpf[7]*z_ht[i]^2,bplu$sbpf[8]*z_ht[i]^3,bplu$sbpf[9]*z_ht[i]^4)
    sbp_z[i] <- (sbp[i] - mu)/bplu$sbpf[10]

However, when I look at the analogous formula for female DBP, you have written (beta*(age-10))^2 i.e. the beta is squared (and cubed and raised to the fourth power), which is a very different result.

    mu <- bplu$dbpf[1] +
    sum(bplu$dbpf[2]*(age[i]-10),(bplu$dbpf[3]*(age[i]-10))^2,(bplu$dbpf[4]*(age[i]-10))^3,(bplu$dbpf[5]*(age[i]-10))^4) +
    sum(bplu$dbpf[6]*z_ht[i],bplu$dbpf[7]*z_ht[i]^2,bplu$dbpf[8]*z_ht[i]^3,bplu$dbpf[9]*z_ht[i]^4)
    dbp_z[i] <- (dbp[i] - mu)/bplu$dbpf[10]

If I'm not mistaken, the beta should be outside the bracket, no?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions