diff --git a/PySDM/physics/isotope_kinetic_fractionation_factors/jouzel_and_merlivat_1984.py b/PySDM/physics/isotope_kinetic_fractionation_factors/jouzel_and_merlivat_1984.py index f17186751..f0c6814c5 100644 --- a/PySDM/physics/isotope_kinetic_fractionation_factors/jouzel_and_merlivat_1984.py +++ b/PySDM/physics/isotope_kinetic_fractionation_factors/jouzel_and_merlivat_1984.py @@ -11,14 +11,14 @@ def __init__(self, _): pass @staticmethod - def alpha_kinetic(alpha_equilibrium, saturation, D_ratio_heavy_to_light): + def alpha_kinetic(alpha_equilibrium, relative_humidity, D_ratio_heavy_to_light): """eq. (11) Parameters ---------- alpha_equilibrium Equilibrium fractionation factor. - saturation + relative_humidity Over liquid water or ice. D_ratio_heavy_to_light Diffusivity ratio for heavy to light isotope. @@ -27,6 +27,6 @@ def alpha_kinetic(alpha_equilibrium, saturation, D_ratio_heavy_to_light): ---------- alpha_kinetic Kinetic fractionation factor for liquid water or ice.""" - return saturation / ( - alpha_equilibrium / D_ratio_heavy_to_light * (saturation - 1) + 1 + return relative_humidity / ( + alpha_equilibrium / D_ratio_heavy_to_light * (relative_humidity - 1) + 1 ) diff --git a/examples/PySDM_examples/Fisher_1991/fig_2.ipynb b/examples/PySDM_examples/Fisher_1991/fig_2.ipynb index ceaab1041..9a6df827b 100644 --- a/examples/PySDM_examples/Fisher_1991/fig_2.ipynb +++ b/examples/PySDM_examples/Fisher_1991/fig_2.ipynb @@ -21,15 +21,13 @@ }, { "cell_type": "code", - "execution_count": 1, "id": "31481014375c7d36", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:17.048483Z", - "start_time": "2025-06-25T12:41:17.041726Z" + "end_time": "2025-12-20T08:39:20.178984Z", + "start_time": "2025-12-20T08:39:20.175130Z" } }, - "outputs": [], "source": [ "import os, sys\n", "os.environ['NUMBA_THREADING_LAYER'] = 'workqueue' # PySDM & PyMPDATA don't work with TBB; OpenMP has extra dependencies on macOS\n", @@ -37,19 +35,19 @@ " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples', 'PySDM')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 2, "id": "c36c2f5c-17c1-422e-9ab9-f7d612064199", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:21.768860Z", - "start_time": "2025-06-25T12:41:17.056517Z" + "end_time": "2025-12-20T08:39:22.493785Z", + "start_time": "2025-12-20T08:39:20.182948Z" } }, - "outputs": [], "source": [ "from matplotlib import pyplot\n", "import numpy as np\n", @@ -64,19 +62,19 @@ " vapour_mixing_ratio,\n", " ice_saturation_curve_4\n", ")" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 3, "id": "91bb290498429f53", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:21.875872Z", - "start_time": "2025-06-25T12:41:21.845639Z" + "end_time": "2025-12-20T08:39:22.528300Z", + "start_time": "2025-12-20T08:39:22.497806Z" } }, - "outputs": [], "source": [ "formulae= Formulae(\n", " isotope_meteoric_water_line=\"Dansgaard1964\",\n", @@ -94,39 +92,39 @@ "for isotope in isotopes:\n", " alpha_eq[isotope] = getattr(formulae.isotope_equilibrium_fractionation_factors, f'alpha_i_{isotope}')\n", " diffusivity_ratio[isotope] = getattr(formulae.isotope_diffusivity_ratios, f'ratio_{isotope}_heavy_to_light')" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": 4, "id": "754af83e4ab216bc", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:21.884154Z", - "start_time": "2025-06-25T12:41:21.881306Z" + "end_time": "2025-12-20T08:39:22.533972Z", + "start_time": "2025-12-20T08:39:22.531976Z" } }, - "outputs": [], "source": [ "def alpha_kin(iso, T):\n", " return formulae.isotope_kinetic_fractionation_factors.alpha_kinetic(\n", " alpha_equilibrium = alpha_eq[iso](T),\n", " D_ratio_heavy_to_light=diffusivity_ratio[iso](T),\n", - " saturation = ice_saturation_curve_4(const=const, T=T)\n", + " relative_humidity = ice_saturation_curve_4(const=const, T=T)\n", " )" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": 5, "id": "9ca4e3256065274b", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:21.894710Z", - "start_time": "2025-06-25T12:41:21.891746Z" + "end_time": "2025-12-20T08:39:22.540134Z", + "start_time": "2025-12-20T08:39:22.537463Z" } }, - "outputs": [], "source": [ "def d_delta_dT(T, delta):\n", " y = yf(T=T)\n", @@ -143,19 +141,19 @@ " / (alpha * (y + alpha * y_e))\n", " )\n", " return res" - ] + ], + "outputs": [], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": 6, "id": "71979cfe7348344d", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:21.901806Z", - "start_time": "2025-06-25T12:41:21.899568Z" + "end_time": "2025-12-20T08:39:22.544815Z", + "start_time": "2025-12-20T08:39:22.542865Z" } }, - "outputs": [], "source": [ "delta_18O_0 = -15 * PER_MILLE\n", "delta_2H_0 = const.CRAIG_1961_SLOPE_COEFF * delta_18O_0\n", @@ -163,19 +161,19 @@ "\n", "y_e = 0\n", "yf = partial(vapour_mixing_ratio, formulae)\n" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": 7, "id": "4e112378083e50f5", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:25.203838Z", - "start_time": "2025-06-25T12:41:21.907105Z" + "end_time": "2025-12-20T08:39:27.719208Z", + "start_time": "2025-12-20T08:39:22.547553Z" } }, - "outputs": [], "source": [ "result = solve_ivp(\n", " fun=d_delta_dT,\n", @@ -189,1297 +187,19 @@ " delta_2H=delta_2H,\n", " delta_18O=delta_18O\n", ")" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "code", - "execution_count": 8, "id": "153a6e26bc2be38a", "metadata": { "ExecuteTime": { - "end_time": "2025-06-25T12:41:25.731698Z", - "start_time": "2025-06-25T12:41:25.217926Z" + "end_time": "2025-12-20T08:39:28.456103Z", + "start_time": "2025-12-20T08:39:27.743940Z" } }, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2025-06-25T14:41:25.713352\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.9.2, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d85508aab73e4fbc91cf47f982b6d8a7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=\"./fig_1.pdf
\"), HTML(value=\"./fig_1.pdf
\"), HTML(value=\"./fig_2.pdf
\"), HTML(value=\"./fig_2.pdf
\"), HTML(value=\"\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2025-06-26T01:25:44.970122\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.10.0, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8c15bde98c9c4698979a4cb47ad75d48", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=\"./fig_8.pdf
\"), HTML(value=\"" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2025-12-20T09:39:08.062718\n image/svg+xml\n \n \n Matplotlib v3.10.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig_8.pdf
\"), HTML(value=\"./fig_9.pdf
\"), HTML(value=\"" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2025-12-20T09:39:10.483313\n image/svg+xml\n \n \n Matplotlib v3.10.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig_9.pdf
\"), HTML(value=\"" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2025-12-20T09:38:41.546360\n image/svg+xml\n \n \n Matplotlib v3.10.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmp9botejd8.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8efa2723e9c3471a947d3a9f7ce74f52" + } + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 5 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-12-20T08:38:41.676493Z", + "start_time": "2025-12-20T08:38:41.673218Z" + } + }, + "cell_type": "code", + "source": "", + "id": "b03a73fd279fa0ce", + "outputs": [], + "execution_count": null + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tests/unit_tests/physics/test_isotope_kinetic_fractionation_factors.py b/tests/unit_tests/physics/test_isotope_kinetic_fractionation_factors.py index 84feeb7ed..c9dfd44a7 100644 --- a/tests/unit_tests/physics/test_isotope_kinetic_fractionation_factors.py +++ b/tests/unit_tests/physics/test_isotope_kinetic_fractionation_factors.py @@ -22,20 +22,20 @@ def test_units_alpha_kinetic(): # arrange alpha_eq = 1 * physics.si.dimensionless D_ratio = 1 * physics.si.dimensionless - saturation_over_ice = 1 * physics.si.dimensionless + rh_over_ice = 1 * physics.si.dimensionless # act sut = JouzelAndMerlivat1984.alpha_kinetic( alpha_equilibrium=alpha_eq, D_ratio_heavy_to_light=D_ratio, - saturation=saturation_over_ice, + relative_humidity=rh_over_ice, ) # assert assert sut.check("[]") @staticmethod - def test_fig_9_from_jouzel_and_merlivat_1984(plot=False): + def test_fig_9_from_jouzel_and_merlivat_1984(plot=PLOT): """[Jouzel & Merlivat 1984](https://doi.org/10.1029/JD089iD07p11749)""" # arrange formulae = Formulae( @@ -44,7 +44,7 @@ def test_fig_9_from_jouzel_and_merlivat_1984(plot=False): isotope_diffusivity_ratios="Stewart1975", ) temperatures = formulae.trivia.C2K(np.asarray([-30, -20, -10])) - saturation = np.linspace(start=1, stop=1.35) + rh = np.linspace(start=1, stop=1.35) alpha_s = formulae.isotope_equilibrium_fractionation_factors.alpha_i_18O diffusivity_ratio_heavy_to_light = ( formulae.isotope_diffusivity_ratios.ratio_18O_heavy_to_light @@ -56,7 +56,7 @@ def test_fig_9_from_jouzel_and_merlivat_1984(plot=False): alpha_k = { temperature: sut( alpha_equilibrium=alpha_s[temperature], - saturation=saturation, + relative_humidity=rh, D_ratio_heavy_to_light=diffusivity_ratio_heavy_to_light(temperature), ) for temperature in temperatures @@ -68,12 +68,12 @@ def test_fig_9_from_jouzel_and_merlivat_1984(plot=False): } # plot - pyplot.xlim(saturation[0], saturation[-1]) + pyplot.xlim(rh[0], rh[-1]) pyplot.ylim(1.003, 1.022) - pyplot.xlabel("S") - pyplot.ylabel("alpha_k * alpha_s") + pyplot.xlabel("Si [1]") + pyplot.ylabel(r"$\alpha_\text{kin} \alpha_\text{eq}$ [1]") for k, v in alpha_s_times_alpha_k.items(): - pyplot.plot(saturation, v, label=k) + pyplot.plot(rh, v, label=k) pyplot.legend() if plot: pyplot.show() @@ -88,10 +88,10 @@ def test_fig_9_from_jouzel_and_merlivat_1984(plot=False): @staticmethod @pytest.mark.parametrize( - ("temperature_C", "saturation", "alpha"), + ("temperature_C", "relative_humidity", "alpha"), ((-10, 1, 1.021), (-10, 1.35, 1.0075), (-30, 1, 1.0174), (-30, 1.35, 1.004)), ) - def test_fig9_values(temperature_C, saturation, alpha): + def test_fig9_values(temperature_C, relative_humidity, alpha): # arrange formulae = Formulae( isotope_kinetic_fractionation_factors="JouzelAndMerlivat1984", @@ -105,7 +105,7 @@ def test_fig9_values(temperature_C, saturation, alpha): alpha_s = formulae.isotope_equilibrium_fractionation_factors.alpha_i_18O(T) alpha_k = formulae.isotope_kinetic_fractionation_factors.alpha_kinetic( alpha_equilibrium=alpha_s, - saturation=saturation, + relative_humidity=relative_humidity, D_ratio_heavy_to_light=diffusivity_ratio_18O(T), ) @@ -123,13 +123,14 @@ def test_alpha_kinetic_jouzel_merlivat_vs_craig_gordon( ): # arrange T = Formulae().trivia.C2K(temperature_C) - RH = np.linspace(0.3, 1) + rh = np.linspace(0.3, 1) formulae = Formulae( isotope_equilibrium_fractionation_factors="VanHook1968", isotope_diffusivity_ratios="HellmannAndHarvey2020", isotope_kinetic_fractionation_factors="JouzelAndMerlivat1984", ) - Si = formulae.saturation_vapour_pressure.pvs_ice(T) + vapour_partial_pressure = rh * formulae.saturation_vapour_pressure.pvs_water(T) + Si = vapour_partial_pressure / formulae.saturation_vapour_pressure.pvs_ice(T) alpha_eq = getattr( formulae.isotope_equilibrium_fractionation_factors, f"alpha_l_{isotope}" )(T) @@ -138,14 +139,14 @@ def test_alpha_kinetic_jouzel_merlivat_vs_craig_gordon( )(T) alpha_kin_jm = formulae.isotope_kinetic_fractionation_factors.alpha_kinetic( alpha_equilibrium=alpha_eq, - saturation=Si, + relative_humidity=Si, D_ratio_heavy_to_light=D_heavy_to_light, ) formulae = Formulae( isotope_kinetic_fractionation_factors="CraigGordon", ) alpha_kin_cg = formulae.isotope_kinetic_fractionation_factors.alpha_kinetic( - relative_humidity=RH, + relative_humidity=rh, turbulence_parameter_n=1, delta_diff=alpha_eq - 1, theta=1, @@ -155,7 +156,7 @@ def test_alpha_kinetic_jouzel_merlivat_vs_craig_gordon( n = (alpha_kin_jm + 1) / (alpha_kin_cg + 1) # plot - pyplot.plot(1 - RH, n) + pyplot.plot(1 - rh, n) pyplot.gca().set( xlabel="1-RH", ylabel="turbulence parameter n",